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Introduction 

Pharmacometrics 

The interdisciplinary research area of pharmacometrics deals with the quantitative 

description and interpretation of pharmacology [1]. Pharmacometrics makes use of 

mathematical, statistical and computational approaches by utilizing existing knowledge 

on physiology, disease and pharmacology to develop mathematical and statistical 

models that can be used to assist rationale selection of dosing regimen, prediction of 

clinical outcome and identification of the covariates as sources of variability [2]. 

Pharmacometric models can be useful in clinical practice for the individualization of 

drug treatment [3] [4] [5]. Nonlinear mixed effects (NLME) models are commonly 

implemented to describe pharmacokinetic/pharmacodynamic (PK/PD) profiles. The 

term mixed effects refer to the characteristics of the typical individual representative of 

a population (fixed effects) as well as the associated inter-individual variability (IIV), 

inter-occasion variability (IOV) and residual unexplained variability (RUV) collectively 

termed random effects [6]. 

NLME models are valuable to describe PK/PD relationships in a given population 

(population analysis) with sparse information, because they simultaneously fit data 

collected from multiple subjects. Estimation of PK/PD parameters such as drug 

clearance (CL) using NLME models is achieved by maximizing the likelihood of 

observing the data given the parameters [7], an approach called maximum likelihood 

estimation (MLE) which makes use of gradient-based numerical approximations such as 

first-order conditional estimation (FOCE) and second-order Laplacian methods. PK/PD 

data comprises of drug concentration (often plasma concentrations) measurements and 

pharmacodynamic endpoints or biomarkers. The primary objective behind the 

development of PK/PD models is to characterize the mathematical relationship between 

dose, concentration and effect. Development of PK/PD models can be accomplished in a 

sequential or simultaneous manner [8]. The former involves analysis of PK data 

followed by the incorporation of PD data, while the latter approach fits PK and PD data 

simultaneously. Depending on the study objective, a PK/PD model having the ability to 

reliably predict observed data is generally required. Being robust, flexible and the most 
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frequently used software in the field of pharmacometrics, NONMEM is used for the 

development and evaluation of PK/PD models part of this thesis [9]. 

Pharmacometrics to assist cancer chemotherapy 

An important component of antineoplastic treatment involves cytotoxic chemotherapy 

using compounds that cause destruction of cancerous cells. Depending on tumor stage, 

type of cancer and patient status, chemotherapy can be useful to cure underlying 

disease, prolong patient survival and alleviate associated symptoms. During situations 

necessitating surgery or radiotherapy, prior chemotherapy is often used to reduce 

tumor burden, whereas post-surgery use of chemotherapeutic agents is helpful for the 

prevention of invasion of cancerous cells to other regions of the body. Hematological 

malignancies are more likely to be cured with chemotherapy [10] compared to solid 

tumors, which are seldom cured with the unaided use of these compounds. Adjuvant 

therapy has been shown to reduce relapse and death in a number of malignant diseases 

[11] [12].  Development of drug resistance is a major issue associated with the use of 

cytotoxic agents.  

Decision making in appropriate dosing strategies is an associated challenge with 

cytotoxic chemotherapy. Successful remission of the tumors generally require higher 

drug doses to be administered, which is often restricted by the tolerability [13]. Rational 

dose selection is of paramount importance for cytotoxic agents with narrow therapeutic 

range. Identification of covariates during PK/PD analyses allows individualization of 

dosing regimens in order to get a better therapeutic outcome. Covariate models are 

developed to describe the relationship between PK/PD parameters and covariates 

which contain information regarding parameter(s) [14] [15] [16] [17] [18]. CL of a drug 

for example may be dependent on patient genotype for a drug metabolizing enzyme 

(covariate) where rapid metabolizers may require a relatively higher dose. Similarly, 

volume of distribution may vary with the variation in body mass and individuals with 

higher weight for instance may need a higher dose. Identification of appropriate 

covariate-parameter relationships may be useful to avoid exposure misspecifications by 

facilitating dose adjustments in patient subgroups.  
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Covariate based dose individualizations in oncology 

Precision medicine involves dose adjustments based on individual patient 

characteristics.  Suboptimal doses for anticancer agents with narrow therapeutic range 

may lead to serious complications. There is always a concern to identify, quantify, and 

manage IIV in order to adjust dosing regimens in patient subpopulations. Demographic 

and physiological covariates such as BSA and renal function may have an underlying 

relationship with PK/PD parameters which is identified during population analysis. 

Optimized dosing can therefore be achieved by minimizing the inter-patient variability 

in drug exposure/response with the consideration of significant covariate(s). A 

prominent example includes personalized dose adjustments based on patient’s renal 

function for carboplatin [19]. Similarly, an improved treatment response with lower 

toxictity for 5-fluorouracil (5FU) treatment was observed when dose was linearly scaled 

according to individual’s BSA [20]. Individualization based on patient genotype was also 

found valuable to minimize the risk of toxicity in case of irinotecan therapy [21]. A 

literature search [22] on personalized dosing based on covariate significance for 

anticancer drugs summarized that demographic covariates (especially body weight) are 

most commonly found to have a significant relationship with PK parameters, while 

parameters representative of renal function such as creatinine CL (CrCL), serum 

creatinine (SCr) and GFR are the other more prevalent covariates.  

Mixture models: an alternative to covariate models 

The population under study may possess heterogeneity in drug’s PK and/or PD, which 

implies the presence of patient subgroups that respond to a particular drug in different 

manner. Differences can be observed in absorption or elimination of the compound, as 

well as the therapeutic outcome. Such differences can be best explained by inclusion of 

scientifically plausible covariate information. Situations may exist, where the relevant 

information on identity or individual value of a possible covariate is not available. A 

class of NLME models called mixture models is of particular value under such 

circumstances, as they are able to empirically describe the multimodal distributions of 

IIV [23]. Mixture modeling is a frequently used approach used for the partitioning of 

subjects to respective subpopulations [24] [25] [26]. 
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Models describing biomarker turnover  

Pharmacological effects are usually delayed relative to plasma drug concentrations. The 

observed delay may be due to multiple reasons such as delay in drug’s distribution to its 

site of action, or turnover of physiological mediator(s) of drug effect such as enzymes 

[27]. It is generally not feasible to measure drug concentrations at the site of action, 

however the time course of drug effect can be empirically described by incorporation of 

hypothetical effect compartments [27]. Indirect response models are frequently used to 

describe the turnover of enzymes or biomarkers in the body, assuming that rate of 

formation of a biomarker follows zero-order kinetics, while rate of degradation follows a 

first-order process [28]. Drug response is frequently modeled based on the assumption 

that the drug inhibits/stimulates the rate of synthesis/degradation of a certain 

biomarker [28]. Drug effects are commonly incorporated as linear or sigmoidal 

functions driven by a measure of drug exposure such as concentrations in plasma or 

effect compartment. 

Models describing myelosuppression during chemotherapy 

Bone marrow suppression in response to cytotoxic chemotherapy makes patient more 

prone to develop infections due to leukopenia. Being the first line of defense, serious 

clinical implications are often associated with the decrease in neutrophils which 

comprise 60-70% of the total leukocyte count. Not only the extent, but also the 

duration of leukopenia is a potential challenge to administer desired dosing regimens.  

Most of the chemotherapeutic regimens are administered in cycles ranging from 21-28 

days according to the time required for the reestablishment of a leukocyte count in the 

reference range. A semi-physiological model was developed by Friberg et al. to describe 

the suppression and reestablishment of leukocyte counts in rats administered with 5FU 

[29]. The model has been frequently employed to describe this undesired 

pharmacodynamic effect of chemotherapeutics since then. Being semi-mechanistic in 

nature, the model comprised of parameters related to drug and physiology, and 

considered the self-renewal of proliferating leukocytes, cellular maturation and a 

positive feedback describing the recovery period. The Friberg model provided clinically 

significant information by prediction of the time period required for leukocytes recovery 

in order to administer the subsequent dose, as an aggravation of toxicity may lead to life 
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threatening infections. The model was useful for individualized dosing in clinical 

practice [30] [31] as well as in preclinical and clinical drug development [32] [33] [34]. 

The model has been successfully applied  to a number of anticancer drugs administered 

as monotherapy [32] [35] [36] [37] [38] [39] [40] [41] or a combination-based regimens 

[34] [42] [43] [44]. 

Investigated drugs 

Mitotane 

Mitotane (o,p’DDD) is the only anticancer drug used in the  treatment for the rare 

disease of adrenocortical carcinoma (ACC). The drug causes impairment of 

steroidogenesis by inhibiting sterol-O-acyl transferase 1 [45]. Mitotane is highly 

lipophilic and has an oral bioavailability of 35-40% [46] [47]. Plasma mitotane 

concentrations >14 mg/L are efficacious [48] [49] [50], whereas concentrations greater 

than 20 mg/L are related to adverse effects, including CNS toxicity [51]. The drug is 

metabolized to o,p′-dichlorodiphenyl-ethene (o,p’-DDE) and –acetate (o,p’-DDA) [52] 

[53]. Mitotane is known to induce hepatic cytochrome P450 subfamily 3A4 (CYP3A4), 

leading to interactions with concomitant drugs [54]. The compound is primarily 

excreted in urine and bile, and has a long and variable elimination half-life of 18-159 

days [55]. Early attainment of target concentrations avoiding a time delay is an 

associated challenge, whereas maintenance of plasma concentrations within the 

therapeutic range causes inconvenience as well. Maintenance doses of mitotane are 

currently being adjusted based on therapeutic drug monitoring (TDM). A pronounced 

delay in the attainment of target concentrations adds to the challenge. Model-based 

approaches to predict the desired exposure can therefore be useful. 

5-Fluorouracil 

Belonging to the class of fluoropyrimidines, 5FU is one of the frequently used 

chemotherapeutic agents for the treatment of solid malignancies including colorectal, 

breast, head and neck cancers [56]. 5FU is commonly used in combination with folinic 

acid, oxaliplatin and irinotecan for the treatment of colorectal and pancreatic cancer 

[57] [58] [59] [60]. Combination of 5FU and leucovorin (folinic acid) has been reported 

to cause lower toxicity, increased response rate and longer progression-free survival in 
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advanced colorectal cancer [61], whereas combined treatment with cisplatin is 

commonly recommended for oesophageal cancer [62]. 5FU undergoes enzymatic 

conversion, where the major fraction of the drug (80-90%) is converted to inactive 

metabolite 5-fluoro-5,6-dihydrouracil (5FUH2) by the hepatic enzyme 

dihydropyrimidine dehydrogenase (DPD), and only a small fraction is converted into 

cytotoxic nucleotides [63]. 5FU causes impairment of DNA synthesis by inhibiting 

thymidylate synthase (TS) [64]. Myelosuppression and mucositis are the dose limiting 

toxicities associated with 5FU based chemotherapeutic regimens [65]. Other associated 

toxicities include diarrhea, nausea, vomiting and encephalopathy [66]. Patients with 

deficiency of the metabolizing enzyme DPD are at higher risk of toxicity which may 

prove fatal [67]. PK profile of the drug is known to be variable and is influenced by dose, 

route and schedule of administration [68] [69] [70]. CL of the drug was related to 

patient’s BSA [69] [71], gender [72] and age [71] [73]. Nonlinearity in its PK was 

observed due to saturable hepatic degradation [74]. Kidney and liver function [69] [72] 

were reported to influence the elimination of 5FU. The drug has a narrow therapeutic 

index and TDM is needed for the achievement of optimal exposure [75].  

Methotrexate 

Methotrexate belongs to the class of antifolates as it is known to inhibit both purine and 

pyrimidine biosynthesis [76] [63]. The drug has extensively been used in clinical 

practice for the treatment of solid and hematological malignancies, and autoimmune 

diseases like arthritis and psoriasis [77]. Clinically administered methotrexate dosing 

regimens are classified as low (<50 mg/m2), intermediate (50-500 mg/m2) and high 

(>500 mg/m2) dose regimens [77] [78]. Considerable IIV in its pharmacokinetics and 

toxicity [79] [80] [81] poses challenges towards dose individualizations, and makes TDM 

essential for the identification of patients at higher risk of severe toxicities such as 

anemia, myelosuppression and acute renal failure. Numerous attempts have been made 

to study its pharmacokinetics using population analysis approach, where disagreements 

exist regarding the underlying covariate relationships. The drug has a wide variation in 

dosage regimens, where individual dose is calculated based on patient’s body surface 

area (BSA), albeit the fraction of variability explained by BSA is of limited clinical 

relevance.  
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Aims and objectives 

Overall aims and objectives 

The research work presented in this thesis was primarily aimed to develop, evaluate, 

and subsequently use PK/PD models with adequate predictive ability for an improved 

antineoplastic treatment outcome. Novel approaches for the evaluation of mixture 

models were aimed to be developed. It was desired to understand the PK/PD behavior 

of the drugs in a better way. We focused towards the refinement of dosing schedules in 

routine clinical practice by precise interpretation of plasma drug concentrations using 

model-based approaches. Plasma drug exposure was predicted by developing 

population pharmacokinetic models, whereas simultaneous modelling of 

pharmacokinetic and pharmacodynamic data was further intended for the prediction of 

desired/undesired clinical outcome. Project specific aims and objectives are described 

below. 

Evaluation of mixture models 

The first project (chapter 3) aimed to contribute towards the development of a novel 

methodology for better evaluation of mixture models. The focus was to adapt the 

standard model diagnostic procedure termed visual predictive check (VPC) for mixture 

models. This class of NLME models has frequently been implemented in 

pharmacometrics research, but little attention has been paid to develop appropriate 

diagnostic procedures for their evaluation. The approach was initially planned to be 

implemented and assessed by generating some simulated data. Subsequently, it was 

desired to evaluate the available models and pharmacokinetic data of antineoplastic 

agents.   

Mitotane pharmacokinetics 

The second project presented in chapter 4 of this thesis was intended to investigate the 

pharmacokinetics of mitotane by developing a population pharmacokinetic model with 

the data collected from a large cohort of adrenocortical carcinoma patients. 

Incorporation of enzyme autoinduction was aimed as the drug was previously reported 

to be a strong inducer of cytochrome P450 subfamily CYP3A4. Moreover, it was desired 

to identify the covariates of influence regarding mitotane pharmacokinetics. Evaluation 
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of clinically practiced dosing regimens for the attainment of therapeutic concentrations 

using model based simulations was further intended. 

5FU pharmacokinetics and pharmacodynamics 

The third project (chapter 5) was designed to understand and predict the progression of 

myelotoxicity driven by 5FU exposure in colorectal cancer patients. It was planned to 

simultaneously model the pharmacokinetic and pharmacodynamic (adverse event) data, 

thus filling the gap in existing knowledge regarding quantitative pharmacology of 5FU. 

The project was further aimed to be characterize the impact of covariates on 5FU 

pharmacology, mainly patient demographic and genetic profiles. Model based prediction 

of toxicity related to different clinically applied 5FU based regimens was meant to be 

part of the present analysis. 

Methotrexate pharmacokinetics 

The fourth project (chapter 6) addressed some clinical aspects related to methotrexate 

pharmacokinetics. Plasma concentration and covariate data was available from the TDM 

database maintained at University Hospital Cologne. It was desired to develop a 

pharmacokinetic model using the data collected from a large cohort of patients with 

solid and hematological malignancies. Identification of the covariate relationships 

mainly patient demographics and clinical laboratory values were part of the study. 

Subsequently, assessment of ongoing clinical practice of dosing methotrexate based on 

BSA compared to flat dosing was desired.   
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Abstract 

The assumption of interindividual variability being unimodally distributed in nonlinear 

mixed effects models does not hold when the population under study displays 

multimodal parameter distributions. Mixture models allow the identification of 

parameters characteristic to a subpopulation by describing these multimodalities. Visual 

predictive check (VPC) is a standard simulation based diagnostic tool, but not yet 

adapted to account for multimodal parameter distributions. Mixture model analysis 

provides the probability for an individual to belong to a subpopulation (IPmix) and the 

most likely subpopulation for an individual to belong to (MIXEST). Using simulated data 

examples, two implementation strategies were followed to split the data into 

subpopulations for the development of mixture model specific VPCs. The first strategy 

splits the observed and simulated data according to the MIXEST assignment. A 

shortcoming of the MIXEST-based allocation strategy was a biased allocation towards 

the dominating subpopulation. This shortcoming was avoided by splitting observed and 

simulated data according to the IPmix assignment. For illustration purpose, the 

approaches were also applied to an irinotecan mixture model demonstrating 36% lower 

clearance of irinotecan metabolite (SN-38) in individuals with UGT1A1 

homo/heterozygote vs wild-type genotype. VPCs with segregated subpopulations were 

helpful in identifying model misspecifications which were not evident with standard 

VPCs. The new tool provides an enhanced power of evaluation of mixture models.  

Keywords: Visual predictive checks, mixture models, multimodal parameter 

distributions, pharmacokinetics, pharmacodynamics.  
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Introduction 

Evaluation of the applicability of a model for a specific purpose is a major consideration 

during pharmacometric analysis. Diagnostic tools have been developed and used 

extensively for evaluation of pharmacokinetic (PK) / pharmacodynamics (PD) models 

[1]. The simulation based diagnostic tool known as visual predictive check (VPC) has 

gathered much focus because of the (i) advantage to retain the original data profile, (ii) 

ability to describe the central trend and dispersion in the data, and (iii) simplicity for 

interpretations [2, 3, 4, 5]. A VPC is a graphical and statistical comparison of observed 

and predicted data by deriving the distribution of observations and predictions against 

the independent variable such as time [3]. Depending on the underlying data, the 

objective of the study and the intended use of the model, different VPCs such as 

stratified VPCs (predictive performance across stratification variable such as a 

covariate), prediction corrected VPCs (to identify random effect misspecification by 

removing the variability coming from independent variables such as doses) and 

covariate VPCs (to evaluate the predictive performance of the model across the 

covariate range) may be used [3, 4].  

The nonlinear mixed effect modeling approach quantifies the intrinsic variability 

associated with pharmacokinetic / pharmacodynamic profiles across the studied 

population [6]. The underlying assumption of interindividual variability (IIV) being 

unimodally distributed is not true when the studied population exhibits heterogeneity 

leading to multimodal parameter distributions [7]. Heterogeneous pharmacological 

behavior may result in clinically significant differences in drug exposure/toxicity. A 

classic example involves acetylation polymorphism in case of isoniazid where clearance 

(CL) was observed to be bimodally distributed and a higher prevalence of peripheral 

neuropathy and hepatotoxicity was observed in slow metabolizers due to elevated 

plasma concentrations [8]. Situations may arise where a polymorphism is associated 

with the exposure/response to a drug, but the covariate capable of describing such 

behavior is not available. The mixture modeling (also referred as clustering) approach is 

a useful tool under such circumstances [9]. A number of studies have been reported to 

utilize mixture modeling. A major proportion of these studies aimed to describe the 

bimodal distribution of CL as reported in case of serotonin receptor antagonist 

repinotan, antianginal drug perhexiline and beta-lactam antibiotic ceftizoxime [10, 11, 
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12]. A bivariate absorption describing the subpopulations with and without absorption 

lag was presented by Piotrovsky et al. [13]. An analysis was performed to segregate the 

patients with and without adverse effects with the help of adverse event data by 

Kowalski et al. [14]. Mixture modeling was also applied to model the probability of cure 

in cancer survival analysis where the proportion of fatal and cured cases was estimated 

[15, 16, 17]. Similarly, a mixture model classifying the mammary tumors in rats as 

benign or malignant was published by Spilker et al. [18].  

