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Abstract

Dark Matter candidates are required in physics beyond the Standard Model.
The preferable models should not only explain the observed phenomena, but
also be testable by experiments including direct detection, indirect detection,
and collider searches. In this thesis, we focus on simplified Dark Matter
models, and try to combine the experiments at colliders with non–collider
data to scrutinize suchmodels. On the theoretical side, themodels considered
in this thesis are the simplifiedDarkMattermodels containing spinor or scalar
Dark Matter particles and a massive vector mediator, which couples to both
Dark Matter and Standard Model particles including quarks and leptons. On
the experimental side, recent collider analyses related to the simplified Dark
Matter models are mainly from ATLAS and CMS collaborations at LHC.
Nevertheless, we also apply some old LEP data at e+e− collider to probe
the parameter region where the LHC data are insensitive. The analyses used
in this thesis cover collider signatures with mono–jet+/ET , di–jet+/ET , di–
jet resonance, 4–jet, di–lepton+/ET , and multi–lepton final states. However,
the published analyses are not always well designed for the selected models
related to Dark Matter. Therefore, we further study the optimization for
the signal–to–background ratio and the selection efficiency for Dark Matter
models, in order to improve the results from published analyses through both
the cut based methods and the Machine Learning based algorithms.
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CHAPTER 1

Introduction

1.1 Quantum Field Theory and Standard Model

During the past decades, the Standard Model (SM) of elementary particles has been well established.
It contains the basic blocks of our physical world (Fig. 1.1), namely quarks, leptons, gauge bosons and
Higgs boson. The last missing block in the SM, the Higgs Boson, was confirmed in 2012 [4, 5]. The
SM is built on a fundamental theory called Quantum Field Theory (QFT), which uses the quantized
fields that are representations of Lorentz group to construct a quantum theory satisfying Special
Relativity. As the upgrade of Classical Field Theory (CFT), fields are the basic concept in QFT,
and particles are the excitation of quantized fields. To describe the elementary particles, physicists
use Lagrangian density constructed by quantized fields which are representations of Poincaré group
and gauge groups. Compared to Hamiltonian or other frameworks, Lagrangian framework has the
advantage to ensure the Lorentz invariance of the physical system, which is required by Special
Relativity, through the Lorentz invariance of Lagrangian density.

In the Classical Electrodynamics, the electromagnetic interaction is described as 4–vector field Aµ,
while electron particle is described as a point–like particle with mass and charge. As the upgrade of
the CFT of electromagnetism, the Quantum Electrodynamics (QED) contains a massless vector field
(Aµ) and a massive spinor field (ψ) to describe photon and electron respectively. The Lagrangian
density of QED is invariant under Poincaré transformation and U(1)EM transformation, where EM
denotes electromagnetism. Besides all the successes of the CFT, some very famous triumphs of QED
are worked out, e.g the prediction of anomalous magnetic dipole moment of electron and the Lamb
Shift of the energy levels of hydrogen. The most remarkable achievement of QED is extremely high
precision. Since QED is one of the most accurate theory describing the elementary particles and their
electromagnetic interaction, QFT with gauge fields turns to be very attractive for constructing the
physical rules of particle physics.

In the SM of particle physics, the gauge group is extended fromU(1)EM to SU(3)C ⊗SU(2)L⊗U(1)Y ,
where C, L and Y correspond to color, left–chirality and hypercharge, while the fermion content is
extended from electron to leptons (e, µ, τ, νe, νµ, ντ) and quarks (u, d, c, s, t, b). Similar to theU(1)EM
group in QED that describes electromagnetism, the SU(3)C group depicts Strong Interaction. The
strong dynamics known as Quantum Chromodynamics (QCD) [6] has confinement effect forbidding
free quarks from being detected directly and trapping them in the form of hadrons including baryons
and mesons. This feature highly influences what can be detected at the collider or other experimental
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Chapter 1 Introduction

facilities. As for SU(2)L ⊗ U(1)Y , they describe weak interaction and electromagnetism together,
named as electroweak interaction through the model introduced by Glashow, Weinberg and Salam
[7, 8]. In the SM, all the particles are massless and then acquire masses through Higgs Mechanism
with Spontaneous Symmetry Breaking (SSB). Under the SSB of the SM, the gauge symmetry1 breaks
spontaneously from SU(3)C ⊗ SU(2)L ⊗U(1)Y to SU(3)C ⊗U(1)EM. The unbrokenU(1)EM still raises
photon, while the unbroken SU(3)C leads to a new massless gauge boson called gluon labeled with g,
and the broken symmetries result in 3 massive gauge bosons W± and Z , whose masses are related to
the electroweak couplings and vacuum expectation value (VEV), while fermions acquire masses from
the Yukawa terms (interactions between the fermions and the Higgs field) in the Lagrangian. Finally,
the Higgs boson itself acquires mass around 125 GeV measured in ATLAS [9] and CMS experiments
[10].

In the constructed SM gauge group (SU(3)C ⊗ SU(2)L ⊗U(1)Y → SU(3)C ⊗U(1)EM), both leptons
and quarks may have multi–generations. The N dimensional orthogonal matrix, which reflects the
real mixing of N generations of quarks, has N(N − 1)/2 degrees of freedom (d.o.f), while the N
dimensional unitary matrix has N2 d.o.f. Therefore, there are N2

− N(N − 1)/2 = N(N + 1)/2
parameters raising from the complexness of the unitary matrix. Moreover, there should be 2N − 1
complex d.o.f that can be absorbed to the relative phase of 2N quark fields, as the meaningless
overall phase of all quark fields. Finally, the number of the remaining complex phase, which can
lead to CP violation, is N(N + 1)/2 − (2N − 1) = (N − 1)(N − 2)/2. Therefore, in order to include
CP–violating terms in the weak interaction, which are implied by experiments, there should be at
least 3 generations of quarks. On the other hand, there could be CP–violating terms in the Strong
Interaction as well through the so called θ term, θFa

µν F̃aµν. However, the recent experiments have
already placed stringent upper bound of θ with θ < 10−10 [11, 12].
Finally, assuming 3 generations of quarks and leptons and massless neutrinos, we end up with

19 free parameters in the model: 3 lepton masses, 6 quark masses, 3 quark mixing angle, 1 weak
CP–violating phase, 3 gauge couplings, the Higgs mass, the VEV, and the QCD vacuum angle (θ). If
one needs to discuss massive neutrinos, e.g. in the context of neutrino oscillation experiments [13–15],
more Yukawa terms with extra couplings should be added beyond the original 19 free parameters.
The SM has obtained its great triumphs in the past half century. Nevertheless, there are still

problems within the model, which has already been implied or proved by experiments. The following
list some of the most famous potential issues:

• Gravitation: In QFT, on which the SM is built, gravitation may lead to non–renormalizable
Lagrangian [16]. The scheme for renormalization and regularization does not work as the case
for strong, weak, and electromagnetic interactions. Different approaches have been introduced
beyond the SM in the past decades. String theory is one of the most famous solutions to combine
the gravitation with other interactions that can be described through gauge groups in the SM.

• Hierarchy Problem: Given that the Higgs mass is near 125 GeV, there should be a cancellation
for loop diagrams to avoid that the loop contribution for the mass may quickly increase according
to the increasing energy level, and hence the Higgs mass is extremely large at high energies. To

1 Some physicists may claim that the gauge symmetry is not a physical symmetry, but a redundancy, since it does not have
a conserved Noether current. Here, in this thesis, the word “symmetry” only means the invariance of Lagrangian under
some given transformation, instead of physical symmetry, which corresponds to a conserved current. Therefore, both
global and local symmetries are defined as symmetries.
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1.1 Quantum Field Theory and Standard Model

achieve the cancellation, fine tuning should be applied. Supersymmetry (SUSY) [17] is one of
the solutions to avoid the fine tuning, since SUSY is a non–renormalization theory whose loop
contributions automatically cancel.

• Hierarchy in Yukawa Couplings: There is no explanation for the huge difference between the
heaviest massive fermion (top quark) and the lightest massive fermion (electron) whose masses
arise from the Yukawa terms in the Lagrangian of the SM. This implies their Yukawa couplings
for them are quite different. Their difference is around mt/me ∼ 106 [18]. Researchers may be
curious about the reason behind the 6 orders of magnitude difference. Unfortunately, SM does
not offer any potential explanation.

• Lepton Universality: In recent LHCb experiments [19–25], the branching ratio of K+ →
B+e+e− and K+ → B+µ+µ− are quite different, where the ratio of branching fractions is
measured to be RK = 0.846+0.060+0.016

−0.054−0.014 (The first error is statistical uncertainty, while the second
is systematic uncertainty). In contrast, the SM predicts this ratio to be exactly unity. The
derivation between the SM estimation and the experimental measurement is higher than 2.5
standard derivations, sizable enough to claim an incompletion of SM. Some new models should
be built to solve such a large discrepancy.

• gµ − 2: The QFT succeeds in explaining the anomalous magnetic moment of electron labeled
with ge − 2, through the calculation of loop diagrams in QED. The prediction from Dirac
equation claims ge − 2 = 0 corresponding to tree level effect in the QFT. The effect from 1-loop
diagram adjust the value to α/2π, where α is fine structure constant. After calculating the loop
diagrams to higher order, the predicted value of ge − 2 agrees with the experiments result to
the level of 10−8, which is one of the most precise estimation of any physics theory. On the
contrary, gµ − 2 is not perfectly explained by the SM. The difference between the SM prediction
and the measured value [26] is

∆aµ = aexp
µ − ath

µ = (29.0 ± 9.0) × 10−10.

The positive value of the difference does not veto the SM prediction, but implies some new
particles or hidden sectors which are missing in the SM.

• Neutrino Masses: Neutrinos are predicted to be massless in SM, and only have left-handed
components. The neutrino oscillation [15] among different flavor, however, proves the tiny
but non–zero masses of the left–handed neutrino in SM. Therefore, some new mechanism
should be introduced to render the neutrinos massive. A class of models as very attractive
solutions utilize see–saw mechanism. In such models, typically 3 new right–handed neutrinos
are added to the SM, which are neutral for the SM gauge groups, and have Majorana mass
terms [27]. The mass eigenvalue of the right–handed neutrinos should be extremely large to
prevent themselves from being detected by recent experiments and observations, and to generate
very small masses for left–handed neutrinos. A Majorana fermion is its own anti–particle.
Therefore, Majorana fermions described in Feynman diagrams may have 2 opposite particle
flow directions. This special property allows the neutrinoless double beta decay to take place,
if neutrinos are Majorana fermions. However, there has been no experiment evidence so far
related to neutrinoless double beta decay in any experiments.

5



Chapter 1 Introduction

• Strong CP Problem: The symmetries of the SM allows the strong CP–violating term, Fµν F̃µν ,
known as the θ term in the QCD sector. This term is not forbidden by any symmetry such as
Lorentz and gauge invariance in the SM. In contrast, the experiments have put a strong limit
on the value of the θ term. An explanation is required to offer a reason for its smallness. The
Peccei–Quinn mechanism [28–31] is one of the potential solutions to this problem through a
new spontaneously breaking U(1) symmetry, called Peccei–Quinn Symmetry.

• Dark Matter: Dark Matter (DM) issues are the main topic of this thesis, and will be discussed
in detail in the rest of this thesis.

Figure 1.1: Quarks (red), Leptons (green), gauge bosons (blue), and the Higgs boson in Standard Model.
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1.2 Dark Matter

1.2 Dark Matter

Figure 1.2: The figure summarizes the experiments of DM. The direct detection focuses on the scattering
between nuclei (SM particles) and DM particles. The indirect detection focuses on the SM products from DM
annihilation. The collider searches focus on the collision of the SM particles that have DM particles in the final
states.

The SM has some well known issues, and inspires a series of discoveries beyond the Standard
Model (BSM). The lack of adequate candidates of Dark Matter (DM) is one of the most remarkable
puzzles. The observations in different macroscopic scales, imply the existence and gravitational effect
of DM. Nevertheless, the microscopic interactions of DM remain mysterious, and open a wide and
attractive research area. On the theoretical side, the extensions of the SM, String Theory, and Modified
Gravity have their different approaches on the topics related to DM. On the experimental side, results
from direct detection, indirect detection, relic density, collider searches, etc., can be combined to
constrain the parameter space of selected models.

The only known aspect of DM is its gravitational effects in different macroscopic scales. To explore
the nature of DM particles, the interactions besides the gravitation need to be studied. Now various
experiments have already showed abundant results related to DM. The direct detections of DM is
based on the interaction between DM particle and nuclei (corresponding to the up arrow in fig. 1.2).
Therefore, the spin–dependent and spin–independent interactions in direct detection experiments
always limit the interaction strength between DM and quarks, which form the nuclei as valence quarks
or sea quarks. The relic density of DM particles is governed by a Boltzmann equation, which reflects
the annihilation and production of the DM particles in the thermal bath of SM particles. When the
temperature of the University deceases because of its expansion, DM decouples with the SM particles
and leaves a constant observable. Therefore, all the interactions between the SM particles and DM
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Chapter 1 Introduction

particles are constrained depending on the observation of relic density. The indirect detection of
DM focuses on the decay and annihilation products of the DM particles (shown as the right arrow in
fig. 1.2), which can be identified from anisotropies of CMB, gamma rays, and cosmic rays. Since the
astronomical objects may capture the DM particles because of the gravitational effect, and hence boost
the annihilation rate, the measurement of the flux from such astronomical objects are also helpful to
study the interactions in DM models, e.g. the neutrinos and muons from the sun.
If DM particles have interactions with the ordinary particles, these interactions should exist at all

collider experiments (shown as the left arrow in fig. 1.2), performing as part of the missing energy.
Therefore, DM models are also testable in collider searches. The old LEP searches have much lower
energy up to only 209 GeV. Their background, however, is relatively clean, and hence the cut efficiency
of a given model may be higher than 30%. In contrast, the LHC searches have higher energy up to 13
TeV with complex background events, which leads to low cut efficiency, normally in percentage level
or even worse. Some proposed colliders, e.g. ILC or CEPC, share the advantages of e+e− colliders
and higher energy levels. After applying the same selection rules described in published analyses or
designed by ourselves to the result of simulation, a large number of collider searches could be useful
materials for discussing the phenomenology of selected DM models. Additionally, the result from
collider searches can be easily combined with the non–collider experiments to show the potential of
the candidate models, or to close the window for them.

1.3 Simplified Model

Similar to the SM, a series of complete models of DM, e.g. supersymmetric DM models, have been
proposed. A complete model is defined as containing all the sectors that respect the gauge symmetry,
Poincaré symmetry and other requirements from the QFT, such as the renormalizable condition. The
neutralino is one of the candidates of DM in the supersymmetric DM models. The second kind of
models are the models built on effective field theory (EFT). For instance, the contact operators between
quarks and fermionic DM,

Le f f = gVf q̄γµq χ̄γµ χ + g
A
f q̄γµγ5q χ̄γµγ

5χ,

are generally used in direct detection experiments. The contact operators describe the interaction
between 2 quarks and 2 DM particles, and can be used to predict the DM annihilation in indirect
detection or relic density, and DM–nuclei scattering in direct detection. The new terms in the
effective Lagrangian are only valid up to some selected energy level, since the Lagrangian itself is
non–renormalizable.

The main disadvantage of complete models is that there are too many parameters in the model, and
hence the model is not easy to test against experiment data for the whole parameter space or have
a series of sectors irrelevant with the problem we concern. For instance, an U(1) extension of SM
should have extra degrees of freedom in the Higgs sector to offer the mass to the new gauge boson
and DM particles if they are massive. However, this Higgs sector contains not only the Yukawa
couplings related to the DM mass and mass of new gauge boson, but also the Higgs mass and extra
VEVs. Therefore, the number of parameters quickly increases, when we consider a more complete
model. Although the model containing very a large number of parameters always has chance to fit
all experiment data, physicists prefer simpler models that are easily testable. A good candidate of
DM should be well testable in direct detection, collider searches, and all other experiments, while
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1.4 Structure of the Thesis

the model containing such candidates can be used to explain some special phenomena, e.g. DM
annihilation in the early Universe. Obviously, a model with so many free parameters can only be used
to fit the special phenomena, but is hard to exclude by experiments. The complete model usually
have extra sector irrelevant with the phenomena we concern (mainly DM in this thesis), or extra free
parameters that are hard to test. Therefore, the model with a limited number of free parameters, which
are relevant to a bunch of complete models, could be more appealing and practical, when we focus on
phenomenology research of DM.

On the other hand, if we move from the complete model to the model built on effective field theory,
the coupling of every operator may come from quite different sources. For instance, in the contact
operator we mentioned gVf q̄γµq χ̄γµ χ derived from a more complete model, the interaction implied
by such an operator may be from a vector mediator, a scalar mediator, or some loop structures, while
the mass of the mediator and other features in the loop structure are also quite influential for the
experimental analysis designed for different signals. The contact operators are equivalent to the case
that the inner structure of the 4–point function can be integrated out. In Ref. [32], it is clear to see
that the assumption with contact operators strongly weakens the bound compared with more detailed
assumptions. Given that most of analyses are designed for special topologies at the collider, only the
signature from the new model that can match the selection rules well enough is testable through the
published analysis. The contact operators, however, hide the various natures of the inner structure of
different models. Therefore, we should focus on the distinguishable signals in the experiments with
minimal number of parameters.
As the discussion above, we introduced the simplified models, which are generally considered in

this thesis. The simplified models only contain small number of parameters to keep the model more
testable by the collider searches than complete models such as SUSY. Moreover, simplified models
are supposed to generate distinguishable signals and be tested through various analyses corresponding
to different natures of the models. In particular, the vector mediators are the most straightforward
assumption of the simplified models, since any gauge extensions of SM may give an extra massive
vector mediator after the SSB. In this kind of simplified models, only the mediator mass, DM mass
and spin (spinor, scalar, etc.), and couplings with quarks or leptons are free to select. We shall see in
the next chapter that not the whole parameter spaces in previous assumption are well testable, even if
the assumption itself has already been simple enough. If the simplified models are not testable, all the
more complete models related to the same simplified model are hard to test. We, therefore, should
perform some optimizations from the experimental side to improve the results for selected models.

1.4 Structure of the Thesis

This thesis is structured as follows.
In Chapter 2, we introduce the background of DM in detail. With the discussion of the previous

researches of DM, we should point out the theoretical challenges that our model should explain, and
the relevant experimental facts that our model should respect. Moreover, since there has been positive
direct detection of DM, we need to argue why DM solution is very attractive in the astrophysical
observations.
In Chapter 3 and Chapter 4, we discuss the simplified model containing leptophobic mediators.

A leptophobic mediator helps the model avoid the strong constraints from e+e− colliders, while it
receives constraints from direct DM detection. Unlike the previous research focusing on family–
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Chapter 1 Introduction

independent assumption which exactly only shows the phenomenology of light quarks, we investigate
the family–dependent case for the phenomenology of heavy quarks. Both LHC and LEP data are
applied, while the optimization designed specially for our model is analyzed as well.
In Chapter 5, we turns to the simplified model containing a leptophilic mediator from U(1)Lµ−Lτ

extension of the SM. We discuss not only DM–related topics from this model, but also other topics
BSM, e.g. the anomalous gµ − 2. Finally, we combine the result from e+e− collider, pp collider, and
neutrino experiments to study this model in different parameter regions.
In Chapter 6, we summarize the obstacles we meet and the weakness of the recent experiments in

previous chapters. Moreover, we discuss the tools from modern computer science that can be used to
optimize our results.

In Chapter 7, we summarize all the conclusions in this thesis.

10



CHAPTER 2

Dark Matter

Dark Matter is the invisible matter in the Universe. The word "invisible" means that it has no
electromagnetic interaction, and hence it cannot be detected through visible lights, radios, X-rays, γ–
rays, etc. Since there are only 2 well known long distance interactions, gravitation and electromagnetic
interaction, the lack of electromagnetic interaction is equivalent with “undetectable” in astronomical
observations. Therefore, the evidence of the existence of DM comes from its gravitational effect in
galaxies, galaxy clusters, and the universe. Nevertheless, DM may have other interactions in small
scale, and can be tested through relevant scenarios. If we assume DM has only gravitation, DM cannot
annihilate to any ordinary particles, and hence this may lead to DM overproduction, when we compare
the real relic density and the predicted value from the estimation of DM in the early universe. On
the contrary, the interaction between DM and ordinary matter can easily produce the observed relic
density in wide parameter space. Therefore, the weakly interacting massive particle (WIMP) turns to
one of the most attractive DM models. Obviously, if DM has interaction with ordinary matter, there
are ways to capture them and to detect them. First, if DM has interactions with nucleon, it may be
scattered by nuclei. The direct detection experiments [33–53] are designed for such purpose. Through
the zero result so far, the direct detection leaves strong constrains on the models connecting DM to
nucleon. Second, the annihilation of DM may generate ordinary particles. Therefore, the annihilation
products of DM may be detectable in the cosmic rays, which can be observed by the telescopes on the
earth or satellites in the space. This kind of detection is called indirect detection [54–70]. Unlike
the direct detection, the indirect detection does not require that the DM has to have interactions with
nucleon. Third, the cue of the annihilation of DM is not only from the cosmic rays, but also from
the relic density. The annihilation rate may change the equilibrium of ordinary matter in the early
universe during special periods, like nucleosynthesis, and then change the current relic density of DM.
Therefore, the relic density may offer a lower limit of annihilation rate for DM models. Finally, DM
that has interactions with ordinary matters can be generated in the collider. The relative old collider
searches with missing energy [71–80] have already been very powerful to test DM effective models or
simplified models. In the following chapter, we will apply a series of more recent LHC analyses to
discuss DM related model with different final states. Although the final state DM in collider is just
missing energy, which is not distinguishable from neutrinos inside collider, the massive DM and other
new particles beyond standard model could strongly change the topologies of the final state objects.
Therefore, through the careful event simulation and selection, the result from observed data can test
the relevant DM model. The following sections will list the previous results from other researchers for

11



Chapter 2 Dark Matter

evidence, direct detection, indirect detection, relic density, and collider searches respectively.

2.1 Evidence

2.1.1 Rotation Curves of Spiral Galaxies

The spiral galaxies are classified by their arm–structure. The arm–structure is the regions of stars
that extend from the center (upper figure in Fig. 2.4 from the official website of NASA 1). In the center
of the spiral galaxies, large mass centralizes here and forms a region called bulge. The velocity in
rotation curves of spiral galaxies should depend on the radius through the simple Newton gravitation.
If we assume the luminous mass of the galaxy is situated in the bulge of the galaxy, the velocity of
rotation agrees the following rule

mv2

r
=

GMm

r2 ⇒ v = (
GM

r
)
1/2
⇒ v ∝ r−1/2. (2.1)

The assumption ofmass distributing a uniform disk gives similar result. In the astronomical observation,
however, the velocity is roughly a constant for the large radius, when it is first time measured by Vera
Rubin [81]. Therefore, if our assumption works, the central mass distribution should be proportional
to radius, i.e. M ∝ r . This implies the real mass distribution is quite different with our assumption. A
more detailed example is shown in the lower part of Fig. 2.4. The observed and expected curves in
this example, are similar with the observed and expected velocity to radius relations in our previous
discussion respectively. The obvious difference is shown clearly in the figure. Other researches [82,
83] claim the similar conclusion that the mass distribution may be quite different with the observation.
This is a hint to claim that the luminous mass may be not the total mass in galaxies. Additionally, the
luminous perhaps is not the dominant mass in this kind of galaxies as well. Nevertheless, there are
still other explanation of the unexpected rotation curve, besides the existence of DM. The modified
gravitation like Modified Newton Dynamics is also helpful to solve the puzzle [84]. Therefore, the
rotation curve is only a hint of the DM assumption, not the strong proof to claim the existence of DM.

2.1.2 Galaxy Clusters

A galaxy cluster may contain 100 − 1000 galaxies, and its mass could be 1014
− 1015M�, where

M� is the mass of sun. The galaxy cluster is the largest gravitationally bound structure in the universe,
and its diameter is typically 2 − 10 Mpc (1023 m). Besides 100 − 1000 galaxies, the galaxy cluster has
X–ray emitting gas inside, which is normally much more massive. In the optical observation, only
galaxies are visible, while we can observe gas through the X–ray. Therefore, the total mass estimated
from the gravitation effect can be compared with the luminous mass through the direct observation.
The difference between luminous mass and total mass again implies the existence of DM.

