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Summary

We show that in Zermelo-Fraenkel Set Theory without the Axiom of Choice (ZF), a surjec-
tively modified Continuum Function §(x) can take almost arbitrary values on all cardinals.
This is in sharp contrast to the situation in ZFC, where on the one hand, Easton’s Theo-
rem states that the Continuum Function on the class of all regular cardinals is essentially
undetermined, but on the other hand, various results show that the value of 2% for sin-
gular cardinals k is strongly influenced by the behavior of the Continuum Function below.

Without the Axiom of Choice (AC), the powerset of a cardinal £(x) is generally not well-
orderable, and there are different ways how “largeness” can now be expressed. The
O-function maps any cardinal s to the least cardinal o for which there is no surjective
function from (k) onto «, thus measuring the surjective size of the powersets £(r).

Our first theorem answers a question of Saharon Shelah, who asked whether there are
any bounds on the #-function in the theory ZF + DC + AX,4. Here, the axiom AX, is the
assertion that for every cardinal A, the set [A]*0 (the collection of all countable subsets of
A) can be well-ordered. Together with the Axiom of Dependent Choice (DC), the theory
ZF + DC + AX4 provides a rich framework for combinatorial set theory in the —=AC-context,
in which set theory is “not so far from normal” (Shelah). Nevertheless, we prove that the
answer to Shelah’s question is no: Given any “reasonable” behavior of the #-function on
a set of uncountable cardinals, we construct a symmetric extension N £ ZF + DC + AX,
where this behavior is realized. More precisely: For sequences of uncountable cardinals
(ky | m <) and (o, | n <~y) with certain natural properties in our ground model V', we
construct a cardinal-preserving symmetric extension N 2 V with N = ZF + DC + AX, such
that 6V (k,) = o, holds for all n <.

Our forcing notion is based on ideas from the paper “Violating the Singular Cardinals
Hypothesis without Large Cardinals” (2012) by Moti Gitik and Peter Koepke. We mod-
ify and generalize their construction in order to treat not only the cardinal &, but the
f-values of all cardinals (k, | 7 <) simultaneously.

For every n <, we add a,-many new x,-subsets to the ground model, which are linked in
a certain fashion in order not to accidentally raise the #-values of the cardinals below. Our
eventual model N contains surjections s : £(x,) - « for every n <y and a < ), but N
does not contain a surjection s: P(x,) - a, for any n < y. Moreover, an Approzimation
Lemma holds: Any set of ordinals located in N can be captured in a “mild” V-generic
extension that preserves cardinals and the GCH. Thus, cardinals are N-V-absolute.

This great freedom provided to the Continuum Function in ZF + DC + AX, differs dras-
tically from the limitations and restrictions prominent in ZFC.

Our second theorem deals with the question whether also any “reasonable” behavior of
the f-function on a class of infinite cardinals can be realized in ZF. (The construction
explained above can not be straightforwardly generalized to a class-sized forcing notion



and is therefore only suitable for treating set many #-values at the same time.)

Given a ground model V' with a function F': Card — Card on the class of infinite cardinals
such that F' is weakly monotone and F'(x) > x** holds for all &, is there is a cardinal-
preserving extension N 2V with N & ZF such that 0V (x) = F'(k) for all x € Card?

We introduce a new notion of class forcing P, consisting of functions on trees with finitely
many maximal points. The trees’ levels are indexed by cardinals, and on any level x,
there are finitely many vertices (k,7) with i < F'(x). Below any vertex (x,7), we will add
a new rk-subset to the ground model. Since we do not allow splitting at limits for the
trees, it follows that this forcing notion indeed adds F'(x)-many new x-subsets for every
k. Our eventual model N is a symmetric extension by this class forcing P. We prove
that N = ZF, although P is not pretame and collapses all cardinals. Moreover, N can be
approximated from within by rather “mild” V-generic extensions and hence, preserves all
cardinals. Finally, we prove that 6V (k) = F(x) holds for all k.

Note that by finiteness of the trees however, it is not possible to retain DC in the sym-
metric extension V.

We conclude that any “reasonable” behavior of the f-function can be realized in ZF — the
only restrictions are the obvious ones. In other words: An analogue of Easton’s theorem
holds for all cardinals.
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Chapter 0

Introduction

0.1 The Continuum Function in ZFC

Investigations of the Continuum Function k — 2% lead back to the very beginnings of set
theory. In 1878, at a time where the theory of transfinite ordinal numbers had not been
developed yet, Georg Cantor postulated his first version of the Continuum Hypothesis
(CH):

There is no set the cardinality of which is strictly between the cardinality of the set R of
real numbers and the cardinality of the set N of natural numbers.

A few years later, the theory of cardinals and their exponentiation lead Cantor to the
final form:

2N0 = Rl (CH) .

The question about the truth or falsehood of the Continuum Hypothesis became the first
on David Hilbert’s famous list of important open problems, presented at the International
Congress of Mathematicians in 1900. Cantor was convinced that the Continuum Hypoth-
esis should be true, and tried in vain to prove it for many years. It was not until 1963,
45 years after Cantor’s death, that Paul Cohen gave a proof in [Coh63| and [Coh64] that
2%0 can be any cardinal x of uncountable cofinality in ZFC. Before that, Kurt Godel had
shown in |G6d40] that CH holds in his constructible universe L. Thus, not only was the
Continuum Hypothesis among the first statements that were shown to be independent of
ZF, but the technique of forcing that Paul Cohen invented in his proofs has had a decisive
impact on modern set theory as a powerful tool for establishing relative consistency and
independence results.

However, there is no evidence that Georg Cantor or any of his contemporaries generalized
the Continuum Hypothesis to arbitrary R, ([Moolll p. 491]).

In 1904, a talk by Julius Konig at the International Congress of Mathematicians at Hei-
delberg attracted attention, where he gave a “proof” that CH is false. Shortly after, Felix
Hausdorff discovered that the origin of the mistake was the theorem by Felix Bernstein
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(IBex01]),

NOA— RO(
R = 2% L n

which fails in the case that a =0 and p = w. This lead Hausdorff to the notion of cofinal-

ity, followed by extensive research on order types. In [Hau0O8|, Hausdorff postulated the
Generalized Continuum Hypothesis (GCH) in the following form:

If the ordinal o has a predecessor o — 1 and R, is reqular, then R, = Ry = 28a-1,

Replacing o by a+ 1 (taking in consideration that Hausdorff had shortly discovered that
with the Axiom of Choice, it follows that any successor cardinal R,,; is regular), this
yields:

VaeOrd 2% =Rr,,; (GCH).

Hausdorff never took a clear position whether the GCH should be true or false, while
methods for constructing independence results were still out of reach at that time.

In [G5d38], where Kurt Godel introduced the class L of constructible sets, he proved the
consistency of the GCH with ZFC. The first global result about possible behaviors of the
Continuum Function k — 2% contradicting GCH was given by William B. Easton in [Eas70],
seven years after Paul Cohen had invented the method of forcing. Easton’s theorem states
that any reasonable behavior of the 2#-function on the regular cardinals x is consistent
with ZFC. Indeed, the only constraints are weak monotonicity (k < A - 2% < 2*) and
Kinig’s Theorem, which implies cf (2“) > k for all k.

Easton’s Theorem reads as follows:

Theorem (William B. Easton). Let V' be a ground model of ZFC + GCH with a class func-
tion F' whose domain consists of reqular cardinals and whose range consists of cardinals,
such that for all k, A e dom F' the following properties hold:

e k<A —> F(k)<F(N),
o cf F(k) > k.

Then there exists a generic extension V[G] = ZFC by class forcing such that V and V[G]
have the same cardinals and cofinalities, and V[G] e 2% = F(k) holds for all k e dom F.

Easton’s forcing construction takes “many” Cohen forcings, and combines them in a way
that was henceforth known as the Faston product. This technique generalized results by
Cohen and Solovay, which had only allowed for setting finitely many 2%-values simultane-
ously.

Summing up, the behavior of the Continuum Function on the class of regular cardinals
follows the rules of “anything goes”. There are no restrictions, except for the obvious ones.

For singular cardinals however, the situation is a lot more involved, since the value of 2%
for singular x is strongly influenced by the behavior of the Continuum Function below. In
the model constructed by Easton, the 2%-values for singular s are as small as possible, so

2
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the Singular Cardinals Hypothesis (SCH) holds, which is the following statement:
Whenever k is a singular cardinal with 2% < k, then k' = k*.
In particular:

Whenever k is a singular cardinal with the property that 2* < k holds for all X < K, then
26 = K*.

It turned out that the negation of the SCH is tightly linked with the existence of large
cardinals. Among the first results in this direction was a theorem by Menachem Magidor
([Mag77b] and [Mag77al]) who proved that, assuming a huge cardinal, it is possible that
GCH first fails at a singular strong limit cardinal. On the other hand, Ronald Jensen and
Keith Devlin proved in [DJ75| that the negation of 0' implies SCH. Moti Gitik deter-
mined in [Git89] and [Git91] the consistency strength of -SCH being the existence of a
measurable cardinal A of Mitchell order o(\) = A**.

There are many more results about possible behaviors of the Continuum Function starting
from large cardinals. For instance, a theorem of Carmi Merimovich shows that assuming
some large enough cardinal, the theory ZFC + V& (2% = k™) is consistent for each n < w
(|Mer07]).

On the other hand, Silver’s Theorem (|Sil75]) imposes a restriction on possible values of
the Continuum Function on singular cardinals, which came rather surprising at that time,
since the general impression was that maybe Easton’ theorem could be generalized to all
cardinals.

Silver’s Theorem reads as follows:

For any singular cardinal k of uncountable cofinality such that 2* = \* holds for all X < k,
it follows that 2% = Kk*.

Moreover, the SCH holds if it holds for all singular cardinals of countable cofinality.
This result was extended by Fred Galvin and Andras Hajnal shortly after (JGHT73]).

The probably most famous upper bound on the Continuum Function on singular cardinals
is the following theorem by Saharon Shelah ([She94]):

If 2% <R, for all n <w, then 2% <R,,.

In [GM96], William Mitchell and Moti Gitik prove that if there is no inner model with a
strong cardinal, then even 2% <R, .

This brief overview makes clear that there are significant constraints on possible behaviors
of the Continuum Function in ZFC. In particular, a result like Easton’s Theorem can not
exist for all cardinals.

Today’s research on the Continuum Function is concerned with firstly, finding restrictions
on possible behaviors, and secondly, finding equiconsistency results of possible behaviors
and large cardinals (cf. [Mer07, p. 2|).




Chapter 0. Introduction

All of these results essentially involve the Axiom of Choice.

In this thesis, we look at possible behaviors of the Continuum Function in ZF + -AC.
Papers by Arthur Apter and Peter Koepke (JAK10]) and Moti Gitik and Peter Koepke
(JGK12]), the latter of which this thesis is based on, show that an accordingly modified
Continuum Function has a lot more freedom in ZF. We generalize their results towards
an “Easton-like” theorem for regular and singular cardinals.

0.2 The Axiom of Choice

First formulated by Ernst Zermelo in [Zer04], the Axiom of Choice is still the most con-
troversial mathematical axiom. It states:

For every family S of nonempty sets there exists a choice function, i.e. a function f on
S with the property that f(X) € X holds for every set X in S. (Axiom of Choice, AC)

The original purpose of Zermelo was to give a rigorous proof of the well-ordering theorem,
but instead he started a debate about the tenability of this “new” axiom, providing the
possibility of arbitrary choices without the slightest hint how the resulting function f
could be defined.

Further criticism of the Axiom of Choice arose from the fact that it has some “unpleas-
ant” (|[Jec73, p. 2|) consequences that do not seem to agree with our basic intuition. The
most famous one is probably the Banach-Tarski paradox ([BT24]), based on earlier work
by Vitali ([Vit05]) and Hausdorff ([Haul4al): Any solid sphere can be decomposed into
finitely many subsets, which can be reassembled in a different way to obtain two solid
spheres, each of which has the same size as the original one. This phenomenon seems to
be a “paradox”, since dividing a sphere into finitely many parts, moving them around and
rotating them, should preserve the volume. The key point is that the subsets considered
are non-measurable sets which do not have a volume in the ordinary sense. Their con-
struction makes use of uncountably many choices.

On the other hand, the Axiom of Choice is indispensable for many important theorems
of modern mathematics. For example, it is equivalent to Zorn’s Lemma, Tychonoff’s
Theorem (the product of any family of compact topological spaces is compact), and the
theorem that every vector space has a basis.

In [G6d38|, Kurt Godel proved the consistency of AC relative to ZF by constructing
L = ZFC, starting off from a model of ZF. This paved the way for a broad acceptance of
the Axiom of Choice (together with the matter of fact that many substantial theorems in
mathematics do not get by without AC).

However, it was not until 1964 that a proof was given for the independence of AC from the
axiom system ZF; for which Paul Cohen used his shortly invented technique of forcing

(cf. [Coh63] and [Coh64]). He incorporated arguments by A. Fraenkel (|Fra22|), who had
introduced permutation models more than 40 years ago, proving the independence of AC
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from ZFA (an axiom system of set theory allowing the existence of atoms). We elaborate
on this in Chapter [1.2] p. [L3). Subsequent work by Mostowski ([Mos39]), Lindenbaum
(JLM38]) and Specker ([Spe57]) lead to the formulation of symmetric forcing, which opened
up the way for a huge variety of theorems and equiconsistency results. Starting off from a
model of a theory ZFC + X, symmetric forcing leads to a model of a theory ZF + -AC +Y,
thus showing: If ZFC + X is consistent, then so is ZF + -AC + Y.

Although there is no doubt that the Axiom of Choice should be generally accepted, it can
still be a “worthwhile endeavor” ([Shel6l §0]) to construct models of a theory ZF + ~AC+Y,
which can give deep insight in the theory ZFC itself.

In [Sheld], Shelah reflects on the Axiom of Choice from a contemporary, pragmatic point
of view. He starts with listing reasons why set theory without AC should be taken into
account, although today’s mathematicians are of course not impressed by the “paradox”
of Banach-Tarski any more, and do not question the indispensability of the Axiom of
Choice.

First, he reminds us that historically, essentially the lack of a “reasonable” theory with-
out AC lead to its acceptance. Thus, the establishment of “nice” results in ZF (+ weaker
forms of AC, for instance ZF + DC + AX4, see below) on the other hand justifies considering
ZF + -AC. Secondly, Shelah points out that a theory without AC bars the way to “mere
existence theorem|s|” ([Sheldl p. 247]), but insists on “nicely definable” [Shel6l, §0]| solu-
tions. Thus in a sense, existence theorems are “strengthen|ed|” [Shel6, §0] by weakening
AC.

We now look at weak forms of AC, leading to rich theories.

The Axiom of Dependent Choice (DC) was introduced by Paul Bernays in 1942
(|Berd2)):

For every nonempty set X with a binary relation R such that for all x € X there isye X
with yRx, it follows that there is a sequence (x, | n <w) in X such that x,.1 Rx, for all
n <w. (Axiom of Dependent Choice, DC)

Over ZF, the axiom DC is equivalent to the Baire category theorem for complete metric
spaces, and it is equivalent to the Lowenheim-Skolem theorem. Over ZF + DC, it is con-
sistent that every set of reals is Lebesgue measurable ([Sol70]). (The construction of a
non-measurable set requires uncountably many choices.)

The Axiom of Countable Choice (CC or AC, ), asserting that any countable collec-
tion of nonempty sets has a choice function, is strictly weaker than DC.

The Axiom of Dependent Choice can be generalized as follows, for x a cardinal:

Let § be a nonempty set with a binary relation R on S, such that for every a < k and
every function f:a — S, there exists y € S with f Ry. Then there is f : k - S such that
fraRf(a) holds for all a < k. (DCy)

The Axiom of Choice implies that DC,, holds for all x —indeed, Y« DC, is equivalent to AC.




Chapter 0. Introduction

When dealing with real numbers, surprisingly often the Axiom of Dependent Choice is
sufficient (instead of full AC), and the theory ZF + DC provides an interesting framework
for real analysis.

Concerning combinatorial set theory however, investigations under ZF + DC seemed rather
hopeless in the first place. A crucial step in the other direction was a paper by Saharon
Shelah (|[She97]) with the main result in ZF + DC that whenever y is a singular cardinal of
uncountable cofinality such that |H (u)| = i, then p* is regular and non-measurable. In the
case that the power sets («) are well-orderable for all a <Ry, with [Usey,, P(a)] =Ry,
it essentially follows that also P(®,,) is well-orderable.

Subsequently (see [Shel0] and [Shel6]), Shelah showed that much of pef theory is possible
in ZF + DC, if an additional axiom is adopted:

For every cardinal X\, the set [A\]*° can be well-ordered. (AXq)

He calls AX; an “anti-thesis to considering L[R]” ([Shel6l §0|) where roughly speaking,
only 2% lacks a well-ordering.

Starting from a ground model V £ ZFC, any symmetric extension by countably closed
forcing yields a model of ZF + DC + AX; (see [Shel0, p.3 and p.15]). In [Shel6, 0.1],
Shelah concludes that ZF + DC + AX, is “a reasonable theory, for which much of combi-
natorial set theory can be generalized”. For example, he proves a rather strong version of
the pcf theorem, gives a representation of A* for A >> k (concluding that [A]* can be be
“almost well-ordered” ([Sheldl, p. 249]) ), and proves that certain covering numbers exist.
Moreover, Shelah shows that in ZF + DC + AX, there is a proper class of regular successor
cardinals. (There can still be singular successors, but “not too many”, [Sheldl p. 249]).
In [Sheld, p. 249], Shelah concludes that set theory in ZF + DC + AX, is “not so far from
normal”, which makes investigations in ZF + DC + AX4 a worthwhile venture.

0.3 The Continuum Function in ZF

In Chapter we saw that in ZFC, the Continuum Function on the class of all regular
cardinals is essentially undetermined by Easton’s Theorem, while for singular cardinals
r on the other hand, possible values of 2% are strongly influenced by the behavior of the
Continuum Function below. In particular, an Easton-like theorem for regular and singular
cardinals can not exist.

All results setting bounds on possible 2%-values for singular cardinals essentially involve
the Axiom of Choice. Without AC, however, there is a lot more possible:

In JAK10|, Arthur Apter and Peter Koepke examine the consistency strength of the nega-
tion of SCH in ZF + —AC. In this context, one has to distinguish between injective and
surjective failures. An injective failure of SCH at k is a model of ZF + -AC with a singular
cardinal x such that GCH holds below «, but there is an injective function ¢ : A\ = £(k)
for some A > k**. A surjective failure of SCH at k is a model of ZF + -AC with a singular
cardinal k such that GCH holds below x, but there is a surjective function f: (k) - A
for some cardinal A\ > k™. On the one hand, Arthur Apter and Peter Koepke construct
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injective failures of the SCH at R, ®,, and R, that would contradict the theorems by
Shelah ([She94]) and Silver ([Sil75]) in the ZFC-context, but have fairly mild consistency
strengths in ZF + —AC. For instance, they prove that the theory

ZFC + 3k (o(k) =™ + w2)7

where o(k) denotes the Mitchell order of the measurable cardinal, is equiconsistent with
the theory
ZF + -AC + “ GCH holds below ®,,” +

+ “there is an injective function ¢: Ry, = [Ry,]“? 7.

On the other hand, regarding a surjective failure of the SCH, they prove that for every
a > 2, ZFC together with the existence of a measurable cardinal is equiconsistent with the
theory

ZF + -AC + “GCH holds below &, 7 +

+ “there is a surjective function f:[R,]Y = R0 .

It follows that also without the Axiom of Choice, injective failures of the SCH are in-
evitably linked to large cardinals. Regarding surjective failures however, one can not
replace the surjective function f : [R,]¥ — R,,o in their argument by a surjection f :
£(R,) = Ry42; so the following question remained:

Is it possible for A > ®,,9, to construct a model of ZF + =AC where GCH holds below R,
and there is a surjection f:{(R,) > A without any large cardinal assumptions?

This question was positively answered by Motik Gitik and Peter Koepke in [GK12|, where
a ground model V' = ZFC + GCH with a cardinal A > R,,» is extended via symmetric forcing
such that the extension N = V(G) preserves all V-cardinals, the GCH holds in N below
R, and there is a surjective function f:£(R,) — .

More generally, in the absence of the Axiom of Choice where (), the power set of a
cardinal k, is generally not well-ordered, the “size” of (k) can be measured surjectively
by the #-function

0(k) :=sup{aeOrd | 3 f:P(r) - a surjective function},

generalizing the value 0 := §(w) prominent in descriptive set theory. In the —-AC-context,
the f-function provides a surjective substitute for the Continuum Function x — 2%, If
0(k) = u, there exists a surjective function f : (k) - « for every « < p, but there is no
surjection function f: (k) - p. Since also without the Axiom of Choice, there is always
a surjection f: (k) — x*, it follows that 0(x) > k** for all cardinals x.

One can show that in the model constructed in |[GK12], it follows that indeed, 0(R,) = A*.
The question arises to what extent this result can be generalized: Is it possible to do a
similar construction and replace R, by a cardinal x of uncountable cofinality? What
happens if we want 6(k) to be a limit cardinal? And is it possible to treat several
cardinals k at the same time and set their #-values independently? Can we perhaps even
modify the #-function as we wish?

This leads us to our main question:
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Is the O-function essentially undetermined in ZF?

We will see that the answer is yes.

The construction introduced in [GK12| can roughly be described as follows: A ground
model V is extended by a forcing notion P adding A-many subsets of R,. These subsets
are linked in a certain fashion to make sure that not too many R,-subsets are adjoined for
n < w. The eventual model NNV is a symmetric submodel of the generic extension, generated
by certain equivalence classes of these A-many R,-subsets.

In Chapter 2, we modify and generalize this forcing notion. Given a ground model
V £ ZFC + GCH with a “reasonable” behavior of the f-function on a set of (regular
or singular) cardinals, our construction provides a cardinal-preserving symmetric exten-
sion where this behavior is realized.

One important modification is that we replace finiteness properties by the property of
being countable, which gives a countably closed forcing notion P. Together with a count-
ably complete normal filter on our P-automorphism group, it follows that the according
symmetric extension N is a model of ZF + DC + AX, (cf. [Karl4l Lemma 1] and [Shel6,
p. 3 + 15]).

Our first main theorem (see [FK18|) states:

Theorem. Let V be a ground model of ZFC + GCH with ~ € Ord and sequences of uncount-
able cardinals (K, | 1 <) and (o, | 1 <), such that (k, | n <) is strictly increasing
and closed, and the following properties hold:

e Vn<n' <y ay<ay, ie. the sequence (o, | 1<) is increasing,
o VN <y ay2K)T,

e Vn<vy cf ay>w,

e Vn<y (ay=af ->cf a>w).

Then there is a cardinal- and cofinality-preserving extension N 2V with N = ZF + DC +
AX4 such that that 0N (k,) = ) holds for all n <.

Firstly, this result gives an answer to our main question for the theory ZF + DC + AXy:
Yes, the O-function is essentially undetermined on any set of cardinals.

Secondly, the theorem above answers a question of Shelah: Firstly, in [Shel(, §0], he
emphasizes that under ZF + DC + AX4, we “cannot say much” on possible cardinalities of
P(k). In [Shel6l §0.2 1)], Shelah asks, referring to [GKI2]: “Can we bound hrtg £(u)]
[=0(wn)] for p singular?” No, we can not.

! In [Shel6, §0.4 1)], Shelah defines “hrtg (A) = min{« | there is no function from A onto a}”. Then
hrtg (k) = min{a € Ord | Af : (k) — « surjective function} = sup{8 ¢ Ord | If : P(x) —
B surjective function} = 6(k).

This does not coincide with the notion of the Hartogs number of a set X, which is usually defined as the
least ordinal « such that there is no injection from « into X.
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Chapter[3|deals with the question whether also any “reasonable” behavior of the f-function
on a class of (regular or singular) cardinals can be realized. Before that, in Chapter
we argue that a construction like in Chapter 2 can not be straightforwardly generalized
to a class-sized forcing notion and is therefore only suitable for treating set many 6-values
at the same time.

This gives rise to the following question: Given a ground model V' with a “reasonable”
function F': Card - Card on the class of all infinite cardinals, is there a cardinal-preserving
extension N 2V where 0V (x) = F(x) holds for all k?

In Chapter [3.1 we introduce a new notion of forcing P whose elements p are functions on
trees (t,<;) with finitely many maximal points. The trees’ levels are indexed by cardinals,
and on any level k, there are finitely many vertices (k,7) with ¢ < F(k). For successor
cardinals x*, the value p(x*,7) is a partial 0-1-function on the interval [, x*). Thus, for
any condition p and (k,7) € dom p, it follows that U{p(v*,7) | (v*,]) < (k,1)} is a partial
function on k with values in {0,1}. Since we do not allow splitting at limits for the trees,
it follows that this forcing indeed adds F'(k)-many new rk-subsets for every cardinal .

Our eventual model N is a symmetric extension by this class forcing P. Although P is
not pretame and collapses all cardinals, we will see that N = ZF. Moreover, cardinals are
N-V-absolute, and 6V (k) = F(k) holds for all k.

In other words: In ZF, the f-function can take almost arbitrary values on all cardinals.
The only constraints are the obvious ones: weak monotonicity, and 6(x) > x** for all k.

This gives our second main theorem (see [FK16]):

Theorem. Let V be a ground model of ZFC + GCH with a function F' on the class of
infinite cardinals such that the following properties hold:

o Yk F(K) 2 k**
o Vi, \ (k<A > F(k) <F(N).

Then there is a cardinal-preserving extension N 2V with N &= ZF such that OV (k) = F(k)
holds for all k.

This complements our results from Chapter 2] and gives another answer to our main ques-
tion above: Yes, the Continuum Function is essentially undetermined in ZF — there is an
Easton-like theorem for all cardinals.

This thesis is structured as follows: Following some preliminaries (see Chapter , Chap-
ter[[] contains a comprehensive introduction to Symmetric Forcing. We start with the gen-
eral forcing technique and then introduce symmetric forcing, largely following [Dim11],
where the technical framework is given for symmetric forcing with partial orders (without
using Boolean algebras). Chapter complements the presentation from [Dim1i] by
including the case that one has to deal with automorphisms 7 : D, - D, defined not on
the whole forcing notion P, but only on a dense subset D, € P. Boolean algebras are
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avoided by working with equivalence classes of partial automorphisms [7]. We also set
the framework for Symmetric Class Forcing without Boolean algebras, in the case that
the class forcing P is considerably nice.

In Chapter [2, we first present the forcing notion introduced by Moti Gitik and Peter
Koepke (cf. [GKI12]). After that, we give a proof of our first main theorem: Any “reason-
able” behavior of the f-function on a set of uncountable cardinals (given by sequences in
V., (K, | 7<), and the according f-values (a,, | 7 < v)) can be realized in ZF + DC + AX,.
We discuss what ‘“reasonable” means in this context, and then introduce our countably
closed forcing notion P, based on the forcing notion constructed in [GK12|. The eventual
model N = ZF + DC + AX, is a V-generic symmetric extension by P. We show that N
preserves all cardinals, and the -values are as desired: 0V (k,) = o, for all n <.

In Chapter [3] we give a proof of our second main theorem: Given a ground model V/
with a function F': Card — Card on the class of infinite cardinals, respecting the rules of
weak monotonicity and F(k) > k** for all k € Card, we construct N 2 V with N = ZF
such that cardinals are N-V-absolute and 0V (k) = F(x) holds for all k € Card. We first
introduce our class-sized forcing notion P, and then use our techniques from Chapter
to construct a V-generic symmetric extension, which will be our eventual model N. This
yields an Easton-like theorem in ZF for all cardinals.

0.4 Preliminaries

The axiom system ZFC (Zermelo-Fraenkel set theory with the Aziom of Choice) is the
most common foundation of mathematics. It consists of the following axioms:
Extensionality. If two sets X and Y have the same elements, then X =Y.
Foundation. Every nonempty set has an e-minimal element.

Pairing. If X and Y are sets, then there exists a set {X,Y} which contains exactly X
and Y.

Union. If X is a set, there exists a set Y = (JX which is the union of all elements of X.
Infinity. There exists an infinite set.

Power Set. For every set X there exists a set Y = £(X) which is the collection of all
subsets of X.

Separation. If ¢ is a formula with its free variables among x, a, z; then for any sets a,
z, also {xeal| ¢(x,a,z2)} is a set.

Replacement. If ¢ is a formula with its free variables among x, vy, a, z; then for
any sets a, z such that for all z € a there is exactly one y with ¢(x,y,a,z), also
{y|Jzea p(x,y,a,2)} is a set.

Axiom of Choice. Every family of nonempty sets has a choice function.

Separation and Replacement are schemas (they contain an axiom for every formula ).
The others are single axioms.

10
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The Axiom System ZF (Zermelo-Fraenkel Set Theory) is ZFC without the Aziom of
Choice. In context with class forcing, sometimes Power Set is excluded, which yields
the theory ZFC™ (and ZF~, respectively). Note that in ZF~, not all commonly used choice
principles are equivalent, so we have to insist on the strongest form:

Well-ordering. Every set can be well-ordered.
Then ZFC™ is the theory obtained from ZF~ by adding Well-ordering.
Also in context with class forcing, sometimes Union is weakened:

Weak Union. If X is a set, then there exists a set Y 2 [JX which is a superset of the
union of all elements of X.

If Separation is available, then Union follows from Weak Union.

The following axiom schema implies Replacement, and is equivalent to Replacement if
Power Set holds:

Collection. If a and z are sets and ¢ is a formula with its free variables among x, v, a,
z, such that for every z € a there exists y with ¢(z,y,a,z), then there exists a set Y with
the following property: For every z € a there is y € Y with p(z,y,a, 2).

We denote by L. the language of set theory, i.e. first-order language with the binary pred-
icate symbol “€ 7.

Throughout this thesis, we work in first-order set theory ZFC and forego introducing a
second-order axiomatization like Godel-Bernays set theory GB, which would allow for
quantification over classes. In our setting, the classes are simply the definable classes
in V, i.e. objects of the form {z | ¢(z,zo,...,2,-1)}, where ¢ € L, with finitely many
parameters xo,...,T,_1 from V. We will treat V-classes informally, but always take care
that everything can be described in the language L..

Our notation is mostly standard and follows textbooks as [Jec06] or [Kun06].

We write Ord and Card for the class of ordinals and the class of infinite cardinals, respec-
tively. The cofinality of an ordinal « is abbreviated c¢f a. We denote by Reg the class of
all regular cardinals (all those x € Card with cf k = k), and by Sing the class of all singular
cardinals (all x € Card with cf k < k).

A cardinal x is inaccessible if it is uncountable, regular, and a strong limit cardinal,
i.e. whenever A < k, then also 2* < k. An inaccessible cardinal is a type of large cardinal:
It can not be reached from smaller cardinals by the common set-theoretic operations.

For a set X, we denote by P(X) :={Y | Y € X} its power set, and by TC'(X) the transitive
closure of X, i.e. the “c "~ smallest transitive set containing X. If X has cardinality > &,
then [X]* denotes the collection of all Y € £(X) with |Y| = k.

Given a function f, we denote by dom f its domain, and by rg f its range. We write
f:A— Bfordomf=Aand rgfc B. If the function f is injective, we write f: A - B,
if f is surjective, we sometimes write f: A - B. For a set X, we denote by idy : X - X
the function that maps every x € X onto itself.

11
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A sequence is a function whose domain is an ordinal . We use the standard nota-
tion (a; | i < a). A sequence of ordinals (a; | ¢ < «) is normal if it is strictly increas-
ing (i.e. i <j — a; <a;) and closed (i.e. for every limit ordinal 5 < «, it follows that
ag = Uicp ;).

We assume familiarity with basic cardinal arithmetic as presented in [Jec06, Chapter 5].

For the sake of completeness, we state Kdnig’s Theorem, which has decisive influence on
behavior of the Continuum Function in ZFC:

Theorem 0.4.1 (Konig’s Theorem, [Jec06l 5.10]). Let Z be a set and k;, \; € Card for
every i € L. Moreover, assume that k; < \; holds for all i € Z. Then

Zlii<H)\i.

1€l 1€l
Corollary 0.4.2 ([Jec06, 5.12]). Let k be a cardinal. Then cf (2%) > k.

The proof of Konig’s Theorem essentially involves the Axiom of Choice.
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Chapter 1

Symmetric Forcing

In this chapter, we present symmetric forcing with partial orders following [Jec73| 5.1 +
5.2| and [Dim11) 1.1 + 1.2], and after that describe our construction of symmetric exten-
sions for partial automorphisms m: D, — D,, which are not defined on the whole forcing
P but only on a dense subset D, € P. Thereby, we continue the presentation in [DimI1]
1.2|] which contains a comprehensive approach to constructing symmetric extensions by
partial orders without using Boolean Algebras. We extend the methods introduced there
in order to incorporate partial automorphisms for set and class forcing.

We start this chapter with a short overview of the history of symmetric models.

In [Fra22|, A. Fraenkel introduced the notion of a permutation model to provide a method
for establishing independence results concerning the Axiom of Choice. His work was re-
fined by Mostowski and Lindenbaum in [Mos39] and [LM38|. This approach starts from
a ground model of ZFCA, which is a modified version of ZFC that allows atoms: An atom
is not a set, and has no elements. Hence, Fxtensitonality does not holds for the atoms.

A general theory of permutation models was developed by E. Specker in [Spe57]. The
overall idea is that one can not use the axioms of ZFCA to distinguish between the atoms,
which allows for constructing models in which the set A of atoms does not have a well-
ordering.

Although this method can not be applied to models of ZFC, it gives some insight into the
problem how the independence of the Axiom of Choice from the other axioms could be
established.

Indeed, when Paul Cohen introduced the method of forcing in [Coh63| and [Coh64], set
theorists noticed that certain sets derived from the generic filter behave similarly as the
atoms in the theory ZFCA. The symmetric extension can roughly be constructed as fol-
lows: Automorphism of the partial order P can be extended to automorphisms of the
name space, and the symmetric extension shall consist of the interpretations of all those
names which are hereditarily symmetric, i.e. they hereditarily remain unchanged under
“many” P-automorphisms. In order to specify the phrase “many”, one introduces an au-
tomorphism group A on the partial order, and a normal filter F on A. A P-name 7 is
symmetric, if the set {m € A | 7& = &} is an element of F, and recursively, a P-name 7 is
hereditarily symmetric, © € HS, if & is symmetric and gy € HS for all y e domz. Then the

13



Chapter 1. Symmetric Forcing

symmetric extension V(G) = {z% | © € HS} is a model of ZF.
This chapter is structured as follows:

In Chapter we give the preliminaries for the method of forcing, in order to fix our
notation and list some basic properties.

After that, in Chapter we present the technique of symmetric forcing with partial
orders. We follow the presentation given in [Diml1l, 1.1 + 1.2], where the standard
method of forcing with Boolean values from [Jec06] and [Jec73| is translated to partial
orders.

In the case that the occuring automorphisms 7 are not defined on the whole forcing
P but only on a dense subset D, ¢ P however, the standard approach is to turn back
to Boolean-valued models, since any such 7 : D, - D, can be uniquely extended to an
automorphism of the according complete Boolean algebra B(P). The aim of Chapter [1.2.3]
is to incorporate also this situation (which appears frequently in practical applications)
into the technique of symmetric forcing with partial orders.

In Chapter we give a brief introduction to class forcing. As an example, we discuss
FEaston forcing, a class-sized product forcing introduced by William Easton in |[Eas70] in
order to show that in ZFC, the Continuum Function on the class of all regular cardinals
can take almost arbitrary values.

Finally, in Chapter we set the framework for constructing symmetric extensions by
class forcing in the case of partial automorphisms ©: D, - D, on dense subsets D, c P.
We restrict to the case that firstly, the class forcing P = Uyeorg Po can be written as an
increasing chain of set-sized complete subforcings (with certain additional properties) and
secondly, any automorphism 7 : D, — D, defined on a dense class D, € P is the canonical
extension of some 7, : D, n P, - D, n P,, where D, n P, is a dense subset of P,.
Symmetric class forcing will be used in Chapter

1.1 Forcing: Notation, Basic Properties and Examples.

1.1.1 Forcing Preliminaries.

The method of forcing was invented by Paul Cohen in [Coh63| and [Coh64], where he
proved the independence of the Continuum Hypothesis (CH) of ZFC. The idea is to ex-
tend a countable, transitive model of set theory V' (the ground model) by a generic filter
G, to obtain the generic extension V[G] which is the smallest transitive ZFC-model with
G € V[G] and V ¢ V[G]. Forcing conditions in the ground model approximate G, and
determine more and more properties of the generic extension V[G].

Forcing is a very general and flexible method for producing a variety of models and es-
tablishing relative consistency results.

In this chapter, we give a short overview of the forcing technique and list some basic
properties. A comprehensive introduction to forcing and generic extensions can be found
in [Kun06, VII] or [Jec06l 14].

14
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As an example, we will discuss several versions of Cohen forcing: Firstly, adding a Cohen
generic is probably the simplest and most intuitive way of adding a new set to the ground
model; and secondly, Cohen forcing is the starting point for modifying the Continuum
Function k — 2%,

We fix a ground model V, i.e. a countable, transitive model of ZFC. For a discussion of
the metamathematical background, we refer to [Kun06, VII].

Definition 1.1.1. A forcing is a set (P, <, 1) such that (P, <) is a preorder (i.e. the
relation “<” is reflexive and transitive on P) with greatest element 1.

The elements of P are the conditions. If p, ¢ € P with ¢ < p, then ¢ is stronger than p. Two
forcing conditions p, g € P are compatible (we write p|q) if they have a common extension
(i.e. there exists r € P such that r < ¢ and r < p), and incompatible if they do not (we
write p 1 q).

Most natural forcings are antisymmetric, i.e. for all p, ¢ € P, we have (¢ <pAp<q) > p=q.
Sometimes, antisymmetry is an additional requirement in Definition [L.1.1]

Note that, given a preorder (P,<) without a maximal element, one can easily construct
a new one by adding a maximal element 1 ¢ P “on top”, and work with the forcing notion
(Pui,xg1).

Definition 1.1.2. A forcing P is separative if for all py, p; € P with pg £ p; there exists
p < po such that p L p;.

Whenever a forcing notion P is not separative, it can be replaced by a separative partial
order that yields the same generic extensions.

For the rest of this Chapter, let (P,<,1) denote a forcing.

We will always assume that a forcing notion (P,<,1) is separative (which is the case for
most forcing notions that occur in practice).

Before we can construct generic extensions, we need the following notions:

Definition 1.1.3. A set A ¢ P is an antichain if its elements are pairwise incompatible.
A mazimal antichain is an antichain A € P with the property that for all antichains B ¢ P
with B 2 A, it follows that B = A.

Definition 1.1.4. A set D ¢ P is dense if for all ¢ € P there exists ¢’ € D with ¢’ < ¢q. If
in addition, D is downwards closed (i.e. g € D and ¢' < g imply ¢’ € D), then D is called
open dense. For a condition p € P, set D € P is dense below p if for every g < p there exists
q' € D with ¢’ <q.

A set D c P is predense if for all ¢ € P there exists ¢’ € D with ¢’ | ¢. For a condition p € P,
a set D c P is predense below p if for every ¢ < p there exists ¢/ € D with ¢ | g.

Definition 1.1.5. A set @ # F' C P is a filter on P if the following holds:

(i) F is upwards closed: If p e F and g € P with ¢ > p, then also q € F.

15
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(ii) F' is directed, i.e. for any p, q € F, there exists r € F' with r < p, ¢.
A filter G ¢ P is V -generic on P if it intersects every dense set D € P with D e V.

It is not difficult to verify that a filter G € P is V-generic on P if and only if it hits every
maximal antichain / open dense set / predense set in V. If G is V-generic on P and p € G,
then G n D # & for every set D that is dense below p.

In the case that P is nonatomic (or nontrivial), i.e. every p € P has two incompatible ex-
tensions, an easy density argument yields that P-generic filters never exist in the ground
model V.

On the other hand, since we have assumed our ground model to be countable, one can
enumerate the dense sets in V' from the “outside” and find a filter G on P that hits every
dense set in V. This settles the question of the existence of a V-generic filter (cf. [Kun06,
2.3| or [JecOG, 14.4]).

As an example, we look at Cohen forcing Fn(w,2,%q), which adds an w-subset to the
ground model. It was introduced by Paul Cohen in|[Coh63|, who used a generalized ver-
sion Fn(wy x w,2,Rq) to construct a model in which 2% = R, holds, i.e. the Continuum
Hypothesis fails. Further generalizations can be used to violate the Generalized Contin-
uum Hypothesis GCH at any regular cardinal x (see [Sol63]).

Example 1.1.6 (Cohen forcing). Let Fn(w,2,Rq) := {p: domp — 2 | domp Cw, |domp| <
w} denote the set of all finite partial functions from w into {0,1} ordered by reverse in-
clusion, i.e. p < ¢ iff p 2 q. For G a V-generic filter on Fn(w,2,Rq), it follows that any
p, q € G are compatible; hence, UG is a function. Moreover, for every n < w, the set
D, == {p € Fn(w,2,%q) | n € domp} is dense; hence, G n D,, + @ and it follows that
nedomUG. Thus, UG :w — 2, and since Fn(w,2,Rq) is nonatomic, we obtain UG ¢ V.
The function UG : w — 2 is called a Cohen real.

In many cases, the generic filter G is confused with UG.

Cohen forcing is the starting point for changing the value of 2% and investigating possible
behaviors of the Continuum Function.

We will now define the generic extension V[G]. Informally, V[G] consists of all sets which
can be constructed using G and finitely many elements of the ground model V. Every
x € V[G] has a name & € V| which tells how = can be constructed from G.

Definition 1.1.7. The class of P-names for V' is defined as follows: Recursively, we define
the set Name! (P) by setting Namey (P) := @, Name!, ,(P) := {& | ¢ € Name) (P) x P)},
and Name} (P) := Uycy Name) (P) for A a limit ordinal.

The class of P-names for V is Name" (P) = Upeorq NameY (P).

For i € Name" (P), let rkps := a if & € Name!,, (P) \ Name! (P). This is the P-rank of .
For any i € Name" (P), it follows that rkpi = sup{rkpy + 1 | § € dom &}, and Name) (P) is
the collection of all # € Name" (P) with rkpi < a.

We introduce the following notation:
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For a P-name & € Name" (P), let

do(2) :=doma, dps1(2) := domd, (&) for n <w, and Tdom(z) := | d,(&).

n<w

We say that a set S ¢ Name" (P) is dom-transitive if for every @ € S and 7 € dom 4, it fol-
lows that also ¢ € S. Then Tdom(#) u {#} € Name" (P) is the “c™- smallest dom-transitive
set 1" with z € T

Now, we are ready to define the interpretation of P-names by a generic filter, along the
well-founded relation §y R2 <> ¢ € dom .

Definition 1.1.8. Let G be a V-generic filter on P. If & € Name" (P), then
#%={y° | 3pe G (9,p) € i}.

The generic extension of V' by G is defined as follows:
V[G] = {2% | # e Name" (P)}.

Then V[G] consists of all those x which are definable in V[G] from G and finitely many
elements of V.

The elements of the ground model a have canonical names a, defined recursively as follows:

a={(b1)|beal.

[1g i

It follows inductively that a“ = a holds for all a € V. For ordinals «, the is usually
omitted and we write « instead of ¢.

The canonical name for the generic filter is

G = {(p,p) | peP}.
Then for any H a V-generic filter on P, it follows that GH = H.

Theorem 1.1.9 ([Jec06l 14.5]). Let G be a V-generic filter on P. The generic extension
V[G] is the smallest transitive ZFC-model with the property that V u {G} < V[G].

It is not difficult to see that Ord" = Ord" 1“1,

If &, iy e Name" (P) with (g, p) € &, then p forces that ¢ € #: For any G a V-generic filter
on P with p € G, it follows that §¢ € . This concept is generalized in the following
definition:

Definition 1.1.10. Let p(vg,...,v,-1) € Lc be a formula of set theory and g, ..., 4, 1 €
Name(P). We say that p forces ¢(&o, ..., Tn-1),

pirg o(dg,. .., Tpo1),

if V[G] & p(2§,...,4% ) holds for every V-generic filter G on P with p e G.
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When V and P are clear from the context, we write just “I+”. Similarly, when the ground
model V' is clear, we write Name(P).

Of course, Definition takes place in an outer model, not in V. However, one
can show that for a formula of set theory ¢ = p(vg,...,v,-1) fixed, the forcing relation
pirp o(To, ..., Tn-1) for pe P and o,...,&,1 € Name(P) can be expressed in the ground
model V. This definability lemma is an integral part of the theory of forcing and crucial
for proving that the generic extension V[G] is a model of ZFC. It is the first part of the
Forcing Theorem, the second part of which (the truth lemma) states that every formula
¢ € L that holds true in the generic extension V[(G], is forced by some condition p € G.

Theorem 1.1.11 (Forcing Theorem, [Kun06, VII 3.6]). Let ¢(vo,...,v,-1) € Lc denote a

formula of set theory and P a forcing in V.

e The class {(p,do,...,@n-1) | p € P, dg,...,4n-1 € Name(P), p kg o(Zo,. .., &p1)} 48
definable in V' (definability lemma).

o If G is a V-generic filter on P and iy, ..., %, 1 € Name(P) such that V[G] = p(i§,. ..
i¢ ), then there exists a condition p € G with p vy (o, ..,d4,-1) (truth lemma).

Y

The definability lemma implies that for every formula of set theory ¢(vo,...,v,-1), there
is another formula $(y, z,vo, ...,v,1) such that @(p,P,Zo,...,%,-1) holds true in V if
and only if P € V is a forcing, p € P, and p I+Y (o, ..., &p1).

We quote the following list of important properties of forcing from [Jec06, 14.7:
Proposition 1.1.12 (Properties of Forcing). Let ¢, 1) € L. denote formulas of set theory.

(1) If p, q € P such that p I+ ¢ and q < p, then also q I+ .
(2) There is no p € P with both p - ¢ and p I+ —.
(3) For every p e P, there is q < p such that q decides p, i.e. either qIF @, or q I+ —p.

For every p e P, the following holds:

4) pi+ - iff there is no q < p with qIF -y,

5) ple A iff pik @ and p -1,

6) pi- Yz ¢ iff pi- () for every @ € Name(P),

7) pik @ v Y iff for all ¢ <p, there exists r < q with r 1+ @ or r -1,

8) pi+ Iz iff for all q < p, there exist r < q and & € Name(P) with r I+ ().

(

(

(

(

(
Finally, the Maximality Principle states:

(9) If pe P with p - 3x @, there exists © € Name(P) with p I+ p(Z).
The Maximality Principle is equivalent to the Axiom of Choice.

We introduce the following notation for names for ordered pairs:

Definition 1.1.13. For &, ¢ € Name(P), let OR(4,5) = {(#,1)}, and ORp(,9) =
{(#,1),(y,1)}. Then

ORp(#,9) = {(ORp(#,9),1), (ORp(i,7), 1)}
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is the canonical name for the ordered pair of © and 1.

For G a V-generic filter on P, it follows that the interpretation ORp(&,9)¢ is the ordered
pair (4, ).
If the forcing P is clear from the context, we write just OR(z, ).

We continue with definitions and facts about isomorphisms, embeddings and projections
of forcing notions.

Definition 1.1.14. Let (P,<p,1p), (Q,<q,1q) be forcing notions. A map b: P - Q is
an isomorphism of forcings if b is bijective, b(1p) = 1g, and for all po, p; € P it follows
that po <p p; if and only if b(py) <q b(p1). If additionally P = Q, then b is called an
automorphism of P.

Even if two forcing notions P and @ are not isomorphic, they can still produce the same
generic extensions if there is a dense embedding between P and Q:

Definition 1.1.15. Let (P, <p,1p), (Q,<q,1q) be forcing notions.

e A map po: P - Q is an embedding if for all py, p; € P, firstly, if p; <p po, then
o(p1) <q 0(po), and secondly, if py Lp p1, then o(po) Lg o(p1)-

e A map o: P - Q is a complete embedding, if o is an embedding, and for every
maximal antichain A ¢ P, it follows that the pointwise image o[ A] = {o(p) | p€ A}
is a maximal antichain in Q.
If P ¢ Q and the inclusion ¢ : P - Q with «(p) = p for all p € P is a complete
embedding, then P is a complete subforcing of Q. We write P ¢, Q.

e Amap o:P — Qis a dense embedding, if o is an embedding and the pointwise image
o[P] is dense in Q.

Clearly, every dense embedding is complete. Whenever po: P — Q is a complete embedding
and H a V-generic filter on Q, then o7 '[H] := {p e P | o(p) € H} is a V-generic filter on
P with V[o '[H]] c V[H]. If p: P - Q is a dense embedding, then P and Q produce the

same generic extensions.

Definition 1.1.16. Let (P,<p,1p), (Q,<q,1q) be forcing notions. A map o:P - Qis a
projection, if the following hold:

(i) o(1p) =1q
(ii) Whenever po, py € P with p; <p po, then o(p1) < o(po).
(iii) For all p e P and g € Q with g <q o(p), there exists p’ € P with p’ <p p and o(p’) <q ¢.

Whenever ¢ : P - Q is a projection and G a V-generic filter on P, then the upwards
closure H:={qeQ | 3pe G w(p) < q} is a V-generic filter on Q.

1.1.2 Changing the Value of 2%.

In this chapter, we set the necessary preliminaries to construct a generic extension V|[G]
where 2% = Ry holds. Generalizing the forcing notion from Example this was how
Paul Cohen proved in [Coh63| and [Coh64] the consistency of -CH.
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After that, we discuss the generalization of Cohen forcing used by Robert Solovay in
[Sol63] to obtain a generic extension with 2% = A\, where & is a regular cardinal, and A is
an arbitrary cardinal with cf A > k.

Example 1.1.17 (Changing the value of 2%0). Let A be an uncountable cardinal.
Then
Fn(A x w,2,80):={p:domp—2| dompC A x w, [p| <R}

denotes the forcing notion consisting of all partial functions form A x w into {0,1} with
finite domain, ordered by reverse inclusion. If G is a V-generic filter on Fn(\ x w,2,Ry),
then for every a < A, it follows that G, : w = 2, Go(n) = G(a,n) for all n < w, is a
total function on w, thus adding a new w-subset to the ground model. An easy density
argument shows that G, # Gs whenever o # 8. Hence, Fn(\ x w,2,R() adds a A\-sequence
of pairwise different function from w into 2, and it follows that (2% )VIG] > |A|VIC],

Setting A := RY, this is not yet enough to make sure that 2% = Ry holds true in V[G],
since it remains to prove that indeed, A = N;/ [“T This will follow from the fact that the

partial order Fn(\ x w,2,Rq) preserves cardinals, i.e. for any V-cardinal «, it follows that
«a is still a cardinal in V[G].

Definition 1.1.18. A forcing P preserves cardinals if for every V-generic filter G on P
and « an ordinal, it follows that « is a cardinal in V' if and only if « is a cardinal in V[G].
A forcing P preserves cofinalities if for every V-generic filter G on P and v a limit ordinal,
it follows that cf¥ () = cfVI¢(5).

Every forcing that preserves cofinalities, preserves cardinals, as well.

The following combinatorial property guarantees the preservation of cardinals and cofi-
nalities:

Definition 1.1.19. A forcing P has the countable chain condition (c.c.c.) if every an-
tichain in P is at most countable.

If V[G] is a V-generic extension by some c.c.c.-forcing P, then every function f € V[G],
f:A— Bwith A, BeV, can be approximated by a map F eV, F: A - P(B) such that
for all a € A, it follows that f(a) € F'(a) and F'(a) is at most countable.

This gives rise to the following lemma:

Lemma 1.1.20 ([Kun06, VII 5.10]). Any c.c.c.-forcing P preserves cardinals and cofi-
nalities.

An easy application of the A-system lemma ([Kun06, IT 1.6]) shows that the forcing

notion Fn(\ x w,2,Rq) from Example [1.1.17| has the c.c.c. Hence, by Lemma [1.1.20] it
follows that Fn(\ x w,2,R¢) preserves cardinals. In particular, XY = (X)VI¢]. Hence,

V[G] E 2% > Ry, and it follows that V[G] & -CH. This is probably the most famous
consistency result in the theory of forcing:

Theorem 1.1.21 ([Coh63] , [Coh64]). If ZFC is consistent, then also the theory ZFC +
-CH is consistent.
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It was Robert Solovay who determined in [Sol63| the exact value of 2% in the generic
extension from Example [I.1.17

If X is an infinite cardinal such that X = X in V and G is a V-generic filter on Fn(\ x
w,2,Rg), then V[G] E 2% = \.

The proof uses nice names for subsets of w:

Definition 1.1.22. Let o be an ordinal and P a notion of forcing. A nice P-name for a
subset of o is of the form

={(8,p) | B<a,peAg},

where each Ag ¢ P is an antichain. We denote by Nice(P,«) the set of nice P-names for
subsets of a.

One can show that for every X ¢ a in a P-generic extension V[(], there exists a nice
name X € Nice(P,«) with X = X&,

The following lemma shows how nice names for subsets of £ can be used to put an upper
bound on the value of 2% in the generic extension:

Lemma 1.1.23 (|[Kun06, VII 5.13|). Let k and X be cardinals, and P a forcing such that
IP| <\ and P has the c.c.c.. Let G be a V-generic filter on P. Then V[G] & 2F < (AF)V.

Proof. Since every antichain in P is countable, it follows that there are < AXo-many an-
tichains in P. Hence, there are only (AR0)% = \*-many nice P-names for subsets of .
Let (X; | i < A\%) enumerate Nice(P,a) in V. For every X e PVIG(k), there exists
X e Nice(P,a) with X = X% Hence, the map F : (\%)V — PVIG)(k), F(i) = XC is
surjective. L]

More general, for any generic extension V[G] by a forcing notion P, and x a cardinal,
it follows that (27)VI&] < (2‘”°|"'“)V, since Nice(P,x) € P(x x P), so there are at most
2IPl-s_many nice P-names for subsets of «.

Applying Lemma [1.1.23| with k = R to the forcing notion Fn(A x w,2,Rq), which has
cardinality ), it follows that 2% < A\® holds true in any Fn(\ x w, 2, Rg)-generic extension.

If V = GCH, then A% = X\ for all cardinals A of uncountable cofinality; which gives the
following result:

Theorem 1.1.24 ([Kun06, p. 209 + 210]). Let V' be a ground model of ZFC + GCH with
a cardinal A such that cfv(/\) > w. Then there is a cardinal- and cofinality-preserving
generic extension V[G] with V]G] 2% =\,

Konig’s Theorem (see [0.4.1) implies that cf(2%0) > Xy must hold in any model of ZFC.
Thus, as Solovay wrote in [Sol65]: “2%0 can be anything it ought to be”.

This is a striking answer to more than eighty years of discussion after Cantor had ad-
vanced the Continuum Hypothesis in [CanT8].
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The question arises whether a similar forcing notion can also be used to modify the value
of 2% for arbitrary cardinals.

If  is regular, one can use the partial order
Fn(\ x k,2,k):={p:domp > 2, dompC A x k, |domp| < Kk},
and proceed similarly as before:

Example 1.1.25 (Changing the value of 2%). Let x, A be cardinals. The forcing
notion Fn(\ x k,2,k) :={p:domp— 2, domp c A x k, |domp| < k} consists of all partial
functions p from A x x into {0,1} with |dom p| < k, ordered by reverse inclusion. Then
Fn(\ x k,2,k) adds a A-sequence of pairwise different functions from x into 2. Hence,
whenever G is a V-generic filter on Fn(\ x k,2, k), it follows that (2%)VIG] > [\VIC]

In order to establish V[G] = 2% = A, it will be necessary that  is regular, 2<% = k, and
A® = X holds true in V.

Definition 1.1.26. Let s be an infinite cardinal in V. A forcing notion P preserves
cardinals > k (or < k), if for every V-generic filter G on P and « > k (respectively, a < k),
it follows that « is a cardinal in V if and only if « is a cardinal in V[G].

A forcing notion P preserves cofinalites > k (or < k) if for every limit ordinal v with

otV () > k (respectively, cf (7) < k), it follows that cf¥ (v) = cfI¢(5).
The following notion generalizes the c.c.c. :

Definition 1.1.27. Let x be an uncountable cardinal. A forcing P has the x-chain
condition (k-c.c.) if every antichain A ¢ P has cardinality < k.

By a theorem of Tarski, the least x such that P satisfies the k-c.c. is either finite, or regular
and uncountable. This allows us to concentrate on the k-c.c. for regular uncountable
cardinals. Then every forcing with the k-c.c. preserves cardinals and cofinalities > &:

Proposition 1.1.28 ([Kun06, VII 6.9]). Let P be a forcing and k a regular uncountable
cardinal such that P has the k-chain condition. Then P preserves cofinalities and cardinals
2 K.

As for the c.c.c., the point is that whenever G is a V-generic filter on a k-c.c. forcing P
and f: A — B a function in the generic extension V[G] with A, B € V, then f can be
approximated by a map F' eV, F: A - £(B) such that f(a) € F(a) and |F(a)| < & for
all a € A.

In particular, any forcing P preserves all cofinalities and cardinals > |P|*.

Example 1.1.20 (Changing the value of 2%, continued). An application of the
A-system lemma shows that Fn(\ x k,2, k) has the (2<%)*-c.c. Hence, Fn(\ x k,2,k)
preserves cardinals and cofinalities > (2<%)*.

In the case that k is regular in V', the preservation of cardinals and cofinalities up to x will
be guaranteed by a different combinatorial property of the partial order, the < x-closure.
Hence, in the case that 2<* = k (for instance, if V = GCH), it follows that the forcing
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notion Fn(\ x k,2, k) preserves all cardinals.

In the case that there are V-cardinals a with k* < a < 2<% however, it follows that in the
generic extension V[G], any such « is collapsed to k. Thus, cardinals are not V-V[G]-
absolute.

Definition 1.1.29. A forcing P is < k-closed if for for any v < k and (p; | i < ) a
descending sequence in P (i.e. p; < p; for all i < j <) there exists a lower bound: There
is p e P with p < p; for all ¢ <~. A forcing P is < k-closed if it is < y-closed for all v < k.

Lemma 1.1.30 ([Kun06, VII 6.14]). Let P be a < k-closed forcing, G a V-generic filter
on P and f:a -V a function in V]G], where a < k. Then feV.

This immediately implies:

Corollary 1.1.31 (|[Kun06, VII 6.15]). If k is a cardinal and P is < k-closed, then P
preserves cofinalities and cardinals < k.

Example 1.1.20 (Changing the value of 2%, continued). If k is a regular cardinal,
then Fn(\ x k,2,k) is < k-closed. Hence, the forcing Fn(\ x k,2, k) preserves cardinals
> k. If additionally 2<* = &, it follows that Fn(\ x k,2,k) preserves all cofinalities and
cardinals.

Now, assume that x is regular, 2<* = x and A\* = X\ in V. Let G be a V-generic fil-
ter on Fn(\ x ,2,k). Since 2<% = &, it follows that Fn(A x k,2,k) has the k*-cc, and
|Fn(\ x k,2,k)] < A = X\. Hence, there are at most \* = A-many antichains, and
| Nice ( Fn(\ x £,2,k),k)] < A% = A. As in the proof of Lemma , this implies 2% < \.

The following theorem is by Robert Solovay (see [Sol63]):

Theorem 1.1.32 ([Kun06, VII 6.17]). Assume that k is reqular, 2<¢ = k and N\~ = Kk in
V, and let G be a V-generic filter on Fu(\ x k,2,k). Then V[G] = 2r = .

It follows that the forcing notion Fn(\ x k,2, k) can be used to violate GCH at any regular
cardinal x: We start with a model V £ ZFC + GCH with cardinals x, A such that k is
regular and cf(\) > k. Then 2<% = k and \* = X holds; hence, for any V-generic extension
V[G] by Fn(X x k,2, k), it follows that V[G] E 2% = X. For n < &, it follows by < k-closure
of the forcing that (27)VIC] = (21)V = (n+)V = (n*)VIC.

By Kdonig’s Theorem (see0.4.1), it follows that always cf(2%) > k must hold in any model
of ZFC; hence, the requirement that cf(\) > k is not a restriction. Thus, for regular x,
the cardinality of the power set £(x) can take any possible value.

For singular cardinals x, however, the forcing notion Fn(x x A, 2, k) is not < k-closed and
collapses the cardinal k. Hence, Fn(k x A, 2, k) is not suitable for changing the value of 2~
for singular . Indeed, investigating possible behaviors of the Continuum Function 2% for
singular x is a lot more involved, and there are restrictions beyond Konig’s Theorem. For
instance, Silver’s Theorem implies that whenever k is a singular cardinal of uncountable
cofinality such that GCH holds below k, then also 2% = x* follows. We elaborate on this

in Chapter 0.1}
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1.1.3 Products

The idea of taking products of forcing notions arose from the following question: Is it
also possible to violate GCH at more than one regular cardinals at the same time? For
example, can we use forcing to construct a model in which 2% = R3 and 2%2 = R5 holds?
The answer is yes: Starting from a ground model V = ZFC + GCH, one can first force
with Fn(R5 x R, 2,R5) and obtain a model V[G] where 282 = R5, and 2% = Ry, 280 = &
holds. After that, one can force over V[G] with Fn(R3 x Rq,2,R;), and obtain a generic
extension V[G][H], where 282 = X5, 28t = R3, and 2% = R;.

It is important that we proceed “backwards”, since we need for the second step that GCH
holds below the relevant cardinal. Thus, this method only enables us to violate GCH at
finitely many regular cardinals at the same time.

If we want to modify the powers of infinitely many regular cardinals simultaneously, we
need product forcing:

Definition 1.1.33. Let (P, <p,1p) and (Q, <q,1q) be forcings. The product forcing
(P,<p,1p) x (Q,<q,1g) = (P x Q,<pxq,Trxq)

is defined by setting (p1,¢1) <pxq (Po, o) if p1 <p po and ¢1 <q qo, and Lp.q = (1p, 1g).

Let G be a V-generic filter on P x Q. It induces Gy :={p e P | 3¢ € Q (p,q) € G} and
G1:={qeQ|3IpeP (p,q) € G}. It is not difficult to see that Gy and G; are V-generic
filters on P and Q respectively, and G = Go x G;. Hence, any V-generic filter G on a
product P x Q has the form G = Gy x GGy, where G is V-generic on P, and G is V-generic
on . The converse is not true: For genericity of the product Gy x Gy, it is additionally
necessary that Gy is generic over V[Gy].

More precisely:

Lemma 1.1.34 (Product Lemma, |[Kun06, VIII 1.4|). Let P and Q be forcings, and
Go P, G1 €Q. Then the following are equivalent:

(i) Go x Gy is a V-generic filter on P x Q,

(i) Go is a V-generic filter on P and Gy is a V[Gy]-generic filter on Q,
(iii) Gy is a V-generic filter on Q and Gy is a V[Gi]-generic filter on P.

If (i) - (iii) hold, then V[Gy x Gy1] = V[Go][G1] = V[G1][Gol.

In many applications, one encounters the product of two forcings P and Q the first of
which is not too large, and the second is sufficiently closed. Then the following lemma
applies:

Lemma 1.1.35 ([Jec06, 15.19]). Let P and Q be forcing notions and r a cardinal such
that P satisfies the k*-chain condition and Q is < k-closed. Let G be a V -generic filter on
P, H a V-generic filter on Q, and f:k -V a function in V[G][H]. Then f e V[G].

We define products of infinitely many forcing notions:

24



Chapter 1. Symmetric Forcing

Definition 1.1.36. Let Z be an index set and (Q; | 7 € Z) a collection of forcings where
every Q; is partially ordered by <; and has greatest element 1;. The product (or product

with full support)
P= H Q:

1€l
consists of all p : Z — V with the property that p(i) € Q; for all i € Z, with maximal
element 1 := (1; | 7 € Z) and the partial order <p defined by ¢ < p :<= ¢(7) <; p(i) for all
ieZ. For peP, the support of pis suppp:={ieZ | p(i) + 1;}.

If G is a V-generic filter on P, then for every i € Z, it follows that G; := {p(i) | p € G}, the
projection of G onto Q;, is a V-generic filter on Q;.

For a collection of forcings (Q; | i € Z7) and x a regular cardinal, the k-product (or product
with < K-support) is

<K

HQi = {p € HQi ‘ |supp p| < /f},

€L 1€l
with the ordering and maximal element as before. The Ri-product is usually referred to
as product with countable support.
Products with finite support appear frequently: For a collection of forcings (Q; | i € ),
the finite-support product is

fin
[[Q:= {p e[[Q ‘ |suppp| < N0}7

i€l 1€l

with the ordering and maximal element as before.

Sometimes, the “product of (Q; | i € Z)” is defined like our product with finite support. In
order to avoid misunderstandings, we always clarify what support we are using.

We conclude this chapter by introducing the forcing notion that William Easton used in
|[Eas70] to show that the Continuum Function on the class of all regular cardinals can
take almost arbitrary values, as long as it meets the rules of monotonicity and Konig’s
Theorem.

Definition 1.1.37. For « an ordinal, Z ¢ a, and a collection of forcings (Q; | i € Z), the
product with Easton support is

Easton
H Qi = {p c H Q; ’ Vv (v is inaccessible — |suppp n | <7) }
ieT 1€l

In the case that Z is a set of cardinals and GCH holds, Easton support is equivalent to
requiring that |domp n «| < v for all regular cardinals ~.

If we wish to change the value of 2¢ for “many” regular s at the same time, we can use
the product forcing

Easton
Pr:= J] Fn(F(k) x &,2,K),

redom F'

where F':dom F' — Card is an Faston function, i.e.
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(i) any ke dom F' is a regular cardinal,
(ii) cf F(k) >k for all kK e dom F,
(iii) if K, A e dom F' with k < A, then F(x) < F'()).

Starting from a model V' = ZFC + GCH, one can show that in any V-generic extension by
Pr, it follows that 2% = F'(x) for all K e dom F'. In other words: Any “reasonable” behavior
of the Continuum Function (i.e. meeting the rules of weak montonicity and Konig’s The-
orem) is consistent with ZFC.

In general, the domain of the Easton function F'is a proper class, so we need class forcing
to construct the appropriate generic extension. Therefore, further discussion of Easton
forcing is deferred to Chapter [I.3.2]

1.2 Symmetric Forcing

In this chapter, we present the technique of constructing symmetric extensions by forcing
with partial orders and symmetric names.

The idea of starting with a group of permutations A with a normal filter F on A, then
considering symmetric objects (which are fixed by F-many permutations), and taking all
objects which are hereditarily symmetric (i.e. they are symmetric, and so are all elements
in their transitive closure), already appeared in the construction of permutation models
by Fraenkel ([Fra22]) and (in a precise version) Mostowski (|[Mos39]), who proved the
independence of the Axiom of Choice from ZFA (set theory with atoms).

The underlying idea — the axioms of ZFA do not distinguish between the atoms, which
allows for constructing models in which the set of all atoms has no well-ordering — was
adapted by Paul Cohen in [Coh63| and [Coh64], where he constructed a symmetric forcing
extension where the reals cannot be well-ordered. As a consequence, it follows that —-AC
is consistent with ZF.

A general technique for constructing symmetric extension as submodels of Boolean-valued
models was developed by Scott (unpublished) and reformulated by Jech ([JecT1]).

In practise, however, it is often more comfortable to work with automorphisms of partial
orders. In [Dimll, 1.2], the method from [Jec71] is translated to forcing with partial
orders; which allows for avoiding Boolean algebras, except in the case that one has to
deal with automorphisms 7 : D, - D, that are not defined on the entire forcing P, but
only on a dense subset D, € P.

Our aim is to incorporate this situation (which appears frequently in practice) into the
technique of constructing symmetric extensions by using automorphisms of partial orders.
This will happen in Chapter [1.2.3] The overall idea is to call two isomorphisms 7 : D, —
D, and 0 : D, — D, equivalent (write m ~ o), if they agree on the intersection D, n D,.
We then work with the equivalence classes [7].

1.2.1 Constructing Symmetric Extensions

For this chapter, we fix a partial order (P,<,1).
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Definition 1.2.1. An automorphism of P is a bijection 7 : P — P such that 7(1) = 1, and
for any p, q € P, it follows that p < ¢ if and only if 7p < wq. Let Aut(P) denote the group
of all P-automorphisms, with the identity element idp : P - P, p+— p for all p € P.