Despite the utility of mixture models to describe data arising from a population with 

underlying heterogeneity, there are limitations in assessing mixture models since the 

common simulation based assessment tools do not account for the multimodality in 

parameter distributions. Attempts have been made to develop posterior predictive 

checks [19] for mixture models [8]. However, VPCs are not yet adapted to mixture 

models and may fail to adequately evaluate the predictive performance of a mixture 

model. The aim of the current project was to design VPCs accounting for multimodal 

parameter distributions and thereby allow (i) the diagnosis of the mixture component 

aspects of the model, and (ii) more powerful assessment of other model aspects by 

reducing between-subpopulation variability from the graphs. 

Methods 

Theoretical overview of parameter estimation using mixture models 

The underlying assumption behind the mixture modeling approach is to partition the 

population into subpopulations according to a probability model [8]. With the 

implementation of mixture models using the $MIXTURE subroutine in NONMEM, 

pharmacokinetic parameters characteristic to a subpopulation can be obtained [20]. 

𝐶𝐿1 = 𝜃1 ∙ 𝑒𝜂1          … 𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒 𝑓𝑜𝑟 𝑠𝑢𝑏𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 1 

𝐶𝐿2 = 𝜃2 ∙ 𝑒𝜂2          … 𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒 𝑓𝑜𝑟 𝑠𝑢𝑏𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 2 

Whereas, the corresponding subpopulation probabilities are estimated as, 

𝑃𝑚𝑖𝑥1 = 𝜃3               … 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑓𝑜𝑟 𝑠𝑢𝑏𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 1 

𝑃𝑚𝑖𝑥2 = 1 −  𝜃3      … 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑓𝑜𝑟 𝑠𝑢𝑏𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 2 
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A Pmix1 estimate of 0.6 corresponds to a 60/40% mixture proportion. The individual 

likelihood to belong to a subpopulation 1 (ILmix1) can be derived from the individual 

objective function value (IOFV). The individual probability for belonging to a 

subpopulation (IPmix) is then computed from the individual likelihood (ILmix) and 

population probability estimates [7]. 

𝐼𝐿𝑚𝑖𝑥1 = 𝑒(𝐼𝑂𝐹𝑉/2) 

𝐼𝑃𝑚𝑖𝑥1 =
𝐼𝐿𝑚𝑖𝑥1 ∙ 𝑃𝑚𝑖𝑥1

𝐼𝐿𝑚𝑖𝑥1 ∙ 𝑃𝑚𝑖𝑥1  +  𝐼𝐿𝑚𝑖𝑥2 ∙ 𝑃𝑚𝑖𝑥2
 

Where, ILmix2 is the corresponding likelihood estimate for the individual to belong to 

subpopulation 2. The empirical subpopulation assignment that the subject’s data is 

described by the corresponding submodel is given the name MIXEST within NONMEM. 

Mixture model output 

Analysis with mixture models provided two individual-level metrics of subpopulation 

association (i) the most likely subpopulation for an individual to belong to, and (ii) the 

probability for an individual to belong to each subpopulation [7]. The former metric 

(MIXEST) is discrete in nature and can be retrieved from output table files. The latter 

metric termed IPmix can be retrieved from the *.phm file which is a standard output of 

models with mixture components. IPmix is considered to be more informative than the 

MIXEST variable because of its continuous nature.  

Mixture specific VPCs 

Two strategies were adapted for allocation of subjects to the subpopulations in order to 

develop mixture model specific VPCs with separate panels for each allocated 

subpopulation. The first strategy utilized the MIXEST information to stratify the 

observed and simulated data. Thus, the original and simulated individuals were 

separated according to their most likely subpopulation. A tendency for subjects to be 

allocated to the dominating subpopulation (similar to the shrinkage phenomenon in 

individual, empirical Bayes, parameter estimation) is expected with the MIXEST-based 

allocation strategy. This shortcoming was avoided through the second strategy to 

randomly partition the observed and simulated data according to the IPmix value. 

Partitioning with the former approach was called MIXEST mixture while the latter was 
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termed randomized mixture. In order to retrieve the IPmix information for the original 

and simulated data, an evaluation step is required. This was accomplished by directing 

NONMEM to perform an evaluation step given the final model parameters by setting 

MAXEVAL=0 for each simulated data set. Naturally, MIXEST can also be computed from 

the IPmix value, therefore further processing to derive VPC statistics for graphical display 

was facilitated by the use of single output file (*.phm). A discrepancy in the individual 

subpopulation allocation frequency between original and simulated data would be 

indicative of model misspecification and hence provide an additional evaluation aspect 

specific for mixture models. Therefore, percentage of individuals in each subpopulation 

for both the original (ORIGID) and the simulated data (SIMID) and the population 

estimate for the mixture probability (PMIX) are displayed in the VPC plots. 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Illustration of proposed methodology 
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Implementation of mixture VPCs 

A PsN functionality was developed to direct NONMEM runs and post-processing 

NONMEM output according to the two strategies (MIXEST and randomized) in order to 

generate the mixture model VPCs. VPCs were implemented using a ggplot2 based 

package in R [21, 22, 23].  

Linear PK data 

Data was simulated from a one-compartment PK model (ka = 1 h-1, CL = 20/80 L/h, Vd = 

100 L; interindividual variances = 0.09; proportional residual variance = 0.04). A total of 

1000 virtual subjects were simulated with 70/30% mixture proportions. Six samples 

were taken at time points 0.5, 1, 2, 4, 8 and 12 hours following a virtual dose of 100 mg. 

A bivariate covariate resulting in a 4 fold difference in CL between subgroups was 

modeled by the inclusion of a mixture component. In order to compare the mixture 

model with a model without any mixture component stochastic simulation and 

estimation (SSE) was performed with PsN version 4.8.0 [24]. The simulated data were 

analyzed by fitting a covariate-free non-mixture model, a covariate model and a mixture 

model using NONMEM version 7.4.2 [20]. VPCs were constructed for the mixture model 

using both the MIXEST and the randomized allocation. Performance of the allocation 

strategies was evaluated by decreasing the difference in drug CL (20/60 L/h) and 

increasing size of the dominant subpopulation (85/15% mixture proportions).  

Parallel linear and nonlinear PK data 

Pharmacokinetic data and NONMEM code were extracted from a publically available 

illustrative PK model example [25]. Thirty-six subjects were part of the analysis with a 

rich sampling over a period of 672 h (22 observations per individual). Individuals 

received 4 doses of 50 mg at 0, 168, 336 and 504 h. The pharmacokinetic profile was 

described by a two-compartment model with two distinct physiological elimination 

pathways (linear and nonlinear). The pharmacokinetic parameters included Vmax = 1.2 

mg/h, Km = 10 mg/L, CLlinear = 0.03/0.12 L/h, V1 = 3 L, V2 = 2 L and Q = 0.075 L/h. The 

parameters for drug disposition (CLlinear, Vmax, V1 and V2) were scaled with the body 

weight of each individual. A bivariate covariate describing a 4 folds difference in the 

linear CL pathway with a 40/60% mixture proportions was introduced before 
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simulation. SSE was performed to simulate the data given the model parameters 

followed by estimation with a mixture model. Mixture specific VPCs were developed to 

assess the predictive performance of the model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Mixture VPCs for linear PK data: Upper panel displays MIXEST based VPCs while lower 

panel displays IPmix based VPCs. One-compartment mixture model with 70/30% mixture 

proportions having 4 folds CL difference. (SUBPOP=subpopulation number, Pmix=estimated 

population proportion, ORIGID,SIMID= individuals (%) allocated to respective subpopulations in 

original and simulated data respectively) 

 

Irinotecan PK data 

Irinotecan PK profile was described by a combined model from previously published 

studies [26, 27]. Data comprised of 109 patients with various malignant solid tumors 

who received an intravenous infusion of 100-350 mg/m2 for a period of 0.75-2.25 h. A 

total number of 1930 plasma concentration measurements of active metabolite SN-38 

were available for the analysis. The model (Fig. 5) comprised of a three-compartment 
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model for the parent drug, a two-compartment model for the active metabolite (SN-38) 

and a two-compartment model for the inactive glucuronide conjugate of SN-38 (SN-

38G). The drug was characterized by linear PK properties and the disposition 

parameters were scaled with body surface area. IIV was associated with all the 

parameters and the residual unexplained variability was modeled by an additive model. 

Based on the established influence of genetic polymorphism upon SN-38 CL, a mixture 

model was developed as the patient genotype information was unavailable. Traditional 

and mixture specific VPCs were developed for the irinotecan mixture model for 

comparative evaluation of the recently developed methodology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Mixture VPCs for linear PK data: One-compartment mixture model with 85/15% mixture 
proportions having 3 folds CL difference. 
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Results 

Allocation of individuals to subpopulations according to MIXEST and IPmix information is 

elaborated in Fig. 1.  

VPCs for linear PK data 

SSE results showed that the mixture model with a Pmix estimate of 72.2% provided an 

improved goodness-of-fit (OFV= -664) over the covariate free, non-mixture model 

(OFV= -642).The inclusion of covariate information provided the best fit (OFV= -774), as 

expected. Fig. 2 presents the mixture specific VPCs for the simulated PK data with linear 

kinetics. Both the MIXEST and the randomized mixtures were adequate to evaluate the 

predictive performance of the model. However, for a population with a comparatively 

lower difference in drug CL (20/60 L/h) and a greater proportion of dominant 

subpopulation (Pmix estimate of 85.8%) an allocation bias towards the dominant 

subpopulation was observed with the MIXEST based method (Fig. 3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Mixture VPCs for parallel linear and nonlinear PK data: two-compartment model with 
mixed elimination kinetics having a mixture proportion of 60/40%with four folds CL difference 

(mixture component on linear CL model) 
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VPCs for parallel linear and nonlinear PK data 

Mixture VPCs for a mixture model describing parallel linear and nonlinear CL pathways 

are presented in Fig. 4. Pmix was estimated to 61.4%. No allocation bias was observed in 

this case as the 4 folds difference in CL for the linear pathway was sufficient to separate 

the subpopulations with 40/60% proportions.  

 

 

 

 

 

 

 

 

Fig. 5: Schematic representation of the irinotecan mixture model having 36% lower CL of SN-38 
in patients with UGT1A1 hetero/homozygote vs wild-type genotype. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: Traditional VPC for irinotecan mixture model 
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VPCs for irinotecan PK data 

The irinotecan mixture model (Fig. 5) provided a Pmix estimate of 70.3% and an 

approximately 36% lower CL of SN-38 in patients with UGT1A1 hetero/homozygote 

(*1/*28, *28/*28) vs wild-type (*1/*1) genotype. The traditional VPC (Fig. 6) did not 

show any model misspecification implying that the model was adequate to describe the 

pharmacokinetics of the population under study. However, a model misspecification was 

captured with the implementation of recent approaches. It was evident from mixture 

VPCs (Fig. 7) that the mixture model was under-predictive for slow metabolizers while 

over-predictive for fast metabolizers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7: Mixture VPCs for irinotecan mixture model; left panel: VPCs for slow metabolizers; right 
panel: VPCs for fast metabolizer 
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Discussion 

A major objective during population analysis is to identify, or otherwise manage, the 

sources of variability in order to assist decision making. Sources for variability 

characterized in PK/PD models result in predictable differences in exposure/responses 

between patient groups and provide a tool to tailor the treatment individually. 

Identifying not only the magnitude, but also the shape of the unexplained variability can 

be important. Mixture models are suitable for appropriately characterizing 

multimodality associated with parameter distributions. VPC is considered to be one of 

the most informative tools, able to simultaneously diagnose the fixed and random effects 

[3, 4]. Therefore, mixture VPCs were designed to overcome the limitations of the 

classical VPCs for the evaluation of mixture models.  

Evaluation with the two VPC implementation strategies for simulated data (Fig. 2) 

illustrates how mixture VPCs can be useful to split the data into subpopulations thereby 

enhancing the power of evaluation by decreasing the remaining variability within a 

subpopulation. Both the MIXEST and the IPmix based allocation strategies were adequate 

to cluster the simulated data for a drug exhibiting linear PK with sufficiently 

differentiable CL (20/80 L/h). Apart from the visual evaluation, information provided in 

the display is of significant importance. The population probability estimate (Pmix) is 

representative of the agreement of the model with prevalence of subpopulations in 

existing literature. Uncertainty or bias associated with Pmix can be reflective of model 

misspecification or insufficient information available in the data. The number of 

individuals allocated to the respective subgroups should be in accordance with the Pmix 

estimate. Allocation bias in the original and the simulated data can be evaluated from 

the values assigned to ORIGID and SIMID. No discrepancy between MIXEST and IPmix 

based allocation of individuals in this illustrative example implies that the data was 

informative enough to separate the individuals according to their likelihood/probability 

estimates.  

As multimodal parameter distributions stem from a failure to incorporate a 

multimodally distributed covariate in the model, it is good practice to consider existing 

covariate data before the decision to proceed with mixture models. Model comparison 

using SSE results confirm that the covariate model provides a preference over the 
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mixture model, while a mixture model in turn is a better characterization of the data 

compared to the standard, unimodal, distribution. 

 

 

 

 

 

 

 

 

Fig. 8: Distribution of individuals in a population; left panel: a less separated mixture; right 

panel: a clearly separated mixture 

 

Under circumstances where the individual data is less informative, the MIXEST estimate 

may exhibit shrinkage towards the dominant subpopulation in contrast to IPmix. Kaila et 

al. [28] used Monte Carlo simulations to examine factors that might impact the ability to 

correctly classify a subject in a bimodal group. Using a one-compartment model with 

subjects assigned to one of two CL groups, the authors found that misclassification of 

individuals was dependent on (i) the magnitude of the difference between the mean CL 

estimates for the subgroups, (ii) IIV in CL, (iii) proportion of subjects in each 

subpopulation and (iv) sample size. One should be careful to inspect multimodalities in 

all the parameter estimates and not only the parameter of physiological interest. A 

probability partitioning may exist across more than one parameter. There may be a 

30/70% partitioning for CL, but a 10/90% partitioning for the volume of distribution. 

Analysis of such data with a model containing a single mixture component may also lead 

to uncertainty in probability estimates leading to misclassification or biased allocation. 
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Fig. 3 demonstrates a biased allocation where the fraction of the dominant 

subpopulation was larger (85/15%) and the difference in CL was comparatively lower 

(20/60 L/h). An allocation bias of 3.2% towards the larger subpopulation can be 

observed with the MIXEST mixture. The less informative individuals with IPmix estimate 

around 0.5 can be identified with the help of a diagnostic plot displaying the distribution 

of individuals in a mixture (Fig. 8). The plot presents a less separated (left) and a clearly 

separated (right) mixture population. We hereby demonstrate that a randomized 

allocation based upon IPmix information takes into account the uncertainty for an 

individual to belong to a subpopulation where the data from an individual is less 

informative.  

Fig. 4 displays VPCs for a population with mixed elimination kinetics. The phenomenon 

is often observed for therapeutic monoclonal antibodies. The linear CL pathway is 

possibly mediated by antibody Fc-receptors interaction, while the nonlinear CL pathway 

reflects binding to its pharmacologic target. A higher allocation bias (16%) using 

MIXEST method was observed with the evaluation of irinotecan mixture model. 

Moreover, a clear model misspecification was observable from mixture VPCs (Fig. 7) 

which was otherwise not evident from the classical VPC (Fig. 6). Irinotecan mixture 

VPCs were supportive of the argument that by reducing the between subpopulation 

variability in the VPC an enhanced power of evaluation can be achieved. Mixture VPCs 

were suggestive of further structural model modifications to adequately describe the 

subpopulation profiles but the respective analysis was beyond the scope of current 

project. 

VPCs like other simulation-based diagnostics test a model’s ability to generate data that 

mimics the observed data. Systematic differences between simulated and real data 

indicate the deficiency of the model to predict the observed data. An important aspect 

regarding such procedures is that post-processing of both the observed and simulated 

data is done in similar way, whether the post-processing occurs through model-based or 

model-independent methods. Indeed, model-based post-processing is considered 

advantageous to learn about the model misspecifications [29, 30]. Capturing 

misspecification in a feature of the model does not necessarily mean that the model is 

completely inadequate. We are frequently making use of the models with deficiencies. 

However, we rely on good diagnostics for the evaluation of model’s deviation in order to 
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proceed further. Such decisions are contextual in nature. Although, considerable amount 

of cases can be seen where mixture modeling approach was used to report results [31-

40], but the class of mixture models did not gather much attention to develop 

diagnostics. Recommended diagnostics for the assessment of non-linear mixed effects 

models such as VPC, conditional weighted residuals (CWRES), normalized prediction 

distribution errors (NPDE) are relatively new [1] and less applicable to mixture models.  

A recent procedure was presented by Lavielle et al [41] but does not address mixture 

models either. Implementation of recent methodology would assist both model 

developers and users to better assess the mixture aspects than what is being practiced 

currently.  

The proposed methodologies are implemented in PsN and VPCs can be generated with 

the addition of the option –mix to the vpc command. For comparative evaluation 

purpose, a traditional VPC plot was also included in the PsN output. 

Conclusions 

A graphical and statistical comparison of observations and predictions derived from the 

multimodal distributions in mixture models is presented. Partitioning of observed and 

predicted data between subpopulations can be done in two ways depending on the 

underlying information (MIXEST or IPmix). Randomized allocation based upon individual 

IPmix information provides a preference over MIXEST based discrete allocation as a 

lower allocation bias is associated with the former case. Mixture VPCs can be a useful 

diagnostic tool for the development and evaluation of mixture models in the future.  
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Abstract 

Objective: Mitotane is used for the treatment of adrenocortical carcinoma. High oral 

daily doses of typically 1- 6 g are required to attain therapeutic concentrations. The drug 

has a narrow therapeutic index and patient management is difficult because of a high 

volume of distribution, very long elimination half-life, and drug interaction through 

induction of metabolizing enzymes. The present evaluation aimed at the development of 

a population pharmacokinetic model of mitotane to facilitate therapeutic drug 

monitoring. 

Methods: Appropriate dosing information, plasma concentrations (1137 data points) 

and covariates were available from therapeutic drug monitoring (TDM) of 76 

adrenocortical carcinoma patients treated with mitotane. Using nonlinear mixed effects 

modeling, a simple structural model was first developed, with subsequent introduction 

of metabolic autoinduction. Covariate data were analyzed to improve overall model 

predictability. Simulations were performed to assess the attainment of therapeutic 

concentrations with clinical dosing schedules. 

Results: A one-compartment pharmacokinetic model with first order absorption was 

found suitable to describe the data, with an estimated central volume of distribution of 

6086 L related to a high interindividual variability of 81.5%. Increase in clearance of 

mitotane during treatment could be modeled by a linear enzyme autoinduction process. 

Body mass index was found to have an influence upon disposition kinetics of mitotane. 

Model simulations favor a high dose regimen to rapidly attain therapeutic 

concentrations, with the first TDM suggested on day 16 of treatment to avoid systemic 

toxicity.  

Conclusion: The proposed model describes mitotane pharmacokinetics and can be used 

to facilitate therapy by predicting plasma concentrations.  



