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Summary

The Introduction presents the main subject of the thesis, the construction of a diffusion

process on spaces of probability measures. Together with a brief survey of the relevant

literature, it collects several tools from the theory of point processes and of optimal

transportation.

Chapter 2 appeared as the preprint [39]. It contains a study of the characteristic

functionals of Dirichlet–Ferguson measures Dσ with non-negative finite intensity measure σ

over locally compact Polish spaces. Firstly, we compute such characteristic functional

as the Dσ-martingale limit of confluent Lauricella hypergeometric functions kΦ2 with

diverging arity k. Secondly we study the interplay between the self-conjugate prior

property of Dirichlet distributions in Bayesian non-parametrics, the dynamical symmetry

algebra of kΦ2 and Pólya Enumeration Theory.

Chapter 3 appeared as the preprint [41], joint work with Eugene W. Lytvynov (Swansea

U., Wales, UK). It contains a new proof of J. Sethuraman’s fixed point characterization

of Dσ [145], providing an understanding of the latter as an integral identity of Mecke- or

Georgii–Nguyen–Zessin-type formula.

Chapter 4 appeared as the preprint [38]. It contains the proof of a Rademacher-type

result on the L2-Wasserstein space P2 over a closed Riemannian manifold M . Namely,

sufficient conditions are given for a probability measure P on (P2,W2), so that real-valued

W2-Lipschitz functions be P-a.e. differentiable in a suitable sense. Some examples of

measures satisfying such conditions are provided, mostly in the case when M = S1.

Chapter 5 appeared as the preprint [40]. It contains two constructions of a Markov

diffusion process η• with values in P2. The process is associated with the Dirichlet

integral induced by the L2-Wasserstein gradient and by Dm with intensity the Riemannian

volume measure m of M . When dimM ≥ 2 we study the properties of η•, including its

invariant sets, short time asymptotics for the heat kernel and a description by means of a

stochastic partial differential equation.
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Chapter 1

Introduction

As non-trivial translation-invariant measures on any separable infinite-dimensional Banach space

do not exist, the quest for well-behaved measures on infinite-dimensional spaces has represented

a stimulating problem for decades. Known examples of such measures naturally arise from

probability theory: for instance, Wiener measures, Poisson random measures, and more generally

the laws of stochastic processes with infinite-dimensional path or state spaces.

The interplay between these laws and the topology and geometry of the underlying spaces is

often much subtler than in finite dimensions, even for measures on linear spaces. Again by way

of example, this is attested in the case of the Wiener measure by the Cameron–Martin Theorem.

Whether finite-dimensional intuitions about basic concepts — like (Riemannian) metric, volume

measure or Brownian motion — may be applied to infinite-dimensional settings, is usually settled

only on a case-by-case basis.

During the last two decades, the space of probability measures over a Riemannian manifold

was put forward as a geometrically amenable infinite-dimensional object: Endowed with the

L2-Kantorovich–Rubinshtein1 distance arising from optimal transportation theory, it inherits

metric and geometric curvature properties from the underlying manifold, including Fréchet-type

differentiation, Riemannian calculus, a Levi-Civita connection and parallel transport.

This thesis is aimed at the study of a candidate “volume” measure on the space of probability

measures over a closed Riemannian manifold, and at the construction of a “geometric” diffusion

process on the same space. Our interest in these objects stems from three main aspects, roughly

corresponding to Chapters 2, 4 and 5 respectively, namely:

• algebraic aspects, related to representations of certain large Lie groups naturally acting

on spaces of measures, and to the invariance properties, with respect to such actions, of

certain random measures on said spaces of measures;

• geometric aspects, related to the “differential” and “Riemannian” structures induced on

spaces of measures by the above group actions, and to their interplay with the (extended)

L2-Wasserstein distance;

• stochastic aspects, related to the existence and properties of Markov diffusion processes

generated by the “Laplace–Beltrami” operators associated to the above random measures

and “Riemannian” structures.

These correspond to just as many long-term goals, only tangentially addressed in the thesis,

and for which the results presented here are but a starting point. Namely,

1Whereas we find the term ‘Kantorovich–Rubinshtein distance’ historically more appropriate (Cf.,

e.g., [21, p. 796] or [165, p. 119].), we shall in the following adhere to the far more common terminology

of ‘Wasserstein distance’.

1
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• to provide a Lie-algebraic proof of, and a probabilistic interpretation to, Thoma’s clas-

sification of the characters of the infinite symmetric group S∞, incarnated as the Weyl

group of the dynamical symmetry algebra of the Dirichlet–Ferguson measure;

• to find a natural “Riemannian volume” measure P on the L2-Wasserstein space P2(M)

over any closed Riemannian manifold (M, g) and such that (P2(M),P) inherit the lower

Ricci curvature bound of M , in the sense of either Bakry–Émery or Lott–Sturm–Villani

curvature(-dimension) conditions;

• to prove the existence of the Wasserstein diffusion on the space of probability measures over

any closed Riemannian manifold of dimension d ≥ 2, and to understand the relationship

between SDEs on P2(M) and SPDEs on M in roughly the same spirit as in Otto calculus

for PDEs.

In this first Chapter, we shall recall some preliminary results, briefly survey the relevant

literature about stochastic processes on spaces of measures, and familiarize the reader with

the notation. We alternate the mathematical description of the objects of interest with some

heuristics drawn from particle systems.

For ease of exposition, all such insights are presented in a sans-serif font and enclosed by a

side-rule, like the present paragraph.

Throughout the Chapter, we reference text by a combination of section number, e.g., §2.3,

page number, and paragraph number, e.g., ¶3.

1.1 Some key ideas

We summarize — informally — the main guidelines to follow.

Let Y be a Polish space, G be a connected Lie group acting freely on Y and g be the

corresponding Lie algebra. We write g.y ∈ Y for the action of g ∈ G on y ∈ Y . An “increment”

or “direction” is any element a ∈ g, and the corresponding “shift” is its image ea via the Lie

exponential mapping e : g→ G. For fixed u : Y → R, we define the directional derivative of u in

direction a by setting

∇au(y) := dt
∣∣
t=0

u
(
et a.y

)
,

whenever this exists. For every y ∈ Y we may define — at this point: arbitrarily — a linear

“tangent” space TyY of admissible directions a. Provided that we endow TyY with a Hilbert

scalar product 〈 · | · 〉y such that a 7→ ∇au is a continuous linear functional for all a ∈ TyY , then

a gradient ∇u(y) ∈ TyY is induced by the Riesz Representation Theorem and satisfies

∇au(y) = 〈∇u(y) | a〉y , a ∈ TyY . (1.1.1)

Some representation theory. Suppose further that Y be endowed with a Borel measure n.

Definition (Quasi-invariance). We term n quasi-invariant with respect to the action G
	
Y if

∀g ∈ G (g.)]n ∼ n ,

where by n1 ∼ n2 we mean that the measures n1 and n2 are mutually absolutely continuous.

Further, for any measurable map f we indicate the push-forward measure by

f]n := n ◦ f−1 .
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When Y is a G-homogeneous space (i.e., G
	
Y is transitive) and n is a G

	
Y -quasi-invariant

(probability) measure, a so called quasi-regular representation of G is induced on L2
n(Y ). This

representation is unitary, in the sense that its image is a subgroup of the group of unitary

automorphisms of L2
n(Y ). (For a further account of quasi-invariance and group representations,

see §2.1.2.)

In the case when G is a Lie group acting as above, we denote by ∇∗ the adjoint of ∇ with

respect to the natural (pre-)Hilbert scalar product on the space Γ(TY ) of (continuous) sections

to the tangent bundle TY , viz.〈
w1
∣∣w2〉 :=

∫
Y

〈
w1
y

∣∣w2
y

〉
y

dn(y) , wi ∈ Γ(TY ) .

Thus, a quasi-regular unitary representation is associated with a quadratic energy functional

E(u) := 〈∇u |∇u〉 . (1.1.2)

As it turns out, the G
	
Y -quasi-invariance of n is usually sufficient to establish that the

quadratic form associated to the functional E in (1.1.2) is closable, and generated by the

negative “Laplacian” L :=−∇∗ ◦∇. (For the details in the case relevant to us, see §4.4.4 ¶1, and

Proposition 4.5.6.)

Some metric analysis. When Y = (Y, r, n) is a metric measure space and ∇ is compatible with

the distance r on Y , (in a sense to be made precise) then the G
	
Y -quasi-invariance of n is a

key tool in establishing results about the n-a.e. differentiability of r-Lipschitz functions.

Indeed, provided E be a densely defined and closable pre-Dirichlet form with carré du champ

operator Γ(u)(y) := |∇u(y)|2y, its domain D(E) may be regarded as a Sobolev space of type H1.

Analogously, the set

{u ∈ Dloc(E) ∩ L∞n (Y ) | Γ(u) ∈ L∞n (Y )}

(properly normed) may be regarded as a Sobolev space of type W 1,∞. In this setting, the classical

Rademacher Theorem and its converse, the so-called Sobolev-to-Lipschitz property, may be

formulated as follows.

Property (Rademacher). If u ∈ Lip(Y, r) ∩ L2
n(Y ), then u ∈ D(E) and Γ(u) ≤ Lip[u]2.

Property (Sobolev-to-Lipschitz). If u ∈ D(E) and Γ(u) ∈ L∞n (Y ), then there exists an n-

version ũ of u such that ũ ∈ Lip(Y, r) and Lip[ũ]2 ≤ ‖Γ(u)‖L∞n .

Some stochastic analysis. Provided that (E,D(E)) be a regular, strongly local Dirichlet form

on L2
n(Y ), the standard theory of Dirichlet forms grants the existence of a Markov process y•

with state space Y , uniquely associated to (E,D(E)). In general, no pathwise construction of y•

is provided by the theory, and thus it must be achieved by other means. However, several

properties of y•, including e.g., conservativeness or ergodicity, may be restated in the language

of Dirichlet forms. In particular, the strong locality of (E,D(E)) implies the a.s. continuity of

the sample paths t 7→ yt(ω), that is, the process y• is a diffusion.

The simplest example of this construction to bear in mind is as follows: Choose (Y, r, n) = Rd

the standard Euclidean space, g ∼= G ∼= Rd the (additive, Abelian) group of translations of Y ,

and TyY :=Rd for every y ∈ Y . Then, ∇ is the usual gradient, L the usual Laplacian, and the

process y• is but a d-dimensional Brownian motion.

Different choices for Y and G yield constructions in a variety of contexts. In the following,

we shall focus on the case when Y is some space of measures on a Riemannian manifold M

and G is the group of diffeomorphisms of M . We start with a complete example.
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1.2 A leading example: configuration spaces

We start with a brief survey about the free geometric dynamics on configuration spaces, a (by

now) classical example of dynamics on spaces of measures which will be of guidance throughout

our study. The related theory, now fully developed, allows us to focus on the anticipated interplay

of algebra, geometry and stochastic analysis, while momentarily neglecting the more technical

aspects that arise in dealing with richer spaces of measures.

Throughout this chapter, we will adhere to the following notation.

Spaces. We introduce the following topological and measure-theoretical objects:

• X is a second countable locally compact Hausdorff topological space2;

• M is a (second countable) connected smooth manifold without boundary, possibly en-

dowed with a smooth Riemannian metric g such that (M, g) is additionally complete and

stochastically complete;

• B is the Borel σ-algebra of either X or M , depending on context; M + is the space of

σ-finite Radon measures on either X or M , depending on context, endowed with the vague

topology if not stated otherwise.

Distributions. We shall make use of the following standard probability distributions:

• the Poisson distribution with parameter γ ∈ [0,∞],

Pγ(k) :=
γk

k!
e−γ , k ∈ N0 ;

(If γ ∈ {0,∞}, then, conventionally, Pγ = δγ .)

• the Gamma distribution with shape parameter k > 0 and scale parameter θ > 0,

Gk,θ(r) :=
θ−k

Γ(k)
rk−1e−

r
θ , r ∈ R+ ;

• the Beta distribution with shape parameters α, β > 0,

Bα,β(r) :=
rα−1(1− r)β−1

B(α, β)
, r ∈ I .

1.2.1 Analysis on configuration spaces. In the study of random dynamics on spaces of

measures several examples naturally arise from physics. In this section, we formalize a simple

leading example: Bose gases.

By a Bose gas we shall mean a many-body system of indistinguishable mass-, volume- and

charge-less random particles in the Euclidean space. We assume further that

(B1) each particle is solely identified by its position and any two particles do not occupy the

same position with probability 1;

(B2) the system obeys the Bose–Einstein statistics, that is, the particles are non-interacting and

the system is invariant under particles’ permutation;

(B3) the system is a rarefied gas, that is, each finite volume in R3 contains only a finite number

of particles;

2Equivalently, X is a locally compact Polish space.



1.2.1 Analysis on configuration spaces 5

(B4) for a volume A of size |A| let γA be the number of particles in A. Then,

P(γA = 0) = e−|A| .

Mathematically, we shall formalize a Bose gas as a Poisson point process with intensity

measure the Lebesgue measure | · | in R3.

Point processes. (Cf., e.g., [102, Chap. 2].) A measure3 γ on X is integral if γB ∈ N0 for

all B ∈ B. A point process on X is any random element in the space of integral measures on X.

For each such γ, the functional E(γ · ) is a measure on X, termed the intensity measure of γ.

We say that a point process γ is

• proper, if there exists random variables N ∈ N0 and (xi)i≤N ∈ X
N such that

γ =

N∑
i=1

δxi P-a.e. ; (1.2.1)

(Let us stress that we allow for xi = xj when i 6= j)

• simple, if it is proper and P(γ{x} ≤ 1) = 1 for every x ∈ X;

• locally finite, if P(γK <∞) = 1 for every compact K ⊂ X;

• completely independent, if the random variables γB1, . . . , γBk are independent for every

pairwise disjoint B1, . . . , Bk ∈ B.

Since particles in a Bose gas are indistinguishable, and exchangeable by property (B2), they are

described by the set (as opposed to: ordered tuple) of their characteristic quantities. By (B1), the

only relevant quantity associated to a particle is its position in space, thus a Bose gas is described

by a proper point process γ. Again by (B1), γ is simple, with diffuse (i.e. atomless) intensity.

By (B3), the process γ is additionally locally finite. Finally, property (B4), together with all of

the previous conclusions, implies that γ satisfies to the following definition. (This is by Rényi’s

Theorem [102, Thm. 6.10].)

Definition (Poisson measure, e.g., [102, Dfn. 3.1]). A Poisson point process with intensity

(measure) σ ∈M + is a completely independent point process on X such that

γB ∼ PσB , B ∈ B .

As it turns out, every such process is a proper point process (up to equality in law, [102,

Cor. 3.7]). Its law (uniquely determined by σ, [102, Prop. 2.10(ii)]) is termed the Poisson

(random) measure Pσ. (For further characterizations of Pσ, see Eq. (3.1.1) and Thm. 3.1.1

below.)

Configuration spaces. A set A ⊂ X is termed locally finite if A∩K is finite for any compact K ⊂
X. Any such A has the form A = {xi}i≤N for some N ∈ N0, and is uniquely associated to a

Radon measure γ of the form (1.2.1), henceforth a configuration in X. With customary abuse of

notation, we write x ∈ γ whenever γ{x} > 0.

The configuration space Υ (4) over X is the set of all configurations in X, regarded as a

topological subspace of M +. Provided σ ∈ M + be diffuse, the Poisson point process γ with

intensity σ is additionally simple (See [102, Prop. 6.9].) and locally finite (since σ is Radon).

Thus, its law Pσ is concentrated on the configuration space Υ.

3Here: not necessarily σ-finite, nor Radon.
4This notation, taken from [51], is not the standard one for configuration spaces, usually denoted by Γ.

However, it is here very convenient to reserve the symbol Γ for carré du champ operators, as in [51].
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Fock spaces. For σ ∈ M +, we denote by L2
σ(X;C)�n the nth symmetric Hilbertian tensor

power of L2
σ(X;C), and define the Bosonic (or symmetric) Fock space of L2

σ(X;C)

Exp
(
L2
σ(X;C)

)
:=

⊕̂
n≥0

L2
σ(X;C)�n . (1.2.2)

From now onwards, we shall assume γ to be a Poisson point process with diffuse intensity σ,

defined on its sample space Υ. For σ and γ as above set q := γ − σ and define the compensated

Poisson multiple stochastic integral

q(n)f :=

∫
X×n

f(x1, . . . , xn) dq⊗n(x1, . . . , xn) , n ∈ N0 , f ∈ L2
σ(X;C)�n ,

as the square-mean limit of any sequence of bounded simple functions in L2
σ(X;C)�n. The

following is a standard result of the theory. (See e.g., [152, p. 220].)

Theorem (Chaos Expansion). Let σ, γ and q be as above and let E = EPσ . Then,

(q1)
(
γ 7−→ q(n)f

)
∈ L2

Pσ (Υ;C);

(q2) E
[
q(n)f

]
= 0;

(q3) E
[
(q(n)f)2

]
= n! ‖f‖2σ,n, where ‖ · ‖σ,n is the Hilbert norm of L2

σ(X;C)�n;

(q4) E
[
q(n)f q(m)g

]
= 0 for n 6= m, where the overline indicates the complex conjugate.

Furthermore, there is an induced unitary isomorphism of Hilbert spaces

ισ : Exp
(
L2
σ(X;C)

)
−→ L2

Pσ (Υ;C)

f := (f0, f1, f2, . . . ) 7−→

γ 7→∑
n≥0

q(n)fn
n!

 . (1.2.3)

An element in L2
Pσ (Υ;C) is but the wave-function of a quantum state of a Bose gas. By the Chaos

Expansion Theorem, each such quantum state is uniquely determined by the quantum states of

single particles in the gas (i.e., an element of the first chaos L2(R3;C)) via the isomorphism (1.2.3).

Random dynamics. For a self-adjoint operator (A,D(A)) on L2
σ(X;C) we term second quanti-

zation of A the operator on the Fock space Exp
(
L2
σ(X;C)

)
defined by

dExp(A) :=
⊕
n≥0

A⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
n

+ 1⊗A⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
n

+ · · ·+ 1⊗ · · · ⊗ 1⊗A︸ ︷︷ ︸
n

, A⊗0 := 0 ,

that is, the formal differential of Exp(A) :=
⊕
n≥0 A

⊗n (the normalization by n! being implicit in

the norms of the spaces). The operator dExp(A) is densely defined on a natural finitary pre-

domain in Exp
(
L2
σ(X;C)

)
. (See e.g., [17, vol. II.6 §1.1].) Furthermore, dExp preserves positivity

and (essential) self-adjointness [17, vol. II.6 §1.1], and sub-Markovianity (for self-adjoint operators,

see [152, Thm. 5.1]).

Suppose P• := (Pt)t≥0 is a Markov semigroup on L2
σ(X) associated to a reversible Markov

process x• := (xt)t≥0 with state space X. As suggested by the Chaos Expansion Theorem, we

may lift the stochastic dynamics of x• to a unique stochastic dynamics

γ• :=

N∑
i=1

δxi• , (1.2.4)

on the configuration space, generated by i.i.d. copies xi• of x•. Namely, γ• is the Markov process

with state space Υ associated to the semigroup

P• :=(ισ)∗ dExp(P•) .
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The dynamics of a Bose gas is given by the second quantization of the dynamics of a single free

particle. Indeed, let us assume further that particles in a Bose gas are free: By this we shall mean

that each particle moves by Brownian motion. Together with assumption (B2), this implies that

the (random) dynamics of a Bose gas is given by (1.2.4), where x i• :=
(
x it
)
t≥0

are i.i.d. Wiener

processes, each with generator the negative standard Laplacian −∆ on R3. Thus, the random

dynamics of a Bose gas in R3 is the reversible Markov dynamics with semigroup

Pt := ι∗ dExp
(
e−t∆

)
, (1.2.5)

where ι is the isomorphism (1.2.3) induced by the Lebesgue measure on R3.

As a generalization of Bose gases in the Euclidean space, let us now consider a Riemannian

manifold (M, g) with volume measure m and Laplace–Beltrami operator ∆g. Equation (1.2.5)

hints to the following question:

Question. Are there a “differential structure” and a “Riemannian metric” on Υ such that Pm

may be regarded as the associated “Riemannian volume measure” and

∆Υ :=−(ιm)∗ dExp(−∆g)

as the corresponding “Laplace–Beltrami” operator?

1.2.2 Geometry on configuration spaces. A positive answer to the above question was

provided in the seminal work [7] by S. Albeverio, Yu. G. Kondrat’ev and M. Röckner. Indeed, it

was the far-reaching intuition of [7] that the configuration space Υ over M inherits geometrical

properties of M .

We start by showing how self-transformations of M are lifted to self-transformations of Υ.

Representations of large Lie groups. Let Diff∞c (M) be the group of smooth diffeomorphisms

of M equal to the identity outside of a compact set. The natural action of Diff∞c (M) on M lifts

to an action of Diff∞c (M) on Υ, given by

ψ. : Υ −→ Υ

γ 7−→ ψ]γ
, (1.2.6)

where ψ ∈ Diff∞c (M), a configuration γ ∈ Υ is understood as in (1.2.1), and

ψ]γ := γ ◦ ψ−1 .

As firstly observed by A. M. Vershik, I. M. Gel’fand and M. I. Graev in [162], the Poisson

measure is quasi-invariant with respect to the action (1.2.6), viz.

d(ψ.)]Pm

dPm
(γ) =

∏
x∈γ

dψ]m

dm
(x) ,

and a unitary representation U = UPm of Diff∞c (M) is induced on L2
Pm

(Υ) by letting

(
U(ψ)f

)
(γ) :=

(
d(ψ.)]Pm

dPm
(γ)

)1/2

f(ψ−1
] γ) , ψ ∈ Diff∞c (M) .
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Differentiation on Υ. Let X∞c be the algebra of smooth compactly supported vector fields

on M and, for w ∈ X∞c , let
(
ψw,t

)
t∈R ⊂ Diff∞c (M) be its flow. In the following, we shall

regard Diff∞c (M) as the Lie group associated to the Lie algebra X∞c . (This identification has

some caveats, see e.g., [125, §§6-7].) For f ∈ L2
Pm

(Υ), the action (1.2.6) gives rise to a notion of

directional derivative w.r.t. w ∈ X∞c , viz.

(∇w f)(γ) := dt
∣∣
t=0

f
(
ψw,t.γ

)
(1.2.7)

whenever this exists. In order to show that (1.2.7) is non-void, let FC∞ ⊂ L2
Pm

(Υ) be the algebra

of functions of the form

u(γ) = F

(∫
M

f1 dγ, . . . ,

∫
M

fk dγ

)
,

for some k ∈ N0, F ∈ C∞c (Rk) and f1, . . . , fk ∈ C∞c (M). A straightforward computation (See

e.g., [7, Eqn. (3.7)]) shows that for every u ∈ FC∞ and every w ∈ X∞c there exists

(∇w u)(γ) =

k∑
i=1

(∂iF )

(∫
M

f1 dγ, . . . ,

∫
M

fk dγ

)
·
∫
M

(dfi)w dγ . (1.2.8)

Tangent spaces to Υ. Compatibly with the form of the directional derivative (1.2.8), set

(∇u)(γ)(x) :=

k∑
i=1

(∂iF )

(∫
M

f1 dγ, . . . ,

∫
M

fk dγ

)
· (dfi)x , u ∈ FC∞ , (1.2.9)

and notice that, for fixed γ ∈ Υ, the function (∇u)(γ)( · ) is an element of X∞c , by compactness

of suppfi, i ≤ k. Let now Xγ denote the completion of X∞c w.r.t. the pre-Hilbert norm

‖w‖Xγ :=

(∫
M

|wx|2g dγ(x)

)1/2

.

As in [7], we define a tangent space TγΥ to Υ at γ by setting

TγΥ :=Xγ .

As in the abstract case of §1.1, this definition is motivated by the classical Riesz Representation

Theorem, in that for every γ ∈ Υ and for any w in the dense subspace X∞c of Xγ one has

(∇w u)(γ) =
〈
(∇u)(γ)

∣∣w〉
Xγ

.

At least for short time, particles in a Bose gas γ behave independently of one another. Heuristically,

this suggests that the “space of directions” TγΥ along which a configuration γ may move is

“additive” and “total” w.r.t. the space of velocities of each particle. In mathematical terms

TγΥ =
⊕̂
x∈γ

TxR3 ∼= Xγ(R3) .

The canonical Dirichlet form on Υ. The Poisson measure Pm, the gradient ∇ defined on the

algebra of cylinder functions FC∞, and the tangent spaces Xγ all concur to the definition of a

canonical (pre-)Dirichlet form on L2
Pm

(Υ), viz.

EΥ(u, v) :=

∫
Υ

〈
(∇u)(γ)

∣∣ (∇ v)(γ)
〉
Xγ

dPm(γ) , u, v ∈ FC∞ . (1.2.10)

Theorem (Albeverio–Kondrat’ev–Röckner [7, Thm. 4.1], also cf. [96, Thm. 19], [142, Cor. 3.4]).

The pre-Dirichlet form (EΥ,FC∞) is closable. Its closure
(
EΥ,D(EΥ)

)
is a quasi-regular strongly

local Dirichlet form on L2
Pm

(Υ) with essentially self-adjoint generator (∆Υ,FC∞).

By the standard theory of Dirichlet forms (e.g., [59, 112]), (E ,D(E)) is properly associated

with a diffusion process with state space Υ, namely the process γ• defined in (1.2.4).
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Further developments. The detailed study of the Riemannian geometry of (Υ,Pm) carried out

in [7] constitutes the starting point of a prolific theory. Subsequent results include M. Röckner

and A. Schied’s Rademacher Theorem [142] for general measures on Υ endowed the extended

L2-Wasserstein distance W2 (described below); S. Albeverio, A. Daletskii and E. W. Lytvynov’s

work [4], about the de Rham cohomology of (Υ,Pm); L. Decreusfond’s work [36], concerned with

optimal transport on Υ; M. Erbar and M. Huesmann’s work [51], about synthetic Ricci curvature

lower bounds for the extended metric measure space (Υ,W2,Pm).

Onwards. Starting from the next section, we shall adopt the line of reasoning sketched in §1.1

and just detailed for configuration spaces, to lay the foundations for the definition of a diffusion

process on the space of probability measures over a closed Riemannian manifold. The general

strategy involves three main aspects: differentiation, randomness, and evolution.

1.3 Differentiation

In this section we discuss some notions of differentiability on spaces of measures in the spirit

of §1.1. Namely, we choose Y to be a space of (probability) measures and detail natural actions

on Y of some (infinite-dimensional) Lie groups G related to either the topology or the geometry

of the underlying space.

Let P be the space of probability measures over a closed Riemannian manifold M . It is

a leading intuition in the theory (e.g., [81, 131, 140, 165]), that we may treat P as a kind of

infinite-dimensional Riemannian manifold. However, care should be taken that this intuition has

its own limitations. Partly for this reason, and before addressing P, let us briefly recall two

basic results about Riemannian manifolds which will be of use in the following.

Manifolds. We start with a (smooth) Riemannian manifold (M, g) with intrinsic distance dg.

By (M, dg) we mean the metric space underlying to (M, g). For the sake of further comparison,

we recall a classical result by S. B. Myers and N. E. Steenrod,

Theorem (Myers–Steenrod [126, Thm.s 1 and 8]). Let ψ : M →M . The following are equivalent:

(a) ψ is a (smooth, bijective) Riemannian isometry of (M, g);

(b) ψ is a (bijective) metric isometry of (M, dg);

(c) ψ is a homeomorphism preserving integral arc-length.

and its strengthening, due to R. S. Palais,

Theorem (Palais [133]). The differential structure of (M, g) may be uniquely reconstructed

from (M, dg).

1.3.1 Wasserstein spaces and Otto calculus. We say that a metric space (X, d) is geodesic

if for every choice of xi ∈ X, i = 0, 1, there exists a curve γ : I → X, henceforth a geodesic

(curve), such that γi = xi and

d(γt, γs) = |t− s| d(x0, x1) .

Definition (Wasserstein spaces). For p ∈ [1,∞) we write Pp for the space of Borel probability

measures µ on X with finite pth-moment, viz.∫
X

d(x, x0)p dµ(x) <∞
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for some (hence any) x0 ∈ X. We endow Pp with the Lp-Wasserstein metric Wp defined by

Wp(µ, ν)p := inf
π∈Cpl(µ,ν)

∫
X×2

d(x, y)p dπ(x, y) , (1.3.1)

where Cpl(µ, ν) denotes the set of couplings of the pair (µ, ν). (See Eq. (5.3.13).) The

pair (Pp,Wp) is termed the Lp-Wasserstein space (over X).

If diamdX <∞, then Pp coincides, as a set, with P. It is a standard result in the theory

(e.g. [10] or [165, Ch. 6]) that (X, d) is separable, resp. complete, compact, geodesic, if and only if

so is (Pp,Wp). The reverse implications are a consequence of the fact that the Dirac embedding

δ : x 7−→ δx (1.3.2)

is an isometry for every p ∈ [1,∞). In the case when (X, d) is a (separable) geodesic space,

Lisini’s superposition principle [110] yields a variational characterization of Wp by the so-called

metric Benamou–Brenier formula [110, Cor. 4.3]

Wp(µ, ν)p = min
π∈GeoAdm(µ,ν)

∫
AC(I;X)

dπ(γ)

∫
I

dt |γ̇t|p . (1.3.3)

Here |γ̇t| denotes the metric speed of a continuous curve (γt)t∈I and GeoAdm(µ, ν) is the family

of Borel probability measures π on the space AC(I;X) of X-valued absolutely continuous curves

and such that (ev0)]π = µ and (ev1)]π = ν, where evt : γ 7→ γt is the evaluation map. Since the

Dirac embedding is an isometry, (1.3.3) yields a version of Myers–Steenrod Theorem, namely:

Corollary. A complete geodesic metric d compatible with a separable topological space X is

uniquely determined by the metric speed of all X-valued absolutely continuous curves.

Optimal maps and Wasserstein geodesics. In the case when (X, d) = (M, dg) is a closed smooth

Riemannian manifold with metric g and volume measure m = mg, the case p = 2 acquires

particular relevance.

Theorem (Brenier–McCann, see Thm. 4.3.8). Let µ � m. Then for every ν ∈ P2 there

exists ϕ = ϕµ→ν : M → R such that

exp · (∇ ·ϕ)]µ = ν

and

W2(µ, ν)2 =

∫
M

d
(
x, expx(∇xϕ)

)2
dµ(x) .

The function ϕ, termed a Kantorovich potential, is unique up to additive constant among
d2
/2-convex functions on M . (See Dfn. 4.3.5.) Furthermore, the curve of measures

(
exp · (t∇ ·ϕ)]µ

)
t∈[0,1]

is a W2-geodesic connecting µ to ν.

The case when µ 6� m is essentially more difficult and was completely understood in [63, 64]

by N. Gigli. (See §§4.3.4-4.3.5.)
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Otto calculus. For M as above, a heuristic understanding of P2 as an infinite-dimensional

Riemannian manifold (e.g., F. Otto [131], J. Lott [111], W. Gangbo–H. K. Kim–T. Pacini [60])

is provided by the celebrated Otto calculus (e.g., [131], R. Jordan–D. Kinderlehrer–F. Otto [81].)

Denote by Pm
2 the space of measures in P2 absolutely continuous w.r.t. m. In a nutshell,

solutions u = u(x, t) to some parabolic PDEs (e.g., the heat equation, resp. the porous medium

equation) may be regarded as curves of measures in Pm
2 by letting µt :=u( · , t)m. As it turns

out, such curves are gradient flows, i.e. solutions to

µ̇t = − gradµt F ,

where F is a “free energy” functional on Pm
2 (e.g., the Boltzmann entropy, resp. the Rényi

entropies). Here, if µt = ρtm, then we put µ̇t := ρ̇t, the total derivative of ρt. The gradient gradµ F

is defined in duality with the derivatives of F along geodesic curves, as follows. By Brenier–

McCann’s Theorem, for every µ ∈ Pm
2 and every ν ∈ P2 we may uniquely choose a W2-

geodesic µs := exp · (s∇·ϕ)]µ for some d2
/2-convex ϕ. Note that, for every ϕ ∈ C∞(M), the

function s · ϕ is d2
/2-convex for sufficiently small s > 0 (See [10, Lem. 1.34]). Thus, we are led to

define the ‘tangent space’

TµP2 := clµ {∇ϕ | ϕ ∈ C∞(M)} ,

where clµ denotes the closure w.r.t. F. Otto’s “Riemannian metric” on P2

Gµ(∇ϕ1,∇ϕ2) :=

∫
M

〈
∇xϕ1

∣∣∇xϕ2〉
g

dµ(x) , ϕi ∈ C∞(M) . (1.3.4)

Interpreting ∇ϕ as a “direction” at µ, we define the ‘directional derivative’

(∂ϕF )µ := ds
∣∣
s=0

F (µs)

with (µs)s∈[0,1] a geodesic as above. Provided that F be sufficiently nice to grant existence for

the above derivative, the Gµ-continuity of the linear mapping ∇ϕ 7→ (∂ϕF )µ yields then the

existence of a unique element gradµ F ∈ TµP such that

(∂ϕF )µ = Gµ(gradµ F,∇ϕ) , ϕ ∈ C∞(M) . (1.3.5)

It turns out that the metric Gµ induces the distance W2 (See [131, §4.3].) and, again if F

is nice, then the W2-metric slope of F coincides with the Gµ-module of its gradient, (Cf. [11,

Lem. 10.1.5]) viz.

|DF | (µ) := lim sup
ν→µ

|F (ν)− F (µ)|
W2(µ, ν)

=
∣∣gradµ F

∣∣
Gµ

.

1.3.2 Differentiation on spaces of measures. Analogously to the case of configuration

spaces, let us firstly introduce some group actions, as follows.

An action in topology. The topology of X is captured by the Abelian Lie algebra Cc. We

write exp Cc
	

M + for the action

ef . : µ 7−→ ef · µ , f ∈ Cc , (1.3.6)

where ef is but the exponential of real-valued functions. On the other hand, P is a homogeneous

space for the action exp Cc
	

P (Cf. [73, 143, 147].)

ef . : µ 7−→ ef · µ∫
X

ef dµ

, f ∈ Cc . (1.3.7)
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An action in geometry. When X = (M, g) is a closed smooth Riemannian manifold, its

differential structure is captured by the non-Abelian Lie algebra X∞ of smooth vector fields and

we write expX∞
	

M +
b for the action

ew. : µ 7−→ ew]µ , w ∈ X∞ , (1.3.8)

where et w :=ψw,t is the flow of w at time t ∈ R. We notice that the latter action restricts

naturally to P and that it is the lift of the natural action Diff∞+ (M)
	
M .

Linear geometries on P. As detailed in §5.2 below, the action (1.3.6), resp. (1.3.7), naturally

relates to those geometries on M +
b , resp. P, for which the linear combination

t 7→ µ+ tδx ,

resp. the convex combination

t 7→ (1− t)µ+ tδx ,

is a geodesic curve for every choice of µ and x ∈ X. Among these geometries are the linear

geometries inherited by subspaces of the vector space Mb of finite signed measures, endowed

with the total variation norm or the L1-Kantorovich–Rubinshtein norm ‖ · ‖1. The latter

satisfies ‖µ− ν‖1 = W1(µ, ν) on P1 and it is in fact maximal among all (semi-)norms on the

space of molecules of X that make the Dirac embedding into an isometry. (See e.g., [120,

Thm. 1].)

L2-Wasserstein geometry on P2. Similarly to the case of configurations, we define Xµ as the

completion of X∞ w.r.t. the pre-Hilbert scalar product〈
w1
∣∣w2〉

µ
:=

∫
M

〈
w1
x

∣∣w2
x

〉
g

dµ(x) , wi ∈ X∞ ,

extending Gµ on TµP2 (1.3.4) to Xµ, occasionally (e.g., [60]) termed ‘pseudo-tangent space’. A

gradient ∇ is induced for functions u : P2 → R by the action (1.3.8), satisfying (1.1.1) for the

choice g = X∞. This gradient extends grad in (1.3.5), in the sense that〈
(∇u)(µ)

∣∣ · 〉
µ

= Gµ(gradµ u, · ) on TµP2 , (1.3.9)

for all u : P2 → R such that either exists. For instance, this is the case when u ∈ FC∞, regarded

as the algebra of cylinder functions induced by smooth potential energies. (Cf. Dfn. 4.2.1.) In

fact, if u ∈ FC∞, then (∇u)(µ) ∈ TµP2 ( Xµ.

A heuristic explanation of (1.3.9) is as follows. If w ∈ X∞, then the geodesic flow expx(t wx)

and the flow ψw,t(x) are tangent to each other at t = 0 for all x ∈M . (See Lem. 4.4.1.) As a

consequence, the corresponding lifted flows on measures exp · (t w · )] and ψw,t] are tangent to

each other at t = 0 for every µ ∈P2. (Cf. the proof of Lem. 4.4.3.) Thus, the induced directional

derivatives and gradients coincide. Additionally, (Xµ, | · |µ) ∼= (TµP2, | · |Gµ) as Hilbert spaces for

all µ in the dense set of purely atomic measures with finite support.

In the following we shall however always distinguish between these two gradients and the

relative tangent spaces TµP2 and Xµ. Indeed, the “differential structures” induced by ∇,

resp. grad, do differ globally. The difference between grad on TµP2 and ∇ on Xµ is accounted

for by the corresponding tangent bundles in terms of the global derivations of Z∞ on P2. (See

Prop. 4.6.3).

Postponing rigorous statements to §4.6.1, let us argue here heuristically. Firstly, in the

previous section we strove for an understanding of Pm
2 as a Riemannian manifold. Any such
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understanding for the whole of P2 is however vitiated, in that P2 has no local structure. By this

we mean that for different points µ, ν ∈P2 the spaces TµP2 and TνP2 need not be isomorphic

Hilbert spaces, nor even of the same dimension as real vector spaces. The same holds for Xµ

and Xν . Therefore, in spite of the geodesic Myers–Steenrod Theorem, it is a consequence of this

“lack of locality” that (any reasonable analogue of) Palais’ Theorem need not hold for P2.

1.4 Randomness

In this section we discuss different choices for reference measures on spaces of measures.

Again, we do so in the spirit of §1.1, proposing candidates of measures n on Y satisfying some

quasi-invariance properties.

We say that a random measure is the law of any M +-valued random field. Starting from

the Poisson measure Pσ, we introduce several random measures over X. As in the case of

configurations, our intuition is partly taken from the physical description of particle systems.

By a non-interacting massive particle system we shall mean a many-body system of massive,

volume- and charge-less random particles in the Euclidean space. We assume further that

(M1) each particle is uniquely identified by its mass;

(M2) the system does not undergo condensation shocks, that is, each finite volume in R3 contains

only a finite amount of mass;

(M3) for a volume A ⊂ R3 of size |A| and an interval [s, t] ⊂ R+ let νs,tA be the total mass of

particles in A of mass comprised between s and t. Then,

lnP(νs,tA = 0) = − |A| · λ[s, t]

for some measure λ on R+.

Analogously to the case of Bose gases, we shall formalize a massive non-interacting particle

system as a marked point process, a pure-jump measure-valued Lévy process with no drift.

1.4.1 The gamma measure. Let X̂ :=X × R+ and Υ̂ be the associated configuration space.

A Lévy measure λ is any measure on R+ such that∫
R+

(1 ∧ s) dλ(s) <∞ .

For a Lévy measure λ, and for σ as in the previous sections, we regard σ̂ :=σ⊗ λ as the intensity

measure of the Poisson random measure Pσ̂ on Υ̂. Further let H : M +
pa → Υ̂ be defined as

H :

N∑
i=1

siδxi 7−→
N∑
i=1

δ(si,xi) .

As it turns out, H is a bi-measurable bijection onto its image, the space of marked config-

urations M̂ +
pa. (See §3.2.) We define the compound-Poisson random measure Rσ,λ on M +

pa

as

Rσ,λ :=(H−1)]Pσ̂ .

A distinguished example among all compound-Poisson random measures is the gamma

measure Gσ. Our interest in Gσ is mainly motivated by four properties, which we comment about

in the next paragraphs.
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Definition (Gamma measure, e.g., [94, 95, 157] or [102, Ex. 15.6]). We define the gamma

measure Gσ as

Gσ :=Rσ,λ , dλ(s) := s−1e−s ds .

(For further characterizations of Gσ, see Eq.s (1.4.1), (3.2.3) and Lem. 3.2.1 below.)

Representations of large groups. As shown by N. V. Tsilevich, A. M. Vershik and M. Yor in [157],

the gamma measure is quasi-invariant w.r.t. the action (1.3.6) of exp Cc on M +, viz. (Cf. [157,

Thm. 3.1].)

d(ef .)]Gσ
dGσ

(ν) = exp

[
−
∫
X

f dσ

]
· exp

[∫
X

(
e−f − 1

)
dν

]
, f ∈ Cc .

It was subsequently shown by Vershik in [161] that there exists a measure L+
σ , unique up to

multiplicative constant, mutually absolutely continuous w.r.t. Gσ and invariant w.r.t. the same

action. Partly because of this property, Gσ and the so-called multiplicative infinite-dimensional

Lebesgue measure L+
σ play a rôle in a long-standing program for the study of representations

of measurable SL2-current groups, i.e., groups of measurable bounded functions on a manifold,

and with values in the special linear group SL2. (We postpone a detailed account about the

relevant literature to §2.1.2.)

As already noticed in [162] for Poisson random measures, Gσ too is related to the representation

theory of the infinite symmetric group S∞, consisting of all permutations of N with cofinitely

many fixed points. The main fact behind this connection is that the Laplace transform L [Gσ] of

the gamma measure satisfies, for all t ∈ R,

L [Gσ] (tf) :=

∫
M+

exp

[
t

∫
X

f dν

]
dGσ(ν) = Z∞

(
t

∫
X

f dσ, t2
∫
X

f2 dσ, . . .

)
, f ∈ Cc .

Here Z∞ is the cycle index polynomial of S∞, defined by

Z∞
(
a1, a2, . . .

)
:=
∑
m

∞∏
i=1

amii
imimi!

,

where the sum runs over all non-negative multi-indices m in an arbitrary number of coördinates

and with finite length. For instance, Z∞ plays an important rôle in A. Yu. Okounkov’s proof [130,

pp. 28-29] of Thoma’s classification of the characters of S∞. (See [154, Satz 2, p. 55].) The

finite counterpart of Z∞, namely the cycle index polynomial Zn of the symmetric group Sn, will

be of importance throughout Chapter 2.

The extended Fock space. For general Rσ,λ (the analog of) the multiple stochastic integration ισ

in (1.2.3), although isometric, is generally not surjective onto L2
Rσ,λ(M +

pa;C), and the question

arises whether it is possible to give a (Fock) factorization of the latter space. For general Lévy

processes, it is known that the answer is affirmative, and in fact �the study of the factorizations

generated by an arbitrary process with independent values reduces to the case of the Gaussian and

Poisson processes.� [163, p. 442, ¶4]. Nonetheless, since the first chaos space need not coincide

with L2
σ(X;C), explicit constructions of such factorizations are generally out of reach. (See [163,

§2.6, ¶2].)

In the case of Gσ however, Yu. G. Kondrat’ev, J. L. da Silva, L. Streit and G. F. Us showed

in [94] that the standard Fock space (1.2.2) may be enlarged to an explicit extended Fock space

(e.g., [95, Eq. (8)]) unitarily equivalent to L2
Gσ (M +

pa;C) (See [95, §2, Thm. 1]). The corresponding

creation and annihilation operators in the extended Fock space of Gσ were later fully understood

by Kondrat’ev and E. W. Lytvynov in [95].
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The factorization property. Let us assume further that 0 < σX <∞. Then, it is not difficult

to show that Gσ has intensity σ, and thus it is concentrated on the cone of strictly positive finite

measures M +
b \ {0} ∼= P × R+. On M +

b \ {0} we define the normalization map

N : ν 7−→ ν :=(νX)−1ν ∈P .

Let now β :=σX > 0, so that σ = βσ. As shown by T. S. Ferguson in [55], the Gamma

measure Gσ is (the unique compound-Poisson random measure) factoring via N, i.e. such that

Gσ = N]Gσ ⊗ λ′ (1.4.1)

for some probability distribution λ′ on R+. In fact, it is not difficult to show that λ′ = Gβ,1.

(See e.g., [55, 157] or [158, Thm. 3].)

Partial quasi-invariance. It was shown by Yu. G. Kondrat’ev, E. W. Lytvynov and A. M. Vershik

in [96] that Gm is not Diff∞(M)
	

M +-quasi-invariant. Motivated by the very same guidelines for

the construction of diffusion processes as in §1.1, the authors overcame this issue by introducing

a notion of ‘partial quasi-invariance’ (Dfn. 2.1.2). In essence, in the notation of §1.1, the

partial G
	
Y -quasi-invariance of n coincides with the G

	
Y -quasi-invariance of the restriction

of n to each G-invariant σ-algebra Bn in a filtration B• := (Bn)n≥0 on Y , with B as terminal

σ-algebra. Under suitable measurability conditions, the Radon–Nikodým derivatives R• form a

(B•, n)-martingale, convergent if n is G
	
Y -quasi-invariant in the classical sense.

1.4.2 The Dirichlet–Ferguson measure. The factorization property of the gamma measure

calls for the following definition of the Dirichlet–Ferguson measure, our candidate for a “volume

measure” on P = P(M).

Definition. The Dirichlet–Ferguson measure with intensity σ (e.g., [55]) is the random measure

Dσ := N]Gσ .

Ever since T. S. Ferguson’s seminal paper [55], the Dirichlet–Ferguson measure Dσ has found

numerous applications throughout mathematics and beyond, as it is attested by its several names.

(See §2.1, ¶2 for a brief account about terminology and applications.) For example, in light

of the identification M +
b \ {0} ∼= P × R+, the measure Dσ is occasionally referred to as the

simplicial part of Gσ. (Cf. [158].) Indeed, assume that X = {1, . . . , k} consist only of a finite

number of points, so that σ =
∑k
i αiδi for some α := (α1, . . . , ak) ∈ Rk+. Then, P coincides with

the standard (k − 1)-dimensional simplex ∆k−1, and Dσ is but the Dirichlet distribution Dα of

parameter α, (Dfn. 2.2.1 below.) a multivariate generalization of the Beta distribution Bα1,α2 .

A fixed point characterization. It was firstly shown by J. Sethuraman in [145, §3] that the

Dirichlet–Ferguson measure satisfies the following characterization.

Theorem. Let x be an X-valued σ-distributed random field, r be a B1,β-distributed random

variable with values in [0, 1], and η be a P-distributed P-valued random field. Then, P is the

Dirichlet–Ferguson measure Dσ if and only if

η
d
= (1− r)η + rδx , (1.4.2)

where
d
= denotes equality in distribution.
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Originally presented as a fixed-point characterization, (Cf. [76, p. 28-279].) the distributional

Equation (1.4.2) may be understood as a Mecke- or Georgii–Nguyen–Zessin-type formula, as

argued in Chapter 3. Indeed, analogous characterizations by means of Palm distributions were

long proven in integral form: for Pσ by J. Mecke in [119], (for Rσ,λ in e.g., [96]) and for general

Gibbs measures by H. O. Georgii and, independently, by X. X. Nguyen and H. Zessin (e.g., [129]).

Among the many consequences of (1.4.2) is the fact that, whenever σ is diffuse, the random

measure Dσ is concentrated on the set of purely atomic probability measures with full topological

support.

Self-conjugate priors. The characterization (1.4.2) is of use to establish the following result,

originally shown in [55] by other means. The precise statement is as follows.

Theorem (Dirichlet-categorical posteriors, e.g., [55, §3, Thm. 1]). Let η be a Dσ-distributed

random field and let x be a sample from η. Then, the conditional distribution Dxσ of η given x

is Dσ+δx .

In the jargon of Bayesian non-parametrics: Dσ is a self-conjugate prior, that is, the (X-categorical)

posterior Dxσ of Dσ is itself a Dirichlet–Ferguson measure. This property is of great importance

in Bayesian non-parametrics, since �posterior distributions given a sample of observations from

the true probability distribution should be manageable analytically� [55, §1]. Besides, it will also

be of importance in relation with SL2-currents, as detailed in Chapter 2.

1.4.3 The entropic measure. As informally argued in Tsilevich–Vershik–Yor [157, p. 276, ¶2],

the multiplicative measures L+
σ are — among α-stable laws — at the opposite of the spectrum

from Wiener processes. Partially pivoting on this antithesis, von Renesse–Sturm [140] constructed

the entropic measure Pβ , a Gibbs-like measure on P(S1). Mimicking Feynman’s celebrated

heuristics of the Wiener measure, the authors replaced the energy functional on curves with the

(relative) Boltzmann entropy on measures, formally letting

dPβ(µ) =
1

Zβ
e−β Ent(µ) dP(µ) , µ ∈P(S1) , (1.4.3)

for some (non-existing!) uniform measure P and some normalization constant Zβ . (For a rigorous

construction on P2(S1), see [140, §3.2] or §4.5.5 below.)

The conjugation map. Let now M be a closed Riemannian manifold with volume measure m

and set β := mM . In the general case when S1 is replaced by M , the construction of the entropic

measure Pm = Pβm was achieved by K.-T. Sturm in [151, §3], as we detail now.

For µ ∈ P2(M) let ϕµ :=ϕm→µ be the map given by Brenier–McCann’s Theorem. Sturm

defined the conjugation map, a self-homeomorphism of P2(M) given by

Cm : µ 7−→
(
exp · (∇ ·ϕ

c
µ)
)
]

m .

Here, ϕc is the conjugate Kantorovich potential (Cf. §4.3.4.)

ϕc : x 7−→ − inf
y∈M

(
1
2

d(x, y) + ϕ(y)
)
.

Definition. The entropic measure with intensity β is the random measure

Pm :=Cm
] Dm , m = βm .
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Consistently with (1.4.3), the parameter β, implicit in the definition of m = βm, ought to be

understood as an inverse temperature in the sense of statistical mechanics. Indeed, it can be

shown (See Cor. 2.3.14) that

lim
β→∞
Dβm = δm and lim

β→0
Dβm = δ]m ,

where, in the second expression, δ]m = m ◦ δ−1 and δ is the Dirac embedding (1.3.2).

In statistical mechanical terms, as β → ∞ (that is, for low temperatures), the system

crystallizes to a fixed probability m, whereas, as β → 0, the system thermalizes to a random

probability δx , where x in an X-valued random variable with law m. (Cf. Rmk. 2.3.16 below.)

Support properties. The measure Pβ is not the law of a point process. Indeed, as noticed

in [140], it is possible to show that Pβ-a.e. µ is supported on a Cantor space5. In the general

case when M has dimension d ≥ 2, the study of Pm turns out to be particularly difficult. This

is mainly due to the fact that, for general µ, the Kantorovich potential ϕµ is not more than

Lipschitz regular. (Cf. Fig. 1.1.)

Figure 1.1: The graph of ϕµ on the unit-area disk for µ the purely atomic measure with atoms as

displayed, each with mass equal to the area of the corresponding circle.

Quasi-invariance of Pβ on P2(S1). By parallelizability and dimension, the unit circle witnesses

the coincidence of the Abelian Lie algebra Cc(S1) of smooth real-valued functions with the

Lie algebra X∞(S1) of smooth vector fields. In the form given in §4.5.5, the conjugation map

on P2(S1) interchanges the actions of the two associated groups. As a consequence of this fact,

von Renesse–Sturm were able to prove that Pβ is quasi-invariant w.r.t. the action (1.3.8). A

by now complete understanding of this property, subsequently provided by M.-K. von Renesse,

5A topological space homeomorphic to the 1/3-Cantor set.
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M. Yor and L. Zambotti’s [141] and J. Shao’s [147], suggests however that this quasi-invariance

property should not be expected in the general case of Pm.

1.5 Evolution

Except for the case of (Υ,Pm), few other cases appear to have been studied in the literature

with Dirichlet forms’ methods, as we detail below.

1.5.1 Dynamics on spaces of probability measures. We present three main examples of

stochastic processes on spaces of probability measures constructed via Dirichlet forms methods.

The Fleming–Viot process on (P(X),Dσ). When X is a (locally compact) Polish space,

L. Overbeck, M. Röckner and B. Schmuland showed in [132] how the gradient induced by the

action exp Cc
	

P relates to the carré du champ operator of the Dirichlet form associated to

the Fleming–Viot process with parent-independent mutation introduced by W. H. Fleming and

M. Viot in [57]. Quasi-invariance properties where subsequently shown by K. Handa [73], and

Schied [144] proved the Rademacher Theorem.

The Wasserstein diffusion on (P2(S1),Pβ). In the aforementioned study [140], K.-T. Sturm

and M.-K. von Renesse proved the closability of the Dirichlet form

E(u, v) :=

∫
P2(S1)

Gµ
(
(∇u)(µ), (∇ v)(µ)

)
dPβ(µ) , u, v ∈ FC∞ ,

give a characterization of the generator and a proof of the Rademacher and Sobolev-to-Lipschitz

properties. Moreover, they provide some understanding of the associated Markov diffusion

process, termed the Wasserstein diffusion, by showing that it is a solution to an SPDE of the

form

dµt = div
(√
µt dWt

)
+ Lwd

2 (µt) dt , (1.5.1)

where W• is a standard Brownian motion. (See (5.2.23wd0) for details, including the definitions

of Lwd
2 and of the space of test functions.)

The Modified Massive Arratia Flow on P2([0, 1]). The rather non-amenable form of the “drift”

term Lwd
2 in (1.5.1) prompted M. K. von Renesse and V. V. Konarovskyi to investigate, again

via Dirichlet form methods, solutions to analogous SPDEs on spaces of probability measures.

Their starting point is the Modified Massive Arratia Flow constructed by Konarovskyi in [91].

The Modified Massive Arratia Flow describes the motion of (a density of) random massive particles

additionally

(A1) locally-in-time non-interacting and free, that is, each particle moves by Brownian motion

until the first meeting time of two or more particles; (Notice that Brownian particles in the

unit interval will necessarily meet in finite time.)

(A2) turbulent, in the sense that, when moving by Brownian motion, particles rearrange them-

selves at a speed inversely proportional to their mass;

(A3) sticky, in the sense that, whenever some massive particles meet, they coalesce to form a

single particle with resulting mass the total mass of the meeting particles.

Konarovskyi was able to construct the Modified Massive Arratia Flow as a stochastic process

with values in the Skorokhod space D
(
[0, 1]; C([0, T ])

)
, by modifying the quadratic variation
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functional of the standard Arratia Flow, for which all particles have constant mass 1 and

coalescence does not alter the mass of particles. Subsequently, von Renesse–Konarovskyi [93]

constructed the process via Dirichlet form and identified as a solution to the SPDE

dµt = div(
√
µt dWt) +

∑
x∈µt

δ′′x dt ,

where W• is a standard Brownian motion and δ′′x is the second distributional derivative of δx.

(See (5.2.23af) for details.)

1.5.2 Dynamics on spaces of measures. The same line of reasoning as in [7] was adopted

in [96] for the case of Gibbs measures on the cone M +
pa of purely atomic Radon measures in M +.

Stochastic dynamics on M +
pa. Let (M, g) be a smooth Riemannian manifold with bounded

topology and geometry, and m be its volume measure. The actions (1.3.6) and (1.3.8) leave M +
pa

invariant, thus, the latter is homogeneous for the action of the (suitably defined) semi-direct

product exp Cc(M) o Diff∞c (M). Although the Gamma measure Gm is not quasi-invariant under

this action, Yu. G. Kondrat’ev, E. W. Lytvynov and A. M. Vershik were able to show in [96] the

closability of the pre-Dirichlet form

Ẽ(u, v) :=

∫
M+

pa

〈
(∇̃u)(µ)

∣∣ (∇̃v)(µ)
〉
T̃µM+

pa
dGm(µ) .

Here, u, v belong to a suitable family of cylinder functions (See [96, Eq. (26)]) and the operator ∇̃
is defined by Riesz Representation in duality with the directional derivatives induced by shifts

in exp Cc(M)oDiff∞c (M). The tangent space T̃µM +
pa is defined as the closure of C∞c (R+;R)⊗X∞c

w.r.t. to the norm

‖f ⊗ w‖
T̃µM+

pa
:=

(∫
M

|f(µx)|2 |wx|2g dµ̃(x)

)1/2

(1.5.2)

where, if µ =
∑
i≤N siδxi for some N ∈ N0, we let µx :=µ{x} and µ̃ :=

∑
i≤N δxi .

The choice of T̃µM
+
pa in [96] mimics the analogous choice of tangent spaces to the configuration

space Υ. Indeed, the Markov diffusion process µ• associated to
(
Ẽ,D(Ẽ)

)
is precisely the free

motion of a massive non-interacting particle system as in §1.4, ¶3, satisfying

µ• =
∑
i≤N

s itδx i• ,

where the x i•’s are i.i.d. Brownian motions on, say, R3, and s i• are i.i.d. of the form s i• = exp(y i•)

where y i• is a solution to the SDE

dyt = dWt − 1
2

exp(yt) dt ,

driven by a standard Brownian motion W•. (Cf. [96, Eqn. (58)].)

Again in analogy with the case of Υ, the generator of the process µ• is constructed as a

(kind of) second quantization of the standard Laplacian on R3, profiting the unitary isomorphism

between the Fock space of Pσ̂ on Υ̂ and the extended Fock space of Gσ constructed in [94, 95].
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1.6 Plan of the work

Let us now summarize some of the results in this thesis in light of the established lexicon.

1.6.1 The results in Chapter 2. The first two chapters are devoted to the study of Dσ
measures, mainly over Polish spaces. In light of the program sketched in §1.1, we aim to

understand the quasi-invariance properties of Dσ w.r.t. the action (1.3.6) on a general Polish

space X, and of Dm w.r.t. the action (1.3.8) on a closed manifold M with volume m. This latter

goal will however only be achieved in Chapter 5.

One main tool in establishing the (quasi-)invariance of measures on linear spaces is provided

by their Fourier transform, or characteristic functional. (Cf. e.g. [7, 96, 157, 159].) Whereas Pσ
and Gσ are (the laws of) measure-valued Lévy processes, the random measure Dσ does not fall

into this class, since the normalization via N destroys the independent increments property.

In particular, it is not possible to compute the characteristic functional D̂σ by means of the

Lévy–Khintchine formula.

In fact, it is commonly understood that Dirichlet–Ferguson measures belong to a class

of �distributions that are difficult to deal with by Fourier transformation, such as relatives

of the [finite-dimensional] Dirichlet distributions� [79, abstract]. In the specific case of Dσ,

the main difficulty consists in that the Fourier transform D̂αk of the Dirichlet distribution

with parameter αk — the k-dimensional marginalization of Dσ — coincides with the confluent

form kΦ2 of the Lauricella hypergeometric function of type D, a kind of k-variate generalization

of Gauß’ hypergeometric function 2F1. (See Dfn. 2.2.3.) In §2.3, we show that

Theorem. The functional D̂σ is the limit for k →∞ of the discrete Dσ-martingale (D̂αk )k.

The key observation in order to pass to the limit k →∞ is that we can rearrange the terms

in the infinite-series definition of kΦ2[αk] to express the latter as the exponential generating

function of a sequence of cycle index polynomials Zn of the symmetric groups Sn (Eq. 2.2.1),

computed at suitable expressions in αk. (See Prop. 2.3.5.)

In §2.4, we study the dynamical symmetry algebra of the function kΦ2. The terminology

originates in a series of works by M. Ciftan and W. Miller, Jr. (e.g., [30, 121, 122, 123]) concerned

with the ‘dynamical symmetric group’ of boson-operator realizations of U(n) state vectors. For

our purposes however, the dynamical symmetry algebra of kΦ2 will be the minimal semi-simple

Lie algebra gk generated by some integro-differential operators, (See (2.4.10).) acting on kΦ2 by

Eαi : kΦ2[α] 7−→ αi kΦ2[α+ ei] ,

E−αi : kΦ2[α] 7−→ (1− α1 − · · · − αk) kΦ2[α− ei]
, i = 1, . . . , k ,

where α ∈ Rk+ and ei is the ith vector in the canonical basis of Rk.

We show that — on the side of Fourier transforms — the discretization to ∆k−1 of the

commutative action (1.3.6) extends to a non-commutative action of the semisimple Lie alge-

bra gk ∼= slk+1. A probabilistic interpretation of this fact is given — on the side of distributions —

in terms of the the Bayesian property of Dα, corresponding to the computation (Prop. 2.1.5.) of

Dirichlet-categorical posteriors. As detailed in §2.1.2, this property of the Dirichlet distributions

turns out to be intimately connected with representations of measurable SL2-currents briefly

mentioned above.

1.6.2 The results in Chapter 3. Chapter 3 is a joint work with Prof. E. W. Lytvynov

(Swansea University, Swansea, UK). Here, we give an independent proof of Sethuraman’s fixed
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point identity (1.4.2), which we rather understand in integral form as the Mecke-type identity∫
P

dDσ(η)

∫
X

F (η, x, ηx) dη(x) =

∫
P

dDσ(η)

∫
X

dσ(x)

∫
I

F (ηxr , x, r) dB1,β(r) , (1.6.1)

where σ = βσ, F : P×X×I → R is any measurable semi-bounded function, and we set ηx := η{x}
and ηxr :=(1− r)η+ rδx. Our understanding is derived from the analogous identity (3.1.2) shown

by J. Mecke for the Poisson measure Pσ. (See [119, Satz 3.1].) Formula (1.6.1) will be an

important tool in establishing the closability of the Dirichlet form (1.6.4) in Chapter 5.

1.6.3 The results in Chapter 4. As shown by M. Röckner and A. Schied in [142], the

intrinsic distance associated to Albeverio–Kondrat’ev–Röckner’s geometry [7] on Υ = Υ(M)

is the (extended) L2-Wasserstein distance. The latter is defined by allowing for µ and ν

in (1.3.1) to be arbitrary non-negative (as opposed to: probability) measures6. The works by

L. Decreusfond [36] and M. Erbar–M. Huesmann [51] confirmed that this choice is also natural

with respect to the (curvature) properties of M .

More precisely, Röckner–Schied [142] showed that the Dirichlet form
(
EΥ,D(EΥ)

)
defined

in (1.2.10) has both the Rademacher and the Sobolev-to-Lipschitz properties defined in §1.1. In

Chapter 4 below we advocate that these properties are natural requirements for a to-be “volume

measure” on the space P2 = P2(M). Combining the proof-strategy of [142] with N. Gigli’s fine

analysis of the metric structure of P2, we give sufficient assumptions for a probability measure P
on P2 to satisfy the Rademacher property.

Theorem. Let P be a Borel probability measure on P2, quasi-invariant w.r.t. the action (1.3.8)

for every w ∈ X∞, and additionally such that, for all finite s ≤ t,

for P-a.e.µ ∈P Leb1- essinf
r∈[s,t]

Rwr (µ) > 0 , where Rwr :=
d(ψw,r.)]P⊗ dr

dP⊗ dr
.

Then, the quadratic form

E(u, v) :=

∫
P2

Gµ
(
(∇u)(µ), (∇ v)(µ)

)
dP(µ) , u, v ∈ FC∞

is closable. Its closure (E ,D(E)) is a regular, strongly local Dirichlet form on L2
P(P2) satisfying

the Rademacher property. That is, u ∈ D(E) and

G(∇u,∇u) ≤ Lip[u]2 (1.6.2)

for every u ∈ Lip(P2).

The rest of Chapter 4 is devoted to the construction of measures satisfying the quasi-invariance

assumption in the Theorem, namely: normalized mixed Poisson measures, and the entropic

measure and the Malliavin–Shavgulidze image measure on P2(S1). (See Ex. 4.5.18.)

These examples serve two main purposes. Firstly, to show that the Theorem is non-void.

Secondly, to comment on the following fact, recently shown by G. De Philippis and F. Rindler

in [35]. Namely that, if µ is a (σ-finite non-negative) measure on Rd such that every Lipschitz

function is differentiable µ-a.e., then µ� Lebd. Since the aforementioned example measures are

mutually singular, it follows that no analogue of De Philippis–Rindler’s result may hold on P2.

(Cf. Rmk. 4.2.9.)

6If µX 6= νX, then the set of coupling Cpl(µ, ν) is empty and we let inf ∅ := +∞, hence the name

‘extended’.
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1.6.4 The results in Chapter 5. We show here how the general strategy outlined in §1.1

also applies to the Dirichlet–Ferguson measure Dm over a closed Riemannian manifold M with

volume m and of dimension d ≥ 2.

As it is the case for (M +
pa,Gm), the space of purely atomic probability measure (Ppa,Dm) is

hardly approximated by finite-dimensional objects, due to the support properties of Dirichlet–

Ferguson measures. In the same spirit as in the treatment of the characteristic functional D̂σ,

we replace standard approximation techniques by martingale approximation techniques. A first

step in this direction requires to define a filtration of σ-algebras on P2(M) compatible with the

geometry of M .

Cylinder functions. In light of [96], we define, for f̂ ∈ C∞c (M × (0, 1]), a (non-linear, non-

continuous) functional on P2 by setting

f̂?(µ) :=

∫
M

f̂(x, µx) dµ(x) ,

where µx :=µ{x} > 0 as in (1.5.2). For each such f̂ , we define further a threshold parameter

εf̂ := inf
x∈M

min suppf̂(x, · ) > 0 .

The induced cylinder functions have the form

u(µ) = F

(∫
M

f̂1(x, µx) dµ(x), . . . ,

∫
M

f̂k(x, µx) dµ(x)

)
, (1.6.3)

for some k ∈ N0, F ∈ C∞c (Rk) and f̂1, . . . , f̂k all as above and with threshold ε > 0. It is not

difficult to see that every such cylinder function vanishes identically at all measures µ such

that µx ≤ ε for every x ∈M . Informally: cylinder functions only detect atoms with mass larger

than their threshold.

The canonical Dirichlet form. Further, we let Ẑ∞ε be the algebra of all functions of the

form (1.6.3), and Bε be the σ-algebra on P2(M) generated by Ẑ∞ε . Following [96], it is possible

to show that Dm is partially quasi-invariant (Dfn. 2.1.2) on the filtration
(
B1/n

)
n≥0

w.r.t. the

action (1.3.8) of Diff∞(M) defining ∇. Combining this result with the Mecke-type identity

for Dm (i.e., the integral version of Sethuraman’s characterization (1.4.2) obtained in Chap. 3)

yields the first main result of Chapter 5.

Theorem. The form

E(u, v) :=

∫
P2

Gµ
(
(∇u)(µ), (∇ v)(µ)

)
dDm(µ) , u, v ∈

⋃
ε>0

Ẑ∞ε (1.6.4)

is closable. Its closure (E ,D(E)) is a regular strongly local Dirichlet form on P2.

The Theorem is but the starting point for a thorough study of the form (1.6.4), including a

description of its carré du champ and generator (Thm. 5.4.11, Rmk. 5.4.12, Prop. 5.5.7), iterated

carré du champ (Lem. 5.6.27), and a proof of the Rademacher property in the form (1.6.2)

(Prop. 5.5.8).

