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detection of surface deformations
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Abstract. Levellings are performed to observe height

changes of different epochs at discrete surveying points. A

reliable estimation of surface deformations by a bivariate

polynomial needs a sufficient configuration of the underly-

ing network. Because the spacial distribution of the sur-

veying points is not homogeneous in the discussed regions,

the network configuration has to be optimized. This study

proposes an optimization procedure that estimates the opti-

mal number and position of the surveying points considered

for a reliable analysis. Furthermore, the already existing

observations are accepted or rejected due to the network’s

geometry. Therefore, two different approaches are com-

bined. First, the sampling theorem from time series analysis

is used to estimate the number and position of the surveying

points. Second, the partial redundancies from statistics take

the reliability into account. Applying the optimization pro-

cedure to several test regions, the benefit of the optimized

network configurations is discussed.

Keywords. network optimization, bivariate polynomial,

reliability, sampling theorem, partial redundancies, surface

deformation.

1 Introduction and background

For the mining of lignite, an extensive dewatering is nec-

essary because of the depth of the opencast coal mines.

This causes a subsidence of ground that has to be ana-

lyzed and monitored. Therefore, the general purpose of

this project is the parameterization of surface deformations

by bivariate polynomials based upon levellings at discrete

surveying points.

Levellings are performed at bench marks usually fixed

to house walls. Height changes of the ground can be cal-

culated at these discrete surveying points by building the
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difference between the heights of two epochs. Figure 1

shows the positions of the n = 194 surveying points of

Sample Region A. The corresponding height differences

between epochs 1 – 3 (15 year period) are also visualized

by different colours.
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Figure 1. Point cloud and height changes of Region A

(epochs 1 – 3, 15 years).

Figure 1 displays that the surveying points are not dis-

tributed homogeneously so that the point density varies over

different regions. Point aggregations correspond to dense

housing, whereas the points with a line structure correspond

to courses of streets. However, surface parameterizations

generally expect a homogeneous spatial point distribution.

An analysis of the height changes in the whole region with

optimal reliability is questionable upon these circumstances

because of two main aspects:

• Sections with a high point density influence the param-

eter estimation by a high weight. In contrast, the ones

with a low point density do not contribute that much.

• The reliability of the parameter estimation can be

insufficient in sections where the point density is

too low.

In conclusion, the network configuration should be ana-

lyzed and possibly optimized.

This study presents an algorithm that automatically adds

new surveying points at positions where they are needed.

Moreover, some existing surveying points are rejected

due to redundancy. Hence, the algorithm estimates the

optimal number and position of surveying points of an

existing network.

mailto:c.holst@igg.uni-bonn.de
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1.1 Analysis of network configurations

To describe the quality of an existing network configuration,

relevant parameters are the ones modelling the influence of

each observation on the values of interest. Values of interest

could be the estimated parameters or the estimated observa-

tions. This correlates highly with the general detection of

influential observations in linear regression [5, 10, 18]. For

describing observations with high impact, several param-

eters exist [2]. They can be grouped into the ones being

estimated iteratively by empirical simulations and the ones

that calculate the impact analytically.

Common parameters used in linear regression are the

Cook’s Distance [3, 4], the criterion by Pena [22] or the

impact factors [31]. These can be assigned to the qual-

ity assessment of geodetic networks. While the first two

parameters are estimated empirically (first group), impact

factors are calculated analytically (second group).

The named parameters of the first group have a high

potential to detect high leverage outliers [3]. The crite-

rion by Pena even seems to be able to detect a group of

high leverage outliers which can be essential for many

applications [22]. Nevertheless, as outliers are excluded

before the analysis of the configuration in this study (see

Section 2), these parameters are not applicable for the

present application.

Impact factors are more suitable for this application [28].

They detect observations with high influence simply by the

geometry of the network without using the actual observa-

tions [6, 27, 31]. They are introduced in Subsection 3.2.

1.2 Optimization of network configurations

The design stage of geodetic networks is separated in four

different orders. The zero, first and second order design

are concerned with the installation of a new network. Here,

the choice of datum (zero order), configuration (first order)

and the weight of individual observations (second order) is

established [23,26]. In contrast, the third order design opti-

mally improves an existing network [26]. This improve-

ment is necessary if parts of the network turn out to be

weak concerning the user’s requirements [24]. The present

study optimizes the configuration of a given height network.

Thus, it is part of the third order design.