Bullet Cluster

Bullet cluster (1E 0657-558) [86, 87] contains galaxies, gas, and perhaps invisible mass. The
existence of invisible mass should be very important proof of DM. Bullet cluster is named as bullet,

1 https://www.nasa.gov/feature/goddard/2017/messier-101-the-pinwheel-galaxy
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Figure 2.1: The visible lights with different colors show galaxies. The pink area is the X–ray photo. The blue
area is the mass distribution from gravitational lensing. If we assume the luminous mass approximately agrees
the baryonic matter shown by the X–ray photo, the luminous mass is obviously distinct from the total mass.

since it consist 2 collided components of galaxies with hot gas. The optical observation can show 2
clusters of galaxies, while the emission of X–ray can show the distribution of gas, which represents
the main component of baryonic matter that forms the dominant visible mass in bullet cluster. If there
is no large amount of DM, the luminous mass observed through X–ray should approximately equal to
the total mass measured by gravitational lensing. The observed result is shown in figure 2.1. The
figure is from the official website of Chandra X–ray Observatory from NASA2. In the figure, it is clear
to see that the luminous mass forms 2 separated parts like we described above. Nevertheless, the total
mass indeed distributes differently with the luminous mass. Unlike the rotation curve, the difference
between the luminous mass and total mass is hard to explain by modified Newton dynamics, since the
total mass distribution is measured directly by gravitational lensing. Therefore, the measurement of
bullet cluster is more important clue to ensure the existence of DM.

2 https://chandra.harvard.edu/photo/2006/1e0657 or https://apod.nasa.gov/apod/ap060824.html
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Chapter 2 Dark Matter

Figure 2.2: The figure is the bound of spin–independent cross sections. The lines above are the exclusion plot
for 90% CL, while the dashed line is the neutrino floor from the measurement of the background in coherent
Nν scattering. The bound for spin–independent interaction is on the sum of neutron and proton, e.g. Cs in A.1.

Coma Cluster

Coma Cluster (Abell 1656) is very large galaxy cluster containing over 1000 galaxies. The cluster is
99 Mpc (≈ 3 × 1024 m) away from earth. In 1933, Fritz Zwicky pointed that the Coma cluster moved
too fast to keep the visible matter together through the gravitational effect [88]. His estimation use
Virial Theorem, which describe the relation between the virial and the total kinetic energy,

〈T〉 = −
1
2

N∑
k=1

〈
®Fk · ®rk

〉
. (2.2)

If we assume the Coma Cluster is in statistical equilibrium and the dominant force inside the cluster is
gravitation. The specialized virial theorem for this system should be in the following form

1
2

M
〈
v2

〉
=

1
2

GM2

2

〈
r−1

〉
⇒ M =

2
〈
v2

〉
G

〈
r−1

〉 . (2.3)
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Therefore, we can calculate out the predicted mass of the galaxy cluster, which is ' 4.5 × 1010M�.
The predicted luminous mass, however, is ' 8.5 × 107M�, which is estimated from the measured
luminosity (L ' 8.5 × 107L�) of the cluster, since we can approximately assume that the mass is
proportional to luminosity in this special case. The difference between the luminous mass and the
total mass is around 2 orders of magnitude, and obviously implies the existence of large amount of
invisible matter, i.e. Dark Matter.

2.1.3 Cosmic Microwave Background (CMB)

CMB is the electromagnetic radiation that filling the whole universe and known as the remnant from
the early universe. It is the oldest electromagnetic radiation that can be observed by scientists in recent
study, and can be traced back to the epoch of recombination. In early research through traditional
optical telescope, the background of the universe is empty. Nevertheless, the sensitive enough radio
telescope finally observed the non–empty background filling by electromagnetic radiations that have
already decoupled from the matter, like electrons and baryons. In the early observation, CMB is
almost isotropic, since the precision is not sufficient, and its temperature is approximately 2.7 K
according to COBE satellite [89]. Nevertheless, in the recent map of CMB, the anisotropy is observed.
The observation of the temperature of CMB depending on different directions is shown in the upper
frame of figure 2.5. The different colors in the map clearly show the anisotropy of CMB. The coldest
point and the hottest point in the figure takes the difference around O(10−5

) K. CMB has already
been observed by different telescopes with increased precision, and the anisotropy always exist, which
requires an explanation from scientist.

The distribution of DM in early universe is helpful to explain the anisotropy of CMB. To parametrize
the anisotropy, we use the spherical harmonics

δT
T
=

∞∑
l=2

m=l∑
m=−l

almYl,m(θ, φ), (2.4)

where alm are the coefficients. We connect the coefficients to the power spectrum, defined as l(l+1)
2π Cl ,

through Cl =
〈
|alm |

2
〉
. The Λ–CDM model fits the observation very good in figure 2.5 [90]. In

the name Λ–CDM, Λ means the existence of cosmological constant, offering Dark Energy, which
dominates the total energy of the universe, while CDM means Cold Dark Matter. Therefore, in
Λ–CDM model, the universe contain Dark Energy, Dark Matter, and Ordinary Matter. According to
the recent observation [90], the percentages of various types of energy in Λ–CDM model are 68.3%
Dark Energy, 26.8% Dark Matter, and 4.9% Ordinary Matter. The ratio of different energy types and
other parameters in Λ–CDM model can be fitted together through the observed data. The Λ–CDM
model fitting to CMB data, not only shows the existence of DM, but also claims that the amount of
DM is much larger than the Ordinary Matter.

2.2 Relic Density

The evidence of DM are all from gravitational effects in large scale, e.g. galaxy, galaxy cluster, and
the universe. Given that the lack of electromagnetic interaction of DM particles, gravitation is the
only long distance force related to DM. However, even if gravitation and electromagnetic interaction
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Chapter 2 Dark Matter

are the only forces we normally considered in the recent macroscopic world, DM may have other
macroscopic effect, if we assume DM has some extra microscopic interactions with ordinary matter.
Although in previous section we consider DM is cold now in universe scale, there are still other models
considering hot dark matter in smaller scales. In contrast, whatever the temperature of DM recently is,
DM has to be quite hot in early universe like any other matters. The early universe was a hot plasma,
where all the particles interacted with each other and kept a thermal equilibrium. According to the
expansion of the universe, the thermal bath gradually cooled down, and a series of particles decoupled
from the thermal bath. DM therefore was similar with ordinary matter in the early universe. Since
DM influenced the thermal equilibrium in the early universe, it changed the matter contents in the
early universe even in macroscopic scale. Moreover, the decoupled DM remains until today, leaving
an observables for us the test the models built for DM.

Given the universe expansion, DM in the thermal bath should obey the Boltzmann equation

dn
dt
+ 3Hn + (n2

− n2
eq) 〈σv〉 = 0, (2.5)

where n is the number density, neq is the number density of the equilibrium, H is the Hubble Constant,
σ is the annihilation cross section, and v is the relative velocity of the DM particle that decay. Besides
using 〈σv〉 directly, we can use the annihilation rate, ΓA ≡ n 〈σv〉, to express the Boltzmann equation
instead. If the temperature of the thermal bath is lower than the mass of DM, where T < mDM, the
generation of DM from ordinary matter ends, while the annihilation of DM continues. After the
generation of DM ended in our universe, the annihilation of DM would end, when the expansion was
larger than the annihilation rate, where H > ΓA. This procedure is called “Freeze out”, and connects
the recent DM abundance in macroscopic scale, to the annihilation rate in microscopic scale. The
“Freeze out” is shown in figure 2.6 from the book The Early Universe [92]. It shows the increasing σv
should lower the remaining number density.
To connect the model to the observation, we need to use a observable named as relic density, or

relic abundance of DM. The relic abundance of DM is defined as

ΩDMh2
=
ρDM
ρc

h2
=

mDMnDMh2

ρc
, (2.6)

where ρc ≡ 3H2
0/8πG ≈ 2.775 × 1011h2M�/Mpc3 is the critical density of the universe. According

to recent observation, ΩDMh2
≈ 0.12 [93]. Therefore, it sets limitations of ΓA, when the mass of DM

(mDM) is set. In other words, to avoid the predicted ΩDMh2 is too large, the annihilation rate should be
sizable enough. The DM overproduction issue will be discussed in the following chapters for various
models accordingly.

2.3 Direct Detection

Direct detection of DM focuses on the scattering between moving DM and target nuclei. The local
DM density on the earth is predicted to be ∼ 0.4 GeV/cm3, and the local speed of DM is estimated
to be 220000 m/s [18]. The recent experiments of direct detection include CRESST [36, 40, 41],
CDMSlite [35, 42], superCDMS [34, 43], Panda X–II [35, 44], and LUX [45, 94]. If we assume
DM is WIMP, the first 3 experiments only sensitive enough to argue the light DM, where mDM < 5
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GeV, while the last 2 is sensitive enough to bound the larger mass region. There are also proposed or
running detection, e.g. LZ [33, 45, 46, 48, 49] and XENON1T [33, 47, 50–52]. The recent run of
XENON1T was from October 2016 to February 2018 [53]. There will be more data analysis released
officially. Before comparing to the experimental data, we should calculate the theoretical expression
first.

To calculate the cross section from scattering amplitude, we use the general formula

dσ

dq2 =
1
πv2

∑
i

CiF
2
i (q

2
) (2.7)

where Ci depends on square of the scattering amplitude, F2 is the form factor, and q = p − p′ is
momentum transfer during scattering. If the target particle can be treated as point–like, F2

= 1. On
the contrary, for a real target particle, the form factor should be carefully modeled. Next step is just to
find different Ci for spin–dependent and spin–independent scattering respectively. To give an example,
we calculate the cross section from effective Lagrangian for Majorana DM, which does not have vector
couplings, i.e. χ̄γµ χ = 0, in appendix A.1 at the end of the thesis.
After calculating σ of the N − χ interaction, we can further derive the interaction rate. The

interaction rate is the relevant quantity for direct search experiments, and is usually measured in
events/(kg ∗ day). We show the detailed definitions and derivations in appendix A.2.

After deriving the theoretical estimation, we can compare it with the experimental data to reach the
bound for certain model. The experimental result is shown in Fig. 2.2 for spin–independent interaction
and Fig. 2.3 for spin–dependent interaction [95]. The result is the upper limit of the interaction cross
section and can be applied to selected models. In Fig. 2.2, there are only one figure showing the
upper limit of the total cross section. In formula A.8, the contribution from proton and neutron is not
distinguishable. Therefore, the upper limit is for the effect summing from both neutrons and protons.
On the other hand, in Fig. 2.3, there are 2 figures showing the upper limit of the spin–dependent cross
sections for χ−proton and χ−neutron respectively. In formula A.16, the contribution from proton and
neutron depends on the vector sum of proton and neutron respectively. Due to the spin cancellation
of the nucleon pairs, CA is mainly from the unpaired proton or neutron. Therefore, the bound is
derived from the theoretical estimation for pure proton case or pure neutron case respectively [96].
According to the theoretical derivation above, we can choose different DM models and distributions.
The calculation in appendix A.1–A.2 shows examples with contact operator, and the calculating
procedure can be repeated for Ci in other models and f (v) in other distributions. In the following
chapter, we mainly focus on the interactions from a vector mediator, instead of the contact operator.

2.4 Indirect Detection

The indirect detection use the decay product of DM. Although the recent relic density is not dense
enough to annihilate to ordinary matter because of the expansion of the universe in large scale, there
are still special regions where DM is dense enough. The region can be formed through massive object
in small scale, e.g. the Sun near earth, to generate the annihilation products of DM. There are 3 kinds
of indirect detection experiments using distinct sources, γ–ray, antimatter, and neutrinos.

First, the γ–ray observation focus on the high–density objects that can accumulate DM, e.g. Galactic
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Center. For instance, Fermi–LAT 3 from NASA is one of the most important instruments. It is one part
of Fermi Gamma Ray Space Detector, besides the Gamma Ray Bursts Monitor (GBM). The results
from Fermi–LAT help us constrain 〈σv〉 from the various channels of SM products, e.g. e+e−, µ+µ−,
etc. The main obstacle to achieve results is the analysis of the various sources in the background, i.e.
distinguishing the DM–original source from other sources.

Second, the antimatter observations commonly detect positron and antiproton fluxes. The antiproton
is measured by Fermi–LAT [59, 63–66] and AMS–02 [62], while the positron is detected by AMS
[54], PAMELA [55], and AMS–02. So far, the positron measurements offer better constraints on DM
related model.
Finally, the neutrino observations from IceCube [60, 67, 68] and ANTARES [61, 69, 70], help us

bound the spin–dependent interactions with nuclei, which can be directly compared to the result from
direct detection.

2.5 Collider Searches

The collider searches is the main topic of this thesis. In the following chapters in the Second Part and
Third Part of this thesis we will consider the DM particle has interactions with various SM particles,
and hence can be probed in collider searches. Since DM is only missing energy in the colliders, and
we need to detect visible particles as signatures, we try to apply a large number of analyses containing
the leptonic final states and hadronic final states related to our selected models from LHC or LEP data.
Those detailed discussion shows not only the sensitivity of experimental data for selected models,
but also the standard procedure to discuss a model related to DM through collider searches. In the
previous research [32], the most general simplified model with all renormalizable terms are considered.
Finally, the terms related leptons or quarks are the most testable sectors, since they reflect different
final state signatures directly. Therefore, in the following chapters, the leptophobic and leptophilic
mediator, which couples to quarks and leptons respectively, are analysed.

For leptophobic mediator, the assumption with universal quark couplings have already been studied
[32]. Since the valence quark content of proton contains u and d quark, while the largest contribution
in direct detection is from interactions with u and d quark as well, the couplings with u and d quark
dominate the phenomena in general. Therefore the family–independent assumption that are commonly
considered in previous researches actually shows the phenomenology of light quark couplings. On the
contrary, in this thesis, we focus on the case that the mediator does not couples to u and d quarks
to discuss the heavy quark phenomenology. Additionally, the previous studies using LHC data only
analyse the on–shell mediator that can decay to quarks and DM particle. In our LEP based analysis,
however, we analyze off–shell mediator.

For leptophilic mediator, the couplings with electron are highly constrained by the data from e+e−

colliders, since the s–channel Feynman Diagram has very large contribution. We therefore focus on
the mediator couples to µ and τ from an anomaly free U(1)Lµ−Lτ

extension of SM.
We discuss the previous researches of leptophobic and leptophilic mediators and our assumption of

parameters with more details in the “Overview and Previous researches” sections and “The Simplified
Model” sections of Chapter 3–5 respectively.

A series of simulation tools are used in the following chapters as the common framework for collider
phenomenology. First, we use FeynRules [97] to express our models into programing code. Second,

3 https://glast.sites.stanford.edu
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we use MadGraph [98] to simulate the collider event in the parton level. Third, we use PYTHIA [99] to
hadronize the parton level events. Fourth, we use DELPHES [100] to apply the parameterization based
fast detector simulation to consider the detector effect for ATLAS and CMS experiments. Finally,
we use CheckMATE [101] to visit the final state objects after detector simulation and calculate the
advanced kinetic variables defined and used in collider researches. The details of the simulation tools
will be discussed in the following chapters.
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Figure 2.3: The figure is the bound of spin–dependent cross sections. The upper figure is for neutron, while the
lower figure is for proton.
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Figure 2.4: Upper figure is Messier 101, an example of spiral galaxy. It is clear to see the bulge in the center,
and the spiral arm extended from the center. Lower figure is rotation curve of Messier 33 [85]. The expected
curve and the observed curve are obviously distinct, especially in the large distance area.
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Figure 2.5: The result in the first figure is based on the data collected by Wilkinson Microwave Anisotropy Probe
(WMAP) in 9 years [91]. More red means hotter, while more blue means colder in the figure. The second figure
is the comparison between the best theoretical estimation from Λ–CDM model and the recent observation [90]..
In the upper part of the second figure, the definition of y–axis is Dl = l(l + 1)Cl/2π, while x–axis is multipole l.
The blue points are the maximum–likelihood estimates from the observed data by Planck satellite. The red line
is the best fit from Λ–CDM model. Additionally, the lower part of the second figure shows the residuals.
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Figure 2.6: The figure shows the “Freeze out” procedure of DM. It does not use time (t) and number density (n)
directly. In the figure, x ≡ m/T , where m is the mass of DM and T is the temperature, and Y ≡ n/s, where
n is the number density of DM and s is the entropy. Along with the increasing time, the temperature should
decrease, meaning larger x. Additionally, n and s decrease simultaneously, as the expansion of the universe.
Therefore, it is better to use Y to show the constant tail.
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The 2nd Part: Leptophobic Mediator
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CHAPTER 3

Constraints on Leptonphobic Mediator from LEP
data

3.1 Overview and Previous Researches

The Standard Model (SM) of particle physics lacks an adequate candidate for dark matter [102].
Particle physics explanations of dark matter therefore typically include a “dark sector” containing
(at least) one stable dark matter candidate (called DSP for Dark Sector Particle in this chapter), and
at least one mediator coupling the DSP to SM particles. In principle this mediator could be the
well–known Z or 125 GeV Higgs boson, but these “portal” models are by now very tightly constrained
[103–105]. Here we are interested in models where the mediator is not part of the SM. Frequently it is
a massive scalar or vector boson. Therefore, a simplified model approach [80, 106, 107] allows to
constrain many UV complete extensions of the SM. Simplified models usually have a relatively small
number of free parameters, allowing exhaustive scans of the parameter space. Models designed to
describe the scattering of DSPs on ordinary matter, as in “direct search” experiments, have to specify
the couplings of the mediator(s) to hadrons and to the DSP. This suffices to fix the rate of monojet
(and similar) events at the LHC. Since no excess of such events has been found, LHC data have given
strong constraints for mediator masses below about 1 TeV that can decay invisibly, e.g. into a pair of
dark matter particles [108, 109]. Moreover, mediator masses roughly between 1 and 2.5 TeV are also
constrained by searches for di–jet final states [110, 111]. Very recently this range has been extended
downward by using special search strategies [112]; preliminary results using events with a hard third
jet recoiling against a “fat jet” allowed CMS to extend the search range down to 50 GeV [113], for
coupling strength to (light) quarks & 0.2.1
It should be noted that more complete models are often subject to additional constraints. For

example, Z ′ models based on extending the SM gauge group with an additional U(1) factor were
investigated in [114–119], and supersymmetric models in [120–122]. However, many or most of these
constraints are not directly related to the dark matter problem. In our purpose, we want the constraints
that directly relate to dark sectors. Therefore, we assume simplified model with the least parameters
related to dark sectors instead of more complete model.
Although the Large Electron Positron collider (LEP) at CERN ceased operations nearly twenty

years ago, and only covered center–of–mass (cms) energies up to 209 GeV, the cleaner environment

1 This analysis also found a slight excess of events corresponding to a mediator mass of about 115 GeV.
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and the distinct energy range still offer some advantages for certain regions of parameter space. In this
chapter we focus on a simplified model with a vector mediator R coupling to the DSP and quarks. We
use the framework of ref.[32], which starts from the very general assumption that the new mediator
couples to all different kinds of SM particles, including gauge bosons, leptons and quarks. It uses
LHC data (from run 1) in order to derive stringent upper bounds on many of these couplings. These
constraints are quite strong if on–shell decays of the mediator to DSPs are possible, or if the mediator
has sizable couplings to leptons. We saw above that (in some cases still preliminary) constraints from
LHC searches for purely hadronic final states have become quite strong, if mR > 50 GeV. However,
the published constraints apply to couplings to first generation quarks, which are strongly constrained
by direct dark matter searches. The annihilation cross section of the DSP χ into hadronic final states
can therefore still be sufficiently large for χ to be a good thermal WIMP (Weakly Interacting Massive
Particle) candidate [92] in standard cosmology. In this chapter we also focus on the χ̄ χR and q̄qR
couplings. Note that together with the masses mR and mχ these are the key parameters determining
both the direct WIMP detection rate and (if the other couplings are small) the relic density.

There are also purely theoretical constraints on the model. Ref.[32] derived an upper bound on the
couplings from the requirement that perturbation theory can be applied, since we do not know how to
constrain these couplings otherwise. Moreover, as pointed out in ref.[123], if R has non–vanishing
axial vector couplings to χ, unitarity imposes an upper bound on the ratio of DSP and mediator
masses. We apply the same perturbativity and unitarity conditions in the part of parameter space that
could have been probed by LEP experiments.
LHC data only probe configurations where the mediator is essentially on–shell. In contrast, in

this chapter, which focuses on a light mediator, we consider cases where the DSP pair can only be
generated through off–shell processes. We notice an enhancement of the cross section if the mediator
has an axial vector coupling to b−quarks and mR < mb because the longitudinal part of the mediator
contributes a term ∝ m2

b/m
2
R to the four–jet cross section. Similarly, in the presence of an axial vector

coupling to the DSP the di–jet plus missing energy cross section may increase with increasing mχ,
contrary to naive expectations. However, the unitarity constraints imply that these terms cannot be
arbitrarily large.
This chapter is organized as follows. In section 3.2 the Lagrangian of the simplified model is

introduced, and bounds on the relevant couplings from theoretical considerations and non–collider
experiments are discussed. In section 3.3 we recast searches for di–jet plus missing energy and 4−jet
final states performed by the ALEPH collaboration [124, 125]. We discuss the bounds resulting
from these published searches and the cut efficiencies when applied to our model. In section 3.4 we
introduce a set of specially designed cuts for the di–jet plus missing energy signature that have much
higher efficiency for our signal than the published searches. Although we do not include the detector
simulation in the test of the background suppression, the result still shows the potential of the LEP
data to improve on the bounds derived in section 3.3. Finally, section 3.5 is devoted to a summary and
some conclusions.

3.2 The Simplified Model

In this section we first describe the Lagrangian of the simplified model we consider. We then
discuss limits on the model parameters that follow if the DSP is assumed to be a thermal WIMP, which
is subject to stringent constraints from direct dark matter search experiments. In the following two
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subsections we discuss upper bounds on the couplings that result from perturbativity and unitarity
constraints. In the final subsection the pre–collider bounds on the remaining free parameters are
summarized and our final choice of free parameters is discussed.

3.2.1 Lagrangian and Free Parameters

As discussed in the overview, we consider a simplified model [32] where a massive spin−1 mediator
connects the DSP to SM particles. The Lagrangian can then be written as

L = LSM + LDSP + LR + LI . (3.1)

We assume the DSP to be a spin−1/2 Dirac fermion. A Majorana fermion cannot have a vector
interaction, but is otherwise basically the same as a Dirac fermion for our purposes.2 The DSP part of
the Lagrangian is therefore:

LDSP = χ̄(i /∂ − mχ)χ . (3.2)

In MadGraph convention [98] the mediator part of the Lagrangian is:

LR = −
1
4

FµνFµν −
1
2

m2
RRµRµ , with Fµν ≡ ∂µRν − ∂νRµ . (3.3)

Finally, the interactions of the mediator with fermions are described by the Lagrangian

LI =
∑
q

Rµ q̄γµ
(
gVq − g

A
q γ

5
)

q + Rµ χ̄γ
µ
(
gVχ − g

A
χγ

5
)
χ . (3.4)

The free parameters of our model are thus the mediator mass mR, the DSP mass mχ, and the
couplings of the mediator to quarks (gVq , g

A
q ) and to the DSP (gVχ , g

A
χ ). In total, there are 16 parameters.

However, since this chapter uses data from e+e− collision up to
√

s = 209 GeV, top quarks cannot
contribute to the final state. Therefore the couplings gVt and gA

t are irrelevant, so that 14 relevant free
parameters remain.
An exhaustive scan of a 14−dimensional parameter space is not feasible with our computational

resource. However, as we will see in the following subsections, non–collider constraints force many of
these couplings to be very small, so that we can set them to zero for our purposes.

3.2.2 Dark Matter Constraints

In the standard thermal WIMP scenario, the dark matter relic density is essentially inversely
proportional to the total DSP annihilation cross section computed in the non–relativistic limit [92]. In

2 A complex scalar DSP behaves similar to a Majorana DSP if mR > mb,mχ . However, the contribution from the
exchange of longitudinal messenger particles vanishes identically in this case, i.e. there are no terms that are enhanced by
mbmχ/m

2
R .
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our model the DSP can always annihilate into sufficiently light quarks, with cross section [126]:

vσ( χ̄ χ → q̄q) '
3m2

χ

2π(m2
R − 4m2

χ)
2

√√√
1 −

m2
q

m2
χ

(3.5)

·

[
(gVq )

2
(gVχ )

2

(
2 +

m2
q

m2
χ

)
+ 2(gA

q )
2
(gVχ )

2

(
1 −

m2
q

m2
χ

)
+ (gA

q )
2
(gA
χ )

2 m2
q

m2
χ

(4m2
χ − m2

R)
2

m4
R

]
.

Here v is the relative velocity between χ and χ̄. The last term on the right–hand side (rhs) of eq.(3.5)
is due to the exchange of longitudinal R−bosons. Note that is is enhanced ∝ m2

χm2
q/m

4
R for small

mediator masses; at the same time it is suppressed ∝ m2
q/m

2
χ if mR > 2mχ � mq. The numerator

of this term implies that it does not have a pole at s ' 4m2
χ = m2

R. If the vectorial couplings do not
vanish, this term is therefore only relevant if the exchanged mediator is quite far off–shell. Notice
also that this term is proportional to the product of axial vector couplings, i.e. it is absent for a purely
vectorial theory. At the same time it is the only term that survives for vanishing vector couplings, e.g.
if χ is a Majorana particle.

