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ABSTRACT 
 
 

 CD8+ T cell priming depends on antigen presentation by dendritic cells 

(DCs) and their capacity to communicate contextual cues associated with antigen 

acquisition. DCs often also require additional signals from helper CD4+ T cells, 

which upon mediation via CD40-CD40L further modulate the communication of 

contextual cue to the responding CD8+T cells. The present study was designed 

to explore the kinetics and molecular mechanisms underpinning this helper-

dependent modulation of DC function.  

 

 To address this, we employed an in vitro system of bone marrow (BM)-

derived equivalents of CD8+ DCs (eCD8+ DCs) and we assessed the role of 

different CD40 signalling components in driving their IFN-αA-induced cytokine 

and chemokine responses by using flow cytometry, mass spectrometry-based 

proteomics, real time PCR and RNA sequencing. This brought to light remarkable 

and distinct patterns of gene regulation through which CD4+ T cells triggered 

CD40 and thereby amplified the capacity of IFN-αA to induce or downregulate a 

broad range of genes. We also observed an unexpected pattern of gene 

regulation: some genes required both T cell help and IFN-αA stimulations but 

could not be induced by ‘help’ or IFN-α alone. By varying the exposure time, we 

further discovered that eCD8+ DCs required 1-2 hours of IFN-αA to become 

responsive to CD40 triggering. Once this pre-activated state was achieved, CD40 

stimulation rapidly amplified responses with remarkably fast kinetics. Combining 

proteomics and RNA sequencing data presented in this thesis suggests a 

complex interplay between the IFN-αA signalling pathway involving IRFs 

transcription factors and the NF-κB signalling pathway.  

 

These findings not only reveal new insights into how T cell help adjusts 

the responsiveness of DC to innate stimuli, but also reveal that this can occur 

with remarkable speed, which aligns with in vivo imaging studies describing very 

brief interactions between eCD8+ DCs and CD4+ T cells during CD8+ T cell 

priming. 
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1.1    Introduction  
 
 Immune responses involve the orchestration of innate signals and 

adaptive responses. Following the infection with microorganisms, the first line of 

defence is the innate immune system constituted in particular by macrophages 

and neutrophils capable of engulfing and killing extracellular pathogens. This 

first phase is based on inflammatory mediators released within the 

microenvironment to increase local blood flow and therefore cell influx and 

recruitment. This inflammatory response also induces an increased flow of 

lymph and enhances the migration of tissue-resident antigen-presenting cells 

(APCs), such as macrophages or dendritic cells (DCs), from the infected tissue 

to the lymphoid tissue where the adaptive response is initiated. The adaptive 

immunity provides long-lasting, antigen-specific responses and therefore takes 

time to develop. Two arms constitute the adaptive immune system: humoral 

immunity, relying on B lymphocytes responses; and cell-mediated immunity 

orchestrated by T lymphocytes such as CD8+ T lymphocytes, also called 

cytotoxic T cells (CTLs), or CD4+ T lymphocytes, known as helper T cells 

(Dempsey et al. 2003).  

 

 Upon infection, innate and adaptive immune systems communicate to 

provide an efficient protection. The subsequent literature review will focus on 

DCs mediating this communication between the two arms of the immune 

system. The present study was performed using a murine model, and, unless 

otherwise stipulated, the information and publications discussed relate to the 

murine model.  

 
 

1.2    Dendritic cells 
 
 DCs are APCs and important players in the immune system. They are 

found in most tissues, recognize pathogens and are able to initiate and 
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modulate the immune responses following their migration to the lymphoid 

organs.  

Being the link between its two main branches, the innate and the adaptive 

immunity, DCs are the sentinels of the immune system. First, they can 

recognize non-self molecules and produce cytokines and chemokines required 

for innate immune responses. Moreover, by processing and presenting antigens 

they can activate effector cells involved in the adaptive immune response. For 

instance, they transfer antigen to naïve B cells, and therefore are involved in the 

antibody secretion, or they stimulate T lymphocytes which can differentiate into 

CTLs or helper T cells via their interaction with an APC (Banchereau and 

Steinman 1998).  

 

 

 1.2.1 Differentiation and subsets of dendritic cells  
 
 DCs are a heterogeneous population leaving the bone marrow during 

their development to give rise to different subtypes differing in phenotype and 

function. They express molecules such as CD11c and Major Histocompatibility 

Complex class II (MHC II) molecules. The main subsets of DCs that can be 

distinguished are the monocyte-derived DCs, (MoDCs), the plasmacytoid DCs 

(pDCs) and the conventional DCs (cDCs) all sharing a Common Myeloid 

Progenitor (CMP). This CMP differentiates into a bi-potent Macrophage DC 

Progenitor (MDP) giving rise to the MoDCs or to a Common DC Progenitor 

(CDP) supporting the generation of cDCs (Heath and Carbone 2009; Merad et 

al. 2013; Poltorak and Schraml 2015), while pDCs are thought to raise from 

Common Lymphoid Progenitor (CLP)-like progenitors (Dress et al. 2019). 

 

 The MoDCs develop from circulating monocytes that are recruited at the 

site of inflammation. Thus, they are not found in steady state and belong to the 

monocytic lineage (Naik et al. 2006). These cells can produce high quantity of 

the cytokine called Tumor Necrosis Factor α (TNF-α), and capture antigens, but 

are thought as barely able to migrate to the lymph nodes (LNs) (Langlet et al. 
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2012). The pDCs are mainly found in lymphoid organs and in non-lymphoid 

tissues only under inflammatory conditions (Dalod et al. 2014). They respond to 

foreign nucleic acids by producing high amount of type I interferon (IFN). pDCs 

are also capable of capturing, processing and presenting antigens to 

lymphocytes T cells, but do so with much reduced efficacy when compared to 

cDCs (Villadangos and Young 2008). 

  

 Until recently, cDCs and pDC were thought to share a similar 

developmental pathway, strongly depending on the growth factor Fms-related 

tyrosine kinase 3 ligand (Flt3L) (Merad et al. 2013). However, in 2019, Dress et 

al. demonstrated the differentiation of pDCs from a CLP-like progenitor called 

“pro-pDCs. Their study highlighted that the CDP does not give rise to pDCs but 

to pre-cDCs only (Dress et al. 2019). Those pre-cDCs exit the bone marrow 

(BM), relocate into lymphoid and non-lymphoid tissues and can differentiate into 

various populations of cDCs. Non-lymphoid-tissue-resident DCs can migrate to 

the LNs and are called “migratory DCs” while the DCs distributed in the 

lymphoid organs are called “resident DCs”. cDCs can be sorted into two major 

subsets distinguished by their expression of various molecules such as CD8α 

and CD4 in the LN and CD11b or CD103 in the tissues (Guilliams et al. 2010; 

Dalod et al. 2014). CD8α+ cDCs within lymphoid tissues share their functions 

with non-lymphoid tissue CD103+ cDCs and represent the cDC lineage cDC1. 

Their differentiation is controlled by transcription factors such as Interferon 

regulatory factor 8 (Irf8), Inhibitor of DNA binding 2 (Id2), Basic leucine zipper 

transcription factor ATF-like 3 (Batf3) (Merad et al. 2013; Schlitzer et al. 2015). 

Moreover, the chemokine receptor XCR1 (chemokine XC receptor 1) is a 

surface marker expressed by cDC1 (Crozat et al. 2011; Bachem et al. 2012).  

High expression of CD11b is common to macrophages and to some migratory 

and resident cDCs. The latter are also characterized by their expression of CD4 

and the endothelial cell-specific adhesion molecule (ESAM). These cDCs 

constitute the second main lineage of cDCs, cDC2 and their development 

requires the transcription factors Irf4, RelB and PU.1 (Merad et al. 2013; 

Schlitzer et al. 2015). Interestingly, human cDC1s specifically express XCR1 as 
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well and are referred to as CD141 (or BDCA3)+ while human cDC2s are CD1c 

(or BDCA1)+ (Dalod et al. 2014). 

The lifespan of conventional DCs is short and therefore these cells are regularly 

replenished from their bone marrow derived precursors (Ardouin et al. 2016).  

 

 

 1.2.2 Antigen presentation 

 
 In order to stimulate the T cells, the APCs such as the DCs are capable 

of capturing antigen and migrating to the lymphoid organs where they process 

and present the antigen to induce the clonal expansion of specific T 

lymphocytes. This interaction between DC that have received peripheral cues, 

and T cells recognizing its specific antigen, is required for the initiation of 

adaptive immune responses. This presentation involves the binding of the 

antigen to molecules of the MHC class I, for the stimulation of CTLs, or class II 

for the priming of helper T cells (Banchereau and Steinman 1998). 

 

 The antigens presented via MHC I molecules drive CD8+ T cell 

activation. Typically, these antigens are endogenously derived, synthesized 

within the cells. Consequently, this direct presentation occurs when the APC 

itself is infected or transfected. In other cases, antigens are captured 

exogenously and shunted into the MHC I pathway. This is the cross-

presentation. Therefore, the presentation of the antigen can subsequently lead 

to the activation of naïve CD8+ T cells without requiring the APC to be infected. 

In contrast, the MHC class II molecules have been firstly described to present 

mainly peptides that derive from exogenous proteins entering cells through 

endocytosis and play an important role in the activation of CD4+ T cells (Heath 

et al. 2004). However, endogenous antigens can also access MHC class II 

presentation via for instance autophagy allowing the presentation of cytosolic 

and nuclear proteins (Münz 2012). Although immune cells such as 

macrophages and B cells are APCs as well, DCs are particularly efficient in 

their function of antigen presentation (de Jong et al. 2006).  
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While APCs express MHC II molecules, MHC I molecules is expressed at the 

surface of all nucleated cells. Therefore, virtually all cells of the organism can 

present antigen at their surface via MHC molecules. However, in addition of 

being the only APC stimulating naïve T cells, DCs are the cell type recognized 

as the most competent cross-presenting cells in vivo (Segura and Villadangos 

2009; Embgenbroich and Burgdorf 2018). They efficiently uptake and process 

antigens, and they respond to inflammatory cues leading to their differentiation 

into APC (Brode and Macary 2004). 

 

 Furthermore, not all DC subtypes are equally efficient at antigen 

presentation and their respective contribution seems to depend on the infection, 

on the antigen and the DC respective location.  

In various immunogenic models, such as vaccinia virus (VACV) infection or 

herpes simplex virus (HSV) skin infections or tumour challenges, migratory DCs 

mainly play the role of carriers collecting the antigen at the site of infection and 

bringing it to the draining LN (dLN). CD8α+ cDCs can then process the antigen 

and cross-present it to CD8+ T cells (Villadangos and Schnorrer 2007; Segura 

and Villadangos 2009; Whitney et al. 2018). Non infected migratory DCs are, on 

the other hand, able to present the antigen to CD4+ T cells (Villadangos and 

Schnorrer 2007). However, other means of infections show different scenarios. 

For instance, during subcutaneous influenza infection dermal DCs can present 

the antigen to both CD8+ and CD4+ T cells (Segura and Villadangos 2009) while 

during lung flu infection both migratory and resident CD8+ DCs contribute to the 

cross-presentation of the antigen (Belz et al. 2004). 

Interestingly, only CD8α+ and CD103+ DCs are uniquely equipped for cross-

presentation, possessing a specialized intracellular machinery for this 

mechanism. Moreover these cells exclusively express XCR1, the receptor of the 

chemokine XCL1 (chemokine C motif ligand 1) produced by various immune 

cells such as T cells and involved on CD8+ T cells expansion and survival 

(Bevan 1976; Haan et al. 2000; Kroczek and Henn 2012). In contrast, MHC II 

presentation to CD4+ T cells is thought to be highly dependent on CD11b+ DCs 

(Mount et al. 2008). 
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1.3    Stimulation of dendritic cells 

 
 DCs promote the priming of T cells by providing the various signals they 

require in addition to the antigen presentation. To fulfil efficiently their functions, 

they undergo maturation, up-regulating co-stimulatory molecules and secreting 

cytokine and chemokine responses (Prilliman et al. 2002). 

 

 

 1.3.1 DC maturation 
 
 When immature, DCs are able to capture antigens but their presentation 

and priming abilities are limited as they express lower level of MHC II and co-

stimulatory molecules or cytokines (Banchereau et al. 2000). Resident DCs in 

the LNs or spleen stay in an immature state until they receive pathogenic or 

inflammatory signals. In contrast, migratory DCs are only immature in peripheral 

tissues and undergo maturation when migrating to their dLN. Interestingly, 

these events can occur without pathogenic challenge (Villadangos and 

Schnorrer 2007). Various phenotypic and functional changes occur when DCs 

undergo their maturation. The DC maturation allows the conversion from 

antigen-capturing cell to antigen-presenting cell. DCs lose endocytic and 

phagocytic receptors and up-regulate co-stimulatory molecules such as CD40, 

CD80 and CD86. Their ability to form functional peptide-MHC II complexes is 

enhanced and produce cytokines and chemokines in response to microbial 

challenge (Banchereau et al. 2000; Mellman and Steinman 2001; Dalod et al. 

2014). They also acquire higher motility thanks to cytoskeleton reorganization, 

down-regulation of homing receptors and up-regulation of C-C chemokine 

receptor (CCR) 7. LN stromal cells produce C-C chemokine ligand (CCL) 19 

and CCL21, ligands of CCR7 and thus participate to the strategic location of 

DCs facilitating their encounter with antigen-specific T lymphocytes 

(Banchereau et al. 2000; Bajénoff et al. 2003; Worbs et al. 2017).  
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 While DC maturation has been for long associated only with the 

acquisition of immunogenicity, there are two types of DC maturations. During an 

infection or in an inflammatory context, DCs mature following their pattern-

recognition receptors (PRRs) engagement. This maturation is called 

immunogenic or induced, leads to an increase of DC migration to the dLN and 

induces their production of pro-inflammatory cytokines. Therefore, those DCs 

become able to promote the priming of antigen-specific T cells. Without 

infection or inflammatory signals, some tissue resident DCs can still undergo 

spontaneous migration, at a lower rate than during the induced maturation, 

bringing tissue antigens to the dLN. These DCs have been described as 

undergoing an homeostatic or tolerogenic maturation, they up-regulate co-

stimulatory molecules but do not produce inflammatory cytokines (Lutz and 

Schuler 2002). A proportion of thymic DCs has been shown to undergo this 

homeostatic maturation as well (Ardouin et al. 2016). Presenting self-antigens 

without the ability of producing inflammatory signals, these DCs tolerize self-

reactive T cells that left the thymus without being eliminated (Spörri and Reis e 

Sousa 2005). Paracrine inflammatory cytokines such IFN-α/β or TNF-α or 

microbiota signals could be driving the homeostatic maturation of the periphery 

resident DCs (Ardouin et al. 2016). 

Contrasting with the theory that homeostatic maturation corresponds to an 

incomplete maturation or semi-maturation (Lutz and Schuler 2002), it requires 

large transcriptomic changes comparable to those leading to the immunogenic 

maturation. These two types of maturation depend on gene expression changes 

that are partially overlapping suggesting that the maturation pathways are 

overlapping as well (Ardouin et al. 2016). Interestingly, the non-canonical 

nuclear factor κB (NF-κB) transcription factor has been shown to be required for 

immunogenic DC maturation as well as tolerogenic DC maturation (Rescigno et 

al. 1998; Dev et al. 2010; Baratin et al. 2015). The blockade of NF-κB pathway 

leads to a default in DCs maturation and survival. For instance, the knockout of 

NIK (NF-κB-inducing kinase), part of non-canonical pathway allows 

lipopolysaccharide (LPS)-induced DC maturation but those DCs quickly 

undergo apoptosis (Quezada et al. 2004).  
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 During immunogenic DC maturation the nature of stimuli DCs receive 

dictates their cytokine responses and influences the T-cell polarization (Dalod et 

al. 2014). With that purpose DCs express a large range of receptors able to 

sense pathogenic and danger signals.  

 

 

 1.3.2 Pathogen recognition receptors engagement  
 
 APC are characterized by their ability of sensing a large range of 

pathogens and host-derived danger signals due to their expression of PRRs. 

These PRRs can be extracellular or intracellular and can detect micro-

organisms signals or pathogen-associated molecular patterns (PAMPs) as well 

as endogenous “danger” signals or damage-associated molecular patterns 

(DAMPs) (Dalod et al. 2014). Among various classes of PRR are the Toll-like 

receptors (TLRs), the C-type lectin receptors (CLRs), the Retinoic acid-inducible 

gene I-like receptors (RLRs) and the NOD-like receptors (NLRs). A broad range 

of pathogens can be detected owing to their specificity and the distinct cellular 

localization of these various PRRs (Table 1.1) (Takeuchi and Akira 2010; Broz 

and Monack 2013). Moreover, the expression of some PRRs is limited to cell 

types. This is the case for the CLRs DC-SIGN, involved in the recognition of 

various viruses including HIV, dengue virus and ebola virus, and Clec9A (or 

DNGR-1) binding damaged or dead cells (Dunnen et al. 2009; Zhang et al. 

2012).  

The PRR engagement induces various signalling pathways activation mainly 

leading to the recruitment of major transcription factors such as IRF3 or 7, 

activator protein-1 (AP-1), and the NF-κB transcription factors. The outcome of 

these pathways is the production of pro-inflammatory cytokines such as TNF-α, 

Interleukin (IL)-6 and pro-IL-1β (Takeuchi and Akira 2010).  

 

 The best-described PRR family are the TLRs, they are expressed 

extracellularly or intracellularly and 12 have been identified in the mouse. 

Immature DCs express these receptors but their expression is also modulated 



Table 1.1: Main Pattern Recognition Receptors and their ligands. 
A vast variety of Pattern Recognition Receptors (PRRs) sense various Pathogen 
Associated Molecular Patterns (PAMPs) that are derived from bacteria, parasites 
and virus. These PRRs include Toll-like receptors (TLRs), found on the cell mem-
brane, extracellular or within endosome or RIG-like receptors (RLRs) and 
NOD-like receptors (NLRs) in the cytosol (adapted from Takeuchi and Akira 2010 
and Broz and Monack 2013). 

10

PRRs Localization Ligand
Toll-Like Receptors (TLRs)
TLR1 Plasma membrane Triacyl lipoprotein
TLR2 Plasma membrane Lipoprotein
TLR3 Endosomal compartment dsRNA
TLR4 Plasma membrane and Endosomal compartment LPS
TLR5 Plasma membrane Flagellin
TLR6 Plasma membrane Diacylipoprotein
TLR7 Endosomal compartment GU-rich ssRNA and short dsRNA
TLR8 Endosomal compartment GU-rich ssRNA and short dsRNA
TLR9 Endosomal compartment CpG DNA
TLR11 Endosomal compartment Profilin and flagellin 
TLR12 Endosomal compartment Profilin
TLR13 Endosomal compartment Bacterial 23S rRNA

RIG-Like Receptors (RLRs)
RIG-I Short dsRNA
MDA5 Cytoplasm Long dsRNA

NOD-Like Receptors (NLRs)
NOD1 Cytoplasm iE-DAP
NOD2 Cytoplasm MDP     

C-type Lectin Receptors (CLRs)
Dectin-1/2 Plasma membrane -Glucan

Cytoplasm

AIM2 Cytoplasm Cytosolic DNA     
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in response to signals the cells receive (Akira et al. 2006; Vega-Ramos et al. 

2014). All TLRs can be described as type I membrane glycoproteins with 

extracellular domains containing leucine-rich-repeat (LRR) motifs. TLRs 1, 2, 4, 

5 and 6 on the cell surface can detect external features of the pathogens, 

mainly lipids such as LPS (TLR4) from Gram-negative bacteria. Within the 

various TLRs expressed in intracellular compartments, TLR3, 7, 8 and 9 can 

sense internalised nucleic acids such as double-stranded RNA (dsRNA) (TLR3) 

or unmethylated Cytosine-phosphate-Guanine (CpG) (TLR9). The cytoplasmic 

portion of the TLRs is responsible for the signalling and called Toll/IL-1R 

homology (TIR) domain. Following the encounter of TLR ligands, adaptor 

proteins containing TIR domain are recruited to the cytoplasmic domain of the 

TLR. For most TLRs this adaptor protein is the Myeloid differentiation factor 88 

(MyD88) or the TIR-domain-containing adaptor inducing IFN-β (TRIF) and Trif-

related adaptor molecule (TRAM). With the exception of TLR3 interacting with 

TRIF, all TLRs engagement induces MyD88 recruitment and TLR4 engages 

both MyD88 and TRIF. The pathway downstream of these adaptor proteins 

depend on the TLR engaged. For instance, TLR4 can induce mitogen-activated 

protein kinase (MAPK) or the NF-κB pathways activation while TLR3 or 9 

engagement result in the phosphorylation of IRF3 or IRF7 respectively (Akira et 

al. 2006; Takeuchi and Akira 2010; Broz and Monack 2013). In DCs, in addition 

of pro-inflammatory cytokines responses, TLR stimulation triggers their 

maturation with, for instance, MHC II and co-stimulatory molecules up-

regulation (Vega-Ramos et al. 2014). 

 

 

 1.3.3 Indirect stimulation of dendritic cells: IFN-α/β 
 
 As described above engagement of PRRs induces DC activation and 

innate responses, involving for instance the release of inflammatory cytokines 

such as IFN-α and IFN-β, TNF-α or IL-1 (Akira et al. 2006). These molecules 

produced by neighbour cells can activate DCs in an indirect manner (Joffre et 

al. 2009; McNab et al. 2015).  
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Three families of IFNs have been characterised, type I, type II and type III IFNs, 

the most commonly studied being type I IFN which includes isotypes of the well 

characterised IFN-α and IFN-β, as well as, among others, IFN-ε, IFN-κ and IFN-

ω (Pestka et al. 2004; Prchal et al. 2009). Type I IFN is known to play a major 

role in anti-viral responses with the ability to activate DCs among other immune 

cells and to drive cell resistance towards virus infection or death of infected 

cells. During a viral infection, type I IFN can virtually be expressed by all cell 

types especially pDCs (Le Bon et al. 2003; Villadangos and Young 2008). Type 

I IFN is essential in inducing DC maturation and promoting functional cross-

presentation and efficient CD4+ and CD8+ T cell immunity responses (Montoya 

et al. 2002; Le Bon et al. 2003; Longhi et al. 2009). While TLR signals inhibit 

MHC II recycling and antigen processing in favour of a long-lasting and specific 

antigen presentation, inflammatory signals don’t inhibit these DC functions and 

their MHC II presentation capacity is less efficient. Indirectly stimulated DCs are 

however capable of cross-presentation (Vega-Ramos et al. 2014).  

 

 The IFN receptor (IFNAR) is expressed by most of cell types. This 

receptor is made of two chains, IFNaR1 and IFNaR2. Its engagement induces 

the so-called Jak-STAT signalling pathway starting with the activation of Janus 

family kinases Tyrosine kinase 2 (Tyk2) and Janus kinase 1 (Jak1) and the 

association of Signal Transducers and Activators of Transcription 1 (STAT1) 

and STAT2 heterodimers. They recruit the IRF9 to form the IFN-stimulated 

gene factor 3 (ISGF3). IRF9 containing a nuclear localization sequence (NLS) 

facilitates the nuclear translocation of the complex (Lau et al. 2000). This 

pathway leads to the expression of interferon-stimulated genes (ISGs) 

dependant on the binding of the STAT proteins and IRF9 to the ISRE 

(interferon-stimulated response element) DNA sites. Importantly, while STAT1 

and STAT2 can be activated in response to IFN-γ or IFN-α/β stimulation and 

bind to Gamma interferon activation site (GAS) element, IRF9 seems required 

for ISRE recognition by ISGF3. Eventually, various anti-viral responses are 

promoted such as the inhibition of viral protein synthesis or viral assembly 
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(Figure 1.1) (Samuel 2007; Au-Yeung et al. 2013; Schneider et al. 2014; 

Ivashkiv and Donlin 2014). 

 

 

 1.3.4 Synergy of stimuli 
 
 It appears that a pathogen can trigger the activation of various PRRs 

while a single PRR is able to recognise different ligands leading to different 

outcomes. For instance, while TLR4 mainly binds to LPS, inducing inflammation 

and tissue repair, high-mobility group box protein (HMGB1) a nucleus protein 

released from necrotic cells is also sensed by TLR4 but induces weaker 

immune responses (Iwasaki and Medzhitov 2010). Therefore, immune cells can 

sense various contextual cues that synergistically regulate their responses. 

In 2009, De Nardo and al. showed that the pre-treatment of murine 

macrophages with LPS led to a greater IL-6 and TNF-a production following 

CpG stimuli showing a potential synergy between different TLR signalling (De 

Nardo et al. 2009). Interestingly, CpG pre-treatment on DCs amplifies their LPS-

triggered IL-12 production but this effect was not occurring on LPS-pre-treated 

DCs subsequently activated with CpG. Moreover, the pre-treatment was 

required 6h prior DC stimulation for an optimal boost of cytokine response 

(Theiner et al. 2008). Therefore the dynamic and kinetics of TLR stimulations 

could modulate and control the responses induced (Tan et al. 2014). The 

recognition of a particular strain of HSV is induced by the sequential TLRs 

activation within the same DC: initially, TLR2 is engaged via the recognition of 

virions at the DC surface, then TLR9 is stimulated intracellularly by the 

internalized viral genomic DNA (Sato et al. 2006). Furthermore, this effect 

doesn’t affect the whole gene expression but only a small portion of the genes 

induced by a single TLR stimulation is significantly increased by the synergy of 

different TLR signallings. These results imply a selective amplification of a set of 

genes via a combinatorial gene expression program (Napolitani et al. 2005). 

This synergy phenomenon is not limited to TLR signalling. Focusing on CD11b+ 

Flt3L-derived DCs, the enhancement of IκBα (NF-κB inhibitor α-like) 
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Figure 1.1: Type I interferon signalling pathway.
Type I interferon (IFN-α/β) receptor includes IFNAR1 and IFNAR2 subunits. Its 
engagement induces the activation of Janus kinase 1 (JAK1) and tyrosine kinase 
2 (TYK2), both kinases phosphorylate IFNAR leading to the recruitment of Signal 
Transducer and Activator of Transcription (STAT) proteins 1 and 2. These STAT 
proteins dimerise and phosphorylate each other. Interacting with the IFN-Regula-
tory Factor 9 (IRF9), they form the Interferon-Stimulated Gene Factor 3 (ISGF3) 
complex. This complex translocates into the nucleus and binds to IFN-Stimulated 
Response Element (ISRE) sequences inducing an antiviral response program 
gene expression (Ivashkiv and Donlin 2014).
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degradation and the increase of NF-κB nuclear translocation have been 

observed when the respective signalling pathways induced by curdlan, dectin-1 

agonist, and by Granulocyte Macrophage Colony Stimulating Factor (GM-CSF) 

were both simultaneously initiated. GM-CSF strengthens the outcome of the 

curdlan via a MAPK Extracellular signal-Regulated Kinases (ERK)-dependant 

mechanism, as phosphorylation of ERK, out of various MAPKs, was the only 

event that was greater under curdlan and GM-CSF co-stimulation (Min et al. 

2012).  Moreover, splenic CD8+ DCs stimulated in vitro with microbial stimulus 

such as CpG in the presence of CD40L-transfected fibroblasts produce a higher 

amount of the cytokine IL-12 than with CpG alone or with CD40L-expressing 

fibroblasts only (Schulz et al. 2000). 

 

 

1.4    T cell priming 
 
 Cell-mediated immune responses mainly involve T lymphocytes and rely 

on their ability to recognize specific antigen via the expression of particular T 

cell receptor (TCR) (Kappler et al. 1983). Following their thymic development, 

naïve T cells circulate from blood to secondary lymphoid organs such as LNs 

and spleen in order to scan the environment for antigens. When the naïve T 

cells don’t encounter their specific antigen they leave the secondary lymphoid 

organs to reach the circulation again and travel through the lymphoid organs, 

blood and lymphatics within 24 hours. When stimulated at the site of infection, 

antigen-bearing DCs migrate to the dLN in order to precisely localise near the 

High Endothelial Venules (HEVs) where they can meet many non-specific T 

cells but also antigen-specific T cells initiating their activation. TCR stimulation 

triggers intracellular signalling cascades inducing cellular activation, clonal 

expansion and differentiation into effector cells able to migrate (Bajénoff et al. 

2003; Smith-Garvin et al. 2009; Obst 2015). Naïve CD8+ T cells acquire 

cytotoxic functions targeting tumour cells or cells that have been infected by 

intracellular pathogens (Zehn et al. 2012). Regarding naïve CD4+ T cells, they 

can differentiate into various lineages and provide specific cytokine signatures, 
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thanks to the cues they receive from their microenvironment (O’Shea and Paul 

2010).  

 

 

 1.4.1 T cell subsets differentiation and circulation 
 
  1.4.1.1 CD8+ T cells 
 
 CD8+ T lymphocytes are capable of controlling intracellular bacterial or 

viral infections. They specifically target infected cells as well as tumour cells, 

and release cytotoxic proteins inducing apoptosis. In addition, they secrete 

cytokines such as IFN-γ or TNF-α involved in the inhibition of viral replication 

and, in the recruitment and activation of macrophages (Ratner and Clark 1993; 

Lampe et al. 1998). 

Following the encounter of their specific antigen presented via MHC I molecules 

at the surface of a DC, naïve CD8+ T cells undergo clonal expansion, acquire 

effector functions and migrate to the site of infection: this is the primary 

response (Williams and Bevan 2007). Once the infection is cleared, the majority 

of the effector CD8+ T cells produced during the primary response will die. 

However, some cells are retained and survive as long-term memory CD8+ T 

cells. A single naïve CD8+ T cells can give rise to both type of cells and the 

initial encounter with DCs is thought to be the means by which the immune 

system can modulate their differentiation (Zhang and Bevan 2011).  

 

 

  1.4.1.2 CD4+ T cells 
 
 CD4+ T cells themselves can have cytolytic mechanisms such as the 

expression of granzymes, perforin, TNF-Related-Associated-Inducing Ligand 

(TRAIL) or Fas Ligand (FasL) targeting tumor in a direct manner (Melssen and 

Slingluff 2017). However, CD4+ T cells are more typically known for their ability 

to regulate macrophages activation and to provide help to CD8+ T cells and to B 
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cells (Zhu et al. 2010). As for CD8+ T cells, naïve CD4+ T cells undergo clonal 

expansion and acquire their functions after the recognition of their specific 

antigen presented by an APC via MHC II molecules. They can differentiate into 

various T helper (Th) cell lineages such as Th1, Th2 for the most described but 

also Th17, Th9, Th22 or regulatory T cells (Tregs). All these subsets differ from 

each other by their cytokines production and functions. Briefly, Th1 cells are 

involved in intracellular pathogens responses and produce IFN-γ, IL-2 and TNF-

α. Th2 cells are known to be IL-4, IL-5 and IL-13 producers and are required for 

humoral-mediated responses and protect hosts against extracellular pathogens 

such as parasites. Th17 cells produce IL-17 and are involved in host defence 

against bacteria and fungi. Finally, Th9 cells produce IL-9, Th22 produce IL-22 

and Tregs produce IL-2 and Transforming Growth Factor β (TGF-β) (Stockinger 

et al. 2007; Zhu et al. 2010; Raphael et al. 2015; Li et al. 2019). 

Interestingly, DCs could themselves influence Th cell lineage of CD4+ T cells: 

for instance the cytokine IL-12 produced by CD8+ DCs is required for Th1 

polarization while its absence leads to Th2 cells development (Moser and 

Murphy 2000). 

Following the clearance of the infection, most of CD4+ T cells will die and only a 

few cells will form the memory CD4+ population (MacLeod et al. 2009). 

 

 

 1.4.2 CD8+ T cell priming and role of dendritic cells  
 
 Activation and differentiation of naïve T lymphocyte into effector T 

lymphocyte require 3 signals (Figure 1.2). As explained earlier, DCs have the 

ability to present antigens at their surface due to their MHC molecules 

expression. They are particularly efficient at T cells priming (Steinman and 

Witmer 1978). These peptides are recognized by T cells via their specific TCR 

and this recognition consists of the signal 1. While CD4+ T cells recognize 

exogenous antigens presented via MHC II molecules, CD8+ T cells recognize 

endogenous antigens presented via MHC I molecules as well as exogenous 
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Figure 1.2: Requirement of three signals for the initiation of T lymphocytes 
effector responses. 
Professional APC such as dendritic cells (DCs) provide three signals that are 
required for naive T cell activation and polarisation. MHC-peptide complex is 
recognized by TCR that delivers signal 1. Co-stimulatory molecules expressed by 
DCs (CD40, CD80/CD86) then interact with their ligand expressed by T lympho-
cytes (CD40L, CD28) providing signal 2. Finally DCs secrete pro-inflammatory 
cytokines. This third signal functionally polarise naive CD4⁺ T cells into T helper 
(Th1, Th2, Th17) or regulatory T cells (Treg).  
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antigens thanks to the cross-presenting ability of DCs (Banchereau and 

Steinman 1998; Heath et al. 2004). 

 

 DCs deliver the signal 2 through the provision of co-stimulatory 

molecules to co-stimulatory or co-inhibitory receptors expressed by the T 

lymphocyte. Co-stimulatory molecules can be classified into two main families: 

the CD28/B7 family with, for instance, CD28 and cytotoxic T-Lymphocyte 

Antigen-4 (CTLA-4) which can both bind to CD80 and CD86 expressed by APC; 

and the TNF/TNF receptor (TNFR) family with members such as OX40, CD27 

and CD40 ligand (CD40L) as well binding OX40L, CD70 and CD40 respectively 

(Elgueta et al. 2009; Magee et al. 2012). For instance, CD28 has been shown 

to optimize T cell responses via the remodelling of the actin cytoskeleton 

strengthening TCR signalling. Upon activation, the APC up-regulate their 

CD80/CD86 expression levels in order to transmit co-stimulatory signals 

(Esensten et al. 2016). The ligation of CD40 on the surface of APCs such as 

DCs leads to the enhancement of their functions including the up-regulation of 

CD80 and CD86 (Grewal and Flavell 1998).   

