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Abstract

Machine learning (ML) models have gained attention for mining the phar-
maceutical data that are currently generated at unprecedented rates and po-
tentially accelerate the discovery of new drugs. The advent of deep learning
(DL) has also raised expectations in pharmaceutical research. A central task
in drug discovery is the initial search of compounds with desired biological ac-
tivity. ML algorithms are able to find patterns in compound structures that
are related to bioactivity, the so-called structure-activity relationships (SARs).
ML-based predictions can complement biological testing to prioritize further
experiments. Moreover, insights into model decisions are highly desired for fur-
ther validation and identification of activity-relevant substructures. However,
the interpretation of complex ML models remains essentially prohibitive. This
thesis focuses on ML-based predictions of compound activity against multiple
biological targets. Single-target and multi-target models are generated for rele-
vant tasks including the prediction of profiling matrices from screening data and
the discrimination between weak and strong inhibitors for more than a hundred
kinases. Moreover, the relative performance of distinct modeling strategies is
systematically analyzed under varying training conditions, and practical guide-
lines are reported. Since explainable model decisions are a clear requirement
for the utility of ML bioactivity models in pharmaceutical research, methods
for the interpretation and intuitive visualization of activity predictions from
any ML or DL model are introduced. Taken together, this dissertation presents
contributions that advance in the application and rationalization of ML models
for biological activity and SAR predictions.
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Motivation

Machine learning (ML) and, more recently, deep learning models have gained
attention in pharmaceutical research due to the emergence of “big data” at
different levels including medicinal chemistry.1–3 The exploration of structure-
activity relationships (SARs) represents a critically important task in medicinal
chemistry and is essential for the development of novel bioactive compounds.4,5

ML models are suitable for leveraging and mining the nearly exponential in-
creasing amounts of compound activity data that are currently generated and
published.6,7 ML enables qualitative or quantitative SAR modeling and the sub-
sequent prediction of compound bioactivity from structural representations.8,9

The identification of active compounds by computational methods plays an im-
portant role in drug discovery and complements high-throughput screening.10

Virtual screening protocols can be implemented using ML so that experimental
testing is prioritized on the basis of model predictions. Some small molecules
specifically interact with multiple targets, which might cause higher drug effi-
cacy or undesired side effects. Therefore, multi-target predictions or activity
profile predictions are currently a fundamental challenge of high interest.11 With
the rise of deep learning techniques, the potential benefit of deep neural net-
works (DNNs) for bioactivity modeling requires a systematic assessment.12,13

Hence, prediction scenarios that mimic real-life screening or introduce challeng-
ing test systems are required.14 Moreover, despite being decisive for ML model
quality, the influence of the nature of training data on activity predictions is
still an underinvestigated issue. Finally, interpretable ML models would pro-
vide insights into structural patterns driving changes in predicted compound
activity and enable the extraction of SAR information. However, ML-based
predictions are difficult to rationalize, especially for DNNs, which are often
considered as “black boxes”.13,15 Thus, insights into complex model decisions
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are essentially prohibitive which often hinders the practical use of ML models
in pharmaceutical research.16 In this thesis, ML models are systematically de-
veloped, analyzed, and rationalized for the prediction of compound bioactivity
against multiple targets. More specifically, the main objectives of this thesis
are: (i) the application and comparison of ML strategies for the prediction of
compound activity profiles, (ii) the study of the influence of training set condi-
tions on model performance, and (iii) the improvement of the interpretability
of ML-based compound activity predictions.

Thesis outline

This dissertation consists of eight chapters structured as follows. Chapter 1
presents an introduction to drug discovery and important applications of ML
models in pharmaceutical research, with emphasis on compound activity predic-
tions. Chapter 2 to Chapter 7 contain six original publications representing the
main work of this thesis. Chapter 2 reports the development and benchmark
of ML approaches for the prediction of compound profiling matrices. Chapter
3 presents the ML-based classification of weakly and highly potent inhibitors
against a panel of kinases. In Chapter 4, guidelines for training set size and
composition are derived for support vector machines models applied to activity
predictions. Chapter 5 investigates the relative performance of single-target
ML and multi-target DNNs for the prediction of multiple assays from screen-
ing data. Chapter 6 systematically studies the feature importance in support
vector machines models for activity and potency prediction. In Chapter 7, a
method for the interpretation of activity predictions from any ML algorithm
is introduced and validated. Finally, Chapter 8 summarizes and discusses the
major findings of this thesis.
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Chapter 1

Introduction

Drug discovery

The ultimate goal of pharmaceutical research is the identification of novel
compounds with desired properties for the treatment of a given disease. Drug
discovery research broadly includes (i) target identification, (ii) hit discovery,
and (iii) lead optimization.4,17 A biological target, generally a protein, is in-
volved in a dysfunctional biological process and its modulation alleviates symp-
toms or modifies the disease state.18 The identification of putative therapeu-
tic targets implies the understanding of the connection between the molecular
mechanisms and the disease. Identified targets are subsequently validated to
confirm the relationship between target and disease. Currently, two major
groups of drug targets are G protein-coupled receptors and kinases.19,20 Next,
a search for active compounds (or hits) that bind to the target and modify
its function is pursued. Hit identification mainly relies on high-throughput
screening (HTS) technologies, which include miniaturized and robotized assay
platforms that test the activity of thousands or hundreds of thousands of com-
pounds against a biological target in a short time.21,22 Once hits are found, lead
compounds or classes that serve as starting points are obtained and undergo
multi-parametric optimization to improve other desired properties. At this
stage, absorption, distribution, metabolism, excretion, and toxicity (ADMET)
properties of lead compounds are characterized and improved.4 Compound op-
timization consists of many cycles of synthesis of close analogs to improve the
properties based on small structural modifications. After these discovery re-
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search stages, a promising drug candidate must satisfy pre-clinical and clinical
development requirements. Only if clinical evaluation in human cohorts is suc-
cessful, a drug could be approved by the pharmaceutical regulatory agencies.
Figure 1 schematizes the main phases of drug discovery and clinical develop-
ment of a new drug, which take an average time of 12 years and are very costly
(∼ $2.6 billion according to a recent estimation).23 Moreover, pharmaceutical
R&D investment has considerably increased during the last years without a pos-
itive impact on the number of discovered drugs,18 which reflects the existence
of some issues and bottlenecks.24

Clinical
development

Pre-clinical
development

Lead 
optimization

Hit 
discovery

Target 
identification

Figure 1: Drug discovery and development. An overview of the main stages in drug
discovery and development is shown.

The role of computational approaches

A variety of computational approaches have been introduced to improve
and accelerate drug discovery.25 Bioinformatics and chemoinformatics focus on
data processing and thus differ from computational biology, which mathemat-
ically models and simulates biological systems, and computational chemistry,
which has its foundation in theoretical and quantum chemistry. Bioinformatics
typically studies “omic”-data such as genomics or proteomics, whereas chemoin-
formatics focuses on small molecules and their role as ligands.26,27 As such, this
thesis covers chemoinformatic approaches for drug discovery. Chemoinformatics
was firstly defined as “the mixing of information resources to transform data into
information, and information to knowledge, for the intended purpose of making
better decisions faster in the area of drug lead identification and optimization”.28

Bio- and chemoinformatics disciplines, which contribute to pharmaceutical re-
search with considerable overlap, have been continuously evolving both with
novel algorithms and applications.29,30
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Machine learning in pharmaceutical research

Machine learning (ML) approaches have been established as essential tools
for bio- and chemoinformatics.3 There is a need for new data mining methods
able to cope with growing amounts of heterogeneous data sets, which offer many
opportunities but are difficult to analyze and utilize. ML belongs to the spec-
trum of artificial intelligence methods, which are closely linked to the big data
era and have currently become a hot topic in many areas including pharmaceuti-
cal research.31,32 ML uses statistical pattern recognition algorithms that enable
a system to learn from experience and subsequently make predictions about
new data. Supervised ML can be used to predict discrete or continuous vari-
ables, whereas unsupervised methods are mainly used for exploratory analysis,
visualization and clustering. Particularly, deep learning (DL) is a subdiscipline
of ML that encompasses non-linear methods which can model complicated re-
lationships between input and output data using low-level representations.33

DL has surpassed standard ML methods in disciplines such as computer vision
and natural language processing.34–36 Consequently, DL has also experienced
an increasing interest in pharmaceutical research.12,37,38 Both ML and DL have
encountered applications across all stages of drug discovery and development.16

Models have yielded accurate predictions for distinct bioinformatics tasks
including target39,40 or biomarker discovery.41 Some studies have shown the
potential of ML methods to distinguish between cancer and non-cancer targets
on the basis of gene expression42 or predict the suitability of targets for drug
development from physicochemical, structural and geometric features of pro-
tein cavities.43 ML has also been used to predict drug response across cell lines
on the basis of gene expression data.44 DL offers opportunities to deal with
large amounts of single-cell RNA sequencing data, reduce dimensionality, and
identify cell-specific biomarkers or characterize cell states and types.45–47 Using
pre-clinical data, ML models also enabled the identification of gene signatures
for patient sub-groups that respond better to drug treatment.48 In addition,
pathology image processing has experienced a considerable improvement af-
ter the introduction of DL methodologies which prevent the need of manually
identifying “handcrafted” task-specific features.49 DL models have been used
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for the classification and segmentation of microscopy images50 as well as the
identification of breast cancer regions in a large data set of pathology images.51

Chemoinformatics has also benefited from ML modeling. Recently,
computer-aided synthesis planning has become a relevant application52 and
some studies have focused on the prediction of the major reaction products
given a set of reactant molecules53 or the conditions of organic synthesis reac-
tions.54 For the task of novel chemical structures generation or de novo design,
a variety DL methods, such as variational autoencoder,55 generative adversarial
networks,56,57 recurrent neural networks,58,59 and deep reinforcement learning,60

have been recently proposed. These approaches seem promising for generating
compounds with desired properties, but the chemical diversity and validity of
output samples are currently still debated.

Since the chemical structure of a compound determines its properties, medic-
inal chemistry studies structure-property relationships (SPRs), which can be
modeled using ML.9 Distinct ML methods61,62 including deep neural networks
(DNNs)63,64 have been applied to quantitative SPRs (QSPRs) modeling. One of
the most relevant compound properties is biological activity. Compound activ-
ity predictions generally help at the hit identification stage, whereas QSPRs for
potency or ADMET properties are often considered in lead optimization.13,65

Compound activity predictions

The understanding and analysis of structure-activity relationships (SARs)
is a central goal in medicinal chemistry and drug discovery. Since the big data
era has arrived in medicinal chemistry, influenced by HTS and combinatorial
chemistry,66,67 ML has become a method of choice to mine chemical information
and find molecules with desired bioactivity. Going beyond volume, compound
activity data fulfills other big data-related terms such as heterogeneity, confi-
dence, complexity, variability, and veracity.1 In this context, ML-based activity
predictions have found some relevant applications.
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Virtual screening

A key application of bioactivity prediction is virtual screening (VS), which
complements HTS through a prioritization of experimental testing.68,69 Despite
the numerous experiments performed by HTS, few bioactive compounds are
found and hit rates are typically below 1-2%.70 Thus, VS aims at selecting
small numbers of potentially active compounds from in-house, commercial or
virtual combinatorial libraries.71

Aside from ligand-based methods, which use compound activity data for pre-
dictions and are at the heart of the research presented in this thesis, methods
relying on structural information about the targets present alternative relevant
approaches.72 Structure-based VS requires the three-dimensional (3D) structure
of the target macromolecule, which can be obtained by X-ray crystallography
or nuclear magnetic resonance spectroscopy.73 Molecular docking is the most
popular structure-based approach, which aims to find the preferred orientation
or binding conformation of a ligand to a receptor through a computationally
intensive optimization.74,75 Docking uses a mechanism to explore the space of
protein-ligand geometries and a scoring function to rank the possibilities.76 Re-
cently, ML methods have been proposed to score protein-ligand interactions,77

including convolutional neural networks.78

On the other hand, ligand-based VS requires active compound data and of-
ten becomes the method of choice when 3D structures are not available.10 Sim-
ilarity searching is the classical approach for the detection of active compounds
based on known ligand data,79 but ML models have become widely used.80 Dif-
ferent studies have shown the ability of ML to identify structurally distinct com-
pounds with similar activity (task also known as scaffold hopping),81 which is a
pre-requisite for successful VS.82,83 In retrospective studies, Doddareddy et al.
trained linear discriminant analysis and support vector machines (SVM) mod-
els on the basis of compound fingerprints and detected blockers of potassium
ion channels potentially leading to cardiotoxic effects.84 VS approaches have
also shown successful results in prospective applications85–87 including a sup-
port vector regression model that detected new inhibitors of histone deacetylase
188 and a naïve Bayes model which identified inhibitors of phosphatidylinositol
3-kinase.89
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With the integration of experimental and computational screening, ML
models trained on the basis of biological screening data might select less but
“smarter” experiments for the next round.10 Active learning approaches have
been developed for VS,90,91 where the model iteratively selects compounds to
test and is updated with the acquired data. The choice of the next experi-
ments can rely on exploration (i.e. selection of useful data for model building)
or exploitation (i.e. selection of compounds likely to be active) strategies.92

Nevertheless, HTS and VS integration is challenging due to the inherent noise,
experimental variance, large data volumes, diversity of chemical classes, possi-
ble presence of distinct binding modes, as well as strong statistical imbalance
between hits and inactive compounds in HTS data.73

Multi-target activity

ML models can be trained to predict multi-target activities of compounds,
also referred to as activity profiles. Figure 2 illustrates compound activ-
ity profiles for exemplary compounds and schematizes the difference between
single-target and multi-target modeling. An important limitation of the “one
target, one drug” paradigm is the non-consideration of multi-target activity
at early stages of the drug discovery.93,94 The ability of small molecules to
specifically engage in interactions with multiple receptors is the molecular ba-
sis of polypharmacology. Therapeutic polypharmacology achieves a stronger
therapeutic effect by simultaneously targeting distinct points in a particular
pathogenic process.11,95 and is promising to combat complex diseases, such as
cancer or neurological disorders, that might require a more elaborate pharma-
cological action.96 However, multi-target activities might also be responsible for
undesired side effects. The ultimate objective of chemogenomics is fully char-
acterizing the interactions between all available chemical ligands and biological
targets, which is practically unfeasible.71 Hence, chemogenomics focuses on
the exploration and navigation of limited ligand-target spaces, typically on the
basis of protein families or related receptors. Since compound bioactivity pro-
files would enable a better prioritization of drug candidates, activity prediction
against multiple targets is a highly relevant topic.97 However, the optimization
of multi-target SARs is complicated.11,95 Some approaches have been proposed
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such as SVM modeling with distinct kernel functions that account for protein
sequence, structure, and hierarchy information for compound-target binding
prediction.98 Moreover, the performance of chemogenomics models that predict
the interaction or non-interaction of protein-ligand pairs has been assessed91

and compared to individual SAR models.99 Recently, DL architectures have
also been applied to multi-target activity predictions.100

v
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+- ? ?

?? + -

+? - -

?- ? +

++ - ?
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?? + -

MM1 M2 M3 M4

Single-target modeling Multi-target modeling

Figure 2: Single-target and multi-target modeling. A compound-target matrix with
activity annotations (red: inactive, green: active, gray: unknown or missing) is schematized.
Single-target (left) and multi-target (right) models predict compound bioactivity for one or
multiple targets, respectively.

Orphan or novel targets

In principle, SAR modeling is not applicable to targets for which no actives
are known, so-called orphan targets. However, some approaches have been im-
plemented to overcome this limitation. The most simplistic method relies on
ligands from homologous targets.97 More sophisticated approaches have been
proposed including SVM with specialized target-ligand kernels or linear com-
binations of SVM models.101,102 Furthermore, chemogenomics models that dis-
criminate between compound-target interacting or non-interacting pairs allow
ligand binding prediction for orphan or novel targets.103
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As stated above, ML and DL models are attractive for drug discovery be-
cause they enable handling large amounts of heterogeneous and noisy data. ML
strategies have been successfully validated for many prediction tasks.104 How-
ever, a “hype” is typically encountered when new technologies are first intro-
duced to drug discovery2 and this also applies to artificial intelligence methods.
Hence, the real benefits of DL approaches remain unknown for many desired
tasks. ML applications are often burdened by the lack of interpretability and
rationalization of model success and failure, which is further aggravated in DL,
given its extreme black box nature.16,105 Even accurate DL models are often
compromised in different application scenarios.106 Therefore, if model decisions
cannot be understood, the practical use of ML might be limited despite its
undisputed potential.

Structure-activity relationships modeling

In addition to activity prediction, ML models statistically relate compound
structure patterns to biological activity.107 For SAR and quantitative SAR
(QSAR) modeling, compounds are numerically represented by a feature vector
and a learning algorithm maps these feature vectors to activity.108 In particu-
lar, the chosen molecular representation defines the theoretical chemical space
under study and the model accounts for similarity measures in such space.109,110

Molecular representations

Following graph theory concepts, chemical structures can be represented
as graphs, in which atoms and bonds correspond to nodes and edges, respec-
tively.111 Linear notations such as the simplified molecular-input line-entry sys-
tem (SMILES)112 or the IUPAC international chemical identifier (InChI)113

allow efficient storage of large compound data sets and can be converted to the
molecular graph.73 For predictive modeling, descriptors of molecular structure
and properties are typically calculated either from the one-dimensional (1D)
molecular formula, two-dimensional (2D) graph or 3D conformation.109 Some
examples of distinct complexity are molecular weight or atom counts (1D), con-
nectivity indexes or structural fragments (2D), and van der Waals volume or
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Figure 3: Molecular fingerprints. Schematic visualization of MACCS (a) and ECFP
(b) for two exemplary compounds. These molecular fingerprints codify the presence (1) or
absence (0) of chemical substructures or patterns. MACCS includes pre-defined structural
keys or substructures, and ECFP encodes atom circular environments for each compound.
In (b) atom environments are only generated for one exemplary atom.

spatial pharmacophores (3D).10 Molecular 2D fingerprints are a well-known rep-
resentation that encodes the presence or absence of chemical substructures or
patterns in a binary vector. Structural keys codify pre-defined chemical patterns
or substructures of a fixed length.73 Molecular access system (MACCS) keys are
a prominent example consisting of 166 bit positions,114 which provide an easy-
to-rationalize fingerprint as shown in Figure 3a. The extended-connectivity
fingerprint (ECFP) is a hashed fingerprint that encodes circular atom environ-
ments up to a given diameter, as illustrated in Figure 3b.115 Therefore, ECFPs
are more general than structural keys and result in a higher-dimensional rep-
resentation. ECFP length is variable by design, but it can be transformed to
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a fixed-length vector through modulo mapping (folding). Recently, DL archi-
tectures that directly learn from the compound SMILES116 or 2D graphs have
been reported,117,118 which alleviate the feature engineering process.

Structural similarity

SAR modeling is based on the “similarity property principle” which states
that “compounds with similar chemical structure share similar properties”.119

Structural similarity has been intensively studied in chemoinformatics for the
comparison of compounds and their properties, mainly bioactivity.120,121 Never-
theless, a clear and consistent similarity assessment by computational methods
is complicated due to the subjective nature of the concept.122 The matched
molecular pair (MMP) formalism is a chemically intuitive way to determine
analogs.123 A pair of compounds forming an MMP only differs by a structural
modification at a single site, as shown in Figure 4. Therefore, an MMP consists
of a common core or key fragment, and a chemical transformation. The frag-
mentation required for MMP generation can be based on retrosynthetic combi-
natorial analysis procedure (RECAP) rules.124 RECAP fragmentation is com-
putationally efficient and accounts for synthetic accessibility. RECAP-MMPs
can be organized in molecular networks, where nodes and edges represent com-
pounds and MMP relationships, respectively. As a result, each disjoint cluster
of the network is considered a unique analog series.125,126

v
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Figure 4: MMP concept. Exemplary MMP formed by two compounds with common core
that only differ by a chemical transformation (highlighted in blue).

There are different metrics that can be used to quantify similarity (i.e. 1-
distance) on the basis of molecular representations. Tanimoto coefficient (Tc)
or Jaccard index is very popular for 2D fingerprints, and is given by (1) for two
compound fingerprints.79 Here A and B represent the sets of features present
in either of the two molecules.
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Tc (A,B) =
|A ∩B|
|A ∪B|

=
|A ∩B|

|A|+ |B| − |A ∩B|
(1)

Similarity searching

Similarity searching is the classic ligand-based approach for identifying new
active compounds.127,128 Following the similarity property principle, fingerprint
similarity based on the Tc (or another metric) is used as an indicator of ac-
tivity.122 In particular, database molecules with unknown activity are ranked
according to their decreasing similarity to an active reference molecule. Despite
its simplistic nature, this approach is often effective providing an early enrich-
ment of actives on the top of the ranking.129 A variety of extensions of standard
similarity searching have been introduced to improve performance including the
combination of multiple searches (data fusion) or fingerprint modification.73,130

Some exemplary methods are Turbo similarity searching,131,132 consensus bit
scaling,133,134 and conditional correlated Bernoulli model.135 With the advent
of ML models, traditional similarity searching has mainly found its application
in descriptive statistics, exploratory analysis and fast extensive calculations,
such as large-scale VS.

Machine learning models for SAR analysis and

prediction

The influence of chemical modifications on compound activity can be mod-
eled using ML either in a qualitative (classification) or quantitative (regression)
fashion. Based on their structural fingerprints, compounds are projected onto
a well-defined m-dimensional chemical space. In such a feature space, similar
molecules map closely together and ML models aim at recognizing differential
patterns that enable accurate predictions. Formally, a supervised ML model
relates a feature vector x = (x1, ..., xm) ∈ X to an output label y, where
y = {+1,−1} for binary classification and y ∈ R for regression, through a func-
tion f so that f(x) = y. The ML model attempts to minimize the expected test
error, which can be decomposed into bias, variance and a constant irreducible
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noise term, as shown in (2) for a test instance x with label y. Bias refers to
the error introduced by approximating a real-life problem using a much simpler
model. Variance measures the variability or sensitivity of the prediction func-
tion to a particular choice of data. Clearly, a successful model simultaneously
achieves low bias and variance.

E
(
y − f̂ (x)

)2
=
[
Bias

(
f̂ (x)

)]2
+
[
Var

(
f̂ (x)

)]
+ ε (2)

x1
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⇩ Variance
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★
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Figure 5: Optimization of model complexity. The prediction error in training and
internal validation sets depends on model complexity. Very simple models, which generally
have high bias and low variance, are not able to model the data properly (underfitting).
Complex models are often characterized by low bias and high variance and model peculiarities
of training data (overfitting). The optimum model complexity is obtained by minimizing the
internal validation error.

As illustrated in Figure 5, model complexity determines the bias and vari-
ance trade-off, which reflects the need of complexity optimization when models
rely on tuning hyper-parameters.136 Simple models might be unable to capture
the underlying patterns (underfitting) and complex models tend to fit the inher-
ent noise of training data (overfitting). Validation is an essential part of model
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building aiming at complexity optimization as well as performance estimation.
Thus, it requires three data partitions: training set (model fitting), internal
validation set (model selection), and test or external validation set (model as-
sessment).136,137 Cross-validation might be utilized to account for different splits
or folds and make better use of the available data.138

Naïve Bayes

Naïve Bayes is a binary classifier that relies on the Bayes’ theorem.139 The
term “naïve” refers to the assumption of conditional feature independence. De-
spite this simplification, naïve Bayes classifiers have been successfully applied in
problems with correlated features.140 Bayes’ theorem is used to determine the
probability that a compound x belongs to class y, i.e. P (y|x). The likelihood
function P (x|y) plays a central role. It can be estimated from the training set
and related to the posterior probability through the Bayes’ theorem (3).

P (y|x) = P (x|y)P (y)

P (x)
(3)

P (y) is the prior, i.e. either the known class probability distribution or
its estimation over the training set, and P (x) refers to the evidence, which
acts as a normalization constant. Class likelihoods require an event model for
feature distributions and, for binary fingerprints, features follow a multivariate
Bernoulli distribution. For test predictions, the class with maximum likelihood
estimate for the observed data x will be selected, as shown in (4).

y = argmax
ŷ∈Y

P (ŷ|x) (4)

Random forest

A random forest (RF) consists of an ensemble of decorrelated decision trees
(DTs) that elicit variance reduction.141 A DT is a non-parametric method that
infers a sequence of binary decision rules to split training data into subsets with
better class separation. Splitting starts from the root (or top) node into child
nodes using rules built on the basis of compound features. DT is a recursive
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partitioning method where each child node might in turn split until a stopping
criterion is reached. As illustrated in Figure 6, non-leaf nodes represent the
decision rules, edges are possible outcomes, and the predominant class on the
leaf nodes determines the prediction. A tree path from the root to the terminal
node directly indicates the chain of feature-based decisions. DTs can capture
complex interaction structures in the data and have a low bias, but it comes at
the expense of high variance.136

DT1 DT2 DT3

x 01 1 0 1 0 00 1 0 0 1

x3x1 x2 x4 x5 x6 x9x7 x8 x10 x11 x12

ŷ

Majority voting

= Active

x1
x5

x9
x10

x9
x8
x2

x11

x8
x6
x1

Root node

Leaf node

Figure 6: Principles of RF modeling. A compound with fingerprint x is predicted by a
RF model with three DTs. Each non-leaf node represents a decision rule based on a feature
(xm). The tree path from the root to the leaf node is highlighted in black. The color of leaf
nodes indicates the predicted label, e.g. active (green) or inactive (red). The final prediction
for x is given by a consensus across individual tree predictions.

The classification and regression trees or CART algorithm142 constructs DTs
using feature thresholds yielding minimal Gini impurity values. This criterion
encourages the formation of regions with high proportions of data assigned to
one class,139 and becomes zero when all instances in a node belong to the same
class. G in a node τ is formally defined by (5), where C refers to the total
number of classes and pc to the probability of selecting a sample from class c.
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G(τ) =
C∑
c=1

pc (1− pc) (5)

RF builds a collection of individual DTs using random samples with replace-
ment from the training set, which is known as bagging or bootstrap aggregat-
ing. Furthermore, RF randomly selects a feature set for node splitting (feature
bagging) to prevent DTs relying on the same strong predictors.141 These two
bagging strategies decorrelate the trees and introduce variability within the
ensemble model.143 Final predictions are driven by a consensus across trees.
RF model achieves reduced variance without increasing the bias of individual
models.

Support vector machines

Classification

The SVM algorithm was initially proposed for binary classification. The
SVM classifier attempts to find a hyperplane H = {x|〈w,x〉 + b = 0}, defined
by a normal vector w and a bias b that separates the positive and negative
classes.144,145 For that purpose, SVM maximizes the margin, i.e. the distance
between the closest training instances from each class and the hyperplane.
These training instances are called support vectors (SVs). The hard-margin
(or maximum margin) hyperplane can be obtained by minimizing the distance
from H to the SVs of each class. However, said minimization problem has no
solution when data is not separable by a linear function. Slack variables (ξi) are
added to derive a soft-margin hyperplane that enables training errors.146 To al-
low limited numbers of training compounds to map inside the margin or on the
incorrect side of the hyperplane, the minimization problem can be formulated
as indicated in (6).

minimize:
w,b

1

2
‖w‖2 + C

∑
i

ξi

subject to: yi (〈w,xi〉+ b) ≥ 1− ξi with ξi ≥ 0 ∀i
(6)

The cost or regularization hyperparameter C balances the magnitude of per-
mitted training errors and the margin maximization. Small C values tolerate
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larger errors, whereas large cost factors lead to a complex model. The primal
optimization problem can be expressed in a dual form using Lagrange multi-
pliers αi, and the solution yields the normal vector of the hyperplane in (7).
Training examples with non-zero αi coefficients represent the SVs and solely
determine the hyperplane position. These data points lie on the edge, within
the margin or even on the incorrect side of the hyperplane. The binary SVM
classification is schematized in Figure 7.

w =
∑
i

αiyixi (7)

Once the hyperplane is derived, test data are projected into the feature
space. A ranking can be obtained using the real value g (x) =

∑
i

αiyi〈xi,x〉+b,

which geometrically corresponds to sliding the hyperplane from the most distant
data point on the positive half space toward the negative side.147 Test instances
can be classified according to the side of the plane on which they fall, i.e.
f (x) = sgn (g (x)), which means that compounds with f(x) = +1 will be
assigned to the positive class (e.g. active) and f(x) = −1 to the negative class
(e.g. inactive).

v

H+

H-

H: <w,x> + b = 0 y = <w,x> + b 

w

b

Support vector machines (SVM) Support vector regression (SVR)

x1

x2

x1

x2

Marg
in

ε-tu
be

Figure 7: Principles of SVM and SVR modeling. In SVM (left), a hyper-plane
is generated for binary classification by margin maximization. The goal is differentiating
between active (green) and inactive (red) compounds. In SVR (right), a regression function
is derived for real value prediction. The gradient from light to dark blue indicates increasing
numerical values (e.g. potency). SVs are represented by a black circle and lie within the
margin (SVM) or outside the ε-tube (SVR).
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Regression

Support vector regression (SVR) is an extension of the SVM algorithm for
real value predictions.148 In this case, SVR aims at mapping x as close as possi-
ble to their real label y by deriving a function of the form f(x) = 〈w,x〉+b.149,150

Tolerated differences from observed and predicted values of training data are
at most ε. However, slack variables are introduced to allow larger positive and
negative deviations (ξi, ξ∗i ) from the so-called ε-tube.149 In SVR, the hyperpa-
rameter C also controls the relaxation of error minimization problem and thus
penalizes large slack variables. Analogously to classification, the optimization
problem is formulated in (8) and can be solved using Lagrangian reformulation,
giving the final regression function in (9).

minimize:
w,b

1

2
‖w‖2 + C

∑
i

(ξi + ξ∗i )

subject to: yi − 〈w,xi〉 − b ≤ ε+ ξi ∀i

〈w,xi〉+ b− yi ≤ ε+ ξ∗i ∀i
with ξi, ξ∗i ≥ 0

(8)

f (x) =
∑
i

(αi − α∗i ) 〈xi,x〉+ b (9)

In SVR, SVs are the training data points that have either positive αi or α∗i .
SVs lie on the ε-tube or outside of it and are the only training data used for the
prediction of new test examples. Figure 7 illustrates the generation of a SVR
model.

