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Abbreviations 
 

2-NBDG 2-(N-(7-nitrobenz-2-1,3-diazol-4-yl)amino)-2-deoxyglucose 

ACSF  artificial cerebrospinal fluid 

AG  astrocyte glucose 

AL  astrocyte lactate 

Aldh1L1  aldehyde dehydrogenase 1 family, member L1 

AMPA  α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

ANLS   astrocyte-neuron lactate shuttle 

ATP  adenosine triphosphate 

Biocytin N-biotinyl-L-lysine 

Camp  cyclic adenosine monophosphate 

Cm  membrane capacitance 

CNP  2',3'-Cyclic-nucleotide 3'-phosphodiesteras 

CNS  central nervous system 

CO  cortex 

CT  cortico-thalamic 

Cx  connexin 

D-AP5  DL-2-amino-5-phosphonovaleric acid 

DIC  differential interference contrast 

dko  double knockout 

DNA   deoxyribonucleic acid 

e.g.  for example 

EAAT  excitatory amino acid transporters 

ECFP  enhanced cyan fluorescent protein 

EGD  extracellular glucose deprivation 

EGFP  enhanced green fluorescent protein 

EGTA  ethylene diaminetetraacetic acid 

Fig.  figure 

FITC  fluorescent isothiocyanate 

fPSP  field Post Synaptic Potential 

GABA  ɣ-aminobutyric acid 

GAD  glutamic acid decarboxylase 

GFAP  glial fibrillary acidic protein 

GFP  green fluorescent protein 

GLAST glutamate aspartate transporter 

GLUT  glutamate transporter  

GLS   glutaminase 

GS  glutamine synthetase 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HC  hippocampus 

I  current 

ic  internal commissure/capsule 
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IP3  inositol triphosphate 3 

KA   kainic acid 

kDa  kilo Dalton 

Kir   inwardly-rectifying K
+
 

ko  knock-out 

LDH  lactate dehydrogenase  

LSM  laser scanning microscope 

LTD  long-term depression  

LTP   long-term potentiation 

MBP  myelin basic protein 

MCT  monocarboxylate transporter 

mGluR  metabotropic glutamate receptor 

MP  membrane potential 

n   number of samples 

NADH  nicotinamide adenine dinucleotide 

NBQX  2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione 

NDD  non-descanned detector 

NG2   nerve/glia antigen 2 

NGS  normal goat serum 

NMDA  N-methyl-D-aspartic acid 

OG  olygodendrocyte glucose 

OL  olygodendrocyte lactate 

OPC  oligodendrocyte precursor cell 

p  postnatal day 

PBS   phosphate buffered saline 

PCR   polymerase chain reaction 

PFA  paraformaldehyde 

PLP  proteolipid protein 

PMT  photomultiplier tube 

Po  posterior thalamic nucleus 

PTX  picrotoxin 

Rm  membrane resistance 

Rs  series resistance 

RT  room temperature 

RTN  reticular thalamic nuclei 

S100ß  S100 calcium binding protein ß  

SEM  standard error of the mean 

SR101  sulforhodamine 101 

TC  thalamo-cortical 

TRITC  tetramethylrhodamine isothiocyanate 

TTX   tetrodotoxin 

V  voltage 

VB  ventrobasal 

VPL  ventro posterior lateral nucleus 

VPM  ventro posterior medial nucleus 

v/v   volume per volume 
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1 Introduction 
 

The role of glial cells in the central nervous system (CNS) has been underestimated and 

brain studies were restricted to neuronal brain cells for a long time. In the CNS, 

complex neuronal networks are formed, in which neurons can receive and integrate 

incoming signals as well as transmit information. Glial cell properties and their 

interaction with neurons are nowadays known to be essential for proper brain function. 

Glial cells make up 65% of the mouse brain and there is increasing evidence on their 

role in brain function, development and more recently in brain metabolism (Barres, 

2008; Allen and Barres, 2009). The brain requirements in energy supply are extremely 

high and glial cells are essential to guarantee proper brain function. 

This study focuses on the role of two types of glial cells, astrocytes and 

oligodendrocytes, and aims to understand their respective role in supporting and 

providing energy substrates to neurons in a specific region of the brain, the thalamus. 

This following section gives an overview into this topic. 

 

1.1 The thalamus 
 

The thalamus (from Greek, „inner chamber“) is the largest component of the 

diencephalon, located in the center of the brain.  It is a symmetrical structure and each 

hemisphere comprises a thalamus. The third ventricle, which is a thin vertical space 

filled with cerebrospinal fluid, separates the two structures. The thalamus has been 

described as “the gateway to consciousness” (Crick and Koch, 2003). It plays an 

essential role as a relay station and only the olfactory sensory pathway is not controlled 

by the thalamus. The thalamus is now not only believed to be a relay station but it can 

also process information. There is evidence demonstrating the role of the thalamus in 

modulation of sensory and motors signals to the neocortex (Sherman and Guillery, 

2002). 
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Figure 1.1 Scheme representing thalamocortical projections in the adult mouse brain.  

(Inset) Outline of a mouse brain. The thick grey line indicates the cutting angle of the brain section used 

to obtain thalamocortical slices containing intact thalamocortical projections. (Main illustration) 

Schematic representation of the connections between the ventrobasal thalamus (VB) and the cortex. The 

ventrobasal thalamic nucleus receives somatosensory ascending inputs from the brain stem (pink). VB 

neurons (red) project axons to layer 4 of the primary somatosensory cortex S1 (light pink) and layer 6 

neurons signal back to the VB (light green). Axons run across the internal commissure (ic). Thalamo-

cortical (TC) as well as cortico-thalamic (CT) neurons form synapses with GABAergic neurons from the 

reticular thalamic nucleus (RTN), creating an inhibitory feedback loop and an inhibitory feedforward 

circuit to the VB (orange). Layer 5 axons (dark green) signals from the somatosensory cortex to a higher 

order nucleus, the posterior thalamic nucleus (Po). This nucleus signals back to a different cortical area, 

S2 (light blue), that is different from the original input. GP, globus pallidus; Str, striatum; wm, white 

matter. From Grant et al., 2012. 

 

 

Sherman and Guillery divided the thalamus into two types of nuclei based on the origin 

of the information. First order nuclei receive and relay information coming from 

ascending pathways (visual, sensory, auditory), whereas high order nuclei relay 

information coming from the cortex itself. Thus, information is transferred between 

different cortical regions via the thalamus. Glial cells in the ventrobasal nucleus (VB), a 

first order nucleus, were the focus of this study. The VB consist of the ventral posterior 

medial (VPM) and the ventral posterior lateral (VPL) nuclei. It is part of the 

somatosensory system and of the trigeminal pathway, which is transferring information 

from the brain stem to the thalamus and further to the cerebral cortex (Bosman et al., 

2011). The VB receives somatosensory peripheral inputs (Fig. 1.1). Those inputs 

terminate on glutamatergic synapses. Glutamate receptors are primarily involved in 

neuronal thalamic firing (Eaton and Salt, 1996). Thalamic relay neurons project axons 
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mainly to the layer 4 of the primary somatosensory cortex via the thalamo-cortical (TC) 

pathway (Agmon et al., 1993). Using this pathway, axons cross through the reticular 

thalamic nucleus (RTN) and the internal capsule. TC neurons from synapses with 

GABAergic RTN neurons generating an inhibitory feedback loop. Cortico-thalamic 

(CT) neurons send projections from layer 6 of the somatosensory cortex back to the VB, 

to form glutamatergic synapses on the distal dendrites of the relay cells (Grant et al., 

2012). Following their pathway, CT neurons also form synapses on RTN neurons 

creating an inhibitory feedforward circuit to the VB (Bourassa et al., 1995; Grant et al., 

2012; Pinault 2011). 

Nearby GABAergic RTN neurons are also interconnected with each other via gap 

junctions-mediated electrical synapses that depend mostly on connexin36 (Cx36), 

throughout thalamic networks development (Landisman et al., 2002; Long et al., 2004; 

Lee et al., 2014; Zolnik and Connors 2016). Electrical synapses via Cx36 are abundant 

between VB neurons in one week old animals but decrease in the second week. In fact, 

they were never observed in VB neurons after postnatal day (p) 12 (Lee et al., 2010). 

The thalamus is one of the most heavily interconnected areas in the brain. Therefore 

thalamic abnormalities have been linked to several disorders. Schizophrenia, absence 

epilepsy, Alzheimer or fatigue in patients with multiple sclerosis have all been 

associated with thalamic dysfunctions (Pinault, 2011; Chen et al., 2017; Aggleton et al., 

2016; Niepel et al., 2006).  

 

1.2 Thalamic barreloids 

The VPM receives input from the whiskers. It contains elongated cellular domains 

called barreloids, which are the structural basis for the somatotopic organization of 

vibrissae responses (Van der Loos, 1976; Land et al., 1995). Each barreloid receive 

sensory input from individual vibrissae and relays those signals to the corresponding 

cortical module, called a barrel in the layer 4 of the primary somatosensory cortex (Fig 

1.2; Ito, 1988; Sugitani et al., 1990; Mosconi et al., 2010; Haidarliu and Ahissar, 2001). 

Barreloids are whisker-related clusters of neurons that form somatotopically related 

pathways. Furthermore, adjacent barreloids are closely connected with each other 

(Lavalée and Deschênes, 2004). In early development one thalamic relay neuron is 

confined to a single barreloid. The number of primary dendrites does not change from 

p5 to adulthood. However, during development dendritic arbors extent to adjacent 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4865577/#tjp7139-bib-0048
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4865577/#tjp7139-bib-0055
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barreloids. This process is mainly complete by p18 (Zantua et al., 1996). More 

specifically, thick proximal dendrites of relay cells are restricted to their home 

barreloids whereas extrabarreloid dendrites can extend to neighbouring barreloids 

(Varga et al., 2002). 

 
Figure 1.2 Schematic representation of somatotopic whisker organization.  

Spatial arrangement of mice whiskers. The somatotopy of face whiskers is maintained in the brain stem 

as “barrelettes”, in the thalamus as “barreloids” and in the cortex as “barrels”. From Li and Crair, 2011. 

 

 

1.3 Glial cells in the brain 

Glial cells are at least as abundant as neurons in the human brain but it was only in the 

middle of the 19
th

 century that Rudolf Virchow, Santiago Ramón y Cajal and Pío del 

Río-Hortega discovered them. The concept of neuroglia defined those cells as 

supporting players next to neurons. The name “Nervenkitt”, literally “nerve-glue”, in 

ancient Greek was introduced by the German anatomist Virchow in 1856 in his trial to 

find a “connective tissue” in the brain (Virchow, 1856; Verkhratsky and Nedergaard, 

2018).  

Pío del Río-Hortega was the first neuroscientist to define the classical view of glial cells 

by dividing them into the subgroups microglia and macroglia. The latter group consists 

of astrocytes, oligodendrocytes, NG2 cells and ependymal cells. Today, the role of glia 

in brain function is progressively recognized. Glial cells have been shown to be 

involved in physiological processes, like learning, memory and cognition, and they have 

also been associated with disease development (Barres 2008; Coulter and Steinhäuser, 

2015; Elsayed and Magistretti, 2015). In this work, the role of astrocytes and 

oligodendrocytes in the thalamus will be investigated.  
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1.3.1 Astrocytes 

Astrocytes are the most abundant glial cell type in the adult brain (Kettenmann and 

Ransom, 2005). Their name was introduced by Michael von Lenhossék and is derived 

from the Greek astron-star and kutos-cell, a reference to their star-like morphology 

(Lenhossék, 1891). They possess numerous ramified processes as firstly described by 

Ramón y Cajal in 1897 (Fig. 1.3A). Astrocytes play an important role in the 

gliovascular network. As already suggested by Ramón y Cajal, they are in intimate 

contact with endothelial cells covering the walls of vascular structures (Fig. 1.3A). 

Indeed, their endfeet are covering all cerebral blood vessels at the blood-brain-barrier 

(BBB). This proximity allows for ion, water, amino acid and neurotransmitter transfer 

and regulation between the two structures (Abbott et al., 2006, Nedergaard et al., 2003). 

Astrocytes are also perfectly located between blood vessels and neurons to participate in 

regulating cerebral blood flow (MacVicar and Newman 2015; see section 1.5.2). 

Consequently, astrocytes are essential in the regulation of brain homeostasis. For this 

purpose, they express a variety of channels and transporters at their endfeet, such as 

aquaporins, glucose and lactate transporters as well as K
+
 channels (Sofroniew and 

Vinters, 2010; Wang and Bordey, 2008). 

A typical marker for identifying astrocytes is the glial fibrillary acid protein (GFAP). It 

is an intermediate filament and the most distinctive cytological feature of astrocytes. 

However, GFAP does not label the entire cell but mostly somata and proximal 

processes (Wilhelmsson et al., 2004). Only dye filling of individual astrocytes allows 

the visualization of the entire cell domain. This method demonstrates that astrocyte 

processes extend around 50 to 100 µm from the somata (Wilhelmsson et al., 2004). 

Furthermore, most of the astrocyte domains are not overlapping with each other and 

only few interdigitations are observed between fine processes (Fig. 1.3B; Wilhelmsson 

et al., 2006; Bushong et al., 2002; Pekny et al., 2014). However, the overlap factor 

seems age-related as interdigitation of astrocyte territories increases with age in mice 

(Grosche et al., 2013). In regions where processes are overlapping, neighboring 

astrocytes are connected together through gap junction channels from early postnatal 

development, thus forming a network. Astrocyte gap junction coupled networks will be 

described in section 1.4.1. Another restriction in using GFAP as an astrocyte marker is 

that it is widely expressed in the hippocampus but not by thalamic astrocytes (Frassoni 

et al., 2000), whereas the calcium binding protein S100β was found in both 
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hippocampal and thalamic astrocytes  (Matthias et al., 2003; Parri et al., 2010). Another 

classical astroglial marker, 10-formyl-tetrahydrofolate dehydrogenase (Aldh1L1), is 

also lacking in thalamic astrocytes and was found to overlap with the oligodendrocyte 

markers Olig2 and PLP-GFP
+
 cells in the thalamus (Griemsmann et al., 2015). 

Glutamine synthetase (GS) is mainly confined to astrocytes in the hippocampus 

(Coulter and Eid, 2012), but almost all PLP-GFP
+
 cells expressed GS in the thalamus 

(Griemsmann et al., 2015). Hence, classical astrocytic markers used in the hippocampus 

show an overlapping expression profiles in the thalamus and are therefore not reliable 

tools for cell type identification.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 1.3 Astrocyte morphology and territories.  
(A) Santiago Ramon y Cajal’s drawing of the pyramidal layer and stratum radiatum of an adult man (3h 

after his death) showing “neuroglia”. He already described and drew astrocytes (dark cells, A, B) as cells 

with comparatively small soma and numerous thick processes, prolonged with fine distal processes 

enwrapping adjacent neuronal somata and dendrites. Astrocytes contact neurons (lighter cells, C, D) and 

blood vessel (F) (Ramon y Cajal, 1897; Navarrete and Araque, 2014). (B) 3D reconstruction of astrocytes 

in the dentate gyrus. Astrocytes occupy their own domains. Only fine cellular processes (yellow) are 

overlapping between adjacent astrocytes (red and green; Wilhelmsson et al., 2006). 

A 

B 
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Astrocytes are electrically non-excitable. Electrophysiological analyses show a passive 

current pattern in whole-cell mode recordings, reflecting the high density of K
+
 

channels, inward-rectifying (Kir) and two-pore domain K
+
 channels (Wallraff et al., 

2004; Djukic et al., 2007; Seifert et al., 2009). Astrocytes are characterized by a high 

resting permeability for K
+
 and a very negative resting potential (around -80 mV) close 

to the Nernstian equilibrium for K
+ 

(Somjen, 1975; Nedergaard et al., 2003). Therefore, 

they are very sensitive to changes in extracellular K
+
 concentrations and play a role in 

spatial K
+
 buffering. Astrocytes can take up the excess of extracellular K

+
 occurring 

during neuronal excitabitiliy and this process is mainly mediated via Na
+
/K

+
 pumps and 

Na
+
/K

+
/Cl

-
 cotransporter 1 (Balestrino and Somjen, 1986; Ransom et al., 2000; 

D’Ambrosio et al., 2002). Spatial buffering is another mechanism involved in regulating 

K
+
 concentrations. It is based on the fact that astrocytes are connected with each other 

via gap junction channels to form coupled networks. Astrocytes are taking up K
+
 from 

high concentrated regions, and redistribute it through their network into areas with low 

concentration of K
+
, via weakly rectifying Kir4.1 channels. This mechanism occurs due 

to the more negative resting membrane potential than the K
+
 equilibrium potential 

leading to an K
+
 influx in astrocytes (Orkand, 1986). An intact gap junction network is 

essential for efficient K
+
 buffering, as an impaired K

+
 buffering was observed in mice 

lacking connexin43 and connexin30 (Wallraff et al., 2006). There is now increasing 

evidence that astrocytes play important roles in modulation of neuronal activity and 

synaptic transmission. At the synapses, they are enwrapping neurons with their 

processes and are therefore active players in the concept of the “tripartite synapse” 

(Araque et al., 1999), which will be described further in section 1.5.1.  

 

1.3.2 Oligodendrocytes 

  

Oligodendrocytes are considered to be the second major group of glial cells in the CNS. 

