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Summary

Stochastic modelling at the interface of mathematics and life sciences has gained great at-
tention over the last decades. The study of many complex biological systems requires models
taking random effects into account. Both sides benefit from this interdisciplinary collabora-
tion. A structured mathematical analysis can provides a new perspective and helps to gain
insights into biological problems. Vice versa, biological research inspires new mathemat-
ical questions leading to an interesting theory on their own. In this thesis, we demonstrate
how mathematical modelling supports biomedical research in various ways: First, import-
ant mechanisms are identified that determine the outcome of experiments. Second, likely
causes for the observed phenomena are investigated, which helps to interpret experimental
data. Third, the clinical applicability of experimental scenarios is validated. Forth, pre-
dictions are made that reach beyond the experiment. Conversely, we study mathematical
questions arising from biology. We approximate stochastic and deterministic models for ad-
aptive dynamics under various parameter regimes to investigate the long-term behaviour of
a population. Some of these results are again beneficial for applications in biomedicine since
they have potential to improve the algorithms for simulations of the studied systems.

The thesis is divided into two more theoretical parts and one more applied part. In the
theoretical parts we study individual-based Markov processes and their deterministic coun-
terpart as models for the evolution of a heterogeneous population. We consider the limit
of large populations and rare mutations. The resulting limit processes show different be-
haviour and are highly dependent and the scaling of mutation rates and the choice of time
scales. The short-term dynamics are governed by Lotka-Volterra interactions of large sub-
populations and the invasion of arising mutations can only be witnessed on a divergent time
scale. In Chapter 2, we analyse the deterministic system that arises from the stochastic
model in a law of large numbers. We study the limit of rare mutations. This corresponds
to a scenario of relatively high mutation rates, compared to other limit regimes. It leads
to multiple microscopic mutant populations that compete to invade the resident population
at the same time. To determine which of the mutant traits succeeds, one has to carefully
keep track of the growth of all subpopulations. The general discrete graph that we con-
sider as a trait space induces complex dynamics of mutations between traits. To handle
these, we have to introduce a new approach of inductive approximation of the population
sizes of different traits, taking into account the influence of different traits at an increasing
distance. Moreover, we investigate a couple of interesting special cases that relate to the
scenario of adaptive walks and propose a cut-off model that mimics the simultaneous limit
of large populations and rare mutations in the stochastic model. In Chapter 3, we combine
the mentioned inductive procedure and couplings to branching processes to consider this
simultaneous limit. To do so, we have to extend some existing limit results for branching
processes to the multidimensional case. We derive a complete characterisation of the limiting
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jump process in the scenario of power law mutation rates, thus extending previous results
for linear trait spaces and specific parameters to general finite graphs and arbitrary fitness
landscapes. In the second part of the chapter we present a collection of specific examples
that represent interesting and partially counter-intuitive behaviour arising under this scaling.
Chapter 4 is dedicated to an application of individual-based models in the field of oncology.
We investigate the role of phenotypic and genotypic heterogeneity of melanoma cells in the
development of resistance to immunotherapy. Here, we substantially extend the existing
model of a previous collaboration to include effects of immunosuppression, aspects of the
spatial structure of the tumour, and the possibility of spontaneous mutations. While the
previous model was designed to investigate phenotypic switches, we focus on the study of
genetic variants. Through simulations we analyse the effect of subclonal fitness variability
on the enrichment of resistant cell types.
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1 Introduction

Over the last years, mathematical modelling has become an important tool in analysing
complex biological systems. At the same time, biological questions have given rise to many
interesting mathematical problems. One prominent example is the study of evolutionary
dynamics. The goal is to understand how populations adapt to their environment by a
succession of changes in their traits. Both the mechanisms of how these changes arise and
how certain traits are selected to be enriched in the overall population are objects of research.
Similar questions arise in the context of tissue growth. In particular, they are of interest
in the study of tumour genesis and evolution under the selective pressure of therapy. Here,
evolutionary dynamics induce an abnormal tissue growth and can cause treatment failure.
In this thesis we study models for the evolution of heterogeneous populations. We consider
both aspects: On one hand, we focus on the theoretical analysis of mathematical models for
evolution. On the other hand, we develop models for applications in biomedicine in the field
of oncology.

There are many approaches towards mathematical modelling in biology, using both stochastic
and deterministic systems. Deterministic models range from systems of ordinary differen-
tial equations to partial differential equations that take into account spatial movement.
Stochastic models include diffusion processes and Markov jump processes in discrete or con-
tinuous time. Different models show the biological system at varying resolutions and focus
on specific aspects of the dynamics. The choice of the correct model therefore depends on
the underlying question one tries to answer. We want to study the effects that spontaneous
mutations towards new traits and the interactions between individuals have on the long-term
evolution of a population. Therefore, we choose a model class that captures the behaviour
of single individuals and takes random effects into account. As a starting point, we consider
an individual-based Markov process that has been introduced in the context of adaptive
dynamics. It is quite detailed in the sense that it accounts for every individual and every
birth or death event in the population.

In particular in the context of biomedical applications, it is of interest to generate realisations
of this Markov process by simulations. The drawback of a stochastic individual-based model
is that it is computationally heavy to simulate. The generation of singular birth and death
events requires many iterations of the algorithm. Particularly in populations with many indi-
viduals, like a tumour consisting of many cells, computing times are high. An approximation
of the underlying stochastic system by simpler models, that are easier to simulate, provides
the opportunity to speed up simulations. Simpler models can for example be deterministic
systems of differential equations or, more or less stochastic, jump processes that only show
the macroscopic adaptation of the population as a succession of resident traits. We study
which of these models can arise as scaling limits of individual-based Markov processes.
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1 Introduction

An important factor in determining the limit process are the various scales that are involved.
As scaling parameters we consider the order of the population size at equilibrium, K, and
the probability of mutation, µK . We study the regime of large populations (K → ∞) and
rare mutations (µK → 0). To analyse the frequencies of different subpopulations, we divide
the population size by K. As a consequence, only significantly represented traits are visible
in the limit and single individuals are of infinitesimal size. Depending on how quickly µK
decays, mutations are more or less frequent. This results in mutations either to be separated
in comparison to the faster ecological dynamics or to overlap and compete for invading the
population. Corresponding to the different mechanisms of mutations, growth of smaller
subpopulations, and the competitive interaction of larger subpopulations, the system can be
considered on various time scales. Different aspects of the model are emphasised and visible
in the limit, depending on the choice of the mutation probability and time scale. We thus
obtain a variety of possible outcomes when approximating the stochastic individual-based
model.

The easiest limit to consider is the one of K → ∞ only, leaving the mutation probability
constant at µ > 0. This implies frequent mutations and gives rise to a deterministic system of
differential equations. These equations take the form of a competitive Lotka-Volterra system
with additional mutation terms. If one lets µ tend to zero in this system, it converges to a
pure Lotka-Volterra system with no mutations. Only when considering another time scale
that diverges as µ → 0, mutations are visible again in the macroscopic population. This
scenario is considered in Chapter 2. We prove convergence to a deterministic jump process
that describes the macroscopic evolution of the population in terms of a sequence of (possibly
coexisting) traits at equilibrium.

The same process can be recovered in the simultaneous limit of large populations and rare
mutations if µK decays at a certain speed. In Chapter 3 we prove this as part of a more
general result, considering moderately rare mutation rates that decay as arbitrary negative
powers of K. The processes that arise in this limit can be seen as interpolations between
the process of Chapter 2 and the stochastic jump processes that have been derived as limits
under very rare mutation rates by Champagnat, Méléard et al. They display interesting and
partially unexpected behaviour, which we document by a number of specific examples.

As mentioned above, these limit approximations can be applied to improve simulation al-
gorithms for stochastic individual-based models. We make use of this in an application
in biomedical research. In cooperation with experimentalists, we use an extension of clas-
sical individual-based models to study the evolution of melanoma cell populations under
immunotherapy with cytotoxic T-cells. In Chapter 4 we prove that the large population ap-
proximation result applies to this extended model. Therefore, it is reasonable to use a hybrid
algorithm that combines deterministic simulations of frequent events and stochastic simula-
tions of rare events. In simulations we compare phenotypic switches and genetic mutations
as tumour escape mechanisms that cause therapy failure. We argue for a substantial het-
erogeneity among genetic variants that explains widespread scattering of the experimental
data.

The remainder of the introduction is organised as follows: In Section 1.1 we give a brief
summary of the history of the theory of evolution and of different mathematical approaches
towards modelling of evolution. Section 1.2 introduces the two main models that are studied
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1.1 Mathematical models for evolution

theoretically in Chapter 2 and 3 and that also form the basis for the model in Chapter 4. We
further discuss notions of fitness. In Section 1.3 we give an extensive overview of the different
scales that are involved with these models and present various regimes for approximation.
A biological background for cancer, its treatment, and in particular the immune system and
immunotherapeutic approaches is given in Section 1.4. Moreover, we explain the benefits
of mathematical modelling in life sciences and present a number of different strategies for
modelling, particularly in the context of cancer. In Section 1.5 we briefly discuss open
questions and future perspectives of research in this field. Finally, the main results and an
outline of the thesis are presented in Section 1.6.

Note that Chapter 2 and 3 are self-contained. Depending on the biomedical knowledge of
the reader, it is advised to read Section 1.4 before Chapter 4.

1.1 Mathematical models for evolution

In this section we give a brief overview of the theory of evolution and of different approaches
to mathematically model the evolution of a population. This is certainly not exhaustive
but sets the work in this thesis into perspective. Many of the mentioned models have been
studied within the DFG Priority Programm "Probabilistic Structures in Evolution". There
are various review articles of members of this programm that we refer to for further reading,
for example [7, 18, 23, 105, 113]. A more detailed introduction to the models that are studied
in this thesis is given in Section 1.2. Note that the introduction of [22] served as a basis for
parts of this section.

1.1.1 Theory of evolution

The theory of evolution, as it is studied today, goes back to the seminal work of Charles
Darwin in the 1850s. Some aspects of his theory were previously mentioned in other works,
e.g. by Erasmus Darwin (his grandfather) [53, 54] and Thomas Malthus [125]. Moreover,
similar theories were developed simultaneously by Alfred Wallace [52]. The term evolution
describes the observation that populations change and adapt to their environment, i.e. the
available resources and also the state of other populations, over time. This change occurs
over the course of generations and is tied to the birth of new individuals, taking the place of
old individuals that die. In his book On the origins of species [51], Darwin identifies three
driving mechanisms of evolution:

Heredity: at reproduction, individuals pass their traits (properties) on to their off-
spring,

Variation: traits vary between individuals and heredity is not perfect, i.e. sometimes
the offspring’s traits vary from those of its ancestor due to mutation,

(Natural) Selection: different traits display different fitness, i.e. reproductive success
and survival rate.

3



1 Introduction

The trait of an individual consists of two components, the genotype and the phenotype. The
genotype of an individual is defined by its genetic code, the DNA, which was discovered by
Francis Crick and James Watson [173], Maurice Wilkins [175], and Rosalind Franklin [78]
in the 1950s. The DNA is contained in every cell of an organism and remains unchanged
during its lifetime (apart from errors during the copying process). At reproduction, it gets
passed on to the next generation and is thus the basis of heredity. The phenotype of an
individual describes its outer appearance, i.e. its morphology and physical properties. It is
determined by a combination of the individuals genotype and environmental influences, and
can vary over a lifespan.

Apart from these phenotypic changes, there are two major causes of variation. At repro-
duction, there can be errors due to faulty copying of the DNA molecule, leading to genetic
mutations. This is possible in any organism and for any form of reproduction. Additionally,
in diploid organisms that obtain their genome as a combination of the genetic information
of two ancestors, variation can arise due to recombination. This process of inheritance has
been studied by Gregor Mendel in the 1860s [136, 137]. One gene, the part of the genome
that determines a particular feature, can have several specificities, called alleles. In a diploid
organism either one allele (the dominant allele) governs over the other (recessive) allele and
fully determines the characteristics of a gene, or the feature is determined by a combina-
tion of the alleles (co-dominance). The procedure of recombination is summarised in the
formalism of Mendel’s law of inheritance.

According to Darwin’s survival of the fittest, natural selection arises as a consequence of
interactions with the environment and between individuals. These interactions can be com-
petitive, due to limited resources, but also in dependence, as in predator-prey or parasite-host
relations, or mutually beneficial in a symbiosis. Advantageous variations of a trait show an
increase in reproductive success and survival, and are thus enriched in the population. Mul-
tiple variations can accumulate in one organism and eventually lead to speciation, i.e. the
splitting into two separate species.

This theory of Darwinian evolution, based on random changes and selection, stands in con-
trast to the theory of Lamarck, where individuals modify their traits to adapt to their
environment and these changes are inherited by the next generation [55]. Although Dar-
wins’s theory is widely accepted, recent discoveries in the field of epigenetics have shown
that there is in fact the possibility to pass on adaptive changes that have been acquired
during a lifetime [122]. Moreover, mechanisms like horizontal gene transfer, that can be
witnessed in bacteria but also eukaryotes, allow for an active exchange of beneficial genes
[149, 104].

A more extensive account of the history of the theory of evolution can be found in [6].
There are different approaches for mathematical modelling that focus on various aspects of
the theory of evolution. In the following, we present a selection of them, including both
deterministic and stochastic models.
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1.1 Mathematical models for evolution

1.1.2 Population dynamics

The theory of population dynamics focuses on the ecology, i.e. on the interaction of popu-
lations. As Malthus proposed, the exponential growth that populations would show in an
interaction-free scenario is in fact restrained by limited resources, e.g. food or space [125].
Mathematically, this results in logistic growth dynamics. For a monomorphic population,
i.e. where all individuals carry the same trait, this growth is described by the deterministic
differential equation

ṅ(t) = rn(t)− cn(t)2, t ≥ 0. (1.1)

Here, n(t) ≥ 0 denotes the population size at time t, r is the exponential growth rate of
the population in an unrestrained environment, and c > 0 parametrises the competitive
interaction within the population. As long as r and n(0) are positive, the population size
converges to its stable equilibrium r/c. If r ≤ 0, the population size tends to zero.

In the more general multitype case, the evolution of a population with traits in the finite set
X is given by

ṅx(t) = nx(t)

rx −∑
y∈X

cx,yny(t)

 , x ∈ X , t ≥ 0. (1.2)

This type of equation goes back to the work of Alfred Lotka [123] and Vito Volterra [170]
and is hence called (competitive) Lotka-Volterra equation. The study of the long-term beha-
viour and equilibria of these competitive Lotka-Volterra systems is of great interest, as they
determine the short-term dynamics of many models that include mutations. More details
on this model, as well as a stochastic version in the form of logistic birth-and-death pro-
cesses, are given in Section 1.2. A more extensive discussion and a modern perspective on
population dynamics can be found in an essay by Hofbauer and Sigmund [96].

1.1.3 Population genetics

In contrast to population dynamics, the concept of population genetics is more focussed on
heredity. In both theoretical and experimental approaches, the change of gene frequencies
over time is studied. Instead of interactions within the population, the emphasis lies on
genealogies and the transmission of genes from one generation to the next. This goes back
to Mendel and his study of genes and alleles, as mentioned above.

Mathematically, the concept was introduced by Fisher [73], Haldane [90] and Wright [177]
around the 1920s. The prototype of a population genetics model is the Wright-Fisher model.
It considers discrete generations of N individuals. In each generation, every offspring indi-
vidual selects one ancestor at random from the previous generation and adopts its trait.
The probability that one individual inherits a certain trait is hence exactly this trait’s fre-
quency in the preceding generation. Since no trait is preferred, this is a neutral model and
the resulting process, which describes the time evolution of the frequencies, is a martingale.
This is in line with the popular Hardy-Weinberg Theorem stating that, in an infinite popu-
lation with no selection, the frequencies of different genes remain constant [92, 174]. In finite
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1 Introduction

populations, the frequencies only change due to stochastic fluctuations, which is referred to
as genetic drift. In a law of large numbers, rescaling the time as tN and letting N → ∞,
the Wright-Fisher model converges to the Wright-Fisher diffusion. This stochastic diffusion
process was first introduced by Kimura [107] and derived as a limit by Ethier and Norman
[71].

There are many variants of the Wright-Fisher model. The Moran model is a time continu-
ous version, where generations are no longer discrete but each individual replaces another
individual with its own trait at an exponential rate [141]. In the Cannings model the off-
spring traits of discrete generations are chosen in a more general way. The only condition
is that the number of offspring per parent is exchangable, keeping the mean frequencies of
traits constant. Depending on the reproduction function, the Cannings model can mimic the
Wright-Fisher and the Moran model [28, 29]. Fleming-Viot processes are generalisations of
the Wright-Fisher diffusion and arise as infinite population limits of Moran type models [75].
Other variants introduce selection, mutation or migration, and a recombination mechanism
to such models [69, 8, 7]. Note that in this form of selection individuals do not interact.
Instead, certain traits are chosen as ancestors with higher probability or individuals are re-
placed at a higher rate. This leads to an enrichment of traits with a selective advantage
within the population. However, since there is no interaction, the population adapts in a
fixed fitness landscape towards the trait of highest selective advantage. Thus, the models do
not depict phenomena like coexistence and speciation due to evolutionary branching. In a
deterministic setting, the spatial spread of an advantageous allele is modelled by the famous
F-KKP equation due to Fisher[74] and Kolmogorov, Petrovsky, and Piscounov [111].

In population genetics, not only the forward in time evolution of gene frequencies is analysed
but a big focus also lies on the study of the genealogical structure and ancestry. The
genealogical tree of a sample of individuals is traced back in time, for example to find
the most recent common ancestor. Providing information on when genetic leneages were
seperated and where mutations occured, this genealogical tree can help to interpret genetic
data. The first example for a mathematical analysis is Kingman’s coalescent that describes
the ancestry of the Wright-Fisher diffusion [108]. More general, ancestries are described by
so-called ancestral selection or recombination graphs [145, 121]. They can be understood as
coalescent processes and satisfy a mathematical duality to the forward process [8, 7]. For an
overview of modern population genetics, we refer to the works of Ewens [72] and Etheridge
[69].

1.1.4 Adaptive dynamics

Adaptive dynamics is a biological theory that was developed to study the interplay of both
ecology and evolution. To this aim, it combines a system of interacting populations, as
in population dynamics, with the study of hereditary mechanisms and the possibility of
mutations, as in population genetics. The ideas go back to works of Hofbauer and Sigmund
[95] on evolutionary game theory, Metz et al. [140] on fitness measures in ecological scenarios,
and Marrow et al. [127] on predator-prey dynamics with small mutational effects. A more
complex theoretical framework was intoduced by Metz, Geritz, Bolker, Pacala, Dieckman,
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Law and coauthors in the 1990s [139, 81, 20, 21, 59, 60]. They present mainly deterministic
models but also outline first stochastic versions.

A basic principle of adaptive dynamics is the separation of evolutionary and ecological time
scales due to relatively rare mutation. It is often assumed that mutations occur at a low
enough frequency such that the population has reached an equilibrium state before new traits
arise. This assumption is certainly debatable as it is not satisfied for many biological systems.
However, if one assumes that small mutant populations grow slow enough, compared to the
dynamics of the larger bulk populations, it is still reasonable to assume that the fixation of a
new trait mainly depends on its fitness within a population at equilibrium. A more detailed
discussion of the term of fitness and the different time scales that are involved is given in
Sections 1.2 and 1.3.

In adaptive dynamics, the aim is to study the consequences that microscopic events, like
interactions on the individual level and changes induced by single mutant individuals, have
on the macroscopic level of the whole population. This yields the analysis of a different
kind of fitness landscape than the one in population genetics. Here, the fitness of a traits
depends on its ecological background. The task is to identify so-called evolutionary stable
states (ESS), where all mutant traits have negative fitness, and therefore the adaptation
of the population comes to a halt. Those ESSs might not be unique and it is of interest
to study the course of evolution and conditions under which different ESSs are attained.
These thoughts are discussed extensively by Metz in his essay Adaptive Dynamics [138]. For
a broad collection of publications on adaptive dynamics we refer to the webpage of Kisdi
[109].

A very important class of mathematical models for adaptive dynamics, so-called individual-
based models, were proposed by Bolker and Pacala in the context of the evolution of plants
[20]. They were further developed by Dieckmann and Law [60] for a spatially structured
population and finally rigorously constructed by Fournier and Méléard in terms of Poisson
random measures [77]. Many versions of this model have been studied over the last 15 years,
focussing on the limit dynamics in large populations with rare mutations (see the next sec-
tions for details). Depending on whether one assumes the so-called invasion implies fixation
principle or not, the limit is a monomorphic process, e.g. the traits substitution sequence
(TSS) [140, 31], or a polymorphic process, e.g. the polymorphic evolution sequence (PES)
[37]. Individual-based models are a central object of this thesis and are introduced in more
detail in Section 1.2. Besides large populations and rare mutations, a third limit parameter
is considered for such models, namely small mutational effects. On a continuous trait space,
this leads to a continuous motion of adaptation of the macroscopic population,. It is de-
scribed by the canonical equation of adaptive dynamics (CEAD), which was introduced by
Dieckman and Law [59]. The CEAD is derived from the TSS by Champagnat, Ferrière, and
Ben Arous [32] and directly from the individual-based model by Baar, Bovier, and Cham-
pagnat [10]. The CEAD focuses on monomorphic populations. However, one can study the
possibility of polymorphism due to evolutionary branching under certain conditions on the
fitness landscape. First heuristics towards this were developed by Bovier and Champagnat
and are stated in [22].
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1.1.5 Adaptive walks

Another prominent example of a mathematical model for adaptive dynamics are adaptive
walks. Here, the idea is to focus on the macroscopic picture and study the trajectory of the
adapting population on a discrete trait space. The concept was introduced by John Maynard
Smith in the 1960s [131, 132] and further developed by Kaufman and Levin more than 15
years later [102, 103]. The idea of Maynard Smith was that mutations are rare and most
genetic variants are dysfunctional. As a consequence, from one genetic trait, only few fitter
traits can be reached. Therefore, it makes sense to study evolution as a random walk on a
discrete trait space, with a graph structure that illustrates the possibility of mutation. There
are two sources of randomness in adaptive walk models. The vertices of the trait graph are
usually endowed with a random but fixed fitness landscape that assigns a real value to each
trait (more in the spirit of population genetics). Moreover, the walk randomly moves along
the edges of the graph towards fitter neighbours according to some given transition law. Note
that a common assumption in this framework is that the population stays macroscopically
monomorphic, i.e. there is no branching.

Questions that are of interest in this context, are the accessibility of certain traits [161, 13,
14, 113], the distribution of final states of the adaptive walk (related to the concept of ESSs)
[147], and the average length of a path before reaching such a final state [150]. The results
very much depend on the choice of fitness landscape and transition laws. Since random walks
can only move to fitter neighbours, final states are local maxima of the fitness landscape.
An extended version of adaptive walks, where transitions are determined by balancing high
fitness increase and short distance on the graph, overcomes this property. It allows for longer
jumps that can skip over valleys in the fitness landscape [99, 98, 100]. More recently, so-
called adaptive flights that travel from one local maximum to another were introduced in
[144]. The topic of crossing a fitness valley has already been studied by Gillespie in the
1980s [85]. He estimated the time for double mutations to occur, where the single mutations
themselves are disadvantageous. Metastable behaviour reminding of adaptive flights can also
be witnessed in limits of individual-based models and is discussed in Section 1.3.

Two particular types of adaptive walks, characterised by their transition law, are of interest
in this thesis. On one hand, the natural adaptive walk jumps to fitter neighbours with a
probability that is proportional to the increase in fitness. On the other hand, the greedy
adaptive walk always jumps to the fittest of its neighbours (as long as they are fitter than
the current trait) [147]. An extensive overview of current results on adaptive walks and flight
can be fond in Joachim Krug’s article [113].

1.2 The models discussed in this thesis

In this section we introduce the two models that are the focus of this thesis: An individual-
based Markov process and the corresponding deterministic system of Lotka-Volterra equa-
tions with mutation. We briefly discuss the existence of equilibrium states and comment on
different notions of fitness that are used in the context of these models.
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In this thesis, we consider the evolution of an asexually reproducing haploid organism that
adapts to its environment through mutation. Individuals or subpopulations are characterised
by their geno- or phenotype, which we call trait or type. Note that, since we consider
trait changes through mutations, it is possibly more fitting to think of traits as genotypes.
However, we focus on those mutations that have a phenotypic effect, i.e. change the fitness
of an individual. We consider the case of a possibly large but finite trait space, given by
a graph G = (V,E). The set of vertices V denotes the set of possible traits. To give an
example, we could choose V = Hn = {0, 1}n, the n-dimensional hypercube. The sequences
of zeros and ones can be interpreted as sequences of different genes being activated or not.
The set of edges E marks the possibilities to obtain one trait from another by mutation. If
mutations are not reversible, we consider a directed edge set E. In the case of the hypercube,
we choose E = {(v, w) ∈ Hn × Hn : ‖v − w‖1 = 1}, i.e. single mutations that (in)activate
exactly one of the genes in the sequence.

The dynamics of both processes are driven by a number of events that happen at exponential
rates. Either as discrete events in the case of the Markov process or as continuous changes
in the case of the differential equation. These events are clonal reproduction, reproduction
with mutation, and death. The rates depend on the current state of the population and a
number of parameters:

For traits v, w ∈ V , we introduce

• bv ∈ R+, the birth rate of an individual of trait v,

• dv ∈ R+, the (natural) death rate of an individual of trait v,

• cv,w ∈ R+, the competitive pressure imposed by an individual of trait w onto an
individual of trait v,

• µ ∈ [0, 1], the probability of mutation at a birth event,

• m(v, ·) ∈Mp(V ), the law of the trait of a mutant offspring produced by an individual
of trait v.

Due to the interpretation of the edge set E as possibilities of mutation, we assume that
m(v, w) > 0 if and only if (v, w) ∈ E. Moreover, we assume that cv,v > 0, i.e. there is always
self-competition within a subpopulation of a certain trait.

1.2.1 An individual-based model

Individual-based Markov processes have been rigorously introduced by Fournier and Méléard
[77], as mentioned in the previous section. There are many works that consider variations
of this model. For example, some models take into account infinite trait spaces [31, 33,
37, 10], diploid organisms and sexual reproduction [41, 146, 24], or spatial structure [119].
Moreover, phenotypic switches [9], predator-prey relations [45], and seed-bank dynamics [19]
are investigated. For simplicity, we only introduce the version of this class of individual-based
models that we study in this thesis.
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The trajectories of the Markov process, denoted by (N(t))t≥0, describe the numbers of
individuals of the different traits over time. Here, Nv(t) gives the number of individuals of
trait v ∈ V at time t. The overall rates for the different events, in a population at state
N ∈ NV , are

• Nvbv(1− µ) for a clonal reproduction event of trait v,

• Nvbvµm(v, w) for a reproduction event of trait v with mutation towards trait w,

• Nv (dv +
∑
w∈V cv,wNw) for a death event of trait v.

The dynamics are summarised by the infinitesimal generator of the process,

Lφ(N) =
∑
v∈V

(φ(N + δv)− φ(N))
(
Nvbv(1− µ) +

∑
w∈V

Nwbwµm(w, v)
)

+
∑
v∈V

(φ(N − δv)− φ(N))Nv

(
dv +

∑
w∈V

cv,wNw

)
. (1.3)

Here, the functions φ : NV → R are bounded. As mentioned before, this process is construc-
ted by Fournier and Méléard in [77] in terms of Poisson random measures. It can also be
constructed algorithmically, following the procedure of a Gillespie algorithm [83].

The individual-based model above is based on classical birth-and-death processes, or branch-
ing processes in general. These processes consider the growth of a population with a single
or multiple traits without interaction and are well studied (e.g. in [4, 5, 162, 70]). We
make extensive use of them to approximate the growth of different subpopulations in the
individual-based model (1.3). A classical example are Galton-Watson processes, where, in
discrete generations, individuals produce offspring according to some distribution on N [172].
Birth-and-death processes arise as a continuous-time version, where only 0 and 2 are allowed
as numbers of offspring, occuring at rates d and b, corresponding to a death or birth event.
As long as b − d > 0, the population in a birth-and-death process grows roughly exponen-
tially. To limit the population size as a result of limited resources, a competitive term is
usually added. In this case, classical branching process results are no longer applicable since
they assume independence of the different individuals and do not allow for an interaction
between them. However, there exists a theory of logistic birth-and-death processes, where
the exponential growth is limited to logistic growth by an interactive competition term.
Here, the equilibrium size of the population is at (b− d)/c, where c is the parameter for the
competition. Moreover, the results can be extended to (logistic) birth-and-death processes
with immigration, where the latter corresponds to incoming mutations. In [38] and previous
publications, the authors derive several important results on the mean behaviour of such
processes in dimension one and two. In Chapter 3 we extend the results to the multidimen-
sional case. This allows us to approximate the individual-based model during an invasion
phase where more than two traits impose notable competitive pressure.
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1.2 The models discussed in this thesis

1.2.2 A system of differential equations

The previously described dynamics can also be modelled by a deterministic system of differ-
ential equations that is another important object of study in this thesis:

ṅv(t) =
(
bv(1− µ)− dv −

∑
w∈V

cv,wnw(t)
)
nw(t) + µ

∑
w∈V

bwm(w, v)nw(t), v ∈ V, t ≥ 0.

(1.4)

Here, nv(t) describes the population size of trait v ∈ V at time t ≥ 0. Note that this size
is neither in terms of numbers of individuals nor in terms of frequencies, i.e. normalised,
but simply a value in R. Since we assume cv,v > 0 for each v ∈ V , the competition term
ensures boundedness for any solution n. This implies Lipschitz continuity of the coefficients
and ensures existence, uniqueness (for fixed initial condition), and continuity of the solution.
Moreover, we are only interested in studying biologically reasonable, non-negative states of
the system. The form of the equations guarantees that, for n(0) ∈ RV+, we obtain n(t) ∈ RV+
for any t ≥ 0. The relation of this deterministic system to the stochastic individual-based
model is discussed in Section 1.3.

Equation (1.4) describes a competitive Lotka-Volterra system with additional mutation
terms. In this thesis we study regimes of rare mutations. It is essential to understand
the behaviour of the mutation-free classical Lotka-Volterra system, i.e. (1.4) with µ = 0 or
(1.2), since it governs the short-term dynamics of the more complex processes. In particular,
it is of interest to study fixed points, so-called equilibria, of the equation.

For a subset v ⊂ V , n̄ ∈ Rv
+ is an equilibrium state if

(
bv − dv −

∑
w∈v

cv,wn̄w

)
n̄v = 0, ∀ v ∈ v. (1.5)

Note that 0 is always a fixed point. If there exists a unique equilibrium in Rv
>0, we denote

by n̄(v) its extension to RV+ by zero. If, for some open subset n̄(v) ∈ U ⊂ Rv
+, the solution

of the mutation-free Lotka-Volterra system converges to n̄(v), for any n0 ∈ U , n̄(v) is called
(asymptotically) stable or attractive. These points can also be characterised in terms of
eigenvalues of the Jacobian matrix of the function g, where gv(n) = nv(bv−dv−

∑
w∈v cv,wnw).

There is no exhaustive study on the existence of such stable equilibria in arbitrary dimensions.
Moreover, Smale has shown that many different and complex long-term behaviours can arise,
ranging from fixed points to limit cycles and multiple attractors [165]. However, there exists
a complete analysis for dimensions up to three and there are some results on sufficient criteria
for existence in general dimensions. In the following we give a short overview.

In the case of just one trait v = {v}, the situation is easy. If bv − dv > 0, the unique stable
equilibrium is given by n̄v(v) = (bv − dv)/cv,v. If bv − dv ≤ 0, then 0 is the only fixed point
and stable.
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In the two-dimensional case, where v = {v1, v2}, there are four potential fixed points, namely
(0, 0), (n̄v1(v1), 0), (0, n̄v2(v2)), and(

(bv1 − dv1)cv2,v2 − (bv2 − dv2)cv1,v2

cv1,v1cv2,v2 − cv1,v2cv2,v1
,
(bv2 − dv2)cv1,v1 − (bv1 − dv1)cv2,v1

cv1,v1cv2,v2 − cv1,v2cv2,v1

)
. (1.6)

Depending on whether they are non-negative and on the relation of the parameters, different
points are stable equilibria. Only in the case where bv1−dv1 = bv2−dv2 and cv1,v1 = cv1,v2 =
cv2,v1 = cv2,v2 , every state n such that nv1 + nv2 = (bv1 − dv1)/cv1,v1 is a fixed point.

In dimension three, already many different scenarios are possible, including coexistence of
up to three traits and cyclic behaviour. A complete classification with conditions on the
parameters b, d, and c is given in a paper from Zeeman, see [180].

For higher dimensions, there exists no full classification yet. However, there are results on
sufficient criteria for the existence of stable equilibria, as for example by Champagnat, Jabin,
and Raoul [35]. Under certain symmetry and positive definiteness assumptions on the matrix
C = (cv,w)v,w∈v, they show existence and uniqueness of stable equilibria with the help of
Lyapunov functions.

It is also possible to relax the assumption of cv,w ≥ 0 and allow for beneficial interactions
between individuals. To give an example, one can consider predator-prey relations. Here,
the presence of a prey trait increases the growth rate of a predator trait, while the prey
trait experiences an increased death rate in the presence of a predator. Similar scenarios
arise for parasite-host relations. Moreover, there is also the possibility of mutually beneficial
interactions in the context of symbiosis. Allowing for more general parameters also increases
the number of different behaviours, where, for example in a predator-prey setting, periodic
cycles already arise in a two-dimensional system.

As an example, we briefly consider a specific case of predator-prey dynamics. It demonstrates
behaviour that is referenced for the interactions of melanoma cells and T-cells in Chapter 4.
We study the system given by

ṅ1(t) =
(
b1 − d1 − c1,1n1(t)− c1,2n2(t)

)
n1(t),

ṅ2(t) =
(
c2,1n1(t)− d2

)
n2(t). (1.7)

All parameters are assumed to be positive, except that c1,1 might be zero, and b1 − d1 > 0.
Trait 1 symbolises the prey and trait 2 the predator. Note that c2,1 appears in a benefi-
ciary term for the predator, as it feeds off the prey. Depending on whether we allow for
self-competition of the prey, i.e. c1,1 > 0, different behaviour arises. As seen in Figure 1.1, if
c1,1 = 0, solutions are periodic. There are limit cycles that depend on the initial condition
and center around the one interior fixed point (d2/c2,1, (b1 − d1)/c1,2). If self-competition
is included, we observe fluctuating convergence towards a single stable equilibrium, inde-
pendent of the initial condition. This stable equilibrium can be shifted, e.g. by changing the
parameter c1,2.

In the theoretical part of this thesis, we concentrate on purely competitive systems. However,
the existence of equilibria is not the main focus of this work. Therefore, in many cases we
assume the existence of unique stable equilibria and terminate the construction otherwise.
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Figure 1.1: Solution of (1.7) for parameters b1 = 3, d1 = 1, c1,2 = 2, c2,1 = 0.5, and d2 = 1. Black
lines indicate a change in signs of ṅ1(t) or ṅ2(t), solutions evolve counter-clockwise. (A) Solutions for
c1,1 = 0 and different initial conditions. (B) Solutions for c1,1 = 0.15 and different initial conditions
(orange and red) or c′1,2 = 0.5 (blue).

1.2.3 Notions of fitness

We now look into the term of fitness landscapes. There are at least two notions of fitness
that are used in the context of mathematical models for evolution. In this thesis, we call
them individual fitness and context-dependent or invasion fitness. Both terms quantify how
well-adapted a trait is to its environment. They are related to the exponential growth rate
of a subpopulation of a certain trait.

The individual fitness is fixed over time and assigns a value in R to each trait. It does
not reflect an interaction with other individuals. For the individual-based model that we
consider, the individual fitness rv of a trait v ∈ V is defined by rv := bv − dv. This value
describes the average growth rate in the competition-free pure birth-and-death process. It
also quantifies the exponential growth in the corresponding competition-free Lotka-Volterra
system.

The system we consider is not competition-free and the competitive interaction with other
individuals limits the actual growth rates of the subpopulations. Therefore, the context-
dependent fitness fv(N) of a trait v ∈ V in a population at state N is defined through
fv(N) := bv − dv −

∑
w∈V cv,wNw. If there is just one individual of a trait w ∈ V within

a bulk population of traits v ⊂ V close to their equilibrium n̄(v), this context-dependent
fitness is approximately equal to fw,v := bw − dw −

∑
v∈v cw,vn̄v(v). Since it describes the

initial growth rate of a new mutant w invading an equilibrium population of v, fw,v is called
invasion fitness. It was first introduced in a more abstract way by Metz et al. in [139] and
formalised for individual-based models as above by Champagnat and Méléard in [31, 37].
If the context-dependent fitness of a trait is negative, its population can be approximated
by a sub-critical branching process and is likely to die out. If it is positive, the population
behaves approximately like a super-critical branching process and has a positive probability
of growing and fixating in the population before extinction. Similar implications are valid for
the deterministic system. The long-term behaviour of competitive Lotka-Volterra systems
can be characterised in terms of the invasion fitnesses of the different traits.
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These two notions of fitness are related to the concept of fixed fitness landscapes in the
context of adaptive walks and flights in the following way: If we assume that the competition
between each two traits is constant, i.e. cv,w ≡ c, for all v, w ∈ V , then the invasion fitness of
a trait w in a monomorphic equilibrium population of trait v simplifies to fw,v = rw− rv. In
this case, w can invade the population of trait v if and only if rw > rv. This is in line with
the transition probabilities of an adaptive walk, where (in most cases) the random walk can
jump to a neighbour of the current trait if and only if the new trait has higher fitness.

1.3 Approximation at different scales

Stochastic individual-based models are good in the sense that they are quite realistic rep-
resentations of certain biological systems (e.g. bacteria). However, due to the stochasticity,
there are many possible outcomes for single realisations of the process. Moreover, simulations
of individual-based models are computationally heavy, which is impractical for applications.
We are interested in the long-term evolution of the system. The goal is therefore to approx-
imate the mean behaviour of the individual-based model by simpler, partially deterministic
processes and to characterise the adaptive evolutionary path that the population takes on
the trait space.

There are two quantities that shape the long-term behaviour of the system, namely the
mutation probability and the fitness landscape. The mutation probability decides how fast
or often mutations occur and whether the system has time to reach a new equilibrium
between mutations. Once a mutation occurs, the fitness landscape determines whether the
new trait can fixate in the population or dies out immediately, and if a new equilibrium state
is reached.

In this section we first present a deterministic approximation of the individual-based model
for large populations with frequent mutations. It relates the two models that were mentioned
in Section 1.2 and is the basis for all following approximations, as it determines the short-
term dynamics of the individual-based model. Second, we give an extensive overview of the
different scales that are involved when considering the simultaneous limit of large populations
and rare mutation and provide previous results that have been derived for the different
regimes. Third, we discuss the limit of rare mutations in the deterministic system. Finally,
we consider several quantities that have to be studied in order to characterise the limiting
processes in these different scenarios.

1.3.1 Large population approximation

A first approach to approximate the stochastic system (1.3) is a law of large numbers.
However, since the population size is not fixed, we need to introduce a parameter to scale
the average population size. As discussed above, the equilibrium size of a logistic birth-and-
death process with parameters b, d, and c is (b−d)/c. We therefore scale the competition by
a parameter K as cKv,w := cv,w/K and denote the corresponding stochastic process by NK .
As a result, the equilibrium size of any coexisting population of NK is of order K. Note that
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this does not change the notion of invasion fitness that was discussed in the previous section.
If we substitute cKw,v for cw,v and n̄(v)K for n̄(v), the Ks cancel out and fw,v remains the
same.

The parameterK is sometimes called carrying capacity and can be interpreted as the capacity
of the environment to support living organisms in terms of space, nutrients etc. Individu-
als compete for these resources and, as the capacity increases, the competitive pressure is
reduced.

The classical result by Ethier and Kurtz [70, Chap.11, Thm.2.1] now yields convergence of
the rescaled process NK/K, as K → ∞. Under the assumption that NK(0)/K converges
to n0 ∈ RV+, NK/K almost surely converges uniformly to the solution n of (1.4) with initial
condition n0, on any finite time interval [0, T ]. As a result, for large populations, the short-
term dynamics of the stochastic process are governed by the deterministic system. Note that
a similar result for continuous trait spaces is proved by Fournier and Méléard in [77].

For the rescaled process NK/K, we can distinguish traits with population sizes that vanish
in the limit of K →∞ and those that do not. According to this, at time t ≥ 0, we call traits
v ∈ V with NK(t)/K → 0 microscopic, and macroscopic otherwise. The macroscopic traits
that are close to their (possibly coexisting) equilibrium size are called resident.

1.3.2 Multiscale approximation in the large population-rare mutation limit

Many genetic mutations that occur do not have a detectable effect on the phenotypic level.
This is because they only slightly vary the genome and thus not influence the overall trans-
lation of DNA enough to cause a change in fitness. Other mutations are lethal since they
damage a part of the genome that is essential for survival. The frequency of effective but
non-lethal mutations is a topic of ongoing discussion and dependent on the considered spe-
cies. However, with a finite trait space we focus on a projection of the full genome onto a
collection of alleles that determine phenotypic characteristics of interest. For this collection
of specific genes, it is reasonable to assume that effective mutations that produce a new
phenotype are rare. In the individual-based model for evolution that we consider, we thus
let the mutation probability µK depend on K and again denote the corresponding process
by NK . In the limit of K →∞, we let µK either converge to zero or to some small µ > 0.

The resulting individual-based Markov process NK is a multiscale model. There are several
phenomena that occur on different time scales. Depending on the choice of mutation rate
and rescaling of time, multiple different stochastic or deterministic processes can arise in the
limit of K →∞. In the following, we give an overview of the different scales involved.

For simplicity we first consider a single invasion and study the different phases. They are
visualized in Figure 1.2.