 

Finally, CTL priming consistently requires a signal 3, which consists of 

cytokines and chemokines provided by DCs. Various cytokines and chemokines 

trigger various effects on CD8+ T cells and the cytokines and chemokines 

produced seem to vary depending on the immunogenic challenge encountered. 

Mature DCs produce the cytokine IL-12, composed by two sub-units, p35 and 

p40. Following Listeria monocytogenes infection IL-12 secretion influences the 

production of IFN-γ by CD8+ T cells (Henry et al. 2008). In the context of a 

synthetic antigen immunization, IL-12 acts on the CD8+ T cells inducing clonal 

expansion and acquisition of cytotoxic function (Schmidt and Mescher 2002; 

Valenzuela et al. 2002). Moreover the activation of CD8+ T cells during a graft 

rejection is triggered by IL-12 provided by DCs (Filatenkov et al. 2005). The 

cytokine IL-15 produced by DCs has been shown to play a key role in driving 

the priming of T cells (Verbist and Klonowski 2012) while, IL-6 promotes 

survival of naïve T cells and their proliferation following antigen encounter 
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(Takeda et al. 1998; Teague et al. 2000). In addition to influencing the divisions 

and functions of T cells, the DCs also produce chemokines that promote the 

migration of T cells.  Inflammation conditions lead to the up-regulation of the 

receptor CCR5 on the surface of CD8+ T cells, however the optimal up-

regulation of this receptor occurs in a TCR-dependent manner. In addition, 

CD4+ T cell interacting with the DCs induce their production of CCL3/CCL4 

allowing the chemical guidance of the CD8+ T cell towards the licensed DCs 

(Castellino et al. 2006; Eickhoff et al. 2015). Sharing the same receptor than 

CCL3/CCL4, CCL5 produced by DCs has been also shown to induce the 

chemoattraction of both CD4+ and CD8+ T cells (Son et al. 2014). In 2016, 

Greyer et al. demonstrated that the DC cytokine production mediating CD8 T 

cell immunity is dictated by the innate stimuli they receive. Indeed, if the mice 

are exposed to a same antigen but DCs receive different innate signals, the 

cytokine response is different: the priming of ovalbumin (OVA)-specific CD8+ T 

cells requires the production of IL-12 when the OVA is presented in the 

presence of LPS while a stimulation with polyinosinic-polycytidic acid (poly(I:C)) 

at the time of antigen presentation induces an IL-15-dependent priming of CTL 

(Greyer et al. 2016). Interestingly, many studies conducted before implied the 

same theory: for instance, Edwards et al. showed that sensing CpG leads to IL-

12p70 secretion while DCs stimulated by yeasts secrete IL-10 (Edwards et al. 

2002). Moreover, the CD8 T cell priming in the context of an adenoviral vaccine 

depends on IL-15 secretion by DCs while VACV specific CD8+ T lymphocytes 

require IFN-α/β stimulation (Oh et al. 2008; Wiesel et al. 2011). 

 

 

1.5    CD4+ T cell help  
 
 There is still much debate as to the relative importance of help, with 

CD4+ T cell help being necessary to provide efficient memory CD8+ T cells 

responses in viral and bacterial infections (Shedlock and Shen 2003), however 

its importance during a primary response has been shown as detrimental in 

some circumstances.  
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 1.5.1 Help involvement during CD8+ T cell priming 
 
 As described earlier, when DCs are activated, they produce cytokine 

responses and up-regulate co-stimulatory molecules including CD40, receptor 

of CD40 ligand (CD40L) (O'Sullivan and Thomas 2003). DCs are well known for 

their ability to transmit help signals derived from their interaction with CD4+ T 

cells. They are a platform able to relay this help to CD8+ T cells for them to elicit 

CTL responses (Mitchison and O'Malley 1987; Ridge et al. 1998). Using an 

antibody-based stimulation of CD40 on DCs, these help signals were quickly 

linked to the interaction of this receptor with CD40L expressed by the activated 

CD4+ T cell (Ridge et al. 1998). Moreover, Schoenberger et al. demonstrated 

the necessity of an interaction between CD40 and CD40L for the delivery of 

help during the naïve T lymphocytes priming (Schoenberger et al. 1998). 

Furthermore, the engagement of CD40L to the CD40 receptor of DCs, promotes 

their characteristics involved in an efficient priming of T cells: cytokines 

production and co-stimulatory molecules CD80/86 up-regulation, required for 

the subsequent CD28 signalling. Moreover, the binding of CD40L to CD40 has 

been also shown to facilitate the antigen cross-presentation (O'Sullivan and 

Thomas 2003; Elgueta et al. 2009).  

 

 Already in 1998 evidence was provided for the requirement of a cognate 

CD4+ T cell signal for an efficient OVA-specific CD8+ T cells priming (Bennett et 

al. 1998). Although lymphocytic choriomeningitis virus (LCMV), vesicular 

stomatitis virus (VSV) and human immunodeficiency virus (HIV) infections 

induce CD4+ T cell-independent primary CD8+ T cell responses, the resolution 

of infections of adenovirus, HSV and VACV are helper-dependent (Wiesel and 

Oxenius 2012). For instance, CD4+ T cell-depleted mice using a murine 

antibody GK1.5 treatment, showed a defect in their CTL priming following HSV 

infection (Jennings et al. 1991).  

 

 Many studies seem to describe the requirement of a three-cell interaction 

between CD4+ T cell, DC and CD8+ T cell. Yet, other dynamic interplays have 
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been recently proposed. It has been observed that CD8+ T cells can express 

CD40 molecules while DCs happen to express CD40L themselves, leading to 

the hypothesis that these cells could receive help from the DCs without the 

requirement of cognate CD4+ T cells interaction. Precisely, CD40L was up-

regulated by DCs during intranasal influenza challenge but not during HSV 

infection (Johnson et al. 2009).  

  

 

 1.5.2 Help-amplification model 
 
 It is still unclear what determines the requirement for CD4+ T cell help in 

generating CD8+ T cell priming. In 2004, Bevan suggested that the help signal 

is equivalent to innate signals for DC activation. An antigen challenge in a non-

inflammatory context would require CD4+ T cell to induce CD8+ T cell responses 

while strong danger signals would efficiently license DCs to prime CD8+ T cells 

in a CD4+ T cell-independent manner (Bevan 2004). Since 2004, several lines 

of evidences point towards the magnitude of the type I IFN response as an 

important factor in the help dependence of CD8+ T cell responses. Consistent 

with this, some pathogens have generated strategies to down-regulate the host 

responses. For instance, during VACV infection the virus expresses proteins 

that bind type I IFN-I thus blocking the cellular recognition of IFN-α/β and its 

signalling, which limits the inflammatory response. This evasion strategy is 

thought to be responsible for the help requirement upon this viral infection 

(Wiesel and Oxenius 2012). The injection of irradiated splenocytes that have 

been loaded with ovalbumin protein (OVA) induces a help-dependent CTL 

priming (Bennett et al. 1997). However, Le Bon et al. could counteract this 

requirement by injecting IFN-α into the immunized mice leading to a strong 

CD8+ T cell response even in CD4+ T cell-deficient mice (Le Bon et al. 2003). 

Upon LCMV infection, a robust amount of IFN-α/β is produced via activation of 

helicase family members such as RNA helicases retinoic gene I (RIG-I) and 

melanoma differentiation-associated gene 5 (MDA5) (Zhou et al. 2010; Wiesel 

et al. 2011). Thus MDA5 deficiency impairs IFN-α/β secretion. Interestingly 
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Wang et al. observed that MDA5 deficiency only led to delayed CD8+ T cell 

response to LCMV. However, this deficiency in combination with CD4+ T cells 

depletion induced CD8+ T cell exhaustion and viral persistence. Therefore, 

although LCMV infection is known as help-independent, the loss of an early and 

strong IFN-α/β production was compensated by the presence of CD4+ T cells 

(Wang et al. 2012). In agreement with these results, induction of IFN-α/β 

production has been shown to compensate CD4+ T cell help requirement in 

response to VACV infection (Wiesel et al. 2011).  

 

 While these results highlight the importance of the inflammatory stimulus 

strength in determining the requirement for help, they do not specify if these two 

signals are able to substitute for each other. In 2016, our team demonstrated 

that CD40-CD40L signalling amplifies weak innate signals leading to the 

maturation of DCs and to the efficient CD8+ T cell priming, this is the 

amplification model (Figure 1.3). Using a HSV-I skin infection model, they 

showed that type I IFN acts directly on the CD8+ DCs and with the help of CD4+ 

T cells, induces IL-15 secretion. In turn, IL-15 participates in CD8+ T cells 

priming. CD4+ T cell help, mediated via CD40-CD40L interaction, amplifies DC 

IL-15 production induced by the initial innate IFN-α/β signal. In the absence of 

help signal, IFN-α/β signal on its own is ineffective to induce this cytokine 

secretion (Greyer et al. 2016). This CD40-driven enhancement of DC cytokine 

responses has been previously described. The CpG-triggered IL-12 production 

by CD8+ DCs is enhanced in the presence of CD40L-transfected fibroblasts 

(Schulz et al. 2000; Edwards et al. 2002). 

 

 These observations allow us to envisage that innate signals, such as 

type I IFN, and CD4+ T cell help act in a synergistic manner towards CD8+ T cell 

priming and that the help requirement depends on the strength of the infection 

or immunization. Weak immunogens would thus lead to a CD4+ T cell 

dependent maturation of the DCs.   

 

 



Figure 1.3: T cell help-driven amplification of innate circuits in CD8+ DCs.
Activated antigen presenting DC can prime CD8⁺ T cells. DCs are stimulated by 
the recognition of microbial patterns and/or by inflammatory cytokines. These 
innate signals initiate a specific innate pathway of cytokines and chemokines 
production. If the innate stimuli are too weak, these innate pathways don’t efficient-
ly induce the priming of CD8⁺ T cells and the DCs require the help signal from their 
interaction with CD4⁺ T cell. This help signal is mediated via the binding of CD40L 
on CD4⁺ T cell with CD40 on DCs. The help signal initiated amplifies the innate 
pathways mediated by the innate stimuli and leads to the efficient priming of CD8⁺ 
T cells.
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 1.5.3 DC strategic localization 
 
 In vivo, little is known about when and where the help process is 

occurring. The lymphatic circulation allows antigens to be efficiently brought to 

the dLN by DCs, while lymphocytes travel through the LN via the blood 

circulation. Naïve T cells frequently migrate to LN and scan the DCs until they 

find their antigen-specific DC and form sustained and stable interactions. If 

lymphocytes cannot recognize their specific antigen, they return to the 

circulation (Andrian and Mempel 2003; Williams and Bevan 2007). Through the 

lymphatic system, lymphocytes patrol the all body within 24 hours. At the site of 

infection, DCs pick up the antigen and receive pathogen-derived signals 

instructing them to migrate to the dLN. For instance, migratory DCs up-

regulated CCR7, receptor for CCL19 and CCL21 chemokines, involved in DCs 

entrance in lymphatic vasculature and subsequently in DCs entrance in dLNs. 

(Worbs et al. 2017). T cell activation by antigen-presenting DC doesn’t occur 

randomly in the LN, but rather in precise areas of the paracortex, close to the 

HEVs. More precisely, antigen-presenting DCs localize in this area to meet 

incoming naïve T cells and therefore encounter the cells specific for their 

antigen (Bajénoff et al. 2003). By injecting TCR transgenic lymphocytes and 

fluorescent DCs, Mempel et al. showed that T cell-priming by DCs occurs in 

three different phases within the LN: a first phase of short interactions with DCs 

while T cells up-regulate their activation markers; a second phase of stable and 

lasting interaction with DCs inducing the T cell production of IL-2 and IFN-γ; and 

ultimately, a third phase, during which T cells proliferate and become able to 

migrate (Mempel et al. 2004). The dynamic of migration of the T lymphocytes 

within the dLN is precise and different between the CD4+ and CD8+ T cells 

(Mandl et al. 2012). Moreover, CD4+ T cell require a prolonged phase of stable 

interactions with DCs compared to CD8+ T cells (Kastenmüller et al. 2010). 

 

 During HSV skin infection migratory DCs allow the trafficking of antigens 

into the dLN but these DCs are not directly involved in the CD8+ T cell priming. 

CD8+ LN resident DCs receive the antigen from most likely dead and dying cells 
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and are responsible for antigen presentation and CTL priming (Allan et al. 

2006). Moreover, it has been shown that, CD4+ and CD8+ T cells are activated 

by distinct DCs and these activations are temporally and spatially segregated 

(Eickhoff et al. 2015; Hor et al. 2015). 

 

 In particular, the help process requires a first step of recognition of 

cognate antigen by CD4+ T cells, which induces the up-regulation of CD40L at 

their membrane surface. Then, CD4+ T cells need to recognize their antigen on 

the same DC that primes CD8+ T cells but these two events don’t necessary 

occur at the same moment (Smith et al. 2004; Bedoui et al. 2016). 

Corroborating this observation, inflammation conditions lead to the up-

regulation of the receptor CCR5 at the surface of CD8+ T cells while the CD4+ T 

cell interacting with the DCs induce their production of CCL3/CCL4 allowing the 

chemical guidance of the CD8+ T cell towards the licensed DCs (Castellino et 

al. 2006). 

  

 In the case of the localized skin infection with HSV, activation of specific 

CD4+ and CD8+ T cells is performed by the encounter of different subsets of 

DCs, and different times throughout the infection. CD4+ T cells interact early 

with migratory DCs and CD8+ T cells interact later with the LN-resident CD8+ 

DCs. Such a fast priming of CD4+ T cells has been hypothesized as a means to 

give the time of the help process to occur (Hor et al. 2015). By contrast, during 

the intradermal VACV infection, CD4+ T cells are activated by non-infected 

resident DCs while CD8+ T cells are initially primed by infected resident DCs. 

It’s only later during the infection that co-recognition of non-infected and cross-

presenting CD8+ DC allows the delivery of help signals (Eickhoff et al. 2015). 

These two studies demonstrate the key and central role of LN-resident cDC1 

forming a platform for the delivery of CD4+ T cell help and the priming of CD8+ T 

cells. 
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1.6    CD40/CD40L interaction and molecular mechanism 

 

 1.6.1 CD40 receptor and CD40 ligand expression 

 
 The receptor CD40 is a co-stimulatory and transmembrane molecule part 

of the TNFR family that was initially characterized on B cells. DCs, monocytes 

and macrophages and also non-hematopoietic cells such as some fibroblasts 

and endothelial cells can all express membrane bound CD40 (Elgueta et al. 

2009). 

 

 CD40L, also called CD154, is expressed by a large range of immune 

cells such as B cells, monocytes, mast cells but most predominantly, by 

activated CD4+ T cells following TCR ligation. However, while some cytokines 

such as IL-4 and IL-10 down-regulate the expression of CD40L, cytokines such 

as IL-2, IL-12 and IL-15 have been shown to up-regulate its expression (Lee et 

al. 2002; Daoussis et al. 2004). CD40L is mostly expressed in its 

transmembrane form but can also be secreted in soluble form, following 

enzymatic cleavage, with similar functions (Johnson et al. 2009). Activated T 

cells only transiently express CD40L on their surface. CD4+ T cells can up-

regulate CD40L after 5-15 minutes following anti-CD3 activation without de 

novo protein synthesis required (Casamayor-Palleja et al. 1995; van Kooten 

and Banchereau 2000). A second wave requiring mRNA expression and protein 

synthesis occurs around 1-2 hours after activation, becomes maximal at 6-8 

hours and CD40L is then gradually lost. Interestingly, in addition to its up-

regulation, CD40L degradation is tightly regulated as well. Its interaction with 

CD40 receptor quickly leads to its endocytosis and lysosomal degradation and 

to down-regulation of its mRNA. This confers restricted time frame for the 

CD40L-CD40 interaction to take place (van Kooten and Banchereau 2000). 

Finally, a peak of surface expression has been observed at 48 hours at the 

surface of Th1 cells that are capable to express higher quantity of CD40L and is 

positively regulated by IL-12 (Lee et al. 2002).  
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 1.6.2 Downstream of CD40 

 

 As part of the TNF family of ligands CD40L trimerizes to be recognized 

by its receptor (Daoussis et al. 2004; Johnson et al. 2009; Elgueta et al. 2009). 

This trimerization is induced by the binding of CD40L to CD40, as well as the 

subsequent recruitment of TNF Receptor Associated Factor proteins or TRAFs 

going from TRAF1 to TRAF6 (Bishop et al. 2007). As CD40 doesn’t have kinase 

domain itself, these adaptor proteins interact with its cytoplasmic domain and 

lead to the activation of various signalling pathways such as the canonical and 

non-canonical NF-κB pathways (NF-κB1 and NF-κB2 respectively), the MAPKs 

or phosphoinositide 3-kinase (PI3K) pathways. The recruitment of a specific 

TRAF protein dictates the downstream signalling pathway as well as seems to 

regulate the involvement of other TRAF proteins. For instance, recruitment of 

TRAF2, TRAF5 and TRAF6 can lead to the activation of the canonical NF-κB 

pathway while TRAF3 negatively regulates it (Zarnegar et al. 2008; Elgueta et 

al. 2009; Ma and Clark 2009). The CD40 cytoplasmic tail can interact with the 

different adaptor proteins: TRAF2 and TRAF3 binding site are distinct but show 

considerable overlap. The binding of TRAF1 is weak but this adaptor protein 

forms an heterodimer with TRAF2 and seems to be responsible for the 

prolongation of TRAF2 recruitment to CD40 (Bishop et al. 2007). TRAF5 

interacts indirectly with CD40, preferentially via TRAF2 (van Kooten and 

Banchereau 2000; Ajibade et al. 2013). 

Within this complicated interplay of TRAF proteins, some TRAFs have been 

described as predominantly interacting with the receptor in a cell-type manner. 

For instance, TRAF2 and 3 are recruited following CD40 engagement in B cells 

while TRAF6 recruitment seems required in DCs (Ma and Clark 2009).  

 

 The binding of TRAF6 to the cytoplasmic tail of CD40 induces the 

recruitment of Ubiquitin-conjugating enzyme 13 (UBC13) leading to the non-

degradative lysine 63 ubiquitination (K63Ub) of various proteins including 

TRAF6 itself and the complex NEMO (NF-κB essential modulator) or Inhibitor of 

κB kinase γ (IKKγ). TRAF2/5 recruitment leads to the ubiquitination of receptor-
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interacting protein 1 (RIP1) which in turn recruit the IKK complex by interacting 

with IKKγ. Finally, these ubiquitination events induce the recruitment of TAK1 

(TGF-β-activated kinase 1), member of the MAP kinase kinase kinase (MAP3K) 

family, which can activate NF-κB and/or MAPK pathways via phosphorylation. 

TAK1 constitutively interacts with TAB1 (TAK1-binding protein 1) required for 

TAK1 kinase activity. Following stimulation TAB2 or TAB3, ubiquitin binding 

proteins, interact with TRAF6 facilitating TAK1 recruitment and activation 

(Figure 1.4) (Ruland 2011; Ajibade et al. 2013; Sabio and Davis 2014). 

 

 While the activation of the non-canonical NF-κB pathway doesn’t seem to 

depend on the recruitment of TRAF6 to CD40, TRAF2 has been shown to be 

able to interact with various kinases including NIK involved in NF-κB2 pathway 

(Malinin et al. 1997; Bishop et al. 2007). More precisely, TRAF2 constitutively 

interacts with cellular inhibitor of apoptosis (cIAP)1/2 and cooperates with 

TRAF3 and NIK. This interaction leads to the cIAP1/2-mediated degradation of 

NIK and thus to the basal inhibition of the pathway. When recruited to CD40 

cytoplasmic tail, TRAF2 is degraded via auto-ubiquitination and TRAF3 is 

degraded via cIAP1/2, releasing NIK which activates NF-κB2 pathway in 

response (Zarnegar et al. 2008; Elgueta et al. 2009; Sanjo et al. 2010).  

 

 

 1.6.3 NF-κB signalling pathway 

 

 The NF-κB signalling pathway is highly conserved and plays critical role 

in various biological processes including the immune system. NF-κB is a 

transcription factor family consisting of five members: RelA (p65), RelB, c-Rel, 

NF-κB1 (p105), processed into p50 and NF-κB2 (p100), processed into p52. All 

NF-κB proteins contain a Rel-homology domain (RHD) bound by specific 

inhibitors such as IκBα, IκBβ and IκBγ. These proteins contain ankyrin repeats, 

displayed as well by NF-κB1/p105 and NF-κB2/p100, allowing them to retain the 

proteins they are bound to in the cytoplasm (Li and Verma 2002; Bonizzi and 

Karin 2004). The transcription factor NF-κB is known to be required for the 
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Figure 1.4: Non canonical NF-κB, canonical NF-κB and MAPKinases pathways. 
CD40 receptor stimulation triggers various pathways involving the recruitment of 
adaptor proteins such as TNF Receptor-Associated Factors (TRAFs). These 
TRAF proteins dictate the subsequent pathway engagement. Through non degra-
dative ubiquitination events, kinases are recruited. TGF-β-activated kinase 1 
(TAK1) can activate the canonical NF-κB or MAPK pathways. NF-κB-inducing 
kinase (NIK) recruitment leads to the non canonical NF-κB pathway activation. 
Eventually, transcription factors translocate in the nucleus inducing gene expres-
sion (Bishop et al. 2007; Ajibade et al. 2013).

30



 

 

31 

 

expression of many genes induced by inflammatory stimuli, 

cytokines/chemokines or anti-microbial peptides. CD40 deficient and RelB 

deficient DCs are both inefficient in CTL priming. CD40L ligation leads to a 

sustained RelB signalling involved in DC functions (O'Sullivan and Thomas 

2002; O'Sullivan and Thomas 2003). Moreover, the expression of CD40 itself 

seems to be regulated by the NF-κB transcription factors (O'Sullivan and 

Thomas 2003). 

 

 For the NF-κB members to fulfil their transcription factor role, the IκBs 

need first to be degraded via the activation of an IKK complex typically 

mediated by TAK1 in response to pro-inflammatory cytokines or PAMPs. Most 

commonly, the canonical NF-κB pathway signals through the IKK complex 

made up of the two catalytic subunits, IKKα and IKKβ and the regulatory subunit 

NEMO/IKKγ. Once activated, the IKK complex triggers the phosphorylation and 

poly-ubiquitination of IκBs, in this particular pathway, mainly IκBα, leading to 

their degradation by the 26S proteasome. Interestingly, IκBα and IκBβ have 

been shown to regulate NF-κB activation even further. Following its 

degradation, IκBα is quickly re-synthesized and able to enter the nucleus, 

detach the NF-κB transcription factor from the DNA and bring it back into the 

cytoplasm thanks to its expression of nuclear-export signal (NES). On the other 

hand, the newly synthesized IκBβ can enter the nucleus and interact with NF-κB 

transcription factors but will not bring it back to the cytoplasm as IκBβ does not 

express NES. In contrast, IκBβ will lead to a persistent NF-κB activation (Li and 

Verma 2002; Oeckinghaus et al. 2011). In the case of the alternative, or non-

canonical NF-κB pathway, NIK activates an homodimer complex of IKKα which 

phosphorylates NF-κB2/p100 leading to poly-ubiquitination, proteosomal 

degradation and finally to its processing into p52. This pathway is independent 

of TAK1 and of the trimeric form of IKK complex (Hayden 2004; Shi and Sun 

2018). 

 

 Once the NF-κB proteins are released and can translocate into the 

nucleus, they are able to bind specific DNA sequences. The RHD includes as 
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well a NLS allowing them to reach the nucleus. Gene transcription is induced by 

the homo- or hetero-dimerization of p50, p52, RelA, RelB and c-Rel. The dimers 

that these proteins form dictate the biological response they induce. Only RelA, 

RelB and c-Rel contain the transcription activation domain; thus, homodimers of 

p50 or p52 will lead to the repression of the gene transcription (Bonizzi and 

Karin 2004). Overall, the dimers triggered by the canonical pathway often 

involve RelA while the phosphorylation of the IKKα homodimer induces, in the 

non canonical pathway, the translocation of p52-RelB complex (Oeckinghaus et 

al. 2011).   

 

 Interestingly, the mutation of NIK rendering this precise kinase unable to 

interact with IKK complex, demonstrated the requirement of the non-canonical 

NF-κB pathway for the cross-presentation capacity of DCs (Ma and Clark 2009). 

Even if this mutation can’t be directly linked to the priming ability of DCs, it has 

been shown to inhibit the nuclear translocation of p52, which can associate with 

RelA and RelB the latter being important for cross-presentation as well 

(Dejardin et al. 2002; Zanetti et al. 2003; Lind et al. 2008). 

 

 

1.6.4 MAPKinase signalling pathways 

 
  Not all TRAFs functions are mediated via NF-κB pathways but can also 

lead to the engagement of the AP-1 transcription factor pathway, following a 

cascade of MAPKs activation (Oeckinghaus et al. 2011). Three different MAPKs 

subfamilies have been described: ERKs, c-Jun N-terminal kinases or JNKs and 

p38 MAPKs. As their name indicates, these pathways heavily depend on 

phosphorylation and dephosphorylation events to fulfil their functions. For 

instance, CD40 ligation is followed by phosphorylation of ERK and JNK in DCs 

while only the later was phosphorylated in CD40-stimulated B cells (Craxton et 

al. 1998; Aicher et al. 1999). p38 MAPK pathway is involved in CD40-induced 

production of cytokines such as IL-12p40 in DCs but interestingly, this seems to 

depend on the maturation state of the DCs while IL-6 production has been 
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shown to depend on CD40-induced p38 MAPK pathway in both immature and 

mature DCs (Aicher et al. 1999; Yanagawa and Onoé 2006). Moreover, the 

CD40-dependent IL-12p40 production by DCs might also be linked to a TRAF6-

induced recruitment of JNK and p38 pathways as mutation of TRAF6 binding 

site impacts IL-12p40 secretion and both MAPKs activation (Mackey et al. 

2003).  

 

 Briefly, the three MAPKs families follow the same complex pattern of 

event cascade. A MAP3K phosphorylates and activates a MAPK kinase (MKK), 

which in turn phosphorylates and activates a MAPK leading to the activation of 

transcription factors such as AP-1 (Shi and Sun 2018). The MAP3K TAK1 is 

involved in JNK and p38 signalling transduction while ERK activation following 

TLR ligation requires the MAP3K isoform Tumour Progression Locus 2 or Tpl2 

that forms a complex with A20-Binding Inhibitor of NF-κB-2 (ABIN-2) and NF-

κB1/p105. The activation of Tpl2 requires its release from this complex following 

NF-κB1/p105 degradation (Sabio and Davis 2014). Each pathway requires 

specific MKKs: MKK1 and MKK2 for ERK, MKK4 and MKK7 for JNK and MKK3 

and MKK6 for p38 (Shi and Sun 2018). By contrast with NF-κB transcription 

factors which can translocate into the nucleus, activated ERK kinase translocate 

themselves into the nucleus to phosphorylated many transcription factors 

(Shapiro et al. 2014).  In order to regulate this nucleus translocation, MAPKs 

seem to be bound to their MKK or regulatory proteins and sequestered in the 

cytoplasm. They required phosphorylation events to dissociate and quickly 

translocate by associating with nuclear transport protein via their nuclear 

translocation signal (NTS) motif (Yang et al. 2013). Once in the nucleus, the 

MAPK rapidly find their substrates. For instance, ERK has been shown to 

phosphorylate AP-1, composed of Fos family members (such as c-Fos, Fra-1/2) 

and Jun family members (c-Jun, JunB/D) (Karin and Gallagher 2009). This 

activation is facilitated by the localisation of c-Fos to the nuclear envelope. JNK 

also phosphorylates the transcription factor c-Jun. Moreover, p38 can 

phosphorylate these transcription factors as well as induce histone modification 
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and chromatin remodelling in order to facilitate gene transcription (Yang et al. 

2013; Shapiro et al. 2014).  

 

 The specific inhibition of p38 MAPK pathway seems to decrease the NF-

κB pathway activation, interfering with the transcriptional function of NF-κB 

factors (Goebeler et al. 2001; Guo et al. 2013). Thus, these two pathways, NF-

κB and MAPKs can cross-interact. Moreover, while it is known that the family of 

transcription factors AP-1 is mediated through MAPK pathways, NF-κB can play 

an indirect role in its activation (Fujioka et al. 2004). 

 

 

1.7    Thesis aims 
  
 Our team was previously able to demonstrate a functional aspect of T 

cell help in the context of HSV infection. While the importance of CD4+ T cell 

help in optimizing CD8+ T cell priming has been intensively studied, the 

mechanisms responsible for this help-driven enhancement of innate signals is 

yet to be unveiled. The experiments conducted and presented in this thesis 

aimed to investigate these unknown mechanisms. Given the possibility of using 

CTL immunity in a therapeutic manner with a help signal considerably 

amplifying the innate-induced responses in DCs, T cell-based therapeutic 

strategies could gain from highlighting this enhancing mechanisms. We 

hypothesized that CD40 stimulation induces a pathway independent from the 

innate signal-induced pathway. These two pathways would then act in synergy 

towards the optimization of DCs functions. More precisely, studies described in 

this thesis aim to: 

 

1. Establish an in vitro model of bone marrow-derived DC specialised on 

the CTL priming, allowing the systematic study of CD40-mediated 

amplification of DC responses to various innate signals (Chapter 3).  
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2. Precisely describe the dynamics of CD40-signal requirement in an 

innate activation context, in order to methodically study the potential 

molecular pathways involved in this CD40-driven enhancement of 

innate signalling (Chapter 4).  

 

 

 

 

 

 

 

 



  

 
Chapter 2 

 

 

Materials and Methods 
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2.1    Materials 
  
 2.1.1 Mice 
 

 All mice used in this study were bred and maintained in specific 

pathogen-free conditions at the Department of Microbiology and Immunology, at 

The University of Melbourne, Australia animal facility. 

The Animal Ethics Committee from Biochemistry & Molecular Biology, Dental 

Science, Medicine (RMH), Microbiology & Immunology and Surgery (RMH) 

approved all animal experiments (Animal ethics number 1814545).   

 

Table 2.1: Description of the mouse strains.  
Strain Description 
C57Bl/6 (B6) Inbred mice expressing MHC class II I-Ab and MHC class I 

H-2b haplotype 

B6/Ifnar2 

(IFNARKO) 

Mutation of the Ifnar2 gene (Fenner et al. 2006) 

IRF3KO Mutation of the Irf3 gene (Sato et al. 2000) 

IRF7KO Mutation of the Irf7 gene (Honda et al. 2005) 

OT-II x B6.Ly5.1 

(OT-II) 

F1 generation of heterozygous/homozygous OT-II and 

B6.Ly5.1 breeding. H-2Kb restricted, TCR transgenic 

(Vα2/Vβ5.1+), specific for the OVA323-339 peptide 

(KISQAVHAAHAEINEAG) from ovalbumin (OVA) 
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2.1.2 Cell biology reagents and materials 
  

Table 2.2: Reagents and materials.  
Reagents and materials Supplier 
α-mouse CD40 pure – functional 

grade antibody (clone FGK45.5) 

Miltenyi Biotec, USA 

BD CytofixTM BD Bioscience, USA 

BD Perm/WashTM BD Bioscience, USA 

Benzylpenicillin CSL, Australia 

BioMag® Goat anti-rat IgG beads  QIAGEN, Germany 

Bright-lineâ haemocytometer Reichert, USA 

Cell strainer, 70 μm BD Biosceince, USA 

CpG 1668 GeneWorks, Australia 

CD40-TRAF6 Signalling Inhibitor, 

Small Molecule Inhibitor 6877002 

Calbiochem, Sigma-Aldrich, USA 

Dimethyl Sulphoxide (DMSO) Sigma-Aldrich, USA 

DynaMagTM-5 magnet ThermoFisher Scientific, USA 

E. coli lipopolysaccharide (LPS) Sigma-Aldrich, USA 

EDTA-BSS Media preparation unit, Department of 

Microbiology and Immunology, The 

University of Melbourne, Australia 

FACS AriaTM III flow cytometry BD Bioscience, USA 

FACS LSR FortessaTM flow cytometry BD Bioscience, USA 

Human recombinant Fms-like tyrosine 

kinase 3 (Flt3) ligand (Flt3L)  

(Flt3L-Ig (hum/hum)) 

Bio X Cell, USA 
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Foetal Calf Serum (heat-inactivated) 

(FCS) 

CSL, Australia 

KDS-RPMI Media preparation unit, Department of 

Microbiology and Immunology, The 

University of Melbourne, Australia 

L-glutamine  Astral Scientific, Australia 

LIVE/DEADTM fixable Near IR dead 

cell stain 

Life Technologies, USA  

Minimal Essential Media (MEM) Media preparation unit, Department of 

Microbiology and Immunology, The 

University of Melbourne, Australia 

2-β-mercaptoethanol Life Technologies, USA 

Nylon mesh, 70 μm Madison Filter Pty Ltd., Australia 

OVA (323-339)  Mimotopes, Australia, kindly provided 

by Dr Linda Wakim, Department of 

Microbiology and Immunology, The 

University of Melbourne, Australia  

Phosphate Buffered Saline (PBS) Media preparation unit, Department of 

Microbiology and Immunology, The 

University of Melbourne, Australia 

Poly(I:C) InvivoGen, USA 

Polypropylene round-bottom FACS 

tubes (5 ml) 

BD Bioscience, USA 

Polystyrene round-bottom FACS 

tubes with cell strainer cap (5 ml) 

ThermoFisher Scientific, USA 

Propidium iodine (PI) Sigma-Aldrich, USA 
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Rat IgG2a pure - functional grade 

antibody (clone ES26-15B7.3) 

Miltenyi Biotec, USA 

Red blood cell lysis buffer (RBCL) Sigma-Aldrich, USA 

RPMI 1640 Media preparation unit, Department of 

Microbiology and Immunology, The 

University of Melbourne, Australia 

Sphero blank calibration beads (6.0 – 

6.4 μM) 

BD Bioscience, USA 

Streptomycin Sigma-Aldrich, USA 

Tissue Culture flask (T75, T150) Techno Plastic Products AG (TPP), 

Switzerland 

Tissue Culture plates (6/12/96 wells) Techno Plastic Products AG (TPP), 

Switzerland 

Tissue Culture petri dishes (60/90 

mm) 

Greiner Bio-One, Germany 

Trypan Blue Sigma-Aldrich, USA 

Trypsin/EDTA (10 X, 0.5 % trypsin, 

0.2 % EDTA 

Gibco BRL, Australia 

Universal Type I Interferon (IFN-αA) PBL Assay Science, USA 

 

 

 2.1.3 Media and solutions 

 

Table 2.3: Composition of media and solutions.  
Media  Composition  
EDTA-BSS – 2.5 % 

FCS (FACS Buffer) 

Buffered Saline Solution (BSS) supplemented with 

1.86 g EDTA/L and 2.5 % heat inactivated FCS 
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Flt3 media KDS-RPMI supplemented with 10 % FCS, 0.2 g/L 

streptomycin, 100 U/ml penicillin, 90 μM 2-β-

mercaptoethanol and 1.32 mM L-glutamine  

KDS-RPMI RPMI 1640 powder dissolved to 1 X strength in Mili Q 

water 

MEM 10 % FCS Minimal essential medium supplemented with 10 % 

FCS and 5 % SC  

RPMI 1640 – 10 % 

FCS (RPMI-10) 

Supplemented with 5 % SC and 10 % heat-inactivated 

FCS 

Supplementum 

completum (SC) 

23.83 g/L HEPES; 2×106 U/L Benzypenicillin; 2 g/L 

Streptomycin; 6 g/L L-glutamine; 70 μL 2-β-

mercaptoethanol (stock concentration 14.3 M); made 

to 1 L with RPMI 1640 

 

 

 2.1.4 Antibodies 
 

  2.1.4.1 Fluorochrome-conjugated primary antibodies 
 
Table 2.4: Anti-mouse antibodies used for Flow Cytometry and Cell 
sorting. 
Antibody Clone  Conjugated Supplier 
α-CD3e 145-2C11 BUV 395 BD PharmingenTM (USA) 
α-CD4 RM4-5 PE BD PharmingenTM (USA) 
α- CD11b M1/70 BV 711 BioLegend (USA) 
α-CD11c N418 PE-Cy7 Thermo Fisher Scientific 

(USA) 
α-CD24 M1/69 FITC BioLegend (USA) 
  PE BD PharmingenTM (USA) 
  BUV 395 BD PharmingenTM (USA) 
α-CD40 HM40-3 FITC BD PharmingenTM (USA) 
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α-CD45R/B220 RA3-6B2 PB BD PharmingenTM (USA) 
α-CD86 GL1 FITC BD PharmingenTM (USA) 
α-CD154 

(CD40L) 
MR1 PE BioLegend (USA) 

α-CD172a 

(SIRP-α) 
P84 APC eBiosciences (USA) 

  BV 510 BD PharmingenTM (USA) 
α-IL-15Rα 

(CD215) 
DNT15Ra APC eBiosciences (USA) 

α-MHC Class II 

(I-A/I-E) 
M5/114.15.2 Alexa fluor 700 Thermo Fisher Scientific 

(USA) 
  Redfluor 710 eBiosciences (USA) 
α-Vα2 TCR B20.1 Alexa fluor 700 BD PharmingenTM (USA) 
Purified 

α-CD16/32 

(mouse BD Fc 

Block) 

2.4G2  BD PharmingenTM (USA) 

 
BUV = Brilliant Ultra Violet, FITC = Fluorescein isothiocyanate, PE = Phycoerythrin, 

APC = Allophycocyanin, Cy = Cyanin, BV = Brilliant Violet, PB = Pacific Blue. 