Any 7 € Aut(P) can be extended to an automorphism 7 of the name space Name(P) by
the following recursive definition along the Name, (P)-hierarchy:

7(2) ={(@(),mp) | (y,p) € i }.

We confuse any 7 € Aut(P) with its extension 7 (which does not lead to ambiguity).
Inductively, it follows that rkp 72 = rkp & for any 7 € Aut(P) and & € Name(P). For any
canonical name @ for an element a of the ground model, it follows recursively that wa = a.
Moreover, whenever §, £ € Name(P) and ORp($,%) denotes the canonical name for their
ordered pair, it follows that

7T( ORp (s, t)) = ORp(ms, 7t).

Lemma 1.2.2 (Symmetry Lemma, [Dim11l 1.14]). Let 7 be a P-automorphism, (v,
<y Uno1) @ formula of set theory and Zg,...,%,1 € Name(P). Then p i+ @(Zg,...,Tn1)
if and only if Tp - p(Tdg, ..., TEp 1).

The proof is by induction over the complexity of ¢, using the properties of the forcing

relation (cf. Propositon [1.1.12)).

Definition 1.2.3. Let A be a group.
(i) A filter F on A is a collection of subgroups B € A such that @ # F and F is closed
under supersets and finite intersections.

(ii) A filter F on A is normal if for every B € F and 7 € A it follows that the conjugate
7~ B7 is contained in F, as well.

(iii) A filter F on A is countably complete if for every {A; | i < w} a family of A-subgroups
with the property that A; € F for all i < w, it follows that also in the intersection
Ni<w A;i 18 an element of F.

(iv) For k a regular cardinal, a filter F on A is r-complete if for every {A; | i < k} a family
of A-subgroups such that A; € F for all i < &, it follows that also the intersection
Ni<r A; is an element of F.

For constructing symmetric forcing extensions, we will need a group A of P-automorphisms
and a normal filter F on A.

The following example demonstrates the main ideas:

Example 1.2.4 (Cohen Forcing). As an example, we consider the forcing notion Fn(w x
w,2,Rg) introduced in Example Paul Cohen used it to construct a symmetric
extension V(G) 2 V where the reals have no well-ordering. Hence, V(G) £ ZF + -AC.
Let G be a V-generic filter on Fn(w x w,2,Rq). As before , we can extract for every i <w
the following real number (a subset of w):

Gi={n<w|3IpeG p(i,n) =1}.
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We wish to construct the symmetric extension V(G) in such a way that the set X :=
{gi | 1 ew} is an element of V(G), but X has no well-ordering in V (G).

We consider the following group A of Fn(w x w, 2, R¢)-automorphisms: Let b : w — w
denote a bijection on w with finite support, i.e. suppb = {i < w | b(¢) # i} is finite.
Then b induces an automorphism 7 = 7, of Fn(w x w,2,Rq) as follows: For a condition
peFn(wxw,2 Ry), let dom(7p) := {(7(i),n) | (i,n) e domp}, and (7p)(7(i),n) := p(i,n)
for all (i,n) e domp. Then the generic w-subsets are permuted according to F.

Let A denote the group of all automorphism 7, : Fn(w x w,2,R¢) - Fn(w x w,2,Rq) which
are induced by a bijection b:w — w with finite support as described above.

For every i < w, let Fix(i) := {my e A | b(i) =i} ={mre A| VpeFn(w x w,2,R8) Vn <
w ((2,n) e domp — (7p)(i,n) = p(i,n))}. Then Fix(i) is a subgroup of A. Let F denote
the filter generated by finite intersections of these Fix(7):

F:={Bc Asubgroup | 3k<w Jig,...,ix1 <w B2Fix(ip) n - n Fix(ix_1)}.

It is not difficult to see that F is normal.

For the rest of this chapter, we fix an automorphism group A ¢ Aut(P) and a normal
filter F on A.

Intuitively, a P-name 2 should be symmetric if it is fixed by “many” automorphisms of
P, and the symmelric extension V(G) should consist of all evaluated P-names which are
symmetric and have only symmetric names in their transitive closure.

Definition 1.2.5. A P-name z is symmetric for F if the stabilizer group
sym? (i) ={reA|ni=4)

is an element of F. Recursively, a name & is hereditarily symmetric, x € HST, if & is
symmetric, and y is hereditarily symmetric for all y € dom 1.

When A and F are clear from the context, we write just sym(#) and HS.

Recursively, it follows that a canonical name @ for an element a of the ground model is
always hereditarily symmetric, since 7wa = a holds for all 7 € Aut(P).

For every & € Name(P) and 7 € A, it follows that
sym?(72) = - sym?(2) - 771,

since for any o € A, we have o(7#) = 7t if and only if (7~'om) () = . Hence, by normality
of F, it follows that whenever a name & is symmetric and 7 € A, then 72 is symmetric,
too. Thus, whenever € HS and w € A, then also ni € HS.

Definition 1.2.6. For a V-generic filter G on P, the symmetric extension by F and G is
defined as follows:
V(G)T ={i% | ieHS}.
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Then V(G)” is a transitive class with V ¢ V(G)* c V[G].
In most cases, we write just V(G), or use the letter N for a symmetric extension.
The symmetric forcing relation I+, can be defined informally as follows:

Definition 1.2.7. If p(v,...,v,-1) € L is a formula of set theory and g, ...,%,-1 € HS,
we write

p (h)K; o(Tg,. .., Tn-1)
it V(G) & p(i§,..., %) for every V-generic filter G on P.

When V', P and F are clear from the context, we write just “I+,".

Note that the symmetric forcing relation I-¢ can be defined in the ground model similar as
the ordinary forcing relation I+, but with the variables and quantifiers ranging over HS.
It has most basic properties of I-. In particular, the analogue of Proposition [1.1.12| holds:

Proposition 1.2.8 (Properties of Symmetric Forcing, [Dim11} 1.20]). Let ¢, ¢ be
formulas of set theory.

(1) If p, q € P such that p -5 ¢ and q < p, then also q -5 p.
(2) There is no p € P with both pi-s p and p g —p.
(3) For every p € P, there is q < p such that q decides p, i.e. either q 5 @ or q s —p.

For every p e P, the following holds:

4) piks = if and only if no there is no q < p with q -5 =@,

5) plks @ A if and only if p ks p and p g 1,

6) pirs YV if and only if p s (&) for every e HS

7) piks @ v ¥ if and only if for all q < p, there exists r < q with r s @ or r g 1,

8) pI+s Jz ¢ if and only if for all q < p, there exists r < ¢ and a name & € HS with

riks ().

(
(
(
(
(

Whenever &, y € HS and p € P, then p i+, y €  if and only if p I+ y € & with the ordinary
forcing relation “I+”, and p - 2 €y if and only if pI-x C 9.

Moreover, the Symmetry Lemma holds for I+, (with the same proof by induction on the
complexity of formulae as for the ordinary forcing relation “I-”, using Proposition [1.2.8));
and the Forcing Theorem holds true, as well: The proof for the atomic cases p I+, T € y
and p Ik¢ @ € g is the same as for the ordinary forcing relation “I+”, and also the induction
on the complexity of formulae can be carried out as for “I”, with the modification that
names are ranging over H.S in the existential quantifier case).

Theorem 1.2.9 ([Dimlll 1.21]). Let A be a group of P-automorphisms with a normal
filter F on A, and let G be a V-generic filter on P. Then V(G)” is a transitive model of
ZF with V c V(G)” c V[G].

A detailed proof of the axioms can be found in [Diml1I]. We will prove the analogue
of Theorem for our more general construction in the case that we do not have P-
automorphisms, but automorphisms 7 : D, - D, on dense subsets D, € P (cf. Theorem
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1.2.21).

Example 1.2.4 (Cohen Forcing, continued). In our example above, a name & for
Fn(w x w,2,Rq) is symmetric if there are finitely many i, ..., 451 <w with 72 = & for all
7 which are contained in the intersection Fix(ig) n -+ n Fix(ix_1). Let G be a V-generic
filter on Fn(w x w,2,R), and let N := V(G)7 denote the according symmetric extension.
For i < w, the i-th generic w-subset G; ={n <w | 3p € G p(i,n) = 1} has a canonical name

Gz’ = {(nap) |p€ [P7p(2an) = 1}’

with the property that 7G; = G; holds true for all 7 € Fix(i).' Indeed, for any i < w and
7 =7, € A induced by a bijection b:w — w, it follows that m,G; = G(;).
Hence, G; € HS and G; € N for all i <w. Note that G; # G; whenever 7 # j.

The set X := {G; | i <w} has the canonical name
X := {OR(Z',GZ-) li<w},

where OR(i, G;) denotes the canonical name for the ordered pair. Then X is stabilized
by all 7 € A, since for any 7 = 7, € A induced by a bijection b : w — w, it follows that

X = {OR(i,7G;) | i<w} = {OR(i,Gb(i)) li<w}=X.
Hence, X € N. We claim that the set X has no well-ordering in V.

Assume towards a contradiction that there was a injective function f:w — X in N. Let
f e HS with f¢ = f such that 7 f = f holds for all 7 € Fix(ig) n -~ n Fix(ig_1), where k <w
and g, ...,ix1 <w. Take G; e rg f with ¢ ¢ {ig,...,ix_1}, and let m <w with f(m) = G;.
Take a condition p € P such that

Pl f ‘w— X is an injective function (%)

and ‘ '

plks OR(m,G;) € f.
The idea is to consider an isomorphism 7 induced by a permutation i <> j such that 7p | p
and 7 f f which will contradict the fact that p forces the functionality of f

Take j <w such that j #4, j ¢ {ig,...,ik-1}, and (j,n) ¢ domp for alln <w. Let T =7 € A
be the map induced by the permutation b : w — w with b(i) = j, b(j) =4, and b(j’) = j’
for all j' e w~ {i,j}. Then

5:=p U {((G,n),p(i,n)) | (i,n) € domp}

is a common extension of p and 7p; and from 7 € Fix(ip) n -+ N Fix(iz-1) it follows that
7f = f. Hence, 7p ks OR(m, 7G,) € 7rf implies that 7p I OR(m G;) € f. Altogether,
Pi-s OR(m, G; ) e f and B, OR(m, G;) € b, which contradicts 7 < p and (*).

It follows that the set X cannot be well-ordered in N. Hence, the Axiom of Choice fails
in the symmetric extension V(G).

This construction was used by Paul Cohen to prove the consistency of ZF + -AC.
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1.2.2 A Model for 8(R®g) = A*

In this chapter, we throw a first glimpse at the question about possible values of the
Continuum Function in the absence of AC.

Since the power sets £(k) can not necessarily be well-ordered in ZF + —AC, the first ques-
tion is how “largeness” of the power sets could now be expressed.

The @-function is defined on the class of all cardinals by setting
0(k) :=sup{a € Ord | 3 f: (k) - a surjective function }.

It generalizes the value © = (X)) prominent in descriptive set theory and provides a
surjective substitute for the Continuum Function in ZF.

Note that if the Axiom of Choice holds and 2% = \| then 0(k) = \*.

Let V £ ZFC + GCH be a ground model with an uncountable cardinal A\. The aim of
this chapter is to use Cohen Forcing Fn(\ x w,2,Rq) to construct a symmetric extension
V(G) 2 V with 6(R®g) = A*, i.e. there exists a surjection f : £(w) — A, but there is no
surjective function f:(w) - A*.

Let A be the group consisting of all Fn(\ x w,2,Rq)-automorphisms 7 of the following
form: There is a finite set dom 7 € A x w (the domain of ), and for every (i,n) € dom,
there is a map 7(i,n) : 2 — 2, such that for every condition p € Fn(A x w,2,Rq), the image
7p is defined as follows:

e dom7p = domp, with

e (mp)(i,n) =m(i,n)(p(i,n)) in the case that (i,n) € domp n dom,

o (mp)(i,n) =p(i,n) for all (i,n) € domp \ dom.
In other words: For every (i,n) in the domain of 7, the value of p(i,n) is switched or not
according to whether (i, n) : 2 - 2 is the identity or not.

Our normal filter F on A is defined as in Example [1.2.4 For i < A, let Fix(i) := {7 €
AlVn<w ((i,n) edomm - 7(i,n) =id)}. Then

Fix(i) = {meA ‘ VpeFn(A x w,2,w) ¥n<w ((i,n) e domp — (7p)(i,n) = p(i,n)) }.
Let F be the normal filter generated by finite intersections of these Fix(7):
F={Bc Asubgroup | 3k <w Jig,...,ix-1 <w B 2Fix(ip) n - n Fix(ig-1) }.

We take a V-generic filter G on Fn(\ x w,2,Ry), and denote by N := V(G)7 the symmet-
ric extension by F and G. Since the forcing notion Fn(A x w,2,Ry) preserves cardinals,
it follows that cardinals are also absolute between V and N.

For i < A, let
Gi = {(TL,E) | n<w>€€{071}7 EIpEGp(i,n):G}-

Its canonical name

Gii={(a,p) | peFn(\ x w,2,R0) A In<w Jee{0,1} (a= OR(n,€) A p(i,n) =€)}
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is stabilized by all 7 € A with 7 € Fix(¢). Thus, G; € N for all i < A.

However, the sequence (G; | i < \) is not contained in N. In order to obtain a surjection
f:P(Ro) > A in N, we use the following technique: Around each G;, we define a “cloud”
G, € PN (Rg), with the property that G; € G; for all i <\, but G; n G; = @ whenever i # j.
For i < A, let '

Gi = {(7Gi,p) | pe Fn(\ x w,2,8;), me A}.

Then G = (G,)C = {(71G); | we A} = {(xG); | 7 € A).

For any i, 5 < A with ¢ # j, it follows that G; n éj = @ If not, there would be 7,
o € A with (7G); = (0G);. Since dom7 U domo is finite, it follows that the set
D :={peFn(A xw?2R) | In<w : (i,n) ¢ (domm u domo) A (j,n) ¢ (domm U
domo) A p(i,n) # p(j,n)} is dense; so by genericity, we can take a condition ¢ € G n D.
Then (7q);(n) = (7q)(i,n) = q(i,n) # ¢(j,n) = (6¢)(j,n) = (0q);(n); contradicting
(’ﬂ'G)Z = (O'G)j.

Hence, the sets G; are pairwise disjoint.

Lemma 1.2.10. V(G) £ 0(Rg) > A*.

Proof. The sequence (G; | i < \) is an element of N, since its canonical name
((OR(i,G),1) | i<A)

is stabilized by all w € A. Thus, we can define in N a surjective function f:§(w) - \ as
follows: For X € N, X cw, let f(X) =i if X € G;, if such i exists, and f(X) = 0, else.
Then f is well-defined, since the G, are pairwise disjoint, and f is surjective, since G; € N
with f(G;) =i for all i < \. O

It remains to prove that 6V (Rq) < \*; i.e. there is no surjective function f:R(Rg) > A*.

An important property of symmetric extensions by forcing notions with a high degree of
symmetricity is the Approzimation Lemma: Sets of ordinals in V(G) can be captured in
fairly “mild” V-generic extensions.

For finitely many io,...,ix-1 < A, it follows that G;; x -+ x G;,_, is a V-generic filter
on Fn(w,2,R)* since for any dense set D ¢ Fn(w,2,Rq)*, it follows that D := {p €
Fn(A x w,2,%0) | (pigy---,Di,,) € D} is dense in Fn(A x w,2,Rp).

These finite products G;, x --- x G;,_, will describe our approximation models:

ig—1

Lemma 1.2.11 (Approximation Lemma). For every set of ordinals X ¢ « with X € V(G)
there are finitely many i, ...,ix_1 < \ such that

X e ‘/[(;io X X (;ik—l]‘

Proof. Let X = XC with X € HS such that 7X = X holds for all 7 € Fix(ig) n - n
Fix(ig_1), where k <w, and ig, ..., 051 < A\. Let

X' ={f<a|IpeFn() x w,2,w) : pII—SBEX,piOeGiO,...,pik_l €eG; .}
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Clearly, X' e V[G;, x --- x G;,_, ], so it remains to show that X = X’. The inclusion “C”is
clear by the Forcing Theorem.

Regarding “c, assume towards a contradiction there was € X'\ X. By construction of
X', take a condition p with p ks 5 € X, with the property that pi, € Giy, ..., pi,_, € Gi_,-
Since (¢ X, it follows that there must be p’ € G with p' I, 5 ¢ X.

We now wish to construct an automorphism 7 € A such that 7p| p’ and 7 € Fix(ip) n

- N Fix(i_1). Then 7X = X; hence, from p 5 3 € X and 7p Ik, 8 € X, it follows that
ks Be X. If p<7p, p/ denotes a common extension of mp and p’, then piFs 8 € X and
Pl 8 ¢ X; contradiction.

[t remains to construct m. Let domm := domp U domp’. For every (i,n) € domm, we
define 7(i,n) : 2 - 2 as follows: 7(i,n) # id in the case that (i,n) € domp n dom p’ with
p(i,n) #p'(i,n), and 7(i,n) = id, else. Then 7p | p’ by construction; and since p’ € G and
Dio € Gigs -+, Dip_, € Gy, it follows that p(i;,n) = p'(i,n) for all [ < k, n < w whenever
(i;,n) e domp n domp’. Thus, w(i;,n) =id for all [ <k, n <w with (i;,n) € domm; which
implies 7 € Fix(ig) n -+ n Fix(ig_1).

It follows that the automorphism 7 has all the desired properties. Hence, X = X’ and
X e V[Gyy x ~ x Gy ]. 0

i, | satisfies GCH and cardinals are absolute
between V and V[G], it follows that there is in V[G] an injection P(Rq) n V[G;, x -+ x
Gl,_,] = ®y. There are A-many tuples (i, ..., 1) € [A]“; hence, there is an injection

Since any approximation model V[G;, x -+ x G|

LZU{F(NQ) mV[GiO X oo X Gik—l] ‘ k<w,i0,...,ik_1<)\}—>)\

in V[G].
Since

g‘)N(NO {P(No)ﬁV[ io "'XGik_l] ‘ k<w,i0,...,ik_1<)\}

by the Approximation Lemma [1.2.11] a surjective function f:£(Rq)Y - A* in N ¢ V[G]
would yield a bijection A <> A* in V[G]. This is a contradiction, since Fn(\ x w,2,w)
preserves cardinals.

Thus, it follows that 6V (Rg) = A*, i.e. there exists in N a surjection f: £(Rg) = A, but
there is not surjective function f: (X)) - A*.

This gives the following theorem:

Theorem 1.2.12. Let V be a ground model of ZFC + GCH with an uncountable cardinal .
Then there exists a cardinal-preserving extension N 2V with N & ZF such that cardinals
are absolute between V and N and N (Ro) = A*.

In the case that cf A\ = w, for example A = R, this is in sharp contrast to the setting in
ZFC, where Konig’s Theorem requires cf (2"0) > w.

This example gives rise to the question whether for arbitrary cardinals x, the values
0(x) might be essentially undetermined in ZF. In [GK12|, Motik Gitik and Peter Koepke
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construct a forcing notion giving rise to a symmetric extension N = V(G) with 6(R,) = A*,
where A > R_,; is an arbitrary cardinal; while below R, GCH is preserved. In Chapter
2.1 we give an overview of their construction.

1.2.3 Symmetric Forcing with Partial Automorphisms

For this chapter, let (P,<,1) be a separative forcing notion. In many applications, one
encounters the situation that there are automorphisms 7 which can not be defined on the
whole forcing notion P, but only on a dense subset D, € P. We call such 7: D, - D, a
partial automorphism. The set A of partial automorphisms that should be considered, is
usually not quite a group, but has a very similar structure:

e Forany 7, 0 e Awith n: D, > D,, 0: D, > D, and pe D, n D,, the image o(p)
is an element of D, n D, as well; and A contains a map v : D, - D, such that
D,=D,nD,and v=moo0con D, (Wecallvthe concatenation 7 o 0.)

e For any 7€ A, there is a map v in A with D, = D, such that r o v=v o 7 =idp, =
idp,. (We call v the inverse n=1.)

e There is an identity element id € A, which is the identity map on its domain D4,
with D;q 2 D, for all 7€ A.

This does not quite give a group structure: For instance, for any 7 € A, the concatenation
monl=x"1om=idp_ is not the identity element id, which usually has a larger domain
D;;2D,.

In this setting, the standard approach would be using Boolean-valued models for the con-
struction of the symmetric submodel N: Any automorphism 7 : D, — D, can be uniquely
extended to an automorphism of the complete Boolean algebra B(IP), and thereby induces
an automorphism of the Boolean valued model VE®), Then one can consider the group
consisting of these extended automorphisms, define a normal filter and construct the cor-
responding symmetric submodel as described in [Jec73, 5.

The aim of this chapter is to avoid Boolean valued models and find a way to incorporate
this situation with partial automorphisms into symmetric forcing with partial orders.

Definition 1.2.13. A map 7 is a partial P-automorphism if there is a dense set D, c P
such that 7: D, - D,, m is bijective, and for all p, g € D, it follows that ¢ < p if and only
if wq < p.

Definition 1.2.14. Let D be a collection of dense subsets D ¢ P which is closed under
intersections (i.e. for any D, D’ € D, it follows that the intersection D n D’ is contained
in D as well) and has a mazimal element Dy (i.6. Dpax 2 D for all D € D). A set A is
an almost-group of partial P-automorphisms for D if the following hold:

e Every 7 e A is a partial P-automorphism, 7 : D, — D,, with D, € D.

e For every D € D, the automorphisms {7 € A | D, = D} form a group, denoted by
Ap.

e For every D, D' € D with D € D' and 7w € Apy, it follows that #[D] = D, and the
restriction 7 | D is an element of Ap.
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We will now see how any almost-group A of partial P-automorphisms for D can be turned
into a group, using the direct limit:

For any D, D' € D with D c D', there is a canonical homomorphism ¢pp : Ap: - Ap,
mm | D. This gives a directed system

(Ap,®p'D)D,D7eD , DD
and we can take the direct limit
Z: hmAD = |_|AD/ ~

(1R
~

with the following equivalence relation : Whenever m € Ap and n’ € Ap/, then m ~ 7/
if there exists D" € A, D" ¢ D n D', such that m and 7’ agree on D”. Since D is closed
under intersections and P is separative, this is the case if and only if 7 and 7’ agree on
the intersection D n D’.

The explicit definition of A reads as follows:

Definition /Proposition 1.2.15. Let A be an almost-group of partial P-automorphisms
for D. We define on A the following equivalence relation:

T~ onm (D0 Dy)=7"} (Dy 0 Dyr).
For 7 € A, we denote by [r] its equivalence class:
[r]:=[n].={oeA|o~n}={ceA|nm | (D,nD,)=0 (D, n D,)}.

Then A = {[x] | 7 € A} becomes a group as follows: For 7, o € A, let [7] o [0] := [v],
where v € A with D, = D, n D, and v(p) =7 (c(p)) for all pe D, n D,.

We call A the group of partial P-automorphisms derived from A.

Proof. First, we have to make sure that the operation “o” is well-defined. For any m, o € A

and D := D, n D,, it follows by Definition[1.2.14that = | D and ¢ | D are elements of Ap.
Since Ap is a group, it follows that there exists a map ve€ Ap € Awith D, =D =D, n D,
such that v= (7w | D) o (¢ I D), i.e. v(p) =7w(o(p)) for all pe D.

If [x] =[], [¢] = [¢'] and v, V' as above with D, = D, n D,, v(p) = n(c(p)) for
all p e D,, and D, = Dy n Dy with v/(p) = 7'(¢’(p)) for all p € D,,, then for all
peD,nD,=(D,nD,)n(Dy n Dy), it follows that v(p) = w(co(p)) = 7' (a'(p)) = v'(p)-
Hence, [v] = [¢'] and it follows that “o” is well-defined.

The identity element id is the identity element of the group Ap, ., with Diq = Dpax 2 D
for all m € A. Then [r] o [id] = [id] o [r] =[] for all 7 € A follows.

Finally, for m € A, let [7]! := [v], where v is the inverse element of 7 in Ap_. Then
D, = D, and v(7w(p)) = 7(v(p)) = p for all p e D, = D,; hence, [7] o [v] = [v] o [7] =
[idp, | = [idp,,..] = id.
Again, such [v] is well-defined: Whenever [r] = [7’] and v, v' with D, = D, v =771 on
D, and D, = D, v/ = (7')"" on D, then for any pe D, n D, = D, n D, it follows
that v(p) = v((v™! o 1) (p)) =7 L(p) = (7')"1(p) = v/(p). Thus, [v] = ['].

O]
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We now have to find a way to extend our partial automorphisms 7 to the name space
Name(P).

We fix a collection D of dense sets which is closed under intersections and has a maximal
element D, and an almost-group A of partial P-automorphisms; and denote by A the
group of partial automorphisms derived from A as in [[.2.15]

—
For D € D, we define a hierarchy Name,(P) recursively:
—— D
e Nameyg(P) =@
—D . . —D
o Namey,1(P) :={&eName(P) | & ¢ Name,(P) x D}, and

—— ——
e Name)(P) :=U,y Name,(P) for A a limit ordinal.

Let

Name(ﬂD)D = U Namea([P)D.
aeOrd

——D
In other words: Name(P) is the collection of all P-names & in which only conditions
pe D occur.

Whenever w € A, 7: D, - D, and & € Name(P), the image 7% can be defined as usual if

— D, — D,
# € Name(P) . In the case that & is a P-name with & ¢ Name(P) = however, it is not
clear how to apply m, so & has to be modified.

Given D € D, we define recursively for @ € Name(P):
7 :={(@".,p) | yedomi,peD, piryei}.

—— D
Then 7" € Name(P) ~ with 2¢ = (z”)¢ for any V-generic filter G on P, and rkpZ?” = rkpi.

Let now D = D, € D, and 7 : D, - D, a partial P-automorphism. Whenever G is a
V-generic filter on P, then 771G := {geP | 3re D n G g > n~1r} is a V-generic filter on

— D 1 .
P as well; and for any name z € Name(P) , it follows that (72)¢ = 27 &, In particular,
(7zP=)G = 27'C for any # € Name(P).

Moreover, it is not difficult to verify that whenever D, D’ € D and & € Name(P), then

s . D
7P =7 and whenever 7, 7/ € A, m: Dy - Dy, @' : Dpv — D, and @ € Name(P) ',

then

_ —D_s
7zl =i ™.

Later on, we will take a normal filter 7 on A and call a P-name & symmetric if the
collection of all [7] with 7Z° = 7"~ is contained in F.

We have to make sure that this definition does not depend on which representative of [r]
we choose:

Lemma 1.2.16. Let w1, 7' € A with m ~ 7', i.e. w1 | (D n D) =7' } (Dy n Dyi). Then

for any & € Name(P), it follows that 7Z°~ = 2P~ if and only if 7'z"~ =z~
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We prove the following more general statement by induction over a:

Lemma 1.2.17. Let 7, ' € A with m ~ @', i.e. w7 | (Dy N D) =7" } (Dy 0 Dy), and
a € Ord. Then for any v, Z € Name(P) wzth rkpy = rkps = 7, it follows that wyP~ = 2P~ if
and only if 7'yP~ =zP=.

Proof. W.l.o.g. we can assume that D, € D,; since the map o :=7 | (D, n DW/) =7}
(D n Dy) is contained in A as well, with D, = D, n D,v and 0 ~ m, 0 ~ 7’. Hence,
if We now that 7y’ = P < oyP7 = 2P for all 4, # € Name(P), and o7”” = 27" <
n'yP~ = ZP for all 9, 2 € Name(P); then it follows that whenever 3, 2 € Name(P), then

ayP™ = ZP if and only if 7/yP~ = ZP~.
Thus, assume D, € D,.. We consider v € Ord, and assume inductively that the statement
holds true for all B <7: Whenever &, @ € Name(P) with rkpd = rkptt < 7, then 7z~ = 7P~

if and only if 7'zP~ =P~
Let ¢, 2 € Name(P) with rkpy = rkpz = 7.

!

“=7: First, assume that 75°" = 2°7. We only prove zP~ c 7/P='; the other inclusion is

similar.

Let (ED“’@) €z ﬁ’, ie. tedomz, pe Dy, and pi- & € 2. Then also p € D, holds.
Hence, (z” ,p) ezl and ZP~ = WyD” by assumption; so there must be % € domy
with xD’T = 7uP". Setting g := 717, it follows that g I- ©”~ e 7P~ and g I u € 9.

P with P € domz”~, it follows that rkpt = rkpd < ~. Thus, our

Since 7P = 71
inductive assumption implies that z°~ = 7#'u”~. Hence, (z"~,p) = (7u’~,77),
which is contained in 7'y~ since @ € domy, g€ D (since p e Dy, G =7~ p, and

7Dy ] =Dy), and g I-u € 9.

<" Now, assume 7'y’ =zP='. As before, we only prove the inclusion zP~ ¢ =g

Consider (z7~,p) EE T i.e. xedomz, peD,and pi-1e€z. Let p<p with pe D,
Then (P ,p) € 2P = 7P, so there must be u € domy with zP = 7’/aP~'. By
the inductive assumption, it follows that z° = 7u”~, since rkptt = rkpd < 7. Let
7 := m'p. We have to show that (7u”",7q) € 7y”~. Since @ € domy and g € D,
it suffices to verify that q I+ @ € y. We prove that whenever r < g, r € D/, then
r I+ 4 € y. Consider such r < q with r € D,». Then nr € D,, and 7r < p implies
that 77 I- @ € 2. Hence, (zP,7r) € 2P, and zP~ = 7'~ by assumption. Now,
(r'uP~ 7'r) = (P~ 7r) e m'yP~ implies that r I- u”~ € y”~'; hence, r I 0 € 7 as
desired.

]

Let F be a normal filter on A (cf. Definition [1.2.3), i.e. F is a nonempty collection of
A-subgroups, closed under supersets and finite intersections, such that for any subgroup
B e F and 7 e A, the conjugate [7]B[7]! is an element of F, as well.

We use F to establish our notion of symmetry:
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Definition 1.2.18. A P-name z is symmetric for F if the stabilizer group
sym?(2) = {[r] € 4 | a7 = 7"~}

is an element of F. Recursively, a name & is hereditarily symmetric, x € HST, if & is
symmetric, and y is herditarily symmetric for all 3 € dom .

By Lemma [1.2.16] this is well-defined, since whenever 7 ~ 7" and & € Name(P), it follows

that 777~ = 7~ if and only if 7'z~ =P~

When A and F are clear from the context, we write just sym(2) and HS.

We will use the following properties: If # € HS” and 7 € A, then firstly, it is not difficult
to verify that also z”7 € HS” holds; and secondly, 7Z°~ ¢ HS”. For the second claim,
one can check that whenever o € A with 07" = 7", then

——D, 1 ——D,_
— —_— ToOT — ToOT
(ror™t) mzPn = nTP" :

and then use the normality of F.

For any element of the ground model a € V| it follows that the canonical name a :=
{(b,1) | bea} is hereditarily symmetric:

For me A,

_ ~Dr . . ~Dxr
@™ ={(b ,p)|bedoma,peD,, pirbea}={(b ,p)|bedoma,peD,},

and _ <
777" = {(wb,np) | bedoma, pe Dy} = {(xb,p) | bedoma, pe D),

D

. - ~Dr
so one can show recursively that 7a " =a  holds for every a € V and 7 € A.

Now, we are ready to define the symmetric extension:

Definition 1.2.19. Let G be a V-generic filter on P. The symmetric extension by F and
G is

V(G = {i% | e HST).
When the normal filter F is clear from the context, we write just HS and V(G).

The symmetric forcing relation with partial automorphisms ()  can be defined as in
Definition [1.2.7, and we write just “I;” if the ground model V, the forcing P, and the
normal filter F on a group A of partial P-automorphisms are clear from the context.

Whenever z, y € HS and p € P, then p I-5 y € 2 if and only if p I+ y € & with the ordinary
forcing relation “I+”, and p I+, @ = g if and only if p I & = ¢. In particular, for any # € HS*
and D € D, we have

7 ={(@".p) | yedomi, pe D, piryei}.

The symmetric forcing relation with partial automorphisms satisfies the same basic prop-
erties as the ordinary symmetric forcing relation (see Proposition [1.2.8— one has to use
that for every & € HS” and 7€ A, it follows that 77"~ € HS7, as well).

Moreover, the Symmetry Lemma holds true:
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Lemma 1.2.20 (Symmetry Lemma). Let m € A, p(vo,...,vn-1) a formula of set theory
and Tg,...,tn1 € HST. For p € D, it follows that p ks ©(o,...,Tn_1) if and only if
™Ik o(TTE™, .., 7T,

The Forcing Theorem holds true, as well (with the same proof as for the ordinary forc-
ing relation “I”, except that for the existential quantifier case in the induction on the
complexity of formulae, one has to adopt Definition .

[t remains to verify that symmetric forcing with partial automorphisms always yields a
model of ZF.

Theorem 1.2.21. Let P be a notion of forcing, let A be an almost-group of partial P-
automorphisms, A the group of partial automorphisms derived from A, and F a normal
filter on A. If G denotes a V-generic filter on P, then V(G) = V(G)¥ is a transitive
model of ZF with V ¢ V(G) c V[G].

Proof. The inclusions V' € V(G) ¢ V[G] are clear, and the transitivity of V(G) follows
by heredity of HS7. Hence, the axioms of Ezxtensionality, Foundation and Infinity hold
in V(G).

Pairing. Let z, y € V(G) and &, y € HS with x = 2, y = y“. We have to show that the
set {x,y} is an element of V(G) as well, i.e. we have to find a name 2z € HS with 2¢ = {z, y}.

Let 2 := {(4,1), (9,1)} and consider m € A with 72° = 7°~ and 77"~ = 5”~. Since

P = {(@,p) | pe Do} U {(¥"",p) | pe D,},
it follows that

Pr = {(7@"7,7p) | pe Da} v {(xy"7, 7p) | p € Dr}

= {@",7mp) | mpe D} v {(F"",7p) | 7p € Dx}
Dx

Tz

= Z

as desired. Thus, sym?(2) 2 symA(2) n symA(y) € F, and it follows that # is symmetric.
Since dom 2 = {,y} € HS, this implies Z € HS as desired.

Union. Let x € V(G), z = 2% with # € HS. We have to show that Uz € V(G), i.e. we
have to find @ e HS with Uz = 4. Let

w:={(,p) | 3y edomi zedomy) A pir, (Jyei zey)}).

It is not difficult to see that indeed, & = Jx. Let m € A with a7P = 7P We will show
that also 77’ = @P~: Then symA (i) 2 symA(&); so @ is symmetric, and domw € HS
implies u € HS as desired.

By definition,

uP = {(ZP",p) | pe D,, 2 edomi, p i, & €u}.

We claim that

al = {(ZP",p) | 3y edoma zedomy) Ape Dy Apir, (Jyei 2ey)}.
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Regarding “27, consider (Z”~,p) such that # € domy for some g € dom, p € D,, and
plks (3y € & 2 € y). Then (2,p) € 4; hence, 2 € domu and p I+, 2 € u. This gives
(zP~,p) euP~ as desired.

For the other inclusion “c”, take (2,p) e u”~, i.e. 2 e dom, p € Dy, and p i, € &t. Then
by construction of dom, there must be y € domz with # € domy. It remains to show
that pirs (Jy e 2 €y). Let H be a V-generic filter with p € H. Then 2 € 4 so there
must be (Zg,q) € @ with 2T = 2 and ¢ € H. Then ¢ I-; Jy € & %y € y. Hence, there must
be y € & with 2H = ZlT e y. This implies p -5 (Jy € & 2 € y) as desired.

Thus, we have shown that

u’" = {(ZP",p) | (3yedomi 2 edomy) A pe Dy Apik, (3yed 2eg)}
= {(ZP",p) | (Qy e domZ"~ zP~ e domy) A pe Dy A pirs (Fy e TP 2P e y)}.
Hence, 7uP™ =

Dxr

= {(7ZP,7p) | (3y e domZ"~ zP* e domy) A pe D A pir, (3y e TP 2P e y)}

= {(7Z",7p) | (3y e domnz"~ 7zP" e domy) A 7pe Dy A ap i, (Jy e 7P~ 7207 e y)}.

D

Since 7zP* = P~ by assumption, this implies 7a”" = P as desired.

Separation. Let ¢(v,w) be a formula of set theory, a € V(G), and z € V(G) some
parameter. We claim that

bi={zealV(G)Ep(z,2)}
is an element of V(G), as well. Let a =a%, 2z = 2% with a, 2€ HS. Let
b:={(&,p) | &edoma,peP,piy (iean (i, 2))}

Clearly, b¢ = b, and dom b c HS. It remains to make sure that the name b is symmetric.

We show that for every 7 € A with 7z”~ = 7"~ and 72" = 2"~ it follows that b=
Then sym#(b) 2 sym?(x) n sym?(2) implies sym#(b) € F as desired.

For me A,
b = {(@P~,p) |  edomb, pe D, plir, i €b}.

We now claim that for any 4 € doma and p € P, it follows that p IFs @ € b if and only if
plks (T €a A o(x,2)). The implication “<” is clear, since for any & € doma and p € P
with p iy (&€ a A (4, %)), we have (&,p) € b by definition. Hence, p I, @ € b. Regarding
“=“ consider £ €e doma and p € P with p i+, 2 € b. Let H be a V-generic filter on P with
p € H. We have to show that 9 € a! and V(H) = p(zH,21).

From #H e bH | it follows that there must be § € doma and ¢ € H with (¢,¢) € b and
#H = gH. Then q -, y € a A p(y,2), hence, g € ¥ and V(H) E o(yH,2H). Since
yH = 1H  this finishes the proof.
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Thus,

D

=l
3
|

{@",p) | & edomb, pe Dy, pir, (Fea n (i, 2))}

{(@P~,p) | 2edoma,pe Dy, piks (D ea A p(i,2))}
{(@P~,p) | Z°" edoma®~ , pe D, , pi-, (" eaP~ n o(zP~,2P))}
{(z,p) |z edom@”, pe Dy, piry (zea” n p(x,277))}

Hence, by the Symmetry Lemma [1.2.20

—D.

o = {(mz,7p) | xredoma”", peD,, pir, (xzea® A p(x,zP7))}
= {(rx,7p) | 7z edomma’" , pe D, mpir, (mx € ma’" A o(mx,72°7))}.
Since maP~ =aP~, 7zP~ =zP= and p € D, if and only if mp € D,, this gives

7b " = {(nz,7p) | 7z e domaP" | wp e Dy, wp ks (w1 €GP A (2, Z07))b =D
as desired.

Power Set. Consider X € N, X = X¢ with X € HS. We have to show that £V (X) € N.
Let
B:={(Y,p)|YeHS,YcdomX xP,peP,pi, Y cX}.

Then B¢ = PN(X), since for any Y € N with Y ¢ X, there exists a name YeHS, YG=Y,
such that Y ¢ dom X x P.

It remains to make sure that the name B is symmetric. Consider 7€ A with X=X,
Then D —D . . . . .
B ={(Y ",p)|YeHS,YcdomX xP,peD,,pl, Y € B}.

It is not difficult to check that
Dﬂ_ _DTr_ . . . _ _ . .
B ={( "p)|YeHS,YcdomX xP,peD,,pl Y c X},

since for any p € D, and Y e HS,Y cdomX x P, it follows that p -, Y € B if and only
if piks Y € X. Hence,

B = { (W?Dﬁ,ﬂ'ﬁ) |YeHS,YcdomX x P, 7peD,, 7P, AV T erx "
. _D7r _D7r
It remains to show that B~ =78 ; then
{[x]eA| 7B =B "} 2{[x]eA|sX =X "}eF
as desired.

. . _D7r _D7T . _D7T — _D7r

For the inclusion B " ¢ #B ", consider (Y ",p) € B " as above. It suffices to con-
y y y . —Dnxr —Dxr . — — .

struct Yy € HS, Yy € dom X x P with 7Yy ~ =Y 7. Then setting p, := 7~1p, it follows

that (VD”,]?) = (W?()DW,WﬁO) € 7T§Dﬂ, since p kg Y ' € X7 and 71X "= X" gives
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Do IFs WVODW crx’"

Let ' ‘ b _p
Yozz{(;},p) | 2edom X, pe Dy, nZP" edomY ", wpir, 7zl €Y ﬁ}.

Then

W?OD" = {(WED’T,ﬂp)| sedomX,peD,, nzl" ¢ domY " ,DIFg Z € YO}

. _Dﬂ_
We first show that whenever 2 € dom X, p € D, and 72”7 € domY " as above, then
. y . . —D —Dx
pls zeYyif and only if mp -, 727" €Y .

“=" I mpik, mzP" e YU it follows that (2,p) € Yy; hence, p I, 4 € Y, as desired.

“=7: Now, assume p I5 € Yp. Let H be a V-generic filter on P with mp € H. We have
to show that (wz"=) e (?Dﬁ)H. Let H':=7"'H. Then (xz"")" = /' and pe H'.
Hence, 27" € Y/ implies that there must be (u,7) € Y with @' = 2" and r € H'.
Then r € D, and 7r -, 7a’" € ?Dﬁ by construction of YO. Since mr € H, it follows
that (mu”")H e (YD”)H, with (muP~)H = 4" = 38" = (7ZP~)H as desired.

Hence,

_DTr — . ¥ —_ _D7r — _D7r
Yy = {(WZD’“,Wp)| sedomX,peD,, mzP" edomY ", wpiksnzPmeY "L

We have to make sure that ﬁ?OD” - Y°". The inclusion W?UD” c V7" is clear. Re-
garding “2”, consider (u”",q) € Y7 with @ € domY ¢ dom X, and ¢ € D, such that
qIFs 4 eY. From uPr ¢ dom X" = dom 7T7Dﬂ, it follows that there must be ¢ € dom X
with "~ = 7077, Let r := 71q. Then (u”~,q) = (70", 7r) € W?ODW, since q ks €Y
implies that 77 I, 7077 € Y7" as desired.

Thus, we have constructed Yo € dom X x P with ﬁ?OD” - Y"". Tt remains to make sure
that Yy € HS. Firstly, X € HS implies that domYy ¢ HS. Secondly, for any o € A with

—D, —D, . .
oY 7 =Y 7, it follows for the concatenation v := 7lom that

—— D, — D,
—D —5 —D
vYy, =vYy, = =vwlYy " |

) —D, —D, .
and since oY ~ =Y , one can easily check that

—_D —
vy T =gply T
and

D, D,

D —D — D
™ :}/E)W :}/b V.

7Y
Since the name Y is symmetric, it follows by normality of F that Yj is symmetric, as well.

Hence, Yj has all the desired properties; and it follows that EDW c WED”.
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. . —=D —Dx . ..
The inclusion 7B~ " ¢ B " is similar.

Replacement. Consider a € N such that N £ Vx € a 3y ¢(x,y). We have to show that
there is b € N with
NEeVzreadyeb p(z,y).

Let a = a“ with a € HS. We proceed like in the proof of Replacement in ordinary forcing
extensions. For € doma and p € P, let

a(z,p) ==min{a | Jw € Name,(P) n HS : pir, (p(2,w) A 2 €a)}

if such « exists, and a(,p) := 0, else.
By Replacement in V| take 5 € Ord with § >sup{a(z,p) | £ € doma, peP}. Let

b:={(y,1) | y € Nameg(P) n HS},
and b := bG. Then for all = € a, it follows that there exists y € b with N & ¢(z,y). It

remains to show that the name b is symmetric. Let m € A. Then

57 = {(7",q) | j e Namey(P) n HS , g e D},

and
7b" = {(75”", 7q) | § € Names(P) 0 HS . g Dy},
We show that 76 " =b .

— D
Since it is not possible to apply 7 to arbitrary P-names y with ¢ ¢ Name(P) , we
construct an alternative 7 that is enough for our purposes here.
Recursively, we define for y € Name(P):

7(9) ={ (@(2),79) | 3(2,9) €y, T<q, 7€ Dr }.

Then rkp ¢ = rkp 7T(7).

Whenever H is a V-generic filter on P, H' := 771 H and y € Name(P), it is not difficult to
see that (7(y))" =y, and
— =~ Dn
Ty =7(y)
Moreover, one can show recursively that whenever ¢ € Name(P) and o € A with oy”7 =
—D
Y, then

D7'r(71r’1 D

(rom ™) 7(3) x(G)
Hence,

([Fled | r7@) " =7@) "} 2{[rlo]lx]" | [o] €4, 07" =77 }.

In the case that g is symmetric, i.e. {[a] €A | oyl =g } e F, it follows by normality
that also {[7]e A | 7 'ﬁ(y')DT = 'ﬁ(y)DT } € F. Hence, 7(y) € HS whenever j € HS.
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—Dx =D . . . — —Dx
Now, we can show that 7b ~ = b : For the inclusion “c”, consider (75”~,7q) € wb

with ¢ € Nameg(P) n HS, ¢ € D,. Then also 7q € D,, and 77°" = 7(y) , where
7(y) € Nameg(P) n HS; so (7y”~,mq) = (%(y')Dﬂ,Wq) 5" follows. The inclusion “2” is
similar.

Hence, be HS as desired.
This finishes the proof of V(G) = ZF. O

The following proposition is an adaptation of |[Karldl Lemma 1] to symmetric forcing
with partial automorphisms.

Proposition 1.2.22. Let P be a countably closed forcing, A an almost-group of partial
P-automorphisms, A the group of partial P-automorphisms derived from A, and F a
countably complete filter on A. Let G be a V-generic filter on P. Then V(G)” & ZF +
DC + AX,.

Proof. V(G)” & ZF follows from Theorem [1.2.21] We now prove that for any set X ¢ N
and f:w — X a function in V[G], it follows that f € N. Then N £ DC: Consider a
nonempty set X in N with a binary relation R such that for all z € X there exists y e X
with yRx. Then DC in V[G] gives a sequence (x,, | n < w) with the property that x,,,1 Rz,
for all n <w; so (z, | n<w) € N as desired.

Consider X e N, X = XC with X e HS. Let f:w — X denote a function in V[G], f = f€¢
with f € Name" (P). Take 7, € G with

Do b f tw— X,
In particular, p, forces the functionality of f .

We claim that the following set is dense in P below pj:

D:={peP ‘ F(&, | n<w) Vn<w (x'nedomX/\pll—gf(n):x'n)}.

Let py < py. We work in V[G] and construct sequences (p, | n < w) and (&, | n < w)
as follows: Assume inductively that m < w, and (p, | n < m), (&, | n <m) are already
constructed. Then pick p,,.1 € P, @, € dom X ¢ HS such that Pms1 < P and Pyt H—¥
f(m) = &p. It follows that (p, | n < w) €V, (&, | n < w) € V, since P is countably
closed. Hence, there exists p € P with the property that p < p, for all n <w. Then p is an
extension of py in D; so D is dense in P below p,. Pick pe D n G and (4, | n<w) eV as
in the Definition of D. We define a name for f as follows:

g::{(ORp(n,jcn),]l) ‘ n<w}.

Then ¢¢ = f by definition of D and since p € G. It remains to make sure that g € HS.
Since ,, € HS for all n < w, it suffices to show that

sym?(g) = {[7] e A | 7gP" =g~ } e F.
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For any n < w and [r] € sym#(d,,), it is not difficult to check that

7 ORp(1,4n) " = ORe(n, ) "

Hence, whenever [7] € Ny, symA(i,), it follows that ng”~ = gP~. Now, i, € HS
gives sym(z,) € F for every n < w; and since F is countably complete, it follows that
MNpew Sym(z,) € F. Hence,

sym?(g) 2 () sym? (i) € F.

n<w

is yields f = ¢% € N, which finishes the proof of N & DC.

Regarding N £ AX,, note that ([A]?)VIG] = ([A]*)Y by the countable closure of P. The
ZFC-model V' contains a wellordering of [A]¥, i.e. a bijection b : [A]* — « for some
ordinal a. Then b is also a wellordering of ([A]¥)¥ = ([A]*)V in N.

O]

1.3 Class Forcing

In this chapter, we briefly review the basic properties of class forcing, i.e. we look at what
happens if we drop the requirement on forcings that the partial order (P, <, 1) is a set (cf.
Definition [1.1.1):

Definition 1.3.1. A class forcing is a class (P, <,1) such that (P,<) is a preorder (the
relation < is transitive and reflexive on P) with greatest element 1.

Class Forcing was first used by William B. Easton in [Eas70|, who proved that in ZFC,
the Continuum Function x ~ 2% can behave almost arbitrarily on the class of regular
cardinals, as long it obeys the rules of weak monotonicity and Konig’s Theorem. We will
discuss Easton forcing in Chapter [1.3.2]

In contrast to set forcing, forcing with a proper class need not preserve the axioms of ZFC
— for example, the partial order Fn(w,Ord,Rg) := {p:domp - Ord | domp Cw, |p| < Ro}
adds a surjective function from w into the ordinals, and thereby destroys the axiom of
Replacement. Moreover, it is not difficult to write down a class-sized partial order that
adds a proper class of Cohen reals and hence destroys Power Set.

We continue working in first-order set theory ZFC, where the classes of V' are the definable
ones, i.e. objects of the form {z | p(z,zg,...,2,-1)}, where ¢ € L. with finitely many
parameters zg,...,x, 1 € V. Thus, it is not possible to quantify over classes, which can
be sidestepped by regarding statements of the form “For every class forcing P ...” as
schemes. We will treat V-classes informally, but always take care that every statement
can be described in the language L. (with additional predicates for the ground model V/

and the generic filter G where necessary).
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1.3.1 The Forcing Theorem, Pretameness and Increasing Chains.

We refer to [Fri00, 2| and [BT97, p.5 - 12| for a detailed introduction to class forcing,
and merely concentrate on some aspects important for us when constructing symmetric
extensions by class-sized partial orders (cf. Chapter [L.4).

We start with introductory definitions and remarks regarding generic extensions by class
forcing, before we turn to the Forcing Theorem (Definition [I.3.8). Unlike as with set
forcing, the Forcing Theorem does not always hold for class forcing, but it can be traced
back to the definability lemma for atomic formulae (see |[Kral7|). We look at pretame-
ness of class forcings, a necessary and sufficient condition for the generic extension to
satisfy ZFC™, and tameness, a necessary and sufficient condition for the generic exten-
sion to satisfy ZFC. In our applications, we will only consider fairly nice class forcings,
namely those P = U,corqa Po that can be written as an increasing chain of set-sized subforc-
ings with certain properties (Definition , which always satisfy the Forcing Theorem.

Later on, in Chapter [1.4] we will consider symmetric extensions by class forcing, where it
can be the case that V(G) & ZF although ZFC fails in V[G].

Most of the definitions form Chapter [[.I1.1] can be given verbatim, or by just replacing
“set” by “class” where necessary.

Definition 1.3.2. Let P be a class forcing for V. A filter G ¢ P is V-generic on P if for
every D € P a dense class in V, it follows that G n D = @.

Since V' is countable, there are only countably many dense classes of V. Thus, as in the
case for set forcing, one can enumerate them from the “outside”, and use a diagonalization
argument to show:

Lemma 1.3.3. Let (P,<,1) be a class forcing for V and p € P. Then there erists a
V-generic filter G on P with pe G.

The class of all P-names is defined recursively:

Definition 1.3.4. A P-name is a set & such that every y € & is of the form y = (¢, p) with
a P-name ¢ and p € P. We denote by Name" (P) the class of all P-names for V.

The rank function on Name" (P) is defined as usual:
rkpd := sup{rkpy + 1 | € dom z}.
For a € Ord, we denote by Name,, (P) the class of all & € Name" (P) with rkpi < .

Definition 1.3.5. Let (P,<,1) be a class forcing for V, and G a V-generic filter on P.
We define recursively for & € Name" (P):

#%:={y% | Ipe G (y,p) € i}.

Then V[G]:= {¢ | & e Name" (P)} is the generic extension of V by G.
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As for set forcing, it follows that V[G] is a transitive class with V € V[G] and Ord"1¢) =
Ord".

When the ground model V' is clear from the context, we write just Name(P).

For p(vg, . ..,v,-1) € Lc aformula of set theory, p € P and Zy, ..., &, € Name(P), the forc-
ing relation p kY ©(Zo, ..., &,-1) can be defined as for set forcing (cf. Definition [1.1.10).

We will work with the structure (V[G], €, V,G), where we have predicate symbols for the
ground model and the generic filter.

We proceed as in [Git80, 4| and extend out language of set theory L. by unary predicate
symbols A and B, where A(x) will assert that € V, and B(x) will assert that x is in
the generic filter G. We denote this extended language by £i?

Definition 1.3.6. For p € P, we define:

o pirp A(2) it Vg<p Ir<qg3a (riry i=a)

e plrp B(x) iff Vg<p Ir<qIseP : ((rirf £=3) Ar<s).
Moreover:

o VI[GleA(z) iff x eV

o V[G]E B(z) iff z €G.

Informally, the forcing relation can be defined as usual:

Definition 1.3.7. For a formula ¢(vg, ..., v, 1) € EEA’B, a condition p € P and g, ..., T, 1 €
Name(P), we write

p |l—¥ QO(jI(), ... ,Zt‘n_l)
if for any G a V-generic filter on P with p € G, it follows that ¢(z§,...,2% ) holds in the
structure (V[G],€,V,G).

We will abuse notation and do not write A and B in our formulas, but keep in mind that in-
side the structure V[G], formulas ¢ can talk about V and G. We write p(zq, ..., 2, 1,V,G)
where these predicates are important.

Behind the forcing symbol I-Y, we will write “p =Y & € V * instead of “p i-Y A(#)” (which
Corresponds to introducing the class name V := {(a,1) | a € V}), and “p Y & eG” for
“DIrY B(m)”(whlch corresponds to introducing the class name G:={(p,p) | pe [P})

We write p -y ©(Zo, ..., T 1,V,G) when we need to mention the predicates V and G
behind the forcmg symbol.

The forcing relation for class forcing satisfies most of the basic properties as the ordi-
nary forcing relation for set forcing (see Proposition [L.1.12} (1) - (8)), and the Symmetry
Lemma holds true, as well.
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Chapter 1. Symmetric Forcing

It is not difficult to see that whenever p H—¥ teVand 7: D, > D, is a partial P-
automorphism with p e D, then
™Iy 7Tl eV

D —Dx

(which corresponds to the fact that V regarded as a class name, satisfies 7V "=V for
all m: D, - D). Moreover, from p IF} & € G and 7: D, » D, a partial P-automorphism
with p € D, it follows that

™ H—¥ 7zl € WG,

where 7G is the canonical name for 7-1G:
pirg yenG iff Yg<pIr<qgIseP : ((rirf g=3) A nlr<s).

However, unlike as with set forcing, the Forcing Theorem does not always hold for class
forcing.

Definition 1.3.8. Let ¢ = ¢(vg,...,v,-1) be an LB _formula.

e We say that P satisfies the definability lemma for ¢ over V if

{(p,ﬁco,...,in_l) |peP, dg,..., 4,1 € Name(P), pIry o(do,. .. ,i’n_l)}
is definable in V.

e We say that P satisfies the truth lemma for ¢ over V if for all &g, ..., &, 1 € Name(P)
and G a V-generic filter on P with

(V[G],e,V,G) E (2§, ...,55 ).

n-1

it follows that there exists p € G with
p ”_¥ 80('1.0’ s 7:1‘771—1)'

e We say that P satisfies the Forcing Theorem for ¢ over V' if P satifies the definability
lemma and the truth lemma for ¢ over V.

We say that P satisfies the Forcing Theorem (over V) if P satisfies the Forcing Theorem
for all £&P-formulas ¢ (over V).

We remark that any generic extension V[G] by class forcing satisfies all single axioms of
ZFC (i.e. all axioms of ZFC except for possibly instances pf Power Set, Separation and
Replacement, cf. Chapter [0.4); with Union replaced by Weak Union (see [Kral7, 1.2.9]):
For any = € V[(G], there exists a set y € V[G] with Uz C y.

In set forcing, the axioms of Separation and Replacement can be established using the
Forcing Theorem. For class forcing, however, we need a stronger property:

Definition 1.3.9 ([Fri00, p.33]). A class forcing (P,<,1) is pretame if for every p € P
and (D; | i € ) a definable sequence of dense classes, there exists ¢ < p and a sequence
(d; | i€Z) €V such that for all i € Z it follows that d; € D; and d; is predense below g.
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Chapter 1. Symmetric Forcing

It is not difficult to see that any ZFC -preserving class forcing has to be pretame (see
[Fri00], 2.17)).

On the other hand:

Proposition 1.3.10 (|00, 2.19]). Assume that the class forcing (P,<,1) is pretame
and satisfies the Forcing Theorem. Then P preserves ZFC™.

Proposition 1.3.11 ([Eri00) 2.18]). If the class forcing (P,<,1) is pretame, then it sat-
wsfies the Forcing Theorem.

Thus, it follows that a class forcing is pretame if and only if it preserves ZFC™.

For the preservation of Power Set, one needs a stronger notion: tameness.

Definition 1.3.12 (|Eril0l p.9]). A class forcing (P,<,1) is tame if P is pretame, and
1 -y Power Set.

For pretame forcings, tameness can be described by a combinatorial property of the par-
tial order using predense partitions (see [Fri00, p. 36]).

A class forcing (P, <, 1) is tame if and only if it preserves ZFC.

In Chapter 3| we will construct a symmetric extension by a class-sized partial order
(P,<,1). Even if a class forcing P is not pretame, one can sometimes arrange that the
according symmetric extension is nevertheless a model of ZF. Tt is crucial, however, that
the Forcing Theorem holds.

By the following theorem, it suffices to check the definability lemma for the atomic for-
mulae:

Theorem 1.3.13 (|[Kral7, 2.1.5|). If the class forcing (P,<,1) satisfies the definability
lemma over V' either for “vg € v1” or “vo =v1”, then P satisfies the Forcing Theorem over
V' for every E?’B-formula ©.

In the case that the Forcing Theorem holds, there is also a product lemma for class
forcings:

Lemma 1.3.14 (|Exi00, 2.27]). Suppose that (P, <p,1p) and (Q,<q,1q) are class forcings.

(i) If G is P-generic over V, and H is Q-generic over (V[G],e,V,G), then G x H is a
P x Q - generic filter over V.

(ii) Let K denote a V-generic filter on P x Q. Then K is of the form K = G x H, where
G is a P-generic filter over V. If in addition, the Forcing Theorem holds for P, then
H is a Q-generic filter over (V[G],e,V,G).

Our class forcing that we construct in Chapter |3| will satisfy the property that it can
be written as the union of a sequence of set-sized forcings, each of which is a complete
subforcing of those beyond:
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Chapter 1. Symmetric Forcing

Definition 1.3.15. A class forcing (P, <,1) is an increasing chain of set-sized complete
subforcings if there is a class ((a,P,) | @ € Ord) such that P = Useorq Pa, and each
Py = (Py,<a,1a) = (Py, <t Py, 1) is a set forcing with the property that for all a, 5 € Ord
with « < f3, it follows that P, is a complete subforcing of Pg.

The following properties can be found in [Sho71), 12], [Zar73, 3], and in [Rei06] in a more
modern fashion using Boolean Algebras:

Assume that P = Uyeorq Po is an increasing chain of set-sized complete subforcings. Then
any P, is a complete subforcing of P. Let G denote a V-generic filter on P. Then for
every « € Ord, it follows that G, := G n P, is a V-generic filter on P,. We define a rank
function A(z) recursively on Name(P) as follows: Let A(Z) be the smallest « such that
for all (y,p) € 2, it follows that A(¢) < « and p € P,,.

Whenever & € Name(P) with A(%) < a, then & € Name(P,) and ¢ = % . Hence, it
follows that V[G,] € V[Gg] whenever a < 8, and V[G] = Uscora V[Gal-

The following theorem is proved in [Sho71l 12| and |Zar73, 3|:

Theorem 1.3.16. If the class forcing P = Upeord Pa %S an increasing chain of set-sized
complete subforcings, then P satisfies the Forcing Theorem for every E?’B—formula ®.

The basic idea of the proof is that for &, ¢ € Name(P) with A(%), A(y) < « and p € P,,,
the forcing relations p - & € ¢ and p 1=} & = g for P can be defined via p -} & € § and
P II—KX T =19, so the definability lemma for set forcing yields the definability lemma for the
atomic formulas “vg € v;” and “vy = v;”. Then Theorem can be applied.

Another useful property is that for P = U,corq P an increasing chain of set-sized complete
subforcings as above, the interpretation function of names # ~ ¢ is definable in any P-
generic extension V[G]. This is not necessarily true for arbitrary class forcing, since the
recursive definition of (-)¢ makes use of Replacement, which might fail in V[G].

Proposition 1.3.17 (|Git80]). Assume that the class forcing P = Ugeord Pa @S an increas-
ing chain of set-sized complete subforcings, and let G be a V-generic filter on P. Then
there is a formula T(u,v) such that for any &, x € V[G], we have (V[G],€,V,G) & 7(&,x)
if and only if & € Name" (P) with x = iC.

Proof. First, we construct a function f in (V[G], €, V,G) such that
dom f = {(a,#) | @ € Ord, & e Name" (P,)},

and for all (o, ) € dom f, it follows that f(«,z) = 2% (= £%). Note that we cannot apply
the recursion theorem directly, since it makes use of Replacement.

However, we can still define in (V[G],€,V,G):
fla, @) =z iff

(*) a € Ord, © € Name(P,), and there exists F' € V[G], F : dom F' - V[G] such that
dom F' ¢ Name" (P,,), dom F' is dom-transitive (see p. , F (%) =z and for every
y € dom F' it follows that

Vz(zeF(y) < 3(5p) ey (peGa A z=F(2))).
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Chapter 1. Symmetric Forcing

Then as in the proof of the recursion theorem in ZFC, it follows that this definition indeed
yields a function (one considers a counterexample of least rank and obtains a contradic-
tion), and for all « € Ord, the set {Z | (o, %) € dom f} is dom-transitive. However, in order
to show that («,4) € dom f for all a € Ord, the original argument cannot be employed

here, since it needs the axiom of Replacement. Instead, we use that the interpretation
function ()% can be defined inside the ZFC-model V[G,].

Let @ € Name(P,), and assume recursively that for all §y € Tdom# (c¢f. p. [L7), we have
y e dom f with f(9) =y%. Let F denote the function that maps any ¢ € Tdomz U {z} to
its interpretation y“=. Then F' € V[G,] € V[G], dom F = {#} uTdom & is dom-transitive,
and for any ¢ € dom F, we have F(y) = ¢ = {£% | 3(2,p) €y p € Go}. In other words,

Vz (zeF(y) < 3(zp)ey (peGo A 2=F(2))).
It follows that F' satisfies all the requirements from (x). Hence, (a,4) € dom f with
f(a,t) = F(&) = 1% = 1% as desired.
It follows that (*) defines in (V[G],€,V,G) a function f on {(a,2) | a € Ord, & €
Name" (P,)} with f(a,#) = iCe = G for all (o, %) € dom f.
Hence, there is a formula 79(u, v, w) such that (V[G],€,V,G) & 1o(a, &, x) iff

(V[G],6,V,G) £ ae Ord A & € Name" (P,) A f(a,i) = .
Moreover, there is a formula 7(v,w) with (V[G],€,V,G) = 7(&, x) iff
(VIG],&,V,G) I+ (x e Name" (P) A Va € Ord (& € Name(P,) — To(a,j:,x))).

Since @8 = 1% = ¢ whenever & € Name(P,) and 3 > , it follows that (V[G],€,V,G)
7(&, ) iff & € Name" (P) with z = €. O

We will now introduce class products. For D a class of ordinals and (Qg | 8 € D) a definable
sequence of set forcings, a product

A
P=1]Qs

BeD

is always an increasing chain of set-sized complete subforcings.

Definition 1.3.18 (|Rei06, 122|). Let D be a class of ordinals and Z a sub-ideal on D,
i.e. Z is a class consisting of sets of ordinals X ¢ D such that @ €Z, {} €Z for all 5 €D,
7 is closed under finite unions, and whenever X € 7 and S € Ord, then also X n feZ
(cf. |[Rei06l 105 + 113]). Let ((Qp,<p,15) | B € D) be a class such that each Qg is a set
forcing. The product of ((Qp,<s,1p) | B € D) with supports in T

z
P := H Qﬁ
BeD

consists of all p : domp — V with the property that domp € Z and p(8) € Qs for all
B € dom p, with maximal element 1 := @, and the ordering <p defined by setting g < p iff
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dom g 2 domp and ¢(8) <g p(B) for all 5 € dom p.

If G is a V-generic filter on P, then for every 5 € D it follows that G :={p(8) |pe G, B €
domp}, the projection of G onto Qs, is a V-generic filter on Q.

In applications, D is for example the class of all cardinals or the class of all regular
cardinals.

Lemma 1.3.19 (|Rei06, 123]). Let (P,<,1) be the product of ((Qp,<p,15) | B€D) with
supports in I as in Definition[1.3.18 For a € Ord, let P, = {p € P | domp < a}, with
mazximal element 1, := 1 = & and the ordering <, inherited from P. Then P = Uycord Pa
15 an tncreasing chain of set-sized complete subforcings.

Proof. Let 7, 6 € Ord with v <. We have to show that P, is a complete subforcing of P;.
Consider p, g € P,. Clearly, ¢ <, p if and only if ¢ <5 p; and ¢ L, p if and only if ¢ Ls p, since
whenever r € Ps is a common extension of p and ¢, then 7:=7 | 7 is a common extension
of pand ¢ in P,,.
Let now A ¢ P, be a maximal antichain in P,. Consider p € Ps, and take r € A with
r|yp 7. Let ge P, with ¢ <, r, ¢ <, p I 7. Then the condition g € Ps, defined by setting
q(p) :=q(p) for p <=, and q(B) := p(B) for v < < § is a common extension of r and p in
Ps. Hence, the antichain A is also maximal in Ps; and we conclude that indeed, P, is a
complete subforcing of Ps.

m

Definition 1.3.20. Fix a definable sequence of set forcings ((Qs,<s,15) | 5 € D) as
above.

Let s be a regular cardinal. If 7 is the class of all sets X € D of cardinality < s, we obtain
the k-product (or product with < k-support)

HD:ﬁQ,B7

BeD

which is the collection of all p : domp — V with the property that domp € D with
|domp| < K, and p(5) € Qs for all § € domp. The Ry-product is usually referred to as
product with countable support.

If 7 is the class of all finite subsets of D, we obtain the product with finite support,

fin
P=T] Qs

BeOrd

which is the collection of all p : domp — V such that domp is a finite subset of D, and
p(B) € Qs for all f e domp.

Finally, if Z is the class of all sets X ¢ D with the property that for all inaccessible
cardinals v it follows that | X n v| <+, we obtain the product with Easton support

Easton

P=T1 Qs

BeD
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which is the class of all p : domp - V such that domp € D with |[domp n ~| < for all
inaccessible v, and p(3) € Qg for all 5 eD.

If D consists of cardinals and GCH holds, then Easton support is equivalent to requiring
|domp n 4| <~ for all regular cardinals ~.

1.3.2 Easton Forcing

In this chapter, we discuss Faston Forcing as an example of tame class forcing. Introduced
by William Easton in [Eas70], it was used to prove that the Continuum Function on the
class of all regular cardinals can take almost arbitrary values:

Theorem 1.3.21 (William B. Easton). Let V' be a ground model of ZFC + GCH with a
class function F whose domain consists of reqular cardinals and whose range consists of
cardinals, such that for all k, A e dom F' the following properties holds:

o K<\ F(k) < F(\) (weak monotonicity),
o cf F(k) >k (Kinig’s Theorem).

Then there ezists a generic extension V[G] by class forcing such V[G] = ZFC, V and V[G]
have the same cardinals and cofinalities, and V[G] E 2% = F(k) holds for all k € dom F.

We again remark that a similar construction is not possible for singular cardinals.

Our proof of Easton’s Theorem follows [Jec06l 15.18]. We start from a ground model
V & ZFC + GCH with an FEaston function F : dom F' - Card, which is a class function
with the following properties:

(i) any k€ dom F'is a regular cardinal,
(ii) cf F(k) >k for all K e dom F,
(iii) k, Aedom F with k < A - F(k) < F(\).