The associated diffusion process. Since no Fock space representation of L2
Dm

(P2(M)) is available,

it is seemingly not possible to construct the diffusion process associated to (E ,D(E)) along the

same lines as in [96] for the gamma measure Gm. Thus, we develop ad hoc methods, relying on

three main ingredients.
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• The two-topologies paradigm of infinite-dimensional analysis. By this we mean that the

study of measures on infinite-dimensional spaces often requires dealing with multiple

topologies (possibly considered on subspaces). This is foremostly known for the Wiener

space and the Cameron–Martin subspace. Other examples include B. K. Driver and

M. M. Gordina’s infinite-dimensional Heisenberg groups (e.g., [47]) and L. Ambrosio,

M. Erbar and G. Savaré’s study [8] of Cheeger energies on extended metric-topological

spaces.

• Quasi-homeomorphisms of Dirichlet forms: the correct notion of isomorphism for quasi-

regular local Dirichlet forms to preserve the associated Markov processes. (See [27].)

• Kuwae–Shioya’s Mosco convergence: a notion of convergence for Dirichlet (and, more

generally, quadratic) forms on varying Hilbert spaces, also preserving convergence of the

stochastic counterparts (in a suitable sense). (See [90, 99].)

In the present case of Dm, we identify S. N. Ethier and T. G. Kurtz’ weak atomic topology [52,

§2] as the coarsest topology granting the continuity of cylinder functions in Ẑ∞ε . This allows

us to prove that (E ,D(E)) is quasi-homeomorphic to a Dirichlet form on an infinite-product

space. The latter may be filtered — roughly speaking: by considering truncations of probability

measures µ =
∑∞
i siδxi to subprobability measures µn =

∑Nn
i siδxi such that si ≥ 1/n for

all i ≤ Nn. Finally, the filtration induces a sequence of Dirichlet forms over finite-dimensional

spaces, converging to (E ,D(E)) in Kuwae–Shioya’s generalized Mosco sense.

The final goal to identify the Markov process associated with (E ,D(E)) is reached as follows.

Theorem. The Dirichlet form (E ,D(E)) is associated to a Markov diffusion

η• =
∑
i≤N

siδyi• , yit :=xit/si ,

where xi• are i.i.d. Brownian motions on (M,m). Furthermore, the measure Dm is a (distinguished)

invariant measure for η•.

Since Dm = N]Gm, rather than as a massive particle system we shall interpret a purely atomic

probability measure µ =
∑

i≤N siδxi as the density of particles in a fluid. The process η• represents

then the motion of the particles in the fluid. This motion is

(F1) non-interacting and free, that is, each particle moves by Brownian motion, and different

particles do not meet;

(F2) in dynamical equilibrium, in the sense that, for every time t > 0 and for every region A ⊂ M,

the total density ηtA of the particles in A coincides in average with the normalized

volume mA;

(F3) turbulent, in the sense that particles in the fluid rearrange themselves at a speed inversely

proportional to their mass.

In mathematical terms: (F1) is a consequence of the dimension of M : for d ≥ 2, independent

(possibly rescaled) Brownian motions meet with probability 0. (Cf. the capacity estimate

Prop. 5.6.24). Property (F2) holds because of Dm being invariant for η• and having intensity

measure m. The ‘speed’ of particle in (F3) is the inverse volatility of the corresponding Brownian

motion. Because of this property, we do not expect η• to be a stochastic flow (in the sense of

Y. Le Jan and O. Raimond [105]).
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These properties together suggest that the process η• is a multi-dimensional analogue of the

Konarovskyi’s Modified Massive Arratia Flow: Indeed, as a final result, it is possible to show

that η• is a solution to the SPDE

dηt = div(
√
ηt dWt) + 1

2

∑
x∈ηt

∆δx dt .

(Here, ∆δx is the distributional Laplacian of the measure δx. See §5.1.)



Chapter 2

Dirichlet characteristic functionals

In this Chapter, we compute the characteristic functional of the Dirichlet–Ferguson measure

over a locally compact Polish space and prove continuous dependence of the random measure

on the parameter measure. In finite dimension, we identify the dynamical symmetry algebra of

the characteristic functional of the Dirichlet distribution with a simple Lie algebra of type A.

We study the lattice determined by characteristic functionals of categorical Dirichlet posteriors,

showing that it has a natural structure of weight Lie algebra module and providing a probabilistic

interpretation. A partial generalization to the case of the Dirichlet–Ferguson measure is also

obtained.

2.1 Introduction and main results

Let X be a locally compact Polish space with Borel σ-algebra B and let P(X) be the space of

probability measures on (X,B). A P(X)-valued random field P is termed a Dirichlet–Ferguson

process [55] with intensity (measure) σ ∈P(X) if, for any measurable partition X :=(X1, . . . , Xk)

of X, the random vector (PX1, . . . , PXk) is distributed according to the Dirichlet distribution

with parameter (σX1, . . . , σXk). (See Dfn. 2.2.1.)

For P as above, we term Dσ := lawP the Dirichlet–Ferguson measure with intensity σ.

We regard Dσ as a probability measure on the linear space Mb(X) of finite signed measures

over (X,B), supported on P(X). The Dirichlet distribution and the Dirichlet–Ferguson measure

have found a wide range of application, including Bayesian non-parametrics [55, 108, 109],

genetics [57, 132], representation theory [157, 161], number theory [44, 45].

The characteristic functional of Dσ is commonly recognized as hardly tractable [79] and

any approach to Dσ based on characteristic functional methods appears de facto ruled out in

the literature. Notably, this led to the introduction of different characterizing transforms (e.g.

the Markov–Krein transform [86, 159] or the c-transform [79, 80]), inversion formulas based on

characteristic functionals of other random measures, (in particular, the Gamma measure, as

in [138]) and, at least in the case X = R, to the celebrated Markov–Krein identity. (See, e.g.,

[109].)

These investigations are based on complex analysis techniques and integral representations of

special functions, in particular the Lauricella hypergeometric function kFD [103] and Carlson’s R

function [26]. The novelty in the results presented in this chapter consists in the combinato-

rial/algebraic approach adopted, allowing for broader generality and far reaching connections,

especially with Lie algebra theory.

2.1.1 Fourier analysis. Let Dαk be the Dirichlet distribution on the standard simplex ∆k−1

with parameter αk ∈ Rk+. (See Dfn. 2.2.1.) We regard Dαk as the discretization of Dσ induced

25



26 2.1 Introduction and main results

by a measurable k-partition Xk of X. Our first result is the following.

Theorem 2.1.1 (See Thm. 2.3.10). The characteristic functional D̂σ of Dσ is — for suitable

sequences of partitions Xk — the limit of the discrete Dσ-martingale (D̂αk )k. For every continuous

compactly supported real-valued f , it satisfies

D̂σ(f) :=

∫
Mb(X)

dDσ(η) ei ηf =

∞∑
n=0

in

n!
Zn(σf1, . . . , σfn) ,

where i =
√
−1 is the imaginary unit, Zn is the cycle index polynomial (2.2.1) of the symmetric

group Sn and f j denotes the jth power of f .

Furthermore, the map σ 7→ Dσ is continuous with respect to the narrow topologies.

The characteristic functional representation is new. It provides — in the unified framework

of Fourier analysis:

• a new (although non-explicit) construction of Dσ as the unique probability measure on

P(X) satisfying D̂σ = limk D̂αk ; (See Cor. 2.3.20. Following [161], we call this construction

a weak Fourier limit.)

• new proofs of known results on the tightness and asymptotics of families of Dirichlet–

Ferguson measures, proved, elsewhere in the literature, with ad hoc techniques; (See

Cor.s 2.3.13 and 2.3.14. Cf. Rmk. 2.3.12.)

• the continuity statement in the Theorem, which strengthens [146, Thm. 3.2] concerned

with norm-to-narrow continuity. This last result is sharp, in the sense that the domain

topology cannot be relaxed to the vague topology.

2.1.2 Representations of SL2-currents. The Dirichlet–Ferguson measure D, the gamma

measure G [94, 157] and the ‘multiplicative infinite-dimensional Lebesgue measure’ L+ [157, 161]

(both defined below) play an important rôle in a longstanding program [96, 157, 163] for the

study of representations of (measurable) SL2(R)-current groups, i.e., spaces of SL2(R)-valued

(bounded measurable) functions on a smooth manifold X. In the following, we shall identify

some special linear objects naturally acting on Dirichlet measures, and translate probabilistic

properties of these measures into the language of Lie theory.

We start by briefly recalling the setting and introducing our motivations.

Quasi-invariance and representation theory. Write h]ν := ν ◦ h−1 for the push-forward of a

measure ν via a measurable function h. Consider now a group G acting measurably, freely and

transitively on a measurable space (Ω,F) and write g.ω ∈ Ω for the action of g ∈ G on ω ∈ Ω.

Definition 2.1.2 (Invariance properties). We say that a finite measure ν on (Ω,F) is

(i) G-quasi-invariant if for every g ∈ G there exists a (F-measurable, ν-a.e. finite) Radon–

Nikodým derivative Rg : Ω→ [0,∞] such that d(g.)]ν(ω) = Rg(ω) · dν(ω);

(ii) projectively G-invariant if, additionally, Rg is constant on Ω for every g ∈ G;

(iii) G-invariant if, additionally, Rg ≡ 1 for every g ∈ G;

(iv) partially G-quasi-invariant [96, Dfn. 9] if there exists a filtration (Fk)k of F such that

• F is the minimal σ-algebra generated by (Fk)k;

• for each g ∈ G and k ∈ N0 there exists n ∈ N0 such that g.Fk ⊂ Fn;
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• for each g ∈ G and k ∈ N0 there exists an Fk-measurable function R
(k)
g : Ω→ [0,∞]

such that d(g.)]νk(ω) = R
(k)
g (ω) · dνk(ω), where νk denotes the restriction of ν to Fk.

Notice that (iii) =⇒ (ii) =⇒ (i) =⇒ (iv).

These properties are related to the theory of representations of G. Indeed, each G-quasi-

invariant measure ν on Ω induces a so-called ’quasi-regular’ unitary representation of G on the

Hilbert space L2
ν(Ω) by setting

Uν(g) : f 7→ (Rg)
1/2 · f ◦ (g−1.) .

(For the heuristics about partial quasi-invariance, see the Introduction to [96].)

We are interested in the invariance properties of D, G and L+ under the following actions.

Two groups of transformations. For σ ∈P(X), we define the Abelian Lie algebra m := Cc(X)

and its ‘σ-traceless’ subalgebra mσ := {f ∈ m | σf = 0}. The corresponding Abelian Lie groups

are the group of multipliers M :=
{
ef | f ∈ m

}
, endowed with the pointwise product, and the

subgroup of σ-traceless multipliers Mσ :=
{
ef | f ∈ mσ

}
. Both M and Mσ act on M +

b (X) by

g. : µ 7→ g · µ , g ∈M , µ ∈M +
b (X) , (2.1.1)

hence the name ‘multipliers’. Additionally, we denote by S the group of shifts, i.e., of bi-

measurable transformations of X, and by Sσ the subgroup of S that leaves σ invariant, i.e., ψ ∈
Sσ is such that ψ]σ = σ. Both S and Sσ act naturally on M +

b (X), or on P(X), by

ψ. : µ 7→ ψ]µ , ψ ∈ S , µ ∈M +
b (X) . (2.1.2)

Definition 2.1.3 (Factorizations). Let N : M +
b (X) \ {0} →P(X) be the normalization map

µ 7→ µ :=µ/µX, and let G be a group acting on M +
b (X). We say that the action factors over

the decomposition

M +
b (X) \ {0} ∼= P(X)× R+ (2.1.3)

if and only if N ◦ g. = g. ◦N for every g ∈ G. We say that a measure Q on M +
b (X) factors

(over (2.1.3)) if and only if there exists a Borel measure λ on R+ such that Q = N]Q⊗ λ.

It was shown in [157, Thm. 3.1] that Gσ :=Dσ ⊗ e−s ds is an M-quasi-invariant measure

on M +
b (X), and that L+

σ :=Dσ ⊗ ds is a projectively M-invariant measure on M +
b (X) with

Radon–Nikodým derivative Rg = exp(−σ ln g), and thus it is Mσ-invariant. The importance

of G and L+ arises from their uniqueness properties w.r.t. these group actions. Indeed, Gσ is

the unique measure among the laws of compound Poisson point processes factoring over (2.1.3)

(Cf. [157, Cor. 4.2] and [55, §4, Thm. 2].), while L+
σ is the unique ergodic (Sσ iMσ)-invariant

measure equivalent to Gσ. (Here, Sσ iMσ is an appropriate semidirect product of Sσ and Mσ.

See [161, Prop. 4].)

Whereas Dσ, Gσ and L+
σ are trivially Sσ-invariant (by Thm. 2.3.9 below), their S-(quasi-)in-

variance does not hold. Indeed, let (X,σ) be a smooth Riemannian manifold with normalized

volume σ and G < S be the group of smooth diffeomorphisms of X. It was shown in [96,

§2.4] that Gσ is partially G-quasi-invariant not G-quasi-invariant. Since the action of (every

subgroup of) S factors over (2.1.3), the measures Dσ and L+
σ are not G- (hence not S-) quasi-

invariant as well. However, this property does not transfer immediately to Dσ or L+
σ , since

the normalization map is not necessarily measurable on the filtration (Fk)k in the definition of



28 2.1 Introduction and main results

partial quasi-invariance. In fact, Dσ too is partially G-quasi-invariant, (See Chapter 5.) hence so

is L+
σ .

When X is a smooth manifold, one main application of the (partial) G- (or GiM-) quasi-

invariance of these and other random measures is the construction of stochastic dynamics

on spaces of measures, for which these random measures are invariant or even ergodic. See

e.g., [132, 147] and Chapter 5 for D, [140] for the related entropic measure P, [7] for Poisson

measures, and [96] for G.

Although inspired by the invariance properties of L+, in the following we will mostly

concentrate on Dσ. This is in fact not restrictive, since the discretization of the spaces and

measures we are interested in factors over (2.1.3). Whereas Theorem 2.1.1 allows for Bochner–

Minlos and Lévy Continuity related results to come into play, the non-multiplicativity of D̂σ
(corresponding to the non-infinite-divisibility of the measure) immediately rules out the usual

approach to quasi-invariance via Fourier transforms [7, 96, 157, 159]. Other approaches to

this problem rely on finite-dimensional approximation techniques, variously concerned with

approximating the space [140, 141], the σ-algebra [96] or the acting group [65, 161]. The common

denominator here is for the approximation to be a filtration (as, e.g., for partial quasi-invariance)

— in order to allow for some kind of martingale convergence — and, possibly, for the approximating

groups and/or spaces to be (embedded into) linear structures. (Cf., e.g., [140, 161].) In the

present case, detailing this approach requires however some preparation.

We shall see in §2.2.3 below how a measurable partition Xk := (Xk,1, . . . , Xk,k) of X induces

a discretization Dαk of Dσ, corresponding to the discretization of X to the space [k] := {1, . . . , k}.
Here, αk := (αk,1, . . . , αk,k) and αk,i :=σXk,i. Again, since this discretization factors over (2.1.3),

the same holds for (the discretizations of) Gσ and L+
σ . Varying k ∈ N, the family of such

discretizations yields the filtration of the Dσ-martingale
(
D̂αk

)
k

in Theorem 2.1.1. This is a

natural candidate for a filtration (Fk)k along which to study the partial S- or partial SiMσ-

quasi-invariance of Dσ. (Notice however that P(X) is not homogeneous for the action of Mσ,

thus the Mσ-quasi-invariance of Dσ should be given a precise meaning.)

In the following, we aim to show how the actions of S and M may be discretized according

to the choice of Xk, and to study the quasi-invariance of Dαk under a general action subsuming

the two. We start by recalling the analogous framework for the discretizations of L+.

Discretizations: The case of L+. The discretization of the action of Mσ was given in [161], as

we briefly recall now. For r > 0, define the (k − 1)-dimensional affine sphere of radius r as

Mk−1
r :=

{
s ∈ Rk+ | s1 · · · sk = r

}
.

Define the Hadamard product s � t := (s1t1, . . . , sktk) and observe that (Mk−1
1 , �) is a group.

Since � : Mk−1
1 ×Mk−1

r →Mk−1
r , the group Mk−1

1 acts naturally on Mk−1
r for every r > 0. It is

readily checked that the measure Lαk on Mk−1
r with density

dLαk (y) = 1
Mk−1
r

(y)

k∏
i=1

y
αk,i−1

i

Γ(αi)
dyi , αk := (αk,1, . . . , αk,k) ,

is Mk−1
1 -projectively invariant with Radon–Nikodým derivative

Rs :=
d(s.)]Lαk

dLαk
= s−αk :=

k∏
i=1

s
−αk,i
i . (2.1.4)
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Indeed, Lαk is the discretization of L+
σ with αk as above (See [161, Prop. 2].) and, for a suitable

sequence of radii (rk)k, the measure spaces (Mk−1
rk , Lαk ) converge to (M +

b (X),L+
σ ) in the weak

Fourier sense. (See [161, Thm. 2] for a precise statement.)

The construction of L+
σ by the aforementioned limiting procedure draws intuition from a

parallel with the Maxwell–Poincaré construction of Gaussian measures on R∞. (See [161, §2].) In

that case, the acting group is the — non-commutative — special orthogonal group SOk(R) and

the homogeneous space is the standard sphere Sk−1
rk for some suitable sequence of radii rk > 0.

For a ∈ Rk let now diaga be the corresponding diagonal matrix. Let hk−1 be the diag-

onal Cartan subalgebra of the real special linear Lie algebra slk(R) of traceless k2-matrices,

and dSLk(R) be the Abelian Lie group of diagonal matrices with determinant 1. As already

noticed in [161], the image of (Mk−1
1 , �) under diag coincides with the group dSL+

k (R) of positive

definite diagonal matrices with determinant 1, i.e. the connected component of the identity in

“the” maximal Abelian subgroup dSLk(R) of the special linear group SLk(R). In this language,

the Abelian Lie algebra mσ of σ-traceless functions is discretized to the Abelian Lie algebra hk−1

of traceless diagonal k2-matrices. The resulting acting group is the image dSL+
k (R) of hk−1 under

the Lie exponential of slk(R). We summarize the actions and discretizations above in Table 2.1.

In comparison with the Maxwell–Poincaré construction, the following question arises.

Question: Does the action of Mk−1
1
∼= dSL+

k (R) on Mk−1
r extend to an action of the whole

(non-commutative) group SLk(R)? If so, how does the measure Lαk vary under this

action?

Table 2.1: Discretizations of multipliers and currents

∞-dimensional objects k-discretizations

structured setwise hom. sp. structured setwise hom. sp.

m
ax

im
al

to
ra

l

al
g.

s mσ

M +
b (X)

hk−1

Mk−1
rk

m Cc(X;R) diagRk R[k]

gr
p

.s Mσ dSL+
k (R) Mk−1

1

M Cc(X;R+) dGL+
k (R) R[k]

+

se
m

i-
si

m
p

le

al
g. Cc(X, sl2(R))

(*)
slk(R)

(*)

gr
p

.

Cc(X,SL2(R)) SL+
k (R)

* It seems that it is not possible to consistently identify a homogeneous space for this algebra/group.

In the following, we will answer in the affirmative — in the conjugate Fourier picture — an

analogous question for the simplicial part Dαk of Lαk .
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Discretizations: The case of D. For α ∈ Rk+, the Fourier transform of Dα satisfies D̂α = kΦ2[α],

the second Humbert function or confluent hypergeometric Lauricella function of type D. (See

Dfn. 2.2.3.) For the purpose of stating the following theorem, let us notice that kΦ2[α] is

well-defined for every α ∈ Rk such that

α• :=α1 + · · ·+ αk 6∈ Z−0 .

Let α ∈ int ∆k−1 be an interior point of the standard simplex. Set Λα :=α + Zk and

define OΛα as the real vector space spanned by kΦ2[ε] varying ε ∈ Λα. Finally, let lk := slk+1(R)

with diagonal Cartan subalgebra hk. Our second main result is the following.

Theorem 2.1.4 (See Thm. 2.4.14). Let α ∈ Rk be such that α• 6∈ Z−0 . Then, there exists a

faithful representation ρα of lk on OΛα such that

(i) Oε :=RkΦ2[ε] is invariant under the action of hk for every ε ∈ Λα;

(ii) if additionally α ∈ int ∆k−1, then hk acts on Oα by weight α;

(iii) if additionally α• 6∈ Z, the representation ρα extends to a faithful representation on OΛα

of the universal enveloping algebra U(lk);

(iv) the discretization of the action (2.1.2) of S on M +
b (X) is — up to a canonical isomorphism

independent of α — the action of a subgroup of the Weyl group Wk of lk. (See the proof

for details.)

The theorem provides a rigorous framework for the following informal statements. Up to

Fourier transform:

• assertion (i) is the quasi-invariance of Dα under a suitable action of dSL+
k+1(R);

• assertion (ii) specifies how the Radon–Nikodým derivative R · — in algebraic terms, the

weight of the representation — depends on α; (For the dependence on the acting element,

see (2.4.12) below.)

• since the action of (non-diagonal elements in) SLk+1(R) leaves R {Dε}ε∈Λα
invariant but

does not fix R {Dα}, assertion (iii) specifies iterative applications of the said action;

• assertion (iv) describes the discretization of the action of S in terms of the Weyl group

of SLk+1(R). We summarize this action in Table 2.2;

• together with Theorem 2.1.1, assertion (i) yields the partial quasi-invariance of Dσ under

the action of traceless multipliers. The filtration in the definition of partial quasi-invariance

is exactly the one generated by the martingale
(
Dαk

)
k
, i.e. it is given by the σ-algebras

generated by measurable partitions in a monotone null-array of partitions. (See §2.2.3.)

Insights about Theorem 2.1.4 are provided by basic properties of the Fourier transform.

Indeed, any discretization of the action of M is naturally a multiplication. Again informally,

the Fourier transform — as opposed to, e.g., the Markov–Krein or the c-transform — maps

multiplication by a Lie group element into differentiation by the corresponding infinitesimal

increment in the Lie algebra of the group. In the case of kΦ2[α] = D̂α, we call the minimal

semi-simple Lie algebra generated by these increments the dynamical symmetry algebra gk

of kΦ2[α]. The terminology originates in the works [121, 122, 123], concerned with the dynamical

symmetry algebras of different Lauricella hypergeometric functions.

Finally, let us notice here that Theorem 2.1.1 allows for a partial generalization of Theo-

rem 2.1.4 to infinite dimensions, the ultimate goal thereof is essentially that to “fill the empty

block” in Table 2.2. We shall extensively comment on this point in Remark 2.4.17 below.
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Table 2.2: Discretizations of shifts

Objects k-discretizations

acting obj. hom. sp. meas. acting obj. homogeneous space meas.(s)

structured setwise

S
X σ

Sk

[k] α (*)

P(X) Dσ P([k]) ∆k−1 (*) Dα

in
F

o
u

ri
er

Sk < Wk [k] (***)

hk Oα RkΦ2[α] α (**)

U(lk) OΛα RZk Λα (**)

* Under the identification of a measure α :=
∑k
i=1 αiδi on [k] with the vector α := (α1, . . . , αk).

** Under the correspondence between ε and the weight wε ∈ Rk by which hk acts on Oε.

*** Understood as the indexing of a basis for the root system of fk < lk. (See Lem 2.4.7.)

2.1.3 Bayesian non-parametrics. A statistical model on a sample space X is any subset M =

{Pθ}θ∈T ⊂ P(X). A model M is parametric if the parameter space T is finite-dimensional,

non-parametric otherwise. In Bayesian statistics, the parameter θ is modeled as a T -valued

random variable Θ. The probability measure Q := lawΘ is termed a prior (distribution). Under

a Bayesian model, any data W is sampled in two stages, as

Θ ∼ Q ,

W1,W2, . . . | Θ
iid∼ PΘ ,

and we aim to determine the conditional distribution of Θ given the data, or posterior (distribu-

tion),

Qw :=Q[Θ ∈ · |W1 = w1, . . . ,Wn = wn] .

In this framework, one remarkable property of Dirichlet measures is the following. (See, e.g.,

[55, p. 212, property iii◦].)

Proposition 2.1.5 (Bayesian property for Dα). Let Θ be a ∆k−1-valued random vector, W be

a [k]-valued (categorical) random variable, and let i ∈ [k]. If the (prior) distribution of Θ is Dα

and if

P {W = i | Θ} = Θi a.s. ,

then the posterior distribution of Θ given W = i is Dα+ei , where ei is the ith vector of the

canonical base of Rk.
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We term any posterior distribution as in the above proposition a Dirichlet-categorical posterior.

It is then the content of the proposition that Dirichlet-categorical posteriors are themselves

Dirichlet measures with different parameter; that is, Dirichlet measures are self-conjugate priors.

This property is implicit in the action of the dynamical symmetry algebra gk ∼= lk. Indeed,

the latter is the minimal semi-simple Lie algebra containing the (nilpotent) raising differential

operators (See (2.4.10) and Lem. 2.4.8.)

Eαi : kΦ2[α] 7−→ αi kΦ2[α+ ei] , i ∈ [k] .

These correspond, in the conjugate Fourier picture, to take posteriors of Dα given knowledge on

the occurrence of categorical random variables in [k] in the sense of Proposition 2.1.5.

Improper priors. Let M be a Bayesian model with parameter Θ and W be some observation

sampled from M . It is of high practical interest in statistics to find priors corresponding to known

posteriors of Θ given W . By Bayes’ formula, any such prior is determined up to a multiplicative

constant. If the prior distribution is integrable, then the constant is fixed in such a way that the

prior be a probability distribution. If otherwise, the constant is (usually) immaterial, and the

prior is termed improper.

As a consequence of Theorem 2.1.4, we are able to identify a family of distinguished (possibly

improper, hyper-)priors of Dirichlet measures. Indeed, each element Eαi in the Lie algebra gk is

paired with a (nilpotent) lowering operator E−αi in the same sl2-triple (See Lem. 2.4.12.) and

such that (See Lem. 2.4.8.)

E−αi : kΦ2[α] 7−→ (1−α•) kΦ2[α− ei] , i ∈ [k] .

Let α ∈ ∆k−1 be an interior point of the standard simplex. Set Λ+
α := {ε ∈ Λα | ε > 0•} and

define O
Λ+
α

analogously to OΛα . It is shown in Theorem 2.4.14 that the action of gk on OΛα

fixes O
Λ+
α

. For every ε ∈ Λ+
α \ Rk+, the function kΦ2[ε] is the Fourier transform of a σ-finite

(possibly: finite) measure which we identify as a (non-normalized, possibly: improper) hyper-prior

of Dα.

Chapter summary. Preliminary results are collected in §2.2, together with the definition and

properties of Dirichlet measures and an account of the discretization procedure that we dwell

upon in the following. In §2.3 we prove Theorem 2.1.1. As a consequence, by the classical theory

of characteristic functionals on linear topological spaces (Cf. e.g., [61, §IV.4] or [160, §IV].) we

recover known asymptotic expressions for Dβσ when β → 0 or ∞ is a real parameter (Cor. 2.3.14,

cf. [146, p. 311].), propose a Gibbsean interpretation thereof (Rem. 2.3.16), and prove analogous

expressions for the entropic measure Pβσ on compact Riemannian manifolds [151], generalizing

the case X = S1 [140, Prop. 3.14]. In the process of deriving Theorem 2.1.1 we obtain a moment

formula for the Dirichlet distribution in terms of the cycle index polynomials Zn. (Thm. 2.3.3.) In

light of Pólya Enumeration Theory we interpret this result by means of a coloring problem, §2.4.1.

This motivates the study of the dynamical symmetry algebra lk of the Humbert function kΦ2

resulting in the proof of Theorem 2.1.4. Finally, in §2.4.2 we study the limiting action of the

dynamical symmetry algebra lk when k tends to infinity.

Some preliminary results in topology and measure theory are collected in the Appendix.
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2.2 Definitions and preliminaries

Notation. Denote by i the imaginary unit, by G[an](t) (resp. by Gexp[an](t)) the (exponential)

generating function of the sequence (an)n ⊂ C, computed in the variable t, viz.

G[an](t) :=
∑
n∈N0

ant
n , resp. Gexp[an](t) :=

∑
n∈N0

an
n!
tn .

Whenever not otherwise specified, for a ∈ N0 set a′ := a+ 1. Let i, k, n be positive integers

and set for 1 ≤ i ≤ k (the position of an element in a vector is stressed by a left subscript)

y := (y1, . . . , yk) ei := (10, . . . , 0, i1, 0, . . . , k0)

1 := (11, . . . , k1) yı̂ := (y1, . . . , yi−1, yi+1, . . . , yk)

~k := (1, 2, . . . , k) y• :=y1 + · · ·+ yk .

Write y > 0 for y1, . . . , yk > 0 and analogously for y ≥ 0. Further set

[k] := {1, . . . , k} π ∈ Sk := {bijections of [k]}

yπ :=
(
yπ(1), . . . , yπ(k)

)
y � z :=(y1z1, . . . , ykzk)

y�n := y � . . . � y︸ ︷︷ ︸
n times

y · z :=y1z1 + · · ·+ ykzk ,

where � denotes the Hadamard product and we write y�z =
(
yz11 , . . . , y

zk
k

)
vs. yz = yz11 · · · y

zk
k .

For f : C→ C, write

f(y) := f(y1) · · · f(yk) f�(y) := (f(y1), . . . , f(yk)) .

Denote by Γ the Euler Gamma function, by 〈α〉k := Γ(α+ k)/Γ(α) the Pochhammer symbol

of α 6∈ Z−0 , by B(y, z) := Γ(y)Γ(z)/Γ(y + z), resp. B(y) := Γ(y)/Γ(y•), the Euler Beta function,

resp. its multivariate analogue.

2.2.1 Combinatorial preliminaries.

Set and integer partitions. For a subset L ⊂ [n] denote by L̃ the ordered tuple of elements in L

in the usual order of [n]. An ordered set partition of [n] is an ordered tuple L̃ :=(L̃1, L̃2 . . . ) of

tuples L̃i such that the corresponding sets Li, termed clusters or blocks, satisfy ∅ ( Li ⊂ [n]

and tiLi = [n]. (By t we denote the disjoint union.) The order of the tuples in L̃ is assumed

ascending with respect to the cardinalities of the corresponding subsets and, subordinately,

ascending with respect to the first element in each tuple. A set partition L of [n] is the family of

subsets corresponding to an ordered set partition. This correspondence is bijective. For any set

partition write L ` [n] and L `r [n] if #L = r, i.e. if L has r clusters. A (integer) partition λ of n

into r parts (write: λ `r n) is an integer solution λ ≥ 0 of the system, ~n · λ = n, λ• = r; if the

second equality is dropped we term λ a (integer) partition of n. (Write: λ ` n.) We always regard

a partition in its frequency representation, i.e. as the tuple of its ordered frequencies. (Cf. e.g.,

[12, §1.1].) To a set partition L `r [n] one can associate in a unique way a partition λ(L) `r n
by setting λi(L) := # {h | #Lh = i}.
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Permutations and cycle index. A permutation π in Sn is said to have cycle structure λ,

write λ = λ(π), if λi equals the number of cycles in π of length i for each i. Let Sn(λ) ⊂ Sn be

the set of permutations with cycle structure λ, so that Sn(λ(π)) = Kπ the conjugacy class of π

and #Sn(λ) = M2(λ) :=n!/(λ! ~nλ) [149, Prop. I.1.3.2].

Let now G < Sn be any permutation group. The cycle index polynomial of G is defined by

ZG(t) :=
1

#G

∑
π∈G

tλ(π) , t := (t1, . . . , tn) .

We write Zn :=ZSn for the cycle index polynomial of the group Sn. For t := (t1, . . . , tn),

and tk := (t1, . . . , tk) with k ≤ n, it satisfies the identities

Zn(t) =
1

n!

∑
λ`n

M2(λ) tλ , Zn
(
(a1)�~n � t

)
= anZn(t) a ∈ R . (2.2.1)

and the recurrence relation

Zn(t) =
1

n

n−1∑
k=0

Zk(tk) tn−k , Z0(∅) := 1 . (2.2.2)

2.2.2 The Dirichlet distribution. Denote the standard, resp. corner, (k − 1)-dimensional

simplex by

∆k−1 :=
{
y ∈ Rk | y ≥ 0, y• = 1

}
, ∆k−1

∗ :=
{
z ∈ Rk−1 | z ≥ 0, z• ≤ 1

}
.

Definition 2.2.1 (Dirichlet distribution). We denote by Dα(y) the Dirichlet distribution with

parameter α ∈ Rk+ (e.g., [128]), i.e. the probability measure with density

1∆k−1(y)
yα−1

B(α)
(2.2.3)

with respect to the k-dimensional Lebesgue measure on the hyperplane of equation y• = 1 in Rk,

concentrated on (the interior of) ∆k−1.

Remark 2.2.2. Alternatively, for fixed α ∈ Rk+ and any measurable A ⊂ Rk−1,

Dα(A) =
1

B(α)

∫
∆k−1
∗

1A(z)

k∏
i=1

zαi−1
i dz where z := (z1, . . . , zk−1) , zk := 1− z• .

Whereas this second description is also common in the literature, the first one makes more

apparent property (ii) below.

Write ‘∼’ for ‘distributed as’ and let Y be any ∆k−1-valued random vector. The following

properties of the Dirichlet distribution are well-known:

(i) aggregation (See e.g., [55, p. 211, property i◦].) For i ∈ [k − 1] set

y+i := (y1, . . . , yi−1, yi + yi+1, yi+2, . . . , yk) .

Then,

Y ∼ Dα =⇒ Y+i ∼ Dα+i . (2.2.4)

(ii) quasi-exchangeability, or symmetry. For all π ∈ Sk

Y ∼ Dα =⇒ Yπ ∼ Dαπ . (2.2.5)
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(iii) Bayesian property. (Iterative generalization of Prop. 2.1.5.) Let W ∈ [k]r be a vector

of [k]-valued (categorical) random variables and P ∈ Nk0 be the vector of occurrences

Pi := # {j ∈ [r] |Wj = i}. For p ∈ Nk0 let Y be such that P {Pi = pi | Y} = Yi for all i ∈ [k]

and denote by Dp
α the distribution of Y given P = p, termed here the posterior distribution

of Dα given atoms with masses pi at points i ∈ [k]. Then,

Y ∼ Dα =⇒ Dp
α = Dα+p . (2.2.6)

Most properties of the Dirichlet distribution may be inferred from its characteristic functional.

We recall its definition below.

Definition 2.2.3 (Confluent kFD or (second) Humbert function kΦ2 [53, §2.1]). For b, s ∈ Ck,

a ∈ C and c ∈ C \ Z−0 the k-variate Lauricella hypergeometric function of type D, write kFD, is

kFD[a,b; c; s] :=
∑

m∈Nk0

〈a〉m• 〈b〉m sm

〈c〉m• m!
‖s‖∞ < 1

=
1

B(a, c− a)

∫ 1

0

ta−1(1− t)c−a−1(1−ts)−b dt <c > <a > 0 .

For b, s ∈ Ck, its confluent form, or second k-variate Humbert function, write kΦ2, is

kΦ2[b; c; s] := lim
ε→0+

kFD[1/ε; b; c; εs] =
∑

m∈Nk0

〈b〉m sm

〈c〉m• m!
c ∈ C \ Z−0 . (2.2.7)

Notice that the distribution Dα is moment determinate for any α > 0 by compactness of

∆k−1. Its moments are straightforwardly computed via the multinomial theorem as

µ′n[s,α] :=

∫
∆k−1

(s · y)n dDα(y) =
∑

m∈Nk0
m•=n

(
n
m

)
sm B(α+m)

B(α)
=

n!

〈α•〉n

∑
m∈Nk0
m•=n

sm

m!
〈α〉m ,

(2.2.8)

so that the characteristic functional of the distribution indeed satisfies (Cf. [53, §7.4.3])

D̂α(s) :=

∫
∆k−1

exp(is · y) dDα(y) =
∑

m∈Nk0

〈α〉m
m!

im•sm

〈α•〉m•
=: kΦ2[α;α•; i s] . (2.2.9)

2.2.3 The Dirichlet–Ferguson measure.

Notation. Everywhere in the following let (X, τ(X)) be a second countable locally compact

Hausdorff topological space with Borel σ-algebra B. We denote respectively by clA, intA, bdA

the closure, interior and boundary of a set A ⊂ X with respect to τ . Recall (Prop. 2.2.4) that

any space (X, τ(X)) as above is Polish, i.e. there exists a metric d, metrising τ , such that (X, d)

is separable and complete; we denote by diamA the diameter of A ⊂ X with respect to any such

metric d (apparent from context and thus omitted in the notation).

Denote by Cc(X) (resp. Cb(X)) the space of continuous compactly supported (resp. continuous

bounded) functions on (X, τ(X)), (both) endowed with the topology of uniform convergence;

by C0(X) the completion of Cc(X), i.e. the space of continuous functions on X vanishing

at infinity; by Mb(X) (resp. M +
b (X)) the space of finite, signed (resp. non-negative) Radon

measures on (X,B) — the topological dual of Cc(X) and C0(X) — endowed with the the

vague topology τv(Mb(X)), i.e. the weak* topology, and the induced Borel σ-algebra. Denote

further by P(X) ⊂ M +
b (X) (Cf. Cor. 2.5.3) the space of probability measures on (X,B).
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If not otherwise stated, we assume P(X) to be endowed with the vague topology τv(P(X))

and σ-algebra Bv(P(X)). On M +
b (X) (resp. on P(X)) we additionally consider the narrow

topology τn(M +
b (X)) (resp. τn(P(X))), i.e. the topology induced by duality with Cb(X). Finally,

given any measure ν ∈Mb(X) and any bounded measurable function g on (X,B), denote by νg

the expectation of g with respect to ν and by g∗ : ν 7→ νg the linear functional induced by g

on Mb(X) via integration.

The following statement is well-known. (See e.g., [85, Thm. 5.3].) A proof is sketched to

establish further notation.

Proposition 2.2.4. A topological space (X, τ(X)) is second countable locally compact Hausdorff

if and only if it is locally compact Polish, i.e. such that τ(X) is a locally compact separable

completely metrizable topology on X. Moreover, if (X,B) additionally admits a fully supported

diffuse measure ν, then (X, τ(X)) is perfect, i.e. it has no isolated points.

Sketch of proof. Let (αX, τ(αX)) denote the Alexandrov compactification of (X, τ(X)) and

α : X → αX denote the associated embedding. Notice that αX is Hausdorff, for X is locally

compact Hausdorff; hence αX is metrizable, for it is second countable compact Hausdorff, and

separable, for it is second countable metrizable, thus Polish by compactness. Finally, recall

that X is (homeomorphic via α to) a Gδ-set in αX and every Gδ-set in a Polish space is itself

Polish. The converse and the statement on perfectness are trivial. �

Partitions. Fix σ ∈ P(X). We denote by Pk(X) the family of measurable non-trivial k-

partitions of (X,B, σ), i.e. the set of tuples X := (X1, . . . , Xk) such that

Xi ∈ B , σXi > 0 , Xi ∩Xj = ∅ i, j ∈ [k], i 6= j , ∪i∈[k] Xi = X .

Given X ∈ Pk(X) we say that it refines A in B if Xi ⊂ A whenever Xi ∩A 6= ∅, respectively

that it is a continuity partition for σ if σ(bdXi) = 0 for all i ∈ [k]. We denote by Pk(A ⊂ X),

resp. Pk(X, τ(X), σ) the family of all such partitions. Given X1 ∈ Pk1(X) and X2 ∈ Pk2(X)

with k1 < k2 we say that X2 refines X1, write X1 � X2, if for every i ∈ [k2] there exists ji ∈ [k1]

such that X2,i ⊂ X1,ji . A sequence (Xh)h of partitions Xh ∈ Pkh(X) is termed a monotone

null-array if Xh+1 � Xh and limh maxi∈[kh] diamXh,i = 0. (Recall that diamXh,i vanishes

independently of the chosen metric on (X, τ(X)), cf. [83, §2.1].) We denote the family of all

such null-arrays by Na(X). Analogously to partitions, we write with obvious meaning of the

notation Na(A ⊂ X) and Na(X, τ(X), σ). If σ is diffuse (i.e. atomless), then limh σXh,ih = 0

for every choice of Xh,ih ∈ Xh with (Xh)h ∈ Na(X).

Given a (real-valued) simple function f and a partition X ∈ Pk(X), we say that f is locally

constant on X with values s if f
∣∣
Xi
≡ si constantly for every Xi ∈ X. Given a function f

in Cc(X) we say that a sequence of (measurable) simple functions (fh)h is a good approximation

of f if |fh| ↑h |f | and limh fh = f pointwise. The existence of good approximations is standard.

(See e.g., [42, Prop. III.3.1].)

The Dirichlet–Ferguson measure. By a random probability over (X,B) we mean any probability

measure on P(X). For X ∈ Pk(X) and η in P(X) set η�X := (ηX1, . . . , ηXk) and

evX : P(X) −→ ∆k−1 ⊂ Rk

η 7−→ η�X .

Recall (Cf. [148]) that, if σ ∈P(X) is diffuse, then for every k ∈ N1 and y ∈ int ∆k−1 there

exists X ∈ Pk(X) such that σ�X = y.
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Definition 2.2.5 (Dirichlet–Ferguson measure). Fix β > 0 and σ ∈ P(X). The Dirichlet–

Ferguson measure Dβσ with intensity βσ [55, §1, Def. 1] (also: Dirichlet [108], Poisson–Dirich-

let [161], Fleming–Viot with parent-independent mutation [54]; see e.g., [145, §2] for an explicit

construction) is the unique random probability over (X,B) such that

evX
] Dβσ =DβevXσ , X ∈ Pk(X) , k ∈ N1 . (2.2.10)

(Recall that σ�X > 0.) More explicitly, for every bounded measurable function u : ∆k−1 → R∫
P(X)

u(η�X) dDβσ(η) =

∫
∆k−1

u(y) dDβσ�X(y) . (2.2.11)

Existence was originally proved in [55] by means of Kolmogorov’s Extension Theorem,

using the aggregation property of Dirichlet distributions to establish the consistency condition.

(Cf. Fig. 2.1 below.) A construction on spaces more general than in our assumptions is given

in [89]. Other characterizations are available. (See e.g., [145].) Since X is Polish (Prop. 2.2.4),

in (2.2.11) it is in fact sufficient to consider u continuous with |u| < 1 and, by the Portmanteau

Theorem, X ∈ Pk(X, τ(X), σ). (Cf. e.g., [151, p. 15].)

Let P be a P(X)-valued random field on a probability space (Ω,F ,P) and recall the following

properties of Dσ, to be compared with those of Dα,

i. realization properties: If P ∼ Dβσ, then P (ω) =
∑
i∈J ηi(ω)δxi(ω) is P-a.s. purely atomic

(Here: J ⊂ N0. See [55, §4, Thm. 2].) with suppP (ω) = suppσ. (See [55, §3, Prop. 1]

or [115].) In particular, if σ is diffuse and fully supported, then J is countable and {xi}i is

P-a.e. dense in X. The sequence (ηi)i is distributed according to the stick-breaking process.

In particular, Eηi = βi−1/(1 + β)i. (See [67].) The r.v.’s xi’s are i.i.d. (independent also

of the ηi’s [52]) and σ-distributed.

ii. σ-symmetry : for every measurable σ-preserving map ψ : X → X, i.e. such that ψ]σ = σ,

P ∼ Dσ =⇒ ψ]P ∼ Dσ . (2.2.12)

(Consequence of [83, Lem. 9.0] together with (2.2.10) and the quasi-exchangeability of Dα)

In particular, P �X is distributed as a function of σ�X for every X ∈ Pk(X) for every k.

iii. Bayesian property [55, §3, Thm. 1]: Let W := (W1, . . . ,Wr) be a sample of size r from P ,

conditionally i.i.d., and denote by DW
σ the distribution of P given W, termed the posterior

distribution of Dσ given atoms W. Then,

P ∼ Dσ =⇒ (P |W) ∼ Dσ+
∑r
j δWj

.

Discretizations. In order to consider finite-dimensional marginalizations of Dβσ, we intro-

duce the following discretization procedure. (Cf. [139] for a similar construction.) Any parti-

tion X ∈ Pk(X) induces a discretization of X to [k] by collapsing Xi ∈ X to an arbitrary point

in Xi, uniquely identified by its index i ∈ [k], i.e. via the map prX : X ⊃ Xi 3 x 7→ i ∈ [k].

The finite σ-algebra σ0(X) generated by X induces then a discretization of P(X) to the

space P([k]) via the mapping µ 7→
∑
i µXi δi. Since the latter space is in turn homeomorphic

to the standard simplex ∆k−1 via the mapping
∑
i yiδi 7→ y, every choice of X ∈ Pk(X) in-

duces a discretization of P(X) to ∆k−1 via the resulting composition evX = prX
] . It is then

precisely the content of (2.2.10) that any partition X as above induces a discretization of the

tuple
(
(X,σ), (P(X),Dβσ)

)
to the tuple

(
([k],α), (∆k−1,Dα)

)
, where α :=βevXσ is identified

with the measure
∑
i αiδi on [k]. (Cf. Fig. 2.1 below.)
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Moving further in this fashion, the subgroup SX of bi-measurable isomorphisms ψ of (X,B)

respecting X, i.e. such that ψ�(X) := (ψ(X1), . . . , ψ(Xk)) coincides with X up to reordering, is

naturally isomorphic to the symmetric group Sk, the bi-measurable isomorphism group S([k])

of [k]. The canonical action of SX on X, corresponding to the canonical action of Sk on [k],

lifts to the action of Sk on ∆k−1 by permutation of its vertices, that is, to the action on P([k])

defined by π.y :=π]y under the identification of y with the measure
∑
i yiδi.

2.3 Proof of Theorem 2.1.1 and accessory results

2.3.1 Finite-dimensional statements. Thinking of α as a measure on [k] as in §2.2, the

aggregation property (2.2.4) may be given a measure-theoretical interpretation too. Indeed

with the same notation of §2.2.2, for i ∈ [k − 1] let additionally si : [k]→ [k − 1] denote the ith

degeneracy map of [k], i.e. the unique weakly order preserving surjection such that #(si)−1(i) = 2.

Then, up to the usual identification of ∆k−1 with P([k]), it holds that si]y = y+i and one has

si]Y ∼ Y+i. Thus, choosing Y ∼ Dα, the aggregation property reads (si])]Dα = Dsi
]
α.

The following result is a rather obvious generalization of the latter fact, obtained by substi-

tuting degeneracy maps with arbitrary maps. We provide a proof for completeness.

Proposition 2.3.1 (Mapping Theorem for Dα). Fix α ∈ Rk+. Then, for every g : [k]→ [k]

(g])]Dα = Dg]α .

Proof. Define the additive contraction y+λ of a vector y with respect to λ ` k as

y+λ :=(y1, . . . , yλ1︸ ︷︷ ︸
λ1

, yλ1+1 + yλ1+2, . . . , yλ1+2λ2−1 + yλ1+2λ2︸ ︷︷ ︸
2λ2

, . . . ,

y~k·λ−kλk+1 + · · ·+ y~k·λ−(k−1)λk
, . . . , y~k·λ−λk+1 + · · ·+ y~k·λ︸ ︷︷ ︸

kλk

) ,
(2.3.1)

whence inductively applying (2.2.4) to any ∆k−1-valued random variable Y yields Y ∼ Dα =⇒
Y+λ ∼ Dα+λ for λ ` k. Combining the latter with the quasi-exchangeability (2.2.5), Dα satisfies

Y ∼ Dα =⇒ (Yπ)+λ ∼ D(απ)+λ π ∈ Sk , λ ` k . (2.3.2)

For λ ` k set λ0 := 0 and define the map ?λ : [k]→ [|λ|] by

?λ : i 7→ λj−1 + di/je if i ∈ {(j − 1)λj−1 + 1, . . . , jλj}

varying j in [k], where dαe denotes the ceiling of α. It is readily checked that (?λ ◦ π)]α =

(απ)+λ for any π in Sk. The proof is completed by exhibiting, for fixed g : [k] → [k], the

unique partition λg ` k and some permutation πg ∈ Sk such that g = ?λg ◦ πg. To this end

set Lg,(i) := g−1(i) and

Lg :=
(
Lg,(1), . . . , Lg,(k)

)
, where it is understood that Lg,(i) is omitted if empty;

L̃g :=(L̃1,1, L̃1,2, . . . , L̃2,1, . . . ) the ordered set partition associated to Lg, where

L̃j,r := (`j,r,1, . . . , `j,r,j) denotes the rth tuple of cardinality j in L̃g;
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moreover, varying j in [k] and r in bk/λjc, where bαc denotes the floor of α, define π in Sk by

π : i 7→ `j, r, (i−λj−1−1 mod j)+1 if

i ∈ {(j − 1)λj−1 + 1, . . . , jλj}

d(i− λj−1 − 1)/λje = r
.

Finally set πg :=π−1 and λg :=λ(Lg). �

Remark 2.3.2. Assuming the point of view of conditional expectations rather than that of

marginalizations, (2.2.10) may be restated as

EDβσ [ · |σ0(X)] = EDβσ�X [ · ] ,

where σ0(X) denotes as before the σ-algebra generated by some partition X ∈ Pk(X). The

aggregation property (2.2.4) is but an instance of the tower property of conditional expectations,

whereas its generalization (2.3.2) is a consequence of the σ-symmetry of Dσ.

Theorem 2.3.3 (Moments of Dα). Fix α > 0 and s ∈ Rk. Then, the following identity holds

µ′n[s,α] =
n!

〈α•〉n

∑
m∈Nk0
m•=n

sm

m!
〈α〉m =

n!

〈α•〉n
Zn(s�1 ·α, . . . , s�n ·α) =: ζn[s,α] . (2.3.3)

Proof. Let

µ̃n[s,α] := 〈α•〉n (n!)−1µ′n[s,α] , ζ̃n[s,α] := 〈α•〉n (n!)−1ζn[s,α] .

The statement is equivalent to µ̃n = ζ̃n, which we prove in two steps.

Step 1. The following identity holds

µ̃n−1[s,α+ e`] =

n∑
h=1

sh−1
` µ̃n−h[s,α] . (2.3.4)

By induction on n with trivial (i.e. 1 = 1) base step n = 1. Inductive step. Assume for

every α > 0 and s in Rk

µ̃n−2[s,α+ e`] =

n−1∑
h=1

sh−1
` µ̃n−1−h[s,α] . (2.3.5)

Let ∂j := ∂sj and notice that

∂j µ̃n[s,α] =
∑

m∈Nk0
m•=n

mj sm−ej

m!
〈α〉m =

∑
m∈Nk0
m•=n

sm−ej

(m− ej)!
αj 〈α+ ej〉m−ej

=αj
∑

m∈Nk0
m•=n−1

sm

m!
〈α+ ej〉m = αj µ̃n−1[s,α+ ej ] .

(2.3.6)

If k ≥ 2, we can choose j 6= `. Applying (2.3.6) to both sides of (2.3.4) yields

∂j µ̃n−1[s,α+ e`] =αj µ̃n−2[s,α+ ej + e`]

∂j

n∑
h=1

sh−1
` µ̃n−h[s,α] =

n∑
h=1

sh−1
` αj µ̃n−h−1[s,α+ ej ]

=αj

n−1∑
h=1

sh−1
` µ̃n−h−1[s,α+ ej ] ,
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where the latter equality holds by letting µ̃−1 := 0. Letting now α′ :=α+ ej and applying the

inductive hypothesis (2.3.5) with α′ in place of α yields

∂j

(
µ̃n−1[s,α+ e`]−

n∑
h=1

sh−1
` µ̃n−h[s,α]

)
= 0

for every j 6= `. By arbitrariness of j 6= `, the bracketed quantity is a polynomial in the sole

variables s` and α of degree at most n− 1. (Obviously, the same holds also in the case k = 1.)

As a consequence (or trivially if k = 1), every monomial not in the sole variable s` cancels out

by arbitrariness of s, yielding

µ̃n−1[s,α+ e`]−
n∑
h=1

sh−1
` µ̃n−h[s,α] =

sn−1
` 〈α` + 1〉n−1

(n− 1)!
−

n∑
h=1

sh−1
`

sn−h`

(n− h)!
〈α`〉n−h .

The latter quantity is proved to vanish as soon as

〈α+ 1〉n−1

(n− 1)!
=

n∑
h=1

〈α〉n−h
(n− h)!

, or equivalently 〈α+ 1〉n−1 =

n−1∑
h=0

〈α〉h (n− 1)!

h!
,

in fact a particular case of the well-known Chu–Vandermonde identity

〈α+ β〉n =

n∑
k=0

(
n
k

)
〈α〉k 〈β〉n−k . (2.3.7)

Step 2. It holds that µ̃n = ζ̃n. By strong induction on n with trivial (i.e. 1 = 1) base

step n = 0. Inductive step. Assume for every α > 0 and s in Rk that µ̃n−1[s,α] = ζ̃n−1[s,α].

Then

∂j ζ̃n[s,α] =
∑
λ`n

M2(λ)

n!

n∑
h=1

∂j(s
�h ·α)λh

(s�h ·α)λh

n∏
i=1

(s�i ·α)λi

=
∑
λ`n

M2(λ)

n!

n∑
h=1

hλhs
h−1
j αj

s�h ·α

n∏
i=1

(s�i ·α)λi

=αj

n∑
h=1

sh−1
j

∑
λ`n

hλh
1λ1λ1! . . . hλhλh! . . . nλnλn!

1

s�h ·α

n∏
i=1

(s�i ·α)λi

=αj

n∑
h=1

sh−1
j

∑
λ`n−h

M2(λ)

(n− h)!

n−h∏
i=1

(s�i ·α)λi

=αj

n∑
h=1

sh−1
j ζ̃n−h[s,α] .

The inductive hypothesis, (2.3.4) and (2.3.6) yield

∂j ζ̃n[s,α] = αj

n∑
h=1

sh−1
j µ̃n−h[s,α] = ∂j µ̃n[s,α] .

By arbitrariness of j this implies that ζ̃n[s,α]− µ̃n[s,α] is constant as a function of s (for

fixed α), hence vanishing by choosing s = 0. �

Remark 2.3.4. Here, we gave an elementary combinatorial proof of the moment formula for Dα, in-

dependently of any property of the distribution. Notice for further purposes that, defining µ′n[s,α]

as in (2.3.3), the statement holds with identical proof for all α in Ck such that α• 6∈ Z−0 . For

further representations of the moments see Remark 2.3.11 below. Also, notice that a simpler

proof of (2.3.4) may be made to follow by expanding 〈α+ e`〉m via the Chu–Vandermonde

identity. We opted for the given proof, since we shall need (2.3.6) for future comparison.
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Proposition 2.3.5. The function kΦ2[α; 1; ts] is the exponential generating function of the

polynomials Zn, in the sense that, for all α ∈ ∆k−1,

kΦ2[α; 1; ts] = Gexp

[
Zn
(
s�1 ·α, . . . , s�n ·α

)]
(t) s ∈ Rk , t ∈ R .

More generally,

kΦ2[α;α•; ts] = Gexp

[
n!

〈α•〉n
Zn
(
s�1 ·α, . . . , s�n ·α

)]
(t) s ∈ Rk , t ∈ R .

Proof. Recalling that kΦ2[α;α•; is] = D̂α(s) by (2.2.9) and noticing that α• = 1, Theorem 2.3.3

provides an exponential series representation for the characteristic functional of the Dirichlet

distribution in terms of the cycle index polynomials of symmetric groups, viz.

D̂α(s) =

∞∑
n=0

1

n!
Zn
(
(is)�1 ·α, . . . , (is)�n ·α

)
.

Replacing s with −its above and using (2.2.1) to extract the term tn from each summand,

the conclusion follows. The second statement has a similar proof. �

Remark 2.3.6. It is well-known that the characteristic functional of a measure µ on Rd (or, more

generally, on a nuclear space) is always positive definite, i.e. it holds that

∀n ∈ N0 ∀s1, . . . , sn ∈ Rd ∀ξ1, . . . , ξn ∈ C
n∑

h,k=1

µ̂(sh − sk) ξhξ̄k ≥ 0 , (2.3.8)

where ξ̄ denotes the complex conjugate of ξ ∈ C. Thus, the functional s 7→ kΦ2[α;α•; is] is

positive definite by (2.2.9) for all α ∈ Rk+.

The following Lemma also appeared in [107, Eqn.’s (2), (3)].

Lemma 2.3.7. There exist the narrow limits

lim
β→0+

Dβα =α−1
•

k∑
i=1

αiδei and lim
β→+∞

Dβα =δ
α−1
• α

.

Proof. Since Dα is moment determinate, it suffices — by compactness of ∆k−1 and Stone–

Weierstraß Theorem — to show the convergence of its moments. By Theorem 2.3.3 (cf.

also (2.2.1)),

µ′n[s, βα] :=
n!

〈βα•〉n
Zn
(
βs�1 ·α, . . . , βs�n ·α

)
=

1

〈βα•〉n

n∑
r=1

∑
λ`rn

M2(λ)

n∏
i

(β s�i ·α)λi

=
1

〈βα•〉n

n∑
r=1

∑
λ`rn

M2(λ)βλ•
n∏
i

(s�i ·α)λi

=
1

〈βα•〉n

n∑
r=1

βr
∑
λ`rn

M2(λ)

n∏
i

(s�i ·α)λi

≈
β�1

1

βα• Γ(n)
βM2(en) (s�n ·α)1 = α−1

• α · s�n ,

≈
β�1

1

βnαn•
βnM2(ne1) (s�1 ·α)n = α−n• (s ·α)n . �

As a consequence of the Lemma further confluent forms of kΦ2 may be computed:

Corollary 2.3.8 (Confluent forms of kΦ2). There exist the limits

lim
β→0+

kΦ2[βα;βα•; s] =α−1
• α · exp�(s) , lim

β→+∞
kΦ2[βα;βα•; s] = exp(α−1

• α · s) .
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2.3.2 Infinite-dimensional statements. Together with the introductory discussion, Propo-

sition 2.3.1 suggests the following Mapping Theorem for Dσ, to be compared with the analogous

result for the Poisson random measure Pσ over (X,B). (See e.g., [88, §2.3 and passim].) The σ-

symmetry of Dβσ and the quasi-exchangeability and aggregation property of Dα are trivially

recovered from the Theorem by (2.2.10).

Theorem 2.3.9 (Mapping theorem for Dσ). Let (X, τ(X),B) and (X ′, τ(X ′),B′) be second

countable locally compact Hausdorff spaces, ν a non-negative finite measure on (X,B) and

f : (X,B)→ (X ′,B′) be any measurable map. Then,

(f])]Dν = Df]ν .

Proof. Choosing X :=(g−1(1), . . . , g−1(k)), the characterization (2.2.11) is equivalent to the

requirement that (g])]Dν = Dg]ν for any g : X → [k] such that every ν-representative of g is

surjective, which makes X non-trivial for ν. Denote by S(X, ν, k) the family of such functions

and notice that if h ∈ S(X ′, f]ν, k), then g :=h ◦ f ∈ S(X, ν, k). The proof is now merely

typographical:

(h])](f])]Dν = (g])]Dν = Dg]ν = Dh](f]ν) ,

where the second equality suffices to establish that (f])]Dν is a Dirichlet–Ferguson measure by

arbitrariness of h, while the third one characterizes its intensity as f]ν. �

We denote by P(P(X)) the space of probability measures on (P(X),Bn(P(X))), endowed

with the narrow topology τn(P(P(X))) induced by duality with Cb(P(X)). We are now able

to prove the following more general version of Theorem 2.1.1.

Theorem 2.3.10 (Characteristic functional of Dβσ). Let (X, τ(X),B) be a second countable

locally compact Hausdorff Borel measurable space, σ a probability measure on (X,B) and fix β > 0.

Then,

∀f ∈ Cc D̂βσ(tf∗) = Gexp

[
n! 〈β〉−1

n Zn
(
βσf1, . . . , βσfn

)]
(i t) , t ∈ R . (2.3.9)

Moreover, the map ν 7→ Dν is narrowly continuous on M +
b (X).

Proof. Characteristic functional. Fix f in Cc and let (fh)h be a good approximation of f , locally

constant on Xh := (Xh,1, . . . , Xh,kh) with values sh for some (Xh)h ∈ Na(X). Fix n > 0 and

set αh :=βσ�Xh. Choosing u : ∆kh−1 → R, u : y 7→ (sh · y)n in (2.2.11) yields

µ
′ Dβσ
n [f∗h ] :=

∫
P(X)

(f∗hη)n dDβσ(η) =

∫
∆kh−1

(sh · y)n dDβevXhσ(y) = µ′n[sh,αh] ,

hence, by Theorem 2.3.3,

µ
′ Dβσ
n [f∗h ] =n! 〈β〉−1

n Zn
(
s�1h ·αh, . . . , s�nh ·αh

)
= n! 〈β〉−1

n Zn
(
βσf1

h , . . . , βσf
n
h

)
,

thus, by Dominated Convergence Theorem, continuity of Zn and arbitrariness of f ,

∀f ∈ Cc µ
′ Dβσ
n [tf∗] =n! 〈β〉−1

n Zn
(
t1βσf1, . . . , tnβσfn

)
, t ∈ R .

Using (2.2.1) to extract the term tn from Zn and substituting t with i t on the right-hand

side, the conclusion follows by definition of exponential generating function.

Continuity. Assume first that (X, τ(X)) is compact. By compactness of (X, τ(X)), the

narrow and vague topology on P(X) coincide and P(X) is compact as well by Prokhorov
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Theorem. Let (νh)h∈N be a sequence of finite non-negative measures narrowly convergent to ν∞.

Again by Prokhorov Theorem and by compactness of P(X) there exists some τn(P(P(X)))-

cluster point D∞ for the family {Dνh}h. By narrow convergence of νh to ν∞, continuity of Zn

and absolute convergence of D̂ · (f), it follows that limh D̂νh = D̂ν∞ pointwise on Cc(X), hence,

by Corollary 2.5.3, it must be D∞ = Dν∞ .

In the case when X is not compact, recall the notation established in Proposition 2.2.4, denote

by B(αX) the Borel σ-algebra of (αX, τ(αX)) and by P(αX) the space of probability measures

on (αX,B(αX)). By the Continuous Mapping Theorem there exists the narrow limit τn(P(X))-

limh α]νh = α]ν∞, thus, by the result in the compact case applied to the space (αX,Bα) together

with the sequence α]νh,

τn
(
P(P(X))

)
-lim
h
Dα]νh =Dα]ν∞ . (2.3.10)

The narrow convergence of νh to ν∞ implies that α]ν∞ does not charge the point at infinity

in αX, hence the measure spaces (X,B, ν∗) and (αX,B(αX),α]ν∗) are isomorphic for ∗ = h,∞
via the map α, with inverse α−1 defined on imα ( αX. The continuity of α−1 and the Continuous

Mapping Theorem together yield the narrow continuity of the map (α−1
])]. The conclusion

follows by applying (α−1
])] to (2.3.10) and using the Mapping Theorem 2.3.9. �

Remark 2.3.11. Different representations of the univariate moments of the Dirichlet–Ferguson

measure have also appeared, without mention to Zn, in [137, Eq. (17)] (in terms of incomplete

Bell polynomials, solely in the case when X b R+ and f = idR) and in [107, proof of Prop. 3.3]

(in implicit recursive form). Representations of the multi-variate moments have also appeared

in [86, Prop. 7.4] (in terms of summations over ‘color-respecting’ permutations, in the case β = 1),

in [52, (4.20)] and [54, Lem. 5.2] (in terms of summations over constrained set partitions).

Remark 2.3.12. In the case when νh converges to ν∞ in total variation, the continuity statement

in the Theorem and the asymptotics for β → 0 in Corollary 2.3.14 below were first shown in [146,

Thm. 3.2], relying on Sethuraman’s stick-breaking representation. The asymptotic expressions in

Corollary 2.3.14 have been subsequently rediscovered many times in different simplified settings:

Lastly, in the case X = Rd, in [107, Prop. 3.4 and Thm. 3.5]. The following result was also

obtained, again with different methods, in [146].

Corollary 2.3.13 (Tightness of Dirichlet–Ferguson measures [146, Thm. 3.1]). Under the same

assumptions of Theorem 2.3.10, let M ⊂M +
b (X) \ {0} be such that M := {ν | ν ∈M} is a tight,

resp. narrowly compact, family of finite non-negative measures. Then, the family {Dν}ν∈M is

itself tight, resp. narrowly compact.

Corollary 2.3.14 (Asymptotic expressions). Under the same assumptions of Theorem 2.3.10,

for all f in Cc and complex t there exist the limits

lim
β↓0
D̂βσ(tf∗) =σ exp(i tf) and lim

β→∞
D̂βσ(tf∗) = exp(i t σf) (2.3.11)

corresponding to the narrow limits

D0
σ := lim

β↓0
Dβσ =δ]σ and D∞σ := lim

β→∞
Dβσ =δσ , (2.3.12)

where, in the first case, δ : X →P(X) denotes the Dirac embedding x 7→ δx.
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Proof. The existence of D0
σ and D∞σ as narrow cluster points for {Dβσ}β>0 follows by Corol-

lary 2.3.13. Retaining the notation established in Theorem 2.3.10, Corollary 2.3.8 yields for

all k

lim
β↓0
D̂βσ(f∗k ) =σ exp(ifk) and lim

β→∞
D̂βσ(f∗k ) = exp(iσfk) ,

hence, by Dominated Converge,

lim
k

lim
β↓0
D̂βσ(f∗k ) =σ exp(if) and lim

k
lim
β→∞

D̂βσ(f∗k ) = exp(iσf) . (2.3.13)

Furthermore, recalling that |fk| ≤ |f | one has∣∣∣D̂βσ(f∗)− D̂βσ(f∗k )
∣∣∣ ≤e‖f‖ ∫

P(X)

dDβσ(η) |f − fk|∗ η

=e‖f‖ ‖f − fk‖L1
σ
≤ e‖f‖ ‖fk − f‖ ,

(2.3.14)

where the equality follows by [55, §3 Prop. 1]. As a consequence, the order of the limits in each

left-hand side of (2.3.13) may be exchanged, for the convergence in k is uniform with respect

to β. This shows (2.3.11). �

Remark 2.3.15. By Theorem 2.3.10, βσ may be substituted with any sequence (βhσh)h with

limh βh = 0,∞ and {σh}h a tight family. Observe that, despite the similarity with Lemma 2.3.7,

Corollary 2.3.14 is not a direct consequence of the former, since the evaluation map evX is never

continuous.

Remark 2.3.16 (A Gibbsean interpretation). Corollary 2.3.14 states that, varying β ∈ [0,∞],

the map Dβ · : P(X) → P(P(X)) is a (continuous) interpolation between the two extremal

maps D0
· = δ

(0)
] and D∞· = δ(1), where δ(0) := δ : X →P(X) and δ(1) := δ : P(X)→P(P(X)).

These asymptotic distributions may be interpreted — at least formally — in the framework of

statistical mechanics. In order to establish some lexicon, consider a physical system at inverse

temperature β driven by a Hamiltonian H.