 

 

  2.1.4.2 T cell enrichment cocktails 
 

Table 2.5: Anti-mouse antibodies used for T cell enrichment. 
Antibody  Clone  Supplier 

α-CD8 53-6.7 Recombinant antibody facility, WEHI, Australia 

α-F4/80 F4/80 Recombinant antibody facility, WEHI, Australia 

α-Gr1 RB6-8C5 Recombinant antibody facility, WEHI, Australia 
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α-I-A/E M5/114 Recombinant antibody facility, WEHI, Australia 

α-Mac-1 M1/80 Recombinant antibody facility, WEHI, Australia 

Erythrocytes Ter119 Recombinant antibody facility, WEHI, Australia 

 

 

  2.1.4.3 In vitro stimulation of T cells 
 

Table 2.6: Anti-mouse antibodies used for in vitro stimulation of T cells. 
Antibody  Clone  Supplier 

α-mouse CD3 functional grade 17A2 ThermoFisher Scientific, USA 

α-mouse CD28 functional grade 37.51 ThermoFisher Scientific, USA 

 
 

 2.1.5 Molecular biology reagents 
 

Table 2.7: Molecular biology reagents. 
Reagent  Supplier 

Deoxynucleotides (dNTP) Mix Promega, USA 

Ethanol (100 %) Chem-Supply 

Oligo-dT  Promega, USA 

Omniscript reverse transcription (RT) Kit QIAGEN 

RNaseOUTTM Recombinant Ribonuclease 

Inhibitor  

ThermoFisher Scientific, USA 

Direct-zolTM RNA MicroPrep kit Zymo Research, USA 

TaqMan Universal PCR Master Mix ThermoFisher Scientific, USA 

TRIzol® Reagent  Gibco, BRL, Australia 
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UltraPureTM DNase/RNase-free distilled water Invitrogen, USA 

 

 

 2.1.6 Real-time Primers and Probes  
 

Table 2.8: Primers used for Taqman real-time PCR analysis. 
Gene  Assay ID 

β2m Mm00437762_m1 

Ccl4 Mm00443111_m1 

Ccl5 Mm01302427_m1 

Cd40 Mm00441891_m1 

Gapdh Mm99999915_g1 

Hprt Mm00446968_m1 

Il6 Mm00446190_m1 

Il12b Mm00434174_m1 

Il15 Mm00434210_m1 

Il15ra Mm04336046_m1 

Irf7 Mm00516793_g1 

Isg20 Mm00469585_m1 

Tnf Mm00443258_m1 

Traf6 Mm00493836_m1 

18s Mm03928990_g1 

 

All primer/probes were purchased from Life Technologies, Australia. 
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 2.1.7 Cytometric Bead Array 
 

Table 2.9: Beads used for Cytometric Bead Array and the cytokines or 
chemokines targeted. 
Cytokine/Chemokine targeted Bead 

Mouse Il-6  Bead B4 

Mouse Il-12/Il-23p40 Bead D7 

Mouse Mip-1β (Ccl4) Bead C9 

Mouse Rantes (Ccl5) Bead D8 

Mouse Tnf-α Bead C8 

 

All Flex Sets were purchased from BDTM Cytometric Bead Array, Australia. 

Each set contains capture beads, detection reagent and standards. 

 

 

2.2     Methods 
 

 2.2.1 In vitro generation of dendritic cells  
 

Murine bone marrow (BM)-derived DCs were generated in vitro from 

C57Bl/6, IFNARKO, IRF3KO or IRF7KO mice. Tibia and femur were cleaned 

and collected in Flt3 media: sterile KDS-RPMI medium supplemented with L-

glutamine, streptomycin, 2-β-mercaptoethanol, benzylpenicillin, FCS. The bone 

marrow cells were flushed into fresh media using a 10 ml syringe with a 26 G 

needle and filtered through a 70 μm nylon mesh. Cells were centrifugated and 

resuspended with 1 ml of RBC lysis buffer (Sigma-Aldrich) per mouse for 60-90 

seconds in order to lyse red blood cells. Following pelleting the cells were 

resuspended and cultured at 1.5 × 106 cells/ml of fresh media supplemented 
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with 150 ng/ml of Flt3L cytokine (BioXCell) for 8 days at 37 °C in 75 cm2 TC 

flask (Naik et al. 2005).  

 

 

 2.2.2 Cell sorting and stimulation of eCD8+ DCs 
 

Following 8 days of Flt3L culture, BM precursors differentiate into 

myeloid cells that can be divided into pDCs and two cDCs subsets, cDC1 and 

cDC2. The cDC2 equivalents are identified by CD24low SIRPαhigh CD11bhigh, 

whilst the cDC1 equivalents are identified by CD24high SIRPαlow CD11blow and 

are also called eCD8+ DCs. pDCs within the culture were uniquely identified as 

B220/CD45R+. After 8 days of Flt3L culture, cells were harvested by collecting 

the supernatant from the culture flasks. Cells were then sorted on the basis of 

CD45R/B220, SIRPα, CD11c, CD11b, MHC II and CD24, using a FACS AriaTM 

III Cell Sorter. The dead cells were excluded by using 1 X Propidium iodide (PI) 

staining.  

0.25×106 CD45R/B220-, SIRPα-, CD11c+, MHC IIint, CD11bint and CD24hi eCD8+ 

DCs were used per condition of stimulation (Naik et al. 2010). 

The eCD8+ DCs were resuspended in Flt3 media at a concentration of 0.1×106 

cells per condition for phenotypic analysis, 0.25×106 cells per condition for gene 

expression and cytokine/chemokine secretion analysis or a minimum of 2×106 

cells per condition for proteomics and phosphoproteomics analysis. The eCD8+ 

DCs were stimulated for various amounts of time, from 30 minutes to 8 hours, 

with IFN-αA (PBL), CpG (1668 InvivoGen), LPS (Difco, derived from E. coli) or 

poly(I:C) (InvivoGen) all at the indicated concentrations. These stimulations 

were conducted in the presence or absence of anti-CD40 monoclonal antibody 

(FGK45.5, Miltenyi Biotec) (α-CD40 antibody), or its isotype control (rat IgG2a, 

Miltenyi Biotec), at 10 μg/ml. All stimuli were prepared in Flt3 media. In the case 

of α-CD40 antibody coated plates. 96-well plates were coated with 50 μl of α-

CD40 antibody at 50 μg/ml in sterile 1 X PBS and incubated overnight at 4°C. 

Wells were gently washed three times with 1 X PBS before use.  
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Moreover, various molecules have been used as specific inhibitors as described 

below. All the reagents were made up at the right concentration in Flt3 media. 

Stimulations were performed in 96 well plates, incubated at 37 °C for the time of 

the experiment. Following stimulation, samples were harvested, centrifugated 

and further processed depending on the analysis performed. 

 

 To investigate the involvement of TRAF6 in the CD40 signalling pathway, 

eCD8+ DCs were cultured for 4 hours and treated for various amount of time 

with CD40-TRAF6 Signalling Inhibitor, Small Molecule Inhibitor 6877002 (3-

((2,5dimethylphenyl)amino)-1-phenyl-2-propen-1-one, Calbiochem, Sigma-

Aldrich), in the presence or absence of IFN-αA and/or α-CD40 antibody. All 

stimuli were prepared in Flt3 media and used at the indicated concentrations. 

Stock solutions of CD40-TRAF6 Signalling Inhibitor were reconstituted with 

DMSO at a concentration of 100 mM. 

 

 

 2.2.3 In vitro OT-II CD4+ T cell – DC co-culture assay  
 
  2.2.3.1 CD4+ T cell enrichment  
 
 CD4+ T cells were enriched from naïve LNs of C57Bl/6 or OT-II 

transgenic female mice. Cell suspensions were prepared from LNs harvested in 

RPMI-10 through mechanical disruption and passaging through 70 μm mesh. 

Cells were resuspended in CD4+ T cell negative enrichment antibody cocktail 

(anti-erythrocytes [Ter119], anti-I-A/E [M5/114], anti-CD8 [53-6.7], anti-Gr1 

[RB6-8C5], anti-Mac-1 [M1/70], anti-F4/80 [F4/80]) for 30 minutes on ice. Cells 

were then washed and incubated with BioMag® sheep anti-rat IgG-coupled 

magnetic beads (QIAGEN) (used at 6:1 bead:cell ratio) in round bottom FACS 

tubes for 20 minutes on constant rotation at 4 °C. Tubes were loaded onto a 

DynaMagTM-5 magnet (ThermoFisher Scientific) and enriched CD4+ T cells 

were obtained via supernatant collection. Purity was determined via flow 



 

 

48 

 

cytometry by co-staining for anti-CD3, anti-CD4 and anti-Vα2 with an expected 

purity > 85 %.  

 

 

  2.2.3.2 In vitro activation of CD4+ T cells 
 
 6-well plate was coated with 600 μl of anti-CD3/CD28 cocktail at 5 μg/ml 

of each antibody in sterile 1 X PBS and incubated for 3 hours at 37 °C. Wells 

were gently washed three times with 1 X PBS. Enriched CD4+ T cells in RPMI-

10 and distributed into the coated wells at a concentration of 400,000 cells/ml, 

and incubated for various amount of times ranging from 6 to 48 hours. Following 

stimulation, cells were harvested, washed twice, enumerated and resuspended 

in FACS buffer for the assessment of CD40L up-regulation, or in Flt3 media at 

the indicated concentration for T cell-DC co-culture.  

 

 

  2.2.3.3 T cell – DC co-culture assay 
 
 eCD8+ DCs were pre-treated with IFN-αA for 1 hour (1000 U/ml, PBL). 

0.5×106 enriched and in vitro activated CD4+ T cells were resuspended with 

0.25×106 eCD8+ DCs (2 activated CD4+ T cells to 1 eCD8+ DC). The cells were 

also cultured with or without 1 μg/ml of OT-II specific peptide, OVA (323-339) 

(Mimotopes). Following 4 hours of co-culture the cell supernatant was collected 

for further analysis. 

 

 

 2.2.4 Quantitative real-time PCR 

  
  2.2.4.1 RNA extraction 
 
 In order to analyse the gene regulation following various stimulations, the 

cell pellet was vigorously resuspended and lysed with TRIzol® (Life 
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Technologies) (400 μl for 0.25×106) for 5 minutes at RT. These samples were 

kept at -80 °C until further processing. For quantitative Real-Time Polymerase 

Chain Reaction (RT-PCR) analysis, RNA was extracted using Direct-zolTM RNA 

MicroPrep kit (Zymo Research) following manufacturer’s instructions. Briefly, 

RNA from lysed cells with TRIzol® reagent was precipitated with 100 % ethanol, 

transferred into Zymo-Spin columns and centrifugated at 14,000 g, 10°C for 

1:30 minute. Columns were then washed with 400 μl of RNA Wash buffer and 

centrifugated again before DNA digestion: 40 μl of DNase I cocktail (5 U of 

DNase I diluted in DNA Digestion Buffer (Zymo Research)) were loaded on 

each column and incubated for 15 minutes at 35 °C, followed by centrifugation 

for 1:30 minute. The columns were then sequentially washed 2 times with 400 

μl of PreWash buffer and one time with 700 μl of RNA Wash buffer. The 

columns were centrifugated twice to entirely remove all remaining buffer. To 

elute the RNA, 15 μl of DNase/RNase-free water was added to the columns and 

incubated for 7 minutes at room temperature before centrifugation for 2 

minutes. 15 μl were added, followed by another centrifugation. RNA was 

quantified via NanoDrop 2000.  

 

 

  2.2.4.2 cDNA synthesis 
 
 The cDNA was synthetized from the extracted RNA with Omniscript RT 

kit for reverse transcription (QIAGEN) using oligo-dT primers (Promega) and 

RNaseOUTTM Recombinant Ribonuclease Inhibitor (ThermoFisher Scientific). 

 

cDNA synthesis Mix (final concentration per sample): 

 3.5 μl 10 X Buffer RT 

 2 μl dNTP Mix (5 mM each dNTP) 

 1 μl Oligo(dT)15 primer (0.5 μg/μl) 

 1 μl RNase inhibitor (RNaseOUTTM) (10 U/μl) 

 1 μl Omniscript Reverse transcriptase (4 U/μl) 
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Total samples were < 2 μg and were entirely resuspended in 8.5 μl of cDNA 

synthesis Mix and incubated for 90 minutes at 37 °C. Finally, the cDNA was 

diluted in RNase/DNase-free water (finale concentration at 2.5 ng/μl) and used 

in RT-PCR.  

 

 

  2.2.4.3 Real-time PCR 
 

The real-time PCR (Polymerase Chain Reaction) was performed with 

Taqman Universal PCR Master Mix (Life Technologies) with primers for various 

genes of interest in a 10 μl reaction with the following cycle conditions: 95 °C for 

2 minutes, 40 cycles at 95 °C for 15 seconds and 60 °C for 1 minute. The 

mRNA expression of these genes was normalized to at least 3 housekeeping 

genes such as Gapdh, β2m, Hprt or 18s (ThermoFisher Scientific) and the 

relative expression (RE) was determined using unstimulated controls (RE=2-

(DDCT)). 

 

PCR Master Mix (volume per reaction): 

 0.5 μl H2O 

 5 μl TaqMan Universal PCR Master Mix 

 0.5 μl primer/probe (10 μM) 

 2 μl Template cDNA (2.5 μg/ml) 

 

 

 2.2.5 Cytometric Bead Array 
 

Supernatants were harvested from the stimulated in vitro eCD8+ DCs in 

order to assess the cytokines and chemokines released under stimulation, 

using cytometric beads array kits (CBA Flex Set assay, BD Bioscience) 

following manufacturer’s instructions. 50 μl of cell supernatant was incubated 

with 50 μl of CBA bead populations in a 96 well plate for 2 hours at room 

temperature. 50 μl containing PE Detection was added to each well and 
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incubated for 1 hour at room temperature. Beads were washed with 100 μl of 

FACS buffer and centrifugated at 200 g, 4 °C for 5 minutes. Pelleted beads 

were resuspended with 200 μl of FACS buffer and assessed using a LSR 

FortessaTM. The cytokine and chemokine concentrations were determined 

relative to a standard curve. Samples were analysed using Flowjo. 

 
 

 2.2.6 Cell surface and intracellular stainings  
 

eCD8+ DCs were stained following stimulation with respective mix of cell 

surface fluorochrome-conjugated antibodies diluted in FACS buffer. Following 

30 minutes of incubation at 4 °C, cells were washed with 100 μl of FACS buffer 

and resuspended with a solution of FACS buffer containing an enumerated 

number of blank calibration beads, and 1 X PI, to exclude non-viable cells in the 

case of extracellular staining only. When indicated, the measurement of an 

extracellular protein was compared to the same cells stained with the same 

fluorochrome-conjugated antibodies cocktail minus the one targeting the 

molecule of interest: Fluorescence Minus One (FMO). 

A competition assay between the anti-CD40 stimulation antibody and the 

fluorescently labelled anti-CD40 was performed. Following 30 minutes to 8 

hours of IFN-αA stimulation, eCD8+ DCs were first stained for 20 minutes with 

α-CD40 monoclonal antibody FGK45. These cells were washed with 100 μl of 

FACS buffer and resuspended with a cocktail of fluorochrome-coupled 

antibodies containing the anti-CD40 (clone HM40-3) conjugated with FITC for 

phenotypic analysis. When necessary, cells were additionally stained 

intracellularly. Following antibody surface staining and the addition of a 

LIVE/DEADTM fixable cell dye, the cells were fixed with BD CytofixTM fixation 

Buffer (BD Bioscience). Cells were subsequently permeabilized and stained 

with BD Perm/WashTM Buffer 1 X (BD Bioscience) containing the fluorochrome-

conjugated antibody. All samples were assessed using the LSR FortessaTM and 

results were analysed using Flowjo. 
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 2.2.7 RNA sequencing handling 
 
  2.2.7.1 Data resources 
 
 Total mRNA was isolated from samples from 6 independent experiments 

and was used for RNA sequencing. Libraries were either prepared for HiSeq HT 

paired end (Illumina, Australian Genome Research Facility, Queensland, 

Australia) or for QuantSeq 3’-mRNA (Lexogen Inc., Vienna, Austria) sequencing 

and were generated from 100 ng total RNA by the Next Generation Sequencing 

Core Facility of the Institute of Human Genetics, Bonn University, Germany. 

Libraries were sequenced on a HiSeq2500 instrument (Illumina, Belgium) in a 

50 bp single-read run. To enable a combined analysis, all raw fastq-files were 

aligned with Spliced Transcripts Alignment to Reference (STAR) software 

(v2.5.3a) against the murine genome mm10 independent of the sequencing run 

(Figure 2.1). The transcript quantification was performed on gene level in 

PartekFlow (v8.0.19.0707) with the E/M algorithm. The mm10 RefSeq 

Transcript 90 database version 2019-05-03 was chosen as annotation model. 

Read counts were obtained for 10,349 genes. Quantification of mRNA 

expression was performed as gene counts normalised as Counts per Million 

(CPM) in PartekFlow to ensure all samples were comparable. A batch 

correction of the independent sequencing runs was performed in PartekFlow to 

remove technical variations. The normalized gene expression values were 

imported into Partek Genomics Suite (PGS) software v7.18.0723. Genes that 

did not have mean expression values ≥1 CPM in at least one stimulatory 

condition were filtered out resulting in 10,222 present genes for further Analysis 

of Variance (ANOVA) analysis.  

The handling of the RNA-Seq dataset was performed by and under Dr Susanne 

V. Schmidt’s guidance.  

 

 

 

 



Figure 2.1: Overview on the bioinformatics workflow for the combined analy-
sis of RNA sequencing data.
Raw files from three independent sequencing runs were aligned to the murine 
reference genome. Gene counts were quantified by the E/M algorithm and normal-
ized as CPM (Count per Million) values. Technical variances were removed from 
the data set by batch effect correction. Data processing was performed in Partek 
Flow. 

53

mRNA
STAR

Pre-alignment 
QA/QC

Quantify to 
annotation 

model
(Partek E/M)

Aligned reads

Post-alignment 
QA/QC Transcript counts

Gene counts Normalization
Normalized 

counts

PCA

Remove batch 
effect

PCA

Batch effect 
adjusted counts



 

 

54 

 

  2.2.7.2 Identification of differentially expressed genes and 
hierarchical clustering 
 
 Most variable and differentially expressed (DE) genes were identified by 

ANOVA in PGS according Benjamini & Hochberg. Genes with a fold change 

(FC) above or lower than |1.5| and a False Discovery Rate (FDR) adjusted p-

value ≤ 0.05 were defined as DE between two test groups. Most variable genes 

were defined by a FDR-adjusted p-value ≤ 0.01.  

Hierarchical clustering via Euclidean distance on gene expressions and 

samples dissimilarities were performed to visualize groups of DE genes or most 

variable genes with similar expression profiles through the conditions and time. 

Standardised expression values were shifted to mean zero and scaled to 

standard deviation of one.  

 

 Self-Organizing Map (SOM) clustering was performed on 341 DE genes 

(sum of the DE genes between IFN-αA 4 hours condition and all IFN-αA 4 hours 

with α-CD40 antibody conditions) in PGS. Expression values were z-

transformed (z-scores). The DE genes were separated into 5 x 5 clusters 

according to similar expression patterns over the time of stimulation. In a SOM 

clustering, the expression values of each gene are scaled into one value 

representing the general expression value of the cluster it belongs to. 

Therefore, the clusters are influenced by the input data. The SOM clustering is 

visualized as a heatmap: red represents increased values; blue decreased 

values and green intermediate values.  

 

 Pathway enrichment analyses were performed in PGS, using default 

settings and providing enrichment scores and enrichment p-values (t-test), 

information derived from KEGG database (http://www.genome.jp/kegg/). This 

analysis was used on DE genes lists to highlight their involvement in biological 

pathways. 
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 Gene Ontology (GO) enrichment analysis was performed in PGS, using 

default settings and providing enrichment scores and enrichment p-values (t-

test), information derived from the Gene Ontology Consortium integrated 

resources (http://geneontology.org/docs/go-consortium/). This analysis was 

used on DE genes to group them into functional hierarchy. When mentioned, 

genes were compared to the Interferome v2.01 

(http://interferome.org/interferome/home.jspx) (Rusinova et al. 2013). 

 

 Cystoscape software v3.5.0 was used to visualize the BiNGO, and 

transcription factor (TF) networks and predict master regulators of the help 

signal (https://cytoscape.org/). The basis structure of TF networks is based on 

the coexpression of the displayed TFs in the data set. TF network were 

generated in Biolayout Express 3D v3.3. Using a Pearson correlation value of 

0.83 resulted in a network structure encompassing 505 TFs. The iRegulon 

plugin v1.3 for Cytoscape (Janky et al. 2014) was used to predict an identify TF 

candidates, which could participate in the differential expression of gene groups 

being regulated by the combinatorial stimulus of IFN-αA + α-CD40 and by IFN-

αA stimulation at several time points of cellular programming. The BiNGO 

plugin v3.0.3 and the EnrichmentMap plugin v3.2.1 were used for functional 

enrichment analysis of groups of genes identified by SOM clustering (Maere et 

al. 2005) described above. The hypergeometric test was used for GO 

enrichment analysis with Benjamini & Hochberg FDR corrected p-value ≤ 0.1. 

WordCloud plugin v3.1.3 was used to visualize the most frequent annotation 

associated with a cluster of GO-terms (Oesper et al. 2011). 

 

 Search Tool for the Retrieval of Interacting Genes (STRING) database 

was used online (https://string-db.org/, (Szklarczyk et al. 2015)) to visualize 

known connections between proteins based on literature co-citation, 

experimental validation, databases, co-expression and co-occurrence. Using 

the default settings and a medium confidence interaction score (0.400), this 

analysis was used on protein identified via phosphosite in phosphoproteome 
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data set to analyse protein-protein interaction network and GO-Term 

enrichment. 

 

 

 2.2.8 Proteomics and phosphoproteomics analysis 
 
 The processing of samples dedicated for phosphoproteomics analysis as 

well as the analysis of results were performed by Dr Nichollas Scott from 

Department of Microbiology and Immunology at the Peter Doherty Institute. 

 

  2.2.8.1 Cell lysis and protein digestion 
 
 Cell lysis was performed as previously described (Humphrey et al. 2015). 

Following stimulation, cells were pooled, centrifugated and cell pellets were 

resuspended in guanidinium chloride (GdmCl) lysis buffer (6 M GdmCl, 100 mM 

Tris pH 8.5, 10 mM tris(2-carboxyethyl)phosphine (TCEP), 40 mM 2-

choloacetamide (CAA)) and transferred into non-autoclaved Eppendorf Tubes®. 

Samples were then heated for 10 minutes at 95 °C shaking at 2000 rpm before 

being stored at -20 °C until all samples were collected for further processing. 

Protein amounts were quantified using a colorimetric BCA assay following the 

manufacturer’s instructions. A minimum of 2 mg of protein per sample was used 

to perform further analysis. Samples were precipitated with cycles of acetone 

washes. Dried protein pellets denatured and reduced in 6 M urea, 2 M thiourea, 

40 mM NH4HCO3 before being digested overnight with Lys-C and trypsin as 

previously described (Scott et al. 2011). Following digestion, samples were 

acidified with 0.5 % formic acid and desalted with tC18 Sep-Pak. 1 % of the 

samples are collected for proteome level input assessment.  
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  2.2.8.2 Pre-TiOx enrichment and TiOx enrichment  
 
 Pre-TiOx enrichment and TiOx enrichment were performed according to 

published methods from Engholm-Keller K. and Larsen M. R. (Engholm-Keller 

and Larsen 2016). Briefly, TiOx (titanium dioxide) resin was used to enrich the 

phosphorylated peptides. Following cycles of washes, phosphorylated peptides 

were eluted in TiOx elution buffer, dried and exposed to another round of TiOx 

enrichment using regenerated resin. Phosphorylated peptides were eluted 

again and R3/C18 clean-up for Mass Spectrometry analysis. This protocol is 

based on work performed by Rappsilber J. et al in 2003 and 2007 (Rappsilber 

et al. 2003; Rappsilber et al. 2007). Eluted phosphorylated peptides were 

desalted using Empire C18 tips with OLIGO R3 reverse phase resin.  

 

 

  2.2.8.3 Identification of proteins and phosphorylated peptides 
 
 Phosphopeptides and total proteome were analysed using Liquid 

Chromatography-Mass Spectrometry. More precisely, samples were infused 

into an Orbitrap Fusion Lumos Tribid Mass Spectrometer from Bio21 at the 

University of Melbourne, Australia MaxQuant software (v1.5.3.1) was used for 

identification of proteins and phosphorylated peptides (Cox and Mann 2008). 

Annotation was performed against mouse proteome database (Uniprot 

proteome ID UP000000589 – Mus musculus, downloaded 18-05-2016). 

Outputs were processed with Perseus software (v1.4.0.6). Phosphosites were 

detected with a localization score > 0.75. Significant 

phosphorylation/dephosphorylation events between two comparable groups of 

condition were identified with a FDR (Benjamini & Hochberg) adjusted p-value ≤ 

0.05 and a FC in abundance above or lower than |1.5| (Tyanova et al. 2016).  
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2.2.9 Statistical analysis 
 
 Statistical analysis was performed using GraphPad Prism 7 software. P-

value, determined by the appropriate test as indicated in the figures legend, 

was considered as significant when p ≤ 0.05.  
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3.1    Introduction 
 
 Pathogen clearance requires the priming of naïve CD8+ T cells. This 

complex process is induced upon TCR-mediated recognition of their specific 

antigen presented via MHC I molecules on the surface of a professional APC 

such as a DC (Williams and Bevan 2007). Precisely, CD8+ DCs and their 

unique cross-presenting ability are critical in immune responses against some 

infections (Joffre et al. 2012).  Danger signals derived from the pathogens 

themselves and associated tissue damage can activate DCs leading to their 

maturation and improvement of their functions. Mature DCs up-regulate co-

stimulatory molecules and enhance their ability to form functional peptide-MHC 

complexes. In addition, DCs are critical producers of cytokines and chemokines 

in response to microbial challenge. Therefore, mature DCs become competent 

in CD8+ T cell priming (Banchereau et al. 2000; Mellman and Steinman 2001; 

Dalod et al. 2014). One of the danger signals leading to DC maturation is type I 

IFN. This group of cytokines promote anti-viral mechanisms and can be 

produced by virtually all cell types in response to viral infection (Gallucci et al. 

1999; Hensley et al. 2005; Simmons et al. 2012; Ivashkiv and Donlin 2014). 

 

 In addition to an innate stimulus, DCs often require signals provided by 

helper CD4+ T cells that are mediated through the interaction between CD40 

receptor on the surface of the DC and CD40 ligand (CD40L) on the surface of 

the CD4+ T cell. In response to these signals DCs become competent for 

subsequent CD8+ T cell priming (Ridge et al. 1998). CD8+ T cells undergo 

clonal expansion and differentiation into effector cells. This is the primary 

response to infection. Once the pathogen is cleared, a few cognate T cells 

remain, the memory cells and respond more efficiently in case of a secondary 

exposure to the same antigen. (Williams and Bevan 2007). Interestingly, while 

CD4+ T cells promote efficient memory CD8+ T cell responses (Shedlock and 

Shen 2003; Sun and Bevan 2003), there is still much debate as to the relative 

importance of help during the generation of primary CD8+ T cell responses 

against some infections. Early work of Jennings et al. focused on the effect of 
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CD4+ T cell depletion in the context of HSV infection. They used a CD4-specific 

monoclonal antibody (mAb) GK1.5 treatment which eliminates CD4+ T cells 

without impacting the pool of CD8+ T cells, highlighting the essential role of 

CD4+ T cells in promoting CD8+ T cell cytolytic functions during the primary 

response to HSV infection (Jennings et al. 1991). In HSV-1 infected CD4+ T 

cell-deficient mice, and MHC II deficient mice, unable to promote cognate 

activation of CD4+ T cells, the CD8+ T cell priming is impaired (Smith et al. 

2004; Rajasagi et al. 2009). Likewise the survival of activated antigen-specific 

CD8+ T cells during the primary response to VACV infection also depends on 

the presence of CD4+ T cells (Wiesel et al. 2010). Altogether, these studies 

linked the requirement of cognate interactions between DC and helper CD4+ T 

cells to enhance the DCs ability to induce CTL priming and memory. However, 

the dependence on CD4+ T cell help appears not to be a general principle as 

several infections induce efficient CD8+ T cell primary responses without 

requiring T cell help. This is the case for instance of LCMV or VSV infections 

(Wiesel and Oxenius 2012).  

 

The disparate requirement for CD4+ T cell help in generating CD8+ T cell 

responses has been linked to the strength of the initial inflammatory response. 

Many infections provide strong inflammatory and danger signals inducing CD4+ 

T cell-independent responses. However, in other cases, the infection or tissue 

damage associated with an antigenic challenge leads to more moderate levels 

of danger signal and this is where help appears to be more consistently 

required for efficient priming of CD8+ T cells (Bevan 2004). Such danger signals 

can be type I IFNs, cytokines produced by most cells during virus infection 

providing a good local source of stimuli (Randall and Goodbourn 2008). 

Interestingly, the helper requirement following immunization of mice with OVA 

coated splenocytes could be counteracted by injecting IFN-α, which induced a 

strong CD8+ T cell responses even in CD4+ T cell-deficient mice (Le Bon et al. 

2003). Moreover, during helper-dependent HSV infection, type I IFN has been 

shown to not be required for the direct stimulation of the antigen-specific CD8+ 

T cells themselves but rather involved in DC stimulation. In response, DCs 
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Figure 3.1: Differentiation, sort and in vitro stimulation of bone marrow 
derived equivalent of CD8+ DCs.
(A.) Bone marrow precursors from C57Bl/6 mice were cultured for 8 days in the 
presence of the growth factor FMS-like tyrosine kinase 3 ligand (Flt3L). (B.) The 
equivalent of CD8⁺ DCs (eCD8⁺ DCs) were sorted within the living cells (PI-) based 
on the expression of CD11c⁺ MHC II⁺ CD24⁺. (C.) eCD8⁺ DCs were stimulated with 
recombinant murine IFN-αA, with anti-CD40 monoclonal antibody (α-CD40 mAb) 
or with IFN-αA and α-CD40 mAb together. 
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secrete cytokines and chemokines critical for CTL priming. Importantly this work 

highlighted the synergy of CD4+ T cell help with the initial type I IFN signal, 

together leading to the amplification of IL-15 production by the DCs (Greyer et 

al. 2016). Thus, CD4+ T cell help through CD40L-CD40 interaction promotes the 

improvement of DC priming ability. However, the underlying mechanisms and 

dynamics of the synergy of help signal and innate stimuli for the efficient CD8+ T 

cell responses are unclear.  

