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ABSTRACT 

Presenilins are the catalytic component of the γ-secretase complex which was first 

identified in the genetic screens of the patients suffering from Alzheimer's disease. 

Macroautophagy is a major route that encompasses the degradation of the cell 

components and damaged proteins, lipids and carbohydrates to recycle nutrients in 

response to starvation. Here we report that Arabidopsis presenilin double mutant 

ps1/ps2 shows defective clearance of autophagosomes in root cells when autophagy 

is induced through sucrose starvation. In addition to being susceptible to the sucrose 

starvation, mutant root cells have altered expression levels of important autophagy-

related genes. Mutant root cells show differential protein accumulations under 

sucrose starvation leading to inefficient clearance of proteins. Biochemical and cell 

biological approaches combined with autophagy inhibitors such as wortmannin and 

concanamycin-A suggested aberrant degradation of autophagosomes within the lytic 

plant vacuoles. Taken together, our data suggest an involvement of the γ-secretase 

complex and/or presenilins in plant autophagy. Presenilin enhancer-2 (PEN2) is 

another subunit of the γ-secretase complex which was first discovered in a genetic 

study involving C. elegans. It is required for the γ-secretase complex activity and 

undertakes the endoproteolysis of presenilins. Here, we demonstrate that AtPEN2 

vesicles are very sensitive to latrunculin-B, an F-actin depolymerizing drug, which 

suggests the role of the actin cytoskeleton in the motility of these vesicles. Moreover, 

AtPEN2 partially localizes with DsRED-FYVE, a PI3P reporter, which is specifically 

localized with the dynamic and highly motile late endosomal compartments and has 

been implicated in the tip growth. Furthermore, the phenotypic analysis of pen2 

mutant reveals reduced primary root growth compared to the wild type seedlings. 

Collectively, our results indicate possible roles of AtPEN2 in regulating tip growth 

and protein trafficking pathways in Arabidopsis. However, studies on other possible 

functions of AtPEN2 in signal transduction and stress responses are still required.  

 Adaptor protein (AP) complexes are conserved throughout eukaryotic 

organisms and are vital for protein sorting among various post-Golgi pathways by 

recognizing specific cargo protein motifs. Among the five AP complexes (AP1-AP5), 

AP4 is the most poorly understood. In animals, AP4 has recently been recognized as 



iii 

 

a regulator of autophagy through mediating the export of ATG9, a core autophagy 

protein from the trans-Golgi to promote autophagosome formation. Here we have 

performed an analysis of Arabidopsis mutants lacking different subunits of AP4 in 

connection with autophagy. We report that the YXXØ motif is conserved in the ATG9 

protein of Arabidopsis which is required for its recognition by AP4 complex. 

Moreover, a colocalization study reveals that AP4 complex localizes with ATG9 in 

the Nicotiana benthamiana leaf epidermal cells. Besides showing sensitivity towards 

dithiothreitol (DTT), an ER stress inducer, the mutants of AP4 complex accumulate 

ATG8, a structural component of autophagosomes. Taken together, we propose that 

the Arabidopsis AP4 complex may interact with ATG9 and play a role in its transport 

to the phagophore assembly site similar to animals and in addition to the missorting 

of proteins, defective autophagy is also responsible for the phenotypic abnormality of 

AP4 mutants. 
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INTRODUCTION 

Plants have limited locomotion capacities and cannot move to the same extent as 

animals to deal with environmental challenges. This makes them vulnerable to both 

biotic and abiotic stress conditions. In modern times, large scale cultivation of crops 

is the basis for feeding the ever-increasing population of the world. In the years to 

come, increased demand for food and a more challenging environment for plant 

growth is expected. Consequently, it is vital to understand the intricacies of plant 

growth and survival at the cellular and molecular levels. Plants have evolved 

mechanisms to adapt to the changes in climate and environment and these 

responses are controlled by various signaling pathways. These pathways upon 

stimulation lead to protein abundance of various key proteins besides other effects. It 

occurs through the mechanisms that implicate changes in the transcription and 

translation as well as rates of protein degradation. This thesis addresses some of the 

important issues in this important facet of plant growth.  

1.1 Autophagy  

Autophagy (self-eating) is an intracellular degradation system that encompasses the 

delivery of cellular cargo such as molecular complexes, protein aggregates, 

infectious agents and damaged organelles to the vacuole (or the animal counterpart, 

the lysosome). The delivered cargo is then degraded inside the vacuole and the 

breakdown products are then exported from the vacuole and recycled for other uses. 

There are different types of autophagy pathways described in different species such 

as chaperone-mediated autophagy, microautophagy, and macroautophagy. In 

plants, however, only micro and macroautophagy have been described (Figure 1). In 

microautophagy, the vacuolar membrane invaginates to engulf the cytoplasmic 

cargo and pinches off to release it inside the vacuole where it is degraded (Müller et 

al., 2000). In this doctoral thesis, my focus was only on the macroautophagy 

pathway which will hereafter be referred to as autophagy. 
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Autophagy is characterized by the formation of a double membrane 

compartment called autophagosome around the cargo that needs to be recycled and 

is sent to the vacuole for degradation (Figure 1). The cargo is delivered to the 

vacuole through a fusion of the outer membrane of the autophagosome with 

tonoplast of vacuole and the vacuolar hydrolases degrade it. It is a highly conserved 

process in eukaryotes and involves core machinery of approximately 40 autophagy 

(ATG) related genes. In plants, most of the ATG genes are encoded by the gene 

families and their transcript levels increase upon autophagy induction. 

Autophagosome formation requires three complexes (Figure 1) i.e. Atg1/ULK1, 

VPS34 (VACUOL SORTING COMPLEX)/PI3K (phosphoinositide-3-kinase) complex 

and the ATG9 complex. Besides, a variety of proteins are required for autophagy 

completion such as small GTPases (guanosine triphosphatases), coat complexes, 

tethering factors and SNARE's (Soluble NSF Attachment Protein Receptor). 

Atg1/ULK1 complex is located at the phagophore assembly site (PAS)/pre-

autophagosomal structure. Phagophore is a double membrane that encloses and 

isolates the cytoplasmic components during autophagy. Although the composition of 

the Atg1 complex varies among eukaryotes, it mainly consists of Atg1 kinase, Atg13, 

Atg11 and Atg101 and It is located at the PAS (Li et al, 2014; Suttangkakul et al., 

2011). Activation of the Atg1/ULK1 complex requires kinases that sense nutrient 

availability and environmental stresses. These include TOR (Target of Rapamycin) 

and SnRK1 (Snf1-RELATED PROTEIN KINASE 1) protein kinases. TOR negatively 

regulates autophagy and under nutrient-rich conditions, activated TOR 

hyperphosphorylates the ATG13 and prevents its binding to Atg1 to avoid the 

complex assembly and prevents autophagy. Under starvation, TOR activity is 

inhibited which dephosphorylates ATG13 and promotes the Atg1/Atg13 complex 

assembly together with other factors (Atg17, Atg11 in yeast and Atg101 in mammals 

and probably also in plants) that leads to autophagy activation.  

 

https://en.wiktionary.org/wiki/membrane
https://en.wiktionary.org/wiki/cytoplasm
https://en.wiktionary.org/wiki/macroautophagy
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Figure 1: Three major routes of the autophagy pathway. Macroautophagy, vacuolar 

microautophagy, and endosomal microautophagy together with the main proposed molecular events 

encompassing macroautophagy (Ding et al., 2018). 

The next step is decorating the phagophore with ATG8 which is at the core of 

the autophagic machinery and is extensively used to study autophagy. Decoration of 

the phagophore involves conjugation of ATG8 with PE (phosphatidylethanolamine) 

and that of ATG12 with ATG5. ATG8 first undergoes proteolytic processing by ATG4 

whereby its C-terminal glycine residue is exposed (Seo et al., 2016). Then ATG3, 

ATG7 and a ligase complex consisting of ATG12-ATG5-ATG16 transfer ATG8 to the 

PE molecules in the growing phagophore (Figure 1). ATG12 and ATG5 conjugation 
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also requires ATG7 and conjugating enzyme ATG10 and can be seen at the margins 

of the phagophore. In plants, CHMP1 (CHARGED MULTIVESICULAR BODY 

PROTEIN1), is needed for the closure of the autophagosomes (Spitzer et al., 2015). 

Once formed, autophagosomes are transferred to the vacuole and fuse with 

tonoplast by means of v-SNARE mechanism and deliver the contained molecule as 

an autophagic body. The autophagic body is then degraded with the action of acidic 

hydrolases. These enzymes are inhibited by the action of concanamycin A (ConA), 

an H+-ATPase inhibitor which makes it an effective tool to study autophagy.   

In addition to interacting with various adaptors for autophagosome formation, 

ATG8 interacts with a variety of receptors that deliver cargo to the phagophore. Most 

important of them are AIMs (ATG8 interacting motif) containing proteins such as 

ATG6, ATG1, and ATG11. NBR1 (Neighbor of BRCA1) is another important protein 

that promotes plant defenses through acting as xenophagy receptor (removal of 

intracellular pathogens through autophagy) [Zhou et al. 2013]. TSPO 

(TRYPTOPHAN-RICH SENSORY PROTEIN/TRANSLOCATOR) is another ATG8 

interacting protein that upregulates under abiotic stresses (Vanhee et al., 2011). 

Other plant-specific autophagy receptors include ATI1 and ATI3a which are required 

for the autophagic turnover of plastids and ER components (Michaeli et al., 2014).  

Studies with Arabidopsis thaliana and other plant species have shown that a 

mechanistically very identical ATG mediated autophagic system exists in the plant 

kingdom just like mammals and yeast (Li et al., 2012). In plants, autophagy is crucial 

under natural senescence, under carbon and nitrogen limiting conditions. The more 

specific roles of autophagy in plants include removal of chloroplast components 

(piecemeal chlorophagy), ER domains (reticulophagy), peroxisomes (pexophagy), 

protein aggregates (aggrephagy) and intracellular pathogens (xenophagy) [Ding et 

al., 2018].  
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1.2 The Gamma-Secretase Complex  

γ-Secretase belongs to a group of so-called intramembrane-cleaving proteases (I-

CLiPs) required for regulated intramembrane proteolysis (RIP) along with site-2 

proteases (S2P), signal peptide peptidases (SPP) and rhomboids (Sannerud & 

Annaert, 2009). RIP is an evolutionarily conserved process required for degrading 

transmembrane protein fragments on one hand (Kopan and Ilagan 2004; 

Lichtenthaler et al., 2011) and signal transduction on the other hand (Lal & Caplan, 

2011). The γ-Secretase complex is a multisubunit cleaving protease and is 

implicated in the cleavage of a variety of transmembrane substrates such as amyloid 

precursor protein (APP) and Notch. Research shows that γ-secretase mediated 

aberrant cleavage of APP and Notch leads to Alzheimer's and cancer respectively. 

This makes γ-secretase an important molecular target and various inhibitors and 

modulators are currently in clinical investigations for both diseases (Gertsik et al., 

2015). 

There are over 90 substrates of γ-secretase and the list continues to grow 

(Haapasalo & Kovacs, 2011). γ-secretase is involved in the processing of these 

substrates to produce distinct amino and carboxy termini with distinct functions 

ranging from signaling to cell adhesion and transcriptional regulation to cytoskeletal 

dynamics (Gertsik et al., 2015). Despite many years of intensive studies, the 

structure, function and precise localization of the γ-secretase and its subunits 

remains somewhat controversial. It has been proposed to localize in most of the 

endomembrane compartments including cis-Golgi, Golgi, trans-Golgi, ER, plasma 

membrane, lysosomes, and endosomes, etc. (Annaert et al., 1999; Pasternak et al., 

2003; Réchards et al., 2003; Jutras et al., 2005; Fukumori et al., 2006; Fassler et al., 

2010; Smolarkiewicz et al., 2014).  

Biochemical studies have shown that γ-secretase complex comprises of a 

core catalytic subunit called presenilin (PS) and three other non-catalytic subunits 

required for its activity namely presenilin enhancer-2 (PEN2), nicastrin (NCT) and 

anterior pharynx defective-1 (APH-1) [Francis et al., 2002; Parks & Curtis, 2007]. All 

of these subunits are vital for the activity of γ-secretase and the loss of any of these 

leads to the loss of its function (Edbauer et al., 2003). Genes that code for the γ-
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secretase subunits are evolutionarily highly conserved and are found in metazoans 

and higher plants but are missing in fungi. It has even been reported to function in 

evolutionarily distinct organisms like the moss, Physcomitrella patens and slime 

mould Dictyostelium discoideum (Khandelwal et al., 2007; McMains et al., 2010). In 

Arabidopsis, the components of γ-secretase were first described in a doctoral thesis 

wherein the focus was set on understanding the complex formation and identification 

of the substrates (Walker 2010). Later on, Smolarkiewicz et al., (2014) reported that 

all of the γ-secretase subunits also exist in A. thaliana and are active at the 

transcriptional level. Through multiple sequence alignments, they also described that 

all of the amino acid motifs essential for the activity of the γ-secretase complex are 

conserved in plant homologues. Moreover, they also found that all of these subunits 

co-localize to endomembrane system and also interact with each other in 

Arabidopsis leaf protoplasts which is consistent with the evidence from animal 

studies (Smolarkiewicz et al., 2014). 

 

 

Figure 2: Formation of the γ-Secretase complex and possible roles of its subunits (Gertsik 

et al., 2015). 
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It is widely accepted that all the γ-secretase complex subunits are 

synthesized in the ER. It is synthesized by the stepwise assembly of APH-1, 

nicastrin, presenilin and PEN2 (Figure 2). First, N-glycosylated nicastrin comes and 

together with Aph1 forms an enzyme scaffold or a subcomplex. Next, a full-length 

presenilin comes and binds with this subcomplex. Lastly, PEN2 joins the complex 

and presenilin undergoes endoproteolysis releasing presenilin-NTF/CTF (N/C 

terminal fragments) to activate the enzyme complex.  

Nicastrin is a large protein consisting of a single transmembrane domain 

(Figure 2) and four amino acid residues in the one-third proximal end of its TMD 

important for interaction with other components of the complex (Capell et al., 2003). 

Nicastrin is itself catalytically inactive but together with APH-1, it provides a scaffold 

for the γ-secretase complex. It also functions in substrate and binding site 

recognition (Dries et al., 2009). APH-1 has seven TMDs and Its GXXXG motif 

present in the fourth TMD is particularly vital for the γ-secretase complex assembly 

through intramembrane helix-helix interactions. In mammalian cells, a mutation in 

Gly 122 of APH-1 to aspartic acid leads to a loss of function phenotype rendering it 

unable to associate with γ-secretase (Lee et al., 2004). In humans, there are two 

APH-1 genes (APH-1a and APH-1b) and APH1a exists as two C terminal splice 

forms (Shirotani et al., 2004). Presenilins (PSs) are aspartyl proteases and the 

catalytic component of the γ-secretase complex which must be endoproteolysed for 

its activity. Human presenilins (HsPS1 & HsPS2) were first identified in the genetic 

screens for mutations causing early-onset familial Alzheimer’s disease (FAD) 

[Sherrington et al., 1995; Levy-Lahad et al., 2015]. Most of the genomes studied 

contain two homologues of presenilins i.e. PS1 and PS2 and have up to 67% amino 

acid sequence homology. Presenilin (PS) has 9 transmembrane domains and the 

catalytic residues reside on the TMDs 6 and 7 (Figure 2) [Tolia et al., 2008; Li et al., 

2013]. In metazoans, PS is produced as a full-length holoprotein, an unstable 

version that undergoes endoproteolysis between TMD 6 and TMD 7. 

Endoproteolysis which is required for the activity of γ-secretase releases NTFs and 

CTFs of PS which function together as a stable heterodimer (Podlisny et al., 1997). 

PEN2 is the smallest subunit and contains two TMDs (Figure 2). It consists of 101 

amino acids and its TMDs share no homology with any of the known family 
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members. PEN2 is required for the endoproteolysis of PS and ultimately for the 

activity of the γ-secretase complex (Mao et al., 2012). The significance of PEN2 in 

endoproteolysis of PS was evidenced in one study by Takasugi et al., (2003) where 

a knockdown mutant of PEN2 through RNAi resulted in decreased NTF & CTF levels 

of PS and the over-expression of PEN2 in PEN2 deficient cells recovered the PS 

fragments. In addition, PEN2 contributes to stabilize the γ-secretase complex and 

plays an important role in its overall proteolytic activity. 

 

 

 

Figure 3: The γ-secretase complex subunits. The 

four subunits of the active γ-secretase complex: 

presenilin (PS, yellow) with catalytic aspartyl residues 

(Asp), nicastrin (NCT, violet), anterior pharynx 

defective 1 (APH-1, red) and presenilin enhancer-2 

(PEN2, green) [Smolarkiewicz et al., 2013]. 

 

 

1.3 The Multifunctional Nature of Presenilins 

Beyond their role in γ-secretase complex regulation, presenilins are also involved in 

a variety of highly conserved γ-secretase independent cellular functions. They 

contain distinct protein binding domains and undergo post-translational modifications 

such as endoproteolysis, caspase cleavage, phosphorylation, and ubiquitination 

which regulate their function and interaction with other proteins (Gudey et al., 2014). 

As previously mentioned, all the γ-secretase complex components and their amino 

acid motifs are evolutionarily conserved in mammals as well as plants. 

Physcomitrella patens mutated for presenilins (Ppps) showed abnormal growth, 

reduced chloroplast movement and defective endocytosis (Khandelwal et al., 2007). 

Exogenous expression of γ-secretase subunits in A. thaliana resulted in impairment 
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of vacuolar trafficking (Smolarkiewicz et al., 2014). These studies indicate that the 

predominant role of presenilins is not connected with the γ-secretase dependant 

protease activity instead of its evolutionary function in endocytosis and vesicle 

trafficking (Duggan et al., 2016).  

 Presenilins and γ-secretase indirectly take part in protein trafficking since 

several γ-substrates are involved in protein transport such as mammalian sortilin-

related receptor and Vsp10p sorting receptor (Nyborg et al., 2006). Other studies 

report that presenilins also participate in protein trafficking, a function independent of 

γ-secretase related proteolytic activity. For instance, presenilins interact with Rab11,  

a vesicular trafficking protein (Dumanchin et al., 1999) and neurons lacking PS lead 

to reduced trafficking of TrkB and EphB receptors required for the neuronal survival 

by regulating neuroprotective functions of these receptor systems (Barthet et al., 

2013). Besides, axonal transport is regulated by PSs by their interaction with 

glycogen synthase kinase-3 beta (GSK-3β), thus influencing kinesin-1 and dynein 

function in transport (Dolma et al., 2013). Multiple evidence indicates a direct role of 

presenilins in regulating calcium homeostasis (Figure 4). It has been found to create 

calcium pores and its interaction with calcium channels like sarco/ERCa2+-ATPase 

(SERCA) pump and the inositol triphosphate receptor (InsP3R) has also been 

evidenced (Figure 4) [Oh et al., 2012; Nelson et al., 2011]. 

