
Theoretical Analysis of Hierarchical
Clustering and the Shadow Vertex

Algorithm

Anna-Klara Großwendt
geboren in Wesel

Dissertation
zur Erlangung des Doktorgrades (Dr. rer. nat.)

der
Mathematisch-Naturwissenschaftlichen Fakultät

der
Rheinischen Friedrich-Wilhelms-Universität Bonn

Bonn 2019

1. Gutachter: Prof. Dr. Heiko Röglin
2. Gutachterin: Jun.-Prof. Dr. Melanie Schmidt
Tag der mündlichen Prüfung: 13.03.2020
Erscheinungsjahr: 2020

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der

Rheinischen Friedrich-Wilhelms-Universität Bonn

Abstract
Agglomerative clustering (AC) is a very popular greedy method for computing hierarchical
clusterings in practice, yet its theoretical properties have been studied relatively little. We
consider AC with respect to the most popular objective functions, especially the diameter
function, the radius function and the k-means function. Given a finite set P ⊆ Rd of
points, AC starts with each point from P in a cluster of its own and then iteratively
merges two clusters from the current clustering that minimize the respective objective
function when merged into a single cluster.

We study the problem of partitioning P into k clusters such that the largest diameter
of the clusters is minimized and we prove that AC computes an O(1)-approximation for
this problem for any metric that is induced by a norm, assuming that the dimension d is a
constant. This improves the best previously known bound of O(log k) due to Ackermann
et al. [2]. Our bound also carries over to the k-center and the continuous k-center problem.

Moreover we study the behavior of agglomerative clustering for the hierarchical k-
means problem. We show that AC computes a 2-approximation with respect to the k-
means objective function if the optimal k-clustering is well separated. If additionally the
optimal clustering also satisfies a balance condition, then AC fully recovers the optimum
solution. These results hold in arbitrary dimension. We accompany our positive results
with a lower bound of Ω((3/2)d) for data sets in Rd that holds if no separation is guar-
anteed, and with lower bounds when the guaranteed separation is not sufficiently strong.
Finally, we show that AC produces an O(1)-approximative clustering for one-dimensional
data sets.

Apart from AC we provide improved and in some cases new general upper and lower
bounds on the existence of hierarchical clusterings. For the objective function discrete
radius we provide a new lower bound of 2 and improve the upper bound of 4. For the
k-means objective function we state a lower bound of 32 on the existence of hierarchical
clusterings. This improves the best previously known bound of 576.

The simplex algorithm is probably the most popular algorithm for solving linear pro-
grams in practice. It is determined by so called pivot rules. The shadow vertex simplex
algorithm is a popular pivot rule which has gained attention in recent years because it
was shown to have polynomial running time in the model of smoothed complexity. In the
second part of the dissertation we show that the shadow vertex simplex algorithm can be
used to solve linear programs in strongly polynomial time with respect to the number n
of variables, the number m of constraints, and 1/δ, where δ is a parameter that measures
the flatness of the vertices of the polyhedron. This extends a previous result that the
shadow vertex algorithm finds paths of polynomial length (w.r.t. n, m, and 1/δ) between
two given vertices of a polyhedron [17].

Our result also complements a result due to Eisenbrand and Vempala [25] who have
shown that a certain version of the random edge pivot rule solves linear programs with a
running time that is strongly polynomial in the number of variables n and 1/δ, but inde-
pendent of the number m of constraints. Even though the running time of our algorithm
depends on m, it is significantly faster for the important special case of totally unimodular
linear programs, for which 1/δ ≤ n and which have only O(n2) constraints.

I

Acknowledgments
I would briefly like to thank a few people without whom my thesis would not have been
possible.

Above all, I would like to thank my supervisor Heiko Röglin for all of his support. I
thank you for the interesting research ideas and the many things I have learned in the
field of computer science. Especially that I was able to choose my research topics freely
as well as the good and trend-setting advice and comments to lead them to a goal. I also
thank you a lot for all the support far away from the scientific area, which I did not take
for granted. I am specifically grateful that you made it always possible for me to combine
my research and my job at the university with my two sons coming to life during my
doctoral studies.

I am very grateful to be part of this working group. Over the last few years I met a
lot of nice people, getting lots of ideas for my research and having great and interest-
ing conversations, not only about computer science. In particular, I would like to thank
Melanie Schmidt, with whom I did a lot of interesting research on clustering after she came
to Bonn. The work was always fun for me. Particularly I thank you for your patience
when our research was only possible via chat because of my parental leave.

Finally, I want to thank my family for their love and support. I especially thank Tim,
Frederik and Alexander who make each day of my life valuable for me.

II

Contents

1 Introduction 1
1.1 Hierarchical Clustering . 2
1.2 Shadow Vertex Algorithm . 10
1.3 Bibliographical Notes . 15

2 Hierarchical Clustering 16
2.1 Outline of the Analysis . 17

2.1.1 Bounds on the Existence of Hierarchical Clusterings 17
2.1.2 Approximation Guarantees for AC 17

2.2 Preliminaries . 21
2.3 Existence of Hierarchical Clusterings . 22

2.3.1 A Lower Bound of 2 for the Hierarchical k-Center Problem 23
2.3.2 Upper Bounds on the Existence of a Hierarchical Clustering 29

2.4 Ward’s Algorithm . 32
2.4.1 Cost of one step . 32
2.4.2 Monotonicity . 33
2.4.3 Exponential Lower Bound in High Dimension 35
2.4.4 Ward’s Method in Dimension One 40
2.4.5 Separation Conditions and Well-Clusterable Data 55
2.4.6 Bounds for δ-center separation and α-center proximity 58
2.4.7 Exponential Lower Bound for Well-Clusterable Data 67

2.5 Complete Linkage . 69
2.5.1 Clustering Intersection Graphs . 69
2.5.2 The One-Dimensional Case . 72
2.5.3 The General Case . 75

3 The Shadow Vertex Algorithm 85
3.1 Outline of the Analysis . 85
3.2 Preliminaries . 87

3.2.1 The Parameter delta . 87
3.2.2 Some Probability Theory . 88

3.3 Algorithm . 89
3.3.1 Reducing the Dimension . 90
3.3.2 Identifying an Element of the Optimal Basis 90
3.3.3 The Shadow Vertex Method . 91

III

3.4 Analysis of the Shadow Vertex Algorithm 92
3.5 Running Time . 98

3.5.1 An Upper Bound on the Number of Random Bits 99
3.6 Finding a Basic Feasible Solution . 109

3.6.1 A Lower Bound for δ(B) . 110
3.6.2 An Upper Bound for ∆(B) . 113

3.7 Justification of Assumptions . 114
3.7.1 Raising the Rank of Matrix A . 114
3.7.2 Translation into a Bounded Polyhedron 117

4 Conclusion 118

A Proofs from Section 3.4 124

IV

Chapter 1

Introduction

Since its first definition in 1971 in a paper by Stephen A. Cook [19], the complexity class
NP has decisively shaped the scientific work in the field of computer science. Cook showed
in his paper that every problem contained in NP can be reduced to the SAT-problem in
polynomial time - this makes SAT the hardest type of problem in NP . Karp followed in
1972 with an extensive work [32], in which he uses polynomial time reductions to prove
for 21 problems, including famous problems like Vertex Cover or Clique, that they are
contained in the group of hardest problems in NP . Since then, research revolves around
the question whether there is an efficient solution for such problems. By efficient we mean
that a solution can be found in polynomial time. Such problems are summarized in the
class P , which is a subclass of NP .

As a consequence one has to deal with the question how to proceed with hard opti-
mization problems, which are of particular interest in practice and where a good solution
has to be computed quickly. A crucial and trend-setting observation is, that we search
in most of the cases for a good solution but not necessarily for an optimum solution.
This introduces the large field of approximation algorithms. An approximation algorithm
searches for a value which differs from the optimal solution by a factor of at most α. In
general one allows α to be a function dependent on parameters like the input size of the
instance.

One popular example for that type of optimization problems is the k-clustering problem
where a finite set of points P shall be divided into a fixed number of clusters. Clustering
is well known to be NP -hard for a large number of objective functions, including the
diameter- or radius-function such as k-means. Since it is indispensable in numerous tasks
in practice one has to find a way to compute good clusterings. Many approximation
algorithms have been developed over the years. In practice greedy methods are very
popular. They are often easy to implement with a small running time and behave naturally
and locally optimal. In terms of clustering a very natural heuristic is to start with P
and proceed with the cheapest possible merge steps one after another until a suitable
number of clusters is obtained. This results in a k-clustering for each integer k ∈ [|P |]1
where clusterings are refinements of subsequent clusterings. A set of clusterings with
these properties is called a hierarchical clustering. Nevertheless for the most popular
objective functions there are very few results known about approximation guarantees or

1We use the abbreviation [i] = {1, . . . , i} for i ∈ N.

1

lower bounds for this greedy heuristic. In Chapter 2 we analyze the existence of such
hierarchical clusterings in general and moreover analyze the greedy heuristic with respect
to the most popular objective functions.

Besides there exist very established problems for which it is still not known if they
are solvable in polynomial time or to belong to the group of NP -hard problems. A
very popular example is the graph isomorphism problem. Another problem for which
the complexity class was unknown for a long time is linear programming. The problem
is to maximize a linear function under a number of linear constraints on the variables.
This turns over to the problem of finding a certain vertex in a polyhedron. The simplex
algorithm was invented by Dantzig in 1947 [21] and walks along a path of neighbored
vertices until it reaches the target vertex. How the next neighbored edge is chosen in
the path depends on so called pivot rules. There are many pivot rules which are very
popular and perform well in practice, though there exist instances where the running
time is known to be exponential for the most of them. Apart from the simplex method
Leonid Khachiyan proved in 1979 [33] that linear programming is contained in P . He
uses an extension of the ellipsoid method which can be used to solve linear programs in
polynomial running time. Nevertheless the simplex method is still significant in practice.
It is still unknown if there exists a pivot rule which leads to a polynomial running time of
the algorithm. One very popular example for pivot rules is the shadow vertex pivot rule.
The shadow vertex pivot rule visits vertices along the shape of the polyhedron projected
into a 2 dimensional plane from a start vertex to the target vertex. In 2004 Spielman and
Teng proved that the shadow vertex pivot rule has polynomial running time in the model
of smoothed complexity [49] which justifies its relevance in practice. In Chapter 3 we
provide a randomized algorithm based on the shadow vertex pivot rule which has strongly
polynomial running time but depends on a parameter which represents the flatness of the
polyhedron defined by the linear program.

1.1 Hierarchical Clustering
In a typical clustering problem, the goal is to partition a given set of objects into clusters
such that similar objects belong to the same cluster while dissimilar objects belong to
different clusters. Clustering is ubiquitous in computer science with applications ranging
from biology to information retrieval and data compression. As an unsupervised learning
method, it provides an easy way to gain insight into the structure of data without the
need for expert knowledge to start with. A k-clustering C of P is a partition of P into k
non-empty sets C1, . . . , Ck. There exist a lot of popular objective functions to measure the
quality of a given clustering C starting with geometric functions like diameter or (discrete)
radius or stochastic functions like k-median and k-means also known under the name sum
of squared errors.

Diameter and discrete radius Let (M,d) be a metric space and P ⊆M denote a finite
set of points. Geometric objective functions consider properties of the convex hull of the
clusters like their diameter but are not interested in properties like the number of points
per cluster. We consider two common variants to measure the quality of a k-clustering C,
which lead to different optimization problems.

2

• diameter k-clustering problem: Find a k-clustering C with minimum diameter.
The diameter diam(C) of C is given by the maximal diameter maxi diam(Ci) of
one of its clusters, where the diameter of a set C ⊆ P is defined as diam(C) :=
maxx,y∈C dist(x, y).

• k-center problem: Find a k-clustering C with minimum discrete radius. The
discrete radius drad(C) of C is given by the maximal discrete radius maxi drad(Ci)
of one of its clusters, where the discrete radius of a set C ⊆ P is defined as drad(C) :=
miny∈C maxx∈C dist(x, y).

In some cases, when the metric is non-discrete, it is crucial to allow any point in M
to be a cluster center. In that case we distinguish between discrete radius and radius
as objective functions. We name the problem of finding a clustering with respect to the
objective function radius as continuous k-center problem.

The approximability of clustering problems is well understood. In general we know that
the k-center problem is NP -hard and it is even NP -hard to find a (2− ε)-approximation
for any ε > 0 [28]. The same bounds hold for the diameter k-clustering problem. Feder and
Greene [26] proved that for the Euclidean metric the k-center problem and the diameter
k-clustering problem cannot be approximated better than a factor of 1.822 and 1.969,
respectively.

k-means One of the most popular clustering objectives is k-means: Given a set P of
points in the Euclidean space Rd, find k centers that minimize the sum of the squared
distances of each point in P to its closest center. The objective is also called sum of
squared errors, since the centers can serve as representatives, and then the sum of the
squared distances becomes the squared error of this representation.

Theory has focused on metric objective functions for a long time: Facility location or
k-median are very well understood, with upper and lower bounds on the best possible
approximation guarantee slowly approaching one another. The k-means cost function is
arguably more popular in practice, yet its theoretical properties were long not the topic of
much analysis. In the last decade, considerable efforts have been made to close this gap.

We now know that k-means is NP-hard, even in the plane [41] and also even for two
centers [4]. The problem is also APX-hard [7], and the currently best approximation
algorithm achieves an approximation ratio of 6.357 [3]. The best lower bound, though, is
only 1.0013 [37]. A seminal paper on k-means is the derivation of a practical approximation
algorithm, k-means++, which is as fast as the most popular heuristic for the problem (the
local search algorithm due to Lloyd [39]), has an upper bound of O(log k) on the expected
approximation ratio, and has proven to significantly improve the performance on actual
data [5]. Due to its simplicity and superior performance, it (or variants of it) can now be
seen as the de facto standard initialization for Lloyd’s method.

Existence of good hierarchical clusterings From a practical point of view, however,
there is still one major drawback of using k-means++ and Lloyd’s method, and this has
nothing to do with its approximation ratio or speed. Before using any method that strives
to optimize k-means, one has to determine the number k of clusters. If one knows very
little about the data at hand, then even this might pose a challenge. However, there

3

is a simple and popular method available: hierarchical clustering. Instead of computing
clusterings for several different numbers of clusters and comparing them, one computes
one hierarchical clustering, which contains a clustering for every value of k. A hierarchical
clustering C of a set P of n objects is a sequence C1, C2, . . . , Cn, where Ci is a clustering of P
into i non-empty clusters and Ci−1 results from Ci by merging two clusters in Ci. Besides the
advantage that the number of clusters does not have to be specified in advance, hierarchical
clusterings are also appealing because they help to understand the hereditary properties
of the data and they provide information at different levels of granularity. A hierarchical
clustering is apparently something very desirable, but the question is: Can the solutions
be good for all values of k? Do we lose much by forcing the hierarchical structure?

Dasgupta and Long [23] were the first to give positive and negative answers to this
question. Their analysis evolves around the k-center problem. They compare the k-center
cost on each level of a hierarchical clustering to an optimal clustering with the best possible
radius with the same number of clusters and look for the level with the worst factor. It
turns out that popular heuristics for hierarchical clustering can be off by a factor of log k
or even k compared to an optimal clustering. Dasgupta and Long also propose a clever
adaption of the 2-approximation for k-center due to González [28], which results in a
hierarchical clustering algorithm. For this algorithm, they can guarantee that the solution
is an 8-approximation of the optimum on every level of the hierarchy simultaneously. We
improve the known upper bound of 8 for the k-center problem to an upper bound of 4,
though our argument is non-constructive.

Theorem 1.1. For each finite point set P and each metric (M,d) with P ⊆ M there
exists a hierarchical clustering with approximation factor 4 on each level of granularity for
the k-center problem.

In a series of works, Mettu, and Plaxton [43], Plaxton [45] and finally Lin, Nagara-
jan, Rajaraman, and Williamson [38] develop and refine algorithms for the hierarchical
k-median problem, which can be seen as the metric cousin of the hierarchical k-means prob-
lem. It consists of minimizing the sum of the distances of every point to its closest center,
and is usually studied in metric spaces. The best known approximation guarantee is 20.06.
However, the quality guarantee vastly deteriorates for k-means: An O(1)-approximation
for the hierarchical k-means problem follows from [45, 43] as well as from [38], but the
approximation ratios range between 961 and 3662. Nevertheless the analysis of Lin, Na-
garajan, Rajaraman, and Williamson [38] includes non-constructive upper bounds for the
existence of a hierarchical clustering with respect to k-median and k-means of 24 and
576, respectively. We improve their upper bounds by providing a better subroutine. The
following theorem improves the upper bound for the k-means problem. We mention that
together with the algorithm in [38] the subroutine can be used to efficiently implement
an approximation algorithm for the hierarchical k-means problem with approximation ra-
tio 32α, given an α-approximation for the k-means problem for arbitrary k. This also
improves the recently known upper bound of 576α.

Theorem 1.2. For each finite point set P ∈ Rd there exists a hierarchical clustering with
approximation factor 32 on each level of granularity for the k-means problem. Moreover
given an α-approximation algorithm for the k-means problem, a hierarchical clustering
with approximation ratio 32α can be computed.

4

When talking about upper bounds it automatically raises the question what it the
best hierarchical clustering we can hope for? Das and Kenyon-Mathieu state an instance
for the diameter k-clustering problem in [22] where no hierarchical clustering exists which
is better than a 2-approximation for each level of granularity. We provide a family of
instances (Tm)m∈N,m≥0 for the k-center problem where no hierarchical clustering has an
approximation factor better than 2− 1/2m.

Theorem 1.3. For each ε > 0 there exists a metric space (M,d) and a finite point set
P ⊆ M where the minimum hierarchical clustering for the k-center problem on P has
approximation factor larger than 2− ε.

k-center diameter k-means
Constructive Upper Bound 8 [23] 8 [23] 32α (576α [38])
Upper Bound 4 (8 [23]) 8 [23] 32 (576 [38])
Lower Bound 2 (-) 2 [22] -

Table 1.1: The table states currently known upper and lower bounds on the hierarchical
versions of the three clustering problems. Whenever we improved one of the bounds we
state the previous known bound in brackets right behind.

The agglomorative clustering greedy Hierarchical clustering algorithms are classi-
fied as divisive or agglomerative. Divisive algorithms work top-down, starting with P as the
first clustering and subsequently dividing it. Agglomerative algorithms work bottom-up,
starting with singletons clusters and subsequently merging them. Agglomerative methods
are more popular because they are usually faster. The Agglomerative Clustering Greedy
(AC) starts with the clustering Cn, in which every object belongs to its own cluster. Then
it iteratively merges the two clusters from the current clustering Ci+1 with the smallest
distance to obtain the next clustering Ci. This is a locally optimal choice only, since the
optimal merge in one operation may prove to be a poor choice with respect to a later level
of the hierarchy. Depending on how the distance between two clusters is defined, different
agglomerative methods can be obtained.

A common variant is the complete-linkage method in which the distance between two
clusters A and B is defined as the diameter or the discrete radius of A∪B, assuming some
distance measure on the objects from P is given. Which clusters are merged in an iteration
depends on the optimization problem we consider. For the diameter k-clustering problem,
the complete-linkage method chooses two clustersA andB from Ci+1 such that diam(A∪B)
is minimized. Similarly, for the k-center problem and the continuous k-center problem it
chooses two clusters A and B from Ci+1 such that drad(A ∪ B) or rad(A ∪ B) is mini-
mized, respectively. Hence, every objective function gives rise to a different variant of the
complete-linkage method. When it is not clear from the context which variant is meant,
we will use the notation CLdrad, CLrad, and CLdiam to make the variant clear.

The complete-linkage method is very popular and successful in a wide variety of appli-
cations. To name just a few of many examples, Rieck et al. [46] have used it for automatic
malware detection, Ghaemmaghami et al. [27] have used it to design a speaker attribution
system, and Cole et al. [18] use it as part of the Ribosomal Database Project. Yet the

5

complete-linkage method is not fully understood in theory and there is still a considerable
gap between the known upper and lower bounds for its approximation guarantee.

Ackermann et al. [2] proved that the complete-linkage method yields an O(log k)-
approximation for any metric that is induced by a norm and constant dimension d. The
analysis of Ackermann et al. proceeds in two phases. The first phase ends when 2k clusters
are left and the second phase consists of the last k merge operations. In the first phase
a factor depending only on d but not on k is incurred. Our analysis begins at the end of
the first phase. We prove that the approximation factor in the last k steps increases by at
most a constant factor. This leads to an improved upper bound for the complete-linkage
method.

Theorem 1.4. For d ∈ N and a finite point set P ⊆ Rd the algorithm CLdrad computes an
O(d)-approximation for the k-center problem. The algorithm CLdiam computes a 2O(d)d-
approximation for the diameter k-clustering problem.

Using AC for k-means yields Ward’s method [51]. Here the distance between two
clusters A and B is defined as the k-means cost of the clustering Ci resulting from Ci+1 by
merging A and B. To the best of our knowledge, the worst-case quality of Ward’s method
has not been studied before. In particular, it was not known whether the algorithm can
be used to compute constant-factor approximations. We answer this question negatively
by giving a family of examples with increasing k and d where the approximation factor of
Ward is Ω((3/2)d).

To explain the algorithms popularity, we then proceed to study it under different
clusterability assumptions. Clustering problems are usually NP-hard and even APX-hard,
yet clustering is routinely solved in practical applications. This discrepancy has led to the
hypothesis that data sets are either easy to cluster, or they have little interesting structure
to begin with. ‘Well-clusterable data sets are computationally easy to cluster’ [12] and
‘Clustering is difficult only when it does not matter’ [20] are two slogans summarizing this
idea. Following it, many notions have been developed that strive to capture how well a
data set is clusterable. One such notion is center separation [13]: A data set P ⊂ Rd
is δ-center separated for some number k of clusters if the distance between any pair of
clusters in the optimal clustering is at least δ times the maximal radius of one of the
clusters. It satisfies the similar α-center proximity [6] for k if in the optimum k-clustering
the distance of each data point to any center except for its own is larger by a factor of
at least α than the distance to its own center. We apply these notions to hierarchical
clustering by showing that if there is a well-separated optimum solution for a level, then
the clustering computed by Ward on this level is a 2-approximation.

Theorem 1.5. Let P ⊂ Rd be an instance that satisfies weak (2 + 2
√

2 + ε)-center separa-
tion or (3 + 2

√
2 + ε)-center proximity for some k ∈ [|P |] and ε > 0. Then Ward computes

a 2-approximation on P for that k.

This means that Ward finds good clusterings for all levels of granularity that have a
meaningful clustering; and these good clusterings have a hierarchical structure. For levels
on which the sizes of the optimal clusters are additionally to some extend balanced, we
prove that Ward even computes the optimum clustering.

6

Theorem 1.6. Let P ⊂ Rd be an instance with optimal k-means clustering O1, . . . , Ok
with centers c∗1, . . . , c∗k ∈ Rd. Assume that P satisfies (2 + 2

√
2ν + ε)-center separation for

some ε > 0, where ν = maxi,j∈[k]
|Oi|
|Oj | is the largest factor between the sizes of any two

optimum clusters. Then Ward computes the optimal k-means clustering O1, . . . , Ok.

Related Work

Let P ⊆ Rd and a metric dist on P be given and consider an objective function f ∈
{drad, rad, diam, k-median, k-means}. Let Ofk be an optimal k-clustering of P with re-
spect to f . For each of these problems, it is easy to find examples where no hierarchical
clustering C = (C1, . . . , C|P |) exists such that Ck is an optimal k-clustering for every k.
We say that a hierarchical clustering C is an α-approximate hierarchical clustering with
respect to f if f(Ck) ≤ α · f(Ofk) holds for every k. In general, we also allow α to be a
function of k and d.

Upper and lower bounds on the existence of hierarchical clusterings The de-
sign of hierarchical clustering algorithms that satisfy per-level guarantees started with the
paper by Dasgupta and Long [23] who gave an efficient algorithm that computes 8-ap-
proximate hierarchical clusterings for the diameter k-clustering problem and the k-center
problem, thereby giving a constructive proof of the existence of such hierarchical cluster-
ings. Their result holds true for arbitrary metrics on Rd and it can even be improved to
an expected approximation factor of 2e ≈ 5.44 by a randomized algorithm. Their method
turns González’ algorithm [28] into a hierarchical clustering algorithm. González’ algo-
rithm is a 2-approximation not only for k-center, but also for the incremental k-center
problem: Find an ordering of all points, such that for all k, the first k points in the ordering
approximately minimize the k-center cost. The idea to make an algorithm for incremental
clustering hierarchical was picked up by Plaxton [45], who proves that this approach leads
to a constant factor approximation for the hierarchical k-median problem. He uses an
incremental k-median algorithm due to Mettu and Plaxton [43]. Finally, Lin, Nagarajan,
Rajaraman and Williamson [38] propose a general framework for approximating incre-
mental problems that also works for incremental variants of MST, vertex cover, and set
cover. They also cast hierarchical k-median and k-means into their framework for incre-
mental approximation. They get a randomized/deterministic 20.06/41.42-approximation
for hierarchical k-median and a randomized/deterministic 151.1α/576α-approximation for
k-means, where α is the approximation ratio of a k-means approximation algorithm. The
results include a non constructive proof of the existence of a 576-hierarchical clustering
for k-means clustering.

Das and Kenyon-Mathieu [22] provide a lower bound of 2 for the existence of a hierar-
chical clustering for the diameter k-clustering problem. They state an instance I and prove
that each hierarchical clustering on I has at least approximation factor 2. To our best
knowledge their exist no further lower bounds with respect to other objective functions.

Complete linkage Dasgupta and Long also studied in [23] the performance of the
complete-linkage method and presented an artificial metric on R2 for which its approx-
imation factor is only Ω(log k) for the diameter k-clustering and the k-center problem.

7

Ackermann et al. [2] showed for the diameter k-clustering and the discrete k-center prob-
lem a lower bound of Ω(p

√
log k) for the `p-metric for every p ∈ N, assuming d = Ω(k).

Ackermann et al. [2] also showed that the complete-linkage method yields an O(log k)-
approximation for any metric that is induced by a norm, assuming that d is a constant.
Here the constant in the big O notation depends on the dimension d. For the k-center
problem the dependence on d is only linear and additive. For the continuous k-center
problem the dependence is multiplicative and exponential in d, while for the diameter
k-clustering problem it is multiplicative and even doubly exponential in d. The analysis
of Ackermann et al. proceeds in two phases. The first phase ends when 2k clusters are left
and the second phase consists of the last k merge operations. In the first phase a factor de-
pending only on d but not on k is incurred. To make this precise, let Cdrad

2k , Crad
2k , and Cdiam

2k
denote the 2k-clusterings computed by the corresponding variants of CL. Ackermann et
al. prove that for each objective F ∈ {drad, rad, diam} there exists a function κF such
that

F (CF2k) ≤ κF (d) · F (OFk). (1.1)

The function κdrad is linear in d, the function κrad is exponential in d, and the func-
tion κdiam is doubly exponential in d. The factor O(log k) is only incurred in the last k
merge operations. Let Cdrad

k , Crad
k , and Cdiam

k denote the k-clusterings computed by
the corresponding variants of CL. Ackermann et al. show that for each objective F ∈
{drad, rad, diam}, it holds

F (CFk) ≤ O(log k) · F (CF2k),

where the constant in the big O notation depends again on the dimension d. Addi-
tionally, Ackermann et al. [2] studied the case d = 1 separately and proved that the
complete-linkage method computes 3-approximate hierarchical clusterings for the diame-
ter k-clustering problem and the k-center problem for d = 1.

Ward’s algorithm Balcan, Liang, and Gupta [11] observe that Ward’s method cannot
be used to recover a given target clustering. We discuss their example and the question
whether Ward can find a specific target clustering, namely the optimum clustering, in
Section 2.4.5. To our best knowledge, the quality in terms of approximation ratio of
Ward’s method has not been analyzed theoretically at all previous to our work.

Clusterability assumptions There is a vast body of literature on clusterability as-
sumptions, i.e., assumptions on the input that make clustering easier either in the sense
that a target clustering can be (partially) recovered or that a good approximation of an
objective function can be computed efficiently. A survey of work in this area can be found
in [12]. Particularly relevant for our results are the notions of δ-center separation [13]
and α-center proximity [6] mentioned above. There are several papers showing that under
these assumptions it is possible to recover the target/optimal clustering if δ and α are
sufficiently large [6, 10, 36, 42]. Other notions include the strict separation property of
Balcan, Blum, and Vempala [9], the ε-separation property of Ostrovsky et al. [44], and the
weaker version of the proximity condition due to Kumar and Kannan [35] which Awasthi
and Sheffet [8] proposed (it is based on the spectral norm of a matrix whose rows are the

8

difference vectors between the points in the data set and their centers). For all these no-
tions of clusterability, algorithms are developed that (partially) recover the target/optimal
clustering.

Our Contribution

Upper and lower bounds on the existence of hierarchical clusterings We prove
that there exists a family of instances for the k-center problem such that for each ε > 0
there is some instance on which no 2 − ε-hierarchical clustering exists. This implies a
lower bound of 2 for the existence of hierarchical clusterings for the k-center problem.
On the other side we introduce new augmentation routines which extend and in the case
of k-means replace the augmentation routines used by Lin et al. in [38]. This leads to
significantly better upper bounds for the k-center problem where the upper bound of
Dasgupta and Long decreases to 4 and k-means clustering where we turn the bound of
576 for the existence of a hierarchical clustering into an upper bound of 32.

Ward’s algorithm We show that, in general, Ward’s method does not achieve a con-
stant approximation factor. We present a family of instances (Pd)d∈N with Pd ⊂ Rd on
which the cost of the 2d-clustering computed by Ward is larger than the cost of the optimal
2d-means clustering of Pd by a factor of Ω((3/2)d). Then we observe that the family of
instances used for this lower bound satisfy the strict separation property of Balcan, Blum,
and Vempala [9], the ε-separation property of Ostrovsky et al. [44] for any ε > 0, and
the separation condition from Awasthi and Sheffet [8]. Hence, none of these three no-
tions of clusterability helps Ward’s method to avoid that the approximation factor grows
exponentially with the dimension.

Moreover we show that the approximation ratio of Ward’s method on one-dimensional
inputs is O(1). The one-dimensional case turns out to be more tricky than one would
expect, and our analysis is quite complex and technically challenging.

Finally, we analyze the approximation factor of Ward’s method on data sets that
satisfy different well-known clusterability notions. It turns out that the assumption that
the input satisfies a high δ-center separation [13] or α-center proximity [6] implies a very
good bound on the approximation guarantee of Ward’s method. We show that Ward’s
method computes a 2-approximation for all values of k for which the input data set satisfies
(2+2

√
2)-center separation or (3+2

√
2)-center proximity. We also show that on instances

that satisfy (2 + 2
√

2ν)-center separation and for which all clusters Oi and Oj in the
optimal clustering satisfy |Oj | ≥ |Oi|/ν, Ward even recovers the optimal clustering.

Complete linkage As a part of this thesis we prove that the complete-linkage method
yields an O(1)-approximation for the k-center problem, the continuous k-center problem
and the diameter k-clustering problem for any metric on Rd that is induced by a norm,
assuming that d is a constant. This does not contradict the lower bound of Ackermann et
al. because this lower bound assumes that the dimension depends linearly on k. In light of
our result, the dependence of this lower bound on k is somewhat misleading and it could
also be expressed as Ω(p

√
log d).

9

In order to obtain our result, we improve the second phase of the analysis of Ackermann
et al. [2] and we prove that for each objective F ∈ {drad, rad,diam},

F (CFk) ≤ O(1) · F (CF2k).

The constant in the big O notation depends neither on d nor on k. It is 43, 19, and 17 for
the discrete k-center problem, the k-center problem, and the diameter k-clustering prob-
lem, respectively. Together with (1.1) this yields the desired bound for the approximation
factor.

1.2 Shadow Vertex Algorithm
Linear Programming (LP) describes an optimization problem where one searches for the
maximum of a linear function while a set of linear constraints is preserved by the solution
vector. LP is probably the most important optimization model. It has an immense
influence on modeling in economics and there exist extensive applications in industrial and
military areas. Besides it plays a major role in the design of approximation algorithms
when translating a hard problem into a suitable Integer Program and using LP to solve a
relaxation to find a good estimation for the optimum value.

For a given matrix A = [a1, . . . , am]T ∈ Rm×n and vectors b ∈ Rm and c ∈ Rn the
standard form of a linear program is given by max{cTx |Ax ≤ b}. The set {x |Ax ≤ b}
of linear constraints builds an n-dimensional polyhedron. Since the objective function is
linear, it is geometrically clear that a vertex of the polyhedron takes the optimum value
in the case where the optimum value does not tend to infinity.

Simplex method In 1974 Dantzig introduced the simplex method as a first algorithm
to solve linear programs [21]. His idea was to start at a vertex of the polyhedron which
has to be identified in a first phase and then walk along the shape of the polyhedron
over a path of pairwise neighbored vertices in the direction of the objective function cTx
until an optimal vertex or an unbounded ray is found. Up to now the simplex method is
one of the most important methods for solving linear programs and is still widely used
in practice. It is a bit misleading to talk about the simplex method as one algorithm.
In fact, the simplex method is mainly determined by how the next vertex in the path is
selected among all vertices that improve the objective function cTx. As a first pivot rule,
Dantzig proposed to choose the vertex which improves the target function the most. In
the further course, many popular pivot rules have been depeloved which lead to different
behaviors of the path from the start vertex to the optimum vertex and lead to advantages
or disadvantages depending on the applications. A big advantage of the simplex method
is that when additional constraints are added subsequently, a so-called warm start can
be performed instead of calculate a solution right from the beginning. In 1970 Klee and
Minty stated an instance in form of a unit hypercube of variable dimension whose corners
have been perturbed and on which the simplex method in the original form as presented
by Dantzig visits an exponential number of corners before reaching an optimal vertex. The
Klee Minty cube is for many pivot rules an example for their non-polynomial running time
and there are a lot of modifications and further hard instances concerning a large number

10

of pivot rules. Up to now, there is no pivot rule for which a polynomial running time
has been proven, although many of them belong to the fastest alternatives in practical
applications.

Shadow vertex algorithm The shadow vertex algorithm is a well-known pivoting rule
for the simplex method. The idea is that linear programming is easy in the two di-
mensions. Assume we have a start vertex x0 and an objective function cTx. First a
vector u is computed such that x0 minimizes the function uTx. Then the polyhedron
P = {x ∈ Rn |Ax ≤ b} of feasible solutions is projected onto the plane by the projection
vectors u and v. Then one walks along the shape of the shadow from x0 to the opti-
mal vertex. The shadow vertex algorithm is known to have an exponential running time
in the worst case. Nevertheless it performs well in practical applications. It has gained
attention in recent years because it was shown to have polynomial running time in the
model of smoothed analysis [49] which justifies its relevance in practice. Brunsch and
Röglin observed that it can also be used to find short paths between given vertices of a
polyhedron [17]. Here short means that the path length is O(mn2

δ2), where n denotes the
number of variables, m denotes the number of constraints, and δ is a parameter of the
polyhedron that we will define shortly.

The result left open the question whether or not it is also possible to solve linear
programs in polynomial time with respect to n, m, and 1/δ by the shadow vertex simplex
algorithm. We resolve this question and introduce a variant of the shadow vertex simplex
algorithm that solves linear programs in strongly polynomial time with respect to these
parameters.

For a given matrix A = [a1, . . . , am]T ∈ Rm×n and vectors b ∈ Rm and c0 ∈ Rn our goal
is to solve the linear program max{c0

Tx |Ax ≤ b}. We assume without loss of generality
that ‖c0‖ = 1 and ‖ai‖ = 1 for every row ai of the constraint matrix.

Definition 1.7. The matrix A satisfies the δ-distance property if the following condi-
tion holds: For any I ⊆ {1, . . . ,m} and any j ∈ {1, . . . ,m}, if aj /∈ span{ai | i ∈ I}
then dist(aj , span{ai | i ∈ I}) ≥ δ. In other words, if aj does not lie in the subspace
spanned by the ai, i ∈ I, then its distance to this subspace is at least δ.

We present a variant of the shadow vertex simplex algorithm that solves linear pro-
grams in strongly polynomial time with respect to n, m, and 1/δ, where δ denotes the
largest δ′ for which the constraint matrix of the linear program satisfies the δ′-distance
property. (In the following theorems, we assume m ≥ n. If this is not the case, we use the
method from Section 3.7.1 to add irrelevant constraints so that A has rank n. Hence, for
instances that have fewer constraints than variables, the parameter m should be replaced
by n in all bounds.)

Theorem 1.8. There exists a randomized variant of the shadow vertex simplex algorithm
(described in Section 3.3) that solves linear programs with n variables and m constraints
satisfying the δ-distance property using O

(
mn3

δ2 · log
(1
δ

))
pivots in expectation if a basic

feasible solution is given. A basic feasible solution can be found using O
(
m5

δ2 · log
(1
δ

))
pivots in expectation.

11

We stress that the algorithm can be implemented without knowing the parameter δ.
From the theorem it follows that the running time of the algorithm is strongly polynomial
with respect to the number n of variables, the number m of constraints, and 1/δ because
every pivot can be performed in time O(mn) in the arithmetic model of computation (see
Section 3.5).2

Let A ∈ Zm×n be an integer matrix and let A′ ∈ Rm×n be the matrix that arises from A
by scaling each row such that its norm equals 1. If ∆ denotes an upper bound for the
absolute value of any sub-determinant of A, then A′ satisfies the δ-distance property for δ =
1/(∆2n) [17]. For such matrices A Phase 1 of the simplex method can be implemented
more efficiently and we obtain the following result.

Theorem 1.9. For integer matrices A ∈ Zm×n, there exists a randomized variant of the
shadow vertex simplex algorithm (described in Section 3.3) that solves linear programs with
n variables and m constraints using O

(
mn5∆4 log(∆ + 1)

)
pivots in expectation if a basic

feasible solution is given, where ∆ denotes an upper bound for the absolute value of any
sub-determinant of A. A basic feasible solution can be found using O

(
m6∆4 log(∆ + 1)

)
pivots in expectation.

Theorem 1.9 implies in particular that totally unimodular linear programs can be
solved by our algorithm with O

(
mn5) pivots in expectation if a basic feasible solution is

given and with O
(
m6) pivots in expectation otherwise.

Besides totally unimodular matrices there exist also other classes of matrices for
which 1/δ is polynomially bounded in n. Eisenbrand and Vempala [25] observed, for
example, that δ = Ω(1/

√
n) for edge-node incidence matrices of undirected graphs with n

vertices. One can also argue that δ can be interpreted as a condition number of the ma-
trix A in the following sense: If 1/δ is large then there must be an (n×n)-submatrix of A
of rank n that is almost singular.

Related Work

Shadow vertex simplex algorithm We will briefly explain the geometric intuition
behind the shadow vertex simplex algorithm. For a complete and more formal description,
we refer the reader to [15] or [49]. Let us consider the linear program max{c0

Tx |Ax ≤ b}
and let P = {x ∈ Rn |Ax ≤ b} denote the polyhedron of feasible solutions. Assume that
an initial vertex x1 of P is known and assume, for the sake of simplicity, that there is a
unique optimal vertex x? of P that maximizes the objective function c0

Tx. The shadow
vertex pivot rule first computes a vector w ∈ Rn such that the vertex x1 minimizes the
objective function wTx subject to x ∈ P . Again for the sake of simplicity, let us assume
that the vectors c0 and w are linearly independent.

In the second step, the polyhedron P is projected onto the plane spanned by the
vectors c0 and w. The resulting projection is a (possibly open) polygon P ′ and one can
show that the projections of both the initial vertex x1 and the optimal vertex x? are vertices
of this polygon. Additionally, every edge between two vertices x and y of P ′ corresponds

2By strongly polynomial with respect to n, m, and 1/δ we mean that the number of steps in the arithmetic
model of computation is bounded polynomially in n, m, and 1/δ and the size of the numbers occurring
during the algorithm is polynomially bounded in the encoding size of the input.

12

to an edge of P between two vertices that are projected onto x and y, respectively. Due to
these properties a path from the projection of x1 to the projection of x? along the edges
of P ′ corresponds to a path from x1 to x? along the edges of P .

This way, the problem of finding a path from x1 to x? on the polyhedron P is reduced
to finding a path between two vertices of a polygon. There are at most two such paths and
the shadow vertex pivot rule chooses the one along which the objective c0

Tx improves.

Finding short paths In [17] Brunsch and Röglin considered the problem of finding a
short path between two given vertices x1 and x2 of the polyhedron P along the edges
of P . Their algorithm is the following variant of the shadow vertex algorithm: Choose
two vectors w1, w2 ∈ Rn such that x1 uniquely minimizes w1

Tx subject to x ∈ P and x2
uniquely maximizes w2

Tx subject to x ∈ P . Then project the polyhedron P onto the plane
spanned by w1 and w2 in order to obtain a polygon P ′. Let us call the projection π. By
the same arguments as above, it follows that π(x1) and π(x2) are vertices of P ′ and that
a path from π(x1) to π(x2) along the edges of P ′ can be translated into a path from x1
to x2 along the edges of P . Hence, it suffices to compute such a path to solve the problem.
Again computing such a path is easy because P ′ is a two-dimensional polygon.

The vectors w1 and w2 are not uniquely determined, but they can be chosen from
cones that are determined by the vertices x1 and x2 and the polyhedron P . Brunsch and
Röglin proved in [17] that the expected path length is O(mn2

δ2) if w1 and w2 are chosen
randomly from these cones. For totally unimodular matrices this implies that the diameter
of the polyhedron is bounded by O(mn4), which improved a previous result by Dyer and
Frieze [24] who showed that for this special case paths of length O(m3n16 log(mn)) can be
computed efficiently.

Additionally, Bonifas et al. [14] proved that in a polyhedron defined by an integer
matrix A between any pair of vertices there exists a path of length O(∆2n4 log(n∆))
where ∆ is the largest absolute value of any sub-determinant of A. For the special case
that A is a totally unimodular matrix, this bound simplifies to O(n4 logn). Their proof is
non-constructive, however.

Geometric random edge Eisenbrand and Vempala [25] have presented an algorithm
that solves a linear program max{c0

Tx|Ax ≤ b} in strongly polynomial time with respect
to the parameters n and 1/δ. Remarkably the running time of their algorithm does not
depend on the number m of constraints. Their algorithm is based on a variant of the
random edge pivoting rule. The algorithm performs a random walk on the vertices of
the polyhedron whose transition probabilities are chosen such that it quickly attains a
distribution close to its stationary distribution.

In the stationary distribution the random walk is likely at a vertex xc that optimizes
an objective function cTx with ‖c0− c‖ < δ

2n . The δ-distance property guarantees that xc
and the optimal vertex x? with respect to the objective function c0

Tx lie on a common
facet. This facet is then identified and the algorithm is run again in one dimension lower.
This is repeated at most n times until all facets of the optimal vertex x? are identified.
The number of pivots to identify one facet of x? is proven to be O(n10/δ8). A single pivot
can be performed in polynomial time but determining the right transition probabilities
is rather sophisticated and requires to approximately integrate a certain function over a

13

convex body.
Let us point out that the number of pivots of our algorithm depends on the number m

of constraints. However, Heller showed that for the important special case of totally
unimodular linear programs m = O(n2) [30]. Using this observation we also obtain a
bound that depends polynomially only on n for totally unimodular matrices.

Combinatorial linear programs Éva Tardos has proved in 1986 that combinatorial
linear programs can be solved in strongly polynomial time [50]. Here combinatorial means
that A is an integer matrix whose largest entry is polynomially bounded in n. Her result
implies in particular that totally unimodular linear programs can be solved in strongly
polynomial time, which is also implied by Theorem 1.9. However, the proof and the
techniques used to prove Theorem 1.9 are completely different from those in [50].

Our Contribution

We replace the random walk in the algorithm of Eisenbrand and Vempala by the shadow
vertex algorithm. Given a vertex x0 of the polyhedron P we choose an objective func-
tion wTx for which x0 is an optimal solution. As in [17] we choose w uniformly at random
from the cone determined by x0. Then we randomly perturb each coefficient in the given
objective function c0

Tx by a small amount. We denote by cTx the perturbed objective
function. As in [17] we prove that the projection of the polyhedron P onto the plane
spanned by w and c has O

(
mn2

δ2
)
edges in expectation. If the perturbation is so small

that ‖c0 − c‖ < δ
2n , then the shadow vertex algorithm yields with O

(
mn2

δ2
)
pivots a solu-

tion that has a common facet with the optimal solution x?. We follow the same approach
as Eisenbrand and Vempala and identify the facets of x? one by one with at most n calls
of the shadow vertex algorithm.

The analysis in [17] exploits that the two objective functions possess the same type of
randomness (both are chosen uniformly at random from some cones). This is not the case
anymore because every component of c is chosen independently uniformly at random from
some interval. This changes the analysis significantly and introduces technical difficulties
that we address in our analysis.

