
Analysis of Land Surface Dynamics in
Ukraine Observed by Satellite Sensors

Dissertation
zur

Erlangung des Doktorgrades (Dr. rer. nat.)
der

Mathematisch-Naturwissenschaftlichen Fakultät
der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Gohar Ghazaryan
aus Kapan, Armenien

Bonn 2019





Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen

Friedrich-Wilhelms-Universität Bonn

Referent: PD Dr. Jürgen Schellberg

Korreferent: Prof. Dr. Klaus Greve

Tag der Promotion: 08.10.2019

Erscheinungsjahr: 2020

i





Abstract

Land surface changes, induced by anthropogenic or climatic drivers, can dramatically impact ecosys-

tem functioning. The growing amount of data from remote sensing and complementary data sources

greatly supports the quantification of land surface changes. This research aimed to use several re-

motely sensed datasets to explore inter-annual and seasonal variability of land surface in Ukraine

at multiple spatial scales. The country was chosen as a study area, as it has experienced immense

institutional and environmental changes during recent decades.

For the analysis at country scale, the main aim was to understand land surface dynamics and

to assess processes underlying the changes. For this, Global Inventory Modeling and Mapping

Studies (GIMMS) Normalized Difference Vegetation Index (NDVI) time series were used. Abrupt

and gradual changes were delineated, and we addressed the relationships of land surface changes

and climatic variables. Among the factors analyzed, air temperature explained the largest portion

of NDVI variability. High air temperature/NDVI correlation coefficients were observed over the

entire country. Soil moisture content had a significant influence in eastern regions and precipitation

was most influential in the central regions of the country.

For the analysis at local scale the focus was put on crop identification and crop condition

monitoring. As croplands are often faced with high inter-annual and seasonal variability, the

monitoring of cropland extent and condition is essential to improve food security. For crop mapping,

the combined use of time series observations derived from Landsat-8 and Sentinel-1 was tested. The

phenology was modeled by fitting harmonic function and we generated training samples based on

the fit. Three classification algorithms (support vector machines, random forest, decision fusion)

were tested for crop mapping. Overall classification accuracies exceeded 80% for random forest and

decision fusion when using Landsat and Sentinel based seasonal composites.

For drought impact monitoring in croplands, time series from optical (Landsat, MODIS, Sentinel-

2) and Synthetic Aperture Radar (SAR) data was used. Indicators were derived based on optical

(NDVI, Normalized Difference Moisture Index (NDMI), Land Surface Temperature (LST), Tas-

selled Cap Indices) and Sentinel-1 (backscattering intensity and relative surface moisture) data.
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Logistic regression was used to evaluate the drought-induced variability of remotely sensed param-

eters estimated for specific phases of crop growth. The parameters with the highest prediction

rate were further used to estimate thresholds for drought/non-drought classification. The results

revealed that remotely sensed variables do not respond uniformly to drought conditions. Growing

season maximum NDMI and NDVI (70-75%) and SAR backscatter (60%) reflect the impact of

agricultural drought. LST was also a useful indicator of crop condition, especially for maize and

sunflower, with prediction rates of 86% and 71% respectively.

Furthermore, to contribute to not only remotely sensed data analysis but also their dissemina-

tion, a web application was developed that enables the provision of customizable geospatial tools

and products. The user is able to define either spatial or temporal parameters (or both), change

the used algorithms (e.g. change detection, anomaly detection) or visualization parameters based

on the preferred data sources and get access to previously discussed outputs, such as vegetation

index time series, LST, backscattering intensity, land cover and crop condition parameters.

The research for this thesis combined different trend analysis techniques, integrated multiple

datasets, and advanced statistical modeling at different scales. This allowed analyses to go beyond

descriptive information like overall vegetation status and dynamics, land degradation or crop stress;

but to derive valuable spatially explicit information towards a better understanding of change

drivers. This information forms the essential basis for advanced models and leads the way to better

decision making for sustainable land management.
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Zusammenfassung

Anthropogen- oder klimabedingte Veränderungen der Landoberfläche können einen gravierenden

Einfluss auf Ökosysteme und ihre Funktionen haben. Durch die zunehmende Anzahl an frei ver-

fügbaren Sensordaten sowie komplementären Datenquellen wird die Quantifizierung von Landober-

flächenveränderungen stetig verbessert. Ziel dieser Forschungsarbeit war es jährliche und saisonale

Schwankungen der Landoberfläche und Vegetation der Ukraine mithilfe verschiedener Fernerkun-

dungsdatensätze auf unterschiedlichen räumlichen Skalen zu untersuchen. Das Land wurde als

Untersuchungregion gewählt, da es in den vergangenen Jahrzehnten immense institutionelle und

ökologische Veränderungen erfahren hat.

Das Ziel der landesweiten Analyse war, die Landoberflächendynamiken und ihre treibenden

Prozesse zu verstehen. Hierfür wurden GIMMS- (Global Inventory Modeling and Mapping Stud-

ies) NDVI-(Normalized Difference Vegetation Index) Zeitreihen verwendet. Abrupte und graduelle

Veränderungen, sowie die Beziehungen zwischen Landoberflächenveränderungen und Klimavari-

ablen wurden beschrieben und untersucht. Bei den hierfür analysierten Faktoren war die Lufttem-

peratur für den Großteil der NDVI-Variabilität ausschlaggebend. Über der gesamten Landesfläche

konnten hohe Lufttemperaturen bzw. NDVI-Korrelationskoeffizienten beobachtet werden, während

in den östlichen Regionen insbesondere der Feuchtigkeitsgehalt des Bodens sowie in den zentralen

Regionen des Landes der Niederschlag signifikanten Einfluss hatte.

Für die Analyse auf lokaler Ebene wurde der Fokus auf der Klassifikation und dem Zus-

tandsmonitoring von Nutzpflanzengelegt. Da die Anbauflächen oftmals hohen jährlichen und

saisonalen Schwankungen unterliegen, ist das Nutzpflanzen-Monitoring für die Ernährungssicherung

von großer Bedeutung. Für die Nutzpflanzenklassifikation wurden Zeitreihenaufnahmen, kombiniert

aus Landsat-8- und Sentinel-1-, getestet. Die Phänologie wurde mit „fitting harmonic funtion“ mod-

eliert. Darauf basierend wurden Trainingsbeispiele entwickelt. Es wurden drei Klassifizierungsalgo-

rithmen (Support Vector Machines, Random Forest, Decision Fusion) getestet. Die Klassifizierungs-

genauigkeit für Random Forest und Decision Fusion betrug bei Landsat- und Sentinel-basierten

saisonalen Kompositen über 80%.
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Für das Dürre-Monitoring der Nutzpflanzen wurden Zeitreihen von optischen (Landsat, MODIS,

Sentinel-2) und Radar-Daten (Synthetic Aperture Radar (SAR)) verwendet. Die Indikatoren wur-

den von optischen Daten (NDVI, Normalized Difference Moisture Index (NDMI), Oberflächen-

temperatur (OFT), Tasselled Cap Indices) und Sentinel-1-Daten (Rückstreuintensität und relative

Oberflächenfeuchtigkeit) abgeleitet. Zur Ermittlung der Dürre-induzierten Variabilität der Fern-

erkundungsparameter wurde das Verfahren der logistischen Regression angewandt, um spezielle

Wachstumsphasen bestimmen zu können. Die Parameter mit der höchsten Vorhersagegenauigkeit

wurden zur Einschätzung der Schwellenwerte für Dürre bzw. Nicht-Dürre-Klassifizierung weiter ver-

wendet. Die Ergebnisse zeigten, dass Variablen, die aus Fernerkundungsdaten abgeleitet werden,

nicht einheitlich auf Dürrebedingungen reagieren. Die Maximalwerte während der Wachstumpe-

riode von NDMI, NDVI (70-75%) und SAR-Rückstreuung (60%) spiegeln die Auswirkungen der

landwirtschaftlichen Dürre wider. OFT erwies sich als nützlicher Indikator für den Zustand der

Pflanzen, insbesondere für Mais und Sonnenblumen. Hier betrugen die Vorhersageraten 86% bzw.

71%.

Weiterhin wurde eine Webanwendung entwickelt, die nicht nur der Analyse von Fernerkun-

dungsdaten, sondern auch der Verbreitung der Ergebnisse dient. Diese stellt flexible raumbezogene

Werkzeuge und Produkte zur Verfügung. Benutzer können räumliche oder zeitliche Parameter

(oder beides) definieren, die verwendeten Algorithmen (z.B. Veränderungsdetektion, Anomalie-

Erkennung) anpassen, oder Visualisierungsparameter, basierend auf den favorisierten Datenquellen,

ändern und dadurch Zugriff auf zuvor beschriebenen Produkte, bspw. Vegetationsindexzeitreihen,

OFT, Rückstreuintensität, Landbedeckung und Erntezustandsparameter, erhalten.

Die Forschung für diese Arbeit kombinierte verschiedene Techniken der Trend-Analyse, integri-

erte mehrere Datensätze und verbesserte statistische Modellierung auf verschiedenen Skalen. Dies

erlaubt Analysen, die über deskriptive Informationen wie Vegetationsstatus und -dynamiken, Land-

degradation oder Trockenstress hinausgehen und sondern vielmehr wichtige räumliche Informatio-

nen zu liefern, die zu einem besseren Verständnis von Ursachen des Landnutzungswandels führen.

Informationen, welche die notwendige Basis für hoch entwickelte Modelle bilden und den Weg für

verbesserte Entscheidungsbildungen hin zu einem nachhaltigen Landmanagement bereiten.
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Chapter 1

Introduction

Land surface changes are one of the critical drivers of global change. They can dramatically impact

ecosystems, climate and social development (Seddon, Macias-Fauria, Long, Benz, & Willis, 2016).

Rapid urbanization, deforestation, socioeconomic transformations, climate variability, and natural

hazards change the Earth’s surface. These changes, in turn, contribute to the intensification of

agriculture and the cultivation of non-arable land, which can accelerate the degradation of nat-

ural ecosystems (Kuenzer, Dech, & Wagner, 2015; Landmann & Dubovyk, 2014). Changes in

land surface, especially those of anthropogenic origin, have broad impacts on critical environmental

processes. Mapping and monitoring of such changes and quantifying their impact in a continuous

and timely manner is necessary to address several important issues such as the global carbon bud-

get, ecosystem dynamics, sustainable land management and to support decision-making processes.

Furthermore, ongoing changes in climate can further amplify the pressure on the already limited

resources (Kogan, 2018). The increasing food and water demand coupled with the finite land

and water resources will further affect agriculture. The changing patterns of water availability and

an increasing number of extreme weather events can alter agricultural production and sustainable

land management (Godfray et al., 2010). With large area acquisition and repairability, satellite

imagery is one of the primary sources of information regarding land surface changes (Ban, 2016).

Different sensors provide large volumes of multitemporal and multiscale data that can be used for

land surface change analysis at global, regional and local scales. As a result of these analyses,

various indicators as well as environmental and agricultural statistics can be derived. Particularly,

the information on land use and land cover change, crop type and deforestation can be derived from

Remote Sensing (RS) data. Further, the statistics and metrics derived from remote sensing data

can be used to support the United Nations 2030 Agenda for Sustainable Development (Holloway

& Mengersen, 2018). Remote sensing aids the monitoring and reporting of Sustainable Develop-
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ment Goals (SDGs), thereby giving an opportunity to develop data-driven indicators and spatially

explicit statistical outputs (Paganini et al., 2018). Remote sensing based time series analysis is

a powerful tool to reveal land surface dynamics and to analyze the magnitude of these changes

within a defined monitoring time span (Kuenzer et al., 2015) and can be used for assessing their

environmental impact and/or attributing to driving processes (Rogier de Jong, Schaepman, Furrer,

de Bruin, & Verburg, 2013).

1.1 Transformations in Ukraine as a Background for Land Surface

Changes

While land surface changes are a global phenomenon, with hotspots of changes spread across

the world, this dissertation focuses on Ukraine, a country that has experienced institutional and

environmental changes during recent decades and is a prime example of an area with diverse agro-

climatic conditions with both long and short term changes (Baumann et al., 2011; Schierhorn

et al., 2013). The collapse of the Soviet Union induced major socio-economic and institutional

dislocations in Ukraine starting from the early 1990s. The integration of concepts of open-market

economy induced policy changes that had direct and indirect effects on the agricultural sector.

Such policy transformations included the abolition of state subsidies used for calibration of output

and input prices, which, in turn, resulted in abruptly declining conditions for trade and negatively

affected agricultural profitability (Rozelle & Swinnen, 2004). Furthermore, after post-socialist land

reforms, collective and state farming was substituted by individualized land use (Lerman, 2004;

Lerman, Sedik, Pugachov, & Goncharuk, 2007). The effects of this socio-economic disturbance

were comparable to the impact of the nuclear disaster in Chernobyl in 1986. It is reported, that

land abandonment rates were similar in Ukraine and neighboring Belarus after the nuclear disaster

(28% and 36% of previously farmed land), but the rates of land abandonment after the collapse of

the Soviet Union in Ukraine were two times higher compared to changes in Belarus (Hostert et al.,

2011). As a result, the institutional changes had an impact on distribution and extent of land cover

types, land use intensity, enforcement of water pollution regulations, the economic productivity in

the industrial and agricultural sectors, and changes in regional biogeochemical cycles. Considering

the fact that for decades Ukraine was seen as a "breadbasket of Europe," (Smaliychuk et al.,

2016),these changes in the agricultural sector can have a significant impact on local crop produc-

tion and more substantial socio-economic impacts. Ukraine accounts for 2.1% of the global arable

land and about 25% of fertile black soil, which makes the country unique regarding its agricultural
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potential. Nowadays, Ukraine is the world’s largest sunflower oil exporter, second largest grain

exporter, fourth largest corn and barley exporter, and sixth largest wheat and soybean producer

(FAO, 2018). Following the economic recovery and cultivation of previously abandoned croplands,

changes in the agricultural sector continued. Generally, the restructuring processes evolved in two

directions: the expansion of managed farmland and the decrease of smallholder farms (Stefanski

et al., 2014). These transformations also manifested themselves as significant changes in land sur-

face phenology which have been previously observed and reported (Kovalskyy & Henebry, 2009).

Besides the ongoing socio-economic transformations, changes in climate conditions have been re-

ported. Specifically, recent studies reported fluctuations in crop production related to extreme

weather conditions. For example, in the past 30–50 years, droughts have become more frequent

and intense, covering up to half of the area of Ukraine every 10–12 years, and up to 20% every

2–3 years (Adamenko & Prokopenko, 2011; Kogan, Adamenko, & Guo, 2013; Skakun, Kussul,

Shelestov, & Kussul, 2015).This climate fluctuation reduced summer crop production by up to

75%. All these described alterations caused changes in ecosystem that can be reflected on the land

surface. To understand the effect of these phenomena, monitoring of land surface changes, partic-

ularly vegetation dynamics and crop condition assessment is required. Although there have been

studies on land surface change analysis in Ukraine, little attention has been paid to the understand-

ing of the main drivers of land surface changes and the appropriate data and algorithm selection.

Thus, the focus of this thesis was on enhancing our understanding of the spatiotemporal changes

and trends in land surface. To address differences in the dynamics at different spatial scales, we

ran the analyses from country to the local level with the use of multi-source remotely sensed time

series. Considering the large area of the country, diverse ecosystems, agroclimatic conditions, and

different factors, the integration of different data sources, with diverse spatial, as well as temporal

and spectral characteristics is essential.

1.2 Analysis of Land Cover Dynamics With Remotely Sensed Data

Remotely sensed imagery has been used over the past decades in order to detect and classify changes

on the Earth’s surface (Kuenzer et al., 2015; Schmullius, Thiel, Pathe, & Santoro, 2015). Remote

sensing can be defined as “the acquisition of information about the Earth’s surface without being in

physical contact with it“ (Wegmann, Leutner, & Dech, 2016). Satellite imagery is applicable for

land surface change detection as it offers repeatable observations at a different spatial scale which

in turn can be used for understanding changes caused by both natural and anthropogenic processes
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(Verbesselt, Hyndman, Newnham, & Culvenor, 2010).

1.2.1 Optical Remotes Sensing

Data from optical remote sensing has been available for over four decades and has been widely

used for land surface monitoring (Joshi et al., 2016). The long time series were particularly

useful for this (e.g., the Landsat Thematic Mapper (TM) has been available since 1983, Satellite

Pour l’Observation de la Terre (SPOT) since the mid-1980s and data from Moderate Resolution

Imaging Spectroradiometer (MODIS) has been available since 1999) (Roy et al., 2014; Vogelmann,

Xian, Homer, & Tolk, 2012). With the launch of new sensors, the availability of optical data has

dramatically increased (Hostert, Griffiths, van der Linden, & Pflugmacher, 2015) and together

with Sentinel-2 observations, a massive amount of data can be acquired. Nevertheless, the primary

constraint on optical remote sensing is cloud cover, which limits the sensors from collecting usable

data and subsequently decreasing the number of valid observations (Alparone et al., 2015).

1.2.2 Thermal Remote Sensing

Thermal remote sensing uses radiation emitted from objects in the portion of the spectrum between

approximately 3 and 14µm wavelength. According to Planck’s law, this is the typical spectral

emission range corresponding to the temperature of objects located on the Earth’s surface. Natural

surfaces as well as man-made objects emit thermal radiation if their temperature is above absolute

zero (0 K or −273 ◦C).

The data obtained from thermal remote sensing are complementary to optical and microwave

remote sensing data and therefore can be used synergistically (Alparone et al., 2015). Although

there were low-resolution thermal remote sensing data available since the 1960s (NOAA TIROS II),

Landsat provides the longest thermal data record which has been widely used for a vast number of

applications. With the launch of Landsat-4 TM in 1984, data with a spatial resolution of 60 to 120

m were available in the thermal infrared (TIR) spectrum from 10.5 to 12.5µm (Cristóbal et al.,

2018). Other data, with shorter data records are also available (e.g. Terra ASTER) (Joshi et al.,

2016).

1.2.3 Microwave Remote Sensing

Microwave remote sensing uses electromagnetic radiation with wavelengths of centimeters to me-

ters. Land surface characteristics determine the amount of energy that backscatters towards the

radar antenna receiving the signal. As active microwave sensors have long wavelengths, SAR images
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provide information on surface roughness, orientation and volumetric moisture content. The inten-

sity depends on the signal properties such as wavelength, incidence angle, polarization and scan

direction, in addition to the above-mentioned properties of the surface (Inglada, Vincent, Arias, &

Marais-Sicre, 2016). Although the information content in radar images is a function of several sur-

face characteristics, the application of microwave data for vegetation monitoring is historically less

than optical and NIR data. This is due to several reasons such as complexity of preprocessing (i.e.

speckle filtering), availability of long term and dense time series and data distribution policy con-

straints. Several studies showed the use of observations from global C-band data such as ERS-2 in

ASAR (Advanced Synthetic Aperture Radar) and ENVISAT (Environmental Satellite) (Nguyen

et al., 2015; Pathe, Wagner, Sabel, Doubkova, & Basara, 2009; Schlaffer, Chini, Dettmering, &

Wagner, 2016). Other datasets, such as RADARSAT were used, but were limited to small-scale

local studies (Moran et al., 2012). Nevertheless, the availability of long term C-band data allowed

the development of automated routines for land cover mapping. This, in turn, can further aid the

development of new algorithms based on freely available Sentinel-1 dense time series data.

1.3 Vegetation Dynamics Using Remotely Sensed Time Series Data

As satellite data are acquired at a frequent time, the data can be mapped in a three-dimensional

array in space-time (Maus et al., 2016). Remotely sensed time series variables can be categorized

in the following groups: geophysical variables, index variables, thematic variables, topographic vari-

ables, and texture variables (Hostert et al., 2015). Geophysical variables have a specific physical

unit (i.e. surface reflectance, land surface temperature (LST)). In contrast, index variables are

dimensionless, such as the Normalized Difference Vegetation Index (NDVI), the Enhanced Vegeta-

tion Index (EVI) and other indices or feature space components, such as Tasseled Cap components.

NDVI is one of the most commonly used indices, which uses the reflectance in the red and near-

infrared (NIR) portions of the electromagnetic spectrum. These time series are particularly valuable

as they provide repeatable observations at various scales at which environmental and anthropogenic

changes occur (Rogier de Jong, Verbesselt, Schaepman, & de Bruin, 2012). Thematic variables

are usually estimated prior to time series analysis based on classification or regression and are of-

ten binary data. Topographic variables include data such as height, slope, and surface roughness.