Let ZHβ := 〈exp(−βH)〉, Fβ :=−β−1 lnZHβ and Gβ :=(ZHβ )−1 exp(−βH) respectively denote

the partition function, the Helmholtz free energy and (the distribution of) the Gibbs measure of

the system. It was heuristically argued in [140, §3.1] that — at least in the case when (X,B, σ)

is the unit interval —

dDβσ(η) =
e−β S(η)

Zβ
dD∗σ(η) ,

where: S is now an entropy functional (rather than an energy functional), Zβ is a normalization

constant and β plays the rôle of the inverse temperature. Here, D∗σ denotes a non-existing (!)

uniform distribution on P(X). Borrowing again the terminology, this time in full generality, one

can say that for small β (i.e. large temperature), the system thermalizes towards the “uniform”

distribution δ]σ induced by the reference measure σ on the base space, while for large β it

crystallizes to δσ, so that all randomness is lost. Consistently with property i. of Dσ, we see

that ED∞σ ηi = 0 and ED0
σ
ηi = δi1 for all i, where δab denotes the Kronecker symbol; both

statements hold in fact with probability 1.

It is worth noticing that a different interpretation for the parameter β has been given in [107],

where the latter is regarded as a ‘time’ parameter in the definition of a Processus Croissant pour

l’Ordre Convexe (PCOC).
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Remark 2.3.17. By the Continuous Mapping Theorem, both the continuity statement in Theo-

rem 2.3.10 and the asymptotic expressions in Corollary 2.3.14 hold, mutatis mutandis, for every

narrowly continuous image of Dβσ, hence, for instance, for the entropic measure Pβσ [140, 151].

This generalizes [140, Prop. 3.14] and the discussion for the entropic measure thereafter.

Corollary 2.3.18. Let (X,B, σ) and β be as in Theorem 2.3.10 and let h ∈ Bb(X;R). Then,

Equation (2.3.9) holds with h in place of f . In particular, D̂βσ(h) does not depend on the choice

of the representative of h ∈ L∞σ (X,B).

Proof. Since h is bounded, D̂βσ(h∗) is well-defined. Let (fk)k ⊂ Cc(X) be such that h =

L1
σ- limk fk. Observe that we can choose (fk)k so that supk |fk|∨‖h‖ ≤M for some finite M > 0.

Analogously to (2.3.14) (with eM in lieu of e‖f‖), we have limk D̂βσ(f∗k ) = D̂βσ(h∗). By the

same reasoning, D̂βσ(h∗) does not depend on the L1
σ-representative of h. The L1

σ-continuity of

the right-hand side of (2.3.9) in f is straightforward. Thus, the assertion follows by replacing f

with fk in (2.3.9) and letting k →∞. �

Remark 2.3.19 (Some alternative proofs). Applying [160, §IV.2.2, Prop. 2.4, p. 204] and Corol-

lary 2.3.18 together yields a different proof of the Mapping Theorem 2.3.9, not relying on the

marginal distributions of Dβσ. As an immediate consequence, the aggregation property is also

recovered by choosing a purely atomic intensity measure.

Corollary 2.3.20 (Alternative construction of Dβσ). Assume there exists a nuclear function

space S ⊂ C0(X), continuously embedded into C0(X) and such that S ∩ Cc(X) is norm-dense

in C0(X) and dense in S. Then, there exists a unique Borel probability measure on the dual

space S ′, namely Dβσ, whose characteristic functional is given by the extension of (2.3.9) to S.

Proof. By the classical Bochner–Minlos Theorem, (See e.g., [61, §4.2, Thm. 2]) it suffices to

show that the extension to S, say χ, of the functional (2.3.9) is a characteristic functional.

By the convention in (2.2.2), χ(0S) = χ(0Cc(X)) = 1. The (sequential) continuity of χ on S
follows by that on C0(X) and the continuity of the embedding S ⊂ C0(X). It remains to

show the positivity (2.3.8) of χ, which can be checked only on S ∩ Cc(X) by ‖ · ‖-density of

the inclusions S ∩ Cc(X) ⊂ C0(X). The positivity of χ restricted to Cc(X) follows from the

positivity of kΦ2 in Remark 2.3.6 by approximation of f with simple functions as in the proof of

Theorem 2.3.10. �

Remark 2.3.21. Let us notice that the assumption of Corollary 2.3.20 is satisfied, whenever X

is (additionally) either finite (trivially), or a differentiable manifold, or a topological group (by

the main result in [1]). In particular, when X = Rd, we can choose S = S(Rd), the space of

Schwartz functions on Rd.

Consider the map G : P(P(X))→P(X) defined by

(G (µ))A =

∫
P(X)

dµ(η) ηA A ∈ B , µ ∈P(P(X)) .

Since f∗ is τn(P(X))-continuous for every f ∈ Cb(X) and bounded by ‖f‖, the map G is

continuous.

Corollary 2.3.22. Let (X, τ(X),B) be a locally compact second countable Hausdorff Borel

measurable space. For fixed β ∈ (0,∞), the map Dβ · : P(X)→P(P(X)) is a homeomorphism

onto its image, with inverse G .
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Proof. The continuity of Dβ · is proven in Theorem 2.3.10. By e.g., [55, Thm. 3] for all f ∈ Cc(X)

one has Dβσf∗ = βσf , hence G inverts Dβ · on its image. �

P(∆k−1)

· · · P(∆k−1) P(∆k) · · ·

P(P(X)) P(P(X ′))

∆k−1

· · · ∆k−1 ∆k · · ·

P(X) P(X ′)

[k]

· · · [k] [k + 1] · · ·

X X ′

g]]

Dβ ·

si]]

pr
Xk+1
]]

pr
Xk
]]

f]]
Dβ ·

g]

Dβ ·

si]

δ

Dβ ·

pr
Xk
]

pr
Xk+1
]

f]

Dβ ·

δ

g

δ

si

f

δ

prXk

pr
Xk+1

δ

Figure 2.1: Many properties of Dirichlet(–Ferguson) measures can be phrased in terms of the commutation

of some diagrams. The commutation of dashed squares of the diagram above, from left to right, respectively

corresponds to

• the symmetry property (2.2.5) when g = π ∈ Sk and, more generally, Proposition 2.3.1;

• the aggregation property (2.2.4);

• the marginalization (2.2.10) (recall that prX] = evX);

• the symmetry property (2.2.12) when f = ψ is measure preserving and, more generally, Theo-

rem 2.3.9;

the commutation of the solid sub-diagram delimited by the two dashed triangles corresponds to the

requirement of Kolmogorov consistency. (Cf. [55, p. 214].)

As a further application of Theorem 2.3.10, we show how the continuity Theorem extends

to hierarchical Dirichlet processes [153]. Such processes arise as a natural counterpart to

Dirichlet–Ferguson processes in a non-parametric Bayesian approach to the modeling of grouped

data.

Definition 2.3.23 (Hierarchical Dirichlet Process [153, Eqn.s (13)–(14)]). Under the same

assumptions as in Theorem 2.3.10, given β > 0 and η a P(X)-valued Dν-distributed random

field, a hierarchical Dirichlet process is any P(X)-valued random field distributed as Dβη.

As usual, we consider rather the laws of hierarchical Dirichlet processes, namely the mea-

sures DβDν on P(P(X)). The construction is easily iterated, as in the following definition.

Definition 2.3.24 (Dirichlet–Ferguson-measured Vershik tower). Let (X, τ(X),B) be a locally

compact second countable Hausdorff Borel measurable space. Define inductively for n ∈ N0

P(0)(X) :=X , P(n)(X) := P
(
P(n−1)(X)

)
,
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always endowed with the corresponding narrow topologies, and let δ(n) : P(n)(X)→P(n+1)(X)

be the corresponding Dirac embeddings for n ∈ N0. Following [21, p. 796] we term the fam-

ily
{(

P(n)(X), δ(n)
)}
n∈N0

the Vershik tower over X. Notice that, since X is Polish, so is P(n)(X)

for every n ∈ N0. Analogously, if X is additionally compact, then P(n)(X) is compact as well,

for every n ∈ N0.

Let now β ∈ RN0
+ and σ be a probability measure on X. Define inductively for n ∈ N0

D(0)
β,σ :=σ , D(n)

β,σ :=D
βn−1D

(n−1)
β,σ

,

and observe that D(n)
β,σ is a Borel probability measure over P(n)(X) for every n ∈ N1. We term

the family
{(

P(n)(X),D(n)
β,σ, δ

(n)
)}
n∈N0

the (β, σ)-Dirichlet–Ferguson-measured Vershik tower

over X.

Corollary 2.3.25. Let (X, τ(X),B) be a compact Hausdorff Borel measurable space and let RN0
+

be endowed with the uniform topology. Then, the map D(n)
· : RN0

+ ×P(X) → P(n)(X) given

by (β, σ) 7→ D(n)
β,σ is continuous for every n ∈ N1.

Proof. Since P(n) is a (locally) compact second countable Hausdorff for every n ∈ N1, it is

sufficient to iteratively apply the continuity statement in Theorem 2.3.10. �

Remark 2.3.26. By resorting to the Alexandrov compactification of X, analogously to the proof

of Theorem 2.3.10, Corollary 2.3.25 holds even if X is merely locally compact. Rigorously, this

is however beyond our framework, since P(X) (hence P(n)(X), n ∈ N1) is locally compact if

and only if X is compact. Thus, if X is not compact, Dβ0σ does not satisfy our definition of

intensity measure as a finite measure on a locally compact second countable Hausdorff Borel

measurable space.

2.4 Proof of Theorem 2.1.4 and accessory results

2.4.1 Finite-dimensional statements.

Multisets. Given a set S, a (finite integer-valued) S-multi-set is any function f : S → N0 such

that its cardinality #f :=
∑
s∈S f(s) is finite. We denote any such multiset by JsαK, where s ∈ S×k

has mutually different entries and α := f�(s) ∈ Nk1 . We term the set [s] := {s1, . . . , sk} the

underlying set to JsαK and put

[sα] := {(s1, 1), . . . , (s1, α1), . . . , (sk, 1), . . . , (sk, αk)} .

A coloring problem. An interpretation of the moments formula (2.3.3) may be given in enumera-

tive combinatorics, by means of Pólya Enumeration Theory. (PET, see e.g., [134].) A minimal

background is as follows. Let G < Sn be a permutation group acting on [n] and [s] := {s1, . . . , sk}
denote a set of (distinct) colors.

Definition 2.4.1 (Colorings). A k-coloring of [n] is any function f in [s][n], where we understand

the elements s1, . . . , sk of [s] as placeholders for different colors. Whenever these are irrelevant,

given a k-coloring f of [n] we denote by f̃ the unique function in [k][n] such that sf̃( · ) = f( · ).
We say that two k-colorings f1, f2 of [n] are G-equivalent if f1 ◦ π = f2 for all π in G. We denote

the family of [k]-colorings of [n] by Ckn(s).
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Theorem 2.4.2 (Pólya [134, §4]). Let G < Sn be a permutation group acting on [n] and ah1,...,hk

be the number of G-inequivalent k-colorings of [n] into k colors with exactly hi occurrences of

the ith color. Then, the (multivariate) generating function G[ah1,...,hk ](t) satisfies

G[ah1,...,hk ](t) = ZG (pk,1[t], . . . , pk,n[t]) , (2.4.1)

where pk,i[t] := 1 · t�i with 1 ∈ Rk denotes the ith k-variate power-sum symmetric polynomial.

In the following we consider an extension of PET to multisets of colors, and explore its

connections — arising in the case G = Sn — with the Dirichlet distribution Dα. A different

approach in terms of colorings, limited to the case α• = 1, was briefly sketched in [86, §7]. The

purpose of this section is that to revisit the key idea of ‘color-respecting’ permutations in [86,

p. 112] in the well-established framework of PET.

Let now JsαK be an integer-valued multiset with α ∈ Nk1 , henceforth a palette. As before, we

understand the elements s1, . . . , sk of its underlying set [s] as placeholders for different colors, and

the elements (si, 1), . . . , (si, αi) of [sα] as placeholders for different shades of the same color si.

Definition 2.4.3 (Shadings). An α-shading of [n] is any function ϕ in [sα][n], where α ∈ Nk1 .

To each α-shading of [n] we associate uniquely a [k]-coloring of [n] by letting f( · ) :=ϕ( · )1. This

association (trivially surjective) just amounts to forget information about the shade and only

retain information about the color. We say that two α-shadings ϕ1, ϕ2 of [n] are G-equivalent if

so are the corresponding [k]-colorings f1, f2 of [n]. We denote the family of α-shadings of [n]

by Skn(sα).

Corollary 2.4.4 (Counting shadings). Let G < Sn be a permutation group acting on [n]

and bαh1,...,hk
be the number of G-inequivalent α-shadings of [n] with exactly hi occurrences of

the ith color. Then,

G[bαh1,...,hk ](s) = ZG
(
α · s�1, . . . ,α · s�n

)
, s ∈ Rk .

Proof. For each i ≤ k set ri := (α1, . . . , αi)• and r0 := 0. Notice that rk = α•. For every rk-

coloring g of [n] let

ϕα[g](x) :=(si, g̃(x)− ri−1) if g̃(x) ∈ {ri−1 + 1, . . . , ri}

varying i ∈ [k] and x ∈ [n]. It is readily seen that, for every fixed α ∈ Nk1 , the map

Qα : Cα•n (s) −→ Skn(sα)

g 7−→ ϕα[g]

is bijective and preserves G-equivalence. Thus, the number ah1,1,...,h1,α1
,...,hk,1,...,hk,αk

of G-in-

equivalent rk-colorings of [n] with exactly hi,j occurrences of the (ri−1 + j)th color is also the

number of G-inequivalent α-shadings of [n] with exactly hi,j occurrences of the jth shade of the

ith color. By Theorem 2.4.2 this is the coefficient of the monomial

t
h1,1

1 · · · th1,α1
r1 · · · thk,1rk−1+1 · · · t

hk,αk
rk

in ZG (1 · t, . . . ,1 · t�n) with 1 ∈ Rrk . By definition,

bαh1,...,hk =
∑

h1,1,...,h1,α1
,...,hk,1,...,hk,αk∑αi

j hi,j=hi

ah1,1,...,h1,α1
,...,hk,1,...,hk,αk

,

which equals the coefficient of the monomial sh1
1 . . . s

hk
k in

ZG
(
1 · t�1, . . . ,1 · t�n

)
=ZG

(
α · s�1, . . . ,α · s�n

)
, t :=(s1, . . . , s1︸ ︷︷ ︸

α1

, . . . , sk, . . . , sk︸ ︷︷ ︸
αk

) . �
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Corollary 2.4.5. For fixed α ∈ Nk1 , denote by Sαn the set of Sn-equivalence classes ϕ• of

α-shadings of [n]. Then, the probability pαh1,...,hk
of some ϕ• uniformly drawn from Sαn having

exactly hi occurrences of the ith color satisfies

G[pαh1,...,hk ](s) = µ′n[s,α] .

Proof. By Corollary 2.4.4,

#Sαn =
∑

h∈Nk0
h•=n

bαh = G[bαh1,...,hk ](1) = 〈α•〉n /n! (2.4.2)

By definition, pαh1,...,hk
= (#Sαn )−1bαh1,...,hk

, hence, by homogeneity,

G[pαh1,...,hk ](s) = (#Sαn )−1 G[bαh1,...,hk ](s) .

The conclusion follows by (2.4.2), Corollary 2.4.4 and Theorem 2.3.3. �

The study of Dα in the case when α• = 1 is singled out as computationally easiest (as

suggested by Theorem 2.3.3, noticing that 〈1〉n = n!), α representing in that case a probability

on [k], as detailed in §2.2. For these reasons, this is often the only case considered. (Cf. e.g.,

[86].) On the other hand though, the general case when α > 0 is the one relevant in Bayesian

non-parametrics, since posterior distributions of Dirichlet-categorical and Dirichlet-multinomial

priors do not have probability intensity. The above coloring problem suggests that the case

when α ∈ Nk1 is interesting from the point of view of PET, since it allows for some natural

operations on palettes, corresponding to functionals of the distribution.

Indeed, we can change the number of colors and shades in a palette JsαK by composing any

permutation of the indices [k] with the following elementary operations:

• (i) ‘widen’, respectively (ii) ‘narrow the color spectrum’, by adding a color, say sk+1,

respectively removing a color, say sk. That is, we consider new palettes J(s⊕ sk+1)α⊕αk+1K,
respectively J(s1, . . . , sk−1)(α1,...,αk−1)K;

• (iii) ‘reduce color resolution’ by regarding two different colors, say si and si+1, as the same,

relabeled si. In so doing we regard the shades of the former colors as distinct shades of the

new one, so that it has αi + αi+1 shades. That is, we consider the new palette J(sı̂)α+iK;

• (iv) ‘enlarge’, respectively (v) ‘reduce the color depth’, by adding a shade, say the αth
i+1,

to the color si, respectively removing a shade, say the αth
i , to the color si. This latter

operation we allow only if αi > 1, so to make it distinct from removing the color si from

the palette. That is, we consider the new palettes Jsα+eiK, resp. Jsα−eiK when αi > 1.

Increasing the color resolution of a multi-shaded color, say sk with αk > 1 shades, by splitting

it into two colors, say s∗k and sk+1 with α∗k > 0 and αk+1 > 0 shades respectively and such

that α∗k + αk+1 = αk, is not an elementary operation. It can be obtained by widening the

spectrum of the palette by adding a color sk+1 with αk+1 shades and reducing the color depth

of the color sk to α∗k. Thus, this operation is not listed above. We do not allow for the number

of shades of a color to be reduced to zero: although this is morally equivalent to removing that

color, the latter operation amounts more rigorously to remove the color placeholder from the

palette.

The said elementary operations are of two distinct kinds: (i)–(iii) alter the number of colors

in a palette, while (iv)–(v) fix it. We restrict our attention to the latter ones and ask how the

probability pαh1,...,hk
changes under them. By Corollary 2.4.5 this is equivalent to study the
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corresponding functionals of the nth moment of the Dirichlet distribution. For fixed k, we address

all the moments at once, by studying the moment generating function

kΦ2[α;α•; ts] = Gexp[G[pαh1,...,hk ](s)](t) .

Namely, we look for natural transformations yielding the mappings

E±i kΦ2[α;α•; s] = Cα kΦ2[α± ei;α• ± 1; s] , (2.4.3)

where Cα is some constant, possibly dependent on α. Here ‘natural’ means that we only allow

for meaningful linear operations on generating functions: addition, scalar multiplication by

variables or constants, differentiation and integration. For practical reasons, it is convenient to

consider the following construction.

Definition 2.4.6 (Dynamical symmetry algebra of kΦ2). Denote by gk the minimal semi-simple

Lie algebra containing the linear span of the operators E±1, . . . , E±k in (2.4.3) and endowed

with the bracket induced by their composition. Following [121], we term the Lie algebra gk the

dynamical symmetry algebra of the function kΦ[α; s] := kΦ2[α;α•; s], characterized below.

Dynamical symmetry algebras. We compute now the dynamical symmetry algebra of the func-

tion kΦ[α; s] := kΦ2[α;α•; s], in this section always regarded as the meromorphic extension (2.2.9)

of the Fourier transform of D̂α(s) in the complex variables α, s ∈ Ck. The choice of complex

variables is merely motivated by this identification and every result in the following concerned

with complex Lie algebras holds verbatim for their split real form. For dynamical symmetry

algebras of Lauricella hypergeometric functions see [121, 122] and references therein; we refer

to [77] for the general theory of Lie algebra (representations) and for Weyl groups’ theory.

Notation and definitions. Denote by Ei,j varying i, j ∈ [k+ 1] the canonical basis of Matk+1(C),

with [Ei,j ]m,n = δmi δnj , where δab is the Kronecker delta, and by A∗ the conjugate transpose of

a matrix A.

Lemma 2.4.7 (A presentation of slk+1(C)). For i, j = 0, . . . , k with j > i let

ei,j := Ei′,j′ , hi,j := Ei′,i′ −Ej′,j′ , fj,i := e∗i,j .

Then, the complex Lie sub-algebra lk of glk+1(C) generated by these vectors is lk = slk+1(C),

with generators the sl2-triples {ei,i′ , hi,i′ , fi′,i}i=0,...,k−1
. Denote further by fk < lk the sub-algebra

spanned by {ei,j , fj,i, hi,j}i,j∈[k]. Then, fk ∼= slk(C).

Proof. It suffices to verify Serre’s relations of type A (See e.g., [77, §18.1].) Let i, p = 0, . . . , k,

j > i, q > p and notice that

[hi,j ]a,b = (δi′a − δj′a)δab , [ei,j ]a,b = δi′aδj′b , [fj,i]a,b = δj′aδi′b .

Then, concerning [77, p. 96, (S1)],

[hi,j , hp,q]a,b =

k∑
c=0

[hi,j ]a,c[hp,q]c,b −
k∑
c=0

[hp,q]a,c[hi,j ]c,b (2.4.4)

=

k∑
c=0

(
(δi′a − δj′a)δac(δp′c − δq′c)δcb − (δp′a − δq′a)δac(δi′c − δj′c)δcb

)
=δab(δi′a − δj′a)(δp′a − δq′a)− δab(δp′a − δq′a)(δi′a − δj′a)

=0 ,
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concerning [77, p. 96, (S2)],

[ei,j , fq,p]a,b =

k∑
c=0

[ei,j ]a,c[fq,p]c,b −
k∑
c=0

[fq,p]a,c[ei,j ]c,b (2.4.5)

=

k∑
c=0

(
δi′aδj′cδq′cδp′b − δq′aδp′cδi′cδj′b

)
=δi′aδjqδp′b − δq′aδipδj′b

(j=i′, q=p′) =δip[hi,j ]a,b ,

concerning [77, p. 96, (S3)],

[hi,j , ep,q]a,b =

k∑
c=0

[hi,j ]a,c[ep,q]c,b −
k∑
c=0

[ep,q]a,c[hi,j ]c,b (2.4.6)

=

k∑
c=0

(
(δi′a − δj′a)δacδp′cδq′b − δp′aδq′c(δi′c − δj′c)δcb

)
=(δi′a − δj′a)δp′aδq′b − δp′aδq′b(δi′b − δj′b)

=(δi′p′ + δj′q′ − δi′q′ − δj′p′)[ep,q]a,b
(j=i′, q=p′) =(2δip − δip′ − δi′p)[ep,q]a,b

and

[hi,j , fq,p]a,b =

k∑
c=0

[hi,j ]a,c[fq,p]c,b −
k∑
c=0

[fq,p]a,c[hi,j ]c,b (2.4.7)

=

k∑
c=0

(
(δi′a − δj′a)δacδp′cδq′b − δp′aδq′c(δi′c − δj′c)δcb

)
=(δi′a − δj′a)δp′aδq′b − δp′aδq′b(δi′b − δj′b)

=(δi′p′ + δj′q′ − δj′p′ − δi′q′)[fq,p]a,b
(j=i′, q=p′) =− (2δip − δip′ − δi′p)[fq,p]a,b

Finally, concerning [77, p. 96, (S+
ij)],

[ei,j , eq,p]a,b =

k∑
c=0

[ei,j ]a,c[eq,p]c,b −
k∑
c=0

[eq,p]a,c[ei,j ]c,b (i, j) 6= (p, q) (2.4.8)

=

k∑
c=0

(
δi′aδj′cδp′cδq′b − δp′aδq′cδi′cδj′b

)
=δi′aδj′p′δq′b − δp′aδq′i′δj′b

(j=i′, q=p′) =δpaδp′′b − δiaδi′′b (i 6= p)

=δp′′a′′δp′′b − δi′′a′′δi′′b
=δa′′b − δa′′b
=0 .

As usual, [77, p. 96, (S−ij)] follows from (S+
ij) by symmetry. �

Everywhere in the following we regard lk together with the distinguished Cartan sub-algebra

hk < lk of diagonal traceless matrices spanned by the basis {h0,j}j∈[k]; the root system Ψk
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induced by hk, with simple roots γj corresponding to the sl2-triples of the vectors ei,i′ for i ∈ [k];

positive, resp. negative, roots Ψ±k corresponding to the spaces of strictly upper, resp. strictly

lower, triangular matrices n±k . The inclusion fk < lk induces the decomposition of vector spaces

(not of algebras)

lk = r−k ⊕ h1 ⊕ fk ⊕ r+k , where r+k :=C {e0,j}j∈[k] , r
−
k :=C {fj,0}j∈[k] , h1 = C {h0,1} .

The subscript k is omitted whenever apparent from context.

For fixed α ∈ Ck regard kΦ[α; · ] as a formal power series and let fα : C2k+1
s,u,t −→ C be

fα = fα(s,u, t) :=kΦ[α; s]uαtα• . (2.4.9)

Let A ⊂ Ck. It is readily seen that the functions {fα}α∈A are (finitely) linearly independent,

since so are the functions {fα(1,u, 1) ∝ uα}α∈A. Set

OA :=
⊕
α∈A

C{fα} , Oα :=O{α} , O :=OCk

and define the following differential operators, acting formally on O,

Eαi :=uit(si∂si + ui∂ui − (s · ∇s)∂si) , Eαi,−αj :=uiu
−1
j ((ui − uj)∂si + ui∂ui) ,

E−αi :=(uit)
−1(si − s · ∇s − t∂t + 1) , Jαi :=t∂t + ui∂ui − 1 ,

(2.4.10)

where i, j ∈ [k], i 6= j and ∇y := (∂y1 , . . . , ∂yk ) for y = u, s. Term the operators Eαi , resp. E−αi ,

raising, resp. lowering, operators. Finally, let gk be the complex linear span of the opera-

tors (2.4.10) endowed with the bracket induced by their composition.

Actions on spaces of holomorphic functions. For α ∈ Ck set Λα :=α+Zk and, for every ` ∈ R+,

Λ+
α := {ε ∈ Λα | ε• > 0} , H±α :=α± Nk0 , Mα,` :=

{
ε ∈ Λ+

α | ε• = `
}
.

Notice that if <�α > 0, the spaceO
Λ+
α

is a space of holomorphic functionsO(Cks×(C\R−0 )k+1
u,t ),

where we choose R−0 as branch cut for the complex logarithm in the variables u and t. The same

holds for OΛα if α• 6∈ Z.

Lemma 2.4.8 (Raising/lowering actions). The operators (2.4.10) satisfy, for i, j ∈ [k], j 6= i,

Eαifα =αifα+ei , E−αifα =(1−α•)fα−ei ,

Eαi,−αjfα =αifα+ei−ej , Jαifα =(α• + αi − 1)fα .
(2.4.11)

Proof. The statement on Jαi is straightforward. Moreover,

Eαi,−αjfα =uα+ei−ej tα•

∑
m≥0

〈α〉m (mi + αi)s
m

〈α•〉m• m!
−
〈α〉mmis

m−ei+ej

〈α•〉m• m!


=uα+ei−ej tα•

∑
m≥0

〈α〉m (mi + αi)s
m

〈α•〉m• m!
−
〈α〉m+ei−ej

(mi + 1)sm

〈α•〉m• (m + ei − ej)!


=uα+ei−ej tα•

αi
αj − 1

×

×

∑
m≥0

〈α+ ei − ej〉m−ei+ej
(mi + αi)s

m

〈α•〉m• m!
−
〈α+ ei − ej〉m sm

〈α•〉m• (m− ej)!


=uα+ei−ej tα•

αi
αj − 1

×
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×

∑
m≥0

〈α+ ei − ej〉m (mj + αj − 1)sm

〈α•〉m• m!
−
〈α+ ei − ej〉mmjs

m

〈α•〉m• m!


=αifα+ei−ej ,

Eαifα =uα+eitα•+1

∑
m≥0

〈α〉m (mi + αi)s
m

〈α•〉m• m!
−
〈α〉mmi(m• − 1)sm−ei

〈α•〉m• m!


=uα+eitα•+1

∑
m≥0

〈α〉m+ei
sm

〈α•〉m• m!
−
〈α〉m (m• − 1)sm−ei

〈α•〉m• (m− ei)!


=uα+eitα•+1

∑
m≥0

〈α〉m+ei
sm

〈α•〉m• m!
−
〈α〉m+ei

m•s
m

〈α•〉m•+1 m!


=uα+eitα•+1 αi

α•

∑
m≥0

〈α+ ei〉m sm

〈α• + 1〉m•−1 m!
−
〈α+ ei〉m m•s

m

〈α• + 1〉m• m!


=uα+eitα•+1 αi

α•

∑
m≥0

〈α+ ei〉m sm(α• + m•)

〈α• + 1〉m• m!
−
〈α+ ei〉m m•s

m

〈α• + 1〉m• m!


=αifα+ei ,

E−αifα =uα−eitα•−1

∑
m≥0

〈α〉m sm+ei

〈α•〉m• m!
−
〈α〉m sm

〈α•〉m• m!
(m• +α• − 1)


=uα−eitα•−1

∑
m≥0

〈α〉m−ei
mis

m

〈α•〉m•−1 m!
−
〈α〉m sm

〈α•〉m• m!
(m• +α• − 1)


=uα−eitα•−1α• − 1

αi − 1
×

×

∑
m≥0

〈α− ei〉mmis
m

〈α• − 1〉m• m!
−
〈α− ei〉m (αi +mi − 1)sm

〈α• − 1〉m• (α• + m• − 1)m!
(m• +α• − 1)


=(1−α•)fα−ei . �

Remark 2.4.9. The variables u and t are merely auxiliary. (Cf. [123, §1].) The operators

do not depend on the parameter α, rather, the subscripts indicate which indices they affect.

Heuristically, the action of the operators (2.4.10) given in Lemma 2.4.8 may be deduced from

that [121, Eqn. (1.5)] of operators in the dynamical symmetry algebra of kFD by a formal

contraction procedure [121, p. 1398], letting (in the notation of [121]) α = 0, β = α, γ = α• and

dropping redundancies. Notice finally that the action of the operator Eαj on fα corresponds to

a differentiation in the variable sj of the moment µ′n[s,α], as in (2.3.6).

Remark 2.4.10. If α• = 1, the action of the lowering operators E−αi vanishes on Oα. This is

natural when regarding fα as a formal power series, whereas it is conventional when regarding fα

as a meromorphic function, for the functions (1−α•)fα−ei are in fact — after cancellations —

well-defined, not identically vanishing, and holomorphic in s even for α• = 1. The convention

here reads 0×∞ = 0, which is consistent with the usual convention in measure theory when we

identify α• − 1 with the quantity (σ − δy)X for any y in X; the reason for such identification

will be apparent in §2.4.2 below.

Corollary 2.4.11. The operators (2.4.10) fix OΛα for any α ∈ Ck.
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In the statement of the next Lemma and in the diagrams in Fig.s 2.2 and 2.3 we write for

simplicity Ei in place of Eαi and analogously for all other operators.

Lemma 2.4.12. For α ∈ Ck consider the operators in gk as restricted to OΛα . The following

commutation relations hold:

[Jj − Ji, Ep,−q] =



2Ep,−q if j = p, i = q

−2Ep,−q if j = q, i = p

Ep,−q if j = p, i 6= q

or j 6= p, i = q

−Ep,−q if j = q, i 6= p

or j 6= q, i = p

0 otherwise

,

[Ei, E−p] =

Ji if i = p

Ei,−p otherwise
,

[Ei, Ep,−q] =

−Ep if i = q

0 otherwise
,

[E−i, Ep,−q] =

E−q if i = p

0 otherwise
,

[Ji, E±p] =

±2E±p if i = p

±E±p otherwise
,

[Ji, Jp] = 0 ,

[Ei, Ep] = 0 ,

[Ej,−i, Ep,−q] =



Jj − Ji if j = q, i = p

−Ep,−i if j = q, i 6= p

Ej,−q if j 6= q, i = p

0 otherwise

,

where i, j, p, q = 1, . . . , k with i 6= j, p 6= q.

Proof. Several applications of (2.4.11) yield

[Jj − Ji, Ep,−q] =αp(Jj − Ji)fα+ep−eq − (αj − αi)Ep,−qfα
=
(
αp((α+ ep − eq)j − (α+ ep − eq)i)− αp(αj − αi)

)
fα+ep−eq

=
(
αp(αj + δjp − δjq − αi − δip + δiq)− αp(αj − αi)

)
fα+ep−eq

=αp(δjp − δjq − δip + δiq)fα+ep−eq

[Ej,−i, Ep,−q]fα =αpEj,−ifα+ep−eq − αjEp,−qfα+ej−ei

=
(
αp(α+ ep − eq)j − αj(α+ ej − ei)p

)
fα+ej−ei+ep−eq

=
(
αp(αj + δjp − δjq)− αj(αp + δjp − δip)

)
fα+ej−ei+ep−eq

=
(
αpδjp − αpδjq − αjδjp + αjδip

)
fα+ej−ei+ep−eq

=(−αpδjq + αjδip)fα+ej−ei+ep−eq ,

[Ei, Ep,−q]fα =αpEifα+ep−eq − αiEp,−qfα+ei

=
(
αp(α+ ep − eq)i − αi(α+ ei)p

)
fα+ei+ep−eq

=
(
αp(αi + δip − δiq)− αi(αp + δip)

)
fα+ei+ep−eq

=− αpδiqfα+ei+ep−eq

[E−i, Ep,−q]fα =αpE−ifα+ep−eq − (1−α•)Ep,−qfα−ei

=
(
αp(1− (α+ ep − eq)•)− (1−α•)(α− ei)p

)
fα−ei+ep−eq

=
(
αp(1−α•)− (1−α•)(αp − δip)

)
fα−ei+ep−eq

=(1−α•)δipfα−ei+ep−eq

[Ei, E−p]fα =(1−α•)Eifα−ep − αiE−pfα+ei

=
(
(α− ep)i(1−α•)− αi(1− (α+ ei)•)

)
fα+ei−ep
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=
(
(αi − δip)(1−α•) + αiα•

)
fα+ei−ep

=(δipα• + αi − δip)fα+ei−ep ,

[Ji, Ep]fα =αpJifα+ep − (α• + αi − 1)Epfα

=
(
αp((α+ ep)• + (α+ ep)i − 1)− αp(α• + αi − 1)

)
fα+ep

=
(
αp(α• + 1 + αi + δip − 1)− αpα• − αiαp + αp

)
fα+ep

=(1 + δip)αpfα+ep ,

[Ji, E−p]fα =(1−α•)Jifα−ep − (α• + αi − 1)E−pfα

=
(
(1−α•)((α− ep)• + (α− ep)i − 1)− (1−α•)(α• + αi − 1)

)
fα−ep

=
(
(1−α•)(α• − 1 + αi − δip − 1)− (1−α•)(α• + αi − 1)

)
fα−ep

=− (1 + δip)(1−α•)fα−ep

[Ji, Jp]fα =(α• + αp − 1)Jifα − (α• + αi − 1)Jpfα

=
(
(α• + αp − 1)(α• + αi − 1)− (α• + αi − 1)(α• + αp − 1)

)
fα

= 0 ,

[Ei, Ep]fα =αpEifα+ep − αiEpfα+ei

=
(
αp(α+ ep)i − αi(α+ ei)p

)
fα+ei+ep

=
(
αp(αi + δip)− αi(αp + δip)

)
fα+ei+ep

= 0 . �

Proposition 2.4.13. Let ρ : lk → End(O) be the linear map defined by

e0,i 7→ Eαi , ei,j 7→ Eαj ,−αi , h0,i 7→ Jαi , fi,0 7→ E−αi , fj,i 7→ Eαi,−αj

where i, j ∈ [k] with j > i. Then, for any fixed α ∈ Ck, the pair ρα :=(ρ( · )
∣∣
OΛα

,OΛα) is

a faithful Lie algebra representation of lk with image gk
∣∣
OΛα

. Furthermore, the functions fα

transform as basis vectors for ρα, in the sense that for every v in the basis for lk and every ε

in Λα there exists a unique ε̄ = ε̄(ε, v) in Λα such that (ραv) fε ∝ fε̄.

Proof. By Corollary 2.4.11, ρα is a well-defined linear morphism into End(OΛα). The fact that fα

transforms as a basis vector of OΛα is an immediate consequence of Lemma 2.4.8. For ε ∈ Λα

such that <�ε > 1, the actions of operators in (2.4.10) on Oε are mutually different again by

Lemma 2.4.8, hence ρα is injective. In order to show that ραl = g
∣∣
OΛα

is a Lie algebra of type Ak

and that ρα is a Lie algebra representation, it suffices to verify that the morphism ρ : lk → gk is a

morphism of Lie algebras. Notice that hi,i′ = h0,i′ − h0,i, hence ρ(hi,i′) = Jαi′ − Jαi . Thus, the

assertion follows by direct comparison of the commutators in Lemma 2.4.12 (for the choice j > i,

p > q) with those of the presentation of lk given in Lemma 2.4.7. �

Theorem 2.4.14. For α in int ∆k−1 and p ∈ Nk0 denote by Dp
α the posterior distribution of Dα

given atoms of mass pi at point i ∈ [k]. Then,

(i) the semi-lattice O
Λ+
α

is a weight l-module and U(l)-module;

(ii) the space OMα,` in invariant under the action of the universal enveloping algebra U(f) < U(l)

for all ` ∈ N1, while O
H+
α

is invariant under the action of U(h)⊕ U(r+);

(iii) for every p ∈ Nk0 there exists a unique v = v(p) ∈ U(r+) such that v.Oα ∼= CD̂p
α;

(iv) the canonical action of Sk on P([k]) corresponds to the natural action of the unique

subgroup (isomorphic to) Sk of the Weyl group of lk permuting roots corresponding to

basis elements in r+k .
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Proof. By (2.4.11), the operators ρ slk+1(C) fix O
Λ+
α
⊂ O, thus ρα is a (faithful) Lie algebra

representation by Proposition 2.4.13, hence O
Λ+
α
⊂ O is an l-module for the linear extension of

the action v.fε :=(ραv)fε varying v in the basis of l. The extension to a representation of U(l) is

standard from the universal property of universal enveloping algebras. (See e.g., [77, §17.2].)

In order to prove (i)-(ii) it suffices to show that, for all ε ∈ Λ+
α and ` ∈ N1, one has

h0,i.fε = (ε• − 1 + εi)fε , v.OMε,` ⊂ OMε,` , w.OH+
α
⊂ O

H+
α

for all i ∈ [k], v in the basis of f, ` ∈ N1 and w in the basis for h⊕ r+. All of the above follow

immediately from Lemma 2.4.8. Notably, since α• = 1, h acts on Oα precisely by weight α.

Since α ∈ ∆k−1, then fα+p( · ,1, 1) = D̂α+p( · ). By the Bayesian property of Dα the

space O
H+
α

is spanned precisely by the Fourier transforms of the form D̂p
α. It remains to show

that U(r+).Oα = O
H+
α

. Setting v = ep1
1 · · · e

pk
k ∈ U(r+k ) yields v.Oα = Oα+p as required. The

uniqueness of v follows by the fact that, since r+ is Abelian, U(r+) coincides with the (Abelian)

symmetric algebra generated by r+. (See [77, §17.2].) This proves (iii).

In order to show (iv), recall (e.g., [77, §12.1]) that the Weyl group Wk of Ψk is isomorphic

to Sk+1 and its action on Ψk may be canonically identified as dual to the action of Sk+1 on hk

via conjugation by permutation matrices in Pk+1
∼= Sk+1 < GL(hk) ∼= GLk+1(C). Let P2:k+1 <

GLk+1(C) denote the subgroup of permutations matrices whose action on Matk+1(C) fixes the

first row and column. Clearly Sk
∼= P2:k+1 < Pk+1. Composing the isomorphism ρα with the

identification of the action of Pk+1 above completes the proof. �
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Figure 2.2: (both) Each marked point corresponds to some ε ∈ Λα for fixed α, and is chosen to indicate

the one-dimensional vector space Oε. (left) The gray anti-diagonal lines denote the isoplethic surfaces:

marked points ε lying on these surfaces belong to Mα,`, i.e. they have fixed length ε• = ` ∈ N1. The

simplex ∆1 is marked as a thick black segment. Analogously, marked points lying in the North-West

dashed region delimited by the hyper-plane of equation y• = 0 belong to the semi-lattice Λ+
α, whereas

marked points lying in the first hyper-octant (in the figure: the North-East dashed quadrant) belong

to H+
α . (right) The action of operators in ρα(n+

2 ) on the lattice OΛα for α =
(

2
3
, 1

3

)
is shown.
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Figure 2.3: (both) Each marked point corresponds to some ε ∈ Λα and is chosen to indicate the one-

dimensional vector space Oε. (left) The action of operators in ρα(n−2 ) on the lattice OΛα for α =
(

2
3
, 1

3

)
is shown. Since α• ∈ Z, the lowering operators E−α1 , E−α2 (left) vanish identically on the lowest

positive isoplethic line (in gray), containing the standard simplex (the thick segment): their action

is here represented by a dashed loop. (right) The action of operators in ρα(n−2 ) on the lattice OΛα

for α =
(

3
5
, 1

2

)
is shown. Since α• ∈ R \ Z, the lowering operators E−α1 , E−α2 never vanish.

The commutative action of hk. It is the content of Theorem 2.4.14(i) that the characteristic

functionals of the measures Dα, varying α ∈ int ∆k−1, are projectively invariant under the

action of the maximal toral subalgebra hk < lk in the representation ρα. Since hk acts on Oα by

weight α (See the proof of Thm. 2.4.14(i).), for arbitrary Jt := t1Jα1 + · · ·+ tkJαk ∈ ραhk one

has

Jtfα =(t ·α)fα , t ∈ Rk . (2.4.12)

This is to be compared with the case of Lα. Indeed, let t ∈ Rk be such that t• = 0 and set

s := exp� t ∈Mk−1
1 . Then, s−α = exp(−α · ln� s) = exp(−t ·α). Thus, by (2.1.4),

d
(
(exp� t).

)
]
Lα = exp(−t ·α) dLα , t ∈ Rk , t• = 0 .

Improper hyper-priors. Before commenting on the non-commutative action of lk, let us introduce

a family of distinguished (possibly improper) hyper-priors of the Dirichlet distribution.

Definition 2.4.15 (Dirichlet-categorical hyper-priors). Let α0 ∈ ∆k−1 and fix α ∈ Λ+
α0

.

For ε ∈ Λ+
α0
∩H−α we denote by D̃ε the (possibly non-finite) definite (i.e., positive or negative,

not signed) measure with density

1∆k−1(y)
yε−1

B(ε)

with respect to the k-dimensional Lebesgue measure on the hyperplane of equation y• = 1

in Rk, concentrated on (the interior of) ∆k−1. We term this measure the Dirichlet-categorical

hyper-prior of parameter ε. The measure D̃ε has sign given by

sgn(B(ε)) = sgn(Γ(ε)) =

1 if ε ∈ H+
α0

(−1)dε1e+···+dεke otherwise
.
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The non-commutative action of lk. If α0 ∈ int ∆k−1 and α ∈ H+
α0

, then

(a) the action of basis elements in r+k amounts to take (characteristic functionals of) Dirichlet-

categorical posteriors; it fixes the space O
H+
α

of (characteristic functionals of) such

posteriors;

(b) the action of basis elements in r−k amounts to take (characteristic functionals of) Dirichlet-

categorical (hyper-)priors. The action of r−k fixes the space O
Λ+
α0
∩H−α

of (characteristic

functionals of) all such (hyper-)priors and vanishes on the line Mα0,1, since Mα0,0 is the

singular set of the normalization constant B[ε]−1;

(c) the action of basis elements in fk contains every non-trivial combination of the actions (a)

and (b), and fixes isoplethic hypersurfaces Mα0,`, i.e. those where the intensity ε has

constant total mass ε• = `.

In this framework, the case α ∈ bd∆k−1 is spurious, since the intensity measure α should

always be assumed fully supported.

2.4.2 Infinite-dimensional statements. For a ∈ R we denote by M>a
b (X) the space of finite

signed measures ν in Mb(X) such that νX > a.

Theorem 2.4.16. Let (X, τ(X),B) be a second countable locally compact Hausdorff space, ν a

diffuse fully supported non-negative finite measure on X. Let further

Φ[ν, f ] :=

∞∑
n=0

in

〈νX〉n
Zn(νf1, . . . , νfn)

and

EAΦ[ν, f ] :=

∫
A

dν(y) Φ[ν + δy, f ] ,

EA,−BΦ[ν, f ] :=

∫
A\B

dν(y) Φ[ν + δy, f ] +

∫
B\A

dν(y) Φ[ν − δy, f ] .

(2.4.13)

Then,

(i) Φ[ν, f ] is a well-defined extension of the characteristic functional D̂ν(f∗) on M>0
b (X)×

Cc(X);

(ii) for every ν in M>1
b (X), every f in Cc(X), every A,B in B, and every good approxima-

tion (fh)h of f locally constant on Xh with values sh for some (Xh)h ∈ Na(A,B ⊂ X),

one has

EAΦ[ν, f ] = lim
h

 ∑
i|Xh,i⊂A

Eαh,i

 khΦ[ν�Xh, sh] ,

EA,−BΦ[ν, f ] = lim
h

 ∑
i|Xh,i⊂A\B
j|Xh,j⊂B\A

Eαh,i,−αh,j

 khΦ[ν�Xh, sh] ,

where αh := ν�Xh and Eαh,i , Eαh,i,−αh,j ∈ gkh .

(iii) let σ be a diffuse fully supported probability on (X, τ(X)) and (Xh)h ∈ Na(X, τ(X), σ).

For σ-a.e. x, such that Xh,ih ↓h {x}, and for every good approximation (fh)h of f , locally
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constant on Xh and uniformly convergent to f , there exist the pointwise limiting rescaled

actions
lim
h
α−1
h,ih

Eαih D̂σ(f∗h) =D̂xσ(f∗) ,

lim
h
α−1
h,ih

Jαih =Id ,

lim
h
α−1
h,ih

E−αih =0 .

(2.4.14)

Proof. The functional Φ[ν, f ] is well-defined in the first place since νX > 0. For c, t > 0 denote

by Pc,t ⊂ Rn the polydisk
{
y ∈ Rn | |yi| ≤ c ti

}
. By induction and (2.2.2) it is not difficult to show

that maxPc,t |Zn| = Zn[c(t1)�~n]; moreover, by (2.2.1) and Theorem 2.3.3 (Cf. also Rmk. 2.3.4),

the latter equals tn 〈c〉n /n!. As a consequence, for arbitrary ν in M>0
b (X) and f ∈ Cc(X),

letting yi := νf i above,

|Φ[ν, f ]| ≤
∞∑
n=0

〈νX〉−1
n max

P‖ν‖,‖f‖
|Zn| =

∞∑
n=0

〈‖ν‖〉n
n! 〈νX〉n

‖f‖n = 1F1 [‖ν‖ ; νX; ‖f‖] ,

which is finite since νX > 0. This shows (i). Notably, if ν is positive, then |Φ[ν, f ]| ≤ exp ‖f‖
independently of ‖ν‖.

Let now A be in B and (Xh)h as in (ii). Fix f in Cc(X), set αh := ν�Xh and let (fh)h be a

good approximation of f , locally constant on Xh with values sh. Equation (2.4.11) yields by

summation  ∑
i|Xh,i⊂A

Eαi

 khΦ [αh; sh] =
∑

i|Xh,i⊂A

αh,i khΦ [αh + ei; sh] . (2.4.15)

More explicitly, since fh is constant on each Xh,i with value sh,i, Proposition 2.3.5 yields( ∑
i|Xh,i⊂A

Eαi

)
khΦ [αh; sh] =

=
∑

i|Xh,i⊂A

νXh,i

∞∑
n=0

1

〈νX + 1〉n
Zn

(
νfh +

ν(fh 1Xh,i)

νXh,i
, . . . , νfnh +

ν(fnh 1Xh,i)

νXh,i

)

=

∞∑
n=0

in

〈νX + 1〉n
×

×
∑

i|Xh,i⊂A

∫
Xh,i

dν(y)Zn

(
νfh +

ν(fh 1Xh,i)

νXh,i
1Xh,i(y), . . . , νfnh +

ν(fnh 1Xh,i)

νXh,i
1Xh,i(y)

)

=

∞∑
n=0

in

〈νX + 1〉n

∑
i|Xh,i⊂A

∫
Xh,i

dν(y)Zn (νfh + fh(y), . . . , νfnh + fh(y)n)

=

∞∑
n=0

in

〈νX + 1〉n

∫
A

dν(y)Zn (νfh + fh(y), . . . , νfnh + fh(y)n) .

=

∫
A

dν(y)

∞∑
n=0

in

〈(ν + δy)X〉n
Zn (νfh + fh(y), . . . , νfnh + fh(y)n) . (2.4.16)

Since |fh| ≤ |f | pointwise, the sequence
(
f ih
)
h

converges strongly in L1
ν for every i ≤ n for

every n ∈ N1, thus by continuity of Zn, there exists the limit

lim
h

∫
A

dν(y)

∞∑
n=0

in

〈νX + 1〉n
Zn (νfh + fh(y), . . . , νfnh + fh(y)n) = EAΦ[ν, f ] .
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The proof of the statement for EA,−B is analogous. This completes the proof of (ii). The

requirement that νX > 1 is necessary to the convergence of Φ[ν−δy, f ] for y ∈ X in the definition

of EA,−B , whereas it may be relaxed to νX > 0 in the case of EA. We will make use of this fact

in the proof of (iii).

Fix now x in X and let ih := ih(x) be such that Xh,ih ↓h {x}. By Lemma 2.5.1, the

sequence (ih)h is unique for σ-a.e. x. With the same notation of (ii), let now A = Xh,ih
in (2.4.16). Then,

α−1
ih
Eαih khΦ[αh; sh] = α−1

ih
Eαih D̂σ(f∗h) =

1

σXh,ih

∫
Xh,ih

dσ(y) D̂σ+δy (f∗h) . (2.4.17)

By (2.3.14) and uniform convergence of the approximation

lim
h

∣∣∣ 1
σXh,ih

EXh,ihΦ[σ, fh]− 1
σXh,ih

EXh,ihΦ[σ, f ]
∣∣∣ ≤ lim

h
e‖f‖ ‖f − fh‖ = 0 , (2.4.18)

thus, (2.4.17) and (2.4.18) yield, together with the continuity of y 7→ D̂σ+δy (f∗) for fixed f

and σ,

lim
h
α−1
ih
Eαih D̂σ(f∗h) = lim

h

1

σXh,ih

∫
Xh,ih

dσ(y) D̂σ+δy (f∗) = D̂σ+δx(f∗) .

By the Bayesian property Dxσ = Dσ+δx , this yields the conclusion for the limiting raising

action. Finally, since σ is a probability measure, (αh)• = 1 for all h, thus by (2.4.11),

lim
h
α−1
ih
Jαih D̂σ(f∗h) = lim

h
D̂σ(f∗h) = D̂σ(f∗) ,

lim
h
α−1
ih
E−αih D̂σ(f∗h) = lim

h
0 = 0 ,

where the second equality for the first limiting action follows by (2.3.14). In all three cases,

independence of the limits from the chosen (good) approximation is straightforward. �

Remark 2.4.17. The existence of a dynamical symmetry algebra gσ for the characteristic functional

of Dσ when σ is a diffuse measure should not be expected. Indeed, as a consequence of (2.4.14),

the limiting action of the standard negative Borel subalgebra would be trivial and, in particular,

the limiting action of the standard Cartan subalgebra would collapse to the identity. As a

consequence, the limiting action of the standard positive Borel subalgebra would be Abelian.

Assuming this is the case, we provide a conjectural statement for the structure of gσ in the

general case.

Let σ = σa + σd, where σa, resp. σd, is the purely atomic, resp. diffuse, part of σ. By

the Mapping Theorem 2.3.9, we main assume without loss of generality that the atoms of σa

are isolated points in X = suppσd t suppσa. Together with the infinite-dimensional analogue

of [145, Lem. 3.1], this suggests that one might in fact have gσ = gσd ⊕ gσa . If we assume

further, as heuristically argued before, that the dynamical symmetry algebra gσd is Abelian,

then gσ = gσd ⊕ gσa would be reductive with semisimple part gσa . Thus, we may consider,

without loss of generality, the case of purely atomic intensity measures σ = σa.

Finally, if σa has support [k], then clearly gσa = gk by Theorem 2.3.10, since Dσa = Dα for

some α. The case #suppσa = ∞ remains open, although we expect that gσa ∼= fsl∞(C), the

finitary special linear Lie algebra of traceless infinite matrices with finitely many non-zero entries.
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2.5 Appendix

We collect here some results in topology and measure theory.

Lemma 2.5.1. Let (X, τ(X),B, σ) be a second countable locally compact Hausdorff Borel measure

space of finite diffuse fully supported measure. Then, for every (Xh)h ∈ Na(X, τ(X), σ) for σ-

a.e. x in X there exists a unique sequence (Xh,ih)h, with ih := ih(x), such that Xh 3 Xh,ih ↓h {x}.

Proof. Proposition 2.2.4 justifies well-posedness of the requirements in the definition of (Xh)h.

Without loss of generality, each Xh,i may be chosen to be closed by replacing it with its

closure clXh,i = Xh,i ∪ bdXh,i. Hence Xh may be chosen to be consisting of closed sets (disjoint

up to a σ-negligible set) with non-empty interior. It follows by the finite intersection property

that every decreasing sequence of sets (Xh,ih)h such that Xh,ih ∈ Xh admits a non-empty limit,

which is a singleton because of the vanishing of diameters. Vice versa, however chosen (Xh)h,

for every point x in X it is not difficult to construct a (possibly non-unique) sequence Xh,ih
(with ih := ih(x)) convergent to x and such that Xh,ih ∈ Xh. Furthermore, letting x be a point

for which there exists more than one such sequence, we see that for every h the point x belongs

to some intersection Xh,i1 ∩Xh,i2 ∩ . . . , hence, since every partition has disjoint interiors by

construction, x ∈ bdXh,i1 ∩ bdXh,i2 ∩ . . . . Since for every h and i ≤ kh each set Xh,i is a

continuity set for σ, the whole union ∪h≥0 ∪i∈[kh] bdXh,i is σ-negligible, thus so is the set of

points x considered above, so that for σ-a.e. x there exists a unique sequence (Xh,ih)h such

that Xh,ih ∈ Xh and limhXh,ih = {x} and x belongs to each Xh,ih in the sequence. �

Finally, recall the following form of Lévy’s Continuity Theorem.

Theorem 2.5.2 ([160, Thm. 3.1, p. 224]). Let (Y, τ(Y )) be a completely regular Hausdorff

topological space, V be a linear subspace of C(Y ) separating points in Y and χ be a complex-

valued functional on V . If (µγ)γ is a narrowly precompact net of Radon probability measures

on (Y,B(Y )) and limγ µ̂γ(v) = χ(v) for every v in V , then (µγ)γ converges narrowly to a Radon

probability measure µ, the characteristic functional thereof coincides with χ.

Corollary 2.5.3. Let (µγ)γ be a narrowly precompact net of random probabilities over (X,B).

If limγ µ̂γ(f∗) = χ(f∗) for every f in Cc(X), then (µγ)γ converges narrowly to a random

probability µ, the characteristic functional thereof coincides with χ.

Proof. By Proposition 2.2.4 the space (X, τ(X)) is Polish, hence so is M +
b (X) [83, 15.7.7], thus

the space M +
≤1(X) :=

{
µ ∈M +

b (X) | µX ≤ 1
}

is too, being closed, and P(X), being a Gδ-set

in M +
≤1(X). Since every finite measure on a Polish space is Radon [20, Thm. 7.1.7], each µγ

is Radon. Consider Mb(X) endowed with the vague topology. The dense subset Cc(X) of the

topological dual (Mb(X), τv(Mb(X)))′ = C0(X) separates points in Mb(X), hence it separates

points in P(X) ⊂Mb(X). The conclusion follows now by the Theorem choosing Y = P(X)

and V = Cc(X). �





Chapter 3

A Mecke-type characterization

of Dirichlet–Ferguson measures

In this Chapter, we characterize the Dirichlet–Ferguson measure over a locally compact Polish

finite diffuse measure space as the unique random measure satisfying a Mecke-type identity.

3.1 Introduction

Let X be a locally compact Polish space1, i.e., the topology on X is completely metrizable,

separable, and locally compact. We denote by B the Borel σ-algebra on X.

We denote by M + the cone of positive (not necessarily finite) Radon measures, endowed

with the vague topology, i.e., the weakest topology on M + with respect to which all maps

M + 3 η 7→ ηf with f ∈ Cc are continuous. Here Cc is the space of continuous compactly

supported functions on X, and for f ∈ Cc and η ∈M +, we denote ηf :=
∫
X
f dη, i.e., the usual

duality pair between Cc and M +. By (the law of) a random measure over X we mean any Borel

probability measure Q on M +.

We denote by Υ the space of configurations in X, i.e., the subset of M + consisting of Radon

measures of the form γ =
∑
i≥1 δxi with xi 6= xj if i 6= j. Here, for x ∈ X, δx denotes the

Dirac measure with mass at x, and we also require that the zero measure on X (i.e., an empty

configuration) belongs to Υ. It holds that Υ is a Borel subset of M +. If a random measure Q is

concentrated on Υ, we say that it is (the law of) a (proper, simple) point process in X.

Let σ be a diffuse (i.e., atomless) Radon measure on (X,B), henceforth an intensity. Among

all point processes, a remarkable and ubiquitous example is given by the Poisson point process

or Poisson measure Pσ with intensity σ [88, 102], i.e., the point process in X whose Laplace

transform satisfies: ∫
Υ

eγf dPσ(γ) = exp

[∫
X

(
ef − 1

)
dσ

]
, f ∈ Cc . (3.1.1)

Recall the following characterization of Pσ, usually known as the Mecke identity.

Theorem 3.1.1 (Mecke identity for Pσ [119, 3.1]). Let X and σ be as above and let Q be a

random measure over X. Then, the following statements are equivalent:

(i) Q is the Poisson measure Pσ with intensity σ;

(ii) for every non-negative measurable function F : M + ×X → R,∫
M+

dQ(γ)

∫
X

dγ(x)F (γ, x) =

∫
M+

dQ(γ)

∫
X

dσ(x)F (γ + δx, x) . (3.1.2)

1It is more common in the literature on random measures to refer to such spaces as second countable

locally compact Hausdorff spaces. The two definitions are equivalent.
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Remark 3.1.2. Note that, for Q = Pσ, in the Mecke identity (3.1.2), integration is over Υ rather

than M +. Furthermore, since the measure σ is diffuse, for each γ =
∑
i≥1 δxi ∈ Υ, we have

σ
(
{xi}i≥1

)
= 0, hence γ + δx ∈ Υ for σ-a.a. x ∈ X.

The Mecke identity (3.1.2) and its generalization to Gibbs measures, the Georgii–Nguyen–

Zessin formula [62, 129], have important applications in the theory of point processes and

stochastic dynamics of interacting particle systems. (See, e.g., [3, 4, 34, 113, 135].)

We denote by P the subset of probability measures in M +. It holds that P is a Borel subset

of M +. If a random measure is concentrated on P, we say that it is (the law of) a random

probability measure.

The aim of this Chapter is to show how the Dirichlet–Ferguson measure Dσ (see §3.2 below)

may be regarded as the natural analog of the Poisson measure when one replaces the configuration

space Υ with P.

Theorem 3.1.3 (A Mecke-type characterization of Dσ). Let X be as above, let σ be a non-zero

finite diffuse measure on (X,B), and set β :=σX. Then, for any random measure Q over X, the

following statements are equivalent:

(i) Q is the Dirichlet–Ferguson measure Dσ with intensity σ;

(ii) for every non-negative measurable function G : M + → R,∫
M+

dQ(η) ηX G(η) =

∫
M+

dQ(η)

∫
X

dσ(x)

∫ 1

0

dt (1− t)β−1 G
(
(1− t)η + tδx

)
.

(3.1.3)

Moreover, for every non-negative (or bounded) measurable function F : P ×X → R,∫
P

dDσ(η)

∫
X

dη(x)F (η, x) =

∫
P

dDσ(η)

∫
X

dσ(x)

∫ 1

0

dt (1− t)β−1 F
(
(1− t)η + tδx, x

)
,

(3.1.4)

and for every non-negative (or bounded) measurable function R : P ×X × [0, 1]→ R,∫
P

dDσ(η)

∫
X

dη(x)R(η, x, ηx) =

∫
P

dDσ(η)

∫
X

dσ(x)

∫ 1

0

dt (1− t)β−1 R
(
(1− t)η + tδx, x, t

)
.

(3.1.5)

Remark 3.1.4. Note that, when σ is a probability measure on X, in formulas (3.1.3)–(3.1.5), the

factor (1− t)β−1 becomes 1.

Remark 3.1.5. Denote by B the Euler Beta function and by

dBα,β(t) :=
tα−1(1− t)β−1 dt

B(α, β)

the Beta distribution on [0, 1] with shape parameters α > 0 and β > 0. Set σ :=σ/β ∈P. Then

we have the following equality of the probability measures on X × [0, 1]:

(1− t)β−1 dσ(x) dt = β(1− t)β−1 dσ(x) dt = dσ(x) dB1,β(t) .

Remark 3.1.6. For Q = Dσ, in formula (3.1.3), integration is over P rather than M +, and the

term ηX is equal to 1. Furthermore, for Q = Dσ, formula (3.1.3) is a special case of formula

(3.1.4), while formulas (3.1.4) and (3.1.5) are in fact equivalent.
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Let us provide some heuristics on the form of the Mecke-type identity for the Dirichlet–

Ferguson measure. In the case of the Poisson measure, we seek a way to compute the Pσ-average

of the functional Υ 3 γ 7→
∫
X
F (γ, x) dγ(x). It is the statement of the Mecke identity that the

latter coincides with the Pσ-average of some ‘augmented’ functional that we construct in the

following way. Firstly, we augment F (γ, x) by adding δx to γ, and secondly we take the σ-average

in x. In the case where η ∈P, η + δx is not anymore a probability measure, so this operation

makes no sense in P. Nevertheless, δx belongs to P. So, we may instead consider the convex hull

of (actually a straight line between) η and δx, i.e., the set {(1− t)η + tδx}t∈[0,1]. Thus, the Mecke-

type identity (3.1.4) states that the Dσ-average of the functional P 3 η 7→
∫
X
F (η, x) dη(x)

coincides with the Dσ-average of the augmented functional that we construct as follows. We

consider F
(
(1− t)η + tδx, x

)
and take its σ-average in x and B1,β-average in t.

Our interest in a Mecke-type identity for the Dirichlet–Ferguson measure originated from the

expected applications to the study of stochastic dynamics related to Dσ, very much in the spirit

of results of [31, 71, 96], which were obtained for measure-valued Lévy processes, in particular,

for the gamma measure, see §3.2 below. Recall that, in those papers, a suitable analog of the

Mecke identity (see formula (3.2.4) below regarding the gamma measure) plays a key rôle.

We also note that the Dirichlet–Ferguson measure is the unique stationary, reversible distri-

bution for the Fleming–Viot process with parent-independent mutation. (See e.g., [54, Thm.s 5.3

and 5.4].)

Below, in §3.2, we discuss preliminary notions and facts, and in §3.3 we prove Theorem 3.1.3

and discuss several corollaries, including a characterization of the Dirichlet distribution. We

expect that the results of this section remain true when X is a standard Borel space, that is,

without the assumption that X is locally compact.

3.2 Preliminaries

The Dirichlet–Ferguson measure. For integer k ≥ 2, let ∆k−1 denote the standard closed

(k − 1)-dimensional simplex in Rk, i.e.,

∆k−1 :=
{

(y1, . . . , yk) | yi ≥ 0, y1 + · · ·+ yk = 1
}
.

Denote R+ :=(0,∞). For α := (α1, . . . , αk) in Rk+ , the Dirichlet distribution with parameter α

is the probability measure on ∆k−1 denoted by Dα and defined by

Dα(A) :=

∫
Rk−1

1A(y1, . . . , yk)
1

B(α)

(
k∏
i=1

yαi−1
i

)
dy1 · · ·dyk−1 (3.2.1)

for each measurable subset A of ∆k−1. In formula (3.2.1), B is the multivariate Beta function

and yk := 1− y1 − · · · − yk−1.

For integer k ≥ 2, we denote by Pk(X) the set of ordered partitions X := (X1, . . . , Xk)

of X with Xi ∈ B and σXi > 0, i ∈ [k]. For each X ∈ Pk(X), we define the evaluation

map evX : P → ∆k−1 by

evX(η) :=
(
ηX1, . . . , ηXk

)
.

Note that the map evX is measurable.

The Dirichlet–Ferguson measure Dσ with intensity σ [55] is the unique random probability

measure over X satisfying the following two conditions:
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(i) for each B ∈ B with σB = 0, we have ηB = 0 for Dσ-a.a. η ∈P;

(ii) for each integer k ≥ 2 and X ∈ Pk(X),

(evX)]Dσ = DevX(σ) , (3.2.2)

i.e., the push-forward of Dσ under evX is equal to DevX(σ).

The gamma measure. Denote by M +,pa
b the subset of M + that consists of discrete finite

measures on X. Thus, each measure ν ∈M +,pa
b is finite and has a representation ν =

∑
i≥1 siδxi

with si > 0 and xi 6= xj if i 6= j. As shown in [72], M +,pa
b is a Borel subset of M +. Consider

the space R+ as endowed with the logarithmic distance dlog(s1, s2) := |log(s1/s2)|. Denote by X̂

the (locally compact Polish) space X × R+. Further let Υ̂ denote the space of configurations in

X̂. Consider the mapping H : M +,pa
b → Υ̂ given by

H :
∑
i≥1

siδxi 7−→
∑
i≥1

δ(si,xi) ,

and let M̂ +,pa
b denote the range of H. Clearly, the mapping H : M +,pa

b → M̂ +,pa
b is a bijection.

It was shown in [72, Thm. 6.2] that both H and H−1 are Borel-measurable.

Let λ be a Borel measure on R+ such that
∫
R+

1 ∧ s dλ(s) <∞ (a Lévy measure). Consider

the measure σ̂ :=σ ⊗ λ on (X̂, B̂). The Poisson measure Pσ̂ with intensity σ̂ is concentrated

on M̂ +,pa
b , and we define a Borel probability measure Rσ,λ on M +,pa

b as the push-forward of Pσ̂
under H−1. The measure Rσ,λ is called a measure-valued Lévy process and it has the Laplace

transform (See [96].)∫
M+,pa
b

eνf dRσ,λ(ν) = exp

[∫
X̂

(
es f(x) − 1

)
dσ̂(x, s)

]
, f ∈ Cc .

When dλ(s) := s−1e−s ds, we write Gσ :=Rσ,λ for the gamma measure with intensity σ. It

has the Laplace transform (e.g., [157])∫
M+
b

eνf dGσ(ν) = exp

[
−
∫
X

dσ log(1− f)

]
, f ∈ Cc , f < 1 . (3.2.3)

Lemma 3.2.1 (Mecke identity for the gamma measure). The gamma measure with intensity σ

satisfies∫
M+,pa
b

dGσ(ν)

∫
X

dν(x)G(ν, x) =

∫
M+,pa
b

dGσ(ν)

∫
X

dσ(x)

∫ ∞
0

dλ′(s)G(ν + sδx, x) (3.2.4)

for every non-negative measurable function G : M +,pa
b ×X → R. Here dλ′(s) := s dλ(s) = e−s ds.