Kernel trick

For nonlinear data that cannot be accurately modeled in the feature space
X , the scalar product 〈·, ·〉 can be replaced by a kernel function K (·, ·).146,151

Conceptually, the kernel function transfers the scalar product to a higher di-
mensional space W in which the data might be linearly separated, as shown in
Figure 8. The advantage is that the non-linear mapping φ : X → W does not
need to be explicitly computed. The generation of the hyperplane or regression
function only depends on SVs and not on the dimension of the input space,
which allows calculations in a higher dimensional space. A variety of kernel
functions exist including, among others, the Gaussian or radial basis function
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kernel and the polynomial kernel. In addition, the Tanimoto kernel expression
is shown in (10) for two compounds with fingerprints xa and xb. This kernel
function is based on the Tc and widely used in chemoinformatics.152

KTc (xa,xb) =
〈xa,xb〉

〈xa,xa〉+ 〈xb,xb〉 − 〈xa,xb〉
(10)

The kernel trick allows non-linear SVM and SVR models but confers “black
box” character to the models.

Input space 𝓧 Higher dimensional space 𝓗

Mapping 𝜙

x1

x2

x1

x2

x3

Figure 8: Kernel trick SVM applies a non-linear mapping (φ) to project molecular rep-
resentations into a higher-dimensional (W) space and enable a linear separation, when it is
not possible in the original feature or input space (X ).

Deep learning

Deep neural networks

Feedforward deep neural networks (DNNs) are a series of functional transfor-
mations given by a collection of connected units that are organized in sequential
layers.153,154 Units in a layer act in parallel. These units are also referred to as
neurons or basis functions. DNNs need to be constituted by at least an input
layer, two hidden layers, and an output layer.153 Each neuron receives inputs
from units in the previous layer and computes its activation value, representing
a vector-to-scalar function. The DNN schematic in Figure 9 illustrates how
each input to a node is modified by a unique set of weights and biases, thus
giving unique combinations per activation. In particular, the neuron applies a
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nonlinear activation function to the weighted sum of its inputs to generate its
output.139 The activation alj of neuron j in layer l is given by (11), where σ is
the activation function; wl

jk indicates the weights at the hidden unit j of layer
l; a(l−1)k are the activations from the previous layer; blj is the bias of the neuron;
and the sum is over all neurons k in the layer (l − 1).153

alj = σ

(∑
k

wl
jka

l−1
k + blj

)
= σ

(
zlj
)

(11)

HiddenInput

Output

∑
Sum

Activation 
function

w1

w2

wm

...

x1

x2

xm

wm
bm

xm

am
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x2

x4
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Figure 9: Principles of a DNN. The schematic representation of a DNN shows an input
layer with five neurons (blue), two hidden layers with four neurons each (gray) and an output
layer with three neurons (orange). Each edge has a unique weight wi and each node has
a unique bias bi. Each neuron considers a weighted sum of the inputs xi and applies an
activation function to obtain the activation ai, which is an input for the units of the next
layer.

During the training phase, network weights and biases are modified so that
the predicted output matches or approximates the correct label y. The cost
function refers to the discrepancy between the output of the network and the
real label and has to be minimized during training. Minor changes in weights
and biases need to be related to small changes in the cost function, which is

facilitated by the gradient of the cost function ∇C ≡
(

∂C
∂w1

, ∂C
∂b1
, ..., ∂C

∂wl
, ∂C
∂bl

)T
.
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The gradient defines the rate at which the cost will vary with respect to a
change in the weights or biases.153 Gradient descent methods can be used to
minimize the cost C(w, b), updating the weights and biases according to (12),
where η is the so-called learning rate. This process is illustrated in Figure
10. The learning rate hyper-parameter needs to be small enough so that the
approximation is accomplished but must also not be too small to avoid an
extremely slow gradient descent process resulting in unfeasibly long training
times.

w → w′ = w − η∂C
∂w

b→ b′ = b− η∂C
∂b

(12)

w1

w2

+

-

Cost
−𝜂∇𝐶(𝑤', 𝑤))+ +

+ ++ +
+ +

Figure 10: Gradient descent. The error surface is shown with respect to two weight
components (w1 and w2), where the color gradient from blue to red represents increasing
error or cost value. Since the gradient of the cost function indicates the direction of steepest
ascent, the negative of the gradient is taken.

Backpropagation is an efficient method to compute the partial derivatives
of the cost function with respect to any weight and bias in the network.155 In
practice, backpropagation applied to random training subsets or “mini batches”
and the average is taken, which is known as stochastic gradient descent.156

Backpropagation in combination with stochastic gradient descent gives an ap-
proximation of the cost function gradient that depends on all the training data,
and weights and biases are updated accordingly. Cost and activation functions
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that capture small changes in the weights and biases are required. For instance,
cross-entropy is generally used as loss function in DNNs to calculate the dis-
tance between the predicted probabilities and the real labels, and rectified linear
units are very popular in current DNN design. In addition, L2 and dropout reg-
ularization are the most common approaches to implicitly reduce the number of
free parameters and thus prevent model overfitting.153 Finally, the output layer
determines whether a DNN is for binary, multi-class, multi-label classification
or regression.139

Graph convolutional networks

Graph convolutional neural nets (CNNs) are another type of DNNs that
have been extensively used in computer vision. CNNs search for a given pat-
tern in different sections of the input matrix such as pixels in an image.34 A
filter or feature detector, which contains units with the same weight and bias pa-
rameters, is applied multiple times. Since CNNs enable representation learning
as well as the mapping to the output, they have been recently applied to di-
rectly learn from the molecular graph.117 Graph convolutional networks rely on
the 2D compound graph to automatically generate molecular representations
inspired by ECFP or the Morgan algorithm.118 A CNN applies convolutions
centered on atoms where the weights and biases are the learnable parameters
to construct molecular representations. The convolution proceeds at different
levels by considering contributions of neighboring atoms, which corresponds to
the circular fingerprints concept of extending the radius of atom environments.
Initially, a set of atom features summarizing the local atom environment (e.g.
atom type, valence, formal charge or hybridization) and a neighbor list repre-
senting molecular connectivity are obtained for every atom.157 Weight matrices
and bias vectors are used to update the atom features, and pooling is applied
using the maximum value. This process is typically repeated and finally a
graph gathering layer is introduced to sum up all feature vectors across atoms.
This final compound representation serves as input to a fully-connected layer.
Hence, a CNN combines feature extraction and model building in a trainable
model. This method is schematized in Figure 11. Representation learning
enables the consideration of task-specific features and eliminates the necessity
to pre-compute fixed compound descriptors.
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Figure 11: Fundamentals of a graph CNN. The process of representation learning is
illustrated for a single central atom (O) and considering two neighbor levels, but in practice
it is applied to all the graph nodes. Atom features (gray/white squares) and neighbors list
(graph connectivity) are the inputs for the convolutional layer. Convolutions transform the
inputs with a weight matrix W and bias b (learnable parameters) to obtain new feature
vectors. In the pooling layer, a single vector is obtained per node (in the example, O atom)
considering the maximum value for each feature across the neighbors. Finally, all feature
vectors in the graph are summed up to obtain the final representation, which is the input for
a fully-connected layer.

Modeling strategies

The prediction of compound bioactivity profiles represents a multi-label clas-
sification task, in which small molecules might bind to distinct targets. Models
can learn on the basis of ligand data for a single target or multiple targets.
Therefore, for the prediction of activity profiles, distinct modeling strategies
can be considered. Single-task (ST) modeling builds one model per target and
is often the default choice for multi-label classification. Accordingly, the multi-
target problem is decomposed into distinct binary tasks and standard binary
classifiers are applied, as shown in Figure 12a. Other strategies exist to trans-
form the prediction problem into binary tasks, e.g. one-vs-one. On the other
hand, some ML methods can be algorithmically modified or adapted to enable
multitask (MT) learning.158 MT learning simultaneously models the activity
against multiple targets, as illustrated in Figure 12b. Many ML algorithms
support multi-label classification, but some methods do not enable MT model-
ing with missing labels. For MT learning with DNNs, the output layer requires
as many units as tasks (or targets). Hence, all tasks share network parameters
and feature selection until they are submitted into separate classifiers at the
output layer. For handling missing compound-target annotations, MT-DNN
can be algorithmically adapted. Finally, in silico chemogenomic approaches or
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proteochemometric models can be directly applied to interaction prediction.159

Following this approach, ligand and protein descriptors are combined160,161 and
used as input for a binary model, which discriminates between interacting and
non-interacting compound-target pairs, as schematized in Figure 12c.

,[ ]

-Minteract

Minteract +

,[ ]

[ ]
MT1,T2

+

-

[ ]

-MT2

MT1 +

[ ]

c)

b)

a)

Figure 12: Modeling strategies for activity prediction. Three modeling strategies are
illustrated for the simplified problem of predicting compound activity against two protein
targets (T1 and T2). In (a) and (b), ST and MT models, respectively, aim at discriminating
between active (green) and inactive (red) compounds from their molecular representations.
In (a), two models MT1 and MT2 (one per target) are used. In (b), the MT1,T2 simultaneously
models activity against targets T1 and T2. Thus, this MT model outputs two predictions
per compound. In (c), the chemogenomics model Minteract discriminates between interacting
(green) and non-interacting (red) compound-target pairs, from the combined input represen-
tation.
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Model interpretation

Model interpretability is a sine qua non for knowledge extraction and prac-
tical utility of ML models in pharmaceutical research. In fact, the importance
of “explainable ML” has been recently recognized in all fields since it enables
detecting scenarios in which models behave unexpectedly, and increases model
acceptance by non-experts.106 To understand model decisions, feature impor-
tance needs to be estimated in order to determine which variables are con-
tributing most to accurate predictions. Linear models are easily interpretable
but generally provide less accuracy in activity predictions.162 In contrast, com-
plex ML models can learn non-linear QSARs but are not easily interpretable,
in particular, DNNs. Moreover, in SAR studies interpretability depends on the
ML model as well as the molecular representation.163–165
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Chapter 2

Prediction of Compound Profiling
Matrices Using Machine Learning

Introduction

Compound activity has been traditionally studied on a per-target basis,
but some ligands might interact with multiple targets. Thus, the prediction of
activity profiles is increasingly relevant. Profiling matrices consist of a small
molecule library screened across a panel of targets so that a bioactivity profile
is obtained for each compound. These matrices represent a pivotal scenario for
the benchmark of VS methods. In this chapter, ML approaches are developed
to model large compound profiling matrices from screening experiments. In
particular, a complete profiling matrix with 109,925 diverse small molecules
tested against 53 targets is predicted. Similarity searching, state-of-the-art ML
and DL models are generated. Moreover, single-target and multi-target learning
as well as distinct molecular representations are explored.
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ABSTRACT: Screening of compound libraries against panels
of targets yields profiling matrices. Such matrices typically
contain structurally diverse screening compounds, large
numbers of inactives, and small numbers of hits per assay.
As such, they represent interesting and challenging test cases
for computational screening and activity predictions. In this
work, modeling of large compound profiling matrices was
attempted that were extracted from publicly available screening
data. Different machine learning methods including deep
learning were compared and different prediction strategies
explored. Prediction accuracy varied for assays with different
numbers of active compounds, and alternative machine
learning approaches often produced comparable results.
Deep learning did not further increase the prediction accuracy of standard methods such as random forests or support vector
machines. Target-based random forest models were prioritized and yielded successful predictions of active compounds for many
assays.

1. INTRODUCTION

Machine learning methods are widely used in computational
compound screening, also termed virtual screening (VS), to
select limited numbers of potentially active compounds from
large libraries.1 Algorithms such as support vector machine
(SVM) or random forest (RF) are among the most popular
approaches for activity prediction.2 In addition, there is
increasing interest in deep learning for VS and quantitative
structure−activity relationship predictions.3−5

Public repositories for compounds and activity data are
indispensable resources for developing, evaluating, and
calibrating VS methods and protocols. For small molecules
and data from medicinal chemistry and biological screening,
ChEMBL6 (maintained by the European Bioinformatics
Institute of the European Molecular Laboratory) and
PubChem7,8 (National Center of Biotechnology Information
of the National Institutes of Health) have become primary
resources, respectively. In addition, MoleculeNet has recently
been introduced as a collection of curated compound activity
data from diverse sources.9 For VS benchmark calculations,
known active compounds and decoys are typically as-
sembled.10−13 Active compounds are usually taken from
medicinal chemistry sources. Evaluating VS approaches using
high-throughput screening (HTS) data provides a more
realistic scenario but is generally complicated by experimental
variance and noise as well as natural unbalance of active and
inactive compounds in HTS data sets.14−16 Hit rates in HTS
typically range from about 0.1 to 2%,15 depending on the assays
and targets, whereas most test compounds are inactive.16

Learning from data sets of such unbalanced composition
generally provides substantial challenges for deriving predictive

models. Hence, predictions using HTS data are only rarely
reported.17,18 Learning from unbalanced data has been
addressed in a few studies.19−21

In addition to state-of-the-art machine learning methods such
as SVM and RF, deep neural networks (DNNs) have also been
applied for activity predictions.3−5,22−24 DNN applications
sometimes report higher prediction accuracy compared with
other methods. DNNs can either be trained on a per-target
basis or by combining data from multiple activity classes, which
are known as multitask DNNs.23,24 Different results have been
obtained by comparing the performance of single- and
multitask DNNs.23,24 A general limitation of DNN and, in
particular, multitask learning is the rather limited ability to
rationalize the failure of predictions.24

A challenge in VS going beyond learning on the basis of HTS
data is the prediction of compound profiling matrices, which
are obtained by screening compound collections in a panel of
assays.25−29 In these cases, the unbalance and screening data
noise issues referred to above further escalate. Compounds
might be active in one or more assays and inactive in others or
they might be consistently inactive, yielding rather complex
prediction scenarios. To our knowledge, machine learning
predictions of large profiling matrices with more than just a
handful of assays are yet to be reported. However, the inherent
challenges of such predictions are not the only reason for their
sparseness. Data unavailability is another. Although profiling
matrices are frequently generated in the pharmaceutical
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Table 1. Assays and Targetsa

assay ID
assay
code target name organism

# active CPDs
(matrix 2 training)

# active CPDs
(matrix 2 test)

# active CPDs
(matrix 1)

485313 A Niemann-pick C1 protein precursor Homo sapiens 3103 3142 395
485314 B DNA polymerase β Homo sapiens 1325 1326 125
485341 C β-lactamase Escherichia coli 458 478 420
485349 D serine-protein kinase ATM isoform 1 Homo sapiens 191 175 118
485367 E ATP-dependent phosphofructokinase Trypanosoma brucei brucei 152 138 103
504466 F ATPase family AAA domain-containing

protein 5
Homo sapiens 1624 1586 424

588590 G DNA polymerase iota Homo sapiens 885 868 103
588591 H DNA polymerase eta Homo sapiens 1123 1129 39
624171 I nuclear factor erythroid 2-related factor 2 Homo sapiens 367 391 118
624330 J Rac GTPase-activating protein 1 Homo sapiens 491 536 156
1721 K pyruvate kinase Leishmania mexicana 433 425 39
1903 L large T antigen Simian virus 40 275 248 57
2101 M glucocerebrosidase Homo sapiens 73 58 41
2517 N AP endonuclease 1 Homo sapiens 197 199 32
2528 O Bloom syndrome protein Homo sapiens 137 128 8
2662 P histone-lysine N-methyltransferase MLL Homo sapiens 10 15 3
2676 Q relaxin/insulin-like family peptide

receptor 1
Homo sapiens 215 195 223

463254 R ubiquitin carboxyl-terminal hydrolase 2
isoform a

Homo sapiens 4 4 2

485297 S Ras-related protein Rab-9A Homo sapiens 3751 3810 410
488837 T ryes absent homolog 2 isoform a Homo sapiens 2 7 1
492947 U β-2 adrenergic receptor Homo sapiens 25 28 4
504327 V histone acetyltransferase KAT2A Homo sapiens 158 141 50
504329 W nonstructural protein 1 influenza A virus 213 205 64
504339 X lysine-specific demethylase 4A Homo sapiens 4755 4757 1320
504842 Y chaperonin-containing TCP-1 β subunit

homolog
Homo sapiens 28 20 13

504845 Z regulator of G-protein signaling 4 Homo sapiens 9 7 1
504847 AA vitamin D3 receptor isoform VDRA Homo sapiens 772 771 48
540317 AB chromobox protein homolog 1 Homo sapiens 442 449 98
588579 AC DNA polymerase kappa Homo sapiens 354 362 6
588689 AD genome polyprotein dengue virus type 2 180 184 6
588795 AE flap endonuclease 1 Homo sapiens 175 210 17
602179 AF isocitrate dehydrogenase 1 Homo sapiens 75 81 28
602233 AG phosphoglycerate kinase Trypanosoma brucei brucei 28 40 1
602310 AH DNA dC->dU-editing enzyme APOBEC-

3G
Homo sapiens 60 66 11

602313 AI DNA dC->dU-editing enzyme
APOBEC-3F isoform a

Homo sapiens 202 183 28

602332 AJ heat shock 70 kDa protein 5 Homo sapiens 15 15 6
624170 AK glutaminase kidney isoform Homo sapiens 162 186 65
624172 AL glucagon-like peptide 1 receptor Homo sapiens 7 7 2
624173 AM hypothetical protein Trypanosoma brucei brucei 136 141 32
624202 AN breast cancer type 1 susceptibility protein Homo sapiens 1469 1484 275
651644 AO viral protein r human

immunodeficiency
virus 1

208 209 74

651768 AP Werner syndrome ATP-dependent
helicase

Homo sapiens 278 325 5

652106 AQ α-synuclein Homo sapiens 111 102 57
720504 AR serine/threonine-protein kinase PLK1 Homo sapiens 3357 3308 662
720542 AS apical membrane antigen 1 Plasmodium falciparum 93 98 25
720707 AT Rap guanine nucleotide exchange factor 3 Homo sapiens 50 62 3
720711 AU Rap guanine nucleotide exchange factor 4 Homo sapiens 59 68 16
743255 AV ubiquitin carboxyl-terminal hydrolase 2

isoform a
Homo sapiens 147 149 15

743266 AW parathyroid hormone 1 receptor Homo sapiens 66 70 79
493005 AX Tumor susceptibility gene 101 protein Homo sapiens 0 0 0
504891 AY peptidyl-prolyl cis−trans isomerase

NIMA-interacting 1
Homo sapiens 6 5 0

504937 AZ sphingomyelin phosphodiesterase Homo sapiens 5 9 0
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industry, they are rarely disclosed. The few profiling data sets
that are publicly available are essentially limited to kinase
targets and partly incomplete. Thus, there is currently no sound
basis for predictive modeling of profiling matrices.
In light of these limitations, we have developed a

computational methodology to extract complete profiling
matrices from available screening data.30 Applying this
approach, we have generated profiling matrices of different
compositions including assays for a variety of targets. These
matrices consist of “real life” screening data and are
characterized by generally low hit rates and the presence of
many consistently inactive compounds.
Prediction of compound profiling matrices is of high

relevance for chemogenomics research, which ultimately aims
at accounting for all possible small molecule−target inter-
actions. For all practical purposes, reaching this goal will
essentially be infeasible. Accordingly, there is a high level of
interest in computational approaches that are capable of
complementing profiling experiments with reliable ligand−
target predictions. Moreover, profiling matrices also represent
excellent model systems for HTS campaigns using a given
compound deck. If experimental matrices are available,
predicting the outcome of HTS runs against different targets
can be attempted under realistic conditions. This provides
much more informative estimates of computational screening
performance than artificial benchmark settings that are typically
used. In drug discovery, the prediction of HTS data has long
been and continues to be a topical issue. For example, because
the capacity of (compound) “cherry-picking” from screening
plates has become more widely available in the industry,
computational prescreening of compound decks can be used to
prioritize subsets that are most likely to yield new hits. Cycles
of computational screening followed by experimental testing
are implemented in iterative screening schemes, which may
significantly reduce the magnitude of experimental HTS efforts.
Herein, we have applied various machine learning approaches

and strategies to predict newly derived compound profiling
matrices. The results are presented in the following and provide
an experimentally grounded view of expected accuracy of
machine learning models in predicting the outcome of
screening campaigns for diverse targets.

2. RESULTS AND DISCUSSION

2.1. Profiling Matrices. Two HTS data matrices
comprising the same 53 assays and targets (i.e., one assay per
target) and 109 925 and 143 310 distinct compounds,
respectively, were used for machine learning and VS. These
matrices were assembled from confirmatory assays available in
the PubChem BioAssay collection7,8 by applying our new
algorithm.30 Assays, targets, and assay codes used in the
following discussion are reported in Table 1. The density of the
smaller matrix, termed matrix 1, was 100%, i.e., all possible
matrix cells contained binary annotations of activity or
inactivity. The number of compounds tested per assay initially
ranged from 266 527 to 387 381 and 46 of the 53 assays in

matrix 1 had a hit rate of less than 1%. Table 1 also shows that
the number of active compounds per assay varied significantly,
ranging from only a few to more than 1000. The 53 assays also
included four assays without hits. For assays with only few
active compounds, training of machine learning models was
generally very difficult (if not impossible in some instances).
However, if all test compounds were predicted to be inactive in
such cases, satisfactory results would still be obtained (i.e., only
very few actives would be missed), despite intrinsic limitations
of model building.
A second matrix was generated by slightly reducing the

density in favor of larger compound numbers.30 From this
matrix, all compounds contained in matrix 1 were removed,
yielding matrix 2. The density of matrix 2 was 96%. Matrix 1
and matrix 2 contained 105 475 (96.0%) and 110 218 (76.9%)
compounds, respectively, which were consistently inactive in all
assays. In matrix 1, 3639 (3.3%) of the test compounds had
single- and 811 (0.7%) had multitarget activity. For matrix 2,
the corresponding numbers of active compounds were 19 069
(13.3%) and 14 023 (9.8%), respectively. Hence, the
composition of these matrices was highly unbalanced and
dominated by consistently inactive compounds. Overall, only
0.1 and 0.8% of the cells in matrix 1 and 2, respectively,
contained activity annotations. Matrix composition is summar-
ized in Table 2. In matrix 1, the number of active compounds

per assay ranged from 0 to 1320, with a mean and median value
of 110 and 32, respectively. In matrix 2, it ranged from 0 to
9512, with a mean and median value of 1077 and 348,
respectively. Figure 1 shows exemplary active compounds from
matrix 1. In Figure 2, intra- and interassay similarity of active
compounds is reported. The heat map reveals low mean
similarity of compounds active in different assays. Furthermore,
interassay and intra-assay similarity were overall comparable.
Taken together, these observations indicated that it would be
challenging to detect compounds sharing the same activity on
the basis of similarity calculations and distinguish between
compounds with different activity.

2.2. Prediction Strategy. The primary goal was predicting
the entire matrix 1 by learning from matrix 2. Predictions were

Table 1. continued

assay ID
assay
code target name organism

# active CPDs
(matrix 2 training)

# active CPDs
(matrix 2 test)

# active CPDs
(matrix 1)

588456 BA thioredoxin reductase Rattus norvegicus 1 8 0
aReported are the PubChem assay IDs, codes used here, targets, and organisms, for all 53 assays. In addition, for each assay, numbers of active
compounds in the matrix 2 training and test sets and in matrix 1 are reported.

Table 2. Matrix Compositiona

matrix 1 matrix 2

density 100% 96.4%
# compounds (CPDs) 109 925 143 310
# assays 53 53
percentage of active cells 0.1% 0.8%
# consistently inactive CPDs 105 475 (96%) 110 218 (76.9%)
# CPDs with single-target
activity

3639 (3.3%) 19 069 (13.3%)

# CPDs with multitarget activity 811 (0.7%) 14 023 (9.8%)
aFor matrix 1 and matrix 2, the density, number of compounds and
assays, percentage of cells with activity annotations (active cells),
number of consistently inactive compounds, and number of
compounds with single- and multitarget activity are reported.
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attempted at two levels including global predictions of active
versus consistently inactive compounds as well as activity
predictions for individual targets. For global models, training
and test compounds with different activities were combined to
yield the “active” class. Half of matrix 2 was randomly selected
and used for training of global models using different methods.
Global models were applied to predict active and inactive
compounds for the other half of matrix 2 used as a test set as
well as the entire matrix 1. Per-target models were derived in
two ways: first, using half of matrix 2 and second, the entire
matrix 2. The former per-target models were applied to predict

the matrix 2 test set, and the complete matrix 1 and the latter
models were applied to predict matrix 1. For per-target models,
initial comparisons of different methods and optimization of
calculation parameters were carried out for 10 assays from
matrix 2 with large numbers of available training compounds
(assay codes A−J in Table 1). These models were used to
predict these 10 assays in the matrix 2 test set as well as in
matrix 1. Further details are provided in the Materials and
Methods section.

2.3. Global Models. Given that the vast majority of matrix
compounds were consistently inactive in all assays, we reasoned
that initial exclusion of these consistently inactive compounds
followed by target-based predictions might be a promising
strategy for activity prediction. Successful elimination of
consistently inactive compounds would increase data balance
and reduce the number of compounds to be predicted by per-
target models. Therefore, global models were first built using
SVM, RF, and DNN to distinguish between combined active
and consistently inactive screening compounds. On the basis of
test calculations (see Materials and Methods), models trained
with all available data reached highest relative performance
levels and the ECFP4 fingerprint was a preferred descriptor.
Figure 3 shows the prediction results of the global models for

the matrix 2 test set and for matrix 1. The performance of the
different models was nearly identical in both cases. Although
there was consistent early enrichment of active compounds,
deprioritization of inactive compounds was accompanied by a
substantial loss of active compounds, in particular, for matrix 1.
In this case, eliminating 50% of the inactive compounds also led
to a removal of 25% of the actives. For the minority class, the
magnitude of this initial loss of active compounds limited the
envisioned two-stage prediction approach.

2.4. Models for Assay-Based Predictions. Next, we used
a subset of 10 assays with larger numbers of available active
compounds (assay codes A−J in Table 1) for comparison of
alternative machine learning methods and identification of best-
performing models and preferred calculation conditions.

2.4.1. Method Comparison. Algorithms of different designs
and complexities were systematically compared. Most of the
implemented approaches resulted in single-task (per-target)
models, but two multitask approaches were also included in the

Figure 1. Exemplary active compounds. Shown are exemplary active
compounds from two matrix 1 assays for (a) DNA polymerase β
(assay code B) and (b) serine-protein kinase ATM isoform 1 (code
D), respectively.

Figure 2. Pairwise Tanimoto similarity. The heat map reports mean
pairwise Tanimoto similarity for active compounds from matrix 1. The
extended connectivity fingerprint with bond diameter 4 (ECFP4; see
Materials and Methods) was used as a molecular representation.

Figure 3. Receiver operating characteristic curves for global models.
Receiver operating characteristic (ROC) curves are shown for SVM
(red), RF (green), and DNN (blue) global models, which were trained
with half of matrix 2 and used to predict the other half of matrix 2
(right) and matrix 1 (left).
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comparison. A multitask model yields probabilities of activity
for compounds tested in different assays. Investigated methods
included a similarity search-based approach termed the
conditional correlated Bernoulli model (CCBM) to estimate

rank positions of active compounds; popular machine learning
approaches; such as naıv̈e Bayes (NB) classification, SVM, and
RF, single- and multitask DNN; and graph-convolutional NN
(GraphConv). Test predictions were assessed by calculating

Table 3. Area under the Curve Values for Prediction of 10 Assays of the Matrix 2 Test Seta

assay code CCBM NB RF SVM single-task DNN multitask DNN GraphConv

A 0.85 0.84 0.91 0.92 0.91 0.91 0.90
B 0.77 0.79 0.85 0.85 0.82 0.82 0.83
C 0.64 0.71 0.73 0.72 0.69 0.67 0.72
D 0.63 0.72 0.69 0.65 0.67 0.62 0.64
E 0.81 0.82 0.86 0.84 0.84 0.85 0.85
F 0.82 0.82 0.88 0.88 0.87 0.87 0.86
G 0.73 0.79 0.84 0.84 0.81 0.79 0.82
H 0.80 0.85 0.90 0.90 0.88 0.87 0.89
I 0.80 0.85 0.89 0.89 0.88 0.85 0.89
J 0.84 0.87 0.92 0.92 0.91 0.86 0.92

aReported are AUC values for prediction of 10 assays (codes A−J) using different machine learning methods. For each assay, best results are
indicated in bold.