The corresponding FEaston forcing for F' is the FEaston support product of the Cohen
forcings Fn(F (k) x k,2,K):

Definition 1.3.22. For x € dom F, we denote by Fn(F'(k) x k,2, k) the set of all function
q:domgq — 2 with domgq ¢ F(k) x k and |¢| < k.
The FEaston forcing for F' is the product with Easton support

Easton

Pr:i= [] Fu(F(k) x k,2,kK),

kedom F'

which is the class of all p : suppp — 2 where supp p € dom F' a set such that for all regular
cardinals -, it follows that |suppp n | <, and p(k) € Fn(F (k) x K, 2, k) for all k € supp p.

For p, q € Pp, we set ¢ < p iff suppq 2 suppp with ¢(k) 2 p(x) for all k € suppp; and
]]-F =d.
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Let G be a V-generic filter on Pg. For every x € dom F' and i < F'(k), it induces
Gf:={a<k|3IpeCG p(r)(i,a) =1}.

By genericity, it follows that G} # G5 whenever ¢ # j; thus, the forcing Pr indeed adds
F(k)-many new x-subsets for every x € dom F'. Hence, V[G] E 2* > F(k). It remains to
show that V[G] = ZFC, that cardinals and cofinalities are absolute between V' and V[G],
and that V[G] E 2" < F(k) for all k € dom F.

For v a regular cardinal and p € Pg, we consider the following decomposition:

pi=pt(y+1) . p7i=p b (OrdN (v+1)).
Then p =p=7 u p>7 for all p e Pr and ~ regular.

Let
Py = {p |pePr} , P :={p"|pePr}.

Then Pg is isomorphic to the product P3' x P7.

Lemma 1.3.23 ([Jec06, 15.18|). For every regular cardinal v, the forcing P is < -
closed.

Proof. Let (p' | i <) be a descending sequence in P}, i.e. p/ < p' whenever i < j. We
define a condition p as follows: Let suppp := U, suppp’ € Ord\ (y+1); and for x € suppp,
let p(k) = Uie, P'(K), with pi(k) := @ in the case that « ¢ suppp'.

By compatibility of the p?, it follows that any p(k) is a function p(x) : domp(x) - 2 with
domp(k) € F (k) x k. Moreover, for any x € supp p, we have k >« and & is regular; hence,
|suppp(k)| = |Uicy suppp?(x)| < &, which implies p(k) € Fn(F (k) x x,2,x). Finally, for
any A a regular cardinal with A >, it follows that |suppp N A| = |Uc, (suppp’ n A)| < A.
Hence, p € P} is a common extension of (p? | i < 7). ]

Moreover, since GCH holds, an application of the A-system lemma yields:

Lemma 1.3.24 ([Jec06, 15.17 + 15.18]). For every reqular cardinal v, the set forcing P3)
satisfies the y*-cc.

By Lemma [1.3.19|it follows that Pp = U creg [P? is an increasing chain of set-sized com-
plete subforcings. Hence, Pp satisfies the Forcing Theorem (see Theorem [1.3.16)), and
V1G] = Usereg VIG=7].

Now, Lemma [1.3.14] yields for every v € Reg" that G = G=¥ x G>7, where G= == {p<7 | p e
G} is a P37 -generic filter over V, and G>7 := {p>7 | p € G} is a P,'-generic filter over
(V[G=1],e,V,G=V).

Moreover,
Proposition 1.3.25 (|[Fri00, 2.26|). FEaston forcing Pr is pretame.

Hence, it follows that P preserves ZFC™. Regarding the preservation of Power Set, it is
not difficult to see that Lemma [1.1.35] remains true when the second factor Q is a class
forcing. Thus,
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Lemma 1.3.26 (|Jec06l p. 236]). Let v be a regular cardinal in V. Then every function
f:v >V inV[G] is already contained in V[G=7]. In particular,

PV (y) = VI ().

Let now X € V[G]. Since V[G] & ZFC™, there must be a cardinal v € Reg” with an
injection ¢ : X < v in V[G]. Now, PVICI(X) = {4 [y] | y € PVIEI(7)}, and PVICI(y) =
PVIET(7) is a set in V[G=7] € V[G], since V[G=7] & ZFC. Hence, £V[C1(X) e V[G]; and
we conclude that V[G] e Power Set.

From the factorization Pp [P? x P, we also obtain the preservation of cardinals and

cofinalities:
Lemma 1.3.27 ([Jec06, 15.18]). Any x € Reg" is still a a regular cardinal in V[G].

Proof. Assume towards a contradiction there was 7 < k, 7 € Reg" , with a cofinal function
f:7 = kin V[G]. Then by Lemma [1.3.26] it follows that f e V[G<7]; so k is not regular
in V[G="]. But this is not possible, since P} satifies the y*-chain condition. O

Thus, all cardinals and cofinalities are preserved by Pg.
Proposition 1.3.28 ([Jec06| 15.18|). For any X e dom F, it follows that (2*)VIE] = F()).

Proof. We have already argued that (2*)VI¢] > F()), since Easton forcing adds F()\)-
many new A-subsets.

In order to show that (2*)VIC¢] < F()), first note that by Lemma |1.3.26]

(QA)V[G] _ |PV[G]()\)|V[G] _ |pV[G9‘]()\)|V[G] < |PV[GSA]()\)|V[G5’\] _ (QA)V[GS*]‘

Now, (2')VIG*] can be computed as in Lemma [1.1.23; and now it is important that the
function F' meets the requirements from Konig’s Theorem:

For any regular x < \ with x € dom F, it follows that the forcing notion Fn(F'(k) x k,2, k)
has cardinality < F(k) < F()\), since V E GCH, and cf F(x) > k. Thus, |[P3| < F(\)< =
F()). Since P has the A*-c.c. by Lemma it follows that there are < F(\)* =
F(X\)-many antichains in P3). Hence, |Nice(P5',\)| = F(A)* = F()\), which implies
(2MVIEPT < F()) as desired.

[

This finishes the proof of Easton’s Theorem.

1.4 Symmetric Extensions by Class Forcing

In this chapter we extend our technique of symmetric forcing with partial automorphisms
introduced in Chapter to class-sized forcing notions P. We proceed similarly as in
Chapter [1.2.3] but for working with proper classes a measure of extra care is needed.
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Chapter 1. Symmetric Forcing

We confine ourselves to the case that the class forcing P has a nice hierarchy: We demand
that P = U, P, should be an increasing chain of set-sized complete subforcings with pro-
jections p, : P - P,, with certain properties as listed below. Any partial automorphism
for P that we consider, say 7 : D, - D,, will be fairly “set-like”: There will o € Ord such
that © can be constructed from an automorphism =, : D, n P, - D, n P, as follows:
Any p € D, is first projected down to P, via p,, then the map 7, is employed to p,(p),
and then 7,(p.(p)) € P, is “glued together” with the “upper part” of p that is not taken
into account for p,(p). In order to formalize this “upper part”, we demand that there
is a definable sequence (Pq,00) | o € Ord) of class-sized forcing notions with a definable
sequence of projections (pra,c0) : P = Pla.e0) | @ € Ord); and for every o € Ord, there is a
canonical isomorphism from P into a dense subforcing of P, x P[4 ). Then every p € P
can be viewed as a pair (pa (D), pla,c) (D))

We demand that the maps p, and p[, ) have several natural properties that one expects
from “cutting off” and “gluing together”, see Definition [1.4.2]

Examples 1.4.1. (1) In Chapter 3] we will apply this idea to a finite support product

fin

P=T] &

reCard

of Cohen-like forcing notions Q. Setting P, := [T Q. and Pla,c0) = I‘[ﬁg[am) Q.,
it follows that P = Uucora Pa is an increasing chain of set-sized complete forcing
notions; and we have projections p, : P - Py, p = p I @, and pla,e) 1 P = Pla,e0),
prp | (Card \ a). Then for every « € Ord, it follows that any p € P can be viewed

as a pair (Pa(P); Pla,e)(P)), and P = Py x Pry o).

(2) Also in Chapter[3] will also employ this construction to forcing with partial functions
on finitary trees (i.e. in this case, trees with finitely many maximal points) the levels
of which are indexed by cardinals. Then p,(p) is the lower part of the tree up to
level o (including level « itself), and ppq,)(p) is the upper part of the tree (level o
and higher). In this case, P is not isomorphic to the product P, x P, ) but only
to a dense subforcing, since conditions in P, x P[4, ) might have additional “roots”
at level a.

Definition 1.4.2. A class forcing P has a nice hierarchy if the following hold:

a) P =Uacorda Pa is an increasing chain of set-sized complete subforcings, each of which
is upwards closed in P, i.e. for any p € P, and ¢ € P with ¢ > p, it follows that
q € P, as well. There are projections (p, | @ € Ord), p, : P - P,, such that
{(a,p,pa(p)) | @ € Ord, p € P} is a class in V, and for all «, 5 € Ord, o < 3, the
following properties hold:

(i) Vp,qeP (p<q—pa(p) < palq)),

(ii) VpeP, pa(p) =p (in particular, p,(1) =1 =1,),
(iii) VpeP pa(ps(p)) = palp),
(iv) VpeP,qePu(q<apa(p) > 30 <p pa(p’) <a q),

26



Chapter 1. Symmetric Forcing

(v) VpeP p<pa(p).

b) There is a definable sequence of class-sized forcing notions (Pac0) | @ € Ord) with
projections (pa,e) | @ € Ord), pra,e) : P = Pla,co), 1. {(a,p) | @ € Ord, p € Ppg,00)}
is a class in V and {(a,p, pra,0)(P)) | € Ord, p € P} is a class in V.
For every o € Ord, the map b, : P — P, x P[4 00y defined by bo(p) := (pa(P); Pla,00) (P)),
is an isomorphism from P into a dense subforcing of P, x P[4,c0)-
For notational convenience, we will often identify p € P with its image b,(p) =
(Pa(P); Plaeo)(P)) € P % Plaoo).
We define projections p, : Py X Pg,00) = Po and Plaeo) Po % Pla,c0) = Pla,e0) for

a € Ord by setting o, (Pa; Gfa,e0)) = Pa and ﬁ[ayw)(pa, U[a,00)) = Q[a,00) FOT (Dars Qla,00)) €
Po % Pla,c0)- Then for every p € P, it follows that 5, (ba(p)) = pa(p), and Py e (ba(p)) =
Plaeo) (P). We will often mix up p, with p,, and pia .y With oy

a’oo).

c) Regarding the projections (pra,e) | @ € Ord), we require for all p, ¢ € P and «,
B € Ord with g < a:

(i) <G~ Plac)(P) < Plaee) (4),
(ii) p€Pg = Pra,co)(P) = Lia,00) (in particular, pra,e) (1) = Lia,00))s
(iii) for every ¢[a,co) € Pla,c0) With ¢[a,c0) S[a,00) Pla,e0) (D), there exists p’ < p with

p[a,oo)(p,) S[oz,oo) Q[a,oo)~
d) Regarding the interplay of the maps p, and ppa,«), We require for all a < 3
Let po € Py, and g € P such that (pa, p[a,c)(q)) € P. Then

(i) ps(Pas Prawe) (@) = (Pas PLase) (P5(2)))
(ii) (pﬁ(paap[a,w)(Q))ap[@w)(Q)) = (poup[a,OO)(q))'

For p € P, we call A(p) :=min{a € Ord | peP,} the height of p. Whenever p < g, then by
the upwards closure of the P,, it follows that A(p) > A(q).

For a name & € Name(P), we define recursively:

A(#) = sup{A(y) | § e domi} U sup{A(p) | pergi}.

Then A(z) is the smallest « such that for all (y,p) € %, it follows that A(y) < « and
pelP,.

For the rest of this chapter, let P denote a separative class forcing with a nice hierarchy.
By Theorem [1.3.16] it follows that the Forcing Theorem holds. In particular, the forcing
relation is definable in V.

We will now describe what type of dense classes D and partial P-automorphisms 7: D - D
we will consider.

Definition 1.4.3. e A dense class D € P allows projections if for any p € D and « € Ord,
it follows that p,(p) € D, as well.
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e A dense class D € P can be described below « if for every p € P, it follows that p € D if
and only if p,(p) € D n P,.

e An automorphism 7 : D — D on a dense class D € P can be described below « if D can
be described below «, and there exists an automorphism =, : D n P, - D n P, such
that for every pe D,

7(p) = (7a(pa(P)) Pla,=)(P))-

We write m =7,.

e An automorphism 7 : D — D on a dense class D c P s nicely level-preserving, if D
allows projections, and for all 8 € Ord and p € D, it follows that 7(ps(p)) = ps(7(p)).
In particular, A(7(p)) = A(p) for all pe D.

Whenever D € P is a dense class that allows projections, then for any « € Ord, it follows
that D n P, is dense in P,,.

Example 1.4.4. Let P = [T, , Q. with P, := [T Q. as in Example m (1). For ¢
a formula of set theory, and S a class of parameters in V', the dense classes considered

could be of the form
Dos={peP|Vredompna ¢(p(x),s)}

for @ € Ord and a parameter s € S. Then for any p € D, s and @ € Ord, it follows that also
pa(p) =p I @€ D, Hence, D, allows projections. Moreover, for any @ > «, we have
pe D, if and only if pz(p) € D, s. Thus, D, s can be described below a.

The automorphisms 7 could be of the form 7 : D, , - D, s for some D, s as above with
7w = (m(k) | kK < @) such that each 7(k) is a partial automorphism on Q; and whenever
p€ Dy, then dom(mp) := domp with 7p(k) = 7(x)(p(k)) for all £ < o, and 7p(k) = p(k)
for all k> . Then 7 can be described below «a, and 7 is nicely level-preserving.

In this setting that 7 : D — D can be described below o with m = 7., we will sometimes
abuse notation, confuse m = 7, with 7., and treat 7 as a set.

Similarly, if a dense class D ¢ P can be described below «, then membership to D can be
reduced to membership to D n P,, and we will again sometimes abuse notation, confuse
D with D n P,, and treat D as a set.

We continue with two lemmas about basic properties that follow from Definition [1.4.2]
and

Lemma 1.4.5. Assume that w: D — D can be described below o with m =T, and assume
that for all p € P, and (€ Ord, it follows that m,(ps(p)) = ps(ma(p)). Then m is nicely
level-preserving.

Proof. First, consider 5 < « and let p e D. Then

m(ps()) = (7alpal(ps(p))); Plase)(Ps(P)))
(7a(ps(P))  Ljawey) (by a) +¢c))

Ta(pp(P))-
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On the other hand,

ps(m(p)) = ps(ma(palp)), Pla.se)(P))
(8 © Pa)(Ta(Pa(D)): Plaey(P)) (by [L42]a) )
ps(malpa(p))):

Now, pa(ma(pa(p))) = ma(ps(pa(p))) by our assumption on 7, and ma(ps(pa(p))) =
7a(ps(p)) by a). This finishes the proof for 8 < a.

In the case that 8 > a, we have

m(ps(p)) (Ta(Palps(P))). Place) (P (P)))
(Ta(pa(D)), P,y (pa(P))) (by a) )

(70 (Pa(D)), Placey () (by d))
ps(m(p)).

O

Lemma 1.4.6. If 71 : D — D can be described below o and o < 3, then w can also be
described below (3.

Proof. Let m =17, as above with 7, : D n P,, 5Dn P.. Then

T(p) = (Ta(Pa(P)); Pla,ee)(P))

for all pe D. We define a map w3 as follows: For pe D n Pg, set

m5(p) = ps(Ta(Pa(P)), Plae) () = ps(m(p)).
Then

(75(p5(P)); Pr5.00) (1)) 5(7a(Pa(P5(P))); Pla.c) (P5(P))) - Po.cc)(P))

(p

(P5(Ta(Pa(D)), Plas)(P8(P))) s PLs.0ey(P) ) by a)
(ps

(

(Ta(Pal(D)); PLaes) () s PLo.co) () ) by [42]d)
Ta(Pa(P)), Place) (D)) by-d

m(p)

for all pe D.

Whenever p € D n Py, it follows that m3(p) = 7(p); hence, 73 : D nPg - D n Py is indeed
an automorphism.

]

Now, we adapt our Definition of an almost-group of partial P-automorphisms to
class forcing. We try to avoid introducing D (which would be a collection of classes),
and therefore assume that all dense classes D considered are given by the same formula
o(x,y), with parameters ranging over a class S. In other words: Any dense class D we
are considering is of the form D= D, ={peP | ¢(p,s)} for some s € S.

If necessary, one could also allow finitely many formulas ¢o(x,y),..., ¢, 1(z,y) with
parameters in Sy, ..., .S, 1, respectively.
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Definition 1.4.7. Let ¢(x,y) be a formula of set theory and S a class in V. A class A
is an almost-group of partial P-automorphisms for ¢ and S if the following hold:

a) Forevery s e S, the class Dy := {p e P | p(p,s)} is dense in P, and there exists o € Ord
such that D, can be described below «. The smallest such o will be denoted by
a(s).

b) For every sg, s; € S, there exists s € S with a(sy) < max{a(sp),a(s1)} such that
Dy 0 Dy, = Dy, ice. {peP | o(p,so) » ¢(p,51)} ={peP|p(p,s2)}.

¢) There exists Syax € S with D€ D for all s€S.

d) Every 7 € A is a nicely level-preserving automorphism 7 : D, 5 D, for some s € S ,
and there exists a € Ord such that 7 can be described below «, i.e. there exists an
automorphism =, : Dy n P, - Dy n P, with 7 =7,.

e) For every s € S and a € Ord with a > a(s),

Smax

Ay ={m=Ta€A | 1,: Dy n Py > Dy NPy}

is a group.

f) Whenever s, s’ € S with D, ¢ Dy, then for every 7 € Ay oy with o > a(s’), it
follows that 7[D,] = Dy; and 7 | Dy € A,y for every a > max{a’, a(s)}.
(Note that for every m € Ay oy with m = T, for some 7y @ Dy 0 Py it Dy n Py
and D, ¢ Dy as above, it follows that 7 } D, = Ty | D,. If o > max{o/,a(s)}, it
follows automatically that 7w | D, can also be described below «: Setting 7, (p) :=
pa(ﬂa/(pa/(p)),p[agoo)(p)), we obtain that 7, | D, : D, n P, > D, n P, is an
automorphism satisfying 7 } D, = m, | Dy.)

Let ¢(z,y) be a formula of set theory, S a class in V', and A an almost-group for ¢ and S.
Then A can be can be turned into a group if we use a construction similar to the direct
lvmit, but keep in mind that we are working with proper classes:

Whenever s, s’ € S and «, o/ € Ord with « > a(s), o' > a(s’) such that D, € Dy and
a > o/, there is a canonical homomorphism ¢y a1 (s,a) * A(s,ar) = A(s,a), T+ 7 I Dy. More
precisely: A map 7 € Ay o), ™ = Ty is mapped to 7,, where 7, : Dy n P, 5 D, n P, is
defined by setting o (p) = pa(Tar(Par (D)), Plar.ce) (p)) for all pe Dy N P,
This gives a directed system

(A(s,a)a ¢(s’,a’)(s,a))
for s,s"€ S, a>a(s), o' >a(s’); and Dy € Dy, a > o
We cannot straightforwardly take the direct limit, since there is a proper class of indices.
However, Scott’s Trick can be applied as follows:

We consider the following equivalence relation “~” on U{A¢.a) | s€S, a>a(s)}: When-
ever me€ A, o) and 7' € Ay o), let ™~ 7 iff there exists s” € S with Dy € Dy n Dy and
a” > o, o’ such that ¢(sa)(s7,a7)(T) = O(sr .07y (57,0 (7). Tt is not difficult to see that this is
the case if and only if 7 and 7" agree on Dy n Dy (since we assumed our forcing P to be
separative).
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Definition /Proposition 1.4.8. Let ¢(z,y) be a formula of set theory, S a class in V|
and A an almost-group for ¢ and S. We define on A the following equivalence relation:

For w, n’ with w: Dy, - Dy, @' : Dy — Dy let
e~ e w (Dsn Dy)=7"1(Ds 0 Dgy).

Consider m € A. We denote by A;(7) (the lower height of 7) the least ordinal a such that
there exists 7/ € A with 7’ ~ 7 such that #’ can be described below a.
We define

[7] = [7]. = {O‘=O'_a ‘ a=A|(r),0~7,0,:domo n P, ->domo N IPQ}.

Let B
A={[r]|meA}.

Then A becomes a group as follows: Consider 7, 0 € A with 7 € Asays 0 € Ay ar)-
Then by b), there is s” € S with Dy» = Dy n Dy, and a(s”) < o := max{q, a'}.
Let [7] o [0] := [v], where v is the map in Ay oy satisfying v(p) = w(o(p)) for all p € Dy

We call A the group of partial P-automorphisms derived from A.

“Wom
o

Proof. We have to make sure that the operation is well-defined: Let m, o as above
with m € A(s 0y, 0 € A(s,ar), and s” € S with Dy = D, 0 Dy and a(s”) < o := max{«a,a'}.
Then 7 | Dgr € A(gn oy and o | Dgr € Aggr oy by f). Now, since Ay qn) is a group,
there exists v € A o) With v(p) = 7(o(p)) for all p € Dy, Setting v := v | Por, it is
not difficult to see that v =T, and v, (p) = 7(o(p)) for all pe Dy 0 Py

The rest of the proof is as in Definition / Proposition for set forcing. O

For the rest of this chapter, we fix a formula ¢(z,y), a class S, an almost-group A for ¢
and S, and A, the group of partial automorphisms derived from A.

Note that whenever 7, 0 € A with 7 ~ o, then A;(7) = Ay(o). Thus, for any 7, o € A, it
follows that 7 ~ o if and only if [7] = [o].

We will now extend our automorphisms m € A to the name space. Let s € S. Recur-
sively, we say that & € Name(P) is a P-name for Dy if for all (y,p) € &, it follows that

7 is a P-name for Dy, and p € D,. We denote by Name(lP)Ds the class of all P-names for D,.

Whenever & is a P-name and 7 : Dy, — D,, then n2 can be defined as usual in the case
" —— D,
that & € Name(P) , and recursively, it follows that A(7t) = A(2) for all £ € Name(P) .

— D,
In the case that & ¢ Name(P) = however, we have to proceed similarly as in Chapter|1.2.3

—DS . .
to modify & to obtain a name T”° € Name(P) ~ with the property that ¢ = (z”#)¢ for
any G a V-generic filter on P.

In order to make sure that z”* is a set, we have to modify our definition from Chapter

and require that for all (7”<,p) e TP, it follows that A(p) < A(&):
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Given s € S, we define recursively for & € Name(P):

7 = {(¥",p) | yedomi, pe Dy, A(p) <A(&), pI-yei}.

—
Then 7"+ € Name(P) , and inductively, it follows that rkeZ”* = rkpi.

Lemma 1.4.9. Let s € S. Whenever G is a V-generic filter on P and & € Name(P), then
i¢ = (TP*)C.

Proof. Assume recursively that ¢ = (y”+)¢ holds for all € Name(P) with rkpy < rkpi.
The inclusion “2¢ 2 (z”#)C 7is clear. Regarding “c”, consider y € ¢, and let (y,p) € @
with ¥ = ¢ and p € G. By density of D,, there exists ¢ < p, ¢ € D, with ¢ € G. Let
a = A(x). Then A(p) < a. Setting §:= po(q), it follows that § e D,, as well, since D,
allows projections. Moreover, A(§) < o = A(&), and since § = pa(q) < po(p) = p, it follows
that § - ¢ € . Hence, (y”,§) € 77%; and ¢ € G with § = pa(q) > ¢ (by a)) implies
that 7 e G, as well. Hence, y = ¢ = (37*)% € (z7%)C as desired. O

—D,
Lemma 1.4.10. Whenever s, s’ € S and & € Name(P), then 7 = =70,

Proof. We first show that A(z”¢) = A(4) holds true for all & € Name(P) and s € S. Take
i € Name(P), and assume recursively that A(7”*) = A(y) holds for all 3 € Name(P) with
rkpy < rkpz. By definition,

A(@"*) = sup{A(F"™*) | y e domi} U sup{A(p) | perg(z™)}.

For any 9 € dom, it follows by assumption that A(7”*) = A(y) < A(&). For every
perg (EDS), we have A(p) < A(#) by construction. Hence, A(Z”*) < A(%).

Regarding the proof of “A(z”*) > A(#)”, it suffices to show that sup{A(p) | p e rg (EDS)} >
sup{A(p) | perga}. Consider (5, p) € & with A(p) =: a. Our aim is to find (7**,7) e 7"+
with A(q) = . Take ¢ < p with g € Dy, and let §:= p,(q). Then § e D, as well, since D
allows projections, and A(q) < a = A(p) < A(z). Moreover, § = pa(q) < pa(p) = p implies
A(@) =2 A(p) = o, and §IF 9 € &. Hence, (y<,§) € 27 with A(g) = A(p) = « as desired.
We conclude that sup{A(p) | perg (EDS)} > sup{A(p) | p e rg}; which finishes the proof
of A(ZP) = A(%).

—D,
Now, consider & € Name(P), and assume recursively that 77+ = = 7"+ holds true for all
y € Name(P) with rkpy < rkpz. Then

s ——D
P = @) | gedomi, pe Do, A) S AE), pir 7 7

= {@".,p) | yedomi,pe Dy, A(p) <A(d),pi-gea}
TP
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Moreover, it is not difficult to verify that whenever 7, 7’ € A, m: Dy - D, 7' : Dy - Dy

— R
and & € Name(P) *, then
Dgr

s

TP = g
In order to establish a notion of symmetry, we need the following analogue of Lemma
T.2.16k

Lemma 1.4.11. Let w, n’ € A with # : Dy - D,, n' : Dy - Dy such that © ~ 7/,
i.e. 1 (Dgn Dy) =7"} (Ds n Dy). Then for i € Name(P), it follows that 7z = TP
if and only if 7'z = TP

We prove the following analogue of Lemma [1.2.17] by induction over a:

Lemma 1.4.12. Let w1, n’' € A with # : Dy, - D,, ' : Dy - Dy such that © ~ 7',
ie. 1} (Dsn Dy)=7"} (Ds n D), and vy € Ord. Then for any v, 2 € Name(P) with

rkpt) = rkp2 =, it follows that 7y"°* = ZP* if and only if ©'yP+ =z,

Proof. As in the proof of Lemma [1.2.17] we can assume w.l.o.g. that Dy ¢ D, since the
map 7:=7 | (Ds n Dy) =n" | (Ds N Dy) is contained in A, as well by f).

Consider 7 € Ord, and assume the statement is true for all ¥ < v. Let gy, Z € Name(P)
with rk[py = rk[p,é’ =7.

“=7 If 7yPs = 2P+ then similarly as in the proof of Lemma [1.2.17, one can show that
=D

zP< ¢ 7P+ holds. The inclusion “2” is similar.

“<” Now, assume 7'y"+ = z”+. Following the proof from Lemma we show that
zP= c 7P+, (The inclusion “2” is similar.) Let a = A(Z). Consider (z7°,p) € 27+,
i.e.#edomz,peD,, A(p) <, and P IF & € 2. We have to show that (z7*,p) € my”=.
Let ' < p with ' € Dy, and set P := po(p’). Then p € Dy as well (since Dy
allows projections), A(P) < o = A(2), and from D = p,(P') < pa(D) = D, it follows
that p - @ € 2. Hence, (zP,p) € ZP = n'y"+'; so there must be @ € domy
with P« = 7'uP+. By inductive assumption, it follows that P = 7u”*, since
rkptt = rkpd < y. Let q:= 71p. We have to show that (7u”*,7q) € 77"*. We know
that @ € domy and g € Dy, so it remains to show that A(g) < A(y) and g I+ @ € .
Regarding “A(q) < A(%)”, let §:= (7/)"1(p). Then (7w’ ,7'(§)) = (z°+,p) e m'y"~
gives A(q) < A(y); hence, A(D) < A(y), and from p < p, we obtain A(p) < A(y).
Hence, from g = 7~1p, it follows that A(q) = A(P) < A(y) as desired.

Regarding the proof of “g I+ u € 3 7, it suffices to show that r I- @ € g for all » < 7§ with
r € Dy. Consider r < g with r € Dy, and let 7 := p,(r), where « := A(2) as above.
Since A(q) = A(P) < «, it follows that 7= p,(r) < pa(q) =; and 7€ Dy, since Dy
allows projections. Then 77" is contained in D, as well. Moreover, from p I+ & € 2
and 7< g =7"!p, it follows that 77 I+ & € 2. Finally, A(77) = A(7) < a = A(2), and
% € dom Z; so we obtain (7%, 77) € z7¢'. Thus, (7'u"*,7T) € 7'y~ *"; which implies
Tl €. Since r <7 = po(r), it follows that 7 I- @ € y as desired; which finishes the
proof.

O
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Now, we introduce our notion of symmetricity in the context of class forcing with partial
automorphisms. We try to get around employing the notion of a filter (which would be a
collection of proper classes), but instead notice that in most applications, there are only
finitely many types of A-subgroups to be considered, each of which is given by a formula
Y;(v,w): For i < (where [ is a finite number), we have A;(y) = {[7] € A | ¢;(7,y) } for
some parameter y. We usually want only parameters with certain properties; so for any
i < I, there will be another formula y;(w) such that only subgroups A;(y) are considered
where x;(y) holds. (In applications, the formula y;(y) could state, for example, that y is
a finite set of ordinals with certain properties.)

In order to have the groups A;(y) well-defined, one has to require that for all y with y;(y)
and 7w, 1" € A with 7 ~ #’, it follows that ;(7,y) if and only if ¢; (7', y).

Finally, we have to ask for a normality property, corresponding to the requirement that
in the case of set forcing, one has to use a normal filter.

This results in the following definition (recall that we have fixed an almost-group A of
partial automorphisms for P):

Definition 1.4.13. A finitely generated symmetric system S for A consists of a finite num-
ber [ < w, [-many formulas ¥ (x,y),...,¥-1(x,y), and l-many formulas xo(v), ..., xi-1(v)
such that the following properties hold:

a) Let ¢ <I. Whenever y with x;(y), and m, 7’ € A with m ~ «/, then ¢;(7,y) if and only
if ¥;(7",y). In other words: The formulas v;(7,y) respect “~”.

b) For all i <1 and y with x;(y), it follows that
Ai(y) ={[r] e A ¥u(m,y) }
is a subgroup of A.

c¢) The following normality property holds: Let [r] € A, i <[, and y with x;(y). Then
there is n < w and finitely many ig,...,7,_1 < [; moreover, finitely many parameters
Yo, - - -, Yn-1 such that x; (y;) holds for all j <n, and

[7JA:i () [7]7" 2 Aig (o) 0 - 0 Aiy (1)

The following definition corresponds to saying that a subgroup B ¢ A is contained in the
filter generated by the A;(y):

Definition 1.4.14. Let S be a finitely generated symmetric system for A. A subgroup
B ¢ A gives rise to symmetry with respect to S if there is n < w and finitely many
ig, - .., ip-1 < I; moreover, finitely many parameters yo, ..., y,-1 such that x;, (y;) holds for
all j <n, and

B2 Ai(yo) 0 -0 Aiy (Y1)

Remark 1.4.15. Since there are only finitely many formulas ¢y (v, w), ..., ;1 (v,w) and

Xo(w), ..., xi-1(w) involved, Definition [1.4.13|and Definition [1.4.14| could be rephrased to
a formula of set theory.
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Remark 1.4.16. One could also allow intersections of cardinality < x for x a regular
cardinal. Then Definition [1.4.13|¢) and [1.4.14] above have to be modified as follows:

e Regarding normality, one has to require that for any [7] € A, i <1 and y with x;(y),

there are ko, ..., /-1 < £, and for any ¢ <1 a sequence (yj | j < x,) with x,(y}) for all
J < K, such that B _
(14717 2 ) Auyy).
1<l j<K,
o A subgroup B € A gives rise to symmetry with respect to S if there are ko, . .., ki1 < K;

and for any ¢ <! a sequence (y; | 7 < K,) with ¥.(y5) for all j <k, such that

B2 Ay)).

<l j<K,

For our purposes in the context of Chapter [3| we will only need symmetric systems that
are generated by finite intersections.

Fix a finitely generated symmetric system S for A. Now, we can use S to establish our
notion of symmetry:
Definition 1.4.17. A P-name z is symmetric for S if the stabilizer group

sym? (&) := {[r]eA, m:Ds~ D, ‘ nzls =P |
gives rise to symmetry with respect to S. Recursively, a name & is hereditarily symmetric,
€ HSS, if & is symmetric, and g is hereditarily symmetric for all ¢ € dom 7.

By Lemma [1.4.11] this is well-defined, since for any 7, 7’ € A, 7: Dy > D, @' : Dy - Dy
with 7 ~ 7" and 4 € Name(P), it follows that 727 = "+ if and only if 7'z =z,

When A and S are clear from the context, we write just sym(#) and HS.
Like in the case for set forcing, one can show that whenever # € HSS and 7 € A,

7 : Dy - Dy, then firstly, also z7* € HSS holds; and secondly, 777 ¢ HSS. For the
second claim, one has to use the normality property from Definition |1.4.13| ¢).

Moreover, for any element a of the ground model, it is not difficult to see that the canon-
ical name @ := {(b,1) | b€ a} is hereditarily symmetric.

We are now ready to define the symmetric extension:
Definition 1.4.18. Let GG be a V-generic filter on P. The symmetric extension by S and
G is

V(GQ)® ={2% | i e HS®}.

When the symmetric system is clear from the context, we write just V(G).

For ¢ a formula of set theory, p € P, and zq,...,%,_1 € HS, the symmetric forcing relation
p(Fs)E s¢(Zo, ... En1) can be defined as for set forcing (cf. Definition [1.2.7)).
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We will work with the structure (V(G)®,€, V), where we have a unary predicate symbol
for the ground model.

Similarly as in Chapter we extend our language of set theory L. by a unary predi-
cat symbol A, where A(z) will assert that x € V', and denote this extended language by LA.

Definition 1.4.19. For p € P, we define:
¢ p(”‘s)g,s A(z) iff Vg<p Ir<q Ja (rvy & =a)
e V[G]E A(x) iff z eV

Again, we will abuse notation and do not mention the predicate A in our formulas. In-
stead, we keep in mind that inside the structure V(G)®, formulas can talk about the
ground model V; and write p(zo,..., 2, 1,V) where necessary. Moreover, behind the
forcing symbol (I-)g s, we write “p(I-5){ ¢4 € V' 7 instead of “p (i)} ¢ A(4)"; and
p(Fs)g s¢(to,. .., @n1,V) for a formula ¢ € £4 when we need to mention the predicate
V.

Informally, the symmetric forcing relation for class forcing can be defined as usual:

Definition 1.4.20. For a formula ¢(vg, ..., v, 1) € L2, a condition p € P, and &g, ..., 2,1 €
HS, we write

D (”‘s)@‘é,g (Lo, -+ Tn-1)

if for any G a V-generic filter on P with p € G, it follows that p(z§,...,2% ) holds in the
structure (V(G)S, €, V).

Then (1)} s satisfies the same basic properties as the ordinary symmetric forcing rela-
tion (see Proposition [1.2.8); and the Symmetry Lemma holds true, as well.

Whenever @, g € HS and p € P, then p(i-,){ ¢ ¢ € @ if and only if p I-{ ¢ € &; moreover,
p(s)Y s =7 if and only if p i) & =5; and p(I-5)¥ s €V if and only if pIry eV .
Hence, the definability lemma for (IFs)p ¢ holds for the atomic formulas “vg € v1” “vg = v1”

and “vy € V”. As in [Kral7, 2.1.5|, this implies that the Forcing Theorem holds for the
symmetric forcing relation (I-)p .

In most cases, when the ground model V', the forcing notion P, and the symmetric system
S are clear from the context, we write just “I+,".

Since p I+ y €  if and only if p -y € & for all 2, y € HS and p € P, it follows that for any
2 € HS and a parameter s € .S, we have

7 = {(5,p) | j edomi, pe Dy, Ap) < A(&), p s € ).

In general, symmetric extensions by class forcing do not preserve ZF. However, the
following proposition remains true:
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Proposition 1.4.21. Let P be a notion of forcing, A a group of partial P-automorphisms
for ¢ and S, and A the group of partial automorphisms derived from A. Let S be a
finitely generated symmetric system for A. Then V(G) = V(G)S is transitive with V ¢
V(G) ¢ V[G], and V(G) satisfies all single axioms of ZF~ (that is, all axioms of ZF~
except Separation and Replacement ), with Union replaced by Weak Union (c¢f. Chapter
)

Proof. The axioms of Eztensionality, Foundation and Infinity are clear.

Regarding Pairing, consider x, y € V(G), x = 1%, y = y“ with z, y € HS. We have to find
aname z € HS with 2¢ = {z,y}.

Let 2 :={(4,1), (y,1)} and consider 7 € A, 7: D, - D, with 777 = 7P+ and 7y": = 7"=.
Then
z0 = {(@".p) [pe Dy, A(p) < A(2)} v {(F",p) | P Ds, A(p) < AW}

and

nz? = {(7z",7p) | pe Dy, A(p) < A(2)} v {(xg"*,7p) | p e Dy, A(p) < A(H)}-

Since p € Dy <> wp € D, for all p € P, and A(p) = A(wp) for all p € Dy, it follows that
—Ds _ =D, Al Al Al Al . .

7wz =Z"°. Hence, sym?(2) 2 sym?(2) n sym?(y), so sym?(2) gives rise to symmetry

with respect to S. Since dom Z = {#,y} € HS, it follows that Z € HS as desired.

For Weak Union, consider x € V(G), x = % with 2 € HS. We have to find u € V(G) with
u2Jx. Let
w:={(%,1) | 3y edomz Zedomy}.

Then 4% 2 Jz. It remains to make sure that we HS.

Consider m € A, 7: D, - D, with 7z”* = zP*. Then

= {(ZP,p) | peDs, A(p) <A(2), Iy edoma 2 edomy)}

{(z,p) | pe Ds, A(p) < A(2), Iy e domT”* z e domy},

since by the proof of Lemma it follows that A(2) = A(z"*) for all z°* € domu”".
We obtain

uPs

Dy

{(mz,mp) | pe Dy, A(p) < A(z2), Iy e domT”* 2z e domy}
= {(nz,7p) | mpe Dy, A(mp) < A(2), Iy e dom 7z”* 72z € domy},

™
which is equal to @”¢, since we assumed 77" = 7=,
Hence, sym4 () 2 symA(#), and dom @ € HS; which gives @ € HS as desired. O

The axioms of Separation and Replacement hold true if P = Uycorq Po and A satisfy cer-
tain homogeneity properties as in Proposition [3.3.2] and [3.3.3] The axiom of Power Set
does not holds true in general.

However, even if the generic extension V[G] by some class forcing P does not satisfy ZFC,
there can still be an intermediate symmetric extension V(G) = V(G)® with V(G) = ZF
(see Chapter [3)).
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Chapter 2

An Easton-like Theorem for Set-many
Cardinals in ZF + DC

In this chapter, we show that in the theory ZF + DC + AX,, the A-function can take al-
most arbitrary values on any set of cardinals. This answers a question of Saharon Shelah
from [Shel6), §0.2 1)]: “Can we bound hrtg (P(1)) |= 0(w)] for p singular?” No, we can not.

On the one hand, this generalization of Easton’s Theorem to regular and singular cardi-
nals in a theory with weak choice is in sharp contrast to the AC-situation, where Silver’s
Theorem and pcf theory put prominent bounds on the Continuum Function. On the other
hand, the theory ZF + DC + AXy is surprisingly rich and allows for much of combinatorics.
For instance, a version of the pef theorem holds (see [Shel6l, §1]) and certain covering
numbers exist (see [Shel6l §2 (D)]).

We continue with a few words about ZF + DC + AX,. Starting off from ZF + DC, most of
real analysis is possible. Investigations in combinatorial set theory under ZF + DC seemed
rather hopeless in the first place, until Saharon Shelah proved various interesting results
under ZF + DC in [She97], thus initiating further projects under weak choice.

In [Shel0)], he suggested to adopt the following additional axiom:

(AX4)  For every cardinal X, the set [A\]¥° can be well-ordered.

Given a ground model V £ ZFC, any symmetric extension by countably closed forcing
yields a model of ZF + DC + AX4 (cf. [Shel(, p.3 + p. 15| and [Karl4, Lemma 1]).
In [Shel6l 0.1], Shelah concludes that ZF + DC + AXy is a “reasonable theory, for which

much of combinatorial set theory can be generalized”.

We stress that we aim to work without any large cardinal assumptions. By [AKI10], rais-
ing the surjective size of [k]* requires a measurable cardinal. This again underlines how
differently [r]f® and £(x) behave in the absence of the Axiom of Choice; so our setting
does not allow for investigating [x]°f*.

The starting point of this thesis was the paper “ Violating the Singular Cardinals Hypoth-
esis Without Large Cardinals” by Motik Gitik and Peter Koepke ([GK12]). Starting off
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from a ground model V = ZFC + GCH, they construct a cardinal-preserving symmetric
extension N 2 V with N = ZF such that in N, the GCH holds below &, but there is a
surjective function s: (R,) - A for some arbitrarily high fixed cardinal A in V.

Note that under AC, this theory has rather high consistency strength for A\ > R,,2, and
is inconsistent for A > ®,,, by pcf theory (|She94]). Hence, without the Axiom of Choice,
the (surjectively modified) Continuum Function 6(x) apparently has a lot more freedom.
This result gives rise to the thesis that in the theory ZF, the #-function can take almost
arbitrary values on all cardinals.

In Chapter , we present the construction from |[GK12|. Many questions arise: Is it
possible to generalize the theorem to cardinals of uncountable cofinality? Is it also possi-
ble to set the #-values of several cardinals independently? The forcing notion introduced
in [GK12] relies on certain finiteness properties, so DC does not hold in the symmetric
extension. Is it possible to modify the general construction and obtain a forcing notion
that is countably closed? On page [79|- [77| we discuss what generalizations would be in-
teresting, and sketch basic ideas.

In Chapter [2.2] we state our theorem: Given a ground model V' = ZFC + GCH with ~ € Ord
and “reasonable” sequences (k, | 7 <), (o, | n <) of uncountable cardinals, there is
a cardinal-preserving extension N 2 V' with N &= ZF + DC + AX, such that 0% (k,) = o,
holds for all <. Here, “reasonable” means that the following properties hold:

o Vn<n a;<a

o Vi ay 2kt

o Vn cfay, >w

o Vi (o, =a > cta>w).

It is not difficult to see that we cannot remove any of the first three properties. The
fourth property
Vn (ay=a" - cfa>w)

is necessary in ZF + DC + AX,, as well (cf. Chapter . The more general question
whether there could be a model N £ ZF + DC with cardinals x, « such that 6V (k) = o*
and c¢f a = w, is adressed in Chapter where we show that this is not possible under
N & -0t

In Chapter 2.3] we introduce our countably closed forcing notion P, the basic ingredients
of which are based on the forcing notion introduced in [GK12|. We treat limit cardinals
and successor cardinals separately, in order to obtain better gaps between the limit cardi-
nals for subsequent factoring arguments: Our forcing notion will be a product P = Py x Py,
where Py is in charge of setting the §-values of the limit cardinals ,, and P, is in charge
of setting the f-values of the successor cardinals x, =&, ".

Roughly speaking, Py adds a,-many &, -subsets (G} | i < o)) to the ground model, which
are linked in a certain fashion in order not to accidentally raise the #-values of the car-
dinals below. The forcing notion P; is a countable support product of Cohen-like forcing
notions P7.
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We establish our notion of symmetry in Chapter Applying the technique introduced
in Chapter we define a collection D of dense subsets of P, and an almost-group A
of partial P-automorphisms for D (cf. Definition in Chapter [2.4.1 We will make
sure that the forcing Py is homogeneous with respect to A, i.e. for any dense set D € D and
conditions p, p’ € Py, there exist p < p, p’' < p’ with p, p’ € D (such that p and p’ have the
same “shape”) and an automorphism 7 € A, w: D - D with 7p = p'. Secondly, we will need
that for any pair of generic x,-subsets G and G? with 7, j < ay), there is an automorphism

7 € A interchanging them. We turn A into a group A by considering equivalence classes
[7] for m € A, where 7 ~ o if and only if 7 and o agree on the intersection of their domains.

In Chapter , we introduce our A-subgroups that will generate a normal filter F on
A. Firstly, we will have subgroups Fix(n,4) for n <, i < a,, in order to make sure that
any generic k,-subset G} is contained in the eventual symmetric extension N. Secondly,
for A <, k < vy, we include subgroups H) such that for any automorphism 7 € H}, there
is an interval [a, k), with the property that 7 does not affect the generics G? for i < k
“too much” on this interval [« k). This will eventually give rise to a surjective function

f:R(ky) = kin N.

Countable intersections of these subgroups Fiz(n,4) and H) generate a normal filter F

on A (Lemma [2.4.4).

In Chapter we take a V-generic filter G on P, and define N := V(G)7 as the symmet-
ric extension by G and F. Then N £ ZF, and N £ DC + AXy, since the forcing notion P
is countably closed and our normal filter F is countably complete (see [Karl4l Lemma 1]
and [Shel0 p.3 + p. 15]).

Moreover, an Approzimation Lemma holds (Lemma [2.5.2)): Any set of ordinals located in
N can be captured in a “mild” V-generic extension that preserves cardinals and the GCH.
Hence, cardinals are V'-N-absolute.

It remains to prove that indeed, 6V (x,) = a,, for all n <, which is the task of Chapter
2.6, The direction “0N (k,) > a,” follows by construction of the groups H} (see Chapter
2.6.1). Regarding “0V (k,) <, (see Chapter + [2.6.3), we proceed as follows:

We assume towards a contradiction that there was a surjective function f : F(k,) - «,
in N for some n <. We fix 8 < a, “large enough”, and define a restriction f# that is
obtained from f as follows: In the domain of f#, we allow only r,-subsets contained in
those intermediate generic extensions from the Approzimation Lemma that add for any
o <~ only those k,-subsets G¢ that have indices i < 5. We ask ourselves whether f# is
still surjective onto a,.

First, we assume towards a contradiction that f%:dom f# - «, is a surjection. We prove
that f? is contained in a model V[G? I (n+ 1)], which is a V-generic extension by a
forcing notion P? | (n+1), obtained from P by essentially “cutting off” at height n+1 and
width 5. On the one hand, we prove that P? | (n+1) preserves all cardinals > a,,; but on
the other hand, we will see that V[G? | (1 +1)] contains a set £(x,) 2 dom f8 with an
injection ¢ : ?(Iin) - (. Contradiction. Hence, it follows that f#:dom f# - a, must not
be surjective.
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However, considering « € rg f N\ rg f#, an isomorphism argument yields a contradiction,
again.

We conclude that our assumption of a surjective map f : £(k,) - o, in N must be wrong,
and 6V (k,) < a,, follows.

In Chapter 2.6.4] and [2.6.5, we prove that in the symmetric extension N, the #-values
ON(X) of cardinals A € (K, Kpe1) or A > sup{k, | n < v} are the smallest possible. This
allows us to assume w.l.og. for our construction that the sequence (a,, | 7 <) is strictly
increasing.

We conclude with several remarks in Chapter

The contents of Chapter [2| have appeared in [FK18|.

2.1 The Basic Construction

This chapter is concerned with with the paper “ Violating the Singular Cardinals Hypothe-
sis Without Large Cardinals” by Moti Gitik and Peter Koepke (J[GK12]), where they prove
the following theorem:

Theorem 2.1.1 (|[GK12, Theorem 1]). Let V' be a ground model of ZFC and GCH, and
A a cardinal in V. Then there exists a cardinal-preserving extension N 2V with N = ZF

such that N & “GCH holds below R,,”, and ON(R,) > \*.

This theory for A > R,,,5 would have large consistency strength under AC (see |Git91]), and
in the case that A > R,,, even contradict Shelah’s pcf theory. In other words: Theorem
provides a strong surjective violation of pcf theory in the absence of the Axiom of
Choice.

In this chapter, we first present their construction, and then look at possible generaliza-
tions. We describe the main issues that we will be dealing with in this thesis and suggest
upcoming difficulties.

The procedure in [GK12| can roughly be described as follows: The ground model V is
extended by a forcing notion P which contains firstly, a “square forcing” P, adding ®,,,1-
many Cohen subsets of R,,,1 for every n <w, and secondly, a component adding A-many
subsets of R, that are linked with the “square forcing” P,. The eventual model N is a
choiceless submodel of the generic extension, generated by certain equivalence classes of
these A-many adjoined R_-subsets.

Let V be a ground model of ZFC + GCH, and A a cardinal in V. We will now give a
definition of P. The first basic ingredient is the following forcing notion P’, adding one
Cohen subset to each interval [R,,,R,,1):

Definition 2.1.2 (JGK12|). The forcing (P’,2, @) consists of all functions p: domp — 2

)’ =

for which there is a sequence (9,, | n <w) with 4, € [R,,R,,1) for all n <w, such that
domp = [ J[Ry,,d,).

n<w
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A product analysis shows:
Lemma 2.1.3 (|[GK12, Lemma 1|). The forcing P’ preserves cardinals and the GCH.

The forcing notion P, is a two-dimensional version of P’, adjoining R,,;-many Cohen
subsets to every interval [R,,, R,41):

Definition 2.1.4 ([GK12]). Denote by (P,,2,2) the forcing notion consisting of all func-
tions p, : domp, — 2 such that domp, is of the following form: There is a sequence
(0n | n <w) with 6, € [R,,R,;1) for all n <w, such that

domp = [J[R,,d,)%

n<w

For p, € P, and £ <R, let p, (&) :={((,p.(&,0)) | (&,¢) e domp, } denote the {-th section
of p,.

As in Lemma [2.1.3] it follows that also P, preserves all cardinals and the GCH.

We are now ready to define the eventual forcing notion P. Every condition p € P is of the
form p = (p., (pi,ai)icx) where p, € P, and p; € P’ for all i < X\. The linking ordinals a;
determine how the i-th generic R -subset G; will be eventually linked with the P,-generic
filter G,.

Definition 2.1.5 (JGK12, Definition 1]). Let P be the collection of all p = (p., (pi, a;)i<x)
with the following properties:

e The support of p, suppp, is a finite subset of \, and p; = a; = @ whenever ¢ ¢ supp p.

e There is a sequence (0, | n < w) with 0, € [R,,R,,1) for all n < w, such that
Ps t Unew[Rny 0)2 = 2 and p; : Upew[Rn, 6, ) = 2 for all i € supp p.

Let domp = Un<w[Nna 571)

e Whenever i € suppp, then q; is a finite subset of R, with |a; N [R,,R,.1)| <1 for all
n<w.

If ig # 11, then a;, N a;; =@. (We call this the independence property).

Concerning the partial ordering “<”, any linking ordinal {£} = a; N [R,,, R,;1) settles that
whenever ¢ < p, then the extension ¢; 2 p; within in the interval [R,,,R,,1) is determined

by ¢.(&):

For p = (ps, (ps, a:)i<n)s 4 = (s, (¢, 0:)i<n) € P, we let ¢ < p if the following holds: ¢, 2 p.;
¢ 2 pi, b; 2 a; for all i € suppp; and whenever ¢ € (domg; ~ domp;) N [R,, R,41) with
a; N [Ry, Ryy1) = {¢€}, then € € domgq with ¢;(¢) = ¢.(&,() (we call this the linking prop-
erty).

The mazimal element of P is 1 := (&, (&, D)icn)-

Let G be a V-generic filter on P. It induces

G.:={q. € P. | 3p=(ps, (pi»ai)icx) €G ¢ S D},
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and for ¢ < \:
Gi={q e P | Ip=(ps. (pia:)icx) €G q; S pi}-
As usual, these filters G, G; are identified with their union UG,, UG;.

Let now £ € [R,,, R,,;1). We denote by
G*(g) = {q : [Nrw(sn) -2 ‘ 5n € [Nn7Nn+1) ) Elp = (pm (piaai)i</\) €eG :

V¢ edomg q(¢) =p.(£,¢) }

the &-th section of G,. Identifying G, (&) with U G.(§), it follows that G, () : [Rp, Rpe1) =
2.

Fori < A, let g; := U{a; | p = (p«, (Di, @i )icx) € G}. Then g; € R, hits every interval [R,,, R,,11)
in exactly one point, and by the independence property it follows that g;, N g;;, = @ when-
ever ig * 11.

The linking property implies that any G; | [R,,R,.1) is equal to some G,(&) on a final
segment, with {£} = ¢g; N [R,,R,,1). Hence, by the independence property it follows that
distinct G;, and G, correspond to parallel disjoint “paths through the forcing P.” (JGK12,

p.6]).
Before defining the symmetric submodel model N, we need the following notions:

Definition 2.1.6 (JGK12, Chapter 2|). For a set D and functions F: D - 2, F': D — 2,
the pointwise exclusive or F & F' : D — 2 is defined as follows: (F @ F')(z) = 0 if
F(z)=F'(x) and (Fe® F')(z) =1 if F(x) # F'(x).

For functions F': R, \ Rg = 2, F': R, \ Rg = 2, we set F'~ F" if there exists n < w with

o (F@®F') | Ry € V[GL],
o (FOF) | [Rys1,Ry) € V.

Then “~” is an equivalence relation on 2%«>Xo,

For a function F': R, \ &y — 2, we denote by
Fi={F':X,\Rg =2 | F' ~F}
its equivalence class by “~ 7.

The eventual model N will be of the form N = HODV[G](V U A), where A is a transitive
set. We refer to [Jec06, p. 194 — 196] for a detailed introduction to OD and HOD, and
merely use that X € N if and only if for every Y € TC({X}) there is a formula ¢ and
parameters v eV, ag,...,a,-1 € A, such that

Y ={yeV[G] | VI[G]E¢(y,v,A,a,...,a51) }.
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Definition 2.1.7. We define in V[G]:
T, := {X e V[G,] | In<w XENn}.
For 7 < A\, we have the equivalence class

@;::{F:NW\NO—>2 ‘ F~ G},

and set
— —
G:=(G; i<\
Let N
N = HODVI(V U TC({T., G ).
Then N = ZF.

For Theorem it remains to show that cardinals are N-V-absolute, N = “GCH holds
below ®,”, and there exists in N a surjective function f:£(R,) > A

We only sketch the basic ideas here, and refer to [GK12, Chapter 4 + 5| for detailed proofs.

Lemma 2.1.8 (|GKI12, Lemma 3|). There exists in N a surjective function f: PN (RY) -
A.

Proof. Let i, 7 < XA with ¢ # j, and assume towards a contradiction that G; ~ G;. Then
there exists n < w with v := (G; ® G;) | [Rpi1,R,) € V, which contradicts the den81ty of
the set

Di={p=(pe, (Pia:)icx) €P | IE € [Rps1, Rey) pi(&) @ p;(€) #v(€) }.

Hence, G; + G; whenever i # j, and we can define in N a function f: (RY) - X as follows:
Let f(X):=i for X € G;, if such i exists, and f(X) = 0, else. Note that the definition
of f uses only the sequence E’), which is contained in N. Moreover, f is well-defined by
what we have just shown, and f is surjective, since G; € N for all i < \. O

The model N can be approximated by fairly “mild” V-generic extensions, which is crucial
for keeping control over the surjective size of P(RY).

Lemma 2.1.9 (|GK12, Lemma 5|, Approzimation Lemma). Let X € N with X ¢ Ord.
Then there are n <w and finitely many g, ...,4-1 < X\ with

X e V[ (Rnﬂ)2 X G [ n+1» w) X e Zz 1 F[Nr‘;la&x ]

where G, (N 1)2 X Gzo [ n+l> w) X Zl 1
the forcing notion P, } (RY,)? x (P" | [RY,,, w))l

PRY, RV is a V-generic filter over
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The proof uses an isomorphism argument relying on homogeneity properties of P.

Now,
(R,

n+1

a product analysis shows that cardinals are absolute between V and V[G, !
)2 x Gy 1 [RYRY) x o x Gy b [RY,ORV)] (ef. [GKI2, Lemma 6]); hence,

n+1> n+1>

cardinals are absolute between V and N. In particular, XY = RY.

Altogether, N 2V is a cardinal-preserving extension with N = ZF and 0V (R,) > \*.

Below &, the situation in V is to large extend like the situation in V:

Lemma 2.1.10 (|[GK12, Lemma 8]). GCH holds in N below R,,: For every n < w, there
exists in N a bijection b, : P(R,,) = Ry.1.

Summing up provides a strong “surjective violation of pcf theory without the use of
large cardinals” (JGK12l p.2]).

The starting point of this thesis was to look at possible generalizations.

A)

The first obvious question to ask is whether 8(X,) = A* (not only “>”) holds in the
constructed model N, in the case that A\ > RY. Indeed, assuming that there was a
surjective function f : f(R,) - A for some X > \, one can apply an isomorphism
argument and obtain a contradiction. Hence, OV (R,,) = A*.

Chapter 6 in |[GK12| suggests that their construction can be straightforwardly gen-
eralized to any cardinal k of countable cofinality. In the case that cf k > w, several
modifications yield the same result: Let (x; | j < cf k) denote a normal cofinal
sequence in k. The intervals [kj, k;41) for j < cf kK now take the role of the intervals
[R,,R,41) for n < w. Regarding the forcing notions P’ and P,, one has to require
that the conditions are bounded below all regular limit cardinals x,. The linking
ordinals a; are bounded below x (instsead of finite), and hit every interval [k, Kj41)
in at most one point. The support of the conditions p remains finite. Then a similar
proof shows that the constructed ZF-model N 2 V' is a cardinal-preserving extension
with OV (k) = A*, and 6V («) = a** for all a < k.

In a setting without AC, where the power sets £(x) are not necessarily well-ordered,
it can happen that 6(x) = p is a limit cardinal: If 8(x) = p, there exist surjections
f:R(k) - «a for all & < u, but there is no surjective function f : £(x) - p. This
situation can not be realized by the same construction:

If one tries to use equivalence classes G for i < ju as in Definition m then for any
a < p, the sequence (G; | i < a) would have to be contained in N, while the whole

— —_
sequence of equivalence classes G = (G; | ¢ < A\) must not be contained in N.

Instead of taking some HOD(A)-inner model of V[G], we will construct our ZF-
model as a symmetric extension N = V(G), using the technique of (partial) au-
tomorphisms and symmetric names as described in Chapter By choosing the
normal filter F carefully, we will make sure that any sequence (G; | i < a) for o < p
has a symmetric name. The whole sequence (G; | i < 1) will not have a symmetric
name, and we will prove that indeed, there exists no surjective function f: (k) - u
in N.

I6)



Chapter 2.  An Faston-like Theorem for Set-many Cardinals in ZF + DC

D) The key question is whether it is possible to treat several cardinals , at the same
time and set their #-values independently. More precisely: Given “reasonable” se-
quences of cardinals (k, | 7 <), (ay, | 7 < v) in V, is it possible to construct a
cardinal-preserving symmetric extension N 2V such that 6(x,) = a,, holds for all

n<y?

Dealing with “many” cardinals x,, at the same time requires essentially new ideas; in
particular, when the sequence (k, | 7 <) has limit points. For instance, it is not
any more possible to work with initial segments of G. (such as G | k2), since they
would interfere with the generic xz-subsets Giﬁ for 7 < n. For this reason, we adjust
the approximation models, and establish that the symmetric extension N can be
approximated by intermediate generic extensions of the form

VIGE x - x Gl

Tm-1

where G denotes the i-the generic ,-subset adjoined by the generic filter G.

The overall construction can be described as follows (assuming w.l.o.g. that the
sequence (k, | 7 <) is normal, i.e. strictly increasing and closed): For every k.1
a limit cardinal, we take a normal sequence (k,; | j < cf k,+1) cofinal in k,,; with
kno = Kky. First, we will define our forcing notion Py, which is a generalization of
the forcing P from Definition The basic ingredient P7 (for n < 7) is defined
as follows: P7 is the collection of all p : dom — 2 for which there is a sequence
(6uj | v<n, j<cthyr) with 6, € [Ky 5, Ky j41) for all v <n, j <cf k41 such that

domp = U (K5, 005),

v<n
j<Cf Ky+1

and for any regular «,, ;, the domain domp n x,,; is bounded below &, ;. The forcing
notion P, is a “square version” of P7.

Any condition p € P is of the form p = (p., (p],a])n<r,ica, ), Where p, € P,, p € P7
for all n < 7; and the pairwise disjoint linking ordinals a € k,, are all bounded below
ky, and hit every interval [k, j, K, j+1) € K, i at most one point.

However, we will need better closure properties for certain product analyses. There-
fore, we treat successor cardinals k, =%, " in a separate forcing Py (which will be a
product of Cohen-like forcing notions) and set P := Py x Py, where Pq is in charge of
the limit cardinals and P, is in charge of the successor cardinals. Then for any &,
a limit cardinal, we choose the normal cofinal sequence (k,; | j < cf k,.1) in such a
way that s, 1 > /ﬁ:']; holds for all j < cf k1.

Our model N = V(G) will be a symmetric extension by P, and we will show that N
preserves cardinals and 60V (k,) = a, holds for all n <.

The only requirements on the sequences (x, | n <) and (o, | 7 <) are the obvious
ones: weak monotonicity and a, > x;* for all n <.
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E) Finally, we ask whether it is also possible to work with a countably closed forcing
notion P and a countably complete filter F generating the symmetric extension.
Then N = ZF + DC + AXy, providing a model where the Axiom of Choice fails but
still, surprisingly much of set theory can be realized (see [Shel6l 0.1]).

In order to obtain a countably closed forcing notion, finiteness properties in the forc-
ing construction have to be replaced by the property of being countable. Regarding
the linking ordinals a] however, requiring that any a; € &, is a bounded subset of
Ky is not any more possible, since in the case that cf s, = w this would conflict with
the requirement of P being countably closed.

Instead, the linking ordinals a; € &, will now hit every interval [k, j, Ky j+1) C Ky
in ezactly one point. This adjustment makes a substantial difference: For any V-
generic filter G = Gg x G; on P and o < 7, m < a, with k, a limit cardinal, the
collection of linking ordinals

gg_b = LJ{CL%I | p= (p*; (p?aa?)TK’Y’KCVn) € GO}

is now contained in the ground model V. (Indeed, for any condition p € Gy, p =
(p«, (0], @ Yoy, i<ary) With (o,m) € supppy, it follows that g3, = ag,.) By countable
support, this implies that also countable sequences (gf,{J | 7 <w) of linking ordinals
are in the ground model. However, for ¢ <y and k, a limit cardinal, the sequence
(99 | i < a,) can not be contained in V' nor in the symmetric extension N: By
the independence property, the sequence (g7 | i < a,,) would blow up any interval

[Kujy Kuj+1) C Ko to size a, and thereby collapse cardinals.

The aim of this Chapter 2 is to modify and generalize the forcing notion from |[GK12|
according to A) - E) and prove that given a ground model V' &= ZFC + GCH with “reason-
able” sequences of cardinals (k, | 7 <~) and (a, | n <) — see Chapter for a precise
definition of the term “reasonable” —, one can construct a cardinal-preserving symmetric
extension N 2V with N & ZF + DC + AX, such that 6V (k,) = o, holds for all n < .

In other words: Every possible behavior of the #-function in ZF + DC + AX,4 can be realized.
This version of Easton’s Theorem for “nice” ZF-models with little choice, including regular
and singular cardinals, is in sharp contrast to the situation in ZFC.

2.2 The Theorem

We start from a ground model V' = ZFC + GCH and a reasonable behavior of the 6-function:
There are sequences of uncountable cardinals (x, | 0 <7 <+v) and (o, | 0 < <) in V
(where «y is an ordinal) for which we aim to construct a symmetric extension N 2 V' with
N e ZF + DC + AX4, such that V and N have the same cardinals and cofinalities and
6N (k,) = o, holds for all 7.

(Later on, we will set kg := Rg,  := Ry for technical reasons — therefore, we talk about
sequences (K, | 0<n <), (a, | 0<n <) here, excluding kg and «ap. )
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First, we want to discuss what properties the sequences (k, | 0 <n <) and (o, | 0 <1 <7)
must have to allow for such construction.

W.lo.g. we can assume that (x, | 0 <7 <) is strictly increasing and closed.

The following conditions must be satisfied:

e For n < 7/, it follows from k, < K, that o, < a, must hold, i.e. the sequence
(v | 0 <7 <) must be increasing.

e For any cardinal k, it is possible to construct a surjection s : (k) - x* without
making use of the Axiom of Choice. Hence, o, > k;* must hold for all .

e Since N E AC,, it follows that cf a;, > w for all n: Assume towards a contradiction
there were cardinals x, o with O¥(k) = , but f(a) = w. Let a = Uj, ;. By
definition of 8V (k), it follows that for every i < w, there exists in N a surjection
from () onto a;. Now, AC,, allows us to pick in N a sequence (s; | i <w) such that
each s; : (k) — « is a surjection. This yields a surjective function 5: (k) x w — «,
defined by setting 5(X,7) = s;(X) for each (X,i) € £(x) x w; which can be easily
turned into a surjection s: (k) - a. Contradiction, since 0V (k) = a.

Hence, it follows that cf o, > w for all 7.

e Finally, for every a,, a successor cardinal with «,, = a*, we will need that cf o > w.
In our setting here, it is not possible to drop this requirement: We start from a
ground model V' & ZFC + GCH with sequences (k, | 0 <1 <), (o, | 0 <1 <),
and aim to construct N 2 V with NV = ZF + DC such that V' and N have the same
cardinals and cofinalities and 0V (k,)) = o, holds for all n. If there was some cardinal
Ky with 0N (k,) = af, where c¢f @ = w, one could construct in N a surjective function
5:P(ky) - o as follows:

Take a surjection s: #(k,) - « in N. Firstly, the canonical bijection x, < £, x w
gives a surjection sq: 2% — (2%7)«. Secondly, the surjection s: P(k,) — « yields in
N a surjection s : (2f7)% — o, defined by setting s1(X; | i <w) = (s(X;) | i <w).
Then s, is surjective, since for any («; | i <w) € a® given, one can use AC,, to obtain a
sequence (Y; | i <w) with Y; € s/ [{a;}] forall i <w. Then s1(Y; |i<w) = (a; | i <w).
Thirdly, it follows from cfa = w that there is a surjection 53 : a¥ - at in V.
Then 53 € N, and since (av)¥ 2 (a#)V and (a*)N = (a*)V, this gives a surjection
So:ta® - ot in N.

Thus, it follows that s, o 51 0 ¢ : 2%7 — o is a surjective function in N; contradict-
ing that 6V (k,) = a*.

Hence, in our setting where we want to extend a ground model V = ZFC + GCH
cardinal-preservingly and obtain N & ZF + DC, it is not possible to have o, = o*
with cf a = w.

The following question arises: More generally, without referring to a ground model
V, could there be N = ZF + DC + AX, with cardinals &, a, such that cf”(a) = w
and 0V (k) = a*? The answer is no: Let s: (k) - a denote a surjective function
in N. Then with DC, it follows as before that there is also a surjective function
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s1:(2%)* - a¥ in N; and we also have a surjective function sg : 28 - (2%)«. It
remains to make sure that there is also a surjection s, : a® - a* in V.

We proceed as follows: First, we show that there is no surjective function y : o —
[a]@, then we use AX;. For any set M € [«]“, we denote by (M (i) | i < w) its
increasing enumeration. We apply a diagonalization argument similar as in Kdnig’s
Theorem: Let o = U, ;, and assume towards a contradiction that there was a
surjection x : Ujew @ > [@]*. For every i < w, the set x[a;] consists of countable
M c «, and we let A; := {M (i) | M € x[a;]}. Then A; € a with |A;] < o < a. We
take a strictly increasing sequence (3; | j <w) such that 5; e a N\ A; for every j < w,
and let M := {B; | j <w}. By surjectivity of x, there must be @ < a with y(a) = M.
Take i < w with @ < o;. Then M € x[a;]; hence, 8; = M (i) € A;. Contradiction.

Hence, it follows that there can not be a surjective function x : & - [a]* in N. Since
[a]@ is well-ordered by AXy, it follows that there must be a surjection 3, : [a]¥ — a*.
Together with the canonical surjection o - [a]* (mapping any function f:w — «
to its range rgf = {f(n) | n < w} if rg f is countable, and to an arbitrary set
X € [a]¥, else) this yields a surjection ss: ¥ — o as desired.