43 
 

Introduction 

The adrenolytic drug mitotane (1-chloro-2-[2,2-dichloro-1-(4-chlorophenyl) ethyl] 

benzene) is the only approved treatment of the orphan malignant disease adrenocortical 

carcinoma (ACC). ACC has a high rate of recurrence after complete tumor resection and 

a dismal prognosis in advanced stages (1, 2). Mitotane is used both as an adjuvant 

treatment after complete tumor resection (3, 4) and for palliative treatment of advanced 

disease (5). Clinically used drug effects of mitotane include reduction of tumor related 

steroid hormone excess and a direct cytotoxic effect leading to objective treatment 

response in ~20% of cases (6) which appears to be relatively specific to cells of the 

adrenal cortex. Several molecular mechanisms for mitotane action appear to contribute 

to mitotane efficacy (7, 8, 9). We recently found sterol-O-acyl transferase 1 to be 

inhibited by mitotane which leads to impaired steroidogenesis and lipid induced 

endoplasmic reticulum stress (10). Published data on the pharmacokinetics of mitotane 

are scarce and have been conducted in small patient series only. It has been shown that 

mitotane has a low oral bioavailability (F) of 35-40% (11) and a high volume of 

distribution which is likely due to its lipophilic nature and extensive accumulation in 

adipose tissue (12). The majority of mitotane has been found to be bound to lipoprotein 

particles in circulation with pharmacological activity limited to the unbound fraction 

(13, 14, 15). 

Efficacy of mitotane treatment is associated with plasma concentrations >14 mg/L 

which could be demonstrated in several retrospective series both in adjuvant and 

palliative treatment with mitotane monotherapy (6, 16, 17, 18, 19, 20) but also in 

combination with cytotoxic drugs in advanced disease (21, 22). Adverse effects, 

including CNS toxicity are associated with plasma concentrations exceeding 20 mg/L 

(23). However, the time interval to achieve therapeutic plasma concentrations of 

mitotane limits the clinical utility of the drug regardless of the dosing regimen applied 

(24, 25, 26). Accordingly, therapeutic drug monitoring (TDM) is needed for continuous 

treatment evaluation and decision making. There is a poor correlation of mitotane dose 

with plasma concentrations, which suggests the involvement of other factors influencing 

the attainment of therapeutic concentrations (27).  

Main metabolites of mitotane are o,p′-dichlorodiphenyl-ethene (o,p’-DDE) and –acetate 

(o,p’-DDA) (28, 29). o,p’-DDA can be detected at ten-fold higher concentration in blood 
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than mitotane itself whereas o,p’-DDE is barely detectable in most cases (19, 30). Small 

amounts of these derivatives apparently undergo aromatic hydroxylation and glycine 

conjugation (28). The compound is a strong inducer of hepatic CYP3A4 in vitro and in 

vivo, which causes interactions with co-administered drugs such as sunitinib (31, 32, 33, 

34). Orally administered mitotane is excreted in urine and bile and has a long 

elimination half-life ranging from 18-159 days (35).  

In vitro, drug metabolizing enzymes and transporters beyond CYP3A4 were induced by 

mitotane, probably via the pregnane X receptor (PXR) (32). PXR ligands 

transcriptionally induce the activity of a broad range of processes in drug metabolism, 

which in turn often also accelerate the metabolism of PXR ligands, a phenomenon called 

autoinduction (36, 37). It is therefore conceivable that mitotane metabolism may be 

affected by autoinduction, and variability in autoinduction may contribute to differences 

in clinical toxicity and efficacy among patients. Thus, it might be helpful to account for 

enzyme induction in order to appropriately describe the pharmacokinetics of mitotane 

during a long-term treatment. A quantitative description of enzyme induction by 

mitotane in patients may also be useful to predict drug interactions that may limit the 

exposure to co-administered chemotherapeutic or targeted agents (3). Previous 

modeling efforts have not considered autoinduction (38). 

The objective of the present evaluation is thus to develop a model describing mitotane 

pharmacokinetics incorporating enzyme autoinduction, which should contribute to 

optimizing mitotane dosing schedules. 

Subjects and methods 

Patients characteristics and data preparation 

Clinical and demographical data were retrieved from records of patients participating in 

the German ACC Registry and the European Network for the Study of Adrenal Tumors 

(ENSAT) at a single reference center. Both registries have been approved by the ethics 

committee of the University of Würzburg (approval number 86/03 and 88/11) and all 

patients provided written informed consent to participate in the study. The following 

parameters were collected: age, sex, weight, height, body mass index, ENSAT tumor 

stage, treatment intention, concomitant systemic therapy, albumin, triglyceride, high 
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and low-density lipoprotein, cholesterol, creatinine, and γ-glutamyltransferase (γ-GT) 

plasma concentrations. Mitotane plasma concentrations were measured within the 

Lysosafe® TDM provided on behalf of the manufacturer, HRA-Pharma (Paris, France) 

using LCMS. A total number of 103 patients with adrenocortical carcinoma were treated 

with oral mitotane doses (0.5-10g per day, with interruptions).  

R (version 3.2.3) with ‘dyplyr’, ‘tidyr’ ‘lubridate’ and ‘ggplot2’ packages was used for 

data manipulation, cleaning and visualization (39, 40, 41, 42). All patients treated with 

mitotane over the age of 18 were eligible. Only patients with missing dosing at the 

initiation of therapy were excluded from analysis. Data from patients with missing 

dosing information during the treatment course was excluded partly by evaluating only 

data gathered during the period prior up to the missing information. Exploratory data 

analysis was performed to judge general trends in the data.  

Data analysis and pharmacokinetic model development 

Nonlinear mixed effect modeling was performed for data analysis. Estimation of 

pharmacokinetic parameters was performed by first order conditional estimation with 

interaction (FOCE-I) using NONMEM 7.4.1 (ICON, Development Solutions, Elliot City, 

MD, USA) (43). Model development was aided by Pearl-speaks-NONMEM toolkit 

(Version 4.7.0) (44). Graphical user interface Pirana (Version 2.9.6) was used for model 

management and execution, output generation and interpretation of results (45). 

Xpose4 package with R was used for visualizing output data, post processing and 

analyzing NONMEM output (46). 

A compartmental approach was adapted in a stepwise manner to develop a 

pharmacokinetic model. In the first step, pharmacokinetic parameters representing a 

typical individual of the population were estimated using the basic structural model, 

followed by estimation of interindividual variability (IIV). Subsequently, a hypothetical 

mitotane metabolizing enzyme compartment was introduced.  

Change in amount of drug in the central compartment (𝐴
𝐷,𝑐𝑒𝑛𝑡

) was described by 

equation 1.   

𝑑𝐴𝐷,𝑐𝑒𝑛𝑡
𝑑𝑡

⁄  = 𝑘𝑎 ∙ 𝐴𝐷,𝑔𝑢𝑡  − 𝐶𝑝 ∙ 𝐶𝐿𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ∙ 𝐴𝑒𝑛𝑧        (1) 

Where,  

𝑘𝑎 is the absorption rate constant, 
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𝐴𝐷,𝑔𝑢𝑡 is the amount of drug in gut compartment, 

𝐶𝑝 is the mitotane plasma concentration,  

𝐶𝐿𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 is the baseline mitotane clearance,  

𝐴𝑒𝑛𝑧 is the relative amount of enzyme in hypothetical enzyme compartment. 

Mitotane plasma concentrations influenced enzyme turnover rate and enhanced enzyme 

synthesis as described in equation 2.  

𝑑𝐴𝑒𝑛𝑧

𝑑𝑡
= 𝐾𝑖𝑛 · (1 + 𝑆𝑙𝑜𝑝𝑒 ∙ 𝐶𝑝) − 𝐾𝑜𝑢𝑡 ∙ 𝐴𝑒𝑛𝑧     (2) 

The enzyme induction model assumes that the rate of enzyme synthesis (𝐾𝑖𝑛) follows 

zero-order kinetics, while the rate of degradation (𝐾𝑜𝑢𝑡) follows first-order kinetics 

dependent upon relative amount of enzyme.  

At steady state enzyme concentrations, 

𝐾𝑖𝑛 =  𝐾𝑜𝑢𝑡          (3) 

 

 

 

 

 

 

 

 

 

Fig 1. A schematic representation of one compartment pharmacokinetic model linked to the 
enzyme induction model. Mitotane plasma concentrations increasing the enzyme formation rate 

and enzyme amount is in turn affecting the mitotane clearance. 
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Parameters which could not be estimated from the data because of insufficient 

information were fixed according to published values or to arbitrary and/or 

physiologically plausible values which were subsequently evaluated by sensitivity 

analysis.  

Other models tested included: (i) a two-compartment model; (ii) models with mitotane 

being eliminated by two distinct inducible and uninducible pathways; and (iii) models 

incorporating both gut wall and hepatic enzyme induction. A more complex 

physiologically based approach was also tested including (iv) a minimal physiologically 

based pharmacokinetic model (47); and (v) a semiphysiological well stirred liver model 

to incorporate the first pass effect (48). Both linear and nonlinear relationships (Emax 

and sigmoidal Emax models) were tested to describe the effect of mitotane on enzyme 

formation.  

IIV was introduced to volumes of distribution and slope (Equation 4) assuming a normal 

distribution of 𝜂 with mean zero and variance 𝜔2. 

𝜙𝑖,𝑗 =  𝜃𝑗  ∙ 𝑒𝑥𝑝(𝜂𝑖,𝑗)         (4) 

Where 𝜙𝑖,𝑗 is the jth individual pharmacokinetic parameter of the ith subject, 𝜃𝑗 the 

population estimate of the respective pharmacokinetic parameter and 𝜂𝑖,𝑗 the deviation 

of the subject’s individual parameter from the population point estimate. 

Additive, proportional and combined error models were scrutinized to obtain estimates 

for residual unexplained variability (RUV). For nested (hierarchical) models, the 

likelihood ratio test was used which assumes that the difference in objective function 

values (OFV) (representating an overall prediction error) between two models is chi-

squared distributed. Decisions regarding model preference were based on a preselected 

level of significance (p=0.05), degrees of freedom (difference in total number of 

parameters), and a critical chi-square value (for the chosen level of significance and 

degrees of freedom). Nested models with fewer parameters and an OFV lower by an 

amount larger than the critical chi-square value was finally given a preference. For non-

nested (non-hierarchical) models, the Akaike Information Criterion (AIC: OFV plus two 

times the number of parameters) was used and the model with a lower AIC value was 

preferred. Goodness of fit (GOF) plots were evaluated to assess the discrepancy between 
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the observed and predicted data and included individual/population predicted 

concentrations (IPRED/PRED) vs. the observed concentrations and conditional 

weighted residuals (CWRES) vs. observed concentrations and vs. time range. 

Physiological plausibility and precision of parameter estimates assessed via bootstrap 

statistics with 1,000 samples were further criteria of model selection.  

Covariate analysis 

After successful development of a basic structural model, covariates were analyzed to 

provide an explanation for IIV and to improve overall model performance. Covariate 

pre-selection was based primarily on physiological plausibility. Graphical screening for 

potential covariates was performed including CWRES and individual pharmacokinetic 

parameters estimates versus covariates. Correlated covariates were avoided to be tested 

together and preference among those was given to the covariate with greater scientific 

plausibility if they provided a similar improvement of the model. Mitotane is reported to 

alter γ-GT (49) and triglyceride levels in patients and it is suggested to closely monitor 

the lipid profile during mitotane treatment (50). As the drug is known to be accumulated 

in the adipose tissue, greater body fat proportion in women might have an impact 

influence upon its volume of distribution (51). Considering these facts, parameter 

covariate relationships were tested on volume of distribution (BMI and sex) and Slope 

(CLCR, plasma γ-GT and triglyceride levels). 

Categorical covariate relationship (sex) was tested as a fractional change (θCOV) from the 

typical value of a parameter estimate (θ1)   

𝑇𝑉𝑃 (𝑡𝑦𝑝𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟) = θ1 ∙ [1 + θCOV  · (COV)]           (5) 

Whereas, continuous covariates (BMI, CLCR, plasma γ-GT and triglyceride levels) were 

analyzed as linear relationships, 

𝑇𝑉𝑃 = θ1 ∙ [1 + θCOV ·(COV - 𝐶𝑂𝑉𝑚𝑒𝑑𝑖𝑎𝑛)]      (6) 

Final covariate inclusion in the model was mainly based upon the decrease in OFV and 

IIV.  

 



49 
 

Simulation study 

Relative change in clearance over time was evaluated graphically by designing stochastic 

simulations with model estimates. Both high dose (day1: 1.5 g, day2: 3g, day3: 4.5g, 

day4-onwards: 6g daily) and low dose (day1-2: 1g, day3-5: 1.5g, day6-8: 2g, day 9-11: 

2.5g, day12-onwards: 3g daily) regimens used in clinical practice (24, 25) were tested in 

simulated population over a period of 3 months. Statistical and graphical evaluation was 

performed with the aim to attain therapeutic mitotane concentrations (14-20mg/L), 

avoiding toxic concentrations and to define appropriate timing of first TDM.  

Results 

Data regarding 76 patients out of 103, 45 females and 31 males, could finally be included 

in the model development process. These patients were aged between 17 and 75 years, 

the body weight was between 44 and 129 kg. 1137 observations of concentration data 

were part of the analysis. Descriptive statistics of patient, disease and treatment 

characteristics are presented in Table 1.  

Absorption from gut compartment was modeled as a first order process. A one-

compartment model was given preference over a two-compartment model, apparently 

because there was not sufficient information available in the data to precisely estimate 

peripheral volume of distribution and intercompartmental clearance. Although an 

empirical two-compartment model provided a lower OFV, this was at the expense of 

highly imprecise parameter estimates for volume of distribution and 

intercompartmental clearance. Attempt to fix these parameters according to published 

fat to plasma concentration ratios (12) resulted in even a higher IIV with regard to 

central volume of distribution and therefore conflicted with the model selection criteria. 

Fig. 1 provides a schematic representation of the model.  

The parameter value for F was fixed to 0.35 (11) and value for ka (49.9 day-1) was also 

taken from the literature because of insufficient information available during the 

absorption phase of mitotane in the present data (52). Model simulations demonstrated 

that parameter estimate for Kout did not have any substantial impact upon concentration 

time profile. Therefore, the parameter value for Kout was fixed to 0.23 day-1 according to 

literature (33). 𝐶𝐿𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 was a priori assumed to be not estimable and sensitivity 
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analysis using different 𝐶𝐿𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 values of up to 60 L/day did not exhibit any changes in 

OFV, hence a value of 1 was used to describe the relative change over time. The drug was  

Table 1. Patient, disease and treatment characteristics  
Patient characteristic total (n = 76) 

Age, years [mean ± sd] 
Sex, female [n (%)] 
Body height, m [mean ± sd] 
Body weight, kg [mean ± sd] 
BMI, kg/m2 [mean ± sd] 

Plasma cholesterol, mg/dL [mean ± sd] 
Plasma creatinine, mg/dL [mean ± sd] 
Plasma γ-glutamyltransferase, U/L [mean ± sd] 

48.6 ± 11.8 
45 (59.2%) 
1.71 ± 0.92 
75.4 ± 14.5 
25.6 ± 4.2 

267.6 ± 83 
0.82 ± 0.26 
187.3 ± 158.8 

Disease characteristics patient n (%) 

Stage at treatment initiation 
    ENSAT I 
    ENSAT II 
    ENSAT III 
    ENSAT IV 
    local recurrence 
    unknown 

 
1 (1) 
23 (30) 
11 (14) 
37 (49) 
3 (4) 
1 (1) 

Treatment characteristics patient n (%) / Median 
(range) 

treatment intention at start of mitotane 
    adjuvant 
    adjuvant and palliative* 
    palliative 
    unknown 

 
12 (16) 
21 (28) 
37 (49) 
1 (1) 

Concomitant systemic therapy any time during observation 
period 
    yes 
    unknown 

 
44 (58) 
2 (3) 

Chemotherapy regimens 
    Number of regimens 
    EDP 
    Streptozotocin 
    Gemcitabine/Capecitabine 
    other 
    unknown 

 
5 (1-5) 
34 (45) 
29 (38) 
13 (17) 
16 (21) 
2 (3) 

 *Treatment initiation in adjuvant intention, later continued as palliative treatment 
BMI: Body Mass Index, ENSAT: European Network for the Study of Adrenal Tumors, EDP: Etoposide, 

Doxorubicin, Cisplatin regimen. 

estimated to have a high central volume of distribution of 6086 L (4743-7676L; 

bootstrap 95% CI). Clearance of the drug was found to increase over time due to the 

enzyme induction process. A relative linear increase of 3.97 L/day (“Slope”, 3.22-4.80; 

bootstrap 95% CI) per day per mg/L mitotane plasma concentration was observed. A 
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simple linear model was preferred over Emax and sigmoidal Emax models because of 

implausible estimates for EC50 and Emax.  

High IIV was associated with the volume of distribution (81.5%; point estimate). Extent 

of induction (Slope) was also found to be highly variable among the population (78.8%; 

point estimate). Estimates for RUV were adequately obtained with a combined error 

model. BMI was found to be a significant covariate for the volume of distribution, with 

an objective function value (OFV) decrease by 11 points. IIV was marginally reduced by 

4.1% upon volume of distribution and 3.5% upon Slope. The comparison of the basic 

model and the covariate model in terms of decrease in IIV and OFV is represented in 

table 2.  Table 3 presents bootstrap parameter estimates. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2. Goodness fo fit plots; observed vs individual predicted concentration (A) observed vs 
population predicted concentrations (B) conditional weighted residuals vs population predicted 

concentrations (C) conditional weighted residuals (CWRES) vs time after first dose (D). 
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Fig. 2 displays the basic goodness-of-fit (GOF) plots for the developed model. The IPRED 

were symmetrically distributed along the line of unity without any major outlier trends 

and PRED were adequate. CWRES were evenly distributed around zero depicting an 

adequate model performance over the concentration and time range. Individual plots 

(Fig. 3) exhibit the concentration time profiles for the observed and model predicted 

concentrations for four individuals exposed to mitotane treatment over different time 

periods ranging from 150 to 600 days. These plots illustrate that the model 

appropriately describes the diverse pharmacokinetic profiles across the studied 

population.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig 3. Individual plots of 4 patients treated with mean mitotane doses of 4.12g (A), 4.57g (B), 
3.91g (C) and 4.77g over different periods of time (TAFD, time after first dose; -●-observed 

concentrations; -▲-predicted concentrations). Doses (rectangular boxes with associated lines) 
represent actual daily doses. 
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Monte-Carlo simulations 

Temporal changes in clearance over time in a simulated population are depicted in Fig. 

4. Median simulated plasma mitotane concentrations and respective percentiles (5th and 

99th) with the high and the low dose regimen, respectively, are shown in Fig. 5. 

Persistent increase in plasma concentrations was observed. The 99th percentile reached 

the upper range of the therapeutic window at around day 16 for the high dose regimen 

and on day 55 for the low dose regimen.  

 

 

 

 

 

 

 

 

 

 

Fig 4. Change in clearance over time in a simulated population of 500 virtual subjects (median 

with 5th and 95th percentiles). 