Presenilins also regulate Wnt/β-catenin signaling pathway, by modulating the 

transcriptional activity of the β-catenin/Tcf-4 complex (Figure 4) [Xia et al., 2001]. β-

catenin is a multifunctional protein that links transmembrane adhesion proteins such 

as the γ-secretase substrate E-cadherin with several signaling pathways and 

participates in regulating transcription of various survival and anti-apoptotic 

pathways (Rosenbluh et al., 2014; Marambaud et al., 2002).  
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Figure 4: PS1 and γ-secretase regulate Wnt and calcium signaling. (A) The γ-secretase cleaves 

E-cadherin/ β-catenin complex from the cytoskeleton to release β-catenin into the cytosol, the key 

regulator of Wnt signaling. In the cytosol, PS1 negatively regulates β-catenin and thereby negative 

regulate Wnt signaling. PS1 FAD mutations or GSK3β phosphorylation of PS1 also negatively 

regulates the Wnt pathway. (B) Presenilins interact with Ca2+ channels such as SERCA and InsP3R 

and regulate Ca2+ levels in the ER. PS1 FAD mutations have also been reported to increase cytosolic 

calcium (Duggan et al., 2016).  

Presenilins have also been linked to apoptosis, an important process involved 

in the development, normal aging as well as pathogenesis of important diseases 

such as neurological disorders and cancer. PS1 FAD mutations showed increased 

susceptibility to apoptotic stimuli (Yang et al., 2008). PSs have been shown to 

interact with apoptotic proteins such as PS1-associated protein (PSAP), FKBP38, 

Omi/HtrAS, and PARL and with anti-apoptotic proteins such as Bcl-2 and Bcl-XL and 

regulate apoptosis in γ-secretase dependent and independent manners (Alberici et 

al., 1998). In short, presenilins have a very multifunctional nature in that they not 

only take part in γ-secretase dependant functions such as regulated intramembrane 

proteolysis which is required for cell differentiation, transcription and disease 

progression but also in regulating γ-secretase independent functions like 

endocytosis, apoptosis, Wnt signaling, calcium fluxes, and degradation.   
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1.3.1 Presenilins and Autophagy 

Presenilins have been shown to function in autophagy through maintaining normal 

acidification of lysosomes and proteolysis (Figure 5). Lee et al., in 2010 reported that 

PS1 mutations result in disrupted lysosomal acidification and thereby inhibited 

autophagy. They proposed that PS1 facilitates glycosylation of the vATPase V0a1 

subunit, an element of the proton pump required for normal acidification of the 

lysosomes. OST (Oligosaccharyltransferase) is a multimeric complex in the ER that 

transfers a preassembled oligosaccharide to the asparagine residues on the 

consensus sequence asparagine-X-serine/threonine. In the cells lacking PS1, there 

is improper glycosylation of the V0a1 subunit resulting in poor assembly and function 

of the vATPase pump leading to reduced acidification of the lysosomes and 

ultimately defective autophagy. In contrast to this proposal, another study suggested 

an alternative function for the role of PS1 in the autophagy pathway. It was proposed 

that it's not the proton pump defects rather the Ca+ homeostasis defects that lead to 

lysosomal dysfunction (Figure 5) [Coen et al., 2012]. Another study proposed that 

defective Ca+ storage and release are secondary to the lysosomal dysfunction in 

PS1 mutants (Lee et al., 2015). It was revealed that PS1 mutation and lysosomal 

acidification lead to the efflux of lysosomal calcium mediated by pH-regulated 

transient receptor potential (TRP) cation channel mucoplin subfamily member 1 

(TRPML1). However, a relatively recent study has provided a completely different 

explanation for the autophagy inhibition resulting from PS1 mutation whereby it was 

proposed that PS1 undergoes phosphorylation at Ser367 residue and facilitates 

autophagosome/lysosome fusion (Bustos et al., 2017). This is accomplished when 

the phosphorylated PS1 interacts with Annexin A2 that as a result interacts with a 

lysosomal SNARE Vamp8. Annexin A2 helps in the binding of Vamp8 to an 

autophagosomal SNARE protein Stx17 to facilitate autophagosomal/lysosomal 

fusion. All these studies supply evidence for an essential role of PS1 in autophagy 

regulation but with somewhat conflicting results. However, future studies will in detail 

elucidate the role of PS1 in autophagy. 
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Figure 5: Presenilins, lysosomal acidification and Ca+ homeostasis. OST complex located in ER 

carries out glycosylation of the vATPase V0a1 subunit. Defects in PS1 lead to improper glycosylation 

resulting in misfolding and proteasome degradation of the V0a1 subunit leading to defective 

lysosomal vATPase function. Lysosomal acidification leads to the accumulation of autolysosomes in 

the cytosol. Defects in lysosomal acidification also lead to lysosomal calcium efflux through TRPML1. 

Increased lysosomal pH also leads to a failure of the two-pore channel (TPC) to dissociate from 

NAADP making it inactive and preventing lysosomal Ca+ efflux (Duggan et al., 2016).  

In plants, there is only one report from Arabidopsis concerning the possible 

role of presenilins in plant autophagy (Smolarkiewicz et al., 2014). Arabidopsis 

contains two presenilins i.e. PS1 and PS2. It was reported that 6-week old presenilin 

double mutant plants (psn1psn2) of A. thaliana display accelerated chlorosis under 

darkness treatment. The experiment was also repeated under in vitro conditions 

where 2-week old seedlings were transferred to growth medium plates containing no 

nitrogen and carbon followed by transfer to dark and again the double mutant 

depicted enhanced chlorosis. Since darkness and starvation induce autophagy, a 

possible involvement of presenilins in plant autophagy was speculated. 
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1.4 PEN2 and Vesicular Trafficking  

PEN2 (presenilin enhancer-2) was discovered in a genetic study involving C. 

elegans and is the smallest subunit of the γ-secretase complex. It is ~10 kDa protein 

and consists of 101 amino acids and shares no significant homology with any of the 

known family members (Dries & Yu, 2008). It consists of two TMDs connected 

through a cytoplasmic loop and an ER retention signal is localized on the TMD1 

(Figure 3) [Fassler et al., 2010]. PEN2 is needed for the endoproteolysis of the PS 

holoprotein to produce PS-NTF/CTF. In a study, RNAi mediated knockdown of PEN2 

led to reduced production of PS-NTF/CTF fragments (Takasugi et al., 2003). Apart 

from its role in PS endoproteolysis, PEN2 is also essential for the γ-secretase 

activity. In the mammalian cells, PEN2 knockdown resulted in an accumulation of PS 

holoprotein and a decreased activity of γ-secretase (Takasugi et al., 2003). PEN2-/- 

mouse embryos showed a notch deficiency phenotype and mouse embryo 

fibroblasts (MEFs) cells showed no γ-secretase activity (Bammens et al., 2011). 

However, the role of PEN2 in endoproteolysis of PS and γ-secretase activity raised 

an important question that whether PEN2 is needed for the activity of γ-secretase in 

itself or is it the PEN2 inspired proteolytic activity that is essential for its activity. To 

answer this, an endoproteolysis deficient mutant i.e. ps1Δe9 was expressed into 

PEN2-/-MEFs and was found to have no γ-secretase (Bammens et al., 2011). This 

revealed that PEN2 is not just important for the endoproteolysis of PS1 but also the 

γ-secretase activity. PEN2 regulates the γ-secretase activity at multiple levels, for 

instance, it regulates the composition of the complex. Overexpression of PEN2 leads 

to the production of more PS2 containing complexes than PS1 comprising 

complexes and to an increased Aβ42:Aβ40 ratio (Figure 6) [Placanica et al., 2009]. 

All this evidence shows that PEN2 modulates the γ-secretase complex through 

diverse mechanisms and not just through providing stability to the complex and by 

carrying out endoproteolysis of PS.  
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Figure 6: Proposed mechanism for 

the relationship between the 

dynamics of γ-secretase complex and 

Aβ42:Aβ40 ratios. PS1 and PS2 

compete for cofactors PEN2, Aph1, and 

NCT. PS1 complex leads to a higher γ-

secretase activity compared to PS2 and 

therefore more Aβ40 peptides are 

processed. However, overexpression of 

PEN2 or PS1 FAD mutations favours the 

formation of PS2 γ-secretase complexes 

and reduced PS1 complexes. This shift 

leads to a rise in Aβ42:Aβ40 ratio 

(Placanica et al., 2009).  

There is very little work done regarding the function of γ-secretase and its 

subunits in plants. However, Smolarkiewicz et al., (2014) reported that amino acid 

motifs vital for the complex activity are present in all of the γ-secretase subunits in 

Arabidopsis including the well-conserved ER retention signal of PEN2 i.e. 

WLVNIFWF in the form of WFVNCFYF motif. In addition, a short NF motif is also 

well conserved in Presenilin at TMD4 which was recognized as a PEN2 binding site 

(Fassler et al., 2010). This highlights that like other components of the γ-secretase, 

PEN2 as well is well conserved in evolutionarily distant plant species. The transient 

transformation of Arabidopsis leaf protoplasts showed that PEN2 shows cellular 

localization in the form of vesicular compartments. It co-localizes with trans-Golgi 

network (TGN) and pre-vacuolar compartment (PVC) and with all members of the γ-

secretase such as APH-1, NCT and PS1 and PS2 (Smolarkiewicz et al.,2014). In 

animals, the ER retention is vital in the targeting of the assembled γ-secretase 

complex subunits to various endomembrane compartments. The TMD1 of PEN2 

contains an asparagine residue which is important for its ER retention and to prevent 

unassembled subunits to enter the secretory pathway. To study this in plants, 

Smolarkiewicz et al., (2014) conducted site-directed mutagenesis by substituting 

asparagine with leucine. Interestingly, PEN2 was found localized only in the ER as 

reticulate compartments unlike its usual vesicular localization and showed no 
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localization in PVC and TGN. The interaction study of a mutated version of PEN2 

and PS2 was also carried out through FLIM measurements but surprisingly there 

was no interaction observed. This showed that PEN2 is required for the trafficking of 

presenilins although this observation needs to be further tested. Another important 

observation was that PEN2 localizes with ATG8 (autophagosomal marker) in the leaf 

protoplasts pre-treated with dark for two days to induce autophagy (Smolarkiewicz et 

al., 2014). All of these studies present intriguing evidence about the function of 

PEN2 in important cellular processes but the molecular mechanisms behind these 

observations need to be further elucidated. 

1.4.1 Intracellular Protein Trafficking Pathways in Plants  

Endomembrane system of the eukaryotic cells is very elaborate, fine-tuned and is 

involved in the syntheses, sorting, delivery, and degradation of the macromolecules. 

The system is comprising of dynamic organelles such as endoplasmic reticulum, 

Golgi complex, trans-Golgi, endosomes, and vacuole. Endosomes are sorting 

organelles within the endomembrane system which act as a gateway for endocytosis 

of the materials and an interim compartment for the transport of macromolecules to 

the vacuole (Otegui & Spitzer, 2008). They are responsible for the sorting of 

receptors, transporters and plasma membrane (PM) proteins which are a vital 

regulatory process for PM structure and the ability of the cells to react to the external 

stimuli (Reyes et al., 2011).  

In plants, endosomes are classified into early endosomes (EE) which are 

tubular and dynamic and late endosomes (LE) which are mostly spherical and are 

recognized by the marker proteins particularly Rab GTPases (Huotari & Helenius, 

2011). In the biosynthetic pathway, secretory proteins are synthesized in the ER 

lumens and exit the ER through budding of the COPII vesicles. These vesicles reach 

Golgi and fuse with Golgi apparatus releasing the proteins through cisternal 

maturation. As the maturation proceeds the trans most cisternae become TGN which 

is a dynamic compartment important for protein sorting. In plants, TGN assumes the 

function of EE and is not only an entry point for the endocytosed material but also a 

sorting spot for the cargo proteins coming from the Golgi and targeted to PM, cell 



16 

 

wall or cell plate, etc. This indicates that TGN is at the intersection of the endocytic 

and secretory pathways (Viotti et al., 2010). After arriving at EE, the endocytosed 

material might be recycled back to PM through recycling endosomes (REs), 

maintained in EE or mature into LE also called MVB (multivesicular body). MVBs 

contain several sorting receptors and vacuolar proteins that are on the way to the 

vacuole indicating that MVBs act as intermediates in the biosynthetic trafficking en 

route to the vacuole (Bottanelli et al., 2011). The MVB is also a PVC (pre vacuolar 

compartment) and is the point where the endocytic and vacuolar pathway meet. The 

plant endocytic pathways have been illustrated in Figure 7 (Contento & Bassham, 

2012). 

 

Figure 7: General overview of protein trafficking pathways in plant cells (Contento & Bassham, 

2012). Pathway (1) is depicted by green arrows which indicate the biosynthetic pathway that leads to 

PM and passes through TGN or sometimes MVB. Pathway (2) is represented by blue arrows which is 

taken up by PM components (red ovals) as they are internalized into endocytic vesicles and pass 

through TGN. The red arrows indicate pathway (3) in which PM components can recycle back to PM 

through RE. The orange arrows show pathway (4) for vacuolar components that are meant for 

degradation in the vacuole.  

 

 



17 

 

1.5 Adaptor Protein Complexes  

In the endocytic and biosynthetic/secretary pathways, the cargo proteins are 

assembled into vesicles and are conveyed to distinct target locations by vesicular 

trafficking. Adaptor proteins (AP) play an essential part in this process. APs bind to 

the sorting signal at the cytoplasmic tail of cargo, engage accessory proteins and 

concentrate the cargo into vesicular carriers (Park & Guo, 2014). These vesicles are 

then transported to the membrane of the targeted organelle. A total of 5 

heterotetrameric adaptor protein complexes AP1, AP2, AP3, AP4, and AP5 have 

been identified and all of them are evolutionarily conserved. All of these adaptor 

complexes consist of two large subunits (γ/β1, α/β2, δ/β3, ε/β4, and ζ/β5), one 

medium subunit (μ1-5) and one small subunit (σ1-5). In AP1 to AP3, these subunits 

occur in multiple isoforms and each subunit of adaptor proteins performs a specific 

function (Park & Guo, 2014). One of the large subunits in each adaptor protein 

complex binds to the membrane of the donor compartment where vesicles are 

formed and the other large subunit recruits clathrin to the membrane (Brodsky et al., 

2001).  

 Some distinct sorting signals such as NPXY, YXXΦ, and dileucine motifs 

have been identified in the cytoplasmic tail of the cargo proteins (Bonifacino & 

Dell'Angelica, 1999). The μ subunit recognizes the tyrosine-based motif (YXXØ) in 

the cytoplasmic tail of the cargo proteins. The small subunits have been implicated in 

the stabilization of the complex. The previous decade has seen a lot of advancement 

in understanding the role of adaptor protein complexes. An overview of the 

localization and functions of the adaptor protein complexes has been shown in 

Figure 8. Just like animal cells, all of the adaptor protein complexes are found in 

plant genomes including Arabidopsis through sequence analysis. Arabidopsis 

genome encodes all of the subunits (adaptins) of the adaptor proteins except the 

sigma 5 subunit of AP5 (Hirst et al., 2011). This indicates the possibility that the 

functions of these complexes are evolutionarily conserved but it should nevertheless 

be experimentally confirmed. 
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Figure 8: Trafficking and localization of the adaptor protein complexes. AP1 localizes to the 

TGN and RE. AP2 localizes to the plasma membrane and mediates clathrin-mediated endocytosis. 

AP3 is present in TGN and is involved in LRO biogenesis. AP4 is present at the TGN and plays a role 

in the transport of vesicles from TGN to endosomes. AP5 is localized at late endosomes and has 

unknown functions (Park & Guo, 2014). 

1.5.1 Adaptor Protein Complex 4 

Adaptor Protein complex 4 (AP4) has been most recently described and is the least 

understood adaptor protein complex. It is evidenced from the studies in animal 

systems that AP4 is localized at the TGN or the endosomal membranes and its 

membrane recruitment is facilitated by ARF1 (Boehm et al., 2001). It facilitates the 

transport of the cargo proteins between TGN and endosomes in a clathrin-

independent manner (Dell’Angelica et al.,1999). Among the major cargos sorted by 

AP4 include APP (amyloid precursor protein), AMPA type glutamate receptors 

(AMPAR) and glutamate receptor protein (Matsuda et al., 2008; Yap et al., 2003). 

Mutations in the genes coding for the subunits of AP4 result in intellectual 

disabilities, seizures, and microcephaly (Moreno-De-Luca et al., 2011). It is 
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noteworthy that AP4 has also been implicated in regulating autophagy in the animal 

cells (Mattera et al., 2017). ATG9, the only transmembrane containing core 

autophagic machinery protein has been identified as a specific cargo of AP4. ATG9 

is exported by AP4 from the TGN to the peripheral cytoplasm where it contributes to 

the maturation of preautophagosomal structure (PAS) [Mattera et al., 2017]. 

 In plants, the first report about AP4 came from Arabidopsis where it was 

shown that AP4 is localized at the TGN and that it binds with YXXΦ motif of the pea 

vacuolar sorting receptor (VSR-PS1) [Happel et al., 2004]. Fuji et al., (2016) 

identified all of the four subunits of the AP4 complex and demonstrated that AP4 is 

involved in receptor-mediated protein sorting through recognizing VSR1 

(VACUOLER SORTING RECEPTOR1). They developed a vacuolar sorting mutant 

library named as green fluorescent seeds (GFS) and identified gfs seeds that 

accumulate very high levels of VSR1. The seeds were named gfs4, gfs5, and gfs6 

which code for AP4B, AP4M and AP4S subunits of AP4 complex respectively. They 

also identified another mutant that encodes the fourth subunit i.e. AP4E. All of the 

mutants had defects in vacuolar protein sorting of 12S globulins which is a major 

storage protein. These subunits were also shown to build AP4 complex in-vivo which 

was localized at the TGN (Fuji et al., 2016). By employing a proteomics approach, 

Pertl-Obermeyer et al., (2016) demonstrated that ap4β mutant has defects in the 

sorting of aquaporins and the proteins of lipid metabolism. Another relatively recent 

report has shown that the AP4 mutants exhibit defects in development and protein 

sorting (Müdsam et al., 2018). The mutants depict defective roots and hypocotyls 

growth and show abnormalities in male fertility and trichome morphology (Müdsam 

et al., 2018).  
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MATERIALS AND METHODS 

2.1 Plant Materials and Growth Conditions  

2.1.1 Plant Materials  

Experiments were carried out using Arabidopsis thaliana ecotype, Col-0 (Columbia-

0) as control. Various mutant lines such as ps1ps2 double mutant, atg9, pen2, 

gfs4/ap4β, gfs6/ap4σ, and ap4e1/ap4ε were employed in different experiments. In 

addition, GFP constructs and seeds of stably transformed lines such as AtPEN2-

GFP, GFP-ATG8f, RFP-ATG8f, GFP-ATG8f/ps1ps2, DsRED-FYVE, MAP4-RFP, 

AP4-GFP, and YFP-ATG9 were used in different confocal microscopic studies. 