They were first discovered by Pío del Río-Hortega in 1928. He introduced the term of 

oligodendroglia to describe these neuroglia cells with few processes arriving from the 

cell somata (Del Río Hortega, 1921). Oligodendrocytes originate from oligodendrocyte 

progenitor cells (OPCs), also called NG2 glial cells as they express the NG2 chondroitin 

sulfate proteoglycan on their surface (Nishiyama et al., 2009). NG2 glia is widely 

considered to be the third major glial cell type in the CNS. 
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First studies focused on oligodendrocytes’ myelinating function. In the CNS, once 

OPCs differentiate in oligodendrocytes, they extend multiple exploratory processes to 

enwrap neuronal axons with an insulating multilamellar lipid structure called myelin 

(Sherman and Brophy, 2005). This process ensures accurate saltatory conduction of 

action potentials from one node of Ranvier to another. Myelination is a continuous 

process that starts during early development. It is region dependent and crucial for the 

signaling capacity of the brain (Fuss et al., 2000). In the adult brain, oligodendrocytes 

have been shown to contribute to myelination modeling (Young et al., 2013). While 

there is heterogeneity across brain regions, white matter areas are mostly composed of 

oligodendrocytes which form myelin around long-range axons. The optic nerve contains 

almost exclusively myelinated axons, whereas more than 70% of the axons are 

unmyelinated in the corpus callosum (Young et al., 2013). Oligodendrocytes are 

nevertheless also present in grey matter. The start of the myelination process in the 

thalamus is characterized by light myelin protein formation in thalamic nuclei around 

p8, which continues until 4 weeks after birth in rats (Downes and Mullins, 2014). 

However, myelination is not the only function of oligodendrocytes. In grey matter, so 

called satellite or perineuronal oligodendrocytes are found whose function is not well 

understood (Simons and Nave, 2016). Recent studies have put forward that 

oligodendrocytes in white matter also provide metabolic support to neurons. They do so 

via myelin sheaths, which are crucial to secure proper axonal function (Simons and 

Nave, 2016). This will be further described in section 1.5.4. 

Like astrocytes, oligodendrocytes also express connexins. However, they express other 

connexin isoforms than astrocytes. Oligodendrocyte gap junction coupled networks will 

be described in section 1.4.2. 

 

1.4 Connexin gap junction channels 

 

Gap junction channels are intercellular channels providing a direct pathway for 

intercellular connection and communication. The cytoplasm of connected cells is 

linked, therefore allowing the exchange of small molecules up to around 1 to 1.2 kDa 

(Giaume and Naus, 2013). In vertebrates, gap junctions are formed by membrane 

proteins called connexins (Cx). 21 different genes encoding connexins have been 

identified in humans and 20 in mice. Cx are usually named according to their predicted 

molecular weight (Willecke et al., 2002; Söhl and Willecke, 2003).  
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A single gap junction channel consists of 2 connexons. One connexon is composed of 6 

connexin molecules, which are transmembrane proteins. Connexins have four 

transmembrane domains, two extracellular loops, one intracellular loop and N- and C- 

terminal tails (Fig. 1.4). The length of the C-terminal tail mostly determines the connexin 

size. In mice, the molecular weight ranges from 23 to 57 kDa (Willecke et al., 2002; 

Giaume et al., 2010; Söhl and Willecke, 2003). A gap junction channel can be 

homotypic, formed by identical connexons, or heterotypic, formed by 2 different 

connexon types. Connexons of uniform connexins are called homomeric whereas 

heteromeric connexons contain different connexins (Willecke et al., 2002; Goldberg et 

al., 2004). The molecular weight, as well as the net charge and the shape, influence the 

permeability properties of gap junction channels (Goldberg et al., 2004; Giaume et al., 

2010). Several studies have shown that gap junction channels are permeable to 

numerous molecules, as for example ions (K
+
, Na

+
, Ca

2+
), second messengers (cAMP, 

IP3), metabolites (glucose, lactate) or water (Niermann et al., 2001; Rouach et al., 2002; 

Bedner et al., 2006; Wallraff et al., 2006; Rouach et al., 2008; Giaume et al., 2010). 

Different sets of connexins are expressed depending on the cell type, the developmental 

stage or the brain region (Goodenough et al., 1996; Willecke et al., 2002; Nagy et al., 

2004; Schools et al., 2006; Bedner et al., 2012).  

 

        
 
 

Figure 1.4 Structure of a gap junction channel  
A connexin is composed of 4 transmembrane domains, two extracellular loops, one cytoplasmic loop, and 

an N- and C-terminal. A hexamer of connexin subunits forms a connexon, also referred to as a 

hemichannel. A gap junction channel is formed when two connexons of two adjacent cells connect with 

each other (Adapted from Bosco et al., 2011). 
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28 human genetic diseases have been associated with connexin mutations or connexin 

expression alterations (Giaume et al., 2010; Giaume and Naus, 2013; Srinivas et al., 

2018). For example, in humans a mutation of Cx32 leads to a demyelination disorder, 

the X-linked Charcot Marie Tooth Disease (Bergoffen et al., 1993). Mutations in the 

Cx47 gene are associated with the Pelizaeus-Merzbacher-like disease, a 

hypomyelinating leukodystrophie characterized by progressive spasticity and ataxia 

(Uhlenberg et al., 2004). Thus, connexins and gap junction channels are important for 

proper brain function. 

 

 

1.4.1 Astrocyte connexins 

Astrocytes express the highest levels of Cx in the brain. The main cell specific 

astrocytic gap junction proteins are Cx43 (gene name Gja1) and Cx30 (Gjb6) while 

Cx26 (Gjb2) is expressed by a small population of grey matter astrocytes (Nagy et al., 

2003; Nagy and Rash, 2003; Nagy et al., 2011). Astrocytic connexins can form intra-

astroglial connections (Wallraff et al., 2006). Using antibodies and immunoreactivity, 

Cx43 has been well recognized as the major constituent of gap junctions in astrocytes in 

the neocortex or in the hippocampus but not in the thalamus (see below). Expression of 

Cx43 starts early during embryonic stage in white and grey matter of the CNS and 

remains high throughout postnatal development (Dermietzel et al., 1989; Yamamoto et 

al., 1990). Loss of Cx43 in the hippocampus leads to partial inhibition of up to 50% of 

astrocyte coupled networks and increases velocity in hippocampal spreading depression 

(Theis et al., 2003). Cx43 is an important element in brain development and physiology, 

such as in K
+
 spatial buffering, inter-astroglial Na

+ 
waves, Ca

2+
 waves, metabolite 

transport and glutamate clearance (Wallraff et al., 2006; Scemes and Giaume, 2006; 

Langer et al., 2012; Rouach et al., 2008; Theis et al., 2003; Pannasch et al., 2011). 

Modulation of glial networks and metabolism will be described in section 1.5.  

In mice lacking Cx43, an upregulation of Cx30 expression was observed (Theis et al., 

2003; Wallraff et al., 2006). Cx30 is expressed later than Cx43, starting at postnatal day 

10 and is dominant in grey matter (Dahl et al., 1996; Kunzelmann et al., 1999; Nagy et 

al., 1999). Cx30 has been shown to control excitatory synaptic transmission in the 

hippocampus through modulation of astrocytic glutamate transport, mediated by 

changes in synaptic location of astroglial processes. Therefore, Cx30 sets synaptic 

strength and is involved in long-term synaptic plasticity and memory (Pannasch et al., 
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2014). Cx30 is also upregulated in mice, which are exposed to cages with a rich 

environment, and is thus linked to cognitive processes (Rampon et al., 2000). 

Interestingly, in the olfactory bulb, neuronal activity regulates astroglial networks 

through Cx30, suggesting Cx30 as a molecular target for activity-dependence of gap 

junction channels (Roux et al., 2011). 

Cx43 and Cx30 are both enriched at perivascular astrocytic endfeets and along blood 

vessel walls (Pannasch and Rouach, 2013). Loss of both Cx43 and Cx30 leads to 

dysmyelination, vacuolization and complete loss of astrocyte coupling, as well as 

reduced astrocyte/oligodendrocyte coupling in the CNS of these mice (Wallraff et al., 

2006; Lutz et al., 2009; Maglione et al., 2010; Pannasch et al., 2011; Griemsmann et al., 

2015). The distribution of astrocytic connexins is broad but heterogeneous among 

different brain regions. In the hippocampus, astrocytic coupling is dominated by Cx43, 

whereas in the thalamus many astrocytes even lack Cx43 (Griemsmann et al., 2015). In 

the thalamus, Griemsmann et al. (2015) have shown that Cx30 is the dominant 

connexin. 

While an abundant expression of Cx26 was observed in the thalamus using 

immunostaining (Nagy et al., 2001, 2011), deletion of Cx26 did not impact gap junction 

coupling (Griemsmann et al., 2015). This indicates that there is no major functional role 

of this specific connexin in thalamic coupling networks (Griemsmann et al., 2015). In 

conclusion, astroglial connexins are crucial for the regulation and maintenance of 

proper brain homeostasis and neuronal activity (Rouach et al., 2008; Giaume et al., 

2010; Roux et al., 2011). 

 

1.4.2 Oligodendrocyte connexins 

 

Oligodendrocytes express Cx29 (gene name Gjc3), Cx32 (Gjb1) and Cx47 (Gjc2) 

(Dermietzel et al., 1997; Kunzelmann et al., 1997; Altevogt et al., 2002; Nagy and Rash, 

2003). Connexins are critical for CNS myelination through electrical and metabolic 

coupling (Menichella et al., 2006; Giaume and Naus, 2013). Oligodendrocytic 

connexins can form intra-oligodendroglial connections (Maglione et al., 2010; Wasseff 

and Scherer, 2011). Cx29 is localized at the adaxonal membrane of the myelin sheaths 

and also at the cell body of oligodendrocytes (Altevogt et al., 2002; Li et al., 2004; 

Nagy et al., 2003). However, this connexin does not form functional gap junction 
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channels (Kleopa et al., 2004). Deletion of Cx29 alone did not impact the coupled 

network size in the corpus callosum (Maglione et al., 2010). 

Gap junction plaques in oligodendrocytes are composed of Cx32 and Cx47 and are 

localized at oligodendrocytic cell bodies (Kleopa et al., 2004). Cx32 is also localized at 

the outer membrane of large myelin sheaths (Kleopa et al., 2004; Kamasawa et al., 

2005). In mice, deletion of Cx32 did not show neurological abnormalities (Nelles et al., 

1996) and the deletion of Cx32 alone did not significantly reduce glial network size in 

the corpus callosum (Maglione et al., 2010). Cx47 is localized in oligodendrocyte 

somata and is widely present at astrocyte-oligodendrocyte gap junctions (Nagy et al., 

2003). Mice lacking only Cx47 did not show obvious abnormal behaviour, and only 

sporadic vacuoles (Odermatt et al., 2003; Menichella et al., 2003). However, functional 

studies have shown that the deletion of Cx47 reduces the coupled network by about 

80% and completely abolishes coupling of oligodendrocytes to astrocytes (Maglione et 

al., 2010). Furthermore, the loss of Cx47 in mice was associated with the loss of other 

connexins located in oligodendrocyte somata (Li et al., 2008). Mice lacking both Cx47 

and Cx32 showed severe vacuolation, died early after birth (6 weeks) and coupling was 

completely absent in white matter (Odermatt et al., 2003; Maglione et al., 2010). In 

conclusion, oligodendroglial connexins are crucial for proper myelination and 

regulation of brain homeostasis (Kamasawa et al., 2005; Maglione et al., 2010; Giaume 

and Nave, 2013). 

 

1.4.3 Panglial gap junction coupling  

 

As astrocytic and oligodendrocytic connexins are different, astrocyte/oligodendrocyte 

gap junctions are therefore heterotypic. Recent findings suggest that astrocytic and 

oligodendrocytic connexins can form inter-astro-oligodendroglial connections, called 

panglial coupling, in vivo (Maglione et al., 2010; Wasseff and Scherer, 2011; Tress et 

al., 2012; Griemsmann et al., 2015). In grey matter, immunohistochemical studies have 

demonstrated that oligodendrocytic Cx47 and astrocytic Cx43 colocolize at 

oligodendrocyte-to-astrocyte gap junctions, while oligodendrocytic Cx32 colocalizes 

with astrocytic Cx30 (Nagy et al., 2003; Altevogt and Paul, 2004). Electrophysiological 

studies have identified that some couplings pairs are functional and permeable to 

molecules, like the Cx30/Cx32, Cx47/Cx43 and Cx47/Cx30 pairs, whereas other pairs 

are not functional, like the Cx43/Cx32 pair (White and Bruzzone, 1996; Orthmann-

https://www.jneurosci.org/content/32/22/7499?ijkey=eb611378efb4d656d0d6805a3d09abebd9bb4623&keytype2=tf_ipsecsha#ref-19
https://www.jneurosci.org/content/32/22/7499?ijkey=eb611378efb4d656d0d6805a3d09abebd9bb4623&keytype2=tf_ipsecsha#ref-2
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Murphy et al., 2007; Magnotti et al., 2011). Panglial gap junction networks have been 

shown to be essential for maintenance of myelin in the CNS. Using mice lacking one 

astrocytic (Cx30) and one oligodendrocytic (Cx47) connexin, a complete loss of 

functional oligodendrocyte to astrocyte gap junction coupling was observed in the 

corpus callosum (Tress et al., 2012). Another study has shown that Cx47 expression and 

phosphorylation in oligodendrocytes is dependent on astrocytic Cx43 expression in 

astrocytes (May et al., 2013), thus, explaining the similarities observed in mice lacking 

Cx43/Cx32 or Cx32/Cx47. Biocytin filling of either one astrocyte or oligodendrocyte in 

the corpus callosum resulted in panglial coupled networks (Maglione et al., 2010; 

Meyer et al., 2018). In the thalamus, biocytin filling of glial cells showed abundant 

panglial coupling, with more than 50% of the coupled cells being oligodendrocytes. In 

contrast, panglial coupling is much less prevalent in other brain regions, e.g. the 

hippocampus and neocortex (Griemsmann et al., 2015). 

 

1.5 Neuron-glia interactions and metabolism 

1.5.1 Tripartite synapse and calcium waves 

Astrocytes and neurons are closely interacting. Astrocyte processes are enwrapping 

neuronal presynaptic and postynaptic terminals at the synapse. This observation led to 

the concept of the tripartite synapse, which is based on the existence of a bidirectional 

communication between astrocytes and neurons (Fig. 1.5; Araque et al., 1999; Halassa 

et al., 2007).  

Neurons release neurotransmitters like GABA or glutamate at the synaptic cleft. 

Specifically, glutamate activates astrocytic G-protein coupled receptors, like mGluR5 in 

the VB thalamus (Nedergaard et al., 2003; Matthias et al., 2003; Parri et al., 2010). This 

increases astrocytic intracellular Ca
2+

 concentration, which leads to astrocytic release of 

gliotransmitters like glutamate, D-serine and ATP (Bezzi et al., 2004; Perea et al., 2009; 

Henneberger et al., 2010; Navarrete et al., 2012). Moreover, astrocytes can covert 

glutamate to glutamine through the glutamine synthetase, which can in return be taken 

up by neurons to resynthesize glutamate and GABA (Parpura et al., 1994; Bergles et al., 

1999; Matsui et al., 2005; Allaman et al., 2011; Amaral et al., 2013). This concept, 

called the glutamate shuttle, was introduced by Van den Berg and Garfinkel in 1971, 

while glutamine synthetase was first observed in glia by Martinez-Hernandez et al. in 

1977.  
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The glutamate-induced increase of intracellular Ca
2+

 has been shown to propagate as 

waves within the cytoplasm of one astrocyte to adjacent astrocytes, first in cell cultures 

and then in vivo, in most brain regions and also in human brain tissue (Cornell-Bell et 

al., 1990; Navarrete et al., 2013). Intracellular Ca
2+

 waves can occur spontaneously 

(Nimmerjahn et al., 2009) or be evoked (Sun et al., 2013). They involve mGluRs, the 

activation of the phospholipase C, IP3 production and subsequent release of Ca
2+

 from 

the endoplasmic reticulum (Scemes and Giaume, 2006). It has been shown that 

intercellular Ca
2+

 waves are dependent on Cx channels (Blomstrand et al., 1999; Enkvist 

and McCarthy, 1992; Scemes and Giaume, 2006; Giaume et al., 2010), in vivo 

(Hoogland et al., 2009) and in pathological conditions (Kuchibhotla et al., 2009). 

However, whether Ca
2+

 waves propagate through astrocyte gap junction networks, or 

extracellular signaling pathways through the extracellular release of ATP and activation 

of P2 receptors at neighboring astrocytes, is still unclear (Nedergaard et al., 2003; 

Haydon and Carmignoto, 2006; Giaume et al., 2010; Pirttimaki and Parri, 2012). In 

conclusion, astrocytes can integrate and regulate synaptic information, influence 

synaptic transmission and plasticity. 

 

Figure 1.5 Scheme of the tripartite synapse. 
Astrocytic processes (green) are in close interaction with the presynaptic (Pre, purple) and postsynaptic 

(Post, blue) terminals. After neuronal activity, K
+
 accumulates and astrocyte processes have an important 

role in K
+
 clearance. Astrocytes are also essential in glutamate uptake from the synaptic cleft. 