Table 4. Area under the Curve Values for Prediction of 10 Assays of Matrix 1a

assay code CCBM NB RF SVM single-task DNN multitask DNN GraphConv

A 0.88 0.86 0.93 0.94 0.93 0.93 0.92
B 0.64 0.68 0.70 0.69 0.67 0.66 0.69
C 0.66 0.64 0.69 0.67 0.64 0.64 0.68
D 0.62 0.63 0.62 0.62 0.63 0.60 0.65
E 0.86 0.91 0.94 0.91 0.90 0.88 0.89
F 0.82 0.82 0.87 0.88 0.87 0.86 0.87
G 0.55 0.55 0.58 0.57 0.54 0.57 0.64
H 0.70 0.75 0.77 0.76 0.74 0.75 0.76
I 0.82 0.86 0.89 0.88 0.86 0.83 0.88
J 0.84 0.88 0.93 0.94 0.93 0.90 0.94

aReported are AUC values for prediction of 10 assays (codes A−J) using different machine learning methods. For each assay, best results are
indicated in bold.

Figure 4. Per-target receiver operating characteristic curves. ROC curves are shown for target-based activity predictions with RF (green), multitask
DNN (orange), and CCBM (pink) models. Curves represent 10 matrix 1 assays used for method comparisons. Codes A−J designate assays
according to Table 1.
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area under the curve (AUC) values for receiver operating
characteristic (ROC) curves and recall rates for the top 1% of
ranked test sets.
Initially, we tested general training conditions. For each

assay, available active training compounds were combined with
increasing numbers of compounds inactive in the assay and a
series of models were generated with different machine learning
methods and evaluated. For all methods (except GraphConv),
the folded version of the extended connectivity fingerprint with
bond diameter 4 (ECFP4; see Materials and Methods) was
used as a descriptor. Paralleling the findings for global models,
preferred training sets generally consisted of all available active
and inactive training compounds. Using these training sets,
different methods were compared.
Tables 3 and 4 report benchmark results for the matrix 2 test

set and for matrix 1, respectively. For the matrix 2 test set, best
models consistently yielded AUC values >0.7 per assay and
values >0.8 for eight assays. For matrix 1, prediction accuracy
was overall lower but AUC values <0.7 were only obtained for
three assays. Thus, different methods yielded models with at
least reasonable prediction accuracy in most cases. Interestingly,
although differences in prediction accuracy were often small,
RF was the overall best-performing approach, achieving top
predictions for eight assays in matrix 2 and five in matrix 1. As
shown in Figure 4, it also compared favorably in multitasking
DNN and performed better than the CCBM similarity search
control. The performance level of RF was nearly matched by
SVM, followed by GraphConv. Given overall comparable
prediction accuracy achieved by different machine learning
methods and high RF performance across different assays, RF
was selected as a representative approach for further activity
predictions.
2.4.2. Alternative Molecular Representations. In the next

step, RF models built using different molecular representations
were compared. The results are reported in Table 5. In these
calculations, ECFP4 emerged as the preferred descriptor, with
nearly identical performance of its unfolded and folded (fixed
length) version.
2.5. Per-Target Activity Predictions. On the basis of the

comparisons above, final models for activity predictions on the

49 assays producing hits in matrix 1 were derived using RF,
folded ECFP4, and all available active and inactive compounds
per assay from the matrix 2 training set. As reported in Table 1,
only few active training instances were available in a number of
assays.
The results of activity predictions for all assays in the matrix

2 test set and in matrix 1 are reported in Figure 5. Predictions

were overall superior for matrix 2 than matrix 1 (that did not
share compounds with matrix 2). For matrix 2, AUC values of
0.8 or greater were achieved for 31 of 49 assays; an encouraging
finding. For matrix 1, AUC values of at least 0.8 were obtained
for 22 assays but there were also nine assays with low
performance close to or even worse than random selection. In
most cases, assays with low prediction accuracy only contained
a limited number of actives (ranging from 1 to 79 compounds).
As a control, matrix 1 predictions were also carried out with
models trained on the entire matrix 2, shown in Figure 6. The
availability of essentially twice as many active training
compounds significantly improved prediction accuracy, with
AUC values of 0.7 or greater obtained for 35 assays.
Table 6 reports the results for predictions on the 49 assays in

matrix 1 after training RF models on the entire matrix 2. Recall
rates among the top 1% of the ranking ranged from 0 to 100%
and varied significantly, with mean and median values of 35 and
30%, respectively. Active compounds were successfully
identified for 41 of 49 assays, and 26 models achieved recall
rates of at least 30%. In instances where activity predictions
completely failed, only few active compounds were available
(ranging from two to eight). Interestingly, for many assays,
there was a notable early enrichment of active compounds. In
22 cases, the first active compound was ranked among the top
three database molecules and in 30 cases, it was ranked among
the top 30. Thus, per-target models yielded promising
predictions in many instances.

2.6. Conclusions. In this study, we have attempted to
predict compound profiling matrices extracted from raw
screening data. Large numbers of assays, small numbers of
active compounds, their chemical diversity, and very large
number of consistently inactive compounds challenged

Table 5. Comparison of Different Molecular
Representationsa

assay
code MOE MACCS

MOE + fold.
ECFP4

nonfolded
ECFP4

folded
ECFP4

A 0.91 0.90 0.93 0.93 0.93
B 0.65 0.64 0.68 0.70 0.70
C 0.66 0.67 0.68 0.69 0.69
D 0.59 0.60 0.63 0.65 0.62
E 0.86 0.84 0.90 0.93 0.94
F 0.86 0.84 0.87 0.87 0.87
G 0.58 0.56 0.60 0.57 0.58
H 0.76 0.73 0.76 0.77 0.77
I 0.85 0.86 0.87 0.90 0.89
J 0.90 0.92 0.93 0.93 0.93

aReported are AUC values for prediction of 10 assays (codes A−J) in
matrix 1 using per-target RF models on the basis of different molecular
representations, including 192 two-dimensional (2D) descriptors from
the Molecular Operating Environment (MOE), 166 MACCS
structural keys, the folded and unfolded version of ECFP4, and the
combination of MOE descriptors and folded ECFP4 (MOE + fold.
ECFP4). For each assay, best results are indicated in bold.

Figure 5. Area under the curve values for per-target models trained
with half of matrix 2. AUC values are reported for predictions of
compounds active in assays of the matrix 2 test set (blue) and matrix 1
(red).
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predictions in this case. Different machine learning methods
were compared for their ability to identify active compounds
across assays. Perhaps surprisingly, alternative methods often
yielded comparable performance. Overall, RF emerged as a
preferred approach, followed by SVM. Deep learning methods
did not yield further improved prediction accuracy. In this
context, we note that compound data sets used for activity
predictions are still much smaller in size than many other data
sets originating from life science research. In addition,
compound data sets for activity prediction are also studied
computationally using predefined molecular representations.
Taken together, these features do not play into the strengths of
deep learning in extracting patterns and feature representations
from large data sets. This may explain the absence of significant
performance increases through deep learning in predicting
profiling matrices. Data sets originating from the life sciences
that are more suitable for deep learning include, for example,
images from high-content screening, data from large-scale gene
expression analysis or next generation sequencing, and
multipoint records from clinical trials. In these cases, perform-
ance increases through deep learning relative to other
computational methods might be expected. Notably, image
analysis in computer science has been one of the first
applications where deep learning outperformed other machine
learning approaches.
Initially, in our study, global models were designed aiming to

eliminate large numbers of consistently inactive compounds.
However, these models also deprioritized many active
compounds, thus limiting their applicability as a first-path
computational screen. By contrast, systematic activity pre-
dictions using per-target RF models yielded overall promising
predictions on the basis of highly unbalanced training sets. A
notable early enrichment of active compounds was frequently
observed.
Compound matrices obtained from experimental screens

provided a more realistic test system for machine learning than
often applied benchmark settings. Under these conditions,
prediction accuracy was lower than often reported for standard
benchmarking exercises, as expected. Increasing complexity of
machine learning methods did not scale with prediction
accuracy, e.g., deep learning did not make a difference in this

case. However, RF calculations yielded successful predictions
for the majority of assays, indicating the ability of standard
machine learning methods to identify novel active compounds
under rather challenging experimental conditions. As an
outlook, multitask learning should be further explored on the
basis of profiling matrices for subsets of assays and we are also

Figure 6. Area under the curve values for per-target models trained
with matrix 2. AUC values are reported for predictions of compounds
active in assays of matrix 1.

Table 6. Recall of Active Compounds in the Top 1% of
Ranked Matrix 1a

assay
code

# active CPDs in
matrix 1

# active CPDs in
top 1%

recall
(%)

rank of first
active CPD

X 1320 383 29 1
S 410 209 51 2
A 395 208 53 1
F 424 161 38 1
Q 223 120 54 1
J 156 113 72 2
AN 275 80 29 1
E 103 63 61 1
AR 662 59 9 1
C 420 56 13 4
AO 74 52 70 1
W 64 49 77 1
L 57 43 75 1
AB 98 36 37 5
I 118 35 30 10
AM 32 30 94 1
M 41 28 68 2
K 39 26 67 2
AK 65 25 38 3
AQ 57 17 30 7
D 118 16 14 1
B 125 15 12 2
AA 48 15 31 1
AF 28 15 54 1
G 103 7 7 42
H 39 7 18 39
AE 17 7 41 4
AS 25 7 28 1
AV 15 6 40 11
N 32 5 16 5
Y 13 5 38 1
AI 28 5 18 19
AD 6 3 50 72
V 50 2 4 192
AJ 6 2 33 88
T 1 1 100 38
Z 1 1 100 368
AG 1 1 100 146
AH 11 1 9 32
AU 16 1 6 249
AW 79 1 1 573
O 8 0 0 6758
P 3 0 0 12 637
R 2 0 0 31 266
U 4 0 0 1805
AC 6 0 0 2012
AL 2 0 0 26 430
AP 5 0 0 1156
AT 3 0 0 36 085

aFor each assay, the number of active compounds in matrix 1, their
recall in the top 1% of the ranking, and the highest-ranked active for
RF models trained with matrix 2 are reported.
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interested in focusing predictions specifically on small numbers
of compounds with multitarget activity for which a different
methodological framework might be required.

3. MATERIALS AND METHODS
3.1. Matrices. A complete (100% density) assay-compound

matrix (matrix 1) was generated from confirmatory assays in
the PubChem BioAssay database7 using a newly introduced
algorithm.30 PubChem compounds yielding unique SMILES
representations were retained in the matrix, which contained
109 925 compounds tested against a panel of 53 different
confirmatory assays. Subsequently, matrix 2 with a final density
of 96% was generated using the same algorithm. Initially, a
matrix 2 precursor was assembled with 95% density that
contained 281 943 compounds tested in the 53 assays. From
the precursor, all matrix 1 compounds were removed. In
addition, 28 708 inactive compounds tested in less than 50
assays were eliminated, yielding matrix 2 with 143 310
compounds. matrix 2 was then randomly divided into training
and test sets each consisting of 71 655 compounds. Zero
imputation31 was applied to missing values. Forty nine of the 53
assays produced hits, as reported in Table 1.
3.2. General Training Conditions. 3.2.1. Global Models.

Global models to distinguish between combined active and
consistently inactive compounds were initially built using SVM,
RF, and DNN on the basis of training sets of increasing size
taken from the matrix 2 training set. A steady improvement in
performance was observed with increasing training set size,
consistent with earlier observations.32 Therefore, final global
models were built using the entire matrix 2 training set.
3.2.2. Per-Target Models. Initially, per-target models were

trained for 10 selected assays (codes A−J) for which larger
numbers of active compounds were available (Table 1). Models
were built using all active training compounds and different
numbers of randomly selected compounds that were inactive in
each assay. First, all available inactive compounds were used.
Second, the number of randomly selected inactive compounds
was set to 10 and 20 times the number of active compounds,
following previously established rules for composition of
training sets.32 Hence, three training sets with increasing ratio
of inactive to active compounds were compared in model
building.
3.3. Molecular Representations. Several descriptors were

evaluated to represent compounds, including the extended
connectivity fingerprints of bond diameter 4 (ECFP4)33 and
MACCS structural keys.34 ECFP4 is a feature set fingerprint
that enumerates layered atom environments and encodes them
as integers using a hashing function. The feature set
(“unfolded”) version of ECFP4 has variable size but can be
“folded” to yield a constant number of bits. A 1024 bit folded
version of ECFP4 was obtained through modulo mapping.
MACCS is a binary keyed fingerprint, accounting for the
presence or absence of 166 predefined substructures. The
OEChem toolkit35 and inhouse Python scripts were used to
generate these fingerprints. In addition, 192 numerical 2D
MOE descriptors were used.36 Among others, these descriptors
included physical properties, atom and bound counts, and
various topological descriptors. Furthermore, graph-based
representation known as graph-convolutional networks (Graph-
Conv) was evaluated as an alternative to conventional chemical
descriptors. GraphConv is a learnable representation inspired
by the Morgan circular fingerprint representing compounds as
undirected graphs and employs convolutional layers to create

graph-based features.37−39 The DeepChem (version 1.3.2
dev)40 implementation of GraphConv was used. Fingerprint
similarity was quantified by calculating the Tanimoto coefficient
(Tc).41

3.4. Machine Learning Models. Similarity searching, three
state-of-the-art machine learning, and three types of DNNs
were applied. For building predictive models, training
compounds were represented as a feature vector ∈x and
associated with a class label y ∈ {−1, 1}, encoding inactivity or
activity for a given target. If the activity against all targets was
predicted with a global model, y was expressed in a vector form.

3.4.1. Conditional Correlated Bernoulli Model (CCBM).
CCBM is an approach for modeling the distribution of Tc
values of a screening database given a reference compound.42

For a specific target, each active compound from the matrix 2
training set was used once as the reference to search for active
compounds in the test sets, i.e., matrix 2 test set and in matrix 1.
Consistently inactive compounds from the matrix 2 training set
were used as the database, and all active compounds present in
matrix 2 test set and in matrix 1 were used as probes. A p-value
representing the probability of finding a database compound
with higher rank was calculated for every test compound. A
nearest neighbor reference compound was determined and
selected for each test compound having the highest Tc value,
and the p-value corresponding to this reference compound was
considered. If multiple nearest neighbors existed for a test
compound, the mean p-values was taken. Finally, a ranking of
test compounds was generated in the order of increasing p-
values.

3.4.2. Support Vector Machine (SVM). SVM is a supervised
learning algorithm aiming to identify a hyperplane H that best
separates two classes using the training data projected into the
feature space .43 This hyperplane is defined by a weight
vector w and a bias b so that H = {x·w, x + b = 0} and
maximizes the margin between the classes. To achieve better
model generalization, slack variables can be added to permit
errors of training instances falling within the margin or on the
incorrect side of H. The trade-off between training errors and
margin size can be controlled by the regularization hyper-
parameter C, which was optimized herein by 2-fold cross-
validation using candidate values 0.1, 1, and 10. The preferred
C values were 0.1 for 9 out of 10 models. In addition, the
“kernel trick” enables projecting the training data into a higher
dimensional space without computing the explicit mapping
of into . Class weights were considered to preferentially
penalize errors in the minority class (active compounds).32 The
Tanimoto kernel44 was used to replace the standard scalar
product.32 SVM models were generated using SVM-light.45

3.4.3. Random Forest (RF). RF consists of an ensemble of
decision trees built from distinct subsets of the training data
with replacement, known as bootstrapping.46 A random subset
of features is considered during node splitting for the
construction of trees.47 The number of trees was set at 500,
and class weights were applied. The number of randomly
selected features available at each split (max_features) and the
minimum number of samples required to reach a leaf node
(min_samples_leaf) were optimized via 2-fold cross-validation.
Candidate values for max_features were the square root, the
logarithm to base 2, or the total number of features; for
min_samples_leaf, candidate values were 1, 5, and 10. RF
calculations were carried out with scikit-learn.48 The minimum
number of samples for a leaf node was set to 5 for half of the
assays and to 10 for the other half and the maximum number of
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features to 10 and 32, respectively. No preferred parameter
combination was identified.
3.4.4. Naıv̈e Bayes (NB). NB uses Bayes’ theorem to predict

the probability of a compound x to be active assuming feature
independence49,50

| = | ·
P x

P x P
P x

(active )
( active) (active)

( )

For binary descriptors, the Bernoulli NB implementation of
scikit-learn was used.48

3.4.5. Deep Feed Forward Neural Network (DNN). DNN
classifier approximates a function that maps an input value x to
a class y, y = f(x; w), and learns the value of parameters w to
achieve the best approximation.51 DNN consists of different
layers with a number of neurons: an input layer, at least two
hidden layers, and an output layer.52 Each hidden or output
neuron assigns weights to the inputs, adds these weights, and
passes the sum through a nonlinear function or activation
function

∑= +
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟y f w x bk

j
kj j k

where y is the output of neuron k, f is the activation function, x
is the input variable (activation neuron in the previous layer), w
is the weights connecting neuron k with xj, and bk is the bias.
The summation includes all of the neurons adding connections
to k.53 Accordingly, each input is modified by a unique set of
weights and biases. During the training phase, weights and
biases are modified to obtain the correct output y, which is
facilitated by following the gradient of the cost function
(gradient decent) and efficiently calculated using back-
propagation.52 Training is generally performed using subsets
of data, and the weights and biases are updated accordingly.
Single-task DNNs (with one DNN per assay) and a multitask
DNN (i.e., a single DNN for predicting all active compounds)
were investigated. For the multitask DNN, the matrix
containing the activity profiles for training compounds was
fed into the network as the set of desired outputs y and the
output layer consisted of multiple nodes equaling the number
of assays. Implementations were based on tensorflow54 and
keras.55

Following previously formulated guidelines,4,24,56 hyper-
parameters were either set to constant values or optimized by
internal validation using 80 vs 20% data splits. For DNN, tested
values for the learning rate (LR) were 0.01 and 0.001 and for
the drop-out rate (DO), tested values were 25 and 50%.
Investigated network architectures included [2000, 100], [2000,
1000], [500, 500, 500], [2000, 1000, 100], and [2000, 1000,
500, 100]. Therefore, both pyramidal and rectangular
architectures were considered during hyperparameter optimi-
zation. Stochastic gradient descent was chosen as the optimizer,
128 as the batch size, and the “rectified linear unit” (ReLU) as
the activation function. Output nodes were “softmax” for the
single-task and “sigmoid” for the multitask DNNs. Different
weights were also applied to the data according to the ratio of
the number of active to inactive compounds to put more
emphasis on actives. Finally, the maximum number of “epochs”
was set to 100 for internal validation and 500 for the final
model building.
For single-task DNN, two combinations of hyperparameters

were preferentially selected including an optimum LR of 0.001,

DO of 50%, and architecture [2000, 1000], as well as LR was of
0.01, DO of 25%, and architecture [2000, 100]. Multitask
models require a single combination of optimized hyper-
parameters. Therefore, the median of AUC for all assays was
used as a metric for multitask DNN hyperparameter
optimization. The maximum value was obtained with a
pyramidal architecture of two layers ([2000, 1000]), LR of
0.001, and DO of 25%.

3.4.6. Graph-Convolutional Neural Networks (Graph-
Conv). As mentioned above, GraphConv is based on features
or descriptors with learnable parameters from a 2D molecular
graph. Initially, a set of atom features, such as atom type or
valence, and a neighbor list is obtained for every atom.
Neighbor information is assigned to each atom by summing up
the neighbors’ features. The learnable parameters include the
weight matrices and biases used for posterior transformations.
The same weight matrices and bias vectors are used in one layer
depending on the degrees of atoms. After updating atom
features, the pooling layer uses an activation function to
generate a new set of feature values, which is the output vector
in one layer. This procedure is repeated several times, and all of
the outputs are summed up to obtain the final representation of
the compound.5 Finally, this representation is the input of a
fully connected DNN. Therefore, in this approach, feature
extraction and model building are combined into one trainable
module.38 In our study, GraphConv models were carried out
with DeepChem (version 1.3.2 dev),40 which implemented a
modified architecture of GraphConv. The pooling operator is
max pool on an atom that returns the maximum activation
across the atom and the atom’s neighbors without introducing
additional parameters. Instead of summing several layers’
outputs, a graph gather layer is introduced. This layer sums
all feature vectors for all atoms to obtain the final
representation of a compound.
For GraphConv, internal validation (80−20%) was also

applied and the number of epochs was set to 50 and the batch
size to 256. The DO value was set to 25%. The numbers of
output features in hidden graph-convolutional layers were [64],
[64, 64], [64, 128, 64], [32, 32, 32, 32], and [64, 64, 64, 64];
for the dense layer dimension, which precedes the gather layer,
they were 128 and 256; and for LR they were 0.01 and 0.001.
Moreover, batch normalization, Adam optimizer, and ReLU
were considered except for the gather (tanh), as the default
settings in DeepChem. A single combination of hyper-
parameters was determined on the basis of the median value
of AUCs for the 10 assays, as described for multitask DNN.
The preferred architecture had three hidden convolutional
layers with [64, 128, 64] neurons, 256 neurons in the dense
layer, and an LR of 0.001.
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Summary

Compound profiling matrices from “real life” screening data were modeled
using methods of increasing complexity, from the traditional similarity search-
ing to graph convolutional networks. Some methods resulted in ST and others
in MT configurations, allowing the individual or simultaneous modeling of dis-
tinct biological activities, respectively. Even though similarity searching pro-
vided the baseline approach, ML models of rather different complexity often
provided similar results, without a clearly superior method in terms of predic-
tive performance. Interestingly, MT-DL did not provide a substantial perfor-
mance benefit over standard ML algorithms such as RF or SVM. Therefore,
final predictions were obtained with per-target RF models, which are easier to
interpret and train than DNNs. For many assays, accurate ML-based predic-
tions were achieved even with structurally diverse hits, experimental variance
and noise as well as large class imbalance. Taken together, the results provided
an estimation of expected performance and preferred strategies when modeling
profiling matrices coming from screening data.

In the following chapter, MT learning strategies including MT-DNNs are
compared for another relevant application of predictive pharmaceutical model-
ing.
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Chapter 3

Multitask Machine Learning for
Classifying Highly and Weakly Potent
Kinase Inhibitors

Introduction

In the previous chapter, MT-DL models did not produce any significant
benefit for the prediction of compound activity against multiple unrelated tar-
gets in screening data. In this chapter, the potential of MT learning is assessed
for related prediction tasks and the discrimination between highly and weakly
potent kinase inhibitors. The data set includes 19,030 inhibitors with activity
against 103 kinases. Due to the lack of implementations of traditional MT-ML
allowing for missing annotations, MT-DNNs are compared to ST-ML, combin-
ing the benefits of MT and DL. Herein, MT-DNN performance is rationalized
by comparing it to other standard ML algorithms, including individual and
simultaneous modeling of biological targets.
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ABSTRACT: Compound activity prediction is a major application of
machine learning (ML) in pharmaceutical research. Conventional single-
task (ST) learning aims to predict active compounds for a given target. In
addition, multitask (MT) learning attempts to simultaneously predict
active compounds for multiple targets. The underlying rationale of MT
learning is to guide and further improve modeling by exploring and
exploiting related prediction tasks. For MT learning, deep neural
networks (DNNs) are often used, establishing a link between MT and
deep learning. In this work, ST and MT strategies for ML methods
including DNN were compared in the systematic prediction of highly
potent and weakly potent protein kinase inhibitors. A total of 19 030
inhibitors with activity against 103 human kinases were used for
modeling. Given its composition, the data set provided many related
prediction tasks. DNN, support vector machine, and random forest ST
and MT models were derived and compared. Clear trends emerged. Regardless of the method, MT learning consistently
outperformed ST modeling. Overall MT-DNNs achieved the highest prediction accuracy, but advantages over other MT-ML
methods were only marginal. Furthermore, feature weights were extracted from models to evaluate correlation between different
prediction tasks.

1. INTRODUCTION

Machine learning (ML) is widely used for the prediction of
compound properties including bioactivity.1 Within the ML
spectrum, deep learning (DL) has experienced increasing
interest in many fields including drug design and chemo-
informatics.2−5 Notably, the multitask (MT) learning paradigm
is one of the major reasons for high expectations associated
with DL in pharmaceutical research.6,7 Activity prediction can
be understood as a multilabel classification problem taking into
consideration that compounds might be active against multiple
targets. For example, predicting inhibitors of related targets
such as protein kinases that may have single- or multitarget
activity represents a multilabel classification scenario and
involves related prediction tasks.
MT learning represents a generalization of the multilabel

case. The characteristic feature of MT learning is that all tasks
are simultaneously modeled.8 Some ML methods are
inherently suitable for MT modeling or permit algorithmic
adaptation, whereas others require the initial derivation of
binary models, which is often referred to as problem
transformation.9 The most common form of problem trans-
formation is the binary relevance approach, which requires the
generation of a single model per class (or target), that is, a ST
model. There are other transformation strategies such as the
one-vs-one approach (i.e., one classifier is generated for every

combination of two classes), the classif ier chain (i.e., ST
models are iteratively built and the model output is used as an
input for the next generation),10 or the label powerset (where
each unique combination of labels is considered a different
class).
Deep neural networks (DNNs) are able to simultaneously

model compound activity against multiple targets through the
use of multiple output neurons. This architecture is known as
MT-DNN. In general, DL classifiers are capable of generating
different levels of abstraction from prediction tasks to derive
complex mathematical functions taking task correlation into
account. Accordingly, these complex architectures are thought
to be suitable for modeling of large data sets and expected to
capture more elaborate patterns or properties than standard
ML techniques.4 However, although a few recent studies have
reported superior performance of DL compared to other
methods in activity or target prediction,3,6,7 others have found
no consistent advantage of ST- and MT-DNN models over
other ML approaches such as random forest (RF) or support
vector machine (SVM) algorithms.11−13 It has also been
attempted to better understand which prediction conditions
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might generally favor MT-DNNs.6,11 For example, Xu et al.
have shown that MT-DNNs were superior to ST-DNNs if test
compounds had similar structures to training compounds from
other tasks as well as correlated activities.11 On the other hand,
the presence of uncorrelated tasks (e.g., targets for which
compound overlap or similarity is limited) negatively
influences MT modeling.11 Moreover, the density of
compound−target matrices was found to influence the relative
performance of MT-DNN and ST-RF models; MT-DNN was
only superior to ST-RF when activity annotations were very
sparsely distributed over the matrix.13 MT learning is not only
limited to DNNs but also feasible for other ML methods such
as RF.14 However, most currently available MT-ML
implementations cannot handle missing data labels, which
complicate applications of MT modeling.
On the basis of currently available results, no firm

conclusions can be drawn concerning the potential superiority
of DL compared to other ML approaches in activity prediction.
More studies will be required. In this work, ST- and MT-
DNNs have been compared to other ST- and MT-ML
approaches in predicting inhibitors for a large panel of kinases.
To these ends, different MT learning strategies were
implemented and compared.

2. RESULTS AND DISCUSSION
Different ST- and MT-ML (RF, SVM, and DNN) approaches
were evaluated for predicting highly and weakly potent
inhibitors of a panel of 103 kinases. In addition, model-based
feature weight (FW) correlation between prediction tasks was
explored and related to MT modeling performance.
2.1. Inhibitor−Kinase Interactions. Figure 1 shows the

distributions of highly and weakly potent inhibitors per kinase.

Compound numbers varied significantly, with median values
51 (highly potent) and 66 (weakly potent), respectively.
Overall, 50% of the inhibitors were highly potent against a
single kinase, 46% were weakly potent against one or more
kinases, and 4% were highly potent against multiple kinases.
2.2. Training and Test Sets. For ST and MT learning,

training and test sets were generated in two different ways.

First, inhibitors were randomly separated into training and test
sets, referred to as compound-based splitting. Second,
inhibitors were organized into a series of structural analogs
and singletons. Then, training and test sets were assembled by
separating complete analog series (ASs) and singletons. This
approach was termed AS-based splitting. It ensured that
training and test sets did not contain structural analogs, which
provided more challenging prediction conditions than
randomly generated training and test sets. The alternative
approaches are illustrated in Figure 2.

2.3. MT Learning Strategies. For MT learning, an
algorithmic DNN implementation (MT_Algorithm) was used.
Because no algorithmic MT implementations capable of
treating missing labels were available for RF and SVM, an
algorithm-independent MT learning strategy was devised. This
approach was termed MT_Identity. For each inhibitor−kinase
pair, a feature vector was generated by concatenating a
compound fingerprint and target identity vector encoding the
kinase, as illustrated in Figure 3. Accordingly, feature vectors
represented individual interactions and inclusion of target
information supported MT learning. To predict highly potent
inhibitors, a global binary model was trained on the basis of
feature vectors representing strong or weak inhibitor−kinase
interactions. Test instances were also encoded as feature
vectors containing compound and target information and
inhibitors were predicted for designated targets. Application of
the MT_Identity strategy enabled MT-RF and MT-SVM
modeling.

2.4. Global Performance of DNN Models. Initially, ST-
DNN and different MT-DNN models were generated, and
their predictions were compared. ST models were separately
built on the basis of inhibitors available for each kinase
(resulting in a model per kinase). As compound representa-
tions, two fingerprints of different designs were used, including
MACCS and the extended connectivity fingerprint with bond
diameter 4 (ECFP4) (see Materials and Methods).

Figure 1. Distribution of highly and weakly potent inhibitors per
kinase. Box plots report the distributions of the number of highly
potent (left) and weakly potent (right) inhibitors per kinase.
Horizontal lines indicate distribution median values (highly potent:
51; weakly potent: 66).