Seeds and/constructs of ps1ps2 and AtPEN2-GFP were kindly supplied by 

Professor Przemysław Wojtaszek of the Adam Mickiewicz University, Poznań. 

Constructs of GFP-ATG8f and RFP-ATG8f was provided by Professor Viktor Žárský 

of the Charles University in Prague. Seeds of the GFP-ATG8f were kindly provided 

by Dr. Tamar Avin-Wittenberg of the Hebrew University of Jerusalem. Plasmid 

construct of AP4-GFP and the seeds of mutant lines of gfs4/ap4β, gfs6/ap4σ, and 

ap4e1/ap4e was gifted by Tomoo Shimada of the Kyoto University. YFP-ATG9 

construct and atg9 seeds were kindly provided by Professor Jiang Liwen of the 

Chinese University of Hong Kong. pen2 mutant was ordered from NASC 

(Nottingham Arabidopsis Stock Center) and genotyped using primers listed in the 

primer list (Table 1). GFP-ATG8f/ps1ps2 transgenic lines were produced by 

Agrobacterium-mediated transformation using floral dipping of ps1ps2 with the 

construct of GFP-ATG8f (Clough & Bent, 1998) and DsRED-FYVE construct was 

prepared by Dr. Boris Voigt (Voigt et al., 2004). 

2.1.2 Seed Sterilization   

Arabidopsis thaliana seeds were surface-sterilized under a laminar flow cabinet. 1% 

NaOCl (Sodium Hypochlorite), a bleaching agent was added into microcentrifuge 

tubes containing the seeds and the bleach treatment was done for up to 5 minutes 
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by flicking the tube from time to time. Thereafter, the bleach was discarded and 70% 

ethanol (EtOH) was added. EtOH treatment was carried out for 3 minutes followed 

by washing with sterilized distilled water (dH2O). The washing step was repeated 5 

times and later the seeds were spread out on a sterilized filter paper to let them dry 

before planting on the growth media. 

2.1.3 Plant Growth Media   

Plants were grown on half-strength (½) Murashige and Skoog (MS) media supplied 

by Duchefa Biochemie. It contained microelements (0.1 µM  CoCl2.6H2O, 0.10 µM 

CuSO4.5H2O, 100 µM FeNaEDTA, 100.27 µM H3BO3, 5 µM KI, 100 µM 

MnSO4.H2O, 1.03 µM Na2MoO4.2H2O, 29.91 µM ZnSO4.7H2O), macroelements 

(2.99 mM CaCl2, 1.25 mM KH2PO4, 18.79 mM KNO3, 1.50 mM MgSO4 and 20.61 

mM NH4NO3) and vitamins (26.64 µM glycine, 554.94 µM myo-inositol, 4.06 µM 

nicotinic acid, 2.43 µM pyridoxine HCl and 0.30 µM thiamine HCl). To make 1 liter of 

½MS media, 2.1 g of MS salt along with 10 g of sucrose (1%) was added to 1 liter of 

dH2O and mixed with a magnetic stirrer. The pH of the media was adjusted between 

5.7 to 5.8 using 0.1 M KOH and 5 g plant agar (Duchefa Biochemie) was added to 

solidify the media followed by autoclaving at 121ºC for 20 minutes. For doing carbon 

(C) starvation experiments, media was prepared without adding sucrose and for 

liquid ½MS no agar was added. For various abiotic stresses, different chemicals in 

appropriate amounts were added to the media before autoclaving.  

2.1.4 Planting  

Seeds were planted on the ½MS plates which were then incubated in the refrigerator 

at 4ºC for 48 hours to break seed dormancy. The plates were then placed vertically 

in the growth chamber which was set for long-day conditions with a 16h light/8h dark 

cycle at 22°C temperature with a light intensity of 175-250 µmol photons m-2s-1. After 

four days, the seedlings that were supposed to be subjected to stress treatments 

were transferred to the relevant stress containing media. For carbon starvation 

experiments, the 5-day-old seedlings were transferred to the solid ½MS media 
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plates or to 6 well cell culture plates containing liquid ½MS media, wrapped in 

aluminum foil and placed in a growth chamber to induce carbon (C) starvation.  

To grow plants in the soil, commercially available peat moss based soil was 

used. The soil was treated with insecticides before planting the seeds or 

transplanting the seedlings into it and transferred to the growth chamber in long-day 

conditions (16h light/8h dark cycle). The tobacco plants (Nicotiana benthamiana) 

used for Agrobacterium-mediated transformation were germinated in the same soil 

under long-day conditions for up to two weeks followed by the transfer of individual 

plants to different pots and grown for another 2 weeks before infiltration with 

Agrobacterium tumefaciens.  

2.2 Plasmid Constructs   

Arabidopsis PEN2 tagged with GFP driven by 35S promoter (AtPEN2-GFP) and 

cloned into pSITE expression vector which has been previously described 

(Smolarkiewicz et al., 2014). Autophagosomal markers ATG8f tagged with RFP and 

ATG8f tagged with GFP had been previously reported (Honig, et al., 2012). The late 

endosomal marker i.e. DsRED-FYVE (Voigt et al., 2005) and microtubule marker 

MBD-MAP4-DsRed (Granger & Cyr, 2001; Marc et al., 1998) have also been used in 

the studies. 

2.3 Bacterial Manipulations  

2.3.1 Preparation of Escherichia Coli Competent Cells  

To make competent cells of Escherichia Coli (E. coli) the CaCl2 method was 

employed since calcium increases the probability of foreign DNA uptake by the cells. 

3 ml of LB media was used to inoculate E. Coli DH5α strain and incubated overnight 

at 37°C with agitation at 200 rpm (revolutions per minute). The next day, 1 ml of the 

overnight pre-culture was inoculated in 100 ml of LB medium (primary culture) in a 

sterile Erlenmeyer flask. This LB broth was incubated at 37°C with gentle shaking 

until the absorbance reached 0.5 at 600 nm. Afterward, the culture was chilled for 10 
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minutes on ice. Then, it was divided into 2 pre-chilled 50 ml falcon tubes and 

subjected to centrifugation at 4500 rpm for 10 minutes at 4°C to spin down the 

bacterial cells. After removing the supernatant carefully, the cell pellet was gently 

resuspended in 2.5 ml of 0.1 M CaCl2 solution and kept on ice for 30 minutes. Later, 

the contents of both falcon tubes were combined and the suspension was 

centrifuged again at 4500 rpm for 10 minutes at 4°C. The pallet was carefully 

resuspended in ice-cold 2.5 ml of 0.1 M CaCl2 with 15% glycerol (v/v). The cell 

suspension was stored as 50 µl aliquots in 1.5 ml microcentrifuge tubes and was 

flash-frozen in LN2 (liquid nitrogen) before storage in -80°C fridge.  

2.3.2 Transformation of E. Coli Competent Cells 

E. coli cells were transformed using the heat shock method. The frozen 50 µl aliquot 

tubes were thawed on ice before 5 µl of plasmid DNA was added into them and 

gently mixed by flicking the tubes. These tubes were kept on ice for 20 minutes and 

after that, a heat shock treatment was given in a water bath for 45 seconds at 42°C. 

After heat shock, the tubes were again incubated on ice for another 2 minutes. 

Thereafter, 500 μl of LB media without antibiotics was added into the tubes which 

were then incubated at 37°C on a shaker at 170 rpm for 1 hour. The cell suspension 

was spread on the Petri plates containing LB media and relevant antibiotics for 

selection of the plasmid. The Petri plates were sealed and put upside down in 37°C 

incubator overnight. 

2.3.3 Preparation of Agrobacterium tumefaciens Competent Cells  

A colony of A. tumefaciens was picked from a plate containing gentamycin (15 

μg/ml) and was inoculated into 3 ml of liquid YEB medium also containing 

gentamycin and incubated at 28°C with shaking (200 rpm) to prepare an overnight 

culture. The next day, 2 ml of the overnight culture was inoculated into a 500 ml flask 

containing 100 ml of the YEB medium. The flask was incubated at 28°C with shaking 

until the OD (optical density) at 600 nm was reached to 0.5. Thereafter, the culture 

was divided into two pre-cooled falcon tubes and centrifuged at 4000 rpm for 15 



24 

 

minutes at 4°C. The supernatant was discarded and the cell pellet was resuspended 

in 25 ml of cold 10 mM Tris/HCl with 7.5 pH. The contents of both tubes were 

combined and subjected to another centrifugation just as stated above. After 

removing the supernatant, the cells were carefully resuspended in ice-cold 25 ml of 

10% glycerol (v/v). After another and final centrifugation, the cell pellet was gently 

resuspended in 600 μl of ice-cold 10% glycerol (v/v). The cells were divided into 50 

μl aliquots into 1.5 ml centrifuge tubes, frozen in LN2 and stored in -80°C for 

prolonged storage. 

2.3.4 Isolation of Plasmid DNA from E. Coli   

A mini culture was prepared by picking a single colony of transformed E. coli from 

the LB media plate and putting into a 3 ml of liquid LB medium containing a specific 

antibiotic for selection and incubated at 37°C overnight with agitation at 200 rpm. 

Plasmid DNA was isolated the following day from 1 ml of bacterial culture using 

HiYield® Plasmid Mini Isolation Kit supplied by SLG (Süd-Laborbedarf Gauting) using 

manufacturer's instructions. 

2.3.5 Transformation of A. tumefaciens Competent Cells   

A high-voltage electroporation method was used to transform the Agrobacterium 

tumefaciens cells (Mersereau et al.,1990). The method is based on the premise that 

the electric field applied to the cells increases the permeability of the cell membrane 

and facilitates the introduction of DNA by the cells. To perform this, a 50 μl aliquot of 

frozen Agrobacteria (GV3101) competent cells were thawed on ice and 3 μl of 

plasmid DNA was added to it and gently mixed. This mix was then carefully 

transferred to a pre-chilled 0.2 cm Gene-Pulse Cuvette (BIO-RAD #1652086) 

avoiding the air bubbles. Meanwhile, the electroporator was set to 2.0 V leaving all 

other settings at default (200 , capacitance extender 250 μFD, capacitance 25 

μFD). The cuvette was placed in proper orientation in the electroporator and 

electroporation was carried out. Now, 500 μl of YEB medium was added to the 

cuvette, mixed by pipetting up and down and transferred to a 2 ml of microcentrifuge 



25 

 

tube. The tube was incubated at 28°C in a shaker at 200 rpm for 2 hours. Thereafter, 

100 μl of the bacteria were spread on YEB media plates containing rifampicin and 

other antibiotics specific for selection and incubated in a 28°C growth chamber to get 

the transformed A. tumefaciens cells.  

2.4 In-Planta Expression Systems  

2.4.1 Agrobacterium-Mediated Transient Expression in N. 

benthamiana   

Transient expression of the fluorescently tagged proteins was carried out using 4-

week old tobacco (Nicotiana benthamiana) plants grown under long-day conditions. 

A single colony was isolated from the plates containing transformed Agrobacteria 

and put into 3 ml YEB media with rifampicin and other appropriate antibiotics to 

prepare an overnight mini culture by incubating at 28°C with agitation at 200 rpm. 

The following day, 1.5 ml of the bacterial culture was put in a microfuge tube and 

centrifuged at 3500 rpm for 5 minutes. The supernatant was discarded and the pellet 

was re-suspended in 1 ml of infiltration media (200 μM acetosyringone, 20 mM citric 

acid and 2% sucrose). The OD600 was measured and adjusted to 0.1 to 0.3 by 

making dilutions. The lower epidermal leaf cells of tobacco were infiltrated using the 

syringe method (Sparkes et al., 2006). The plants were then kept in the same growth 

chamber for two more days before visualization with confocal laser scanning 

microscope (CLSM). 

2.4.2 PEG-Mediated Transient Transformation of Protoplasts   

Arabidopsis mesophyll protoplast isolation and the transient transformation were 

done according to J. Sheen (2002) with slight modifications. Leaves of 3-4 week old 

plants grown under long-day conditions were cut into 0.5-1 mm thin strips using 

razor blades. These strips were transferred to glass Petri plates containing 10 ml 

enzyme solution (1% cellulase, 0.2% macerozyme, 0.4 M mannitol, 20 mM KCl, 20 

mM MES-pH 5.7 and 10 mM CaCl2). The Petri plates were placed in a vacuum 
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desiccator to apply vacuum for 10-20 minutes followed by its transfer to a growth 

chamber on a platform shaker at 40 rpm to release protoplasts into the solution. 

Afterward, the same amount of W5 solution (125 mM CaCl2, 154 mM NaCl, 5 mM 

KCl and 2 mM MES-pH 5.7) was added and the mixture was filtered with a 75 µm 

nylon mesh. The protoplasts were then spun down in a round bottom glass tube at 

500 rpm for 10 minutes and the supernatant was removed. The pelleted protoplasts 

were resuspended in W5 solution, washed twice and incubated on ice for 30 

minutes. During incubation, the protoplasts were counted under a light microscope 

using a hemocytometer, centrifuged and resuspended in MMg solution (0.4 M 

mannitol 15 mM MgCl2 and 4 mM MES-pH 5.7) to have a final concentration of 1-2 x 

104/ml. 20 µg plasmid DNA was introduced into 1 ml protoplast solution (1-2 x 104) 

and mixed well. 1 ml of freshly prepared 40 % (w/v) Polyethylene Glycol (PEG, 

Sigma-Aldrich) solution was added and the mixture was incubated for 5 minutes. 

Thereafter, 6 ml of W5 solution was added and mixed gently followed by 

centrifugation at 400 rpm for 5 minutes and the supernatant was removed. The 

transfected protoplasts were now subjected to two more washings with W5 followed 

by incubation in the 6 well plates. To induce C starvation, protoplasts were incubated 

in W5 solution without sucrose (0.5%) and incubated at room temperature in 

darkness for two days before their observation with CLSM.  

2.4.3 Agrobacterium-Mediated Stable Transformation of 

Arabidopsis  

Arabidopsis plants (both mutants and Col-0 wild type) grown under long-day 

conditions were stably transformed through Agrobacteria containing various vectors 

by floral dip method (Clough & Bent 1998). The first inflorescence shoots were 

removed to promote the growth of more inflorescence and well-watered plants 

containing many floral buds were used for transformation. A mini culture was 

prepared by taking 3 ml of YEB medium containing appropriate antibiotics and 

inoculating it with transformed Agrobacteria colony. The mini culture was incubated 

at 28°C overnight with shaking to let the bacteria grow. The following day, this 3 ml 

of the mini culture was mixed with 300 ml of fresh YEB media with antibiotics in an 
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Erlenmeyer flask and incubated for one day at 28°C with shaking until the OD600 was 

reached to 0.8. Thereafter, 1.5 ml of 10% Tween-20 and 300 μl of acetosyringone (1 

mg/25 μl in chloroform) were added and mixed in the bacterial culture before dipping 

the plants. The Arabidopsis plants were now dipped gently into the bacterial culture 

for up to 10 seconds followed by covering them with plastic bags to maintain high 

humidity. The plants were then transferred to the growth chamber and put away from 

the direct light in order to recover them from inoculation. After one day, the plastic 

covers were removed and the plants were kept under long-day conditions until their 

harvest.  

2.5 Plant Genotyping   

2.5.1 Genomic DNA Isolation   

To extract genomic DNA, a leaf was cut from a 4-week old plant and ground in a 1.5 

ml microcentrifuge tube containing 400 μl of DNA extraction buffer (200 mM NaCl, 

200 mM Tris-HCl pH 7.5 and 25 mM EDTA). After grinding, it was centrifuged at 

13000 rpm for 10 minutes. Meanwhile, 715 μl of 70 % ETOH was added to another 

tube. The supernatant from the centrifuged sample was subsequently added to the 

EtOH containing a tube followed by its vigorous vortexing. Thereafter, the tube 

containing the sample was subjected to centrifugation at 13000 rpm for another 10 

minutes followed by removal of the supernatant. Afterward, the sample was 

subjected to the last centrifugation at 2000 rpm for 10 minutes and any supernatant 

left was completely discarded. The tube containing pallet was incubated at 50°C to 

let the pallet dry. After drying, the pellet was resuspended in 50 μl of 10 mM Tris-HCl 

pH 7.5.  

2.5.2 PCR Reactions 

PCR (Polymerase Chain Reaction) was conducted for genotyping the mutant lines in 

order to determine the presence of T-DNA (Transfer DNA) insertion. A master mix 

was prepared such that each reaction (25 ml) contained 5 ml of Promega 5X 
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GoTaq® green reaction buffer, 0.5 μl of 10 mM forward primer (FP), 0.5 μl of 10 mM 

reverse primer (RP), 0.5 μl of 2.5 mM dNTPs, 0.1 μl of Promega GoTaq® G2 DNA 

Polymerase, 16.4 ml dH2O and 2 μl of DNA. The 0.2 ml PCR tubes containing these 

reactions were put inside BIO-RAD MyCycler™ Thermal Cycler System and 

following PCR conditions were set. Denaturation was done at 95°C for 5 minutes on 

the initial cycle followed by 30 seconds on the rest, annealing was done for 30 

seconds at a temperature set to 5 degrees less than the Tm (melting temperature) of 

the primers and extension was carried out at 72°C for ~1 min/kb with 5 minutes at 

the last cycle. The total number of cycles was set to 30.  

2.5.3 Gel Electrophoresis  

After running the PCR, the reactions were run on 1% (w/v) agarose gel prepared by 

dissolving in 1X TAE buffer (20 mM acetate, 40 mM Tris and 1 mM EDTA with pH 

8.6) through boiling in a microwave oven. After boiling, once the temperature of the 

solution was dropped to ~50°C, the DNA stain (Roti®-GelStain, Carl Roth GmbH, 

Karlsruhe) was added to it. The solution was loaded onto the electrophoreses 

chamber and after it cooled down, the samples were directly loaded into the wells. 

100 bp (base pair) or 1 kb (kilobase) GeneRuler DNA ladders (Thermo Fischer 

Scientific) were also loaded in one of the wells to determine the size of the DNA 

fragments. The gels were run for 40 minutes at 100 V (volts) and later observed 

under transilluminator.  

2.6 Quantitative real-time PCR  

2.6.1 RNA Isolation  

Total RNA was isolated from the seven-days old carbon starved seedlings of 

Arabidopsis plants (Col-0 and ps1ps2 double mutant) to perform validation of the 

protein sequencing results (Figure 13) and to determine the relative mRNA 

expression of various autophagy-related genes in ps1ps2 through qPCR (Figure 14). 

A total of 50 mg plant sample was taken in the microcentrifuge tubes and 
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immediately placed on LN2. RNA was extracted using Qiagen, RNeasy Mini Kit 

(Hilden, Germany) following the instructions laid out by the manufacturer. After RNA 

extraction, its quality and quantity were evaluated by using NanoDrop™ 2000 

spectrophotometer (Thermo Fisher Scientific). The integrity of RNA was also 

checked by running it on 1% agarose gel.  