Additionally, neurotransmitter release from neurons activates astrocytic metabotropic receptors, which 

leads to an increase in astrocytic Ca
2+

 concentration. In a Ca
2+

-dependent process, they then release 

gliotransmitters, which then modulate neuronal activity (Halassa et al., 2007).  
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1.5.2 Astrocytes and neurovascular coupling 

In 1886 Camillo Golgi already hypothesized that astrocytes, thanks to their cytological 

features, would be involved in delivery of energy substrates to neurons and in 

cerebrovascular regulation (Fig. 1.6; Golgi 1886; Magistretti and Pellerin, 1999; 

Nedergaard et al., 2003; Iadecola and Nedergaard, 2007). Astrocytes are involved as 

intermediaries in modulating neurovascular coupling (Magistretti et al., 1994; Attwell et 

al., 2010). Together with endothelial cells and pericytes, they tightly wrap blood 

vessels, and although astrocytes do not form the BBB, they contribute to its healthy 

development (Kacem et al., 1998; Nedergaard et al., 2003; Abbott et al., 2006; 

Mathiisen et al., 2010). Astrocytes are therefore in the strategic position to take up 

glucose from the blood using their endfeet, which are particular structures closely 

apposed to blood vessels (Belanger et al., 2011; Mergenthaler et al., 2013). They do so 

through the glucose transporter GLUT1, expressed on astrocytes enfeet (Morgello et al., 

1995). The specific proteins aquaporin 4 and Cx43 are also strongly express at 

astrocytic endfeet (Simard et al., 2003). Astrocytes can influence the diameter of 

capillaries and arterioles, thereby adapting blood flow to neuronal activity (Attwell et 

al., 2010). As astrocyte endfeet express high levels of Cx, they enhance gap junction 

communication between astrocytes located close to the blood vessels (Nagy et al., 1999; 

Rouach et al., 2008). As outlined above, astrocyte gap junction channels participate in 

the propagation of Ca
2+

 waves in vivo and in pathological conditions (Hoogland et al., 

2009; Kuchibhotla et al., 2009). Consequently, it was proposed that they might 

contribute to blood flow modulation by increasing the number of endfeet processes 

involved in the response, as the regulation and production of vasoactive molecules is 

Ca
2+

-dependent (Scemes and Giaume, 2006; Giaume et al., 2010).  
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Figure 1.6 Astrocytes and neurovascular interactions.  
Astrocyte endfeet are in close contact with blood vessels. (a) Drawing of astrocytes and blood vessels 

from a human cerebellum, from table XII of Golgi’s book. (b) Zoom in of the drawing in a, which 

emphasizes the close spatial relationship between astrocytes and blood vessels. (c) Confocal image of 

astrocytes, which were double-labeled with aquaporin 4 and GFAP. It is striking that this picture taken 

with a confocal microscope is really similar to Golgi’s drawings from 100 years earlier. (Golgi, 1886; 

Iadecola and Nedergaard, 2007).  

 

 

1.5.3 Astrocyte Neuron Lactate Shuttle hypothesis 

Glial cells are now recognized as active players that do not merely react to neuronal 

activity but also perceive metabolic changes and accordingly support and influence 

neuronal energy metabolism (Barros et al., 2018). Astrocytes and neurons are 

preferentially using different metabolic mechanisms. Although different, their metabolic 

profiles are actually complementary (Belanger et al., 2011). Neurons depend on 

oxidative metabolism to satisfy their high energy consumption whereas astrocytes rely 

on aerobic glycolysis and lactate production (Magistretti, 2006; Pellerin, 2003). Studies 

have shown that astrocytes can take up large amounts of glucose, more than needed for 

their own metabolism. In vivo experiments in rats suggested that half of the glucose 

uptake in the brain is done by astrocytes, and this uptake quickly accelerates in 

astrocytes, but not in neurons during intense neuronal activity triggered by whisker 

stimulation (Chuquet et al., 2010). 

Therefore, although neurons express GLUT3 and can also take up glucose from the 

extracellular space, astrocytes have the highest energy uptake. Findings suggest that 

astrocytes are a major source of neuronal energy supply. The current hypothesis in the 
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field of neuron-glia metabolism is called the Astrocyte Neuron Lactate Shuttle (ANLS; 

Fig. 1.7) hypothesis and was introduced 25 years ago by Pellerin and Magistretti (1994). 

It has been shown that upon increase in neuronal activity, astrocytes can take part in the 

clearance of extracellular glutamate around the synaptic cleft of glutamatergic synapses. 

Glutamate is taken up by excitatory amino acid transporters (EAATs), which in 

astrocytes are GLUT1 and GLAST. It is cotransported with Na
+
, leading to an increase 

in intracellular Na
+
 (three Na

+
 are cotransported with one glutamate molecule). The 

cotransported Na
+
 led to the activation of the astrocytic Na

+
/K

+
-ATPase pump, which in 

turn promotes glycolysis (Magistretti and Chatton, 2005). This mechanism is associated 

with an increase in glycolytic flux, resulting in the stimulation of glucose uptake from 

blood vessels through the GLUT1 transporter located on astrocytes and capillary 

endothelial cells (Magistretti and Pellerin, 1999; Pellerin and Magistretti, 2012). 

Through glycolysis, glucose is converted to two molecules of pyruvate, and ATP and 

NADH are produced. Pyruvate is then transformed into lactate using lactate 

dehydrogenase 5, located mainly in astrocytes. Once lactate is released to the 

extracellular space through the monocarboxylate transporter MCT4 in astrocytes, 

neurons can take it up using the monocarboxylate transporter MCT2. Neurons can then 

consume lactate as an energy substrate and convert it to pyruvate through the neuron 

specific lactate dehydrogenase 1 for oxidative ATP production (Pellerin et al., 2007; 

Belanger et al., 2011). Another consequence of glutamate uptake in astrocytes is its 

conversion into glutamine through an astrocyte-specific enzyme, glutamine synthetase 

(Martinez-Hernandez et al., 1977). Glutamine can then be taken up by neurons to be 

resynthesized into glutamate by glutaminase. Several studies are now supporting the 

ANLS hypothesis (Pellerin and Magistretti, 2012).  

Gap junction networks and energy metabolites trafficking might therefore be crucial in 

pathological conditions like hypoglycemia or ischemia, to ensure neuronal survival 

(Giaume et al., 2010). Additionally, during hypoglycemia or ischemia, astrocytes can 

break down glycogen and produce lactate, which is released to the extracellular space 

and can be taken up by neurons to fuel their energy needs. Glycogen is the only source 

of energy reserve in the brain and is almost exclusively localized in astrocytes (Dringen 

et al., 1993; Magistretti et al., 1993; Brown et al., 2005; Brown and Ransom, 2007; 

Belanger et al., 2011; Barros, 2013). Astrocytic glycogen breakdown and lactate release 

to the extracellular space through the ANLS pathway is essential for long-term memory 

formation and plasticity (Suzuki et al., 2011). Additionally, in the hippocampus, 
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delivery of glucose or lactate from astrocytes has been demonstrated to be essential to 

maintain neuronal synaptic transmission during extracellular glucose deprivation. 

Astrocyte gap junction networks are necessary for this protective effect (Rouach et al., 

2008). 

 

 

 
Figure 1.7 Representation of the Astrocyte-Neuron Lactate Shuttle (ANLS) 
Glutamate (Glu) is released at the synaptic cleft and can activate glutamatergic receptors (GluR). The 

majority of the glutamate released at the synapse is taken up by astrocytes through excitatory amino acid 

transporters (EAATs), mainly GLUT1 and GLAST. Thereby, astrocytes are taking up 3 Na
+
 ions and 

activate the Na
+
/K

+
-ATPase, consuming ATP. Non oxidative glucose utilization is activated, as well as 

glucose uptake from the blood vessels via the glucose transporter GLUT1 (located on astrocytes and 

capillary endothelial cells). Through glycolysis, glucose is converted to two molecules of pyruvate and 

ATP and NADH are produced. Pyruvate is converted to lactate through lactate dehydrogenase 5 (LDH5; 

located mainly in astrocytes). Lactate is finally transported to neurons by monocarboxylate transporters 

(mainly MCT4 on astrocytes and MCT2 in neurons). Lactate can then be used by neurons as an energy 

substrate after being converted back to pyruvate by LDH1, expressed by neurons. Alternatively, neurons 

can take up glucose directly via GLUT3. The glutamate-glutamine cycle is also shown. Astrocytes can 

clear up glutamate from the synaptic cleft to then convert it to glutamine through the glutamine synthetase 

(GS), which can then be taken up by neurons to resynthesize glutamate by the glutaminase (GLS) 

(Belanger et al., 2011).  

 

 

 

1.5.4 Oligodendrocytes and metabolic support to axons 

In white matter, oligodendrocytes have been recently identified as key player in fueling 

axonal activity. Most studies have been done in the optic nerve (Morrison et al., 2013). 

In this specific region, oligodendrocytes have been identified as crucial partners in 

maintaining axonal function by supplying lactate as an energy metabolite (Brown et al., 
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2003, 2005). Oligodendrocytes are in close contact with axons as they are enwrapping 

neuronal axons. The first studies suggesting a role for oligodendrocytes in neuronal 

metabolic support were done in mice with a specific knockout for myelin proteins, 

either myelin proteolipid protein (PLP), myelin basic protein (MBP), or myelin-

associated enzyme 2',3'-Cyclic-nucleotide 3'-phosphodiesteras (CNP). The loss of those 

oligodendrocyte proteins leads respectively either to axonal degeneration with intact 

myelin, to dysmyelination with intact neurons, or to more compact myelin than normal 

leading to severe axonal degeneration (Griffiths et al., 1998; Klugmann et al., 1997; 

Loers et al., 2004; Lappe-Siefke et al., 2003). These observations revealed differential 

effects of myelin in axonal degeneration and action potential propagation. Thus, 

oligodendrocytes appear as essential partners in neuronal metabolic support (Philips and 

Rothstein, 2017). Metabolites need to be shuttled from oligodendrocytes to axons and it 

has been shown that oligodendrocytes are expressing transporters to guarantee that 

energy metabolites are delivered to axons to meet neuronal metabolic needs (Fig. 1.8). 

The first two studies available on the metabolic role of oligodendrocytes in the CNS 

were performed less than a decade ago. Oligodendrocytes were first found to express a 

transporter for monocarboxylate metabolites (such as lactate, pyruvate or ketone 

bodies), the monocarboxylate transporter MCT1. MCT1 has been shown to allow the 

transfer of metabolites to support neurons and a specific inhibition of MCT1 leads to 

severe axon injury and neuronal death (Lee et al., 2012). Lactate can therefore be 

shuttled through MCT1 into the periaxonal space, where neurons can take it up via 

MCT2. Neurons can then convert lactate to pyruvate by lactate dehydrogenase to meet 

their energy needs (Lee et al., 2012). Another study in white matter has confirmed 

oligodendrocytes as a source of lactate for neurons through aerobic glycolysis 

(Fünfschilling et al., 2012). As axons can use lactate during aglycemia (Tekkök et al., 

2005), Fünfschilling et al. suggested a physiological function to the axon-

oligodendrocyte metabolic coupling model. A recent study by Meyer et al. (2018) in the 

corpus callosum has shown that networks of coupled oligodendrocytes provide energy 

to sustain axonal function through delivery of energy metabolites. Grey matter has 

higher metabolic needs than white matter areas (Amaral et al., 2013). Thus, it is likely 

that the ANLS mechanism is operative to deliver energy substrates to glutamatergic 

synapses in grey matter, while the axon-oligodendrocyte signalling assures supplying 

myelinated axons with energy metabolites (Morrison et al., 2013; Philips and Rothstein, 

2017).  
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Figure 1.8 Representation of axon-oligodendrocyte metabolic coupling 
Lactate is transported from oligodendrocytes to the periaxonal space through the monocarboxylate 

transporter MCT1. Myelinated axons can then take up lactate from this space through the 

monocarboxylate transporter MCT2. Axons are then converting lactate to pyruvate by lactate 

dehydrogenase. Pyruvate is then shuttled into mitochondria for oxidative phosphorylation and production 

of ATP (Morrison et al., 2013).  
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2 Aim of the Study 
 

Over the past decades, growing evidence has revealed the importance of glial cells in 

maintaining physiological brain function by providing proper metabolic energy supply 

to neighboring neurons. Recent studies demonstrate extensive astrocyte and 

oligodendrocyte heterogeneity between brain regions. The thalamus has been refereed 

as the „gateway to consciousness” and plays an essential role in relay and modulation of 

sensory and motors signals to the cortex. The present study aimed to understand the 

functional effect of astrocyte-oligodendrocyte coupling and more precisely the role of 

oligodendrocytes in energy metabolism and neuron-glia signaling in the thalamus. To 

this end, the two following aspects were investigated in detail. 

(i) Analysis of glial network properties in thalamic barreloids. 

Astrocytes and oligodendrocytes are connected with each other to form large coupled 

networks via gap junction channels. In contrast to other brain areas, an abundant 

astrocyte/oligodendrocyte coupling called panglial coupling has been found in the 

thalamus (Griemsmann et al., 2015). The ventral posterior nucleus of the thalamus is 

part of the somatosensory system and contains an area forming whisker-related domains 

called barreloids (Van Der Loos., 1976). Interestingly thalamic barreloids are mainly 

formed by oligodendrocytes and have been shown to shape coupled networks (Claus et 

al., 2018). The first part of the study aimed to analyze the properties of those 

oligodendrocytes located on barreloid borders and to provide the first structure-function 

analyses of gap junction networks in thalamic barreloids. 

 

(ii) What is the specific role of oligodendrocytes in neuron-glia signaling and 

energy metabolism in the thalamus?  

As explained, astrocytes and oligodendrocytes express gap junction channels which 

allow diffusional exchanges of small molecules under 1 kDa like energy metabolites 

including glucose and lactate (Giaume et al. 2010). Thalamic oligodendrocytes make up 

for more than 50% of coupled cells (Griemsmann et al., 2015; Claus et al., 2018; Höft et 
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al., 2014) whereas hippocampal networks are mainly formed by astrocytes 

(Griemsmann et al., 2015). An intact and extensive astrocytic coupling network has 

been shown to be essential to sustain synaptic activity in the hippocampus (Rouach et 

al., 2008), whereas in white matter oligodendrocytes support axonal function by 

transport of metabolites (Lee et al., 2012; Meyer et al., 2018). The functional impact of 

astrocyte/oligodendrocyte coupling in grey matter is still unclear. Studying 

corticothalamic field potential recordings combined with the patch-clamp technique, 

this part of the study aimed to unravel the functional impact of abundant panglial 

thalamic networks on energy metabolism. Since oligodendrocytes do not directly 

contact blood vessels, the panglial network is a possible route of transport for energy 

metabolites from blood vessels to the oligodendrocytes. This study aimed to investigate 

whether and through which mechanism oligodendrocytes in the thalamus contribute in 

the energy delivery to neurons. 
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3 Materials 

3.1 Chemicals 

 

Product     Company 

2-NBDG     Thermo Fisher Scientific, Carlsbad, USA 

Biocytin     Sigma-Aldrich, Munich, Germany 

CaCl2.6H2O     AppliChem GmbH, Darmstadt, Germany 

Carbogen     Linde, Pullach, Germany 

EGTA      Sigma-Aldrich, Munich, Germany 

Ethanol 99%     AppliChem GmbH, Darmstadt, Germany 

Ethanol absolut pa.    AppliChem GmbH, Darmstadt, Germany 

Glucose     AppliChem GmbH, Darmstadt, Germany 

Glue      Superglue, Uhu, Bühl, Germany 

HEPES      AppliChem GmbH, Darmstadt, Germany 

Hoechst 33342     Thermo Fisher Scientific, Carlsbad, USA 

Isoflurane     Piramal Healthcare, Morpeth, UK 

L-Lactate     Sigma-Aldrich, Munich, Germany 

MgSO4.7H2O     AppliChem GmbH, Darmstadt, Germany 

KCl      AppliChem GmbH, Darmstadt, Germany 

K-Gluconate     AppliChem GmbH, Darmstadt, Germany 

KH2PO4     AppliChem GmbH, Darmstadt, Germany 

KOH      Merck Millipore, Darmstadt, Germany 

MgCl2      AppliChem GmbH, Darmstadt, Germany 

MgSO4      AppliChem GmbH, Darmstadt, Germany 

Na2-ATP     Sigma-Aldrich, Munich, Germany 

NaCl      AppliChem GmbH, Darmstadt, Germany 

NaH2PO4     AppliChem GmbH, Darmstadt, Germany 

NaHCO3     AppliChem GmbH, Darmstadt, Germany 

NGS Merck Millipore, Darmstadt, Germany 

Mounting Medium  Aqua-Poly/Mount, Polyscience, Warrington, 

USA 

Paraformaldehyde    AppliChem GmbH, Darmstadt, Germany 

Picrotoxin     Abcam, Cambridge, UK 

Pyruvate     Sigma-Aldrich, Munich, Germany 

Sulforhodamine B    Sigma-Aldrich, Munich, Germany 

SR101      Sigma-Aldrich, Munich, Germany 

Sucrose      AppliChem GmbH, Darmstadt, Germany 

TritonX-100     Sigma-Aldrich, Munich, Germany 

TTX      Abcam, Cambridge, UK 
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3.2 General materials 

 