However, the most commonly used series are based on synthetic aperture radar (SAR) data in

order to generate surface deformation information based on phase. The final group of variables are

texture variables such as object size, shape, fragmentation which are not widely used in time series
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analysis. Nonetheless, the improvements of algorithms based on spatial and temporal segmentation

will lead to the use of these variables (Hostert et al., 2015). Remote sensing time series can be

decomposed into three components: a long-term directional trend, seasonal component, and short-

term fluctuations (Figure 1.1). These components can be used to analyze land surface dynamics

(Kuenzer et al., 2015).

Figure 1.1: Time series components a) raw data, b) trend and c) seasonal component (Adapted
from Kuenzer et al. (2015)).

The selection of an algorithm for time series analysis highly depends on land surface processes

that should be understood. Generally, any phenology-driven, highly dynamic or gradual and long-

term change processes can be analyzed using time series. Nevertheless, data needs for these different

processes are not the same: Highly dynamic processes require time series with a sufficient obser-

vation frequency as dense time series are needed for capturing even subtle changes. Meanwhile,

long-term gradual change can be estimated only when long time series are available. In summary,

time series analysis can be based on one or several remotely-sensed derived variables, from which

temporal metrics can be extracted, such as maxima or minima of a vegetation index, the slope

of a linear trend, function fitted to model seasonal trajectory over several years, or a breakpoint

indicating the abrupt change (Fensholt, Rasmussen, Nielsen, & Mbow, 2009; Hostert et al., 2015;

Jamali, Jönsson, Eklundh, Ardö, & Seaquist, 2015; S. Wang, Azzari, & Lobell, 2019).

1.4 Crop Monitoring

Monitoring crop type, condition and sown area are critical to support food security. Remotely

sensed time-series observations could provide essential and timely information especially in areas
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where ground data is not available, is scattered or data is not collected homogeneously (Araya,

Ostendorf, Lyle, & Lewis, 2017; Atzberger, 2013; Bégué et al., 2018). Derivation of information

on plant phenology and productivity has been shown to be useful for quantitatively analyzing

seasonal characteristics of vegetation (Parplies, Dubovyk, Tewes, Mund, & Schellberg, 2016).

Crop phenology, the timing of seasonal activity, is describing the continuous development of plants

during the cultivation cycle. It is usually expressed with a numerical scale depicting stages of growth

from sowing to harvest (Rogier de Jong et al., 2012). The phenological dynamics of ecosystems,

in general reflect the response to inter- and intra-annual dynamics of the climate and hydrologic

regimes (Xiaoyang Zhang et al., 2003). Furthermore, the mapping of phenometrics is important

as the phenology can be associated with biomass production and crop yield (Meroni, Verstraete,

Rembold, Urbano, & Kayitakire, 2014). Besides, these metrics can be used for distinguishing

different land cover types and for land use change studies. Remotely sensed derived phenology,

commonly referred to as Land Surface Phenology (LSP), is defined as the analysis of spatiotemporal

dynamics of the vegetation observed by satellite sensors (de Beurs & Henebry, 2010). It was shown

by several studies that LSP is related to plant phenology due to absorption and reflectance of

electromagnetic radiation but it is also affected by several factors such as cloud cover, atmospheric

scattering, and anthropogenic drivers such as land use change and different management practices

that impact the land surface dynamics (Kovalskyy & Henebry, 2009; Verbesselt, Hyndman, Zeileis,

& Culvenor, 2010). Several studies have been conducted in order to derive the characteristics of

LSP (Bégué et al., 2018). For the majority of cases, optical data from sensors such as AVHRR,

MODIS and Landsat have been used for LSP detection. Most of these studies have extracted

critical points in the seasonal growth -phenometrics (Parplies et al., 2016) such as start, end of

the growing season, the timing of the peak (Figure 1.2) for different biomes, including croplands.

Several freely distributed software such as Timesat (Jönsson & Eklundh, 2004) and libraries such

as GreenBrown (Forkel et al., 2015) can be used to derive these metrics. In general, microwave data

has been used less for agricultural applications, due to the limited number of available datasets and

the constraints of data pre-processing. With the launch of Sentinel-1 and freely distributed data

with high spatial and temporal resolution new opportunities arise for investigation of multitemporal

changes in crop growth and condition (Moran et al., 2012; Schroeder, McDonald, Azarderakhsh, &

Zimmermann, 2016).
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Figure 1.2: Phenometrics that can be extracted from remotely sensed time series (Adapted from
Fabian Löw et al. (2017), Parplies et al. (2016)).

1.5 Drought Monitoring

One of the extreme events having an impact on crop production is drought, which can have a drastic

impact on food and water security (Sadegh et al., 2017). Based on timing and impact, four types

of drought are distinguished: meteorological, agricultural, hydrological and socio-economic which

explicitly reflect precipitation deficit, soil moisture deficit leading to crop damages, lack of surface

and ground waters, and diverse socio-economic impacts (Figure 1.3) (AghaKouchak et al., 2015;

J. Liu & Zhan, 2016; Skakun et al., 2015). Frequent droughts can cause a colossal impact on crop

production, which can then affect food prices and threaten food security. Thus, the monitoring of

droughts can aid policy making and agricultural planning in order to address food security issues.

Furthermore, as drought impact on agriculture is expected to intensify due to aggravating climate

change, accurate and timely monitoring and forecasting of droughts crucial (Kogan, 2019).

Remote sensing has been recognized as an effective tool to provide a reliable data source for

agricultural drought monitoring at different scales due to its long-term historical archive, periodic

observations, and extensive coverage over vast regions. A number of studies of agricultural drought
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Figure 1.3: Primary remote sensing proxies of crop condition change related to water availability
(Adapted from Yuting Zhou et al. (2017)).

monitoring have been carried out using AVHRR and MODIS time series (Anyamba, 2011; Graw

et al., 2017; Hazaymeh & Hassan, 2016; Klisch & Atzberger, 2016).Especially, MODIS data have

been widely used for regional drought monitoring due to moderate spatial resolution and frequent

revisit time (Kogan, 2019). Other datasets, such as Landsat, has been used to assess moisture

scarcity and vegetation condition (Ghaleb, Mario, & Sandra, 2015; Urban et al., 2018).

1.6 Remotely Sensed Data Fusion

Most of the land surface monitoring tasks benefit from dense time series observations, as denser and

more consistent data can provide timely information on land surface changes (Chastain, Housman,

Goldstein, & Finco, 2019; X. Zhu et al., 2018) . The increasing availability of complementary data

from different sensors can significantly support the accurate and timely identification of land use

and land cover information and quantify subtle and abrupt changes. The integration of multimodal

data makes it possible to increase the diversity of data and ensure scalable surface change char-

acterization, even if the data is not available from one of the data sources. As discussed in the

previous section, VIR provides multi-band observations influenced by sun illumination and cloud

cover. In contrast, SAR delivers texture, geometry, and moisture-sensitive information. Exam-

ples of integration of optical and SAR data exist for applications such as land cover and land use

classification (Chang & Bai, 2018).Thermal data can further aid the estimation of land surface

temperature and assessment of energy balance and water use dynamics (Figure 1.4).

One of the essential methods for data fusion is spatiotemporal data fusion. As most of the

data have different spatial and temporal scales, careful data preparation is needed before data

integration. Usually it is applied for fusing satellite images from two sensors: data with high
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Figure 1.4: Remotely sensed data and corresponding vegetation properties that can be derived.

temporal but coarse spatial resolution (e.g. MODIS), is integrated with imagery which has a

higher spatial resolution but lower temporal granularity (e.g. Landsat and Sentinel-2) (F. Gao et

al., 2015). The output of spatiotemporal data fusion are synthesized images with higher temporal

frequency and spatial resolution. Nevertheless, the algorithm can be used for two sensors with

similar spatial and temporal characteristics. This will yield consistent generated datasets, such as

harmonizing Landsat and Sentinel-2 images (X. Zhu et al., 2018).
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Chapter 2

Thesis Scope

2.1 Thesis Objectives and Research Questions

Currently, several long-term satellite time series are available, such as the Landsat archive, which is

the longest open-access data archive (Bhandari, Phinn, & Gill, 2012; Joshi et al., 2016). Along with

Landsat, other satellite sensors with complementary data are also available (e.g., Advanced Very

High Resolution Radiometer (AVHRR), Advanced Spaceborne Thermal Emission and Reflection

Radiameter (ASTER), MODIS). Moreover, the Sentinel satellites of the Copernicus program started

offering high-resolution EO data at frequent intervals.

With the increasing availability of data, not only the length of the time series is increasing, but

the spatial and spectral properties of new datasets are continuously improving. Particularly, if we

look at the volume of the generated data, we can observe that it took several decades for Landsat

to reach a PB (petabyte), meanwhile the observations of Sentinel-2 reached a PB of volume in

only two years 1. These increasing data volume also suggests that greater amounts of thematic

information is begin collected. The integrated use of these datasets can aid the derivation of detailed

information on land surface changes and attribution of these changes to different environmental or

anthropogenic drivers.

The overall goal of this dissertation is to increase the understanding of land surface changes

in Ukraine at multiple scales through analysis of change patterns with the use of multi-sensor

remotely sensed time series (Figure 2.1). In order to develop a methodology that can be utilized

for achieving this goal, the following research questions are addressed:

Research Question I: To what extent can the variation of NDVI be explained by

environmental conditions?

1The size of the datasets was estimated based on publicly available data on Google Earth Engine data catalog.
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Figure 2.1: Conceptual framework

While several studies derived long term trends in NDVI and attempted explaining the variability

in the last decade, the spatially and temporally consistent mapping of the changes and coupling it

with environmental factors is still challenging. The objectives related to Research Question 1 are:

• To assess the long-term land surface variability

• To estimate the effects of the essential environmental variables on different land cover types.

The use of coarse scale proxies of vegetation dynamics and environmental conditions can give us

spatially explicit information regarding vegetation activity, but for the regional to local analyses,

more detailed information is needed. This detailed information is especially crucial for agricultural

monitoring, as field scale knowledge can be essential for land management and decision making. In

order to derive seasonality metrics which describe different crops, the second research question of

the dissertation is:

Research Question II: How can the vegetation seasonality derived from RS con-

tribute to agricultural monitoring? The objectives related to Research Question 2 are:

• To develop a two-step procedure for crop classification and identify crop types based on within-

season temporal dynamics

• To identify a favorable selection of input data derived from multiple sources of remote sensing

data and from different time intervals of multisource datasets

• To test the suitability of different machine learning algorithms

Remotely sensed derived time series can be used for not only differentiating crop types, but

also they can give valuable information about the crop growth and condition during the growing

season. Based on this, the third research question was formulated:

12



2.2. Thesis Structure

Research Question III: How much information can be derived from time series to

study crop condition?

The objectives related to Research Question 3 are:

• To investigate features derived from optical sensors and Synthetic Aperture Radar (SAR) imagery

for drought-induced crop condition monitoring

• To investigate the spatial variability of drought-impacted fields

With the growing variety and the increasing volumes of available information effective data handling

is getting highly important, particularly for tracking vegetation dynamics over several time scales.

More emphasis should be given to the adequate characterization of the strengths and limitations of

specific remote sensing tools and products, the results of which should be communicated to different

user groups.

Research Question IV: How can the multi-source data and analysis methods be used

for vegetation monitoring at different scales?

The objectives related to Research Question 4 are:

• To derive optimal data and indicators for vegetation monitoring

• To identify characteristics of vegetation at different spatiotemporal scales

• To integrate product related to vegetation condition and change in an easy to access web appli-

cation for large-scale information extraction.

2.2 Thesis Structure

Figure 2.2 displays the structure of the research. The first line of research was developed towards

the analysis of interannual changes based on AVHRR data. Particularly, the main trends during

the extended time period, the breakpoints and the impact of environmental factors were discussed

in Chapter 3. The second line of the research focuses on data integration for local level crop

classification and condition monitoring. Specifically, we aimed at deriving detailed information

about seasonal changes based on Landsat like optical data and Sentinel-1, as highlighted in Chapter

4 and 5. The integration of the results in a web application accessible for users is presented and

discussed in Chapter 6.
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Figure 2.2: Thesis structural components and associated data
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2.2.
T
hesis

Structure

Question I To what extent can the variation of NDVI be explained by environmental conditions?

Hypothesis The spatiotemporal variation of NDVI are driven by multiple processes and is
influenced by precipitation, temperature and soil moisture.

Theoretical and thematic aims Methodological aims

Verification - Understanding of spatial and temporal changes in land surface - Estimation of trends and abrupt changes
- Integration of gridded environmental variables

Question II How can the vegetation seasonality derived from RS contribute to agricultural monitoring?

Hypothesis Intra-seasonal variability derived from RS time series can improve crop type
identification.

Theoretical and thematic aims Methodological aims

Verification Monitoring of cropland extent and spatial distribution - Fusion of optical and SAR
- Test of several machine learning algorithms
- Optimal input selection

Question III How much information can be derived from time series to study crop condition?

Hypothesis Remotely sensed derived time series are sensitive to changes during crop
development.

Theoretical and thematic aims Methodological aims

Verification - Estimation of drought impacted vegetation stress and spatial extent - Derivation of parameters for crop condition analysis
- Combined use of optical and SAR datas

Question IV How can the multi-source data and analysis methods be used for vegetation monitoring at different scales?

Hypothesis It is possible to provide near real-time customizable geospatial data products
derived from different sensors.

Theoretical and thematic aims Methodological aims

Verification - Comparison of the RS metrics from different sensors - Development of a web-based platform for
information derivation

Table 2.1: The main components of the thesis: Research questions, hypotheses and associated specific aims
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2.3 List of Publications

As described above, the thesis is structured into four main research chapters following this intro-

duction. Each of these chapters consists of one stand-alone manuscript published or submitted for

publication to a peer-reviewed journal and presented in international conferences. In particular,

Research Question I is covered by Chapter III whereas Research Question II is covered by Chapter

IV and Research Question III by Chapter V (submitted to journal) and Chapter VI discusses the

data accessibility. The dissertation is synthesized in Chapter VI. The publications and manuscripts

presented were edited to have a common style in this doctoral thesis. Modifications were applied

to the numbering of figures and tables, and citation style. As a result all references were integrated

into one reference list.The text, figures, and contents of tables agree with the original publications,

with the exception for figure 6.4 which was modified from the original published version.

A reference list of these papers is given below:

Peer Reviewed Journals:

• Ghazaryan, G., Dubovyk, O., Kussul, Schellberg J. (2019). Local Scale Agricultural Drought

Monitoring with Satellite-based Multi-sensor Time-series (submitted to journal).

• Ghazaryan, G., Dubovyk, O., Löw, F., Lavreniuk, M., Kolotii, A., Schellberg, J., Kussul, N.

(2018). A rule-based approach for crop identification using multi-temporal and multi-sensor

phenological metrics. European Journal of Remote Sensing, 51(1), 511-524.

• Ghazaryan, G., Dubovyk, O., Kussul, N., Menz, G. (2016). Towards an Improved Environmental

Understanding of Land Surface Dynamics in Ukraine Based on Multi-Source Remote Sensing

Time-Series Datasets from 1982 to 2013. Remote Sensing, 8(8), 617.

Conference Proceedings:

• Ghazaryan, G., Dubovyk, O., Graw, V., Schellberg, J. (2018, October). Vegetation monitoring

with satellite time series: an integrated approach for user-oriented knowledge extraction. In

Remote Sensing for Agriculture, Ecosystems, and Hydrology XX (Vol. 10783, p. 107830W).

International Society for Optics and Photonics.
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Chapter 3

Towards an Improved Environmental Understanding of Land

Surface Dynamics in Ukraine Based on Multi-Source Remote

Sensing Time-series Datasets from 1982 to 2013

Abstract: Ukraine has experienced immense environmental and institutional changes during the

last three decades. We have conducted this study to analyze important land surface dynamics and

to assess processes underlying the changes. This research was conducted in two consecutive steps.

To analyze monotonic changes we first applied a Mann–Kendall trend analysis of the Normalized

Difference Vegetation Index (NDVI3g) time series. Gradual and abrupt changes were studied by

fitting a seasonal trend model and detecting the breakpoints. Secondly, essential environmental

factors were used to quantify their possible relationships with land surface changes. These factors

included soil moisture as well as gridded air temperature and precipitation data. This was done

using partial rank correlation analysis based on annually aggregated time-series. Our results demon-

strate that positive NDVI trends characterize approximately one-third of Ukraine’s land surface,

located in the northern and western areas of the country. Negative trends occurred less frequently,

covering less than 2% of the area and are distributed irregularly across the country. Monotonic

trends were rarely found; shifting trends were identified with a greater frequency. Trend shifts

were seen to occur with an increased frequency following the period of the 2000s. We determined

that land surface dynamics and climate variability are functionally interdependent; however, the

relative influence of the drivers varies in different locations. Among the factors analyzed, the air

temperature variable explains the largest portion of NDVI variability. High air temperature/NDVI

correlation coefficients (r = 0.36 – 0.77) are observed over the entire country. The soil moisture con-

tent is of significant influence in the eastern portion of Ukraine (r = 0.68); precipitation (r = 0.65)

was most influential in the central regions of the country. These results increase our understanding
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3. National scale Land surface dynamics

of ecosystem responses to climatic changes and anthropogenic activities.

3.1 Introduction

Ukraine has experienced immense environmental and institutional changes during the last three

decades due to both human-induced and environmental processes such as socio-economic trans-

formation, ongoing urbanization, increased climate variability and frequency of hazardous events

(Baumann et al., 2011; Kovalskyy & Henebry, 2009). The drastic social, institutional and economic

alterations at the end of 1991 as a result of the Soviet Union collapse induced significant changes in

distribution and extent of land cover, land use intensity, economic productivity in the agricultural

sector and shifts in the land surface phenology (Kovalskyy & Henebry, 2009; Kuenzer et al., 2015).

These socio-economic changes had radical results and one of the consequences was the widespread

farmland abandonment especially in the northern and western regions (Alcantara et al., 2013;

Baumann et al., 2011; Hostert et al., 2011; Schierhorn et al., 2013; Smaliychuk et al., 2016). Be-

sides the ongoing socio-economic transformations, several studies discussed the changes in climate

conditions. In the past 30–50 years, droughts have become more frequent and intense, covering up

to half of the area of Ukraine every 10–12 years, and up to 20% every 2–3 years (Adamenko &

Prokopenko, 2011). All these described alterations had an impact on the ecosystem that can be

reflected on the land surface. To understand the effect of these phenomena, long-term monitoring

of land surface changes is required. There is a limited number of studies on long-term land surface

change analysis for all of Ukraine, as previous studies focused on specific applications of land cover

change (e.g., forest loss, farmland abandonment) in particular areas of the country (Carpathian

ecoregion, the river basin of the Dnieper river) (Baumann et al., 2011; Kovalskyy & Henebry,

2009; Kuemmerle et al., 2009). Moreover, little attention has been paid to the understanding of

the main drivers of these changes as most of the studies focused on the factors influencing land

abandonment (Baumann et al., 2011; Meyfroidt, Schierhorn, Prishchepov, Müller, & Kuemmerle,

2016). Satellite image time series observations of land surface reflectance and vegetation indices,

such as Normalized Difference Vegetation Index (NDVI) calculated from them, are often used for

land surface change analysis as NDVI uses the spectral differences between red and near-infrared

reflectance and as a result exposes the properties of ecosystem (Kirsten M. de Beurs, Henebry,

Owsley, & Sokolik, 2015). NDVI-based trend analysis can assist the investigation of changes of

land surface over a period of time and help to understand the mechanisms behind the observed

changes. This is because NDVI is not only related to a variety of vegetation properties (structural
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properties of plants, vegetation productivity) (Dubovyk et al., 2013; Forkel et al., 2013), but it

can also indirectly represent the ecosystem conditions (Baldi et al., 2008). For instance, several

studies used NDVI as a proxy of land cover change (Waylen, Southworth, Gibbes, & Tsai, 2014)

and land dynamics (J. Chen et al., 2014), land degradation (Ibrahim, Balzter, Kaduk, & Tucker,

2015), farmland abandonment (Estel et al., 2015), and phenological changes (de Beurs & Henebry,

2010). Based on these complex characteristics of NDVI, we assume that it can be used to assess land

surface dynamics over time. In the context of this study, we define land surface dynamics as the

sudden or gradual transformation or modification of earth surface including vegetation, soil, water

and its ecosystem functioning in the unit of time (e.g., day, month, year) including fast (e.g., land

use change) and slow processes (e.g., land degradation), which can indicate the response to both

anthropogenic and environmental factors (Dubovyk et al., 2013; Forkel et al., 2013; Verbesselt,

Zeileis, & Herold, 2012). The detection of significantly increasing or decreasing trends is often not

enough to assess the environmental impact or to be able to attribute the change to factors behind

it. Abrupt changes or non-linearities may occur within the long-term time series, as the trends in

complex systems usually are not monotonously increasing or decreasing (R. de Jong & de Bruin,

2012; Teferi, Uhlenbrook, & Bewket, 2015; Verbesselt et al., 2012). Furthermore, the interpretation

of these abrupt changes without using additional datasets or expert knowledge is often challeng-

ing (Jamali et al., 2015). In this regard, the overall aim of this research was not only to analyze

the land surface dynamics over all of Ukraine for the time period from 1982 to 2013 but also to

assess underlying processes and drivers of the changes. The specific objectives were: (1) to assess

long-term land surface variability, (2) to integrate data from different sensors and investigate the

suitability of different methodologies, and (3) to estimate the effects of the essential environmental

variables namely soil moisture, air temperature and precipitation on land surfaces. Our study is,

therefore, the first study that analyzed spatiotemporal changes of land surface over all of Ukraine

for the long time period of 30 years to provide integrated and spatially continuous knowledge of

the changes and its triggers using remote sensing approaches.