The third order design optimizes the reliability (i.e.

the configuration) as well as the precision (i.e. the indi-

vidual weights of the observations). In planar networks,

this usually leads to the modification of the observation

plan, the precision and weights of the observations, respec-

tively [11]. Additional distance or angle measurements

between already existing stations are integrated [28], cri-

terion matrices are introduced [7] or shift-vectors are esti-

mated [14].

These aspects are not considered in the present study

because the method of measurement (levelling) and its pre-

cision are given. Rather an optimization of the geometry,

i.e. a densification and a thinning, is necessary to increase

the reliability of the parameter estimation. This is also dis-

cribed in the literature where the insertion of additional

stations [26] or the optimal positioning of given observa-

tions [16] are mentioned. Unfortunately, none of these third

order designs are able to determine the optimal number of

additional observations or surveying points, respectively, as

well as to position them at new stations where they are

needed most.

The purpose of applied network design is not to optimize

the reliability or the precision to inifite magnitude. Rather,

it is the optimization of these criterions under the ascpect of

economy [13]. Optimization means thus an improvement

of the existing network until it becomes economic, reliable

and accurate enough [26]. Thereby, the economy is often

integrated by a threshold that indicates the maximum pre-

cision or reliability that should be achieved. Higher values

are then not desired.

1.3 Main aspects of this study

In this study, a third order design strategy is presented.

This strategy analyzes and optimizes – if necessary – the

configuration of a given height network. This optimiza-

tion is dependent on the complexity of the modelled height

changes. The optimized point cloud is then suitable to reli-

ably estimate surface deformations. Accordingly, the main

aspects are the recommodations

• where new surveying points should be positioned (to

raise the reliability) and

• also where the point density can be reduced (to raise

the cost effectiveness).

Two different approaches are merged in this strategy: First,

the sampling theorem used in time series analysis. This

estimates the optimal number and position of the surveying

points. Second, the partial redundancies known in statis-

tics and linear regression. They verify the reliability of the

optimized configuration.

Section 2 presents the measurement and adjustment pro-

cedure for the estimation of the bivariate polynomial. Sec-

tion 3 shows the new developed optimization procedure and

Section 4 verifies this strategy.

2 Detection of surface deformations

Levellings are used for the detection of surface deforma-

tions. By building the difference between the levellings of

different epochs, height changes can be analyzed at discrete

surveying points. To describe the height changes continu-

ously, they are approximated by an adapted model. This is

developed in a stepwise adjustment procedure. The follow-

ing subsections explain the fundamentals of this procedure.
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2.1 Measurement of height changes

Height changes ∆heighti, with i = 1, ...n representing

the number of surveying points, are received by substract-

ing the height of two epochs 2 and 1 at one survey-

ing point i: ∆heighti = height
(2)
i − height

(1)
i . These

heights heighti are gained by a pre-adjustment of the lev-

ellings within each epoch. Notwithstanding the fact that the

height changes are therefore the outcome of a preprocess-

ing, they are in the following considered as observations

li = ∆heighti. These observations l = [l1, ..., ln]
T

are the

basis of further investigations.

By performing a geodetic high precision levelling, an

accuracy for the height changes between two epochs of

σ = 1mm can be reached. In this value, the measure-

ment accuracy as well as the quality of the point definition

is included. This magnitude can be confirmed by empiri-

cal investigations as well as by the long-time experience of

practical surveyors [34].

2.2 Parameterization of surface deformations

For parameterization of the height changes, a bivariate poly-

nomial is chosen. Polynomials enable an approximation of

the height changes with globally defined parameters. From

the view of approximation, especially splines among other

parameterizations could be appropriate as well. Splines

being defined locally in a fitnite grid [9] are often used

in other studies of comparable application [21, 33]. The

differences between the approximation results of polyno-

mials and splines concerning the number of parameters or

the smoothness of the derived surface deformations can be

insignificant as well as enormous. This depends i.a. on the

finite grid of the splines or their basis functions.

Disregarding these facts, the selection of bivariate poly-

nomials is not based on the view of approximation. Rather,

it is the aim to determine the global complexity of the

surface height changes, i.e. the included waves and their

smoothness. Here, polynomials seem to be more appropri-

ate because the smoothness, complexity and the included

waves result straightforward from the parameters and their

number (see Subsections 2.4 and 3.3.1).

Nevertheless, polynomials cannot approximate height

changes of arbitrary complexity. Regions with bounded

anomalies, fold lines or other local abnormalities cannot be

covered straightforward by bivariate polynomials.