 

 The aim of the following chapter was to establish a model that would 

allow the study of mechanisms contributing to the help-driven amplification of 

innate signals. CD8+ DCs being specialised on CTL cross-priming, their 

equivalent (equivalent of CD8+ DCs, eCD8+ DCs) were generated in vitro from 

bone marrow (BM) precursors cultured in the presence of Flt3L. Despite 

differences in their extracellular molecules expression, DCs generated in the 

presence of this cytokine show functional and phenotypic characteristics 

equivalent to the steady-state DCs (Naik et al. 2007; Naik 2010). This methods 

gives rise to sufficient numbers of cells to precisely characterize and examine 

the CD40-driven amplification of various innate responses in vitro using a 

monoclonal antibody anti-CD40 (α-CD40 mAb), known to mimic the “help” 

signal (Greyer et al. 2016). 

 
 

3.2    Results 
 

 3.2.1 Survival and activation profiles of eCD8+ DCs 
  

 BM cells cultured for 8 days in the presence of Flt3L, ligand of the 

receptor fms-like tyrosine kinase 3 (Flt3), resulted in the generation of myeloid 

cells (Figure 3.1.A). The myeloid cells could be identified by unique expression 

of surface markers and separated into pDCs and two cDCs subsets (cDC1 and 

cDC2 splenic equivalents). As shown in Figure 3.1.B, CD24low SIRPαhigh 
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Figure 3.2: Survival of eCD8⁺ DCs following IFN-αA dose response and 
following time course of stimulations from 30 minutes to 8 hours.
(A.) Percentage of living eCD8⁺ DCs following 4 hours of stimulation with escalat-
ing concentrations of IFN-αA (from 1 to 10 000 U/ml), in the presence (purple) or 
absence (orange) of α-CD40 mAb (Pool of 2 independent experiments). 
(B.) Percentage of living eCD8⁺ DCs measured following time course from 30 min-
utes to 8 hours of stimulation with media only (Unstimulated, white), α-CD40 mAb 
(10 μg/ml) (α-CD40, blue), IFN-αA (1000 U/ml) (IFNαA, orange) or IFN-αA (1000 
U/ml) with α-CD40 mAb (10 μg/ml) (IFN-αA + α-CD40, purple) (Pool from 2 to 4 
independent experiments). Error bars represent mean +/- SEM.
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CD11bhigh, equivalents of cDC2 and CD24high SIRPαlow CD11blow equivalents of 

cDC1, also called eCD8+ DCs, can be distinguished. The third DC subtype 

generated is the pDCs identified as B220/CD45R+. Using propidium iodide (PI) 

to exclude dead/dying cells, eCD8+ DCs were sorted from Flt3L cultures on day 

8 on the basis of MHC II+ CD11c+ CD24+ and SIRPα- (Figure 3.1.B).  

 

 IFN-αA was used to mimic endogenous type I IFN in the activation of 

eCD8+ DCs (Le Bon et al. 2003). In order to investigate the help-driven 

amplification of IFN-α/β-initiated innate pathways, eCD8+ DCs were additionally 

stimulated with an anti-CD40 monoclonal antibody (FGK45.5, α-CD40 antibody) 

described as mimicking T cell help (Bennett et al. 1998; Schoenberger et al. 

1998; Feau et al. 2011) (Figure 3.1.C). eCD8+ DCs survival and phenotypic 

changes in response to stimuli were assessed: the cells were stimulated for 4 

hours with increasing doses of IFN-αA in the presence or absence of α-CD40 

antibody (used at a concentration determined by previous work conducted by 

Dr Marie Greyer (Greyer et al. 2016)) (Figure 3.2.A). The proportion of living 

cells was determined using PI exclusion and flow cytometric analysis following 

stimulation. Compared to the unstimulated cells, IFN-αA-stimulated eCD8+ DCs 

showed a constant proportion of living cells across the range of 1 U/ml to 

10,000 U/ml of IFN-αA. Treatment of cells for 4 hours with α-CD40 antibody 

alone showed no difference in cell survival compared to unstimulated cells. 

Moreover, addition of α-CD40 antibody to cells treated with IFN-αA didn’t induce 

any significant decrease or increase in the proportion of living cells. To 

investigate the effect of these various stimuli on the cell survival over time, 

eCD8+ DCs were treated with α-CD40 antibody or IFN-αA alone or with the 

combination of these two stimuli from 30 minutes to 8 hours of stimulation 

following sort (Figure 3.2.B). A control group of eCD8+ DCs were cultured 

unstimulated and harvested at each time point to allow comparison between 

pre- and post- stimulation and culture alone-induced effects. Following 30 

minutes of culture at 37 °C without stimulus, there was only a minimal 20 % loss 

of cell viability. These unstimulated cells showed a progressive loss of cell 

viability with only 40 % of living cells at 8 hours of culture post sort. Therefore, 
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Figure 3.3: Up-regulation of surface and activation markers on IFN-αA stimu-
lated eCD8⁺ DCs.
Geometric Mean of CD86 (A.) or of MHC II (B.) expression measured on eCD8⁺ 
DCs stimulated with escalating concentrations of IFN-αA, in the presence (purple) 
or absence (orange) of α-CD40 mAb (Pool from 2 independent experiments). 
Geometric Mean (upper part) and representative histogram (lower part) of CD86 
(C.) or of MHC II (D.) expression measured on eCD8⁺ DCs stimulated from 30 min-
utes to 8 hours with media only (Unstimulated, white), α-CD40 mAb (10  μg/ml) 
(α-CD40, blue), IFN-αA (1000 U/ml) (IFN-αA, orange) or IFN-αA (1000 U/ml) with 
α-CD40 mAb (10 μg/ml) (IFN-αA + α-CD40, purple) (Pool from 2 to 4 independent 
experiments).
Error bars represent mean +/- SEM. Asterisk indicates statistically significant 
differences between IFN-αA condition and IFN-αA + α-CD40 condition, or between 
IFN-αA condition or IFN-αA + α-CD40 condition, each time point being compared 
to the expression at 30 minutes of the corresponding stimulation as assessed by 
two-way ANOVA; adjusted p-value: * p≤0.0252;  **** p<0.0001.
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no culture were performed for longer than 8 hours. However, the survival rate of 

unstimulated cells was comparable to cells treated with α-CD40 antibody. 

Similarly, cell survival following various IFN-αA doses with or without the 

addition of α-CD40 antibody showed no difference compared to unstimulated 

cells. Precisely, eCD8+ DCs stimulated with α-CD40 antibody and IFN-αA for 

only 30 minutes survived at 80% while the ones stimulated for 8 hours reached 

40 % of living cells. Therefore, while progressive cell death was observed 

following the sort of eCD8+ DCs, none of the stimulations applied to those cells 

increased nor decreased the proportion of cell death induced by the culture 

conditions. 

 

 To assess how the different stimuli and their combination affect the 

activation of eCD8+ DCs, typical DC activation markers were measured. CD86, 

CD83, CD40 or MHC class II molecules are expressed at relatively low levels in 

immature DCs, and increase substantially following activation (Mellman and 

Steinman 2001). Following 4 hours of stimulation with a low dose of IFN-αA (1 

U/ml), eCD8+ DCs expressed the same level of maturation marker CD86 than 

unstimulated cells (Figure 3.3.A). However, escalating doses of type I IFN 

increased CD86 expression on their surface in a dose dependent manner. 

Reaching a peak at the IFN-αA concentration of 1000 U/ml, this expression was 

twofold higher than unstimulated cells. Stimulated cells showed a slight up-

regulation of MHC II expression, which similarly reached a maximum of surface 

expression with 1000 U/ml of IFN-αA (Figure 3.3.B). The addition of α-CD40 

antibody treatment to the IFN-αA stimulation had no influence on the expression 

of these two maturation markers (Figure 3.3.A and B). To ensure this activated 

state would last over longer stimulation, sorted eCD8+ DCs were cultured from 

30 minutes to 8 hours under the four different conditions: no stimulation, 

stimulation with α-CD40 antibody only or IFN-αA only and stimulation with the 

combination of both. Following 8 hours of culture with media only CD86 (Figure 
3.3.C) and MHC II (Figure 3.3.D) expressions were not increased on the cell 

surface. Although CD40 ligation has been shown to induce phenotypic changes 

on DCs including the up-regulation of CD86 (van Kooten and Banchereau 
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Figure 3.4: Up-regulation of CD83 on IFN-αA stimulated eCD8⁺ DCs.
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2000), α-CD40 stimulated cells did not up-regulate CD86 or MHC II (Figure 
3.3.C and D). IFN-αA stimulation strongly increased CD86 expression by 10-

fold (Figure 3.3.C). Finally, a slightly higher expression of CD86 and MHC II 

markers was observed from 8 hours of stimulation with both IFN-αA and α-

CD40 antibody (Figure 3.3.C and D). CD83 is another marker up-regulated by 

DCs in response to activation and has been correlated with functional T cell 

activation (Aerts Toegaert et al. 2007). While 8 hours of IFN-αA stimulation 

alone induced a moderate up-regulation of CD83 surface expression, the 

addition of α-CD40 antibody treatment led to a clear increase of the Geometric 

Mean Fluorescence of this marker, reaching more than 20,000 with the 

combination of these two stimuli, 5-times higher than under the unstimulated 

condition (Figure 3.4.A). Likewise, the percentage of eCD8+ DCs positive for 

this maturation marker progressively increased from 4 hours of IFN-αA 

stimulation (Figure 3.4.B). The α-CD40 antibody treatment in addition 

enhanced the proportion of CD83+ cells to 90 % compared to 50 % with 8 hours 

of IFN-αA stimulation alone. 

 

CD40, the receptor for CD40L (or CD154), involved in the transmission 

of the help signal (Ridge et al. 1998; Schoenberger et al. 1998) can be up-

regulated following DC maturation (O'Sullivan and Thomas 2003). While without 

any stimulation CD40 expression was not increased, eCD8+ DCs treated with 

IFN-αA up-regulated CD40 from 4 hours of stimulation (Figure 3.5.A). 

Moreover, the percentage of cells expressing CD40 also increased over time: 

only 10 % of eCD8+ CD40+ DCs at 30 minutes of IFN-αA stimulation while more 

than 80 % expressed this marker after 4 hours of stimulation. Interestingly, we 

also observed an increase of the CD40 positive cells percentage under no 

stimulation, from 10 % at the start of the culture to 50 % of eCD8+ DCs positive 

for CD40 from 4 hours post-sort (Figure 3.5.B). To assess if α-CD40 antibody 

treatment could, as for IFN-αA stimulation, lead to an increase of CD40 surface 

expression, a competition assay was performed. The α-CD40 antibody used for 

stimulation may mask the CD40 receptor from a fluorochrome conjugated 

antibody used for its staining. Thus, eCD8+ DCs were stimulated over a time 
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Figure 3.5: CD40 up-regulation on IFN-αA stimulated eCD8⁺ DCs.
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(C.) Competition assay. Geometric Mean of eCD8⁺ DCs CD40 expression mea-
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lation with (purple) or without (orange) pre-staining with α-CD40 mAb (n=1).
(D.) eCD8⁺ DCs regulation of Cd40 assessed following time course from 30 min-
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course with IFN-αA, at 1000 U/ml, dose previously shown to induce CD40 up-

regulation (Figure 3.5.A). Following stimulation, each sample was split in two 

with some cells directly stained using the fluorescently conjugated α-CD40 

antibody and the other cells first incubated with α-CD40 antibody mimicking the 

help for 30 minutes, and then stained with the fluorescently conjugated α-CD40 

antibody (Figure 3.5.C). While the two sets of samples were subject to the 

same IFN-αA stimulation, cells that had been pre-incubated with the α-CD40 

antibody used for the treatment were lower in CD40 surface expression, 

suggesting that the binding of fluorescently conjugated α-CD40 antibody is 

occluded.  The efficiency of the α-CD40 antibody binding to the CD40 receptor 

therefore prevented the precise assessment of a potential α-CD40-driven up-

regulation of CD40 receptor on the surface of DCs. Nonetheless, α-CD40 

antibody treatment on its own did not induce Cd40 expression at the mRNA 

level. However, α-CD40 antibody treatment in combination with IFN-αA 

triggered a 250,000-fold increase in Cd40 mRNA expression compared to 

unstimulated control (Figure 3.5.D). 

 

With MHC II, CD86, CD83 and CD40 all up-regulated from 4 hours of 

culture with IFN-αA, sorted eCD8+ DCs phenotypically responded to stimulation.  

Moreover, eCD8+ DCs reached maturation when stimulated with IFN-αA from a 

concentration of 1000 U/ml. This concentration was therefore used for the 

subsequent functional experiments. In order to ensure that the experimental 

conditions did not trigger activation of the cells, an unstimulated condition for 

each time point performed, was included as a control of the inactivated state of 

the cells. In summary, these results support the use of BM-derived eCD8+ DCs 

as an in vitro system to study DCs functional response to stimuli. 

 

 

 

 

 

 



Figure 3.6: Amplification of cytokine and chemokine gene expression trig-
gered by the stimulation of CD40 on eCD8⁺ DCs.
eCD8⁺ DCs cultured for 4 hours with media only (Unstimulated, white), α-CD40 
mAb (10 μg/ml) (α-CD40, blue), IFN-αA (1000 U/ml) (IFN-αA, orange), IFN-αA 
(1000 U/ml) with α-CD40 mAb (10 μg/ml) (IFN-αA + α-CD40, purple), rat IgG2a (10 
μg/ml) (Isotype control, hatched blue) or IFN-αA (1000 U/ml) with rat IgG2a (10 μ
g/ml) (IFN-αA + Isotype control, hatched purple). Following stimulation, the regula-
tion of Il15 (A.), Il6 (B.), Il12b (C.), Ccl4 (D.), Ccl5 (E.), Tnf (F.) was assessed 
(n=1). 

A. B.

D.

C.

E. F.

Unsti
mulat

ed
α-C

D40

IFN-αA

IFN-αA + 
α-C

D40

Iso
typ

e c
ontro

l

IFN-αA + 
Iso

typ
e c

ontro
l

0

200

400

600

R
E

 (I
l1

5 
/ β

2m
, G

ap
dh

, H
pr

t)

α-C
D40

IFN-αA

IFN-αA + 
α-C

D40

Iso
typ

e c
ontro

l

IFN-αA + 
Iso

typ
e c

ontro
l

Unsti
mulat

ed
0

50000

100000

150000

R
E

 (I
l6

 / 
β2

m
, G

ap
dh

, H
pr

t)

Unsti
mulat

ed
0

20000

40000

60000

80000
R

E
 ( T
nf

 / 
β2

m
, G

ap
dh

, H
pr

t)

Unsti
mulat

ed
0

500

1000

1500

2000

2500

R
E

 (I
l1

2b
 / 

β2
m

, G
ap

dh
, H

pr
t)

α-C
D40

IFN-αA

IFN-αA + 
α-C

D40

Iso
typ

e c
ontro

l

IFN-αA + 
Iso

typ
e c

ontro
l

0

2000

4000

6000

R
E

 (C
cl

4 
/ β

2m
, G

ap
dh

, H
pr

t)

Unsti
mulat

ed
0

200

400

600

800

R
E

 (C
cl

5 
/ β

2m
, G

ap
dh

, H
pr

t)

α-C
D40

IFN-αA

IFN-αA + 
α-C

D40

Iso
typ

e c
ontro

l

IFN-αA + 
Iso

typ
e c

ontro
l

Unsti
mulat

ed
α-C

D40

IFN-αA

IFN-αA + 
α-C

D40

Iso
typ

e c
ontro

l

IFN-αA + 
Iso

typ
e c

ontro
l

α-C
D40

IFN-αA

IFN-αA + 
α-C

D40

Iso
typ

e c
ontro

l

IFN-αA + 
Iso

typ
e c

ontro
l

72



 

 

73 

 

 3.2.2 CD40-driven amplification of IFN-αA-initiated 
cytokine and chemokine expression  
 
 In order to characterize the CD40-driven amplification of the responses 

induced by this IFN-αA stimulation, eCD8+ DCs gene regulation was assessed 

following 4 hours under various conditions (Figure 3.6). Without any 

stimulation, none of the various cytokines and chemokines measured was 

expressed at the mRNA level. Stimulation with IFN-αA alone induced the 

expression of different cytokines, such as Il15 (Figure 3.6.A) or Il6 (Figure 
3.6.B) but not of the cytokine Il12b (Figure 3.6.C). The three chemokines 

measured, Ccl3 (data not shown), Ccl4 (Figure 3.6.D) and Ccl5 (Figure 3.6.E) 

were also all induced by IFN-αA stimulation. Interestingly, mRNA expression of 

Il12b, a sub-unit of IL-12 cytokine (Henry et al. 2008), was promoted by α-CD40 

antibody treatment on its own (Figure 3.6.C), in accordance with previous 

observations (Gately et al. 1998; Schulz et al. 2000). Importantly, the mRNA 

expression of these cytokines and chemokines was highly induced when α-

CD40 antibody treatment was added to the IFN-αA stimulation reaching an 

expression level at least 4-times higher than the one triggered by IFN-αA alone. 

This illustrates an amplification of IFN-αA-mediated expression triggered by the 

stimulation of CD40 receptor. Remarkably, while IFN-αA stimulation alone 

induced an expression of Tnf that was almost undetectable, the addition of α-

CD40 antibody enhanced its expression to a level 60,000-times higher than the 

unstimulated control (Figure 3.6.F). Il12b mRNA expression could be measured 

as well following IFN-αA and α-CD40 antibody combined stimulation and was 

visibly higher than the expression induced under the stimulation of CD40 

receptor alone (Figure 3.5.C). In order to confirm that these results illustrated 

the outcome of a specific CD40 stimulation, eCD8+ DCs were stimulated with 

the isotype control of the α-CD40 monoclonal antibody at the same 

concentration and under the same experimental conditions. None of the 

cytokines and chemokines measured could be detected in the presence of the 

isotype control alone. When the cells were stimulated with the combination of 

IFN-αA and the isotype control, the detected mRNA expression reached a level 
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Figure 3.7: α-CD40-driven amplification of IFN-I-induced cytokine expres-
sion independent of IRF3 and IRF7 transcription factors.
C57Bl/6 (control), IRF3KO (A.) or IRF7KO (B.) eCD8⁺ DCs cultured for 4 hours 
with media only (Unstimulated, white), α-CD40 mAb (10 μg/ml) (α-CD40, blue), 
IFN-αA 4 hours (1000 U/ml) (IFN-αA, orange) or IFN-αA 4 hours (1000 U/ml) with 
α-CD40 mAb 4 hours (10 μg/ml) (IFN-αA + α-CD40, purple). Following stimulation, 
the regulation of Il15 (a.), Il6 (b.) and Il12b (c.) was assessed (n=1 or pool from 2 
independent experiments). Error bars represent mean +/- SEM. 

Unstimulated
α-CD40
IFN-αA
IFN-αA + α-CD40

74



 

 

75 

 

comparable to the one induced by IFN-αA stimulation alone showing that the 

specific stimulation of CD40 is required to trigger the amplification of the IFN-

αA-initiated responses (Figure 3.6). In summary, IFN-αA stimulation promotes 

eCD8+ DCs cytokine and chemokine responses. The in vitro amplification of 

these responses requires the specific stimulation of CD40 receptor. 

 

 One possible explanation of this enhancement of the expression of IFN-

αA-triggered genes is that the stimulation of CD40 receptor could lead to the 

production of IFN-α/β, which would then generate a positive feedback loop, 

essentially increasing the level of IFN-αA stimulation in an autocrine manner. 

Type I IFN responses can be induced via the activation of the transcription 

factors IRF3 or IRF7 (Marié et al. 1998). Accordingly, these two transcription 

factors could potentially be involved in the amplification of IFN-αA-induced 

responses. Stimuli responses from eCD8+ DCs derived from C57Bl/6 mice and 

eCD8+ DCs deficient for Irf3 expression were compared (Figure 3.7.A). While 

the level of Il15 (Figure 3.7.A.a), Il6 (Figure 3.7.A.b) and Il12b (Figure 3.7.A.c) 

mRNA expression were different from the control C57Bl/6 cells, Irf3 deficiency 

did not alter the α-CD40-triggered amplification of IFN-αA-induced responses. 

Similarly, the stimulation of Irf7-/- eCD8+ DCs with the combination of IFN-αA 

and α-CD40 antibody for 4 hours induced a clear amplification of IFN-αA-

triggered Il15 (Figure 3.7.B.a) and Il6 (Figure 3.7.B.b) mRNA production as 

well as Il12b expression (Figure 3.7.B.c). In order to inhibit the potential 

feedback loop of IFN-α/β signalling, a blocking antibody against the IFN 

receptor 1 (IFNAR1), MAR1-5A3 was used. IFNAR1 blockade instantly inhibited 

type I IFN pathway as the simultaneous addition of αIFNAR1 and IFN-αA to 

eCD8+ DCs for 4 hours entirely prevented the IFN-αA-driven mRNA expression 

of various cytokines and chemokines such as Il15 (Figure 3.8.A.a), Il6 (Figure 
3.8.A.b), and Tnf (Figure 3.8.A.c). By decreasing the duration of αIFNAR1 

treatment, the initiation of IFN-αA responses became slightly detectable. While 

eCD8+ DCs were stimulated for 4 hours with IFN-αA stimulation, type I IFN 

recognition was blocked for the last 3 hours, the last 2 hours, or for the last hour 

only. In this last case, when the cells were stimulated with IFN-αA for 3 hours 



Figure 3.8: IFN-I feedback stimulation not required for α-CD40-driven amplifi-
cation of IFN-αA-induced responses.
(A.) Efficiency of a blocking monoclonal antibody specific for IFN-α/β receptor sub-
unit 1 MAR1-5A3 (αIFNAR1) to block IFN-αA-induced gene regulation. eCD8⁺ 
DCs were cultured with media only (Unst or Unstimulated, white), IFN-αA 4 hours 
(1000 U/ml) (IFN-αA, orange) or IFN-αA 4 hours (1000 U/ml) with anti-IFNAR1 (10 
μg/ml) (IFN-αA + αIFNAR1, grey striped orange) either for the entire time of the 
experiment, either for the last 3, 2 or 1 hour(s) (1 to 2 independent experiments 
pooled for each time point). Error bars represent mean +/- SEM. 
(B.) IFN-αA-independent amplification of IFN-αA-induced responses. eCD8⁺ DCs 
were cultured with IFN-αA 4 hours (1000 U/ml) (IFN-αA, orange), IFN-αA 4 hours 
(1000 U/ml) with α-CD40 mAb 1 hour (10 μg/ml) (IFN-αA + α-CD40, purple), IFN-α
A 4 hours (1000 U/ml) with anti-IFNAR1 1 hour (10 μg/ml) (IFN-αA + αIFNAR1,  
grey striped orange), or IFN-αA 4 hours (1000 U/ml) with α-CD40 mAb 1 hour (10 
μg/ml) and anti-IFNAR1 1 hour (10 μg/ml) (IFN-αA + α-CD40 + αIFNAR1, grey 
striped purple) (n=1, representative of 2 independent experiments). 
Following stimulation, the regulation of Il15 (a.), Il6 (b.), Tnf (c.) was assessed.
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and its recognition blocked for the last hour of culture, a slight expression of the 

three cytokines could be observed (Figure 3.8.A). Therefore, the αIFNAR1 

treatment was able to efficiently block the IFN-αA-induced pathway and the 

cells required at least 2 to 3 hours of stimulation to induce their cytokine gene 

expressions. The mRNA expression induced after 4 hours of IFN-αA with 

IFNAR1 blocking for the last hour, was lower than 4 hours of IFN-αA stimulation 

only (Figure 3.8.A and B). eCD8+ DCs were again stimulated for 4 hours with 

IFN-αA and received αIFNAR1 treatment for the last hour of culture. Knowing 

that the blocking effect of this antibody was instantaneous, the α-CD40 antibody 

was quickly added to the cells following the start of the IFNAR1 blocking. 

Despite this blocking, the α-CD40 antibody treatment induced the amplification 

of the expression of all three cytokines (Figure 3.8.B). In some cases such as 

for Il15 (Figure 3.8.B.a) and Tnf (Figure 3.8.B.c), the expression induced when 

IFN-αA recognition was blocked was comparable and even higher than the α-

CD40-mediated amplification of IFN-αA-induced expression without any 

IFNAR1 blocking. The amplification triggered via CD40 stimulation while the 

receptor for type I IFN was blocked showed that the gene expression 

enhancement is not due to an autocrine effect of IFN-α/β produced by DCs. 

Therefore, CD40 stimulation in the context of a danger signal such as IFN-αA, 

induces an enhancement of the DCs responses that relies on another 

mechanism than the simple intensification of IFN-α/β production itself.  

 

The results so far depict the in vitro induction of α-CD40-driven 

amplification of IFN-αA-induced mRNA expression. This amplification depends 

on the specific stimulation of CD40 receptor on DCs and leads to the 

enhancement of various cytokines and chemokines expression without 

requiring an autocrine effect of IFN-α/β. 
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Figure 3.9: Time course of α-CD40-driven amplification of IFN-αA-induced 
cytokine and chemokine gene expression.
eCD8⁺ DCs cultured for time course from 30 minutes to 8 hours with media only 
(Unstimulated, white), α-CD40 mAb (10 μg/ml) (α-CD40, blue), IFN-αA (1000 
U/ml) (IFN-αA, orange) or IFN-αA (1000 U/ml) with α-CD40 mAb (10 μg/ml) (IFN-α
A + α-CD40, purple). 
Following stimulation, the regulation of Il15 (A.), Tnf (B.), Il6 (C.), Ccl4 (D.), Il12b 
(E.), Ccl5 (F.) was assessed (Pool from 2 to 3 independent experiments). Error 
bars represent mean +/- SEM. Asterisks indicate statistically significant differences 
between IFN-αA condition and IFN-αA + α-CD40 condition as assessed by 
two-way ANOVA; adjusted p-value: *** p≤0.0002; **** p<0.0001.
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 3.2.3 Kinetics of CD40 signal requirement in the context of 
an IFN-αA-driven activation 
 
 BM-derived eCD8+ DCs can be used effectively in vitro to investigate the 

CD40-driven amplification of IFN-αA-induced signals. So far, mRNA 

assessment was performed following 4 hours of stimulation and discrepancies 

between the expression of the different cytokines could be observed. For 

instance, Tnf was almost not detectable under IFN-αA stimulation (Figure 
3.6.F.) while Il12b was not induced at all under this condition and was 

measured under α-CD40 antibody treatment alone (Figure 3.6.C.). Such 

differences could be due to the precise time point of 4 hours chosen with all 

cytokines and chemokines having the potential to respond the same way to 

stimulation but following different kinetics in response to a danger signal. To 

investigate this possibility, time course experiments were performed by 

stimulating eCD8+ DCs from 30 minutes to 8 hours with IFN-αA alone, with α-

CD40 antibody alone or with the combination of both of these stimuli. As 

previously, the gene expression of cytokines and chemokines was assessed. 

Interestingly, each cytokine and chemokine showed specific dynamic patterns 

of help-driven amplification (Figure 3.9). Expression of Il15 was induced after 2 

hours of IFN-αA stimulation while the addition of α-CD40 antibody showed a 

peak of significant amplification occurring at 4 hours of stimulation (Figure 
3.9.A). The same trend was observed for Tnf with a noticeable high mRNA 

expression under IFN-αA and α-CD40 antibody combined stimulation (Figure 
3.9.B). Other genes where induced earlier, such as Il6, with a peak of α-CD40 

antibody-mediated amplification occurring after 1 hour of stimulation and a 

tempered amplification maintained throughout the time course (Figure 3.9.C). A 

similar pattern was observed for Ccl3 (data not shown) and Ccl4 mRNA 

measurement (Figure 3.9.D). Both of these chemokines showed an early peak 

of gene expression occurring at 1 hour after IFN-αA stimulation. The early 

expression of these genes was unaffected by the addition of α-CD40 antibody. 

However, a second later peak occurred after 4 hours of stimulation indicating a 

late CD40-mediated amplification profile. Finally, other genes such as Il12b 
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Figure 3.10: α-CD40-driven amplification of Il12b independently of IFN-I 
signal.
IFNARKO eCD8⁺ DCs cultured for time course from 30 minutes to 8 hours with 
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Following stimulation, the regulation of Il15 (A.) and Il12b (B.) was assessed (n=1).
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(Figure 3.9.E) and Ccl5 (Figure 3.9.F) were induced later during the time 

course, with a peak of significant CD40-induced amplification occurring at 8 

hours compared to the mRNA expression induced by IFN-αA only. Again, anti-

CD40 stimulation on its own led to a slight Il12b expression from 4 hours but 

this was clearly enhanced when stimulation was combined with IFN-αA for 8 

hours. To confirm that this Il12b expression was independent of type I IFN 

signalling pathway, eCD8+ DCs derived from the BM of IFNAR KO mice that 

lack the expression of IFN-I receptor were stimulated over a similar time course. 

As expected, without type I IFN signalling, the expression of most of the genes, 

such as Il15 didn’t show any expression pattern (Figure 3.10.A). However, 

Il12b was expressed in a type I IFN-independent manner following α-CD40 

antibody treatment (Figure 3.10.B).  

 

At a protein level, the cytokines and chemokines measured followed two 

main patterns of secretion. Cytokines and chemokines such as Il-12p40 (Figure 
3.11.A), Ccl5 (Figure 3.11.B) and Tnf-α (Figure 3.11.C) were not detectable in 

the supernatant of the cells stimulated with IFN-αA stimulation alone. Upon 

combined treatment these levels were highly and significantly secreted, 

reaching concentration of about 1500 pg/ml, 350 pg/ml and 130 pg/ml 

respectively. For those three proteins, the secretion occurred at 8 hours of 

stimulation. By contrast, Il-6 (Figure 3.11.D) and Ccl4 (Figure 3.11.E) were 

detectable in the supernatant following IFN-αA stimulation alone, with both 

proteins secretion amplified from 4 hours with the addition of α-CD40 antibody. 

Ccl4 reached a concentration of 150 pg/ml in the supernatant of the cells 

stimulated with IFN-αA and α-CD40 antibody compared to 100 pg/ml from the 

cells stimulated with IFN-αA only.  

 

The cytokine IL-15 is a transpresented cytokine, meaning that the DCs 

secrete IL-15 and express at their surface the α-chain of the receptor (IL-15Rα) 

as well. When secreted, IL-15 interacts with IL-15Rα and is presented to the 

two other chains of the receptor, β and γ at the surface of the target cells 

(Figure 3.12.A) (Jabri and Abadie 2015). Therefore, its measurement as a 



Figure 3.11: Time course α-CD40-driven amplification of IFN-αA-induced 
cytokine and chemokine secretion.
eCD8⁺ DCs cultured for time course from 30 minutes to 8 hours with media only 
(Unstimulated, white), α-CD40 mAb (10 μg/ml) (α-CD40, blue), IFN-αA (1000 
U/ml) (IFN-αA, orange) or IFN-αA (1000 U/ml) with α-CD40 mAb (10 μg/ml) (IFN-α
A + α-CD40, purple). Following stimulation, the secretion of Il-12p40  (A.), Ccl5 
(B.), Tnf-α (C.), Il-6 (D.), Ccl4 (E.) was assessed (Pool from 2 to 3 independent 
experiments for each time point). Dotted line indicates the limit of detection of each 
cytokine/chemokine for the assay performed. Error bars represent mean +/- SEM. 
Asterisks indicate statistically significant differences between IFN-αA condition 
and IFN-αA + α-CD40 condition as assessed by two-way ANOVA; adjusted p-val-
ue: * p≤0.0332; ** p≤0.0021; *** p≤0.0002; **** p<0.0001.
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secreted cytokine during DC stimulations is challenging and can be 

unrepresentative of its actual level. The intracellular staining of Il-15rα in 

combination with its surface staining allows the investigation of its dynamic 

expression (Figure 3.12.B). Interestingly, Il-15rα expression was induced 

following 4 hours of IFN-αA stimulation and was amplified via α-CD40 treatment 

after 8 hours of stimulation. These results are in accordance with the Il15ra 

gene expression measurement showing that Il15ra is significantly induced 

under IFN-αA and α-CD40 stimulation for 8 hours reaching a relative expression 

about 500-times higher than the unstimulated control condition (Figure 3.12.C). 

 

Finally, mRNA expression and protein formation and secretion are 

processes that potentially consume cell energy and resources (Kafri et al. 

2016). To investigate if the entirety of the IFN-α/β-induced gene sets was 

amplified following treatment with α-CD40 antibody, the gene regulation of other 

Interferon-Stimulated Genes (ISG) such as Irf7 (Figure 3.13.A) and Isg20 

(Figure 3.13.B) were measured. These genes, were, as expected, induced at 

the mRNA level following IFN-αA stimulation. However, the addition of α-CD40 

antibody treatment did not result in any significant amplification of this IFN-αA-

driven expression. These results reveal that CD40-driven amplification targets a 

precise set of genes only.  

 

These experimental results provide key insights into the kinetics of the 

CD40-mediated amplification of the innate pathways in eCD8+ DCs with distinct 

but specific patterns of gene and protein expressions of various molecules 

involved in inflammatory responses. 

 

 

 3.2.4 CD40-CD40L interaction requirement for 
amplification of DC responses 
 
 In order to investigate if the use of an antibody targeting CD40 receptor 

recreates the effect of the CD40L expressed on the surface of the T cell, an 
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Figure 3.12: α-CD40-driven amplification of Il-15rα expression.
(A.) Trans-presentation of the cytokine IL-15. DCs secrete IL-15 and express the 
α-chain of the receptor (IL-15Rα) allowing the cytokine to bind and its presentation 
to the two other chains of the receptor, β and γ at the surface of the T cells (Jabri 
& Abadie 2015).
Percentage of Il-15rα⁺ eCD8⁺ DCs (B.) or eCD8⁺ DCs regulation of Il15rα (C.) 
measured following time course from 30 minutes or 1 hour to 8 hours of stimulation 
with media only (Unstimulated, white), α-CD40 mAb (10 μg/ml) (α-CD40, blue), 
IFN-αA (1000 U/ml) (IFN-αA, orange) and IFN-αA (1000 U/ml) with α-CD40 mAb 
(10 μg/ml) (IFN-αA + α-CD40, purple) (1 to 3 independent experiments pooled). 
Error bars represent mean +/- SEM. Asterisks indicate statistically significant 
differences between IFN-αA condition and IFN-αA + α-CD40 condition as 
assessed by two-way ANOVA; adjusted p-value:  **** p<0.0001. 
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experiment that would allow the interaction between CD40L expressed by the 

CD4+ T cell and CD40 on the DCs was set up. First, the up-regulation of CD40L 

on CD4+ T cells was assessed. For this, naïve CD4+ T cells were isolated from 

C57Bl/6 LNs and stimulated in vitro using anti-CD3/CD28 coated plates (Figure 

3.14). CD40L expression was measured by flow cytometry over time and 

interestingly the surface CD40L expression increased at 6 hours after 

stimulation and decreased progressively thereafter, reaching a level close to the 

resting CD4+ T cells at 48 hours after in vitro stimulation (Figure 3.14.A and B).  