Moreover, for mχ > mR a χ χ̄ pair can also annihilate into two mediators, which subsequently
decay to quarks. The corresponding cross section is [126]:

vσ( χ̄ χ → RR) =
(m2

χ − m2
R)

3/2

4πmχ(m
2
R − 2m2

χ)
2 (3.6)

·

{
8(gA

χ )
2
(gVχ )

2 m2
χ

m2
R

+
[
(gA
χ )

4
− 6(gA

χ )
2
(gVχ )

2
+ (gVχ )

4
]}

.

The first term in the second line again gives an enhancement ∝ m2
χ/m

2
R. Note that in the limit

v → 0, which we applied here, the contribution ∝ (gA
χ )

4
/m4

R, which is due to the production of two
longitudinal R bosons, vanishes. Moreover, the cross section (3.6) is quite strongly phase space
suppressed near threshold where mχ ' mR.

Since the predicted DSP relic density is inversely proportional to the total χ χ̄ annihilation cross
section, requiring that the predicted DSP density is not larger than the total observed dark matter
density imposes a lower bound on (sums of products of) the relevant couplings if the masses are fixed.
The detailed analysis of ref.[126] shows that for mR ≤ 100 GeV this bound is easily satisfied if all
axial vector couplings are & 0.3 even for vanishing vector couplings. We will see below that LEP data
only allow to probe significantly smaller mR. We confirm that for coupling strengths of interest to
LEP physics, in standard cosmology the thermal DSP relic density is always much below the desired
dark matter density, unless the DSP is very light (with mχ < mR so that χ χ̄ → RR annihilation is
suppressed) and has very small couplings to light quarks (see below).

The signal in direct dark matter detection experiments depends essentially on the mass of the dark
matter particle and its scattering cross section on nucleons. For the latter one usually distinguishes
between spin–dependent (SD) and spin–independent (SI) contributions. The calculation procedure
has already been shown in section 2.3. For our case here, the corresponding cross sections can be
written as [126]:
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σSD
N = a2

N

3µ2
N

πm4
R

; σSI
N = f 2

N

3µ2
N

πm4
R

. (3.7)

Here N = n, p and
µN =

mχmN

mχ + mN

(3.8)

is the reduced mass of the DSP–nucleon system. The coefficients fN appearing in σSI
N are simply

given by products of couplings:

fp = gVχ (2g
V
u + g

V
d ) ; fn = gVχ (g

V
u + 2gVd ) , (3.9)

where the differences are due to the different valence quark content of neutrons and protons. Note
that sea quarks do not contribute, since quarks and antiquarks couple with opposite sign to R; their
contributions cancel, since here the coherent coupling to the entire nucleon (in fact, in most cases to
an entire nucleus) is relevant. Finally, the coefficients aN appearing in σSD

N are:

aN = gA
χ

∑
q=u,d,s

∆q(N )gA
q . (3.10)

Here ∆q(N ) is the contribution of the spin of quark q to the total spin of nucleon N . They can be
determined from polarized deep–inelastic scattering experiments. The current Particle Data Group
values [127] are:

∆u(p) = ∆d(n) = 0.84 ± 0.02 ;
∆u(n) = ∆d(p) = −0.43 ± 0.02 ; (3.11)
∆s(p) = ∆s(n) = −0.09 ± 0.02 .

There are strong upper bounds on the spin–independent scattering cross section on the proton. For
mχ & 5 GeV the tightest constraint comes from the PandaX–II [39] experiment, whereas CRESST
[36] data impose significant constraints for mχ & 0.5 GeV. We will see below that LEP data can only
probe scenarios with mR < 100 GeV. These bounds require gVu,d to be below 0.1, usually much below
this value. Such small couplings have little influence on LEP physics, so we set gVu = gVd = 0.3

The upper bounds on the spin–dependent cross sections become quite weak for WIMP mass below
4 GeV, but the bound on σSD

n is still below 10−2 pb for mχ = 5 GeV [128]. If mR ≤ 10 GeV this
constraint suffices to imply gA

u,d ≤ 0.1, the bound on gA
s being somewhat weaker but still strong

enough to force these couplings to be negligible for LEP physics. On the other hand, for mR ≥ 50
GeV O(1) axial vector couplings are allowed even for the light quarks if we scale the bound on the
scattering cross section by the ratio of the predicted χ relic density and the total observed dark matter
density. However, in that case χ does not make a good thermal dark matter candidate. In most
scenarios where the predicted χ relic density in standard cosmology is at least a sizable fraction of

3 The bounds on the spin–independent cross section have been derived under the assumption of equal scattering cross
section on neutrons and protons, which need not be the case in our scenario. In fact, the cross section for scattering on
any one isotope can be made to vanish for a particular (negative) ratio of gVu /g

V
d . However, by now experiments using

many different isotopes have been performed, allowing to constrain gVu and gVd separately.
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Chapter 3 Constraints on Leptonphobic Mediator from LEP data

the observed dark matter density the upper bound on the spin dependent cross section for mχ & 4
GeV requires the axial vector couplings to be too small to significantly affect LEP cross section. We
therefore set gA

u = gA
d = gA

s = gA
c = 0; we require vanishing axial vector coupling to charm quarks

since strange and charm quarks reside in the same SU(2) doublet.
We are then left with eight free parameters: four couplings of R to quarks, two couplings of R to

the DSP, and the masses of R and the DSP.

3.2.3 Perturbativity Condition

Wewill use leading order perturbation theory to derive constraints on our model from published LEP
data. Perturbation theory becomes unreliable when the couplings become too large. Our calculations
depend on the SM electroweak couplings, which are perturbative, and on the couplings of the mediator
R. We constrain the latter through the simple condition

ΓR < mR , (3.12)

where ΓR is the total decay width of R. R can decay into qq̄ and χ χ̄ pairs, with partial widths:

Γ(R→ qq̄) =
mR

4π

√
1 − 4zq

[
(gVq )

2
+ (gA

q )
2
+ zq

(
2(gVq )

2
− 4(gA

q )
2
)]

;

Γ(R→ χ χ̄) =
mR

12π

√
1 − 4zχ

[
(gVχ )

2
+ (gA

χ )
2
+ zχ

(
2(gVχ )

2
− 4(gA

χ )
2
)]

. (3.13)

Here z f ≡ m2
f /m

2
R. The factor of 3 in the first equation comes from the colors of quarks. Of course,

these widths are nonzero only for mR > 2m f , i.e. zF < 0.25. The perturbativity condition can thus be
written as ∑

2m f <mR

Nf

√
1 − 4z f

[
(gVf )

2
+ (gA

f )
2
+ z f

(
2(gVf )

2
− 4(gA

f )
2
)]
< 12π . (3.14)

This constraint can be used for mR ≥ 1 GeV, so that at least decays into strange quarks are possible.
For somewhat heavier mediators, which can also decay into cc̄ and perhaps χ χ̄ pairs, the constraint
(3.14) becomes stronger. We will only use combinations of parameters that respect this bound.

3.2.4 Unitarity Condition

Another important kind of constraint has first been discussed in ref.[123]: unitarity limits the size of
the axial vector couplings of fermions f to the mediator R. One way to see this is to consider the cross
section for f f̄ → RLRL , where RL denotes a longitudinally polarized R boson. For fixed (nonzero)
relative velocity between f and f̄ , the matrix element scales like (gA

f m f /mR)
2. This violates unitarity,

unless

gA
f

m f

mR

6

√
π

2
. (3.15)

Note that this bound applies both to the DSP, f = χ, and to the quarks with non–vanishing axial
vector coupling, f = q.

Another derivation of the unitarity constraint starts from the observation that in a renormalizable
theory, R must be a gauge boson. If fermion f has non–vanishing axial coupling gA

f to R, the
two–component fermions fL and fR must transform differently under the R gauge symmetry. This
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3.3 Application of LEP Data

implies that the (Dirac) mass term m f fL fR is not invariant under the R gauge symmetry. Hence m f

must be due to the vacuum expectation value of some Higgs field that carries R charge. The upper
bound (3.15) then follows from the upper bound on the Yukawa coupling that gives rise to m f .

The bound (3.15) limits the size of the enhancement due to the exchange of longitudinal R−bosons
with axial vector coupling to massive fermions; see the discussion of eq.(3.5) above. We will see
below that similar terms also appear in our signal cross sections. Neglecting the unitarity constraint
(3.15) could thus lead to overly optimistic conclusions regarding the sensitivity of collider data to our
model.

3.2.5 Summary: Free Parameters of the Model

The perturbativity condition (3.14) is quite weak. The unitarity constraint (3.15) can be strong for
small mR, but only applies to the axial vector couplings, and in any case still allows non–negligible
couplings. These constraints therefore do not reduce the number of free parameters, i.e. we still have
the eight free parameters enumerated at the end of Sec. 3.2.2. This parameter space is still too large
for a thorough exploration.
We therefore assume equal vector couplings of s, c and b quarks. Recall that we set the vector

couplings of u and d quarks to zero in order to satisfy constraints from direct detection experiments.
As mentioned in the Introduction, we will investigate final states with either two jets and two DSPs, or
with four jets. The searches we will use to probe qq̄χ χ̄ production do not require any flavor tagging,
so to good approximation this cross section only depends on the sum (gVs )

2
+ (gVc )

2
+ (gVb )

2. Results
for different ratios of the vector couplings therefore can be derived by simply re–scaling the results
presented below. In contrast, the best published probe of the four–jet final state requires the detection
of at least two b (anti)quarks in the final state. Since bb̄bb̄ final states have a significantly higher
probability of satisfying this requirements than final states with only one bb̄ pair, gVb contributes with
higher weight to the final cross section after cuts than gVc and gVs .
Recall that scenarios where a light R can decay into a χ χ̄ pair are strongly constrained by LHC

“monojet” data. We will thus assume mR < 2mχ. In that case the (tree–level) cross section for the
four–jet final state is completely independent of the couplings gVχ and gA

χ . Moreover, the cross section
for qq̄χ χ̄ production is then proportional to the product (gqgχ)

2. It is thus sufficient to present results
for a fixed ratio of the couplings of the mediator to quarks and to DSPs; results for different ratios can
then be obtained by re–scaling our results presented below.

In the end we are left with four free parameters: mR, mχ, g
A
b and gVq .

3.3 Application of LEP Data

In this Section we check whether published analyses of LEP data can impose significant constraints
on the parameters of our model. We focus on analyses by the ALEPH collaboration [124, 125],
because they are based on well–defined, and clearly described, cuts defining final states that receive
contributions from the two processes we wish to probe. We expect data from the other three LEP
experiments (DELPHI, L3 and OPAL) to have similar sensitivity, so a combined analysis could lead
to somewhat stronger bounds.
In our numerical analysis we use FeynRules [97] to generate a model file in UFO format [129],

MadGraph [98] to simulate the e+e− collision, and Pythia 8.2 [99] to perform the hadronization. We
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Chapter 3 Constraints on Leptonphobic Mediator from LEP data

apply the cuts defining the relevant ALEPH analyses at the hadron level, neglecting detector resolution
effects. In the following two Subsections we discuss two–jet plus missing energy and four–jet final
states, respectively.

3.3.1 Two Jets Plus Missing Energy

We start with the topology
e+e− → jet + jet + /p , (3.16)

where /p stands for missing energy and momentum in the final state, i.e. the invariant mass of the
two–jet system is significantly smaller than the center–of–mass energy

√
s. The extra Feynman

diagrams contributing to this topology in our model are shown in Fig. 3.1. As usual we neglect the
Higgs exchange diagrams since the e+e−H coupling is tiny. Since the couplings, gq and gχ, appear
together in Fig. 3.1, the experiment data bound the product of gq and gχ. Therefore, in the following
section, bounds on √gqgχ are shown.

γ/Z

R

e−

e+

q̄

χ̄

χ

q

gq

gχ

γ/Z

R

e−

e+

q̄

χ̄

χ

q

gq

gχ

Figure 3.1: Leading order diagrams contributing to the final state (3.16) in our model. Note that the mediator R
is always off–shell in the region of parameter space we are interested in.

Analysis of LEP2 Data

During the LEP2 period (data taken between 1995 and 2000, at center of mass energy 161 GeV ≤
√

s ≤ 209 GeV) ALEPH performed most searches for the topology (3.16) in the context of supersym-
metric extensions of the SM. This includes searches for the pair production of squarks [130, 131]
and neutralinos [132–136]. In addition, ALEPH searched for the production of an invisibly decaying
Higgs boson produced in association with an on–shell Z boson [137–139]. Each of these searches
uses dedicated cuts to suppress the SM background.
We generally find that the data taken at higher energies have better sensitivity to our model, if

the event selection cuts are more or less independent of
√

s. The cross section for the four–body
final state we are interested in depends quite sensitively on the available phase space. Note also that
the integrated luminosity was higher at the higher energies. The total sensitivity is then essentially
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3.3 Application of LEP Data

determined by the data taken at higher energy. On the contrary, if the cuts strongly depend on
√

s, the
cut efficiencies may vary strongly; in this case one should consider all analyses together.

The neutralino searches fall in the second category. The analyses of the data taken at
√

s = 161 and
172 GeV [132] use quite different cuts than the analyses of the data taken at

√
s ≥ 183 GeV [133–136].

At these higher energies, on–shell production of two Z bosons becomes possible. The high–energy
analyses impose a strong cut on the missing mass, which is designed to remove the Z ν̄ν background.
Unfortunately this cut by itself excludes more than 90% of our signal, leading to a total cut efficiency
of only about 2%. On the other hand, the lower energy analyses use a cut on the visible mass, not on
the missing mass,1 leading to a total cut efficiency of about 20% for our signal. The overall cross
sections times luminosity at

√
s = 161 and 172 GeV are, however, too small. We therefore find that

the analyses do not lead to significant bounds on our model.
For the invisibly decaying Higgs search, cut–based analyses were published only for data with
√

s ≤ 183 GeV [137]. There is a published search for this channel using data taken at
√

s = 189 GeV
[139], but it uses a Neural Network; since we cannot reproduce this analysis, we cannot use it to
constrain our model. ALEPH did not publish any search for an invisibly decaying Higgs using data
taken at

√
s > 189 GeV. When applied to our signal, the cuts used in the analyses [137, 138] at

√
s

between 161 and 183 GeV have an efficiency of less than 10%. In this case the most harmful cuts are
those related to the thrust and the reconstruction of the two jets. The relatively small cross sections,
low integrated luminosity and insufficient cut efficiencies again imply that no meaningful constraints
on our model can be derived.

We find the best sensitivity to our model when applying the cuts optimized for searches for squark
pair production. Here cut–based analyses were published for the entire data set, including the highest
energies. The cuts have been listed in Sec. 7 of ref.[131]2; when applied to our model, they frequently
lead to an efficiency of ≥ 10%. This is still not ideal, but sufficient to derive some meaningful
constraints on the parameters of our model.
In this chapter we focus on the part of parameter space where on–shell R → χ χ̄ decays are not

allowed, i.e. mχ > mR/2, since otherwise “monojet” searches by the LHC experiments [72, 126, 140]
give much tighter constraints. In this part of parameter space our signal process is a genuine 2→ 4
reaction, with rather low cross section. We find that our recasting of the ALEPH squark searches does
not lead to significant constraints if mR & 10 GeV. In Fig. 3.2 – 3.4 we therefore show results for
mR = 1, 2 and 5 GeV, respectively, focusing on scenarios with rather light DSP, mR/2 ≤ mχ ≤ 2mR.
We find that the bounds on vector couplings are not as strong as those on the axial vector couplings, and

1 Note that in general there is no simple relation between the missing and the visible mass of a given event. The visible mass
is defined as M2

vis = P2
vis, where Pvis denotes the sum of the 4−momenta of all “visible” particles; only neutrinos and

DSPs are counted as “invisible”. The missing mass is defined by M2
miss = (Pinit − Pvis)

2, where Pinit is the 4−momentum
of the initial state. In some kinematical configurations both the visible and the missing mass are small.

2 The cuts for “intermediate ∆M” usually turned out to give the tightest constraints. The influential cuts are Nch > 11,
Mvis > 15 GeV, pT /

√
s > 4%, Evis/

√
s < 70%, E12/

√
s < 0.5%, cos θmiss > 0.8, cos θT > 0.8, Φacop < 176°,

ΦT < 177°, EWedge/
√

s < 12.5%, Thrust < 0.94, pT /Evis > 12.5%, Ehad/
√

s < 55%, ENH/Evis < 30%, and
E30
l1 /
√

s > 1%. Here Nch is the number of good tracks (i.e., of charged particles); Mvis is the invariant mass of the visible
system, Evis is its energy and pT is the absolute value of its transverse momentum, which is the same as the absolute
value of the missing pT ; θmiss is the polar angle of the missing p vector; θT is the polar angle of the thrust axis; Φacop
is the acoplanarity angle; Ehad is the total measured energy excluding the contribution of identified charged leptons;
and EWedge is the energy in a 30° azimuthal wedge around the missing transverse momentum. We also use many of
these variables in the optimized cuts presented in Sec. 3.4, e.g. E12, ENH, E30

l1 , ΦT , where their definition and physical
significance are discussed.
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do not depend strongly on mR. Therefore, for nonzero g
A and small mχ we set the vector couplings to

zero and derive the upper bound on the axial vector coupling from the ALEPH data in Fig. 3.2 – 3.4,
while we show results for gA

= 0 separately in Fig. 3.5. For mχ & 4 GeV and gV = 0 the resulting
bound on gA is weaker than the unitarity bound (3.15). In this case we set the axial vector coupling
such that the unitarity bound is saturated, and derive the resulting upper limit on the vector coupling.
This is the strongest possible constraint on the vector coupling that can be derived from our recasting
of the ALEPH squark pair search. The larger sensitivity to the axial vector coupling again comes from
contributions ∝ mqmχ/m

2
R to the Feynman amplitude.

These terms dominate the cross section for mR = 1 GeV (Fig. 3.2). As a result, the bound on the
coupling becomes stronger as the DSP mass is increased. Evidently the enhanced contribution from
longitudinal R exchange over–compensates the reduction of the phase space. For the entire range of
mχ shown the bound is stronger than the unitarity limit. Note that we show the bounds on

√
gA
χg

A
b ,

because the unitarity limit due to mχ is different compared to that due to mb. Moreover, all vector
couplings have been set to zero. Strictly speaking we would have to allow some coupling at least to
s quarks in order to allow R to decay; however, vector couplings � 1 will not affect the bound on
the axial vector coupling. On the other hand, O(1) vector couplings would lead to a slightly stronger
upper bound on the axial vector coupling.
The results for mR = 2 GeV (Fig. 3.3) are qualitatively rather similar, but the bound on the axial

vector coupling is weaker by a factor of about 1.5. As a result, for mχ ≥ 3.6 GeV the upper bound on
gA
χ is actually set by the unitarity constraint (3.15). At mχ = 4 GeV a vector coupling as large as 0.89

has been turned on in order to saturate our recasting of the ALEPH bound, for axial vector coupling at
the unitarity limit. This leads to a slight increase of the upper bound on the cross section, shown in the
lower frame, which otherwise is very similar to the case with mR = 1 GeV. Since in both cases mR is
much smaller than all other relevant energy scales in the problem, in particular much smaller than the
missing energy required by the cuts, it is not surprising that the upper bound on the cross section does
not depend on mR.
On the other hand, for mR = 5 GeV ' mb (Fig. 3.4) the enhancement due to the exchange of

longitudinal R−bosons no longer suffices to over–compensate the reduced phase space when mχ is
increased. The ALEPH squark searches now permit quite large axial vector couplings even for mχ

near mR/2. For mχ ≥ 4.5 GeV this bound again becomes weaker than the unitarity constraint (3.15).
Even if we saturate this constraint, sizable vector couplings are allowed by the ALEPH data, as shown
by the dotted (blue) curve. Note that our perturbativity bound (3.14) requires gVq ≤ 2.5 for mR = 5
GeV. Fig. 3.3 and Fig. 3.4 show that our recasting of the ALEPH squark search limits leads to stronger
upper bounds on this coupling if mχ ≤ 10 GeV.

Having considered nonzero gA, the bounds on gV for vanishing gA are shown in Fig. 3.5. Evidently
the constraints on gV are much weaker than those on gA. Recall, however, that gV is not constrained
by the unitarity condition. The upper bound on gV is therefore set by LEP2 data for mχ . 30 GeV; at
even larger DSP masses, the LEP2 bound becomes weaker than the perturbativity condition (3.14).
Another noticeable property is that for mχ > 10 GeV the upper bound on the vector coupling is nearly
the same for our three choices of mR, as is the bound on total cross section. This is due to the fact that
the transverse R propagator becomes independent of mR once (2mχ)

2
� m2

R.
In Fig. 3.2, Fig. 3.3, and Fig. 3.4 we extended mχ only to mχ = 2mR. In Fig. 3.6 we show upper

bounds on the couplings (upper) and on the total cross section (lower) for the same values of mR,
but for mχ between 2 and 10 GeV. Moreover, we also compare the bounds on gV for gA

= 0 (dotted
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curves) to the bounds on gV with gA chosen to saturate its upper bound (dashed curves), which is
set by the unitarity condition (3.15) once mχ > 4 GeV. In this case gA

χg
A
b ∝ m2

R/(mχmb), so that the
contribution from longitudinal R exchange becomes largely independent of both mχ and mR once
(2mχ)

2
� m2

R. Note that the axial vector coupling also contributes to the exchange of transverse R
bosons. This contribution simply scales like (gA

)
2, and is thus significant only for mR = 5 GeV where

unitarity allows relatively large axial vector couplings. This explains why the upper bound on gV with
maximal gA is stronger for mR = 5 GeV than for the smaller values of mR. In contrast, if g

A
= 0 the

bound on gV becomes independent of mR once (2mχ)
2
� m2

R, as we saw above. Overall Fig. 3.6
shows that the effect of gA can be significant even if it is much smaller than gV .
The lower frame of Fig. 3.6 again shows that the upper bound on the cross section becomes

independent of mR once (2mχ)
2
� m2

R. We also see that for light R and gA , 0, the upper bound on
the cross section increases by nearly a factor of two once mχ > 4 GeV; evidently the cut efficiency
becomes smaller. This coincides with the range of χ masses where the bound on the axial vector
coupling is set by the unitarity constraint, so that the limit we derive from the ALEPH data can only be
saturated by also including sizable vector couplings. The main observation is that the cut efficiency is
much smaller if the process proceeds dominantly by vector coupling. For example, for mR = mχ = 1
GeV, we find cut efficiencies between 1.5 and 3.5% for pure vector coupling, with couplings to b
quarks yielding the highest sensitivity. In contrast, if the cross section is dominated by the axial vector
coupling to b quarks the efficiency increases to 15%. This is at least partly due to the fact that the χ χ̄
pair has to be in a P− wave in the R rest frame if the χ χ̄R coupling is purely axial vector, whereas a
vector coupling allows S−wave contributions. The P−wave has a larger χ χ̄ invariant mass, making it
easier to pass cuts related to the missing mass or missing energy. The cut efficiency increases with
increasing mχ, which of course also implies larger χ χ̄ invariant mass. However, even here pure vector
couplings lead to lower cut efficiency. For example, for mχ = 10 GeV, i.e. at the end of the range
shown in Fig. 3.6, we find a cut efficiency of just under 10% if gA saturates the unitarity bound, with
little dependence on mR; if g

A
= 0, the cut efficiency is only about 7.5%.

We also find reduced cut efficiency if mχ is only slightly above mR/2. In this case configurations
where the R boson is only slightly off–shell, i.e. configurations with small χ χ̄ invariant mass, are
even more strongly preferred dynamically than for larger values of the ratio mχ/mR. This again leads
to a reduced efficiency for cuts related to the missing mass.

Analysis of LEP1 Data

Searches for the final state (3.16) were also performed at LEP1, the first period of operating the
LEP collider (1989 to 1994), with

√
s ' 91 GeV ' mZ [141, 142]. These analyses searched for Hνν̄

production where H is the SM Higgs boson which is assumed to decay hadronically; this final state
yielded the strongest lower bound on mH that could be derived from a single LEP1 analysis.

Since the exchanged Z boson is now nearly on–shell, for not too large values of mχ the total signal
cross section is much larger than at LEP2. Moreover, the physics background at

√
s ' mZ is much

smaller than at
√

s ' 200 GeV. In particular, the W+W− and Z Z backgrounds did not exist at LEP1.
Therefore, less severe cuts were needed at LEP1, so the cut efficiency of our signal can be expected
to be higher than for the LEP2 analyses. These two effects over–compensate the about three times
smaller total luminosity accumulated at LEP1. At least for not too large DSP mass we therefore expect
LEP1 data to lead to stronger constraints on the couplings of our model than LEP2 data.
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In [141] the cuts and the number of selected events are not given in detail. We therefore cannot
recast this analysis. Fortunately it is superseded by [142], where all applied cuts and the number of
selected events are listed1. Unfortunately there is some uncertainty regarding the precise jet definition
that has been used. One of the cuts requires to reconstruct the final state as exactly three jets. We found
that the results differ slightly for different jet algorithms. Moreover, occasionally the reconstruction of
the event as three–jet event does not work; we discard such events. However, both the effect of having
to discard events that cannot be described as three–jet events, and the differences between final results
using different jet algorithms, are quite small, probably smaller than the effects of ignoring detector
smearing, as we do. In the results presented below we use the kT based Durham algorithm, which was
the algorithm of choice for LEP2 analyses.