In general, a bivariate polynomial P of order a in both

planar directions is defined as [17]

P (xi, yi) =

a∑

k=0

a−k∑

m=0

pk,mxk
i y

m
i . (1)

The number of surveying points is i = 1, ..., n, the planar

coordinates of the bench marks where the height changes

are observed are xi, yi and p = [p0,0, p0,1, ..., pa,0]
T

are the

parameters. The maximal number umax of parameters cor-

responding to a defined order a can be calculated by [17]

umax =
(a+ 1)(a+ 2)

2
. (2)

2.3 Least squares parameter estimation

The parameters p of the bivariate polynomial are estimated

within a classical least squares approch, i.e. the Gauß-

Markov model. The functional model is defined as [15]

l + v = Ap. (3)

The vector of residuals equals v and the design matrix A

consists of the partial derivatives of the bivariate polynomial

of eq. (1) with respect to the parameters pk,m. The associ-

ated stochastic model, i.e. the covariance matrixΣΣΣll, is

ΣΣΣll = σ2Qll = σ2I (4)

where I equals the identity matrix and Qll the cofactor

matrix. Here, correlations are neglected, the observa-

tions have identical weights and measurement errors are

aussumed to be Gaußian distributed. By minimizing the

cost function vΣΣΣ−1
ll vT , the least squares solution of the

parameters p̂ and its corresponding covariance matrix ΣΣΣp̂p̂

are gained

p̂ =
(

AT Q−1
ll A

)
−1

AT Q−1
ll l (5)

ΣΣΣp̂p̂ = σ2 ·
(

AT Q−1
ll A

)
−1

. (6)

The estimated residuals v̂ that should underly a normal dis-

tribution are then calculated by

v̂ = Ap̂ − l. (7)

The a posteriori standard deviation ŝ is given by

ŝ =

√

v̂
T

Q−1
ll v̂

r
(8)

where r is the redundancy

r = n− u. (9)

The global test proofs the consistence between a priori vari-

ance σ2 and a posteriori variance ŝ2 [19]

H0 :

{

ŝ2/σ2 < fα,r,∞ if ŝ2 > σ2

σ2/ŝ2 < fα,∞,r if ŝ2 < σ2
(10)

where f equals the Fisher distribution and α the prob-

ability level. The redundancy is r for ŝ2 and ∞ for

σ2. If the null hypothesis H0 is accepted, the adjustment

can be assumed to be consistent. Otherwise, it requires

further investigations [19].
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2.4 Development of a stepwise adjustment procedure

Three assumptions are included in the presented adjustment

theory of Subsection 2.3:

(i) the order a of the polynomial is known

(ii) no outliers are included in the observations l

(iii) all parameters in the parameter vector p̂ are significant

Nevertheless, an optimal order of the polynomial is not

obvious a priori and outliers can be existent inside the obser-

vations. An iterative adjustment procedure has therefore

to be implemented. This estimates the optimal order a
of the polynomial besides the parameters p̂. Furthermore,

this procedure has to detect and eliminate outliers due to

the assumption of Gaußian distributed measurement errors

(see Subsection 2.3).

Outliers can also be included in the datasets. In gen-

eral, they are due to instable bench marks or mixed up point

definitions. Furthermore, they can result from local abnor-

malities from the general subsidence of ground. Thus, the

corresponding observations are not conspicuous in the pre-

adjustment within one epoch but when building the differ-

ence between two epochs. Outliers are defined as observa-

tions that do not support the general structure of the height

changes. This is given if the observation of a point devi-

ates from the polynomial, which fits the observations not

being outliers, more than 2.58 · σ = 2.58mm. Here, a con-

fidence interval of 2.58 corresponding to a probability level

of 99.0% is chosen [20].

The number umax of parameters corresponding to the

optimal order a (see eq. (2)) is only a maximal limit because

not all parameters have to be significant. To guarantee a reli-

able estimation without an over-parameterization, the num-

ber u of significant parameters has to be determined. For

the elimination of the non-significant parameters, they are

decorrelated by a modified Cholesky-decomposition [25].

Before these steps are processed, the surveying points

are transformed because of numerical reasons. First, they

are rotated into the main directions by a 2D principal com-

ponent analysis. Second, they are translated into the cen-

troid and scaled to an interval of [−1, 1]. Algorithm 1 shows

the final stepwise adjustment procedure. This algorithm is

an enhancement of the one already proposed in [34].