Proof. The statement is a straightforward corollary of the Mecke identity satisfied by the Poisson

measure Pσ̂ and the construction of the gamma measure Gσ. (See [72, Thm. 6.3] for the details

in the case X = Rd.) �

Remark 3.2.2. A similar Mecke identity holds, of course, for each measure-valued Lévy pro-

cess Rσ,λ. (See [96, Eq. (29)].)

It was shown in [55] that the Dirichlet–Ferguson measure Dσ is the ‘simplicial part’ of Gσ.

More precisely, we denote by Γ the Euler gamma function and by

dGk,θ(r) :=
θ−k

Γ(k)
rk−1e−

r
θ dr
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the gamma distribution on R+ with shape parameter k > 0 and scale parameter θ > 0. Consider

the measurable mapping R : M +,pa
b →P × R+ given by

R : ν 7−→ (ν, νX) .

Then,

R] Gσ = Dσ ⊗ Gβ,1 , (3.2.5)

i.e., the push-forward of Gσ under R is the product measure Dσ ⊗ Gβ,1. (Recall that β = σX.)

Note that G1,1 = λ′. Note also that the Dirichlet–Ferguson measure Dσ is concentrated on the set

of discrete probability measure, Ppa := M +,pa
b ∩P, and that the mapping R : M +,pa

b →Ppa×R+

is bijective.

3.3 Proof and corollaries

We start with the proof of the main result.

Proof of Theorem 3.1.3. We first prove that Dσ satisfies formula (3.1.4), hence (3.1.3). Using

Lemma 3.2.1 and formula (3.2.5) yields∫
P

dDσ(η)

∫
X

dη(x)F (η, x)

=
Γ(β)

Γ(β + 1)

∫
P

dDσ(η)

∫ ∞
0

dGβ,1(r) r

∫
X

dη(x)F (η, x)

=
Γ(β)

Γ(β + 1)

∫
M+,pa
b

dGσ(ν)

∫
X

dν(x)F (ν, x)

=
Γ(β)

Γ(β + 1)

∫
M+,pa
b

dGσ(ν)

∫
X

dσ(x)

∫ ∞
0

ds e−s F

(
ν + sδx
νX + s

, x

)
=

Γ(β)

Γ(β + 1)

∫
P

dDσ(η)

∫ ∞
0

dGβ,1(r)

∫
X

dσ(x)

∫ ∞
0

ds e−sF

(
rη + sδx
r + s

, x

)
=

1

Γ(β + 1)

∫
P

dDσ(η)

∫ ∞
0

ds e−s
∫
X

dσ(x)

∫ ∞
0

dr rβ−1e−rF

(
r

r + s
η +

s

r + s
δx, x

)
,

whence the change of variable t = s
r+s

(for a fixed s) yields

=
1

Γ(β + 1)

∫
P

dDσ(η)

∫ ∞
0

ds e−s
∫
X

dσ(x)

∫ 1

0

s dt

t2
sβ−1 (1− t)β−1

tβ−1
e−s(1−t)/t·

· F
(
(1− t)η + tδx, x

)
=

1

Γ(β + 1)

∫
P

dDσ(η)

∫
X

dσ(x)

∫ 1

0

dt
(1− t)β−1

tβ+1
F
(
(1− t)η + tδx, x

) ∫ ∞
0

ds e−ssβ ·

· e−s(1−t)/t

=

∫
P

dDσ(η)

∫
X

dσ(x)

∫ 1

0

dt (1− t)β−1F
(
(1− t)η + tδx, x

)
.

To prove formula (3.1.5), choose F (η, x) = R(η, x, ηx) in (3.1.4), which gives∫
P

dDσ(η)

∫
X

dη(x)R
(
η, x, ηx

)
=

∫
P

dDσ(η)

∫ 1

0

dt (1− t)β−1

∫
X

dσ(x)R
(
(1− t)η + tδx, x, (1− t)ηx + t

)
=

∫
Ppa

dDσ(η)

∫ 1

0

dt (1− t)β−1

∫
X

dσ(x)R
(
(1− t)η + tδx, x, t

)
,
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where we used that, for a fixed η =
∑
i≥1 siδxi ∈ Ppa, we have σ

(
{xi}i≥1

)
= 0, hence ηx = 0

for σ-a.a. x ∈ X.

For the reverse implication we consider the set M of all random measures Q over X that

satisfy (3.1.3). We know that Dσ ∈M and we need to prove that Dσ is the unique element of M.

So let Q ∈M and let us first show that Q is concentrated on P. Choosing G = 1 in (3.1.3), we

get ∫
M+

ηX dQ(η) = 1 . (3.3.1)

In particular, ηX <∞ Q-a.s.. Next, choosing G(η) = ηX in (3.1.3) and using (3.3.1), we get∫
M+

dQ(η) (ηX)2 =

∫
M+

dQ(η)

∫
X

dσ(x)

∫ 1

0

dt (1− t)β−1((1− t)ηX + t
)

(3.3.2)

=

∫
X

dσ(x)

∫ 1

0

dt (1− t)β−1((1− t) + t
)

= 1 .

By (3.3.1) and (3.3.2), the random variable ηX has zero variance underQ, hence it is deterministic.

Thus, ηX = 1 Q-a.s., so Q is concentrated on P. Hence, formula (3.1.3) becomes∫
P

dQ(η)G(η) =

∫
P

dQ(η)

∫
X

dσ(x)

∫ 1

0

dt (1− t)β−1G
(
(1− t)η + tδx

)
, (3.3.3)

and it holds for every measurable bounded function G : P → R.

Let B ∈ B be such that σB = 0. By (3.3.3),∫
M+

ηB dQ(η) =

∫
M+

dQ(η)

∫
X

dσ(x)

∫ 1

0

dt (1− t)β−1((1− t)ηB + t1B(x)
)

=β

∫
M+

ηB dQ(η)

∫ 1

0

dt (1− t)β + σB

∫ 1

0

dt t(1− t)β−1

=
β

β + 1

∫
M+

ηB dQ(η) ,

which implies ∫
M+

ηB dQ(η) = 0 .

Hence, ηB = 0 for Q-a.e. η ∈ M +. Next, for an integer k ≥ 2, consider an ordered partition

X = (X1, . . . , Xk) ∈ Pk(X). To prove that Q = Dσ, it remains to show that the distribution

of the random vector evX(η) = (ηX1, . . . , ηXk) in Rk (in fact, in ∆k−1) under Q is uniquely

determined by (3.3.3). We recall that the Hadamard product � : Rk × Rk → Rk is defined by

s1 � s2 :=
(
s1,1s2,1, . . . , s1,ks2,k

)
, si :=(si,1, . . . , si,k) ∈ Rk , i = 1, 2 .

This binary operation is obviously associative and commutative.

Denote by Bb(X) the linear space of bounded measurable functions g : X → R. For any

g ∈ Bb(X) and a finite measure η on X, we let ηg :=
∫
X
g dη. Set further α := evX(σ). Fix any

s = (s1, . . . , sk) ∈ Rk, and let g(x) :=
∑k
i=1 si1Xi(x) ∈ Bb(X). Then

ηg = s · evX(η) , η ∈P , (3.3.4)

and

σgn = s�n ·α , n ∈ N0 . (3.3.5)

For n ∈ N0, we get, by (3.3.3)–(3.3.5),∫
P

(
s · evX(η)

)n
dQ(η)
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=

∫
P

dQ(η)

∫
X

dσ(x)

∫ 1

0

dt (1− t)β−1((1− t)ηg + tg(x)
)n

=

n∑
i=0

(
n
i

) ∫
P

(ηg)i dQ(η)

∫
X

gn−i dσ

∫ 1

0

(1− t)β+i−1tn−i dt

=

n∑
i=0

(
n
i

)
B(β + i, n− i+ 1)

∫
P

(
s · evX(η)

)i(
s�(n−i) ·α

)
dQ(η)

=

n∑
i=0

n! Γ(β + i)

i! Γ(β + n+ 1)

∫
P

(
s · evX(η)

)i(
s�(n−i) ·α

)
dQ(η)

=

n∑
i=0

(n)n−i
(β + n)n+1−i

∫
P

(
s · evX(η)

)i
(s�(n−i) ·α) dQ(η)

=
β

β + n

∫
P

(
s · evX(η)

)n
dQ(η)

+

n−1∑
i=0

(n)n−i
(β + n)n+1−i

∫
P

dQ(η)
(
s · evX(η)

)i
(s�(n−i) ·α) ,

where (r)k denotes the falling factorial: (r)0 := 1 and (r)k := r(r − 1) · · · (r − k + 1) for k ∈ N1.

Therefore,∫
P

(
s · evX(η)

)n
dQ(η) =

β + n

n

n−1∑
i=0

(n)n−i
(β + n)n+1−i

∫
P

dQ(η)
(
s · evX(η)

)i(
s�(n−i) ·α

)
(3.3.6)

=

n−1∑
i=0

(n− 1)n−1−i

(β + n− 1)n−i

∫
P

(
s · evX(η)

)i(
s�(n−i) ·α

)
dQ(η) .

The recurrence relation (3.3.6) uniquely determines the moments∫
P

(
s · evX(η)

)n
dQ(η) , s ∈ Rk , n ∈ N0 . (3.3.7)

Since the measure (evX)]Q has a compact support in Rk, it is uniquely determined by its moment

sequence (3.3.7). (See e.g., [16, Ch. 8, §5].) Therefore, (evX)]Q = (evX)]Dσ. Thus, Q = Dσ. �

Remark 3.3.1. We stress that our proof of the reverse implication in Theorem 3.1.3 is different

from the proofs of the analogous characterizations for the Poisson and the gamma measure

(resp. [119, Satz 3.1] and [72, Thm. 6.3]). Indeed, the latter proofs rely on a characterization of

the Laplace transform of the random measure in question by some ordinary differential equation.

This approach seems however not possible in the case of the Dirichlet–Ferguson measure, whose

Laplace transform is a kind of an infinite-variable hypergeometric function. (See Thm. 2.1.1.)

On the other hand, proper analogs of our proof (through the uniqueness of the solution of a

multidimensional moment problem under an appropriate bound on the moments) allow one to

prove the corresponding statements for both the Poisson and the gamma measure. (See [102,

Thm. 4.1].)

Corollary 3.3.2 (Moments of the Dirichlet distribution). Let α :=(α1, . . . , αk) ∈ Rk+ and assume

that α• :=α1 + · · ·+ αk = 1. Then

(i) The moments of the Dirichlet distribution Dα satisfy the following recurrence relation:∫
Rk

n∏
i=1

(si · y) dDα(y) =
1

n

∑
ξ⊂[n]
#ξ<n

(
n

#ξ

)−1

(
�

j∈[n]\ξ
sj

)
·α
∫
Rk

∏
i∈ξ

(si · y) dDα(y) (3.3.8)
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for all n ∈ N0 and s1, . . . , sn ∈ Rk. (Here, #ξ denotes the number of elements of the

set ξ.) In particular, for all n ∈ N0 and s ∈ Rk,∫
Rk

(s · y)n dDα(y) =
1

n

n−1∑
i=0

∫
Rk

(s · y)i dDα(y)
(
s�(n−i) ·α

)
. (3.3.9)

(ii) For all n ∈ N0 and s ∈ Rk,∫
Rk

(s · y)n dDα(y) = Zn
(
s�1 ·α, . . . , s�n ·α

)
,

where Zn denotes the cycle index polynomial of the symmetric group Sn.

Proof. Choose X = [0, 1], dσ(x) = dx, and choose a partition X such that evX(σ) = α. Then

formula (3.3.9) follows from (3.3.6) if we note that, for β = 1,

〈n− 1〉n−1−i

〈β + n− 1〉n−i
=
〈n− 1〉n−1−i

〈n〉n−i
=

1

n
.

Next, note that the right hand side of formula (3.3.8) is an n-linear symmetric form of s1, . . . , sn ∈
Rk, and for s = s1 = · · · = sn, the right-hand side of (3.3.8) is equal to the right-hand side of

formula (3.3.9). Hence, (3.3.8) follows from (3.3.9) and the polarization identity. The second

statement follows by noticing that the cycle index polynomials of Sn satisfy the recurrence

relation (3.3.9). (See e.g., [37, §2.1, Eq. (2.6)]). �

Remark 3.3.3. Corollary 3.3.2(ii) is shown by different methods in [37, 4.2].

Remark 3.3.4. By using formula (3.3.6), one can immediately extend Corollary 3.3.2(i) to the

case of a general α ∈ Rk+.

Corollary 3.3.5 (Moments of the Dirichlet–Ferguson measure). Let σ ∈P (i.e. β = 1). Then,

the moments of the Dirichlet–Ferguson measure Dσ satisfy the following recurrence relation:∫
P

n∏
i=1

ηgi dDσ(η) =
1

n

∑
ξ⊂[n]
#ξ<n

(
n

#ξ

)−1
∫

P

∏
i∈ξ

ηgi dDσ(η)

∫
X

∏
j∈[n]\ξ

gj dσ (3.3.10)

for all n ∈ N1 and g1, . . . , gn ∈ Bb(X). In particular, for all n ∈ N1 and g ∈ Bb(X),∫
P

(ηg)n dDσ(η) =
1

n

n−1∑
i=0

∫
P

(ηg)i dDσ(η)

∫
X

gn−i dσ .

Proof. In the case where the functions g1, . . . , gn ∈ Bb(X) take on a finite number of values,

formula (3.3.10) follows from (3.3.4) and (3.3.8). In the general case, formula (3.3.10) follows by

approximation and the dominated convergence theorem. �

Remark 3.3.6. Similarly to Remark 3.3.4, one can easily extend Corollary 3.3.5 to the case of a

general finite intensity measure σ.

Remark 3.3.7. A non-recursive formula for the moments of the Dirichlet–Ferguson measure,

namely the full expansion of (3.3.10), may be found in [54, Lem. 5.2].

Corollary 3.3.8 (A characterization of the Dirichlet distribution). Let k ≥ 2. Let θ be a

probability measure on Rk+. Then, the following statements are equivalent:

(i) θ is the Dirichlet distribution Dα with parameter α ∈ Rk+;
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(ii) for every non-negative measurable function g : Rk+ → R,∫
Rk+

dθ(y) y• g(y) =

∫
Rk+

dθ(y)

∫ 1

0

dt (1− t)α•−1
k∑
i=1

αi g
(
(1− t)y + tei

)
. (3.3.11)

Here y• := y1 + · · ·+ yk for y ∈ Rk+ and {ei}i∈[k] is the canonical basis of Rk.

Moreover, for every non-negative (or bounded) measurable function f : ∆k−1 × [k]→ R,∫
∆k−1

k∑
i=1

yif(y, i) dDα(y) =

∫
∆k−1

dDα(y)

∫ 1

0

dt (1− t)α•−1
k∑
i=1

αi f
(
(1− t)y + tei, i

)
.

(3.3.12)

Proof. Assume (i) holds. Similarly to the proof of Corollary 3.3.2, choose X = [0, 1] and dσ(x) =

α• dx, so that β = α•, and choose a partition X such that evX(σ) = α. Applying formula (3.3.3)

to G := g ◦ evX and recalling (3.2.2) gives∫
∆k−1

g(y) dDα(y) =

∫
P

g
(
ηX1, . . . , ηXk

)
dDσ(η)

=

k∑
i=1

∫
P

dDσ(η)

∫
Xi

dx

∫ 1

0

dt (1− t)α•−1g
(
(1− t)ηX1, . . . , (1− t)ηXi + t, . . . , (1− t)ηXk

)
=

∫
∆k−1

dDα(y)

∫ 1

0

dt (1− t)α•−1
k∑
i

αig
(
(1− t)y + tei

)
.

Thus, (3.3.11) holds for θ = Dα. Formula (3.3.12) is proven analogously by applying (3.1.4) to

F (η, x) =

k∑
i=1

f
(
evX(η), i

)
1Xi(x) .

In order to prove that (3.3.11) uniquely identifies the measure θ, one uses essentially the

same arguments as in the proof of Theorem 3.1.3. One first shows that∫
Rk+

(y•)
n dθ(y) = 1 , n = 1, 2 ,

which implies y• = 1 θ-a.s., i.e., θ is concentrated on ∆k−1 in Rk. Then one chooses g(y) :=(s·y)n

and finds the recurrence relation for the moments of θ. �





Chapter 4

A Rademacher-type Theorem on Wasserstein spaces

Let P be any Borel probability measure on the L2-Wasserstein space (P2(M),W2) over a closed

Riemannian manifold M . In this Chapter, we consider the Dirichlet form E induced by P and by

the Wasserstein gradient on P2(M). Under natural assumptions on P, we show that W2-Lipschitz

functions on P2(M) are contained in the Dirichlet space D(E) and that W2 is dominated by the

intrinsic metric induced by E . We detail several examples.

4.1 Introduction

We consider the L2-Wasserstein space P2 = (P2(M),W2) associated to a closed Riemannian

manifold (M, g). Since the seminal work of F. Otto [131], the geometry of P2 has been widely

studied from several view points. Definitions have been proposed and thoroughly studied of a

‘weak Riemannian structure’ on P2 (e.g., Lott [111]), of a gradient for ‘smooth’ functions on P2,

of tangent space to P2 at a point (See Gigli [63] for a detailed account of several such notions),

of an exponential map [63], of a Levi-Civita connection [64], of differential forms [60]. This

heuristic picture of P2 as an infinite-dimensional Riemannian manifold calls for the existence of

a measure on P2 canonically and uniquely associated to the metric structure. As it is the case

for a differentiable manifold, such a measure — if any — would deserve the name of Riemannian

volume measure which we shall adopt in the following.

In this framework, the question of the existence of such a Riemannian volume measure on P2

has been insistently posed (e.g., [28, 63, 140, 151]). In the case of M = S1, M.-K. von Renesse

and K.-T. Sturm [140] proposed as a candidate the entropic measure on P2(S1) (Example 4.5.15).

Whereas a suitable definition of entropic measure on P2(M) for a closed Riemannian manifold M

was given by K.-T. Sturm in [151], most of its properties in this general case remain unknown.

Here, we rather address the question of discerning the properties of a volume measure P on P2.

By ‘volume measure’ we shall mean any analogue on P2 of a measure on a differentiable manifold

induced by a volume form via integration.

We do so by proving a Rademacher-type result on the P-a.e. Fréchet differentiability of

W2-Lipschitz functions (Thm. 4.2.4). Namely, we consider a Dirichlet space F associated to P
and to a natural gradient, with core being the algebra Z∞ of cylinder functions induced by

smooth potential energies (Dfn. 4.2.1). Combining the strategy of [142] with the fine analysis

of tangent plans performed by N. Gigli in [63], we study, for functions in F , suitable concepts

of directional derivative and differential, proving their consistency on Z∞. We show that, if P
is quasi-invariant with respect to the family of shifts defining the gradient, then the space of

W2-Lipschitz functions is contained in F .

The requirement of the Rademacher property is indeed a natural one for a volume measure.

For instance, it was recently shown by G. De Philippis and F. Rindler [35, Thm. 1.14] that, if µ

73
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is a positive Radon measure on Rd such that every Lipschitz function is µ-a.e. differentiable,

then µ � Lebd. In infinite dimensions, the problem has been addressed in linear spaces (e.g.

Bogachev–Mayer-Wolf [22]), in particular on the abstract Wiener space (Enchev–Stroock [49]),

and — in the ‘non-flat’, albeit finitary, case — on configuration spaces (Röckner–Schied [142]).

Finally, we detail some examples of measures satisfying, fully or in part, our assumptions.

These are mainly taken from the theory of point processes and include normalized mixed Poisson

measures, the Dirichlet–Ferguson measure [55], as well as the entropic measure [140] and an

image on P2(S1) of the Malliavin–Shavgulidze measure [116]. We show through these examples

how the situation on P2 is opposite to the aforementioned result in [35]. In particular, there

exist mutually singular fully supported measures on P2 satisfying the Rademacher property.

Auxiliary results are collected in the Appendix, together with a discussion of the notion of

‘tangent bundle’ to P2 from the point of view of global derivations of the algebra Z∞.

4.2 A Rademacher Theorem on P2

Let (X, d) be a complete and separable metric space and let further P = P(X) be the space

of all Borel probability measures on X. Given µ1, µ2 ∈P, we denote by Cpl(µ1, µ2) the set of

couplings (or transport plans) between µ1 and µ2, that is, the set of Borel probability measures

on X×2 such that pri]π = µi for i = 1, 2. We let further

P2 :=

{
µ ∈P |

∫
X

d2(x, x0) dµ(x) <∞
}

for some fixed x0 ∈ X, and

W2(µ1, µ2) := inf
π∈Cpl(µ1,µ2)

(∫
X×2

d2(x, y) dπ(x, y)

)1/2

. (4.2.1)

The space (P2,W2) is a metric space, termed L2-Wasserstein space over (X, d). (Notice

that P2 does not depend on the choice of x0, by triangle inequality.) We denote by Opt(µ, ν) the

set of optimal plans π ∈ Cpl(µ, ν) attaining the infimum in (4.2.1). This set is always non-empty.

Everywhere in the following let (M, g) be a closed (i.e. compact , without boundary) connected

smooth d-dimensional Riemannian manifold with Riemannian distance d = dg and volume

measure m. As a consequence of the compactness of M , the space P2 coincides, as a set, with the

space P. It is well-known that, under our assumptions on M , the space (P2,W2) is a compact

(in particular: complete and separable) geodesic metric space. (See e.g., [10] or [165, Ch. 6].)

In order to perform computations for functions on P in the spirit of [111, 131], we recall

the definition of potential energy — in the sense of [164, §5.2.2]. Namely, given a continuous

function f : M → R, we define the potential energy f∗ : P → R associated to f by setting

f∗µ :=µf =

∫
M

f dµ .

Definition 4.2.1 (Cylinder functions). For fi ∈ C0(M), i ≤ k, we set f := (f1, . . . , fk) and

f∗ : P 3 µ 7→ (f∗1µ, . . . , f
∗
kµ) ∈ Rk, and define the algebra of cylinder functions on P

Z∞ :=
{
u : P → R | u = F ◦ f∗ for some k ∈ N0 , F ∈ C∞(Rk) , fi ∈ C∞(M)

}
. (4.2.2)

Remark 4.2.2. By compactness of P2, in the definition above one might equivalently take F ∈
C∞c (Rk). The given definition makes more apparent that f∗ ∈ Z∞ for all f ∈ C∞(M). By

continuity of f∗, cylinder functions are continuous and thus (Borel) measurable.
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Motivated by a similar choice in the framework of configuration spaces, (Cf. [142, Eq. (1.1)],

see §4.5.3 below.) we define the gradient of u ∈ Z∞ by

∇u(µ)(x) :=

k∑
i

(∂iF )(f∗µ)∇fi(x) . (4.2.3)

This choice is consistent, by chain rule, with the Fréchet differentiability of f∗ with respect

to a natural Riemannian structure on the space of absolutely continuous measures µ = ρm ∈P

(Cf., e.g., [111] or [164, §9.1].) and more generally with the differentiability of functionals

on probability measures (e.g., [11]); furthermore, it is also consistent with the definition of a

Wasserstein gradient in the recent work [29]. (See in particular [29, Dfn. 2.3 and Rmk. 2.4].)

We will also need a concept of directional derivative for functions in Z∞ and thus a concept

of ‘direction’ at a point µ in P. It is not surprising that such a definition ought to be “inherited”

from the differentiable structure of the manifold M , henceforth the base space. Indeed, let TxM

be the tangent space to M at the point x. We denote by X0 the space of continuous vector fields,

that is, sections of the tangent bundle TM , endowed with the supremum norm

‖w‖X0 := sup
x∈M
|wx|g .

We let further X∞ ⊂ X0 be the algebra of smooth vector fields on M . For any w ∈ X∞ we

denote by
(
ψw,t

)
t∈R the flow generated by w, i.e. a map ψw,t : M →M such that

∀x ∈M ψ̇w,t(x) = w
(
ψw,t(x)

)
and ψw,0(x) = x ,

where by ψ̇w,t(x) we mean the velocity of the curve s 7→ ψw,s(x) at time t. By compactness

of M every w ∈ X∞ admits a unique flow, well-defined and a smooth orientation-preserving

diffeomorphism in Diff∞+ (M) for all times t ∈ R. (See e.g. [14, §1.3.7(ii)].) If we denote by

Ψw,t :=ψw,t] : P −→P

the push-forward via ψw,t, then a straightforward computation (see Lem. 4.6.2 below) shows

that

(∇w u)(µ) := dt
∣∣
t=0

(u ◦Ψw,t)(µ) =
〈
∇u(µ)

∣∣w〉
Xµ

, u ∈ Z∞ , (4.2.4)

where 〈
w0
∣∣w1〉

Xµ
:=

∫
M

〈
w0
x

∣∣w1
x

〉
g

dµ(x) , w0, w1 ∈ X∞ . (4.2.5)

This motivates (Cf. [142] for the case of configuration spaces.) to define the tangent space

to P at a point µ as the space Xµ := clL2
µ
X∞, that is, the abstract linear completion of X∞ with

respect to the norm ‖ · ‖Xµ induced by the Hilbert scalar product 〈 · | · 〉Xµ , the (non-relabeled)

extension to Xµ of the scalar product (4.2.5). We shall also write TDer
µ P2 for Xµ and thus TDerP2

for the associated fiber-“bundle”. Let us further set T∇µ P2 := clXµX
∞
∇ , where X∞∇ :=∇C∞(M)

denotes the family of vector fields of gradient type; the associated fiber-“bundle” will be denoted

by T∇P2. As it is well-established in the optimal transport literature, (e.g., [10, 60, 63, 64]) the

space T∇µ P2 is the space of those geodesic directions at µ that are induced by optimal transport

maps in the sense of Brenier–McCann Theorem. (See Thm. 4.3.8 below.) In the following we

will make use of both non-equivalent definitions. An exhaustive discussion of this choice is

postponed to §4.6.1. However, let us remark here that the two definitions are in fact equivalent

on configuration spaces.
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Assumption. We say that a Borel probability measure P on P2 satisfies Assumption 4.2 if

4.2 (i)–4.2 (iv) below hold for P, namely if

4.2 (i) P is fully supported;

4.2 (ii) P is diffuse (i.e., it has no atoms);

4.2 (iii) P satisfies the following integration by parts formula. If u, v ∈ Z∞ and w ∈ X∞, then there

exists a measurable function µ 7→∇∗w v ∈ Xµ such that∫
P

∇w u · v dP =

∫
P

u ·∇∗w v dP ; (4.2.6)

4.2 (iv) P is quasi-invariant with respect to the action of the family of flows Flow(M) on P, i.e. P
and Ψw,t

] P are mutually absolutely continuous for all w ∈ X∞ and t ∈ R. Moreover, for all

finite s ≤ t it holds that

for P-a.e.µ ∈P Leb1- essinf
r∈[s,t]

Rwr (µ) > 0 where Rwr :=
d(Ψw,r

] P)⊗ dr

dP⊗ dr
. (4.2.7)

The validity and necessity of these assumptions are widely illustrated through examples

in §4.5.

In the following, we shall also need the stronger assumption

4.2 (v) P satisfies 4.2 (iv) and the Radon–Nikodým derivative Rwr defined in (4.2.7) is such that

for every w ∈ X∞

• r 7→ Rwr (µ) is differentiable in a neighborhood of 0 for P-a.e. µ;

• µ 7→ |∂rRwr (µ)| is integrable w.r.t. P uniformly in r on a neighborhood of 0.

We shall comment on this latter assumption in Proposition 4.5.6.

Definition 4.2.3 (Cylinder vector fields). Let XC∞ :=Z∞ ⊗R X∞ denote the vector space of

cylinder vector fields on P, i.e. the R-vector space of sections W of TDerP of the form

W (µ)(x) =

n∑
j

vj(µ)wj(x) (4.2.8)

with n ∈ N, vj ∈ Z∞ and wj ∈ X∞. (By ⊗R we denote the algebraic R-tensor product.) By XCP
we mean the abstract linear completion of the space XC∞ endowed with the pre-Hilbert norm

defined by setting

‖W‖2XCP :=

n∑
j

∫
P

|vj(µ)|2 ‖wj‖2Xµ dP(µ) .

It follows by linearity from Assumption 4.2 (iii) that

∀u ∈ Z∞ ∀W ∈ XC∞
∫

P

〈
∇u

∣∣W〉
X ·

dP = −
∫

P

u · divPW dP (4.2.9)

where, for any W as in (4.2.8),

divPW (µ) :=−
n∑
i

∇∗wi vi(µ) .

Then, (divP,XC∞) is a densely defined linear operator from the space of sections ΓL2
P
TDerP2

to L2
P(P) and we denote its adjoint by (dP,W

1,2). By definition, functions in W1,2 are weakly

differentiable, in the sense that (4.2.9) holds for all u ∈W1,2 with dPu in lieu of ∇u.
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We denote by F the set of all bounded measurable functions u on P for which there exists a

measurable section Du of TDerP2 such that

E(u, u) :=

∫
P

〈Du(µ) |Du(µ)〉Xµ dP(µ) <∞ (4.2.10)

and such that for every w ∈ X∞ and s ∈ R there exists the directional derivative

u ◦Ψw,t − u
t

t→0−−−→ 〈Du |w〉X · in L2(P,Ψw,s
] P) . (4.2.11)

Finally, set Fcont :=F ∩ C(P) and observe that Z∞ ⊂ Fcont ⊂ F and that, a priori, every

inclusion may be a strict one.

Before stating the main result, we introduce the following — quite restrictive — assumption

on the base space. We will comment extensively about this assumption, and about its connection

with the Ma–Trudinger–Wang curvature condition, in §4.5.2.

Assumption (Smooth Transport Property). We say that M satisfies the smooth transport property

(in short: STP) if, whenever µ, ν ∈ P, µ, ν � m with smooth nowhere vanishing densities,

then there exists a smooth optimal transport map g : M →M mapping µ to ν in the sense of

Thm. 4.3.8 below.

Theorem 4.2.4. Suppose that P satisfies Assumptions 4.2 (ii) and 4.2 (iii). Then,

4.2.4 (1) the bilinear forms (E ,Z∞), (E ,Fcont) and (E ,F) are closable and their closures, respectively

denoted by (E ,F0), (E ,Fcont) and (E ,F ) are strongly local Dirichlet forms. Clearly, F0 ⊂
Fcont ⊂ F ;

4.2.4 (2) for each u ∈ F there exists a measurable section Du of the tangent bundle TDerP2 such

that

Du = ∇u , u ∈ Z∞ , (4.2.12)

and

E(u, u) =

∫
P

‖Du(µ)‖2Xµ dP(µ) , (4.2.13)

i.e. the form (E ,F ) admits carré du champ Γ(u)(µ) := ‖Du(µ)‖2Xµ ;

4.2.4 (3) (Rademacher property) let u : P → R be W2-Lipschitz continuous. Then u ∈ Fcont and,

if additionally STP holds, then u ∈ F0. Furthermore, there exist a measurable set Ωu ⊂P

of full P-measure and a measurable section Du of TDerP2, satisfying (4.2.12) and (4.2.13),

such that

4.2.4 (3.i) for all µ ∈ Ωu it holds that ‖Du(µ)‖Xµ ≤ Lip[u];

4.2.4 (3.ii) if additionally Assumption 4.2 (iv) holds, then

∀µ ∈ Ωu ‖Du(µ)‖Xµ ≤ |Du| (µ) , (4.2.14)

where |Du| is the slope of u (see (4.3.2) below), and, for all w ∈ X∞

lim
t→0

(u ◦Ψw,t − u)( · )
t

= 〈Du( · ) |w〉X · (4.2.15)

pointwise on Ωu and in L2
P(P).

We now collect some remarks on the statement of our main theorem.
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Remark 4.2.5. Let us notice that, in the definition of the pre-domain F , we only ask for the

existence of a measurable section Du of TDerP2 with finite L2-norm in the sense of (4.2.10). In

particular, we do not require (4.2.12) which is only used to uniquely identify the form (E ,F )

in the theorem. We pay this arbitrariness with the Fréchet differentiability (4.2.11) of u ∈ F
in L2(P,Ψw,s

] P) for each real s, a seemingly stronger condition than the conclusion (4.2.15)

of Theorem 4.2.4 (3.ii). In fact though, under Assumption 4.2 (iv), condition (4.2.11) is equiv-

alent to (4.2.15) for every W2-Lipschitz u, since the L2(P,Ψw,s
] P)-topology is equivalent to

the L2(P,P)-topology for every s.

Remark 4.2.6 (On the definition of ‘volume measure’ on P2). Assumptions 4.2 (i) and 4.2 (ii)

are of a general kind. In fact, Assumption 4.2 (i) (i.e. P fully supported) is not necessary to the

conclusions of Theorem 4.2.4. Rather, it rules out some trivial cases. (See Example 4.5.4.)

On the contrary, Assumptions 4.2 (iii) and 4.2 (iv) are — as already noticed in [142, Rmk.

p. 329] for measures on configuration spaces — specifically proper of a volume measure (as

discussed in the Introduction). In particular, Assumption 4.2 (iii) may be regarded as a form

of ‘gradient-divergence duality’ for P. Assumption 4.2 (iv) (and its stronger version 4.2 (v)) is

also expected from a differential geometry point of view and it is equally important in light of

Proposition 4.5.6 below.

Remark 4.2.7. As already noticed in the case of configuration spaces (Cf. [142, Prop. 1.4(iii)].),

the Dirichlet forms (E ,F0), (E ,Fcont) and (E ,F ) do in principle differ. A sufficient condition

for their coincidence is the essential self-adjointness of the generator of (E ,F ) on the core Z∞.

It is readily seen that, by compactness of P2 and the Stone–Weierstraß Theorem, the spaces

Z∞ and Fcont are uniformly dense in C(P2). Together with the Theorem, this implies that

the Dirichlet forms (E ,F0) and (E ,Fcont) are regular strongly local Dirichlet forms on P2,

thus properly associated to Markov diffusion processes by the theory of Dirichlet forms. (See

e.g. [112].)

Remark 4.2.8 (On the definition of ‘Rademacher-type’ properties). Assume we have already

shown that uν : µ 7→W2(ν, µ) belongs to Fcont, resp. F0, (cf. Lem.s 4.4.3 and 4.4.4 below) and

Γ(uν) ≤ 1. Then, 4.2.4 (3.i) may be deduced by the general results on (non-local) Dirichlet

forms in [58]. On the contrary — even if it is proven that the Dirichlet form (E ,F ) is strongly

local and regular — the finer estimate (4.2.14) does not follow by [97, Thm. 2.1], where the

reference measure (in our case P) is assumed to be doubling. In fact it may be proved that no

(fully supported) doubling measure exists on P2, since the latter is infinite-dimensional.

Both of the previous results may be considered as ‘Rademacher-type’ properties for the

Dirichlet form(s) in question. Nonetheless, in the case of the Wasserstein space P2, we have

— in addition to the general assumptions of [58] or [97] — a good notion of directional derivative

for functions on P2. As a consequence, the statement of what we call a ‘Rademacher Theo-

rem on (P2,W2,P)’ comprises more properly assertion 4.2.4 (3.ii), where we check that each

directional derivative of a “differentiable” function u ∈ F along a “smooth direction” w ∈ X∞

coincides with the scalar product of the “gradient” Du and “direction” w.

To conclude this preliminary section we anticipate that the statement of our main theorem is

non-void, and that our assumptions pose no restriction to the subset of measures in P whereon P
is concentrated. In particular

Remark 4.2.9 (See Rmk. 4.5.19 below). Define

• A1 the set of measures in P absolutely continuous w.r.t. the volume of M ;

• A2 the set of measures in P singular continuous w.r.t. the volume of M ;
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• A3 the set of purely atomic measures in P;

• A4 the set of transport regular measures in P. (See Dfn. 4.3.6 below.)

Then, M = S1 has the STP (Ass. 4.2), and, for any choice of a1, a2, a3 ≥ 0 and such that

a1 + a2 + a3 = 1, there exists P ∈P(P2), satisfying Assumption 4.2 and such that P(Ai) = ai

for every i = 1, 2, 3 and P(A4) = a1 + a2.

4.3 Preliminaries

4.3.1 Setting and further notation. By a measure we always mean a non-negative measure.

We denote by I, resp. I◦, the unit interval [0, 1], resp. (0, 1), always endowed with the usual

metric, σ-algebra and with the one-dimensional Lebesgue measure dLeb1(r) = dr. Analogously,

we denote by Lebd the d-dimensional Lebesgue measure on (any subset of) Rd.

Probability measures on M . We indicate by Pm ⊂P the space of probability measures µ� m,

by P∞ the subset of probability measures µ ∈Pm with smooth densities, by P∞,× the subset

of measures in P∞ whose densities with respect to m are bounded away from 0 (the boundedness

(from above) of such densities is rather a consequence of their continuity and of the compactness

of M). We denote further by η any purely atomic measure in P. Usually, we think of any such η

as an infinite marked configuration and thus we write, with slight abuse of notation, ηx in place

of η{x} and x ∈ η whenever ηx > 0. We denote further by ptws η the set of points x ∈M such

that ηx > 0, termed the pointwise support of η. For r in I and any µ ∈P also set

µ+r δx :=(1− r)µ+ rδx . (4.3.1)

4.3.2 Lipschitz functions. Everywhere in the following let (Y, τ) be a compact Polish (that

is, it is separable and completely metrizable) space with Borel σ-algebra B and let n be a finite

fully supported (Radon) measure on (Y,B). Let ρ be any metric metrizing (Y, τ). In the rest of

this section, the metric measure space (Y, ρ, n) will play the rôle of (P,W2,P).

We say that a real-valued function h : Y → R is L-Lipschitz (with respect to ρ) if there exists

a constant L > 0 such that

∀y1, y2 ∈ Y |h(y1)− h(y2)| ≤ Lρ(y1, y2) ,

in which case we denote by Lipρ[h] the infimal such constant and by

|Dh|ρ (y) := lim sup
z→y

|h(y)− h(z)|
ρ(y, z)

≤ L (4.3.2)

the slope (or local Lipschitz constant) of h at a point y ∈ Y . The metric ρ is omitted in the

notation whenever apparent from context. We set ρz( · ) := ρ(z, · ) and, for any A := (ai)
n
i ⊂ R

and E := (zi)
n
i ⊂ Y , we let ρA,E,L( · ) :=∨i≤n(ai − Lρzi( · )).

Lemma 4.3.1. Let Z ⊂ Y be a dense set and fix h ∈ LipρY . For ε > 0 let Eε := (zε,i)
nε
i ⊂ Z be

an ε-net for Y , that is, Eε is such that ρ(zε,i, zε,j) > ε/2 for all i 6= j and supy∈Y ρ(y,Eε) ≤ ε.
Set Aε := (h(zε,i))

nε
i ⊂ R. Then, the function hε := ρAε,Eε,Lip[h] satisfies Lip[hε] ≤ Lip[h] and

‖h− hε‖C0 ≤ Cε where C is a constant only depending on Lip[h].
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Proof. The existence of Eε as above follows by density of Z in Y and compactness of Y . This

shows that the statement is well-posed. The function hε is ρ-Lipschitz continuous with Lip[hε] ≤
Lip[h] for it is a maximum of ρ-Lipschitz continuous functions with Lipschitz constant Lip[h].

Since h is Lipschitz continuous, it coincides with its lower McShane extension [118], i.e. h(y) =

supz∈Y {h(z)− ρy(z)}. Thus, hε ≤ h. Furthermore, for all y ∈ Y there exists z̄ := z̄(y) such

that h(y) ≤ h(z̄)−ρ(y, z̄)+ε and, by definition of Eε, there exists ı̄ := ı̄(y) such that ρ(z̄, zε,ı̄) ≤ ε.
Hence,

hε(y) ≤ h(y) ≤h(z̄)− ρ(y, z̄) + ε

≤h(z̄)− h(zε,ı̄) + h(zε,ı̄)− ρ(y, z̄) + ρ(y, zε,ı̄)− ρ(y, zε,ı̄) + ε

≤h(zε,ı̄)− ρ(y, zε,ı̄) + |h(z̄)− h(zε,ı̄)|+ |ρ(y, zε,ı̄)− ρ(y, z̄)|+ ε

≤hε(y) + Lip[h]ε+ ε+ ε

respectively by definition of hε, Lipschitz continuity of h and by reverse triangle inequality and

definition of zε,ı̄. The conclusion follows by letting C := Lip[h] + 2. �

4.3.3 Dirichlet forms. We recall some facts on Dirichlet forms and prove some auxiliary

results. Whenever (Q,D(Q)) is a non-negative definite symmetric bilinear form, we denote

by the same symbol the associated quadratic form, defined as Q(u) :=Q(u, u) if u ∈ D(Q)

and Q(u) := +∞ otherwise.

Definition 4.3.2 (Energy measure, carré du champ, intrinsic distance). Let (E ,D(E)) be a

regular strongly local (in the sense of [59, §1.1]) Dirichlet form on L2
n(Y ), additionally such

that 1 ∈ D(E) and E(1) = 0. Then, (e.g., [23]) the form E can be written as

E(u, v) =

∫
Y

dΓ(u, v)

for all u, v ∈ D(E), where Γ, termed the energy measure of (E ,D(E)), is an M (Y,B)-valued

non-negative definite symmetric bilinear form defined by the formula∫
Y

φ dΓ(u, v) := 1
2

(
E(u, φv) + E(v, φu)− E(uv, φ)

)
for all u, v ∈ D(Γ) := D(E) ∩ L∞n (Y ) and φ ∈ D(E) ∩ C(Y ). (Notice that C(Y ) = Cc(Y ) by

compactness of Y .)

We say that (E ,D(E)) admits carré du champ operator if Γ(u, v)� n for every u, v ∈ D(Γ),

in which case, with usual abuse of notation, we indicate again by (Γ,D(Γ)) the L1
n(Y )-valued

non-negative definite symmetric bilinear form dΓ(u,v)
dn

. By Γ(u) ≤ n we mean that Γ(u) is

absolutely continuous with respect to n and Γ(u) ≤ 1 n-a.e..

A strongly local Dirichlet form (E ,D(E)) on L2
n(Y ) with carré du champ operator Γ induces

an intrinsic extended pseudo-metric dE on Y , termed the intrinsic metric of (E ,D(E)) and defined

by

dE(y1, y2) := sup {u(y1)− u(y2) | u ∈ D(Γ) ∩ C(Y ),Γ(u) ≤ n} . (4.3.3)

By extended we mean that dE may attain the value +∞, by the prefix “pseudo-” that it may

vanish outside the diagonal in Y ×2.

We will make wide use of the following lemma, which is thus worth to state separately. A

proof is standard. (See e.g. [112, Lem. I.2.12] for the first part.)
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Lemma 4.3.3. Let (E ,D(E)) be a Dirichlet form on L2
n(Y ) with energy measure (Γ,D(Γ))

and let (un)n ⊂ D(E) be such that supn E(un) < ∞. If there exists u ∈ L2
n(Y ) such that L2

n-

limn un = u, then

u ∈ D(E) and E(u) ≤ lim inf
n
E(un) .

If additionally (un)n⊂D(Γ) and lim supn Γ(un)≤n, then, additionally, u ∈ D(Γ) and Γ(u)≤n.

Lemma 4.3.4. Let (E ,D(E)) be a (possibly not regular) strongly local Dirichlet form on L2
n(Y )

with energy measure (Γ,D(Γ)). Let ρ be any metric metrizing (Y, τ) and assume further that

ρz := ρ(z, · ) ∈ D(Γ) and Γ(ρz) ≤ n for every z ∈ Z a dense subset of Y . Then, every ρ-Lipschitz

function u : Y → R satisfies u ∈ D(Γ) and Γ(u) ≤ Lip[u]2 n.

Proof. Without loss of generality, up to rescaling, we can restrict ourselves to the case when

Lip[u] ≤ 1, for which we claim Γ[u] ≤ n. Let uε be defined as in Lemma 4.3.1. Since Y is

compact and 1 ∈ D(E), functions locally in the domain of the form belong to D(E), thus we

have uε ∈ D(E) and Γ(uε) ≤ n by [97, Thm. 2.1] (where the regularity of (E ,D(E)) is in fact

not needed and the fact that Γ(ρzi) ≤ n is granted by assumption). Choose now ε := εn ↘ 0

as n→∞. Since uεn converges to u uniformly as n→∞ by Lemma 4.3.1, the conclusion follows

by Lemma 4.3.3. �

4.3.4 Optimal transport. We collect here some known results in metric geometry based on

optimal transport. The reader is referred to [10] for an expository treatment.

Everywhere in the following let expx : TxM → M be the exponential map of (M, g) at a

point x ∈M and set c := 1
2

d2 : M×2 → R.

Definition 4.3.5 (c-transform, c-convexity, conjugate map). For any ϕ : M → R, we define its

c-transform (often termed c−-transform, e.g. [10]) by

ϕc(x) :=− inf
y∈M
{c(x, y) + ϕ(y)} . (4.3.4)

Any such ϕ is termed c-convex if there exists ψ : M → R such that ϕ = ψc, in which case it

holds that ϕ = ϕcc. (See e.g. [10, Dfn. 1.9].) Every c-convex function on M is Lipschitz. (See [10,

Prop. 1.30], where the statement is proven for c-concave functions. It is equivalent to our claim

by [10, Rmk. 1.12].) By the classical Rademacher Theorem on M , the set Σϕ of singular points

of ϕ has m-measure 0.

Definition 4.3.6 (Regular measures). We say that µ ∈P is (transport) regular if µΣϕ = 0 for

every semi-convex function ϕ. We denote by Preg the set of regular measures in P.

It is well-known that every finite measure on a Polish space is regular in the classical sense

of measure theory. Thus we will henceforth refer to ‘transport regular’ measures simply as to

‘regular’ measures. Since we only consider finite measures on Polish spaces, no confusion may

arise.

Remark 4.3.7. The above definition of a regular measure is rather intrinsic. Regularity is a local

property. For an extrinsic definition in local charts we refer the reader to [63, Dfn. 2.8]. The

equivalence of our definition to the one in [63] is shown in the proof of [63, Prop. 2.10].

Theorem 4.3.8 (Brenier–McCann, [10, Thm. 1.33], Gigli, [63, Prop. 2.10 and Thm. 7.4]). The

following are equivalent:
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(i) µ ∈Preg;

(ii) for each ν ∈P there exists a unique optimal transport plan π ∈ Opt(µ, ν) and π is induced

by a map (say, gµ→ν).

Furthermore, if any of the previous holds, then there exists a c-convex ϕµ→ν , unique up to

additive constant, termed a Kantorovich potential, such that gµ→ν = exp∇ϕµ→ν µ-a.e. on M .

Proposition 4.3.9 (AC curves in (P2,W2), [10, Thm. 2.29]). For every (µt)t∈I ∈ AC1(I; P2)

there exists a Borel measurable time-dependent family of vector fields (wt)t∈I with ‖wt‖Xµt ≤ |µ̇t|
for dt-a.e. t ∈ I and additionally such that the continuity equation

∂tµt + div(wtµt) = 0 (4.3.5)

holds in the sense of distributions on I ×M , that is

∀ϕ ∈ C∞c (I ×M)

∫ 1

0

∫
M

(
∂tϕ(t, x) + 〈∇ϕ(t, x) |wt(x)〉g

)
dµt(x) dt = 0 . (4.3.6)

Conversely, if (µt, wt)t∈I satisfies (4.3.5) in the sense of distributions and ‖wt‖Xµt ∈ L
1(I),

then, up to redefining t 7→ µt on a dt-negligible set of times, (µt)t ∈ AC1(I; P2) and |µ̇t| ≤
‖wt‖Xµt for dt-a.e. t ∈ I.

4.3.5 Geometry of P2. A detailed study of the Riemannian structure of P2 has been carried

out by N. Gigli in [63, 64]. We shall need the following definitions and results from [63] to which

we refer the reader for further references.

We consider the tangent bundle TM as endowed with the Sasaki metric g∗ and the associated

Riemannian distance d∗ := dg∗ which turn it into a (non-compact connected oriented) Riemannian

manifold.

Definition 4.3.10 (Tangent plans). For µ ∈P2 we let P2(TM)µ ⊂P2(TM) be the space of

tangent plans γ ∈P(TM) such that

prM] γ = µ and

∫
TM

|v|2gx dγ(x, v) <∞ . (4.3.7)

Definition 4.3.11 (Exponential map). We denote by expµ : P2(TM)µ →P2 the exponential

map expµ(γ) = exp] γ, with right-inverse exp−1
µ : P2 →P2(TM)µ defined by

exp−1
µ (ν) :=

{
γ ∈P2(TM)µ | expµ(γ) = ν,

∫
TM

|v|2gx dγ(x, v) = W 2
2 (µ, ν)

}
.

Equivalently, exp−1
µ (ν) is the set of all tangent plans γ ∈P2(TM) such that

(prM , exp)]γ ∈ Cpl(µ, ν) (4.3.8)

and ∫
TM

|v|2gx dγ(x, v) = W 2
2 (µ, ν) . (4.3.9)

Remark 4.3.12 (Cf. [63, p. 131]). Notice that (4.3.9) may not be dropped even if (4.3.8) is

strengthened to

(prM , exp)]γ ∈ Opt(µ, ν) . (4.3.10)

The joint requirement of (4.3.8) and (4.3.9) is however equivalent to that of (4.3.10) and

(4.3.9).
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Remark 4.3.13. Notably, exp−1
µ (ν) need not be a singleton even when Opt(µ, ν) is. Consider

e.g. the case when µ = δp and ν = δq are Dirac masses at antipodal points p, q ∈ S1 and

let v := 1
2
∂p ∈ TpS1. Then Cpl(µ, ν) = Opt(µ, ν) =

{
δ(p,q)

}
, yet exp−1

µ (ν) = {δp,v +r δp,−v}r∈I .
(Cf. (4.3.1).)

Definition 4.3.14 (Rescaling of tangent plans). For t ∈ R we denote by t · γ the rescaling

t · γ :=(prM , t pr1)]γ . (4.3.11)

Definition 4.3.15 (Double tangent). We denote by T 2M :=
{

(x, v1, v2) | v1, v2 ∈ TxM
}

the

double tangent bundle to M , with natural projections

prM : (x, v1, v2) 7→ x ∈M , pri : (x, v1, v2) 7→ vi ∈ TxM , i = 1, 2

and endowed with the distance

d∗2 :=
√

d2
∗ ◦ (pr1, pr1) + d2

∗ ◦ (pr2,pr2) .

All of the previous definitions are instrumental to the statement of the following result by

N. Gigli, concerned with the one-sided differentiability of the squared L2-Wasserstein distance

along a family of nice curves including W2-geodesic curves.

Theorem 4.3.16 (Directional derivatives of the squared Wasserstein distance, [63, Thm. 4.2]).

Fix µ0 ∈P and γ ∈P2(TM)µ0 and set µt := expµ0
(t · γ). Then, for every ν ∈P there exists

the right derivative

d+
t

∣∣
t=0

1
2
W 2

2 (µt, ν) = − sup
α

∫
T2M

〈v1 | v2〉gx dα(x, v1, v2) (4.3.12)

where the supremum is taken over all α ∈P2(T 2M)

(prM , pr1)]α = γ , and (prM , pr2)]α ∈ exp−1
µ0

(ν) . (4.3.13)

The following is a straightforward corollary. We provide a proof for the sake of completeness.

Corollary 4.3.17. In the same notation of Theorem 4.3.16, there exists the left derivative

d−t
∣∣
t=0

1
2
W 2

2 (µt, ν) = − inf
α

∫
T2M

〈v1 | v2〉gx dα(x, v1, v2) (4.3.14)

where the infimum is taken over all α ∈P2(T 2M) satisfying (4.3.13).

Proof. Given γ+ ∈P2(TM)µ0 let γ− :=(−1) ·γ be defined by (4.3.11) and set µ±t := expµ(t ·γ±)

for t ≥ 0. Notice that µ+
−t = µ−t for every t ≥ 0, hence, by definition,

d−t
∣∣
t=0

1
2
W 2

2 (µ+
t , ν) = − d+

t

∣∣
t=0

1
2
W 2

2 (µ−t , ν)

which exists by choosing γ = γ− in Theorem 4.3.16. Let A± be the set of plans α ∈P2(T 2M)

satisfying (4.3.13) with γ± in lieu of γ and define re1 :=(prM ,−pr1,pr2) : T 2M → T 2M . It is

straightforward that A± = re1
]A
∓, thus, by Theorem 4.3.16,

−d+
t

∣∣
t=0

1
2
W 2

2 (µ−t , ν) = sup
α∈A−

∫
T2M

〈v1 | v2〉gx dα(x, v1, v2)

= sup
α∈A+

∫
T2M

〈−v1 | v2〉gx dα(x, v1, v2)

=− inf
α∈A+

∫
T2M

〈v1 | v2〉gx dα(x, v1, v2) ,

whence the conclusion by combining the last two chains of equalities. �
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4.4 Proof of the main result

Let us briefly outline the proof of Theorem 4.2.4. The proofs of 4.2.4 (1) and 4.2.4 (2) are

mainly a standard consequence of Assumption 4.2 (iii) and the abstract theory of Dirichlet forms.

Therefore, we shall rather focus on the proofs of Theorem 4.2.4 (3.i) and 4.2.4 (3.ii). These are

respectively reminiscent of the “global” proof of the Rademacher Theorem for strongly local

regular Dirichlet forms in the work [97] by P. Koskela and Y. Zhou, and of the “local” proof [127]

of the classical Rademacher Theorem on Rn by A. Nekvinda and L. Zaj́ıček. Informally, the

“global” method consists in showing that Lipschitz functions belong to the Sobolev space W 1,2
loc

(Here: to the domain F ) and that |∇ · | ≤ Lip[ · ]. The “local” method consists instead in

showing that a Lipschitz function is Gâteaux differentiable (along every direction) at a.e. point

and, subsequently, that a Lipschitz function Gâteaux differentiable at a point is in fact Fréchet

differentiable at that point.

A “local” proof of 4.2.4 (3.ii) under quasi-invariance. Let u : P2 → R be a W2-Lipschitz

function. In §4.4.2, we study the differentiability of any such u along the flow curves t 7→ Ψw,tµ.

In Corollary 4.4.10 we show how we may trade the dt-a.e. differentiability of the curve t 7→
u(Ψw,tµ) for every µ, with the differentiability of t 7→ u(Ψw,tµ) at t = 0 (i.e. the Gâteaux

differentiability of u along w) for P-a.e. µ. This result is the only one relying on the quasi-

invariance Assumption 4.2 (iv). Finally, assuming that u is Gâteaux differentiable along every w

in a countable dense subspace of directions, we improve its differentiability to the Fréchet

differentiability in 4.2.4 (3.ii). This is the content of Proposition 4.4.9, adapted from the proof

of [142, Thm. 1.3].

A “global proof” of 4.2.4 (3.i) without quasi-invariance. Set Uµ,ν(t) :=W2(ν,Ψw,tµ). In §4.4.1

we show that t 7→ Uµ,ν(t) is differentiable at t = 0 for every fixed ν in the dense set Preg and

every fixed µ 6= ν. This shows the Gâteux differentiability of uν :=W2(ν, · ) at every µ 6= ν along

every w ∈ X∞, hence we can apply Proposition 4.4.9 to conclude 4.2.4 (3.i) for all metric-cone

functions uν with ν ∈ Preg. The extension to all Lipschitz functions is given by the general

Lemma 4.3.4 with Z = Preg.

Refined statements under STP. We start by considering truncated metric cones uν ∨ θ with uν

as above and θ > 0. In Lemma 4.4.4 we construct an approximating sequence uν,θ,n ∈ Z∞

and E1-convergent to uν ∨ θ as n → ∞. This shows that uν ∨ θ ∈ F0 for every ν ∈ P2. By

applying Proposition 4.4.9 to uν ∨ θ we improve the bound ‖D(uν ∨ θ)(µ)‖Xµ . θ
−1 obtained in

Lemma 4.4.4 to the sharp bound ‖D(uν ∨ θ)(µ)‖Xµ ≤ Lip[uν ∨ θ] = 1. By Lemma 4.3.3 we may

then remove the truncation by θ, thus showing that uν ∈ F0 for every ν ∈P2. Once more, the

extension to all Lipschitz functions follows by Lemma 4.3.4.

4.4.1 On the differentiability of W2-cone functions. In this section we collect some

results on the differentiability of the Wasserstein distance along (flow) curves. We aim to

show (Lem. 4.4.3) that, for nice µ and ν ∈ P2, the function t 7→ Uµ,ν(t) :=W2(ν,Ψw,tµ) is

differentiable at t = 0. Since U ≥ 0, with equality only if µ = ν, it suffices to study the

differentiability of t 7→ Uµ,ν(t)2. In order to do so, we firstly need to trace back the computation

of dt
∣∣
t=0

Uµ,ν(t)2 to the setting of Gigli’s Theorem 4.3.16. Informally, we exploit the following

fact: The curves ψw,t(x) and expx(tw) are tangent to each other at every point x ∈ M

(Lem. 4.4.1). As a consequence, their lifts on P2 by push-forward, namely Ψw,tµ :=ψwt] µ

and expµ(t · γ) = exp · (tw · )]µ (here, γ is some tangent plan depending on w) are themselves

tangent to each other in a suitable sense. (See Step 2 in the proof of Lem. 4.4.3.) This shows
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that dt
∣∣
t=0

Uµ,ν(t) = dt
∣∣
t=0

Vµ,ν(t), where Vµ,ν(t) :=W2(ν, expµ(t · γ)). Thus, as for Uµ,ν , it

suffices to show the differentiability of t 7→ Vµ,ν(t)2.

While Theorem 4.3.16 and Corollary 4.3.17 provide the one-sided differentiability of t 7→
Vµ,ν(t)2 at t = 0, the two-sided differentiability generally fails, since the left and right derivatives

need not coincide. However, t 7→ Vµ,ν(t)2 is differentiable as soon as we show that, for given µ, ν,

the set of plans α over which we are extremizing in the right-hand sides of (4.3.12) and (4.3.14)

is in fact a singleton. This is the case if either µ or ν is regular. (See Prop. 4.4.2.)

We denote by injM > 0 the injectivity radius of M .

Lemma 4.4.1. Let w ∈ X∞. Then,

d(expx(twx),ψw,t(x)) ∈ o(t) as t→ 0

uniformly in x ∈M .

Proof. Let (∂i)i=1,...,d be a g-orthonormal basis of TxM , (di)i=1,...,d be its g-dual basis in T ∗xM

and recall the Lie series expansion of ψw,t about t = 0, viz.

∀f ∈ C∞(M) f(ψw,t(x)) =
∑
k≥0

tk

k!
wk(f)x .

Set c0 := injM
(
1 ∧ ‖w‖−1

X0

)
and let 0 < c1 < c0 be such that ψw,t(x) ∈ Bc0(x) for all t < c1.

Letting wx = wj∂j and choosing f = di ◦ exp−1
x (suitably restricted to a coördinate chart

around x) above yields

(di ◦ exp−1
x )(ψw,t(x)) =(di ◦ exp−1

x )(x) + tw(di ◦ exp−1
x )x + o(t)

=twj∂j(di ◦ exp−1
x )x + o(t) = twi + o(t) ,

whence (exp−1
x ◦ψw,t)(x) = tw + o(t). Since expx is a smooth diffeomorphism on Bc1(0TxM ),

there exists L > 0 such that

∀y1, y2 ∈ Bc1(x) d(y1, y2) ≤ L
∣∣exp−1

x (y1)− exp−1
x (y2)

∣∣ .
Thus, finally

d(expx(tw),ψw,t(x)) ≤L |tw − tw − o(t)|gx ∈ o(t) ,

which concludes the proof. �

Proposition 4.4.2. Let either µ ∈Preg or ν ∈Preg. Then, exp−1
µ (ν) is a singleton.

Proof. Assume first µ ∈Preg. By Theorem 4.3.8 there exists a c-convex ϕ (unique up to additive

constant) such that

ν = (exp · ∇ϕ · )]µ and W 2
2 (µ, ν) =

∫
M

d2(x, expx∇ϕx) dµ(x) . (4.4.1)

Moreover, for µ-a.e. x ∈M there exists a unique geodesic (αxr )r∈I connecting x to gµ→ν(x)

given by αxr := expx(r∇ϕx). (Cf. [10, Rmk. 1.35].) We call this property the geodesic uniqueness

property.
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Claim: exp−1
µ (ν) 6= ∅. Proof. Set γ0 :=(idM ( · ),∇ϕ · )]µ ∈P(TM). It is straightforward that

γ0 ∈P2(TM)µ. Additionally,∫
TM

|v|2gx dγ0(x, v) =

∫
M

|∇ϕx|2gx dµ(x) (4.4.2)

=

∫
M

d(x, expx∇ϕx)2 dµ(x) = W 2
2 (µ, ν) ,

where |∇ϕx|gx = d(x, expx∇ϕx) for µ-a.e. x by geodesic uniqueness. This shows (4.3.9), hence

that γ0 ∈ exp−1
µ (ν).

Claim: exp−1
µ (ν) = {γ0}. Proof. Let γ ∈ exp−1

µ (ν). By (4.3.7), prM] γ = µ, thus there exists

the Rokhlin disintegration {γx}x∈M of γ along prM with respect to µ. By (4.3.10), expµ γ =

ν = (exp · ∇ϕ · )]µ, thus, for µ-a.e. x ∈M , γx is concentrated on the set Ax := exp−1
x (expx∇ϕx).

Moreover, (4.4.2) holds with γ in place of γ0 by (4.3.9), hence, by optimality, γx is in fact

concentrated on the set

prAx(0TxM ) := argmin
v∈TxM

distgx(Ax,0TxM ) . (4.4.3)

By geodesic uniqueness, one has prAx(0TxM ) = {∇ϕx} for µ-a.e. x ∈M , hence γx = δ(x,∇ϕx)

for µ-a.e. x ∈M . Thus finally (4.4.2) holds and γ = γ0.

Assume now ν ∈Preg. By Theorem 4.3.8 there exists a c-convex ψ (unique up to additive

constant) such that (4.4.1) holds when exchanging ν with µ and replacing ϕ with ψ. Moreover,

geodesic uniqueness holds too, for the geodesics defined by βyr := expy(r∇ψy).

For a measurable vector field w, we denote by Tt
s((α))wαs the parallel transport (of the

Levi-Civita connection) from αs to αt of the vector wαs along the curve (α) := (αr)r. We set

further

R : TM −→ TM

(x, v) 7−→
(
expx v,−T1

0

(
(expx(rv))r

)
v
)

Claim: exp−1
µ (ν) 6= ∅. Proof. Set γ0 := R](idM ( · ),∇ψ · )]ν. Since

prM ◦R ◦ (idM ( · ),∇ψ · ) = exp · ∇ψ ·

and µ = (exp · ∇ψ · )]ν, then γ0 ∈P2(TM)µ. Additionally,∫
TM

|v|2gx dγ0(x, v) =

∫
M

∣∣−T1
0((βyr )r)∇ψy

∣∣2
gx(y)

dν(y) x(y) :=βy1

=

∫
M

|∇ψy|2gy dν(y) ,

where the last equality holds since, being (βyr )r a geodesic and the Levi-Civita connection being

a metric connection, the parallel transport

T1
0((βyr )r) : (Tβy0M, gβy0 )→ (Tβy1M, gβy1 )

is an isometry. Thus, arguing as in the proof of the first claim, γ0 ∈ exp−1
µ (ν).
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Claim: exp−1
µ (ν) = {γ0}. Proof. Let γ ∈ exp−1

µ (ν). By definition expµ γ = exp] γ = ν, thus

there exists the Rokhlin disintegration {γy}y∈M of γ along exp with respect to ν. By (4.3.10),

(idM ( · ), exp · −)]γ ∈ Opt(µ, ν) =(pr2, pr1)]Opt(ν, µ)

= {(exp · ∇ψ · , idM ( · ))]ν} ,

thus, for ν-a.e. y ∈M , γy is concentrated on the set

Cy := exp−1

β
y
1

(y) ⊂ Tβy1M .

By a similar reasoning to that in the second claim, for ν-a.e. y ∈M , γy is in fact concentrated

on prCy (0T
β
y
1
M ), defined analogously to (4.4.3). By definition of parallel transport and since (βyr )r

is a geodesic, the latter set is a singleton

prCy (0T
β
y
1
M ) =

{
−T1

0((βyr )r)∇ψy
}
.

This concludes the proof analogously to that of the second claim. �

Lemma 4.4.3 (Derivatives of the Wasserstein distance along flow curves). Fix w ∈ X∞, µ0 ∈P

and set µt := Ψw,tµ0. Then, for every ν ∈P \ {µ0}, there exists the right derivative

d+
t

∣∣
t=0

W2(µt, ν) = −W−1
2 (µ0, ν) sup

γ

∫
TM

〈wx | v〉gx dγ(x, v) (4.4.4)

where the supremum is taken over all γ ∈ exp−1
µ0

(ν). Moreover, if additionally either µ0 ∈Preg

or ν ∈Preg, then there exists the two-sided derivative dt
∣∣
t=0

W2(µt, ν).

Proof. The proof is divided into several steps. Firstly, we show that there exists

lim
t↓0

W2(µ′t, ν)−W2(µ0, ν)

t
= −W−1

2 (µ0, ν) sup
γ

∫
TM

〈wx | v〉gx dγ(x, v) (4.4.5)

where µ′t :=(exp · (tw))]µ0 and γ is as above. Next, profiting the fact that for small t > 0 the

flow exp · (tw · ) is tangent to the flow ψw,t( · ) at each point in M , we show that the same holds

for the corresponding lifted flows (exp · (tw · ))] and (ψw,t( · ))] at each point in P, hence that

the right derivative (4.4.4) exists and coincides with (4.4.5).

Step 1. Set ιw :=(idM ( · ), w · ) : M → TM , let γ0 := ιw] µ0 ∈P2(TM) and notice that

expµ0
(t · γ0) =

(
exp] ◦(prM , t pr1)] ◦ ιw]

)
µ0 = (exp · (tw · ))]µ0 =: µ′t .

By Theorem 4.3.16, there exists the right derivative

d+
t

∣∣
t=0

1
2
W 2

2 (µ′t, ν) = − sup
α

∫
T2M

〈v1 | v2〉gx dα(x, v1, v2)

where α is as in (4.3.13). In particular, for every such α, it holds that (prM , pr1)]α = γ0 =

ιw] µ0, that is (prM ,pr1)]α is supported on the graph Graph(ιw) ⊂ TM of the map ιw. As a

consequence, α is concentrated on the set

{(x, v1, v2) | (x, v1) ∈ Graph(ιw)} =
{

(x,wx, v2) ∈ T 2M
}
⊂ T 2M ,

thus, in fact

d+
t

∣∣
t=0

1
2
W 2

2 (µ′t, ν) = − sup
γ

∫
TM

〈wx | v〉gx dγ(x, v)

where the supremum is taken over all γ ∈ exp−1
µ0

(ν). The existence of d+
t

∣∣
t=0

W2(µ′t, ν) and

(4.4.5) follow from the existence of d+
t

∣∣
t=0

1
2
W 2

2 (µ′t, ν) by chain rule.
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Step 2. By Lemma 4.4.1 there exists a constant c1 > 0 such that

∀t ∈ (0, c1) ∀x ∈M d2(expx(tw),ψw,t(x)
)
∈ o(t2) . (4.4.6)

Furthermore, since
(
exp · (tw),ψwt ( · )

)
]
µ0 is a coupling between µ′t and µt, equation (4.4.6)

yields

∀t ∈ (0, c1) W 2
2 (µ′t, µt) ≤

∫
M

d2(expx(tw),ψwt (x)
)

dµ0(x) ∈ o(t2) ,

thus there exists

dt
∣∣
t=0

W2(µ′t, µt) = lim
t→0

1
t

∣∣W2(µ′t, µt)−W2(µ0, µ0)
∣∣ = 0 .