The results are shown in Fig. 3.7. Evidently for mχ < 20 GeV the bounds from LEP1 data are much
better than those from the published analyses of LEP2 data. For larger DSP mass, however, the phase
space constraints become quite severe at LEP1 energy, and hence these data quickly lose sensitivity.
For pure axial vector coupling the upper bound on the coupling we derive from our recasting of the
LEP1 data saturates the unitarity constraint at mχ ' 23 GeV, with larger mR yielding a slightly larger
range of mχ where the experimental bound is below the unitarity limit. This can be understood as
follows. The larger mR, the larger the axial vector coupling allowed by unitarity. The contribution
from longitudinal R exchange is again independent of mR if the unitarity limit is saturated, but the
contribution from the exchange of transversely polarized R bosons increases with increasing gA, and
hence becomes significant only for larger mR. Note also that for small mR the bound on gA at first
becomes stronger as mχ is increased from its minimal value, which we took to be just above mR/2 as
before. As in Fig. 3.2 – 3.4 this is due to the exchange of longitudinal R bosons.
In contrast, for gA

= 0 the bounds on gV are strongest for the smallest value of mχ, where the R
boson only needs to be slightly off–shell. The steep rise of the dotted curves towards small mχ in the
lower frame shows that the cut efficiency decreases, but this is over–compensated by the increase of
the total cross section. Once mχ > mR, the bound on gV again becomes largely independent of mR,
and is (coincidentally) quite close to the bound on gA for mR = 10 GeV. The “experimental” upper
bound on gV becomes worse than the perturbativity constraint (3.14) once mχ > 30 GeV.

If gA , 0 and gV = 0 the cut efficiency of our signal is generally higher than 20%. For
5 GeV < mχ < 10 GeV the cut efficiency is even higher than 30%, and reaches the highest point of
32% for mχ between 6 GeV and 7 GeV. For gV , 0, gA

= 0 and relatively small mχ & mR/2 the cut
efficiency is again less, typically around 10%, which is similar to the efficiency for the LEP2 squark
pair search. However, it quickly increases for larger mχ, reaching 35% for mχ ' 15 GeV. Moreover,
for mχ > 10 GeV the cut efficiency is now actually higher for pure vector coupling than for pure axial
vector coupling. This is opposite to the results shown in Fig. 3.6 for LEP2 energies. The LEP1 analysis
mostly employs cuts on angular variables, and does not contain any explicit cut on the invisible mass
or energy; recall that such cuts play a prominent role in the corresponding analysis of LEP2 data.

1 The influential cuts are: Nch > 7, Mvis < 70 GeV, pCH/
√

s > 0.1, E30/Evis > 60%, E12 < 3 GeV, θacol < 165°,
Mvis > 25 GeV when pT /

√
s < 10%, M1,2

thrust > 2.5 GeV,
∑

3j θ j j < 342°, Φacop < 159°, and Θisomiss > 31°. Here pCH is
the scalar sum of the charged particle momenta; E30 is the energy measured at more than 30° from the beam axis; M1,2

thrust
is the invariant masses measured in both hemispheres according to the plane perpendicular to the thrust axis; and Θisomiss is
the largest cone around missing momentum vector containing energy less than 1 GeV. The other variables have already
been defined in the LEP2 analysis described in Sec. 3.3.1.
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3.3.2 Four Jet Analysis

We now turn to a discussion of the 4−jet final state. The signal again comes from the diagrams
shown in Fig. 3.1, except that the (real or virtual) R−boson now decays into a qq̄ pair rather than a χ χ̄
pair. As a result, at tree–level the cross section now only depends on the couplings of R to quarks. We
compute the signal by squaring the R−exchange contribution, i.e. we neglect interference between
R−exchange and SM contributions. Note that the interference with the dominant (gluon exchange)
SM contribution to the four quark final state is color suppressed1; moreover, the total SM contribution
to four parton final states is dominated by qq̄gg production, where g stands for a gluon.

There are several ALEPH analyses involving 4−jet final states. Some are optimized to detect W+W−

or Z Z final states. These are part of the background for us; hence these analyses cannot be used to
derive useful bounds on the couplings of our model. The earliest ALEPH analyses of the 4−jet final
state in the LEP2 era had very low luminosity [143] or did not veto Z Z events [144], and are hence
also only of limited usefulness for our purpose.
In contrast, the searches for neutral Higgs bosons, either in pairs or in association with a Z boson,

investigate final states that are at least somewhat similar to ours. More importantly, they include cuts
that attempt to minimize non–Higgs SM backgrounds, both from electroweak and from QCD sources.
The related analyses cover the entire LEP2 energy range, from

√
s = 133 to 209 GeV [145–152]. The

analyses of the data taken at
√

s ≤ 172 GeV all use similar cuts, while the analyses of data taken at
√

s ≥ 183 GeV apply another group of cuts in order to reduce W+W− and Z Z backgrounds. The
first group of analyses turns out to be essentially useless for us, due to the rather low energy and
comparatively small integrated Luminosity.

However, the data taken at
√

s ≥ 183 GeV do allow to impose meaningful constraints on our model.
Although the cuts applied in these analyses are similar, the slight changes still influence the final
efficiencies. We find the highest efficiency, of about 27% with little dependence on mR, for the cuts
applied to the data taken at

√
s = 183 GeV [147]2, where the Z pair background is still very small. At

the highest energy the efficiency falls to about 21 to 22%. As a result, the strongest bound can be
derived from the ALEPH analysis of the data taken at

√
s = 183 GeV. This is shown in Fig. 3.8.

The 183 GeV analysis performs quite well. For pure axial vector coupling (dashed curves) the
final cut efficiency for our signal is actually as good as the one for the all–hadronic ZH signal for
which this analysis was originally designed. This leads to quite stringent bounds, in particular for
small mR, where it is significantly stronger than that from the 2−jet plus missing energy analysis of
LEP2 data described in the previous Section even for small mχ, if we assume gq = gχ; of course, the
constraints we derive from the analysis of the four jet final state are independent of mχ and gχ, as
long as mχ > mR/2. However, for vanishing vector couplings our “experimental” bound on gA

b is still

1 Denote the final state by q(k1)q̄(k2)q
′
(k3)q̄

′
(k4), where q′ may be a different flavor from q. The gluon exchange

contribution where q′(k3)q̄
′
(k4) results from the splitting of a virtual gluon then only interferes with the R exchange

contributions where q′(k3)q̄(k2) or q(k1)q̄
′
(k4) originate from the decay of the R boson. Evidently this is possible only

if q′ = q, i.e. for final states with two identical qq̄ pairs. Moreover, the interference gets a color factor of 1, compared to a
factor N2

c = 9 for the squared R exchange diagram. We checked explicitly for some combinations of parameters that the
interference terms change the total cross section only by a few percent.

2 The influential cuts are: at least 2 b−jets, Nch > 7, min(cos θi j+cos θkl) < −1.3 (i j kl label the four jets), min(
∑4
i=1 θ

i
j j ) >

350°, and either y34 > (2.9 − #b − jets)/9.5 (transition from 4 to 3 jets through Durham algorithm), or m12 > 78 GeV,
m34 > 55 GeV, and y34 > 0.008. Here θi j is the opening angle between jets i and j, mi j is the invariant mass of the
system of jets i and j; θij j is any one of these six opening angles, with the sum going over the smallest four; #b − jets is
the number of tagged b−jets.
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slightly weaker than the one derived from the unitarity constraint (3.15) applied to the b quark, where
we used mb(mb) = 4.25 GeV.

Turning on a vector coupling gVq = 1 for q = s, c, b reduces the cut efficiency somewhat; this leads
to increased upper bounds on the total cross section. This is presumably again due to the P−wave
nature of the qq̄ pair that originates from the “decay” of the virtual R boson via an axial vector
coupling, which leads to a larger separation between these two partons, and hence better separated
jets. Nevertheless the resulting upper bound on gA

b that we derive from the 183 GeV analysis is now
better than the one from the unitarity condition. This is in particular true for larger mR; the vector
contribution depends less strongly on the mass of the mediator, since there are no terms ∝ m2

b/m
2
R in

this case. For small mR the upper bound on a pure vector coupling is rather weak, but still stronger
than the perturbativity limit (3.14).
The bounds on the coupling become significantly stronger once on–shell R→ bb̄ decays become

possible. This region of larger mR is explored in Fig. 3.9. Since the unitarity bound becomes weaker
for higher mR, the final bound on the coupling is given by our recasting of the LEP2 search until
mR ' 70 GeV, where it becomes comparable to the upper bound (3.14) from perturbativity. Over
most of the range of mR shown, the curves for gVq = 0 and gVq = 1 behave similarly. Nevertheless,
there are some differences for mR around 10 to 15 GeV. For pure axial vector coupling the bound
on the coupling begins to rise again just after the point where on–shell R→ bb̄ decays are allowed.
In contrast, if the vector coupling is sizable, gVq = 1, the lowest bound on the axial vector coupling
is obtained for mR ' 12 GeV. The reason is that contributions due to the exchange of longitudinal
R bosons, which only comes from gA, more strongly prefer small mR. Hence turning on a vector
coupling moves the peak of the cross section for fixed coupling to slightly larger values of mR, where
on–shell R→ bb̄ decays are less phase space suppressed.

We also tried scenarios with pure vector coupling, setting gA
b = 0 (magenta dotted lines in Fig. 3.8

and 3.9). As in case of the 2−jet plus missing energy analysis the resulting bound on the vector
coupling is considerably weaker than that on gA for mR < 5 GeV. This is partly due to the absence of
the term enhanced by m2

b/m
2
R, and partly due to the limited cut efficiencies, which are below 10%

in this case. For mR < 2mb the bound on the vector coupling does not depend much on mR. The
strongest bound appears for mR & 2mb. It gradually weakens again for larger mR, saturating the
perturbativity condition (3.14) around mR = 35 GeV. In this case the cut efficiency is smaller than in
the scenarios with non–vanishing gA, as can be seen from the larger upper bound on the total signal
cross section.
We saw that in case of the two jet plus missing ET analysis the strongest bound often comes from

LEP1 data rather from LEP2 data, due to the larger signal cross section (for not too large mχ) and
smaller SM background. Unfortunately the only published ALEPH new physics searches at LEP1
using four jet final states [141, 153] are based on early data samples with very low integrated luminosity
of 1.16/pb. These searches were designed for the pair production of particles with sizable coupling
to the Z boson, e.g. light charged Higgs bosons, with each new particle decaying into a pair of jets.
The early data set was sufficient to exclude such particles with mass nearly up to MZ/2; at the time
there was thus little motivation to perform new physics searches in the four jet final state using the
full LEP1 data sample. Even in the absence of backgrounds the early analyses could improve on the
bounds we derive from the LEP2 searches only if the cut efficiency of signal events was higher than
50%; this is even higher than the efficiency of the final states for which these searches were originally
optimized. We conclude that among the published four jet analyses, the one based on data taken at
√

s = 183 GeV data gives the tightest constraints on our model.
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3.4 Improved Analysis of LEP2 Data

In Sec. 3.3 we saw that the cuts applied in the searches for 2−jet plus missing energy searches in
LEP2 analysis published by the ALEPH collaboration have limited efficiency for our signal, below 5%
in some cases, which is obviously not satisfactory. In this Section we therefore propose new cuts,
which have much better efficiency for our signal but still remove most SM backgrounds. We employed
kinematical variables also used by ALEPH, and applied them to SM events generated with Pythia 8.2
[99]. The cuts are designed to remove all SM backgrounds that may appear for the energy level up
to 208 GeV. When analyzing data taken below the Z pair threshold part of the cuts can be loosened
or removed, which would increase the cut efficiency even further. As the cut efficiency of the 4−jet
signature as applied to our model is already as good as that of the ZH search for which this analysis
was originally optimized, we only try to redesign the selection rules for the j j/p signature.

We start by requiring at least 5 good tracks in the event; this essentially guarantees that the event
contains some hadronic activity.

Most multi–hadron events produced by LEP2 were not due to e+e− annihilation. Rather, they were
produced when both the electron and the positron emitted a space–like photon; these two photons then
collided to produce a multi–hadronic final state. Since the virtuality of these photons can be of order
of the electron mass, they can be considered to be quasi–real. This class of events is therefore often
called two–photon (or γγ) events. The first set of cuts, listed above the second double line in Table
3.1, are designed to greatly reduce this background. These cuts are adapted from the cuts against
two–photon events employed in ref.[132]; we use the same kinematical variables, but change some of
the cut values since we optimize our analysis for higher energies,

√
s = 208 GeV.

Double Jet + Missing Energy ( j j/p)
Variable Selection Rule

Mvis > 4 GeV
pT/Evis > 20%��cos θmiss

�� < 0.95
∆ΦT < 170°
ENH < 30%Evis

(NH=Neutral Hadron) 30% 6 Evis < 45% pT (N̄H) > 1.8%
√

s
El1
/
√

s < 10%
E12/
√

s < 5%
E30
l1
/
√

s > 1%
Durham Mj1

6 9Mj2
and Mj2

6 9Mj1
2-jet j1 j2 Mj1 j2

6 80 GeV or Mj1 j2
> 100 GeV

y23 < 0.02

Table 3.1: Cuts designed to reduce the SM background to the two jet plus missing ET signal. The cuts listed
above the last horizontal double line are mostly directed against two–photon events, whereas the cuts below
this double line help to remove background events containing on–shell W or Z bosons. See the text for further
details.

The first of these cuts requires the invariant mass of the system consisting of all detected particles
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to exceed 4 GeV. Since the probability for the emission of a nearly on–shell photon off an energetic
electron or positron quickly increases with decreasing photon energy, the γγ background peaks at
small values of this variable.
The second cut imposes a lower bound on the total transverse momentum of the system of visible

particles. Since photons are mostly emitted with small virtuality, the γγ system typically has small
total transverse momentum. It is nonzero partly due to measurement errors, and partly because the
detector is not hermetic. In particular, an outgoing e± can carry some transverse momentum but still
escape detection. It is important to note that this cut also removes e+e− → qq̄ annihilation events
(including events with additional gluon emission), since here the total visible transverse momentum is
also close to zero.
The third cut vetoes events where the missing momentum vector, which is simply the opposite of

the total 3−momentum of all detected particles, points nearly in the forward or backward reaction.
There is no reason why the two quasi–real photons should have similar energy. If the outgoing e±

remain undetected, two–photon events therefore typically have a large longitudinal momentum of
detected particles, i.e. the total missing momentum vector is dominated by its longitudinal component.

The fourth cut employs the transverse acoplanarity angle ∆ΦT defined in [131]. It removes events
where the momenta in two hemispheres are nearly back–to–back. This cut is again efficient against
both two–photon and e+e− → qq̄ annihilation events.

The next cut, which we again copy from ALEPH analyses, uses the energy ENH carried by neutral
hadrons. It can be measured by subtracting the energy associated with the tracks of charged particles
from the total energy measured in the calorimeters. All events where ENH is less than 30% of Evis
pass this cut. Events where ENH > 0.45Evis are always removed. If ENH lies between these two values,
events only pass if the visible pT not including neutral hadrons, called pT N̄H in the Table, is at least
0.018

√
s. The purpose of this combination of cuts is to remove events where a large fraction of the

energy, or of the transverse momentum, is assigned to neutral hadrons. This can be dangerous, since
the energies and momenta of neutral hadrons are least well determined experimentally of all “visible”
particles (i.e., not counting neutrinos or DSPs); hence these events may contain a large amount of
“fake” missing (transverse) energy, due to mismeasurement of the neutral hadrons.

The penultimate cut in this category vetoes events with energetic charged leptons (electrons or
muons); l1 is the most energetic identified charged lepton in the event. This removes two–photon
events where at least one of the photons is so far off–shell that the corresponding outgoing e± becomes
detectable. This cut will also be effective against other backgrounds, in particular against events with
leptonically decaying W bosons; these events are dangerous since they also contain a neutrino, which
leads to an imbalance of the visible (transverse) momentum. Of course, events that do not contain a
charged lepton also pass this cut.

The last cut against two–photon events removes events where the energy E12 deposited in forward
or backward direction (within 12° of the beam axis) exceeds 0.05

√
s. Note that two–photon events

can have a sizable visible energy, even if the transverse momentum is typically small. This cut also
removes events where one of the outgoing e± hits the detector, but is not identified as a charged lepton.
The second group of cuts mostly targets events with real W or Z bosons. The first of these uses

the variable E30
l1
, which is the energy of particles in a 30° half–angle cone around the most energetic

charged lepton (excluding the lepton itself). This cut is applied only if the event contains such a lepton.
It removes events where this lepton is isolated, which is typically the case for leptons from leptonic
W± decays. In contrast, charged leptons produced in the decay of c or b quarks typically have a lot of
hadronic activity nearby, i.e. large values of E30

l1
, and thus pass this cut.
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The three final cuts concern the jet system. In order to apply these cuts, the event is forced into
a two–jet topology using the Durham kT algorithm. The first cut removes events where one jet is
very “slim”, i.e. has very small invariant mass. This is often the case for a jet from a hadronically
decaying τ lepton. This cut thus removes events containing real W± → τ±ντ decays. The second cut
removes events where the di–jet invariant mass is close to MZ ; this removes Z Z events with one Z
boson decaying hadronically and the other into a neutrino pair, i.e. invisibly. The last cut removes
events where the event would be reconstructed as containing three or more jets for dimensionless
resolution variable y23 = 0.02. We find that this cut removes very efficiently that part of the eνeW
background that survived the lepton cuts.
Some resulting cut efficiencies are listed in Table 3.2 to 3.4. We focus on scenarios with rather

light mediator and light DSP, where the efficiency of our signal for the published missing energy
searches at LEP2, discussed in the previous Section, was especially poor. We list the detailed cut
efficiencies from previous sections in Appendix A.3 for comparison. In general, cut efficiencies of the
best 4–jet analysis is much better than the di–jet case. Obviously, in Table 3.2 – 3.4, our new cuts
highly improved the original cut efficiencies. For mR = 5 GeV, Table 3.2, we show efficiencies for
pure vector and pure axial vector couplings separately; for mR = 2 GeV, Table 3.3, and mR = 1 GeV,
Table 3.4, we only show results for pure axial vector coupling, since outside the region mχ ' mR/2
the cut efficiency for pure vector coupling has very little dependence on mR.

mR = 5 GeV
mχ/GeV 2.5 3.0 3.5 4.0

εA 18.48% 23.53% 27.54% 29.22%
εV 12.32% 15.55% 18.09% 19.83%

mχ/GeV 4.5 5 5.5 6.0
εA 30.74% 32.21% 33.42% 33.58%
εV 21.43% 22.53% 22.97% 23.52%

mχ/GeV 6.5 7.0 7.5 8.0
εA 34.46% 35.02% 34.76% 35.57%
εV 25.94% 25.44% 26.14% 27.25%

mχ/GeV 8.5 9.0 9.5 10.0
εA 35.51% 35.45% 36.15% 36.25%
εV 27.29% 27.26% 28.37% 29.43%

Table 3.2: Cut Efficiencies for mR = 5 GeV and mR/2 ≤ mχ ≤ 2mR. εA has been computed with pure axial
vector coupling, gVq = gVχ = 0, while εV is the efficiency for pure vector coupling, assumed to be the same for
s, c and b quarks, while gA

χ = gA
q = 0.

We see that the efficiency for pure vector coupling quickly increases from mχ = mR/2 to mχ ' mR,
and then gradually increase to 35% for mχ > 25 GeV. These efficiencies are about three times higher
than those for the published analysis discussed in the previous Section.
Turning to axial vector couplings, the cut efficiency for any combination (mR,mχ) is again better

than the corresponding one in the published analysis described in the previous Section. For example,
for mR = 2mχ, the efficiency is more than three times larger. As in case of vector couplings, the cut
efficiency quickly increases when mχ is raised from mR/2 to mR; it continues to increase more slowly
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mR = 2 GeV
mχ/GeV 1.0 1.2 1.4 1.6

ε 21.98% 25.82% 27.59% 29.30%
mχ/GeV 1.8 2.0 2.2 2.4

ε 29.25% 30.91% 31.08% 31.65%
mχ/GeV 2.6 2.8 3.0 3.2

ε 32.07% 32.86% 33.36% 33.65%
mχ/GeV 3.4 3.6 3.8 4.0

ε 33.25% 33.40% 34.29% 34.49%

Table 3.3: Cut Efficiencies for mR = 2 GeV and mR/2 ≤ mχ ≤ 2mR. We have assumed pure axial vector
coupling, gVq = gVχ = 0.

mR = 1 GeV
mχ/GeV 0.5 0.6 0.7 0.8

ε 24.36% 27.36% 28.99% 28.57%
mχ/GeV 0.9 1.0 1.1 1.2

ε 28.77% 29.49% 30.71% 30.23%
mχ/GeV 1.3 1.4 1.5 1.6

ε 30.85% 30.82% 31.43% 30.22%
mχ/GeV 1.7 1.8 1.9 2.0

ε 31.98% 31.19% 32.38% 31.25%

Table 3.4: Cut Efficiencies for mR = 1 GeV and mR/2 ≤ mχ ≤ 2mR. We have assumed pure axial vector
coupling, gVq = gVχ = 0.

for even higher mχ, reaching slightly more than 40% for mχ > 30 GeV. Cut efficiencies of 30 to 40%
are quite typical for many LEP searches.
The selection cuts were chosen to remove most SM backgrounds. We simulated γγ (i.e., e+e− →

e+e−qq̄) events; events with hadronically decaying W+W− or Z Z pairs leading to events with four hard
partons prior to showering; Z ν̄ν, Zl+l− and Wlνl events where the gauge boson decays hadronically;
and e+e− → qq̄ annihilation events. We include “purely hadronic” final states since they can contain
heavy b or c quarks whose semileptonic decays can produce energetic neutrinos, and hence lead to
significant amounts of missing energy. The Z ν̄ν, Zl+l− and Wlνl events include contributions where
the lepton pair comes from the decay of a (nearly) on–shell Z or W boson, but also contributions that
only arise at third order in electroweak couplings. The latter diagrams do not contribute very much to
the total cross sections for these final state, but populate different regions of phase space.

Our cuts remove more than 99.9% of most of these SM backgrounds. The exceptions are the Wlνl
and Z ν̄ν final states, where 1.05% and 5.03%, respectively, of all generated events pass the cuts.
MadGraph finds total cross sections of 7.34 pb and 0.33 pb, respectively, for these two final states,
leading to a total SM background of about 0.1 pb. Recall that the upper bounds on the signal cross
section we derived in the previous section, shown in the lower frames of Fig. 3.2–3.6, were & 0.1 pb.
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For parameter choices that saturate these earlier bounds, the new cuts would therefore lead to
comparable signal and background cross sections. Since we cannot apply the new cuts to the actual
data, we cannot quote the resulting bounds, even if the cut efficiencies are roughly doubled over a
broad range of parameters. In order to give some idea of the expected improvement, we give some
sensitivity limits, i.e. expected bounds (computed under the assumption that the observed number
of events agrees exactly with the SM prediction). To this end, we use the p−value test of the “null”
hypothesis (SM only) for a 95% confidence level. For mR = 5 GeV with gV = 0, the upper limit on gA

is improved from 1.48 to 1.39 at mχ = 2.5 GeV, and the point that LEP data is weaker than unitarity
condition (3.15) moves from mχ = 4.5 GeV to 5 GeV. The sensitivity to the vector couplings increases
even more. For mR = 5 GeV and mχ = 2.5 GeV with gA

= 0, the bound of gV is improved from 1.36
to 0.99. For mR = 5 GeV and mχ = 10 GeV, the expected bound on gV is improved from 2.15 to 1.88
with gA

= 0, and from 1.64 to 1.53 with non–zero gA reaching unitarity bound. We repeat that actual
bounds can only be derived by applying our cuts to real data.

Further optimization of the cuts, in order to maximize S/B or S/
√

B where S is the signal and B is
the background, should be possible. For example, the (dominant) Wlνl background can be further
reduced by slightly reducing the lower end of the excluded region of the invariant mass of the di–jet
system (the penultimate cut in Table 3.1). However, such an optimization should also include detector
effects, which is difficult for us to do reliably. This analysis nevertheless makes it appear likely that
the bounds we derived in the previous Section, which used published analyses not optimized for this
final state, can be improved significantly.
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Figure 3.2: The upper frame depicts the bound on √gqgχ. The solid (green) curve shows the bound on gA

from the unitarity condition (3.15). The dashed (red) curve shows the bound on gA from the combination of
the unitarity condition and our recasting of the ALEPH squark pair search limits. The lower frame shows
the upper bound on the total signal cross section at

√
s = 208 GeV from our recasting of the ALEPH limits.