It should be emphasized that although Algorithm 1 can

estimate the parameters automatically, this algorithm is

only a construct that still needs expert knowledge by the

user. Especially the evaluation of the detected outliers

requires proof of an expert: If the outliers are not distributed

randomly in the point cloud, the estimated polynomial can-

not be expected to be a good fit of the observations. In this

case, the suboptimal determination of the polynomial order

could be responsible for the occurence of systematic out-

liers. To guarantee reliable results, every outlier should be

analyzed and the automatic classification as an outlier has

Algorithm 1: Stepwise adjustment procedure for

detection of surface deformations

Rotate, translate and scale the point cloud1

Estimation of optimal order2

Start with order a = 03

while H0 is declined do4

Estimate parameters p̂ by eq. (5)5

Calculate residuals v̂ by eq. (7)6

Elimination of outliers7

while outliers in data do8

Eliminate biggest outlier9

Redo Lines 5–610

if outliers are systematic then11

Go to Line 1612

Test H0 by eq. (10)13

if order is maximal then14

Go to Line 1815

Raise order a = a+ 116

Elimination of parameters17

Eliminate non-significant parameters18

Estimation of final parameters19

Redo Lines 5–10 with original point cloud, fixed order20

and fixed number of parameters

always to be questioned. Furthermore, the number of max-

imal order has to be chosen carefully. In conclusion, there

are five requirements that should always be met:

(i) The number of outliers should be small regarding the

number of observations

(ii) The number of parameters and the polynomial order

should be small regarding the number of observations

(iii) The spatial distribution of outliers should be random

(iv) The estimated residuals should underly a normal dis-

tribution

(v) The global test, i.e. H0, should be accepted

The main results of this algorithm are the estimated sig-

nificant parameters p̂ and the optimal order. These values

are the basis for the presented method for optimization of

the network configuration shown in Section 3.

Region A from Figure 1 is parameterized by this algo-

rithm. Figure 2 shows the estimated bivariate polynomial.

The polynomial is of order a = 6, estimated with u = 23

significant parameters. Black crosses indicate the 15 out-

liers that are detected and eliminated. The redundancy

equals r = 156 following eq. (9) and n = 179.
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Figure 2. Estimated bivariate polynomial of Region A

(epochs 1 – 3, 15 years); black crosses indicate outliers.

3 Strategy for optimization of network configurations

The basic idea of the developed strategy for network opti-

mization consists of three steps:

(i) Building a regular data-adaptive grid to homogenize

the spatial surveying point distribution. This increases

the relibility of the analysis of surface deformations.

(ii) Network reduction by elimination of individual sur-

veying points if necessary. This increases the economy

and cost effectiveness.

(iii) Reinsertion of boundary points. This optional step

copes with the bounded expansion of the regions.

Here, two different approaches are combined: First, the

sampling theorem known from time series analysis (see

Subsection 3.1). This is used to build the data-adaptive reg-

ular grid in the first step. Second, impact factors and partial

redundancies used in statistics and regression (see Subsec-

tion 3.2). They are suitable to verificate the configuration

of a network as in the second step. Subsection 3.3 proposes

the whole optimization strategy.

3.1 Sampling theorem

In the digital processing of signals, observed waves are

transferred by the Fourier transformation from the time

domain into the frequency domain. This enables an anal-

ysis of the frequencies being enclosed in the observed sig-

nal. The sampling theorem used in this context specifies the

Nyquist frequency fN based upon the fixed sampling rate

of the observations ∆t [1]:

fN =
1

2∆t
. (11)

A signal can only be reconstructed from the sampled data

if the frequency f of the included waves is less than the

Nyquist frequency fN . Thus, to detect a wave with a fre-

quency of f = 1Hz, the sampling rate of the observations

has to be ∆t < 0.5s.

This sampling theorem is based upon the assumption of

noise-free signals of infinite duration. Therefore, the num-

ber of more than 2 observations per wave as indicated by

eq. (11) cannot be transferred to empirical data as used in

this study. Hence, the number of minimal observations in

one wave to detect its frequency should be raised to 5–6 in

practial analysis [32]. This guarantees reliability even with

noised data of finite observation time.

Consequently, the number of observations needed to reli-

ably detect surface deformations can be calculated. There-

fore, the number of waves in the surface deformations has

to be known. This will be shown in Subsection 3.3.

3.2 Impact factors and partial redundancies

Observations with high influence can be detetected simply

by the knowledge about the geometry of the network with-

out using the actual observations. This leads to the impact

factors hi that are widespread in geodetic analysis [27, 31].