 

 The 6 hours time point was chosen to perform a co-culture experiment of 

CD4+ T cells with eCD8+ DCs (Figure 3.15). CD4+ T cells were enriched from 

OT-II mice that have been engineered to produce CD4+ T cells expressing 

transgenic TCR specific for the OVA323-339 peptide from ovalbumine (OVA). In 

vivo, CD40 stimulation triggered by CD40L requires a cognate CD4+ T cell to 

increase the strength of the interaction. Therefore, OT-II CD4+ T cells were in 

vitro stimulated and co-cultured in the presence of their specific OVA peptide 

with IFN-αA-stimulated DCs. The co-culture system is not amenable to mRNA 

unless the cell types were sorted again which would cause confounding factors 

to the analysis. Therefore, the cytokines and chemokines secreted in the 

supernatant of the co-culture were measured. Control eCD8+ DCs were 

stimulated with IFN-αA alone, α-CD40 antibody alone or combined IFN-αA and 

α-CD40 antibody. As observed previously, IFN-αA stimulation induced Il-6 

secretion that was amplified with the addition of α-CD40 antibody (Figure 
3.15.A). There was no Il-6 secreted from unstimulated eCD8+ DCs co-cultured 

with activated OT-II CD4+ T cells, with or without their specific OVA peptide. 

However, when eCD8+ DCs were stimulated with IFN-αA and co-cultured with 

activated OT-II CD4+ T cells, the levels of Il-6 secreted trended to be higher 

than IFN-αA-stimulated DCs alone, although not to a significantly different level 

(Figure 3.15.A). This amplified secretion induced by the presence of activated 

OT-II CD4+ T cells with IFN-αA-stimulated eCD8+ DCs was also observed for 

the chemokines Ccl4 (Figure 3.15.B) and Ccl5 (Figure 3.15.C), compared to 

the IFN-αA stimulation alone. Moreover, the addition of OT-II CD4+ T cell 
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Figure 3.13: No α-CD40-driven amplification for some IFN-αA-induced 
genes.
eCD8⁺ DCs cultured for time course from 30 minutes to 8 hours with media only 
(Unstimulated, white), α-CD40 mAb (10 μg/ml) (α-CD40, blue), IFN-αA (1000 
U/ml) (IFN-αA, orange) or IFN-αA (1000 U/ml) with α-CD40 mAb (10 μg/ml) (IFN-α
A + α-CD40, purple). 
Following stimulation, the regulation of Irf7 (A.) and Isg20 (B.) was assessed (Pool 
from 2 to 3 independent experiments for each time point). Error bars represent 
mean +/- SEM. ns = non significant difference between IFN-αA condition and 
IFN-αA + α-CD40 condition as assessed by two-way ANOVA.
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specific OVA peptide seemed to slightly increase the secretion of each cytokine 

and chemokine, showing a significant higher secretion of 45 pg/ml of Ccl5 when 

compared to only 15 pg/ml secreted by eCD8+ DCs stimulated with IFN-αA only 

(Figure 3.15.C).  The finding that cytokine and chemokine secretion under IFN-

αA-stimulated eCD8+ DCs co-cultured with activated OT-II CD4+ T cells without 

cognate ligand was comparable to the secretion by eCD8+ DCs stimulated with 

IFN-αA and α-CD40 antibody together indicates that the CD40L up-regulation 

alone could allow CD40L-CD40 interaction and help signal deliverance in vitro. 

The addition of the OVA-specific peptide potentially induced a stronger and 

longer interaction leading to an even greater secretion (Figure 3.15). 

Interestingly, it was observed that OT-II CD4+ T cells co-cultured with 

unstimulated eCD8+ DCs could secrete Ccl4 and Ccl5, this secretion being 

comparable to eCD8+ DCs stimulated with IFN-αA alone. However, a similar 

level of secretion was detectable when the OT-II CD4+ T cells were cultured on 

their own or in the presence of IFN-αA (data not shown). The secretion of Ccl4 

and Ccl5 in the supernatant of the cultured cells was thus linked to OT-II CD4+ 

T cells anti-CD3/CD28 stimulation. The amplification of chemokines secretion 

observed when eCD8+ DCs were stimulated with IFN-αA and co-cultured with 

activated OT-II CD4+ T cells did not originate from the OT-II CD4+ T cells 

themselves.  

 

 These results utilising in vitro activated CD4+ T cells correlated with the 

initial findings using the surrogate α-CD40 antibody stimulations. This depicts 

the ability of CD40L-CD40 interaction to induce a signal able to amplify the IFN-

I-induced pathways within eCD8+ DCs.  

 
 

 3.2.5 CD40-driven amplification of various innate signals 
 

 The results so far demonstrate an enhancement of IFN-αA-triggered 

responses via CD40L-CD40 interaction. DCs can respond to many external 

stimuli other than type I IFN. For instance TLRs stimulation enhances the ability 
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of DC to provide cytokines and chemokines (Reis e Sousa 2004). To investigate 

if interaction of CD40L-CD40 could also act to amplify responses to other innate 

stimuli eCD8+ DCs were stimulated with different TLR agonists: CpG (TLR9 

agonist), LPS (TLR4 agonist) and poly(I:C) (TLR3 agonist), in the presence or 

the absence of α-CD40 antibody for 4 hours (Figure 3.16). In order to compare 

the TLR-induced responses to IFN-αA-triggered responses previously observed 

(Figure 3.6), eCD8+ DCs were stimulated with TLR agonists for 4 hours. The 

three TLR agonists triggered Il15 mRNA production on their own, at various 

levels of expression (Figure 3.16.A). Importantly, these TLR-induced 

expressions were slightly higher following the addition of α-CD40 antibody 

(Figure 3.16.A). Interestingly, the level of expression reached by the 

combination of innate stimuli and CD40 triggering depended on the type of 

innate stimulation received. LPS triggered an expression of Il15 that was 30-

times higher than the unstimulated condition, with α-CD40 antibody addition 

enhancing this expression. p(I:C) stimulation on its own led to an expression 

500-times higher than the unstimulated condition and a slight increase was 

observed with α-CD40 antibody addition (Figure 3.16.A). In the same way, Il6 

(Figure 3.16.B) and Il12b (Figure 3.16.C) expressions were clearly induced 

following TLR9 stimulation and slightly induced following TLR3 and 4 

stimulation. In many cases, these expressions could be enhanced thanks to 

CD40 signalling (Figure 3.16.B and C). For instance, the addition of α-CD40 

antibody treatment to the CpG stimulation triggered a significant amplification of 

these two cytokines, reaching an expression 4-times higher than the expression 

induced by CpG stimulation on its own. As TLRs ligation can induce IFN-α/β 

production as well, it is not possible with these results to confirm that the higher 

mRNA expression we observed was due to the specific amplification of the 

TLR9, TLR4 or TLR3 pathways rather than the amplification of the autocrine 

IFN-I-induced response. To investigate this question, eCD8+ DCs were 

stimulated with LPS in the presence of the αIFNAR1, blocking the type I IFN 

signalling, therefore blocking its potential feedback stimulation. Under αIFNAR1 

treatment, LPS stimulation induced Il15 (Figure 3.17.A), Il-6 (Figure 3.17.B) 

and Tnf (Figure 3.17.C) mRNA expression, presumably via LPS-specific 
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Figure 3.15: In vitro assay of CD4⁺ T cell-CD40L-induced amplification of DC 
response to IFN-αA stimulation. 
On the left, eCD8⁺ DCs cultured for 4 hours with media only (Unstimulated, white), 
α-CD40 mAb 3 hours (10 μg/ml) (α-CD40, blue), IFN-αA 4 hours (1000 U/ml) 
(IFN-αA, orange) or IFN-αA 4 hours (1000 U/ml) with α-CD40 mAb 3 hours (10 μ
g/ml) (IFN-αA + α-CD40, purple). 
On the right, eCD8⁺ DCs were co-cultured for 3 hours with stimulated OT-II CD4⁺ 
T cells only (OT-II, tiled light blue), with stimulated OT-II CD4⁺ T cells and their spe-
cific ovalbumin peptide (OT-II + OVA, tiled dark blue), with stimulated OT-II CD4⁺ T 
cells and IFN-αA (1000 U/ml) (OT-II + IFN-αA, tiled purple), with stimulated OT-II 
CD4⁺ T cells, their specific ovalbumin peptide and IFN-αA (1000 U/ml) (OT-II + 
IFN-αA + OVA, tiled green). Following stimulation, the secretion of Il-6 (A.), Ccl4 
(B.), Ccl5 (C.) was assessed (Pool from 2 independent experiments). Dotted line 
indicates the limit of detection of each cytokine/chemokine for the assay 
performed. Error bars represent mean +/- SEM. Asterisk indicates statistically 
significant differences between IFN-αA condition and OT-II + IFN-αA + OVA condi-
tion as assessed by one-way ANOVA; adjusted p-value: * p≤0.0480.
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pathways. These same pathways were amplified, when α-CD40 treatment was 

added leading to a greater mRNA expression of the three cytokines, even in the 

presence of the IFNAR1 blocking antibody (Figure 3.17).  

 

 In conclusion, the α-CD40-driven amplification of TLR-induced 

responses demonstrates the possibility of enhancing the responses of DCs to 

various innate signals via CD40 engagement.  

 

 

3.3    Discussion 
 

 This chapter characterized an in vitro system of CD40-driven 

amplification of innate pathways in eCD8+ DCs. This amplification could be 

achieved by using either an activating α-CD40 antibody or through the addition 

of antigen-activated CD4+ T cells, thus representing an in vitro model of T cell 

help. IFN-αA stimulation of eCD8+ DCs induced their activation and maturation 

illustrated by the up-regulation of co-stimulatory molecules (Hensley et al. 2005; 

Shortman and Heath 2010; Simmons et al. 2012) and the production of 

cytokines and chemokines. Importantly, the specific stimulation of CD40 on the 

DCs, while not triggering any responses on its own, intensified these innate 

responses in a manner that followed distinct patterns of mRNA expression and 

protein secretion.  

 

 The priming of naïve T cells requires three different signals from the 

DCs: antigen presentation (signal 1), co-stimulatory molecules expression 

(signal 2) and cytokines secretion (signal 3) (Mescher et al. 2006). CD4+ T cell 

help has been suggested to be involved in the provision of signal 3 by DCs 

(Rajasagi et al. 2009; Wiesel et al. 2011), with reports implicating the secretion 

of IL-12 (Filatenkov et al. 2005), IL-15 (Oh et al. 2008) or CCL3 and CCL4 

(Castellino et al. 2006). eCD8+ DCs responded to simultaneous stimulation with 

IFN-αA and the α-CD40 antibody by transcribing and secreting cytokines and 

chemokines with distinct kinetics. For example, while Il-12p40, Ccl5 or Tnf-α 
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Figure 3.16: α-CD40-driven amplification of various TLR-agonists-induced 
responses.
eCD8⁺ DCs cultured for 4 hours with media only (Unstimulated, white), α-CD40 
mAb (10 μg/ml) (α-CD40, blue), CpG (1 μg/ml), LPS (10 μg/ml) or poly(I:C) (10 μ
g/ml) alone (CpG/LPS/p(I:C), orange) or with α-CD40 mAb (10 μg/ml) (Cp-
G/LPS/p(I:C) + α-CD40, purple). Following stimulation, the regulation of Il15 (A.), 
Il6 (B.), Il12b (C.) was assessed (Pool from 2 independent experiments). Error 
bars represent mean +/- SEM. Asterisk indicates statistically significant differences 
between TLR-agonist condition and TLR-agonist + α-CD40 condition as assessed 
by one-way ANOVA; adjusted p-value: ** p≤0.0053; *** p≤0.0006.
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secretion displayed a late enhancement, the provision of Il-6, Ccl3 and Ccl4 

was amplified from 4 hours of stimulation. This unique pattern aligns with the 

described kinetics of in vivo supply of those molecules. The chemokines CCL3 

and CCL4 are secreted by licensed DCs interacting with CD4+ T cells and the 

injection of blocking antibodies against CCL3 and CCL4 leads to a diminution of 

naïve CD8+ T cells accumulation in the draining LN (Castellino et al. 2006; 

Castellino and Germain 2007). On the other hand, the up-regulation of Il-15rα 

after 8 hours of stimulation with the combination of IFN-αA and α-CD40 

antibody, and the amplification of Il15 from 4 hours of stimulation suggested 

that Il-15 as a protein is likely to be secreted and trans-presented from 8 hours 

of stimulation. This cytokine has been shown to be required for optimal clonal 

expansion of specific CD8+ T cells in the context of VSV and HSV infections 

(Schluns and Lefrançois 2003; Greyer et al. 2016). It is therefore possible that 

the enhanced secretion of Ccl3 and Ccl4 we observed in vitro aims to increase 

the CD8+ T cell chemoattraction towards the antigen-bearing DCs potentially 

increasing the chance of meeting and engaging the antigen specific CD8+ T 

cells. Il-15 could subsequently play a role in the expansion of specific CD8+ T 

cells. While many of the IFN-αA-induced genes and proteins assessed were 

amplified by the addition of α-CD40 antibody, not all ISGs expression was 

enhanced, revealing that the effect of CD40 treatment is specific to some 

genes. Therefore the α-CD40-driven amplification of innate DC responses is 

precise in terms of kinetics and targets.  

 

 Our culture conditions were associated with expected rates of cell death 

with a half-life of 1.5 days in vivo, splenic CD8+ DCs are subject to a rapid 

turnover (Kamath et al. 2000). Similarly, Flt3-DCs that are isolated from the 

spleen and cultured in nutritive medium display significant cell death (Vremec et 

al. 2015). While apoptotic cells release signals and molecules to attract 

phagocytes to the site of cell death (Peter et al. 2010), no up-regulation of 

maturation markers such as CD86 or CD83 was observed and therefore no 

spontaneous maturation occurred over the culture time of eCD8+ DCs. 

Interestingly, the addition of CD40 stimulation left the cells in an immature state, 
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Figure 3.17: CD40-driven amplification of LPS-induced responses inde-
pendently of IFN-α/β recognition.
eCD8⁺ DCs cultured over 4 hours under various conditions. Cells were cultured 
with LPS 4 hours (10 μg/ml) (LPS, orange), LPS 4 hours (10 μg/ml) with α-CD40 
mAb for 1 hour (10 μg/ml) (LPS + α-CD40, purple),  LPS for 4 hours (10 μg/ml) with 
anti-IFNAR1 for 1 hour (10 μg/ml) (LPS + αIFNAR1, grey striped orange), or LPS 
for 4 hours (10 μg/ml) with α-CD40 mAb for 1 hour (10 μg/ml) and anti-IFNAR1 1 
hour (10 μg/ml) (LPS + α-CD40 + αIFNAR1,  grey striped purple). Following stimu-
lation, the regulation of Il15 (A.), Il6 (B.), Tnf (C.) was assessed (n=1).

94



 

 

95 

 

suggesting that whatever danger signals released during the culture-associated 

cell death, these were not significantly amplified by CD40. In 2016, Greyer et al. 

observed that the outcome of DCs cytokine response is dictated by the stimulus 

they received. Exposing mice to cell-associated OVA and challenging them with 

either LPS or poly(I:C) drove different cytokine responses and requirements for 

the generation of specific CTL priming. However, in both cases these CD8+ T 

cell responses were helper dependent (Greyer et al. 2016). We observed the 

CD40-driven enhancement of various TLR-induced pathways, such as those 

triggered by LPS or CpG, indicating that T cell help is not tied to the 

amplification of a single innate pathway. Corroborating these results, CD40L-

transfected fibroblasts and CpG stimulation act together synergistically on CD8+ 

DCs to produce an higher amount of IL-12 than both stimuli on their own 

(Schulz et al. 2000). While the potential danger signals released due to 

spontaneous cell death would not activate eCD8+ DCs nor be amplified 

following CD40 stimulation, DCs sense and precisely respond to the innate 

signals from the microenvironment in which they encounter antigen. In turn, 

CD4 T cell help enhances those responses. These results allow us to consider 

the CD40-mediated amplification as a general principle applicable to a broad 

range of microbial or danger signals sensed by the DCs. 

 

 The cytokine IL-12 has been shown to increase the proliferation and 

cytotoxic abilities of CD8+ T cells (Henry et al. 2008). Consistent with previous 

work, Il12b was expressed in vitro following CD40 stimulation alone (Gately et 

al. 1998; Schulz et al. 2000) while CD40 stimulation on its own did not trigger 

the expression of most of the other cytokines and chemokines assessed. 

Although Il12b was not induced by IFN-αA stimulation alone, the synergy of this 

stimulation with CD40 signalling triggered its up-regulation (Schulz et al. 2000; 

Reis e Sousa 2001). Without stimulation, DCs constitutively express low levels 

of CD40, which was sufficient to induce a low IL-12 expression when cells 

receive the CD40L stimulus alone. On the other hand, activating signals such 

as microbial challenge (Schulz et al. 2000) or IFN-α/β stimulation (Figure 3.5), 

induce CD40 surface expression on DCs and increase the number of cells 
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expressing it along with other maturation markers. This receptor up-regulation 

could be enough to increase the CD40L-induced IL-12 expression. Therefore, in 

the case of genes adopting the same pattern of expression, the enhancement 

might be caused by the innate signal-mediated increase of the DCs ability to 

respond to CD40 signalling. Moreover, this phenomenon might depend on the 

innate signal received by the DCs as their stimulation with TLR-agonists on their 

own led to significant Il12b mRNA production and to an IFN-α/β-independent 

enhancement following the addition of α-CD40 antibody treatment. Therefore, 

the ability of DCs to produce IL-12 in response to CD40 stimulation in vivo is 

dependent on the exposure to microbial stimuli, a conclusion that aligns with a 

report by Schulz et al. (Schulz et al. 2000).  

 

 Although some experiments would gain from experimental replicates, the 

findings presented herein characterised eCD8+ DCs responses to α-CD40 

antibody treatment and innate stimulation. Knowing that CD40L-CD40 

interaction is required for providing the help signal (Bennett et al. 1998; Ridge et 

al. 1998; Schoenberger et al. 1998), these results support the use of the in vitro 

system of BM-derived DCs to resolve the molecular mechanisms that enable 

the “help”-mediated amplification of innate pathways. 
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4.1    Introduction 
 

 The priming of antigen-specific CD8+ T cells involves carefully 

orchestrated interactions between naïve CD8+ T cells and DCs. In many 

situations the effectiveness of this interaction also depends on CD4+ T cells 

triggering CD40 via CD40L in a process referred to as T cell help. Various 

studies have highlighted the relative kinetics of the CD8+ T cell (Mempel et al. 

2004; Garcia et al. 2007; Henrickson et al. 2008) and CD4+ T cell (Miller et al. 

2004; Celli et al. 2007) response, but little is known about the dynamics through 

which activated CD4+ T cells provide such help to the antigen-bearing DC. 

Cross-presenting XCR1+ DCs serve as important platforms allowing dynamic 

interactions between CD4+ and CD8+ T cells (Eickhoff et al. 2015; Hor et al. 

2015) and in vivo imaging indicates that CD4+ T cells can have surprisingly 

short, transient interactions with CD8+ T cell-DCs clusters (Hor et al. 2015). This 

suggests that activated cognate CD4+ T cells are able to rapidly move between 

the DCs, triggering dynamic and short-lived interactions required for CTL 

priming. Furthermore, CD40L expression occurs in a transient manner following 

activation and its interaction with CD40 is tightly controlled (van Kooten and 

Banchereau 2000). These findings raise the possibility that the provision of T 

cell help to DC is a surprisingly rapid event.  
 

 The binding of CD40L to CD40 leads to the recruitment of TRAF proteins 

(Bishop et al. 2007). In contrast to TRAF6 that binds to a unique domain of the 

cytoplasmic tail of CD40, TRAF2 and TRAF3 associate with an overlapping 

region of the receptor. Moreover, TRAF5 only indirectly interacts with CD40 via 

TRAF2 or TRAF3 (van Kooten and Banchereau 2000; Ajibade et al. 2013). 

Accordingly, the combined deficiency for CD40-TRAF2/3/5 signalling causes a 

different phenotype compared to the single deficiency for CD40-TRAF6 

signalling (Chatzigeorgiou et al. 2014). Upon recruitment, TRAF2 and TRAF3 

are degraded leading to the activation of NIK and therefore to the processing of 

p100 into p52 and stimulation of the non canonical NF-κB pathway (Zarnegar et 

al. 2008; Elgueta et al. 2009). TRAF6 recruitment leads to TAK1 activation. 
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TAK1 is a kinase that can phosphorylate and activate MAPKs (p38, JNK and 

ERK) and IKK-NF-κB pathways (Ajibade et al. 2013) (Figure 1.4). 

 

 The components of these different signalling pathways, their crosstalk 

and outcomes have been extensively studied and described. The integration of 

a signal can occur overtime, triggering gradual transcriptional changes. For 

instance, histone modifications accumulate in a temporal manner, following 

prolonged LPS stimulation and these epigenetic modifications are linked to and 

potentially depend on the activation of transcription factors (TFs) (Vandenbon et 

al. 2018). A TF can translocate to the nucleus with different rates depending on 

the stimulus received by the cells and these nuclear translocation dynamics 

influence the gene expression. For instance, NF-κB can move in and out of the 

nucleus, adopting an oscillatory behaviour and controlling the gene expression 

into waves (Zambrano et al. 2016; Lane et al. 2017). Moreover, these distinct 

expression patterns are linked to specific molecular functions: in response to 

TNF stimulation, an early cluster of NF-κB-dependent genes encodes cytokines 

while a late cluster of genes encodes cell surface receptors and adhesion 

molecules (Tian et al. 2005). These studies highlight an integration of signal 

overtime leading to dynamic changes in transcription, but it is unclear if such 

signalling integration also occurs in DCs that have received T cell help.  

 

Our previous results revealed α-CD40-driven amplification of IFN-αA-

induced gene expression and protein secretion after 4 to 8 hours of stimulation. 

However, all stimulations were applied on the cells simultaneously. To better 

understand the underlying kinetics and molecular regulation, we set up an in 

vitro system allowing us to study the timing of CD40-driven amplification of 

innate response in DCs and investigate the underlying molecular mechanisms.  

 

 
 
 
 



Figure 4.1: Investigation of the dynamics of CD40-driven amplification of  
IFN-αA-initiated pathway.
eCD8⁺ DCs cultured for 4 hours under various conditions:
(A.) Dynamics of IFN-αA-induced responses. Cells were stimulated with IFN-αA 
only (1000 U/ml) either for 4 hours, either for the last 3 hours, 2 hours, 1 hour, 30 
minutes or 15 minutes. 
(B.) Dynamics of IFN-αA responses under 4 hours of α-CD40 treatment. Cells 
were stimulated with α-CD40 mAb (10 μg/ml) (α-CD40) for 4 hours while being 
also stimulated with IFN-αA (1000 U/ml) either for 4 hours, either for the last 3 
hours, 2 hours, 1 hour, 30 minutes or 15 minutes.
(C.) Dynamics of responses to α-CD40 treatment under 4 hours of IFN-αA stimula-
tion. Cells were stimulated with IFN-αA (1000 U/ml) for 4 hours while being stimu-
lated with α-CD40 mAb (10 μg/ml) (α-CD40) either for 4 hours, either for the last 3 
hours, 2 hours, 1 hour, 30 minutes or 15 minutes. 
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4.2    Results 
 
 4.2.1 Dynamics of α-CD40-mediated amplification 
 
 In order to investigate molecular pathways triggered by CD40 

stimulation, the precise dynamics of eCD8+ DCs responses first required to be 

clarified. When eCD8+ DCs were stimulated with IFN-αA and treated with α-

CD40 antibody, the expression of many cytokines and chemokines, such as Il-

15, Tnf or Ccl5, were highly induced from 4 hours of IFN-αA stimulation 

(Chapter 3). This timing was therefore chosen as a constant duration of 

stimulation. Knowing that α-CD40 antibody treatment on its own does not 

trigger many cytokine and chemokine responses (Chapter 3), the first point that 

required clarification was the dynamics of the responses to IFN-αA stimulation 

on its own. Therefore, eCD8+ DCs were subjected to 4 hours of culture and 

received IFN-αA stimulus either from the beginning, either for the last 3 hours, 

the last 2 hours, the last hour, the last 30 minutes or the last 15 minutes (Figure 
4.1.A). This way, the minimum amount of time required for inducing IFN-αA-

mediated responses would be assessed. In order to precisely investigate the 

effect of one signal on the outcome of another one, the treatment with α-CD40 

antibody was first administered ahead of IFN-αA stimulation, instead of applying 

these two signals simultaneously as performed previously (Chapter 3). This 

experimental set up interrogated whether stimulating CD40 receptor would 

“prepare” the DCs to, for instance, respond faster to the subsequent challenge 

with an innate signal. Thus, eCD8+ DCs were treated with α-CD40 antibody for 

4 hours and received IFN-αA for various amounts of time within this α-CD40 

treatment: for 4 hours, for the last 3 hours, 2 hours, 1 hour, 30 minutes or 15 

minutes of culture post-sort (Figure 4.1.B). Comparing these results with the 

dynamics of IFN-αA stimulation alone as explained in Figure 4.1.A would 

therefore highlight the effect of α-CD40 antibody pre-treatment on DCs. Another 

hypothesis on the dynamics of the two different signals is that once the DCs 

have been licensed through the recognition of an innate signal, they might be 
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Figure 4.2: One hour of α-CD40 signaling efficient for the initiation of Il15 
mRNA amplification.
(A.) eCD8⁺ DCs stimulated as described in Figure 4.1.A. (B.) eCD8⁺ DCs stimu-
lated as described in Figure 4.1.B. (C.) eCD8⁺ DCs stimulated as described in 
Figure 4.1.C. 
Following stimulation, the regulation of Il15 was assessed. The shaded area indi-
cates the highest mRNA expression induced by IFNαA stimulation, value indicated 
in orange (Pool from at least 3 independent experiments for each time point). Error 
bars represent mean +/- SEM. Asterisks indicate statistically significant differences 
between the IFNαA condition itself versus the unstimulated condition (A.) or 
between the condition itself versus the highest mRNA expression induced by IFN
αA stimulation alone (B.) and (C.) as assessed by one-way ANOVA; adjusted 
p-value: * p≤0.0454; *** p≤0.0006; **** p<0.0001.
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able to respond more quickly to α-CD40 signal. Therefore, through 4 hours of 

IFN-αA stimulation, eCD8+ DCs received α-CD40 antibody treatment for the 

entirety of the culture post-sort, or for the last 3 hours, 2 hours, 1 hour, 30 

minutes or 15 minutes (Figure 4.1.C). Knowing that 4 hours of IFN-αA 

stimulation led to the activation of eCD8+ DCs (Chapter 3), the addition of α-

CD40 stimulus for various amounts of time will highlight the shortest duration 

required for this signal to induce the enhancement of the response of licensed 

DC.  

 
 
  4.2.1.1 Rapid amplification of IFN-αA-induced Il-15 and Il-6 
gene expression followed by enhancement of protein secretion 
 
 As observed previously, IFNα/β stimulation activates DCs and can trigger 

IL-15 production (Verbist and Klonowski 2012; Greyer et al. 2016) (Chapter 3). 

While eCD8+ DCs were cultured for 4 hours following sort, the IFN-αA 

stimulation for 15 minutes or for 30 minutes was not sufficient to trigger Il15 

mRNA expression (Figure 4.2.A). However, this mRNA expression was 

significantly induced from 1 hour of stimulation and reached a plateau of 

expression with a maximum of expression about 185-times higher than the 

unstimulated control. When the cells were treated for 4 hours with α-CD40 

antibody, 1 hour of IFN-αA stimulation was still required to start inducing Il15 

mRNA expression (Figure 4.2.B). Once Il15 expression was initiated, it further 

increased upon longer IFN-αA stimulation. When compared to the highest 

expression induced by IFN-αA alone (185 of relative expression compared to 

unstimulated condition, Figure 4.2.A), this amplified expression became 

significant when cells were treated with both stimulations for 4 hours. 

Interestingly, when eCD8+ DCs were stimulated with IFN-αA, the treatment with 

α-CD40 antibody for only the last 30 minutes of the experiment was enough to 

show signs of amplification of the Il15 expression (Figure 4.2.C). This 

amplification gradually increased the longer the cells were treated with α-CD40 

antibody, reaching an expression significantly higher than the expression 



        α-CD40 stimulation under 4hrs IFN-αA
Figure 4.3: Rapid initiation of Il6 mRNA amplification followed by Il-6 secre-
tion via α-CD40 signalling.
(A., D.) eCD8⁺ DCs stimulated as described in Figure 4.1.A. (B., E.) eCD8⁺ DCs 
stimulated as described in Figure 4.1.B. (C., F.) eCD8⁺ DCs stimulated as 
described in Figure 4.1.C. 
Following stimulation, the regulation of Il6 (A., B., C.) and Il-6 (D., E., F.) was 
assessed. The shaded area indicates the highest mRNA expression induced by 
IFN-αA stimulation, value indicated in orange, while the dotted line indicates the 
limit of detection of the cytokine for the assay performed (Pool from at least 2 inde-
pendent experiments for each time point). Error bars represent mean +/- SEM. 
Asterisks indicate statistically significant differences between the IFN-αA condition 
itself versus the unstimulated condition (A., D.) or between the condition itself 
versus the highest expression/secretion induced by IFN-αA stimulation alone (B., 
C., E., F.) as assessed by one-way ANOVA; adjusted p-value: * p≤0.0325; ** p≤
0.0084; *** p≤0.0009; **** p<0.0001.
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induced by IFN-αA alone from 3 hours of α-CD40 antibody treatment. 

Therefore, in the case of Il15 expression, at least about 1 hour of IFN-αA 

stimulation is necessary for DCs to start responding and inducing its mRNA 

production. Pre-treating the cells with α-CD40 antibody for 3 hours before the 

addition of IFN-αA did not prepare the eCD8+ DCs to respond faster to this 

innate stimulus. Conversely, if the cells were pre-treated with IFN-αA, only a 

short duration, about 30 minutes, of α-CD40 antibody treatment efficiently 

induces the amplification of these IFN-αA-triggered responses (Figure 4.2). 

Moreover, this short CD40 stimulation in the context of IFN-αA-stimulated cells 

was also sufficient to trigger Tnf and Ccl5 mRNA amplification (data not shown). 

This shows that IFN-αA stimulation endows the DC with a remarkably quick 

responsiveness to CD40 stimulation.  

 

 As for Il15, Il6 mRNA expression required about 1 hour of IFN-αA 

stimulation to be induced, this IFN-αA-triggered expression was about 81 000-

times higher than the basal expression under unstimulated condition (Figure 
4.3.A). When eCD8+ DCs were pre-treated with α-CD40 antibody, the 

amplification of the Il6 expression did not occur following only 15 or 30 minutes 

of IFN-αA stimulation (Figure 4.3.B). However, 1 hour of IFN-αA stimulation 

under α-CD40 constant presence, triggered Il6 mRNA expression and this 

expression was significantly amplified, when compared to its highest IFN-αA-

induced expression as observed in Figure 4.3.A. Interestingly, when eCD8+ 

DCs were stimulated over 4 hours with IFN-αA, treatment with α-CD40 antibody 

only for the last 15 minutes was sufficient to induce the enhancement of Il6 

mRNA expression, significantly triggered with 30 minutes of this treatment 

(Figure 4.3.C). This amplification then quickly stopped even with longer α-CD40 

antibody treatment, returning to the IFN-αA-triggered level of mRNA expression. 

Following Il6 mRNA expression occurring after 1 hour of IFN-αA, the Il-6 

cytokine could be measured in the supernatant of the eCD8+ DCs stimulated for 

3 hours with IFN-αA (Figure 4.3.D). This secretion reached a maximum of 61 

pg/ml in the cell stimulated for 4 hours. Correlating with the amplification of Il6 

observed after 1 hour of IFN-αA in the presence of α-CD40 antibody, the 



Figure 4.4: α-CD40 signalling rapidly initiating amplification of Ccl4 expres-
sion and Ccl4 secretion by IFN-αA-stimulated cells.
(A., D.) eCD8⁺ DCs stimulated as described in Figure 4.1.A. (B., E.) eCD8⁺ DCs 
stimulated as described in Figure 4.1.B. (C., F.) eCD8⁺ DCs stimulated as 
described in Figure 4.1.C. 
Following stimulation, the regulation of Ccl4 (A., B., C.) and Ccl4 (D., E., F.) was 
assessed. The shaded area indicates the highest mRNA expression induced by 
IFN-αA stimulation, value indicated in orange, while the dotted line indicates the 
limit of detection of the cytokine for the assay performed (Pool from at least 2 inde-
pendent experiments for each time point). Error bars represent mean +/- SEM. 
Asterisks indicate statistically significant differences between the IFN-αA condition 
itself versus the unstimulated condition (A., D.) or between the condition itself 
versus the highest expression/secretion induced by IFN-αA stimulation alone (B., 
C., E., F.) as assessed by one-way ANOVA; adjusted p-value: * p≤0.0130; ** p≤
0.0027; *** p≤0.0006; **** p<0.0001.
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secretion of Il-6 was significantly amplified after 3 hours of IFN-αA stimulation 

under CD40 engagement (Figure 4.3.E). When eCD8+ DCs were treated with 

IFN-αA for 4 hours, the secretion of Il-6 was significantly amplified from only 1 

hour of α-CD40 antibody stimulation, secreted at a concentration more than 

twice higher than the IFN-αA-mediated secretion (Figure 4.3.F). Interestingly, 

the amplification of the secretion gradually increased with longer stimulation of 

CD40 receptor until reaching a plateau at about 300 pg/ml of protein secreted in 

the supernatant. 