 

 

Table 2. Comparison of base and covariate model 

Model Objective function value Interindividual variability (%CV) 
Base model 

Covariate model 

4764.4 

4753.3 

81.5 (V), 78.8 (Slope) 

77.3 (V), 75.2 (Slope) 

CV: coefficient of variation, V: volume of distribution 
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Fig 5. Concentration vs time plot for a simulated population of 500 virtual subjects administered 

with the clinically used highy dose (A) and low dose (B) mitotane regimens  (median, 5th and 99th 

percentiles). The region between the dashed lines represents the therapeutic window. The 

vertical lines identify the time points proposed for the first TDM sampling for the two dosing 

regimens. 

Discussion 

In this by far largest and well characterized series of ACC patients on mitotane 

treatment, we investigate the pharmacokinetics of mitotane by implementing a 

nonlinear mixed effect modeling approach. The approach not only considers the fixed 

effects (descriptors of a process e.g., pharmacokinetic parameters and respective 

covariates) but also estimates the random variability (reflected by IIV and RUV) across 

the population by making use of nonlinear regression techniques. Mitotane showed a 

large and highly variable volume of distribution, partly explained by interindividual 

differences in BMI. Pronounced variability was also found for concentration dependent 

mitotane clearance attributable to autoinduction of mitotane metabolism.  



55 
 

Table 3: Model parameter estimates  

Pharmacokinetic parameters 

Parameter median estimate 95% CI 

ka (day-1) 

F (%) 

V/F (L) 

Kin (day-1) 

Kout (day-1) 

slope (L day-1 day-1) 

BMI covariate effect upon V (fractional change 

from typical value of V per unit of BMI) 

49.9 

35 

6086 

0.23 

0.23 

3.97 

0.055 

 

Fixed 

Fixed 

4743-7673 

Fixed 

Fixed 

3.22-4.80 

0.01-0.11 

 

Interindividual variability 

Parameter  median estimate 95% CI 

ηi
v (ω2) 

ηi
slope (ω2) 

0.54 

0.56 

0.28-0.87 

0.35-0.84 

Residual variability (combined error model) 

Type median estimate 95% CI 

Additive (σ2) 

Proportional (σ2) 

0.24 

2.28 

0.18-0.29 

1.50-3.13 

 ka: absorption rate constant, F: bioavailability, V: volume of distribution, Kin: rate of enzyme synthesis, 

Kout: rate of enzyme degradation, ηiv: interindividual variability in V, ηislope: interindividual variability in 

slope, ω2 and σ2: variance, BMI: body mass index as kg m-2, CI: confidence interval.  

 

Sparsity of data points as well as the complex pharmacokinetics were well handled by 

the population pharmacokinetic model as indicated by the GOF plots. A high volume of 

distribution is compatible with the extensive distribution of mitotane drug to adipose 

tissue (53). Moreover, high IIV associated with volume of distribution suggests a 

significant influence of individual patient characteristics. Individual patient 

demographics and lipid profiles were analyzed as possible sources of variability. While 

BMI was found to be a significant covariate for the volume of distribution, the reduction 

in IIV was marginal and individualization of therapy based on BMI seems not useful.  

Our study has the particular strength of a uniform mode of measurement in regular time 

intervals and a large individual number of data points and corresponding clinical and 

laboratory data available. In comparison with a previous modeling effort (38) we come 

to a similar conclusion regarding high volume of distribution. Nevertheless, the 

published study has some important limitations although the data were informative 
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enough to develop a three-compartmental model. Thus, the estimate for absorption rate 

constant (0.005 hr-1) corresponds to a physiologically implausible absorption half-life of 

138 hours in that study. Importantly, this model does not take enzyme autoinduction 

into account. Empirical modeling approaches of metabolic autoinduction are frequently 

based on either of the two following approaches. The drug may be assumed to increase 

the rate of enzyme synthesis as demonstrated in case of rifampin, or it may decrease the 

rate of enzyme degradation as modeled in the case of ifosfamide (55, 56). Studies 

elucidating the mechanism of enzyme induction responsible for drug interactions 

concluded that mitotane increases gene expression of a number of transporters and 

enzymes, including CYP3A4 (57). Therefore, we assumed an increase in enzyme 

synthesis as an approach for modeling enzyme induction. An attempt was made to 

estimate a baseline value for mitotane clearance prior to any enzyme induction process 

but limited information in the initial phase of dosing precluded a reliable estimate. The 

sparsity of initial TDM data reflects the current practice of monitoring mitotane 3-4 

weeks after the first dose. Therefore, the enzyme compartment which represented a 

time changing clearance of the drug was initialized to a baseline value of 1 (100%). With 

regard to the magnitude of mitotane induction of drug metabolizing enzymes, a limited 

parallel group comparison study revealed 18.3 fold and 5.0 fold decrease in midazolam 

(a CYP3A probe drug) and sunitinib AUCs (both administered orally) by mitotane, 

respectively (31). As a comparison, the very potent known CYP3A inducer rifampin 

caused a 4-fold reduction in oral sunitinib plasma exposure (58), while it decreased AUC 

of orally and intravenously administered CYP3A probe substrates by 10-20 fold and 1.9-

3.5 fold respectively (33). The effect on intravenously administered CYP3A probe 

substrates reflects hepatic CYP3A induction. A reasonable estimate for maximal 

induction of hepatic CYP3A activity by mitotane may therefore be about 5-fold. The 

larger changes in mitotane clearance according to our empirical model (Fig. 4) suggest 

an additional induction of gut wall enzymes.  

In order to quickly establish antitumor efficacy, it is imperative to attain target 

concentrations as early as possible. Previously, efforts have been made to develop an 

appropriate dosing regimen with mitotane considering ≥14 mg/L as the target 

concentration. Appropriate plasma levels can be ultimately achieved with a chronic dose 

from the beginning of treatment but at the expense of a lag time to achieve therapeutic 

concentrations (24). This period may be shortened with high loading dose regimens but 
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at the cost of a higher risk to attain potentially toxic concentrations (25). Studies 

indicating high variation in plasma concentration buildup suggest the involvement of 

factors other than the dosage regimen such as enzyme induction and differences in 

intestinal absorption due to dietary variation (26). Our model was not able to identify 

major sources of interindividual variability; therefore, an exact prediction of the 

individual required dose is not possible. Hence TDM remains essential for mitotane 

treatment. Simulations based on our model however were supportive of using the high 

dose regimen for the rapid attainment of therapeutic concentrations (Fig 5).   

The current model is expected to be helpful for decision making in clinical management 

of ACC with mitotane.  It can be used for a posteriori dose adjustments in patients using 

Maximum a posteriori (MAP) Bayesian methods (59) based on limited TDM 

measurements (two or three) to estimate individual pharmacokinetic parameters. MAP 

Bayesian approaches have proven their benefit in TDM of a number of anticancer drugs 

including methotrexate and carboplatin (60, 61). Another important aspect regarding 

decision making is the addition of cytotoxic chemotherapy in patients who are not 

predicted to attain therapeutic concentrations within a clinically useful time frame (e.g. 

90 days) when using their individual maximum tolerated dose. Also,  in a palliative 

setting where response to mitotane monotherapy is limited (6), optimal dosing may be 

supported when drug exposure related parameters are taken into account in addition to 

tissue based markers of response (10).  From a research perspective, the model may be 

used to link mitotane pharmacokinetics to pharmacodynamic endpoints such as tumor 

growth inhibition. 

The limitations of the evaluation related to retrospective nature of the present study 

suggest to design a prospective study for a more physiological and a more detailed 

description of mitotane pharmacokinetics. It would be desirable to (i) take more 

samples (e.g., 1 per day) during the initial build-up of plasma concentration; (ii) 

occasionally apply a dense sampling scheme including several samples within the first 

hour after dose during one dosing interval to describe mitotane absorption kinetics; (iii) 

evaluate the effect of additional covariates such as food intake, disease state and co-

medications on mitotane pharmacokinetics, and (iv) to quantify enzyme induction 

during therapy by separate CYP3A probe drugs such as midazolam.  
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Conclusion 

The proposed model appropriately describes plasma concentrations during chronic 

treatment with mitotane. It includes concentration dependent induction of metabolizing 

enzymes that considerably accelerates mitotane elimination. If tolerated, using the high 

dose regimen with a first TDM on day 16 of treatment might be a good treatment 

strategy. The model is a next important step to use pharmacokinetic modeling to 

improve personalized dose selection as well as establishing the timing of TDM, while 

more data are urgently needed.  
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Abstract 

Purpose: To describe 5-fluorouracil (5FU) pharmacokinetics, myelotoxicity and 

respective covariates using a simultaneous nonlinear mixed effect modelling approach.  

Methods: Thirty patients with gastrointestinal cancer received 5FU 650 or 1000 

mg/m²/day as 5-days continuous venous infusion (14 of whom also received cisplatin 

20 mg/m²/day). 5FU and 5-fluoro-5,6-dihydrouracil (5FUH2) plasma concentrations 

were described by a pharmacokinetic model using NONMEM. Absolute leukocyte counts 

were described by a semi-mechanistic myelosuppression model. Covariate relationships 

were evaluated to explain the possible sources of variability in 5FU pharmacokinetics 

and pharmacodynamics. 

Results: Total clearance of 5FU correlated with body surface area (BSA). Population 

estimate for total clearance was 249 L/h. Clearances of 5FU and 5FUH2 fractionally 

changed by 77% per m² difference from the median BSA. 5FU central and peripheral 

volumes of distribution were 5.56 L and 28.5 L, respectively. Estimated 5FUH2 clearance 

and volume of distribution were 121 L/h and 96.7 L, respectively. Baseline leukocyte 

count of 6.86×109/L, as well as mean leukocyte transit time of 281 h accounting for time 

delay between proliferating and circulating cells were estimated. The relationship 

between 5FU plasma concentrations and absolute leukocyte count was found to be 

linear. A higher degree of myelosuppression was attributed to combination therapy 

(slope=2.82 L/mg) with cisplatin as compared to 5FU monotherapy (slope=1.17 L/mg).  

Conclusions: BSA should be taken into account for predicting 5FU exposure. 

Myelosuppression was influenced by 5FU exposure and concomitant administration of 

cisplatin. 

Key words: 5-fluorouracil, pharmacokinetics, pharmacodynamics, pharmacogenetics, 

myelosuppression. 
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Introduction 

The pyrimidine antimetabolite 5-fluorouracil (5FU) is being used since decades for the 

treatment of gastrointestinal solid malignancies [1]. Dose, but also route and schedule of 

administration have been identified to influence 5FU pharmacokinetics (PK) and effects 

[2, 3]. Considerable variations in PK and toxicity are associated with a given 5FU dosing 

regimen [4]. Investigations have been carried out evaluating patient’s factors to predict 

5FU exposure, where a relationship between body surface area (BSA) and 5FU clearance 

(CL5FU) was reported [3, 5]. CL5FU was found to be lower in females [6] and at older age 

[5, 7]. Due to saturable hepatic degradation, 5FU PK is considered to be non-linear in 

nature [8]. Additionally, elimination of the drug was reported to be influenced by 

hepatic metastases [3] and by glomerular filtration rate as measured by creatinine 

clearance [6]. 

Being a prodrug, 5FU requires enzymatic activation. A small fraction of an administered 

dose is metabolised into cytotoxic nucleotides, while most of the drug is degraded to 5-

fluoro-5,6-dihydrouracil (5FUH2) mainly by hepatic dihydropyrimidine dehydrogenase 

(DPD) [9]. Some rare variants of the highly polymorphic DPD gene (DPYD) are 

responsible for complete or partial loss of DPD activity, which is related to increased 

5FU toxicity [10]. Belonging to the class of antimetabolites, 5FU inhibits thymidylate 

synthase (TS), ultimately leading to the impairment of DNA synthesis [11]. 

Polymorphisms in the gene encoding TS influence toxicity and response of 5FU based 

therapeutic regimens [12]. Methylenetetrahydrofolate reductase (MTHFR) is involved in 

formation of the reduced folate cofactor, which is required for the inhibition of TS. 

Genetic polymorphisms in the gene encoding MTHFR are associated with altered 

enzymatic activity, thereby influencing sensitivity towards 5FU [13]. 

5FU is commonly used in combination with other antineoplastic drugs and with 

radiotherapy. A therapeutic regimen known as FOLFIRINOX including 5FU, folinic acid, 

oxaliplatin and irinotecan is frequently employed for the treatment of colorectal and 

pancreatic cancer [14]. Another regimen, called de Gramont, includes a combination of 

5FU and leucovorin (folinic acid) and has been reported to possess low toxicity profile, 

increased response rate and progression-free survival [15]. For oesophageal cancer, 

combination with cisplatin is one of the recommend drug treatments [16]. 



69 
 

Approximately 10%–30% of 5FU treated patients experience severe treatment-related 

toxicity [17], where myelosuppression and mucositis have been reported as main dose 

limiting side effects in 5FU treatment [18]. Continuous infusions exhibit lower 

myelosuppression with greater efficacy and are considered superior over the bolus 

administrations [19]. Furthermore, 5FU has a narrow therapeutic index with severe 

toxicities tending to occur with AUC values >25 mg h/L during continuous venous 

infusion [20]. Therefore, therapeutic drug monitoring is considered valuable to achieve 

optimal 5FU exposure with minimal serious toxicity [21].  

Semiphysiological myelosuppression models were developed in both animals and 

human beings to understand time course and extent of leukopenia following 

administration of cytotoxic antineoplastic drugs, thus facilitating the drug development 

and therapy [22]. Models incorporating white blood cell (WBC) count over time are 

helpful to predict the time (Tnadir) and depth (WBCnadir) of lowest total WBC count and 

the duration of the recovery period in order to administer the next cycle of a regimen 

[23]. Efforts have been made to predict the time course of myelosuppression by 5FU in 

rats [24]. Population analysis was carried out for the hematological toxicity in breast 

cancer patients treated with combined 5FU, epirubicin and cyclophosphamide regimen 

[25] but such a study with 5FU monotherapy is lacking.  

The objective of the present study was to describe the PK and associated variability of 

5FU and its metabolite by developing an empirical model. Subsequently, it was aimed to 

establish the relationship between 5FU exposure and myelotoxicity through a semi-

mechanistic PKPD model. The study was further focused towards the identification and 

quantitative description of covariates on 5FU PK and myelotoxicity, especially patient 

demographics and genotypes (DPYD, MTHFR, TS).  

Methods 

Patients and treatment plan 

The study was approved by the Ethics Committee of the Medical Faculty of the 

University of Cologne, Germany (application number 02-171) and was conducted 

according to the Declaration of Helsinki and national and international legal stipulations 

and guidelines in 2002 to 2005 [26, 27]. Sample size was estimated using WinBiAS 
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(version 7.01, epsilon Verlag, Darmstadt, Germany) considering interindividual 

variability (IIV) in 5FU pharmacokinetics to be at least 30%. To assess the effect of a 

covariate on 5FU pharmacokinetics, assuming a linear coefficient of correlation  = 

0.5477 (explaining a fraction of 2 = 0.3 of variability) with a power of 90% and α = 0.05, 

n = 30 patients were required. To account for possible dropouts, thirty-three patients 

with colorectal or oesophageal cancer were planned to be enrolled in the study after the 

provision of written informed consent. Eligibility criteria included age ≥ 18 years; 

Karnofsky performance status ≥ 70%; life expectancy ≥ 3 months; adequate 

haematopoietic, hepatic, and renal function. Exclusion criteria were prior chemotherapy 

or radiotherapy, and concomitant drugs (not included in the chemotherapeutic regimen) 

known to interfere with 5FU PK and/or pharmacodynamics. The patients with colorectal 

cancer received 5FU 650 or 1000 mg/m²/day as 24-hours continuous venous infusion 

for 5 days, and radiotherapy. The patients with oesophageal cancer additionally 

obtained cisplatin 20 mg/m²/day for 5 days before, or together with 5FU 

administration. Any decision on treatment was made according to the clinical situation 

and was not influenced by the study. WBC count was evaluated once prior to and 1-3 

times per week after 5FU administration, but prior to the second cycle starting on day 

28, as the assessment of myelosuppression was aimed to be investigated under the 

influence of single cycle of treatment. Only the first cycle was monitored in each 

participant. Covariate data regarding patient demographics and essential laboratory 

values were collected prior to the treatment. 

Genotyping 

DNA was extracted from peripheral blood using the QIAamp DNA Blood Mini Kit 

(Qiagen, Hilden, Germany). For DPYD genotyping [28], PCR amplification of all 23 coding 

exons and exon-intron boundaries of the DPYD gene was carried out. PCR products were 

separated on 1.6% agarose gels, visualized with ethidium bromide and purified using a 

QIA quick Gel Extraction Kit (Qiagen, Hilden, Germany). Samples were sequenced on an 

ABI 3100 automated DNA sequencer (Applied Biosystems, Foster City, CA, USA). TS 

genotyping was carried by PCR amplification [29] of the TS promoter enhancer region 

containing the double and triple tandem repeats using the following primers: forward 

5´AAAAGGCGCGCGGAAGGGGTCCT3´; reverse 5´TCCGAGCCGGCCACAGGCAT3´. A total of 

32 cycles (94°C for 40 sec, 62°C for 40 sec and 72°C for 1 min) and extension at 72°C for 
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5 min were carried out following hot start at 94°C for 4 min. The PCR product was 

analyzed in a 3% agarose gel. The triple repeat (3R/3R) had a 144 bp PCR product, the 

double repeat (2R/2R) a 116 bp product. For MTHFR genotyping [30], the PCR reaction 

used forward primer 5´TGAAGGAGAAGGTGTCTGCGGGA3´ and reverse primer 

5´AGGACGGTGCGCTGAGAGTG3´. Restriction fragment analysis was carried out using 

Hinf I (Fermentas, St. Leon-Rot, Germany). The C→T substitution at nucleotide 667 

creates a Hinf I digestion site resulting in two fragments (175 bp and 23 bp) of the PCR 

product.  

Table 1: Patient characteristics (n = 30) 

Characteristics Value 

Sex (n male/ n female) 25/5 

Median age, years (range) 59.5 (37-73) 

Median Karnofsky performance status 
(range) 

100% (100-100) 

Tumour primary site (n) 
    Oesophagus 
    Rectal 
    Colorectal 
    Anus 

 
14 
2 

13 
1 

Median body height, m (range) 1.75 (1.61-1.86) 

Median body weight, kg (range) 76 (46-111) 

Median BMI, kg/m2 (range) 24.2 (16.9-33.2) 

Median BSA, m2 (range) 1.95 (1.48-2.33) 

Median baseline laboratory values 
(range) 
    Haemoglobin (g/dL) 
    Platelet count (x103/uL) 
    Erythrocyte count (x106/uL) 
    Leukocyte count (x109/L) 
    Plasma albumin (g/dL) 
    Plasma ASAT (U/L) 
    Plasma ALAT (U/L) 
    Plasma -GT (U/L) 
    Plasma total bilirubin (mg/dL) 
    Plasma creatinine (mg/dL)  

 
13.7 (10.1-16.6) 

277 (48-426) 
4.6 (3.8-5.5) 

6.90 (4.68-11.28) 
42 (35-47) 
18 (9-50) 
15 (8-90) 

24 (13-81) 
0.45 (0.4-0.5) 

0.85 (0.44-1.06) 

Comedication with cisplatin (n) 14 
BSA = body surface area, BMI = body mass index, ASAT = aspartate aminotransferase,  

ALAT = alanine aminotransferase, -GT = gamma-glutamyl transferase 

Analysis of 5FU and 5FUH2 plasma concentrations  

Analytical grade reagents were purchased from Merck (Darmstadt, Germany). 5FU 

(Sigma, St. Louis, MO, USA) was purchased as crystalline form, pure > 95%, 5FUH2 

https://www.google.com/search?client=firefox-b-d&q=St.+Louis&stick=H4sIAAAAAAAAAOPgE-LUz9U3sLC0SK5U4gAxzcoryrW0spOt9POL0hPzMqsSSzLz81A4VhmpiSmFpYlFJalFxYtYOYNL9BR88ksziwF7Ub6pTwAAAA&sa=X&ved=2ahUKEwiGq9ralb_lAhURKlAKHcTRBQIQmxMoATAdegQIEBAH
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(26.5% pure) was supplied by Syncom (Groningen, The Netherlands), and 5-chlorouracil 

(5-CU), the internal standard, was obtained from Arcos Organics (Geel, Belgium).  