Thus, sy 0 51 0 509 : 2% - a* is a surjective function in N; which gives the desired
contradiction.

We conclude that all the requirements on the sequences (k, |0 <n<~y) and (o, |0 <n<7)
listed above are necessary for a model N = ZF + DC + AX,.

In addition, one could ask if there exists a model N = ZF + DC (without AX,) with car-
dinals x, a such that 0¥ (k) = a* and cfY(a) = w. It is not difficult to see that this is
not possible under -0' (cf. Chapter ; and we conclude that without large cardinal
assumptions, it is not possible to construct a model N £ ZF + DC with &, « such that
0N (k) =at and cfa = w.

Our main theorem states that the properties listed above are the only restrictions on the
f-function for set-many uncountable cardinals in ZF + DC + AXy:

Theorem. Let V be a ground model of ZFC + GCH with ~v € Ord and sequences of un-
countable cardinals (k, | 0 <n <) and (o, | 0 <n <), such that (k, | 0 <n <7) is
strictly increasing and closed and the following properties hold:

e VO<n<n <y ay<ay, ie. the sequence (o, | 0<n<7) is increasing,
e VO<n<y ay2kt,

e VO<n<y cf ay>w,

e VO<n<y (ay=a" ->cf a>w).

Then there is a cardinal- and cofinality-preserving extension N 2V with N = ZF + DC +
AX4 such that that 0N (k,) = oy, holds for all 0 <n <.
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In our construction, we will make sure that for any cardinal X in a “gap” (ky,kp+1),
the value 0V () is the smallest possible, i.e. V() = max{a,, A**}. Moreover, setting
Ky = U{ky | 0<n <}, ay=U{a, | 0 <n <y}, we will also make sure that 6V(\) takes
the smallest possible value for every A > x,: We will have 6V ()) = max{a’*, A**} in the
case that cf o, = w; N (X) = max{a?, \**} in the case that o, = a* for some cardinal «
with cf @ = w; and OV (N) = max{a,, A\**}, else.

This allows us to assume w.l.o.g. that the sequence (a, | 0 <7 <7) is strictly increasing:
If not, one can start with the original sequences (x, | 0 <7 <) and (o, | 0 <7 <7),
and successively strike out all x,, for which the value a,, is not larger than the values og
before. This procedure results in sequences (%, | 0 <7 <7) = (ks | 0 <1 <7) and
(@, | 0<n<7) = (ayy | 0 <n <7) for some 7 < v and a strictly increasing function
s:74 =, such that @ := U{@, | 0<n <7} =U{asm | 0<n <7} =U{a, | 0<n <7} = a,,
and (&, | 0 <n <7) = (asy | 0 <n <7) is strictly increasing. If we then use the
sequences (%, | 0 <n <7), (@, | 0 <n <7) for our construction and make sure that
not only 0V (%,) = &, holds for all 0 < n <7, but additionally, V(X)) takes the small-
est possible value for all cardinals A\ within the “gaps” (’,,%,+1), and for all cardinals
A > Ry = U{R, | 0 < n <7}; then it follows, that for all x, in the original sequence
(ky | 0<n <), the values 6V (k,) = o, are as desired.

Hence, from now on, we assume w.l.o.g. that the sequence (o, | 0 < 1 <) is strictly
increasing.

2.3 The Forcing

In this chapter, we define our forcing notion P.

We start from a ground model V' = ZFC + GCH with sequences (k, | 0 < n < 7),
(o, | 0 <m <) that have all the properties mentioned in Chapter

We will have to treat limit cardinals and successor cardinals separately. Let Lim := {0 <
n <7 | Ky is a limit cardinal}, and Succ := {0 < n < v | Kk, is a successor cardinal}. For
n € Succ, we denote by %, the cardinal predecessor of k,; i.e. k, =&, *. Our forcing will
be a product P =Py x Py, where Py deals with the limit cardinals x,, and [P; is in charge
of the successor cardinals.

The forcing Py is a generalized version of the forcing notion in [GK12].

Roughly speaking, for every n € Lim we add a,-many x,-subsets, which will be linked in
a certain fashion, in order to make sure that not too many r-subsets for cardinals < x,,
make their way into the eventual model N.

For technical reasons, let ko := Rg, ap := Ry. For all n with n+ 1 € Lim, we take a se-
quence of cardinals (x,; | j < cf Kky41) cofinal in k,,q, such that s, = &, the sequence
(Kyj | J < cfkyer) is strictly increasing and closed, and any &, .1 is a successor cardinal
with Ky 1 > m;; for all j <cf kps1.

These “gaps” between the cardinals x, ; and &, ;11 Wwill be necessary for further factoring
arguments.
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For all 0 <7 <~ for which n+1 € Succ, i.e. k,41 is a successor cardinal, we set ko = Ky,
and cf K,,1 := 1 for reasons of homogeneity.

Now, in the case that n € Lim, the forcing P" will be defined like an Easton-support
product of Cohen forcings for the intervals [k, ;, f,,j41) S Ky

Definition 2.3.1. For 1 € Lim, we let the forcing notion (P7,2, @) consist of all functions
p:domp — 2 such that domp is of the following form:

There is a sequence (6,; | v <1, j <cfryr) with d,; € [k, j, Ky j+1) forall v <n, j <cf ki
with
domp=J [Kuvjs0u)),

v<n
j<cf Kyl

and for any regular &, ;, the domain domp n &, ; is bounded below &, ;.

For a set S ¢ k,, we let P11 S:={peP"| dompcS}={ptS|pePr}. Then for any
Kyj < Ky, the forcing P7 is isomorphic to the product P7 'k, ; x P" [k, , ky), where the
first factor has cardinality < 7} ., and the second factor is < k,, j-closed.

v,5?
This helps to establish:
Lemma 2.3.2. For all n € Lim, the forcing P" preserves cardinals and the GCH.

Proof. Let G denote a V-generic filter on P7. It suffices to show that for all cardinals o
inV,

(Qa)V[G”] < (a+)v7
which implies that cardinals are V-V [G"]-absolute: If not, there would be a V-cardinal
a with a surjection s : f — « in V[G"] for some V[G"]-cardinal 5 < . Then there is
also a surjection 5 : 3 —» (8*)V in V[G"], which gives a surjection 5 : § — (25)V[G !
Contradiction.

e In the case that o > £;, it follows that (22)VIE"] < [P(ar- [P7))|V < (2%)Y = (o) by
the GCH in V.

e Now, assume « € (K, ;, Ky 41) for some k,; < k,. Then the forcing P7 can be
factored as Pk, ; x P" [k, ;, ky), where P7 | k,; has cardinality < K, i <, and
P} Ky, ky) is < a-closed. Hence,

(2a)v[Gn] < (Q(X)V[anﬁu,j] < |P(a _ |P’7 fFéy,jD ‘V < (2a)v _ (oﬁ)V.

o If a = k,,; for some regular x,; < k,, then |P" | k,;| = k,; and P | [k, ,ky) is
< Ky j-closed; so the same argument applies.
If a = K, is regular, then (22)VI¢"] < (a*)V follows from |P7| < k,,.

It remains to show that (2%.7)VIG"] = (k} )V for all singular k,; < #,, and (2)VIE"] <
(k;)V in the case that s, itself is singular.

We only prove the first part (the argument for &, is similar).
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e Assume the contrary and let k,; least with A := cfk,; < £, and (2%4)VIC"] >
(k);)V. Take (a; [ i <A) cofinal in k, ;. By assumption and by what we have shown

before, it follows that (2¢)VI¢"] = (a*)V for all a < k,,;. Hence, Card” n(,,+1) =
Card"1 n (K, + 1), and (22)VIG"] = (aF)V for all i < X. Thus,

Ku,j a; A Kvj _ oKy j
2w < []2% <y <yl =2
<A

holds true in V and V[G"]. Let X € [k, m, Kum+1) for some K, < K. X > Ky,
then [P} Kym| < (Kum)t < A, and P} [Kym, k) is < A-closed. In the case that
A = Kum, it follows by regularity of A that |P" | k.| < Kum = A, as well. In either
case,

(2/{,,’]')‘/[6’7]] _ (K,\ )V[G”] P (KJ/\ )V[G”Wu,m] < (QHV,J-)V[G"WHM] <

- v,j - v,J -

<[ 8 (k0 - [Pl <[00y ) [ = G507

which gives the desired contradiction.

Corollary 2.3.3. For every n € Lim, the forcing P" preserves cofinalites.

Proof. We show that every regular V-cardinal \ is still regular in V[G7]. If not, there
would be in V[G7] a regular cardinal A\ < \ with a cofinal function f : X - . Let
Ae [Kvj, kv j+1). The forcing P7 is isomorphic to the product P7 I k,; x P71 [k, ky),
where the second factor is < A-closed. If X\ > k,;, then the first factor has cardinality
<K, < . In the case that \ = Ky j, the first factor has cardinality < x, ; = A by regularity

of . Hence, f € V[G | x,,]. However, since |P7 } £, ;| < ), it follows that A is still a
regular cardinal in the generic extension V[G" I k, ;]. Contradiction.
Thus, it follows that P" preserves cofinalities as desired. O

Our eventual forcing notion Py will contain a,-many copies of P for every o € Lim. They
will be labelled P?, where i < o,. All the P? for o € Lim, ¢ < o, will be linked with a
forcing notion P,, which is a two-dimensional version of P7, adding &, j.1-many Cohen
subsets to every interval [k, ;, Ky j+1):

Definition 2.3.4. We denote by (P,,2 @) the forcing notion consisting of all functions
p. :domp, - 2 such that dom p, is of the following form:

There is a sequence (0,; | v <7, j <cfkys1) with 6,5 € [k, j, Ky ji1) forall v <, j <cf ki
with
domp, = | [kKuj 0uj)%

v<y
j<Cf Ry+1

and for any k,; a regular cardinal, it follows that |domp, n ”ﬂ%j < Kyj, and in the case
that k., itself is regular, we require that |dom p.| < k..
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For p. € P, and & < ky, let p.(€) = { (¢, p+(&,0)) | (£, ¢) € domp, } denote the &-th section
of p.. If a € k, is a set that hits every interval [k, j, %, +1) in at most one point, we let

ps(a) ={ (¢, (&, Q) [ £ €a, (£, ¢) e domp, }.
As in Lemma it follows that P, preserves cardinals and the GCH.

Now, we are ready to define our forcing notion Py. Every pg € Py is of the form

Po = (Px, (D7, 7 )oetim i<a )

with p. € P, and p? € P° for all (o,1).
The linking ordinals af will determine how the i-th generic k,-subset GY, given by the

projection of the generic filter G onto P?, will be eventually linked with the P,-generic
filter G,.

Definition 2.3.5. Let Py be the collection of all py = (p«, (p7, a7 )veLim  i<a, ) Such that:
e The support of py, supp po, is countable with p? = a7 = & whenever (o,17) ¢ supp po.
e We have p, € P,, and p? € P° for all (o,7) € supp po.

e The domains of the p7 are coherent in the following sense:
If domp. = Uy jectry.i [bvj: 0v7)%, then for every (o,i) € supppy, it follows that
domp? = Uu<a,j<cfm,+1 [’fu,ja 5u,j)-

We set dom py := Uu,j[fiu,m 5u,j)-

e For all (0,7) € supppo, we have af € k, with a7 N [K,;, Ky j41)| = 1 for all intervals
[Hu,ja /iu,j-%-l) € Re-
If (00,70) # (01,11), then a7’ n af! =@. (We call this the independence property).

Concerning the partial ordering <, any linking ordinal {{} = aZ N [k, ;, Ky j+1) settles that
whenever ¢ < po, the extension ¢7 2 p¢ within in the interval [k, j, K, j+1) is determined

by ¢.(&):

For po = (ps, (07,07 )1), Q0 = (¢+, (47 7 )oi) € Po, let qo <o po if the following holds: ¢. 2 p.;
q7 2p7, b7 2af for all (o,7) € supp po, and whenever ¢ € (domg? ~ domp?) N [Kyj, Ky j+1)
with af N [k, j, Ky je1) = {£}, then £ e dom gy with ¢7(¢) = ¢.(&,¢) (we call this the linking
property ).

The mazimal element of Py is 1o := (&, (D, D) sery.icay )-

Let Gy denote a V-generic filter on Py, and ¢7 := U{a? | p = (p+, (07,07 )s.i) € Go}.

Note that by our strong independence property, every interval [k, ;, K, j+1) Will be blown
up to size sup{a, | o € Lim} in a Py-generic extension.

Hence, since we want our eventual symmetric submodel N preserve all V-cardinals,
we will have so make sure that N “does not know” the sequence of linking ordinals
(99 | o0 eLim, i< ay).

A major difference between our forcing and the basic construction in [GK12| is the fol-
lowing: The forcing conditions in [GK12| Definition 2| have finite linking ordinals af; so
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the according generics g7 are not contained in the ground model V. With our definition
however, it follows for any p € Gy with (o,7) € suppp that g7 = a7 € V. By countable
support, also countable sequences of linking ordinals (gZ_j | j <w) are contained in V; but
for o € Lim not the whole sequence (¢7 | i < o).

This modification helps to establish that any generic GY can be described using only G
and sets from the ground model V' (see below).

Next, we define our forcing notion Py, which will be in charge of the successor cardinals.
For every o € Succ with x, = kK, 7, it follows that o =: 7 + 1 must be a successor ordinal,
since we have assumed in the beginning that the sequence (k, | 0 < o <7) is closed.

We denote by P? the Cohen forcing
P?:={p:domp— 2| domp < [Ry;,kKy), |domp| < K, },
and let
C?:={p:domp— 2| domp =dom,p xdom,p S o, x [Ry,kKs), |domp| < Ky }.

Then both P and C° are < k,-closed, and if 2<r
the k}-chain condition and hence, preserve cardinals.

In particular, any forcing P° or C' preserves cardinals if we are working in our ground
model V' with V = GCH, or any V-generic extension by < k,-closed forcing.

Ko, 1.e. 250 = K., then they satisfy

Definition 2.3.6. The forcing notion (Py,<;,3;1) consists of all p1 = (p?)sesuce With
countable support suppp; := {0 € Succ | p° # @}, and p° € C° for all o € Succ. For
P1 = (P7)oesuce; @1 = (@7)gesuce € P1, we let ¢1 <1 py if ¢° 2 p? for all ¢ € Succ; and
11 = (@) gesuce is the maximal element.

For ¢ € Succ and i < o, we set p? = {({,p?(4,()) | (4,¢) e domp?}.

Our main forcing will be the product P := Py x P; with maximal element 1 := (1o,1;)
and order relation <. In order to simplify notation, we write conditions p € P in the form

D= (p*v (pz?‘, ag)UeLim,kag; (pU)U€Succ)-
It is not difficult to verify:
Proposition 2.3.7. P is countably closed.

This is important to make sure that DC holds in our eventual symmetric extension N.

For 0 <7 <~ (with € Lim or 1 € Succ or n =), we define a forcing P like P7 is defined
in the case that n e Lim:

Let P" consist of all functions p: domp — 2 such that there is a sequence (0, | v <n,j <
cf kyi1) with 8, € [Kyj, Ky ja) for all K, j < Ky, and

domp = U [’%V,jv 5V,j)7

V?j

such that |p | ko3| < K whenever kg3 is a regular cardinal, and |p| < K, in the case that
Ky itself is reqular.
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For any 0 <7 < X with &y a limit cardinal, it follows that P = P> P Koy

Let now G be a V-generic filter on P. It induces
G.={q. e P | Ip=(ps, (b7, 0] )0, (")) € G : s S pu},

and for A € Lim, k < a,:

Gr=A{a € P* [ 3p = (po, (17,07 )ois (07)5) € G 41 C P2}

As usually, these filters G., Gy are identified with their union UG., UGj. Then any G
can be regarded a subset of k).

Moreover, let
g =U{ar | p= (0e; (0,07 )ois (07)o) € G-

Then g3 = a) for any p € G with (X, k) € supp po; and g; hits any 1nterva1 [/{V], Ky j+1) S K
in exactly one point. By the independence property, it follows that gk N gk = & whenever

(Ao, ko) # (A1, ko).
For \ € Succ, set

={p* [ p= (0, (1,07 )i (7)) € G,
and

Gr={pr | p= (e, (07,00 )0i, (17)s) € G}

for any k < ay.
Again, we confuse these filters G*, G with their union UG*, UG).
Let now & € [k, j, Ky j+1). We denote by

G*(S) ::{q:[HV,jaéV,j)_)Q | 5V7j€[’€l/,j7liv,j+l) ) Elp:(p*7(pzv 7,)027( )O’)EG :

V¢ edomq (C) =p.(&,0) }
the &-th section of G,.

If a € k, is a set that hits any interval [, ;, K, j+1) € K, 0 at most one point, we denote
by G, (a) the set of all ¢ € P such that there is p € G with ¢ C p.(a).

As before, we identify any G, (€) and G, (a) with their union UG, (§) and UG, (a), re-
spectively. Then any G.(&) with £ € [K,;, K,,j+1) can be regarded as a function G, (&) :
[Fuj, ki) = 2, and any G,.(a) becomes a function G.(a) : domG.(a) — 2, where
dom G.(a) € k. is the union of those intervals [k, ;, Ky j+1) With a N [Ryj, Ky ji1) # @.

Now, the linking property implies that any G | [k, Ky j+1) With X € Lim, k < ay, is
eventually equal to G.(§), where {£} == a N [Kyj, Ky ji1).

Indeed, the symmetric difference G ®G.(gy) is always an element of the ground model V:
Take a condition p € G with (A, k) € supppo, such that for any interval [k, ;, Ky j+1) € K
with dompy N [Kyj, Ky ja) # @ and {£} = a} N [Kyj, K i), it follows that & € dom py.
(This does not interfere with the condition that dom py has to be bounded below all reg-
ular k53, since we do not bother the intervals [k, j, £,,j41) with dompg N [k, Ky jr1) = 2.)
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o Firstly, GR(¢) ® G.(g2)(¢) = 0 whenever ¢ ¢ dompg: Let € € [k, 4,y j+1), ¢ ¢ domp
with {&} := g} N [k, Fuji1) = ap 0 [Kuj, ko je1). Take g € G, g < p with ¢ e dom gp.
Then by the linking property, it follows that & € dom g with ¢ (¢) = ¢.(&, (). Hence,
Gr(Q) = a2(€) = ¢.(§,¢) = G (g2)(C), and GR(¢) & G.(g)(¢) = 0.

o If ( edomp then GR({)®G.(g))(¢) = pp(C) @ p.(&,C), where again, C € [Kyj, Ky js1)
and {&} := g N [Kuj, Kuge1) = @) N [Kuj, Ky jr1). Here we use that for any interval
[Ku,js o j1) With domp 0 [k, j, Ky je1) # @, it follows that ap N [k, Ky j41) € dom py.

Hence, G @ G.(g;) can be calculated in V.

This will be employed to keep control over the surjective size of £(x,) in the eventual
symmetric extension N.

Now, we consider countable products [],,,., P°™ and [],,<. P

Definition 2.3.8. Let ((0,%,) | m < w) be a sequence of pairwise distinct pairs with
0<0m <7, i<ag, forallm <w. We denote by [,,., P the set of all (p(m) [ m < w) with
p(m) € Pom for all m < w (with full support), and similarly, [1,,., P " := {(p(m) | m <

w) | Ym<w p(m)e P }.

For any interval [k, j, Ky j+1) C Ky, 1t follows that [],,., P°" | k,; has cardinality < &, ; in
the case that r, ; is regular, and cardinality < & ;, else. Moreover, [T, P7™ | Ky, Fio,)
is < K, j-closed. Hence, as in Lemma and Corollary one can show that the
product [],,., P7" preserves cardinals, cofinalities and the GCH.

Similarly, [T,,<. P preserves cardinals, cofinalities and the GCH.

The next lemma implies that countable products [1,,,, G« (g™ o

7m) are V-generic over [, P

Lemma 2.3.9. Consider a sequence (a,, | m <w) of pairwise disjoint sets such that for
allm < w, the following holds: a, is a subset of k,,, for some 0 < 0,, <7, and for all K, ; <
Koy, 1t follows that |amy, 0 [Kyj, Ky je)| = 1, i.e. ay, hits every interval [k, j, Ky ji1) C Ko,
in ezactly one point. Then [1,,<, G+(am) = { (p(m) | m<w) | Vm<w p(m) e G*(am)}

Om

s a V-generic filter on [1,,<, P

Proof. Let D c[]
Let

Pom he an open dense set in V. We show that D n[],,., G«(an) #+ @.

m<w

E:: {p = (p*v (pgaag)d,iv (pU)U) eP ‘ (p*(am) | m < w) € D}

It suffices to prove that D is dense in P. Assume p = (p., (p7,a7 )04, (07)o) € P given, and
denote by (¢, | m < w) an extension of (p.(ay) | m < w) in D. We have to construct
P < p such that P, (a,,) 2 g, for all m < w.

Consider an interval [k, j, K, j+1) S K, In the case that (domp U U<, dom qm) N
[Kujy Euje1) = D, let 6, = K, j. Otherwise, we pick 0, € [K,.;, Kuj+1) such that firstly,

(domp u | domgy) N [Kuj, Ewji1) € [Fugs 60

m<w

secondly, for all m < w, it follows that a, N [k, Kuj+1) S [Kuj,0,;); and thirdly,
al N [Kyj,kyjs1) S [Kuj,00;) for all (o,i) € suppp. This is possible, since the sets
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Am O [Ryjy Kuje1) and af N [k, j, Ky 1) are singletons or empty, all the domains domp n
[Kvj, kv j+1) and domgy, N [k, Ky je1) for m < w are bounded below &, j.1, and &, j,1 is
always a successor cardinal.

Let

dom]_Qo = U [I{’VJ’ 5V7j)'

V?]

Then domp, is bounded below all regular xz;, since this holds true for domp and
Um<w dom ¢,,. We define p, on U, j[k.,;,0,,;)? as follows: Consider an interval [k, ;,d,,;) #
G and €, C € [K,,0,5). For (£,C) € domp x domp, let 5,(&,C) = p.(&,C). Tf {€} =
Am N [Kyj, Ky j+1) for some m <w and ¢ € domg,,, we set p,(§,¢) := ¢, (¢). This is not a
contradiction towards p, | [Kuj,0,,;)2 2 De | [Kuj,00,7)?, since g, 2 p.(ay,) for all m < w.
Also, the a,, are pairwise disjoint, so for any & € [k, ;,d, ), there is at most one m with
€ € ay,. For all the remaining (£,() € domp,, we can set p,(&,() € {0, 1} arbitrarily. This
defines p, on U, ;[Ku,j,0u,)>

For all (o,7) € suppp, = supppy, we set a; := af, and define p] 2 p? on the cor-
responding domain U,./Wyj<,§a[/€,,,j,(5,,7j) according to the linking property: Whenever ( €
(dompy ~ domp) N [Kyj, Ky 1) and af N [k, Ky 41) = {€}, then € € domp, follows, so
we can set pf () :=p,(§,¢). For the ¢ e domp] \ domp? remaining, we can define p7 ({)
arbitrarily. This completes the construction of p,.

Let p; = p1. It is not difficult to check that p < p indeed is a condition in P with
P.(am) 2 ¢y, for all m <w. Hence, (p,(an,) | m<w) e D, and pe D as desired. ]

In particular, for ((o,,,7,) | m <w) a sequence of pairwise distinct pairs as before with
Om € Lim, 4, < a,, for all m <w, it follows that [] G, (gf;”) is a V-generic filter over

Om

Hm<w P

Similarly, one can show:

m<w

Lemma 2.3.10. Let ((0,n,im) | m <w) denote a sequence of pairwise distinct pairs with
0<0m <Y, im < g, forallm<w. Then [],,, G{™ = {(p(m) | m<w) | Vm<w p(m)e
G‘Z’;"} is a V-generic filter on [],,<, P7™.

2.4 Symmetric Names

2.4.1 Constructing A and A

For defining our symmetric extension N, we first need an almost-group A of partial [P-
automorphisms. We will have A = Ay x A;, where Aj is an almost-group of partial
Po-automorphisms, and A; is an almost-group of partial P;-automorphisms.

We start with the construction of Aj.

Every my € Ay will be an order-preserving bijection 7 : D, = Dy, with D, € Dy, where
Dy is defined as follows:

Let Dy denote the collection of all sets D ¢ Py given by
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e a countable support supp D ¢ {(0o,7) | 0 € Lim,i < o, }, and

o a domain dom D = U,y ject i,y [ Fr,js Oj) such that 0, € [k, iy 501) for all v <,
J < cfkyi1; and for all regular w3, it follows that dom D n kp5 is bounded below

HUJ;
such that D is the set of all p = (p., (p7,a7),,;) € Po with
e suppp2supplD , domp2domD, and

o for all intervals [k, j, Ky j+1) With domp N [k, Ky ji1) # &, it follows that

o
U a; N [Kjlj,j7'%ll,j+l) c domp
(o,i)esuppp

In other words: D is the collection of all p € Py the domain and support of which cover a
certain domain and support given by D; with the additional property that all the linking
ordinals {¢} = a? n [k, , Ky j+1) contained in any interval [k, ;, K, j+1) hit by domp, are
already contained in dom p.

It is not difficult to see that any D € Dy is dense in Py. The sets D € Dy are not open
dense; but whenever p, g € Py with p e D and ¢ < p such that supp ¢ = suppp, then by the
linking property, it follows that also ¢ € D.

Whenever D, D’ € Dy, then the intersection D n D’ is contained in Dy as well, with
supp (D n D") = supp D U supp D', dom (D n D") =dom D udom D'.

The collection Dy has a mazimal element (Dg)max With supp(Do)max == @, dom(Dp)max =
@. Clearly, (Dg)max 2 D for all D eD.

Hence, it follows that D has all the properties required in Definition [1.2.14

We now describe the two types of partial Po-automorphisms that will generate Ay:

Our first goal is that for any two conditions p, ¢ € P with the same “shape”, i.e. domp =
domg, suppp = suppq and Ua = Ub7, there is an automorphism my € Ay with mop = q.
This homogeneity property will be achieved by giving the maps m € Ay a lot of freedom
regarding what can happen on supp 7y and dom 7.

For K, j < Ky, let
supp mo(v, 7) = {(0,1) e suppmo | Kuj < K}

Concerning the linking ordinals, we want that for any p € D, p = (p., (p7,a7),,:) with
m=p = ((p)«, ((p")7,(a’)7)s:), the sets of linking ordinals for p and p’ are the same,
ie. Ua? = U(a’)?. In other words, for any interval [k, j, K, j+1), the linking ordinals
€ € [Kyj, Ky j+1) Will be exchanged between the coordinates (¢,7) € supp mo(v, 5), which is
described by an isomorphism Fy, (v, ) : supp mo(v, j) = supp (v, 7).

Regarding the (p')7 for (o,7) € supp 7o, there will be for every ( € [k, j, Ky j+1) N dommg a
bijection () : 25uPPm0(1:7) — 25uPPmo(¥) with

(@7 | (0,9) esuppmo(v, ) ) = mo()(#7(C) | (0.4) € suppmo(v, j) ).
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Concerning p’,, we will have a similar construction for the p.(£,() in the case that
¢ edommg and £ is a linking ordinal contained in Ua?. Moreover, for all (£, () € dommg N

[Ku,j, kwj+1)?, we will have a bijection 7.(§,¢) : 2 - 2, and set p,(&,¢) = m. (&, () (p.(£,¢))
whenever &, ¢ e dommy and £ ¢ Uay.

Our second goal is that for any interval [k, ;, k,,541) and (o,7), (A, k) € suppmo(v, j), there
is an isomorphism 7y € Ay with (moG)2 N [Kuj, K je1) = GI N [Kuj, Kujer). Thus, every
7o € Ap will be equipped with bijections G, (v, ) : supp mo(v, ) = supp mo(v, j) for every
Kyj < K~, such that the following holds: Whenever p € D, p’ := mp and ¢ € dom p~\ dom 7,
(0,1) € suppmo(v, j), then (p')7(¢) = pp(¢) with (A, k) := G,y (v, 5)(0,1).

Whenever ¢ € domm, and (o,) € suppn(v,j), then the values (p')7(¢) are described by
the maps 7o(¢) mentioned above, which allows for setting (p’)7(¢) := pp(¢) for any pair
(Uvi)a (Avk) € SUPPWO(VJ)-

Roughly speaking, Ay will be generated by these two types of isomorphism. Regard-
ing the construction of p’,, some extra care is needed concerning the values p.(¢,()
for ¢ ¢ dommy and § € Uaf a linking ordinal, since we have to make sure that the
maps my € Ay are order-preserving. Whenever p,q € D,, with ¢ < p, then also ¢/ < p’
must hold; in particular, whenever {{7} := a? n [k, , Ky +1) i a linking ordinal and
¢ € domg ~ domp (in particular, ¢ ¢ dommy), then {7} = (a’)} N [Kuj, Ko je1) With
(0,1) = Fro(v,7)(\E), and ¢,(£7,¢) = (¢")2(¢) by the linking property for ¢’ < p.
Moreover, (¢')3(C) = ¢/'(¢) with (u,1) = Gro(v,5)(A k), and ¢/'(¢) = ¢.(§',¢) with
&' = a)' 0 [Kyj, Ky e1) by the linking property for ¢ < p. Hence, ¢,(£7,¢) = ¢.(&",Q)
must hold, where (p,1) = G, (v,7) o (Fry(v,7)) 1 (0,1).

This gives rise to the following definition:

Definition 2.4.1. Let A; consist of all automorphisms my : D, = Dy, such that there
are

e a countable set suppm € {(0,7) | o € Lim,i < a,}
(for K, j < Ky, we set supp (v, j) = {(0,7) € suppmo | Ky < Ky }),

e a domain dommy = Uycy, ject sy [Av,js Ou,j) such that 0, € [k, 5, Ky 1) for all v <,
J < cfrye; and for all regular k55, it follows that dommy N kp; is bounded below
kw3
(for K, j < Ky, we set dommy(v,7) :=dommy N [Kyj, Ky j+1)),

such that

D,, = {p = (pe, (07,09 )04) € Po | supp p 2 supp o , dom p 2 dom 7y, and

V Ky <Kyt (domp N [kujsbvj) 2= U a7 n[kuj,Eujs1)C domp) };
(o,i)esuppp

moreover, there are

e for all v <7, j<cfk,,1, a bijection

Fro(v,7) s suppmo(v, j) — suppmo(v, 5)
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(which will be in charge of permuting the linking ordinals as mentioned above),

and a bijection

GWO(Vaj) : Suppﬂ-O(ij) — Supp 71-0(”7.7)
(which will be in charge of permuting the verticals p? outside domm, on the interval
[sz/,ja K/l/,j+1))7

o forall v<~, j<cfr, and € € Ky, Ky ji1) N dommg, a bijection

7-(0(() . QSUPPWO(VJ) N 25upp7rg(y,j)

(which will be in charge of setting the values (7p)?(¢) for (o,i) € suppmo(v,7),
¢ e dom ),

o for all v <y, j<cfhyi, ¢ €[k , Ky 1) N domm, and
(& | (0,7) esuppmo(v, 7)) € (dommo(v, 7))> PP
a sequence of pairwise distinct ordinals, a bijection
(10)+(Q)(&7 | (0,1) € supp mo(v, ) : 2772 Tae) s oop o)

(which will be in charge of setting the values (7p). (&7, ) for {£7} = aZ N Ky, Ko je1)
a linking ordinal and ( € [k, j, Ky j+1) N dommg ),

o for all v <y, j<ctr, and (€,C) € [Ku, Ko j+1)?, a bijection

(m0)+(£,¢) 2 —>2

such that m, (&, () is the identity whenever (£, () ¢ (dommg)?
(which will be in charge of the values (7p).(&,() in the case that £ ¢ U, ;af is not
a linking ordinal);

which defines for p e Dy, p = (p«, (p7,a7)s,:), the image mp =:p’ = (pL, ((p")7,(a’)?)s:) as
follows:

We will have supp p’ = suppp, domp’ = dom p. Moreover:

e Concerning the linking ordinals, for all (¢,7) € suppp’ = suppp and £, ; < K,

- (a')f n [/fu,jﬁ K:I/,j+1) = a;; n [Ku,ja Hl/,jJrl) fOI' (Uvi) ¢ supp 7T'O(Vuj)?

— (a7 0 [Kuj, Kuger) = @ O (Ko, kujer) with (A k) = Fr (v,7)(0,1) in the case
that (o,1) € supp mo(v, j)-

e Concerning the (p’)? with (o,7) € supp mo:

— for e dom my,

((@)7(¢) | (0.4) e suppmo(v, 7)) = () (7 (C) | (0,4) € suppmo(v, 7)),
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— and in the case that ¢ ¢ dom g,
()7(€) = pr(Q) with (A k) = Gy (v,5)(0, ).

e Whenever (o,i) ¢ supp 7o, then (p')7 = p?.

e We now turn to p,. Consider an interval [k, ;, K, j+1). For any (o,7) € supp mo(v, j),
let {€7} :=a? N [Kyj, Kujs1). For ¢ €[Ryj, Ky je1) N dommg, we will have

(1.(&7.Q) | (0,i) esuppmo(v, j)) =

= (10)+ (&7 | (0,7) e supp 7o (v, 7)) (1 (&7.Q) | (0,7) € suppmo(v, 7).
In the case that ¢ € [K,;, Ky 41) N (domp N dommp), we will have for (o,7) e
supp (v, j):
PL(&,€) = p.(&,0),
where (A k) = G, (v,5) o (Fro(v,5)) 1 (0,1).
Finally, if (£,() € (domp)? with &,( € [k, 5, Ky j+1) such that £ ¢ U, ,; a?, then

PL(E,€) = (m0)+(&,0) (p-(&,0)).

For any 7 € Ay, it follows that D,, € Dy with supp D, :=supp 7 and dom D, := dom 7.
Moreover, whenever p is a condition in D, then p’ := mop € Py is well-defined with p’ € D,
since suppp’ = supp p, domp’ = domp, and U,;a? = U, ,(a’) by construction.

Here we use that m is only defined on D,, and not on the entire forcing Py, since we have
to make sure that in our construction of the p,(£7,() for ¢ ¢ dommg, we do not run out
of dom p.

It is not difficult to see that for any p, ¢ € D,, with ¢ <p, also ¢’ < p’ holds. The linking
property follows readily from our definition of the p, (£7,() for ¢ ¢ dom .

Whenever 1y € Ay and D € Dy with D ¢ D, , it follows that the map 7y := 7y | D is con-
tained in Ag, as well. Here we have to use that the maps my do not disturb the conditions’
domain or support, and merely permute the linking ordinals. In particular, whenever
p e D, it follows that the image myp is contained in D, as well.

For Definition |1.2.14} it remains to verify that for any D € Dy, the collection (Ag)p :=
{m €Ay | Dy, =D} is a group.

Firstly, whenever my € Ay, 7o : Dy, = Dy, it is not difficult to write down a map 1 € 4,
with D,,, = D, such that 1, is the inverse of m:

Let suppvy := suppm and domuy := domm. For any k,; < k., we set F, (v,j) =

(FTFO(Vaj))_la GVO(Z/7j) = (Gﬂo(yvj))_l; and for C € [ﬁv,ja K“V,j+1)> we let VO(C) = (WO(C))_I‘
Regarding (1), we use the following notation:

For sets T, J with a bijection b : T — J and a sequence (z; | j € J), we denote by
b(x; | jeJ) the induced sequence parametrized by L:

bz | je€T) = (y; | i€T) with y; := 2y for all i e T.
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Whenever ¢ € [k, j, Ky j+1) N dom g, and
(&7 | (0,4) € suppmo(v, 7)) € (dommo (v, j))>PPmo9)

is a sequence of pairwise distinct ordinals, we set (19).(&7 | (0,4) € suppmo(v,5)) =

— 7.\ =7 o . ) - _ 1
Fry(0,3) © [ (0)-( Fra(r,3) (&7 | (03) esuppmo(1,)) )] o Fry(07)
which is a bijection on 2swpmo(».j),

-1
For (57 C) € [Ru,jﬁ "il/,j+1)27 let (VO)*(€7C) = ((WO)*(£7<)) .
It is not difficult to verify that indeed, mo(v9(p)) = vo(mo(p)) = p holds for all p e D, = D,

0*

Secondly, for any 79 : D - D, 0¢p : D — D in Ay, one can write down a map 7y € Ay
explicitly with D., = D such that 79(p) = mo(0o(p)) holds for all p e D.

Finally, (Ag)p contains the identity element (idy)p (the identity on D); and it follows
that (Ag)p is indeed a group.

Now, all the properties form Definition [1.2.14] are satisfied. Hence, Aq is an almost-group

of partial Py-automorphisms.

We turn to P; and define A;, our collection of partial Pq-isomorphisms. Every m € A;
will be a bijection 7, : D, - D, with a dense set D,, € Dy, where D; is defined as follows:

Let D; denote the collection of all D ¢ Py given by:
e a countable support supp D € Suce, and

o for every o e supp D, k, = R, ', a domain dom D(c) = dom, D(0) x dom, D(o) C
Qy X [Fg,ky) with [dom 7y (0)| < Ko,

such that
D={peP;| suppp2suppD A Yo esuppD domp’ 2dom D(c)}.

Then every set D € Dy is open dense; and whenever D, D’ € Dy, then the intersection
D n D' is contained in Dy as well, with supp(D n D’) = supp D U supp D', and dom, (D n
D")(o) = dom, D(c) u dom, D'(¢), dom,(D n D")(c) = dom, D(c) u dom, D'(o) for all
o esupp(D n D').

Moreover, the collection D; has a mazimal element (D1 )max With supp(D1)max := @. Then
for all D € Dy, we have Py = (D1)max 2 D.

It follows that D has all the properties required in Definition [1.2.14]

We now describe the two types of partial Pi-isomorphisms that will generate Aj:

As with Ay, our first goal is that for any p, g € P; which have the same “shape”; i.e. suppp =
suppq and domp® = domq° for every o € suppp, there is an isomorphism m; € A; with
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mp = q. These isomorphisms will be of the following form: For every o € suppm, we will
have a collection of m(0)(,¢) : 2 - 2 for (i,{) € domm (o), such that for any p € D,
the map m; changes the value of p?(i,() if and only if 71(0)(4,() # id. In other words,
(r1p)7(.0) = m(0) (1. O (17 (0,0)).

This allows for constructing an isomorphism m; with mp = ¢ for any pair of conditions
p, q that have the same supports and domains: One can simply set m1(0)(7,() = id if

p°(1,¢) = q°(i,¢), and 71(0)(4,¢) # ¢d in the case that p°(i,() + q° (i, ().

Secondly, for every pair of generic r,-subsets G¢ and GY for o € Succ and 7,¢ < oy, we
want an isomorphism 7w € A; with 7G7 = GY. Therefore, we include into A; all isomor-
phisms 7, = (m1(0) | o € supp ) such that for every o € supp 7y, there is a bijection f,, (o)
on a countable set supp (o) € a,; and 7y is defined as follows: Whenever p € D, , then

(Wlp)a(i>C) = pg(fm(O')(Z.) ) C) for all (ng) € domp". Then WG? = G?ﬁl (o) (%)"

Roughly speaking, A; will be generated by these two types of isomorphisms. In order to
retain a group structure, the values (m1p)? (4, () for (i,() € domm(o) and i € supp (o)
have to be treated separately: For every ¢ € dom, m(¢), there will be a bijection m(() :
gsuppmi(0) . 2suppmi(9) gyuch that ((mp)"(i,() | i € supp 7T1(0')) = Wl(C)(p"(z',C) | i€

supp 7r1(0)).

This yields the following definition:

Definition 2.4.2. A; consists of all isomorphisms m : Dy, - Dy, m = (m(0) | 0 €
supp ;) with countable support suppm; € Succ, such that for all o € suppm, ko = Ry ',

there are

e a countable set supp (o) € a, with a bijection fr, (0) : suppmi (o) - suppm (o),

e a domain domm (o) = dom, m (o) x dom, m1(0) € @y X [Ry, ko) With |dom (o) <
Ko, such that suppm (o) € dom, m(0),

e for every (i,() € oy X [Rq,ky) a bijection m1(0)(4,¢) : 2 - 2, with m(0)(4,¢) = id
whenever (i,() ¢ domm;(0), and
o for every ¢ € dom, (o) a bijection () : 250PPT1(9) — 2suppmi(7)
with

D, ={pePy| suppp2suppm A Yo esuppm; domp’2dommi(0)};
and for every p € D,,, the image mp is defined as follows:

We will have supp(mp) = suppp with (mp)° = p° whenever o ¢ suppm;. Moreover, for
0 € supp T,

o for every (i,() € dom p? with i ¢ supp 71 (o), we have (m1p)?(7,¢) = 7m1(0) (4, C)(p"(i, C)),

e for every i e suppm (o) and ¢ € dom, p° \ dom, m(0),

(mp)?(i,¢) = p"(fm(a)(i)7 C), and
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e for all ¢ e dom, m(0),
((mip)7(i,¢) | i esuppmi(o)) = m(¢)(p7(4,¢) | i e suppmi(0)).

In other words: Outside the domain domm (o), we have a swap of the horizontal lines
p°(i,-) for i € suppm (o), according to fr, (). If ¢ € dom,m (o), then the values
(m1p)? (i, C) for i € supp w1 (o) are given by the map 71 ((). Any remaining value (m1p)° (4, ()
with 7 ¢ supp (o) is equal to p°((,7) or not, depending on whether 71(0)(i,() :2 —> 2 is
the identity or not.

We need the dense sets D, in order to make sure that dom(mp)® = domp°. In particular,
we do not want to run out of dom p° when permuting the p°(i,-) for i € suppm (o).

It is not difficult to see that any map m : D, — D, as in Definition is order-
preserving.

Whenever m € A; and D € Dy with D ¢ D, , then the map 7, := m; | D is contained in
Ay, as well. Here we have to use that the maps 7; do not disturb the conditions’ support
or domain. In particular, whenever p € D, it follows that mp € D, as well.

For Definition [1.2.14] it remains to verify that for any D € Dy, the collection (Ay)p :=
{m € Ay | D;, = D} is a group; which happens similarly as for Ay:

Firstly, for any m € Ay, m : Dy, = D, one can write down a map vy € A; with D, = D,
such that v, is the inverse of 7.

Secondly, whenever m,01 € Ay, m1: D - D, 01 : D — D, one can explicitly write down a
map 71 € Ay with D, = D such that 71(p) = m1(o1(p)) holds for all p e D.

Finally, (A;)p contains the identity element (id;)p (the identity on D), and it follows
that (A;)p is indeed a group.

Hence, all the properties from Definition [I.2.14] are satisfied, so A; is indeed an almost-
group of partial Pi-automorphisms.

Definition 2.4.3. Let A := Ag x Ay, i.e. any 7w € A is of the form 7 = (7, m), where
o € Ao, Mo : Dy, = Dy, is a partial Pp-automorphism, and m € Ay, m : Dy, - D, is a
partial P;-automorphism.

Let D := Dy x D;. By what we have just shown, it follows that A is an almost-group of
partial P-automorphisms for D.

Let A denote the group of partial P-automorphisms derived from A as in Definition [1.2.15

Form, w'e A, w: D, —> D,, ©': Dy — D, we set
e e N (Den D) =7" 1 (D 0 Dy),

and let A:= {[r] | 7 € A}, with concatenation A given by concatenation in A (cf. [1.2.15).
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2.4.2 Constructing F

Now, we define a collection of A-subgroups that will generate a normal filter F on A,
establishing our notion of symmetry.

We will introduce two different types of A-subgroups.
Firstly, for any 0 <7 <7, i < a; (with 1 € Lim or 7 € Succ), let

Fiz(n,i):={[r] € A| Vpe Dy (wp)] = p }.

Whenever 7 ~ 7/, it follows that (7p); = p] for all p € D if and only if (7'p)] = p/ for all
p € D, Hence, Fixz(n,i) is well-defined, and any Fiz(n,i) is a subgroup of A.

By including Fiz(n,) into our filter F, we make sure that any canonical name G? for the -
—D. —=Dsr

th generic k,-subset G is hereditarily symmetric, since 7G] =G for all m € Fiz(n,1).

Hence, our eventual model N will contain any generic x,-subset G}.

Now, we turn to the second type of A-subgroup. For any 0 < A < v and k < a, (with
A € Lim or A € Succ), we need in N a surjection s : £(k)) - k in order to make sure that
6N (ky) > an. However, the sequence (G} | i < ay) must not be included into N, since
0N (ky) < ay, so N must not contain a surjection s: (k) = a,.

The idea is that for any 0 < A < and k < v, we define a “cloud” around each G? for i < k,

denoted by (é;\)(k), and make sure that the “sequence of clouds” ((6’?‘)(’“) | i < k) makes
its way into V.

When defining the according A-subgroups, we have to treat limit cardinals and successor
cardinals separately.

For X\ € Lim, k < a, let

Hﬁ::{[w]eﬁ‘ kpj<kr Vhyj€[hpg k) Vi<k:

() € suppmo(v,) v Gy (v, 1) (N,3) = (A3) ) |
It is not difficult to verify that any H)) is well-defined and indeed a subgroup of A.

Roughly speaking, H} contains all [r] € A such that above some ry; < iy, there is no
permutation of the vertical lines P} | [k53, k) for i < k.

This implies that for any 4, j < k with i # j and [7] € H, it is not possible that 7G = G7.
Hence, for any ¢ < k, we can define a “cloud” around G? as follows:

(GH® = {(xGE 1) | [x] € HY).

With (@})(k) = ((CEE\)(’“))G, it follows that (5})%) is the orbit of G} under H}); so two
distinct orbits (G})® and (G3)™ for i # j are disjoint. The sequence ((G)® | i< k),

which has a canonical symmetric name stabilized by all 7 with [7] € H}, gives a surjection
s:P(ky) = kin N (see Chapter [2.6.1)).
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Now, we consider the case that A € Succ. For k < ay, let
H) = { [rle A|Vi<k (ié¢suppmi(A) Vv fr,(A\)(5) = 1) }
Again, one can easily check that H}' is well-defined and indeed an A-subgroup.

Whenever [r] is contained in H}}, then 7 does not interchange any G} and G7 for 4,j <k

in the case that ¢ # j. Thus, as for A € Lim, we can define “clouds” (55\)(’“) for i < k and
obtain a surjection s: (k,) - k in N (see Chapter [2.6.1]).

We are now ready to define our normal filter 7 on A. Note that the Fiz(n,i) and H}
are not normal A-subgroups: For instance, if [7] € Fiz(n,i) for some n € Lim, i < ay,
and o € A with G,,(v,j)(n,1) = (n,7') for all k, ;,< K, such that [«] ¢ Fiz(n,:), then in
general, [o]![n][c] is not contained in Fix(n,1).

However, it is not difficult to verify:
Lemma 2.4.4. e loralloce A, and nelim, i< a,,
[o]Fiz(n,i)[o]™" 2 Fiz(n,i) 0 (O {Fix(Mm,im) | m <w, (N, im) € SUPP 0o}

In the case that o € A, and n € Succ, @ < ay),
[o]Fiz(n,i)[o]™ 2 Fiz(n,i) n (W Fiz(n,in) | m <w,in € suppoi(n)}.
o ForoeA and ) e Lim, k< a,,

[c1HXe]™ 2 HY 0 (W EFiz(Mmsim) | m < w, (M im) € SUpp g}
In the case that X € Suce, k < a,
[o1HX o] 2 H)} n ({Fiz(\,im) | m<w, iy, esuppor(N)}.
Hence, it follows that Colmtable intersections of the A-subgroups Fiz(n,i) and H} gen-
erate a normal filter on A:
Definition 2.4.5. We define F as follows:

A subgroup B ¢ A is contained in F if there are ((1m,im) | m < w), (A, km) | m < w)
with
B2 () Fiz(nm,im) n () Hy"

m<w m<w

Then by Lemma it follows that F is a normal, countably complete filter on A.

Now, we can use F to establish our notion of symmetry. The following Definition corre-

sponds to Definition [1.2.18;

Definition 2.4.6. A P-name 7 is symmetric if
sym? (i) := {[r]eA|nzPr =2 "} e F.

Recursively, a name & is hereditarily symmetric, x € HS, if © is symmetric, and y is
hereditarily symmetric for all ¢ € dom .
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2.5 The Symmetric Submodel

Let G be a V-generic filter on P. The symmetric extension by F and G is
N:=V(G):=V(G) ={i% |t e HS}.

As set out in Chapter the symmetric forcing relation with partial automorphisms
“IFs” can be defined as usual, and satisfies the same basic properties as the ordinary
symmetric forcing relation. In particular, the Symmetry Lemma holds, and the Forcing
Theorem holds true, as well.

Whenever &, g € HS and p € P, then p -5 ¢ € & if and only if p I+ y € & (with the ordinary

forcing relation “I+”) and p I+s & = ¢ if and only if p I- & = §. In particular, for any @€ HS
and D € D, we have

ED:{(gD,p) |yedomaz,pe D, piksyei}.

By Theorem [1.2.21] it follows that N = V(G) is a transitive model of ZF with V ¢ N ¢
VIG].

Proposition 2.5.1. N £ DC + AX,.

Proof. N = DC follows readily, since firstly, P is countably closed (Proposition [2.3.7) and
secondly, our normal filter F generating N is countably complete. We give a proof for
the sake of completeness, using the basic ideas from |[Karl4, Lemma 1].

It suffices to show that whenever X € N and f:w — X is a function in V[G], then f e N.
This implies DC: Assume that there was in N a set X with a binary relation R such that
for any x € X there exists y € X with y Rx. Since DC holds in V[G], we obtain a sequence
(z, | n <w) in V[G] such that z,.1 Rx, for every n < w. Then (x, | n < w) is already
contained in N, as desired.

Let X e N, X = XG with X € HS, and consider a function f :w — X in V[G]. Let
f = f¢ where f e Name" (P). Take a condition P, € G such that

Do IF f ‘w— X,
We claim that the following set (in V') is dense in P below p,:
D:={peP | 3(d, | n<w) Vn<w (j:nedomX Apll—f(n)z:tn)}

Let po € P, po < Py We use recursion in V' to construct sequences (p, | n < w) and
(&, | n <w) such that &, € dom X, pns1 < pn, and puiq - f(n) =1, for all n <w.

By countable closure of P, we can take a condition p € P such that p < p,, for all n < w.
Then p I f(n) = i, for all n <w. Thus, p is an extension of py in D; and it follows that
D is dense in P below p,.

Thus, we can take ¢ € G n D, q <Py, and (&, | n < w) as in the definition of D with
&, edom X and q I+ f(n) =4, for all n <w. Let

g::{(OR[p(n,jcn),]l) ‘ n<w}.
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Then ¢ = f. It remains to make sure that ¢ € HS. Since &, € dom X ¢ HS for all n < w, it
follows that symA(i, ) € F for every n < w. Thus, dom g € HS. Moreover, F is countably
complete, which gives <, symA(i,) € F. Since g’ = gP~ for all 7 € N,,<,, symA (&), it
follows that g € HS as desired.

Regarding N = AX, (see [Shel(), p.3 and p.15]), we note that ([A]X)VIC] = ([A]®0)V, since
P is countably closed. Hence, ([A]*)Y = ([A]®0)V. Thus, the set [A\]¥ can be well-ordered
in N, using the according well-ordering of [A]® in V.

[

Next, we want to show that N preserves all V-cardinals; which will follow from the fact
that any set of ordinals X ¢ «, X € N, can be captured in a “mild” V-generic extension
by a forcing notion as in Lemma [2.3.9) and Lemma [2.3.10

This Approzimation Lemma demonstrates how our symmetric extension /N can be approx-
imated from within by fairly nice V-generic extensions. Later on, this will be a crucial
step in keeping control over the values 0V (k).

Lemma 2.5.2 (Approximation Lemma). Consider X e N, X € o with X = XG such that

X" =X"" holds for we A with [7] contained in the intersection

N Fiz(myim) 0 () Fix(T,im) 0 () H’\’" n N H’\

m<w m<w m<w m<w
where ((Mm,im) | m<w), ((@,,0m) | M <w), ((Amskm) | m<w) and (A, k) | m <w)
denote sequences with n,, € Lim, i,, < o, ; 7, € Succ, I < ag  for all m < w; and
Am € Lim, K, < ay, ; Am € Suce, ky, < as  for all m <w.

Then
XeV[ng)G”m x EJG";]
Proof. Let
={B<a | 3p= e (07,0)0i, (17)5) : PIrs BEX Vs (Mnsim) €sUDPPY |
Vm s al =gl (P e € [T GI0 L (2 e € [ G27 .
Then o o

X ev[ 16 « 167
m<w m<w
since the sequence (g;")m<, is contained in V. It remains to show that X = X’. The
inclusion X ¢ X' follows from the Forcing Theorem. Concerning “2” | assume towards a
contradiction there was 5 € X'\ X. Take p as above with (7,,,1,,) € supp po for all m < w,
and

Y cam = " 7 Ui 7] .
pirBeX, Vm s al =gl ()€ [T G L (7 e € [T G2

m<w m<w

Since [ ¢ X, we can take p’' € G, p' = (p’*, ((p’);’, (a’);’)m,, ((p’)")a) with p’ 15 8 ¢ X, such
that (1,4, ) € suppp for all m < w.

98



Chapter 2.  An Faston-like Theorem for Set-many Cardinals in ZF + DC

First, we want to extend p and p’ and obtain conditions p < p, o' <p’, p = (D, (57,7 )i, (F7) o),
7 = (]—9’*7 ((]3’);?, (a’)g)”, ((ﬁ')")g) such that the following holds:

—Nm _ (=I\TIm —Nm _ (=/\TIm
o Vm<w pim—(p o, aim—(a Vi

o Vm<w "= ()"

im
e domp, = domp;,
® SUpPp P, = SUPpP P
—0 _ —\o
® U(o,i)esuppp, @i = U(nyi)esupp%(a )

o V(v,j) : dompy N [Kyykuji1) D (Uo‘,i a; n [/iu,j,/iy,jn)) ¢ domp ,
V(v,j) : domPy N [Kuj,kuje1) # D — (Ua,i (@)7 n [F&u,j,ffu,ju)) ¢ domp

® SUppp; = suppp;
e Voesuppp, =suppp; : domp,; (o) =domp](c).

We will now describe how p, and pj can be constructed. First, we need a set supp, :=
supp P, = supp py. Consider

s:=sup{k, | o € Lim, i<, : (0,i) € supppg Usuppp,}-

Then by closure of the sequence (k, | 0 < o <), it follows that s = k5 for some 7 < 7.
If % = ~, then c¢f K, = w and we can take ((oy,lx) | k¥ <w) with oy € Lim, [} < oy, for all
k < w such that (k,, | k <w) is cofinal in ., and (o, ;) ¢ supppo Usupp pj for all k < w.
Let

SUPPy := SUPP Py = SUPP Py := supppo U supppy U { (o, k) | k <w}.
If ¥ < 7y, we can set oy, := 7 € Lim for all k <w and take (/; | k¥ <w) such that [} < o, with
(ok:lk) = (7,1k) ¢ supppo U supppy for all k <w. Let

Suppy = SuUpp Py = SUPP Py := supp po U supppy U { (o, k) | k <w}

as before.
The next step is to define the linking ordinals. Take a set X ¢ x5 such that for all intervals
[Kuj, kv je1) C Ky, it follows that |[X n [k, Ky 1) = Ro; and X n (U(U7i)ESuppp0 al u

U(U,i)esuppp(’)(a,)?) =@. Let o
X=X 0 Ua? o U@

Our aim is to construct p and p’ such that U,; @7 = Uy, (@')7 = X.
Consider an interval [k, ;, Ky j+1) € k5. For every (o,i) € supppy with K, > K, ;, we let
a; N [Kyj, Ko je1) = al 0O [Kyj, Kuje1)-
Define o
{&(v, ) [ k<w} = (X n [HV,jvﬁu,jH)) \ U@?-
0,0
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This set has cardinality ®q by construction of X.

Moreover, let

{(@r(.3), le(v,5)) | k <w} = {(0,4) € suppTy ~ supp po | kg > kv }-

This set also has cardinality Ry by construction of supp p, = suppy.
Now, for any k < w, let

—Ek(yvj)

oy O [Fugs fvgen) = {8 (v 5) )

Together with same construction for p’, we obtain the linking ordinals @, (@')? for
(0,i) € supp, = suppp, = supp(p')o such that the independence property holds, and
Uo,i af = LJU,i(a,);‘7 =X.

Next, we construct domg := domp, = dom(p')o := U, [k, 0,,;) as follows: Consider an in-
terval [k, j, Ky j+1) € K. In the case that dompy N [k, 5, Ky ji1) = dom(p')o N [Kuj, Ko je1) =
@, let 4, = K, ;. Otherwise, take 8, € [k, j, fyjs1) such that (dompy U domp) U X) n
[Kujy kv j+1) € [Kuj,6,,5). (This is possible since the set X n [Kv,j, Kuj+1) is countable, and
any Ky 41 18 a successor cardinal.)
Let

domyg := domp, := dom Py, := | J[ kw5, 005)-

v,j

This set is bounded below all regular xz; by construction, since domp, and dompyj, are
bounded below all regular ry ;.

Now, for (o,7) € supppy, let pf : domp] — 2 on the corresponding domain with domp{ =
dompyn k,, such that p7 2 p? for all (,7) € supppo, and in the case that (o,7) = (9, im)
for some m < w, we additionally require that p;™ 2 (p’);". This is possible, since p’ € G

Im, Nm TIm 1\7Im 3
and p/™ € GI™, so p]™ and (p')]™ are compatible.

We define p, on the according domain U, [k, j,0,,;)? such that p, 2 p., and the link-
ing property holds for p, < po: Consider an interval [k, ;, Ky j+1) With 6,; > &, ;. For
¢ € (dompy N~ dompy) N [Kyj, K jr1) and {E} = a? N [Kyj, Ky j+1) for some (o,7) € supp po,
it follows by construction that £ € domp,. Let p,(&,¢) :=p7(¢). For all £, ¢ € dompy N

7

(K., 1), we set P, (&, C) = p. (&, C); and P, (€, ¢) € {0, 1} arbitrary for the ¢, ¢ € domp,
remaining.

Concerning p’, we set (p');™ = p;™ for all m <w. Then (p')]™ 2 (p’);™ by construction.

For the (o,i) € supp(p’)o = suppp, remaining, we can set (p')7 arbitrarily on the given
domain such that (p")7 2 (p')?.

Finally, we let (p'). 2 (p'). according to the linking property for p;, < pj, (same construc-
tion as for p,).

It follows that p, < po and p; < pj, and B, and p;, have all the required properties.

The construction of p; < p; and pj < p} is similar.

Our aim is to write down an isomorphism 7 € A with the following properties:
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e pe D, with np=7,

® T €[\ Fix(nm,im) N Nin<w sz(ﬁm,;m) N Nin<w H,;\:: N Nin<w H%m
(then X =X follows).

From P Ik, 8 € X, we will then obtain 7P I, 3 € WYDW; hence, p' I-, 3 € X", This will be
a contradiction towards p’ I+, B ¢ X.

We start with mg. Let dom 7y := domp, = dom 7y, and supp mg := supp p, = sSupp py-

e Consider an interval [k, ;, K, 41). We define F (v, j) : suppmo(v, j) = suppmo(v,7)
as follows: Let Fy, (v,7)(0,i) = (\ k) in the case that (@')? N [k, , kv je1) = @y N
[Kvj, K jr1)- This is well-defined by the independence property, and since we have
arranged U, af = U, ,;(@’)7.

e For every interval [k, ;, Ky j+1), let Gr,(v,7)(0,1) = (0,1) for all (o,i) € supp mo(v, ).
(These maps G,,(v,7) will be the only parameters of m, which are not deter-
mined by the requirement that mop, = p;. However, in order to make sure that

T € Nincw F1x(Mmyim) O Ninew H,;\Z, we firstly need G, (v, 7)(Nm,im) = (M, im) for
all m < w; and secondly, whenever m < w and i < k,,,, we need that G, (v,7)(A\pn,7) =
(Am, ) for all k,,; above a certain xy3.)

e For ¢ € [k, ,kujs1) N dommg, we define mo(¢) @ 25PPm0(d) — 2suppmo(vi) ag fol-
lows: For (€@ | (0.1) € suppmo(v, 7)) € 25w0pmo(i) given, let mo(C) (€@ | (0.1) €
suppﬂ(y,j)) = (E'(m) | (0,i) € suppﬂo(y,j)) such that €,;) = €, whenever
P7(¢) = (P)7(C), and €, ) # €3y in the case that 7 (¢) # (p')7 (¢).

e Let now ( edommy N [:‘iu,j, /iu,j+1)7 and
(&7 (v,) | (0,1) € suppmo(v, j)) € dommg (v, j) PP ).

The map 7. (O)(&7(1,7) | (0,1) € Supp mo(v, 7)) : 29wPT0D) > 29pTw) i defimed
as follows: A sequence (e(m-) | (0,i) € suppﬂo(y,j)) is mapped to (E'((m-) | (0,1) €
suppwo(y,j)) with ’g(a,i) = €(0,i) if ﬁ*(f?(ynj)aC) :ﬁ;(fg(l/,j),C), and ao,i) * €(0,i) n
the case that p, (& (v,7),¢) # P.(§7(v,5), ).

e For (£,() € [Kuj,Kuj+1)?, the map m.(§,() : 2 > 2 is defined as follows: We let
m.(&,¢) = id in the case that (£,¢) ¢ (dommo(v,5))2. If &, € dommg(v,j), let
m.(§,¢) =1difp,(§,¢) =P.(§, (), and 7. (§, () #id in the case that P, (&, ¢) # PL (&, ().

This defines 7. Directly by construction, it follows that mp, = p: Let
oDy = ((7P)+, (D)7, (7@)] )i (7D7))-
Then for any (o,7) € supp(mop,) = suppp, and K, j < Kk, we have (7a)? N [Kyj, Ky j+1) =

62‘ N[Kuj, Kuje1), where (N, k) = Fr (v, j)(0o,1); hence, 62 N[k kv jer) = (@) N [Kuj, Ko je1)
as desired.
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For any ¢ € dom7Py, it follows by definition of mo(¢) that ((75)?(¢) | (0,i) € suppmo(v, j)) =
(3)7(0) | (0,7) € suppmo(w, ), and similarly, (x5).(£,C) = FL(€,C) for all (€,¢) €
dom(7p), = domp,.

Hence, myp, = Do-

[t remains to verify that 7 € N, Fiz(Mm, im) N N H,;\:; Consider a condition r € D,
and let 7’ := mor. Take an interval [k, ;,ky,j+s1) S Kky. Then for any m < w with
(N> im) € suppmo(v,j) and ¢ € dommo(v, j), it follows that (/)" (¢) = 7" (¢) by con-
struction of the map 7mo(¢), since we have arranged p;"(¢) = (p');"(¢). In the case that
¢ € [Kuy, kv ) With ¢ € dom7g \ dommy, it follows for m < w that (r')!" () = 72 (¢),
where (A, k) = G (v, 7) (s im) = (M, im) as desired. Hence, (/)™ = r™ for all m < w.
Since 1 € D,, was arbitrary, it follows that mg € N, F12 (N, im )-

Similarly, g € N,,, H ,?: follows from the fact that G, (v, j) = id for all intervals [k, ;, Ky, j+1) S
Koy

Now, we turn to the map 7.

Let supp 7y := supp p; = supppj, and dom (o) := domp,(¢) = domp; (o) for o € supp 7.
We set supp (o) := @ for all o € supp ;. Then we only have to define maps 71 (o) (4, () :
2 > 2 for o esuppm, (i,¢) e domm(o): Let m(0)(i,() =id if p(o)(i,¢) =p'(0)(7,(), and
m1 (o) #id in the case that p(o)(4,¢) # 9 (o) (4, ().

Clearly, 79, = p;. Moreover, w € N, Fiz(7,,,1m): Let m <w and r € D, with 7, € suppr
and i,, € dom,7(7,,). In the case that 7,, € suppm, it follows for any ¢ € dom,r(7,,)
that (77) (Tyn) (ims €) = 71 (Tn) (i O (7 () (ims €)) = 7(71) (i, €) by construction of 7y,
since we have arranged that p'(7,,) (im, ¢) = p(7,,,) (im, ¢) whenever (i,,,() € domp(7,,) =
domp'(7,,) =domm(7,,). If 7,, ¢ suppm, then (77)(7,,) = r(7,,) by construction.
Finally, 7w €N, HEA;" follows from the fact that suppmi(\) =0 for all A € supp 7.

Hence, the map 7 has all the desired properties.

This finishes the proof of X = X/, and

X-x'ev[ TG« 1G]

m<w m<w

follows.
O]

It is not difficult to see that with the exception of the maps G, (v, ), all the parameters
describing w are given by the requirement that 7p =p". We call an isomorphism 7 € A of
this form a standard isomorphism for np=7'.

With the same proofs as for Lemma [2.3.2| and [2.3.3] one can show:

Lemma 2.5.3. Let ((0n,im) | m < w), ((Cm,im) | m < w) with o, € Lim, i, < ay,,,
and G, € Suce, iy, < az,, for allm <w. Then [],,<, P7™ % [, P°™ preserves cardinals,
cofinalities and the GCH.

Hence, the Approximation Lemma implies:
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Corollary 2.5.4. Cardinals and cofinalities are V -N -absolute.

We will now take a closer look at the intermediate generic extensions introduced in the
Approximation Lemma Firstly, we replace the generic filters G by G.(g/™), and
secondly, we factor at s, (Or Ky.1).

Definition 2.5.5. For 0 <7 <+, we say that ((am)m<w, (Em,gm)mw) is an n-good pair if
the following hold:

o (an | m<w) is a sequence of pairwise disjoint x,-subsets, such that for all m < w
and K3 < Kp, it follows that |CLm n [Ii;g, lip’j+1)| = 1,

e for all m <w, we have 7, € Succ with o, <7, i, < az,,,

o if m=m/, then (Gp,im) # (T, g ).

As in Lemma |2.3.9| and |2.3.10|, it follows that for any n-good pair ((am)mw7 (Emjm)mw),

[]G.(am) x T] GZ’;”

m<w m<w

is a V-generic filter on [1,,.,(P")* x [1,,e, P7m.
Proposition 2.5.6. Let 0 <n <~ and X € N with X € ky. If Ky > K} (o1 Ky = Ky with
v =7+1), it follows that there is an n-good pair ((am)m<w, (Em,gm)mw) with

X eV[[] Gulan) x [T GZ"].

m<w m<w

Proof. By the Approzimation Lemma [2.5.2) there are sequences ((op,im) | m < w),
((Tmsim) | m < w) of pairwise distinct pairs with o, € Lim, i, < ag,,; 0m € Succ,
im < 0, for all m <w, such that

X ev[TT o « 1 67+

m<w m<w

The sequence of linking ordinals (g7 | m < w) is contained in V, and by the linking
property, it follows that V[[1,,«, Gi™] = V[ G+ (g7m)].

Hence, B
X e V[ H G*(ng;”) x H Gf’"].

m<w mew ™
The forcing [1,,<., P7™ % [I;n<, P7™ can be factored as

(IT Pty x TT P7) < (TT Pt o) x T P77),

m<w om<n m<w Tm>1
where the “lower part”has cardinality < «; by the GCH in V, and the “upper part” is
< fij;—closed: If kp41 is a limit cardinal, this follows from the fact that x,, ;.1 > K;; for all

J < cf ky41 by construction (in particular, &, 1 > #;*); and if .1 is a successor cardinal,
we use our assumption that r,,1 > ;. Hence,

X eV[ [T Glgim 0 ry) x [T GI7].

m<w oTm<n
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Setting an, := g;™ N K, for m <w, it follows by the independence property that

((am)m«m (Emy im)m<w 7Em£77)

is an n-good pair with

X eV[]] Gulan) x ] GZ:“]

m<w om<n

]

In the case that k1 = £}, we use our notion of an n-almost good pair, which is defined like
an n-good pair, with the exception that for an n-almost good pair ((am)m<w, (Em,gm)mm),
we have a,, € k1 for all m <w.