They can be calculated straightforward. Based on the

parameter estimation of Subsection 2.3, l̂ = Ap̂ [15] and

equation (5) follows

l̂ = A
(

AT Q−1
ll A

)
−1

AT Q−1
ll

︸ ︷︷ ︸

H

l. (12)

Here, H is called the hat matrix [6]. Its diagonal elements

hi = Hi,i (13)

are the impact factors. They describe the influence of every

observation li on the calculation of the estimated observa-

tions l̂i. The values of hi are in the interval of 0 ≤ hi ≤ 1.

An impact factor of hi → 1 equals a very high impact

whereas hi → 0 equals a negligible impact.

Figure 3 shows the impact factors of Region A: Impact

factors are getting higher towards the outer ring of the

region. Furthermore, points in sections with low density do

have a higher impact than the ones being located in point

clusters. The colour is scaled to an interval of [0.0, 0.4] in

Figure 3 to stress the distribution. In fact, the highest impact

factor is hi = 0.93.

The complement of the impact factor is the

partial redundancy ri

ri = 1 − hi (14)

indicating how one observation is controlled by the oth-

ers [6, 30]. Both the magnitude as well as the variance of

the partial redundancies can be an indicator for the reliablil-

ity of the underlying adjustment [28]. Furthermore, partial
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Figure 3. Impact factors hi of Region A (epochs 1 – 3), the

colour is scaled to [0.0, 0.4].

redundancies are an indicator for the marginally detectable

blunder named as internal reliability [6, 28].

The relative redundancy r is a measure for the overall

reliability of the network. It is calculated by [6, 12]

r =
1

n

n∑

i=1

ri =
r

n
. (15)

This value equals r = 0.87 for Region A. A verification

of the magnitude of relative redundancies in terms of the

reliability of a network is given in Section 4.

3.3 Developed strategy for optimization

The strategy for optimization of the network configuration

is segmented into three steps. These will be discussed in the

following before first results are shown.

3.3.1 Step 1: Building of data-adaptive grid

As soon as the preliminary surface estimation is done, the

number of waves of the estimated height changes is known.

This can be clarified by Figure 4 where a sine curve is dis-

played. Furthermore, the order of a polynomial a is shown

that is necessary to approximate this sine curve dependent

on its length. This relation leads to the connection between

the order of a one-dimensional polynomial a and the maxi-

mal number of waves nw that can be approximated by this

polynomial:

nw =
a− 1

2
. (16)

Assigned to a bivariate polynomial, nw indicates the num-

ber of waves into one coordinate direction. Here, the coor-

dinate system is orientated by the point cloud’s principal

components as is the case at the parameter estimation (see

Subsection 2.4).

number of waves nw

0 1 20.5 1.5

order of polynomial a

1 3 52 4

b

b

b

b b

Figure 4. Sketch of a sine curve (black), order a of a poly-

nomial to approximate the sine curve and the correspond-

ing number of waves nw, regularly spaced surveying

points in one wave ng (red).

Following the sampling theorem (Subsection 3.1), the

number of regularly spaced surveying points that are nec-

essary to detect reliably the waves of the polynomial into

one direction is thus

ng = ⌈nw · 5⌉ . (17)

The number of cells in a grid in both planar directions then

equals n2
g . The number of 5 observations per wave is also

displayed in Figure 4. This number is chosen because of

empirical investigations. Additionally, it fits to the proposed

magnitude of 5–6 observations ([32], see Subsection 3.1)

being based upon the sampling theorem. This will be veri-

fied in Subsection 4.4.

The optimization procedure thus calculates the optimal

number of surveying points n2
g as well as their optimal posi-

tion assuming a regular grid. Afterwards, the configura-

tion is optimized as follows: If observations are included

in the actual cell, only one of them is necessary for the

adjustment of the polynom. The others are rejected. Oth-

erwise, if no observation is contained inside the actual cell,

the network is densified by adding an additional observa-

tion. The specific location of this new observation inside

the cell is rather variable because of the discretization of

this approach. Here, it is chosen to be the middle.

The minimal number of waves in eq. (16) is assumed

to be 1: nw ≥ 1. Otherwise, the transfer of the sampling

theorem would not be suitable. Consequently, the minimal

number of cells is n2
g = 25 following eq. (17).

The rejected observations are not required for the estima-

tion of surface deformations due to the optimization proce-

dure. However, they can be regarded as independent control

observations as is discussed in the Outlook (Section 5).
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3.3.2 Step 2: Data reduction

Under the aspect of economy, the reliability of a geode-

tic network should not be optimized to infinite magnitude.