Phase 1: Arrival of a mutant
If the resident population has a size of order K and the probability of mutation at birth
is of order µK , then the occurrences of mutations behave like a Poisson point process
with intensity of order KµK . The waiting time until a single mutant individual arrives
is hence of order 1/KµK .
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Phase 2: Growth to a macroscopic level
If a mutation occurs, the mutant trait has positive invasion fitness, and it does not go
extinct due to random fluctuations, its population initially grows roughly exponentially.
This is because the self-competition is not relevant yet and the resident traits have
roughly constant size. The exponential growth rate equals the invasion fitness of the
mutant trait. In a resident population of traits v ⊂ V , the time that a mutant
population of trait w takes to grow from a level of Kγ individuals, γ ∈ (0, 1), to
a macroscopic population size of order K is roughly (1 − γ) logK/fw,v, i.e. of order
logK.

Phase 3: Invasion/Re-equilibration
Once the mutant trait reaches a macroscopic population size, the populations of the
resident traits and the mutant trait behave according to the corresponding mutation-
free Lotka-Volterra system. Since the initial conditions for the Lotka-Volterra dynamics
are of order K, i.e. non-vanishing when rescaled by K, the time until the system is
close to its new equilibrium (if existent) can be bounded uniformly by a time of order
1. In the stochastic system this can be argued since individual birth and death events
occur at frequency 1 times the population size. In a population with size of order K,
changes of order K can therefore ba achieved in a time of order 1.

Phase 4: Extinction
After the new equilibrium is reached, the former resident traits that are no longer
resident have a negative fitness and thus their population size declines. Equivalently
to the second phase, their populations take a time of order logK to go extinct.

Depending on the choice of the mutation probability µK and the time scale, some of these
phases are visible or not.

εK

n̄v(v)K

n̄w(w)K εK

εK

O(logK) O(1) O(logK)O(1/KµK)

Figure 1.2: Four phases of an invasion and their duration, for the case of one resident trait (grey)
and one mutant trait (black).

The general strategy to prove convergence for the individual-based model is to approximate
the microscopic mutant populations by branching-processes during the phase of growth.
This is possible since one can use the stability of the resident population at equilibrium,
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e.g. due to large deviation results from [63, 79], and assume the competitive pressure to be
roughly constant. Once a mutant reaches a macroscopic population size, and does hence
no longer vanish in the limit, the invasion of the resident population can be approximated
by the corresponding Lotka-Volterra dynamics. The occurrence of mutations is estimated
by Poisson processes. A similar strategy is applied for the convergence of the deterministic
system in the limit of rare mutations, as mentioned below. Here, the growth is approximated
by sums of pure exponential functions and stability of the resident population is shown via
stability of the equilibrium state under slight perturbations.

The above considerations lead to the distinction between three time scales: First, the short
time scale of order 1, on which the Lotka-Volterra dynamics between macroscopic traits play
out. Second, the evolutionary time scale of order 1/KµK , on which mutations arise. Third,
the ecological time scale of order logK, on which microscopic populations grow according
to their invasion fitness. We can distinguish four different regimes of mutation rates µK
that we can study on these multiple time scales. In the following, we summarise what is
known about the different cases. Most of the results are also assembled and discussed in a
little more detail in a review article by Bovier [23]. All convergences, orders, and notions of
macro- or microscopic are meant with respect to the limit of K →∞.

Regime 1: e−V K � µK � 1
K logK

In this scenario, we obtain logK � 1/KµK � eV ′K . As a result, mutations occur before
the resident populations can go extinct due to random fluctuations [79]. However, mutations
are extremely rare and the waiting time between single mutations is much larger than the
time that a mutant population needs to grow from one individual to a macroscopic level (if
it successfully does so). Therefore, mutation events are separated in the way that a new
trait either fixates or goes extinct before the next mutation occurs.

If time is not rescaled, microscopic traits grow too slowly and new mutations are too rare.
Therefore, NK/K converges almost surely to the solution n of the mutation-free Lotka-
Volterra system ((1.4) with µ = 0) that involves the traits v ∈ V with NK

v (0)/K → n0,v > 0.
After reaching an equilibrium state between those traits (if existent), there is no further
evolution.

If we consider the time scale logK, mutations are still too rare to be seen but traits with
microscopic initial condition such that NK

v (0) ∼ Kγ , γ ∈ (0, 1), can grow and hence reach
a macroscopic population size. In this case, the time to obtain a new equilibrium with the
former resident traits vanishes. Thus, NK/K converges in probability to a deterministic
jump process that jumps between coexistence equilibria involving only traits with the men-
tioned initial conditions. The characterisation of this jump process is a topic of this thesis
and is discussed in Section 1.6 and Chapter 3.

The most interesting time scale for this regime is 1/KµK . Here, the waiting time between
mutations is finite but non-vanishing. Assuming that the initial living traits reach a final
state according to the previous paragraph, all traits that are not part of this final coexist-
ence equilibrium die out within a time of order logK, i.e. before the first mutation occurs.
The time that a mutant population needs to grow from a single individual to a macroscopic
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level vanishes. The occurrence of a mutant, the trait of the mutant, and the choice whether
it fixates or not are random. Consequently, NK/K converges for finite dimensional dis-
tributions to a random jump process that jumps between (coexistence) equilibria between
different subsets of traits. It is called trait substitution sequence (TSS) [31] or polymorphic
evolution sequence (PES) [37], depending on whether coexistence is allowed or not. In the
monomorphic case, jumps from v to w occur at a rate proportional to m(v, w)[fw,v]+/bv.
This is similar to a natural adaptive walk, which jumps to direct neighbours with a probab-
ility proportional to [fw,v]+. Both processes move along edges of the graph towards higher
fitnesses until a local maximum is reached, i.e. a trait v ∈ V such that, for every neighbour
w, fw,v < 0.

Regime 2: µK ∼ 1
K logK

In this setting, mutations occur at the same speed as the mutant populations grow. The eco-
logical and evolutionary time scale are therefore not separated. Multiple, but not necessarily
all possible, mutants may interact at the same time. If time is not rescaled, mutations are too
rare and, as in the previous scenario, NK/K converges to the solutions of the mutation-free
Lotka-Volterra system involving all initially macroscopic traits.

On the time scale 1/KµK ∼ logK, many different outcomes are possible due to random
events. So far, there exists no general study of the limit process (if existent). However, for
small trait spaces with only two or three possible mutants, this scaling has recently been
considered by Billiard and Smadi in [15, 16]. They derive conditions for coexistence and
fixation, and study the invasion time.

Regime 3: µK � 1
K logK , µK → 0

This is the scenario that we focus on in this thesis. Since 1/KµK � logK in this case,
mutations occur much more frequent and are no longer separated. However, since µK → 0,
mutant traits can not reach a population size of order K through incoming mutations alone
and the logK growth phase governs the dynamics.

If time is not rescaled, either mutations occur too rarely (1/KµK → ∞) or mutations in
fact arise but the mutant population stays at a microscopic level since the time to reach a
macroscopic population size is of order logK. As a result, NK/K converges almost surely to
the solution n of the mutation-free Lotka-Volterra system ((1.4) with µ = 0) that involves all
the traits v ∈ V with NK

v (0)/K → n0,v > 0. If existent, the process reaches an equilibrium
between those traits within a time of order 1 and remains in this state.

Similarly, on the mutational time scale 1/KµK , mutations frequently occur but the mutant
populations can not grow to a macroscopically visible size. Depending on how µK decreases
compared to 1/K, more or less of the Lotka-Volterra dynamics mentioned above are visible.
If µK � 1/K, e.g. µK ∼ 1/ logK, changes in the population due to birth and death events
are of an order that is macroscopically not visible and NK/K converges to the constant
process at state limK→∞N

K(0)/K. In the case of µK ∼ 1/K, time is not rescaled and the
result is as in the previous paragraph. If 1/K � µK � 1/(K logK), the Lotka-Volterra
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dynamics are faster than the occurrence of mutations and therefore NK/K converges to the
constant process that takes the value of the Lotka-Volterra equilibrium of all traits v ∈ V
with NK

v (0)/K → n0,v > 0 (if existent).

The time scale that is mostly considered in this thesis is the one of logK. On this scale
mutations occur infinitely fast and the growth of microscopic populations is visible. Since
mutations are much more frequent than in the previous scenarios, every possible mutation of
the resident traits arises infinitely often and fixates, as long as it has a positive fitness. As a
result, in the macroscopic picture, mutations are no longer random and the limiting process
of NK/K is a deterministic jump processes that moves between Lotka-Volterra equilibria of
different subsets of V . The dynamics of this process are rather complicated since multiple
growing mutant populations compete to invade the resident population at the same time.
They are one of the main issues of this thesis and are further discussed in Section 1.6 and
Chapter 3. We consider the case of power law mutation rates, µK = K−1/α, α > 0. Note
that, for α < 1, this falls under regime 1. This scaling of negative powers of K was previously
discussed in [25, 38]. However, the authors consider a more restrictive setting, where the trait
graph consists of a subset of N and a specific fitness landscape is assumed. Depending on the
choice of α, the limiting jump processes interpolate between adaptive walks and adaptive
flights. They can cross fitness valleys of width smaller than α and possible final states are
local maxima such that no fitter trait exists in a radius of α.

Regime 4: µK → µ > 0

In this case, mutations occur on the same time scale as birth and death events. The mutant
populations therefore reach a size of order K simply due to incoming mutations (and not
their own population growth) within any time of order 1. Consequently, the logK growth
phase becomes obsolete for those traits. Since we consider a finite trait space, every trait that
can be reached through a chain of mutations from an initial resident trait is macroscopically
present within any time of order 1.

If we do not rescale time, NK/K converges almost surely to the solution n of (1.4). All
traits that are accessible through mutations from a trait v ∈ V with NK

v (0)/K → nv,0 > 0,
have a positive population size nv(t) for any t > 0. Under certain assumptions on the
parameters for competition and mutation, cv,w and µm(v, w), which allow to construct a
Lyapunov functional, Coville and Fabre show convergence to a stable equilibrium in such
systems [47].

If we consider the process on the logK time scale, the traits that are accessible from the
initial resident traits immediately reach an equilibrium state of (1.4), if existent. Since we do
not assume that the trait graph is connected, there might however be other components, that
do not contain any of the initial resident traits, but some traits v ∈ V with NK

v (0)/K ∼ Kγ ,
γ ∈ (0, 1). If those traits have positive fitness in the mentioned equilibrium state, they can
grow on the logK time scale and invade the resident population to change the equilibrium.
Note that, once a new trait reaches a population size of orderK, immediately every trait that
is accessible through mutation from this trait does so, too. Hence, the limiting process of
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NK/K jumps between equilibria of (1.4) (if existent), taking into account increasing subsets
of V .

One could also consider the somewhat artificial mutational time scale 1/KµK ∼ 1/K. This
is the time scale on which single mutation events but also birth and death events occur.
Since these change the state of the system by single individuals, in the rescaled process
NK/K, changes are of size 1/K and not visible in the limit. However, if we consider
NK(t/K)−Kn(t/K), it is possible to study the Poisson variation around the mean state of
the population.

A forth time scale for metastability

The three time scales that are considered above (Lotka-Volterra dynamics, occurrence of
mutations, and growth of mutant populations) are derived from the study of mutants that
directly stem of a resident trait. They occur at rate KµK . However, these mutants, having
an initial population size of order µKK, are also able to produce second order mutations at
rate Kµ2

K , and similar for traits with higher distance to the initial resident traits. As long
as Kµ`K � 1, the higher order mutants with distance ` to the resident traits still have a
positive population size and can grow on the logK time scale. If however Kµ`K � 1, these
traits only occur as mutations extremely rarely. They are only visible on the time scale
1/Kµ`K . On this time scale, assuming that 1/Kµ`K � logK, we can observe a metastable
behaviour.

Regime 1 constitutes the trivial case with ` = 1, where KµK � 1 and mutations are visible
on the time scale 1/KµK . In regime 3, according to the dynamics described above, the
process first attains a locally stable equilibrium on the logK time scale which is surrounded
by a fitness valley of respective width. This step is immediate on the new, more accelerated
time scale. The process then randomly gains access to further parts of the trait graph and,
once it does so, promptly attains a new local equilibrium.

In the case of the trait space [0, `] ∩ N and power law mutation rates, this metastable time
scale is rigorously studied by Bovier, Coquille, and Smadi in [25]. Two interesting scenarios
of non-linear trait spaces are also heuristically discussed in this thesis as a part of [42].

1.3.3 Rare mutations in the deterministic system

Another approach is to consider the limits of large populations and rare mutations separately.
This is done letting the mutation probability µ tend to zero in the deterministic system (1.4).
This limit has first been proposed by Bovier and Wang in [26] and is further considered in
[25] and in this thesis as part of [112]. Here, the terms microscopic and macroscopic are to
be interpreted as vanishing and non-vanishing in the limit of µ → 0. All orders are given
with respect to this limit.

In this case, due to the continuous flow of mutation, every trait that is attainable through
mutation from a trait with positive initial size has a positive population size after any time
t0 > 0. This population size is of some order µγ , γ ≥ 0. For example initial resident traits
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satisfy γ = 0, neighbours of those γ = 1, and so on. The time to grow from a microscopic
population size µγ , γ > 0, to a macroscopic size of order µ0 with a roughly exponential rate
is of order log 1/µ.

Let us denote the solution to (1.4) with parameter µ by nµ. If time is not rescaled, only
the traits with an initial population size of order 1 are visible in the limit since the other
traits do not reach a macroscopic level within a finite time. As a result, nµ converges to
the mutation-free Lotka-Volterra system ((1.4) with µ = 0) that involves all traits with
nµ(0)→ ñ0 > 0.

We do not have a mutational time scale since there is no waiting time before the first mutant
appears. However, it is interesting to consider the time scale log 1/µ on which microscopic
traits can grow to a macroscopic level. As in regime 3 above, we see multiple mutants
competing to invade the population. The first mutant trait to reach a macroscopic level
and change the equilibrium according to the Lotka-Volterra dynamics is found optimising
the ratio between the initial population size of the trait and and its speed of growth, i.e.
its invasion fitness. Since the microscopic populations are not visible in the limit and the
Lotka-Volterra phase vanishes on the accelerated time scale, nµ converges pointwise almost
everywhere to a deterministic jump process that moves between Lotka-Volterra equilibria
involving different subsets of V . The derivation of this jump process is one of the main topics
of this thesis and is further discussed in Section 1.6 and Chapter 2.

This scenario is a good first step towards studying limiting processes for vanishing but not
too rare mutation rates. It is related to the simultaneous limit in the following way: All
populations of positive size, no matter how small, are able to grow. The minimal population
size of a trait, which is obtained by mutations from a resident trait, is of order µ`G , where `G
is the diameter of the trait space in terms of (directed) paths. In the stochastic system, this
implies that Kµ`GK � 1, which is equivalent to µK � K−1/`G . This scenario falls into regime
3. Indeed, under this assumption, the limits of NK(t logK)/K, as K → 0, and nµ(t log 1/µ),
as µ → 0, coincide (up to linear rescaling of time). In this thesis we study the connection
between the simultaneous limit for mutation rates of the form µK = K−1/α and a slightly
modified version of the deterministic system, where only traits with a population size above
a certain threshold can grow. This version is introduced in [112].

1.3.4 Two processes to study as K →∞

There are two ways of studying the population in the limit of K →∞ or µ→ 0 that capture
different aspects. Depending on the time scale, NK/K converges to a jump process that
resembles an adaptive walk between (coexistence) equilibria and, more or less deterministic-
ally, describes the macroscopic adaptation of the population. In addition to the succeeding
sets of resident traits, it also reflects the precise states of the Lotka-Volterra equilibria. For
the rare mutation limit in the deterministic system, one alternatively studies the limit of
nµ.
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Particularly in the case where multiple different mutants are microscopically present and can
grow at the same time, it is of interest to consider

βKv (t) := log(1 +NK
v (t logK))

logK , (1.8)

which is equivalent to NK
v (t logK) = KβKv (t) − 1. This exponent, which asymptotically

ranges in [0, 1], gives more details on the growth of microscopic populations.

In the case of the rare mutation limit in the deterministic system there is no K. βK is
therefore substituted by

ρµv (t) := log(nµv (t log(1/µ)))
logµ , (1.9)

which is equivalent to nµv (t log(1/µ)) = µρ
µ
v (t). In the limit of µ → 0, this exponent ranges

in [0,∞) and macroscopic traits satisfy ρKv (t) = 0. When comparing NK/K to nµ for
µ = µK = K−1/α, this yields the relation of βKv (t) ≈ 1− ρµKv (αt)/α.

In the scenarios of regime 3 and the limit in the deterministic system, it is necessary to know
βK or ρµ (or better their limit) to construct the limiting adaptive walk. However, they only
reflect the sets of resident traits (as traits with βK = 1 or ρµ = 0) and do not quantify the
equilibrium states. The full information is therefore only captured in a combination of the
limits of these two quantities, NK/K and βK or nµ and ρµ, respectively.

1.4 Immunotherapy of cancer

In this section we give a brief summary of the biology of cancer, treatment strategies, the
immune system, and immunotherapy of cancer for a reader with less biomedical background.
For more details we refer to classic text books for internal medicine [101] and immunobio-
logy [143]. Cancer appears in many different forms and is one of the deadliest diseases for
humanity. There are many different approaches to treat cancer and just as many resistance
mechanisms that suppress the effectiveness of therapy. Most of the underlying effects are not
yet well understood. Therefore, we argue that mathematical modelling is a beneficial tool
in studying the dynamics of the tumour tissue, but also other complex biological systems.
We present a number of different strategies for mathematical modelling and simulations of
stochastic processes, and reason why stochastic individual-based models of evolution un-
der selective pressure are suitable for studying the particular scenario of melanomas under
immunotherapy.

1.4.1 Cancer and treatment strategies

Tumours in general are masses of abnormally growing cell tissue (neoplasms). There are two
major classes of tumours, namely benign and malignant tumours. The former do not invade
neighbouring tissue or metastasise, i.e. cells of the primary tumour spread throughout the
body, and they usually do not grow back when removed surgically. Malignant tumours, also
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called cancer, show a much higher growth rate than benign tumours. They often metastasise
and invade organs and tissues of the body, thus impairing their function and causing major
symptoms or even death [91]. There are many different types of cancers. Some of the
major causes are smoking, unhealthy diets, infections, excessive radiation, inherited genetic
defects, or simply pure chance. They induce a change in the genome of tissue cells, resulting
in increased cell growth. As opposed to their benign form, malignant tumours display a
variety of escape mechanisms from treatment and often relapse after an initial remission.

For a long time, there have been three major approaches for cancer therapy: surgery, ra-
diation, and chemotherapy. Surgery can remove solid tumours that are isolated from the
surrounding tissue. It has the advantage that it allows for a biopsy, i.e. an analysis of the
removed tissue. However, surgery cannot easily be applied to tumours that have invaded
important organ tissue or metastasised throughout the body. Radiation therapy targets the
tumour tissue with concentrated X-ray beams to damage the DNA of the cells and thus in-
duce cell death. It can be applied to cancer tissue that is hard to reach by surgery but always
damages the neighbouring tissue in the process. Chemotherapy is a drug-based treatment
that targets rapidly dividing cells all over the body. It is directed at the cell division pro-
gram and induces cytotoxic functions. A drawback of chemotherapy is its toxicity to other
tissues of the body which often limits its effectiveness. Often, two or more of these three
methods are combined. For example the bulk of the primary tumour is removed surgically
and residual tissue and metastases are treated with chemotherapy.

All of the approaches above are fairly undirected and do not only harm the tumour tissue
but also the surrounding healthy body tissue. Therefore, it is of great interest to develop
so-called targeted therapies that specifically treat the cancerous cells. A major challenge in
this context is the identification of suitable molecular targets that are characteristic for the
tumour tissue alone. This is particularly difficult as tumours are usually highly heterogeneous
and do not consist of a single cell type.

There exists a variety of targeted approaches that use small molecules to target surface re-
ceptors or intracellular proteins of cancer cells. The small molecules bind to their target and
thus impair its function, blocking tumour cell growth and metastasis or inducing apoptosis.
In this thesis we focus on a new method that has come into use since the 1990s, namely im-
munotherapy of cancer. It utilises the bodies own defence mechanisms to fight the cancerous
cells.

1.4.2 Immune system and immunotherapy

The immune system consists of many biological structures and mechanisms that defend the
body against disease. To do so, it needs to detect a variety of pathogens, such as harmful
bacteria, viruses, and mutated cells. In this process it not only needs to differentiate between
self and non-self structures, but also between healthy and diseased tissues. The immune
system in vertebrates is categorised into two major components: The innate and the adaptive
immune system [128].

The innate immune system is evolutionary much older and already found in plants, insects
and other multicellular organisms. It targets pathogens in an unspecific way. The innate
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immune system is comprised of physical barriers such as the skin, the complement system,
inflammatory cytokines, and leukocytes (white blood cells) such as phagocytes, neutrophiles,
and natural killer cells. Apart from an assortment of inflammatory cytokines, in particular
TNF-α and IFN-γ, and some effects that are mediated by neutrophiles, we do not study the
innate immune response in this thesis.

The adaptive immune system is only present in vertebrates and develops within the life-time
of an individual, through confrontation with different pathogens. Therefore, it is often re-
ferred to as the acquired immune system. It is responsible for a specific pathogen recognition
and suppression, as well as the establishment of memory. There are two important types of
adaptive immune cells, namely B- and T-lymphocytes. They are part of the leukocytes and
are comprised of different subgroups of cells themselves. B-lymphocytes, or B-cells for short,
produce antibodies that circulate the blood and lymph systems and are part of the humoral
response. They can specifically bind to certain peptides (antigens) and are responsible for
agglutination and neutralisation of pathogens, for activation of the complement system, and
enhancement of phagocytosis and innate cytotoxicity.

The focus of this thesis lies on the T-lymphocytes, more specifically on cytotoxic T-cells.
With their T-cell receptors (TCRs), which resemble antibodies bound to the cell surface, they
specifically recognise certain peptides bound to MHC molecules. Upon activation through
presentation of an antigen in the lymph node, naive T-cells are activated and proliferate.
Directed by chemokine gradients, they migrate to the infected tissue. When exposed to the
specific antigen, they secrete cytotoxins that perforate the cell membrane of the dysfunctional
or infected cell and induce apoptosis (cell death).

There are many different methods to improve the immune system’s ability to fight cancer
[46]. Besides a treatment with certain cytokines, which is mentioned in the context of chemo-
therapy above, three major approaches of immunotherapy are cancer vaccines, checkpoint
inhibition, and adoptive cell transfer (ACT). Cancer vaccines can be used both as preven-
tion and as treatment. Tumour specific antigens are injected into the patient to boost the
immune systems activity and thus either form a memory for future diseases or enhance the
response to acute cancer.

The immune system possesses a number of negative feedback mechanisms that regulate and
inhibit excessive immune responses, preventing for example autoimmunity. Tumour cells can
evade immunosurveillance, amongst others, by up-regulation of negative immune checkpoints
that suppress antitumour responses. Immune checkpoint therapy is part of so-called passive
therapy approaches that aim to enhance the existing tumour-specific immune responses by
blocking these inhibitory immune checkpoints [135]. For example, binding of programmed
cell death (PD-1) receptors expressed on T-cells to their ligand (PD-L1) expressed on cancer
cells induces an inhibitory signal, limiting T-cell efficiency. Monoclonal antibodies, such as
aPD-L1, are used to block this interaction and maintain T-cell responses. For their discovery
of cancer therapy through inhibition of negative immune regulation by PD-1 and another
receptor CTLA-4, Tasuku Honjo and James P. Allison received the Nobel Prize in Physiology
or Medicine in 2018.

ACT therapy is a form of active immunotherapy. Tumour specific autologous T-cells are
extracted from the patient, activated and clonally expanded in vitro, and re-infused into the
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patient. Chimeric Antigen Receptor (CAR) T-cell therapy represents a further development
in which autologous T-cells are genetically modified to express a CAR specific for a tumour
antigen. This procedure is able to enhance an otherwise sub-critical immune response.

In this thesis we focus on malignant melanomas, which are an aggressive type of skin cancer
and known to grow quickly and metastasise to vital organs such as the lung, liver, and brain.
We study ACT therapy with cytotoxic T-cells that specifically target a melanocytic antigen,
combined with injections of a small molecule inhibitor targeting the HGF/c-MET signalling
pathway (METi) [117, 87].

Besides an immunosuppressive environment, other resistance mechanisms of malignant tu-
mours against targeted immunotherapy have been observed. Most prominently, genotypic
and phenotypic plasticity of the cells comprising the tumour is a driving force for resistance
[129]. Due to their high reproduction rate, cancer cell populations are prone to harbour pre-
existing and acquired mutations that cause great genotypic heterogeneity among the cells
[148]. On top, a changing environment, for example in an inflammatory milieu during treat-
ment, can result in phenotypic changes in the cells. This can for example cause reversible
dedifferentiation and down-regulation of antigen expression [44]. Both mechanisms can lead
to resistance by abrogating T-cell recognition. Under the increased selective pressure during
treatment, cell variants with pre-existing or acquired genetic and non-genetic aberrations
have a fitness advantage and are enriched in the tumour tissue. This can induce a relapse of
the tumour, even after initial remission [86, 97].

Landsberg et al. [117] and Baar et al. [11] have studied inflammation-induced phenotypic
dedifferentiation of melanoma cells (down-regulation of the melanocytic antigen) as a resist-
ance mechanism to ACT therapy. Small molecule inhibitors (METi) partially prevent this
mechanisms [87]. In this thesis and in [88], we compare these phenotypic switches to genetic
antigen loss as mechanisms to escape a combined ACTMETi therapy.

1.4.3 Mathematical modelling in life sciences

The immune system, like many other biological systems, is a very complicated network of
many different cell and molecule types that interact in multiple ways to regulate the body’s
response to disease. Modern experimental techniques make it possible to study many aspects
of these kind of complex systems. However, the options to manipulate biological processes
in living creatures or even full ecosystems are limited. Experiments under laboratory con-
ditions, like in vitro experiments in cell cultures, often over-simplify and do not reflect the
actual situation.

In these cases it is often helpful to employ mathematical modelling to further study the dy-
namics of the system. In contrast to many experimental models, mathematical models and
simulations are less time and money consuming and easily manipulable. Even though theor-
etical models may not always be able to make quantitative predictions and can of course not
replace clinical studies, they can still be beneficial. Through modelling, one can test hypo-
theses, identify important mechanisms, i.e. those that determine the outcome of an experi-
ment, and predict general trends for scenarios beyond the experiments. Thus, mathematical
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modelling can guide experimental research towards promising ideas, validate experimental
results, and reduce the amount of necessary long-term and animal experiments.

The general approach of mathematical modelling is to start out from some input data, and
most of the time some hypotheses on which players (cell types, molecules, organisms, etc.)
are involved and how they interact. From this information, a model is built. It is validated
by comparing simulation results, which are generated based on this model, with experimental
data. Optimally, this validation data should be different to the input data. If the simulation
and experimental results coincide, it is a strong indication, although not a proof, that the
underlying hypothesis is true.

Depending on the pre-existing knowledge and amount and quality of available data, there
are different approaches to building a suitable mathematical model. If the data is high
in quantity and quality, it makes sense to apply statistical and computational methods to
choose the best model out of a pool of hypotheses and determine the parameters to fit the
experimental data. In [50] Costa and coauthors present a Bayesian approach for model
selection and parameter estimation in tumour growth models. Recently, Fröhlich et al. have
introduced a computational framework for the parameterisation of large-scale mechanistic
models. They apply these methods to a large network of cancer related signalling pathways to
predict responses to combined drug treatments [80]. Computational methods like this allow
to integrate large sets of diverse data to investigate complex biological systems. Particularly
in the parametrisation of large systems it is however important to conduct an uncertainly
analysis. This determines the reliability of model predictions, accounting for various sources
of uncertainty in model input and design.

Particularly if the available data is not that extensive, statistical methods can give a false
confidence into the attained model and the predictions generated by simulations. In those
cases, it is often useful to employ a more simplistic modelling approach. Here, the goal is to
keep the number of different cell or molecule types and interactions or mechanisms that are
incorporated in the model as low as possible. This produces low dimensional models that
allow for a more theoretical analysis of the dynamics. Such an approach aims more towards
a general understanding of the structure of the system than an exact quantitative fitting. It
looks for common phenomena that arise across a wider set of parameter choices. In case the
simulations do not fit the experimental data, one retains a basic understanding of causalities
within the mathematical model and can suggest which mechanisms might be depicted in a
wrong way.

As an example, Kuznetsoz and coauthors have proposed a simple ODE model for the in-
teraction between tumour and immune cells and did parameter estimations [116]. A review
on more of such models can be found in [67]. In [1], Altrock, Liu, and Michor review a
number of stochastic and deterministic models for different aspects of cancer, like tumour
initiation, progression, metastasis, and treatment resistance. Kimmel et al. consider a hybrid
model that combines a deterministic ODE model with stochastic birth-and-death processes
for small tumour cell populations to study CAR T-cell therapy of B-cell lymphomas [106].

On a more theoretical level, with no connection to specific data, Mayer and Bovier study
the activation of T-Cells as a statistical test problem, using large deviation techniques [130].
In [64, 76], Foo, Leder, and coauthors investigate tumour genesis, where several mutations
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have to be acquired to gain a fitness advantage, in a spatial setting similar to a voter
model. Gunnarsson et al. consider multitype branching processes to study the stabilisation of
reversible phenotypic switches that lead to drug-resistance, for various treatment approaches
[89].

With the experiments on ACT therapy of melanoma in mouse models from Landsberg et
al. and Glodde et al. [117, 87, 88], we are in the situation of relatively sparse data. The
available measurements give information about the variation of the total number of cells
(comprised of many different cell types) over time and the genetic composition of the tumour
at inoculation and harvesting. Therefore, we employ a rather simple model that only involves
the most important cell or molecule types and mechanisms. Among other reasons, the study
of spontaneously occurring mutations makes it necessary to consider a stochastic model.
Since we consider evolutionary dynamics within a growing tumour tissue that has not yet
reached an equilibrium size, the model should not be restricted to a fixed population size and
depict the competitive interaction between different cell types. All of these reasons make an
extension of the previously mentioned class of individual-based Markov processes a suitable
choice of model. In this thesis we extend the model of Baar at al. [11] that is used to study
the experiments in [117]. Parameter estimation for this model by an SAEM algorithm is
proposed by Diabaté et al. in [58]. More details are given in Section 1.6 and Chapter 4.

There are a couple of different approaches to simulate sample paths of such generalised
individual-based Markov processes, where a number of different events or reactions occur at
exponential rates, depending on some parameters and the current state of the population.
A stochastic simulation algorithm to produce an exact realisation of such a Markov process
was introduced by Gillespie in the context of chemical reactions [83]. There are various ways
to improve this algorithm, e.g. by reducing the number of required random variables. For
example the next reaction method [82] reuses random variables by rescaling, which is further
improved by efficient binning of events in [160]. Both approaches are particularly suited for
systems with many possible events with rates that only depend on few cell or molecule
types. However, all of these algorithms separately generate single events. Particularly in
large populations, where there are many frequently occurring events like proliferation and
death, they are computationally heavy and need many iterations to simulate the evolution
over a time span that is of interest.

To overcome this problem, there are different procedures to approximate the number of
occurrences of a certain event within some time interval. The simplest one is to consider
the corresponding deterministic system (according to the large population approximation
as described above). This way, the mean dynamics of the system can be simulated with
classical numerical techniques for solving differential equations, as for example Runge-Kutta
methods. The shortcoming of this approach is that random effects are no longer included.
Therefore, the idea of hybrid algorithms is to combine deterministic and stochastic methods
in some way to speed up simulation but also maintain stochastic fluctuations. To do so,
either subpopulations are sorted by large and small population sizes or events are sorted
by frequent and rare occurrence, i.e. the size of their event rate. The evolution of large
populations or frequent events is handled deterministically, according to the mean dynamics,
while small populations or rare events are treated stochastically. There are also approaches
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that introduce an intermediate step of stochastic diffusion approximations. Examples for
approximative hybrid simulations of individual-based models can be found in [159, 126, 62].

Another approach is the one of so-called tau-leaping, where the number of events within a
certain time interval is generated as a Poisson random variable [84]. The approximation in
this case is that the rates of the different events are assumed to be constant for this time
interval. Therefore, the length of the interval is dynamically chosen based on the sensitivity
of the rates, i.e. on how much the rates vary with a changing population state. For linear,
quadratic, and cubic rates, there is a good theory in place to choose the interval length [30].
However, general rates are not treated yet.

In the simulations in this thesis, we apply a hybrid algorithm that combines deterministic
Runge-Kutta methods and a stochastic Gillespie algorithm, differentiating between frequent
and rare events. This is justified by applying the large population approximation result from
[70]. More details on this are given in Chapter 4.

1.5 Outlook and open questions

There are multiple open questions related to the work in this thesis. They are promising for
future research, both of more theoretical nature and related to applications. In the following
we present a few of those topics.

As mentioned above, Bovier, Coquille, and Smadi introduce a fourth time scale for the
study of individual-based models with power law mutation rates in [25]. On this time scale
the limiting object is no longer fully deterministic but metastability phenomena can arise
with random jumps between local maxima of the fitness landscape (with respect to invasion
fitness). We heuristically study these phenomena for more general trait spaces in Chapter 3.
A promising goal for future work is to fully characterise the resulting limit for general finite
trait spaces on this faster time scale.

Moreover, so far we only characterise the limit as long as there is a unique stable equilibrium
to the Lotka-Volterra system involving the resident traits and the new mutant. It is of great
interest to relax these assumptions and study for example the behaviour of new mutants in a
regularly oscillating population, i.e. when the Lotka-Volterra system shows limit cycles. This
ties in with a scenario arising in tumour immunotherapy. The occurrence and fixation of
spontaneous mutations in a small tumour of oscillating melanoma cell and T-cell populations
is of interest as it has potential to cause late relapses of previously shrinking tumours.

A similar idea is to study a system with time dependent parameters. It is reasonable to
consider parameters that change with respect to the system time t, corresponding to a
changing environment. Here, it is again a question of time scales. It is important how
fast the changes of the environment are with respect to the time scale on which mutations
occur, populations grow, and the Lotka-Volterra dynamics change the resident population. A
quickly fluctuating environment, as for example seasons that change multiple times during
the life time of an individual, lead to a mean field behaviour. Conversely, slow changes,
like global hot and cold phases of the span of hundreds of years, allow the population to
adapt to the changing environment. In the latter scenario, it is then a question of whether
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subpopulations that are unfit with respect to one parameter set survive long enough to
reach a phase where they posses a positive fitness. In [49], Cvijović and coauthors study the
fixation of a mutation in a population of constant size, depending on the lengths of beneficial
and deleterious epochs as well as the size of fitness change during these phases.

Motivated by medical applications, the study of parameters that change with respect to
the age of an individual is particularly interesting. As we observe that T-cell dynamics
play an important role in determining the outcome of immunotherapy, we want to gain
a better understanding of T-cell activation, inhibition, and exhaustion. The latter is a
phenomenon of ongoing discussion in biomedical research, see [17] where a large number of
researchers present their viewpoint on the topic. Although it is not settled how and why
exactly exhaustion occurs, it is observed that effector T-cells loose their function over time,
for example in chronic infections. With this perspective, the question ties in nicely with the
topic of age-dependent parameters. Here, the effects of T-cell exhaustion can be modelled
independently of the underlying mechanism as a decreased efficiency with age. This is
different to the approach of parameters depending on the system time since new unexhausted
T-cells can be recruited to the tissue. To reduce the complexity of the mathematical model,
in a first step one should study the dynamics that determine the T-cell activity in a more
simple context. This could be the scenario of chronic infections, where intricate pheno- and
genotype dynamics, like the ones of melanoma cells, do not play a role.

In addition to T-cell activity, we see that spatial aspects of the tumour are important and
need to be incorporated more into the model, which currently assumes a well-mixed pop-
ulation. One possibility is to consider a partially spatial model that introduces several
compartments that differentiate between inner and outer layers of the tumour. It is prom-
ising to combine this with a change in parameters, where the outside of the tumour is easily
reachable by T-cells but the core shows a hypoxic and immunosuppressive environment.

Computation wise, we observe that stochastic fluctuations play an important role not only
in small populations but in general at "critical points" (e.g. bifurcations) of the deterministic
system. In the future, we want to improve how to dynamically identify and deal with these
interior critical points and how to choose the threshold for deterministic approximations in
the hybrid algorithm. Another promising way to go is a tau-leaping approach to bundle
multiple events, as long as the rates don’t change too much and can be approximated as
constant for a certain time interval [84, 30]. However, also with this method, there remains
work to be done to derive an appropriate choice of time steps in the case of rates that are
more complicated than linear, quadratic, or cubic functions of the sizes of subpopulations.

1.6 Outline and main results of the thesis

The main part of this thesis is divided into three chapters. All chapters can be read inde-
pendently, however, their contents are related. Chapter 2 and 3 are more theoretic, where the
former introduces some of the approximation techniques that are used in the latter. Chapter
4 presents an application of the type of model that is analysed in the first two chapters in
the context of oncological research. In the following we summarise the content and main
results of the three chapters.
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1.6.1 Rare mutations in competitive Lotka-Volterra systems with mutation

Chapter 2 studies the deterministic system (1.4) in the limit of rare mutations, i.e. as the
mutation probability µ tends to zero. We derive an algorithmic description of the limiting
deterministic jump process, which is simplified in the case of equal competition. Finally,
we consider a cut-off model, where proliferation is only possible above a certain threshold
population size. This chapter was published in the Journal of Mathematical Biology as joint
work with Anton Bovier [112],

A. Kraut and A. Bovier, From adaptive dynamics to adaptive walks. Journal of
Mathematical Biology, Volume 79 , Number 5, pp. 1699–1747, 2019.

Chapter 2 contains the published version, with only minor changes to correct some typing
errors and to adapt the layout to the format of this thesis.

In the main result of Chapter 2 we derive a full description of the limiting jump process of
(1.4), as µ → 0, see Theorem 2.12. As discussed above, we rescale the time as t log 1/µ.
This is the time scale on which microscopic mutant populations can grow. The same limit
is also considered in [26, 25], but in a much more restrictive setting. There, the trait graph
is a subset of N with nearest neighbour mutations and very specific assumptions on the
(invasion) fitness landscape. We consider the n-dimensional hypercube Hn = {0, 1}n, due
to its nice interpretation as sequences of (in)active genes and since the length of a shortest
path between two traits v, w ∈ Hn is exactly the 1-norm ‖v − w‖1. However, the results can
easily be transferred to any finite, possibly directed graph.

The main difficulties of the proof, compared to previous results like [26], come from two
sources. First, we allow for coexistence of multiple resident traits. This leads to more
complicated calculations for the stability of the resident equilibrium state during the growth
phase of the mutants. Instead of approximating the derivative of the population size of
one resident trait from above and below, we prove a contraction close to the equilibrium
state. To do so, we compare the Euclidean norm and a norm that is related to the positive
definiteness of the competition kernel. The latter is an assumption that we make to also
guarantee the existence of unique stable equilibria according to [35].

The second complication stems from the fact that we consider a trait graph with circles. As
a consequence, two traits are connected by multiple different paths and mutant traits can
arise due to different chains of consecutive single mutations. Since we consider a regime of
very large mutation rates, this means that each subpopulation has a continuous influx of
mutants from different sources. To approximate the growth rate of a population of a certain
trait or better its population size, we carefully take into account all these different influences.
Here, a population can grow according to its own fitness or due to incoming mutants from a
neighbouring trait. To derive the correct rates or sizes, we introduce a particular induction
procedure. For all traits in parallel, we take into account the incoming mutants arising due
to an increasing number of mutations, i.e. stemming from traits of increasing distance to
the considered trait. This is a fundamentally different approach to the previous papers,
where mutation was only going in one direction and one could therefore approximate the
population sizes trait by trait, already knowing the size of the direct neighbour.
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The first mutant trait to reach a macroscopic population size invades the resident population
according to the Lotka-Volterra dynamics. It is determined by optimising the quotient of
initial population size (as exponent of µ) and invasion fitness of the different traits. This is
due to the fact that traits reaching a population size of order 1 cannot have gotten there
purely due to incoming mutations (those result at most in a population size of order µ),
but only due to their own growth with the rate of their invasion fitness. On the time
scale t log 1/µ, it then takes a time of order t = γ/fw,v to grow from µγ to µ0 at rate fw,v.
Consequently, minimising this quotient not only gives the next trait to invade the population
but also the time step between invasions. The exact bookkeeping of the population sizes of
all other traits is necessary to determine the initial conditions for the next invasion step. This
is important because the fitness landscape changes according to the new resident population
and formerly unfit traits might become fit.

In Theorem 2.14, we present a simplified characterisation of the limiting process for the
case of constant competition cv,w ≡ c. In this case, a trait that is once unfit stays unfit
indefinitely. As a result, we do not need to keep track of the population sizes of all mi-
croscopic populations, which simplifies the algorithmic description. Note that this is not a
direct corollary from Theorem 2.12 since the assumption on the positive definiteness of the
competition kernel can no longer be satisfied. However, we assume that the individual fitness
r is different for each trait, which prevents coexistence and allows us to argue differently in
the few places where the positive definiteness is used.

Finally, we propose a cut-off version of the deterministic system (1.4), where proliferation
is only possible above a certain threshold for population size, depending on µ. This model
is intended to mimic the simultaneous limit of large populations and rare mutations, where
reproduction is only possible in populations with at least one individual. Depending on the
choice of the threshold, populations of size µ` are able to reproduce, which corresponds to
Kµ`K being of order at least one and hence µK ≥ K−1/`. In the case of ` = 1, we again
characterise the limiting process in Theorem 2.18. Moreover, we give some results on the
accessibility of traits in relation to fitness valleys.

The limiting processes of the deterministic system, corresponding to the different scenarios,
behave similar to adaptive walks or flights in the sense of [132, 102, 144, 147]. In the case
of Theorem 2.12, the fitness landscape is changing after each invasion. The limiting jump
process can take arbitrary large steps and reaches a final state only if there exists a set
of coexisting resident traits, for which every invasion fitness is non-positive. In the cases of
constant competition, the fitness landscape defined by the individual fitnesses rv corresponds
to the setting of adaptive walks. For non-restricted reproduction, as in Theorem 2.14, the
limiting process moves along traits of increasing fitness r and eventually reaches the global
maximum, where it remains. In Theorem 2.18, we only allow for nearest neighbour jumps.
Thus, the process always jumps to the fittest neighbour of a resident trait, which corresponds
to the greedy adaptive walk in [147].