3.2 Materials and Methods

3.2.1 Study Area

Ukraine is located in Eastern Europe in the southeastern part of the East European plain, between

44°20’N and 52°20’N latitudes and 22°5’ E and 41°15’ E longitude (Figure 3.1). It covers 603,550

km2 and consists of 24 administrative units (oblast) (State Statistics Service of Ukraine). Most
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of Ukraine is composed of vast plains stretching north from the Black and Azov Seas. There are

also two mountainous areas in the west and south of the country, the Carpathians and Crimean

Mountains, respectively. The climate in the East European Plain, the medium Ukrainian Carpathi-

ans, and the Crimean Mountains is mostly temperate continental, with hot summers (t > 18 ◦C)

and cold winters (t < −5 ◦C); the southern coast of the Crimea has a subtropical Mediterranean

climate (FAO, 2008). The area of Ukraine is divided into three main agro-ecological zones: steppe

(southern and eastern regions, 40% of the area), semi-steppe (central regions) and mixed forest

(north and north-west) (Smaliychuk et al., 2016; Zastavnyi, 1994) (Figure 3.1).

Despite the prevailing moderate continental climate, the study area is characterized by fairly

significant differences in the humidity, temperature and length of the growing season (Shishenko &

Munich, 2008). Hot and relatively dry summers, together with relatively severe winters, create good

conditions for the formation of chernozems (black soils) that are highly fertile for most agricultural

crops (Nazarov, Cook, & Woodgate, 2001). The average winter temperature ranges from −8 ◦C

to −12 ◦C. In the southern regions, the mean winter temperature is 0 ◦C. The mean summer

temperature ranges from 18 ◦C to 25 ◦C, although it can reach above 35 ◦C.

The area of Ukraine is characterized by significant regional differences in rainfall and its dis-

tribution throughout the year with a summer maximum. The largest amplitude of the volume is

characteristic to the south. Most of the precipitation falls in the Ukrainian Carpathians (more

than 1500 mm per year). The precipitation ranges from 650 mm (in the west) to 400 mm (in the

southeast). In dry years, precipitation is significantly reduced: in the coastal areas of the Azov and

Black Seas up to 100 mm, in the steppe up to 150–200 mm, and in forest-steppe up to 250–350

mm. In winter, permanent snow cover occurs almost everywhere in the country. One of the key

features of the climate of Ukraine are the droughts which in recent years have increased frequency

and affect large areas (Adamenko & Prokopenko, 2011; Shishenko & Munich, 2008; Skakun et al.,

2015).

3.2.2 Data

Normalized Difference Vegetation Index

As a primary data source for the regional study the Global Inventory Monitoring and Modeling

System (GIMMS) NDVI3g dataset was chosen as it is the only currently available dataset that

spans since 1982 and includes a dense time series needed for the analysis of land surface dynam-

ics. The GIMMS NDVI3g dataset is an improved 8 km NDVI dataset produced by the National
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Figure 3.1: Primary remote sensing proxies for crop water stress observation (3.1d adapted from
Smaliychuk et al. (2016)).

Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer

(AVHRR) instruments that extend from July 1981 to December 2013 (Forkel et al., 2013; Pinzon

& Tucker, 2014). The third generation GIMMS NDVI is a 15-day Maximum Value Composite

that was acquired from seven different NOAA satellites (7, 9, 11, 14, 16, 17, 18), which have been
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processed using an adaptive Empirical Mode Decomposition. NDVI3g is appropriate for long-term

studies of land surface trends in vegetation, seasonality and coupling between climate variability

and vegetation over the last three decades (Atzberger, Klisch, Mattiuzzi, & Vuolo, 2013; East-

man, Sangermano, Machado, Rogan, & Anyamba, 2013). The NDVI3g has different quality flags

(Ibrahim et al., 2015). Based on these flags, prior to analysis, all values with reduced quality

were excluded. We used pixels with minimum 75% valid data excluding interpolated observations,

possible snow covered pixels. In addition, the images for the year of 1981 were also excluded to

have full-year observations. The maximum value compositing approach was applied in the NDVI3g

dataset.

Environmental Variables

Several studies discussed the effects of climate variability on land surface change (Kirsten M de

Beurs & Henebry, 2004; Rogier de Jong, Schaepman, et al., 2013; Evans, Pitman, & Cruz, 2011).

The monthly mean temperature (TMP) and precipitation total (PRE) datasets were obtained

from the Climate Research Unit (CRU). The datasets cover the period 1901 to 2014 with a spatial

resolution of 0.5° (Harris, Jones, Osborn, & Lister, 2014). Recent studies also show the impacts

of soil moisture on vegetation at various temporal scales (Dorigo et al., 2012; Evans et al., 2011;

Y. Y. Liu et al., 2011). They discuss the co-variation of NDVI and soil moisture, stating coherent

trend changes (T. Chen, de Jeu, Liu, van der Werf, & Dolman, 2014). Furthermore, other authors

showed that a soil moisture NDVI pixel-wise residual trend indicates land degradation (Ibrahim

et al., 2015). Soil moisture influences hydrological and agricultural processes, runoff generation,

drought development and other processes. A soil moisture dataset (“ESA CCI Soil Moisture,”

n.d.; Y. Y. Liu et al., 2011) was chosen for the study, which was a merged product of active and

passive microwave soil moisture products. The dataset covering the period 1978–2013 provides

daily surface soil moisture with a spatial resolution of 0.25°and depicts the soil moisture in around

2 cm layer depth (“ESA CCI Soil Moisture,” n.d.). Therefore, we chose the following environmental

variables precipitation, temperature and soil moisture for the analysis. In addition, we used a land

cover map (Lavreniuk, Kussul, Skakun, Shelestov, & Yailymov, 2015) of 1990 as a reference (the

main institutional changes happened after 1990) to characterize the possible associations of the

environmental variables and NDVI in main vegetation formations: cropland, grassland, and forest,

which have different seasonal characteristics and response to the disturbances (Lavreniuk et al.,

2015).
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3.2.3 Methods

Prior to processing, the raster time series datasets were reprojected to World Geodetic System

(WGS) 84 coordinate reference system and resampled to a common 8 km grid, using a bilinear

interpolation algorithm. The datasets were further smoothed with Savitzky-Golay filter as the

datasets were not extremely noisy, and we intended preserving the local variations (Eklundh &

Jönsson, 2015). We extracted the temporal window (1982–2013) of the environmental time series

to match the same period with NDVI dataset. The water bodies and build up areas were masked

out. All the analyses were conducted using R statistical software (R Core Team, 2016).

Trend Analysis

After the pre-processing of the image time series (1982–2013), we explored the trends of annually

aggregated NDVI series. There are several methods described in the literature for time series

analysis of satellite imagery (Dubovyk et al., 2013; Forkel et al., 2013; Verbesselt et al., 2012).

The simplest and most common method is the ordinary least-squares (OLS) regression, where the

main assumption is that the land surface is changing linearly and gradually over time (R. de Jong

& de Bruin, 2012). The drawbacks of this method have been depicted by several authors (R. de

Jong & de Bruin, 2012; Jamali et al., 2015). In particular linear regression assumes normality and

independence of data (neglecting the temporal autocorrelation). To overcome this, we used the

Mann–Kendall nonparametric trend test, which does not depend on the distribution of data and

can be used with data with serial dependence. Tüshaus, Dubovyk, Khamzina, and Menz (2014)

demonstrated the performance of trend analysis with the aforementioned method for the land

surface dynamics monitoring. This non-parametric test evaluates the occurrence of a monotonic

single direction trend in the time series (Tüshaus et al., 2014). Furthermore, non-stationarity (time

dependency) was excluded due to a significant Augmented Dickey-Fuller test and inspection of the

autocorrelation graphs and the related tests of annually aggregated time series. However, the land

surface dynamics are not always a gradual process and often the changes are abrupt due to factors

such as extreme weather conditions or changes in land management. In general, the changes that

can be monitored using remotely sensed data can be classified as follows: (1) a seasonal or cyclic

change; (2) a gradual change over time consistent in direction (monotonic); and (3) an abrupt

shift at a specific point in time (Rogier de Jong et al., 2012; Verbesselt et al., 2012). To study

sudden and gradual changes in land surface, the Break For Additive Season and Trend (BFAST)

algorithm was used, (R Core Team, 2016) which decomposes the series into trend, seasonal and

reminder components to evaluate gradual and seasonal dynamics occurring within indices derived
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from satellite image time series such as NDVI (Rogier de Jong, Verbesselt, Zeileis, & Schaepman,

2013; Horion et al., 2016; Verbesselt, Hyndman, Newnham, & Culvenor, 2010). The season-trend

model (i.e., linear trend and harmonic component) was fitted to pre-processed monthly NDVI time

series, and the stability of the model was assessed using a test that determines the significance

of structural trend breaks. As we were focusing on trajectories of the changes, rather than the

number of the breakpoints, we chose the model with either 0 or 1 breakpoints. These breakpoints

were assumed to catch the most influential trend shifts in the time series, which represent drastic

changes in ecosystem functioning (Rogier de Jong, Verbesselt, Zeileis, & Schaepman, 2013; Horion

et al., 2016). We classified the trends based on the modified methodology described by Rogier de

Jong, Verbesselt, Zeileis, and Schaepman (2013). The authors used the term greening/browning

for categorizing the changes based on the signal before and after the breakpoint. Instead of the

above-mentioned terms, we used the concept of increase or decrease of the NDVI trends.

Correlation Analysis

We used correlation analysis to investigate the effects of essential environmental variables, namely

soil moisture, air temperature and precipitation on variability of NDVI. Correlation analysis is one

of the commonly used methods for assessing the associations between vegetation indices and inde-

pendent variables. In the case of simple correlation, the linear relationship between two variables is

determined. The disadvantage of such an approach is that the effect of other variables is ignored.

For example, when the correlation between soil moisture and NDVI is studied, the impact of other

factors, such as precipitation and temperature, on NDVI is disregarded. To reflect the internal rela-

tion between two variables, a partial correlation coefficient should be calculated. Partial correlation

coefficients reveal the relation between two variables when controlling the impact of other variables.

As a result, when two variables are both linked to the third, only the relation between the former

two variables is estimated while the impact of the third variable is removed (Peng, Li, Tian, Liu,

& Wang, 2015). Partial Spearman correlation is nonparametric in the form of relationship, and it

is robust against outliers and invariant against monotone transformation.

3.3 Results and Discussion

Trends of NDVI Series

Figure 3.2 shows the results of the non-parametric Mann–Kendall trend analysis of annually ag-

gregated NDVI time series from 1982 to 2013 for Ukraine. Areal statistics (Figure 3.2) depict the
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occurrence of positive and negative trends in each administrative unit proportional to its area. As

changes of environmental conditions are most likely to affect the land-cover classes in a different

way (Rogier de Jong, Verbesselt, Zeileis, & Schaepman, 2013), we interpreted the relative influ-

ence of each factor based on the spatial context of the observed associations i.e., land cover class

and the agro-ecological zone. Overall, around one-third of the area of Ukraine is characterized by

significant positive trends, clustered mainly in northern and western parts, which are mostly in the

relatively humid and temperature limited area with forests and forest-steppe zones. These areas

are also characterized by less frequent crop cultivation and observed land abandonment processes

(Estel et al., 2015). The secondary succession on the former croplands is captured by a positive

trend signal in our analysis.

Around 30% of cropland is characterized by positive trends, which also indicates changes in

agricultural practices. A large cluster of the positive trend was identified in the northwest from

Kiev, where the Chernobyl zone is located. This area has been closed since 1986 after the oc-

currence of the Chernobyl disaster, which is one of the major anthropogenic disasters of the last

century. Within the Chernobyl zone, active vegetation growth and environmental recovery are

observed and documented (Hostert et al., 2011), which is also reflected in the results of the trend

analysis. The observed positive trends in forest cover 32% of its area. This is evident in the ar-

eas such as mountainous regions in the Carpathian Mountains in the west of Ukraine and in the

Crimean Mountains (Kuemmerle et al., 2009). Statistically significant negative trends were less

frequent (<2% of the total area) and are mostly scattered across the country. This could probably

be explained by the fact that the area was more dynamic, and, instead of a monotonic trend, land

surface was varying over the entire study period. Most of the steppe zone does not reveal significant

trends. The steppe zone of Ukraine, sometimes also referred to as the ‘bread basket’ of Ukraine,

is the area where most intensively cultivated lands are located. The absence of the big clusters of

significant trends within this part of Ukraine may indicate that, despite the overall socio-economic

and environmental processes that have occurred in the country since 1982, these areas were con-

tinuously managed in a similar way, which has not led to noticeable land surface trends. It should

be emphasized that the analysis of long-term earth observation time series is affected by several

factors, such as the spatial resolution of the imagery, the level of temporal aggregation, number of

observations, pre-processing steps, and the analysis method itself. The temporal resolution of the

time series has an effect on the trend significance estimation. In comparison to the full-resolution

time series, the use of annually aggregated data reduces the number of observations, which results

in the underestimation of the trend significance. Nevertheless, annual aggregation decreases the
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Figure 3.2: Spatial distribution of annually aggregated Normalized Difference Vegetation Index
(NDVI) trends for the period 1982 to 2013 (a), and the areal statistics for each region (oblast) (b).

risk of detecting false positive trends (Forkel et al., 2013). Furthermore, the aggregation is an

effective method to account for autocorrelation: dependence between successive observations in a

time series (Yu Zhou et al., 2015).

Although monotonic trend analysis can reveal the general tendency of land surface changes, the

trends are not always continuously increasing or decreasing but can fluctuate over time (Teferi

et al., 2015). To account for these changes, a breakpoint analysis was conducted. (Figure 3.3)
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illustrates the spatial distribution of change categories. Pixels with insignificant trends (P ≥ 0.05)

were masked out. For each category of land surface change, representative points were selected,

and the temporal profiles of NDVI response and the observed trend were studied in detail (Figure

3.3a–d).

Figure 3.3: Spatial distribution of the change categories. The pixels with significant trends in
both segments and significant monotonic trends are represented (p < 0.05). Temporal profiles show
the most frequent change types. (a) Increase to decrease (b) Decrease with burst (c) Increase with
setback (d) Increase to decrease
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In general, NDVI varied and pixels with trend shifts prevailed (Figure 3.3). Increasing trends

with the shifts is the dominant type covering 28% of Ukraine (Table 3.1). Although the hotspots

of the monotonic increase can be noticed (3.67% of the area), the results of the analysis of the

change type reveal a higher number of interrupted trends (i.e., increase with setback) and reversal

trends (increase to decrease). The interrupted increasing trends could probably be conditioned

by human interventions and by the effect of extremely dry periods (observed in 10.24% of the

area). The reversal trend indicating trend change from increase to decrease stated the decline of

ecosystem functioning. We suggest that these types of changes can be associated with the large

socioeconomic disturbances followed by the collapse of the Soviet Union and associated processes

of land abandonment after 1991 and land re-cultivation after the 2000s (Alcantara et al., 2013;

Smaliychuk et al., 2016). We also evaluated the percentage of change types in each land cover class

(Table 3.1)

Trend type Cropland Grassland Forest

Monotonic increase 4.66 7.34 2.53
Decrease with burst 6.96 13.27 0.73
Increase with setback 11.21 24.41 7.43
Increase to decrease 18.97 44.49 10.31

Table 3.1: Percentage of change types in each land cover class.

The estimates reflect the percentage of the trend type within the dominant class, using the

land cover information from the 1990 reference year. Generally, the interpretation of these trends

is challenging as the trend shifts can be explained by several factors (Rogier de Jong, Verbesselt,

Zeileis, & Schaepman, 2013). The reversal trend can be attributed to long-term increasing human

pressures (Horion et al., 2016), particularly the cultivation of abandoned croplands, which was

also observed by Smaliychuk et al. (2016). Another abundant category of change is the increasing

trend with an abrupt negative change, which can be related to the extreme events such as drought.

In Ukraine, frequent drought events have been observed during the last 16 years (Skakun et al.,

2017). The drought in 2003 in most of the pixels was not detected as a major break and this can

be explained by the fact, that in long-term series from 1982–2013, the drought did not have the

biggest break in the NDVI trajectory. Furthermore, during the consecutive drought in 2007–2010,

the break was not detected in the first year of the drought. The effects of droughts should be further

investigated. Another challenge for the interpretation is the spatial resolution of the dataset, as one

pixel of NDVI3g dataset can contain diverse land cover types, due to the fragmented landscapes in

some regions and the size of the land management units (Chandler & Scott, 2011; Sutton et al.,
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2008). Despite of this sub-pixel heterogeneity, the dataset is still representing the large-scale land

use/land cover patterns and their spatiotemporal variance over this vast area. The validation of

these trends is not straightforward because the field observations are not temporally dense and

mostly were restricted to a few-time steps. In addition, the scale compatibility was another issue,

as the datasets might be not representative for an 8 km grid (Rogier de Jong, de Bruin, de Wit,

Schaepman, & Dent, 2011). To overcome this, we compared our results with the results of the

previous studies (Alcantara et al., 2013; Baumann et al., 2011; Hostert et al., 2011; Schierhorn

et al., 2013) and investigated the validity of the results by local experts.

Characteristics of the Main Time Periods of the Trend Shifts in Ukraine

To understand the land surface dynamics and the main drivers of its changes, it is essential not

only to look at the spatial distribution of the trend shifts but also the timing of these changes.

We classified the time of the NDVI changes in three time periods of 1982–1992, 1993–2002 and

2003–2013 as the socio-economic pressures and environmental conditions were different during

these periods (Figure 3.4). According to our results, the decrease with the abrupt positive break

predominated during the first period of 1982–1992 within the steppe zone of Ukraine, which is the

main agricultural zone of the country. This period was the last period before the collapse of the

Soviet Union and was still characterized by extensive cultivation and agricultural land expansion

in the country.

During the second period (1993–2002), most of the changes occurred in the northwest of Ukraine

(Figure 3.4). The first post-socialistic years were described with high abandonment rates as well

as with prevailing forest disturbances. The agricultural activities were mostly affected after the

collapse of the Soviet Union due to the ongoing transformation processes and structural changes

in the agricultural sector at that time. Almost 70% of cropland abandonment occurred within the

first 10 years of the transition from a state-command to a market-driven economy (Schierhorn

et al., 2013). Since the late 1990s and early 2000s, due to the economic recovery, the re-cultivation

of formerly abandoned land emerged (Schierhorn et al., 2013). The last period (2003–2013) was

also associated with strong environmental impacts (i.e., droughts and extreme weather conditions)

(Adamenko & Prokopenko, 2011; Shishenko & Munich, 2008). Although the effect of sensor change

that affected the quality of the AVHRR data is significantly reduced in NDVI3g (Ibrahim et al.,

2015; Tian et al., 2015), some research found that GIMMS3g NDVI data are still showing an

inconsistency between sensors in humid, dry-sub humid, semi-arid and hyper-arid regions (Tian

et al., 2015). As the AVHRR platform changes (1985, 1988, 1994, 1995, 2000 and 2004) could
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Figure 3.4: Spatial distribution of the time of the shift classified in three major time intervals.

potentially cause the breakpoints in the trends (Rogier de Jong, Verbesselt, Zeileis, & Schaepman,

2013), we have conducted the corresponding tests. We compared these changes with the frequency

of the detected changes and the detected breakpoint did not show the same result, suggesting that

our results are unlikely to be affected by the platform changes.