Rather a defined limit should be reached (see Subsection

1.2). Ideal values for partial redundancies in planar geode-

tic networks are 0.3 ≤ ri ≤ 0.7 [29]. An observation hav-

ing a partial redundancy of ri > 0.7 can thus be eliminated,

whereas one with ri < 0.3 should be supported by addi-

tional observations.

Thus, points having a high partial redundancy after the

first optimization step are iteratively eliminated. This data

reduction step is widespread [8,24]. The threshold is set up

as ri ≤ 0.95. This may seem to be very high in comparison

to the interval of 0.3 ≤ ri ≤ 0.7 for planar networks but it

will be verified later in Subsection 4.4.

3.3.3 Step 3: Reinsertion of boundary points

The optional third step reinserts boundary points. This step

is not essential following the previous efforts to build up a

constant grid of surveying points. Nevertheless, this step

counteracts two difficulties:

(i) Boundary points have a high impact using polynomials

(see Figure 3).

(ii) The sampling theorem assumes signals of infinite

expansion (see Subsection 3.1). This is not fulfilled

because of the limited size of the regions in this study.

Because of these two difficulties, boundary points are

important to guarantee reliable estimates. Hence, it is rea-

sonable not to reject any boundary points. However, to

highlight the benefit of the first two steps, this third step

is excluded in the following analysis.

3.3.4 Resulting algorithm

Algorithm 2 presents the resulting strategy for optimization

of the network configuration. This approach is based upon

the theory of time series analysis (sampling theorem) and

statistics (partial redundancies). Two values, which are ver-

ified in Subsection 4.4, are set empirically:

(i) The number of 5 observations per wave (eq. (17))

(ii) The threshold of ri ≤ 0.95 for the maximal partial

redundancy that is not rejected

Figure 5 shows the optimization of the configuration of

Region A. The order of the polynomial is a = 6, the number

of waves is nw = 2.5 and the number of grid points in each

of both directions is ng = 13 (see eqs. (16) and (17)). 106

observations (of 179) have been rejected so that 73 observa-

tions of the original point cloud remain. 12 observations are

added so that the number of surveying points of this region

with an optimal configuration is nopt = 85.

Algorithm 2: Optimization of network configuration

Estimate polynomial by Algorithm 11

1. Building of data-adaptive grid2

Calculate number of waves nw by eq. (16)3

Build regular grid with n2
g cells by eq. (17)4

for j = 1 to number of cells do5

if cell(j) is empty then6

Add point in middle of cell7

else if cell(j) is filled then8

Accept point that is nearest to the middle9

Reject the others10

2. Data reduction11

for i = 1 to number of points do12

Calculate partial redundancies ri by eq. (14)13

if max(ri) > 0.95 then14

Reject point with max(ri)15

else16

Go to Line 1917

3. Reinsertion of boundary points (optional)18

for j = 1 to number of boundary points do19

if boundary point (j) /∈ point cloud then20

Reinsert boundary point (j)21

Region A should thus be densified at 12 cells whereas

106 surveying points could be rejected. Consequently, an

optimization of the network configuration could be per-

formed to raise the reliability of the analysis in the whole

region.

4 Verification of the developed strategy

Various test regions are used to verify Algorithm 2. The

objective analysis that can be achieved regarding the opti-

mal number of points nopt and the resulting relative redun-

dancy ropt is pointed out.

4.1 Verification of Region A

Region A is optimized based on the proposed strategy.

Before the optimization, its relative redundancy was r =
0.87 (see Subsection 3.2). This values equals ropt = 0.73

after the optimization. This is close to the upper end of

the interval 0.3 ≤ ri ≤ 0.7 of partial redundancies usually

demanded in planar geodetic networks (see Subsection 1.2).

Figure 6 shows the impact factors of Region A after opti-

mization revealing two facts: (1) The mean value of the

impact factors is increased (the mean value of the partial

redundancies is decreased, as is already mentioned by ropt).
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Figure 5. Optimization of Region A (epochs 1 – 3, 15

years); rejected points (black), accepted points (green),

added points (red) and underlying grid cells (blue).

(2) The distribution of the impact factors is more homoge-

neous. The general increase of impact factors towards the

border of the region is due to the fact that polynomials are

less reliable there.

0 500 1000 1500 2000

200

400

600

800

1000

1200

Easting [m]

N
or

th
in

g
[m

]

 

 

Impact Factors
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Figure 6. Impact factors hi of Region A (epochs 1 – 3)

after optimization, the colour is scaled to [0.0, 0.4].