Note that in Chapter 2 we employ a slightly different notation. We consider the trait space
X = Hn with elements x, y, z. The rescaled stochastic process is denoted by νµ,Kt instead
of NK(t)/K and the solution of the Lotka-Volterra system with mutation is denoted by ξµt
instead of nµ(t). Finally, the parameters for competition are α(x, y) instead of cv,w.
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1.6.2 Simultaneous large population-rare mutation limit for moderate power
law mutation

In Chapter 3 we study the simultaneous limit of large populations and rare mutations in
the individual-based model (1.3), i.e. K → ∞ and µK → 0. For finite trait spaces and on
the time scale logK, we consider moderate mutation probabilities that decay like K−1/α,
α > 0. This corresponds to regime 3, or regime 1 in the special case of α < 1. We derive a
full description of the limiting jump process, thus extending the results from Chapter 2 to
the simultaneous limit and the results from [25] to a more general trait space. Moreover, we
present multiple specific examples of interesting evolutionary scenarios that occur for this
choice of mutation rate. This chapter is available as a preprint as joint work with Loren
Coquille and Charline Smadi [42],

L. Coquille, A. Kraut, and C. Smadi, Stochastic individual-based models with power
law mutation rates on a general finite trait space. Preprint, arXiv:2003.03452, 2020.

Chapter 3 contains the preprint, with only minor changes to correct some typing errors and
adapt the layout to the format of this thesis.

The content of Chapter 3 is divided into two parts. In the first part, in Theorem 3.3 and
Proposition 3.6, we give a full characterisation of the limiting process, both in terms of the
exponents βKv , as defined in (1.8), and the rescaled population size NK/K. This result
applies to general finite, possibly directed graphs and provides an algorithmic construction
of the limit, as long as there exist unique stable equilibria to the Lotka-Volterra dynamics
for the resident and invading mutant traits. For α larger than the longest distance within
the trait graph (in terms of shortest path length), the limiting process coincides with the
one in Theorem 2.12. For smaller α, the description is more intricate since not all mutant
traits are present in the beginning. Therefore, we have to introduce intermediate time steps
(between invasions) when new subpopulations arise due to mutation from other growing
subpopulations.

Both results are proved simultaneously and the proof relies on the induction approach from
Chapter 2, as well as an approximation by (logistic) birth-and-death processes with and
without migration. We make extensive use of the limit results for such processes from
Champagnat, Méléard, and Tran’s paper [38]. However, we have to generalise some of their
results, for example to deal with coexisting resident traits.

In the second part we consider several specific graphs and parameter choices to demonstrate
interesting and partially counter-intuitive behaviours that arise in the limiting process under
this particular scaling of mutation rates. To name some examples, mutational paths can be
longer or shorter than expected, taking seemingly unnecessary detours or skipping traits on
the graph. Adding an edge in the graph, i.e. a possibility for mutation, can prolong the
time to reach a fitness maximum. Moreover, the process can take arbitrarily large steps,
in particular farther than the radius α, in which a resident trait can produce mutants. In
this regime, the limiting process can get stuck in a local maximum of the (invasion) fitness
landscape, surrounded by unfit traits in a radius of α.
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Moreover, we consider two cases where metastable stochastic behaviour arises in the other-
wise deterministic limit, when considering an even more accelerated time scale in the spirit
of [25]. In those cases, we see an effective random walk that jumps between clusters of
traits, on which a metastable equilibrium is reached according to the deterministic dynam-
ics. These clusters are separated by fitness valleys wider than α. In Chapter 3 we give these
metastability results without proof but provide a heuristic derivation.

1.6.3 Modelling of genetic variation as an escape mechanisms from cancer
immunotherapy

In Chapter 4 we present an extension of the individual-based Markov process in (1.3) that
models the evolution of tumour cell populations in melanomas under ACT immunotherapy
with cytotoxic T-cells. We identify several important mechanisms that are essential to
reproducing the experimental data and derive likely causes for high variation witnessed in
the measurements of tumour composition. Moreover, we validate the clinical relevance of
the experimental results by going beyond the experimental setup and simulating scenarios of
spontaneously occurring mutations. Larger parts of this chapter are available as a preprint as
joint work with Nicole Glodde, Thomas Tüting, Anton Bovier, Michael Hölzel et al. [88],

N. Glodde, A. Kraut, D. van den Boorn-Konijnenberg, S. Vadder, F. Kreten, J.
Schmid-Burgk, P. Aymans, K. Echelmeyer, M. Rumpf, J. Landsberg, T. Bald, T.
Tüting, A. Bovier, and M. Hölzel, Experimental and stochastic models of melanoma
T-cell therapy define impact of subclone fitness on selection of antigen loss variants.
Preprint, bioRxiv:10.1101/860023, 2019.

This is an interdisciplinary project with experimentalists from the Faculty of Medicine.
For Chapter 4, the preprint is adapted to a purely mathematical audience, presenting the
experimental results in a more condensed way and giving more details on the mathematical
model and the simulation algorithm. Moreover, a couple of simulation results that were not
part of the preprint, but are essential to the derivation of the model or present interesting
mathematical scenarios, are included. More details on this are given in Chapter 4.

In the beginning of Chapter 4 we briefly summarise the medical background, setup, and
results of the mouse experiments done by our collaborators in the group of Prof. Michael
Hölzel at the Institute for Experimental Oncology. The two most important observations
can be summed up as follows: First, a combination of the ACT immunotherapy protocol
presented in [117] with small molecule inhibitors (METi) results in reduced tumour growth,
less cytokine-induced dedifferentiation (down-regulation of presentation of the melanocytic
antigen), and increased T-cell efficiency [87]. Second, experiments with genetic antigen loss
variants (KO) show a reduced fitness with respect to the wild type (WT) melanoma cells
in an untreated scenario. However, under ACTMETi therapy, the KO cells are enriched
since they are not recognised by the T-cells due to the missing presentation of melanocytic
antigen. Surprisingly, the enrichment of KO cells was highly variable between individual
mice and a notable amount of WT cells survived, i.e. the KO cells did not fully invade the
tumour tissue. This high variability is one of the main motivations to apply mathematical
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modelling to better understand the evolutionary dynamics and interactions between different
melanoma cell types.

In the second part of Chapter 4, we introduce the mathematical model used to simulate
the tumour cell dynamics. We give a description of the stochastic process and and discuss
the derivation of the parameters. Moreover, this section includes a rigorous justification of
the applicability of the deterministic limit result from [70]. This justifies an approximative
hybrid algorithm that we describe along with the corresponding pseudo code.

The model is an individual-based Markov process that is an extension of the model for ACT
therapy introduced in [11]. In their work, Baar et al. model two types of melanoma cells
(differentiated and dedifferentiated) that interact according to the competitive dynamics in
(1.3), with the difference that mutations are substituted by phenotypic switches between
the two states. These switches are more frequent than mutations and reach an equilibrium
after a short time. In addition to the melanoma cells, the authors consider T-cells, which
interact with the differentiated cells according to standard predator-prey dynamics, and
TNF-α cytokines that are secreted by active T-cells and induce additional dedifferentiation.
This model is now extended by adding the effects of METi injections and the additional cell
type of KO melanoma cells. Moreover, the rates for T-cell proliferation and differentiated
WT cell killing are more intricate as they now include the effects of cytokine-mediated T-cell
inhibition and spatial shielding of WT cells from T-cells by KO melanoma cells. The model
is characterised by its generator that takes the form of

Lφ(ν) =
∑
e∈E

(φ(ν + νe)− φ(ν))re(ν), (1.10)

where E is the set of possible events, like T-cell proliferation, dedifferentiation of WT cells,
or mutation to a KO cell at WT cell reproduction. νe is the change in the population at
such an event and re(ν) is the exponential rate at which the event occurs.

The third part of Chapter 4 provides the results of the simulations. We comment on the
necessity of including T-cell inhibition into the model and discuss a critical threshold for
the tumour size at treatment onset that determines the therapy success. This threshold
represents a critical point in the corresponding deterministic system. It further underlines
the need to consider a stochastic model, as the course of therapy close to this threshold
depends on random fluctuations. We analyse the changing fitness of KO melanoma cells
and the shielding effect that explains the remaining portion of WT cells under therapy. The
most likely causes for the high variability in measured KO cell enrichment are identified
as a varying time point of harvesting and, most importantly, a subclonal fitness variability.
The latter is confirmed by experiments. Finally, we study the spontaneous occurrence of
KO mutations, validating that effects similar to the ones witnessed in experiments with
artificially introduced KO cells also arise in clinically relevant scenarios.

In the last part, we discuss the clinical relevance and implications of these results. We
argue that competitive interactions and evolutionary dynamics within the melanoma cell
population have to be taken into account when analysing heterogeneous tumour samples.
Moreover, we propose that immunotherapy is best applied to small tumours and could be
enhanced through a combination with apoptosis-inducing drugs.
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2 From Adaptive Dynamics to Adaptive
Walks

We consider an asexually reproducing population on a finite type space whose evolution
is driven by exponential birth, death and competition rates, as well as the possibility of
mutation at a birth event. On the individual-based level this population can be modelled as
a measure-valued Markov process. Multiple variations of this system have been studied in
the simultaneous limit of large populations and rare mutations, where the regime is chosen
such that mutations are separated. We consider the deterministic system, resulting from the
large population limit, and then let the mutation probability tend to zero. This corresponds
to a much higher frequency of mutations, where multiple microscopic types are present at
the same time. The limiting process resembles an adaptive walk or flight and jumps between
different equilibria of coexisting types. The graph structure on the type space, determined
by the possibilities to mutate, plays an important role in defining this jump process. In a
variation of the above model, where the radius in which mutants can be spread is limited,
we study the possibility of crossing valleys in the fitness landscape and derive different kinds
of limiting walks.

2.1 Introduction

The concept of adaptive dynamics is a heuristic biological theory for the evolution of a
population made up of different types that has been developed in the 1990s, see [139, 59,
20, 21, 60]. It assumes asexual, clonal reproduction with the possibility of mutation. These
mutations are rare and new types can initially be neglected, but selection acts fast and
the population is assumed to always be at equilibrium. This implies a separation of the
fast ecological and slow evolutionary time scale. Fixation or extinction of a mutant are
determined by its invasion fitness that describes its exponential growth rate in a population
at equilibrium. This notion of fitness is dependent on the current resident population and
therefore changes over time. The equilibria do not need to be monomorphic and allow for
coexistence and evolutionary branching. Eventually, so-called evolutionary stable states can
be reached, where all possible mutants have negative invasion fitness and therefore the state
of the population is final.

A special case of adaptive dynamics are so-called adaptive walks or adaptive flights. The
concept of adaptive walks was introduced by Maynard Smith [131, 132] and further developed
by Kauffmann, Levin, and Orr [102, 103, 150]. Here, evolution is modelled as a random
walk on the type space that moves towards higher fitness as the population adapts to its
environment. More precisely, a discrete state space is equipped with a graph structure
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that marks the possibility of mutation between neighbours. A fixed, but possibly random,
fitness landscape is imposed on the type space. In contrast to the above, this individual
fitness is not dependent on the current state of the population. Adaptive walks move along
neighbours of increasing fitness, according to some transition law, towards a local or global
optimum. Adaptive flights, a term that has been introduced by Neidhart and Krug [144],
can take larger steps and jump between local fitness maxima to eventually attain a global
maximum. Quantities of interest are, among others, the typical length of an adaptive walk
before reaching a local fitness maximum and the distribution of maxima, see [147], as well
as the number of accessible paths, see [161, 13, 14]. They have been studied under various
assumptions on the correlations of the fitness landscape and the transition law of the walk.
Examples, mentioned by Nowak and Krug [147], are the natural adaptive walk, where the
transition probabilities are proportional to the increase in fitness, or the greedy adaptive
walk, which always jumps to the fittest available neighbour.

Over the last years, stochastic individual-based models have been introduced to study dif-
ferent aspects of evolution. They start out with a model that considers a collection of
individuals. Each individual is characterised by a type, for example its genotype. The
population evolves in time under the mechanisms of birth, death, and mutation, where the
parameters depend on the types. The population size is not fixed but the resources of the
environment, represented by the carrying capacity K, are limited. This results in a com-
petitive interaction between the individuals, which limits the population size to the order of
K. The dynamics are modelled as a continuous time Markov process, as shown by Fournier
and Méléard [77]. It is of particular interest to study the convergence of this process in the
limits of large populations, rare mutations, and small mutation steps.

For a finite type space, Ethier and Kurtz [70] have shown that, rescaling the population by
K, the process converges to the deterministic solution of a system of differential equations
in the limit of large populations, i.e. as K tends to infinity. The differential equations are
of Lotka-Volterra type with additional terms for the effects of mutation. This result was
generalised for types in Rd in [77]. For finite times, in the limit of rare mutations, this
deterministic system converges to the corresponding mutation-free Lotka-Volterra system.
Under certain conditions, these converge in time to unique equilibrium configurations, see
[96, 35].

Champagnat, Ferrière, Méléard and others have considered the simultaneous limit of large
populations and rare mutations [31, 33, 37]. Here, the mutation probability µK tends to zero
as K tends to infinity. They make strong assumptions on the scaling of µK , where only very
small mutation probabilities µK � 1/(K logK) are considered. This ensures the separation
of different mutation events. With high probability, a mutant either dies out or fixates in the
resident population before the next mutation occurs. To balance the rare mutations, time
is rescaled by 1/(KµK), which corresponds to the average time until a mutation occurs.
The limiting process is a Markov jump process called trait substitution sequence (TSS) or
polymorphic evolution sequence (PES), depending on whether the population stays mono-
morphic or branches into several coexisting types. In the framework of adaptive walks, these
sequences correspond to the natural walk, mentioned above.

Similar convergence results have been shown for many variations of the original individual-
based model under the same scaling, including small mutational effects, fast phenotypic
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switches, spatial aspects, and also diploid organisms, see, e.g. [10, 9, 36, 169, 119, 41, 146,
24].

The drawback of all these results is the strong assumption on the mutation rate. The
separation of mutations which results in small mutational effects and slow evolution has
been criticised by Barton and Polechová [12]. We therefore consider a scenario where the
mutation rate is much higher, although decreasing, and the mutation events are no longer
separated. This allows for several mutations to accumulate before a new type fully invades
the population. To study the extreme case, as first done by Bovier and Wang [26] and
recently by Bovier, Coquille, and Smadi [25], we consider the two limits separately. We take
the deterministic model, arising from the limit of large populations, and let the mutation
rate µ tend to zero while rescaling the time by ln 1/µ. This corresponds to the time that a
mutant takes to reach a macroscopic population size of order 1, rather than the time until
a mutant appears, as before. The time that the system takes to re-equilibrate is negligible
on the chosen time scale and hence the resulting limit is a jump process between metastable
equilibrium states.

We consider a finite type space with a graph structure representing the possibility of muta-
tion. First, we prove that, under certain assumptions, the deterministic model converges
pointwise to a deterministic jump process in the rare mutation limit. This process jumps
between Lotka-Volterra equilibria of the current macroscopic types. For a (possibly poly-
morphic) resident population, we have to carefully track the growth of the different micro-
scopic mutants that compete to invade the population. The first mutant to reach a macro-
scopically visible population size solves an optimisation problem and balances high invasion
fitness and large initial conditions, where the latter is determined by the graph distance to
the resident types. The limiting process can be fully described by its jump times and jump
chain, which are closely related to this optimisation problem. It can make arbitrarily large
jumps and may reach an evolutionary stable state.

Second, we show how we can derive different limiting processes by changing the parameters
of the system. On one hand, assuming equal competition between all individuals and mono-
morphic initial conditions, the description of the jump process can be simplified. In this
case, the invasion fitness of a type is just the difference between its own individual fitness,
defined by its birth and death rate, and that of the resident type. Hence, we can relate back
to the classical notion of fixed fitness landscapes in the context of adaptive walks. The lim-
iting process resembles an adaptive flight since it always jumps to types of higher individual
fitness, eventually reaching a global fitness maximum. A similar scenario was studied in the
context of adaptive walks and flights in [114, 99, 100, 98]. Here the fitness is also assumed
to be fixed but time steps are discrete. As in our case, the transitions between macroscopic
types are determined by balancing high initial conditions, depending on the distance in the
type space, and high fitness.

On the other hand, we modify the deterministic system such that the subpopulations can
only reproduce when their size lies above a certain threshold. This limits the radius in
which a resident population can foster mutants. A threshold of µ` mimics the scaling of
µK ≈ K−1/` in the simultaneous limit, where resident types can produce mutants in a
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2 From Adaptive Dynamics to Adaptive Walks

radius of `. Bovier, Coquille, and Smadi [25] as well as Champagnat, Méléard, and Tran [38]
recently studied this scaling for the type space of a discrete line. A similar scaling has also
been applied to a Moran-type model by Durrett and Mayberry [65] and an adaptive walk-
type model with restricted mutation radius has been studied by Jain and Krug [100]. The
resulting limit processes of the modified deterministic system are similar to the previously
mentioned greedy adaptive walk. However, they are not all restricted to jumping to direct
neighbours only, and thus can cross valleys in the fitness landscape and reach a global fitness
maximum. Only when we choose the extreme case ` = 1, the resulting limit is exactly the
greedy adaptive walk.

The remainder of this paper is organised as follows. In Section 2.2, we introduce the de-
terministic system and the corresponding mutation free Lotka-Volterra system and present
the main theorems, stating the convergence to different jump processes in the limit of rare
mutation for different scenarios. We relate the deterministic system to the individual-based
stochastic model and present a modification that mimics the simultaneous limit of large pop-
ulations and rare, but still overlapping, mutations. Moreover, we give a short outline of the
strategy of the proofs. Sections 2.3 and 2.4 are devoted to the proof of the first convergence
result. The proof is split into three parts. The analysis of the exponential growth phase of
the mutants, which follows ideas from Bovier and Wang [26], is given in Section 2.3. The
following Lotka-Volterra invasion phase has been studied in detail by Champagnat, Jabin,
and Raoul [35]. In Section 2.4, we show how to combine the two phases to prove the main
result. Next, in Section 2.5, we consider the special case of equal competition, where we can
simplify the description of the limiting jump process. Since the assumptions of the result
from [35] are no longer satisfied, we have to slightly change the proof. In Section 2.6, we
finally present an extension of the original deterministic system, where we limit the range
of mutation to mimic the scaling of µK ≈ K−1/` in the simultaneous limit. In the extreme
case, where only resident types can foster mutants, the greedy adaptive walk arises in the
limit. For the intermediate cases, we present some first results on accessibility of types.

2.2 Model introduction and main results

In this section we introduce the deterministic model for evolution that is the focus of our
studies. Similar models have been studied by Hofbauer and Sigmund [96], who give an
extensive overview of models of population dynamics in their book. We present the main
result of convergence of this deterministic process in the limit of rare mutations on a diver-
gent time scale. The limiting process is a deterministic jump process that jumps between
Lotka-Volterra equilibria, involving different types. In the special case of equal competition,
we derive a simplified description of this limiting process. Moreover, we relate the model to
the stochastic individual-based model introduced by Fournier and Méléard [77] and present
a modification of the deterministic system that mimics the simultaneous limit of large pop-
ulations and rare, but not too rare, mutations. In the case where only neighbouring types of
the current resident type can arise as mutants, the limiting object is a true adaptive walk.
At the end of the section we outline the proofs that are given in the following sections.
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2.2.1 The deterministic system and relations to Lotka-Volterra systems

The model we consider is a classical Lotka-Volterra system with additional mutation terms.
We consider a population consisting of subpopulations that are characterised by their types
(e.g. geno- or phenotypes). In this paper we choose the n-dimensional hypercube
Hn := {0, 1}n as our type space. The sequences of ones and zeros can, for example, be
interpreted as sequences of loci with different alleles. The type (0, ..., 0) can be seen as the
wild type while all other types have accumulated mutations on some loci. However, we will
not assume to always start out with a monomorphic population of this type.

The choice of Hn can easily be generalised to any finite set. We comment on this in Remark
2.11.

The state of the system is described by ξµt = (ξµt (x))x∈Hn , where ξµt (x) denotes the size of
the subpopulation of type x at time t. ξµt can be seen as a non-negative vector or (not
necessarily normalised) measure on Hn.

The dynamics of (ξµt )t≥0 are determined by the system of differential equations

d
dtξ

µ
t (x) =

b(x)− d(x)−
∑
y∈Hn

α(x, y)ξµt (y)

 ξµt (x)

+ µ
∑
y∈Hn

ξµt (y)b(y)m(y, x)− µξµt (x)b(x)
∑
y∈Hn

m(x, y), x ∈ Hn, (2.1)

where the parameters are chosen as follows.

Definition 2.1. For x, y ∈ Hn, we define

- b(x) ∈ R+, the birth rate of an individual with type x,

- d(x) ∈ R+, the (natural) death rate of an individual with type x,

- α(x, y) ∈ R+, the competitive pressure that is imposed upon an individual with type x by
an individual with type y,

- µ ∈ [0, 1], the probability of mutation at a birth event,

- m(x, ·) ∈Mp(Hn), the law of the mutant.

Here Mp(Hn) is the set of probability measures on Hn. We assume that m(x, x) = 0, for
every x ∈ Hn. For each x ∈ Hn, we define r(x) := b(x)− d(x), its individual fitness.

Abiotic factors like temperature, chemical milieu, or other environmental properties enter
through b and d, while biotic factors such as competition due to limited food supplies,
segregated toxins, or predator-prey relationships are reflected in the competition kernel α.

We could also let the probability of mutation depend on x ∈ Hn in a way such that it is still
proportional to some µ, i.e. µM(x). However, this would not change the limiting process,
therefore we stick with a constant µ for simplicity of notation.
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2 From Adaptive Dynamics to Adaptive Walks

Note that the competition term ensures that solutions are always bounded. This implies
Lipschitz continuity for the coefficients, and hence the classical theory for ordinary differential
equations ensures existence, uniqueness, and continuity in t of such solutions ξµt . Moreover,
for non-negative initial condition ξµ0 , ξ

µ
t is non-negative at all times.

Definition 2.2. For x ∈ Hn, we denote by |x| :=
∑n
i=1 xi the 1-norm. We write x ∼ y if x

and y are direct neighbours on the hypercube, i.e. if |x− y| = 1. Else, we write x � y. We
denote the standard Euclidean norm by ‖·‖.

To ensure that the mutants which a type x ∈ Hn can produce are exactly its direct neigh-
bours, we introduce the following assumption. It corresponds to only allowing single muta-
tions.

(A) For every x, y ∈ Hn, m(x, y) > 0 if and only if x ∼ y.

Again, this assumption is not necessary and can easily be relaxed. However, it simplifies
notation and does not change the method of the proofs. We comment on the case of general
finite (directed) graphs as type spaces in Remark 2.11.

Under the above assumption, (2.1) reduces to

d
dtξ

µ
t (x) =

r(x)−
∑
y∈Hn

α(x, y)ξµt (y)

 ξµt (x) + µ
∑
y∼x

b(y)m(y, x)ξµt (y)− µb(x)ξµt (x). (2.2)

In the mutation-free case, where µ = 0, the equations take the form of a competitive Lotka-
Volterra system

d
dtξ

0
t (x) =

r(x)−
∑
y∈Hn

α(x, y)ξ0
t (y)

 ξ0
t (x). (2.3)

Understanding this system is essential since it determines the short term dynamics of the
system with mutation as µ → 0. For a subset of types we study the stable states of the
Lotka-Volterra system involving these types.

Definition 2.3. For a subset x ⊂ Hn we define the set of Lotka-Volterra equilibria by

LVE(x) :=

ξ ∈ (R≥0)x : ∀ x ∈ x :
[
r(x)−

∑
y∈x

α(x, y)ξ(y)
]
ξ(x) = 0

 . (2.4)

Moreover, we let LVE+(x) := LVE(x) ∩ (R>0)x. If LVE+(x) contains exactly one element,
we denote it by ξ̄x, the equilibrium size of a population of coexisting types x.

Remark 2.4. If LVE+(x) = {ξ̄x}, this implies r(x) > 0 for all x ∈ x. In the case where
x = {x}, we obtain ξ̄x(x) := ξ̄x(x) = r(x)

α(x,x) .

The following assumption ensures that for a subset x ⊂ Hn, such that r(x) > 0 for all
x ∈ x, there exists a unique asymptotically stable equilibrium of the Lotka-Volterra system
involving types x.
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2.2 Model introduction and main results

(Bx) There exist θx > 0, x ∈ x, such that

∀ x, y ∈ x : θxα(x, y) = θyα(y, x), (2.5)
∀ u ∈ Rx\{0} :

∑
x,y∈x

θxα(x, y)u(x)u(y) > 0. (2.6)

This is, for example, trivially satisfied by any symmetric, positive definite matrix
(α(x, y))x,y∈x. Under this condition, Champagnat, Jabin, and Raoul have proven conver-
gence to a unique stable equilibrium.

Theorem 2.5 ([35], Prop.1). Assume (Bx) for a subset x ⊂ Hn such that r(x) > 0, for all
x ∈ x. Then there exists a unique ξ̄x ∈ (R+)x\{0} such that for any solution ξ0

t to (2.3) with
initial condition ξ0

0 ∈ (R>0)x × {0}Hn\x,

ξ0
t

∣∣∣
x
→ ξ̄x as t→∞. (2.7)

The proof of this theorem uses the Lyapunov functional

L(ξ) = 1
2
∑
x,y∈x

θxα(x, y)ξ(x)ξ(y)−
∑
x∈x

θxr(x)ξ(x), ξ ∈ Rx. (2.8)

(2.5) ensures that

d

dt
L(ξ0

t

∣∣∣
x
) = (∇L)(ξ0

t

∣∣∣
x
) · ddt ξ

0
t

∣∣∣
x

= −
∑
x∈x

θx

r(x)−
∑
y∈x

α(x, y)ξ0
t (y)

2

ξ0
t (x) ≤ 0, (2.9)

while (2.6) gives convexity of L.
Remark 2.6. Note that 2.6 implies

∀ u ∈ Rx\{0} :
∑
x,y∈x

θxα(x, y)u(x)u(y) ≥ κx ‖u‖2 , (2.10)

where

κx := min
u:‖u‖=1

∑
x,y∈x

θxα(x, y)u(x)u(y) > 0. (2.11)

We set κ := minx⊂Hn κx.

Connected to this positive definiteness property and the Lotka-Volterra equilibria, we define
a norm that is used to measure the distance between the current state of the population and
the equilibrium size. Since the θx, x ∈ x, in (Bx) are not unique, we fix an arbitrary choice
of such parameters. In the case where (α(x, y))x,y∈x is irreducible, we can choose the unique
normalised version where

∑
x∈x θx = 1.

Definition 2.7. For x ⊂ Hn such that LVE+(x) = {ξ̄x} and (Bx) is satisfied, we define a
scalar product on Rx (orM(x), the set of non-negative measures on x) by

〈u, v〉x :=
∑
x∈x

θx

ξ̄x(x)
u(x)v(x), u, v ∈ Rx. (2.12)

The corresponding norm is defined by ‖u‖x :=
√
〈u, u〉x.
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2 From Adaptive Dynamics to Adaptive Walks

This scalar product is chosen exactly in a way such that we can use the positive definiteness
(2.10) and the properties of ξ̄x. Moreover, we notice that

c2
x ‖u‖

2 :=
(

min
x∈x

θx

ξ̄x(x)

)
‖u‖2 ≤ ‖u‖2x ≤

(
max
x∈x

θx

ξ̄x(x)

)
‖u‖2 =: C2

x ‖u‖
2 . (2.13)

Remark 2.8. Throughout the paper, constants labelled c and C have varying values. Specific
constants, as cx and Cx above, are labelled differently and referenced when used repetitively.

While some types x coexist at their equilibrium size ξ̄x, other types y ∈ Hn\x, which only
have a small population size, grow in their presence. Considering the rate of exponential
growth in (2.3), we formulate a notion of invasion fitness.

Definition 2.9. For x ⊂ Hn such that LVE+(x) = {ξ̄x} and y ∈ Hn, we define the invasion
fitness of an individual with type y in a population of coexisting types x at equilibrium by
fy,x := r(y)−

∑
x∈x α(y, x)ξ̄x(x).

Notice that fx,x = 0 for all x ∈ x. In contrast to the individual fitness r, which is fixed, this
notion of fitness varies over time and depends on the current resident types.

2.2.2 Convergence to a deterministic jump process

We now come back to the system (2.2), involving mutation. We assume that the system starts
out close to the equilibrium size of some subset of types x ⊂ Hn and study its evolution over
time. We distinguish between macroscopic resident types that coexist at their equilibrium
size and microscopic mutant types that have a population size that tends to 0 as µ → 0.
The initial conditions are specified as follows.

Definition 2.10. A collection of measures ξµ0 ∈M(Hn), depending on µ, satisfies the initial
conditions for resident types x ⊂ Hn, η > 0, and c̄ > 0 if LVE+(x) = {ξ̄x} and there exists
a µ0 ∈ (0, 1] and constants 0 ≤ cy ≤ Cy < ∞ and λy ≥ 0, for each y ∈ Hn, such that, for
every µ ∈ (0, µ0],

ξµ0 (y) ∈ [cyµλy , Cyµλy ], (2.14)

where

∀ y ∈ x : λy = 0, ξ̄x(y)− η c̄√
|x|
≤ cy, Cy ≤ ξ̄x(y) + η

c̄√
|x|
, (2.15)

∀ y ∈ Hn\x : λy > 0, 0 ≤ cy, Cy <∞ or (2.16)

λy = 0, 0 ≤ cy, Cy ≤
η

3 , fy,x < 0. (2.17)

If ξµ0 (y) ≡ 0, we choose any λy > maxz∈Hn:ξµ0 (z)>0 λz + n.
We write ξµ0 ∈ IC(x, η, c̄).
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This definition is very technical. We could choose more simple initial conditions for our main
theorem, for example a monomorphic macroscopic type and no microscopic types of positive
population size. However, after the first invasion step, this is exactly what the system looks
like, and we want to be able to iterate our procedure. The definition roughly implies that all
macroscopic types are close to their coexistence equilibrium (within an attractive domain)
and all microscopic types y are of order µλy as µ → 0. The types that are not part of
the resident types but of order µ0 are assumed to be unfit and of small enough size. This
ensures that they do not "trigger" the stopping time that marks the beginning of the next
Lotka-Volterra phase, i.e. the time when the first fit mutant reaches a macroscopic level.
This stopping time is defined in (2.39).

Let x0 ⊂ Hn be the initial set of coexisting types, i.e. ξµ0 ∈ IC(x0, η, c̄), and set T0 := 0.
During a time of order 1, each type y ∈ Hn grows to a size of order µρ0

y , where

ρ0
y := min

z∈Hn
[λz + |z − y|], (2.18)

due to incoming mutants from other types. This can be argued as follows. The population
of type y collects incoming mutants from all other types z of order ξµ0 (z)µ|z−y|. These
influences are summed up but in the limit of µ → 0, the asymptotically largest summand,
i.e. the smallest exponent of µ, dominates all other terms.

Assume now that, after the (i−1)st invasion, at time Ti−1 ln 1/µ, we have coexisting resident
types xi−1 and all types y ∈ Hn have population size of order µρ

i−1
y , where

ρi−1
y = minz∈Hn [ρi−1

z + |z − y|] is satisfied. During a time of order ln 1/µ, microscopic
types grow until the first type reaches a population size of order 1. The population sizes
during growth can be approximated as

ξµ
t ln 1

µ

(y) ≈ µminz∈Hn [ρi−1
z +|z−y|−(t−Ti−1)fz,xi−1 ]. (2.19)

This is a little tricky and takes into account that there are three possible sources that
could dominate the growth of type y: First, the population at y could just grow at its own
exponential growth rate fy,xi−1 . This gives µρ

i−1
y −(t−Ti−1)fy,xi−1 . Second, it could come from

mutants from the large populations in x ∈ xi−1. This gives µ|x−y| since x has to mutate
|x − y| times to reach y. Finally, it could come from the mutants that have grown at any
other site z over the last period. This gives µρ

i−1
z +|z−y|−(t−Ti−1)fz,xi−1 .

Since mutants from another type can never increase the population size past µ1, the first
microscopic type y to reach a size of order 1 must have grown at its own rate fy,xi−1 > 0. The
time to reach this macroscopic size (after the last invasion) is of order (ρi−1

y /fy,xi−1) ln 1/µ.

Summarising these thoughts, we inductively define

yi∗ := arg min
y∈Hn:

fy,xi−1>0

ρi−1
y

fy,xi−1
, (2.20)

43
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the ith invading type (if the minimiser is unique),

Ti := Ti−1 + min
y∈Hn:

fy,xi−1>0

ρi−1
y

fy,xi−1
, (2.21)

the time of the ith invasion on the time scale ln 1/µ, and

ρiy := min
z∈Hn

[ρi−1
z + |z − y| − (Ti − Ti−1)fz,xi−1 ] (2.22)

the µ-exponent of the population size of type y at the time of the ith invasion. If there is no
y ∈ Hn such that fy,xi−1 > 0, we set Ti :=∞.

At time Ti ln 1/µ, the types yi∗ and xi−1 re-equilibrate according to the mutation-free Lotka-
Volterra dynamics. If it is unique, we denote the support of the new equilibrium, i.e. the
new coexisting resident types, by xi.
Remark 2.11. The results in this paper can easily be generalised to finite, possibly directed
graphs as type spaces, where (directed) edges mark the possibility of mutation. In these cases
the Hamming distance on the hypercube (e.g. |z − y| in (2.22)) is replaced by a “directed”
distance, corresponding to lengths of directed paths (e.g. by the length of the shortest path
from z to y). Note that this directed distance is not a distance in the classical sense since
it might not be symmetric. For ease of notation and due to the nice applicability to genetic
sequences, we stick with the hypercube in this paper.

With the above notation, we can now characterise the limiting process as follows.

Theorem 2.12. Consider the system of differential equations (2.2) and let ξµ0 ∈ IC(x0, η, c̄),
for η small enough. Assume (A) and (Bxi−1∪yi∗), for every 1 ≤ i < I, where we set I := i
for the smallest i ∈ N where either

(a) the minimiser in (2.20) is not unique, or

(b) there is a y ∈ (xi−1 ∪ yi∗)\xi such that fy,xi ≥ 0,

and I :=∞ if none of these occur. In the latter case, we set T∞ :=∞.

Then, for every t ∈ [0, TI)\{Ti, 0 ≤ i ≤ I},

lim
µ→0

ξµ
t ln 1

µ

=
I−1∑
i=0

1Ti≤t<Ti+1

∑
x∈xi

δxξ̄xi(x). (2.23)

Remark 2.13. (i) Note that (Bxi−1∪yi∗) implies (Bxi−1) and (Bxi), with the same constants
θx.

(ii) Case (a) is very unlikely if the parameters of the model are chosen in a random fashion
since it requires a very particular equality. Case (b) guarantees that we terminate the
procedure as soon as the conditions of IC(xi, η, c̄) are not satisfied after the ith invasion. For
every y ∈ (xi−1 ∪ yi∗)\xi, fy,xi ≤ 0 is ensured (going through the proof of Theorem 2.5), so
the only problem can arise from equality.

(iii) Note that the theorem implies that, in the case of Ti =∞, even if there was a mutant type
y ∈ Hn\xi−1 such that fy,xi−1 = 0, it would not be able to invade the resident population.
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The proof of this result is given in Sections 2.3 and 2.4.

2.2.3 Convergence in the case of equal competition

In the context of adaptive walks and flights, the fitness landscape on the type space is possibly
random, but usually fixed over time. For a monomorphic resident type, the current fitness
of any type, corresponding to its invasion fitness, is determined by the difference between its
individual fitness and the fitness of the resident type.

As a special case of our model, we consider equal competition between all types on the
hypercube. In this case, one can simplify the description of the limit process and derive
some interesting properties.

We introduce the additional assumption

(C) For every x, y ∈ Hn, α(x, y) ≡ α > 0.

This leads to a couple of nice properties of the invasion fitness fy,{x}. As in the adaptive
walks framework, we obtain

fy,{x} = r(y)− α(y, x)ξ̄{x}(x) = r(y)− r(x), (2.24)

which yields

fy,{x} = −fx,{y} and fz,{y} + fy,{x} = fz,{x}. (2.25)

As a consequence, there is some kind of transitivity of invasion fitness. A type z that is
unfit relative to some other type y, i.e. fz,{y} < 0, is unfit relative to all types that are
fitter than y. This ensures that types which are once suppressed by resident types stay at a
microscopic level forever. In particular, case (b) in Theorem 2.12 is automatically excluded
by assumption (C).

As before, we terminate the procedure as soon as case (a) in Theorem 2.12 occurs to ensure
that there is always a unique mutant that reaches the threshold of order 1 first after an
invasion. Starting out with only a single type at its equilibrium size, i.e. x0 = {x0}, this also
implies that we avoid coexistence and always maintain a monomorphic resident population.
This is due to the fact that an invading type has to have higher rate r than the current
resident type, which prevents a polymorphic Lotka-Volterra equilibrium.

Assumption (Bx) can no longer be satisfied for constant α, as soon as |x| ≥ 2. However,
it is no longer needed since the resident types are monomorphic, i.e. |xi| = 1, and have
a lower rate r than the invading types, which implies a unique stable equilibrium of the
Lotka-Volterra system involving xi ∪ yi∗. We comment on this in more detail in Section 2.5,
where we adapt the proof of Theorem 2.12 to this situation.

In the case of a monomorphic resident population x = {x}, we use the shorthand notation
ξ̄x := ξ̄{x}, fy,x := fy,{x}. For types xi, xj , we write fi,j := fxi,xj .

The limiting jump process can now be described in a simple way.
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Theorem 2.14. Consider the system of differential equations (2.2) and let ξµ0 ∈ IC({x0}, η, c̄)
such that λy ≥ |y − x0|, for all y ∈ Hn, and η small enough. Assume (A) and (C) and set
I := i for the smallest i ∈ N such that the minimiser in (2.20) is not unique, and I :=∞ if
this does not occur. In the latter case, we set T∞ :=∞.

Then, for every t ∈ [0, TI)\{Ti, 0 ≤ i ≤ I},

lim
µ→0

ξµ
t ln 1

µ

=
I−1∑
i=0

1Ti≤t<Ti+1δxi ξ̄xi(xi). (2.26)

Moreover, the following identities hold:

xi = arg min
y∈Hn:fy,xi−1>0

|y − x0| − |xi−1 − x0|
fy,xi−1

, (2.27)

Ti = |x
i − x0| − |xi−1 − x0|

fi,i−1
. (2.28)

Remark 2.15. (i) λy ≥ |y − x0| ensures that the initial population size of all microscopic
types is not larger than what they gain due to incoming mutants from x0 within a time of
order 1. This is necessary to obtain the identities for xi and Ti.

(ii) Uniqueness of the minimiser in (2.20) is equivalent to uniqueness of the minimiser in
(2.27) and hence xi is well-defined.

(iii) In the case where I =∞, the jump process in Theorem 2.14 continues as long as there
is a type with higher individual fitness, i.e. higher rate r. As a result, it can cross arbitrarily
large valleys in the fitness landscape (defined by r) and eventually reaches a global fitness
maximum, where it remains. Note that this global maximum does not have to be unique.
The jump process reaches the maximum that is closest to x0 in Hn, which is unique if I =∞,
and equally fit types cannot invade as mentioned in Remark 5(iii). With these properties, the
jump process resembles an adaptive flight. However, it does not quite fit into that framework
since it is not only jumping to local fitness maxima.

(iv) Every invasion step increases the distance on Hn between the resident type and x0. This
can be seen inductively as follows. Consider the (i + 1)st invasion. xi was a minimiser of
(|y − x0| − |xi−1 − x0|)/fy,xi−1 . If now y satisfies fy,xi > 0, then

|y − x0| − |xi−1 − x0|
fy,xi−1

≥ |x
i − x0| − |xi−1 − x0|

fi,i−1
, (2.29)

and since fy,xi−1 = fy,xi + fi,i−1 > fi,i−1 and |xi − x0| > |xi−1 − x0| (by assumption),
|y − x0| − |xi−1 − x0| > |xi − x0| − |xi−1 − x0|, and hence |y − x0| > |xi − x0|.

The proof of Theorem 2.14 is found in Section 2.5.
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2.2.4 Derivation from the individual-based stochastic model in the large
population limit

The deterministic system, that is studied above, can be obtained as the large population
limit of an individual-based Markov process. At time t, we consider a population of finite
size N(t) ∈ N. Each living individual is represented by its type x1(t), ..., xN(t)(t) ∈ Hn and
the state of the population is described by the finite point measure

νµt =
N(t)∑
i=1

δxi(t). (2.30)

νµt (x) describes the number of individuals of type x ∈ Hn at time t. The dynamics of
the Markov process are determined by the same parameters b, d, α, µ, and m as for the
deterministic system ξµt .

To let the size of the population tend to infinity, we introduce the carrying capacity of the
environment, denoted by K ∈ N. This can for example be interpreted as the amount of
available space or resources. As K increases, the competitive pressure between individuals
decreases and we scale αK(x, y) ≡ α(x,y)

K . This leads to an equilibrium population size of
order K. To derive a finite limit for large populations, i.e. as K → ∞, we consider the
rescaled measure

νµ,Kt := νt
K
. (2.31)

This measure-valued Markov process can be constructed similar to [77, Ch. 2], with infin-
itesimal generator

LKφ(ν) =
∑
x∈Hn

Kν(x)
(
φ

(
ν + δx

K

)
− φ(ν)

)
b(x)(1− µ)

+
∑
x∈Hn

Kν(x)
∑
y∼x

(
φ

(
ν + δy

K

)
− φ(ν)

)
b(x)µm(x, y)

+
∑
x∈Hn

Kν(x)
(
φ

(
ν − δx

K

)
− φ(ν)

)d(x) +
∑
y∈Hn

α(x, y)
K

Kν(y)

 , (2.32)

where ν ∈ M(Hn) is a non-negative measure on Hn and φ a measurable bounded function
fromM(Hn) to R.

Ethier and Kurtz have shown convergence of this process to ξµ as K tends to infinity.