2.6.2 cDNA Synthesis  

cDNA (complementary DNA) was made from the total RNA using Invitrogen™, First-

Strand cDNA Synthesis Kit (Thermo Fisher Scientific) following the manufacturer's 

instructions with slight modifications. A reaction of 20 μl was prepared on ice in a 

nuclease-free 1.5 ml microcentrifuge tube and the following components were 

added: 1 μl (1 ng-5 μg) template RNA, 1 μl Oligo (dT) primer and 9.5 μl dH2O. To get 

rid of any secondary structures, the tube was gently mixed, briefly centrifuged and 

incubated at 65°C for 5 minutes. After that, it was chilled on ice, briefly centrifuged 

and again placed on ice. Next, 4 μl of the 5x reaction buffer, 0.5 μl RNAse inhibitor, 2 

μl of 10 mM dNTPs and 1 μl reverse transcriptase were added. The tube was gently 

mixed, briefly centrifuged and placed at 42°C for 60 minutes. The reaction was 

terminated by heating at 70 for 10 minutes and prepared cDNA samples were stored 

in -20°C refrigerator.  

2.6.3 Real-time PCR Analysis   

Quantitative real-time PCR (qPCR) was performed in a 48 well plate using the 

StepOne Real-Time PCR system (Applied Biosystems). SYBRTM green PCR master 

mix (Applied Biosystems, Lot. 1805518) was used as a fluorescent dye to monitor 

double-stranded DNA (dsDNA) synthesis. The reactions of 10 μl volume (5 μl 

SYBRTM Green master mix reagent, 200 nM of each gene-specific primer, 1.0 ng 

cDNA and sterile dH2O) were prepared on ice. The experiment was set up on the 

machine with the following PCR reaction conditions, 2 minutes at 50C on the first 

cycle, followed by 10 minutes at 95C then 40 cycles of 95C for 15 seconds and 

60C for 1 minute (annealing). The resulting PCR data was analyzed using the 
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StepOne software v2.1 (Applied Biosystems). All of the amplification plots were 

analyzed using a threshold of 2.0 to get the Ct (threshold cycle) values. These 

values were then normalized to the Ct values of Arabidopsis Actin2 (AT3G18780) 

which was used as the reference gene.  

Table 1: Primers List   

Genomic DNA Amplification Primers 

PEN2-F 5'-TGCCGTACAGATTTTGATTCC 

PEN2-R 5'-AAGTCCATTGGCCTATTCAGG 

LBb1.3 5'-ATTTTGCCGATTTCGGAAC 

Primers for Gene Expression Analysis 

PEN2-F   5'-CGACCCCAGTCTGAACCCTA 

PEN2-R 5'-CAGACAAGCCGAGACGATCA 

PS1-F 5'-GAACTCCCAAAAATGGCGTA 

PS1-R 5'-GCTTCACTTGAACATCACAAGG 

PS2-F 5'-GAAATCAAAGACCCAGAAGCA 

PS2-R 5'-TCAAAGTCTAGGACGAGCACA 

qPCR Primers for Validation of the Genes Identified in Sequencing 

AT5G01300.1-F  5'-CGGTCACCGTTTTCAGTTCAAG 

AT5G01300.1-R 5'-TGCCCTTCAATTGCGATCAG 

AT1G56410-F 5'-TGATGCATCTGTCCAAAGCG 

AT1G56410-R 5'-TCCGCAGCGAATTGTTTCTC 

AT1G58380.1-F 5'-TGGGTTCCTTACACCAGAGTTC 

AT1G58380.1-R  5'-ACCTTGGTTGCAGAAACAGC 

AT3G06040.1-F 5'-ATTTCATCGGACGGCATTGG 

AT3G06040.1-R  5'-TCACATCGAAAGCCGTCTTC 

AT3G12650-F 5'-TGTGGAACGCGATTTGTCAG 

AT3G12650-R 5'-AAATCGCCGCTCCAAGAATC 

AT1G55490-F 5'-AGCAAGCGGAGCAAGATTAC 

AT1G55490-R 5'-TGCTCCAACCTGAATCACAG 

AT1G13060.2-F  5'-ATGAGCTGGCAAACAAGAGG 

AT1G13060.2-R  5'-CCAACAGAAAGTCCCATTCC 

AT1G52600.1-F  5'-AGGACAGCTTTGGCTTCATC 

AT1G52600.1-R  5'-CCCATCCAACATAAGGCAAG 

Actin2-F TGCCAATCTACGAGGGTTTC 

Actin2-R CTTACAATTTCCCGCTCTGC 

https://www.araport.org/locus/AT3G18780
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qPCR Primers for Autophagy Related Genes 

AtTOR-F 5'-TGAAGTCCCCCAATTAGCAC 

AtTOR-R 5'-TTCGTCAGGCTCAACATCAG 

ATG9-F 5'-AAGGTGTAGGCCATGTTTGC 

ATG9-R 5'-CGACGAGTTGCATTATGTGG 

ATG8a-F GAACACATTGCCTCCAACTG 

ATG8a-R 5'-GGAACCCATCCTCATCTTTG 

ATG18a-F 5'-CAAGATCATGCTTGCTTCGC 

ATG18a-R 5'-AATCACGCCGGAAAATCTCG 

Table 1: A list of the primers utilized in the various analysis. 

2.7 Protein Work   

2.7.1 Protein Extraction   

Seven-day-old etiolated seedlings were collected, weighed and put in liquid nitrogen. 

For total protein extraction, 50 mg of the plant material was ground in liquid nitrogen 

and ice-cold protein extraction buffer (50 mM Tris-pH 7.5, 20 mM NaCl, 10% [v/v] 

glycerol, 0.1% SDS and phosphatase protease inhibitor cocktail [Roche]) was added 

into it. The samples were mixed well and centrifuged at 16000g for 15 minutes at 

4C. The supernatant (total protein content) was recovered in fresh tubes. To obtain 

the soluble and insoluble protein fractions, the protein extraction buffer without and 

with 0.1% SDS was added to the samples respectively.  

2.7.2 SDS PAGE  

The SDS PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) was 

carried out using 0.75 mm casts in a Hoefer™ Mighty Small™ gel system 

(Thermofisher Scientific). The separation gel was prepared using 12.5% 

acrylamide/bis solution 37:5:1 (Serva), 3 M Tris-pH 8.8, 10% SDS, 10% APS 

(ammonium persulphate), 0.04% TEMED (tetraethylenediamine) and dH2O. The 

stacking gel was prepared using 6% acrylamide/bis solution 37:5:1, 1 M Tris-pH 6.8, 
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10% SDS, 10% APS, 0.1% TEMED and dH2O. The protein samples were subjected 

to 4X protein loading dye (300 mM Tris-HCl, 500 mM DTT, 60% Glycerol, 10% SDS, 

and 0.01% bromphenol blue) and denatured at 96C for 3 minutes. The denatured 

protein samples were then loaded on the gel along with an unstained protein 

molecular weight marker (prestained protein ladder for western blotting [PagerRuler, 

Thermofisher Scientific]) and ran at an appropriate voltage at room temperature until 

the blue dye reached the lower end of the gel. After the run was complete, the 

protein gel was stained with Coomassie blue staining. The gels were soaked in 

Coomassie solution (1.1% Coomassie Brilliant Blue R250, 20% isopropanol, 20% 

acetic acid and 60% dH2O) for 30 minutes with shaking. Thereafter, the gel was 

destained for another 30 minutes with the destaining solution (10% isopropanol, 10% 

acetic acid and 80% dH2O) until the blue background was gone. The protein 

identification in the bands of interest was done by Dr. Youjun Zhang in the lab of 

Prof. Alisdair Fernie based on a previously described method (Avin-Wittenberg et al., 

2005). 

2.7.3 Western Blotting   

In western blotting, the proteins ran on the separation gel can be subjected to 

detection by antibodies. The proteins were transferred to a PVDF membrane through 

electroblotting at room temperature for 1 hour at an appropriate voltage. Thereafter, 

the membrane was blocked for 30 minutes in 5% skimmed milk (Serva), Tris buffer 

saline (TBS) and Tween-20 (TBST: 50 mM Tris-HCl pH 7.6, 100 mM NaCl and 0.1% 

Tween-20). After blocking, the membrane was incubated overnight at 4C with 

shaking in the anti-GFP antibody (Roche) diluted 1:2000 in TBST buffer. The 

following day, the membrane was subjected to 3 washings (each for 10 minutes) in 

TBST buffer. A 1/4000 dilution of HRP (Horseradish Peroxidase) linked anti-mouse 

secondary antibody (Cell Signaling Technology, #7076) made in TBST milk was 

prepared and the membrane was incubated in it for 1 hour at room temperature with 

shaking. Thereafter, the membrane was washed 3 times in TBST buffer and each 

time for 10 minutes. The antibody attachment places were observed using 

electrochemiluminescence (ECL) by soaking the membrane for 5 minutes into the 
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western blotting substrate solution (Serva) prepared by mixing reagents A and B in 

1:1 ratio. Imaging was performed using the BIO-RAD ChemiDocTM MP imaging 

system. 

2.8 Confocal Microscopy   

Imaging was performed using the Olympus FluoView FV1000 confocal laser 

scanning microscope. The instrument is fitted with a diode (405 nm), argon-ion (458, 

488 and 514 nm) and helium-neon (543 nm) lasers which were used to excite 

different fluorophores. GFP was excited at 488 nm wavelength and emission was 

collected between 500 to 600 nm. MDC (monodansylcadaverine) dye was excited at 

the wavelength of 533 nm and emitted at 508 nm while RFP and red fluorescent dye 

FM4-64 were excited at 543 nm and their emission was filtered between 660 and 

760 nm. Roots of Arabidopsis seedlings were observed by putting on a glass slide 

between two glass coverslips in aqueous media and using 40X oil immersion 

objectives. In order to observe transient expression in N. benthamiana, a small piece 

of a leaf (1 cm2) was cut, mounted on the cover slide with abaxial side facing up and 

was observed using 40X oil immersion objective. For simultaneous imaging of RFP, 

GFP, and FM4-64, the images were acquired by using sequential imaging mode to 

prevent fluorescence bleed (Hutter H. 2004). Image processing was done using Fiji 

software (Schindelin et al., 2012) to adjust the contrast, intensity, and projection of 

the serial confocal sections of the images. 

2.8.1 Fluorescent Dyes and Inhibitor Treatments   

FM4-64 dye treatment was carried out using seven-day-old seedlings grown on 

½MS media plates. The seedlings were incubated in pre-cooled FM4-64 dye solution 

(5 ug/ml) on ice for 5 minutes to slow down endocytosis followed by 3 washings with 

dH2O to remove the excess of dye. The seedlings treated with dye were put on the 

glass slides containing aqueous ½MS medium and were hanged vertically in glass 

slide staining jars for different time intervals (15, 30, 45 and 60 minutes) before 

observation under the confocal microscope. For BFA (Brefeldin A) treatment, the 
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FM4-64 stained samples were put on the slides containing ½MS solution with BFA 

(50 μM) and hanged in the same jars for 30 minutes before examination under the 

microscope. To study autophagy with MDC dye, seven-day-old carbon starved 

Arabidopsis seedlings were incubated in 50 μM dye solution at ambient temperature 

for 10 minutes followed by washing with PBS buffer (phosphate buffer saline) before 

subsequent observation with confocal microscopy. Latrunculin-B (Lat-B) and 

gamma-secretase complex inhibitor (BSM-299897) treatments were done by 

incubating the seven-day-old seedlings in 10 μM of Lat-B and 50 μM of BSM-299897 

solutions respectively for 30 minutes. 

2.8.2 Treatment with Autophagy Inhibitors   

Autophagy inhibitors such as ConA (Concanamycin A) and wortmannin (Wort) were 

used for studying autophagy as specified in a protocol described by Jung et al., 

(2017). Six-day-old seedlings grown on ½MS media plates were transferred to the 6 

well plates containing liquid ½MS media with 1 µM ConA or 10 µM wortmannin. As a 

control, plates were put in the growth chamber on a shaker with gentle shaking (40 

rpm) for 16 hours before observation with the confocal microscope. The seedlings 

subjected to C starvation treatment were transferred to 6 well plates containing ½MS 

medium without sucrose. These plates were enwrapped with aluminum foil and 

transferred to the growth chamber for 16 hours with shaking. 

2.9 Hypocotyl/Root Length Measurements and Statistical 

Analysis   

Arabidopsis seedlings were grown in the plates as described previously for seven 

days and were scanned using Adobe Photoshop (Adobe Systems Inc.). Hypocotyl 

and root length measurements were done using the Fiji software. The experiment 

was replicated thrice and the statistical analysis was carried out with Student’s t-

tests on the raw data using Prism GraphPad version 5.00 for the Windows (La Jolla 

California, USA). Results were found to be statistically different at a probability level 

of P < 0.05. 
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2.10  Accession Numbers  

The locus numbers of major Arabidopsis genes discussed in this work include PS1 

(At1G08700), PS2 (AT2G29900), PEN2 (AT5G09310), ATG8f (AT4G16520), ATG8a 

(AT4G21980), ATG9 (AT2G31260), ATG18a (AT3G62770), AP4β (Atg11490.1), 

AP4σ (At2g19790.1) and AP4ε (At1g31730.1).  
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RESULTS 

3.1 Carbon Starved Etiolated Seedlings of ps1ps2 have 

Shorter Hypocotyls and Roots  

Arabidopsis etiolated seedlings were used as a model system to study the effect of 

carbon starvation since the only C source available to the plants is coming from the 

seeds which makes this system heterotrophic (Avin-Wittenberg et al., 2015). 

Besides, there is no additional photosynthesis happening. The analysis was started 

by studying the phenotype of presenilins double mutant grown under carbon 

starvation and comparing it with wild-type Col-0. We also used ATG9 as an 

additional control since it is an essential component of autophagic machinery and 

has been reported to be involved in autophagosomes formation in Arabidopsis 

(Zhuang et al., 2017). In the past, it has been shown that atg mutants display a 

delayed growth phenotype (Avin-Wittenberg et al., 2015). Seeds were grown on 

½MS medium without C source and grown in the dark for seven days. Presenilins 

mutant ps1ps2 and atg9 mutant displayed shorter hypocotyls and roots compared to 

the wild-type plants (Figure 9) and this difference was also statistically significant. 

The phenotype was recovered when the media was supplemented with an external 

C source. The size of the hypocotyls and roots of the mutants was similar to that of 

wild-type plants when grown on 1% sucrose (Figure 9A, E). These results show that 

the presenilins mutant displays a delayed growth phenotype when grown under C 

starvation just like other autophagy-related mutants and gave important evidence 

that autophagy is disturbed in this mutant line.  
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Figure 9: Etiolated seedlings of ps1ps2 and atg9 mutants grown under C starved condition 

showed significantly shorter hypocotyls and roots compared to the wild type seedlings. (A, E) 

Measurement of the hypocotyls and roots of ps1ps2, atg9 and WT control grown under 1% sucrose 

using ImageJ. (C) Representative image of the etiolated seedling of each line grown under 1% sucrose. 

(B, F) Measurement of the hypocotyls and roots of ps1ps2, atg9 and WT control grown without sucrose 

using ImageJ. (D) Representative image of the etiolated seedling of each line grown without sucrose. 

Data represent the mean (S.E) of three independent replicates and different letters above the error 

bars show significant differences compared to WT (P < 0.05) based on the student t-test. 
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3.2 Carbon Starvation Induces Autophagy in ps1ps2 Mutant  

Although the role of gamma-secretase complex particularly the presenilin subunit in 

terms of autophagy has been well studied in animals very little is known in plants. 

However, recently Smolarkiewicz et al., (2014) showed ps1ps2 displays enhanced 

chlorosis in the darkness which is an autophagy-related symptom. To further this 

observation and investigate the role of presenilins in autophagy. Five-day-old wild 

type (WT) Col-0 and ps1ps2 seedlings grown on ½MS were subjected to sucrose/C 

starvation media for two days under dark to induce autophagy. For control, the 

seedlings were kept growing on ½MS media under standard growth conditions. 

Autophagy was observed in the root cells of the seedlings by staining with MDC dye. 

MDC dye stains acidic compartments and autophagosomes which as well are acidic 

bodies and it has been tested for use in mammals (Munafo & Colombo, 2001). 

ps1ps2 showed a high number of autophagosomes under sucrose/C starvation 

compared to wild type (Col-0) plants (Figure 10D). Remarkably, the ps1ps2 

seedlings showed a higher number of autophagosomes even under the normal 

growth conditions (Figure 10B). This gave a first hint about the defectiveness of 

autophagy in the root cells depleted with presenilins. 

 

 

Figure 10: Autophagy induction in ps1ps2 double mutant under sucrose starvation. (A, B) Root 

cell images of seven-day-old ½MS grown seedlings of WT and ps1ps2 under standard growth 

conditions. (C, D) WT and ps1ps2 grown without sucrose for two days (C starvation), ps1ps2 showing 

a visibly higher number of autophagosomes in the root cells.   
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3.3 Presenilins Mutant has Higher Number of Autophagosomes  

In order to further confirm that the ps1ps2 mutant has a high level of basal 

autophagy under normal growth conditions, we followed another approach by 

isolating protoplasts from the leaves of WT and ps1ps2 mutant plants. These 

protoplasts were transformed with autophagosomal marker i.e. GFP-ATG8f which is 

an extensively used marker to follow autophagy. The presence of more than three 

visible autophagosomes in a protoplast determines active autophagy (Yang et al., 

2016). Previously, autophagy in ps1ps2 was observed by using MDC dye (Figure 

11) which is although a reasonable tool to study autophagy but has some drawbacks 

associated with it such as its lack of specificity. Following the transient 

transformation of the leaf protoplasts, we observed a visibly higher number of GFP-

ATG8f tagged autophagosomes in ps1ps2 protoplasts compared to WT even in the 

transient system as is evident from Figure 11 and it was consistent with our previous 

observation using MDC dye (Figure 11). Although, this experiment was useful to get 

insights about autophagy in ps1ps2 mutant, nevertheless, further studies were 

necessary to be performed using the stably transformed lines.  

 

Figure 11: Leaf protoplasts of ps1ps2 mutant have an abnormal accumulation of 

autophagosomes. Transient transformation of GFP-ATG8f in the leaf protoplasts of WT and ps1ps2 

mutant observed by confocal microscopy. (A, D) GFP tagged autophagosomes appear as green 

puncta and are indicated by the arrows. (B, F) show chloroplast and (C, F) merge respectively.   
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3.4 Presenilins Malfunction Results in Abnormal Accumulation 

of Autophagosomes in the Root Cells  

Autophagosome formation is a conserved process and ATG8 is a widely used and 

reliable autophagosomal marker to study autophagy in Arabidopsis. In plants, GFP-

ATG8 fusion makes it easier to visualize autophagosomes which appear as puncta. 