Definition 2.5.7. For 0 <7 <~ with r,,1 = s, we say that ((am)mw7 (Em,gm)mw) is an
n-almost good pair if the following hold:

o (an | m<w) is a sequence of pairwise disjoint x,.1-subsets, such that for all m <w
and Ky j < Ky1, it follows that |a,, N [k, kp501)| = 1,

e for all m, we have ,, € Succ with @, <7, and i,, < az,,,

o if m#m/, then (Gp,im) # (Tt i ).
The counterpart of Proposition [2.5.6] states:
Proposition 2.5.8. Let 0 <n <~y and X € N with X < ;. In the case that Ky = K},
there is an n-almost good pair ((am)m<w, (Em,gm)mw) with

X eV[ ] Gelam) x T] GZm x G™].

m<w m<w

Proof. We follow the proof of Proposition with a slightly different factorization: Let
XeV[[TG(o7r) < TTG77]

m<w m<w

as before with o, € Lim, i, < a,,; Om € Suce, iy, < ag, for all m < w. The forcing

[To<w PP % Tlpew 7™ can be factored as

m<w = 5
m

(Hpamr/fnﬂ X H Pam) X (Hpamr[/{nﬂa'%am)x H PEm)a
m<w om<n+1 m<w om>n+1
where the “lower part”has cardinality < r,.; by the GCH in V' (since .1 = &;), and the
“upper part”is < K,,1-closed. Hence,
XeV[T] Gulgim 0 kpr) x [] GZ] eV ] Gulgl™ 0 ki) x [] G x G™1.
m<w " Fmentl " m<w " Fm<n "
With a,, := 7™ N kye1 for m < w, it follows that ((am)m<w, (T, gm)m<w,5m§n) is an n-almost

good pair with
X eV[] Gulam) x T] GZm x G™]

m<w Om <n

as desired.
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2.6 Vn ON(ky) =y

It remains to make sure that in our ZF-model N, the values 0V (k,,) are as desired. Firstly,
in Chapter 2.6.1] [2.6.2] and [2.6.3] we will show that 6" (x,) = a, holds for all 0 <7 < ~.
After that, in Chapter and we will see that for any cardinal A € (k,), k,.1) in
a “gap”, or A > K, = sup{s, | 0 <n <~} the value 6V ()) is the smallest possible.

By our remarks from Chapter this justifies our assumption from the beginning that
the sequence (o, | 0 <7 <7) is strictly increasing.

2.6.1 Vn 0N(ky) 2 ay

Using the subgroups H)', it is not difficult to see that for all k < «,, there exists in N a
surjection s: f(x,) - k.

Proposition 2.6.1. Let 0<n<~y. Then 0N (k,) > .

Proof. Let k < a;;. We construct in N a surjection s: £(x,) - k. As already outlined in
Chapter 2.4.2] we define around each G with i < k a “cloud” as follows:

SNk Fay

(@)™ = ((@)™)

where
P —D-x
(@)™ = { @G 1) | [x) e H7 }:
and we take the following canonical name for the i-th generic x,-subset:
G? :={(a,p) |pE P,3( <k, Jeec{0,1} : a=O0Rp((,€) A pl(¢) =e}.

Roughly speaking, (a?)(k) is the orbit of G/ under the A-subgroup H]'; hence, its canon-
ical name (@?)(k) is fixed by all automorphisms in H,.

More precisely:

Let 0 € A with [o] € H]. Then

D Do

GH® " ={(«GT" p)|[r]eH, peD,}.

Moreover, for all ,

Do
—D, — D, y
ey :{(EDU,p)|peD(,,pll—sae7rG;7 ,3{’</<¢77§Iee{0,1}:a:OR[P(C,é)},

§ Dy ——
since for any a = ORp((, €) as above, it follows that 7a”~ =a’~ =a

Now, it is not difficult to see that p € D, with p -5 a € WG_;’Dﬁ if and only if p € D, and
for all ¢ <p with g€ D, n D, and ¢ € dom gy, it follows that (771¢)](¢) = €.

Also, oa”7 = a”> holds for all o.
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Hence,

Do
07TG_Z-7DTr z{(oaD” , ap) |peD,,3(<k,Iec{0,1} a=O0Rp((,€),
VqeDrn Dy ((g<p A ¢edomgy) = (77'9)](()=¢) }

={(a@" ,p)|peD,,3(<k,Ieec{0,1} a=O0Rp((,é),

Vge D, n D, ((q <p A (edomgy) = (7'o71¢)7(C) = e) }
Setting 7 := om, it follows that

D, D,
— —D,
onG! =7G]

— Do
Now, any element of o (G7)*)  is of the form

Dy
(oxGT" o)

with [7] € H; and p € D,,. Since

Dy Do
(oG Lop)=(7GT" B),

where 7 := o and p := op satisfy [7] € H] and p € D,,, it follows that

Do

Doy —
(0nGI”" op) e (@H®

Hence,

— Do' p— Do—
o @)W c@H® .
The inclusion “2”is similar.

Thus, _ '

(@)™ | i<k)={(0re(7(GD)").1) | i<k},
is a name for the sequence ((@)(k) | i< k) that is stabilized by all o with [o] € H}..
Hence, ((@)(k) | i< k) e N.
Now, we can define in N a surjection s : £(x,) - k as follows: For X € N, X ¢ k,, let
s(X) :=1 in the case that X € (@?)(k)
The surjectivity of s is clear, since G} € N for all i < k with s(G?) = 4. It remains to show

that s is well-defined; i.e. for any ,4’ < k with ¢ # ¢/, it follows that (’C:'?)(k) N (Cj?,)(k) =g.

if such i exists, and s(x) := 0, else.

First, let n e Lim, and take i, i/ < k with ¢ # ¢/
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The point is that the automorphisms in H,’ do not permute the vertical lines P | [y, k;)
and P! 1 [kpj, k) above some ky3 < k,. Thus, the orbits of G and G}, under H, must
be disjoint:

Assume towards a contradiction there was X € (é’vy)(k) N (é?,)(k). Then we have
(<G7")° - (G

for some 7,7 with [7] € H] and [7] € H. Hence, (77'G)] = (77'G)},. Take ky; < K,
such that for all k, ; € [kp 3, ky) and [ < k, it follows that G, (v,7)(n,1) = (,1) whenever

(n,1) esuppmo(v, ), and G, (v,5)(n,1) = (n,1) whenever (n,l) € supp1o(v, j).
By genericity, take g € G with g € D, n D, such that there is ¢ € dom g\ (dom 7wy N dom 79),

C € [Kpg, ky) with Q?(C) * QZ(C)

W.Lo.g., let ¢/(¢) =1, ¢ (¢) =0. With r:=n1q, 1’ := 771¢, it follows by construction of
the isomorphism that () = ¢/'(n) = 1 and (")} (¢) = ¢;,(¢) = 0, which would contradict
(G = (G,

Hence, s:§#(k,) > k is a well-defined surjection in N.

The case n € Succ is similar. O]

2.6.2 Vg (mml > Ky — OV (k) < an)
Let 0 <7 <~. Throughout this Chapter we assume that

+
Kp+1 > Ky-

Then Proposition [2.5.6 can be applied.
In Chapter [2.6.3] we discuss the case that x,.1 = £}, where the proof can be structured

777
the very same way; except that the intermediate generic extensions where the k,-subsets

in N are located are given by Proposition Thus, we will have to take care of an
extra factor G in our products describing these intermediate generic extensions, which
will lead to a couple of modifications. In Chapter 2.6.3] we take a brief look at each step
in the proof presented here, and go through the major changes.

Assume towards a contradiction that there was a surjective function f:#(x,) - a, in N.

Let f = fG with f e HS, such that W?Dﬁ = ?DW holds for all 7 € A with [7] contained in
the intersection

N Fiz(nm,im) 0 () HY" (15).

m<w m<w

By Proposition [2.5.6] it follows that any X e dom f is of the form

X — Xnm<w G*(am) X Hm<w G;:: ,

where ((am)m<w, (Em,%m)mw) is an n-good pair.
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Our proof will be structured as follows: We pick some 3 < o, large enough for the inter-
section (1;) (we give a definition of this term on the next page) and consider a map f7,
which will be obtained from f by restricting its domain to those X that are contained in

a generic extension B
V[ H G.(am) x H Gg;”]

m<w m<w

for an n-good pair ((am)m<w, (Em,gm)mw) such that i,, < 3 for all m < w.
We wonder if this restricted function f? could still be surjective onto a,.

The main steps of our proof can be outlined as follows:

First, we assume that also f#:dom f# — «, was surjective onto a,.

A) We define a forcing notion P? } (n+1), which will be obtained from P by essentially
“cutting off 7 at height n + 1 and width 3. We show that there is a projection of
forcing posets p? : P — P? | (n+1). Then the V-generic filter G on P induces a
V-generic filter G8 | (n+1) on P8 (n+1).

B) We show that f# is contained in an intermediate generic extension similar to V[G# |
(n+1)].

C) We prove that the forcing PP | (n+1) preserves cardinals > .
D) We construct in V[G8 1 (n+1)] a set £(x,) 2 dom f# with an injection ¢ : P(r,) = 5.

Then D) together with B) and C) gives the desired contradiction.

Hence, f%:dom f# - «, must not be surjective.

E) We consider a < a, with o € rg f ~rg f8, and use an isomorphism argument to
obtain a contradiction, again.

We see that either case, whether f? was surjective or not, leads into a contradiction.
Thus, our initial assumption must be wrong, and we can finally conclude:

There is no surjective function f:0P(k,) = a,.

Before we start with Chapter A), we first define our term large enough for the
intersection (I;):

Definition 2.6.2. A limit ordinal Bv< oy, is large enough for the intersection ([f) if the
following hold:

° g>l-€;
o g>sup{im|77mg77}
o 3> sup{km | An <1}
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(We use that o, > s+, and cf ;) > w.)

Fix a limit ordinal § < ay, large enough for the intersection (I;), and let j := B+ Ky
(addition of ordinals).

The restriction f? is defined as follows:

Definition 2.6.3.

7= { (X,0) € f | 3((am)mess @ im)mewr) 1-g00d pair :

(Ym i < B) A3X e Name ((P")* x [] P7) X = XTnew G lam) xTne G }

m<w

First, we assume towards a contradiction that f#:dom f? - a,, is surjective.

A) Constructing P2  (n+1).

Our aim is to construct a forcing notion P?  (n+1) that is obtained from P by essentially
“cutting oft” at height n and width (; i.e. only the cardinals k, for ¢ < n should be
considered, and for any such k,, we add at most S-many new k,-subsets G7.

Regarding our V-generic filter G on P, we need that the restriction G# } (n+1) := G |
([Pﬁ ' (n+1)) is a V-generic filter on P? } (n+ 1), which will be guaranteed by making
sure that the canonical map p?: P - P? } (n+1), p~p® | (n+1) is a projection of forcing
posets.

A first attempt to define P? } (n+ 1) could be the following:
For p e P, let

pﬁ r(n + 1) = (p* r’%?ya (pzqv a?)USU,Kmin{ag,ﬁ}a (Pa f (min{@aa 6} x domy po)USn)

denote the canonical restriction; and set

PP (n+1):={p" t (n+1) | peP}.

But then, G# | (n+1) :=={p® 1 (n+1) | p e G} would not be a V-generic filter on
P5 } (n+1): Consider a linking ordinal £ € g7 for some (7, i), such that n <7 <7, i < ag
holds; or <7, B<i<az Theset D:={peP’ | (n+1) ] &€ Upepicsal} is dense in
P53}t (n+1); but D nGP | (n+1) =@ by the independence property. Hence, G } (n+1)
can not be a V-generic filter on P } (n+1).

This shows that the conditions in P? | (5 + 1) should contain some information about
which linking ordinals are “forbidden” for U, i< af, being already occupied by some
index (7,7) with @>n or i > (5.

Thus, for p € P, we add to p® | (n+ 1) a new coordinate X,, which is essentially the
union of all a n k, for o >n or ¢ > 3. Then X, is a subset of , that hits any interval
[Kuj, kuj+1) in at most countably many points.
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Let 7 := sup{o < n | o € Lim}. By closure of the sequence (r, | 0 < o <), it follows that
7€ Lim with 7 = max{o <7 | ne Lim}, and k5 = sup{k, | o0 € Lim, o <7}.

W.l.o.g. we restrict to the case that
B<ayz or Limn (n,7v)+d;

which is the same as requiring that there exist coordinates (o,47) with o € Lim, and o > n
or i > 3. (Otherwise, the forcing P? | (n+ 1) already contains all coordinates (o,4) with
o € Lim, and there are no “forbidden” linking ordinals. In that case, we can indeed set

PA Lt (n+1):= { (p,, P2, (07, a )ocnic, (07 1 (B % domyp"))o.gn) |peP }, and obtain that
GP 1 (n+1) is a V-generic filter on P? | (n+1). )

For a condition p € P, let
Xp::U{af N Ky | 0 € Lim with (U>n0rizﬁ)},

and
pﬁ P(n+1):= (p* ) “7277 (p?ﬂg)asﬁ,kﬁ, (p7 1 (B x domypa))aszp)'

For reasons of homogeneity, we include into P? | (n+1) only those conditions p® | (n+1)
for which the set X, hits every interval [k, ;, K, j+1) € k77 in countably many points, which
is the same as requiring |{(o,7) € supppo | o > 7 or i > }| = Rg.

Definition 2.6.4. P8 |} (n+1):=
{P" Y (+1) | peP, [{(o,) esupppo | o>nori> B} =R} u {1},

with ]lf; .1 as the maximal element.

For conditions p? | (n+1), ¢ 1 (n+1) in P2 } (n+1)~ {]lgﬂ}, let ¢° I (n+1) Sf,ﬂ

p? 1 (n+1)if X, 2 X,, and (Q* ) H%a(é’ﬁb?)oémkﬁa(qa M (8 x domyqa)aéﬁ) < (p* )
K2, (07,07 )o<n,icp, (P71 (B x domyp")og,) regarded as conditions in P.

In other words: PP | (n+ 1) is the collection of all (p., (p7,a?)o<ni<s, (P )<y, Xp) such
that

o p = (pu, (P7,07)0<n,i<ps (P7)oey) is a condition in P with dompy € k,, supppy S
{(0,i) | 0 <m,i< B}, and suppp; €n+ 1 with Vo e suppp; : dom, p° € 3,

L] Xp c KRy with V[/ﬁlyd‘, I{,/7j+1) c Ry |Xp N [I‘ilj7j7/€l/7j+l)| = RO, and Xp n UJSW,KB a;’ =dJ.

For p, ¢ € P with ¢ < p and |[{(0,i) € supppy | ¢ > nori > [} = R, it follows that
¢’ M (n+1)<pf 1 (n+1).

Definition 2.6.5.
Gt (n+1):={peP’} (n+1) | 3peG : [{(0,i) esupppy | o >nori>f} =R,

ﬁﬁ r (77+ 1) Srﬁ]ﬂ p}-
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We will now show that G? | (n+ 1) is a V-generic filter on P? | (n+1).
Let P ¢ P denote the collection of all p € P with the property that |{(o,i) e supppo | o >
NV i> [} =R, together with the maximal element 1. Then P is a dense subforcing of P.

Proposition 2.6.6. The map p? : P - P8 | (n+1) with p— p® } (n+1) in the case that
|{(0,i) esupppo | o>n Vv i>pF}| =Ry, and 1~ ]lg is a projection of forcing posets:

+1’
e pﬁ(:ﬂ-) = :ﬂ'§+1 ’
e if p, e P with G<p, it follows that p®(q) 5§+1 P?(p),

e foranypeP and qe PP } (n+1) with q Sgﬂ pP(P), there exists G € P such that G<p
and p°(q) < q.
Hence, G? } (n+1) is a V-generic filter on PP} (n+1).
Proof. Clearly, the map p? as defined above is order-preserving with p?(1) = ]lg ;- Con-

sider p = (., (97, )0, (07)s) € P and q = (qu | £2,(47,09)ocn,i<s (47)ocns Xq) € PP}
(n+1) with ¢ szﬂ p?(®)=7" t (n+1). Then

(g« 12, (67, 0) osnics) <o (e 1 w2, (07,0 )osnicp) in Py ,
(@)o<y <1 (P71 (B x domy, p7))oey inP, , and
X, 2 W@ nkzlo>nvixph

We have to construct 7 € P, § = (., (7.5} )ois (7°)o), with 7 < B and p?(q) = 7° |
(n+1) S?H q.
We start with g:

e In order to achieve X7 2 X,, we will enlarge suppp, U supp o by countably many
((n,my) | k < w), where 7 > n or my > f for all k < w, and arrange that any
§ € X, N X, occurs as a linking ordinal in some 5:%.
More precisely: Let suppq, := supp p, U supp go U supp,, where supp, := {(1, my) | k <
w} such that (7, my) ¢ suppp, U supp qo for all k < w, and since we are working in
the case that § < az or (n,v) N Lim # @, we can take either 7 := 77 and my, € (53, az)
for all k < w; or 7 € (n,7) N Lim. Then for all (7,my), it follows that 1 > n or
my > .

e Next, we define the linking ordinals 5? for (o,1) e suppq, such that Xz 2 X,.

For (o,1) € supp qo, we let 5? = b7 2@]; and in the case that (o,7) € supp p, \ supp qo,

we set b, :=a’. Finally, we define (l_)?nk | k <w) with the following properties:

=N . . .
— as usual, every b,, is a subset of x; that hits every interval [Kujs Kuje1) S Ki
in exactly one point,
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= U{bn, k| k<w)2 X, X,

S b7 = @ for all k <w and (7,i) esuppqo ,

mg

- b n 527 =@ for all k <w and (7,i) € suppp,  supp qo

mg

(since ¢ <77+1 P’ 1 (n+1), it follows that in this case, @ >nor i > ),

— b n bmk, = @ whenever k # k'.

mp

This is possible, since X, n b? = @ for any (7,4) € suppq by construction of P? }
(n+1); and whenever (7,i) € supp P, \ supp qo, then & > n or i > 3 implies 6? c Xz
thus (X, X5) na? = @.

e We now define domg,. For any interval [k, j, Ky j+1) C Ky, take 6, € [Kyj, Kuje1)
as follows: In the case that domqy N [k, j, Ky ji1) = D, let 0,5 := K, ;. If domgy N
[(Kuj, kuje1) * D, we take 0, € (K, , Ky 41) such that U{T)j“()’,i) € suppqy} N
[Kvj»Euvje1) C [Kuj,0u;) and domgy N [Kyj, Ky jr1) € [Kuj,007). Since domgp is
bounded below all regular cardinals 3, this is also true for U{ [£,,;,d,.5) | kv j < Ky }-
Let

dom@y 0 k= { [Kujs 00g) | Ky <y},

and dom @, N [Ky, k) = domPy N [Ky, k).

e We take q, | 52 2 ¢. | w7 arbitrary on the given domain; and @, I [x,,k,)* =P, |
[y ,)?.

e [t remains to define g7 for (o,1) € supp g,.
For (o,i) € suppqo, we define g7 2 ¢7 on the given domain Uy, <, [Ku.j;0,,5) ac-

cording to the linking property: Consider an interval [k, j, K, j+1) With 0,; > K, ;.
For any ¢ € (domg, ~ domqy) N [, kuje1), set G (C) = G, (§,¢), where {£} :=
b9 N [Kuj, Kuje1) = b N [Kuj, kujs1). (Note that € € domg, by construction).
For (0,i) € supppy \ suppqo, we set q; | [Ky,ky) = DI | [Ky,Ky), and define
q; I Ky 2 D7 I Ky, on the given domain according to the linking property as be-
fore.

Finally, qﬁmk for k < w can be arbitrary on the given domain.

Then g, = (3., (g7 ,Z_)U)m) is a condition in Py. In particular, the independence property
holds for the linking ordinals b, : Firstly, by construction of (b | k <w), it follows that
l;n b* = @ for any (7,4) € suppqo U suppp,. Secondly, Whenever (00,%0) € suppqo
and (01,11) € supp Py \ supp qo, then oy > 1 or zl > [3; hence, b =a;' ¢ Xp € X,. Since
b A X, =07 n X, = @, this implies b N b = @ as desired. Thus, the independence

20

property holds for q,.

Moreover, (p%(q))o = (g, | H%,(ﬁ?,E:)USmK/g,Xq) < qo by construction; in particular,
Xy € Xz Consider § € X,. In the case that { € X5, it follows that & € EZ? for some

(7,i) e suppp, with & >n, or i > 3. Then (7,i) € suppp, ~ supp qo; hence, Z_g =a?, and it
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follows that & € l_rj € X7 as desired. In the case that § € X, \ X5, we have { € I;ﬁmk for some
k < w; so again, § € X7 as desired.

Finally, g, < p, by construction; and it follows that g, has all the desired properties.

The construction of g, is similar. Thus, the map p? : P - P# | (n+1) as defined above,
is indeed a projection of forcing posets.

It follows that G?  (n+1) is a V-generic filter on P? | (n+1): For genericity, consider an
open dense set D € P? } (n+1). It suffices to show that the set D := {pe P |p° | (n+1) € D}
is dense in P. Take a condition p € P, and let p < p with p e P. Since D < P? } (n+1) is
dense, there exists g € P? } (n+1) with ¢ Sgﬂ 7’ | (n+1). By what we have just shown,
we there exists § <P with §° } (7+1) <q. Then g is an extension of p in D as desired. [

B) Capturing fA.

In this section, we will show that the map f# is contained in a generic extension similar

to V[GE } (n+1)].

Recall that we are working in the case that K,.1 > K3, and 8 < az or (7,7v) n Lim # g,
where 77 := max{o <n | o € Lim}.

Recall that any X € dom f is of the form

X — Xnm<w G (a’m) X Hrn<w G?m

m
Y

where X ¢ Name((P")*) x [Ty P7™) and ((am)mw,(ﬁm,%m)m@) is an n-good pair.
Moreover, B
fﬁ = { (X,Oé) € f ‘ 3 ((am)m<w7 (Emaim)m«p) 77'900d pair :

(Vm ;m </6) A E'X € Name((ﬁn)w % H Pﬁm) X :Xnm<wG*(am)xnm<wG%:L }
Fix an n-good pair o = ((am)m<w, (Em,zm)mw). We use recursion over the Name((P")®
x Tlmew P7m)-hierarchy to define a map 7, : Name((P")® x [I,ne, P ) - Name(P) that
maps any name Y € Name((P")* x [I,,, P?) to a name 7,(Y") € Name(P) such that

Ynm<w G*(am) X Hm<w Gg:; — (TQ(Y))G

Definition 2.6.7. For an n-good pair o = ((am)m<w, (5m,€m)m<w), we define recursively
for Y e Name((P")* x 1, P7):

m<w

(V)= { (7(2),0) | 4P, 3(Z, ((0e(0m) ) (07 Jmes) ) €V

Vm (Q%(am) pr_(am) , qgﬂ?ln sz:z ) }
It is not difficult to check that indeed, YT @) e G500 (7 (y))6 olds for all
Y e Name((P")* x [1,,., P°").

m<w
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Now, we define a map (f?)’ 2 f#, which is contained in an intermediate generic extension
similar to V[G? | (n+1)]. We will then use an isomorphism argument to show that
actually, (f#)" = f5.

Recall that f = f¢, where W?DW = TDW whenever [7] contained in the intersection
Nim<w Fi2(Mimy im) O Ninew Hg‘g denoted by (]f).

The idea is that we include into P  (n+1) the verticals P;"" for 7, € Lim, 7,, > 7). Below
Ky, the linking property will be important, so we also have to include the linking ordinals
mon K

-

aim

For a condition p € P, we set

X, =U{a? n k| o eLim, (0,i) # (1, im) for all m<w, (o >nori>fB)}.

Nm

Then Xp is similar to X)), but excludes the linking ordinals a;™ for n,, € Lim.

For reasons of notational convenience and better clarity, we introduce the following ad-hoc
notation:

Let
(P71 (n+ 1)) mimdmes o= (p, b k2, (07,09 )ocn,i<s » (DI P By @ O Ky mcwr sy

(p7 1 (B x domypo))asmyp)'

Then (p? I (7+1))min)n<e can be obtained from p? | (n+1) by using X, instead of X,
and including (p/™ | Ky, a]™ N k,) for ny, € Lim with 5, > 7. (Note that for n, <7, it

follows that i,, < 3, so (pi;”ma"’”) is already part of the condition p?  (n+1).)

We are now ready to define our forcing notion (P?  (n+1))(mim)m<. The order relation
is defined similarly as for the forcing notion P? } (5 +1); but additionally, we require for
(@° 1 (n+1))mmimImee < (pB 1 (n+1))0mim)m<w that the linking property below &, holds

for all (1,,,1,) with n,, € Lim, n,, > n.

Definition 2.6.8. Let (P? | (1 + 1))@min)m< denote the collection of all (p® | (n+
1))(mim)m<w guch that p € P (i.e. p € P with [{(0,4) € supppo | ¢ > nori > B} = Re);
together with (1§+1)("Mvim)m<w as the maximal element.

For conditions p, g € P, let (¢° 1 (1 +1))mimImew < (p8 } (9 + 1)) Omim)mes if

e X, 20X

q P

(g 1 82,007, 0)oenics, (7 1 (B x domyq7))oey) < (P 1 K2, (07,07 )o<n,icn, (P71
(B x domyp‘f))ggn) regarded as conditions in P,

Vi >n 0 g 1Ry 207 1 kg,

V% > 1, (M, im) €suppp : b)™ =al™,

for all intervals [k, ;, Ky j+1) € Ky and 1, >0 with @)™ 0 [k, Ky541) = {€}, it follows

im

that ¢/ (¢) = ¢. (&, () whenever ¢ € (domg ~ domp) N [Ky j, Ky j+1)-

im
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Finally, for constructing our intermediate generic extension for capturing f#, we also have
to include the verticals P | [k, k,,,) for 1, >n.

This gives a product

(P71 (1 + 1)) mtmdmec s TT Pt [y, 5,

m<w

which is the set of all

( (pﬁ M(n+ 1))(77m,im)m<w ) (pZ:’ M Ky B ) ) mew )

such that p e P (i.e. p € P with |[{(0,i) e supppo | o > nor i > B} = R¢); together with a
. —B :
maximal element (1, )0 im)me,

Then
(Gﬁ M(n+ 1))(77m,im)m<w X H GZZL ) [Hm“nm)

m<w

is the set of all ((p? | (n+ 1))0mimme (™ 1 [Kys Ko ) Jmew ) SUCh that there exists
q € G n F Wlth (qﬂ [‘ (n+1))(ﬂm,im)m<w < (pﬁ [‘ (77+ 1))(nm7im)m<w and qZ’:TLl r [Hn, K/T]m) Qpnm r

Tm

[y, Fin,,, ) for all m < w; together with the maximal element (i§+1)(n"b7i'rb)"L<W.

In order to show that (G  (n+1))@mimme x [T, ., GI™ | [Ky, iy, ) is a V-generic filter
on (P8 1 (n+1))0mim)mew x T, P™ | [Ky, Ky, ), we proceed similarly as in Proposition
2.6.0

Proposition 2.6.9. The map (p?)m-im)m< : P — (PA } (n+1))0mim)mes x [T, P }
[KJ?'H I{nm)’ .
b= ((pﬁ M (n+ 1))(nm,zm)m<w ) (p?:: ) [’fnv ’{nm))m<w)

in the case that |{(o,i1) e supppy | ¢ >n Vv i> B} =Ry, and 1 — (igﬂ)(nm’im)m@, is a
projection of forcing posets.

Proof. We closely follow the proof of Proposition [2.6.6, Consider 7 € P with |{(c,i) €
supppy | o >n v i > [} =R, and a condition

—_ 2 m Mm
q= (Q* M Ko (47,07 )o<n,i<s (q?m [ K, b 0 K ) m<w,nm>n »

(qU)JSU ) Xq ) (QZT ) [Hm “nm))mw )
in

(P71 (n+ 1))(nm’im)m<“ X H P N [y, fig,, )

m<w

with g < (p%)(mmim)mes (). We have to construct § < p, § = (7., (@7.; )oi: (7°)o), such
that (pﬁ)(nm,im)m«u (q) < q

We start with g,
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e Similarly as in Proposition we construct supp, = {(7,mg) | kK <w} such that
7 >mnor my >, and (17,my) ¢ suppp, U suppqo for all k < w; with the additional
property that for all k <w, we have (77, mg) ¢ {(Dm,im) | m <w, ny € Lim}. We set

SUpp G = SUPP Py U SUPP go U SUpp, U {(1m,im) | m <w, 7, € Lim}.
e Next, we define the linking ordinals Z_?? for (o,i) € suppg,, such that )?q 2 )~(q holds:

First, we consider the case that (O’ 1) ¢ {(Mm,im) | m <w, Ny, € Lim}. For (o,i) €
supp qo, we let b =07 2a7, and b =a] in the case that (a i) € supp py  Supp qo-

We construct (bmk | k <w) as in Proposition [2.6.6

After that, we define the linking ordinals (l_)?: | m <w, N, € Lim) with the following
properties:

— As usual, every EZZ is a subset of k,,, that hits any interval [k, ;, Ku.j+1) € Ky,
in exactly one point.

— The l_)?: are pairwise disjoint, and E?: nb, =@ for every m < w and (o,i) €
suppqo with (0,4) # (N, im)-

— For every (1, im,) € suppp,, we set l_)?: i= a]™; for every (7m,im) € SUpp qo
supp p, with n,,, <n, we set 5?: = b]™; and whenever (7, im) € SUPP go \Supp by
with 7, >n, we let 1_)?: 20" N Ky

This concludes our construction of the linking ordinals 5?.

o We define domgq, = U, j[K.,;,9.,,) as follows:
Let dom = domp, U domqy U Uy, erimdomg™ 1 [Ky, Ky, ). For every interval
[Kujy kwje1) With dom 0 [RKyj, Ky ji1) = D, we set d,; = K,,;; and whenever dom n
[Kujy Kuji1) £ D, we pick 0, ; € (Ky.j, Ky j+1) With the property that domn [k, j, Ky j+1) €
[Kvj,0uj), and bé N [Kujs Kujs1) € [Kuj, 00 ) for all (o,7) € suppq.
Since dom p,, dom ¢y and the domains dom ¢ | [k, Ky, ) are bounded below all
regular cardinals, this is also true for dom and "dom q-

o We take g, | k22 ¢, | k2 arbitrary on the given domain.

The verticals g7 | k, for (o,i) € (suppgo U supppy) N { (m,im) | m <w, 1, € Lim}
can be defined according to the linking property as in Proposition 2.6.6]

The verticals GZ% K, with (7, my) € supp, can be set arbitrarily on the given
domain.

Now, consider (9,%,) with 7,, € Lim. In the case that (,,,7,) € suppqy with
Nm < 1M, we can proceed as before, and define GZ:: 2 ¢;" according to the linking
property as in Proposition [2.6.6]

Concerning the verticals @) | &, for (9u,in) € suppgo with 7, > 1, we define
@ Ky Fvgen) 2407 1 [Fuyg, Kuge1) on intervals [k,,5, k,,411) € Ky according to the
linking property, and use that we have incorporated the linking ordinals bfm N K, into
our forcing notion (P# | (n+1))mim)m<w: For ¢ € (domqy ~ domqp) N [Kyj, i je1),s
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we set 7, (¢) =q,.(&,¢), where {£} =0/ 0 [k, 4, Ky ji1) = 5?:: N [Kuj, K je1)- (Note
that £ e domg, by construction.)

In the case that (9,,%,) € supp qo, it follows that also (9,,%m,) ¢ suppp,, and we

m

can set ;" | k, arbitrarily on the given domain.

o Next, consider an interval [k, j, Ky j+1) € [Ky, Ky). We first set the verticals g7 |
[Kuj, Kuje1) Tor (o,1) € suppqy, o > n, on the given domain, with the property that
Gt [Kugs Buge) 2 ¢ [Rugs fivge) for all m < w with (1m,4,) € supp g, and
G5 1 [KujsBuje1) 207 1 [Kuj, Kuje1) Whenever (0,1) € suppp,. After that, we define
Q. 1 [Fugy b js1)? 2D, | [Kujy Ko je1)? according to the linking property: Whenever

¢ € (domg, ~ dompy) N [Kyj, K r1) and {E} =af N [Kyj, Ky ja1) = b, N [Kujs Kuje1)
for some (o,i) € suppp,, then g,(&,¢) = q7(¢). Otherwise, q,(£,() can be set
arbitrarily.

This defines g,. The construction of g, is similar; and it is not difficult to see that ¢ <p

Hence, (p?)(mim)m<v is a projection of forcing posets.
L]

Thus, it follows that (G# | (1 + 1))(mimdm<s x [T, GI™ } [k, Ky,,) is a V-generic filter
on the forcing notion (P2 } (1 + 1))mmim)mes x [T, Pm } [k, k).

The aim of Chapter m B) is to show that f# is contained in the intermediate V-generic
extension V[ (G# | (n+1))0mim)m<e x T, G Y [k, K ) 1

Definition 2.6.10. Let (f?)’ denote the set of all (X, «) for which there exists an n-good
pair o = ((am)mw7 (Em,%m)mw) with 4,, < 8 for all m < w such that

X — Xnm G*(a’m) x ]._[m sz

?

and there is a condition p € P with
o [{(0,i) esupppy | o> 7 or i B} =R,
® ik, (TQ(X),Oé) ef

o (07 1 (e 1)Omimmes G} [, e ) € (GF 1+ 1))0mindnes x
My GL 1 [ ),
7]'7” T]'"L

® V1, €Lim : (9y,im) € Supppe with a;™ = g™,

Then (f%)" € V[(GP 1 (n+1))mimdmes 5 T, GI™ } [Ky, iy, )], since the sequence
(g™ | m <w) is contained in the ground model V.

We will now use an isomorphism argument and show that f# = (f#)".

Proposition 2.6.11. 8 =(f8)".

117



Chapter 2.  An Faston-like Theorem for Set-many Cardinals in ZF + DC

Proof. By the Forcing Theorem, it follows that (f#)’ 2 f8. Assume towards a contradic-
tion, there was (X, a) € (f#) \ fP. Let

X — Xn'm<w G* (a’m) x Hm<w G;::l

for an n-good pair o = ((am)m<w, (Em,%m)mw) with i, < 3 for all m <w. Take p € P as in
Definition [2.6.10] with p I+ (TQ(X),a) e f; and since (X,a) ¢ £, we can take p’ € G with
P ks (7,(X), ) ¢ f and (7, i) € suppp) for all n,, € Lim.

Our first step will be to extend the conditions p and p’ and obtain p < p, P’ < p’ such
that p and P’ have “the same shape” similarly as in the Approzimation Lemma 2.5.2} but
additionally, p° | (n+1) = (7')? | (n+1) holds, and p}™ = (p')!™ for all m < w, and
a;" = (a')]" for all m <w with n,, € Lim.

After that, we construct an isomorphism 7 such that firstly, gﬁ =7 secl())ndly, 7 should
not disturb the forcing P# } (+ 1) (which will imply 77,(X)  =7,(X) ); and thirdly
[7] should be contained in the intersection M, Fiz(Nm,im) N N H,?:n" (which implies

—Dr =Dy
a7 =), ]
Then from 7 IF, (7,(X),a) € f it follows 7P -, (7 7,(X) W,a) € W?DW. Together with

—Dr —Dnr . . . . .
P IFs (,(X) ,a) ¢ f 7, this gives our desired contradiction.

In order to make such an isomorphism 7 possible, the extensions p < p and p’ < p’ will
satisfy the following properties:

® SUpD, = SUpp Py = SUPP D
e domy := domp, = domp

o U = Uoiyesipp, @ = U(o,i)esipp, (@)f

Yv,j: (do_rno N [Kujs kv 1) #D=>UT N [Kyj, Kuje1) Edo_mo)
® SUPD, = SUppp; = suppp;
o Vo esupp; : dom (o) :=domp’ = dom(p')°.
Additionally, we want:
o Vm<w : pim=(p)"
e Vm<w, nyelim : @™ = (@)
¢ D1+ =(@) 1 (n+1), ie.
= Da PRy =D MR
— YoeLim,o<n, i<min{a, B} : 7 =(p')7,af =(a')7
— VoeSucco<n : p° I (B x dom,p”) = (p')? | (B x dom,(p')?).
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Then it follows that Xﬁ = Xﬁr.

Note that @ = (a@’);" for n,, € Lim follows automatically, since a]" = (a')]™ = g/™ by
assumption.

Now, we construct the conditions p and p'.

We start with the linking ordinals @] and (@')?, with our aim that U, ; @; = U,;(a")? =: Ua.
We closely follows our construction from the Approzimation Lemma but now, some
extra care is needed, since we additionally have to make sure that aj = (@')7 holds for all
o<n, 1< pB.

Similarly as in the Approzimation Lemma let

s:= K5 :=sup{k, | 0 € Lim, 3i <, (0,i) € supppy Usuppp;}-
Recall that we are assuming 8 < a7 or Lim n (7],7) # &, where 7 := max{c <7 | 0 €
Lim}.

In the case that x5 = #., we set 7 := ¢ and take ((oy,l;) | k < w) such that sup{,, | k <
w} = Ky = Ky, and (o, ;) ¢ supppe U suppp;, for all k < w, with the additional property
that o, > 1 or [y > 8 for all k < w.

If k5 < k, and Lim n (7,7) # @, let 7 € Lim n (7,v) with 5 > 0, and take ((o, 1) | k <w)
such that (o, k) = (7,1;) ¢ supppo U supppy for all k <w.

Finally, if x5 < k, and Lim n (7],7) = @, then [ < g follows. In this case, let 7 := 7 > 0,
and take ((oy, 1) | k <w) with (og,l;) = (7, 1) ¢ supppo U supp pj for all k < w; with the
additional property that [, > 3 for all k£ < w.

Let
SUpP, = Supp Py := SUpp Py := supp po U supppy U {(ox, ) | k <w}.

We now construct the linking ordinals @;. For any (o,7) € supppo, we set @; := af; and
whenever (o,7) € supppj \ supp pp with o <7, i < /3, then @ := (a’)?.

Now, take a set Z C ks such that for all intervals [k, ;, Ky j+1) S K7, we have |Z n

[Kuj, kwj+1)| = Ro, and Z N (U(Uvi)@uppm a7 U U(o,i)esuppyp), (a/)g) =g. Let
Z =27 uJaZ ulJ()?.
o, 0,1

Our aim is to construct p and ' with U, ;a7 = U,,;(@')? =Ua = Z.

Fix an interval [k, j, £, j41) C k7. Let

Zvi = (Uta? | (0,9) esupppo} U UK(@)? | (0,4) esuppph, o <11,i < B} ) 1

n [KV,j7 ’fu,j-#l)

and

{&(v,7) | k<w} = (7 N [k, /éy,j+1)) N2y
This set has cardinality g by construction of Z.

119



Chapter 2.  An Faston-like Theorem for Set-many Cardinals in ZF + DC

Now, let

{(@r, 1) | k <w} ={(0,i) e supp P, \ SUpppo | kuj < Ko and (o >n or i > B)}.

This set also has cardinality Ry by construction of suppp,. Now, for any k < w, we let
7" 0 [, fvg) = {6 ()}

We apply the same construction to the linking ordinals (a’)7 for (o,1) € supp pj = Supp.
It is not difficult to see that U,;a; = U,;(@')? = Ua = Z, the independence property
holds, and @] = (@')? whenever o <7, i < f.

Next, take domg := domp, = dompy = U, j[kv;,0,;) With the property that firstly,
dompy U dompj € domy, and secondly, for every interval [k, j, £y ji1) € K, With domg N
[Iil,’j, Hy7j+1) * J, it follows that Z n [HVJ', Iil,’j+1) c dOIIlo.

It remains to construct p,, 7., and 57, (p')¢ for (o,7) € Supp,.

First, we consider an interval [/ﬁ,,,j, /@,JH) € K.

We start with the construction of P, | [Kyj, Ky j+1)? =D 1 [Kujs Fuje1)?

Let &, ¢ € [Kuj, Kuje1) 0 dO_mO-
e In the case that (£,() € dompy x dompg, we set D, (&,¢) =, (&,C) :=p.(& Q).
o If (§,¢) e dompy x dompy, then Pl (&, () =D, (&, ) = pL(§,C).

For (£,¢) € (dompy x dompy) N (dom pf, x dom p})), this is not a contradiction, since
p« I K3 and pl | k2 are compatible.

o If ( edompy \ domp) and £ ¢ dom py, we proceed as follows: In the case that {{} =
a? N [Kyj, Ky j+1) for some (o,7) € supppy with o <n, i < 5 or (0,7) € {(Nm,im) | M <

w}, we set P, () =P, (& C) = p{(C). Otherwise, we set P, (&, ¢) =P, (£ ¢) arbi-
trarily.

e In the case that ¢ € domp{ \ domp, and £ ¢ domp), we proceed as before: If
{&} = (a)? 0 [Ky, Ky 41) for some (0,i) € supppy with o <, i < B or (0,i) €
{(Mm,im) | m <w}, then PL(E,C) =D.(& ¢) = ()7 (¢). Otherwise, we set Pl (£, () =
P, (&, ¢) arbitrarily.

e In all other cases, D, (&,() =P, (&, () can be set arbitrarily.
This defines p, 1 [Kuj,K0j+1)* = D5 1 Koy, Bujen)?

Now, consider (o,7) € Supp,. We define pJ and (p’)7 on the interval [k, j, Ky j+1) S Ky @S
follows:

o For (o,i) € supppy, we define p | Ky, kuje1) 2 P7 | [Kujs Ko je1) according to the
linking property: Let {£} := a? N [Ky;, Ky j+1) and consider € € [k, j, Ky 1) N domy.
If ¢ € dompy, we set p7(¢) = p7(¢); and p7(¢) = p,.(£,¢) in the case that ¢ €
domg \ dom py. (Note that & € domg follows by construction.)
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In the case that (o,7) € supppy, we define (p')7 | [Kuj, kv jr1) 2 (D)7 1 [Kugs Ruje1)
according to the linking property as before: Let {{} := (a/)7 n [k, Kuji1), and
consider ¢ € [K,j, fy 1) N domg. If ¢ € dompp, we set (7')7(¢) = (p')?(¢); and
(P)7(¢) = (PL)(&,¢) in the case that ¢ € domg \ domp}. (Again, ¢ € domg by
construction.)

For (0,i) € supppo \ supp pp, let (B')7 1 [Kugy kvjer) =05 1 [Bug, Kuger)-
For (o,7) € supppj ~ supp po, let 57 | [ku i, ko je1) = (B 1 [Kugy Kujer)-

If (0-7i) € Suppo N (Supppo U Suppp6)7 then ﬁ;f f [/{’l/,j7l€l/,j+1) = (ﬁ,)f f [’fzz,jﬂ‘il/,jJrl)
can be set arbitrarily on the given domain.

This defines all p} and (p")? for (o,7) € Supp, on intervals [k, j, Ky j+1) € Ky

We now have to verify that p7 = (p')? for any (o,7) € supp, with o <7, i < 5. We only
have to treat the case that (o,7) € supppy N supp pj.
Consider an interval [k, j, Ky j+1) € Ko € Kyy. Then p’ € G and

implies that p? and (p')7 are compatible, and a? N[k, j, Ky j+1) = (@')7 N [Kyj, Kuje1) = {E}-

Let CE [liu,j;/{u,]#l) N dOITl().

If ¢ e dompg n dompy, then p7(¢) =p7 (€) = ()7 (C) = (7)7(C)-

For ¢ € domg~ (dom pg U dom py), it follows that 77 (C) =D, (&, ¢) =P(&,¢) = ()7 (C)
by construction, since we have arranged p, ! 2 =D, | k2.

Let now ¢ € dom po~dom pj, € ¢ dompg. Then 57 (¢) = p7 (¢), and ()7 (¢) =P, (&, ).
Since 7., (&,¢) = p7(¢) by construction of p,,, this gives p7(¢) = (p')7(¢) as desired.

The case that ¢ € domp{ \ dompy, ¢ domp[, can be treated similarly.

If ¢ e dompp \ dompj, and £ € dompy, it follows that p7(¢) = p7(¢) and (p')7(C) =
7. (&,¢) as before; but in this case, we have set 7., (&, () := p.(&,¢), so it remains to
verify that p?(¢) = p.(&, Q).

Since p’ € G, (p? 1 (n+1))mim)m<e € (GF | (n+1))mmim)m<w e can take ¢ € G with
(¢% t (n+1))0mim)mw < (pf } (n+1))0mim)m<w  and assume w.l.o.g. that ¢ < p'.
Then ¢7(¢) = ¢.(§,¢) by the linking property for ¢ < p/, since (a')7 N [Kyj, Ky j+1) =
{€}. Moreover, p?(¢) = ¢7(¢) and p.(£,¢) = g.(&,¢), and we are done.

The remaining case is that ¢ € dompf \ dompy and ¢ € domp). Then p7(() =
P.(6,0) = pL(€,0) and (7)7(0) = (#)7(0), and it remains to verify that ()¢ (C) =
p.(&,¢). As before, take ¢ € G with ¢ < p’ and (¢° | (n+1))0mim)m< < (pf |
(n+1))@mim)m<w  The latter gives ¢7(¢) = ¢.(§,¢) by the linking property, since
o<, i< B, al 0 [Kyj ki) ={£} and ¢ € domgy \ domp,. Moreover, from ¢ < p’

it follows that (p")7(¢) = ¢7(¢) and p.(§,¢) = ¢.(&,¢); hence, (p')7(¢) = p.(&,¢) as
desired.
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Thus, it follows that pJ = (p')? holds for all (,7) € Supp, with o <7, i < 5.

If m < w with 5, <n, then 4, < § follows by construction of 3. Hence, p;" = (p')]".
It remains to make sure that whenever m < w with 7, >, then " | x, = (p')!" | &,
holds; which can be shown similarly as py = (p')7 in the case that o <n, i < 5: We use
that a; = (a’)]™ and p]™(¢) = (p’)]"(¢) for all m <w and ¢ € dompy N dom pfy; and now,

it is important that we are using the forcing notion (P? 1 (5 + 1))(mim)m<w instead of
P2t (n+1); since we need the linking property below «, for the (1,7, ) with 7, > n.

It remains to construct p, | [k, £y)2, D | [Kn, £4)2%, and 7 1 [Ky, ky), (P')7 | [Ky, k) for
all (0,1) € supp, with o > n.

® For (Nm,i,) with 9, > 1, we take P 1 [“na“nm) 2 PZZ ) [Kln7K/77m)7 @ Z;n )
(K, bin) 2 ()1 1 Ky, Kn,,) On the given domain, such that p)™ | [k, Ky, ) =
(@)™ 1 [Kn, Fy,,)- This is possible, since p’ € G and (p? | (+ 1))mim)n<w ¢ (G5 }

(n+1))(msimIm<e: 50 p™ and (p")]™ are compatible for all m < w.

e For the (0,i) € Supp, remaining, we set py | [ky, ky) 2 p7 | [Ky, k) and (P)7 T
[k, ky) 2 (') 1 [Ky, k) arbitrarily on the given domain.

e Consider an interval [k, ;,kyj+1) S [Ky, ky). We define p, 1 [k, Kuj1)? 2 pu |
[Kuj, Kuje1)? according to the linking property: Whenever C € domg \ dom py and
{&} = a7 n [Ky, Ky 41) for some (o,) € supp po, then p,(§,¢) =17 (¢)-
The construction of P, | [Kyj, kv j+1)? 2D 1 [Kujs Ko jr1)? is similar.

This completes our construction of p, < py and p;, < pj with all the desired properties.

Similarly, one can construct p; < pi, p; < pj such that Supp; := suppp, = supppi,
dom; (o) := domp, (o) = dompj(c) for all o € supp,; and py = (p')7 for all o0 <n, i < S
with o € Suce, and p;™ = (p')]™ for all m <w with 5, € Succ.

We now proceed similarly as in the Approzximation Lemma and construct an iso-
morphism 7 such that 7 a standard isomorphism for wp = p’. This determines all pa-
rameters of 7 except the maps Gy(v,j) : suppmo(v,j) = suppmo(v,j), which will be
defined as follows: Consider an interval [k, j,#,, +1). Recall that we have the map
F. (v, j) :suppmo(v,j) = suppmo(v, j), which is in charge of permuting the linking ordi-
nals: We set Fy,(v,7)(0,i) := (A, k) for (@)7 0 [Kuj, Kujs1) = Ty N (Ko Ko jir). We define
Gr(v,7) = Fry(v,7) for all K, < k), and G, (v, j) :=id whenever r,; > K.

By construction, it follows that 7p = p’. We will now check that [r] is contained in the
intersection N, Fiz(Mm,im) N Ny H]j::

e Consider m < w with n,, € Lim and r € D, 1’ := wr, with (1,,,4,,) € suppro.

For an interval [k, j, Ky j+1) € Ky, and ¢ € dommy N [k, 5, Ky js1), it follows by con-
struction of the map mo(¢) that (r')]™(¢) = /™ (¢) holds; since p;™ = (p');™.

In the case that ¢ € [k, , Ky je1) N (domrg N dommg), it follows that (/)7 ({) =
r(¢) with (N k) = Gro (v, 7) (s i) If Ky j < Ky, then (N k) = Gy (v, ) (N, im) =
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Fro(¥,5)Mmyim) = (s im), since @™ = (@’)]™. In the case that x,; > x,, we have
Gy (v, 7) = id; s0 again, (A, k) = (m, im)-

Hence, 77" (¢) = (r');™(¢) holds for all ¢ e domry N Ky,

This proves [7] € Fix(n,,i,) in the case that n,, € Lim. For n,, € Succ, we obtain
[7] € Fiz(nm,im) as in the Approzimation Lemma.

e Consider m < w with A, € Lim. In the case that \,, > 7, we have G, (v,7)(An,7)
= (A, 1) for all k,; € [Ky, Ky, ), and [7] € H,;\;” follows. If A\, <, it follows that
km < B by construction of 5. Hence, whenever x,; < ky, and ¢ < k,,, we have
Goro (1, 5) Oy 1) = Fry (0, 5) Ay i) = (A, 1); since @™ = (a’)? follows from A, <1,
1< f.

In the case that \,, € Succ, we obtain [r] € H;‘n’j as in the Approzimation Lemma.

—D,;

Thus, we have shown that [7] € N, Fix(Nm,im) 0 N, H,;\::; which implies W?D" =f . Tt

—Dx —Dx
remains to make sure that 77,(X) =7,(X) .

Recall that we have an 7-good pair ¢ = ((am)mews (Toms im )mew) With i, < 8 for all m < w,
and X e Name ((P")* x [T, P7) with

() ={ (0).0) | 4P 3(V ((elam)mss (1 mes) ) € X

v (a€om) 2p0(an) € 2087 )}
Then

TQ(X)Dﬁ = { (TQ(Y)DW,q) ‘ geD, .Y edomX, qlirg TQ(Y) € TQ(X) },

and

D

0 —.Dﬂ' . . . .
T, (X) = { (77,(Y) ,mq) | mge Dy, Y edom X, qirs 7o(Y) € 7,(X) }

We will now check that 7 is the identity on P?  (n+1). More precisely: Let ¢ € D,

q = (¢, (67,70, (¢7)0) With 7g = ¢’ = (¢}, ((¢')7, (V)7 )0i» ((¢')7)s). We prove that
¢, I K2 = q. I k2; moreover, (¢')7 = q7, (b')7 = b7 for all o <1, i < with ¢ € Lim, and

(¢")7 =¢¢ for all o <, i < with o € Succ.

e Since 7 is a standard isomorphism for «p = p', it follows that ¢, | k2 = q. I k2 for
all ¢ € Dy; since firstly, p, I w2 = P, | s2, and secondly, Gr,(v,j) = Fr,(v,j) for
all k,; < k,. The latter makes sure that ¢,(£7(v,7),¢) = ¢.(§(v,75),¢) whenever
C € dOIIlqO \dOIIl’YTQ, and {gf(yhj)} = bla N [HVJ? ’%V,jJrl) for some (Uvi) € supp 7T-O(I/nj):
We have ¢, (€7 (1.), ) = 4. (&)(1. 1), C) with (A k) = Gy (1,7) @ (Fry (v,7)) (7, 0):
so from G, (v, j) = Fr,(v,7) it follows that ¢, (£7 (v, 5),C) = ¢.(§7 (v, 7), () as desired.
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e Let now (0,7) € suppmp = suppp, with o <7, i < § and o € Lim. Then @] = (a’)?;
hence, Fr,(v,7)(0,i) = (0,i) for all k,; < k,. This gives (0')7 = b7 as desired.
For ¢ € domm, = domp,, it follows from py = (p')7 by construction of m, that
(¢")7(¢) = ¢¢(¢) holds. Finally, if ¢ € (domqo ~ dommyg), and ¢ is contained in
an interval [, j, Ky 1) C Kq, then (¢)7(C) = ¢} (¢) with (A k) = G (v,7)(0,1) =
Fr,(v,7)(0,i) = (0,7) as desired. Hence, it follows that (¢")7 = ¢7 for all 0 <7, i < S.

e In the case that o <7, i < § with o € Suce, we obtain (¢')7 = ¢7 from p] = (p')7 as
in the Approzimation Lemma [2.5.2]
Hence, 7 is the identity on P?  (n+1).

Now, it is not difficult to prove recursively that for every Z € Name((ﬁn‘)w * [Tim<w P7m) the
following holds: If H is a V-generic filter on P, then (7,(2))™ = (7,(Z))H = (1,(Z))™ 'H.

D —Dx . .
This implies TQ(X) = m7o(X) , since for every ¢ € D, and Y € dom X, we have
gl T,(Y) € 7,(X) if and only if 7q -, 7,(Y) € 7,(X) holds.

Summing up, this glves our desired contradiction: Since p I (TQ(X),a) e f, it follows
— ———Dx _

that 7p I+ (FTQ(X) ,a) € ﬂfD"; hence, P I+ (TQ(X) ,a) € fD". But this contradicts

7 Ik (TQ(X) a)¢f.

Thus, our assumption that (X, a) € (%) \ f# was wrong, and it follows that (f#)" = f#
as desired.

Hence, f2 e V[ (GP | (n+1))mmimme x T, ., Gt Ky, By ]

C) (PB } (g +1))@msim)mew x [] m | [Ky,y Kn,,) Dreserves cardinals > a,.

m<w

The next step is to show that cardinals > «, are absolute between V and V[G# }
(’]7+1))(77m,im)m<u X Hm<w GZ;” r [/{n’/{nm)],

Recall that we are assuming GCH in our ground model V', which will be used implic-
itly throughout this Chapter C): When we claim that a particular forcing notion
preserves cardinals, then we mean it preserves cardinals under the assumption that GCH
holds, if not stated differently.

First, we have a look at the cardinality of (P? (5 + 1))(mim)m< Recall that § was an
ordinal large enough for the intersection (I ) with s} < 8 < ay,.

Lemma 2.6.12. |(P? | (n+1))0mim)m<s| <|S]*.

Proof. The forcing notion (P?  (n+1))mim)m< is the set of all

Mm

im

(p* MRy, (pf,af)ggmw,(p M (B x domy p”))ogy (pnm Ky G 0 Ky ) e msn Xp)

for p € P with |{(c,7) € supppo | o >n v i > B}] = R, together with the maximal element
(]lﬁ ) (mim)mes - Since X, € k), there are only K, < |Bl-many possibilities for X,; and there
are only <k} <|f]-many possibilities for p, ! /1,27 and (p!™ | Ky, al™ 0 Ky )mew- Concernmg

124



Chapter 2.  An Faston-like Theorem for Set-many Cardinals in ZF + DC

(p7,a?)p<n,i<p, there are |3[R0 < |5|*-many possibilities for the countable support; and with
the support fixed, we have (277)® < x} < |B|-many possibilities for countably many (p7,a7)
with o <7, i <. Finally, for (p° I (8 x dom, p”))s<,, there are only ||~ < &} < |B|-many
possibilities for the countable support; and with the countable support fixed, there are
< (2/81-kn )R = | B*-many possibilities for countably many p® with domp? € 3 xk, € 8 x k.
Hence, it follows that the forcing notion (P?  (5+1))mim)m< has cardinality < |+, [

Corollary 2.6.13. If |B|* < ay, then (PP } (n+ 1))0mim)m<w s [T P | [Ky, kp,,)
preserves cardinals > .

Proof. With the same arguments as in Lemma [2.3.2] one can show that the forcing
[Tinew P | [Ky, K, ) preserves all cardinals. By Lemma above, the forcing (P? |
(n+1))mmsim)m<w has cardinality < |8]* (in V; and hence, also in any [1,,«, P™ | [Ky, Ky, )-
generic extension). It follows that the product (P8 | (n+ 1))0mim)m< x [T, Pim }
[k, K, ) Preserves all cardinals > |3[**. O

It remains to consider the case that [8|* = a,,. Then by our assumptions on the sequence
(o, | 0 < <y) (cf. Chapter 2), it follows that cf |3| > w. Hence, GCH gives |5]¥ = |5| < a;
and by our proof of Lemma[2.6.12] it follows that all components of (P# | (n+1))mim)m<
have cardinality < |f] < a,); with the exception of (p° | (8 x domyp?))s<,, Where there
might be (2/%l-#)% = |3[* = o, -many possibilities.

We now have to distinguish several cases depending on whether 7 is a limit ordinal or
not, and depending on whether &, is a limit cardinal or a successor cardinal (i.e. n € Lim
or 1 € Succ).

We will have to separate one or two components P | (8 x [R,,k,)), where o € Suce,
0 <1, Ko = Ry, from the forcing notion (P? | (5 + 1))mim)m<w: and obtain a forcing
(([PB P+ 1))(inm)m<w), which has cardinality < oy, while the product of the remaining
P} (B x [Re, ko)) and [T P | [Ky, Kn,,) Preserves cardinals.

Proposition 2.6.14. The forcing notion (P? | (n+1))0mim)m<e x T] . P | Ky, Ky,
preserves all cardinals > ou,.

Proof. By Corollary [2.6.13 we only have to treat the case that o, =|8|*. Then cf |5| > w
and 5% = |3].

First, we assume that 7 is a limit ordinal. Then by closure of the sequence (k, | 0 <
o <7), it follows that 1 € Lim, i.e. k, = sup{x, | 0 <o <7} is a limit cardinal.

Since the sequence (o, | 0 < 0 < ) is strictly increasing (cf. Chapter 2.2)), it follows
that «, < || for all o < 1. Hence, for any o € Succ with o < n, the forcing notion
P? } (B x [Fg,ks)) = P7 | (a0 % [Rg,ke)) has cardinality < o} < |3]; and we conclude
that there are only < |n[¥ - |5[* =|5|-many possibilities for (p° | (8 x domy p?))s<y-
Hence, by the proof of Lemma it follows that (P | (n+1))0mim)m< has cardinality
<|B] < ayy. Like in Corollary this implies that the product (P? } (n+1))0mmim)m< x
[Tes P | [Ky, Ky, ) Dreserves all cardinals > |B|* = a, as desired.

The remaining case is that i is a successor ordinal. Let 7 =7 +1. We now have to
distinguish four cases, depending on whether s, and k5 are successor cardinals or limit
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cardinals.

If n € Lim and m € Lim, it follows for any P’ | (8 x [Ry,ky)) With o <1, o € Succ
that ¢ < 77 must hold; hence, a, < a7 < a, = |5|*, which implies a, < [5|. Thus,
the corresponding forcing notion P° | (5 x [Ry,ky)) = P° | (ay x [Ry,ky)) has car-
dinality < o} < |3]; and as before, it follows that the forcing (P | (n + 1))mim)mee
has cardinality < [8[* = |3|. Like in Corollary [2.6.13] this implies that the product
(P2} (n+1))0mimdmee 5 T[T P} [Ky, Ky, ) preserves all cardinals > |3]* = v, as de-
sired.

If e Lim and n € Succ, we consider the forcing notion ((P?  (n+ 1))(77”“%)”1@),7
which is obtained from (P? 1 (n+1))0mim)m< by excluding P7 1 (8 x [Ry, ky)); Le. we
consider

(pg ) (6 X dOmypg) o<n = (po ) (ﬁ X domypo))cxﬁ

instead of (p I (8 x domy p?))sey. Then ((P? | (n+ 1))(77”,,,2‘7,,,)7,7,@)' has cardinality < |f|
as before; and it suffices to check that the remaining product

P r(ﬁ x [H_nv'%n)) X H pim r[“m“nm)
m<w
preserves all cardinals.
The forcing notion [T,,., P"™ | [ky, Ky, ) Preserves cardinals. Moreover, [],,., P™ |
[Kn, k) 18 < Ky-closed. Hence, in any V-generic extension by [1,,., P"™ | [ky,kn,.)
the following holds: Firstly, P" } (5 x [R,,k,)) is the same forcing notion as in V; and
secondly, P | (8 x [R,, ky)) preserves cardinals, since 2<% = x,. Thus, it follows that the

product P71 (8 x [Ry,ky)) X [pew P | [Ky, Ky, ) Preserves all cardinals as desired.

If 7 € Succ and 1 € Lim, we proceed similarly, but exclude P7 } (8 x [Rg, k7)) instead
of P11 (B % [Ry, Ky))-

If n € Succ and m e Suce, then both P7 | (8 x [K,, ky,)) and P7 | (5 x [Rg, k7)) have
to be parted from (P? | (n+1))(mim)m<  Ag before, it follows that firstly, the remaining
forcing notion, denoted by ((P? | (n+ 1))(”mvim)m<W)", has cardinality < |3]; and secondly,
the remaining product

P} (B x [Fa ) x P71(B x [y, 9)) x [T P 1 [y, ki)

m<w
preserves all cardinals.

It follows that (P | (n+1))mimim<w x [, P | [Ky, ky,, ) preserves all cardinals > a,.

This concludes our proof by cases.
O

D) A set P(k,) 2 dom f8 with an injection ¢ : P(k,) = |8[%.

In this section, we construct in V[(G? | (n+1))0mim)m<w x T GI™ 1 [Ky, Ky, )] & set

im

P(r,) with £(k,) 2 dom f&, together with an injective function ¢ : P(k,) = (|3[*)V < a,.
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Since f# is contained in V[(G? | (n+1))0mimdm<s x T] . G!™ | [Ky, Ky, )] by Defini-

tion [2.6.10| and Proposition [2.6.11} and (P? 1 (5 + 1))0mim)mes x T P | [Ky, Ky, )

preserves cardinals > «,, by Proposition [2.6.14] this will contradict our initial assumption
that f2:dom f? - «, was surjective.
Fix an n-good pair o = ((am)m@,(ﬁm,fm)mw). Then [],,G«(am) x [, G?" isa V-

generic filter on I’Imﬁq7 x [1,, P?; and as in Lemma it follows that this forcing
preserves cardinals and the GCH. Hence, there is an injection x : P(k,) = (x;)" in

VI Ge(an) x T, G77].
Let Mg be the set of all n-good pairs ((am)m<w, (Em,;m)mw) in V' with the property that
iy < B for all m <w. Then Mj has cardinality < (25n)%0 - |p[%o - |B]%0 < |B|%0,

First, we consider the case that |3|* = a,,. Then cf |5| > w; hence, GCH gives |5[* = |5
and there is an injection ¢ : Mz < |5] in V.

By construction of f# (cf. Definition [2.6.3)), it follows that any X ¢ r, with X e dom f#
is contained in a model V[[1,, G.(am) x [1,, G;™] for some n-good pair

((am)m<w7 (Emagm)mq;) € MB'

Hence, dom f? is a subset of
B(r,) = U{P(f@n) A VITTG(am) x T1GZ"] | ((am)m<w,(am,im)m<w)eMg}.

The set Z@(/{n) can be defined in V[(G? | (n+ 1))(mim)m< x GI™ } [K,, Ky, )], since for
any ((am)m<w, (Em,gm)mw) € Mg, we have a,, € k,, and 7,, <7, i < 3 for all m < w.

For the rest of this section, we work in V[(G? | (n+1))mim)mes x [T GI™ 1 [Ky, k) ],

im

and construct there an injective function ¢ : ?@(Hn) = |B]".

For a set X € E(/{n), let i
T(X) = ((am)m<wa (Emaim)m«u)
if ((am)m<w7 (Emagm)mﬁu) € Mﬁ with X € P(,«;n) N V[Hm G*(ij) % Hm G?m:L and

Y((am)mew> (Tms Im )mew) is least with this property.
Now, we use the Axiom of Choice in V[(G? | (1 +1))mim)mew x [T, GI™ } Ky, ki, )],

and choose for all ((am)mew, (T, im)mew) € My an injection
X((@mme@mimmeny © (P0in) 0 VITTGulam) x [TGT]) = (7).
Now, we can define ¢ : ?(/@7) . (,i;)v 8| as follows: For X e z@(%)J lot

LX) = (a0 (X), 0 (T(X)) ).

Since ¢ and the MaPs X (4, ), (Fom i Jmewr) LOT ((@m)mews (Trms im )mew) € Mg are injective, it
follows that also ¢ is injective; which finishes our construction in the case that (|3|*)Y = a,,.
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If |B]* < oy in V, we can take an injection ¢ : Mg < (|8]*)Y, and construct an injective
function ¢ : () = (7)V - (18)Y in VI(GP I (n+1))mimdmesr x TT, 0GPV [ iy, )]
similarly as before.

This gives the following proposition:

Proposition 2.6.15. If (|8]*)Y = «,, then there is in V[(G? | (n+ 1))0mim)mew x
[T G 1 [y i, )] amingection o2 £(ky) = [B]Y, where

Blsa) = U {#09) 0 VITTGe(am) % TTGTT | ((@mmess s Tm)me) € M |

If (I16]")V < o, there is in V[(GP | (n+1))mimImes x T, GI™ 1 [k, Ky, )] an injection
v BP(kn) = (16117

This leads to our desired contradiction: We assumed that f# : dom f? — «,, was surjective.

By Chapter B), Definition [2.6.10[and Proposition [2.6.11}] it follows that f5 € V[(G# |
(1 + 1)) Ormdmdmse 5 T, GV [k, bin,, ) ]; where (GP 1 (g + 1)) 0rmodmdmee s TT, GP |
[Kys Ko, ) 18 @ V-generic filter on the forcing notion ((P? | (n+1))0mim)m<s x T] Pm }

(K, K, ), Which preserves cardinals > o, by Chapter C), Proposition [2.6.14
However, since dom f# ¢ (k,) and |3]V < a,, it follows that f? together with the map ¢

from Proposition [2.6.15| above, collapses the cardinal «,, in V[(G? I (1 + 1))0mim)m<e x
[1,,G]" 1 [Ky, Ky, )]. Contradiction.

Thus, we have shown that our initial assumption that f?: dom f# — «, was surjective,

was wrong.

Hence, there must be a < oy, with o ¢ rg f5.

E) We use an isomorphism argument and obtain a contradiction.

We fix an ordinal o < o, with « ¢ rg f8. By surjectivity of f, there must be X ¢ x,,
X € N, with f(X) = a. Hence, there is an 7-good pair 0 = ((am)mew, (Tm, im )mew) With
X e V[II,, G«(am) x I G?:]; but since X ¢ dom f5, there must be at least one index
m < w with i, > 8. Let Sy denote the set of all (G,,,4,,) with i,, <3, and let S; be the
set of all (G, %) With 4,, > 3. Then |S;| > 1.

For better clarity, we now switch to a slightly different notation, and write (A, kn) =
(Gmyim) in the case that m € S;. We denote our 7-good pair o by

0= ((am)m«uv ((EmaEM)meSov (XmaEm)mesl))'

Then _ <
X = XTI Golam) xTmesy G x Tmes, Gy

for some X € Name((P")“ x [inesy P7m % Tlnes, Pm), such that the following holds:

o (an | m<w) is a sequence of pairwise disjoint x,-subsets, such that for all m < w
and Ky ;< Ky, it follows that |a, N [ks3, o g41)] = 1,
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e Sy Cw, and for all m € Sy, we have 7, € Succ with 7, <1, i,, < min{as, , 3},
o if m, m’ € Sy with m #m’, then (G, im) # (T, it ),
e o+ 5 Cw, and for all m € S;, we have \,, € Succ with \,,, <7, k, € (8,05 ),
o if m, m’ €S with m #m/, then (M, k) = (Ao, k).

Since (X, «) € f, take p € G with

Pk, (TQ(X),&) ef.

Since we are using countable support, we can asssume w.lo.g. that @,, € supppi,
im € domy p1(T,,) for all m € Sp; and A, € supp p1, k,,, € dom, py(\,,) for all m € Sy.