Step 3. By triangle inequality

W2(µt, ν)−W2(µ0, ν) ≤W2(µt, µ
′
t) +W2(µ′t, ν)−W2(µ0, ν) ,

while by reverse triangle inequality

W2(µt, ν)−W2(µ0, ν) ≥
∣∣W2(ν, µ′t)−W2(µ′t, µt)

∣∣−W2(µ0, ν)

≥W2(µ′t, ν)−W2(µ0, ν)−W2(µ′t, µt) .

As a consequence, setting

d
+
t

∣∣
t=0

W2(µt, ν) := lim sup
t↓0

W2(µ′t, ν)−W2(µ0, ν)

t
,

d+
t

∣∣
t=0

W2(µt, ν) := lim inf
t↓0

W2(µ′t, ν)−W2(µ0, ν)

t
,

one has

− dt
∣∣
t=0

W2(µt, µ
′
t) + d+

t

∣∣
t=0

W2(µ′t, ν) ≤

d+
t

∣∣
t=0

W2(µt, ν) ≤d
+
t

∣∣
t=0

W2(µt, ν)

≤ dt
∣∣
t=0

W2(µt, µ
′
t) + d+

t

∣∣
t=0

W2(µ′t, ν)

where the derivatives above exist by the previous steps. Since dt
∣∣
t=0

W2(µt, µ
′
t) = 0 by Step 2,

the right derivative d+
t

∣∣
t=0

W2(µt, ν) exists and coincides with (4.4.5).

The last assertion follows by Step 1 and Corollary 4.3.17 since exp−1
µ0

(ν) is a singleton by

Proposition 4.4.2. �

Lemma 4.4.4. Let (M, g) be additionally satisfying STP (Ass. 4.2). Then, for every ν ∈ P

and every θ > 0, the function uν,θ : µ 7→W2(ν, µ) ∨ θ belongs to F0.

Proof. We construct an approximation of uν,θ by functions in Z∞.

Preliminaries. By Kantorovich duality (see e.g. [10, Thm. 1.17])

W 2
2 (ν, µ) = 2 · sup {νψ + µϕ}

where the supremum is taken over all (ψ,ϕ) ∈ L1
ν(M)× L1

µ(M) satisfying ψ(x) + ϕ(y) ≤ c(x, y)

for ν-a.e. x and µ-a.e. y in M . An optimal pair (ψ,ϕ) always exists and satisfies ψ = ϕc ν-a.e.

where ϕc is the c-conjugate (4.3.4) of ϕ.

Let P∞,× be the set of measures in P∞ with densities bounded away from 0 and fix a

countable set (µi)i ⊂P∞,× and dense in P2.
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Construction of the approximation. We start by showing that W2(ν, · ) ∨ θ ∈ F0 for fixed ν ∈
P∞,×. Let (ψi, ϕi) be the optimal pair of Kantorovich potentials for the pair (ν, µi), so that

1
2
W 2

2 (ν, µi) = νψi + µiϕi , (4.4.7)

where ϕi and ψi are smooth maps by assumption for all i’s. Let further t := (t1, . . . , tn) ∈ Rn and,

for small ε > 0, let Fn,ε : Rn → [−ε,∞) be a smooth regularization of the function Fn(t) := 2 ·
maxi≤n ti. Since Fn is 2-Lipschitz for every n, the functions Fn,ε may be chosen in such a way

that

lim
ε↓0

Fn,ε(t) = Fn(t) , n ∈ N , t ∈ Rn ; (4.4.8a)

Fn,ε1(t) ≥ Fn,ε2(t) , n ∈ N , ε1 < ε2 , t ∈ Rn ; (4.4.8b)

2 · 1Bn,i ≤ ∂iFn,ε ≤ 2 · 1(Bn,i)ε , n ∈ N , i ≤ n , ε > 0 , (4.4.8c)

where

Bn,i :=

{
t ∈ Rn

∣∣∣∣∣ ti > tj for all 1 ≤ j < i

ti ≥ tj for all i ≤ j ≤ n

}
(4.4.9)

and, for any B ⊂ Rn, we put Bε := {t ∈ Rn | dist(t, B) < ε}.
For small 0 < δ < θ, let %θ,δ : R→ [θ − δ,∞) be a smooth regularization of %θ : t 7→

√
t ∨ θ

such that

lim
δ↓0

%θ,δ(t) = %θ(t) , 0 < δ < θ , t ∈ R ; (4.4.10a)

%θ,δ1(t) ≥ %θ,δ2(t) , 0 < δ1 < δ2 < θ , t ∈ R ; (4.4.10b)

1[θ,∞) /(2%θ) ≤ %′θ,δ ≤ 1[θ−δ,∞) /(2%θ) . (4.4.10c)

Now, by smoothness of all functions involved, the function uθ,n,ε,δ : P → R defined by

uθ,n,ε,δ(µ) := %θ,δ (Fn,ε(c1 + ϕ∗1µ, . . . , cn + ϕ∗nµ)) where ci :=ψ∗i ν .

belongs to Z∞ and one has

∇uθ,n,ε,δ(µ) =

n∑
i

%′θ,δ (Fn,ε(c1 + ϕ∗1µ, . . . , cn + ϕ∗nµ))×

× (∂iFn,ε)(c1 + ϕ∗1µ, . . . , cn + ϕ∗nµ)∇ϕi .

By (4.4.8a) and (4.4.8b), resp. (4.4.10a) and (4.4.10b), and Dini’s Theorem,

lim
ε↓0

lim
δ↓0

(%θ,δ ◦ Fn,ε)(t) = (%θ ◦ Fn)(t)

locally uniformly in t ∈ Rn and for all n and θ > 0. As a consequence, for all n and uniformly

in µ ∈P

lim
ε↓0

lim
δ↓0

uθ,n,ε,δ(µ) = uθ,n(µ) := %θ
(
Fn(c1 + ϕ∗1µ, . . . , cn + ϕ∗nµ)

)
. (4.4.11)

Moreover, by (4.4.8c), resp. (4.4.10c), limε↓0 ∂iFn,ε = 2 · 1Bn,i pointwise on Rn for all i ≤ n,

for all n, resp. limδ↓0 %
′
θ,δ : t 7→ 1[θ,∞) /(2%θ) pointwise on R for all θ > 0. Thus, for all n and for

all µ ∈P one has

lim
ε↓0

lim
δ↓0

∇uθ,n,ε,δ(µ) =

n∑
i

1Aθ,n,i(µ)

%θ
(
Fn(c1 + ϕ∗1µ, . . . , cn + ϕ∗nµ)

)∇ϕi , (4.4.12)
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where the sets

Aθ,n,i :=

µ ∈P

∣∣∣∣∣∣∣
ci + ϕ∗iµ ≥ θ

ci + ϕ∗iµ > cj + ϕ∗jµ for all 1 ≤ j < i

ci + ϕ∗iµ ≥ cj + ϕ∗jµ for all i ≤ j ≤ n


are, for all n, measurable by continuity of ϕ∗i and pairwise disjoint for all i ≤ n, since the same

holds for Bn,i in (4.4.9).

Finally, again by McCann Theorem, |∇ϕi|g ≤ diamM , hence

|∇uθ,n,ε,δ(µ)(x)|g ≤ n(diamM)/
√
θ

whence, by Dominated Convergence, (4.4.11) and (4.4.12),

E1/2
1 - lim

ε↓0

(
E1/2

1 - lim
δ↓0

uθ,n,ε,δ
)

= uθ,n ∈ F0 ,

Duθ,n(µ)(x) =

n∑
i

1Aθ,n,i(µ)

%θ (Fn(c1 + ϕ∗1µ, . . . , cn + ϕ∗nµ))
∇ϕi(x) .

Pre-compactness of the approximation. Since L2
P- limn uθ,n = uν,θ by Dominated Convergence

and (4.4.11), by Lemma 4.3.3 it suffices to show that

for P-a.e.µ lim sup
n

Γ(uθ,n)(µ) ≤ Cν,θ (4.4.13)

for some constant Cν,θ to get uν,θ ∈ F0 and Γ(uν,θ) ≤ Cν,θ P-a.e.. Indeed,

‖Duθ,n(µ)‖2Xµ =

∫
M

|Duθ,n(µ)(x)|2g dµ(x)

=

n∑
i

1Aθ,n,i(µ)

%2
θ

(
Fn(c1 + ϕ∗1µ, . . . , cn + ϕ∗nµ)

) ∫
M

|∇ϕi|2g dµ

(4.4.14)

since the sets Aθ,n,i are pairwise disjoint. Thus

‖Duθ,n(µ)‖2Xµ =

n∑
i

1Aθ,n,i(µ)

θ ∨ 2(ci + ϕ∗iµ)

∫
M

|∇ϕi|2g dµ ≤ (diamM)2

θ
=: Cθ .

General case. Fix an arbitrary ν ∈P and let (νk)k be a sequence in P∞,× narrowly converging

to ν. It is readily seen that uνk,θ converges to uν,θ in L2
P(P) and ‖Duνk,θ‖

2
X ·
≤ Cθ P-a.e. by

the previous step. Thus, uν,θ ∈ F0 and ‖Duν,θ‖2X · ≤ Cθ P-a.e. by Lemma 4.3.3. �

4.4.2 On the differentiability of functions along flow curves.

Lemma 4.4.5. Fix w ∈ X∞, µ0 ∈P and set µt := Ψw,tµ0. Then, the curve (µt)t∈R is Lipschitz

continuous with Lipschitz constant M ≤ ‖w‖X0 and satisfies |µ̇t| = ‖w‖Xµt for every t ∈ R.

Proof. Since constant functions are in particular Lipschitz, we can assume without loss of

generality w 6= 0. Set c1 := injM/ ‖w‖X0 and let µ′t,ε :=(exp · (εw))]µt. For ε ∈ (−c1, c1), the

curve ε 7→ expx(εw) is a minimizing geodesic. Thus, (exp · (εw))]µt ∈ Opt(µt, µ
′
t,ε) and, for

every t ∈ R,

dε
∣∣
ε=0

W2(µt, µ
′
t,ε) = lim

ε→0

(
1

ε2

∫
M

d2(x, expx(εw)
)

dµt(x)

)1/2

= ‖w‖Xµt .
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Arguing as in Step 3 in the proof of Lemma 4.4.3 with µ′t,ε, µt+ε and µt in lieu of µ′t, µt

and ν respectively,

|µ̇t| := dε
∣∣
ε=0

W2(µt, µt+ε) = dε
∣∣
ε=0

W2(µt, µ
′
t,ε) .

Combining the last two equalities yields the second assertion. Moreover, by [11, Thm. 1.1.2],

∀s < t W2(µs, µt) ≤
∫ t

s

|µ̇r| dr =

∫ t

s

‖w‖Xµr dr ≤ ‖w‖X0 |t− s| .

This concludes the proof. �

Lemma 4.4.6. Fix w ∈ X∞, µ0 ∈P and set µt := Ψw,tµ0. If u is L-Lipschitz continuous, then

the map U : t 7→ u(µt) is Lipschitz continuous with Lip[U ] ≤ L ‖w‖X0 for every choice of µ0 and

∀t ∈ R |DU | (t) ≤ |Du| (µt) ‖w‖Xµt . (4.4.15)

Proof. The Lipschitz continuity of U follows from those of u and t 7→ µt (Lem. 4.4.5). By

definition of slope,

|DU | (t) ≤ lim sup
ν→µt

|u(µt)− u(ν)|
W2(µt, ν)

lim sup
s→t

W2(µt, µs)

|t− s| = |Du| (µt) |µ̇t|

for every t ∈ R, whence (4.4.15) again by Lemma 4.4.5. �

Lemma 4.4.7. Let (µt)t∈I be an absolutely continuous curve in P2 connecting µ0 to µ1. Then,

for every u ∈ Z∞ there exists for a.e. t ∈ R the derivative

dtu(µt) = 〈∇u(µt) |wt〉Xµt ,

where (µt, wt) is any distributional solution of the continuity equation (4.3.5), and one has

u(µt)− u(µ0) =

∫ t

0

〈∇u(µs) |ws〉Xµs ds . (4.4.16)

Proof. Let f be in C∞(M), ϕ ∈ C∞c (R) be an arbitrary test function and denote by 〈 · | · 〉 the

canonical duality pair of distributions. Then,

〈dtf∗µt |ϕ〉 =

∫
R
ϕ′(t) f∗µt dt =

∫
R
ϕ′(t)

∫
M

f(x) dµt(x) dt

=

∫
R

∫
M

∂t(fϕ)(t, x) dµt(x) dt

=

∫
R
ϕ(t)

∫
M

〈∇f(x) |wt(x)〉g dµt(x) dt

for any time dependent vector field (wt)t such that (µt, wt)t is a solution of (4.3.5). Thus the

distributional derivative is representable by

dtf
∗µt =

∫
M

〈∇f(x) |wt(x)〉g dµt(x)

and

|dtf∗µt| ≤ ‖∇f‖C0 ‖wt‖Xµt .
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By Proposition 4.3.9 and absolute continuity of (µt)t the function t 7→ ‖wt‖Xµt is in L1
loc(R).

Thus t 7→ dtf
∗µt is itself in L1

loc(R). Let now u :=F ◦ f∗ ∈ Z∞. The above reasoning yields, in

the sense of distributions,

dtu(µt) =

k∑
i

(∂iF )(f∗µt) dt(f
∗
i µt) =

k∑
i

(∂iF )(f∗µt)

∫
M

〈∇fi |wt〉g dµt

= 〈∇u(µt) |wt〉Xµt ,

where (µt, wt)t is a solution of (4.3.5) as above and we used (4.2.3). Since t 7→ ∇u(µt) is

continuous and bounded by definition of u, the distributional derivative of the function t 7→ u(µt)

is again representable by some function in L1
loc(R). Thus, the Fundamental Theorem of Calculus

applies and one has

u(µt)− u(µ0) =

∫ t

0

dr
∣∣
r=s

u(µr) ds =

∫ t

0

〈∇u(µr) |wr〉Xµr ds .

This concludes the proof. �

The following Lemma is taken — almost verbatim — from [142].

Lemma 4.4.8 ([142, Lem. 6.1]). Fix w ∈ X∞. Then, for every bounded measurable u : P → R
and every v ∈ Z∞, for every t ∈ R∫ (

u ◦Ψw,t − u
)
v dP =−

∫ t

0

∫
u ◦ ψw,s] ·∇∗w v dP ds . (4.4.17)

4.4.3 On the differentiability of Lipschitz functions. In the following let u ∈ LipP2, w ∈
X∞ and set

Ωuw :=
{
µ ∈P | ∃Gwu(µ) := dt

∣∣
t=0

(u ◦Ψw,t)(µ)
}
. (4.4.18)

Since the function u ◦Ψw,t is continuous, the existence of Gwu coincides with that of the

limit limr→0
1
r
(u(ψr]µ)− u(µ)), r ∈ Q. As a consequence the set Ωuw is measurable.

Proposition 4.4.9. Fix u ∈ LipP2 and for any w ∈ X∞ let Ωuw be defined as in (4.4.18). Let

further X ⊂ X∞ be a countable Q-vector space dense in X0 and assume PΩuw = 1 for all w ∈ X .

Then, the assertions 4.2.4 (3.i) and 4.2.4 (3.ii) in Theorem 4.2.4 hold for u.

Proof. Fix w ∈ X . By assumption on X , there exists

Gwu(µ) = lim
t→0

u(Ψw,tµ)− u(µ)

t

for all µ in the set Ωuw of full P-measure. Moreover, by (4.4.15),

sup
t∈[−1,1]

∣∣∣∣u(Ψw,tµ)− u(µ)

t

∣∣∣∣ ≤ sup
t∈[−1,1]

Lip[u]

t

∫ t

0

‖w‖XΨw,rµ
dr ≤ Lip[u] ‖w‖X0 ,

thus, by Dominated Convergence,

Gwu = L2
P- lim
t→0

u ◦Ψw,t − u
t

. (4.4.19)

By continuity of t 7→ 1
t
(u ◦ ψw,t − u), combining Lemma 4.4.8 with (4.4.19) yields

∀v ∈ Z∞
∫
Gwu · v dP =

∫
u ·∇∗w v dP
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Next, notice that the map w 7→∇∗w v is linear for all v ∈ Z∞ by Assumption 4.2 (iii). Hence,

if w = s1w1 + · · ·+ skwk for some si ∈ R and wi ∈ X , then∫
Gwu · v dP =

k∑
i

si

∫
u ·∇∗wi v dP =

k∑
i

si

∫
Gwiu · v dP ,

thus

Gwu =

k∑
i

siGwiu P-a.e. . (4.4.20)

Since X is countable, the set Ωu0 :=
⋂
w∈X Ωuw has full P-measure by assumption. Therefore,

the set Ωu of measures µ ∈ Ωu0 such that w 7→ Gwu(µ) is a Q-linear functional on X has itself

full P-measure by (4.4.20).

For fixed µ ∈ Ωu we have |Gwu(µ)| ≤ |Du| (µ) ‖w‖Xµ for every w ∈ X by Lemma 4.4.6.

Since X is X0-dense in X∞, it is in particular Xµ-dense in X∞ for every µ ∈ P. Hence the

map w 7→ Gwu(µ) is a Xµ-continuous linear functional on the dense subset X and may thus

be extended on the whole space X∞ (in fact: on Xµ) to a continuous linear functional, again

denoted by w 7→ Gwu(µ) and again such that |Gwu(µ)| ≤ |Du| (µ) ‖w‖Xµ .

Thus, for every µ in the set of full P-measure Ωu there exists Du(µ) ∈ TµP2 such that

Gwu(µ) = 〈Du(µ) |w〉Xµ and ‖Du(µ)‖Xµ ≤ |Du| (µ). This concludes the proof of the first

statement in 4.2.4 (3.ii), which in turn implies 4.2.4 (3.i) since |Du| ( · ) ≤ Lip[u].

By definition of Ωu one has Ωu ⊂ Ωu
w for all w ∈ X , hence 4.2.4 (3.ii) is already proven

for all w ∈ X . In order to prove it for w ∈ X∞ \ X , fix ε > 0 and let w′ ∈ X be such

that ‖w − w′‖X0 < ε. Since M is compact, a straightforward modification of [142, Lem. 5.5]

yields ∣∣∣u(Ψw,tµ)− u(Ψw′,tµ)
∣∣∣ ≤ Lip[u]W2(Ψw,tµ,Ψw′,tµ) ≤ tLip[u] c0 e

c0 t ε

for some constant c0 := c0(M,w) <∞. As a consequence,

∀µ ∈ Ωu
∣∣∣∣u ◦Ψw,t − u

t
− 〈Du(µ) |w〉Xµ

∣∣∣∣ ≤εLip[u] c0 e
c0 t + ε ‖Du(µ)‖Xµ

+

∣∣∣∣∣u ◦Ψw′,t − u
t

−
〈
Du(µ)

∣∣w′〉
µ

∣∣∣∣∣
and letting t→ 0 yields the conclusion of 4.2.4 (3.ii) by arbitrariness of ε.

As consequence of 4.2.4 (3.ii) and the bound ‖Du(µ)‖Xµ ≤ Lip[u], by definition, u ∈
Fcont. �

Corollary 4.4.10. Assume P additionally satisfies Assumption 4.2 (iv) and let u ∈ LipP2.

Then, the assertions 4.2.4 (3.i) and 4.2.4 (3.ii) in Theorem 4.2.4 hold for u.

Proof. Let w ∈ X∞ and denote its flow by
(
ψw,t

)
t∈R. It suffices to show that u satisfies the

assumption on Ωuw in Proposition 4.4.9. By Lemma 4.4.6 the set
{
r ∈ [s, t] | Ψw,rµ ∈ Ωuw

}
has

full Lebesgue measure for every s < t in R and every µ ∈P. Thus

0 =

∫ 1

0

∫
1(Ωuw)c(Ψw,rµ) dP(µ) dr =

∫ 1

0

(Ψw,r
] P)

(
(Ωuw)c)dr =

∫ 1

0

∫
Rwr (µ)1(Ωuw)c(µ) dP(µ) dr ,

whence P
(
(Ωuw)c

)
= 0 by (4.2.7). �
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Corollary 4.4.11. Let (M, g) be additionally satisfying the STP (Ass. 4.2). Then, for every ν ∈
P the function uν : µ 7→W2(ν, µ) belongs to F0 and ‖Duν‖X · ≤ 1 P-a.e..

Proof. Assume first ν ∈ Preg and set Sθ(ν) := {µ ∈P | uν(µ) = θ}. Since P is a probability

measure, there exists a sequence θn → 0 as n→∞ such that PSθn(ν) = 0. As a consequence

of this fact and of Lemma 4.4.3, Proposition 4.4.9 applies to the map uν,θn : µ 7→ W2(ν, µ) ∨
θn with Ωuν,θn := P \ Sθn(ν), yielding ‖Duν,θn‖X · ≤ Lip[uν,θn ] = 1 P-a.e.. On the other

hand, uν,θn ∈ F0 by Lemma 4.4.4 and it is clear by reverse triangle inequality that limn uν,θn = uν

uniformly, whence uν ∈ F0 by Lemma 4.3.3.

If ν ∈ P \Preg, choose νn ∈ Preg narrowly convergent to ν. Again by reverse triangle

inequality limn uνn = uν uniformly and ‖Duνn‖X · ≤ 1 P-a.e. as above, hence the conclusion

again by Lemma 4.3.3. �

4.4.4 Proof of Theorem 4.2.4.

Proof of 4.2.4 (1) and 4.2.4 (2). The proof of [142, Prop. 1.4(i) and (iv)], together with the

auxiliary results [142, Lem.s 6.3, 6.4], carries over verbatim to our case. This proves the

closability of the forms in assertion 4.2.4 (1) and assertion 4.2.4 (2). Since F0 ⊂ Fcont ⊂ F ,

it suffices to prove the strong locality of (E ,F ). That is, by [23, Rmk. I.5.1.5] it suffices to

show that if u ∈ F , then %1 ◦ u, %2 ◦ u ∈ F and E(%1 ◦ u, %2 ◦ u) = 0 for %1, %2 ∈ C∞c (R) such

that %1(0) = %2(0) = 0 and supp%1 ∩ supp%2 = ∅.

Fix w ∈ X∞ and denote by
(
ψw,t

)
t∈R its flow. Since u ∈ F is bounded, the map U : t 7→

u ◦Ψw,t satisfies U(t) ∈ L2
P(P) for every t ∈ R, hence, [142, Lem. 6.4] yields for i = 1, 2

dt
∣∣
t=0

%i(U(t)) = %′i(U(0)) dt
∣∣
t=0

U(t) = (%′i ◦ u) 〈Du |w〉X ·

where all derivatives are taken in L2
P(P). Hence, the map µ 7→ %′i(u(µ))Du(µ) is a measurable

section of TDerP2, satisfies (4.2.11) and is such that

E(%i ◦ u, %i ◦ u) =

∫
%′i(u(µ)) ‖Du(µ)‖2Xµ dP(µ) ≤

∥∥%′i∥∥2

C0 E(u, u) <∞ . (4.4.21)

As a consequence, %i◦u ∈ F and the locality property follows now by (4.4.21) and polarization.

�

Proof of 4.2.4 (3). For fixed ν ∈ Preg let uν : P → R be defined by uν : µ 7→ W2(ν, µ). By

Lemma 4.4.3, for every µ ∈ Ων := P \ {ν} and every w ∈ X∞ there exists the limit Gwuν(µ)

defined in (4.4.18). Since P is diffuse by Assumption 4.2 (ii), the set Ων has full P-measure, hence

Proposition 4.4.9 applies to uν with Ωuν = Ων and one has ‖Duν(µ)‖Xµ ≤ Lip[uν ] = 1.

Since additionally uν ∈ Fcont by Proposition 4.4.9, if u is W2-Lipschitz continuous, then u ∈
Fcont and ‖Du‖X · ≤ Lip[u] P-a.e. by strong locality of (E ,F ) and Lemma 4.3.4 applied to

the dense set Preg, which proves 4.2.4 (3.i). If M additionally satisfies the STP, then we may

replace Fcont in the above reasoning with F0 thanks to Corollary 4.4.11.

If P additionally satisfies Assumption 4.2 (iv), then assertion 4.2.4 (3.ii) reduces to Corol-

lary 4.4.10. �

Intrinsic distances. Given a family of functions A ⊂ F set, for all µ, ν ∈P,

dA (µ, ν) := sup {u(µ)− u(ν) | u ∈ A ∩ C(P),Γ(u) ≤ 1 P-a.e. on P} .
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Corollary 4.4.12 (Intrinsic distances). Suppose that P satisfies Assumption 4.2 and let

dF0 ≤ dFcont ≤ dF

be the intrinsic distances (4.3.3) of the Dirichlet forms (E ,F0), (E ,Fcont) and (E ,F ) respectively.

Then,

dZ∞ ≤W2 ≤ dFcont .

If additionally STP holds, then the above statement holds with dF0 in lieu of dFcont .

Proof. Let A = F0,Fcont,F . If uν ∈ A then

dA (µ, ν) ≥ uν(µ)− uν(ν) = W2(µ, ν) ,

hence it suffices to keep track of the assumptions under which uν ∈ F0,Fcont,F respectively

in order to show W2 ≤ dA . One has uν ∈ Fcont ⊂ F by the proof of Theorem 4.2.4 (3) above,

while uν ∈ F0 under the STP by Corollary 4.4.11.

Let now u ∈ Z∞ with ‖Du‖X · ≤ 1 P-a.e.. Since Du = ∇u is continuous, if P is fully

supported (Assumption 4.2 (i)), then ‖Du(µ)‖Xµ ≤ 1 for all µ ∈ P. In the same notation of

Lemma 4.4.7, it follows from (4.4.16) that

u(µ1)− u(µ0) =

∫ 1

0

〈∇u(µs) |ws〉Xµs ds ≤
∫ 1

0

‖ws‖Xµs ds .

Taking the infimum of the above inequality over all distributional solutions (µs, ws)s∈I

of (4.3.5) with fixed µ0, µ1 yields u(µ1)− u(µ0) ≤W2(µ0, µ1) by e.g. [10, Prop. 2.30].

This settles all the inequalities in the assertion. �

4.5 Examples

We collect here some examples of measures satisfying our main Theorem 4.2.4. These include

the family of normalized mixed Poisson measures §4.5.3 (for any M), the entropic measure §4.5.5

and an image on P2 of the Malliavin–Shavgulidze measure §4.5.6 (both in the case M = S1).

We notice that a proof of Theorem 4.2.4 for the entropic measure was already sketched in [140,

Prop. 7.26]. Again when M is arbitrary, we also provide an example of a measure not satisfying

Assumption 4.2, namely the Dirichlet–Ferguson measure §4.5.4. However, relying on results

in the present chapter, we will show in Chapter 5 that the assertions 4.2.4 (1)–4.2.4 (3.i) in

Theorem 4.2.4 hold for this measure too. Finally, we show how to construct more examples from

those listed above, by considering shifted measures, weighted measures and convex combinations.

Notation. Everywhere in this section let φ ∈ Diff∞(M) and denote by Φ: M +
b → M +

b the

shift by φ, by φ∗ : L0(M)→ L0(M) the pullback by φ, and by Jm
φ the modulus of the Jacobian

determinant of φ with respect to m.

Denote further by N : M +
b →P the normalization map N : ν 7→ ν := ν/νM . It is straightfor-

ward that N is continuous with respect to the chosen topologies, hence measurable with respect

to the chosen σ-algebras. Moreover, it is readily verified that N and Φ :=φ] commute, i.e.

N ◦ Φ = Φ ◦N : M +
b −→P . (4.5.1)
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4.5.1 On Assumption 4.2. We collect here some comments on Assumption 4.2. First of all,

let us show how one can construct examples of measures satisfying Assumption 4.2 starting from

a single one.

Lemma 4.5.1. Let w ∈ X∞ and u ∈ Z∞. Then,

∇w(u ◦ Φ) = ∇φ∗w u ◦ Φ .

Proof. Let f ∈ C∞(M). Then

∇(f∗ ◦ Φ) = ∇((f ◦ φ)∗) = ∇(f ◦ φ) .

By (4.2.4), the proof reduces now to the following computation

〈∇(u ◦ Φ)(µ) |w〉Xµ =

k∑
i

(∂iF )(f∗(Φµ))

∫
M

d(f ◦ φ)x(wx) dµ(x)

=

k∑
i

(∂iF )(f∗(Φµ))

∫
M

dfφ(x)(dφxwx) dµ(x)

=

k∑
i

(∂iF )(f∗(Φµ))

∫
M

dfy(dφφ−1(y)wφ−1(y)) dΦµ(y)

= 〈∇u(Φµ) |φ∗w〉XΦµ
. �

Proposition 4.5.2. Let P ∈ P(P), φ ∈ Diff∞(M) and ϕ ∈ F be such that ϕ > 0 P-a.e.

and ‖ϕ‖L2
P

= 1. Set P′ := Φ]P and Pϕ :=ϕ2 · P. Then,

(i) if P satisfies Assumption 4.2 (i), then so do P′ and Pϕ;

(ii) if P satisfies Assumption 4.2 (ii), then so do P′ and Pϕ;

(iii) if P satisfies Assumption 4.2 (iii), then so do P′ and Pϕ;

(iv) if P satisfies Assumption 4.2 (iv), then so does Pϕ. If additionally φ = ψw,t for some w ∈
X∞, t ∈ R, then, additionally, P′ satisfies Assumption 4.2 (iv) too.

Proof. Since φ is bijective, so are Φ :=φ] and Φ]. This proves (i) and (ii) for P′; they are also

straightforward for Pϕ since ϕ2 > 0 P-a.e.. In both cases, (iv) is straightforward by (4.2.7).

In order to show (iii) for P′, we need to show that there exists an operator ∇∗
′
w : Z∞ → L2

P′(P)

such that (4.2.6) holds with P′ in lieu of P and ∇∗
′
w in lieu of ∇∗w. Since φ is a diffeomorphism,

the notations φ−1
∗ and φ−1

] = φ]
−1 = Φ−1 are unambiguous. Then, by Lemma 4.5.1,∫

∇w u · v dP′ =

∫
∇w u ◦ Φ · v ◦ Φ dP =

∫
∇
φ
−1
∗ w

(u ◦ Φ) · v ◦ Φ dP

=

∫
u ◦ Φ ·∇∗

φ
−1
∗ w

(v ◦ Φ) dP =

∫
u ·∇∗

φ
−1
∗ w

(v ◦ Φ) ◦ Φ−1 dP′ .

Assertion (iii) follows by putting ∇∗
′
w v :=∇∗

φ
−1
∗ w

(v ◦ Φ) ◦ Φ−1.

In order to show (iii) for Pϕ assume first that ϕ ∈ Z∞, whence ϕ is continuous and bounded

(Rmk. 4.2.2). Then, by (4.2.3) and (4.2.4)∫
uϕ2 ·∇∗w v dP =

∫
∇w(uϕ2) · v dP =

∫
∇w u · ϕ2v dP +

∫
ϕ2uv · (2ϕ−1 ∇w ϕ) dP

and the assertion follows by setting ∇∗,ϕw v :=∇∗ v − (2ϕ−1 ∇w ϕ)v. The general case follows by

approximation as soon as we show that the pre-Dirichlet form

Fϕ :=

{
u ∈ F |

∫ (
u2 + ‖Du‖2X ·

)
ϕ2 dP <∞

}
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Eϕ(u, v) :=

∫
ϕ2 〈Du |Dv〉X · dP

is closable. Provided that (E ,F ) is a strongly local Dirichlet form by Theorem 4.2.4 (1), this last

assertion is the content of [48, Thm. 1.1]. �

Remark 4.5.3. While points (i)–(iii) of the Proposition suggest that Assumptions 4.2 (i)–4.2 (iii)

are quite generic with respect to shifting P by (the lift of) a diffeomorphism, point (iv) is (by

far) more restrictive, as the inclusion Flow(M) ( Diff∞+ (M) is always strict, even on S1. (See

e.g. [66].)

It is clear that the closability of the pre-Dirichlet forms (E ,Z∞) and (E ,Fcont) associated to P
is essential to our approach in discussing Rademacher-type theorems, which settles the necessity

of Assumption 4.2 (iii). Assumption 4.2 (i) is instead motivated by the following trivial example.

Example 4.5.4. Denote by δ : M 7→P the Dirac embedding x 7→ δx and set P := δ]m. Since P
is supported on the family of Dirac masses, it does not satisfy 4.2 (i). On the other hand,

since W2(δx1 , δx2) = dg(x1, x2) for every x1, x2 ∈M , it is clear that (P,W2,P) and (M, dg,m)

are isomorphic as metric measure spaces, which shows 4.2 (ii). Moroever,

Φ]δ]m = (Φ ◦ δ)]m = (δ ◦ φ)]m = δ](Φm) = δ](J
m
φ ·m) = (Jm

φ )∗ · δ]m

and 4.2 (iii) holds for P as well.

Remark 4.5.5. Incidentally, notice that Theorem 4.2.4 applied to Example 4.5.4 provides a

non-local proof of the classical Rademacher Theorem on a closed Riemannian manifold. Indeed

it suffices to notice that TDer
δx
∼= TxM as Hilbert spaces for every x ∈M and that every Lipschitz

function f ∈ Lip(M) induces a Lipschitz function f̃ ∈ Lip(P2), namely the (e.g. lower) McShane

extension f̃ of the function f ◦ δ−1 defined on the image of δ.

Proposition 4.5.6. The following chain of implications holds true:

4.2 (v) =⇒ 4.2 (iv) ∧ 4.2 (iii) =⇒ 4.2 (iv) =⇒ 4.2 (ii) .

In particular: 4.2 (i) and 4.2 (v) together imply Assumption 4.2.

Proof. The implication 4.2 (v) =⇒ 4.2 (iv) is trivial. It is readily seen that Assumption 4.2 (ii)

is already implied by the first part of 4.2 (iv). It remains to show that 4.2 (v) =⇒ 4.2 (iii).

Indeed, ∫
∇w u · v dP =

∫
lim
t→0

u ◦Ψw,t − u
t

· v dP

= lim
t→0

1

t

∫ (
u · v ◦Ψw,−t ·Rw−t − uv

)
dP

= lim
t→0

1

t

∫
u
(
v ◦Ψw,−t − v

)
dP

+ lim
t→0

1

t

∫
u
(
v ◦Ψw,−t − v

)
(Rw−t − 1) dP

+ lim
t→0

1

t

∫
uv (Rw−t − 1) dP .

The first limit in the last equality satisfies, by Dominated Convergence,

lim
t→0

1

t

∫
u
(
v ◦Ψw,−t − v

)
dP =−

∫
u ·∇w v dP .
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The second limit vanishes, again by Dominated Convergence, since t 7→ Rwt (µ) is continuous

(differentiable) at t = 0 for P-a.e. µ. In light of Assumption 4.2 (v), differentiating under integral

sign, the third limit satisfies

lim
t→0

1

t

∫
uv (Rw−t − 1) dP =

∫
uv · ∂t

∣∣
t=0

Rw−t dP .

As a consequence, Assumption 4.2 (iii) is satisfied by letting

∇∗w v :=−∇w v − ∂t
∣∣
t=0

Rw−t · v .

This concludes the proof. �

4.5.2 On the Smooth Transport Property. The reader is referred to [56] and references

therein for an expository treatment of regularity theory of optimal transport maps on Riemannian

manifolds, whereof we make use in the present section. We denote by STxM :={w ∈ TxM |
|w|gx = 1} the unit tangent space to (M, g) at x. Everywhere in the following also let c := 1

2
d2.

Further geometrical assumptions. For x ∈M and w ∈ TxM define the cut, resp. focal, time by

tc(x,w) := inf {t > 0 | s 7→ expx(sw) is not a d-minimizing curve from x to expx(tw)}

tf(x,w) := inf
{
t > 0 | dtw expx : TxM → Texpx(tw)M is not invertible

}
and the (tangent), resp. (tangent) focal, cut locus and injectivity domain by

TCL(x) := {tc(x,w)w | w ∈ STxM} , cut(x) := expx(TCL(x)) ,

TFL(x) := {tf(x,w)w | w ∈ STxM} , fcut(x) := expx(TCL(x) ∩ TFL(x)) ,

I(x) := {tw | w ∈ STxM, 0 ≤ t < tc(x,w)} .

Finally, recall the definition of the Ma–Trudinger–Wang tensor

S(x,y)(w,w
′) :=− 3

2
d2
s

∣∣
s=0

d2
t

∣∣
t=0

c
(
expx(tw), expx(v + sw′)

)
where x ∈M , y ∈ I(x), w,w′ ∈ TxM and v := exp−1

x (y).

The following definitions are taken from [56].

Definition 4.5.7 (Non-focality of cut loci). We say that (M, g) is non-focal if it additionally

satisfies fcut(x) = ∅ for all x ∈M .

Definition 4.5.8 (Strong Ma–Trudinger–Wang condition MTW(K)). We say that (M, g)

satisfies the strong Ma–Trudinger–Wang condition with constant K (in short: M is MTW(K)) if

there exists a constant K > 0 such that

∀x ∈M , y ∈ expx(I(x)) S(x,y)(w,w
′) ≥ K

∣∣w∣∣2
gx

∣∣w′∣∣2
gx

whenever w> [c · , · ]w
′ = 0 ,

where [c · , · ] denotes the matrix of derivatives ci,j := ∂2
xi,yj c.

Our main interest in the previous definitions is the following regularity result.

Theorem 4.5.9 (Loeper–Villani (See e.g. [56, Cor. 3.13].)). Let (M, g) be additionally non-focal

and satisfying MTW(K). Then M satisfies the STP (Ass. 4.2).

Remark 4.5.10. The strong MTW condition is sufficient, whereas not necessary, to establish the

above result. A discussion of optimal assumptions is here beyond our purposes. It will suffice to

say that the proof strategy of Lemma 4.4.4 fails as soon as MTW(0) is negated, which in turn

implies that c-convex C1 functions are not uniformly dense in (Lipschitz) c-convex functions.

(See [56, Thm. 3.4].)
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4.5.3 Normalized mixed Poisson measures. We denote by Ϋ the space of integer-valued

Radon measures over (M, g) with arbitrary finite number of atoms, always regarded as a

subspace of M +
b , endowed with the vague topology (which coincides with the narrow topology

by compactness of M) and with the associated Borel σ-algebra. Similarly to [7, 142], we let ρ ∈
C1(M ;R+) and denote by Pσ the Poisson measure of intensity σ := ρm on Ϋ. Given λ ∈P(R+)

such that λ(1 ∧ idR+) <∞, henceforth a Lévy measure, we denote by Qλ,σ the mixed Poisson

measure

Qλ,σ( · ) =

∫
R+

Ps·σ( · ) dλ(s) .

Recall that Pσ, hence Qλ,σ, is concentrated on the configuration space

Υ :=
{
γ ∈ Ϋ | γ {x} ∈ {0, 1} for all x ∈M

}
.

Moreover (see [7, Prop. 2.2]), for all γ ∈ Υ

d
(
Φ]Pσ

)
dPσ

(γ) = exp
(
σ(1−pσφ)

)∏
x∈γ

pσφ(x) , where pσφ(x) :=
φ∗ρ(x)

ρ(x)
Jm
φ (x) (4.5.2)

and by x ∈ γ we mean γ {x} > 0. Since we chose ρ ∈ L1
m(M), the measure σ is finite,

hence γM <∞ for Pσ-a.e. γ, i.e. Pσ-a.e. γ is concentrated on a finite number of points. As a

consequence, the same statement holds for Qλ,σ in lieu of Pσ and one has

for Qσ,λ-a.e. γ Rσφ(γ) :=
∏
x∈γ

pσφ(x) = exp

∫
M

ln
(
pσφ(x)

)
dγ(x) . (4.5.3)

Example 4.5.11 (Normalized mixed Poisson measures). Let λ ∈ P(R+) be a Lévy measure

with compact support and set P := N]Qλ,σ. Assumption 4.2 (ii) is satisfied because of the

diffuseness of σ, whence that of Pσ and, in turn, that of Qλ,σ. Assumptions 4.2 (iv) and 4.2 (iii)

are respectively verified in Lemmas 4.6.5 and 4.6.6 below. In particular, the closability of

the pre-Dirichlet form in (4.2.13) is obtained as a consequence of the quasi-invariance of P.

Assumption 4.2 (i) is verified in Lemma 4.6.7 below.

Denote now by M�n :=M×n/Sn the quotient of the n-fold cartesian product M×n by the

symmetric group Sn acting by permutation of coördinates. Let further M×n◦ denote the set of

points x := (x1, . . . , xn) in M×n such that xi 6= xj for i 6= j, and set

M (n) :=M×n◦ /Sn .

Denote by prSn : M×n◦ → M (n) the quotient projection, and set σ(n) := prSn] σ⊗n. It is

well-known that, when (M,σ) is a finite Radon measure space, then (Υ,Pσ) is isomorphic, as a

measure space, to the space

⊕
n∈N1

(
M (n), e−σMσ(n)/n!

)
. (4.5.4)

More explicitly, the isomorphism is given by identifying M (n) with Υ(n), the space of configura-

tions γ ∈ Υ such that γM = n. Finally, define the following subsets of P

N
(
Υ(n)) ⊂∆̊n :=

{
n∑
i

siδxi | x ∈M
(n), si ∈ R+

}
⊂ ∆̊fin :=

⋃
n

∆̊n ,

N
(
Ϋ(n)) ⊂∆n :=

{
n∑
i

siδxi | x ∈M
×n, si ∈ R+

}
⊂ ∆fin :=

⋃
n

∆n .

(4.5.5)
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Remark 4.5.12. While the support ∆̊1 = ∆1 ∼= M of the measure constructed in Example 4.5.4

is “small” in various senses — e.g., it is a closed nowhere dense subset of P —, the normalized

(mixed) Poisson measures in Example 4.5.11 are fully supported. On the other hand though, even

these measures are concentrated on ∆̊fin, which may itself be still regarded as “small” — e.g.,

since the measure space (∆fin,N]Qλ,σ) may be approximated in many senses via the sequence

of compact finite-dimensional measure spaces (∆n,N]Qλ,σ
∣∣
∆n

).

4.5.4 The Dirichlet–Ferguson measure. Example 4.5.11 shows that the laws of (normalized)

point processes on M may be examples of measures on P satisfying Assumption 4.2. In light of

Remark 4.5.12, the question arises, whether such laws may be chosen to be concentrated on sets

richer than ∆̊fin, and in particular on the whole set of purely atomic measures.

In this section we introduce for further purposes a negative example, the Dirichlet–Ferguson

measure over M (see below), satisfying Assumptions 4.2 (i)–4.2 (ii) and the closability of the

form (E ,D(E)), whereas not 4.2 (iii) nor 4.2 (iv). These properties are verified in Chapter 5,

basing on the characterization of the measure in Theorem 4.5.13 below.

Preliminaries. Denote by m the normalized volume measure of M . Everywhere in the following

let β ∈ (0,∞) be defined by m = βm. Set further M̂ :=M × I, always endowed with the product

topology, σ-algebra and with the measure m̂β := m⊗ Bβ , where

dBβ(r) :=β(1− r)β−1 dr

is the Beta distribution on I with parameters 1 and β.

The Dirichlet–Ferguson measure. We denote by Dm the Dirichlet–Ferguson measure [55] over

(M,B) with intensity m. The measure is also known as: Dirichlet, Poisson–Dirichlet [157], (law of

the) Fleming–Viot process with parent-independent mutation [132]. The characteristic functional

of Dm may be found in Chapter 2, together with further properties of the measure. The following

characterization is originally found, in the form of a distributional equation, in [145, Eqn. (3.2)].

Theorem 4.5.13 (Mecke-type identity for Dm [145], see Chapter 3). Let u : P × M̂ → R be

measurable semi-bounded. Then, there exists a unique measure Dm on P satisfying∫∫
M

u(η, x, ηx) dη(x) dDm(η) =

∫∫
M̂

u(η +r δx, x, r) dm̂β(x, r) dDm(η) . (4.5.6)

The unacquainted reader may take this result as a definition of Dm.

4.5.5 The entropic measure. In this section we recall an example showing that there exist

measures on P — other than normalized mixed Poisson measures — satisfying Assumption 4.2.

Preliminaries. Similarly to [140, §2.2], define

G (R) := {g : R→ R, right-cont. non-decr., s.t. ∀x ∈ R g(x+ 1) = g(x) + 1}

In light of the equi-variance property, each g ∈ G (R) uniquely induces a Borel function

prG (g) : S1 → S1 and we set G := prG (G (R)), endowed with the L2-distance

‖g1 − g2‖G :=

(∫
S1

|g1(t)− g2(t)|2 dm(t)

)1/2

.

Letting S1 ∼= R/Z, define further for every a ∈ S1 the translation τa : S1 → S1 by

τa : t 7→ t+ a (mod 1) ,
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and define an equivalence relation ∼ on G by setting g ∼ h for g, h ∈ G if and only if g = h ◦ τa
for some a ∈ S1. Denote by prG1 the quotient map of G modulo this equivalence relation, with

values in the quotient space G1 := prG1(G ) = G /S1 endowed with the quotient L2-distance

‖g1 − g2‖G1
:=

(
inf
s∈S1

∫
S1

|g1(s)− g2(t+ s)|2 dm(t)

)1/2

.

Equivalently, G1 is the semi-group of right-continuous non-decreasing functions on S1 ∼= [0, 1)

fixing 0 ∈ S1. Finally, the space
(
G1, ‖ · ‖G1

)
is isometric ([140, Prop. 2.2]) to P2 :=

(
P2(S1),W2

)
via the map

χ : g 7→ g]m . (4.5.7)

The conjugation map Cm (cf. [151, §3]). For µ ∈P let ϕµ :=ϕm→µ be given by Theorem 4.3.8

(recall that m ∈Preg). The conjugation map Cm : P →P is defined by

Cm : µ 7→
(
exp∇(ϕc

µ)
)
]
m .

It was shown in [151, Thm. 3.6] that Cm is an involutive homeomorphism of P2. If M = S1,

then the conjugation map may be alternatively defined in the following equivalent way. Let

gµ(t) := inf {s ∈ I | µ[0, s] > t}

(Here: conventionally, inf ∅ := 1.) denote the cumulative distribution function of µ ∈ P(S1).

Observe that gµ ∈ G1, hence it admits a left inverse g−1
µ in G1 given by

g−1
µ (t) := inf {s ≥ 0 | g(s) > t} .

Then, Cm(µ) = dg−1
µ where, for any g ∈ G1, we denoted by dg the Lebesgue–Stieltjes measure

associated to ϕ (see [140] for the detailed construction).

Definition 4.5.14 (entropic measure over M [151, Dfn. 6.1]). The entropic measure Pm is the

Borel probability measure on P2 defined by Pm :=Cm
] Dm, where Dm is the Dirichlet–Ferguson

measure of §4.5.4.

Since Cm is a homeomorphism, Pm satisfies Assumptions 4.2 (i), 4.2 (ii) because so does Dm.

The quasi-invariance of Pm as in Assumption 4.2 (iv) and Assumption 4.2 (iii) (hence the

closability of the Dirichlet form (4.2.13)) are a challenging problem. They have been proven in

the seminal work [140] for the case M = S1, which leads us to the following example.

Example 4.5.15 (The entropic measure over S1 [140, Dfn. 3.3]). Let β > 0 be a fixed constant

and let M = S1 be endowed with the rescaled volume measure m :=βLeb1. The quasi-invariance

of Pm — as in Assumption 4.2 (iv) — was proven in [140, Cor. 4.2] (in fact, it was proven for

the action of the whole of Diff2(M) rather than only for Flow(M), cf. Rmk. 4.5.3). Although

not apparent, the bound (4.2.7) for the Radon–Nikodým derivative Rwr may be deduced from

the explicit computations in [140, Lem. 4.8]. In fact, Assumption 4.2 (v) holds too, because

of [140, Lem. 5.1(ii)]. Assumption 4.2 (iii) holds as a consequence of 4.2 (v) by Proposition 4.5.6.

Together with the previous discussion, this shows that Pm satisfies Assumption 4.2.

The closability of the form (E ,F0) is proven in [140, Thm. 7.25], where the family of cylinder

functions Z∞ is introduced in [140, Dfn. 7.24] and denoted by Z∞(P). A proof of the Rademacher

property in the form of our Theorem 4.2.4 (3.i) is sketched in [140, Prop. 7.26].

Remark 4.5.16. Finally, let us notice that Pm-a.e. µ is concentrated on an m-negligible set [140,

Cor. 3.11]. In fact, it is not difficult to show that Pm-a.e. µ is concentrated on the set of irrational

points of a Cantor space, i.e. any (non-empty) totally disconnected perfect metrizable compact

space.
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4.5.6 An image on P of the Malliavin–Shavgulidze measure. As a final example, we

introduce here an image on P(S1) of the Malliavin–Shavgulidze measure on Diff1
+(S1).

Preliminaries. See e.g. [100] for a detailed exposition and further references. Let M = S1

with volume measure m := Leb1 and denote by C0(I◦) the space of continuous functions on I

vanishing at both 0 and 1, endowed with the trace topology of C(I). Consider the space Diff1
+(S1)

of orientation preserving C1-diffeomorphisms of S1, endowed with the topology of uniform

convergence, and let ξ : Diff1
+(S1)→ S1 × C0(I◦) be the homeomorphism defined by

ξ : g(t) 7→
(
g(0), ln g′(t)− ln g′(0)

)
.

Definition 4.5.17 (The Malliavin–Shavgulidze measure). Let W0 be the Borel probability

on C(I) defined as the law of the Brownian Bridge connecting 0 to 0 in time 1, concentrated

on C0(I◦). The Malliavin–Shavgulidze measure M on Diff1
+(S1) [116] is the Borel probability

measure defined by M :=(ξ−1)](m⊗W0).

Denote further by S the Schwarzian derivative operator

S : φ 7→ φ′′′

φ′
− 3

2

(
φ′′

φ′

)2

,

and consider the left action Lφ : g 7→ φ ◦ g of the subgroup Diff3
+(S1). The measure M is

quasi-invariant with respect to Lφ and the following quasi-invariance formula holds true (see

e.g. [116]) for every Borel A ⊂ Diff1
+(S1)

M(Lφ(A)) =

∫
A

exp

[∫
S1

S(φ)(g(t)) · g′(t)2 dm(t)

]
dM(g) . (4.5.8)

The Malliavin–Shavgulidze image measure. Every C1-function in G is a C1-diffeomorphism of S1,

orientation-preserving since induced by a non-decreasing function, and every such diffeomorphism

arises in this way. Furthermore, Diff1
+(S1) embeds continuously into G . It follows that M may

be regarded as a (non-relabeled) measure on G .

Example 4.5.18 (The Malliavin–Shavgulidze image measure). Consider the Borel probability

measure M on G . The measure M1 := prG1
] M is a well-defined Borel probability measure on G1

by measurability (continuity) of prG1 . The Malliavin–Shavgulidze image measure S is the Borel

probability measure on P defined by

S :=χ](prG1
] M) .

Assumptions 4.2 (i) for S is readily verified from the properties of the Malliavian–Shavgulidze

measure M. In fact, S is concentrated on the set(
Diff1

+(S1)/Isom+(S1)
)
]
m ⊂Pm(S1) .

Assumption 4.2 (v) is verified in Lemma 4.6.8 below, which suffices to establish Assumption 4.2

by Proposition 4.5.6.

Remark 4.5.19. Examples 4.5.11, 4.5.15 and 4.5.18 clarify that Assumption 4.2 poses no restriction

to the subset of P where P is concentrated. Indeed, as argued above

• N]Qλ,σ-a.e. µ ∈P2(S1) is purely atomic;

• Pm-a.e. µ ∈P2(S1) is singular continuous (w.r.t. the volume measure of S1);

• S-a.e. µ ∈P2(S1) is absolutely continuous (w.r.t. the volume measure of S1).
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Furthermore, it is readily seen that, if P and P′ both satisfy Assumption 4.2, then so does

any convex combination thereof. Thus, it is possible to construct a measure P on P2(S1) such

that P-a.e. µ has Lebesgue decomposition consisting of both a singular, a singular continuous

and an absolutely continuous part.

4.6 Appendix

4.6.1 On the notion of tangent bundle to P2. The concept of ‘tangent space’ to P2 at a

point µ or ‘space of directions’ through µ has been widely investigated. (See [11, 60, 63, 64] and,

especially, the bibliographical notes [10, §6.4].) At least the following three different notions are

available

• the tangent space T∇µ P2 := clXµX
∞
∇ ;

• the geometric tangent space, denoted here by TµP2, defined in [63, Dfn. 5.4];

• the pseudo-tangent space, denoted here by TDer
µ P2 :=Xµ, considered as auxiliary space

in [29, 60].

It was proven in [63, Prop.s 6.1, 6.3] (cf. [10, Thm. 6.1]) that T∇µ P2
∼= TµP2 if and only

if µ ∈ Preg; if otherwise, then T∇µ P2 embeds canonically non-surjectively in TµP2 and the

latter is not a Hilbert space. The relation between T∇µ P2 and TDer
µ P2 is made explicit in the

following.

Preliminaries. By a Fréchet space we mean a locally convex completely metrizable topological

vector space. In this section, we endow C∞(M) with its usual Fréchet topology τC∞(M) and

denote by C∞(M)∗ the topological dual
(
C∞(M), τC∞(M)

)∗
endowed with the weak* topology

(see e.g. [155, §1.9]). Analogously, we endow Z∞ with the locally convex metrizable linear

topology τZ∞ induced by the countable family of semi-norms

|u|k := sup
w1,...,wk∈X∞

‖(∇w1 ◦ · · · ◦∇wk )u‖C(P2) , k ∈ N0 ,

where it is understood that |u|0 is but the uniform norm on C(P2). We denote by Z∞∗ the

topological dual of (Z∞, τZ∞), endowed with the weak* topology.

Divergence operator (cf. [60, §2.3]). The divergence operator divµ : X∞ → C∞(M)∗ mapping

w 7→
(
〈divµw | · 〉 : f 7→ −

∫
M

(df(w))(x) dµ(x)

)
satisfies

〈divµw | f〉 ≤ ‖∇f‖Xµ ‖w‖Xµ , (4.6.1)

hence it extends by continuity to a (non-relabeled) operator divµ : TDer
µ P2 → C∞(M)∗ and one

has (e.g. [60, Rmk. 2.7])

TDer
µ P2 = T∇µ P2 ⊕ ker divµ , (4.6.2)

where the symbol ⊕ denotes the orthogonal direct sum of Hilbert spaces.

On the one hand, it is clear that, if µ ∈P∞,×, then ker divµ is non-trivial as soon as X∞ 6= X∞∇ .

This holds in particular if (M, g) has non-trivial de Rham cohomology group H1
dR(M ;R). On

the other hand (cf. [60, Example 2.8]), if η ∈P has finite support, then

T∇η P2 = TDer
η P2 =

⊕
x∈ptws η

(
TxM,ηx · gx

)
. (4.6.3)
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Local derivations. Motivated by the definition, for finite-dimensional differentiable manifolds,

of space of derivatives at a point (or pointwise derivations) (see e.g. [32, Cor. 2.2.22]), we define

for fixed µ ∈P the linear functional ∂µw : Z∞ → R by

∂µw : u 7→ 〈∇u(µ) |w〉Xµ .

Letting evµ : Z∞ → R be defined by evµ(u) :=u(µ), it is readily verified (cf. Lem 4.6.2 below)

that ∂µw satisfies Leibniz rule in the form

∂µw(uv) = evµ(v) ∂µwu+ evµ(u) ∂µwv . (4.6.4)

We denote by Der(Z∞)µ ⊂ Z∞∗ the space of continuous linear functionals on Z∞ satisfy-

ing (4.6.4), endowed with the trace topology. Since Z∞∗ is Hausdorff and complete, the (uni-

formly) continuous linear operator ∂µ· : X∞ → Z∞∗ extends to a uniquely-defined non-relabeled

operator ∂µ· : Xµ → Z∞∗ by [156, §I.5, Thm. 5.1, p. 39]. Moreover,

∂µw(u) ≤ ‖∇u(µ)‖Xµ ‖w‖Xµ , (4.6.5)

hence one has in fact ∂µw ∈ Der(Z∞)µ for every w ∈ Xµ.

Proposition 4.6.1. Denote by j : f 7→ f∗ the canonical injection C(M)→ C(M)∗.

Then, divµ( · ) = −∂µ· ◦ j : Xµ → C∞(M)∗ and ker divµ ∼= ker ∂µ· ⊂ Xµ as Hilbert spaces.

Proof. For any f ∈ C∞(M) and w ∈ X∞ it holds that

(∂µw ◦ j)(f) = ∂µw(f∗) =

∫
M

〈∇fx |wx〉g dµ(x) = µ(df(w)) = −〈divµw | f〉 , (4.6.6)

that is divµ( · )(·) = −∂µ· (j(·)) on X∞ ⊗ C∞(M). By (4.6.5) applied to u = f∗ ∈ Z∞, the

operator ∂µ· ◦ j : X∞ → C∞(M)∗ may be extended to a uniquely defined non-relabeled operator

∂µ· ◦ j : Xµ → C∞(M)∗ and the notation is consistent in the sense that this operator coincides

with the previously defined extension of ∂µ· applied to j. Since both ∂µ· ◦ j and −divµ( · ) are

linear and ‖ · ‖Xµ -continuous and coincide on the dense set X∞ ⊂ Xµ, they coincide on the whole

space Xµ. It remains to show that ker ∂µ· = ker ∂µ· ◦ j, which follows immediately by noticing

that for any u = F ◦ f∗ ∈ Z∞ and w ∈ Xµ

∂µw(u) =

k∑
i

(∂iF )(f∗µ)

∫
M

〈∇xfi |wx〉g dµ(x) = −
k∑
i

(∂iF )(f∗µ) 〈divµw | fi〉

=

k∑
i

(∂iF )(f∗µ)(∂µw ◦ j)(fi) .

This concludes the proof. �

Tangent bundles. Let us denote by T∇P2 the tangent bundle to P2, set-wise defined as the

disjoint union of T∇µ P2 varying µ ∈ P2. The pseudo-tangent bundle TDerP2 is analogously

defined. Whereas this terminology is well-established, it is clear that T∇P2 is not a vector bundle

in the standard sense — nor in any reasonable sense —, since it admits no local trivialization by

reasons of the dimension of T∇µ P2. Indeed, for any x0 ∈M and every ε > 0 one can find a smooth

function ρε ∈ C∞(M) such that µε := ρεm ∈ Pm and W2(δx0 , µε) < ε, yet T∇δx0
P2
∼= Tx0M

while T∇µ P2 is infinite-dimensional. The same is true for TDerP2.

Despite this fact, the gradient ∇u of a cylinder function u ∈ Z∞ may well be regarded as a

‘smooth section’ of T∇P2 since ∇u(µ) ∈ T∇µ P2 by (4.2.3). Again by (4.2.3) the space of all
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such gradients is a subspace of the space Z∞ ⊗R X∞∇ of Z∞-linear combinations of gradient-type

vector fields. This motivates the Definition 4.2.3 of cylinder vector fields XC∞ :=Z∞ ⊗R X∞,

henceforth regarded — in analogy to the case of finite-dimensional manifolds — as (a subspace

of) the space of ‘smooth sections’ of the tangent bundle TDerP2. In spite of Proposition 4.6.1,

the fiber-bundle TDerP2 does in fact convey more information than the fiber-bundle T∇P2.

Global derivations. Consider the space Der(Z∞) of abstract R-derivations of Z∞.

Lemma 4.6.2. Let w ∈ X∞. Then, the map

∂w : u 7→ dt
∣∣
t=0

(u ◦Ψw,t) = 〈∇u |w〉X ·

is an element of Der(Z∞).

Proof. One has

dt
∣∣
t=0

u(Ψw,tµ) =

k∑
i

(∂iF )(f∗ψw,0] µ)× dt
∣∣
t=0

f∗i Ψw,tµ =

k∑
i

(∂iF )(f∗µ)× dt
∣∣
t=0

µ(fi ◦ ψw,t)

=

k∑
i

(∂iF )(f∗µ)× µ
(
dt
∣∣
t=0

(fi ◦ ψw,t)
)

=

k∑
i

(∂iF )(f∗µ)× µ 〈∇fi |w〉g

=

k∑
i

(∂iF )(f∗µ)× 〈∇fi |w〉∗g µ (4.6.7)

= 〈∇u(µ) |w〉Xµ . (4.6.8)

Since 〈∇fi |w〉g ∈ C
∞(M) by the choice of fi and w, and since Z∞ is an algebra, (4.6.7) shows

that ∂w : Z∞ → Z∞. The Leibniz rule is straightforward from the same property of dt, while Z∞-

linearity is a consequence of the representation in (4.6.8). �

Proposition 4.6.3. Let W ∈ XC∞ be as in (4.2.8). Then, the map

∂ : W 7→ ∂W :=

n∑
j

vj∂wj

is a linear injection ∂ : XC∞ → Der(Z∞).

Proof. The fact that ∂W ∈ Der(Z∞) is a consequence of Lemma 4.6.2 and of the choice of the vj ’s.

The Z∞-linearity is immediate, while the X∞-linearity follows from (4.6.8).

Let now W 6= 0XC∞ , that is, there exists µ0 ∈ P and x0 ∈ M such that W (µ0)(x0) 6=
0Tx0

M . Since W ( · )(x0) is continuous and the set of purely atomic finitely supported probability

measures is dense in P2, (see e.g. the proof of [165, Thm. 6.18]) we can find a purely atomic

finitely supported η ∈ P such that W (η)(x0) 6= 0Tx0
M . Without loss of generality, up to

choosing η′ := η+ε δx0 for some small ε > 0, we can assume ηx0 > 0 (for the notation see (4.3.1)).

By standard arguments, there exists f ∈ C∞(M) such that ∇fx0 = W (η)(x0). Moreover,

since ptws η is discrete (finite), we can find g ∈ C∞(M) such that g ≡ 1 on an open neighborhood

of x0 and g ≡ 0 on an open neighborhood of every point in ptws η other than x0. Set h = fg

and notice that ∇hx0 = W (η)(x0) while ∇h = 0 for every point in ptws η other than x0. Now,

∂W (h∗)(η) = 〈∇h∗ |W (η)〉Xη =

∫
M

〈∇hx |W (η)(x)〉g dη(x) = ηx0 |W (η)(x0)|2g > 0 .

Since ∂ is linear, this shows that it is also injective, which concludes the proof. �
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Remark 4.6.4. Proposition 4.6.3 is motivated by the analogy (e.g. [32, Prop. 3.5.3]) with finite-

dimensional compact differentiable manifolds, where the map

∂ : X∞ 3 w 7−→
(
∂w : f 7→ df(w)

)
∈ Der(C∞(M))

is straightforwardly injective, and surjective because of the classical Hadamard Lemma. In the

case of P2, I do not know whether ∂ is surjective, however, it should be noted that, in the case

of infinite-dimensional smooth manifolds, this is not necessarily the case, again already at the

pointwise scale. (Cf. [98, Thm. 28.7], for a proof of surjectivity under additional assumptions.)

Throughout all computations in Section 4.4, vector fields w ∈ X∞ ought to be interpreted

as ‘smooth directions’ at every point µ ∈P. This is the right notion to be compared with the

definition of directional derivative given in (4.2.4) in light of Proposition 4.6.3.

4.6.2 Auxiliary results on normalized mixed Poisson measures.

Lemma 4.6.5. The measure P defined in Example 4.5.11 satisfies Assumption 4.2 (iv).

Proof. Retain the notation in §4.5. By (4.5.1) and combining (4.5.2) with (4.5.3),

d
(
Φ]P

)
(µ) = d

(∫
R+

N]Φ]Ps·σ( · ) dλ(s)

)
(µ)

= d

(∫
R+

exp
(
s · σ(1−ps·σφ )

)
·N]

(
Rs·σφ · Ps·σ

)
( · ) dλ(s)

)
(µ) .

Noticing further that N is injective on Ϋ and denoting by N−1 its right-inverse, the func-

tion Rs·σφ ◦N−1 is well-defined on Ϋ, hence Ps·σ-a.e. on Υ. It follows that

d
(
Φ]P

)
(µ) =

∫
R+

(
exp

(
s · σ(1−ps·σφ )

)
·
(
Rs·σφ ◦N−1)(µ) · d (N]Ps·σ) (µ)

)
dλ(s) .

Moreover, pσφ = ps·σφ for every s > 0 by definition (cf. (4.5.2)), thus Rσφ = Rs·σφ and

d
(
Φ]P

)
(µ) =

(
Rσφ ◦N−1)(µ)

∫
R+

(
exp

(
s · σ(1−pσφ)

)
· d (N]Ps·σ) (µ)

)
dλ(s)

=
(
Rσφ ◦N−1)(µ) · dN]

(∫
R+

exp
(
s · σ(1−pσφ)

)
· Ps·σ( · ) dλ(s)

)
(µ) , (4.6.9)

where it is possible to pull N] outside the integral sign since the integrand does not depend on µ.

Finally, for every measurable A ⊂P,

e−cλ,σ,φ
(
Rσφ ◦N−1 · P

)
A ≤

(
Φ]P

)
A ≤ ecλ,σ,φ

(
Rσφ ◦N−1 · P

)
A , (4.6.10)

where cλ,σ,φ :=(sup suppλ)
∣∣σ(1−pσφ)

∣∣. Since Rσφ(γ) > 0 for Qλ,σ-a.e. γ ∈ Υ, it follows from

(4.6.10) that P and Φ]P are mutually absolutely continuous, hence the quasi-invariance in 4.2 (iv)

holds. Letting w ∈ X∞, equation (4.2.7) is similarly verified since #suppµ < ∞ for P-a.e. µ,

hence, for all t ∈ R,(
Rσψw,t ◦N−1)(µ) ≥

∏
x∈µ

(ψw,t)∗ρ(x)

ρ(x)
Jm
ψw,t(x) ≥

(
min
M

(ψw,t)∗ρ

ρ
Jm
ψw,t

)#suppµ

> 0 .

This concludes the proof. �

Lemma 4.6.6. The measure P defined in Example 4.5.11 satisfies Assumption 4.2 (iii).

Proof. We show the assertion when λ = δ1, i.e. when P = N]Pσ, similarly to [7, Thm. 3.1]. The

general case is readily proved by integration w.r.t. λ in light of the mutual absolute continuity

of Ps·σ w.r.t. Pσ (hence of their normalizations) for every choice of s > 0 (hence λ-a.e., cf. (4.5.4)).
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Preliminaries. Retain the notation established in §4.5 and denote by βσ :=∇ρ/ρ the logarithmic

derivative of σ, which is well-defined on M since ρ ∈ C1(M ;R+). Let further w ∈ X∞ and set

βσw(x) := 〈βσx |wx〉gx + divmwx ,

where divm denotes the divergence on M with respect to the volume measure m. By integration

by parts (cf. e.g. [7, Eq. (3.11)]) one can readily show that

∇∗w = −∇w − βσw ,

where ∇∗w denotes the adjoint of ∇w in L2
σ(M) and we denote the closure of ∇w again by the

same symbol.