 

 In conclusion, Il15, and Il6 expressions display similar dynamics with 

IFN-αA-induced expression occurring after at least 1 hour of stimulation. This 

stimulation duration requirement was unchanged with α-CD40 antibody pre-

treatment. However, when eCD8+ DCs were stimulated for the overall 4 hours 

of the experiment with IFN-αA, the addition of α-CD40 antibody for a short 

amount of time induced a quick and clear amplification of the IFN-αA-mediated 

mRNA expression. More importantly, the concentration of secreted Il-6 cytokine 

was as well amplified by the treatment with α-CD40 antibody under constant 

IFN-αA stimulation. This amplified secretion occurred subsequently to the 

observed mRNA amplification.  

 

 

  4.2.1.2 Rapid enhancement of both IFN-αA-induced Ccl4 gene 
expression and secretion 

 
As for many cytokines, when eCD8+ DCs were stimulated for increasing 

amounts of time with IFN-αA, at least 1 hour of stimulus was required for 

inducing Ccl4 mRNA expression (Figure 4.4.A). This timing of stimulus also 

induced the maximum of Ccl4 expression, at about 660-times higher than 

unstimulated cells. When eCD8+ DCs were treated over 4 hours with α-CD40 

antibody, 1 hour of IFN-αA stimulation was again required to trigger Ccl4 

expression higher than the expression induced by IFN-αA on its own (Figure 
4.4.B). However, when the cells received IFN-αA stimulus for the entire time of 
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Figure 4.5: Early inhibition of α-CD40-driven Il12b mRNA expression by 
IFN-αA stimulation.
(A.) eCD8⁺ DCs stimulated as described in Figure 4.1.A. (B.) eCD8⁺ DCs stimu-
lated as described in Figure 4.1.B. (C.) eCD8⁺ DCs stimulated as described in 
Figure 4.1.C. 
Following stimulation, the regulation of Il12b was assessed. The highest mRNA 
expression induced by IFN-αA stimulation value is indicated in orange (Pool from 
at least 3 independent experiments for each time point). Error bars represent mean 
+/- SEM. Asterisks indicate statistically significant differences between the IFN-αA 
condition itself versus the unstimulated condition (A.) or between the condition 
itself versus the highest mRNA expression induced by IFN-αA stimulation alone 
(B.) and (C.) as assessed by one-way ANOVA; adjusted p-value: * p≤0.0307.
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the experiment, only 30 minutes of α-CD40 antibody was enough to increase 

the IFN-αA-mediated Ccl4 expression (Figure 4.4.C). Ccl4 chemokine was 

detectable in the supernatant of eCD8+ DCs from 2 hours of IFN-αA stimulation 

(Figure 4.4.D). This secretion reached a maximum of 73 pg/ml from cells 

stimulated for 4 hours with IFN-αA. Even in the presence of α-CD40 antibody 

treatment, the 2 hours of IFN-αA stimulation were again required for detectable 

Ccl4 secretion (Figure 4.4.E). This secretion was clearly higher under the effect 

of CD40 stimulation reaching a significant amplification of IFN-αA-mediated 

after 4 hours of α-CD40 antibody treatment. When the cells received IFN-αA 

stimulation for 4 hours, 15 minutes of α-CD40 antibody was sufficient to 

observe a slight increase to Ccl4 secretion (Figure 4.4.F). Only 1 hour of CD40 

engagement was sufficient to trigger a significant amplification of this secretion. 

As for Il-6, this secretion mediated by the combination of α-CD40 antibody and 

IFN-αA stimulation reached a plateau at 150 pg/ml that would not be exceeded 

even with longer duration of CD40 stimulation. Interestingly, while Ccl4 

amplification occurred from 30 minutes to 1 hour of α-CD40 antibody treatment, 

the amplification of Ccl4 secretion was already triggered by the activated DCs 

with only 15 to 30 minutes of CD40 engagement. 

 

Therefore, as for Il6 mRNA expression, Ccl4 required 1 hour at least of 

IFN-αA stimulation irrespective of pre-treatment with α-CD40 antibody. IFN-αA-

stimulated eCD8+ DCs could quickly respond to CD40 stimulation and triggered 

Ccl4 amplification. More importantly, a rapid amplification of the IFN-αA-

mediated Ccl4 secretion in the supernatant of the cells was also observed. Thus 

the effect of α-CD40 antibody in the amplification of Ccl4 IFN-αA-mediated 

secretion and of Ccl4 mRNA expression occurred with similar dynamics.  

 

 

  4.2.1.3 Early inhibition of α-CD40-driven Il12b expression 

 
 As observed previously, Il12b mRNA expression was hardly triggered by 

IFN-αA stimulation (Figure 4.5.A). In our previous results, the cytokine was not 
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Figure 4.6: Transient effect of α-CD40 through IFN-αA stimulation.
eCD8⁺ DCs cultured with media only (Unstimulated 4hrs, white), IFN-αA 4 hours 
(1000 U/ml) (IFN-αA 4hrs, orange), IFN-αA 4 hours (1000 U/ml) with α-CD40 mAb 
4 hours (10 μg/ml) (IFN-αA 4hrs + α-CD40 4hrs, purple) or IFN-αA 4 hours (1000 
U/ml) with α-CD40 mAb 1 hour (10 μg/ml) (IFN-αA 4hrs + α-CD40 1hr, grey striped, 
purple). For this last sample, cells were cultured with IFN-αA and α-CD40 mAb for 
1 hour, then cells were collected, washed and resuspended with IFN-αA in fresh 
media for the remaining time of the experiment (A.). Following stimulation, the 
regulation of Il15 (B.), Il6 (C.), Tnf (D.) was assessed (n=1).

A.

Unsti
mulat

ed
 4h

rs
0

20000

40000

60000

R
E 

(Il
6 

/ β
2m

, G
ap

dh
, H

pr
t)

 

D.

4 hours culture post-sort

4hrs0hr 1hr 2hrs 3hrs

wash

α-CD40 1hr

IFN-αA 4hrs

C.

Unsti
mulat

ed
 4h

rs
0

2000

4000

6000

R
E 

(T
nf

 / 
β2

m
, G

ap
dh

, H
pr

t)
 

IFN
-αA 4h

rs

IFN-αA 4h
rs 

+ α
-C

D40
 4h

rs

IFN-αA 4h
rs 

+ α
-C

D40
 1h

r

B.

110



 

 

111 

 

detectable in the supernatant of stimulated cells for 4 hours or less. Despite the 

really low induction of Il12b at this time point, α-CD40 antibody treatment alone 

triggered a slight mRNA expression when compared to the unstimulated 

condition (Chapter 3). Interestingly, while eCD8+ DCs stimulated with both 

signals IFN-αA and α-CD40 antibody for 4 hours expressed Il12b mRNA at a 

level about 1000-times higher than the IFN-αA-induced expression, Il12b was 

also detected when CD40 was stimulated for 4 hours alone (Figure 4.5.B). 

Compared to Il12b expression induced by IFN-αA stimulation, its levels was 

significantly higher by α-CD40 antibody for 4 hours alone or with 15 minutes of 

IFN-αA stimulation. Interestingly, this expression seemed to gradually decrease 

when the duration of IFN-αA stimulation increased and became almost 

undetectable after 1 hour of IFN-αA stimulation. When constantly stimulated 

with IFN-αA, eCD8+ DCs initiated Il12b mRNA expression from 1 hour of α-

CD40 antibody treatment and gradually increased this expression (Figure 
4.5.C).  

 

 The results displayed in Chapter 3 highlighted the requirement of the 

stimulation with the combination of IFN-αA and α-CD40 antibody to induce a 

detectable Il12b expression. However α-CD40 antibody pre-treatment revealed 

a significant expression of Il12b via CD40 stimulation alone and more 

importantly its active inhibition triggered by increasing IFN-αA stimulation. This 

inhibition was subsequently abolished and allowed Il12b expression under the 

combination of IFN-αA and CD40 stimulations.  

 

 

  4.2.1.4 Transient effect of α-CD40 engagement  
 
 Once eCD8+ DCs have been stimulated with IFN-αA, they are ready to 

quickly respond to α-CD40 antibody treatment displaying signs of amplification 

from as early as 15 minutes of CD40 stimulation (Figures 4.2.C, 4.3.C, 4.4.C). 

However, this experimental set up did not demonstrate whether this short hit 

with α-CD40 antibody is sufficient to subsequently lead to amplification 



Figure 4.7: α-CD40 coated plate assay for transient effect of help-driven 
amplification.
eCD8⁺ DCs cultured with media only (Unstimulated, white), IFN-αA 4 hours (1000 
U/ml) (IFN-αA, orange), IFN-αA 4 hours (1000 U/ml) with α-CD40 mAb 4 hours (10 
μg/ml) (IFN-αA 4hrs + α-CD40 4hrs, purple) or IFN-αA 4 hours (1000 U/ml) added 
to α-CD40 mAb-coated wells for 15 minutes (50 μg/ml) (IFN-αA + α-CD40 coated, 
dark blue). For this last condition, from 2 hours of IFN-αA stimulation, cells were 
transferred in α-CD40 coated plate wells for 15 minutes (A.) (Pool from 3 indepen-
dent experiments). Error bars represent mean +/- SEM. Following stimulation, the 
regulation of Il15 (B.), Il6 (C.), Tnf (D.) was assessed. 
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comparable with longer CD40 stimulation or whether 4 hours of CD40 

engagement is required for an optimal α-CD40-driven amplification of IFN-αA-

triggered expression. In order to investigate these two possibilities, CD40 was 

stimulated in a transient manner in the context of IFN-αA stimulus. eCD8+ DCs 

were stimulated with both IFN-αA and α-CD40 antibody for an hour. The cells 

were then collected, washed and cultured again in fresh media for 3 additional 

hours with IFN-αA only (Figure 4.6.A). eCD8+ DCs stimulated with the 

combination of IFN-αA and α-CD40 antibody for 4 hours displayed the expected 

amplification of IFN-αA-triggered Il15 mRNA expression (Figure 4.6.B). 

However, this expression was impaired when the cells were subjected to the 

transient α-CD40 antibody treatment. On the other hand, those cells displayed 

level of Il6 mRNA expression comparable to the level induced by IFN-αA 

stimulation (Figure 4.6.C). Moreover, Tnf expression was amplified by the 

transient effect of α-CD40 antibody at a level comparable to the CD40 

stimulation for 4 hours in the presence of IFN-αA (Figure 4.6.D). In the context 

of IFN-αA stimulation, the measurement of Tnf regulation seemed to highlight a 

short CD40 stimulation sufficient to induce its amplification. However, the other 

cytokines did not respond the same way to the stimulations.  

 

 Optimally, eCD8+ DCs would be stimulated with IFN-αA and 

subsequently treated with α-CD40 antibody for a short amount of time without 

wash that would lead to cell loss and/or additional stimulation. For a transient 

and controlled CD40 stimulation, plates were coated with α-CD40 antibody 

overnight at a concentration of 50 μg/ml, a concentration that induced an α-

CD40-driven amplification of IFN-αA-triggered cytokines expression comparable 

to the one measured when the antibody was diluted in the media (data not 

shown). eCD8+ DCs were stimulated for 2 hours with IFN-αA, as this duration 

was enough to induce the mRNA expression of cytokines (Figures 4.2.A, 4.3.A, 

4.4.A) (Figure 4.7.A). Activated DCs were then transferred to α-CD40 antibody 

coated wells for only 15 minutes before pursuing the culture in their original 

well. Il15 mRNA expression induced under this condition displayed and 

amplification about 2-times higher than the IFN-αA-induced Il15 (Figure 4.7.B). 
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Figure 4.8: Quality control for samples of 2 independent sequencing runs in 
a combined analysis. 
RNA sequencing analysis of eCD8⁺ DCs stimulated with media only (Unstimu-
lated), α-CD40 mAb for various timings (10 μg/ml) (α-CD40 4hrs, 30min or 15min), 
IFN-αA 4 hours (1000 U/ml) (IFN-αA 4hrs) or IFN-αA 4 hours (1000 U/ml) with 
α-CD40 mAb for various timings (10 μg/ml) (IFN-αA 4hrs + α-CD40 4hrs, 30min or 
15min). Samples are from 2 independent sequencing runs, 3 independent experi-
ments for each sequencing runs.
(A.) Box Plot of normalised Counts per Million (CPM) values for each sample. Grey 
background identifies the samples of the sequencing run number 1. White back-
ground identifies the samples of the sequencing run number 2. Marked with an 
arrow are the 4 samples behaving slightly differently than the others. (B., C.) Prin-
cipal Component Analysis (PCA) of 10,222 present genes. Stimulatory conditions, 
α-CD40 treatment timing and sequencing runs are colored as indicated.
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Moreover, this expression was comparable to the one induced in cells 

stimulated with both IFN-αA and diluted α-CD40 antibody for 4 hours. Similarly, 

Il6 (Figure 4.7.C) and Tnf (Figure 4.7.D) IFN-αA-induced respective expression 

was amplified with this short contact of 15 minutes with α-CD40 antibody coated 

well. However, an important variability was observed for instance for Il15 and 

Tnf expression and the effect of transferring DCs during the experiment was 

difficult to assess. Moreover, a consequent amount of cells remained at the 

bottom of the coated wells, observed via microscope following the experiments. 

Therefore, this method was not utilized to pursue the investigation of α-CD40-

mediated amplification kinetics.  

 

 These results support the hypothesis of a short hit of CD40 stimulation 

being sufficient to induce the amplification of IFN-αA-triggered cytokine 

expression. While 1 to 2 hours of IFN-αA stimulation is required to promote DC 

activation, a brief encounter with the α-CD40 antibody is sufficient to generate 

the amplification of cytokine and chemokine expressions. Interestingly, while the 

α-CD40-mediated amplification of Il-6 secretion occurred subsequently of the 

amplification of its IFNαA-induced mRNA expression, Ccl4 chemokine showed 

a slightly different pattern. Only 30 minutes of CD40 stimulation efficiently 

induced the amplification of the IFNαA-mediated Ccl4 secretion in the 

supernatant and Ccl4 mRNA expression, these two events occurring with 

similar dynamics.  

 

 

 4.2.2 Investigation of the α-CD40-mediated amplification 
mechanisms 

 

 In order to study the potential pathway(s) responsible for the early and 

late transcriptional regulation in response to CD40 stimulation, the response of 

eCD8+ DCs to stimulation was assessed at the transcriptomic level. eCD8+ DCs 

were kept unstimulated or were treated with α-CD40 antibody and IFN-αA in 

combination or separately. The α-CD40 antibody treatment was performed for 



Figure 4.9: Hierarchical clustering of samples according to the similar 
expression profiles by the most variable genes through the different condi-
tions.
Heatmap displaying z-score transformed CPM expression values. FDR adjusted 
p-value ≤ 0.01. Marked with an arrow are the 4 samples behaving slightly different-
ly than the others. 
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15 minutes, 30 minutes and 4 hours, to investigate the early and late mRNA 

regulation as described in Figure 4.1. The preparation of the samples was 

performed into two sets of three experiments, each set sequenced separately. 

Each experiment contained an unstimulated condition and an IFN-αA stimulated 

condition: therefore the two independent sequencing runs could be 

subsequently combined for analysis. 10,349 genes were obtained from 

normalized and batch corrected data and the distribution of all gene counts, as 

normalized Counts per Million (CPM) values, per sample was plotted for quality 

control reasons (Figure 4.8.A). The samples from the second sequencing run 

showed clear homogeneity compared to the samples from the first sequencing 

run with 4 samples, deriving from one experiment, that behaved differently. 

However, the distribution of the gene reads for each sample showed a median 

value consistent through both sequencing runs allowing the comparison of the 

responses to the respective conditions (Figure 4.8.A). About 10,222 present 

genes were extracted on the basis of the mean CPM values of at least one 

condition equal or higher than the defined background value. The similarities 

and differences within the conditions were further assessed by reducing the 

dimension of the data in form of a Principal Component Analysis (PCA) on the 

normalized CPM values (Figure 4.8.B). The two first principal components, 

PC1 and PC2, summarized more than 75% of the overall variance of the data 

set. The samples clearly clustered into two groups according to similar 

expression patterns. One cluster contained the unstimulated DCs and the 

samples treated with α-CD40 antibody alone. All the samples stimulated with 

IFN-αA with or without α-CD40 antibody clustered together separately, 

demonstrating that IFN-αA triggered important changes in the transcriptional 

programming of DCs. While the four samples of the first experiment displayed a 

higher variance than the others, those were still clustering in accordance with 

their conditions within the two different groups (Figure 4.8.C). Therefore, the 

quality of the data set allowed further analysis.  

 

 In addition of providing a first insight in the gene regulation through the 

various conditions, the hierarchical clustering of the 3678 most variable genes 



Figure 4.10: Overviews of proportions of differentially expressed (DE) genes 
between stimulatory conditions.
(A.) Analysis of 10,222 present genes with changes in expression greater than 
Fold Change (FC) |1.5| and a FDR-corrected step-up p-value ≤ 0.05 (Benjamini & 
Hochberg) were defined as differentially expressed (DE). Total number of DE 
genes are marked in green, increased expression are marked in red (Up) and 
decreased expression are marked in blue (Down).
(B.) Venn diagram of the 341 DE genes between IFN-αA 4 hours and all IFN-αA 4 
hours + α-CD40 conditions.
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corroborated the PCA results (Figure 4.9). Samples from unstimulated DCs 

clustered again with samples treated with α-CD40 antibody for different 

durations. This result indicates that the stimulation of CD40 alone does not lead 

to significant changes in the DC transcriptional regulation. In contrast, IFN-αA-

stimulated samples in absence and presence of α-CD40 antibody clustered 

together (Figure 4.9, left part). Again, four samples from the first experiment 

displayed a slightly different behaviour. However, their overall gene regulation 

was mainly dictated by IFN-αA stimulation and followed the same trend 

compared to the samples they clustered with. Moreover, the number of 

differentially expressed (DE) genes proportionally illustrated the gene regulation 

and therefore the impact of stimuli on the DCs (Figure 4.10.A). The comparison 

of the gene regulation under the various conditions did not reveal significant 

differences induced by the α-CD40 antibody treatment alone. As expected from 

the PCA and heatmap of the most variable genes (Figures 4.8 and 4.9), a large 

number of DE genes were identified when IFN-αA stimulation was compared to 

the unstimulated control, with about 1237 genes up-regulated and 3949 genes 

down-regulated. This IFN-αA stimulation were further compared to the 

responses induced by the combination of IFN-αA with α-CD40 antibody 

treatment. Interestingly, the number of DE genes relative to the IFN-αA alone 

group progressively increased the longer the treatment duration was. Indeed, 

21 genes were significantly regulated following only 15 minutes of CD40 

stimulation while 30 minutes triggered the regulation of 115 genes. Finally, 295 

genes were significantly regulated by 4 hours of α-CD40 antibody added to IFN-

αA stimulation. In total, 341 genes were significantly regulated when IFN-αA 

with α-CD40 treatment conditions were compared to IFN-αA stimulation alone 

(Figure 4.10.B). Therefore, while the strongest gene regulation was induced by 

IFN-αA stimulation, the addition of α-CD40 treatment induced increasing 

changes in the mRNA expression of various genes. 

 

 Focusing only on the 341 DE genes induced when α-CD40 antibody was 

added to IFN-αA stimulation, the samples clustered together depending on their 

respective condition, showing that the gene regulation the cells displayed was 



Figure 4.11: Time kinetics of α-CD40-mediated gene regulation.
(A.) Hierarchical clustering of samples according to similar expression profiles by 
the union of 341 DE genes as determined in Figure 4.11.B.  Standardised expres-
sion values were shifted to mean zero and scaled to standard deviation of one. 
(B.) Self Organizing Map (SOM) of genes belonging to the union of 341 DE genes 
as determined in Figure 4.11.B according to their expression into 25 clusters. 
Clusters following similar patterns of expression are highlighted. Some genes are 
identified within their respective cluster.  
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caused by the stimulation they received (Figure 4.11.A). The self-organizing 

map (SOM) clustering is an unsupervised technique of pattern recognition 

through different conditions. Therefore, SOMs can be used to define groups of 

genes with similar expression patterns. Performing SOM clustering on the 341 

DE genes defined above allowed the separation of the DE genes into 24 

different patterns of gene expression throughout the conditions (Figure 4.11.B) 

(see Appendix Table A.1 for a complete list of the 341 genes divided into the 24 

clusters). One square represents one cluster of genes following the same 

pattern of regulation. For instance, the upper right square, dark blue under IFN-

αA stimulation, became light blue/ light green with 15 to 30 minutes of α-CD40 

and orange with 4 hours of treatment. Therefore, the group of genes contained 

in this cluster became gradually up-regulated with longer duration of CD40 

stimulation. Taken together, hierarchical and SOM clustering analysis revealed 

a gradual regulation of the genes, the majority of which is not induced by 

treatment with IFN-αA alone (Figure 4.10.A and B). Indeed, the effect of the 

addition of α-CD40 antibody treatment for the last 15 minutes of IFN-αA 

stimulation was confined to a small group of genes specifically regulated at that 

time point, noticeably containing Fos. With 30 minutes of treatment added to 

IFN-αA stimulation, up-regulated genes were grouped into 7 clusters. 

Chemokines such as Ccl5, Cxcl10 or NF-κB-related genes belonged to this 

clusters and followed the same pattern of expression. Interestingly, a large part 

of them were not up-regulated anymore when α-CD40 antibody treatment was 

applied for 4 hours. Instead, the expression of another group of genes 

increased highlighting a specific group of gene clusters regulated with 4 hours 

of CD40 ligation, genes that were not rapidly regulated with only 15 or 30 

minutes of CD40 stimulation. In accordance with the results presented in 

Chapter 3, this group of gene clusters contained pivotal genes for the DC 

functions such as Il15 or Il15rα. The Venn diagram performed on the 341 DE 

genes between IFN-αA compared to IFN-αA with α-CD40 antibody for the three 

time points also illustrated the differences and similarities between these lists of 

genes as well (Figure 4.10.B). Only 12 genes were differentially expressed in a 

sustained manner that occurred at all time points examined after α-CD40 
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Figure 4.12: Biological functions of SOM clusters.
(A.) Biological process Gene Ontology (GO)-term enrichment performed on 15 
minutes gene clusters (as displayed in Figure 4.12.B). GO-terms with a p-value < 
0.001 are displayed.
(B.) Network of GO-term enrichment performed on 30 minutes gene clusters (as 
displayed in Figure 4.12.B) (turquoise) and 4 hours gene clusters (as displayed in 
Figure 4.12.B) (blue). Nodes represent the GO-terms, edges represent a score 
inversely proportional of the genes shared between the two GO-terms. GO-terms 
with a p-value ≤ 0.005 and connected with three or more GO term are displayed.
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treatment. Those genes were for instance Nfkbia or Dusp1/2 and Junb related 

to the NF-κB or MAPKinase signalling pathways respectively, or the chemokine 

Ccl3. About 224 genes, including Il15 and Il15ra, were specifically regulated 

under IFN-αA and α-CD40 antibody 4 hours and 38 genes were following IFN-

αA with α-CD40 treatment for 30 minutes. Corroborating the SOM clustering, 

Fos was the only gene specifically and significantly regulated after 15 minutes 

of CD40.  

 

 Overall, the RNA sequencing analysis revealed a major transcriptomic 

regulation occurring following IFN-αA stimulation. CD40 ligation induced a rapid 

gene regulation in the context of this IFN-αA stimulation. Interestingly, the 

duration of CD40 signalling impacts distinct group of genes highlighting time 

kinetics of α-CD40-mediated gene regulation.  

 

 

  4.2.2.1 α-CD40-mediated functional regulation 

 

 To investigate changes in the biological program induced by IFN-αA 

stimulation over the initial phases of DC activation, 15 minutes, 30 minutes or 4 

hours of CD40 stimulation induced the regulation of distinct groups of genes. 

Gene ontology (GO) analysis was performed to link the DE genes to biological 

processes of the cells (Figure 4.12). Regarding the small group of clusters 

containing genes that were rapidly up-regulated with the addition of α-CD40 

antibody for 15 minutes (see Figure 4.11.B), the top enriched GO terms were 

linked to the response to IFN and to the immune responses to virus or stress 

(Figure 4.12.A). Although only a few genes were part of this group, 14 out of 15 

genes belonged to the Interferome (Rusinova et al. 2013) and specifically to the 

Type I IFN signature genes. The BiNGO plugin in combination with the 

EnrichmentMap plugin of Cytoscape allows investigating the GO-terms 

significantly overrepresented within only two sets of genes. The number of 

genes regulated after only 15 minutes of α-CD40 treatment being low and 

therefore not included in this analysis. However this tool was used to visualize 



Figure 4.13: Transcription factors network.
Network of transcription factors genes. Colours represent the expression as stan-
dardised to the mean of IFN-αA-induced expression. Red are the up-regulated 
genes under the indicated comparison; blue are the down-regulated genes under 
the indicated comparison. Framed are the significant expression with a p-value ≤ 
0.05. 
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the changes in biological functions induced between 30 minutes and 4 hours of 

α-CD40 antibody treatment added to IFN-αA stimulation (Figure 4.12.B). Each 

node represents a GO-term, enriched either after 30 minutes or 4 hours of α-

CD40 treatment. The inner and outer parts of each node represent the 

enrichment score of the GO-term at the respective time point and are therefore 

proportional to the contribution of the α-CD40 30 minutes and 4 hours data set 

respectively. For instance, a large dark blue outer part of the node represents 

an important contribution of the α-CD40 4 hours SOM clusters for the 

concerned GO-term. The edges (links between the nodes), thickness and 

length represent the number of common genes that belong to both GO-terms. 

Thus, the closer two GO-terms are, the higher is the number of genes they 

share. GO-terms cluster together, sharing genes and similar functions. Finally, 

WordCloud was used to determine the most common words in a cluster of GO-

terms. As expected, the α-CD40 treatment for 4 hours induced genes that 

allowed the enrichment of GO-terms related to immune responses (blue 

borders, Figure 4.12.B), with for instance the cytokine production, containing 

Cd40, Irf1, Tnf and Traf6 (GO-terms cluster 5), or the lymphocyte activation, 

with Traf6 and Relb potentially involved in Th1 responses (GO-terms cluster 7). 

With only 30 minutes of α-CD40 treatment, genes are linked to anti-apoptotic 

processes (GO-terms cluster 15) and response to stimulus (GO-terms clusters 

4 and 9) (turquoise borders, Figure 4.12.B). In addition, transcriptional activity 

was rapidly initiated after 30 minutes of CD40 ligation (GO-terms clusters 10, 11 

and 12). Importantly, the NF-κB pathway was highlighted as involved from 30 

minutes up to 4 hours, in a sustained manner (GO-terms clusters 1 and 13).  

 

 The rapid enrichment of genes associated to the transcriptional activity 

encouraged the investigation of the regulation of the TF. Filtering the entire data 

set with the murine TFs and chromatin remodelers, about 580 TFs were 

expressed by eCD8+ DCs in at least one of the different experimental conditions 

assessed. Focusing on the IFN-αA 4 hours and all IFN-αA 4 hours with α-CD40 

conditions, the expression patterns of 505 co-regulated TFs were chosen to 

generate a network structure based on Pearson correlation (ρ=0.83). Each TF 



Figure 4.14: Differential gene expression patterns.
IFN-αA-induced only genes (A.), amplified genes (B.) and specific genes (C.) 
expression patterns illustrated with schema (left), heatmap (middle) and box plot of 
one example mRNA expression (right). For the box plot, each dot is a sample, the 
line inside the box is the median, the whiskers represent the variability. Asterisks 
indicate statistically significant differences between Unstimulated condition and 
IFN-αA condition or between IFN-αA condition and IFN-αA + α-CD40 condition as 
assessed by one-way ANOVA; adjusted p-value: ns = non significant; * p≤0.032; 
**** p<0.0001.
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is represented by a node and is linked to other TFs according to similar 

expression patterns in the data set (Figure 4.13). Only 15 minutes of α-CD40 

treatment added to IFN-αA stimulation was enough to induce a rapid up-

regulation of a group of TFs including key regulators such as Fos, Jun and 

Junb. 30 minutes of α-CD40 treatment triggered a distinct pattern, allowing the 

significant up-regulation of Irf1, Rel and Atf3. Furthermore, many of those 

rapidly regulated TFs were not anymore significantly induced when α-CD40 

antibody was applied for 4 hours. Instead, the expression of Nf-κB2, Rela and 

Relb was newly enhanced with longer CD40 stimulation. Interestingly, while the 

enhancement of expression of TFs was regulated in a dynamic manner through 

α-CD40 treatment, a group of IFN-α/β-related TFs such as Irf2, Irf5, Irf7 or Stat1 

were unchanged or slightly but not significantly down-regulated under CD40 

stimulation (Figure 4.13, see Appendix Figure A.1 for gene regulation of Irfs 

and Stat1/2).  

 

 The gene regulation established by α-CD40 treatment clearly follows a 

precise kinetic. This dynamic regulation affects distinct biological functions of 

the DCs. Genes involved in cell survival and immune defences were rapidly 

amplified, setting up the responses of cells to their stimulus. These immune 

responses were further enhanced in a sustained manner with longer CD40 

signalling. Importantly, a clear program controlling the transcriptional activity 

was rapidly induced within only 15 minutes to 30 minutes of CD40 stimulation. 

This might indicate the de novo synthesis of cellular proteins required for the 

DCs responses to help signal.  

 

 

  4.2.2.2 Various gene regulation patterns in response to IFN-
αA and α-CD40 stimuli 
 

 Different processes influence gene expression such as transcriptional 

regulatory elements, TFs and chromatin rearrangements (Maston et al. 2006). 

As observed previously, α-CD40 treatment triggered a dynamic program of 



Figure 4.15: Transcription factors binding prediction IFN-αA-induced genes.
(A.) Top three of the transcription factors (TFs) motifs clusters enriched for IFN-α
A-induced genes signature as presented in Figure 4.15.A.
(B.) Venn diagram of IFN-αA-induced genes targeted by Irf9.
(C.) Box plot of Irf9 expression: each dot is a sample, the line inside the box is the 
median, the whiskers represent the variability. Asterisks indicate statistically signifi-
cant differences between Unstimulated condition and IFN-αA condition or between 
IFN-αA condition and IFN-αA + α-CD40 condition as assessed by one-way 
ANOVA; adjusted p-value: ns = non significant; ** p≤0.002.
(D.) JAK-STAT pathway enrichment, colours represent -1.5 ≤ FC (blue) and FC ≤ 
1.5 (red) under the comparison Unstimulated vs IFN-αA 4 hours. 
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transcriptional activity and processes. Aiming to investigate the possible gene 

regulation induced by the CD40 stimulation, precise expression patterns were 

defined (Figure 4.14). The expression of the majority of IFN-αA-triggered genes 

was not affected by α-CD40 antibody treatment (Figure 4.14.A). The 

expression of this group of 1101 IFN-αA responsive genes, including for 

instance Isg20, was induced by IFN-αA stimulation and displayed no change 

with the addition of α-CD40 treatment. Those genes are called “IFN-αA-induced 

only” genes. As described previously Il15 and 29 other genes expression was 

triggered by IFN-αA stimulation and significantly enhanced when CD40 was 

stimulated in addition (Figure 4.14.B). Those genes are the “amplified” genes. 

Finally, the RNA sequencing analysis highlighted a third pattern of expression. 

A group of genes neither triggered by IFN-αA stimulation on its own nor by 

CD40 stimulation required the combination of both, IFN-αA and α-CD40 signals 

to be induced (Figure 4.14.C). This was the case for 111 genes, including 

Cd83.  

 

 The stimulation of DCs with IFN-αA in combination with α-CD40 

treatment induces precise and gene specific regulation patterns. Interestingly, 

within the large amount of IFN-αA-induced genes, some of these genes 

respond to α-CD40 mAb addition, being amplified, while other genes seem 

immune to its effect. Under our statistical analysis characteristics, a third pattern 

of gene expression requiring the combination of IFN-αA and α-CD40 treatment 

was highlighted. This might indicate various molecular mechanisms responsible 

for α-CD40-driven amplification and IFN-αA and α-CD40 signalling synergy. 

 

 

  4.2.2.3 Mechanism of α-CD40-mediated amplification of IFN-
αA-induced gene expression 

 

 To investigate the potential regulatory mechanisms of α-CD40-driven 

gene amplification, TFs potentially involved in the expression of the DE genes 

were predicted by iRegulon. In this promoter binding prediction (PBP) analysis, 
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TFs enriched amplified genes 4 hrs
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Figure 4.16: Transcription factors binding prediction amplified genes.
(A.) Top three of the TFs motifs clusters enriched for amplified 30 minutes genes 
signature as presented in Figure 4.15.B.
(B.) Top three of the TFs motifs clusters enriched for amplified 4 hours genes 
signature as presented in Figure 4.15.B.
(C.) Venn diagram of all TF motifs enriched for IFN-αA -induced genes, amplified 
genes 30 minutes and amplified genes 4 hours.
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similar motifs recognised by TFs are grouped into clusters of enriched motifs. 

Different TFs can be associated to a motif. Therefore, a cluster of motifs can 

potentially be recognised by a group of different TFs. Clusters of motifs are 

classified depending on their Normalized Enrichment Score (NES), ranking the 

likelihood of a motif to be involved in the regulation of the genes assessed. IFN-

α/β stimulation triggers the activation of the JAK-STAT pathway eventually 

leading to the formation of ISGF3 complex containing IRF9, STAT1 and STAT2 

TFs involved in the ISGs expression (Chapter 1, Figure 1.2). As expected, the 

three top scored clusters motifs enriched for the groups of IFN-αA-induced 

genes included IRFs and STATs TF family members (Figure 4.15.A). 63% of 

the 1101 IFN-αA-induced only genes contained motifs targeted by IRF9 (Figure 
4.15.B). Like other IRF family members and consistent with the TF footprint 

(Figure 4.13), Irf9 was significantly induced following IFN-αA stimulation and 

was not regulated by the addition of α-CD40 antibody treatment (Figure 
4.15.C). Moreover, when comparing IFN-αA-stimulated eCD8+ DCs with 

unstimulated cells, most of the JAK-STAT pathway actors were up-regulated 

highlighting a possible positive feedback regulation of IFN-αA (Figure 4.15.D). 