The idea can roughly be explained as follows: Recall that we have § = B+ Ky (addition
of ordinals), where the ordinal 3 is large enough for (]f-). In particular, ; < B<fB< Q.
We will now extend p and obtain a condition ¢ € G, ¢ < p, such that there is a sequence
(Im | m € Sy) with 1,,, € (B, 3) for all m e Sy, such that " = q;:;” for all m € S;. Then we

construct an isomorphism 7 € A that swaps any (Am, km )-coordinate with the according
(Am, lm )-coordinate.

Then 7q = ¢; and we will see that € N, Fix(Mm, i) N N H,i‘:, since gis large enough for
— _ . . —Dr
(I;). Hence, 7TfDﬂ = fD”; so from q I, (7,(X), @) € f, we obtain that q I+, (77,(X) ,«) €

7Dﬂ. Setting

Y := (WTQ(X)DW)G

Y

it follows that
(Y,a) e f.

: T G (am) * Minesy G2 % Mnes, G2 -
However, we will see that Y = X Tm G+(am) xTlmeso G7 * x Tlmes, im ; where 4, < [ for all

m € Sy, but also I < B for all m € S;. But then, the n-good pair
QI = ((am)m<wa ((Emagm)mesoa (Xmazm)meSl))
is an element of Mg, and it follows that
y a X Tm ,Xm
(Y,OZ) — (Xnm G*( m) nmeSO Gim HmeSl Glm ,Of) € fﬁ
But this would be a contradiction towards a ¢ rg f7.

We start our proof with the following lemma:

Lemma 2.6.16. Let D be the set of all q € P for which there exists a sequence of pairwise
distinct ordinals (I, | m € S1) with I, € (8, 8) N {im | m € So} for all m € Sy, such that
q%"" = q;‘m holds for all m e S1. Then D is dense below p.
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Proof. Consider g € P with ¢ < p. We have to construct ¢ < ¢ with ¢ € D. The
idea is that for every m € Si, we enlarge dom,q(\,,) by some suitable k,,, and set

Q(Xm)(Em,C) = Q(Xm)(zma ()= Q(Xm)(zvmg) for all C e domyQ(Xm) = dom, Q(Xm)
Note that for every m € S;, we have \,, € suppgq; with |dom, q;(A\,)| < Ky, < K

since \,, < 1. Hence, it follows that |Upnes, dom, q(\y,)| < kK, < K,; and similarly,
| Umes, domy, ¢(@)| < Ky < 7. Thus, the set

A:=(3,8) ~ (U dom,g(X,) v U dom, q(a,))

meSy meSy

has cardinality x;.

Recall that for every m € Sy, we have assumed that i, € dom, p(@,,) € dom, ¢(7,,); hence
im A

For m € Sy, we have k,, € [3,a5 ); hence, B<ax and A c(f,83) < a5 follows.

We take a sequence of pairwise distinct ordinals (I, | me Sy) in A (then {I,, | meS;}c
(3,8) ~ {im | m € Sp}), and define the extension g < q as follows:

Set G, = qo, and suppq, = supp¢q;. (From ¢ < p it follows that X, € supp g, for all m € S;.)
For o € suppq, with o ¢ {\,, | m € S1}, we set g(c) = q(c). For o € {\,, | m e Si}, we
proceed as follows: Let Si(0):={me S | o =\,}. Weset dom,q(c) := dom, q(c), and
dom, g(o) := dom, q(o) U {l,, | m e S;(0)}. Note that by construction of A this union is
disjoint, since I,, ¢ dom, ¢(c) = dom, q(\,) for all m € Sy (o).

Note that for every m € S;(o), we have k,, € dom, p(c) € dom, q(¢) € dom, G(o).
We let q(0)(i,¢) = q(0)(i,¢) whenever (i,¢) € dom,q(o) x dom,g(o). If (i,() €
dom@q(c) \ domg(o), then ¢ € dom,g(co) and i = [, for some n € Si(0), i.e. n € S)
with o = A,,. In this case, we set G(0)(i,¢) = G(M\n)(ln, €) := ¢( M) (kn, ¢) = q(o) (kn, ).
This defines 7 < ¢ with the property that 7" =g holds for all m € 5.
Thus, it follows that D is dense below p.

]

Since p € G, we can now take ¢ € G, ¢ < p with ¢ € D. Take (I, | m € Sy) as in the
definition of D, with I,,, € (5, 8) \ {im | m € Sy} and " = qZ’\m for all m € S;. Then the

m

sets {(Am,lm) | m € S1} and {(Gp, i) | m € Sp} are disjoint.

Since g < p, we have . '
qIFs (T(X), ) € f.

The next step is to construct an isomorphism 7 that swaps every (Xm,Em)—coordinate
with the according (A, [, )-coordinate for m € S;, and does nothing else.

Definition 2.6.17. We define an isomorphism m € A as follows:

e The map 7 is the identity on D, = Py.
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e We set supp 7 := supp ¢q;, and for every o € supp ¢, we let dom (o) := dom g, (o).
Then for all m € S, it follows that XEL € suppp; € suppq; = supp; and km €
domzpl()‘m) c domx Q1()‘m) = dom:p 7Tl()‘?n)? lm € domx Q1()‘m) = domx 7Tl()‘m)~

e Consider o € suppm with x, = %, *. In the case that o ¢ {Xm | m e S1}, we set
suppmi (o) = @&, and let m(0)(i,{) : 2 = 2 be the identity map for all (7,() €
Qg5 X [’f_aa "ia)-

e For 0 € {\,, | m € S}, consider the set Si(0) == {m € S | 0 = Am}, and let
supp7m1(0) = {km | me Si1(o)} u {l,, | m e Si(0)}. Then suppmi(o) is a subset of
dom, (o).

The map fr, (o) : suppmi (o) - suppmi (o) is defined as follows: Let fer () (k) =
I, and fr, (o) (L) = ky, for all m e Sy(o).

Then f,, (o) is well-defined and bijective, since k,, > 8 for all m € Sy, and [,,, < /3 for
all m e Sl-

It remains to define the maps 7 (¢) : 25wPm(?) — 2suppmi(9) for ¢ € dom, m(0): Let
m1(¢)(e | i esuppmi(0)) = (& | i e suppmi(0)), where & =¢ , & :=¢ for all

m e Sy (o).
Finally, for every (i,() € a, x [Ro, ko), we let m1(0)(4,() : 2 - 2 be the identity.

This defines our automorphism 7 € A.

— D\ G
Lemma 2.6.18. For Y := (TTQ(X) ) , it follows that (Y,a) € f.

Proof. By construction of 7 it follows that whenever 7 is a condition in D, with 77 := 77,
then the following holds: Firstly, for all m € Sy, we have (/)2 = 72 and (/)" =
T%’". Secondly, whenever o € suppry, i € dom, 7(0) with (0,7) ¢ {(Am, km) | m € S} U

m

{( A, Im) | me Si}, then (r')7 =r7.

In particular, ()7 = 77" holds for all m’ € Sp:

On the one hand, we have (G, in) € {(Am, k) | m € S} for all m’ € Sy, since iy < 5;
but k,, > 3 for all m € S;. On the other hand, (G, 7m) ¢ {(Am,lm) | m € Si} for all
m' € Sy follows by construction of the set D.

Irl otlger words: The map 7 swaps for all m € Sy the (Xm, Em)—coordinate with the according
(Am, lm )-coordinate, and does nothing else.

Hence, it follows that mq = ¢; since q%m = qZXm for all m € S;.

m

Next, we want to show that 7 € N, Fiz(fm, im) N Ny, H,;\: Then W?DW = ?DW follows.
Regarding 7 € N, Fix(nm,imn), it suffices to make sure that for all m < w, we have
N im) € {Onrs kmr) | M/ € S1} U {(Dwr, L) | m” € S1}. But this follows from the fact
that A <7 and kny > 8> B, Ly > B for all m’ € Sy; but 3 is large enough for (I4), so
for any n,, with 7,, < n, it follows that i,, < 3. This implies (s im) € L, Er) | M €
S1} U {( A, L) | m/ € 1} for all m < w as desired.
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Hence, m€N,, Fix(nmim).

Regarding m e N,, H k , we have to make sure that whenever \,, = \,» for some m < w and

m' € Si, then suppm(\y,) = suppm()\ 1) € (km,ay,,) holds; i.e. Ky > ki and Ly > ko,
Again, this follows from the fact that A, <n and k> 5> ﬁ, w > 3 for all m’ € Sy; and
B is large enough for ( I;), so whenever A, <7, then k,, < 3 follows. Hence, 7€, H)‘

Thus, it follows that W?DW = 7D”

. . . D7T —_—
Now, from ¢ I-s (7,(X),a) € f, we obtain mq I-s (77,(X) ,a) € WfDW; hence, ¢ I+
. D7r —
(rr(X) L a)ef . With

Y := (WTQ(X)DW)G,

it follows from ¢ € G that (Y, «) € f as desired.
[l

We will now show that (Y,«) € f implies that also (Y,«) € f# must hold. This finally
gives our desired contradiction, since « ¢ rg 5.

Indeed, we will prove that

Y — Xnm e (am) x HmESO G?:; X Hm,ESI G;;:L .

Since i, < § for all m e Sy and I,, < 3 for all m € Sy, it follows that the n-good pair

o' = ((am)m<w7 ((Emagm)mesou (ijm)mESH ))

is an element of Mg. Hence, (Y, «) € f would then imply that also (Y, «) € f# must hold,
and we are done.

Recall that B o
Q = ((am)m<w7 ((5m7 ?:m)mESOJ ()\m7 km)mesl))y

X e Name((P")* x [mes, P7" % Tnes, P*), and 7,(X) is the canonical extension of X
to a name for P (see Definition [2.6.7)).

We will show recursively:

Lemma 2.6.19. For every Y € Name((P ¥ % [neso P7™ % Tines, P m), it follows that

—Dx —Dx
T7(Y)  =7y(Y)

Proof. Consider Y € Nameg.1((P")“ x [Tnes, P % Tlimes, P), and assume recursively
that the claim was true for all Z € Name, ((P")* x ines, P2 % Times, P).
First,

TQ(Y)DW Z{(TQ(Z')DW,T) ‘ reD,, ZedomY, Tl TQ(Z) ETQ(Y) },
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and

WTQ(Y)DW ={ (FTQ(Z)Dﬁ,WT) | reD,, ZedomY | 7k, 7,(Z) e T,(Y) }.

Now, for any H a V-generic filter on P and Z, € Name((P")* x Mes, P % Tines, P),
it follows by construction of the map 7 that

Tl He(am) < Tinesg HO™ % Tiesy Hy™

7\ 2 i Fm
(TQ(ZO)) = 4 *
Mo (TH )« (@m) % Tnesy (FH)T™ X Tes, (wH)™
— ZO m m

- TH
= (Tg'(ZO)) )
since  swaps any (Am, km )-coordinate with the according (A, Ly, )-coordinate, and does

nothing else.

Hence, whenever 7 € Dy, then r I, 7,(Z) € 7,(Y) if and only if 77 I, 7,(Z) € 7,(Y).
Thus, by our recursive assumption,

7r7‘Q(Y)D7r = {(WTQ(Z')DW,WT) ‘ mr €Dy, ZedomY , iy 7y(7) € TQI(Y)}

{(TQ/(Z)DW,T) ‘ reD,, ZedomY , ri, 7y(Z) ergr(Y)}
Dr

Tg’(Y)

Hence,

V= (1 (0) ) = (D)) = (r () =

_ Xl'[m Gx(am) x HmeSO Gz;n X Hmesl GZXTZL ]
Hence, by Lemma [2.6.18] above, it follows that

(Tl G (o) X Thnes, G % Mpnes, G?;’ a)ef.
But 7,, < § for all m € Sy and 1,,, < 8 for all m € S;; hence,

(Tl G (o) X Thnes, GI™ x Tnes, G a)efo
But this contradicts our choice of a ¢ rg f5.

Thus, in either case our assumption of a surjective function f : P¥(k,) - «, in N has
lead to a contradiction, and it follows that indeed, 0V (k,) < ).

Recall that we have assumed throughout our proof that r,.; > ;. In the next Chapter
6.3, we will treat the case that x,,; = ;, and discuss where the arguments from Chapter
2.6.2] have to be modified.
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2.6.3 V1 (Knpa =k — OV(ky) <ay)

If k11 = K}, we need the notion of an n-almost good pair (cf. Definition and Proposi-

tion : For any X € N, X ¢ k), there exists an -almost good pair ((am)mews (Tons i )mew )
such that X € V[[L,, G+«(am) x [ G‘;m x G+l

Throughout this Chapter [2.6.3] we assume that

_ .t
Ky+1 = I‘-',n.

As before in Chapter we assume towards a contradiction that there was a surjective

—Dr —Dy . . .
function f:PN(k,) > a, in N with 7f " = f 7 for all 7 € A with [7] contained in the
intersection

N Fiz(m,im) 0 () HY" (15).

m<w m<w

We take 3 large enough for (I;) as in Chapter [2.6.2, Definition [2.6.2) and set 3 := B+ K
(addition of ordinals).

Now, we can adapt our definition of f# to n-almost good pairs, and obtain:
1P = { (X,a)ef ‘ 3 ((@m)mews (Tmsim)mew) n-almost good pair = (Ym i, < 3) A
3 X € Name ((ﬁn)w X H PEm % P77+1) X — Xn'rn G*(am) X I_I'rn G;:ZL XGn+1 }.

First, we assume towards a contradiction that f?:dom f? - a,, is surjective.

A) Constructing P8  (n+1).
As before, we only treat the case that
B<ayz or Limn (n,v) 3,

where 77 := sup{o <n | o € Lim}, i.e. we presume that there exist (o,i) with o € Lim and
1> [ oro>n.

This time, we construct a forcing notion P8 | (n+1) instead of P2 | (+1); which should
be like P } (1 + 1), except that firstly, we use restrictions p. | x7,, instead of p. I k2,
and secondly, we include P+,

Definition 2.6.20. For p € P, let
i)ﬁ r (T/ + 1) = (p* T H%+17 (pgaag)aﬁn,i<ﬂa (pa r (5 x domypa))aﬁnupn+17Xp )7

and denote by P? } (n+1) the collection of all 7% | (+1) such that p e P (i.e. p € P with
{(o,i) e supppo | o > n v i > B} = Ry); together with the maximal element ]lﬁﬂ. The

order relation Z,fﬂ is defined as in Definition .

Like in Chapter A), one can write down a projection of forcing posets fofH P -
P2} (n+1) and conclude that

GPt(n+1):={peP’t(n+1) | JgeGnP Tt (n+1) 3, p}

is a V-generic filter on P# 1 (n+1).
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B) Capturing fA.

We define a forcing notion (P8} (n+1))@msim)mew which will be obtained from P# 1 (n+1)
by using X, instead of X, (cf. Chapter m B) ), and including for n,, € Lim, n,, > n the
verticals i b Kyt and also a?: N Kp+1, the according linking ordinals up to k..

The restriction (p? | (1 +1))0mim)m<e for p e P is defined as follows:

(ﬁﬁ i (77+ 1))(777n7im)m<w = (p* ) /€727+]_ > (p?va?)ogn,kﬁ ) (p?:: ) /fn+1>anm N /’in+l)m<w,nm>m

(pa r (ﬁ X domypa))GSn ) Xp ) pTI+1 )

Roughly speaking, the difference with the restrictions (p® | (n+1))@m-im)m<e introduced
in Chapter [2.6.2 B) is, that we are now reaching up to #,.1 = #; instead of .

We denote by (P? 1 (n+1))@mim)m<w the collection of all (77 | (n+1))@mim)m< for p e P
together with the maximal element (]lgﬂ)(”mvim)ww The order relation “<”is defined like
in Definition

Finally, we include the verticals P | [K,1, Ky, ) for n,, >n+ 1, which gives the product

(B 1 (g + 1)) Crmimdmes s TT PP 4 [, i, )-

m<w

Let
(G 1 (g D))t T GI 1 [sogen o)

im
m<w

denote the collection of all

((ﬁﬂ [‘ (rr] + 1))(77m77;m)m<w7 (p"?m r [’in+17 Knm)m<w))

im

such that there exists ¢ € G n P with (% } (0+ 1)) im)men < (B2 1 (+1))(rmsim)mes and
qZ’f P [Knets K, ) QpZ’: M [Kpe1, Kin,, ) Tor all m < w.

As in Proposition 2.6.9] one can construct a projection of forcing posets
(ﬁﬁ)(n'n“iwn)nKu} :F > (Fﬁ r (77 + 1))(7]7n7i7n)7n<w X H Pn'm r [I{T]-Fl)"{/’r]m)a
m<w
and it follows that (G8 | (n+1))Omim)mes x ], G} [Kye1, Fin, ) is a V-generic filter
on (PP 1 (n+1))tmimdmes x TT,, o P 1 e, 5y, ).
Like in Chapter ), we want to define a map (f?)" contained in V[G? I (n+

1)) msim)mes 5 [T, GI™ 1 [Kpa1, K, )], and then use an isomorphism argument to show

that f8 = (f#)".

Before that, we have to modify our transformations of names 7, (where p is an n-good
pair), and define transformations 7,(where g is an n-almost good pair) with

Ty Name((fml)“’ x [ P7™ x P"™') - Name(P)

m<w

as follows (cf. Definition [2.6.7)):
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Definition 2.6.21. For an n-almost good pair ¢ = ((am)m<w, (Em,gm)m@), define recur-
sively for Y e Name((ﬁml)w x TLypew, PP x PT1):

A= {E(2).0) | aeP 32, (@) s G e, 977)) €Y
¥ (g(am) 2p.(an) , 67" 2977 ), ™ 27 ).

Then ¥ e & (@m)* Tlnew GUEX G _ (2 (371 holds for all V e Name((P™ )% x [Ty, P77 x
pr+),

Definition 2.6.22. Let (f?)’ denote the set of all (X,«a) for which there exists an -
almost good pair 0= ((am)mew> (Tms im )mew) With 4, < 8 for all m < w, such that

1, G (am) x [1,,, GZ™ x G*1
X = T Golom) ¥ T, T <670

and there is a condition p € P with the following properties:

o [{(0,i) esupppo | o >n or i 2 B} = X,
® plFs (?Q(X)voé) e f,
® ((ﬁﬁ r (77+1))(77m,im)m<% (p?;: r [l"fn-yl,/fnm))qu) € (éﬁ [‘ (’[’]+1))(7]m,im)m<w x Hm<w GZ;” r

[’inﬂa KZWm))

® Vi, eLim : (7, in) € supppo with a]™ = g™,

Then (f%)" € V(G | (n+1))mimdmes x [T, o, GI" } [Kyr1, iy, )]
Proposition 2.6.23. f# = (f?)".

Proof. We briefly outline where the isomorphism argument form Proposition [2.6.11] has

to be modified. We start with (X, ) € (f#)' ~ f8, X = X Tom G (am) x Tl G G771
n-almost good pair 0 = ((@m)mew> (T, im)m<w))- Take p as in the definition of (fﬁ)’ with
Pl (Fo(X), ) e f, and p’ € G with p’ IF, (7,(X), a)¢f.

The first step is the construction of extensions p < p, p’ < p’ such that p and P’ have “the
same shape”, agree on P8  (n+1); and pim = (p');™ holds for all m <w, and @)™ = (@)}
holds for all m < w with 7, € Lim.

We proceed as in Proposition [2.6.11, with the following modifications:

, for an

im

e The construction of p,, P. that we used in the Proposition [2.6.11| for intervals
[Kv,j, Kuj+1) C Ky, has to be applied to all intervals [, j, K,,j+1) € K1 DOW, since we

— — 2
need p, and p, agree on K ;.

e Analogously, the construction of 7, (p')7 for o € Lim, i < o, for intervals [k, ;, fy,j+1) S
Ky, has to be applied to all intervals [k, j, f,,j+1) € Kye1 DOW, in the case that o > n+1.
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e Additionally, we have to make sure that p"*' = (p')"*1.

—D, =Dy
The next step is the construction of an isomorphism = such that 7p =p', nf = f 7,

and W?Q(X)DW = ?’Q(X)Dw. Again, we take for 7 a standard isomorphism for ©p =7p'; but
this time, we set G, (v, j) := Fy, (v, 5) for all intervals [k, j, K, j+1) € Kye1 (instead of only
intervals [, j, Ky j+1) € Ky), and Gr (v, j) = id for all K, ; > K1 (instead of all k,; > k).
Then as before, it follows that m € N, F12 (D, im) N N H,i‘:.

—Dx —Dx
For verifying 77,(X) =7,(X) , we now additionally have to make sure that 7 is the

identity on P7*!. But since we have arranged p"*' = (p’)"*!, this is clear by construction
of .
. . - D7r _DTr
Now, it follows from P Ik, (Fo(X),a) € f that 7P s (77,(X) ,a) e 7f . Hence,
D~ —Dx . . . - — ~ ¥ ;
7 Ik (?Q(X) ,a) € f 7, which is a contradiction towards p’ I (TQ(X),a) ¢f. ]

Thus, 7 = (f%) e V[(GP 1t (n+1))mimdmes x T[], GI™ } [Kya1, Ky, )] as desired.

C) (FB t (n+1))mmsim)mes x [ P } [Ky.1, Ky, ) Preserves cardinals > a,.

Now, we will show that cardinals > «, are absolute between V and V[(G® t (n +
1)) O ey it 1 [ fin,) )

As in Chapter C), we are using that GCH holds in our ground model V', and when
we argue that a particular forcing notion preserves cardinals, we mean that it preserves
cardinals under GCH, if not stated differently.

Lemma 2.6.24. If |B]* < ay, then (PP | (n+1))msim)mes x [T, P} [Kys1, iy, ) preserves
cardinals > ov,.

Proof. We closely follow the proof of Lemma [2.6.12| and Corollary [2.6.13
The forcing notion (P8 (5 +1))@mim)m< is the set of all

2 7 Y
(p* ¥ Kn+1 s (pgaa?)agy,Kﬂ , (pz:nn P Rp+1, @ A ffn+1)m<w,77m>n7

im

(pa ) (ﬁ X domypa))JSn ) Xp ) pT]+1 )7
where p € P with |{(0,7) esupppo | o >n v i > 5}] = Rg.

Since k.1 = £, it follows that the p, | /4;72”1, as well as (p/™ | kps1,a]™ 0 Kye1) for
m < w are bounded below #,,1; which gives only < (k41 - 27)% = K1 = £} < |B|-many
possibilities.

Since X, € ky, there are only < K} < |f|-many possibilities for X, as well. Regarding
(p7, 07 )o<n ,i<p and (p°  (dom, p° x f3))s<y, it follows as in Lemma [2.6.12] that there are

only <|B[* - &} = |B|*-many possibilities.
We denote by ((ﬂﬁﬁ b (n+ 1))(nm7im)m<w), the forcing notion that is obtained from (P#

(n+1))@mim)m<w by excluding P71, Then (P? | (n+ 1))@msim)m< is isomorphic to the
product ((Fﬁ M(n+ 1))(nm,im)m<w)l x Pl
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By what we have just argued, it follows that the forcing notion ((Fﬁ M(n+ 1))("7mvim)m<u),
has cardinality < |3[*; and the remaining product P! x ], P | [Kys1, Ky, ) Dreserves
all cardinals by similar arguments as in Proposition [2.6.14] Hence, it follows that (([Pﬁ ¥

(n+ 1))(’7m=im)m<w)’ x P11 x [T P | [Kps1, K, ) Preserves all cardinals > |5[*.
0

Proposition 2.6.25. The forcing (PP | (n+1))@mim)mes x [T, P} [Kya1, iy, ) preserves
cardinals > o,.

Proof. We only have to treat the case that o, = |8|*. Then cf|5] > w, and GCH gives
|B[% = |B]. The proof is similar as for Proposition We distinguish several cases,
and construct ((Fﬁ ) (n+1))(nmim)m<w)" from (P8 | (n+1))mmim)mes by splitting up P+,
and also one or two factors P? | (8 x [Ry, ky)) for o € Succ with o =n, or o =7 in the case
that 7 is a successor ordinal with 7 =7+ 1. Then as in the proof of Proposition [2.6.14] it
follows that ((F,B M (n+ 1))("mvim)’m<W)” has cardinality < |8] < ay, and the product of the
remaining P | (8 x [Ry, Ky)), P71 and [1,, P™ 1 [Kye1, Ky, ) preserves all cardinals. [

D) A set P(k,) 2 dom f# with an injection ¢ : P(k,) - |8[%.

For an n-almost good pair 0 = ((@m)me<ws (T im)mew), it follows that [T, G.(am) x
[1,,G]" x G™is a V-generic filter on I1,,(P"* x I1,, PP x P!, and

(2] o TG _ oy

holds for all a < k,, by the same proof as for Lemma since P! ist < k,-closed.
Thus, there is an injection x : #(r,) = (57)" in V[, G«(am) x [T, G;™ x G71].

Let Mﬁ denote the set of all n-almost good pairs g = ((am)mew> (@ms im)mew) in V with
the property that 4,, < § for all m < w. Then Mz has cardinality < k,.q - [n|R - ||} = | 3]0,

Moreover, dom f# is a subset of ?(/{n) =
U{ P('%77) n V[H G*(am) x HG;E: x G77+1] ‘ ((am)m<wa (Emagm)m«u) € MB }

Now, we can proceed as in Chapter m D) and construct in V(G } (7+1))@mim)me x
[, G/ t [Kye1, Ky, )] an injection ¢ : P(k,) = |B]Y in the case that a, = (|3|*)" and an
injection ¢ : ﬁ(/ﬂn) < (|8]*)V in the case that «, > (|5]")V. Together with Chapter
B) and C), this gives the desired contradiction.

Thus, we have shown that the map f#:dom f? - «a, must not be surjective.

E) We use an isomorphism argument and obtain a contradiction.

The arguments for this part are the very same as in the case that x,,; > ;, except that we
are now working with n-almost good pairs 0 = ((am)mew, (T, im)m<w) instead of n-good
pairs.

Thus, also in the case that r,.1 = &, it follows that 0V (k) = ay.
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2.6.4 The Remaining Cardinals in the “Gaps” X € (Ky, Ky+1)

So far, we have shown that 6~ (k,) = a, holds for all 0 <7 <. Recall that in the very
beginning (see Chapter 2.2)), we started by “thinning out” our sequence (x, | 0 <7 <)
and assuming w.l.o.g. that (a, | 0 <7 <) is strictly increasing. Thus, it remains make
sure that for all cardinals A € (k,, f£,+1) in the “gaps”, 6V ()\) gets the smallest possible
value, i.e. OV (\) = max{a,, A**}. This will be our aim for this Chapter

After that, in Chapter [2.6.5] we make sure that also for all cardinals A > k., the value
6N (X) will be the smallest possible.

ki

We consider a cardinal A in a “gap” X\ € (ky,kps1) (then ko > k), and set a(A) :=

max{A\**, a,}. Then 0V (X) > () is clear, and it remains to make sure that there is no
surjective function f:PN(\) > a(\) in N.

First, we want to describe the intermediate generic extensions where the A-subsets X ¢

£N(A) are located.

Let X\ € [Ky3,Ky541), where J < c¢f K1 in the case that n+ 1 € Lim, and jJ = 0 with
A€ (Kyo,kn1) = (Ky, kpe1) in the case that n+1 € Succ.

We will modify our definition of an n-good pair and obtain the notion of an n-good pair
for A, which will be used to describe the intermediate generic extensions where the sets
X € PN(N) are located:

Definition 2.6.26. We say that ((am)m<w, (Em,im)mw) is an n-good pair for A, if the
following hold:

e (a, | m < w) is a sequence of pairwise disjoint subsets of &, 3, such that for all
K7 < Kp3, it follows that |a,, N [k 5, k.7,,)] =1,

e for all m < w, we have &, € Succ with 7,, <7, and i,, < az,,
o if m#m/, then (Gp,im) # (Tt ipnr ).
Similarly as in Proposition [2.5.6, we obtain:

Proposition 2.6.27. For every X e N, X c A, there is an n-good pair for A, denoted by
0= ((am)m<w7 (Ema Z.m)m<w)7 SUCh that X € V[Hm<w G*(am) X Hm<w Ggm]_

Proof. As in Proposition [2.5.6] it follows by the Approzimation Lemma that any
X e N, X c )\ is contained in a generic extension

X eV[IT Gulglm) = TT G771,

m<w m<w

where ((o,im) | m <w) and ((G,n,im) | m < w) are sequences of pairwise distinct pairs
with o, € Lim, i,, < ,,, and @, € Succ, i, < az,, for all m <w.

The forcing [1,,<., P7™ % [lin< P7™ can be factored as

(TTPm tong o TT P77 ) (IT P 1 [sngssn,) x TT P7).

m<w Tm<n m<w om>n
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In the case that A € (k, 3, £y5+1), it follows that the “lower part” has cardinality < s S A
and the “upper part” is < A-closed.

If X = k3, then firstly, the “lower part” has cardinality < Ky 5= A+, and secondly, it follows
that 7 > 0 and k.1 € Lim, so K301 2 Ky by construction. Hence, the “upper part”is
< A*t-closed.

In either case, we obtain

X eV[] Gulglr nryz) x [T GI7].
m<w om<n
With a,, = gi™ n ry,5 for all m < w, it follows by the independence property that
((am)m«m (Em,gm)mw) is an n-good pair for A with

X eV[]] Gulan) x ] GZ”]

m<w Om <n

]

(Note that [1,, G«(am) x [1z,.<, G?’” is a V-generic filter on the forcing (]_377+1 P Ryg)? X
HEmST] Pﬁm)'

As before, we assume towards a contradiction that there was a surjective function f :

PN(A) - a()) in N, where W?Dﬂ = TDW holds for all 7 € A with [7] contained in the
intersection

N Fiz(m,im) 0 () HY" (15).

m<w m<w

We take /3 large enough for the intersection (If) as in Chapterm7 Definition and

set 3:= [+ %, (addition of ordinals).

Let

f’B = { (X,Oé) ef | 3 ((am)mquy(amjm)m«u) n-good pair for X : (Vm %m < B) A

HXeNaurne((FnJr1 N hog)” x [] P7) X = XM Geam) <1 GE }

Emﬁn

First, we assume towards a contradiction that f2:dom f# - «() is surjective.

A) Constructing Fs M (n+1).

We proceed as in Chapter A) and A), except that we have to use P, I 7,
instead of P, I £, and do not include P+
For p e P, we set

1:9% P(n+1):= (p* ¥ 572737 (p?aa?)oSmK& (p7 1 (B x domyp"))gsn, XP))

and denote by Fs ' (n+1) the collection of all 77 | (n+ 1), where p e P (i.e. p € P with
17, and the

[{(0,i) esupppo | o >n v i> B} =Rg); together with the maximal element T, ,,
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.= B .. . -
order relation <, defined similarly as in Definition [2.6.4

We denote by Gs P (n+1) the set of all p e s } (n+1) such that there exists ge G n P
~ =B

with ¢° | (n+1)<,,; p. Then as in Chapter [2.6.2] A), Proposition [2.6.6} it follows that

GB } (n+1) is a V-generic filter on P# } (+1).

B) Capturing fA.
For p € P, the restriction (77 | (1 + 1))@mim)m<w is defined as follows:
(’ﬁﬂ M(n+ 1))(nm’iM)m<w = (p* ) “7273 , (07507 )osni<s 5 (pZ: ) “nyj’a?: N K3 )me<w, mm>n >

(p° 1 (8 x domy p%))oen » Xp )-

We define (Eﬁ P (n+1))mim)m<e and (55 P (n+1))0mim)m<e as in Chapter [2.6.2| B) and
B). Then

(éﬁ M (n+ 1))(nm’im)m<w x H GZ:L ) [“n&a’inm)

m<w

is a V-generic filter on

B 1 (n+ )i T PP i)
m<w
The construction of (f?)" as well as the proof of f# = (f#)’ are as in Chapter B) and
2.6.3| B); except that this time, the isomorphism 7 from the proof of Proposition
has to be the identity on P, | #7, (not only on P, I #7). This can be achieved by the
following modifications: Firstly, we demand that p, and p’, cohere on P, | “7273 (not only
P. I k7); secondly, we arrange p, I s}, =D, | x;; (instead of just p, | K} =D, | K3);
and thirdly, when constructing the isomorphism 7w, we set G, (v,7) = F (v, j) for all
Kyj < Ky now, and G (v, j) = id whenever k,; > k3.

It follows that f8 = (fP) € V[(éﬂ M (n+ 1)) mim)mes x T, G 1 [Fng, Kn ) ]-

C) (Eﬁ P (n+1))Omoim)mes x I, ., P? | [K, 3, Ky, ) Preserves cardinals
> a(A) = max{A**, ay,}.

The arguments here are similar as in Chapter C) and C), since there are only

< (2%3)%0 = K} - < A* < (A)-many possibilities for p. | k7 and (p{™ | ry 5,0/ 0 Ky ) me-

D) A set P(\) 2 dom f# with an injection ¢ : P(\) = A* - |3[%.
We proceed as in Chapter D) and D). Whenever ((m)mews (Tms im)mew) is an

n-good pair for A, it follows that IT,, G« (am) x [1, G?m is a V-generic filter on (ﬁml )
Kp3)® x [, P7; and B '

(za)v[nm G(am) x 1 G%T::] _ (a+)V
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holds for all cardinals a by the same proof as in Lemma [2.3.2 Hence, it follows that in
V[T Ge(am) x 1, G, there is an injection x : £(A) = (A*)V.

Let ]T[g be the set of all 0 = ((@m)mews (T, im)mew) in V such that o is an n-good

pair for A\ with the property that i,, < B for all m < w. Then MB has cardinality
< (rp ) - 1B <X - 3.

By construction, it follows that dom f# is a subset of

Z@()\) = U{P(/\) N V[H G.(an) x H G;E;Ln] | ((@m)mew, (Emagm)m@u) € ﬁﬁ }

As in Chapter [2.6.2| D), we can now work in V[(éﬂ (g + 1)) Omim)mes x [T G}

[Kn3, Kn,)] and construct there an injection ¢ : P(N) > (M) - |8V in the case that
a, = (7)Y, and an injection ¢ : £(A) = (A*)V - (|8]*)V in the case that «, > (|5]7)V.
Together with Chapter [2.6.4 B) and C), this gives the desired contradiction.

Hence, it follows that there must be a < a(\) with a ¢ rg f5.

E) We use an isomorphism argument and obtain a contradiction.

The arguments for this part are the same as in Chapter E); except that we are
working with n-good pairs for A now (instead of n-good pairs).

Thus, we have shown that for all cardinals A € (k,, k,41) in a “gap”, the value OV ()) is

the smallest possible: 0V (X) = a(A) = max{\**, a,}.

It remains to consider the cardinals A > k. := sup{x, | 0 <7 <~}. We prove that for all
A > K., again, OV () takes the smallest possible value.

This will be the aim of the next Chapter 2.6.5

2.6.5 The Cardinals A > k. :=sup{k, | 0<n <~}

Let o, := sup{ay, | 0 <7 <}, and consider a cardinal A > k.. We want to show that 6~ (\)
takes the smallest possible value a()), defined as follows:

e In the case that cf o, = w, we set a()\) = max{a*, A**}.
e In the case that o, = a* for some o with cf a = w, we set a()\) = max{al, \**}.

o In other cases, we set a(\) := max{a,, A\**}.

Then by our remarks from Chapter it follows that indeed, 6V (\) > a(\) holds for all
A2 Ky

First, we assume that
a(A) > a,.
[t remains to prove that there is no surjective function f:#V(\) - a()\) in N.

We start with the following observation (again, we use that V' = GCH):
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Lemma 2.6.28. Let A > s, with a(\) > o,. Then P preserves cardinals > ().
Proof. For every pe P, p= (p«, (07,a7)o<r.ican, (P7)os<y), there are

e < kl-many possibilities for p.,

e < o) -many possibilities for the countable support of (p7,a?)y<r.i<ay

e < k!-many possibilities for (p7, a7 )s<y,ica, When the support is given.

In the case that -~ is a limit ordinal, it follows by the strict monotonicity of the
sequence (o, | 0 < o <) that a, < a,, holds for all 0 < o <. Hence, for any o € Succ, the
forcing notion P? has cardinality < o} < a,; and it follows by countable support that we
have < |y[® - a3° = a°-many possibilities for (p?),.,. Hence, the forcing P has cardinality
<KL-05” <A, Ifef oy > w, GCH gives [P| < A* - vy, and a(X) = max{A**, aZ}. Hence,
P preserves cardinals > a(A) as desired. If cf @, = w, then a(A) = max{\** at*} > [P|*;
and again, it follows that P preserves cardinals > a(\).
It remains to consider the case that ¥ = + 1 is a successor ordinal. Then our sequences
(ko |0<o<y) = (ks |0<o<7) and (e, |0<0 <) = (e | 0 <0 <7) have a maximal
element, and k, = Ky, oy = a5.
If 7 € Lim, i.e. k5 is a limit cardinal, it follows that for any o € Succ, we have o < 7;
hence, a < az = ay. This gives |P| < k2 - 05° < A* - 3 as before, and a(\) > |P|*.
If 7 € Suce, i.e. k5 is a successor cardinal, then P7 has to be treated separately. We
factor P = P’ x P7 with P’ := { (p«, (07, a7)o<7 ,icays (07 )o<z) | p € P }. Then P7 preserves
cardinals, and P’ has cardinality < (A\*)V - (a5°)V as before (in V, and hence, also in
any P7-generic extension); where a()) > |P’|*. Hence, the forcing P = P’ x P7 preserves
cardinals > a(\) as desired.

O

Now, we assume towards a contradiction that there was a surjective function f: £V(\) -
a(A) in N.

By the Approzimation Lemma it follows that any X € N, X ¢ ), is contained in
an intermediate generic extension V/[[],,., Gi™], with a sequence ((oy,im) | m < w) of
pairwise distinct pairs in V' such that 0 < 0,,, < 7, i, < @, for all m < w. Denote by M
the collection of these ((o,i,) | m <w). Then |M| < a5° in V; and of° < a()) as argued
before.

The product [],, P’ preserves cardinals and the GCH. Hence, it follows that in any
generic extension V[[],, G7], there is an injection x : P(\) = (A*)V. Now, one can
argue as in Chapter 6.2 D), and define in V[G] a set P(A) 2 N (\) with an injection
L PN > (W)Y -, or 0 P(A) > (M) - (af)V in the case that a()) > (at*)Y. To-
gether with Lemma [2.6.28] this gives the desired contradiction.

Thus, we have shown that in the case that a()) > a,, there can not be a surjective func-
tion f:R(\) - a(A) in N.

It remains to consider the case that

a(A) = a,.
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Then A\* <o, cf o, > wj and if o, = a* for some «, then cf a > w.

Assume towards a contradiction that there was a surjective function f: N (\) - a(\) in

N, f = fC with W?Dﬂ = TDﬂ for all m € A with [7] contained in the intersection

N Fiz(m,im) 0 () Hym (1;).

m<w m<w

Similary as before, we take § < a(\) large enough for the intersection (I;), ie. B> A
With~g> sup{i, | m < w} u sup{k,, | m <w} (this is possible, since cf a(\) > w). Let
3= + k¥ (addition of ordinals). Then x? < A* < a(A) gives A* < 3 <a(N).

By the Approzimation Lemma [2.5.2] it follows as in Proposition that any X € N,
X c A, is contained in an intermediate generic extension V/[[1,, G+ (an) x [, G7™], where

((@m)mew (Tmyim)mew) is a good pair for Kny, 1.€.

o (an, | m<w)is asequence of pairwise disjoint subsets of x., such that for all k33 < K,
and m < w, it follows that |a,, N [Ks3, kv541)| = 1,

e for all m <w, we have 7, € Succ, 0 <o <7, and i,, < az,,,,

o if m#m/, then (G, im) # (T, iyt )-

As before, let
77 = {(X,0) € 7 | 3((am)mess @ in)ne) good pair for sy < (Ym iy < 3) A

A3X e Name ((P)* x [[P"") X = Tl Gelam) Tl GE7 }

m

First, we assume towards a contradiction that f#:dom f? - a(\) is surjective.

A) + B) Constructing P? and capturing fA.

For a condition p € P, let

p/B = (p*) (pg7 ag)UELim,Kﬂa (pU r (/8 X domx pa))UESuCC)Xp ))
where
X, :=J{a? | 0 € Lim, i > 8}.
We define P? and G? as before.

The construction of (f#)" € V[G?] and the isomorphism argument for f# = (f#)" are as
in Chapter 6.2 and 6.3; except that when constructing the isomorphism 7, we now have
to set G, (v,7) = Fry(v,7) for all k,; < K.
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C) PP preserves cardinals > a(A) = ay =sup{a, | 0<n<~}.

The arguments here are similar as in Chapter C): If o, > |B[*, it follows as in Lemma
that |P?| < k% - [B]% < A* -|B|* < a,. In the case that o, = |A]*, it follows that
cf |f] > w, and as before, we distinguish several cases, whether 7 is a limit ordinal or
v =7+ 1, and in the latter case, whether ¥ € Lim, or ¥ € Succ with ¥ = 7 + 1 etc.
We separate P7 (or P7, or both), and obtain that P7 (or P7, or the product P7 x P7)
preserves cardinals, while the remaining forcing is now sufficiently small.

D) A set £(A) 2 dom f# with an injection ¢: P(\) > A* - |B]%e.

As in Chapter D) and D), we construct in V]G] a set £()) 2 dom f# with
an injection ¢ : P(A) = (A*)Y - (|8[*)V in the case that (|5]*)" < a()) and an injection
L:P(A) > (AH)V - |B]Y in the case that (|5]*)Y = a(N).

Together with Chapter [2.6.5 B) and C), this gives the desired contradiction.

Hence, it follows that there must be some a < a(\) with « ¢ rg f5.

E) We use an isomorphism argument and obtain a contradiction.

With the same isomorphism argument as in Chapter E), it follows that OV (\) = a(\)
as desired.

Thus, we have shown that also for all cardinals A > k., 8V (\) takes the smallest possible
value.

This was the last step in the proof of our main theorem.

2.7 Discussion and Remarks

e Our result gives an answer to Shelah’s question from [Shel6l §0.2 1)] (“Can we bound
hrtg (P(w)) [= 0(u)] for p singular?” No, we can not), and confirms his thesis from
[Shel0] p.2] that in ZF + DC + AX, it is “better” to look at ( [k] | k € Card ) rather than
(#(k) | k € Card ), in the sense that by what we have shown, the only restrictions that can
be imposed on the f-function on a set of cardinals in ZF + DC + AX4, are the obvious ones.

In [Shel0l §0 (A)], Shelah suggests to investigate possible cardinalities of (k% | x € Card ).
From Theorem 1 in [AK10], it follows that increasing the surjective size of [R,,]*0 together
with preserving GCH below R, requires a measurable cardinal, which indicates how dif-
ferently £(x,) and [R,]*0 behave without the Axiom of Choice.

In further investigation, one might look at the cardinal arithmetic in our constructed
model, such as possible surjective sizes of ([k]* | k € Card) for A\ << k.

e We now look at the following requirement that we put on the sequences (s, | 0 <7 <7),

(o) | 0<mp<y):
Vn (a,=a" - cfa>w).
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In Chapter 2.2] we mentioned that this condition is necessary under ZF + DC + AX,.
Moreover, we proved that whenever we start from a ground model V £ ZFC + GCH, and
construct a symmetric extension N 2 V with N & ZF + DC such that V and N have the
same cardinals and cofinalities, then the following holds:

If k, a € Card with 0N (k) = a*, then cf™ (a) > w.

One could ask what happens if we drop the requirement that NV should extend a ground
model V' E ZFC + GCH cardinal- and cofinality-preservingly:

Can there be any inner model N £ ZF + DC with cardinals x, a such that ¥ (k) = a* and
of V() = w?

Let s:2% - a denote a surjective function in N. Then with DC, it follows as in Chapter
that there is also a surjection s; : (2%)“ - a* in N; and we also have a surjective
function sq : 2% — (2%)«.

In Chapter we then took a surjection 55 : (a¥)V - (a*)V from our ground model
V', which gave a surjection ss : (a?)V — (a*)¥ in N. Then s5 o 51 0 59 : 2% - at was a
surjective function in N, hence, 0V (k) > a**.

In a more general setting, where we can not refer to a ground model V', we try to use the
constructible universe L = LV instead. Under the assumption -0f, it follows by Jensen’s
Covering Theorem ([DJ75]) that L does not differ drastically from N: In particular, L and
N have the same successors of singular cardinals; so if cf (a) = w, then (a*)F = (a*)V.

This yields the following lemma:

Lemma 2.7.1. Let N be an inner model of ZF + DC with N & -30!, and o € Card” with
cfN(a) = w. Then there exists a surjective function sy : ()N - (a*)N in N.

Proof. Let (a; | 1 < w) denote a strictly increasing sequence in N that is cofinal in a.

First, we construct in N an injection ¢ : (2*)F < (a¥)N, 1 =13 0 11 o 19, as follows:

e Let ¢p: (29)F - [1;,(2%)" denote the injection that maps any g:a — 2, g € L, to
the sequence of its restrictions ((g | a;) | i <w).

e For any ¢ < w, there is in L an injection ~y : (2%)L < (o] )L; so with DC in N, we
can choose a sequence of injective maps (; | ¢ <w) such that 7, : (2%)% < (o] )* for
all i < w. Then we define in N an injection ¢; : [1;.,(2%)* - [, () by setting
(X li<w) = (((X;) | i<w).

e Finally, since (o )L < (o )N < o for all i < w, it follows that there is in N an injective
map tg : Hi<w(a;—)L g (aw)N.

Thus, ¢ := 15 0 17 0 19 : (29)F = () is an injection in N; which yields a surjection
s:(a?)VN > (29) or 5: ()N > (a*)L.

Since we have assumed that N = -30¢ and cf (a) = w, it follows by Jensen’s Covering
Lemma in N that (a*)? = (a*)V.

This gives our surjecion ss : (o) — (a*)¥ in N as desired.
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Corollary 2.7.2. Let N be an inner model of ZF + DC with N & -0! and cardinals k, o
such that 0N (k) = a*. Then cf™ (a) > w.

Proof. Let s: 2% - « denote a surjective function in N, and assume towards a contra-
diction that ¢f™(a) = w. As mentioned before, we have surjections s : 28 — (2%)* and
s1:(2%)% - a¥. By Lemma it follows that there is also a surjection sy :a¥ - a* in
N. Setting s:= 59 0 51 0 5p, we obtain in /N a surjective function s: 2% - a*. Contradic-
tion. [

Thus, without large cardinal assumptions, it is not possible to obtain a model N & ZF + DC
such that 8V (k) = a* for cardinals &, o with c¢f™ (o) = w.

e Another question to ask is, under what circumstances certain ~AC-large cardinal prop-
erties are preserved in our symmetric extension N. As an example, we will briefly look at
the question whether an inaccessible cardinal x from the ground model V' could remain
inaccessible in N.

The notion of inaccessibility in ZFC reads as follows: A cardinal k is inaccessible (or
strongly inaccessible) if r is regular and 2* < k holds for all cardinals \ < k.

Hence, it can not be transferred directly to the -AC-context, since the power sets ()
for A < K are usually not well-ordered. In [BDLO7, Chapter 2|, there are several charac-
terizations how inaccessibility can be defined in ZF:

Definition 2.7.3 (|[BDL07]). (i) A regular uncountable cardinal « is i-inaccessible if
for all A < k, there is an ordinal o < k with an injection ¢ : £(\) < a.
(ii) A regular uncountable cardinal x is v-inaccessible if for all A < x, there is no
surjection s: V) - k.
(iii) A regular uncountable cardinal x is s-inaccessible if for all A < k, there is no
surjection s: P(\) > k.

Note that ¢-inaccessibility implies v-inaccessibility, and wv-inaccessibility implies s-inac-
cessibility. It is not difficult to see that a cardinal x is v-inaccessible if and only if V} is a
model of second-order ZF (see [BDLOT, Chapter 2|).

Let now x be an inaccessible cardinal in the setting of our theorem: V k= ZFC + GCH
with sequences (k, | 0 <n <7), (ay, | 0 < <) as before, with the additional property
that for all k, <k, it follows that also a, < k. Then by construction, it follows that & is
s-inaccessible in IV, while i-inaccessibility of  is out of reach, since we do not have our
power set well-ordered.

The question remains whether k is v-inaccessible in V.

By induction over A\, we could prove (using several isomorphism and factoring arguments
similar to those in Chapter [2.6):

Proposition 2.7.4. Let V' be a ground model of ZFC + GCH with v € Ord, and sequences
of uncountable cardinals (rk, | 0 <n <) and (o, | 0 <1 <~) with the properties listed in
Chapter|[2.2. Moreover, let N 2V denote the symmetric extension constructed in Chapter

and 23,
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If Kk is an inaccessible cardinal in V' with the property that for all k, < K it follows that
oy, < K, then Kk is v-inaccessible in N: For A < K, there can not be a surjective function
s:Vy—>k1in N.

In our inductive proof, we show that for any cardinal A < s, there exists ky;(\) < k and
a cardinal §) < k with an injection ¢: V\V < 8y in V[G | kz3(\)].

e Finally, we remark that our theorem gives a result about possible behaviors of the
f-function on a set of uncountable cardinals. A straightforward generalization of our forc-
ing notion to ordinal length sequences (x, | n € Ord), (o, | n € Ord) does not result in a
ZF-model:

Denote by P the class forcing which canonically generalizes our forcing notion P to se-
quences (k, | 7 € Ord), (o, | n € Ord) of ordinal length, denote by G a V-generic
filter on P, and let N := V(G). Then N ¥ Power Set: Assume towards a contradic-
tion that Z := PN(x;) € N. Then there would be an ordinal v and a symmetric name
Z ¢ HS n Name(P | v) with Z = ZG, where P | 7 denotes the initial part of P up to
k. Now, by an isomorphism argument similar as in the Approzimation Lemma [2.5.2]
one can show that any set X € fV(R) is contained in an intermediate generic exten-
sion V[[Te, GI™] with 7, < v, im < oy, for all m < w. Consider X := GI™' vy for
some i < ;1. Then X € PN(R,); hence, X = G7™' 1 &y € V[[ne G™] for a sequence
((Mmsim) | m < w) with 1, <7, ip < oy, for all m < w. But this is not possible, since
G is V[[1new G'™]-generic on P+,

7 m<w i,,L

Broadly speaking, the point is that a class-sized version of our forcing construction never
stops adding new subsets of ®; (or any other uncountable cardinal). Although we can try
and keep control over the surjective size of £V (Ry), it is not possible to capture £V (R) in
an appropriate set-sized intermediate generic extension; and it remains a future project
to settle this problem and find a countably closed forcing notion that is also suitable for
sequences (k, | n € Ord), (o, | n € Ord) of ordinal length.
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Chapter 3

An Easton-like Theorem for all
Cardinals 1n ZF

In this chapter, we show that in the theory ZF, the #-function can take almost arbitrary
values on all cardinals.

More precisely, we prove the following theorem (see [FK16]):

Theorem. Let V' be a ground model of ZFC + GCH with a function F : Card — Card such
that the following properties hold:

o Vi F(K) > k**
e Vi, A (k<A—> F(k)<F()\)).

Then there is a cardinal-preserving extension N 2V with N &= ZF such that OV (k) = F(k)
for all k € Card.

In other words: In the theory ZF, an analogue of Easton’s Theorem holds for regular and
singular cardinals. The only constraints on the #-function are the obvious ones: weak
monotonicity, and 6(x) > k** for all cardinals k.

This is in sharp contrast to the situation in ZFC, where Easton’s Theorem includes only
reqular cardinals, while possible values of 2% for singular  strongly depend on the behavior
of the Continuum Function below.

Recall that in Chapter [2, we additionally retained DC in our symmetric extension. How-
ever, the forcing notion introduced there could not be turned into a class forcing, and
therefore merely allowed for setting the 6-values of set-many cardinals.

We now complement our results from Chapter [2| by dropping the restriction that only set
many cardinals can be considered (but in return losing DC in the constructed model N.)

Let F': Card - Card be a function on the class of infinite cardinals with the properties
stated above: F' is weakly monotone, and F'(k) > xk** for all k € Card. We introduce a
class-sized forcing notion P (completely different from the forcing notion from Chapter
that allows for treating class many cardinals at the same time.
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The conditions p are 0-1-functions on trees with finitely many maximal points. The trees’
levels are indexed by cardinals, and the vertices on any level x are denoted by pairs (k,7)
where i < F'(k). For a successor cardinal k* and (k*,7) a vertex in the tree t(p) associ-
ated with p, the value p(x*,7) is a partial 0-1-function on the interval [k, "), bounded
below x*. Thus, below any vertex (k,i), the generic filter G adds a new k-subset. For
i, j < F(k) with ¢ # j, the k-subsets below the vertices (k,7) and (k,j) agree on some
interval [0, o), where v denotes the level where the branches below (x,7) and (x,j) split.
We do not allow branches to split at limit levels, thus making sure that the forcing indeed
adds F'(k)-many pairwise distinct k-subsets for every cardinal k.

In Chapter 3.1} we define our class forcing P. Like in Chapter P will be a product
P =Py x Py, where Py (a forcing notion consisting of partial 0-1-functions on finitary trees
as described above) is in charge of setting the @-values of the limit cardinals, while Py (a
finite support product of Cohen-like forcing notions) is in charge of setting the f-values
of the successor cardinals. We will see that P has a nice hierarchy (cf. Definition [1.4.2)
and Lemma [3.1.6]), so our methods from Chapter [L.4] can be applied.

In Chapter[3.2] we first construct our almost-group A = Ay x A; of partial P-automorphisms.
Any automorphisms 7 in Ay has a height ht 7 € Card, and for all k < ht 7 basically “re-

names” the vertices on level k. The partial automorphisms in A; are similar to the partial

P;-automorphisms introduced in Chapter [2.4]

We proceed as described in Chapter and use a method similar to Scott’s Trick to turn
A into a group A. We define the following A-subgroups that will yield our notion of sym-
metry: Firstly, for k € Card and i < F(k), a subgroup Fiz(k,i) will be included into our
symmetric system in order to make sure that the i-th generic s-subset G has a symmetric
name. Secondly, for k € Card and a < F'(k), including a subgroup Small(x, [0, «)) ensures
that there exists a surjective function s : (k) - « in the eventual symmetric extension
N (hence, 0N (k) > F(r)). We verify that the collection of these subgroups satisfies the
normality property (cf. ¢) ), and hence yields a finitely generated symmetric system

§ (cf. [L113).

We take a V-generic filter G on P and denote by N := V(@) the symmetric extension by
S and G.

Although due to its finiteness properties, the class forcing P adds a cofinal function
f:w — Ord (see Proposition [3.1.3)), the symmetric extension N satisfies all axioms of
ZF. This will be shown in Chapter

We will also see that an Approzimation Lemma holds (cf. Lemma 3.3.6): Any set of ordi-
nals located in NV can be captured in a “mild” V'-generic extension that preserves cardinals
and the GCH.

In Chapter 3.4 we finally prove that indeed, 6V (k) = F(x) holds for all x € Card.

The direction “6V (k) > F(k)” is rather immediate by construction of the subgroups
Small(k,[0,a)). Regarding “0V (k) < F(k)”, we use a similar proof structure as in Chap-

ter A) - E) (cf. p. [108):
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We assume towards a contradiction that there was a surjective function S : (k) - F(k)
in N. First, we define a restriction S# : dom S# - F(k), which is obtained from S by
roughly allowing only x-subsets contained in those intermediate generic extensions from
the Approzimation Lemma that use merely branches below indices (x*,i) with i < f.
In Proposition we prove that whenever § < F(k) is “large enough”, it follows by
surjectivity of S that the map S? must be surjective, as well. We construct an involved
intermediate generic extension that preserves all cardinals > F/(x) (cf. Lemma[3.4.7), and
then use an isomorphism argument to show that this intermediate generic extension must
contain the map S# : dom S — F(k) (cf. Proposition [3.4.9). In Proposition [3.4.10 we
prove that our intermediate generic extension also contains an injection tg : dom S? - f;
which finally gives the desired contradiction.

3.1 The Forcing

We start from a ground model V = ZFC + GCH with a function F': Card — Card on the
class of infinite cardinals such that the following properties hold:

o Vi F(k) 2K
o Vi, A (k<A— F(k) <F())).
In this section, we define our class forcing P and give some basic properties.

We will have to treat limit cardinals and successor cardinals separately: P is a product
P := Py x Py, where Py will blow up the power sets of all limit cardinals x, and P; is in
charge of the successor cardinals ™.

The conditions in Py will be functions on trees with finitely many maximal points.

For constructing Py, our function F' has to be modified as follows: For all limit cardinals
K, let Fiim(k) == F'(k), and for any successor cardinal k* > R, let Fji, (k") := F(R), where
R :=sup{\ < k* | Ais a limit cardinal }. For n < w, set Fji,(R,) = F(Rq). Moroever, let
Eim(o) = {O}

Our trees’ levels will be indexed by cardinals, and on any level x, the trees contain finitely
many vertices (k,4) with i < Fjy, (k).

Definition 3.1.1. A partial order (¢,<;) is an Fy,-tree, if

tc U {k}x Fm(x) u {(0,0)}

reCard

with the following properties:
o If (k,i) < (N, ), then K <A
e For any (), j) €t and x < \, there exists exactly one i < Fj;, (k) with (k,7) < (A, ).

e The tree t has finitely many mazimal points, i.e. there are finitely many (ro, i), ... ,
(Kn-1,in-1) with t = {(k,7) | 3m <n (k1) <t (K, im) -
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e There is no splitting at limits, i.e. for any limit level x and (k,1), (k,3’) € t with
{(Ag) et [ (A J) < (ka)} ={(Aj) et | (A j) < (w,i)}, it follows that i ="

If (t,<;) is an Fjy-tree with maximal points (ko,%0), ..., (Kp-1,9n-1), we call htt :=
max{Koq, ...,k 1) the height of t.

The first and second conditions make sure that for any Fj,-tree (¢,<;), the predecessors
of any (k,7) € t with k = R, are linearly ordered by <, in order type o (or a+ 1 in the case
that « is finite), and for any (k,i) € t, it follows that (0,0) <; (k, 7).

There is a canonical partial order on the class of Fy,-trees: Let (s,<) <p. _tree (£,<;) iff
s2tand <, 2 <.

The conditions in our forcing Py will be functions p : (¢(p),<ip)) = V whose domain
(t(p), <upy) is an Fjiy-tree.

The functional values of p below any maximal point (k,%) € t(p) will make up a partial
0-1-function on k. If (k,i) and (A, j) are the maximal points of two branches meeting at
level v, then the according 0-1-functions coincide up to v.

Hemnce, a Py-generic filter will add a new x-subset G, below any vertex (r,i) with
i < Fim(x). The fourth condition in Definition makes sure that for any 7,4’ < Fiy, (k)
with 7 # ¢/, the according s-subsets G, ;) and G, given by the branches below (1)
and (k,7") are distinct. Hence, our forcing adds Fji,(k)-many pairwise distinct x-subsets
for any cardinal k.

For a set X, we denote by Fn(X,2 k) the collection of all functions f : dom f — 2 with
dom f ¢ X and |dom f]| < k.

Definition 3.1.2. The class forcing (Po, <o) consists of all functions p: (t(p), <i(p)) =V
such that (t(p), <)) is an Fyp-tree, and

o p(k*,i) € Fn([k,k%),2,k") for all (k*,7) € t(p) with k* a successor cardinal,
e p(Rg,7) € F'n(Rg,2,Rq) for all (Rg,i) € t(p), and
e p(k,i) =@ for all (k,7) € t(p) with k a limit cardinal or x = 0.
e For (k,1) et(p), let
Py = U0 5) | (7,0) <uy (0}
We require that |p(,. ;| < & for all i < Fiy, (k) whenever & is a regular limit cardinal.
For p: (t(p),<upy) = V5 ¢ (t(q),<i(q)) = V conditions in Py, let ¢ <o p iff
o (£(4): <uq)) SFy-tree (D), <i(p));
e q(k,1) 2 p(k,1) for all (k,i) € t(p).

Let ]].0 =d.
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For a condition p € Py, p: (t(p), <)) = V, we call htp := htt(p) the height of p. Let
ht ]]_0 =0.

Let A be a cardinal. We denote by p 1 (A+1) : t(p) I (A\+1) > V the restriction of p to
the subtree t(p) I (A+1) = {(k,7) € t(p) | K <A}, <iprosn) = Sap) N (EP) F(A+1)). Then
pl(A+1)ePowith p<ogpl(A+1). Let P I (A+1)=={plt(A+1) | pePo}.

Similarly, we define p | [, 00) : t(p) | [A,00) = V (which is not a condition in Pg), with
t(p) P [N 00) = {(k,i) et(p) | K > A}. Let (pI[A, 00))(k,4) := p(k,i) for all (ki) € t(p)
with x > A, and (p b [/\,oo))(A,i) = @ for any (\,i) € t(p). Set Py | [A,00) := {p}
[A,00) | pePo}.

The forcing Py is dense in the product Po [ (A+ 1) x Pg ['[A, 00).

Similarly, for cardinals g, A with p < A, we define p | [, A+1) : t(p) I [p,A+1) =V
with t(p) | [, A+1) = {(k,i) e t(p) | p < <A}, Let (p [, A+1))(k,1) := p(k,i) for
all (k,7) € t(p) with x > p, and (p M, A+ 1))(,u,z') = @ for any (u,i) € t(p). We set
Pol[p, A+1) ={pt[u,A+1) | pePo}.

For conditions p,q € Py with p|gq, it follow that ¢(p) u t(¢) with the order relation
Stp) Y Si(q) 18 an Fyp-tree as well, and we can define a mazimal common extension
p U q of p and ¢ as follows: Let t(p U q) = t(p) U t(q), <ipug)=<ip) Y <iq) With
(puq)(k,1):=p(k,1) U q(k,1) for any (k,1) € t(p) Nnt(q), (p U q)(k,?) := p(k,7) whenever
(k,7) €t(p) ~ t(q) and (p U q)(k, i) := q(x, 1) for all (x,7) € t(q) \ t(p).

Surely, the class forcing Py does not preserve ZFC:

Proposition 3.1.3. Let Gy be a V-generic filter on Py. There is a cofinal function
f:w = Ord in (V[Go],e,V,Go). In particular, the Aziom of Replacement fails in
(V[G0]7€>V7G0>‘

Proof. We work in (V[Gy],€,V,Gg). For any cardinal A and i < F(\*), note that (\*,4)
is a vertex in the generic tree with Go(A*,7) : [A,A*) > 2.

We define a function f :w — Ord as follows: Let n <w. Let f(n):= X if A is the least
cardinal with the property that G(A*,m)(\) =0 for all m <n, but G(A*,n)(\) = 1.

In order to make sure that f is well-defined, we check that for any n < w, the following
set is dense in Py:

D, ={peP, ‘ JxeCard (Ym<n p(A*,m)(A)=0 A p(A",n)(A)=1)}.

Fix n < w, and consider a condition p € P. Let htt(p) = A, and take A\ > X arbitrary.
We define an extension p < p as follows: #(p) is obtained from t(p) by adding (n+1) -
many new branches disjoint from #(p) with maximal points (A*,0),...,(A*,n). We set
p(At,m)(A) =0 for all m <n, p(A*,n)(\) := 1, and the remaining values p(x*,4)(() for
(k*,i) € t(p), C € [k,k*) arbitrary with the property that p(x*,i) := p(k*,7) whenever
(k*,i) € t(p). Then P is an extension of p in D,,.

It follows that D, is dense in Py; and we can pick p e G n D,,. By definition on D,,, there
exists \, € Card with the property that Go(A;, m)(\,) = p(A;,m)(A,) =0 for all m < n,
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and Go(A:,n) (M) =p(A:,n)(N\,) = 1. Hence, f(n) is well-defined with f(n) < \,.

It remains to make sure that the function f is cofinal in Ord. Assume towards a contra-
diction that rg f was bounded below some cardinal k. We claim that the following set is
dense in Py:

D::{pelPO ‘ In<w V/\</{E|m<np(/\+,m)(/\)=1}.

Consider p € P, and let [ < w denote the number of maximal points of #(p). Then
t(p) has < l-many vertices on any level A < htt(p). Let n := [+ 1. For any \ < &,
there exists m < n, i.e. m € {0,1,...,1}, with the property that (\,m) ¢ t(p). We de-
fine an extension p < p as follows: t(p) is obtained from ¢(p) by adding a new branch
{(A,m(N\)) | 0 < XA <k} u{(0,0)} such that any m(\) is the least m < [ with the
property that (A,m) ¢ t(p). For A\* < k, set p(A*,m(A*))()\) := 1, and the remaining
values p(A*,m(A*))(¢) for ¢ € (A, A\*) arbitrary. Moreover, p(A*,7) := p(A*,7) whenever
(A*,i) €t(p). Then p is an extension of p in D; which proves the density of D c P.

Now, take g€ D n Gy and n < w as in the definition of D. By assumption, = f(n) < &,
so Go(put,m)(p) =0 for all m <n. This contradicts g € D.

Thus, it follows that the function f:w — Ord can not be bounded below any cardinal «.
O

Note that for successor cardinals x*, the forcing Py only adds Fjy,(x*)-many x*-subsets,
which might be less than the desired F'(x*). Hence, we need a second forcing P; to blow
up the power sets (k).

(The reason why we use for Py the function Fjy, instead of F' is that for singular limit
cardinals k, we will have to use the forcing notion Py I (k*+1) instead of Py I (k+1) for cap-
turing x-subsets in N in our proof of 6V (k) < F(k); and we will need that Fii,(k*) = F/(k)
to make sure that Py | (k* + 1) only has size F(k).)

Now, we turn to P;. The forcing P; will be a variant of Easton forcing with finite
support: We will have a finite support-product of forcings Fn([k,k*) x F(k*),2,k%),
where a successor cardinal £* shall only be included into the forcing Py if F'(x*) is strictly
greater than all F'(v*) for v < k.

Definition 3.1.4. Let Succ’ denote the class of all successor cardinals x* with the prop-
erty that F'(k*) > F(v*) for all v* < k*. The forcing (Py,<;,1;) consists of all conditions
p:suppp — V with suppp € Succ’ finite and

p(k") e Fn([k, k%) x F(k),2,k%)

for all k* € suppp; such that dom p(k*) is rectangular, i.e. dom p(k*) = dom, p(k*) x
dom, p(x*) for some dom, p(x*) € [k, k") and dom, p(k*) € F(k*).

The conditions in P; are ordered by reverse inclusion: Let ¢ <; p iff supp ¢ 2 suppp with
q(k*) 2 p(k*) for all k™ e suppp. The maximal element is 1 := .

For a cardinal A and p € Py, we denote by p I (A + 1) the restriction of p to the domain
{k* e suppp | k* < A}. Similarly, we write p | [, 00) for the restriction of p to {x* €
suppp | K* > A}
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Let Pyt (A+1):={pi 1 (A\+1) | p1 € P1}, and Py [ [\, 00) := {p1 | [A,00) | p1 € P1}. Then Py
is isomorphic to the product Py I (A+1) x Py [[A, 00).

For a successor cardinal x* € Succ’, we set Py(k*) := {p(x*) | p € P1}, which is the forc-
ing notion Fn([k,k*) x F(k*),2,k). If G is a V-generic filter on Py, it follows that
G1(k*) ={p(r*) | pe Gy} is V-generic on Py (k*).

Definition 3.1.5.
(P,<) = (Po x Py, <poxp, )

For a condition p = (pg, p1) € P and a cardinal A\, let p I (A+1) := (po I (A+1),p1 | (A+1)),

and p 1 [X,00) :=(po | [N, 00),p1 | [N, 00)). Let n(p) :=min{\ [ pt (A+1) =p}.
Moreover, P} (A+1):={p 1 (A+1) |peP},and P | [\,00):={p | [\, 00) | pe P}.

Lemma 3.1.6. P has a nice hierarchy.

Proof. For a€ Ord, let (Pg)y :=Po 1 (Ro+1) ={pe Py | ht p<R,}, with (<), the ordering
on (Pg), induced by <o, and (1g), := @ = 1g. Moreover, let (P1), =P I (Ra+1) ={pe
P1 | suppp € R, + 1}, with (<1), the ordering induced by <y, and (1), =@ = 1;.