To confirm the previous results of (Figures 10 & 11) and further study a possible 

functional role of presenilins in autophagy, GFP-ATG8f was transformed into the 

ps1ps2 mutant line through stable transformation. Root cells of seven-day-old ½MS 

grown seedlings of GFP-ATG8f/ps1ps2 and GFP-ATG8f as control were observed 

under CLSM. Surprisingly, in the ps1ps2 mutant background, there was a huge 

buildup of autophagosomes as reflected by an increase in the GFP-ATG8f labeled 

puncta (Figure 12). The GFP-ATG8f used as control had clear cells with very few 

autophagosomes. This defective accumulation of autophagosomes in ps1ps2 

suggested an important role of presenilins in autophagosome clearance and is 

consistent with previous observations (Figures 10 &12).   

 

 

Figure 12: Subcellular expression of 

GFP-ATG8f in WT and ps1ps2. Images 

are from the root cells of seven-day-old 

seedlings grown under standard growth 

conditions in ½MS media plates as 

observed by CLSM. 
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3.5 Differential Protein Accumulation occurs in ps1ps2  

Proteins are the degradation target of autophagic machinery (Li & Vierstra, 2012), 

therefore, we decided to investigate the protein content of the carbon starved ps1ps2 

mutant compared with WT plants. For this purpose, the total protein content was 

isolated and run on SDS gel. As expected ps1ps2 showed higher accumulation of 

proteins compared to the wild-type plants (Figure 13A). This observation showed 

that due to the defectiveness of the autophagy pathway, the proteins were not able 

to recycle leading to their abnormal accumulation in the cytosol. When the same 

quantities of protein were separated on SDS-PAGE, some of the bands in ps1ps2 

showed higher intensity compared to wild-type plants. Especially, a band of around 

~22 kDa size (marked by arrow) in ps1ps2 was very prominent compared to the 

same band in wild-type which suggested a differential accumulation and degradation 

of some proteins in this mutant under C starvation. To get further insights that 

whether the protein accumulation at ~22 kDa is either present in the soluble or non-

soluble fractions of the proteins, non-soluble protein fraction was extracted using 

extraction buffer with SDS and soluble proteins without SDS and separated on 12% 

SDS gel (Figure 13B). White arrow indicates that the prominent ~22 kDa band is 

present in ps1ps2 double mutant in the soluble protein fraction. 
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Figure 13: Separation of total protein content, as well as the soluble and non-soluble protein 

fraction from the seven-days-old C, starved etiolated WT and ps1ps2 seedlings on the SDS 

gel. (A) Total protein content from the WT and ps1ps2 mutant grown under C starvation media and 

complete darkness was isolated and run on 12% SDS gel. Arrows indicate protein bands with visibly 

higher protein content in ps1ps2 compared with WT. (B) Separation of soluble and non-soluble protein 

fraction on 12% SDS gel from the seven-day-old C starved etiolated seedlings. The ~22 kDa band is 

present in the soluble fraction of the proteins and is indicated by an arrow. 

3.6 Identification of the Selected Protein Band by Liquid 

Chromatography Mass Spectrometry (LCMS)  

The ~22 kDa band from ps1ps2 showing a difference in accumulation in Figure 13A 

along with WT band of the same size were excised followed by in-gel digestion with 

trypsin. The resulting peptides were identified using liquid chromatography coupled 

with tandem mass spectrometry (Table 2). We identified a total of 8 proteins from 

sequencing that accumulated in higher amounts and could be of interest for further 

studies (Table 2). Our proteomic analysis revealed the accumulation of chaperonin 

61 beta (CPN60β) which has many known functions. It is a chloroplast localized 

chaperone implicated in protein folding of newly synthesized and stress denatured 

proteins (Peng et al., 2011). Additionally, it has been found involved in proper plastid 

division and a mutation in CPN60β abolishes the greening of plastids and results in 
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reduced chlorophyll levels (Suzuki et al., 2009). We were able to identify the 

accumulation of two endopeptidases PBE1, a 21S proteasome beta E1 protein and 

peptidase S24 family protein, both of these are enzymes involved in endopeptidase 

activity. PBE1 has been found involved in proteolysis of catabolic proteins in cells 

and it is responsive to cadmium (Cd) stress in Arabidopsis (Polge et al., 2009). The 

accumulation of these proteins in ps1ps2 mutant indicates a defectiveness in protein 

degradation which is a known function of autophagy. Our proteomic analysis also 

revealed the accumulation of PEBP which belongs to the phosphatidylethanolamine-

binding protein family. We also identified another interesting protein i.e. HSP70T-1 

(heat shock protein 70T-1) which is a cytosol localized chaperone. The expression of 

HSP70T-1 is induced by temperature extremes and rises after seed imbibition (Sung 

et al., 2001). Two ribosomal proteins XW6 and L12 were also accumulated which 

implies possible defects in the ribophagy pathway.  

Table 2: Identification of 22 kDa Protein Band in ps1ps2 from Figure 13A 

AGI PEPTIDES DESCRIPTION  MW 

AT1G55490 2 CPN61B, LEN1 | chaperonin 61 beta 63.8 kDa 

AT1G13060 2 PBE1 | 21S proteasome beta subunit E1 32.3 kDa 

AT5G01300 2 
PEBP (phosphatidylethanolamine-binding 

protein) family protein 
17.8 kDa 

AT1G56410 1 
ERD2, HSP71T-1 | heat shock protein 71 

(Hsp 71) family protein 
68.3 kDa 

AT1G58380 1 XW6 | Ribosomal protein S5 family protein 30.7 kDa 

AT3G06040 1 

Ribosomal protein L12/ ATP-dependent 

Clp protease adaptor protein ClpS family 

protein 

20.7 kDa 

AT3G12650 1 Unknown protein; Functions Unknown 26.8 kDa 

AT1G52600 1 
Peptidase S24/S26A/S26B/S26C family 

protein 
20 kDa 

Table 2: Mass spectra of the peptides obtained from 22 kDa band from figure 13A through in-gel 

digestion were matched using Mascot software and Arabidopsis protein database. The description 

represents the annotation of the identified proteins. AGI and MW indicate genome accession number 

molecular weight of proteins respectively.  
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Figure 14: Relative gene expression of 8 genes observed in the ~22 kDa band from the seven-

day-old C starved etiolated seedlings of WT and ps1ps2 mutant. Data is representing relative 

gene expression of the said genes compared to WT whose value is set to 1. Asterisks indicate P < 

0.05 compared to WT based on the student t-test. 

Since there are a total of 8 proteins detected in the LCMS analysis, we 

wanted to further validate the protein sequencing findings at the RNA level by doing 

a qPCR. For this, gene-specific primes of all those 8 genes were ordered. The Col-0 

and ps1ps2 mutant seeds were grown on C starvation media for seven days. RNA of 

the seedlings was extracted and cDNA was synthesized. A qPCR was run using the 

gene-specific primers. Hereby, we show that all of the genes (At1g56410, 

At5g58380.1, At1g52600, At5g01300.1, At1g13060, At3g06040, At1g55490 and 

At3g12650) were upregulated. The results of this experiment are in accordance with 

the LCMS data and therefore validate that.  

3.7 The Internalization of FM4-64 is Uninterrupted in ps1ps2  

It has been shown that the subunits of the gamma-secretase complex interact with 

the proteins involved in trafficking. The presenilin component has particularly been 

implicated in trafficking, for instance, it interacts with a small GTPase Rab11 

(Dumanchin et al., 1999). Furthermore, it has also been reported that PS interacts 

with two SNARES i.e. syntaxin 5 and syntaxin 1A which are implicated in synaptic 
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vesicle fusion and Golgi trafficking (Jing & Prekeris, 2009). In moss Physcomitrella 

patens, the presenilins mutant PpΔpsn had defective internalization of FM4-64 dye 

and defects in cytoskeletal networks. FM4-64 is a lipophilic dye used to monitor 

endocytosis and vesicle trafficking in eukaryotic cells. We used this dye to monitor 

endocytosis in the root cells of WT and ps1ps2 mutant seedlings to observe any 

possible defects in vesicle trafficking (Figure 15). Just after staining, the plasma 

membrane was stained bright red in both WT as well as in the ps1ps2 mutant. After 

30 minutes, there were plenty of punctated vesicles seen in the WT as well as in the 

mutant root cells. However, neither the number of these vesicles nor the 

fluorescence was different in the mutant line compared with WT. This result indicates 

that endocytosis remains unaffected as a result of presenilins deletion in 

Arabidopsis.  

 

Figure 15: ps1ps2 deficiency does not affect endocytosis in Arabidopsis root cells. (A-D) Roots 

of seven-day-old Arabidopsis WT and ps1ps2 seedlings were treated with 5 µg/ml FM4-64 and the 

stained seedlings were observed after 30 minutes under the confocal microscope. The internalization 

of the dye was uninterrupted in the ps1ps2 mutant line.  

3.8 Autophagy Marker Proteins are Upregulated in ps1ps2  

Several genes regulate autophagy in Arabidopsis and most of them are upregulated 

under conditions that induce autophagy transcriptionally. Since autophagy was 

disrupted and the autophagosome number was high in ps1ps2, it was tempting to 

check the gene expression of some well-known autophagy marker genes like ATG9, 

ATG18a, and ATG8a in ps1ps2. Since all these genes perform their functions in the 

important steps of autophagy pathways, we tested the mRNA level of these genes in 
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the C starved etiolated seedlings of WT and ps1ps2 through real-time qPCR (Figure 

16). ATG9 is involved in the early stages/initiation step of autophagy and is thought 

to deliver membrane source for the autophagosome formation in yeast (Yamamoto 

et al., 2012). Its deficiency completely blocks autophagy in yeast, however, in 

mammals, it is less severely affected. ATG9 is not well characterized in plants, but a 

recent advanced imaging analysis has provided insights that it is involved in forming 

the early autophagic structures and upon autophagy induction, it interacts with the 

autophagic membrane (Zhuang et al., 2017). The gene expression of ATG9 was 

found to be upregulated in the ps1ps2 mutant line which indicated that the levels of 

ATG9 are increased under C starvation conditions and that there is increased 

formation of autophagosomes. ATG18 is another important autophagy-related 

molecule that is conserved from yeast to higher organisms including humans 

(Mizushima et al., 2011). It plays an important role in starvation-induced autophagy 

and is needed at the early steps of autophagosome formation. Studies from yeast 

show that ATG18 makes a complex with ATG2 and localizes at the PAS in a PI3P 

dependent manner for autophagosome biogenesis (Obara et al., 2008). In 

Arabidopsis, there is a family of ATG18 genes which comprises of 8 members. One 

member i.e. ATG18a is particularly sensitive to nutrient deprivation conditions and is 

reported to play a role in autophagosome formation. Due to these important 

functions, we tested ATG18a in the qPCR analysis and its expression was also 

upregulated under C starvation conditions in the ps1ps2 mutant line. This also 

indicates the increased formation of autophagosomes in the absence of presenilins 

(Xiong et al., 2015). 

Next, we decided to check the expression of ATG genes at vesicle elongation 

and completion steps. ATG8 is involved at these steps which as previously 

described is an important autophagy marker. The soluble form of ATG8 is converted 

to autophagic vesicle-associated form i.e. ATG8-PE through its conjugation with PE. 

This process is said to be required for the phagophore elongation. We observed an 

increase in the transcript level of ATG8 as well which suggests that a lack of 

presenilins function leads to an increase in the number of autophagosomes.  
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Figure 16: Relative gene expression of ATG8, ATG9 and ATG18 genes in seven-day-old C 

starved etiolated seedlings of WT and ps1ps2. Data is representing relative gene expression of 

the said genes compared to WT whose value is set to 1. Asterisks indicate P < 0.05 compared to WT 

based on the student t-test.  

3.9 ps1ps2 has Reduced Autophagy Flux under Sucrose 

Starvation   

In order to be sure that the ps1ps2 mutant has defective autophagy, we also carried 

out a GFP-ATG8f processing assay using an anti-GFP antibody to measure the 

autophagic flux (Figure 17). Autophagic flux gives a semi-quantitative measure of the 

rate of autophagosome degradation. It is based on the principle that GFP is cleaved 

from the GFP-ATG8f containing vesicles after they reach vacuole. Free GFP is 

stable in the vacuole and more the amount of free GFP the higher is the autophagic 

flux and vice versa. Typically, autophagy defective mutants have a reduced amount 

of free GFP and this assay can be used effectively in plant cells. Arabidopsis seeds 

expressing GFP-ATG8f and GFP-ATG8f/ps1ps2 were grown on ½MS plates 

containing either 1% sucrose or no sucrose. The seedlings were grown in the dark 

for seven days and then collected (~50 mg) and immediately frozen in liquid 

nitrogen. Total proteins were extracted and separated on an SDS-PAGE gel. 

Immunoblot analysis was performed using an anti-GFP antibody to detect either the 

full-length fusion protein (GFP-ATG8f, ~45 kDa) or free GFP (~27 kDa) and the 
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experiment was repeated thrice. ps1ps2 double mutant plants show low autophagic 

flux indicated by low levels of free GFP in the vacuole under both sucrose-containing 

as well as sucrose starvation media (Figure 17). ps1ps2 double mutant has a higher 

amount of full-length fusion protein i.e. GFP-ATG8f (45 kDa) in the sucrose-

containing media compared to the WT seedlings. This indicates that even when 

sucrose is present in the growth media, the autophagosomes labeled with GFP-

ATG8f are abundantly present in the cytoplasm or the vacuole of the mutant. They 

either have difficulty in reaching the vacuole or are already in the vacuole but have a 

low degradation rate. However, when autophagy was induced through sucrose 

starvation, the amount of free GFP was increased in both WT as well as in the 

mutant seedlings but the amount was less increased in mutant indicating reduced 

autophagic flux in the later.  

 

 

Figure 17: Western blot of seven-day-old C starved Col-0 and ps1ps2 mutant plants using 

Anti-GFP antibody. ps1ps2 mutant exhibits lower autophagic flux during C starvation.  
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3.10  Presenilins Mutant has Defective Autophagy at the Later 

Stages of Autophagic Pathway and Not at the Initiation 

Step  

To further study autophagy in ps1ps2 mutant, an autophagy inhibition experiment 

using carbon starvation and wortmannin was conducted. Wortmannin is an 

extensively used autophagy inhibitor because of its inhibition of vacuolar transport 

and autophagy. It inhibits the activity of PI3K (phosphatidylinositol 3-kinase) which is 

essential for the induction of autophagy (Merkulova et al., 2014). Seven-day-old 

seedlings of GFP-ATG8f and GFP-ATG8f/ps1ps2 transgenic plants grown vertically 

on nutrient-rich solid growth media were transferred to nutrient-rich liquid media with 

and without carbon and wortmannin in different combinations for 16 hours before 

observation under the confocal microscope (Figure 18). Root cells of GFP-ATG8f 

seedlings have almost no autophagosomes under nutrient-rich conditions (+C-Wort) 

when there is no wortmannin used. However, as expected GFP-ATG8f/ps1ps2 root 

cells have a lot of autophagosomes under these control conditions as can be seen in 

Figure 18B. When seedlings were subjected to carbon starvation media (-C-Wort) for 

16 hours, we could observe some autophagosomes in the GFP-ATG8f root cells 

which formed as a result of autophagy induction under starvation and GFP-

ATG8f/ps1ps2 still had an abundance of autophagosomes in the cytoplasm (Figure 

18D). When wortmannin was used for 16h under nutrient-rich conditions (+C+Wort), 

there was hardly any autophagic body in the GFP-ATG8f as well as in GFP-

ATG8f/ps1ps2 which might be because of the reason that the inhibitor completely 

stopped the formation of autophagosomes (Figure 18E, F). Wortmannin treatment 

also resulted in a diffused signal of GFP-ATG8f in the cytoplasm which is a typical 

effect of this inhibitor. Similarly, when treated with wortmannin under starvation 

media (-C+Wort) for 16h it stopped the autophagosome formation in GFP-ATG8f as 

well as in GFP-ATG8f/ps1ps2 (Figure 18G, H). These results suggest that the 

mutant has defective autophagy probably at the later steps of the autophagic 

pathway and not at the initiation step. 
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Figure 18: ps1ps2 mutant has autophagy defectiveness at the later steps of the autophagic 

pathway and not at the initiation step. Seven-day-old ½MS media grown seedlings of GFP-ATG8f 

and GFP-ATG8f/ps1ps2 were subjected to various treatments such as DMSO/control (A, B), C 

starvation (C, D), 33 µM wortmannin (E, F) and C starvation with 33 µM wortmannin (G, H) for 16 h 

before observation under CLSM.  

3.11 Autophagy in ps1ps2 Root Cells: Effects of 

Concanamycin-A and Wortmannin  

The presence of autophagosomes in high numbers even under control conditions in 

ps1ps2 suggests that autophagy is defective in this mutant line, but there is still a 

likelihood that in these plants the fusion/delivery of autophagosomes to the vacuole 

is inhibited which leads to an abnormal accumulation of autophagosomes in the 

cytoplasm. To rule out this possibility, in addition to the wortmannin treatment done 

in the previous experiment (Figure 18), a concanamycin-A (ConA) treatment 

experiment was performed (Figure 19). ConA is an inhibitor of V-ATPase which 

maintains the vacuolar pH keeping it acidic. When added exogenously, the inhibitory 
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effect of ConA on V-ATPase raises the pH of the vacuole. Consequently, the 

vacuolar hydrolases cannot act under high pH conditions leading to a buildup of 

autophagic bodies inside vacuole thus allowing us to monitor autophagic flow 

(Yoshimoto et al., 2004). When seven-day-old seedlings of GFP-ATG8f and GFP-

ATG8f/ps1ps2 were grown under nutrient-rich (NR) growth conditions and the root 

cells were observed by confocal microscopy, there were no autophagosomes in WT 

but there was already a high level of autophagy in the cells of ps1ps2 (Figure 19A, 

B). When treated with ConA, we observed a huge buildup of autophagosomes in the 

cells of both WT as well as ps1ps2 seedlings indicating that the autophagic bodies 

were able to reach the vacuole (Figure 19C, D). When only wortmannin was used, 

the GFP-ATG8f signal appeared to be diffused in the cytoplasm in both WT as well 

as ps1ps2 root cells and the autophagosomes were almost nonexistent. Finally, 

when wortmannin was used in combination with ConA, it markedly diminished the 

effect of ConA (Figure 19G, H) which indicates that the PI3 kinase activity is vital for 

the efficient delivery of the autophagosomes to the vacuole which corroborates our 

previous results (Figure 18). These results clearly indicate that the ATG8f associated 

autophagosomes reach the vacuole.  

 

 

 

 



52 

 

 

Figure 19: Autophagosomes reach the vacuole in ps1ps2 mutant. Seven-day-old ½MS media 

grown seedlings of GFP-ATG8f and GFP-ATG8f/ps1ps2 were subjected to various treatments such 

as nutrient-rich media NR with DMSO/control (A, B), 1 µM ConA (C, D), 33 µM wortmannin (E, F) and 

1 µM ConA in combination with 33 µM wortmannin (G, H) for 16 h before observation under CLSM.  

3.12  GFP-ATG8f is Delivered to the Vacuoles in ps1ps2 Mutant  

FM4-64 labels the plasma membrane and is taken up by the cell via endocytosis. 