The problem when running the simplex method is that a feasible solution needs to be
given upfront. Usually, such a solution is determined in Phase 1 by solving a modified
linear program with a constraint matrix A′ for which a feasible solution is known and
whose optimal solution is feasible for the linear program one actually wants to solve.
There are several common constructions for this modified linear program, it is, however,
not clear how the parameter δ is affected by modifying the linear program. To solve this
problem, Eisenbrand and Vempala [25] have suggested a method for Phase 1 for which
the modified constraint matrix A′ satisfies the δ-distance property for the same δ as the
matrix A. However, their method is very different from usual textbook methods and needs
to solve m different linear programs to find an initial feasible solution for the given linear
program. We show that also one of the usual textbook methods can be applied. We
argue that 1/δ increases by a factor of at most

√
m and that ∆, the absolute value of any

sub-determinant of A, does not change at all in case one considers integer matrices. In
this construction, the number of variables increases from n to n+m.

14

1.3 Bibliographical Notes
Preliminary versions of the results concerning the analysis of Complete Linkage andWard’s
algorithm in Chapter 2 such as the Shadow Vertex Method in Chapter 3 have been pub-
lished in conference proceedings and in a journal:

- Anna Großwendt, Heiko Röglin, and Melanie Schmidt. Analysis of Ward’s Method.
In Proc. of the 30th SODA, pp. 2939–2957, 2019.

- Anna Großwendt and Heiko Röglin. Improved Analysis of Complete-Linkage Clus-
tering.
In Proc. of the 23rd ESA, pp. 656-667, 2015.
Also appeared in Algorithmica, Volume 78, Issue 4, pp. 1131–1150, 2017.

- Tobias Brunsch, Anna Großwendt, and Heiko Röglin. Solving Totally Unimodular
LPs with the Shadow Vertex Algorithm.
In Proc. of the 32nd STACS, pp. 171-183, 2015.

15

Chapter 2

Hierarchical Clustering

In this chapter we deal with the quality of hierarchical clusterings and analyze a popular
greedy heuristic which computes hierarchical clusterings bottom up. Remember that a
hierarchical clustering is a set C of clusterings of a finite point set P which contains
exactly one k-clustering for each k ∈ [|P |]. Moreover each k-clustering for k ∈ [|P |] is a
refinement of the (k − 1)-clustering contained in C. We mentioned in Chapter 1.1 that
in general there does not exist a hierarchical clustering which is optimal on each level of
granularity.

a b c d
1 1− ε 1

Figure 2.1: The optimal 3-clustering has diameter 1− ε while the optimal 2-clustering has
diameter 1. There does not exist a hierarchical clustering which is optimal on each level
of granularity.

a b c d e
1 1− ε 1− ε 1

Figure 2.2: An analogous example for the k-center problem. The optimal 3-clustering has
discrete radius 1− ε while the optimal 2-clustering has discrete radius 1.

Figure 2.1 and Figure 2.2 show simple examples where no hierarchical clustering exists
which is optimal on each level of granularity for the diameter k-clustering problem and
the k-center problem.

Definition 2.1. Let (M, dist) be an arbitrary metric space, P ⊆ M a finite point set
and cost an arbitrary objective function. We call a hierarchical clustering C of P an α-
hierarchical clustering if for each integer k ∈ [|P |] and for the k-clustering Ck ∈ C it holds
that cost(Ck) ≤ α ·cost(Ok), where Ok is an optimal k-clustering on P with respect to cost.
We call a hierarchical clustering minimum hierarchical clustering if no other hierarchical
clustering with smaller approximation factor exists on that instance.

We deal with the natural question what is the minimum α for which an α-hierarchical
clustering exists. Therefore we provide in Section 2.3 a first non-trivial lower bound for

16

the k-center problem. Moreover we derive upper bounds for the most popular objective
functions diameter, discrete radius and k-means. In addition to that we analyze in Sec-
tion 2.4 and Section 2.5 the popular agglomerative greedy algorithm known as Complete
Linkage or Ward depending on the considered objective function.

2.1 Outline of the Analysis
We start with a brief overview about the ideas and main techniques which are used in this
chapter to prove the main results.

2.1.1 Bounds on the Existence of Hierarchical Clusterings

We start with general lower and upper bounds on the existence of hierarchical clusterings.
Remember that a hierarchical clustering C has approximation factor α on a finite point set
P if on each level on granularity k ∈ [|P |] we have that cost(Ck) ≤ α cost(Ok) where Ck ∈ C
is the k-clustering in C and Ok is an optimal k-clustering of P . We start with a lower
bound for the k-center problem. Therefore we just state a suitable set of instances. Then
we prove that on a certain set of granularity levels there exists only one unique hierarchical
clustering with approximation factor smaller than two. Moreover this factor tends to two
for large instances. It follows that there does not exist a hierarchical clustering with a
lower approximation factor on all levels on granularity.

We provide improved upper bounds for the k-center problem and the k-means cluster-
ing problem. Therefore we use the algorithm IncApprox(γ, δ) stated in [38]. The algorithm
requires an augmentation routine which computes for a given k′-clustering Ck′ and an op-
timal k-clustering Ok (where k′ > k) a k-clustering Ck which is hierarchically compatible
with Ck′ and the costs of Ck have an upper bound of cost(Ck) ≤ γ cost(Ck′) + δ cost(Ok)
for real values δ and γ with δ, γ ≥ 1. Based on that IncApprox(γ, δ) computes a hier-
archical clustering with approximation factor 4γδ. We provide a simple but new (1, 1)-
augmentation for the k-center problem and a (2, 1)-augmentation for the diameter k-
clustering problem and the continuous k-center problem. Moreover we improve the (18, 8)-
augmentation with respect to k-means given in [38] to a (4, 2)-augmentation.

2.1.2 Approximation Guarantees for AC

For the rest of the chapter we analyze the Agglomerative Clustering Greedy AC with
respect to different objective functions. The algorithm AC computes a hierarchical clus-
tering starting with |P | singleton clusters. Now iteratively AC merges these two clusters,
which minimize the increase of the objective function. Notice that whenever AC makes
a decision, it is optimal for the clustering in the next step. Where does its error lie? The
problem is that every merge forces the points of two clusters to be in the same cluster for
any clustering to come. In later clusterings, the condition to cluster certain points together
may induce error. The main challenge is now to relate the cost of the k-clustering Ck com-
puted by AC to the cost of an optimal k-clustering Ok without any information about the
structure or geometrical properties of the optimal clustering. The only information given
by Ok is which points may be merged together within costs cost(Ok). We use this infor-
mation to provide AC a setM of possible merge steps at the beginning which costs are

17

related to the cost of Ok. Whenever AC merges two clusters (A,B) /∈M although there
exists a suitable merge step (C,D) ∈ M (here suitable means that the clusters C and D
are available for AC in the current step) then we know that cost(A,B) ≤ cost(C,D) holds
because AC behaves optimally in each single step. After the merge step A and B are no
longer available thus we delete all merges related to A or B fromM. Moreover we delete
the merge step (C,D) from M which has been used for an upper bound on cost(A,B).
We use this strategy to give an upper bound on the costs of the performed merge steps
and thus on the cost of Ck. However, the objective functions diameter, discrete radius
and radius have a clear contrast in its behavior to k-median and k-means as objective
functions. The reason is that the first three objectives measure the size of a cluster with
respect to the maximum cluster in a k-clustering while the k-means objective is defined as
the sum of the squared distances of each point to its center of all clusters in the clustering.
Especially this means that the sets of merges which are crucial to determine the objective
values differ considerably. Therefore we discuss our idea in the following exemplarily for
the objective functions diameter and k-means.

k-means In terms of k-means clustering AC is well-known as Ward’s algorithm. There-
fore we name the algorithm Ward in the following. The k-means objective function con-
siders for each cluster the sum of the squared distances of each point in the cluster to
its cluster center. Then it sums up these values over all clusters. Especially that means
that we can decompose the costs of a hierarchical clustering C into costs of single steps
as follows: In each step k ∈ [|P | − 1] we perform exactly one merge step (A,B) which
modifies a (k+ 1)-clustering Ck+1 into a k-clustering Ck. By that the k-means cost of the
clustering increase and we denote the amount by D(A,B). If our hierarchical clustering
is represented by the sequence of merge steps m1, . . . ,m|P |−1 it directly follows that the
k-means cost of Ck are given by Ck =

∑|P |−k
i=1 D(mi). Now we apply the strategy described

above and try to provide upper bounds for all merges m1, . . . ,m|P | inM. Our main tech-
nical idea is that we can assemble the optimal k-clustering Ok from a sequence of merge
steps and each merge step has some cost. Thereby we add some hierarchical structure to
Ok. Analogously to Ck the cost of Ok are then just given by the sum of the costs of all
merge steps in the sequence.

In the following we give some technical details how M is chosen. Whenever Ward
merges two clusters which are contained in a common cluster in Ok we know that the
cost of this merge are included in optk = cost(Ok). Thus we are especially interested in
situations where Ward differs in its behavior which means Ward merges subclusters from
different optimal clusters. To focus on that situation we introduce an equivalence relation
where two points p1, p2 in P are equivalent if there exists a cluster C with p1, p2 ∈ C
constructed by Ward which is contained in some optimum cluster of Ok. We call these
clusters inner clusters. The equivalence classes are then given by the largest inner clusters
formed by Ward, right before Ward acts differently and merges equivalence classes from
different optimal clusters. We know that we can build up Ok from that equivalence classes
by defining an arbitrary path for each cluster Oi in Ok containing all equivalence classes
which are subclusters of Oi. We save this paths in the so called potential graph. The
vertices are the equivalence classes while the edges save merge costs for the merges of
incident vertices. Note that the sum of all edge weights does not equal optk since the

18

optimal clustering proceeds the merges in a path one after another which means in a 2-
path of clusters A,B,C the optimal clustering has cost D(A,B) +D(A∪B,C) while our
edge weights are given by D(A,B) and D(B,C) to enable Ward a more generous choice
of possible merges.

To find an upper bound for the sum of the edge weights we decompose an optimal
k-clustering. Consider an arbitrary cluster Oj ∈ Ok and let P j1 , . . . , P jnj be the equiv-
alence classes Oj consists of. We pretend Oj to result from a hierarchical decompo-
sition. Especially we use two different hierarchical decompositions. Consider the set
Mj = {{P j1 , P

j
2 }, {P

j
2 , P

j
3 }, . . . , {P

j
nj−1, P

j
nj}} of merges. Observe that the merges inMj

cannot be applied one after another because after the first merge {P j1 , P
j
2 } the singleton

class P j2 is gone, which is to be merged in the second merge {P j2 , P
j
3 }. But it is possible to

do every second merge ofMj , obtaining sets of clustersM1 = {{P j1 , P
j
2 }, {P

j
3 , P

j
4 }, . . . , }

and M2 = {{P j2 , P
j
3 }, {P

j
4 , P

j
5 }, . . . , }. Both sets can be hierarchically completed to Oj

and thus all merges inMj together cost at most 2∆(Oj). Now letM = ∪jMj . Then all
merges in M together cost at most 2 optk. Together this implies that Ward computes a
clustering with cost at most 2 optk.

Finally we search for a bijection between the steps of Ward and the edges in the graph.
This bijection has the property that every merge of Ward is at most as expensive as the
edge assigned to it. Since Ward and the optimal clustering proceed the same number of
steps this can only be guaranteed if every merge of Ward decreases the number of available
edges by only 1. One can show that this follows from separation assumptions defined in
Section 2.4.5.

For the one-dimensional case, the basic approach is similar. The main difference is that
without separation, we can no longer guarantee that the number of available merges de-
creases by only 1 with every step of Ward. Indeed, the original setM of good merges may
be empty after n− 2k merges. To bound the cost of the remaining merge steps, we find a
new set of (relatively) good merges, i.e., a set of merges whose costs can be bounded by a
constant times optk. Again, this set may run dry, and we have to start again. Essentially,
we show that after a constant number of phases (Ward merges that are charged against a
specific set of good merges), Ward has obtained a k-clustering. Although the basic idea is
similar, the technical implementation of the proof for d = 1 is very different from our proof
for well-clusterable data. Every time that Ward does not merge in a way compatible to
the optimum clustering, we have to account for all possible consequences. Techniques like
reordering help us to organize the proof. We also simplify the instance before the actual
proof.

Diameter, Radius and discrete Radius Now we consider exemplarily the objective
function diameter. In literature AC became popular with respect to the diameter k-
clustering problem and the k-center problem under the name Complete Linkage (CL).
The diameter function behaves very differently in comparison with k-means. The reason
is that the objective function diameter considers at most two points in each cluster to
calculate the objective value while k-means takes each point in each cluster into account.
The most conspicuous geometrical consequence is that while k-means takes rather an
outlier than two different dense points in a cluster the diameter objective is not negatively

19

affected by that. A theoretical consequence is that separation assumptions lead already
with very small separation parameters to optimal results and are no longer of theoretical
interest. Instead, we derive a general upper bound for all instances depending on the
dimension d as a parameter.

Therefore we base our analysis on results of Ackermann et al. stated in [2]. As written
in the introduction their analysis in [2] proceeds in two phases. The first phase ends
when 2k clusters are left and the second phase consists of the last k merge operations. In
the first phase an approximation factor depending only on d is incurred (even though the
factor is doubly exponential in d). Based on the first phase we give an improved analysis
of the second phase. Let C′ be the 2k-clustering computed by CL. We know that in phase
two only k merge steps are left and again provide a setM of possible merge steps. Unlike
in the case of k-means we are not interested in summing up the costs of all steps in M.
Indeed the diameter of a given k-clustering C refers only to the distance of two specific
points contained in one cluster. Especially the costs of merge steps applied before and
related to other clusters in C are not of special interest for the objective function. Due
to that we define a threshold t related to the cost of Ok such that an adequate number
of merges can be applied to C′ leading to a diameter of at most t. Let optk = diam(Ok)
be the cost of an optimal k-clustering. Note that each point in P is contained in some
optimal cluster. It follows that each cluster in C′ intersects with at least one optimal
cluster. Moreover there exists an optimal cluster which has common points with at least
two clusters from C′. Using the triangle inequality it follows that two such clusters can be
merged within diameter cost of 2 ·diam(C′)+optk. To organize such potential merge steps
we introduce the concept of clustering intersection graphs (CI). The clusters in C′ build
the set of vertices of a CI-graph G while optimal clusters from Ok form hyperedges which
connect all clusters in C′ which have a common point with the optimal cluster related to
that edge. Then we set t = 2 · diam(C′) + optk and add k pairs of such incident clusters in
G from C′ toM such that each cluster of C′ is contained in a merge step fromM. Note
that the merge steps inM define a subforest F on G.

Unfortunately CL could merge clusters which do not intersect in a common optimal
cluster and in that case two merge steps are deleted fromM (the two merge steps which
contain A or B). We have to deal with the problem that the set of possible merges M
runs empty whereas CL did not terminate. We will fix this by filling up M with new
possible merge steps remembering the number of different fill-up processes (note that each
fill-up process increases the threshold and therefore the diameter of CL). We represent
this process in F . Whenever two clusters are merged we contract the corresponding
vertices in F . When M runs empty for a certain threshold d we know that it may be
filled up with all pairs of vertices neighbored in F for the new threshold 2d + optk. To
decrease the threshold to d + optk + diam(C′) we proceed more carefully and add only
merges of neighbored vertices to M where one of the vertices is a leaf. One can argue
that the corresponding cluster is contained in C′. Finally we argue that we only need 3
fill-up processes until F has at most k vertices and CL terminates. We obtain our results
by carefully exploiting the structural properties of F . At the beginning each connected
component is a tree and especially each connected component contains a leaf which means
there is some merge contained in M. We argue that after two fill-up processes for each
connected component either there is a cycle contained or the component is involved in two

20

merge steps in the next period. Finally it follows from counting arguments that after a
third fill-up process each component contains a cycle and by that the number of vertices
is at most the number of edges which is k.

2.2 Preliminaries
Our instances are given by a finite point set P ⊆M which is a subset from a metric space
(M, dist). We denote by optk(P) the value of a k-clustering that minimizes a specific
objective function.

k-means We consider inputs in the Euclidean space Rd. The Euclidean distance of
x1, x2 ∈ Rd is denoted by ||x1 − x2|| = ||x1 − x2||2. Let P ⊂ Rd be a finite set of points.
For any center c ∈ Rd, we denote the sum of the squared distances of each point in P
to c by ∆(P, c) =

∑
p∈P ||p − c||2. This sum is minimized when the center is the centroid

µ(P) := 1
|P |
∑
p∈P p of P . We set ∆(P) := ∆(P, µ(P)). For any set of k centers C ⊂ Rd, the

k-means objective cost is ∆(P,C) =
∑
p∈P minc∈C ||p−c||2. The 1-means cost of P is ∆(P).

If P is weighted with a weight function w : P → N≥1, then we denote the total weight
by w(P) :=

∑
x∈P w(x) and extend the above notations by µ(P) = 1

w(P)
∑
x∈P w(x)x,

∆(P, c) =
∑
x∈P w(x)||x− c||2, and ∆(P) = ∆(P, µ(P)). The weighted k-means objective

is ∆(P,C) =
∑
x∈P minc∈C w(x)||x−c||2. We denote the costs of the k-clustering computed

by Ward’s method on data set P by Wardk(P). The following two facts are well known.

Lemma 2.2 (Relaxed triangle inequality). For all x, y, z ∈ Rd, ||x− y||2 ≤ 2(||x− z||2 +
||z − y||2).

Lemma 2.3. For any finite point set P ⊂ Rd and any c ∈ Rd, ∆(P, c) = ∆(P) + |P | ·
||c− µ(P)||2.

Proof. See for example Lemma 2.1 in [31] or Lemma 2.4.1 in [47].

Lemma 2.3 has the following important consequence. Whenever a set of points P ′ is
clustered together, i.e., all points in it are assigned to the same center in a given solution,
then the cost for this assignment can be computed by knowing only the centroid of the point
set and ∆(P ′). Indeed, ∆(P ′) is always part of the cost when the points in P ′ end up in the
same cluster, no matter where they are assigned. Consider any bottom-up hierarchical
clustering strategy. As soon as a set of points P ′ has been merged by the strategy, it
is clear that all of the points in P ′ will be assigned together in all clusterings to come.
Thus, we can treat such a P ′ as one weighted point with some additional constant cost.
This view is very helpful to simplify the analysis of agglomerative hierarchical clustering
strategies and we will adopt it whenever convenient.

Diameter and (discrete) Radius If the metric is not specified we consider general
metric spaces (M, dist). Moreover an instance is given by a finite point set P ⊆ M .
Especially our upper bounds on the existence of α-hierarchical clusterings in Section 2.3.2
are true for arbitrary metric spaces (M,dist). Also our analysis forCL in Section 2.5 works
for arbitrary metric spaces. Though one should mention that Lemma 2.77, Lemma 2.79

21

as well as Lemma 2.81 are based on results from [2] which hold true for all metrics which
are induced by a norm. For a k-clustering C we denote the diameter of C by diam(C) :=
maxx,y∈C dist(x, y). The radius of C is given by rad(C) := miny∈Rd maxx∈C dist(x, y).
Finally the discrete radius of C is defined by drad(C) := miny∈C maxx∈C dist(x, y). When
it is not clear from the context which variant is meant, we will use the notation CLdrad,
CLrad, and CLdiam to make the variant clear.

2.3 Existence of Hierarchical Clusterings
In general it is not possible to find a hierarchical clustering which is optimal on every level
of granularity. This fact automatically raises the question which is the minimum approx-
imation factor we can guarantee for a hierarchical clustering at each level of granularity.

a b c d
x y x

Figure 2.3: Figure 2.1 with more general distances.

Let us consider Figure 2.1 again but try to achieve an approximation factor of the
hierarchical clustering as large as possible. As seen above there exists no hierarchical
clustering which is optimal on each level if y < x. If the hierarchical clustering merges b and
c first it is optimal in the first step but realizes an approximation factor of (x+y)/x in the
next merge. The other way round when the hierarchical clustering starts with merging a
and b it can become an optimal 2-clustering but the approximation factor of the resulting 3-
clustering is given by x/y. Note that the minimal approximation factor min{x/y, (x+y)/x}
is maximized by the the golden cut which is given by (

√
5 − 1)/2 ≈ 0.618. It follows

an approximation factor of approximately 1.618 for the diameter k-clustering problem.
Analyzing Figure 2.2 in a similar way we achieve an even smaller maximal approximation
factor for the k-center problem of

√
2 ≈ 1.42 for a = 1 and b = 1/

√
2. The reason is that

the center may be chosen in an optimal way for the objective function which leads to more
conditions on the choice of x and y.

Figure 2.4: An optimal 6-clustering has diameter 1 while the optimal 4 clustering has
diameter 2. The hierarchical clustering either starts with an optimal 6-clustering and
merges two further clusters (but this leads to a diameter of 4) or starts with another
6-clustering but including an edge of weight 2.

22

Aparna Das and Claire Kenyon state some instance in [22] where no α-hierarchical
clustering with α smaller than 2 exists. This instance is the first non-trivial lower bound
for the diameter k-clustering problem and is shown in Figure 2.4. In this section we
introduce the first non-trivial lower bound for the k-center problem. We prove that also
in the case of the objective function discrete radius in general no hierarchical clustering
with approximation factor smaller than 2 exists. In a second step we extend the work
of Lin et al. in [38] which improves several upper bounds on the existence of hierarchical
clusterings.

2.3.1 A Lower Bound of 2 for the Hierarchical k-Center Problem

Our family of instances consists of a finite point set Pm with 3m+1 points for m ≥ 0 where
the metric on Pm is given by a shortest-path metric induced by a tree Tm with vertex set
V (Tm) = Pm. Especially the distance between two points v, w ∈ Pm is given by the length
of the unique v −w-path in Tm. It is helpful to spend some time on general properties of
clusterings on tree metrics before we start with the analysis.

Definition 2.4. We call a clustering on a tree metric convex, if each vertex x on a v, w-
path in T , where v and w are part of a common cluster C, is also contained in the cluster
C.

Now we consider a convex k-clustering on a tree. If we build the union of all paths
between all pairs of vertices in a cluster we obtain a subtree T ′ by the above definition
and it holds C = V (T ′). This implies that we can identify clusterings in a tree by sets of
edges instead of vertices.

Lemma 2.5. Each forest with m edges on V (T) = P induces a convex |P |−m-clustering
on P : Each of the |P |−m connected components defines a cluster, and the points in these
clusters are just the points of the related connected component. Vice versa, each convex
|P |−m clustering can be represented by a forest in G by connecting all points in the same
cluster.

In each tree metric T and for each k ∈ [|V (T)|] there exists a convex optimal solution
for the k-center problem. Unfortunately this property does not turn over to hierarchical
clusterings. A simple example is given in Figure 2.5.

a b c

d

e

3 3
2

2

Figure 2.5: An optimal 4-clustering has radius 2 and is given by either {b, d} or {d, e}.
The optimal 3-clustering has also radius 2 and is unique with the clusters {a}, {c}, {b, d, e}.
The optimal 2-clustering which is hierarchically compatible is also unique with radius 3
and given by {a, c}, {b, d, e}. Note that it is not convex.

23

Nevertheless we use connected components of a forest as representatives for our clus-
ters. We will justify in the analysis, that the minimum hierarchical clustering on a given
set of granularity levels is convex in our family of instances.

The Family of Instances {Tm}m≥0 We define {Tm}m≥0 with Pm = V (Tm) recursively
as follows: Let T0 be a tree with three vertices connected by a path with two edges of
weight 20 = 1. Then Tm for m > 0 starts with the edge- and vertex set of Tm−1 and adds
for each vertex v ∈ V (Tm−1) two copies v′ and v′′ to V (Tm). Moreover we add two edges
(v′′, v′) and (v′, v) with weight 2m to E(Tm). We call the edge (v′′, v′) outer edge of weight
2m and the edge (v′, v) inner edge of weight 2m. Moreover we call v′ a designated center
on level m. Figure 2.6 depicts T2 as the left picture.

Note that all edge weights are positive and thus the tree induces a metric on its vertices.
Moreover the most expensive edges in Tm have weight 2m. The graph T0 has 3 vertices
and in each step the number of vertices increases by a factor of 3. Especially the graph
Tm consists of |V (Tm)| = 3m+1 vertices. We denote by Ki the set of edges with weight
exactly 2i for i = 0, . . . ,m. Let ki be the number of edges in Ki. Then, k0 = 2. Since
for each vertex in Tm−1 we add two edges with weight 2m, ki = 2 · |V (Ti−1)| = 2 · 3i for
i = 0, . . . ,m.

Theorem 2.6. For the instance Pm = V (Tm) the optimal hierarchical clustering has an
approximation factor of at least

Φ = 2m+1 − 1
2m = 2− 1

2m ,

i.e., for any ε > 0, there is an m where the factor is > 2− ε.

Proof. Let n = |Pm| denote the number of points for a fixed parameter m ≥ 0.

Optimal Clusterings on Tm First we consider the costs of optimal clusterings with
(n− ki) clusters for i ∈ [m]. We argue that an optimal (n− ki)-clustering for i ∈ [m] has
cost 2i. We have to choose ki = 2 · 3i edges in G to obtain an (n − ki)-clustering. We
can just choose all edges from Ki and obtain a clustering with cost 2i, where the centers
are the designated centers on level i, and each connected component is a path with two
edges of weight 2i. Thus each cluster has discrete diameter 2i. We argue that there is
no cheaper clustering with (n − ki) clusters. Each forest including an edge with weight
at least 2i has discrete radius at least 2i. Thus, to obtain a cheaper (n − ki)-clustering
we have to choose edges with weight smaller than 2i. Note that all edges with weight
smaller than 2i are contained in Ti−1 and moreover Ti−1 is a tree. Thus there exist only
|V (Ti−1)|−1 = 3i−1 < 2 ·3i = ki such edges. It follows that an optimal (n−ki)-clustering
in Tm has cost 2i.

A Hierarchical Clustering T on Tm We recursively define a hierarchical clustering
T on Tm which has an approximation factor of 2 − 1/2m. For each level of granularity
n− k0, . . . , n− km we denote the (n− ki)-clustering from T by Ti. Then we argue that T
is basically the only possible hierarchical clustering with a factor smaller than two on the
specified granularity levels (it is unique up to symmetry).

24

The (n − 2)-clustering T0 is given by the forest containing the two edges from K0.
Note that this is an optimal (n− 2)-clustering on Tm. Now assume we have a hierarchical
(n−ki)-clustering T0, . . . , Ti for i ∈ [m−1]. We define the (n−ki+1)-clustering Ti+1 which
is hierarchically compatible as follows: First we add all outer edges with weight 2i+1. Our
forest then contains ki + ki+1/2 = 2 · 3i + 3i+1 edges. Thus, we have to choose 3i further
edges to obtain a forest with ki+1 edges. Notice that it holds 3i = ki/2. The set Ki of
edges with weight 2i decomposes into ki/2 many 2-paths consisting of an inner and outer
edge. Thus it is sufficient to choose one further edge from Ki+1 for each 2-path in Ki. Let
v− v′− v′′ be a 2-path in Ki. Then its designated center v′ is incident to some inner edge
of weight 2i+1 by construction of Tm. We add this edge to the hierarchical clustering Ti+1
(note that these edges are not yet part of the clustering since we only chose outer edges
with weight 2i+1 or edges with smaller weight in the recursive step before). We choose the
designated centers on level i+ 1 as the centers of Ti+1. Note that this choice is mandatory
for clusters in Ti+1 which contain the inner and outer edge with weight 2i+1. Each other
choice would lead to a path of length 2i+2 and thus to an approximation factor of at least
two.

4

4 4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

1 1

2

2

2

2

2

2

4

4 4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

1 1

2

2

2

2

2

2

4

4 4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

1 1

2

2

2

2

2

2

Figure 2.6: The picture shows T2, an optimal 9-clustering and the hierarchical cluster-
ing T2.

The Approximation Factor We claim that for each i ∈ [m] the hierarchical clustering
Ti is the only one with approximation factor smaller than two on each level n − kj for
j ∈ [i] up to isomorphism. Moreover the cluster centers are the designated centers of level
i and the discrete radius is given by a path with weight

∑i
j=0 2j containing one edge of

each different weight smaller or equal to 2i outgoing from the cluster centers.
We prove the claim by induction. Furthermore we ensure in each step that the following
property is fulfilled by Ti:

(?): Each connected component in Ti restricted to Ti contains either a 2-path of Ki or
the component consists of exactly one outer edge of weight 2i.

Base Case: The optimal (n − k0) = (n − 2)-clustering has cost 20 = 1. We have to
proceed two merge steps which lead to a clustering with maximum radius smaller than two
to achieve an approximation factor smaller than two. There are only two paths between
points with suitable length which are each given by one of the two edges of weight 1. Thus
there exists only one unique (n − k0) clustering with the required approximation factor,
namely T0, which is obtained by choosing the edges of weight 1. Moreover setting the
center to the designated center on level 1 leads to a radius of 1. Obviously (?) is fulfilled.

25

Thus, the claim holds for i = 0.

Inductive Step: Assume the claim holds for all j where j ≤ i. We prove that the
claim follows for i + 1. In the i-th step we considered as cluster centers the designated
centers of level i. Now we switch to the designated centers on level i + 1 as centers. We
start with an upper bound for the radius of Ti+1 which is given by the longest outgoing
path from the cluster center.

Claim 2.7. The (n− ki+1)-clustering Ti+1 has discrete radius
∑i
j=0 2j.

Proof. Consider an arbitrary cluster from Ti+1. There are two cases: Either the cluster
only consists of the outer edge of Ki+1. But then the longest path consists of one edge of
weight 2i+1. Note that (?) is fulfilled in that case. In the second case the cluster contains
both, the inner and the outer edge of weight 2i+1 (also in that case (?) is fulfilled).
By construction the inner edge is then incident to some designated center on level i.
By induction the longest outgoing path of an i-th designated center has length

∑i
j=0 2j

containing one edge of each different weight smaller or equal to 2i. Now it becomes longer
by the inner edge with weight 2i+1 to a path of length

∑i+1
j=0 2j . All other paths increase

also by an additive factor of 2i+1 and thus cannot become longer than the longest path.
All in all we have an upper bound of

∑i+1
j=0 2j on the length of a longest path. One

should mention vice versa that by construction for all designated centers of level i the
neighbored inner edge of weight 2i+1 is part of Ti+1. Because of (?) each cluster contains
an edge of weight 2i which is incident to a designated center. Especially each of the n−ki
clusters gets a new edge of weight 2i+1 in Ti+1. Thus (?) is also true for Ti+1 restricted to
Ti+1. Especially the designated center of level i with the outgoing path of length

∑i
j=0 2j

becomes a new incident edge of weight 2i+1 which is incident to the new cluster center
c (the designated center of level 2i+1). It follows that c has an outgoing path of lenght∑i+1
j=0 2j in Ti+1.

Since the optimal (n−ki+1)-clustering has cost 2i+1, the approximation factor is given
by ∑i+1

j=0 2j

2i+1 = 2i+2 − 1
2i+1 < 2.

It remains to show that the hierarchical clustering stays unique with this property up to
isomorphism. In that context the isomorphism appears when we have a connected com-
ponent which consists for example of a single outer edge of weight 2i. It is not mandatory
to choose the inner edge with weight 2i+1 incident to its designated center on level i. We
could just choose the inner edge incident to the outer vertex and obtain an isomorphic
version of our clustering. By induction, the hierarchical clustering is unique up to iso-
morphism on all previous steps. To prove that the clustering stays unique, it is sufficient
to show that there is no other hierarchically compatible clustering with Ti which has an
approximation factor smaller than two. For the rest of the proof we may restrict our
attention to the subtree Ti+1, since larger edges are not valid for the construction of the
clustering as argued above. By that we shrink the number of points from 3m+1 to 3i+2.
That means we lose a point set of size 3m+1 − 3i+2 and we know that each point in that

26

point set builds necessarily a singleton cluster in Ti+1. Thus in the following we search for
n− ki+1 − (3m+1 − 3i+2) = 3i+2 − 2 · 3i+1 = 3i+1 clusters in Ti+1.

Claim 2.8. Consider a 2-path v, v′, v′′ in Ki+1 where v is contained in Ti. Then v′ and
v′′ are contained in the same cluster of Ti+1.

Proof. First note that two different outer vertices (which are incident to outer edges in
Ki+1 and have degree one in Ti+1) may not be contained in the same cluster. Whenever
a cluster contains such a vertex w the cluster center has to be chosen as the designated
center on level i+ 1 which has a common edge with w. Otherwise the cluster would have
a path of length at least 2i+2. Since the optimal (n− ki+1)-clustering has radius 2i+1 this
leads to an approximation factor of at least two. But we may only choose one center and
therefore we cannot have two vertices of that type in one cluster. But since there are 3i+1

many of that points and we search for 3i+1 clusters each cluster contains exactly one of
the outer vertices in Ki+1. Now we argue that v′ and v′′ are contained in the same cluster.
In fact assume v′ is contained in another cluster C. But C contains also an outer vertex w
and moreover the cluster center is the designated center on level i+1 which has a common
outer edge with w. Note that each path from the cluster center passes an inner edge of
weight 2i+1 incident to the cluster center. But then the path from the cluster center to v′
contains two edges of weight 2i+1 which leads to an approximation factor of at least two.
It follows that all outer edges of weight i+ 1 are necessarily contained in Ti+1.

Now we show that based on this fact there is essentially only one way to construct Ti+1.
From Claim 2.8 it follows that each of the 3i+1 outer edges in Ki+1 has to be contained
in its own cluster in Ti+1 without another outer edge of weight 2i+1. Since we search for
a 3i+1-clustering we have to deal with the question how the clusters in Ti |Ti are allocated
to the outer edges from Ki+1. Especially it holds that if a cluster C ∈ Ti |Ti is contained
in a cluster C ′ ∈ Ti+1, then C ′ also contains some outer edge from Ki+1.

Claim 2.9. Assume C ∈ Ti |Ti and eout ∈ Ki+1 are contained in a common cluster
C ′ ∈ Ti+1. Let ein be the corresponding inner edge in Ki+1. Then ein is incident to a
point v contained in C.

Proof. We argued above that necessarily the designated center c on level i+ 1 incident to
eout builds the cluster center of C ′. Let ein be the inner edge incident to c. Note that each
path from c to a point in C contains ein as an edge. By (?) we know that each connected
component of Ti |Ti contains an edge of weight 2i. We consider two cases: Either a pair of
an inner and outer edge of level 2i is contained in C. But then the path from the cluster
center must pass an edge incident to the designated center of level i to avoid two edges of
weight 2i. Otherwise there exists a path from the cluster center which contains an edge of
weight 2i+1 and two edges of weight 2i which leads to a radius of at least 2i+1 +2 ·2i = 2i+2

and with other words an approximation factor of at least two. But by construction of the
instance there are only inner edges from Ki+1 incident to the designated center. Since we
may not pass two edges of weight 2i+1 this edge equals ein. The other case is when C
contains only an outer edge of weight 2i. Let e′out = (x, y) be that outer edge of weight 2i.
If ein is not incident to x or y, then the path from the cluster center to e′out’s outer vertex
passes ein of weight 2i+1. Then it passes the inner edge of weight 2i which lies on the

27

C

ein eout

designated center of level i+ 1

2i

2i

2i+1

Case 1: C contains two vertices of weight 2i.

C

ein eout

designated center of level i+ 12i

2i

2i+1 2i+1

Case 2: C contains one vertices of weight 2i.

2i+1

e′in e′out
2i+1 2i+1

e′in e′out

2i+1 2i+1

Figure 2.7: The two cases specify the position of the outer and inner edge with respect
to a merged cluster from C ∈ Ti |Ti . Here ein and eout were suitable candidates for outer
edges merged with C while e′in and e′out are other candidates. The dotted red edges are
paths from the cluster center of other candidates which lead to a path length of 22+1.
Thus these edges may not be merged with C to avoid a too large approximation factor.

2-path of e′out in Ki and finally e′out. But then the path contains again an edge of weight
2i+1 and two edges of weight 2i. Thus ein is incident to x or y.

Claim 2.9 provides a lot of information how Ti+1 has to be built. For a cluster C ∈ Ti |Ti
we know exactly which outer edge from Ki+1 is merged with C. First we know that
the corresponding inner edge from Ki+1 is incident to a vertex in C. This provides the
information, that the merge step can be represented by adding an inner edge from Ki+1 to
Ti. Moreover the proof gives us the exact information which inner edge ein must be chosen.
If C is not given by a single outer edge then ein is given by the inner edge incident to the
designated center on level i contained in C. If C is given by a single outer edge from Ki

one can choose between two incident edges from Ki+1. We mention that in both cases the
resulting component consists of a path of length 3 which starts with an edge of weight 2i
followed by two edges of weight 2i+1. Thus both versions are clearly isomorphic. Without
loss of generality we may assume that the inner and outer edge from Ki+1 are incident to
the designated center of level i. Otherwise we use the isomorphism to map further merge
steps extending the forest later into an isormorphic version with that property. In fact
this is possible because the instance is a symmetrical construction.

Finally a clustering is a partition and thus v ∈ ein is only contained in one cluster from
Ti. Thus no two clusters from Ti |Ti are merged in Ti+1. Up to isomorphism there remains
only one possible (n − ki+1)-clustering which is hierarchically compatible to Ti and has
approximation factor smaller than 2.

Theorem 1.3. For each ε > 0 there exists a metric space (M,d) and a finite point set
P ⊆ M where the minimum hierarchical clustering for the k-center problem on P has
approximation factor larger than 2− ε.

28

2.3.2 Upper Bounds on the Existence of a Hierarchical Clustering

In this section we give upper bounds on the existence of hierarchical clusterings. Therefore
we improve results stated by Lin et al. in [38] by providing a better subroutine of their
algorithm and extend their results to the k-center problem. We start by restating the
essential framework in terms of clustering.

Definition 2.10 ((δ, γ)-augmentation). We say that the (δ, γ)-augmentation property
holds for reals γ, δ ≥ 0 if for each k′-clustering C′ of a point set P and for each inte-
ger k′ > k there exists an augmented k-clustering C such that C′ is a refinement of C and
for the costs of C it holds:

cost(C) ≤ γ cost(C′) + δ(cost(Ok)).

Let Augment(C′, k, γ, δ) denote a subroutine that computes such an augmentation.

We state now the algorithm from [38] which computes a hierarchical clustering. Again
for the sake of simplicity we reformulate the algorithm for the special case of clustering.

Algorithm 1 IncApprox(γ, δ).
1: Initialization: Let C0 be a k-clustering, where k′ is the smallest integer for which

cost(C0) = 0. Set i = 0.
2: Iteration i: Ci+1 = Augment(Ci, k, γ, δ), where k is the smallest integer for which

cost(Ci+1) is at most (2γ)i+1.
3: Termination: If |Ci+1| > 1 set i = i + 1 and go to Step 2; otherwise return sequence
C0, . . . , Ci+1.

We mention that IncApprox(γ, δ) does not necessarily compute a complete hierarchical
clustering, which means that there may be some k where no clustering in computed. To
build a complete hierarchical clustering for every level of granularity it is sufficient to
chose the smallest integer k′ with k′ > k and the largest integer k∗ with k > k∗ for which
IncApprox(γ, δ) computed a k′-clustering C′ and a k∗-clustering C∗, respectively. Then one
may chose an arbitrary hierarchical sequence which transforms C ′ into C∗. Note that this
is possible since C ′ is a refinement of C∗. The approximation guarantees of the following
theorem remain valid for all such clusterings in between.

Theorem 2.11 (Theorem 2.3 of [38]). If (δ, γ)-augmentation holds for reals γ ≥ 1, δ ≥ 1,
then IncApprox(γ, δ) computes a hierarchical clustering with approximation ratio 4γδ.

One should say that these results are a priori only of theoretical interest. The aug-
mentation routine takes as an input an optimal k-clustering which is clearly unknown.
Lin et. al. provide therefore a variant of their algorithm, which calculates a 4γδα-
approximation, for the case where an α-approximation for the optimal clustering is known
for each k ∈ [|P |]. Here we are only interested in theoretically bounds on the existence
of hierarchical clusterings. Thus in the following we derive (δ, γ)-augmentations for the
objective functions (discrete) radius, diameter and k-means.

29

(1, 1)-Augmentation for discrete Radius

We start with a simple (1, 1)-augmentation for the case of k-center clustering which directly
leads to the following theorem.

Theorem 1.1. For each finite point set P and each metric (M,d) with P ⊆ M there
exists a hierarchical clustering with approximation factor 4 on each level of granularity for
the k-center problem.

Proof. By Theorem 2.11 it is sufficient to prove that a (1, 1)-augmentation exists. There-
fore assume we have a k-clustering C and an integer k′ < k. Let Ok′ = {O1, . . . , Ok′} be an
optimal k′-clustering of P . For each cluster C ∈ C let xC be its center. Note that xC is also
contained in an optimal cluster, say Oi with its center xOi . Because of triangle inequality
we know that for each point x ∈ C we have dist(x, xOi) ≤ dist(x, xC) + dist(xC , xOi) ≤
cost(C) + cost(Ok′). Thus merging all clusters from C whose centers lie in a common
optimal cluster of Ok′ leads to a (1, 1)-augmentation.

(2, 1)-Augmentation for Radius and Diameter

Also there is a natural (2, 1)-augmentation for the objective functions radius and diameter.

Theorem 2.12. For each finite point set P and each metric (M,d) with P ⊆ M there
exists a hierarchical clustering with approximation factor 8 on each level of granularity for
the continuous k-center problem and the diameter k-clustering problem.

Proof. By Theorem 2.11 it is sufficient to prove the existence of a (2, 1)-augmentation.
Therefore assume we have a k-clustering C and an integer k′ < k. Let Ok′ = {O1, . . . , Ok′}
be an optimal k′-clustering of P . For each cluster C ∈ C let xC be an arbitrary but
fixed point in C. Now merge all clusters from C whose labeled points xC lie in a common
optimal cluster of Ok′ . Denote the resulting k′-clustering by C′. To calculate the objective
let C ′ ∈ C′ be an arbitrary cluster. If the objective function is given by the diameter
of C ′ chose two points x, y ∈ C ′ which maximize the distance under all pairs of points
in C ′. By definition of C ′ there exist points px and py which are elements in the same
optimal cluster O ∈ Ok′ and we have that d(x, px) ≤ diam(C) such as d(y, py) ≤ diam(C).
Moreover d(px, py) ≤ diam(Ok′). Using the triangle inequality we obtain diam(C ′) ≤
diam(Ok′) + 2 diam(C) which proves the claim.

(4, 2)-Augmentation for k-means

We define a natural (δ, γ)-augmentation for the k-means clustering problem as follows.
Assume we have a k′-clustering C′ such as centers C = c1, . . . , ck of an optimal k-clustering
Ok. Note that optk = cost(Ok) = ∆(P,C). We allocate each cluster in C ′ to the optimal
center which minimizes the 1-means cost of the cluster with respect to that center. The
following Lemma relates the costs of the allocation to the costs of C′ and Ok.

Lemma 2.13. Let C = {c1, . . . ck} ⊂ Rd be any set of k centers, and let M be any subset
of the points P ⊆ Rd.

min
i∈[k]

∆(M, ci) ≤ 4∆(M) + 2∆(M,C).

30

Proof. Define
M1 = {x ∈ P | ||c1 − x|| ≤ ||cj − x||∀j ∈ {2, . . . , k}}

and
Mi = {x ∈ P\(M1, . . . ,Mi−1) | ||c1 − x|| ≤ ||cj − x||∀j ∈ {2, . . . , k}}

for i ∈ {2, . . . , k}. Abbreviate ni = |Mi|, µi = µ(Mi) and µ = µ(M). Observe that by
Lemma 2.3,

min
i∈[k]

∆(M, ci) = ∆(M) + min
i∈[k]
|M | · ||µ− ci||2.

Thus it is optimal to cluster M with the center ci which is closest to µ = µ(M). Without
loss of generality, assume that the numbering is such that this center is c1. The optimal
assignment cost thus is ∆(M, c1). We rewrite this cost by splitting it up for the points in
the k different subsets Mj , again using Lemma 2.3:

∆(M, c1) =
k∑
j=1

(
∆(Mi) + |Mi| · ||µi − c1||2

)

=
k∑
j=1

∆(Mi) +
k∑
j=1
|Mi|(||µi − µ||+ ||µ− c1||)2

≤
k∑
j=1

∆(Mi) +
k∑
j=1
|Mi|(||µi − µ||+ ||µ− c1||)2

≤
k∑
j=1

∆(Mi) +
k∑
j=1
|Mi|(||µi − µ||+ ||µ− ci||)2

≤
k∑
j=1

∆(Mi) +
k∑
j=1
|Mi|(2 · ||µi − µ||+ ||µi − ci||)2

≤
k∑
j=1

∆(Mi) + 4
k∑
j=1
|Mi| · ||µi − µ||2 + 2

k∑
j=1
|Mi| · ||µi − ci||2

The second inequality holds because c1 is the closest center to µ, the other first and third
inequalities are due to the triangle inequality. We know that

∆(M) =
k∑
i=1

(
∆(Mi) + |Mi| · ||µi − µ||2

)
=

k∑
j=1

∆(Mi) +
k∑
i=1
|Mi| · ||µi − µ||2.

Furthermore,

∆(M,C) =
k∑
i=1

∆(Mi, ci) =
k∑
i=1

∆(Mi) +
k∑
i=1
|Mi| · ||µi − ci||2.

Thus, we get that
∆(M, c1) ≤ 4∆(M) + 2∆(M,C).

31

Corollary 2.14. Let C′ = C1, . . . , Ck′ be any k′-clustering of P ⊂ Rd and C = {c1, . . . ck} ⊂
Rd be an optimal k-means solution. Then

k′∑
i=1

min
j∈{1,...,k}

∆(Ci, cj) ≤ 4
k′∑
i=1

∆(Ci) + 2 ·∆(P,C) = 4 cost(C′) + 2 cost(Ok).