Setting
[Poz = ([PO)a X ([Pl)a
for o € Ord, it follows that P = Uaeorq Pa 18 an increasing chain of set-sized forcing notions.

Let now a < . We have to make sure that P, is a complete suborder of Pg. For
A a maximal antichain in P,, we have to show that A is also maximal in P. Assume
towards a contradiction there was p = (po,p1) € Pg with pLq for all ¢ € A. Take
G e Awithg | (p | (Rg +1)), and denote by r = (rg,r1) a common extension of
p ! (Rg+1) and G in P,. Then 7 := (7, 71) with 7y := 19 U py (i.e. T | (Rg +1) = 10,
T I [Ra,00) =po | [Ra,00) U{((Rq,7),D) | (Rq,7) € t(r0) Nt(po)}) and 7y := 71 Upy is a
common extension of p and g. Contradiction.

Thus, we have shown that P = U,corq Po is an increasing chain of set-sized complete forc-
ing notions, and clearly, each P, is upwards closed.

We now go through Definition [T.4.2}

a) For a € Ord, define p, : P - P, by setting p.(p) :=p | (R, + 1) for all p e P. The
properties (i) - (v) are not difficult to verify. Regarding (iv), consider p = (pg,p1) € P

and ¢ = (qo, q1) € Po with ¢ < pa(p). Let p":= (pg, p}) with pj = qo U po, py = q1 U p1.
Then p’' < p, and po(p') = (g0, q1) = q as desired.

b) For o € Ord, let Py 00y == P | [Rq,00) with the projection ppa,c) 1 P = Pla,c0),
pp | [Ra, ).
We define: P, x Pq,0) =

{((@o,p1), (@0,@1)) € P x Ppaooy | {(k,1) €t(q0) | & = Ra} € {(5,9) €t(po) | & =Ra} },

i.e. Py x Ppo00) consists of all those conditions ((po,p1), (¢0,q1)) in Py x Prgy ey for
which pg U go has no “extra roots” at level . Then P, x P[4 ) is dense in Py, x Ppq, o0)
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(one can extend p, if necessary).

For any ((po,p1);(q0,¢1)) € Pa x Pla,00), we can regard (po,qo) as a condition in
Py by identifying the pair (pg,qo) with the condition py U gy defined as follows:
t(po U qo) = t(po) U t(qo) with the order relation <;(,,uq0):=<t(po) Y <t(go); (Po U
q0)(k,1) := po(k,) in the case that k < R,, and (pg U qo)(k,1) := qo(k,1) for k> R,.
Similarly, we can regard (p1,q1) as a condition in Py by identifying the pair (p1,q1)
with p; U ¢.

It follows that the map by : P = Py x Praco), 0 = (pa(P), Pla,)(P)) is an iso-
morphism of forcings with inverse (b,)™! : Py x Prao) = P, ((p0,11), (00,01)) ~
(Po U qo,p1 Y q1).

We will confuse any p € P with its image b, (p) in Po x Ppa,c0)-

¢) The properties (i) - (iii) are not difficult to verify. For (iii), consider p € P and
Q[a,00) € Plajc0) With G[a,00) <[a,00) Pla,e0)(P). By density, take p’ € Py x Ppg,00) With
P" < (Pa(P); laoe))- Then p’ < (pa(p), Pla,co)(P)) = P With pra.co)(P') S[a.c0) Gla,eo)-

d) The properties (i) and (ii) are clear, identifying each p € P with its image b,(p) =
(pa(p)vp[a,oo)(p)) in P, x [P[a,oo)-

Hence, it follows that P has a nice hierarchy.
O

We conclude tat P satisfies the Forcing Theorem. In particular, the forcing relation Iy
is definable.

Moreover, for any ordinal « and G a V-generic filter on P, it follows that G, := G n P, is
a V-generic filter on P,,.

By the same arguments as above, it follows that also Py = Uaecora(Po)a has a nice hierar-
chy with projections (po)a : Po = (Po)a, p = p I (Ra +1) and (po)[a,e0) : Po = (Po)a,c0),
p = p | [Re,00); and similarly, P; = Uneora(P1)o has a nice hierarchy with projections
(pl)a Py - ([Pl)a and (Pl)[a,oo) Py - ([Pl)[a,oo)-

If Gy is a V-generic filter on Pg and Gy is V[Gq]-generic on Py, then G := Gy x Gy is a
V-generic filter on P. By the definability of H—¥0, it follows that the converse is true, as

well (cf. Lemma [1.3.14)).

Our eventual symmetric submodel N ¢ V[G] will have the crucial property that sets of
ordinals X ¢ a with X € N can be captured in “mild” V-generic extensions of the following
form:

Definition/Lemma 3.1.7. For p, q € Po with (£(q), <i(q)) <my-tree (£(D), <t(p)), We denote
by ¢ I't(p) the restriction of ¢ to the domain t(p). Let

Po tt(p) = {q1t(p) | g€ Po,t(q) <t(p)},

with the partial order induced by <y, and the maximal element 1p,y ) : t(p) - V with
Lpore(p) (k,1) = @ for all (k,7) € t(p).
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For Gy a V-generic filter on Py and p € Gy, it follows that

Go 1t(p) :={q 1t(p) | ¢ € Go,t(q) <Fyp-tree L(p)} ={q € Go | t(q) =1(p)}

is a V-generic filter on Pg |'¢(p).

Proof. Consider a dense set D € P [t(p). It suffices to show that D := {ge Py | ¢ t(p) €
D} is dense in Py below p.

Take q € Py with ¢ <g p. There exists r € Py | t(p), r € D, with r <y ¢ | t(p). We
define a condition g € Py as follows: (t(7),<uq)) = (t(q), <u(q)) With G(x,) = r(k,) for
(k,i) € t(p), and q(k,1) == q(k,1), else. Then <y g with G t(p) =r € D as desired. ]

For finitely many (kg,%0), ..., (Kn-1,9n-1) € t(p), we denote by t(p) | {(ko,i0), ---,
(Kn-1,in-1)} the subtree {(x,i) € t(p) | Am < n (K,7) <yp) (Km,im)} With the order-
ing induced by <. We write p | {(xo,%0), - .. , (Fn-1,%n-1)} for the restriction of p to the
subtree t(p) M {(ko,%0),- -, (Kn-1,%n-1)}

If the set {(ko,%0),-- ., (Kn-1,%n-1)} contains all maximal points of p, i.e. for any (k,i) €
t(p) there is | < n with (k,%) <) (k1,%), then we sometimes use the notation Gy |
{(Ko,10), - -+, (Kn-1,in-1)} instead of Gy I't(p).

We have similar restrictions for Py:

Definition/Lemma 3.1.8. Consider finitely many cardinals Ry, ... ,%z_1 € Succ’, and
% < F(Ro), ... ,im1 < F(Rn_1). For a condition p; € Py, we define p; | {(Ro,7%), --- ,
(Rr-1,7%7-1)} as follows:

dom p; M{(Fo,%), - .., (Ra-1,%-1)} =
(dom, p(7o) x {7o}) U - U (dom, p(Fr-1) x {Ta-1}) =
={(a,i) edomp | Il <7 i=7},
and for any («,7%) € dom p(%;),
(p1 H{(Fo. %), -, (Fr1.%-1) }) () = pr (Fa) (o, 7).
Let
Pi (Ko, %), - (Fae1,ta1) } = {01 H{(Fo, %), -+, (Bt %m1) ) | pr e P}
For GGy a V-generic filter on P, it follows that
G1 H{(Fo,70); -+ (Fae1,im-1) } = {p1 H{(Fo, ), -+ 5 (Rae1,%01) } | p1 € Gr }

is a V-generic filter on Py ' {(Ro,%), - - - » (Fa-1,%-1) }-

In other words, for any [ <7 with &, = &}, it follows that Py | {(Ro,%), ..., (Fa-1,%-1)}
adds a new Cohen-subset to the interval [K;, R} ).
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Proof. If D is a dense subset of Py | {(Ko,%), -- -, (Fn-1,%-1) }, it follows that

D= {py Py | pr 1{(Fo, %), --- , (Fw-1,75-1)} € D}
is dense in P;. -

Hence, if G = Gy x G is a V-generic filter on P with (ko,i0), ..., (Kn-1,n-1), (Fo,%), - - -,
(Rn-1,77-1) as before and p € G, p:t(p) - V such that {(ko,%0), ---, (Kn_1,in-1)} St(p)
contains all maximal points of ¢(p), it follows that

Go 1't(p) x G1 H{(Fo,%0), -, (Fa-1,7m-1) }
is a V-generic filter on Pq [ £(p) x Py 1M {(Fo,%), - - - , (Fr_1,7m-1) }-

We will now see that these forcings preserves all cardinals.

Proposition 3.1.9. Consider a condition p € Py such that {(ko,i0), .-, (Kn-1,in-1)} S
t(p) contains all maximal points of t(p); moreover, finitely many (Ro,%), - - - ,(Fr-1,%m-1)
with Ko, ... ,Kn_1 € Succ’, 7o < F(Ry), ... , 1 < F(Fn_1).

The forcing

Po tt(p) x P1 M{(Fo,%), -, (Fa-1,7m-1) }
preserves cardinals and the GCH.
Proof. We show that for all cardinals A,

(2>\)V[G0 t(p)xG1H{(Fo,%0), - }] _ ()\4.)\/.

First, consider the case that A = A" is a successor cardinal. Let (Pott(p))t(A+1)={q?
(A+1) | g€ Py t(p)} and (Po 1(p)) 1A 00) = {q } [\, 00) | g € Py 1 ()}

Similarly, let (Py 1 {(Ro,%), ... }) T(A+1)={(pt (A+1)) 1 {(Fo,%), ...} | p€ P1} denote
the lower part, and ([Pl r{(ﬁo,io), . }) r[)\, OO) = {(p r [)\,OO)) r{(Eo,Zo), .. } | p € [Pl}
the upper part of the forcing Py | {(Ro,%), - }-

Then Py ['t(p) x Pyt {(Ro,7%0), - - - , (Rn-1,%7-1)} can be factored as
((Po 1(p)) A+ 1) % (PyH{(Fo,T0), -, (Far,751)}) F A+ 1))
((Po 1)) 1A 00) x Py H{(FosTo), - s (Roa,7m-1)}) A 00),

where the first factor has cardinality < A, since \ = N is a successor cardinal, and the
second factor is < A - closed. Thus, it follows that

(ZA)V[GoFt(p)XGlT{(Eoﬁo)a"'}] < ‘KJ()‘)’V = (Xr)v

as desired.
If X is a regular limit cardinal, the same argument applies.
It remains to show that

(2)\)V[Go tt(p)xG1{(Ko,%0), --- }] _ (/\+)V
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in the case that X is a singular limit cardinal. Assume the contrary and take \ least such

that n:=cf A <\ and
(ZA)V[Gort(p)XG1 H{(%o,70), - }] S ()\Jr)v'

Let (\; | i <n) denote a cofinal sequence in A. By assumption, it follows that

(2X)V[Go (p)xG1{ (Rosto), ] _ (X+)V

for all A < \. Thus,
2 <[]2% < (2)" =A< A =22

i<n

holds true in V and V[Gy 1 t(p) x G1 1 {(Fo,%), --. }]. Since 7 is regular, we have

| (Po 1t(p)) P (n+1) x (P11 {(Fo, %), ... }) Mn+1) | <,

and
(Po tt(p)) M n, 00) x (P1 M {(Ko,%), ---}) I [n, 00)

is <17 - closed. Thus,

(QA)V[Goft(p)XGlF{(E0,50)7...}] — ()\T])V[Goft(p)xGl[{(Eoﬁo),...}] <

< ()\n)V[(Go () n+1)x(G1H(Rosw0), - DMn+1)] < (QA)V[(Gort(p))r(n+1)X(Gl H(Fo20), - DIn+)] <
<[P xn)" < (24 = (A1),

which gives the desired contradiction.
O

We will see that any set of ordinals in our eventual symmetric submodel N can be captured
in a generic extension by one of these forcings Py 1t(p) x Py [ {(Ro,%), - - -, (Ra_1,m-1) }-

Hence, N preserves all cardinals.

3.2 Symmetric Names

For defining our symmetric submodel N, we first we need an almost-group A of partial
P-automorphisms (cf. Definition [1.4.7). We will have A = A x A;, where A, is a group
of Pp-automorphisms each of which is nicely level-preserving and can be described be-
low some ordinal «, and A; is an almost-group of partial P;-automorphisms. It is not
difficult to check that in this setting, it follows that A is an almost-group of partial [P-
automorphisms.

We start with the construction of Aj.

Definition 3.2.1. Denote by Ag(levels) the collection of all 7 = (7(k) | k € Card, k < ht )
with htm, the height of 7, a cardinal, such that each w(k) : {(k,7) | i < Fim(k)} —
{(k,i) | i < Fim(x)} is a bijection with finite support supp () = {(k,7) | 7(k)(k,1) #

(Kyi)}.
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A map 7 € Ag(levels) induces an automorphism 7. on the class of Fj,-trees as fol-
lows:  Set Tyee(t,<) = (8,<s) with s := 7[t] = {n(k)(k,i) | (k,i) € t}, where for
k > htm, we take for w(x) the identity on {(k,7) | i < Fim(k)}. Let <g:= w[<] :=

{(m(7) (5, 2), T(A) (A B)) | (#,) <o (A )}

Moreover, 7 induces an automorphism 7 : Py - Pg: For p € Po, p : t(p) = V, let
T(P) : Tiree(t(P), <opy) =V with f(p)(ﬁ(/f)(/ﬁ,i)) =p(k,1) for all (k,i) € t(p).
Let
Ag:={T | me Ag(levels)}.
We will often confuse an automorphism 7 with its extensions m;... and 7.

Note that for an Fjy,-tree t(p), it follows that 7(¢(p)) is essentially the same tree, where
only the vertices (k,7) have now different “names” 7(x)(k,1).

It is not difficult to see that any m € Ay can be described below « := ht7 + 1; and any
automorphism 7 € A is nicely level-preserving (cf Definition [1.4.3).

As usual, every m e Ay can be extended to an automorphism on Name(Py), which will be
denoted by the same letter.

Let x be a cardinal and G a V-generic filter on Py. For every i < Fji,(k), the forcing Py
adjoins a new s-subset (Go)(..,i) given by the branch through (x,7):

(Go)wiy ={C <k [IpeGo I(N,J) iy (k1) = (A, J)(C) =1}

Then (Go) (s has a canonical Py-name

(Go)way = {(¢p) [ C<mypePot (k+1), 3(N5) iy (m37) = p(A)(C) =1},
For any 7 € Ay, it follows that 7 ((éo)(n,z)) = (GO)W(,{)(M). Thus, the automorphisms in
Ag allow for swapping the generic subsets.

(We use the notation (C?O)(m) here, because later on, (GO)(M) will be used for the canon-
ical P-name.)

We call an automorphism 7 € Ay small if it satisfies the following property:

For all (r,1), it follows that w(k)(k,1) = (k,j) such that there is a limit ordinal (i) with
6,7 € [v(),7(1) +w).

It is not difficult to see that for any pair of conditions p, q € Py, there is a small automor-
phism 7 € Ay with 7p| ¢. Indeed, by finiteness of the trees, it is possible to arrange that

for any (k,17) € t(p), we have w(k)(k,1) ¢ t(p) U t(q).

Now, we turn to P;. We first outline the basic ideas about how our almost-group A; of
partial P-automorphisms shall look like.

If Gy is V-generic on Py, then for any x* € Succ’, i < F/(k*), the generic k*-subset

(G ey = {C € [m,R7) | Fp e Gy p(w7)((,0) = 1}
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has the canonical P;-name
(G ey = {(Cp) | Ce[kyr™),pe Pyt (57 + 1), p(k)(0) = 1}

(Again, we use the notation (C}'l)(m) here, because later on, (Gl)(,w-) will be used for the
canonical P-name.)

Firstly, we want that for any two generic x*-subsets (G1).+,) and (G1)(x+,r), there is
an automorphism 7 € A; interchanging them. In other words: We want to include into
A; the collection of all m = (n(k*) | k* € suppm) with finite support suppm, such that
for every x* € supp, there is a bijection fr(x*) on a finite set suppm(x*) € F'(x*) with
T(G1) (s ) = (G1) (s, £, () ()) for all @ € supp (k™).

For these automorphisms 7, we will have mp(x*)(¢,4) = p(k*)(¢, f=(k7)(i)) whenever
p € Py with ¢ € [k,k*), ¢ € suppm(x*). For all the remaining x* and ((,), we will have
mp(s*)(C, 1) = p(K*) (¢, ).

Moreover, we want that for any p,q € Py, there is an automorphism 7 € A; with 7p||q.
These 7 will be of the form 7 = (7(k*) | k* € suppm) with finite support suppm, such
that for any x* e supp, there is dom 7 (k") = dom, w(x*) x dom, (k") € [k, k") x F(Kk")
with |dom(k*)| < k*, and a collection

(W(H+)(C,i) | (¢,0) € dOIIl7T(I€+)) ¢ gdomm(x7)

such that 7 changes the values p(x*)((,4) if and only if 7(x*)({,7) = 1. In other words:

mp(k*)((, 1) # p(k*)((,7) whenever w(k*)((,7) = 1, and 7p(k*)((,7) = p(k*)((,7) in the
case that w(x*)((,i) =0 or ((,7) ¢ dom7(k*).

Ay will be generated by those two types of automorphisms.

All the (¢,7) with ((,7) € dom7(k*) and i € supp7(x*) will have to be treated seper-
ately: Namely, for any ¢ € dom, w(x*), we will have a bijection 7(x*)({) which maps the

sequence (p(C.1) | i €supp(x*)) to ((np)(C,3) |1 € supp(s*)).
These bijections m(k*)(¢) will be necessary to retain a group structure.

We will now define the collection of dense classes D, that will serve as the domains of the
partial automorphisms 7: Dy > D, in A;. We need a class of parameters S and a formula
¢, such that any Dy is of the form Dy ={pe Py | p(p,s)} (cf. Definition [1.4.7)).

Definition /Proposition 3.2.2. Let S be the class of all s = (doms(k*) | k* € supps)
such that supp s ¢ Succ’ is finite, and any dom s(x*) is of the form dom s(x*) = dom, s(x*) x
dom, s(x*) with dom, s(k*) € [k, k"), dom, s(k*) € F'(x"), and |dom s(k")| < k*.

Let ¢(p, s) be the formula
pelPy A VKY€ (suppp nsupps) domp(k*) 2 doms(k™).
Then a), b) and ¢) from Definition hold.

Proof. We observe that S consists of all finite sequences s = (doms(k*) | K* € suppp)
which are allowed as domains for conditions in Pq, and ¢(p, s) states that p is a condition
in Py, the domains of which extend the domains given by s.
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a) For every s €S, the set
Dy,={peP; | Vk* € (suppp nsupps) domp(x*)2doms(k*)}

is dense in Py, and D, can be described below a(s) := max{x* e supp s | dom s(x*) #
a}.

b) Let sp, s; € S. Then we can construct sy € S with D, = Dy, n Dy, as follows:
Let supp sy = supps; U supp Sg, and domy so(k*) = dom, so(k*) U domy s1(k"),
domy so(k*) = domy so(k*) U dom,, s1(k*) for all k* € suppsy. Then Dy, = {p €
Pilo(p,s2)} ={pePi]o(p so) Ap(p,s1)} = Ds, N Dy, with a(ss) = max{a(so), a(s1)}.

¢) Setting Smax := &, it follows that D, . =Py with Dy . 2 D for all se€S.

Smax Smax

We can now define our almost-group Aj:

Definition 3.2.3. Let A; consist of all automorphisms 7 : D, - Dy, m = (7(k*) | k* €
supp 7) with finite support supp 7 € Succ’ such that for all k* € supp 7, there are

e a finite set suppmw(k*) € F'(k*) with a bijection f (k") :suppn(k*) — supp7w(r*),

e adomain dom7(k*) = dom, 7(k*)xdom, w(k*) € [k, k*) x F((k*) with |dom7(k*)| <
k* such that suppm(x*) € dom,m(k*), and a collection (W(/ﬁ*)(gi) | ((,i) €
[k,6%) x F(x*)) with 7(x*)((,i) € 2 for all (¢,i) and 7(x*)(¢,4) = 0 whenever
(¢,i) ¢ domm(k*), and

e for any ¢ € dom, 7(k*), a bijection 7(x*)(¢) : 25uwpPm(s")  Qsuppm(x7)
such that setting s(7) := (domw(k*) | k* € supp ), it follows that s(7) € S with
Dy =Dyry={pePi | V& € (suppp nsuppm) domp(x*)2domn(x*)};

and for any p € D,, the condition 7p is defined as follows:

We will have supp(7p) = suppp with 7p(k*) = p(k*) whenever k* € suppp \ supp.
Let now k* e suppp N supp.

e For any i e supp7(x*) and ¢ ¢ dom, 7(x*), we have
() (¢,7) = p(R*) (¢ f (5 ().
e For ¢ € dom, 7(k*),
(7p(5*)(¢,) i esuppm(s*)) = (k") (O (p(K")(C,1) | i € supp (k™).

e Whenever i ¢ suppn(x*t), then mp(k*)((,7) = p(k*)((,7) if 7(k*)((,7) = 0, and
mp(k*)((, 1) # p(k*)((,7) in the case that w(x*)((,i) = 1.
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In other words: Outside the domain domm(x*), we have a swap of the horizontal lines
p(k*)(+,1) for i e suppm(k*) according to fr(k").

Inside dom7w(k*), the values wp(x*)((,7) for i € suppm(k*) are determined by the maps
7(k*)(¢); while any of the remaining values 7p(x*)((,?) with ¢ ¢ suppm(k*) is equal to
p(k*)(¢,9) if and only if 7(x*)((,7) = 1.

We need the dense sets D, to make sure that domp(x*) is not mixed up by .
For notational convenience, we write D rather than Dy, but keep in mind that any D is
of the form D, = Dy») = {p € Py | ¢(p,s(7))}, where s(7) = (domm(x*) | k¥ esuppm) € S.

Lemma 3.2.4. Ay is an almost-group of partial P-automorphisms for ¢ and S.

Proof. We go through Definition [1.4.7] By [3.2.2] it remains to make sure that d), e) and
£) hold.

d) It is not difficult to verify that any 7 € A; is order preserving. The inverse map
71 e A; can be written down explicitly, using Definition [3.2.3] Moreover, it follows
from Definition that any 7 € Ay is nicely level-preserving and can be described
below some ordinal « (take for o the maximal element of supp ), i.e. there exists
an automorphism n,: D, n P, - D, n P, with 7 =7,.

e) Let s €S, and « an ordinal with « > a(s). We have to make sure that
(A1) (s) = {T =Ta € A1 | ma: Dy 0 Py > Dy n Py}

is a group. Let m =7,, 0 =04 € (A1) (sa)- Firstly, it is not difficult to write down
amap v € (A1)(sa), ¥V = Uq such that v, = (m,)"'. Then v is the inverse of 7.
Secondly, using Definition , one can write down a map 7 € (Ay)(sa), T = Ta
such that 7,(p) = ma(0a(p)) for all p e P, n D,. Then 7 = 7o o. Thirdly, (A1)s.a)
contains the identity element idp, (the identity map on D), since idp, =idp, np,-
Hence, (A1) (s,a) is indeed a group.

f) Let s, s’ € S with Dy € Dy, and o’ > a(s’). For any 7 € (A1)(y.a), it follows that
7[Ds] = Dy, since the maps 7 in A; do not change the support and domains of the

conditions. Moreover, 7 I Dy € (A1) (sq) for every a > max{a’/,a(s)} follows from
Definition B.2.3

]

Definition 3.2.5. Let A := Ag x Ay, i.e. any 7w € A is of the form 7 = (m,m), where
7o € Ao, mo : Po = Po; and my € Ay, m : Dy, = Dy, is a partial Py-automorphism.

By what we have just shown, it follows that A is an almost-group of partial P-automorphisms.

Let A denote the group of partial P-automorphisms derived from A as in Definition m

Form, w"e A, w: D, - D,, 7' : Dy — D, we set

T~ e N (Dyn Dy)=7"1 (D 0 Dy),
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and use a method similar to Scott’s Trick to obtain set-sized equivalence classes [7] = [7].

(cf. p. . and . Then we set A:= {[n] | m € A}. Concatenation in A is given by con-
catenatlon in A, and the group structure of the A, ,) gives a group structure on A as
described in m].

Now, we are ready to introduce a finitely generated symmetric system S for A. For this,
we introduce formulas v (x,y),...,¥s(z,y), and xo(y), ..., x3(y) such that that for each
i €{0,1,2,3} the following holds (cf. Definition [I.4.13)): Firstly, whenever m, 7’ € A, then
Yi(m,y) < (', y) for all y with x;(y). Secondly, for all y with x;(y), it follows that

Ai(y) ={[r] e Al vi(m,y)}
is a subgroup of A. And thirdly, the normality property holds for the A;(y), see|1.4.13[c).

Then a subgroup B ¢ A gives rise to symmelry if there are finitely many Ay (yo), ...,
A, (Yn-1), where dg, ... 4,1 €{0,1,2,3} and x;,(%0),-- -, Xi,_, (Yn—1) hold, with

B2Ai,(yo) n -0 A, (Yno1)-
A name 7 is symmetric, if the stabilizer group
sym? (&) = {[r]eA|nrzP~ =2}
gives rise to symmetry.

We now go through the four types of A-subgroups that we want to include into our finitely
generated symmetric system S, and give some motivation.

Firstly, for any x € Card,? < Fiu(k), we want to include

Fixg(k,1) := { [7] = [(mo,m)] € A ‘ mo(k)(k,1) = (K z)}

which is well-defined (since for any 7, 7’ € A with 7 ~ 7/, it follows that 7 € Fixo(x,7) <
7' € Fixo(k,1)), and Fizg(k,i) is an A-subgroup.

By this, we make sure that any canonical name

(Go)way = {(C.0) [ <m peP (K +1), 3(NJ) iy (8,9) 2 p(X5)(C) = 1}

is hereditarily symmetric; since

Dy Dx
T(Go)(si) = (Go)(ri)

whenever 7] € Fizg(k,i). Thus, our model N will contain any of the adjoined s-subsets
(Go)(x,i) given by the branches through the generic tree.

Now, we turn to the second type of A-subgroup for our finitely generated symmetric sys-
tem S: For any cardinal x and o < Fj,(k), we want in N a surjection s : £(k) - «;
which gives 0% (k) > F() for all limit cardinals k. However, we have to make sure that
ON (k) < F(k)*; so the sequence ((Go) (s | i < F(x)) must not be contained in N.
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Therefore, for cardinals x and o < Fj,(k) a limit ordinal, we consider the subgroup
Smally(k,[0,«)) containing all [r] = [(m,71)] with the property that mo(x) is small
below v, i.e. for any i < «, it follows that mo(x)(k,7) = (k, ) such that 4, j € [v(3),v(7) +w)
for some limit ordinal ~(3):

Smally(k,[0,a)) := { [7] = [(mo,m)] € A ‘ Vi<a, ie[v(i),v(i) +w) with v(i) a limit

ordinal (WO(H)(K,i) = (k,j) for some j€[v(i),7v(i) +w) ) }

Then Smally(k, [0,a)) is well-defined, since for any 7, 7’ € A with 7 ~ 7/, it follows that
(k) (k,1) =7'(k)(K,1). Moreover, Smally(x,[0,)) is a subgroup of A.

Now, for any limit ordinal i < o, we can define a “cloud” around (G'o)(m) as follows:
— — D,
(Go0) (i) = { (7r (G0) (ki) ,]l) ‘ [7] € Smally(k, [0,a)) } =

(@i 1) | m<w).

Then (@‘“0)((1“) = ((Z;’VO)?‘H Z.))G is the set of all (Go)(x,i+n) for n < w; hence, any two distinct

clouds (@6)‘(1“) and (@6)& ; for limit ordinals 7,j < « are disjoint. It follows that the
sequence .
((GO)?ﬁ,i) | i < a limit ordinal ),

which has a canonical symmetric name stabilized by all © € Smally(k,[0,a)), yields a
surjection s: (k) > o in N.

This argument is carried out in more detail in Proposition [3.4.1]

Moreover, for any k € Succ’, kK = K" and i < F'(k), we include into our finitely generated
symmetric system S:

Fizy(k,i) = {[r] = [(m,m)] € A | Vpe D, : (mp) 1 {(k,i)} =p | {(k,3)} }.

As before, Fix; (#,7) is a well-defined subgroup of A.

By this, we make sure that any generic s-subset (G1)(.,) is contained in our eventual
symmetric submodel N; since with the canonical name

(Gl)(n,i) = {(Cap) | C € [’%7 ’%+) , D€ P F(Kﬁ + 1) ) p(/{r)(CaZ) = 1}7

AT

Dr
it follows that 7(G1) (x4 G1)(xiy for all me Fizy(k,1).

Again, we have to make sure that the sequence ((Gl)(m) |i< F(/i)) is not contained in N,
in order to achieve OV (k) < F(k). On the other hand, we need surjections s : (x) - « for
all & < F(k). Thus, we include into our finitely generated symmetric system for x € Succ/,
a< F(k):

Smally(k,[0,a)) := { [7] = [(m0,m1)] € A ‘ Vi<a (i¢suppmi(k) V fr,(k)(1) =1) }
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Again, Small,(k,[0,)) is a well-defined A-subgroup.

Moreover, Small,(k,[0,a)) does not contain any of those automorphisms that inter-
change some (G1) (e and (G1) ) for 4, j < a. Thus, for any i < o, we can define a

“cloud” (G)® (i) around (G1)(x,iy With the symmetric name

(@) = { (7@ mny 1) | [7] € Smally (5, [0,0)) }

such that with (Gl)(m) ((Gl)(m)) , it follows that any two distinct clouds (Z;Vl)(m-)

and (Gl)(w) are disjoint. Hence, the sequence ((@I)(m) | i < a), which has a canonical

symmetric name stabilized by all 7 € Small;(x,[0,«)), gives a surjection s : (k) - « in
N.

This concludes the introduction of our finitely generated system S for A, and we have
already checked [1.4.13a) and b). Regarding|1.4.13|¢), it is not difficult to verify:

Lemma 3.2.6. o For all me A and k € Card, i < Fjy(k),
[7]Fizo(k,i)[7] " 2 Fizg(k,i) n ({Fizo(k, ) | (k,7) € suppmo(k)}.
e For me A and K € Succ’, i < F(k),
[7)Fizi(k,i)[7] " 2 Fizy(k,i) 0 [({Fiz1(k, ) | j € suppmi(x)}.
e For me A and k € Card, a < Fiyn (k) a limit ordinal,
[7]Smally(k,[0,0))[7]™ 2 Smally(k, [0, @) n ({Fizo(r, ) | (r,]) € suppmo(k)}.
o For me A and k € Succ’, a < F(k),

[7]Smally(k,[0,a))[x]" 2 Smally(k,[0,a)) n ({Fizi(k,j) | j € suppmi(k)}.
We conclude:

Definition /Proposition 3.2.7. The A-subgroups

Fixo(k,i) for k € Card, i < Fijn (k)

Smally(k,[0,a)) for k € Card, a < Fin(k) a limit ordinal

Fizy(k,1) for k € Succ’, i < F(k), and

Smally(k,[0,a)) for k€ Succ’, a < F(k)
yield a finitely generated symmetric system as in Definition [1.4.13] denoted by S.
The following Definition corresponds to Definition [1.4.14

Definition 3.2.8. A subgroup B € A gives rise to symmetry with respect to S if there
are n,m,n,m < w and
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® Ko, ..., kn1 € Card, ig < Fim(Ko0), -+ in-1 < Flim(Kn-1),

® )\, ..., A1 € Card, o < Flim(Xo), - -+ 5 Q1 < Flim (A1) limit ordinals,

® Ky, ...,RKn1 €Succ’, 79 < F(Ro), ..., 11 < F(Rn_1), and

® o, A € Suee @y < F(Xo), - oo et < F(Mime1)
such that B is a superset of the following intersection:
Fizg(ko,ig) N+ N Fizg(Kp-1,in-1) N Smally(Xo, [0,a0)) N - n Smally(An-1,[0, 1)) N
N Fizy(Ro,79) N - N Fixy (Fr_1,Ta-1) N Smally (X, [0,a0)) N - n Smally(Am_1, [0, @m1))-
We define corresponding to Definition

Definition 3.2.9. A P-name 1 is symmetric for S if the stabilizer group
sym? (&) := {[x]€A, n: Dy > D, | 7zl =3P~}

gives rise to symmetry with respect to S. Recursively, a name z is hereditarily symmetric,
€ HSS, if & is symmetric and ¢ is hereditarily symmetric for all ¢ € dom 7.

3.3 The Symmetric Submodel

Fix a V-generic filter G on P.

Definition 3.3.1. The symmetric extension by S and G is
N =V (G)® = {i% | & e HS®}.

We claim that N satifies the statement from our theorem, i.e. N & ZF, N preserves all
V-cardinals, and 6V (k) = F(k) for all k.

We will work with the structure (N, €, V) = (V(G)S,€, V), where we have a unary predi-
cate symbol for the ground model.

Since P is approachable by projections, it follows that the Forcing Theorem holds for Iy,
ans also for the symmetric forcing relation (I-)¢ -

In this chapter, we will verify that N is indeed a model of ZF, although the class forcing
P does not preserve ZFC. Later on, we will see that any set of ordinals located in N can

be captured in a “mild” V-generic extension by set forcing that preserves cardinals and
the GCH.

By Proposition|1.4.21} it follows that N is satisfies the axioms of Extensionality, Foundation,
Pairing, Weak Union and Infinity.

Proposition 3.3.2. The Aziom of Separation holds in (V[G],e,V) and (N,e, V) for
every L2A-formula o.
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Proof. We first consider V[G]. Let a € V[G] and ¢ € L.
W.lo.g. assume n =1 and take a parameter z := zy in V[G]. We have to show that there
is be V[G] with
b={zea| (V[G],e,V) Ep(z,2,V)}.

Take a cardinal A large enough such that there are names a, 2 € Name(P | (A + 1)) with
a = dGr(AJrl)7 » = 3GHA+1)
Let

bi={(i,p) |2 edom a, pePt(A+1),piY (i ea A o(d, 2 V))}.

We claim that b¢ = b. The direction “c” is clear. Concerning “2”, consider x € b. Let
% € doma with z = 2¢ and p € G with

pirg (T ean (i, 2 V).

Let p:=p (A +1). It suffices to verify also p IF} (2 €a A ©(&,%,V)). If not, there would
be g € P, q < p with .

gy ~ (2 ean (i, 2,V)).
We construct a P-automorphism 7 with 7p| ¢ such that « is the identity on P | (A + 1).

Then 7zl = 7P, waP’~ = aP~ and 7z = ZP~; hence,

ik (TP ea® A p(zPm, 7207, V),
contradicting that 7p | q.

We start with 7. Let ht my := max{n(p),n(q)}. For a <\, let mo(«) be the identity. For
At <« < ht g, take for mo(a) a bijection on {(«,7) | i < Flim(a)} with finite support such
that for any (1) € t(p), it follows that mo(a)(a, i) = (v, 7) for some (a,7) ¢ t(p) U t(q).
Then from g <p (A +1) it follows that 7P, | go-

Now, we turn to m;. Let suppm := suppp; U suppq;. For at € suppm with a® < A,
let m1(a*) be the identity. For a* € suppm with a* > A, we define 7 (a*) as follows:
Let domm(a*) := domp, (at) n dom ¢ (o) and suppm(at) = @; then we only need to
define m(a*)((,4) for ¢ € dom,p,(a*) n dom, ¢;(a*), i € dom,p,(a*) n dom, ¢, (a*).
Let mi(a*)((,7) = 0 if p;(a*)((,7) = 1(a*)((,7), and 7 (a*)((,7) = 1 in the case that
ﬁl(a_'-)(Cui) # ql(a+)(C7i)‘ Then 77-1]_91 H qi-

Hence, our automorphism 7 = (7, 71) is as desired.

This proves Separation in (V[G], €, V) for any LA-formula .

The proof for N is similar, using symmetric names and the symmetric forcing relation

(IFs)p.-
0

Now, in order to show that Replacement holds in N, it is enough to verify the Axiom
Scheme of Collection (and then use Separation):

Proposition 3.3.3. For any LA-formula o(x,y,v0, ... ,Un-1) and a, 2z, ... ,2n1 € N
such that
(N,e,V) eEVzea Iy o(x,y, 20, -+ , 201, V),
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there exists b e N with the property that
(N,e,V) E Vreayebo(x,y,z0, -+ y2n-1,V).

Proof. For an ordinal o and the set forcing P, as above, the Nameg(P,)Y-hierarchy is
defined recursively (in V') as usual: & € Nameg,;(P,)" iff & € Nameg(P,)" x P,, and for
A a limit ordinal, & € Namey (P, )Y iff & e Nameg(P,)" for some 5 < A.

We are going to use the following “diagonal hierarchy”. For a € Ord, let

N, = {i% | & € HS n Name,,;(P,)"}.

One has to check that this hierarchy is indeed definable in the structure (V[G],€,V,G),
i.e. there is an £2*%-formula 7 such that (V[G],,V,G) E7(z,0,V,G) iff o = min{f | x €
Ng}.

Therefore, one first has to make sure that the interpretation function (-)¢ is definable
within (V[G],€,V,G), where some extra care is needed, since the recursion theorem can
only be applied very carefully (we do not have replacement in V[G]).

This issue is adressed in [Git80] and Proposition where we show: There is a func-
tion f in (V[G],¢,V,G) with f(&,,V,G) = x if and only if # € Name,,1(P,)" and
x = 1Ce.

This function f can be used to define our N,-hierarchy: Let 7(z,a,V,G) be the formula
a=min{B | 3i € HS n Nameg,,(Ps)" x=f(i,8,V,G)}.
Then (V[G],€,V,G) E 7(z,,V,G) if and only if o = min{3 | x € Ng}.
Now, consider a € N and an LA-formula ¢ with
(N,eVYEVzea Iy p(x,y,V).

(We suppress the parameters zo, . . ., 2,1 for simplicity.) We have to show that there exists
b e N with the property that

VexeaJyeb (N,e,V) Ep(z,y,V).

First, we use structural induction over the formula ¢ to construct an L£28 formula © such
that for all € a and v,
(VIG] &, V,G) = o(z,y,V,G)

if and only if
<N7 E’ V) ': SO(Q:’ y7 V)'

Then we define in (V[G],€,V, G):
M:={(z,a) | zea n a=min{S |y 3y e HS n Nameg,(P5)" :

y=[f(,8.V.G) np(z.y,V,G) } }.
Then M ={(z,a) |z€a A o =min{B | Iy e Ng (N,&,V)Ep(z,y,V)}}.
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It suffices to show that there exists 6 with rg M < 4, since this would imply that for all
x € a, there exists y € Ny with (N, e, V) E o(z,y,V).

Take A large enough such that there is @ € HS n Name(P | (A + 1))V with a = aG1+1),
We claim that M e V[G (A +1)].

Let
M= {29 ) | & edoma,a=min{B8 | 3y e HS n Nameg,; (Pg)"

3p: pirg (deanp(d,9,V,G)), pt(A+1) eGH(A+1)} }.

Then M’ e V[G ' (A+1)]. It remains to prove that M = M.

Therefore, it suffices to show that in (V[G], €, V,G), for any & € doma and € Ord the
following are equivalent:

(1) &9104) ea n 3j € HS n Nameg,i(Py)Y 3y : y= (5, 6,V.G) ABEGOD, 5.V, @)

(I1) 3y e HS n Nameg.1(P)V Ip: piry (v ea np(a,9,V,G)),
ptA+1)eGI(A+1).

The direction “(I) = (II)” is clear. Concerning “(II) = (I)”, assume towards a contra-
diction that there was & € doma, 5 € Ord and y € HS n Nameg,;(Ps)" with p -y (a: €
a A p(#,9,V,G)) for some peP with pt(A+1) e G (A+1), but (I) fails.

From piry 2 ea withpt (A+1) e Gt (A+1) and &,a € Name(P (A +1))V, it follows that
G+ € gGIA+D) = g hence,

(VIG],V,e,G) E ~(3y € HSnNameg, (Pg)" 3y = y = f(5,5,V.G) a5 4, V,G) ).
Take g € G such that
gy Ve HS n Nameg.1(Ps)" Vy (y=f(5,8,V,G) — -o(i,y,V,G)).

As in Proposition we can construct an automorphism 7 such that 7p | ¢, and 7 is
the identity on P } (A +1). Then 77"~ = 7”~; hence,

L B(&, 75", V,7G).

By structural induction over the formula p, one can use an isomorphism argument
to show that for any condition r € P, it follows that r I} @(jz,W@D’T,V,G) if and
only if 7 Iy @(:’L’,W@D”,V,WC’). The induction step regarding the existential quan-
tifier follows from the fact that for any © € HS n Name,,1(P,)V and m € A, also
707" € HS n Name,,1(P,)Y; and 07 = (7077)™ for any V-generic filter H on P.

Hence, it follows that also o
ik p(i, 7y ", V,G).

But 7y°~ € HS n Namegs,;(P)V, which contradicts 7p | ¢.
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Thus, (I) and (II) are equivalent, which implies M = M as desired. Now, since M € V[G |
(A+1)], we can apply Replacement in the ZFC-model V[G | (A +1)] and obtain that
rg M c ¢ for some ordinal §. Therefore,

Vexea Jye Ns (N,e,V)E @o(x,y,V).

Since Ns € N (the canonical name Ny := {(4,1) | 2 € HS n Nameg.1 (P, )V} is symmetric),
this finishes the proof.
[

Similarly, one can show that the Axiom of Replacement holds true in V[G] as long the
formula ¢ does not make use of the parameter GG for the generic filter:

Proposition 3.3.4. For any LA-formula o(x,y,v0, ... ,v5_1) and a,2g, ... , 2,1 € V[G]
such that
(VIG],&,V,G) EVzea Iy p(x,y,20, - ,2n-1,V),

it follows that there exists b e V[G] with the property that
(VIG],e,V,G) EVxea Iyeb p(x,y,20, - .- ,2n-1,V).
One can use basically the same proof, but with the hierarchy ((V[G])q | @ € Ord) instead
of (N, | @€ Ord), where (V[G])q := {2% | & €e Name,,1(P,)}.
Proposition 3.3.5. The Aziom of Power Set holds in N.
Proof. Consider a set Y € N. We first show:

IXeCard PV (V) cV[G (A +1)] (%).
Take a cardinal p large enough such that Y € V[G t (u+1)] and [Y|VICIw+D] < 4

i.e. there exists an injection ¢ : Y < pin V[G } (u+1)]. Take Y € Name(P | (u+ 1))V
with YV = YD) Tet \:= F(u)*; then [P} (u+1)] <A
We claim that £¥(Y) c V[G (A +1)].

Consider Z € PN(Y), Z = Z€ with Z € HS such that 7Z " =7 for all 7 which are
contained in the intersection

FZ.ZE()(I{(),Z'()) n...N Fi$0(l€n_1, Z.n—l) N Smallo(/\g, [0, Ofo)) NN Smallo()\m_l, [O, Ofm—l)) N

ﬁFilL’l(Eo,io) n---N Fil'l(ﬁﬁ,l,iﬁ,l) n---N Smalll(xo, [0,60)) N Smalll(Xm,l, [O,am,l)).

Take a condition r € G such that ¢(r) contains the vertices (Ko, %), - -, (Kn-1,in-1) and all
t(r)-branches have height > p.

Then Go t(p+1) x (Go1(r)) M, 00) x Gyt (u+1) x (G1 H{(Fo. %), - - -, (F-1,Tm-1)}) |
[11,00) is a V-generic filter on Py M (u+1) x (Po M(r)) 1 [p,00) x Pyt (u+1) x (Py

{(ECHZO)’ SRR (Em—lviﬁ—l)}) r[l'[w OO)
We want to show that Z is contained in the intermediate generic extension

V[Go P (u+1) x (Go 1(r)) 11, 00) x Gy } (p+1) x (G M{(Fo,%0)s - -+ (Rt Tm-1) }) 1, 00) |-

Let Z' be the set of all y&1(+1) with ¢ € domY such that there exists p € P, po < 7, with
pIFp y € Z such that:
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pol(u+1)eGot(pn+1),
(po 1¢(r)) Mp, 00) € (Go 1E(r)) tp, 00),
prh(p+1)eGypt(p+1),

o (p1 1H{(Ro,7), .- }) Mp, 00) € (G1 1H{(Ko, %), - - - }) I [, 00).

It suffices to show that Z = Z’. The direction “c” follows from the Forcing Theorem. For
“27 we use an isomorphism argument similarly as before: Assume there was §C1u+1) €
Z'\ Z with § e domY and p with p IF ¢ € Z as in the definition of Z'.

Take g € G such that ¢y <7 and ¢ I- § ¢ Z. We will construct an automorphism 7 with
7p | ¢ such that 7 restricted to P (u + 1) is the identity, and additionally,

VIS Fil]o(lio,io) NN Smallo()\o, [0,0é())) NN F’L.l'l(Eo,io) (DIEEN

e N Smalll(XO,[O,ao)) Mmoo

—D, —D, =D,
But then, from 7p W+ 7y°" € 7Z " and wZ " = Z

1y T z". Together with 7p| ¢ and ¢ - ¢ ¢ Z, this gives the desired contra-
diction.

. myP™ = P~ it follows that

We start with the construction of 7. Let ht 7 := max{n(p),n(q)}. For a < pu, let mo() be
the identity. In the case that « € [u*, ht 7], we take for mo(«) a bijection on {(«,i) | i <
Fim(a)} with finite support such that:

e for any (a,7) € t(r), we have mo(a) (e, i) = (a,1),

e for any (a,i) € t(p) \ t(r), we have mo(a) (e, 1) = (a, ) for some j < Fjy, () with
(a,j) ¢ t(p) U t(q),

e for any i < Fjy, (o) with i € [y(4), (i) +w) for v a limit ordinal, we have my(«)(«,7) =
(v, 4") such that also ¢’ € [v(7), (i) + w).

Then g is the identity on Py I (u+ 1), and 7y € Fizg(ko,i0) N =+ N Fixg(Kp-1,in-1),
since mo(a)(e,i) = (o, 1) for all (a,i) € t(r). Moreover, mg € Smallo[ Ao, [0,0)) N -+ N
Smally(Am-1, [0, @m_1)), since we only use small permutations. By construction, it follows
that mopo | qo.

The map m can be constructed as in the proof of Proposition [3.3.2] Then mip; | ¢1, m
restricted to Py I (u+1) is the identity, w1 € Fixi(Ro,70) N+ N Fizy(Fr_1,%-1) since p; and
q1 agree on Py M {(Ro,%), ...}, and m € Smally(Xo, [0,@)) n -+ n Smally (Am-1, [0, am-1)),
since supp m; (at) = @ for all a* € Succ'.

Hence, our automorphism 7 has all the desired properties, which implies Z = Z’; so

ZeV[Gol(u+1) x (Gott(r)) M 00) x Gyt (u+1) x (Gi H(Fos %), - }) Hps00) |-

Recall that we have an injection ¢:Y < pin V[G I (u+1)]; so using the parameter Z, we
can construct in V[Go | (u+1) x (Go M t(r)) | [p,00) x Gy | (p+1) x (G1 M {(Ro,%0), ---}) |
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[, 00)] a function ¢z : pp — 2 with 1z(a) =1 iff @ € im(s) with ™ () € Z, and 1z(a) =0,
else.

The forcing

Po I (pu+1) x (Po tt(r)) Mp, 00) x Pr 1 (1) x (Py1{(Fo,%), - }) I, 00)

can be factored as

(Po b (1) x (Po L)) Hm A+ 1) x Pyt (1) x (PyH{(FosTo), - ) Hm A+ 1) )

< ((Bot(r)) 1A 00) x (Py H{(FoTo), .- }) 1A 00) ).

where the “lower part”

Pot (u+1) x (Pott(r)) M A+1) x Pyt (u+1) x (Py M {(Ro,%0), --- }) M, A+ 1)

has cardinality < Fiim(p) - A - F(u)* - A= F(p)* = A, and the “upper part”

(Po tt(r)) A, 00) x (P11 {(Fo,%), ---}) I'[A, )

is < A-closed.

Hence,

Ly € V[Go Mu+1) x (Gott(r)) Mp, A+1) x Gy M (u+1) x (G1 M {(Ro,70), ---}) f[,u,)\Jrl)];

so 1z € V[G I (A +1)], which implies that also Z e V[G (A +1)].

Since Z € PN (Y) was arbitrary, it follows that £V(Y) ¢ V[G | (A +1)] as desired. This
proves (*).

Now, let a == PVIGIODI(Y) e V[G } (A+1)]. Then PN(Y) € a. Take @ € Name(P | (A+1))V
with a = a& = aG1O+1),

Inside the structure (V[G], €, V,G), we define a function F :a — Ord as follows:
For zea, let F(z) =« if a =min{f | z € Nz} if such an « exists. Let F(z) =0, else.

Now, we will use the function f from Proposition with the property that (V[G],e,V,G)
f(z,0,V,G) =z iff & € Namey,1(Py)Y with z = 3Ge.

Let n(z,8,V,G) denote the statement
i e HS n Nameg,1(Ps)Y 2= f(1,8,V,Q).
Then
F={(GCOD a) | zedoma n 29O € gD A o =min{ | (29D 3, V,G)} }u

U{ (G 0) | 2edoma A 291D € gFTFD A 33 (291D 3 V@) ).
We claim that F'e V[G (A +1)].
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Let
F = { 9D a) | 2 edoma, 291D € g1 Jp: pi-d o =min{B | n(z, B, V.3)},

pr()\+1)eGr()\+1)} U
0 {9, 0) | £ edoma, 291 € a¥O 3p: piry 38 9(2,8,V,G),
pr(A+1)eGI(A+1)}.

It suffices to show that F' = F. The direction “c” follows from the Forcing Theorem.
Concerning “2”, we proceed as in the proof of Proposition |3.3.3}

Assume towards a contradiction, there was (2¢O o) € F\ F with # € doma, 2610+1) ¢
aGtO+) W.lo.g., let a > 0.

Take p € P with

pirg a=min{f | n(z,8,V,G)}
and pt (A+1) e G (A+1). Since (261D o) ¢ F', there must be g € G with

qH—§P/ _'(Oé:min{ﬂ | 77(27B7V7G)})

As in the proof of Proposition we construct an automorphism 7 with 7p |¢ such
that 7 restricted to P} (A + 1) is the identity. Then 7z°~ = ZP~; so

Y a=min{8 | n(z 8,V,7C)}.

Now, for any condition r € P and 3 an ordinal, we have r Y n(%,3,V, G) if and only if
rikg n(Z, 0, V,7@G), similarly as in the proof of Proposition Hence,

p kg o =min{s | 9z, 8,V,G)},

contradicting that 7p | q.
The case « = 0 is similar. Hence, F'= F € V[G } (A+1)] as desired.

Now, by Replacement in V[G | (A + 1)], it follows that rg F' is bounded by some ordinal
5. Then any z € £V (Y") € a is contained in some N, for a < §; hence, PN (Y') € Ns. By the
Axiom of Separation, this implies £V (Y) € N as desired.

]

Thus, we have shown that the symmetric extension N is indeed a model of ZF.

We will now see that N preserves all V-cardinals, which follows from the fact that any
set of ordinals X € N, X ¢ « can be captured in a “mild” V-generic extension by a forcing
as in Proposition [3.1.9;

Lemma 3.3.6 (Approximation Lemma). Let X € N, X ¢ a with X = XC such that

_Dﬂ' _DTr . . . . .
wX =X for all m which are contained in the intersection

Fizo(ko,i0) N N Fixzg(Kp-1,in-1) 0 Smally(No, [0,00)) N - 0 Smally(Ap-1, [0, 1)) N
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ﬂF’éﬂfl(Eo,io) n--N F?;xl(gﬁ_l,zﬁ_l) n Smalll(xo, [0,&0)) n---N Smalll(Xm_l, [O,am_l)).
Let r € Gy such that {(ko,%0), ..., (Kn-1,in-1)} S t(r) contains all mazimal points of t(r).

Then
X e V[GO ft(r) X G1 r{(%o,io), e ,(Eﬁ_l,zﬁ_l)}] =

=V[Go M{(ko,%0), -, (Kn-1,0n-1)} X G1 1 {(Ro, %), - -, (Fa-1,75-1) } ]-
Proof. Define
={f<alIqg=(q,q): (IOSOT;C]”—5€X7QOH(T)€G0H(T),

M (Fo,%), ...} € G1 H{(Ro,%), ... } }

Then X = X’ follows by an isomorphism argument as before.

From Lemma |3.3.6| and Proposition we obtain:
Corollary 3.3.7. Cardinals are N-V -absolute.

A factoring argument shows that for X ¢ x with x a cardinal, the according forcings in
the statement of Lemma [3.3.6] can be cut off at level x*:

Corollary 3.3.8. Let X € N, X ¢ k with k a limit cardinal. Then there are n,n' < w,
Joy -+ s Jn-1 < Fim(k*) = F(kK), and Ko, ... ,Rp-1 € Succ with Ky < K, ... ,Rp_1 < K;
W0 < F(Ro), - i1 < F(Ru_1) such that

X eV[Go M {(k",J0), - s (K" jno1) } x G1 1 {(Fo,%0), -+ s (Far—1,tnr-1) } X G1(KT) ]

For a successor cardinal k* and X € N, X € k*, there are n,n’ <w, jo, - - , Jn-1 < Flim(K*),
and ROy -+ s kpr—1 € Succ with Ko < /€+, vy R £ KJ+,' 20 < F(Eo), eyl < F(En’—l)
such that

X e V[Go{(k",J0), -+, (K", jn-1)} x G1 1H{(Fo,%0), -+ (Far—1,2-1) }]-

Proof. First, we consider the case that x is a limit cardinal. From Lemma [3.3.6] it

follows that there are finitely many cardinals ko, ..., K, 1, and ig < Fiim(Ko), - -+ ,in-1 <
Fim (Kn-1); moreover, finitely many Ko, ... ,Rz_1 € Succ’ and 79 < F'(Rg), ... ,17-1 < F'(Fr_1)
with

X e V[Go r{(lio,io), ,(ﬁn_l,in_l)} X G1 r{(Eo,io), 7(Eﬁ_1,iﬁ_1)}].

W.lo.g. we can assume Ko, ... ,k,-1 > k*. Take a condition r € Gy such that {(kqg,?), - .-
y (Kn-1,1n-1)} € t(r) contains all maximal points of ¢(r). Then

0 r{(lio,io), e a(/{n—lyin—l)} X G1 r{(ﬁo,ZO), Ce ,(Eﬁ_l,Zﬁ_l)}

is a V-generic filter on the forcing

0 rt(T) X [Pl [{(Eo,io), ce ,(Eﬁ_l,zﬁ_l})7
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which can be factored in a “lower part”

((Po 1(r)) P (5" + 1)) x (P 1 {(FosTo), -+ » (1, 1) }) P (6 + 1)),

with cardinality < x*, and an “upper part”

((Po tt(r)) MKt 00)) x ((Py M{(Fos70), - - -, (1, 7o) }) M7, 00)),

which is < xk*-closed. Thus, X is contained in the generic extension by the lower part:

Let (K%, J0), ... , (K%, Jn-1) denote the <;(,)-predecessors of (Ko, %), ..., (Kn-1,%n-1) respec-
tively, on level k*. Moreover, assume w.l.o.g. that 0 <n’ <n” <n with Ry, ... ,Kp_1 < K;
Rty ovv s R = li+ and K,», ... ,kn_1 > k*. Then

X € V[Go r{(li+,j0), . ,(Ii+,jn_1)} x (G4 f{(ﬁo,ig), ceey (En/r_l,inﬂ_l)}] c
c V[GO r{(li+,j0), e (I€+,jn_1)} X Gl r{(Eo,zo), e ’(En’—lain’—l)} X Gl(li+)]
as desired.

The case X € x* is similar.

3.4 V keCard 6V (k) =F(k)

Firstly, using the subgroups Smally(k,[0,«)) or Small;(x, [0, a)), it is not difficult to see
that 6V (k) > F (k) for all cardinals k; i.e. for any o < F(k), there exists in N a surjection

s:P(k) > a
Proposition 3.4.1. Ve Card 0¥(k) > F(k).

Proof. First, we consider the case that x is a limit cardinal. Fix some cardinal a <
Fim(k) = F(k); we construct in N a surjection s : (k) — a.

As already mentioned in Chapter [3.2] we define for any limit ordinal i < o a “cloud”
around (G‘o)(m) as follows:

(Co)esy = { (7(Co)nny 1) | [7] € Smallo(, [0,0)) } =

(G 1) [ m<w}),
Then
(GO)(H i) T ((GO)(H z)) = { (GO)(N,Hn) | n < w} e N

for any limit ordinal i < o, since the name (GO)( is fixed by all 7 with [7] € Smally(k, [0, «)).

Moreover, any two distinct clouds (GO)O‘ P and (GO) j for limit ordinals i and j are
disjoint — here, we have to use that sphttmg at hmlts is not allowed in our tree forcing;
so for 7,7’ < Fhm(n) with j # j it follows by genericity that indeed, (Go)(x ) # (Go)(x,j7)-
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Recall that for P-names z, g, we denote by ORp(,7) the canonical name for the ordered
pair (29,5%). The sequence ((GO)(O;D | 7 < o a limit ordinal) is contained in N as well,
since its name

{( ORe(,(Go)¢.).1) | i < a limit ordinal }
is fixed by all 7 € Smally(k, [0, a)).
This gives in N a well-defined surjection 5: §(x) - {i <« |7 is a limit ordinal}, by setting
5(X) :=i whenever X € (GO)(Cfm') for some i < o, and 5(X) := 0, else.
Also without the Axiom of Choice, 5 can be turned into a surjection s: £(k) - a.

Concerning successor cardinals, it suffices to show that 6V (k*) > F(k*) for all k* € Succ'.
Let a < F(k*). We proceed similarly as before, setting for i < a:

- Dx

(Gl)&+’i) = { (ﬂ-(Gl)(I{+7i) ,1) | [7T:| € Smalll(ﬂf', [0,0é)) }
With 7 (G1) s+ = (W(Gl)(m,i)Dﬂ)G, we obtain

o A\ a G a
(Gl)(m,z‘) = ((Gl)(m,i)) = {77 (Gl)(m,i) | [7] € Smalli(£",[0,a)) }
As before, it follows that the sequence ((Z;Vl)(% 9 | i < @) is contained in N, so it suffices to
check that two distinet “clouds” (G1)e. .. and (@:)&+ j are indeed disjoint. Assume to-

wards a contradiction, there were 7, a(e S)malll(/{*, [0, )) with 7 (G4 (ti) =0 (Gl)(m,j)'
By genericity, take ¢ € [x, x*)\(dom, 7(k*) udom, o (k*)) with (G1) (i) (C) # (G1) e+ ,5)(€)-
Since 4,7 < a and 7,0 € Small; (%, [0,)), it follows that 7 (G1)(x+.) () = (G1)(x+.))(C)
and o (G1) ) (€) = (G1)x+,5(¢). Contradiction.

Hence, the sequence ((@Vl)(‘f{”) | i <a) gives in N a surjective function s : (k") » o as
desired.

«

[]

It remains to show that 6V (k) < F(k) for all cardinals k.
First, we consider the case that
Kk is a limit cardinal.

Assume towards a contradiction that there was a surjection S : £(k) - F(x) in N. For
the rest of this section, fix such a surjection S.

- . —D.  —D, ) .
Let S € HS with S = S¢ such that 7S " =S " for all © that are contained in the
intersection

FZ.ZE()(I{(),Z'()) NN Fixo(lin_l,in_l) N Smallo(/\o, [0,(10)) NN Smallo(/\m_l, [07O[m_1)) N
ﬁFiJIl(Eo,io) n---nN Fixl(ﬁﬁfl,iﬁfl) N Smalll(xo, [0,50)) (RN ﬁSmalll(Xm,l, [O,am,l)),
which will be abbreviated by ().

We know from Corollary that any X € N, X ¢ k is contained in a generic extension
of the form

V[GO r{(liJrajO)? ’(K+7jk—1)} X Gl r{(MO’jO)’ 7(”@—17jﬁ—1)} X Gl(’{+)]v
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where k7E < W, j07 7jk—1 < Fiim(’%+) = F(K')a and Koy -+ 5 Hg_q < K, j(] < F(:U“O)a R
i1 < F(pzy)-
For a limit ordinal 8 < F(k) large enough for (Ig) (we give a precise definition of this

term later), we want to consider a map S® ¢ S, which will be the restriction of S to all
X that are contained in a generic extension

V[GO r{(’i+7j0)7 R (K+7jk—1)} X Gl r{(/“bi[))? SRR (ME—l’jE—l)} X Gl(K+)]7

where jo, ... ,Jk-1 < B and Jy, ..., 75, < 5.

Let M denote the collection of all tuples (s, (10,7), - -- » (z_1,J5_1)) such that k < w,
Koy -+ s g € K N Succ, 7y < F(po), -+ J5q < F(pz_1), and s is a condition in Py with
finitely many maximal points (k*, 7o), ..., (k*, jk_1) with jo, ..., Jk1 < Flim(k%) = F(K).
For B < F(k), we denote by Mgz the collection of all tuples (s, (f:0,70)s --- > (14515 J51)) €
M such that additionally, 7, < /5, ..., Jz_; < f, and s has maximal points (s, jo), ...,
(/i+,jk_1) with jo, ceey jk—l < B

Proposition 3.4.2. There is a limit ordinal 5 < F(k) such that the restriction
S8 .= S r{X Cr | I(s, (10:70)s - s (WgqsT51)) EMp: seGot (k" +1),

X e V[GO ft(S) x Gl r{(N0770)7 7(:“%—1775—1)} X Gl('Kﬁ)]}

is surjective onto F(k), as well.

Later on, we will lead this into a contradiction by showing that any such S? must be
contained in an intermediate generic extension which preserves cardinals > F'(), but also
contains an injection ¢ : dom S? — (.

We now define what we mean by large enough for (I¢): Fix a condition r € Gy such that
{(Ko,90)s - -+ s (Kn-1,%n-1)} € t(r) contains all maximal points of ¢(r), and an extension
T <o 1, T € Gy such that all ¢(7)-branches have height > k*. For | < n with k; > k*, let
(k*,i)) be the t(7)-predecessor of (x;,4;) on level xk*; in the case that x; < x*, let (x*,7))
denote some t(T)-successor of (k;,i;) on level Kk*.

We say that a limit ordinal 5 < Fy,(5*) = F\(k) is large enough for (1) if the following
hold:

e .
o B>il, ...,4_q,

o 3>qforall [ <m with \ < k™,
o 3>7 for all | <7 with & < &,
e 3>a for all [ <m with \; < &.

We will refer to these conditions r, 7 later on.

We want to show that whenever a limit ordinal 5 < F (k) is large enough for (I¢) and
f:= [+ k* (addition of ordinals), then S# must be surjective onto F(k), as well.
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For any tuple (s, (10,7), - - » (51, 75.1)) € M and
& € Name(Po 1(s) x P1 M{(10,70)s -+ (05175210} * Pi(K7)),

we define a canonical extension & € Name(P) as follows:

Recursively, set
= { @) | 305 (o 1 ()00 {0 To)s - o va(5%))) € ¢ To = v (),

supp® € K"+ 1,01 H{(p0,70)5 -+ -} = v1 H{ (10, Jo), - - 1,01 (k") = v1(K") }
If seGot(k*+1), it follows that

EEG — ijO M(s)xG1M{(10,J0)s - }xG1 (k") )

~ =D — p.
Sometimes, this name & will be extended further to a name © € Name(P) . In order
to simplify notation, this extension will be denoted by zP~.
We now give a proof of Proposition [3.4.2]

Proof. Assume towards a contradiction that a limit ordinal 3 < F(k) is large enough and
B:= B+ r* (addition of ordinals), but S8 is not surjective. Let o < F((k) with « ¢ rg S8.
Fix some cardinal A with A > max{x*, Ko, ... , Kn-1,A0; -+ s An—1, K0y « - - » Rm—1, Ao, - - - 7Xﬁ—1}
such that S € Name(P 1 (A+1))V. Then S € V[G } (A\+1)], and we can define a canonical
P} (A +1)-name for S as follows:

Sﬁ = { (OR[Pr()\Jrl)(Xaa)vﬁ) | 3 (87 (MOajO)a s 7(ME_17jE—1)) € MB :

X e Name(Py 1(s)  Pr (0. To), - (i1 T2)} % Pr(s™)). P = (BouBy) €P T A+ 1),
Do £ 8, D IFpr(a+1) ORIPr(Ml)(XyOé) €S }
It is not difficult to check that indeed, (S8)G1(A+1) = S8,

Since S : N(k) - F(k) is surjective, there must be X € £V (x) with (X,a) € S. By

Corollary [3.3.8, take (s, (t0,70), ---,(Hg_1,75.1)) € M such that s € Gy | (k* + 1) has
maximal points (k*, o), ..., (K%, jk-1), and

X = X Colt(s) x G H{(0.5)s iy Fpy) * G (")

for some X € Name(Pg 1£(s) x Py 1 { (110,70, - - - s (M1 Tia) ) x Pi(k*)). W.lo.g. we can
assume that the sequences (j; | [ < k) and (J, | I < k) are both increasing.
Now, (X,a) = (XCIO+D) ) e SGIO+D)  but o ¢ rg(S#)GIO+D) 50 we can take p e G} (A+1)
such that — _ _

pirpioat) ORpioun) (X, @) €S plkpiun) a g g SP.
W.lo.g., let po <7, po<s and htp > k*.

Now, take h < k such that jo, ..., jn-1 < B, ju, ..., jk-1 > B, and h <k with 5y, ..., Jr_, < 3,
Tis - s Jpq 2 8- Then (X, ) ¢ S? implies that h <k or h < k.
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Pick pairwise distinct ordinals mjn, - .. , mojr-1 i (5, 58) ~ {Jo, - .. , ja_1} such that
{(H+77T0jh)7 R (H+77T0jk71)} N t(pO) =.

We want to construct a Py-automorphism 7y which is the identity below level x*, and
swaps for any [ € [h, k) the vertex (xk*, ;) with the vertex (k*, mo7;); i.e. for any qo € Pg and
lelh, k) with (k*,7), (", m0j1) € t(qo), we want that (moqo) [ {(k*, 7o)} = qo M {(K*, 1)},
and (7ogo) M{(£*, 1)} = qo M{ (K", moji) }. Since {(k*,mojn), ..., (K%, Tojk-1)} N t(po) = 2,
we can assure that at the same time, mopg | po-

For P; we proceed similarly, but in order to achieve mip; | p1, we first have to extend p to
condition P = (po,Py) < (po,p1) with pe G 1 (A +1) such that the following holds:

For any p* € Succ’ with {l € [h,k) | u = pt} = {los.. . la} for some 1 < 2 < w
(e, puy = = = pu_, = p*, s0lo, ... 1.y € [hk) implies that J,,...,7,., > B), it
follows that p* € suppp, with J,,...,7, , € domyp,(u*), and there are mJ,, ...,
lelz,l € (675)\{707 s Jﬁ_l} withﬁl [{(/ff,jlo)} :Z_jl r{(/fr:ﬂ'ljlo)}? 71_71 r{(/frajlz,l)} =
Py Mt mg, )}

Since [ = 5+ x*, and dom, p;(p*) has cardinality < p < &, this is possible by a density
argument.

Now, it is possible to construct a P;-automorphism that exchanges for every [ € [ﬁ, E) the
(P1)(u.5,)-coordinate with the according (P1)(,, xj,)-coordinate; so for any ¢ € D, we

will have (71q1) (um3) = (@) ) (T1@1) (w3 = (1) (umz,)- By our preparations about
P, we can also assure m1p; | ;-

Moreover, we will have 75" =577 Recall that B was large enough for (I), and for both
7o and 7 we do not disturb indices below J3; so 7 € Fizo(ko,i0) Nn---n.Smally(No, [0,00)) N
N Fiz(Fo,%) N -+ n Small; (o, [0,7)) N --.