Blood samples (4.5 mL each) were withdrawn during the first cycle using Li+-

heparinized tubes pre-dose, 36, 48, and 108 hours after the start of 5FU infusion, at the 

end of infusion, and 5, 30, 60 and 90 min thereafter. The samples were immediately 

placed in an ice water bath and centrifugated at +4°C. Plasma was stored at -80°C until 

analysis. 5FU and 5FUH2 in plasma were quantified by reverse-phase HPLC method with 

UV detection. Briefly, 0.7 mL of plasma was mixed with 20 µL of 100 µg/mL 5-CU 

(internal standard) and extracted with 7 mL of isopropranol/ethyl acetate (5:95, v/v). 

Samples were mixed and centrifuged (3500 rpm, 10 min) to separate the organic phase, 

which was evaporated to dryness. The samples were reconstituted with 100 µL of 50 

mM K2HPO4 (pH 4.0), and 40 L were injected into the HPLC system. 5FU and 5FUH2 

were separated on an Ultrasphere ODS C18 column (5 m, 250x4.6 mm, Beckman 

Coulter, Brea, CA, USA). Elution was performed under gradient condition as follows: 50 

mM K2HPO4 (A) for 17 min, acetonitrile (B) 0-50% over 1 min and maintained at 50% 

for 5 min; initial conditions were restored by decreasing B to 0% over 1 min, and the 

column was equilibrated with 100% A for 5 min. The chromatographic instrument was a 

Waters 2690 Separations Module (Waters, Milford, MA, USA) with a Waters 996 

photodiode array detector. Detection of 5FU, 5FUH2 and 5-CU were carried out at 265, 

220 and 270 nm, respectively. Data analysis was performed by the Millennium 2.1 

software (Waters, Milford, MA, USA). The LLOQs were 0.005 and 0.01 µg/mL for 5FU 

and 5FUH2, respectively. The 5FU and 5FUH2 intra-assay coefficients of variation 

ranged from 0.34 to 7.15% and from 0.53 to 2.76%, respectively, while the inter-assay 

coefficients of variation for a 5-day validation were 0.1–3.4% and 2.3–9.0%, 

respectively.  

Data analysis 

Model development and selection criteria  

R (version 3.2.3) was used for data manipulation and exploratory evaluation [31]. 

Population parameter estimates were obtained using first order conditional estimation 

with interaction (FOCE-I) algorithm in NONMEM 7.4.2 (ICON, Development Solutions, 

Elliot City, MD, USA) [32]. Model development process was aided by Perl-speaks-



73 
 

NONMEM (PsN) toolkit (Version 4.7.0) [33]. IIV in model parameters was estimated 

assuming a log-normal distribution. Additive, proportional and combined error models 

were implemented to estimate residual unexplained variabilities (RUV) for 5FU and 

5FUH2. Model selection/rejection was guided by decrease in objective function value 

(OFV) which was assumed to be chi-squared distributed (p<0.05, corresponding to a 

ΔOFV≥3.84 given a change by one degree of freedom), diagnostic plots, scientific 

plausibility and precision of parameter estimates. Precision of population parameter 

estimates was assessed with the help of a bootstrap procedure using 1000 sample 

replicates. 

 

Table 2: Allele frequencies of polymorphisms in the DPYD gene found in patients 

Polymorphisms in 
the DPYD gene 

Effect (nucleotide 
change) 

Wild-
type (n) 

Heterozygo
us mutant 

(n) 

Homozygo
us mutant 

(n) 

Allelic 
frequency 

(%) 
*DPYD 

nomenclatu
re 

Exon 

DPYD*9A 2 Cys29Arg (85T>C) 20 8 2 
12/60 
(20%) 

- 6 Met166Val (496A>G) 22 8 0 
8/60 

(13.33%) 

- 11 
Glu412Glu 
(1236G>A) 

29 1 0 
1/60 

(1.67%) 

DPYD*4 13 
Ser534Asn 
(1601G>A) 

29 1 0 
1/60 

(1.67%) 

DPYD*5 13 Ile543Val (1627A>G) 19 9 2 
13/60 

(21.67%) 

DPYD*6 18 Val732Ile (2194G>A) 28 2 0 
2/60 

(3.33%) 

DPYD = dihydropyrimidine dehydrogenase gene  

*Source of nomenclature:  Mcleod et al., 1998 [45] 
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Pharmacokinetic analysis 

An empirical compartmental model for 5FU was first developed and then expanded to a 

combined model incorporating 5FUH2 data. The drug was presumed to be eliminated 

from the central compartment where elimination was tested to follow either a linear 

behaviour or nonlinear Michaelis-Menten kinetics. The fraction of 5FU converted to 

5FUH2 was fixed a priori to 0.85, according to the literature [6, 34]. PK parameters were 

estimated based on the absolute dose administered.  

Pharmacodynamic analysis  

The PD model was developed according to Friberg et al [24, 34] using simultaneous 

approach. The model was driven by 5FU plasma concentrations from the PK model and 

comprised a compartment of proliferating leukocytes (rate constant describing the 

proliferation of cells: kprol), transit compartments representing leukocytes undergoing 

maturation (rate constant describing the transfer between transit compartments: ktr) 

and a compartment of circulating leukocytes (rate constant describing the rate of exit 

from the circulating compartment: kcirc). Parameters were the baseline circulating 

leukocyte count (Circ0) representing the number of cells prior to 5FU administration, 

mean transit time (MTT = [n +1] / ktr, where n denotes the number of transit 

compartments) and a parameter γ describing a negative feedback of circulating cells on 

the rate of self‐renewal of the proliferative cells (feedback = [Circ0 / Circ]γ). The number 

of parameters to be estimated were minimized by assuming kprol = ktr = kcirc. 5FU plasma 

concentrations were assumed to inhibit the proliferation of leukocytes.   

The drug effect (Edrug) on proliferating cells was assumed to be driven by individual 

predicted 5FU plasma concentrations (Cp) and was incorporated in to the model as kprol 

× (1 - Edrug). Edrug was either formulated as a linear model (Edrug = slope × Cp) or a 

nonlinear model (Edrug  = Emax × Cp / (EC50 + Cp)).    

Covariate analysis 

Covariates tested in the PK analysis included demographics (age, weight, height, sex, 

body mass index, lean body weight, BSA); predose plasma concentrations of alanine 
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aminotransferase (ALT), aspartate aminotransferase (AST) γ-glutamyltransferase (γ-

GT), and albumin; and DPYD, TS, and MTHFR genotypes. The effect of co-medication with 

cisplatin was tested on the slope of the linear effect model. Scientific plausibility was the 

primary basis for covariate pre-selection, while graphical evaluation (residuals and 

individual PK estimates versus covariates) was performed to assist the inclusion 

decision. A comparative analysis was carried out to assess any possible superiority of 

other indices representing body mass over the BSA such as BMI, LBW and allometric 

scaling with body weight.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Schematic representation of PKPD model. Compartments with white background reflect 

the PK model describing 5FU and 5FUH2 plasma concentrations, while those with grey 

background reflect the PD model describing total WBC count over time. kprol: 1st order rate 

constant of proliferation, ktr: 1st order rate constant of transit, kcirc: 1st order rate constant of 

elimination of circulating cells, Circ0: baseline leucocyte count, γ: feedback parameter, Cp: 5FU 

plasma concentration, VC,5FU: 5FU central volume of distribution, VP,5FU: 5FU peripheral volume of 

distribution, CL5FU: 5FU total clearance, Q: intercompartmental clearance, Fm: fraction of 5FU 

converted to 5FUH2, VC,5FUH2: 5FUH2 central volume of distribution, CL5FUH2: 5FUH2 clearance, 

drug effect: Edrug=slope ∙ Cp. 

 

Simulation design 

The effect of concomitant cisplatin administration on leukocyte suppression was 

evaluated. WBC counts over time were simulated for virtual subjects receiving a 5 day 
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continuous infusion with and without cisplatin co-medication. WBCnadir and Tnadir for the 

respective regimens were determined to assess the degree of myelosuppression. 

Another simulation scenario aimed towards the comparative assessment of the time 

course of myelosuppression theoretically produced by the 5FU component contained in 

a single cycle of the two standard dosage regimens used in current clinical practice; to 

this end, the effects of the other components of the regimens were ignored.  The 

standard FOLFIRINOX regimen combines oxaliplatin (85 mg/m2 over 2 hours) with 

folinic acid (200 mg/m2) followed by irinotecan (180 mg/m2 over 90 min) and 5FU 

(400 mg/m2 bolus) followed by 2400 mg/m2 5FU over 46 h, all on day 1 and repeated 

every 2 weeks [14]. The de Gramont regimen is described as follows: high-dose folinic 

acid (200 mg/m2) followed by 5FU i.v. bolus (300 mg/m2) and continuous infusion (300 

mg/m2) on days 1, 2, 14 and 15, repeated every 4 weeks. In the absence of toxicity, 5-FU 

is increased to 400 mg/m2 i.v. bolus and continuous infusion at course 2 and to 500 

mg/m2 at course 3 and from course 4 maintained at 500 mg/m2 [15]. Simulated WBCnadir 

and Tnadir were observed for treatment with FOLFIRINOX (400 mg/m2 bolus 5FU 

followed by 2400 mg/m2 5FU over 46 h) and de Gramont (5FU 300 mg/m2 i.v. bolus 

followed by 300 mg/m2 continuous infusion over 24 hrs) regimens. 

Results 

Patient characteristics 

Thirty-three patients were included in the study; of these, 3 patients dropped out prior 

to the first administration of 5-FU. The remaining 30 patients who all completed the 

study comprised 5 women and 25 men with an age ranging between 37 and 73 years. 16 

patients with colorectal cancer were administered 5FU only, while 14 with oesophageal 

cancer were treated with the combination of 5FU with cisplatin. Patient demographics, 

primary tumor location, pre-treatment values of haematology and clinical chemistry 

parameters are summarized in table 1.  

Genotypes 

Analysis of the DPYD gene revealed the presence of 6 polymorphisms in 22 of 30 

patients. Eight patients had multiple mutations in the coding region of the DPYD gene 
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(table 2). None of the known rare (<2%) mutations causing extremely reduced or absent 

DPD activity, such as exon 14 (DPYD*2A) G>A skipping mutation [36] were found in the 

study population. The six DPYD polymorphisms detected in our study were considered 

to result in either normal (i.e. 1236G>A [37]) or partially reduced enzyme activity [38]. 

With regard to the TS genotype, 5 (16.7%) patients were homozygous for the triple 

repeat (3R/3R), 19 (63.3%) were heterozygous (2R/3R), and 6 (20%) were 

homozygous (2R/2R) for the double repeat variant within the TS promoter region. As 

for C677T MTHFR genotype, 13 of 30 patients (43.3%) were CC (wild-type), 12 (40%) - 

CT (heterozygous mutant), and 5 (16.7%) - TT (homozygous mutant).  

Pharmacokinetic model 

199 and 251 quantifiable plasma concentrations of 5FU and 5FUH2, respectively, were 

part of the pharmacokinetic model development. Fig. 1 provides a schematic 

representation of the PKPD model. A two-compartment model with linear elimination 

(∆OFV of 210 compared to one-compartment model) best described the 5FU 

concentration-time data, and a one-compartment model was appropriate for the 5FUH2 

data. IIV in the combined model was included for CL5FU, CL5FUH2, VC,5FU and VC,5FUH2. IIV on 

VP,5FU was removed because of a high shrinkage value, while IIV on intercompartmental 

clearance (Q) was negligible and hence removed from the final model. A proportional 

error model was appropriate to model RUV for both 5FU and 5FUH2. Visual predictive 

checks (VPCs) indicated an adequate prediction of the 5FU and 5FUH2 concentrations 

by the model (fig. 2). Population pharmacokinetic parameter estimates are presented in 

table 3.  

Pharmacodynamic model 

In total, 135 observations for total WBC count were available for 29 patients. None of the 

patients received a WBC count-modifying drug (e.g. filgrastim). The semi-mechanistic 

model with three transit compartments adequately described the time course of 

myelosuppression (fig. 2). A linear model was preferred over an Emax model, as the Emax 

model did not provide any additional goodness-of-fit to describe the PK / PD 

relationship. The estimated parameter γ for the feedback mechanism was inconsistent 

across different runs and was therefore fixed to a value of 0.17 according to available 
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literature [22]. Fixing the parameter estimate for γ did not have a significant impact on 

the model fit (∆OFV=3.68). IIV on MTT and slope were not kept in the final model as 

they displayed high shrinkage and provided no further improvement with ∆OFV values 

of 1.32 and 0.09, respectively. A proportional error model was found adequate to model 

RUV. Pharmacodynamic parameter estimates are presented in table 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Visual predictive checks for 5FU (a) and 5FUH2 (b) plasma concentration data and total 

WBC count (c) over time. Continuous and dashed lines represent median, 2.5th and 97.5th 

percentiles of the observed data. Shaded areas are the 95% confidence interval for median, 2.5th 

and 97.5th percentiles of the simulated data. 5FU and 5FUH2 plasma concentrations are 

presented on a log scale. 
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Covariate relationships 

Estimated IIV in CL5FU in the covariate-free model was 32.8% (CV), whereas a 9% 

reduction in IIV resulted from the inclusion of BSA as covariate. Scaling with BSA 

(∆OFV=10.1) was found superior to that with LBW (∆OFV=6.4), BMI (∆OFV=4.3) and 

body weight (∆OFV=5.0). CL5FU point estimates were 263 L/h [231-295] and 175 L/h 

[87-263] in patients with wild-type DPYD genotype and homozygous mutations, 

respectively. Precision of these estimates was poor, and the effect of DPYD was not 

statistically significant, probably due to small number of mutations in the DPYD gene 

found in the studied population. IIV of CL5FU was correlated to MTHFR genotype with a 

∆OFV of 8.98, but the covariate effect was not included in the model because of 

limitations with regard to mechanistic plausibility. Scaling CL5FUH2 with individual BSA 

reduced OFV by 6.76 points with a marginal reduction in IIV (~2.1%). The estimate for 

BSA effect on CL5FUH2 (0.73 m-2) was close to that on CL5FU (0.79 m-2), therefore the BSA 

effect was included as a single parameter in the final model assuming a similarity in 

disposition kinetics between 5FU and 5FUH2. Using single parameter instead of two 

separate parameters provided no significant change in model fit (∆OFV = 0.35). 

Inclusion of cisplatin co-medication as a covariate upon slope parameter provided an 

improvement in model fit by reduction of 18.6 OFV points. Thus, the covariate 

relationships part of the PKPD model included effects of BSA on CL5FU and CL5FUH2, and of 

cisplatin comedication on slope.  

Bootstrap analysis using the final PKPD model including the covariate relationships 

resulted in 681 runs with successful minimization, 318 runs with rounding errors, 

whereas only a single run failed during the execution. Parameter estimates obtained 

from bootstrapping were very close to NONMEM estimates (Table 3).  

Simulated total WBC count over time 

Differences in simulated WBC count over time for 5FU monotherapy (5FUmono) and 

combination therapy (5FUcomb) are presented in fig. 3 (left panel). A higher degree of 

myelosuppression was observed for the typical individual receiving 5FUcomb in 

comparison to the individual receiving 5FUmono. Simulated temporal changes in total 

WBC count (fig. 3, right panel) showed a higher degree of myelosuppression for virtual 
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subjects administered with the higher 5FU exposure in FOLFIRINOX regimen in 

comparison to de Gramont regimen.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Left panel; Simulated total WBC count over time. Continuous line represents individuals 

receiving5FU monotherapy. Dashed line represents individuals receiving combination therapy 

with 5FU and cisplatin. Numbers represent corresponding WBCnadir values. Right panel: 

Simulated total WBC over time for effects attributable to a 5FU dose as used in the FOLFIRINOX 

(400 mg/m2 bolus 5FU followed by 2400 mg/m2 over 46 h) versus the de Gramont regimens 

(300 mg/m2 i.v. bolus followed by 300 mg/m2 continuous infusion over 24 hrs): Continuous 

lines represent an individual receiving 5FU according to de Gramont regimen, while dashed lines 

represent an individual receiving the dose according to FOLFIRINOX regimen. Effects apply for a 

single treatment course, and those of the other components of the respective regimens are 

ignored in this figure. Numbers represent corresponding WBCnadir values. 

Discussion 

A semi-physiological PK/PD model of 5FU during continuous venous infusion was 

developed. Covariate effects including genetic variants of the main enzymes involved in 

5FU PK and myelosuppression were tested. BSA was identified as a factor significantly 

influencing 5FU pharmacokinetics. Cisplatin co-administration was found to aggravate 

myelotoxicity. The current investigations are of particular value because they establish a 

link between 5FU PK and myelosuppression in the same patients, where we were also 

able to characterize the PD interaction between 5FU and cisplatin. 
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Approaches adapted to describe pharmacokinetics of 5FU have been nicely summarized 

by Deyme et al [14]. In most of the cases, a two-compartment model was found adequate 

to describe 5FU PK [3, 38, 39, 40], while some studies presented a one-compartment 

model [6, 41]. Most of these studies demonstrated a linear elimination [6, 38, 41], 

whereas a nonlinear elimination was also observed occasionally [3, 40]. Both linear and 

nonlinear elimination kinetics were reported in one case [40]. In the current evaluation, 

a two-compartment model with linear elimination was the best to describe 5-FU PK. 

CL5FU of 249 L/h was comparable to the estimates obtained in similarly designed 

studies. Non-compartmental analysis with a 5-day continuous infusion estimated the 

CL5FU to be 257 L/h [43], while an estimate of 270 L/h was reported for a 3-day 

continuous infusion [44]. Population pharmacokinetic analysis performed by Etienne et 

al. presented an estimate of 235 L/h, where the data was described by a one-

compartment model with first order elimination [7].  

BSA and C677T MTHFR genotype were significant covariates in our model. Despite the 

long-term use of BSA for 5FU dose individualization in clinical practice, existing studies 

provided conflicting results regarding suitability of BSA for prediction of 5FU exposure. 