Claim. Letting Bσw :=(βσw)∗, we claim that ∇∗w :=−∇w −Bσw satisfies (4.2.6) for our choice

of P.

Some differentiation. For all u ∈ Z∞ denote by the same symbol the natural extension of u

to M +
b . By [7, Prop. 2.1] and several applications of (4.5.1) we have∫

u ◦Ψw,t · v dN]Pσ =

∫
u · v ◦Ψw,−t dN]PΨw,tσ . (4.6.11)

Differentiating the l.h.s. of (4.6.11) under the sign of integral with respect to t yields the

l.h.s. of (4.2.6) by (4.2.4). Moreover, letting λ = δ1 in (4.6.9) yields∫
u · v ◦Ψw,−t dN]PΨw,tσ =

∫
exp

(
σ(1−pσψw,t)

)
·Rσψw,t ◦N−1 · u · v ◦Ψw,−t dN]Pσ ,

(4.6.12)

where Rσψw,t ◦ N−1 is well-defined as in Lemma 4.6.5. Also, with obvious meaning of the

notation x ∈ µ for µ ∈ N(Ϋ),

dt
∣∣
t=0

(
exp

(
σ(1−pσψw,t)

)
·Rσψw,t ◦N−1) (µ) =

= dt
∣∣
t=0

∏
x∈µ

(ψw,t)∗ρ(x)

ρ(x)
Jm
ψw,t(x) + dt

∣∣
t=0

exp

[∫
M

(
1− (ψw,t)∗ρ(x)

ρ(x)
Jm
ψw,t(x)

)
dσ(x)

]
.

Now the arguments in the proof of [7, Thm. 3.1] apply verbatim, yielding

dt
∣∣
t=0

(
exp

(
σ(1−pσψw,t)

)
·Rσψw,t ◦N−1) (µ) = −Bσw . (4.6.13)

Proof of the claim. Finally, differentiating v ◦ Ψw,−t with respect to t yields −∇w v, again

by (4.2.4). Combing this fact with (4.6.13), the derivative under integral sign with respect to t

of the r.h.s. of (4.6.12) reads
∫
u · (−∇w v −Bσw) dP, which proves the claim. �

Lemma 4.6.7. The measure P defined in Example 4.5.11 satisfies Assumption 4.2 (i).

Proof. By definition, P is concentrated on the set N(Υ), which is dense in P. (See e.g. [165,

Thm. 6.18].) Let U 6= ∅ be open in P2. Then U ∩N(Υ) 6= ∅ by density of N(Υ) in P2. By

continuity of N the set Ũ := N−1(U) ∩ Υ = N−1(U ∩N(Υ)) 6= ∅ is open in Υ. Since Qσ,λ is

fully supported on Υ (cf. [142, Prop. 5.6]), then PU = Qσ,λŨ > 0. �
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4.6.3 Auxiliary results on the Malliavin–Shavgulidze image measure.

Lemma 4.6.8. The measure S defined in Example 4.5.18 satisfies Assumption 4.2 (v).

Proof. Retain all notation from §4.5.6. It follows from (4.5.8) that (Lτa)]M =M for every a ∈ S1,

hence M1 is quasi-invariant with respect to the left action of Diff∞+ (S1) (in fact: of Diff3
+(S1))

on G1 given by post-composition, i.e. (4.5.8) holds true with M1 in place of M for every

Borel A ⊂ G1 and every φ in Diff∞+ (S1).

By definition of χ (eq. (4.5.7)), for every φ and Φ as in the beginning of §4.5, it holds that

χ(Lφ−1(g)) = (φ−1 ◦ g)]m = φ−1
] (g]m) = φ−1

] χ(g) = Φ−1(χ(g)) .

As a consequence, for µ = χ(g),

dΦ]S(µ) = dS(Φ−1(χ(g))) = dS(χ(Lφ−1(g))) = dM1(Lφ−1(g)) = Rφ(g) · dM1(g)

=(Rφ ◦ χ−1)(µ) · dS(µ)

where Rφ(g) is the Radon–Nikodým derivative

Rφ(g) := exp

[∫
S1

S(φ−1)(g(r)) · g′(r)2 dm(r)

]
.

The conclusion straightforwardly follows from the form of Rφ. �



Chapter 5

The Dirichlet–Ferguson Diffusion

In this Chapter construct a recurrent diffusion process with values in the space of probability

measures over a closed Riemannian manifold of arbitrary dimension. The process is associated

with the Dirichlet energy integral defined by integration of the L2-Wasserstein gradient w.r.t. the

Dirichlet–Ferguson measure. Together with two different constructions of the process, we discuss

its ergodicity, invariant sets and finite-dimensional approximations.

5.1 Introduction

We provide two constructions of a Markov diffusion η• with values in the space of probability

measures P over a closed Riemannian manifold M of dimension d ≥ 2.

On the one hand, combining results by Bendikov–Saloff-Coste [15] and Albeverio–Daletskii–

Kondratiev [5, 6] about elliptic diffusions on infinite products, we characterize η• as the superpro-

cess constituted by any number of independent massive Brownian particles with volatility equal

to their inverse mass. Thus, we may regard η• as a possible counterpart over M of Konarovskyi’s

Modified Massive Arratia Flow [91] over the unit interval. Here, no coalescence occurs by reasons

of the dimension of M .

On the other hand, we show that η• is associated with a symmetric Dirichlet form E on the

space of real-valued functions on P square-integrable with respect to the Dirichlet–Ferguson

random measure D [55]. The form E is defined as the closure of the Dirichlet integral induced

by D and by the natural gradient of the L2-Wasserstein geometry of P, on the algebra of

cylinder functions induced by smooth potential energies in the sense of Otto calculus. Thus, we

may regard η• as a possible candidate for a “Brownian motion” — that is, a canonical diffusion

process — on the L2-Wasserstein space P2(M).

Among other results, we prove the following.

Main Theorem. Let (M, g) be a closed Riemannian manifold of dimension d ≥ 2 with volume

measure m, Riemannian distance d and Laplace–Beltrami operator ∆. Let (P2,W2) be the

L2-Wasserstein space over (M, d), endowed with Otto’s metric 〈 · | · 〉TµP2
and with the Dirichlet–

Ferguson (probability) measure Dm [55] with intensity measure m. Let Ẑ∞0 be the algebra of

functions u : P2 → R defined in Definition 5.4.1.

Then, the symmetric bilinear form (E , Ẑ∞0 ) given by

E(u, v) := 1
2

∫
P2

dDm(η) 〈∇u(µ) |∇ v(µ)〉TµP2
, u, v ∈ Ẑ∞0

is closable. Its closure (E ,D(E)) is a regular strongly local recurrent (conservative) Dirichlet form

with generator the (Friedrichs) extension of the essentially self-adjoint operator (L, Ẑ∞0 ) given by

Lu(η) := 1
2

∫
M

dη(x)
∆z
∣∣
z=x

u(η + η{x} δz − η{x} δx)

(η{x})2
for Dm-a.e. η , u ∈ Ẑ∞0 .
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Additionally:

• For any W2-Lipschitz function u : P2 → R it holds that u ∈ D(E) and 〈∇u |∇u〉TµP2
≤

Lip[u]2;

• The associated Markov kernel

pt(A1, A2) :=

∫
A1

dDm e
−tL

1A2 , A1, A2 ⊂P2

satisfies the one-sided Varadhan-type upper estimate

lim
t↓0

t log pt(A1, A2) ≤ − 1
2

inf
µi∈Ai

W2(µ1, µ2)2 .

• The properly associated Markov diffusion η• is a P2-valued martingale solution to the

stochastic partial differential equation (Cf. (5.2.24) and Prop. 5.2.4 below)

dηt = div
(√
ηt dWt

)
+

 1
2

∑
x|ηt{x}>0

∆δx

dt , t > 0

tested on functions in Ẑ∞0 . (Here W• is a cylindrical Brownian motion.)

5.2 Motivations, main results and literature comparison

Wasserstein geometry. In the last two decades, the space P of probability measures over a

Riemannian manifold (M, g), endowed with the L2-Kantorovich–Rubinshtein distanceW2 (5.3.13),

has proven both a powerful tool and an interesting geometric object in its own right. Since

the fundamental works of Y. Brenier, R. J. McCann, F. Otto, C. Villani and many others (see,

e.g., [24, 117, 131, 164]), several geometric notions have been introduced, including those of

geodesics, tangent space TµP at a point µ ∈P and gradient ∇u(µ) of a scalar-valued function u

at µ (see, e.g., [63, 64, 111]). Indeed, the metric space P2 :=(P,W2) may — to some extent —

be regarded as a kind of infinite-dimensional Riemannian manifold. Furthermore, provided

that (M, g) be a closed manifold with non-negative sectional curvature, P2 has non-negative

lower curvature bound in the sense of Alexandrov [10, Thm. 2.20].

Volume measures on P2. The question of the existence of a Riemannian volume measure

on P2, say dvolP2 , has been insistently posed and remains to date not fully answered. A first

natural requirement that one might ask of such a measure — if any — is an integration-by-parts

formula for the gradient, which would imply the closability of the form

E(u, v) := 1
2

∫
P

〈∇u(µ) |∇ v(µ)〉TµP2
dvolP2(µ) . (5.2.1)

In turn, the theory of Dirichlet forms would then grant the existence of a diffusion process

associated to E and thus deserving the name of Brownian motion on P2.

Further requirements are the validity of a Rademacher-type Theorem, i.e. the dvolP2 -a.e.

differentiability of W2-Lipschitz functions, which motivated the work in Chapter 4, and of

its converse, the Sobolev-to-Lipschitz property. Together, these properties would grant the

identification of W2 with the intrinsic distance induced by E .
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Diffusions processes on P. In the case when M = S1, the unit sphere, or M = I, the (closed)

unit interval, M.-K. von Renesse and K.-T. Sturm proposed the entropic measure Pβ [140,

Dfn. 3.3] as a candidate for dvolP2 and constructed the associated Wasserstein diffusion µwd
• .

Whereas the construction of the entropic measure in the case when M is an arbitrary closed

Riemannian manifold was subsequently achieved by K.-T. Sturm in [151], many of its properties

and in particular the closability of the associated form (5.2.1) remain unknown.

Similar constructions to the Wasserstein diffusion — up to now confined to one-dimensional

base spaces — include J. Shao’s Dirichlet–Wasserstein diffusion [147] (when M = S1 or I), and

V. Konarovskyi modified massive Arratia flow µaf
• [91, 93] (when M = I) and V. Konarovskyi

and M.-K. von Renesse’s coalescing-fragmentating Wasserstein dynamics µcf
• [92] (when M = R).

Finally, it is worth mentioning two constructions in the case M = Rd, namely the superprocesses

of stochastic flows introduced by Z.-M. Ma and K.-N. Xiang in [114] and the recent work [29] by

Y. T. Chow and W. Gangbo, concerned with a stochastic process µcg
• on P2 �modeled after

Brownian motion� and generated by a �partial Laplacian�.

A canonical process. If not otherwise stated, we shall assume the following.

Assumption (Riemannian manifolds). By a Riemannian manifold we shall mean any closed

(i.e. compact, without boundary) connected oriented smooth Riemannian manifold (M, g) with

(smooth) Riemannian metric g, intrinsic distance dg, volume measure m, normalized volume

measure m and heat kernel ht(x, dy). If not otherwise stated, we shall assume that d := dimM ≥ 2.

In the following, we shall construct a stochastic diffusion process

η• :=
(
Ω,F , (Ft)t≥0 , (ηt)t≥0 , (Pη)η∈P2

)
(5.2.2)

with state space P2, modeled after the Brownian motion on M . By this we mean that η• enjoys

the following property: Let (ηη0
t )t denote the stochastic path of η• starting at η0. If

η0 :=(1− r)δx0 + rδy0 , x0, y0 ∈M , r ∈ I ,

then

ηη0
t (ω) = (1− r)δxt/(1−r)(ω) + rδyt/r(ω) , (5.2.3)

where x• and y• are independent Brownian motions on (M, g) respectively starting at x0, y0.

If r = 0 or 1, then (5.2.3) entails that η• respects the Dirac embedding, that is

η0 = δx0 =⇒ ηt(ω) = δxt(ω)

for some Brownian motion x• starting at x0. This is a natural requirement, since δ : x 7→ δx is

an isometric embedding (M, dg)→ (P2,W2). If r ∈ (0, 1), then (5.2.3) and its straightforward

n-points generalizations may be easily interpreted in terms of particle systems. Indeed, η• as

in (5.2.3) describes the evolution of the two massive particles (x0, 1−r) and (y0, r), and translates

into the requirement that the evolution of their positions be independent up to the choice of

suitable volatilities, namely the inverse of the mass carried by each atom.

We will provide two different constructions of η•.

Construction via semigroups. In the following let I :=
∏∞ I with the product topology and set

∆ :=

{
s := (si)i∈N ∈ I |

∞∑
i

si = 1

}
,

T :=
{
s := (si)i∈N ∈∆ | si ≥ si+1 ≥ 0

}
.
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Let T◦ ⊂ T be defined similarly to T with > in place of ≥. For s ∈ T◦ we put Mi :=(M, sig)

and consider the infinite product M =
∏∞
i Mi, endowed with the product measure

m :=
∞⊗

m .

Letting x = (xi)i∈N, y := (yi)i∈N and defining the family of measures

hs
t(x,dy) :=

∞⊗
i

ht/si(xi,dyi) , x ∈M , (5.2.4)

the resulting product semigroup (Hs
t)t≥0 given by

(Hs
tu)(x) :=

∫
M

u(y) hs
t(x,dy) , u ∈ L2

m(M) , t > 0 , (5.2.5)

is an ergodic Markov semigroup with invariant measure m. By the general results of A. Bendikov

and L. Saloff-Coste [15] about infinite-dimensional elliptic diffusions, Hs
t admits a density, i.e.

hs
t(x, dy) = hs

t(x,y) dm(y) for every x,y ∈M and every t > 0, which is additionally continuous

and bounded on (0,∞)×M×2 for every s ∈ T◦. We denote by

Ws
• :=

(
Ω,F , (Ft)t≥0 , (W

s
t)t≥0 , (P

s
x)x∈M

)
(5.2.6)

the associated time-homogeneous recurrent ergodic Markov process with state space M and

transition kernels (hs
•(x, · ))x∈M. Let now P be any probability on T◦ such that (T◦,P) be a

standard Borel probability space. The semigroup defined on M̂ := T×M as

(Ĥtv)(s,x) :=
(
(id⊗Hs

t) v
)
(s,x) , t > 0 ,

=
(
Hs
t v(s, · )

)
(x) , v ∈ L2(M̂,P⊗m)

(5.2.7)

is itself a Markov semigroup on L2(M̂,P⊗m). Setting

M◦ := {x ∈M | xi 6= xj for i 6= j} ,

the map

Φ : ∆×M −→P2 , Φ(s,x) :=

∞∑
i

siδxi (5.2.8)

is injective when restricted to M̂◦ := T◦×M◦. We say that M◦ is Ws
•-coexceptional for every s ∈

T◦ if the process Ws
• never leaves M◦. Since this turns out to be the case, (See Lem. 5.3.9)

then M̂◦ is coexceptional for the process Ŵ• associated to Ĥt. Thus, provided that Φ is suitably

measurable (Prop. 5.3.14), we may consider the induced stochastic process on P pathwise defined

as

ηη0
t := Φ ◦ Ŵ

s,x0

t = Φ
(
s,Ws;x0

t

)
, η0 := Φ

(
s,x0

)
, t > 0 , (5.2.9)

where by Ws;x0
t we mean Ws

t starting at x0.

By construction, η• is a time-homogeneous Markov process with state space P2. However,

since Φ is not continuous, it is not clear at this stage whether η• has continuous paths, and its

properties may vary wildly depending on the choice of the law P for the starting point s.
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A choice for dvolP2 . Everywhere in the following we let β > 0 be fixed. For the moment, we

shall think of β as the total volume of M , so that m = βm. We denote by

dBβ(r) :=β(1− r)β−1 dr

the Beta distribution on I with shape parameters 1 and β; by Bβ :=
⊗∞ Bβ the corresponding

product measure on I. For every measure µ and every measurable map T , we denote the induced

push-forward measure by

T]µ :=µ ◦ T−1 .

We set Ppa
iso = Φ(M̂◦), the space of purely atomic probability measures with infinite strictly

ordered masses. By standard results (e.g., [165, Thm. 6.18, Rmk. 6.19]), the latter space is dense

in the compact space P2. Thus, if we assume P to be fully supported on T, then

Q := Φ](P⊗m)

is fully supported on P2. Under such assumption, the property of Q being a ‘canonical’ measure

— in any suitable sense — on P is equivalent to that of P being ‘canonical’ on T. As a candidate

for P we choose the Poisson–Dirichlet measure Πβ introduced by J. F. C. Kingman in [87]. We

recall its definition following the neat exposition of P. Donnelly and G. Grimmet [44].

Definition 5.2.1 (Poisson–Dirichlet measure). For r := (ri)i∈N ∈ I we denote by Υ(r) the vector

of its entries in non-increasing order, by Υ : I → T ⊂ I the reordering map, measurable by

e.g. [45, p. 91]. Further, we let Λ : I→∆ be defined by

Λ1(r1) := r1 , Λk(r1, . . . , rk) := rk

k−1∏
i

(1− ri) , Λ(r) := (Λ1(r1),Λ2(r1, r2), . . . ) .

(5.2.10)

The Poisson–Dirichlet measure Πβ with parameter β on T, concentrated on T◦, is defined as

Πβ :=(Υ ◦Λ)]Bβ .

For such a choice of P, the measure Q is the Dirichlet–Ferguson measure Dm introduced

by T. S. Ferguson in his seminal work [55]. The dependence of Dm on β is implicit in the

constraint m = βm. Since in the following Dm will play the rôle of dvolP2 , we state here one of

its several characterizations.

Theorem 5.2.2 (A characterization of Dm). Let Q be a probability measure on P. For η ∈P,

x ∈M and r ∈ I set ηx := η {x} ∈ I and

ηxr :=(1− r)η + rδx ∈P . (5.2.11)

Then, the following are equivalent:

• Q is the Dirichlet–Ferguson measure Dm := Φ](Πβ ⊗m);

• if η is a Q-distributed P-valued random field, x is m-distributed and r is Bβ-distributed,

then Q satisfies Sethuraman’s fixed-point1 characterization (See [145, Eqn. (3.2)])

η
d
= ηxr , (5.2.12)

where
d
= denotes equality in law;

1I am grateful to Prof. F. Bassetti for having suggested me this interpretation of (5.2.12).
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• Q satisfies the Mecke-type identity or Georgii–Nguyen–Zessin formula (See Chapter 3.)∫
P

dQ(η)

∫
M

dη(x)u(η, x, ηx) =

∫
P

dQ(η)

∫
M

dm(x)

∫
I

dBβ(r)u(ηxr , x, r) (5.2.13)

for any semi-bounded measurable u : P2 ×M × I → R.

We will mostly dwell upon the characterization (5.2.13), obtained with E. W. Lytvynov

in Chapter 3 and which is in fact but the integral version of (5.2.12), originally proven by

J. Sethuraman in [145]. (See also G. Last [101] for a similar characterization on more general

spaces, Chapter 2 for a characterization via Fourier transform and T. J. Jiang–J. M. Dickey–K.-

L. Kuo’s work [79] for a characterization via c-transform.)

Construction via Dirichlet forms theory. By construction, the measure Φ−1
] Dm = Πβ ⊗m is an

invariant measure of Ŵ•. Choosing Dm as dvolP2 in (5.2.1), we will show that the process η•

in (5.2.9) is the Markov diffusion (i.e. special Hunt, sample-continuous) associated with the

Dirichlet form E . This requires however some preparations.

We shall follow a similar strategy to the one adopted in Yu. G. Kondratiev, E. W. Lytvynov

and A. M. Vershik [96], where analogous results are presented for Gibbs measures on the space

of non-negative Radon measures over Rd. Firstly, let f̂ : M × I → R be of the form f̂ := f ⊗ %,
where f ∈ C∞(M) and % ∈ C∞(I) is supported in the open interval (0, 1). Recalling the

notation ηx := η {x}, we let further

f̂?(η) :=

∫
M

dη(x) f(x) · %(ηx) (5.2.14)

and consider

• the algebra Ẑ0 of cylinder functions u : P → R of the form

u(η) = F
(
f̂?1 (η), . . . , f̂?k (η)

)
,

where F ∈ C∞b (Rk) and f̂i is as above for i ≤ k.

• the algebra B of cylinder functions induced by measurable potential energies, i.e. such

that

u(η) = F
(
ηf1, . . . , ηfk

)
,

where F ∈ C∞b (Rk) and fi ∈ Bb(M ;R) for i ≤ k;

• the algebra Z of cylinder functions induced by smooth potential energies, defined as B,

with the additional requirement that fi ∈ C∞(M) for i ≤ k.

Let now w be a smooth vector field and
(
ψw,t

)
t≥0

be its flow (5.3.3). For µ ∈ P we

denote by TDer
µ P2 the completion of the space of all smooth vector fields w with respect to the

pre-Hilbertian norm w 7→
∥∥ |w|g ∥∥L2

µ
. (The superscript ‘Der’ stands for derivation. See §4.6.1.) It

is well-established in the optimal transport theory (e.g., [10, 2.31 and §7.2], cf. also [60, 63, 64])

that the tangent space TµP2 to the ‘Riemannian manifold’ P2 at µ is

TµP2 := clTDer
µ P2

{∇f | f ∈ C∞(M)} .

The inclusion TµP2 ⊂ TDer
µ P2 is generally a strict one. We shall make use of both definitions,

the interplay of which was detailed in Chapter 4. The ‘directional derivative’ of functions u ∈ Ẑ0

or Z in the smooth ‘direction’ w is given by (Lem. 5.4.7)

∇w u(µ) := dt
∣∣
t=0

u
(
ψw,t] µ

)
. (5.2.15)
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For u, v ∈ Ẑ0 and any smooth w, we show that there exists some small ε = εu,v > 0 such

that we have the integration by parts formula (Thm. 5.4.9)

EDm

[
∇w u · v

]
= −EDm

[
u ·∇w v

]
−EDm

[
u · v ·Bε[w]

]
,

where

Bε[w](η) :=
∑

x|ηx>ε

divm
xw . (5.2.16)

Provided that w 7→∇w u(µ) be a TDer
µ P2-continuous linear functional, a gradient

µ 7−→∇u(µ) ∈ TDer
µ P2 (5.2.17)

is induced by Riesz Representation Theorem. The latter integration-by-parts formula is then a

main tool in establishing the following theorem.

Theorem 5.2.3 (See Thm. 5.4.11 and Cor. 5.4.19). The quadratic form (E ,Z) defined by

E(u, v) :=

∫
P

dDm(η)
〈
∇u(η)

∣∣ ∇ v(η)
〉
TηP2

, u, v ∈ Z

is closable. Its closure (E ,D(E)) is a regular strongly local recurrent non-ergodic Dirichlet form

on L2
Dm

(P2) with carré du champ operator

Γ(u, v)(η) :=
〈
∇u(η)

∣∣ ∇ v(η)
〉
TηP2

, u, v ∈ Z . (5.2.18)

A comparison with the Fleming–Viot process. Before exploring any further the properties of E
and its relation to η•, it is worth comparing its carré du champ operator (5.2.18) with the

carré du champ operators of other processes on P. In [132] L. Overbeck, M. Röckner and

B. Schmuland showed that, letting2 (cf. [132, p. 2])(
∂
∂δx

u
)
(µ)(x) := dt

∣∣
t=0

u(µ+ tδx) , (5.2.19)

the Dirichlet form (Efv,D(Efv)) with carré du champ operator

Γfv(u)(µ) := Varµ
(
∂
∂δ ·

u(µ)
)

u ∈ B

and invariant measure Dm is properly associated with the Fleming–Viot process [57] with parent

independent mutation. J. Shao observed in [147] that the increment in (5.2.19) is not internal

to P. To overcome the issue, he considered the map Sf [147, Eqn. (2.7)] (there termed

‘exponential map’. See Remark 5.4.6 below.) originally introduced by K. Handa in [73]

Sf (µ) :=
ef · µ
µ(ef )

f ∈ C(M) . (5.2.20)

For µ ∈P we recall the notation (5.2.11) and set3 (also cf. [143, Eqn. (1.1)])(
∂̃
∂δx

)
u(µ) := dt

∣∣
t=0

u(µxt ) .

Then,

dt
∣∣
t=0

Stf (µ) =
〈(

∂̃
∂δ ·

u
)
(µ)
∣∣∣ f〉

L2
µ

u ∈ Z ,

2Here, we are forced to change the notation for the gradient in [132], since it conflicts with ours.
3Here, we are forced to change the notation for the gradient in [147], since it conflicts with ours.
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and

Γfv(u)(µ) =
∥∥∥ ∂̃
∂δ ·

u
∥∥∥2

L2
µ

.

As noted by M. Döring and W. Stannat in [46, Rmk. 1.5], the carré du champ operator (5.2.18)

is strictly stronger than Γfv and one has in fact

Γ(u)(µ) =
∥∥∥∇ · ∂

∂δ ·
u
∥∥∥2

L2
µ

=
∥∥∥∇ · ∂̃

∂δ ·
u
∥∥∥2

L2
µ

.

In the case M = S1 (whence TµP2 = TDer
µ P2 = L2

µ(S1;R)), one has

Γ = Γwd , (5.2.21)

the carré du champ [140, Dfn. 7.24] of the Wasserstein diffusion [140]. Letting (Ewd,D(Ewd))

be the Dirichlet form [140, Thm. 7.25] of Wasserstein diffusion, equality (5.2.21) is interpreted

in the following sense: By definition u ∈ Z ⊂ D(Ewd). Then, for each u ∈ Z there exist a

continuous Pβ-representative Γ̃wd(u) of Γwd(u) and a continuous Dm-representative Γ̃(u) of Γ(u)

such that Γ̃wd(u) = Γ̃(u) (everywhere) on P(S1).

A comparison with the Wasserstein diffusion. In addition to the carré du champ operator, the

generator of (E ,D(E)) entails further geometrical information. Up to Friedrichs extension,

Lu = L1u+ L2u , u ∈ Ẑ0 ,

where

L1u(η) := 1
2

k∑
i,j

(∂2
ijF )

(
f̂?1 (η), . . . , f̂?k (η)

)
·
∫
M

dη(x) %i(ηx)%j(ηx) 〈∇xfi |∇xfj〉g ,

L2u(η) := 1
2

k∑
i

(∂iF )
(
f̂?1 (η), . . . , f̂?k (η)

)
·
∑

x|ηx>ε

%i(ηx) ∆xfi .

(5.2.22)

For functions in the core Z of (E ,D(E)), the first operator takes the form

L1u(η) = 1
2

k∑
i,j

(∂2
ijF )

(
ηf1, . . . , ηfk

)
· 〈∇fi |∇fj〉TηP2

,

the diffusion part of the generator. Indeed, in the case when M = S1, we have

L1 = Lwd
1 ,

where Lwd
1 is the diffusion part of the generator Lwd of the Wasserstein diffusion in the decomposi-

tion [140, Thm. 7.25] and equality is interpreted as in (5.2.21). As noted in [140, Rmk. 7.18], Lwd
1

�describes the [Wasserstein] diffusion [...] in all directions of the respective tangent spaces�.

Thus, the process µwd
• associated with (Ewd,D(Ewd)) �experiences [...] the full tangential noise�.

In the present case, the same statement may be formulated rigorously, in terms of Hino’s

index [74] of the form (Prop. 5.4.22).

The first order operator L2 represents instead the drift part of the generator, constraining

the process η• on Ppa
iso. We notice here that the expression of L2 in (5.2.22) does not converge

for functions in Z (i.e., in the pointwise limit %i → 1I). This is consistent with the heuristic

observation of N. Gigli (see [64, Rmk. 5.6]) that the Laplacian of potential energies on P2 should

not exist. On the other hand though, this does not prevent the closability of (E ,Z) above.
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This seeming contradiction is resolved in the understanding that the operator L2 is in fact a

boundary term, and, as such, it was not accounted for in [64, ibid.]. Indeed — in the present

framework — the set Ppa
iso where Dm is concentrated ought to be thought of as part of the

geodesic boundary of P2. Here, we say that a point µ0 ∈ P is a geodesic boundary point if

there exists some W2-geodesic (µt)t for which µ0 is extremal, that is, (µt)t may not be further

prolonged through µ0. The fact that measures with atoms satisfy this property is a consequence

of the same result for Dirac masses, originally proved by J. Bertrand and B. R. Kloeckner (see [19,

Lem. 2.2]) and of the known fact that transport optimality is inherited by restrictions (see [165,

Thm. 4.6]).

When M = S1 the operator Lwd
2 (see [140, Rmk. 7.18, Thm. 7.25]) may be given the

same interpretation of L2, analogously to the case of L1 and Lwd
1 . Finally, we notice that

the operator Lwd
3 in [140, Rmk. 7.18] has no counterpart in our case (which should rather be

compared with [140, Thm. 7.25]), since it is an artifact of the boundary of I.

A comparison with the Modified Massive Arratia Flow. In [91] V. V. Konarovskyi introduced the

Modified Massive Arratia Flow, a random element y( · , · ) in the Skorokhod space D
(
I; C([0, T ])

)
whose corresponding measure-valued process µaf

• defined by µaf
t := y( · , t)]Leb1 is a solution

to (5.2.23af) below. For the purpose of comparison, let us recall the stochastic partial differential

equations solved by all the processes mentioned so far. Namely, for t ≥ 0

dµaf
t = div

(√
µaf
t dWt

)
+ Laf

2 (µaf
t ) dt on M = R , (5.2.23af)

dµwd
t = div

(√
µwd
t dWt

)
+ Lwd

2 (µwd
t ) dt+ β∆µwd

t dt on M = I , (5.2.23wd0)

dµwd
t = div

(√
µwd
t dWt

)
+ Lwd

2 (µwd
t ) dt on M = S1 , (5.2.23wd1)

− 1√
2γ

dµcg
t = div

(
µcg
t dWt

)
−
√
γ/2 ∆µcg

t dt on M = Rd , (5.2.23cg)

where W• is a standard Brownian motion and the equations are tested on functions of the form f?

for f ∈ C∞c (M) (hence f? ∈ Cb(P2) by Rmk. 5.4.3(d)). Then, by e.g. (5.2.23af) we mean

d
(
f?µaf

t

)
=
((
|∇f |2g

)?
µaf
t

)
dWt +

(
f?(Laf

2 µ
af
t )
)

dt , f ∈ C∞c (R) ,

or, equivalently,

d

∫
M

f dµaf
t =

(∫
M

|∇f |2g dµaf
t

)
dWt +

(
(Laf

2 µ
af
t )f

)
dt , f ∈ C∞c (R) .

Finally, for µ such that |ptws (µ)| <∞, the operator Laf
2 µ is the distribution

Laf
2 µ = L2µ =

∑
x|µx>0

δ′′x , (5.2.24)

whereas, for µ singular continuous w.r.t. Leb1, the operator Lwd
2 µ is instead given by

(Lwd
2 µ)f :=

∑
J∈gaps(µ)

[
f ′′(J+) + f ′′(J−)

2
− f ′(J+)− f ′(J−)

|J |

]
,

where gaps(µ) is the set of maximal intervals J :=(J−, J+) such that µJ = 0, and |J | := J+ − J−.

Equation (5.2.23af) is [93, Eqn. (1.2)]. It was subsequently shown by V. V. Konarovskyi and

M.-K. von Renesse (See [92, Rmk. 1.2]) that (5.2.23af) admits multiple solutions, among which

the coalescing-fragmentating Wasserstein dynamics [92]. Equation (5.2.23wd0), describing the

Wasserstein diffusion µwd
• on P(I), is also found shortly after [93, Eqn. (1.2)]. The corresponding

Equation (5.2.23wd1), describing µwd
• on P(S1), is readily deduced from [140, Rmk. 7.18].
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Equation (5.2.23cg), describing Y. T. Chow and W. Gangbo’s process µcg
• , is a reformulation

of [29, Eqn. (1.7)]. (Cf. also [25, Eqn. (8)] for a formulation analogous to the one given here.)

We are forced to change the notation of [29] in that we denote here the noise intensity by γ > 0

(instead of β, as originally in [25, 29]) since γ is opposite in meaning to β > 0 in (5.2.23wd0)

which is rather an inverse temperature. (Cf. Rmk. 2.3.16.) For the relation of (5.2.23wd0) to

the Dean–Kawasaki dynamics for supercooled liquid models, cf. [92, §1.1].

In the case when d ≥ 2, our process η• may be regarded as a counterpart on multidimensional

base spaces to the Modified Massive Arratia Flow, in the following weak sense:

Proposition 5.2.4. Assume d ≥ 2. Then, the process η• is a P-valued martingale solution

to (5.2.23af) tested on functions of the form f̂? as in (5.2.14).

In the case when d = 1 the form (E ,D(E)) above is properly associated with a Markov

diffusion, again denoted by η•. In this case however, the identification of η• with Φ ◦ Ŵ• does

not hold. We collect some remarks on the relations between η• and the Modified Massive Arratia

Flow in §5.5.3, postponing a thorough analysis to future studies.

Quasi-invariance, representations and Helmoltz decomposition. If G is a group acting measurably

on a probability space (Ω,F ,P) (write G
	

Ω) we say that P is quasi-invariant with respect to

the action of h ∈ G (write h.ω) if

Ph :=(h.)]P = R[h] ·P

for some F-measurable Radon–Nikodým derivative R[h] : Ω→ [0,∞]. It is invariant if Ph = P.

In the case when M = S1 and G is the Virasoro group Diff∞+ (S1) of smooth orientation-

preserving diffeomorphisms of S1, the quasi-invariance of the entropic measure Pβ and of the

Dirichlet–Ferguson measure D has been a key tool in establishing the closability of the form (5.2.1).

Let us briefly recall the definition of the actions in [140, 141, 147]. Following [140, §2.2] we

set

G (R) := {g : R→ R , right-continuous, non-decreasing, s.t. g(x+ 1) = g(x) + 1} .

Let further prS
1

: R→ S1 ∼= R/Z denote the quotient projection and set G (S1) := prS
1

(G (R)).

By equi-variance, g : S1 → S1 for every g ∈ G (S1) and the set G (S1) endowed with the usual

composition of functions, ◦, is a semi-group with identity idS1 . In particular, the group Diff∞+ (S1)

injects into G (S1). (See, e.g., [140] or Chapter 4.) Again following [140], we set

G1 := G (S1)
/
S1 , (5.2.25)

where g, h ∈ G (S1) are identified if g( · ) = h( · + a) for some a ∈ S1, and define the maps

ζ : G (S1) −→P(S1)

ζ : g 7−→ dg
and

χ : G1 −→P(S1)

χ : g 7−→ g]m
, (5.2.26)

where dg is the Lebesgue–Stieltjes measure induced by g and m denotes here the normalized

Lebesgue measure on S1. Both maps are invertible. Namely, the inverse ζ−1 assigns to µ its

cumulative distribution function, while χ−1 assigns to µ its generalized inverse distribution

function (see [140, Eqn. (2.2)]). In particular, up to passing from S1 to I,

χ−1 = ·−1 ◦ ζ−1 , (5.2.27)

where ·−1 : g 7→ g−1 is the right-inversion map defined by g−1(t0) := inf {t ∈ I | g(t) > t0}.
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For h ∈ Diff∞+ (S1) we consider the left and right action on G (S1) defined by

`h : g 7−→ h ◦ g , (5.2.28 `)

rh : g 7−→ g ◦ h . (5.2.28 r)

It is then the content of [140, Thm. 4.1] (See also [141, Thm. 4.1]) that the measure on G (S1)

defined as Qβ := ζ−1
] Dβm is quasi-invariant with respect to the left action (5.2.28 `). This has

two consequences. On the one hand (See [147, Thm. 3.4]), the measure Dm is quasi-invariant

with respect to the “left” action Lh := ζ ◦ `h ◦ ζ−1 of Diff∞+ (S1) on P corresponding to (5.2.28 `)

on G (S1) via ζ. On the other hand (see [140, Cor. 4.2]), the entropic measure Pβ = χ]Qβ

is quasi-invariant with respect to the “right” (because of (5.2.27)) action Rh :=χ ◦ rh ◦ χ−1

of Diff∞+ (S1) on P corresponding to (5.2.28 r) on G (S1) via χ.

The action (5.2.28 `) is meaningful only for one-dimensional base spaces, where the repre-

sentation of µ via its cumulative distribution function makes sense. As a consequence, it is not

possible to generalize the results of [147] to base spaces of arbitrary dimension. Analogously, since

the Rh-quasi-invariance of the entropic measure Pβ is a consequence of the `h-quasi-invariance

of Qβ , it is bound to hold only in the case of one-dimensional base spaces.

Notwithstanding this fact, let us notice that

gh]µ := ζ−1(h]µ) = gµ ◦ h =: rh(gµ) ,

thus, the action Kh := ζ ◦ rh ◦ ζ−1 of Diff∞+ (S1) on P(S1) is meaningful in the general case, as

we detail now. Indeed, let G := Diff∞+ (M) be the Lie group of orientation-preserving smooth

diffeomorphisms of M . The natural action of G on M lifts to an action of G on P, given by

. : G×P −→P

(ψ , µ) 7−→ ψ]µ
. (5.2.29)

The quasi-invariance of dvolP2 with respect to the action G
	

P is a natural question

within representation theory (cf. e.g., [2, 96]), where it corresponds to the action above defining

a quasi-regular representation of the infinite-dimensional Lie group G on L2(P2). In turn,

this relates to the closability of the gradient (5.2.17) on P2. Indeed, the Lie algebra of G is

the algebra X∞ := Γ∞(TM) of smooth vector fields on M and its exponential curves based

at idG = idM are precisely the shifts ψw,t defining the directional derivative (5.2.15).

It turns out that the Dirichlet–Ferguson measure Dm is not quasi-invariant with respect to

the action of G : Were this the case, then the Gamma measure Gm = Dm ⊗ G[1, β] too would be

quasi-invariant with respect to the analogous action G
	

M +
b (M) = P(M)× R+. However, this

does not hold (see the introduction to §2.4 in [96]).

In order to address this issue, we recall the following definition from [96, Dfn. 9]. (See also [78,

§5.2].)

Definition 5.2.5 (Partial quasi-invariance). P is termed partially quasi-invariant with respect

to G
	

Ω if there exists a filtration F• := (Fn)n∈N such that:

(i) F = F∞ the σ-algebra generated by F•;

(ii) for each h ∈ G and n ∈ N there exists n′ ∈ N such that h.Fn = Fn′ ;

(iii) for each h ∈ G and n ∈ N there exists an Fn-measurable Rn[h] : Ω→ [0,∞] such that∫
Ω

dPh(ω)u(ω) =

∫
Ω

dP(ω)u(ω)Rn[h](ω)

for each Fn-measurable semi-bounded u : Ω→ [−∞,∞].
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If P is quasi-invariant with respect to G
	

Ω, then it is partially quasi-invariant (choose Fn =

F). Finally, Rn[h] is P-a.e. uniquely defined (see [96, Rmk. 10]).

We let B•(P2) :=
(
Bε(P2)

)
ε∈I be the filtration of σ-algebras on P2 generated by the functions

Rε[ψ] : η 7−→
∏

x|ηx>ε

dψ]m

dm
(x) , ψ ∈ Diff∞+ (M) . (5.2.30)

Then, B1(P2) is the trivial σ-algebra and the restriction B0(P2)Ppa of B0(P2) to Ppa

coincides with the Borel σ-algebra B(P2)Ppa (Lem. 5.4.4). We shall prove the following

Theorem 5.2.6 (See Prop. 5.4.20 and Cor. 5.4.21). Let ψ ∈ Diff∞+ (M). Then, (i) Dm is

partially quasi-invariant w.r.t. the action of ψ on the filtration
(
B1/n(P2)

)
n∈N; (ii) Dm is

quasi-invariant w.r.t. the action of ψ if and only if ψ]m = m, in which case it is in fact invariant;

(iii) if ψw,t is the flow of a smooth vector field w, then B•, defined in (5.2.16), satisfying

B•[w] = dt
∣∣
t=0

R•[ψ
w,t] ,

is a centered square-integrable Dm-martingale adapted to B•(P2).

By the theorem, the algebra X is decomposed, as a vector space, into a direct sum Xinv⊕Xpqi,

where Xinv, resp. Xpqi, denotes the space of vectors such that Dm is invariant, resp. partially

quasi-invariant not quasi-invariant, with respect to the action of ψw,t. Now, it is readily checked

(see, e.g., [10, Rmk. 1.29]) that, if ψ = ψw,1 for some w ∈ X, then ψ is m-measure-preserving

(i.e. ψ]m = m) if and only if w is divergence-free. Thus, Xinv = Xdiv the space of divergence-free

vector fields, whereas Xpqi = X∇ the space of gradient-type vector fields. This is but an instance

of the classical Helmholtz decomposition, and extends for every η to an orthogonal decomposition

of the tangent space TDer
η P2 into the subspaces TηP2 = clTDer

η P2
(X∇) and clTDer

η P2
(Xdiv).

(Also cf. [10, Prop. 1.28].)

Properties of the process. By the standard theory of Dirichlet forms there is a Markov process η•

with state space P properly associated to (E ,D(E)) in the sense of [112, Dfn. IV.2.5(i)]. In order

to show, as anticipated, that η• = Φ ◦ Ŵ•, we shall construct finite-dimensional approximations

of η• and Ŵ• and prove their coincidence up to a suitable restriction of the map Φ. Namely, we

construct

• a sequence of Dirichlet forms (En,D(En)) defined as a martingale-type approximation

of (E ,D(E)) w.r.t. the filtration
(
B1/n(P2)

)
n∈N given by (5.2.30);

• a sequence of Dirichlet form (Ên,D(Ên)) (See Prop. 5.5.3) associated to the processes Ŵn
•

obtained by truncation of Ŵ• onto the first n components of the product space M and

onto the first n elements of s ∈ T.

We show their coincidence and their generalized Mosco convergence to (E ,D(E)) in the sense

of Kuwae–Shioya [99] (see Prop. 5.5.6). As already noticed in [93, §1] for the Modified Massive

Arratia Flow in the case d = 1, also in the case d ≥ 2 we do not expect the family
(
Ŵn
•
)
n

to be

a compatible family of Feller semigroups in the sense of Le Jan–Raimond [105, Dfn. 1.1]; thus

the process η• would not be induced by a stochastic flow.

The previous approximation allows to identify, up to quasi-homeomorphism, the Dirichlet

form E with the Dirichlet form Ê associated to Ŵ•, hence to further specify η•’s sample-continuity

properties and to classify its invariant sets and invariant measures (see Thm. 5.5.17).

Finally, profiting the essential self-adjointness of the generator L on Ẑ0 (Prop. 5.5.7), we

are able to show the Dm-a.e. differentiability of W2-Lipschitz functions (Prop. 5.5.8) and to

provide a one-sided Varadhan-type estimate of the short-time asymptotics for the heat kernel

of E (Cor. 5.5.9).
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5.3 Preliminaries

Everywhere in the following let S be any Hausdorff topological space with topology τ(S)

and Borel σ-algebra B(S). We denote by C(S), resp. Cc(S), C0(S), Cb(S), Bb(S), the space of

(real-valued) continuous, resp. continuous compactly supported, continuous vanishing at infinity,

continuous bounded, bounded (Borel) measurable, functions on (S, τ(S)). Whenever U ∈ τ(S),

we always regard the spaces Cc(U) and C0(U) as embedded into C(S) by taking the trivial

extension of f ∈ Cc(U) identically vanishing on Uc :=S \ U .

For n ∈ N and h : S → Rk, h := (h1, . . . , hk), we set ‖h‖∞ := sup
s∈S

max
i≤k
|hi(s)|.

5.3.1 Dirichlet forms. By a Dirichlet form we shall mean either a symmetric bilinear Dirichlet

form E(u, v) with domain D(E) ⊂ L2
n(S) or the associated functional E(u) :=E(u, u), denoted

by the same symbol. We adhere to the terminology of [112].

Definition 5.3.1. In the following, we let (Y, τ(Y )) be a Lusin space, (i.e. Y is homeomorphic

to a Borel subset of a compact metric space) and n be a fully supported non-negative finite

measure on (Y,B(Y )). Every such measure is Radon by [20, Thm. 7.4.3 (Vol. II)].

Definition 5.3.2 (Capacities). Let (E,D(E)) be a strongly local Dirichlet form on Y . LetK ⊂ Y
be compact and U ⊂ Y be open and such that K ⊂ U . We define the capacities

cap(0)(K,U) := inf {E(u) | u ∈ D(E),1K ≤ u ≤ 1U n-a.e.} ,

cap(K,U) := inf {E1(u) | u ∈ D(E),1K ≤ u ≤ 1U n-a.e.} .

If A ⊂ B ⊂ Y and A is relatively compact, denote by A the closure of A in Y . We set further

cap(0)(A,B) := inf
B⊂U∈τ(Y )

cap(0)(A,U) , cap(A,B) := inf
B⊂U∈τ(Y )

cap(A,U) .

Write cap(0)(A) := cap(0)(A, Y ) and analogously for cap(A). Every infimum above is always

achieved by some uA,B ∈ D(E), termed the equilibrium potential of the pair (A,B). (See e.g. [59,

Thm. 2.1.5] for the case B = Y .) We refer the reader to [59, §2.1] for additional properties of

capacities which we shall use in the following without explicit mention. Finally, we say that a

set A ⊂ Y is E-capacitable if cap(A) <∞.

Definition 5.3.3 (E-invariance). Let (E,D(E)) be a conservative Dirichlet form on L2
n(Y ). A

Borel set A ⊂ Y is termed E-invariant if

∀u, v ∈ D(E) 1A u ∈ D(E) and E(u) = E(1A u) + E(1Ac u) . (5.3.1)

A Borel set A is E-invariant if and only if so is Ac. Since 1 ∈ D(E) and E(1) = 0,

choosing u = 1 in (5.3.1) yields E(1A) = 0 for every E-invariant A. Finally, recall that

if (E,D(E)) is additionally (quasi-)regular with properly associated Markov diffusion process M•,

then A is E-invariant iff it is M•-invariant.

5.3.2 Group actions. Let G be a group acting on Y , write G
	
Y and g.y ∈ Y for any g ∈ G

and y ∈ Y . We denote by Y/G the quotient of Y by the action of G, always endowed with the

quotient topology and the induced Borel σ-algebra, and by prG : Y → Y/G the projection to

the quotient.

We say that A ⊂ Y is G-invariant if G.A := {g.y | g ∈ G, y ∈ A} ⊂ A (equivalently G.A = A)

and that f : Y → R is G-invariant if it is constant on G-orbits, i.e. f(y) = f(g.y) for every g ∈
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G, y ∈ Y . We say that A ⊂ Y is (G, n)-invariant if there exists a G-invariant A1 ∈ B(Y ) such

that A4A1 is n-negligible. If A ∈ B(Y ) and (Y,B(Y ), G, n) is a continuous dynamical system

with invariant measure n, then (G, n)-invariance coincides with the classical definition (e.g. [33,

Eqn. (1.2.13)]). For any n ∈ N let (a) Y ×n :=
∏
i≤n Y , resp. Y :=

∏
i∈N Y , always endowed with

the product topology; and (b)

Y ×n◦ :=
{

(yi)i≤n | yi 6= yj for i 6= j
}
, (5.3.2)

resp. Y◦, defined analogously, always endowed with the trace topology of Y ×n, resp. Y. Addi-

tionally, let prn : Y → Y ×n be defined by prn : y := (yi)
∞
i 7→ (yi)

n
i .

If G
	
Y , then G

	
Y ×n and G

	
Y ×n◦ coördinate-wise. We say that G

	
Y is (a) transitive

if for every y1, y2 ∈ Y there exists g ∈ G such that g.y1 = y2; (b) n-transitive if G
	
Y ×i◦ is

transitive for every i ≤ n; (c) finitely transitive if G
	
Y ×n◦ is transitive for every finite n; (d)

σ-transitive if G
	

Y◦ is transitive. Finally, for p ∈ [1,∞], we denote by Lpn,G(Y ) the family of

classes u ∈ Lpn(Y ) such that u has a G-invariant representative.

Proposition 5.3.4. Let G be a group acting on Y . Then, a G-invariant subset A ⊂ Y is Borel

measurable if and only if so is prG(A). Furthermore, for every p ∈ [1,∞], the space Lpn,G is

isomorphic to the space Lp
prG
]
n
(Y/G ).

Proof. Let pr := prG. If pr(A) is Borel, then so is A = pr−1(pr(A)) by measurability (continuity)

of pr. Vice versa, if A is Borel G-invariant, then so is Ac. Moreover, pr(G. {y})c = pr((G. {y})c),

hence, by G-invariance of A, Ac,

pr(A)c =pr(G.A)c = pr (∪y∈AG. {y})c = ∩y∈Apr(G. {y})c

= ∩y∈A pr((G. {y})c) = pr ((∪y∈AG. {y})c) = pr((G.A)c) = pr(Ac) .

By continuity of pr, both pr(A) and pr(A)c are analytic (Suslin), thus Borel by [20, Cor. 6.6.10

(Vol. II)]. The second assertion is a straightforward consequence. �

5.3.3 Riemannian manifolds. The main object of our analysis are Riemannian manifolds

satisfying Assumption 5.2. We refer the reader to the monograph [69] for a detailed account of

(stochastic) analysis on manifolds. We state here without proof the main results we shall assume

in the following.

For w ∈ X∞, the algebra of smooth vector fields on M , we denote by ψw,t its flow, satisfying

dtψ
w,t(x) =w(ψw,t(x))

ψw,0(x) =x
, x ∈M , t ∈ R . (5.3.3)

As a consequence of its compactness, M enjoys the following additional properties: (a)

for every w ∈ X∞ the flow ψw,t is well-defined and a smooth diffeomorphism for every t ∈ R,

with inverse (ψw,t)−1 = ψw,−t; (b) the manifold M is geodesically complete, that is, every

geodesic curve is infinitely prolongable to a locally length-minimizing curve; (c) the Laplace—

Beltrami operator ∆g is a densely defined linear operator on L2
m(M), essentially self-adjoint

on C∞(M) and with discrete spectrum; (d) the manifold M is stochastically complete, that

is the heat semigroup Ht := e−t∆
g

: L2
m(M) → L2

m(M) has (absolutely continuous) kernel with

density y 7→ ht( · , y), satisfying

(Ht 1M )(x) =

∫
M

dm(y) ht(x, y) = 1 , x ∈M , t > 0 .
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For f ∈ C1(M) and w ∈ X∞ we denote further (a) by ∇g
wf = (df)w the directional derivative

of f in the direction w; (b) by ∇gf the gradient of f ; (c) by divmw the divergence of w induced

by the volume measure m, satisfying the integration by parts formula∫
M

dm (∇g
wf1) · f2 = −

∫
M

dm f1 · (∇g
wf2)−

∫
M

dm f1 · f2 · divmw .

Whenever no confusion may arise, we drop the superscript g from the notation. We denote

variables by a superscript: e.g. ∇z
∣∣
z=x

f denotes the gradient of f in the variable z computed at

the point x ∈M .

Canonical Dirichlet forms. We endow (M, g) with the canonical Dirichlet form (Eg,D(Eg)),

defined as the closure of the pre-Dirichlet form

Eg(f1, f2) :=

∫
M

dm Γg(f1, f2) , fi ∈ C∞(M) , (5.3.4)

where Γg is the carré du champ operator Γg(f1, f2) := 1
2
〈f1 | f2〉g. We stress that the reference

measure here is the normalized volume m (as opposed to the volume) and that we adhere to

the stochastic convention, taking 1
2
∆g as generator of Eg (as opposed to ∆g). If not otherwise

stated, by a Brownian motion on M we shall mean the diffusion process associated to Eg; due

to the normalization in the measure, this differs from the usual Brownian motion by a linear

deterministic time change.

Conformal rescaling. We will make extensive use of conformal rescaling for metric objects on M ,

some of which are listed below. Let a > 0. Then,

a∇ag =∇g , a∆ag =∆g , Γg( · ) := |∇g · |2g = aΓag( · ) ,

mag =ad/2mg , hagt =hg
t/a , Hagt :=e−t∆

ag

= Hg
t/a .

(5.3.5)

Product manifolds. Everywhere in the following let M, resp. I, be the infinite-product manifold

of M , resp. I, endowed with the respective product topologies, and T◦ ⊂ T ⊂∆ ⊂ I be endowed

with the trace topology. Define the topology τu on M̂ := T×M as the product topology of the

spaces M and T and denote by the same symbol the trace topology on any subset of M̂. For

the sake of notational simplicity we let further M̂◦ := T◦ ×M◦.We always endow M̂ with the

fully supported measure m̂β := Πβ ⊗m, concentrated on M̂◦.

Definition 5.3.5. For n ∈ N and s ∈ T◦, we denote by Mn,s the product manifold M×n en-

dowed with Riemannian metric gn,s :=
⊕n
` s` g, normalized volume measure mn := m⊗n, canonical

form (En,s,D(En,s)), heat semigroup Hn,st with kernel hn,st , and Brownian motion

Wn,s
• :=

(
Ω,F , (Ft)t≥0 , (Wn,s

t )t≥0 , (P
n,s
x )x∈Mn,s

)
, (5.3.6)

where F• is the natural filtration in the sense of [112, Dfn. IV.1.8]. For every x0 :=
(
x`0
)
`≤n ∈M

×n

and t > 0 one has Wn,s;x0
t =

(
x1
t/s1

, . . . , xnt/sn
)
, where

(
x`•
)
`≤n are independent Brownian motions

on M respectively starting at x`0.

Denote further by Ms the infinite-product manifold M endowed with the symmetric tensor

field gs :=
⊕∞
` s` g and normalized volume measure m := m⊗∞. Each of the above objects is

well-defined since s ∈ T◦, as opposed to T.

Lemma 5.3.6. The set M×n◦ is Wn,s
• -coexceptional for every s ∈ T◦.
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Proof. By the standard theory of Dirichlet forms (see, e.g. [59, Thm. 4.1.2(i)] or [112, Thm.

5.29(i)]), the statement is equivalent to the set M×n◦ being En,s-coexceptional. Let

Mn
i,j :=

{
x ∈M×n | xi = xj for i 6= j

}
.

Since M×n \M×n◦ ⊂ ⋃
i,j|i6=jM

n
i,j , it suffices to show that capn,s(M

n
i,j) = 0, where capn,s

denotes the capacity associated to (En,s,D(En,s)). Without loss of generality, we can as-

sume i = 1, j = 2. Set gi := si g, d1,2 := dg1⊕g2 and B1,2
ε (A) :=B

d1,2
ε (A) ⊂ M×2 be the ε-

neighborhood of A ⊂ M×2. Denote by cap1,2, resp. cap3,...,n, the capacity of the canonical

form
(
E2,(s1,s2),D(E2,(s1,s2))

)
, resp.

(
En−2,(s3,...,sn),D(En−2,(s3,...,sn))

)
. For 0 < ε < r, let

now u1,2,ε be the equilibrium potential of B1,2
ε (∆M) for the cap1,2. By Lemma 5.6.23,

capn,s(Mn
1,2) ≤capn,s

(
B1,2
ε (∆M)×M×n−2,M×2 ×M×n−2)

≤cap1,2

(
B1,2
ε (∆M)

)
‖1‖2L2

mn−2
+ cap3,...,n(Mn−2,Mn−2) ‖u1,2,ε‖2L2

m2

≤cap1,2

(
B1,2
ε (∆M)

)
· 1 + 1 · ‖u1,2,ε‖2L2

m2

≤2 cap1,2

(
B1,2
ε (∆M)

)
.

The conclusion follows by Proposition 5.6.24 letting ε→ 0. �

We summarize several results about the canonical form and heat semigroup (kernel) on Ms.

For the sake of notational simplicity, A := {`1, . . . , `k} shall always denote a finite subset of N,

and we set xA := (x`1 , . . . , x`k ) and analogously for s. For m ∈ N, define the algebra of cylinder

functions (cf. [6, Eqn. (3)])

FCm :=
{
u : M −→ R | u(x) = F (xA) , F ∈ Cm(M |A|)

}
. (5.3.7)

Theorem 5.3.7 (Albeverio–Daletskii–Kondratiev, Bendikov–Saloff-Coste). Fix s ∈ T◦. Then,

the following holds: (i) Ms is a Banach manifold modelled on the space `∞(N;Rd) with norm

‖a‖s := sup` s` |a`|Rd . (ii) The form (Es,FC1) given by (cf. [6, Eqn. (25)])

Es(u) := 1
2

∫
M

dm(x)
∑
`∈A

s−1
`

∣∣∇g,x`F (xA)
∣∣2
gx`

, u(x) = F (xA) ∈ FC1 , (5.3.8)

is closable. (iii) its closure is a regular strongly local Dirichlet form on L2
m(M) with standard

core FC1. Furthermore, it has (iv) generator (∆s,D(∆s)), essentially self-adjoint on FC2, with

∆su(x) = 1
2

∑
`∈A

s−1
` ∆g,x`F (xA) , u(x) = F (xA) ∈ FC2 ;

and (v) heat kernel hs
•, defined as in (5.2.4), absolutely continuous w.r.t. m with density in Cb(M);

(vi) properly associated Brownian motion Ws
•, defined as in (5.2.6), satisfying

prn ◦Ws;x0
t = W

s,n;x
(n)
0

t , x0 ∈M , t > 0 ,

where x
(n)
0 := prn(x0) and W

n,s;x
(n)
0

t is defined as in Definition 5.3.5.

Proof. Throughout the proof we shall refer to results in [5, 6] concerned with the infinite-product

manifold M = M1, rather than with Ms. However, as noted in [6, Rmk. 2.1], this construction

is possible and nearly identical for arbitrary s ∈ T. Again throughout the proof, we refer to the

form (5.3.8) as coinciding with the one in [6, Eqn. (25)].
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Assertion (i) is claimed in [6, p. 284]. Assertion (ii): The closability of the form is claimed

in [6, p. 289]; it is a consequence of the integration by parts formula [5, Eqn. (44)] with Λk ≡ 0

for all k, in the notation of [5]. Assertion (iii): The fact that FC1 is a core is straightforward;

its standardness is immediate. By [23, Cor. I.5.1.4, Rmk. I.5.1.5], it is sufficient to check strong

locality on the core FC1; by finiteness of the set A in (5.3.7) this is in turn a standard finite-

dimensional fact. Assertion (iv) is claimed in [5, Thm. 4] and [6, Thm. 4.1]. Provided we can

identify the semigroup Ts
• of (Es,D(Es)) with Hs

• as in (5.2.5), (v) is the content of [15, Thm. 1.1]

since
∞∑
n

e−2λ1 t/sn <∞ , s := (sn)∞n ∈ T◦ , t > 0 , (5.3.9)

where λ1 denotes the spectral gap of the Laplace–Beltrami operator of (M, g,m). In order to

prove (5.3.9) it is sufficient to show that lim supn e
−2λ1t/(n sn) < 1, by the root test. In turn,

this is equivalent to lim infn n sn <∞. In fact, since s ∈ T◦, there exists limn n sn = 0 by the

Abel–Olivier–Pringsheim criterion. The rest of the proof is devoted to the identification of the

semigroup Ts
• with Hs

•. Since hs
t(x,dy)� m, by [82, Lem. 6] we have in fact

hs
t(x, dy) =

(
∞∏
`

ht/s`(x`, y`)

)
dm(y) , x,y ∈M .

(In particular, the product of the densities converges). For u ∈ FC2 one has (Also cf. [18, §4.1])

lim
t↓0

1
t

(
Hs
tu− u

)
(x) = lim

t↓0

1

t

(∫
M

dm(y)

(
∞∏
`

ht/s`(x`, y`)

)
F (yA)− F (xA)

)

= lim
t↓0

1

t

(∫
M×|A|

dm|A|(y)

(∏
`∈A

ht/s`(x`, y`)

)
F (y)− F (x)

)
.

The standard finite-dimensional computation now shows that the generator, say (Ls,D(Ls)),

of Hs
• satisfies Ls = ∆s on FC2. This concludes the proof of (v) by essential self-adjointness (iv)

of ∆s on FC2. (vi) is a direct consequence of (v). �

Remark 5.3.8. If d = 1, i.e. M = S1, Theorem 5.3.7(iv) and (v) are [18, §4.1, Thm.s 4.3, 4.6].

Lemma 5.3.9. Let s ∈ T◦ and Ws
• be defined as in (5.2.6). Then, M◦ is Ws

•-coexceptional.

Proof. Denote by τ s the first touching time of Mc
◦ for Ws

• in the sense of [112, §IV.5, Eqn. (5.14)].

Since Mc
◦ is measurable and Ws

• has infinite life-time, it suffices to show

P s
m {τ s <∞} = 0 . (5.3.10)

(Here, P s
m is defined analogously to [112, §IV.1, Eq. (1.4)].) With slight abuse of notation, for

every x0 ∈M we denote both x0 and prn(x0) by x0, the distinction being apparent from the

contextual index n. Notice that M \M◦ =
⋂
n pr−1

n

(
M×n \M×n◦

)
and prn ◦Ws;x0

• = Wn,s;x0
• by

Theorem 5.3.7(vi). Moreover, since M×n is compact, prn is a closed map, hence prn
(
Ws

[0,t]

)
=

Wn,s
[0,t]. (Cf. [50, Cor. 3.1.11].) As a consequence, letting τn,s be the first touching time of M×n \

M×n◦ for Wn,s
• ,

{τn,s <∞} ⊂
{
τn+1,s <∞

}
⊂ {τ s <∞} = lim

n
{τn,s <∞} . (5.3.11)

Furthermore,

P s
m {τn,s <∞} = Pn,smn {τ

n,s <∞} = 0 (5.3.12)

since M×n \ M×n◦ is Wn,s
• -exceptional for every s ∈ T◦ by Lemma 5.3.6. Finally, (5.3.11)

and (5.3.12) yield (5.3.10) by the Borel–Cantelli Lemma. �
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5.3.4 Spaces of measures. Let P := P(M), resp. M +
1 := M +

1 (M), denote the space of Borel

probability, resp. subprobability, measures on M . On P we consider different topologies, namely

(a) the narrow (or weak) topology τn, induced by duality with Cb(M); (b) the weak atomic

topology τa [52, §2]; (c) the strong (or norm) topology τs, induced by the total variation.

For i = 1, 2 let µi ∈P. We denote by Cpl(µ1, µ2) the set of couplings of µ1, µ2, i.e. the set of

probability measures π on M×2 such that pri]π = µi, where pri : M×2 →M is the projection on

the ith component of the product. For p ∈ [1,∞), the Lp-Kantorovich–Rubinshtein distance Wp

on P is defined by

Wp(µ1, µ2)p := inf
π∈Cpl(µ1,µ2)

∫
M×2

dπ(x, y) dg(x, y)p . (5.3.13)

Since M is compact, the narrow topology coincides with both the vague topology (induced by

duality with Cc(M)) and with the topology induced by Wp for any p. (See, e.g., [165, Cor. 6.13].)

For the reader’s convenience, we collect here the main properties of the weak atomic topology

which we shall dwell upon in the following, taken, almost verbatim, from [52].

Remark 5.3.10. On P we only consider the Borel σ-algebra Bn(P) :=B(P, τn); in fact, it holds

that Bn(P) = B(P, τa). (See [52, p. 5].)

Proposition 5.3.11 (Ethier–Kurtz [52]). The following holds: (i) τa is strictly finer than τn;

(ii) (P, τa) is a Polish space; (iii) suppose τn-limn µn = µ∞. For N ∈ N let
(
sN,iδxN,i

)
i≤mN

be the set of atoms of µN , ordered so that sN,i−1 ≥ sN,i for all i ≤ mN ∈ N0. Then,

τa-lim
n
µn = µ∞ if and only if sn,i −→ s∞,i for all i ≤ m∞ ;

(iv) suppose τn-limn µn = µ∞ and that µ∞ is purely atomic. Then,

τa-lim
n
µn = µ∞ if and only if lim

n

∑
i

|sn,i − s∞,i| = 0 .

Conversely, if τa-limn µn = µ∞ and s∞,k > s∞,k−1 for some k ≤ m∞, then the set of loca-

tions {xn,1, . . . , xn,k} converges to {x∞,1, . . . , x∞,k}. In particular, if s∞,i > s∞,i+1 for all i,

then xn,i −→ x∞,i for all i; (v) (P, τa) is not compact, even if M is.

Proof. For a metric metricizing (P, τa) see [52, Eqn. (2.2)]. For separability and completeness

see [52, Lem. 2.3]. The inclusion in (i) follows by comparison of [52, Eqn. (2.2)] with the Prohorov

metric; it is strict by [52, Example 2.7]. For (iii)–(iv) see [52, Lem. 2.5(b)]. Assume M compact.

We sketch a proof of (v). By e.g. [165, Rmk. 6.19], (P, τn) is compact. Argue by contradiction

that (P, τa) is compact. It is known that a continuous injection from a compact Hausdorff space

is a homeomorphism onto its image. Applying this to id : (P, τa)→ (P, τn) contradicts (i). �

The Dirichlet–Ferguson measure. Everywhere in the following let β ∈ (0,∞) be defined by m =

βm. Let I :=[0, 1], resp. I◦ :=(0, 1), be the closed, resp. open, unit interval and set M̂ :=M × I
and M̂◦ :=M × I◦, always endowed with the product topology, Borel σ-algebra B(M̂) and

with the measure m̂β := m⊗ Bβ . The next result may be regarded as a corollary of the Mecke

identity (5.2.13).

Corollary 5.3.12 (cf. [55, Prop. 1]). Let η be a Dm-distributed P-valued random field. Then,

for every semi-bounded measurable f : M → R,

E[ηf ] = mf . (5.3.14)

In particular, for every measurable A it holds with Dm-probability 1 that ηA > 0 iff mA > 0.
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Definition 5.3.13. Denote by Ppa the set of purely atomic probability measures on M ;

by Ppa
iso the set of measures η ∈ Ppa with infinitely many atoms and such that ηx1 6= ηx2

whenever ηx1 > 0 and x1 6= x2; by P fs the set of fully supported Borel probability measures

on M . Finally set Ppa,fs
so := P fs ∩Ppa

iso.

Proposition 5.3.14. The following holds: (i) Ppa,fs
so ,Ppa

iso ∈ Bn(P) and DmPpa,fs
so = 1; (ii)

let Φ be defined as in (5.2.8); then, its non-relabeled restriction

Φ :
(
M̂◦, τu, m̂β

)
−→ (Ppa

iso, τa,Dβm)

is a homeomorphism and an isomorphism of measure spaces; (iii) the set

N := {(η, x) ∈P ×M | ηx > 0} × I ⊂P × M̂ (5.3.15)

is Bn(P)⊗ B(M̂)-measurable and Dm ⊗ m̂β-negligible.