Proof. We apply Lemma 2.13 to each Ci separately to obtain that minj∈[k] ∆(Ci, cj) ≤
4∆(Ci) + 2∆(Ci, C), and then add up the bounds.

Note that Corollary 2.14 derives an upper bound for the costs when we allocate each
cluster in C′ to the nearest center of the optimal solution. It follows that the resulting
k-clustering is a (4, 2)-augmentation. We mention that together with the results in [38]
this directly turns over into a 32α-approximation algorithm for the hierarchical k-center
problem.

Theorem 1.2. For each finite point set P ∈ Rd there exists a hierarchical clustering with
approximation factor 32 on each level of granularity for the k-means problem. Moreover
given an α-approximation algorithm for the k-means problem, a hierarchical clustering
with approximation ratio 32α can be computed.

2.4 Ward’s Algorithm
We come to the analysis of Ward’s Algorithm which computes a solution for the k-means
clustering problem. We motivated above that we will analyze the costs of the algorithm as
the sum of the costs of each single step. Therefore we define the increase of the costs per
step D(A,B) in the next section. After that we state a family of instances of increasing
dimension d where Ward computes for some number k = k(d) of clusters a k-clustering that
costs Ω((3/2)d optk) in Section 2.4.3. In Section 2.4.4 we analyze Ward for 1-dimensional
instances. Finally in Section 2.4.6 and Section 2.4.7 we analyze the behavior of Ward’s
Algorithm on well-separated instances with respect to different separation assumptions in
arbitrary dimensions.

2.4.1 Cost of one step

To describe Ward’s method, the easiest way is to define the following quantity that de-
scribes how much the sum of the 1-means costs increases when merging two clusters.

Definition 2.15. Let A,B ⊂ Rd be two finite point sets. We define D(A,B) = ∆(A ∪
B) − ∆(A) − ∆(B). If a set contains only one point, e.g., A = {a}, we slightly abuse
notation and write D(a,B) = D({a}, B) (similarly, if A = {a} and B = {b}, we write
D(a, b) = D({a}, {b})).

The value D(A,B) plays a central role in the analysis of Ward’s method. By using
Lemma 2.3, it is easy to show that D(A,B) does not depend on ∆(A) or ∆(B). The
following lemma gives an explicit formula, which leads to convenient upper and lower
bounds. These bounds say that the cost of merging two clusters is roughly equivalent to
assigning the points of the smaller cluster to the centroid of the larger cluster.

32

Lemma 2.16. Let A and B be two clusters. Then D(A,B) = |A||B|
|A|+|B| · ||µA − µB||2.

Furthermore, 1
2 ·min{|A|, |B|} · ||µA−µB||2 ≤ D(A,B) ≤ min{|A|, |B|} · ||µA−µB||2. The

left hand side is attained for |A| = |B|, and the right hand side for max{|A|,|B|}
min{|A|,|B|} →∞.

Proof. Notice that µ(A∪B) = |A|µ(A)+|B|µ(B)
|A|+|B| and thus µ(A)−µ(A∪B) = |B|

|A|+|B|(µ(A)−
µ(B)) and µ(B)− µ(A ∪B) = |A|

|A|+|B|(µ(B)− µ(A)), respectively. By Lemma 2.3, we get
that

D(A,B) = ∆(A ∪B)−∆(A)−∆(B)
=∆(A,µ(A ∪B)) + ∆(B,µ(A ∪B))−∆(A)−∆(B)
=∆(A) + ∆(B) + |A| · ||µ(A)− µ(A ∪B)||2 + |B| · ||µ(B)− µ(A,∪B)||2 −∆(A)−∆(B)

=|A| · |B|2

(|A|+ |B|)2 ||µ(A)− µ(B)||2 + |B| · |A|2

(|A|+ |B|)2 ||µ(A)− µ(B)||2

= |A||B|
|A|+ |B| ||µ(A)− µ(B)||2 ·

(|B|
|A|+ |B| + |A|

|A|+ |B|

)
,

which implies the first statement of the lemma. Now we estimate D(A,B). Observe that

|A||B|
|A|+ |B| = min{|A|, |B|}

1 + min{|A|,|B|}
max{|A|,|B|}

.

Since 1 ≤ 1 + min{|A|,|B|}
max{|A|,|B|} ≤ 2, we get that

1
2 ·min{|A|, |B|} · ||µA − µB||2 ≤ D(A,B) ≤ min{|A|, |B|} · ||µA − µB||2.

The left hand side is attained when |A| = |B|. The right hand side is not attained for finite
|A| and |B|, but when max{|A|, |B|}/min{|A|, |B} goes to infinity, D(A,B) approaches
the right hand side.

2.4.2 Monotonicity

Notice that performing arbitrary merge operations is not monotone: Say that a < b < c are
one-dimensional points such that the centroid of a and c is b. Then merging a and c first
results in a point set where merging with b costs nothing; clearly, this is not monotone.
It is natural to assume that costs of the merges of Ward’s method are monotonically
increasing, and it is indeed true. The main technical hurdle to show that Ward is monotone
is contained in the proof of the following decomposition lemma for D(A,B).

Lemma 2.17. Let A, B, and C be clusters. Then

D(A∪B,C) = |A|+ |C|
|A|+ |B|+ |C|D(A,C)+ |B|+ |C|

|A|+ |B|+ |C|D(B,C)− |C|
|A|+ |B|+ |C|D(A,B).

Proof. In the following, we use the abbreviations a = |A|, b = |B|, c = |C|, µAB =
µ(A ∪B), µA = µ(A) and µB = µ(B). In the following calculation, we use the bilinearity

33

of the inner product and the fact that µA∪B = a
a+bµA + b

a+bµB:

||µAB − µC ||2 =〈µAB − µC , µAB − µC〉 = 〈µAB, µAB〉 − 2〈µAB, µC〉+ 〈µC , µC〉

= a2

(a+ b)2 〈µA, µA〉+ 2 ab

(a+ b)2 〈µA, µB〉+ b2

(a+ b)2 〈µB, µB〉

− 2 a

a+ b
〈µA, µC〉 − 2 b

a+ b
〈µB, µC〉+ 〈µC , µC〉

= a

a+ b
(〈µA, µA〉 − 2〈µA, µC〉+ 〈µC , µC〉)

+ b

a+ b
(〈µB, µB〉 − 2〈µB, µC〉+ 〈µC , µC〉)

− ab

(a+ b)2 (〈µA, µA〉 − 2〈µA, µB〉+ 〈µB, µB〉)

= a

a+ b
〈µA − µC , µA − µC〉+ b

a+ b
〈µB − µC , µB − µC〉

− ab

(a+ b)2 〈µA − µB, µA − µB〉

= a

a+ b
||µA − µC ||2 + b

a+ b
||µB − µC ||2 −

ab

(a+ b)2 ||µA − µB||
2.

It follows from Lemma 2.16 that

D(A ∪B,C) = (a+ b)c
a+ b+ c

||µAB − µC ||2

= ac

a+ b+ c
||µA − µC ||2 + bc

a+ b+ c
||µB − µC ||2 −

abc

(a+ b)(a+ b+ c) ||µA − µB||
2

= a+ c

a+ b+ c
D(A,C) + b+ c

a+ b+ c
D(B,C)− c

a+ b+ c
D(A,B).

Corollary 2.18. [Monotonicity of Ward’s method] Let Di be the increase of the objective
function in the i-th step of Ward’s method. Then Di ≤ Dj for i ≤ j.

Proof. Assume this is not true. Then there exists an i such that Di > Di+1. Let A and B
be the clusters merged in the i-th step. In the (i+ 1)th step A∪B has to be merged with
another cluster C: If the merge in the (i+ 1)th step merges to clusters unrelated to A and
B, then this merge could be done in the ith step, and Ward’s method would have chosen
it. Hence, Di = D(A,B) and Di+1 = D(A∪B,C) for clusters A,B,C. Now observe that

D(A ∪B,C) = |A|+ |C|
|A|+ |B|+ |C|D(A,C) + |B|+ |C|

|A|+ |B|+ |C|D(B,C)− |C|
|A|+ |B|+ |C|D(A,B)

≥ |A|+ |C|
|A|+ |B|+ |C|D(A,B) + |B|+ |C|

|A|+ |B|+ |C|D(A,B)− |C|
|A|+ |B|+ |C|D(A,B)

= D(A,B),

where the inequality follows from the choice of Ward’s method. We get a contradiction.

34

Monotonicity is a very helpful property. It allows us to analyze the costs of possible
merge steps at some certain point of the algorithm. Then we can directly derive an upper
bound for the costs of previous performed merge steps. For example in the argument
discussed in Section 2.4.6 we use, e.g., that all merges that are possible in the final k-
clustering computed by Ward’s method are at least as expensive as all merges that are
performed before by Ward’s method to obtain the k-clustering.

k-median as an unexpected example

It turns out that different objective functions may not behave monotonously with respect
to agglomerative clustering. Unfortunately k-median is a very famous example of this
type.

a b

c

1

11

Figure 2.8: Merging two arbitrary points of {a, b, c} causes an increase of the costs by 1.
Merging the resulting 2 clusters in a second step increases the k-median costs by an amount
smaller than 1.

Figure 2.8 shows a simple example from [34] where Ward does not behave monotonously.
It follows that we cannot use our techniques to give a 2-approximation for well-separated
instances with respect to k-median and also the proof of the one dimensional case cannot
be transferred into terms of k-median. However the property that Ward works exact on
balanced, well-separated instances is also true for k-median, which is also derivated in
[34].

2.4.3 Exponential Lower Bound in High Dimension

In the following, we describe a family of instances of increasing dimension d where Ward
computes for some number k = k(d) of clusters a k-clustering that costs Ω((3/2)d optk).
Here and in all other worst-case examples, we assume that given a choice between equally
expensive merges, Ward chooses the action that leads to a worse outcome. This is without
loss of generality because we can always slightly move the points to ensure the outcome
we want. However, it greatly simplifies the exposition.

To further simplify the exposition, we start by giving an instance containing points
of infinite weight and assume that the optimal cluster centers coincide with these infinite
weight points. For any finite realization of the example, that is not the case. To ensure
that Ward actually behaves like described in the following, we have to move the high
weight points by an infinitesimal distance. Notice that merging a cluster H of infinite
weight with a cluster A of finite weight costs |A| · ||µ(A)− µ(H)||2 by Lemma 2.16.

35

−1 +1−(
√

2− 1) +(
√

2− 1)

+z2

−z2

2z3

Figure 2.9: Point set Pd from the family of worst-case examples, drawn for d = 2 and
d = 3. The heavy points are drawn larger.

Lower Bound with Infinite Weights

Let d be given. We construct an instance Pd ⊆ Rd with 2d+1 points. For i ≥ 2 let z2
i = 3i−2

2i−1

and define

Pd = {(x1, . . . , xd) | x1 ∈ {−1,−(
√

2− 1),
√

2− 1, 1}, xi ∈ {−zi, zi} ∀i ∈ {2, . . . , d}}.

All points from Pd whose first coordinate is −1 or 1 have weight ∞ (we call these heavy
points). All other points have weight 1 (we call these light points). For an illustration of
P2 and P3, see Figure 2.9.

We show the following theorem.

Theorem 2.19. The family of point sets (Pd)d∈N satisfies Wardk(Pd) ∈ Ω((3/2)d·optk(Pd))
for k = 2d.

In the theorem, we use k = k(d) = 2d, i.e., we are interested in finding a 2d-clustering
of Pd. Observe that in the optimal 2d-clustering of Pd, the heavy points are in separate
clusters. Due to their infinite weight, they also determine the cluster centers. Hence, in
the optimal solution each light point is in the same cluster as its closest heavy point. Since
each light point is within distance 2−

√
2 of a heavy point, the cost of the optimal solution

is
optk(Pd) = 2d · (2−

√
2)2.

Now we look at a run of Ward’s method on Pd. We say that phase 1 lasts as long
as there is at least one light point that forms its own cluster. We prove by induction
that during phase 1 the only clusters that occur are singleton clusters consisting of one
light or one heavy point and clusters that consist of two light points that differ only in
the first coordinate. We call the latter pair clusters. At the beginning this is clearly the
case. Now assume that the induction hypothesis holds at some point of time in phase 1.
Merging two heavy points has infinite cost and merging a heavy point with a light point
or a pair cluster has cost at least (2 −

√
2)2 ≈ 0.343 because 2 −

√
2 is the minimum

distance between a light and a heavy point. Merging two singleton light points that differ
only in the first coordinate costs 1

2 · (2
√

2 − 2)2 = (2 −
√

2)2 (observe that the induction
hypothesis guarantees that for any singleton light point the light point that differs only

36

in the first coordinate is also a singleton point). Merging two singleton light points that
differ in any other coordinate costs at least 1

1+1 · (2z2)2 = 1, merging a singleton light
point with a pair cluster costs at least 1·2

1+2 · (2z2)2 = 4
3 , and merging two pair clusters

costs at least 2·2
2+2 · (2z2)2 = 2. Hence, we can assume that Ward merges two singleton

light points that differ only in the first coordinate. After that the induction hypothesis is
still true. Hence, in phase 1 all 2d−1 pairs of points of the form (−(

√
2 − 1), x2, . . . , xd)

and (
√

2 − 1, x2, . . . , xd) will be merged. We call the clusters that consist of these points
the (∗, x2, . . . , xd)-clusters in the following.

Then phase 2 starts. Phase 2 lasts as long as there are pair clusters. We show by
induction that the only clusters that occur in phase 2 are singleton heavy points, pair
clusters, and clusters with four points that result from merging two pair clusters that differ
only in the second coordinate. We call the latter quadruple clusters. Merging two pair
clusters of the form (∗,−z2, x3, . . . , xd) and (∗, z2, x3, . . . , xd) to form a quadruple cluster
costs 2·2

2+2(2z2)2 = 2. Merging two pair clusters that differ in any other coordinate than
the second is more expensive because their centers are further apart than 2z2. Merging
the (∗, x2, . . . , xd)-cluster with a heavy point costs at least 2 because the center of this
cluster is (0, x2, . . . , xd), which is at distance 1 from the heavy points. Similarly merging a
quadruple cluster (whose center is (0, 0, x3, . . . , xd)) with a heavy point costs at least 2 +
z2

2 ≥ 2. Merging a quadruple cluster with a pair cluster costs at least 2·4
2+4(2z3)3 > 2

and merging two quadruple clusters costs at least 4·4
4+4(2z3)3 > 2. Hence, we can assume

that Ward merges two pair clusters that differ only in the second coordinate. After that
the induction hypothesis is still true. Hence, in phase 2 all 2d−2 pairs of clusters of the
form (∗,−z2, x3, . . . , xd) and (∗, z2, x3, . . . , xd) will be merged. We call the clusters that
consist of these points the (∗, ∗, x3, . . . , xd)-clusters in the following.

At the beginning of phase i ≥ 2, there are 2d singleton heavy points and 2d−i+1 clus-
ters of the form (∗, . . . , ∗, xi, . . . , xd) with 2i−1 points each. Phase i ends when there
is no cluster of the form (∗, . . . , ∗, xi, . . . , xd) left. One can show again by induction
that Ward merges in phase i all pairs of clusters of the form (∗, . . . , ∗,−zi, xi+1, . . . , xd)
and (∗, . . . , ∗, zi, xi+1, . . . , xd). The center of the cluster (∗, . . . , ∗, xi, . . . , xd) is given
by (0, . . . , 0, xi, . . . , xd), which is at distance

√
1 + z2

2 + . . .+ z2
i−1 from the heavy points.

Hence, merging such a cluster with a heavy point costs at least 2i−1 · (1+z2
2 + . . .+z2

i−1) =
2iz2

i , where the equation follows from the following observation.

Observation 2.20. It holds that 1 + z2
2 + . . .+ z2

i−1 = 2z2
i .

Proof. It holds that

1 + z2
2 + . . .+ z2

i−1 = 1 +
i−1∑
j=2

3j−2

2j−1 = 1 + 1
3

i−1∑
j=2

3j−1

2j−1 = 1 + 1
3

i−2∑
j=0

3j

2j − 1


= 2

3 + 1
3

i−2∑
j=0

3j

2j = 2
3 + 1

3 ·
1− (3/2)i−1

1− (3/2)

= 2
3 + 1

3 ·
(

3i−1

2i−2 − 2
)

= 2
3 + 3i−2

2i−2 −
2
3 ,= 2z2

i

which proves the observation.

37

Merging the clusters (∗, . . . ,−zi, xi+1, . . . , xd) and (∗, . . . , zi, xi+1, . . . , xd) costs

2i−1 · 2i−1

2i−1 + 2i−1 · (2zi)
2 = 2iz2

i .

Merging two clusters that differ in one of the d− i last coordinates costs at least

2i−1 · 2i−1

2i−1 + 2i−1 (2zi+1)2 = 2i · z2
i+1 > 2iz2

i .

As a consequence, in phase i all 2d−i pairs of clusters of the form (∗, . . . , ∗,−zi, xi+1, . . . , xd)
and (∗, . . . , ∗, zi, xi+1, . . . , xd) will merge, which costs in total 2d−i · 2iz2

i .
Phases 2 until d together cost

∑d
i=2 2d−i · 2iz2

i = 2d · (2z2
d+1 − 1) = 2 · 3d−1 − 2d, where

we used Observation 2.20. After phase d, all light points will be in the same cluster. Then
the number of clusters is 2d+1 and in the last step the cluster of light points, whose center
is the origin, will be merged with one heavy point. This costs

2d · (1 + z2
2 + . . .+ z2

d) = 2d+1 · z2
d+1 = 2 · 3d−1.

Phase 1 costs in total 2d−1(2−
√

2)2. Thus, the overall cost of Ward’s solution is

Wardk(Pd) = 2d−1(2−
√

2)2 + 2 · 3d−1 + 2 · 3d−1 − 2d = 4 · 3d−1 + 2d−1(2−
√

2)2 − 2d.

This implies

Wardk(Pd)
optk(Pd)

= 4 · 3d−1 + 2d−1(2−
√

2)2 − 2d

2d · (2−
√

2)2

= 4
3(2−

√
2)2 ·

(3
2

)d
+ 1

2 −
1

(2−
√

2)2 ∈ Ω
((3

2

)d)
.

Lower Bound with Finite Weights

In this section, we present a version of the lower bound from Section 2.4.3 in which the
heavy points have a large finite weight m (to be determined later) instead of an infinite
weight. In order to not change the behavior of Ward’s method by this adaption of the
weights, we have to move the heavy points slightly further to the outside. For given d, we
construct the set

P ′d = {(x1, . . . , xd) | x1 ∈ {−(1+ε),−(
√

2−1),
√

2−1, 1+ε}, xi ∈ {−zi, zi} ∀i ∈ {2, . . . , d}}

where ε := 2d
m

3d−2

2d−1 . All points from P ′d whose first coordinate is −(1 + ε) or 1 + ε have
weight m (we call these heavy points). All other points have weight 1 (we call these light
points). We set k = k(d) = 2d, i.e., we are interested in finding a 2d-clustering of P ′d.

We will now argue that the behavior of Ward’s method on the input P ′d is exactly the
same as on the input Pd with infinite weights. Observe that the costs for merging clusters
that do not contain heavy points are the same in Pd and P ′d because the light points are
at the same location in both these point sets. We use the same inductive argument as
for Pd. For phase 1 we only need to verify that merging a light point with its closest heavy

38

point (which is at distance (2 −
√

2 + ε)) still costs at least (2 −
√

2)2. This follows with
Lemma 2.16 because
m

m+ 1 · (2−
√

2 + ε)2 >
m

m+ 1 · (2−
√

2)2 + m

m+ 1 · 2 · (2−
√

2) · ε

= m

m+ 1 · (2−
√

2)2 + 1
m+ 1 · 2 · (2−

√
2) · 2d · 3d−2

2d−1 > (2−
√

2)2.

In phase i ≥ 2 we start with 2d−i+1 clusters of the form (∗, . . . , ∗, xi, . . . , xd) and the
heavy points in singleton clusters. We show that merging a heavy point with a cluster
of the form (∗, . . . , ∗, xi, . . . , xd) still costs at least 2iz2

i . The center of such a cluster
is (0, . . . , 0, xi, . . . , xd). Observe that this is at distance

√
(1 + ε)2 + z2

2 + . . .+ z2
i−1 from

the closest heavy point. Hence, the inequality follows again with Lemma 2.16 and Obser-
vation 2.20 because

m · 2i−1

m+ 2i−1 · ((1 + ε)2 + z2
2 + . . .+ z2

i−1) = m · 2i−1

m+ 2i−1 (2z2
i + 2ε+ ε2)

>
m

m+ 2i−1 · 2
iz2
i + m

m+ 2i−1 · 2
i 2d

m
· 3d−2

2d−1

≥ m

m+ 2i−1 · 2
iz2
i + 2i−1

m+ 2i−1 2iz2
i = 2iz2

i .

This proves that Ward’s method behaves identically on Pd and P ′d. Next we calculate
the cost of an optimal k-clustering and the cost of the k-clustering computed by Ward’s
method. In the optimal 2d-clustering of P ′d, the heavy points are in separate clusters, and
every light point is paired with its closest heavy point. Each of these clusters costs

m

m+ 1 · ((1 + ε)− (
√

2− 1))2.

Thus the optimal solution has a cost of

optk(P ′d) = 2d · m

m+ 1 · (2−
√

2 + ε)2 < 2d · (2−
√

2)2 + m

m+ 1 · 2
d · (2ε+ ε2).

Now we come to the costs of the k-clustering computed by Ward’s method. After
phase d, all light points will be in the same cluster. Then the number of clusters is 2d + 1
and in the last step the cluster of light points will be merged with one heavy point. For
m ≥ 2d this costs

m · 2d

m+ 2d · ((1 + ε)2 + z2
2 + . . .+ z2

d) = m · 2d

m+ 2d · (2z
2
d+1 + 2ε+ ε2)

≥ 2d

2 · (2z
2
d+1 + 2ε+ ε2)

= 2d−1 · (2 · 3d−1

2d + 2ε+ ε2)

= 3d−1 + 2d−1 · (2ε+ ε2).

Since in the first d phases only light points are involved, the costs for these phases are
the same on P ′d as on Pd. We have seen in Section 2.4.3 that phase 1 costs 2d−1(2−

√
2)2

39

and that phases 2 until d together cost
∑d
i=2 2d−i · 2iz2

i = 2d · (2z2
d+1 − 1) = 2 · 3d−1 − 2d.

Hence, the total costs of Ward’s method can be written as follows:

Wardk(P ′d) ≥ 2d−1(2−
√

2)2 + 2 · 3d−1 − 2d + 3d−1 + 2d−1(2ε+ ε2)
= 3 · 3d−1 + 2d−1(2−

√
2)2 − 2d + 2d−1(2ε+ ε2)

= 3d − 2d+1(
√

2− 1) + 2d−1(2ε+ ε2).

This implies

Wardk(P ′d)
optk(P ′d)

≥ 3d − 2d+1(
√

2− 1) + 2d−1(2ε+ ε2)
2d · (2−

√
2)2 + m

m+1 · 2d · (2ε+ ε2)
≥ 3d − 2d+1(

√
2− 1)

2d · (2−
√

2)2 + m
m+1 · 2d · (2ε+ ε2)

.

Observe that
m

m+ 1 · 2
d · (2ε+ ε2) ≤ m

m+ 1 · 2
d · 3ε ≤ 1

m+ 1 · 2
d · 3 · 2 · 3d−2.

Thus, by assuming that m+ 1 ≥ 4 · 6d−1, we can make sure that m
m+1 · 2

d · (2ε+ ε2) ≤ 1,
and then we have

Wardd
optd

≥ 3d − 2d+1(
√

2− 1)
2d · (2−

√
2)2 + 1

∈ Ω
(
(3/2)d

)
.

2.4.4 Ward’s Method in Dimension One

In this section, we discuss the approximation ratio of Ward’s method for inputs P ⊂ R1

and show the following theorem.

Theorem 2.21. Let P ⊂ R be an arbitrary one-dimensional instance. Then, for every k,
the k-clustering computed by Ward on P is an O(1)-approximation with respect to the
k-means objective function.

For the purpose of analyzing the worst-case behavior of Ward’s method, an instance
sometimes also contains an integer k ∈ N in addition to P (even though Ward itself only
takes P as the input). If we specify P and k, then we are interested in the quality of the
k-clustering produced by Ward on P .

We will usually denote the hierarchical clustering computed by Ward on P by W =
(W0, . . . ,Wn−1). Ward’s method always chooses greedily a cheapest merge to perform.
We say that a merge is a greedy merge if it is a cheapest merge; if all merges are greedy,
we call W greedy. Ward’s method computes a greedy hierarchical clustering, and every
greedy hierarchical clustering can be the output of Ward’s method.

Prelude: Reordering

The following statements only hold for d = 1. First we observe that Ward satisfies the
following convexity property.

Lemma 2.22 (Convexity in R1). For any three finite convex clusters A,B,C ⊂ R1 with
µ(A) < µ(C) < µ(B), we have D(A,C) < D(A,B) or D(B,C) < D(A,B).

40

Proof. We observe that D(A,B) = ∆(A ∪ B) − ∆(A) − ∆(B) = |A| · ||µ(A) − µ(A ∪
B)||2 + |B| · ||µ(B) − µ(A ∪ B)||2 > |B| · ||µ(B) − µ(A ∪ B)||2. Now first assume that
µ(A ∪B) ≤ µ(C). Then we conclude

D(A,B) > |B| · ||µ(B)− µ(A ∪B)||2 ≥ |B| · ||µ(B)− µ(C)||2 ≥ D(B,C),

where the second inequality follows since µ(A ∪B) ≤ µ(C). If µ(A ∪B) > µ(C), then we
get D(A,C) < D(A,B) in the same manner.

Lemma 2.22 means that Ward will always merge A and C or B and C, and never A
and B. This gives us a convexity property: If Ward forms a clusterM , then no other point
or cluster lies within the convex hull of M . Clusters can thus also never overlap, and we
get a concept of neighbors on the line. Thus, the clusteringsWi consist of non-overlapping
clusters, which we can thus view as ordered by their position on the line. Ward’s method
always merges neighbors on the line. We will combine it with the following useful corollary
of Lemma 2.16. It gives a condition under which merging a cluster A with a subcluster
B′ ⊂ B is cheaper than merging A with B. Notice that without the condition, the
statement is not true: Imagine that A and B have the same centroid (merging them is
free), but µ(B′) 6= µ(B). Then clearly, merging A with B′ is more expensive than merging
A and B.

Corollary 2.23. Assume we have two finite clusters B′ ⊆ B ⊂ Rd and a third finite
cluster A ⊂ Rd such that ||µ(A)−µ(B′)||2 ≤ ||µ(A)−µ(B)||2. Then D(A,B′) ≤ D(A,B).

Proof. The statement follows from Lemma 2.16 since |B′| < |B| and ||µ(A) − µ(B′)||2 ≤
||µ(A)− µ(B)||2:

D(A,B′) = |A| · |B′|
|A|+ |B′| ||µ(A)− µ(B′)||2 ≤ |A| · |B

′|
|A|+ |B′| ||µ(A)− µ(B)||2

≤ |A| · |B|
|A|+ |B| ||µ(A)− µ(B)||2 = D(A,B).

Corollary 2.23 holds in arbitrary dimension. However, for d = 1, it is much easier to
benefit from it. We get a very convenient tool that we call reordering. Say that Ward
at some point merges two clusters A and B. By Lemma 2.22, that means that µ(A) and
µ(B) are neighbors on the line (at the time of the merge). Now assume that A and B are
present for a while before they are merged. Then during all this time, they are neighbors.
Notice that this means that merging A and B will result in a centroid µ(A ∪B) which is
further away from any other cluster than µ(A) and µ(B) are. So, clusters that did not
want to merge with A or B would also not merge with A∪B by Corollary 2.23. Thus, we
could perform the merge (A,B) earlier without distorting Ward’s course of action at all
(except that the merge (A,B) is at the wrong position). Lemma 2.24 below formulates
this idea.

Recall that a hierarchical clustering can also be described by the n − 1 merge op-
erations that produce it. We usually denote the sequence of merges by (A,B)(W) =
((A1, B1), . . . , (An−1, Bn−1)). We say that a cluster Q ⊂ P exists in W after merge t if
Q ∈ Wt. If Q is the result of the merge (Ai, Bi) (i.e., Q = Ai ∪Bi), and it is later merged

41

with another cluster in merge (Aj , Bj) (i.e., Aj = Q or Bj = Q), then Q exists as long as
merge i has happened and merge j has not yet happened. All singleton clusters exist in
W0. After merge n− 1, P is the only remaining existing cluster.

Lemma 2.24 (Reordering Lemma). Let P ⊂ Rd be an input for which Ward computes the
clusteringW with merge operations (A,B)(W). Consider the merge (At, Bt) for t ∈ [n−1].
If both At and Bt exist after merge s < t, then

1. The sequence of merge operations (A′, B′) = (A1, B1), . . ., (As, Bs),(At, Bt),
(As+1,Bs+1),. . ., (At−1, Bt−1), (At+1, Bt+1), . . ., (An−1, Bn−1) results in a valid hi-
erarchical clustering W ′.

2. W ′j =Wj for all j ≥ t.

3. All merges except the moved merge (A′s+1, B
′
s+1) = (At, Bt) are greedy merges.

Proof. (1) and (2) hold because performing merges in a different order does not change the
resulting clustering, and after merge t, all deviations from the original order are done. For
(3), we have to argue that inserting (At, Bt) as step s+ 1 does not create cheaper merges.
For this, we observe that by Lemma 2.22, At and Bt are neighbors on the line. In the
original sequence, no cluster was merged with At or Bt up to point t. The cluster At ∪Bt
is a superset of At and of Bt, and its centroid is further away from all other clusters than
the centroids of At and Bt. Thus by Corollary 2.23, up to point t, merging with At ∪ Bt
cannot be cheaper than the merges we do. However, after (At−1, Bt−1), the clustering is
identical to Wt by (1), thus all remaining merges are also greedy merges.

Lemma 2.24 a crucial observation to allow us to systematically analyze Ward’s steps:
We can sort them into steps that depend on each other, and then analyze them in batches
/ phases. Note that when we analyze the costs of a k-clustering computed by Ward we
analyze the sum of the costs of the first n− k steps proceeded by Ward. Using reordering
we change the order of proceeded merge steps which may result in a different sequence of
first (n− k)-merge steps. Using the monotonicity of Ward we ensure that reordering may
only increase the sum of the costs of this sequence.

In Rd for d > 1, reordering does not work. Also, we cannot assume that there are no
inner-cluster merges. This can easily be seen from the example in Figure 2.13: Here, Ward
merges c and d, and then a and b, and a and b are input points from the same optimum
cluster. However, moving the merge ({a}, {b}) to the front destroys the example; Ward
will just compute the optimum solution then.

Prelude: No Inner-cluster Merges

Reordering also gives us a nice simplification tool. Assume that A and B are in fact
singleton clusters, A = {a} and B = {b}, and they are from the same optimum cluster.
Then they are present from the start; we can reorder the merge (A,B) to be the first
merge Ward does. Indeed, instead of actually doing this merge, we can also simply forget
about it and replace a and b by a weighted point. How does this affect the approximation
ratio? Both Ward’s cost and the optimal cost decrease by ∆({a, b}), meaning that the
approximation ratio can only get worse. We can now assume that there are no merges

42

between inner clusters, since inner clusters arise from merging input points that belong to
the same optimum cluster. We formalize our observation in Lemma 2.25.

We directly apply Lemma 2.24 in order to achieve a simplification method. Recall that
(given an optimal k-clustering) we call a merge (Ai, Bi) an inner-cluster merge if Ai and Bi
are inner clusters from the same optimum cluster. For a worst-case instance (P, k) we can
always assume that such inner-cluster merges do not happen, as they are only helpful for
Ward’s method. We formally see this in the next lemma, where we relocate inner-cluster
merges to the front of the hierarchical clustering and then eliminate them.

Recall that ∆k(W) =
∑
Q∈Wn−k

∆(Q) is the cost of the k-clustering contained in W.
For an instance (P, k) and Ward’s resulting clustering W, the approximation ratio of
Ward’s method is ∆k(W)/ optk(P).

Lemma 2.25. Let (P, k) be an instance with P ⊂ Rd and k ∈ N, for which O =
{O1, . . . , Ok} is an optimal k-clustering and for which Ward computes the hierarchical
clustering W with merge operations (A,B)(W). Then there exists a weighted point set
P ′ and a hierarchical clustering W ′ for P ′ with merges (A′, B′)(W ′) with the following
properties:

1. W ′ is greedy.

2. No (A′i, B′i) is an inner-cluster merge with respect to O.

3. For some α ≥ 0, ∆k(W ′) = ∆k(W)− α and optk(P ′) ≤ optk(P)− α.

Proof. Assume that P is weighted; this will be necessary to iterate the following process.
Let ({x}, {y}) be a merge operation in (A,B)(W) that merges two points x, y ∈ Oj for
j ∈ [k], i.e., two points from the same cluster in the optimal solution. Let their weights be
w(x) and w(y). By Lemma 2.24, we can move the merge ({x}, {y}) to the front. Then we
replace x and y in P by one point z = w(x)x+w(y)y

w(x)+w(y) with weight w(z) := w(x) + w(y). By
Lemma 2.16, z behaves identically to {x, y} in Ward’s method. Thus, we can adjustW ′ by
removing the merge operation ({x}, {y}), and replacing x and y by z in all further merge
operations of the cluster {x, y}. We see that (1) holds for the new hierarchical clustering.
Our adjustment will change the cost by α := ∆({x, y}). Similarly, we can replace x and y
in Oj by z, which decreases the cost of the clustering induced by O1, . . . , Ok by α. Since
this is still a possible clustering, the optimal clustering can cost at most optk(P) − α.
Thus, (3) holds for the new clustering.

Observe that if (2) is not true, then there has to be a merge operation where two points
from the same cluster in the optimum are merged. Thus, we can complete the proof by
repeating the above process until we have removed all pairs with this property. Then (2)
holds.

Now if Ward performs inner-cluster merges on an instance, we apply Lemma 2.25.
If this changes the optimum solution, we just apply Lemma 2.25 again, and repeat this
until Ward does not do any inner-cluster merges. We explicitly note the following trivial
corollary.

Corollary 2.26. Assume thatW ′ and (A′, B′)(W ′) result from applying Lemma 2.25 until
Ward does not do inner cluster merges. If a merge (A′i, B′i) for i ∈ [n − 1] contains an
inner cluster, then this inner cluster is a (weighted) input point.

43

Proof. If A resulted from a previous merge, then this merge was an inner-cluster merge,
which is a contradiction.

Corollary 2.26 implies that we can use the terms inner cluster and input point inter-
changeably.

Prelude: Clustering points together

Crucial in showing the approximation factors of the good merges is the following lemma.
To see its usage, assume that A and B belong to one optimum cluster, and C and D
belong to another. Then the lemma implies that if Ward has already merged B and C,
but ∆(B ∪ C) is small, say ∆(B ∪ C) ≤ c · (∆(B) + ∆(C)), then we can still obtain a
7c-approximation.

Lemma 2.27. Let A,B,C,D ⊂ Rd be disjoint sets with |A| ≤ |B| and |C| ≥ |D|. Then

∆(A ∪B ∪ C ∪D) ≤ ∆(A) + 3 ·∆(B ∪ C) + ∆(D) + 4 ·D(A,B) + 4 ·D(C,D) and

D(A ∪B,C ∪D) ≤ 3 ·∆(B ∪ C) + 3 ·D(A,B) + 3 ·D(C,D)−∆(B)−∆(C).

Proof. We find an upper bound on ∆(A∪B ∪C ∪D) by computing the cost of clustering
all four clusters with the center of B∪C. Then we decompose the cost and use Lemma 2.3:

∆(A ∪B ∪ C ∪D)
≤∆(A ∪B ∪ C ∪D,µ(B ∪ C))
=∆(A,µ(B ∪ C)) + ∆(B ∪ C, µ(B ∪ C)) + ∆(D,µ(B ∪ C))
=∆(A) + |A| · ||µ(A)− µ(B ∪ C)||2 + ∆(B ∪ C) + ∆(D) + |D| · ||µ(D)− µ(B ∪ C)||2.

Next, we apply the relaxed triangle inequality in Lemma 2.2 and use that |A| ≤ |B| to
get

|A| · ||µ(A)− µ(B ∪ C)||2 ≤2|A| · (||µ(A)− µ(B)||2 + ||µ(B)− µ(B ∪ C)||2)
≤2|A| · ||µ(A)− µ(B)||2 + 2|B| · ||µ(B)− µ(B ∪ C)||2.

Similarly, we get that

|D| · ||µ(D)− µ(B ∪ C)||2 ≤ 2|D| · ||µ(D)− µ(C)||2 + 2|C| · ||µ(C)− µ(B ∪ C)||2.

Using Lemma 2.16 and the fact that |A| ≤ |B|, we observe that

D(A,B) = |A| · |B|
|A|+ |B| · ||µ(A)− µ(B)||2

⇔ |A| · ||µ(A)− µ(B)||2 = |A|+ |B|
|B|

·D(A,B) ≤ 2D(A,B)

holds, and, similarly, |D| · ||µ(D) − µ(C)||2 ≤ 2D(C,D) since |D| ≤ |C|. Thus, 2|A| ·
||µ(A)−µ(B)||2+2|D|·||µ(D)−µ(C)||2 ≤ 4D(A,B)+4D(C,D). Furthermore, ∆(B∪C) ≥
D(B,C) = |B| · ||µ(B)− µ(B ∪ C)||2 + |C| · ||µ(C)− µ(B ∪ C)||2. Together, we get that

|A| · ||µ(A)− µ(B ∪ C)||2 + |D| · ||µ(D)− µ(B ∪ C)||2

≤ 4 ·D(A,B) + 4 ·D(C,D) + 2∆(B ∪ C),

44

which implies that

∆(A ∪B ∪C ∪D) ≤ ∆(A) + ∆(B ∪C) + ∆(D) + 4 ·D(A,B) + 4 ·D(C,D) + 2∆(B ∪C)

and

D(A ∪B,C ∪D)
= ∆(A ∪B ∪ C ∪D)−∆(A ∪B)−∆(C ∪D)
= ∆(A ∪B ∪ C ∪D)−∆(A)−∆(B)−D(A,B)−∆(C)−∆(D)−D(C,D)
≤ ∆(A) + 3∆(B ∪ C) + ∆(D) + 3 ·D(A,B) + 3 ·D(C,D)
−∆(A)−∆(B)−∆(C)−∆(D)

= 3 ·∆(B ∪ C) + 3 ·D(A,B) + 3 ·D(C,D)−∆(B)−∆(C)

The analysis

We now analyze the worst-case behavior of Ward’s method. For this, we fix an arbitrary
worst-case example that does not contain inner-cluster merges (we can assume the latter
by Lemma 2.25).

The general plan is the following. Whenever Ward merges two clusters, it does so
greedily, meaning that the cost of the merge is always bounded by the cost of any other
merge. Thus, if we can find a merge with low cost, then the merge actually performed
can only be cheaper. We can clearly find cheap merges in the beginning, however, Ward’s
decisions may lead us to a situation where we run out of the originally good options. The
idea of the proof is to find a point during Ward’s execution where

• We still know a bound on the costs produced so far.

• We know a set S of good merges that can still be performed and lead to a good
k-clustering.

• We can ensure that no merge can possibly destroy two merges from S.

At such a point in time, we can use S to charge the remaining merges that Ward does to
compute a k-clustering. We find this point in time by sorting specific merges of Ward into
the front, and bounding their cost. There will be five phases of merges which we need to
pull forward and charge.

The phases We will use the reordering lemma (Lemma 2.24) to sort the merges into
phases and then analyze the cost of the solution after each phase.

In the following, we call a cluster that contains points from more than one optimum
cluster composed, more precisely, we call it an `-composed cluster if it contains points from
` different optimum clusters. Most of the time, we are interested in 2-composed clusters,
and we name such a cluster 2-composed cluster from Oj and Oj+1 if these are the involved
optimum clusters.

The goal of the reordering is simple in nature; we want to collect all merges that create
2-composed clusters and that grow 2-composed clusters. We can think of the phases as
different stages of development of 2-composed clusters. A 2-composed cluster may become

45

Oj Oj+1

x` xr

Creation: Phase P1

Oj Oj+1

x` xr

Growth: Phase P2

Oj Oj+1

x` xr

Left side done: Phase P3

Oj Oj+1

x` xr

Growth: Phase P4

Oj Oj+1

x` xr

Both sides done: (Phase P5)

Oj Oj+1

x` xr

Figure 2.10: The pricipal phases of development of a 2-composed cluster.

part of the k-clustering computed by Ward’s method, or it may at some point become i-
composed for i > 2, at which time we are no longer interested in it. By the final stage of
a 2-composed cluster we either mean how it looks in the k-clustering, or how it looked in
the last step before it became more than 2-composed.

Consider the example in Figure 2.10, where we depict the development of a 2-composed
cluster from Oj and Oj+1 which in its final stage consists of the input points x`, . . . , xr.
It undergoes five principal phases: It is created by merging a point from Oj with a point
from Oj+1 (phase P1). Then it grows; it is merged with points left and right of itself
(phase P2). We add extra phases for the last points on both sides. In phase P3, the first
side is completed; in the example, it is the left side. This merge is again followed by a
growth phase (phase P4). The final phase P5 consists of the final merge on the other
side; the right side in the example. (We skip some merges in P5, the details of P5 are not
discussed until much later in this proof).

So, we use reordering to pull the following phases of merges to the front.

P1 (Creation phase)
We create 2-composed clusters by collecting the merges ({ai}, {bi}) with ai ∈ Oj ,
bi ∈ Oj+1 for some j ∈ [k]. The collected merges constitute phase P1. For technical
reasons, we make one exception. If the 2-composed cluster only consists of two input
points in its final stage (i.e., the creating merge is also the last merge), then we defer
the merge to phase P5.

P2 (Main growth phase)

46

We now grow the 2-composed clusters initialized during phase P1. For each 2-
composed cluster, we move the growth merges to phase P2, preserving their original
order. We stop right before one side of the 2-composed cluster is done. There may
be many growth merges for a cluster, or none.

P3 (First side elimination phase)
This phase consists of at most one merge for each 2-composed cluster, and this merge
is the last merge on the first side. After phase P3, every 2-composed cluster thus
has one side where it will not be merged with further input points. Notice that a
cluster may skip phase P3 if it only shares one point with Oj or Oj+1 in its final
stage, anyway.

P4 (Second growth phase)
This phase resembles phase P2, however, the growth is now one-sided. For each 2-
composed cluster, we move the growth merges to phase P4, preserving their original
order, and stopping right before the final merge.

P5 (Second side elimination phase)
The last phase consists of at most one merge for each cluster. If the final stage of a
2-composed cluster contains only two points, then the merging of these two points is
done in phase P5. Otherwise, phase P5 may contain the last merge for the cluster,
resulting in its final state. For technical reasons, we have to exclude some merges;
we postpone the details to Definition 2.31.

We now analyze the sum of the 1-means costs of all clusters in the clustering after each
phase. We start with phases P1 and P2.

Lemma 2.28. Let N = {xa, . . . , xb} with xa, . . . , xm ∈ Oj and xm+1, . . . , xb ∈ Oj+1 be a
2-composed cluster after phases P1 and P2. Then

∆(N) ≤
m−1∑
h=a−1

D(xh, xh+1) +
b∑

h=m+1
D(xh, xh+1).

Furthermore, D(N ∩Oj , N ∩Oj+1) ≤ D(xa−1, xa) +D(xb, xb+1).

Proof. We show the statement by induction on the number of points in N . The base case
is the merge done in phase P1. By the way we defined phase P1, we know that when xm
and xm+1 were merged in the original order, either xm−1 or xm+2 were also present. Thus,

∆(xm, xm+1) ≤ max{D(xm−1, xm), D(xm+1, xm+2)} ≤ D(xm−1, xm) +D(xm+1, xm+2).

Now say that at some point, the cluster is N ′ = {xc, . . . , xd}, and it is expanded by one
point. Without loss of generality, say it is expanded by xc−1 by the merge {N ′, xc−1} (the
other case follows symmetrically). By the induction hypothesis, ∆(N ′) ≤

∑m−1
h=c−1D(xh, xh+1)+∑d

h=m+1D(xh, xh+1). By the definition of phase P2, xc−2 is also present during the merge,
meaning thatD(N ′, xc−1) ≤ D(xc−1, xc−2), and that ∆(N ′∪{xc−1}) ≤

∑m−1
h=c−2D(xh, xh+1)+∑d

h=m+1D(xh, xh+1), which proves the induction step.
The second statement follows since ∆(N∩Oj) = ∆({xa, . . . , xm}) ≥

∑m−1
h=a D(xh, xh+1),

∆(N ∩ Oj+1) = ∆({xm+1, . . . , xb}) ≥
∑b−1
h=m+1D(xh, xh+1) and D(N ∩ Oj , N ∩ Oj+1) =

∆(N)−∆(N ∩Oj)−∆(N ∩Oj+1).

47

In phase P3, Ward’s method faces the first situation where it may run out of good
merge options and has to resort to more expensive merges. Notice that by the definition
of our phases, each cluster has one side where after phase P2, there is exactly one point
left which has not been added to the cluster.