In these figures the mass of the mediator mR = 1 GeV. Here all vector couplings have been set to zero, i.e.
gq = gA

q , gχ = gA
χ .
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Figure 3.3: The meaning of the curves in the lower frames, and of the solid and dashed curves in the upper
frames, is as in Fig. 3.2, but for mediator mass mR = 2 GeV. For mχ ≥ 3.6 GeV the solid and dashed curves
coincide, i.e. the unitarity condition gives the stronger bound on the axial vector coupling. The dotted (blue)
lines show the upper bound on the vector coupling that we derive from the ALEPH search, i.e. for these curves,
gqgχ = gVq g

V
χ ; the axial vector couplings were chosen such that the unitarity limit is saturated. In this mass

range the upper bound on the signal cross section shown in the lower frames also uses the maximal axial vector
coupling allowed by unitarity.
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Figure 3.4: The meaning of the curves in the lower frames, and of the solid and dashed curves in the upper
frames, is as in Fig. 3.2, but for mediator mass mR = 5 GeV. For mχ ≥ 4.5 GeV the solid and dashed curves
coincide, i.e. the unitarity condition gives the stronger bound on the axial vector coupling. The dotted (blue)
lines show the upper bound on the vector coupling that we derive from the ALEPH search, i.e. for these curves,
gqgχ = gVq g

V
χ ; the axial vector couplings were chosen such that the unitarity limit is saturated. In this mass

range the upper bound on the signal cross section shown in the lower frames also uses the maximal axial vector
coupling allowed by unitarity.
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Figure 3.5: The upper frame depicts the bound on
√
gVq g

V
χ , while the lower one shows the upper bound on the

total signal cross section at
√

s = 208 GeV from our recasting of the ALEPH limits; all axial vector couplings
have been set to zero. The green, blue and red curves are for mR = 5 , 2 and 1 GeV, respectively. For mχ > 30
GeV the bound on gV is weaker than the perturbativity condition (3.14).
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Figure 3.6: The upper frame shows upper bounds on the couplings of the mediator. The solid lines are from the
unitarity condition (3.15), while the dashed lines are from our recasting of the ALEPH squark search; both sets
of curves refer to axial vector couplings. If the unitarity constraint is stronger, we allow non–vanishing vector
couplings; their upper bounds, derived from the ALEPH data, are shown by the dot–dashed curves. If gA

= 0,
the unitarity condition are irrelevant, and the bounds on gV become weaker. They are shown by the dotted
curves. The green, blue and red curves are for mR = 5 , 2 and 1 GeV, respectively. The lower frame shows the
corresponding upper bound on the total signal cross section before cuts at

√
s = 208 GeV.
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Figure 3.7: The upper frame depicts bounds on couplings of the mediator. The solid lines show the unitarity
bound on the axial vector coupling. The other curves depict bounds from our recasting of the ALEPH LEP1
limits. The dotted lines are the upper limits on gV for gA

= 0, while the dashed lines are the upper limits on gA

for gV = 0. The purple, green, blue and red curves are for mR = 10 , 5 , 2 and 1 GeV, respectively. For mχ > 30
GeV the bound on gV is always weaker than the perturbativity condition (3.14). For mχ > 23 GeV the LEP1
bound on gA is weaker than the unitarity condition (3.15), and is therefore not shown any more. The lower
frame shows the upper bound on the total signal cross section at

√
s = 91 GeV; we use the same conventions as

in the upper frame.
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Figure 3.8: Bounds on the (axial) vector coupling to b quarks (upper) and total cross section (lower) we derive
from our recasting of the ALEPH Higgs searches in the 4−jet channel. In both frames the lower (red) curves
correspond to data taken at

√
s = 183 GeV, while the upper (blue) curves correspond to data taken at

√
s = 209

GeV. The dashed curves have been obtained with vanishing vector couplings, while the dot–dashed curves are
for gVq = 1. The dotted magenta curves show the upper bounds for vanishing axial vector couplings. The solid
(green) curve in the upper frame shows the upper bound on gA

b from the unitarity constraint (3.15) applied to
the b quark.
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Figure 3.9: Upper bounds on the couplings (upper) and total cross section (lower) from our re–casting of an
ALEPH LEP2 4−jet analysis. The notation is as in Fig. 3.8, except that we only show results for the analysis at
√

s = 183 GeV which again has the highest sensitivity. For gA
= 0, shown by the dotted curve, the LEP2 bound

is only stronger than the perturbativity condition (3.14) if mR < 35 GeV. The unitarity bound on gA
b becomes

weaker for higher mR, and is no longer relevant. However, for mχ > 70 GeV the perturbativity condition is
stronger than our “experimental” bound, both for gVq = 0 and for gVq = 1.
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3.5 Conclusions

This chapter derives constraints from published ALEPH searches, based on data taken at the LEP
collider some twenty years ago, on a simplified dark matter model. The model features a fermionic
dark sector particle (DSP χ) and a spin–1 mediator R which has sizable couplings to some quarks
but not to leptons. A complete model may contain additional Higgs bosons to generate mR and/or
additional fermions for anomaly cancellation (see e.g. [154]), but the presence of these particles
should not affect our interpretation of LEP data. This kind of simplified model has of course been
analyzed previously, in particular in connection with LHC data, which impose severe constraints
from “monojet” searches if mR > 2mχ, and from searches for di–jet resonances for heavy R. We
therefore focus on rather light mediators, mR . 70 GeV, and always require mR < 2mχ so that on–shell
R→ χ χ̄ decays are kinematically forbidden. We also impose unitarity and perturbativity constraints
on the parameters of the model.

We consider two different final states. The new physics production of two jets plus missing energy
and momentum, j j/p, can only proceed via off–shell R exchange; the signal is thus proportional to the
square of the product of the mediator’s coupling to quarks and to the DSP. In contrast, in our model the
production of 4−jet final states can occur through real or virtual R exchange, and the signal depends
only on the mediator’s coupling to quarks. We used ALEPH data since this experiment published
analyses of both of these final states, including complete descriptions of the applied cuts and numbers
of surviving SM background events. This allowed us to recast these analyses; although we did not
implement detector effects, these are likely to be less important for the signal than for the background
(where they can e.g. create missing momentum).

The best bound on the j j/p final state from LEP2 data (taken at
√

s well above the Z mass) comes
from squark searches. Somewhat counter–intuitively the resulting bound on the couplings becomes
stronger for larger mχ if R is very light and axial vector couplings dominate. This is partly because
increasing mχ increases the cut efficiency, since it increases the kinematical lower bound on the missing
energy in the event; however, the main effect is the increase of the contribution from longitudinal R
bosons, whose matrix element scales like gA

χg
A
b mχmb/m

2
R. However, even though this is the most

promising among several ALEPH searches for this kind of final state, the cut efficiency for our model
is rather low, less than 20%. In particular, for vanishing axial vector couplings the bound on the
vector coupling is worse than that from perturbativity. In Section 3.4 where therefore devised an
optimized set of cuts, which according to our simulation still removes most SM backgrounds, but has
significantly higher efficiency for qq̄χ χ̄ events in our model.
For mχ . 20 GeV the best bounds nevertheless come from LEP1 data, taken at

√
s ' MZ , well

below the W+W− and Z Z production thresholds. We found that an ALEPH analysis looking for νν̄H
final states, where H is the SM Higgs boson which is assumed to decay hadronically, uses cuts that
have quite a high efficiency to qq̄χ χ̄ events in our model. For example, for mR = 1 GeV and mχ . 20

GeV it requires
√
gA
b g

A
χ ≤ 0.1, see Fig. 3.7. However, LEP1 data cannot probe the region mχ & 25

GeV for couplings that respect the unitarity and perturbativity constraints.
Turning to the four jet final state, we found that ALEPH searches for ZH production in the

all–hadronic final state have quite a good cut efficiency for qq̄q′q̄′ production via real or virtual R
exchange in our model. The resulting bound on the coupling of the mediator are roughly comparable
to those that follow from j j/p final states at LEP2, if the DSP is light and the mediator couples with
equal strength to quarks and to the DSP. This search allows to exclude new parts of parameter space
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for mR ≤ 70 GeV. For somewhat smaller mR we again expect LEP1 data to be considerably more
sensitive, due to the larger signal cross section and reduced background. Unfortunately the only
published ALEPH analysis of four jet final states at LEP1 used only about 1% of the total integrated
luminosity. This was sufficient to exclude the pair production of new particles with masses up to
nearly the beam energy, which was the purpose of this search, but does not allow to improve the limits
we derive from LEP2 data.

In all cases we found that the Dirac structure of the couplings (vector or axial vector) affects the
bounds significantly. This is partly due to enhanced contributions from longitudinal R exchange,
which are proportional to axial vector couplings. Moreover, the cut efficiencies often differ, with pure
axial vector couplings usually leading to higher efficiency; the exception is the di–jet plus missing
energy search at LEP1, where for mχ > 10 GeV vector couplings lead to a higher cut efficiency.
In summary, we have shown that LEP data should be able to impose significant new constraints

on the parameter space of dark matter models with a leptophobic spin–1 mediator, if the mass of
the mediator and/or the dark matter particle are in the (tens of) GeV range and on–shell decays of
the mediator into the dark matter particles are forbidden. While a published LEP1 search for di–jet
plus missing energy final states already has good efficiency for our model, even the best published
analysis of the same final state using LEP2 data has quite a low efficiency. Conversely, the best LEP2
analysis of four jet final states is already quite useful for our purposes, but published LEP1 searches
for this final state only use a small fraction of all data. Improved analyses of LEP data therefore hold
considerable promise to probe new regions of parameter space of this class of models.
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CHAPTER 4

Constraints on Leptophobic Mediator from LHC
data

4.1 Overview and Previous Researches

Simplified models of particle dark matter often need a mediator coupling the dark matter particle χ
to some particles in the Standard Model (SM). Models where the mediator couples to both quarks
and leptons are strongly constrained by LHC searches for `+`− resonances, where ` stands for a
charged lepton [155–158]. This motivates the investigation of “leptophobic” models, where the
mediator does not couple to leptons. In case of a spin−1 mediator R, universal couplings to all quarks
are often assumed. If R has a sizable branching ratio into invisible final states, which is generally
true if mR > 2mχ, the allowed vector and axial vector couplings are then strongly constrained by
mono–jet searches [108, 109] unless mR is well above 1 TeV. For mediator mass between 1 and 2.5
TeV, searches for di–jet resonances [110, 111] perform even better. Additionally, the constraints from
spin–dependent and spin–independent interactions in direct detection experiments imposes strong
constraints on couplings to first generation quarks [32]; these bounds scale like mR.
In Chapter 3, which applies LEP data to probe the low mR region, we therefore switched off all

couplings to first generation quarks and axial vector couplings to second generation quarks in order
to avoid an excess in direct Dark Matter detection experiments. At tree level, axial vector couplings
lead to spin–dependent contributions to the scattering cross section, which also receive a sizable
contribution from strange quarks, whereas vector couplings lead to spin–independent contributions
which only probe u and d quarks in the nucleon [159]. In our model the scattering on nuclei can
therefore only proceed via loop diagrams, and should thus be strongly suppressed.1 Moreover, the
non–zero couplings to other quarks are still available to generate a sizable annihilation rate to explain
the observed dark matter relic density through thermal freeze–out. By switching off couplings to
first generation quarks, and hence to all valence quarks, we greatly reduce the cross sections for pp
scattering processes with an R boson in the intermediate or final state. The published bounds from the
LHC experiments, which assume equal couplings of R to all quarks, are therefore no longer valid.

1 For purely vectorial interaction the effective Rgg vertex should vanish according to Furry’s theorem; one will have to
add a second R exchange or a third external gluon in order to obtain a non–vanishing contribution. In case of axial
vector interaction the effective Rgg vertex seems to lead to a velocity–suppressed contribution to the cross section, so the
dominant contribution probably again comes from yet higher orders.
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In this chapter, we want to estimate the LHC constraints on the similar model introduced in Chapter 3.
We showed in Chapter 3 that LEP data impose strong constraints only for mR < 10 GeV, and become
entirely insensitive for mR > 70 GeV. Here we therefore focus on scenarios with mR ≥ 10 GeV.
The relevant searches we exploit are similar to those that constrain scenarios with flavor–universal
couplings of R: mono–jet + /ET searches, di–jet + /ET searches and di–jet resonance searches. By
switching off couplings to light quarks, we increase the branching ratio for R→ bb̄ or tt̄ decays. Since
in background events most jets originate from light quarks or gluons, b or t tagging can increase the
signal to background ratio even for flavor–universal couplings of R, and should be even more helpful
in our case.

This chapter is organized as follows. In Sec. 4.2, we briefly describe the Lagrangian of the simplified
model containing a leptophobic mediator, which does not couple to first generation quarks. The
application to the relevant LHC data is discussed in Sec. 4.3. The LEP result and the tightest unitarity
condition from top quark are compared to the LHC exclusion limits we estimate. Finally, Sec. 4.4
contains our summary and conclusions.

4.2 The Simplified Model

4.2.1 Lagrangian and Free Parameters

In the previous chapter, we have already introduced the Lagrangian of the leptophobic mediator
without couplings with the first generation quarks. In this chapter, we want to discuss a similar model.
Nevertheless, in Chapter 3 we set gA

t = gVt = 0 for LEP research, since the total energy of LEP is too
limited to probe the top quark. In this chapter, as turing to LHC data, we therefore assume gVt = gVb ,
gA
t = gA

b , g
V
c = gVs , g

A
c = gA

s = 0, and gA
u, d = gVu, d = 0.

This leaves us with seven free parameters: gVs, c, g
V
b, t , g

A
b, t , g

A
χ , g

V
χ , mR and mχ. However, since R

does not couple to leptons, signals involving missing transverse energy /ET require a pair of DSPs in
the final state. Since SM Z boson couple to all quarks, final states with an R boson replaced by an
invisible decaying Z boson will always contribute to (and indeed often dominate) the background
to these signals. Clearly the signal can only compete with this background from on–shell Z bosons
if on–shell R→ χ χ̄ decays are possible. The relevant quantity is then the branching ratio for these
decays, rather than the couplings gVχ and gA

χ separately. Moreover, the DSP mass mχ also affects the
signal only through this branching ratio. This observation implies that replacing the Dirac DSP χ by a
complex scalar φ is trivial, since again only the branching ratio for R→ φφ̄ decays is relevant in that
model.
Turning to quark couplings, we assume all non–vanishing couplings to be equal. In case of axial

vector couplings, this can again be motivated by SU(2) invariance. This would still allow different,
non–vanishing second and third generation vector couplings, but we set them equal for simplicity.
Note that the case gVs = gVc = 0 would give very similar results as the scenario with non–vanishing
axial vector couplings. The reason is that contributions to the relevant matrix elements from gVq and
gA
q differ only by terms of the order mq/Q, where Q is the energy scale of the process. Since the

parton distribution function for top quarks is still very small at the energies we are interested in, and
top tagging turns out to be quite inefficient, the relevant quark is the b quark, and mb/Q � 1 for all
cases of interest to us. The main difference between vector and axial vector couplings is therefore that
in the former case couplings to second generation quarks are included, while these couplings vanish in
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the latter case.
Finally we are therefore left with four relevant free parameters: gVq , g

A
q , Br(R→ χ χ̄) and mR. Since

the parton distribution functions for second generation quarks in the proton are significantly larger than
those for third generation (basically, b) quarks, for fixed size of the non–vanishing couplings we expect
much smaller total cross sections for the case gVq = 0, gA

q ≡ gq than for the case gA
q = 0, gVq ≡ gq . On

the other hand, scenarios with gV = 0 should have higher efficiency for b tagging, which is required in
some searches.

4.2.2 Perturbativity and Unitarity Conditions

The perburbativity and unitarity conditions are introduced in formula 3.12, 3.14, and 3.15 from
Chapter 3. However, due to the assumption of universal axial vector couplings to b and t quarks, now
the strongest constraint always comes from the much heavier top, and becomes quite strong for light
mediator:

gA
q 6

√
π

2
mR

mt

=
mR

137.59 GeV
. (4.1)

For example, for mR = 10 GeV, gA should be smaller than 0.08. In contrast, for mR > 275 GeV the
unitarity constraint becomes weaker than the perturbativity condition.

4.3 Application to LHC Data

In this section, we recast various LHC searches to constrain the model introduced in section 4.2,
including a mono–jet + /ET search [108], multi–jet + /ET searches [160–162], a multi–jet + /ET searches
with t tag [163], a multi–jet + /ET search with double b tag [164], and di–jet resonance searches with
final state b–jets [165] or t–jets [166].

In order to simulate the events and recast the analysis, we use FeynRules [97] to encode the model
and generate an UFO file [129] for the simulator, MadGraph [98] to generate the parton level events,
PYTHIA 8 [99] for QCD showering and hadronization, DELPHES [100] to simulate the ATLAS and
CMS detectors, and CheckMATE [101, 167] to reconstruct and b–tag jets, to calculate kinematic
variables, and to apply cuts. We note that the toolkit CheckMATE uses a number of additional tools
for phenomenology research [168–178].
Let us first discuss final states involving missing ET . These are often categorized as “mono–jet +
/ET ” and “multi–jet + /ET ” final states. However, the “mono–jet” searches also allow the presence of
at least one additional jet. On the other hand, “multi–jet” searches do indeed require at least two jets
in the final state. These signals thus overlap, but are not identical to each other.
As remarked in section 4.2, missing ET in signal events always comes from invisibly decaying

mediators, R → χ χ̄. Since multi–jet searches require at least two jets in the final state, we use
MadGraph to generate parton–level events with a χ χ̄ pair plus one or two partons (quarks or gluons)
in the final state. The former process only gets contributions from the left diagram in fig. 4.1 plus its
crossed versions, including the contribution from gq→ Rq. Note that R has to couple to the initial
quark line in this case. We use parton distribution functions (PDFs) with five massless flavors; the
mass of the corresponding quarks should be set to 0 in order to avoid the inconsistency with massless
evolution equations (DGLAP equations). The b−quark PDF is nonzero, but it is still considerably
smaller than those of first generation quarks. The contribution from this diagram, which is formally
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of leading order in αS , is therefore quite small, especially for scenarios with gVq = 0 where R only
couples to third generation quarks.
If we allow the final state to contain two partons in addition to the DSPs, there are contributions

with only light quarks or gluons in the initial state; an example is shown in the middle of fig. 4.1, but
there are several others. These diagrams are higher order in αS , but they receive contributions from
initial states with much larger PDFs than those contributing to the first diagram. It is thus not clear a
priori which of these contributions will be dominant for a given set of cuts.
There is one additional complication. At the parton level, events with one and two partons in

the final state are clearly distinct. However, once we include QCD showering, which is handled
automatically by PYTHIA, the distinction becomes less clear. In particular, a single parton event with
an additional gluon from showering can no longer be distinguished from a certain two parton event
without additional gluon. Naively adding contributions with one and two partons in the final state
before showering can therefore lead to double counting. Similarly, if one of the final–state quarks
shown in the middle diagram of fig. 4.1 has small pT , the diagram can be approximated by g → qq̄
splitting followed by gq → Rq production. This contribution is already contained in the crossed
version of the left diagram of fig. 4.1, via the scale–dependent PDF of q, so simply adding these
diagrams again leads to double counting. MadGraph avoids both kinds of double counting by using
the “MLM matching” algorithm [179]. Of course, showering can add more than one additional parton;
indeed, we find significant rates for final states with up to four jets (having transverse energy ET ≥ 35
GeV each).
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R
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g

g
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R
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R
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Figure 4.1: Examples of Feynman diagrams contributing to mono–jet + /ET (left), di–jet + /ET (center) and
di–jet resonance (right) final states; in the former two cases it is assumed that the mediator R decays into two
dark sector particles, which escape detection, whereas in the latter case R is assumed to decay into a quark
antiquark pair. The diagram to the right is unique (with different initial states contributing), and the one on the
left is unique up to crossing; however, many additional diagrams, with different combinations of partons in the
initial and final states and different propagators, contribute to R+di–jet production.

Searches for final states leading to large missing ET are typical cut–and–count analyses, where
the final state is defined by cuts on the type and number of final state objects (in particular, leptons
and jets with or without b−tag) and on kinematic quantities (in particular, the transverse momenta
or energies of the jets and the missing ET ). The experiments themselves designed these cuts, and
estimated the expected number of surviving SM background events. The comparison with the actually
observed number of events after cuts then allows to derive upper bounds on the number of possible
signal events. We pass our simulated signal events through CheckMATE, which applies the same cuts
(including detector resolution effects), and compares the results with the upper bounds obtained by the
experiments.
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The second kind of search we consider are searches for di–jet resonances. The leading–order signal
diagram is shown on the right in fig. 4.1. In this case the final state contains no partons besides the
mediator R; for gVq = 0, only bb̄ initial states contribute, whereas for non–vanishing vector couplings
also ss̄ and cc̄ initial states contribute. Of course, the left and middle diagrams shown in fig. 4.1 also
contribute to this signal if R decays into a qq̄ pair. However, in this case one has to add two powers of
αS in order to access initial states including only light quarks or gluons. Moreover, if all final state
transverse momenta are small, which maximizes the cross section, the contribution from the middle
diagram is actually already included in the right diagram, via double g → qq̄ splitting. The left and
middle diagrams should therefore only be included in inclusive R production when a full NLO or even
NNLO calculation is performed, which is beyond the scope of this chapter.
Note also that resonance searches are not cut–and–count analyses. The analyses still use a set of

basic acceptance cuts, in this case on the (pseudo–)rapidities and transverse momenta of the two
leading jets. The bound on resonance production is then obtained by fitting a smooth function to the
di–jet invariance mass distribution, which is assumed to be dominated by backgrounds, and computing
the limit on a possible additional contribution peaked at a certain value (basically, the mass of the
resonance). The current version of CheckMATE does not include comparison with this kind of
searches. However, CheckMATE does allow to estimate the efficiency with which our signal events
pass the acceptance cuts. This allows to derive the constraints from resonance searches on our model,
as follows.
The most sensitive di–jet resonance search we found is that of ref. [165], which requires a double

b−tag in the final state. This paper presents the resulting upper bounds for a couple of models. One of
them is quite similar to ours, but assumes universal couplings to all quarks; this leads to a greatly
enhanced resonance production cross section, and a somewhat reduced branching ratio into bb̄ pairs,
compared to our model. The paper also gives the cut efficiency for the model with universal couplings.
We, therefore, recast their cuts and compare the cut efficiencies of their model and our models in order
to estimate the bound for our model through the following rescaling:

σmax, ours = σmax, exp ·
εexp

εours
. (4.2)

Here σmax, ours is the largest allowed cross section for our model, σmax, exp is the largest allowed cross
section in the original experimental analysis, εexp is the selection efficiency of the model in the paper,
and εours is the selection efficiency of our model.
Finally, we cannot easily reproduce the top tagging required in the di–top resonance search [166].

However, even if we assume 100% efficiency for the di–top tag, the resulting bound is much weaker
than our recast of [165] described in the previous paragraphs. We therefore do not show this bound in
our summary plot.
The results of our analyses are summarized in fig. 4.3. The thin solid lines in the top–left corner

show the bounds we derived in Chapter 3 from analyses of older ALEPH searches for four jet final
states at the e+e− collider LEP; note that these bounds are valid for mR < 2mχ. The solid straight line
is the unitarity bound (4.1) applied to the top mass; recall that it applies only to axial vector couplings.
(Since top quarks could not be produced at the LEP collider, in Chapter 3 we only considered the
unitarity constraints involving mb and mχ.)
The other results shown in fig. 4.3 are new. The dashed curves show the bounds on the square of

the coupling of R to quarks times the branching ratio for invisible R decays which we derived from the
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Figure 4.2: Loop diagrams contributing to R+jet production from gluon fusion.

most sensitive jet(s) plus missing ET searches, for pure axial vector couplings (red, upper curve) and
pure vector couplings (green, lower curve); the lower frame shows the corresponding bounds on the
signal cross section, defined as the total cross section for the on–shell production of a mediator R times
the invisible branching ratio of R. It is important to note that these constraints are only significant in
our model if on–shell R→ χ χ̄ decays are allowed, i.e. they constrain a region of parameter space
that is complementary to that analyzed in Chapter 3.
The dot–dashed curves in the upper frame show the bounds on the square of the coupling of R to

quarks times the branching ratio for R→ qq̄ decays that result from searches for di–jet resonances,
again separately for pure axial vector couplings (purple, upper curve) and pure vector couplings (blue,
lower curve). The relevant analysis by the ATLAS collaboration [165] is sensitive only to mR ≥ 600
GeV.

The difference between the constraints on vector and axial vector couplings is almost entirely due to
the additional coupling to s and c quarks that we allow only for the former, as discussed in Sec. 4.2.1.
In particular, we see that the constraint from the bb̄ resonance search is much stronger for the model
with vector couplings.