Until now, the height changes between epochs 1 – 3 have

been analyzed. In epoch 2, the network configuration has

been optimized without using Algorithm 2. An analysis of

the densified network between epochs 2 – 3 is thus reason-

able. Figure 7 shows the optimization of the improved net-

work. Here, the order of the approximated polynomial, the

number of waves and the number of grid points remain as

in Figure 5 (a = 6, nw = 2.5, ng = 13).

The densification of the network at epoch 2 to a num-

ber of n = 635 observations (441 additional points) did

benefit the configuration only partially. Instead of 12 sur-

veying points that should be added between epochs 1 – 3,

now 9 observations should be added regarding Algorithm 2.

This is because the densification was performed not homo-

geneously but along the courses of streets. Thus, some

sections of the region are still not covered optimally. The
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Figure 7. Optimization of Region A (epochs 2 – 3, 8

years); rejected points (black), accepted points (green),

added points (red) and underlying grid cells (blue).

relative redundancy was r = 0.96 before the optimization

with u = 23 parameters. After the optimization, this equals

ropt = 0.76. Again, this value is near the desired interval.

4.2 Verification of Region B

Region B also consists of 3 epochs of levelling. Figure

8 shows its optimization concerning epochs 1 – 2: The

n = 267 observations are nearly sufficient for a reliable

adjustment (a = 4, u = 12), only one observation should be

added. Furthermore, the point cloud could be thinned out to

a number of nopt = 42. This leads to a relative redundancy

of r = 0.96 before and ropt = 0.71 after the optimization.
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Figure 8. Optimization of Region B (epochs 1 – 2, 8

years); rejected points (black), accepted points (green),

added points (red) and underlying grid cells (blue).

Figure 9 illustrates the surveying points and the opti-

mization regarding the first and third epoch (n = 155,

a = 4, u = 13). Because the time between the epochs

is 12 years now, less identical surveying points are cov-

ered. However, the fewer observations are still sufficient for

a reliable adjustment. Only one more observation is miss-

ing than in the first period while many observations are still

rejected. The relative redundancy has been r = 0.92 before

the optimization and is ropt = 0.69 afterwards.
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Figure 9. Optimization of Region B (epochs 1 – 3, 12

years); rejected points (black), accepted points (green),

added points (red) and underlying grid cells (blue).

4.3 Verification of Region C

Figure 10 reveals the configuration optimization of Region

C, epochs 1 – 2. A big cluster of points is located in

the north. Thus, the observations especially in the south

would have a very low impact on the parameter estimation

based on this configuration (if all observations are equally

weighted, as assumed here). The optimization upgrades the

configuration so that the different sectors of the region con-

tribute in similar parts to the parameter estimation. Because

of the locally bounded point cluster, only 37 of the n = 136

points are necessary (a = 4, u = 11) while 6 new points

have been added. This leads to nopt = 43. Further-

more, the relative redundancy is reduced from r = 0.92

to ropt = 0.74.
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Figure 10. Optimization of Region C (epochs 1 – 2, 7

years); rejected points (black), accepted points (green),

added points (red) and underlying grid cells (blue).

Here, also a network densification was performed after

epoch 1. Regarding the configuration optimization of

epochs 2 – 3 (Figure 11), two main aspects can be observed:

(i) Even though the order of the polynomial has risen to

a = 5, the number of significant parameters remains

constant at u = 11. This leads to a relative redundancy

of ropt = 0.83 after optimization. This is higher than

the ones of the proposed regions until now.

(ii) Eight grid cells (highlighted in yellow) do not contain

any observation in the optimized configuration. These

observations are rejected in the data reduction step due

to partial redundancies of ri > 0.95.

Both these findings are due to Algorithm 2: Only the order

a of the polynomial is considered as criterion for the num-

ber of grid cells n2
g but not the number of parameters u. In

contrast, the partial redundancies ri and the relative redun-

dancy r only depend on the number of paramters u, not on

the order of the polynomial a.

Hence, the proposed method in Algorithm 2 is limited to

the assumption that the order a and the number of signifi-

cant parameters u are proportional. This is only the case if

almost all parameters are significant. If even all parameters

are significant, eq. (2) describes this proportion. However,

the two specified thresholds could be readjusted to over-

come this limiation.
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Figure 11. Optimization of Region C (epochs 2 – 3, 10

years); rejected points (black), accepted points (green),

added points (red) and underlying grid cells (blue); cells

not containing points in the optimized configuration are

yellow.