In the following, we will again and again use the following statement which follows
directly from Lemma 2.27.

Corollary 2.29. Let A, B, and C be three disjoint sets of points with |A| ≤ |B| (or
w(A) ≤ w(B), for weighted sets). Then ∆(A∪B∪C) ≤ ∆(A)+3 ·∆(B∪C)+4 ·D(A,B)
and D(A ∪B,C) ≤ 3 ·∆(B ∪ C) + 3 ·D(A,B)−∆(B)−∆(C).

Proof.

We need the following interpretation of Corollary 2.29. If we have a 2-composed cluster
M = A ∪ B which consists of a lighter cluster A ⊆ O′ for an optimum cluster O′ and a
heavier cluster B ⊂ O′′ for another optimum cluster O′′, then merging A∪B with another
cluster C ⊂ O′′ basically costs as much as A ⊆ O′ and B ∪C ⊆ O′′ cost individually, plus
what merging A and B costed us already (up to constant factors). We now analyze the
1-means costs of the clusters after phase P4

Lemma 2.30. Let F = {x`, . . . , xr} be the final state of a 2-composed cluster, with
x`, . . . , xm ∈ Oj and xm+1, . . . , xr ∈ Oj+1. The state of the cluster after phase P4 is
either N = {x`, . . . , xr−1} or N = {x`−1, . . . , xr}. In both cases,

∆(N) ≤ 8 · (∆({x`, . . . , xm}) + ∆({xm+1, . . . , xr})).

Proof. During phase P2, N grew to the penultimate point on one side, and is now merged
with the last point on this side in phase P3. Without loss of generality, we assume that
this is the left side. This means that N = {x`, . . . , xr−1} will be the state after P4. The
state after P2 is N ′ = {x`+1, . . . , xd} for d ∈ {m+ 1, . . . , r− 1}. Phase P3 does the merge
{N ′, {x`}}.

There are two cases for how to charge this merge. First, assume that w(N ′ ∩ Oj) ≥
w(N ′ ∩ Oj+1), i.e., x` lies on the heavier side of N . This allows us to use Corollary 2.29
with A = N ′ ∩Oj+1, B = N ′ ∩Oj and C = {x`} to obtain

∆(N ′ ∪ {x`}) ≤ ∆(N ′ ∩Oj+1) + 3 ·∆((N ′ ∩Oj) ∪ {x`}) + 4 ·D(N ′ ∩Oj , N ′ ∩Oj+1)
≤ ∆({xm+1, . . . , xd}) + 3 ·∆({x`, . . . , xm}) + 4 · (D(x`, x`+1) +D(xd, xd+1))
≤ 4 · (∆({x`, . . . , xm}) + ∆({xm+1, . . . , xd+1}) +D(x`, x`+1) +D(xd, xd+1)),

where the second inequality follows from Lemma 2.28.
Now assume w(N ′ ∩ Oj) ≤ w(N ′ ∩ Oj+1). We can still apply Corollary 2.29, but

with reversed roles. We know that xd+1 is still present by the definition of phase P3.
Thus, we charge the merge {N ′, {x`}} to the merge {N ′, {xd+1}}. By Corollary 2.29 with
A = N ′ ∩Oj , B = N ′ ∩Oj+1 and C = {xd+1}, we get

∆(N ′ ∪ {xd+1}) ≤ ∆(N ′ ∩Oj) + 3 ·∆((N ′ ∩Oj+1) ∪ {xd+1}) + 4 ·D(N ′ ∩Oj , N ′ ∩Oj+1).

48

Thus, D(N ′, xd+1) = ∆(N ′ ∪ {xd+1})−∆(N ′), which implies that

∆(N ′ ∪ {x`})
=∆(N ′) +D(N ′, {x`})
≤∆(N ′) +D(N ′, {xd+1})
≤∆(N ′ ∩Oj) + 3 ·∆((N ′ ∩Oj+1) ∪ {xd+1}) + 4 ·D(N ′ ∩Oj , N ′ ∩Oj+1)
≤∆({x`+1, . . . , xm}) + 4 ·∆({xm+1, . . . , xd+1}) + 4 · (D(x`, x`+1) +D(xd, xd+1))
≤4 · (∆({x`, . . . , xm}) + ∆({xm+1, . . . , xd+1}) +D(x`, x`+1) +D(xd, xd+1)).

We see that we bounded the cost by the same expression in both cases. After phase P3,
there are possibly additional merges in phase P4, which extend N ′ ∪ {x`} to the right.
More precisely, P4 extends the cluster from {x`, . . . , xd} to {x`, . . . , xr−1}. Similarly to
Lemma 2.28, we can show that this extension increases the cost of N ′ ∪ {x`} by

r−1∑
h=d+1

D(xh, xh+1).

Finally, notice that

4 · (∆({x`, . . . , xm}) + ∆({xm+1, . . . , xd+1}) +D(x`, x`+1) +D(xd, xd+1)) +
r−1∑

h=d+1
D(xh, xh+1)

≤ 4 · (∆({x`, . . . , xm}) + ∆({xm+1, . . . , xd+1}) +D(x`, x`+1)) + 4 ·
r−1∑
h=d

D(xh, xh+1)

≤ 8 · (∆({x`, . . . , xm}) + ∆({xm+1, . . . , xr})),

which concludes the proof.

Now we come to phase P5, which we haven’t completely defined yet. The problem
with phase P5 is that we can no longer charge all clusters ‘internally’. To see what the
issue is, first notice that we say that a 2-composed cluster F from Oj and Oj+1 points to
cluster A if

• w(F ∩Oj) ≥ w(F ∩Oj+1) and A is the cluster left of F , or

• w(F ∩Oj) ≤ w(F ∩Oj+1) and A is the cluster right of F .

We define a lopsided cluster to be a 2-composed cluster F = {x`, . . . , xr} for which the
last merge is {F\{x}, {x}}, but at the time of this merge, F ′ = F\{x} does not point to
{x}. This means that we cannot use Corollary 2.29 (directly) to charge this merge. As a
technicality, we also call a 2-composed cluster lopsided if it only contains two points in its
final state; again, we cannot use Corollary 2.29 in this case.

We have to pay attention to one more detail when defining phase P5. When charging
2-composed clusters internally, we could always be sure that the clusters that are involved
are part of one of the two optimum clusters that the 2-composed cluster intersects. That
is because the 2-composed cluster by definition only contains points from two optimum

49

clusters, and we only dealt with points and subclusters of such a 2-composed cluster.
However, in the following arguments, we will have to argue about clusters neighboring a
2-composed cluster. These may or may not belong to one of the optimum clusters. Let A
and B be two clusters that are neighbors on the line such that A lies left of B. We say
that there is an opt change between A and B if the last point in A and the first point in
B belong to different optimum clusters.

Now we define phase P5. Let Y be the cluster that lies on the other side of F ′ than x
at the time of the merge {F ′, {x}}. Let Z be the cluster that lies ‘behind’ x from the point
of view of F ′ at the time of the merge {F ′, {x}}. By behind from F ’s point of view we
mean that if x lies left of F , then Z lies left of x, and if x lies right of F ′, then Z lies right
of x.

Definition 2.31 (Phase P5). Phase P5 contains the final merge {F ′, {x}} of a cluster
F = F ′ ∪ {x} if any of the following conditions applies.

1. F is not lopsided (phase P5a),

2. F is lopsided, there is no opt change between Y and F ′, and Y is an inner cluster
(phase P5b),

3. F is lopsided, there is no opt change between {x} and Z, and Z is an inner cluster
(phase P5c),

4. F is lopsided, there is no opt change between {x} and Z, Z is 2-composed, and points
to {x} (phase P5d).

The next lemma deals with merges in P5a.

Lemma 2.32. Let F = {x`, . . . , xr} be the final state of a 2-composed cluster, with
x`, . . . , xm ∈ Oj and xm+1, . . . , xr ∈ Oj+1. Assume that F is not lopsided. Then

∆(F) ≤ 35 · (∆({x`, . . . , xm}) + ∆({xm+1, . . . , xr})).

Proof. Let {F\{x}, {x}} be the final merge in P5. Without loss of generality, assume that
x = xr, i.e., the final merge happens at the right end of F . Set F ′ = F\{x}, so the final
merge is {F ′, {xr}}. By Lemma 2.30, we know that

D(F ′ ∩Oj , F ′ ∩Oj+1) ≤ ∆(F ′) ≤ 8 · (∆({x`, . . . , xm}) + ∆({xm+1, . . . , xr}))

is true after P4. By our assumption that the final merge is not lopsided, we know that
F\{x} points to {x}. So, we can apply Corollary 2.29 with A = F ′ ∩ Oj = F ∩ Oj ,
B = F ′ ∩Oj+1 = (F ∩Oj+1)\{xr} and C = {xr}. We get:

∆(F ′ ∪ {x})
≤∆(F ∩Oj) + 3 ·∆(((F ∩Oj+1)\{xr}) ∪ {xr}) + 4 ·D(F ′ ∩Oj , F ′ ∩Oj+1)
≤3 · (∆({x`, . . . , xm}) + ∆({xm+1, . . . , xr})) + 4 · (8 · (∆({x`, . . . , xm}) + ∆({xm+1, . . . , xr})))
≤35 · (∆({x`, . . . , xm}) + ∆({xm+1, . . . , xr})).

Now we consider the merges in phase P5b.

50

Lemma 2.33. Let F = {x`, . . . , xr} be the final state of a 2-composed cluster, with
x`, . . . , xm ∈ Oj and xm+1, . . . , xr ∈ Oj+1. Assume that F is lopsided. Assume that
at the time of the merge {F\{x}, {x}}, the cluster on the other side of F ′ = F\{x} is an
inner cluster Y , and there is no opt change between F ′ and Y . Then if x = x`, we have

∆(F) ≤ 35 · (∆({x`, . . . , xm}) + ∆({xm+1, . . . , xr+1})),

and if x = xr, then

∆(F) ≤ 35 · (∆({x`−1, . . . , xm}) + ∆({xm+1, . . . , xr})).

Proof. W.l.o.g. assume that F = {x`, . . . , xr}, that x = x` lies left of F ′ and that the
cluster Y is thus {xr+1}. Then we can still use Corollary 2.29, with A = F ′ ∩ Oj , B =
F ∩Oj+1 and C = {xr+1} (notice that w(F ′ ∩Oj) ≤ w(F ∩Oj+1) because F is lopsided),
and obtain that ∆(F) ≤ ∆(F ′ ∪ {xr+1}) ≤ ∆(F ′ ∩ Oj) + 3 · ∆((F ∩ Oj+1) ∪ {xr+1}) +
4 · D(F ′ ∩ Oj , F ∩ Oj+1). Since F ′ results from P4, we know from Lemma 2.30 that
D(F ′ ∩Oj , F ∩Oj+1) ≤ ∆(F ′) ≤ 8 · (∆({x`, . . . , xm}) + ∆({xm+1, . . . , xr})). That means
that

∆(F) ≤∆(F ′ ∩Oj) + 3 ·∆((F ∩Oj+1) ∪ {xr+1}) + 4 ·D(F ′ ∩Oj , F ∩Oj+1)
≤∆({x`, . . . , xm}) + 3∆({xm+1, . . . , xr+1}) + 32(∆({x`, . . . , xm}) + ∆({xm+1, . . . , xr}))
≤35 · (∆({x`, . . . , xm}) + ∆({xm+1, . . . , xr+1).

Notice that the upper bound involves xr+1, which is not part of the final state F of the
2-composed cluster. In the symmetric case that x = xr, the upper bound involves x`−1
instead of xr+1.

We are ready to show the main lemma about the phases.

Lemma 2.34. Let C5 be the clustering after phase P5. Then∑
A∈C5

∆(A) ≤ O(1) · optk .

Proof. Let C ′5 be the clustering that arises from performing P1-P4 and finishing phases
P5a and P5b. By Lemma 2.32, we know that for any non-lopsided cluster in C ′5, its 1-
means cost is at most 35 times as much as the cost of its points in the optimal solution.
By Lemma 2.33, we know that for any lopsided cluster in C ′5 resulting from phase P5b,
nearly the same holds, except that the upper bound involves one more point. However,
by the definition of phase P5b, this point is in one of the two optimum clusters that the
lopsided cluster intersects. All other 2-composed clusters in C ′5 cost at most 8 times their
optimum cost by Lemma 2.30. The inner clusters cost nothing (they are input points).

Now we consider phases P5c and P5d. Let F = {x`, . . . , xr} = F ′ ∪ {xr} with
x`, . . . , xm ∈ Oj and xm+1, . . . , xr ∈ Oj+1 be lopsided with final merge {F ′, {xr}}. We
know that at the time of the final merge, the clusterM right of xr is either an inner cluster
or it is a 2-composed cluster that points to xr. In the first case (phase P5c), we observe
that the merge {{xr}, {xr+1}} is available, which costs at most D(xr, xr+1). Thus, in this
case D(F ′, xr) ≤ D(xr, xr+1). At this point, it is important that we assumed that there is

51

no opt change between {xr} and its neighboring cluster, here {xr+1}: Thus, xr and xr+1
are in the same optimum cluster, and D(xr, xr+1) is part of the optimum cost. Notice
that D(xr, xr+1) has not been charged before.

Now assume that M is 2-composed and points to xr. Note that M is in its final state,
since any merge of M with a possible additional inner cluster right of M would happen in
Phase P5b. This is a tricky technical detail: We need that M , the cluster next to {xr} at
the time of the merge {F ′, {x}}, is finished after phase P5b, such that we know that its
cost is bounded and can use this cost bound in the following charging argument. Indeed,
this is the sole purpose of phase P5b.

We now charge the merge {F ′, {xr}} to the possible merge {M, {xr}}. By Corol-
lary 2.29 with A = M ∩Oj+2, B = M ∩Oj+1 and C = {xr},

D(F ′, xr) ≤ D(M,xr) ≤ ∆(M ∪ {xr})
≤∆(M ∩Oj+2) + 3∆((M ∩Oj+1) ∪ {xr}) + 4 ·D(M ∩Oj+1,M ∩Oj+2).

Notice that even though we charge a merge with F ′ to a merge with M , ∆(F) + ∆(M)
increases by a factor of at most 7 compared to ∆(F ′) + ∆(M). Since no M can be part
of two such charge operations, we know that the overall sum of all 1-means costs of all
clusters increases by a factor of at most 7 when we process all the remaining lopsided
clusters. Thus, the final cost after phase P5 is at most 245 · optk.

Good merges for the final analysis In general, the clustering of Ward after phase P5
has still more than k clusters. It remains to analyze the merges after phase P5 that reduce
the number of clusters to k. For the final charging argument, we need four types of good
merges. Good merges are not necessarily merges that Ward’s method does, instead, it’s a
collection of merges that are possible and can be used for charging. Indeed, good merges
include merges that would not be present anymore if Ward did them, since then we would
move them to the phases. But if Ward never uses them, they may still be present for us
to charge against.

The whole point of the phases is to ensure that any merge that Ward may still do
does not destroy two good merges. The final arguments of the proof will be to count good
merges and to show that no two good merges can be invalidated simultaneously by one of
Ward’s merges.

Recall that W1, . . . ,W` is the current Ward solution, and O1, . . . , Ok is a fixed optimal
solution, numbered from left to right. The following merges are good merges in the sense
that we can bound the increase in cost. Of course, the result of the merge only forms a
cluster of low cost if the participating clusters had low cost beforehand.

Type 1: Two inner clusters Wi,Wi+1 of the same optimal cluster Oj , i.e., Wi,Wi+1 ⊂ Oj .
This type of merge is never actually applied by Ward on simplified examples, but
we need it for charging.

Type 2: A 2-composed cluster Wi ⊂ Oj ∪Oj+1 for some j and an inner cluster Wi+1 ⊂ Oj+1,
with the condition thatWi+2 is an inner cluster of Oj+1 as well. Also: The symmetric
situation of a 2-composed cluster Wi ⊂ Oj ∪ Oj+1 for some j and an inner cluster
Wi−1 ⊂ Oj with the condition that Wi−2 ⊂ Oj .

52

Wi Wi+1

Oj

Type 1

Wi Wi+1Wi+2

Oj Oj+1

Type 2

Wi−1 Wi

Oj Oj+1

Type 3

Wi Wi+1

Oj Oj+1 Oj+2

Type 4

Figure 2.11: Different types of good merge situations. A part of a Ward cluster that is
filled with gray contains more points than the white part of the same Ward cluster.

Type 3: A 2-composed cluster Wi ⊂ Oj ∪ Oj+1 for some j and an inner cluster Wi−1 ⊂ Oj ,
with the condition that Wi points to Wi−1. Also: The symmetric situation of a
2-composed cluster Wi ⊂ Oj ∪ Oj+1 for some j and an inner cluster Wi+1 ⊂ Oj+1
with the condition that Wi points to Wi+1.

Type 4: Two 2-composed clusters Wi ⊂ Oj ∪ Oj+1 and Wi+1 ⊂ Oj+1 ∪ Oj+2 that point at
each other.

We already know Type 1 merges (inner-cluster merges), type 2 merges (growth phase
and phase 5c) and type 3 merges (merges chargeable with Corollary 2.29). We know that
applying them increases the cost by at most a constant factor. We also know that these
merges cannot happen anymore: Type 1 merges are inner-cluster merges, which Ward
does not do on our example. Type 2 merges happen either in the growth phase, or in
phase 5c. Type 3 merges merge non-lopsided clusters, which happens in phase 5a.

Type 4 is a type of merge that we did not yet consider, and which Ward can still do.
Indeed, to charge it, we need the general charging statement in the below Lemma 2.27
from which Corollary 2.29 follows.

Lemma 2.27. Let A,B,C,D ⊂ Rd be disjoint sets with |A| ≤ |B| and |C| ≥ |D|. Then

∆(A ∪B ∪ C ∪D) ≤ ∆(A) + 3 ·∆(B ∪ C) + ∆(D) + 4 ·D(A,B) + 4 ·D(C,D) and

D(A ∪B,C ∪D) ≤ 3 ·∆(B ∪ C) + 3 ·D(A,B) + 3 ·D(C,D)−∆(B)−∆(C).

Let Wi and Wi+1 constitute a type 4 merge as described above. Then Lemma 2.27
with A = Wi ∩Oj , B = Wi ∩Oj+1, C = Wi+1 ∩Oj+1 and D = Wi+1 ∩Oj+2 implies that

∆(Wi ∪Wi+1)
≤ ∆(Wi ∩Oj) + 3∆(Oj+1) + ∆(Wi+1 ∩Oj+2)

+ 4D(Wi ∩Oj ,Wi ∩Oj+1) + 4D(Wi+1 ∩Oj+1,Wi+1 ∩Oj+2).

Thus, if ∆(Wi)+∆(Wi+1) was bounded by a constant factor times the optimal cost of the
points in Wi ∪Wi+1, then this is still true after the merge of Wi and Wi+1 (with a higher
factor).

53

Counting inner clusters Observe that the only merges that delete more than one
inner cluster are the merges in phase P1. All other merges remove either exactly one inner
cluster, or none at all. In phase P2-P5, every merge eliminates exactly one inner cluster.
In the beginning, there are n inner clusters. So if phase P1 has n1 merges and P2 until
P5 together have nr merges, then we have n− 2n1−nr inner clusters after phase P5, and
we have n1 2-composed clusters. The total number of all clusters is n− n1 − nr.

Consider the Ward clustering W1, . . . ,Wt after phase P5. We split the clustering into
blocks, based on the inner clusters. More precisely, we get n − 2n1 − nr − 1 blocks that
start with an inner cluster, possibly has some 2-composed clusters and ends with another
inner cluster. The blocks overlap in the inner clusters.

We argue that there is at least one good merge in every block except for k − n1 − 1
blocks. The exceptions are the blocks where the optimum cluster changes between start
and end, but the change happens between the clusters (not in a 2-composed cluster). This
can only happen k − n1 − 1 times because n1 of the k − 1 cluster borders are within
2-composed clusters. For the remaining blocks, we argue the following. If there are no
2-composed clusters in the block, then the two inner clusters are neighbored and form a
type 1 merge. If there is only one 2-composed cluster in the block, then it has to point
at an inner cluster and thus there is a type 2 or a type 3 merge. If there are multiple 2-
composed clusters, we argue as follows. The first 2-composed cluster either points left and
thus there is a type 2 or a type 3 merge, or it points to the right. Any further 2-composed
cluster either points to the one before it, forming a type 4 merge, or it points to the right.
This goes on until we either find a merge, or we find the last 2-composed cluster, which
then has to point at the second inner cluster, forming a type 2 or 3 merge.

We collect one good merge from every block and call the resulting set of merges S.
Observe that the cost of all merges in S together is a constant factor of the cost that we
have so far, so all merges together cost O(1) optk.

This argument alone is not enough. The main feature of S is that every merge that
Ward actually performs can make at most one merge from our set invalid. This means
that we can charge n− 2n1 − nr − 1− (k − n1 − 1) merges to S.

Notice that our merges are disjoint except for possible overlap at inner clusters. Assume
that a merge of Ward invalidates two merges from our set. There are two ways how this can
happen. Case one is that Ward’s merge is one of the two good merges that are invalidated.
Say this merge is called (A,B). Then the second merges involves either A or B, say it
involves B. Thus, there is another cluster C next to B, and the merge (A,B) invalidates
itself and (B,C). This in particular means that (A,B) is a good merge. Since Ward does
not do inner-cluster merges, either A or B has to be 2-composed, since (A,B) is a merge
of Ward. If they are both 2-composed clusters, then A and B are in the same block, thus
(A,B) and (B,C) cannot both be in S. Thus, one is 2-composed and the other is an inner
cluster, i.e., they form a type 2 or 3 merge, since (A,B) is supposed to be a good merge.
If it is a type 3 merge, then (A,B) is not lopsided, and would have happened in phase
P5a. If it is a type 2 merge, then it is either not lopsided (phase P5a), or it is lopsided,
but has an inner cluster behind its inner cluster (phase P5c). We conclude that a good
merge (A,B) cannot invalidate another good merge.

Case two is that the two good merges are disjoint, and Ward does a merge that overlaps
with both of them. Thus, we have two good merges (A,B) and (C,D), and Ward performs

54

merge (B,C). Since Ward does not do inner-cluster merges, either B or C is 2-composed,
w.l.o.g. say that C is 2-composed. If B is 2-composed as well, then (A,B) and (C,D) are
in the same block, so they would not both be in S. So B is an inner cluster. If C points
to B, then (B,C) is not lopsided and would have happened in phase P5a. Thus, C points
to D. If A is an inner cluster, then (B,C) is a type 2 merge and would have happened
in phase P5c. So say that A is 2-composed. (A,B) is a good merge. It is not a type 2
merge since C is 2-composed. It has to be a type 3 merge, thus, A points to B. Thus,
(B,C) would have happened in phase P5d: It is a lopsided merge with B left of C, and
the 2-composed cluster left of B points to A.

We have seen that no merge of Ward can invalidate two merges from S. Thus, we can
now charge in the following way. The cost of the performed merge is bounded by the cost
of any available merge. For each Ward step, we look whether it invalidates a merge from
S. If so, then we charge the performed merge to this good merge. If Ward’s merge does
not invalidate any merge from S, we just arbitrarily charge a merge in S and mark it as
invalid. In this manner, we can pay for n−2n1−nr−(k−n1−1)−1 merges, i.e., we can pay
until the number of clusters is reduced to n−n1−nr−(n−2n1−nr−(k−n1−1)−1) = k.
That completes the proof of Theorem 2.21.

2.4.5 Separation Conditions and Well-Clusterable Data

Clustering suffers from a general gap between theoretical study and practical application;
clustering objectives are usually NP-hard to optimize, and even NP-hard to approximate
to arbitrary precision. On the other hand, heuristics like Lloyd’s algorithm, which can
produce arbitrarily bad solutions, are known to work well or reasonably well in practice.
One way of interpreting this situation is that data often has properties that make the
problem computationally easier. Indeed, for clustering it is very natural to assume that
the data has some structure – otherwise, what do we hope to achieve with our clustering?
The challenge is to find good measures of structure that characterize what makes clustering
easy (but non-trivial).

Many notions of clusterability have been introduced in the literature and there are also
different ways to measure the quality of a clustering. While traditionally a clustering is
evaluated on the basis of an objective function (e.g., the k-means objective function), there
has been an increased interest recently to study which notions of clusterability make it
feasible to recover (partially) a target clustering, some true clustering of the data. For this,
the niceness conditions imposed on the input data are usually some form of separation
condition on the clusters of the target clustering. We study the effect of five well-studied
clusterability notions on the quality of the solution computed by Ward’s method.

δ-center separation and α-center proximity First we study the notions of δ-center
separation and α-center proximity, which have been introduced by Ben-David and Hagh-
talab [13] and Awasthi, Blum, and Sheffet [6], respectively.

Definition 2.35 ([13]). An input P ⊂ Rd satisfies δ-center separation with respect to some
target clustering C1, . . . , Ck if there exist centers c∗1, . . . , c∗k ∈ Rd such that ||c∗j − c∗i || ≥ δ ·
max`∈k maxx∈C` ||x−c∗` || for all i 6= j. We say the input satisfies weak δ-center separation
if for each cluster Cj with j ∈ [k] and for all i 6= j, ||c∗j − c∗i || ≥ δ ·maxx∈Cj ||x− c∗j ||.

55

Kushagra, Samadi, and Ben-David [36] show that single linkage and a pruning tech-
nique are sufficient to find the target clustering under the condition that the data satisfies
δ-center separation for δ ≥ 3.

While the goal of Ben-David and Haghtalab [13] is to recover a target clustering,
we focus on approximating the k-means objective function. Hence, in the following we
will always assume that the target clustering C1, . . . , Ck is an optimal k-means clustering
(which we usually denote by O1, . . . , Ok) and the centers c∗1, . . . , c∗k ∈ Rd are the optimal k-
means centers for this clustering. We will make this assumption also for all other notions of
clusterability that are based on a target clustering and that we introduce in the following.

Definition 2.36 ([6]). An instance P satisfies α-center proximity if there exists an optimal
k-means clustering O1, . . . , Ok with centers c∗1, . . . , c∗k ∈ Rd such that for all j 6= i, j ∈ [k]
and for any point x ∈ Ci it holds ||x− c∗j || ≥ α||x− c∗i ||.

Awasthi, Blum, Sheffet [6] introduced the notion of α-perturbation resilience and
showed that it implies α-center proximity. They show that for α ≥ 3, the optimal cluster-
ing can be recovered if the data is α-perturbation resilient. This was improved by Balcan
and Liang [10] and finally by Makarychev and Makarychev [42], who show that it is pos-
sible to completely recover the optimal clustering for α = 2. The latter paper shows that
the results even hold for a weaker property called metric perturbation resilience. We show
that for large enough δ and α, Ward’s method computes a 2-approximation if the data
satisfies δ-center separation or α-center proximity.

Theorem 2.37. Let P ⊂ Rd be an instance that satisfies weak (2 + 2
√

2 + ε)-center
separation or (3 + 2

√
2 + ε)-center proximity for some ε > 0 and some number k of

clusters. Then the k-clustering computed by Ward on P is a 2-approximation with respect
to the k-means objective function.

We also show that on instances that satisfy (2 + 2
√

2ν + ε)-center separation and for
which all clusters Oi and Oj in the optimal clustering satisfy |Oj | ≥ |Oi|/ν, Ward even
recovers the optimal clustering.

It is interesting to note that the example proposed by Arthur and Vassilvitskii [5]
that shows that the famous k-means++ algorithm has an approximation ratio of Ω(log k)
satisfies δ-center separation and α-center proximity for large values of δ and α, and has
balanced clusters, i.e., ν = 1.

Observation 2.38. There is a family of examples where k-means++ has an expected
approximation ratio of Ω(log k), while Ward computes an optimal solution.

In contrast we will see that the instances that we use to prove our exponential lower
bound on the approximation factor of Ward’s method (Theorem 2.19) satisfy δ-center
separation and α-center proximity for δ ≤ 1 +

√
2 and α ≤ 1 +

√
2. We will also see that

even for arbitrary large δ and α there are instances that satisfy δ-center separation and
α-center proximity and on which Ward’s method does not compute an optimal solution.

Strict separation property Balcan, Blum, and Vempala [9] introduce the strict sep-
aration property. In [1], this property is defined as follows1.

1In [9], the property is defined for similarity measures.

56

4m
a

m

b

m

c
5 6

Figure 2.12: Redrawing of Figure 16 in [11]. There are three groups of points A, B and C
at the locations a, b and c. The numbers indicate the sizes of the groups, the total number
is n = 6m.

Definition 2.39 ([1, 9]). An instance P with target clustering C1, . . . , Ck satisfies the
strict separation property if for all x, y ∈ Ci, i ∈ [k], and every z ∈ Cj for j ∈ [k] with
j 6= i, ||x − y|| < ||y − z||. It satisfies ν-strict separation if there is a subset of P of size
at least (1− ν)|P | for which the property is satisfied.

Balcan et al. show that if the clusters in the target clustering are of sufficient size
and the instance is ν-strict separated, then one can correctly classify all but νn points
(correctly with respect to the target clustering). Indeed, if all points satisfy the property,
then the target clustering can be completely recovered.

Balcan, Liang, and Gupta [11] have already studied Ward’s method on strictly sepa-
rated instances. They present the instance shown in Figure 2.12 (In §C, Figure 16). Given
the target clustering A∪B, C, the example clearly satisfies strict separation for all points.
However, Ward will compute the clustering A, B∪C: It will start by merging all points at
the same location, resulting in three weighted points pa, pb, pc at a, b, and c. But then it
will merge pb and pc because this is cheaper than merging pa and pb: It costs m

2 ·6
2 = 18m,

while the alternative merge costs 4
5m · 5

2 = 20m. The resulting clustering is then judged
to be very bad since it misclassifies m = 1

6n points.
Now one can argue that this judgment is overly critical because Ward actually achieves

its design goal on this instance: it computes a solution with minimal k-means cost. Hence,
in this thesis we study the behavior of Ward when the target clustering is an optimal k-
means clustering. We will see that also in this case the strict separation property does not
help Ward to compute a good clustering.

ORSS-separation Another line of work on niceness conditions for clustering investi-
gates conditions that help to find a low-cost clustering with respect to the k-means objec-
tive function, usually a (1 + ε)-approximation. For this area, conditions that ensure a cost
separation between different solutions are helpful. We will see that the strongest among
these conditions, namely ε-separation [44] (we will also use the term ε-ORSS-separation),
does not help Ward to avoid the worst-case example from Theorem 2.19.

Definition 2.40 ([44]). An instance P satisfies the ε-ORSS-separation property for some
number of clusters k if optk(P)/ optk−1(P) ≤ ε2.

Ostrovsky et al. [44] show that a variant of Lloyd’s method with the right seeding
computes a (1 + ε)-approximation for the k-means problem on instances that satisfy ε-
ORSS-separation.

AS-separation For the following separation condition, it is convenient to denote the
point set by a matrix A, where row i contains point Ai. Let C1, . . . , Ck be a target

57

clustering for A and let µ1, . . . , µk be the corresponding centroids, i.e., µi = µ(Ci). Assume
that C ∈ Rn×d is a matrix where the ith row contains the centroid of the cluster that Ai
belongs to. Then ||A−C||2F is the k-means cost of the clustering C1, . . . , Ck, where || · ||F
is the Frobenius norm. Let || · || denote the spectral norm.

In a seminal paper, Kumar, and Kannan [35] defined a proximity condition and showed
that if all points satisfy this condition, then the target clustering can be reconstructed (and
if only a fraction satisfies it, then the target clustering can be mostly recovered). The
proximity condition states that the projection of a point onto the line joining its cluster
center µi with another cluster center µj is closer to µi than to µj by at least a value ∆ij ,
where ∆ij depends on the number of points in the two clusters, and on k||A − C|| (and
a big constant). Here, we consider the weaker center-based condition due to Awasthi and
Sheffet [8], which was developed in follow-up work. We call it AS-center separation to
distinguish it from the above δ-center separation.

Definition 2.41 ([8]). Let A and C be as defined above and define

∆i = 1√
|Ci|

min{
√
k||A− C||, ||A− C||F }.

Then the instance A satisfies AS-center separation with respect to the target cluster-
ing C1, . . . , Ck if for all i 6= j, i, j ∈ [k], it holds that

||µi − µj || ≥ c(∆i + ∆j)

where c is a fixed constant.

Again, if all points satisfy AS-center separation, then the target clustering can be
recovered [8]. We will see that the exponential lower bound instances satisfy AS-separation
when the target clustering is the optimal k-means clustering.

Corollary 2.42. For any ε > 0, there is a family of point sets (Pd)d∈N with Pd ⊂ Rd
that are ε-separated and that satisfy 1 +

√
2-center separation, 1 +

√
2-center proximity,

the strict separation property and the AS-center separation property where Wardk(Pd) ∈
Ω((3/2)d · optk(Pd)) for k = 2d. Furthermore, for any δ > 1 and any α > 1, there exists
a point set that satisfies δ-center separation and α-center proximity and for which Ward
does not compute an optimal solution.

2.4.6 Bounds for δ-center separation and α-center proximity

In this section, we analyze the behavior of Ward on δ-center separated instances and
instances that satisfy α-center proximity for some number k of clusters. Before we will
prove Theorem 2.37 we start by giving a simple example that shows that Ward does not
necessarily compute an optimal solution for instances that satisfy δ-center separation and
α-center proximity for arbitrary δ and α. After that we show that nevertheless Ward
works well on such instances and even computes an optimal clustering if the clusters in
the optimal clustering are balanced with respect to its size.

58

a
mγ

b
mγ

c

mγ

d

1√
2 + ε

√
2

√
2

γ ·
√

2 =
√
mγ + 1

Coordinates
a: (0, (

√
2 + ε)/2)

b:
(0,−(

√
2 + ε)/2)

c:
(
√

3/2− ε/4, 0)
d : c+ (γ ·

√
2, 0)

ε := 1/(mγ + 1)

mγ := 2γ2 − 1
⇔

γ2 = mγ + 1
2

Figure 2.13: Family of instances for k = 2 that shows that Ward does not necessarily
compute an optimal solution for instances that satisfy δ-center separation and α-center
proximity for arbitrary δ and α.

Center Separation and Center Proximity do not Guarantee Optimality

In this section we give an example that shows that not even for arbitrary large δ and α,
δ-center separation and α-center proximity guarantee that Ward’s method computes an
optimal clustering. Figure 2.13 depicts a family of instances for k = 2. The idea of
the example is that Ward’s method merges the lone point d with the points at c, which
is inconsistent with the optimum clustering. We first compute merge costs for different
possible merges.

Lemma 2.43. For all instances of the family in Figure 2.13, D(a, b) = mγ(1 + ε
2) and

D(a, c) = D(b, c) = D(c, d) = mγ. Furthermore, D(a, cd) = D(b, cd) > D(a, b) and
D(ab, c) < mγ.

Proof. By Lemma 2.16, D(c, d) = mγ
mγ+1 · 2γ

2 = mγ , since the squared distance between
c and d is 2γ2. The squared distance between a and b is 2 + ε, and the squared distance
between a and c as well as between b and c is 2. Thus, Lemma 2.16 implies that D(a, b) =
m2
γ

2mγ (2 + ε) = mγ(1 + ε
2) and that D(a, c) = D(b, c) = m2

γ

2mγ · 2 = mγ , and D(c, d) =
mγ
mγ+1 · γ

2 · 2 = mγ .
Next, we show that D(a, cd) = D(b, cd) > D(a, b). We have that

D(a, cd) = mγ(mγ + 1)
2mγ + 1 · ||µa − µcd||2 ≥

1
2mγ · ||µa − µcd||2.

Note that µcd is given by µcd = c+ (1√
mγ+1

, 0). Using Pythagoras we obtain

||µa − µcd||2 = ||µa − (0, 0)||2 + ||(0, 0)− µcd||2

> ||µa − (0, 0)||2 + ||(0, 0)− c||2 + 1
mγ + 1

= ||a− c||2 + 1
mγ + 1

= 2 + ε.

59

Thus, D(a, cd) > 1
2mγ · (2 + ε) and we obtain D(a, cd) > D(a, b) (and D(b, cd) > D(a, b)).

Finally,

D(ab, c) = 2
3mγ · ||c− (0, 0)||2 = 2

3mγ ·
(3

2 −
ε

4

)
< mγ ,

which completes the proof.

As announced above, we assume that Ward’s method chooses to merge c and d in
the first step, which is one of the cheap merges. In the second step, it will then merge
a and b, since D(a, cd) = D(b, cd) > D(a, b). The resulting clustering {a, b}, {c, d} costs
D(c, d) +D(a, b). This is strictly more than the cost of the clustering {a, b, c}, {d}, which
costs D(a, b) + D(ab, c) < D(a, b) + mγ = D(a, b) + D(c, d). Thus, Ward’s method does
not compute an optimal solution.

Lemma 2.44. All instances of the family in Figure 2.13 satisfy γ
√

2-center separation
and γ

√
2-center proximity.

Proof. The optimum 2-clustering for an instance from the family is {a, b, c}, {d} with
centers µ1 = (

√
1
6 −

ε
36 , 0) and µ2 = d. The point d has distance 0 to its center µ2, the

point c has distance
√

3
2 −

ε
4 −

√
1
6 −

ε
36 <

√
3
2 −

√
1
6 −

1
36 < 1 to µ1 and using Pythagoras

again a and b have distance
√

2+ε
4 + 1

6 −
ε

36 ≤
√

1
2 + 1

4 + 1
6 < 1 to µ1. The distance

between µ1 and µ2 is more than γ
√

2. Thus, the instance satisfies γ
√

2-center separation.
It also satisfies γ

√
2-center proximity, since the distance between any point in {a, b, c} and

µ2 is at least γ
√

2.

Corollary 2.45. For any δ > 0 and any α > 0, there is an instance with k = 2 that
satisfies δ-center separation and α-center proximity and for which Ward does not find an
optimum clustering.

The approximation ratio between Ward’s solution and the optimum solution in Fig-
ure 2.13 is relatively small. Notice, however, that this is a family for examples that shows
that Ward is not optimal for any possible δ and α.

The upper Bound

We are only interested in the k-clustering computed by Ward. Hence, in the following we
assume that k is fixed and that Ward stops as soon as it has obtained a k-clustering. First
we prove that center proximity implies weak center separation. Hence, it suffices to study
instances that satisfy weak center separation.

Lemma 2.46. Let P ⊂ Rd be an instance that satisfies α-center proximity. Then P also
satisfies weak (α− 1)-center separation.

Proof. LetO1, . . . , Ok be an optimal k-means clustering for P with cluster centers c∗1, . . . , c∗k.
Fix arbitrary j ∈ [k] and i ∈ [k] with i 6= j. For x ∈ Oj we have ||x − c∗i || ≥
α||x − c∗j ||. Moreover, we have that ||x − c∗i || ≤ ||x − c∗j || + ||c∗i − c∗j ||. Together this
implies (α − 1)||x − c∗j || ≤ ||c∗i − c∗j ||. Since this is true for all x ∈ Oj , we get that
||c∗i − c∗j || ≥ (α− 1) ·maxx∈Oj ||x− c∗j ||.

60

In the following we call a cluster A that is formed by Ward an inner cluster if A is
completely contained within an optimum cluster. We start our analysis with the following
lemma, which states one very crucial property of Ward’s behavior on well-separated data.
It implies that Ward does not merge inner clusters from two different optimal clusters as
long as there exists more than one inner cluster in both of these optimal clusters.

Lemma 2.47. Let P ⊂ Rd be an instance that satisfies weak (2+2
√

2+ε)-center separation
for some ε > 0. Assume we have two optimal clusters O1 and O2 and each of them contains
at least two inner clusters A1, B1 and A2, B2, respectively, directly after the i-th step of
Ward. Then, in step i + 1, Ward will not merge an inner cluster of O1 with an inner
cluster of O2.

Proof. To prove the lemma, we assume w.l.o.g. that merging A1 and A2 is the merge
operation with minimum increase under all operations containing exactly one inner cluster
of O1 and one inner cluster of O2. We prove that min{D(A1, B1), D(A2, B2)} < D(A1, A2).
Thus, Ward will not merge A1 and A2. Due to the choice of A1 and A2 this implies that
Ward will not merge an inner cluster of O1 with an inner cluster of O2.

Let ri = maxx∈Oi ||x−µ(Oi)|| be the radius of cluster Oi. Since Ai is contained in Oi,
we have ||µ(Ai)− µ(Oi)|| ≤ ri. From the triangle inequality and the weak (2 + 2

√
2 + ε)-

center separation it follows that

||µ(A1)− µ(A2)|| ≥ ||µ(O1)− µ(O2)|| − r1 − r2

≥ (2 + 2
√

2 + ε) ·max{r1, r2} − r1 − r2

≥ (2 + 2
√

2 + ε) ·max{r1, r2} − 2 max{r1, r2}
> 2
√

2 max{r1, r2}.

For symmetry reasons we may assume |A1| ≤ |A2|. Then with the above bound for ||µ(A1)−
µ(A2)|| we obtain the following lower bound for D(A1, A2):

D(A1, A2) = |A1| · |A2|
|A1|+ |A2|

· ||µ(A1)− µ(A2)||2

≥ |A1| · |A2|
|A2|+ |A2|

· ||µ(A1)− µ(A2)||2

≥ |A1|
2 · ||µ(A1)− µ(A2)||2

>
|A1|

2
(
2
√

2 max{r1, r2}
)2

≥ 4|A1| · r2
1.

Now we compare this to D(A1, B1). Since A1 and B1 are both contained in O1, we have
||µ(A1)− µ(B1)|| ≤ 2r1. In accordance with Lemma 2.16, this implies

D(A1, B1) = |A1| · |B1|
|A1|+ |B1|

·||µ(A1)−µ(B1)||2 ≤ |A1|·||µ(A1)−µ(B1)||2 ≤ 4|A1|·r2
1 < D(A1, A2).

61

Inner-cluster merges In the following let P ⊂ Rd be an arbitrary instance and let
O1, . . . , Ok be an optimal k-clustering of P with objective value opt = optk(P). Our goal
is to show that the k-clustering W1, . . . ,Wk computed by Ward on P is worse by only a
factor of at most 2 if P satisfies weak (2 + 2

√
2 + ε)-center separation for some ε > 0.

Observe that Lemma 2.47 does not exclude the possibility that Ward performs inner-
cluster merges on P , i.e., it might merge two inner clusters from the same optimum
cluster at some point during its execution. While we will see that in the one-dimensional
case one can assume that such inner-cluster merges do not happen, we cannot make this
assumption in general (see Figure 2.13, where the counterexample crucially needs an inner-
cluster merge). In our analysis, we bound the costs of the inner-cluster merges separately
from the costs of the other merges, which we call non-inner merges in the following.

We define an equivalence relation r on P as follows: two points x1 and x2 ∈ P are
equivalent if and only if there exists an inner cluster C constructed by Ward at some point
of time with x1, x2 ∈ C. We denote the equivalence classes of r by P/r = {C1, . . . , Cm}.
The following observation is immediate.
Observation 2.48. If Ward merges in any step an inner cluster C with another cluster
that is not an inner cluster of the same optimal cluster, then C ∈ P/r is an equivalence
class.

This means that the equivalence classes represent inner clusters of Ward right before
they are merged with points from outside their optimal cluster. With other words, if we
perform all inner cluster merges that are performed by Ward and leave out all non-inner
merges, we get the clustering represented by P/r.

Consider an arbitrary optimal cluster Oj and let P j1 , . . . , P jnj denote the inner clusters
of Oj in P/r. We assume that these inner clusters are indexed in the order in which they
are merged with other clusters by Ward. To illustrate this definition, consider the step
in which P ji is merged by Ward with some other cluster Q. Since P ji ∈ P/r, this step is
a non-inner merge and in particular Q is not equal to any of the clusters P ji+1, . . . , P

j
nj .

At the time this merge happens, the indexing guarantees that the cluster P ji+1 is either
present or there exist multiple parts C1, . . . , C` of P ji+1 that are only later merged by
inner-cluster merges to P ji+1. Since Ward merges P ji and Q, we know that D(P ji , Q) ≤
D(P ji , Ch) for any h ∈ [`]. We will use this fact to give an upper bound for the costs of
the clustering W1, . . . ,Wk.

It might be that some inner clusters of Oj in P/r are not merged at all by Ward and
contained in the clustering W1, . . . ,Wk. These inner clusters are the last in the ordering,
i.e., they are P ja , . . . , P jnj where nj − a+ 1 is the number of such clusters.

Potential graph In order to bound the costs of the clustering W1, . . . ,Wk produced by
Ward we introduce the potential graph G = (V,E) with vertex set V = P/r. The edges E
of G are directed and there are only edges between inner clusters of the same optimal
cluster. Consider an arbitrary optimal cluster Oj with j ∈ [k] and let P j1 . . . P jnj be the
inner clusters of Oj in P/r indexed as above in the order in which they are merged with
other clusters by Ward. Then for every i ∈ [nj−1] the set E contains the edge (P ji , P

j
i+1).

Both the vertices and the edges are weighted and we denote the sum of all vertex and
edge weights by w(G).