Factors of Land Surface Dynamics in Ukraine

We explored the correlations between NDVI time series and environmental variables (mean annual

temperature, total precipitation and mean soil moisture) using the partial rank correlation method.

Prior to correlation analysis, we evaluated multicollinearity by obtaining VIF (variance inflation

factor) for each variable. Non-stationarity (time dependency) could be excluded due to a significant

the Augmented Dickey–Fuller test and inspection of the autocorrelation graphs and the related tests

of annually aggregated time series. As the VIF was smaller than two, we continued the partial

ranked correlation analysis of the driving factors and NDVI. (Figure 3.5) illustrates the spatial

distribution of the extent of the effect of each factor. We used a subtractive model for visualization,

where the primary factors are illustrated with a pure color and the overlapping areas of influence

are depicted by the intersection of colors.

Although the studies have discussed the impact of climatic variation on land surface changes
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Figure 3.5: Dominant factors of Normalized Difference Vegetation Index (NDVI) change: pixel-
wise correlation coefficients between NDVI and environmental variables. The gray color denotes
pixels without statistically significant correlations (p < 0.05).

(Rogier de Jong, Schaepman, et al., 2013; Y. Liu, Li, Li, & Motesharrei, 2015; Nemani et al.,

2003), very few of them have focused on the impact of environmental factors on land surface trends

in Ukraine as opposed to management and land tenure factors (Adamenko & Prokopenko, 2011;

Alcantara et al., 2013; Baumann et al., 2011; Hostert et al., 2011; Kovalskyy & Henebry, 2009;

Schierhorn et al., 2013; Smaliychuk et al., 2016). Our results show that the changes in land surface

can be partially explained by the combination of thermal and water conditions. It is important

to mention, that we do not raise any causal argument for the statistical results of presented cor-

relations. The only aim we had was to assess the effect of an estimator and describe possible

associations between environmental variables and land surface changes. Among all analyzed fac-

tors, air temperature explained most of the NDVI variability (Table 3.2). The impacts of air

temperature were observed in 31.5% of the area, with a positive correlation coefficient (0.36–0.77).

This can be explained by the fact, that in western and northern regions, the temperature is the

main limiting factor for the vegetation growth, and with the increase of temperature over the study

period, the correlation becomes higher. The percentage of the area in each land cover class with

NDVI/Air temperature correlation depicts that grasslands were the most sensitive to temperature.

31



3. National scale Land surface dynamics

Correlation Coefficient Range Cropland Forest Grassland

0.36–0.44 20.34 10.45 41.04
0.45–0.53 16.94 9.86 34.67
0.54–0.77 8.70 4.47 15.10

Table 3.2: Percentage of the area in each land cover class with Normalized Difference Vegetation
Index (NDVI)/Air temperature correlation.

Soil moisture content is influential in eastern (r = 0.68), semi-steppe, and steppe zones, covering

around 12% of the area. High correlation coefficients between NDVI and soil moisture is observed

in grasslands (Table 3.3). Furthermore, we observed small clusters of negative correlations be-

tween NDVI and soil moisture that might be referred to anthropogenic influences in this area and

unfavourable socio-economic conditions. Finally, precipitation is a dominant factor (r = 0.65) in

central regions of the country (Table 3.4). Relatively low correlation coefficients were estimated

between NDVI and precipitation in forests, which were conditioned by lower water limitation com-

pared to other classes. Again, there is a small cluster of a negative correlation between NDVI and

precipitation in the northwest of Ukraine. Since it is not driven by climate variability, this could be

an indicator of human-induced changes such as land transformations (Dubovyk, Landmann, Eras-

mus, Tewes, & Schellberg, 2015) (not represented on a map). Moreover, the results of NDVI/soil

moisture partial correlation analysis show a higher number of pixels with a significant association

within the study area than NDVI/rainfall. Although theoretically the precipitation is considered

as an essential forcing factor for soil moisture variability, the latter is also affected by conditions

such as soil hydraulic properties, land cover, evapotranspiration, and topography. This is in line

with several studies (Ibrahim et al., 2015; Sohoulande Djebou & Singh, 2015) where soil moisture

had better performance for the explanation of land surface dynamics. In addition, when evaluating

the partial rank correlations between variables, the effect of the other confounders is eliminated

by adjusting the target correlation for any other monotonic association with the variables of this

study.

Correlation Coefficient Range Cropland Forest Grassland

-0.55–(-0.21) 0.53 0.31 2.27
0.1–0.44 8.91 1.84 19.72
0.45–0.68 7.79 1.25 14.80

Table 3.3: Percentage of the area in each land cover class with Normalized Difference Vegetation
Index (NDVI)/Soil Moisture correlation.

Although the additional datasets give insight about the processes that can affect the land surface

changes, further analysis should consider the use of complementary factors and include datasets
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representing anthropogenic activity. Several studies discussed the factors that affect the land aban-

donment in Ukraine, and they depicted that factors such as soil type, yield decrease, unfavourable

socio-economic conditions and population density demonstrate a significant association with land

abandonment and cultivation rate (Baumann et al., 2011; Meyfroidt et al., 2016). The observed in-

creasing and decreasing trends and their interruptions are only partially explained by temperature,

precipitation and soil moisture. Other factors—such as CO2 fertilization, agricultural management

practices and the intensity of land use and fertilizer use may affect the land surface changes. To

improve our analysis, this should be considered in the context of overall land surface dynamics.

Correlation Coefficient Range Cropland Forest Grassland

-0.47–(-0.18) 0.32 0.59 1.02
0.1–0.44 6.24 2.01 9.53
0.45–0.65 3.64 0.59 6.01

Table 3.4: Percentage of land cover class with significant correlation coefficients Normalized
Difference Vegetation Index (NDVI)/ precipitation.

3.4 Conclusions

The current study addressed the assessment of long-term land surface dynamics over a 32 -year

period between 1982 and 2013 in Ukraine. The interpretation of the influences of environmental

variables on the observed land surface dynamics were supplemented and improved by employ-

ing additional datasets. Fundamentally, we concluded that long-term increasing NDVI trends are

widespread across the country. Decreasing trends with abrupt positive breaks predominated during

the initial 1982–1992 study period within the steppe zone of Ukraine. This period is characterized

by extensive cultivation and agricultural land expansion in the country. During 1993 and 2002,

most of the changes occurred in northwest Ukraine. The first post-socialistic years in the country

were characterized by high rates of land abandonment as well as widespread forest disturbances.

Following the collapse of the Soviet Union, agricultural activities and practices were principally

affected by transformational processes and structural changes in this sector. A general economic

recovery has been occurring in Ukraine since the late 1990s and early 2000s. These conditions

have stimulated re-cultivation of formerly abandoned land. This process has emerged mainly in

the central portion of the country and is reflected by the monotonic increase and increase with a

setback that is seen to predominate during the recent years of 2003–2013. Critical, high impact

environmental events (including droughts and other extreme weather conditions) also occurred with

an increased frequency during these years. Based on our results, we conclude that the combined
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trend and breakpoints analysis captures and reflects the spatial patterns of these trends as well

as describes the timing of those changes. This capability will allow increased understanding of

dynamic land surface processes over extensive areas. We found that the GIMMS NDVI3g dataset

was extremely useful for regional scale trend analysis. In particular, a data record spanning more

than three decades enabled a markedly improved trend characterization. With respect to the ef-

fects of environmental factors on NDVI change, we conclude that partial correlation analysis is

useful for determining the individual contribution of each specific environmental factor on NDVI

dynamics. Correlation analysis shows that temperature accounts for approximately 30% of over-

all NDVI variance. Grassland and cropland environments show similar responses to the drivers,

demonstrating high sensitivity to soil moisture and precipitation as well as temperature. Additional

analyses should include complementary causal factors along with datasets that accurately charac-

terize anthropogenic activity. There is also a requirement for analyses at higher spatial resolutions.

This will enhance interpretation of land surface trends and provide for assessments at scales com-

plimentary to land management practices. We are confident that this study demonstrates that

the effective combination of different trend analysis techniques, integrated multiple datasets, and

effective statistical modelling allows derivation of valuable, previously unavailable spatially explicit

information on land surface dynamics and their causal factors. Finally, such information will enable

an improved understanding of land surface processes and environmental changes ongoing over space

and through time that are specific to Ukraine.
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Chapter 4

A Rule-based Approach for Crop Identification Using

Multi-temporal and Multi-sensor Phenological Metrics

Abstract: Accurate classification and mapping of crops is essential for supporting sustainable land

management. Such maps can be created based on satellite remote sensing, however, the selection

of input data and optimal classifier algorithm still needs to be addressed especially for areas, where

field data is scarce. We exploited the intra-annual variation of temporal signatures of remotely

sensed observations and used prior knowledge of crop calendars for the development of a two-

step processing chain for crop classification. First, Landsat-based time-series metrics capturing

within-season phenological variation were preprocessed and analyzed using Google Earth Engine

cloud computing platform. The developmental stage of each crop was modeled by fitting harmonic

function. The model’s output was further used for the automatic generation of training samples.

Second, several classification methods (support vector machines, random forest, decision fusion)

were tested. As input data for crop classification, composites based on Sentinel-1 and Landsat

images were used. Overall classification accuracies exceeded 80% when the seasonal composites

were used. Winter cereals were the most accurately classified, while we observed misclassifications

among summer crops. The proposed approach offers a potential to accurately map crops in the

areas where in situ field data is scarce or unavailable.

4.1 Introduction

Due to a growing world population and decreasing land and water resources, there is a need for

enhancing agricultural productivity to ensure food security. Accurate crop maps from Earth Ob-

servation (EO) can build the basis for agricultural monitoring and decision making at wider spatial

scales (Nataliia Kussul, Lemoine, Gallego, Skakun, & Lavreniuk, 2015; Fabian Löw & Duveiller,
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2014) to support sustainable agricultural land management. Improving the resiliency of food pro-

duction systems, and implementing sustainable agricultural practices have been recognized as one

of the most important development goals (United Nations, 2015). Spatially explicit information

on the distribution of croplands and crop types can also assist accurate statistical estimation such

as yield prediction and crop area estimation (Kogan et al., 2013; Nataliia Kussul et al., 2015; Pan

et al., 2012) and so support policy making (Davidson, Fisette, Mcnairn, & Daneshfar, 2017). The

recent advancement of satellite remote sensing, such as the free distribution of satellite archives

and the availability of new sensors, gives more opportunities to derive land cover and land use

(LULC) information. Also, the frequency of data acquisition is nowadays rather high, which al-

lows not only to discriminate different crops but also to assess their growth stage. Several studies

discussed the use of multi-temporal imagery for classification (Hentze, Thonfeld, & Menz, 2016;

Jinxiu Liu, Heiskanen, Aynekulu, Maeda, & Pellikka, 2016; Siachalou, Mallinis, & Tsakiri-Strati,

2015; Simonetti, Simonetti, Szantoi, Lupi, & Eva, 2015; Yan, Wang, Lin, Xia, & Sun, 2015) often

using vegetation indices, such as Normalized Difference Vegetation Index (NDVI), for the identifi-

cation of croplands and crop types from other types of land cover (Hao, Wang, Zhan, & Niu, 2016;

Marais Sicre et al., 2016; Wardlow & Egbert, 2008). Previous studies also discussed the use of

knowledge-based temporal features for crop identification based on several optical sensors. These

studies applied a phenology-based approach for the identification of areas cultivated with different

crop types (Bargiel, 2017; Waldner, Canto, & Defourny, 2015; Zhong, Hu, Yu, Gong, & Biging,

2016). However, these multi-temporal classification approaches either rely on a high number of

training data and/or cannot be applied in years without training data. Moreover, the integration

of several data sources and the discrimination of crop types are still challenging as most of the

studies are based on the use of remote sensing data coming from one sensor. Hence, the present

study proposes an approach to automatically generate training samples based on phenological met-

rics derived from both optical and radar image time series. We applied this method to the study

site in Central Ukraine as this region has undergone profound changes during the last decades in

the extent and intensity of agricultural land use (Kuemmerle et al., 2011). For the study area,

(Nataliia Kussul et al., 2015) demonstrated successful classification of the agricultural land use.

However, the crop identification methods applied were relying on extensive field data collection

which was further used for calibration of the classification model. Although a number of studies

have addressed the use of satellite data products for crop mapping (Loosvelt, Peters, Skriver, Baets,

& Verhoest, 2012; F. Löw, Michel, Dech, & Conrad, 2013; Wardlow & Egbert, 2008), there is still

an ongoing discussion regarding the choice of input data. Further, when using only optical remote
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sensing data, unfavourable atmospheric conditions such as cloud cover can reduce the quality of

classification results (Forkuor, Conrad, Thiel, Ullmann, & Zoungrana, 2014; Joshi et al., 2016;

Whitcraft, Becker-Reshef, & Justice, 2015). Therefore, analyses are needed which strives for a

better understanding of the effect of type and number of input variables on classification accuracy.

Such analysis should also consider an increase in amount and quality of freely distributed data

especially when data from multiple sensors are combined. In our study, we thus tested the perfor-

mance of several non-parametric classification algorithms (support vector machines, random forest,

and decision fusion) and applied them to multi-temporal data sets. As these algorithms are widely

used for classification, the comparison of these approaches is important to test their applicability

for crop type mapping. In this light, the objectives of the research were: (i) to develop a two-step

procedure for crop identification based on analysis of crops’ within season temporal dynamics and

application of non-parametric classification algorithms, (ii) to identify a favorable selection of input

data derived from optical and SAR sensors, and (iii) to compare the applicability of classification

methods and a training sample generation approach across years.

4.2 Study Site

We selected the Vasilkovsky district in Kiev region as the test site (Figure 4.1). This area is located

in Central Ukraine in the semi-steppe zone, comprising 1184 square km. In 2015, the total sown

area was 58,618.36 ha, while in 2016 it comprised only 46,092.52 ha (State Statistical Department of

Kiev region, 2015, 2016). The test site is characterized by a temperate climate and a heterogeneous

agricultural land use. Agricultural production in the region is highly dependent on rainfall, as the

area is not irrigated. In this region, two major cropping seasons are distinguished. Winter crops

are grown from October to July of the following year, whereas summer crops are grown from April

to September. In this area, during one growing season, one crop is planted and after the harvest

of winter crops, no other crop is planted. Although the area is located in the temperate zone,

agro-climatic conditions were different during the study years. Particularly, in 2015 the weather

was drier lacking rain from mid-July. Although growing conditions in 2016 were more favorable,

the average temperature and precipitation deviated from the long-term mean. The agricultural

field size in this area varies mostly from 30 ha to 100 ha. Small fields have a size of less than 5 ha

(5% of the fields in the area) and large fields can even reach up to 250 ha. Such differences occur

due to several factors such as different types of cropland tenure, ownership (agricultural holdings,

household farms).
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Figure 4.1: Location of the study area (Sentinel 1 multi-temporal composite, RGB bands: VH
images from May, August, and October in 2016)

Wheat is the main winter cereal, which is typically planted in late September or October. The

seeding date depends on weather conditions as plants start growing when temperature exceeds

1-2 ◦C, while the optimal temperature for growth ranges from 14 to 20 ◦C. The active vegetative

period ends in November but starts again in the following spring (Day of the year (DOY) 60-

85). Winter wheat usually reaches the flowering stage in the second part of May; and the crop is

consequently harvested in July and early August (DOY 11-123) (Figure 4.2).

Figure 4.2: Typical crop calendar.

Besides winter wheat, other winter cereals, such as barley are also sown, but usually the culti-

vated area is smaller compared to winter wheat. Another common winter crop is rapeseed, which is

one of the main oilseed crops grown in this area. It is also planted in fall. The distinctive flowering

period is in late April, which usually lasts for 35 days. The duration of the growing season of rape-

seed is around 300-320 days. Maize, soybean, and sunflower are the main summer crops cultivated

in the study site. Maize is sown between late April and May: the crop reaches the peak of the
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vegetative phase in July and is harvested till mid-September. Maize typically reaches the flowering

stage in mid-July (DOY 190-202). Soybean is usually sown in May, reaching a flowering stage in

July and maturing in August (the overall growing period is 80-240 days). Sunflower is another

important oilseed crop, which exhibits similar crop development stages during the growing season:

seeding is in late April, flowering in July and harvest is in early September (growing period: 95-120

days) (State Hydrometeorological Service of Ukraine, 2007). The other crops which are cultivated

in this area are sugarbeet, buckwheat, oat, spring wheat and barley. However, due to relatively

small area (0.88-10% of cultivated area in the study region) they were not included in the study.

In the following section these classes were designated as class ‘other’.

4.3 Datasets

4.3.1 Satellite Data

Landsat 8 Operational Land Imager (OLI) time series were used as the primary source of data.

Top of Atmosphere (TOA) collection was accessed using Google Earth Engine (GEE) (Google

Inc., 2016; Lessel & Ceccato, 2016). The Landsat archive was chosen due to its 30m spatial

resolution, which is suitable to characterize land use at field level given the average field size in

the study area. As the study area is in the overlapping section of two Landsat paths (181/25

and 182/25), four optical acquisitions are available per month. In figure 4.3, the selected Landsat

scenes are illustrated (several Landsat scenes were excluded due to extensive cloud cover). Some

of the Landsat bands, such as costal blue (Band 1), thermals (Band 10 and 11), panchromatic

(Band 8) and cirrus (Band 9) were not used in the study. Following initial tests, Blue (Band 2)

and Green (Band 3) bands were excluded from the classification framework as well. In addition

to the optical images, Sentinel-1A C-band SAR images with VH (Vertical transmit, Horizontal

receive) polarization were used (Interferometric Wide swath mode (IW), Processing level 1 high-

resolution products, Ground Range Detected). As SAR backscatter is sensitive to both geometric

(e.g. crop structure, roughness) and dielectric properties (permittivity, which highly depends on

water content) of the targets, it provides additional information to optical data (Inglada et al.,

2016; Weng, 2011). When using multi-temporal SAR data, it is important to use the data with

the same viewing configuration. For this, we used the images in descending mode, and we filtered

images by the orbit, as the difference in orbit might cause changes in backscattering that are not

related to (bio)-physical properties of the target.
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Figure 4.3: Data acquisition (dots) and the temporal window of compositing (arrows).

4.3.2 In situ Data

In situ phenological observations acquired from the State Hydrometeorological Services of Ukraine

were used for the assessment of seasonality parameters derived from remote sensing. This data

represents long-term observations of dates of the main phenological events for each crop. These

key dates of crop development can be grouped into the following temporal classes: initial (low

vegetation, beginning of emergence), development of leaves (greening up), mid-season peak and

flowering, late season (grain filling and senescence) and harvest. According to the collected in situ

crop phenological data, among recent years these plant growth stages generally corresponded to

crop calendar. Land cover information was collected using a mobile device with the GPS during

the growing season of each year. The field data collection was carried out during the entire growing

season of all crops, which enabled the recognition of winter crops (cereals and rapeseed) and summer

crops (maize, sunflower and soybean). The reference dataset for each crop is listed in Table 4.2.

4.4 Methods

4.4.1 Preprocessing

Prior to the analysis, remotely sensed time series went through several preprocessing steps. We

filtered the Landsat data collection by the time interval corresponding to the monitoring period

and to the extent of the study area using Google Earth Engine. The Fmask (Function of mask)

method was applied for cloud and cloud-shadow detection in Landsat imagery (Z. Zhu, Wang,

& Woodcock, 2015). Temporal SAR composites were created and, subsequently, included into the

classification scheme. Prior to compositing, it is important to filter the speckle noise in SAR images.
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We used GammaMap filter for this purpose (Lopes, Nezry, Touzi, & Laur, 1990) with the 7x7

kernel size. The Sentinel-1 and Landsat imagery were orthorectified to the same map projection

and resampled to a common 30 m pixel resolution (Figure 4.4). The NIR and R bands of Landsat

were used to compute NDVI images for each individual time step.