Theorem 2.16 ([70], Ch. 11, Thm. 2.1). Assume that the initial conditions converge almost
surely to a deterministic limit, i.e. νµ,K0 → ξµ0 , as K → ∞. Then, for every T ≥ 0,
(νµ,kt )0≤t≤T almost surely converges uniformly to the deterministic process (ξµt )0≤t≤T , which
is the unique solution to the system of differential equations 2.2 with initial condition ξµ0 .
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2.2.5 Convergence for a limited radius of mutation

The limiting process in Theorem 2.14 already looks similar to the greedy adaptive walk of
Nowak and Krug [147], mentioned in the introduction. It is a monomorphic jump process
on the type space that always jumps to types of higher individual fitness r. However, it can
take larger steps than just to neighbouring types and we have seen that the initial type x0

plays an important role in determining the jump chain. This is due to the fact that, already
after an arbitrarily small time, mutation has induced a positive population size for every
possible type. These mutant populations have size of order µ to the power of the distance
to x0 on Hn. The next invading type is then found balancing low initial µ-power and high
(invasion) fitness.

In all our previous considerations, arbitrarily small populations were able to reproduce and
foster mutants, which can lead to population sizes as small as µn. This might not always fit
reality well.

If we consider the stochastic model, introduced in the previous subsection, and allow for the
mutation probability µK to decrease as K increases, we can study the simultaneous limit of
large populations and rare mutations. To be able to reproduce within a time of order 1 in a
population of size µnK implies that

lim
K→∞

µnK ·K ≥ 1, (2.33)

or equivalently

lim
K→∞

µK

K−
1
n

≥ 1. (2.34)

In this case, we would recover the deterministic system (2.2) in the limit of K →∞.

If now µK was of order K−
1
` for some ` < n, this implies that populations with a size of

order µλK , for λ > ` are vanishing as K → ∞ and hence cannot reproduce. If we consider
a monomorphic resident type x, it spreads mutants y of population size µ|y−x|K . This means
that it can initially only foster mutant populations in a radius of `.

This regime has already been studied by Bovier, Coquille, and Smadi [25] as well as Cham-
pagnat, Méléard, and Tran [38]. It is shown that, on the type space N (with neighbours
having difference exactly 1) and on the usual time scale of ln 1/µK , a fitness valley of width
≤ `, but no further, can be crossed. However, crossing a wider valley is possible on a faster
diverging time scale.

In the following, we want to mimic this parameter regime of the stochastic system in our
deterministic model. To do so, we introduce a cut-off that freezes the dynamics of a popu-
lation below the threshold of ξ̄µ`, where ξ̄ := min{ξ̄x(x)/2 : x ∈ Hn, r(x) > 0} > 0 is chosen
such that every resident type will eventually surpass this value (which is relevant in the case
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` = 1). The new system of differential equations then reads as follows.

d
dtξ

µ
t (x) =

b(x)1ξµt (x)≥ξ̄µ` − d(x)−
∑
y∈Hn

α(x, y)ξµt (y)1ξµt (y)≥ξ̄µ`

 ξµt (x)

+ µ
∑
y∼x

ξµt (y)1ξµt (y)≥ξ̄µ`b(y)m(y, x)− µξµt (x)1ξµt (x)≥ξ̄µ`b(x). (2.35)

Remark 2.17. Reproduction (clonal and non-clonal) is stopped for types below the threshold
of ξ̄µ`. As a result, those types are in a kind of dormant state and can only grow due to the
mutational influence of other, larger types. It does not affect the system that these dormant
types remain at a low level since they do not influence the dynamics of other types and only
become active again if they gain a larger amount due to incoming mutants.

The death rate of populations below ξ̄µ` is not set to zero. This is necessary to actually
drop below the threshold if a population declines due to negative fitness. Otherwise, the
population would remain at exactly ξ̄µ` and could immediately start growing again when
its fitness becomes positive due to a change of resident types. This is however not what we
want to achieve since populations that drop to the threshold are supposed to go extinct and
only reappear due to incoming new mutants.

We cannot simply set the population size of a type to zero below the threshold. In that case,
a zero-type would never become active since every gain due to mutation would immediately
be cancelled.

As mentioned above, for ` ≥ n, we just recover the original scenario of Theorem 2.12. This
is due to the fact that, as long as there is at least one macroscopic type, every other type
has population size of at least µn, due to mutants from this macroscopic type.

For ` = 1, if we keep assumption (C) of constant competition and a monomorphic initial
condition, we obtain the greedy adaptive walk of Nowak and Krug [147], where the process
always jumps to the fittest direct neighbour of the current resident type. We re-define

xi := arg max
y∼xi−1

r(y), (2.36)

Ti := Ti−1 + 1
fi,i−1

, (2.37)

and set Ti :=∞, as soon as there exists no y ∼ xi−1 such that r(y) > r(xi−1).

The convergence can be stated as follows.

Theorem 2.18. Consider the system of differential equations (2.35) for ` = 1 and let
ξµ0 ∈ IC({x0}, η, c̄) such that λy ≥ 1, for all y ∼ x0, λy ≥ 2, for |y − x0| ≥ 2, and η small
enough. Assume (A) and (C) and set I := i for the smallest i ∈ N such that the maximiser in
(2.36) is not unique, and I :=∞ if this does not occur. In the latter case, we set T∞ :=∞.

Then, for every t ∈ [0, TI)\{Ti, 0 ≤ i ≤ I},

lim
µ→0

ξµ
t ln 1

µ

=
I−1∑
i=0

1Ti≤t<Ti+1δxi ξ̄xi(xi). (2.38)
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Remark 2.19. (i) λy ≥ 2, for |y − x0| ≥ 2, ensures that no microscopic type has a larger
initial population that what it gains due to the first incoming mutants from other types.

(ii) The adaptive walk in Theorem 2.18 stops as soon as it reaches a local maximum of the
individual fitness r since only direct neighbours of the resident type can be reached. Local
maxima do not need to be strict. However, as in the previous cases, mutants with invasion
fitness 0 cannot invade the resident population.

(iii) It is no longer the case that every step increases the distance to x0. The walk could
return to a type close to x0, which just could not be reached before because one had to go
around a valley in the fitness landscape defined by r.

In Section 2.6, we discuss the proof of Theorem 2.18, as well as the intermediate cases of
1 < ` < n.

2.2.6 Structure of the proofs

The general strategy of the proofs of all three theorems is to split the analysis of the evolution
into two parts. First, the microscopic mutants grow in the presence of the coexisting resident
types until one of them reaches a macroscopic population size of order 1, i.e. that does not
vanish as µ → 0. Second, this macroscopic mutant and the resident types attain a new
equilibrium according to the Lotka-Volterra dynamics. The two phases are visualised in
Figure 2.2, found in Section 2.4, prior to the proof of Theorem 2.12.

The first phase is studied in detail in Section 2.3. Theorem 2.21 gives upper and lower
bounds for the exponential growth of the non-resident types. The growth can be due to a
type’s own (invasion) fitness or due to mutants from a growing neighbour. To get the correct
approximation, the influences of all existing types have to be summed up. Meanwhile, the
resident types stay close to their equilibrium. Corollary 2.22 considers the ln 1/µ-time scale
and derives an approximation for the first time that a mutant reaches the macroscopic
threshold.

After the threshold is reached, for the second phase, we can apply Theorem 2.5 to the Lotka-
Volterra system involving the macroscopic mutant type and the resident types to derive the
convergence to a new equilibrium state. This is possible since we now have a non-negative
initial condition that does not vanish as µ→ 0.

In Section 2.4, this theorem is combined with Theorem 2.21, or rather Corollary 2.22, to
analyse the full evolution of our system (2.2). First, in Lemma 2.23, the dependence of
solutions on the initial condition and the size of µ is studied to be able to approximate the
full system by the Lotka-Volterra system only involving the macroscopic types. Second, in
Lemma 2.25, continuity of the duration of the Lotka-Volterra phase in the initial condition
is shown. From this, a uniform bound on the time to reach the initial conditions of Theorem
2.21 again is derived. All of this is then combined to show the convergence in Theorem 2.12,
one invasion step at a time, and recursively describe the limiting process.

To prove Theorem 2.14, only slight changes have to be made. Since assumption (Bx) is not
satisfied, Theorem 2.5 can no longer be applied directly. However, the assumption is mainly
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needed to show uniqueness of the limiting equilibrium, which is, in this case, already implied
by the structure of the individual fitness landscape. The rest of the proof, found in Section
2.5, is then devoted to simplifying the expressions for yi∗, Ti, and ρiy.

In Section 2.6, Theorem 2.18 is proved. Here, the bounds from Theorem 2.21 have to be
revised. The rest of the argument follows the previous proofs.

2.3 Invasion Analysis

In this section, we prove an exponential approximation of the growth of the non-resident
subpopulations until the first type reaches a macroscopic threshold of order 1. We choose
this threshold to be at η > 0, independent of µ, and pick η small enough for our purposes in
the end.

Definition 2.20. For a resident population of x ⊂ Hn, the time when the first mutant type
reaches η > 0 is defined as

T̃µη := inf{s ≥ 0 : ∃ y ∈ Hn\x : ξµs (y) > η}. (2.39)

To consider the evolutionary time scale ln 1/µ, we define Tµη through T̃µη = Tµη ln 1/µ.

We can now state the first result that describes the evolution of the system until T̃µη .

Theorem 2.21. Consider the system of differential equations (2.2) and assume (A). Then
there exist η̃ > 0 and 0 < c̄ ≤ C̄, uniform in all x ⊂ Hn for which LVE+(x) = {ξ̄x} and (Bx)
is satisfied, such that for η ≤ η̃ and µ < η the following holds:
If ξµ0 ∈ IC(x, η, c̄), then, for every 0 < t0 ≤ t < T̃µη and every y ∈ Hn,

č
∑
z∈Hn

et(fz,x−ηČ)µρz+|z−y| ≤ ξµt (y) ≤ ĉ
∑
z∈Hn

et(fz,x+ηĈ)µρz+|z−y|(1 + t)m, (2.40)

where ρy := minz∈Hn(λz + |z− y|), m ∈ N, and 0 < č, Č, ĉ, Ĉ <∞ are independent of µ and
η (but dependent on t0).
Moreover, for all x ∈ x,

ξµt (x) ∈ [ξ̄x(x)− ηC̄, ξ̄x(x) + ηC̄]. (2.41)

As a corollary, we estimate the growth of the different subpopulations on the time scale
ln 1/µ and derive the asymptotics of Tµη as µ→ 0.

Corollary 2.22. Under the same assumptions as in Theorem 2.21 and with the same con-
stants, we obtain that, for every y ∈ Hn and every t0 ≤ t ln 1/µ ≤ T̃µη ,

čµminz∈Hn [ρz+|z−y|−t(fz,x−ηČ)] ≤ ξµ
t ln 1

µ

(y) ≤ 2nĉµminz∈Hn [ρz+|z−y|−t(fz,x+ηĈ)]
(

1 + t ln 1
µ

)m
.

(2.42)
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Moreover, as long as there is a y ∈ Hn for which fy,x > 0, there is an η̄ ≤ η̃ such that for
every η ≤ η̄

min
y∈Hn
λy>0

min
z∈Hn
fz,x>0

ρz + |z − y|
fz,x + ηĈ

≤ lim inf
µ→0

Tµη ≤ lim sup
µ→0

Tµη ≤ min
y∈Hn
λy>0

min
z∈Hn
fz,x>0

ρz + |z − y|
fz,x − ηČ

. (2.43)

Proof of Theorem 2.21. The proof consists of two steps. We only derive the existence of η̃
for a specific set x. To get a uniform parameter, we just have to minimise over the finite set
of all such sets x.

First, we show that (2.41) holds up to time T̃µη . Second, we inductively prove the upper
bound in (2.40). The lower bound can derived analogously.

Step 1: ξµt (x) ∈ [ξ̄x(x)− ηC̄, ξ̄x(x) + ηC̄].
To prove our first claim, we analyse the distance of ξµt |x := (ξµt (x))x∈x from ξ̄x with respect
to the norm ‖·‖x, defined in (2.12). We prove that, in an annulus with respect to the norm
‖·‖x, this distance declines. Hence, starting inside the annulus, ξµt |x will remain there. This
argument is depicted in Figure 2.1.

To approximate

d

dt

∥∥∥ξµt |x − ξ̄x
∥∥∥2

x
2 =

〈
ξµt |x − ξ̄x,

d

dt
(ξµt |x − ξ̄x)

〉
x

(2.44)

from above, we split the right hand side of (2.2) into two parts.

We define F, V :M(Hn)→ Rx,

Fx(ξ) =

r(x)−
∑
y∈x

α(x, y)ξ(y)

 ξ(x), x ∈ x, (2.45)

the Lotka-Volterra part, and

Vx(ξ) = −
∑

y∈Hn\x
α(x, y)ξ(y)ξ(x) + µ

∑
y∼x

b(y)m(y, x)ξ(y)− µb(x)ξ(x), x ∈ x, (2.46)

the error part of the differential equation.

With this,〈
ξµt |x − ξ̄x,

d

dt
(ξµt |x − ξ̄x)

〉
x

= 〈ξµt |x − ξ̄x, F (ξµt )〉x + 〈ξµt |x − ξ̄x, V (ξµt )〉x. (2.47)

We first approximate the norm of the error part, using that |ξµt (y)| ≤ η for y ∈ Hn\x. In
addition, we assume that, for every x ∈ x, ξµt (x) ≥ η. We choose η such that this is always
implied by (2.41) at the end of Step 1.
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We estimate

|Vx(ξµt )| ≤ η2n max
x∈x,y∈Hn

α(x, y)|ξµt (x)|+ µnmax
y∈Hn

b(y) max
y∈Hn

|ξµt (y)|+ µmax
y∈Hn

b(y)|ξµt (x)|

(2.48)

and hence, using that maxy∈Hn |ξµt (y)| ≤ ‖ξµt |x‖ ≤ c−1
x ‖ξ

µ
t |x‖x,

‖V (ξµt )‖x ≤ η2n max
x∈x,y∈Hn

α(x, y) ‖ξµt |x‖x

+ µmax
y∈Hn

b(y)
(
n

√
|x|max

x∈x
θx

ξ̄x(x)
max
y∈Hn

|ξµt (y)|2 + ‖ξµt |x‖x

)

≤ η2n max
x∈x,y∈Hn

α(x, y) ‖ξµt |x‖x + µmax
y∈Hn

b(y)
(
n
√
|x|Cxc

−1
x + 1

)
‖ξµt |x‖x

≤ η ‖ξµt |x‖xC, (2.49)

for some C <∞ independent of η and µ.

Next, we approximate the Lotka-Volterra part. To do so, we show that a slight perturbation
of the positive definite matrix (θxα(x, y))x,y∈x is still positive definite. Let ζ ∈ Rx such that,
for x ∈ x, |ζ(x)− 1| ≤ ε̃x. Then∑
x,y∈x

ζ(x)θxα(x, y)u(x)u(y) =
∑
x,y∈x

θxα(x, y)u(x)u(y) +
∑
x,y∈x

(ζ(x)− 1)θxα(x, y)u(x)u(y)

≥ κ ‖u‖2 −max
x∈x
|ζ(x)− 1| max

x,y∈x
(θxα(x, y))

∑
x,y∈x

|u(x)||u(y)|

≥ ‖u‖2
[
κ− ε̃x|x|2 max

x,y∈x
θxα(x, y)

]
≥ κ

2 ‖u‖
2 , (2.50)

as long as ε̃x ≤ κ(2|x|2 maxx,y∈x θxα(x, y))−1.

We now apply this to ζ(x) = ξµt (x)/ξ̄x(x). The condition |ζ(x)−1| ≤ ε̃x is satisfied whenever

|ξµt (x)− ξ̄x(x)| ≤ ε̃xξ̄x(x), (2.51)

which is the case if ∥∥∥ξµt |x − ξ̄x
∥∥∥

x
≤ cxε̃x min

x∈x
ξ̄x(x) =: εx. (2.52)

Using the fact that ξ̄x is an equilibrium of (2.4) for which ξ̄x(x) > 0 holds for all x ∈ x, we
derive

〈ξµt |x − ξ̄x, F (ξµt )〉x =
∑
x∈x

θx

ξ̄x(x)
(ξµt (x)− ξ̄x(x))

r(x)−
∑
y∈x

α(x, y)ξµt (y)

 ξµt (x)

= −
∑
x∈x

θx

ξ̄x(x)
(ξµt (x)− ξ̄x(x))

∑
y∈x

α(x, y)(ξµt (y)− ξ̄x(y))

 ξµt (x)

= −
∑
x,y∈x

ξµt (x)
ξ̄x(x)

θxα(x, y)(ξµt (x)− ξ̄x(x))(ξµt (y)− ξ̄x(y))

≤ − κ

2

∥∥∥ξµt |x − ξ̄x
∥∥∥2
. (2.53)
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Combining estimates (2.49) and (2.53), we get

d

dt

∥∥∥ξµt |x − ξ̄x
∥∥∥2

x
2 = 〈ξµt |x − ξ̄x, F (ξµt )〉x + 〈ξµt |x − ξ̄x, V (ξµt )〉x

≤ − κ

2

∥∥∥ξµt |x − ξ̄x
∥∥∥2

+
∥∥∥ξµt |x − ξ̄x

∥∥∥
x
‖V (ξµt )‖x

≤ − κ

2

∥∥∥ξµt |x − ξ̄x
∥∥∥2

+
∥∥∥ξµt |x − ξ̄x

∥∥∥
x
η ‖ξµt |x‖xC

≤ −
∥∥∥ξµt |x − ξ̄x

∥∥∥2

x

 κ

2C2
x
− η

C ‖ξµt |x‖x∥∥∥ξµt |x − ξ̄x
∥∥∥

x


≤ −

∥∥∥ξµt |x − ξ̄x
∥∥∥2

x

κ

4C2
x
< 0, (2.54)

whenever

εx ≥
∥∥∥ξµt |x − ξ̄x

∥∥∥
x
≥ ηC ‖ξµt |x‖x

4C2
x
κ
≥ ηC(

∥∥∥ξ̄x
∥∥∥

x
− εx)4C2

x
κ

=: ηc. (2.55)

Finally, we choose η̃ small enough such that η̃ < εx/c.

Now we can follow the argument that was outlined in the beginning and is supported by
Figure 2.1. As long as η ≤ η̃ and∥∥∥ξµ0 |x − ξ̄x

∥∥∥ ≤ ηcC−1
x =: ηc̄x, (2.56)

we obtain that
∥∥∥ξµ0 |x − ξ̄x

∥∥∥
x
≤ ηc. Because of (2.54), we obtain that

∥∥∥ξµt |x − ξ̄x
∥∥∥

x
≤ ηc, for

every 0 ≤ t ≤ T̃µη , and hence ∥∥∥ξµt |x − ξ̄x
∥∥∥ ≤ ηcc−1

x =: ηC̄x. (2.57)

For the single types, this implies, for every 0 ≤ t ≤ T̃µη , that

ξµt (x) ∈ [ξ̄x(x)− ηC̄x, ξ̄x(x) + ηC̄x], x ∈ x, (2.58)

whenever

ξµ0 (x) ∈
[
ξ̄x(x)− η c̄x√

|x|
, ξ̄x(x) + η

c̄x√
|x|

]
, x ∈ x. (2.59)

Setting c̄ := miny⊂Hn c̄y and C̄ := maxy⊂Hn C̄y, and choosing η̃ ≤ minx∈x ξ̄x(x)/(2C̄ + 2) to
ensure that ξµt (x) > η, for every x ∈ x, we arrive at the claim.

Step 2: Inductive exponential bounds.
We derive the upper bound for ξµt (y) in (2.40) in full length. At the end of the proof, we
comment on how the same strategy can be adapted to the lower bound.
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ξ̄x
ξµ0

∣∣
x

ξµt

∣∣
x

Figure 2.1: Scheme for the argument in Step 1. Dashed lines indicate balls B(ξ̄x, ηc̄x) and B(ξ̄x, ηC̄x)
with respect to the standard Euclidean norm, while solid lines correspond to balls Bx(ξ̄x, ηc) and
Bx(ξ̄x, εx) with respect to the ‖·‖x norm.

To begin, we establish an upper bound on d
dtξ

µ
t .

d
dtξ

µ
t (y) ≤

[
r(y)−

∑
x∈x

α(y, x)(ξ̄x(x)− ηC̄)
]
ξµt (y) + µ

∑
z∼y

b(z)m(z, y)︸ ︷︷ ︸
≤C̃y∀z∼y

ξµt (z)

≤
[
r(y)−

∑
x∈x

α(y, x)ξ̄x(x) + ηC̄
∑
x∈x

α(y, x)︸ ︷︷ ︸
=:Ĉy

]
ξµt (y) + µC̃y

∑
z∼y

ξµt (z)

≤ [fy,x + ηĈ]ξµt (y) + µC̃
∑
z∼y

ξµt (z), (2.60)

where Ĉ := maxy∈Hn Ĉy <∞ and C̃ := maxy∈Hn C̃y <∞.

We prove by induction that, for every m ≥ 0, there exists a constant Cm <∞, independent
of µ, η, and y, such that, for every 0 ≤ t ≤ T̃µη ,

ξµt (y) ≤ Cm

[ ∑
z∈Hn
|z−y|≤m

et(fz,x+ηĈ)
(
µρz+|z−y| + 1

η
µm+1

)
(1 + t)m + µm+1

]
. (2.61)

For the case m = 0, we approximate
d
dtξ

µ
t (y) ≤ [fy,x + ηĈ]ξµt (y) + µC̃

∑
z∼y

1z∈x(ξ̄x(z) + ηC̄) + 1z∈Hn\xη︸ ︷︷ ︸
≤C uniformly in y,z

, (2.62)

and hence

ξµt (y) ≤ et(fy,x+ηĈ)ξµ0 (y) + µC̃C

∫ t

0
e(t−s)(fy,x+ηĈ)ds

≤ et(fy,x+ηĈ)Cyµ
λy + µC̃C

1
fy,x + ηĈ

(et(fy,x+ηĈ) − 1). (2.63)

Choose η̃ > 0 small enough such that fy,x + η̃Ĉ < 0, for every y ∈ Hn for which fy,x < 0.
Then, for η ≤ η̃ and a different constant C < ∞, the second summand can be bounded
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from above by Cµ, for fy,x < 0, and by C/η · et(fy,x+ηĈ)µ, for fy,x ≥ 0. C can be chosen
independent of y, µ, η ≤ η̃, and 0 ≤ t ≤ T̃µη . Overall, using λy ≥ ρy, we get

ξµt (y) ≤ ((max
y∈Hn

Cy) ∨ C)︸ ︷︷ ︸
=:C0<∞

[
et(fy,x+ηĈ)

(
µρy + 1

η
µ
)

+ µ
]
, (2.64)

which is the desired bound.
Assuming that the hypothesis holds for m− 1 and using (2.60), we approximate

d
dtξ

µ
t (y) ≤ [fy,x + ηĈ]ξµt (y)

+ µC̃
∑
z∼y

Cm−1

[ ∑
u∈Hn

|u−z|≤m−1

et(fu,x+ηĈ)
(
µρu+|u−z| + 1

η
µm
)
(1 + t)m−1 + µm

]
.

(2.65)

Splitting up the second summand, Gronwall’s inequality yields

ξµt (y) ≤ et(fy,x+ηĈ)ξµ0 (y) + C̃Cm−1nµ
m+1

∫ t

0
e(t−s)(fy,x+ηĈ)ds

+ C̃Cm−1
∑
z∼y

∑
u∈Hn

|u−z|≤m−1

(
µρu+|u−z|+1 + 1

η
µm+1

)

·
∫ t

0
(1 + s)m−1es(fu,x+ηĈ)e(t−s)(fy,x+ηĈ)ds

≤ et(fy,x+ηĈ)Cyµ
λy + Cµm+1

(
1 + 1

η
et(fy,x+ηĈ)

)
+ C̃Cm−1

∑
z∼y

∑
u∈Hn

|u−z|≤m−1

(
µρu+|u−z|+1 + 1

η
µm+1

)
(1 + t)m−1

·
∫ t

0
et(fy,x+ηĈ)es(fu,x−fy,x)ds, (2.66)

where we bound the first integral just as before in the base case.

We distinguish two cases to approximate the second integral. If fu,x 6= fy,x, then∫ t

0
et(fy,x+ηČ)es(fu,x−fy,x)ds = 1

fu,x − fy,x
(et(fu,x+ηČ) − et(fy,x+ηČ))

= 1
|fu,x − fy,x|

|et(fu,x+ηČ) − et(fy,x+ηĈ)|

≤ C ′(et(fu,x+ηČ) + et(fy,x+ηČ)), (2.67)

for some C ′ <∞ large enough, uniformly in y and u.
If fu,x = fy,x, then ∫ t

0
et(fy,x+ηČ)es(fu,x−fy,x)ds = tet(fy,x+ηČ). (2.68)
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Plugging this back into (2.66) we get

ξµt (y) ≤et(fy,x+ηĈ)Cyµ
λy + Cµm+1

(
1 + 1

η
et(fy,x+ηĈ)

)
+ C̃Cm−1

∑
z∼y

∑
u∈Hn

|u−z|≤m−1

(
µρu+|u−z|+1 + 1

η
µm+1

)
(1 + t)m−1

· C ′(1 + t)(et(fu,x+ηĈ) + et(fy,x+ηĈ))
≤ (n+ o(1))((max

y∈Hn
Cy) ∨ C ∨ C̃Cm−1C

′)︸ ︷︷ ︸
≤Cm for µ<η̃

·
[ ∑

z∈Hn
|z−y|≤m

et(fz,x+ηĈ)
(
µρz+|z−y| + 1

η
µm+1

)
(1 + t)m + µm+1

]
, (2.69)

where we used that ρy ≤ (ρu + |u − z| + 1) ∧ λy for all z ∼ y and |u − z| ≤ m − 1, and
gathered all the higher µ-powers in the o(1) with respect to the limit µ→ 0. This concludes
the proof of (2.61).
Finally, we can choose m ≥ maxy∈Hn maxz∈Hn ρz + |z − y| ≥ n and, since fz,x = 0 for all
z ∈ x, we get

ξµt (y) ≤ Cm

[ ∑
z∈Hn

et(fz,x+ηĈ)
(
µρz+|z−y| + 1

η
µm+1

)
(1 + t)m + µm+1

]

≤ Cm

[ ∑
z∈Hn

et(fz,x+ηĈ)(µρz+|z−y| + µm)(1 + t)m +
∑
z∈x

et(fz,x+ηĈ)µm+1
]

≤ 3Cm
∑
z∈Hn

et(fz,x+ηĈ)µρz+|z−y|(1 + t)m. (2.70)

With ĉ := 3Cm and choosing η̃ uniform over all subsets x ⊂ Hn of coexisting resident types,
this yields the desired upper bound.

The proof of the lower bound is very similar. We approximate, for every y ∈ Hn,
d
dtξ

µ
t (y) ≥ [fy,x − ηČ]ξµt (y) + µc̃

∑
z∼y

ξµt (z), (2.71)

and then use the inductive application of Gronwall’s inequality twice.

First, to prove that, for an arbitrarily small t0 > 0, ξµt0/2(y) ≥ ct0µ
ρy , where ct0 > 0 can

be chosen uniformly in µ, η, and y. This corresponds to mutation producing a positive
population size for every type within a time of order 1.

Second, we show that, for every 0 ≤ m ≤ n, there exists a constant cm > 0, independent of
µ, η, and y, such that, for (n+m)t0/(2n) ≤ t ≤ T̃µη ,

ξµt (y) ≥ cm
∑
z∈Hn
|z−y|≤m

µρz+|z−y|et(fz,x−ηČ). (2.72)

Setting č := cn yields the lower bound in (2.40), for t0 ≤ t ≤ T̃µη .
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Proof of Corollary 2.22. The inequalities in (2.42) follow directly from (2.40) by inserting
the new time scale. For the lower bound, only the asymptotically largest summand, cor-
responding to the smallest µ-power, is kept. For the upper bound, every one of the 2n
summands is estimated against this largest one.

To prove the second part of the corollary, we first show that, for µ small enough, the first
non-resident type y that reaches the η-threshold, i.e. the type that determines the stopping
time Tµη , satisfies λy > 0 and hence ρz + |z − y| > 0, for every z ∈ Hn.
Let y ∈ Hn\x be a non-resident type for which λy = 0. This implies ξµ0 (y) ≤ η/3 and fy,x < 0.
Going back into the proof of (2.61) and using that η̃ is chosen such that fy,x + η̃Ĉ < 0, this
yields

ξµt (y) ≤ et(fy,x+ηĈ)Cyµ
λy + µC̃C

1
fy,x + ηĈ

(et(fy,x+ηĈ) − 1)

≤ et(fy,x+ηĈ) η

3 + µC̃C
1

|fy,x + ηĈ|
(1− et(fy,x+ηĈ))

≤ η

3 + µC̃C

|fy,x + η̃Ĉ|
≤ 2

3η, (2.73)

whenever µ ≤ η|fy,x + η̃Ĉ|/3C̃C. As a consequence, as µ→ 0, y stays strictly below η and
does not determine Tµη .

Now we assume that Tµη is determined by a non-resident type y ∈ Hn for which λy > 0,
i.e. y is the first mutant to reach the η-threshold. Let η̄ ≤ η̃ ∧ 1 ∧ č. Then, assuming that
0 < µ ≤ η ≤ η̄, the lower bound in (2.42) yields

čµminz∈Hn [ρz+|z−y|−Tµη (fz,x−ηČ)] ≤ ξµ
T̃µη

(y) = η, (2.74)

and hence

ln(µ) min
z∈Hn

[ρz + |z − y| − Tµη (fz,x − ηČ)] ≤ ln
(
η

č

)
≤ 0. (2.75)

Since ln(µ) < 0, we obtain, for every z ∈ Hn, that

ρz + |z − y| ≥ Tµη (fz,x − ηČ), (2.76)

and therefore, if we choose η̄ small enough such that, for every η ≤ η̄ and every z ∈ Hn for
which fz,x > 0, also fz,x − ηČ > 0,

Tµη ≤ min
z∈Hn
fz,x>0

ρz + |z − y|
fz,x − ηČ

. (2.77)

To get a lower bound for Tµη , (2.42) implies

η = ξµ
T̃µη

(y) ≤ 2nĉµminz∈Hn [ρz+|z−y|−Tµη (fz,x+ηĈ)]
(
1 + T̃µη

)m
, (2.78)
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which yields

ln(µ) min
z∈Hn

[ρz + |z − y| − Tµη (fz,x + ηĈ)] ≥ ln
(

η

2nĉ(1 + T̃µη )m

)
, (2.79)

and therefore there exists a z ∈ Hn such that

ρz + |z − y| ≤ Tµη (fz,x + ηĈ) +
ln
(

2nĉ
η

)
+m ln(1 + T̃µη )

ln 1
µ

. (2.80)

The second summand on the right hand side is positive and, with (2.77), converges to zero
as µ → 0. Since the left hand side is positive this implies that fz,x + ηĈ > 0 and by our
choice of η̃ in the proof of (2.61) we obtain fz,x ≥ 0.
Consequently, for every fixed 0 < η ≤ η̄, it follows that

lim inf
µ→0

Tµη ≥
ρz + |z − y|
fz,x + ηČ

≥ min
z∈Hn
fz,x≥0

ρz + |z − y|
fz,x + ηČ

. (2.81)

Overall, for every fixed 0 < η ≤ η̄, we obtain

min
z∈Hn
fz,x≥0

ρz + |z − y|
fz,x + ηČ

≤ lim inf
µ→0

Tµη ≤ lim sup
µ→0

Tµη ≤ min
z∈Hn
fz,x>0

ρz + |z − y|
fz,x − ηČ

. (2.82)

If we now pick η̄ small enough, both minima are realised by the same z ∈ Hn for which
fz,x > 0, that also minimise

min
z∈Hn
fz,x>0

ρz + |z − y|
fz,x

, (2.83)

and we can reduce to only considering z ∈ Hn such that fz,x > 0 in the lower bound.

All the above considerations apply to a single y for which λy > 0. Considering all such
y ∈ Hn we get that asymptotically

min
y∈Hn
λy>0

min
z∈Hn
fz,x>0

ρz + |z − y|
fz,x + ηČ

≤ lim inf
µ→0

Tµη ≤ lim sup
µ→0

Tµη ≤ min
y∈Hn
λy>0

min
z∈Hn
fz,x>0

ρz + |z − y|
fz,x − ηČ

. (2.84)

For the upper bound, the minimum can be used since, if Tµη was larger than this minimum,
the minimiser would reach the η-level before T̃µη , which would be a contradiction.
This finishes the proof of the corollary.
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2.4 Construction of the Jump Process

In this section we combine the results of Theorem 2.21, or rather Corollary 2.22, and Theorem
2.5 to derive the convergence of ξµ as µ→ 0 to a jump process that moves between Lotka-
Volterra equilibria of coexistence. We prove the convergence by an induction over the invasion
steps and show that after each invasion the criteria for the initial conditions in Theorem 2.21
are again satisfied.

Before we get to the actual proof, we derive two lemmas. The first lemma treats the bounded-
ness of solutions of (2.2), the continuity in the initial condition, and the perturbation through
the mutation rate µ.

Lemma 2.23. Let

Ω :=
{
ξ ∈M(Hn) : ∀x ∈ Hn : ξ(x) ∈

[
0, 2 |r(x)|

α(x, x)

]}
. (2.85)

There is a µ0 > 0 such that, for every 0 ≤ µ < µ0, for every ξµ0 ∈ Ω, and for every t ≥ 0,
we obtain ξµt ∈ Ω, where ξµt is the solution of (2.2).

Moreover, there are positive, finite constants A, B such that, for every 0 ≤ µ1, µ2 < µ0, for
every ξµ1

0 , ξµ2
0 ∈ Ω, and every t ≥ s ≥ 0,

‖ξµ1
t − ξ

µ2
t ‖ ≤ e(t−s)A

‖ξµ1
s − ξµ2

s ‖+

√
(µ1 + µ2)B

A

 . (2.86)

Proof. To prove the first claim, assume that ξµt ∈ Ω and ξµt (x) = 2|r(x)|/α(x, x), for some
x ∈ Hn. Then

d
dtξ

µ
t (x) ≤ [r(x)− α(x, x)ξµt (x)]ξµt (x) + µ

∑
y∼x

b(y)m(y, x)ξµt (y)

≤ −2|r(x)|2

α(x, x) + µ2nmax
y∈Hn

b(y)|r(y)|
α(y, y) < 0, (2.87)

for

µ < µ0 := min
y∈Hn

2|r(y)|2

α(y, y)

(
2nmax

y∈Hn
b(y)|r(y)|
α(y, y)

)−1
. (2.88)

Hence, ξµt cannot leave Ω.
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For the second claim, we approximate

d

dt

‖ξµ1
t − ξ

µ2
t ‖

2

2
=
∑
x∈Hn

(ξµ1
t (x)− ξµ2

t (x))r(x)(ξµ1
t (x)− ξµ2

t (x))

−
∑
x∈Hn

(ξµ1
t (x)− ξµ2

t (x))
∑
y∈Hn

α(x, y)(ξµ1
t (x)ξµ1

t (y)− ξµ2
t (x)ξµ2

t (y))

+
∑
x∈Hn

(ξµ1
t (x)− ξµ2

t (x))µ1

(∑
y∼x

b(y)m(y, x)ξµ1
t (y)− b(x)ξµ1

t (x)
)

−
∑
x∈Hn

(ξµ1
t (x)− ξµ2

t (x))µ2

(∑
y∼x

b(y)m(y, x)ξµ2
t (y)− b(x)ξµ2

t (x)
)

≤ max
x∈Hn

|r(x)|
∑
x∈Hn

(ξµ1
t (x)− ξµ2

t (x))2

−
∑
x∈Hn

∑
y∈Hn

α(x, y)(ξµ1
t (x)− ξµ2

t (x))2ξµ1
t (y)

+
∑
x∈Hn

∑
y∈Hn

α(x, y)|ξµ1
t (x)− ξµ2

t (x)| · |ξµ1
t (y)− ξµ2

t (y)| · |ξµ2
t (x)|

+ µ1 max
x∈Hn

b(x)
∑
x∈Hn

max
x∈Hn

(|ξµ1
t (x)|+ |ξµ2

t (x)|) max
x∈Hn

|ξµ1
t (x)|

(∑
y∼x

m(y, x) + 1
)

+ µ2 max
x∈Hn

b(x)
∑
x∈Hn

max
x∈Hn

(|ξµ1
t (x)|+ |ξµ2

t (x)|) max
x∈Hn

|ξµ2
t (x)|

(∑
y∼x

m(y, x) + 1
)
, (2.89)

which implies

d

dt

‖ξµ1
t − ξ

µ2
t ‖

2

2 ≤ ‖ξµ1
t − ξ

µ2
t ‖

2
[

max
x∈Hn

|r(x)|+ 22n max
x,y∈Hn

α(x, y) ‖ξµ2
t ‖

]
+ (µ1 + µ2)(2n · 2) max

x∈Hn
b(x)(‖ξµ1

t ‖+ ‖ξµ2
t ‖)2

=: ‖ξµ1
t − ξ

µ2
t ‖

2
A+ (µ1 + µ2)B, (2.90)

where A and B depend on b, r, α, and can be chosen uniformly in t ≥ 0, 0 ≤ µi < µ0, and
initial values ξµi0 ∈ Ω since ‖ξµit ‖ ≤ maxξ∈Ω ‖ξ‖ < ∞. Applying Gronwall’s inequality and
taking the square root implies the claim.

Theorem 2.21 and Corollary 2.22 provide us with approximations for ξµt during the exponen-
tial growth phase and Theorem 2.5 guarantees convergence to a new equilibrium during the
invasion phase. To show that this second phase vanishes on the time scale ln 1/µ, we need
to bound its duration uniformly in the approximate state of the system at its beginning.

We introduce the following notation for the time until the initial conditions for the next
growth phase are reached.
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Definition 2.24.

τ̃µη (ξ,x) := inf
{
t ≥ 0 : ∀ x ∈ x : |ξµt (x)− ξ̄x(x)| ≤ η c̄√

|x|
,

∀ y ∈ Hn\x : ξµt (y) ≤ η

3 ; ξµ0 = ξ
}
, (2.91)

In the proof of Theorem 2.12, we approximate the true system, solving (2.2), by the mutation-
free Lotka-Volterra system during the invasion. The second lemma proves continuity in the
initial condition for a slight variation of τ̃µη (ξ,x), corresponding to the case of µ = 0.

Lemma 2.25. Let y ⊂ Hn such that r(y) > 0, for all y ∈ y, and (By) is satisfied. Let x ⊂ y
such that the equilibrium state of the Lotka-Volterra system involving types y is supported on
x and assume fy,x < 0, for every y ∈ y\x. Define

τ̄0
η (ξ,x,y) := inf{t ≥ 0 :

∥∥∥ξ0
t

∣∣∣
x
− ξ̄x

∥∥∥
x
≤ ηc̄cx

2
√
|x|
,

∀ y ∈ y\x : ξ0
t (y) ≤ η

6 ∧ η̂; ξ0
0 = ξ}, (2.92)

where ‖·‖x is the norm defined in (2.12), corresponding to ξ̄x, and η̂ := ηc̄cx/(2
√
|x|c). Then,

for η small enough, τ̄0
η (ξ,x,y) is continuous in ξ ∈ (R>0)y × {0}Hn\y.

Remark 2.26. Theorem 2.5 ensures that the Lotka-Volterra system involving the types y
converges to a unique equilibrium and hence x in Lemma 2.25 is uniquely determined.

Proof. Since we are considering the case of µ = 0, we obtain ξ0
t ∈ (R>0)y × {0}Hn\y, for all

t ≥ 0 and ξ0
0 ∈ (R>0)y×{0}Hn\y. As in Step 1 of the proof of Theorem 2.21, it follows that,

as long as ξ0
t (y) ≤ η̂, for y ∈ y\x, and

η̂c ≤
∥∥∥ξ0

t

∣∣∣
x
− ξ̄x

∥∥∥
x
≤ εx, (2.93)

we obtain

d

dt

∥∥∥ξ0
t

∣∣
x − ξ̄x

∥∥∥2

x
2 ≤ −

∥∥∥ξ0
t

∣∣∣
x
− ξ̄x

∥∥∥2

x

κ

4C2
x

=: −κ̃
∥∥∥ξ0

t

∣∣∣
x
− ξ̄x

∥∥∥2

x
. (2.94)

Hence ∥∥∥ξ0
t

∣∣∣
x
− ξ̄x

∥∥∥
x
≤ e−κ̃(t−t0)

∥∥∥ξ0
t0

∣∣∣
x
− ξ̄x

∥∥∥
x
. (2.95)

Moreover, (2.93) implies, for every x ∈ x,

|ξ0
t (x)− ξ̄x(x)| ≤ εx

cx
. (2.96)
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Since fy,x < 0 for every y ∈ y\x, we can choose εx small enough such that

d
dtξ

0
t (y) = [r(y)−

∑
z∈Hn

α(y, z)ξ0
t (z)]ξ0

t (y)

≤
[
fy,x +

∑
x∈x

α(y, x)εx
cx

]
ξ0
t (y) ≤ −Cξ0

t (y), (2.97)

for some C > 0. Hence,

ξ0
t (y) ≤ e−C(t−t0)ξ0

t0(y). (2.98)

We have now found an attractive domain around the limiting equilibrium of the Lotka-
Volterra system.