62

The weight of a vertex Q ∈ P/r is defined as w(Q) = ∆(Q), i.e., the weight of vertex Q
equals the costs of forming the inner cluster Q. We will now define weights for the edges
such that the sum of all vertex and edge weights in the potential graph is at most 2 optk.
After that we prove that there is a one-to-one correspondence between the non-inner
merges of Ward and the edges in the graph such that the costs of each non-inner merge
of Ward are at most the weight of the associated edge. Together this proves that Ward
computes a solution with costs at most 2 optk.

To define the weight of the edge (P ji , P
j
i+1), we first consider the case that P ji is merged

at some point of time with another clusterQ byWard. Then let C1, . . . , C` again denote the
parts of P ji+1 that are present at that point of time. The edge weight w(P ji , P

j
i+1) is defined

as maxh∈[`]D(P ji , Ch)2. Observe that since Ward performs greedy merges, this definition
guarantees that the merge of P ji and Q costs at most the edge weight w(P ji , P

j
i+1). If P ji

is not merged at all by Ward, we set the weight w(P ji , P
j
i+1) to D(P ji , P

j
i+1).

Lemma 2.49. Let P ⊂ Rd be a finite point set and let Q1, . . . , Q` denote an arbitrary
partition of P into pairwise disjoint parts. Then ∆(P) ≥ ∆(Q1) + . . .+ ∆(Q`).

Proof. The lemma follows from the following calculation:

∆(P) = ∆(P, µ(P)) =
∑
x∈P
||x− µ(P)||2

=
∑̀
i=1

∑
x∈Qi

||x− µ(P)||2

=
∑̀
i=1

∆(Qi, µ(P))

≥
∑̀
i=1

∆(Qi, µ(Qi)) =
∑̀
i=1

∆(Qi).

Lemma 2.50. The weights in the potential graph satisfy w(G) ≤ 2 optk.

Proof. Since there are no edges between inner clusters of different optimal clusters, we
can analyze each optimal cluster separately. Let Oj be an arbitrary optimal cluster and
let P j1 , . . . , P jnj denote the inner clusters of Oj in P/r. Then the graph G contains for
each i ∈ [nj − 1] the edge (P ji , P

j
i+1). Let us denote the set of these edges by Ej . We

partition Ej into two disjoint matchings Eodd
j and Eeven

j where Eodd
j = {(P ji , P

j
i+1) |

i is odd} and Eeven
j = Ej \ Eodd

j .
Let i ∈ [nj−1]. We first consider the case that P ji is merged by Ward at some point of

time with some other cluster. We denote by C1, . . . , C` the parts of P ji+1 that are present
at that point of time. Let Qji+1 denote a part Ch of P ji+1 for which D(P ji , Ch) is maximal.

2When reading the proof the reader might notice that our definition of w(P ji , P
j
i+1) is to some extend

arbitrary. Instead of defining it as maxh∈[`] D(P ji , Ch), we could also define it as minh∈[`] D(P ji , Ch) or as
D(P ji , Ch) for any h.

63

If P ji is not merged by Ward, we set Qji+1 = P ji+1. Then by the definition of the potential
graph, in both cases, the edge (P ji , P

j
i+1) has weight D(P ji , Q

j
i+1) and Qji+1 ⊆ P

j
i+1.

Let us first assume that nj is even. Then we obtain with Lemma 2.49

∆(Oj) ≥
∑

(P ji ,P
j
i+1)∈Eodd

j

∆
(
P ji ∪ P

j
i+1

)

≥
∑

(P ji ,P
j
i+1)∈Eodd

j

∆
(
P ji ∪Q

j
i+1

)

=
∑

(P ji ,P
j
i+1)∈Eodd

j

∆
(
P ji

)
+ ∆

(
Qji+1

)
+D

(
P ji , Q

j
i+1

)

≥
∑

(P ji ,P
j
i+1)∈Eodd

j

w
(
P ji

)
+ w

(
P ji , P

j
i+1

)
.

An analogous bound holds true for Eeven
j . In fact, since we assumed nj to be even, the

last vertex P jnj is not covered by Eeven
j . This yields by the same reasoning as above the

following slightly stronger inequality:

∆(Oj) ≥ ∆
(
P jnj

)
+

∑
(P ji ,P

j
i+1)∈Eeven

j

∆
(
P ji ∪ P

j
i+1

)

≥ w
(
P jnj

)
+

∑
(P ji ,P

j
i+1)∈Eeven

j

w
(
P ji

)
+ w

(
P ji , P

j
i+1

)
.

Adding the inequalities for Eodd
j and Eeven

j yields

2∆(Oj) ≥
nj∑
j=1

w
(
P ji

)
+

∑
(P ji ,P

j
i+1)∈Ej

w
(
P ji , P

j
i+1

)
. (2.1)

In the case that nj is odd, we obtain the same inequality by adding the last vertex P jnj
to the inequality for Eodd

j instead of Eeven
j . Observe that the right-hand side of (2.1)

equals the sum of all vertex and edge weights in the component of the potential graph
that corresponds to Oj . Adding up the inequalities for every j proves the lemma:

2 opt = 2
(k∑
j=1

∆(Oj)
)
≥

∑
Q∈P/r

w(Q) +
∑

(P,Q)∈E
w(P,Q).

Bijection between non-inner merges and edges We have seen that the total weight
of the potential graph is at most 2 optk. Our goal is now to find a bijection between the
non-inner merges of Ward and the edges of the potential graph such that the costs of
any non-inner merge are bounded from above by the weight of the edge assigned to it
in the bijection. The existence of such a bijection implies that also the costs of the
solution W1, . . . ,Wk computed by Ward are at most 2 optk.

64

Now we construct this bijection. Let us first consider non-inner merges in which at least
one of the clusters is an inner cluster contained in P/r. Let this be the inner cluster P ji of
some optimal cluster Oj and assume further that i < nj . Then P ji has an outgoing edge
to P ji+1. We denote by Q the cluster with which P ji is merged and we assign the merge
of P ji with Q to the edge (P ji , P

j
i+1) in the bijection.

Lemma 2.51. Let P ⊂ Rd be an instance that satisfies weak (2+2
√

2+ε)-center separation
for some ε > 0. Consider a non-inner merge of Ward between two inner clusters from P/r.
Then at most one of these inner clusters has an outgoing edge in G.

Proof. Let P j1i1 and P j2i2 be the two clusters from P/r that are merged. From the definition
of P/r it follows that j1 6= j2. Assume for contradiction that both P j1i1 and P j2i2 have
outgoing edges in G. Then i1 < nj1 and i2 < nj2 . Hence, when P j1i1 and P j2i2 are merged
there exist two other inner clusters P j1i1+1 and P j2i2+1 of Oj1 and Oj2 , respectively. This is
a contradiction to Lemma 2.47.

Observe that it cannot happen that the same edge is assigned to two different merges
by the construction described above because an edge (P ji , P

j
i+1) can only be assigned to a

step in which P ji is merged with some other cluster and there can only be one such merge.
Let L ⊆ E denote the set of edges that are not assigned to a step of Ward by the

above construction. The potential graph G contains |V | = |P/r| vertices and |V | − k
edges. Since the number of non-inner merges of Ward is also |V | − k, there are also |L|
non-inner merges that are not yet assigned to an edge. We finish the construction of the
bijection by assigning the unassigned non-inner merges arbitrarily bijectively to L.

Lemma 2.52. The costs of each non-inner merge of Ward are bounded from above by the
weight of the assigned edge in the potential graph.

Proof. First we consider steps in which one of the clusters is an inner cluster P ji with i < nj
contained in P/r. Let Q denote the cluster with which P ji is merged. At the point of time
at which this merge happens, let C1, . . . , C` denote the parts of P ji+1 that are present. The
merge of P ji and Q is assigned to the edge (P ji , P

j
i+1) in the potential graph. The weight of

this edge is defined as maxh∈[`]D(P ji , Ch). Since the merge of P ji and Q is a greedy merge,
it must be D(P ji , Q) ≤ D(P ji , Ch) for all h ∈ [`]. Hence, the weight of the edge (P ji , P

j
i+1)

is an upper bound for the costs of the merge of P ji and Q.
It remains to consider the steps in which no inner cluster P ji with i < nj is involved.

These steps are assigned arbitrarily to the set L of unassigned edges at the end. For
these steps we can use the monotonicity of Ward (Corollary 2.18). Observe that an
edge (P ji , P

j
i+1) belongs to L if and only if the inner cluster P ji is not merged at all by

Ward. Due to the ordering of the inner clusters this implies that also the cluster P ji+1 is not
merged by Ward. Hence, both P ji and P ji+1 are clusters in the final clustering W1, . . . ,Wk.
Hence, in this clustering the costs of a greedy merge are at most D(P ji , P

j
i+1). Due to

Corollary 2.18, this implies that all merges performed by Ward to obtain the Cluster-
ing W1, . . . ,Wk have each costs at most D(P ji , P

j
i+1). Hence, the weight of any edge in L

is an upper bound for the costs of each merge of Ward.

65

Now the following theorem follows easily.

Theorem 1.5. Let P ⊂ Rd be an instance that satisfies weak (2 + 2
√

2 + ε)-center separa-
tion or (3 + 2

√
2 + ε)-center proximity for some k ∈ [|P |] and ε > 0. Then Ward computes

a 2-approximation on P for that k.

Proof. First we consider instances that satisfy weak (2 + 2
√

2 + ε)-center separation. The
costs of the k-clustering W1, . . . ,Wk computed by Ward equal the sum

∑
Q∈P/r ∆(Q) =∑

Q∈P/r w(Q) plus the costs of all non-inner merges performed by Ward. In accordance
with Lemma 2.52, the sum of the costs of the non-inner merges is bounded from above by
the sum of edge weights in the potential graph. Hence, the costs of W1, . . . ,Wk are upper
bounded by the sum of vertex and edge weights in the potential graph. This sum is at
most 2 opt due to Lemma 2.50.

For instances that satisfy (3 + 2
√

2 + ε)-center proximity the theorem follows from the
first part of the theorem and Lemma 2.46.

Theorem 1.6. Let P ⊂ Rd be an instance with optimal k-means clustering O1, . . . , Ok
with centers c∗1, . . . , c∗k ∈ Rd. Assume that P satisfies (2 + 2

√
2ν + ε)-center separation for

some ε > 0, where ν = maxi,j∈[k]
|Oi|
|Oj | is the largest factor between the sizes of any two

optimum clusters. Then Ward computes the optimal k-means clustering O1, . . . , Ok.

Proof. Assume that there are merges between inner clusters of different optimum clusters,
and let (A1, A2) be the first such merge. That means that A1 and A2 are two inner clusters
from Oi and Oj for some i, j ∈ [k], i 6= j. They are merged by Ward’s method, and before
their merge, all merges were inner-cluster merges. Since the instance is (2 + 2

√
2ν + ε)-

center separated, the triangle inequality implies ||µ(A1) − µ(A2)|| ≥ (2
√

2ν + ε)r for
r = max`∈[k] maxx∈C` ||x− c∗` || (cf. proof of Lemma 2.47). Hence, we get by Lemma 2.16
that

D(A1, A2) > min{|A1|, |A2|} ·
1
2(8ν + ε2)r2 > min{|A1|, |A2|} · 4νr2.

If there are two inner clusters B1 6= A1 and B2 6= A2 with B1 ∈ Oi and B2 ∈ Oj at the
time of the merge (A1, A2), then A1 and A2 will not be merged by the same argument as
in the proof of Lemma 2.47. If only B1 exists, but A2 is the only inner cluster in Oj , then
|A2| = |Oj | ≥ |Oi|/ν. We know that

D(A1, B1) = |A1| · |B1|
|A1|+ |B1|

· ||c∗(A1)− c∗(B1)||2 ≤ min{|A1|, |B1|} · 4r2.

If min{|A1|, |A2|} = |A1|, then D(A1, A2) > |A1| · 4νr2 ≥ D(A1, B1). Furthermore, if
min{|A1|, |A2|} = |A2| ≥ |Oi|/ν, then

D(A1, A2) > |Oi| ·
1
ν
· 4νr2 > min{|A1|, |B1|} · 4r2.

Thus, the merge (A1, A2) will not happen. Lastly, assume that both A1 and A2 are the
last inner cluster. Then we either have only k clusters left, or there are two inner clusters
C and D in some other optimum cluster O`. We also know that |A1| = |Oi| ≥ |O`|/ν
and |A2| = |Oj | ≥ |O`|/ν, implying that D(A1, A2) > |O`|/ν

2 · 8νr2 > min{|C|, |D|} · 4r2 ≥
D(C,D), and we get a contradiction to the assumption that A1 and A2 are merged.

66

m

a

1
b

1
c

m

d
2−
√

2 + ε ≈ 0.6 2
√

2− 2 ≈ 0.8 2−
√

2 + ε ≈ 0.6

Figure 2.14: The left and right points (a and d) have weight m, while b and c have weight
1. This has the effect that Ward merges b and c (for ε = 1/

√
m), and then ends with

either {a, b, c}, {d} or {a}, {b, c, d}. The optimum clustering is {a, b}, {c, d}, and the factor
between the two clusterings converges to 2 +

√
2 ≈ 3.41.

We conclude this section by showing that Theorem 1.5 does not hold for significantly
smaller δ and α. Consider the one-dimensional example in Figure 2.14 from [48]. Ward
may compute the clustering {a, b, c}, {d}, while the optimal clustering is {a, b}, {c, d},
and the approximation ratio of this example is 2 +

√
2 ≈ 3.41. Notice that this example

is (3 +
√

2)-center separated (this is ≈ 0.414 smaller than the δ in our upper bound) and
it satisfies (1 +

√
2)-center proximity.

2.4.7 Exponential Lower Bound for Well-Clusterable Data

First we have a closer look at the construction of the lower bound in Theorem 2.19 and show
that it satisfies the clusterability notions ORSS-separation, the strict separation property
and AS-center separation. For the sake of simplicity we first look at the simplified version
where the weight of the heavy points is infinite. After that we do a more careful calculation
for the case that all weights are finite.

For the version with infinite weights ORSS-separation follows easily for any ε > 0. For
this observe that if the instance was to be clustered with 2d − 1 = k − 1 clusters, then at
least two heavy points would need to be merged, which generates infinite costs, while the
costs of the optimal k-clustering are finite.

Now we come to the strict separation property. Notice that the distance between a
light point and its closest heavy point is 2−

√
2 ≤ 0.59. The minimal distance of two points

from different optimal clusters is realized for clusters that differ only in the first coordinate.
The two light points from two such clusters have a distance of

√
2− 1− (−

√
2− 1) ≥ 0.82.

Points from two clusters that differ in any other coordinate than the first one have a
distance of at least 2z2 =

√
2 ≥ 1.4. Thus, the exponential lower bound example satisfies

the strict separation property.
Next we discuss the AS-center separation property for the instances from the lower

bound in Theorem 2.19. Let the matrices A and C have the same meaning as in the
definition of the AS-center separation property, where C encodes the optimal k-means
clustering. In order to apply Definition 2.41, we replace each heavy point with m → ∞
many unweighted points at the same location. To keep the description simple, we will
also call these unweighted points heavy points. in the following. Since the number m
of heavy points goes to infinity, the cluster centers coincide with the locations of the
heavy points. Hence, there are only two types of rows in the matrix A − C: the rows
for heavy points have only zero entries and the rows for light points have ±(2 −

√
2)

as first entry and zeros at all other positions. Let a1, . . . , an ∈ R denote the entries in
the first columns of A − C. Then it follows from basic linear algebra that ||A − C||2F =
||A − C||2 =

∑n
i=1 a

2
i . Furthermore, since ||A − C||2F coincides with the costs of the

67

optimal k-means clustering C, we obtain||A − C||2F = 2d−1(2 −
√

2)2. Every cluster i in
the clustering C1, . . . , Cn contains m + 1 points, one light and m heavy points. Hence in
accordance with Definition 2.41, we obtain

∆i = 1√
|Ci|

min{
√
k||A− C||, ||A− C||F }

= 1√
m+ 1

||A− C||F =

√
2d−1(2−

√
2)2

√
m+ 1

for every i ∈ [k]. For m → ∞, ∆i becomes arbitrarily small. On the other hand, the
distance between two different cluster centers is at least 2z2 =

√
2, which does not change

with m. Hence, the condition ||µi − µj || ≥ c(∆i + ∆j) for i 6= j is satisfied for every
constant c if m is chosen sufficiently large.

Corollary 2.53. For any ε > 0, there is a family of point sets (P)d∈N with Pd ⊂ Rd which
are ε-ORSS-separated, satisfy the strict separation property and the AS-center separation
property, and where Wardk(Pd) ∈ Ω((3/2)d · optk(Pd)) for k = 2d.

It remains to study for which values of δ and α the lower bound construction satisfies
δ-center separation and α-center proximity. For this we study again the idealized construc-
tion in which the heavy points have infinite weight and hence the centers of the optimal
clustering coincide with the heavy points. The radius of each cluster is then the distance
between its light and its heavy point, which is 2 −

√
2 for each cluster. The minimum

distance between two centers is 2z2 =
√

2. Hence, the lower bound construction satisfies
δ-center separation for any δ <

√
2

2−
√

2 = 1 +
√

2. A short calculation shows that the min-
imum distance of a point from one cluster to a center of a different cluster is realized for
clusters that differ only in the first coordinate and that it is

√
2. Hence, the lower bound

construction also satisfies α-center separation for any α <
√

2
2−
√

2 = 1 +
√

2.

Corollary 2.54. There is a family of point sets (P)d∈N with Pd ⊂ Rd that satisfy δ-center
separation and α-center proximity for any δ < 1 +

√
2 and any α < 1 +

√
2 and where

Wardk(Pd) ∈ Ω((3/2)d · optk(Pd)) for k = 2d.

Exponential Lower Bound with Finite Weights First we consider ORSS-separation.
Assume we want to find a (2d − 1)-clustering. Then there exists a cluster containing two
heavy points with weight m. The distance between two different heavy points is at least
2 · z2 =

√
2. Thus, the 1-means cost of that cluster is at least m·m

m+m · (
√

2)2 = m. Hence,
opt2d−1 ≥ m. On the other side, we have seen in the case with infinite weights that
opt2d ≤ 2d · (2−

√
2)2 + 1 if we choose m+ 1 ≥ 4 · 6d−1. Hence, also in the case of finite

weights, ORSS-separation follows for any ε > 0 by choosing m larger by m > 2d·(2−
√

2)2+1
ε2 .

Now we come to the strict separation property. The distance between a light point
and its closest heavy point is 2−

√
2 + ε ≤ 0.59 + ε with ε = 2d

m
3d−2

2d−1 = 2
m3d−2. Notice that

ε tends to zero for large values of m. The minimal distance of two points from different
optimal clusters is realized for clusters that differ only in the first coordinate. The two
light points from two such clusters have a distance of

√
2− 1− (−

√
2− 1) ≥ 0.82. Points

from two clusters that differ in any other coordinate than the first one have a distance of

68

at least 2z2 =
√

2 ≥ 1.4. Thus, the exponential lower bound example satisfies the strict
separation property by choosing m large enough.

Last we consider the AS-center separation property for the lower bound instances with
finite weights. We calculate more carefully the rows of the matrix A − C. The optimal
clusters consist of one heavy point with weight m and one light point. The first coordinate
of the centroid of the i-th optimal cluster is given by µi,1 = ±m·(1+ε)+(

√
2−1)

m+1 . The other
coordinates equal the corresponding coordinates of the points in the corresponding optimal
cluster. Thus, the rows of the heavy points have ±(1 + ε−µi,1) as first entry and zeros at
all other positions. According to that the rows for the light points have ±(µi,1 −

√
2 + 1)

as first entry and zeros at all other positions. Let a1, . . . , an ∈ R denote the entries in the
first columns of A− C. Since all other entries equal zero, we obtain like in the case with
infinite weights that ||A−C||2F = ||A−C||2 =

∑n
i=1 a

2
i . Again, since ||A−C||2F coincides

with the costs of the optimal k-means clustering we get that ||A−C||2F ≤ 2d · (2−
√

2)2 +1
for m+ 1 ≥ 4 · 6d−1. We obtain

∆i =

√
2d · (2−

√
2)2 + 1

√
m+ 1

for i ∈ [k]. If m tends to infinity, ∆i becomes arbitrarily small. Like in the instance with
infinite weights, the distance between two different cluster centers is at least 2z2 =

√
2

independently from m. Hence, the condition ||µi − µj || ≥ c(∆i + ∆j) for i 6= j is satisfied
for every constant c if m is chosen sufficiently large.

2.5 Complete Linkage
In this section we analyze the approximation factor of the Complete Linkage Algorithm.
Our analysis gives an upper bound how the approximation factor may increase by the
execution of k-merge steps by CL. This matches a result in [2] which states an upper
bound on the approximation factor or the first n − 2k steps. In Section 2.5.1 we intro-
duce formally the concept of clustering intersection graphs and prove some elementary
properties. In Section 2.5.2 we provide a short analysis of the one-dimensional case be-
fore we consider a more general case under the assumption of the existence of certain
subgraphs in Section 2.5.3. In Section 2.5.3 we combine our analysis with the result of
Ackermann et al. about the first phase to prove that the complete-linkage method yields
an O(1)-approximation.

2.5.1 Clustering Intersection Graphs

Our analysis is based on studying the clustering intersection graph induced by CL at
certain points of time. Before we introduce the concept of clustering intersection graphs
formally, we will define these points of time. Let P ⊆ Rd be arbitrary but finite and
let Ok denote some arbitrary optimal k-clustering of P (w.r.t. the chosen objective function
diameter or (discrete) radius). By scaling our point set we may assume that the objective
value of Ok equals 1. We define t≤x to be the last step before some cluster reaches an
objective value (w.r.t. the chosen objective) of more than x and denote the clustering of
CL at time t≤x by Ax. The following lemma is crucial for our analysis.

69

Lemma 2.55. Let x > 0. In Ax there do not exist two clusters a1 and a2 such that
diam(a1)+ dist(a1, a2) + diam(a2) ≤ x, for CLdiam,

rad(a1)+ dist(a1, a2) + 2 rad(a2) ≤ x, for CLrad,

drad(a1)+ dist(a1, a2) + 2 drad(a2) ≤ x, for CLdrad,

where dist(a1, a2) is defined as the minimum distance between two points p1 ∈ a1 and
p2 ∈ a2.

Proof. Let a1 and a2 be clusters that satisfy the stated inequality. Clearly we have
diam(a1 ∪ a2) ≤ diam(a1) + dist(a1, a2) + diam(a2) ≤ x because of the triangle inequality.
But that means CLdiam will not merge two clusters obtaining a cluster of diameter larger
than x in the next step, contradicting the definitions of t≤x and Ax.

≤ r2
≤ r2

≤ r1

≤ dist(a1, a2)

Cluster a2
Cluster a1

Figure 2.15: All points are contained in a cluster of radius at most r1 + dist(a1, a2) + 2r2.

For the objective functions rad and drad we use an analogous argument based on
the inequalities rad(a1 ∪ a2) ≤ rad(a1) + dist(a1, a2) + 2 rad(a2) and drad(a1 ∪ a2) ≤
drad(a1) + dist(a1, a2) + 2 drad(a2) (see Fig. 2.15).

This implies that if we have at t≤x two clusters a1, a2 ∈ Ax and some cluster o ∈ Ok
with a1 ∩ o 6= ∅ and a2 ∩ o 6= ∅, then at t≤2x+1 or t≤3x+1 (depending on the objective
function) not both a1 and a2 can be present anymore, i.e., either a1 or a2 or both were
merged.

The fact that we can guarantee for certain pairs of clusters that one of them is merged
at a certain point of time motivates us to define a clustering intersection graph (which
is in general a hypergraph) with the clusters from Ax as vertices, where two vertices are
neighbored if and only if there exists a cluster o ∈ Ok with which both have a non-empty
intersection.

Definition 2.56. Let Ok be an optimal k-clustering of some finite point set P ⊆ Rd.
Let Ax be the clustering of P computed by CL at time t≤x. We define the clustering
intersection graph (CI-graph) Gx = Gx(Ax,Ok) at point of time t≤x as a hypergraph with
vertex set Ax. A set of vertices N = {v1, . . . , v`} forms a hyperedge if there exists some
cluster o ∈ Ok such that for each cluster vi we have that vi ∩ o 6= ∅ and furthermore there
does not exist a cluster v 6∈ N with v ∩ o 6= ∅.

In general, the CI-graph is a hypergraph with exactly k edges and |Ax| vertices. Fig-
ure 2.16 gives an example of a CI-graph. If a statement holds for arbitrary points of time
or the point of time is clear from context we omit the index x and just write G. Note
that for each cluster a ∈ Ax each point p ∈ a in the cluster is contained in some optimal

70

Clusters constructed by CL
Optimal Clusters

Figure 2.16: Example of a clustering instance with an optimal clustering and a clustering
computed by CL (left side) and the corresponding CI-graph (right side).

cluster o. Thus, the CI-graph does not contain isolated vertices where isolated means that
the vertex has no incident edge. We call a vertex ` a leaf if ` is incident to exactly one
edge e and moreover ` is not the only vertex incident to e. Moreover an edge e is called a
loop if e is only incident to one vertex. We define the degree of a vertex v to be number of
non-loop edges that contain v plus twice the number of loops that consist of v.

The CI-graph has the crucial property that merging two clusters in Ax corresponds to
contracting the corresponding vertices in the CI-graph. Assume that two clusters a1 and
a2 are merged in a step of CL. Then all clusters o ∈ O that have a nonempty intersection
with a1 or a2 clearly have a nonempty intersection with a1 ∪ a2. Let G and G′ denote
the CI-graph before and after this merge operation, respectively. Then it is easy to see
that G′ is obtained from G by contracting the two vertices v1 and v2 corresponding to a1
and a2. The vertex that results from this contraction is incident to exactly those edges
that were incident to v1 or v2 before. In particular, any edge {v1, v2} becomes a loop that
consists of the new vertex.

a1

o1 o2
o1 o2

a1 a2

o3

a2

o3

o1 o2

a1 ∪ a2

o3 o1

o2

a1 ∪ a2

o3

Figure 2.17: Example of a merge step computed by CL (left side) and the corresponding
merge step of vertices in the CI-graph (right side).

To prove that the approximation factor of CL is at most x, it is sufficient to show that
at time t≤x the CI-graph Gx contains at least as many edges as vertices. Clearly this is
equivalent to |Ax| ≤ k, which means that CL has terminated.

71

Clusters computed by CLA

Optimal Clusters

Figure 2.18: Each component of G1 consists of vertices and edges of the above form.

2.5.2 The One-Dimensional Case

In this section we prove that CL yields a constant approximation factor for all finite point
sets P ⊆ R, all metrics dist : R× R → R≥0 and all k ∈ N using the CI-graph. The result
is known for the diameter k-clustering problem and the k-center problem [2]. Our result
also holds for the discrete k-center problem and it demonstrates how the analysis of CL
benefits from considering the CI-graph at certain points of time t≤x.

Theorem 2.57. For d = 1 and arbitrary k,
CLdiam computes a 3-approximation for the diameter k-clustering problem,

CLrad computes a 5-approximation for the k-center problem,

CLdrad computes a 5-approximation for the discrete k-center problem.

Proof. At the beginning, we start with the CI-graph G0 with vertex set V = P and we
have k hyperedges, each of which corresponds to a cluster o ∈ Ok. Moreover in dimension
one we have the additional property that at any point of time only clusters can be merged
that are neighbored on the line. At t≤1 there do not exist two clusters a1, a2 ∈ Ax such
that a1, a2 ⊆ o for some o ∈ Ok because such clusters could be merged to form a new
cluster with size at most 1, contradicting the definition of t≤1. Note that this is true for
all objective functions. This implies the following claim.

Claim 2.58. Each hyperedge in G1 contains at most one leaf and hence, each hyperedge
contains at most 3 vertices.

Figure 2.18 shows an example that contains essentially all possibilities how hyperedges
in G1 can look like. In the following, we call hyperedges with 3 incident vertices true
hyperedges. Observe that the number of incident vertices of the hyperedge that belongs
to a certain cluster of Ok cannot increase during the course of CL.

Next we show the following claim.

Claim 2.59. Let e1 and e2 be hyperedges that are incident to a common vertex and that
contain each a unique leaf at t≤1. Then either e1 or e2 or both contain no leaves at t≤2
for the objective function diam and at t≤3 for the objective functions rad and drad

Proof. Assume that there are two hyperedges e1 and e2 that are incident to a common
vertex and that contain each a unique leaf `1 and `2, respectively, at t≤1. Then there exists
a unique common vertex v. The cluster corresponding to v must be directly between the
clusters corresponding to `1 and `2 on the line. This implies that as long as `1 and `2
are not merged, also v cannot be merged. Merging v and `i, for i ∈ {1, 2}, results in a
cluster of diameter at most 2 because each vertex at t≤1 has diameter at most one and

72

since leaves are fully contained in the incident optimal cluster and the optimal cluster also
has at most diameter 1 (for an example see Figure 2.19).

v

`1 `2

o1 o2
o1 o2

`1 `2v

diam(o1)≤ 1

diam(v)≤ 1

Figure 2.19: The cluster `1 ∪ v has at most diameter 2.

Moreover we can argue that for the objective functions drad and rad merging v and `i,
for i ∈ {1, 2}, results in a cluster of (discrete) radius at most 3. Indeed, the clusters
oi can be covered by a ball with (discrete) radius 1. Moreover at t≤1 also the cluster v
can be covered by a ball with (discrete) radius 1 and thus has a diameter of at most 2.
Additionally v has a common point with oi. Thus, if we increase the radius of the ball
covering oi by 2 then v is also covered (for an example see Figure 2.20).

v

`1 `2

o1 o2
o1 o2

`1 `2v

diam(v)≤ 2

2rad(v)

(d)rad(o1)≤ 1

Figure 2.20: The cluster `1 ∪ v has at most (discrete) radius 3.

From this observation we may conclude that either e1 or e2 or both contain no leaves
at t≤2 for the objective function diam and at t≤3 for the objective functions rad and drad:
If v is merged, then v is merged with `1 or `2. If w.l.o.g. v is merged with `1 then e1
contains no longer a leaf and thus is either a simple edge or a loop. If v was not merged
at t≤2 (or t≤3, respectively) then clearly `1 and `2 were both merged with other clusters
and e1 and e2 do not contain leaves.

Claim 2.60. For diam, at t≤2 two hyperedges that each contain a leaf either cannot be
neighbored or the common vertex is incident to a loop. The same is true for rad and drad
at t≤3 instead of t≤2.

Proof. For the objective function diam consider at time t≤2 two hyperedges e1 and e2
that each contain a unique leaf `1 and `2, respectively. If e1 and e2 contain a common
vertex v at time t≤2, then from the previous argument it follows that v does not yet
exist at time t≤1. It is created between t≤1 and t≤2 by some merge operations. In these
merge operations there must be two vertices v1 and v2 involved that are contained in e1
and e2, respectively, at time t≤1. In particular v1 and v2 are no leaves, otherwise e1 or e2,
respectively, would have contained 2 leaves at t≤1. Since all vertices on the line between
v1 and v2 are contracted, their incident edges became a loop incident to v at t≤2. Hence,

73

at t≤2 two hyperedges containing a leaf either cannot be neighbored or the common vertex
is incident to a loop (for an example see Figure 2.21). The same is true for rad and drad
for t≤3 instead of t≤2.

`1 `2

e1 e2

Point of time t≤1:

` `2

e e2

Point of time t≤2: Contraction of ` and v2 leads to a simple edge between two hyperedges.

`2

e2

` `2

e e2v2

Point of time t≤2: Contraction of `1, v and further vertices leads to a loop between two hyperedges.

`2
e

e2

v = v1 ∪ ` ∪ v2

v1 e2

e

`

e1

`1

e1

v1 v2

v2v1

e1

`1 `1

Figure 2.21: Depending on how many vertices are contracted between t≤1 and t≤2 we have
that at t≤2 between two true hyperedges there exists at least a simple edge or a loop.

Claim 2.61. For diam at t≤3 all neighbors of leaves are incident to some loop. The same
is true for rad and drad at t≤5 instead of t≤3.

Proof. First consider the objective function diam. Assume that there exists some neighbor
v1 of a leaf `1 that is not incident to a loop at t≤2. Since v1 is no leaf it is incident to
another hyperedge e2 (otherwise e1 contains 2 leaves which is a contradiction to t≤1) and
since v1 is not incident to a loop at t≤2 we know that e2 contains no leaf by the previous
claim. Using the argument shown in Figure 2.19 we know that at t≤3 either `1 or v1 has
been merged. If `1 was merged, e1 has no leaves at t≤3. If `1 has not been merged at t≤3
then v2 has and therefore was merged with its other neighbor contained in e2. But then
a loop was built. The same is true for rad and drad for t≤5 instead of t≤3.

Finally, we argue that at t≤3 (or t≤5) the number of vertices is bounded from above by
k, which equals the number of edges in the hypergraph G3(G5). We prove this bound for
each connected component separately. Consider some arbitrary connected component C
of G3(G5). If C is a path we have clearly |E(C)|+1 vertices in C. For each true hyperedge
in C, there exists one additional leaf. We will argue, that if we have j true hyperedges in
C, then C contains j+ 1 loops. Thus, we have at least as many edges as vertices. Indeed,
assume that there are j true hyperedges left at t≤3 (or t≤5). Each of them contains exactly
one leaf. The right neighbor of this leaf is then incident to some loop at t≤3 (or t≤5) as
argued above. Thus, there are at least j loops in the edge set. Moreover consider the
leftmost hyperedge with its leaf `. The left neighbor of ` is also incident to some loop.
But then we have at least j + 1 loops. Note that if j = 0 the arguments above still hold
for the leaf of the leftmost edge in a component. Thus, we have at least one loop at t≤3
(or t≤5).

74

2.5.3 The General Case

In this section, we prove that CL computes an O(1)-approximation for any constant
dimension d ∈ N. In the following, we assume that x ≥ 1 is fixed arbitrarily and we
analyze the CI-graph G = Gx and how it changes over time. Later we will choose x such
that Gx contains at most 2k nodes.

Completion of the CI-Graph

In the one-dimensional case one has the crucial property that all vertices of a CI-graph can
be arranged in increasing order on a line such that only neighbored vertices on the line may
be contracted. Additionally, it follows from Lemma 2.55 that at least one vertex of every
neighbored pair must be contracted until a certain time step. This implies that each edge
is incident to at most 3 vertices at t≤1, which is essential in the proof of Theorem 2.57.
This property is not true anymore in higher dimensions.

Given a CI-graph G = Gx, we construct a weighted graph Γ(G), which we call the
completion of G. The graph Γ(G) has the same vertex set as the CI-graph G. For
every hyperedge {v1, . . . , v`} in G, we introduce a clique with edge weights 1 in Γ(G). In
particular, for ` = 1 we introduce a loop at node v1 with weight 1.

Definition 2.62. Let G = (V,E) be a hypergraph and let v, w ∈ V be two vertices in the
same connected component of G. A path p between v and w is a sequence v = v0, . . . , v` =
w of vertices such that vi and vi+1 are adjacent in G for all i ∈ {0, . . . , `− 1}. We call `
the length of path p. A shortest v-w-path in G is a v-w-path ps such that no v-w-path p
with length less than the length of ps exists.

For each pair of vertices v and w from the same connected component that are not
adjacent, we add an edge (v, w) to Γ(G). If p denotes the length of a shortest v-w-path
in G then the weight of the edge (v, w) in Γ(G) is set to p + (p − 1)x for the objective
function diam and p + (p − 1)2x for the objective functions rad and drad. The next
lemma shows that this construction ensures the following important property: the weight
of every edge (v, w) in Γ(G) is an upper bound for the distance of the corresponding
clusters (remember that the distance of two clusters is defined as the smallest distance
between any pair of points from these clusters).

Lemma 2.63. Assume that a v-w-path in a CI-graph G has length p. Then the smallest
distance between two points in v and w is at most p + (p− 1)x for the objective function
diam and p+ (p− 1)2x for the objective functions rad and drad.

Proof. Let P = v, v1, . . . , vp−1, w be a v-w-path of length p in the CI-graph G. Due to the
definition of G, we can find a sequence of points (for a geometric intuition see Figure 2.22)
s1, t1, s2, t2, . . . , sp, tp with the properties

i) s1 ∈ v and tp ∈ w,

ii) ti, si+1 ∈ vi for 1 ≤ i ≤ p− 1,

iii) dist(si, ti) ≤ 1 for 1 ≤ i ≤ p.

75

v

wv1

v2

o1

o2

o3

s1

t1

s2

s3

t2 t3

Clusters of Ax

Clusters of Ok

Figure 2.22: We can choose points in the clusters corresponding to the path in G.

For the objective function diam, we can additionally ensure

iv) dist(ti, si+1) ≤ x for 1 ≤ i ≤ p− 1

while for the objective functions rad and drad, we can only additionally ensure

iv’) dist(ti, si+1) ≤ 2x for 1 ≤ i ≤ p− 1.

From this the claim follows by the triangle inequality.

Our analysis is based on studying subgraphs of Γ(G) that satisfy certain properties.
The following lemma shows how subgraphs change during the course of CL. In order
to state the lemma, let us define what we mean by contracting two nodes v and w in a
multi-graph. It means that v and w get replaced by a new node and that all edges that
were incident to v or w are now incident to the new node instead. In particular, all edges
between v and w become loops. Hence, contraction operations do not change the total
number of edges in the graph, and each such operation reduces the number of vertices by
one.

Lemma 2.64. Let Gx be a CI-graph at some point of time t≤x, and let Hx be a subgraph
of Γ(Gx) with V (Hx) = V (Gx). Now consider the CI-graph Gx′ for some point of time
t≤x′ with x′ > x. Let Hx′ be the multi-graph that arises from Hx by performing the same
contractions that are made between Gx and Gx′. Then V (Gx′) = V (Hx′) and moreover
the weight of any edge (v, w) in Hx′ is an upper bound for the distance of the clusters
corresponding to v and w.

Proof. By definition ofHx′ it is clear that V (Hx′) = V (Gx′). Let e = (v, w) be an arbitrary
edge in Hx′ . Then there exist vertices v1, . . . , vn1 ∈ V (Hx) and w1, . . . , wn2 ∈ V (Hx) that
were contracted to v and w, respectively, between Hx and Hx′ . Since e = (v, w) is an edge
in Hx′ , there exist two vertices vi and wj such that the edge e′ = (vi, wj) is contained
in Hx and has the same weight as the edge e. Hence, according to Lemma 2.63 the
distance between vi and wj is at most the weight of edge e′. Since the distance between
two clusters is defined as the smallest distance between any pair of points from these
clusters, this implies that also the distance between v and w is bounded from above by
the weight of edge e′, which equals the weight of edge e.

76

Subgraphs at Different Points of Time

Now we study CI-graphs that contain certain subgraphs. Assume that there exists a
subgraph Hx of Γ(Gx) that satisfies the following properties:

i) V (Hx) = V (Gx),

ii) |E(Hx)| ≤ k,

iii) no vertex in Hx is isolated (i.e., every vertex in Hx has at least one incident edge,
which might also be a loop).

Let δ denote the largest edge weight in Hx. By Lemma 2.64, δ is an upper bound for
the distance between any pair of clusters that are adjacent in Hx. For i ∈ N0, we will
analyze time steps t≤x+i(δ+x) for the diameter k-clustering problem and t≤x+i(δ+2x) for
the k-center and discrete k-center problem and denote them by ti. In accordance to that,
we define xi = x + i(δ + x) for CLdiam and xi = x + i(δ + 2x) for CLrad and CLdrad,
respectively.

Lemma 2.65. If there exists a subgraph Hx of Γ(Gx) that satisfies properties i), ii), and
iii), then Gt4, Gt7, and Gt3 contain at most k nodes for CLdiam, CLdrad, and CLrad,
respectively.

Under the assumption that a subgraph Hx with properties i), ii), and iii) exists,
Lemma 2.65 implies that the approximation ratio of CL is bounded by x4, x7 and, x3,
respectively. Hence, it is constant if both x and δ are constant. In order to prove the
lemma, we will prove that Ht4 , Ht6 , and Ht3 , respectively, contain at least as many edges
as vertices. As the number of edges is at most k and V (Hti) = V (Gti), this proves the
lemma.

In the following we denote Hx′ by H if the point of time is clear from context or if
a statement holds for all Hx′ with x′ ≥ x. First note that H is a multi-graph. Multi-
graphs have the crucial property that a connected component has at least as many edges
as vertices if and only if it contains a cycle (where a loop is considered as a cycle).

Definition 2.66. We call a connected component of H tree-component if the component
is a tree.

Observation 2.67. If Hx′ has no tree-component, then Hx′ contains at most k nodes.

Leaves of H and their neighbors play a key role in the analysis of the algorithm. We
will show that between certain time steps either a leaf or its unique neighbor is merged.

Definition 2.68. We call a vertex p ∈ H in a tree-component of H a leaf-parent if p is
the neighbor of some leaf and has at least degree 2.

At the beginning of our analysis in Hx = Hx0 there does not necessarily exist a
leaf-parent in each tree-component because there could be tree-components that consist
only of two vertices that are connected by an edge. These are the only possible tree-
components without a leaf-parent (remember that in H there exist no isolated vertices
by property iii); any connected component that consists of a single vertex must contain a

77

loop). Furthermore it follows easily that any other tree-component does not only contain
a leaf-parent but that the unique neighbor of every leaf is a leaf-parent. Analogously to
dimension one we show that at point of time t1 for each tree-component by CL either one
vertex was merged with a vertex from another component and thereby some vertex with
degree 2 is built or two vertices from one component were merged. The latter means that
a cycle was built and the component is no longer a tree.

Lemma 2.69. Each tree-component C of H that contains a vertex v of degree 2 contains
at least one leaf-parent p. Furthermore Hx1 contains at least one leaf-parent in each tree-
component.

Proof. Since C is a tree-component, we know that C is a tree. If v is a leaf-parent itself
then we are done. Otherwise v has no leaf as a neighbor. Thus C \{v} defines two trees T1
and T2 that each contain at least two vertices and one leaf. In particular, we can choose
leaves `1 ∈ T1 and `2 ∈ T2 that are no neighbors of v. Let `1, p1, . . . , v, . . . , p2, `2 be the
unique `1-`2-path in C. Then p1 and p2 have degree at least 2 and a neighbored leaf.
Therefore both vertices are leaf-parents.

Using the same arguments as for the one-dimensional case, we can argue that at
time t≤1 each tree-component contains a vertex with degree at least 2: We have argued
above that the only tree-component for which this is not the case consists of two connected
vertices and it must have been present at t≤x already. Hence the clusters corresponding
to these vertices have both objective value at most x and their distance is at most δ.
According to Lemma 2.55 and the definition of x1 this implies that one of these clusters
must have been merged at time t1.

The proof of Lemma 2.69 gives a hint that we have in most cases at least two leaf-
parents in each tree-component while components with exactly one leaf-parent are of a
special form. We will use this structure later on to prove that if each tree-component
contains at least 2 leaf-parents then the algorithm terminates. For this we need some
statement counting the number of remaining contractions depending on the number of
leaf-parents. First, we need some statement how often contraction steps are performed in
each component.

Lemma 2.70. Let ` be some leaf in Hxi at an arbitrary point of time ti with i ≥ 0. Then
the leaf ` is also contained in Hx0 and it is not contracted between t0 and ti. Moreover
between two steps of time ti and ti+1 where i ∈ N we have that for each leaf ` either the
leaf ` or its corresponding leaf-parent p` is contracted.

Proof. We do not have any vertices with degree 0. Thus, a vertex is a leaf if and only if
it has degree 1. Moreover by the contraction of two vertices the degree of the contracted
vertex equals the sum of the degrees of the two vertices contracted. Since both vertices
have degree at least 1 the contracted vertex has degree at least 2 and is therefore no leaf.

To prove the second claim we note that the distance between any leaf and its leaf-
parent is at most δ because δ is an upper bound for the weight of any edge in Hxi for
any i ∈ N0. Since all leaves in Hxi for any i ∈ N0 are already contained in Hx0 , they have
an objective value of at most x = x0. Moreover each leaf-parent p` has an objective value

78

of at most xi at ti. But that means for a leaf ` and the corresponding leaf-parent p` we
have for CLdiam that

diam(p`) + δ + diam(`) ≤ xi + δ + x

≤ x+ i(δ + x) + δ + x

≤ x+ (i+ 1)(δ + x) = xi+1,

and for CLrad (analogously for CLdrad) we get that

rad(p`) + δ + 2 rad(`) ≤ xi + δ + 2x
≤ x+ i(δ + 2x) + δ + 2x
≤ x+ (i+ 1)(δ + 2x) = xi+1.

Thus by Lemma 2.55, ` and p` cannot be both present at t≤xi+1 anymore.

We denote the number of leaf-parents of Hxi at time ti for a connected component C by
n`p(C). Since in each tree-component the number of leaf-parents is at most the number of
leaves, we may conclude that the algorithm performs at least n`p/2 contractions between
ti and ti+1 where n`p =

r∑
i=1

n`p(Ci) is the sum over the number of leaf-parents in the tree-
components. Now we count the number of leaf-parents contained in one tree-connected
component. The idea is that if each tree-component contains at least two leaf-parents
then we have at least as many contractions as tree-components and can conclude that the
algorithm will terminate. Therefore we show that at a certain point of time every tree-
component must contain at least two leaf-parents. First we will show that if the number
of leaf-parents in a tree-component is at least two, then after contraction the number of
leaf-parents does not decrease below two.