Proof. Assertion (i) is known, see e.g. [52] or [55, §4]. In order to prove (ii) notice that each of

the topologies involved is metrizable (including τa, by Prop. 5.3.11(ii)), thus it suffices to show

the continuity of Φ, resp. Φ−1, along sequences. To this end, for N ∈ N let

xN := (xN,i)
∞
i ∈M◦ , sN := (sN,i)

∞
i ∈ T◦ , µN := Φ(sN ,xN ) ∈Ppa .

The latter association is unique, since Φ is bijective.

Assume first τu-limn(xn, sn) = (x∞, s∞). In particular `1-limn sn = s∞. For every f ∈
Cb(M), ∣∣∣∣∫

M

dµn f −
∫
M

dµ∞ f

∣∣∣∣ =

∣∣∣∣∣
∞∑
i

(
sn,if(xn,i)− s∞,if(x∞,i)

)∣∣∣∣∣
≤
∞∑
i

sn,i |f(xn,i)− f(x∞,i)|+
∞∑
i

|sn,i − s∞,i| |f(x∞,i)|

≤
∞∑
i

sn,i |f(xn,i)− f(x∞,i)|+ ‖f‖∞ ‖sn − s∞‖`1 .

The first term vanishes as n→∞ by Dominated Convergence Theorem with varying domi-

nating functions ‖f‖∞ sn ∈ `1(N); the second term vanishes by assumption. By arbitrariness of f ,

τn-limn µn = µ∞, whence τa-limn µn = µ∞ by Proposition 5.3.11(iv). This shows the continuity

of Φ. The continuity of Φ−1 is precisely the converse statement in Proposition 5.3.11(iv). It

follows that Φ is bi-measurable. The measure isomorphism property is also known (Sethuraman

stick-breaking representation). (iii) The set N is measurable by Lemma 5.6.2. Moreover, its

sections Nx := {η ∈P | (η, x, r) ∈ N } are Dm-negligible for every x ∈ M by Corollary 5.3.12,

hence N is Dm ⊗ m̂β-negligible itself. �

Remark 5.3.15. It is not possible to extend the homeomorphism in Proposition 5.3.14(ii), in the

sense that the spaces (Ppa, τa) and T ×M◦ are not homeomorphic. Clearly, the same holds

for (Ppa, τa) and T◦ ×M, for which Φ is not even bijective.

Remark 5.3.16. It was noticed in [13, Prop. 3.1] that Ppa is an Fσδ-set in (P, τn), and thus so

is Ppa,fs. The same holds in τa. Neither subspace is locally compact in τn, nor in τa.

5.4 The Dirichlet form

In this section, assume d ≥ 1 whenever not stated otherwise.
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5.4.1 Cylinder functions. Here, we introduce some spaces of suitably differentiable functions.

Definition 5.4.1 (Cylinder functions). Let k, `,m, n ∈ N0 and Cmb (Rk) be the space of real-

valued bounded m-differentiable functions on Rk with bounded derivatives of any order up

to m.

For f̂ ∈ Bb(M̂) and η ∈P set

f̂?(η) :=
∑
x∈η

ηx f̂(x, ηx) =

∫
M

dη(x) f̂(x, ηx) . (5.4.1)

For f̂i ∈ Bb(M̂) for i ≤ k, set f̂ :=
(
f̂1, . . . , f̂k

)
and f̂?(η) :=

(
f̂?1 (η), . . . , f̂?k (η)

)
.

For ε ∈ I set further M̂ε :=M × (ε, 1]. We always regard Cmc (M̂ε) as the subspace of Cm(M̂)

obtained by extension by 0. Consistently with this identification, we put C0(M̂1) := {0} by

convention. Notice that C0
0(M̂0) ( C0(M̂). We define the following families of cylinder functions

Ẑm :=

{
u : P −→ R | u = F ◦ f̂?,

F ∈ Cmb (Rk), f̂ ∈ Cm(M̂)⊗k

}
, Ẑm− :=

{
u : P → R | u = F ◦ f̂?, F ∈ Cmb (Rk),

f̂i = 1M ⊗%i, %i ∈ Cm(I) i ≤ k

}
,

Ẑmε :=

{
u : P −→ R | u = F ◦ f̂?,

F ∈ Cmb (Rk), f̂ ∈ Cmc (M̂ε)
⊗k

}
, Zm :=

{
u : P → R | u = F ◦ f̂?, F ∈ Cmb (Rk),

f̂i = fi ⊗ 1I , fi ∈ Cm(M) i ≤ k

}
,

Ẑm−,ε :=Ẑm− ∩ Ẑmε .

(5.4.2)

For u ∈ Ẑm we define the vanishing threshold εu of u by

εu := sup
{
ε ∈ I | u ∈ Ẑmε

}
.

Notice that εu > 0 for all u ∈ Ẑ0
0. Finally, for ε ∈ I, define the family of σ-algebras

Bε(P) :=σ0

(
Ẑ∞ε
)
. (5.4.3)

Remark 5.4.2 (Representation of cylinder functions). The representation of u by F and f̂ is

never unique. Indeed, assume u ∈ Ẑm may be written as u = F ◦ f̂? for appropriate F and f̂ .

By compactness of P and M̂ and by our definition of the test functions f̂?, if G : Rk → R
satisfies G ≡ F identically on

∏k
i imf̂i, then u = G ◦ f̂?. As a consequence: (a) the families

in (5.4.2) remain unchanged if we replace Cmb (Rk) with Cmc (Rk) or Cm(Rk); (b) in particular,

if f̂ ∈ Cm(M̂), then the induced test function f̂? belongs to Ẑm (and analogously for the other

families of functions in (5.4.2)); (c) if additionally F is constant in the direction ej on imf̂j for

some j ≤ k, then u = G ◦ ĝ?, where ĝ :=
(
f̂1, . . . , f̂j−1, f̂j+1, . . . , f̂k

)
and G ∈ Cmb (Rk−1) is such

that, for some, hence any, t̄ ∈ imf̂j ,

∀s :=(s1, . . . , sk−1) ∈
k∏
i6=j

imf̂i G(s) = F (s1, . . . , sj , t̄, sj+1, . . . , sk−1) ;

(d) if u ∈ Ẑm there exists a minimal k such that u = F ◦ f̂? for F ∈ Cm(Rk) and appropriate f̂?.

If this is the case, we say that u is written in minimal form. In the following, we shall always

assume every cylinder function to be written in minimal form.

Remark 5.4.3 (Measurability and continuity of cylinder functions). (a) Every function u ∈ Ẑ0 is

measurable (consequence of Lemma 5.6.1); (b) every non-constant function u ∈ Ẑ0
0 is τn-discon-

tinuous at Dm-a.e. µ, even for u ∈ Ẑ∞ε , for every ε ∈ I; (c) every function u ∈ Ẑ0
0 is τa-continuous

(consequence of [52, Rmk. 2.6]); (d) every function in Z0 is τn-continuous (by definition of τn);

(e) Zm, Ẑm− , Ẑmε and Ẑm are algebras with respect to the pointwise multiplication of real-valued
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functions on P and are closed with respect to pre-composition with m-differentiable functions,

i.e. if e.g. u ∈ Zm and ψ ∈ Cm(R;R), then ψ ◦ u ∈ Zm; (f) the sequences m 7→ Zm, Ẑm− , Ẑmε , Ẑm

are decreasing; (g) Zm, Ẑm− , Ẑmε ( Ẑm (strict inclusion) for every m ∈ N0 and ε ∈ I; (h) ε 7→ Ẑmε

is decreasing and left-continuous, in the sense that Ẑmε =
⋃
δ>ε Ẑ

m
δ for every m ∈ N0 and ε ∈ I;

(i) Ẑ0
0 ∩ Z0 = R (constant functions); (j) Bε(P) does not separate points in P for any ε ≥ 0.

Lemma 5.4.4. It holds that (i) B1(P) = {∅,P}; (ii) Bn(Ppa) = B0(P)Ppa ; and (iii)

clL2
Dm

(P,Bn)(Ẑ
∞
ε ) = clL2

Dm
(P,Bε)(Ẑ

∞
ε ) = L2

Dm
(P,Bε).

Proof. (i) is immediate, since Ẑ∞1 = R. As for (ii), notice that the family of pointwise limits of

sequences in Ẑ∞0 contains the algebra

B0
0 :=

{
u : P → R | u :=F ◦ f̂?, F ∈ C0

b (Rk),

f̂i = fi ⊗ 1(0,1], fi ∈ C0
b (M) i ≤ k

}
,

and, for u = F ◦
((
fi ⊗ 1(0,1]

)
i≤k

)? ∈ B0
0 let ũ :=F ◦ f? ∈ Z0. Clearly u(η) = ũ(η) for

every η ∈Ppa, hence B0(P)Ppa :=σ0(Ẑ∞0 )Ppa ⊃ σ0(B0
0)Ppa = σ0(Z0)Ppa . Since τn on P is

generated by the linear functionals f? ∈ Z0 varying f ∈ Cb(M), one has σ0(Z0)Ppa = Bn(Ppa).

Thus, B0(P)Ppa ⊃ Bn(Ppa). On the other hand, Bn(P) = Ba(P) ⊃ B0(P), (by Rmk.s 5.3.10

and 5.4.3(c) respectively) hence Bn(Ppa) ⊃ B0(P)Ppa and the conclusion follows. The first

equality in (iii) is immediate, since Ẑ∞ε ⊂ L2
Dm

(P,Bε) by boundedness of functions in Ẑ∞ε and

finiteness of Dm. The second equality is not entirely straightforward (cf. Rmk. 5.4.3(j)). It is

however a consequence of Proposition 5.6.3 which we postpone to the Appendix. �

As a consequence of the proof of Lemma 5.4.4(iii), we have that Bε(P)Ppa = σ0(Ẑmε )Ppa

and that we may replace Ẑ∞ε with Ẑmε in the statement of Lemma 5.4.4(iii) for any m ∈ N0.

Directional derivatives of cylinder functions. In the following, if φ : M → M is measurable,

set Φ :=φ] : P →P. In particular,

Ψw,t :=ψw,t] .

Definition 5.4.5. For w ∈ X∞ and u ∈ Ẑ1 we define the derivative of u in the direction of w

∇w u(η) := dt
∣∣
t=0

u
(
Ψw,tη

)
(5.4.4)

whenever it exists.

Remark 5.4.6 (Geometries of P). It is important to notice that the shift Stf in (5.2.20) (consid-

ered in [73, 144, 147]. See [73, p. 546] for the terminology.) is not the ‘exponential map’ of P2

(i.e. in the sense of the L2-Wasserstein geometry of P). Rather, it is associated to P1, where the

convex combination µ 7→ µxt is a geodesic curve. In fact, the map Ψw,t (one might suggestively

write (etw)]) is also not the exponential map exp of P2, studied in [63]. However, Ψw,t is

tangent to exp t · γ for some appropriately chosen ‘tangent plan’ γ ∈P2(TM) depending on w,

as shown in the proof of Lemma 4.4.3.

Lemma 5.4.7 (Directional derivative). Let u ∈ Ẑ1, w ∈ X∞ and η ∈P. Then, there exists

∇w u(η) =

k∑
i

(∂iF )(f̂?η) ·
∫
M

dη(x)
〈
∇f̂i(x, ηx)

∣∣w(x)
〉
g
. (5.4.5)

Furthermore ∇w : Z −→ Z for Z = Ẑ∞, Ẑ∞ε ,Z
∞ while ∇w : Ẑ1

− −→ {0}, and∥∥∇w u
∥∥
L2
Dm

≤
√
k ‖∇F‖∞max

i

∥∥∇f̂i∥∥X0 ‖w‖Xm
.
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Proof. We show that the curve t 7→ u
(
Ψw,tη

)
is differentiable for every t. Indeed

dtu
(
Ψw,tη

)
=

k∑
i

(∂iF )(f̂?η) · dt
∫
M

d
(
Ψw,tη

)
(y) f̂i

(
y,
(
Ψw,tη

)
y

)
=

k∑
i

(∂iF )(f̂?η) · dt
∫
M

dη(y) f̂i
(
ψw,t(y), ηy

)
.

Since f̂ ∈ C1(M̂), differentiation under integral sign yields

dtu
(
Ψw,tη

)
=

k∑
i

(∂iF )(f̂?η) ·
∫
M

dη(y)
〈
∇f̂i

(
ψw,t(y), ηy

) ∣∣∣ ψ̇w,t(y)
〉
g

Computing at t = 0 yields (5.4.5). For the second claim, notice that, by smoothness of w,〈
∇f̂i( · , · )

∣∣w( · )
〉
g
∈ C∞(M̂) as soon as f̂i is. One can estimate

∥∥∇w u
∥∥2

L2
Dm

≤‖∇F‖2∞ · kmax
i

∫
P

dDm(η)

∣∣∣∣∫
M

dη(x)
〈
∇f̂i(x, ηx)

∣∣∣w(x)
〉
g

∣∣∣∣2
≤k ‖∇F‖2∞max

i

∥∥∇f̂i∥∥2

X0

∫
P

Dm(η) ‖w‖2Xη

=k ‖∇F‖2∞max
i

∥∥∇f̂i∥∥2

X0 ‖w‖
2
Xm

by (5.3.14), which concludes the proof. �

Integration by parts formula. We discuss integration by parts for cylinder functions.

Lemma 5.4.8 (Local derivative and Laplacian). Let u :=F ◦ f̂? ∈ Ẑ0
0. Then, the function

U : (η, z, r) 7→ u(ηzr ) is Bn(P)⊗ B(M̂)-measurable. Furthermore,

(i) if u is in Ẑ1
0, then for Dm ⊗ m̂β-a.e. (η, x, r) the map z 7→ U(η, z, r) is differentiable in a

neighborhood of z = x and

∇zw
∣∣
z=x

U(η, z, r) = r

k∑
i

(∂iF )
(
f̂?(ηxr )

)
· ∇wf̂i(x, r) . (5.4.6)

(ii) if u is in Ẑ2
0, then for Dm ⊗ m̂β-a.e. (η, x, r) the map z 7→ U(η, z, r) is twice differentiable

in a neighborhood of z = x and

∆z
∣∣
z=x

U(η, z, r) = r2
k∑
i,j

(∂2
ijF )

(
f̂?(ηxr )

)
·
〈
∇f̂i(x, r)

∣∣∇f̂j(x, r)〉g
+ r

k∑
i

(∂iF )
(
f̂?(ηxr )

)
·∆f̂i(x, r) .

(5.4.7)

Furthermore, the right-hand sides of (5.4.6) and (5.4.7) are Bn(P)⊗ B(M̂)-measurable.

Proof. By continuity of the Dirac embedding x 7→ δx and Lem. 5.6.1 the function (η, x, r) 7→ ηxr

is continuous. As a consequence, U is measurable by Remark 5.4.3. Let N be as in (5.3.15).

For (η, z, r) 6∈ N and every f̂ ∈ C0
0(M̂) one has

f̂?(ηzr ) =
∑
y∈ηzr

(ηzr )y f̂
(
y, (ηzr )y

)
= rf̂(z, r) +

∑
y∈η

(1− r)ηy f̂
(
y, (1− r)ηy

)
. (5.4.8)

Thus,

∇zw
∣∣
z=x

F (f̂?ηzr ) =
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=

k∑
i

(∂iF )(f̂?ηxr ) · ∇zw
∣∣
z=x

f̂?i (ηzr )

=

k∑
i

(∂iF )(f̂?ηxr ) · ∇zw
∣∣
z=x

∑
y∈ηzr

(ηzr )y f̂i
(
y, (ηzr )y

)
=

k∑
i

(∂iF )(f̂?ηxr ) ·

(
∇zw
∣∣
z=x

(ηzr )z f̂i
(
z, (ηzr )z

)
+
∑
y∈η

∇zw
∣∣
z=x

(ηzr )y f̂i
(
y, (ηzr )y

))
,

where the gradient may be exchanged with the sum, since the latter is always over a finite

number of points by the choice of f̂i. In light of (5.4.8),

∇zw
∣∣
z=x

F
(
f̂?(ηzr )

)
=

k∑
i

(∂iF )
(
f̂?(ηxr )

)
·

(
∇zw
∣∣
z=x

rf̂i(z, r) +
∑
y∈η

∇zw
∣∣
z=x

(1− r)ηy f̂i
(
y, (1− r)ηy

))
,

=

k∑
i

(∂iF )
(
f̂?(ηxr )

)
· r∇wf̂i(x, r) .

By (5.4.6) and arbitrariness of w one has

∇z
∣∣
z=x

u(ηzr ) =r

k∑
i

(∂iF )
(
f̂?(ηxr )

)
· ∇f̂i(x, r) ,

hence, if u is sufficiently regular,

∆z
∣∣
z=x

u(ηzr ) =(divm,z ◦ ∇z)
∣∣
z=x

u(ηzr )

=r

k∑
i

〈
∇z
∣∣
z=x

(∂iF )
(
f̂?(ηzr )

) ∣∣∇f̂i(x, r)〉g + r

k∑
i

(∂iF )
(
f̂?(ηxr )

)
·∆z

∣∣
z=x

f̂i(z, r)

=r2
k∑
i,j

(∂2
jiF )

(
f̂?(ηxr )

)
·
〈
∇f̂j(x, r)

∣∣∇f̂i(x, r)〉g + r

k∑
i

(∂iF )
(
f̂?(ηxr )

)
·∆f̂i(x, r) .

This shows (5.4.6) and (5.4.7) outside the Dm ⊗ m̂β-negligible set N . �

Theorem 5.4.9 (Integration by parts). Let w ∈ X∞ and u :=F ◦ f̂?, v :=G ◦ ĝ? be cylinder

functions in Ẑ1
0. Set ε := εu ∧ εv > 0. Then, the following integration by parts formula holds:∫

P

dDm ∇w u · v =−
∫

P

dDm u ·∇w v −
∫

P

dDm u · v ·Bε[w] , (5.4.9)

where

Bε[w](η) :=
∑

x|ηx>ε

divm
xw . (5.4.10)

Proof. We can compute∫
P

dDm ∇w u · v =

∫
P

dDm(η) v(η) ·
k∑
i

(∂iF )
(
f̂?(η)

) ∫
M

dη(x)
〈
∇f̂i(x, ηx)

∣∣w(x)
〉
g

=

∫
P

dDm(η)

∫
M

dη(x) v(η) ·
k∑
i

(∂iF )
(
f̂?(η)

)
·
〈
∇f̂i(x, ηx)

∣∣w(x)
〉
g
,
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whence, by the Mecke identity (5.2.13) and by (5.4.6),

=

∫
P

dDm(η)

∫
M̂

dm̂β(x, r) v(ηxr ) ·
k∑
i

(∂iF )
(
f̂?(ηxr )

) 〈
∇f̂i(x, r)

∣∣w(x)
〉
g
,

=

∫
P

dDm(η)

∫ 1

0

dBβ(r)

β
1(ε,1](r)

∫
M

dm(x) v(ηxr ) · 1
r
∇zw
∣∣
z=x

u(ηzr ) .

Since bdM = ∅, integration by parts on M now yields∫
P

dDm ∇w u · v =−
∫

P

dDm(η)

∫
M̂

dm̂β(x, r)∇zw
∣∣
z=x

v(ηzr ) · u(ηxr )

−
∫

P

dDm(η)

∫
M̂

dm̂β(x, r)
1(ε,1](r)

r
(uv)(ηxr ) · divm

xw

=−
∫

P

dDm(η)

∫
M̂

dm̂β(x, r)u(ηxr ) ·
h∑
j

(∂jG)(ĝ?ηxr ) 〈∇ĝj(x, r) |w(x)〉g

−
∫

P

dDm(η)

∫
M̂

dm̂β(x, r)
1(ε,1](r)

r
(uv)(ηxr ) · divm

xw .

Applying the Mecke identity (5.2.13) to the first integral yields

∫
P

dDm(η)

∫
M̂

dm̂β(x, r)u(ηxr ) ·
h∑
j

(∂jG)
(
ĝ?(ηxr )

)
〈∇ĝj(x, r) |w(x)〉g

=

∫
P

dDm(η)u(η) ·∇w v(η) .

Applying the Mecke identity (5.2.13) to the second integral instead yields∫
P

dDm(η)

∫
M̂

dm̂β(x, r)
1(ε,1](r)

r
(uv)(ηxr ) · divm

xw

=

∫
P

dDm(η)

∫
M

dη(x)
1(ε,1](ηx)

ηx
(uv)(η) · divm

xw

=

∫
P

dDm(η) (uv)(η) ·
∑
ηx>ε

divm
xw . �

5.4.2 Gradient and Dirichlet form on P. At each point µ in P, the directional deriva-

tive ∇w u of any u ∈ D(∇w) defines a linear form w 7→ ∇w u(µ) on X∞. Let ‖ · ‖µ be a

pre-Hilbert norm on X∞ such that this linear form is continuous, and let TµP denote the

completion of X∞ with respect to the said norm. By Riesz Representation Theorem there exists

a unique element ∇u(µ) in TµP such that ∇w u(µ) =
〈
∇u(µ)

∣∣w〉
µ
, where 〈 · | · 〉µ denotes

the scalar product of the Hilbert space TµP. Different choices of ‖ · ‖µ, hence of TµP, yield

different gradient maps ∇u, namely, as suggested by Lemma 5.4.7, the closures of the operator

∇u(µ)(x) :=

k∑
i

(∂iF )
(
f̂?(µ)

)
· ∇f̂i(x, µx) , u :=F ◦ f̂? ∈ Ẑ1 . (5.4.11)

Remark 5.4.10 (Measurability of gradients). The function x 7→ ∇u(µ)(x) is measurable for

every u ∈ Ẑ1
0 and µ in P by measurability of x 7→ µx, whereas it is generally discontinuous

at Dm-a.e. µ, even for u ∈ Ẑ∞.
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The Dirichlet form E. Throughout this section we fix TµP = TDer
µ P2 :=Xµ. The ‖ · ‖Xµ -

continuity of w 7→ ∇u(µ), granting that our choice is admissible, readily follows from (5.4.5).

We refer the reader to §4.6.1 for the geometrical meaning of this choice.

For u :=F ◦ f̂? ∈ Ẑ0 where f̂ :=
(
f̂1, . . . , f̂k

)
, denote by ũ the extension of u to Mb(M) defined

by extending f̂?i : P → R to f̂?i : Mb(M)→ R in the obvious way for all i’s. For the purpose of

clarity, in the statement of the following theorem we distinguish u from ũ. Everywhere else, with

slight abuse of notation, we will denote both u and ũ simply by u.

Theorem 5.4.11. Assume d ≥ 1. For u, v in Ẑ2
0 set

E(u, v) := 1
2

∫
P

dDβm(η)
〈
∇u(η)

∣∣ ∇ v(η)
〉
Xη

,

Lu(η) := 1
2

∫
M

dη(x)
∆z
∣∣
z=x

ũ(η + ηxδz − ηxδx)

(ηx)2
, η ∈Ppa , (5.4.12)

Γ(u, v)(η) := 1
2

〈
∇u(η)

∣∣ ∇ v(η)
〉
Xη

, η ∈P . (5.4.13)

Then, (L, Ẑ2
0) is a symmetric operator on L2

Dm
(P) satisfying

∀u, v ∈ Ẑ2
0 E(u, v) =

〈
u
∣∣ − Lv

〉
L2
Dm

.

The bilinear form (E , Ẑ2
0) is a closable symmetric form on L2

Dm
(P). Its closure (E ,D(E)) is a

strongly local recurrent (in particular: conservative) Dirichlet form with generator the Friedrichs

extension (Lf,D(Lf)) of (L, Ẑ2
0). Moreover, (E ,D(E)) has carré du champ operator (Γ,D(Γ))

where D(Γ) := D(E) ∩ L∞Dm
(P), that is, for all u, v, z ∈ D(Γ),

2

∫
P

dDm z Γ(u, v) = E(u, vz) + E(uz, v)− E(uv, z) . (5.4.14)

Proof. By definition of ∇u,

2 E(u, v) =

∫
P

dDm(η)

∫
M

dη(x)

k,h∑
i,j

〈
(∂iF )

(
f̂?(η)

)
∇f̂i(x, ηx)

∣∣∣ (∂jG)
(
ĝ?(η)

)
∇ĝj(x, ηx)

〉
g
,

(5.4.15)

whence, by the Mecke identity (5.2.13) and integrating by parts on M ,

=

∫
P

dDm(η)

∫
I

dBβ(r)

∫
M

dm(x)
〈

1
r
∇z
∣∣
z=x

u(ηzr )
∣∣ 1
r
∇z
∣∣
z=x

v(ηzr )
〉
g

=−
∫

P

dDm(η)

∫
I

dBβ(r)

βr2

∫
M

dm(x)u(ηxr ) ·∆z
∣∣
z=x

v(ηzr )

=−
∫

P

dDm(η)

∫
M̂

dm̂β(x, r)u(ηxr ) ·
∆z
∣∣
z=x

v(ηxr + rδz − rδx)

r2
,

thus, again by the Mecke identity (5.2.13),

=− 2

∫
P

dDm(η)u(η) · Lv(η) .

Let H := clL2
Dm

Ẑ2
0, thought of as a Hilbert subspace of L2

Dm
(P). Clearly Ẑ2 ⊂ H, hence

in particular Z2 ⊂ H and the family Z2 is a unital nowhere-vanishing algebra of continuous

functions (cf. Rem. 5.4.3) separating points in P, thus it is uniformly dense in C(P) by

compactness of P and the Stone–Weierstraß Theorem. Since (P,Bn(P),Dm) is a compact

Polish probability space, one has clL2
Dm
C(P) = L2

Dm
(P), thus finally H = L2

Dm
(P). It is
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straightforward that (5.4.12) defines a linear operator L : Ẑ2
0 → L2

Dm
(P). The symmetry (and

coercivity) of the bilinear form (E , Ẑ2
0) is obvious. Its closability on L2

Dm
(P) and the existence of

the Friedrichs extension (L,D(L)) follow from [136, Thm. X.23]. The Markov and strong local

properties are also straightforward since Ẑ2
0 is closed w.r.t. post-composition with smooth real

functions.

By the Leibniz rule for ∇, (5.4.14) holds for all u, v, z ∈ Ẑ1
0. Arbitrary u, v, z ∈ D(E) ∩

L∞Dm
(P) may be respectively approximated both in E1/2

1 and Dm-a.e. by uniformly bounded

sequences un, vn, zn ∈ Ẑ1
0. Thus limn unvn = uv, limn unzn = uz and limn vnzn = vz in E1/2

1

and

lim
n

∫
P

dDm

∣∣z Γ(u, v)− znΓ(un, vn)
∣∣

≤ lim
n

∫
P

dDm |z − zn|Γ(u, v) + lim
n

∫
P

dDm |zn|
∣∣Γ(u, v)− Γ(un, vn)

∣∣ = 0 ,

whence (5.4.14) carries over from Ẑ1
0 to D(E)∩L∞Dm

(P). Since 1 ∈ D(E) and E(1) = 0, the form

is recurrent (e.g. [59, Thm. 1.6.3]), thus conservative (e.g. [59, Lem. 1.6.5]). �

Remark 5.4.12. Notice that (E ,D(E)), (Lf,D(Lf)) and (Γ,D(Γ)) all depend on β. Rigorously

we ought to write E(β) for the form E defined on L2
Dβm(P) and analogously for Γ and L. We

assume β > 0 to be fixed and drop it from the notation.

Remark 5.4.13. For u = F ◦ f̂? ∈ Ẑ2
0 with vanishing threshold εu, set, consistently with (5.4.10),

B[∇f̂i](η) =
∑
x∈η

∆f̂i(x, ηx) =
∑

x|ηx>εu

∆f̂i(x, ηx) , i ≤ k ,

and

L1u := 1
2

k∑
i,p

(∂2
ipF ◦ f̂?) · Γ(f̂?i , f̂

?
p ) , L2u := 1

2

k∑
i

(∂iF ◦ f̂?) ·B[∇f̂i] . (5.4.16)

Also notice that

Γ(f̂?i , f̂
?
p ) = Γ(f̂i, f̂p)

? , i, p ≤ k , (5.4.17)

where Γ(f̂i, f̂p)(x) := 1
2

〈
∇xf̂i

∣∣∇xf̂p〉g is but the carré du champ operator of the Laplace–Beltrami

operator on (M, g). Then, consistently with (5.4.10) and (5.4.9),

L = L1 + L2 , (5.4.18)

which makes apparent that Lu is defined everywhere on P and is identically vanishing on the

subspace of diffuse measures. for every u ∈ Ẑ2
0.

The τn-regularity of E. In view of Remark 5.4.3, D(E) might appear unsuitable for the form to

be regular, since we defined the latter on a core of non-continuous functions. The goal of this

section is to show that, in fact, D(E) contains sufficiently many continuous functions.

Definition 5.4.14 (Sobolev functions of mixed regularity and Sobolev cylinder functions).

Denote by Iβ the measure space (I,Bβ) and consider the space

Wm̂β
:=L2(Iβ ;W 1,2

m (M)
) ∼= L2(Iβ) ⊗̂W 1,2

m (M) ,
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where ⊗̂ denotes the tensor product of Hilbert spaces. It coincides with the completion of C∞(M̂)

with respect to the norm defined by∥∥f̂∥∥2

Wm̂β

:=

∫
M̂

dm̂β

(∣∣∇f̂ ∣∣2
g

+
∣∣f̂ ∣∣2) .

To fix notation, let f̂ : (x, s) 7→ f̂s(x) := f̂(x, s) ∈ Wm̂β . We denote further by D the

distributional gradient on M and by D1,0 :=(D ⊗ idI◦) the distributional differential operator

given, locally on a chart of M̂◦, by differentiation along coördinate directions on M .

By [9, Prop. 3.105], for f̂ ∈Wm̂β and for a.e. s ∈ I◦ one has that, locally on M̂◦, differentiation

in the M -directions commutes with restriction in the I◦-direction, i.e. Df̂s = (D1,0f̂)s. Thus, for

any such f̂ , the notation Df̂ is unambiguous. For f̂ ∈Wm̂β , we denote by [f̂ , Df̂ ] any of its Borel

representatives. We write [f̂ , Df̂ ]1 when referring only to the representative of f̂ , and [f̂ , Df̂ ]2

when referring only to the representative of Df̂ . Finally set

Ŵ2,2
b :=

{
u : P → R | u = F ◦

(
[f̂1, Df̂1]?1, . . . , [f̂k, Df̂k]?1

)
,

F ∈ C2
b (Rk) , f̂i ∈Wm̂β , [f̂i, Df̂i]1 ∈ Bb(M̂) i ≤ k

}
. (5.4.19)

Remark 5.4.15. The specification of representatives for both f̂ and Df̂ in the definition of Ŵ2,2
b

is instrumental to the statement of Lemma 5.4.16 below. It is then the content of the Lemma

that such a specification is in fact immaterial.

Lemma 5.4.16. Let (E ,D(E)) be defined as in Theorem 5.4.11. Then, (i) Ẑ2 ⊂ D(E); and

(ii) Ŵ2,2
b ⊂ D(E) and u ∈ D(E) of the form (5.4.19) does not depend on the choice of the

representatives for f̂i. Moreover, for any such u, for Dm-a.e. η ∈P,

Γ(u)(η) =
∑
i,p

(∂iF )
(
[f̂ , Df̂ ]?1(η)

)
· (∂pF )

(
[f̂ , Df̂ ]?1(η)

) ∫
M

dη(x)
〈

[f̂i, Df̂i]2

∣∣∣ [f̂p, Df̂p]2〉
g

(x, ηx)

(with usual meaning of the notation f̂) does not depend on the choice of representatives for f̂i.

Proof. (i) Let u = F ◦ f̂ ∈ Ẑ2 and %n ∈ C∞(I) be such that %n ↑n 1I pointwise and supp%n ⊂
[1/n, 1]. For i ≤ k set f̂n,i := %n · f̂i and notice that f̂n,i ∈ C2(M̂1/n), hence un :=F ◦ f̂n ∈ Ẑ2

1/n

for every n ∈ N. It is straightforward that

max
i≤k

lim
n

∥∥f̂n,i − f̂i∥∥Wm̂β

= 0 ,

hence there exists Cu > 0 such that maxi≤k supn
∥∥f̂n,i∥∥Wm̂β

≤ Cu. Thus,

2 E(un − um) =EDm

∫
M

dη(x)

∣∣∣∣∣
k∑
i

(
(∂iF )

(
f̂?n(η)

)
· ∇f̂n,i − (∂iF )

(
f̂?m(η) · ∇f̂m,i

))∣∣∣∣∣
2

g

(x, ηx)


≤2EDm

∫
M

dη(x)

∣∣∣∣∣
k∑
i

(∂iF )
(
f̂?n(η)

)
·
(
∇f̂n,i −∇f̂m,i

)
(x, ηx)

∣∣∣∣∣
2

g


+ 2EDm

∫
M

dη(x)

∣∣∣∣∣
k∑
i

(
(∂iF )

(
f̂?n(η)

)
− (∂iF )

(
f̂?m(η)

))
· ∇f̂m,i(x, ηx)

∣∣∣∣∣
2

g


≤2kk · Lip(F )2 ·

k∑
i

EDm

[∫
M

dη(x)
∣∣∣∇f̂n,i −∇f̂m,i∣∣∣2

g
(x, ηx)

]

+ 2kk ·max
i

Lip(∂iF )2 · C2
u ·

k∑
i

EDm

[∣∣∣∣∫
M

dη(x)
(
f̂n,i − f̂m,i

)
(x, ηx)

∣∣∣∣2
]
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≤Ku ·
k∑
i

E1
(
f̂?n,i − f̂?m,i

)
, (5.4.20)

for some appropriate constant Ku, independent of i, n,m. Now, by Jensen inequality

2 E1
(
f̂?n,i − f̂?m,i

)
=EDm

[
Γ(f̂n,i − f̂m,i)? +

∣∣(f̂n,i − f̂m,i)?∣∣2]
≤EDm

[
Γ
(
f̂n,i − f̂m,i

)?
+
(∣∣f̂n,i − f̂m,i∣∣2)?] ,

thus, by the Mecke identity (5.2.13)

2 E1(f̂?n,i − f̂?m,i) ≤EDmEm̂β

[
Γ(f̂n,i − f̂m,i) +

∣∣f̂n,i − f̂m,i∣∣2]
=Em̂β

[
Γ(f̂n,i − f̂m,i) +

∣∣f̂n,i − f̂m,i∣∣2]
=
∥∥f̂n,i − f̂m,i∥∥2

Wm̂β

. (5.4.21)

This shows that the sequence
(
E(un)

)
n∈N is fundamental (hence bounded). Analogously, one

can show that the sequence un converges to u strongly in L2
Dm

(P). Thus, u ∈ D(E) by [112,

Lem. I.2.12]. Since
(
E1(un)

)
n∈N is fundamental, letting n → ∞ in (5.4.21) and combining it

with (5.4.20) yields

lim
n
E1(un − u) = 0 , u ∈ Ẑ2 , un ∈ Ẑ2

1/n . (5.4.22)

Notice that the condition [f̂i, Df̂i]1 ∈ Bb(M̂) grants that [f̂i, Df̂i]
?
1(η) is well-defined by (5.4.1).

The measurability of u follows as in Remark 5.4.3. As a consequence, (ii) may be proven similarly

to (i) by ‖ · ‖Wm̂β
-density of C2(M̂) in Wm̂β . �

Remark 5.4.17. In view of Lemma 5.4.16(ii), everywhere in the following we write f̂? in lieu

of [f̂ , Df̂ ]?1 ∈ Ŵ2,2
b \ Ẑ

2. Analogously, for any such f̂ we will write Γ(f̂?) =
(∣∣Df̂ ∣∣2

g

)?
omitting

any explicit indication of the representative of f̂ ∈Wm̂β . We notice that, with a little more effort,

one could show that f̂? is a well-defined element of L2
Dm

for any f̂ ∈ L2(M̂, m̂β) and independent

of the choice of representatives for f̂ . In a similar way, one can show that Ŵ2,2 ⊂ D(E), with

obvious meaning of the notation Ŵ2,2 (as opposed to Ŵ2,2
b ).

Corollary 5.4.18. Let u ∈ D(E). Then, there exists (un)n∈N such that (a) un ∈ Ẑ2
1/n for

all n ∈ N; (b) E1/2
1 -limn un = u; (c) Dm-limn un = u; (d) Dm-limn

∥∥∇un −∇u
∥∥
X ·

= 0.

Proof. (c) and (d) are a standard consequence of (b) up to passing to a suitable subsequence.

Thus, it suffices to show (a) and (b), which in turn follow by Lemma 5.4.16(i) and an ε/3-

argument. �

Corollary 5.4.19. Assume d ≥ 2. The Dirichlet form (E ,D(E)) on L2(P, τn,Dm) is a regular

strongly local recurrent (in particular: conservative) Dirichlet form with standard core

L2,1 :=

{
u : P → R | u :=F ◦ f̂?, F ∈ C2

b (Rk),

f̂i = fi ⊗ 1I , fi ∈ Lip(M) i ≤ k

}
.

Proof. The family Z∞ ⊂ Ŵ2,2
b ⊂ D(E) is uniformly dense in C(P) as in the proof of Thm. 5.4.11

Closability. A proof that Z∞ is also dense in D(E) if d ≥ 2 is postponed to Lemma 5.6.26.

One has L2,1 ⊂ Ŵ2,2
b ⊂ D(E) and in fact L2,1 ⊂ D(E) as in the proof of Lemma 5.4.16(ii).

In particular, for any f ∈ Lip(M), the section Df is defined on Ac, where the singular set A of f
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satisfies A ∈ B(M) and mA = 0 by the classical Rademacher Theorem. For u = F ◦ f? ∈ L2,1

with f := (f1, . . . , fk), let Ai denote the singular set of fi and set A :=∪i≤kAi. Then,

∀u ∈ L2,1 , for Dm-a.e. η Γ(u)(η) = 1
2

∫
M

dη(x)

k∑
i,p

(∂iF )(f?η) · (∂pF )(f?η) · 〈Dfi |Dfp〉g

is well-defined, since the set of measures η ∈Ppa,fs
so charging A is Dm-negligible by Corollary 5.3.12.

The fact that L2,1 is a standard core is a straightforward consequence of the definition of L2,1

and of the classical chain rule. �

Partial quasi-invariance of Dm and integration by parts formula. The following result is heuristi-

cally clear from the analogous result [96, Thm. 13] for the Gamma measure. However, it seems

to us that it cannot be rigorously deduced from it. Thus, we provide an independent proof.

Proposition 5.4.20. The measure Dm is partially quasi-invariant with respect to the ac-

tion G
	

P as in (5.2.29) on the filtration B•(Ppa) :=
(
B1/n(Ppa)

)
n∈N as in (5.4.3), with

Radon–Nikodým derivatives R1/n[ψ] as in (5.2.30).

Proof. It suffices to establish (iii) in Definition 5.2.5. Indeed (i) was noticed in Definition 5.4.1

and (ii) is straightforward with n′ = n. In order to check (iii) it suffices to restrict ourselves to

functions u ∈ Ẑ∞1/n, since they generate B1/n(Ppa) by definition. Now, for ψ ∈ Diff∞+ (M),∫
P

d(ψ.)]Dm(η)u(η) =

∫
Ppa

iso

d
(
Φ]m̂β

)
(η)u(ψ]η)

by Proposition 5.3.14(ii). Let η =
∑∞
i siδxi . Since s1 > s2 > . . . , one has sn+1 < 1/n, hence,

for every i ≤ k, every x ∈ M and every n′ > n it holds that f̂j(x, sn′) = 0 by definition of f̂i.

Thus,∫
P

d(ψ.)]Dm(η)u(η) =

=

∫
M◦

dm(x)

∫
T◦

dΠβ(s)F

(
∞∑
i

sif̂1(ψ(xi), si), . . . ,

∞∑
i

sif̂k(ψ(xi), si)

)

=

∫
M×n

dmn(x1, . . . , xn)

∫
T◦

dΠβ(s)F

(
n∑
i

sif̂1(ψ(xi), si), . . . ,

n∑
i

sif̂k(ψ(xi), si)

)

=

∫
M×n

d(ψ]m)⊗n(x1, . . . , xn)

∫
T◦

dΠβ(s)F

(
n∑
i

sif̂1(xi, si), . . . ,

n∑
i

sif̂k(xi, si)

)

=

∫
M×n

dmn(x1, . . . , xn)

n∏
i

Jm
ψ(xi)

∫
T◦

dΠβ(s)F

(
n∑
i

sif̂1(xi, si), . . . ,

n∑
i

sif̂k(xi, si)

)

=

∫
M◦

dm(x)

∫
T◦

dΠβ(s)

 ∏
i|si>1/n

Jm
ψ(xi)

F

(
n∑
i

sif̂1(xi, si), . . . ,

n∑
i

sif̂k(xi, si)

)

=

∫
P

dDm(η) R1/n[ψ](η) · u(η) . �

Together with the definition of partial quasi-invariance, Proposition 5.4.20 suggests that

some of the quantities we defined in terms of the σ-algebras Bε(P) ought to be martingales with

respect to the filtration (Bε(P))ε∈I . Indeed, this turns out to be the case. The following is a

corollary of Theorem 5.4.9.
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Corollary 5.4.21. Let w ∈ X∞ and Bε[w] be defined as in (5.4.10). Then, with the same nota-

tion of Proposition 5.4.20, (i) the stochastic process B•[w] :=
(
Bε[w]

)
ε∈I is a centered square-inte-

grable martingale on
(
Ppa,Bn(Ppa),Dm

)
with respect to the filtration B•(Ppa) := (Bε(Ppa))ε∈I

(cf. (5.4.3)); (ii) it holds that

B•[w] = dt
∣∣
t=0

R•[ψ
w,t] ;

(iii) the quadratic form

Aw0 : Ẑ1
0 × Ẑ1

0 3 (u, v) 7−→ EDm

[
u · v ·Bε[w]

]
ε := εu ∧ εv

is E1/2
1 -bounded, and uniquely extends to an E1/2

1 -bounded quadratic form Aw on D(E);

Proof. (i) Let δ > ε > 0 and %ε,δ ∈ C∞c ([ε, 1];R) be such that %ε,δ(r) = 1/r for every r ≥
δ. Set f̂w,ε,δ := divmw ⊗ %ε,δ ∈ Ẑ∞ε and notice that Bε[w] = limδ↓ε f̂

?
w,ε,δ pointwise on Ppa.

Thus, Bε[w] is Bε(Ppa)-measurable. This shows that the process B•[w] is adapted to B•(Ppa).

Moreover, ∣∣Bε[w](η)
∣∣ ≤ ∑

x|ηx>ε

‖divmw‖C0 ≤
⌊
ε−1⌋ ‖divmw‖C0 . (5.4.23)

Choosing v = 1 in (5.4.9) yields∫
P

dDm(η) ∇w u(η) =

∫
P

dDm(η)u(η) Bε[w](η) .

Since u is Bε(Ppa)-measurable, it is also Bε(Ppa)-measurable for all δ ≤ ε, hence

∀δ ≤ ε
∫

P

dDm(η)u(η) Bδ[w](η) =

∫
P

dDm(η)u(η) Bε[w](η) .

By arbitrariness of u ∈ Ẑ1
ε and Lemma 5.4.4(iii),

EDm

[
Bδ[w] | Bε(Ppa)

]
= Bε[w] . (5.4.24)

Then, B•[w] is a martingale by (5.4.23) and (5.4.24). Finally, choosing u = v = 1 in (5.4.9)

yields EDm

[
Bε[w]

]
= 0. (ii) For every ε > 0 one has

dt
∣∣
t=0

Rε[ψ
w,t](η) = dt

∣∣
t=0

exp

[∫
M

dη(x)1(ε,1](ηx) ln
dψw,t] m

dm
(x)

]

= dt
∣∣
t=0

∫
M

dη(x)1(ε,1](ηx) ln
dψw,t] m

dm
(x)

=

∫
M

dη(x)1(ε,1](ηx) dt
∣∣
t=0

ln
dψw,t] m

dm
(x)

by Dominated Convergence Theorem. Finally, since ψw,t is orientation-preserving,
dψ

w,t
]

m

dm
=

det dψw,t, whence

dt
∣∣
t=0

Rε[ψ
w,t](η) =

=

∫
M

dη(x)1(ε,1](ηx) dt
∣∣
t=0

ln det dψw,t(x) =

∫
M

dη(x)1(ε,1](ηx) tr
[
dt
∣∣
t=0

dψw,t(x)
]

=

∫
M

dη(x)1(ε,1](ηx) divm
xw = Bε[w](η) .
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(iii) By (5.4.9), Cauchy–Schwarz inequality, (5.4.5) and (5.4.11)∣∣∣∣∫
P

dDm u · v ·Bε[w]

∣∣∣∣ ≤∫
P

dDm

∣∣∇w u · v
∣∣+

∫
P

dDm

∣∣u ·∇w v
∣∣

≤
∥∥∇w u

∥∥
L2
Dm

‖v‖L2
Dm

+ ‖u‖L2
Dm

∥∥∇w v
∥∥
L2
Dm

≤‖w‖Xm
‖u‖E1/2

1

‖v‖E1/2
1

.

The existence and uniqueness of Aw are a standard consequence. �

Next, we show that (E ,D(E) describes a truly infinite-dimensional diffusion. We refer to [74,

Dfn. 2.9] for the concept of index of a Dirichlet form.

Proposition 5.4.22. The form (E ,D(E) has pointwise index p(η) =∞ Dm-a.e.. Moreover, the

index is ‘full’ in the following sense: For Dm-a.e. η ∈P there exists an orthonormal basis (ei)i
of TDer

η P and a function u = ui ∈ Ẑ2
0 ⊂ D(E) such that ∇u = ei for any choice of i.

Proof. Since Dm(Ppa,fs
so ) = 1, we can restrict our attention to η =

∑∞
i siδxi ∈ Ppa,fs

so . For all

such η one has TDer
η P ∼= ⊕⊥

i (TxiM, sig), where ⊕⊥ denotes the orthogonal direct sum. For the

rest of the proof we tacitly assume this identification.

As a basis for TDer
η P we fix (ei,`)i∈N,`≤d, where (ei,`)`≤d is a g-orthonormal basis for TxiM

for every i. In order to show the second assertion, let f = fi,` ∈ C∞(M) be such that ei,`(f)xi = 1

and ei,`′(f)xi = 0 for every `′ 6= ` and % = %i ∈ C∞(I) be such that %(si) = 1 and %(si′) = 0

for every i 6= i′. The existence of f is standard, while the existence of % follows from the fact

that η ∈Ppa
iso, hence (prT ◦Φ−1)(η) ∈ T◦. Letting u = ui,` :=(f ⊗ %)?, one has ∇u(η) = ei,`.

By definition of (ei,`)i,`, one has Γ(ui,`, ui′,`′)(η) = δii′ 〈ei,` | ei,`′〉g = 0 for every (i, `) 6=
(i′, `′). As a consequence, setting

Aii′(η) :=
[
Γ(ui,`, ui′,`′)(η)

]`′≤d
`≤d ∈ Rd×d and A(η) :=

[
Aii′(η)

]i′≤n
i≤n ∈ Rd

2×n2

,

one has A(η) = idRnd for every η ∈Ppa,fs
so . Thus p(η) ≥ rk(A(η)) = nd for every n, which shows

the first assertion. �

Remark 5.4.23 (A comparison with the Cheeger energy). A known object in metric measure

space’s analysis is the Cheeger energy of a (complete and separable) metric measure space (Y, d, n)

Chd,n(f) := inf

{
lim inf

n

1
2

∫
Y

dn |Dfn|2 | fn ∈ Lip(Y, d) , fn → f in L2
n(Y )

}
,

|Df | (y) := lim sup
z→y

|f(y)− f(z)|
d(y, z)

, f ∈ Lip(Y, d) .

A comparison of the Cheeger energy ChW2,Dm of (P,W2,Dm) with the form (E ,D(E))

constructed in Theorem 5.4.11 is here beyond our scope. However, let us notice that, at a merely

heuristic level, we do not expect ChW2,Dm to be a quadratic form. Indeed, Dm-a.e. η ∈P is not

a regular measure in the sense of optimal transport (e.g., [63]), hence the tangent space at η

accessed by Lipschitz functions is the full ‘abstract tangent space’ AbstrTanη [63, Dfn. 3.7]. By

the results in [63, §6], X∇η embeds canonically, non-surjectively into AbstrTanη and the latter is

Dm-a.e. not a Hilbert space (rather, it is merely a Banach space). Additionally, it is not clear to

me whether ChW2,Dm is non-trivial (that is, not identically vanishing).



140 5.5 The associated process

5.5 The associated process

In the case d ≥ 2, by e.g., [112, Thm. IV.5.1], the form (E ,D(E)) is properly associated with a

Dm-symmetric recurrent Markov diffusion process

η• :=
(

Ω,F , (Ft)t≥0 , (ηt)t≥0 , {Pη}η∈P

)
(5.5.1)

which we now characterize.

5.5.1 Finite-dimensional approximations. Everywhere in this section, assume d ≥ 1 when-

ever not explicit stated otherwise. We construct a sequence of forms (Ên,D(Ên)) enjoying the

following properties: (a) Ên is defined on L2(Yn) for some finite-dimensional compact manifold Yn

and (b) (Ên,D(Ên)) Mosco converges to (E ,D(E)) (in the generalized sense).

We start with the following definition of a family of Dirichlet forms approximating (E ,D(E)).

Definition 5.5.1 (Approximating forms). For ε ∈ (0, 1) we consider the form (E , Ẑ2
ε). Notice

that (a) (E , Ẑ2
ε) is a closable, strongly local Dirichlet form, with closure (Eε,D(Eε)), closability

and strong locality being inherited by (E , Ẑ2
0); (b) (Eε,D(Eε)) is not densely defined on L2

Dm
(P),

yet it is densely defined on L2
Dm

(P,Bε(P)) by Lemma 5.4.4(iii).

Definition 5.5.2 (Simplices and projections). For n ∈ N, ε ∈ I and β > 0 set

Σn :=prn(T) , M̂n :=prn(M̂) ,

Σnε := {s ∈ Σn | s1 ≥ ε} , M̂n
ε :=Σnε ×M×n ,

each endowed with the usual topology and σ-algebra. We endow Σn (resp. Σn
ε ) with (the

restriction of) the probability measure

πnβ := prn] Πβ , (5.5.2)

and M̂n (resp. M̂n
ε ) with (the restriction of) the measure m̂n

β :=πnβ ⊗mn. Finally, we set

Φn : M̂n −→M +
1

(s,x) 7−→
∑
`

s`δx`
. (5.5.3)

Everywhere in the following, for fixed n ∈ N and ε > 0 let

Hn
ε :=clL2

m̂n
β

C∞(M̂n
ε ) = L2

m̂n
β

(M̂n
ε ) , Hn :=Hn

1/n ,

H1/n :=L2
Dm

(P,B1/n(P)) , H :=L2
Dm

(P) .

(5.5.4)

The following is a particular case of the direct integral of Dirichlet forms constructed in §5.6.4.

Proposition 5.5.3 (Randomization of Dirichlet forms). For fixed n ∈ N and ε > 0 let

Ên,ε(h) =

∫
Σnε

dπnβ (s)

∫
Mn,s

dmn(x, s)
∣∣∇gn,s,z

∣∣
z=x

h(z, s)
∣∣2
(gn,s)x

, h ∈ C1(M̂n
ε ) .

For every i ≤ n let further xi• :=
(
xit
)
t>0

be independent Brownian motions on (M, g) starting

at xi0 and defined on a common probability space (Ω,F ,P). We define a stochastic process Ŵn,ε

on (Ω,F ,P) with state space M̂n
ε by

Ŵn,ε,x0,s
t (ω) :=

(
x1
t/s1(ω), . . . , xnt/sn(ω)

)
, s := (s1, . . . , sn) ∈ Σnε , ω ∈ Ω ,
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where Ŵn,ε,x0,s
• (ω) is any stochastic path of Ŵn,ε

• starting at (x0, s) ∈ M̂n
ε .

Then, (i) the form
(
Ên,ε, C1(M̂n

ε )
)

is closable and its closure
(
Ên,ε,D(Ên,ε)

)
is a regular

strongly local Dirichlet form on Hn
ε with special core C1(M̂n

ε ); with (ii) semigroup

(Hn,εt h)(x, s) =
(
(Hs

t ⊗ idHnε )h
)
(x, s)

=cn,ε

∫
M×n

dmn(y)

n∏
i

ht/si(xi, yi)h(y1, . . . , yn, s1, . . . , sn) ,

where cn,ε :=πnβΣnε ↑ε↓0 1; (iii) (Ên,ε,D(Ên,ε)) is properly associated to the process Ŵn,ε
• ; (iv)

M×n◦ × Σnε is Ŵn,ε
• -coexceptional.

Proof. (i)–(iii) are a direct consequence of Proposition 5.6.18. We omit the details. (iv) follows

by showing that M×n◦ is Wn,s
• -coexceptional for πnβ -a.e. s ∈ Σnε , which is Lemma 5.3.6. �

Lemma 5.5.4. Let Dn := Φ∗nẐ
1
1/n and (Tnm)m be a family of closed sets in Σn1/n ∩ prn(T◦) such

that Tnm ↑ Tn with Tn of full πnβ -measure in Σn
1/n. Let further (Fnm)m be a nest for En,s for

every s ∈ Tn and such that Fnm ⊂ intFnm+1. Set F̂nm :=Tn × Fnm ⊂ M̂n
1/n and let

Dn,m = (Dn)F̂nm
:=
{
u ∈ Dn | u ≡ 0 πnβ -a.e. on (F̂nm)c

}
.

Then,
⋃
mDn,m is both dense in Hn and dense in D(Ên).

Proof. It suffices to show the second density statement. Let (Dn,m)s :=
{
h
(
· , s
)
| h ∈ Dn,m

}
.

In order to show that
⋃
mDn,m is dense in D(Ên), it suffices to show that

⋃
m(Dn,m)s is dense

in D(En,s) for πnβ -a.e. s ∈ Σn1/n (cf. Prop. 5.6.18(iii)). Since (Fnm)m is a nest for (En,s,D(En,s))

for all s in the set of full πnβ -measure Tn, we have that
⋃
m D(En,s)Fnm is dense in D(En,s) for

all s ∈ Tn. Thus, it suffices to show that

cl
(En,s)

1/2
1

(
(Dn,m+1)s

)
⊃ D(En,s)Fnm , m ∈ N . (5.5.5)

To this end, we firstly show that (Dn,m+1)s ⊃ An,m+1 :=
(
C1(M)⊗n

)
Fnm+1

. Indeed, since,

in particular, s ∈ prn(T◦), for ` ≤ n there exists %` ∈ C∞c ((1/n, 1)) (depending on s) such

that %`1(s`2) = s−1
`1
δ`1 `2 ∈ (0,∞). Thus, for any choice of (f`)

n
` ⊂ C

1(M), one has that

n⊗
`

f` =
(
Φ∗
( n∏
`

(f` %`)
?))( · , s) , s ∈ Tn .

Finally, it is clear that

cl
(En,s)

1/2
1

(An,m+1) = cl
(En,s)

1/2
1

(
C1(M×n)Fnm+1

)
⊃ D(En,s)Fnm

where the latter inclusion follows by a localization argument with smooth partitions of unity and

regularization by convolution since Fnm ⊂ intFnm+1. (We omit the details.) This concludes the

proof of (5.5.5). �

Lemma 5.5.5. Let (Ên,D(Ên)) :=(Ên,1/n,D(Ên,1/n)) be defined as in Proposition 5.5.3. Then,

the forms (Ên,D(Ên)) and (E1/n,D(E1/n)) are intertwined via Φ∗n as in (5.5.3).

Proof. Let η ∈Ppa be of the form η =
∑N
` s`δx` for some N ∈ N. For u = F ◦ f̂ ∈ Ẑ0

ε define

N∑
`

s` f̂(x`, s`) :=

(
N∑
`

s`f̂1(x`, s`), · · · ,
N∑
`

s`f̂k(x`, s`)

)
, N ∈ N (5.5.6)
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Un : u 7−→

(
Φ∗nu : (s,x) 7→ F

(
n∑
`

s` f̂(x`, s`)

))
, n ∈ N , (s,x) ∈ Σn . (5.5.7)

By definition of u one has

f̂i(x, s) = 0 , x ∈M , s ≤ 1/n , i ≤ k , (5.5.8)

hence

Φ∗u = Φ∗nu ◦ prn , u ∈ Ẑ0
1/n . (5.5.9)

Now, by Proposition 5.3.14(ii) and the fact that E1/n = E on Ẑ1
1/n one has for all u ∈ Ẑ1

1/n

E1/n(u) =

∫
M̂◦

dm̂β(s,x)

k∑
i,p

(∂iF · ∂pF )

(
∞∑
`

s` f̂(x`, s`)

)
·
∞∑
`

s` Γg(f̂i, f̂p)(x`, s`) . (5.5.10)

If ` > n, then s` ≤ 1/n because s1 ≥ s2 ≥ . . . . Thus, by (5.5.10) and (5.3.5),

E1/n(u) =

∫
M̂n

dm̂n
β(s,x)

k∑
i,p

(∂iF · ∂pF )

(
n∑
`

s` f̂(x`, s`)

)
·
n∑
`

s2
` Γs`g(f̂i, f̂p)(x`, s`)

=

∫
M̂n

dm̂n
β(s,x)

∣∣∣∣∣∇gn,s,z
∣∣
z=x

F

(
n∑
`

s` f̂(z`, s`)

)∣∣∣∣∣
2

g
n,s
x

(5.5.11)

=

∫
M̂n

1/n

dm̂n
β(s,x)

∣∣∣∣∣∇gn,s,z
∣∣
z=x

F

(
n∑
`

s` f̂(z`, s`)

)∣∣∣∣∣
2

g
n,s
x

(5.5.12)

=Ên(Φ∗nu) ,

where we may reduce the domain of integration in (5.5.11) to the one in (5.5.12) since the

integrand vanishes identically on M̂n \ M̂n
1/n for all u ∈ Ẑ1

1/n, again as a consequence of (5.5.8).

In particular, Dn :=Un Ẑ
1
ε ⊂ D(Ên). An analogous computation shows that Φ∗nu satisfies

‖u‖H1/n
= ‖Φ∗nu‖Hn , u ∈ Ẑ0

1/n .

The family Ẑ1
1/n is dense in H1/n by Lemma 5.4.4(iii) and dense in D(E1/n) by definition

of the latter. As a consequence, the operator Un defined in (5.5.7) uniquely extends to a

non-relabeled isometric operator Un : D(E1/n)1 → D(Ên)1, and, subsequently to an isometric

operator Un : H1/n → Hn. It suffices to show the intertwining property on dense subsets. Thus,

the conclusion follows by showing that Dn :=Un Ẑ
1
1/n = Φ∗nẐ

1
1/n is both dense in Hn and dense

in D(Ên). This follows by Lemma 5.5.4 with Fm :=M for every m. �

Proposition 5.5.6. Let
(
Ên,D(Ên)

)
:=
(
Ên,1/n,D(Ên,1/n)

)
be defined as in Proposition 5.5.3.

Then, the sequence
(
Ên,D(Ên)

)
n∈N Mosco converges to (E ,D(E)) in the sense of Definition 5.6.7.

Proof. Recall the notation in (5.5.4). We claim that (E1/n,D(E1/n)) converges to (E ,D(E))

as n → ∞ in the generalized Mosco sense. Indeed let Pn : H → H be the projection opera-

tor Pn := EDm [ · | B1/n(Ppa)] given by the conditional expectation w.r.t. B1/n(Ppa). By defini-

tion, H1/n = Pn(H). Since B0(P)Ppa = Bn(Ppa) by Lemma 5.4.4(ii), the sequence (Pn)n∈N
converges strongly to idH . Regard (E1/n,D(E1/n)) as a (not densely defined) quadratic form

on H. By Lemma 5.6.10 applied to the family (Pn)n∈N, it suffices to check the Mosco convergence

of (E1/n,D(E1/n)) to (E ,D(E)) in the classical sense. The strong Γ-lim sup condition (5.6.5) is
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the content of Corollary 5.4.18. Since E(u) = E1/n(u) for every u ∈ D(E1/n), the weak Γ-lim inf

condition (5.6.4) is a consequence of the weak lower semi-continuity of E (Lem. 5.6.5).

Now, Lemma 5.6.9 applies to Q = E1/n and Q] = Ên with Un = Φ∗n as in (the proof of)

Lemma 5.5.5. Therefore, (Ên,D(Ên)) Mosco converges to (E ,D(E)) as n→∞. �

Proposition 5.5.7. The non-negative operator (−L, Ẑ∞0 ) is essentially self-adjoint.

Proof. We show that for every u0 ∈ Ẑ∞0 and every T ∈ [0,∞) there exists (a) a sequence

(u0,n)n∈N ⊂ Ẑ∞0 such that L2
Dm

(P)-limn u0,n = u0 and (b) strong solutions un of the Cauchy

problems

(dtun)(t)− (−Lun)(t) =0 ,

un(T ) =u0,n , un(t) ∈ Ẑ2
0 ⊂ D(L) ,

t ∈ [0, T ] . (5.5.13)

Then, the assertion follows by [17, §II.5, Thm. 1.10, p. 30]. (Condition (ii) there is trivially

satisfied since we chose, in the notation of [17, ibid.], An = A.)

Solutions to the heat equation. For n ≤ N ∈ N let η =
∑N
i siδxi and u ∈ Ẑ∞1/n, and recall the

notation in (5.5.6). Analogously to the proof of Lemma 5.5.5, by (5.4.16) and (5.4.17) we have

2 (Lu0)(η) =

k∑
i,p

(∂2
ipF )

(
n∑
`

s` f̂(x`, s`)

)
n∑
`

s` Γg(f̂i, f̂p)(x`, s`) (5.5.14)

+

k∑
i

(∂iF )

(
n∑
`

s` f̂(x`, s`)

)
n∑
`

∆z
∣∣
z=x`

f̂i(z, s`)

=

k∑
i,p

(∂2
ipF )

(
n∑
`

s` f̂(x`, s`)

)
n∑
`

s2
` Γs`g(f̂i, f̂p)(x`, s`)

+

k∑
i

(∂iF )

(
n∑
`

s` f̂(x`, s`)

)
n∑
`

s` ∆s`g,z
∣∣
z=x`

f̂i(z, s`)

=(∆gn,s,z
∣∣
z=x

Φ∗nu0)(z, s) , (5.5.15)

By (5.5.15) together with the time-reversal t 7→ T − t, the Cauchy problem (5.5.13) with u0 in

place of u0,n transforms into the Cauchy problem

∂th− 1
2
∆gn,sh =0 ,

h(0) =Φ∗nu0 ,
t ∈ [0, T ] . (5.5.16)

Since Mn,s is a closed manifold, by standard results the latter Cauchy problem has a unique

solution, say t 7→ h(t), additionally satisfying h(t) ∈ C∞(Mn,s) for all t ∈ [0, T ]. Finally, notice

that every function h ∈ C∞(Mn,s) may be written as

h(x) = (Unv)(x, s)

for some v = G ◦ ĝ? ∈ Ẑ∞1/n (not necessarily in minimal form) with G ∈ C∞c (Rnd;R). As

a consequence, there exist functions t 7→ G(t) ∈ C∞c (Rnd;R) and t 7→ ĝi(t) ∈ C∞c (M̂1/n)

for i ≤ nd such that h(t) = Φ∗nu(t), where u(t) :=G(t) ◦ ĝ(t)?. We have thus constructed

the unique solution t 7→ u(t) of the Cauchy problem (5.5.13) with initial data u0 ∈ Ẑ∞1/n,

additionally satisfying u(t) ∈ Ẑ∞1/n. As usual, the representation of u by G and ĝ is not

unique (cf. Rmk. 5.4.2). Notice that the strong solution hu(t) to (5.5.16) is smooth, hence the

corresponding function u(t) ∈ Ẑ∞1/n is a strong solution to (5.5.13) in the sense of the strong

topology of L2
Dm

(P) and therefore satisfies (b).
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Approximations. Let u0,n ∈ Ẑ∞1/n be given by Corollary 5.4.18, thus satisfying (a). Constructing

solutions t 7→ un(t) to the Cauchy problems (5.5.13) as above concludes the proof. �

Next, we show a weak form of the Rademacher property for (E ,D(E)). We assume the reader

to be familiar with the setting of Chapter 4, from which a proof is adapted.

Proposition 5.5.8. Assume d ≥ 2. If u ∈ Lip(P2), then u ∈ D(E) and Γ(u) ≤ Lip[u]2 Dm-a.e..

Proof. By e.g. Theorem 2.3.9, Ψw,t
] Dm = D

ψ
w,t
]

m. Let F be the set of all bounded measurable

functions u on P for which there exists a measurable section Du of TDerP2 such that∫
P

dDm(η) 〈Du(η) |Du(η)〉Xη <∞

and, for all s ∈ R and w ∈ X∞,

u ◦Ψw,t − u
t

t→0−−−→ 〈∇u |w〉X · in L2(P,Dψw,s
]

m) .

By Lemma 5.4.7, Ẑ∞0 ⊂ F . Since the generator of (E ,D(E)) is essentially self-adjoint

on Ẑ∞0 (Prop. 5.5.7), the form (E ,D(E)) coincides with the form (E ,F ) defined in Chapter 4

with P = Dm. Moreover, (E ,D(E)) coincides with the closure of (E ,Z∞) (in the notation

of Chapter 4, Z∞ = FC∞) by Lemma 5.6.26. Thus, for P = Dm, the forms (E ,F0), (E ,Fcont)

and (E ,F ) defined in Thm. 4.2.4 (1) all coincide with (E ,D(E)) by Remark 4.2.7.

As already noticed in §4.5.4, Dm satisfies assumptions (P1)− (P2) there. Since we have the

closability of (E ,Z∞) independently of (P3) there, the strategy of Chapter 4 applies verbatim,

except for Lemma 4.4.8 Proposition 4.4.9. We show how to replace both of them in Lemma 5.6.28

and Proposition 5.6.29 below. �

For A1, A2 ∈ Bn(P) of positive Dm-measure set dW2(A1, A2) :=Dm- essinfµi∈AiW2(µ1, µ2)

and pt(A1, A2) :=
∫
A1

dDm(µ1)
∫
A2
pt(µ1, dµ2) and let

dE(µ, ν) := sup {u(µ)− u(ν) | u ∈ D(Γ) ∩ C(P) , Γ(u) ≤ 1 Dm-a.e.} (5.5.17)

be the intrinsic distance of (E ,D(E)). Then,

Corollary 5.5.9 (Gaussian short-time asymptotics lower bound). It holds that W2 ≤ dE and

lim
t↓0

t log pt(A1, A2) ≤ − 1
2

dW2(A1, A2)2 . (5.5.18)

Proof. The first statement is an immediate consequence of Proposition 5.5.8. Since, dE ≥ dW2 ,

the Varadhan-type estimate (5.5.18) follows by the general result [75, Thm. 1.1]. �

5.5.2 A quasi-homeomorphic Dirichlet form. In this section, assume d ≥ 2 whenever not

explicitly stated otherwise. We construct a Dirichlet form on L2(M̂, m̂β) quasi-homeomorphic to E .

Namely, the Πβ-randomization (Ê,D(Ê)) (Dfn. 5.6.19) of the forms (Es,D(Es)), varying s ∈ T.