Some studies did not report any significant relationship between BSA and 5FU exposure 

[7, 38, 44], while others considered BSA as the best predictor of CL5FU [5]. In a PKPD 

study, principally aiming to describe hematological toxicity under a combination 

regimen with 5FU, neither BSA nor body weight were found to influence the variability 

in 5FU PK [46]. Significant, but moderate, effects of either BSA [3] or body weight [45] 

on 5FU PK were confirmed in most population pharmacokinetic studies using nonlinear 

mixed-effect modelling. In the comparative covariate analysis, none of the indices 

representing body mass provided superiority over BSA regarding the improvement of 

model fit principally guided by reduction in OFV and % IIV. Patient’s gender was not 

found to influence CL5FU in the present study, which is consistent with a previous 

population pharmacokinetic analysis [7]. Gender effect on CL5FU observed in some 

studies [5, 41] might possibly be accounted for by differences in individual BSA. A 

considerably higher IIV of 145% was associated with Vc,5FU in comparison to previously 

reported values ranging from 19% to 114% [6, 38, 39, 41]. The CL5FUH2 (126 L/h) and 

VC,5FUH2 (91.9 L) estimates in our study were comparable to those reported by Mueller et 

al. [6]. An 18% higher CL5FUH2 in men was reported, but the gender influence is not 

supported by the present evaluation, probably because of the lower proportion of 
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female patients in the studied population. It is worth mentioning that exploratory 

covariate analyses in small to medium sized studies are expected to result in different 

sets of covariates, especially in case the covariates demonstrate moderate to high 

correlation such as body size, age, sex, creatinine clearance etc.  

Table 3: Population pharmacokinetic and pharmacodynamic parameter estimates  

 
RSE = relative standard error, CI = confidence interval, CL5FU = total clearance of 5FU, VC, 5FU =  5FU central volume of distribution, VP, 

5FU = 5FU peripheral volume of distribution, Q = intercompartmental clearance, BSA = body surface area, Fm = fraction of 5FU 
converted to 5FUH2, CL5FUH2 = clearance of 5FUH2, CIRC0 = baseline leukocyte count, MTT = mean transit time, Slopecomb = slope 
parameter for combination therapy with cisplatin, Slopemono = slope parameter for 5FU monotherapy, The “Slope” parameter 
represents the relationship between efffect and drug concentration into bone marrow (Edrug=slope×Cp), Cp = plasma concentration, 
IIV = interindividual variability, RUV = residual unexplained variability, CV = coefficient of variation.   

a fractional change in CL per m2 difference from median BSA value, b calculated by obtaining time integral of drug concentrations 
using an additional compartment in NONMEM.  
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The effect of the MTHFR C677T mutation on CL5FU was found to be statistically 

significant. Population estimates for total clearance were 278 L/h (MTHFR 677CT or 

677CC genotype) and 150 L/h (MTHFR 677TT genotype), but the genotype effect was 

not made part of the model due to lack of mechanistic plausibility as a predictor of 5FU 

PK. Published studies analysed this mutation primarily in relationship to 5FU efficacy 

and showed its favourable role in treatment response [47] and survival [48], 

considering the MTHFR genotype as an important predictor for the therapeutic effect of 

5FU [49]. The common C677T polymorphism in the MTHFR gene results in a 

considerably lower enzyme activity [48] that probably increases intracellular folate 

concentrations, making tumors exhibiting mutated MTHFR genotypes more sensitive to 

cytotoxicity than wild-type MTHFR tumors [50], if there are no differences in MTHFR 

genotype between tumor and somatic cells of the patient. It is difficult to deduce 

plausible mechanisms describing the influence of MTHFR on CL5FU based on the current 

knowledge on the metabolic pathways which provides a motivation to investigate this 

effect in further studies.  

The Friberg model [24] is the standard approach to study the myelotoxicity under 

antineoplastic treatment. The model was originally developed using total WBCs count 

data from rats treated with 5FU. A subsequent study comprised of a number of 

myelosuppression models demonstrated parameter consistency across different drugs 

[35]. The developed models performed adequately to predict the time course of 

myelosuppression using both neutrophil and total leukocyte counts data separately. The 

semi-mechanistic myelosuppression model appropriately described the total WBC count 

over time after 5FU administration. Transit compartments accounted for a delay 

between drug administration and the observed effect. Self-renewal/mitosis in the 

proliferating cells compartment was dependent on the number of cells, a rate constant 

for cell division (kprol), and a feedback mechanism from the circulating cells (Circ0/Circ)γ 

which describes the rebound of cells as the proliferation rate is regulated by endogenous 

growth factors and cytokines [51]. An estimate of 6.86×109/L for baseline leukocyte 

count (Circ0) was in the expected range [22]. The Parameter estimates for γ (indicative 

of hematopoietic viability) were highly inconsistent across model runs; therefore, the 

value representative of a typical population was fixed according to the available 

literature [22]  in order to avoid an overshoot compared to Circ0. Myelosuppression was 

found to be significantly higher in patients receiving additional cisplatin (slope=2.82 
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L/mg) as compared to the patients undergoing monotherapy (slope=1.17 L/mg). In an 

attempt using a semi-physiological model to describe the relationship between the PK 

and the myelotoxicity contributed by respective components of the combination 

regimen comprised of 5FU, epirubicin and cyclophosphamide, the authors assumed 

negligible contribution by 5FU as it was not possible to estimate the effect contributed 

by 5FU and cyclophosphamide simultaneously [25]. The hypotheses underlying this 

strong assumption was a lower hematological toxicity observed with continuous 

infusions as compared to 5FU bolus administration [52], and a relatively stronger 

myelosuppression previously reported with epirubicin and cyclophosphamide in 

comparison to 5FU in rats [53]. When 5FU is investigated alone, the present results 

demonstrate a significant amount of myelosuppression related to 5FU continuous 

infusion with WBCnadir values of 2.26 (×109) and 4.29 (×109) in patients receiving 

5FUcomb and 5FUmono regimens, respectively. Tnadir is typically expected between day 9 

and day 14 with 5FU, however the simulated Tnadir in the present study was observed 

between day 22 to day 25 after start (=17 to 20 days after end) of infusion, which may 

possibly be attributed to the continuous nature of the infusion.  

A comparative evaluation of the theoretical contribution of a 5FU dose to 

myelosuppression expectedly predicted a more pronounced effect for the higher dose 

administered in the FOLFIRINOX regimen in comparison to de Gramont regimen. 

Although, hematological toxicities in case of combination based regimens are often 

additive in nature [53, 54, 55], a true prediction of the time course of myelosuppression 

under these therapeutic regimens may demands the incorporation of the effect of the 

other components, especially leucovorin, as one may expect differences in WBCnadir and 

Tnadir. Nevertheless, the simulations nicely show that just the FU component of even a 

single treatment course would put a considerable fraction of patients at risk for 

infections, as these doses are repeated every other week. Model based prediction of 

WBCnadir and Tnadir along with monitoring during the course of treatment can be 

imperative for suitable sampling schedules, assessment of the patient’s immune 

competence, and the expected consequence of additional treatment cycles [23]. Thus, it 

would be interesting to develop myelotoxicity models for 5-FU incorporating the effect 

of leucovorin in present regimens. Predictions may further be useful to identify patients 

or patient subgroups at a higher risk of toxicity. 
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Conclusions  

A semi-physiological PKPD model of 5FU is presented. IIV in the CL5FU was partially 

explained by individual BSA. Frequent leukocyte count monitoring and model based 

predictions may be used to take the contribution of 5-FU to myelosuppression into 

account, especially in case of polychemotherapy regimens. 
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Supplementary material 
 

Supplementary Fig. 1: Goodness of fit plots for 5FU; observed vs individual predicted (IPRED) 

concentration (mg/L) (A); observed vs population predicted (PRED) concentrations (B); 

conditional weighted residuals (CWRES) vs population predicted concentrations (C); conditional 

weighted residuals vs time after first dose (D). Continuous line represents the line of unity (A & 

B) and zero line (C & D), while dashed lines are the lines of smooth. 
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Supplementary Fig. 2: Goodness of fit plots for 5FUH2; observed vs individual predicted 

(IPRED) concentration (mg/L) (A); observed vs population predicted (PRED) concentrations 

(B); conditional weighted residuals (CWRES) vs population predicted concentrations (C); 

conditional weighted residuals vs time after first dose (D). Continuous line represents the line of 

unity (A & B) and zero line (C & D), while dashed lines are the lines of smooth. 
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Supplementary Fig. 3: Goodness of fit plots for total WBC count data; observed (OBS)vs 

individual predicted (IPRED) WBC count (109/L) (A); observed vs population predicted (PRED) 

WBC count (B); conditional weighted residuals (CWRES) vs population predicted WBC count 

(C); conditional weighted residuals  vs time after first dose (D). Continuous line represents the 

line of unity (A & B) and zero line (C & D), while dashed lines are the lines of smooth. 
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Supplementary Fig. 4: Individual plots for 5FU; points connected with dashed lines represent 

observed concentrations whereas continuous lines are the individual predicted concentrations.  
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Supplementary Fig. 5: Individual plots for 5FUH2; points connected with dashed lines 

represent observed concentrations whereas continuous lines are the individual predicted 

concentrations.  
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Supplementary Fig. 6: Individual plots for total WBC count data. points connected with dashed 

lines represent observed WBC count whereas continuous lines are the individual predicted WBC 

count.  
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Abstract 

Objective: The aim of this study was to identify sources of variability including gender in 

pharmacokinetic exposure for methotrexate continuous infusion by a population 

pharmacokinetic approach applied in a large cohort of patients with hematological and 

solid malignancies.   

Methods: Plasma concentration data (2182 measurements) from therapeutic drug 

monitoring was available for 229 subjects receiving methotrexate through 4 or 24 hours 

continuous intravenous infusion. Nonlinear mixed effects modeling was performed 

using NONMEM 7.4.3. Covariate data on patient demographics and clinical chemistry 

parameters was incorporated to assess and to quantify relationships with 

pharmacokinetic parameters. Simulations were developed to compare pharmacokinetic 

exposure under BSA adjusted and flat dosing regimens. 

Results: Pharmacokinetics of methotrexate were best described by a three-compartment 

model. Values for clearance (CL) of 4.52 [2.98-6.36] L h-1 and central volume of 

distribution of 4.44 [2.09-8.21] L were estimated. An inter-occasion variability of 23.1% 

(coefficient of variation) and an inter-individual variability of 29.7% were associated to 

methotrexate CL, which was 16% lower in female patients. Serum creatinine, patient 

age, and BSA were also significantly related to methotrexate CL. The simulations 

suggested only marginal differences in drug exposure between flat dosing and adjusted 

dosing regimens.  

Conclusion: Superiority of BSA guided dosing over flat dosing regimens is not supported 

by the present analysis. Influence of patient gender on methotrexate CL is present but 

small and needs to be further investigated.  

Key words: methotrexate, pharmacokinetics, covariates, dosing.  
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1. Introduction 

Methotrexate is considered an efficacious, cost-effective and acceptably safe drug for the 

treatment of many malignancies and autoimmune diseases.1 The folate analogue 

methotrexate acts as an antineoplastic agent via competitive inhibition of dihydrofolate 

dehydrogenase, resulting in depletion of purines and thymidylate leading to impairment 

of DNA synthesis.2 3 The drug can be administered via multiple routes of administrations 

and has a wide variation in dosing regimens including low  (<50 mg/m2), intermediate 

(50-500 mg/m2) and high (>500 mg/m2) dose regimens.1 4 The pronounced inter-

individual variability (IIV) of methotrexate pharmacokinetics and toxicity8 9 10 renders 

individualization of dosing regimens difficult.  

Hepatic metabolism accounts for a considerably lower fraction of its clearance 

compared to renal elimination, as the main fraction (80-90%) of the drug is primarily 

eliminated via glomerular filtration and active tubular secretion.12 13 Nephrotoxicity 

associated with methotrexate impairs its clearance (CL), leading to further aggravation 

of toxicity such as myelosuppression and mucositis. In subjects with extracellular fluid 

accumulations, methotrexate has been shown to undergo delayed elimination.11 To 

handle the various sources of variability, monitoring of methotrexate plasma 

concentrations (therapeutic drug monitoring, TDM) and serum creatinine (SCr) is 

recommended to safeguard a relatively constant circulating drug concentration with an 

acceptable risk/benefit ratio particularly in patients with impaired renal function.14  

Modeling of pharmacokinetic data has the potential to optimize TDM, where tailored 

dose adjustments can be made according to the model predicted concentrations.16 

Bayesian population pharmacokinetic analysis has been used to assist TDM guided dose 

adjustments for methotrexate.16 In addition, population pharmacokinetic analysis 

provides the possibility to identify and quantify covariate effects on drug exposure.17 18 

This may provide a better understanding of drug’s pharmacology and assist adjustments 

in dosage regimen according to patient’s individual characteristics e.g., renal/hepatic 

function, genotype of drug metabolizing enzymes or transporters, and/or 

anthropometric characteristics. Models capturing covariate relationships have been 

found useful in oncology for individualized dose adaptations such as in case of busulfan, 

topotecan and docetaxel.17   
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The current study was primarily aimed to identify the covariates influencing 

methotrexate pharmacokinetics, particularly patient gender, by developing a population 

pharmacokinetic model using the TDM data collected from patients with hematological 

and solid malignancies. The model was further aimed to be used for the evaluation of 

ongoing clinical practice of administering methotrexate based on individual BSA.  

2. Materials and methods 

2.1 Patients, treatment and sampling procedures 

Plasma concentration over time data was obtained for patients with hematological 

malignancies or solid tumors treated with methotrexate during the period of 2005 to 

2018 from the CoCoNut database maintained at Department I of Internal Medicine, 

University Hospital Cologne, Germany. Methotrexate was administered via 4 or 24 hour 

continuous intravenous infusions. TDM was routinely performed in patients 42h and 

48h after infusion for 24 hour MTX and 24h, 42h, and 48h after infusion for 4 hour MTX. 

When target plasma concentration was not reached TDM was performed every 6h. 

Methotrexate plasma concentrations were measured. Demographic covariates included 

patient’s age, gender, weight and height. Covariate data from clinical chemistry analysis 

included SCr, plasma total bilirubin (Bilitot), γ-glutamyltransferase (γ-GT), uric acid 

concentrations, absolute leukocyte counts (ALC), and BSA.  

2.2 Dataset preparation 

Dosing, concentration and covariate data was subjected to screening prior to 

pharmacokinetic analysis. R (version 3.5.1) with the ‘tidyverse’ packages19 was used to 

prepare the dataset. Dataset preparation was assisted by visual inspection of individual 

concentration time profiles. Patients with missing dosing information at treatment 

initiation were identified for exclusion from subsequent analysis. Subjects with missing 

dosing information during the treatment were flagged and partially excluded (data 

points after missing dose information only). Missing covariates within an individual 

were handled using last observation carried forward approach in case the covariate 

values were available at start or during the treatment, while next observation was 

carried backward where the covariate information was present during or at the end of 

therapy but missing at prior time points. At the very time point of sampling, actual 
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covariate information was not available in 91.9 %, 82.2 %, 78.2 %, and 40.0 % of the 

data for γ-GT, weight, Bilitot and SCr respectively. 

2.3 Model development, selection and evaluation criteria 

Data was analyzed by the nonlinear mixed effect modeling approach using NONMEM 

7.4.3 (ICON, Development Solutions, Elliot City, MD, USA). Perl speaks NONMEM (PsN), 

Pirana and Xpose4 were used to assist model development, evaluation and post 

processing of output data.20 21 22 A combination of iterative two-stage (ITS) and first 

order conditional estimation with interaction (FOCE-I) methods was applied for 

parameter estimation. Likelihood ratio test (LRT) or Akaike information criterion (AIC) 

were used for evaluation of nested and non-nested models, respectively. A nested model 

with fewer parameters or decrease in OFV by 3.84 (i.e., p<0.05) was given preference. 

The model with a lower AIC value in case of non-nested models was preferred.  

Model evaluation criteria comprised of plausibility of parameter estimates, reduction in 

unexplained and residual variability, shrinkage and precision in parameter estimates. 

Visual inspection through goodness of fit (GOF) plots included observed versus 

individual/population predicted concentrations (IPRED/PRED) over time. Residual 

error model was evaluated with the help of CWRES versus observed concentrations and 

versus time after first dose (TAFD). Numerical predictive checks (NPCs) were used for 

further assessment by comparing the empirical cumulative distribution function of the 

observed methotrexate concentrations with the theoretical cumulative distribution, 

computed from simulated data. 

2.4 Structural model development 

Compartmental analysis was performed in a step-wise manner. Both linear and 

nonlinear (Michaelis-Menten) elimination models were evaluated. IIV was incorporated 

using exponential terms ηiiv.18 Interoccasion variability (IOV) defined as variability 

between individual cycles of methotrexate therapy was incorporated in the model as 

random effects (ηiov).23 Population parameters (P) were therefore estimated as, 

P = θ × eηiiv+ ηiov 



104 
 

Where, 𝜃 represent the population estimate of the pharmacokinetic parameter. 𝜂𝑖𝑖𝑣 

describes the deviation of pharmacokinetic parameter values of an individual from the 

population estimate. 𝜂𝑖𝑜𝑣 account for the variability on part of subsequent cycles of 

methotrexate infusions. Additive, proportional and combined error models were tested 

to estimate the residual unexplained variability (RUV).  

2.5 Covariate model development 

Covariate data was analyzed to identify covariate-parameter relationships.  

Continuous covariates were included as linear relationships or power relationships 

centered around their median values as follows, 

Covariateeffect = 1 +  (Covariatei −  Covariatemedian)  × θCovariate 

Covariateeffect = (
Covariatei

Covariatemedian
⁄ )

θCovariate

 

Categorical relationships were given the following functional form, 

Covariateeffect = 1 +  Covariatei ×  θCovariate 

Where, Covariatei is the individual covariate value and θCovariate represents the effect 

size of covariate relationship to a pharmacokinetic parameter. Covariate preselection 

was performed considering scientific plausibility as an essential criterion. Graphical 

evaluation of covariates was performed including conditional weighted residuals 

(CWRES) vs covariate, empirical bayes estimates (EBEs) versus covariate, and covariate 

versus covariate plots. Inclusion of highly correlated covariates was abstained by 

assigning superiority on basis of physiological plausibility. Significance of covariate 

relationship was principally guided by decrement in OFV and/or unexplained 

variability. A univariate analysis was performed as a first step followed by 

inclusion/elimination of further covariate data in a stepwise manner. During forward 

inclusion, the covariate providing maximum reduction in OFV was selected at each step, 

while covariate relationships demonstrating no significant impact on OFV during the 

backward elimination process were disregarded. Selection criteria during forward 
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inclusion was a ∆OFV of 3.84 (p<0.05), whereas a ∆OFV of 6.63 (p<0.01) was considered 

during the backward elimination procedure. 

Population parameter estimates with respective confidence intervals (CI) and relative 

standard errors (RSE) were obtained by performing a bootstrap analysis using 1000 

sample replicates. 

2.6 Evaluation of BSA versus flat dosing regimens 

Simulations were designed using the final model for comparative evaluation of drug 

exposure under BSA based and flat dosing 24 hours infusion regimens. A typical high 

dose regimen of 3000 mg/day, was given either as a flat (scaled with the median BSA of 

1.96 for all patients) or a BSA based dose (linear scaling with individual BSA), where 

each subject was simulated 100 times (22900 subjects in total). Considering the current 

TDM protocol at University Hospital of Cologne, plasma concentrations were supposed 

not to exceed 1.0 and 0.3 mg/L at 42 and 48 hours after the start of infusion, 

respectively. Subjects exceeding the target concentrations at respective time points 

were flagged and the dose reduction needed to provide a plasma concentration below 

the thresholds was identified for these subjects. The fraction of subjects requiring a dose 

reduction stratified by BSA percentiles (<10%, 10–90%, and >90%) was calculated and 

compared for both regimens. 