Materials     Company 

Borosilicate glass    Science Products, Hofheim, Germany 

Coverslips, object slides   Engelbrecht, Edermünde, Germany 

Gloves      Ansell, Staffordshire, UK 

Kimtech     Kimberley Clark 

Needles and syringes    BD, Franklin Lakes, USA 

Parafilm     Pechiney Plastic Packaging, Chicago, USA 

Plastic Pasteur pipettes    Carl-Roth, Karlsruhe, Germany 

Razor blade     Wilkinson, Bucks, UK 

Well plates     Sarstedt, Nümbrecht, Germany 

Surgical instruments    Fine Science Tools, Heildeberg, Germany 

Syringe filters 4 mm    Thermo Fisher Scientific, Waltham, USA 

Tips, tubes     Greiner GmBH, Frickenhausen, Germany 

Whatman paper     Whatman International, Maidstone, UK 

Bipolar stimulation electrode,WE3ST31.0A10  MicroProbes for Life Science, 

Gaithersburg, USA 

 

3.3 Software 

 

Software     Company 

Igor Pro     Wave Metrics, Portland, USA 

ImageJ      NIH, Maryland, USA 

LAS AF     Leica Microsystems, Wetzlar, Germany 

Matlab      The MathWorks, Natick, USA 

MC Stimulus II     Multi Channel Systems, Reutlingen, Germany 

Tida      Heka, Lambrecht, Germany 

 

3.4 Equipment 

 

Device      Company 

Axiophot     Carl Zeiss, Göttingen, Germany 

Centrifuges     Eppendorf, Wesseling, Germany 

DMZ Zeitz-Puller    Zeitz, Martinsried, Germany 

Eclipse E600FN microscope   Nikon, Tokyo, Japan 

DIC camera     Cohu, Poway, USA 

EPC-7      Heka, Lambrecht, Germany 

EPC-800     Heka, Lambrecht, Germany 

Fluorescemt lamp    Leica Microsystems, Wetzlar, Germany 

IPC pump     Ismatec, Wertheim, Germany 
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Leica SP5 LSM     Leica Microsystems, Wetzlar, Germany 

Leica SP8 LSM     Leica Microsystems, Wetzlar, Germany 

Leica TCS NT confocal    Leica Microsystems, Wetzlar, Germany 

LIH 1600     Heka, Lambrecht, Germany 

MaiTai      Newport Spectra-Physics, Darmstadt, Germany 

Micromanipulator, electric   Luigs und Neumann, Ratingen, Germany 

MC Stimulus II     Multi Channel Systems, Reutlingen, Germany 

Oscilloscope HM 507    Hameg, Maihausen, Germany  

pH meter     Mettler Toledo, Giessen, Germany 

DMZ Zeitz-Puller     Zeitz, Martinsried, Germany 

STG-2004     Multi Channel Systems, Reutlingen, Germany 

Vibration isolation platform LW 3036B-OPT Newport, Irvine, USA 

Vibratome VT1200S    Leica, Nussloch, Germany 

Vortexer     VWR, Darmstadt, Germany 

Weight balance     Sartorius group, Göttingen, Germany 

 

3.5 Antibodies 

 

Primary Antibodies 

Epitope               Species             Type             Dilution                Company 

GFP       chicken       polyclonal              1:500                       Abcam     

 

Secondary Antibodies 

Epitope                            Species                       Dilution                Company 

Anti-chicken-A488          goat                                   1:500                       Invitrogen      

 

 

Streptavidin Conjugate 

Streptavidin-Alexa Fluor 647     1:600     Thermo Fisher Scientific 
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3.6 Solutions and buffers 

3.6.1 Solutions for electrophysiology 

 

Preparation solution 

NaH2PO4  1.25 mM 

NaCl   87 mM   

KCl   2.5 mM 

MgCl2.6H2O  7 mM 

CaCl2.6H2O  0.5 mM 

Glucose  25 mM 

NaHCO3  25 mM 

Sucrose             75 mM 

And pH 7.4 adjusted with carbogen (95% O2/5% CO2) 

 

Artificial cerebrospinal fluid 1 (for barreloids and coupling experiments) 

NaH2PO4  1.25 mM 

NaCl   126 mM   

KCl   3 mM 

MgSO4.7H2O  2 mM 

CaCl2.6H2O  2 mM 

Glucose  10 mM 

NaHCO3  26 mM 

And pH 7.4 adjusted with carbogen (95% O2/ 5% CO2) 

 

 

Artificial cerebrospinal fluid 2 (for glucose deprivation experiments) 

NaCl   119 mM   

KCl   2.5 mM 

CaCl2.6H2O  2.5 mM 

MgSO4.7H2O  1.3 mM 

NaH2PO4  1 mM 

NaHCO3  26.2 mM 

Glucose  11 mM 

And pH 7.4 adjusted with carbogen (95% O2/ 5% CO2) 

 

 

Intracellular standard solution (for oligodendrocyte patching on barreloid borders and 

coupling experiments) 

K-gluconate  130 mM 

MgCl2.6H2O  2 mM 

EGTA   10 mM  

Hepes   10 mM 

Na2-ATP  3 mM 

pH 7.28 

Supplemented with 0.5% biocytin or 0.5% biocytin and 0.1% Texas Red Dextran  
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Intracellular K-gluconate solution (for glucose diffusion in barreloids experiments) 

K-gluconate  105 mM 

MgCl2.6H2O  1 mM 

CaCl2.6H2O  0.5 mM 

HEPES              10 mM  

EGTA   5 mM 

KCl   30 mM    

Na2-ATP  3 mM 

pH 7.2 

Supplemented with 0.5% biocytin, 0.1% Texas Red Dextran and 14.6 mM 2-NBDG 

 

 

Intracellular K-gluconate solution (for extracellular glucose deprivation experiments) 

K-gluconate  100 mM 

MgCl2.6H2O  1 mM 

CaCl2.6H2O  0.5 mM 

HEPES             10 mM  

EGTA   5 mM 

KCl   30 mM  

KOH   20 mM   

Na2-ATP  3 mM 

Glucose  20 mM or L-Lactate 40mM 

pH 7.2 

Supplemented with sulforhodamine B (10 µg/ml) 

 

3.6.2 Solutions and buffers for immunohistochemistry 

Phosphate buffered saline (PBS 10x) 

NaCl   1.5 mM 

Na2HPO4  83 mM 

NaH2PO4  17 mM 

Dissolved in dH2O, pH 7.4 

 

Paraformaldehyde solution 

Paraformaldehyde 4% (w/v) dissolved in PBS and dH2O, pH 7.4 

 

Blocking solution 

NGS   10% (v/v) 

TritonX-100  0.5-2% (v/v) 

Diluted in PBS, pH 7.4 

 

1
st
 antibody solution 

NGS   2-5% (v/v) 

TritonX-100  0.5-2% (v/v) 

Diluted in PBS, pH 7.4 
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2
nd

 antibody solution 

NGS   2-5% (v/v) 

TritonX-100  0.1% (v/v) 

Diluted in PBS, pH 7.4 

 

Hoechst nuclei staining solution 

Hoechst  1% (v/v) 

Diluted in dH2O 

 

 

3.7 Animals 

Mice used in this study were kept under standard housing conditions with 12h/12h dark-

light cycle, food and water ad libitum. All experiments were carried out in accordance 

with local state and European regulations. All measures were designed to minimize the 

number of animals used.  

 

3.7.1 C57BL/6J mice 

This inbred strain C57BL was developed by C.C Little (Founder of The Jackson 

Laboratory) in 1921 at the Bussey Institue for Research in Applied Scielnce. C57BL/6J 

was isolated in 1937 and maintained in Jackson Laboratories. They are one of the oldest 

and most widely used strains in research (Bryant et al., 2008). Wild-type mice 

C57BL/6J of either sex, aged between postnal days p14-17 were purchased from 

Charles River and used to perform barreloid experiments.  

 

3.7.2 hGFAP-EGFP mice 

In this transgenic mouse line, astrocytes are labelled with the enhanced green 

fluorescent protein (EGFP), which is expressed under the control of the human glial 

fibrillary protein (hGFAP) promoter. This mouse line has an FVB/N background and 

was generated by micro-injecting oocytes with a plasmid construct of 2.2kb DNA 

fragment of the hGFAP promoter (Nolte et al., 2001). In this mouse line, in all regions 

of the CNS such as the hippocampus, cortex or corpus callosum, EGFP-positive cells 

with morphological properties of astrocytes are labeled (Nolte et al., 2001). Moreover, 

EGFP expression was also revealed in NG2 cells (Wallraff et al., 2004). In many 

regions, a good overlap of GFAP and EGFP-positive cells was observed. However, in 

the thalamus GFAP immunoreactivity is only weak, despite a strong EGFP expression 
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(Nolte et al., 2001; Frassoni at al., 2000). Animals aged p28-40 were used to perform 

our glucose experiments.  

 

3.7.3 PLP-GFP mice 

In the PLP-GFP mouse line with a C57BL/6J background, mature oligodendrocytes can 

easily be visualized in live and fixed tissue. The green fluorescent protein is expressed 

under the control of a PLP promoter (Fuss et al., 2000). The proteolipid protein is the 

major protein component of CNS myelin and has been shown to be expressed 

specifically in differentiating and myelinating oligodendrocytes. Indeed, 

immunocytochemical studies of GFP fluorescence confirmed that GFP expression in 

this mouse line is restricted to terminally differentiated oligodendrocytes (Fuss et al., 

2000). Additionally, GFP fluorescence is limited to cell somata and nuclei (Fuss et al., 

2000). 

 

3.7.4 Cx32/Cx47 dko mice 

The Cx47-null mouse line was generated by replacing the Cx47 (Gjc2) coding DNA 

with an enhanced green fluorescent protein (EGFP) reporter gene. This reporter is under 

the control of the endogenous Cx47 promoter (Odermatt et al., 2003). Homozygous 

mutant mice are fertile and show sporadic vacuolation of nerve fibers but no obvious 

morphological or behavioral abnormalities (Odermatt et al., 2003). The Cx32 deficient 

mice have a constitutive deletion of Cx32 (Gjb1) (Nelles et al., 1996). The Cx32 gene is 

located on the X chromosome.  Cx47
EGFP(-/-)

 male mice were intercrossed with Cx32
-/-

 

female mice and the F1 generation was intercrossed again to obtain Cx32/Cx47 (dko) 

mice (Odermatt et al., 2003). Mice lacking both Cx47 and Cx32 die by postnatal week 5 

to 10 and develop severe abnormalities such as thin or absent myelin sheaths, 

vacuolation, enlarged periaxonal collars, oligodendrocyte cell death, axonal loss, tonic 

seizures and sporadic convulsions (Menichella et al., 2003; Odermatt et al., 2003). The 

Cx47 and Cx32 genotypes were tested by tail-tipPCR by PD Dr. Gerald Seifert and 

Thomas Erdmann.  
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4 Methods 

4.1 Electrophysiology 

4.1.1 Preparation of acute brain slices 

Acute brain slices were prepared from p14-17 days old mice for visualization of 

thalamic barreloids or from p28-40 days old mice for field potential recordings. 

Animals were anaesthetized with isoflurane and decapitated. The brain was quickly 

removed, put into ice-cold slicing solution, and a cut was made along the midline. The 

midline of each hemisphere was laid on a plastic homemade block with a 30° angle and 

a small piece of the dorsal part of the brain was cut off. For field potential recording, the 

hemispheres were glued dorsally on a specimen holder and 300 µm thick slices were 

made. To visualize thalamic barreloids in acute brain slices, the cutting plane was 

additionally tilted up 5° anteriorly from the horizontal plane and 200 µm thick slices 

were made (Claus et al., 2018).  

The brains were placed in ice-cold preparation solution constantly bubbled with 

carbogen (95% O2/ 5% CO2) and cut with a vibrotome (VT1200S) at a speed of 0.12 

mm/s and an amplitude of 1.2 mm. Horizontal slices containing the thalamic 

ventrobasal nuclei were obtained. Slices were allowed recovering in a sucrose solution 

constantly bubbled with carbogen at 35°C for 20 min. Sections were then transferred 

into bubbled ACSF and cooled down to room temperature. Slices were kept resting 

before use for at least 20 min for tracer filling experiments or 1 h for field potential 

recording. In some experiments, prior to transfer into ACSF at room temperature, slices 

were stained with 1 µM sulforhodamine 101 (SR101) supplemented ACSF at 35°C for 

20 min.  
 
 

4.1.2 Electrophysiological set up 

The tracer diffusion experiments were performed in a recording chamber of an 

electrophysiological setup. The microscope was located in a Faraday cage to reduce 

electrical noise and placed on a vibration isolated board (Newport) to guarantee stable 
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recording conditions.  A slice was placed in the chamber and held in place under a U-

shaped platinum wire where nylon strings were glued. Brains sections were perfused 

continuously with carbogenized ACSF at room temperature by a peristaltic pump at 1-2 

ml/min. Patch-clamp pipettes were pulled from borosilicate glass by a horizontal puller 

and had a resistance of 3-6 MΩ when filled with internal solution (see chapter 3.6.1). A 

Teflon-coated silver wire with a chlorinated tip was connected to the preamplifier to 

record electrical signals. The reference electrode, also connected with the head stage of 

the preamplifier, was made of a silver/silver chloride pellet. The patch pipette was 

controlled by an electrically-driven micromanipulator. To visualize the tissue, slices 

were transferred to a Leica TCS SP5 confocal microscope equipped with a Leica HCX 

APO L 20x 1.0 water immersion objective and differential interference contrast (DIC) 

optics were used. The LAS AF software was required to perform the experiments (see 

chapter 4.3.4 for detailed list of equipment). To identify astrocytes or oligodendrocytes, 

fluorescence was emitted after applying light of the respective wavelength. An EPC-7 

or EPC-800 patch clamp amplifier was used to record currents in voltage clamp mode. 

Currents were monitored by the TIDA software (Heka). Data were filtered at 3-10 kHz 

and sampled at 6-30 kHz. 

 

4.1.3 Whole-cell patch-clamp recording 

The patch-clamp technique was first introduced by Erwin Neher and Bert Sakmann 

(Neher and Sakmann, 1976). This technique allows for electricals recordings and 

characterization of single ion channels. Astrocyte and oligodendrocytes were identified 

either by their endogenous fluorescence and morphologies. In some experiments, 

SR101 was used to mark astrocytes (Nimmerjahn et al., 2004; Kafitz et al., 2008). All 

cells were analyzed in the whole-cell voltage clamp mode. Briefly, a patch pipette was 

filled with internal solution and placed above the slice. The cell was then approached 

while using overpressure to keep the tip of the pipette clean of potential tissue debris. 

Once the cell was reached, the overpressure was released and low pressure was applied 

to establish a close contact between the pipette tip and the cell membrane. This is called 

the “cell-attached” mode and it is characterized by a high resistance above 1 GΩ, 

known as a “Gigaseal”. During this process, the cell was continuously clamped at          

-80 mV. Next, to disrupt the cell membrane, short pulses of negative pressure were 

applied in order to get in the whole-cell configuration. 
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Currents were recorded in the whole cell mode. In this mode, the amplifier compares 

the command potential of our patched cell to the actual resting membrane potential. If 

the resting membrane potential differs from the test potential, small currents are injected 

into the cell to keep it at the test potential. Analysis of input and series resistance (Rs) 

was determined every 10 min by applying 10 repetitive steps of 10 mV over 50 ms (V 

= 10 mV). Analysis was done with the Igor Pro tool written by PD Dr. Ronald Jabs 

(average of 10 traces). Rs was calculated from the current at the beginning of the 

recordings I(t0), according to the Ohm’s law Rs=V/I(t0). Recordings with Rs > 20 MΩ 

were discarded. The membrane resistance (Rm) was determined from the constant 

current after the decline of the capacitive current I(t1) and calculated based on the 

equation Rm==U/I(t1)-Rs (Fig. 4.1A). Recordings with Rm > 10 MΩ were discarded. 

To characterize the membrane parameters, de- and hyperpolarization steps of 10 mV 

from +20 mV to -160 mV were applied, starting from the holding potential at -80 mV, 

as shown in Fig. 4.1B. Cells with a resting potential above -60 mV were discarded. 

All intracellular solutions were based on K-gluconate, causing a liquid junction 

potential which was compensated accordingly online during the measurement by 

adjusting the holding potential. For biocytin experiments, after 20 min of filling, slices 

were fixed in 4% PFA overnight at 4°C and stored the next day in PBS at 4°C until used 

for immunohistochemistry. 

 

 
Figure 4.1 Electrical circuit and analysis of the whole-cell patch clamp configuration. 

(A) Equivalent circuit of the whole cell mode. Series resistance (Rs) originates at the transition between 

the pipette and the cell cytoplasm. Rs is in series with the membrane capacitance (Cm) and the membrane 

resistance (Rm) of the cell. Rm depends on the membrane properties whereas Cm is generated by the lipid 

bilayer. (B) To record the electrophysiological properties of the patched cell, 10 mV pulses were applied 

for 50 ms each, every 10 min. 

A B 



 Methods 
   

 

43 
 

4.1.4 Recording of thalamic field potentials and data analysis  

Slices containing the VB thalamus were prepared and transferred to a recording 

chamber. To stimulate the cortico-thalamic (CT) pathway, a bipolar stimulation 

electrode was placed in the internal capsule (Fig. 4.2 A). Electrical stimulation was 

achieved with a computer-controlled constant current isolated stimulator (STG2004). 