Definition 5.5.10. We denote by (Ê,D(Ê)) the Dirichlet form on L2(M̂, m̂β) with semigroup Ĥ•

defined as in (5.2.7).

Theorem 5.5.11. The forms (Ê,D(Ê)) on L2(M̂, τu, m̂β) and (E ,D(E)) on L2(Ppa
iso, τa,Dm)

are quasi-homeomorphic (in the sense of [27, Dfn. 3.1]) via the map Φ defined in (5.2.8).
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Proof. For i < j ∈ N set Ui,j,δ := {x ∈M | dg(xi, xj) < δ}. Notice that Ui,j,δ is open and that

for every ε > 0 there exists δ(ε) > 0 such that mUi,j,δ(ε) < ε. As a consequence, the set

Um :=
⋃
i,j∈N
i<j

Ui,j,δ(2−i−j/m) ⊂M , m ∈ N ,

is open, relatively compact, and satisfies mUm ≤ 1/m, Um+1 ⊂ Um and Um ↓m Mc
◦. Finally,

set Fm := Uc
m and notice that Fm is compact (closed) and satisfies Fm ↑m M◦.

A nest for Ê. The set M◦ is Es-coexceptional by Lemma 5.3.9. Since caps := capEs is a Choquet

capacity,

lim
m

caps(Fc
m) ≤ lim

m
caps

(
Fc
m

)
= inf

m
caps

(
Um

)
= caps

(⋂
m

Um

)
= caps

(⋂
m

Um

)
= caps(Mc

◦) = 0 ,

hence (Fm)m is a nest for (Es,D(Es)) for every s ∈ T. Set now

Tm :=
{
s ∈ T | s` − s`+1 ≥ 2−`−1/m

}
and notice that Tm is compact (closed) and satisfies Tm ↑m T◦. Then, F̂m := Tm × Fm is

compact (closed) in M̂◦ (in M̂) and satisfies F̂m ↑m M̂◦. By Proposition 5.6.18(vi),
(
F̂m
)
m

is a

nest for (Ê,D(Ê)).

A nest for E. Since Φ : (M̂◦, τu) → (P, τa) is a homeomorphism onto its image Ppa
iso (Prop.

5.3.14(ii)), then Gm := Φ(F̂m) ⊂ P is itself compact in (Ppa
iso, τa), hence compact in (P, τa)

and, in turn, compact (closed) in (P, τn) by Proposition 5.3.11(i). (Also cf. [52, Lem. 2.4].) Set(
Ẑ2
ε

)
Gm

:=
{
u ∈ Ẑ2

ε | u ≡ 0 Dm-a.e. on Gc
m

}
⊂ D(E)Gm , ε ∈ I ,

and notice that
(
Ẑ2

0

)
Gm
⊂ C(P, τa) for every m ∈ N by Remark 5.4.3(c). Then, in order to

prove that (Gm)m is a nest for (E ,D(E)) we need to show that
⋃
m

(
Ẑ2

0

)
Gm

is dense in D(E).

We start by reducing the statement to a finite-dimensional case. In fact, by Corollary 5.4.18,

it suffices to show that Cn :=
⋃
m

(
Ẑ2

1/n

)
Gm

is dense in Ẑ2
1/n for n ∈ N. To this end, fix n ∈ N

and let u :=F ◦ f̂? be arbitrary in Ẑ2
1/n. By definition of Ẑ0

1/n, it holds that Φ∗u = (Φ∗nu) ◦ prn

m̂β-a.e.. Therefore, by Lemma 5.5.5 it suffices to establish that D′n := Φ∗Cn is dense in D(Ên).

To this end, set Tnm := prn(Tm), Fnm := prn(Fm) and F̂nm :=Tnm × Fnm. Since Φ is a homeo-

morphism onto Gm for every m, one has Φ∗n
((
Ẑ1

1/n

)
Gm

)
=
(
Φ∗n
(
Ẑ1

1/n

))
F̂nm

. Thus, the conclusion

follows by Lemma 5.5.4 with Tnm and Fnm as above.

Intertwining. It suffices to prove the intertwining property Ê ◦Φ∗ = E for all u ∈ C with C
dense in D(E) and Φ∗C dense in D(Ê). We choose C := Ẑ1

0 =
⋃
n Ẑ

1
1/n (cf. Rmk. 5.4.3(h)). The

first density requirement follows by definition of (E ,D(E)).

By standard topological facts and Lemma 5.5.5, one has

cl
Ê
1/2
1

(
Φ∗

⋃
n

Ẑ1
1/n

)
⊃
⋃
n

cl
Ê
1/2
1

(
Φ∗Ẑ1

1/n

)
=
⋃
n

cl
Ê
1/2
1

(
Φ∗nẐ

1
1/n ◦ prn

)
=
⋃
n

cl
(Ên)

1/2
1

(
Φ∗nẐ

1
1/n

)
◦ prn =

⋃
n

D(Ên) ◦ prn .

As a consequence, it suffices to show that
⋃
n D(Ên)◦prn is dense in D(Ê). By our usual reduction

argument, it suffices to show that
⋃
n D(En,s) ◦ prn is dense in D(Es) for Πβ-a.e. s ∈ T. This is

however immediate by definition of (Es,D(Es)), since
⋃
n D(En,s) ◦ prn ⊃ FC∞. (Cf. (5.3.7).)
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As for the intertwining, for all u ∈ Ẑ1
1/n it holds by (5.5.9) that

Ê(Φ∗u) = Ê(Φ∗nu ◦ prn) . (5.5.19)

Noticing that Φ∗nu ◦ prn ∈ FC1 by definition of Ẑ1
1/n, it follows by definition of Ê and (5.3.8) that

Ê(Φ∗nu ◦ prn) = Ên(Φ∗nu) . (5.5.20)

Respectively by Lemma 5.5.5 and definition of (E1/n,D(E1/n)),

Ên(Φ∗nu) = E1/n(u) = E(u) . (5.5.21)

Finally, combining (5.5.19)–(5.5.21) concludes the proof of the intertwining property. �

As a consequence of the regularity of (Ê,D(Ê)) on L2(M̂, τu, m̂β) and of [27, Thm. 3.7] we

have

Corollary 5.5.12. The Dirichlet form (E ,D(E)) on L2(Ppa
iso, τa,Dm) is quasi-regular.

Remark 5.5.13. Although Φ∗ : L2
Dm

(P) → L2
m̂β

(M̂) is an order isomorphism, Theorem 5.5.11

does not follow from the general result [106, Thm. 3.12], where the intertwined quasi-regular

Dirichlet forms are additionally assumed irreducible. We postpone a study of the E-invariant

sets to Theorem 5.5.17 below.

5.5.3 Properties of η•. Recall that G := Diff∞+ (M) and let Fw :=
(
ψw,t

)
t∈R be the one-para-

meter subgroup of G generated by w ∈ X∞, and I := Iso(M,B(M)) be the group of bijective

bi-measurable transformations of (M,B(M)). The natural action G
	
M of any G ⊂ I lifts to

an action on P as in (5.2.29), denoted by G].

Proposition 5.5.14. Assume d ≥ 1. Then, (i) I
	
M is σ-transitive. Assume d ≥ 2. Then,

(ii) for every n ∈ N and every x,x′ ∈M×n◦ there exists w ∈ X∞ such that

x′ = (ψw,1)×n(x) :=
(
ψw,1(x1), . . . ,ψw,1(xn)

)
; (5.5.22)

and (iii) G
	
M is finitely transitive.

Proof. (i) Let x,x′ ∈M◦. The map g : M →M defined by g(xi) :=x′i for all i ∈ N and g(x) :=x

if x 6= xi for all i ∈ N is bijective since xi 6= xj and x′i 6= x′j for every i 6= j and it is

straightforwardly bi-measurable. (iii) is an immediate consequence of (ii). Since x,x′ ∈M×n◦
there exist ε > 0 and smooth arcs γi· : I → M satisfying (a) γi0 = xi and γi1 = x′i for

all i ≤ n; (b) γi· is a simple open arc and Bε(imγ
i
· ) is contractible for all i ≤ n; and (c)

Bε(imγ
i
· ) ∩ Bε(imγj· ) = ∅ for i 6= j ≤ n. For each i ≤ n define a vector field wi on imγi·

by wi
γit

:= γ̇it for every t ∈ I (this definition is well-posed by (c)). By standard techniques involving

partitions of unity, each wi may be extended to a (non-relabeled) globally defined smooth vector

field vanishing outside Bε(imγ
i
· ). Let w :=

∑
i w

i. By construction, one has ψw,t(xi) = γit for

every i ≤ n and t ∈ I, thus (5.5.22) holds. �

As a consequence of Propositions 5.3.4, 5.3.14(ii) and 5.5.14(i) we have

Corollary 5.5.15. The (Borel) spaces
(

(Ppa
iso, τa)/I] ,pr

I]
] Dβm

)
and (T◦,Πβ) are homeomor-

phic, isomorphic measure spaces.
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We say that A ⊂Ppa
iso is Fn,w] -invariant if

η =
∑
i

siδxi ∈ A , orbFwn
(η) :=

⋃
t∈R

∑
i≤n

siδψw,t(xi) +
∑
i>n

siδxi

 ⊂ A .

By definition, F∞,w] = Fw] . For N ∈ N we say that A is FN] -invariant if it is FN,w] -invariant

for each w ∈ X∞. Consistently, for any η ∈ Ppa
iso we set orbFn(η) :=

⋃
w∈X∞ orbFn,w (η) and

analogously for orbF(η). In light of the fact that the natural action of Diff∞(M) on M is finitely

transitive but not σ-transitive, Fn] -invariance and F]-invariance are not comparable notions.

Proposition 5.5.16. Let A ⊂Ppa
iso. Then, (i) A is I]-invariant if and only if it is Fn] -invariant

for all n ∈ N; (ii) if A is Fn] -invariant for some n ∈ N, then it is also Fk] -invariant for

all k ≤ n ∈ N; (iii) there exists A ⊂Ppa,fs
so such that A is F]-invariant but not I]-invariant.

Proof. The forward implication in (i) is straightforward (cf. the proof of Prop. 5.5.14(i)). For the

reverse implication let A be Fn] -invariant for all n ∈ N. Set pr×n := prn ◦Φ−1. By Prop. 5.5.14(ii)

pr×n (A) =pr×n (Fn.A) = prΣn ◦Φ−1(A)×M×n◦ = pr×n (I.A) .

As a consequence,

A =
⋂
n

(pr×n )−1(pr×n (A)
)

=
⋂
n

(pr×n )−1(pr×n (I.A)
)

= I.A ,

that is, A is I-invariant. (ii) is straightforward since Fk.A ⊂ Fn.A for all A ⊂Ppa
iso and all k ≤ n.

In order to show (iii) let η =
∑
i siδxi ∈Ppa,fs

so be arbitrary. By (i)
⋃
n orbFn(η) = orbI(η).

Let H := Homeo(M). We show the possibly stronger statement that orbI(η) ) orbH(η) ⊃ orbF(η).

Indeed, for fixed n ∈ N let y 6= xn. On the one hand, the measure η̃ :=
∑
i∈N \{n} siδxi + snδy

satisfies η̃ ∈ orbI(η) and η̃ 6= η (cf. the proof of Prop. 5.5.14(i)). On the other hand, argue by

contradiction that there exists h ∈ Homeo(M) such that h]η = η̃. Since for i 6= j one has si 6= sj

by definition of Ppa,fs
so , then h(xi) = xi for all i 6= n. Again since η ∈Ppa,fs

so , the set {xi}i∈N \{n}
is dense in M , hence, by continuity of h it must be h = idM , and η̃ = η, a contradiction. �

Theorem 5.5.17. Assume d ≥ 2 and let η• be defined as in (5.5.1). Then, (i) η• satisfies (5.2.9);

(ii) η• is not irreducible: a measurable set A ⊂P is η•-invariant if and only if it is (I],Dm)-in-

variant; (iii) η• is not ergodic; (iv) η• has a (non-relabeled) distinguished extension to all starting

points in Ppa and satisfying (5.2.3); (v) η• has τa-continuous sample paths; (vi) let the initial

distribution of η0 be satisfying law(η0)� Dm. Then, for each u ∈ Ẑ2
0, the process

Mu
t :=u(ηt)− u(η0)−

∫ t

0

dsLu(ηs)

is a martingale with quadratic variation process

[Mu]t =

∫ t

0

dsΓ(u)(ηs) .

Proof. Since Φ is bijective between an Ê-coexceptional and an E-coexceptional set, Equa-

tion (5.2.9) is satisfied as a consequence of Theorem 5.5.11.
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Invariant sets. Assume first that A ⊂P is (I],Dm)-invariant. Without loss of generality, A ⊂
Ppa

iso, since DmPpa
iso = 1 and Ppa

iso is I]-, hence (I],Dm)-, invariant. By a straightforward density

argument and Corollary 5.5.15, (cf. (5.4.2))

L2(T◦,Πβ) ∼= L2
(

Ppa
iso/I] , pr

I]
] Dm

)
∼= L2

Dm,I](P) = clL2
Dm

Ẑ1
−,0 .

Since ∇ ≡ 0 on Ẑ1
−,0, one has E ≡ 0 on clE1/2

1

(Ẑ1
−,0) = clL2

Dm
Ẑ1
−,0. By strong locality, Γ

satisfies the Leibniz rule, hence

∀u, v ∈ D(E) 1A u ∈ D(E) and E(1A u, v) = E(1A u,1A v) = E(u,1A v) (5.5.23)

as soon as 1A ∈ L2
Dm,I]

(P) or, equivalently, A is (I],Dm)-invariant. Thus, (5.3.1) follows

by (5.5.23) since Γ(1A, u) = 0 for every u ∈ D(E). Viceversa, assume that A is E-invariant.

If DmA = 0, resp. 1, then A is (I],Dm)-invariant since ∅, resp. M̂◦, is. Assume then DmA ∈ (0, 1).

Without loss of generality, A ⊂Ppa
iso, since Ppa

iso is E-coexceptional. Thus, Φ−1 is well-defined

on A and B := Φ−1(A) ⊂ M̂◦ is Ê-invariant by Theorem 5.5.11. Since (Es,D(Es)) is ergodic

for every s ∈ T by the discussion in [15, §1], it follows by Proposition 5.6.18(v) that the only

Ê-invariant sets are of the form C×
∏
i Ui where C ∈ B(T◦) is any measurable set and Ui satisfies

either Ui = Mi or Ui = ∅ for all i ∈ N. As a consequence of the fact that m̂βB ∈ (0, 1), it must

be Ui = M for every i ∈ N and ΠβC ∈ (0, 1), that is B = C ×M. The (I],Dm)-invariance of A

follows by the I
	

M-invariance of M since

ι]Φ(s,x) = Φ(s, ι×∞(x)) , ι ∈ I .

Lack of ergodicity. Let ε ∈ (0, 1). Since Πβ is diffuse, by the main result in [148] there

exists A′′ ∈ B(T◦) with ΠβA
′′ = ε. Let A′ be the corresponding subset of Ppa

iso/J] via

the homeomorphism of Corollary 5.5.15. Then, A :=(prI])−1(A′) is I]-invariant by definition,

Bn(P) measurable by Proposition 5.3.4, satisfying DmA = ε by Corollary 5.5.15 and E-invariant

by the previous step. As a consequence, (E ,D(E)) is not ergodic.

Continuity of paths and extension. For every η0 ∈Ppa
iso the path t 7→ ηη0

t is τa-continuous as a

consequence of Corollary 5.5.12 and the standard theory of Dirichlet forms.

Consistently with the definition of Ws
• for s ∈ T◦, for s ∈ T \T◦ we set

Ws;x0
t (ω) :=

(
x1
t/s1 , x

2
t/s2 , . . .

)
,

where
(
xit
)
t≥0

are independent Brownian motions on M and, conventionally, xit/si = xi0 for

all t ≥ 0 whenever si = 0. Then, letting

Ŵ
s,x0

• :=Ws;x0
• , and η0 := Φ(s,x0) , ηη0

• := Φ ◦ Ŵ
s,x0

•

yields the desired extension to all starting points in Φ(T×M◦) = Ppa satisfying (5.2.3).

A proof of (vi) is standard and it is therefore omitted. �

As a consequence of Theorem 5.5.17(v)–(vi), the process η• defined as in (5.5.1) is, equiva-

lently, a solution of the following martingale problem.

Corollary 5.5.18 (Martingale problem). For every f̂ ∈ C2(M̂0) (Def. 5.4.1) the process

M f̂
t := f̂?(ηt)− f̂?(η0)−

∫ t

0

dsB0

[
∇f̂
]
(ηs)

is a continuous martingale with quadratic variation process[
M f̂

]
t

=

∫ t

0

dsΓ(f̂)?(ηs) .



149

Remark 5.5.19 (Distinguished invariant measures). By Theorem 5.5.11, it follows from the

extremality of Ŵ•-ergodic measures that Q ∈ P(P) is η•-ergodic if and only if it is of the

form Qs := Φ](δs ⊗m) for some s ∈ T◦. It is straightforward that every such measure satisfies

EQs EP · [η
·
t A] = mA , A ∈ B(A) , t ≥ 0 . (5.5.24)

More generally, (5.5.24) holds for any η•-invariant measure Q, since Q ∈ conv {Qs | s ∈ T◦}.

Remark 5.5.20. We notice that the requirement in (5.2.3) is not met by the process defined by

Y. Chow and W. Gangbo in [29], which satisfies instead for each fixed starting point µ0 ∈P2

µcg,µ0
t (ω) =

(
idM +

√
2 bt(ω)

)
]
µ0 ,

where M = Rd, and b• is a standard d-dimensional Brownian motion. The process µcg
• satisfies

EPµ0
[µcg,µ0
t A] = µ0A , A ∈ B(A) , t ≥ 0 ,

and it may then be made to satisfy (5.5.24) if the initial distribution of µ0 is chosen according

to some suitable randomness and independently of b•.

Some remarks on the case of one-dimensional base space. Although most of the previous results

only hold when d ≥ 2, we are able to construct a regular strongly local Dirichlet form on P also

in the case when d = 1, i.e. when M = S1.

Definition 5.5.21 (Reduced form). We denote by (Ered,D(Ered)) the τn-regular strongly local

Dirichlet form on L2(P2(S1),Dm) defined as the closure of the form (E ,Z1).

Proof. By Lemma 5.4.16 we have Z1 ⊂ D(E), hence the statement is well-posed. The closability

of (E ,Z1) follows since (E ,D(E)) is closed. The Markov property and strong locality are inherited

from (E ,D(E)). The density of Z1 in C(P2) holds as in the proof of Corollary 5.4.19. �

Remark 5.5.22. If d ≥ 2 we have (Ered,D(Ered)) = (E ,D(E)) by Lemma 5.6.26. However, if d = 1,

our proof of Lemma 5.6.26 fails and the form (E ,D(E)) might be not τn-regular.

5.6 Appendix

5.6.1 Measurability properties.

Lemma 5.6.1. For any A ∈ B(X) and µ ∈P define the evaluation map evA : µ 7→ µA. Then,

(i) the map evA is Bn(P)-measurable; (ii) Bn(P) is generated by the maps {evA}A∈B(X); (iii)

the r-parametric convex combination (r, µ, ν) 7→ (1− r)µ+ rν is jointly B(I)⊗ Bn(P)⊗2-mea-

surable.

Proof. (i) is a consequence of (ii) which is in turn [84, Thm. 1.5]. Since Mb(X) ⊃P, endowed

with the weak* topology, is a measurable vector space (iii) follows by [160, Prop. I.2.3, p. 16]. �

Lemma 5.6.2. The map ev : (µ, x) 7→ µx :=µ{x} is Bn(P)⊗ B(X)-measurable.
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Proof. Denote by h∗t : P →P the heat flow on measures. Then, (a) h∗t : P →P is narrowly

continuous for every t > 0; (b) t 7→ µt := h∗tµ is narrowly continuous for every µ ∈ P; (c)

µt � m for every t > 0 and every µ ∈P. For each ε > 0, t > 0 and x ∈ X the map µ 7→ µtBε(x)

is measurable, since it is the composition of the continuous map µ 7→ µt with the measurable

map evBε(x) (see Lem. 5.6.1). Moreover, it is readily seen by Dominated Convergence that for

each ε > 0, t > 0 and µ ∈ P the map x 7→ µtBε(x) is continuous, since dµt(y) = ft(y) dm(y)

for some ft ∈ L1
m(X). That is, evε,t : (µ, x) 7→ µtBε(x) is a Carathéodory map between Polish

spaces, hence it is jointly measurable. Since the pointwise limit of (jointly-)measurable maps is

(jointly-)measurable, it suffices to show the existence of limε↓0 limt↓0 evε,t = ev. To this end,

lim inf
ε↓0

lim inf
t↓0

µtBε(x) ≥ lim inf
ε↓0

µBε(x) = µx ,

lim sup
ε↓0

lim sup
t↓0

µtBε(x) ≤ lim sup
ε↓0

lim sup
t↓0

µt
(
Bε(x)

)
≤ lim sup

ε↓0
µ
(
Bε(x)

)
≤ lim sup

ε↓0
µB2ε(x) = µx

by the Portmanteau Theorem and the outer regularity of µ. �

Proposition 5.6.3. Let Ω be any non-empty set, A be a multiplicative system of bounded

real-valued functions on Ω. Let B be the σ-algebra generated by A and denote by Bb the space

of bounded B-measurable real-valued functions. Then, for any non-negative finite measure µ

on (Ω,B), the system A is dense in L2
µ(Ω).

Proof. Since µ is finite and functions in A are bounded, then A ⊂ L2
µ(Ω). Let now v ∈ A⊥ ⊂

L2
µ(Ω) and H ⊂ Bb be maximal such that

∫
Ω

dµ v h = 0 for every h ∈ H. It suffices to show

that v = 0 µ-a.e.. We show that Bb ⊂ H, from which the previous assertion readily follows.

Observe that H is a vector space, uniformly closed in RΩ and closed under monotone convergence

of non-negative uniformly bounded sequences by Dominated Convergence. Since A ⊂ H

is multiplicative, Bb ⊂ H by Dynkin’s Multiplicative System Theorem [20, Thm. 2.12.9(i)

(Vol. I)]. �

5.6.2 Quadratic forms. Let (H, ‖ · ‖H) be a real separable Hilbert space.

Definition 5.6.4. By a quadratic form (Q,D) on H we shall always mean a symmetric positive

semi-definite — if not otherwise stated, densely defined — bilinear form. To (Q,D) we associate

the non-relabeled functional Q : H → R ∪ {+∞} defined by

Q(u) :=

Q(u, u) if u ∈ D

+∞ otherwise
, u ∈ H .

Additionally, we set for every α > 0

Qα(u, v) :=Q(u, v) + α 〈u | v〉H , u, v ∈ D ,

Qα(u) :=Q(u) + α ‖u‖2H , u ∈ H .

For α > 0, we let D(Q)α be the completion of D, endowed with the Hilbert norm Q
1/2
α .

The following result is well-known.

Lemma 5.6.5. Let (Q,D) be a quadratic form on H. The following are equivalent: (a) (Q,D)

is closable, say, with closure (Q,D(Q)); (b) the canonical inclusion ι : D → H extends to a

continuous injection ια : D(Q)α → H satisfying ‖ια‖ ≤ α−1; (c) Q is lower semi-continuous

w.r.t. the strong topology of H; (d) Q is lower semi-continuous w.r.t. the weak topology of H.
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To every closed quadratic form (Q,D(Q)) we associate a non-negative self-adjoint operator−L,

with domain defined by the equality D(
√
−L) = D(Q), such that Q(u, v) = 〈−Lu | v〉H for

all u, v ∈ D(Q). We denote the associated semigroup by Tt := etL, t > 0, and the associated

resolvent by Gα :=(α− L)−1, α > 0. By Hille–Yosida Theorem (See e.g. [112, p. 27])

Qα(Gαu, v) = 〈u | v〉H , v ∈ D(Q), u ∈ H , (5.6.1a)

Tt =H- lim
α→∞

etα(αGα−1) . (5.6.1b)

5.6.3 Generalized Mosco convergence of quadratic forms. We shall need K. Kuwae and

T. Shioya’s generalized Mosco convergence (see [99]). We start by recalling the simplified setting

introduced by A. Kolesnikov in [90, §2].

Definition 5.6.6 (Convergences of Hilbert spaces, vectors, operators). Let (Hn)n∈N and H be

Hilbert spaces and set H :=H t
⊔
n∈NHn. Let further D ⊂ H be a dense subspace and (Φn)n∈N

be densely defined linear operators

Φn : D → Hn . (5.6.2)

We say that Hn H-converges to H if

∀u ∈ D lim
n
‖Φnu‖Hn = ‖u‖H , (5.6.3)

in which case we say further that a sequence (un)n∈N, un ∈ Hn, (a) H-strongly converges

to u ∈ H if there exists a sequence (ũm)m∈N ⊂ D such that

lim
m
‖ũm − u‖H = 0 and lim

m
lim sup

n
‖Φnũm − un‖Hn = 0 ;

(b) H-weakly converges to u ∈ H if, for every sequence (vn)n∈N, vn ∈ Hn, H-strongly converging

to v ∈ H,

lim
n
〈un | vn〉Hn = 〈u | v〉H .

Let further (Bn)n∈N be a sequence of bounded operators Bn ∈ B(Hn). We say that Bn

converges H-strongly to B ∈ B(H) if Bnun converges H-strongly to Bu for all sequences (un)n∈N,

un ∈ Hn, such that un H-strongly converges to u ∈ H.

Definition 5.6.7 (Kuwae–Shioya’s Mosco convergence). Let
(
(Qn,D(Qn))

)
n∈N be a sequence

of closed quadratic forms, Qn on Hn, and (Q,D(Q)) be a quadratic form on H. We say that Qn

Mosco converges to Q if the following conditions hold: (a) Hn H-converges to H; (b) (weak

Γ-lim inf) if (un)n∈N, un ∈ Hn, H-weakly converges to u ∈ H, then

Q(u) ≤ lim inf
n

Qn(un) ; (5.6.4)

(c) (strong Γ-lim sup) for every u ∈ H there exists a sequence (un)n∈N, un ∈ Hn, H-strongly

convergent to u and such that

Q(u) = lim
n
Qn(un) (5.6.5)

Clearly, in condition (b) we can additionally assume un ∈ D(Qn).

Remark 5.6.8. In all the above definitions, the notion of convergence does depend on the family

of linear operators (Φn)n∈N. The latter is however omitted from the notation, for it will be

apparent from the context.
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Lemma 5.6.9. Let
(
(Qn,D(Qn))

)
n∈N, resp.

(
(Q]n,D(Q]n))

)
n∈N, be a sequence of closed quad-

ratic forms Qn on Hn, resp. Q]n on H]
n, and (Q,D(Q)) be a quadratic form on H. Assume that

there exist unitary operators (Un)n∈N such that Q]n ◦ Un = Qn. Then,
(
(Qn,D(Qn))

)
n∈N Mosco

converges to (Q,D(Q)) if and only if
(
(Q]n,D(Q]n))

)
n∈N Mosco converges to (Q,D(Q)).

Proof. Assume
(
(Qn,D(Qn))

)
n∈N Mosco converges to (Q,D(Q)). Let D ⊂ H and Φn : D → Hn

be as in Definition 5.6.6 for n ∈ N. Set Φ]n :=Un ◦ Φn : D → H]
n. Then, since Un : Hn → H]

n is

unitary and by (5.6.3),

∀u ∈ D lim
n

∥∥Φ]nu
∥∥
H
]
n

= lim
n
‖Φnu‖Hn = ‖u‖H ,

hence H]
n H-converges to H. Analogously, one can show that (un)n∈N , un ∈ Hn, H-strongly,

resp. H-weakly, converges to u ∈ H if and only if
(
u]n
)
n∈N, u]n :=Un(un) ∈ H]

n, H-strongly, resp.

H-weakly converges to u ∈ H. Thus, let u ∈ H and (un)n∈N , un ∈ Hn, be as in (5.6.5) and

notice that
(
u]n
)
n∈N defined as above H-strongly converges to u ∈ H and

Q(u) = lim
n
Qn(un) = lim

n
Q]n(Unun) = lim

n
Q]n(u]n) ,

which proves the Γ-lim sup condition (5.6.5) for Q]n. Finally, let
(
u]n
)
n∈N, u]n ∈ H]

n, be H-weakly

converging to u ∈ H and set un :=U−1
n (u]n) ∈ Hn. Then, (un)n∈N H-weakly converges to u ∈ H,

hence, by assumption on Qn,

Q(u) ≤ lim inf
n

Qn(un) = lim inf
n

Q]n(Unun) = lim inf
n

Q]n(u]n) ,

which proves the Γ-lim inf condition (5.6.4) for Q]n and concludes the proof. �

Lemma 5.6.10. Let H be a Hilbert space and (Pn)n∈N be an increasing sequence of orthogonal

projectors Pn : H → H strongly converging to idH . Set Hn := ranPn and let further u ∈ H

and (un)n∈N be a sequence such that un ∈ Hn. Then, (i) Hn H-converges to H; (ii) (un)n∈N
H-strongly converges to u ∈ H if and only if it strongly converges to u in H; (iii) (un)n∈N
H-weakly converges to u ∈ H if and only if it weakly converges to u in H.

Proof. (i) is an immediate consequence of the strong convergence of Pn to idH .

(ii) Assume un strongly converges to u and choose D = H, Φn :=Pn and ũm = um in

Definition 5.6.6. By strong convergence of Pn to idH one has limm ‖um − u‖H = 0. Furthermore,

lim
m

lim sup
n

‖Pnum − un‖Hn = lim
m

lim sup
n

‖Pn(um − un)‖Hn

≤ lim
m

lim sup
n

‖Pn‖ ‖um − un‖H = 0

and the conclusion follows. Viceversa, assume that un H-strongly converges to u. Then,

‖un − u‖H ≤‖un − Pnũm‖H + ‖Pnũm − ũm‖H + ‖ũm − u‖H
= ‖un − Pnũm‖Hn + ‖Pnũm − ũm‖H + ‖ũm − u‖H .

Taking first the limit superior in n and, subsequently, the limit in m, the above inequality

readily yields the conclusion. A proof of (iii) follows similarly to (ii) (by definition of H-weak

convergence) and thus it is omitted. �

The main result concerning generalized Mosco convergence is the following

Theorem 5.6.11 (Kuwae–Shioya [99, Thm. 2.4]). Let
(
(Qn,D(Qn))

)
n∈N be a sequence of

closed quadratic forms, Qn on Hn, and (Q,D(Q)) be a closed quadratic form on H. Then, the

following are equivalent: (a) Qn Mosco converges to Q; (b) Gn,α H-strongly converges to Gα

for every α > 0; (c) Tn,t H-strongly converges to Tt for every t > 0.
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5.6.4 Direct integrals of quadratic forms. In the following, we shall need the notion of

a direct integral of quadratic forms. We provide here a minimal background for the reader’s

convenience, referring to [43, §§II.1, II.2] for the general theory of direct integrals of Hilbert

spaces. We adhere to the notation in [43] except for minor modifications.

Everywhere in the following let (Z,B, ν) be a measure space with σ-algebra B, endowed with

a σ-finite measure ν. Denote by (Z,Bν , ν̂) its completion. Sets in Bν are termed ν-measurable.

A real-valued function is termed ν-measurable if it is measurable w.r.t. Bν .

Definition 5.6.12 (Direct integrals (cf. [43, §II.1.3, Def. 1, p. 164, II.1.5, Prop. 5, p. 169])).

Let (Hζ)ζ∈Z be a family of Hilbert spaces and let F be the linear space F :=
∏
ζ∈Z Hζ . We say

that ζ 7→ Hζ is a ν-measurable field of Hilbert spaces (with underlying space S) if there exists a

linear subspace S of F such that (a) for every u ∈ S, the function ζ 7→ ‖uζ‖ζ is ν-measurable;

(b) if v ∈ F is such that ζ 7→ 〈uζ | vζ〉ζ is ν-measurable for every u ∈ S, then v ∈ S; (c) there

exists a sequence (un)n∈N ⊂ S such that (un,ζ)n∈N is a total sequence4 in Hζ for every ζ ∈ Z.

Any such S is termed a space of ν-measurable vector fields. Any sequence in S possessing

property (c) is termed a fundamental sequence. A ν-measurable vector field u is termed

square-integrable if

‖u‖ :=

(∫
Z

dν(ζ) ‖uζ‖2ζ

)1/2

<∞ .

Two square-integrable vector fields are termed equivalent if ‖u− v‖ = 0. The space H of

equivalence classes of square-integrable vector fields, endowed with the norm ‖ · ‖, is a separable

Hilbert space, termed the direct integral of ζ 7→ Hζ (with underlying space S) and denoted by

H =
S∫ ⊕
Z

dν(ζ)Hζ . (5.6.6)

The superscript S is omitted whenever the chosen space S is apparent from context or its

specification is unnecessary.

Definition 5.6.13 (Measurable fields of bounded operators, decomposable operators). Let H

be defined as in (5.6.6). A field of bounded operators ζ 7→ Bζ ∈ B(Hζ) is termed ν-measurable

(with underlying space S) if ζ 7→ Bζuζ ∈ Hζ is a ν-measurable vector field for every ν-measurable

vector field u. A ν-measurable vector field of bounded operators is termed ν-essentially bounded

if ν-esssupζ∈Z ‖Bζ‖op,ζ <∞. A bounded operator B ∈ B(H) is termed decomposable if Bu is

represented by a ν-essentially bounded ν-measurable field of bounded operators ζ 7→ Bζ , in

which case we write

B =

∫ ⊕
Z

dν(ζ)Bζ .

Lemma 5.6.14. Let H be defined as in (5.6.6), B ∈ B(H) be decomposable and ϕ ∈ C(σ(B)).

Then, the continuous functional calculus ϕ(B) of B is decomposable and

ϕ(B) =

∫ ⊕
Z

dν(ζ)ϕ(Bζ) .

Proof. Well-posedness follows by [43, §II.2.3, Prop. 2, p. 181]. The proof is then a straightforward

application of [43, §II.2.3, Prop. 3, p. 182] and [43, §II.2.3, Prop. 4(ii), p. 183] (by approximation

of ϕ with suitable polynomials, since σ(B) is compact). �

4A sequence (un)n∈N in a Banach space B is termed total if the strong closure of its linear span

coincides with B.
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Definition 5.6.15 (Direct integral of quadratic forms). For ζ ∈ Z let (Qζ , Dζ) be a closable

quadratic form on a Hilbert space Hζ . We say that ζ 7→ (Qζ , Dζ) is a ν-measurable field of

quadratic forms on Z if (a) ζ 7→ Hζ is a ν-measurable field of Hilbert spaces on Z, and (b)

ζ 7→ D(Qζ)1 is a ν-measurable field of Hilbert spaces on Z, both with common underlying

space S (under the identification of D(Qζ) with a subspace of Hζ granted by Lemma 5.6.5). We

denote by

Q =
S∫ ⊕
Z

dν(ζ)Qζ

the direct integral of ζ 7→ (Qζ ,D(Qζ)), i.e. the quadratic form defined on H as in (5.6.6) given

by

D(Q) :=

{
u ∈ H |

∫
Z

dν(ζ)Qζ,1(uζ) <∞
}
, (5.6.7)

Q(u, v) :=

∫
Z

dν(ζ)Qζ(uζ , vζ) , u, v ∈ D(Q) . (5.6.8)

Lemma 5.6.16. Let (Q,D(Q)) be defined as above. Then, (i) (Q,D(Q)) is a densely defined

closed quadratic form on H; (ii) ζ 7→ Gζ,α, ζ 7→ Tζ,t are ν-measurable fields of bounded operators

for every α, t > 0 (iii) Q has resolvent and semigroup respectively defined by

Gα :=
S∫ ⊕
Z

dν(ζ)Gζ,α , α > 0 ;

Tt :=
S∫ ⊕
Z

dν(ζ)Tζ,t , t > 0 .

(5.6.9)

Proof. (i) Let u ∈ D(Q). Since ζ 7→ Hζ is a ν-measurable family of Hilbert spaces by Defini-

tion 5.6.15(a), the map ζ 7→ ‖uζ‖ζ is ν-measurable for every u ∈ H by Definition 5.6.12(a).

Analogously, the map ζ 7→ Q
1/2
ζ,1 (uζ) is ν-measurable for every u ∈ D(Q). Together with the

polarization identity for D(Q)1, this yields the measurability of the maps

ζ 7→ Qζ,α(uζ , vζ) , u, v ∈ D(Q) , α > 0 .

As a consequence ζ 7→ D(Qζ)α is a ν-measurable field of Hilbert spaces (on Z, with underlying

space S) for every α > 0. Thus, it admits a direct integral of Hilbert spaces

Dα :=

∫ ⊕
Z

dν(ζ) D(Qζ)α , α > 0 .

For α > 0 let (uαn)n∈N be a fundamental sequence of ν-measurable vector fields for Dα

and (un)n∈N be a fundamental sequence of ν-measurable vector fields for H. Since Qζ is closable

for every ζ ∈ Z, the (extension of the) canonical inclusion ιζ : D(Qζ)1 → Hζ is injective and

contractive for every ζ ∈ Z by Lemma 5.6.5. Since Dα and H are defined on the same underlying

space S by Definition 5.6.15, the maps

ζ 7→ 〈ιζ,αuαi |uj〉ζ = 〈uαi |uj〉ζ , i, j ∈ N , α > 0

are ν-measurable. Together with the uniform boundedness of ιζ,α in ζ ∈ Z, this yields the

decomposability of the operator ια : Dα → H, defined by

ια :=

∫ ⊕
Z

dν(ζ) ιζ,α .
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By [43, §II.2.3, Example, p. 182] and the injectivity of ιζ,α for every ζ ∈ Z and every α > 0,

the map ια : Dα → D(Q)α is an isomorphism. In particular, the composition of ι1 with the

canonical inclusion of D(Q) into H is injective, thus Q is closed.

Finally, since
(
uαn,ζ

)
n∈N is Q

1/2
ζ,α-total in D(Qζ)α for every ζ ∈ Z by Definition 5.6.12(c), it is

additionally Hζ-total for every ζ ∈ Z by Hζ-density of D(Qζ) in Hζ . As a consequence,
(
uαn
)
n∈N

is fundamental also for H, thus D(Q) is H-dense in H.

(ii) For fixed α > 0 consider the field of linear operators ζ 7→ Gζ,α. The map (cf. (5.6.1a))

ζ 7→ Qζ,α(Gζ,αu
α
i,ζ , u

α
j,ζ) =

〈
uαi,ζ

∣∣uαj,ζ〉ζ
is ν-measurable for every i, j ∈ N since uαn is a ν-measurable vector field. Since ‖Gα,ζ‖ζ ≤ α

−1

and (uαn)n∈N is a fundamental sequence of ν-measurable vector fields for H, then ζ 7→ Gζ,α is a

ν-measurable field of bounded operators by [43, §II.2.1, Prop. 1, p. 179] and the operator Gα

defined in (5.6.9) is decomposable for every α > 0.

By Lemma 5.6.14 any image of Gα via its continuous functional calculus is itself decomposable.

For every ζ ∈ Z one has Tζ,t = limα→∞ e
tα(αGζ,α−1) strongly in Hζ by (5.6.1a), hence

ζ 7→
〈
Tζ,tu

α
i,ζ

∣∣uαj,ζ〉ζ = lim
α→∞

〈
etα(αGζ,α−1)uαi,ζ

∣∣∣uαj,ζ〉
ζ

is a pointwise limit of ν-measurable functions, hence ν-measurable, for every i, j ∈ N and

every t > 0. As a consequence, ζ 7→ Tζ,t is a ν-measurable field of bounded operators for

every t > 0, again by [43, §II.2.1, Prop. 1, p. 179]. Since ‖Tζ,t‖ ≤ 1, the operator Tt defined

in (5.6.9) is decomposable too, for every t > 0.

(iii) It suffices to show (5.6.1) for (Q,D(Q)), Gα and Tt defined in (5.6.9). Now, by definition

of (Q,D(Q)) one has for every α > 0

Qα(Gαu, v) =

∫
Z

dν(ζ)Qζ
(
(Gαu)ζ , vζ

)
+ α

∫
Z

dν(ζ) 〈(Gαu)ζ | vζ〉ζ

=

∫
Z

dν(ζ)Qζ,α
(
(Gαu)ζ , vζ

)
=

∫
Z

dν(ζ)Qζ,α
(
(Gα,ζuζ)ζ , vζ

)
.

By [43, §II.2.3, Cor., p. 182] and decomposability of Gα, one has Gα,ζ = Gζ,α for ν-a.e. ζ ∈ Z,

whence, by (5.6.1a) applied to (Qζ ,D(Qζ)) and Gζ,α,

=

∫
Z

dν(ζ) 〈uζ | vζ〉ζ = 〈u | v〉 ,

which is the desired conclusion. The proof of (5.6.1b) for Tt is a consequence of (5.6.1a) and the

approximation given in (ii) and is therefore omitted. �

Remark 5.6.17 (cf. [43, p. 168, Rmk.]). Each of the above statements holds with identical proof

if one substitutes ‘ν-measurable’ with ‘measurable’.

Proposition 5.6.18 (Direct integrals of Dirichlet forms). Let (Z,B, ν) be satisfying Defini-

tion 5.3.1. For ζ ∈ Z let further (a) nζ be a fully supported finite measure on Y such that (a1)

ζ 7→ nζf is measurable for every f ∈ C0(Y ); and (a2) ν-esssupζ∈Z nζY < ∞; (b) (Eζ ,D(Eζ))

be a family of strongly local regular Dirichlet forms on L2
nζ (Y ) with common core C ⊂ C0(Y ) and

such that ζ 7→ Eζ(u, v) is measurable for every u, v ∈ C.

Then, (i) ζ 7→ (Eζ ,D(Eζ)) is a measurable field of quadratic forms (Def. 5.6.15); (ii) its

direct integral (E,D(E)) is a regular strongly local Dirichlet form on

H :=

∫ ⊕
Z

dν(ζ)L2
nζ (Y ) ∼= L2

ν(Z;L2
n · (Y )); (5.6.10)
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(iii) 1Y×Z ∈ D(E) if and only if 1Y ∈ D(Eζ) for ν-a.e. ζ ∈ Z; (iv) (E,D(E)) has

core C0(Z)⊗ C; (v) (E,D(E)) has semigroup given on its core by

(Tt u)(y, ζ) =
(
(Tζ,t ⊗ id)u

)
(y, ζ) :=

(
Tζ,t u( · , ζ)

)
(y)

for ν-a.e. ζ ∈ Z and nζ-a.e. y ∈ Y ; (vi) whenever A ⊂ Z is ν-measurable and U ⊂ Y

is Eζ-capacitable for every ζ ∈ Z, then A× U ⊂ Z × Y satisfies

capE(A× U) ≤
∫
A

dν(ζ) capEζ (U) .

Proof. (i) Let (un)n∈N ⊂ C be a ‖ · ‖∞-total system in C0(Y ). Since C is a core of (Eζ ,D(Eζ)),

then C is ‖ · ‖ζ-total in Hζ :=L2
nζ (Y ) and E

1/2
ζ,1 -total in D(Eζ)1 for every ζ ∈ Z. By (a1),

the function ζ 7→ 〈ui |uj〉ζ is measurable for every i, j ∈ N. By (b) the same holds for

the function ζ 7→ Eζ(ui, uj), therefore, additionally, for the function ζ 7→ Eζ,1(ui, uj). This

verifies properties (a) and (c) in Definition 5.6.12 for both ζ 7→ L2
nζ (Y ) and ζ 7→ D(Eζ)1. In

particular, (un)n∈N is a fundamental sequence (Def. 5.6.12). By [43, §II.1.4, Prop. 4, p. 167]

there exists a unique family of functions S such that ζ 7→ (Eζ ,D(Eζ)) satisfies Definition 5.6.15

with underlying space S. Let now u ∈ C0(Y ) be arbitrary; for every n ∈ N one has u ·un ∈ C0(Y ),

whence the measurability of ζ 7→ 〈u |un〉 = nζ(u · un) by (a2). By [43, §II.1.4, Prop. 2, p. 166],

the measurability of ζ 7→ 〈u |un〉ζ for every un in a fundamental sequence is sufficient to establish

the conclusion in Definition 5.6.12(b), that is, the linear map

ι : C0(Y ) −→
∏
ζ∈Z

Hζ

u 7−→
(
ζ 7→ u = u · 1Z(ζ)

)
has range in S. This shows that C0(Y ) ⊂ S and that S does not depend on the total sys-

tem (un)n∈N. Furthermore, ι(u) ∈ H by (a2) since

‖ι(u)‖2H = ν
(
‖ι(u)‖2·

)
≤ ‖ι(u)‖∞ ν- esssup

ζ∈Z
nζY .

Finally, since nζ is fully supported for ν-a.e. ζ ∈ Z by (a), one has ‖ι(u)‖ = 0 if and only

if u ≡ 0, that is ι : C0(Y )→ H is an injection. Let now v ∈ C0(Z) be arbitrary and notice that it

is measurable by assumption. Thus ζ 7→ v(ζ)ι(u) is an element in S, and in fact in H, exactly

as before. This shows that C0(Z) ⊗ C0(Y ) injects into H. Since C0(Z) ⊗ C0(Y ) is norm-dense

in L2
ν(Z;L2

n · (Y )), a proof of the isomorphism in (5.6.10) and that it respects fibers is now

standard.

(ii) The Markov property for the quadratic form (E,D(E)) is a straightforward consequence

of the Markov property for (Eζ ,D(Eζ)). The strong locality is also straightforward, due to our

topological assumptions on Y and Z. The regularity is a consequence of (iv) below.

(iii) is immediate. (iv) The ‖ · ‖∞-density of C0(Z)⊗ C in C0(Z)⊗ C0(Y ) is a consequence

of that of C in C0(Y ). The ‖ · ‖∞-density of C0(Z)⊗ C0(Y ) into C0(Z × Y ) is in turn standard.

The E
1/2
1 -density in D(E) is a straightforward consequence of the E

1/2
ζ,1 -density of C in D(Eζ)

for ν-a.e. ζ ∈ Z. (v) is but a rephrasing of Lemma 5.6.16(iii). (vi) is straightforward. �

Definition 5.6.19 (Randomization of Dirichlet forms). Let n be as in §5.3 and assume that nζ =

n for ν-a.e. ζ ∈ Z in Proposition 5.6.18(a). In this case, we term the direct integral of Dirichlet

forms constructed in Proposition 5.6.18 the ν-randomization of the family
(
(Eζ ,D(Eζ))

)
ζ∈Z ,

a Dirichlet form on the concrete Hilbert space L2
ν⊗n(Z × Y ). We denote it by (Êν ,D(Êν)),

dropping ν from the notation whenever apparent from the context.
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5.6.5 Capacity estimates. In order to simplify the statement of the next results, set

ck,d :=

√
k

d− 1
, sk,d(r) :=


sin(ck,d r) if k > 0

r if k = 0

sinh(ck,d r) if k < 0

, Vk,d(r) :=

∫ r

0

du sk,d(u)d−1

and

vr(x) := mBg
r(x) , x ∈M , r > 0 , Dg := diamdgM . (5.6.11)

The following is well-known.

Proposition 5.6.20 (Bishop–Gromov volume comparison). Let (M, g) be satisfying Assump-

tion 5.2. Then, (M, dg,m) satisfies

vR(x)

vr(x)
≤ Vk,d(R)

Vk,d(r)
, x ∈M , 0 < r < R (5.6.12)

where k :=(d− 1) infx∈M Ricx.

Definition 5.6.21 (Packings and coverings). For fixed r > 0, we say that (xj)
n
j ⊂M is (a) an

r-packing of M if
(
Bg
r(xj)

)
j≤n is a disjoint family and Bg

r(x) ∩ ⋃nj Bg
r(xj) 6= ∅ for every x ∈M ;

or (b) an r-covering of M if M ⊂ ⋃n
j B

g
r(xj). The covering number of M is defined by

cM,g(r) := min
{
n ∈ N | ∃ (xj)

n
j r-covering of M

}
.

We say that an r-covering (xj)
n
j is (r-)optimal if n = cM,g(r).

The following is an exercise in [70, E+, 5.31 Ex. (b)]. We provide a proof for completeness.

Lemma 5.6.22 (Covering number of M). Let r > 0. Then, cM,g(r) ≤ Vk,d(Dg/2)/Vk,d(r/2).

Proof. Alternatively letting r → 0 or R→ Dg/2 in (5.6.12) we have

rd . β
Vk,d(r)

Vk,d(Dg/2)
≤ vr(x) ≤ Vk,d(r) . rd , r > 0 , x ∈M . (5.6.13)

Let (xj)
n
j be an r/2-packing of M . Notice that it is an r-covering. By disjointness,

m
n⋃
j

Bg
r/2(xj) =

n∑
j

mBg
r/2(xj) ≤ mM = β ,

hence n ≤ β/ infx∈M vr/2(x) and the conclusion follows by (5.6.13). �

Lemma 5.6.23. For i = 1, 2 let (Mi, gi) be satisfying Assumption 5.2, with canonical form

(Ei,D(Ei)). Denote by (M, g) the product manifold (M1, g1) × (M2, g2), with canonical form

(Eg,D(Eg)). For every Ei-capacitable Ai, Bi with Ai ⊂ Bi let further ui :=uAi,Bi ∈ D(Ei) be the

equilibrium potential of (Ai, Bi). Then, the set A1 ×A2 is Eg-capacitable and

capg(A1 ×A2, B1 ×B2) ≤ cap1(A1, B1) ‖u2‖2L2
m2

+ cap2(A2, B2) ‖u1‖2L2
m1

.

Proof. Straightforward. �

Proposition 5.6.24. For i = 1, 2 let (M, gi) be satisfying Assumption 5.2, with canonical

form (Ei,D(Ei)) and same underlying differential manifold M . Denote by (M×2, g) the product

manifold (M, g1)× (M, g2), with canonical form (Eg,D(Eg)). Then, capg(∆M) = 0.
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Proof. Fix 0 < ε < δ < 1 and let
(
xij
)ni
j

be an optimal ε-covering for (M, gi). Then, their union,

relabeled (yj)
n
j , is an ε-covering of both (M, gi) and n :=n1 + n2 . ε−d by Lemma 5.6.22. For

simplicity of notation, for any r > 0 write Bir(x) :=Bgi
r (x), Bir,j :=Bgi

r (yj) and vi,r(x) := vgir (x).

Let ui,j,ε,δ be the equilibrium potential of the pair (Biε,j , B
i
δ,j) for the form (Ei,D(Ei)). Since (yj)

n
j

is a covering, ∆M ⊂ ⋃n
j B

1
ε,j ×B2

ε,j , thus

capg(∆M) ≤capg

(
n⋃
j

B1
ε,j ×B2

ε,j

)
≤

n∑
j

capg

(
B1
ε,j ×B2

ε,j

)
≤

n∑
j

capg

(
B1
ε,j ×B2

ε,j , B
1
δ,j ×B2

δ,j

)
≤

n∑
j

cap1

(
B1
ε,j , B

1
δ,j

)
‖u2,j,ε,δ‖2L2

m2

+ cap2

(
B2
ε,j , B

2
δ,j

)
‖u1,j,ε,δ‖2L2

m1

by Lemma 5.6.23. As a consequence, since 0 ≤ ui,j,ε,δ ≤ 1Bi
δ,j

,

capg(∆M) . ε−d sup
x∈M

(
cap1

(
B1
ε (x), B1

δ (x)
)
· v2,δ(x) + cap2

(
B2
ε (x), B2

δ (x)
)
· v1,δ(x)

)
. (5.6.14)

Now, if i, j = 1, 2, i 6= j,

capi
(
Biε(x), Biδ(x)

)
· vj,δ(x) ≤ cap

(0)
i

(
Biε(x), Biδ(x)

)
· vj,δ(x) + v1,δ(x) · v2,δ(x) . (5.6.15)

By [150, Eqn. (2.2)] (also cf. [68, Eqn. (2.2)]) and (5.6.13), one has

sup
x∈M

cap
(0)
i

(
Biε(x), Biδ(x)

)
≤ sup
x∈M

(∫ δ

ε

dr
r − ε

vi,r(x)− vi,ε(x)

)−1

≤

∫ δ

ε

dr
r − ε

sup
x∈M

vi,r(x)− inf
x∈M

vi,ε(x)

−1

≤
(∫ δ

ε

dr
r − ε

Vk,d(r)− Vk,d(ε)β−1
i Vk,d(Di/2)−1

)−1

. cε :=

εd−2 if d ≥ 3 and δ := 2ε(
ln δ+ε

2ε

)−1
if d = 2 and δ := 1 ∧D1/2 ∧D2/2

.

(5.6.16)

Finally, combining Equations (5.6.13)–(5.6.16) yields

capg(∆M) . ε−d(cε ε
d + εd εd)

and letting ε tend to 0 yields the desired conclusion since cε → 0. �

5.6.6 Operators and domains.

Lemma 5.6.25. Let % ∈ C∞(I), f ∈ C∞(M) and g ∈ C∞(M×2). Then,

ug,% : µ 7→
∫
M

dµ(x) f(x) · %
(∫

M

dµ(y) g(x, y)

)
satisfies ug,% ∈ clE1/2

1

(Z∞) and(
g[∇ug,%(η)(x)

)
( · ) =(df)x( · x) · %

(
g(x, · )?η

)
+ f(x) · %′

(
g(x, · )?η

) ∫
M

dη(y) (d⊗2g)x,y( · x, · y) .
(5.6.17)
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Proof. Let u :=ug,%. Notice that

∇w u(η) = dt
∣∣
t=0

∫
M

dη(x) (f ◦ ψw,t)(x) · %
(∫

M

dη(y) g
(
ψw,t(x),ψw,t(y)

))
=

∫
M

dη(x)
〈
∇xf

∣∣wx〉g · %(g(x, · )?η
)

+

∫
M

dη(x) f(x) · %′
(
g(x, · )?η

)
·
∫
M

dη(y)
〈
∇⊗2
x,yg

∣∣ (wx, wy)
〉
gx⊕gy

,

whence (5.6.17) follows. By a straightforward approximation argument in the appropriate C1-

topologies, it suffices to show ug,% ∈ clE1/2
1

(Z∞) when % ∈ I[r], the space of real-valued polynomials

on I, and g is of the form g =
∑n
k ak ⊗ bk, where k ≤ n ∈ N and ak, bk ∈ C∞(M). Finally,

since % 7→ ug,% is linear and ∇ is a linear operator, it suffices to show the statement when %(r) := rN

for N ∈ N. For such a choice of g and %, one has in fact

ug,%(η) =
∑
j∈Nn0
|j|=N

(
N
j

)
(f · aj)?η · (b?η)j ∈ Z∞ , a := (ak)nk , b := (bk)nk . �

Lemma 5.6.26. The set Z∞ is dense in D(E).

Proof. In order to prove the statement, it suffices to show that u :=(f ⊗ %)? ∈ clE1/2
1

(Z∞) for

all f ∈ C∞(M) and % ∈ C∞(I). Denote by cap the (first order) capacity associated to the canonical

form (E,D(E)) of (M, g)×2. Let (gn)n ∈ D(E) be a minimizing sequence for cap(∆M) = 0 (by

Prop. 5.6.24). By standard arguments, we may assume that gn ∈ C∞(M×2) additionally satisfies

0 ≤ gn ≤ 1 , gn(x, x) = 1 , ∇z
∣∣
z=x

gn(z, z) = 0 , E1(gn) ≤ 2−n x ∈M , n ∈ N ,

and further that gn(x, y) = gn(y, x), thus we may write gxn := gn(x, · ), unambiguously.

By Lemma 5.6.25, for every f ∈ C∞(M), % ∈ I[r] and n ∈ N,

un(η) :=

∫
M

dη(x) f(x) · %
(
(gxn)?η

)
∈ clE1/2

1

(Z∞) .

Thus, it suffices to show that E1/2
1 -limn un = u. By (5.6.17),

E(u− un) ≤‖|∇f |‖2∞
∫

P

dDm(η)

∫
M

dη(x)
∣∣%(ηx)− %

(
(gxn)?η

)∣∣2︸ ︷︷ ︸
I1,n

+ ‖f‖2∞
∫

P

dDm(η)

∫
M

dη(x)
∣∣%′((gxn)?η

)∣∣2 ∫
M

dη(y)
∣∣∇⊗2

x,ygn
∣∣2︸ ︷︷ ︸

I2,n

.

Concerning I1,n, one has, by the Mecke identity (5.2.13) and properties of gxn, that

I1,n ≤
∥∥%′∥∥2

∞

∫
P

dDm(η)

∫
M

dm(x)

∫
I

dB(r)

∣∣∣∣r − rgxn(x)− (1− r)
∫
M

dη(y) gxn(y)

∣∣∣∣2
≤
∥∥%′∥∥2

∞

∫
P

dDm(η)

∫
M

dm(x)

∫
M

dη(y) |gxn(y)|2

=
∥∥%′∥∥2

∞

∫
M×2

dm⊗2(x, y) |gxn(y)|2 ≤ 2−n
∥∥%′∥∥2

∞

and therefore vanishing as n→∞. A proof of the convergence limn un = u pointwise on Ppa

and in L2
Dm

(P) is analogous to that for I1,n and therefore it is omitted.
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Concerning I2,n, by Cauchy–Schwarz inequality, properties of gn and the Mecke iden-

tity (5.2.13),

I2,n ≤
∥∥%′∥∥2

∞

∫
P

dDm(η)

∫
M

dm(x)

∫
I

dBβ(r)

[
(1− r)

∫
M

dη(y)
∣∣∇⊗2

x,ygn
∣∣2 + r

∣∣∇⊗2
x,xgn

∣∣2]
≤
∥∥%′∥∥2

∞

∫
M

dm⊗2(x, y)
∣∣∇⊗2

x,ygn
∣∣2 ≤ 2−n

∥∥%′∥∥2

∞ ,

which concludes the proof by letting n→∞. �

Lemma 5.6.27 (Iterated carré du champ operator). Denote by Γ2 the iterated carré du champ

Γ2(u, v) := 1
2

(
LΓ(u, v)− Γ(u,Lv)− Γ(Lu, v)

)
,

by Γ (resp. Γ2) the (iterated) carré du champ operator of the Laplace–Beltrami operator on (M, g).

For m ∈ N0 and f̂ ∈ Cm0 (M̂), set further

S : f̂ 7→ S(f̂)(x, s) := s−1f̂(x, s) .

Then, for u = F ◦ f̂?, v = G ◦ ĝ? ∈ Ẑ3
0 one has

Γ2(u, v) =

k,k,h,h∑
i,p,j,q

(∂2
ipF ) ◦ f̂? · (∂2

jqG) ◦ ĝ? · Γ(f̂i, ĝj)
? · Γ(f̂p, ĝq)

?

+

k,h∑
i,j

(∂iF ) ◦ f̂? · (∂jG) ◦ ĝ? · S
(
Γ2(f̂i, ĝj)

)?
+ 1

2

k,k,h∑
i,p,j

(∂2
ipF ) ◦ f̂? · (∂jG) ◦ ĝ? ·

(
Γ(f̂p,Γ(f̂i, ĝj))− Γ(Γ(f̂i, f̂p), ĝj)

)?
+ 1

2

k,h,h∑
i,j,q

(∂iF ) ◦ f̂? · (∂2
jqG) ◦ ĝ? ·

(
Γ(Γ(f̂i, ĝj), ĝq)− Γ(f̂i,Γ(ĝj , ĝq))

)?
.

In particular,

Γ2(u) = (L1u)2 +

k,k∑
i,p

(∂iF ) ◦ f̂? · (∂pF ) ◦ f̂? · S
(
Γ2(f̂i, f̂p)

)?
. (5.6.18)

Proof. For u, v as above one has

Γ(u, v) =

h,k∑
i,j

H(ij) ◦ ĥ
?

(ij)

where H(ij) := ∂iF ⊗ ∂jG⊗ idR : Rk+h+1 → R and ĥ(ij) := f̂ ⊕ ĝ ⊕ Γ(f̂i, ĝj).

Then (recall the definition of L1,L2 from (5.4.16)),

L1Γ(u, v) =

k,h∑
i,j

k,k∑
p1,p2

(∂3
p1p2iF ) ◦ f̂? · (∂jG) ◦ ĝ? · Γ(f̂p1 , f̂p2)? · Γ(f̂i, ĝj)

?

+

k,h∑
i,j

h,h∑
q1,q2

(∂iF ) ◦ f̂? · (∂3
q1q2jG) ◦ ĝ? · Γ(ĝq1 , ĝq2)? · Γ(f̂i, ĝj)

?

+ 2

k,h∑
i,j

k,h∑
p,q

(∂2
piF ) ◦ f̂? · (∂2

qjG) ◦ ĝ? · Γ(f̂p, ĝq)
? · Γ(f̂i, ĝj)

?
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+

k,h∑
i,j

k∑
p

(∂2
piF ) ◦ f̂? · (∂jG) ◦ ĝ? · Γ(f̂p,Γ(f̂i, ĝj))

?

+

k,h∑
i,j

h∑
q

(∂iF ) ◦ f̂? · (∂2
qjG) ◦ ĝ? · Γ(Γ(f̂i, ĝj), ĝq)

?

+

k,h∑
i,j

0

and

L2Γ(u, v) =

k,h∑
i,j

k∑
p

(∂2
piF ) ◦ f̂? ·B[∇f̂p] · (∂jG) ◦ ĝ? · Γ(f̂i, ĝj)

+

k,h∑
i,j

h∑
q

(∂iF ) ◦ f̂? · (∂2
qjG) ◦ ĝ? ·B[∇ĝq] · Γ(f̂i, ĝj)

+

k,h∑
i,j

(∂iF ) ◦ f̂? · (∂jG) ◦ ĝ? ·B[∇Γ(f̂i, ĝj)] .

By bilinearity, Γ(Lu, v) = Γ(L1u, v) + Γ(L2u, v). Moreover,

L1u =

k,k∑
p1,p2

L
(p1p2)
1 ◦ â?p1p2

where L
(p1p2)
1 := ∂2

p1p2
F ⊗ idR : Rk+1 → R and âp1p2 := f̂ ⊕ Γ(f̂p1 , f̂p2), and

L2u =

k∑
p

L
(p)
2 ◦ b̂?p

where L
(p)
2 := ∂pF ⊗ idR : Rk+1 → R, b̂p := f̂ ⊕∆S(f̂p). Thus,

Γ(L1u, v) =

k,h∑
i,j

k,k∑
p1,p2

(∂3
ip1p2

F ) ◦ f̂? · Γ(f̂p1 , f̂p2)? · (∂jG) ◦ ĝ? · Γ(f̂i, ĝj)
?

+

h∑
j

k,k∑
p1,p2

(∂2
p1p2

F ) ◦ f̂? · (∂jG) ◦ ĝ? · Γ(Γ(f̂p1 , f̂p2), ĝj)
?

Γ(L2u, v) =

k,h∑
i,j

k∑
p

(∂2
ipF ) ◦ f̂? ·B[∇f̂p] · (∂jG) ◦ ĝ? · Γ(f̂i, ĝj)

?

+

h∑
j

k∑
p

(∂pF ) ◦ f̂? · (∂jG) ◦ ĝ? · Γ(∆S(f̂p), ĝj)
?

It follows from the previous computations that

Γ2(u, v) =

k,k,h,h∑
i,p,j,q

(∂2
ipF ) ◦ f̂? · (∂2

jqG) ◦ ĝ? · Γ(f̂i, ĝj)
? · Γ(f̂p, ĝq)

?

+ 1
2

k,k,h∑
i,p,j

(∂2
ipF ) ◦ f̂? · (∂jG) ◦ ĝ? ·

(
Γ(f̂p,Γ(f̂i, ĝj))− Γ(Γ(f̂i, f̂p), ĝj)

)?
+ 1

2

k,h,h∑
i,j,q

(∂iF ) ◦ f̂? · (∂2
jqG) ◦ ĝ? ·

(
Γ(Γ(f̂i, ĝj), ĝq)− Γ(f̂i,Γ(ĝj , ĝq))

)?
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+
∑
i,j

(∂iF ) ◦ f̂? · (∂jG) ◦ ĝ? · 1
2
S
((

∆Γ(f̂i, ĝj)
)
− Γ(∆S(f̂i), ĝj)− Γ(f̂i,∆S(ĝj))

)?
.

Since the map S does not affect evaluation in the space variable, it commutes with any linear

differential operator affecting only the space variable. Thus, the conclusion follows by definition

of Γ2. �

Lemma 5.6.28. For w ∈ X∞ let Aw be the form on D(E) defined in Corollary 5.4.21(iii).

Then, for all bounded measurable u : P → R and all v ∈ Z∞,∫
P

dDm (u ◦Ψw,t − u)v = −
∫ 1

0

ds

[∫
P

dDm u ◦Ψw,s ·∇w v +Aw(u ◦Ψw,s, v)

]
. (5.6.19)

Proof. We follow [142, Lem. 6.1]. By a monotone class argument, it suffices to show (5.6.19)

for u ∈ Z∞. Then, u ◦Ψw,t ∈ Z∞ too. By Lemma 4.4.7,

u ◦Ψw,t − u =

∫ t

0

ds ∇w(u ◦Ψw,s) ,

whence, integrating and applying Fubini’s Theorem,∫
P

dDm (u ◦Ψw,t − u)v =

∫ t

0

ds

∫
P

dDm ∇w(u ◦Ψw,s) · v ,

hence the conclusion by properties of Aw. �

Proposition 5.6.29. For u ∈ Lip(P2) and w ∈ X∞ set

Ωuw :=
{
µ ∈P | ∃Gwu(µ) := dt

∣∣
t=0

(u ◦Ψw,t)(µ)
}
.

Let further X ⊂ X∞ be a countable Q-vector space dense in X0 and assume DmΩuw = 1 for

all w ∈ X . Then u ∈ D(E) and Γ(u) ≤ Lip[u] Dm-a.e..

Proof. It suffices to show Equation (4.4.20): the rest of the proof is identical to Proposition 4.4.9.

By continuity of t 7→ Aw(u ◦Ψw,t, v) for u, v ∈ Z∞, Equation (4.4.19) and Lemma 5.6.28 yield∫
P

dDmGwu · v = −
∫

P

dDm u∇w v −Aw(u, v) , u, v ∈ Z∞

Next, notice that the map w 7→ Aw(u, v) is linear for every u, v ∈ Z∞, since it is the limit of

the linear maps w 7→ Aw0 (un, vn), where un, vn ∈ Ẑ∞1/n are the approximation of u, v constructed

in Corollary 5.4.18. As a consequence, if w = s1w1 + · · ·+ skwk for some si ∈ R and wi ∈ X ,

then ∫
P

dDmGwu · v = −
k∑
i

si

[∫
P

dDm u∇wi v +Awi(u, v)

]
=

k∑
i

∫
P

dDmGwiu · v

and Equation (4.4.20) follows. �
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[132] Overbeck, L., Röckner, M., and Schmuland, B. An analytic approach to Fleming–Viot

processes with interactive selection. Ann. Probab., 23(1):1–36, 1995.

[133] Palais, Richard S. On the Differentiability of Isometries. Proc. Amer. Math. Soc., 8(4):805–

807, 1957.
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