Figure 2. Strategies for generating training and test sets. Compounds
(CPDs) from the complete data set (labeled A−M) are divided into
ASs. Edges between compounds indicate MMP relationships, and
each separate cluster represents a color-coded AS (including
singletons). Each compound has one or more recorded target
annotations (Tx), as shown for the green cluster. Two strategies are
applied to separate compounds into training and test sets including
compound-based splitting (CPD-splitting) and AS-based splitting
(AS-splitting). In CPD-splitting, individual compounds are assigned
to the training or test set, regardless of AS membership. In AS-
splitting, complete ASs are included in the training or test set.
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Figure 4 shows Matthew’s correlation coefficient (MCC)
values for the different DNN models. Predictions are reported

over all inhibitor−kinase interactions (entire matrix) and on a
per-target basis. MT-DNN models were consistently superior
to ST-DNN models, regardless of the molecular representa-
tions and splitting strategies used. Assessing predictions on a
per-target basis followed by averaging revealed overall more
variations than assessing predictions on the basis of the entire
matrix and provided more details. On a per-target basis, AS-
based predictions were generally of lower accuracy than
compound-based predictions, as anticipated. Interestingly, the
performance of MT_Algorithm and MT_Identity models was
overall comparable, lending credence to the algorithm-
independent MT_Identity strategy. Differences only became
apparent when AS-based predictions were evaluated on a per-
target basis. Here, models built using the algorithmic MT-
DNN implementation were on average slightly more accurate
than the MT_Identity models. Given the higher resolution of

per-target than matrix-based evaluation of predictions, models
generated using different ML methods were subsequently
compared on a per-target basis.

2.5. Method Comparison. 2.5.1. ST-RF versus MT-DNN
Models. Next, ST-RF and MT-DNN (MT_Algorithm) models
were compared, which mark opposite ends of the computa-
tional complexity spectrum of ML methods investigated
herein. In previous studies on ligand−target matrices from
screening experiments, ST-RF models yielded overall accurate
activity predictions12,13 that were only further improved by
MT-DNN if training data were very sparse.13 However,
different from predictions of screening data matrices
containing unrelated targets and active as well as inactive
compounds, the kinase data set investigated here provided
related prediction tasks and thus different modeling conditions.
Figure 5 reports distributions of balanced accuracy (BA) and

MCC values for predictions using ST-RF and MT-DNN
models evaluated on a per-target basis. For kinase inhibitors,
MT-DNN models produced consistently more accurate
predictions than ST-RF models, which was attributable to
the presence of related prediction tasks. For both performance

Figure 3. Feature vectors for the MT_Identity strategy. Feature vectors xn with labels yn represent inhibitor−kinase interactions (x1 is marked in
red). A feature vector combines a compound fingerprint and target identity vector encoding the kinase. Label coloring characterizes interactions
(green: highly potent inhibitor/strong interaction, red: weakly potent inhibitor/weak interaction, gray: missing activity annotation).

Figure 4. Global performance of DNN models. Reported are mean
MCC values per trial for the entire matrix (left) and per-target
predictions (right). Each dot represents an individual trial. Prediction
strategies include algorithmic MT-DNN (salmon), MT-DNN based
on the identity vector (green), and ST-DNN (blue). Results are
reported for the MACCS (top) and ECFP4 (bottom) fingerprints and
the CPD- and AS-splitting strategies (x-axis) according to Figure 2.

Figure 5. Comparison of MT-DNN and ST-RF models. BA (top) and
MCC values (bottom) are reported for MT-DNN (salmon) and ST-
RF (blue) predictions using the MACCS fingerprint and test sets
obtained by CPD- or AS-splitting.
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measures and splitting strategies, equivalent trends were
observed. With top median BA values exceeding 0.8 and
MCC values exceeding 0.75, MT predictions were of high
quality.
We note that different from BA, MCC explicitly takes false

positives and false negatives into account (see Materials and
Methods) and hence provides a balanced quantitative measure
of prediction outcomes. Therefore, in the following, ST and
MT models were compared on the basis of MCC values.
2.5.2. Comparison of ST- and MT-RF, -SVM, and -DNN

Models. A key question was how different ML algorithms
would perform under conditions of ST and MT learning. All
models were trained and evaluated using data sets obtained by
AS-based splitting. In addition to building MT_Algorithm
(DNN) and MT_Identity (RF, SVM, DNN) models, as a
control, other MT models were also generated following a
strategy termed MT_OnlyFP. This approach corresponded to
MT_Identity except that kinase identity vectors were omitted.
Accordingly, only compound fingerprints were used as features
to build a global binary model but no target information such
that the predictions completely relied on chemical information.
Figure 6 summarizes our comprehensive comparison of

different RF, SVM, and DNN models. For each type of model,

distributions of MCC values for individual predictions are
reported. The performance of ST models was consistently
lower than that of MT models. Best ST predictions were
obtained using SVM, followed by RF. These models were
clearly more accurate than ST-DNN models. Overall best
performance was achieved by MT_Algorithm DNN models
but only by a very small margin. Surprisingly, the prediction
accuracy of MT_Identity models was similar for RF, SVM, and
DNN and nearly reached the top performance level. With top
median MCC values greater than 0.7, MT predictions achieved
overall high accuracy. Moreover, the predictive performance of

the MT_OnlyFP models approached the performance level of
MT_Identity models for all methods and molecular
representations. Thus, chemical features were of critical
importance for the predictions, indicating that highly potent
inhibitors of a given kinase were often more similar to each
other than to inhibitors of other kinases. For RF and DNN, the
MT_OnlyFP models were clearly more accurate than the ST
models, reflecting partial MT learning capacity, despite the
absence of kinase information. For SVM, which produced the
best ST models, the performance of MT_OnlyFP models was
comparable.
Figure 7 reports true positive (TPR) and false positive rates

(FPR) for the different DNN, RF, and SVM modeling

strategies. The results were comparable to those discussed
above. An additional finding was that ST consistently had the
lowest FPR and TPR. Thus, compared to MT models, the
inferior prediction accuracy of ST models was very likely due
to missing highly potent inhibitors, especially for DNN and
RF.
Taken together, the results in Figures 6 and 7 revealed that

MT learning was largely responsible for achieving high
prediction accuracy rather than a specific algorithm. MT-RF,
MT-SVM, and MT-DNN models displayed similar perform-
ance, although DNN was the only method for which an
algorithmic MT implementation was available. On the basis of
these observations, the performance of the algorithm-
independent MT_Identity strategy was encouraging.

2.6. FW Correlation. In light of the superior performance
of MT models for predicting highly potent kinase inhibitors,
we further investigated relationships between prediction tasks.
Because only 4 and 7% of the highly and weakly potent
inhibitors had multikinase annotations, respectively, there was
no significant overlap between inhibitor sets for different
kinases, which would directly explain correlation effects
between prediction tasks. Given this very limited compound
overlap, FW correlation was analyzed as an indirect measure of
task relatedness. Figure 8a illustrates FW correlation analysis.
Because of the sparseness of the compound−target matrix task,

Figure 6. Comparison of MT-ML and ST-ML models. Box plots
report distributions of MCC values for per-target predictions for MT-
and ST-ML (DNN, RF, and SVM) models using the MACCS (top)
and ECFP4 (bottom) fingerprints. Prediction strategies include
algorithmic MT-DNN (salmon), MT-ML based on the identity
vector (green), MT-ML only with fingerprints (MT_OnlyFP, yellow),
and ST-ML (blue).

Figure 7. FPR and TPR for MT-ML and ST-ML models, respectively.
Mean FPR and TPR plus standard deviation (error bar) are reported
for MT- and ST-ML models according to Figure 5.
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correlation cannot be determined on the basis of compound
activity. As an alternative, ST-RF models were built on a per-
target basis to analyze chemical features prioritized for different
tasks (targets). FW vectors have the same size for all the
targets, corresponding to the dimensionality of the feature
space (e.g., 166 features for the MACCS fingerprint), and no
missing values. From ST-RF models of all kinases, FWs were
extracted on the basis of Gini importance (see Materials and
Methods) and pairwise FW correlation among tasks was
determined. As a result, a target−target correlation matrix was
obtained as shown in Figure 8b,c for an individual trial using
MACCS and ECFP4, respectively. Pairwise correlation
between FW vectors provided a measure of similarity between
prioritized chemical features. Correlation coefficient values
significantly varied for different targets (and were overall
smaller for ECFP4 than for MACCS).
Then, MT-RF and MT-DNN models were built on the basis

of varying numbers of tasks based on FW correlation. Initially,
two tasks with the highest (or lowest) FW correlation
coefficient were identified and combined. In subsequent
iterations, the three tasks with the highest (lowest) mean
FW correlation compared to combined tasks were identified
and added to an MT model. A total of 10 iterations were
carried out such that the number of tasks selected on the basis
of maximal or minimal correlation ranged from 2 to 32,
yielding two sets of tasks.
Figure 9a (MACCS-based FW correlation) and Figure 9b

(ECFP4-based FW correlation) show MCC differences
(ΔMCC values) for MT-RF and MT-DNN and corresponding
ST models. Value distributions are reported for individual
prediction from different iterative trials. Median MCC values
were consistently higher for MT models compared to that for
ST models and mostly higher for MT models built on the basis
of strongly than weakly correlated tasks. Depending on the
trial, some tasks might be more correlated than others,
resulting in larger performance differences. However, the
presence of tasks with strong FW correlation generally
supported MT learning and was an at least approximate
indicator of MT model performance.

3. CONCLUSIONS
In this study, we have compared ST and MT models for
different ML methods including DNN in the prediction of
highly potent inhibitors of more than 100 kinases. The data set
curated for this analysis provided related prediction tasks.
Compared to ST models, MT learning resulted in a
performance boost for all methods. Algorithmic MT-DNN
models displayed overall highest predictive performance but
only by a slight margin compared to MT-RF or MT-SVM
models. These models were generated on the basis of the
algorithm-independent and generally applicable MT_Identity
strategy. This approach combined compound and target
information and was effective for MT learning. These findings
also indicated that algorithmic transfer learning available for
MT-DNN was not required for achieving high predictive
performance. Furthermore, control calculations applying the
MT_OnlyFP strategy revealed that chemical features of highly
potent kinase inhibitors were often sufficient to generate
models with at least partial MT character that yielded
meaningful predictions. Finally, because only very few shared
active compounds were available, FW correlation was
determined over a limited number of independent trials and
used as a measure of task relatedness. Iteratively selected

Figure 8. FW correlation for individual tasks. (a) Matrix at the top
represents compound−target interactions and label coloring reflects
different activity annotations (green: highly potent inhibitor/strong
interaction, red: weakly potent inhibitor/weak interaction, gray:
missing activity annotation). ST models are generated for individual
targets (M1−4). The matrix at the bottom illustrates weighting of
different fingerprints features on the basis of the ST models. Pairwise
correlation was calculated for FW vectors. The blue color gradient
and values from 0.1 to 1 represent the magnitude of FWs. In (b,c),
exemplary FW correlation matrices are shown for an individual trial
using MACCS and ECFP4, respectively. The color gradient indicates
lowest (white) to highest (red) FW correlation.
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prediction tasks prioritized on the basis of FW correlation were
found to favor MT learning, which further rationalized
observed performance differences between ST- and MT-ML
models. Taken together, the findings presented herein assign
high priority to MT learning schemes when addressing related
prediction tasks. As also shown herein, MT modeling of
compound−target interactions does not depend on DNN and
can be facilitated with different ML methods. This provides an
encouraging perspective for practical applications of MT
learning in medicinal chemistry.

4. MATERIALS AND METHODS

4.1. Compound Data Set. 4.1.1. Kinase Inhibitor Data.
Kinase inhibitors with available high-confidence compound
activity data were extracted from ChEMBL version 22.15 A
total of 43 331 inhibitors were obtained, which were active
against 286 human kinases from 12 different groups, yielding
53 622 pIC50 and 5828 pKi activity annotations.

16 For activity
predictions, only pIC50 annotations were considered for
consistency.

4.1.2. Potency-Based Inhibitor Classification. We distin-
guished highly potent and weakly potent inhibitors from each
other. A potency threshold of pIC50 ≥ 8 (10 nM) was applied
to assemble the highly potent (positive) class and a threshold
of pIC50 ≤ 6 (1000 nM) to generate the weakly potent
(negative) class. Compounds falling into the intermediate
potency range were omitted to minimize the influence of
boundary effects on predictions. Kinase targets were only
selected if at least five positive and five negative compounds
were available. On the basis of these criteria, the data set used
for predictive modeling comprised a total of 19 030 inhibitors
of 103 kinases. These inhibitors formed 11 120 highly potent
and 11 252 weakly potent compound−target interactions,
yielding an activity annotation density of 1.1% (of all possible
kinase−inhibitor interactions). The 19 030 inhibitors con-
tained a subset of 739 compounds with multikinase activity.

4.2. Data Analysis Protocol. 4.2.1. Molecular Represen-
tations. MACCS structural keys17 and ECFP418 were used to
represent inhibitors. MACCS consists of a set of 166
predefined structural keys (bits). ECFP4 enumerates layered
atom environments and encodes them by integers using a
hashing function. The folded version (1024 bits) of ECFP4
obtained by modulo mapping was used. The MACCS and
ECFP4 fingerprints were generated using in-house Python
scripts based on the OEChem toolkit.19

4.2.2. Identification of ASs. ASs were systematically
identified in the kinase inhibitor set applying computational
method20 based upon the matched molecular pair (MMP)
formalism.21 An MMP is a pair of compounds that only differ
by a structural change at a single site. Here, MMPs were
generated by bond fragmentation on the basis of retrosynthetic
combinatorial analysis procedure rules.22 A total of 2117 ASs
with two or more inhibitors were identified. These series
contained a total of 12 290 compounds. The remaining
inhibitors were singletons that were treated as individual
entities (compounds or series) for the generation of training
and test sets.

4.2.3. Model Building and Evaluation. Training and test
sets were created for model building and evaluation,
respectively.23,24 Two strategies were applied to separate
compounds into training and test sets including compound-
based splitting and AS-based splitting, as illustrated in Figure 2.
Compound-based splitting assigned individual compounds to
the training or test set, whereas the AS-based approach
separated complete ASs. Thus, in the latter case, models were
trained and tested on different ASs. To avoid potential AS
annotation bias,7,25 AS-based splitting assigned all kinase
annotations of analogs either to the training or to the test set.
The proportion of compounds or ASs in training and test sets
was constantly set to 75% versus 25%. For each splitting
strategy, five independent trials were carried out.

4.2.4. Parameter Optimization and Performance Meas-
ures. For each ML method, trial, and splitting strategy, model

Figure 9. Task addition based on FW correlation. Box plots report
distributions of ΔMCC values for comparison of ST-DNN/RF and
corresponding MT models. Positive and negative values reflect
superior performance of MT and ST models, respectively. MT models
with iteratively combined prediction tasks are obtained based on
maximal (salmon) or minimal (blue) FW correlation between tasks.
ΔMCC values are reported for five trials and three MT models
including algorithmic MT-DNN (top) and MT-DNN/RF based on
the identity vector (middle/bottom). (a) shows results using MACCS
and (b) ECFP4.
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hyperparameters were optimized through a twofold cross-
validation on the training set. Following optimization, the final
model was built using the complete training set.
As performance measures, BA26 and MCC27 values were

calculated for test set predictions

= +BA
1
2

(TPR TNR)

=
× − ×

+ + + +

MCC
TP TN FP FN

(TP FP)(TP FN)(TN FP)(TN FN)

4.3. ML Algorithms. Three different classification
algorithms were used for predictive modeling including RF,
SVM, and DNN.
4.3.1. Random Forest. RF represents an ensemble of

decision trees trained on a bootstrap sample of the data set. At
each node, the best data split is selected for a random feature
subset, known as feature bagging.28 The final prediction is a
consensus over all decision trees. The ensemble approach
reduces the risk of overfitting of individual trees. Moreover,
feature bagging avoids a high correlation between trees. RF
models were built using 500 trees and optimizing three
hyperparameters: (i) the minimum number of samples per leaf
node (with candidate values of 1, 5, and 10); (ii) the maximum
number of features at each node (all features, the square root,
or the logarithm to the base 2 of the total number of features);
and (iii) presence or absence of class weights. The application
of class weights permits preferential penalization of errors in
the minority class during training. Table 1 reports most
frequently selected hyperparameters during optimization. The
scikit-learn implementation was used14 (with remaining
hyperparameters set to default values).

4.3.2. Support Vector Machines. SVM is a kernel-based
classification algorithm that defines a hyperplane H capable of
separating two classes in the input space .29 The hyperplane
is defined by the expression H = {x|⟨w,x⟩ + b = 0}, where w is
the weight vector and b a bias obtained by maximizing the
margin (or distance) between the training classes. Because a
hard-margin model is prone to overfitting, a certain number of
misclassifications can be allowed by adding slack variables. The
cost or regularization hyperparameter C controls the amount of
instances falling within the margin or on the incorrect side of
the hyperplane (i.e., the training errors). Candidate C values
during internal cross-validation were 0.001, 0.01, 0.1, 1, 10,
100, and 1000. Hyperparameter optimization is summarized in
Table 2.

If linear separation of data with different class labels is not
possible in a given feature space, nonlinear kernel functions are
applied to map the data into a higher-dimensional space where
linear separation might be possible. Through this “kernel trick”
computing, an explicit mapping can be avoided.30 SVM
calculations were carried out with scikit-learn using the
Tanimoto kernel.31,32

4.3.3. Deep Neural Networks. Feed-forward DNNs consist
of a collection of connected units or neurons that are organized
in different layers such that the output of one layer is used as
the input of the next. In addition to an input and output layer,
DNNs have at least two hidden layers.33 Thus, a DNN model
can be understood as a series of functional transformations.34

Each hidden neuron applies a nonlinear activation function to
the weighted sum of its inputs,35 according to the following
equation:

∑ ω ω= +
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Here, f is the activation function; i and j account for unit
indices on the input and hidden layers, respectively; ωji
indicates the weights at the hidden unit j; ωj0 represents the
biases; xi is the input; and yj is the output of neuron j.
During training, the weights of the network are adjusted

such that the input matches the desired outputs and the loss is
minimized. The gradient of the loss function was computed
using the backpropagation algorithm,33 and weights were
varied subsequently to minimize the loss (gradient descent).
DNNs were built with a single unit or multiple units in the
output layer, yielding ST- and MT-DNN models, respectively.
DNNs were calculated using Tensorf low36 and Keras.37

DNNs contain more hyperparameters than RF and SVM,
and predictions are generally more dependent on prior
optimization. The optimum architecture (i.e., number of
hidden layers and neurons per layer) was chosen from the
following options: [200,100], [2000,1000], [200,100,100] for
ST-DNN and [200,100], [2000,1000], [2000,1000,100] for
MT-DNN. Candidate values for the learning rate were 0.01
and 0.001 for both ST- and MT-DNN, respectively, and
models with and without class weights were considered. For
ST-DNN, batch sizes were 128 or 256, and “Adam” was used
as the optimization algorithm. For MT-DNN, the batch size
was set to 258, and the optimizer was either Adam or
stochastic gradient descent with momentum. The activation
function was the rectified linear unit, except for the output
layers for which softmax (ST-DNN) or sigmoid (MT-DNN)
functions were used. A dropout rate of 25% was permitted to
prevent overfitting. For internal validation, 100 epochs were
applied; for external validation, the best model was retained

Table 1. Optimal Hyperparameters for RFa

strategy fingerprint
min. leaf
samples max. features

class
weights

MT_Identity MACCS 1 square root,
log 2

yes

MT_Identity ECFP4 1 square root,
log 2

yes, no

ST MACCS 1 square root no
ST ECFP4 1 square root no

aReported are the most frequently selected optimal hyperparameters
for RF when different modeling strategies and fingerprint descriptors
were used. MT_Identity refers to the descriptor-based strategy for
MT learning (see Section 4.4.2).

Table 2. Optimal Hyperparameters for SVMa

strategy fingerprint cost class weights

MT_Identity MACCS 100 yes, no
MT_Identity ECFP4 100 yes, no
ST MACCS 10 yes
ST ECFP4 10 yes

aReported are the most frequently selected optimal hyperparameters
for SVM when different modeling strategies and fingerprint
descriptors were used. MT_Identity refers to the descriptor-based
strategy for MT learning (see Section 4.4.2).
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after 500 epochs. Table 3 summarizes the most frequently
selected hyperparameters for different DNN models.
4.4. MT Implementations. For MT learning, two

strategies were considered. First, algorithmic adaptations
were carried out such that MT learning was embedded into
the algorithm.9 Second, an algorithm-independent approach
was applied based on descriptor modification.
4.4.1. Algorithm-Based Approach. Classification algo-

rithms might be modified to support MT modeling. For RF
and SVM, no MT implementations are currently available,
which can handle missing labels. For algorithm-based MT-
DNNs, 103 output units were used (one per kinase). A
customized loss function was created to mask missing labels
and only use labeled examples when computing cross-entropy
loss.
4.4.2. Descriptor-Based Approach. The MT_Identity

strategy was applied to all methods. An identity vector was
generated to encode the 103 targets (one bit per target)
potentially involved in inhibitor−kinase interactions and
concatenated with the compound fingerprint. The resulting
MACCS- and ECFP4-based hybrid fingerprints then consisted
of 269 (166 + 103) and 1127 (1024 + 103) bits, respectively.
In the identity vector, only one bit was set on. Then, a binary
model was built to distinguish between highly potent and
weakly potent compound−kinase interactions.
4.5. Feature Weighting. ST-RF models were used to

obtain weights for each feature on the basis of the Gini
importance.38 The Gini impurity index estimates the quality of
a data split at a given node. The lower the Gini index value, the
larger the influence of a feature on a data split. FWs were then
obtained by summing over all nodes including a given feature
proportionally to the number of examples.
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Summary

Strong and weak inhibitors against multiple kinases were successfully dif-
ferentiated by MT learning. In particular, MT-DNNs provided the best re-
sults indicating that MT learning might be favored due to the inherent relation
among the tasks. However, MT-DNN model performance was closely followed
by a very simplistic method that allowed standard ML models to use all ligand
data to train a single model. In this approach, an interaction is codified by the
concatenation of fingerprint (inhibitor) and a one-hot encoding (kinase), and a
model is trained to classify strong and weak interactions. Overall, MT-DNN did
not extract much additional information compared to this simplistic approach
(MT-Identity) implemented with other ML algorithms. Even though additional
protein information was not available, MT-Identity models also provided sig-
nificant superior performance compared to ST. This suggests that prioritized
chemical patterns were mostly common to distinct kinases. Thus, the calcu-
lation of task correlation based on model feature weights was proposed for
non-overlapping activity measurements across targets.

The next two chapters include investigations about relevant methodological
aspects in bioactivity predictions, namely the influence of the nature of training
compound data on ML model performance.
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Chapter 4

Influence of Varying Training Set
Composition and Size on Support Vector
Machine-Based Prediction of Active
Compounds

Introduction

The previous chapters have presented two successful applications of ML
algorithms for the prediction of ligand-protein interactions against multiple bi-
ological targets including data from different sources and thus distinct nature.
In supervised learning, training data essentially determines the quality and pre-
dictive ability of a model. Herein, the effect of training set size in activity pre-
dictions is systematically studied. Furthermore, activity data from medicinal
chemistry sources are characterized by large sets of active compounds and only
few inactive annotations, whereas screening data shows the opposite trend and
often contains only small numbers of valid hits. Consequently, training set com-
position is also investigated. Calculations are carried out using the state-of-art
SVM method, which is widely used in pharmaceutical research and allows both
linear and non-linear modeling. SVM-based compound activity predictions are
analyzed for distinct activity classes from ChEMBL.
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ABSTRACT: Support vector machine (SVM) modeling is
one of the most popular machine learning approaches in
chemoinformatics and drug design. The influence of training
set composition and size on predictions currently is an
underinvestigated issue in SVM modeling. In this study, we
have derived SVM classification and ranking models for a
variety of compound activity classes under systematic variation
of the number of positive and negative training examples. With
increasing numbers of negative training compounds, SVM
classification calculations became increasingly accurate and stable. However, this was only the case if a required threshold of
positive training examples was also reached. In addition, consideration of class weights and optimization of cost factors
substantially aided in balancing the calculations for increasing numbers of negative training examples. Taken together, the results
of our analysis have practical implications for SVM learning and the prediction of active compounds. For all compound classes
under study, top recall performance and independence of compound recall of training set composition was achieved when 250−
500 active and 500−1000 randomly selected inactive training instances were used. However, as long as ∼50 known active
compounds were available for training, increasing numbers of 500−1000 randomly selected negative training examples
significantly improved model performance and gave very similar results for different training sets.

■ INTRODUCTION
The support vector machine (SVM) algorithm1,2 is among the
most widely used supervised machine learning methods in
chemoinformatics and computer-aided drug discovery.3−5 The
popularity of SVM modeling primarily stems from generally
high predictive performance in compound classification and
virtual screening.4 Although SVMs have been applied to
investigate a variety of class label prediction and also regression
tasks in chemoinformatics and drug discovery research,4,5 so far
only very few studies have addressed the issue of training set
composition and size for SVM modeling6 and other machine
learning methods.7,8 Especially the choice of negative training
examples is often little considered in machine learning.
Typically, to train models for compound classification, a
subjectively chosen number of molecules are randomly selected
from chemical databases to serve as negative training instances,
without further analysis. Two previous studies have investigated
the choice of negative training examples in greater detail.6,7 For
SVM modeling, the use of experimentally confirmed negative
training compounds from screening assays and randomly
chosen compounds from the ZINC database9 was compared
in the prediction of active compounds.6 It was shown that the
source of negative training instances affected the performance
of SVM classification. Perhaps surprisingly, randomly selected
ZINC compounds often resulted in better models than
screening compounds that were confirmed to be inactive
against a target for which active compounds were predicted.6

No training set variations were carried out. In another study,
negative training sets were assembled from different databases

for compound classification using different machine learning
approaches.7 These calculations revealed a notable influence of
negative training examples on the predictions and a preference
for randomly selected ZINC compounds over compounds from
other sources.7 In this case, the size of negative training sets was
varied when building models using different machine learning
methods including SVMs with polynomial kernels. Training set
size variations were found to influence compound predictions.7

Performance relationships for varying numbers of negative and
positive training examples were not investigated. In other
studies, positive and negative training examples were balanced
to improve the performance of machine learning models,6,8

addressing the issue of data imbalance in machine learning.10,11

Herein, we report an analysis of the influence of training set
composition and size on SVM classification and ranking by
systematically varying the number of negative and positive
training examples and determining how these variations affect
the prediction of active compounds and stability of the
calculations.

■ MATERIALS AND METHODS

SVM Classification. For SVM classification,1 training
compounds are defined by a feature vector x ∈ and a class
label γ ∈ {−1, 1} and projected into the reference space .
SVMs solve a convex quadratic optimization problem to find a
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hyperplane H = {x|⟨w, x⟩ + b = 0} that separates the positive
and negative class. The hyperplane H is defined by a normal
vector w and a bias b and maximizes the margin between the
two classes. To achieve model generalization, non-negative
slack variables ξi are considered during training to penalize
misclassification. In addition, the cost hyperparameter C
controls the trade-off between margin maximization and
permitted training errors, and its value can be optimized by
cross-validation.12

Once the decision boundary is defined, test instances are
projected into the feature space. New compounds of unknown
class label are classified according to the side of the hyperplane
on which they fall or, alternatively, ranked according to the
value of g(x) = ⟨w, x⟩.13 The latter strategy is equivalent to
changing the bias of the hyperplane, sliding it from the most
distant points on the positive side toward the negative side, and
ranking compounds in the order they pass through the plane.
In the case of nonlinearly separable training data in a given

reference space, the scalar product <·, ·> can be replaced by a
kernel function K(·, ·), which is known as the kernel trick.14

Using kernel functions, the scalar product of two feature vectors
can be computed in a higher dimensional space where the
data may be linearly separable without the need to explicitly
compute the mapping of into . In SVM-based compound
classification, the Tanimoto kernel is one of the most frequently
used kernel functions for binary fingerprints.15

For imbalanced data sets, different class weights can be
assigned to put relative weights on misclassification of positive
and negative training instances and avoid orienting the
hyperplane toward the minority class. Accordingly, C+ and C−
balance the weight on slack variables for the positive and
negative class, respectively.16

= | | = − |
| | = + |

+
−

C
C

i y

i y
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Compound Data Sets and Representation. Ten sets
with at least 600 active compounds (positive instances) were
obtained from ChEMBL version 22.17 Only compounds with
numerically specified equilibrium constants (Ki values) for
single human proteins were selected, while omitting borderline
active compounds (pKi < 5) that might often represent
artifacts. Table 1 reports the accession number, target name,
number of compounds and mean pKi values for these 10

compound data sets. As background set (pool of negative
instances), 250 000 compounds were randomly selected from
ZINC.9 Random subsets of these compounds were used as
negative training and test examples. For model building, all
active and inactive compounds were represented as standard
MACCS fingerprints18 consisting of 166 bits monitoring the
presence (bit set on) or absence (set off) of predefined
structural fragments or patterns. Although we deliberately
selected the simplistic and easy to rationalize MACCS
fingerprint for our proof-of-concept investigation, control
calculations were also carried out using the folded version of
the extended connectivity fingerprint with bond diameter 4
(ECFP4).19

Calculation Protocol.

(1) Each activity class was randomly divided into training
and test (prediction) sets. Training set size was varied
across values #I = {10, 50, 100, 500, 1000} for the
negative (inactive) class and #A = {10, 50, 100, 250, 500}
for the positive (active) class. Test sets always consisted
of 10 000 inactive and 100 active compounds.

(2) Preprocessing of the fingerprints of the training and test
data was carried out by removing zero-variance features
and applying centering and unit variance scaling to all
features on the basis of the training set for each trial.