The bipolar stimulation electrode (WE3ST31.0A10) had an outer diameter of 0.61 mm, 

a tip separation of 250 m and an impedance of 1.0 MΩ.  A field recording electrode, 

made from borosilicate glass capillaries with an outside diameter of 2 mm and a 

resistance of 3-6 MΩ, was located in the VB thalamus and field potentials were 

recorded with a recording pipette connected to a bridge amplifier SEC05-LX. Both 

electrodes were separated by about 700 µm. (Fig 4.2 B). The depth of the recording 

electrode was adjusted in the tissue to evoke maximal responses.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Recording of field potentials in the thalamus. 

(A) Scheme of a coronal slice, obtained after a cut at a 30° angle from the horizontal plane. The plane 

contains the cortex (CO), the internal capsule (IC), the reticular thalamic nucleus (RTN), the ventrobasal 

thalamus (VB) and the hippocampus (HC). The orientation is indicated at the bottom by a cross. The 

cortico-thalamic pathway is displayed with a green neuron whereas the thalamocortical pathway is shown 

in blue. Additionally, GABAergic neurons of the RTN are presented in brown. From Stephanie 

Griemsmann, thesis (2015) and modified from Grant et al. (2012). (B) Example of a thalamic brain slice 

used for electrophysiology. In the inset, the stimulation electrode (Stim) and the recording electrode (Rec) 

are displayed.  

 

Stim 

Rec 

dorsal 

medial lateral 

ventral 

150µm 

A B 



 Methods 
   

 

44 
 

Field potentials were recorded by applying trains of stimuli (duration 100 µs, 5 stimuli 

at 20 Hz, from 50 µA to 200 µA, every 15 s) in the presence of picrotoxin (100 µM) to 

block GABAregic neurons present in the reticular thalamic nucleus (RTN). Ten traces 

were averaged and used for the analysis, therefore giving one data point every 150 s.  

To ensure stable responses over time (> 1 h) without inducing LTP or LTD, the 

stimulation intensity was set to 80% of the maximal peak amplitude. The response after 

the third stimulus was later analyzed in all experiments (FIG. 4.3 A-B). 

Stephanie Griemsmann established a protocol in our lab to analyze field potentials. 

fPSPs were isolated by subtracting responses evoked in the presence of either 

picrotoxin, D-2-amino-5-phosphonopentanoate (D-AP5) to blocked NMDA receptors 

and 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione (NBQX) to 

block AMPA/KA, from responses recorded in normal ACSF (Fig. 4.3C-D). At the end 

of each experiments, thalamic field potentials were completely blocked by adding the 

Na
+
 channel blocker tetrodotoxin (TTX) (0.5 µM) tot the bath solution (Fig. 4.3D, 

bottom). 

Data analysis was achieved using a custom made Igor Pro tool written by PD Dr. 

Ronald Jabs. Recordings were averaged (10 traces). A TTX protocol was recorded at 

the end of each experiment, and was then subtracted from the corresponding experiment 

recording before analysis, to remove stimulation artefacts. Three measuring points were 

manually positioned (grey circles in Fig. 4. 3E). The first one represents the highest 

amplitude after the second peak, the second one was placed just before the descending 

slope went back to baseline level. Those two points defined a slope that was 

extrapolated (dotted blue line in Fig. 4.3E). A third point was placed at the minimum 

level of the second peak. Thus, fPSP amplitudes were calculated as the distance 

between the second peak of the field potential and the intersection of the extrapolated 

slope (dotted blue line in Fig. 4. 3E). 
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Figure 4.3 Analysis of field potentials in the thalamus. 

(A) Average of 10 recording in which every 15 s, stimulation trains of 5 pulses (black arrows) were 

applied. The synaptic field potentials increased over the 5 stimuli. (B) Enlargement of the third and fourth 

response displayed in (A). Scale bar, 10 ms, 0.5 mV. (C) Time line of the recording protocol used to 

isolated fPSPs via application of blockers. (D) Synaptic field potentials were sensitive to blockers of 

glutamate receptors. The upper trace was recorded in the presence of ACSF supplemented with 

picrotoxin. D-AP5 and NBQX were added to the bath solution in the second recording, were post 

synaptic activity is inhibited. Finally, the bottom trace was recorded after TTX application which blocks 

action potentials. (E) Example of fPSP analysis with a custom made Igor Pro tool. Three measuring 

points (grey circles) were positioned manually and the amplitude of the fPSPs was measure (blue dotted 

line). Modified from Stephanie Griemsmann, thesis (2015). 
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4.2 Confocal and 2-photon microscopy  

For glucose diffusion experiments in thalamic barreloids, the glucose analogue 2-

NBDG (2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino)-2-Deoxyglucose) was 

applied. Using a Leica SP5 laser scanning microscope, we could image the spread of 2-

NBDG between two barreloid borders, after filling an SR101+ astrocyte. Taking 

advantage of a pulsed infrared laser, we could separate the 2-NBDG fluorescence from 

the GFP signal of the PLP-GFP mice. 2 photon imaging was realized by excitation of 

the fluorophores with femtosecond pulses of infrared light at a repetition rate of 80 

MHz. Imaging was done with a MaiTai femtosecond laser (Spectra Physics). Excitation 

wavelength and laser power were adjusted to 710 nm and 1.15 W for optimized signal-

to-noise ratio of the GFP/SR101 signals. The emitted light of GFP/SR101 was separated 

with an FITC-TRITC filter cube. Spatial resolution was of 1024x1024x30-70 pixels. 

The spread of 2-NBDG was captured online 20 min after patching an astrocyte and the 

quantification of the number of coupled cells was analyzed offline with Fiji software.  

The 2-NBDG signal was isolated at 465-540 nm using the 2-photon laser. Continuous 

wave laser signals (SR101 and PLP-GFP; also GFAP-EGFP in some experiments) were 

detected with photomultiplier tubes (PMTs). The 2-photon signal (2-NBDG) was 

acquired with a non-descanned detector (NDD). 

SR101
+
 cells were imaged at 586/605 nm (absorption and emission), PLP-GFP

+
 cells at 

488/509 nm using conventional continuous wave lasers (Leica SP5, Argon 488 nm and 

HeNe 543 nm).  

 

4.3 Immunohistochemistry 

4.3.1 Immunofluorescence staining 

After patch-clamp experiments, each 200 µm thick slice was fixed overnight using a 24-

well plate containing 4% PFA. Each slice could float freely during the staining 

procedure. Slices were first incubated for 4 h at room temperature (RT), in a blocking 

solution (PBS containing 0.5-2% TritonX-100 and 10% normal goat serum (NGS)). 

This step intended to prevent unspecific binding of antibodies. Slices were incubated 

with the first antibodies, diluted in PBS containing 0.1%TritonX-100 and 2% NGS, and 

stored overnight at 4°C on a shaker. The following day, each slice was washed 3 times 

for 10 min in PBS and subsequently incubated with a solution containing the secondary 
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antibodies for 2 h at RT on a shaker. A second washing step of 3 times 10 min each was 

performed. A nucleus staining was then applied; slices were incubated with Hoechst 

(1:100 in dH2O) for 10 min at RT. After a final washing step, slices were mounted on 

object slides with Aqua-Poly/Mount and lastly covered with cover slips. We allowed 

slices to rest at 4°C overnight for optimal final fixation before confocal imaging.  

 

4.3.2 Microscopy of fixed slices 

Images of our immunofluorescence stainings were acquired at a 1 µm interval with a 

confocal laser scanning microscope, Leica SP8. A resolution of 1024x1024 pixels and a 

scan speed during acquisition of 400 Hz were chosen. Hybrid detectors were used to 

detect all stainings with the exception of Hoechst, were a photo-multiplier tube was 

sufficient for detection. Depending on the samples, 20x or 40x immersion objectives 

were used to visualize tracer filled networks.  

 

4.3.3 Data analysis 

Images were analyzed using Fiji software. Panglial networks were analyzed by counting 

manually all biocytin filled cells using the plugin Cell-Counter created in Fiji by Kurt 

De Vos (URL https://imagej.nih.gov/ij/plugins/cell-counter.html). 

 

4.4 Statistics 

All statistical analyses were done with Excel (Microsoft Excel 2010, US) and the 

software R (R Development Core Team, URL http://www.R-project.org). Data are 

given as mean ± standard error of the mean (SEM); n refers to the number of brains 

slices investigated and N to the number of animals. Normality was tested using the 

Shapiro-Wilk test. Data were tested with Student’s t-test or analysis of variance 

(ANOVA) followed by Tukey’s post-hoc test. For non-normal distributions, the non-

parametric Kruskal-Wallis test followed by Dunn´s test was used. Differences were 

regarded as significant at *p ˂ 0.05, **p ˂0.01. 

https://imagej.nih.gov/ij/plugins/cell-counter.html
http://www.r-project.org)./
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5 Results 

 

5.1 Thalamic barreloids 

The ventrobasal nucleus of the thalamus containing the VPL and VPM plays an 

essential role in relay and modulation of information to the cortex (Shermann and 

Guillery, 2002). The VPM is part of the somatosensory system and contains elongated 

cellular domains called barreloids. Those domains offer a basic structure for the 

representation of vibrissae (Van Der Loos, 1976). In the first part of the present study, 

patch-clamp recordings and immunohistochemistry were combined to further study 

functional properties of glial cells in thalamic barreloids and their impact on neuron 

signaling.  

 

5.1.1 Properties of oligodendrocytes localized on barreloid borders 

The shape of panglial networks in the VPM of the thalamus has been shown to follow 

the barreloid structure. Interestingly oligodendrocytes were preferentially located along 

the borders (Claus et al., 2018). This observation led to the question whether those 

oligodendrocytes were part of the panglial network. Taking advantage of PLP-GFP 

mice in which oligodendrocytes are labeled by the green fluorescent protein (Fuss et al., 

2000), a single oligodendrocyte located on the border was identified and patched. All 

patched cells were electrophysiologically characterized and displayed typical current 

patterns during the voltage steps and large symmetrical tail currents (Berger et al., 

1991). Initial cells were filled during 20 min using a pipette solution supplemented with 

biocytin and Texas Red Dextran. Biocytin is small enough to efficiently diffuse through 

gap junction networks (Rouach at el., 2008) while Texas Red Dextran is bigger and 

consequently restricted to the initial cell. Tracer diffusion through glial networks was 

analyzed and network sizes were evaluated. Out of 8 filled oligodendrocytes, 2 were 

totally uncoupled (2 slices from 2 mice) (Fig. 5.1). Additionally, a significantly reduced 

spread of biocytin in glial networks (39.8 ± 4.8 cells, with 51.5% of oligodendrocytes, 



 Results 
 

  

49 
 

and 48.5% of astrocytes) was found in the other 6 slices (6 slices from 6 mice). Those 

results can be compared with filling an oligodendrocyte outside the barreloid area (86 ± 

13.9 cells, with 66.5 ± 8% of oligodendrocytes, see Griemsmann et al., 2015). 

Interestingly, as described by Claus et al. (2018) after filling an astrocyte, many PLP-

GFP positive cells located within the biocytin-filled networks were actually not 

biocytin-positive (39%, i.e., 13.3 ± 2.2 out of 33.7 ± 3.8 cells). In conclusion, 

oligodendrocytes located on barreloid borders show no or low coupling.  

 

 

 

 

Figure 5.1 Tracer diffusion in oligodendrocytes located on barreloid borders show no or low 

coupling. 

Brain slices of p14-17 PLP-GFP mice were prepared to obtain slices containing thalamic barreloids. (A) 

One oligodendrocyte positioned on a barreloid border (indicated by a grey line) was recognized thanks to 

its intrinsic GFP fluorescence (green) and therefore patch-clamped for 20 min with a solution containing 

Texas Red Dextran (pink). (B) Biocytin (red) was added to observe coupled networks. This example 

shows that the biocytin signal colocalizes with the Texas Red Dextran signal (merge). Thus, this 

oligodendrocyte is not coupled to any other cell. The image shows that the initial patch cell is slightly 

shifted to the right side of the border. Originally this patched oligodendrocyte was located on the border. 

It was shifted due to a technical issue inherent to the patch technique when removing the pipette after the 

experiment. Scale bar 25 μm. See also Claus et al. (2018). 
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5.1.2 Functional impact of neuronal activity on glial coupling in thalamic 

barreloids 

In other brain areas, like the hippocampus and the olfactory bulb, astrocyte coupling is 

controlled by and needed for neuronal activity (Rouach et al., 2008, Roux et al., 2011). 

Thus, the question next addressed was whether astrocyte/oligodendrocyte coupling in 

thalamic barreloids is controlled by neuronal activity. Brain slices from p14-p17 

C57BL/6J mice were used. Thalamic slices were incubated for 3-4 h with TTX (0.5 

µM) and ω-conotoxin GVIA (0.5 μM) to block voltage–gated Na
+
 channels and N-type 

Ca
2+

 channels. Individual astrocytes were filled with a patch pipette containing Texas 

Red Dextran, biocytin and the fluorescent metabolizable glucose analog, 2-NBDG. 

Astrocytes were identified by the efficient, specific but non-fixable red fluorescent dye 

sulforhodamine 101 (SR101) labeling after incubating the tissue before recording 

(Nimmerjahn et al., 2004; Kafitz et al., 2008). In the thalamus, it has been shown that 

only a few, weakly SR101
+
 cells were also GFP

+
 in PLP-GFP mice which were not 

visible using conventional epifluorescence microscopy (Griemsmann et al., 2015). 

Thus, SR101 is a reliable marker to identify astrocytes in the thalamus. Additionally, 

this dye has been described to affect neuronal activity in the hippocampus (Kang et al., 

2010) but later on has been proven to have no influence on coupled network sizes 

(Griemsmann et al., 2015). The same time of incubation, either with blockers or in 

ACSF without blockers, was applied. Tracer diffusion through glial networks and 

network sizes was quantified (Fig. 5.2). 2-NBDG analysis was done online. 2-NBDG 

spread into 50.3 ± 1.7 cells (5 slices from 4 mice) under control condition whereas the 

spread was significantly reduced to 26.6 ± 1.0 cells after inhibition of neuronal activity 

by TTX and ω-conotoxin GVIA (5 slices from 4 mice).  

Using the same technique as described by Claus et al., 2018, the shape of the coupled 

network after neuronal inhibition was analyzed. A spherical shape of the coupling was 

observed with 2-NBDG (y/x-ratio 0.96 ± 0.02, see also Claus et al. 2018). 

Immunohistochemistry was performed after fixation of the tissue and biocytin filled 

cells were visualized. Under control condition biocytin spread into 88.2 ± 4.6 cells (5 

slices from 4 mice). Number of biocytin filled cells after neuronal inhibition was 

significantly lower (54.1 ± 3.5 cells, 5 slices from 4 mice). As observed with 2-NBDG, 

biocytin spread was also spherical (y/x-ratio 0.99 ± 0.06). Furthermore, as the 2-NBDG 

spread analysis was done online, it was possible to test whether there were also 
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uncoupled astrocytes within the volume covered by the dye spread. The strong 

fluorescence intensity of the 2-NBDG-filled patch pipette, covering part of the region of 

interest, hampered steady online analysis of the whole panglial coupled network. 

Nonetheless, several uncoupled astrocytes, i.e. 2-NBDG-negative/SR101-positive cells, 

were observed. Beside the region covered by the pipette fluorescence, those cells added 

up to about 40% of the SR101-positive astrocytes in this area, both control conditions 

and after incubation with TTX and ω-conotoxin GVIA (5 slices from 4 mice, see also 

Claus et al., 2018). Taken together, these results indicate that within the barreloids 

numerous astrocytes and oligodendrocytes were not part of the coupling network. 

Furthermore, those observations confirm that, as shown previously in other brains areas 

for astrocytic networks, modulation of neuronal activity can disturb 2-NBDG and 

biocytin diffusion, i.e. panglial coupling in thalamic barreloids.  

 

 

 

Figure 5.2 Inhibition of neuronal activity modulates panglial coupling in thalamic barreloids. 

Thalamic slices containing barreloids were obtained from young C57BL/6J mice. SR101 was used to 

identify astrocytes. One individual astrocyte was patched and filled for 20 min with Texas Red Dextran, 

biocytin (A1, B1 red) and the glucose analog 2-NBDG (A2, B2 yellow). Those experiments were done 

under control conditions (A1, A2) or after preincubation of the slices with TTX (0.5 μM) and ω-

conotoxin GVIA (0.5 μM) for 3–4 h. Scale bar, 100 μm. (C) Quantification of the spread of 2-NBDG and 

biocytin after inhibition of neuronal activity. Number of coupled cells was significantly reduced (grey 

bars, 5 slices from 4 mice) after incubation with blockers compared to control experiments (black bars, 5 

slices from 4 mice). Number of mice is given in bar graphs. Student’s t-test, p = 0.0047 and p = 0.013 for 

2-NBDG and biocytin respectively. 
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5.2 Effect of extracellular glucose deprivation on post synaptic field 

potentials in the thalamus 

The first part of the present study revealed how neuronal activity shapes panglial 

coupling in thalamic barreloids. The next experiments aimed at finding a reliable 

protocol to analyze changes in synaptic activity in the thalamus.   

5.2.2 Analyses at physiological temperature 
 

To study neuronal networks in the thalamus the cortico-thalamic pathway was 

stimulated. To investigate neuronal activity and the role of oligodendrocytes in the 

thalamus, extracellular glucose deprivation (EGD) was used in the following 

experiments as previously described in the corpus callosum, the optic nerve or the 

hippocampus (Meyer al et., 2018; Wender et al., 2000; Brown et al., 2001; Rouach et 

al., 2008).  