Next, we can derive the continuity of τ̄0
η (ξ,x,y). Let γ > 0 arbitrarily small such that

eκ̃γ , eCγ ≤ 2. Let ξ0,1 and ξ0,2 be two versions of the process with different initial values ξ0,1
0

and ξ0,2
0 . By Lemma 2.23,∥∥∥ξ0,1

t

∣∣∣
x
− ξ0,2

t

∣∣∣
x

∥∥∥
x
≤ Cx

∥∥∥ξ0,1
t

∣∣∣
x
− ξ0,2

t

∣∣∣
x

∥∥∥ ≤ e(t−t0)ACx
∥∥∥ξ0,1

t0

∣∣∣
x
− ξ0,2

t0

∣∣∣
x

∥∥∥ , (2.99)

|ξ0,1
t (y)− ξ0,2

t (y)| ≤
∥∥∥ξ0,1
t − ξ

0,2
t

∥∥∥ ≤ e(t−t0)A
∥∥∥ξ0,1
t0 − ξ

0,2
t0

∥∥∥ . (2.100)

Now, if we pick initial conditions that are very similar, namely that satisfy∥∥∥ξ0,1
0 − ξ0,2

0

∥∥∥ ≤ e−(τ̄0
η̄ (ξ0,1

t0
,x,y)+γ)A

[
(eκ̃γ − 1) ηc̄cx

2
√
|x|Cx

∧ (eCγ − 1)
(
η

6 ∧ η̂
)]

, (2.101)

we can apply (2.99) and (2.100) and use the definition of τ̄0
η (ξ0,1

0 ,x,y) to derive∥∥∥∥ξ0,2
τ̄0
η (ξ0,1

0 ,x,y)

∣∣∣∣
x
− ξ̄x

∥∥∥∥
x
≤
∥∥∥∥ξ0,2

τ̄0
η (ξ0,1

0 ,x,y)

∣∣∣∣
x
− ξ0,1

τ̄0
η (ξ0,1

0 ,x,y)

∣∣∣∣
x

∥∥∥∥
x

+
∥∥∥∥ξ0,1

τ̄0
η (ξ0,1

0 ,x,y)

∣∣∣∣
x
− ξ̄x

∥∥∥∥
x

≤ eτ̄0
η (ξ0,1

0 ,x,y)ACx
∥∥∥ξ0,2

0

∣∣∣
x
− ξ0,1

0

∣∣∣
x

∥∥∥+ ηc̄cx
2
√
|x|
≤ eκ̃γ ηc̄cx

2
√
|x|
, (2.102)

and for y ∈ y\x,

ξ0,2
τ̄0
η (ξ0,1

0 ,x,y)
(y) ≤ |ξ0,2

τ̄0
η (ξ0,1

0 ,x,y)
(y)− ξ0,1

τ̄0
η (ξ0,1

0 ,x,y)
(y)|+ ξ0,1

τ̄0
η (ξ0,1

0 ,x,y)
(y)

≤ eτ̄0
η (ξ0,1

0 ,x,y)A
∥∥∥ξ0,2

0 − ξ0,1
0

∥∥∥+
(
η

6 ∧ η̂
)
≤ eCγ

(
η

6 ∧ η̂
)
. (2.103)

For all η > 0 such that

η̂c = ηc̄cx
2
√
|x|
≤ εx

2 , (2.104)

we obtain ∥∥∥∥ξ0,2
τ̄0
η (ξ0,1

0 ,x,y)

∣∣∣∣
x
− ξ̄x

∥∥∥∥
x
≤ εx (2.105)

63



2 From Adaptive Dynamics to Adaptive Walks

and hence (2.95) and (2.98) can be applied to ξ0,2 with t = τ̄0
η (ξ0,1

0 ,x,y) + γ and
t0 = τ̄0

η (ξ0,1
0 ,x,y) to obtain τ̄0

η (ξ0,2
0 ,x,y) ≤ τ̄0

η (ξ0,1
0 ,x,y) + γ.

Repeating the same calculation switching 1 and 2 and using this bound for τ̄0
η (ξ0,2

0 ,x,y) to
apply (2.101), it follows that∥∥∥∥ξ0,1

τ̄0
η (ξ0,2

0 ,x,y)

∣∣∣∣
x
− ξ̄x

∥∥∥∥
x
≤ eκ̃γ ηc̄cx

2
√
|x|
, (2.106)

ξ0,1
τ̄0
η (ξ0,2

0 ,x,y)
(y) ≤ eCγ

(
η

6 ∧ η̂
)
, (2.107)

and therefore τ̄0
η (ξ0,1

0 ,x,y) ≤ τ̄0
η (ξ0,2

0 ,x,y) + γ. Hence, |τ̄0
η (ξ0,1

0 ,x,y) − τ̄0
η (ξ0,2

0 ,x,y)| ≤ γ,
which proves the continuity.

To mark the transition between the exponential growth phase and the Lotka-Volterra inva-
sion phase, we extend the definition of T̃µη in (2.39) to the ith invasion.

Definition 2.27. For i ≥ 1, the time when the first mutant type reaches η > 0 after the
(i− 1)st invasion is defined as

T̃µη,i := inf{s ≥ T̃µη,i−1 : ∃ y ∈ Hn\(xi−2 ∪ xi−1) : ξµs (y) > η}. (2.108)

We set T̃µη,0 := 0 and x−1 := ∅.

To consider the evolutionary time scale ln 1/µ, we define Tµη,i through T̃
µ
η,i = Tµη,i ln 1/µ.

t

η
η/3

ξ̄(xi−1)

ξ̄(xi−1)− ηC̄

ξ̄(xi)
ξ̄(xi)− ηc̄

T̃µη,i T̃µη,i + τ̃µη (ξµ
T̃
µ
η,i

,xi)

θ
(
(ρi−1
xi

/fi,i−1) ln 1
µ

)
o(1)

Figure 2.2: The two phases of yi∗ = xi invading xi−1, in the case where there is no coexistence. The
dashed line corresponds to ξµt (xi−1), the solid line depicts ξµt (xi).

We can now turn to the proof of Theorem 2.12 and inductively derive the convergence of
ξµt ln 1/µ to a jump process as µ→ 0. The two phases of an invasion (exponential growth and
Lotka-Volterra) are depicted in Figure 2.2.
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Proof of Theorem 2.12. The proof is split into several parts. The main goal is to inductively
approximate Tµη,i and ξ

µ
t ln 1/µ, similar to Corollary 2.22. We claim that, for each 1 ≤ i ≤ I

such that Ti <∞,

min
y∈Hn
ρi−1
y >0

min
z∈Hn

fz,xi−1>0

ρi−1
z + |z − y| − ηĈi−1

fz,xi−1 + ηĈ
≤ lim inf

µ→0
Tµη,i − Ti−1

≤ lim sup
µ→0

Tµη,i − Ti−1 ≤ min
y∈Hn
ρi−1
y >0

min
z∈Hn

fz,xi−1>0

ρi−1
z + |z − y|+ ηČi−1

fz,xi−1 − ηČ
. (2.109)

Moreover, for each 0 ≤ i < I such that Ti < ∞, Ti < t < Ti+1, there are positive constants
či, Či, ĉi, Ĉi, and m, such that, for every y ∈ Hn,

čiµ
minz∈Hn [ρiz+|z−y|−(t−Ti)(fz,xi−ηČ)]+ηČi ≤ ξµt ln 1/µ(y)

≤ ĉiµminz∈Hn [ρiz+|z−y|−(t−Ti)(fz,xi+ηĈ)]−ηĈi
(

1 + t ln 1
µ

)(i+1)m
, (2.110)

while, for each x ∈ xi, ξµt ln 1/µ(x) ∈ [ξ̄xi(x)− ηC̄, ξ̄xi(x) + ηC̄].

In the first step, we approximate |Tµη,i − Ti| ≤ ηC, assuming that the claim holds true.
Second, we derive a uniform bound on the duration of the ith invasion phase, using Lemma
2.25. In Step 3, we prove the bounds that are claimed above. Finally, we use these bounds
to derive the convergence as µ→ 0.

Step 1: |Tµη,i − Ti| ≤ ηC.
In the case where there exists a y ∈ Hn such that fy,xi−1 > 0, we want to relate Ti, as defined
in (2.21), to Tµη,i.

First, we prove a different identity for Ti that is similar to (2.109), namely the second equality
of

Ti − Ti−1 = min
y∈Hn:

fy,xi−1>0

ρi−1
y

fy,xi−1
= min

y∈Hn
ρi−1
y >0

min
z∈Hn

fz,xi−1>0

ρi−1
z + |z − y|
fz,xi−1

. (2.111)

On one hand, fy,xi−1 > 0 implies ρi−1
y > 0. The only cases in which ρi−1

y = 0 are if
y ∈ xi−1, then fy,xi−1 = 0, or if y ∈ xi−2\xi−1, which implies fy,xi−1 < 0 (else we would
have terminated the procedure after the (i− 1)st invasion due to case (b) in Theorem 2.12).
Hence

min
y∈Hn
ρi−1
y >0

min
z∈Hn

fz,xi−1>0

ρi−1
z + |z − y|
fz,xi−1

≤ min
y∈Hn

fy,xi−1>0

min
z∈Hn

fz,xi−1>0

ρi−1
z + |z − y|
fz,xi−1

≤ min
y∈Hn

fy,xi−1>0

ρi−1
y

fy,xi−1
, (2.112)

where we inserted z = y in the second step.
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2 From Adaptive Dynamics to Adaptive Walks

On the other hand, if we assume that ȳ and z̄ realise the minima, which implies that
fz̄,xi−1 > 0, we obtain

min
y∈Hn
ρi−1
y >0

min
z∈Hn

fz,xi−1>0

ρi−1
z + |z − y|
fz,xi−1

= ρi−1
z̄ + |z̄ − ȳ|
fz̄,xi−1

≥ ρi−1
z̄

fz̄,xi−1
≥ min

y∈Hn
fy,xi−1>0

ρi−1
y

fy,xi−1
. (2.113)

Now, under the assumption that (2.109) holds true, we approximate

lim inf
µ→0

Tµη,i − Ti−1 ≥

 min
y∈Hn
ρi−1
y >0

min
z∈Hn

fz,xi−1>0

ρi−1
z + |z − y|
fz,xi−1


 min

z∈Hn
fz,xi−1>0

fz,xi−1

fz,xi−1 + ηĈ


− ηĈi−1 max

z∈Hn
fz,xi−1>0

1
fz,xi−1 + ηĈ

= (Ti − Ti−1)

1− max
z∈Hn

fz,xi−1>0

ηĈ

fz,xi−1 + ηĈ

− ηĈi−1 max
z∈Hn

fz,xi−1>0

1
fz,xi−1 + ηĈ

= (Ti − Ti−1)− η((Ti − Ti−1)Ĉ + Ĉi−1) max
z∈Hn

fz,xi−1>0

1
fz,xi−1 + ηĈ

(2.114)

and, analogously,

lim sup
µ→0

Tµη,i − Ti−1 ≤ (Ti − Ti−1) + η((Ti − Ti−1)Č + Či−1) max
z∈Hn

fz,xi−1>0

1
fz,xi−1 − ηČ

. (2.115)

As a result there is a constant C > 0 such that, for η and µ small enough,

|Tµη,i − Ti| ≤ ηC. (2.116)

Step 2: Uniform time bound on the Lotka-Volterra phase.
We show that, for η small enough,

τ̃µη (ξµ
T̃µη,i

,xi) = inf
{
t ≥ 0 : ∀ x ∈ xi : |ξµ

T̃µη,i+t
(x)− ξ̄xi(x)| ≤ η c̄√

|xi|
,

∀ y ∈ Hn\xi : ξµ
T̃µη,i+t

(y) ≤ η

3
}

(2.117)

is bounded by some constant T̄η.

Since LVE+(xi−1) = {ξ̄xi−1} and fyi∗,xi−1 > 0, we obtain r(y) > 0, for every y ∈ (xi−1 ∪ yi∗).
(Bxi−1∪yi∗) holds by assumption and hence Lemma 2.25 can be applied to y = xi−1 ∪ yi∗ and
x = xi.

Let

Ωi
η := {ξ : ξ(yi∗) = η, ξ(x) ∈ [ξ̄xi−1(x)− ηC̄, ξ̄xi−1(x) + ηC̄] ∀ x ∈ xi−1, ξ(y) = 0 else},

(2.118)

66



2.4 Construction of the Jump Process

then, by continuity of τ̄0
η (ξ,xi,xi−1 ∪ yi∗) in ξ (Lemma 2.25) and the compactness of Ωi

η,

sup
ξ∈Ωiη

τ̄0
η (ξ,xi,xi−1 ∪ yi∗) =: T̄η <∞. (2.119)

Using Lemma 2.23, for

ξ :=

ξ
µ

T̃µη,i
(x) x ∈ xi−1 ∪ yi∗

0 else
∈ Ωi

η, τ̄ := τ̄0
η (ξ,xi,xi−1 ∪ yi∗), (2.120)

we obtain, for x ∈ xi, y ∈ xi−1 ∪ yi∗\xi, ξ0
0 = ξ, and µ small enough, that

|ξµ
T̃µη,i+τ̄

(x)− ξ̄xi(x)| ≤
∥∥∥∥ξµT̃µη,i+τ̄ − ξ0

τ̄

∥∥∥∥+ c−1
xi
∥∥∥ξ0

τ̄

∣∣∣
xi
− ξ̄xi

∥∥∥
xi

≤ eτ̄A
∥∥∥∥ξµT̃µη,i − ξ

∥∥∥∥+

√
µ
B

A

+ ηc̄

2
√
|xi|
≤ ηc̄√

|xi|
, (2.121)

ξµ
T̃µη,i+τ̄

(y) ≤
∥∥∥∥ξµT̃µη,i+τ̄ − ξ0

τ̄

∥∥∥∥+ ξ0
τ̄ (y)

≤ eτ̄A
∥∥∥∥ξµT̃µη,i − ξ

∥∥∥∥+

√
µ
B

A

+ η

6 ≤
η

3 . (2.122)

Here we used that, for η small enough,
∥∥∥∥ξµT̃µη,i − ξ

∥∥∥∥ ≤ 2n maxy∈Hn\(xi−1∪yi∗) ξ
µ

T̃µη,i
(y) tends to

zero as µ→ 0. A more precise approximation for this is given in Step 3 and 4.

Overall, τ̃µη (ξµ
T̃µη,i

,xi) ≤ τ̄ ≤ T̄η.

Step 3: Approximation of ξµt ln 1/µ and Tµη,i.
We now turn to the proof of (2.109) and (2.110).

(2.110) in the case of i = 0 is given by Theorem 2.21 and Corollary 2.22, setting č0 := č,
Či := 0, ĉ0 := 2nĉ, and Ĉi := 0 and using that by Step 1, for every t < T1, there are η and
µ small enough such that t < Tµη,1. Corollary 2.22 also gives(2.109) for i = 1.

Assuming that the claims holds for 0 ≤ i− 1 < I, Ti <∞ implies that there is some y′ ∈ Hn
for which fy′,xi−1 > 0, and hence, for every y ∈ Hn,

či−1µ
minz∈Hn [ρi−1

z +|z−y|−(Tµη,i−Ti−1)(fz,xi−1−ηČ)]+ηČi−1 ≤ ξµ
T̃µη,i

(y)

≤ ĉi−1µ
minz∈Hn [ρi−1

z +|z−y|−(Tµη,i−Ti−1)(fz,xi−1+ηĈ)]−ηĈi−1
(
1 + T̃µη,i

)im
. (2.123)

Moreover, ξµ
T̃µη,i

(yi∗) = η and, for every x ∈ xi−1, ξµ
T̃µη,i

(x) ∈ [ξ̄xi−1(x) − ηC̄, ξ̄xi−1(x) + ηC̄].
Similar to Corollary 2.22, we obtain (2.109).
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2 From Adaptive Dynamics to Adaptive Walks

Next, we estimate the evolution of the different types during the Lotka-Volterra phase.
Lemma 2.23 gives ξµt (z) ≤ 2|r(z)|/α(z, z), for all z ∈ Hn and t ≥ 0, and therefore

d
dtξ

µ
t (y) ≥

r(y)−
∑
z∈Hn

α(y, z) 2|r(z)|
α(z, z) − µb(y)

 ξµt (y) ≥ −Kξµt (y), (2.124)

for some K > 0.

By Step 2, we know that τ̃(ξµ
T̃µη,i

,xi) ≤ T̄η and hence (2.123) yields

ξµ
T̃µη,i+τ̃(ξµ

T̃
µ
η,i

,xi)(y) ≥ e−KT̄η či−1µ
minz∈Hn [ρi−1

z +|z−y|−(Tµη,i−Ti−1)(fz,xi−1−ηČ)]+ηČi−1 (2.125)

Using Step 1, we can approximate

min
z∈Hn

[ρi−1
z + |z − y| − (Tµη,i − Ti−1)(fz,xi−1 − ηČ)] + ηČi−1

= min
z∈Hn

[ρi−1
z + |z − y| − (Tµη,i − Ti−1)fz,xi−1 ] + η(Či−1 + (Tµη,i − Ti−1)Č)

≤ ρiy + η(Či−1 + (Tµη,i − Ti−1)Č + C max
z∈Hn

fz,xi−1). (2.126)

We now plug this back in as the exponent and set č′i := e−KT̄η či−1 as well as
Č ′i ≥ Či−1 + (Tµη,i − Ti−1)Č + C maxz∈Hn fz,xi−1 to derive

ξµ
T̃µη,i+τ̃(ξµ

T̃
µ
η,i

,xi)(y) ≥ č′iµρ
i
y+ηĈ′i . (2.127)

Note that Č ′i can be chosen uniformly in η since Tµη,i ≤ Ti + ηC by Step 1, while č′i may
depend on η.

On the other hand,
d
dtξ

µ
t (y) ≤ r(y)ξµt (y) + µC̃

∑
z∼y

ξµt (z). (2.128)

Following the same argument as for the upper bound in (2.40) (compare Step 2 of the proof
of Theorem 2.21, with t = τ̃(ξµ

T̃µη,i
,xi) and ξµ

T̃µη,i
instead of ξµ0 ), we obtain

ξµ
T̃µη,i+τ̃(ξµ

T̃
µ
η,i

,xi)(y) ≤ ĉe
τ̃(ξµ

T̃
µ
η,i

,xi) maxz∈Hn r(z)
(1 + τ̃(ξµ

T̃µη,i
,xi))m

∑
z∈Hn

ξµ
T̃µη,i

(z)µ|z−y|. (2.129)

By Step 1,

min
z′∈Hn

[ρi−1
z′ + |z′ − z| − (Tµη,i − Ti−1)(fz′,xi−1 + ηĈ)]− ηĈi−1 + |z − y|

≥ min
z′∈Hn

[ρi−1
z′ + |z′ − y| − (Tµη,i − Ti−1)fz′,xi−1 ]− η(Ĉi−1 + (Tµη,i − Ti−1)Ĉ)

≥ ρiy − η(Ĉi−1 + (Tµη,i − Ti−1)Ĉ + C max
z∈Hn

fz,xi−1). (2.130)
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Using this and Step 2, we derive

ξµ
T̃µη,i+τ̃(ξµ

T̃
µ
η,i

,xi)(y) ≤ ĉeT̄η maxz∈Hn r(z)(1 + T̄η)m

·
∑
z∈Hn

ĉi−1µ
ρiy−η(Ĉi−1+(Tµη,i−Ti−1)Ĉ+C maxz∈Hn fz,xi−1 )

(
1 + T̃µη,i

)im
≤ ĉ′i

(
1 + T̃µη,i

)im
µρ

i
y−ηĈ′i (2.131)

where ĉ′i := 2nĉeT̄η maxz∈Hn r(z)(1+T̄η)mĉi−1 and Ĉ ′i ≥ Ĉi−1+(Tµη,i−Ti−1)Ĉ+C maxz∈Hn fz,xi−1 .
As above, Ĉ ′i can be chosen uniformly in η since Tµη,i ≤ Ti + ηC by Step 1, while ĉ′i may
depend on η.

For τ̃(ξµ
T̃µη,i

,xi) = τ(ξµ
T̃µη,i

,xi) ln 1
µ and µ small enough, Step 1 implies

|Tµη,i + τ(ξµ
T̃µη,i

,xi)− Ti| ≤ ηC + T̄η

ln 1
µ

≤ 2ηC. (2.132)

For Ti < t < Ti+1, we can now pick η small enough such that Ti + 2ηC < t < Ti+1 − ηC,
and hence

lim sup
µ→0

Tµη,i + τ(ξµ
T̃µη,i

,xi) < t < lim inf
µ→0

Tµη,i+1. (2.133)

As in Corollary 2.22, with the above bounds on ξµ
T̃µη,i+τ̃(ξµ

T̃
µ
η,i

,xi), we derive

ξµt ln 1/µ(y) ≥ čč′iµ
minz∈Hn [ρiz+ηČ′i+|z−y|−(t−(Tµη,i+τ(ξµ

T̃
µ
η,i

,xi)))(fz,xi−ηČ)]

≥ čč′iµ
minz∈Hn [ρiz+|z−y|−(t−Ti)(fz,xi−ηČ)]+η(Č′i+2C maxz∈Hn (fz,xi−ηČ))

= čiµ
minz∈Hn [ρiz+|z−y|−(t−Ti)(fz,xi−ηČ)]+ηČi , (2.134)

defining či := čč′i and Či := Č ′i + 2C maxz∈Hn(fz,xi − ηČ).

Similarly, the upper bound is derived as

ξµt ln 1/µ(y) ≤ 2nĉĉ′iµ
minz∈Hn [ρiz−ηĈ′i+|z−y|−(t−(Tµη,i+τ(ξµ

T̃
µ
η,i

,xi)))(fz,xi+ηĈ)]

· (1 + T̃µη,i)
im
(

1 +
(
t ln 1

µ
− (T̃µη,i + τ̃(ξµ

T̃µη,i
,xi))

))m
≤ 2nĉĉ′iµ

minz∈Hn [ρiz+|z−y|−(t−Ti)(fz,xi+ηĈ)]−η(Ĉ′i+2C maxz∈Hn (fz,xi+ηĈ))
(

1 + t ln 1
µ

)(i+1)m

= ĉiµ
minz∈Hn [ρiz+|z−y|−(t−Ti)(fz,xi+ηĈ)]−ηĈi

(
1 + t ln 1

µ

)(i+1)m
, (2.135)

with ĉi := 2nĉĉ′i and Ĉi := Ĉ ′i+2C maxz∈Hn(fz,xi +ηĈ). This concludes the proof of (2.110).

Notice, that, although či and ĉi may vary for different η, Či and Ĉi can be chosen uniformly
in η.
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2 From Adaptive Dynamics to Adaptive Walks

For every x ∈ xi, we obtain ξµt ln 1/µ(x) ∈ [ξ̄xi(x)− ηC̄, ξ̄xi(x) + ηC̄], as in Theorem 2.21.

Step 4: Convergence for Ti < t < Ti+1.
We now want to prove the actual convergence. We already know that the resident types are
staying close to their equilibrium between Ti and Ti+1 and therefore mainly have to show
that the population sizes of the non-resident types vanish as µ→ 0.

We claim that, for each i ≥ 0, Ti < t < Ti+1, and y ∈ Hn\xi,

min
z∈Hn

[ρiz + |z − y| − (t− Ti)(fz,xi + ηĈ)]− ηĈi ≥ γ, (2.136)

for some γ > 0 and all η small enough, and hence

0 ≤ lim
µ→0

ξµt ln 1/µ(y) ≤ lim
µ→0

ĉiµ
γ
(

1 + t ln 1
µ

)(i+1)m
= 0. (2.137)

We distinguish several cases. If z ∈ xi, this implies fz,xi = 0, ρiz = 0, and |z− y| ≥ 1. Hence

ρiz + |z − y| − (t− Ti)(fz,xi + ηĈ)− ηĈi ≥ 1− η((t− Ti)Ĉ + Ĉi). (2.138)

If z ∈ Hn\xi and ρiz = 0, this implies fz,xi < 0 and

ρiz + |z − y| − (t− Ti)(fz,xi + ηĈ)− ηĈi ≥ −(t− Ti)fz,xi − η((t− Ti)Ĉ + Ĉi). (2.139)

If z ∈ Hn\xi, ρiz > 0, and fz,xi ≤ 0, we get

ρiz + |z − y| − (t− Ti)(fz,xi + ηĈ)− ηĈi ≥ ρiz − η((t− Ti)Ĉ + Ĉi). (2.140)

Since Či does not depend on η, all these expressions can be bounded from below by a positive
constant γ if η is small enough.

Finally, if z ∈ Hn\xi, ρiz > 0, and fz,xi > 0, we obtain t < Ti+1 ≤ ρiz/fz,xi + Ti and, for η
and γ small enough, t− Ti < (ρiz − ηĈi − γ)/(fz,xi + ηĈ). Therefore,

ρiz + |z − y| − (t− Ti)(fz,xi + ηĈ)− ηĈi > ρiz − ηĈi − (ρiz − ηČi − γ) = γ. (2.141)

This proves the claim, in particular in the case where Ti+1 =∞ and there is no y ∈ Hn such
that fy,xi > 0.

Last, we consider the x ∈ xi. For every η small enough,

lim
µ→0

ξµt ln 1/µ(x) ∈ [ξ̄xi(x)− ηC̄, ξ̄xi(x) + ηC̄]. (2.142)

As a result, limµ→0 ξ
µ
t ln 1/µ(x) = ξ̄xi(x) and

lim
µ→0

ξµt ln 1/µ =
∑
x∈xi

δxξ̄xi(x). (2.143)
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2.5 Special Case of Equal Competition

In this section we turn to the proof of Theorem 2.14, the special case of equal competition
between types. We go through the proof of Theorem 2.12 to make changes where assumptions
are no longer satisfied and check the identities for xi and Ti.

Proof of Theorem 2.14. Unfortunately, assumption (Bx) is not satisfied since there are no
constants θx such that (θxα)x,y∈x is positive definite for |x| ≥ 2. To still be able to apply the
results of Theorem 2.12, we have to carefully go through all the points, where assumption
(Bx) was used.

In the proof of Theorem 2.21, this property is only used for the resident types x. In the case
where x consists of a single type, the positive definiteness is trivially satisfied since α > 0.

In the case of Theorem 2.5, we have to argue differently in a few places. Champagnat, Jabin,
and Raoul derive Proposition 1 from a more general theorem [35]. If one adapts the proof of
this theorem to our situation, one sees that assumption (Bx) is first used to prove that there
are only finitely many equilibrium points. In our special case, we are only considering Lotka-
Volterra systems involving the old resident type xi−1 and the minimizing mutant yi∗ = xi.
An equilibrium point ξ∗ ∈ (R≥0){xi−1,xi} has to satisfy

ξ∗(xi−1) = 0 or r(xi−1) = α(ξ∗(xi−1) + ξ∗(xi)),
and ξ∗(xi) = 0 or r(xi) = α(ξ∗(xi−1) + ξ∗(xi)). (2.144)

Since fxi,xi−1 > 0, we obtain r(xi) > r(xi−1) and there are only three equilibrium points,
namely (0, 0), (r(xi−1)/α, 0), and (0, r(xi)/α).

Moreover, assumption (Bx) is used to prove that the evolutionary stable state (if existent)
is unique. An evolutionary stable state ξ̄ ∈ (R≥0){xi−1,xi} is characterised by

{
r(xj)− α(ξ̄(xi−1) + ξ̄(xi)) ≤ 0, if ξ̄(xj) = 0,
r(xj)− α(ξ̄(xi−1) + ξ̄(xi)) = 0, if ξ̄(xj) > 0,

(2.145)

for j ∈ {i−1, i}. Since fi,i+1 > 0, only the last of the three equilibrium points satisfies these
assumptions,

r(xi−1)− α(ξ̄(xi−1) + ξ̄(xi)) = r(xi−1)− α
(

0 + r(xi)
α

)
= −fi,i−1 ≤ 0, (2.146)

r(xi)− α(ξ̄(xi−1) + ξ̄(xi)) = r(xi)− α
(

0 + r(xi)
α

)
= 0. (2.147)

Finally, in Lemma 2.25, we are again in the situation where x consists of only one type and
hence the positive definiteness is trivial.
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2 From Adaptive Dynamics to Adaptive Walks

The only thing left is to show the identities for xi and Ti. We claim that, for i ≥ 0,

ρi+1
y = min

zi+1∈Hn
· · · min

z1∈Hn

[
|y − zi+1|+

i∑
j=1
|zj+1 − zj |+ |z1 − x0|

− fz1,x0T1 −
i∑

j=1
fzj+1,xj (Tj+1 − Tj)

]
. (2.148)

From the initial condition we obtain ρ0
y = minz∈Hn [λz + |z − y|] = |y − x0|. Hence,

y1
∗ = arg min

y∈Hn:fy,x0>0

|y − x0|
fy,x0

(2.149)

and

T1 = min
y∈Hn:
fy,x0>0

|y − x0|
fy,x0

. (2.150)

Since fy1
∗,x0 = r(y1

∗) − r(x0) > 0, the new equilibrium is monomorphic of type x1 = y1
∗ and

T1 = |x1 − x0|/f1,0. Moreover,

ρ1
y = min

z∈Hn
[ρ0
z + |z − y| − T1fz,x0 ] = min

z∈Hn

[
|y − z|+ |z − x0| − fz,x0T1

]
. (2.151)

Assume that xi, Ti, and ρiy are of the proposed form. Then there is a unique

xi+1 = yi+1
∗ = arg min

y∈Hn:fy,xi>0

ρiy
fy,xi

= arg min
y∈Hn:fy,xi>0

minzi∈Hn
[
|y − zi|+ ρi−1

zi − fzi,xi−1(Ti − Ti−1)
]

fy,xi

= arg min
y∈Hn:fy,xi>0

min
zi∈Hn

F (y, zi), (2.152)

where the last equality serves as the definition of the function F : Hn ×Hn → R+.

Assume that the minimum over zi is only realised by some z̄ 6= yi+1
∗ , i.e.

min
y∈Hn
fy,xi>0

min
zi∈Hn

F (y, zi) = min
zi∈Hn

F (yi+1
∗ , zi) = F (yi+1

∗ , z̄) < F (yi+1
∗ , yi+1

∗ ). (2.153)

Looking back at the definition of F and using that

ρi−1
yi+1
∗

= min
z∈Hn

[ρi−2
z + |z − yi+1

∗ | − (Ti−1 − Ti−2)fz,xi−2 ]

≤ min
z∈Hn

[ρi−2
z + |z − z̄| − (Ti−1 − Ti−2)fz,xi−2 ] + |z̄ − yi+1

∗ |

= ρi−1
z̄ + |yi+1

∗ − z̄|, (2.154)
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2.5 Special Case of Equal Competition

this yields

0 ≤ |yi+1
∗ − z̄|+ ρi−1

z̄ − ρi−1
yi+1
∗

< (fz̄,xi−1 − fyi+1
∗ ,xi−1)(Ti − Ti−1) (2.155)

and, since Ti > Ti−1, we obtain fz̄,xi−1 > fyi+1
∗ ,xi−1 > 0. But this would imply

min
zi∈Hn

F (z̄, zi) ≤ F (z̄, z̄) < F (yi+1
∗ , z̄) = min

y∈Hn
fy,xi>0

min
zi∈Hn

F (y, zi), (2.156)

which is a contradiction. Hence, z̄ can be chosen equal to yi+1
∗ .

Repeating the previous argument shows that the minimum over z1, ..., zi+1 is achieved at
z1 = ... = zi+1 = y and hence

xi+1 = arg min
y∈Hn:fy,xi>0

ρi−1
y − fy,xi−1(Ti− Ti−1)

fy,xi
= . . .

= arg min
y∈Hn:fy,xi>0

|y − x0| − fy,x0
|x1−x0|
f1,0

−
∑i−1
j=1 fy,xj (Tj+1 − Tj)

fy,xi

= arg min
y∈Hn:fy,xi>0

|y − x0|
fy,xi

−
fy,xi−1

fy,xi
Ti −

i−1∑
j=1

fy,xj−1 − fy,xj
fy,xi

Tj

= arg min
y∈Hn:fy,xi>0

|y − x0|
fy,xi

−
fy,xi−1(|xi − x0| − |xi−1 − x0|)

fy,xifi,i−1

−
i−1∑
j=1

|xj − x0| − |xj−1 − x0|
fj,j−1

fy,xj−1 − fy,xj
fy,xi

= arg min
y∈Hn:fy,xi>0

|y − x0|
fy,xi

− (|xi − x0| − |xi−1 − x0|)
(

1
fi,i−1

+ 1
fy,xi

)

− |x
i−1 − x0| − |x0 − x0|

fy,xi

= arg min
y∈Hn:fy,xi>0

|y − x0| − |xi − x0|
fy,xi

− Ti, (2.157)

where we use (2.25) several times. Analogously,

Ti+1 = Ti + min
y∈Hn:
fy,xi>0

ρiy
fy,xi

= Ti +
(
|xi+1 − x0| − |xi − x0|

fi+1,i
− Ti

)
= |x

i+1 − x0| − |xi − x0|
fi+1,i

.

(2.158)

Finally,

ρi+1
y = min

zi+1∈Hn
[ρizi+1 + |zi+1 − y| − (Ti+1 − Ti)fzi+1,xi ], (2.159)

which is of the desired form. This proves the claim and hence the theorem.
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2 From Adaptive Dynamics to Adaptive Walks

2.6 A First Look at Limited Range of Mutation

In this section we present the proof of Theorem 2.18, where ` = 1, and take a first look at
the intermediate cases of 1 < ` < n.

2.6.1 Proof for the case ` = 1

We again go over the previous proofs and make alterations where necessary.

Proof of Theorem 2.18. We only consider the first invasion step. We can assume that η < ξ̄.
Consequently, up to time T̃µη,1∧inf{t ≥ 0 : ∃ z ∈ Hn, |z−x0| > 1, ξµt (z) ≥ ξ̄µ}, the neighbours
of type x0 are the only active mutants. As before,

ξµt (x0) ∈ [ξ̄x0(x0)− ηC̄, ξ̄x0(x0) + ηC̄]. (2.160)

Moreover, as in (2.60) and (2.71), we obtain

[fx0,x0 − ηČ]ξµt (x0) ≤ d
dtξ

µ
t (x0) ≤ [fx0,x0 + ηĈ]ξµt (x0), (2.161)

and with fx0,x0 = 0, c := ξ̄x0(x0)− c̄ξ̄, and C := ξ̄x0(x0) + c̄ξ̄,

ce−tηČ ≤ ξµt (x0) ≤ CetηĈ . (2.162)

Considering the neighbours y ∼ x0 of the resident type, we derive

[fy,x0 − ηČ]ξµt (y) + µc̃ξµt (x0) ≤ d
dtξ

µ
t (y) ≤ [fy,x0 + ηĈ]ξµt (y) + µC̃ξµt (x0), (2.163)

and hence the upper bound,

ξµt (y) ≤ et(fy,x0+ηĈ)Cyµ
λy + µC̃C

∫ t

0
esηĈe(t−s)(fy,x0+ηĈ)ds

≤ µet(fy,x0+ηĈ)
(
Cyµ

λy−1 + C̃C

∫ t

0
e−sfy,x0ds

)
≤ ĉ′µetηĈ

(
(1 + t)etfy,x0 + 1

)
, (2.164)

for some ĉ′ <∞, uniformly in y ∼ x0, η < ξ̄, and µ.

A similar lower bound can be shown and, on the ln 1/µ-time scale, we obtain

č′µ((1−tfy,x0 )∧1)+tηČ ≤ ξµ
t ln 1

µ

(y) ≤ ĉ′µ((1−tfy,x0 )∧1)−tηĈ
(

1 + t ln 1
µ

)
. (2.165)

Using this bound, all types z such that |z − x0| = 2 can be bounded from above using the
same type of calculation to derive

ξµ
t ln 1

µ

(z) ≤ Cµ2−tηĈ
((

1 + t ln 1
µ

)2
µ−tmaxy∼x0 fy,x0 + 1

)
. (2.166)
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2.6 A First Look at Limited Range of Mutation

Hence, for η small enough, T̃µη,1 ≈ inf{t ≥ 0 : ∃ z ∈ Hn, |z − x0| > 1, ξµt (z) ≥ ξ̄µ}.

As in Corollary 2.22, we can now argue that

min
y∼x0

fy,x0>0

1
fy,x0 + ηČ

≤ lim inf
µ→0

Tµη,1 ≤ lim sup
µ→0

Tµη,1 ≤ min
y∼x0

fy,x0>0

1
fy,x0 − ηČ

. (2.167)

The first mutant y1
∗ to reach the η-level is the neighbour of x0 minimising 1/fy,x0 (given

fy,x0 > 0), hence maximising r(y), which is unique (or else we set I := i and terminate the
procedure). This yields Tµη,1 ≈ T1 = 1/fy1

∗,x0 .

The Lotka-Volterra phase can be analysed just as before. Since y1
∗ satisfies r(y1

∗) > r(x0),
the new equilibrium has x1 = y1

∗ as the only resident type.

Since, for every other y ∼ x0, r(y) < r(x1), these types always stay unfit, do not foster
mutants above the threshold, and we do not need to consider them any further.

During the Lotka-Volterra phase, once the ξµt (z), z ∼ x1 have surpassed ξ̄µ, they start to
grow. However, since the duration of the Lotka-Volterra phase can be bounded uniformly as
before, this only results in mutant populations of order µ1, which fits the initial conditions
for the next invasion step.

2.6.2 The intermediate cases

For now, we stick with the assumption of constant competition. In the case of ` ≥ n,
arbitrarily large steps can be taken. In particular, arbitrarily large valleys in the fitness
landscape (defined by r) can be crossed. A (strict) global fitness maximum is reached
eventually and is the only stable point. If ` = 1, the limiting walk always jumps to the
fittest nearest neighbour and (strict) local fitness maxima are stable points. In both cases,
the microscopic types do not have to be tracked to characterise the jump process. The next
step is determined only by the previous and possibly the initial resident type.

The cases 2 ≤ ` ≤ n−1 interpolate between the two extreme scenarios. To study accessibility
of different types, we again need to keep track of the microscopic populations. To this extent,
we define some new quantities.

Definition 2.28. The first appearance time of a type y (on the ln 1/µ-time scale) is denoted
by

τµy := inf{s ≥ 0 : ξµ
s ln 1

µ

(y) > 0}. (2.168)

The µ-power the population size of type y would have at time t ln 1/µ due to its own growth
rate (neglecting mutation from neighbours after τµy ) is

λt(y) := 1t≥τµy

(
` ∧ |y − x0|︸ ︷︷ ︸
initial size

−
∞∑
i=0

fy,xi(t ∧ T
µ
η,i+1 − τ

µ
y ∨ T

µ
η,i)+︸ ︷︷ ︸

growth between
ith and (i+1)st invasion

)
+ 1t<τµy

∞, (2.169)

75



2 From Adaptive Dynamics to Adaptive Walks

where xi and Tµη,i are just as before.

All types under the mutational influence of type y are denoted by

Λt(y) := {z ∈ Hn : |z − y|+ λt(y) ≤ `} (2.170)

and Λt :=
⋃
y∈Hn Λt(y).

Since we are assuming constant competition, the population sizes of the different types are
approximated by

ξµ
t ln 1

µ

(y) ≈ 1y∈Λtµ
minz∈Λt [|y−z|+λt(z)], (2.171)

where we drop multiplicative constants and all terms involving η. Figure 2.3 visualises the
interplay of λt(y), ξµt ln 1/µ(y), and the sets Λt(y) for an easy example.

space

µ-power

x1 x2 x3 x4 x5

2

1

0

logµ(ξµ
t ln 1

µ

(x3))

λt(x3)

Λt(x2)
resident type

Figure 2.3: Example for the case ` = 3. The mutational influence of x2 reaches x1 and x3. The
population size of x3 is not determined by its own growth rate but by mutants from the resident type
x4.

It is not easy to make general statements about the evolution of this intermediate model.
However, we state some first results on the accessibility of types.

Definition 2.29. A type y ∈ Hn is called accessible if y ∈ Λ∞ :=
⋃
t≥0 Λt.

Remark 2.30. This is equivalent to τµy <∞.

Since resident types can only produce mutants in a radius of `, in order to be accessible, a
type has to be reached on a path with types of increasing fitness and at most distance `.
Figure 2.4 gives an example for such a path.

Lemma 2.31. A necessary condition for a type y to be accessible is the existence of a path
(y0 = x0, y1, ..., ym = y) and indices i0 = 0 < i1 < ... < ik = m, such that

∀ 1 ≤ j ≤ k : |ij − ij−1| ≤ `, (2.172)
∀ 1 ≤ j < k : fyij ,yij−1

> 0, (2.173)

∀ ij−1 < i < ij : fyij−1 ,yi
> 0. (2.174)
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Hn

r(x)

y0 = x0

i0

y1

i1

y2 y3 y4

i2

y5 y6

i3

y7

i4

y8 y9 = y

i5

≤ ` = 3

Figure 2.4: A possible path to access y, for ` = 3.

Proof. Assume that y 6= x0. If y ∈ Λ0(x0), this implies |y − x0| ≤ `. Hence we can choose
any shortest path from x0 to y and pick the indices ij such that the conditions are satisfied.

If y is accessible but y /∈ Λ0(x0), then τµy > 0. There is at least one z 6= y such that
y ∈ Λτµy (z). We choose such a z for which the rate r(z) is maximal. Consequently, τµz < τµy

and ξµ
τµy ln 1

µ

(z) ≈ µ
λ
τ
µ
y

(z) (else z would just grow due to mutants from a fitter type, which
would imply that z was not chosen such that the rate r(z) is maximal). Any direct path
from z to y now only goes through types that are unfit in comparison to z. We set yik := z.

We can now iterate this procedure with z replacing y. In addition, we know that, for the
z′ 6= z such that z ∈ Λτµz (z′) and r(z′) is maximised, r(z) > r(z′) (else, we would obtain
Λt(z) ⊂ Λt(z′), for all t ≥ 0, and z would not have been chosen maximising r(z)). We set
yik−1 := z′ and continue until we reach x0.

Remark 2.32. The condition in Lemma 2.31 is not sufficient. Even if such a path exists,
there might be a type z that is reached before yij such that r(z) > r(yij ). In this case
the population of yij is not fit to grow and might never reach the necessary size to induce
mutants of type yij+1 .

As a corollary, we can consider the non-crossing of fitness valleys. Figure 2.5 gives the
example of a non-accessible type, surrounded by a fitness valley.

Corollary 2.33. If a type y is surrounded by a fitness valley of width at least `+1, i.e. for all
paths (y0 = x0, y1, ..., ym = y) there exists an i ≤ m−(`+1) such that fyi,yj > 0,∀ i < j < m,
it is non-accessible.

Hn

r(x)

yi1

i1

y yi2

i2

> ` = 3

Figure 2.5: Due to the high fitness of yi1 and yi2 , y is not accessible for ` = 3.
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Proof. The claim follows directly from Lemma 2.31 since in this case the necessary path
cannot exist.

As a result, at least in the matter of crossing fitness valleys, the intermediate cases interpolate
between the extreme cases.