After being endocytosed, it labels the tonoplast and possibly also goes into the 

vacuole together with the vacuolar membrane. To further confirm whether the 

autophagosomes in ps1ps2 go into the vacuole, we performed an FM4-64 uptake 

study in both GFP-ATG8f as well as in GFP-ATG8f/ps1ps2 seedlings before treating 

with C starvation and ConA (Figure 20). As can been seen from Figure 19, there is a 

pronounced buildup of the GFP-ATG8f as well as that of GFP-ATG8f/ps1ps2 inside 

the vacuole. This indicates that the GFP-ATG8f labeled structures are delivered to 

the vacuole in the presenilins mutant.  
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Figure 20: GFP-ATG8f labeled autophagosomes are delivered to the vacuole in the presenilins 

mutant. FM4-64 was applied to the seven-day-old seedlings for 1 hour which was followed by 

transfer of the ATG8-GFP and GFP-ATG8f/ps1ps2 to the C starvation medium containing ConA for 

another 6 hours before observation with CLSM. ''v'' indicates vacuole.  

3.13  AtPEN2 Bodies are Distinct from Classical 

Autophagosomes   

Previously it has been shown that AtPEN2-GFP is partially localized with autophagy 

marker protein i.e. ATG8 in the Arabidopsis leaf protoplasts (Smolarkiewicz et al., 

2014). Through the transient transformation of the leaf protoplast, it was shown that 

about 80% of cells show clear co-localization of AtPEN2 with autophagosomes and 

the rest of 20% of cells show no co-localization. It might mean that AtPEN2 is linked 

with autophagy. To confirm the role of AtPEN2 in plant autophagy, we transiently co-

expressed AtPEN2-GFP and ATG8f-RFP in the tobacco leaf epidermal cells. The 

transformed tobacco plants were pre-treated with darkness for two days to induce 

autophagy before confocal microscopy analysis. Surprisingly, as depicted in Figure 

21, AtPEN2-GFP vesicles were distinct from ATG8f-RFP in structure and generally 

did not co-localize with autophagosomes. However, only a small portion of the 

AtPEN2-GFP was associated with ATG8f at some point. 
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Figure 21: RFP-ATG8f, a marker for autophagosomes is not co-localized with the AtPEN2-GFP 

vesicles in the transient transformation assay. (A) AtPEN2-GFP (B) RFP-ATG8f (C) Merge 

showing partial co-localization. 

3.14  Motility of AtPEN2 is Independent of Microtubules   

Since the AtPEN2-GFP labeled vesicles are motile and we know that the motility of 

vesicles is dependent on actin and microtubule bundles of the cytoskeleton 

(Langford, G. M. 1995). Therefore, it would be interesting to see if the mobility of 

AtPEN2 is dependent on the microtubules. For this purpose, the MAP4-RFP which is 

a marker for microtubules was transiently co-expressed with AtPEN2-GFP in N. 

benthamiana leaf epidermal cells. AtPEN2-GFP failed to localize with microtubule 

bundles (Figure 22). To further explore the role of microtubules in AtPEN2-vesicle 

motility, oryzalin, a microtubule disrupting reagent was employed. Five-day-old 

seedlings of Arabidopsis AtPEN2-GFP were treated with 10 µM oryzalin solution for 

30 minutes before observation with the confocal microscope. There was no effect 

observed in the motility of AtPEN2 vesicles further confirming that they are not 

associated with microtubules and their movement is independent of the later (Figure 

22). 
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Figure 22: AtPEN2-GFP does not localize with MAP4-RFP in epidermal leave cells of N. 

benthamiana and the movement of AtPEN2-GFP vesicles is independent of the microtubule 

cytoskeleton. (A) AtPEN2-GFP (B) MAP4-RFP (C) Merge showing no co-localization. (D, E) seven-

day-old ½MS media grown seedlings of AtPEN2-GFP treated with and without oryzalin for 30 minutes 

before observation under CLSM. 

3.15  Motility of AtPEN2-GFP is Actin Cytoskeleton Dependent   

Similar to microtubules, the actin cytoskeleton is also important for the motility of 

vesicles. Latrunculin-B (Lat-B) is an actin-depolymerizing agent that disrupts F-actin 

assembly and thereby inhibits the motility of vesicles in the cells. Arabidopsis roots 

expressing AtPEN2-GFP were treated with 10 µM Lat-B for 30 minutes and 

observed under a spinning disk confocal microscope. Lat-B stopped the movement 

of AtPEN2-GFP positive vesicles within 30 minutes of treatment and also changed 

their shape indicating that actin is important for their mobility and AtPEN2 is sensitive 

to Lat-B treatment (Figure 23). 
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Figure 23: Lat-B stops the movement of AtPEN2-GFP.  Seven-day-old ½MS grown seedlings of 

AtPEN2-GFP were subjected to Lat-B treatment for 30 minutes before observation under a spinning 

disk confocal microscope. (A) Control (B) Lat-B treated Arabidopsis root cells. 

3.16  AtPEN2-GFP Partially Co-localizes with Late Endosomes  

AtPEN2-GFP has  previously been reported to be absent from the early endocytic 

pathway (Walker, 2010), therefore, I wanted to check its presence in the late 

endocytic pathway. FYVE domain-containing marker binds to the PI3P 

(phosphoinositol-3-phosphate) in the membranes of late endosomes (Voigt et al., 

2005). AtPEN2-GFP and DsRed-FYVE constructs were transiently co-expressed in 

the tobacco (Nicotiana benthamiana) leaf epidermal cells (Figure 24). Confocal 

microscopy imaging revealed that DsRED-FYVE, a marker for late endosomes 

showed partial localization of AtPEN2 and FYVE domain-containing protein in 

tobacco leaf epidermal cells. Both AtPEN2 and FYVE are highly motile 

compartments and in the tobacco leaf cells, they were seen to interact at some point 

and then leave each other which might mean they exchange some molecule. 
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Figure 24: AtPEN2-GFP partially localizes with DsRED-FYVE in epidermal leave cells of N. 

benthamiana. (A) AtPEN2-GFP (B) DsRed-FYVE (C) Merge showing partial co-localization as 

indicated by arrows. 

3.17  Effect of Gamma Secretase Inhibitor on AtPEN2-GFP 

We tested an inhibitor (BSM-299897) of the gamma-secretase complex with the 

purpose to get further insights into the function of this complex in plants. The 

inhibitor has been successfully tested in animals before. To test the inhibitor, seven-

day-old AtPEN2-GFP expressing plants were treated with 50 µM for 30 minutes in 

dark. The root cells treated with the inhibitor changed the localization of AtPEN2-

GFP signal with more signal at the cross walls (Figure 25). This shows that the 

inhibitor affects the complex activity also in the plant cells.  

 

Figure 25: Gamma secretase inhibitor (BSM-299897) changes the localization of AtPEN2-GFP 

signal. (A) Control (B) BSM-299897 treated Arabidopsis root cells showing relocalization of the 

AtPEN2-GFP signal. 
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3.18  Genotyping of AtPEN2 Mutant  

The Arabidopsis AtPEN2 mutants have already been described in a doctoral thesis 

by Walker (2010). They phenotyped two SALK mutants for AtPEN2 i.e. pen2-1 and 

pen2-2 for the lines Salk_128110 and Salk_140461 respectively. Homozygous pen2-

1 mutant plants showed stunted growth and failure to produce functional 

inflorescence (Walker 2010). However, when it was tried to complement the pen2.1 

phenotype with ATPEN2-GFP it did not complement the phenotype. On the other 

hand, pen2-2 mutant did not show any gross morphological differences when 

exposed to various abiotic stresses. Due to this ambiguity, we also decided to 

analyze the pen2 mutant. We ordered the SLAK_140461 line which is pen2-2 mutant 

line according to Walker (2010). The mutant was genotyped using the primers listed 

in the primer list (Table 1). When grown on ½MS media, the homozygous pen2 

mutant always displayed a reduced primary root growth as can been seen in Figure 

26. When exposed to various abiotic stress treatments such as hormonal (GA, ABA, 

IAA), ER stress (DTT), salt stress, etc., no significant change occurred in the growth 

of the pen2 mutant. This might mean that the reduced primary root length of the 

mutant is independent of the treatments used.  
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Figure 26: Root lengths in pen2 mutant are significantly shorter than in WT seedlings when 

grown under normal growth conditions. Measurement of the hypocotyls and roots of pen2 and WT 

control grown under ½MS media using ImageJ. Data represent the mean (S.E) of two independent 

replicates and letters above the error bars show significant differences compared to WT (P < 0.05) 

based on the student t-test. 
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3.19  ATG9 Motif Crucial for Binding with AP4 is Conserved in 

Plants and Animals   

Recent studies from animal models have highlighted an important role of adaptor 

protein 4 complex in autophagy by its interaction with ATG9A (Mattera et al., 2017; 

Davies et al., 2018; De Pace et al., 2018). By employing various functional and 

biochemical approaches, Mattera et al., (2017) reported that ATG9A is a 

physiological cargo of AP4. ATG9A is the only transmembrane domain-containing 

protein in animals and plants among the core ATG machinery. It has been reported 

that ATG9 cycles between TGN/early endosomes and preautophagosomal 

structures where it provides membrane to the growing autophagosomes in animals 

as well as in plants (Imai et al., 2017; Zhuang et al., 2017). The interaction between 

ATG9A and AP4 is mediated by YXXØE (YQRLE) motif present on the N terminal 

cytosolic tail of ATG9A (Mattera et al., 2017). In order to verify if this sequence is 

also conserved in other organisms including plants, we carried out multiple 

sequence alignments using amino acid sequences of ATG9A homologues from A. 

thaliana, Caenorhabditis elegans, Physcomitrella patens, Zea mays, and Homo 

Sapiens. The YQRLE sequence in the N terminal cytoplasmic tail of ATG9 is 

required for binding with AP4 seems to be quite well conserved (Figure 27). This 

indicates that ATG9 and AP4 interaction is conserved in evolutionarily distinct 

organisms.  
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Figure 27: Sequence alignments of amino acid motifs known to be crucial for binding with AP4 

in different species. (A) YQRLE motif in ATG9 (B) Cladogram was created based on the amino acid 

sequence alignments for ATG9.  

3.20  AP4 Co-localizes with ATG9 in Tobacco Leaf Epidermal Cells  

As mentioned above, ATG9 is the only TMD containing protein among ATGs and 

cycles between TGN and the PAS and plays a key role in autophagosome formation. 

Zhuang et al., (2017) for the first time provided comprehensive analysis of the 

structure and function of Arabidopsis ATG9. They reported that in Arabidopsis, both 

N and C termini of ATG9 are exposed to the cytosol in a manner similar to the yeast 

or mammals. Through subcellular localization studies, they showed that ATG9 is 

present in the proximity with TGN and that the ATG9 vesicles may be derived from 

the Golgi. In plants, AP4 complex has been shown to localize at the TGN and 

mediates sorting and trafficking to the plasma membrane and the pre vacuolar 

compartment (Pertl-Obermeyer et al 2016; Fuji et al., 2016). In animals, several 

recent reports show that ATG9 is the physiological cargo of the AP4 complex 

(Mattera et al., 2017, De Pace et al., 2018; Davies et al., 2018). The interaction is 

mediated by recognition of the YXXØE motif (YQRLE) in the N terminal of ATG9 by 

the μ subunit of AP4 (Mattera et al., 2017). Through the export of ATG9 from the 

TGN to the surface of cytoplasm and PAS site, AP4 complex functions in the 

maintenance of autophagic function. Keeping in view these recent developments 

about the interaction of AP4 with ATG9, we were also interested to see if AP4 also 



61 

 

localizes with ATG9 in plants. For this purpose, YFP-ATG9 and AP4-GFP were 

transiently co-transformed in the tobacco leaf epidermal cell and interestingly, both 

fluorescently tagged proteins showed complete localization (Figure 28). This 

observation indicates that AP4 may be involved in the transport of the ATG9 but it 

needs to be tested with further experimental analysis.  

 

Figure 28: AP4µ-GFP localizes with YFP-ATG9 in the leaf epidermal cells of N. benthamiana in 

the transient transformation assay. (A) AP4µ-GFP (B) YFP-ATG9 (C) Merge showing complete co-

localization.  

3.21  AP4 Mutants Accumulate Autophagy Marker  

It has previously been demonstrated that membrane trafficking is closely related with 

the autophagic pathway (Kulich et al., 2013). The autophagic pathway recycles the 

cellular constituents by forming double-membrane compartments called 

autophagosomes and ATG8 is the structural component of these structures. Based 

on the previous observations, there was a possibility of autophagy defectiveness in 

the AP4 mutant lines, we analyzed the steady-state levels of ATG8 in these lines 

(Figure 29). ATG8 accumulated in all of three mutant lines which indicates that the 

mutant lines are defective in autophagy and that AP4 is potentially involved in 

autophagy. 
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Figure 29: AP4 mutants accumulate autophagosomal marker. Total protein extracts from wild-type 

(WT), gfs4/ap4β, gfs6/ap4σ, ap4e1/ap4ε grown under long-day conditions were subjected to 

immunoblotting using an anti-ATG8 antibody. Coomassie was used as a loading control. The 

experiment was repeated twice.  

3.22  ER-Stress Mediated Autophagy Induction Affects the 

Growth of Arabidopsis AP4 Mutants  

Müdsam (2018) described that the mutants for two out of four AP4 subunits namely 

gfs4/ap4β and gfs5/ap4µ show reduced hypocotyl and root growth under normal as 

well as under sucrose starvation growth conditions and this defective growth was 

attributed to the reduced cell expansion. DTT is a classical ER stress inducer and 

interferes with protein folding by inhibiting N linked glycosylation and by blocking the 

disulfide bond formation (Martínez & Chrispeels, 2003). It has also been implicated 

as autophagy inducer in plants and under the influence of DTT, the portions of ER 

are recycled to the vacuole through the macroautophagy pathway (Liu et al., 2012). 

Moreover, Zhuang et al., (2017) proposed that ATG9 might be involved in ER-phagy 

due to tight coherence between autophagosome structure and the ER membrane. 

Since our results suggest that AP4-GFP localizes with ATG9 and might be involved 

in its export from the TGN in a manner similar to animal cells, we decided to test the 

effect of DTT on AP4 mutant lines namely gfs4/ap4β, gfs6/ap4σ, and ap4e1/ap4ε. 

We tested the mutants for two subunits which were not tested before i.e. gfs6/ap4σ 

and ap4e1/ap4ε and another gfs4/ap4β which was tested already by Müdsam 

(2018). Seven-day-old seedlings of WT and AP4 mutants grown on ½MS medium 
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were transferred to the ½MS media plates containing 0mM and 1mM DTT and 

allowed to grow for another one week (Figure 30). Under the control condition, the 

growth of mutant lines tested was significantly shorter than that of WT seedlings and 

these results are also consistent with those of Müdsam (2017). Under 1mM DTT or 

ER stress induction, the growth of both WT as well AP4 mutants was negatively 

affected and the mutant lines had significantly shorter growth of primary roots 

(Figure 30). Our data hints that the reduced growth of AP4 mutants under ER stress 

might be correlated with defective autophagy.  
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Figure 30: Seedlings of AP4 mutants grown with or without DTT showed significantly shorter 

roots in comparison to the wild type seedlings. (A, B) Image showing seedlings of each line grown 

under normal growth media and media supplemented with 1mM DTT. (C) Measurement of the roots of 

AP4 mutants i.e. gfs4/ap4β, gfs6/ap4σ, ap4e1/ap4ε and WT control grown with and without DTT using 

ImageJ. Data represent the mean (S.E) of two independent replicates and different letters above the 

error bars show significant differences compared to WT (P < 0.05) based on the student t-test. 
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3.23  AP4µ-GFP Accumulates in the Core of BFA Compartments   

The subcellular localization of AP4 has already been described in animal cells and is 

reported to be localized at the TGN (Hirst et al., 1999). In plants, it as well has been 

confirmed that the fluorophore fusions of AP4µ and AP4β are localized specifically at 

the TGN (an endosomal compartment) [Fuji et al., 2016; Müdsam et al., 2017]. The 

authors confirmed this by showing a localization with FM4-64 which labels the 

endomembrane compartments in addition to performing a series of co-localization 

experiments by employing well established TGN markers (Fuji et al., 2016). To 

better substantiate the above results, we also stained the roots of seven-day-old 

Arabidopsis seedlings stably expressing AP4µ-GFP with FM4-64. As expected, the 

AP4µ-GFP vesicles co-localized with FM4-64 compartments of the early endocytic 

pathway (Figure 31A-C). Next, FM4-64 stained roots of AP4µ-GFP were stained with 

BFA which is a fungal toxin known to inhibit ARF-GTPases. BFA treatment of 

Arabidopsis seedlings causes an accumulation of BFA compartments in the root 

cells. The core of these compartments is made up of the TGN and is surrounded by 

remnants of Golgi stacks (Satiat-Jeunemaitre & Hawes, 1994). After the treatment 

with BFA, AP4µ-GFP puncta were re-localized and accumulated in the core of BFA 

compartments (Figure 31D-F). This result further confirmed that AP4µ-GFP is 

localized at the TGN/early endosomes and that its localization is affected by BFA 

treatment.  

 

Figure 31: AP4µ-GFP accumulates in the core of BFA compartments. (A-C) Arabidopsis root 

cells of stably expressing AP4µ-GFP were analyzed with confocal microscopy. AP4µ-GFP localized 

with the early endocytotic compartments labeled with FM4-64. (D-F) After BFA treatment, both FM4-

64 and AP4µ-GFP accumulated in the core of the BFA compartments as indicated by the arrow.  
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DISCUSSION 

4.1 Arabidopsis Presenilins 

4.1.1 Presenilins Respond to Carbon Starvation  

Presenilins are the central and catalytic subunit of the gamma-secretase complex 

and are ubiquitous proteins known to function in important cellular processes. These 

are evolutionarily conserved proteins throughout metazoa and there has been 

considerable research done in animal models to understand their functions 

especially their role in the development of Alzheimer's disease. In animals, 

presenilins have particularly been implicated in autophagy and are considered a 

critical mediator of the lysosome mediated protein degradation (Neely et al., 2011). 

In plants, there has been little or no work done on presenilins concerning autophagy. 

In this work, we report that presenilins are important for the normal functioning of the 

autophagic pathway in plants as well and that their absence can lead to defective 

autophagy and ultimately adverse effects on plant growth and development.  