(3) For each of the 25 training set combinations, SVM
models were built using the linear and Tanimoto kernel
with class weights C+ and C−. In addition, cost factors C
controlling the influence of individual support vectors
were optimized using values of 0.01, 0.1, 1, and 10. For
cost factor optimization, 10-fold cross-validation was
carried out with training data splits of 60% (model
derivation) and 40% (testing, internal validation).
Models with best cost factors were selected on the
basis of largest area under the ROC curve (AUC).

(4) The optimized SVM model was used to rank test set
compounds in the order of decreasing probability of
activity based upon the signed distance from the
hyperplane (positive to negative side). Model perform-
ance was assessed by determining the recall rate of active
compounds within the top 1% of ranked test compounds.
In addition, balanced accuracy (BA) was calculated,
defined as

= + + +BA
0.5TP

TP FN
0.5TN

TN FP
(TP, true positives; TN, true negatives; FP, false

positives; FN, false negatives).
(5) For each activity class and combination of a kernel

function and training set size, the modeling process was
carried out 50 times to obtain a distribution of recall
rates.

(6) The results were compared using hypothesis testing. The
nonparametric Kolmogorov−Smirnov test20 was em-
ployed to account for differences between cumulative
recall distributions and the Levene test21 to compare the
variance of these distributions. In addition, the
Bonferroni correction22 was introduced for multiple
testing.

The calculation protocol was implemented in R,23 and the
kernlab package24 was used for SVM modeling.

Table 1. Compound Data Setsa

accession
no. target name

number of
compounds

mean
pKi

P00734 thrombin 839 6.67
P00918 carbonic anhydrase 2 2164 7.22
P21917 dopamine D4 receptor 804 7.11
P41146 nociceptin receptor 844 7.81
P00742 coagulation factor X 1476 7.77
P29275 adenosine receptor A2b 1187 7.12
P32245 melanocortin receptor 4 1260 7.00
Q9H3N8 histamine H4 receptor 875 6.97
Q99705 melanin-concentrating hormone

receptor 1
1208 7.45

Q9Y5Y4 prostaglandin D2 receptor 2 833 7.53

aTen compound data sets were selected from ChEMBL and used for
SVM modeling. For each activity class, the ChEMBL accession no.,
target name, number of compounds, and mean pKi value are reported.
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■ RESULTS AND DISCUSSION
For different activity classes, SVM classification and ranking
models were built under systematic variation of training set
composition and size and active compounds were predicted.
Specifically, the number of negative and positive training
examples was varied in the ranges of 10−1000 and 10−500,
respectively, and all possible combinations were explored. In
addition, cost factors were optimized by cross-validation and
class-specific weights were used to account for data imbalance
in the training set.
Class Weights. Figure 1 compares balanced accuracy of the

predictions in the presence or absence of class weights for two

representative activity classes. Consideration of class-specific
weights consistently improved the accuracy of the predictions
for imbalanced training sets, except for three cases of large
training sets with at least 250 actives and 500 inactives for
which the performance was comparable. Hence, the explicit
consideration of different class weights for positive and negative
training instances produced more accurate classification
models. Under these conditions, the derived hyperplane was
not skewed toward the minority class, resulting in improved
model generalization, especially in the presence of large training
data imbalance. These effects were outweighed only for the
largest and least imbalanced training sets. Given the
demonstrated relevance of class weights for prediction accuracy,
a factor that is not always considered in SVM modeling, results
reported in the following included class weight settings.
In addition, optimization of cost factors was carried out using

cross validation. The best cost factors often varied depending
on training set composition, but for well-performing training
sets (i.e., those with large numbers of actives and inactives),
there was an overall preference for C values of 0.01 for both the
linear and Tanimoto kernels. For highly imbalanced data sets,
larger cost factors were frequently selected, indicating that
adjusting margin softness (stability) also contributed to model
generalization. It is noteworthy that for different training set
compositions and regardless of the cost factor chosen the
hyperplanes generated by the SVMs were very frequently able

to separate the training data without error and thus resulted in a
hard margin classifier.

Kernels and Fingerprints. Figure 2 reports compound
recall for alternative kernel functions under systematic variation
of inactive and active training instances for two representative
activity classes. Figure 3 shows corresponding density plots for
recall rate distributions over multiple trials. First, we focus on
relative kernel performance. The results in Figure 2 and 3 reveal
generally higher recall performance for the Tanimoto than the
linear kernel, frequently reaching a recall level of 0.9. However,
even for the linear kernel, satisfactory recall was observed, often
approaching a recall level of 0.75. Differences in recall
performance between the linear and Tanimoto kernel were
quantitatively assessed for all activity classes and statistically
compared using the two-sided and paired Kolmogorov−
Smirnov test. The results confirmed that the Tanimoto kernel
generally performed significantly better than the linear kernel
for training instances of #A = {100, 250, 500} and #I = {100,
500, 1000}. However, there was no significant difference in the
cases of #A = {10} and #I = {50, 100, 500, 1000} where
prediction accuracy was limited. Furthermore, as shown in
Figure 3, SVM models derived using the Tanimoto kernel were
generally more robust, i.e., corresponding recall rate distribu-
tions were sharper for the Tanimoto than for linear kernel. The
presence of narrow distributions indicated that models derived
from different training sets had comparable prediction accuracy
for alternative test instances. As a control, SVM calculations
were also repeated using the radial basis function (RBF)
kernel,25,26 another popular kernel function, with a sigma
setting, corresponding to the inverse kernel width, of 0.01.26

The results obtained using the RBF kernel were, on average,
nearly indistinguishable from those obtained using the
Tanimoto kernel discussed in the following. As an additional
control, the calculations were also carried out using ECFP4
instead of MACCS to compare the trends observed for training
set variation. With both fingerprints, the same trends were
observed (with the typical slightly better recall performance of
ECFP4 relative to MACCS).

Training Sets of Varying Composition and Size. The
results in Figures 2, 3, and 4 revealed two key findings; (i) recall
performance and model generalization consistently improved
with increasing size of training sets and (ii) the ratio of active vs
inactive training examples significantly influenced prediction
accuracy. The increases in recall performance observed in
Figure 2 were detected for all activity classes. When the number
of active training instances was kept constant, recall rates
increased with increasing numbers of inactive instances, except
in the case of 10 actives, where prediction accuracy was
generally low even over the range of 100−1000 negative
instances. Thus, a minimum number of active training
compounds was required for training sets of increasing size.
Similar observations were made when the number of inactive
training compounds was kept constant and the number of
active examples was increased. Ten negative examples were
consistently insufficient for building effective models and 50
negative training instances were often insufficient (Figure 2).
However, in the presence of at least 100 negative training
instances, high prediction accuracy was consistently achieved
when the number of active examples was increased (Figure 3).
For all compound classes, incremental increase in the

number of negative (positive) training instances led to
systematic performance enhancements when at least 50 positive
(100 negative) training compounds were used, as confirmed by

Figure 1. Effects of class weights on model performance. Heat map
representations show balanced accuracy over 50 independent trials
(using a two-color gradient) for training sets of varying composition
and size: (top) melanocortin receptor 4 (MC4R) ligands, (bottom)
thrombin inhibitors.
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the one-sided Kolmogorov−Smirnov test. While overall highest
prediction accuracy was achieved for training sets consisting of
500 active and 1000 inactive examples, similar accuracy was
already observed for 100 active and 500 inactive training
compounds. Furthermore, recall generally began to reach a
plateau when at least 100 active and 500 inactive training
instances were used (Figure 2). However, with further
increasing training set size, recall rate distributions became
narrower, as illustrated in Figure 3 and 4, which was indicative
of models with consistent prediction accuracy despite training
set variations, as mentioned above.
Table 2 compares the recall performance over all activity

classes for one of the worst and the best performing training set
compositions of 10 actives/100 inactives and 500 actives/1000
inactives, respectively. In the bad case scenario, recall rates of
compounds werewith one exceptionlower than 50% with
large standard deviations and balanced accuracy was around the
80% level. By contrast, for the best performing large training
sets, recall rates were consistently high, with a mean of 87%,
and balanced accuracy was approaching 100% with very low
standard deviations (Table 2). Interestingly, training set
imbalance only limited the accuracy of predictions in the case
of small but not large training sets, as illustrated in Figure 4, an
effect that can be ascribed to the use of class weights for SVM
models, as detailed above. For example, while an inactive vs
active ratio of 10:1 produced inaccurate predictions for training
sets comprising 100 inactive and 10 active training examples,
prediction accuracy was high when 1000 inactive and 100 active

training compounds were used. Similar observations were made
for other compound ratios.

Variance. Taken together, the results in Figure 3 and 4
clearly indicate that the predictions became stable with
increasing size of training sets, another key finding. Figure 5
reports the variance of recall rates over independent predictions
using training sets of increasing size and provides confirmatory
evidence. Furthermore, Levene tests for all activity classes
confirmed that the variance of recall distributions significantly
differed in 38 of 40 cases (resulting from 10 compound classes
and four training set conditions) when training sets with at least
50 active and 10 or 1000 inactive examples were used. By
contrast, no statistically significant differences in variance of
recall rate distributions were detected when the SVM models
were trained with 100 or 1000 inactive examples, regardless of
the number of actives.

■ CONCLUSIONS

Herein, we have systematically analyzed the influence of
training set composition and size on the prediction accuracy of
SVM classification models. Different from earlier studies, our
calculations have stressed the importance of considering class
weights and optimizing cost factors when imbalanced training
sets are used. Furthermore, the ratio of active vs inactive
training examples substantially affected the ability of SVM
models to correctly predict active compounds. However, recall
rates and balanced accuracy consistently improved for training
sets of increasing size for all compound classes under study.
Increasing size of training sets also compensated for inherent

Figure 2. Recall performance. The median value and interquartile range of the recall rate of active compounds among the top 1% of the ranking is
reported for 50 trials with the linear (blue dashed line) or Tanimoto (red solid line) kernel. Results monitor the evolution of recall for a constant
number of inactives (or actives) and increasing number of actives (or inactives) in the training set: (a) melanocortin receptor 4 ligands, (b) thrombin
inhibitors.
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data imbalance. Moreover, large training sets led to robust
predictions and the accuracy was essentially constant when
different training sets of the same size were used. Taken
together, our findings have implications for practical
applications of SVM classifiers. The following conclusions can
be drawn. Best performing SVM models were obtained when
250−500 active and 500−1000 randomly selected inactive
training instances were used. Moreover, as long as ∼50 known
active compounds are available for training, increasing numbers
of 500−1000 randomly selected negative training examples
improve and stabilize model performance when class weights

are taken into consideration, which provides a clear guideline

for virtual compound screening.
Finally, we note that large numbers of active compounds may

not always be available for training. However, since SVM

classification and ranking models do not take compound

potency as a parameter into account, in contrast to support

vector regression, large numbers of hits often obtained from

confirmatory screening assays might be readily used for SVM

model building.

Figure 3. Density estimates. The distribution of recall rates over 50 trials is given for 100 (top) and 1000 (bottom) inactive and increasing numbers
of active training compounds: (a) melanocortin receptor 4 ligands, (b) thrombin inhibitors.

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.7b00088
J. Chem. Inf. Model. 2017, 57, 710−716

714



■ AUTHOR INFORMATION
Corresponding Author
*Tel.: +49-228-2699-306. Fax: +49-228-2699-341. E-mail:
bajorath@bit.uni-bonn.de.
ORCID
Jürgen Bajorath: 0000-0002-0557-5714
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The project leading to this report has received funding (for
R.R.P.) from the European Union’s Horizon 2020 research and
innovation program under the Marie Skłodowska-Curie grant
agreement No 676434, “Big Data in Chemistry” (“BIGCHEM”,
http://bigchem.eu). The article reflects only the authors’ view
and neither the European Commission nor the Research
Executive Agency (REA) are responsible for any use that may
be made of the information it contains.

■ ABBREVIATIONS
AUC, area under receiver operating characteristic curve; BA,
balanced accuracy; ECFP, extended connectivity fingerprint;
MC4R, melanocortin receptor 4; RBF, radial basis function;
SVM, support vector machine

Figure 4. Influence of training set composition and size on recall rates.
Density estimates obtained from the distribution of recall rates over 50
trials are presented for training sets of varying size and composition.
For a constant number of 10−500 active training compounds, recall
distributions are shown for 10 (pink), 100 (green), and 1000 (blue)
inactive training compounds: (a) melanocortin receptor 4 ligands, (b)
thrombin inhibitors.

Table 2. Classification Performancea

10 actives and 100 inactives 500 actives and 1000 inactives

accession no. recall μ recall σ BA (%) μ BA (%) σ recall μ recall σ BA (%) μ BA (%) σ

P00734 0.433 0.211 79.3 5.1 0.911 0.021 98.8 0.6
P00918 0.388 0.219 87.2 3.7 0.770 0.036 97.0 0.9
P21917 0.288 0.164 80.9 5.9 0.744 0.045 96.9 1.1
P41146 0.455 0.163 80.9 6.3 0.924 0.018 99.4 0.3
P00742 0.236 0.138 72.4 5.7 0.872 0.027 98.5 0.6
P29275 0.407 0.226 81.5 4.5 0.820 0.030 97.0 1.1
P32245 0.486 0.276 85.6 4.5 0.942 0.018 99.0 0.5
Q9H3N8 0.440 0.233 84.3 4.5 0.888 0.030 98.4 0.7
Q99705 0.349 0.171 78.7 6.9 0.860 0.046 98.2 0.7
Q9Y5Y4 0.562 0.206 83.7 4.8 0.965 0.013 99.3 0.6
global performance 0.405 0.200 81.4 5.2 0.870 0.028 98.2 0.7

aReported are the mean (μ) and standard deviation (σ) of recall of active compounds and balanced accuracy after 50 independent trials for
differently composed training sets: “10 active and 100 inactive compounds” (low performance) and “500 active and 1000 inactive compounds” (high
performance). Results are shown for 10 compound classes, referred by accession no., according to Table 1. In addition, global performance over all
classes is reported.

Figure 5. Influence of training set composition and size on recall
variance. Heat map representations show variance of recall rates over
50 independent trials (using a two-color gradient) for training sets of
varying composition and size: (left) melanocortin receptor 4 (MC4R)
ligands, (right) thrombin inhibitors.
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Summary

SVM models were generated for individual targets using distinct amounts
and proportions of positive and negative training compounds. Both SVM-based
classification and ranking were highly influenced by the numbers of training
data. Models became consistently more accurate and robust with increasing
training set size. Data imbalance, which is a well-known caveat in ML, did not
reduce model performance. Investigated compound sets required a minimum of
∼50 actives for training and errors in the minority class (actives) needed to be
penalized during the learning process. Under these conditions, increasing the
inactive training examples resulted in more stable models that showed consis-
tent high performance regardless of the training set partition. This study has
identified the nature of training data as a key factor for successful single-target
activity predictions and established guidelines for SVM modeling in activity
prediction.

In the following chapter, MT-DNN and ST models are compared at varying
density of activity annotations for the prediction of profiling matrices.

67





Chapter 5

Relative Performance of Multitask Deep
Learning and Random Forest
Classification on the Basis of Varying
Amounts of Training Data

Introduction

As shown in the previous chapter, the training set size and composition has
a strong influence on ST-SVM model performance. However, it is not yet under-
stood how varying amounts of training data might affect ST and MT methods,
especially for comparative predictions. In Chapter 2, different methods and
strategies were investigated for the modeling of profiling matrices where MT-
DNN did not provide a learning advantage over ST-RF. In this chapter, the
availability of all compound-target interaction annotations is hypothesized as a
factor influencing the limited performance difference between alternative meth-
ods. Thus, the effect of training data sparseness on method relative performance
is addressed by training models on matrices of increasing data density.
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ABSTRACT: Currently, there is a high level of interest in deep learning and multitask
learning in many scientific fields including the life sciences and chemistry. Herein, we
investigate the performance of multitask deep neural networks (MT-DNNs) compared to
random forest (RF) classification, a standard method in machine learning, in predicting
compound profiling experiments. Predictions were carried out on a large profiling matrix
extracted from biological screening data. For model building, submatrices with varying
data density of 5−100% were generated to investigate the influence of data sparseness on
prediction performance. MT-DNN models were directly compared to RF models, and
control calculations were also carried out using single-task DNNs (ST-DNNs). On the
basis of compound recall, the performance of ST-DNN was consistently lower than that
of the other methods. Compared to RF, MT-DNN models only yielded better prediction
performance for individual assays in the profiling matrix when training data were very
sparse. However, when the matrix density increased to at least 25−45%, per-assay RF
models met or partly exceeded the prediction performance of MT-DNN models. When
the average performances of RF and MT-DNN over the grid of all targets were compared, MT-DNN was slightly superior to
RF, which was a likely consequence of multitask learning. Overall, there was no consistent advantage of MT-DNN over standard
RF classification in predicting the results of compound profiling assays under varying conditions. In the presence of very sparse
training data, prediction performance was limited. Under these challenging conditions, MT-DNN was the preferred approach.
When more training data became available and prediction performance increased, RF performance was not inferior to MT-
DNN.

1. INTRODUCTION

Recently, there has been increasing interest in machine
learning (ML) and, especially, deep learning (DL) in many
areas of science including pharmaceutical research.1−3 In ML,
one can distinguish between single-task (ST) and multitask
(MT) learning. MT learning is based on the idea that the
predictive performance of a given task can be improved by
using the data available for related tasks.4 In the context of
compound activity prediction, which is a core task in
computational medicinal chemistry, this principle implies that
some structural features and/or molecular properties should be
common to active compounds, regardless of their targets. This
“basis set” of activity-relevant features would then be
complemented by others to yield target-specific biological
activities. Hence, bioactivity data from various assays might be
considered to predict activities in a given assay on the basis of
shared activity determinants, a key assumption underlying MT
learning. By contrast, in ST learning, one trains models on the
basis of compounds that were active or inactive in an individual
assay in order to predict the potential activities of test
compounds.

For MT learning, deep neural network (DNN) architectures
(MT-DNNs) have become very popular,2,3 raising expect-
ations that they might yield further improved predictive
performance compared to standard ST−ML approaches.2,3,5 A
frequent reasoning is that MT-DNNs make explicit use of
moreand more diversetraining data than ST−ML
approaches, which further expands the knowledge base for
predictions. For example, Ramsundar et al. compared the
performance of MT-DNN with different architectures, ST-
DNN, and random forest (RF) predictions on four data sets
(Kaggle, Factors, Kinase, and UV). Their results suggested that
MT models offered improvements over RF calculations for
correlated tasks.3 However, the effect of training matrix density
was not explored. Xu et al. compared the performance of ST-
DNNs and MT-DNNs for different quantitative structure−
activity relationship prediction tasks.5 Their results indicated
that the prediction performance and relative performance of
ST-DNNs and MT-DNNs varied greatly across data sets
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containing either on-target potency values or off-target
absorption, distribution, metabolism, and excretion properties.
Furthermore, Xu et al. concluded that MT-DNN only
outperformed ST-DNN when test compounds showed
structural similarity and activity that correlated with training
set instances from other tasks.5 Recently, attempts have also
been made to predict experimental compound profiling
matrices.6 Such matrices are obtained by screening a
compound collection in different assays against closely related
or diverse targets and yield activity profiles of test compounds.
Importantly, the composition of such matrices is highly
unbalanced because the majority of compounds are usually
inactive across assays (otherwise, specific biological activities
would not exist). In the first investigation,6 ST and MT models
were derived for individual assays in matrices to predict active
compounds. Under conditions of experimental data imbalance,
prediction performance using different ML approaches was
overall reasonable and DNNs did not further increase the
performance over RF or support vector machine (SVM)
classifiers.6

General reasons for varying MT-DNN performance might
include, for example, the high complexity of MT-DNN
hyperparameter optimization and lack of transparence and/or
the nature of training data that is available.7,8 For example,
Rodriǵuez-Peŕez et al. have shown that activity prediction on
the basis of ST-SVM classification and ranking became more
accurate and stable with increasing numbers of available
training instances and that a lower-bound threshold for active
training examples was required.8 In addition, a recent study by
de la Vega de Leoń et al. investigated the effects of missing
data on the performance of MT methods.9 In particular, the
authors explored the performance of MT-DNN and Macau
(Bayesian factorization) methods at different percentages of
missing data. A minimum number of training instances was
required to generate effective models, but the predictive ability
saturated when increasing amounts of data were added.9

Furthermore, Reker et al. have shown that only small subsets of
ligand−target interaction matrices were required for ML
modeling to reach upper limits of predictive performance.10

In this case, RF models were built for predicting interacting
versus noninteracting ligand−protein pairs from concatenated
molecular and protein descriptors.10

Taken together, the studies discussed above have revealed a
significant influence of training set size on the quality of both
ST− and MT−ML models. However, the influence of training
data sparseness on comparative ST− and MT−ML predictions
remains to be investigated. Our current study was designed to
address this issue by further extending previous work on the
modeling of compound profiling matrices,6 which is a
prediction task of high relevance for biological screening and
medicinal chemistry. Herein, a large compound profiling
matrix combining different screening assays was used to derive
submatrices of systematically increasing density for the training
of RF, MT-DNN, and ST-DNN models that were then used to
predict the activity profile of test compounds. Thereby, the
relative performance of predictions using methods of different
computational complexity on training matrices of stepwise
increasing data density was investigated, thus directly
addressing the issue of training data sparseness for comparative
prediction of profiling results. The study design and results of
our investigation are presented in the following.

2. RESULTS AND DISCUSSION
2.1. Study Design. 2.1.1. Focusing on Profiling Matrices.

Compound profiling matrices from biological screening
represent challenging test cases for ML because of the
experimental assay variance and, more importantly, inherent
data imbalance. This is the case because most screening
compounds are inactive in given assays, which typically yield
on the order of ∼0.1−1% active compounds (hits).11

Previously, we have investigated a variety of ML approaches
for predicting the experimental results of assays forming
complete or nearly complete matrices using the largest possible
amount of training data on a per-assay basis.6 In a complete
(100% dense) matrix, all cells are filled with experimental
observations. Matrices of decreasing density have increasing
amounts of missing data points (“empty” cells). Here, we
change the analysis scheme and attempt assay predictions by
systematically deriving submatrices of varying density for
training, thereby directly assessing the influence of data
sparseness on the model quality.

2.1.2. Matrices of Varying Density. From a large profiling
matrix comprising more than 140 000 compounds tested in 53
assays (with 0.8% actives), different series of matrices with
stepwise increasing data density were extracted, covering the
range of 5−100% density, with increments of 5% per step.
Further details are provided in the Materials and Methods
section. Hence, 20 matrices with varying density levels were
obtained. Figure 1 shows the distribution of the number of

active compounds per assay for five exemplary matrices with
different densities of 5, 25, 50, 75, and 100%, respectively. The
figure illustrates that increasing data density correlated with
increasing numbers of active compounds available for training.

2.1.3. Training and Predictions. For each of the 20 matrices
with increasing density, ML models were derived at each
density level. The resulting models were then used to predict
active compounds. For ST predictions, an individual model
was built for each assay (target) to predict active compounds
on a per-assay basis. Individual predictions were then
combined. For MT predictions, multioutput models were
derived for all assays at each density level to predict the

Figure 1. Active compounds per assay. Distributions of the number
(#) of active compounds per assay are reported in boxplots for five
different matrix density levels. Black points represent outliers.
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complete activity profile of a compound. The resulting ST and
MT models were used to predict a constant test set comprising
25% of the original profiling matrix that was excluded from
training.
2.1.4. Selected Methods. As an ST−ML approach, RF was

selected. This choice was motivated by the results of our
previous ST matrix predictions where RF was the overall best
approach, achieving slightly better performance than SVMs
and ST-DNNs.6 As an MT−ML method, MT-DNN was
chosen, which represents the currently most complex MT
approach. Thus, RF and MT-DNN essentially delineate
opposite ends of the ML spectrum ranging from methods of
low to high computational complexity and an increasing “black
box” character. As a control, ST-DNN models were also
generated and evaluated.
In the following, the results of our systematic activity

predictions using RF and MT-DNN models trained at different
density levels are presented and compared. The results were
averaged over three independent trials.
2.2. Influence of Matrix Density on Prediction

Performance. We first investigated how training sample
sizes influenced the predictive ability of ST models based upon
data from only one assay or MT models based upon data from
all assays. Therefore, a pairwise comparison of ST or MT
models at different density levels was carried out using the area
under the receiver operating characteristic (ROC) curve
(AUC) as a figure of merit. For a given assay, the AUC
difference at two density levels was required to exceed 2% to
classify one prediction to be superior to another. The training
matrix yielding the best (worst) performing model was
considered to be of superior (inferior) density. Figure 2a,b
reports the results for RF and MT-DNN, respectively. The
number of assays for which a model trained with a given matrix
density provides better results compared to another matrix
density is reported. In addition to the pairwise comparison
shown in the heatmap, the panel on the right reports a cross-
density comparison for the same method. For both methods,
models trained at higher density levels produced better
predictions on a per-assay basis than the models trained at
lower density levels, as clearly revealed by the heatmap
representations. Thus, consistent with earlier observations,
increasing numbers of positive training instances resulted in
increasing prediction performance, here for both ST and MT
models. The separation between predictions with models
trained at higher or lower density was even more extensive for
RF than MT-DNN, as also indicated by the distribution of
superior assay counts in Figure 2. Hence, RF models were
overall more affected by missing data than MT-DNN models.
2.3. Method Comparison. Next, the performance of RF

and MT-DNN was compared at different density levels.
2.3.1. Relative Performance for Individual Tasks. Pre-

diction performance was first compared on a per-assay basis
using AUC and Matthew’s correlation coefficient (MCC). A
model was considered superior if it achieved at least 2% better
performance than its counterpart. This criterion was used as a
disjunctive requirement for the AUC and MCC measures.
Then, the number of individual assays in which a method was
superior to another was separately calculated for both figures of
merit. Figure 3 reports the average number of assays for three
independent trials. Figure 3a shows the mean number of assays
with larger AUC values for a given method at varying density
levels. MT-DNN was clearly superior to RF when very sparse
matrices were used for training. However, at increasing density

levels, performance differences became smaller, and at a
density level of 50% or greater, the performance of RF began
to meet and then slightly exceed the performance of MT-
DNN. Figure 3b reports the corresponding comparison on the
basis of MCC calculations. In this case, MT-DNN models
produced better predictions at low density levels of up to 25%.
At further increasing density, however, RF models were clearly
superior to MT-DNN. Thus, on the basis of the AUC and
MCC performance measures, similar trends were observed on
a per-assay basis, with MT-DNN models yielding better
prediction performance for training on very sparse matrices
and RF models having better prediction performance at
increasing density levels, especially when evaluated on the basis
of MCC calculations. At high density levels, that is, in the
presence of large amounts of training data, RF models were

Figure 2. Prediction performance at different matrix densities.
Heatmaps record the average number of assays for which larger
AUC values were obtained at a given (superior) matrix density (y-
axis) compared to another (inferior) density (x-axis). On the right,
bar graphs report the number of assays (count) at a given density level
for which better prediction performance was achieved than at any
other density for the same method. (a) RF and (b) MT-DNN.
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superior on a per-assay basis to the much more complex MT-
DNN models.
To provide additional control calculations, ST-DNN models

were also generated. Figure 3c compares ST- and MT-DNN
models on the basis of AUC values. MT-DNN models
outperformed ST-DNN models in most assays at varying
density levels. ST-DNN models only yielded better AUC
values in a few cases. At decreasing matrix density, perform-
ance differences between MT- and ST-DNN increased, and
MT-DNN was progressively superior. Figure 3d shows the
results of MCC calculations. Here, ST-DNN models yielded

larger MCC values for more assays than MT-DNN models.
However, for very sparse training matrices, the relative
performances of both methods became comparable.

2.3.2. Global Prediction Performance. Figure 4a shows the
mean AUC, balanced accuracy (BA), and MCC values over all
assays at varying density levels. Values of different performance
measures are reported in Table 1. Different from the results
obtained for individual assays, on average, predictions were
slightly superior for MT-DNN compared to RF when assessed
on the basis of AUC and clearly superior on the basis of BA
calculations. However, on the basis of MCC calculations, the

Figure 3. Per-assay comparison of prediction performance using different methods. For different trials covering all matrix density levels, the mean
(dot) and standard deviation (error bar) of the number of assays are given for which one method achieved higher prediction performance than the
other on the basis of different measures. RF, MT-DNN, and ST-DNN models were compared. (a) MT-DNN vs RF on the basis of AUC, (b) MT-
DNN vs RF; MCC, (c) MT-DNN vs ST-DNN; AUC, and (d) MT-DNN vs ST-DNN; MCC.