Figure 4.4: Methodological workflow.

4.4.2 Two-step approach

A two-step approach for crop identification was developed which included generation of training

samples and a pixel-wise classification per se.

Training sample generation

To automatically generate training samples, a processing chain was developed to separate the main

crops in the study area. First, a harmonic function was fitted to the time series of NDVI data. By

fitting a harmonic function (Eq. 4.1), it has been possible to model temporal signal of NDVI as

a sum of additive term and harmonic term, which were then expressed by phase and amplitude.

Phase term represents the angle at which the peak occurs (time represented in radians). The

amplitude corresponds to the amount of the NDVI change (Dubovyk, Landmann, Dietz, & Menz,

2016; Jakubauskas, Legates, & Kastens, 2002).

NDV It = β0 +
∞∑

n=1

An cos(
2πnx

f
− ϕn) (4.1)

where NDVIt represents the reconstructed series, A is the amplitude and φ is the phase of the

nth harmonic term, f is the frequency and t represents the time. β0 can be viewed as the coefficient

at zero frequency (intercept), which is the average of the series. Phase and amplitude terms were

further used to extract the decision rules. The phenometrics were calculated for each pixel-wise time

series (Table 4.1). As the main variance in NDVI series is captured in first harmonic terms and their
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additive component, we have tested our approach based on these terms. The first harmonic term

represents the annual cycle while the second term captures semi-annual variation (Jakubauskas

et al., 2002). We filtered the Landsat time series based on the crop calendar, which means that for

winter crops (wheat, rapeseed) it was essential to use the observations from previous fall to have

correct fitting. In situ observations of crop phenology were used to check their agreement with

remotely sensed seasonality metrics by the comparison of key phenological dates.

Phenometrics used in the study Description

Phase angle in which the peak occurs
Amplitude magnitude of peak

Mean average of the series

Maximum Landsat-8 composite from the start of a season pixel based maximum composite
(Period 1, month 4-5)

Median Landsat-8 composite from mid-season pixel based median composite
(Period 2, month 6-8)

Median Landsat-8 composite from the end of a season pixel based median composite
(Period 3, month 9-10)

Sentinel 1 composites

VH polarized monthly temporal composites:
months 4 and 5 correspond to Period 1

months 6,7,8 to Period 2 and
months 9,10 to Period 3 respectively

Table 4.1: Input features used for the development of the decision rules.

Based on the harmonic regression fit, we identified the essential temporal intervals for the

derivation of the Landsat composites. Using statistical aggregates such as mean, median and

maximum values during each phenological stage, we generated the image composites (Table 4.1)

Although all pixels in such composites were not acquired during the same day, they still represent

the same phenological state of the crop. Thus, such composites from different periods of the

growing season (start, mid-season, end of the season) can be further used for differentiation of

crops. ‘Start’, ‘mid-season’, ‘end of the season’ terms correspond to period 1, period 2 and period

3 respectively and through the manuscript are used interchangeably. Afterwards we used these

composites, derivatives from harmonics and the reference phenological information to determine

the range of the values of the peak of vegetation index and the timing of the peak, the range values

of base and mid-season NDVI values. In this way, the decision rule set was developed to separate

crop types. Based on these decision rules, we generated the masks which we labeled as ‘probable’

class for each crop (Figure 4.6). The winter cereals (wheat, barely) were aggregated in one class

due to their spectral similarities. To reduce the effect of mixed pixels in the generated crop masks,

they were filtered one more time. The final training set was randomly selected each time from

the crop masks. The selection of the sample points was based on the lowest standard deviation of
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NDVI values, where the ‘lowest’ means those standard deviations that are within 95% confidence

interval, derived from observed standard deviations. The number of generated training samples

was proportional to the validation set. The values that were out of the range for the main crop

classes, were used to generate a class labeled ‘other’.

Figure 4.5: Delineation of agricultural areas.

We run image segmentation to generate field boundaries and identify only cropland areas in the

study area. Elimination of non-cropped areas and generation of field boundaries was performed by

the intersecting several segmentation results based on both Landsat and Sentinel-1 images. The

elimination of non-cropped areas was possible when using the distinctive characteristics of harmonic

derivatives of different land cover classes such as masking the areas with low yearly average (zero

harmonic component) for bare land and high values for the forest. Another assumption used for the
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delineation of cropped areas was the higher amplitude compared to non-cropped areas (Figure 4.5).

In the map we can clearly differentiate non-cropped areas, illustrated in green, and cropped areas in

the shades of purple. The visible differences in the cropped area are due to characteristic distinctions

in temporal metrics of different crop types.

Figure 4.6: The rule set used for sample generation (NDVI mid is the NDVI estimated from the
mid-season composite).

Classification

The second step in the classification procedure was the selection of the features that can improve the

class separability and the training of the classifier. The main input features for the classifier were six

spectral bands of Landsat, NDVI, derived from three temporal composites, and Sentinel-1 monthly

composites (Table 4.1). We tested three machine-learning algorithms for pixel-based classifications

Random Forest (RF), Support Vector Machine (SVM) and one decision fusion approach. The first

classification algorithm employed was the Random Forest which is an ensemble machine learning

technique that combines multiple trees (Breiman, 2001). One of the advantages of the RF is that

the increase in the number of trees does not result in over-fitting (Hao, Zhan, Wang, Niu, & Shakir,
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2015; Ozdarici Ok, 2012). We have selected the optimal number of trees in the ensemble as 500. For

each scenario of classification, the square root of the number of features was used for generation of

the trees at each node. Support Vector Machine was the second method applied for classification,

which uses higher dimensional features space for a class separation (G. M. Foody & Mathur, 2004).

SVM is a non-parametric method, and the parametric distribution of the input data is not required.

SVM is reported to work well with small training datasets (Mathur & Foody, 2008). For the SVM

test we used Radial basis function kernel (RBF). The third classification approach was based on

decision fusion by combining the results of several classifier algorithms (Kittler, Hatef, Duin, &

Matas, 1998), similar to the method proposed by (Waske & Benediktsson, 2007). Two classifier

algorithms (here: RF and SVM) were trained based on randomly selected feature subsets. Whilst

Waske, van der Linden, Benediktsson, Rabe, and Hostert (2010) recommended 20-30% of all input

features to get accurate results, such a low number of features decreased classification accuracy

in our study. Hence, the subsets were created by randomly drawing 75% of all input variables.

This process was repeated 50 times, based on recommendation of Waske et al. (2010) and initial

tests in our study. Through this procedure, we created 100 outputs (50 by the RF, and 50 by the

SVM) which were 100 land cover maps. These 100 maps were then combined using a majority vote

(Fabian Löw, Conrad, & Michel, 2015), and as a result, one final map was the output from the

decision fusion (Figure 4.7).

4.4.3 Accuracy Assessment

The accuracy of the initial crop masks and final crop maps was assessed based on confusion matrices

(Congalton, 1991), calculated with the independent validation set collected during the field visits

(Table 4.2). From confusion matrices, we derived overall accuracy (OA), as well as producer´s (PA)

and user´s (UA) accuracy. We used McNemar’s test (Giles M. Foody, 2004) for the comparison of

the classification results. Further, we calculated the area of each crop class and compared it with

the official agricultural census statistics (State Statistical Department of Kiev region, 2015, 2016).

For the spatially explicit representation of uncertainty of crop maps, we divided the training data

into multiple overlapping collections by randomly selecting each time 75% of data. Afterwards we

trained the classifier with each subset, classified the input with each classifier. After generation of

the classification results, we have normalized the values of pixels in each array to a common scale

and estimated the variance of classification for each pixel. All the analyses were carried out with

the use of R (R Core Team, 2016) and GEE (Google Inc., 2016).
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Figure 4.7: The workflow for decision fusion approach.

2015 2016

Class Training Validation Training Validation
Winter Cereals 19 19 20 23
Winter Rapeseed 7 7 5 4

Maize 18 20 20 19
Sunflower 7 8 13 13

Soy 20 21 19 19
Other 10 6 7 6

Table 4.2: The samples used for training and validation

4.5 Results and Discussion

According to the approach described in the previous section, crop maps were produced using one

of the supervised algorithms (RF, SVM, and DF) and different input time series derived by single

Landsat or Sentinel-1 sensors and their combination. The study site was characterized with different

agricultural landscapes and its crop variability therein (Figure 4.8). As SVM resulted in accuracies

lower than 75%, we did not consider it for further analysis. Crop maps indicated that the general

patterns of crop distribution were similar when using different classification methods. An exception
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were fields in the southwestern region of the study area, which were classified in 2015 as ‘winter

cereal’ when using decision fusion, whereas with random forest those fields were assigned to the

class ‘other’. Based on a visual inspection of the generated crop maps we found out that several

fields of the same crop were in the direct neighborhood or in the close distance. In general, we

can observe that, the output using different input data (Landsat or Sentinel-1 sensors plus their

combination) was similar for several fields. Particularly, this is visible for ‘winter cereal’ class,

where the area in the disagreement class comprised 4-14% of the classified ‘winter cereal’ area. The

explanation for this could be the fact that winter cereals have distinctive temporal characteristics

which can be detected in both SAR and optical temporal composites. The disagreement was

higher for summer crops, which can be explained by their spectral similarities and the allocation

of these fields to different classes during several classification tests (Figure 4.9, class ‘disagreement

among different scenarios’ represented in red). For instance, soy had higher portion of pixels with

higher disagreement among the classifiers, reaching up to 33% with DF and 41% with RF in 2016.

Furthermore, looking at the accuracy metrics (Table 4.3), we can observe, that with the elimination

of the input variables, PA and UA for crops such as soy decrease respectively. The reason for this

is that with less data it is harder to distinguish the summer crops which have similar development

throughout a growing season.

We compared the results when using three seasonal composites from Landsat-8 and Sentinel-

1 using McNemar’s test. The difference between the classification results of RF and DF was

statistically significant in both years (for 2015 χ2: 4.5; p=0.034 and for 2016χ2: 5; p=0.025).

Similar results were observed in the study of (Hao et al., 2015; Fabian Löw et al., 2015) who

report that the fusion approach had better results. Among the classification algorithms tested,

DF performed the best in terms of OA using both Landsat and Sentinel as input data (88% in

2015 and 85% in 2016) and resulted in more accurate crop maps with an increase in OA of 2-6%

over the RF classification’s accuracy. DF yielded acceptable accuracies (>80%) when using optical

and SAR data separately as well. The only exclusion was the SAR based classification of 2016,

where the OA was 78% which was close to the desired accuracy metric. This can be due to the

fact that the map produced based on DF was a product of several classification results based on

combination of the classifiers. In addition to the traditional accuracy assessment methods, we have

also visualized pixel-based uncertainty of classifications (Figure 4.10). In general, the variance was

higher when using RF, whereas with DF we can observe good agreement of class allocation among

multiple classification results.

We have evaluated the efficiency of training sample generation by assessment of the accuracies of
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Figure 4.8: Crop maps for 2015 obtained using a) Random forest b) Decision fusion and 2016
obtained using c) Random Forest d) Decision fusion with the input data from Landsat-8 and
Sentinel-1 composites from start, mid and end of the growing season.

the ‘possible crop masks’ with the independent validation data. For both years, the accuracies were

high for winter crops (80%), whereas lower accuracies were found for soybean and maize ( 60%).

This lead us to infer that the masks should be further filtered and only the samples which exhibited

low standard deviation were selected for final classification.

Overall, results indicate that the temporal patterns of crops can be modeled with harmonic

function especially when using the first and second components. For summer crops, the main

variation was derived using only first harmonic component as they exhibited a strong unimodal

behavior. In contrast, to derive the best fit for winter crops, we used the function generated from
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Figure 4.9: The uncertainty of classification results using a) Random forest b) Decision fusion
and 2016 obtained using c) Random Forest d) Decision fusion with the input data from Landsat-8
and Sentinel-1 composites from start, mid and end of the growing season.

the first and second harmonic components. These crops are usually planted in fall of the previous

year and due to their distinct phenological development, the second component is characterized

with substantial variability.

4.5.1 Per-class Separability

In general, the winter cereal class was most accurately classified, whereas we observed misclassifi-

cations with maize and soybean classes. This could be explained by the fact that winter cereals

exhibit distinctive development stages and early growth, which make them easily separable from
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Figure 4.10: Temporal profiles of the main crops. a) sunflower, b) maize, c) winter cereals, d)
winter rapeseed, e) soybean (Error bars are illustrating the standard deviations and the temporal
windows show the phenological phases).

spring crops. In the case of spring/summer crops, we observed misclassifications between maize

and soybean in 2015. In 2016, sunflower was misclassified with maize. Soybean also exhibited

slightly lower accuracy and was misclassified together with maize and sunflower. Relatively poor

classification results for soybean (both accuracies (Table 4.3) and the areal estimates (Figure 4.11))

can be explained by confusion with other summer crops. The comparison of the sown areas de-

rived from classification results and the official agricultural census statistics published by the State

Statistical department of Kiev region (Figure 4.11) showed that the area estimated for each class

was in acceptable agreement with reference agricultural census statistics and the deviation for four

crops was ranging from 7% - 35%. We observed large error estimates among spring crops which can

be accounted to misclassifications between them. We observed the lowest accuracies in the class
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other and winter rapeseed. This could be the result of high heterogeneity of the class as it includes

several summer crops, which have different spectral response. Another reason for this could be the

relatively small number of training samples compared to the rest of classified crop classes. The

estimated area for winter rapeseed was significantly larger than recorded in the official statistics.

Figure 4.11: Crop area (ha) estimated according to the classification and official statistic.

4.5.2 Evaluation of Input Features

To check the effect of selected input features for the classification, we applied a backward elimina-

tion approach, and estimated the decrease of prediction accuracy due to the exclusion of some input

variables. The most successful classifications were conducted using Landsat bands along with NDVI

and monthly backscatter composites. The integration of both Landsat features (spectral bands,

NDVI) and Sentinel-1 based composites at multiple time steps is advantageous. Overall, these

results are in line with several studies (Fontanelli et al., 2014; N. Kussul et al., 2015) where the

integration of optical and SAR data improved crop identification. These results demonstrate the

applicability of Landsat time-series and fitted harmonic function for the derivation of phenologi-

cal features. When adding Sentinel-1 composites, the cropped areas were quantified with higher

accuracies. The integration of multispectral and SAR data improved the classification accuracy

by 2 - 5%. The increase in class-specific accuracies was observed in both studied years for winter

cereals. In addition, there was an improvement for the separation of spring/summer crops (Table

4.3). We have also noted the increase in overall accuracies when using several temporal composites.

Despite this, with mono-temporal analysis, acceptable results can be achieved, if using mid-season

composites (Period 2). Mono-temporal classifications from early season and end of the growing

season resulted in significantly lower accuracies. To achieve high separability among crops, the use

of imagery from at least two periods within the crop growing season is required (Figure 4.12).
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The use of temporal composites was justified, as when averaging different images, we decreased

the contribution of speckle which resulted in within-class variance decrease and easy separation of

the crops. In case of optical imagery, composting enabled the creation of cloud free images covering

the study area. It is worth mentioning, that the use of GEE profoundly decreased the time for

data access and analysis, as it was possible to use the satellite time series from repository and run

computationally intensive pixel-wise analysis using google’s distributed power.

Figure 4.12: Classification accuracies using different scenarios: L8 corresponds to Landsat-8
data, S1 to Sentinel-1 data, L8+S1 corresponds to combined use of data from both Landsat-8 and
Sentinel-1 and OA corresponds to overall accuracy.
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Decision fusion Decision fusion Decision fusion
(All Landsat 8+Sentinel-1composites) (All Landsat-8 composites) (All Sentinel-1 composites)

Time OA Winter cereals Maize Soybean OA Winter cereals Maize Soybean OA Winter cereals Maize Soybean
PA UA PA UA PA UA PA UA PA UA PA UA PA UA PA UA PA UA

2015 88 86 100 82 95 94 80 83 90 94 70 95 93 66 81 95 100 63 95 90 47
2016 85 90 86 90 100 93 71 82 86 82 90 95 100 71 78 84 95 77 70 65 71

Random forest Random forest Random forest
(All Landsat 8+Sentinel-1composites) (All Landsat-8 composites) (All Sentinel-1 composites)

Time OA Winter cereals Maize Soybean OA Winter cereals Maize Soybean OA Winter cereals Maize Soybean
PA UA PA UA PA UA PA UA PA UA PA UA PA UA PA UA PA UA

2015 81.4 89 89 80 85 78 85 79 88 84 80 80 77 80 75 100 100 60 70 66 66
2016 79.3 90 86 69 90 87 66 75 75 81 79 95 100 66 73 100 95 63 70 57 71

Table 4.3: Accuracy measures of area dominant crops using different classification approaches and data.
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4.5.3 Considerations and Outlook

The mapping of different crop types based on temporal variation is a demanding and complex

process. First, several factors influence the process of crop identification. Individual fields can be

managed with different seeding and harvesting times for the same crop species, which in turn has

an impact on spectral signatures. Second, different crops can have analogical stages of development

throughout a growing season. This can introduce a bias to the selection of training samples and

classification. The timing and frequency of image acquisition influence the accuracy of the derived

sample set, as it has a significant effect on the fitting accuracy and subsequent estimation of

phenological parameters (Eklundh & Jönsson, 2016; Kuenzer et al., 2015; Wardlow & Egbert,

2008). An important aspect of this approach is that crop development throughout the growing

season highly depends on several factors such as temperature, the amount and temporal distribution

of precipitation that can vary from year to year. This variation plays a key role in the development

of the decision rules of several years. One solution for this was making the range of values in

decision rule set quite wide, but with the consideration that too large range can lead to lower

classification accuracies. Another solution was creation of the composites and fitting the harmonic

function, which removed sharp differences and noise in time series due to atmospheric conditions

and cloud cover. Although the development of the decision rule set was straightforward for winter

crops due to distinctive spectra-temporal characteristics, the identification of summer crops was

challenging due to spectral similarities of these crops. For spatial upscaling and transferring of

this approach to other areas, the variation in phenological development from one region to another

should be considered. For this, in situ data of phenology, the knowledge of crop development and

the integration of the weather data may lead to accurate results for large area classification.

4.6 Conclusions

In the presented paper, we discussed the delineation of main crop types in the central region of

Ukraine using multi-source remote sensing data. We have proposed and evaluated a two-step

approach that constitutes of training sample generation based on harmonic regression, random

forest and decision fusion classification. The approach developed and tested herein has the potential

for cases especially when field data are insufficient. We have also demonstrated the potential

use of optical and SAR data for the rule-based training sample generation and subsequent crop

classification in complex cropping systems. The derivation of key phenological and temporal metrics

enabled the creation of image composites that allow mapping the crop types accurately. In addition,
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we demonstrated that the harmonic fit and derived metrics can be very useful for representation

of the seasonal variations of crops. The obtained results confirmed the feasibility of the herein

developed two-step approach for crop mapping in the study area in Ukraine. Overall accuracy

exceeded 80% when seasonal composites were used. Among the crop species, the class of winter

cereals was the most accurately identified, while we observed misclassifications between soybean

and maize. We showed that class separability is depending on the selected features and their

temporal distribution of the input data. The integration of multispectral and SAR data improved

the classification accuracy. The method was tested for two years which enabled us to study the effect

of inter-annual meteorological differences on crop phenological development that in turn, impacts

crop classification results. Based on our results, we recommend the use of seasonal composites

in a two-step approach of classification to create accurate crop maps over several years. Overall,

our remotely sensed crop patterns were confirmed by quantitative (via accuracy assessment and

comparison with state crop statistical data) and qualitative tests including agroecological knowledge

of local experts. Therefore, we concluded that the proposed approach could be implemented in the

areas where field observations are not available or scarce.
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Chapter 5

Local Scale Agricultural Drought Monitoring with

Satellite-based Multi-sensor Time-series

Abstract: Globally, drought constitutes a serious threat to food and water security. The complexity

and multivariate nature of drought challenges its assessment, especially at local scales. We aimed

at assessing spatio-temporal patterns of crop condition and drought impact. For this, we used time

series from optical (Landsat, MODIS) and SAR (Synthetic Aperture Radar) data to identify the

main characteristics of agricultural droughts in Ukraine at the spatial scale of field management

units. Indicators were derived based on optical (Normalized Difference Vegetation Index (NDVI),

Normalized Difference Moisture Index (NDMI), Land Surface Temperature (LST), Tasselled cap in-

dices) and Sentinel-1 (backscattering intensity and relative surface moisture) data. We used logistic

regression to evaluate the drought-induced variability of remotely sensed parameters estimated for

different phases of crop growth. The parameters with the highest prediction rate were further used

to estimate thresholds for drought / non-drought classification. The models were evaluated using

the area under the receiver operating characteristic (ROC) curve. The results revealed that not

all remotely sensed variables respond in the same manner to drought conditions. Growing season

maximum NDMI and NDVI (70-75%) and SAR derived metrics (60%) reflect specifically the impact

of agricultural drought. These metrics also depict stress affected areas with larger spatial extent.