Acute thalamic slices were placed in a bath chamber with continuously gassed (95% O2, 

5% CO2) ACSF containing 11 mM glucose. Next, the corticothalamic pathway was 

stimulated and synaptic activity was monitored with a field electrode (as described in 

chapter 4.1.4). Stable field potentials were recorded for over 40 min (Fig. 5.3 A, black 

line). Synaptic activity was reduced by applying EGD (Fig. 5.3, gluc-). 

fPSPs were isolated and quantified (as described in chapter 4.1.4). After a 10 min 

control baseline recording, EGD was induced by applying ASCF without glucose  

(gluc-) and subsequently changing back to ACSF containing glucose (Fig. 5.3 A,B). 

Following 5 min (purple line) or 10 min (red line) of EGD, a total drop of the fPSPs to 0 

was observed (Fig. 5.3 A). More importantly, in almost all recordings, no recovery of 

the synaptic activity was observed after reperfusion with ACSF containing glucose. 

Therefore, experiments with only 2.5 min of EGD were performed (Fig. 5.3 B). Here, 

no decline in fPSPs was observed in 5 experiments out of 8 (blue lines). In the other 3 

(red lines), only 1 showed a recovery above 80% of the control value. 

In summary, even if doing experiments at 35°C is more physiological, the following 

experiments were done at room temperature to have a reliable model to study the effect 

of glucose deprivation on synaptic activity in the thalamus. 
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Figure 5.3 Effect of temperature on EGD experiments to study fPSPs in the thalamus. 
Thalamic field potentials were recorded at 35°C. (A) Normalized fPSPS under control conditions 

(gluc+,black line; n = 5; N = 5), during 5 min of EGD  (purple line) and 10 min of EGD (red line). fPSPs 

were stable under control conditions. They declined to zero after a 10 or a 5 min EGD, and did not 

recover after glucose reperfusion in most cases. (B) Examples traces of the normalized fPSPs after 2.5 

min of EGD. A decline in fPSPs was only observed in 3 out of 8 experiments (red lines) whereas no 

decline was observed in the other 5 experiments (blue lines). 

 

5.2.1 Analyses at room temperature 

Previous experiments were done at physiological temperature. Recordings at room 

temperature were next performed. Stable field potentials were recorded for over >40 

min (Fig. 5.4 A, B, black line). Control fPSPs were first recorded in ACSF for 10 min. 

Next, EGD was induced by removing glucose from the bath (10 min; gluc-) and 

subsequently ACSF containing glucose was re-perfused (Fig. 5.4 A,B, orange line). A 

decline in fPSPs was observed during EGD, follow by a recovery after reperfusion with 

ACSF containing glucose (12 slices from 10 animals). In conclusion, the effect of EGD 

on synaptic activity in acute thalamic slices can reliably be study at room temperature 

with this protocol. 
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Figure 5.4 EGD leads to a fast decrease of thalamic synaptic activity.  
Synaptic field potentials were monitored in thalamic slices containing the VPM of the thalamus. (A) 

Example traces of thalamic field potentials were recorded under control conditions over 40 min (indicated 

by black line in B, numbers correspond to times points specified in B) or under 10 min control recording 

(1), during EGD (2) and after reperfusion with ACSF containing glucose (3) (indicated in orange line in B 

Scale bars, 0.5 ms, 0.5 mV. (B) Normalized fPSPs under control conditions in ACSF over 40 min shown 

in black (gluc+, n = 4, N = 4), and of a 10 min extracellular glucose deprivation (gluc-) shown in orange 

(n = 10, N = 12). 

 

 

5.3 Decline of fPSPs during EGD cannot be rescued by extracellular bath 

application of lactate or pyruvate 

Lactate and pyruvate have been shown to be able to replace glucose to sustain axonal 

activity in the optic nerve (Brown et al., 2001) but not in the corpus callosum (Meyer et 

al., 2018). During EGD, fPSPs declined to around 45% of the initial amplitude (EGD, 

orange line and bar graph, 44.83 ± 5.47%, n = 12, N=10, Fig. 5. 5 B) and a recovery 

was observed upon reperfusion with ACSF containing glucose. In the following 

experiments, 11 mM glucose was first replaced by 22 mM L-lactate (L-lact+). We used 

22 mM to have an equimolar amount of L-lactate and glucose. When extracellular 

lactate was applied fPSPs dropped to around 60% of the control value (red line and bar 

graph, EGD + lactate, 61.25 ± 3.50%, n = 5, N = 5). Thus, similar to the corpus 

callosum, lactate was not able to compensate the lack of glucose (ANOVA followed by 

Tukey’s post-hoc test, p = 0.13). Next 11 mM glucose was also replaced by 22 mM 

pyruvate and recorded comparable results as with L-lactate with a decline to around 
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60% of the control value (pink line and bar graph, EGD + pyruvate, 61.52 ± 4.47%, n = 

6, N = 6, p = 0.10). In both lactate and pyruvate experiments, a recovery in post 

synaptic activity was observed after reperfusion with ACSF containing glucose, similar 

to the one observed in EGD experiments without lactate or pyruvate (Fig. 5.5 A, red and 

pink lines).  

In summary, these findings indicate that extracellular glucose, rather than extracellular 

lactate or pyruvate, is specifically needed to sustain post synaptic activity in the 

thalamus. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 EGD suppresses fPSPs in the thalamus and is not rescued by extracellular lactate or 

pyruvate application. 

(A) Normalized fPSPs during 10 min EGD, follow by reperfusion (orange line). Experiments were done 

at room temperature. Additionally, normalized fPSPs in which extracellular glucose was replaced by 

either 22 mM L-lactate (red line) or 22 mM pyruvate (pink line) during 10 min of EGD, are shown. (B) 

Bar graphs represent the mean of the remaining fPSP amplitudes, normalized to the respective conditions 

during control recording prior to EGD. Perfusing extracellular lactate or pyruvate did not significantly 

attenuate the decline in fPSPs induced by EGD (EGD, orange, n = 12, N = 12; EGD + lactate, red, N = 5, 

N = 5, EGD + pyruvate, pink, N = 6, N = 6; ANOVA followed by Tukey’s post-hoc test p = 0.13 and 

0.10 for L-lactate and pyruvate respectively). Number of mice is given in bar graphs. 
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5.4 Effect of filling glial cells with energy metabolites during EGD on 

neuronal activity 

 

5.4.1 Effect of filling an astrocyte 

 

In the hippocampus, astrocytic networks help maintaining synaptic activity (Rouach et 

al., 2008). In the corpus callosum, glial networks consist mainly of oligodendrocytes. 

They form a pathway to provide energy substrates to axons, sustaining axonal activity 

(Meyer et al., 2018). There are abundant panglial coupling networks in the thalamus. 

Indeed, coupled networks contain more than 50% of oligodendrocytes (Griemsmann et 

al., 2015; Claus et al., 2018). Hence, this observation led to the question whether 

panglial coupling networks in the thalamus can provide energy to sustain synaptic 

activity and therefore rescue the decline of fPSPs observed during EGD.  

We investigated whether loading glial cells with metabolites could rescue the loss of 

fPSP amplitudes mediated by EGD. Astrocytes were identified in the VPM of acute 

thalamic slices of hGFAP-GFAP mice by their bright fluorescence. A single astrocyte 

was patched and dialyzed with an intracellular solution containing a high concentration 

of glucose (20 mM) for 20 min. Then 10 min of EGD was applied, followed by a 

reperfusion step with ACSF containing glucose. To control the successful spread of 

biocytin into the coupled network, the pipette solution also contained the gap junction 

permeable dye sulforhodamine-B. The initial, patched hGFAP-EGFP
+
 cell displayed a 

passive current pattern typical of astrocytes, an average resting membrane potential 

(MP) of -70.25 ± 1.89 mV and a very low input resistance (Rm) of 3.45 ± 0.60 MΩ (n = 

8, N = 7 animals). Glucose filling of an astrocyte significantly reduced the decline in 

fPSPs induced by EGD (to around 71%, EGD, orange line and bar graph,  44.83 ± 5.47 , 

n = 12,  N=10; after astrocyte filling: EGD+ AG, dark green line and bar graph, 71.21 ± 

3.19, n = 8, N = 7) (Fig. 5.6 B, ANOVA followed by Tukey’s post-hoc test, p = 0.004). 

Filling a single astrocyte (MP = -74.85 ± 1.58 mV; Rm = 2.37 ± 0.38 MΩ; n = 7, N = 7) 

with a high concentration of lactate (40 mM L-lactate) was performed to test if it could 

also rescue fPSPs. A concentration of 40 mM L-Lactate was used because during lactic 

fermentation, 1 molecule of glucose generates 2 molecules of lactate. A significant 

rescue of the EGD-induced drop of fPSPs was observed when filling an astrocyte with 

lactate (EGD+ AL, light green line and bar graph, 66.55 ± 3.27%, n = 7, N = 6, Fig. 5.6 

B, ANOVA followed by Tukey’s post-hoc test, p = 0.014). In conclusion, high 
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intracellular glucose concentration as well as high L-lactate loading of astrocytes can 

rescue the decline of fPSP amplitudes in the thalamus during EGD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 Glucose and lactate filling of astrocytes can rescue synaptic activity in the thalamus 

during EGD. 

Thalamic astrocytes of hGFAP-EGFP mice were loaded with metabolites before recording synaptic 

activity. (A) Normalized fPSPs during a 10 min EGD (orange line), after dialyzing an astrocyte with 20 

mM glucose (dark green line) or dialyzing an astrocyte with 40 mM L-lactate (light green line). (B) Bar 

graphs represent the mean of the remaining fPSPs amplitude, normalized to the respective conditions 

during control basal recording prior to EGD. Filling an astrocyte with glucose or L-lactate led to a 

significant rescue of fPSP amplitudes during EGD. ANOVA followed by Tukey’s post-hoc test p = 0.004 

and 0.014 for glucose and L-lactate respectively. (C) Overview of a thalamic brain slice used for 

electrophysiological recordings. Close to the recording electrode (Rec. El.), one astrocyte was loaded with 

an energy metabolite and sulforhodamine B (red dye, 10 μg/ml) to visualize online its spread in the 

coupling cloud. Number of mice is given in bar graphs. Asterisks indicate statistical significance 

(*p<0.05, **p<0.01). 
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5.4.2 Effect of filling an oligodendrocyte 

In the corpus callosum, filling an oligodendrocyte with energy metabolites was shown 

to be more efficient than astrocyte filling in rescuing the decline of axonal activity 

during EGD (Meyer et al., 2018). In the thalamus, astrocytes and oligodendrocytes form 

abundant panglial coupling networks (Griemsmann et al., 2015; Claus et al., 2018). 

More than half of the thalamic coupled cells are oligodendrocytes, irrespective of 

whether an astrocyte or an oligodendrocyte was initially filled with the tracer 

(Griemsmann et al., 2015). 

Thus, to test if oligodendrocytes also protect synaptic activity in the thalamus, a single 

oligodendrocyte was loaded with a high glucose concentration (20 mM, for 20 min) 

using the same experimental strategy as mentioned before. Oligodendrocytes were 

identified by their GFP fluorescence and patched in the VPM of acute brain slices form 

PLP-GFP mice. On average they had a MP of -73.57 ± 1.27 mV and an Rm 6.63 ± 1.16 

MΩ (n = 7, N =7 animals). Similar to loading an astrocyte, dialyzing oligodendrocytes 

with glucose significantly reduced the decline of fPSP amplitudes (to around 68%), 

during EGD (EGD, orange line and bar graph,  44.83 ± 5.47% , n = 12,  N = 10; 

EGD+OG, dark blue line and bar graph 67.80 ± 2.82%, n = 7, N = 7 (Fig. 5.7 A, B, 

ANOVA followed by Tukey’s post-hoc test, p = 0.01). Loading an oligodendrocyte 

with a high concentration of lactate (40 mM) led to a similar effect. The remaining 

fPSPs amplitude during EGD was on average about 66% (EGD+OL, light blue line and 

bar graph, 66.09 ± 3.65%, n = 5, N = 5, fig. 5.7 B, ANOVA followed by Tukey’s post-

hoc test, p = 0.031). 

Summarizing, dialyzing glucose or lactate into a patched oligodendrocyte can rescue the 

decline in fPSP amplitude during EGD. This rescue was as efficient as filling an 

astrocyte with energy metabolites. 
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Figure 5.7 Glucose and lactate filling of oligodendrocytes can attenuate fPSP amplitude decline 

mediated by EGD. 

(A) Normalized fPSPs during 10 min EGD (orange line), while dialyzing an oligodendrocyte with 20 mM 

glucose (dark blue line) or with 40 mM L-lactate (light blue line). (B) Bar graphs illustrate the mean of 

the remaining fPSP amplitudes, normalized to the respective control recording prior to EGD for each 

condition. Loading of oligodendrocytes with 20 mM glucose or 40 mM L-lactate can partially rescue 

fPSP amplitudes during EGD (control EGD, orange line and bar graph n = 12, N = 10; 20 mM glucose, 

EGD+OG, dark blue line and bar graph n = 7, N = 7; 40 mM L-lactate, EGD+OL, light blue line and bar 

graph, n = 5, N = 5). ANOVA followed by Tukey’s post-hoc test p = 0.01 and 0.031 for glucose and 

lactate, respectively. Number of mice is given in bar graphs. Asterisks indicate statistical significance 

(*p<0.05, **p<0.01). 
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5.5 The impact of Cx32 and Cx47 

 

5.5.1 Impact on panglial networks 

 

White matter oligodendrocytes contribute to sustain axonal activity by transport of 

metabolites in the corpus callosum and the optic nerve (Lee et al., 2012; Meyer et al., 

2018). Oligodendrocytes express Cx32 and Cx47. Cx30 is the dominant astrocytic 

connexin in the thalamus (Griemsmann et al., 2015). Heterotypic Cx30:Cx32 gap 

junction channels have been proposed to mainly mediate thalamic panglial coupling 

(Claus et al. 2018). Hence, the impact of oligodendrocyte connexins on thalamic 

panglial networks was first investigated. 

Panglial coupling efficiency was quantified after injecting biocytin (for 20 min of patch 

clamp recording) in a single astrocyte of  Cx32
-/-

;Cx47
EGFP(-/-)

 (dko) mice (n = 10, N = 

3), Cx32
-/-

;Cx47
EGFP(+/-)

 mice (n = 11, N = 4) and Cx32
-/-

;Cx47
EGFP(+/+)

 mice (n = 15, N 

= 4). Astrocytes were identified in those mice by SR101 labelling in acute thalamic 

brain slices. Coupling efficiency was significantly reduced in dko mice (36 ± 8 cells, n 

= 10 slices) compared to Cx32
-/-

;Cx47
EGFP(+/-)

 mice (69 ± 11 cells, n = 11 slices, p = 

0.048) and to control mice (110 ± 20 cells, n = 8 slices, p = 0.0028; Griemsmann et al., 

2015) (Fig. 5.9, Kruskal–Wallis test followed by Dunn´s test). 

Interestingly, when looking at the proportion of oligodendrocytes which were still part 

of tracer-coupled networks, among those biocytin-coupled cells, 27% were GFP
+
, i.e. 

oligodendrocytes in Cx32
-/-

;Cx47
EGFP(+/-)

  mice, compared to 55% in control mice. In 

Cx32
-/-

;Cx47
EGFP(-/-)

 dko mice, the remaining small networks completely lacked 

oligodendrocytes, as no EGFP
+
 cells were observed. Thus, we next investigated whether 

oligodendrocytes in the thalamus contribute to the maintenance of synaptic activity by 

providing metabolites through the coupled network by using Cx32
-/-

;Cx47
EGFP(-/-)

 dko 

mice, where no oligodendrocytes are part of the biocytin-coupled network anymore.  
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Figure 5.8 Biocytin diffusion in Cx32/Cx47 mice. 

(A1-C1) SR101
+
 astrocytes were filled with biocytin for 20 min in the thalamus of 3 different genotypes 

Cx32
-/-

;Cx47
EGFP(+/+)

 (A), Cx32
-/-

;Cx47
EGFP(+/-)

 (B) and Cx32
-/-

;Cx47
EGFP(-/-)

 (C). Cx47-EGFP
+
 

oligodendrocytes are displayed in green (A2-C2) and the merge images are shown (A3-C3). Notice that 

EGFP is not expressed in Cx32
-/-

;Cx47
EGFP(+/+)

 mice (A2). Immunostaining for GFP (B1-B3) revealed that 

biocytin spread into Cx47-EGFP
+
 oligodendrocytes in Cx32

-/-
; Cx47

+/-
mice as revealed by the 

colocalization of both markers (yellow cells, B3). Scale bar 40 µm. 
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Figure 5.9 Quantification of panglial network size in Cx32/Cx47 dko mice. 