In the upper frame of Fig. 4.3 the curves depicting the bounds from searches for final states
containing /ET evidently lie below the ones showing bounds from di–jet resonance searches, except for
the scenario with pure vector coupling at mR ' 2 TeV. However, this is somewhat misleading, since
the dashed curves show bounds on g2

q · Br(R→ χ χ̄), while the dot–dashed curves shows bounds on
g2
q · [1 − Br(R → χ χ̄)]. For mR ≥ 1 TeV the two sets of constraints on the coupling are actually
comparable if Br(R → χ χ̄) ' 0.3 (0.1), for pure vector (axial vector) coupling; for even smaller
invisible branching ratio of R, the bb̄ resonance search imposes the stronger constraint in this large mR

region. We note that for m2
R � m2

t and gχ = gq , i.e. equal coupling of the mediator to the DSP and to
heavy quarks, the invisible branching ratio of R is below 1/7 (1/13) for pure axial vector (vector)
coupling, the difference being due to the different number of accessible qq̄ final states.

Within the missing ET searches the best bound on gVq for mR < 1.4 TeV is from ref.[164], a double
b tagged multi–jet + /ET analysis, while ref.[160], a general multi–jet + /ET analysis, is the most
sensitive one for mR ≥ 1.4 TeV; this change of the most sensitive analysis explains the structure in the
dark green curves at that mR, which is most visible in the lower frame. In contrast, the strongest bound
on gA

q is always from ref.[164] with double b tag, which also determines the bound on the vector
coupling for mR < 1.4 TeV. This explains why the bound on the coupling is actually very similar in
both cases: the required double b tag means that the contribution from partonic events containing only
s or c quarks, which only exists in the case of vector coupling, has very small efficiency, since the b
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tag requirement can only be satisfied though mistagging, or through additional b quarks produced in
hard showering. As a result the bound on the total cross section, shown in the lower frame, is much
weaker for pure vector coupling, since the coupling to s and c quarks greatly increases the total cross
section while contributing little to the most sensitive signal.
We also consider multi–jet analyses specially designed for final states containing two top quarks

[161, 163]. However, the top–tag in [163] is not easy to recast directly. We therefore, assume 100%
efficiency to reach the most ideal bound. Unfortunately, even this ideal bound on g2 is 10 times weaker
than that from the analysis which only requires a double b-tag. One reason is that both bb̄ and tt̄ final
states may lead to b-tagged jets, while the selection rules specially designed for top jets exclude the bb̄
final state. Moreover, for our assumption of equal couplings the cross section for tt̄R production is
considerably smaller than that for bb̄R production.
As noted above, we also derived constraints on our model from mono–jet searches. The most

sensitive analysis has been published in [108], and does not require any flavor tagging. The resulting
constraint on the vector coupling is only slightly weaker than that shown in Fig. 4.3, while the
constraint on the axial vector coupling is not competitive. Since no flavor tagging is required, the large
contribution from s or c quarks in the initial and final states has similar efficiency as contributions
with b quarks, and greatly strengthens the limit on the vector coupling.

Before concluding this section, we comment on loop processes that allow gg initial states to
contribute to our signals. The relevant Feynman diagrams are shown in Fig. 4.2. They involve two
additional QCD vertices relative to the leading–order R+jet production channels, i.e. they are formally
NNLO. Nevertheless the large gluon flux in the proton might lead to sizable contributions. We again
use FeynRules and Madgraph to simulate these events at the parton level.

Note that the tree–level contributions we discussed so far are only sensitive to the absolute value of
the couplings of the mediator to quarks. In contrast, in the loop diagrams all quark flavors contribute
coherently, so the relative signs between different Rqq̄ couplings are important.
Let us first consider pure vector couplings. Here our simplified model as written is well–behaved

also at QCD one–loop level. We find that the loop contributions of Fig. 4.2 only contribute at most 2%
of the leading–order mono–jet signal if all gVq are set equal; this contribution is reduced by another
factor of 5 if we instead take gVs/b = −g

V
c/t . In particular, there is no enhancement for small mR;

instead, the cross section after cuts approaches a constant once mR � pT,cut. Recall also that in this
case there are tree–level contributions involving the strange quark content of the proton, which is
much larger than that of b quarks (although still considerably smaller than that of gluons). We can
thus always safely neglect these loop contributions for non–zero vector couplings.

In contrast, in case of non–vanishing axial vector couplings our model with equal couplings of the
mediator to all heavy quarks leads to a ggR anomaly, i.e. this version of our simplified model is not
well–behaved at the 1–loop level. We therefore took gA

b = −g
A
t in order to cancel this anomaly.

Moreover, the loop amplitude now receives a contribution that scales ∝ 1/mR. As a result, for
mR = 10 GeV the loop contribution to the mono–jet cross section exceeds the tree–level contribution
by about a factor of 20. We find that nevertheless the best bound still comes from the final state
with two b−jets and missing ET . Recall that here gg initial states are accessible already at tree–level.
Since in the loop diagrams the external gluon has to be virtual, so that it can split into a bb̄ pair,
the loop contribution is still NNLO relative to this tree–level contribution. Nevertheless the 1/mR

enhancement, which is associated with heavy (i.e. top) quark loops, means that including the loop
diagram with gA

b = −g
A
t would tighten the upper limit on the squared coupling shown in Fig. 4.3 at
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mR = 10 by about 40%. For mR = 50 GeV, however, the loop contribution only doubles the total
mono–jet signal, and the final bound on the squared coupling from the di-b final state is improved by
about 3%.
It should be clear that setting gA

b = −g
A
t is only one solution to cancel the anomaly. Another

possibility is to introduce a very heavy quark Q satisfying gA
Q = −2gA

b = −2gA
t . This would lead to

even larger loop contributions for small mR; however, the unitarity bound (4.1) would then also have
to be applied to mQ, and might even supersede the LHC constraint.
In sum, we conclude that for axial vector couplings loop corrections involving two–gluon initial

states might moderately strengthen the LHC constraint for mR < 50 GeV, the exact result depending
on the UV completion of the model. Note also that this source of loop corrections adds incoherently
to the signal, i.e. it cannot weaken the bounds presented in Fig. 4.3. We therefore believe that this
Figure, which is independent of the UV completion, is a better representation of the LHC constraints
on our model.

4.4 Conclusions

In this chapter, we discuss a model containing a Dirac fermion χ as dark matter candidate as well
as a spin−1 mediator R. We assume that R has vanishing couplings to first generation quarks and
vanishing axial vector coupling to second generation quarks, thereby easily satisfying constraints from
direct dark matter searches. By assuming vanishing couplings to leptons the otherwise most sensitive
LHC searches, based on analyses of `+`− final states where ` stands for a charged lepton, are evaded
as well. Due to the vanishing couplings to light quarks, and hence to all valence quarks in the proton,
the R production rate at the LHC is considerably smaller than for the more commonly considered
scenarios with (essentially) universal couplings to all quarks.
Nevertheless LHC data impose quite strong constraints on the model if the branching ratio for

invisible R decays is sizable, which requires mR > 2mχ. The best LHC bound then always comes
from searches for final states containing jets plus missing ET . Our CheckMATE–based recast of these
analyses leads to an upper bound on the product of the squared coupling and the invisible branching
ratio of R of 10−3 for mR ≤ 200 GeV. This weakens to 0.01 (1) for mR = 600 GeV (2 TeV), see Fig. 4.3.
Searches for invisibly decaying mediators have traditionally been framed as “mono–jet” searches
(which allow additional jets in the final state, as mentioned above), and have been interpreted assuming
equal (vector or axial vector) couplings to all quarks [108, 109]. For pure axial vector couplings these
bounds are actually weaker than ours if mR ≤ 600 GeV. Since the signal need only contain a single
hard jet, and no b−tagging is used, one needs a very strong cut on the missing ET to suppress the
background; for mR . 1 TeV this leads to a much worse cut efficiency than the most sensitive analysis
we use, which requires two tagged b−jets plus missing ET . For mR . 600 GeV this search may thus
also impose tighter bounds on the model with universal couplings. Nevertheless the bound on g2

q times
the invisible branching ratio from mono–jet searches in the model with universal coupling becomes
significantly stronger than ours for larger mR, by about one order of magnitude for mR = 1.5 TeV.
For mR ≥ 0.6 TeV roughly comparable bounds on the product of the squared coupling and the

branching ratio of R into qq̄ quarks can be derived from an ATLAS search for bb̄ resonances. Searches
for generic di–jet or tt̄ resonances yield much weaker constraints on our model. Generic di–jet
resonance searches at the 13 TeV LHC become sensitive only at a resonance mass above 1.5 TeV or so.
The resulting bounds on mediators with unsuppressed couplings to valence quarks are quite strong.
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For example, for mR = 1.5 TeV the ATLAS analysis [111] gives a bound on the squared universal
coupling to quarks in a leptophobic model that is about two orders of magnitude stronger than our
bound from bb̄ resonant searches in the model with vector couplings, which in turn is a factor of about
3 stronger than the analogous bound in the model with axial vector couplings.

We thus see that both in the missing ET and in the resonance searches switching off the couplings to
first generation quarks greatly weakens the limits on the couplings for mR > 1 TeV, less so for smaller
mediator masses.

Since the energy scale of these reactions (e.g. the missing ET , or mR in the resonance searches) is
much larger than the masses of the relevant quarks, the matrix elements for vector and axial vector
couplings are almost the same. Unless mR � mχ for equal coupling strengths the branching ratio for
invisible R→ χ χ̄ decays will be larger for pure vector coupling than for pure axial vector coupling;
however, this effect is absorbed by interpreting the relevant constraints as upper bounds on the product
of the squared coupling times the invisible branching ratio, as we did in the above discussion.
LHC searches lose sensitivity to our model if mR > 2 TeV, or if mR < 0.6 TeV and mR < 2mχ.

Probing significantly higher values of mR would require higher center–of–mass energies; since all
relevant searches are background–limited, increasing the luminosity will increase the reach only
slowly. If on–shell R→ χ χ̄ decays are not possible, missing ET searches at the LHC are essentially
hopeless in our model. The reason is that in this case a signal which is of second order in the couplings
of the mediator has to compete with SM signals that are first order in electroweak couplings, in
particular the production of Z and W bosons which decay into neutrinos.1 For mR < 70 GeV the
old LEP experiments have some sensitivity, but the resulting bound is not very strong in Chapter 3.
Straightforward di–jet resonance searches at the LHC are not possible for mR much below 0.6 TeV,
since the trigger rate would be too high. One might consider previous hadron colliders, in particular
the Tevatron. However, these earlier colliders were pp̄ colliders, where the bb̄ background includes
contributions where both initial–state quarks are valence quarks; recall that in our model the signal
does not receive contributions from such initial states.
A probably more promising approach is to consider final states containing an additional hard

“tagging jet” besides the mediator R. Both ATLAS [180] and CMS [181] have presented bounds on
rather light di–jet resonances using this trick, which is also employed in the “mono–jet” searches.
Unfortunately these searches are currently not easy to recast, since they use “fat jet” substructure
techniques. In any case, in order to gain sensitivity to our model this technique would probably have
to be combined with b−tagging, which proved crucial for deriving useful constraints from di–jet
resonance searches at mR > 600 GeV. An analysis of this kind should be able to probe deep into the
parameter space with mR < 600 GeV and mR < 2mχ.

1 In case of universal couplings to all quarks the “mono–jet” analyses [108, 109] do exclude a small region of parameter
space with mR/2 < mχ . 200 GeV for a vector mediator, but not for an axial vector mediator.
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Figure 4.3: The upper frame shows the bound on the squared coupling of the mediator to quarks times the
relevant branching ratio of the mediator that we derive by recasting various LHC bounds (dashed and dot–dashed
curves). The lower solid curve shows the unitarity bound (4.1) on the axial vector coupling, and the thin solid
lines in the top–left corner show constraints from recast LEP constraints in Chapter 3 based on analyses by the
ALEPH collaboration. For gA

= 0 only vector couplings gVq are allowed with q = s, c, b, t, while for gV = 0
only axial vector couplings gA

q are allowed with q = b, t. LHC missing ET results are from the combination of
mono–jet and multi–jet analyses. The lower frame shows the upper bound on the total cross sections from the
missing ET analyses.
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CHAPTER 5

Constraints on Leptophilic Mediator from LHC
data

5.1 Overview and Previous Researches

In the previous chapters of Part II, we discuss the leptophobic mediator, which relates to final state
without hard leptons. Another kind of signatures at collider is final states with hard leptons. Unlike
the parton level process with only quarks in the final state, which hardly have very energetic leptons
finally after hadronization, the final state τ may decay hadronically to form a jet that can be tagged
as τh besides leptons. Additionally, the soft jets after jet reconstruction in the final state is relatively
energetic compared to soft leptons, and hence is hard to be excluded by simple cuts as well. Therefore,
the leptonic final state is not quite simpler than the quark case. The hadronization, jet reconstruction
and tagging are still challenging and significant. We use the signatures with hard leptons to analyze
the leptophilic mediator in this chapter.
There are several reasons for considering the extension of the gauge group of the Standard Model

(SM) by another Abelian U(1) factor. It is usually assumed that the new gauge boson couples
universally to all three generations of quarks, in order to avoid constraints from flavor–changing neutral
currents. If we further insist that the gauge group should be anomaly–free within the SM matter
content (possibly extended by right–handed neutrinos, but without other exotic chiral fermions), there
are only four different possibilities. These can be written as B − L [182], as well as the purely leptonic
Le − Lµ, Lµ − Lτ , and Le − Lτ [183]; of course, linear combinations of these four groups are also
possible. In the U(1)B−L model, which does require right–handed neutrinos, the new gauge boson
couples to both quarks and (charged) leptons. This model is therefore tightly constrained by searches
for di–lepton resonances at hadron colliders, in particular at the LHC [156, 158]; if the coupling of
the new U(1) is comparable to that of the U(1)Y of the SM, these searches exclude Z ′ masses below
several TeV.1

In the other three models the cancellations of anomalies occur between different generations without
the requirements of extra fermions [183]. LEP data strongly constrain the Le − Lµ and Le − Lτ
models. While we are not aware of dedicated analyses of LEP data in the framework of these models,
for mZ′ > 300 GeV or so the Z ′ propagator at LEP energies (

√
s ≤ 209 GeV) can be approximated

by a constant, in which case limits on contact interactions apply. In particular, ALEPH data on

1 See ref.[184] for a very recent assessment on current constraints on the B − L model.
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e+e− → µ+µ− [185] imply mZ′/geµ > 1.1 TeV for the Le − Lµ model, whereas OPAL data on
e+e− → τ+τ− [186] lead to the bound mZ′/geτ > 0.94 TeV for the Le − Lτ model. For smaller Z ′

masses, where propagator effects become important, the bound will be even stronger.
In contrast, the Lµ − Lτ model does not predict any new interaction for the electron. Its gauge boson

can therefore only be produced through higher–order processes in e+e− collisions, by emission off a
charged or neutral lepton of the second or third generation. These final states can also be produced
at the LHC [187], which has accumulated a far larger number of di–muon and di–tau events than
LEP did. In this chapter we therefore focus on LHC data. Note also that the U(1)Lµ−Lτ

model can
accommodate successful neutrino masses even with the simplest Higgs sector [188, 189], and can be
extended to contain a dark matter particle that is charged under the new symmetry but easily satisfies
the stringent direct search constraints [190, 191]. In principle, this model could also explain the
difference between SM prediction and measurement of the anomalous magnetic moment of the muon
(gµ − 2); however, bounds on νµN → νµµ

+µ−N “trident” production [192], where N stands for some
nucleus, exclude this possibility for mZ′ > 0.5 GeV.
The other existing constraint in the Z ′ mass range relevant for searches at the LHC comes from

analyses of Z decays into four charged leptons [193]. In particular, ref.[194] is a CMS analysis
constraining this model using Z → 4µ decays. This search is obviously only sensitive to relatively
light Z ′, mZ′ < mZ . LHC prospects for this model have been discussed previously [195–197], with
ref. [197] focussing on the case mZ′ ≤ mZ/2; however, these papers did not attempt to use actual LHC
data to constrain the model.

In contrast, we consider a comprehensive set of LHC analyses for final states with two, three or four
charged leptons in the final state, where a lepton l for us means a muon or a hadronically decaying τ.
Final states with fewer than four charged leptons are also required to contain some missing transverse
momentum /ET . In particular, final states with only two charged leptons plus /ET are sensitive to Z ′

decays into dark matter particles, which also reduce the branching ratios for Z ′ decays into µ or τ
pairs. τ → µ decays contribute to muonic final states, if typically with reduced efficiency since the
muon produced in τ decays is obviously softer than the parent τ. In principle, τ → e decays can also
populate final states with electrons. However, the small branching ratio (about 18%) and again reduced
efficiency imply that final states with electrons will not be as sensitive as those only containing muons
or hadronically decaying τ leptons. We use the CheckMATE framework [101, 167]. Only a few of the
analyses we applied had already been included in CheckMATE. We included a total of 281 new signal
regions defined in 28 different papers.2 We find that the specialized Z ′ search [194] based on 4µ final
states is indeed most sensitive for 10 GeV ≤ mZ′ ≤ 60 GeV; for larger masses, analyses of final states
containing only three charged leptons are more sensitive.

The full SU(3)c × SU(2)L ×U(1)Y ×U(1)Lµ−Lτ
model introduced in [190, 191] contains not only

the new mediator and DM particle, but also an extra Higgs boson to break the new U(1) as well as
SM singlet right–handed neutrinos for a see–saw generation of realistic neutrino masses. The extra
Higgs boson plays a significant role in the dark matter phenomenology, but it can contribute to the
final states we consider only if its mixing angle with the SU(2) doublet Higgs boson responsible for
electroweak symmetry breaking is relatively large. We ignore this possible source of additional signal
events. The main free parameters are thus the mass of the Z ′ and the strength of its coupling to µ and

2 Most of the experimental papers we used also include signal regions containing electrons. We did not consider those, for
the reasons explained above. By current policy an analysis can become part of the official CheckMATE release only if all
of the signal regions defined in this analysis are encoded. Our “private” version of CheckMATE is available upon request.

70



5.2 The Simplified Model

τ leptons; the branching ratio for Z ′ decays into dark matter particles also plays a (lesser) role.

The reminder of this chapter is organized as follows. In Sec. 5.2, we briefly describe the parts of the
U(1)Lµ−Lτ

model [190, 191] that are relevant for the LHC searches we consider. The application to
LHC data is discussed in Sec. 3, both for vanishing and non–vanishing branching ratio for Z ′ decays
into dark matter particles. Finally, Sec. 5.4 contains our summary and conclusions.

5.2 The Simplified Model

The SU(3)c × SU(2)L ×U(1)Y ×U(1)Lµ−Lτ
model contains a new gauge boson Z ′ for the local

U(1)Lµ−Lτ
symmetry; the corresponding field strength tensor isZ′µν ≡ ∂µZ ′ν − ∂νZ ′µ. As usual, we

write its interaction with other particles using the covariant derivative instead of the normal partial
derivative, i.e. ∂µ → Dµ = ∂µ − igµτqZ ′µ, where gµτ is the new gauge coupling and q is the Lµ − Lτ
charge of the particle in question. The model also contains a complex scalar φDM, which is singlet
under the gauge group of the SM but carries Lµ − Lτ charge qDM. The kinetic term of the new gauge
boson s written with strength tensor LZ′ = −

1
4Z
′
µνZ

′µν, while the kinetic term of DM particle is
(Dµφ)∗Dµφ. If we need a massive gauge boson for U(1)Lµ−Lτ

, the original gauge field should eat a
Goldstone boson through Higgs mechanism. Therefore, a new Higgs field with non-zero U(1)Lµ−Lτ

charge should be added to the new model. If we assume the new Higgs field named as φH and the SM
Higgs field named as φh, the additional terms related to φH are

LH = (DµφH )
∗
(DµφH ) − V(φh, φH ), (5.1)

V(φh, φH ) ≡ µ
2
Hφ
∗
HφH + λH (φ

∗
HφH )

2
+ λhH (φ

†

h
φh)(φ

∗
HφH ). (5.2)

In the expression, Dµ = ∂µ − igµτZ ′µ, we assume the new Higgs field has the same charge with muon.
Because of the existence of λhH , the mass matrix of 2 neutral Higgs particle is not diagonal, and
hence they mix with each other to form the mass eigenstates h1 and h2, where the mass of h1 should
equal to SM Higgs in experiments. Therefore, the DM particle may acquire mass from both sides.
Normally, we can assume either spinor or scalar DM, and in this chapter, unlikely previous chapters,
we consider complex scalar DM in the following sections. The spinor DM couples to Higgs bosons
only through Yukawa terms. On the other hand, the scalar DM may have more flexible couplings. In
the most general case, the Lagrangian for DM field is

LDM =(DµφDM )
∗
(DµφDM ) − µ

2
DMφ

∗
DMφDM − λDM (φ

∗
DMφDM )

2 (5.3)

− λDh(φ
∗
DMφDM )(φ

†

h
φh) − λDH (φ

∗
DMφDM )(φ

∗
HφH ), Dµ = ∂µ − iqµτgµτZ ′µ .

Therefore, after the symmetry spontaneous breaking (SU(2)L ×U(1)Y ×U(1)Lµ−Lτ
to U(1)EM ), the

expressions of φh and φH in the unitary gauge are

φh =

(
0

v+H√
2

)
, φH =

vµτ + Hµτ
√

2
. (5.4)
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Therefore, the DM particle acquire its mass equaling to

m2
DM = µ

2
DM +

1
2
(vλDh + vµτλDH ), (5.5)

where v/
√

2 is the vacuum expectation value (vev) of SM Higgs field and vµτ/
√

2 is the vev of the
new Higgs field.

To consider massive neutrinos, the model should contains extra right–handed neutrinos, which are
heavy enough to suppress the mass of left–handed neutrinos. U(1)Lµ−Lτ

model allows the related
terms in type-I seesaw mechanism, and hence can explain the phenomena in neutrino oscillation and
trident experiments [192, 198, 199]. The seesaw mechanism requires Majorana mass term. However,
only Ne does not carry the U(1)Lµ−Lτ

charge, and hence the Majorana mass term N̄c
µNµ and N̄c

τ Nτ
are forbidden. Therefore, the full Lagrangian of the right–handed neutrinos containing both Majorana
mass terms and Yukawa terms are

LN =
∑

i=e, µ, τ

(
i
2

N̄i /DNi − (yi L̄i φ̃hNi + h.c.)
)
−

1
2

(
N̄c
e N̄c

µ N̄c
τ

) ©«
Mee heµφ

∗
H heτφH

heµφ
∗
H 0 Mµτ

heτφH Mµτ 0

ª®¬ ©«
Ne

Nµ
Nτ

ª®¬ ,
(5.6)

where φ̃h = iσ2φ
∗
h. After symmetry spontaneous breaking, the mass matrix of the neutrinos takes the

form

Mν =

(
0 MD

M>D MR

)
, MD =

©«
ye

v√
2

0 0
0 yµ

v√
2

0
0 0 yτ

v√
2

ª®®¬ , MR =

©«
Mee heµ

vµτ
√

2
heτ

vµτ
√

2
heµ

vµτ
√

2
0 Mµτeiξ

heτ
vµτ
√

2
Mµτeiξ 0

ª®®®¬ (5.7)

After the diagonalization of the mass matrix, the mass eigenstates of the neutrino are established and
the tuning of the parameters (ye, yµ, yτ , vµτ , ξ, Mµτ , Mee, heµ, and heτ), may explain the related
experiments.

In sum, the final full Lagrangian of the model is

L = LSM + LN + LDM + LH + LZ′ . (5.8)

Nevertheless, not every sector is testable through LHC experiments. First, the neutrinos are not
detectable at collider and are treated as missing energy. Therefore, the final observables only depend
on the sum of all flavors of neutrinos. Because of the unitarity of the mixing matrix, the distinction
of the variables in the mixing matrix is hardly detectable from LHC experiments. Moreover, the
right–handed neutrinos are predicted to be very heavy which are hard to generate at modern colliders.
Thus, LN terms are not testable through LHC data. Second, non–collider data should be much more
sensitive than the LHC data for λDh and λDH , since the h2 Higgs boson is supposed to be heavy and
final state DM may decrease the total cross section in collider experiments. In contrast, the process,
φ∗DMφDM → h2 → bb̄, connecting the extra h2 to SM particles, significantly contributes to the data
from relic density and indirect detection [200]. Therefore, the strongest bound of such parameters
should be from non–collider data. Third, λDM only relates to next leading order experiments through
loop diagrams in LHC searches. Finally, the mixing of φh and φH is very small to prevent the mass
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eigenstate h1 from disagreeing the SM Higgs, and hence the effect can only be tested on higher order
tree diagrams with 6 or 8 lepton final states. In sum, the extra part from the complete Lagrangian that
is the most relevant sector for DM topic from LHC data is thus given by

Lnew = (DµφDM)
∗DµφDM − m2

DMφ
∗
DMφDM −

1
4
Z
′
µνZ

′µν
+

1
2

m2
Z′

Z ′µZ ′µ (5.9)

+ gµτ(µ̄/Z
′
µ + ν̄µ /Z

′
νµ − τ̄ /Z

′
τ − ν̄τ /Z

′
ντ).