For a condition q¢ < p,mp and H a V-generic filter on P with ¢ € H, it follows that
a ¢ rg(SP)H, but at the same time

—~—Dx

((ﬂ'X )H,a) € (ﬂgDﬁ)H =S,

. - - . Pm\H . = Pm 1
We will see that this is a contradiction, since (7TX ) will be equal to some (X ) ,

where X is a name for the forcing

[PO rt(ﬂ_OS) x [Pl H(HOJO); s a(:uﬁ_pjﬁ—l)? (ME? leﬁ)) cee 7(ME_177F17E—1)} x [Pl(/4'+)7

where s > mop > ¢ has maximal points (k*,j0), ..., (k% jn-1), (K*, T0gn)s - - (K*, ToJk);
thusv (71-087 (M0770)7 SR (:uﬁ_lajﬁ—l)7 (ME? Trljﬁ)v SR (ME) leE)) € Mﬂ This will lmply

(XY a)esr,

contradicting that o ¢ rg(S#)H.

We start with defining 7g. Let ht mg := n(p). For any « < k*, mo(«) will be the identity
on {(a,i) | i < Fim(a)}. Regarding level x*, let suppmo(k*) := {(k*,jn)s .-+, (K*, Jk-1),
(/{+77T0jh)7 7(’f+77r0jk—1)} with 71-()(/{'—)(Oévjl) = (O[,’YT()jl), 71-0(/{*—)(0‘{’77-0].1) = (Oé,jl) for
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all [ € [h,k). For k** < a < htm, the map my(«) is constructed as follows: Let
{(,60), ..., (@, 05(a)-1)} denote the collection of all («,0) € t(py) which have a t(po)-
predecessor in {(x*,jn), ..., (k" jr_1)}. Pick o, ... ,gn(a)_l < Fim(a) pairwise distinct
with {(a, &), ... , (a,gn(a)_l)} Nt(po) = @ such that for all i < n(«), there is a limit ordinal
v with 6178’1 € [777'““-))' Eet SUPPWO(OQ = {(Oé, 50)7 Tt (Oé, 671(04)—1)7 (0475’0% Tt (047’5’71(06)—1)}
with mo(a)(a, ;) = (o, ), mo() (v, ;) = (v, 0p) for all I < n(a).

This defines .

First, we have to check whether my € Fixg(ko,i9) N -+ N Fixg(Kp_1,in-1). Consider
Il < mn. Then my € Fixg(ky,i;) is clear in the case that x; < k™. If k; = k*, then
(Ki,1;) ¢ supp mo(k;) follows from B> i) = 1. In the case that x; > k*, let suppmo(r;) =
{(K1,60), -, (Kiy Ongi)-1), (k1,00), - .. ,(/il,gn(m)_l)} as before. Recall that we denote by
(k*,4]) the t(7)-predecessor of (ky,4;) on level k* (which is also its ¢(po)-predecessor).
Since 3 is large enough for (Ig), it follows that i) < B, so (k*, i) ¢ {(K%,n), -, (KT Jko1) }s
thus7 (Hl,il) ¢ {(FL[,(S()), e ,(/@l,én(,ﬂ)_l)}. _ _

Also, (ki,4) € t(r) € t(po) gives (ki i) ¢ {(K1,00) -, (Ki,0n()-1)}- Hence, (ki,4) ¢
supp mo(r;) as desired; and it follows that 7y € Fizg(ko,i0) N =+ N Fixg(Kp_1,%n-1)-

Also, m € Smally(Xo, [0,a0)) N+ N Smallo(Am-1, [0, m-1)): Let [ <m. For \; # *, there
is nothing to show. In the case that \; = x*, we use again that [ is large enough for (I¢);
50 B> g, ..., 01, which implies supp mo(k*) n {(k*,7) | i <oy} = @.

Finally, mpy | po by construction.

Now, we turn to 7. Let suppmy = {5, ..., 15 }-

Consider u* € Succ’ with {l € [h,k) | ;= p*} = {lo,...,l._1} for some 1 < z <w. (Then
iy ==y, = pt, and Iy, ... 1,y € [h, k) implies Tl Ji._, 2 B.) Recall that we have
lelg? vﬂ-ljlz_l € (ﬁ75) N {707 tee Jﬁ—l} with Dy r{(ulmjlo)} =D r{(ﬂloﬂrljlo)}? <Dyt
{(Iulz—17jlz_1)} =D r{(ﬂlz—nﬂ-ljlz_l)}'

Let dommy (p*) = dom, m(p*) x domy my(p*) == dom, p, (u*) x dom, p; (u*), and

supp ™1 (1) = {Jiy» -+ s Jiu > T1dlgs -+ » M1, - Themap fr, (u*) : suppmi(p+) - supp mi (")
will be defined as follows: fr, (u*)(7,) = ™17}, fu,(ut)(m17;) =7, for all e {ly,... 1,1}

For ¢ € dom, 71 (u*), we need a bijection 7y (pu*)(¢) : 2wppm (k™) — 2suppm(1™) - Again, we
swap any j;-coordinate with the according m;7,-coordinate:

(i () (O)(ei | i esuppmi(p))), = enz (ma(u)(O) (e | i € suppmi (7)) )
ledlo, ..., 1,1}

Finally, for (,7) € [p, u*) x F(u*), let m(ut)(¢,4) = 0.

This defines 7y, with D, = {q e Py |V u* esuppgn{pz, ..., pz_} domg(p*) 2 domm(put)}.

_ = ¢ for
T1J; T

For any such ¢ € D, and pu* € suppq with p* =y, = - = py,_, for o,...,1,-1 as above,
we have {7, ... ,7._,» Ty, --- M7y, € domy, p(p*) = domy, my(p*) € domy, g1 (p*), and
() ()T = 40 (Coma)s (rag) (1) (G ) = a(er)(C) for all Le oy, 1},
¢ € domgq(p*). Moreover, (mq)(ut)((,i) = q(put)(¢,i) for all the ¢ € dom,q(ut),
i < F(p*) remaining with 4 ¢ supp mi(u*) = {71, - - > J1._,» T1ligs -+ T1di._, }-

Since we have arranged that D1 r{(/vblmjlo)} =D r{(:ulouﬂ-ljlo)}ﬂ <Dy r{(ulzfl7jlz,1)} =
B MG w131, )} it follows that (w7, (1) = 7y ().
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Hence, 717, | ;.-

It remains to check that m € Fizy(Ro,%) N - N Fizy(Fp_1,7a-1) N Smally (X, [0,a0))
n-- n Smally(Am-1,[0,m-1)). For I <7 and % < k, we have 7; < E, since 3 is large
enough, so 1y ¢ supp m1(%;). Hence, m € Fizy(%;,7). In the case that k; > k, it follows that
Ry ¢ supp 7y, so again, m; € Fiz (%;,7) as desired. Similarly, m € Small; (o, [0,a0)) N
e N Smalll(xm_l, [0,0%_1)).

Thus, we have constructed an automorphism 7 = (7, m1) with 7p | p and 7 € Fixg(ko, %) N
N Smallo(/\g,[0,0éo)) NN Fixl(ﬁo,@)) n - n Smalll(Ao,[O,@o)) N ---. This gives
—Dr =D

S =5 .

- . —~Dr
Since D IFpr(a+1) ORuDr()\+1)(X,C\{) € S, it follows that ™ IFPr(a+1) OR[PF(A+1)(7TX ,O{) €
7S " hence,
_ e .
T H_[Pf()\‘*'l) OR[Pr()\+1)(7TX ,Oé) €sS.
Take g € P (A +1) with ¢ <p,7p. Then q IFpj(as1) ¢ 18 S8 and

’\."Dﬂ' .
q IFP(A+1) ORPr(/\+1)(7TX ) €S,

We will lead this into a contradiction.

’T’Dw ’T’DW .
As already indicated, 7X  will be equal to some X | where X is a name for the forcing

Po Mt(mos) x Pyt {(posJo)s - s (i1 Trr)s (W ™T5)5 - (g Tid5_1) b % P1(K7),

where s € Py has maximal points (k*,70), ..., (&%, jn-1), (K", T0Jn), - - -, (K*, ToJr_1)-

More generally, for a name & € Name(Pq ['£(s) x Py M {(10,70)s - -+ » (4515 J51) } x P1(67)),
we cannot apply « directly to obtain 7z, but have transform z into a P-name & first, and

i . ~D
then consider the extension &

However, the map 7 induces a canonical isomorphism T} : Po ' £(s) x Py I {(ro0,70), - - -,

(ﬂE_17jE_1)} X [Pl(/{+) —> [PO Tt(WOS) X [Pl r{(l’tO)jO)? e 7(Mﬁ_1ujﬁ_1)7(ﬂﬁv7rljﬁ)7 L)
(tz_1,m™Jp_1)} x P1 t (k%), which extends to the name space, such that for all & e

Name([PO rt(S) x [Pl r{(ﬂ(]?jO)? cee 7(#%-173%-1)} X [Pl(/iJr)); we have
This transformation 7. can be defined as follows:
Recall that s is a condition in Py with maximal points (k*, o), ..., (K%, jk-1), so the con-
dition mps has maximal points (k*,70), ..., (K%, jn-1), (K*,70dn), -+, (K*,mojr-1) with
(mos) I k* = s k*, and for any [ < h, it follows that mys has the same branch below (k*, j;)
as s; but for [ € [h, k), the mys-branch below (k*,mqj;) coincides with the s-branch below
("{F»jl)'
For a condition

(UO [‘t(S), U1 r{(:u()vjo)v sy (ME—I’jﬁ—l)}v Ul(li+) )
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in [PO H(S) X [Pl T{(M0770)7 7(“%-177%-1)} x [Pl(/ﬁfr)? let

TW(UO rt(s)’vl r{(:umjo)v 7(#%—1’7E—1)}7U1('%+))

be the condition

(w6 P(m09), 04 {0, 30) - (s T (e )y -+ (g M)} 01 (7))
with
o v [t(mos) = mo(vo I(s)),
o v M{(o: 7o) -+ » (Wi Tien)s (s ™T7)s -+ (o1 M) b € Pt {(uo, 7o), - -
(=15 Th=1)s (s ™Tg)s -5 (g, M5y ) s obtained from vy M{(p0, 7o), - - - (g, Tpon)

by swapping any (u,7,)-coordinate for [ € [h,k) with the according (u,m7)-
coordinate,

o v (k") =v1(K").

Then T, induces a canonical transformation of names T : Name (P M(s) x Py M {(10,70) - -- »

(171 T1) } x P1(k7)) - Name (Po M (mos) x Py M{ (10, o), - - - » (1 F5r)s (s Tad)s - -
(g, mJrq)} x P1 r(m)), which will be denoted by the same letter.

. . . . . ’T’Dﬂ "‘.’D'/r
Recursively, it is not difficult to check that indeed, 7z " =T,% .

Thus, from
’T"Dﬂ' .
q-proa1) ORproeny (X ) €8
it follows that

—Dr .
q Frie1) ORpros) (17X ,a) €S,

NOW> T7X € Name([PO rt(ﬂos) x Py r{(”OajO)’ 7(”3—1735—1)7 (:uﬁa leﬁ)? SRR (HJE—D
M)} x P1(k%)), where mos has maximal points (k*, jo), ..., (K%, ja_1), (K%, ojn), .- -
(K™, mojk-1) With jo <, ..., jn1 < B, and mjp < B, ... ,mojr-1 < 8 by construction. Also,
Jo<Bs... 75 <B,and mJ; < B, ... ,mJz_y < B by construction. Thus, (7os, (10,7), - - -
(1> Ta1)s (g ™TR)s - (Mo, M) € M.

Since qg < TPy £ Tos and g Ikppast) ORPF(AH)(TWX, Q) € S, it follows that

(ORW(AH)(T,TXD",Q),C]) € S’B.

contradicting that also ¢ IFppoxe) @ ¢ 18 S8,
Hence, S? must be surjective, which finishes the proof. n

Thus, we have shown that for any B’< F(k) large enough and (5 = B+ k*, the restriction
SP:dom S? - F (k) must be surjective, as well.
We will now lead this into a contradiction.

For the rest of this section, we fix some limit ordinal B < F(k) large enough and let
B =B+ ~k*. We want to capture S? in an intermediate model V[G? | (k* + 1)], which
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will be a generic extension by a certain set forcing P2 | (k* +1). We will show that
V[G? } (k*+1)] also contains an injection ¢ : dom S# < S, while P# | (k* + 1) preserves all
cardinals > F'(k) — a contradiction.

Roughly speaking, this forcing P? | (k* + 1) will be obtained from P, by first cutting off
at height x* + 1, and then cutting off at width 5. The latter procedure is rather clear
for Py: For successor cardinals A\* < k, A\* € Succ’, we take for (Py)?(\*) the forcing
Fn([M\ A1) x 5,2, A%) instead of Fn([A\,A*) x F(A*),2,A") in the case that 8 < F(\*).
However, the forcing notion (Pg)? | (k* + 1) requires a careful construction. One could
try and restrict Py to all those p € Py I (k* + 1) which have only maximal points (k*,%)
with ¢ < B. Nevertheless, their predecessors (A, 7) on lower levels A < k* might still have
indices j > 3, so our forcing would still be “too big”.

Our idea will be to drop all indices at levels below x* — then the domain #(p) of the
conditions p € (Po)? I (k* +1) will be given by their maximal points (k*,7) and the struc-
ture of the tree below, i.e. for any two maximal points (k*,7) and (k*,7') we only need
information about the level at which the branches below them meet.

We start with a “preliminary version” (Po)? t (k* +1): Any condition p € (Py)? | (k* +1)
will be of the form p:¢(p) » V with a tree ¢(p) given by its finitely many maximal points
(k*,080), ..., (K", Br-1) and the tree structure below. We will now specify how this tree
structure should be coded into the forcing conditions:

On the one hand, for any level a < k*, the tree structure of ¢(p) induces an equivalence
relation ~, on the set {8y, ..., Bk-1} by setting §; ~, §; iff (k*,i) and (x*,j) have a
common t(p)-predecessor on level a. This equivalence relation ~, induces a partition B,
on {fo, ..., Pr-1} such that for all [,I' < k, there exists z € B, with {§;, 5y} € z iff the
vertices (k*, ;) and (k*, By) have a common t(p)-predecessor on level a.

Conversely, the tree structure below (k*, ), ..., (K", Bk-1) could be described by a se-
quence (B, | a < k*,a € Card) of partitions of the set {f,..., 1} such that any B,+
is finer than B,, and By ={{fo,---,Bk-1}}, Be+ = {{Bo},---,{Br-1}}. Since for Fj,-trees
we do not allow splitting at limits, we have to require that for any limit cardinal « < &,
there exists a cardinal @ < a such that B, = Bj for all 8 with @< < a.

We will give any t(p)-vertex on level a < k* a “name” («, z), where z € B, is the collec-
tion of all i < k with (o, 2) <) (7, {B;}). Then the vertices already determine the tree
structure of t(p).

Definition 3.4.3. Let k < w and By, ..., Bk1 < Fim(k*) = F(r). We say that (¢,<;)
is a tree below (K*, ), ..., (k*, Bk_1) if there is a sequence (B, | a < k*,« € Card) of
partitions of the set {5, ..., Bx_1} such that

e for any cardinal a < k%, it follows that B+ is finer than B,, By = {{fo,.- ., Ok-1}},
and B/{* = {{60}7 B 7{6k—1}}7

e for all limit cardinals a, there exists o < o with Bg = B, for alla < 8 < o,

such that

t:= | {a}x B,
aeCard
ask®
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i.e. , the vertices of ¢ are pairs («, z) with z € B, a subset of {f,..., Bk_1}-

The order <; is defined as follows: («,2) < (8,2') iff < and z 2 2.

We call suppt = {(k*,50), ..., (K", Br_1)} the support of (t,<;).

For 8 < Fim(k*), we denote by T'(x*,3) the collection of all (¢,<;) such that (¢,<;) is a
tree below some (k*,50), ..., (K", Bk_1) with k <w and fy, ..., Bk_1 < .

There is a canonical partial order <p(,.+ gy on T'(x*, 3): Set (s,<s) <r(erp) (t,<¢) iff supp 2
suppt, and the tree structures of s and ¢ below supp t agree, i.e. for any ¢, j € supp t, the
(t,<¢)-branches below (k*,47) and (k*,7) meet at the same level as they do in (s, <y).

Definition 3.4.4. Let (£,<;),(s,<,) € T'(x%,3) with suppt = {Bo, ... ,Br-1}, supps =
{Bo, -+, B5_1}, and the according sequences of partitions (B, | o € Card,a < x*) and
(Bo | @€ Card, o < k). Then (s,<;) <pe+ ) (¢, <) iff the following hold:

o supps={By, ..., Bz} 2 {Bo, ..., Bu-1} = suppt,

e for any a < k*, the partition B, extends B,, i.e. for any j3;, By € suppt,
(3 z € B, {ﬁl,ﬂl/} c Z) < (33 € Za {Blaﬁl’} c E).

One can check that <p(.+ g) is indeed a partial order.

For trees (s,<,) and (t,<;) in T'(k*, ) with (s,<) <@+ ) (£,<¢), we can define an em-
bedding ¢ : (¢,<¢) = (s,<s) as follows: «(«, 2) := («,Z), where («,Z) € s with Z 2 2z (then
z =7z nsuppt). With <= 1[<] = {((a, 2),0(8,2")) | (o, 2) < (8,2")}, it follows that
< =<s neft], and (¢[t], <) € (5,<s) is a subtree.

Conversely, consider s,t € T'(x*, 3) with an embedding ¢ : (¢,<;) = (s, <) such that for all
(a,2) €t, we have (v, 2) = (o, Z) with Z 2 2. Then (¢[t],¢[<]) € (s,<s) is a subtree, and
one can easily check that (s,<) <r(e ) (£, <)

Hence, the partial order <p(.+ g can also be described via embeddings.

The maximal element of T'(x*, ) is the empty tree.

Now, we can define (Py)?  (k* +1):
Definition 3.4.5. The forcing (Py)? t (k* + 1) consists of all p: t(p) — V such that
o t(p) e T(x*, ),

p(at,z) e Fn([a,a*),2,a%) for all (a*,z) € t(p) with a* a successor cardinal,

p(Ro, 2) € Fn(Rg,2,Rq) for all (R, 2) € t(p),

p(a,2) =@ for all («, 2) € t(p) with  a limit cardinal, and
e |plal<a for all regular limit cardinals a.
For p,p € (Po)? 1 (k* +1), set p < p iff

o (D) <r(x+p) t(p),
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e p(,Z) 2 p(a, z) whenever z 2 z.
The maximal element 1 in (Py)? | (k* + 1) is the empty condition with ¢(1) = @.

Our argument for capturing S? inside V[G? t (k* + 1)] will roughly be as follows: We

define a function (S8)’ as the set of all (X’ 1(+"+1) «) for an appropriate name X, such

that there exists p € P with p - (X,a) € S and p? | (k* +1) € GB } (k* +1). In order to

show that (S?)’ ¢ S8, we use an isomorphism argument similarly as before: If there was

(XG1 (=D ) e (S8)'\ S8, one could take p and ¢ in P with pf | (k*+1) € GB } (k* + 1),

q € G such that p I (X,a) € S and ¢ I- (X,a) ¢ S. We construct an automorphism 7
~D, D

. . y 4 y 4 _D7r _D7r . . .
with 7p|l¢ with 7X =X and 7S " =S5 ", and obtain a contradiction.

Recall that prior to the proof of Proposition we have fixed a condition r € G such
that the maximal points of ¢(r) are among {(ko, %), --- , (Kn_1,in-1)} S t(r), and 7 € Gy,
7 <1, such that all branches of 7 have height > k*. For [ <n with x; > k™, we denote by
(r*,4)) the t(7)-predecessor of (x;,4;) on level £¥; in the case that x; < x*, we have chosen
for (k*,i;) some t(7)-successor of (x;,%;) on level K*.

Firstly, in order to make sure that 7p || ¢ is possible while at the same time 7 € Fiixg (o, i0) N
N Fizg(Kp-1,in-1), it will be necessary that from (pg)? I (k*+1) € (Go)? I (k*+1), ¢ € G,
it follows that p and ¢ coincide on the tree ¢(7). Thus, we will have to include ¢(7) into
our forcing (Py)? I (k* +1): Namely, we will restrict (Py)? t (k* + 1) to those conditions
that coincide with ¢(7) below level k.

Secondly, for m € Smally(Ao, [0, 0)) N - 0 Smallo(Apm-1,[0, m-1)), we will have to make
sure that (po)? I (k* +1) € (Go)? I (k* + 1), ¢ € G implies that for all [ < m, the indices
(A\;,7) at level \; agree for p and ¢ for all ¢ < ;. In order to achieve this, we enhance
our forcing (Py)? | (k*+1) and assign indices (\,7) with i < a; to some some vertices (X, 2).

We start with the second, defining a forcing ((ﬁP\o)/B Mkt + 1))(/\ ~ that will be the

0,000), -
collection of all p € (Pg)? I (k* + 1) equipped with an additional indexing function N(p)

on {(A;,z) €t(p) | L <m,\ <k} such that
o N(p)(M,2) e {(N\,i) | i<} u{*} for all (N, 2) e dom N(p),

e any (\,7) € rg N(p) has only one preimage:
(N(p)()‘lvz) = N(p)(/\laz,) NZF Z,) = N(p)()‘l’z) = N(p)(/\hzl) =+

The idea about this indexing function N(p) is that for a condition p € ((ﬁP\O)B Mkt +
1))@07&0)7”., any vertex (A;,z) € t(p) with N(p)(\,2) = (A,4) for some ¢ < o should
correspond to the vertex (\;,7) for conditions in Py, while all vertices (N, z) € t(p) with
N(p)(\;, z) = * should correspond to vertices (A, 7) with i > ay.

For p, pe ((Zﬁo)ﬁ M(RY + 1))()\0@0)7.”
iff p<pin (Po)? M (k*+1), and N(p)(N\,Z) = N(p)(\i,2) for all Z 2 2.

with indexing functions N(p) and N(p), we set p< p
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Now, we define our forcing ((ﬁso)ﬂ P(RY + 1));0 o) which could be regarded the col-

lection of all those conditions p € ((Fo)ﬂ Mkt + 1))(/\0 o) that coincide with ¢(7) below

(k*,i4), -, (k*,i!_,), where the function N(p) is now defined on
{(Qo2) ) [ 1<m N <} U {(0,2) t(F) | a <),

First, we define T'(x*, )" c T'(k*, 3) as follows: The condition #(7) induces on any level
a < KT an equivalence relation ~T) on {if, ... ,i,_,} by setting A7) ir iff (k*,4;) and
(k*,17) have a common ¢(7)-predecessor on level a.

Thus, let (¢,<;) € T'(x*, B)'7) iff (¢,<) € T(k*, ) with partitions (B, | a € Card, « < k%)
as in the definition of T'(x*, ), such that {(x*,i(),...,(x*,i_;)} S suppt, and for any
level o < k7, the partition B, coincides with ~f1®, i.e. for all [,] < n, we have i ~Z§F) z% iff
there exists z € B, with {i,i7} ¢ 2.

In other words, we want the tree structure of t below (x*,1)),..., (k%,1
the tree structure of (7).

The partial order <p(+ gy on T(x*, )" is inherited from T'(x*, 3).
Now, any p € ((ﬁﬁo)ﬁ M (kT + 1))2\O o). will be of the form p : t(p) - V with ¢(p) €

T(x*, 3)!") and the values p(c, 2) as in Definition [3.4.5 equipped with an indexing func-
tion N(p) defined on

{()\l,z)et(p) | l<m,)\lSH} U {(a,z) | 3l<n (o, 2) <yp) (K+,{22})}

with the following properties:

/

' 1) coincide with

o For (a,2) <y (K%, {i}}) with N(p)(«,2) = (o, i), it follows that (o, ) is the ¢(7)-
predecessor of (k*,i;) on level a.

e For all the (\;, z) remaining, N(p)(A;,2) € {(N\,7) | i <y} U {*} as before with

(N()\l,z) =N\, 2") A ziz’) =N\, z)=N(\z2") =

The idea about extending the domain of N(p) is that any (o, z) <) (&%, {i}) with
N(p)(«, z) = (a, i) should correspond to the vertex (a,i) € (7).

The partial order “<” on ((ﬁSO)ﬁ M (kT + 1))2\0 o). is defined as follows: Set p < p iff

t(p) <t(p) in T'(k*, B)H7, and for all (a, 2) € t(p), (o, Z) € t(p) with z € Z, it follows that
p(a,Z) 2p(a, 2z), and N(p)(a,z) = N(p)(«,Z) in the case that («,z) € dom N(p).

For the maximal element 1, we have for (1) a tree below (k*,4(), ..., (k*,4/_;) with par-
titions (B, | @ € Card, o < k*) and the values N(1)(«, z) given by ¢(7), and 1(a, 2) = @
for all (o, 2) € t(1).

This defines (Po)? | (k* + 1) = ((Po)? M (k* + 1));/\0’(10)’.“.

We will now see that there is a subforcing (FO)F c Py dense in Py below 7 with a projec-
tion of forcing posets pf : (P)™ — (Pg)? I (k* +1). Hence, Gy induces a V-generic filter
(Go)? 1 (k™ +1) on (Po)? 1 (k*+1).
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Generally, for a condition p € Py with ¢(p) < t(7) such that all the branches of ¢(p) have
height > k*, we can define p (p) € (Po)? } (5* + 1) as follows: Roughly, we take all prede-
cessors of the points {(k*,i) € t(p) | i < B} and drop the indices below level k*. We start
with defining ¢ := t(p’g(p)). Let suppt := {(x*,3) | I < k} :== {(k*,7) € t(p) | i < B}. For
any level a < k*, the condition p induces an equivalence relation ~, on {f, ..., Bk_1} by
setting ) ~o f7 iff (k*,5;) and (k*, ;) have a common t(p)-predecessor on level a. We
take for ¢ the sequence (B, | a € Card, a < k%) of partitions such that any B, corresponds
to the equivalence relation ~,: For any /3, 3;, we have 3 ~, 3 iff there exists z € B, with
{81, B;} € z. Together with the order relation <; given by (a,z) < (5,2') iff a < and
22 2/, this defines t € T'(x*, 8). From t(p) < t(T) it follows that ¢t € T'(x*, 3)H™.

The tree t can be embedded into ¢(p): Namely, a canonical map i (p) : t = t(p) can be
defined as follows. For (o, 2) € t, consider §5; € z. Let («,i) denote the ¢(p)-predecessor
of (k*, ;) on level a. Then («, z) €t corresponds to the vertex («a,i) € t(p), and we set
B (p)(a, z) = (a,1). ThlS map is well-defined and injective, with (a, z) < (5, 2") if and

only if ¢ (P)(a z) S o 0 (p)(B, 7).

Hence, (15 (p)[t], 6 (p)[<i]) € (t(D), <u(p)) is a subtree.

For (o, 2) et =t(pg(p)), we set (pf(p)) (e, 2) = p(1g (p) (e, 2)).

It remains to define the indexing function N := N(pﬁ(p)): For (a,z) €t with («, 2) <
(k*, {zl}) for some [ < n, let N(a,2) = (a,i) = 1)(p)(a, 2). For all (\,z) et, <m,

with o2 (p) (N, 2) = (M, 1), let N\, 2) == 1o (p) (M, 2) = (A7) in the case that i < ay, and
N(Aj, z) = *, else.

This defines the projection pg (p).

Whenever (o,2) € t with (o, 2) < (k%,{i}}) for some [ < n, then N(a,z) = («,i) is
the t(p)-predecessor of (k*,7]) on level a. Since t(p) < t(7) it follows that (o) is
also the t(7)-predecessor of (k*,7]) on level o. Hence, po(p) is indeed a condition in

((IPO)H (’l{ +1))()\0 a0),.. ([PO)/J) r(/{++1)'
Let now (Py)™ denote the collection of all p € Py with ¢(p) < ¢(7) such that all branches of
p have height at least x*, and the following additional property holds:

(1) For I <m, every (A, k) € t(p) with k < oy has a t(p)-successor (k*,7) with i < .

Then ((Po)7, (Z0)7) is a forcing with the partial order (Z)" induced by <, and maximal
element 1:¢(7) - V with 1(«,7) = & for all (a,7) € t(T).

Since (Pg)7 is dense in Py below 7, it follows that (Go) == {pe (Po) | peGy}isa
V-generic filter on (Py)".

Proposition 3.4.6. The map pl : (Po)™ = (Po)? | (k* +1), p = pl(p) is a projection of
forcing posets. In particular,

(Go)? M (k" +1) -Pg[ Go) ] {P (p) | pe (”Do) N Go}
is a V-generic filter on (Pg)? 1 (k* +1).
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The latter will be important, since we want to work with models of the form V[(Gg)? |
(k* +1)] as intermediate generic extensions to capture parts of the map S¥.

Proof. 1t is not difficult to see that ,0’3 is order-preserving and surjective with pg(]l) =1.
In order to show that pgv is a projection of forcing posets, it remains to verify the following
property: For any p € (Po)™ and q € (Po)? 1 (k% +1) with q < pl(p), there exists s € (Py)T,
s <p with p(s) < q.

Then it follows that (Gg)? | (k* + 1) hits any open dense set D ¢ (Pg)? | (k* + 1).

Let p e (Po)™ and ¢ < p(p) as above. First, we construct a condition g € (Py)™ compatible
with p such that pg (9) = ¢ We do not change the tree structure of ¢, but give any

vertex (o, z) € t(q) an index N(q)(o, 2) = (1), where N(q) should extend the following
indexing functions Ny+(¢), N'(¢) and N,(¢):

e N.+(q) maps any (k*,{i}) €t(q) to the number (x*,17),

e N'(q) is the restriction of N(q) to the set of all (\;, 2) € t(q), \; < K, with N(q)(\;, 2) #

*

e N,(¢) maps any (o, %) € t(q) which corresponds to a vertex (a,z) et = t(pg(p)) to
the number («, ) that («, z) inherits from ¢(p).
More precisely: Since ¢ < ph(p), there is an embedding ¢ : (t,<,) = (t(q),
<i(q)) such that for all (o, 2) € t, it follows that ¢(a, z) = (o, Z) for some Z 2 z. For
any («,z) € im ¢ with (o, %) = t(a, 2), let N,(q)(a,Z) be the number («,i) of the
t(p)-vertex corresponding to (e, z): With our canonical map ¢f(p) : t = t(p) with
P(p) (e, 2) = (1), set Ny(q) (e, ) = (e, i) = P (p) (0, 7).

It is not difficult to see that Ny+(¢) u N'(¢q) u N,(¢) is well-defined and injective.

Since t(p) < t(7), it follows that for any («,%) € t(q) with (a,Z) <yq) (57, {i}}) for some
[ <n, wehave N,(q)(,Z) = (a, 1), where (o, ) is the ¢(7)-predecessor of (k*,1]) on level a.
It remains to define N(¢)(a, z) for those (o, z) € t(g) remaining with (e, 2) ¢ dom (N, (g) U
N'(q) U Ny(9)).

For a<k*, a¢{N\ |l <m}, let

Zo={ (i) | i < Fim(a), (a,4) ¢ t(p) U im (N (g) u N'(q) U Ny(q)) }.

For [ <m with \; < k, let
Zy, = { (A1) | i€ [ag, Fim(N)) 5 (Ar57) €8(p) L im (Nm(Q) U N'(q) u Ny(q)) }

We take foiﬁ(q) :t(q) — V an injective function with N(q) 2 N.+(q) u N'(¢q) u N,(q)
such that N(q)(«, z) € Z, for all (a,2) €t(q) ~ dom(Nm(q) U N'(q) U N,y(q)).

The condition q € (ﬁISQF is defined as follows: t(q) := {N(¢)(a,2) | (a,2) € t(q)}, with
<= {(N (@) (0, 2), N(0)(8,2)) | (a,2) <iq) (8,2}

For any (a,) = N(g)(a 2) € £(7), let 7(a, i) = q(a, 2).
This finishes the construction of g.
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By construction, it follows that pg(q) =q. Also, q| p: Firstly, for any (x*,7) € t(p) with
J < B, it follows by construction of N,(¢) that the ¢(p)-branch below (k*,j) coincides
with the ¢(g)-branch below (k*,7).

On the other hand, the set of all (a,4) € t(p) which have no successor (k*,j) with j <
is disjoint from t(g): The sets Z, and Z,, are disjoint from ¢(p) by construction, so
N(g)(,%) = (a,i) € t(p) would imply (ev,4) € im (Ny+(q) U N'(q) U Ny(q)). But any
(a,1) € im N+ (q) U im N,(q) clearly has a t(p)-successor (x*,j) with j < 3, so the only
possibility remaining is that («,7) = (A;,7) = N'(q)(\,2) = N(q)(N\;, z) for some [ < m
with i < a;. But then it follows from property (1) for (Py)” that again, (\;,i) has a
t(p)-successor (k*,7) with j < 8 — contradiction.

For any (a,i) = N(q)(a,%) € t(q) n t(p), we have (a,i) = N,(q)(, %), and with the
embedding ¢ : (£,<;) = (¢(q),<iq)) as in the definition of N,(q) with «(a,2) = (o, %), it
follows from ¢ < pf(p) that G(e, ) = ¢(a, Z) 2 p(p)(a, 2) = p(a, i).

Hence, ¢ | p.

Setting s := p U g, it follows that s < p with s € (Py)™ and p(s) < p2(q) = q.

Hence, the condition s has all the desired properties, and it follows that pg is indeed a

projection of forcing posets.
O

For capturing S?, we will consider the product forcing
(Po)? M (k™ +1) x (Po 1(F)) M[K", 00).

Then also the map ﬁg : (F(]Y - (Pg)? 1 (k*+1) x (IPO rt(F)) P [K*,00), which maps a
condition p € (ﬁISO)F to (pg(p), (ptt(F)) K", 00) ) is a projection of forcing posets; hence,
(Go)? 1 (k" +1) x (GO rt(F)) MK+, 00) is a V-generic filter on (Po)? | (k* +1) x (IPO b
t(F)) MK*, 00).

Now, we turn to (P;)? | (k +1). As already mentioned, we take for any A\* € Succ’ n
k at stage A* the forcing Fn([A,)ﬁ) x min{ﬁ,F(A*)},Z)\*) instead of Fn([)\,Xf) X
F(A*),2,A%).

More precisely, (P1)?  (k + 1) consists of all conditions p : Succ’ n (k+1) - V with
suppp = {A\* <k | p(A\*) # @} finite such that for all \* € suppp,

p(A*) e Fu ([A, A7) x min{F(B,A")},2,\")
with dom p rectangular, i.e.
domp(A*) = dom, p(A") x dom, p(A*)

for some dom, p(A*) € [A, A*) and dom, p(A*) € min{g3, F'(A\*)}. The partial order “<” is
reverse inclusion, and the maximal element 1 is the empty condition.

For p € P, we can define a projection pf(p) as follows: supp pf(p) ==suppp N (k+1), and
for any A\* < k with A\* € suppp,

dom (pf(p))()ﬁ) := dom, p(A*) x (domy, p(A*) n B),
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with (o7 (9))(A*) (¢, 1) = p(A*)(C ) for all (¢, ) € dom (pf (p)) (A*).

It is not difficult to check that p? is indeed a projection from Py onto (P1)? | (k + 1).
Hence,

(G 1k +1)={p)(p) | pe G}
is a V-generic filter on (P1)% 1 (k+1).

For capturing S?, we will work with the forcing
(PP M (k+1)) x Py(s*) x Py MH{(F,m) | <m0, "y > K7}

The map 7, : Py~ ((P1)? 1 (5 +1)) x Py(s*) x Py H{(%,7) | <7, % > £*} that maps a
condition p € Py to (pf(p),pl(m),pl M (R, m) | <7, K > k*}) is a projection of forcing
posets, as well. Hence, it follows that

(G)P M (k+1) xGi(6") x Gy M (7L | L<7, 7y > k7Y

is a V[Gol-generic filter on ((P1)? 1 (k+1)) x Py(k*) x Py M (R o) | <7, Ry >kt
In particular,

V[(Go)? 1 (5% +1) x (Go 1 (F)) MK*, 00) x (G1)P M (k+1) x Gi(k") x
x G (B ) | 1<, & > K7}
is a well-defined generic extension by the forcing
(Po)? P (k" +1) x (Po 1(F)) MK, 00) x (P1)? 1 (k+1) x Py(x%)x
x Py MR, ) | 1<, 7y > K64}
Lemma 3.4.7.
(Po)? M (k™ +1) x (Po M(F)) P[K*, 00) x (P1)? P (k+1) x Py(k*)x
<Py H{(F) | <7, & > k')
preserves cardinals > F (k).

Proof. First, it is not difficult to see that the forcing (Pg)? I (k* + 1) has cardinality
<|B] < F(k) (one has to use that ( is large enough, which implies that 8 > a; for all [ <m
with \; < K*).

Concerning (P1)? | (k + 1), we have several cases to distinguish: If |8|* < F(k), then
|(P1)A 1 (k+1)| <|B]* < F(r). For the rest of the proof, assume |3|* = F(k).

e If the class Succ’ has no maximal element below &, it follows that F/(A*) < |5| for
all \* < k with A\* € Succ’, since F(A*) < F(u*) for all At u* € Succ’ with A* < u*.
Hence, all the blocks Fn([)\,/\+) X F(A*),Q,)ﬁ) in (P1)? 1 (k+ 1) have cardinality
<1B; so [(P1)? 1 (5 +1)| < F(x).
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It remains to consider the case that Succ’ has a maximal element u* below k.
Now, we have to treat the block (P1)?(u*) = Fn([u, pt)xmin{ F'(u*), 5},2, /H) separately
and consider the forcing (P1)% 1 (u+ 1).

e In the case that F(u*) < |f] or “F(u*) = F(r) = |8[" and the class Succ' has no
mazimal element below 17, it follows that |(P1)? 1 (u+1)| < F (k) similarly as before.

e Finally, if F(u*) = F(k) = |B]* and Succ’ has a maximal element v* below p*, we
have to treat the product (P;)?(v*) x (P1)?(u*) separately. Since F(v*) < |f], it
follows that F(A\*) < |g] for all \* € Succ’ with A* < v*; hence, [(P1)? 1 (v+1)| < 8] <
F(r).

For the rest of the proof, we restrict to the latter case with (P1)? } (k+1) = ((P1)# |
(v+1)) x (P1)B(v+) x (P1)2(p*) and |[(P1)? | (v + 1)| < F(k) — the other cases can be
treated similarly.

Consider the product forcing
(Po)? 1 (k% +1) x (Po 1(7)) P[K*, 00) x (P1)? I (k+1) x Pi(k") x
xPy H{(F,w) | L<m, R > K'Y}
Similarly as in Proposition [3.1.9] it follows that the “upper part”
(Po (7)) K", 00) x Py M {(Fp, ) | L <7, o > K7}

preserves cardinals. Since this forcing is also < k*-closed, it follows that the “lower part”,

namely,
(Po)? M(K*+1) x (PP M (k+1) x Pi(k"),

is the same forcing in a (Po M(7)) I [&*, 00) x Py M{(%1,%) | | <7, Ky > &+ }-generic exten-
sion as it is in V.

Thus, it suffices to show that (Pg)? | (k*+1) x (P1)? } (k+1) x Py(k*) preserves cardinals
> F (k). We factor

(Po)? M (k" +1)x (PP }(k+1) xPy(k")

112

= (Po)? 1 (5" +1) x (P H(w+ 1)) x ((P)P(*) x (P (") x Py (7).

The product (Py)?(v+) x (Py)?(u*) x Py (k™) preserves all cardinals. Secondly, as we have
argued before, the forcing (Pg)? 1 (k*+1)x(P1)? | (v+1) has cardinality < F(x) (in V and
hence, also in any (P1)8(v*) x (P1)?(u*) x P1(x*)-generic extension). Hence, the product
forcing (Po)? 1 (k*+1) x (P1)? M (k+1) x Py(k*) preserves cardinals > F'(x), which finishes
the proof. n

We want to show by an isomorphism argument that our surjection S%:dom S? — F(k)
is contained in

VI(Go)? (k" +1) x (Go Mt(T)) MK, 00) x (G1)P M(k+1) x Gi(k") x
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XGl f{(ﬁl,il) | l<ﬁ, Ry > I{+}].

Also, we will see that in V[(Go)? | (k* +1) x (Go 1(7)) I [K*,00) x (G1)P } (5 +1) x
G1(k*) x Gy MH{(%;, 1) | I <m, Ry > k*}], there is also an injection ¢ : dom S# - 3. Together
with Lemma this gives the desired contradiction.

Recall that any X in the domain of S? is of the form

X = XGO t(s)xG1 M (10,30)s -+ » (b1 T5_1 ) }¥G1(KT)

where s is a condition in Gy I (k* + 1) and (s, (%, %), ---» (B5_1,75.1)) € M3, ie. s has
finitely many maximal points (k%,7j0), ..., (K", je_1) With jo < B, ..., je1 < B, and k < w,
Moy - - s g € K 0 Succ, Jo <min{F(po), B}, ..., Jp_y <min{F(uz_,),S}. For any such s,
let s=suT.

Since do not want to use Gg | (k* + 1) for capturing S?, but only (Go)? | (k™ + 1), we
would like to replace the filter

Go tt(s) = {p1t(s) | pe Go,t(p) <t(s)},
by something like

(G (T + 1)) 1i(s) = {p () | o (p) € (Go)? 1 (5% + 1), (g (p)) < (05 (3)) }”

but we have to specify what we mean by p I £(s) if not necessarily #(p) < t(s), but we
only know that t(pg(p)) < t(pg (5)), i.e. merely the tree structures of ¢(p) and ¢(s) agree
below the vertices (k*,j) € t(s).

We will have ¢(p M(s)) := t(s). For a vertex (a,m) € t(s) with ¢(s)-successor (k*,7), let
(a,m’") denote the t(p)-predecessor of (x*,7) on level . We will set (p [ t(s))(c,m) :=
p(a,m’"). From t(pg(p)) < t(p'g(E)) it follows that this is well-defined: If (k*,7), (k*, ")
are both t(s)-successors of («,m), then also in the tree t(p), the vertices (k*,7) and
(k*,j") have a common predecessor (a, m’) on level a.

In other words: The condition p | t(s) is constructed from p } {(sk*,7) | (k*,j) € t(s)}
by exchanging any index (a,m') such that (o, m') <y (5%, 7), with (o, m) such that
(o, m) <o) (K4, 7).

Definition /Lemma 3.4.8. Let g denote a condition in Pg | (k*+1) with maximal points
(K%, Jo), -, (K", j5_y) such that jo,...,jr, < B, and ¢||F. With § = ¢ U 7, assume
po(q) € (Go)? I (k* +1). We define

((Go)7 1 (5" + 1)) 1(q)
as the set of all p ['t(q) with pePg ! (x* + 1) such that

Ph(p) € (Go)’ M (k" +1)
and
t(po(p)) <t(p0 (@),
with p ¢(q) as defined before.

This is a V-generic filter on Py 1(q), with ((Go)? I (5* +1)) 1t(q) = Go 1 t(q) in the case
that ¢ € G.
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Proof. More generally, for conditions qo,q; € Pg with maximal points in {(x*,j) | j < 5}
and qo |7, q1 || 7, let §y=qo U T and G, = ¢; U T as before. If

t(ﬂg@o)) = t(ﬂg@l))a

there is the following canonical isomorphism T'(qo,q1) : Po I t(q) = Po | t(q1): For
a condition p € Py | t(qo) and some vertex (a,m) € t(q1), consider a t(q;)-successor
(k*,7). Let (a,m') denote the according t(qo)-predecessor of (k*,7) on level a. Set

(T(qo,ql)(p))(a,m) = p(a,m’). As argued before, it follows from t(,og(qo)) = t(,og(ql))
that this is well-defined.

This isomorphism T'(qy,q1) extends to an isomorphism T'(qo,q1) : Name(Pq | t(q0)) —
Name(Py £(q1)) on the name space as usual: For Y e Name(P (o)), define recursively:

T(q0,01) (V) :={ (T(q0,01)(2). T(q0.01)(p) ) | (Z,p) €Y }.

In the case that t(pg(ﬁo)) = t(pg(ql)) agrees with the generic filter (Go)? I (k* + 1), it is
not difficult to check that

(01640 1) _ (T(qo’ql)y)((Go)ﬁr(mﬂ)) o).

Hence, using canonical names for the generic filter, it follows that

((Go)? 1 (s*+1)) tt(qn) = T(Qo,%)[ ((Go)? 1 (k% +1)) M(q0) ]

Now, let ¢ € Py | (k* + 1) as in the statement of this lemma, with maximal points
(K%, Jo0)s- .-, (K, jz_q) With jo,...,Jz_, < B such that ¢|r, and po(q) € (Go)? 1 (k* +1)
forg:=qur.

Let s € Gy with the same maximal points (k*, jo), ..., (%, jz_;) and pf(3) = p(q), where
5:= s UT as before. Since ((Go)? I (k% +1)) Mt(s) = Gy [ t(s) is a V-generic filter on
Po 1t(s) and T'(s,q) : Po 1t(s) = Pg [ 't(q) is an isomorphism of forcings, it follows from

((Go)? 1 (5" +1)) 1t(q) = T(s.0)[Go 1 (5)]
that ((GO)B Mkt + 1)) M(q) is a V-generic filter on Pq ['t(q) as desired. O

Now, we turn to Py: For finitely many (uo,7),---» (5.1, 75.1) With o, ... oz, < K,
70 < mln{F(MO)aﬂ}v cee jE_1 < min{F(uE—l)aﬂ}: let

(GO 1+ 1)) M0 To)s -+ oy Ta) )
denote the collection of all py M{(1o0,70), --- » (51, 751 )} with p; € Py 1 (k+1) such that

(1)’ M(r+1) € (G’ I (k+1).

Then ((Gl)ﬁ r(/i + 1)) r{(:“’OajO)?. SRR (ME—lvjE—l)} = Gl r{(M0770)7 SRR (ME-l?jE—l)}'
Thus, for any X € dom S8, X = X Golt(s)xGiH{(rodo), (g1 Te- )} < G1(s) g follows that

5 = (@710 1) x (61100 1) ) H(p030), o gy )} < G ().

This will help us prove the following proposition:
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Proposition 3.4.9. The restriction SP is contained in
V[(Go)P (K" +1) x (Go 1H(F)) | [K,00) x (G1)7 I (k+1) x Gi(K) %
<G H{(FLw) | L<mF > k'

Proof. Asin the proof of Proposition , fix a cardinal A with A > max{x*, ko, ..., Kn_1, Ao,
ooy Am1,F0s - s Fm1s A0y -+ A1} such that S € Name(P | (A +1)). Then also
S8 e Name(P (A +1)).

Let (S?)" denote the collection of all

)

(X((Go>ﬁr<~++1>)rt<q>x((Gl)ﬁrwl))r{(uo,ﬁ()),...7<ug_1,7;_1>}xch(n*) o)

such that
(i) qis a condition in Py | (k*+1) where ¢(¢) has maximal points (k*,jo), - .., (K*, jr-1)
with jo, ..., Jk-1 < B; moreover, ¢ | 7, and for g := q U T, it follows that pg(a) € (Go)? 1
(5 +1),

(ii) k<w, po, -, piz_y € & N Succ’ and Jo < min{ F (1), B}, - .. ,Jr_y < min{ F(pz_,), 5},
(ili) X is a name for the forcing Py 1(q) x Py M {(110,70); - - » (1> Teq)} % Pr(k%),
(iv) there is a condition p € P} (A + 1) with pg € (FO)F, po <q and

— py(p) € (Go)? I (k* +1)

— (po 1t(7T)) 1 [K*, 00) € (Go (7)) T [K*, 00)

= (p)P 1 (k+1) e (G1) (s +1)

— pi(K*) € Gi (k)

— o M Fnw) | 1<n, R/ >k} e Gy MH{(RLu) | 1<, R > k)

such that p I-pyae1) (TXT, Q) € S,
It suffices to show that S# = (S8)".

“2" For (X, a) € S, we have X = X Colt()xC1H(0do). - G-y - () for some (s, (1o, 7o),
ooy (51, J521)) € Mg with s € Gy I (k" + 1), where X is a name for the forcing

Pott(s) x Py t{(to,70), --- } x Pi(s*).
—GI(A+1) .
Then (X, a) = (X , ) € SGHA+D) “5o there must be p e G I (A+1), pg <5:=sUT,

with P IFpr(a+1) (X,Oé) € S
Setting ¢ := s, it follows that

(X.a)= (X((G())ﬁr(ml))rt(q)x (@ 1+1) ) (0.0 o (11 ) <G )

is contained in (S?)" as desired.
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“c”: Assume towards a contradiction, there was (X, «) € (S#)' \ SP. Let
x = (@716 ) )1e(a) < (G0 16541) ) (0,30, (1 350} G (")
as in the definition of (S?)’ with pe P (A +1) as in (iv) such that
D IFPr(A+1) (3{, a) € S (x).

Since pp () € (Go)P I (k* +1), we can take a condition 5 € G } (A+1), 5 € (Py)™ with
5<7and pl(3) = p2(g). W.Lo.g. we can assume that 5 = sUT for some s € G I (k++1)
which has the same maximal points (k*,79),..., (k*, jrk-1) as ¢. The isomorphism
T(q,s):Potq— Pols from the proof of Definition / Lemma can be extended
to an isomorphism from Py 1 t(q) x Py} {(10,70), ---» (-1, 75.1)} % P1(x*) onto
Po 1t(s) x Py M {(10,70)s - -+ » (g1, 75.1)} x P1(x*) that is the identity on the second
and third coordinate. We will denote this extension by 7'(gq,s) as well, and con-
sider the according isomorphism on the name space T(q,s) : Name ([PO Mt(q) x Py}

{(10,70)s -+ » (W1, T5-1)} x Pr(*)) - Name (P M(s) x Py 1 {(40,50), -- - »
(-1 Tp1) } < P1(k)).

Let X :=T(q,s)X. Then
5 = % (@10 ) 1@ < (G2 10+1) ) Hk0.30), (75 )} Ga(s) _
_ (@216 +1) ) 109) % (6010541 ) H(0.50), (i1 T )} x Gt _

- XGO ft(s) ><C;11 F{(Moﬁo)v---a(l%_pjg_l) XGI(K+) = X ,

where as before, X denotes the canonical extension of X to a P-name.

Since (X, ) ¢ S, there exists p’ € G } (A +1), p} € (Po)7, with
P ikproany (X @) €5 (xx).

W.lo.g. we can take p}, <5, and assure by a density argument, that p{ (p})) < pg(po).

We want to construct an isomorphism 7 : P — P with the following properties:

— mp|p

’\."Dﬂ' ’.\."DTF
- 7aX =X
— 25725

Together with (x) and (xx), this gives the desired contradiction.

The third condition is satisfied if we make sure that 7 is contained in the_intersection
Fixo(lio,ig) NN Smallo(/\o, [0, Oéo)) NN Fil?l(ﬁo,io) NN Smalll(/\o, [0760)) N
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We start with the construction of mo. From pl(p}) < pf(po), it follows that the tree
structures of t(py) and t(p}) coincide below the vertices (k*,i) € t(py) with i < f.
Hence, we can achieve mopy | pj by changing any index (a,m) with (o, m) <)
(k*,i) for some i < 3, to (a,m'), where (a,m') <y (K%,7), i.e. (a,m’) is the
corresponding index in the tree structure of ¢(p); and outside the branches below
{(r*,i) et(po) | i < B}, we make t(mopy) and t(pf) disjoint.

Let ht 7o := A+ 1. For a cardinal o < ht mg with « ¢ {)g,..., A1}, take for mo(a) a
bijection on {(«,j) | j < Fiim(«)} with finite support such that the following hold:

= If (v, j) € 4(7), then mo(a)(ev, j) := (e, ).

— If (o, §) has a t(po)-successor (x*,1) with i < 3, it follows from p{ (p}) < po(po)
that also (k*,7) € t(p}). Let mo(a)(e,j) := (o, j") be the t(p})-predecessor of
(k*,1) on level a.

— For all the («,7) € t(po) remaining, j € [y(7),7(j) +w) for v(j) a limit ordinal,
let mo () (v, j) = (e, j) for some j" € [7(5),7(5) +w) with (v, j") ¢ t(po) U t(pp)-

This is well-defined: If («,j) has two t(pg)-successors (k*,i) and (k*,i) with
i,i" < B, then it follows from ph(p}) < ph(po) that (k*,i) and (k*,i’) also have
the same t(p})-predecessor on level a. Also, if («,j) € ¢(7) has a t(po)-successor
(k*,i) with i < 3, it follows that in #(p}), the vertex (x*,i) has predecessor («,7)
as well, since t(py) and t(pf) both extend ¢(7). Thus, mo()(e, j) = (e, ).

In the case that o = \; for some [ < m, we have to be careful, since we want
7 € Smally(A;, [0,07)). Thus, for any interval [, +w) S oy with v a limit ordinal
and j € [v,7 +w), we have to make sure that mo(N\)(A,7) = (A, 47) such that also
jrelvy+w):

Consider (\;,j) € t(po) with t(pg)-successor (k*,i) for some i < f. Let (A, z2) €
t(,og(po)) with i € z, and (N, %) € t(pg(p{))) with i €Z.

Since pg(pg) < pg(po), it follows that Z 2 2z, and in the case that j < «;, we
have N(pg(ph)) (M, Z) = N(pg(90)) My 2) = (N, 7). Hence, (N, j) is also the ¢(pp)-
predecessor of (k*,4) on level \;, which gives mo(A;) (A, 7) = (A, 7).

In the case that j > oy, it follows from

N @) (s 2) = Nl (0)) (M, 2) =

that for (\;, j') denoting the ¢(pf,)-predecessor of (k*,7) on level A\, i.e. mo(A) (N, 7) =
(A, J"), we have j’ > oy, as well.

Thus, we can make sure that for any [ < m, the following additional property holds
for mo(\):

— For any (A, j) with 7 a limit ordinal such that j € [v(j),v(j)+w) S oy, we have
mo(N) (A, J) = (A, j") such that j' is contained in the interval [v(j),~v(j) + w),
as well.
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Then 7y € Smallo( Ao, [0,0)) N+ 0 Smally(Am-1, [0, m-1)), and mg € Fixg(ro, o) N
<N Fizg(Kno1,in-1), since (ky,4;) € t(7) for all [ < n.

We now have to verify that mopo | pj. Firstly, on the tree ¢(7), the conditions pg
and pj coincide, and m is the identity. Secondly, from pg (pp) < pg (po) and by
construction of the map m, it follows that mypy and p; agree on the branches below
{(r*,i) e t(mopo) | i < B}. All the remaining ¢(mopo)- and ¢(pf)-branches are disjoint,
i.e. whenever (a, j) € t(p)) ~ t(7), and («, j) has no ¢(p})-successor (x*,i) with i < 3,
then (o, 7) ¢ t(mopo). Hence, mopo || ).

The map m with mp; || p} can be constructed as in Proposition [3.3.2 and since
pi € Gy I (A +1) and p satisfies (iv), it follows that m € Fivi(Ko,%) N -+ N
Fizy(Ra-1,77-1) n Smally (X, [0,@)) N - n Smally(Am-1, [0, @m-1)) as desired.

—~Dr = . — .
It remains to check that 71X = X P~ where X :=T(q,s)X.

Firstly, m; is the identity on Py ' {(r0,7),---» (5.1, 75.1)}, since p < &, 7, < 8 for
all I < k; so from (p1)? 1 (k+1) € (G1)? I (k" +1), p| € Gy, it follows that p; and p}
coincide on Py M (10, 70) - - -» (Hg_1, J5_q) b+ Similarly, 7y is the identity on Py (x*).
Now, consider 7. Recall that any (o, ) € t(po) with (o, j) <yp) (k7%,17) for some
i < is mapped to («,j’) such that («,j’) is the t(p})-predecessor of (k*,i) on
level .. Since pg <g=qu T, pj<5=5uUT with pg(E) = pg(q), it follows that any
(a, j) € t(q) with (o, j) <yq) (k7,i) for some i < 3 is mapped to the corresponding
t(s)-predecessor of (x*,4) on level a: mo(ar)(e,7) = (o, j") with (a, ") <ys) (K7, 7).
Hence, it follows for any condition g€ Py 1't(q) that mog=T(q,s)(q) € Po 't(s).

Inductively, this implies 72 = = Z ~ whenever 4 is a name for Py | t(¢) x Py !

{(/uOij)? cee (Mﬁ_lajﬁ—l)} x Pl(li+) and 7 := T(Q,S)IL’
—~—Dx —~Dx
In particular, 7X =X |, which finishes the proof.

]

Thus, we have shown that the surjection S? : dom S? - F(k) is contained in V[(Gg)? 1
(5 +1) x (Go 1(P)) N [i",00) x (Gh)7 1 (s + 1) x G (") x G 1 {(Ruv ) | 1< 70,71 > ]
We will now see that in this model, there is also an injection (% : dom S? - 3. Together
with Lemma this gives the desired contradiction.

Proposition 3.4.10. In V[(G)? | (k* +1) x (Go [ t(T)) I [k*,00) x (G1)? I (k+1) x
G1(k*) x Gy M{(Fi,u) | L <m, Ry > k*}], there is an injection o* : dom S8 — 3.

Proof. We work inside V[(Go)? 1 (k% +1) x (Go |} t(T)) I [57,00) x (G1)? | (k+1) x
Gl(li+) x (1 f{(ﬁl,il) | [ < n,r; > I€+}] = ZFC.

Let Mg denote the collection of all tuples (q, (t0,J0), --- (1515 J5.1)) € Mp with the
property that ¢ |7, and for §= ¢ U T as before, pg(a) € (Go)? MK +1).

Fix some (g, (10,70), ---» (051, 75.1)) € Mﬂ- Then ((Go)ﬁ Pkt + 1)) Mt(q) x ((Gl)ﬁ i

(k+ 1)) M (0:70)s - (15 J51) X Gi(k7) is a V-generic filter on Py [ ¢(q) x Py 1
{(M0750)7 sy (:uﬁfijfl)} x I}DI(H+)'
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From Proposition we know that the forcing Py | t(q) x Py | {(10,70), ---} pre-
serves cardinals and the GCH. By the same proof, one can show that Pq | t(q) x Py |
{(1o,7Jg), ---} x P1(k*) preserves cardinals and the GCH below x* (since P;(k*) is < k-
closed):

For every a < K,

(2a)v[((G0)6r("<‘++1))rt(Q) < ((G1)P MR+ M (10.70), -+ } x G1 (k)] _ (a+)v_

Hence, in V[((Go)? M (k" +1)) 1t(q) x ((G1)? 1 (k+1)) M{(10,To), --- } x Gi(k™)], there
is an injection ¢ : P(k) = (k*)V.

Now, we can use AC (in V[(Go)? t (k* +1) x (Go I t(F)) | [r*,00) x (G1)P } (k+1) x
P() 0 VI((Go)? 1kt + 1)) 1) % (G271 G+ D) (0T -} Culst)] = (5)Y
for (’qi’(,UOij)a SRR (uk—bjk—l)) € Mﬁ'

Let Mg_denote the set of all tuples ((x*,70), ..., (K", Jk-1), (10, J0) » -+ » (Hg_1:T5-1))
with k. k <w and jo, ..., jk-1 < B, fo, -, fz_q € & N Succ, Jp < min{F (o), B}, ...,

Troy <min{F(uz_,), B}

Let 7 denote an injection that maps any tuple ((s*, 7o), ..., (K%, jk-1)) With jo, ..., Jk_1 <
3 as above to some condition ¢ € Py such that ¢(¢) has maximal points (k*,jo), ..., (K™, jk-1),
¢||7, and for G:= q U T as before, pl(q) € (Go)? | (k* +1).

For any ((/{+7j0)’ SR (/{+7jk—1)’ (M0750)7 S (ME—DjE—l)) € Mﬁ? let

L((K*50) s ooes (H0.T0) 5 ) *= Ua(10.J0) )0

where q-= T((’%+7j0)7 B (K+>jk—1))'
Any X € dom S” is of the form

v = (@164 1e(@) < (G161 (0,50} x G ()

for some X € Name ([PO Tt(CI) x [Py r{(ﬂ0770)7 SRR (ME—177E—1)} X [P(’%+)) with (Q7 (:anjO)v SR
(17 1, T5.1)) € Mg. Denote by (k*,7j0),.-.,(k*, jk-1) the maximal points of t(q) with
7((K*,40), -, (K", dk-1)) = ¢'. Then pl(q),p0(7') € GS t (k* + 1) with the same max-
imal points; hence, pi(g) = pi(7). With the isomorphism T'(q,q') : Po | t(q) — Po |
t(q") from Definition / Lemma and its extension T(q,q’) : Name(Pq 1 t(¢) x Py |

{(10:70), - -+ (15 751) } x P1(k*)) — Name(Po 1(q") x Py M{(p0:70), - -+ (715 T51) } %
P1(x*)), it follows that

X - (T(q q,)X)(mo)ﬁr(ml))rt(q'>x () 1r+1) ) (10,30, } % G ()
where (T(g,q')X) € Name(Po 14(q") x P11 {(10,70): - - -» (51, 1)} x Pr(6")).

Hence,
X edom (g (o 50),-) = AOM (it o), (10,30)-) -
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There is a canonical bijection b : ]\75 — (3. Hence, the injections ¢+ jo), ..., (u0J0),..)

for ((5*,50),---> (0, 7o), ---) € Mz can be “glued together”to an injection 7 : dom S8 —

(k*)V x B as follows: For X e domS8, take ((x*,70),..,(ko,J0),---) € Mg with ¢ :=
b((K*,70),---, (1o, Jg)s - - -) < B least such that X € dom i((x+ jo),....(uoJ0)....) and set

UX) = (o) s (u0F0) ) (X)),

This gives an injection ¢ : dom S# — B in V[(Go)? | (k* +1) x (Go 1 t(T)) I [k, 00) x
(G121 (k+1) x G1(k) x G {(Fi,u) | L <7, R, > k*}] as desired.
O

Thus, we have shown that our assumption of a surjective function S: (k) > F(x) in N
leads to a contradiction.
Hence, 6V (r) < F(x) for any limit cardinal k.

It remains to show that 6V (k*) < F'(k*) for all
successor cardinals k*,

which can be done by the same argument:

Like before, we assume towards a contradiction there was a surjective function S : P(k*) —
F(k*)in N, S = 8¢ with 75" = 5" for all 7 that are contained in an intersection like
(Ig). Again, fix a condition r € Gy such that {(xo,), ..., (Kn-1,%n-1)} S t(r) contains all
maximal points of ¢(r), and an extension 7 <, r, 7 € G such that all ¢(7)-branches have
height > k™.
From Corollary [3.3.8] it follows that any X € N, X ¢ x*, is contained in a model of the
form

VIGo (%, Jo), - (K7, Je-1)} x Ga H{(p0,70)5 - - > (W15 Tpo1) s
where jo, ..., jk-1 < Fim (%) = F(k) and po, . . ., pg_ € Succ’ n (k¥+1) with 7, < F (o), - ,
Toe1 < F(pgy)-
For a limit ordnal 3 < F(k7"), our definition of large enough for (Ig) has to be slightly
modified: This time, we require that B>7 foralll< n with & < k" (instead of just 7 < k),
and > for all [ <m with A\, < k* (instead of just \; < k).

Fix § < F(x*) large enough for (I¢) and B := f + k* (addition of ordinals). We de-
fine the restriction S# similarly as before: Let M’ denote the collection of all tuples

(Sa(;u(%jo)v SR (NE_177E_1)) with &k < W, Moy -y HE_q < "{+> 70 < F(MO): ajE_l <
F(pz_,), and s a condition in Py with maximal points (k*,jo), ..., (K", jk-1) Where
Jo < Fim(K%), ..., jk-1 < Fim(k*). Moreover, we denote by M the collection of all tuples
(s,(10:70) > - » (Mg_15J5_1)) € M’ with the additional property that 7, < 5, ..., Jz_; <05,
and s has maximal points (k*,jo), ..., (K, k1) With jo <3, ..., jr1 < 5.

Let

SB.= S F{X Ck ‘ (s, (10:J0)s - - (W51 T51)) € M[fj tseGo (kY +1),
X eV[Gott(s) x Gy M (10,70) 5 -+ (N%—pﬁ—l)}] }
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The same proof as for Proposition shows that the surjectivity of S implies that S?
must be surjective, as well.

Now, with the same construction as before, one can capture S? in an intermediate model
VI(Go)? M (k*+1) x (Go 1 t(F)) 1 [k+,00) x (G1)? 1 (k*+1) x Gy M{(R, ) | L <70, Ry > K7},
and like in Lemma one can show that the according forcing (Pg)8 1 (k*+1) x (Pg !
t(T)) 1 [k7,00) x (P1)8 } (k¥ +1) x Py M {(Ri,u) | | < T, % > Kk*} preserves cardinals
> F(k").

Finally, one can show like in Proposition[3.4.10|that in this model V[(Gp)? I (k*+1) x (Go |
t(T)) t [k*,00) x (G1)? } (k*+1) x Gy M {(R;, 1) | | <7, Ry > k*}], there is also an injection
t# :dom SP - . This gives the desired contradiction.

Hence, it follows that 6V (k") < F(k*) for all successor cardinals x*.

Thus, our model N has all the desired properties.

3.5 Discussion and Remarks

Our result generalizes Easton’s Theorem to regular and singular cardinals: In the theory
ZF, the #-function can take almost arbitrary values. This extends the results from Chap-
ter 2| to a proper class of cardinals, with the constraint that this time, we do not retain
DC in the symmetric extension N.

One could ask whether it is possible to do a similar construction and obtain a ZF-model
N where additionally DC holds. For this, we would need a countably closed forcing no-
tion (and a symmetric system generated by countable intersections). A straightforward
generalization of Py would be a forcing with trees (¢,<;) where countably many maximal
points are allowed, instead of just finitely many.

However, this gives rise to the following appearance that we call an open branch: There
might be a <;-increasing chain of vertices ((«,i,) | @ < A) for some cardinal A of countable
cofinality such that there exists no (\,7) € t with (o, i, ) <; (A, 4) for all @ < A. The number
of open branches might be 2% =Ry, so we can not always “close” all of them and retain a
condition in the forcing.

Let us shortly discuss the following technical problem that comes along with these open
branches: If conditions p and ¢ in Py agree on a subtree ¢(r) > t(p), t(q), it might not
be possible to achieve 7mp | g by a small Pp-automorphism 7 that is the identity on ¢(r):
Consider the case that the tree ¢(r) has an open branch ((a,i,) | @ < A) such that in
t(p), there is a vertex (A,7) with (\,7) >, (@,i,) for all a < A, but in ¢(g), there is a
different vertex (A, ") with i’ # 7 and (\,i") >4 (o, 4q) for all & < A. An automorphism
7 with 7p | ¢ such that 7 is the identity on this branch ((«,i,) | @ < A), has to satisfy
w(A)(A, 1) = (A, "), since the tree t(7p) U t(g) must not have a “splitting” at level \. But
then, there is no way to guarantee that 7 is small, since in general, ¢ and ¢’ will not be
close to each other.

Thus, generalizing Py to trees with countably many maximal points makes us lose an
essential homogeneity property, and several crucial arguments in the original proof do not
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work any more.

One could try and allow trees with < g-many maximal points, where y is an inaccessible
cardinal. Then our conditions in the forcing have < y-many open branches, and we can
now ‘“close” all of them and still remain inside Py. Hence, our forcing will be < p-closed.
In this setting, we call a Pg-automorphism small, if for any level k and 7(x)(k,7) = (k, 1),
it follows that there is an ordinal ~ divisible by p with 7,4’ € [y, + u).

Concerning P, we can use < u-support instead of finite support, and then take intersec-
tions of < p-many Fiz(k,i)- and Small(\, [0, a))-subgroups for generating our symmetric
system. Then N & DC_, (cf. [Karld, Lemma 1]).

Of course, DC,, imposes further restrictions on the f-function, and one cannot use this
modified forcing for setting #-values 6V (k) for cardinals x < u. However, it might be
conceivable to combine this < u-closed tree forcing with the set-sized forcing notion from
Chapter [2| which could treat the cardinals below p, while the < p-closed tree forcing could
provide the “upper part”, setting the 6-values OV (k) of cardinals x > p.
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