Graph summarizing the coupling efficiency after injecting astrocytes with biocytin (20 min) in the 

thalamus of Cx32/Cx47 dko mice. Total numbers of coupled cells (black bars) and number of GFP+ cells 

(light grey bars), which were part of biocytin-coupled networks, were compared. Coupling efficiency was 

reduced in In Cx32
-/-

;Cx47
EGFP(-/-)

 dko mice (n = 10, N = 3), compared to Cx32
-/-

;Cx47
EGFP(+/-)

 mice (n = 

11, N = 4) and in control mice (n = 14, N = 8). Moreover, in Cx32
-/-

;Cx47
EGFP(+/-)

 mice, biocytin-filled 

networks still contained around 27% of GFP
+ 

cells (i.e. oligodendrocytes) whereas 55% were GFP
+ 

cells 

in control mice. No GFP
+
 cells were found in coupled networks of Cx32

-/-
;Cx47

EGFP(-/-)
 dko mice. As 

oligodendrocytes were completely lacking in those networks, those mice were used for further 

experiments. In Cx32
-/-

;Cx47
EGFP(+/+)

 mice, Cx47 was not fluorescent. Therefore, the proportion of 

oligodendrocytes that were part of the coupled networks could not be estimated (n = 15, N = 4). Number 

of mice is given in bar graphs. Asterisks indicate statistical significance (*p<0.05, **p<0.01). Kruskal–

Wallis test followed by Dunn´s test. 
 

 

5.5.2 Impact on neuronal activity 

Oligodendrocytes support axonal function by transport of metabolites in white matter 

areas (Lee et al., 2012; Meyer et al., 2018). In Cx32
-/-

;Cx47
EGFP(-/-)

 dko mice, the 

remaining small networks completely lacked oligodendrocytes (see section 5.5.1). In 

this part of the study, the protection of fPSP activity during EGD through glucose filling 

of astrocytes was investigated in Cx32
-/-

;Cx47
EGFP(-/-)

 dko mice. Incubation of acute 

thalamic brain slices of Cx32
-/-

;Cx47
EGFP(-/-)

 dko mice with the astrocytic marker SR101 

confirmed that green fluorescent Cx47
+
 cells never colocalized with the astrocytic 

marker SR101 (Fig. 5.10, N = 4 mice, n = 12 regions of interest).   
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Figure 5.10 EGFP
+
 cells do not colocalize with the astrocytic marker SR101 in Cx32

-/-
;Cx47

EGFP(-/-)
 

mice. 

Employing the astrocytic marker SR101 (red, center A2), online visualization of EGFP
+
 oligodendrocytes 

(green, left A1)  did not colocalize with astrocytes (merge, right A3) Cx32
-/-

;Cx47
EGFP(-/-)

 mice. Scale bar, 

50 µm. 

 

Astrocytes were therefore identified as Cx47
-
 cells, their low input resistance (1.8 ± 0.27 

MΩ) and a negative resting MP (-84.57 ± 2.28 mV, n = 6, N = 6). To visualize online 

that our initial patched cell was an astrocyte and was coupled, sulforhodamine B (10 

µg/ml) was added to the pipette solution. The fPSP decline during EGD in Cx32
-/-

;Cx47
-/-

 mice (dark grey, EGD dko, 46.61 ± 5.12%, n = 5, N = 5) did not differ 

significantly from the fPSP decline during EGD in hGFAP-EGFP mice (orange, EGD, 

44.83 ± 5.47%, n = 12, N = 10; Fig. 5.11 B, ANOVA followed by Tukey’s post-hoc 

test, p = 0.99). 

In Cx32
-/-

;Cx47
EGFP(-/-)

 mice, filling an astrocyte with 20 mM glucose (for 20 min) did 

not rescue fPSP amplitudes during 10 min of EGD (light grey, EGD dko + AG, 53.76 ± 

6.42%, n = 6, N = 6) compared to control experiments (dark grey, EGD dko, 46.61 ± 

5.12%, n = 5, N = 5, ANOVA followed by Tukey’s post-hoc test, p = 0.87, Fig. 5. 11 

B).  

In conclusion, these experiments demonstrate that dialyzing an astrocyte with glucose in 

Cx32
-/-

;Cx47
EGFP(+/-)

 mice, where oligodendrocyte are not part of the coupled network, 

showed no rescue in neuronal activity, during EGD. Therefore, in the thalamus coupled 

oligodendrocytes participate in neuronal provision of metabolite substrates. 
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Figure 5.11 Filling an astrocyte with glucose cannot rescue thalamic fPSPs during EGD in Cx32
-/-

;Cx47
EGFP(-/-)

 dko mice. 

(A) Normalized fPSPs during 10 min of EGD (orange line, n =12, N =10) and while dialyzing an 

astrocyte with 20 mM glucose (dark green line, n = 7, N = 6) in hGFAP-EGFP mice. Furthermore 

normalized fPSPs during 10 min of EGD (dark grey line, n =5, N = 5) and while dialyzing an astrocyte 

with 20 mM glucose (light grey line, n = 6, N = 6) in Cx32
-/-

;Cx47
EGFP(-/-)

 mice are shown. (B) Bar graphs 

illustrate the mean of the remaining fPSPs amplitude, normalized to the respective conditions during 

control recording prior to EGD for each condition. Filling an astrocyte with a high glucose concentration 

in Cx32
-/-

;Cx47
EGFP(-/-)

 mice did not rescue fPSP amplitudes during EGD. Number of mice is given in bar 

graphs. ANOVA followed by Tukey’s post-hoc test. Asterisks indicate statistical significance (*p<0.05). 

 

 

5.6 Effect of glucose and monocarboxylate transporters on neuronal activity 

 

To further characterize the mechanisms involved in the rescue of fPSPs while loading 

an astrocyte with glucose during EGD, the effect of glucose and monocarboxylate 

transporter inhibitors was tested. First, a combination of blockers was employed.       

AR-C155858 (1 µM) specifically inhibits the monocarboxylate transporters MCT1 and 

MCT2, which are isoform expressed by oligodendrocytes and by neurons, respectively. 

Stf31 (5 µM) specifically blocks the glucose transporter GLUT1, which is expressed by 

oligodendrocytes as well as by astrocytes. An astrocyte was patched and loaded with 20 

mM glucose before applying the cocktail of blockers during 10 min of EGD. After 

loading an astrocyte with glucose, the combined application of AR-C155858 and Stf31, 

prohibited the  rescue of fPSP amplitudes during EGD as fPSPs still declined to around 

45% (dark green, EGD+AG+Stf/AR-C applic., 45.49 ± 7.98%, n = 6, N = 6), which is 

similar to the decline observed without glucose filling of astrocytes (orange, EGD, 

A B 
     gluc - 
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44.83 ± 5.47%, n = 12, N = 10; Fig. 5.11 B, ANOVA followed by Tukey’s post-hoc 

test, p = 0.99, Fig. 5.12 B). Next, SR13800 (0.01 µM), an MCT1 specific inhibitor, was 

used. After dialyzing an astrocyte with glucose, application of SR13800 alone did not 

have a significant effect on fPSP amplitudes during EGD (purple, EGD+AG+SR13800, 

59.28 ± 3.63%, n = 6, N = 6) compared to EGD only  (p = 0.36, ANOVA followed by 

Tukey’s post-hoc test, Fig. 5.12 B) or to applying both blockers (p = 0.50, ANOVA 

followed by Tukey’s post-hoc test, Fig. 5.12 B). Taken together, these results show that 

in the thalamus, the protective effect of providing glucose through the panglial network 

on thalamic synaptic activity during EGD is dependent on both MCT1/2 and GLUT1 

transporter activity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12 Simultaneous disruption of both glucose and monocarboxylate transport inhibits the 

rescue of fPSPs after glucose filling of astrocytes. 

(A) Normalized fPSPs during 10 min of EGD (orange line, n =12, N =10), while dialyzing an astrocyte 

with 20 mM glucose (green line, n = 7, N = 6), with application of the blockers Stf31 (5 µM) to block the 

glucose transporter GLUT1 and AR-C155858 (1 µM) to block monocarboxylate transporters MCT1 and 

MCT2 (dark green line, n = 6, N =6) and with application of the specific MCT1 blocker SR13800 (0.01 

µM) (purple line, n = 6, N = 6). (B) Bar graphs illustrate the mean of the remaining fPSP amplitudes, 

normalized to the respective conditions during control recording prior to EGD for each condition. fPSPs 

amplitude do not rescue after filling an astrocyte with glucose during EGD while applying both AR-

C155858 and Stf31.  (EGD+AG+Stf/AR-C appl., dark green bar graph, ANOVA followed by Tukey’s 

post-hoc test p = 0.99). Applying SR13800 (0.01 µM) alone did not impact fPSP amplitudes during EGD 

while an astrocyte was loaded with glucose (EGD+AG+SR13800, purple bar graph, n = 6, N = 6, 

ANOVA followed by Tukey’s post-hoc test, p = 0.36 and p = 0.50 compared to EGD only and to 

applying both blockers, respectively).  

A B 

        gluc - 



Discussion 
 

  

66 
 

 

 

 

 

6 Discussion 

Glial cells in the CNS, and in particular astrocytes, are interconnected via gap junction 

channels, forming coupled networks. These glial networks are essential for several 

functions such as brain homeostasis and brain metabolism. In contrast to other brain 

areas, in the thalamus not only astrocytes are coupled to each other. Oligodendrocytes 

are making up for more than half of the coupled cells within a network (Griemsmann et 

al., 2015; Claus et al., 2018). While the human brain represents only 2% of the total 

body volume, 20% of whole-body glucose consumption is allocated to meet the brain’s 

energy demands (Magistretti and Allaman, 2015; Mink et al., 1981), suggesting high 

energy requirements for the nervous system. Consequently, over the last two decades, 

brain energy metabolism and the most recent term “neuroenergetics” have been a 

research focus. Recent studies have started to unravel the key role of glial cells in brain 

energy metabolism. However, little is known about glial cells in the thalamus, a grey 

matter region with long myelinated fibers projecting to and from the cortex. It is 

described as the gate to consciousness as it receives somatosensory inputs (Crick and 

Koch, 2003). In grey matter, astrocyte coupling networks have emerged as active 

players in sustaining neuronal energy requirements (Rouach et al., 2008), whereas in 

white matter, coupled oligodendrocytes are key elements in supporting axonal function 

(Meyer et al., 2018). The functional impact of oligodendrocytes on neuronal activity in 

grey matter remains unclear. Thus, thalamic panglial networks with their abundant 

astrocyte-oligodendrocyte coupling might influence brain energy metabolism. To this 

end, the characteristics and the specific role of oligodendrocytes in the panglial thalamic 

network and in energy metabolism were investigated in this project.  
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6.1 Barreloid borders are mostly shaped by weakly coupled 

oligodendrocytes 

As part of the somatosensory system, the VPM of the thalamus contains elongated 

domains called barreloids. Barreloids in rat and mice reflect the spatial arrangement of 

whiskers (Haidarliu and Ahissar, 2011). In our study by Claus et al. (2018), thalamic 

barreloid borders were shown to restrict panglial coupling networks. Furthermore, 

analysis in PLP-GFP mice showed that barreloid borders are mainly formed by 

oligodendrocytes. This information initiated a first set of experiments to ask whether 

those oligodendrocytes located on barreloid borders were part of the panglial network. 

Using PLP-GFP mice, selected oligodendrocytes positioned on the barreloid borders 

were patched and filled with biocytin. I could show that barreloid borders are mainly 

formed by weakly coupled or uncoupled oligodendrocytes (Fig. 5.1), thus giving an 

explanation to why biocytin diffusion was asymmetrical and restricted to an individual 

barreloid field after filling a single astrocyte in between barreloids borders (Claus et al., 

2018). Furthermore, several PLP-GFP-positive cells within the volume of the biocytin-

filled networks were biocytin-negative. We also detected some astrocytes as biocytin-

negative within the volume occupied by biocytin-filled networks (Claus et al., 2018). In 

the juvenile hippocampus, it has been reported that not all astrocytes located in a 

coupling domain are coupled with each other (Houades et al., 2006). However, this 

observation was actually due to the immature functional stage of those cells (Wallraff et 

al., 2004; Schools et al., 2006; Strohschein et al., 2011). Noteworthy, in the thalamus 

the number of biocytin coupled cells reached maximum coupling capacity already at an 

earlier development stage (Griemsmann et al., 2015). Therefore, the immature stage is 

not responsible for the observed uncoupled cells in thalamic barreloids. However, it still 

remains to be determined whether those non-filled cells are really uncoupled or if they 

are actually part of another coupled network or if they are just temporarily not part of 

the network. These results are contributing to the concept of glial heterogeneity within 

thalamic glial cells. Two sub-populations of astrocytes from the VB thalamus were 

described in a previous study, using acuted isolated astrocytes to study their expression 

of glutamate receptors. Those thalamic astrocytes were either expressing or lacking 

AMPA/KA receptors (Höft et al., 2014). Other studies have also shown heterogeneity in 

thalamic astrocytes regarding their response to sensory or corticothalamic inputs in the 

VB thalamus (Parri et al., 2010; Pirttimaki and Parri, 2012). It remains elusive whether 
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biocytin-negative and -positive astrocytes have different functional features. Further 

analyses are also required to determine if uncoupled astrocytes may be involved in 

specific signaling pathways in respect to neurons in thalamic barreloids. 

 

6.2 Neuronal activity shapes panglial networks in thalamic barreloids 

Only a handful of studies have covered neuronal activity effects on astrocyte networks. 

The first investigations were done in cell cultures. Mouse co-culture of astrocytes with 

cerebellar neurons increases the amount of dye-coupled astrocytes (Fischer and 

Kettenmann, 1985). Those results were confirmed in another study in which astrocyte 

gap junction coupling was upregulated by neurons in rat astrocyte-neuron co-cultures 

(Rouach et al., 2000). Marrero and Orkand (1996) were the first to report an activity-

dependent regulation of glial networks by neurons. They demonstrated that in the frog 

optic nerve, nerve stimulation increases glial coupling. The mechanisms mediating this 

process are mainly unknown. An increase in extracellular K
+
 concentration leads to the 

depolarization of astrocytes which then modulates gap junction permeability of glial 

cells (Enkvist and McCarthy, 1994; see also review by Giaume et al., 2010). 

Phosphorylation of the C-terminus of Cx43 by Ca
2+

-calmoduline protein kinase II has 

been proposed to play a role in this K
+
-induced increased glial coupling (De Pina-

Benabou et al., 2001). Astrocytic coupling is dominated by Cx43 in the hippocampus 

(Griemsmann et al., 2015). Furthermore, modulation of hippocampal neuronal activity 

shapes the spread of energy metabolites like 2-NBDG, while gap junction permeability 

to biocytin was not impacted (Rouach et al., 2008). Interestingly, in contrast to the 

hippocampus, astroglial gap junction coupling is reduced in olfactory glomeruli when 

neural network activity is inhibited by TTX or after early sensory deprivation (Roux et 

al., 2011). This study also suggested that Cx30 is the molecular target for the activity-

dependence of gap junction channels in astroglial glomerular networks. Indeed, in Cx30 

KO mice, dye coupling was affected neither by TTX treatments nor by early olfactory 

deprivation, whereas astroglial coupling was reduced when doing experiments in Cx43 

KO mice. To strengthen this point, the same results were confirmed in juvenile mice, at 

a development stage in which Cx30 is not yet expressed by astrocytes (Roux et al., 

2011).  

I have analyzed glial networks in thalamic barreloids after treatments with TTX and ω-

conotoxin GVIA. Inhibition of neuronal activity significantly reduced the spread of both 
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2-NBDG and biocytin in glial networks to the same extent (Fig. 5.2). As Cx30 is the 

dominant astrocytic Cx in coupled thalamic network (Griemsmann et al., 2015), our 

results are consistent with the findings from Roux et al. (2011). Taking together the 

literature and these neuronal activity dependent coupling networks, panglial coupling in 

thalamic barreloids of young mice is likely mediated by heterotypic Cx30/Cx32 

channels.  

In addition, Roux et al. (2011) have speculated that in olfactory glomeruli, changes in 

extracellular K
+
 generated by neuronal activity can modulate astrocytic Cx30-mediated 

gap junction channels through a mechanism including their Kir channels. Astrocyte 

properties have been reported to be heterogeneous between different brain areas (Xin 

and Bonci, 2018; Zhang and Barres, 2010). Indeed, as mentioned earlier, two sub-

populations of astrocytes were defined in the VB thalamus (Höft et al., 2014). AMPA 

receptor-bearing astrocytes displayed a lower Kir current density than astrocytes lacking 

this receptor. Therefore, taking those data together, biocytin-negative astrocytes 

observed in our experiments might be part of the astrocytic population expressing 

AMPA receptors.  

What might be the advantage of having an anatomofunctional compartmentalization of 

panglial coupling networks for each barreloid? Houades et al. (2008) have shown that in 

the somatosensory cortex, glial networks are limited to a single barrel. Thus, they 

speculated that this compartmentalization could be necessary to restrict the activation of 

a single whisker to a single cortical barrel. In future studies, it would be interesting to 

investigate if a comparable concept can be observed in thalamic barreloids. Analyses of 

changes in panglial networks after whisker trimming could be studied. In case network 

formation is altered, Cx30 deficient mice could be employed to identify molecular 

targets of activity-dependent panglial coupling in thalamic barreloids. How panglial 

networks can perceive and modulate neuronal output in the thalamus is not well known. 

But, one can speculate that separation of glial networks by thalamic barreloid borders 

can limit neuronal interaction to one specific barreloid and therefore prevent any 

irregular neuronal activity. In addition, barreloid borders separation might be a 

requirement for high energy supply within the barreloid rather than in between 

barreloids. These limited gap junction networks in thalamic barreloids might also lead 

to metabolic pathway signaling, which is restricted to a single corresponding vibrissae. 