The LHC signals we consider originate from the production and decay of (nearly) on–shell Z ′

bosons. At leading order the Z ′ can only decay into second or third generation leptons, and possibly
into DM particles. The corresponding partial widths are given by

Γ(Z ′→ l+l−) =
g2
µτmZ′

12π
√

1 − 4zl(1 + 2zl) , for l = µ, τ; (5.10)

Γ(Z ′→ φDMφ
∗
DM) =

q2
DMg

2
µτmZ′

48π
(1 − 4zDM)

3/2 , (5.11)

where zX ≡ m2
X/m

2
Z′
. The partial width for Z ′ decays into one flavor (µ or τ) of neutrino is half of that

given in eq.(5.10), since only the left–handed neutrinos are light enough to contribute. In our analysis
we only consider scenarios where the total Z ′ width is smaller than mZ′ , since otherwise perturbation
theory is not reliable. This is the same perturbativity condition compared to 3.12, even if we change
the model. This translates into the condition

q2
DM(1 − 4zDM)

3/2
+ 4

∑
l=µ, τ

√
1 − 4zl(1 + 2zl) + 4 < 48π/g2

µτ . (5.12)

This bound is always satisfied for gµτ ≤ 3 and qDM ≤ 2.

5.3 Application to LHC Data

At tree–level the only SM particles our Z ′ boson couples to are leptons of the second and third
generation. These can be pair–produced via neutral or charged current Drell–Yan processes. The
leading–order Z ′ production processes are based on these Drell–Yan reactions, with a Z ′ boson being
emitted off the lepton line, see Fig. 5.1.
If the primary Drell–Yan process produces an l+l− pair (left diagram), Z ′ → l ′+l ′− decays lead

to final states containing four charged leptons, where flavor l ′ may be the same or different from l
(with l, l ′ ∈ {µ, τ}). Invisible Z ′ decays, into neutrinos or DM particles, lead to final states with an
opposite–sign same–flavor charged lepton pair plus missing ET .
If the primary Drell–Yan reaction produces a νl ν̄l pair (middle diagram), Z ′ decays into charged

leptons again lead to l+l− /ET final states. For this production process invisible Z ′ decays do not result
in a detectable final state.1

1 If a hard parton is emitted off the initial state this process would contribute to monojet production; however, it would
merely be a higher–order correction to monojet production in the SM, and would thus certainly not lead to a detectable
signal.
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Finally, if the primary Drell–Yan reaction produces a l−ν̄l pair or its charge conjugate (right
diagram), Z ′ decays into charged leptons leads to final states of the type l±l ′+l ′− /ET , where the l and l ′

may again be the same or different flavors. In this case invisible Z ′ decays lead to final states with a
single charged lepton plus missing ET . This can be considered a higher–order correction to the SM
charged–current Drell–Yan reaction, and will certainly have a far worse sensitivity than the 3l + /ET

final state.
Of course, experimentally a µ and a τ look very different. In fact, primary muons and muons from

tau decays cannot be distinguished reliably; we will just add these contributions. For reasons described
in the Introduction, we do not consider final states containing electrons, which might be produced in
tau decays. However, we do consider final states including hadronically decaying tau leptons, which
we denote by τh.

γ/Z

Z ′

q

q̄

l+

l−

Z

Z ′

q

q̄

ν̄l

νl

W−

Z ′

q

q̄′

ν̄l

l−

Figure 5.1: Examples of Feynman diagrams for pp → Z ′l+l− (left), pp → Z ′νl ν̄l (center) and pp → Z ′lνl
(right). For the left diagram, both visible (leptonic) and invisible Z ′ decays (into neutrinos or DM particles)
contribute to signal processes, but for the central and right diagram only Z ′ decays into a charged lepton pair
were considered. The Z ′ boson can also be emitted off the other lepton, and W+ exchange diagrams also
contribute. In the event generation the Z ′ is allowed to be off–shell.

Altogether, we thus consider the following distinct final states: 3µ, 4µ, mµ+ nτh (m+ n > 2, n , 0),
2τh + /ET , µτh + /ET , and 2µ + /ET . The corresponding LHC analyses we recast are summarized in
Table 5.1. To that end we used the CheckMATE 2 framework [101], which in turn uses Delphes
3 [100] to simulate the CMS [201] and ATLAS [202] detectors. It should be noted that CheckMATE
also uses several other public tools [100, 168–178]. As mentioned in the Introduction, we encoded a
total of 281 new signal regions; we also used a few searches for superparticles in multi–lepton final
states which had already been included in CheckMATE.

List of Analyses Center–of–mass energy
Topologies 7 TeV 8 TeV 13 TeV

2µ + /ET [203, 204] [203, 205–207] [158, 208–217]
(2τh or µτh) + /ET [157, 218–220]

3µ or 4µ [221] [194, 212, 213, 216, 217, 222–228]
mµ + nτh [229] [212, 223, 227, 228]

(m + n > 2, n , 0)

Table 5.1: All analyses used in this chapter for leptophilic mediator.

74



5.3 Application to LHC Data

In order to simulate the signal, we used FeynRules [97] to produce a model file output in UFO
format [129]. Parton–level events were generated by MadGraph [98]. Specifically, we defined charged
leptons (meaning µ− and τ−) and invisible particles (µ and τ neutrinos or antineutrinos as well as DM
particles). The 2l signal events were generated by specifying MadGraph events containing a charged
lepton–antilepton pair plus two missing particles; for the 3l signal, MadGraph generated events with
three charged leptons and one missing particle; and the 4l signal started from MadGraph–generated
events with two pairs of charged leptons. In all cases only diagrams containing one Z ′ propagator (i.e.
two new couplings) were generated.

This means that the Z ′ boson is allowed to be off–shell, but interference between Z ′ and Z or photon
exchange is not included. These interference terms formally vanish in the narrow width approximation,
i.e. for ΓZ′ → 0. These terms are therefore expected to be more important for larger coupling gµτ ,
which in turn are allowed for larger mZ′, as discussed quantitatively below. However, we found that
even for the largest coupling we consider, which respects the perturbativity constraint (5.12), the
interference contribution to the cross section after cuts is at most 6% of the squared Z ′ exchange
contribution. This is considerably less than the effect of typical QCD NLO corrections, which we
also ignore. Note also that in the high mass region (mZ′ > 100 GeV), where the upper limit of gµτ is
sizable and considered offering noticeable interference contribution, we found the interference terms
to be positive, so ignoring them is conservative.

These MadGraph events were passed on to Pythia 8.2 [99] for parton showering and hadronization,
and then to CheckMATE 2 [101] which applies the selection cuts defined by the designated search
regions and decides whether the given model is excluded by these searches or not.
We performed separate comparisons to 2l, 3l and 4l searches; we remind the reader that l here

means a muon or a hadronically decaying τ lepton. Some of the analyses we apply used data taken
at
√

s = 7 or 8 TeV, which required separate event generation. However, at the end the analyses
of data taken at

√
s = 13 TeV, many of which were published quite recently, always proved more

constraining. Moreover, we find that replacing a muon in the final state by a hadronically decaying
τ always reduces the sensitivity. The branching ratio for hadronic τ decays is about 65%, but the
τ−tagging efficiency is well below the efficiency of identifying a muon, and QCD jets are much more
likely to be misidentified as a hadronically decaying τ than as a muon. Nevertheless τ leptons do
contribute to the final sensitivity, through τ → µ decays.

In the following we will present constraints on the Lµ − Lτ gauge boson in two different scenarios.
We begin with scenarios where the Z ′ boson does not decay into dark matter particles, either because
qDM = 0 or because mDM > mZ′/2. The strengths of all signals we consider can then be computed
uniquely in terms of only two parameters: the mass mZ′ and the coupling gµτ . We generate at least
20, 000 events for each combination of Z ′ mass and coupling; if the total error in the most relevant
signal region is dominated by Monte Carlo statistics, we generate additional events. Since the signal
rates to good approximation scale like g2

µτ , we typically only need to try three to four values of the
coupling in order to determine its upper bound for a given value of mZ′.

In the upper frame of Fig. 5.2 we show upper bounds on gµτ that have been derived in this manner
as functions of mZ′. The figure shows separate bounds from analyses of final states with two (green
dot–dashed curve), three (red dashed curve) and four (dark blue solid curve) charged leptons. The lower
frame shows the upper bounds on the corresponding total cross sections, which include the branching
ratios for Z ′ decays but count each τ as a charged leptons, irrespective of its decay. The curves
terminate in the region of large Z ′ mass when the perturbativity limit (5.12) is reached. The curves
aren’t always smooth. The reason is that CheckMATE uses the signal region with the best expected
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sensitivity to set the bounds. This avoids “look elsewhere” effects, but can lead to discontinuities
when the relevant signal region changes. Finally, we do not show bounds from 2l final states for
mZ′ < 10 GeV since the cut efficiency becomes very poor there, i.e. we would need to generate a very
large number of events in order to derive reliable results; we did not do that since the resulting bound
will surely again be worse than that from 3l and 4l analyses.

The upper frame also shows the value of gµτ where the full theory prediction, including Z ′ exchange,
reproduces the measured value of gµ − 2. The brown solid line corresponds to the central value,
whereas the darker and lighter shaded regions allow too reproduce gµ − 2 up to 1 and 2 standard
deviations, respectively. Here we use

∆aµ = aexp
µ − ath

µ = (29.0 ± 9.0) × 10−10

from [26], which is was also used in the non–collider studies [190, 191] we discussed previously.
Finally, the lower dot–dashed line in the upper frame summarizes non–LHC bounds. For mZ′ > 4

GeV the results from non–LHC data come from our interpretation of the CCFR measurement of the
cross section for “trident” production [230]. We used the CLS method to set the 95% c.l. limit, which
is also employed by CheckMATE. The resulting bound on gµτ is ∼ 20% weaker than that derived by
taking the central value of the CCFR cross section plus 1.64 times the CCFR error as upper bound on
the cross section, which seems to have been done in [192]; note that the cross section measured by
CCFR is somewhat below the SM prediction.2 For mZ′ < 4 GeV the best non–LHC bound comes from
4µ searches by the BaBar collaboration [232]. We show a smoothed–out version of the actual bound,
which fluctuates rapidly by ∼ ±30% around this line. In [233] it was shown that bounds from tests of
lepton universality are always weaker than that from the neutrino trident experiments in the parameter
region we focus on (mZ′ ≤ 500 GeV). We therefore do not show these constraints in Fig. 5.2.
As mentioned above, there is only one published analysis of LHC data that specifically searches

for the Lµ − Lτ gauge boson [194]; it covers the mass range 5 GeV < mZ′ < 70 GeV using Z → 4µ
decays in the CMS detector. Our CheckMATE based recast of this analysis leads to a similar, but
slightly weaker constraint on gµτ for given mZ′; this difference presumably results from inaccuracies
of the fast Delphes 3 simulation of the CMS detector, as compared to the full simulation based on
Geant 4 [234] employed by the CMS collaboration. For Z ′ masses between 10 and 60 GeV, this
search provides the strongest bound of all LHC searches.
However, outside this mass range the tightest LHC constraint comes from other searches. In

particular, for mZ′ < 10 GeV the 4µ search in [228], which includes softer muons, is comparable to or
sometimes stronger than [194]. On the other hand, for mZ′ > 60 GeV the best LHC bound comes
from searches for 3µ final states, the most important ones being [222] and, for mZ′ > 100 GeV, [228].
Another analysis [212] uses the same selection rules as [228] with different categorization, and thus
gives similar results. The main reason for the good performance of the 3µ searches is that the cross
section for the charged current Drell–Yan process is larger by a factor of 2.5 to 3 than that for the
corresponding neutral current process leading to a charged lepton pair; this relative ordering is not
affected much by the Z ′ boson emitted off the leptons line (see Fig. 5.1) [187]. Moreover, the cut
efficiency for the most sensitive 3µ analysis turns out to be a little better.
On the other hand, Fig. 5.2 also shows that the LHC bounds are stronger than existing constraints

2 The CHARM–II collaboration also measured this cross section, with a different neutrino beam, and found a result
somewhat larger than, but compatible with, the SM prediction [231]. Naively averaging the two measurements of
σexp/σSM leads to a very similar bound on gµτ when using the CLS method.
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only in the mass range covered by the dedicated search [194]. Note also that the upper bounds on the
signal cross sections flatten out, or even slightly increase, at large Z ′ masses (lower frame). This is
a sure sign that the cuts were not optimized for the Lµ − Lτ model. For example, the upper bound
derived from 3µ final states in [228] increases at large mZ′ largely because of a transverse mass cut,
which loses efficiency.

So far we have assumed that DM particles cannot be produced in on–shell Z ′ decays. If we allow
Z ′→ φDMφ

∗
DM decays the branching ratio for Z ′→ l+l− decays will be reduced, leading to reduced

3l and 4l signals. However, since we consider a scalar DM particle, even for qDM = ±2 the branching
ratio for Z ′ decays into DM particles does not exceed 25%. This would reduce the upper bounds on
gµτ derived from these channels by a factor of at most

√
12/4 ' 0.86.

The situation for the 2l channel is different. The contribution from the left Feynman diagram in
Fig. 5.1 to this final state increases with increasing branching ratio for invisible Z ′ decays, while that
from the middle diagram decreases. Since for |qDM | ≤ 2 the branching ratio for invisible Z ′ decays is
never more than 50%, one might expect the former effect to be dominant; however, the two diagrams
have both different total cross sections and different cut efficiencies, making a numerical analysis
necessary.
Some results are shown in Fig. 5.3, for gµτ = 1 and qDM = 1 (upper) and 2 (lower). The green

regions are excluded by our recast of analyses of 2µ final states; the corresponding exclusion limits
in the absence of Z ′ → DM decays are given by the horizontal black lines. The fact that the green
regions extend beyond the upper horizontal line shows that allowing Z ′→ φDMφ

∗
DM decays increases

the sensitivity of this final state somewhat, the effect being slightly bigger for qDM = 2. The strongest
bounds are from three different analyses of data taken at

√
s = 13 TeV [211, 213, 215], and their

cut efficiencies are indeed quite different for pp→ Z ′νl ν̄l and pp→ Z ′l l̄ processes. However, this
entire region of parameter space is still excluded by analyses of final states with three or four muons.
Therefore LHC data are not sensitive to the production of dark matter particles in this model.

So far we have considered a complex scalar as dark matter candidate. However, in on–shell Z ′

decays the spin of invisible particles cannot be determined; the only quantity relevant for LHC analyses
is the invisible branching ratio of the Z ′ boson. For example, we could just as well consider a Dirac
fermion χ as dark matter candidate. The relevant partial width would then be given by

Γ(Z ′→ χ̄ χ) =
m′Z
12π

√
1 − 4zDM(g

2
V + g

2
A + 2zDM(g

2
V − 2g2

A)), (5.13)

where the gA is the axial vector coupling, gV is the vector coupling, and zDM = m2
χ/m

2
Z′
. For gV = 0

and gA = gµτ , this partial width is the same as that for scalar DM for qDM = 2 shown in the lower
frame of Fig. 5.3. On the other hand, for gA = 0 and gV = gµτ , eq.(5.13) predicts a somewhat larger
partial width for sizable mass of the DM particle. However, the branching ratio for Z ′ decays into
dark matter still remains below 25%, and the constraints from 2µ + /ET searches remain far weaker
than those from analyses of final states with 3 or 4 muons.

5.4 Conclusions

In this chapter, we recast a large number of LHC analyses, summarized in Table 5.1, from both the
CMS and ATLAS collaborations in the CheckMATE framework in order to constrain the U(1)Lµ−Lτ
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extension of the SM. Here we focus on the new Z ′ gauge boson predicted by this model, whose mass
and coupling are the main free parameters relevant for LHC physics. We find that recently published
analyses of data taken at

√
s = 13 TeV always have higher sensitivity than LHC data taken at lower

energies. These data exclude Z ′ masses up to 550 GeV for perturbative couplings. We analyzed final
states containing two, three or four charged leptons, where a charged lepton is here defined as a muon
or a hadronically decaying τ lepton. Final states with only two charged leptons in principle would have
the highest sensitivity to Z ′ decays into invisible dark matter particles, but this final state is always
much less sensitive than the 3l and 4l final states. Moreover, replacing a muon by a hadronically
decaying τ lepton always reduced the sensitivity. The final LHC limit is therefore set by 4µ final states
for 5 GeV < mZ′ < 60 GeV, and by 3µ final states otherwise. However, except for 10 GeV < mZ′ < 60
GeV LHC data are still no more sensitive to this model than data taken at much lower energies, in
particular analyses of νµN → µ+µ−N “trident” production by the CCFR collaboration [230].

Only one analysis we use [194], which looks for Z → 4µ decays, has been designed specifically for
this Z ′ boson. It is thus very likely that the sensitivity could be enhanced, in particular for larger Z ′

masses, by optimizing the cuts, in particular in 3µ final states which have a larger cross section before
cuts. A further increase of sensitivity might be possible by statistically combining final states with
muons and with hadronically decaying τ leptons, since the relative normalization of these channels
can be predicted unambiguously in this model; for example, for mZ′ ≥ 10 GeV, where lepton mass
effects are negligible, the branching ratios for Z ′ decays into µ+µ− and τ+τ− are essentially the same.

In this chapter we focused on the production of the new Z ′ gauge boson. The model also contains a
new Higgs boson, which may decay via two real or virtual Z ′ bosons into up to four charged leptons.
Both the decay of the 125 GeV Higgs boson into two of the new Higgs bosons, and the emission of the
new Higgs boson off a Z ′ boson in one of the diagrams of Fig. 5.1, can therefore lead to spectacular
final states with up to eight charged leptons. Unfortunately, there are too many diagrams from the SM
containing eight lepton final state. Thus, the calculation speed is too slow to work out through the
calculating power of our computer. We therefore calculate the cross section of 6−lepton final state
from the SM instead. The cross section is very tiny and hence negligible even for 6−lepton final state
(∼ 2.3 × 10−7 pb with some preset cuts), while the 8−lepton final state is supposed to have smaller
cross section. On the other hand, from our model, the 8−lepton final state has larger cross section even
compared to 6−lepton case from the SM. Therefore, if the signal from our model is sizable enough3 in
some parameter spaces, those spaces should be excluded directly, since it is much larger than the SM
estimation. Nevertheless, given that the complexity of the parameters in the Higgs sector are not as
simple as those in DM sector, topics relevant to the Higgs sector should be carefully discussed in the
future work.

3 “sizable enough” for detection in collider experiments means that at least 3 events can be measured through the detector
in recent total integrated luminosity.

78



5.4 Conclusions

100 101 102 103

mZ ′ [GeV]

10−3

10−2

10−1

100

g µ
τ

LHC Constraints for Lµ−τ w/o DM

2l-Sig.
3l-Sig.
4l-Sig.
Others
(gµ−2)

0 100 200 300 400 500
mZ ′ [GeV]

10−3

10−2

10−1

100

101

102

cr
os

s
se

ct
io

n
[p

b]

LHC Constraints for Lµ−τ w/o DM

2l-Sig.
3l-Sig.
4l-Sig.

Figure 5.2: The upper limit on the new coupling gµτ (upper) and the corresponding cross section before cuts
(lower). The upper frame also shows the value of the coupling indicated by the measurement of the anomalous
magnetic moment of the muon (shaded area), as well as a summary of existing constraints (lower dot–dashed
curve); see the text for further details.
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Figure 5.3: The effect of Z ′ decays into dark matter particles on the constraint from 2l final states, for gµτ = 1
and qDM = 1 (upper) and 2 (lower). In the gray region below the diagonal these decays are kinematically
forbidden, i.e. the result of Fig. 5.2 holds. The green region is excluded by analyses of 2µ final states at

√
s = 13

TeV; in the absence of Z ′→ DM decays these analyses exclude the region between the horizontal lines. The
pink region is excluded by analyses of 4µ final states, which are only mildly affected by Z ′→ DM decays; this
includes the entire green region.
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CHAPTER 6

Application on Machine Learning Based
Classifiers

In the previous Chapter, we see that although we applied all the released LHC analyses with
multi–lepton final states, the bound from LHC data is still in general weaker than the result from
non–LHC experiments. Nevertheless, in the special parameter region, mZ′ from 10 GeV to 60 GeV, the
LHC constraints are the strongest compared to other experiments. As we mentioned in the previous
chapter, the CMS paper that designs cuts specially for U(1)Lµ−Lτ

extension of SM. Therefore, the
redesign of the selection rules could be helpful to improve the final bounds from the LHC data.
Additionally, from the result in previous chapter, the 3l signal in general should be better than 4l and
2l due to the larger total cross section. Therefore, we begin from the optimization of 3l signal.
In this chapter of Part III, we want to discuss the improvement of LHC constraints for U(1)Lµ−Lτ

model. There are several ways to do the optimization for certain model. First is to design dedicated
cuts like what we do in Chapter 3. However, the LHC background is much more complex than the
LEP case. The reduction of QCD background is quite non–trivial. Therefore, to design cuts that can
reduce the QCD background and boost the signal to background ratio after the cuts is not very easy in
general. Therefore, repeating our work for LEP analysis is challenging. Moreover, unlike the LEP
case, which has no specially designed analysis for our model, the CMS collaboration has already
designed cuts for U(1)Lµ−Lτ

, and hence if their cuts only work from 10 GeV to 60 GeV, it is hard to
easily extend the conclusion for larger parameter space. Fortunately, besides the cut–based analysis,
there are still other ways to reduce the background and to boost the signal to background ratio. From
20 years ago, Neural Network has already been used to tag a jet as b–jet. Now a toolkit called The
Toolkit for Multivariate Data Analysis (TMVA1) is developed to apply more specialized Machine
Learning algorithms on collider related topics. Additionally, the development of GPU and CPU highly
increases the efficiency of Machine Learning. Thus, it offers us a series of competitive classifiers to
distinguish Signal and background. Moreover, the tree–based algorithms, like Boosted Decision Tree
can offer the information of the feature importance of various parameters we select to describe the
simulated signatures. Therefore, we try to apply Support Vector Machine, Random Forest, AdaBoost,
XGBoost, Neural Network, etc. to classify the signal and background. We implement XGBoost
through the standard XGBoost Python package 2, while we implement other algorithms through the

1 https://root.cern.ch/tmva
2 https://xgboost.ai
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combination of Scikit-learn3, Keras4 and Tensorflow5.
Developing classifier is a well known topic in Computer Science. A lot of researches focus on

this topic to solve a series of puzzles and to benchmark various algorithms on certain challenges.
Obviously, it should be better than the cut based classification on the efficiency side. However, the
cut based analysis helps us understand the physical aspects clearly. For instance, the missing energy
cut directly reflects the mass of invisibly decaying mediator. It is very convenient to connect the
experimental data and the theoretical settings inside Lagrangian through the selection rules. Therefore,
we try to combine the results from different machine learning algorithms through votes from various
classifier for the stronger bounds, while we use the feature importance information from XGBoost to
point out the most important features that reflects the physical properties. We select all the variables
designed for 3l analysis in Chapter 5. Since the experimentalists in ATLAS and CMS are more
professional than us to design the selection rules, they have already develop a series of variables
related to multi–lepton topology in LHC. We calculate out all the variables and use them as the input
vector for Machine Learning classifiers. According to the feature importance we get from XGBoost,
we are able to drop the the useless feature to decrease the calculating complexity and to increase the
size of the data set from the simulation to improve the result. Finally, we simulate 1000000 signal
events for a single mass point of mZ′, e.g. 1000000 for mZ′ = 100 GeV, while the number of SM
events simulated by us is equal to the total number of signal events for all the mass points to keep the
1 : 1 ratio between signal and background before the preselection and training procedure.