ACS Omega Article

DOI: 10.1021/acsomega.8b01682
ACS Omega 2018, 3, 12033−12040

12036



global prediction was only slightly better for MT-DNN models
at very low density levels of up to 25%. Then, the prediction
performance of RF models gradually exceeded the performance

of MT-DNN models, consistent with the results in Figure 3b.
Hence, Figure 4a shows that different performance measures
produced different results. As a consensus, we would conclude
that average results over all assays were slightly better for MT-
DNN than RF.
To better understand apparent differences resulting from the

application of alternative performance measures, confusion
matrices were generated at different density levels using mean
values. Rates derived from raw counts of true positives (TPs),
false positives (FPs), false negatives (FNs), and true negatives
(TNs) were calculated. Figure 4b shows the TP rate (TPR)
and TN rate (TNR), which are defined as follows:
TPR = TP/(TP + FN) and TNR = TN/(TN + FP).
Therefore, TPR and TNR are related to FN rates (FNR) and
FP rates (FPR), respectively. TPR and FNR displayed the
same tendency for RF and MT-DNN. At increasing density,
TPR increased and FNR decreased. However, for MT-DNN,
FPR increased and TNR decreased at increasing density levels,
whereas they remained essentially constant for RF across all
levels. Thus, MT-DNN predicted more FPs than RF at
increasing density. We note that the constantly used test set
contained a mean of 35 523 inactive and only 305 active
compounds per target, given the inherent data imbalance.
Consequently, figures of merit that use absolute values such as
MCC are strongly affected by the different magnitudes of the
numbers of active and inactive compounds. Conversely, other
measures relying on proportions only yield small differences,
which correspond, however, to large differences in the absolute
number of errors.
On the basis of MCC calculations, MT-DNN model

performance was clearly inferior to RF, except at lower density
levels, when the number of FPs and TNs decreased and
increased, respectively. On the other hand, the model
performance assessed by BA taking only the TPR and TNR
into account was superior for MT-DNN, given that the TPR
was consistently higher for MT-DNN and differences in TNR
were comparably small. These aspects must be taken into
consideration when judging relative prediction performance on
imbalanced data sets using alternative figures of merit.
ST-DNN was also included in the global comparison as a

control. On the basis of AUC values, ST-DNN performed
consistently worse than the other two methods. In addition,
ST-DNN models produced BA values falling in between those
of RF and MT-DNN and MCC values that were overall
comparable to RF.
The consensus view emerging from the results comparing

MT-DNN and RF shown in Figures 3 and 4 was that MT-
DNN was only superior to RF when models were trained on
the basis of very sparse matrices. When examining the relative
prediction performance (Figure 3), MT-DNN models only

Figure 4. Global prediction performance using different methods. For
different trials covering all matrix density levels, the mean prediction
performance over all assays is compared for MT-DNN and RF using
different measures. (a) AUC (top), BA (middle), and MCC
(bottom), (b) TPR (right), and TNR (left).

Table 1. Evaluation of Predictions Applying Different Performance Measuresa

AUC BA MCC TPR TNR

matrix density (%) MT-DNN RF MT-DNN RF MT-DNN RF MT-DNN RF MT-DNN RF

5 0.700 0.666 0.551 0.521 0.080 0.058 11.9 4.6 98.3 99.5
25 0.763 0.744 0.623 0.548 0.117 0.117 28.3 10.2 96.3 99.5
50 0.790 0.781 0.653 0.570 0.126 0.156 35.2 14.7 95.4 99.4
75 0.803 0.793 0.674 0.581 0.126 0.173 40.3 16.9 94.5 99.3
100 0.810 0.804 0.693 0.591 0.128 0.190 44.8 19.1 93.9 99.3

aReported are mean AUC, BA, and MCC values for global predictions using MT-DNN and RF models trained at varying matrix density levels. In
addition, mean TPR and TNR values are given.
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displayed superior performance to RF models at training
matrix density levels of up to 25−45%, depending on the
performance measures that were applied. By contrast, at
increasing matrix density, RF calculations often met or
exceeded the prediction performance of MT-DNN at the
level of individual assays. Global prediction results (Figure 4)
also showed that when enough training data were available, RF
models were at least as good as MT-DNN models. Only global
BA values were consistently higher for MT-DNN, but for the
remaining performance measures (AUC, MCC), MT learning
only provided a notable advantage at low matrix density levels.
2.4. Concluding Discussion. In this work, we have

systematically explored the effects of using varying amounts of
training data on MT-DNN and RF modeling. As a prediction
task representing experimental results, a large compound
profiling matrix was selected. The analysis was facilitated by
generating assay submatrices of varying density for model
derivation. The resulting models were then compared on the
basis of a consistently used test submatrix of 100% density.
There was no significant global correlation between prediction
tasks. Differences in the performance of (low-complexity) RF
and (high-complexity) MT-DNN models were observed at
different density levels.
When trained on very sparse matrices, MT-DNN models

yielded better prediction performance than RF models.
However, when the density increased to 25−45%, per-assay
RF models met or slightly exceeded the prediction perform-
ance of MT-DNN models. Thus, compared to a RF, a standard
ML classifier, MT-DNN models only provided a learning
advantage for individual assays when training data were very
limited. However, when predictions were averaged over all
assays, MT-DNN was the overall superior approach, albeit by a
confined margin, depending on the applied performance
measures. This observation reflected the presence of more
stable predictions as a likely consequence of MT learning. On
the basis of AUC values, ST-DNN was consistently inferior to
MT-DNN and RF but produced higher MCC values than MT-
DNN for matrices of increasing density. In all instances,
performance assessment yielded partly different results,
depending on the measures that were used, emphasizing the
need to consider alternative performance measures in ML.
Taken together, the results of our analysis show that there

was no consistent advantage of MT-DNNs over RF in
predicting profiling assay results, as one might have
anticipated, given high expectations often associated with
MT DL. These findings should balance such expectations, at
least for applications of DL in compound screening. However,
they are also encouraging from the point of view that
reasonable prediction performance was also achieved on a
complicated prediction task with a standard ML classifier of
much lower complexity than DNN architectures. Clearly,
under most challenging conditions of data sparseness, when
prediction performance was limited, MT-DNN was the
superior approach. When increasing amounts of training data
became available, and the model quality generally improved,
the performance of MT-DNN and RF was comparable.
Taken together, our findings also suggest that MT-DNN

might be preferred over standard classification methods such as
RF in special situations, for example, when the main objective
is modeling a single task (activity) and only very little training
data are available for this task, but extensive data are available
for related (correlated) tasks (such as similar activities). In
addition, MT-DNN might be an approach of choice when the

main objective is improving global prediction performance
over multiple screens, and only sparse training matrices are
available.
In future work, additional prediction tasks in chemistry and

other challenging prediction conditions should be explored to
further evaluate potentially significant advantages of DL and
MT learning over standard ML approaches.

3. MATERIALS AND METHODS
3.1. Assay Data. A large compound profiling matrix was

algorithmically extracted12 from PubChem confirmatory assays
as described previously6 and provided the basis for our
analysis. This matrix consisted of 143 310 compounds tested in
53 assays (covering a diverse range of 53 unique target
proteins).6 In the matrix, activity versus inactivity of
compounds in assays was recorded in a binary format (i.e., 1
vs 0). The matrix density of experimental observations was
96.4%. As reported in Table 2, the majority of screened

compounds (77%) were consistently inactive in all assays, 13%
of the compounds had single-target activity, and 10% had
multitarget activity. The resulting global proportion of matrix
cells containing activity annotations was 0.8%. As reported
previously,6 the intra- and interassay similarity of active matrix
compounds was generally low.

3.2. Matrix Modifications. For computational modeling,
the matrix was completed (100% density) by conventional zero
filling,13 that is, missing experimental data (3.6%) were
compensated for by inactivity annotations. The complete
matrix was then randomly divided into training (75%) and test
data (25%). The test set submatrix was complete (100%
density). By contrast, training sets of varying density were
created ranging from 5 to 100% density, with increments of
5%. To these ends, 95% of the compound-assay annotations
were randomly removed, and assay data were added back in
5% increments, yielding cumulatively built training sets of
stepwise increasing density.

3.3. Machine Learning. Using a consistent molecular
representation, two distinct ML approaches of different designs
and computational complexity were investigated including
(ST-)RF and MT-DNN. As a control, ST-DNN calculations
were carried out.

3.3.1. Molecular Representation. The folded (1024-bit)
version of the extended connectivity fingerprint with bond
diameter 4 (ECFP4) was used as a molecular representation.14

ECFP4 was computed using in-house Python scripts based
upon the OEChem Toolkit.15

3.3.2. Calculation Protocol. For each matrix density level,
RF and MT-DNN models were trained and used to predict the
same test data. Three independent trials with different random
seeds were carried out for training sets covering all density
levels, as detailed above. In each trial, RF and MT-DNN
models were built for individual assays using the same
cumulative training sets and compared. The use of different

Table 2. Matrix Compounds with Different Activity Statusa

activity status number of compounds

consistently inactive 110 272 (77%)
single-target activity 19 054 (13%)
multitarget activity 13 984 (10%)

aReported are the numbers of matrix compounds with different
activities across all assays.
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random seeds for modeling modified the initialization of MT-
DNN and cross-validation partitions of RF models.
Models were only built for assays for which the training

matrices and the test matrix consistently contained active
compounds. The different training sets included active
compounds from all 53 assays, whereas the test set was
found to contain active compounds from 47 assays. Thus, RF
and MT-DNN models were ultimately built for 47 assays
(targets).
Figure 5 shows the distribution of pairwise Pearson

correlation coefficients (r) between learning tasks encoded

by the matrix. The maximum r value was 0.79 and the mean r
value 0.03, which indicated very low global correlation between
tasks (while significant correlation between tasks typically
supports transfer and MT learning).
3.3.3. Random Forest. The RF approach utilizes an

ensemble of decision trees that are built with different subsets
of samples by bootstrapping.16 Variance is reduced by training
decision trees using different subsets of the training set.
Moreover, a random sample of features is considered during
node splitting, which avoids the presence of correlated trees
because of feature dominance.16 In this study, the scikit-learn
implementation of RF was used.17 The number of trees was set
at 100, and two hyperparameters were optimized using twofold
cross-validation including the number of randomly selected
features available at each bifurcation (max_features) and the
minimum number of samples required to reach a leaf node
(min_samples_leaf). Cross-validation optimization was inde-
pendently carried out on a per-assay basis such that different
optimum hyperparameters could be derived for each RF
model. Tested values for max_features included the total
number of features, the square root, and the logarithm to base
two of the number of features. In addition, for min_sam-
ples_leaf, candidate values were 1, 5, and 10. Class weights
were set according to the ratio of samples from each training
label (i.e., active vs inactive) such that errors in the minority
class were preferentially penalized.7 Default values were used
for all remaining hyperparameters.17

3.3.4. Multitask Deep Neural Networks. Feed-forward
DNNs learn a function that approximates the input values to
an output (class) without backward connections or loops
within the network architecture.18,19 DNNs can be used for
MT activity predictions by considering multiple nodes in the
output layer, yielding MT-DNNs.19 A DNN is constituted by
different layers including an input layer, hidden layers, and an
output layer.20 Each layer contains a number of neurons that
assign weights to the values originating from the previous layer,
adds them, and passes the sum through an activation function
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j jk k k
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k

jjjjjjj
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Here, yk is the output and xj is the input of neuron k, f is the
activation function, wkj are the weights connecting neuron k
with xj, and bk is the so-called bias.21 Ultimately, the output
layer transforms the values of the last hidden layer into the
output values (classes). Weights are derived during training by
the iterative value modification to obtain the desired output y.
Gradient descent is computed using back-propagation to
optimize the weights and biases.20 For weight and bias
adjustment, back-propagation required the actual labels
(active/inactive) of the training set. For MT-DNN calcu-
lations, Keras22 and TensorFlow23 Python implementations
were used.
For MT-DNNs, many optimization-relevant hyperpara-

meters are available. Because 20 successive density levels and
three trials per level were investigated, an exhaustive evaluation
of alternative hyperparameter settings was computationally
infeasible. Instead, a set of hyperparameters permitting
validation loss convergence was chosen for comparison of
different density levels, as suggested by previous optimization
studies.6,20 These parameter settings included, first, a
pyramidal network architecture with two hidden layers of
2000 and 1000 neurons, respectively. In addition, the rectified
linear unit (ReLU) function was chosen as an activation
function, except for the output layer, in which the sigmoid
function was employed. Furthermore, as an optimization
function, stochastic gradient descent (SGD) was used, the
batch size was 1024, and the initial learning rate (LR) was set
to 0.01 and iteratively decreased when the training loss reached
a plateau and remained constant. To avoid overfitting, a fall-
out rate of 25% was applied. A total of 800 epochs were
computed, and the best resulting model was used for
prediction. Class weights were considered. For internal
validation, an 80−20% data split was applied. Binary cross-
entropy was used as the loss function and the reduction of the
LR and the choice of the best model after 800 epochs were
based on minimizing this validation loss.

3.3.5. Single-Task Deep Neural Networks. As additional
control calculations, ST-DNN models were built and evaluated
at the same 20 density levels. Hyperparameter values were set
according to previous optimization results.6 The ST-DNN
network architecture included two hidden layers with 2000 and
1000 neurons, respectively. ReLU was the activation function,
except for the output layer, which used the softmax function.
The optimization function was SGD, the batch size was set to
128, and the LR was set to 0.0001. To avoid overfitting, a
drop-out rate of 25% was permitted, and L2-regularization was
applied. Furthermore, batch normalization was applied to all
layers, and a total of 100 epochs were computed.

Figure 5. Correlation between learning tasks. The histogram shows
the distribution of pairwise Pearson correlation coefficients (r)
between all learning tasks (training data) on a logarithmic x-scale.
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3.4. Performance Measures. The performance of ML
models was evaluated using confusion matrices and three
different measures including the area under the ROC curve
(AUC),24 MCC,25 and BA.26 AUC evaluates the global
ranking of test compounds. MCC and BA are defined below

=
× − ×

+ + + +

MCC
TP TN FP FN

(TP FP)(TP FN)(TN FP)(TN FN)

= +BA
1
2

(TPR TNR)
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Summary

Herein, a dense compound profiling matrix extracted from PubChem BioAs-
say facilitated the study of the influence of data sparseness on model perfor-
mance. A systematic analysis of MT-DNN and ST-RF predictions demon-
strated a strong influence of profiling matrix density on global and relative
methods’ performance. No consistent advantage was observed for MT-DNN
models compared to ST-RF. Average or global performance estimations using
distinct metrics pointed out MT-DNN superiority for the prediction of activity
profiles. However, performance for individual targets highlighted MT-DNN as
a preferred option only for modeling very sparse data sets. Nevertheless, for
increasing matrix density and increasing numbers of compound-target anno-
tations as training data, ST-RF results on individual assays approached and
occasionally exceeded MT-DNN predictive ability.

In the previous chapters, ML models of varying complexity have shown
high performance in predicting compound activity across distinct test cases.
The following chapters cover the work on interpretability of complex model
decisions.
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Chapter 6

Support Vector Machine Classification
and Regression Prioritize Different
Structural Features for Binary
Compound Activity and Potency Value
Prediction

Introduction

SVM is a standard ML method that provides state-of-the-art performance
for the prediction of compound activity against biological targets, as also shown
in previous chapters. The extension of the SVM algorithm to regression prob-
lems (SVR) has also allowed the prediction of potency values or, in other words,
the magnitude of activity. Both variants relate structural parts of chemical
compounds to changes in activity resulting in qualitative and quantitative SAR
models, which typically are non-linear. In this chapter, a systematic analysis
of feature relevance in non-linear SVM and SVR models is presented. The aim
is determining whether prioritized chemical patterns are stable across indepen-
dent trials and common in both models. Important features for both methods
are extracted and visualized to compare chemical patterns driving the binary
activity and potency value predictions.
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ABSTRACT: In computational chemistry and chemoinformatics, the
support vector machine (SVM) algorithm is among the most widely
used machine learning methods for the identification of new active
compounds. In addition, support vector regression (SVR) has become
a preferred approach for modeling nonlinear structure−activity
relationships and predicting compound potency values. For the
closely related SVM and SVR methods, fingerprints (i.e., bit string or
feature set representations of chemical structure and properties) are
generally preferred descriptors. Herein, we have compared SVM and
SVR calculations for the same compound data sets to evaluate which
features are responsible for predictions. On the basis of systematic
feature weight analysis, rather surprising results were obtained.
Fingerprint features were frequently identified that contributed
differently to the corresponding SVM and SVR models. The overlap
between feature sets determining the predictive performance of SVM and SVR was only very small. Furthermore, features were
identified that had opposite effects on SVM and SVR predictions. Feature weight analysis in combination with feature mapping
made it also possible to interpret individual predictions, thus balancing the black box character of SVM/SVR modeling.

1. INTRODUCTION

Supervised machine learning is a preferred approach for the
prediction of compound properties including biological
activity.1,2 Among machine learning approaches, support vector
machines (SVM) have become increasingly popular.3−5 The
SVM methodology was originally conceived for binary class
label prediction of objects6−8 on the basis of training data. In a
given feature space, SVM learning aims to construct a
hyperplane to best separate training data with different class
labels.7,8 The hyperplane is derived on the basis of a limited
number of training instances, so-called support vectors, to
maximize a margin on each side of the plane. If the data are not
separable by a hyperplane, the data can be projected into
feature spaces of higher dimensionality where linear separation
of positive and negative examples might be possible.7,8 For a
given feature space, a successfully derived hyperplane
represents a classification model that can then be used to
predict the class label of test objects in this space, depending on
which side of the hyperplane (i.e., the positive or negative) they
fall. In chemoinformatics, binary class label prediction is used
for compound classification, for example, to distinguish active
from inactive compounds.3,4 In addition to class label
prediction, SVM models can also be used for compound
database ranking by calculating their distance from the “active”
or “inactive side” of the hyperplane.9

Support vector regression (SVR), an extension of the SVM
algorithm, has been introduced for predicting numerical

property values10,11 such as compound potency. In SVR,
instead of generating a hyperplane for class label prediction, a
different function is derived on the basis of training data to
predict numerical values. In analogy to SVM, SVR also projects
training data with nonlinear structure−activity relationships
(SARs) in a given feature space into higher-dimensional space
representations where a linear regression function may be
derived. In this case, compounds with different potency values
are used to fit a regression model that can then be used to
predict the potency of new candidate compounds. SVR
typically produces statistically accurate regression models
when predictions over all potency ranges are analyzed.5,12

However, SVR also displays the tendency to underpredict
highly potent compounds in data sets and hence eliminates
activity cliffs from their activity landscape.12

In SVM and SVR, mapping into higher-dimensional feature
spaces, which is a signature of these algorithms, is accomplished
through the use of kernel functions, the so-called “kernel
trick”.13 When using nonlinear kernel functions, SVM and SVR
can resolve nonlinear SARs in original feature spaces through
dimensionality extension. This makes SVR especially attractive
for potency prediction because it is not confined to the
applicability domain of conventional quantitative SAR analysis
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methods.14 On the other hand, both SVM and SVR modeling
have black box character, meaning that the predictions cannot
be directly interpreted in chemical terms. Hence, it is generally
difficult to rationalize model performance. Only few attempts
have thus far been made to aid in SVM model interpretation in
high-dimensional kernel spaces. For example, support vectors
with largest contributions to SVM models have been
visualized.15 In addition, descriptor features have been
organized in polar coordinate systems according to their
contributions to SVM predictions.16

To increase model interpretability and reduce the black box
character of SVM and SVR, we aimed to identify descriptor
features that determine model performance on individual
compound data sets. Given the close methodological relation-
ship between SVM and SVR, relevant features of classification
and regression models were also compared. Intuitively, one
might expect that SVM and SVR would prioritize similar
features for a given compound data set because most
informative chemical features for predicting whether a
compound is active or not might also be relevant for predicting
the magnitude of activity. For this purpose, feature weighting
and mapping techniques were systematically applied. Feature
mapping helped to rationalize the performance of SVM and
SVR models.

2. RESULTS AND DISCUSSION
2.1. Global Performance of SVM and SVR Models. A

prerequisite for feature weight analysis is the assessment of the
prediction accuracy of SVM and SVR models. This is the case
because the evaluation of features that contribute to predictions
is only meaningful if the underlying models reach a reasonably
high-performance level. Figure 1 summarizes the performance
of our SVM and SVR models on the 15 activity classes using
different figures of merit appropriate for assessing classification
and regression calculations. Results are presented for two
molecular representations, the MACCS fingerprint and
extended connectivity fingerprint with bond diameter 4
(ECFP4). Figure 1a shows that the median F1 scores and
the area under the ROC curve (AUC) values of the SVM
models were clearly above 0.95 for both MACCS and ECFP4
fingerprints, reflecting accurate classification of active and
inactive compounds. Furthermore, recall rates of the active
compounds reached a median value of 0.77 for MACCS and
0.94 for ECFP4 among the top 1% of the ranked compounds.
These results also reflected the usually observed higher
performance of ECFP4 relative to MACCS.
Figure 1b reports the performance of the SVR models across

the different activity classes. The median values of mean
absolute error (MAE) and mean squared error (MSE) median
values were between 0.5 and 0.6, and the median values of the
Pearson correlation coefficient (r) between the predicted and
observed pKi values were above 0.7 for MACCS and above 0.8
for ECFP4. In addition, errors of potency predictions were
consistently limited to less than 1 order of magnitude. Thus,
the SVR model also exhibited an overall reasonable perform-
ance.
2.2. Feature Relevance. A second condition for

informative feature weight analysis is demonstrating the
relevance of individual fingerprint features. Therefore, features
were randomly removed from SVM models or in the order of
decreasing feature weights, and classification calculations were
repeated. Figure 2 shows the results for exemplary activity
classes and the MACCS (Figure 2a) and ECFP4 (Figure 2b)

fingerprints. For MACCS containing 166 features, both random
and weight-based feature removal decreased compound recall
and increased MSE values. The magnitude of errors was greater
for weight-based feature removal than for random feature
removal. For ECFP4 comprising much larger numbers of
possible features, random feature removal affected the
calculations only marginally, if at all, whereas removal of highly
weighted features led to a substantial reduction in compound
recall and a gradual increase in MSE values. Thus, as
anticipated, removal of features obtaining high weights during
model building consistently reduced the model performance.

2.3. Global Feature Weight Analysis. For SVM and SVR
models, weights of fingerprint features were systematically
determined over 10 independent trials and compared. In some
instances, feature weights were consistently high or low over
different trials, as further detailed below; in others, they varied
depending on the training data. In addition, feature weights
generally varied for different activity classes, as expected.
Furthermore, it was observed that some individual features
were equally important for SVM and SVR for a given class,
consistent with their shared methodological framework.
However, a striking finding was that the importance of many

features for classification and regression fundamentally differed.
Figures 3 and 4 show representative examples for different
activity classes and MACCS and ECFP4, respectively. Feature
weights were assigned to three different categories (i.e., high,
medium, and low), as detailed in the Materials and Methods
section. Figures 3a and 4a show examples of MACCS and
ECFP4 features, respectively, which had very different weights
in SVM and SVR models, including features with consis-
tentlyor mostlylow weights in classification and high
weights in regression model and vice versa. Thus, many features

Figure 1. Global performance. Box plots report the prediction
accuracy of (a) SVM and (b) SVR calculations over all activity classes
and 10 independent trials per class. For SVM calculations, the F1
score, AUC, and recall of active compounds among the top 1% of the
ranked test set are reported. For SVR calculations, the MAE and MSE
values and the Pearson correlation coefficient (r) for the observed and
predicted potency values are given.

ACS Omega Article

DOI: 10.1021/acsomega.7b01079
ACS Omega 2017, 2, 6371−6379

6372



were only relevant for either classification or regression. On
average, 7 MACCS and 18 ECFP4 features were identified per
activity class that had a high weight in at least 5 of the 10 SVM
trials and a low weight in at least 5 SVR trials and vice versa.
Among these, there were no MACCS and on an average one
ECFP4 feature that exclusively had high/low weights in all
SVM/SVR trials and vice versa. One possible explanation for
such differences in feature relevance might be the composition
of support vectors in SVM and SVR. Although SVM and SVR
share a closely related methodological framework, support
vectors for SVM and SVR are determined in different ways. To
derive support vectors for regression, only active compounds
are considered, whereas classification models are trained with
active and inactive compounds, which also contribute to
support vectors. Given these intrinsic differences, SVM and
SVR models may prioritize different chemical descriptors for
support vector compounds during the training stage.
In Figures 3b and 4b, exemplary MACCS and ECFP4

features are mapped onto the structures of compounds that
were correctly predicted. In Figure 3b, MACCS features that
were highly weighted in classification (blue color) or regression
(red color) were mapped onto the same molecule, a thrombin
inhibitor, illustrating that features critical for SVM or SVR are
often mapped to different parts of the same substructure. In
Figure 4b, ECFP4 features critical for classification (blue color)
or regression (red color) are mapped to a serotonin 1A (5-
HT1A) receptor agonist, showing that features important for
classification (feature 638) or regression (201) are mapped to
distant parts of this compound.
In principle, features relevant for SVM and SVR might be

activity class-specific or shared by different classes. To identify
features common to different classes, MACCS and ECFP4
features were determined that had a high weight in at least 5 of
the 10 SVM or SVR trials per class. For SVM, on an average, 9
of such MACCS and 15 ECFP4 features were identified per

activity class and for SVR, 14 MACCS and 35 ECFP4 features
were identified. For SVM, a total of 38 MACCS and 47 ECFP4
highly weighted features were shared by two activity classes. For
SVR, 56 MACCS and 116 ECFP4 features were shared by two
classes. However, for SVM (SVR), only five (seven) MACCS
and nine (three) ECFP4 features with at least five high weights
were common to five or more activity classes. Thus, most
features determining SVM and SVR predictions were weighted
in a compound class-specific manner.
Furthermore, we also determined the number of features that

were consistently highly weighted in all trials per activity class.
For SVM, on an average, only two of such MACCS and five
ECFP4 features were identified and for SVR, two and four
MACCS and ECFP4 features, respectively, were identified.
Thus, weights of most features with strong contributions to
SVM and SVR predictions displayed some variations in
different activity classes depending on the training sets.

2.4. Features with Different Signs. So far, only absolute
feature weights were analyzed, which revealed many features
that contributed differently to SVM and SVR. However, in
SVM and SVR, feature weights may carry a positive or negative
sign depending on how they influence the predictions. Features
with a positive weight contribute to the prediction of active
compounds in SVM and high potency values in SVR, whereas
features with a negative weight contribute to the prediction of
inactive compounds in classification and low potency values in
regression. Thus, taking these signs into account further refines
the view of differential feature contributions to SVM and SVR.
Therefore, we also searched for features with high weights and
different signs. Such features have opposite effects in SVM and
SVR. Only few features were identified that had high weights in
corresponding SVM and SVR trials but consistently different
signs. Exemplary features with opposite effects in SVM and
SVR are shown in Figure 5. For example, three MACCS
features in Figure 5a contributed to the prediction of active

Figure 2. Effects of feature removal. For SVM and SVR, the effects of iterative fingerprint feature removal on recall of active compounds and MSE
are reported for three exemplary activity classes (with TID values according to Table 1) and the (a) MACCS and (b) ECFP4 fingerprints. Features
were randomly removed (dashed lines) or in the order of decreasing feature weights (solid lines).
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compounds but low potency values (dark green/light orange
bars) and two to the prediction of inactive compounds but high
potency values of active compounds (light green/dark orange
bars). In Figure 5b, four ECFP4 features are shown that
contributed to the prediction of active compounds and low
potency values and one that contributed to the prediction of
inactive compounds and high potency values. Among features
with high weights in both SVM and SVR, as discussed above,
sign inversion and opposite effects in SVM and SVR were
exceptions.
2.5. Mapping of Highly Weighted Features. In Figure 6,

highly weighted ECFP4 features are mapped on compounds
from different activity classes that were correctly predicted
using SVM and SVR. Atom environments were chosen for
exemplary mapping because they haveby definitiona
greater tendency to overlap than that involving discrete
MACCS features. For an exemplary trial, features that had a
high weight in the SVM and/or SVR model were mapped to
the compounds shown. Figure 6a illustrates that only partly
overlapping yet distinct atom environments led to the correct
classification and potency value prediction of each compound.
The two thrombin inhibitors in Figure 6b are close structural

analogues that are only distinguished by a heteroatom
replacement in a ring and a fluorine substituent. As anticipated
for highly similar compounds, these inhibitors shared a number

of features that were highly weighted in classification and
regression models. However, two features highly weighted for
regression but not classification were mapped to the ring
substructure distinguishing these compounds. Clearly, in
contrast to the SVM model that assigned the same highly
weighted features to both inhibitors, in accordance with their
common activity, the SVR model accounted for the structural
difference between these compounds. Hence, feature mapping
also indicated that the fluorine substitution might be
responsible for the higher potency of the inhibitor at the
bottom, given its positive weight.
The two mu-opioid receptor ligands in Figure 6c are also

analogous to each other but distinguished from each other by
multiple substitutions at the upper and lower ring. In this case,
few highly weighted features were present, only one of which
was shared by the classification and regression models, covering
the methyl substituent at the upper phenyl ring. Other highly
weighted features in the models were distinct and mapped to
different substructures. In the SVR model, a highly weighted
feature with negative contribution matched a part of the upper
phenyl ring including the methoxy substituent of the
compound at the top, indicating that this substructure (but
not the lower ring) was important for potency variation among
analogues.
Taken together, these examples illustrate that comparative

mapping of features highly weighted in SVM and SVR helps to

Figure 3. Distribution of MACCS feature weights and feature
mapping. For an exemplary activity class (thrombin inhibitors, TID
11), (a) reports the distribution of weights of the selected features for
SVM (classification, blue color) and SVR (regression, red color) over
10 trials. The color gradient represents the magnitude of feature
weights (low, medium, or high). In (b), features that were highly
weighted in SVM (blue color) and SVR (red color) are mapped on the
same correctly predicted compound. In feature labels, “A” stands for
any atom.

Figure 4. Distribution of ECFP4 feature weights and feature mapping.
For an exemplary activity class (serotonin 1A (5-HT1A) receptor
agonists, TID 51), (a) reports the distribution of weights of selected
features for SVM (classification, blue color) and SVR (regression, red
color) calculations over 10 trials. The color gradient represents the
magnitude of feature weights (low, medium, or high). In (b), features
that were highly weighted in SVM (blue color) and SVR (red color)
are mapped on the same correctly predicted compound.
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rationalize predictions made by classification and regression
models and may reveal SAR information.