4.4 Final results

Table 1 summarizes the results of the previous subsections.

The relative redundancies ropt are all in the interval of

0.69 ≤ ropt ≤ 0.76 after the optimizations. The higher

relative redundancy of Region C (epochs 2–3, see Subsec-

tion 4.3) indicates the limitation of the proposed method.

Although the threshold of ri > 0.95 for rejecting obser-

vations seems to be very high, the relative redundancies

ropt are near the interval of 0.3 ≤ ri ≤ 0.7, proposed

as desired in planar networks [29]. The fact that they are

slightly higher than this interval should not imply that the

configuration is still too dense. This would mean that the

threshold of 5 observations per wave should be reduced.
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region epochs a u n r nopt ropt

A 1–3 6 23 179 0.87 85 0.73

2–3 6 23 635 0.96 97 0.76

B 1–2 4 12 267 0.96 42 0.71

1–3 4 13 155 0.92 42 0.69

C 1–2 4 11 136 0.92 43 0.74

2–3 5 11 168 0.93 64 0.83

Table 1. Parameters describing the network configurations and the approximated polynomials; a: order of polynomial;

u: number of significant parameters; n (nopt): number of observations (after optimization); r (ropt): relative redundancy

(after optimization).

It is rather the fact that the proposed interval is not com-

pletely transferable to the application discussed here. The

proposed interval considers planar networks, where station

coordinates are estimated. Since the present study aims at

continuously parameterizing surface deformations, higher

partial redundancies than usual should be achieved. Rel-

ative redundancies of r ≈ 0.75 with observations being

distributed equably over the region are therefore still rec-

ommendable for the present study – even considering cost

effectiveness. In conclusion, Algorithm 2 objectively opti-

mizes the configuration of a given height network.

5 Discussion and outlook

This study presents an algorithm that handles the third order

design of height networks. This has not been solved sat-

isfactorily based on the discussed literature. The proposed

method analyzes a given height network concerning its con-

figuration. Therefore, it estimates the optimal number of

surveying points that should be used to guarantee a reliable

estimation of the underlying bivariate polynomial. Further-

more, the method

• recommends the rejection or acceptance of the already

given observations and

• places additional surveying points at positions where

they are needed in terms of an optimal configuration.

Here, the sampling theorem from time series analysis and

the partial redundancies known in statistics are combined.

The first one is based on the order of the polynomial, the

latter one on the number of parameters. Two empirically

set thresholds are integrated to specifiy the density of the

resulting optimized configuration.

The proposed algorithm has one limitation: The order

of the polynomial and the number of its significant param-

eters are assumed to be proportional. If this is not ful-

filled, the resulting optimized configuration might still be

too dense. Then, the two included thresholds need to be

readjusted. This should again lead to a network configura-

tion that equals a regular grid of surveying points.

The optimization procedure is verified by several test

regions. The following benefits can be achieved:

• The observations that are rejected by the optimiza-

tion procedure can be regarded as independent con-

trol observations. These control observations could be

used to support and verify the adjustment because they

would not take part in the parameter estimation.

• The relative redundancy of the optimized point cloud

ropt is more meaningful than the original one (r). This

is because the spatial distribution of the given survey-

ing points might be very inhomogeneous. A high rel-

ative redundancy r could misleadingly imply that the

observations are reliable even in sections where sur-

veying points are given only sparsely.

• Other important parameters describing the reliability

of a geodetic network are improved: The internal reli-

ability (marginally detectable blunder) and the exter-

nal reliability (impact of outliers onto the estimated

parameters) [6, 12, 30].

It should be emphasized that the proposed method alters

the configuration to guarantee optimal reliability. A given

suboptimal configuration does not automatically mean that

the detection of surface deformations is impossible; the

parameter estimation is simply not optimal.

Generally, polynomials have one disadvantage – the

increase of impact of observations lying on the outer ring

of the observed region (see Figure 3). A strategy to over-

come this drawback is the reinsertion of boundary points

as mentioned in Subsection 3.3. Furthermore, twin points

could be introduced. These twin points could be positioned

in the direct neighbourhood of the already observed survey-

ing points lying on the outer ring of the region. Hence, the

partial redundancies would be enhanced significantly at the

borders of the region. This procedure would even be reason-

able regarding the economy: The installation and levelling

of additional points in the direct neighbourhood of already

existing ones is neither time-consuming nor cost-intensive.

These aspects have to be studied further.
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