LST was a useful indicator of crop condition especially for maize and sunflower with prediction

rates of 86% and 71%, respectively. The developed approach can be further used to assess crop

condition and to support decision making in areas which are more susceptible and vulnerable to

drought.
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5.1 Introduction

Increasing crop production and resilient agriculture are essential to meet the rising food demand.

To close the gap between potential and actual yield, it is critical to understand how climate ex-

tremes impact crop condition in a spatially explicit and scalable manner. Crop production changes,

and particularly crop loss related to weather variability have always been of interest for farmers,

governments, and decision makers who aim to reduce these impacts triggered by natural disasters

and extreme events, in order to take actions for mitigation and to support food security in general

(Kogan et al., 2013). One of the extreme events having an impact on crop production are droughts

which bear food and water security concerns globally (Sadegh et al., 2017). Drought is a com-

plex slow-onset natural disaster which can, with regard to its impact, last over a notable period

of time (weeks to months) (Mishra et al., 2015; L. Zhang, Jiao, Zhang, Huang, & Tong, 2017).

Although, there is no universally accepted definition of drought, it is most commonly characterized

with a precipitation deficit (Wardlow, Anderson, & Verdin, 2012). It significantly alters several

sectors, including water quantity and quality and influences food, water, and energy security and

can subsequently have broad socio-economic effects.

In the past decades, several studies discussed the derivation of drought-related metrics based on

hydrological variables such as precipitation and soil moisture. To have a drought indicator, often

hydrological variables were used to estimate the extent of an anomaly or difference from a refer-

ence. The resulted indicators are then used to quantitatively assess and categorize drought severity

(AghaKouchak et al., 2015). One of the first indices developed was the Palmer Drought Severity

Index (PDSI) (Palmer, 1965) which enabled the assessment of relative drought severity. Another

widely used drought metric is Standardized Precipitation Index (SPI) (Guttman, 1998). However,

as evapotranspiration (ET) also plays a major role in agricultural water stress and crop production,

the standardized precipitation evapotranspiration index (SPEI) was developed (Vicente-Serrano,

Beguería, & López-Moreno, 2009).

Remote Sensing (RS) data has been widely used to monitor drought impact and to derive pa-

rameters along with climatological indices. Its main advantage is the availability of temporally and

spatially continuous information over large areas. This is an advantage for monitoring of vegetation

condition on large scale compared to in situ measurements which can be costly, labour intensive

and limited to rather smaller areas. Optical RS data has been used to explore the link between pho-

tosynthetic rate and optical properties of the plant leaves by estimation of vegetation indices. The

most commonly used vegetation indices are the Normalized Difference Vegetation Index (NDVI)
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and Enhanced Vegetation Index (EVI) which indicate the vegetation condition through the ratio of

near-infrared and visible bands. Specifically, data obtained from Advanced Very High-Resolution

Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) were often

used for calculating drought indices. One of the conventional approaches is the derivation of the

Vegetation Condition Index (VCI), which uses NDVI or EVI of the current time relating it to long-

term minimum and maximum. Another drought relevant indicator derived from remotely sensed

time series is the Vegetation Health Index (VHI), which incorporates both NDVI and brightness

temperature (BT) data. VHI, in particular, has been found efficient in determining the empirical

probability of agricultural drought occurrence (Kogan, 2019).

Fewer studies have focused on high-resolution data derived from sensors such as Landsat due

to a lack of dense time series needed for drought impact monitoring. Besides the frequent use of

NDVI (Karnieli et al., 2010; Klisch & Atzberger, 2016; van Hoek, Jia, Zhou, Zheng, & Menenti,

2016) further studies explored the sensitivity of other VIs to vegetation condition change, such

as indices incorporating the shortwave infrared (SWIR) band. Notably, it was demonstrated that

MODIS based NDWI, derived from NIR and SWIR bands, is more sensitive to the onset of drought

stress compared to commonly used NDVI (Gu, Brown, Verdin, & Wardlow, 2007). Furthermore,

NDVI and NDWI were later integrated into Normalized Difference Drought Index (NDDI) (Gu

et al., 2008). In general, the integration of several data sources such as remotely sensed indices,

climate, land cover has been discussed to be more effective in vegetation stress monitoring, because

multisensor data makes it possible to assess adverse impacts of droughts. One of the examples

is VegDRI derivation where the satellite and climate based drought indicators are combined with

other biophysical information such as ecoregions and elevation (Wardlow et al., 2012). Although

there are examples of multivariate drought analysis (Enenkel et al., 2016; Wardlow et al., 2012;

Wu, Qu, & Hao, 2015), there is still a need for the use of multisource high resolution data. The

integration of remotely sensed information from optical, infrared and microwave portions of the

spectrum could provide valuable, complementary information regarding drought severity (Xiang

Zhang, Chen, Li, Chen, & Niyogi, 2017). Synthetic aperture radar (SAR) applications for crop

monitoring have only been used rarely as compared to optical data. The reasons for this include

limited availability of freely distributed datasets, the absence of large-area acquisitions and the

need for more comprehensive data processing compared to optical data. So far, few studies have

used dense SAR time series data for crop monitoring (Moran et al., 2012; Schroeder et al., 2016).

Some studies have demonstrated the use of microwave sensors for vegetation monitoring in general,

such as Metop Advanced SCATterometers (ASCAT), Soil Moisture Ocean Salinity (SMOS) mission
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and Soil Moisture Active Passive (SMAP), but the spatial resolution of these datasets is coarse.

Only recently, finer resolution SAR data, such as Sentinel-1 data has been used to assess the

sensitivity of backscatter to crop dynamics (Urban et al., 2018; Veloso et al., 2017; Vreugdenhil

et al., 2018). In order to derive methods using dense time series of SAR and optical data, there is

a need to study their temporal behavior for a variety of widely cultivated crops. As backscatter is

affected by water content and roughness of land surface (i.e. soil, leaf and stem moisture content,

geometry and structural properties such as size and orientation) it may be sensitive to drought

(Schroeder et al., 2016). Recent studies reported fluctuations in crop production related to extreme

weather conditions in Ukraine. It was reported to have more intense and frequent droughts in

recent years (Adamenko & Prokopenko, 2011; Kogan et al., 2013; Skakun et al., 2015). This

climate fluctuation reduced summer crop production by up to 75%. Furthermore, there were

reports on increasing frequency of extreme events with severe drought in 2003, 2007, 2015 and

2017 (Adamenko & Prokopenko, 2011; Ivits, Horion, Fensholt, & Cherlet, 2014). Skakun et al.

(2015) quantified agricultural drought-risk in Ukraine using VHI. However, continuous monitoring

of croplands throughout the growing season is needed, to identify the key characteristics of drought

hazard at a finer scale. The knowledge about start, severity, duration and spatial extent of the

affected areas would improve our understanding of drought characteristics which would in turn

support the decision-making and actions aimed at mitigating drought effects at the spatial scale of

field management units. Drought impact increases when the lack of precipitation is coupled with

heat waves enhancing the vegetation’s evaporative stress (Ahmadalipour, Moradkhani, Yan, &

Zarekarizi, 2017). In the context of this study, we aimed at understanding the impact of moisture

scarcity and increased evaporative demand due to heat stress. In this regard, the overall aim of

this research was to study the possibility of the use of high-resolution remotely sensed time series

for observing drought impact. Specifically, we aimed (i) to investigate features derived from optical

and SAR imagery for drought impact monitoring, (ii) to study the temporal variability of time-

series during the growing season under drought and non-drought conditions and (iii) to investigate

the spatial variability of drought impact and the agreement of drought characteristics derived from

different sensors.
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5.2 Materials and Methods

5.2.1 Study Area

Three study cites were selected in the Kiev region: Bila Tserkva, Mironivka and Yagotin districts

(Figure 5.1). Agricultural fields and cultivated areas comprise more than 70% of the area in each

district (State Statistical Department of Kiev region, 2015). Primary crops grown in these regions

are winter wheat, maize, soybean, and sunflower (Nataliia Kussul, Mykola, Shelestov, & Skakun,

2018). The agricultural production is highly associated with favourable meteorological conditions,

as rainfed agriculture is predominant in these regions. In dry years, precipitation significantly

reduces from 400 mm to 170 mm during the growing season.

Figure 5.1: Study Areas: a) Bila Tserkva, b) Mironivka c) Yagiton districts.

During four growing seasons, suboptimal hydrological conditions were observed in 2015 and

2017 (Figure 5.2). Topography in this area is mostly flat with in the range of 0- 2%. The soils in

the area are mostly chernozems (Black soils), which are rich in organic matter and highly fertile.
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Figure 5.2: Precipitation during the main crop growth period between April and September in
a) Bila Tserkva, b) Mironivka c) Yagiton regions.

5.2.2 Data

Satellite Imagery

Our analysis focused on the 2014 –2017 period, which was determined by the availability of datasets

encompassing consecutive growing seasons with different hydroclimatic conditions. 30m-Landsat-

based (L8) time series metrics that capture the seasonal variations of crops were acquired and

analyzed using Google Earth Engine (GEE) cloud computing platform (Gorelick et al., 2017)

. The number of valid observations of optical data series might have been reduced due to poor

atmospheric conditions and cloud cover. For this reason, we used observations from MODIS with

250 m resolution to integrate it with Landsat and to test improvements (Feng Gao, Wang, & Masek,

2013). Cross-polarized Sentinel-1 C-band SAR images (S1) were also used due to their sensitivity to

the attributes of a target surface such as dielectric properties and roughness (Schroeder., 2016). In

order to test the interoperability of Sentinel-2 (S2) data with previously discussed data collections,

we integrated Level-1C (L1C) TOA data which is also available in GEE data catalog. Although

the data was available for only two growing seasons, S2 imagery was still used in the analysis to

test the comparability of data from different optical sensors.

Additional Data

A suite of ancillary data was also compiled and used to link quantitatively crop condition and crop

growth dynamics with different factors. These datasets consisted of agrometeorological observations

along with land use maps. The agrometeorological data (e.g., temperature, precipitation, in situ

phenological observations) were acquired from the State Hydrometeorological Services of Ukraine.

In addition, we used land use maps of the study area from 2014 to 2017 provided by Space Research

Institute (SRI) of the National Academy of Sciences of Ukraine (NASU) (Nataliia Kussul et al.,
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2018). Additionally, in-situ observations of drought-impacted fields were acquired comprising 20

fields from 2015, 19 fields for 2017 and 14 fields from 2016 non-drought conditions from Bila Tserkva

district.

5.2.3 Methods

The workflow for crop condition monitoring and estimation of drought characteristics was based

on the analysis of relevant metrics derived from Sentinel-2, Landsat-8 and backscatter time series

based on Sentinel-1 (Figure 5.3).

Figure 5.3: Workflow for drought induced crop condition monitoring, where RS stands for Remote
Sensing, LST for Land surface Temperature, RSM for Relative surface moisture.
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Pre-processing

To overcome the frequently missing data in Landsat time series due to cloud cover we used MODIS

and Landsat data to predict synthetic Landsat imagery for timesteps when MODIS was available.

The primary selection criterion of Landsat and MODIS data pairs was their acquisition date. Both

images should be acquired with the shortest temporal delay (Feng Gao et al., 2013). With the

closest pair we predicted synthetic Landsat image based on pixel-wise linear regression (M. He et al.,

2018). Prior to analysis, Fmask (Function of mask) (Z. Zhu et al., 2015) and cloud-mask flags were

used for clouds and cloud shadow detection in the Landsat and MODIS imagery. For Sentinel-2 time

series we used the QA60 bitmask band which contains cloud information to mask out opaque and

cirrus clouds. In addition, we used modified Temporal Dark Outlier Mask method which was applied

to Sentinel-2 observations (Housman et al., 2018). The Sentinel-1 σo time series analysis was

carried out following pre-processing of the SAR imagery such as geometric correction, radiometric

normalization, speckle noise reduction. The data was pre-processed by GEE (GEE API, Sentinel-1

Algorithms) following the steps implemented in the Sentinel-1 toolbox. The pre-processing included

thermal noise removal, radiometric calibration, and terrain correction. To reduce the impact of

differences in viewing geometry and the orientation of the radar beam, the ascending and descending

overpasses were used separately. For each location we further filtered images by the orbit, as the

difference in orbit and incidence angles can induce changes in backscattering that are not related

to geometric or dielectric properties of the target. To further reduce the effects of incidence angle

variations on the backscatter, we eliminated observations with very shallow and steep incidence

angles. We applied GammaMap filter to reduce speckle with the 7x7 kernel size.

Derivation of RS Parameters

Following the pre-processing of each image collection, we derived parameters based on vegetation

index time series, such as NDVI and NDMI. NDMI was estimated based on NIR and SWIR. Landsat

based NDVI was further used to derive information on the timing of green-up, senescence and length

of the growing season. These metrics were derived by estimating the DOY (day of a year) of the

first NDVI observation during the growing season, which had lower/higher values than a defined

threshold. Besides the aggregation of these metrics throughout the crop growth period (maximum,

amplitude) as a proxy of overall condition, we studied crop condition at specific growth stages. For

this, we calculated local changes of VIs within 20-day and the ratio of S1 backscatter change. Taking

into consideration the frequency of different observations, 20-day interval was chosen, as this window

allowed to capture changes in data acquired with all sensors (i.e. Landsat with 16-day observation,
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Sentinel-2 with 12-day observation). To investigate thermal conditions of the vegetation, we used

single channel method to derive LST based on Landsat imagery. NDVI-based surface emissivity

information was used (Jimenez-Munoz & Sobrino, 2010). Another metric that we investigated

was the Landsat based tasseled-cap transformation (TCT). TCT is an empirical transformation

that captures critical physical characteristics of vegetation, mainly we used the wetness which is

mostly linked to a combination of moisture conditions and vegetation structure. Relative surface

moisture was estimated using the minimum and maximum backscatter values observed over the

study period, which is considered to be equivalent to the dry reference (5th percentile) and wet

reference (95th percentile) (Urban et al., 2018; Wagner, Lemoine, & Rott, 1999). Thus, crop

condition was described by several metrics derived from Landsat (NDVI, NDMI), the combined use

of Landsat and MODIS (NDVI), Sentinel 2 and Sentinel 1 (Table 5.1).

Indicator Sensor

Normalized Difference Vegetation Index L8, S2, L8+MOD
Normalized Difference Moisture Index L8, S2

Backscatter S1 (VH, VV)
Relative Surface Moisture S1 (VV)

Tasseled-cap wetness L8
Land surface temperature L8

Phenometerics (green up, senescence, length, amplitude) L8

Table 5.1: Main RS indicators tested for agricultural drought monitoring, where L8 stands for
Landsat 8 observations, S2 for Sentinel 2, S1 for Sentinel-1 and L8+MOD for Synthetic Landsat
products.

Model Development

We used logistic regressions to further examine crop condition and subsequent classification of

drought impact in three disturbance levels based on the comparison of parameters from different

conditions. The models were tested based on 20 samples per crop/per region derived for the growing

seasons. The only exception was soybean, for which the number of samples was less (28 observations

less than the other crops), as in 2014, 2016 and 2017 we were unable to find representative fields

(based on size, uniform cover) in our study areas. The initial drought events were identified based

on historical studies and in situ weather data. 2015 and 2017 were known to be drought years

that affected large areas. Additionally, non-drought years were represented by the years 2014

and 2016 (Figure 5.2). One of the challenges for the comparison is the estimation of relevant

thresholds that discriminate between drought and non-drought conditions, as well as varying levels

of drought impact level, namely low, moderate and severe as they can be different among different
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crop type, location, and season. Typically, a relative VI value or a deviation of a VI value from

a baseline is used as an indicator of drought. Due to crop rotation and subsequent year to year

crop changes in our study area, instead of comparing the indices derived from different years at

the same location, we compared the condition of the respective crop from different locations in

different years. The output of the regression was used to evaluate the drought-induced variability

of remotely sensed parameters. The variables with the highest prediction rate were further used to

estimate the thresholds for drought/non-drought classification. The models were evaluated using

the area under the receiver operating characteristic (ROC) curve. For each variable which yielded

in a statistically significant result (p< 0.05) and satisfactory prediction accuracy, we derived a value

at which the parameter discriminated drought and non-drought conditions. Based on these values,

crop specific thresholds for three levels were subsequently estimated. Based on the consecutive

drought occurrence during the growing season, the length of the drought was estimated. Finally,

we evaluated the results derived from different parameters with the in-situ field data from 2015-

2017.

5.3 Results and Discussion

Comparing the Parameters Extracted from Different Sensors

Remotely sensed time series were used to derive indicators from a single data source (Landsat,

Sentinel-1, and Sentinel-2) or fused series (Landsat/Modis) and to assess drought-induced properties

during 2014-2017. Among the variables tested in this study, NDMI, LST, and SAR based relative

moisture index had a significant impact on the prediction of drought occurrence. The accuracy

of different models varied based on region, crop of interest and remotely sensed derivatives. In

general, within all models, maize was affected the most compared to other crops, that showed

lower values in impacted areas. This can be explained by the fact that crops are characterized

by different sensitivity to water-deficiency during each phenological phase (Xiang Zhang et al.,

2017). NDVI and NDMI from different sensors exhibited similar results (i.e. AUC, prediction rate)

for positive and negative predictions when applying the logistic model. Particularly, NDVI and

NDMI accuracies ranged between 50-70% and 52-75% respectively. These results are in line with

other studies and can be conditioned with the properties of SWIR that reflect changes in water

content. The lowest accuracies were observed for soybean, with a ROC value of 0.57 which can

be conditioned by a lower number of samples. The MODIS/Landsat based methods, were less

accurate compared to results derived from Sentinel-2 and Landsat. One possible explanation is the
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higher intrapixel heterogeneity at the MODIS scale, which results in underestimation of drought

impact. As a result, best MODIS/Landsat based models produced satisfactory results, with a ROC

value of 0.72. Local parameters (e.g. short-term maximum, amplitude within a month) describing

within seasonal changes, especially those from mid growth period, were sensitive to drought as well.

The only constraint for this was the decreasing number of samples, due to masked values in the

optical data set. LST was significantly higher for crops with unfavourable conditions during the

mid-season of 2017. This was observed for maize and sunflower with the highest ROC values 0.86

and 0.79, respectively. As a result, the drought affected fields could be discriminated (Figure 5.4).

This is in agreement with several studies reporting that the period around anthesis is particularly

sensitive to heat stress in nearly all crops (Luo 2011). The link between vegetation indices and LST

is attributed to changes in the proportion of vegetation cover and moisture conditions, showing that

surface temperature can quickly increase with drought stress (Johnson, 2014).

Figure 5.4: NDVI/LST scatterplots for a) maize, b) soybean and c) sunflower during the mid-
growing season derived from Landsat-8.

Although we observed differences in the length of growing season among drought and non-

drought years, they were not statistically significant. Furthermore, tasseled cap wetness did not

yield in statistically significant results and so this was not used for further analysis. Including SAR

input variables into the logistic model resulted in satisfactory performance with a ROC value of

0.65 and an accuracy of 60% only for maize. The best results were acquired from observations

during the tasselling and silking period.

Temporal Variability of RS Metrics During Drought and Don-drought Years

Two major drought occurrences differing in intensity, timing, duration and location were examined

over the three study sites in Ukraine between 2014-2017. Our results illustrate that optical time

series, including NDVI, MDMI, play a primary role in determining drought occurrence.