Lemma 2.71. Assume that two vertices v1 and v2 from two different components C1
and C2 that contain each at least one leaf-parent are contracted in H. If the resulting
component C = C1∪C2 is a tree then C has at least as many leaf-parents as the maximum
of C1 and C2, i.e., n`p(C) ≥ max{n`p(C1), n`p(C2)}.

Proof. Assume w.l.o.g. that the number of leaf-parents in C1 is larger than or equal to the
number of leaf-parents in C2. We claim that n`p(C) ≥ n`p(C1). If v1 is no leaf, then by
contraction all leaves in C1 are still leaves in C and the number of leaf-parents will not
decrease in C. Thus n`p(C) ≥ n`p(C1). We may assume that v1 is a leaf and moreover
it is the only leaf neighbored to its leaf-parent (otherwise the leaf-parent still remains a
leaf-parent after the contraction). By that choice of v1 we ensure that after contraction C
contains n`p(C1)− 1 leaf-parents of C1.

There are three possibilities for the choice of v2 (leaf, leaf-parent, or an inner node). If
v2 is a leaf-parent or an inner node, then all leaves in C2 remain leaves and thus all leaf-
parents of C2 are leaf-parents in C. But then we have n`p(C) = n`p(C1)− 1 + n`p(C2) ≥
n`p(C1) by assumption. Finally, we analyze the case where v1 and v2 are leaves and their
leaf-parents have only one leaf as a neighbor. Let p2 denote the leaf-parent corresponding
to v2. Since p2 has degree two there exists another neighbor v. By assumption v is no leaf
(otherwise we are done). But in that case, there exists at least a second leaf-parent p̃ in C2.

79

Thus, p̃ remains a leaf-parent in C and again we have n`p(C) = n`p(C1)−1+n`p(C2)−1 ≥
n`p(C1), which proves the claim.

We may conclude that the only possibility to obtain a tree-component with just one
leaf-parent is that we contract vertices from two different components that each contain
only one leaf-parent. In particular for two such components C1 and C2, we have to contract
the leaf-parents p1 and p2. If another vertex and therefore a leaf of C1 is contracted another
component C1 ∪ C2 with at least two leaf-parents is built.

Lemma 2.72. For CLdiam each tree-component contains at least 2 leaf-parents at point of
time t3. For CLrad each tree-component contains at least 2 leaf-parents at t2. For CLdrad

each tree-component contains at least 2 leaf-parents at t6.

Proof. We have proven in Lemma 2.69 that at point of time t1 each tree-component
contains at least one leaf-parent. By Lemma 2.71 this is also true for any point of time
after t1. Let i ∈ N and assume that there exists a tree-component C at time ti that has only
one leaf-parent pC . Again from Lemma 2.71 it follows that C was either already present
at t1 or that it was created by merging the leaf-parents of components that contained
exactly one leaf-parent at t1. This implies that C must contain two leafs `1 and `2 that
were already leaves at t1 and that were furthermore contained in the same component C ′
at t1. From the discussion above it follows that the component C ′ contains at t1 exactly
one leaf-parent pC′ . Hence we can bound the diameter of `1 ∪ `2 from above by

diam(`1 ∪ `2) ≤ diam(`1) + dist(`1, `2) + diam(`2)
≤ diam(`1) + δ + diam(pC′) + δ + diam(l2)
≤ x+ δ + (x+ (δ + x)) + δ + x

= x+ 3(δ + x) = x3.

Again by Lemma 2.55 we may conclude that at t3 either `1, `2 or both leaves were merged
by CLdiam, contradicting the existence of C at time t3.
Analogous to CLdiam we can bound the discrete radius of `1 ∪ `2 from above by

drad(`1 ∪ `2) ≤ drad(`1) + dist(`1, `2) + 2 drad(`2)
≤ drad(`1) + δ + 2 drad(pC′) + δ + 2 drad(l2)
≤ x+ δ + 2(x+ (δ + x)) + δ + 2x
= x+ 6(δ + x) = x6.

In case of CLrad we find the following upper bound. For each of the leaves `1 and `2 it
holds that pC′ ∪ `i is contained in a ball with radius rad(pC′) + δ+ 2 rad(`i) with i ∈ {1, 2}
around the center of pC′ . Thus, we may bound the radius of `1 ∪ `2 from above by

rad(`1 ∪ `2) ≤ rad(pC′) + δ + 2 max{rad(`1), rad(`2)}
≤ x1 + δ + 2x ≤ x+ (δ + 2x) + δ + 2x = x2.

We may conclude that at t≤x2 = t2 either `1 or `2 or both were merged by CLrad.

80

It remains to prove that CL terminates if each component contains at least two leaf-
parents.

Lemma 2.73. If at ti each tree-component of Hxi contains at least two leaf-parents then
CL has terminated at ti+1 (i.e., Hxi+1 contains at most k nodes).

Proof. Assume that at ti there exist j tree-components, each of them containing at least
two distinct leaf-parents p` and p′`. Clearly the sets of corresponding leaves are disjoint.
According to Lemma 2.70 that means that for each connected component at least two
vertices will be contracted up to point of time ti+1. In each tree-component the number
of vertices equals the number of edges plus one. Thus if E is the set of edges in H we have
at most |E| + j vertices. Moreover 2j vertices will be contracted. This requires at least
j contractions and by each contraction the number of vertices decreases by one. Finally,
after j contractions we have at most |E| vertices and the algorithms terminates.

Now we are ready to prove Lemma 2.65.

Lemma 2.65. It follows from Lemma 2.72 that each tree-component contains at least 2 leaf-
parents at point of time t3, t2, and t6 for CLdiam, CLrad, and CLdrad, respectively. Now
Lemma 2.73 implies that Hx4 , Hx3 , and Hx7 , respectively, contain at most k nodes.

Subgraphs with Small Edge Weights

Our goal in this section is to find a subgraph Hx of Γ(Gx) that satisfies properties i)-iii)
and whose maximum edge weight is small. Note that properties i), ii), and iii) imply
|V (Gx)| = |V (Hx)| ≤ 2|E(Hx)| ≤ 2k = 2|E(Gx)|, which means |V (Gx)| ≤ 2|E(Gx)| is a
necessary condition to find a subgraph Hx.

In the following we will assume that |V (Gx)| ≤ 2|E(Gx)| and that Gx is connected.
We will prove that, under this assumption, we can always find a subgraph Hx of Γ(Gx)
that satisfies properties i)-iii) and has the following additional property:

iv) For each edge e′ = (v, w) ∈ E(Hx), the vertices v and w have distance at most 2
in Gx, i.e., either there is an edge e ∈ E(Gx) with {v, w} ⊆ e or there are two
edges ev ∈ E(Gx) and ew ∈ E(Gx) with v ∈ ev, w ∈ ew, and ev ∩ ew 6= ∅.

In accordance with the definition of Γ(Gx), property iv) implies that the maximum edge
weight δ in Hx is bounded from above by 2 + x for CLdiam and by 2 + 2x for CLrad

and CLdrad. Using this we will prove that CL terminates at time t≤O(x) if for each
connected component C of the CI-graph Gx we have that |V (C)| ≤ 2|E(C)|.

In order to find a subgraph Hx of Γ(Gx) that satisfies properties i)-iv) we let T be
a spanning tree of Γ(Gx) that uses only edges of weight 1. Such a spanning tree is
guaranteed to exist because we assumed Gx to be connected. Such a spanning tree satisfies
all properties except for ii) because the number of edges in T is |V (Gx)| − 1 and |V (Gx)|
can be up to 2k.

However, any perfect matching in the spanning tree T is a subgraph H that satisfies
the properties i)-iv). If T does not contain a perfect matching, we show how to find a
perfect 2-matching (according to the following definition).

81

Definition 2.74. An α-matching in a graph G is a matching M in the complete graph
with vertex set V (G) such that for each matching edge (v, w) ∈M the distance of v and w
in G is at most α. Moreover we call an α-matching perfect if M contains for edge vertex
from V (G) an incident edge.

Lemma 2.75. Each tree T with an even number |V (T)| ≥ 2 of vertices has a perfect
2-matching.

Proof. We prove the claim by induction on the height of the tree. Since the tree T contains
at least 2 vertices, its height is at least 1. If the height is exactly 1, we have some root r
with an odd number v1, . . . , vn of sons. Then clearly {(r, v1), (v2, v3), . . . , (vn−1, vn)} is a
2-matching.

Now assume we have some tree of height j with an even number of vertices. For each
vertex v in layer j − 1 let v1, . . . , vn be its children. We distinguish 3 different cases:
Case 1: n = 0. That means v has no sons and we do nothing.
Case 2: n is even. In that case we add the edges (v1, v2), . . . , (vn−1, vn) to M and delete
all children from T .
Case 3: n is odd. In that case we add the edges (v, v1), (v2, v3), . . . , (vn−1, vn) to M and
delete all children and v from T .
Thus we end up with a tree of height j − 1. Moreover we deleted in each case an even
number of vertices from T . Thus the number of vertices in T remains even and hence we
can apply the induction hypothesis. This proves the claim.

We construct a graph Hx that satisfies the properties i), ii), iii), and iv) as follows.
First we compute an arbitrary spanning tree T of Γ(Gx) that uses only edges of weight 1.
If |V (Gx)| = |V (Hx)| is even, then the graph Hx is chosen as a perfect 2-matching of T .
Then the properties i), iii), and iv) are satisfied by construction and property ii) is satisfied
because of |E(Hx)| = |V (Hx)|/2 ≤ k. If |V (Gx)| is odd, we choose some leaf v from the
spanning tree T . Then we find a perfect 2-matching M in T \ {v}. Since |V (Gx)| ≤
2|E(Gx)| we have that the matching contains at most |E(Gx)| − 1 edges. Thus we set Hx

to M and may add the edge from T that is incident to v to Hx such that property iii)
becomes true.

Now we have a graph Hx fulfilling properties i), ii), iii), and iv). Property iv) and
Lemma 2.64 imply that δ ≤ 2 + x for the objective function diam and δ ≤ 2 + 2x for the
objective functions rad and drad. We conclude with the following theorem.

Theorem 2.76. Assume that the CI-graph Gx is connected and contains k edges and at
most 2k vertices at some point of time t≤x. Then CLdiam computes a 9x+8 approximation
for the diameter k-clustering problem. Moreover CLrad computes a 13x+6 approximation
for the k-center problem and CLdrad computes a 29x+ 14 approximation for the discrete
k-center problem.

Proof. We conclude from Lemma 2.65 that CLdiam has terminated at t4. In addition to
that we can bound the diameter of clusters at t4 from above by

x+ 4(δ + x) ≤ x+ 4(2 + x+ x) ≤ 9x+ 8.

82

For the objective function discrete radius CLdrad has terminated at t6. Again we can
bound the discrete radius of clusters at t7 from above by

x+ 7(δ + 2x) ≤ x+ 7(2 + 2x+ 2x) ≤ 29x+ 14.

Finally for the objective function radius CLrad has terminated at t3. We can bound the
radius of clusters at t3 from above by

x+ 3(δ + 2x) ≤ x+ 3(2 + 2x+ 2x) ≤ 13x+ 6.

Approximation Factor of CL

In this section we combine our analysis with the result of Ackermann et al. [2] for the
first phase of CL (i.e., the steps until 2k clusters are left) in order to prove the main
theorem. From the analysis of Ackermann et al. it follows that there is a function κ
such that for x = κ(d) the CI-graph Gx contains at most 2k vertices. We consider the
completion Γ(Gx) of Gx and assume that it is connected. This is not necessarily the case
but we will see later that this assumption is without loss of generality because our analysis
can be applied to each connected component separately. In fact, the result of Ackermann
et al. implies that for each connected component of Gx the number of vertices is at most
twice the number of edges.

Now for each version of the algorithm CLdiam, CLrad, and CLdrad we combine our
analysis with the special result of [2] corresponding to each of the methods. We state the
following lemma from [2] deriving an upper bound for a point of time x where |V (Gx)| ≤
2k.

Lemma 2.77 ([2]). Let P ⊆ Rd be finite. Then, for all k ∈ N with 2k ≤ |P |, the partition
A of P into 2k clusters computed by CLdrad satisfies

max
a∈A

drad(a) < 20d · drad(Odrad
k).

Combining this result with Theorem 2.76 yields the following theorem.

Theorem 2.78. For d ∈ N and a finite point set P ⊆ Rd the algorithm CLdrad computes
an O(d)-approximation for the k-center problem.

Proof. Define x = 20d and consider the point of time t≤x. Then either CLdrad has
terminated in case when the number of clusters Ax is at most k. But then the theorem is
proven.

Otherwise assume we have a CI-graph with connected components C1, . . . , Cr. By
Lemma 2.77 we have that for each component Ci with ki edges there are at most 2ki
vertices. In fact this is true since each connected component at t≤x can be seen as a single
clustering instance and then one can apply Lemma 2.77 to each instance separately. But
then we have a CI-graph of the form claimed in Section 2.5.3 and CLdrad terminates after
at most O(x) steps according to Theorem 2.76.

83

Lemma 2.79 ([2]). Let P ⊆ Rd be finite. Then, for all k ∈ N with 2k ≤ |P |, the partition
A of P into 2k clusters computed by CLrad satisfies

max
a∈A

rad(a) < 24d · e24d · rad(Orad
k).

Combining this result with Theorem 2.76 yields the following theorem.

Theorem 2.80. For d ∈ N and a finite point set P ⊆ Rd the algorithm CLrad computes
an eO(d)-approximation for the continuous k-center problem.

Lemma 2.81 ([2]). Let P ⊆ Rd be finite. Then, for all k ∈ N with 2k ≤ |P |, the partition
A of P into 2k clusters computed by CLdiam satisfies

max
a∈A

diam(a) < 23(42d)d(28d+ 6) · diam(Odiam
k).

Analogously to CLdrad and CLrad we can conclude the following theorem.

Theorem 2.82. For d ∈ N and a finite point set P ⊆ Rd the algorithm CLdiam computes
a 2O(d)d-approximation for the diameter k-clustering problem.

84

Chapter 3

The Shadow Vertex Algorithm

The shadow vertex pivot rule is a popular pivoting rule for the simplex algorithm. Though
it has no polynomial running time in general it is arguable fast. It was also shown to have
polynomial running time in the model of smoothed complexity. In this chapter we provide
a randomized variant of the shadow vertex algorithm which can be used to solve a linear
program max{cT0 x|Ax ≤ b} in strongly polynomial time with respect to the dimension of
the polyhedron, the number of constraints and a parameter 1/δ where δ somehow measures
the flatness of the polyhedron.

3.1 Outline of the Analysis
To analyze the shadow vertex algorithm remember that it is a modification of an algorithm
by Eisenbrand and Vempala [25] which solves a linear program max{cT0 x|Ax ≤ b}. For a
feasible solution x0 they perturb c0 by a small amount. Let c be the perturbed objective
and xc be an optimal solution with respect to c. Then they determine a path along the
edges of the polyhedron P of feasible solutions from x0 to xc. If the amount of perturbation
is small enough they argue that xc and xc0 have a common facet which is then identified.
Then they reduce the dimension of P by one and repeat their algorithm on the facet
starting with xc. We borrow their algorithm but replace the subroutine searching for a
path from x0 to xc by a variant of the shadow vertex algorithm introduced by Brunsch
and Röglin in [17].

The algorithm finds a path between two vertices, say x1 and x2, on a polytope by
determining their cones and choosing a random vector w1, respectively w2, from each
cone. Note that because of their choice the vertices x1 and x2 are optimal with respect
to the objectives w1 and w2, respectively. We project the polyhedron P onto the plane
spanned by w1 and w2 in order to reduce the problem to finding a path between vertices on
a 2-dimensional polygon P ′, which is easy by walking along the edges. We want to adapt
the algorithm to find an optimal solution x of P with respect to c0, which is an element of
x’s cone. Anyway, to start the shadow vertex algorithm we need a randomly chosen vector.
Therefore we perturb all entries of c0 a little bit and denote the perturbed objective by
c. Unfortunately the vectors w1 and c are chosen by different types of randomness which
changes the analysis in [17] significantly. Nevertheless, we adopt a lot of ideas and the
main structure of the analysis. Notice that in general it may happen that by perturbation

85

c is no longer an element of x’s cone. We denote by xc an optimal solution with respect
to the perturbed objective c.

From the description of the shadow vertex algorithm it is clear that the main step in
proving Theorem 3.7 is to bound the expected number of edges on the path from π(x0)
to π(xc) on the polygon P ′. In order to do this, we look at the slopes of the edges on this
path and prove that the slopes are pairwise distinct with probability one. This makes it
possible to count the number of slopes in the interval [0,∞) instead of counting the number
of vertices on the path from π(x0) to π(xc). Therefore we partition the interval [0, n]
into small subintervals such that with high probability, none of them contains more than
one slope. Then it is sufficient to bound the probability for each interval [t, t + ε), that
a slope is contained: By the choice of the projection vectors the sequence of slopes is
monotonically decreasing and together with the above argument it follows that it is even
strictly decreasing with probability one. Now we use a similar technique to the principle
of deferred decisions motivated by [17]. We consider the unique leftmost vertex p̂ on the
path, which slope is bigger than t (see Figure 3.1). Note that this is the only chance for
a slope in [t, t + ε). Since P is non-degenerated each two neighbors on the path differ in
their basis elements by exactly one element. Let ai be the element which is not part of
the basis of p̂ but in the basis of its left neighbor. It turns out that by switching w to an
arbitrary vector on the ray {w−γ ·ai | γ ≥ 0} the vertex p̂ is invariant with that property.
Now we split the random draw of the vectors w1 and c in the shadow vertex algorithm
into two steps. In the first step the vector c is completely revealed while instead of w1
only an element w̃1 from the ray {w1 + γ · ai | γ ≥ 0} is revealed. By that we get enough
information to identify the candidate p̂. Even though p̂ is determined in the first step,
its slope is not. The only randomness left in the second step is the exact position of the
vector w2 on the ray {w̃2 − γ · ai | γ ≥ 0}, which suffices to bound the probability that the
slope of e lies in the interval (t, t+ ε].

To count all slopes between zero and infinity we use a trick and switch the order of
the projection vectors w1 and c. By that each slope of size m turns into a slope of size
1/m. Again we count the expected number of slopes in the interval [0, 1/n] and obtain
the expected number of slopes in general which directly turns into the number of expected
edges on the path.

We will describe our algorithm in Section 3.3.3 where we assume that the linear pro-
gram in non-degenerate, that A has full rank n, and that the polyhedron P is bounded. It is
already described in Section 3 of [17] that the linear program can be made non-degenerate
by slightly perturbing the vector b. This does not affect the parameter δ because δ de-
pends only on the matrix A. In Section 3.7 we discuss why we can assume that A has full
rank and why P is bounded. There are, of course, textbook methods to transform a linear
program into this form. However, we need to be careful that this transformation does not
change δ. In Section 3.4 we analyze our algorithm and prove Theorem 1.8. In Section 3.5
we discuss the runtime of the algorithm and analyze the number of random bits necessary
to run the shadow vertex method. In Section 3.6 we discuss how Phase 1 of the simplex
method can be implemented. In Section 3.7 we argue how to cope with unbounded linear
programs and linear programs without full column rank.

86

3.2 Preliminaries
We assume that we are given a linear program max{c0

Tx |Ax ≤ b} with vectors b ∈ Rm
and c0 ∈ Rn and a matrix A = [a1, . . . , am]T ∈ Rm×n. Moreover, we assume that ‖c0‖ =
‖ai‖ = 1 for all i ∈ [m], where [m] := {1, . . . ,m} and ‖ · ‖ denotes the Euclidean norm.
This entails no loss of generality since any linear program can be brought into this form by
scaling the objective function and the constraints appropriately. For a vector x ∈ Rn\{0n}
we denote by N (x) = 1

‖x‖ · x the normalization of vector x.
For a vertex v of the polyhedron P = {x ∈ Rn |Ax ≤ b} we call the set of row indices

Bv = {i ∈ {1, . . . ,m} | ai · v = bi} basis of v. Then the normal cone Cv of v is given by
the set

Cv =

∑
i∈Bv

λiai |λi ≥ 0

 .
Before we start with the algorithm we give an alternative and more general definition

of δ and discuss some properties of this parameter.

3.2.1 The Parameter δ

In [17] Brunsch and Röglin introduced the parameter δ only for m × n-matrices A with
rank n. This was the only interesting case for the type of problem considered there. Here
we cannot assume the constraint matrix to have full column rank. Hence, in Definition 1.7
we extended the definition of δ to arbitrary matrices (as Eisenbrand and Vempala [25]).
We will now give a definition of δ that is equivalent to Definition 1.7 and allows to prove
some important properties of δ.

Definition 3.1.

1. Let z1, . . . , zk ∈ Rn be k ≥ 2 linearly independent vectors and let ϕ ∈ (0, π2] be the
angle between zk and span{z1, . . . , zk−1}. By δ̂({z1, . . . , zk−1} , zk) = sinϕ we denote
the sine of ϕ. Moreover, we set

δ(z1, . . . , zk) = min
`∈[k]

δ̂({zi | i ∈ [k] \ {`}} , z`) .

2. Given a matrix A = [a1, . . . , am]T ∈ Rm×n with rank r = rank(A) ≥ 2, we set

δ(A) = min {δ(ai1 , . . . , air) | ai1 , . . . , air linearly independent} .

Note that for the angle ϕ in Definition 3.1 we obtain the equation

ϕ = min {∠(zk, z) | z ∈ span{z1, . . . , zk−1}} .

Furthermore, the minimum is attained for the orthogonal projection of the vector zk onto
span{z1, . . . , zk−1} when we use the convention ∠(x, 0) := π

2 for any vector x ∈ Rn. For
this reason the sine is given by the length of the orthogonal projection divided by ‖zk‖. In
the case where ‖zk‖ has length 1 this equals the length of the orthogonal projection and
thus the δ-distance of zk to span{z1, . . . , zk−1} as defined in Definition 1.7.

87

Lemma 3.2 (Lemma 5 of [17]). Let z1, . . . , zn ∈ Rn be linearly independent vectors of
length 1, let A ∈ Rm×n be a matrix with rank(A) = n, and let δ := δ(A). Then the
following properties hold:

1. If M is the inverse of [z1, . . . , zn]T, then

δ(z1, . . . , zn) = 1
maxk∈[n] ‖mk‖

≤
√
n

maxk∈[n] ‖Mk‖
,

where [m1, . . . ,mn] = M and [M1, . . . ,Mn] = MT.

2. If Q ∈ Rn×n is an orthogonal matrix, then δ(Qz1, . . . , Qzn) = δ(z1, . . . , zn).

3. Let y1 and y2 be two neighboring vertices of P = {x ∈ Rn |Ax ≤ b} and let aiT be a
row of A. If aiT · (y2 − y1) 6= 0, then |aiT · (y2 − y1)| ≥ δ · ‖y2 − y1‖.

4. If A is an integral matrix, then 1
δ ≤ n∆1∆n−1 ≤ n∆2, where ∆, ∆1, and ∆n−1 are

the largest absolute values of any sub-determinant of A of arbitrary size, of size 1,
and of size n− 1, respectively.

3.2.2 Some Probability Theory

In this section we state and formulate the corollary about linear combinations of random
variables used in Section 3.4 and Appendix A. This theorem follows from Theorem 3.3
of [16] which we will recite here in a simplified variant.

Theorem 3.3 (cf. Theorem 3.3 of [16]). Let ε > 0 and φ ≥ 1 be reals, let I1, . . . , In ⊆
[−1, 1] be intervals of length 1/φ, and let X1, . . . , Xn be independent random variables such
that Xk is uniformly distributed on Ik for k = 1, . . . , n. Moreover, let A ∈ Rn×n be an
invertible matrix, let (Y1, . . . , Yn−1, Z)T = A · (X1, . . . , Xn)T be the linear combinations of
X1, . . . , Xn given by A, and let I : Rn−1 → {[x, x+ ε] |x ∈ R} be a function mapping a
tuple (y1, . . . , yn−1) ∈ Rn−1 to an interval I(y1, . . . , yn−1) of length ε. Then the probability
that Z falls into the interval I(Y1, . . . , Yn−1) can be bounded by

Pr [Z ∈ I(Y1, . . . , Yn−1)] ≤ 2εφ ·
n∑
i=1

|detAn,i|
|detA| ,

where An,i is the (n− 1)× (n− 1)-submatrix of A obtained from A by removing row n and
column i.

Now we can state

Corollary 3.4. Let ε, φ, X1, . . . , Xn, A, Y1, . . . , Yn−1, Z, and I be as in Theorem 3.3.
Then the probability that Z falls into the interval I(Y1, . . . , Yn−1) can be bounded by

Pr [Z ∈ I(Y1, . . . , Yn−1)] ≤ 2nεφ
δ(a1, . . . , an) ·mink∈[n] ‖ak‖

,

where a1, . . . , an denote the columns of matrix A. Furthermore, if A is orthogonal, then
even the stronger bound

Pr [Z ∈ I(Y1, . . . , Yn−1)] ≤ 2
√
nεφ

holds.

88

Proof. In accordance with Theorem 3.3 it suffices to bound the sum
∑n
i=1

|det(An,i)|
|det(A)| from

above. For this, consider the equation Ax = en, where en = (0, . . . , 0, 1) ∈ Rn denotes the
nth unit vector. Following Cramer’s rule and Laplace’s formula, we obtain

|xi| =
|det([a1, . . . , ai−1, en, ai+1, . . . , an])|

| det(A)| = | det(An,i)|
| det(A)| .

Hence, applying Theorem 3.3 yields

Pr [Z ∈ I(Y1, . . . , Yn−1)] ≤ 2εφ ·
n∑
i=1
|xi| = 2εφ · ‖x‖1 ≤ 2

√
nεφ · ‖x‖ .

Recall, that by ‖x‖ we refer to the Euclidean norm ‖x‖2 of x. The claim for orthogonal
matrices A follows immediately since ‖x‖ = ‖A−1en‖ = ‖en‖ = 1 because A−1 = AT is
orthogonal as well.

For the general case we consider the equation Âx̂ = en, where Â = [N (a1), . . . ,N (an)]
consists of the normalized columns of matrix A. Vector x̂ = Â−1en is the nth column of
the matrix Â−1. Thus, we obtain

‖x̂‖ ≤ max
r column
of Â−1

‖r‖ ≤
√
n

δ(a1, . . . , an) ,

where second inequality is due to Claim 1 of Lemma 3.2. Due toA = Â·diag(‖a1‖, . . . , ‖an‖),
we have

x = A−1en = diag
(1
‖a1‖

, . . . ,
1
‖an‖

)
· Â−1en = diag

(1
‖a1‖

, . . . ,
1
‖an‖

)
· x̂ .

Consequently, ‖x‖ ≤ ‖x̂‖/mink∈[n] ‖ak‖ and, thus,

Pr [Z ∈ I(Y1, . . . , Yn−1)] ≤ 2
√
nεφ · ‖x̂‖

mink∈[n] ‖ak‖
≤ 2nεφ
δ(a1, . . . , an) ·mink∈[n] ‖ak‖

.

3.3 Algorithm
Given a linear program max{c0

Tx |Ax ≤ b} and a basic feasible solution x0, our algorithm
randomly perturbs each coefficient of the vector c0 by at most 1/φ for some parameter φ
to be determined later. Let us call the resulting vector c. The next step is then to use
the shadow vertex algorithm to compute a path from x0 to a vertex xc which maximizes
the function cTx for x ∈ P . For φ > 2n3/2

δ one can argue that the solution x has a
facet in common with the optimal solution x? of the given linear program with objective
function c0

Tx. Then the algorithm is run again on this facet one dimension lower until all
facets that define x? are identified.

This section is organized as follows. In Section 3.3.1 we repeat a construction from [25]
to project a facet of the polyhedron P into the space Rn−1 without changing the parame-
ter δ. This is crucial for being able to identify the facets that define x? one after another.
In Section 3.3.2 we also repeat an argument from [25] that shows how a common facet
of xc and x? can be identified if xc is given. Section 3.3.3 presents the shadow vertex
algorithm, the main building block of our algorithm. Finally in Section 3.5 we discuss the
running time of a single pivot step of the shadow vertex algorithm.

89

3.3.1 Reducing the Dimension

Assume that we have identified an element ai, i ∈ [m], of the optimal basis x? (i.e.,
aix

? = bi). In [25] it is described how to reduce in this case the dimension of the linear
program by one without changing the parameter δ. We repeat the details. Without loss
of generality we may assume that a1 is an element of the optimal basis. Let Q ∈ Rn×n
be an orthogonal matrix that rotates a1 into the first unit vector e1. Then the following
linear programs are equivalent:

max{cT0 x |x ∈ Rn, Ax ≤ b} (3.1)

and
max{cT0 Qx |x ∈ Rn, AQx ≤ b}.

In the latter linear program the first constraint is of the form x1 ≤ b1. We set this con-
straint to equality and subtract this equation from the other constraints (i.e., we project
each row into the orthogonal complement of e1). Thus, we end up with a linear program
of dimension n − 1. Lemma 3.2 shows that the δ-distance does not change under mul-
tiplication with an orthogonal matrix. Furthermore, Lemma 3 of [25] ensures that the
δ-distance property is not destroyed by the projection onto the orthogonal complement.

3.3.2 Identifying an Element of the Optimal Basis

In this section we repeat how an element of the optimal basis can be identified if an optimal
solution xc for an objective function cTx with ‖c0 − c‖ < δ/(2n) is given (see also [25]).

Lemma 3.5 (Lemma 2 of [25]). Let B ⊆ {1, . . . ,m} be the optimal basis of the linear
program (3.1) and let B′ be an optimal basis of the linear program (3.1) with c0 being
replaced by c, where ‖c0 − c‖ < δ/(2n) holds. Consider the conic combination

c =
∑
j∈B′

µjaj .

For k ∈ B′ \B, one has ‖c0 − c‖ ≥ δ · µk.

The following corollary whose proof can also be found in [25] gives a constructive way
to identify an element of the optimal basis.

Corollary 3.6. Let c ∈ Rn be such that ‖c0−c‖ < δ/(2·n) and let µj, B, and B′ be defined
as in Lemma 3.5. There exists at least one coefficient µk with µk > 1/n · (1 − δ/(2 · n))
and any k with this property is an element of the optimal basis B (assuming ‖c0‖ = 1).

The corollary implies that given a solution xc that is optimal for an objective func-
tion cTx with ‖c0 − c‖ < δ/(2n), one can identify an element of the optimal basis by
solving the system of linear equations

[a′1, . . . , a′n] · µ = c,

where the a′i denote the constraints that are tight in xc.

90

3.3.3 The Shadow Vertex Method

In this section we assume that we are given a linear program of the form max{c0
Tx |x ∈ P},

where P = {x ∈ Rn |Ax ≤ b} is a bounded polyhedron (i.e., a polytope), and a basic
feasible solution x0 ∈ P . We assume ‖c0‖ = ‖ai‖ = 1 for all rows ai of A. Furthermore,
we assume that the linear program is non-degenerate.

Due to the assumption ‖c0‖ = 1 it holds c0 ∈ [−1, 1]n. Our algorithm slightly perturbs
the given objective function c0

Tx at random. For each component (c0)i of c0 it chooses an
arbitrary interval Ii ⊆ [−1, 1] of length 1/φ with (c0)i ∈ Ii, where φ denotes a parameter
that will be given to the algorithm. Then a random vector c ∈ [−1, 1]n is drawn as follows:
Each component ci of c is chosen independently uniformly at random from the interval Ii.
We denote the resulting random vector by pert(c0, φ). Note that we can bound the norm
of the difference ‖c0 − c‖ between the vectors c0 and c from above by

√
n
φ .

The shadow vertex algorithm is given as Algorithm 2. It is assumed that φ is given to
the algorithm as a parameter. We will discuss later how we can run the algorithm without
knowing this parameter. Let us remark that the Steps 5 and 6 in Algorithm 2 are actually
not executed separately. Instead of computing the whole projection P ′ in advance, the
edges of P ′ are computed on the fly one after another.

Algorithm 2 Shadow Vertex Algorithm
1: Generate a random perturbation c = pert(c0, φ) of c0.
2: Determine n linearly independent rows ukT of A for which ukTx0 = bk.
3: Draw a vector λ ∈ (0, 1]n uniformly at random.
4: Set w = − [u1, . . . , un] · λ.
5: Use the function π : x 7→

(
cTx,wTx

)
to project P onto the Euclidean plane and obtain

the shadow vertex polygon P ′ = π(P).
6: Walk from π(x0) along the edges of P ′ in increasing direction of the first coordinate

until a rightmost vertex x̃c of P ′ is found.
7: Output the vertex xc of P that is projected onto x̃c.

Note that
‖w‖ ≤

n∑
k=1

λk · ‖uk‖ ≤
n∑
k=1

λk ≤ n,

where the second inequality follows because all rows of A are assumed to have norm 1.
The Shadow Vertex Algorithm yields a path from the vertex x0 to a vertex xc that

is optimal for the linear program max{cTx |x ∈ P} where P = {x ∈ Rn |Ax ≤ b}. The
following theorem (whose proof can be found in Section 3.4) bounds the expected length
of this path, i.e., the number of pivots.

Theorem 3.7. For any φ ≥
√
n the expected number of edges on the path output by

Algorithm 2 is O
(
mn2

δ2 + m
√
nφ
δ

)
.

Since ‖c0 − c‖ ≤
√
n
φ choosing φ > 2n3/2

δ suffices to ensure ‖c0 − c‖ < δ
2n . Hence, for

such a choice of φ, by Corollary 3.6, the vertex xc has a facet in common with the optimal
solution of the linear program max{c0

Tx |x ∈ P} and we can reduce the dimension of

91

the linear program as discussed in Section 3.3.1. This step is repeated at most n times.
It is important that we can start each repetition with a known feasible solution because
the transformation in Section 3.3.1 maps the optimal solution of the linear program of
repetition i onto a feasible solution with which repetition i+1 can be initialized. Together
with Theorem 3.7 this implies that an optimal solution of the linear program (3.1) can be
found by performing in expectation O

(
mn3

δ2 + mn3/2φ
δ

)
pivots if a basic feasible solution x0

and the right choice of φ are given. We will refer to this algorithm as repeated shadow
vertex algorithm.

Since δ is not known to the algorithm, the right choice for φ cannot easily be computed.
Instead we will try values for φ until an optimal solution is found. For i ∈ N let φi = 2in3/2.
First we run the repeated shadow vertex algorithm with φ = φ0 and check whether the
returned solution is an optimal solution for the linear program max{c0

Tx |x ∈ P}. If this
is not the case, we run the repeated shadow vertex algorithm with φ = φ1, and so on. We
continue until an optimal solution is found. For φ = φi? with i? =

⌈
log2

(
1/δ

)⌉
+ 2 this is

the case because φi? > 2n3/2

δ .
Since φi? ≤ 8n3/2

δ , in accordance with Theorem 3.7, each of the at most i? = O(log(1/δ))
calls of the repeated shadow vertex algorithm uses in expectation

O

(
mn3

δ2 + mn3/2φi?

δ

)
= O

(
mn3

δ2

)
.

pivots. Together this proves the first part of Theorem 1.8. The second part follows
with Lemma 3.29, which states that Phase 1 can be realized with increasing 1/δ by at
most

√
m and increasing the number of variables from n to n + m ≤ 2m. This implies

that the expected number of pivots of each call of the repeated shadow vertex algorithm
in Phase 1 is O(m(n + m)3√m2

/δ2) = O(m5/δ2). Since 1/δ can increase by a factor
of
√
m, the argument above yields that we need to run the repeated shadow vertex algo-

rithm at most i? = O(log(
√
m/δ)) times in Phase 1 to find a basic feasible solution. By

setting φi = 2i
√
m(n + m)3/2 instead of φi = 2i(n + m)3/2 this number can be reduced

to i? = O(log(1/δ)) again.
Theorem 1.9 follows from Theorem 1.8 using the following fact from [17]: Let A ∈ Zm×n

be an integer matrix and let A′ ∈ Rm×n be the matrix that arises from A by scaling each
row such that its norm equals 1. If ∆ denotes an upper bound for the absolute value
of any sub-determinant of A, then A′ satisfies the δ-distance property for δ = 1/(∆2n).
Additionally Lemma 3.30 states that Phase 1 can be realized without increasing ∆ but
with increasing the number of variables from n to n + m ≤ 2m. Substituting 1/δ =
∆2n in Theorem 1.8 almost yields Theorem 1.9 except for a factor O(log(∆2n)) instead
of O(log(∆ + 1)). This factor results from the number i? of calls of the repeated shadow
vertex algorithm. The desired factor of O(log(∆ + 1)) can be achieved by setting φi =
2in5/2 if a basic feasible solution is known and φi = 2i(n+m)5/2 in Phase 1.

3.4 Analysis of the Shadow Vertex Algorithm
For given linear functions L1 : Rn → R and L2 : Rn → R we denote by π = πL1,L2 the
function π : Rn → R2, given by π(x) = (L1(x), L2(x)). Note that n-dimensional vectors

92

π(x0)

P ′

pr

≤ t
≤ t

> t

> t

> t

p?

p̂

c

w

Figure 3.1: Slopes of the vertices of R

can be treated as linear functions. By P ′ = P ′L1,L2
we denote the projection π(P) of

the polytope P onto the Euclidean plane, and by R = RL1,L2 we denote the path from
the bottommost vertex of P ′ to the rightmost vertex of P ′ along the edges of the lower
envelope of P ′.

Our goal is to bound the expected number of edges of the path R = Rc,w, which is
random since c and w are random. Each edge of R corresponds to a slope in (0,∞). These
slopes are pairwise distinct with probability one (see Lemma 3.9). Hence, the number of
edges of R equals the number of distinct slopes of R.

Definition 3.8. For a real ε > 0 let Fε denote the event that there are three pairwise
distinct vertices z1, z2, z3 of P such that z1 and z3 are neighbors of z2 and such that∣∣∣∣∣wT · (z2 − z1)

cT · (z2 − z1) −
wT · (z3 − z2)
cT · (z3 − z2)

∣∣∣∣∣ ≤ ε .
Note that if event Fε does not occur, then all slopes of R differ by more than ε.

Particularly, all slopes are pairwise distinct. First of all we show that event Fε is very
unlikely to occur if ε is chosen sufficiently small. The proof of the following lemma is
almost identical to the corresponding proof in [17] except that we need to adapt it to the
different random model of c. The proof as well as the proofs of some other lemmas that
are almost identical to their counterparts in [17] can be found in Appendix A for the sake
of completeness. Proofs that are completely identical to [17] are omitted.

Lemma 3.9. The probability of event Fε tends to 0 for ε→ 0.

Let p be a vertex of R, but not the bottommost vertex π(x0). We call the slope s of
the edge incident to p to the left of p the slope of p. As a convention, we set the slope of
π(x0) to 0 which is smaller than the slope of any other vertex p of R.

Let t ≥ 0 be an arbitrary real, let p? be the rightmost vertex of R whose slope is at
most t, and let p̂ be the right neighbor of p?, i.e., p̂ is the leftmost vertex of R whose slope

93

exceeds t (see Figure 3.1). Let x? and x̂ be the neighboring vertices of P with π(x?) = p?

and π(x̂) = p̂. Now let i = i(x?, x̂) ∈ [m] be the index for which ai
Tx? = bi and for

which x̂ is the (unique) neighbor x of x? for which aiTx < bi. This index is unique due to
the non-degeneracy of the polytope P . For an arbitrary real γ ≥ 0 we consider the vector
w̃ := w − γ · ai.

Lemma 3.10. Let π̃ = πc,w̃ and let R̃ = Rc,w̃ be the path from π̃(x0) to the rightmost
vertex p̃r of the projection π̃(P) of polytope P . Furthermore, let p̃? be the rightmost vertex
of R̃ whose slope does not exceed t. Then p̃? = π̃(x?).

Let us reformulate the statement of Lemma 3.10 as follows: The vertex p̃? is defined
for the path R̃ of polygon π̃(R) with the same rules as used to define the vertex p? of the
original path R of polygon π(P). Even though R and R̃ can be very different in shape,
both vertices, p? and p̃?, correspond to the same solution x? in the polytope P , that is,
p? = π(x?) and p̃? = π̃(x?).

Lemma 3.10 holds for any vector w̃ on the ray ~r = {w − γ · ai | γ ≥ 0}. As ‖w‖ ≤ n
(see Section 3.3.3), we have w ∈ [−n, n]n. Hence, ray ~r intersects the boundary of [−n, n]n
in a unique point z. We choose w̃ = w̃(w, i) := z and obtain the following result.

Corollary 3.11. Let π̃ = πc,w̃(w,i) and let p̃? be the rightmost vertex of path R̃ = Rc,w̃(w,i)
whose slope does not exceed t. Then p̃? = π̃(x?).

Note that Corollary 3.11 only holds for the right choice of index i = i(x?, x̂). However,
the vector w̃(w, i) can be defined for any vector w ∈ [−n, n]n and any index i ∈ [m]. In
the remainder, index i is an arbitrary index from [m].

We can now define the following event that is parameterized in i, t, and a real ε > 0
and that depends on c and w.

Definition 3.12. For an index i ∈ [m] and a real t ≥ 0 let p̃? be the rightmost vertex of
R̃ = Rc,w̃(w,i) whose slope does not exceed t and let y? be the corresponding vertex of P .
For a real ε > 0 we denote by Ei,t,ε the event that the conditions

• aiTy? = bi and

• wT(ŷ−y?)
cT(ŷ−y?) ∈ (t, t+ ε], where ŷ is the neighbor y of y? for which aiTy < bi,

are met. Note that the vertex ŷ always exists and that it is unique since the polytope P is
non-degenerate.

Let us remark that the vertices y? and ŷ, which depend on the index i, equal x? and x̂
if we choose i = i(x?, x̂). For other choices of i, this is, in general, not the case.

Observe that all possible realizations of w from the line L := {w + x · ai |x ∈ R} are
mapped to the same vector w̃(w, i). Consequently, if c is fixed and if we only consider
realizations of λ for which w ∈ L, then vertex p̃? and, hence, vertex y? from Definition 3.12
are already determined. However, since w is not completely specified, we have some
randomness left for event Ei,t,ε to occur. This allows us to bound the probability of event
Ei,t,ε from above (see proof of Lemma 3.14). The next lemma shows why this probability
matters.

94

Lemma 3.13 (Lemma 12 from [17]). For any t ≥ 0 and ε > 0 let At,ε denote the event
that the path R = Rc,w has a slope in (t, t+ ε]. Then, At,ε ⊆

⋃m
i=1Ei,t,ε.

With Lemma 3.13 we can now bound the probability of event At,ε. The proof of the
next lemma is almost identical to the proof of Lemma 13 from [17]. We include it in the
appendix for the sake of completeness. The only differences to Lemma 13 from [17] are
that we can now use the stronger upper bound ‖c‖ ≤ 2 instead of ‖c‖ ≤ n and that we
have more carefully analyzed the case of large t.

Lemma 3.14. For any φ ≥
√
n, any t ≥ 0, and any ε > 0 the probability of event At,ε is

bounded by

Pr [At,ε] ≤
2mn2ε

max
{
n
2 , t
}
· δ2 ≤

4mnε
δ2 .

Lemma 3.15. For any interval I let XI denote the number of slopes of R = Rc,w that lie
in the interval I. Then, for any φ ≥

√
n,

E
[
X(0,n]

]
≤ 4mn2

δ2

Proof. For a real ε > 0 let Fε denote the event from Definition 3.8. Recall that all slopes
of R differ by more than ε if Fε does not occur. For t ∈ R and ε > 0 let Zt,ε be the random
variable that indicates whether R has a slope in the interval (t, t+ ε] or not, i.e., Zt,ε = 1
if X(t,t+ε] > 0 and Zt,ε = 0 if X(t,t+ε] = 0.

Let k ≥ 1 be an arbitrary integer. We subdivide the interval (0, n] into k subintervals.
If none of them contains more than one slope then the number X(0,n] of slopes in the
interval (0, n] equals the number of subintervals for which the corresponding Z-variable
equals 1. Formally

X(0,n] ≤
{∑k−1

i=0 Zi·nk ,
n
k

if Fn
k
does not occur ,

mn otherwise .

This is true because
(m
n−1

)
≤ mn is a worst-case bound on the number of edges of P and,

hence, of the number of slopes of R. Consequently,

E
[
X(0,n]

]
≤

k−1∑
i=0

E
[
Zi·n

k
,n
k

]
+ Pr

[
Fn
k

]
·mn =

k−1∑
i=0

Pr
[
Ai·n

k
,n
k

]
+ Pr

[
Fn
k

]
·mn

≤
k−1∑
i=0

2mn2 · nk
n
2 δ

2 + Pr
[
Fn
k

]
·mn = 4mn2

δ2 + Pr
[
Fn
k

]
·mn .

The second inequality stems from Lemma 3.14. Now the lemma follows because the bound
on E

[
X(0,n]

]
holds for any integer k ≥ 1 and since Pr [Fε] → 0 for ε → 0 in accordance

with Lemma 3.9.

In [17] Brunsch and Röglin only compute an upper bound for the expected value
of X(0,1]. Then they argue that the same upper bound also holds for the expected value
of X(1,∞). In order to see this, simply exchanged the order of the objective functions in

95

the projection π. Then any edge with a slope of s > 1 becomes an edge with slope 1
s < 1.

Hence the number of slopes in [1,∞) equals the number of slopes in (0, 1] in the scenario
in which the objective functions are exchanged. Due to the symmetry in the choice of the
objective functions in [17] the same analysis as before applies also to that scenario.