To test our classifier, we use “test data set” that contains the signal to background ratio roughly
equaling to the cross section ratio between our model and SM. Through the application of the same
preselection before training and trained model on the regenerated and unbiased test data set, we get the
remaining events, which are the events tagged as “Signal” by our classifier, and then we can use the
signal from our model and the background from SM after our selection to estimate the new bound for
a 95% confidential level, similar to the case in Chapter 3 Section 3.4. Our recent results are shown in
Fig. 6.1 and Fig. 6.2 for feature importance and improved bound respectively. In the figure of feature
importance, we use CheckMATE to calculate all the features6. Those 2 kinds of transverse masses are
defined as internal functions, and hence can be visited directly from CheckMATE. Obviously, the most
important feature is the invariant mass of the di–muon pair that minimize the value of |mZ − mµ+µ− |.
Therefore, when the value is extremely near to the Z mass, it loses its efficiency. From Fig. 6.2, it
is clear to see unusual behavior between 90 GeV and 100 GeV, which agreeing our estimation from
the feature importance. Therefore, the feature importance is indeed helpful to achieve the physical
information.
In Fig. 6.2, there are 2 different figures from 2 kinds of preselection respectively. In the first one,

we apply /pT > 100 GeV cut before training the classifier. In the second one, we only apply /pT > 10
GeV cut before training the classifier. The results show that the weaker cut is much better than the
stronger cut. The reason of this result is that the Machine Learning classifier is in general much better
than the cut based methods. Nevertheless, if we use /pT > 1 GeV, the result is again much worse than
/pT > 10 GeV. The reason is that the necessary cut from our physical perspectives helps us remove
the anomalies and outlier in the data. Furthermore, if we do not apply any cut, there could be a
large number of useless events that highly decrease the speed of training. Therefore, some weak and

3 https://scikit-learn.org
4 https://keras.io
5 https://www.tensorflow.org
6 https://checkmate.hepforge.org/documentation/group__kinematics.html
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physical cuts are still necessary.
The recent result we get through Machine Learning has already been the best compared to all other

analyses. Even if we can not compare the bound from real data with the estimated bound directly,
it still implies the potential of the Machine Learning algorithms. The latter steps in the Machine
Learning approach could be the analysis of 2l–signal and 4l–signal to consider the DM related sector.
Moreover, we can try to use kernel function to construct some new features that have physical meaning
or to remove most of the unnecessary features. In sum, the Machine Learning tools are very helpful
on our collider analysis for DM related models.
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Chapter 6 Application on Machine Learning Based Classifiers
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Figure 6.1: The figure shows the feature importance from XGBoost. The x–axis is the variables with leading
importance we use in our Machine Learning. Larger importance means more important variables. E , px , py ,
pz , and pT are the 4–momenta and transverse momentum of the final state leptons and the most energetic jet,
while the number 0 − 2 means the position in the energetic series. η and φ are the angular position of final state
objects. Missing pT is the missing transverse momentum. mT and mT2 are 2 kinds of transverse mass, HT is
the scalar sum of jet transverse momenta, and mµ+µ− is the invariant mass of the di–muon pair that minimize the
value of |mZ − mµ+µ− |.
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Figure 6.2: The figure shows the optimized bound from 3l–signal. The upper figure drops all the signal and
background data with /pT > 100 GeV before training, while the lower figure drops data with /pT > 10 GeV.
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CHAPTER 7

Summary

In this thesis, we overview the experiments, observations, and simplified models of DM. DM
is an attractive and important topic of BSM physics. The hint of its existence appears in various
scales in galaxies, galaxy clusters, and the Universe. Although there are other candidate theories for
certain observation puzzles, it is difficult for those alternative candidates to explain all the unexpected
observations through one simple hypothesis. Moreover, the distinction between luminous mass and
total mass in bullet clusters is not easy to work out through other models besides DM such as modified
Newton gravitation. Additionally, DM model is very simple, since only mass distribution is needed in
the macroscopic scale. In sum, the observation in astronomy implies that DM is a very competitive
model to solve all the observational puzzles altogether. The microscopic detail of DM, however, is not
straightforward to study. Since the lack of electromagnetic interaction, which is the foundation of the
most of detection strategies, the properties and origins of DM require more advanced searches. The
direct detection, indirect detection, and collider searches are the recent experiments that we can use to
discuss the theoretical models. They offer chances to test the interactions between DM and the quarks,
leptons, or other sectors in the SM. After the overview of all experiments and observation, we focus
on the collider searches in this thesis.

A theoretical model with a large number of parameters is hardly testable through experimental data.
Therefore, we build simplified models with a limited number of parameters in this thesis to make our
models testable. The simplified models contain an extra mediator that offers the connection between
the SM and DM particles. Whatever the mediator couples to, the couplings of new interactions,
mediator mass, and DM mass always appear as the new parameters. Through our application of
LHC and LEP data, we find that the assumption with only mediator mass and interaction couplings
are well constrained by our tests. In contrast, if we introduce more parameters related to DM, the
constraints are not good enough in general. On the one hand, we try to consider other methods of event
selection, such as the Machine Learning based classifiers. On the other hand, the result proves our
understanding of simplified models, i.e. a large number of parameters may make the model untestable.
For a more complete model, which contains more sectors like an extra Higgs sector and flavor mixing,
more signatures should be considered together, while the constraints from their simplified model
should be analyzed as hints for the complete models. Additionally, the simplified models are useful
for building a connection between the experimental events in the detector and the theoretical models
as well. Some selected kinetic parameters are sensitive enough to distinguish signal from the SM
background. It helps us understand the properties of the theoretical assumptions. Even if we use the
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Chapter 7 Summary

Machine Learning classifier instead of the cut based analysis, the feature importance also offers the
information concerning the most remarkable variables.

In this thesis, we recast a very large number of collider searches from LHC and LEP. The first kind
of mediator we carefully discussed is the leptophobic mediator that couples to heavy quarks.

From LEP, we apply data taken at the e+e− collider LEP in the 1990’s at center–of–mass energy up
to 209 GeV. We assume that the dark sector particle (DSP) is a spin−1/2 fermion χ. This scenario is
well studied in the context of LHC searches for mediator mass from 100 GeV to several TeV. Emission
of the mediator off a quark or antiquark at LEP gives rise to di–jet plus missing energy and 4−jet
signatures, which we use to limit the relevant couplings. We focus on scenarios with 2mχ > mR,
which are poorly constrained by LHC data. We recast published searches by the ALEPH collaboration.
For mχ . 20 GeV the best bounds result from an analysis at

√
s ' MZ of di–jet plus missing energy

events. For heavier DSP but mR . 70 GeV meaningful bounds can be derived from a four jet analysis
at
√

s = 183 GeV. Unfortunately published searches using four jet final states at
√

s ' MZ use only a
small fraction of the total data sample. Moreover, all published searches for di–jet plus missing energy
final states at

√
s ≥ 130 GeV have poor efficiency for our model; we therefore design new cuts that

combine good background rejection with higher efficiency. Re–analyzing the higher energy data using
our new cuts, and an analysis of the complete four jet data sample taken at

√
s ' MZ , can explore new

regions of parameter space.
From LHC, we recast ATLAS and CMS searches for final states containing one or more jet(s) + /ET ,

with or without b tags, as well as searches for di–jet resonances with b or t tagging. We find that LHC
constraints on the axial vector couplings of the mediator are always stronger than the unitarity bound,
which scales like mR/mt . If R has a sizable invisible branching ratio, the strongest LHC bound on
both vector couplings and axial vector coupling comes from a di–jet + /ET search with or without
double b tag. These bounds are quite strong for mR < 1 TeV, even though we have switched off all
couplings to valence quarks. Searches for a di–jet resonance with double b tag lead to comparable
bounds with the previous results even if R → χ χ̄ decays are allowed; these are the only sensitive
LHC searches if the invisible branching ratio of R is very small or zero.
In sum, the off–shell case can only be probed by LEP data in the low mass region. The LEP data

loses sensitivity from mediator mass & 70 GeV. On the other hand, the LHC data is sensitive enough
for mediator mass < 1 TeV. Nevertheless, the LHC data cannot probe DM decaying from off–shell
mediator. From our result, the off–shell case is quite different with the on–shell case, especially for low
mediator mass values. The transverse part of the propagator of the mediator is the main contribution
in the on–shell case. However, in the off–shell case, the longitudinal part of the propagator of the
mediator is competitive, especially for a very light mediator mass, 2 GeV, 1 GeV, or even lighter.

The second kind of mediator we carefully discussed is the extension of the SM by an anomaly–free
U(1)Lµ−Lτ

gauge group; this model contains a new gauge boson (Z ′) and a scalar dark matter particle
(φDM). We recast a large number of LHC analyses of multi–lepton final states by the ATLAS and
CMS collaborations. We find that for 10 GeV < mZ′ < 60 GeV the strongest constraint comes from a
dedicated Z ′ search in the 4µ final state by the CMS collaboration; for larger Z ′ masses, searches
for final states with three leptons plus missing ET are more sensitive. Searches for final states with
two leptons and missing ET , which are sensitive to Z ′ decays into dark matter particles, can only
probe regions of parameter space that are excluded by searches in the 3 and 4 lepton channels. The
combination of LHC data excludes values of Z ′ mass and coupling constant that can explain the deficit
in gµ − 2 for 4 GeV ≤ mZ′ ≤ 500 GeV. However, for much of this range the LHC bound is weaker
than the bound that can be derived from searches for “trident” events in neutrino–nucleus scattering
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Since we find that the result from the LHC analyses is weaker than non–LHC experiments in most
of parameter region, except 10 GeV < mZ′ < 60 GeV, we therefore apply Machine Learning classifiers
to improve the estimated results for 3l–signal, since the cross section of 3l–signal is the largest and
hence is supposed to be the best. If the cut in our pre–selection is not too strong, the estimated result
is indeed better than all other bounds from real experiments. The Machine Learning based analysis
could be a good alternative to solve similar problems in the future instead of the cut based analysis.
It not only gives bounds for selective models, but also offers the information to help us select the
most important features. The combination of the simplified model that decrease the number of free
variables and the data driven analysis from Machine Learning algorithms helps us discover the testable
models related to Dark Matter or other models beyond the Standard Model.
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APPENDIX A

Appendix

A.1 The Cross Section of N–χ Scattering from Contact Operator

In detector experiments, the standard cross section σ0 is usually used,

σ
(i)
0 ≡

∫ 4m2
r v

2

0
dq2 dσ(i)(q = 0)

dq2 =

∫ 4m2
r v

2

0
dq2 Ci

πv2 , (A.1)

where mr =
mχmN

mχ+mN
is reduced mass, and Ci is defined in 2.7. Then, the final expression is

σ(i) =

∫ 4m2
r v

2

0
dq2 dσ

dq2 =

∫ 4m2
r v

2

0
dq2 Ci

πv2 F2
i (q

2
) =

∫ 4m2
r v

2

0
dq2 σ

(i)
0

4m2
rv

2 F2
i (q

2
). (A.2)

Additionally, we can always use the following expression to generalize the standard cross section to
the real cross section,

dσ(i)

dq2 =
σ
(i)
0

4m2
rv

2 F2
i (q

2
). (A.3)

A.1.1 Contact Operator

The general contact operators for spinor DM are all scalar combinations of

χ̄(1, γ5, γµ, γµγ
5
)χq̄(1, γ5, γµ, γµγ5

)q.

To give an example, we calculate the spin–dependent and spin–independent cross section for Majorana
DM, which does not have vector couplings, i.e. χ̄γµ χ = 0. Therefore, since the suppression from
the low velocity, the most important terms are Sq χ̄ χq̄q and Aq χ̄γµγ

5χq̄γµγ5q for spin–independent
and spin–dependent interactions respectively [235]. For mχ hitting on mN , qmax = 2mrv, where
mr =

mχmN

mχ+mN
is reduced mass and q = p − p′ is momentum transfer during scattering. For the form

factor F, its normalization condition is F2
(0) = 1. Moreover, if the nucleus is point–like, F2

(q2
) = 1.
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A.1.2 Spin–independent Interaction

The effective coupling of spin–independent DM-nucleon interaction is∑
q

Sq 〈N |q̄q |N〉 =
∑
q

Sqλq N̄N, (A.4)

where λq describes how quarks form the certain nucleon. Therefore, it can be measured experimentally
through nuclear physics. Obviously, it should be the same for protons and neutrons in nucleus for
different quarks. Therefore,

L
(1)
=

∑
q

Sqλq χ̄ χN̄N, (A.5)

⇒ For proton,
∑
q

Sqλq χ̄ χN̄N ≡ fp χ̄ χp̄p; (A.6)

⇒ For neutron,
∑
q

Sqλq χ̄ χN̄N ≡ fn χ̄ χn̄n. (A.7)

For nucleus scattering amplitude, we should sum up all protons and neutrons components inside.
Thus,

Cs = (Z fp + (A − Z) fn)
2. (A.8)

From the definition in A.1,

σ
(1)
0 =

∫ 4m2
r v

2

0
dq2 Cs

πv2 =
4m2

r

π
(Z fp + (A − Z) fn)

2. (A.9)

Then, according to formula A.3, the final expression is

σ(1) =

∫ 4m2
r v

2

0
dq2 dσ

dq2 =

∫ 4m2
r v

2

0
dq2 Cs

πv2 F2
(q2
) =

∫ 4m2
r v

2

0
dq2 σ

(1)
0

4m2
rv

2 F2
(q2
). (A.10)

If the nucleus is not point–like, we need to know form factor explicitly. For spin–independent
interaction, form factor can be chosen approximately as an exponential distribution.

A.1.3 Spin–dependent Interaction

Similarly with spin–independent interaction, we need to find CA, beginning from∑
q

Aq

〈
N |q̄γµγ

5q |N
〉
=

∑
q

Aq∆q N̄SµN, (A.11)

where ∆q is the quark content of nucleon, which can be measured experimentally from the scattering
of electron and nucleon, and Sµ is the spin vector. Therefore the effective Lagrangian is,

L
(2)
=

∑
q

Aq∆q χ̄γ
µγ5χN̄SµN . (A.12)
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A.2 Interaction Rates in Detector

Using |M J〉 to express nucleus M with total angular momentum J, we can use the effective Lagrangian
of DM–nucleon scattering to write the DM–nucleus scattering amplitude,

|M|
2
= | 〈M J |L|M J〉 |2 =

〈
J2

〉
|
∑
nuclei

∑
q

Aq∆q
〈S〉
J
|
2, (A.13)

where J is total angular momentum, and 〈S〉J is fraction of spin component. Moreover, to distinguish
between the neutron and proton, we need to define parameter for them respectively, i.e.∑

protons

∑
q

Aq∆q
〈S〉
J
= ap

〈
Sp

〉
J

,
〈
Sp

〉
=

〈
Mp |Sµ |Mp

〉
, ap =

(∑
q

Aq∆q

)
proton

; (A.14)

∑
neutrons

∑
q

Aq∆q
〈S〉
J
= an

〈
Sn

〉
J
,

〈
Sn

〉
=

〈
Mn |Sµ |Mn

〉
, an =

(∑
q

Aq∆q

)
neutron

; (A.15)

⇒ CA =
〈
J2

〉
|ap

〈
Sp

〉
J
+ an

〈
Sn

〉
J
|
2
= J(J + 1)Λ2, Λ =

1
J
(ap

〈
Sp

〉
+ an

〈
Sn

〉
). (A.16)

Using the new parameters we defined, we find the expression of standard cross section for spin–
dependent interaction,

σ
(2)
0 =

∫ 4m2
r v

2

0
dq2 dσ(q = 0)

dq2 =

∫ 4m2
r v

2

0
dq2 CA

πv2 =
4m2

r

π
Λ

2J(J + 1), (A.17)

and it can be generalized to σ(2) through formula A.3.

A.2 Interaction Rates in Detector

A.2.1 General Formula

The interaction rate, which is the relevant quantity for direct search experiments, and is usually
measured in events/(kg ∗ day), takes the form

dR =
ρ0

mχmN

v f (v)dvdσ ⇒ MdR =
ρ0
mχ

Nv f (v)dvdσ, (A.18)

where MdR is the total interaction rate in our detector, ρ0
mχ

is the number density of χ, and N ≡ M
mN

is
the total number of nuclei in detector. For the velocity distribution f (v), its normalization condition is∫ ∞

0 f (v)dv = 1. We use recoil energy, Q = q2
/(2mN ), instead of the momentum transfer q. In center

of momentum frame,

q2
= 2m2

rv
2
(1 − cos θ) ⇒ Q =

q2

2mN

=
m2
rv

2

mN

(1 − cos θ) ⇒ dQ =
dq2

2mN

, (A.19)
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and the lower and upper limits are

vmin =

√
2QmN

m2
r

, vmax →∞. (A.20)

Therefore,

dR
dQ
=

2ρ0
mχ

v f (v)dv
dσ

dq2 =
2ρ0
mχ

v f (v)dv
σ0

4m2
rv

2 F2
(Q) =

ρ0σ0

2m2
rmχ

F2
(Q)

f (v)
v

dv, (A.21)

then integrate from vmin =

√
QmN

2m2
r

to vmax →∞,

dR
dQ
=

ρ0σ0

2m2
rmχ

F2
(Q)

∫ ∞

vmin

f (v)
v

dv, (A.22)

⇒ R =
ρ0σ0

√
πv0mχm2

r

∫ Emax

ET

T(Q)F2
(Q)dQ, T(Q) =

√
π

2
v0

∫ ∞

vmin

f (v)
v

dv, (A.23)

where T(Q) is a dimensionless parameter, v0 = 220 km/s is circular speed of the sun around galactic
center, and recoil energy Q is from ET to Emax .

A.2.2 A Simple Case for Maxwellian Halo

Maxwellian halo has a Gaussian velocity distribution,

f ′(®v)d3v =

(
1

v0
√
π

)3
e−v

2
/v2

0 d3v → 4πv2dv
(

1
v0
√
π

)3
e−v

2
/v2

0 =
4v2

√
πv3

0
e−v

2
/v2

0 dv = f (v)dv. (A.24)

From the velocity distribution, we firstly calculate the dimensionless parameter T(Q) and differential
interaction rate,

T(Q) =
√
π

2
v0

∫ ∞

vmin

4v
√
πv3

0
e−v

2
/v2

0 dv = e−v
2
min/v

2
0 = e

−
mN Q

2m2
r v2

0 , (A.25)

⇒
dR
dQ
=

ρ0σ0
√
πv0mχm2

r

e
−

mN Q

2m2
r v2

0 F2
(Q). (A.26)

Moreover, if we only consider the threshold energy ET without the upper limit of energy, and use the
simplest point–like condition, F2

= 1, the formula reduces to

⇒ R =
ρ0σ0

√
πv0mχm2

r

∫ ∞

ET

dQe
−

mN Q

2m2
r v2

0 =
2ρ0σ0v

2
0

√
πmχmN

e
−

ET mN

2m2
r v2

0 . (A.27)

Therefore, we can compare the observed R with the model related σ0 and mχ. If we consider the
relative velocity between sun and earth, the calculation of the total R is more complicated.
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A.2.3 Relative Movement Between Earth and Sun

If we consider not only the circular motion of the Sun around galactic center, but also the motion
between the Sun and the Earth, the total the velocity is

®v = ®ve + ®vχ, (A.28)

where vχ is the velocity of DM in our experimental frame. From Ref. [236], we know

ve = v0

(
1.05 + 0.07 cos(2π(t −

153 ± 1.3
365

))

)
, t =

time
1 year

; (A.29)

f (vχ)dvχ =
vχdvχ
√
πvev0

(
exp

(
−
(vχ − ve)

2

v2
0

)
− exp

(
−
(vχ + ve)

2

v2
0

))
. (A.30)

Therefore, we can repeat the integration procedure in formula A.25 and A.27 to find T(Q) and R, i.e.

T(Q) =
√
π

2
v0

∫ ∞

vmin

dvχ
vev0
√
π

(
exp

(
−
(vχ − ve)

2

v2
0

)
− exp

(
−
(vχ + ve)

2

v2
0

))
(A.31)

=

√
πv0

4ve

∫ ∞

vmin

d
vχ

v0

2
√
π

(
exp

(
−
(vχ − ve)

2

v2
0

)
− exp

(
−
(vχ + ve)

2

v2
0

))
=

√
πv0

4ve

(
erf

(
vmin + ve

v0

)
− erf

(
vmin − ve

v0

))
;

R =
ρ0σ0

4vemχm2
r

∫ Emax

ET

dQ
(
erf

(
vmin + ve

v0

)
− erf

(
vmin − ve

v0

))
F2
(Q). (A.32)

Again using F2
= 1 for point–like case, we can integrate out the formula analytically. The integration

for the first term is∫ Emax

ET

dQ erf

(√
mNQ

2m2
rv

2
0
+
ve
v0

)
=

∫ Emax

ET

d
QmN

2m2
rv

2
0

2m2
rv

2
0

mN

erf

(√
mNQ

2m2
rv

2
0
+
ve
v0

)
(A.33)

=
2m2

rv
2
0

mN

∫ b

a

dx erf(
√

x + c) ≡
2m2

rv
2
0

mN

Π+,

where x(E) = EmN/2m2
rv

2
0 , a = x(ET ), b = x(Emax), and c = ve/v0. Therefore,

Π+ =
1
√
π

(
(
√

b − c) exp(−(
√

b + c)2) − (
√

a − c) exp(−(
√

a + c)2)
)

(A.34)

−
1
2

(
(1 − 2b + 2c2

) erf(
√

b − c) − (1 − 2a + 2c2
) erf(
√

a − c)
)
.
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Taking c→ −c, we find Π−, and the total interaction rate is therefore

R =
ρ0σ0v

2
0

2vemχmN

(Π+ − Π−).

Since ve changes yearly, the interaction rate R also periodically changes, and it reaches the peak on
June 02 approximately.

A.3 Best Cut Efficiencies of LEP Analysis

The tables list the best cut efficiencies that we get from all LEP analysis referenced in chapter 3 for
our model described in the same chapter.

mR = 5 GeV
mχ/GeV 2.5 3.0 3.5 4.0

ε 7.67% 11.63% 14.32% 16.17%
mχ/GeV 4.5 5 5.5 6.0

ε 16.18% 15.80% 13.44% 13.67%
mχ/GeV 6.5 7.0 7.5 8.0

ε 13.67% 13.54% 12.88% 12.70%
mχ/GeV 8.5 9.0 9.5 10.0

ε 12.72% 12.51% 13.06% 13.20%

Table A.1: Cut efficiencies for mR = 5 GeV. The efficiencies are around 13%, and are normally not enough for
the signal. We have assumed pure axial vector coupling, gVq = gVχ = 0.

mR = 2 GeV
mχ/GeV 1.0 1.2 1.4 1.6

ε 10.29% 13.61% 14.53% 15.82%
mχ/GeV 1.8 2.0 2.2 2.4

ε 16.30% 16.57% 17.40% 17.64%
mχ/GeV 2.6 2.8 3.0 3.2

ε 19.19% 19.59% 19.11% 18.85%
mχ/GeV 3.4 3.6 3.8 4.0

ε 19.94% 16.50% 14.93% 15.63%

Table A.2: Cut efficiencies for mR = 2 GeV. The efficiencies are better than those of 5 GeV in general. We have
assumed pure axial vector coupling, gVq = gVχ = 0.
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mR = 1 GeV
mχ/GeV 0.5 0.6 0.7 0.8

ε 11.86% 13.99% 14.57% 15.34%
mχ/GeV 0.9 1.0 1.1 1.2

ε 14.89% 14.92% 16.14% 16.19%
mχ/GeV 1.3 1.4 1.5 1.6

ε 16.24% 16.31% 16.56% 16.30%
mχ/GeV 1.7 1.8 1.9 2.0

ε 17.13% 17.06% 17.62% 18.02%

Table A.3: Cut efficiencies for mR = 1 GeV. The result is similar with the case mR = 2 GeV. We have assumed
pure axial vector coupling, gVq = gVχ = 0.

m/GeV mR = 5 2 1
mχ = 4 16.17% 15.63% 14.15%
4.5 16.18% 12.69% 12.68%
5 15.80% 12.07% 12.84%
5.5 13.44% 11.64% 12.92%
6 13.67% 12.50% 12.00%
6.5 13.67% 11.30% 11.65%
7 13.54% 11.07% 11.99%
7.5 12.88% 11.30% 11.46%
8 12.70% 11.07% 11.34%
8.5 12.72% 11.55% 11.75%
9 12.51% 11.39% 11.53%
9.5 13.06% 11.21% 11.25%
10 13.20% 11.84% 11.42%

Table A.4: Comparison for various values of mR. We have assumed pure axial vector coupling, gVq = gVχ = 0.
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183 GeV Experiment
mR/GeV 1.0 1.5 2.0 2.5 3.0

ε 27.73% 27.58% 27.30% 27.57% 27.77%
mR/GeV 3.5 4.0 4.5 5.0 5.5

ε 27.37% 27.14% 27.47% 26.96% 26.24%
mR/GeV 6.0 6.5 7.0 7.5 8.0

ε 26.77% 25.62% 25.69% 24.74% 25.08%
mR/GeV 8.5 9.0 9.5 10.0 10.5

ε 24.51% 23.13% 18.80% 18.93% 18.19%
mR/GeV 11.0 11.5 12.0 12.5 13.0

ε 19.24% 19.28% 19.15% 19.55% 19.69%
mR/GeV 13.5 14.0 14.5 15.0

ε 19.31% 20.05% 20.35% 19.71%

Table A.5: Cut efficiencies of our signal from 4-jet topology in ZH search. We have assumed pure axial vector
coupling, gVq = 0.

209 GeV Experiment
mR/GeV 1.0 1.5 2.0 2.5 3.0

ε 21.87% 22.18% 22.23% 21.95% 21.81%
mR/GeV 3.5 4.0 4.5 5.0 5.5

ε 21.83% 22.49% 22.23% 21.32% 21.54%
mR/GeV 6.0 6.5 7.0 7.5 8.0

ε 21.05% 20.65% 20.75% 19.74% 19.12%
mR/GeV 8.5 9.0 9.5 10.0

ε 19.15% 18.40% 14.24% 14.17%

Table A.6: Cut efficiencies of our signal from 4-jet topology in ZH search. Every value is lower than the
corresponding one of 183 GeV. We have assumed pure axial vector coupling, gVq = 0.
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