Another simulation was designed to visualize the exposure achieved with BSA based 

dosing and flat dosing regimens, where the probability of attaining concentrations 

higher than the above mentioned thresholds at respective time points was calculated 

and visualized. 

3. Results 

3.1.  Patient and treatment characteristics 

The majority of the patients received 4 or 24 hours infusions with median methotrexate 

doses of 5.60 and 2.61 g/m2 respectively, while some received 12 or 48 hours infusions 

with median doses of 4.54 and 5.39 g/m2 respectively. Only a single patient received a 

72 hours infusion with a dose of 8.09 g/m2. A median of 3 dosing cycles (range, 1 – 9) 

per patient were part of the available data. In total, 229 cancer patients (83 females) 
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with 2182 plasma concentration measurements were included in the pharmacokinetic 

analysis. The number of plasma concentration measurements per patient ranged from 1 

to 65 with a median of 7 measurements. Patients were 19 to 82 years old and had a 

median BSA of 2.06 m2 (range: 1.56 - 3.42). The underlying disease characteristics of the 

study population are provided in Table 1. Further information on patient demographics 

and clinical laboratory parameters is summarized in table 2.   

Table 1: Population characteristics 

Characteristics  
(n=229, females=83) 

Median [Min, Max] 

 

Age (years) 58.0 [19.0, 82.0] 

Weight (kg) 78.4 [41.5, 227] 

Height (cm) 176 [154, 203] 

Body surface area (m2) 1.96 [1.34, 3.42] 

Body mass index (kg/m2) 25.4 [15.7, 66.3] 

Serum creatinine (mg/dL) 0.76 [0.30, 7.31] 

Total plasma bilirubin (mg/dL) 0.48 [0.09, 2.90] 

Plasma γ-glutamyltransferase 

(mg/dL) 
69.8 [14.0, 442] 

Plasma urea (mg/dL) 32.0 [2.90, 949] 

Absolute leucocyte count 

(×109/L) 
6.28 [0.05, 61.1] 

 

Table 2: Population disease characteristics 

Tumor type  n 

Solid tumors    

Sarcoma 4 

Carcinoma 2 

Hodgkin lymphoma   5 

Non-Hodgkin lymphoma   9 

Leukemia / very aggressive Non-

Hodgkin lymphoma 
   

Acute lymphoblastic leukemia 64 

Acute Myeloid leukemia 1 

Others 48 

Low aggressive Non-Hodgkin 

lymphoma 
  101 

  



107 
 

3.2.  Pharmacokinetic model 

A three-compartment model with linear elimination adequately described methotrexate 

plasma concentrations well as shown by a ∆OFV of 389 compared to two-compartment 

model (fig. 1, fig. 2). Population estimates for V1 and plasma CL of methotrexate were 

4.44 L and 4.52 L/h, respectively. A linear CL model was preferred over a model with an 

additive nonlinear CL component (combined model), although the latter provided a 

better fit with a ∆OFV of 70 points. The fraction of CL contributed by the linear 

component in the combined model was 4.77 L/h, whereas nonlinear CL contributed 0.42 

L/h at median methotrexate concentrations (2.20 mg/L). It was not feasible to proceed 

further with the combined model because of the much longer run times of ~60 hours 

compared to ~1 hour for linear model, preventing proper covariate analysis. Moreover, 

a decreased stability with frequent rounding errors was observed with the combined 

model. Therefore, the linear model was used for subsequent analysis. 

An IIV of 34.1%, and an IOV of 27.9% was associated with methotrexate CL. Covariance 

between IIV parameters on CL and V1 was estimated to be 49.4%. RUV was 

appropriately described by a combined (additive and exponential) error model. Mean 

pharmacokinetic parameters with 95% CI and RSE obtained from the bootstrap analysis 

are presented in Table 3. Supplementary table presents parameter estimates for the 

combined model with linear and nonlinear CL components.  

3.3. Covariate analysis 

SCr was found to be a significant covariate on CL with an OFV reduction by 215. 

Inclusion of patient’s gender and age on CL was further observed to improve the model 

fit with ∆OFVs of 32.0 and 13.0 respectively. BSA effect on CL and V was devoid of 

statistical significance during univariate analysis. However, considering the 

pharmacological relevance due to the fact that individual doses were calculated 

according to patient’s BSA, it was tested as a covariate on CL and V in the final model, 

demonstrating a further reduction in OFV by 4.4 on CL, but no significant impact on V 

was observed. A ~16% lower CL was estimated in females. Reduction in IIV of individual 

parameters was not so eminent as a decrease in 2.40, 0.56 and 1.44 (%) was observed 

after the inclusion of SCr, age and gender respectively. IIV and IOV on methotrexate CL 

in the covariate model was estimated to be 29.7% and 23.1% respectively. Individual CL 
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(CLi) given the model point estimates, individual Scr, age, BSA and gender can be 

computed as follows, 

CLi = 4.52 (
SCri

0.77⁄ )
−0.77

(
Agei

58⁄ )
−0.17

(
BSAi

1.73⁄ )
−0.41

(1 + Genderi × −0.16)   

Where, gender was coded as 0 for males and 1 for females. Estimates for covariate 

relationships are summarized in table 3. 

 

Table 3: Population pharmacokinetic parameter estimates from bootstrap analysis 

  Mean % RSE 95% CI 

Pharmacokinetic parameters      

CL (L h-1)  4.52 23.6 2.58 - 7.38 

V1  (L) 4.44 46.9 1.65 - 9.52 

V2 (L) 2.73 48.0 0.87 - 6.25 

V3 (L) 2.94 59.0 0.65 - 7.25 

Q1  (L h-1) 0.43 52.9 0.13 - 1.04 

Q2  (L/h) 0.03 55.0 0.01 - 0.06 

Covariate effects on CL    

SCr (mg-1 dL) -0.77 -14.2 -0.97 - -0.57 

Age (year-1) -0.17 -37.1 -0.30 - 0.05 

Gender (fractional decrease in females) -0.16 -29.2 -0.25 - -0.07 

BSA  (m-2) 0.41 68.2 -0.13 - 0.96 

IIV (ω2)    

CL  0.11 15.1 0.08 - 0.14 

V1 1.58 29.7 0.84 - 2.72 

COV(CL, V1) 0.32 21.3 0.19 - 0.44 

IOV (ω2)    

CL 0.08 18.9 0.05 - 0.11 

V1 - - - 

RUV (σ2)    

Additive error  0.02 18.6 0.02 - 0.03 

     Exponential error   0.26 6.89 0.22 - 0.30 

RSE = relative standard error, CI = confidence interval, RSE = relative standard error, CL = clearance, V1 = central volume of distribution,  

V2 & V3 = peripheral volumes of distribution, Q1 and Q2 = inter-compartmental clearances, AUC = Area under the curve, SCr = Serum 
Creatinine, IIV = inter-individual variability, IOV = inter-occasion variability, RUV = residual unexplained variability.  
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Figure 1: Goodness of fit plots; observed vs individual predicted (IPRED) concentration 
(mg/L) (top left); observed vs population predicted (PRED) concentrations (top right); 
conditional weighted residuals (CWRES) vs population predicted concentrations 
(bottom left); conditional weighted residuals vs time after first dose (bottom right). 
Concentrations are presented on log scale in the upper panel. 

 

3.4.  BSA versus flat dosing regimens 

Table 4 presents the fraction of subjects requiring dose reduction for respective BSA 

percentiles in a simulated population administered with methotrexate flat dosing or 

scaled on the basis of individual BSA. Overall, marginal differences between the 

regimens were observed. For the upper BSA percentile (>90%), a higher proportion of 
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subjects (45.6%) receiving BSA based regimens required dose reduction as compared to 

the flat dosing (38.5%). The contrary was observed for the lower BSA subgroup (<10%) 

where 30.5% compared to 37.2% subjects needed dose reduction for BSA based and flat 

dosing regimens, respectively. A negligible difference (37.3% for flat versus 36.7% for 

BSA based dosing) was observed for the major proportion (10-90%) of subjects in the 

simulated population. 

Figure 3 displays the probability of attaining plasma concentrations higher than the 

given threshold across the BSA quartiles for flat and BSA based regimens. Marginal 

differences between the two regimens across the BSA range were observed.  

Table 4: Fraction of subjects requiring dose reduction for BSA based and fixed dosing 

regimens across the observed BSA percentiles.  

BSA percentile Dosing Subjects requiring dose reduction (%) 

< 10% BSA based 30.5 

 Fixed 37.2 

10-90% BSA based 36.7 

 Fixed 37.3 

> 90% BSA based 45.6 

 Fixed 38.5 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Numerical predictive check: Continuous and dashed lines are the empirical 
and predicted distributions, respectively. Shaded area represents the 95% prediction 
interval. 



111 
 

3. Discussion 

A three-compartment pharmacokinetic model of methotrexate continuous infusion is 

presented. Patient gender, age, BSA and Scr were related to methotrexate CL. A 16% 

lower CL was estimated for females compared to males. Simulations using the final 

covariate model did not support superiority of BSA based dose adjustments over flat 

dosing.  

Identification of clinically relevant covariates has been main objective of population 

pharmacokinetic modeling of methotrexate, as numerous studies with inconsistent 

covariate effects have been presented24 25 26 27 28 29 30 31 32 33 34 . Gender influence on 

methotrexate CL was previously presented in a study on patients with acute 

lymphocytic leukemia29, but gender effect was not supported by several other 

population pharmacokinetic studies.24 30 31 32 33 34 For univariate analysis, a reduction in 

OFV by 4.4 points was observed with the inclusion of patient gender. The inclusion of 

gender in the model containing a SCr effect demonstrated an improvement of model fit 

by ∆OFV of 32.0, where CL was shown to be about 16 % lower in females, independent 

of the differences in anthropometric characteristics between men and women. Besides 

statistical significance, a ~30% reduction in IIV with the covariate inclusion is 

considered to be clinically relevant. 17 Despite of the 16% difference in CL between the 

two genders, considerable unexplained variability is yet associated with methotrexate 

CL, thus the effect size is not of considerable importance from a clinical perspective.  

Age was related to methotrexate CL in a few studies30 32, while inconsistencies exist in 

the majority of studies.25 34 35 36 37 38 Some studies presented the influence of body 

weight and patient’s age on both the CL and V of methotrexate.31 33  Mei et al., showed 

that V of methotrexate increases with increase in age and supported the preference of 

age over body weight as a covariate influencing V. A relationship between weight and V 

was reported by some other studies as well.30 34 31 39 40  Age was found to be significant 

on methotrexate CL in our study with a ∆OFV of 13.0, however body weight was not 

concluded to be significant on methotrexate CL and V in the present analysis.  

SCr was found to be the most significant covariate with a ∆OFV of 215, where the 

studied population demonstrated a wide variation in SCr concentration (0.30-7.31 

mg/dL). These results are in line with other studies where methotrexate elimination 
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was found to be correlated with SCr. 34 41 42 The observed effect is physiologically 

plausible as methotrexate is primarily eliminated by the kidneys.24 Nevertheless, the 

covariate relationship between SCr concentrations and methotrexate CL faces 

disagreements in some studies.31 30 33 37 Creatinine CL (CrCL, estimated from individual 

Scr) was included as a covariate on methotrexate CL in some studies 29 26 43 but CrCL 

was not found significant during the present analysis. 

Identification of true parameter covariate relationship is of considerable importance as 

it may enhance the model’s predictive performance which is primarily the ability of the 

model to (1) predict the variable of interest, and (2) better estimate individual 

parameter(s). Lack of predictive performance however does not necessarily mean that 

the co-variate-parameter relation does not exist. Important aspects influencing 

covariate selection power and bias are briefly discussed by Ribbing et al.44 The authors 

concluded that false covariate selection is more probable in case of highly correlated 

covariates. Under circumstances where a potential covariate contains information from 

another set of covariates, high correlations may exist. A selection bias may be observed 

where a true covariate has a weak or insignificant effect which may occur in small 

sample size, i.e. in the case of lack of power, which may not be a major limitation in the 

present analysis as a sample size of 229 patients was large enough containing complete 

covariate information on BSA, age and gender, while SCr values were available for most 

of the time points (~60%). Covariates with lesser information included γ-GT, Bilitot and 

uric acid but none of these were previously reported to influence methotrexate 

pharmacokinetics.  

The present analysis led towards the motivation to evaluate BSA guided dosing strategy 

being employed in current clinical practice in contrast to flat dosing. Preference of BSA 

based dosing over flat dosing or based on other measures such as patient genotype / 

phenotype is an ongoing debate. Therapeutic effects with an acceptable tolerability are 

generally assumed by a linear scaling of the dose according to individual BSA. Flat 

dosing is proposed for a number of anticancer drugs where BSA was not found to reduce 

IIV. 45 46 47  Prediction of exposure becomes more relevant for anticancer drugs with 

narrow therapeutic index. Fig 3 displays marginal differences in plasma drug exposure 

between the two dosing strategies. It can be observed that BSA guided dosing performs 

slightly better in comparison to flat dosing for subjects having BSA at the lower extreme.  
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For these subjects, a comparatively lower proportion required dose reduction in case of 

BSA guided dosing as presented in Table 4. The contrary was observed for subjects with 

BSA at the upper extreme, while the major proportion of simulated population (between 

10th and 90th percentile) had negligible differences.  

Estimation of IOV separates the individual differences in pharmacokinetic parameters 

from residual error, thereby avoiding the overestimation of IIV and RUV.23 Model-based 

approaches to assist TDM are challenged under circumstances where IOV is observed to 

be higher than IIV because IOV lacks the predictive ability.23 48 A decreased precision in 

target attainment was reported with increasing magnitudes of IOV. 48 Abrantes et al., in a 

recent study suggested the inclusion of IOV to generate individual pharmacokinetic 

estimates but dose individualization including IOV should be avoided during model-

based TDM.49  

 

 

Figure 3: Probability of attaining plasma concentrations > 1 mg/L at 42 hours (left 
panel), > 0.3 mg/L at 48 hours (right panel) across the observed BSA quartiles with flat 
and BSA based dosing regimens. Q1: <25%, Q2: >=25% to <50%, Q3: >=50% to <75%, 
Q4: >75%. 
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It is evident from the present analysis that flat dosing at least does not appear to 

enhance the variability in exposure. Keeping in view that fixed dosing regimens avoid 

the chances of making errors in dose calculation and preparation, it might be advisable 

to substitute the ongoing clinical practice of methotrexate dose individualization based 

on BSA.  

4. Conclusions 

Methotrexate pharmacokinetics were described by a three-compartment model. A lower 

CL estimated for the female patients needs to be investigated in future studies. Plasma 

Scr, patient age, and BSA were found additionally as statistically significant covariates on 

methotrexate CL. Fixed dosing can be a reasonable alternative to BSA guided dosing, as 

marginal differences in simulated pharmacokinetic exposure between the two dosing 

strategies were observed in the present analysis.  
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Supplementary Table: Bootstrap population pharmacokinetic parameter estimates of 

nonlinear model obtained from bootstrap analysis 

  Mean % RSE 95% CI 

Pharmacokinetic parameters    

LCL (L h-1)  4.77 14.1 3.28 - 6.02 

Vmax (uM h-1) 2.46 31.6 0.96 - 4.19 

Km (uM L-1) 1.02 31.9 0.56 - 1.80 

V1  (L) 1.12 32.5 0.42 - 1.67 

V2 (L) 3.87 24.5 2.03 - 5.86 

V3 (L) 5.08 30.2 2.12 - 7.70 

Q1  (L h-1) 0.52 26.7 0.27 - 0.83 

Q2  (L/h) 0.04 24.1 0.02 - 0.06 

Covariate effects on CL    

SCr (mg-1 dL) -0.91 -12.0 -1.11 - -0.68 

Age (year-1) -0.23 -37.0 -0.39 - -0.05 

Gender (fractional decrease in females) -0.28 -21.9 -0.39 - -0.14 

BSA  (m-2) - - - 

IIV (ω2)    

LCL  0.07 28.9 0.034 - 0.11 

V1 2.127 58.8 0.46 - 4.43 

COV(LCL, V1) 0.10 79.2 0.002 - 0.28 

IOV (ω2)    

LCL 0.07 28.9 0.034 - 0.11 

V1 2.13 58.8 0.46 - 4.43 

Vmax 0.10 79.2 0.002 - 0.28 

RUV (σ2)    

Additive error  0.02 19.3 0.01 - 0.03 

     Exponential error 0.22 9.67 0.18 - 0.26 

RSE = relative standard error, CI = confidence interval, RSE = relative standard error, CL = clearance, LCL = linear fraction of clearance, V1 

= central volume of distribution, V2 & V3 = peripheral volumes of distribution, Q1 and Q2 = inter-compartmental clearances, AUC = Area 

under the curve, SCr = Serum creatinine, IIV = inter-individual variability, IOV = inter-occasion variability, RUV = residual unexplained 
variability.  
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Summary and conclusions 

Part of this thesis is focused towards the development of VPCs for an improved 

evaluation of mixture models which have the ability to empirically classify the studied 

population into subgroups. We mainly aimed to develop NLME models for 

chemotherapeutic agents used for the treatment of various types of malignancies. 

Research work presented in this thesis comprises of several objectives mentioned in 

chapter 2. Major findings and conclusions are described below. 

VPCs for mixture models was successfully designed and implemented. The developed 

approach demonstrated an ability to overcome existing limitations regarding evaluation 

of mixture models. We were able to perform graphical and statistical assessment of both 

the observed and the predicted data taking into account the multimodalities associated 

with pharmacokinetic parameter distributions. Segregation of data between respective 

subpopulations was evaluated with an objective to avoid allocation bias. It was 

concluded that randomization of individuals across subpopulations based on the 

individual probability estimates is a superior strategy (with lower allocation bias) 

compared to empirical assignment to subpopulations. The magnitude of allocation bias 

was observed to increase with the decrease in differences in pharmacokinetic parameter 

estimates between subgroups. An illustrative example using the irinotecan 

pharmacokinetic mixture model displayed a better power of evaluation with the 

implementation of mixture VPCs. The recent approach was useful to capture 

misspecifications in an irinotecan model with a UGT1A1 genotype effect (incorporated 

as a bimodal mixture) on CL of the metabolite (SN-38), which were otherwise not 

evident using the previous (classical) approach.  

An enzyme autoinduction model for mitotane was developed. Concentration dependent 

metabolic enzyme induction leading to change in mitotane clearance over time was 

taken into account. BMI was identified as statistically significant covariate, but the major 

fraction of IIV was unexplained, therefore clinically relevant decisions could not be 

based on individual differences in BMI. The model demonstrated adequate predictive 

ability of plasma concentration data and was further used for the comparative 

assessment of two dosing regimens used in current clinical practice, namely high dose 

and low dose regimens. Based on simulation results, use of the high dose regimen with a 
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first TDM on day 16 of treatment was suggested. A considerably greater lag time to 

achieve concentrations above the therapeutic threshold was associated with the use of 

the low dose regimen. The developed model is a significant progress towards 

personalized dose selection and can be useful for the establishment of TDM protocols in 

case of mitotane therapy.  