We will now also exchange the order of the objective functions wTx and cTx in the
projection. Since these objective functions are not anymore generated by the same random
experiment, a simple argument as in [17] is not possible anymore. Instead we have to go
through the whole analysis again. We will use the superscript −1 to indicate that we are
referring to the scenario in which the order of the objective functions is exchanged. In
particular, we consider the events F−1

ε , A−1
t,ε , and E−1

i,t,ε that are defined analogously to
their counterparts without superscript except that the order of the objective functions is
exchanged. The proof of the following lemma is analogous to the proof of Lemma 3.9.

Lemma 3.16. The probability of event F−1
ε tends to 0 for ε→ 0.

Lemma 3.17. For any φ ≥
√
n, any t ≥ 0, and any ε > 0 the probability of event A−1

t,ε is
bounded by

Pr
[
A−1
t,ε

]
≤ 2mn3/2εφ

max
{
1, nt2

}
· δ
≤ 2mn3/2εφ

δ
.

Proof. Due to Lemma 3.13 (to be precise, due to its canonical adaption to the events with
superscript −1) it suffices to show that

Pr
[
E−1
i,t,ε

]
≤ 1
m
· 2mn3/2εφ

max
{
1, nt2

}
· δ

= 2n3/2εφ

max
{
1, nt2

}
· δ

for any index i ∈ [m].
We apply the principle of deferred decisions and assume that vector w is already fixed.

Now we extend the normalized vector ai to an orthonormal basis {q1, . . . , qn−1, ai} of Rn
and consider the random vector (Y1, . . . , Yn−1, Z)T = QTc given by the matrix vector
product of the transpose of the orthogonal matrix Q = [q1, . . . , qn−1, ai] and the vector
c = (c1, . . . , cn)T. For fixed values y1, . . . , yn−1 let us consider all realizations of c such
that (Y1, . . . , Yn−1) = (y1, . . . , yn−1). Then, c is fixed up to the ray

c(Z) = Q · (y1, . . . , yn−1, Z)T =
n−1∑
j=1

yj · qj + Z · ai = v + Z · ai

for v =
∑n−1
j=1 yj · qj . All realizations of c(Z) that are under consideration are mapped to

the same value c̃ by the function c 7→ c̃(c, i), i.e., c̃(c(Z), i) = c̃ for any possible realization
of Z. In other words, if c = c(Z) is specified up to this ray, then the path Rc̃(c,i),w and,
hence, the vectors y? and ŷ from the definition of event E−1

i,t,ε, are already determined.
Let us only consider the case that the first condition of event E−1

i,t,ε is fulfilled. Other-
wise, event Ei,t,ε cannot occur. Thus, event E−1

i,t,ε occurs iff

(t, t+ ε] 3 cT · (ŷ − y?)
wT · (ŷ − y?) = vT · (ŷ − y?)

wT · (ŷ − y?)︸ ︷︷ ︸
=:α

+Z · ai
T · (ŷ − y?)

wT · (ŷ − y?)︸ ︷︷ ︸
=:β

.

96

The next step in this proof will be to show that the inequality |β| ≥ max {1,
√
n · t} · δn

is necessary for event E−1
i,t,ε to happen. For the sake of simplicity let us assume that

‖ŷ− y?‖ = 1 since β is invariant under scaling. If event E−1
i,t,ε occurs, then aiTy? = bi, ŷ is

a neighbor of y?, and aiTŷ 6= bi. That is, by Lemma 3.2, Claim 3 we obtain |aiT ·(ŷ−y?)| ≥
δ · ‖ŷ − y?‖ = δ and, hence,

|β| =
∣∣∣∣∣aiT · (ŷ − y?)wT · (ŷ − y?)

∣∣∣∣∣ ≥ δ

|wT · (ŷ − y?)| .

On the one hand we have |wT · (ŷ − y?)| ≤ ‖w‖ · ‖ŷ − y?‖ ≤
(∑n

i=1 ‖ui‖
)
· 1 ≤ n. On the

other hand, due to cT·(ŷ−y?)
wT·(ŷ−y?) ≥ t we have

|wT · (ŷ − y?)| ≤ |c
T · (ŷ − y?)|

t
≤ ‖c‖ · ‖ŷ − y

?‖
t

≤

(
1 +

√
n
φ

)
t

≤ 2
t
,

where the third inequality is due to the choice of c as perturbation of the unit vector c0
and the fourth inequality is due to the assumption φ ≥

√
n. Consequently,

|β| ≥ δ

min
{
n, 2

t

} = max
{

1, nt2

}
· δ
n
.

Summarizing the previous observations we can state that if event E−1
i,t,ε occurs, then |β| ≥

max
{
1, nt2

}
· δn and α+ Z · β ∈ (t, t+ ε]. Hence,

Z · β ∈ (t, t+ ε]− α ,

i.e., Z falls into an interval I(y1, . . . , yn−1) of length at most ε/(max
{
1, nt2

}
· δ/n) =

nε/(max
{
1, nt2

}
· δ) that only depends on the realizations y1, . . . , yn−1 of Y1, . . . , Yn−1.

Let B−1
i,t,ε denote the event that Z falls into the interval I(Y1, . . . , Yn−1). We showed that

E−1
i,t,ε ⊆ B

−1
i,t,ε. Consequently,

Pr
[
E−1
i,t,ε

]
≤ Pr

[
B−1
i,t,ε

]
≤ 2

√
nnεφ

max
{
1, nt2

} ≤ 2n3/2εφ

max
{
1, nt2

}
· δ
,

where the second inequality is due to Theorem 3.3 for the orthogonal matrix Q.

Lemma 3.18. For any interval I let X−1
I denote the number of slopes of Rw,c that lie in

the interval I. Then
E
[
X−1

(0,1/n]

]
≤ 2m

√
nφ

δ
.

Proof. As in the proof of Lemma 3.15 we define for t ∈ R and ε > 0 the random vari-
able Z−1

t,ε that indicates whether Rw,c has a slope in the interval (t, t+ ε] or not. For any

97

integer k ≥ 1 we obtain

E
[
X−1(

0, 1
n

]] ≤ k−1∑
i=0

E
[
Z−1
i· 1
kn
, 1
kn

]
+ Pr

[
F−1

1
kn

]
·mn

=
k−1∑
i=0

Pr
[
A−1
i· 1
kn
, 1
kn

]
+ Pr

[
F−1

1
kn

]
·mn

≤
k−1∑
i=0

2mn3/2φ

knδ
+ Pr

[
F−1

1
k2`
√
n

]
·mn = 2m

√
nφ

δ
+ Pr

[
F−1

1
k2`
√
n

]
·mn .

The second inequality stems from Lemma 3.17. Now the lemma follows because the
bound holds for any integer k ≥ 1 and Pr

[
F−1
ε

]
→ 0 for ε → 0 in accordance with

Lemma 3.16.

The following corollary directly implies Theorem 3.7.

Corollary 3.19. The expected number of slopes of R = Rc,w is

E
[
X(0,∞)

]
= 4mn2

δ2 + 2m
√
nφ

δ
.

Proof. We divide the interval (0,∞) into the subintervals (0, n] and (n,∞). Using Lemma 3.15,
Lemma 3.18, and linearity of expectation we obtain

E
[
X(0,∞)

]
= E

[
X(0,n]

]
+ E

[
X(n,∞)

]
= E

[
X(0,n]

]
+ E

[
X−1(

0, 1
n

]]

≤ 4mn2

δ2 + 2m
√
nφ

δ
.

In the second step we have exploited that by definition X(a,b) = X−1
(1/b,1/a) for any inter-

val (a, b).

3.5 Running Time
So far we have only discussed the number of pivots. In this section calculate the actual
running time of our algorithm. For an initial basic feasible solution x0 the repeated
shadow vertex algorithm repeats the following three steps until an optimal solution is
found. Initially let P ′ = P .

Step 1: Run the shadow vertex algorithm for the linear program max{cTx |x ∈ P ′},
where c = pert(c0, φ). We will denote this linear program by LP ′.

Step 2: Let xc denote the returned vertex in Step 1, which is optimal for the objective
function cTx. Identify an element a′i of xc that is in common with the optimal
basis.

98

Step 3: Calculate an orthogonal matrix Q ∈ Rn×n that rotates a′i into the first unit
vector e1 as described in Section 3.3.1 and set LP ′ to the projection of the
current LP ′ onto the orthogonal complement. Let P ′ denote the polyhedron
of feasible solutions of LP ′.

First note that the three steps are repeated at most n times during the algorithm. In
Step 1 the shadow vertex algorithm is run once. Step 1 to Step 4 of Algorithm 2 can be
performed in time O(m) as we assumed P to be non-degenerate (this implies P ′ to be
non-degenerate in each further step). Step 5 and Step 6 can be implemented with strongly
polynomial running time in a tableau form, described in [15]. The tableau can be set up in
time O((m−d)d3) = O(mn3) where d is the dimension of P ′. By Theorem 1 of [15] we can
identify for a vertex on a path the row which leaves the basis and the row which is added
to the basis in order to move to the next vertex in time O(m) using the tableau. After
that, the tableau has to be updated. This can be done in O((m − d)d) = O(mn) steps.
Using this and Theorem 3.7 we can compute the path from x0 to xc in expected time
O
(
mn3 + mn ·

(
mn2

δ2 + m
√
nφ
δ

))
= O

(
m2n3

δ2 + m2n3/2φ
δ

)
. Using that φ ≤ 8n3/2

δ , as discussed
above, yields a running time of O

(
m2n3

δ2
)
.

Once we have calculated the basis of xc we can easily compute the element ai of the
basis that is also an element of the optimal basis. Assume the rows a′1, . . . , a′n are the
basis of xc. As mentioned in Section 3.3.2 we can solve the system of linear equations
[a′1, . . . , a′n]µ = c and choose the row for which the coefficient µi is maximal. Then a′i
is part of the optimal basis. As a consequence, Step 2 can be performed in time O(n3).
Moreover solving a system of linear equations is possible in strongly polynomial time using
Gaussian elimination.

In Step 3, we compute an orthogonal matrix Q ∈ Rd×d such that e1Q = ai. Since Q is
orthogonal we obtain the equation e1 = aiQ

T. It is clear that the first row of Q is given
by ai. Thus, it is sufficient to compute an orthonormal basis including ai. This is possible
in strongly polynomial time O(d3) = O(n3) using the Gram-Schmidt process.

Since all Steps are repeated in this order at most n times we obtain a running time
O(m2n4

δ2) for the repeated shadow vertex algorithm.

Theorem 3.20. The repeated shadow vertex algorithm has a running time of O(m2n4

δ2).

The entries of both c and λ in Algorithm 2 are continuous random variables. In practice
it is, however, more realistic to assume that we can draw a finite number of random bits. In
Appendix 3.5.1 we will show that our algorithm only needs to draw poly(logm,n, log(1/δ))
random bits in order to obtain the expected running time stated in Theorem 1.8 if δ (or a
good lower bound for it) is known. However, if the parameter δ is not known upfront and
only discrete random variables with a finite precision can be drawn, we have to modify the
shadow vertex algorithm. This will give us an additional factor of O(n) in the expected
running time.

3.5.1 An Upper Bound on the Number of Random Bits

For our analysis we assumed that we can draw continuous random variables. In practice
it is, however, more realistic to assume that we can draw a finite number of random bits.

99

In this section we will show that our algorithm only needs to draw poly(logm,n, log(1/δ))
bits in order to obtain the expected running time stated in Theorem 1.8. However, if
the parameter δ is not known to our algorithm, we have to modify the shadow vertex
algorithm. This will give us an additional factor of O(n) in the expected running time.

Let us assume that we want to approximate a uniform random drawX from the interval
[0, 1) with k random bits Y1, . . . , Yk ∈ {0, 1}. (A draw from an arbitrary interval [a, b)
can be simulated by drawing a random variable from [0, 1) and then applying the affine
linear function x 7→ a+ (b− a) · x.) We consider the random variable Z =

∑k
`=1 Y` · 2−`.

We observe that the random variable Z has the same distribution as the random variable
g(X), where g(x) = bx·2kc/2k. Note that |g(X)−X| ≤ 2−k. Hence, instead of considering
discrete variables and going through the whole analysis again, we will argue that, with
high probability, the number of slopes of the shadow vertex polygon does not change if
each random variable is perturbed by not more than a sufficiently small ε. If we have
proven such a statement, this implies that we can approximate our continuous uniform
random draws as discussed above by using O

(
log(1/ε)

)
bits for each draw. Recall that

our algorithm draws two random vectors λ ∈ (0, 1]n and c ∈ [−1, 1]n that we have to deal
with in this section.

For a vector x ∈ Rn and a real ε > 0 let Uε(x) ⊆ [−1, 1]n denote the set of vectors x′ ∈
[−1, 1]n for which ‖x′ − x‖∞ ≤ ε, that is, x′ and x differ in each component by at most ε.
In the remainder let us only consider values ε ∈ (0, 1].

Whenever a vector c ∈ [−1, 1]n and a vector ĉ ∈ Uε(c) are defined, then by ∆c we
refer to the difference ∆c := ĉ − c. Observe that ‖∆c‖ ≤

√
nε. The same holds for the

vectors λ ∈ (0, 1]n, λ̂ ∈ Uε(λ), and ∆λ := λ̂ − λ. When the vectors λ and λ̂ are defined,
then the vectors w and ŵ are defined as w := −[u1, . . . , un] · λ and ŵ := −[u1, . . . , un] · λ̂
(cf. Algorithm 2). Furthermore, the vector ∆w is defined as ∆w := ŵ − w. Note that
‖w‖ = ‖[u1, . . . , un] · λ‖ ≤

∑n
`=1 ‖u`‖ ≤ n as the rows u1

T, . . . , un
T of matrix A are

normalized. Similarly, ‖ŵ‖ ≤ n and ‖∆w‖ ≤ nε. We will frequently make use of these
inequalities without discussing their correctness again.

If P denotes the non-degenerate bounded polyhedron {x ∈ Rn |Ax ≤ b}, then we de-
note by Vk(P) the set of all k-tuples (z1, . . . , zk) of pairwise distinct vertices z1, . . . zk of P
such that for any i = 1, . . . , k−1 the vertices zi and zi+1 are neighbors, that is, they share
exactly n− 1 tight constraints. In other words, Vk(P) contains the set of all simple paths
of length k− 1 of the edge graph of P . Note that |Vk(P)| ≤

(m
n

)
·nk−1 ≤ mnnk−2. For our

analysis only V2(P) and V3(P) are relevant.
The following lemma is an adaption of Lemma A.1 for our needs in this section and

follows from Lemma A.1.

Lemma 3.21. The probability that there exist a pair (z1, z2) ∈ V2(P) and a vector ĉ ∈
Uε(c) for which ĉT · (z2 − z1) = 0 is bounded from above by 2mnn3/2εφ.

Proof. Let c ∈ [−1, 1]n be a vector such that there exists a vector ĉ ∈ Uε(c) for which
ĉT · (z2 − z1) = 0 for an appropriate pair (z1, z2) ∈ V2(P). Then

|cT · (z2 − z1)| = |ĉT · (z2 − z1)−∆c
T · (z2 − z1)|

≤ ‖∆c‖ · ‖z2 − z1‖
≤
√
nε · ‖z2 − z1‖ .

100

In accordance with Lemma A.1, the probability of this event is bounded from above by
2mnn3/2εφ.

A similar statement as Lemma 3.21 can be made for the objective w. However, for our
purpose we need a slightly stronger statement.

Lemma 3.22. The probability that there exist a pair (z1, z2) ∈ V2(P) and a vector λ̂ ∈
Uε(λ) for which |ŵT · (z2 − z1)| ≤ nε1/3 · ‖z2 − z1‖, where ŵ = −[u1, . . . , un] · λ̂ (cf.
Algorithm 2), is bounded from above by 4mnn2ε1/3/δ.

Proof. Fix a pair (z1, z2) ∈ V2(P) and let ∆z := z2 − z1. Without loss of generality let us
assume that ‖∆z‖ = 1. The event ŵT∆z ∈ [−nε1/3, nε1/3] is equivalent to

wT∆z ∈ [−nε1/3, nε1/3]−∆w
T∆z .

This interval is a subinterval of [−2nε1/3, 2nε1/3] as

|∆w
T∆z| ≤ ‖∆w‖ · ‖∆z‖ ≤ nε · 1 ≤ nε1/3

when recalling that ε ≤ 1. Since

wT∆z ∈ [−2nε1/3, 2nε1/3] ⇐⇒ (Uλ)T∆z ∈ [−2nε1/3, 2nε1/3]
⇐⇒ λTy ∈ [−2nε1/3, 2nε1/3]

for U = [u1, . . . , un] and y = UT∆z, in the next part of this proof we will derive a lower
bound for ‖y‖. Particularly, we will show that ‖y‖ ≥ δ/

√
n.

Let M := [m1, . . . ,mn] := (UT)−1. Due to ∆z = My, we obtain 1 = ‖∆z‖ ≤ ‖M‖ · ‖y‖,
which implies ‖y‖ ≥ 1/‖M‖. In accordance with Lemma 3.2, Claim 1, we obtain

max
k∈[n]

‖mk‖ = 1
δ(u1, . . . , un) ≤

1
δ
.

Consequently,

‖Mx‖ ≤
n∑
k=1
‖mk‖ · |xk| ≤

n∑
k=1

1
δ
· |xk| =

‖x‖1
δ
≤
√
n · ‖x‖
δ

for any vector x 6= 0, i.e., ‖M‖ = supx 6=0 ‖Mx‖/‖x‖ ≤
√
n/δ. Summarizing the previous

observations, we obtain ‖y‖ ≥ 1/‖M‖ ≥ δ/
√
n.

For the last part of the proof we observe that there exists an index i ∈ [n] such that
|yi| ≥ δ/n. We apply the principle of deferred decisions an assume that all coefficients λj
for j 6= i are fixed arbitrarily. By the chain of equivalences

λTy ∈ [−2nε1/3, 2nε1/3]

⇐⇒
n∑
k=1

λk · yk
yi

∈
[
−2nε1/3

|yi|
,
2nε1/3

|yi|

]

⇐⇒ λi ∈
[
−2nε1/3

|yi|
,
2nε1/3

|yi|

]
−
∑
k 6=i

λk · yk
yi

101

we see that the event λTy ∈ [−2nε1/3, 2nε1/3] occurs if and only if the coefficient λi, which
we did not fix, falls into a certain fixed interval of length 4nε1/3/|yi|. The probability for
this to happen is at most 4nε1/3/|yi| ≤ 4n2ε1/3/δ. The claim follows by applying a union
bound over all pairs (z1, z2) ∈ V2(P), which gives us the additional factor of mn.

The next observation characterizes the situation when the projections of two linearly
independent vectors in Rn are projected onto two linearly dependent vectors in R2 by the
function x 7→ (ĉTx, ŵTx).

Observation 3.23. Let (z1, z2, z3) ∈ V3(P), let ∆1 := z2 − z1 and ∆2 := z3 − z2, and let
ĉ, ŵ ∈ Rn be vectors for which ŵT∆1 6= 0, ŵT∆2 6= 0, and

ŵT∆1
ĉT∆1

= ŵT∆2
ĉT∆2

.

Then ĉTx = 0 for x := ∆1 − µ ·∆2, where µ = ŵT∆1/ŵ
T∆2.

Note that, by the definition of x, the equation ŵTx = 0 trivially holds. For the
equation ĉTx = 0 we require that the projections of ∆1 and ∆2 are linearly dependent
as it is assumed in Observation 3.23. Furthermore, let us remark that in the formulation
above we allow ĉT∆1 = 0 or ĉT∆2 = 0 using the convention x/0 = +∞ for x > 0 and
x/0 = −∞ for x < 0.

Proof. The claim follows from

ĉTx = ĉT∆1 − µ · ĉT∆2 = ĉT∆2 ·
ŵT∆1
ŵT∆2

− µ · ĉT∆2

= ĉT∆2 ·
µ · ŵT∆2
ŵT∆2

− µ · ĉT∆2 = 0 .

We are now able to prove an analog of Lemma 3.9.

Lemma 3.24. The probability that there exist a triple (z1, z2, z3) ∈ V3(P) and vectors
λ̂ ∈ Uε(λ) and ĉ ∈ Uε(c) for which

ŵT∆1
ĉT∆1

= ŵT∆2
ĉT∆2

,

where ∆1 := z2 − z1, ∆2 := z3 − z2, and ŵ = −[u1, . . . , un] · λ̂, is bounded from above by
12mnn2ε1/3φ/δ.

Proof. Let us introduce the following events:

• With event A we refer to the event stated in Lemma 3.24.

• Event B occurs if there exist a pair (z1, z2) ∈ V2(P) and a vector λ̂ ∈ Uε(λ) such that
|ŵT · (z2 − z1)| ≤ nε1/3 · ‖z2 − z1‖ (cf. Lemma 3.22).

• Event C occurs if there is a triple (z1, z2, z3) ∈ V3(P) such that |cTx| ≤ (4
√
nε1/3/δ) ·

‖x‖, where x = x(w, z1, z2, z3) := ∆1 − µ · ∆2 for ∆1 := z2 − z1, ∆2 := z3 − z2, and
µ = wT∆1/w

T∆2 if wT∆2 6= 0 and µ = 0 otherwise (cf. Observation 3.23).

102

In the first part of the proof we will show that A ⊆ B ∪ C. For this, it suffices to show
that A\B ⊆ C. Let us consider realizations w ∈ (0, 1]n and c ∈ [−1, 1]n for which event A
occurs, but not event B. Let (z1, z2, z3) ∈ V3(P), λ̂ ∈ Uε(λ), and ĉ ∈ Ue(c) be the vectors
mentioned in the definition of event A. Our goal is to show that |cTx| ≤ (4

√
nε1/3/δ) · ‖x‖

for x = x(w, z1, z2, z3). As event B does not occur, we know that

|wT∆1| ≥ nε1/3 · ‖∆1‖ , |ŵT∆1| ≥ nε1/3 · ‖∆2‖ ,
|wT∆2| ≥ nε1/3 · ‖∆2‖ , and |ŵT∆2| ≥ nε1/3 · ‖∆2‖ .

Furthermore, note that

|ŵT∆1 − wT∆1| ≤ ‖∆w‖ · ‖∆1‖ ≤ nε · ‖∆1‖

and, similarly,
|ŵT∆2 − wT∆2| ≤ nε · ‖∆2‖ .

Therefore,

|ŵT∆1 − wT∆1| ≤ nε · ‖∆1‖ ≤ ε2/3 · |wT∆1| and
|ŵT∆2 − wT∆2| ≤ nε · ‖∆2‖ ≤ ε2/3 · |ŵT∆2| ,

and, consequently

|ŵT∆1|
|ŵT∆2|

≤ (1 + ε2/3) · |wT∆1|
1

1+ε2/3 · |wT∆2|
= (1 + ε2/3)2 · |w

T∆1|
|wT∆2|

≤ (1 + 3ε2/3) · |w
T∆1|

|wT∆2|
and

|ŵT∆1|
|ŵT∆2|

≥ (1− ε2/3) · |wT∆1|
1

1−ε2/3 · |wT∆2|
= (1− ε2/3)2 · |w

T∆1|
|wT∆2|

≥ (1− 3ε2/3) · |w
T∆1|

|wT∆2|
.

Here we again used ε ≤ 1. Observe that both, ŵT∆1 and wT∆1, as well as ŵT∆2 and
wT∆2, have the same sign, since their absolute values are larger than nε1/3 · ‖∆1‖ and
nε1/3 · ‖∆2‖, but their difference is at most nε · ‖∆1‖ and nε‖∆2‖, respectively. Hence,∣∣∣∣∣ ŵT∆1

ŵT∆2
− wT∆1
wT∆2

∣∣∣∣∣ =
∣∣∣∣∣
∣∣∣∣∣ ŵT∆1
ŵT∆2

∣∣∣∣∣−
∣∣∣∣∣wT∆1
wT∆2

∣∣∣∣∣
∣∣∣∣∣ ≤ 3ε2/3 · |w

T∆1|
|wT∆2|

.

As event A occurs, but not event B, Observation 3.23 yields ĉTx(ŵ, z1, z2, z3) = 0. With

103

the previous inequality we obtain

|ĉTx(w, z1, z2, z3)| =
∣∣∣ĉT ·

(
x(w, z1, z2, z3)− x(ŵ, z1, z2, z3)

)∣∣∣
≤ ‖ĉ‖ · ‖x(w, z1, z2, z3)− x(ŵ, z1, z2, z3)‖

= ‖ĉ‖ ·
∣∣∣∣∣wT∆1
wT∆2

− ŵT∆1
ŵT∆2

∣∣∣∣∣ · ‖∆2‖

≤
√
n · 3ε2/3 · |w

T∆1|
|wT∆2|

· ‖∆2‖

≤
√
n · 3ε2/3 · ‖w‖ · ‖∆1‖

nε1/3 · ‖∆2‖
· ‖∆2‖

≤
√
n · 3ε2/3 · n · ‖∆1‖

nε1/3 · ‖∆2‖
· ‖∆2‖

= 3
√
nε1/3 · ‖∆1‖ .

In the remainder of this proof, with x we refer to the vector x(w, z1, z2, z3) (and not to,
e.g., x(ŵ, z1, z2, z3)). Now we show that ‖x‖ ≥ δ · ‖∆1‖. For this, let aiT be a row of
matrix A for which ai

Tz1 < bi, but aiTz2 = ai
Tz3 = bi, i.e., the ith constraint is tight

for z2 and z3, but not for z1. Such a constraint exists as z1 and z3 are distinct neighbors
of z2. Consequently, aiT∆1 > 0 and aiT∆2 = 0. Hence,

|aiTx| = |aiT · (∆1 − µ ·∆2)| = |aiT ·∆1| ≥ δ · ‖∆1‖ ,

where the last inequality is due to Lemma 3.2, Claim 3. As ‖ai‖ = 1, we obtain

‖x‖ ≥ |ai
Tx|
‖ai‖

= |aiTx| ≥ δ · ‖∆1‖ .

Summarizing the previous observations yields

|ĉTx| ≤ 3
√
nε1/3 · ‖∆1‖ ≤

3
√
nε1/3

δ
· ‖x‖ .

Now that we have bounded |ĉTx| from above, we easily get an upper bound for |cTx|.
Since

|cTx− ĉTx| ≤ ‖∆c‖ · ‖x‖ ≤
√
nε · ‖x‖ ,

we obtain

|cTx| ≤ |ĉTx|+ |cTx− ĉTx| ≤ 3
√
nε1/3

δ
· ‖x‖+

√
nε · ‖x‖ ≤ 4

√
nε1/3

δ
· ‖x‖ ,

i.e., event C occurs.
In the second part of the proof we show that Pr [C] ≤ 8mnn2ε1/3φ/δ. Due to A ⊆

B ∪ C, φ ≥ 1, and Lemma 3.22, it then follows that

Pr [A] ≤ 4mnn2ε1/3/δ + 8mnn2ε1/3φ/δ ≤ 12mnn2ε1/3φ/δ .

104

Let (z1, z2, z3) ∈ V3(P) be a triple of vertices of P . We apply the principle of deferred
decisions twice: First, we assume that λ has already been fixed arbitrarily. Hence, the
vector x = x(w, z1, z2, z3) 6= 0 is also fixed. Let z = (1/‖x‖) · x be the normalization of x.
As |cTx| ≤ (4

√
nε1/3/δ) · ‖x‖ holds if and only if |cTz| ≤ 4

√
nε1/3/δ, we will analyze the

probability of the latter event.
There exists an index i such that |zi| ≥ 1/

√
n. Now we again apply the principle of

deferred decisions an assume that all coefficients cj for j 6= i are fixed arbitrarily. Then

|cTz| ≤ 4
√
nε1/3/δ ⇐⇒

n∑
j=1

cj ·
zj
zi
∈
[
−4
√
nε1/3

δ · |zi|
,
4
√
nε1/3

δ · |zi|

]

⇐⇒ ci ∈
[
−4
√
nε1/3

δ · |zi|
,
4
√
nε1/3

δ · |zi|

]
−
∑
j 6=i

cj ·
zj
zi
.

Hence, the random coefficient ci must fall into a fixed interval of length 8
√
nε1/3/(δ · |zi|).

The probability for this to happen is at most

8
√
nε1/3

δ · |zi|
· φ ≤ 8

√
nε1/3

δ · 1√
n

· φ = 8nε1/3φ

δ
.

A union bound over all triples (z1, z2, z3) ∈ V3(P) gives the additional factor of V3(P) ≤
mnn.

Lemma 3.25. Let us consider the shadow vertex algorithm given as Algorithm 2 for
φ ≥
√
n. If we replace the draw of each continuous random variable by the draw of at least

B(m,n, φ, δ) := d6n log2m+ 6 log2 n+ 3 log2 φ+ 3 log2(1/δ) + 12e

random bits as described earlier in this section, then the expected number of pivots is
O
(
mn2

δ2 + m
√
nφ
δ

)
.

Proof. As discussed in the beginning of this section, instead of drawing k random bits to
simulate a uniform random draw from an interval [a, b), we can draw a uniform random
variable X from [0, 1) and apply the function g(X) = h(bX · 2kc/2k) for h(x) = a + (b−
a) · x to obtain a discrete random variable with the same distribution. Observe, that
|X − g(X)| ≤ (b − a)/2k. In the shadow vertex algorithm all intervals are of length 1 or
of length 1/φ ≤ 1. Hence, |X − g(X)| ≤ 2−k. As we use k ≥ B(m,n, φ, δ) bits for each
draw, we obtain g(X) ∈ Uε(X) for

ε = 2−B(m,n,φ,δ) ≤ δ3

212m6nn6φ3 =
(

δ

16m2nn2φ

)3
.

Now let c and λ denote the continuous random vectors and let c̄ ∈ Uε(c) and λ̄ ∈ Uε(λ)
denote the discrete random vectors obtained from c and λ as described above. Further-
more, let w = −[u1, . . . , un] ·λ and w̄ = −[u1, . . . , un] · λ̄. We introduce the event D which
occurs if one of the following holds:

1. There exists a pair (z1, z2) ∈ V2(P) such that cTz1 and cTz2 are not in the
same relation as c̄Tz1 and c̄Tz2 or cTz1 = cTz2 or c̄Tz1 = c̄Tz2.

105

2. There exists a triple (z1, z2, z3) ∈ V3(P) such that wT·(z2−z1)
cT·(z2−z1) and wT·(z3−z2)

cT·(z3−z2)

are not in the same relation as w̄T·(z2−z1)
c̄T·(z2−z1) and w̄T·(z3−z2)

c̄T·(z3−z2) .

Here, a and b being in the same relation as ā and b̄ means that sgn(a − b) = sgn(ā − b̄),
where sgn(x) = −1 for x < 0, sgn(x) = 0 for x = 0, and sgn(x) = +1 for x > 0.

Let X and X̄ denote the number of pivots of the shadow vertex algorithm with con-
tinuous random vectors c and λ and with discrete random vectors c̄ and λ̄, respectively.
We will first argue that X = X̄ if event D does not occur. In both cases, we start in the
same vertex x0. In each vertex x, the algorithm chooses among the neighbors of x with a
larger c-value (or c̄-value, respectively) the neighbor z with the smallest slope wT·(z−x)

cT·(z−x) (or
w̄T·(z−x)
c̄T·(z−x) , respectively). If event D does not occur, then in both cases the same neighbors
of x are considered and, additionally, the order of their slopes is the same. Hence, in both
cases the same sequence of vertices is considered.

Now let Y be the random variable that takes the value mn if event D occurs and the
value 0 otherwise. Clearly, X̄ ≤ X + Y and, thus,

E
[
X̄
]
≤ E [X] + E [Y] ≤ O

(
mn2

δ2 + m
√
nφ

δ

)
+mn ·Pr [D] ,

where the last inequality stems from Theorem 3.7. In the remainder of this proof we show
that the probability Pr [D] of event D is bounded from above by 1/mn. For this, let us
assume that the first part of the definition of event D is fulfilled for a pair (z1, z2) ∈ V2(P).
If cTz1 and cTz2 are not in the same relation as c̄Tz1 and c̄Tz2, then there exists a µ ∈ [0, 1]
such that

µ · (cTz1 − cTz2) + (1− µ) · (c̄Tz1 − c̄Tz2) = 0 .

If we consider the vector ĉ := µ · c+ (1− µ) · c̄ ∈ Uε(c), then we obtain

ĉT · (z2 − z1) = µ · cT · (z2 − z1) + (1− µ) · c̄T · (z2 − z1) = 0 .

Hence, the event described in Lemma 3.21 occurs. This event also occurs if cTz1 = cTz2
or c̄Tz1 = c̄Tz2.

Let us now assume that the second part of the definition of event D is fulfilled for a
triple (z1, z2, z3) ∈ V3(P), but not the first one, and let us consider the function f : [0, 1]→
R, defined by

f(µ) =
(
µ · w + (1− µ) · w̄

)T · (z2 − z1)(
µ · c+ (1− µ) · c̄

)T · (z2 − z1)
−
(
µ · w + (1− µ) · w̄

)T · (z3 − z2)(
µ · c+ (1− µ) · c̄

)T · (z3 − z2)
.

The denominators of both fractions are linear in µ and, since the first part of the definition
of event D does not hold, the signs for µ = 0 and µ = 1 are the same and different from 0.
Hence, both denominators are different from 0 for all µ ∈ [0, 1]. Consequently, function f
is continuous (on [0, 1]). As we have

f(0) = w̄T · (z2 − z1)
c̄T · (z2 − z1) −

w̄T · (z3 − z2)
c̄T · (z3 − z2)

106

and
f(1) = wT · (z2 − z1)

cT · (z2 − z1) −
wT · (z3 − z2)
cT · (z3 − z2)

and these differences have different signs as the second part of the definition of event D is
fulfilled, there must be a value µ ∈ [0, 1] for which f(µ) = 0. This implies

ŵT · (z2 − z1)
ĉT · (z2 − z1) = ŵT · (z3 − z2)

ĉT · (z3 − z2)

for ĉ :=µ · c+ (1−µ) · c̄ ∈ Uε(c), λ̂ :=µ ·λ+ (1−µ) · λ̄ ∈ Uε(λ), and ŵ :=−[u1, . . . , un] · λ̂ =
µ · w + (1− µ) · w̄. Thus, the event described in Lemma 3.24 occurs.

By applying Lemma 3.21 and Lemma 3.24 we obtain

Pr [D] ≤ 2mnn3/2εφ+ 12mnn2ε1/3φ

δ
≤ 4mnn2ε1/3φ

δ
+ 12mnn2ε1/3φ

δ

= 16mnn2φ

δ
· ε1/3 ≤ 1

mn
.

This completes the proof.

Lemma 3.25 states that if we draw 2n·B(m,n, φ, δ) random bits for the 2n components
of c and λ, then the expected number of pivots does not increase significantly. We consider
now the case that the parameter δ is not known (and also no good lower bound). We will
use the fraction δ̂ = δ̂(n, φ) := 2n3/2/φ as an estimate for δ. For the case φ > 2n3/2/δ, in
which the repeated shadow vertex algorithm is guaranteed to yield the optimal solution,
this is a valid lower bound for δ. For the case φ < 2n3/2/δ this estimate is too large and we
would draw too few random bits, leading to a (for our analysis) unpredictable running time
behavior of the shadow vertex method. To solve this problem, we stop the shadow vertex
method after at most 8n · p(m,n, φ, δ̂(n, φ)) pivots, where p(m,n, φ, δ) = O

(
mn2

δ2 + m
√
nφ
δ

)
is the upper bound for the expected number of pivots stated in Lemma 3.25. When the
shadow vertex method stops, we assume that the current choice of φ is too small (although
this does not have to be the case) and restart the repeated shadow vertex algorithm with
2φ. Recall that this is the same doubling strategey that is applied when the repeated
shadow vertex algorithm yields a non-optimal solution for the original linear program. We
call this algorithm the shadow vertex algorithm with random bits.

Theorem 3.26. The shadow vertex algorithm with random bits solves linear programs
with n variables and m constraints satisfying the δ-distance property using O

(
mn4

δ2 · log
(1
δ

))
pivots in expectation if a feasible solution is given.

Note that, in analogy, all other results stated in Theorem 1.8 and Theorem 1.9 also
hold for the shadow vertex algorithm with random bits with an additional O(n)-factor (or
O(m)-factor when no feasible solution is given).

Proof. Let us assume that the shadow vertex algorithm with random bits does not find
the optimal solution before the first iteration i? for which φi? > 2n3/2/δ. For iterations
i ≥ i? we know that the shadow vertex algorithm will return the optimal solution (or
detect, that the linear program is unbounded) if it is not stopped because the number of

107

pivots exceeds 8n · p(m,n, φi, δ̂(n, φi)). Due to Markov’s inequality, the probability of the
latter event is bounded from above by 1/8n (for each facet of the optimal solution) because
p(m,n, φi, δ̂(n, φi)) ≥ p(m,n, φi, δ) due to δ̂(n, φi) ≤ δ and p(m,n, φi, δ) is an upper bound
for the expected number of pivots. As n facets have to be identified in iteration i, the
probability that the shadow vertex method stops because of too many pivots is bounded
from above by n · 1/8n = 1/8. Hence, the expected number of pivots of all iterations
i ≥ i?, provided that iteration i? is reached, is at most

∞∑
i=i?

(1
8

)i−i?
· 7

8 · n · 8n · p(m,n, φi, δ̂(n, φi))

=7n2 ·
∞∑
i=i?

1
8i−i? · p

(
m,n, φi,

2n3/2

φi

)

=O

8i?n2 ·
∞∑
i=i?

1
8i ·

m
√
nφi

2n3/2

φi

 = O

(
8i?n ·

∞∑
i=i?

1
8i ·mφ

2
i

)

=O
(

8i?n ·
∞∑
i=i?

1
8i ·m · (2

in3/2)2
)

= O

(
8i?n ·

∞∑
i=i?

1
2i ·mn

3
)

=O(4i?mn4) = O

(
mn4

δ2

)
.

Some equations require further explanation. The factor n · 8n · p(m,n, φi, δ̂(n, φi)) stems
from the fact that we have to identify n facets, and for each we stop after at most 8n ·
p(m,n, φi, δ̂(n, φi)) pivots. The second equation is in accordance with Lemma 3.25, which
states that p(m,n, φ, δ) = O

(
mn2

δ2 + m
√
nφ
δ

)
. As the term mn2/δ2 is dominated by the term

m
√
nφ/δ when φ ≥ n3/2/δ, it can be omitted in the O-notation for such values. Above

we only consider iterations i ≥ i?, i.e., φi ≥ φi? > 2n3/2/δ. The last equation is due to the
fact that

2i?−1n3/2 = φi?−1 ≤
2n3/2

δ
,

i.e., 2i? ≤ 4/δ and, hence, 4i? = O(1/δ2).
To finish the proof, we observe that the iterations i = 1, . . . , i? require at most

i?−1∑
i=1

n · 8n · p(m,n, φi, δ̂(n, φ)) =
i?−1∑
i=1

n · 8n · p
(
m,n, φi,

2n3/2

φi

)

=O
(
i?−1∑
i=1

n2 · mn
2

δ2

)
= O

(
i? · mn

4

δ2

)
= O

(
log

(1
δ

)
· mn

4

δ2

)

pivots in expectation. The second equation stems from Lemma 3.25, which states that
p(m,n, φ, δ) = O

(
mn2

δ2 + m
√
nφ
δ

)
. The second term in the sum can be omitted if φ =

O(n3/2/δ), which is the case for φ1, . . . , φi?−1. Finally, i? is the smallest integer i for
which 2in3/2 > 2n3/2/δ. Hence, i? = O(log(1/δ)).

108

3.6 Finding a Basic Feasible Solution
In this section we discuss how Phase 1 can be realized. In general there are, of course,
several known textbook methods how Phase 1 can be implemented. However, for our
purposes it is crucial that the parameter δ (or ∆) is not too small (or too large) for the
linear program that needs to be solved in Phase 1. Ideally we would like it to be identical
with the parameter δ (or ∆) of the matrix A of the original linear program. Eisenbrand
and Vempala have addressed this problem and have presented a method to implement
Phase 1. Their method is, however, very different from usual textbook methods and needs
to solve m different linear programs to find an initial feasible solution for the given linear
program.

In this section we will argue that also one of the usual textbook methods can be applied.
We argue that 1/δ increases by a factor of at most

√
m and that ∆ does not change at all

in case one considers integer matrices (in particular, for totally unimodular matrices).
Let m and n be arbitrary positive integers, let A ∈ Rm×n be an arbitrary matrix

without zero-rows, and let c ∈ Rn and b ∈ Rm be arbitrary vectors. For finding a basic
feasible solution of the linear program

(LP)
{

max cTx

s.t. Ax ≤ b

if one exists, or detecting that none exists, otherwise, we can solve the following linear
program:

(LP’)


min

m∑
i=1

yi

s.t. Ax− y ≤ b
y ≥ 0

In the remainder of this section let us assume that matrix A has full column rank, that
is, rank(A) = n. Otherwise, we can transform the linear program (LP) as stated in
Section 3.7.1 before considering (LP’). Furthermore, let us assume that the matrix Ā,
formed by the first n rows of matrix A, is invertible. This entails no loss of generality as
this can always be achieved by permuting the rows of matrix A.

Let b̄ denote the vector given by the first n entries of vector b and let x̄ denote the
vector for which Āx̄ = b̄. The vector (x′, y′) = (x̄,max{Ax̄ − b, 0}) is a feasible solution
of (LP’), where the maximum is meant component-wise and 0 denotes the m-dimensional
null vector. This is true because Ax′ − y′ ≤ Ax̄ − (Ax̄ − b) = b and y′ ≥ 0. Moreover,
(x′, y′) is a basic solution: By the choice of x̄ the first n inequalities of Ax − y ≤ b are
tight as well as the first n non-negativity constraints. For each k > m the kth inequality
of Ax − y ≤ b or the kth non-negativity constraint is tight. Hence, the number of tight
constraints is at least 2n + (m − n) = m + n, which equals the number of variables of
(LP’).

Finally, we observe that a vector (x, 0) is a basic feasible solution of (LP’) if and only
if x is a basic feasible solution of (LP). Consequently, by solving the linear program (LP’)
we obtain a basic feasible solution of the linear program (LP) (if the optimal value is 0)

109

or we detect that (LP) is infeasible (if the optimal value is larger than 0). The linear
program (LP’) can be solved as described in Section 3.3.3. However, the running time is
now expressed in the parameters m′ = 2m, n′ = m+ n and δ(B) (or ∆(B)) of the matrix

B =
[

A −Im
Om×n −Im

]
∈ R(m+m)×(n+m) .

Before analyzing the parameters δ(B) and ∆(B), let us show that matrix B has full column
rank.

Lemma 3.27. The rank of matrix B is m+ n.

Proof. Recall that we assumed that the matrix Ā given by the first n rows of matrix A
is invertible. Now consider the first n rows and the last m rows of matrix B. These rows
form a submatrix B̄ of B of the form

B̄ =
[

Ā C
Om×n −Im

]

for C = [−In×n,On×(m−n)]. As B̄ is a 2× 2-block-triangular matrix, we obtain det(B̄) =
det(Ā) ·det(−In) 6= 0, that is, the first n rows and the last m rows of matrix B are linearly
independent. Hence, rank(B) = m+ n.

The remainder of this section is devoted to the analysis of δ(B) and ∆(B), respectively.

3.6.1 A Lower Bound for δ(B)
Before we derive a bound for the value δ(B), let us give a characterization of δ(M) for a
matrix M with full column rank.

Lemma 3.28. Let M ∈ Rm×n be a matrix with rank n. Then

1
δ(M) = max

k∈[n]
max

{
‖z‖ | r1

T, . . . , rn
T linear independent rows

of M and [N (r1), . . . ,N (rn)]T · z = ek

}
,

where ek denotes the kth unit vector.

Proof. The correctness of the above statement follows from

1
δ(M) = max

{ 1
δ(r1, . . . , rn) | r1

T, . . . , rn
T lin. indep. rows of M

}
= max

{ 1
δ(N (r1), . . . ,N (rn)) | r1

T, . . . , rn
T lin. indep. rows of M

}
= max

{
max
k∈[n]

‖vk‖ |
r1

T, . . . , rn
T lin. indep. rows of M and

[v1, . . . , vn]−1 = [N (r1), . . . ,N (rn)]T

}
.

The first equation is due to the definition of δ, the second equation holds as δ is invariant
under scaling of rows, and the third equation is due to Claim 1 of Lemma 3.2. The
vector vk from the last line is exactly the vector z for which [N (r1), . . . ,N (rn)]T · z = ek.
This finishes the proof.

110

For the following lemma let us without loss of generality assume that the rows of
matrix A are normalized. This does neither change the rank of A nor the value δ(A).

Lemma 3.29. Let A and B be matrices of the form described above. Then

1
δ(B) ≤

2
√
m− n+ 1
δ(A) .