 Autophagy is a highly regulated process with crucial roles in cell regulation, 

maintenance of amino acid levels and mitigating toxic effects of the proteins prone to 

accumulation. Over the last decade, there has been accumulating evidence about 

the important role of autophagy under nutrient-limited conditions (Chung et al., 2010; 

Izumi al. 2010). Eukaryotes require high carbohydrate levels to synthesize 

macromolecules and generate energy. Low energy leads to retarded growth 

because carbon (C) is retained by the cells to survive and maintain core functions of 

life. In Arabidopsis, the availability of C has a significant effect on growth and 

development in both seedling as well as adult stages. Carbon starvation is one of the 

well-characterized phenotypes of autophagy-related mutants and the relationship 

between autophagy, protein degradation, and amino acid recycling under nutrient-

limited conditions has already been described (Izumi et al., 2013; Avin-Wittenberg et 

al., 2015). The previous study of our collaborators showed that two-week seedlings 

of Arabidopsis presenilin double mutant (ps1ps2) exhibit enhanced chlorosis under 

carbon/nitrogen starved media combined with darkness (Smolarkiewicz et al., 2014). 
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Since starvation and darkness are known to induce autophagy, we took this as a 

starting point to further study this process in the ps1ps2 double mutant. We also 

carried out a C starvation experiment to determine the phenotypic response of the 

ps1ps2 mutant. However, in our C starvation system, we took etiolated seedlings 

grown on media without supplemented sucrose as a C starvation system. This 

system gives an advantage of studying autophagy at the early seedling 

establishment where nutrients are acquired through reserve mobilization (Avin-

Wittenberg et al., 2015). We observed a clear delayed growth phenotype for ps1ps2 

mutant where it displayed shorter growth of roots and hypocotyls (Figure 9) and this 

phenotype is also in line with the previous report that autophagy defective mutants 

have delayed growth when grown on media without C (Avin-Wittenberg et al., 2015).  

 Autophagy induction by stress conditions results in an increase in the 

formation of autophagosomes in the cells (Xiong at al. 2005). Since the ps1ps2 

mutant showed the phenotype of an autophagy defective mutant under C starvation 

we wanted to observe autophagosomes in the root cells. We used established 

methods such as MDC staining and GFP-ATG8 labeling to observe 

autophagosomes in the root cells of ps1ps2 (Figure 10 & 12). Protoplasts of WT and 

ps1ps2 mutant plants were also transiently transformed with GFP-ATG8f to monitor 

autophagy (Figure 11). We demonstrated that ps1ps2 had an abnormal build-up of 

autophagosomes which indicates that presenilins have a vital role in the process of 

autophagy in multiple cell types. This observation is very similar to the one made in 

animals where it was shown that knockout of presenilins leads to a buildup of 

autophagosomes in the mouse embryonic fibroblasts (MEFs) and neuroblastomas 

(N2A) [Neely et al., 2011]. The increase in autophagosomes in ps1ps2 mutant might 

mean either an increase in autophagic activity or a disturbance in the degradation of 

autophagosomes late in the pathway at the vacuole.  

4.1.2 Presenilins Regulate Protein Trafficking in Arabidopsis  

Proteins are the degradation target of the autophagic machinery, therefore, we 

analyzed the total protein content of the C starved presenilin mutant as compared to 

wild type. Furthermore, previously it has been shown that Arabidopsis ATG mutants 
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have differential protein accumulation and have a reduction in free amino acids when 

grown under C starvation (Avin-Wittenberg et al., 2015). Interestingly, the total 

protein content of ps1ps2 was turned out to be higher than the wild type seedlings 

particularly a band of ~22 kDa and it suggested a possible disruption in the normal 

protein degradation in this mutant (Figure 13). This finding is also similar to the one 

reported by Neely et al., (2011) whereby they conducted pulse-chase assays in 

PSDKO (Presenilin-1 and -2 double knockout) MEFs to monitor the breakdown of 

long-lived proteins. The authors reported that PSDKO had a significant reduction in 

proteolysis and attributed this to the dysfunction of downstream steps of the 

autophagic pathway. These similarities between the response of Arabidopsis 

presenilin mutant with MEF presenilin mutants suggest that presenilins play similar 

roles in animals as well as in plants and function identically in these evolutionarily 

distinct species. Proteomic analysis of the ~22 kDa band suggested that differential 

protein accumulation occurred in presenilin mutant during C starvation and revealed 

the accumulation of some interesting proteins (Table 2). Among these proteins were 

PBE1, a 21S proteasome beta E1 protein and serine peptidase protein of S26A, 

both of which are enzymes involved in peptidase activity. Although we did not 

measure the endopeptidase activity in the C starved ps1ps2 mutant but over-

accumulation of these proteins suggests a possible impairment in the endopeptidase 

activity in presenilin mutant. Surprisingly, a few years ago another study had 

reported a higher endopeptidase activity in the ATG mutants under nitrogen 

starvation during the later stages of growth before reaching senescence (Guiboileau 

et al., 2013). This is contrary to what we conclude from our observation, however, 

this inconsistency might be due to the age of the plants observed. Guiboileau et al., 

(2013) worked with plants that were 30 to 75 days old while we observed seven-day-

old etiolated seedlings. Moreover, the difference is not just in the age but also in the 

experimental conditions, in our experiment the seedlings are growing in a 

heterotrophic system while the older plants are autotrophic. In animals, some of the 

peptidases known as cathepsins including the ones from the serine group have been 

reported as autophagy regulators. They undertake cleavage of the peptide bonds of 

the autophagy substrates and maintain autophagic flux (Kaminskyy & Zhivotovsky, 

2012). It is also worth noting that asparagine endopeptidase (AEP) has been 
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described as an autophagy regulator. Its deficiency in mice resulted in abnormal 

activation of PI3K resulting in the conversion of phosphatidylinositol (4,5)-

bisphosphate (PIP2) to phosphatidylinositol (3,4,5)-bisphosphate PIP3 (Lan & Guo, 

2015). An increase in PIP3 and a decrease in PIP2 led to impaired autophagic-

lysosomal biogenesis and ultimately defective autolysosomal clearance. This is 

remarkably similar to the Arabidopsis presenilin double mutant ps1ps2 which is also 

defective in autophagosome clearance. In addition to endopeptidases, ps1ps2 also 

accumulated peptides of ribosomal proteins XW6 and L12 (Table 2). The over-

accumulation of these proteins suggests the malfunction of ribophagic activity in 

ps1ps2 mutant. Another interesting protein identified in our proteomic analysis was 

chaperonin 61 beta (CPN61β) which is a type 1 chaperonin involved in the proper 

folding of the newly synthesized proteins (Horwich et al., 2007). It has many known 

functions such as it is needed for the folding of NdhH, a subunit of chloroplast NADH 

dehydrogenase-like complex (NDH) [Peng et al., 2011]. Additionally, CPN61β and 

CPN61α are vital for the formation of the plastid division apparatus (Suzuki et al., 

2009). These proteins maintain plastid division by means of regulating the FtsZ ring 

dynamics, FtsZ is required for dividing plastids into equal-sized daughter plastids 

(Yang et al., 2008). An accumulation of chloroplast division protein CPN61β in the C 

starved ps1ps2 mutant suggests that FtsZ dynamics might be disrupted in this 

mutant resulting in the improper plastid division. This assumption is further 

supported by a previous observation by our colleagues that ps1ps2 exhibits 

enhanced chlorosis when exposed to dark under C starvation conditions 

(Smolarkiewicz et al., 2014). However, this aspect needs to be determined with 

further experimentation. We also identified HSP70T-1 (heat shock protein 70T-1) 

which is a cytosolic chaperone and upregulates under temperature extremes and 

after seed imbibition (Sung et al., 2001). It is also noteworthy that HSP70T-1 has an 

actual molecular weight of 68.3 kDa but it was identified in ~22 kDa region and this 

was a similar case for other proteins identified in our analysis. A possible explanation 

for this can be that a partial degradation of these proteins occurs in the ps1ps2 

mutant. ps1ps2 mutant also accumulated PEBP (phosphatidylethanolamine-binding 

protein) family protein which in humans has been implicated in the development of 

various cancers (Table 2). Recently, PEBP1 has also been reported to negatively 



70 

 

regulate starvation-induced autophagy through interaction with LC3 (microtubule-

associated protein1 light chain 3β) which functions in autophagosome biogenesis in 

mammalian cells (Noh et al., 2016). It has been reported that PEBP1 contains an 

LIR (LC3 interacting region) motif important for binding to LC3. Overexpression of 

PEBP1 suppressed autophagy through activation of MTORC1 (mechanistic target of 

rapamycin complex 1) and its disruption promoted starvation-induced autophagy 

(Noh et al., 2016). Since PEBP proteins are evolutionarily conserved therefore they 

can be expected to play similar roles in plants as well. In Arabidopsis, 

autophagosome formation requires conjugation of ATG8 with 

phosphatidylethanolamine (PE) and an overaccumulation of PEBP family protein in 

C starved ps1ps2 mutant suggests the involvement of this protein in regulating 

autophagy in Arabidopsis. Collectively, our results indicate that ps1ps2 shows an 

increased stress response under energy deprivation as compared to wild type.  

4.1.3 Arabidopsis Presenilins Function in the Degradation Steps 

of Autophagy Pathway and Not in the Initiation  

A prominent feature of the ps1ps2 mutant is an increase in the number of 

autophagosomes compared to WT even under normal growth conditions which are 

evidenced by the increase in GFP-ATG8f labeled puncta (Figure 12). An increase in 

the autophagosome number indicates an increased amount of autophagy. Given this 

fact, we pondered whether there is a change in the expression of some key ATG 

genes in ps1ps2 under C starvation which are involved in the initiation or vesicle 

elongation steps. All three of the ATG genes included in the analysis i.e. ATG9, 

ATG18a and ATG8a were found to be up-regulated (Figure 16). ATG9 is involved at 

the initiation step of autophagy and delivers membrane source for the 

autophagosome formation in yeast and in plants, it is required to make the early 

autophagic structures (Yamamoto et al., 2012). ATG18a is an important molecule 

needed for autophagosome biogenesis which localizes at PAS and is particularly 

sensitive to nutrient starvation conditions. ATG8a bears the central position in 

autophagic vesicle elongation through its conjugation with PE. An increase in the 

gene expression of all of these ATG genes reflects an increase of autophagy in 
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ps1ps2. We also carried out a GFP-ATG8f processing assay to measure the 

autophagic flux of C starved ps1ps2 seedlings. ps1ps2 mutant exhibited a lower flux 

as revealed by a small amount of free GFP (Figure 17). During disease condition or 

autophagy dysfunction, an increase in autophagosomes is observed in cells. 

Therefore, it is plausible to assume that the loss of presenilins in Arabidopsis causes 

a disease state of autophagy which increases autophagosomes. Moreover, the 

observation that C starvation leads to differential accumulation of proteins in ps1ps2 

seedlings also validates our assumption that the loss of presenilins leads to a 

disease state of autophagy in Arabidopsis. The reduced autophagic flux in ps1ps2 

also indicates that the loss of presenilin function does not completely stop autophagy 

instead renders the system inefficient by disturbing autophagy after the formation of 

autophagosomes.  

 Keeping in view the malfunction in the autophagic pathway in the presenilin 

mutant, we wanted to know at what stage of the pathway does this dysfunction 

happen. Presenilin mutant showed the ability to increase the number of 

autophagosomes under C starvation and it confirmed that the formation of normal 

autophagosomes was functional in the mutant. However, we went further to 

investigate autophagy in GFP-ATG8f/ps1ps2 in the subcellular level using some 

established inhibitors of the autophagy pathway such as wortmannin and 

concanamycin A. Wortmannin, an inhibitor of PI3kinase completely stopped 

autophagosome formation in ps1ps2 as well as in WT both under nutrient-rich 

conditions as well as under C starvation (Figure 18). This observation confirmed that 

the presenilin mutant has defective autophagy pathway and the defect is at the later 

stages of the pathway and not at the initiation step. Conconamycin A is an inhibitor 

of vacuolar hydrolases and prevents autophagosome degradation in the vacuole. Its 

treatment resulted in a huge buildup of the autophagosomes in the vacuoles of both 

WT as well as ps1ps2 cells (Figure 19). This showed that autophagosomes are 

indeed able to reach the vacuole and there is no problem in their fusion with the 

vacuole. The FM4-64 uptake study further confirmed the claim about the delivery of 

autophagosomes to the vacuole in ps1ps2 cells (Figure 20). This claim is further 

strengthened by the observation that when ps1ps2 seedlings were treated with 

wortmannin for 16 hours, the autophagosomes which are always present in huge 
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number in the knockout mutant were also disappeared (Figure 19). A possible 

explanation can be that wortmannin stopped the formation of new autophagosomes 

and the already existing autophagosomes reached the vacuole and degraded there. 

This may also mean that there is another pathway active which is responsible for the 

autophagosome delivery to the vacuole or their degradation in the absence of 

presenilins. It also favors our claim of the disease state of autophagy in ps1ps2 

whereby the autophagy is not completely stopped and instead becomes inefficient 

as a result of presenilin deficiency. However, further experimentation and analysis 

need to be done to better explicate the role of presenilins in plant autophagy.  

 As previously mentioned, there has been considerable work done in animal 

models to understand the function of presenilins in mammalian autophagy, however, 

some findings were conflicting. For instance, Lee et al., (2010) demonstrated that the 

autophagosome buildup in the presenilin-1 knockout mutant is due to defective 

lysosomal acidification. Soon after, Neely et al., (2001) found that there is no defect 

in the acidification of lysosomes, but they referred this discrepancy to different cells 

types used in their study than the study of Lee et al., (2010). Two years later, 

another study reported that the autophagy turnover, vesicle pH or lysosomal function 

are unaffected in the mice and mammalian presenilin single and double knockout 

mutants (Zhang et al., 2012). A relatively recent study attributed a new function to 

presenilin-1 which is its role in facilitating autophagosome fusion with vacuole in 

mouse brain cells (Bustos et al., 2017). At this stage, based on our observation and 

in the light of knowledge obtained from animal studies, it is evident that presenilins 

function in a much-complicated manner and multiple mechanisms are underway to 

efficiently clear autophagosomes from the vacuoles. A recent study in Arabidopsis 

has characterized the interactome of two γ-secretase complex subunits i.e. AtPEN2 

and PS2 through affinity purification and co-immunoprecipitation studies. The 

analysis revealed seven interacting partners of PS2 which were mainly comprised of 

integral membrane proteins including one R-SNARE protein i.e. PHYL1.1 

(Skrzypczak et al., 2019). Of note is PHYL1.1, mainly because SNARE proteins are 

critical for most of the vesicle fusion events including autophagosome-vacuole 

fusion. It would also be intriguing to discover the interacting partners of PS1 and it is 

possible that these groups of proteins may regulate autophagic degradation in 
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Arabidopsis cells by presenilins. One such important interacting partner can be Bax-

inhibitor-1 (BI-1) which is an evolutionarily conserved cell death inhibitor and 

provides cytoprotection against various stimuli. Recently, it has been described that 

BI-1 forms a stable complex with presenilin-1 in a γ-secretase complex independent 

manner (Wu et al., 2019). Interestingly, this interaction is evolutionarily highly 

conserved indicating the co-evolution of both proteins in eukaryotes (Wu et al., 

2019). Interestingly, BA-1 has been found to interact with ATG6, a core autophagy-

related gene in Arabidopsis and regulates cell and autophagy (Xu et al., 2017). 

Presenilins mutation leads to a loss of γ-secretase activity and because secretase is 

required for processing various substrates that regulate many downstream events, a 

possible mechanism by which autophagy is regulated. In its entirety, our data 

suggest an important role of Arabidopsis presenilins in the management of protein 

turnover through mediating autophagosome-vacuole interaction or maintaining 

vacuolar function. However, more research needs to be done to comprehend the 

precise mechanism of presenilins function in plants.  

4.2 Arabidopsis PEN2 

PEN2 or presenilin enhancer-2 is a subunit of the γ-secretase complex and plays an 

essential role in the complex activity. It undertakes the endoproteolysis of presenilins 

to generate the N and C terminal fragments (Takasugi et al., 2003). Since it is an 

intrinsic part of the γ-secretase complex, therefore, a loss of its activity leads to a 

failure of the γ-secretase function. As mentioned before, the knowledge about the 

function of PEN2 in plants is very limiting. The little available information comes from 

the work on Arabidopsis and is mainly about its subcellular localization and 

expression (Walker 2010; Smolarkiewicz et al., 2014). It has been previously 

reported that AtPEN2 localizes with the autophagosomal marker ATG8 in 

Arabidopsis leaf protoplasts (Smolarkiewicz et al., 2014). Since we were keen to 

investigate the role of γ-secretase complex subunits in autophagy, therefore, we 

tested the effect of some autophagy inducing stresses such as C starvation and 

NaCl on the expression of stably transformed AtPEN2-GFP (data not shown). 

However, we did not see any change in the expression pattern of AtPEN2 under the 
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effect of these stresses. We then decided to find out the colocalization of AtPEN2-

GFP with RFP-ATG8f and for this purpose, we co-expressed both of these 

constructs in tobacco leaf epidermal cells. We observed that AtPEN2-GFP vesicles 

were distinct from ATG8f-RFP in structure and generally did not co-localize with 

autophagosomes (Figure 21). However, a small portion of the AtPEN2-GFP was 

indeed associated with ATG8f at some point which is in conformity with the previous 

observation of Smolarkiewicz et al., (2014). Nevertheless, further work is needed to 

understand this interaction.  

 Actin and microtubule cytoskeleton is essential for intracellular vesicle and 

organelle movement. Lack of colocalization studies with microtubule marker MAP4-

RFP revealed no localization of AtPEN2 with microtubules (Figure 22). It was further 

confirmed by the treatment with oryzalin, a microtubule inhibitor which also did not 

influence the motility of AtPEN2-GFP. However, we found that AtPEN2-GFP positive 

vesicles were very sensitive to latrunculin-B, an F-actin depolymerizing drug (Figure 

23). Spinning disk confocal images revealed that Lat-B treatment not just stopped 

the movement of AtPEN2-GFP but also changed the shape of these vesicles. 

Previous research shows that F-actin filaments play a critical role in protein 

trafficking from the Golgi complex to the vacuole (Kim et al., 2005). The transport of 

two Arabidopsis vacuolar reporter proteins i.e. sporamin (Spo-GFP) and aleurain like 

protein (AALP-GFP) were affected as a result of Lat-B treatment. Subcellular 

localization studies disclosed that these proteins are localized as punctate stains at 

the Golgi complex. Moreover, A. thaliana vacuolar sorting receptor (At-VSR) which is 

normally localized at the PVC was also found accumulated at the Golgi complex 

after Lat-B treatment (Kim et al., 2005). AtPEN2 has been reported to localize at the 

Golgi complex (Walker 2010) and a subset of it has also been shown to localize at 

the TGN and PVC (Smolarkiewicz et al., 2014). A change in the expression pattern 

of AtPEN2-GFP under the influence of Lat-B not only confirms the role of F-actin in 

the movement of these vesicles but also suggests their possible involvement in the 

trafficking pathways between Golgi complex and vacuole. Moreover, a recent 

interactome analysis of the γ-secretase subunits in Arabidopsis suggested that 

AtPEN2 interacts with secretory proteins which suggest its involvement in protein 

trafficking (Skrzypczak et al., 2019). F-actin has been implicated in polarized tip 
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growth in eukaryotic cells whereby it mediates the focusing of vesicles at the cell tip 

(Bibeau et al., 2018). In a colocalization study, we found that AtPEN2-GFP partially 

localizes with DsRED-FYVE in the tobacco leaf epidermal cells (Figure 24). DsRED-

FYVE is a PI3P reporter which is specifically localized with the dynamic and highly 

motile endosomal compartments and hence recognized as a late endosomal marker 

(Voigt et al., 2005). This late endosomal marker has also been implicated in tip 

growth and interestingly, the motility of these endosomes was reported to be 

dependent on dynamics and polymerization of actin (Voigt et al., 2005). Based on 

these similarities, we propose that AtPEN2 might play a role in tip growth through 

mediating vesicle trafficking. This suggestion is further supported by the phenotypic 

analysis of the pen2 mutant whereby it displayed a reduced root growth (Figure 26), 

however, it needs to be confirmed with further experimentation and analysis.  