However, as in the case of ` = n, it is still possible to take arbitrarily large steps in the
macroscopic process or the limiting jump process, respectively. If there was a series of types
with distance smaller than ` + 1 and fast increasing rate r, then each population could be
overtaken by its faster growing mutants before it reaches the macroscopic level of µ0.

Overall, the microscopic types play an important role in defining the limiting process.
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3 Stochastic individual-based models with
power law mutation rate on a general finite
trait space

We consider a stochastic individual-based model for the evolution of a haploid, asexually
reproducing population. The space of possible traits is given by the vertices of a (possibly
directed) finite graph G = (V,E). The evolution of the population is driven by births, deaths,
competition, and mutations along the edges of G. We are interested in the large population
limit under a mutation rate µK given by a negative power of the carrying capacity K of
the system: µK = K−1/α, α > 0. This results in several mutant traits being present at
the same time and competing for invading the resident population. We describe the time
evolution of the orders of magnitude of each sub-population on the logK time scale, as
K tends to infinity. Using techniques developed in [38], we show that these are piecewise
affine continuous functions, whose slopes are given by an algorithm describing the changes
in the fitness landscape due to the succession of new resident or emergent types. This work
generalises [112] to the stochastic setting, and Theorem 3.2 of [25] to any finite mutation
graph. We illustrate our theorem by a series of examples describing surprising phenomena
arising from the geometry of the graph and/or the rate of mutations.

3.1 Introduction

Adaptive dynamics is a biological theory that was developed to study the interplay between
ecology and evolution. It involves the three mechanisms of heredity, mutations, and natural
selection. It was first introduced in the 1990s by Metz, Geritz, Bolker, Pacala, Dieckmann,
Law, and coauthors [139, 59, 81, 20, 21, 60], who mostly considered a deterministic setting
but also heuristically mentioned first stochastic versions. A paradigm of adaptive dynamics
is the separation of the slow evolutionary and the fast ecological time scales, which is a result
of reproduction with rare mutations. Invasion, fixation or extinction of a mutant population
is determined by its invasion fitness, that describes the exponential growth rate of a single
mutant in the current (coexisting) population(s) at equilibrium.

Stochastic individual-based models of adaptive dynamics have been rigorously constructed
and first studied in the seminal work of Fournier and Méléard [77], and there is now a
growing literature on these models. The population consists of a collection of individuals
who reproduce, with or without mutation, or die after random exponential times depending
on the current state of the whole population. The population size is controlled by a carrying
capacity K which represents the amount of available resources. This class of models has first
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been studied in the original context of separation between evolutionary and ecological time
scales. That is in the joint limit of large populations and rare mutations such that a mutant
either dies out or fixates before the next mutation occurs. Mathematically this amounts to
considering a probability of mutation satisfying in particular

µK � 1/K logK as K →∞. (3.1)

We will call this regime ’rare mutation regime’ in the sequel. The description of the suc-
cession of mutant invasions, on the mutation time scale 1/KµK , in a monomorphic [31] or
polymorphic [37, 15] asexual population gives rise respectively to the so-called Trait Substi-
tution Sequence or Polymorphic Evolution Sequence. Extensions of the question to sexual
populations were then studied, both in the haploid [163, 43] and the diploid [41, 146] cases.

It is natural to consider the effect of a higher mutation rates, where mutation events are no
longer separated, if we want to describe several mutant traits being present microscopically
at the same time and competing for invading the resident population. The mutation rate
given by

µK = K−
1
α , for α > 0 (3.2)

was considered in different contexts [65, 164, 25, 38] and will be the concern of the present
paper. Notice that another mutation scale has been considered in [15, 16] to model the
interaction of few mutants in the case without recurrent mutations, namely µK of order
1/K logK.

Another approach to adaptive dynamics has been introduced by Maynard Smith [132] under
the name of adaptive walks. This was further developed by Kauffman and Levin [102] and
many others, as mentioned below. Here, a given finite graph represents the possible types
of individuals (vertices) together with their possibilities of mutation (edges). A fixed, but
possibly random, fitness landscape assigns real numbers to the vertices of the graph. The
evolution of the population is modelled as a random walk on the graph that moves towards
higher fitnesses. This can be interpreted as the adaptation of the population to its environ-
ment. In contrast to the adaptive dynamics context, this fitness landscape is not dependent
on the current state of the population. Adaptive walks move along edges towards neighbours
of increasing fitness, according to some transition law, towards a local or global maximum.
In particular, in such models it is not possible for a population to cross a fitness valley. This
is partially solved by a variation of this model, called adaptive flight [144]. It consists in a
walk jumping between local fitness maxima, before eventually reaching a global maximum.
The questions of the distribution of maxima [147], the typical length of a walk [150], or the
typical accessibility properties of the fitness landscape [113, 161, 13] have been studied under
different assumptions on the graph structure, the fitness law, or the transition law of the
walk. Moreover, comparisons of these models with actual empirical fitness landscapes have
been performed in [167]. As Kraut and Bovier showed [112], adaptive walks and flights arise
as the limit of individual-based models of adaptive dynamics, when the large population
followed by the rare mutations limit is taken. They also conjecture, and this will be proved
in the present article, that similar results hold in the stochastic setting under the mutation
rate (3.2), as we detail below.
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3.1 Introduction

In this paper, we consider an individual-based Markov process that models the evolution
of a haploid, asexually reproducing population. The space of possible traits is given by the
vertices of a (possibly directed) finite graph G = (V,E). The evolution of the population is
driven by birth, death, and competition rates, which are fixed and depend on the traits, as
well as mutations towards nearest neighbours in the graph G. We start with a macroscopic
initial condition (that is to say of order K, see Definition 3.2) and we are interested in the
stochastic process given by the large population limit under the mutation rate (3.2). We
describe the time evolution of the orders of magnitude of each sub-population on the logK
time scale, asK tends to infinity. We show that the limiting process is deterministic, given by
piecewise affine continuous functions, which are determined by an algorithm describing the
changes in the fitness landscape due to the succession of new resident or emergent types.

This work constitutes an extension of the paper by Kraut and Bovier [112] to the stochastic
setting. They consider the deterministic system resulting from the large population limit
of the individual-based model (K → ∞), and let the mutation probability µ tend to zero.
By rescaling the time by log(1/µ), they prove that the limiting process is a deterministic
adaptive walk that jumps between different equilibria of coexisting traits. A corollary of
our results gives the same behaviour, on the logK time scale, for the stochastic process
under the scaling (3.2) for α larger than the diameter of the graph G. Kraut and Bovier
also study a variation of the model, where they modify the deterministic system such that
the subpopulations can only reproduce when their size lies above a certain threshold µα.
This limits the radius in which a resident population can foster mutants, and mimics the
scaling (3.2) that we consider. The resulting limiting processes are adaptive flights (which
are not restricted to jumping to nearest neighbours), and thus can cross valleys in the fitness
landscape and reach a global fitness maximum. We obtain the same behaviour, on the logK
time scale, for the stochastic process under the scaling (3.2) without any restriction on α.

The results of the present paper can also be seen as a generalisation of Theorem 3.2 in [25] by
Bovier, Coquille, and Smadi to any finite trait space. Indeed, they consider the graph with
vertices V = {0, . . . , L} embedded in N and choose parameters such that the induced fitness
landscape exhibits a valley: mutant individuals with negative fitness have to be created in
order for the population to reach a trait with positive fitness. Several speeds of the mutation
rate are considered, and in particular, when α > L, the exit time of the valley is computed on
the logK time scale. This becomes a corollary of our results, and we can give an algorithmic
description of the rescaled process for more general graphs endowed with a fitness valley, as
we discuss in several examples in Section 3.3.

Our proof heavily relies on couplings of the original process with logistic birth-and-death
processes with non-constant immigration, and the analysis of the latter simpler processes
on the logK time scale. This approach was developed by Champagnat, Méléard, and Tran
in [38]. They consider an individual-based model for the evolution of a discrete population
performing horizontal gene transfer and mutations on V = [0, 4]∩ δN, δ > 0. Their goal is to
analyse the trade-off between natural selection, which drives the population to higher birth-
rates, and transfer, which drives the population to lower ones. Under the mutation rate (3.2),
they exhibit parameter regimes where different evolutionary outcomes appear, in particular
evolutionary suicide and emergence of a cyclic behaviour. As in the present paper, their
results characterise the time evolution of the orders of magnitude of each sub-population
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on the logK time scale, which are shown to be piecewise affine continuous functions whose
slopes are given by an algorithm describing the succession of phases when a given type is
dominant or resident. Their proofs provide us with the main ingredients needed for our
results. However, the graph structure they choose simplifies the inductions and we have
to generalise their approach to treat the case of more general graphs, in the proof spirit of
Kraut and Bovier [112].

Our results are general, and could be applied to have a better understanding of evolutionary
trajectories in complex fitness landscapes. There are now more and more empirical studies
of fitness landscapes (see [56] for a comprehensive review of data and tools up to 2014 for
instance), and the probability and effect of specific mutations in given landscapes are better
and better understood. For instance oriented mutation graphs can stem from mutation bias,
through codon usage bias or similar molecular phenomena which make some mutations more
probable than others [153].

We present a series of specific examples where surprising phenomena arise from the geometry
of the graph G and/or the rate of mutations (3.2). Most of them could not happen under a
different scaling of mutation rates.

• In Example 3.10, we describe a scenario where the ancestry of the resident population
consists, with high probability, of back mutations towards a previously extinct trait,
although the mutations that happen in between are not deleterious. In other words,
the final resident individuals, say of trait v, although they can be produced from
a wild type directly, come with high probability from a sequence of non deleterious
mutations which went back to the wild type before mutating to v. This phenomenon
can also happen in the regime (3.1), that is for α ∈ (0, 1), on the mutation time scale
(1/KµK � logK), where invading mutants fully replace the resident population before
a new mutant arises. We show that it can still occur for higher mutation rates of the
form (3.2), on a logK time scale, when parameters are chosen such that temporary
extinction of the original trait is likely. Such mutational reversions have been observed
(see [57] for instance).

• If evolution and mutation time scales are separated (i.e. in the regime (3.1)), mutations
occur one at a time, and the number of successive resident traits from the wild type
to the type gathering k successively beneficial mutations is k. This is not the case if
mutations are faster, in which case it is possible to observe either more or less successive
resident traits. We will show this in Examples 3.11 and 3.12.

• In Example 3.13, we show that adding a new possible mutation path towards a fit
trait can increase the time until it appears macroscopically. This is in the spirit of the
paradox called price of anarchy in game theory or more specifically Braess paradox in
the study of traffic networks congestion. Motter showed that this paradox may often
occur in biological and ecological systems [142]. He studies the removal of part of a
metabolic network to ensure its long term persistance, with applications to cancer,
antibiotics and metabolic diseases. Another field of application is the food webs man-
agement, where selective removal of some species from the network can potentially
have a positive outcome of preventing a series of further extinctions [158].
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3.2 Convergence on the logK-time scale

• Another counter-intuitive phenomenon arising from the mutation rate (3.2), presented
in Example 3.14, is the possibility to observe, for a cyclic clockwise oriented mutation
graph, successive counter-clockwise resident populations. This means that the mac-
roscopic succession of resident traits is not necessarily representative of the mutation
graph. In particular, this may call into question the interpretation in terms of mutation
graphs of some experiments in experimental evolution (see [124] for instance).

• In Examples 3.15 and 3.16, we show that the mutation rate (3.2) does not restrict the
range of the corresponding adaptive flights on the trait space, i.e. the distance that the
limiting process can jump, to bαc.

• We finally study the framework of fitness valley crossings. Combining our results with
Theorem 3.3 of [25], we construct Examples 3.17 and 3.19, where effective random
walks on the trait space appear on the time scale Kβ, for some positive β. Those
limiting adaptive flights arise as a result of a "fast" equilibration on the logK time
scale followed by exponential waiting times until fitness valleys get crossed. This
makes sense biologically, since there may be traits with positive invasion fitness that
can be reached through several consecutive mutation steps [120, 48].

The remainder of this paper is organised as follows. In Section 3.2 we define the model and
present our results. In Section 3.3 we illustrate our results by a series of examples describing
surprising phenomena arising from the geometry and/or the rate of mutations. Section 3.4
is devoted to the proofs. In the Appendix, we present and extend some technical results.

3.2 Convergence on the logK-time scale

3.2.1 Model

We consider an individual-based Markov process that models the evolution of a haploid,
asexually reproducing population. The space of possible traits is given by the vertices of a
(possibly directed) finite graph G = (V,E).

For all traits v, w ∈ V and every K ∈ N, we introduce the following parameters:

• bv ∈ R+, the birth rate of an individual of trait v,

• dv ∈ R+, the (natural) death rate of an individual of trait v,

• cKv,w = cv,w/K ∈ R+, the competition imposed by an individual of trait w onto an
individual of trait v,

• µK ∈ [0, 1], the probability of mutation at a birth event,

• m(v, ·) ∈Mp(V ), the law of the trait of a mutant offspring produced by an individual
of trait v.

The process NK describes the state of the population, where NK
v (t) denotes the number

of individuals of trait v ∈ V alive at time t ≥ 0. We assume that edges in E mark the
possibility of mutation and hence m(v, w) > 0 if and only if (v, w) ∈ E.
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3 Stoch. individual-based models with power law mutation rate on a general finite trait space

Remark 3.1. We could also allow for µK to depend on v ∈ V as long as µK(v) = µKh(v)
for some strictly positive function h that is independent of K. However, this would not
change the characterisation of the limit, and hence we assume a constant µK to simplify the
notation.

Moreover, we assume that, for every v ∈ V , cv,v > 0. The parameter K is scaling the
competitive pressure and, through this self-competition, fixes the equilibrium size of the
population to the order of K. K is sometimes called carrying capacity and can be interpreted
as a scaling parameter for the available sources of food or space.

As a consequence of our parameter definitions, the process NK is characterised by its infin-
itesimal generator:

LKφ(N) =
∑
v∈V

(φ(N + δv)− φ(N))
(
Nvbv(1− µK) +

∑
w∈V

NwbwµKm(w, v)
)

+
∑
v∈V

(φ(N − δv)− φ(N))Nv

(
dv +

∑
w∈V

cKv,wNw

)
, (3.3)

where φ : NV → R is measurable and bounded. Such processes have been explicitely con-
structed in terms of Poisson random measures in [77].

Due to the scaling of the competition cK , the equilibrium population is of order K. Since
the mutation probability µK tends to zero as K → ∞, the process NK/K converges (on
finite time intervals) to the mutation-free Lotka-Volterra system (3.5) involving all initial
coexisting resident traits. We are interested in the long-term evolution of the population
and want to study successive invasions by new mutant populations. Given the fact that a
mutant population that is initially of order Kγ , γ < 1, needs a time of order logK to grow
exponentially to the order of K, we have to rescale the time by logK to obtain a non trivial
limit.

It is convenient to describe the population size of a certain trait v ∈ V by its K-exponent

βKv (t) := log(1 +NK
v (t logK))

logK , (3.4)

which is equivalent to NK
v (t logK) = KβKv (t) − 1. Since the population size is restricted to

order K by the competition, βKv ranges between 0 and 1, as K →∞ (see Corollary 3.29 for
a rigorous statement).

For the sake of readability, we now introduce the terminology we will use in the sequel.

Definition 3.2.

1. A trait v ∈ V with exponent βKv is called macroscopic if, for every ε > 0, there exists
Kε such that, for every K ≥ Kε, βKv > 1− ε .

2. A trait that is not macroscopic is called microscopic.

3. The set of living traits is the set {v ∈ V : βKv > 0}.
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When K is large enough, the macroscopic traits interact on any finite time interval according
to the corresponding mutation-free Lotka-Volterra system (see Chapter 11, Theorem 2.1 in
[70] for the proof of this law of large numbers): Let v ⊂ V , then the mutation-free Lotka-
Volterra system associated to v is

ṅw(t) =
(
bw − dw −

∑
v∈v

cw,vnv(t)
)
nw(t), w ∈ v, t ≥ 0. (3.5)

For a subset v ⊂ V of traits, we denote by n̄(v) ∈ RV+ the unique equilibrium of the
Lotka-Volterra system (3.5), when it exists, and where to simplify notations, we extend it
by n̄w(v) = 0 for w /∈ v. In the case where v = {v}, we obtain from classical results on
Lotka-Volterra models (see [31] for instance)

n̄v(v) = (bv − dv)/cv,v ∨ 0. (3.6)

If v denotes the set of macroscopic traits, we call the traits v ∈ v such that n̄v(v) > 0
resident.

The approximate rate at which a mutant of trait w grows in a population of coexisting
resident traits v is called invasion fitness and is denoted by fw,v, where

fw,v := bw − dw −
∑
v∈v

cw,vn̄v(v). (3.7)

If fw,v > 0, the trait w is called fit. If fw,v < 0, the trait w is called unfit. The case fw,v = 0
will be excluded (see Remark 3.4).

Mutants can be produced along (directed) edges of the graph. We denote by d(v, w) the
graph distance, i.e. the length of the shortest (directed) path from v to w in G = (V,E). For
a subset v ⊂ V we define

d(v, w) := min
v∈v

d(v, w) and d(w,v) := min
v∈v

d(w, v). (3.8)

3.2.2 Results

Let a finite graph G = (V,E) be given and assume that α ∈ R>0 \ N and fw,v 6= 0 for any
v ⊂ V and w ∈ V \v (see Remark 3.4). The two following results concern the convergence of
the orders of the different subpopulation sizes to a piecewise linear trajectory, whose slopes
and times of slope changes can be explicitly expressed in terms of the parameters.

Theorem 3.3. Let a finite graph G = (V,E) and α ∈ R>0 \ N be given and consider the
model defined by (3.3). Assume that fw,v 6= 0 for any v ⊂ V and w ∈ V \v. Let v0 ⊂ V and
assume that, for every w ∈ V ,

βKw (0)→
(

1− d(v0, w)
α

)
+
, (K →∞) in probability. (3.9)

Then, for all T > 0, as K → ∞, the sequence ((βKw (t), w ∈ V ), t ∈ [0, T ∧ T0]) converges
in probability in D([0, T ∧ T0],RV+) to a deterministic, piecewise affine, continuous function
((βw(t), w ∈ V ), t ∈ [0, T ∧ T0]), which is defined as follows:
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3 Stoch. individual-based models with power law mutation rate on a general finite trait space

(i) If the mutation-free Lotka-Volterra system (3.5) associated to v0 has a unique positive
globally attractive equilibrium, the initial condition of β is set to βw(0) :=

(
1− d(v0,w)

α

)
+
.

Otherwise, the construction is stopped and T0 is set to 0.

(ii) The increasing sequence of invasion times is denoted by (sk)k≥0, where s0 := 0 and,
for k ≥ 1,

sk := inf{t > sk−1 : ∃w ∈ V \vk−1 : βw(t) = 1}. (3.10)

Here, vk denotes the set of coexisting resident traits of the Lotka-Volterra system that
includes vk−1 and the trait w ∈ V \vk−1 that satisfies βw(sk) = 1.

(iii) For sk−1 ≤ t ≤ sk, for any w ∈ V , βw(t) is defined by

βw(t) := max
u∈V

[
βu(sk−1) + (t− tu,k ∧ t)fu,vk−1 −

d(u,w)
α

]
∨ 0, (3.11)

where, for any w ∈ V ,

tw,k :=
{

inf{t ≥ sk−1 : ∃ u ∈ V : d(u,w) = 1, βu(t) = 1
α} if βw(sk−1) = 0

sk−1 else
(3.12)

is the first time in [sk−1, sk] when this trait arises.

(iv) The inductive construction is stopped and T0 is set to sk if

(a) there is more than one w ∈ V \vk−1 such that βw(sk) = 1;

(b) the Lotka-Volterra system including vk−1 and the unique w ∈ V \vk−1 such that
βw(sk) = 1 does not have a unique stable equilibrium;

(c) there exists w ∈ V \vk−1 such that βw(sk) = 0 and βw(sk − ε) > 0 for all ε > 0
small enough.

(d) there exists w ∈ V \vk−1 such that sk = tw,k.

Remark 3.4. Notice that conditions (a), (c), and (d) of point (iv) are here to exclude very
specific and non generic cases where one coordinate reaches 1 while another reaches 1 or
reaches 0 from above, or a new trait arises at the exact same time. They are difficult to
handle for technical reasons.

Moreover, we exclude the cases where α ∈ N. They would produce mutant populations, at
distance α from the resident traits, that can neither be approximated by sub- nor super-
critical branching processes. The same applies to the case fw,v = 0, where the population
can both grow and shrink due to fluctuations.
Remark 3.5. The tw,k do not keep track of traits that die out in [sk−1, sk] and then reappear.
However, since the fitnesses do not change between invasions, such a trait would have a
negative invasion fitness (else it would not die out). Hence, it would not start growing on its
own if it reappears, but only follow along another trait due to mutants. It would therefore
not contribute to the maximum over u ∈ V in (3.11).
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3.2 Convergence on the logK-time scale

Proposition 3.6. Under the same assumptions and with the same notations as in Theorem
3.3, for all T > 0, as K → ∞, the sequence ((NK

w (t logK)/K,w ∈ V ), t ∈ [0, T ∧ T0])
converges in probability in D([0, T ∧ T0]\{sk, k ≥ 1},RV+) to a deterministic jump process
((Nw(t), w ∈ V ), t ∈ [0, T ∧ T0]), which is defined as follows:

(i) For t ∈ [0, T0], N(t) jumps between different Lotka-Volterra equilibria according to

Nw(t) :=
∑

k∈N:sk+1≤T0

1sk≤t<sk+11w∈vk n̄w(vk). (3.13)

(ii) The invasion times sk and the times tw,k when new mutants arise can be calculated as
follows. We define the increasing sequence (τ`, ` ≥ 0) = {sk, k ≥ 0}∪{tw,k, w ∈ V, k ≥ 0}
of invasion times or appearance times of new mutants, and (M`, ` ≥ 0) the sets of liv-
ing traits in the time interval (τ`, τ`+1]. Initially, τ0 = s0 = 0 and, according to (3.9),
M0 = {w ∈ V : d(v0, w) < α} = {w ∈ V : βw(0) > 0}. For sk−1 ≤ τ`−1 < sk, τ` is
defined as

τ` := sk ∧min{tw,k : w ∈ V, tw,k > τl−1}. (3.14)

Given τ` and M`−1, we set M` := (M`−1\{w ∈ V : βw(τ`) = 0}) ∪ {w ∈ V : τ` = tw,k}.
τ` is then given by

τ` − τ`−1 = min
w∈M`−1:
fw,v`−1>0

(
1 ∧ d(w,V \M`−1)

α

)
− βw(τ`−1)

fw,v`−1

. (3.15)

Remark 3.7. We could allow for more general initial conditions of the form

βKw (0)→ β̃w ∈ [0, 1], (3.16)

with β̃w, w ∈ V , deterministic and v0 := {w ∈ V : β̃w = 1} 6= ∅. An inductive
application of Lemma 3.25, similar to the induction proving (3.75), implies that within
a time of order 1, for all w ∈ V , βKw ∼= maxu∈V [β̃u − d(u,w)/α]+. We therefore set
βw(0) := maxu∈V [β̃u − d(u,w)/α]+ in Theorem 3.3 and M0 := {w ∈ V : βw(0) > 0} in
Proposition 3.6. The rest of the results remains unchanged.
Remark 3.8. The limiting jump process N(t) resembles an adaptive walk or flight, as studied
in [150, 144, 161, 147, 13]. For a constant competition kernel cv,w ≡ c, we consider the fixed
fitness landscape given by rv = bv − dv. Since in this case fw,v = rw − rv, the process jumps
along edges towards traits of increasing fitness r.

The above results are in the vein of Theorem 2.1 and Corollary 2.3 in [38]. There are however
many differences between the setting considered in [38] and our setting.

Due to the horizontal transfer between individuals, Champagnat and coauthors obtained
trajectories where a "dominant" population, i.e. with the size of highest order, could be non
resident, i.e. of order negligible with respect to K. They could also witness extinction on a
logK time scale as well as evolutionary suicide. The absence of horizontal transfer in our
case prevents such behaviours.
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3 Stoch. individual-based models with power law mutation rate on a general finite trait space

We consider a general finite graph of mutations with possible back mutations, whereas
their graph was embedded in Z and did not allow for back mutations. We also allow for
the coexistence of several resident traits in the population at equilibrium. The two main
difficulties in the proofs compared to [38] are thus to handle the generality of the graph of
mutations, and to extend some approximation results to the multidimensional case.

3.3 Surprising phenomena arising from geometry and mutation
rate

In this section, we present some non intuitive behaviours of the population process, which
stem from the mutation scale or the generality of the mutational graph that we allow for.
They are direct applications of Theorem 3.3 and Proposition 3.6, and provide explicit com-
putations of exponents (3.11) and time intervals (3.15).

Several examples are build on directed graphs. Although this is not a necessary condition to
obtain the desired phenomena, it allows a simplified study (especially of the decay phases).

We first introduce some notations for the sake of readability.

Definition 3.9. Let w, v ∈ V and v ⊂ V . We write

1. with high probability to mean "with a probability converging to 1 as K →∞",

2. w > v if and only if fw,v > 0, that is if w can invade in v,

3. w < v if and only if fw,v < 0, that is if w cannot invade in v,

4. w � v (or v � w) if and only if fw,v > 0 and fv,w < 0, that is if w can invade in v and
fixate,

5. w ≡ v if and only if fw,v > 0 and fv,w > 0, that is if w and v can coexist,

6. w _ v if and only if fw,v < 0 and fv,w < 0, that is if w and v can neither invade in
each other.

3.3.1 Back mutations before adaptation

In the following, we build an example where the ancestry of the resident population comes
from back mutations from an ancestral trait, even if the mutations happening in between
are not deleterious.

Example 3.10. Let us consider the graph G depicted in Figure 3.1 where V = {0, 1, 2, 3}
and E = {[0, 1], [1, 2], [2, 0], [0, 3]}. Let α > 2, an initial condition given by (n̄(0), 0, 0, 0) and
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a fitness landscape given by

0� 1� 2, 3 _ 0, 3 _ 1 (3.17)
0 ≡ 2, 3 > {0, 2}, 2 < 3 (3.18)
f2,0 < 2f1,0 (3.19)
f0,1 ≥ f3,1, f2,0 ≤ f1,0 (3.20)

i1 := 1− 1/α
f0,1

<
−(1− 4/α)

f2,1
=: i2 (3.21)

In this case, Proposition 3.6 implies that on the logK time scale, the rescaled macroscopic
population then jumps from traits 0 − 1 − 2 then to coexistence between 0 and 2, followed
by the invasion and fixation of 3 which is produced with high probability, due to Condition
(3.21), by individuals of type 0 which have the sequence 0 − 1 − 2 as ancestry. In other
words, the final resident individuals of trait 3, although they can be produced by individuals
of trait 0 directly, come from a sequence of mutations which went around the loop 0− 1− 2
of G. Conditions (3.18), summarised in Figure 3.1, imply phase portrait number 8 in the
classification of Zeeman [180]. Condition (3.19) ensures that trait 1 becomes resident before
2. Condition (3.20) is not necessary but allows to simplify the setting. The exponents are
drawn in Figure 3.1.

0

1

2

3

3

02

i1 i2

β0(t)

β1(t)

β2(t)

β3(t)

1

1− 1/α

1− 2/α

0
s1 s2 s3 s4

Figure 3.1: Graph G, phase portrait of traits 0-2-3, and exponents β(t) of Example 3.10.

Note that this scenario can also happen in the rare mutation regime considered in [31] (for
example α ∈ (0, 1)): the average waiting time until a mutant of type 1 appears is then of
order O(1/KµK) = O(K−1+1/α) � logK. Once it has appeared, it survives with positive
probability and the succession of invasions and fixations above takes place on the logK time
scale, separated by mutation events on the K−1+1/α time scale. What is new in our case is
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that such a scenario can still take place for higher mutation rates than the ones considered
in [31], and on a logK time scale.

3.3.2 Non-intuitive mutational pathways in the high mutation framework

Longer or shorter path than expected

If evolution and mutation time scales are separated (i.e. in the rare mutation regime),
mutations occur one at a time, and the number of successive resident traits from the wild
type to the type gathering k successively beneficial mutations is k. This is not the case if
mutations are faster, in which case it is possible to observe either more or less resident traits,
as the following examples show.

Example 3.11. Let us consider the directed graph G depicted in Figure 3.2, where
V = {00, 01, 10, 11} and E = {[00, 01], [00, 10], [01, 11], [10, 11]}. Let α > 2, an initial condi-
tion given by (n̄(00), 0, 0, 0) and a fitness landscape given by

00� 01� 10� 11, and 01� 11 (3.22)
10, 11 _ 00 (3.23)
f11,00 < f01,00 (3.24)
f10,01 > f11,01 (3.25)

In this case, in the rare mutation regime, the rescaled macroscopic population jumps along
00− 01− 11.

00

10

01

11

β00(t)

β01(t)

β10(t)

β11(t)

1

1− 1/α

1− 2/α

0
s1 s2 s3

Figure 3.2: Graph G for Examples 3.11 and 3.12 and exponents β(t) for Example 3.11.

In the regime of Theorem 3.3, Proposition 3.6 implies that the rescaled macroscopic popu-
lation jumps along 00− 01− 10− 11 on the logK time scale. More precisely, the exponents
are drawn in Figure 3.2. Note that Condition (3.24) ensures that 11 does not invade before

90



3.3 Surprising phenomena arising from geometry and mutation rate

01, it is not necessary but allows to simplify the setting. Condition (3.25) ensures that 11
does not invade before 10.
Example 3.12. Let us consider the directed graph G depicted in Figure 3.2, where
V = {00, 01, 10, 11} and E = {[00, 01], [00, 10], [01, 11], [10, 11]}. Let α > 2, an initial condi-
tion given by (n̄(00), 0, 0, 0) and a fitness landscape given by

01 > 00, 11� 00 (3.26)
10 < 00 (3.27)
01, 10 < 11 (3.28)

2
f11,00

<
1

f01,00
(3.29)

In this case, in the rare mutation regime, the rescaled macroscopic population still jumps
along 00− 01− 11, under the additional assumption that f11,01 > 0.

In the regime of Theorem 3.3, Proposition 3.6 implies that the rescaled macroscopic popula-
tion directly jumps from 00 to 11 on the logK time scale. More precisely, the exponents are
drawn in Figure 3.3. Condition (3.29) ensures that 11 fixates before 01. Condition (3.27)
is not necessary but allows to simplify the setting. Note that equation (3.15) implies that
s1 = 2/f11,00 and s̃1 = 1/f01,00.

β00(t)

β01(t)

β10(t)

β11(t)

1

1− 1/α

1− 2/α

0
s1 s̃1

Figure 3.3: Exponents β(t) for Example 3.12.

Price of anarchy

We build an example where adding a new possible mutation path to a fit trait increases the
time until it appears macroscopically.
Example 3.13. Let us consider the graph G depicted in Figure 3.4, where V = {1, 2a, 2b, 3}
and the edge set is either E1 = {[1, 2a], [2a, 3], [2b, 3], [3, 2b]} or E2 = {[1, 2a], [2a, 3], [2b, 3],
[2a, 2b], [3, 2b]}. Let α > 3, an initial condition given by (n̄(1), 0, 0, 0) and a fitness landscape
given by

1� 2a� 3, and 2a� 2b (3.30)
1 < 2b, and, 1, 2b < 3 (3.31)

f2a,1 ≥ f3,1, f2b,1, and 1
f2b,2a

<
1

f3,2a
<

2
f2b,2a

(3.32)

0 <f3,2b < f3,2a. (3.33)
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1

2b

2a

3

β1(t)

β2a(t)

β3(t)

β2b(t)

1

0

1− 1/α

1− 2/α

1− 3/α

β1(t)

β2a(t)

β3(t)

β2b(t)

1

0

1− 1/α

1− 2/α

1− 3/α

T s̃3 = T̃

s1 s2 = T

s̃1 s̃2

Figure 3.4: Graph G and exponents β(t) for Example 3.13, with edge set E1 (above) and E2 (below).

In this case, if the edge set is E1, Proposition 3.6 implies that the rescaled macroscopic
population jumps along traits 1 − 2a − 3 in a time T on the logK time scale. But if the
edge set is E2, the population jumps along 1− 2a− 2b− 3 and the time to reach 3 is T̃ > T .
More precisely, the exponents are drawn in Figure 3.4. Condition (3.32) ensures that 2b
invades first when the edge set is E2 but not when it is E1, in other words β2b reaches 1
before β3 if started at 1− 1/α but not at 1− 2/α. And Condition (3.33) enlarges the time
of fixation of 3. Note that the first inequality in Condition (3.32) is not necessary but allows
to simplify the second one. Moreover, observe that equation (3.15) implies s̃2− s̃1 = 1/f2b,2a
and s2−s1 = 1/f3,2a. Note that in the rare mutation regime we can observe this phenomenon
on the mutation time scale, but only with probability strictly smaller than 1, since both 2b
and 3 are fit with respect to 2a and can both invade with positive probability once they are
produced.

Counter-cycle

Example 3.14. Let us consider the graph G depicted in Figure 3.5, where V = {1, 2, 3} and
the edge set is E = {[1, 2], [2, 3], [3, 1]}. Let α > 2, an initial condition given by (n̄(1), 0, 0)
and a fitness landscape given by

1� 2, 2� 3, 3� 1. (3.34)

92



3.3 Surprising phenomena arising from geometry and mutation rate

In this case, Proposition 3.6 implies that the rescaled macroscopic population jumps along
traits 1−3−2 (in the clockwise sense) although the mutations are directed counter-clockwise.
More precisely, the exponents are drawn in Figure 3.5. Moreover, if Conditions (3.37) below
are fulfilled the period is shorter and shorter, and acceleration takes place, as it is depicted
in Figure 3.5.

f2,3 > −f1,3 (3.35)
f1,2 > −f3,2 (3.36)
f3,1 > −f2,1 (3.37)

Note that in the rare mutation regime, with the chosen parameters, there would be no evolu-
tion since 2 < 1. Moreover, there are no parameters such that counter-cyclic or accelerating
behaviours could arise.

1

2

3

β1(t)

β2(t)

β3(t)

1

0

1− 1/α

1− 2/α

β1(t)

β2(t)

β3(t)

1

0

1− 1/α

1− 2/α

s1 s2 s3 s4

s̃1 s̃2 s̃3 s̃4

Figure 3.5: Graph G and exponents β(t) for Example 3.14, without Assumption 3.37 (above) and
with Assumption 3.37 (below).

3.3.3 Arbitrary large jumps on the logK-time scale

A natural question to ask is if the "cut-off" α restricts the range of the jumps, on the logK
time-scale, to traits which are at a distance less than α. The answer is no, as the following
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3 Stoch. individual-based models with power law mutation rate on a general finite trait space

example shows.

Example 3.15. Let us consider the graph G depicted in Figure 3.6, where V = {0, 1, 2, 3, 4}
and E = {[0, 1], [1, 2], [2, 3], [3, 4]}. Let α ∈ (3, 4), an initial condition given by (n̄(0), 0, . . . , 0)
and a fitness landscape given by

1, 2 < 0, 3, 4 > 0, 0, 1, 2, 3 < 4 (3.38)
1
f4,0

+ −1 + 4/α
f3,0

<
3/α
f3,0

(3.39)

In this case, the cut-off is in between traits 3 and 4 (meaning that KµiK → 0 for i > 3) and
thus the population of trait 4 vanishes at time 0. However, Proposition 3.6 implies that the
rescaled macroscopic population jumps from trait 0 to trait 4 in a time

s1 = −1 + 4/α
f30

+ 1
f40

(3.40)

on the logK time scale. More precisely, the exponents are drawn in Figure 3.6. Condition
(3.39) ensures that trait 4 fixates before trait 3.

0 1 2 3 4

β0(t)

β1(t)

β2(t)

β3(t)

1

0

1− 1/α

1− 2/α

1− 3/α

1− 4/α

β4(t)

t4,1
s1

Figure 3.6: Graph G and exponents β(t) for Example 3.15.

It is easy to generalise this example to construct jumps to any distance L larger than α, by
taking larger and larger fitnesses after the negative fitness region. The condition implying
emergence of trait L is then a little more technical to write, since one has to compute the
time for the piecewise affine function βL(t) (with multiple slope-breaks) to reach 1 before the
other traits. Example 3.15 constitutes the simplest non-trivial example of this phenomenon.
Example 3.16 is a further case where a more distant trait fixates, and two intermediate times
t4,1 and t5,1 occur (recall the definition in (3.12)).

Example 3.16. Let us consider the graph G depicted in Figure 3.7, where V = {0, 1, 2, 3, 4, 5}
and E = {[0, 1], [1, 2], [2, 3], [3, 4], [4, 5]}. Let α ∈ (3, 4), an initial condition given by
(n̄(0), 0, . . . , 0) and a fitness landscape given by

1, 2 < 0, 3, 4, 5 > 0, 0, 1, 2, 3, 4 < 5 (3.41)

f3,0 < f4,0 < f5,0 and −1 + 4/α
f3,0

+ −4/α+ 5/α
f4,0

+ 1
f5,0

<
3/α
f3,0

. (3.42)
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3.3 Surprising phenomena arising from geometry and mutation rate

In this case, the cut-off is in between traits 3 and 4 (meaning that KµiK → 0 for i > 3) thus
population of trait 4 and 5 vanishes at time 0. However, Proposition 3.6 implies that the
rescaled macroscopic population jumps from trait 0 to trait 5 in a time

s1 = −1 + 4/α
f3,0

+ −4/α+ 5/α
f4,0

+ 1
f5,0

(3.43)

on the logK time scale. More precisely, the exponents are drawn in Figure 3.7. Condition
(3.42) ensures that trait 5 fixates before traits 3 and 4. The first inequality is not needed
but allows to simplify the second one. The dotted lines in the figures allow to construct the
points where some exponents become positive.

0 1 2 3 4 5

β0(t)

β1(t)

β2(t)

β3(t)

1

0

1− 1/α

1− 2/α

1− 3/α

1− 4/α

β5(t)

t4,1

s1

t5,1

1− 5/α

β4(t)

Figure 3.7: Graph G and exponents β(t) for Example 3.16.

3.3.4 Effective random walk across fitness valleys

2 effective sites

Example 3.17. Let us consider the graph G depicted in Figure 3.8, where V = {0, 1a, 1b, i}
and E = {[0, i], [i, 1a], [1a, 1b], [i, 1b]}. We suppose that whenever there are several outgoing
edges from a vertex v, the mutation kernel is uniform among the nearest neighbouring ver-
tices. Let α ∈ (0, 1), an initial condition given by (n̄(0), 0, . . . , 0) and a fitness landscape
given by

1a� 0� 1b� 1a (3.44)
i < 0, i < 1a, i < 1b. (3.45)

In this case, according to [25], the time to cross the fitness valley is of order
O(1/Kµ2

K) = O(K−1+2/α) � logK, thus the first mutant of type 1a will appear on this
time scale, and will invade with positive probability. Then, in a time of order O(1/KµK),
type 1b fixates, and one has to wait again a time of order O(K−1+2/α) until the appearance
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3 Stoch. individual-based models with power law mutation rate on a general finite trait space

of the next mutant of type 0. Thus, on the time scale O(K−1+2/α), the population pro-
cess converges to a jump process between the two states 0 and 1b with positive jump rates
although the fitness f1b,0 is negative. More precisely, following [25] we define

λ(ρ) : =
∞∑
`=1

(2`)!
(`− 1)!(`+ 1)!ρ

`(1− ρ)`+1 (3.46)

ρw,v : = bw
bw + dw + cw,vn̄(v) (3.47)

Theorem 3.18. As K →∞, the following convergence holds

(NK
0 , N

K
1b )(tK−1+2/α)⇒ n̄(Xt)δXt (3.48)

for finite dimensional distributions, where Xt is a continuous time Markov chain on {0, 1b}
with transition rates

r0→1b = n̄0b0
λ(ρi,0)

2
f1a,0
b1a

(3.49)

r1b→0 = n̄1bb1b
λ(ρi,1b)

2
f0,1b
b0

. (3.50)

0

1b

1a
i

0

1a

2a

2b

1b

i

j

k

Figure 3.8: Graphs G of Examples 3.17 and 3.19.

3 effective sites

Example 3.19. Let us consider the graph G depicted in Figure 3.8. We suppose that
whenever there are several outgoing edges from a vertex v, the mutation kernel is uni-
form among the nearest neighbouring vertices. Let α ∈ (0, 1), an initial condition given
by (n̄(0), 0, . . . , 0) and a fitness landscape given by

1a� 0 2a� 0 2a� 1b
1b� 1a 2b� 2a 1a� 2b
0� 1b 0� 2b 1b� 2b
i < 0 j < 0 k < 1a, k < 1b

i < 1a, i < 1b j < 2a, j < 2b k < 2a, k < 2b

(3.51)

96



3.4 Proof of Theorem 3.3 and Proposition 3.6

Thus, following [25], on the time scale O(K−1+2/α), the population process converges to a
jump process between the three states {0, 1b, 2b} with positive jump rates. More precisely,

Theorem 3.20. As K →∞, the following convergence holds

(NK
0 , N

K
1b , N

K
2b )(tK−1+2/α)⇒ n̄(Xt)δXt (3.52)

for finite dimensional distributions, where Xt is a continuous time Markov chain on {0, 1b, 2b}
with transition rates:

r0→1b = n̄0b0
2

λ(ρi,0)
2

f1a,0
b1a

, r1b→0 = n̄1bb1b
2

λ(ρi,1b)
2

f0,1b
b0

r0→2b = n̄0b0
2

λ(ρj,0)
2

f2a,0
b2a

, r2b→0 = n̄2bb2b
2

λ(ρj,2b)
2

f0,2b
b0

r1b→2b = n̄1bb1b
2

λ(ρk,1b)
2

f2a,1b
b2a

, r2b→1b = n̄2bb2b
2

λ(ρk,2b)
2

f1a,2b
b1a

.

(3.53)

3.4 Proof of Theorem 3.3 and Proposition 3.6

This section is dedicated to the proofs of our main results. As they are technical and involve
many stopping times, we begin with a rough outline of the strategy of the proof.

Throughout the proof, we define several stopping times to divide the times between invasions
into sub-steps. Heuristically they correspond to the following events:

• σKk , the time when the kth invasion has taken place and a new equilibrium is reached.