Proof. In accordance with Lemma 3.28, it suffices to show that for any m + n linearly
independent rows r1

T, . . . , rm+n
T of B and any k = 1, . . . ,m+ n the inequality

‖z‖ ≤ 2
√
m− n+ 1
δ(A)

holds, where z is the vector for which [N (r1), . . . ,N (rm+n)]T · z = ek.
Let r1

T, . . . , rm+n
T be arbitrary m + n linearly independent rows of B and let k ∈

[m + n] be an arbitrary integer. We consider the equation B̂ · z = ek, where B̂ =
[N (r1), . . . ,N (rm+n)]T. Each row r` is of either one of the two following types: Type 1
rows correspond to a row from A and for these we have ‖r`‖ = 2 as the rows of A are
normalized. Type 2 rows correspond to a non-negativity constraint of a variable yi. For
these we have ‖r`‖ = 1. Observe that each row has exactly one “−1”-entry within the
last m columns.

We categorize type 1 and type 2 rows further depending on the other selected rows:
Type 1a rows are type 1 rows for which a type 2 row exists among the rows r1, . . . , rm+n
which has its “−1”-entry in the same column. This type 2 row is then classified as a
type 2a row. The remaining type 1 and type 2 rows are classified as type 1b and type 2b
rows, respectively. Observe that we can permute the rows of matrix B̂ arbitrarily as we
show the claim for all unit vectors ek. Furthermore, we can permute the columns of B̂
arbitrarily because this only permutes the rows of the solution vector z. This does not
influence its norm. Hence, without loss of generality, matrix B̂ contains normalizations of
type 1a, of type 2a, of type 1b, and of type 2b rows in this order and the normalizations
of the type 2a rows are ordered the same way as the normalizations of their corresponding
type 1a rows.

Let m1, m2, and m3 denote the number of type 1a, type 1b, and type 2b rows, respec-
tively. Observe that the number of type 2a rows is also m1. As matrix B̂ is invertible,
each column contains at least one non-zero entry. Hence, we can permute the columns
of B̂ such that B̂ is of the form

B̂ =


1
2A1 −1

2Im1 O O
O −Im1 O O

1
2A2 O −1

2Im2 O
O O O −Im3

 ∈ R(m+n)×(m+n) ,

where A1 and A2 are m1 × n- and m2 × n-submatrices of A, respectively. The number of
rows of B̂ is 2m1 +m2 +m3 = m+ n, whereas the number of columns of B̂ is n+m1 +
m2 + m3 = m + n. This implies m1 = n and m2 ≤ m − n. Particularly, A1 is a square

111

matrix. As matrix B̂ is a 2 × 2-block-triangular matrix and the top left and the bottom
right block are 2× 2-block-triangular matrices as well, we obtain

det(B̂) = det
(1

2A1

)
· (−1)m1 ·

(
−1

2

)m2

· (−1)m3 = ±det(A1) · 1
2n+m2

.

Due to the linear independence of the rows r1
T, . . . , rm+n

T we have det(B̂) 6= 0. Conse-
quently, det(A1) 6= 0, that is, matrix A1 is invertible.

We partition vector z and vector ek into four components z1, . . . , z4 and e(1)
k , . . . , e

(4)
k ,

respectively, and rewrite the system B̂ · z = ek of linear equations as follows:

1
2A1z1 −

1
2z2 = e

(1)
k

−z2 = e
(2)
k

1
2A2z1 −

1
2z3 = e

(3)
k

−z4 = e
(4)
k

Now we distinguish between four pairwise distinct cases e(i)
k 6= 0 for i = 1, . . . , 4. In any

case recall that the rows of A1 and A2 are rows of A, which are normalized. Furthermore,
recall that the rows of A1 are linearly independent.

• Case 1: e(1)
k 6= 0. In this case we obtain z2 = 0 and z4 = 0. This implies z1 = 2ẑ,

where ẑ is the solution of the equation A1ẑ = e
(1)
k + 1

2 ·0 = e
(1)
k . As the rows of matrix A1

are normalized, Lemma 3.28 yields ‖ẑ‖ ≤ 1/δ(A) and, hence, ‖z1‖ ≤ 2/δ(A). Next, we
obtain z3 = A2z1 − 2 · e(3)

k = A2z1 − 0 = A2z1. Each entry of z3 is a dot product of a
(normalized) row from A and z1. Hence, the absolute value of each entry is bounded
by ‖z1‖ ≤ 2/δ(A). This yields the inequality

‖z‖ =
√
‖z1‖2 + ‖z2‖2 + ‖z3‖2 + ‖z4‖2 ≤

√
(1 +m2) · (2/δ(A))2

≤ 2
√
m− n+ 1
δ(A) .

For the last inequality we used the fact that m2 ≤ m− n.

• Case 2: e(2)
k 6= 0. Here we obtain z2 = −e(2)

k , z4 = 0, and A1z1 = 2 · e(1)
k + z2 =

2 · 0 − e(2)
k = −e(2)

k , that is, z1 = −ẑ, where ẑ is the solution of the equation A1ẑ =
e

(2)
k . Analogously as in Case 1, we obtain ‖ẑ‖ ≤ 1/δ(A) and, hence, ‖z1‖ ≤ 1/δ(A).
Moreover, we obtain z3 = A2z1− 2 · e(3)

k = A2z1− 0 = A2z1, that is, the absolute value
of each entry of z3 is bounded by ‖z1‖ ≤ 1/δ(A). Consequently,

‖z‖ ≤
√

1 + (1 +m2) · (1/δ(A))2 ≤
√
m− n+ 2
δ(A) ≤ 2

√
m− n+ 1
δ(A) .

For the second inequality we used m2 ≤ m − n and δ(A) ≤ 1 by definition of δ(A).
In the last inequality we used the fact that m − n + 1 ≥ 1 and

√
x+ 1 ≤ 2

√
x for all

x ≥ 1/3.

112

• Case 3: e(3)
k 6= 0. In this case we obtain z2 = 0, z4 = 0, and hence, z1 = 0. This yields

z3 = −2 · e(3)
k and

‖z‖ = ‖z3‖ = 2 ≤ 2
√
m− n+ 1
δ(A) ,

where we again used δ(A) ≤ 1.

• Case 4: e(4)
k 6= 0. Here we obtain z2 = 0, z4 = −e(4)

k , and hence, z1 = 0 and z3 = 0.
Consequently, we get

‖z‖ = ‖z4‖ = 1 ≤ 2
√
m− n+ 1
δ(A) ,

which completes this case distinction.

As we have seen, in any case the inequality ‖z‖ ≤ 2
√
m− n+ 1/δ(A) holds, which finishes

the proof.

3.6.2 An Upper Bound for ∆(B)
Although parameter ∆(B) can be defined for arbitrary real-valued matrices, its meaning
is limited to integer matrices when considering our analysis of the expected running time
of the shadow vertex method. Hence, in this section we only deal with the case that
matrix A is integral. Unlike in Section 3.6.1, we do not normalize the rows of matrix A
before considering the linear program (LP’). As a consequence, matrix B is also integral.

The following lemma establishes a connection between ∆(A) and ∆(B).

Lemma 3.30. Let A and B be of the form described above. Then ∆(B) = ∆(A).

Proof. It is clear that ∆(B) ≥ ∆(A) as matrix B contains matrix A as a submatrix.
Thus, we can concentrate on proving that ∆(B) ≤ ∆(A). For this, consider an arbitrary
k × k-submatrix B̂ of B. Matrix B̂ is of the form

B̂ =
[

A′ −I1
Ok1×(k−k2) −I2

]
,

where A′ is a (k − k1) × (k − k2)-submatrix of A and I1 and I2 are (k − k1) × k2- and
k1 × k2-submatrices of Im, respectively. Our goal is to show that |det(B̂)| ≤ ∆(A). By
analogy with the proof of Lemma 3.29 we partition the rows of B̂ into classes. A row of B̂
is of type 1 if it contains a row from A′. Otherwise, it is of type 2. Consequently, there
are k − k1 type 1 and k1 type 2 rows.

These type 1 and type 2 rows are further categorized into three subtypes depending on
the “−1”-entry (if exists) within the last k2 columns. Type 1 and type 2 rows that only
have zeros in the last k2 entries are classified as type 1c and type 2c rows, respectively.
The remaining type 1 and type 2 rows have exactly one “−1”-entry within the last k2
columns. These are partitioned into subclasses as follows: If there are a type 1 row and a
type 2 row that have their “−1”-entry in the same column, then these rows are classified as
type 1a and type 2a, respectively. The type 1 and type 2 rows that are neither type 1a nor
type 1c nor type 2a nor type 2c are referred to as type 1b and type 2b rows, respectively.

113

Note that type 2c rows only contain zeros. If matrix B̂ contains such a row, then
| det(B̂)| = 0 ≤ ∆(A). Hence, in the remainder we only consider the case that matrix B̂
does not contain type 2c rows. With the same argument we can assume, without loss of
generality, that matrix B̂ does not contain a column with only zeros. As permuting the
rows and columns of matrix B̂ does not change the absolute value of its determinant, we
can assume that B̂ contains type 1a, type 1c, type 2a, type 1b, and type 2b rows in this
order and that the type 2a rows are ordered the same ways as their corresponding type 1a
rows. Furthermore, we can permute the columns of B̂ such that it has the following form:

B̂ =


A1 −I O O
A2 O O O
O −I O O
A3 O −I O
O O O −I

 ,

where A1, A2, and A3 are submatrices of A′ and, hence, of A. Iteratively decomposing
matrix B̂ into blocks and exploiting the block-triangular form of the matrices obtained in
each step yields

| det(B̂)| =

∣∣∣∣∣∣∣det


A1 −I
A2 O
O −I



∣∣∣∣∣∣∣ ·
∣∣∣∣∣det

([
−I O
O −I

])∣∣∣∣∣ =

∣∣∣∣∣∣∣det


A1 −I
A2 O
O −I



∣∣∣∣∣∣∣

=
∣∣∣∣∣det

([
A1
A2

])∣∣∣∣∣ · | det(−I)| =
∣∣∣∣∣det

([
A1
A2

])∣∣∣∣∣ .
The absolute value of the latter determinant is bounded from above by ∆(A). This
completes the proof.

3.7 Justification of Assumptions
We assumed the matrix A ∈ Rm×n to have full column rank and we assumed the polyhe-
dron {x ∈ Rn |Ax ≤ b} to be bounded. In this section we show that this entails no loss
of generality by giving transformations of arbitrary linear programs into linear programs
with full column rank whose polyhedra of feasible solutions are bounded.

3.7.1 Raising the Rank of Matrix A

For the algorithm we have assumed that the matrix A determining the polyhedron P =
{x ∈ Rn |Ax ≤ b} has full column rank. In this section we provide a solution if this
condition is not met. For this, we describe the transformation of A into a matrix A′

with full column rank by adding new linearly independent rows (we will ensure that the
δ-distance property respectively the value of ∆ is not violated by the transformation of A
into A′).

114

Transformation with respect to δ

Assume that we have an arbitrary matrix A = [a1, . . . , am]T ∈ Rm×n with rank r =
rank(A) < n. This implies that the polyhedron P = {x |Ax ≤ b} has no vertices. Let
c ∈ Rn be an arbitrary vector. Then the linear program max{cTx |Ax ≤ b} has either no
solution (this is true if P is empty or cTx is unbounded) or infinitely many solutions. We
distinguish two different cases.

Case 1: c ∈ span{a1, . . . , am}
Let span{a1, . . . , am}⊥ denote the orthogonal complement of span{a1, . . . , am}. Further-
more let o1, . . . , on−r be an orthonormal basis of span{a1, . . . , am}⊥. Then the set of
solutions L = {arg max cTx |Ax ≤ b} equals the set

L̃ = {v + arg max cTx |Ax ≤ b, Ãx = O, v ∈ span{a1, . . . , am}⊥},

where Ã = [o1, . . . , on−r]. Thus we can add rows [o1,−o1, . . . , on−r,−on−r] and extend the
vector b by zero entries and calculate the set of solutions (note that the δ-distance-property
does not change under this extension of A by Lemma 3.31). This equals the case where
n − r basis variables are known and we can proceed as in Section 3.3.1 by reducing the
polyhedron to dimension r.

Case 2: c 6∈ span{a1, . . . , am}
We maintain the notation from above. Then we have a linear combination

c =
r∑
i=1

`i · ai +
n−r∑
i=1

˜̀
i · oi

where ˜̀
k 6= 0 for at least one k ∈ [n− r]. Without loss of generality we may assume that

˜̀
k > 0. But x is not bounded for direction ok by A and thus ok’s coefficient in the linear
combination of x may be chosen arbitrarily large. Thus max{cTx |Ax ≤ b} is unbounded.

Finally we prove that adding rows from the orthogonal complement of 〈a1, . . . , am〉
to A does not change the δ-distance property.

Lemma 3.31. Let A = [a1, . . . , am]T ∈ Rm×n be an arbitrary matrix of rank r ≤ n − 1
and ‖ai‖ = 1 for i ∈ [m]. Let v ∈ Rn be a vector such that ‖v‖ = 1 and 〈v, ai〉 = 0 for
i ∈ [m]. Then rank(A′) = r+ 1 and furthermore δ(A′) = δ(A) where A′ = [a1, . . . , am, v]T
is defined by adding the new row vT to matrix A.

Proof. First choose r linearly independent rows of A. Without loss of generality we may as-
sume a1, . . . , ar. To calculate δ({a1 . . . , ar−1}, ar) we choose a vertex x ∈ span{a1, . . . , ar}
with x · ai = 0 for i ∈ [r − 1] and x · ar = 1. Let α be the angle between ar and x. Then
δ({a1 . . . , ar−1}, ar) = sin(π/2− α) = cos(α) = ‖ar‖

‖x‖ = 1
‖x‖ .

Moreover let v, o2, . . . , on−r be an orthonormal basis of the orthogonal complement
span{a1, . . . , ar}⊥. Then x · v = 0 and x · oi+1 = 0 for i ∈ [n − r − 1] because of
x ∈ span{a1, . . . , ar}. Thus, x is the unique solution of the system of linear equations

[a1, . . . , ar, v, o2, . . . , on−r]Tx = er,

where er ∈ Rn denotes the rth canonical unit vector.

115

In accordance with Definition 3.1 and Lemma 3.2 1, we obtain δ(A) by choosing a
solution with minimum norm over all such systems of linear equations and all vectors
ei ∈ Rn with i ∈ [r]. Consider now the matrix A′ which is obtained by adding the row v
to A. To calculate δ(A′) we have to calculate the minimal norm 1

‖x‖ of the set of solutions
of the systems of linear equations of the form

[a′1, . . . , a′r, v, o2, . . . , on−r]Tx = ei,

with i ∈ [r + 1]. In the case where i ≤ r the set of systems of linear equations equals
the set of systems of linear equation from the case where we calculate δ(A). Thus the
minimum norm does not change and we obtain δ(A′) = δ(A).

In the case where i = r + 1 the solution of the systems of linear equations is given by
x = v and we obtain 1/‖x‖ = 1. But this is the maximum norm, which can be reached
by a solution x and thus the minimum norm does not change at all which completes the
proof.

Transformation with respect to ∆

If we want to ensure that the value ∆(A) does not change under the tranformation (which
means ∆(A′) = ∆(A)) we have to consider a slight modification of the above transforma-
tion. Especially, we will add vectors ei for i ∈ [n] which are part of the canonical basis
of Rn such that ei 6∈ span{a1, . . . , am}.
Again, we know that in Case 1 the polyhedron is either empty or has infinitely many
solutions. Thus, if we find a solution

x′ ∈ {arg max cTx |Ax ≤ b, Ãx = O},

where Ã = [ei1 , . . . , ein−r] we already know that x′ also maximizes c with respect to P .
Furthermore if we are in Case 2 which means c 6∈ span{a1, . . . , am} then the function cTx
is unbounded for elements x ∈ P . It remains to show that ∆ does not change by adding
rows ei to A.

Lemma 3.32. Let A = [a1, . . . , am]T ∈ Zm×n be an arbitrary matrix of rank r ≤ n − 1.
Let ei ∈ Rn be a vector part of the canonical basis of Rn such that ei 6∈ span{a1, . . . , am}.
Then rank(A′) = r + 1 and furthermore ∆(A′) = ∆(A) where A′ = [a1, . . . , am, ei]T is
defined by adding the new row ei

T to matrix A.

Proof. Let B be a submatrix of A′. Then either B contains no entries from row ei
T

(which means det(B) ≤ ∆(A)) or one row of B is a subvector e′ of eiT. We distinguish
two different cases:

Case 1: e′ = 0. Then B has a zero row and thus det(B) = 0 ≤ ∆(A).
Case 2: e′ 6= 0. In this case B has a row e′T, which is element of the canonical basis.

Then B has the form (
Ã
e′T

)
.

Using the Laplace expansion, the absolute value of the determinant of B is at most the
absolute value of a determinant of a submatrix of Ã which is a submatrix of A. We obtain
det(B) ≤ ∆(A) which concludes the proof.

116

3.7.2 Translation into a Bounded Polyhedron

For the algorithm we have assumed that the polyhedron P = {x ∈ R |Ax ≤ b} is bounded.
This may be done because in the case where P is unbounded we tranform P into a
polytope P ′ and run the algorithm for P ′. If the optimum solution is unique and not a
vertex of P , then we assert that the linear program max{cTx |Ax ≤ b} is unbounded. To
transform P we use the construction applied in [25]. First we choose n linearly independent
rows of A. Without loss of generality we may assume the rows are given by a1, . . . , an.
If we find a ball B(0) with radius r which contains all vertices of P , then we define a
parallelpiped

Z = {x ∈ Rn | − r ≤ ai · x ≤ r, i ∈ [n]},

which contains all vertices of P and does not violate the δ-distance property since it is
defined by rows of A. Finally, set P ′ = P ∩Z and start the algorithm on polytope P ′. Note
that P ′ has δ-distance since the set of rows of A did not change during the transformation.

To construct a ball with the desired properties we have to assume A ∈ Qm×n such
as b ∈ Qm, which means no loss of generality for the implementation of the algorithm.
By a slight generalization of Lemma 3.1.33 of [29] all vertices of the polyhedron P are
contained in a ball B(0) with radius r =

√
n · 2enc(A,b)−n2 · lcm(A)n if A ∈ Q, where the

function enc returns the encoding length and the function lcm(M) for a rational matrix
M ∈ Qm×n returns the least common multiple of the denominators of the entries of M .
As a convention, the denominator of 0 is defined as 1.

Lemma 3.33. If P = {x ∈ Rn |Ax ≤ b} for A ∈ Qm×n and b ∈ Qm, then all vertices of
P are contained in a ball B around 0 with radius r =

√
n · 2enc(A,b)−n2 · lcm(A)n.

Proof. We have to calculate an upper bound for the length of all vertices. Thus, for each
submatrix B of A of rank n and the corresponding subvector b′ of b we have to bound the
length of the solution x of Bx = b′. Applying Cramer’s rule, the components xi of x are
given by

xi = det(Bi)
det(B) ,

where Bi equals B after replacing the ith column of B by b′. We obtain lcm(B)n ·det(B) =
det(lcm(B) ·B) ≥ 1 since lcm(B) ·B is integral and non-singular. All together we obtain

xi = det(Bi)
det(B) ≤ det(Bi) · lcm(B)n

≤ 2enc(Bi)−n2 · lcm(B)n

≤ 2enc(B,b′)−n2 · lcm(B)n.

Thus, choosing r =
√
n · 2enc(A,b)−n2 · lcm(A)n the ball B(0) with radius r contains all

vertices of P .

117

Chapter 4

Conclusion

Hierarchical Clustering In this dissertation we gave the first known lower bound for
the existence of hierarchical clusterings for the k-center problem. This leaves open a gap
between the lower bound of 2 and the upper bound of 4 also shown in this dissertation.
Moreover it leaves room for further lower bounds with respect other objective functions
like k-means. We have initiated the theoretical study of the approximation guarantee of
Ward’s method. In particular, we have shown that Ward computes a 2-approximation
on well-separated instances, which can be seen as the first theoretical explanation for its
popularity in applications. We have also seen that its worst-case approximation guarantee
increases exponentially with the dimension of the input and that it computes an O(1)-
approximation on one-dimensional instances. These results leave room for further research.
It would be particularly interesting to better understand the worst-case behavior of Ward’s
method. It is not clear, for example, if it computes a constant-factor approximation if the
dimension is constant. Our analysis of the one-dimensional case is very complex and the
factor hidden in theO-notation is large. It would be interesting to simplify our analysis and
to improve the approximation factor. We conjecture that the instance shown in Figure 2.14
is the worst one-dimensional instance for Ward’s method with an approximation factor
of 2 +

√
2 ≈ 3.41.

We improved the known approximation guarantees for the popular complete-linkage
method which yields an O(1)-approximate hierarchical clusterings for the diameter k-
clustering problem and the (discrete) k-center problem, assuming that d is a constant.
For this it was sufficient to improve the second phase of the analysis by Ackermann et
al. [2] (i.e., the last k merge operations). We used their results about the first phase to
obtain our results. It is a very interesting question if the dependence on the dimension
can be improved in the first phase. If we express the known lower bound of Ackermann et
al. [2] in terms of d then it becomes Ω(p

√
log d). Hence, in terms of d, there is still a huge

gap between the known upper and lower bounds. Another interesting question is whether
the upper bound of O(log k) holds also for metrics that are not induced by norms.

Shadow Vertex Algorithm We also have shown that the shadow vertex algorithm
can be used to solve linear programs possessing the δ-distance property in strongly poly-
nomial time with respect to n, m, and 1/δ. The bound we obtained in Theorem 1.8
depends quadratically on 1/δ. Roughly speaking, one term 1/δ is due to the fact that

118

the smaller δ the less random is the objective function wTx. This term could in fact be
replaced by 1/δ(B) where B is the matrix that contains only the rows that are tight for x.
The other term 1/δ is due to our application of the principle of deferred decisions in the
proof of Lemma 3.14. The smaller δ the less random is w(Z).

For packing linear programs, in which all coefficients of A and b are non-negative and
one has x ≥ 0 as additional constraint, it is, for example, clear that x = 0n is a basic
feasible solution. That is, one does not need to run Phase 1. Furthermore as in this
solution without loss of generality exactly the constraints x ≥ 0 are tight, δ(B) = 1 and
one occurrence of 1/δ in Theorem 1.8 can be removed.

119

Bibliography

[1] Margareta Ackerman and Shai Ben-David. Clusterability: A theoretical study. In
Proceedings of the Twelfth International Conference on Artificial Intelligence and
Statistics (AISTATS), pages 1–8, 2009.

[2] Marcel R. Ackermann, Johannes Blömer, Daniel Kuntze, and Christian Sohler. Anal-
ysis of agglomerative clustering. Algorithmica, 69(1):184–215, 2014.

[3] Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward. Better guar-
antees for k-means and euclidean k-median by primal-dual algorithms. In Proceedings
of the 58th IEEE Annual Symposium on Foundations of Computer Science (FOCS),
pages 61–72, 2017.

[4] Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat. NP-hardness of
Euclidean sum-of-squares clustering. Machine Learning, 75(2):245–248, 2009.

[5] David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seeding.
In Proceedings of the 18th ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1027–1035, 2007.

[6] Pranjal Awasthi, Avrim Blum, and Or Sheffet. Center-based clustering under pertur-
bation stability. Information Processing Letters, 112(1-2):49–54, 2012.

[7] Pranjal Awasthi, Moses Charikar, Ravishankar Krishnaswamy, and Ali Kemal Sinop.
The hardness of approximation of euclidean k-means. In Proceedings of the 31st
International Symposium on Computational Geometry (SoCG), pages 754–767, 2015.

[8] Pranjal Awasthi and Or Sheffet. Improved spectral-norm bounds for clustering. In
Proceedings of the 15th APPROX and 16th RANDOM, pages 37–49, 2012.

[9] Maria-Florina Balcan, Avrim Blum, and Santosh Vempala. A discriminative frame-
work for clustering via similarity functions. In Proceedings of the 40th Annual ACM
Symposium on Theory of Computing (STOC), pages 671–680, 2008.

[10] Maria-Florina Balcan and Yingyu Liang. Clustering under perturbation resilience.
SIAM Journal on Computing, 45(1):102–155, 2016.

[11] Maria-Florina Balcan, Yingyu Liang, and Pramod Gupta. Robust hierarchical clus-
tering. Journal of Machine Learning Research, 15(1):3831–3871, 2014. Appendix C,
page 4048.

120

[12] Shai Ben-David. Computational feasibility of clustering under clusterability assump-
tions. CoRR, abs/1501.00437, 2015.

[13] Shai Ben-David and Nika Haghtalab. Clustering in the presence of background noise.
In Proceedings of the 31th International Conference on Machine Learning, ICML
2014, Beijing, China, 21-26 June 2014, pages 280–288, 2014.

[14] Nicolas Bonifas, Marco Di Summa, Friedrich Eisenbrand, Nicolai Hähnle, and Martin
Niemeier. On sub-determinants and the diameter of polyhedra. In Proceedings of the
28th ACM Symposium on Computational Geometry (SoCG), pages 357–362, 2012.

[15] Karl Heinz Borgwardt. A probabilistic analysis of the simplex method. Springer-Verlag
New York, Inc., New York, NY, USA, 1986.

[16] Tobias Brunsch. Smoothed Analysis of Selected Optimization Problems
and Algorithms. PhD thesis, University of Bonn, 2014. http://nbn-
resolving.de/urn:nbn:de:hbz:5n-35439.

[17] Tobias Brunsch and Heiko Röglin. Finding short paths on polytopes by the shadow
vertex algorithm. In Proceedings of the 40th International Colloquium on Automata,
Languages and Programming (ICALP), pages 279–290, 2013.

[18] James R. Cole, Qiong Wang, Jordan A. Fish, Benli Chai, Donna M. McGarrell, Yanni
Sun, C. Titus Brown, Andrea Porras-Alfaro, Cheryl R. Kuske, and James M. Tiedje.
Ribosomal database project: data and tools for high throughput rrna analysis. Nucleic
Acids Research, 2013.

[19] Stephen A. Cook. The complexity of theorem-proving procedures. In Proc. of the 3rd
Annual ACM Symposium on Theory of Computing (STOC), pages 151–158, 1971.

[20] Amit Daniely, Nati Linial, and Michael E. Saks. Clustering is difficult only when it
does not matter. CoRR, abs/1205.4891, 2012.

[21] G.B. Dantzig. Programming in a linear structure. Comptroller, United States Air
Force, Washington DC, 1948.

[22] Aparna Das and Claire Kenyon-Mathieu. On hierarchical diameter-clustering and the
supplier problem. Theory of Computing Systems, 45(3):497–511, 2009.

[23] Sanjoy Dasgupta and Philip M. Long. Performance guarantees for hierarchical clus-
tering. Journal of Computer and System Sciences, 70(4):555–569, 2005.

[24] Martin E. Dyer and Alan M. Frieze. Random walks, totally unimodular matrices, and
a randomised dual simplex algorithm. Mathematical Programming, 64:1–16, 1994.

[25] Friedrich Eisenbrand and Santosh Vempala. Geometric random edge. CoRR,
abs/1404.1568, 2014.

[26] Tomás Feder and Daniel H. Greene. Optimal algorithms for approximate clustering.
In Proc. of the 20th Annual ACM Symposium on Theory of Computing (STOC), pages
434–444, 1988.

121

[27] Houman Ghaemmaghami, David Dean, Robbie Vogt, and Sridha Sridharan. Speaker
attribution of multiple telephone conversations using a complete-linkage clustering
approach. In Proc. of the 2012 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 4185–4188, 2012.

[28] Teofilo F. Gonzalés. Clustering to minimize the maximum intercluster distance. The-
oretical Computer Science, 38:293–306, 1985.

[29] Martin Grötschel, Laszlo Lovasz, and Alexander Schrijver. Geometric Algorithms and
Combinatorial Optimization. Springer-Verlag New York, Inc., New York, NY, USA,
1980.

[30] I. Heller. On linear systems with integral valued solutions. Pacific Journal of Math-
ematics, 7(3):1351–1364, 1957.

[31] Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth
Silverman, and Angela Y. Wu. A local search approximation algorithm for k-means
clustering. Computational Geometry, 28(2-3):89–112, 2004.

[32] Richard M. Karp. Reducibility among combinatorial problems. Complexity of Com-
puter Computations, pages 85–103, 1972.

[33] Leonid Khachiyan. A polynomial algorithm in linear programming. Dokl Akad Nauk
SSSR, 244:1093–1096, 1979.

[34] Joshua Marc Koehnen. Ward-Verfahren mit k-median Zielfunktion, 2018. Bachelor’s
Thesis, in German.

[35] Amit Kumar and Ravindran Kannan. Clustering with spectral norm and the k-means
algorithm. In Proceedings of the 51th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 299–308, 2010.

[36] Shrinu Kushagra, Samira Samadi, and Shai Ben-David. Finding meaningful cluster
structure amidst background noise. In 27th International Conference on Algorithmic
Learning Theory (ALT), pages 339–354, 2016.

[37] Euiwoong Lee, Melanie Schmidt, and John Wright. Improved and simplified inap-
proximability for k-means. Information Processing Letters, 120:40–43, 2017.

[38] Guolong Lin, Chandrashekhar Nagarajan, Rajmohan Rajaraman, and David P.
Williamson. A general approach for incremental approximation and hierarchical clus-
tering. SIAM Journal on Computing, 39(8):3633–3669, 2010.

[39] Stuart P. Lloyd. Least squares quantization in PCM. Bell Laboratories Technical
Memorandum, 1957. later published as [40].

[40] Stuart P. Lloyd. Least squares quantization in PCM. IEEE Transactions on Infor-
mation Theory, 28(2):129–137, 1982.

122

[41] Meena Mahajan, Prajakta Nimbhorkar, and Kasturi R. Varadarajan. The Planar
k-means Problem is NP-Hard. In Proceedings of the 3rd Workshop on Algorithms and
Computation (WALCOM), pages 274–285, 2009.

[42] Konstantin Makarychev and Yury Makarychev. Metric perturbation resilience.
CoRR, abs/1607.06442, 2016.

[43] Ramgopal R. Mettu and C. Greg Plaxton. The online median problem. SIAM Journal
on Computing, 32(3):816–832, 2003.

[44] Rafail Ostrovsky, Yuval Rabani, Leonard J. Schulman, and Chaitanya Swamy. The
effectiveness of Lloyd-type methods for the k-means problem. Journal of the ACM,
59(6):28:1–28:22, 2012.

[45] C. Greg Plaxton. Approximation algorithms for hierarchical location problems. Jour-
nal of Computer and System Sciences, 72(3):425–443, 2006.

[46] Konrad Rieck, Philipp Trinius, Carsten Willems, and Thorsten Holz. Automatic
analysis of malware behavior using machine learning. Journal of Computer Security,
19(4):639–668, 2011.

[47] Melanie Schmidt. Coresets and streaming algorithms for the k-means problem and
related clustering objectives. PhD thesis, Universität Dortmund, 2014.

[48] Armin Schrenk. Konstruktion unterer Schranken für die maximale Approximations-
güte von Ward’s method, 2017. Bachelor’s Thesis, in German.

[49] Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the
simplex algorithm usually takes polynomial time. Journal of the ACM, 51(3):385–463,
2004.

[50] Éva Tardos. A strongly polynomial algorithm to solve combinatorial linear programs.
Operations Research, 34(2):250–256, 1986.

[51] Joe H. Ward Jr. Hierarchical grouping to optimize an objective function. Journal of
the American Statistical Association, 58:236–244, 1963.

123

Appendix A

Proofs from Section 3.4

In this chapter we give the omitted proofs from Section 3.4. These are merely contained
for the sake of completeness because they are very similar to the corresponding proofs
in [17].

Lemma 3.9. The probability of event Fε tends to 0 for ε→ 0.

Lemma A.1. The probability that there are two neighboring vertices z1, z2 of P such that
|cT · (z2 − z1)| ≤ ε · ‖z2 − z1‖ is bounded from above by 2mnnεφ.

Proof. Let z1 and z2 be arbitrary points in Rn, let u = z2 − z1, and let Aε denote the
event that |cT · u| ≤ ε · ‖u‖. As this inequality is invariant under scaling, we can assume
that ‖u‖ = 1. Hence, there exists an index i for which |ui| ≥ 1/

√
n ≥ 1/n. We apply the

principle of deferred decisions and assume that the coefficients cj for j 6= i are already
fixed arbitrarily. Then event Aε occurs if and only if ci ·ui ∈ [−ε, ε]−

∑
j 6=i cjuj . Hence, for

event Aε to occur the random coefficient ci must fall into an interval of length 2ε/|ui| ≤
2nε. The probability for this is bounded from above by 2nεφ.

As we have to consider at most
(m
n−1

)
≤ mn pairs of neighbors (z1, z2), a union bound

yields the additional factor of mn.

Proof of Lemma 3.9. Let z1, z2, z3 be pairwise distinct vertices of P such that z1 and z3 are
neighbors of z2 and let ∆z :=z2−z1 and ∆′z :=z3−z2. We assume that ‖∆z‖ = ‖∆′z‖ = 1.
This entails no loss of generality as the fractions in Definition 3.8 are invariant under
scaling. Let i1, . . . , in−1 ∈ [m] be the n − 1 indices for which aik

Tz1 = bik = aik
Tz2.

For the ease of notation let us assume that ik = k. The rows a1, . . . , an−1 are linearly
independent because P is non-degenerate. Since z1, z2, z3 are distinct vertices of P and
since z1 and z3 are neighbors of z2, there is exactly one index ` for which a`Tz3 < b`, i.e.,
a`

T∆′z 6= 0. Otherwise, z1, z2, z3 would be collinear which would contradict the fact that
they are pairwise distinct vertices of P . Without loss of generality assume that ` = n− 1.
Since akT∆z = 0 for each k ∈ [n−1], the vectors a1, . . . , an−1,∆z are linearly independent.

We apply the principle of deferred decisions and assume that c is already fixed. Thus,
cT∆z and cT∆′z are fixed as well. Moreover, we assume that cT∆z 6= 0 and cT∆′z 6= 0
since this happens almost surely due to Lemma A.1. Now consider the matrix M =
[a1, . . . , an−2,∆z, an−1] and the random vector (Y1, . . . , Yn−1, Z)T = M−1 · w = −M−1 ·

124

[u1, . . . , un] · λ. For fixed values y1, . . . , yn−1 let us consider all realizations of λ for which
(Y1, . . . , Yn−1) = (y1, . . . , yn−1). Then

wT∆z =
(
M · (y1, . . . , yn−1, Z)T)T∆z

=
n−2∑
k=1

yk · akT∆z + yn−1 ·∆z
T∆z + Z · an−1

T∆z

= yn−1 ,

i.e., the value of wT∆z does not depend on the outcome of Z since ∆z is orthogonal to
all ak. For ∆′z we obtain

wT∆′z =
(
M · (y1, . . . , yn−1, Z)T)T∆′z

=
n−2∑
k=1

yk · akT∆′z + yn−1 ·∆z
T∆′z + Z · an−1

T∆′z

= yn−1 ·∆z
T∆′z + Z · an−1

T∆′z

as ∆′z is orthogonal to all ak except for k = ` = n− 1. The chain of equivalences∣∣∣∣∣wT∆z

cT∆z
− wT∆′z
cT∆′z

∣∣∣∣∣ ≤ ε
⇐⇒ wT∆′z

cT∆′z
∈ [−ε, ε] + wT∆z

cT∆z

⇐⇒ wT∆′z ∈
[
− ε · |cT∆′z|, ε · |cT∆′z|

]
+ wT∆z

cT∆z
· cT∆′z

⇐⇒ Z · an−1
T∆′z ∈

[
− ε · |cT∆′z|, ε · |cT∆′z|

]
+ wT∆z

cT∆z
· cT∆′z − yn−1 ·∆z

T∆′z

implies, that for event Fε to occur Z must fall into an interval I = I(y1, . . . , yn−1) of
length 2ε · |cT∆′z|/|an−1

T∆′z|. The probability for this to happen is bounded from above
by

2n · 2ε · |cT∆′z |
|an−1T∆′z |

δ(r1, . . . , rn) ·mink∈[n] ‖rk‖
= 4n · |cT∆′z|
δ(r1, . . . , rn) ·mink∈[n] ‖rk‖ · |an−1T∆′z|︸ ︷︷ ︸

=:γ

·ε ,

where [r1, . . . , rn] = −M−1 · [u1, . . . , un]. This is due to (Y1, . . . , Yn−1, Z)T = [r1, . . . , rn] ·λ
and Corollary 3.4 (applied with φ = 1). Since the vectors r1, . . . , rn are linearly indepen-
dent, δ(r1, . . . , rn) is a well-defined positive value and mink∈[n] ‖rk‖ > 0. Furthermore,
|an−1

T∆′z| > 0 since in−1 is the constraint which is not tight for z3, but for z2. Hence,
γ <∞, and thus Pr

[∣∣∣wT∆z

cT∆z
− wT∆′z

cT∆′z

∣∣∣ ≤ ε]→ 0 for ε→ 0.
As there are at most m3n triples (z1, z2, z3) we have to consider, the claim follows by

applying a union bound.

Lemma 3.10. Let π̃ = πc,w̃ and let R̃ = Rc,w̃ be the path from π̃(x0) to the rightmost
vertex p̃r of the projection π̃(P) of polytope P . Furthermore, let p̃? be the rightmost vertex
of R̃ whose slope does not exceed t. Then p̃? = π̃(x?).

125

0 c

w

γ · bi

R̄

R̃

(a) Relation between R̄ and R̃
0 c

w

R

p?
R̄

≤ t

≤ t > t

> t

(b) Relation between R̄ an R

Figure A.1: Relations between R, R̃, and R̄

Proof of Lemma 3.10. We consider a linear auxiliary function w̄ : Rn → R, given by
w̄(x) := w̃Tx + γ · bi. The paths R̄ = Rc,w̄ and R̃ are identical except for a shift by
γ · bi in the second coordinate because for π̄ = πc,w̄ we obtain

π̄(x) = (cTx, w̃Tx+ γ · bi) = (cTx, w̃Tx) + (0, γ · bi) = π̃(x) + (0, γ · bi)

for all x ∈ Rn. Consequently, the slopes of R̄ and R̃ are exactly the same (see Figure A.1a).
Let x ∈ P be an arbitrary point from the polytope P . Then, w̃Tx = wTx− γ · aiTx ≥

wTx − γ · bi. The inequality is due to γ ≥ 0 and ai
Tx ≤ bi for all x ∈ P . Equality

holds, among others, for x = x? due to the choice of ai. Hence, for all points x ∈ P
the two-dimensional points π(x) and π̄(x) agree in the first coordinate while the second
coordinate of π(x) is at most the second coordinate of π̄(x) as w̄(x) = w̃Tx+γ · bi ≥ wTx.
Additionally, we have π(x?) = π̄(x?). Thus, path R̄ is above path R but they have point
p? = π(x?) in common. Hence, the slope of R̄ to the left (right) of p? is at most (at least)
the slope of R to the left (right) of p? which is at most (greater than) t (see Figure A.1b).
Consequently, p? is the rightmost vertex of R̄ whose slope does not exceed t. Since R̄
and R̃ are identical up to a shift of (0, γ · bi), π̃(x?) is the rightmost vertex of R̃ whose
slope does not exceed t, i.e., π̃(x?) = p̃?.

Lemma 3.14. For any φ ≥
√
n, any t ≥ 0, and any ε > 0 the probability of event At,ε is

bounded by

Pr [At,ε] ≤
2mn2ε

max
{
n
2 , t
}
· δ2 ≤

4mnε
δ2 .

Proof of Lemma 3.14. Due to Lemma 3.13 it suffices to show that

Pr [Ei,t,ε] ≤
1
m
· 2mn2ε

max
{
n
2 , t
}
· δ2 = 2n2ε

max
{
n
2 , t
}
· δ2

for any index i ∈ [m].

126

We apply the principle of deferred decisions and assume that vector c is already fixed.
Now we extend the normalized vector ai to an orthonormal basis {q1, . . . , qn−1, ai} of Rn
and consider the random vector (Y1, . . . , Yn−1, Z)T = QTw given by the matrix vector
product of the transpose of the orthogonal matrix Q = [q1, . . . , qn−1, ai] and the vector
w = −[u1, . . . , un] ·λ. For fixed values y1, . . . , yn−1 let us consider all realizations of λ such
that (Y1, . . . , Yn−1) = (y1, . . . , yn−1). Then, w is fixed up to the ray

w(Z) = Q · (y1, . . . , yn−1, Z)T =
n−1∑
j=1

yj · qj + Z · ai = v + Z · ai

for v =
∑n−1
j=1 yj · qj . All realizations of w(Z) that are under consideration are mapped

to the same value w̃ by the function w 7→ w̃(w, i), i.e., w̃(w(Z), i) = w̃ for any possible
realization of Z. In other words, if w = w(Z) is specified up to this ray, then the path
Rc,w̃(w,i) and, hence, the vectors y? and ŷ from the definition of event Ei,t,ε, are already
determined.

Let us only consider the case that the first condition of event Ei,t,ε is fulfilled. Other-
wise, event Ei,t,ε cannot occur. Thus, event Ei,t,ε occurs iff

(t, t+ ε] 3 w
T · (ŷ − y?)
cT · (ŷ − y?) = vT · (ŷ − y?)

cT · (ŷ − y?)︸ ︷︷ ︸
=:α

+Z · ai
T · (ŷ − y?)
cT · (ŷ − y?)︸ ︷︷ ︸

=:β

.

The next step in this proof will be to show that the inequality |β| ≥ max
{
n
2 , t
}
· δn

is necessary for event Ei,t,ε to happen. For the sake of simplicity let us assume that
‖ŷ− y?‖ = 1 since β is invariant under scaling. If event Ei,t,ε occurs, then aiTy? = bi, ŷ is
a neighbor of y?, and aiTŷ 6= bi. That is, by Lemma 3.2, Claim 3 we obtain |aiT ·(ŷ−y?)| ≥
δ · ‖ŷ − y?‖ = δ and, hence,

|β| =
∣∣∣∣∣aiT · (ŷ − y?)cT · (ŷ − y?)

∣∣∣∣∣ ≥ δ

|cT · (ŷ − y?)| .

On the one hand we have |cT · (ŷ − y?)| ≤ ‖c‖ · ‖ŷ − y?‖ ≤
(
1 +

√
n
φ

)
· 1 ≤ 2, where the

second inequality is due to the choice of c as perturbation of the unit vector c0 and the
third inequality is due to the assumption φ ≥

√
n. On the other hand, due to wT·(ŷ−y?)

cT·(ŷ−y?) ≥ t
we have

|cT · (ŷ − y?)| ≤ |w
T · (ŷ − y?)|

t
≤ ‖w‖ · ‖ŷ − y

?‖
t

≤ n

t
.

Consequently,
|β| ≥ δ

min
{
2, nt

} = max
{
n

2 , t
}
· δ
n
.

Summarizing the previous observations we can state that if event Ei,t,ε occurs, then |β| ≥
max

{
n
2 , t
}
· δn and α+ Z · β ∈ (t, t+ ε]. Hence,

Z · β ∈ (t, t+ ε]− α ,

127

i.e., Z falls into an interval I(y1, . . . , yn−1) of length at most ε/(max
{
n
2 , t
}
· δ/n) =

nε/(max
{
n
2 , t
}
· δ) that only depends on the realizations y1, . . . , yn−1 of Y1, . . . , Yn−1.

Let Bi,t,ε denote the event that Z falls into the interval I(Y1, . . . , Yn−1). We showed that
Ei,t,ε ⊆ Bi,t,ε. Consequently,

Pr [Ei,t,ε] ≤ Pr [Bi,t,ε] ≤
2n · nε

max{n2 ,t}·δ

δ(QTu1, . . . , QTun) ≤
2n2ε

max{n2 , t} · δ2 ,

where the second inequality is due to Corollary 3.4 (applied with φ = 1): By definition,
we have

(Y1, . . . , Yn−1, Z)T = QTw = QT · −[u1, . . . , un] · λ = [−QTu1, . . . ,−QTun] · λ .

The third inequality stems from the fact that δ(−QTu1, . . . ,−QTun) = δ(u1, . . . , un) ≥ δ,
where the equality is due to the orthogonality of −Q (Claim 2 of Lemma 3.2).

128

	Introduction
	Hierarchical Clustering
	Shadow Vertex Algorithm
	Bibliographical Notes

	Hierarchical Clustering
	Outline of the Analysis
	Bounds on the Existence of Hierarchical Clusterings
	Approximation Guarantees for AC

	Preliminaries
	Existence of Hierarchical Clusterings
	A Lower Bound of 2 for the Hierarchical k-Center Problem
	Upper Bounds on the Existence of a Hierarchical Clustering

	Ward's Algorithm
	Cost of one step
	Monotonicity
	Exponential Lower Bound in High Dimension
	Ward's Method in Dimension One
	Separation Conditions and Well-Clusterable Data
	Bounds for delta-center separation and alpha-center proximity
	Exponential Lower Bound for Well-Clusterable Data

	Complete Linkage
	Clustering Intersection Graphs
	The One-Dimensional Case
	The General Case

	The Shadow Vertex Algorithm
	Outline of the Analysis
	Preliminaries
	The Parameter delta
	Some Probability Theory

	Algorithm
	Reducing the Dimension
	Identifying an Element of the Optimal Basis
	The Shadow Vertex Method

	Analysis of the Shadow Vertex Algorithm
	Running Time
	An Upper Bound on the Number of Random Bits

	Finding a Basic Feasible Solution
	A Lower Bound for delta(B)
	An Upper Bound for Delta(B)

	Justification of Assumptions
	Raising the Rank of Matrix A
	Translation into a Bounded Polyhedron

	Conclusion
	Proofs from Section 3.4