3. CONCLUSIONS
In this work, we have investigated and compared the relevance
of different fingerprint features for the corresponding SVM and
SVR models. The MACCS and ECFP4 fingerprints used herein
capture the structural features of compounds in different ways.
To these ends, feature weight analysis was carried out for well-
performing classification and regression models over different
compound classes. Because SVM and SVR share a common
methodological framework, one might hypothesize that there
should be considerable overlap between structural features that
determine binary activity and potency value predictions. By
contrast, systematic feature weight analysis revealed that
features with high weights in SVM and SVR predominantly
differed, a rather unexpected finding. In many instances,
individual features contributed very differently to classification
and regression, although features with strongly opposing effects
were rare, as revealed by the analysis of positive and negative

weights. SVM and SVR predictions are usually determined by
feature combinations rather than individual features with high
weights. Thus, features with medium weights also make
contributions to predictions, albeit at a lesser magnitude than
the most important ones. Therefore, as also demonstrated
herein, mapping of highly weighted features is usually sufficient
to identify molecular regions that are important for the activity-
based classification and structural differences between com-
pounds that are responsible for potency variation. Accordingly,
mapping and comparing features that are highly weighted in
SVM and SVR models help to better understand how individual
features influence or determine predictions and thus alleviate
the often-cited black box character of SVM, SVR, and other
machine learning approaches that hinder model interpretation.
Moreover, mapping of features that are highly weighted in SVR
models onto compounds with correctly predicted potency
values also points at SAR-informative regions in active
compounds.

Figure 5. Highly weighted features with different signs. For selected activity classes and (a) MACCS and (b) ECFP4 features (TID/feature), the
number of trials is reported in which the features had high weights but different signs (+, −) in SVM and SVR. Features with positive weights
contribute to the correct prediction of active compounds (dark green color) or high potency values (light green color), whereas features with
negative weights contribute to the prediction of inactive compounds (dark orange bars) or low potency values (light orange bars). Bars are labeled
with MACCS features (A, any atom and Q, heteroatom) or mapped ECFP4 atom environments (pink color).
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4. MATERIALS AND METHODS

4.1. Compound Data Sets. Different sets of compounds
with activity against human targets were extracted from
ChEMBL version 22.17 Only compounds with numerically
specified equilibrium constants (Ki values) for single human
proteins with the highest assay confidence score were selected.
If multiple Ki values for a compound and a target were available,
they were averaged provided all values fell within the same
order of magnitude; otherwise, the compound was discarded.
Furthermore, compounds with a pKi value below 5 were not
selected to exclude borderline active compounds from
modeling. In addition, this pKi threshold also limited the

range of potency values for SVR model building. Table 1
summarizes the 15 large activity classes that were selected. Each
class contained at least 800 active compounds. In addition, for
SVM modeling, 250 000 compounds were randomly selected
from ZINC18 as a pool of negative (inactive) training and test
instances. From this pool, negative training and test sets were
randomly sampled for all classification calculations.

4.2. Molecular Representation. Compounds were
represented as MACCS19 and ECFP4 fingerprints.20 MACCS
is a prototypic binary-keyed fingerprint comprising 166 bits,
each of which accounts for the presence or absence of a
structural fragment or pattern. ECFP4 is a representative

Figure 6. Mapping of highly weighted features. ECFP4 atom environments with high weights in classification and regression are mapped onto
correctly classified compounds and potency prediction within 0.2 pKi units. (a) shows individual compounds from three activity classes; (b,c) show
pairs of analogues from two activity classes. Each compound is shown twice (side-by-side). On the left and right, features from classification (blue
color) and regression (red color) are mapped, respectively. Single carbon atoms are displayed if they are a part of a mapped atom environment. In
(b,c), substructures of analogues with feature differences are highlighted in gray color.
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feature set fingerprint enumerating layered atom environments,
which are encoded by integers using a hashing function. By
design, ECFP4 has variable sizes, but it can be folded to obtain
a fixed-length representation. For our calculations, ECFP4 was
folded into a 1024-bit format using modulo mapping. Feature-
to-bit mapping was recorded to enable mapping of fingerprint
bits to compound structural features. Although modulo
mapping assigns different features (atom environments) to
identical bits, it is possible to trace environments and map
them. Fingerprint representations were generated using in-
house Python scripts based upon the OEChem toolkit.21

4.3. Support Vector Machine. For binary classification,
training instances defined by a feature vector x ∈ X and a class
label y ∈ {−1,1} are projected into the feature space X. For
activity prediction, negative and positive examples represent
inactive and active compounds for a given target, respectively.
The SVM algorithm attempts to construct a hyperplane H such
that the distance between the classes, the so-called margin, is
maximized. This hyperplane is defined by a normal vector w
and a scalar b using the expression H = {x|⟨w,x⟩ + b = 0}. For
data that cannot be separated using a linear function, slack
variables are added that permit training instances to fall within
the margin or on the incorrect side of the hyperplane. To
control the magnitude of allowed training errors, the cost or
regularization hyperparameter C is introduced to balance
margin size and classification errors. This represents a primal
optimization problem that can be expressed in a dual form
using Lagrange multipliers αi (Lagrangian dual problem). Its
solution yields the normal vector of the hyperplane w =
∑iαiyixi. Training examples with nonzero coefficients represent
the support vectors and correspond to data points of one class
that are closest to the other, that is, those that lie on the margin
of the hyperplane. Once the hyperplane is derived, test data are
projected into the feature space and classified according to the
side of the plane on which they fall, that is, f(x) =

sgn(∑iαiyi⟨xi,x⟩ + b), or ranked using the real value, that is,
g(x) = ∑iαiyi⟨xi,x⟩ + b.9

4.4. Support Vector Regression. Training samples for
SVR are defined by a feature vector x ∈ X and a numerical label
y ∈ R.10,11 If SVR is applied to potency prediction, the
numerical label is the pKi value of the compound. SVR maps
the training data as close as possible to the quantitative output y
by deriving a regression function of the type f(x) = ⟨w,x⟩ + b.
Tolerated deviations from the observed and predicted values of
training data are at most ε, and larger errors are penalized. In
SVR, the relaxation of error minimization problem is also
controlled by a hyperparameter C, which penalizes large slack
variables or deviations from the so-called ε tube. By solving the
optimization problem with a Lagrange reformulation, the
normal vector is derived and the prediction function is
expressed as f(x) = ∑iαi⟨xi,x⟩ + b.

4.5. Kernel Function. When accurate data separation is not
feasible in the X space, the standard scalar product ⟨·,·⟩ is
replaced by a kernel function K(·,·). Conceptually, the kernel
function represents the scalar product in a high-dimensional
space W in which the data might become linearly separable,
without the need to compute an explicit mapping to W. This
approach is known as the “kernel trick”13 that is applied in both
SVM and SVR. In chemoinformatics, one of the most popular
kernels for fingerprint representations is the Tanimoto kernel22

that was also used herein

= ⟨ ⟩
⟨ ⟩ + ⟨ ⟩ − ⟨ ⟩K u v

u v
u u v v u v

( , )
,

, , ,

4.6. Feature Weight Analysis. In the SVM model,
different weights are assigned to molecular descriptors
(features), which correspond to the coefficients of the primal
optimization problem. The linear kernel (scalar product) allows
direct determination of feature weights from the dual problem
coefficients and support vectors. By contrast, direct access to
feature weights is not possible when using nonlinear kernel
functions because an explicit mapping into the high-dimen-
sional feature space is not computed. However, for the
Tanimoto kernel, feature weight analysis can be adapted from
the linear case according to which the importance of a feature
depends on the coefficients of those support vectors that
contains the feature.16 To account for the nonlinearity of the
Tanimoto formalism, a normalization factor is included for each
individual support vector by dividing the feature weight
contribution by the total number of features present in each
support vector

∑ α= ∑= *= *
d
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v
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i
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Here, FW(d) is the feature weight for feature d, D is the
dimensionality, m is the number of support vectors, and vi and
αi are the support vector coefficients of the dual problem
solution.
Feature contributions are not constant across feature space

and depend on the fingerprint that is used.16 However,
adaptation of feature weight analysis from the linear case with
normalization yields an average weight, indicating the
importance of each feature. Highly weighted fingerprint
features can then be mapped to compound structures.16

4.7. Calculations and Data Analysis. Each activity class
was randomly divided into training and test (prediction) sets
comprising 700 and 100 compounds, respectively, following

Table 1. Compound Data Setsa

TID
accession

no. target name CPDs
median
pKi

IQR
pKi

11 P00734 thrombin 839 6.33 1.86
51 P08908 serotonin 1A (5-HT1A)

receptor
1904 7.62 1.50

72 P14416 dopamine D2 receptor 2876 7.00 1.29
100 P23975 norepinephrine

transporter
1099 6.82 1.60

129 P35372 mu-opioid receptor 2026 7.26 1.95
136 P41143 delta-opioid receptor 1547 7.11 1.97
137 P41145 kappa-opioid receptor 1930 7.28 2.07
138 P41146 nociceptin receptor 844 7.85 1.43
165 Q12809 HERG Homo sapiens 956 5.93 1.05
194 P00742 coagulation factor X 1476 8.05 2.80
278 P29275 adenosine A2b receptor 1187 7.23 1.43
10280 Q9Y5N1 histamine H3 receptor 2434 8.00 1.43
11362 P42336 PI3-kinase p110-α

subunit
885 7.68 1.39

12968 O43614 orexin receptor 2 1040 6.70 1.57
20174 Q9Y5Y4 G protein-coupled

receptor 44
833 7.65 1.90

aComposition of 15 compound activity classes is reported that were
selected for SVM and SVR modeling. For each class, the ChEMBL
target ID (TID), accession number, target name, and number of
compounds (CPDs) are given. In addition, median and interquartile
range (IQR) pKi values are reported, which were calculated from the
pKi distribution of each activity class.
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previously derived guidelines for relative training and test set
composition.23 For SVM, 700 and 100 compounds from ZINC
database were randomly selected as negative training and test
instances, respectively. For SVR, the same positive training data
were used in each case (but no negative data). For each activity
class and SVM/SVR calculation protocol, 10 independent trials
were carried out, and the results were averaged.
For SVM and SVR models, the hyperparameter C was

optimized using 10-fold cross-validation on training data using
candidate values of 0.01, 0.1, 1, 5, 10, 20, 50, and 100. For
SVM, hyperparameter optimization was guided by maximizing
the F1 score; for SVR, optimization aimed to minimize the
MAE.

= · ·
+F1

2 precision recall
precision recall

∑̂ = | − ̂|
=

y y
n

y yMAE( , )
1

i

n

i i
1

Here, n is the number of samples (see also MSE given below).
Following hyperparameter optimization, feature weight

analysis was carried out for classification and regression models.
Weights were categorized as high, medium, or low, depending
on whether their absolute value was at least 50, 25−50%, or less
than 25% of the maximum weight observed for a given SVM
model, respectively.
Binary activity (active/inactive) and potency values of test

compounds were predicted, and model performance was
estimated using different figures of merit. For SVM, the F1
score, AUC, and the recall of active compounds among the top
1% of the ranked test set were determined. For SVR, MAE,
MSE, and the Pearson correlation coefficient between the
observed and predicted pKi values were calculated.

∑̂ = − ̂
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y y
n

y yMSE( , )
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n
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Calculation and data analysis protocols were implemented in
Python using Scikit-learn.24
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Summary

SVM and SVR modeling was performed for distinct compound activity
classes and fingerprint features determining performance were identified to en-
able interpretation. A systematic analysis reflected considerable differences
between highly weighted features in classification and regression models. In-
terestingly, predictions were generally determined by combinations of features
rather than single descriptors, but the mapping of highly weighted features was
often sufficient to identify activity-relevant regions on the compound 2D struc-
ture. Structural patterns prioritized in binary activity and potency predictions
were mapped onto compounds and SAR-informative regions were examined.
Important molecular regions of compounds were usually different for SVM and
SVR model predictions. Hence, despite sharing the same algorithmic basis,
SVM and SVR use distinct structural patterns from compounds to predict ac-
tivity and potency, respectively.

In the following chapter, a new methodology to interpret model predictions
is introduced. Rather than focusing on a single ML method, the proposed and
analyzed approach is applicable to any ML model.
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Chapter 7

Interpretation of Compound Activity
Predictions from Complex Machine
Learning Models Using Local
Approximations and Shapley Values

Introduction

In the previous chapter, a step towards a better interpretability of SVM and
SVR models was presented and feature weighting was systematically explored.
Other ML methods might be preferred under certain circumstances. Thus, ac-
cess to the feature prioritization of distinct ML models is crucial. However,
many ML methods, especially DNNs, are complex and have a black box char-
acter, which hinders interpretability. The rationalization of bioactivity predic-
tions has an additional layer of complexity compared to other fields, which is
compound representation. Even though feature importance is extracted, it has
to be presented to the user in an intuitive and understandable way. In this
chapter, a new method based on local approximations and the Shapley values
concept from game theory is proposed to interpret activity predictions from any
ML model. Exemplary algorithms and visualizations are reported to establish
proof-of-principle.
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ABSTRACT: In qualitative or quantitative studies of
structure−activity relationships (SARs), machine learning
(ML) models are trained to recognize structural patterns
that differentiate between active and inactive compounds.
Understanding model decisions is challenging but of critical
importance to guide compound design. Moreover, the
interpretation of ML results provides an additional level of
model validation based on expert knowledge. A number of
complex ML approaches, especially deep learning (DL)
architectures, have distinctive black-box character. Herein, a
locally interpretable explanatory method termed Shapley
additive explanations (SHAP) is introduced for rationalizing
activity predictions of any ML algorithm, regardless of its complexity. Models resulting from random forest (RF), nonlinear
support vector machine (SVM), and deep neural network (DNN) learning are interpreted, and structural patterns determining
the predicted probability of activity are identified and mapped onto test compounds. The results indicate that SHAP has high
potential for rationalizing predictions of complex ML models.

■ INTRODUCTION

Compound bioactivity prediction and structure−activity
relationship (SAR) analysis are major applications of machine
learning (ML) in pharmaceutical research.1−6 Supervised ML
methods are trained to search for structural patterns that
differentiate between active and inactive compounds. Since
prospective predictions using such activity models provide
decision support and guidance for compound exploration and
design, there is a high level of interest in obtaining accurate
models and in rationalizing their predictions.7−9 However,
while much attention has been paid to improving the
predictive performance of ML models, interpreting the
predictions currently is an underinvestigated area, despite its
high relevance.10,11

While statistical performance measures and method
validation procedures are of critical importance for ML, they
do not provide scientific insights into predictions, which can
typically only be achieved on the basis of expert knowledge.
On the other hand, rationalizing model decisions would assign
priority to meaningful predictions, help to extract knowledge
from ML models, and also increase the acceptance of and
confidence in predictions in pharmaceutical research.5,12,13 In
activity prediction, model interpretation generally relies on the
identification of chemical features that determine predic-
tions.14,15 For simplistic linear (Q)SAR models, the
interpretation of structural and/or property changes that

modulate activity is often straightforward.13 However, the
situation fundamentally changes when ML models become
complex, which often increases predictive performance at the
expense of interpretability, ultimately leading to the frequently
quoted “black-box” character of ML model and their
predictions.13,15 For example, the random forest (RF)16 and
support vector machine (SVM)17 algorithms are robust and
well-performing ML methods that have become very popular
in the field. However, RF and SVM models are very difficult to
interpret and exhibit black-box character, for different reasons.
In the case of RF, this is largely due to the generation of large
decision tree ensembles, leading to statistically driven
decisions; in the case of SVM, black-box character results
from the use of nonlinear kernels to facilitate data mapping
into feature reference spaces of increasing dimensionality.18

Currently, compound activity data grow at unprecedented
rates,19,20 leading to emerging big data phenomena in
medicinal chemistry19 and catalyzing the application of deep
learning (DL)21 strategies for activity prediction. Among ML
methods, DL architectures have shown particular promise in
data-rich fields such as image analysis22 or natural language
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processing23 and deep neural networks (DNNs) also gain
increasing popularity in chemical informatics and drug
design.24−26 Although some successful applications in com-
pound design and activity prediction using DNNs have been
reported, it remains unclear at present whether DL might
provide a consistent advantage over other ML methods in at
least some application scenarios.27−31 However, DNNs have
higher complexity than other ML models and their black-box
character is notorious. Any form of model diagnostics becomes
essentially prohibitive for DNNs, and domain experts struggle
to understand why DNN models succeed or fail,32 which
hinders advances in the field.
Several interpretation strategies have been proposed to

reduce the black-box nature of ML models.13 These
approaches can essentially be divided into model-specific and
model-agnostic (or model-independent) strategies. As a
model-specific approach, feature weighting has been applied
to better understand predictions of SVM18,33 and RF models.34

As a model-agnostic method, sensitivity analysis can be used to
investigate the influence of systematic feature value changes on
the model output.35 Sensitivity analysis has been applied to
different ML algorithms including neural networks36 but
becomes quickly inefficient with increasing dimensionality of
models and has thus hardly been used in chemical
informatics.13 An exception is provided by investigating partial
derivatives as a form of local sensitivity analysis that has been
applied in QSAR modeling.13 Here, for a given compound, a
perturbation is introduced to an individual feature and
calculation of the partial derivative provides an estimation of
its contribution to model performance.37,38 However, effective
use of partial derivatives is also limited given its intrinsic focus
on individual features. A principal advantage of model-agnostic
over model-specific interpretation approaches, if they can be
established, is that model-agnostic analysis alleviates the need
to balance model performance and interpretability.39,40

In this work, we introduce a conceptual new agnostic
interpretation method for ML models of arbitrary complexity
used for activity prediction. The Shapley additive explanations
(SHAP) approach41 is an extension of local interpretable
model-agnostic explanations (LIME)42 according to which
feature weights are represented as Shapley values from game
theory.43 As shown herein, SHAP is capable of interpreting
activity predictions from complex ML models. Features that
increase or reduce the probability of predicted activity are
identified and mapped onto molecular graphs to identify and
visualize structural patterns that determine predictions.

■ RESULTS

Principles of Explanation Models and the LIME
Approach. Explanation Model. The principal goal of an
explanation model g is to simplify or locally approximate a
complex model f that cannot be directly interpreted. Additive
feature attribution methods generate an explanation model via
a linear function of binary variables, as shown in eq 1:

∑ϕ ϕ′ = + ′
=

g x x( )
i

M

i i0
1 (1)

where x′ ∈ {0,1}M, M is the number of input features, and
ϕ ∈i .42 The presence or absence of a feature value impacts
the model, which can be referred to as a feature contribution
(ϕi). Accordingly, a weight must be assigned to each variable.

Therefore, the SHAP method has been devised, which
represents an extension of the LIME approach.

LIME. The LIME methodology generates the explanation ξ
of an instance x according to eq 2:

ξ π= + Ω
∈

x f g g( ) argmin ( , , ) ( )
g G

x
(2)

where G is a class of interpretable (linear) models, is the loss
function to minimize, πx the proximity measure between an
instance z and x (kernel defining locality), and Ω(g) an
optional regularization term to control (limit) model complex-
ity.42

For the interpretation of a given test instance x, the
following procedure is applied.

(i) Artificial samples are obtained by permuting features of
the test instance x.

(ii) These samples are weighted by the value of a kernel
calculated for them and x.

(iii) A model g is trained to predict f(x) with coefficients
corresponding to feature importance estimates.

It follows that LIME builds a linear model g in a feature region
proximal to the test instance, although model f might be
nonlinear, as illustrated in Figure 1. This figure also shows that

samples similar to x receive high weights, due to the
application of the kernel function. This conceptual framework
provides the basis for the development of the SHAP
methodology detailed in the following.

SHAP Method. Shapley Value Concept. Shapley values
from cooperative game theory provide a connection between
LIME and the SHAP methodology. Specifically, Shapley values
were introduced in the 1950s to measure contributions of
individual players to a collaborative game.43 They provide a
theoretically grounded partition of payoff or credit among
members of a team by considering the average of all
contributions made by a player.43 This concept can be applied
to feature attributions by considering the success of a team (or
total credit) as an output (prediction), and each player’s
contribution (or player’s payoff) as the feature importance.

Figure 1. Local approximations for model interpretation. The active
(red) and inactive (blue) regions in feature space correspond to the
decision function of the complex model f. The dashed gray line
represents the decision function of the simple explanation model g,
which locally approximates the global model. The largest red dot is
the active instance x to be explained, while the other dots are artificial
samples that are weighted by the kernel function with respect to x.

Journal of Medicinal Chemistry Article

DOI: 10.1021/acs.jmedchem.9b01101
J. Med. Chem. XXXX, XXX, XXX−XXX

B



Therefore, in this context, Shapley values facilitate the
distribution of a model’s prediction resulting from an input
feature vector over the individual features.
To obtain the contribution of a feature i, all operations by

which a feature might have been added to the set (N!) and a
summation over all possible sets (S) is considered. For any
feature sequence, the marginal contribution through addition
of feature i is given by [f(S∪{i}) − f(S)]. The resulting
quantity is weighted by the different possibilities the set could
have been formed prior to feature i’s addition (|S|!) and the
remaining features could have been added ((|N| − |S| − 1)!).
Hence, the importance of a given feature i is defined by eq 3:

∑ϕ = ! | |! | | − | | − ![ ∪ { } − ]
⊆ \{ }N

S N S f S i f S
1

( 1) ( ) ( )i
S N i

(3)

It follows that Shapley values represent a unique way to divide
a model’s output among feature contributions satisfying three
axioms: local accuracy (or additivity), consistency (or
symmetry), and nonexistence (or null effect).
SHAP Formalism. Additive feature attribution methods

typically do not consider two properties that are of high
relevance for assessing feature importance, i.e., local accuracy
and consistency, as referred to above. Taking these axiomatic
properties into account was a main motivation for proposing
the SHAP concept.41 The property local accuracy forces the
sum of individual feature attributions to be equal to the
original model prediction. In addition, consistency ensures that
feature importance correctly accounts for different models on a
relative scale. Hence, if a change in a feature value has larger
impact on a model A than a model B, feature importance
should be larger in A. These properties can be considered by
expressing feature weights as Shapley values.43

A weighting procedure for artificial samples is a key aspect
for connecting Shapley values to the LIME approach, which
allows the approximation of Shapley values. In LIME, heuristic
choices are made to select , Ω(g), and πx. By contrast, the
SHAP method introduces a special kernel function that is
related to the Shapley value definition, assuming that feature
weights follow the two axioms of interpretability.41 Specifically,
SHAP uses the following procedure for interpreting an
instance x:

(i) Training data is organized by k-means clustering and the
k samples are weighted by the number of training
instances they represent. These samples constitute a
background data set with “typical” feature values.

(ii) Artificial samples are obtained by replacing features of
the test instance x with the values from the background
data set.

(iii) These artificial samples are weighted by the value of the
SHAP kernel calculated for them and x.

(iv) A weighted linear regression model g is trained to
predict f(x). The model coefficients are Shapley values
corresponding to feature importance estimates.

Sampling all possible feature subsets is time-consuming.
Therefore, the input vector is permutated for an individual
prediction by setting its features on and off, thereby examining
feature influence. Herein, 1000 artificial samples were
generated in each case and missing features were simulated
by replacing them with the values obtained from a k-means
clustering of the training set (k = 100). A feature obtained a
large weight if its replacement with an artificial (non-

informative) value led to a significant change in model output.
Weights of artificial samples were determined according to the
number of feature-addition sequences that a given subset
accounted for on the basis of the SHAP kernel. Local linear
regression resulted in coefficients representing feature weights
as Shapley values. These weights indicate how important a
feature is for a given prediction and include the direction
(sign) of feature influence. The expected explanatory value is
calculated as the mean of the model output probability over
training set instances. For a given compound, the original
output probability (of activity) given by model f is then
retrieved by summing the expected (or base) value and all
SHAP values.

Model Building and Analysis Strategy. ML models
were built for 10 activity classes summarize in Table 1. These

classes were assembled on the basis of specific structural and
activity data selection criteria detailed in the Experimental
Section. As negative training and test instances, compounds
with unknown activity status were considered inactive and
randomly assembled, as also reported in the Experimental
Section. Feature contributions were systematically calculated
for test set compounds. First, model performance for three
different ML algorithms and two molecular representations is
reported. Then, the effect of feature removal is investigated.
SHAP results for RF models are compared to Gini importance,
and the relationship between SHAP values obtained for
different ML methods is examined. Next, representative
examples are shown to illustrate SHAP results. Individual
predictions using ML algorithms are interpreted and differ-
ences in feature importance are explored. Furthermore, for
individual predictions, important (fingerprint) features are
mapped onto compounds and visualized.
While our study is focused on method development and

evaluation, it is essential to carry out the analysis on newly
generated ML models and their predictions to ensure
independence of ML assessment (rather than reliance on
previously reported models) and reproducibility of the results.

Global Model Performance. Accurate predictions are a
key requirement for meaningful model interpretation. If ML
models are not predictive, the prioritized chemical patterns do
not correlate well with activity prediction. Thus, initially, the
predictive performance of SVM, RF, and DNN models over
different compound activity classes was determined. Models
were built on the basis of the state-of-art ECFP4 and easy-to-

Table 1. Compound Data Setsa

CHEMBL
identifier target

no.
compounds

no.
ASs

mean
pKi

229 α-1a adrenergic receptor 243 80 7.8
4860 Apoptosis regulator Bcl-2 283 67 9.0
244 Coagulation factor X 679 154 7.5
264 Histamine H3 receptor 955 216 8.0
237 κ opioid receptor 716 160 7.5
344 Melanin-concentrating

hormone receptor 1
409 73 7.4

259 Melanocortin receptor 4 443 57 6.9
1946 Melatonin receptor 1B 285 70 8.2
233 μ opioid receptor 831 194 7.6
4792 Orexin receptor 2 399 81 6.9

aReported are the CHEMBL identifier, target name, number of
compounds, number of analog series (ASs), and mean pKi values for
10 compound activity classes.
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understand MACCS fingerprints. Table 2 reports average
model performance on the basis of the AUC, BA, and MCC
measures. Overall, activity predictions for the 10 activity classes
were consistently accurate for the investigated methods and
molecular representations, hence providing a sound basis for
model analysis. Overall, rankings of test compounds yielded
AUC values greater than 0.9, BA of ∼90%, and MCC values of
around 0.8 or larger. Figure 2 reports the distribution of MCC
values for all ML method/representation combinations. As
anticipated, MCC values were larger for ECFP4 than MACCS,
albeit by a confined margin. In addition, RF predictions were
generally slightly less accurate than SVM and DNN
predictions. Although hyperparameter combinations were
optimized (see Experimental Section), alternative parameter
settings did not have a large influence on the predictions
because active compounds were overall easily distinguishable
from random ZINC examples. Taken together, the results
showed that the test system setup was appropriate for our
proof-of-principle investigation of a new model interpretation
methodology.
Feature Importance. To interpret the prediction for a test

compound, SHAP calculations were carried out resulting in a
set of feature weights. Initially, the distributions of ECFP4
features with nonzero SHAP values (feature weights) were
determined for all test compounds. Figure 3a shows how many
feature variables were contributing to the RF, SVM, and DNN
predictions of individual test instances. SVM and DNN
distributions were centered on smaller values than RF,
indicating that more features were required to provide local
explanations for RF predictions. The average number of
features with nonzero SHAP values for a test instance was 68
and 67 for SVM and DNN, respectively, and 96 for RF. These
numbers represented less than 10% of the entire ECFP feature

population obtained for the activity classes, revealing that
limited numbers of features were important for the predictions.
Because some features with nonzero SHAP values might not

contribute significantly to predictions, absolute SHAP values of
features were normalized with respect to the total sum of
SHAP values for a given prediction, resulting in a percentage
value for a feature. This percentage represents the fraction of
feature weights that a given variable is accounting for,
considering both negative and positive contributions. Thus,
the cumulative SHAP percentage for a given number of top-
ranked features can be calculated per test instance. Figure 3b
shows the distributions of cumulative SHAP percentage values
for different numbers of top-ranked features. The distributions
were nearly identical for all three ML methods and showed
that the top-1, -5, -10, and -20 ranked features generally
corresponded to 7%, 25%, 40%, and 60% of the cumulative
(total) feature weights of a prediction, respectively. These
findings indicated that top-ranked features provided sufficient
information for model interpretation.

Feature Elimination. The next step was exploring whether
SHAP values indeed identified features that were important for
predictive performance. Therefore, for each data set and ML
model, SHAP values were calculated for all test compounds.
Then, absolute SHAP values were averaged over test
compounds to obtain an ECFP4 feature importance ranking.
Finally, features were systematically eliminated, either
randomly or in the order of SHAP ranking, and the ML
models were generated again using the reduced feature sets.
Following this protocol, RF, SVM, and DNN control models
were built after removal of 4, 10, 80, 160, and 320 ECFP4
features. Figure 4 shows the median MCC values of SVM, RF,
and DNN models across all activity classes for varying numbers
of features. The results revealed that random elimination of up

Table 2. Classification Performancea

ECFP4 MACCS

metric SVM RF DNN SVM RF DNN

AUC 0.98 (0.02) 0.98 (0.02) 0.98 (0.02) 0.97 (0.02) 0.97 (0.02) 0.97 (0.02)
BA 0.89 (0.30) 0.84 (0.05) 0.91 (0.03) 0.88 (0.04) 0.84 (0.04) 0.89 (0.03)
MCC 0.87 (0.03) 0.80 (0.07) 0.88 (0.03) 0.83 (0.06) 0.79 (0.06) 0.81 (0.05)

aArea under the ROC curve (AUC), balanced accuracy (BA), and Matthew’s correlation coefficient (MCC). Mean (and standard deviation) values
are reported across 10 activity classes. Performance values are given for two molecular representations (ECFP4 and MACCS) and three ML
methods (SVM, RF, and DNN).