The most pronounced and significant changes were observed during the peak growing season

and corresponded to anthesis and ripening stages of summer crops (Figure 5.5). The NDVI
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Figure 5.5: Time series of NDVI derived from optical sensors for a) Maize, b) Sunflower, c) Soy,
d) wheat with blue depiction non-drought conditions (2016) and black drought conditions (2017).

derived from different sensors in general was similar for both drought and non-drought conditions.

The local amplitudes of NDVI were high in drought-affected fields reaching a value of 0.4. When

using SAR backscattering signal, we observed higher fluctuations of intensity in drought-affected

fields of maize. For the other crops the backscattering intensity was highly variable. This was

most prominent for wheat. Particularly, lower backscatter during the non-drought condition was

observed, which can be caused by increased attenuation. Backscattering intensity is a function of

the geometry and the dielectric properties of a crop. Throughout the growing season, crop height

and water content are changing, so it is difficult to decompose drought factors. Crops’ growth

period is visible as an increase in reflectivity in the VH band (Figure 5.6). Backscatter generally

increases as water content in vegetation increases. Similarly, backscatter intensity decreases with

the decline of wet biomass, which could be observed in this study at the end of the growing season.
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Figure 5.6: Time series of backscattering coefficient for a) Maize, b) Sunflower, c) Soy, d) wheat
with blue depiction non-drought conditions (2016) and black drought conditions (2017).

Figure 5.7: Length of the drought estimated in 2017 from a) Landsat NDMI b) Sentinel 2 NDMI,
c) Sentinel 1, d) L8+MOD NDVI.
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The sensitivity of VV backscatter to soil moisture in maize (Figure 5.6a) can be explained

by larger row spacing on maize fields. Because of this, bare soil is visible and VV backscatter

is not attenuated by vegetation and can be still affected by soil moisture. Similar results have

been reported by other studies (Vreugdenhil et al., 2018). In this study, the maximum drought

duration identified varied among different drought indicators (Figure 5.7). Based on our analysis,

the maximum drought duration appeared to be higher in the SAR based variables than in the

optical indices. Maize was the most sensitive to a drought of one month occurring in July, which

corresponds to silking and reproductive stages. This agrees with other studies, where NDVI was

evaluated for maize response to drought (R. Wang et al., 2016). For wheat we observed high

sensitivity particularly in June. Even though we observed large areas of wheat with suboptimal

water conditions in 2015, this was not reflected in the yield statistics which did not depict a drastic

yield decrease. This might be explained with the recovery of the crop due to sufficient rainfall and

optimal thermal conditions during the subsequent stages of crop growth. For further understanding

of the winter wheat response to drought hazard, the study of conditions during the winter months

is still needed. One of the limiting factors for the estimation of drought duration was the temporal

frequency of remotely sensed observations. This was critical for cases when periods of precipitation

deficit were shorter than the revisit time of the sensor, and as a result drought induced changes were

not fully depicted by the indicator. Our results indicate, that VIs were not sensitive to drought

stress at early growth stages. For all crops we observed the impact of drought stress and the start

of the drought close to the flowering stage. Although considered as moderately drought tolerant,

we observed drought impacted sunflower fields in three regions.

Spatial Distribution of Drought Impact

For each of these drought events, the corresponding areas being affected by recurrent drought

events were mapped. Our results indicate areas that were affected by drought when using different

indicators for different crops ranging from 20% (for soybean) to 44% (maize) in 2017. In general,

areas affected by drought varied for different crops. We observed the highest affected areas for

maize, for both 2015 and 2017, whereas the areas for other summer crops (sunflower and soy)

comprised 23-30% of the cultivated area. These estimates were different compared to the tests

on non-drought years, where areas under sub-optimal conditions were less than 10%. The only

exception was soybean, in which we observed approximately 16% of the cultivated area under

severe, moderate and mild stress, although the year of 2016 exhibited more favourable conditions.

Depiction of these false positive stressed areas can be caused by different management practices and
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cultivar change which were not examined in this study. The drought impacted areas as derived from

remotely sensed crop condition variables also differed with time (Figure 5.8). In the case of 2015,

we identified larger affected areas at the end of the growing season, whereas in 2017, the drought

impact could be observed at earlier stages of the growing season. In general, derivatives from

optical sensors reported similar timing of the start of drought. In a contrary, SAR derived onset

of crop stress appeared 12 – 24 days earlier than those derived from optical data. Coupled with

the declined precipitation during the growing season as well as reduced crop yields, this indicates

that drought-induced properties of time series can be characterized based on temporal metrics.

Temporal features showed that different crops experience different intensities of drought impact

(Figure 5.9). Moreover, the described drought-induced properties were more prevailing in different

regions of the study, opposed to local management differences, which would be allocated to specific

smaller areas. The agreement maps based on peak growing season (July) for maize show that in the

majority of the fields the indicators have more than 50% agreement for 2017. This shows that data

from different sensors indicate a similar condition for the crop and are comparable, thus further

integration of the datasets is feasible (Figure 5.10). Whereas for 2015, both the detected drought

impacted fields and the agreement between five indicators is less, which can be conditioned by the

later onset of the drought. The major environmental drivers that affected crop productivity were

used to assess the results of the study. Firstly, we checked the total precipitation during the critical

stages of the growing season (April-August) which was 50- 180 mm less. However, precipitation

was not evenly distributed during the growing season, and there were periods without rain during

start-mid July. The examination of yield of several crops showed that the yields in different regions

of the study area decreased significantly in 2017. Mainly, for soybean 26-30% decrease, sunflower

yields were 17-26% less, maize 16-40% and wheat yield decreased by 20-33%. The yield losses

in general were less in 2015, especially for wheat and sunflower comprising 7-10% compared to

non-drought years. Nevertheless, in 2015 maize and soy had 20% yield decrease.
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Figure 5.8: Spatially explicit drought mapping series based on Landsat time series in June, July
and August during two sub-optimal growing seasons a)-c) in 2015 and d)-f) in 2017.
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Figure 5.9: Drought impacted crops in 2017 derived from a)-c) Sentinel 2 NDMI and d)-f) Sentinel
1 during peak of the growing season (July).
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Figure 5.10: Percentage agreement between different indicators a)-c) in July 2015 (LST, S1, L8
NDMI, L8 NDVI, MOD+L8 NDVI) and d)-f) 2017 (LST, S1, L8 NDMI, S2 NDMI, MOD+L8
NDVI).

Although the results of the logistic model show sufficient accuracy ( 70%) and estimated drought
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impacted fields were in good agreement with field data (correct allocation in drought/non-drought

class for 75% of the fields with optical data), there is still need for larger validation datasets.

Furthermore, certain factors may have contributed to some uncertainties in the estimates of the

drought impact and timing. In general, agricultural land cover is characterized by substantial

variations within relatively short time intervals. Even though some of these variations might have

been caused by agricultural practices, plant disease, cultivar change, we were able to detect the

drought induced changes in crop condition. Another issue is the integration of parameters such as

soil moisture which would be verified based on in situ measurements. Calibration of models and ET

derivation can further improve our understanding of vegetation stress and overall dynamics during

the growing season. Nevertheless, our results contribute to the general understanding of climate-

induced variations in crop condition by quantifying spatial and temporal variability in drought

for major crops in three study areas. Considering that instead of controlled field experiment,

the study was conducted in a real environment, assuming the uncertainties, such as cloud cover,

this study highlights the feasibility of crop condition monitoring at a farm management scale in

different areas. Such spatio-temporal understanding allows us to identify both where and when

drought-induced properties can be observed with satellite remote sensing, as well as how sensitivity

to drought has evolved over time, which can help guide drought response and mitigation at field,

county, state, and national levels. Approximately 45% of the cropping areas were associated with

the sub-optimal condition in the key stages of the growing season. These results can be used for

development of agricultural management strategies in order to mitigate impacts of droughts on

agricultural production.

5.4 Conclusions

The current study introduces new sets of parameters for crop condition monitoring and demon-

strates the potential of the optical and SAR data to assess crop conditions at spatial scale that

can support decision-making. The combined use of SAR data, multispectral Sentinel-2, and with

existing Landsat and lower resolution MODIS time series provides opportunities for applications in

crop monitoring and derived variables are sensitive to drought-related stress in croplands. Landsat

and Sentinel-2 NDMI estimated higher drought induced effects compared to the other metrics. On

the other hand, SAR metrics characterize relatively larger drought duration. The derived drought

induced crop condition is influenced by crop type and a timing of the drought. Specifically, we ob-

served summer crops under severe vegetation stress. The findings show that moisture index, SAR
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backscatter, and land surface temperature could explain drought occurrence and impact level on

crop. These dense time series can be further used for crop water use estimation and near real time

crop water requirement estimation. The advancement of large area soil moisture and ET estimation

can further improve operational crop water management. The methods demonstrated here can be

applied to other areas requiring early warning of food shortage or improved agricultural monitoring

to ensure greater sustainability within the agriculture sector.
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Chapter 6

Vegetation Monitoring with Satellite Time Series: an

Integrated Approach for User-oriented Knowledge Extraction

Abstract: Climate change, food insecurity and limited land and water resources strengthen the

need for operational and spatially explicit information on vegetation condition and dynamics. The

detection of vegetation condition as well as multiannual and seasonal changes using satellite remote

sensing, however, depends on the choice of data including length and frequency of time series. Thus,

this contribution focuses on the derivation of the optimal remotely sensed data for vegetation moni-

toring and extraction of relevant metrics. Time series of satellite data from Landsat-8, Sentinel-1/2,

and MODIS were used to identify characteristics of vegetation at different spatiotemporal scales.

We derived parameters, such as maximum and amplitude based on vegetation index time series, as

well as Land Surface Temperature (LST). Along with optical data, we used backscattering inten-

sity over consecutive vegetation growing seasons. The analysis was carried out using Google Earth

Engine, a cloud computing platform which allows to access various data archives and conduct data-

intensive analysis. Taking advantage of this platform, we developed a web-based application named

GreenLeaf. The application is computing metrics and plotting time series, based on parameters

defined by the user. The derived vegetation condition parameters provide sufficient information

to detect vegetation change. In addition, the images acquired from near-coincident dates provide

similar information over continuous surfaces. The developed application contributes to the use of

satellite data and the simplification of data access for users with limited remote sensing experience

and/or restricted processing power. Aiming at providing this knowledge to stakeholders can further

support decision making on multiple scales.

77



6. Near real-time customizable output generation

6.1 Introduction

Vegetation is one of the essential elements of the terrestrial biosphere and is a crucial component for

land-cover and climate-related studies. Accurate and continuous monitoring of vegetation is vital

to assess the overall ecosystem conditions. Changes in vegetation cover, both of natural and an-

thropogenic origin, have broad impacts on critical environmental processes including Earth’s energy

balance, water cycle, and biogeochemical processes (Eastman et al., 2013; B. He, Chen, Wang, &

Wang, 2015). Furthermore, timely monitoring of vegetation condition, such as the spatially explicit

information on heat and drought stress, growth stage can be critical for decision makers (Mishra

et al., 2015). Thus, quantifying such changes is necessary to address a number of critical issues

such as the assessment of ecosystem dynamics, global carbon budget, sustainable land use and the

vulnerability of natural and human systems. Earth Observation (EO) data collected by different

sensors can be a useful supplement to ground-based observation, providing spatial and temporal

information for vegetation monitoring over large areas. These data, collected from different sen-

sors, often have different spatial and temporal characteristics. Several studies showed the use of

time-series of coarse resolution data, such as from the Advanced Very High-Resolution Radiometer

(AVHRR) to extract information on vegetation change and condition (Dubovyk et al., 2015; Fen-

sholt et al., 2015; Klisch & Atzberger, 2016; Miao, Ye, He, Chen, & Cui, 2015). Moreover, the use

of moderate to high-resolution sensors such as the Moderate-resolution Imaging Spectroradiometer

(MODIS), Landsat and RapidEye has been shown as well (Elste, Glässer, Walther, & Götze, 2015;

Fisher & Mustard, 2007; Parplies et al., 2016; Simonetti et al., 2015; Sonnenschein, Kuemmerle,

Udelhoven, Stellmes, & Hostert, 2011). Often the activity of vegetation systems has been quantified

with the use of vegetation indices (VI), derived from specific combinations of the spectral bands.

The use of indices such as the Normalized difference vegetation index (NDVI), or other spectral

indices based on optical data has been shown to be effective not only for short-term analysis but

also for long-term change characterization (Bradley, Jacob, Hermance, & Mustard, 2007; Rogier

de Jong et al., 2011; Fensholt et al., 2009). VIs has been often used for tracking subtle changes

in time series, capturing specific vegetation conditions, growth or stages of degradation (Venteris,

Tagestad, Downs, & Murray, 2015; Yagci, Di, & Deng, 2015). Besides widely used optical data,

data coming from active sensors have also been used for analysis of vegetation dynamics (Fontanelli

et al., 2014). Especially the launch of Sentinel-1 and the availability of dense time series of Syn-

thetic Aperture Radar (SAR) data provide more opportunities for tracking temporal and spatial

variability of vegetated areas (Imperatore et al., 2017; Reiche et al., 2018).

78



6.2. Materials and Methods

The growing variety and the increasing volumes of available information make effective data

handling of high importance, particularly for tracking vegetation dynamics over several time scales.

Nevertheless, recent advances in cloud-based remote sensing pose a challenge to scientists to make

the data available for parties outside academia (e.g. policy makers, international donors, NGOs).

The latter, lacking advanced technical expertise, are given an opportunity to efficiently use the

data, monitor and evaluate ecosystems and implement relevant changes if necessary. There are a

number of applications targeting remotely sensed data processing, visualization and download, such

as Sentinel Hub (“Sentinel-hub EO-Browser”) , Landsat look (“LandsatLook Viewer”), where simple

visualization of different composites and time series is possible. Other applications focus on specific

applications such as sediment mapping(“Lower Mekong Basin Suspended Sediment Monitoring”).

One of the advanced applications available is ClimateEngine (“On-Demand Cloud Computing and

Visualization of Climate and Remote Sensing Data”) where besides simple visualization users can

derive several climatological and remote sensing variables, and calculate anomalies. However, Cli-

mateEngine offers more coarse scale parameters, and finer scale derivates such as Landsat based

land surface temperatures, Tasseled cap indices, along with data manipulations such as thresh-

olding, multitemporal compositing is not integrated. Thus, this contribution focuses on (i) the

derivation of the optimal data and indicators for vegetation monitoring (ii) identification of charac-

teristics of vegetation at different spatiotemporal scales and (iii) the integration of these products

in an easy to access web application for large-scale information extraction.

6.2 Materials and Methods

6.2.1 Data and Tools

Time series data from Landsat-8, Sentinel-2, MODIS, and Sentinel-1 were used to identify charac-

teristics of vegetation at different spatiotemporal scales. The data were accessed and analyzed using

Google Earth Engine (GEE). It is an advanced cloud computing platform for processing global-

scale satellite imagery. GEE provides access to satellite products which are organized in image

collections which make the combined use of these datasets possible (Sidhu, Pebesma, & Câmara,

2018). The Landsat Surface Reflectance (SR) time series were selected (Robinson et al., 2017) as

the primary source of data as this dataset is corrected for atmospheric and illumination/viewing

geometry effects and are the highest levels of image processing available for Landsat data. Landsat

SR products contain pixel data quality flag information indicating clear, snow, cloud or shadow

conditions, as determined by the CFMask algorithm (Foga et al., 2017). These quality flags were
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used to eliminate low-quality pixels with possible cloud and shadow contamination. In addition,

Landsat top of atmosphere (TOA) collection was used within the framework for calculating Land

surface temperatures and Tasseled cap indices. In this study, we used the MOD09Q1 surface re-

flectance (8-day composite, 250 m resolution). This product comprises the best (low view angle,

the absence of clouds, lowest aerosol loading) observations in near-infrared (NIR) and Red spectral

bands collected during an eight-day period, with corrections for atmospheric influences applied.

While daily NDVI could be calculated directly from the MODIS daily surface reflectance product

(MOD09GQ), the clouds and cloud shadows, high view angled can significantly affect the usability

of the daily products. The 8-day product was screened for low-quality pixels using the quality

flags. In order to test the interoperability of Sentinel-2 (S2) data with previously discussed data

collections, we integrated Level-1C (L1C) TOA data which is also available in GEE data catalog.

We used the QA60 bitmask band which contains cloud information to mask out opaque and cirrus

clouds. Finally, we integrated SAR data acquired by Sentinel-1, which uses microwaves that can

penetrate through cloud and haze, thus, can provide better temporal coverage (Hütt, Koppe, Miao,

& Bareth, 2016). This is particularly useful for tracking subtle changes in vegetation cover during

a growing season. Unlike optical sensors, SAR can provide more frequent data, as the density of

time series derived from optical sensors can be significantly affected by atmospheric conditions.

6.2.2 Methods

A multi-scale framework was developed with the aim to derive remotely sensed metrics over main

vegetation formations. For the pilot study, we investigated distinct agricultural regions in Central

Ukraine. Nevertheless, the metrics used can be derived for broader regions. Following the prepro-

cessing of each image collection, we derived parameters based on vegetation index time series, such

as NDVI, Normalized Difference Moisture Index (NDMI) and tasseled-cap transformation (TCT)

(Table 6.1).

RS indicator Description

NDVI Landsat, MODIS, Sentinel-2
NDMI Landsat, Sentinel-2
TCT Landsat

Land surface temperature Landsat/MODIS
SAR backscatter Sentinel-1

Table 6.1: Remote Sensing Time Series Variables.

To investigate the thermal conditions of the vegetation, we used single channel method to derive

Land surface temperature (LST) based on Landsat imagery. As the algorithm requires surface emis-
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sivity information from external sources we used NDVI-based emissivity estimated from Landsat

red and near-infrared bands (Jimenez-Munoz & Sobrino, 2010). Another metric that we have in-

vestigated was the Landsat based tasseled-cap transformation. TCT is an empirical transformation

based on linear combinations of the original bands. The design of the transformation and the use

of different bands highlight inherent data properties that capture critical physical characteristics

of vegetation, mainly the brightness captures variation in overall reflectance and is related to soil

and albedo; greenness is related to variability of vegetation, and the wetness is mostly linked to

a combination of moisture conditions and vegetation structure (Wegmann et al., 2016). MODIS

based NDVI at 250 m resolution were integrated into this approach to account for potential surface

variations in NDVI that can occur between the Sentinel-2 and Landsat acquisitions. All remotely

sensed metrics were summarized for specific vegetated systems and the time series were derived for

the different periods of the growing season. Furthermore, having a purpose to compare the data

coming from different sensors, we investigated the impact of the differences in observation time. To

quantify changes in vegetation, we used two approaches: bi-temporal change detection and anomaly

identification. For bi-temporal change detection, specific images or composites were selected based

on remote sensing-derived variables. For anomaly identification, reference is calculated for a speci-

fied region and time period. This reference defines the initial condition of the selected area. This is

followed by the definition of the test period which is compared with the baseline calculated using

monthly time-series.

Figure 6.1: The infrastructure for spatial application development.

Taking advantage of the cloud computing platform, we developed GreenLeaf, a web-based appli-

cation using Google developer tools to have an integrated platform for accessing discussed indicators

and tools. The backend of the app is written in Python, using the Google Earth Engine Python

library to interface with GEE servers. The frontend, is developed using HTML and CSS for the
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user interface, and Javascript for interaction. The app is hosted on Google App Engine, which

enables a high disponibility (Figure 6.1).

6.3 Result and Discussion

While the web app is available for a worldwide application, we used it for a specific pilot area

in Central Ukraine. Figure 6.2 shows the selected parameters for this particular region of inter-

est. It can be seen, that the spatial features are generally similar, with a distinct difference in

vegetated and non-vegetated areas. We could also observe clear differentiation of individual fields

especially in metrics derived from high-resolution data. This differentiation is robustly represented

in multitemporal composites derived from Sentinel-1 as well. This is due to the fact that the SAR

backscattering signal is mainly affected by canopy structure (such as the size, shape, and orientation

of plant tissues), water content of canopy, as well as the roughness and moisture of the underlying

soil (Forkuor et al., 2014). TC wetness and LST also give valuable information about moisture

stress and thermal condition of vegetation. Specifically, we can observe higher NDVI values in

densely vegetated areas, which correspond to areas with high TC wetness and low LST values

respectively. The notable link among the variables derived from different sensors, specifically the

lower NDVI and corresponding lower wetness can indicate water scarcity or vegetation at the end

of the growing season.