• θKk,m,C , the first time after σKk−1 when either the macroscopic traits stray too far from
their equilibrium or at least one of the (formerly) microscopic traits becomes macro-
scopic (recall Definition 3.2)

• sKk , the first time after σKk−1 when a microscopic trait becomes almost macroscopic, i.e.
reaches an order of K1−εk .

• tKw,k, the first time after σKk−1 when trait w has a positive population size. (tKw,k = σKk−1
for all traits that are alive at this time.)

As in Proposition 3.6, (τK` , ` ≥ 0) is the collection of (sKk , k ≥ 0) and (tKw,k, k ≥ 0, w ∈ V ).
Figure 3.9 visualises the different stopping times for the case of one macroscopic and two
microscopic traits.

The proof consists of five parts:

1. In the longest and most involved part of the proof, we study the growth dynamics of the
different subpopulations in the time interval [τK`−1∧T ∧θKk,m,C , τK` ∧T ∧θKk,m,C ], making
use of several results from [38], which are restated in the Appendix, and generalised
when needed. Similar to [112], we prove lower and upper bounds for βKw (t) via an
induction, successively taking into account incoming mutants originating from traits
of increasing distance to w. We prove that βKw (t) follows the characterisation of βw(t)
in Theorem 3.3 up to an error of order εk for large K.

2. We construct the sets MK
` and calculate the value of τK` − τK`−1, proving part (ii) of

Proposition 3.6.
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K1/α

K1−εk
mεkK
εkK

n̄v(v)K

n̄w(w)K

tKu,k sKk θ
K
k,m,C σKk sKk+1σKk−1

2εkK

2CεkK

O(logK) O(1)

Figure 3.9: Schematic evolution of macroscopic trait v (blue) and microscopic traits w = lKk (red)
and u (green), where d(w, u) = 1, during the kth invasion step.

3. We prove that sKk and θKk,m,C are equal up to an error ηk that goes to zero as εk → 0
and conclude that sKk converges to sk when K →∞.

4. We prove that the stopping time θKk,m,C is triggered by a (formerly) microscopic trait
reaching order K, and not by the macroscopic traits deviating from their equilibrium.

5. Knowing that we have non-vanishing population sizes at θKk,m,C , we finally consider the
Lotka-Volterra phase involving vk−1 and the trait lKk that has newly reached order K,
proving that the initial conditions for the next step, characterised in the definition of
σKk , are satisfied after a time of order 1. This concludes the proof of Theorem 3.3.

Since part (i) of Proposition 3.6 is a direct corollary of Theorem 3.3, this concludes the
proofs of both results.

Recall the definitions provided in Theorem 3.3 and Proposition 3.6, and for a given set
v ⊂ V , introduce ṽ the support of the mutation free Lotka-Volterra equilibrium associated
to v, that is to say

w ∈ ṽ⇔ n̄w(v) > 0. (3.54)

Similarly as in [38], the strategy of the proof consists in performing an induction on successive
phases k, during which the population sizes of the set of traits ṽk are close to their equilibrium
value and the population sizes of the set of traits V \ ṽk are small with respect to K. To be
more precise, we will introduce a sequence of stopping times (σKk logK, k ∈ N) (see definition
in (3.140)) satisfying the following conditions, as soon as sk < T :

Assumption 3.21.

1. σKk → sk in probability when K goes to infinity
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3.4 Proof of Theorem 3.3 and Proposition 3.6

2. For any 0 < εk < 1 ∧ infw∈ṽk n̄w(vk), with high probability

a) For every w ∈ ṽk,

NK
w (σKk logK)

K
∈ [n̄w(vk)− εk, n̄w(vk) + εk] (3.55)

b) For every w ∈ vk \ ṽk,

K1−εk ≤ NK
w (σKk logK) ≤ εkK. (3.56)

c) There exists c̄k < ∞ such that for every w /∈ vk, either NK
w (σKk logK) = 0 if

βw(sk) = 0 or

0 < βw(sk)− c̄kεk <
log

(
1 +NK

w (σKk logK)
)

logK = βKw (σKk ) < βw(sk) + c̄kεk < 1.

(3.57)

To be more precise, for k ≥ 1, the time interval [σKk−1 logK,σKk logK] will be divided into
two parts:

• a ’stochastic phase’ [σKk−1 logK, θKk,m,C logK] needed for the trait

lKk := vKk \ vKk−1 (3.58)

to reach a size of order K,

• a ’deterministic phase’ [θKk,m,C logK,σKk logK] needed for the mutation free Lotka-
Volterra system associated to ṽKk−1 ∪ lKk to reach a neighbourhood of its equilibrium.

Initialisation of the induction.

• σK0 : By assumption,

βKw (0) K→∞→
(

1− d(v0, w)
α

)
+
. (3.59)

Let us choose a small ε0 > 0. Then from point (ii) of Lemma 3.28, there exists a deterministic
T (ε0) <∞ such that

lim
K→∞

P
(
‖NK(T (ε0))/K − n̄(v0)‖∞ ≤ ε0

)
= 1. (3.60)

Define σK0 := T (ε0)/ logK. We can check that σK0 is a stopping time converging in prob-
ability to s0 = 0 and satisfying Assumption 3.21. Moreover we know that the processes
βKw , w ∈ V , vary on a time scale of order logK (see [31, 38] for instance). In particular,
they do not vary during the time T (ε0) in the large K limit. This entails that σK0 satisfies
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3 Stoch. individual-based models with power law mutation rate on a general finite trait space

Assumption 3.21.

• σKk , k ≥ 1:

Assume that sk−1 < T0 and that σKk−1 logK is a stopping time satisfying Assumption 3.21.
We will now construct σKk .

3.4.1 Definitions and first properties

Let us introduce a small εk > 0 as well as a stopping time θKk,m,C logK via

θKk,m,C := inf
{
t ≥ σKk−1, ∃w ∈ vk−1,

∣∣∣∣∣NK
w (t logK)

K
− n̄w(vk−1)

∣∣∣∣∣ ≥ Cεk
or

∑
w/∈vk−1

NK
w (t logK) ≥ mεkK

}
. (3.61)

The conditions satisfied by m > 0 and C > 0 will be precised later on. m is typically small,
see (3.136). The conditions satisfied by C will be specified in Subsection 3.4.4.

We will now finely study the population dynamics on the time interval
[σKk−1 logK, (θKk,m,C ∧ T ) logK]. To this aim, we will couple the subpopulations of indi-
viduals with a given trait with branching processes with immigration and use results on
these processes derived in [38] and recalled (and generalised when needed) in the Appen-
dices. The main difficulty of this step comes from the fact that as we allow for any finite
graph of mutations, the immigration rate for a particular subpopulation may vary a lot on
the time interval [σKk−1 logK, (θKk,m,C ∧ T ) logK]. This is why we introduced in Proposition
3.6 the sequence of times (τ`, ` ∈ N), which corresponds to the times when mutants of a new
type arise or a formerly microscopic trait becomes of order K.

Notice that although we make extensive use of the techniques and results developed in [38],
the authors of this paper considered a specific graph embedded in Z, and their proof struc-
ture, in particular inductions, relies on their graph structure. The current inductions are
more involved and more in the proof spirit of [112].

To begin with, let us recall the rates of the different events for the population NK
w , with

w ∈ V , at time t:

• Reproductions without mutation:

bw(t) := bw(1−K−1/α)NK
w (t) (3.62)

• Death:

dw(t) :=
(
dw +

∑
x∈V

cw,x
K

NK
x (t)

)
NK
w (t) (3.63)
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3.4 Proof of Theorem 3.3 and Proposition 3.6

• Reproductions with mutations towards the trait w:

bmw(t) := K−1/α ∑
x∈V,d(x,w)=1

bxm(x,w)NK
x (t). (3.64)

Notice that for K large enough, as σKk−1 satisfies Assumption 3.21 and by definition of θKk,m,C ,
on the time interval [σKk−1 logK, (θKk,m,C ∧ T ) logK], we have

b(w, k,−)NK
w (t) ≤ bw(t) ≤ b(w, k,+)NK

w (t), (3.65)
d(w, ṽk−1, k,+)NK

w (t) ≤ dw(t) ≤ d(w, ṽk−1, k,−)NK
w (t) (3.66)

f(w, ṽk−1, k,−) ≤ fw,ṽk−1 ≤ f(w, ṽk−1, k,+), (3.67)

where we have introduced the following notations, for any w ∈ V and ∗ ∈ {−,+},

b(w, k,−) := (1− εk)bw, b(w, k,+) := bw, (3.68)

d(w, ṽk−1, k,−) := dw +
∑

x∈ṽk−1

cw,xn̄x(vk−1) +
(∑
x∈V

cw,x

)
(m+ C)εk, (3.69)

d(w, ṽk−1, k,+) := dw +
∑

x∈ṽk−1

cw,xn̄x(vk−1)−
(∑
x∈V

cw,x

)
Cεk, (3.70)

f(w, ṽk−1, k, ∗) := b(w, k, ∗)− d(w, ṽk−1, k, ∗). (3.71)

Hence the rate of reproduction without mutation, as well as the death rate do not vary
significantly during the time interval [σKk−1 logK, (θKk,m,C ∧ T ) logK]. The difficulty comes
from the rate of mutations towards a given trait, which depends on the population sizes
of its neighbours in the graph G, which themselves depend on the population sizes of their
neighbours and so on.

Let us introduce the times τK` and the sets MK
` , which correspond respectively to the times

of invasion or appearance of new mutants (and will be the time steps of the algorithm to be
described shortly later) and to the sets of living traits in the time interval (τK` , τK`+1]. To be
more precise,

Definition 3.22. Let sKk := inf{t ≥ σKk−1 : ∃w ∈ V \ vKk−1, β
K
w (t) > 1− εk}, and

tKw,k :=
{

inf{t ≥ σKk−1 : ∃ u ∈ V : d(u,w) = 1, βKu (t) = 1
α} if βKw (σKk−1) = 0

σKk−1 else,
(3.72)

The sequences (τK` , ` ≥ 0) and (MK
` , ` ≥ 0) are defined as follows: τK0 = σK0 and, for

σKk−1 ≤ τK`−1 < sKk ,

τK` = sKk ∧min {tKw,k : w ∈ V, tKw,k > τK`−1}, (3.73)
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3 Stoch. individual-based models with power law mutation rate on a general finite trait space

that is to say the minimum between the time when a previously microscopic population
becomes (almost) macroscopic, and the time of appearance of a new mutant. From the
definition of the sequence (τK` , ` ≥ 0) we can now define the sequence of sets of living traits
(MK

` , ` ≥ 0) via

MK
` = {w ∈ V : βKw (τK` ) > 0 or τK` = tKw,k}

=
(
MK
`−1\{w ∈ V : βKw (τK` ) = 0}

)
∪ {w ∈ V : τK` = tKw,k}. (3.74)

3.4.2 Dynamics of the process on [τK`−1 logK, τK` logK]

We will first prove that there exists a finite and positive constant C` such that with high
probability, for every w ∈MK

`−1 and t ∈ [τK`−1 ∧ T ∧ θKk,m,C , τK` ∧ T ∧ θKk,m,C ],

max
u∈MK

`−1

[
βKu (τK`−1)− d(u,w)

α
+ (t− τK`−1)f(u, ṽk−1, k,−)

]
+

≤ βKw (t) ≤

max
u∈MK

`−1

[
βKu (τK`−1)− d(u,w)

α
+ C`εk + (t− τK`−1)f(u, ṽk−1, k,+)

]
+

(3.75)

Let us thus take t in [τK`−1∧T ∧θKk,m,C , τK` ∧T ∧θKk,m,C ]. To obtain the lower bound in (3.75),
we show by induction that, for any n ≥ 0 and with high probability,

βKw (t) ≥ max
u∈MK

`−1:
d(u,w)≤n

[
βKu (τK`−1)− d(u,w)

α
+ (t− τK`−1)f(u, ṽk−1, k,−)

]
+

(3.76)

Induction lower bound: • n = 0: let w ∈ MK
`−1. From (3.65) and (3.66), we see that

we can couple NK
w with a process ZK with law BPK

(
b(w, k,−), d(w, ṽk−1, k,−), βKw (τK`−1)

)
(see the definition of BPK in Subsection 3.5.1) in such a way that

NK
w (t logK) ≥ ZK((t− τK`−1) logK). (3.77)

Hence, from Corollary 3.27, we obtain that with high probability,

βKw (t) ≥
[
βKw (τK`−1) + (t− τK`−1)f(w, ṽk−1, k,−)

]
+
. (3.78)

Remark 3.23. Notice that the application of Lemma 3.24 (which has been derived in [38])
would require βKw (τK`−1) > 0 and that this condition may not be satisfied for one of the
w ∈ MK

`−1 (the trait which becomes macroscopic at time τK`−1 logK). However, the popula-
tion of individuals w grows exponentially due to the mutations coming from another trait
and there exists a finite c such that, for small δ > 0, NK

w ((τK`−1 + δ) logK) ≥ Kcδ. We could
thus apply Lemma 3.24 at this time, and later on let δ go to 0 to get the result. This is in
words the statement of Corollary 3.27.
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3.4 Proof of Theorem 3.3 and Proposition 3.6

• n→ n+ 1: Let w, u′, u ∈MK
`−1 such that d(u′, w) = 1 and d(u, u′) ≤ n. From now on, we

will use the notation BPIK , which is defined in Subsection 3.5.2. From (3.65), (3.66), and
(3.67), by looking only at the immigration coming from u′, we see that we can couple NK

w

with a process ZK with law

BPIK

(
b(w, k,−), d(w, ṽk−1, k,−), f(u′, ṽk−1, k,−), βKu′ (τK`−1)− 1

α
, βKw (τK`−1)

)
(3.79)

in such a way that

NK
w (t logK) ≥ ZK((t− τK`−1) logK). (3.80)

By the induction hypothesis, with high probability,

βKu′ (t) ≥
[
βKu (τK`−1)− d(u, u′)

α
+ (t− τK`−1)f(u, ṽk−1, k,−)

]
+
, (3.81)

which implies that we can couple ZK with a process Y K with law

BPIK

(
b(w, k,−), d(w, ṽk−1, k,−), f(u, ṽk−1, k,−), βKu (τK`−1)− d(u, u′) + 1

α
, βKw (τK`−1)

)
(3.82)

in such a way that

ZK((t− τK`−1) logK) ≥ Y K((t− τK`−1) logK). (3.83)

Hence, from Corollary 3.27, even if we have to work in a time interval [τK`−1 +δ, T ], for a small
positive δ, in the spirit of Remark 3.23, as w ∈MK

`−1 we obtain that with high probability,

βKw (t) ≥
[
βKw (τK`−1) ∨

(
βKu (τK`−1)− d(u, u′) + 1

α

)
+ (t− τK`−1)f(w, ṽk−1, k,−)

]
+

∨
[
βKu (τK`−1)− d(u, u′) + 1

α
+ (t− τK`−1)f(u, ṽk−1, k,−)

]
+

≥
[
βKw (τK`−1) + (t− τK`−1)f(w, ṽk−1, k,−)

]
+

∨
[
βKu (τK`−1)− d(u, u′) + 1

α
+ (t− τK`−1)f(u, ṽk−1, k,−)

]
+
. (3.84)

As this is true for any u′ such that d(u′, w) = 1 and as the above bound is a decreasing
function of d(u, u′), by taking the supremum over such u′ we obtain

βKw (t) ≥
[
βKw (τK`−1) + (t− τK`−1)f(w, ṽk−1, k,−)

]
+

∨
[
βKu (τK`−1)− d(u,w)

α
+ (t− τK`−1)f(u, ṽk−1, k,−)

]
+
. (3.85)
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Thus, with high probability,

βKw (t) ≥ max
u∈MK

`−1:
d(u,w)≤n+1

[
βKu (τK`−1)− d(u,w)

α
+ (t− τK`−1)f(u, ṽk−1, k,−)

]
+
, (3.86)

which ends the induction for the lower bound.

Let us now proceed to the induction for the upper bound. We again take t in
[τK`−1 ∧ T ∧ θKk,m,C , τK` ∧ T ∧ θKk,m,C ] and we will show that for any n ∈ N there exists a
finite constant Cn,` such that with high probability,

βKw (t) ≤ max
u∈MK

`−1:
d(u,w)≤n

[(
βKu (τK`−1)− d(u,w)

α
+Cn,`εk

)
∨
(

1− n+ 1
α

+ (n+ 2)εk
)

+ (t− τK`−1)f(u, ṽk−1, k,+)
]

+

∨
(

1− n+ 1
α

+ (n+ 2)εk
)
. (3.87)

Notice that, since εk can be chosen small enough such that 1 − (n + 1)/α + (n + 2)εk < 0,
for all n > bαc, this equation is equivalent to the upper bound in (3.75).

Induction upper bound:

Throughout the induction for the upper bound, we will several times make use of the fact
that we can approximate the total immigration to one trait, which is the sum of the mutants
coming from its neighbours, from above by the number of neighbours times the largest
incoming mutation. More precisely, if Iw is the number of incoming neighbours of w,∑

u∈V :
d(u,w)=1

KβKu (t) ≤ Iw max
u∈V :

d(u,w)=1

KβKu (t) = max
u∈V :

d(u,w)=1

K(log Iw/ logK)+βKu (t). (3.88)

Since the trait space is finite, we can assume that maxw∈V log Iw/ logK ≤ εk, for K large
enough.

• n = 0: We observe that for K large enough βKu (t) ≤ 1 + εk for every u ∈ MK
`−1 such that

d(u,w) = 1 (see Corollary 3.29).

From (3.65), (3.66), and (3.67), we see that we can couple NK
w with a process ZK with law

BPIK
(
b(w, k,+), d(w, ṽk−1, k,+), 0, 1− 1

α + 2εk, βKw (τK`−1)
)
in such a way that

NK
w (t logK) ≤ ZK((t− τK`−1) logK). (3.89)

Hence from Corollary 3.27, even if we have to work in a time interval [τK`−1 +δ, T ], for a small
positive δ, in the spirit of Remark 3.23, as w ∈MK

`−1 we obtain that with high probability,

βKw (t) ≤
[
βKw (τK`−1)∨

(
1− 1

α
+ 2εk

)
+ (t− τK`−1)f(w, ṽk−1, k,+)

]
+
∨
(

1− 1
α

+ 2εk
)
.

(3.90)
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• n→ n+ 1: For w, u′ ∈ MK
`−1 such that d(u′, w) = 1, by the induction hypothesis we have

the existence of a finite constant Cn,` such that, with high probability,

βKu′ (t) ≤ max
u∈MK

`−1:
d(u,u′)≤n

[(
βKu (τK`−1)− d(u, u′)

α
+ Cn,`εk

)
∨
(

1− n+ 1
α

+ (n+ 2)εk
)

+ (t− τK`−1)f(u, ṽk−1, k,+)
]

+

∨
(

1− n+ 1
α

+ (n+ 2)εk
)
. (3.91)

From (3.65), (3.66), and (3.67), by looking at the maximal immigration coming from a
neighbouring u′ and adding another εk in the spirit of (3.88), we thus see that we can couple
NK
w with multiple processes ZK,u,u′ and ZK with respective laws

BPIK
(
b(w, k,+), d(w, ṽk−1, k,+), f(u, ṽk−1, k,+),(

βKu (τK`−1)− d(u, u′) + 1
α

+ (Cn,` + 1)εk
)
∨
(

1− n+ 2
α

+ (n+ 3)εk
)
, βKw (τK`−1)

)
(3.92)

and

BPIK

(
b(w, k,+), d(w, ṽk−1, k,+), 0, 1− n+ 2

α
+ (n+ 3)εk, βKw (τK`−1)

)
(3.93)

in such a way that

NK
w (t logK) ≤ max

u′∈MK
`−1:

d(u′,w)=1

max
u∈MK

`−1:
d(u,u′)≤n

ZK,u,u
′((t− τK`−1) logK) ∨ ZK((t− τK`−1) logK). (3.94)

Hence from Corollary 3.27, even if we have to work in a time interval [τK`−1 +δ, T ], for a small
positive δ, in the spirit of Remark 3.23, as w ∈MK

`−1 we obtain that with high probability,

βKw (t) ≤ max
u′∈MK

`−1:
d(u′,w)=1

max
u∈MK

`−1:
d(u,u′)≤n

{[
βKw (τK`−1) ∨

(
βKu (τK`−1)− d(u, u′) + 1

α
+ (Cn,` + 1)εk

)

∨
(

1− n+ 2
α

+ (n+ 3)εk
)

+ (t− τK`−1)f(w, ṽk−1, k,+)
]

+

∨
[(
βKu (τK`−1)− d(u, u′) + 1

α
+ (Cn,` + 1)εk

)
∨
(

1− n+ 2
α

+ (n+ 3)εk
)

+ (t− τ`−1)f(u, ṽk−1, k,+)
]

+

∨
(

1− n+ 2
α

+ (n+ 3)εk
)}

.

(3.95)
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3 Stoch. individual-based models with power law mutation rate on a general finite trait space

Applying that d(u,w) ≤ d(u, u′) + 1, this can be further approximated by

βKw (t) ≤ max
u∈MK

`−1:
d(u,w)≤n+1

{[
βKw (τK`−1) ∨

(
βKu (τK`−1)− d(u,w)

α
+ (Cn,` + 1)εk

)

∨
(

1− n+ 2
α

+ (n+ 3)εk
)

+ (t− τK`−1)f(w, ṽk−1, k,+)
]

+

∨
[(

βKu (τK`−1)− d(u,w)
α

+ (Cn,` + 1)εk
)
∨
(

1− n+ 2
α

+ (n+ 3)εk
)

+ (t− τ`−1)f(u, ṽk−1, k,+)
]

+

∨
(

1− n+ 2
α

+ (n+ 3)εk
)}

.

(3.96)

In order to simplify the right hand side of the previous inequality, we will show that for any
` ∈ N there exists a finite and positive constant C` such that for any (u,w) ∈ V 2, with high
probability

βKu (τK`−1)− d(u,w)
α

≤ βKw (τK`−1) + C`εk. (3.97)

Combining (3.96) and (3.97) yields that with high probability,

βKw (t) ≤ max
u∈MK

`−1:
d(u,w)≤n+1

{[(
βKw (τK`−1) + (Cn,` + 1 + C`)εk

)
∨
(

1− n+ 2
α

+ (n+ 3)εk
)

+ (t− τK`−1)f(w, ṽk−1, k,+)
]

+

∨
[(
βKu (τK`−1)− d(u,w)

α
+ (Cn,` + 1)εk

)
∨
(

1− n+ 2
α

+ (n+ 3)εk
)

+ (t− τ`−1)f(u, ṽk−1, k,+)
]

+

∨
(

1− n+ 2
α

+ (n+ 3)εk
)}

≤ max
u∈MK

`−1:
d(u,w)≤n+1

[(
βKu (τK`−1)− d(u,w)

α
+ (Cn,` + 1 + C`)εk

)
∨
(

1− n+ 2
α

+ (n+ 3)εk
)

+ (t− τ`−1)f(u, ṽk−1, k,+)
]

+

∨
(

1− n+ 2
α

+ (n+ 3)εk
)
,

(3.98)

which ends the induction for the upper bound.

106



3.4 Proof of Theorem 3.3 and Proposition 3.6

Let us now derive inequality (3.97). It is obtained by an induction on `. If ` = 1, by (3.9)
and the triangle inequality,

lim
K→∞

βKu (0)− d(u,w)
α

=
[
1− d(v0, u)

α

]
+
− d(u,w)

α

≤
[
1− d(v0, u)

α
− d(u,w)

α

]
+
≤
[
1− d(v0, w)

α

]
+

= lim
K→∞

βKw (0).

(3.99)

As the convergence is in probability, it means that for K large enough, there exists a finite
Cu,w such that with a probability larger than 1− εk,

βKu (0)− d(u,w)
α

≤ βKw (0) + Cu,wεk. (3.100)

As there are only finitely many traits, supu,w∈V Cu,w < ∞. Moreover, as εk can be chosen
as small as we want and as we want to prove a convergence in probability, we may focus on
the event where inequality (3.100) is satisfied. We will do that later on without mentioning
it again for the sake of readability.

Now assume that (3.97) is true for `− 1 ∈ N. Let us first prove that it still holds for `.

From the previous step on the time interval [τK`−2 ∧ T ∧ θKk,m,C , τK`−1 ∧ T ∧ θKk,m,C ], we know
that if τK`−1 ≤ T ∧ θKk,m,C , for any w ∈ V and K large enough,

max
u∈MK

`−2

[
βKu (τK`−2)− d(u,w)

α
+ (τK`−1 − τK`−2)f(u, ṽk−2, k,−)

]
+
≤ βKw (τK`−1). (3.101)

Now let us take u ∈ V . We also deduce from the previous step that for K large enough

βKu (τK`−1) ≤ max
u′∈MK

`−2

[
βKu′ (τK`−2)− d(u′, u)

α
+ C`−1εk + (τK`−1 − τK`−2)f(u′, ṽk−2, k,+)

]
+
.

(3.102)

In particular there exists ũ ∈ V such that d(ũ, u) ≤ bαc and for K large enough

βKu (τK`−1) ≤
[
βKũ (τK`−2)− d(ũ, u)

α
+ C`−1εk + (τK`−1 − τK`−2)f(ũ, ṽk−2, k,+)

]
+
. (3.103)
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Thus, for K large enough,

βKu (τK`−1)− d(u,w)
α

≤
[
βKũ (τK`−2)− d(ũ, u)

α
+ C`−1εk + (τK`−1 − τK`−2)f(ũ, ṽk−2, k,+)

]
+
− d(u,w)

α

≤
[
βKũ (τK`−2)− d(ũ, u) + d(u,w)

α
+ C`−1εk + (τK`−1 − τK`−2)f(ũ, ṽk−2, k,+)

]
+

≤
[
βKũ (τK`−2)− d(ũ, w)

α
+ C`−1εk + (τK`−1 − τK`−2)f(ũ, ṽk−2, k,+)

]
+

≤
[
βKũ (τK`−2)− d(ũ, w)

α
+ C`−1εk + (τK`−1 − τK`−2)f(ũ, ṽk−2, k,−)

]
+

+ Cεk

≤ max
ũ∈MK

`−2

[
βKũ (τK`−2)− d(ũ, w)

α
+ (τK`−1 − τK`−2)f(ũ, ṽk−2, k,−)

]
+

+ (C`−1 + C)εk

≤ βKw (τK`−1) + (C`−1 + C)εk, (3.104)

where we used (3.71), (3.76), the bound τK`−1 − τK`−2 ≤ T , and

C := max
ũ∈MK

`−2

(
bũ + (m+ 6)

(∑
x∈V

cũ,x

))
T. (3.105)

This entails (3.97).

To conclude the proof of (3.75), we just need to notice that for n > bαc, if εk is small
enough,

1− n+ 1
α

+ (n+ 2)εk < 0. (3.106)

As τK` − τK`−1 ≤ T , Equation (3.75) tells us that, with an error of order εk which is
as small as we want, with high probability, the growth of traits w ∈ MK

`−1 follows, for
t ∈ [τK`−1 ∧ T ∧ θKk,m,C , τK` ∧ T ∧ θKk,m,C ]

βKw (t) ∼= max
u∈MK

`−1

[
βKu (τK`−1)− d(u,w)

α
+ (t− τK`−1)fu,vk−1

]
+
. (3.107)

To avoid repetition, we will write ∼= in the sequel to indicate approximations with high
probability, with an error of order εk.

3.4.3 Value of τK` and construction of MK
`

Let us assume for the moment (it will be proven in Subsection 3.4.4) that the following holds
with high probability:

[τK`−1 ∧ T ∧ θKk,m,C , τK` ∧ T ∧ θKk,m,C ] = [τK`−1, τ
K
` ]. (3.108)
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Our aim now is to find the duration τK` − τK`−1 and to construct the set MK
` knowing the set

MK
`−1.

To reach τK` , two events are possible. Either one living non resident trait reaches a size of
order K, or a new mutant appears. Let us consider the first type of event. In fact, we have
to be more precise on the time when a new trait has a size which reaches order K, this is why
we defined sKk as the time when one trait has a size which reaches order K1−εk . Notice that
we may choose εk small enough to be sure that it corresponds to the trait whose exponent
reaches 1 at time sk in the deterministic sequence (sj , j ∈ N) defined in Theorem 3.3. (if
there exist two such traits, condition (iv)(a) is fulfilled and T0 is set to sk). Notice that if
fu,vk−1 < 0, for any w ∈ V ,

t 7→ βKu (τK`−1) + (t− τK`−1)fu,vk−1 −
d(u,w)
α

(3.109)

is decreasing and thus will not reach 1−εk if it is smaller than this value at time τK`−1. Hence
if we denote by u0 the element of MK

`−1 such that βKu0(τK` ) = 1− εk, we get

1− εk = βKu0(τK` ) ∼= max
u∈MK

`−1
fu,vk−1>0

[
βKu (τK`−1) + (t− τK`−1)fu,vk−1 −

d(u, u0)
α

]
. (3.110)

Now assume by contradiction that there is u1 6= u0 ∈MK
`−1 such that:

1− εk = βKu0(τK` ) ∼= βKu1(τK`−1) + (τK` − τK`−1)fu1,vk−1 −
d(u1, u0)

α
. (3.111)

This implies

βKu1(τK` ) ≥ βKu1(τK`−1) + (τK` − τK`−1)fu1,vk−1 > 1, (3.112)

as soon as εk < 1/α, which yields a contradiction. This implies that if there exists u0 ∈MK
`−1

such that βKu0(τK` ) = 1− εk, then

βKu0(τK` ) ∼= βKu0(τK`−1) + (τK` − τK`−1)fu0,vk−1 (3.113)

and with high probability, the value of τK` − τK`−1 satisfies,

τK` − τK`−1
∼= min

w∈MK
`−1:

fw,vk−1>0

1− βKw (τK`−1)
fw,vk−1

. (3.114)

Let us now consider the second type of event, that is to say that there exist u0 /∈MK
`−1 and

u1 ∈MK
`−1 such that d(u1, u0) = 1 and βKu1(τK` ) = 1/α. Notice again that if fu,vk−1 < 0, the

function defined in (3.109) is decreasing and thus will not reach 1/α if it is smaller than this
value at time τK`−1.

By definition we have

1
α

= βKu1(τK` ) ∼= max
u∈MK

`−1

[
βKu (τK`−1) + (τK` − τK`−1)fu,vk−1 −

d(u, u1)
α

]
. (3.115)
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Denote by u2 ∈ MK
`−1 the trait realizing the maximum in the previous equation, that is to

say

1
α
∼= βKu2(τK`−1) + (τK` − τK`−1)fu2,vk−1 −

d(u2, u1)
α

. (3.116)

This equality can be rewritten as

βKu2(τK`−1) + (τK` − τK`−1)fu2,vk−1
∼=
d(u2, u1) + 1

α
. (3.117)

Let us now make a reductio ad absurdum to prove that d(u2, u1) + 1 = d(u2, u0). Let us thus
assume that

d(u2, u1) + 1 > d(u2, u0)⇔ d(u2, u1) ≥ d(u2, u0), (3.118)

and take u′1 such that

d(u2, u
′
1) + 1 = d(u2, u0). (3.119)

Let us first assume (we will prove it later) that u′1 ∈MK
`−1. In this case, using the proof for

the lower bound, we obtain that with high probability

βKu′1
(τK` ) ≥ βKu2(τK`−1) + (τK` − τK`−1)f(u2, ṽk−1, k,−)− d(u2, u

′
1)

α

≥ βKu2(τK`−1) + (τK` − τK`−1)f(u2, ṽk−1, k,−)− d(u2, u1)− 1
α

∼=
2
α
. (3.120)

As d(u′1, u0) = 1, this means that u0 becomes a living trait before the time τK` , which is in
contradiction with the definition of τK` .

Let us now assume that u′1 /∈ MK
l−1 and consider a sequence of vertices v0 = u2, v1, ...,

vd(u2,u′1) = u′1 such that d(u2, vk) = k and d(vk, u′1) = d(u2, u
′
1)− k. Let

k0 := max{0 ≤ k ≤ d(u2, u
′
1)− 1, vk ∈MK

`−1}. (3.121)

Then

d(u2, vk0) ≤ d(u2, u
′
1)− 1 ≤ d(u2, u1)− 2, (3.122)

and with high probability

βKvk0
(τK` ) ≥ βKu2(τK`−1) + (τK` − τK`−1)f(u2, ṽk−1, k,−)− d(u2, vk0)

α

≥ βKu2(τK`−1) + (τK` − τK`−1)f(u2, ṽk−1, k,−)− d(u2, u1)− 2
α

∼=
3
α
, (3.123)

and thus vk0+1 becomes a living trait before the time τK` , which again is in contradiction
with the definition of τK` . We thus obtain a contradiction and deduce that (3.118) is not
satisfied. We conclude that

βKu2(τK`−1) + (τK` − τK`−1)fu2,vk−1
∼=
d(u2, u1) + 1

α
= d(u2, u0)

α
. (3.124)
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Hence, when τK` corresponds to the arrival of a new mutant,

τK` − τK`−1
∼= min

w∈MK
`−1

fw,v`−1>0

d(w,V \MK
`−1)

α − βKw (τK`−1)
fw,vk−1

. (3.125)

Combining (3.114) and (3.125), we finally obtain

τK` − τK`−1
∼= min

w∈MK
`−1:

fw,vk−1>0

(
1 ∧ d(w,V \MK

`−1)
α

)
− βKw (τK`−1)

fw,vk−1

. (3.126)

To obtain MK
` from MK

`−1, we suppress the traits w ∈ MK
`−1 such that βKw (τK` ) = 0 (if

condition (iv)(c) is not satisfied, otherwise T0 is set to sk) and if τ` 6= sk, we add the traits
which are at distance 1 from the w ∈ V satisfying

w ∈ arg min
w∈MK

`−1:
fw,vk−1>0

(
1 ∧ d(w,V \MK

`−1)
α

)
− βKw (τK`−1)

fw,vk−1

. (3.127)

3.4.4 Value of θKk,m,C and convergence of sKk to sk

Recall the definition of θKk,m,C in (3.61). We thus have constructed, on the time interval
[(σKk−1∧T ) logK, (sKk ∧ θKk,m,C ∧T ) logK], the times (τK` , ` ∈ N) and the sets (MK

` , ` ∈ N) of
living traits between times τK` and τK`+1. We will now study the dynamics of the process on
the time interval [(σKk−1 ∧ T ) logK, (σKk ∧ θKk,m,C ∧ T ) logK] (σKk to be defined later in order
to satisfy Assumption 3.21). Recall that lKk is the trait w ∈ V such that βKw (sKk ) = 1 − εk
and introduce

ηk := 2εk/
(
flK
k
,vk−1

−
(
blK
k

+
(∑
x∈V

clK
k
,x

)
(C +m)

)
εk

)
(3.128)

We will first prove that

lim
K→∞

P
(
sKk ≤ θKk,m,C ≤ sKk + ηk

∣∣∣sKk < T
)

= 1. (3.129)

The first step consists in showing that

lim
K→∞

P
(
θKk,m,C < sKk

∣∣∣sKk < T
)

= 0. (3.130)

By definition of sKk , we have

sup
w∈V rvk−1

sup
σK
k−1≤t≤s

K
k

βKw (t) ≤ 1− εk. (3.131)
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Moreover, applying Lemma 3.28 to vk−1 we obtain that

lim
K→∞

P
(
∀t ∈ [σKk−1, s

K
k ], sup

w∈vk−1

∣∣∣NK
w (t logK)

K
− n̄w(vk−1)

∣∣∣ ≤ Cεk∣∣∣sKk < T

)
= 1. (3.132)

As a consequence, (3.130) holds true. Notice that the value of C in the definition of θKk,m,C in
(3.61) is a consequence of the previous limit. The constant C is the one needed for Lemma
3.28 to hold, and thus depends on the parameters of the process.

Now assume by contradiction that

sKk + ηk ≤ θKk,m,C < T. (3.133)

Then on the time interval [sKk , sKk + ηk], by definition of θKk,m,C , the lKk population has a
growth rate bounded from below by

flK
k
,vk−1

−
(
blK
k

+
(∑
x∈V

clK
k
,x

)
(C +m)

)
εk. (3.134)

Hence by coupling, with high probability,

βKlK
k

(sKk + ηk) ≥ 1− εk +
(
flK
k
,vk−1

−
(
blK
k

+
(∑
x∈V

clK
k
,x

)
(C +m)

)
εk

)
ηk = 1 + εk,

(3.135)

which leads to a contradiction, as the total population size cannot be of order larger than
K in the limit K →∞, see Corollary 3.29.

This proves (3.129). In particular, this implies that sKk converges to sk in probability when
K goes to infinity, as soon as T > sk.

3.4.5 Value of the process at time θKk,m,C logK

We are now interested in the value of the process at time θKk,m,C logK. First notice that
according to Proposition A.2 in [37] and (3.129),

lim
K→∞

P
(
∀t ∈ [σKk−1, (sKk + ηk) ∧ θKk,m,C ], w ∈ vk−1,

∣∣∣∣∣NK
w (t logK)

K
− n̄w(vk−1)

∣∣∣∣∣ < Cεk

)

= lim
K→∞

P
(
∀t ∈ [σKk−1, θ

K
k,m,C ], w ∈ vk−1,

∣∣∣∣∣NK
w (t logK)

K
− n̄w(vk−1)

∣∣∣∣∣ < Cεk

)
= 1. (3.136)

Notice that m has to be chosen small enough for this limit to hold, and thus depends on
the parameters of the Lotka-Volterra deterministic system associated to vk−1. To be more
precise, m has to be chosen small enough for the assumption (3.148) in Lemma 3.28 to hold
true with εk in place of ε. We choose such an m in the definition of θKk,m,C in (3.61).

112



3.5 Appendix: Couplings with branching processes and logistic processes with immigration

Hence we obtain that with high probability,∑
w∈V rvk−1

NK
w (θKk,m,C logK) ≥ mεkK. (3.137)

If condition (iv)(a) of Theorem 3.3 is satisfied T0 is set at sk and the induction is stopped.
Otherwise there exists γ > 0 such that if εk is small enough βKw (sKk ) < 1 − γ for every
w ∈ V r (ṽKk−1 ∪ {lKk }). Thus again by coupling, as the growth rates of the populations are
limited and ηk may be as small as we want, with high probability,∑

w∈V rṽKk−1,w 6=l
K
k

NK
w (θKk,m,C logK) ≤ K1−γ/2. (3.138)

From the two last inequalities we deduce that with high probability,

NK
lK
k

(θKk,m,C logK) ≥ mεkK/2. (3.139)

3.4.6 Construction of σKk and Assumption 3.21

Let us now introduce the stopping time σKk , via:

σKk := inf{t ≥ θKk,m,C ,∀w ∈ vKk , |NK
w (t logK)/K − n̄w(vk)| ≤ εk}. (3.140)

The last step of the proof consists in showing that σKk indeed satisfies Assumption 3.21.
First σKk logK is a stopping time. Second, from (3.136), (3.138), (3.139) and an application
of Lemma 3.28 there exists T (εk) <∞ such that

lim
K→∞

P
(∣∣∣NK

w (θKk,m,C logK + T (εk))/K − n̄w(vk)
∣∣∣ ≤ εk,∀w ∈ vk) = 1. (3.141)

Moreover, during a time of order one, the order of population sizes does not vary more than
a constant times εk (result similar in spirit to Lemma B.9 in [38]). Adding that sKk converges
to sk in probability when K goes to infinity, as well as (3.129), we obtain that Assumption
3.21 holds. It ends the proof of Theorem 3.3 and Proposition 3.6.

3.5 Appendix: Couplings with branching processes and logistic
processes with immigration

The aim of this section is to collect various couplings of the populations with simpler pro-
cesses like branching processes and logistic processes with immigration, and to state some
properties of these simpler processes. These results have been derived in [38] (note that we
need to slightly generalise some of them), and we state them for the sake of readability. For
simplicity we keep the notations of [38].
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3.5.1 Branching process

In this subsection, we recall Lemma A.1 of [38], which describes the dynamics of a birth-
and-death process on a logK time scale. For b, d, β ≥ 0, let BPK(b, d, β) denote the law of
a process (ZK(t), t ≥ 0) with initial state ZK(0) = bKβ − 1c, individual birth rate b and
individual death rate d.

Lemma 3.24 (Lemma A.1 in [38]). Let (ZK(t), t ≥ 0) be a BPK(b, d, β) process such that
β > 0. The process (log(1 + ZK(t logK))/ logK, t > 0) converges when K tends to infinity
in probability in L∞([0, T ]) for all T > 0 to the continuous deterministic function given by

β̄ : t 7→ β + (b− d)t ∨ 0. (3.142)

In addition, if b < d, for all t > β/(d− b),

lim
K→∞

P
(
ZKt logK = 0

)
= 1. (3.143)

3.5.2 Branching process with immigration

In this subsection, we recall Lemma B.4 and Theorem B.5 of [38], illustrated in Figure B.1
therein, which describe the dynamics of birth-and-death processes with immigration on a
logK time scale. For b, d, β ≥ 0, a, c ∈ R, BPIK(b, d, a, c, β) denotes the law of a process
(ZK(t), t ≥ 0) with initial state ZK(0) = bKβ − 1c, individual birth rate b, individual death
rate d, and immigration rate Kceas at time s ≥ 0.