Figure 2. Global classification performance. Boxplots show value distributions of Matthew’s correlation coefficient (MCC) across 10 compound
data sets using SVM (red), RF (green), DNN (blue) models and two fingerprints (ECFP4, left; MACCS, right).
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to 320 features did not notably affect the performance of ML
models, which remained essentially constant, providing further
evidence for general ECFP4 feature redundancy. By contrast,
removal of features with large average SHAP values led to a
substantial decrease in model performance for the three ML
algorithms.

For all ML methods, the MCC value distribution after
feature removal according to SHAP values was significantly
larger than the one after random elimination (Wilcoxon test, p-
values ≪0.0001). These results confirmed that SHAP values
provided a quantitative measure of feature importance for
predictions using different ML models.

Figure 3. Distribution of SHAP values. (a) shows distributions of features with nonzero SHAP values over all test compounds (Count) for RF,
SVM, and DNN predictions. (b) shows distributions of cumulative SHAP percentage values for different numbers of top-ranked features.

Figure 4. Feature removal. MCC values are shown for varying numbers of ECFP4 features, which were removed randomly (red) or according to
decreasing mean absolute SHAP values (blue). Results are shown for SVM (left), RF (center), and DNN (right) models.
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SHAP versus Gini Importance. In an additional control
calculation, SHAP feature weights were compared to Gini
importance,34 which has become a popular measure for the
assessment of variable importance in decision tree-based
methods such as RF. Gini importance is equivalent to the
mean decrease in Gini “impurity”, which measures the
probability of a new sample to be incorrectly classified at a
given node in a tree weighted by the proportion of samples
representing the data partition. Gini feature importance values
were calculated during RF model building56 and were thus not
dependent on test instances. Gini calculations yielded absolute
(nonsigned) values, which were thus compared to mean
absolute SHAP values determined from predictions of all test
compounds. Figure 5 compares feature weights obtained using
both approaches for RF models of four activity classes. Each
point represents the weights for a given feature using SHAP
and Gini importance. There was strong correlation between
these orthogonal feature weights (i.e., one derived on the basis
of training, the other on the basis of testing), without any
outlier or notable inconsistency. However, while Gini feature
importance is confined to decision tree methods, SHAP is
generally applicable.
SHAP Comparison. Next, relationships between SHAP

values for the same compound sets and different ML methods
were examined. Despite algorithmic differences, which might
affect variable prioritization, ML models with predictive power
should detect similar chemical patterns that differentiate
between active and inactive compounds for a given molecular
representation.
Figure 6 shows mean absolute SHAP values for test

compounds from two activity classes. SHAP values originating
from SVM and RF models were compared in a pairwise
manner to corresponding values from DNN models based
upon the ECFP4 (Figure 6a) and MACCS (Figure 6b)
representations. Correlation coefficients were high, ranging
from 0.90 to 0.98 for ECFP4 and from 0.83 to 0.95 for
MACCS. Highly weighted features were consistently priori-
tized for models generated with all ML methods, thus

confirming algorithm-independent consistency of feature
relevance. We note that features that are important in a local
explanation model might not be globally relevant. Therefore,
some features influencing individual predictions might yield
small (but nonzero) mean SHAP values because they were not
prioritized in the majority of explanation models.
Feature weight relationships between different ML methods

were also examined across all activity classes. Therefore,
correlation between mean absolute SHAP values for models
generated with different methods was determined. The
resulting distributions or correlation values are shown in
Figure 7. All method combinations displayed high correlation
of feature importance, especially SVM and DNN, with a
median correlation coefficient of 0.97 and 0.95 for ECFP4 and
MACCS, respectively. SHAP mean values were overall more
strongly correlated for ECFP4- than MACCS-based models.
Taken together, the results in Figures 6 and 7 revealed that

SHAP values of features originating from models built using
ML algorithms were highly correlated, showing that the
different methods prioritized similar chemical patterns for
predictions that were consistently detected in the basis of
SHAP values.

Visualization of SHAP Values. To rationalize model
predictions, features with highest SHAP values for individual
predictions were extracted, first for the simplistic MACCS
fingerprint that encodes the presence or absence of predefined
chemical patterns. Figure 8 shows MACCS feature weights for
the correct prediction of three compounds using SVM, RF, and
DNN models. The first compound (Figure 8a) was an
antiapoptotic Bcl-2 inhibitor and the second (Figure 8b) a
melanin-concentrating hormone receptor 1 antagonist. The
third compound (Figure 8c) was a factor X inhibitor. For each
ML model and test compound, SHAP values for MACCS
features are reported in a separate graph. Positive and negative
feature contributions are identified using sequential red and
blue arrows, respectively. The length of each arrow is
proportional to the SHAP value for a given feature, and the
MACCS keys corresponding to the top-ranked variables with

Figure 5. Relationship between SHAP and Gini importance. For four activity classes, RF models were built to predict the activity of test
compounds. For each ECFP4 feature, mean absolute SHAP values for test compounds and Gini importance are reported for RF models. In
addition, the correlation coefficient for feature weighting methods is reported.
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(largest absolute SHAP value) are given. The expected value is
obtained as the average model output over training set
instances and corresponds to the predicted probability of a test
compound with unknown feature values. It is also referred to
as the base probability. SHAP values quantify the influence of a
given feature on a prediction and modify the expected value.
When SHAP values are added to this base value, the output
probability of the original ML model is obtained (shown in
bold).
The three compounds in Figure 8 were correctly classified as

actives by the three ML algorithms. Moreover, different
methods shared most top-ranked features, indicating that
similar chemical patterns determined the prediction of a given
compound. However, the absolute importance values differed
between ML methods and other features with smaller SHAP

values also contributed to the predictions, resulting in different
final output probabilities. DNN models produced the highest
output probabilities of activity for these test compounds,
whereas RF models gave the smallest ones.
Figure 9 shows feature weights for three other exemplary

compounds, which were represented by ECFP4, including a κ
opioid receptor (Figure 9a), melanocortin receptor 1B (Figure
9b), and orexin receptor 2 (Figure 9c) ligands. ML models
correctly predicted these active compounds and SHAP values
were calculated to examine the prioritized features for the
predictions. In this case, positive and negative feature
contributions were displayed using the ECFP4 feature index
(obtained after fingerprint folding). Again, most highly
weighted features were common to SVM, RF, and DNN
models. RF gave the overall lowest output probability, due to

Figure 6. Comparison of SHAP values. Mean absolute SHAP values for features originating from different ML models are compared in a pairwise
manner. Each data point represents a pairwise value comparison for a given feature. Different ML models were generated on the basis of (a) ECFP4
and (b) MACCS.
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smaller individual feature weights. The corresponding
substructures of top-ranked important features shared by the
three algorithms were mapped onto the compounds. In Figure
9a, feature with index #566 is highlighted, which was relevant
for the three models applying a SHAP threshold value of
∼0.07. Feature #566 was ranked top-1 (SVM), -2 (RF), and -2
(DNN). On the other hand, in Figure 9b, the highlighted
feature #637 was ranked top-5 (SVM), -1 (RF), and -6
(DNN). However, in the latter case, features ranked higher
than #637 (SMILES, [CH2]CNC(C)O) represented
substructures of #637 (#1010, CC; #29, [CH2]NC; #118,
[CH2]NC(C)O; #236, CC([NH])O; #960, [CH2]C-
[NH]) and were thus correlated. Finally, in Figure 9c,
highlighted features include #843 (ranked top-1 (SVM), -1
(RF), and -2 (DNN)) and #268 (ranked top-2 (SVM), -3
(RF), and -1 (DNN)). The SHAP values representations in
Figures 8 and 9 provide global explanations for a given
prediction and enable comparison of feature importance across
different models and methods.
Feature Mapping onto Compounds. The use of the

ECFP4 fingerprint made it possible to map highly weighted
topological features onto molecular graphs and analyze
resulting substructures. Although ECFP4 folding might lead
to feature “collisions” (i.e., different atom environments might
be encoded by the same element), such collisions were only
very rarely observed for individual compounds because of their
generally low number of hash values compared to the size of
the folded fingerprint. In global model interpretation, a unique
weight is obtained for each feature. SHAP values explain
individual predictions, and for a given compound, correspond-
ence between a given feature and substructure is generally
unequivocal. Furthermore, different mapped features might
contribute to the formation of coherent, overlapping, or
distinct substructures. Figure 10 provides an example for the
rationalization of a prediction on the basis of SHAP values.
Figure 10a depicts the mapping of the most relevant features
onto a compound active against the κ opioid receptor, and
Figure 10b gives an overview of the positive and negative
feature contributions. All three ML models correctly predicted
this test compound, and the substructures resulting from
mapping of features that determined these predictions were
explored. For feature mapping, a threshold should be defined
that can be based on the absolute SHAP value, the signed value

(accounting for positive or negative contributions), or the
number of top-ranked features. Therefore, depending on the
application, different types of threshold values can be used. In
this case, the threshold was iteratively varied, and results for
different SHAP threshold values are shown in the figure.
In Figure 10a, the top-1 and -2 ranked features from SVM,

RF, and DNN models are highlighted. For the three models,
mapping of important features lineated the same or similar
substructures. Figure 10b provides a complementary view of
cumulative positive or negative feature contributions. In this
case, RF and DNN models predicted a lower probability of
activity (p of ∼0.60) than the SVM model (p = 0.97), which
largely resulted from negative feature contributions, especially
for DNN, which were absent in the SVM model. SHAP results
suggest that RF and DNN models made use of the absence of
some features to discriminate between active and inactive
training compounds. However, such prioritization had a
negative impact on the model output for this exemplary active
test compound, leading to a lower output probability.
Accordingly, a noninformative bias in the training set was
likely exploited by these two ML models. For example, both
models penalized the absence of feature #12 (SMARTS
pattern: [#6D4v4+0H0R], SMILES: C), which was present in
91% of the positive and only in the 8% of the negative training
compounds. The representation also shows that the majority of
features with positive contributions to the prediction of activity
were conserved.

Comparison of Structural Analogs. Analog series
provide interesting test cases for local model diagnostics. In
most cases, analogs from the same series are predicted to be
active because of their high structural similarity. However,
there can be exceptions where small structural differences
between compounds abruptly change the predicted probability
of activity. Such incorrect predictions are of particular interest
to better understand intrinsic limitation of activity predictions,
provided the underlying models can be interpreted. Figure 11
presents the SHAP analysis of SVM predictions for two
histamine H3 receptor antagonists with comparable potency
(having pKi values of 6.2 and 6.3, respectively). One was
predicted correctly, the other incorrectly. Figure 11a shows the
ECFP4 features with the highest positive and negative
contributions on predicted activity. The first analog was
accurately predicted (p = 0.98), but the second was not (p =

Figure 7. SHAP value correlation between ML models. For each activity class, the correlation between mean absolute SHAP values was calculated
for different ML models. Boxplots report the pairwise correlation of SVM vs RF (green), SVM vs DNN (blue), and RF vs DNN (purple) for two
molecular representations (ECFP4, left; MACCS, right).
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Figure 8. continued

Journal of Medicinal Chemistry Article

DOI: 10.1021/acs.jmedchem.9b01101
J. Med. Chem. XXXX, XXX, XXX−XXX

I



0.19). The substructure formed by features with the highest
positive contribution was shared by both compounds but
obtained a larger SHAP value for the first analog. Moreover,
the correctly predicted compound did not yield any feature
with a negative contribution. By contrast, for the incorrectly
predicted analog, features making a large negative contribution
were identified. Consequently, the substructure formed by
features with largest negative contribution according to the
SVM model was only present in the incorrectly predicted
analog. Figure 11b reports the base and SHAP values for the
two compound predictions. Even though most of the variables
with positive contributions were shared by both compounds,
the second analog exhibited a number of features that
negatively impacted the prediction. Thus, SHAP analysis
uncovered a model error and made it possible to rationalize
why these two analogs produced different model outputs. On
the basis of such insights, it can be attempted to further
optimize SVM models for individual predictions.
Global Model Diagnostics. SHAP analysis can conven-

iently be used as a global model diagnostic by comparing
decisions of different ML models on the same compound data
set, which aids in model selection. Moreover, consensus
features can be identified across methodologically distinct
models that can be selected for practical applications. Figure 12
presents an example of SHAP-based model comparison and
selection. Figure 12a shows a score plot of predicted

probabilities of activity for compounds using DNN and SVM
models. Red dots in the upper-right panel represent active
compounds that are correctly predicted by both methods, and
blue dots in the bottom-left panel are inactive compounds
correctly detected by SVM and DNN. The compounds falling
into other regions of the plot have been incorrectly predicted
by only one of the methods. An exemplary active compound
that is correctly predicted by DNN but not by SVM is
indicated. In Figure 12b, the SHAP contribution plots are
shown for this compound and the SVM and DNN models. It is
evident that many features were equally weighted using SHAP
for predictions with both models. However, SVM was found to
assign negative contributions to a number of atom environ-
ments that were not considered by DNN. To further reduce
the black-box character of these model predictions, highly
weighted features were mapped onto this compound, as
depicted in Figure 12c. The SHAP threshold was adjusted such
that top-1 as well as -3 ranked features with positive
contributions were obtained from both SVM and DNN
models. For SVM, the top-ranked features with negative
contributions were also selected. Such features were absent in
the DNN model, as discussed above. Figure 12c shows that
features important for the prediction of activity mapped to the
same region in the molecule. However, SVM also negatively
weighted similar parts of the compound formed by overlapping
atom environments, thus reducing the output probability.

Figure 8. SHAP values for MACCS keys. Shown are two exemplary test compounds that were represented using MACCS keys and correctly
predicted by SVM, RF, and DNN models including a (a) Bcl-2 inhibitor, (b) melanin-concentrating hormone receptor 1 antagonist, and (c) factor
X inhibitor. SHAP positive (red) and negative (blue) feature weights are given for the three models. The expected base and output value (bold) is
also shown. The following symbols are used: A, any element symbol; Q, heteroatom; X, other than H, C, N, O, Si, P, S, F Cl, Br, I; $, ring bond; !,
aliphatic bond; %, aromatic bond.
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Thus, in this case, the model diagnostic detected SVM-
dependent inconsistencies in feature prioritization, which were
absent in the DNN model. On the basis if these observations,
the DNN model would be prioritized.

■ CONCLUSIONS
In this work, the SHAP method has been introduced for the
interpretation of compound activity predictions using ML
models, regardless of their complexity. As an ML model

diagnostic, SHAP is generally applicable to ML models
including ensemble and DL models, which makes it possible
to shed light on their black-box nature. SHAP values quantify
feature importance for ML in a consistent manner.
Furthermore, the SHAP analysis scheme introduced herein
provides visual access to feature importance and enables
structural interpretation of ML predictions including DNNs.
By application of the SHAP methodology, variables with
increasing influence on predictions can be explored and detect

Figure 9. SHAP values for ECFP4 features. Shown are two exemplary test compounds that were represented using ECFP4 and correctly predicted
by SVM, RF, and DNN models including a ligand of the (a) κ opioid receptor, (b) melanocortin receptor 1B, and (c) orexin receptor 2. The
representation is according to Figure 8. In addition, top-ranked features are highlighted in compound structures.
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potential sources of bias of predictions or confirm their
consistency and further validate a model. It is important to
consider the applicability domain of explanatory methods
because interpretations will be strongly influenced by training
data and conditions. Here, it is important to note that the
SHAP methodology is applicable to essentially all ML
approaches including regression techniques. For ML methods
and especially in the context of DL, SHAP offers novel
opportunities for the rationalization of predictive models and
for reducing or eliminating their black-box character. In future
work, SHAP analysis might be further extended to better
understand multitask learning for compound activity pre-
diction.

■ EXPERIMENTAL SECTION
1. Compound Data Sets. Machine learning inevitably depends

on compounds from the literature and their reported activity data.
ChEMBL is the primary repository for active compounds from the
medicinal chemistry literature.44 From ChEMBL version 24, 10
activity classes were selected for ML.
For each selected compound, literature reference(s) and the

presence of direct interactions (i.e., assay relationship type “D”) with a
human single-protein target at the highest confidence level (i.e., assay
confidence score 9) were required. As potency measurements,
explicitly specified (assay-independent) equilibrium constants (Ki
values) were required. Activity measurements provided in ChEMBL

were taken from original publications. When multiple Ki values were
available for a compound and fell within the same order of magnitude,
the mean value was determined. If differences between measurements
exceeded 1 order of magnitude, the compound was discarded. Only
compounds with (mean) pKi of at least 5 were ultimately selected to
exclude borderline active compounds from further consideration.
Furthermore, compounds with potentially inconsistent activity
records including comments such as “inactive”, “inconclusive”, or
“not active” were discarded. Taken together, these criteria exclusively
select compounds with highest ChEMBL confidence scores and
highest activity data confidence.45 In addition, all compounds meeting
high-confidence selection criteria were screened for pan-assay
interference compounds (PAINS)46 using substructure libraries
from public filters44,47,48 and compounds with PAINS alerts were
discarded (less than 1%).

Selected data sets were required to contain at least 200 compounds
belonging to at least 50 different analog series computationally
determined49 on the basis of matched molecular pair (MMP)
relationships.50 Selection of activity classes consisting of large
numbers of analog series ensured the presence of defined subsets of
structurally analogous compounds that were distinct from others.
Activity classes of sufficient size and intraclass structural diversity were
essential for meaningful ML-based activity modeling. Since this study
aimed to detect chemical features determining activity predictions,
confirmed activity of compounds against a given target based on high-
confidence activity data was another key criterion for an activity class.
Table 1 specifies selected classes, which consisted of 243−955
compounds and 57−216 analog series, respectively. To prevent

Figure 10. SHAP visualization for ECFP4. SHAP results are shown for an exemplary κ opioid receptor antagonist. In (a), the probability of activity
predicted by SVM (left), RF (center), and DNN (right) is reported at the bottom of the boxes and the most important features for determining
these predictions (top-1 and top-2) according to SHAP analysis are mapped onto the compound and highlighted. For top-ranked features, the
corresponding SHAP values are reported. In (b), positive (red) and negative (blue) feature contributions are shown for SVM (top), RF (middle),
and DNN (bottom). The output value (bold) corresponds to the output probability of each ML model.
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potential structural bias of predictions,51,52 analogs from different
series were selected as positive (active) training and test instances.
Training sets contained 70% of the analog series per activity class and
corresponding test sets 30% of the series. On average, training and
test sets included 366 (157 to 683) and 163 (70−278) active
compounds, respectively. As negative (inactive) training and test
instances, compounds were randomly selected from ZINC,48 i.e.,
consistently 1000 compounds per training and test set.
2. Molecular Representations. Extended connectivity finger-

print with bond diameter 4 (ECFP4)53 is a topology descriptor
encoding layered atom environments as numeric identifiers using a
hashing function. SMARTS patterns corresponding to each atom
environment (codified by a hash value) were stored. Therefore,
ECFP4 features can be mapped back onto the compounds. This
feature set fingerprint is variable in size, but a constant-length 1024-bit
representation was obtained through modulo mapping. In addition,
MACCS structural keys54 were used in a binary fingerprint format
encoding the presence (bit set on) or absence (off) of 166 predefined
structural patterns or fragments. The OEChem toolkit55 and in-house
Python scripts were used for fingerprint calculations.
3. Machine Learning Models. 3.1. Support Vector Machine.

The SVM classifier finds a hyperplane in a multidimensional space
that maximizes the distance between the support vectors of each class,
known as margin.17 The support vectors are the training instances of
one class that are closest to the other class. SVM enables nonlinear
modeling through the application of the kernel trick,56 i.e., the use of
kernel functions to map training compounds into a higher-
dimensional feature space representation in which the classes might
be linearly separable. For compound classification, the nonlinear
Tanimoto kernel54 is one of the best performing kernel functions.57,58

The SVM implementation of scikit-learn56 with customized Tanimoto
kernel was used for all calculations.

3.2. Random Forest. RF is an ensemble of decision trees (DTs)
that aims at reducing the variance of individual trees.16 RF is based on
bootstrap aggregating according to which training DTs with distinct
compound subsets are generated. In addition, a random subset of
features is used to minimize correlations between DTs. The final RF
prediction results from a consensus across the DT population. RF
calculations were carried out with scikit-learn.59

3.3. Feedforward Deep Neural Networks. A DNN is a series of
functional transformations (neurons) that learn how to modify input
values to obtain a desired output.60 Accordingly, DNNs have an input
layer, multiple hidden layers, and an output layer. First, a neuron’s
input values (x1, ..., xD) are linearly combined considering a set of
weights (w) and biases (b). Then, a differentiable nonlinear activation
function (h) is applied to obtain the neuron’s output (yj) according to
eq 4:61
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where n indicates the layer number. Training aims at determining the
weights and biases that minimize the cost function (e.g., cross-
entropy).21 Gradient descent is applied to update weights by
considering small steps (defined by the learning rate) in the direction
of the negative gradient and can be efficiently calculated using
backpropagation.60 DNNs were generated using TensorFlow61 and
Keras.62

3.4. Hyperparameter Optimization. Model hyperparameters were
optimized through internal 2-fold cross-validation and grid search.

Figure 11. Rationalizing SVM predictions for two analogs. (a) Two analogs are shown (with ECFP4 Tanimoto similarity of 0.6), and features with
the largest positive and negative contributions to SVM predictions are highlighted. SHAPth indicates the SHAP threshold value for the top-1 ranked
feature (such that only this feature is obtained). The analogs have different predicted probabilities of activity (Pactive). (b) For the analogs, features
with positive (red) and negative (blue) SHAP values are visualized.

Journal of Medicinal Chemistry Article

DOI: 10.1021/acs.jmedchem.9b01101
J. Med. Chem. XXXX, XXX, XXX−XXX

M



The same randomized data splits were considered for training (80%)
and internal validation (20%) for different ML methods.63 Best
hyperparameters were selected according to area under the ROC
curve (AUC) optimization (average across folds).
For SVM, the regularization term C was optimized with candidate

values of 0.01, 0.1, 1, and 10. In addition, SVM models were built with
and without class weights.58 The use of class weights consists in
penalizing errors on the minority class more than errors on the
majority class.

For RF models, the number of trees was consistently set to 500 and
three numerical hyperparameters were optimized including the
minimum number of samples required to split a leaf node (1, 5,
10) or an internal node (2, 8, 16) and the maximum number of
features considered when searching for the best split (i.e., square root,
log2). Furthermore, models were built with and without class weights.

Different network architectures were tested for DNN models, with
the following number of neurons in hidden layers: [100,500],
[200,100], [2000,1000], [200,100,100], and [2000,1000,100]. The
activation function was Rectified Linear Unit (ReLU) except at the

Figure 12. Interpretation of DNN and SVM predictions. (a) Score plots show the output probabilities of activity against orexin receptor 2 for DNN
and SVM models. A green square marks an exemplary compound that is incorrectly classified by SVM (p = 0.44) but correctly predicted by DNN
(p = 0.69). (b) Plots for SVM and DNN report SHAP feature values that modify the base value (0.22), with a positive (red) or negative (blue)
sign, to yield the final output probability (bold). For the DNN model, features with negative contributions to the output probability were absent.
(c) ECFP4 features with largest positive and negative SHAP values are shown for the SVM model (i.e., the top-1 feature and the top-3 ranked
features). For the DNN model, only the features with positive SHAP values are available.
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output layer, where a sigmoid function was applied. In addition, three
initial learning rates (0.1, 0.01, 0.001) were tested and values were
reduced when reaching a loss plateau. L2 regularization and drop-out
(25% or 50%) were applied to all hidden layers. Three batch sizes (64,
128, 256) were tested, Adam was used as the optimization function,
and the number of epochs was set to 50 and 200 during internal and
external validation, respectively.
3.5. Performance Measures. Predictive performance on test sets

was evaluated using three metrics: AUC, balanced accuracy (BA),64

and Matthew’s correlation coefficient (MCC).65 BA and MCC are
defined by eqs 5 and 6, respectively.

= +BA
1
2

(TPR TNR)
(5)

= × − ×
+ + + +MCC

TP TN FP FN
(TP FP)(TP FN)(TN FP)(TN FN)

(6)

To statistically compare MCC values before and after feature
elimination, nonparametric Wilcoxon tests66 were carried out.
4. Feature Contributions. Feature contributions were assessed

following the SHAP approach detailed in the Results sections. The
feature contributions represented by Shapley values are meant to
satisfy three axioms including local accuracy, consistency, and
nonexistence (or null effect).67,68

5. Data Availability. Compound activity classes used here are
made available in an open access deposition on the ZENODO
platform.69
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Summary

In this chapter, a conceptually new interpretation method to understand
activity predictions from any ML model was presented. Shapley additive ex-
planations (SHAP) represents an extension of local interpretable model-agnostic
methods where feature weights are approximated as Shapley values from game
theory. SHAP estimates feature importance in a consistent manner, which
enables an additional validation and/or knowledge extraction. The SHAP
method is applicable to any ML model, including regression or ensemble models.
Herein, SVM-, RF- and DNN-based predictions were interpreted for exemplary
compounds. Structural patterns with large SHAP values were identified and
mapped onto 2D graphs of compounds for intuitive visualization. On this basis,
model predictions can be structurally interpreted to detect potential sources of
bias or confirm model consistency to further validate a model, which is a key
factor for ML model acceptance and trust. Overall, the SHAP methodology of-
fers interesting practical opportunities for the further integration of ML models
into pharmaceutical research.
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Chapter 8

Conclusions

In this thesis, single-target and multi-target ML models have been gener-
ated for compound activity prediction. Two prominent modeling problems were
tackled: (i) prediction of compound profiling matrices and (ii) identification of
strong inhibitors across a panel of kinases. Potential advantages of DL and MT
learning over standard ML approaches have been evaluated. Moreover, bench-
mark settings and the influence of training set conditions on model performance
have been investigated. Finally, interpretability of activity predictions has been
improved to reduce or eliminate the black box character of complex ML models.

In the first study, distinct prediction strategies and ML methods of varying
complexity were benchmarked to model large screening matrices, which con-
tained approximately 110,000 and 143,000 small molecules extensively tested
against ∼50 targets. Models based on MT-DNNs and CNNs gave accurate
predictions for unrelated tasks but did not outperform other ML methods.
Surprisingly, target-based RF models, which are easier to train as well as inter-
pret, yielded successful predictions and detected active compounds for multiple
targets.

In the second work, ML strategies were developed to discriminate between
highly and weakly potent inhibitors across a set of 103 human kinases. MT
learning consistently surpassed ST approaches. MT-DNNs achieved overall the
best predictive performance, but advantages over other ML models using ligand
data for multiple kinases were only marginal.

Next, SVM classification and ranking models were trained for different ac-
tivity classes under systematic variation of the number of positive and neg-
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ative training compounds. With as few as 50 active compounds for training
predictions became accurate. Model performance and stability improved with
increasing number of inactives when considering class weights.

Moreover, the effect of compound profiling matrix density on the relative
performance of DNN and standard ML methods was systematically analyzed.
MT-DNNs slightly improved RF results when average performance across tar-
gets was calculated. Nevertheless, for individual targets MT-DNNs only yielded
superior performance with very sparse training data.

In the following, SVM and SVR models for compound activity and potency
predictions were interpreted and their prioritized model features were analyzed.
Surprisingly, fingerprint features contributed very differently to the correspond-
ing SVM and SVR models despite sharing the algorithmic basis.

Finally, an intuitive methodology to interpret activity predictions from com-
plex ML models was proposed. The locally interpretable explanatory method
termed SHAP was introduced to rationalize activity predictions of any ML
algorithm, regardless of its complexity. The SHAP analysis scheme proposed
herein enabled the identification of structural patterns determining activity pre-
dictions and their visual access onto compound graphs. Results indicated the
high potential of this methodology for rationalizing predictions from complex
ML models, including DNNs or ensemble methods.

In conclusion, these studies reflect the potential of ML approaches for mining
large compound data sets and modeling bioactivity against individual and mul-
tiple targets. Thus, predictive models can guide experimental design as well as
increase the enrichment of active compounds in drug discovery projects. Taken
together, the results revealed that DL is not a “magic bullet” and only leads to
improvements over standard ML methods under certain circumstances. Results
provided practical guidelines for ML and prediction of active compounds. Our
findings suggest MT-DNNs might be preferred to improve global performance
over multiple screens when only sparse matrices are available. Also, MT-DNN
might be the method of choice for modeling the activity against a single target
with only few known ligands, but when extensive data for other targets are
available. In addition, the findings presented herein assign high priority to MT
learning schemes when addressing correlated prediction tasks. As also shown,
MT modeling of compound-target interactions does not essentially depend on
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DNN and can be facilitated with different ML methods. Hence, MT learning
in medicinal chemistry has an encouraging perspective for practical applica-
tions. Large predictive performance is not sufficient for the usefulness of ML in
pharmaceutical research. There is an inherent lack of trust in computational
approaches and reluctance to use prediction outcomes without an associated
explanation. Accordingly, explainable model decisions provide an additional
validation step based on domain knowledge, which might allow the detection
of model biases. Furthermore, models can only guide compound modifications
if the structural features prioritized by the algorithm are extracted. Therefore,
insights on predictive models are required. Herein, the critical issue of model
interpretation has been addressed by designing and validating an intuitive an-
alytical methodology. Overall, this dissertation presents contributions to the
application and rationalization of ML models for activity predictions and SAR
modeling in pharmaceutical research.
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