 In Alzheimer's disease (AD), the deposition of amyloid β protein (Aβ42) 

accounts for the onset and progression of the disease (Selkoe 2001). Particularly, 

mutations in the genes APP, PS1, and PS2 result in an increased formation of Aβ42 

leading to the development of AD. Many gamma-secretase inhibitors (GSIs) have 

been employed to inhibit the production of Aβ42 and are considered an important 

tool to treat AD. Keeping in view the effectiveness of GSIs, we also tested the effect 

of a potent gamma-secretase inhibitor i.e. BSM-299897 on the AtPEN2-GFP line to 

study its effect on plant gamma-secretase activity (Figure 25). The inhibitor 

treatment changed the expression of AtPEN2-GFP which became more 

concentrated at the cross walls. This result showed that BSM-299897 affects the 

assembly of the gamma-secretase complex in Arabidopsis. Although we did not use 

this inhibitor in further experiments it would potentially prove an important tool to 

study the gamma-secretase complex activity in plant cells. Taken together, our work 

suggests that AtPEN2 is an essential constituent of the gamma-secretase complex 

and plays an important role in protein trafficking.   

4.3 Arabidopsis Adaptor Protein Complex 4  

Adaptor protein complex 4 (AP4) is one of the five AP complexes which are 

conserved throughout eukaryotic organisms and have been implicated in protein 
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trafficking. In animals, the interest in AP4 had risen from the studies where the 

mutations in genes coding for subunits of AP4 were identified in the patients with 

hereditary spastic paraplegias (HSPs) [Verkerk et al., 2009]. The AP4 deficiency 

syndrome results in microcephaly, intellectual disability and growth retardation 

(Moreno-De-Luca et al., 2011). Later work revealed that AP4 complex and 

autophagy are directly linked when ATG9 was identified as a physiological cargo of 

AP4 (Mattera et al., 2017; Davies et al., 2018; De Pace et al., 2018; Ivankovic et al., 

2017). This interaction is carried out by the recognition of YXXØE (YQRLE) motif in 

the N terminal tail of ATG9 by μ4 subunit of AP4 (Mattera et al., 2017). The authors 

of these studies attributed these defects to the mistrafficking of ATG9 by AP4 which 

leads to a defective function of ATG9. Among the components of ATG machinery, 

ATG9 is a unique protein not just because it is the only transmembrane domain-

containing protein but also because it recycles between TGN and peripheral 

compartments of the cell. In yeast, ATG9 is exported into Golgi vesicles by ATG23 

and ATG17 and in mammalian cells, AP4 is responsible for the export of ATG9 from 

the TGN (Yamamoto et al., 2012; Mattera et al., 2017). In plants, information about 

ATG9 is very limited, however, a recent imaging analysis has provided a profound 

understanding of the role of ATG9 in the formation of early autophagosomal 

structures (Zhuang et al., (2017). It has been reported that in Arabidopsis, both N 

and C termini of ATG9 are exposed to the cytosol in a manner identical to the yeast 

or mammals. Through subcellular localization studies it has been shown that ATG9 

is present in the proximity with TGN and that the ATG9 vesicles may be derived from 

the Golgi which is similar to the animal counterparts (Zhuang et al., (2017). Overall, it 

was demonstrated that ATG9 regulates autophagosome progression from the ER in 

Arabidopsis. 

 Recent reports in Arabidopsis have illuminated an essential role of AP4 

complex in subcellular protein sorting in plants (Pertl-Obermeyer et al., 2016; Fuji et 

al., 2016; Müdsam et al., 2018). Arabidopsis AP4 is also comprising of four essential 

subunits as their animal counterparts encoded by four different genes namely μ4 

(AP4M1), σ4 (AP4S1), ε (AP4E1) and β4 (AP4B1) [Fuji et al., 2016]. Moreover, it 

has been demonstrated that Arabidopsis AP4 is also localized at the trans-Golgi and 

recognizes tyrosine-based motif YXXФ present in the cytosolic tail of proteins 
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required for their sorting (Fuji et al., 2016). Importantly, we also demonstrated that 

BFA treatment induces accumulation of AP4 in the core of the BFA compartments 

which further confirms that AP4 is localized at the TGN or early endosomes (Figure 

31). Mutants for the subunits of AP4 were reported to exhibit defects in protein 

sorting, defective root and hypocotyl growth, abnormalities in male fertility and 

trichome morphology (Müdsam et al., 2018; Fuji et al., 2016). It was also reported 

that AP4 mutants have significantly reduced growth when grown on the media 

without sucrose and this observation was attributed to defects in meristem activity 

and cell elongation (Müdsam et al., 2017). However, under nutrient starvation and as 

a result of the missorting of proteins, autophagy is induced in the context of arrested 

and reduced cell growth. Sucrose starvation causes accumulation of proteins and 

reduced amino acid synthesis in the cells of ATG mutants leading to defects in 

cellular homeostasis (Avin-Wittenberg et al., 2015). In the light of the studies from 

animals combined with the above-mentioned abnormalities of the AP4 mutants and 

their similarity with the ATG mutants, we proposed that autophagy is defective in 

these mutant plants.  

 By carrying out multiple sequence alignments of ATG9 homologues from 

various species including Arabidopsis we provided a piece of evidence that YXXØ 

motif is well conserved in evolutionarily distinct organisms (Figure 27). This 

conserved sequence might also result in a similar interaction between ATG9 and 

AP4 in Arabidopsis and possibly other plants as it does in human or mice cells. This 

finding was further compounded by our observation that ATG9 and YFP-AP4 co-

localize in the tobacco leaf epidermal cells (Figure 28). Since the N terminus of 

Arabidopsis ATG9 protein is also facing the cytosol, it may contain the sorting 

information required for interaction with the AP4 complex. Multiple sequence 

analysis from evolutionarily distinct plant and animal species showed that YXXØ 

motif is very good conserved in ATG9. Particularly, in maize, the YXXØ motif in 

ATG9 i.e. YRRL was very similar to that of human i.e. YQRL which suggests the 

evolutionary pressure to conserve this motif in evolutionarily divergent species. 

Since AP4 seems to play a critical role in protein sorting as described in the previous 

reports, it can be assumed that defects in AP4, in turn, lead to missorting and 

accumulation of proteins. These accumulated proteins need to be degraded through 
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the autophagy pathway of which ATG9 is an essential component. In AP4 deficient 

cells, ATG9 might not be exported to the site of phagophore assembly leading to 

defective autophagy. However, further investigation will be needed to better 

understand how this interaction between AP4 and ATG9 takes place in plants.  

 The mutants of AP4 subunits used in this study i.e. gfs4/ap4β, gfs6/ap4σ, 

ap4e1/ap4ε showed an accumulation of ATG8, a structural component of 

autophagosomes which further supports our proposal about autophagy defects in 

these mutants (Figure 29). DTT is an inducer of ER stress which interferes with 

protein folding and is used as autophagy inducer in plants. Zhuang et al., (2017) 

proposed that ATG9 might be involved in ER-phagy due to tight coherence between 

autophagosome structure and the ER membrane. Since our results indicated that 

AP4-GFP localizes with ATG9 and might be involved in its export from the TGN like 

animal cells, we tested the effect of DTT on AP4 mutant lines and interestingly, all of 

these mutant lines showed sensitivity towards DTT which was reflected as 

significantly shorter growth of primary roots. Because DTT induces ER stress and 

ATG9 has been demonstrated to be involved in ER-phagy, our observation about the 

sensitivity of AP4 mutants to DTT reflects a specific role of AP4 complex in plant 

autophagy.  

 Taken together, our study has proposed that Arabidopsis AP4 might interact 

with ATG9 and play a role in its transport to the phagophore assembly site similarly 

to the situation in animals. Besides the missorting of proteins, defective autophagy 

might also be responsible for the phenotypic abnormality of AP4 mutants. Further 

investigations are needed to understand the link between the AP4 complex and plant 

autophagy.  
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CONCLUSIONS 

Our study characterizes the important roles of Arabidopsis presenilins in plant 

macroautophagy. We have reported adverse consequences of ablating presenilins in 

the clearance of autophagosomes in root cells when autophagy is induced through 

sucrose starvation. In addition to being susceptible to the sucrose starvation, mutant 

cells have altered expression levels of important autophagy-related genes. 

Presenilin mutant root cells show dysfunction in the turnover of proteins and 

organelles. Immunoblotting and microscopy techniques provide evidence about the 

aberrant degradation of autophagosomes within the lytic plant vacuoles. Collectively, 

our data propose an involvement of the presenilins and/or γ-secretase complex in 

plant autophagy. However, the mechanisms that underlie this novel aspect of 

presenilin biology needs to be further investigated in plants. Our work also 

demonstrates that the motility of Arabidopsis PEN2, another component of the 

gamma-secretase complex, is dependent on the actin cytoskeleton and proposes its 

role in protein trafficking. Moreover, the localization of PEN2 with the late endosomal 

marker combined with the reduced primary root growth of the pen2 mutant suggests 

a role for PEN2 in the tip growth in Arabidopsis. Our results implicate the roles of 

AtPEN2 in regulating tip growth and protein trafficking pathways in Arabidopsis. 

Nevertheless, studies on other possible functions of AtPEN2 in signal transduction 

and stress responses are still required.  

 In this study, we have proposed the involvement of AP4 complex in plant 

autophagy by performing analysis of Arabidopsis mutants lacking different subunits 

of AP4. We report that the YXXØ motif is conserved in the ATG9 protein of 

Arabidopsis which is required for the recognition by AP4. Moreover, a colocalization 

study reveals that AP4 localizes with ATG9 in the tobacco leaf epidermal cells. 

Besides showing sensitivity towards DTT, an ER stress inducer, the mutants of AP4 

subunits accumulate ATG8, a structural component of autophagosomes. We present 

evidence that Arabidopsis AP4 may interact with ATG9 and play a role in its 

transport to the phagophore assembly site similar to animals and in addition to 

missorting of proteins, defective autophagy is also responsible for the phenotypic 

abnormality of AP4 mutants. In animals, a role for AP4 in autophagy has already 
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been established whereby ATG9 has been identified as a cargo of the AP4 complex. 

To our knowledge, this is the first report which shows that the AP4 complex plays an 

important role in plant autophagy. Nonetheless, further studies are required to better 

elucidate the connections between AP4 subunits and ATG9 and their role in 

autophagy.  
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APPENDIX 

8.1 Abbreviations 

AALP  Arabidopsis Aleurain Like Protein 

AD   Alzheimer Disease 

AEP  Asparagine Endopeptidase 

AIMs  ATG8 Interacting Motifs 

Aβ   Amyloid β protein 

AP  Adaptor Protein 

APH-1  Anterior Pharynx Defective-1  

APP  Amyloid Precursor Protein  

APS   Ammonium Persulphate 

AP4  Adaptor Protein Complex 4 

ATG  Autophagy related  

bp   base pair 

BI-1  Bax inhibitor-1  

BFA   Brefeldin A 

C  Carbon 

Cd   Cadmium  

cDNA   Complementary DNA 

CHMP1  CHARGED MULTIVESICULAR BODY PROTEIN 1 

CLSM  Confocal Laser Scanning Microscope  

Col-0   Columbia-0 

CPN60β  Chaperonin 61 beta 

Ct   Threshold Cycle 

CTF  C Terminal Fragment 

dH2O  distilled Water 
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dsDNA  double-stranded DNA  

EE  Early Endosomes 

ECL   Electrochemiluminescence  

EtOH  Ethanol 

E. coli  Escherichia Coli 

FAD   Familial Alzheimer’s Disease  

GFS  Green Fluorescent Seeds 

GSI   Gamma Secretase Inhibitor  

GTPases  Guanosine Triphosphatases 

HRP   Horseradish Peroxidase 

HSPs   Hereditary Spastic Paraplegias  

HSP70T-1  Heat Shock Protein 70T-1 

InsP3R  Inositol Triphosphate Receptor 

I-CLiPs  Intramembrane Cleaving Proteases  

LatB   Latrunculin B 

LC3   Microtubule associated Protein 1 Light Chain 3β 

LCMS  Liquid Chromatography Mass Spectrometry  

LE  Late Endosomes 

LIR   LC3 Interacting Region 

MEFs   Mouse Embryonic Fibroblasts 

MDC   Monodansylcadaverine 

MS  Murashige and Skoog  

MTORC1 Mechanistic Target of Rapamycin Complex 1 

MVB   Multi Vesicular Body 

NaOCl  Sodium Hypochlorite 

NCT  Nicastrin  

NDH  NADH Dehydrogenase-like complex 

NTF  N Terminal Fragment 
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N2A   Neuroblastomas  

OD   Optical Density 

OST   Oligosaccharyltransferase 

PAS   Phasgophore Assembly Site 

PBE1 | 21S  Proteasome Beta Subunit E1 

PBS buffer  Phosphate Buffer Saline 

PCR   Polymerase Chain Reaction 

PE   Phosphatidylethanolamine 

PEBP   Phosphatidylethanolamine Binding Protein 

PEG  Polyethylene Glycol 

PEN2   Presenilin Enhancer 2 

PIP2  Phosphatidylinositol (4,5)-bisphosphate 

PIP3  Phosphatidylinositol (3,4,5)-bisphosphate  

PI3K   Phosphoinositide-3-Kinase 

PI3P   Phosphoinositol-3-Phosphate 

PM  Plasma Membrane 

PS  Presenilin 

PSAP   PS1-Associated Protein  

PSDKO  Presenilin-1 and -2 Double Knockout 

PVC  Pre-Vacuolar Compartment  

qPCR   Quantitative PCR 

RE  Recycling Endosomes  

RIP  Regulated Intramembrane Proteolysis together with 

RPM   Revolutions Per Minute 

SERCA  Sarco/ERCa2+-ATPase  

SDS PAGE  Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis 

SNARE Soluble NSF Attachment Protein Receptor 

SnRK1  Snf1-RELATED PROTEIN KINASE 1 
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Spo  Sporamin 

SPP  Signal Peptide Peptidases  

S2P  Site-2 Proteases (S2P) 

TBS  Tris Buffer Saline 

TEMED  Tetraethylenediamine 

TGN  trans-Golgi Network 

Tm   Melting Temperature 

TMD  Trans Membrane Domain 

TOR   Target of Rapamycin 

TPC  Two Pore Channel 

TRP   Transient Receptor Potential 

TSPO  TRYPTOPHAN-RICH SENSORY PROTEIN/TRANSLOCATOR 

T-DNA  Transfer DNA 

GSK-3β  Synthase Kinase-3 Beta 

V   Volts 

VPS34 VACUOLER SORTING COMPLEX 34 

VSR  Vacuolar Sorting Receptor  

Wort   Wortmannin  

WT   Wild Type  

8.2 List of Figures  

Figure 1: Three major autophagic routes 

Figure 2: γ-Secretase complex formation and roles of its essential subunits  

Figure 3: The γ-secretase complex subunits 

Figure 4: PS1 and γ-secretase regulate Wnt and calcium signaling within the cell 

Figure 5: Presenilins, lysosomal acidification and Ca+ homeostasis 

Figure 6: Proposed mechanism for the relationship between γ-secretase complex 

dynamics and Aβ42:Aβ40 ratios 

Figure 7: General overview of protein trafficking pathways in plant cells  
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Figure 8: Trafficking and localization of the adaptor protein complexes 

Figure 9: Etiolated seedlings of ps1ps2 and atg9 mutants grown under C starved 

condition showed significantly shorter hypocotyls and roots compared to the wild 

type seedlings. 

Figure 10: Autophagy induction in ps1ps2 double mutant under sucrose 

starvation. 

Figure 11: Leaf protoplasts of ps1ps2 mutant have an abnormal accumulation of 

autophagosomes.  

Figure 12: Subcellular expression of GFP-ATG8f in WT and ps1ps2. 

Figure 13: Separation of total protein content, as well as the soluble and non-

soluble protein fraction from the seven-day-old C starved etiolated WT and 

ps1ps2 seedlings on the SDS gel. 

Figure 14: Relative gene expression of 8 genes observed in the ~22 kDa band 

from the seven-day-old C starved etiolated seedlings of WT and ps1ps2 mutant.  

Figure 15: ps1ps2 deficiency does not affect endocytosis in Arabidopsis root 

cells. 

Figure 16: Relative gene expression of ATG8, ATG9 and ATG18 genes in seven-

day-old C starved etiolated seedlings of WT and ps1ps2.  

Figure 17: Western blot of seven-day-old C starved Col-0 and ps1ps2 mutant 

plants using the Anti-GFP antibody. 

Figure 18: ps1ps2 mutant has autophagy defectiveness at the later stages of the 

autophagic pathway and not at the initiation step.  

Figure 19: Autophagosomes reach the vacuole in ps1ps2 mutant. 

Figure 20: GFP-ATG8f labeled autophagosomes are delivered to the vacuole in 

the presenilins mutant.  

Figure 21: RFP-ATG8f, a marker for autophagosomes is not co-localized with the 

AtPEN2-GFP vesicles in the transient transformation assay.  

Figure 22: AtPEN2-GFP does not localize with MAP4-RFP in epidermal leave 

cells of N. benthamiana and the movement of AtPEN2-GFP vesicles is 

independent of the microtubule cytoskeleton. 

Figure 23: Lat-B stops the movement of AtPEN2-GFP.   
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Figure 24: AtPEN2-GFP partially localizes with DsRED-FYVE in epidermal leave 

cells of N. benthamiana.  

Figure 25: Gamma secretase inhibitor (BSM-299897) changes the localization of 

the AtPEN2-GFP signal. 

Figure 26: Root lengths in pen2 mutant are significantly shorter than in WT 

seedlings when grown under normal growth conditions. 

Figure 27: Sequence alignments of amino acid motifs known to be crucial for 

binding with AP4 in different species. 

Figure 28: AP4µ-GFP localizes with YFP-ATG9 in the leaf epidermal cells of N. 

benthamiana in the transient transformation assay.  

Figure 29: AP4 mutants accumulate autophagosomal marker.  

Figure 30: Seedlings of AP4 mutants grown with or without DTT showed 

significantly shorter roots compared to the wild type seedlings.  

Figure 31: AP4µ-GFP accumulates in the core of BFA compartments. 
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Table 1: A list of all the primers utilized in the various analysis. 
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