Using GAD (the synthetic enzyme for GABA) stainings as an indicator of thalamic 

metabolism, Land and Akhtar (1987) have shown that depriving adult rat of tactile input 
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via chronic whisker trimming leads to reduced metabolic activity and GAD 

immunoreactivity in corresponding barreloids in the VB thalamus. Future studies should 

aim at understanding the role of each glial cell type in sustaining and modulating 

neuronal activity in thalamic barreloids, in the healthy and diseased brain. 

 

6.3 Thalamic fPSPs are sensitive to EGD and extracellular lactate or 

pyruvate cannot replace glucose to maintain fPSPs 

What might be the link between neuronal activity and panglial networks in the 

thalamus? Thalamic oligodendrocytes make up for more than 50% of coupled cells 

(Griemsmann et al., 2015; Claus et al., 2018; Höft et al., 2014). In contrast, in the 

hippocampus panglial networks are mainly formed by astrocytes (Griemsmann et al., 

2015), while oligodendrocytes are predominant in the corpus callosum (Meyer et al., 

2018). This add to the evidence of different glial features and properties between brain 

regions (Matyash and Kettenmann, 2010; Xin and Bonci, 2018). Thus, what is the 

specific role of oligodendrocytes in energy metabolism? In the hippocampus, astrocytic 

networks provide metabolic substrates to neurons to sustain glutamatergic synaptic 

transmission (Rouach et al., 2008). Furthermore, recent studies have reported that in 

white matter, oligodendrocytes are metabolically highly active cells (Amaral et al., 

2016). Hence, oligodendroglial networks are expected to participate significantly to 

brain metabolism activity. Additionally, oligodendrocytes are essential for sustaining 

the function of myelinated axons via transport of metabolites (Fünfschilling et al., 2012; 

Lee et al., 2012; Morrison et al., 2013; Meyer et al., 2018). Since oligodendrocytes are 

not in direct contact to blood vessels, brain metabolism might make use of the panglial 

coupling network to transport energy metabolites from the circulation, via astrocytic 

endfeets to synapses and via oligodendrocytes to axons. The thalamus has been 

described as a region of high energy consumption in accordance with its functional role 

as a gateway, in relaying and modulating sensory information to the cortex (Gordji-

Nejad et al., 2018). From an anatomical organization point of view, high energy levels 

are probably needed to support long-range myelinated axons projecting from the cortex 

to the VB thalamus and vice versa.  

A protocol to record thalamic field potentials from acute brain slices was established in 

our lab by Stephanie Griemsmann (PhD thesis, 2015). The corticothalamic pathway was 

stimulated and field potentials were recorded in the VB thalamus. A method to analyze 
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and quantify fPSP, representative of postsynaptic activity, was developed (also see 

chapter 4.1.4). Unfortunately, due to the experimental protocol parameters, analyzes of 

the pre-synaptic component of thalamic field potentials was not possible, as the axonal 

signals were merged with artefact recordings, even after TTX subtraction.  

After 10 min of glucose deprivation, a decline by 55% in fPSP amplitudes was 

observed, followed by a recovery after reperfusion with ACSF containing glucose (Fig. 

5.4). Next, extracellular glucose was replaced by lactate or pyruvate. Several studies 

have recently shown that lactate or pyruvate delivery by oligodendrocytes in white 

matter, mainly in the optic nerve and the spinal cord, is essential for proper axonal 

function (Hirrlinger and Nave, 2014; Funfschilling et al., 2012; Brown et al., 2003; Lee 

et al., 2012). On the other hand, astrocytes have been shown to deliver lactate as the 

main energy substrate to neurons, through the astrocyte-neuron lactate shuttle (ANLS) 

(Pellerin and Magistretti, 2012). Hence, oligodendrocytes in panglial thalamic networks 

might contribute to sustain presynaptic (axonal) function while astrocytes might sustain 

postsynaptic activity by delivering energy metabolites through the ANLS model. This 

hypothesis has been tested in the present study. 

Applying extracellular lactate or extracellular pyruvate did not prevent the decline in 

fPSP amplitudes during EGD (Fig. 5.5). These results are in line with a recent report 

from the corpus callosum (Meyer et al., 2018) but in contrast with data from another 

white matter region, the optic nerve, were lactate could replace glucose in maintaining 

axonal activity (Brown et al., 2003). Another characteristic of thalamic fPSPs is their 

really fast decline during EGD compared to another grey matter region, the 

hippocampus (Rouach et al., 2008). Notably, initial experiments were performed at 

physiological temperature. However, after 5 or 10 min of glucose deprivation, field 

potentials irreversibly declined to zero while shorter duration of EGD (2.5 min) did not 

induce a reduction of the field potential (Fig. 5.3). These changes in energy dynamics 

might be caused by organizational differences in the thalamus, resulting in higher 

energy consumption in the VB thalamus than in the hippocampus. Indeed, as already 

mentioned above, corticothalamic neurons have long-range myelinated axons compared 

to shorter Schaffer collateral axons in the hippocampus, and are therefore in need of 

higher energy supply.  

Another explanation for these changes in energy dynamics might be lower glycogen 

storage in thalamic astrocytes, compared to other brain areas. During metabolic 

challenges, astrocytic glycogen may be transformed to lactate (Pellerin and Magistretti, 
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2012) and therefore lower glycogen storage would result in a faster decline of energy 

metabolites available to fuel neuronal activity. Some reports have shown heterogeneity 

in metabolic activity between brain regions. A few decades ago, Yamamoto et al. 

(1989) have already described certain regionalization in the role of astrocytes in 

glutamate metabolism. Inhibition of glutamine synthetase generated a substantial 

glycogen accumulation in hippocampal, as well as in neocortical astrocytes but not in 

thalamic astrocytes. More recent evidence by Oe et al. (2016) has shown direct 

confirmation of regional differences in glycogen storage. Indeed, glycogen 

immunoreactivity was high in the hippocampus and the neocortex compared to the 

thalamus, which was only labeled sparsely. Accordingly, lower glycogen storages in the 

thalamus might cause the faster decrease in fPSP amplitudes observed during EGD.  

 

6.4 Loading an astrocyte with energy metabolites can rescue the EGD-

induced decline of thalamic fPSPs  

Upon filling an astrocyte with the fluorescent glucose analog 2-NBDG, its spread 

reaches neighboring oligodendrocytes and myelin sheaths (Claus et al., 2018; Stephanie 

Griemsmann, thesis, 2015). On the other hand, loading astrocyte networks with energy 

metabolites can sustain synaptic activity in the hippocampus (Rouach et al., 2008). 

Hence, filling glial cells with metabolic substrates in the thalamus might rescue the 

decline in fPSP amplitudes observed during EGD. Glucose was first loaded in a single 

astrocyte. A high concentration of 20 mM, much higher than in physiological conditions 

(0.5-1 mM; Lerchundi et al., 2015), was used. However, due to the diffusion resistance, 

a much lower concentration is expected to be found in the coupled network, as the 

glucose spreads. Filling an astrocyte with glucose was sufficient to significantly 

attenuate the EGD-induced drop of post synaptic activity (Fig. 5.6). In the ANLS 

model, glucose is metabolized to lactate by astrocyte glycolysis, and then used by 

neurons (Magistretti and Allaman, 2018; Pellerin and Magistretti, 1994). Therefore, a 

single astrocyte was also loaded with high lactate. Lactate could also rescue the decline 

in thalamic synaptic activity. Those results suggest that in contrast to extracellular 

supply, delivery of intracellular lactate and glucose, which is likely metabolized to 

lactate and pyruvate, was able to sustain synaptic transmission in the thalamus.  
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6.5 Oligodendrocytes in gap junction networks are essential to maintain 

fPSP activity in the thalamus 

As oligodendrocytes constitute a large part of thalamic panglial networks, further 

analyzes were conducted to unravel their role in thalamic energy supply. Loading an 

oligodendrocyte with glucose or lactate had a similar effect as filling an astrocyte in 

preventing the decline of thalamic synaptic activity (Fig. 5.7). Those results suggest that 

both astrocytes and oligodendrocytes are engaged by the thalamic panglial network to 

transport energy metabolites from blood vessels to neurons. To provide additional 

insight into the specific role of oligodendrocytes in sustaining synaptic activity, 

genetically modified mice were used. Cx32 and Cx47 are oligodendrocytic connexins. 

Mice lacking these connexins showed severe vacuolation, thin or absent myelin sheaths, 

axonal loss and died between 5 and 10 weeks after birth (Menichella et al., 2003; 

Odermatt et al., 2003). Additionally, those connexins are essential for oligodendrocyte 

coupling (Maglione et al., 2010; Griemsmann et al., 2015). As anticipated, mice lacking 

both Cx32 and Cx47 showed significantly reduced coupling compared to control mice 

(Fig. 5.8 and 5.9). Moreover, oligodendrocytes were completely lacking in glial 

networks from those double-deficient mice. Next, after confirmation that green 

fluorescent Cx47
+
 cells never colocalized with the astrocytic marker SR101 (Fig. 5.10), 

an SR101
+
 astrocyte was patched and filled with glucose in those double-deficient mice. 

No rescue of fPSP amplitudes was observed during EGD (Fig. 5.11). Consequently, we 

can conclude that oligodendrocytes are crucial elements of thalamic panglial networks 

for proper energy metabolite supply to the neuronal network. 

A recent study by Saab et al. (2016) provided new insights in oligodendrocyte 

regulation of glucose utilization in the optic nerve. Oligodendrocytes use NMDA 

receptor signals as an indicator of axonal activity, leading to an increased trafficking of 

GLUT1 transporters to the oligodendrocyte membrane, which in turn increases glucose 

uptake. This mechanism does not require gap junction coupling (Saab et al., 2016). In 

the present study, experiments in connexin deficient mice showed that oligodendrocyte 

networks are necessary to sustain neuronal activity in the thalamus. Therefore, despite 

the fact that it is still unclear whether thalamic oligodendrocytes possess GLUT1 and 

NMDA receptors and at which extent, these data contribute to demonstrating 

heterogeneity in glial cells between the thalamus and other brain areas (Claus et al., 

2018; Griemsmann et al., 2015). Oligodendrocytes in the optic nerve are weakly 
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coupled (Butt and Ransom, 1989) compared to the thalamus (Claus et al., 2018; 

Griemsmann et al., 2015) and have noticeably established other strategies to support 

neuronal activity. 

Interestingly, when taking together findings from all different regions, including the 

hippocampus, the optic nerve and the corpus callosum, it is tempting to speculate that in 

the thalamus, astrocytes support neuronal activity at the synapse while oligodendrocytes 

primarily sustain axonal energy metabolism.  

 

6.6 Glucose and monocarboxylate transporters are involved in providing 

energy substrates through thalamic panglial networks to sustain neuronal 

activity 

Next, this study aimed to further challenge the later hypothesis by investigating, which 

metabolic pathways are involved in the energy supply from the panglial network to 

neurons. Glucose and monocarboxylate transporters are integral membrane proteins 

which mediate the fueling of neurons with energy metabolites (Barros and Deitmer, 

2010). According to the current ANLS hypothesis, glucose can be taken up by 

astrocytes from the blood vessels via the glucose transporter GLUT1 (Belanger et al., 

2011). Astrocyte glycolysis converts glucose into lactate, which is exported via MCT4, 

a specific astrocyte transporter (Rafiki et al., 2003; Rinholm et al., 2011). Lactate can 

then be taken up by MCT2, a neuron specific transporter, whereas MCT1 is expressed 

by oligodendrocytes and predominantly localized at the myelin sheaths around axons 

(Pierre and Pellerin, 2005; Rinholm et al., 2011; Morrison et al., 2013; Lee at al., 2012). 

Meyer at al. (2018) recently reported that lactate, rather than glucose, derived from 

oligodendrocytes could contribute to support axonal metabolic support in the corpus 

callosum. To further characterize the mechanisms involved in the prevention of EGD-

induced decline in thalamic fPSPs, glucose and monocarboxylate transport blockers 

were used. GLUT1 and MCT1/2 blockers were applied to the bath solution while an 

astrocyte was filled with glucose. Simultaneous disruption of MCTs and GLUT1 

completely inhibited the protective effect of astrocyte glucose loading (Fig. 5.12). Next, 

EGD experiments were performed under application of an MCT1 specific blocker (Fig. 

5.12). The remaining fPSP amplitude was neither different from the control experiments 

(EGD) nor from experiments where blockers for MCT1/2 and GLUT1 were applied 
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(EGD +AG + AR-C155858 + Stf31). Thus, the conclusion of these results is difficult to 

explain, and the metabolite route used by oligodendrocytes to fuel neurons remains 

elusive.  

In conclusion, as speculated in a review by Morrison et al. (2013), energy metabolites 

are transported between astrocytes and oligodendrocytes through gap junction networks 

prior to being used to fuel neurons/axons. Indeed, in the thalamus, astrocytes and 

oligodendrocytes are jointly involved in sustaining neuronal synaptic activity by 

delivery of energy substrates like glucose and lactate through the panglial network. 

Additionally, these data confirm the increasing evidence of glial heterogeneity 

throughout different brain regions. Glial heterogeneity occurs between the hippocampus 

and the thalamus, as well as between grey and white matter regions. However, further 

work needs to be carried out as it remains unclear whether oligodendrocytes in the 

thalamus modulate neuronal activity either by supporting axons or by supporting 

astrocytes in promoting energy metabolite transport at the synapse, or both. 
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7 Summary 
 

 

Glia is now recognized as a key element in brain metabolism. In the thalamus, 

astrocytes and oligodendrocytes are coupled via gap junction channels and form 

extensive panglial networks. Interestingly and in contrast to other brain regions, 

thalamic panglial networks are equally composed of astrocytes and oligodendrocytes. 

The functional impact of astrocyte-oligodendrocyte coupling in grey matter is still 

unclear. Thus, thalamic glia properties and their role in brain energy metabolism and 

neuron-glia signaling were investigated.  

The ventral posterior nucleus of the thalamus is part of the somatosensory system and 

contains elongated cellular domains called barreloids, which are the basic structure for 

the representation of vibrissae. In the first part of the present study, electrophysiological 

recordings and immunohistochemistry revealed new features of glial cells in thalamic 

barreloids. It could be shown that barreloid borders were formed by uncoupled or 

weakly coupled oligodendrocytes. Furthermore, it could be demonstrated that thalamic 

panglial networks were dependent on neuronal activity and limited by the barreloid 

borders.  

Oligodendrocytes make up for more than 50% of coupled cells in the thalamus. 

However, their functional impact remains elusive. The role of thalamic 

oligodendrocytes in brain energy metabolism was investigated in this study. In acute 

brain slices, the cortico-thalamic pathway was stimulated and extracellular glucose 

deprivation (EGD) suppressed thalamic postsynaptic field potentials (fPSPs). This 

EGD-induced decline could not be rescued by extracellular lactate or pyruvate bath 

application. However, filling an astrocyte with glucose or lactate was sufficient to 

rescue the decline of fPSP amplitudes during EGD. Interestingly, loading a single 

oligodendrocyte with energy metabolites also rescued thalamic fPSP amplitudes during 

EGD. Next, connexin 32/47 double-deficient mice lacking oligodendroglial coupling 
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were used. Filling an astrocyte with glucose in those mice did not rescue the decline in 

fPSP amplitudes during EGD. Moreover, employing pharmacological blockers it could 

be shown that the prevention of the decline of fPSP amplitudes during EGD required 

glucose and monocarboxylate transporters.  

In conclusion, the present study demonstrates that thalamic astrocytes and 

oligodendrocytes are jointly engaged in maintaining neuronal activity by supplying 

energy metabolites like glucose and lactate through the panglial network. In addition, 

these results enhance our understanding of glial network functional dissimilarities 

between different grey matter and white matter areas.  
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8 Perspective 
 

The current study highlights new specific features of thalamic oligodendrocytes in and 

outside thalamic barreloids. Excitingly, a new essential role for thalamic glial cells in 

sustaining synaptic activity via delivery of energy substrates was unraveled. The 

importance of oligodendrocytes in thalamic energy metabolism could be demonstrated.    

Uncoupled or weakly coupled oligodendrocytes are the cellular element restricting 

neuronal communication to a single barreloid. As thalamic panglial networks were 

dependent on neuronal activity it would be interesting to determine whether this 

characteristic might be important to guarantee energy support along the metabolite route 

from individual vibrissae to the corresponding neuronal network within a barreloid. In 

this study, TTX incubation reduced thalamic panglial coupling. There is evidence that 

connexin 30 is predominant in the thalamus and is the molecular target for the activity-

dependence of coupled networks in another brain region. Therefore, studying which 

connexin mediates the activity-dependence of coupling and starting with Cx30-

defficient mice would be interesting. Moreover, it would be of interest to test whether 

neuronal activity modulates coupling not only in slices but also in vivo. Thus, the 

impact of the reduction of sensory inputs to the barreloids through whisker trimming, 

which leads to long term reorganization of the thalamus, could be investigated. 

Excitingly, the present study provides new insights into the physiological relevance of 

oligodendrocytes within thalamic panglial networks. Astrocytes and oligodendrocytes 

were identified as being conjointly engaged in sustaining synaptic activity through the 

delivery of metabolites. However, it still remains to be investigated whether 

oligodendrocytes apply their effect by supporting axonal/presynaptic function and/or 

rather by assisting astrocyte metabolite transport to the postsynapse. Obviously, basic 

thalamic mechanisms regarding brain energy metabolism differ from other brain 

regions. Thus, exploring panglial networks in other yet unstudied brain areas would be 

of great interest for the field of brain metabolism. 
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