A semi-mechanistic PKPD model of 5FU was developed. Individual differences in BSA 

partly explained the IIV in 5FU CL. Patient MTHFR genotype mutation was found to be 

significantly related to 5FU CL. However, this genotype effect was excluded from the 

final PKPD model due to the lack of mechanistic plausibility. The present analysis is of 

significant importance being the first attempt to develop a link between 5FU exposure 

and myelotoxicity in the same population of cancer patients. A pharmacodynamic 

interaction of 5FU with cisplatin was taken into account by the model where an 

aggravated toxicity was observed with the combination regimen compared to 5FU 

monotherapy. The developed PKPD model was further used to predict the contribution 

of 5FU to the time course of progression of leukocytes under frequently employed 

clinical regimens. Significant differences in toxicity were predicted, where a greater 

contribution to toxicity was associated with the FOLFIRINOX regimen compared to de 

Gramont regimen. Predictions based on the developed PKPD model can be helpful to 

identify patients at considerable risk of developing infections, while prediction of the 

time required for the reestablishment of total leukocyte count can be useful for decision 

making with regard to dosing cycles. 

A PopPK model of methotrexate continuous infusion was developed, where patient 

gender, age, BSA and Scr were found statistically related to methotrexate CL. Covariate 

inclusion resulted in an improved model fit but did not provide any significant reduction 

in IIV (% CV). A 16% difference in CL was observed for the two genders, but the effect 

size was clinically irrelevant because considerable variability was yet unexplained for 

methotrexate CL. BSA based methotrexate dosing was not found superior to flat dosing, 

as marginal differences in plasma drug exposure between the two dosing strategies 

were evident from model simulations. The present analysis does not support BSA guided 

methotrexate dosing, considering that fixed dosing regimens may avoid dose 

calculation/preparation errors. 
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To conclude, the current research work made contributions to the field of 

pharmacometrics in both methodological and clinical aspects. Novel methodologies for 

evaluation of NLME models with mixture components were developed. We were able to 

develop NLME models for the antineoplastic compounds. The current research work 

utilized plasma concentration data as well as adverse event data of prospective and 

retrospective nature to better understand the PK/PD profiles of the investigated drugs. 

The findings of present analyses were further used to assist the adjustment of doses / 

dosing schedules in oncology drug treatment. The developed approaches were found 

adequate to predict drug exposure and toxicity.  
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Appendix I: List of Abbreviations 
 

5FU 5-fluorouracil 

5FUH2 5-fluoro-5,6-dihydrouracil 

ACC Adrenocortical carcinoma 

ALT Alanine aminotransferase 

AST Aspartate aminotransferase 

AUC Area under the curve 

BQL Below quantitation limit 

BMI Body mass index 

BSA Body surface area 

CL Clearance 

CI Confidence interval 

CrCL Creatinine clearance 

CWRES Conditional weighted residuals 

DV Dependent variable 

DPD Dihydropyrimidine dehydrogenase 

EFPIA European Federation of Pharmaceutical Industries and Associations 

EMA European Medicines Agency 

ENSAT European Network for the Study of Adrenal Tumors 

F Bioavailability 

FDA U.S. Food and Drug Administration 

FO First-order method 

FOCE First-order conditional estimation method 

FOCE-I First-order conditional estimation with interaction 
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GOF Goodness of fit 

HPLC High performace liquid chromatogryphy 

IIV Inter-individual variability 

IOV Inter-occasion variability 

IPRED Individual predictions 

LLOQ Lower limit of quantification 

LCMS Liquid chromatography mass spectrometry 

MLE Maximum likelihood estimation 

MID3 Model informed drug development and discovery 

MTHFR Methylene tetrahydrofolate reductase 

MTT Mean transit time 

NLME Non-linear mixed effects 

NONMEM Non-linear mixed effects modeling 

OFV Objective function value 

o,p’-DDA o,p′-dichlorodiphenyl- acetate 

o,p’-DDE o,p′-dichlorodiphenyl-ethene 

PCR Polymerase chain reaction 

PD Pharmacodynamics 

PK Pharmacokinetics 

PRED Population predictions 

PsN Perl speaks NONMEM 

PXR pregnane X receptor 

Q Intercompartmental clearance 

RUV Residual unexplained variability 

SCr Serum creatinine 
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TDM Therapeutic drug monitoring 

TS Thymidine synthetase 

VPC Visual predictive check 

γ-GT γ-glutamyltransferase 
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Appendix II: NONMEM control streams/ R codes 

NONMEM control stream for mitotane enzyme autoinduction model 

$PROBLEM   popPK Mitotane 

$INPUT   ID TIME AMT ADDL II EVID CMT BMI DV 

$DATA   Sim_data_NONMEM.csv IGNORE=@ 

;------------------------------------------------------------------- 

$SUBROUTINES  ADVAN13 TOL=6 

;------------------------------------------------------------------- 

$MODEL 

COMP=(DEPOT) 

COMP=(CENTRAL) 

COMP=(ENZYME) 

;------------------------------------------------------------------- 

$PK 

KA      = THETA(1)   ; Absorption rate constant 

F1      = THETA(2)   ; Bioavailability 

VC      = THETA(3)*EXP(ETA(1)) ; Central volume of distribution 

KOUT    = THETA(4)   ; Rate of enzyme degradation 

SLOPE   = THETA(5)*EXP(ETA(2)) 

 

KIN  = KOUT 

E0  = KIN/KOUT   ; Steady state enzyme levels 

A_0(3)  = E0 

;------------------------------------------------------------------- 

$DES 

DADT(1) = - KA*A(1) 

DADT(2) = KA*A(1) - A(3)/VC*A(2) 

CP      = A(2)/VC 

DADT(3) = KIN*(1 + DELTA_KIN*CP) - KOUT*A(3) 

;------------------------------------------------------------------- 

$ERROR 

IPRED = A(2)/VC 

IRES = DV - IPRED 

W = SQRT(THETA(6)**2*IPRED**2+THETA(7)**2) 

Y = IPRED+ERR(1)*W 

IWRES = IRES/W 

;------------------------------------------------------------------- 

$THETA 

(0, 49.9) FIX  ; KA 

(0, 0.35) FIX  ; F1 

(0, 5810)    ; VC 

(0, 0.23)    ; KOUT 

(0, 4.04)    ; SLOPE 

(0, 0.249)   ; EPS1 

(0, 2.2)     ; EPS2 

;------------------------------------------------------------------- 

$OMEGA 

0.664    ; ETA_VC 

0.621 FIX    ;   ETA_SLOPE 

;------------------------------------------------------------------- 

$SIGMA 

 1 FIX  ;       EPS1 

 1 FIX  ;       EPS2 
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;------------------------------------------------------------------- 

$EST   METHOD=1 INTERACTION MAXEVAL=9999 NOABORT PRINT=1 SIG=3 

;------------------------------------------------------------------- 

;$SIM  (12345) (54321) ONLYSIM 

;------------------------------------------------------------------- 

$TABLE  ID TIME EVID DV Y IRES CWRES PRED IPRED FILE=sdtab17 

NOPRINT NOAPPEND ONEHEADER 

$TABLE  ID TIME EVID DV VC DELTA_KIN CL K HL FILE=patab17 NOPRINT 

NOAPPEND ONEHEADER 

$TABLE  ID TIME ETA(1) ETA(2) SEX AGE HEIGHT WEIGHT BN TG CHN HDL 

LDL GGT ALB CRN BMI CRCL LBW FILE=cotab17 NOPRINT 

NOAPPEND ONEHEADER 

;------------------------------------------------------------------- 

;$TABLE  ID TIME DV CMT IPRED ONEHEADER FILE=SIMTAB17 

;------------------------------------------------------------------- 
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NONMEM control stream for 5FU PKPD model 

$PROBLEM    5FU PKPD 

$INPUT      ID TIME AMT RATE CMT EVID DV SE AG BS TS MR GE GT AL AS 

 CO WEIGHT HEIGHT BSA BMI 

$DATA       5FU.csv IGNORE=@ 

;------------------------------------------------------------------- 

$SUBROUTINE ADVAN13 TOL=6 

;------------------------------------------------------------------- 

$MODEL  

NCOM = 8  

COMP = (CENT DEFDOSE NOOFF)  ; Central 5FU 

COMP = (PERIP)     ; Peripheral 5FU 

COMP = (METAB NOOFF)             ; 5FUH2 

COMP = (CIRC DEFOBS)    ; Circulating cells  

COMP = (PROLIF)     ; Proliferative cells 

COMP = (TRANSIT1)    ; Transit compartment 1 

COMP = (TRANSIT2)    ; Transit compartment 2 

COMP = (TRANSIT3)    ; Transit compartment 3 

;------------------------------------------------------------------- 

$PK   

 

CL5FU   = THETA(1)*(1+(BSA-1.95)*THETA(8))*EXP(ETA(1)) 

VC5FU   = THETA(2)*EXP(ETA(2)) 

VP5FU   = THETA(3) 

FM      = THETA(4) 

CL5FU_0 = CL5FU*FM     ; CL via conversion to 5FUH2  

CL5FU_1 = CL5FU*(1-FM)  ; CL of fraction not converted to 5FUH2 

CL5FUH2 = THETA(5)*(1+(BSA-1.95)*THETA(8))*EXP(ETA(3)) 

V5FHU2  = THETA(6)*EXP(ETA(4)) 

Q       = THETA(7) 

SLOPE   = THETA(9) 

IF(CO.EQ.0) SLOPE = THETA(10) 

MTT     = THETA(11) 

KTR     = 4/MTT 

CIRC0   = THETA(12)*EXP(ETA(5)) 

GAM     = THETA(13) 

 

K12 = Q/VC5FU 

K21 = Q/VP5FU 

K13 = CL5FU_0/VC5FU 

K31 = 0 

K10 = CL5FU_1/VC5FU 

K30 = CL5FUH2/V5FHU2   

 

S1=VC5FU 

S3=V5FUH2 

 

A_0(4) = CIRC0 

A_0(5) = CIRC0 

A_0(6) = CIRC0 

A_0(7) = CIRC0 

A_0(8) = CIRC0 

;------------------------------------------------------------------- 

$DES   

CP  = A(1)/VC5FU 
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CM  = A(3)/V5FUH2 

EFF = SLOPE*CP 

DADT(1) = - K12*A(1) + K21*A(2) - K13*A(1) - K10*A(1) 

DADT(2) =   K12*A(1) - K21*A(2) 

DADT(3) =   K13*A(1) - K30*A(3) 

DADT(4) = - KTR*A(4) + KTR*A(8)                               

DADT(5) = - KTR*A(5) + KTR*A(5)*(1-EFF)*(CIRC0/A(4))**GAM 

DADT(6) = - KTR*A(6) + KTR*A(5) 

DADT(7) = - KTR*A(7) + KTR*A(6) 

DADT(8) = - KTR*A(8) + KTR*A(7) 

;------------------------------------------------------------------- 

$ERROR   

CFU = A(1)/VCFU+0.00001 

CFUH  = A(3)/V5FUH2 

CWBC = A(4) 

 

IF(CMT.EQ.1) THEN 

IPRED = CFU 

W  = THETA(14)*IPRED 

ENDIF 

IF (CMT.EQ.3) THEN 

IPRED = CFUH 

W  = THETA(15)*IPRED 

ENDIF 

IF(CMT.EQ.4) THEN 

IPRED = CWBC 

W = THETA(16)*IPRED 

ENDIF 

 

IRES = DV-IPRED 

IWRES = IRES/W 

Y = IPRED + EPS(1)*W 

;------------------------------------------------------------------- 

$THETA 

(1, 278,500)   ; CL5FU 

(1, 6.52,50)   ; VCFU 

(1, 33.4)    ; VP5FU 

(0.85) FIX    ; FM 

(10, 120,700)   ; CL5FUH2 

(1, 96.7,400)   ; V5FUH2 

(0.1, 16.4,100)   ; Q 

(-2.63, 0.68,2.12) ; BSA 

(0, 2.95)    ; SLOPE_1 

(0, 1.02)    ; SLOPE_2 

(0, 269)    ; MTT 

(0, 6.8)    ; CIRC0 

(0, 0.17) FIX   ; GAM 

(0, 0.581)   ; W_CFU 

(0, 0.381)   ; W_CFUH 

(0, 0.309)   ; W_CWBC 

;------------------------------------------------------------------- 

$OMEGA 

 0.0265    ; IIV_CL5FU 

 1.04    ; IIV_VCFU 

 0.0826    ; IIV_CL5FUH2 

 0.257    ; IIV_V5FUH2 
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 0.0563    ; IIV_CIRC0 

;------------------------------------------------------------------- 

$SIGMA 1 FIX  

;------------------------------------------------------------------- 

$ESTIMATION  METHOD=1 INTER PRINT=5 NOABORT MAXEVAL=9999 

$COVARIANCE 

;------------------------------------------------------------------- 

$TABLE   ID TIME DV EVID CMT PRED IPRED IRES IWRES CWRES MR 

NOPRINT ONEHEADER FILE=sdtab97 

;------------------------------------------------------------------- 
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R codes for Mixture VPCs 

VPCs default 

--- 

title: "VPC" 

output: pdf_document 

classoption: landscape 

geometry: margin=1.5cm 

--- 

 

```{r loading_libraries, warning=FALSE, message=FALSE, include = 

FALSE} 

# get libPaths 

source(file.path(rscripts.directory,"common/R_info.R")) 

R_info(directory=working.directory,only_libPaths=T) 

library(xpose4) 

#add R_info to the meta file 

R_info(directory=working.directory) 

``` 

 

```{r vpc_plots, warning=FALSE, message=FALSE, 

results='hide',echo=FALSE,fig.width=9,fig.height=6.5,fig.keep="high"

,fig.align="center"} 

 

if (is.tte) { 

    #data is in the model directory, go there to read input 

    setwd(model.directory) 

    xpdb <- xpose.data(xpose.runno) 

    plots <- kaplan.plot(object=xpdb, VPC=T) 

    #go back to vpc directory  

    setwd(working.directory) 

} else if (is.categorical) {  

    plots <- xpose.VPC.categorical(vpc.info=tool.results.file, 

vpctab=vpctab) 

} else if (have.loq.data | have.censored) { 

    plots <- xpose.VPC.both(vpc.info=tool.results.file, 

vpctab=vpctab) 

} else { 

    plots <- xpose.VPC(vpc.info=tool.results.file, vpctab=vpctab) 

} 

print(plots)  

 

if (exists('mix')) {      # A mixture model is a special case 

    if (require("vpc")) { 

        source(paste0(rscripts.directory, "/vpc/vpc_mixtures.R")) 

        observations_tablefile <- paste0(working.directory, 

'/m1/vpc_original.npctab.dta') 

        simulations_tablefile <- paste0(working.directory, 

'/m1/vpc_simulation.1.npctab.dta') 

 

        obs <- vpc::read_table_nm(observations_tablefile) 

        sim <- vpc::read_table_nm(simulations_tablefile) 

        plots_plain <- vpc_mixtures(obs=obs, sim=sim, 

numsims=samples, mixcol=mix, dv=dv, bins=bin_boundaries) 
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        plots_phm <- vpc_mixtures(obs=obs, sim=sim, numsims=samples, 

mixcol=mix, dv=dv, phm_obs=phm_obs_file, phm_sim=phm_sim_file, 

bins=bin_boundaries) 

 

        for (p in plots_plain) { 

            print(p) 

        } 

        for (p in plots_phm) { 

            print(p) 

        } 

    } 

} 

#add R_info to the meta file 

R_info(directory=working.directory) 

``` 

VPCs mixtures 

suppressMessages(library(vpc)) 

suppressMessages(library(dplyr)) 

library(ggplot2) 

library(xpose) 

 

vpc_mixtures <- function(obs, sim, numsims, mixcol="MIXNUM", 

dv="DV", phm_obs, phm_sim, bins) { 

    # Put in replicate numbers in sim table 

    sim$sim <- rep(1:numsims, each=nrow(sim) / numsims) 

 

    if (!missing(phm_sim)) { 

        phm_table <- subpopulations_from_nonmem_phm(phm_sim, 

numsims) 

        sim <- dplyr::full_join(sim, phm_table) 

        phm_table_obs <- subpopulations_from_nonmem_phm(phm_obs, 1) 

        obs <- dplyr::full_join(obs, phm_table_obs) 

        mixcol <- 'SUBPOP' 

        method <- 'Randomized Mixture' 

    } else { 

        method <- 'MIXEST Mixture' 

    } 

 

    num_ids <- length(unique(obs$ID)) 

 

    unique_subpops <- sort(unique(c(obs[[mixcol]], sim[[mixcol]]))) 

 

    table_list <- list() 

 

    for (i in unique_subpops) { 

        subobs <- filter_(obs, paste0(mixcol, "==", i)) 

        subsim <- filter_(sim, paste0(mixcol, "==", i)) 

        if (nrow(subsim) == 0) { 

            next 

        } 

        if (missing(bins)) { 

            vpc <- vpc::vpc(obs=subobs, sim=subsim, 

obs_cols=list(dv=dv), sim_cols=list(dv=dv)) 

        } else { 
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            vpc <- vpc::vpc(obs=subobs, sim=subsim, 

obs_cols=list(dv=dv), sim_cols=list(dv=dv), bins=bins) 

        } 

 

        obs_ids <- length(unique(subobs$ID)) 

        perc_obs_ids <- (obs_ids / num_ids) * 100 

     

        ids_per_sim <- subsim %>% group_by(sim) %>% 

summarise(count=length(unique(ID))) 

        ids_per_sim <- ids_per_sim$count 

        lower_quantile <- (quantile(ids_per_sim, probs=0.05) / 

num_ids) * 100 

        upper_quantile <- (quantile(ids_per_sim, probs=0.95) / 

num_ids) * 100 

 

        title <- sprintf("%s SUBPOP=%d\nORIGID=%.1f%% SIMID=[%.0f%%, 

%.0f%%] (5%%, 95%% percentiles)", 

                         method, i, perc_obs_ids, lower_quantile, 

upper_quantile) 

        vpc <- vpc + ggtitle(title) 

        table_list[[i]] <- vpc 

    } 

     

    return(table_list) 

} 

 

 

# Takes a NONMEM phm file as input and outputs a data.frame with ID 

and SUBPOP columns 

# The SUBPOP is a random sample given the PMIX probabilities nrep is 

the number of replicates 

# phm can either be a file name of a phm file or a data.frame  

 

subpopulations_from_nonmem_phm <- function(phm, nrep) { 

    if (is.character(phm)) { 

        phm_table <- xpose::read_nm_files(file=phm) 

    } else { 

        phm_table <- phm 

    } 

 

    ind_table <- dplyr::bind_rows(phm_table[['data']])   # One table 

for all replicates 

    ind_table <- data.frame(ID=ind_table$ID, 

SUBPOP=ind_table$SUBPOP, PMIX=ind_table$PMIX)   

 

# Keep only interesting columns 

 

    ind_table$sim <- rep(1:nrep, each=nrow(ind_table) / nrep) # 

number the replicates 

 

    result <- data.frame(ind_table %>% group_by(sim, ID) %>% 

summarize(SUBPOP=sample(SUBPOP, size=1, prob=PMIX))) 

 

    return(result) 

} 
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