The main characteristic of the amplified genes is that they first undergo an up-

regulation triggered by IFN-αA signal alone. Therefore, the underlying 

mechanism of regulation of these genes could be equivalent to the IFN-αA-

induced only genes regulation and involve an additional regulator specific and 

responsible for the amplification phenomenon. Unfortunately, the number of 

genes amplified following only 15 minutes of CD40 stimulation was too low to 

conduct the PBP. The highest enriched cluster of motifs for the amplified genes 

following 30 minutes (Figure 4.16.A), or 4 hours of α-CD40 treatment (Figure 
4.16.B) was similar, containing Irfs and Stats. When the enrichment results from 

PBP for the IFN-α-induced only genes and the amplified genes were compared, 

about 34 TFs were predicted as possibly involved in the expression of all three 

sets of genes (Figure 4.16.C). As expected, the Irf family members as well as 

the Stats proteins constituted this group of TFs potentially regulating the 

expression of the three sets of genes. Those TFs are therefore strong 

candidates for the expression of IFN-αA-induced only genes and for the IFN- 
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Figure 4.17: Transcription factors binding prediction amplified Irf9-targeted 
genes.
(A.) Top five of the transcription factors motifs clusters enriched for Irf9-targeted 
amplified 30 minutes genes signature.
(B.) Top three of the transcription factors motifs clusters enriched for Irf9-targeted 
amplified 4 hours genes signature.
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αA-mediated expression of the amplified genes. As highlighted previously, 

genes rapidly regulated with only 30 minutes of α-CD40 treatment are different 

than the genes regulated following 4 hours of treatment and can be linked to a 

slightly different biological program (Figure 4.12.B). Therefore, it is not 

surprising that different TFs could be involved in the expression of the two sets 

of amplified genes. The genes rapidly amplified display motifs uniquely 

recognised by Egr, Hivep and Jun families while Klfs and Sp1/2/3 TFs can bind 

specifically to the genes amplified under 4 hours of α-CD40 treatment. 

Following the hypothesis that the amplification process could involve the same 

mechanism at 30 minutes and 4 hours of CD40 stimulation, a group of 34 TFs 

was commonly enriched for the two sets of genes: the family of NF-κB TFs were 

found in this group. Importantly, this family of TFs was not enriched for the IFN-

αA-induced only genes. Therefore, the presence of motifs recognized by TFs 

such as NF-κB TFs could govern which of the IFN-αA-induced genes can be 

amplified. 

 

 It has been described earlier that IRF9 is crucial for ISGF3 binding to 

ISRE and therefore for ISGs expression in response to IFN-α/β (Au-Yeung et al. 

2013). Irf9 was further considered as a major candidate regulator of IFN-αA-

induced genes. Lists of α-CD40-amplified genes were filtered for the genes 

possibly targeted by Irf9. When the Irf9-targeted genes were filtered from the 30 

minutes amplified genes (Figure 4.17.A) and from the 4 hours amplified genes 

(Figure 4.17.B), the NF-κB members appeared in the enriched TF motif 

clusters with a high NES. Abundantly linked to CD40 stimulation (Figure 1.4) 

(Elgueta et al. 2009; Ma and Clark 2009), this signalling cascade was previously 

highlighted as regulated from 30 minutes to 4 hours of CD40 stimulation in the 

SOM clustering analysis (Figure 4.12.B). Furthermore, the NF-κB signalling 

pathway had the highest enrichment score on the DE genes between IFN-αA 

stimulation and IFN-αA with α-CD40 treatment for 4 hours meaning that many 

of those DE genes are involved in the signalling pathway (Figure 4.18). 

Focusing on the genes involved in the precise enriched KEGG pathway, most 

of them, for instance Traf6, Tnf, Tnfaip3, followed a specific gene signature 



Figure 4.18: Pathway enrichment analysis of DE genes induced by the addi-
tion of α-CD40 treatment to IFN-αA stimulation.
KEGG pathway enrichment analysis performed on DE genes between IFN-αA 4 
hours and IFN-αA 4 hours + α-CD40 4 hours. Pathways enriched with a p-value < 
0.0001.
The DE genes were identified with -1.5 ≤ FC ≤ 1.5 and FDR adjusted p-value ≤ 
0.05 from 10,222 present genes. 
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(Figure 4.19). The cytokine Tnf displayed the highest fold change, with an 

mRNA expression upon IFN-αA with α-CD40 up to 10-times higher than the 

expression triggered by IFN-αA alone, while the negative regulator Nfkbia, also 

called IκBα, has the overall highest mean expression under the combination of 

IFN-αA and α-CD40 stimulation.  

 
 While there are various TRAFs proteins that interact with CD40, TRAF6, 

is the only one that has been clearly shown as involved downstream of CD40 

activation in DCs (Ma and Clark 2009). Moreover, TRAF6 mediates the 

activation of the canonical NF-κB signalling pathway via the recruitment of 

TAK1 that phosphorylated IKKα and IKKβ leading to the degradation of IκB and 

therefore to the release of p105/RelA TFs (Figure 1.4) (Ghosh and Dass 2016). 

Interestingly, the expression of Traf6 was induced following 8 hours of α-CD40 

antibody and this expression was intensified when eCD8+ DCs were stimulated 

with the combination of IFN-αA and α-CD40 antibody for 8 hours (Figure 
4.20.A). Moreover, the RNA sequencing data set showed a significant 

amplification of the IFN-αA-initiated Traf6 expression following the addition of α-

CD40 treatment for 4 hours (Figure 4.20.B). To investigate a potential function 

role of TRAF6, we employed the small molecule inhibitor 6877002 that 

specifically targets CD40-TRAF6 interactions, without interfering with CD40-

TRAF2/3/5 (Chatzigeorgiou et al. 2014; Aarts et al. 2017). The dose response 

treatment with this small molecule inhibitor, from 10 to 100 μM, or with DMSO at 

a dose equivalent of the highest concentration of inhibitor did not induce 

spontaneous expression of Il15 (Figure 4.21.A) or Il12b (Figure 4.21.B). When 

applied simultaneously, the presence of CD40-TRAF6 inhibitor did not dampen 

Il15 expression induced by IFN-αA stimulation. And more importantly, when 

combined with IFN-αA stimulation and α-CD40 antibody treatment, the 

compound did not inhibit the amplification of Il15. However, a progressive 

reduction of Il12b expression could be observed with increasing dose of CD40-

TRAF6 (Figure 4.21.B). The minimum dose of 50 μM, inducing an adequate 

inhibition of Il12b expression, was chosen to further interrogate the involvement 

of CD40-TRAF6 interaction in the α-CD40-driven amplification of IFN-αA 



Figure 4.19: Hierarchical clustering of NF-κB signalling pathway enriched DE 
genes.
Hierarchical clustering of the DE genes between IFN-αA 4 hours and IFN-αA 4 
hours + α-CD40 4 hours, part of the NF-κB signalling pathway (list derived from 
KEGG database). DE genes identified with -1.5 ≤ FC ≤ 1.5 and FDR adjusted 
p-value < 0.01 from 10,222 present genes. Fold change of the expression of the 
genes in the comparison IFN-αA 4 hours + α-CD40 4 hours vs IFN-αA 4 hours indi-
cated on the right of the heatmap. Standardised expression values were shifted to 
mean zero and scaled to standard deviation of one. In red bold is highlighted the 
gene differentially regulated with the highest fold change. In black bold is highlight-
ed the highest Mean of expression under IFN-αA 4 hours + α-CD40 4 hours. 
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signalling. eCD8+ DCs treated with the small molecule inhibitor alone at 50 μM 

or in combination with IFN-αA and α-CD40 antibody survived up to 80% (Figure 
4.21.C). This percentage is comparable to the survival of unstimulated cells. 

Moreover, CD86, marker for myeloid cell activation, was up-regulated by the 

DCs stimulated with IFN-αA, α-CD40 antibody and CD40-TRAF6 inhibitor at a 

level (MFI=2068) comparable to the stimulation without inhibitor (MFI=3430) 

(Figure 4.21.D). Therefore, 50 μM of CD40-TRAF6 inhibitor for 4 hours was not 

toxic for the cells and did not inhibit the activation of the DCs in response to 

IFN-αA stimulation. The simultaneous treatment with the small molecule 

inhibitor targeting CD40-TRAF6 interaction, IFN-αA and α-CD40 antibody did 

not inhibit the amplification of Il15 (Figure 4.21.A). However, given the rapid 

effect of CD40 engagement following DCs licensing, the signal triggered by the 

α-CD40 antibody treatment might be delivered before the CD40-TRAF6 

inhibition could block the signalling cascade. Therefore, CD40-TRAF6 

interaction was inhibited ahead of the beginning of the α-CD40 antibody 

treatment (Figure 4.22). As expected, 4 hours of IFN-αA stimulation induced 

Il15 expression (Figure 4.22.A). Expression amplified by the addition of α-CD40 

antibody treatment for the last 2 hours. The inhibition of CD40-TRAF6 

interaction before CD40 engagement slightly reduced the α-CD40-triggered 

amplification of IFN-αA induced Il15 expression. Indeed, under CD40-TRAF6 

inhibition, IFN-αA stimulation induced Il15 to a level 300-times higher than 

without IFN-αA and this level of expression was unchanged when α-CD40 

antibody treatment was added. Moreover, TRAF6 binding to CD40 might play a 

role in the CD40-mediated Il12b expression as it was restrained under the 

inhibitor treatment (Figure 4.22.B). The level expression of Il6 measured at 4 

hours was diffused and the CD40-TRAF6 inhibition did not seem to have any 

effect on the α-CD40-triggered amplification of IFN-αA-induced expression of 

this cytokine (Figure 4.22.C). However, when the concentration of Il-6 secreted 

in the supernatant of the stimulated cells was measured, the inhibition of CD40-

TRAF6 interaction seemed to trigger the inhibition of the amplified release of Il-6 

(Figure 4.22.D).  
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Figure 4.20: α-CD40 and IFN-αA combination-dependent Traf6 expression.
eCD8⁺ DCs regulation of Traf6 assessed via RT-PCR (Pool from 2 independent 
experiments) (A.) or via RNA sequencing analysis (Pool from 3 to 6 independent 
experiments) (B.) following the indicated timing of stimulation with media only (Un-
stimulated, white), α-CD40 mAb (10 μg/ml) (α-CD40, blue), IFN-αA (1000 U/ml) 
(IFN-αA, orange) and IFN-αA (1000 U/ml) with α-CD40 mAb (10 μg/ml) (IFN-αA + 
α-CD40, purple). (A.) Error bars represent mean +/- SEM. (B.) Box plot of Traf6 
expression: each dot is a sample, the line inside the box is the median, the whis-
kers represent the variability.
Asterisks indicate statistically significant differences between IFN-αA condition 
and IFN-αA + α-CD40 condition as assessed by one-way ANOVA; adjusted p-val-
ue: * p≤0.029.
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 To trigger NF-κB activation, TRAF6 recruits TAK1 that requires 

phosphorylation to be activated. In turn, TAK1 phosphorylates IKKα and IKKβ, 

which phosphorylate IκB for the release of p105/RelA (Figure 1.4) (Ghosh and 

Dass 2016). Therefore the canonical NF-κB pathway is subject to many 

phosphorylation events. Phosphorylation and dephosphorylation events were 

analysed via mass spectrometry following the stimulation of eCD8+ DCs for 4 

hours under different conditions. In total, 8406 phosphosites with a high 

localization probability (higher than 0.75) were detected from about 2901 

proteins in the phosphoproteome dataset. Within these 8406 phosphosites, 181 

displayed significant changes in their phosphorylation status when comparing 

the combination of IFN-αA with α-CD40 treatment for 4 hours to the IFN-αA 

stimulation alone for 4 hours (Figure 4.23). 118 phosphosites showed a 

decrease in the abundance of phosphorylation (dephosphorylation) while 63 

phosphosites underwent a significant phosphorylation event when α-CD40 

antibody treatment was added to IFN-αA stimulation (see Appendix Table A.2 

for a complete list of the 119 dephosphorylation events and 64 

phosphorylation). Interestingly, signalling molecules and TFs from NF-κB 

pathway were amongst the peptide sequences with phosphorylation events. 

Within this group of proteins with significant changes in their phosphorylation 

status as consequence of the addition of α-CD40 treatment to IFN-αA 

stimulation, only a small proportion were also undergoing changes when α-

CD40 stimulation was compared to untreated samples and none (Figure 
4.24.A). Moreover, none of the phosphorylation and dephosphorylation events 

occurring with the addition of α-CD40 treatment to IFN-αA stimulation were 

already happening when the cells were stimulated with IFN-αA alone. 

Interestingly, IFN-αA stimulation triggered the significant phosphorylation of 

Stat1 on the Tyrosine 701 that have been associated with its activation (Hirata 

et al. 2013). The phosphorylation of Irf9 on Serine 136 and Serine 393 could be 

detected under IFN-αA alone as well. These phosphorylation events on Irf9 

have not been linked to the activation of the TF as its expression more than its 

post-transcriptional modifications seems to play a crucial role in IFN-αA 

signalling pathway (Nan et al. 2018). However, none of these phosphorylation 
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tions were performed with dimethyl sulfoxide (DMSO). Following stimulation, the 
regulation of Il15 (A.) and Il12b (B.) was assessed (Pool from 4 independent 
experiments). Error bars represent mean +/- SEM. No statistical significance 
detected.
Percentage of living cells (C.) or histogram of CD86 expression (D.) measured 
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α-CD40 + CD40-TRAF6 Inhibitor, dark purple) (n=1).
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events, Irf9 or Stat1, were increased nor decreased with the addition of α-CD40. 

Altogether, these observations showed a strong and specific effect of α-CD40 

treatment in the context of IFN-αA stimulation at the post-transcriptional level. 

The STRING online tool was used to investigate the potential protein-protein 

interactions on the set of significantly phosphorylated proteins (Figure 4.24.B). 

While the phosphorylation events occurring under α-CD40 treatment alone did 

not show any significant pathway enrichment, the phosphorylation events 

occurring following the addition of α-CD40 antibody to IFN-αA stimulation were 

highly enriched within several KEGG pathways. Interestingly, the Epstein-Barr 

virus infection pathway, was the top ranked pathway enriched from the 

phosphosites analysis, with an adjusted p-value of 0.00024 and was also 

enriched from the DE genes under the same conditions (Figure 4.18). 

Moreover, the NF-κB signalling pathway was also significantly enriched in both 

cases. Within the different events, the phosphorylation of Ikbkb (Inhibitor of NF-

κB kinase subunit beta), also called IKKβ, was detectable (Figure 4.23). The 

phosphorylation was identified on the Serine 697 of the protein, a site that has 

not been linked with the activation of the kinase (Kray et al. 2005). Another 

phosphorylation event induced when α-CD40 treatment was added to IFN-αA 

was measured on NFκBie (NF-κB-inhibitor epsilon), IκBε member of the IκB 

family that interact with NF-κB proteins to trap them in the cytoplasm. This 

phosphorylation was identified on the Serine 18. The Ser-18 phosphorylation 

has been described to be mediated by IKKβ and to lead to IκBε proteasomal 

degradation in response to TNF-α and IL-1β stimulation (Whiteside et al. 1997; 

Viatour et al. 2005). Finally, the phosphorylation of Tnfaip3 (TNF-α-induced 

protein 3) on Serine 381 was significantly detectable when CD40 was 

stimulated for 4 hours in addition of IFN-αA. TNFAIP3, also known as A20 is a 

negative regulator of NF-κB pathway (Ruland 2011). Interestingly, Ser-381 

phosphorylation, mediated by IKKβ as well, has been shown to be detrimental 

in A20 functions (Wertz et al. 2015). Therefore, several activating 

phosphorylation events seem to target proteins involved in a negative feedback 

control of the NF-κB pathway in response to α-CD40 treatment in the context of 

IFN-αA stimulation. In addition of these post-transcriptional modifications, the 
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Figure 4.22: TRAF6 binding to CD40 required for α-CD40-driven amplification 
of IFN-αA-induced cytokine expression.
eCD8⁺ DCs were cultured over 4 hours with media only 4 hours (Unstimulated, 
white), α-CD40 mAb 2 hours (10 μg/ml) (α-CD40, blue), IFN-αA 4 hours (1000 
U/ml) (IFN-αA, orange) and IFN-αA 4 hours (1000 U/ml) with α-CD40 mAb 2 hours 
(10 μg/ml) (IFN-αA + α-CD40, purple). These conditions were performed on their 
own (Alone, left, filled pattern) or in the presence of CD40-TRAF6 inhibitor 4 hours 
(50 μM) (6877002) (+ CD40-TRAF6 Inhibitor, right, grey striped). Following stimu-
lation, the regulation of Il15 (A.), Il12b (B.), Il6 (C.) was assessed (Pool from 3 
independent experiments), as well as the secretion of Il-6 (D.) with the dotted line 
indicating the limit of detection for the assay performed (Pool from 3 independent 
experiments). Error bars represent mean +/- SEM. No statistical significance 
detected.
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feedback control of NF-κB pathway also depends on the regulation of 

expression of these proteins. For instance, the expression of IκBα and IκBε is 

induced in response of NF-κB signalling pathway (Kearns et al. 2006). Nfkbie 

(IκBε) (Figure 4.25.A) and Nfkbib (IκBβ) (Figure 4.25.B) progressively 

increased longer the α-CD40 treatment was applied to IFN-αA stimulation, 

significantly expressed under 4 hours of both stimuli. On the other hand, Nfkbia 

(IκBα) (Figure 4.25.C) and Tnfaip3 (A20) (Figure 4.25.D) were rapidly and 

significantly induced under IFN-αA with α-CD40 treatment for only 15 minutes 

or 30 minutes of CD40 stimulation and their expression slightly decreased after 

4 hours of stimulation. Interestingly, none of these regulators are significantly 

induced by IFN-αA stimulation alone. Instead, they seem to follow the regulation 

of specific genes as described in Figure 4.14, requiring both signals IFN-αA 

and α-CD40 in combination to be expressed.  

  

 A group of TFs belonging to NF-κB signalling pathway was highlighted as 

potentially involved in the amplified genes regulation. Importantly, the motifs 

recognised by these TFs were absent from the genes up-regulated under IFN-

αA and not amplified. The analysis of gene regulation and phosphorylation 

events suggested a tight regulation of NF-κB pathway. However, further 

analysis, especially on the protein synthesis and degradation will be required to 

confirm this involvement. 

   

 
  4.2.2.4 Mechanism of α-CD40 and IFN-αA induced specific 
gene expression 
 
 As described above, the expression of a group of genes were induced by 

stimulation followed a distinct pattern of regulation. One group of genes, which 

will refer to as “specific” (Figure 4.14.C), were not induced by IFN-αA 

stimulation or α-CD40 treatment alone. They only got induced when the cells 

were stimulated by both IFN-αA and α-CD40. To investigate the mechanism 

behind this particular pattern of expression, the potential TFs involved in the 



Figure 4.23: Control of NF-κB signalling pathway via post-transcriptional 
modifications.
Volcano plot of the magnitude and significance of differential phosphopeptide 
abundance in IFN-αA vs IFN-αA + α-CD40. Each dot represents a protein. 
Phosphopeptide undergoing phosphorylation (on the right, green background) or 
dephosphorylation (on the left, orange background) were considered as significant 
with a p-value ≤ 0.05, with a probability of localization > 0.75 and exhibiting -1.5 ≤ 
FC ≤ 1.5 (blue dots). Proteins highlighted in red known as involved in the NF-κB 
signalling pathway.
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expression of the specific genes were analysed at 30 minutes (Figure 4.26.A) 

or 4 hours (Figure 4.26.B) of α-CD40 treatment. Here again, the number of 

specific genes induced with only 15 minutes of CD40 stimulation was too 

restricted to conduct a satisfactory GO-term of pathway analysis. Utilizing PBP 

analysis to identify TFs being responsible for the gene expression of the 

“specific” gene signature, it was observed that the top ranked clusters motifs 

were different to the TF motifs predicted for the amplified genes. Indeed, the 

cluster motifs with a NES greater than 7, obtained from both sets of specific 

genes, 30 minutes and 4 hours of α-CD40 antibody treatment, mainly contained 

NF-κB related TFs. Stat6 and Irf1 were the only transcriptional regulators 

highlighted belonging to the Stat and Irf families. Therefore, compared to the 

analysis of IFN-αA-induced genes and amplified genes, the clusters of TFs 

predicted for the regulation of “specific” genes induced by the combination of 

IFN-αA and α-CD40 treatment did not include most of the IFN-related TFs such 

as Irf3, Irf7, Irf9 or Stat1/2. The NF-κB pathway seemed again to be involved in 

the expression of these specific genes. Following the hypothesis that as the 

patterns of expression of amplified and specific genes differ, the mechanisms 

behind them could be different, the data mining for the transcriptional regulators 

prediction was different. As IFN-αA stimulation alone or α-CD40 treatment alone 

are not efficient in triggering this pattern of expression, the hypothetic 

mechanism could require the expression of a transcriptional regulator triggered 

by CD40 stimulation in the context of IFN-αA signalling. To investigate this 

hypothesis, the TFs enriched from the specific genes prediction were firstly 

filtered to investigate the ones expressed by the eCD8+ DCs (Figure 4.26.C). 

These TFs were considered as TF candidate for the regulation of specific genes 

and were further analysed taking into account significant fold changes in their 

expression under IFN-αA with α-CD40 as well as their overall expression level. 

Following this strategy, the potential TFs were obtained from the prediction of 

specific genes induced with 30 minutes of α-CD40 antibody treatment (Figure 
4.27.A). As the expression of those TFs might be regulated early, the IFN-αA 

alone condition was compared to IFN-αA with α-CD40 from 15 minutes to 30 

minutes. This filtering strategy lead to 5 TFs which might be the master 
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regulators of IFN-αA and α-CD40 combination DC programming at 30 minutes: 

Jun, Junb, Fos, Fosb and Irf1. Therefore, those proteins were part of the 

predicted and expressed TFs and were significantly DE under IFN-αA with α-

CD40 antibody for 15 and 30 minutes. Next, the proportion of specific genes 

potentially targeted by these TFs was assessed (Figure 4.27.B). Junb and 

Fosb were only capable of binding a small portion of those genes. However, 

Jun/Fos and Irf1 could target about 28 % of the genes. About 9 % of them were 

only targeted by Jun and Fos while Irf1 alone could bind 23 % of the genes. 

Therefore, altogether, more than 60 % of the specific genes were induced 

following 30 minutes of CD40 stimulation. 

 

The same strategy was used to investigate, the potential TFs involved in the 

expression of the specific genes induced with 4 hours of α-CD40 antibody 

treatment (Figure 4.28.A). The expression of the potential TFs, predicted and 

expressed by eCD8+ DCs, was assessed. Again, the IFN-αA alone condition 

was compared to IFN-αA with α-CD40 treatment from 15 minutes to 30 minutes 

for TFs expressed early enough to be involved in the gene regulation. However, 

this time, these proteins were further filtered for the ones with sustained 

expression until 4 hours of α-CD40 treatment. The analysis identified 3 TFs 

which might guide the specific IFN-αA and α-CD40 combination DC 

programming at 4 hours: Mxd1, Rel and Irf1. When the proportion of specific 

genes potentially targeted by these TFs was assessed, more than 40 % of the 

specific genes induced under 4 hours of α-CD40 treatment could be recognised 

by Irf1 (Figure 4.28.B). Interestingly, Rel was predicted to bind motif(s) on all of 

these genes and 28 % more. Thus, Rel and Irf1 could potentially target more 

than 70 % of the specific genes 4 hours while the portion of Mxd1 targeted 

genes was negligible. Interestingly, Fos (Figure 4.29.A) and Jun (Figure 
4.29.B) were significantly up-regulated after only 15 minutes of α-CD40 

treatment. On the other hand, the up-regulation of Irf1 (Figure 4.29.C) and Rel 

(Figure 4.29.D) was slightly delayed, occurring after 30 minutes of α-CD40 

treatment. All together, the strategy used for the investigation of the regulators 



Figure 4.25: Gene regulation of proteins involved in the negative feedback 
control of NF-κB signalling pathway.
Regulation of Nfkbie (A.), Nfkbib (B.), Nfkbia (C.) and Tnfaip3 (D.) expression 
assessed following the indicated stimulation (Pool from v3 to 6 independent exper-
iments). Each dot is a sample, the line inside the box is the median, the whiskers 
represent the variability. Asterisks indicate statistically significant differences 
between Unstimulated condition and IFN-αA condition or between IFN-αA condi-
tion and all IFN-αA + α-CD40 conditions as assessed by one-way ANOVA; adjust-
ed p-value: ns = non significant; * p≤0.028; ** p≤0.006; **** p<0.0001.
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of the specific genes pointed towards a possible early involvement of Fos and 

Jun, a late involvement of Rel and a sustained involvement of Irf1. 

 

Taken together, the results indicate a potential requirement for TRAF6 

for the α-CD40-driven amplification of IFN-αA-induced mRNA expression. 

TRAF6 could then trigger the activation of the NF-κB pathway, most likely 

supported by the analysis of the TFs potentially involved in the regulation of 

amplified genes presented here. The phosphorylation and gene regulation of 

different proteins known to be involved in the negative feedback control of NF-

κB pathway were observed, corroborating this hypothesis. On the other hand, 

the specific genes could be regulated in a dynamic manner with Fos/Jun and 

Irf1 involved in the early response and, Irf1 and Rel involved in the late 

response to α-CD40 treatment.   

 
 

4.3    Discussion 
 

This chapter investigated the kinetics and molecular mechanisms 

underlying the gene regulation induced under IFN-αA and α-CD40 stimuli. 

Stimulated DCs displayed precise dynamic and functional organisations of their 

responses. Importantly, 1 to 2 hours of IFN-αA stimulation was required to 

induce DCs cytokines and chemokines expression. While the pre-treatment with 

α-CD40 antibody did not modify this minimum requirement, the activated eCD8+ 

DCs exhibited the ability to respond to the CD40 stimulation in a surprisingly 

rapid manner. Indeed, once the IFN-mediated program was initiated, 15 to 30 

minutes of CD40 ligation efficiently induced the amplification of gene expression 

and cytokine secretion. Analysing the changes triggered by the stimulations at 

the whole transcriptome level highlighted a dynamic enrichment of biological 

functions. Mostly, genes involved in immune responses were enhanced by the 

α-CD40 antibody treatment added to IFN-αA in sustained fashion while 

transcriptional activity was rapidly promoted. Moreover, transcription factor 

prediction and phosphoproteomic analyses revealed specific NF-κB signalling 



Cluster Transcription Factors NES 
M1   
M2   
M3    

A.
8.688Nf-κb1, Nf-κb2, Bcl3, E2f1, Rela, Relb, Irf1,...

Ets1, Zfp354c, Ing4, Gli3, Runx1,Zbtb14, Elf5
7.613
5.821

All specific genes 30 min (43 genes)

B.
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events as potential key regulators of the mechanisms responsible for the α-

CD40-mediated amplification phenomenon. Finally, an intriguing pattern of 

gene regulation requiring the combination of both IFN-αA and CD40 signals 

was highlighted. The rapid and late regulation of these specific genes could 

involve the sequential and respective involvement of different transcriptional 

regulators.   

 

 Focusing on the precise kinetics of α-CD40-triggered amplification of a 

few cytokines and chemokines, our results revealed the rapid amplification of 

Il15, Il6 and Ccl4 expression. Interestingly, the secretion of Il-6 and Ccl4 

followed a similar pattern with, Ccl4 secretion matching the kinetics of mRNA 

expression. The precise timing required for mRNA transcription and 

subsequently translation into protein remains unclear and is most likely 

conditioned by the cell type and the signal received. However, using a 

fluorescent-based system to follow the mRNA production, Ben-Ari et al. 

observed a doxycycline-induced β-actin expression starting from 20 minutes 

with a peak at 1 hour following treatment. Interestingly, they also highlighted the 

discrepancy between this timing requirement for transcription and the protein 

translation occurring earlier. They hypothesized a presence of existing mRNAs 

in the cytoplasm, potentially ready for translation before the presence of newly 

transcribed mRNAs (Ben-Ari et al. 2010). Moreover, once the proteins are 

formed, their secretion into the supernatant of cells is quick (Rivera et al. 2000). 

These studies can explain the fast amplification of Ccl4 chemokine secretion 

following α-CD40 antibody treatment. Intriguingly, Il-6 and Ccl4 secretion 

appeared to reach immediately a plateau phase. Both molecules have been 

implicated in chronic inflammation and autoimmunity (Tanaka et al. 2016; Jones 

et al. 2018; Ahmad et al. 2019; Kang et al. 2019). Our results could highlight an 

intrinsic mechanism of control of the cytokines and chemokines concentration 

released by the cells in response to IFN-αA and α-CD40 combined signalling.  

 

 As for Il15, Il6 and Ccl4, the whole transcriptomic analysis highlighted the 

rapid regulation of a number of genes. The investigation of transcription 
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regulators potentially involved in the gene regulation following α-CD40 

treatment revealed a possible role for the NF-κB signalling pathway. The genes 

induced with IFN-αA and not affected by the addition of α-CD40 did not contain 

motifs that would allow the binding of the NF-κB TFs. Therefore, the presence 

or the absence of a motif that NF-κB TFs can recognise could dictate which 

genes are amplified within the set of IFN-αA-triggered genes. In the hypothetical 

mechanism concluded from this study, NF-κB signalling pathway could be 

responsible for the amplification of IFNαA-triggered genes in addition of Irf9 

involvement. Such a cooperation between NF-κB and IRFs has been observed 

previously with the transcriptional regulation of CD83 depending on the 

synergistic activation of IRFs, including IRF1, and NF-κB TFs (Stein et al. 

2013). In addition to this gene amplification pattern, some genes such as Tnf, 

Cd83 and Ccl5 were rapidly induced in a specific manner, requiring both α-

CD40 and IFN-αA stimuli. Hypothetically, IFN-αA-induced Irf1 could rapidly be 

recruited and cooperates with Fos and Jun to induce the rapid expression of 

specific genes. Importantly, while most of Irf TFs were up-regulated by IFN-αA 

and unchanged following the addition of α-CD40 antibody, Irf1 was the only TF 

clearly enhanced by CD40 stimulation with an up-regulation occurring after 15 

to 30 minutes only. Importantly, the TFs Irf1 and Rel were highlighted as key 

candidates in the late regulation of the specific genes, such as Cxcl16, Il15ra. 

Therefore, the α-CD40-mediated amplification of Irf1 and Rel expression might 

allow the subsequent expression of the specific genes (Figure 4.30). Under this 

hypothetical mechanism, the early up-regulation of the specific genes Jun and 

Fos remains unclear. Both were part of the group of genes displaying a rapid 

up-regulation in response to α-CD40 antibody treatment in the context of IFN-

αA stimulation. Those genes have been previously characterised as immediate 

early (IE) genes in the context, for instance of liver regeneration. IE genes are 

regulated without requiring de novo protein synthesis (Fausto 2000). Fos is one 

of the most described IE genes. This rapid expression is explained by the 

organisation of its promoter with paused RNA polymerase II on the transcription 

start site (TSS) and the chromatin constitutively in an open structure (Senecal et 

al. 2014). Moreover, its promoter also displays a sustained level of histone 3 
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acetylation (H3Ac), histone modification that enhances and is responsible for TF 

recruitment and Fos transcription via MAPK/Erk signalling pathway activation in 

response to stimulus (O'Donnell et al. 2008; Fowler et al. 2011). However, as 

specific genes, Fos and Jun regulation also depends on an unknown IFN-αA-

related factor.  

 

 If the NF-κB potentially played a major role in CD40 signalling under the 

investigated conditions, its activation must be controlled. This pathway requires 

the phosphorylation, ubiquitination and degradation of the inhibitory IκB 

proteins. The IKK complex, formed by homodimers or heterodimers of IKKα and 

IKKβ and NEMO/IKKγ is responsible for the phosphorylation of IκB, with IKKβ 

playing a crucial role in canonical NF-κB activation pathway and NEMO 

associated to the recruitment of kinases activating IKKα/β. The activation of 

those IKKα/β proteins necessitates their phosphorylation on Ser-176/177 by 

Protein Kinases C (PKC) and TAK1, allowing their subsequent 

autophosphorylation on Ser-180/181 (Tojima et al. 2000; Kray et al. 2005; 

Zhang et al. 2014). The phosphoproteomics analysis under the addition of α-

CD40 treatment to IFN-αA stimulation highlighted the phosphorylation of IKKβ 

on Ser-697. While it has not been linked to the kinase activation, this amino 

acid is localised in a serine-rich region (aa 643-735) between the NEMO binding 

domain and the helix loop helix domain (Israël 2010). Interestingly, 

phosphorylation events in the Serine-rich region, including Ser-697, and the 

NEMO binding domain have been associated with the negative regulation of 

IKKβ functions. Three members of the IκB family are known: IκBα, IκBβ and 

IκBε. Their degradation, detrimental step for the NF-κB activation, occurs 

following different kinetics. For instance, IκBα and IκBβ are both degraded more 

rapidly than IκBε (Ruland 2011). As described previously, NF-κB moves into the 

nucleus and is exported to the cytoplasm in an oscillatory dynamic (Zambrano 

et al. 2016; Lane et al. 2017). This oscillatory behaviour depends on the 

inhibitory mechanisms targeting NF-κB: IκBα and IκBε can enter the nucleus, 

interact with NF-κB and return it to the cytoplasm. The expression of both 

inhibitors is induced in response to NF-κB signalling pathway activation leading 



Figure 4.29: Regulation of the expression of TFs potentially involved in spe-
cific genes. 
Regulation of the expression of Fos (A.), Jun (B.), Irf1 (C.) and Rel (D.) assessed 
following the indicated stimulation (Pool from 3 to 6 independent experiments). 
Each dot is a sample, the line inside the box is the median, the whiskers represent 
the variability. Asterisks indicate statistically significant differences between 
Unstimulated condition and IFN-αA condition or between IFN-αA condition and all 
IFN-αA + α-CD40 conditions as assessed by one-way ANOVA; adjusted p-value: 
ns = non significant; * p≤0.03; ** p≤0.005; *** p≤0.0005; **** p<0.0001.
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to a feedback control of the NF-κB activation (Hoffmann et al. 2002; Hayot and 

Jayaprakash 2006). While IκBα is thought to be the main coordinator of NF-κB 

oscillations, its expression was rapidly induced, from 15 to 30 minutes of α-

CD40 treatment under IFN-αA stimulation. Moreover, IκBε, associated to the 

decrease of the oscillations amplitude, was up-regulated later, following 4 hours 

of CD40 stimulation (Kearns et al. 2006). Interestingly the stimulation of CD40 

receptor in the context of IFN-αA stimulation triggered IκBε Ser-18 

phosphorylation known to lead to IκBε proteasomal degradation (Whiteside et 

al. 1997; Viatour et al. 2005). These two opposite phenomenons could 

participate in a balance between activation and control of NF-κB responses 

taking place late following CD40 stimulation. One of the targets of TNFAIP3, or 

A20, deubiquitinase is RIP1. Ubiquitinated RIP1 is activated and is involved in 

the recruitment of IKK. Therefore, the activation of A20 leads to the inhibition 

and degradation of RIP1 eventually inhibiting IKK complexe (Ruland 2011). 