The use of temporal composites makes it possible to create cloud-free images covering the study

area. Furthermore, the composites spanning over a specific period of growing season (Figure 6.2)

can be a proxy of overall ecosystem productivity. In case of SAR imagery, multitemporal composites

highlight the changes during the growing season, as when averaging different images, we decreased

the contribution of speckle which resulted in within-class variance decrease and easy separation of

the vegetation. The temporal variability of VIs derived from different sensors was examined for the

study area (Figure 6.4). Time series derived from different sensors showed a generally consistent

pattern of a mid-summer peak during the growing season (April-September), though with some

differences in peak timing and value. This difference is mainly caused by the lack of data during the

growing season due to atmospheric condition and thus limited number of cloud-free observations.

Vegetation progress varies by location. We can observe distinct differences in seasonal variation

between forests and agricultural areas. Another distinct pattern is the consistent lower values of

S2 derived NDVI. This can be explained by the fact, that S2 product is TOA, and compared to

other products with applied atmospheric correction, has lower values. The profile and magnitude
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Figure 6.2: Examples of derived parameters. (a) Seasonal image composite spanning during peak
growing season, (b) TC wetness derived from Landsat, (c) LST derived for specific DOY (day of
the year) (d) multitemporal composite from Sentinel-1.

of the curve and NDVI variations are essential indicators of vegetation growth. Additionally, in

heterogeneous landscapes, the 30 m Landsat NDVI product better reflects the spatial variability of

the underlying land cover. Similar temporal patterns can be observed in SAR time series (Figure

6.3d). During the growing season, both VH and VV increases because of the volume scattering of

vegetation. As a result, SAR and optical data both reproduce crop growth cycles and can be used

synergistically in order to have a dense time series. The derived metrics and the time series can

be an input for land cover classification as well as it can be used in biophysical and agro-economic

models. It is essential to mention, that reference data are needed to validate further/explain the

spatiotemporal variability of remotely sensed indicators.

In general, we can see good agreement of MODIS and Landsat (Figure 6.4), for the areas of

interest bigger than 5 ha. When smaller areas of interest are selected, we can see the impact of

the mixed pixels. The values are in good agreement, with high correlation coefficients equal to 0.7

(Figure 6.4a). The agreement is lower in cases of the absence of a cloud-free Landsat-8 image. In

case if the images are not available within a few days of the MODIS acquisition we can observe
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Figure 6.3: Time series of NDVI for (a) Forest, (b) winter crop, (c) summer crop and (d) Backscat-
tering coefficient (σo expressed in decibels) over an agricultural area.

Figure 6.4: Scatterplots showing (a) minor differences for the acquisitions which are days apart
(Landsat 11.07.2016; MODIS 13.07.2016) (b) differences with bigger acquisition interval (Landsat
27.06.2016; MODIS 03.07.2016).

higher variability (Figure 6.4b).

Finally, in order to integrate this information in a single vegetation monitoring tool, we devel-

oped a web-based application using Google App Engine: GreenLeaf. The application is computing

metrics (minimum, maximum, mean, change between time1 and time2, detection of the anomalies

from baseline) and plotting the time series graph, based on parameters defined by the user: Date

range, preferred product and location/area of interest. The users can add specific thresholds (e.g.,

NDVI > 0.5), and mask only agricultural areas based on decision rule set and temporal variability

of the surface (Ghazaryan et al., 2018) and derive parameters regarding the start of the vegeta-
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tion stress and severity (Figure 6.5). Further development of the app supposes upscaling of these

products.

Figure 6.5: (a) Vegetated and non-vegetated areas based on a threshold of Sentinel-2 NDVI,
(b) Changes detected using Landsat based NDMI between two years, c) NDVI anomaly image
estimated based on Landsat data collected in July 2017 compared to the reference mean NDVI for
this time-step between 2013 and 2016.

The use of web-based applications, along with big data on the cloud enable provision of cus-

tomizable geospatial tools and products. The user is able to define either spatial or temporal

parameters (or both), change the used algorithms or visualization parameters. With this approach,

the access to geospatial operations is no longer restricted to expert users, but it is also available to

others. The developed web-app, accessible online at https://greenleaf.eodynamics.org can be used

for both large and small-scale analysis (Figure 6.6). The presented methodology is suitable espe-

cially for areas where in situ data is scarce and can be used for analyzing vegetation dynamics such

as monitoring agricultural management and intensification, heat and drought stress and tracking

deforestation. Future development of the tool will include algorithms for deriving phenometrics

such as start, end and the duration of the growing season.

6.4 Conclusions

In this study, we evaluated the spatiotemporal variation of vegetation based on data derived from

several sensors. Recently, with the development of new sensors, the time-series data with high

spatial and temporal resolutions have become available for VI time-series analysis. These time-

series, in addition to temporal information about the vegetation phenology and changes, contain

valuable information about the spatial patterns of vegetation distribution. The different sensors

each have comparative strengths and weaknesses, but their overall performance was similar for

tracking temporal variability over homogeneous areas. With respect to spatial resolution 250 m

MODIS data were not always sufficient for differentiating vegetation variability in heterogeneous
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Figure 6.6: A screenshot of the developed GreenLeaf tool.

landscapes. Landsat has greater capabilities for tracking variation at finer spatial resolutions.

Further, with imagery derived from Sentinel and Landsat, it was possible to detect small-scale

heterogeneity within fields on agricultural land. By choosing an adequate number of images, further

composites based on multi-temporal statistics can be created. GreenLeaf contributes to the use

of the satellite data products and the simplification of data access for users with limited remote

sensing experience and/or restricted processing power. In the presented study for the pilot area it

was demonstrated how the data could be used in order to quantify vegetation change and condition;

this evidence-based information can be a base to spatial planning, implementation of interventions

in vulnerable areas or other policy decisions.
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Chapter 7

Synthesis

7.1 Summary

During the last several decades, Ukraine experienced multiple changes, such as the collapse of So-

viet Union, which, in turn induced land surface changes. The nature of the changes was different

ranging from land abandonment, land productivity decline to changes in cropping practices (Kuem-

merle et al., 2011; Schierhorn et al., 2013). Besides the socioeconomic changes there were several

reports regarding ongoing environmental changes such as the increasing frequency of droughts and

heat waves (Adamenko & Prokopenko, 2011; Kogan et al., 2013) which also had an impact on

agricultural production (Kogan, 2019). The primary objective was to enhance our understanding

on patterns of land surface changes through exploiting the potential of multimodal RS time series.

Throughout this thesis, the use of time series observations and the applications of different algo-

rithms were tested to pursue several research questions and/or to enhance current methodologies

for the derivation of metrics describing the land surface and its dynamics. Under progressive cli-

mate change and transformations in land use such metrics are necessary to support data-driven

land management decisions. It has been shown that the use of such features produced insightful

results for characterizing vegetation state and its condition, such as those presented in Chapter

3, 4, 5 and 6. A variety of datasets and methods were used to address the research questions of

this thesis. Regarding the first aim, coarse scale NDVI dataset was used together with a variety

of time series analysis methods to assess the vegetation changes and to quantify the impact of

environmental factors on vegetation variability. To tackle the second aim related to crop mapping

Landsat and Sentinel-1 data were used. The use of several non-parametric classifiers was addressed

in relation to their performance for crop mapping. Regarding the third aim, focusing on drought

impact assessment, we have comprehensively studied crop condition with the use of several optical
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and SAR time series metrics. In order to ensure the data access and transferability of results, we

have integrated different datasets, derived metrics, and tools in a web application.

7.2 To What Extent can the Variation of NDVI be Explained by

Environmental Conditions?

Long-term vegetation variability and the impact of environmental factors were studied for a thirty-

year time span in Ukraine. The observed patterns of land surface changes were different depending

on the land cover and the period. Increasing NDVI trends are widespread across the country from

1982 to 2013. The output of breakpoint analysis gave more information on land surface dynamics

and possible triggers of it. For instance, large areas with trend shifts were observed in northwest

Ukraine during 1993 and 2002. The first post-socialistic years in the country were characterized

by high rates of land abandonment as well as widespread forest disturbances. Following economic

recovery around the early 2000s, re-cultivation of formerly abandoned land emerged. The mentioned

processes were reflected by the monotonic increase and increase with an abrupt break in NDVI

time series that is seen to predominate during the recent years of 2003–2013. Overall, the AVHRR

time series spanning more than three decades enabled an improved trend characterization. Partial

correlation analysis is generally useful for determining the individual contribution of each specific

environmental factor on NDVI dynamics. Among the analyzed factors, air temperature explained

most of the NDVI variability. The impacts of air temperature were observed in 30% of the

area. Grasslands and cropland exhibited similar responses to the drivers, demonstrating high

sensitivity to soil moisture and temperature. Although AVHRR data showed a big advantage of

long-term time series, the coarse spatial resolution of this dataset highlights the need for more

detailed analysis. At the same time, Landsat offers a long-term data record, with 30m spatial

resolution whilst the analysis of the data can be time and resource consuming. Nevertheless, with

the cloud computing technologies, it is possible to implement similar time series and breakpoint

algorithms on higher resolution data. Because of the distributed computational power, it was

possible to run this computationally intensive processes. To highlight this, Landsat based linear

trends were computed (Figure 7.1) and the three decadal record of 30m resolution data was used

for national scale monitoring of land surface changes. Similar patterns of predominant greening as

presented in Chapter 3 can be observed, nonetheless, the interpretation of the results for specific

study cases is more straightforward, as the changes can be observed at land management scale.

88



7.3. How Can the Vegetation Seasonality Derived from Remote Sensing Contribute to
Agricultural Monitoring?

Figure 7.1: National scale long-term NDVI trends based on Landsat (1982-2018) a) Greening
in Chernobyl area, b) Productivity increase in irrigated cropland and c) Decline due to farmland
abandonment in Crimea.

7.3 How Can the Vegetation Seasonality Derived from Remote Sensing

Contribute to Agricultural Monitoring?

The possibility of main crop type mapping with limited field level information in the central region

of Ukraine was assessed using Landsat and Sentinel-1 time series. We have tested the potential

use of optical and SAR data for the rule-based training sample generation and subsequent crop

classification in complex cropping systems. The derivation of critical temporal metrics enabled the

creation of image composites which represent the cropping patterns more adequately. In addition,

we demonstrated that the harmonic analysis and derived metrics could represent the seasonal vari-

ations of crops. It was shown that selected input features have an impact on class separability.

Specifically, the data availability during critical growth stages has a crucial impact on the classifi-

cation results. The use of Landsat and Sentinel based composites were also highlighted (Chapters

4 -6). Recent studies suggested the use of composites (Griffiths, van der Linden, Kuemmerle, &

Hostert, 2013) not only for well-known data products such as MODIS (E. Vermote, 2015) but

for Landsat like sensors. The main advantage of aggregation of the data within a specific period

is that when averaging different images, the contribution of speckle was decreased which resulted
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in within-class variance decrease and easy separation of the crops. In the case of optical imagery,

compositing enabled the creation of cloud-free images covering the study area. The integration of

multispectral and SAR data improved the classification accuracy by 2% for 2015 and 5% for 2016.

The method was tested in two years which made it possible to study the effect of inter-annual

meteorological differences. Besides the RS datasets, a crucial role for crop classification had the

additional agroecological data (e.g., phenological observations, crop status during different growth

stages). Integration of other ancillary data such as soil type, crop rotation regulations and the

integration of additional information over large areas can further improve the classification results.

For example, with the aggregation of decision rules, the algorithm can be applied over the whole

country. Figure 7.2 shows the 30m resolution map of delineated winter crops on a national level.

Figure 7.2: National scale winter crop mask derived from Landsat and Sentinel-1 images for 2017.

Based on the results, the use of seasonal composites in a two-step approach of classification

to create accurate crop maps over several years is recommended. The approach developed and

tested here has the potential for cases especially when field data are insufficient and can be further

developed for upscaling to larger areas.
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7.4 How much Information Can be Derived from Time Series to Study

Crop Condition?

Compared to the crop classification, crop condition monitoring and identification of timing and

severity of the vegetation stress is often a challenge as different crops have diverse spectral responses

under different hydroclimatic conditions. The increasing number of freely distributed remotely

sensed time series gives opportunities to monitor intra-seasonal changes in croplands and track

subtle changes in time series, which can be induced by extreme events such as droughts. The

use of time series from optical and SAR data to identify the main characteristics of agricultural

drought was discussed. Indicators were derived based on optical (Landsat-8, Sentinel-2, MODIS)

and SAR data. We used logistic regression to evaluate the drought-induced variability of remotely

sensed parameters. We found out that growing season maximum NDMI and NDVI (70-75%) and

SAR derived metrics (60%) reflect specifically the impact of agricultural drought. These metrics

also depict stress affected areas with a larger spatial extent. LST was a useful indicator of crop

condition especially for maize and sunflower with prediction rates of 86% and 71%, respectively.

The results showed that drought-induced properties of time series could be characterized based on

featurization and temporal dynamics of time series and combined use of several indicators.

7.5 How Can the Multi-source Data and Analysis Methods be Used for

Vegetation Monitoring at Different Scales?

Remotely sensed imagery is an important data source for different decision makers as the data can

be further used to forecast of crop production, measure and manage land use intensity. To make the

results accessible for a wide range of users a web application has been developed, where users can

derive satellite-based data products such as vegetation indices, SAR backscatter time series without

coding or image processing for a defined area of interest and a preferred period. The computation

is running on Google Cloud servers (using Google Earth Engine) and the results are returned to

the user via the interactive interface. The application is computing metrics (minimum, maximum,

mean, change between time1 and time2, anomalies) and extracting the time series graph, based

on parameters defined by the user. The user can define either spatial or temporal parameters or

both, change the used algorithms or visualization parameters. This will further contribute to the

use of the data and will simplify data access for users with limited remote sensing experience, or

with limited processing power. With this approach, access to geospatial operations is no longer

restricted to expert users, but it is also available to others. Overall, we can observe changes in
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remote sensing analysis approaches. Along with access to data from MODIS and Landsat, the

launch of new satellites, such as the Sentinel constellation, give new opportunities for timely and

accurate monitoring of land surface dynamics. More opportunities also arise from the private sector,

such as PlanetScope constellation operated by Planet (Houborg & McCabe, 2018), where global

high-resolution data are now available at very high temporal frequency i.e. daily. The approaches

towards land surface analysis are also changing with the increasing amount of analysis-ready data

(Giuliani, Chatenoux, Honeck, & Richard, 2018; “U.S. Landsat Analysis Ready Data (ARD) |

Landsat Missions,” n.d.), cloud computing, multi-temporal and multi-sensor analysis (Figure 7.3).

Especially with algorithms such as deep learning, integration of different data sources gives more

opportunities for accurate data products such as indicators and spatially explicit statistical output.

Moreover, the output is changing from static maps, which capture the land surface state for one

timestep (e.g. land cover maps), to the generation of dynamic output defined by the users’ needs

(Azzari & Lobell, 2017).

Figure 7.3: Conceptual representation of changes in remote sensing (RS) research and output gen-
eration highlighting the impact of freely accessible multisensor data, cloud computing and Artificial
Intelligence (AI).

7.6 The Impact of the Resolution and Sensor

Besides the transferability of models and upscaling, the impact of the spatial resolution of imagery is

a crucial aspect that can affect the accuracy of the derived land surface parameters. Several sensors

introduced in the previous chapters (AVHRR, Landsat, MODIS, Sentinel-1, and Sentinel-2) – with
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high, medium, and low spatial resolution have weaknesses and strengths when it comes to mapping

and monitoring land cover changes. Landsat offers high-resolution data starting from the 1980s,

although the data quality varies with cloud cover. In the case of MODIS, with reasonably regular

time series, it is only available from the 2000s. Furthermore, MODIS offers less spectral bands with

finer spatial resolution. Depending on the application, one or the other sensor might be a better

choice. Consequently, different satellite sensors are not equally suitable for different applications

such as vegetation monitoring, crop specific condition monitoring especially in heterogeneous land-

scapes. For example, dense time series (e.g., MODIS) are necessary for detailed phenology analysis,

but at the same time, annually spaced Landsat like composites might be enough for tracking long

term vegetation changes as a result of changes in management or political decisions and conver-

sion. With the integration of Copernicus data, time series with both high temporal and spatial

resolutions can be accessed. This highlights the need for the synergistic use of multi-scale data.
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Chapter 8

Conclusions

This thesis provides a comprehensive assessment of land surface changes at different spatiotemporal

scales based on multi-source remotely sensed datasets. Through the studies on country and local

scale, essential gaps were addressed in the understanding of vegetation changes, drought stress

impacts on crops and crop classification based on optical and SAR data. This was achieved by the

application of several algorithms for time series trend and change detection, and machine learning

techniques for land cover characterization. It was demonstrated how different data could influence

remotely sensed change detection and its characterization. In general, it was shown that Earth

Observation provides a comprehensive data source for repeated, large-scale analysis of both long-

and short-term land surface changes.

Important outcomes of the thesis are:

• Integration of multiple datasets allows derivation of valuable, spatially explicit information

on overall vegetation status and dynamics, and the potential causes of land surface changes.

Coarse-resolution input data (NDVI, environmental data) yielded sufficient results at the

national level. High-resolution input data is required for local scale analysis and for inter-

preting the seasonal dynamics and spatially explicit quantification of impacts of extreme

events (drought stress) in heterogeneous agricultural landscapes.

• The remotely sensed patterns of crop growth confirm agroecological knowledge and presented

approaches of crop identification. Furthermore, crop condition monitoring can be imple-

mented in areas where field observations are unavailable or scarce. Temporal context of the

remotely sensed data through time series and temporal composites was valuable and necessary

for interpretation of vegetation change especially in dynamic agricultural setting. Neverthe-

less, it is still crucial to have representative in situ datasets (e.g. crop calendars, drought
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occurrence databases) for calibration of the models and validation of the remotely sensed

derivatives.

• The data fusion results outperform single sensor analysis for crop type classification and

condition monitoring. Especially the integration of SAR data was shown to be useful for

improved crop classification. Furthermore, it can be concluded that integration of optical,

microwave and thermal information extends knowledge of crop-specific drought impacts.

• The use of a web-based application, along with big data on cloud enables provision of cus-

tomizable geospatial tools and products showing the possibilities of scaling up of the results

and implementation of the algorithms in other areas.

In addition to suggestions for future work presented at the ending of each chapter of the thesis,

the following considerations are proposed.

• Regarding the country level analysis, additional factors along with datasets that accurately

characterize anthropogenic activity should be considered. The study was relying on AVHRR

based NDVI data. Other variables such as Net Primary Productivity (NPP) and LAI can

further improve the understanding of vegetation variability.

• Regarding field-level crop type mapping, the use of dense time series should be highlighted

to harness the temporal footprint of different land cover types. Although in chapters 3, 4

and 5 we have demonstrated examples of combined usage of the data, the studies bring up

the necessity of the creation of harmonized data cubes. For example, Sentinel-2 integration

with Landsat can dramatically increase the temporal frequency of data for dense time series

analyses (Chastain et al., 2019; Claverie et al., 2018). These data can further be used for not

only crop type identification but also products such as cropping intensity and crop rotation

violations.

• The use of deep learning algorithms for classifications can further improve the results such as

better discrimination of certain crop types. Recently, deep learning algorithms, such as Deep

Neural Networks (DNNs) and the Convolutional Neural Networks (CNNs), demonstrated

great potential for various applications compared to other machine learning algorithms (Cai

et al., 2018; X. X. Zhu et al., 2017). Integration of deep learning with cloud processing can

further enable large-scale analysis (d’Andrimont, Lemoine, & van der Velde, 2018).
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• In addition, future research may also focus on investigating the potential of optical and SAR

sensors for the derivation of finer scale biophysical parameters and estimates such as soil mois-

ture, LAI and large scale observation on functional trait detection. Furthermore, remotely

sensed time series and derived parameters can be used not only for drought monitoring but

also prediction and early warning and forecast.

Overall, it was demonstrated that the effective combination of different trend analysis tech-

niques, integration of multiple datasets, and effective statistical modeling allows derivation of valu-

able, spatially explicit information on overall vegetation status and dynamics, land (vegetation)

degradation, crop stress and the potential causes of these changes. This information can be used

as an input for different models and can support the decision making for sustainable land manage-

ment.
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