Phosphorylation of Ser-381 is required for A20 activation and was triggered by 

α-CD40 treatment in the context of IFN-αA stimulation (Wertz et al. 2015).  

 

 Taken together these results highlight a potential early involvement of the 

MAPK pathway and a key role for NF-κB signalling pathway in the α-CD40-

mediated responses in the context of IFN-αA stimulation. This NF-κB pathway 

is tightly controlled, either via dynamic up-regulation of inhibitors IκBs 

associated to the oscillatory NF-κB responses; or via post-transcriptional 

modification potentially resulting in negative feedback control. Interestingly, both 

early and late specific or amplified responses require the involvement of Irfs 

which would explain the absence of gene regulation following CD40 stimulation 

only.  
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Figure 4.30: Proposed mechanisms of synergy between α-CD40 and IFN-αA 
stimuli.
IFN-α/β stimulation triggers ISGs expression via the JAK/STAT signalling pathway 
resulting in the activation of IRF9 transcription factor. Following the stimulation of 
CD40 receptor, the amplification of IRF9-regulated genes has been observed. This 
mechanism could involve the NF-κB signalling pathway and lead to the amplifica-
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its own could rapidly be involved in the early specific genes regulation, in coopera-
tion with Jun and Fos. Subsequently, amplified Irf1 and Rel could induce the late 
specific response. Interestingly, both of these responses target genes playing a 
role in the negative feedback control of NF-κB signalling pathway. 
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 Naïve CD8+ T cells require priming by DC to eliminate intracellular 

pathogens and tumours. This involves T cell receptor (TCR)-mediated antigen 

recognition and depends on the integration of contextual cues released by 

tissue damage associated with the antigenic encounter. These cues are 

transmitted to the DC by innate signals, such as type I interferon (IFN-α/β), and 

are subsequently communicated from the DC to the T cells via co-stimulatory 

molecules and cytokines (Prilliman et al. 2002). Interestingly, CD4+ T cells also 

play an important role in this and this involves CD40L/CD40 interactions (Ridge 

et al. 1998; Schoenberger et al. 1998; Smith et al. 2004; Williams and Bevan 

2007; Rajasagi et al. 2009; Zhu et al. 2015; Ghosh and Dass 2016; Ahrends et 

al. 2017). However, precisely how innate signals and T cell help are integrated 

and ultimately regulated the provision of cytokines and chemokines remains 

unclear. The work summarized in this thesis sheds new light on these important 

questions, revealing an intriguing interplay between innate triggers and T cell 

help.  

 
 The first aim of this thesis was to establish an in vitro model that allows 

the investigation of how T cell help shapes the responsiveness of DC. BM-

derived equivalent of CD8+ DCs (eCD8+ DCs) were stimulated with an innate 

signal and treated with a α-CD40 antibody to mimic T cell help. In this set up, 

the stimulation of CD40 enhanced the expression and secretion of cytokine and 

chemokine, such as Il-15, Il-6, Tnf or Ccl4/5 in response to various innate 

signals including the danger signal IFN-αA or the TLR3, 4, 9 agonists, poly(I:C), 

LPS and CpG respectively. The IFN-αA stimulation associated with an isotype 

antibody did not result in the enhancement of the DCs responses, indicating 

that specific stimulation of CD40 was responsible for this amplification 

phenomenon. Similar responses were observed when we used antigen-

activated CD4+ T cells rather than the α-CD40 antibody. This supports the 

conclusion that our model faithfully reproduces the effect of T cell help through 

CD40-CD40L interactions.  

 
 Various kinetics of DCs responses resulted from precise dynamics of 
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stimulation. Stimulating CD40 receptor prior to any innate stimuli did not enable 

the DCs to amplify their responses to IFN-αA. Instead, DCs required innate 

stimulation for about 1 to 2 hours and only then became receptive to α-CD40 

signal. Once activated, DCs could respond to CD40 ligation in a remarkably 

rapid manner, within minutes. Indeed, only 15 to 30 minutes of CD40 

stimulation efficiently enhanced the gene expression and protein secretion 

induced by IFN-αA stimulation. CD40L expression on T cells is transient and 

regulated (van Kooten and Banchereau 2000). The interactions between CD4+ 

T cell and DCs are short (Hor et al. 2015). Therefore the binding ligand-receptor 

is limited to a precise window of time. The rapid induction of CD40 signalling 

matches with helper T cells competent of shaping DCs priming ability in a fast 

and efficient manner without necessity of long-lasting cell to cell interactions.  

 
 Relying on the precise kinetics of DC responses to IFN-αA and α-CD40 

stimulation, the investigation of gene regulation at whole transcriptome level 

revealed three intriguing patterns of expression. As expected from previous 

work conducted in the team (Greyer et al. 2016) and from qPCR experiments, 

the expression of some genes up-regulated under IFN-αA stimulation could be 

significantly enhanced with the addition of α-CD40 antibody treatment. This 

amplification of IFN-αA-induced expression was the first pattern. This ability of 

two stimuli acting in synergy to increase the responses triggered by a solely 

stimulus has been previously suggested. LPS pre-treated macrophages trigger 

enhanced CpG-mediated IL-6 and TNF production (De Nardo et al. 2009). 

Similarly, DCs pre-treated with CpG display amplified IL-12 production in 

response to LPS stimulation. Several pieces of evidence presented here 

excluded the possibility that amplification of IFN-αA-mediated responses was 

the result of a CD40-driven additional IFN-α/β secretion, acting in an autocrine 

manner to boost the signalling pathway. Indeed, blocking the IFNAR receptor 

during CD40 stimulation did not abrogate the amplification of innate responses. 

Furthermore, a large portion of IFN-αA-regulated genes were unaffected by the 

addition of α-CD40 antibody treatment dismissing the α-CD40-mediated IFN-α/β 

secretion as solely responsible for the enhancement of DCs responses. These 
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genes represent the second pattern of expression. Interestingly, this 

amplification phenomenon did not affect all IFN-αA-induced genes, as some of 

these genes could not be amplified even with longer duration of CD40 

stimulation. These results revealed a specific effect of CD40-mediated 

enhancement targeting a precise set of genes only. Finally, the third pattern of 

expression observed following IFN-αA and α-CD40 stimulations was the 

“specific” pattern. The genes following this pattern were not induced by IFN-αA 

stimulation alone or by α-CD40 antibody treatment only but required the 

combination of both stimuli to be up-regulated. We demonstrated that IFN-αA 

stimulation was responsible for an up-regulation of various co-stimulatory 

molecules including CD40. The increase of the surface expression of this 

receptor could explain the regulation of these specific genes. IFN-αA stimulation 

would only be required indirectly to increase the DCs ability to receive the 

CD40L signal. Therefore CD40 stimulation would be sufficient for the 

expression of these genes. However, we were able to detect a basal expression 

of CD40 without stimulation as well as a slight up-regulation of the surface 

expression of this receptor without any stimulation most likely due to the culture 

conditions. When eCD8+ DCs were stimulated with α-CD40 antibody alone, this 

basal expression was not sufficient to induce gene regulation. Therefore, this 

particular pattern of expression requires the combination of factors induced by 

the two different signalling pathways. It is tempting to speculate that such 

interplay might arise from the independent induction of individual transcription 

factors that then heterodimerize to induce transcription of these specific genes. 

The amplification model is not the only model that have been proposed to 

explain the respective involvement of CD4+ T cell help and innate signals in 

CD8+ T cell priming. An alternative model suggests that the result of the 

combination of help signal and innate signal is different from the result of the 

innate signal alone. Therefore, CD4+ T cell help could enhance, in terms of 

quantity, the innate signal responses or would shape the quality of these 

responses. While those two models might have been seen as incompatible 

(Borst et al. 2018), our results bring a new dimension into the contribution of 

help in the context of CTL priming with a quantitative amplification of IFN-αA-
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induced responses associated with the establishment of a specific response to 

the combinatorial signals.  

 

 The analysis of up-regulated genes exhibited an enrichment of immune 

response functions in a dynamic manner from 15 minutes to 4 hours of α-CD40 

treatment. Moreover, genes involved in the regulation of transcriptional activity 

were rapidly enhanced suggesting the early organisation of mechanisms 

responsible for the amplification. The data mining of the genes regulated 

allowed us to propose a potential model for the response to CD40 stimulation. 

In the case of amplified genes, IRF9 being the main candidate as transcription 

regulator of IFN-αA-induced responses, our findings indicate its cooperation 

with another regulator triggered by α-CD40 antibody treatment. NF-κB signalling 

pathway was then highlighted as enriched in our conditions and potentially 

involved in the regulation of the group of amplified genes only. Such 

cooperation between IRFs and NF-κB TFs has been previously observed in 

response to virus infection. In humans, IRF3 and p65/Rela co-activate and 

recruit the RNA polymerase II (Freaney et al. 2013). In addition, when both 

pathways were activated via the same stimulus, the gene expression in 

response to IRF3 translocation into the nucleus was delayed and NF-κB 

translocation triggered rapid gene regulation (Zhao et al. 2013). This 

observation corroborates our results were IRF9-induced responses were slow 

but the effect of CD40 stimulation on the regulation of the same genes would 

occur rapidly. The regulation of the specific genes, requiring the combination of 

IFN-αA and α-CD40 antibody treatment together likely followed a different 

mechanism. The prediction of TFs potentially involved in the specific genes 

expression showed a possible dynamic organisation of transcription regulators. 

Indeed, Jun and Fos, were identified for the regulation of the early specific 

genes while Rel was identified for the later expression. In both cases, Irf1 was 

suggested as a potential co-regulator acting in a sustained manner. IRF1 is 

thought to be expressed at a low basal level and induced by IFN-γ and/or TNF-

α stimuli via the involvement of STAT1 and NF-κB TFs (Kröger et al. 2002; 

Michalska et al. 2018). Moreover, IRF1 interacts with other TFs in order to 
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activate the transcription of ISGs. In addition of the IFN-αA-driven up-regulation 

of Irf1 expression our results highlighted a strong enhancement of this TF 

expression after only 30 minutes of CD40 stimulation and amplification 

detectable after 4 hours of treatment. Interestingly, IRF1 half-life is only of 30 

minutes implying direct correlation between mRNA expression and protein 

synthesis (Kröger et al. 2002). This observation strongly suggests a key role for 

IRF1 in the transmission of the help signal, in a sustained manner.  

 

 While our results provide novel insights into help mechanisms within the 

DCs, more work is necessary to further validate our hypotheses. For instance, 

NF-κB signalling pathway heavily relies on protein trafficking to the nucleus and 

protein degradation in response to post-transcriptional modifications 

(Oeckinghaus et al. 2011). The phosphoproteomics analysis suggests tight 

regulation of the NF-κB signalling pathway, however the phosphorylation events 

resulting in the activation of this pathway most likely occur earlier in transient 

manner and therefore investigations at earlier time points are needed. In 

addition of the investigation of the protein synthesis and TFs trafficking in 

response to stimuli, epigenetic modifications necessitate further investigation. 

Histone acetylation is for instance critical for transcriptional control. Acetylation 

of histones leads to a change in the chromatin conformation, rendering it open 

and thus allowing the binding of TFs. We hypothesise that the up-regulation of 

Irf1, one of the key candidates TF highlighted in our work, would eventually 

result in its protein synthesis and this will be important to test. Moreover, IRF1 is 

involved in the recruitment of acetyltransferases at the promoter of target genes 

(Marsili et al. 2004).  

 

 While the study presented herein focused on the molecular mechanisms 

underlying α-CD40-amplification of IFN-αA-induced genes and the genes 

positively regulated in response to their combinatorial stimulation, our 

transcriptomic dataset offers interesting patterns of expression potentially 

governed by specific mechanisms. Our study focused for instance on gene 

expression being induced by IFN-αA stimulation and enhanced with the addition 
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of α-CD40 treatment. However, some genes followed an opposite regulation 

and were downregulated under IFN-αA stimulation and further downregulated 

with CD40 stimulation in addition. Furthermore, a group of genes was 

progressively downregulated when α-CD40 treatment was added to IFN-αA 

stimulation. Although these genes were not linked to a specific function, with 

only a few of them such as Lin54, Ccne1/2 or Tgfb3 related to cellular 

senescence (data not shown), further analysis would provide insight into what 

mechanisms are responsible for this specific gene downregulation. Moreover, 

our results highlighted a group of genes linked to the mRNA stability, 

upregulated only after 30 minutes of α-CD40 treatment added to IFN-Aα 

stimulation and subsequently actively downregulated in our conditions. 

 

 Our team previously demonstrated that the cytokines and chemokines 

produced by DCs are dictated by the innate stimuli they receive (Greyer et al. 

2016). The observation of an amplification process confined to a portion of IFN-

αA-induced genes reveals a new layer in the DCs complex ability to decipher 

and assimilate signals they integrate to provide precise responses towards T 

cell priming and the promotion of immune responses. Altogether, the results 

presented in this thesis provide an insight in the mechanisms allowing DCs to 

regulate their responses to stimuli. Using CD40L-CD40 interaction blockade has 

been observed to inhibit autoimmune disease development as well as increase 

the number of islet transplant acceptance in diabetic animals. Direct antibody 

blockade, targeting the trimerization of CD40L or inhibition of CD40L mRNA 

transcription are all various strategies for CD40 signalling inhibition either 

currently used or proposed for autoimmune disease treatment (Howard and 

Miller 2004). Promising advances on allograft tolerance have been achieved. 

Prior to organ transplantation, blocking anti-CD40L is administrated in addition 

to donor alloantigen. DC maturation is prevented but the alloantigen can still be 

presented by non-matured DCs, thus leading to an abortive priming alloantigen 

specific T cells and creating an environment tolerant for the allograft (Elgueta et 

al. 2009). Although CD40 signalling has been extensively studied, particularly in 

respects to B cells, the details of this signalling in DCs and its involvement in an 
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adequate and powerful CTL priming still needs to be clarified. Precisely 

targeting the CD40 signalling and its nuances is an exciting prospect for 

autoimmune diseases and graft rejection treatments. The efficiency of vaccines 

relies on the use of potentially inflammatory adjuvants (Garçon et al. 2011). 

Antibodies targeting CD40 as adjuvant have been studied in the context of 

vaccination against Influenza A and have shown an enhancement of the 

immune responses (Hatzifoti and Heath 2007). Understanding how and when T 

helper signals can improve DCs ability for CTL priming would benefit 

vaccination efficacy and limit potential side effects related to adjuvants.    
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APPENDIX 

 

Table A.1: List of genes within SOM clusters (part 1). 
Cluster ID  

(Row – Column) Genes  Cluster ID  
(Row – Column) Genes  Cluster ID  

(Row - Column) Genes 

Cluster 1  
(1 – 1) 

Bcl2a1a  

Cluster 4  
(1 – 4) 

Atf3  

Cluster 10  
(2 – 5) 

9330159M07Rik 
Ccl5  Btg1  Afmid 
Cd274  Dot1l  Arl5c 
Cd69  Ets2  Cacfd1 
Chd7  Etv3  Cx3cl1 
Cxcl10  Herpud1  Icosl 
Egr3  Hspa1a  Itga5 
Fosb  Hspa1b  Myo1g 
Grasp  Hspbap1  Nfkb2 
Id1  Icam1  Nfkbie 
Kcnc3  Itpkc  Pdlim7 
Kdm6b  Ncoa7  Prr14 
Ldlr  Snhg15  Rasip1 
Nr4a1  

Cluster 5  
(1 – 5) 

Bcl2a1b  Rela 
Phlda1  Birc3  Srgn 
Skil  Cd83  Tnnt3 

Zfand5  Gpr132  Trim35 
Zfp36l1  Klf6  

Cluster 11  
(3 – 1) 

Armcx6 

Cluster 2  
(1 – 2) 

A3galt2  Lilr4b  Arntl 
Arl5b  Rgs1  Frmd4a 
Clcf1  Slc35b2  Ifi44 
Csrnp1  Stx11  Ifit3 
Dusp2  Tnip3  Iigp1 
Irf1  Traf1  Olr1 
Nlrp3  

Cluster 6  
(2 – 1) 

A930037H05Rik  Rin2 
Pim1  Btg2  Rnf214 
Rnf19b  Egr1  Slfn9 
Sh3d21  Gm18853  Stat1 
Socs3  Ier2  Tgtp2 
Tgif2  Jun  Treml2 
Trib1  Mpv17l  Cluster 12  

(3 – 3) 
Fos 

Zc3h12a  Pkd2l2  Tulp2 

Cluster 3  
(1 – 3) 

Ccl4  

Cluster 7  
(2 – 2) 

Ccl3  

Cluster 14  
(3 – 4) 

4930523C07Rik 
Cd40  Cited2  Arhgef3 
Cdkn1a  Dusp1  Axl 
Dcbld2  Gdap10  Ccnd2 
Dusp5  Insig1  Gm15708 
Gadd45b  Nfkbiz  Clic4 
H2-K2  Nr4a3  Dyrk2 
H2-Q7  Pmaip1  Inpp5b 
Icam4  Ppp1r15a  Ncf1 
Ifrd1  Zfp36  Ptger4 
Maff  

Cluster 8  
(2 – 3) 

Casz1  Sdc4 
Mybpc3  Junb  Serpinb6b 
Nfkbia  Mxd1  Tlr2 
Nfkbid  Npas2  Zc3h12c 
Rasgef1b  Psd  Zmynd15 
Rel  Tagap    

Sowahc  

Cluster 9  
(2 – 4) 

Ell2    
Taf7  Ier3    
Tgif1  Il2rg    
Tnf  Lilrb4a    

Tnfaip3  Marcksl1    
   Mcl1    
   Serpinb9    
   Tent5c    
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Table A.1: List of genes within SOM clusters (part 2). 
Cluster ID  

(Row – Column) Genes  Cluster ID  
(Row – Column) Genes  Cluster ID  

(Row – Column) Genes 

Cluster 15  
(3 – 5) 

Bcl2a1d  

Cluster 18  
(4 – 3) 

Atp6v0a1  

Cluster 21  
(5 – 1) 

4921531C22Rik 
C9orf72  Ctsz  A130010J15Rik 
Cpeb4  Irf4  Akap17b 
Cxcl16  Jade2  Arl4a 
Ehd1  Ncoa5  B4galt4 
Furin  Plxnc1  C430042M11Rik 
Hivep1  Rab12  Cbll1 
Il15  Rras2  Ccne1 
Kcnk6  Socs2  Degs2 
Mapk6  Tank  Ell3 
Mdm2  Zfp280b  F630111L10Rik 
Mir22hg  

Cluster 19  
(4 – 4) 

Basp1  Fam111a 
Mirt1  Dqx1  Hap1 
Mthfs  Irak2  Kbtbd7 
Nabp1  Lcp1  Mitd1 
Nfkbib  Mtf1  Nedd9 
Pvr  Nipal1  Ogfrl1 
Relb  Pik3r5  Pou6f1 
Sbds  Poglut1  Rab19 
Slc2a6  Spdl1  Rmi2 
Suco  Stat5a  Slc30a1 

Tmem123  Tmem63b  Tent5a 
Tmem39a  Tnip1  Tex9 
Tnfaip2  Traf6  

Cluster 22  
(5 – 2) 

Ap3m2 

Cluster 16  
(4 – 1) 

Arhgap12  

Cluster 20  
(4 – 5) 

1700047I17Rik2  C920021L13Rik 
Ccne2  Adam8  F420014N23Rik 
Dmpk  Bcl2l11  

Cluster 23  
(5 – 3) 

Batf 
Flt4  Cd200  Cptp 

Gnptab  Cdc42ep3  Cst7 
Gpsm2  Cdk5r1  Dapp1 
Hbp1  Cflar  Dok1 
Lims1  Ebi3  Exoc3l4 
Lin54  Fam177a  Gucd1 
Lpin2  Mif4gd  Il27 
Mcm10  Mllt6  Parp3 
Mcm6  Mthfsl  Ralgds 
Mxi1  Mylip  Riox2 
Npat  Nudt9  Slc43a3 
Ppm1k  Oaf  Tlcd2 
Smad1  Pi4k2b  Tnk1 

Smarca5-ps  Rap1b    
St8sia1  Rest    
Tgfb3  Sema6d    
Tpr  Slamf7    

Traf3ip3  Slc22a21    
Trim34a  Slc39a1    
Trim56  Sqstm1    
Usp1  Tnfsf15    
Wdr62  Tnfsf9    
Zcchc24  Zfand2a    
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Table A.1: List of genes within SOM clusters (part 3). 
Cluster ID  

(Row – Column) Genes       

Cluster 24  
(5 – 4) 

Arl4c       
Cacnb3       
Cd82       
Cdk6       
Degs1       
Dennd4a       
Fam84b       
Foxp4       
Hmga1       
Hsd17b11       
Hsf2       
Il4i1       
Jdp2       
Jup       

Kdm2b       
Lima1       
Mdfic       
Ptafr       

Rapgef2       
Rcsd1       
Rhof       
St3gal1       
Stip1       

Txndc17       

Cluster 25  
(5 – 5) 

Adap1       
Aebp2       
Arf2       

Arhgap22       
Bcl2l1       
Cd80       
Cldn1       

Dnase1l3       
Emp3       
Il15ra       
Kpna3       
Mfhas1       
Mrpl39       
Nub1       
Rnf2       

Slc30a4       
Stx6       

Swap70       
Uap1       
Zswim4       
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Figure A.1: Regulation of the expression of Irfs and Stat1/2.
Regulation of the expression of Irf1 (A.), Irf2 (B.), Irf3 (C.), Irf4 (D.), Irf5 (E.), Irf7 
(F.), Irf8 (G.), Irf9 (H.), Stat1 (I.) and Stat2 (J.) assessed following the indicated 
stimulation. Each dot is a sample, the line inside the box is the median, the whis-
kers represent the variability. Asterisks indicate statistically significant differences 
between the indicated conditions as assessed by one-way ANOVA; adjusted p-val-
ue: ns = non significant; * p≤0.047; ** p≤0.007; *** p≤0.0004; **** p<0.0001.
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Table A.2: List of phosphorylation and dephosphorylation events under 
IFN-αA+α-CD40 4 hours condition compared to IFN-αA 4 hours condition 
(part 1). 
Significant events were selected with a p-value ≤ 0.05 and a probability of 
localisation > 0.75. 
Events presented from the lowest p-value (high significance) to the highest p-
value (lower significance). 
 
Phosphorylation events: 
 

-Log10 (p-value 
IFN-αA vs IFN-
αA+α-CD40) 

Log2 FC (IFN-αA 
vs IFN-αA + α-

CD40) 
Protein 

Localisation 
(Amino acid 
– position) 

3.5296 3.8498 Crebbp Ser1077 
3.477 3.57649 Rlim Ser194 

3.47627 4.20114 Gab2 Ser402 
3.43593 2.51402 Ampd2 Ser45 
3.4323 3.31568 Spn Ser139 

3.27709 3.69652 Tnfaip3 Ser381 
3.18662 4.92123 Myo1g Ser998 
3.09868 3.54325 Tmpo Ser291 
3.0363 3.28189 Coro1a Ser426 

2.84376 1.92042 Pcyt1a Ser347 
2.7145 4.12413 Taf3 Ser90 

2.68712 3.00416 Cenpe Ser2423 
2.4238 3.21354 Lrmp Ser373 

2.30787 2.64733 Gcc2 Ser341 
2.22294 2.37997 Inpp5d Ser173 
2.14658 2.71468 Akap9 Ser3694 
2.05209 3.02263 Zbp1 Ser384 
1.97866 1.5995 Tex2 Ser195 
1.95929 1.64142 Atrip Ser102 
1.90297 2.0261 Ahnak Ser5596 
1.8993 2.35394 Krit1 Ser276 

1.89513 3.6341 Kifap3 Ser60 
1.89103 2.1418 Lmnb2 Ser402 
1.84581 2.82309 Ogfrl1 Ser65 
1.84269 2.14502 Huwe1 Ser1368 
1.77473 1.97334 Pde4dip Ser195 
1.73577 2.46296 Nfkbie Ser18 
1.71399 2.13797 Cep128 Ser33 
1.6851 1.90442 Ssrp1 Ser657 

1.68335 1.61834 Spag9 Ser561 
1.67788 2.24202 Ccdc88a Ser1584 
1.67536 1.99893 Srpk1 Ser335 
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1.67155 2.29818 C7orf50 homolog Ser180 
1.6664 1.91294 Card11 Ser448 

1.65114 1.88712 Zmym4 Ser242 
1.62434 3.46781 Plekho2 Thr251 
1.61453 2.31649 Myo9a Ser1300 
1.60525 2.84119 Snap29 Ser65 
1.59179 1.68009 Secisbp2l Ser900 
1.58785 4.0828 Mtdh Ser297 
1.57018 1.63469 Prrc2a Thr782 
1.55297 2.57025 Zc3h18 Ser45 
1.53482 2.14485 Arfgap2 Ser431 
1.51213 2.85533 Ahctf1 Ser1928 
1.47783 2.90321 Palld Ser1146 
1.47592 1.8848 Smg9 Ser53 
1.47293 2.90789 Mvb12a Ser168 
1.46621 2.70381 Pcf11 Ser495 
1.46415 1.86075 Ndrg1 Thr328 
1.45371 3.43613 Rb1 Ser31 
1.43485 2.91031 Tpd52 Ser145 
1.4348 3.60622 Jdp2 Thr148 
1.4001 3.2158 Ikbkb Ser697 

1.39384 2.13993 Card10 Ser678 
1.37489 3.38107 Tbc1d10b Ser693 
1.36774 1.9717 Sh3bp4 Ser240 
1.35576 3.09447 Srrm2 Ser433 
1.35087 2.83804 Cbx8 Ser229 
1.3489 3.57887 Macf1 Ser7295 

1.32642 2.7496 Nedd4 Ser309 
1.31837 2.07825 Sipa1l1 Ser1116 
1.30778 1.81134 Sos2 Ser1283 
1.30431 2.87349 Hnrnpm Ser574 
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Table A.2: List of phosphorylation and dephosphorylation events under 
IFN-αA+α-CD40 4 hours condition compared to IFN-αA 4 hours condition 
(part 2). 
 
Dephosphorylation events: 

-Log10 (p-value 
IFN-αA vs IFN-
αA+α-CD40) 

Log2 FC (IFN-αA 
vs IFN-αA + α-

CD40) 
Protein 

Localisation 
(Amino acid 
– position) 

4.65002 -6.02586 Son Ser2047 
4.02031 -3.32748 Pikfyve Ser475 
3.70601 -3.26485 Rexo1 Ser353 
3.28061 -2.45748 Rsf1 Ser401 
3.27111 -3.45232 Mki67 Thr1952 
3.18406 -3.38134 Ell Ser300 
3.03041 -2.5885 Cep128 Ser1058 
2.46856 -3.22592 Baiap2 Ser493 
2.44423 -4.60781 Nop56 Thr546 
2.3904 -4.19358 Son Ser2049 
2.2987 -4.14234 Ubap2l Ser625 

2.23136 -2.5985 Rpsa Ser43 
2.17236 -2.45818 Fermt3 Ser8 
2.1325 -2.48194 Top2a Ser1211 
2.1272 -2.01409 Hist1h1d Thr18 
2.1248 -2.6917 Grap2 Ser41 

2.05429 -2.97466 Hnrnpf Ser187 
2.05098 -3.7054 Phip Ser1283 
2.03173 -1.82344 Nadk Ser50 
1.99501 -5.20582 Rreb1 Ser1452 
1.98133 -2.24405 Pnn Ser441 
1.96722 -3.36034 Nfic Ser339 
1.9361 -2.49673 Cdk13 Ser664 

1.93325 -2.72872 Gm20431;Ube2v1 Ser370 
1.92983 -3.78564 Fxr2 Ser603 
1.91494 -3.13332 Fam126a Ser465 
1.91426 -3.76288 Mbd2 Ser410 
1.91425 -3.33242 Phip Ser1281 
1.91038 -3.1707 Nmd3 Thr470 
1.8972 -1.80362 Hist1h1e Thr18 

1.89123 -3.94332 Tns3 Ser332 
1.87531 -3.00582 Atxn2 Ser834 
1.85233 -2.79783 Cad Thr1037 
1.84707 -4.04609 Cdyl Ser83 

1.819 -4.49519 Rcsd1 Ser378 
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1.76248 -2.9672 Rcsd1 Ser177 
1.7497 -3.77992 Fcho2 S394 

1.73218 -1.97058 Rock2 S1374 
1.73021 -3.06876 Rsrc2 Thr219 
1.71646 -2.01245 Diap3;Diaph3 Ser1072 
1.71232 -1.70057 Itgb3 Thr778 
1.70767 -2.83158 Sub1 Ser92 
1.68618 -3.15368 Rbl1 Ser959 
1.68158 -2.00377 Arhgap21 Ser875 
1.6757 -2.17686 Ppih Ser6 
1.6747 -1.87852 Atm Ser1987 

1.67352 -1.95414 Lrrc40 Ser37 
1.66428 -5.72701 Lrrc25 Ser227 
1.62752 -4.41118 Rif1 Ser1565 
1.61313 -3.61108 Hsd17b4 Ser3 
1.58239 -5.07196 Rgs14 Ser203 
1.57318 -3.71659 Srrm2 Ser2070 
1.56518 -2.03763 Srrm2 Ser946 
1.5564 -3.32773 Cic Ser778 

1.55621 -3.17743 Sptbn1 Ser2163 
1.55296 -2.16765 Prkd2 Thr715 
1.54998 -3.47008 Eef1g Thr46 
1.54118 -2.54248 Twistnb Thr226 
1.53469 -1.64387 Mki67 Ser128 
1.53107 -2.86663 Wdr90 Ser20 
1.52732 -3.53792 Thrap3 Ser320 
1.52651 -2.46248 Dennd1b Ser395 
1.52316 -4.54814 Wdr44 Ser563 
1.52038 -4.85644 Ddi2 Ser121 
1.51522 -2.54608 Mki67 Ser2934 
1.50966 -2.64157 Pbrm1 Ser636 
1.50691 -3.2781 Chaf1a Ser173 
1.50038 -2.46659 Plekhg3 Ser502 
1.49929 -3.18726 C2cd2l Ser660 
1.49784 -1.8793 Irf8 Ser232 
1.49405 -3.20341 Nap1l1 Ser69 
1.48127 -2.63757 Mki67 Thr797 
1.46249 -2.85549 Ik Ser225 
1.46134 -3.16853 Irf8 Ser162 
1.45939 -2.13223 Tpm4 Ser179 
1.4575 -2.23491 Iws1 Thr672 

1.45688 -4.49456 Vim Ser412 
1.4475 -2.43856 Gpalpp1 Ser249 
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1.44614 -1.89761 Lpin2 Ser144 
1.43701 -3.46722 Tfeb Ser167 
1.43593 -3.61993 Rftn1 Ser198 
1.43033 -3.81911 Eif4b Ser93 
1.41316 -2.28094 Cdca2 Ser758 
1.41043 -1.61421 Atad2 Ser317 
1.40896 -3.70831 Parp12 S273 
1.4072 -2.5126 Rptor Ser859 

1.40053 -5.24351 Pak1 Thr184 
1.39784 -2.08432 Peak1 Ser1206 
1.39441 -1.51608 Mcm3 Ser253 
1.39391 -3.03028 Prkag2 Ser90 
1.38431 -2.44391 Phf10 Ser326 
1.38389 -4.53788 Fgd3 S589 
1.38231 -1.64932 Osbpl11 Ser192 
1.37185 -6.8898 G3bp1 S231 
1.37139 -3.43056 Raly Thr268 
1.36795 -2.6349 Arhgap11a Ser284 
1.36738 -1.79681 Cdca7l Thr153 
1.36272 -2.88557 Fubp1 Ser410 
1.36233 -2.96947 Pcyt1a Ser315 
1.35907 -2.40717 Lmnb1 Thr400 
1.35833 -3.57857 Bcl2l13 Thr342 
1.35532 -2.0161 Asap2 Ser722 
1.3437 -3.10828 Otud4 Ser1016 

1.33899 -2.59814 Map3k4 Ser424 
1.33587 -5.39164 Sash3 Ser42 
1.33217 -1.57546 Phf2 Ser899 
1.33216 -3.30801 Isy1 Ser222 
1.3277 -2.26973 Pqbp1 Ser245 

1.32723 -2.66356 Map7d1 Ser296 
1.32651 -3.01051 Fam21 Ser1173 
1.32635 -2.99368 Rabep1 Ser410 
1.32464 -1.67302 Rhbdf2 Ser113 
1.32006 -1.87869 Shkbp1 Ser621 
1.31779 -2.41728 Hmga1 Thr53 
1.31721 -2.36837 Bag6 Ser1121 
1.31594 -2.95905 Rnf113a2 Ser85 
1.31459 -3.51151 Lrch4 Ser281 
1.30511 -2.24882 Tnks1bp1 Ser713 