Lemma 3.25 (Lemma B.4 in [38]). Assume that β < c. Then for all ε > 0 and all
ā > |b− d| ∨ |a|,

lim
K→∞

P
(
ZK(ε logK) ∈

[
Kc−āε,Kc+āε

])
= 1. (3.144)

Lemma 3.26 (Theorem B.5 in [38]). Let (ZK(t), t ≥ 0) be a BPIK(b, d, a, c, β) process
with c ≤ β and assume that β > 0. The process (log(1 + ZK(t logK))/ logK, t > 0) con-
verges when K tends to infinity in probability in L∞([0, T ]) for all T > 0 to the continuous
deterministic function β̄ given by

β̄ : t 7→ (β + (b− d)t) ∨ (c+ at) ∨ 0. (3.145)

In addition, in the case where c 6= 0 or a 6= 0, for all compact intervals I ⊂ R+ which do not
intersect the support of β̄,

lim
K→∞

P
(
ZK(t logK) = 0,∀t ∈ I

)
= 1. (3.146)

We will mostly use a corollary of those two lemmas, which is valid without the assumption
c ≤ β but on a time interval [δ, T ], for any δ > 0. The idea of the proof has been explained
in Remark 3.23.
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Corollary 3.27. Let (ZK(t), t ≥ 0) be a BPIK(b, d, a, c, β) process with β ≥ 0, and either
c > 0 or both c = 0 and a > 0. For any δ > 0 and T > 0, the process
(log(1 + ZK(t logK))/ logK, t ∈ [δ, T ]) converges when K tends to infinity in probability
in L∞([δ, T ]) to the continuous deterministic function β̄ given by

β̄ : t 7→ ((β ∨ c) + (b− d)t) ∨ (c+ at) ∨ 0. (3.147)

3.5.3 Logistic birth-and-death process with immigration

We recall that for a subset v ⊂ V of traits that can coexist at a strictly positive equilibrium
in the Lotka-Volterra system (3.5), n̄(v) ∈ Rv

+ denotes this equilibrium. The next result
states that if all traits in v have an initial population of order K and the immigration of
individuals with traits in v is small enough, the equilibrium n̄(v)K is reached in a time of
order 1 and the populations of individuals whose traits belong to v will keep a size close to
its equilibrium during a time of order larger than logK. This result is a generalisation of
Lemma C.1 in [38] to the multidimensional case and with (slightly) varying rates.

We consider a subset v ⊂ V of traits and denote by (bv(t), t ≥ 0) := ((bw(t), w ∈ v), t ≥ 0),
(dv(t), t ≥ 0) := ((dw(t), w ∈ v), t ≥ 0), (cv(t), t ≥ 0) := ((cw1,w2(t), (w1, w2) ∈ v2), t ≥ 0)
its birth, natural death, and death by competition rates that we allow to vary in time, as
well as (gv(t), t ≥ 0) := ((gw(t), w ∈ v), t ≥ 0) a function with values in Rv

+. We denote
by LBDIK(bv,dv, cv,gv) the law of a logistic birth-and-death process with immigration
ZK := ((Zw(t)K , w ∈ v), t ≥ 0) where, at time t, an individual with a trait w ∈ v has a birth
rate bw(t), a death rate dw(t) +

∑
x∈v cw,x(t)ZKx (t)/K and an immigration rate gw(t).

Lemma 3.28. Let T > 0, v ⊂ V and assume that the mutation-free Lotka-Volterra sys-
tem (3.5) associated to v and with rates (b̄v, d̄v, c̄v) ∈ (R>0)v × (R>0)v × (R>0)v2 admits a
unique positive globally attractive stable equilibrium n̄(v). Assume that ZK follows the law
LBDIK(bv,dv, cv,gv) and that

sup
w1,w2∈v

{∣∣∣bw1(t)− b̄w1

∣∣∣ , ∣∣∣dw1(t)− d̄w1

∣∣∣ , |cw1,w2(t)− c̄w1,w2 |
}
< ε (3.148)

and gw(t) ≤ K1−η for all t ∈ [0, T logK], w ∈ v for some ε, η > 0.

(i) There exists C, ε0 > 0 such that if ε ≤ ε0 and ‖ZK(0)/K − n̄(v)‖∞ ≤ ε, then

lim
K→∞

P
(
∀t ∈ [0, T logK], ‖ZK(t)/K − n̄(v)‖∞ ≤ Cε

)
= 1. (3.149)

(ii) For all ε1, ε2 > 0, there exists ε0 > 0 and T (ε1, ε2) < ∞ such that for all ε < ε0 and
initial condition ZK(0) such that ZKv (0)/K ≥ ε1, ∀v ∈ v, we have that

lim
K→∞

P
(
‖ZK(T (ε1, ε2))/K − n̄(v)‖∞ ≤ ε2

)
= 1. (3.150)

Proof. The case where the functions bv, dv, cv are constant is a direct generalisation of
Lemma C.1 in [38], whose proof follows arguments similar to the ones given in [31, 37] or
in the Proposition 4.2 in [34] to handle the addition of (negligible) immigration. We do not
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provide it. Let us explain how we deal with varying rates for point (i). Let us choose w0 ∈ v,
and introduce for w1, w2 ∈ v:

b̃w1 =
{
b̄w1 + ε if w1 6= w0
b̄w1 − ε if w1 = w0

(3.151)

d̃w1 =
{
d̄w1 − ε if w1 6= w0
d̄w1 + ε if w1 = w0

(3.152)

c̃w1,w2 =
{
c̄w1,w2 − ε if w1 6= w0
c̄w1,w2 + ε if w1 = w0

(3.153)

Then we can couple a process ZK with the law LBDIK(bv,dv, cv,gv) with a process
Z̃K with the law LBDIK(b̃v, d̃v, c̃v,gv) such that for every t ≥ 0, Z̃Kw0(t) ≤ ZKw0(t) and
Z̃Kw (t) ≥ ZKw (t) for every w ∈ v \ w0. Moreover, as the equilibrium of a Lotka-Volterra
system is continuous with respect to its coefficient, there is a positive C̃ such that for ε small
enough, and if we denote by n̄(w0)(v) the equilibrium of the Lotka-Volterra system with the
coefficients b̃v, d̃v, c̃v we have just introduced, ‖n̄(w0)(v)− n̄(v)‖ ≤ C̃ε. Hence applying the
point (i) for the process Z̃K , we obtain upper bounds for coordinates w 6= w0 and a lower
bound for the coordinate w0, for the process ZK . Doing the same and the reverse bounds
for the other elements of v gives the result for some C > C̃ that takes into account the
fluctuations around the varied equilibria.

We end this section with a result stating that the time needed for the total population size
of a logistic birth-and-death process (with or without mutations) to reach an order smaller
or equal to K is of order one for K large enough.

Corollary 3.29. Let us consider a subset v ⊂ V of traits, (bv,dv, cv) in (R>0)v× (R>0)v×
(R>0)v2 and let ZK follow the law LBDIK(bv,dv, cv, 0), and ZK denote the total population
size of the process ZK . For every ε > 0 there exists T (ε) <∞ such that for t > T (ε)

lim
K→∞

P
(

log(1 + ZK(t))
logK < 1 + ε

)
= 1. (3.154)

Remark 3.30. Notice that this result only treats mutation-free logistic birth-and-death pro-
cesses. However, mutation within v does not affect the total population size and hence the
result can be transferred to such cases. Considering v = V , Corollary 3.29 therefore implies
the same asymptotic bound for the total population size of the process that we consider in
Theorem 3.3 and Proposition 3.6, and hence also for each subpopulation.

Proof. The process ZK increases by 1 at a rate∑
w∈v

bwZ
K
w ≤ (sup

w∈v
bw)ZK =: BZK (3.155)
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and decreases by 1 at a rate

∑
w∈v

(
dw +

∑
u∈v

cw,u
K

ZKu

)
ZKw ≥

1
K

( inf
u∈v

cu,u)
∑
w∈v

(
ZKw

)2

≥ 1
K

( inf
u∈v

cu,u) 1
Card(v)

(
ZK

)2
=: C

K

(
ZK

)2
. (3.156)

Hence the process ZK can be coupled with a logistic birth-and-death process NK with
individual birth rate B and individual death rate CNK/K in such a way that for every
t ≥ 0, if ZK(0) = NK(0)

ZK(t) ≤ NK(t). (3.157)

But from Chapter 11, Theorem 2.1 in [70], we know that on any finite time interval, the
rescaled process NK/K converges in probability to the solution to the logistic equation
κ̇ = κ(B−Cκ), κ(0) = κ0 if NK(0)/K converges in probability to κ0. The one dimensional
logistic equation has an explicit solution, and in particular, we know that its equilibrium is
B/C, that it comes down from infinity, and that it takes a time

1
B

log
( κ̄
κ̄ − B/C

)
(3.158)

to reach κ̄ > B/C from an infinite initial condition. As a consequence, NK takes a time
of order one to become smaller than 2κ̄K, and as B/C is a globally hyperbolic equilibrium
for the function κ, classical large deviation results (see [63] for instance) entail that NK/K
will stay an exponential (in K) time in any compact interval of R>0 including B/C. This
concludes the proof.

117



118



4 A stochastic model for melanoma T-cell
therapy

In this chapter we present an individual-based Markov process that models immunotherapy
of melanoma. It is an extension of the stochastic model for population dynamics that was
discussed in Chapters 2 and 3 and allows to analyse evolutionary dynamics within the tumour
as well as the interaction with cells and molecules of the immune system that arise during
therapy. In particular, we study Adoptive Cell Transfer (ACT) therapy, where cytotoxic
T-cells are injected to infiltrate the tumour tissue and specifically target the melanoma
cells, which are characterised by a distinct surface marker (antigen). The tumour cells show
various mechanisms to avoid detection by the immune cells and thus escape from therapy.

The current model is based on the model of Baar et al. in [11]. In a previous project,
they have studied the escape from ACT therapy through phenotypic plasticity, where the
melanoma cells can reversibly down-regulate the presentation of their specific antigen in an
inflammatory environment. In the new experimental and mathematical models, we compare
this adaptive phenotype switching to a permanent genetic antigen loss. The fitness of these
genetic variants is highly variable and dependent on their environment and thus creates an
interesting evolutionary scenario. We provide a framework to better understand how sub-
clone heterogeneity in tumours and evolutionary dynamics influence immune selection by
T-cell therapy through stochastic events. This work emphasises the need to take these dy-
namics into account when interpreting variant allele frequencies in therapy resistant tumour
specimens.

In the present thesis we focus more on the mathematical modelling and demonstrate how
theoretical approaches and simulations can benefit experimental research through the char-
acterisation of important mechanisms, identification of likely causes for observed phenomena,
and validation of clinical relevance. In Section 4.1, we give a brief summary of the biological
background and the experimental results that are the basis of our model. In Section4.2,
we present the extended stochastic model and explain the hybrid algorithm and parameter
choices that we apply to run simulations. The results of the simulations are discussed ex-
tensively in Section 4.3. Finally, in Section 4.4, we consider the clinical relevance and the
implications for future treatment strategies of our studies.

Larger parts of this chapter were previously made available as a preprint [88]. For the purpose
of this thesis, the content is adapted to a mostly mathematical audience. Besides rearranging
some sections, the paragraphs on the experimental methods and results are rewritten in
a condensed way. For a more detailed description we refer to [88]. The paragraph on
the deterministic approximation and the hybrid algorithm was extended substantially, now
including a rigorous justification of the applicability of the limit result from [70], as well
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as a more detailed description of the algorithm along with the corresponding pseudo code.
In the discussion of the simulation results, more details on the necessity of including T-cell
inhibition and a shielding effect into the model are included. Moreover, the critical threshold
for the tumour size at treatment onset and stochastic effects in simulations for spontaneous
mutations are analysed in more detail.

4.1 Medical background and experimental results

In this section we want to give a short overview of the biological context of our research, as
well as the experimental setup and results. A more general background on cancer, therapy
approaches, and the immune system is given in Section 1.4.

Cytotoxic CD8+ T-cells play an important role in tumour immune surveillance. They recog-
nise peptides (epitopes) derived from tumour cell-encoded gene products (antigens) which are
presented on major histocompatibility complex (MHC) class I molecules. Epitope-specific
activation of CD8+ T-cells leads to tumour cell killing through the release of cytotoxic
granules and cytokines, amongst others, which can be exploited therapeutically by different
strategies. One approach is genetic engineering of autologous CD8+ T-cells by introducing a
tumour antigen-specific T-cell receptor (TCR) [61, 118, 178]. After ex vivo expansion these
TCR-transgenic (TCRtg) CD8+ T-cells can be re-infused into the same patient, a procedure
known as adoptive T-cell transfer (ACT). Clinical trials have been conducted in patients
with various types of cancer showing that the emergence of resistant tumour cell variants
restrains durable responses [40, 134, 168].

Malignant melanoma, an aggressive type of skin cancer, is a paradigm disease for the de-
velopment of novel immunotherapies including ACT. Using mouse models, it was previously
found that melanomas can escape from ACT targeting the melanocyte differentiation antigen
Pmel (also known as gp100) by dedifferentiation [117], an epigenetic mechanism also known
as phenotype switching or phenotypic plasticity [93, 94]. Briefly, infiltrating activated Pmel-
specific CD8+ T-cells (Pmel-1 T-cells) instigated pro-inflammatory cytokine release which
induced dedifferentiation and down-regulation of the Pmel antigen in melanoma cells, which
impaired immune recognition and killing [117, 156]. Thus, phenotypic plasticity of melanoma
cells emerges as a relevant mechanism of resistance to immunotherapy [2, 97].

A better understanding how the various cell populations interact over time could help to
improve current ACT regimens, but longitudinal analyses impose challenges with regard to
tissue sampling, both in patients and animal models. We therefore reason that mathematical
modeling as in [67, 116] can complement the experimental approaches. Mathematical models
allowed us to easily manipulate the system and potentially make novel predictions. Baar
et al. have proposed an individual-based stochastic model of ACT [11]. Using adjusted
parameters the model faithfully recapitulated tumour growth kinetics and melanoma cell
state transitions as reported in the previous experimental study [117].
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Here, we advanced the experimental and mathematical models of ACT in order to compare
the evolution of gene edited Pmel antigen loss variants (Pmel knockout; PmelKO) with
adaptive dedifferentiation, because genetically hardwired loss of target antigen expression
or presentation is another key mechanism of resistance to immunotherapy [155, 166, 179].
PmelKO melanoma cells were positively selected by ACT, but unexpectedly they exhibited a
growth defect in the absence of therapy imposed by the bulk wild type (WT) melanoma cell
population. This established an evolutionary scenario of competing tumour cell populations,
where PmelKO and WT melanoma cells switch their fitness in response to ACT.

4.1.1 Experimental setup

Experiments were generally conducted both with HCmel12 and B16F1 melanoma cells. The
latter were used to study the effects of METi on the immune system since they do not respond
to an increased level of METi themselves. However, since the aim of the mathematical
modelling approach was mostly to understand evolutionary dynamics within the tumour, we
focus on the HCmel12 melanoma cells, which were used for the generation of PmelKO cells.
The setup for all the experiments is described extensively in [88].

Therapy protocol

The adoptive T-cell transfer immunotherapy (ACT) protocol that is applied here is similar
to clinical protocols [40, 134] and is an improved version of the ACT therapy described in
[110, 117]. It adds injections of small molecule inhibitors (METi, e.g. capmatinib) of the
c-MET receptor tyrosine kinase and was shown to enhance ACT efficacy in [87]. We only
give the short version of the protocol here (visualised in Figure 4.1) with the information
that is relevant to the mathematical model.

Figure 4.1: Exemplary ACTMETi therapy protocol.

On day 1, cohorts of syngeneic C57BL/6J mice were injected with a total of 2 ·105 HCmel12
melanoma cells (WT, PmelKO or mixtures thereof at different ratios) into the skin of the
flank. When the transplanted tumours reached a size of 3-5 mm diameter (usually around
day 14-18), the advanced ACTMETi therapy was initiated. For five consecutive days, the
mice were injected with METi into the body cavity every 12 hours. On the second day
of METi injections, 2 · 106 naïve Pmel-specific T-cells were injected into the blood and
activated in vivo by an adenoviral vector expressing Ad-hgp100. For animal welfare reasons
mice were sacrificed when tumours exceeded 10 mm in diameter or when signs of illness were
observed.
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Generation of genetic knockout variants

The polyclonal HCmel12 PmelKO variants were generated using the CRISPR-Cas9 genome
engineering technology, targeting the Pmel gene upstream of the region encoding for the
gp100 epitope separately with three different guide RNA sequences in parental HCmel12
melanoma cells. With this technique, the DNA is cut in a specific position and several
nucleotides are deleted or inserted at random, producing Pmelindel cells. Depending on
whether the number of nucleotides differs from that of the wild type by a multiple of three
or not, the reading frame for the production of amino acids stays intact or is shifted, resulting
in so-called in-frame or frame-shift indels. Only frame-shift indels (or in-frame indels that
inserted/deleted a rather long sequence of nucleotides, which are quite rare) truly change
the structure of the resulting epitope and produce a functional knockout. We hence focus
on the frame-shift variants and call those PmelKO cells. In-frame indels are considered as
equivalent to wild type cells, which is supported by the observation that they are preserved
in untreated tumours and almost eradicated under ACTMETi therapy (see [88] for details).
To generate monoclonal HCmel12 PmelKO single cell clones, individual cells were selected
and expanded in vitro. Frequencies of frame-shift and in-frame Pmelindel cells and functional
knockouts, in the case of single cell clones, were determined by amplicon next generation
sequencing (NGS).

The described procedure results in multiple subpopulations of PmelKO cells, both due to
different positions of cutting the DNA and different insertion and deletion of nucleotides.
Experiments were conducted both with polyclonal (genetically slightly different, correspond-
ing to the same guide RNA) and monoclonal (established from a single cell and hence genet-
ically identical) HCmel12 PmelKO cultures. They were either injected into the mice alone or
mixed with different PmelKO and/or parental HCmel12 (WT) cultures at different ratios.

4.1.2 Experimental results

In this subsection we summarise the most important experimental results. The types of
data that were collected and led to the conclusions are: The initial composition of the
melanoma cell population at tumour inoculation, the tumour size measured as diameter in
mm twice weekly, and (in most cases) the tumour composition at the time of harvesting. The
composition of the melanoma cell population, i.e. the frequency of WT cells and different
types of PmelKO cells, was determined by amplicon NGS.

Effects of MET inhibitor (METi) treatment

Regular injections of METi alter the evolution of HCmel12 melanomas in several ways. On
the one hand, they directly influence the melanoma cells by limiting their population growth
(through inhibition of c-MET signalling) and partially counteracting the TNF-α induced
dedifferentiation. The growth deficit was witnessed comparing in vivo growth curves of
untreated HCmel12 tumours with and without METi injections (Figure 4.2A), as well as in
vitro cell growth of WT and METi-resistant HCmel12 melanoma cells under METi treatment
(Figure 4.2B). The Pmel level of HCmel12 cells, i.e. their (de)differentiated phenotype, was
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studied in vitro, where cell cultures were treated with TNF-α, METi, or a combination of
both, as well as control vehicles (Figure 4.2C). The results suggest that METi has little
effect on the differentiation of melanoma cells in the absence of TNF-α. However, it mostly
reverses the cytokine induced dedifferentiation in the presence of TNF-α.
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Figure 4.2: (A) Tumour growth curves of HCmel12 melanomas, untreated (gray) or treated with
METi between day 17 and 21 (red) [87]. (B) Quantification of cell growth of WT and METi-resistant
HCmel12 cells in vitro over 6 days, percentages compare growth under METi treatment to untreated
controls (n=5). (C) Flow cytometric analyses of Ngfr (melanoma dedifferentiation maker) surface
expression in HCmel12 WT melanoma cells exposed to TNF-α or left untreated in combination with
vehicle (DMSO) or METi (capmatinib) treatment.

On the other hand, experiments with HCmel12 METi-resistant variants (HCmel12METi-R)
and B16F1 melanoma cells (which are METi-resistant by nature) have shown that, upon
ACT immunotherapy, METi injections also influence the melanoma-T-cell-dynamics beyond
their direct influence on the melanoma cells, namely through an increased Pmel-1 T-cell
activity. A higher level of METi both accelerates T-cell expansion (Figure 4.3B) and increases
T-cell efficacy (Figure 4.3A) by blocking the recruitment of T-cell-suppressive neutrophils
early during treatment [87].
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Figure 4.3: (A) Individual tumour growth curves of experiments comparing the therapeutic efficacy
of ACT (black) and ACTMETi (red) in mice bearing HCmel12METi-R melanomas. Vertical lines mark
beginning of METi injections, injection of Pmel-1 T-cells, and end of METi injections. Dashed lines
indicate tumours undergoing eradication. (B) Flow cytometry-based quantification of the percentage
of Pmel-1 T-cells in peripheral blood leukocytes from mice treated as in A (1 week after onset of
ACT regimens). (n=8 for ACT; n=12 for ACTMETi).
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4 A stochastic model for melanoma T-cell therapy

Enrichment of PmelKO variants in untreated and ACTMETi-recurrent melanomas

Experiments with mixed melanomas suggest an interesting evolutionary scenario with vary-
ing context-dependent fitness of PmelKOcells. Polyclonal HCmel12 Pmelindel cells were
mixed with HCmel12 WT cells (HCmel12pcMix) to obtain a Pmelindel allele frequency of
20% (roughly 17% of PmelKO, see Figure 4.4). This mixture was injected into mice and
animals bearing established HCmel12pcMix melanomas were treated with ACTMETi, as de-
scribed above, or left untreated for control purposes. When tumours reached a size of 10
mm in diameter, the mice were sacrificed and genomic DNA was isolated to determine the
PmelKO allele frequencies. The results are visualised in Figure 4.5.

Figure 4.4: Composition of HCmel12pcMix melanomas at tumour inoculation for three different guide
RNAs.

In untreated HCmel12pcMix tumours, the average frequency of PmelKO alleles declined to
a level of 7.8%, which suggests a reduced fitness in the context of a bulk HCmel12 WT
population when the immunological selection pressure by Pmel-1 T-cells is absent. When
compared to pure HCmel12 WT tumours, pure HCmel12 PmelKO tumours exhibited very
similar growth rates (see Figure 4.6). This result argues for a scenario where HCmel12 WT
cells impose a large competitive pressure on HCmel12 PmelKO cells.
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Figure 4.5: (A) Individual tumour growth curves of HCmel12pcMix melanomas left untreated or
treated with ACTMETi. Vertical lines mark beginning of METi injections, injection of Pmel-1 T-cells,
and end of METi injections. (B) PmelKO allele percentages in untreated or recurrent ACTMETi-
treated HCmel12pcMix melanomas, #average PmelKO frequency at tumour inoculation (17%).

When treated with ACTMETi therapy, HCmel12pcMix melanomas could no longer be erad-
icated (as they were in the pure WT experiments in [87]). Hence, despite the fact that
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4.2 Extension of the mathematical model

melanoma cells can down-regulate the Pmel expression by dedifferentiation, a complete ge-
netic abrogation of antigen expression provides a survival benefit for the tumour. The ex-
periments show a strong enrichment of PmelKO cells in recurrent HCmel12pcMix melanomas
with an average of 58.5%, which suggests a gain in fitness in comparison to HCmel12 WT
cells in response to ACTMETi. However, the enrichment was surprisingly highly variable,
ranging from 20% to almost 100%.
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Figure 4.6: Tumour growth curves of HCmel12 WT (red) versus mixed HCmel12 PmelKO (blue,
sgRNA-1/2/3 at 1:1:1) melanomas in untreated mice.

In conclusion, this finding supported the notion that genetic Pmel loss reduced HCmel12
fitness in untreated melanomas, but strongly increased their fitness under ACTMETi.

4.2 Extension of the mathematical model

The experimental approach with HCmel12pcMix melanomas, described in the previous sec-
tion, establishes an evolutionary scenario of competing tumour cell populations undergoing
a reciprocal fitness switch upon ACTMETi therapy. This prompts us to use mathematical
modelling in order to better understand cell population dynamics and potentially explain
the highly variable enrichment of PmelKO cells found in recurrent melanomas.

4.2.1 Stochastic model of ACTMETi with PmelKO variants

To study the evolution of melanomas under the improved ACTMETi therapy, we use an
individual-based continuous-time Markov process that is an extension of the model by Baar
et al. [11]. This model itself is based on an individual-based model of adaptive dynamics,
that we introduce in Section 1.2 and study in Chapters 2 and 3.

In the following, we adjust the model in [11] according to the context of HCmel12pcMix

melanomas treated with ACTMETi. The main changes are the addition of negative feedback
in the immune system, i.e. cytokine-mediated inhibition of T-cells, the possibility of genetic
mutations, and the shielding effect against T-cell infiltration of the tumour. We consider six
different types of interacting cell populations or molecules, collectively termed as individuals:
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4 A stochastic model for melanoma T-cell therapy

Differentiated (Diff) and dedifferentiated (Dedi) WTmelanoma cells, PmelKO melanoma cells
(KO), CD8+ Pmel-1 T-cells (CD8), cytokines (Cyto), and dead melanomas cells (Dead). The
latter are included, because they contribute to the measured tumour sizes, although they
do not influence the evolution of the other cells in the mathematical model. Cytokines
comprise a variety of different molecules, in particular T-cell effector cytokines such as TNF-
α and IFN-γ, that evoke a pro-inflammatory microenvironment promoting melanoma cell
dedifferentiation and up-regulation of negative immune checkpoint molecules [39, 117, 154,
156]. The state of the mathematical process

N(t) = (NDiff (t), NDedi(t), NKO(t), NDead(t), NCD8(t), NCyto(t)) (4.1)

describes the numbers of these different types of individuals (cells, cytokines) that are present
in the tumour tissue as a function of time t starting with tumour cell inoculation at t = 0.

The dynamics of the Markov process are determined by a number of events that change
the state of the population and occur at exponential rates. Those rates depend on fixed
parameters as well as the current state of the population. The evolution of the Markov
process is described by its infinitesimal generator that is of the form

Lφ(N) =
∑
e∈E

(φ(N + ve)− φ(N))Re(N), (4.2)

where E is the set of possible events, ve is the change in the population associated to an
event, Re(N) is the rate at which the event occurs, and φ is a measurable bounded function.
It can be constructed rigorously similar to the process in [77]. In the model we consider the
following events and rates (δi = ith unit vector), visualised in Figure 4.7:

Differentiated WT melanoma cells

- reproduce clonal: ve = δDiff , Re(N) = (1−m)bDiNDiff

- switch to dedifferentiated state (naturally): ve = −δDiff+δDedi, Re(N) = sDi,DeNDiff

- die (naturally and due to competitive pressure): ve = −δDiff + δDead,
Re(N) = (dDi + cDi,DiNDiff + cDi,DeNDedi + cDi,KONKO)NDiff

Dedifferentiated WT melanoma cells

- reproduce clonal: ve = δDedi, Re(N) = (1−m)bDeNDedi

- switch to differentiated state (naturally): ve = −δDedi + δDiff , Re(N) = sDe,DiNDedi

- die (naturally and due to competitive pressure): ve = −δDedi + δDead,
Re(N) = (dDe + cDe,DiNDiff + cDe,DeNDedi + cDe,KONKO)NDedi

PmelKO melanoma cells

- reproduce clonal: ve = δKO, Re(N) = bKONKO

- arise as (spontaneous) mutants from (de)differentiated melanoma cells: ve = δKO,
Re(N) = m(bDiNDiff + bDeNDedi)

- die (naturally and due to competitive pressure): ve = −δKO + δDead,
Re(N) = (dKO + cKO,DiNDiff + cKO,DeNDedi + cKO,KONKO)NKO
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4.2 Extension of the mathematical model

Dead melanoma cells

- get disintegrated: ve = −δDead, Re(N) = dDeadNDead

CD8+ Pmel-1 T-cells (abbreviated as T-cells)

- reproduce/get activated/get recruited and simultaneously secrete ` cytokines: ve =
δCD8+`δCyto, Re(N) = bCDNDiffNCD8[NDiff/(NDiff+NDedi+NKO)]α(1−hNCyto)+

- kill differentiated melanoma cells: ve = −δDiff + δDead,
Re(N) = kDiNDiffNCD8[NDiff/(NDiff +NDedi +NKO)]α(1− hNCyto)+

- die/get inactive: ve = −δCD8, Re(N) = dCDNCD8

Cytokines

- induce an additional dedifferentiation of melanoma cells: ve = −δDiff + δDedi,
Re(N) = sCyDi,DeNCytoNDiff

- get disintegrated: ve = −δCyto, Re(N) = dCyNCyto

†
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Figure 4.7: Interaction diagram displaying cells/molecules (filled circles) and mechanisms that are
incorporated in the mathematical model. Arrows represent possible changes to the state of the
system, i.e. events e ∈ E , like cell division, cytokine secretion, or cell death. Formulae describe the
rates at which these population changes occur (per individual from which the arrow emanates).

Most rates correspond to a standard birth-and-death process with competition and switch-
ing/mutation. The unusual rates are the ones of T-cell reproduction and melanoma cell
killing. They do not only depend on the number of differentiated melanoma cells and T-
cells but include two additional factors. [NDiff/(NDiff + NDedi + NKO)]α represents the
effect of differentiated cells being shielded from the T-cells by other melanoma cells, not
susceptible to the T-cells. In an otherwise non-spatial model that assumes the individuals
to be well-mixed, it partially takes into account the spatial structure of the tumour and
the fact that dedifferentiated WT and PmelKO melanoma cells can physically prevent an
effective infiltration of the differentiated WT melanoma cells by the T-cells. The proportion
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4 A stochastic model for melanoma T-cell therapy

of differentiated cells [NDiff/(NDiff + NDedi + NKO)] is weighed by a parameter α that
determines the influence of this shielding effect. The factor (1 − hNCyto)+ corresponds to
cytokine-induced T-cell inhibition. As the number of inflammatory cytokines increases, the
melanoma cells up-regulate PD-1 ligands (PD-L1) that inhibit the immune reaction. We
comment on the necessity of adding the shielding effect and T-cell inhibition to the model
in the next section, where we discuss the simulation results.

The ACTMETi therapy protocol is modelled through an addition of T-cells on the respective
day of adoptive T-cell transfer and a temporary change of parameters during the five days of
METi injections. These injections of METi are not modelled by an additional particle, which
is reasonable since regular injections ensure a relatively stable level of METi, which is then
degraded quickly after the injections stop. During the five days, melanoma cell reproduction,
cytokine-induced dedifferentiation of WT melanoma cells, and T-cell inhibition are down-
regulated, while reproduction and killing activity of T-cells are up-regulated, based on the
experimental data in [87].

4.2.2 Law of large numbers/deterministic approximation and hybrid algorithm

In simulations, we use a Gillespie-type algorithm that generates a realisation of the stochastic
process by simulating single events [83]. Since this method is computationally intensive in
large populations with frequent events, we combine stochastic simulations of rare events and
deterministic simulations (employing Runge-Kutta methods [27, 157, 115]) of frequent events
to reduce the running time while keeping random effects such as subpopulations dying out.
Similar approaches have been discussed in [126, 159].

Deterministic approximation

A deterministic approximation of frequent events is reasonable due to the law of large num-
bers result from Ethier and Kurtz [70]. For an extensive discussion of limit approximations
of individual-based Markov processes see the previous two chapters of this thesis. In this
particular context, the result can be stated as follows:

Theorem 4.1 ([70], Ch. 11, Thm. 2.1). Let NK , K ∈ N, be Markov processes on Ω ⊂ Rd
with generators

L̃Kφ(N) =
∑
e∈E

(φ(N + ve)− φ(N))KR̃e
(
N

K

)
. (4.3)

Suppose that, for each compact Ω0 ⊂ Ω,∑
e∈E
|ve| sup

n∈Ω0

R̃e(n) <∞ (4.4)

and there exists CΩ0 <∞ such that

sup
n1,n2∈Ω0

∣∣∣∣∣∑
e∈E

ve(R̃e(n1)− R̃e(n2))
∣∣∣∣∣ ≤ CΩ0 |n1 − n2|. (4.5)
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4.2 Extension of the mathematical model

Assume that NK(0)/K → n0 ∈ Ω almost surely, as K → ∞. Then, for every T ≥ 0,
(NK(t)/K)t∈[0,T ] almost surely converges uniformly to (n(t))t∈[0,T ], which is the unique solu-
tion to the differential equation

ṅ(t) =
∑
e∈E

veR̃e(n(t)) (4.6)

with initial condition n(0) = n0.

We want to apply this result to approximate the stochastic process that is described above
with the deterministic solution to a differential equation. If, for some large but fixed K ∈ N,
we can rewrite the generator of N(t) with rates R̃e as

Lφ(N) =
∑
e∈E

(φ(N + ve)− φ(N))Re(N) =
∑
e∈E

(φ(N + ve)− φ(N))KR̃e
(
N

K

)
(4.7)

and check the conditions of the theorem for these rates R̃e, then N(t)/K ≈ n(t) with

ṅ(t) =
∑
e∈E

veR̃e(n(t)). (4.8)

To construct the new rates R̃e, we have to rescale some of the parameters in the non-linear
original rates Re with the fixed K. More precisely, we replace all competition parameters
c∗,∗ with Kc∗,∗, the parameter for cytokine-induced dedifferentiation sCyDi,De with KsCyDi,De,
the parameter for T-cell inhibition h with Kh, the parameter for T-cell proliferation bCD
with KbCD, and the parameter for the killing of differentiated WT cells kDi with KkDi. For
example, if e is the event of cytokine-induced dedifferentiation,

Re(N) = sCyDi,DeNCytoNDiff = K(KsCyDi,De)
NCyto

K

NDiff

K
, (4.9)

and hence R̃e(n) = KsCyDi,DenCytonDiff . Apart from these changes, the new rates are the
same as the original ones.

We check the conditions for these R̃e on

Ω :=
{
n ∈ R{Diff,Dedi,KO,Dead,CD8,Cyto}

+ : nDiff + nDedi + nKO > ε
}
, (4.10)

for some small ε > 0.

Condition (4.4) is automatically satisfied since E is finite, Ω0 is compact, and the only
non-polynomial factor nDiff/(nDiff + nDedi + nKO) is bounded by 1 for all n ∈ Ω.

To check condition (4.5), we note that, since E is finite, we can look at each event e separately.
We can also consider different factors individually, as long as they are bounded on compact
subsets Ω0 ⊂ Ω, since∣∣∣ve(R̃1

e(n1)R̃2
e(n1)− R̃1

e(n2)R̃2
e(n2))

∣∣∣
≤ |ve|

(∣∣∣R̃1
e(n1)

∣∣∣ · ∣∣∣R̃2
e(n1)− R̃2

e(n2)
∣∣∣+ ∣∣∣R̃2

e(n2))
∣∣∣ · ∣∣∣R̃1

e(n1)− R̃1
e(n2)

∣∣∣) . (4.11)

Since |(1− hn1,Cyto)+ − (1− hn2,Cyto)+| ≤ h|n1 − n2| and 1/(nDiff + nDedi + nKO) is both
bounded and Lipschitz-continuous away from nDiff + nDedi + nKO = 0, condition (4.5) is
satisfied for our choice of Ω.
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4 A stochastic model for melanoma T-cell therapy

Hybrid algorithm

We now want to apply this approximation result to speed up simulations for our stochastic
model. In collaboration with the group of Prof. Martin Rumpf at the Institute for Numerical
Simulations, in particular his student Kai Echelmeyer, we have developed a hybrid algorithm
that combines a classical Gillespie algorithm with Runge-Kutta methods [66].

While a Gillespie algorithm produces an exact realisation of the stochastic process, it is
computationally very heavy since every event is simulated separately. This particularly
takes effect in large populations, where there are many reproduction and death events in
a short period of time. In this case, the algorithm must perform many steps in order to
simulate a time span of interest.

In contrast to this, the Runge-Kutta methods for the deterministic approximation of the
stochastic process run much faster. However, they neglect any stochasticity, which is par-
ticularly relevant in small populations. In those scenarios, random fluctuations could cause
extinction of a subpopulation, while the deterministic solution will never quite hit zero. We
want to keep these stochastic effects since for example the T-cells could die out and through
this induce a relapse of the tumour.

In our algorithm we do not distinguish between small and large subpopulations, but rare
and frequent events. We apply the deterministic approximation to the frequent events, i.e.
events with rates R̃e above a certain threshold, which is not directly in line with the choice
of Ω above. However, since the rates depend on the sizes of the different subpopulations,
there is a direct correspondence and we can choose ε such that all population states that
produce (partially) super-critical rates lie in Ω.

The stochastic-deterministic hybrid algorithm is implemented in C++. In the algorithm,
the rates R̃ depend on the time as well as the state of the population. This is due to the
fact that we allow for a change of parameters, e.g. during METi-injections. The threshold
values lower(K) and upper(K), that determine whether an event is treated stochastically
or deterministically, are chosen of order K−1/2. This is because fluctuations of the rescaled
stochastic process are of order K−1/2 (compare for example the diffusion approximation in
[171]) and we want to make sure that we allow for extinction of a subpopulation due to
stochastic fluctuations. The parameters αij , βi, and γi determine the Runge-Kutta method
and are in our case chosen as follows (summarised in the corresponding Butcher-tableau):
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1
2

1
2 0 1

2
1 0 0 1

1
6

1
3

1
3

1
6

In the following we present the pseudo code for our stochastic-deterministic hybrid algorithm.
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4.2 Extension of the mathematical model

More details can be found in [66].

Algorithm 1: Hybrid Algorithm
Input: number of types d, capacity K,
event set E with event vectors ve and rates R̃e(t, n),
stochastic events Es, deterministic events Ed,
thresholds for update lower(K) < upper(K),
maximal number of iterations kmax, end time T , step size τ
initial condition n0
Output: Evolution of types {tk, n(tk)}k
k = 0, t0 = 0, n(0) = n0
while k ≤ kmax and tk ≤ T and

∑d
i=1 ni(tk) > 0 do

for e ∈ Es do
if R̃e(tk, n(tk)) > upper(K) then
Es = Es\e, Ed = Ed ∪ e

for e ∈ Ed do
if R̃e(tk, n(tk)) < lower(K) then
Ed = Ed\e, Es = Es ∪ e

tk+1 := tk + τ , t← 0, w ← 0
while t < τ do

R̃tot ←
∑
e∈Es R̃e(tk + t, n(tk) + w))

sample ttot ∼ Exp(KR̃tot)
if t+ ttot ≤ τ then

sample e∗ ∈ Es proportional to {R̃e(tk + t, n(tk) + w)}e∈Es
w ← w + ve∗

K

t← t+ ttot

for 1 ≤ i ≤ 4 do
κi ← 0
for e ∈ Ed do

κi ← κi + R̃e
(
tk + γiτ, n(tk) + τ

∑i−1
j=1 αijκj

)
n(tk+1) :=

[
K
(
n(tk)+τ

∑4
i=1 βiκi

)]
K

n(tk+1)← n(tk+1) + w
k ← k + 1

4.2.3 Parameter choices

We have two sets of parameters corresponding to two sets of experiments. First, the exper-
iments with pure wild type tumours from Glodde et al. [87], which are displayed in Figure
4.11A, and second, the experiments including PmelKO cells that are new to [88]. Between
the sets of experiments, the melanoma cells showed slightly different behaviour (e.g. different
speed of growth), however this can be achieved through variation of the parameters, leaving
the systemic level (different events, structure of the rates) unchanged.
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4 A stochastic model for melanoma T-cell therapy

In the following, we describe how the parameter values were either derived from the experi-
ments to fit the model to the data or chosen to simulate scenarios beyond the experiments.
The parameter choices for the two experimental setups and with or without the influence of
METi injections are summarised in Table 4.1.

Initial cell numbers and scaling parameter K

We assume that the tumour takes the form of a 3-dimensional ball to relate the number of
cells in our model to the tumour diameter measured in the experiments. A 5 mm tumour
contains roughly 7 ·107 cells and since the measured tumour sizes vary from 1 mm ≈ 5.6 ·105

cells to 10 mm ≈ 5.6 · 108 cells, we choose K = 107 as the typical size for the deterministic
approximation. The number of initially injected melanoma cells is 2 · 105. Since likely not
all of these cells survive and contribute to form the growing tumour, the initial condition
NDiff (0) +NDedi(0) +NKO(0) is varied between 104 and 2 · 105.

Reproduction, death, and competition rates

The growth parameters of the different melanoma cells can be approximated from in vivo ex-
periments where tumour cells are injected into mice and then left to grow without treatment.
We set the death rates to 0.1 and assume the same rates for differentiated and dedifferenti-
ated wild type tumour cells, since we cannot distinguish them in the experiments. Through
a logistic fitting, we determine the birth and self-competition rates. The cross-competition
between PmelKO and WT melanoma cells is only relevant to the new experiments. As
mentioned in the previous section and seen in Figure 4.6, the growth rates of pure WT and
PmelKO tumours are very similar and hence the competitive pressure that the WT melanoma
cells impose on the PmelKO melanoma cells is chosen relatively large to fit the percentages
in Figure 4.5B (results in Figure 4.16B).

Switch between differentiated and dedifferentiated melanoma cells

The rates for natural and cytokine-induced switching between differentiated and dediffer-
entiated WT melanoma cells are chosen to fit experiments from Figure 4.2C, where WT
melanoma cells are stimulated in vitro with TNF-α and/or METi for 72 hours, during which
an equilibrium is attained. Without treatment, in a vehicle control experiment, a ratio of
roughly 0.95:0.05 of differentiated to dedifferentiated melanoma cells is observed, which de-
termines the ratio between the natural switch rates. The actual size of the rates is then
chosen to make sure that an equilibrium is attained within 72 hours. This ratio shifts to
approximately 0.65:0.35 under the influence of TNF-α, which indicates an additional dedif-
ferentiation, induced by inflammatory cytokines. Under addition of METi alone, the ratio
is about the same as in the control case, while a combination with TNF-α results in a ratio
of roughly 0.85:0.15. This suggests that METi has no influence on the natural switch rates,
while partially cancelling the cytokine-induced switch.
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4.2 Extension of the mathematical model

T-cell activity and cytokines

The therapy parameters (reproduction, death, killing efficiency, and inhibition of T-cells,
secretion and degradation of cytokines) are chosen to fit the experiments in Figure 4.11A and
experiments with pure WT tumours corresponding to the protocol in Figure 4.1. During the
course of therapy, 2 ·106 Pmel-1 T-cells are injected into the mice, which do not all infiltrate
the tumour tissue. Simulations show that a variation of the number of T-cells has little to
no effect on the evolution of the tumour since the amount of differentiated WT cells that can
be killed is limited by the T-cell inhibition. Therefore, we fix the number of T-cells that are
added on the respective day to 105 for all simulation runs. The variation between different
mice is obtained by running simulations with different initial conditions (initial number of
melanoma cells). The effect of METi on the proliferation, killing efficiency, and inhibition of
T-cells is determined comparing experiments with therapy protocols including and excluding
METi injections.

Dead melanoma cells

The parameter for the degradation of dead melanoma cells is chosen to fit the descent of
the tumour size during the 5 days of METi injections. During this phase, the most dead
melanoma cells are produced due to effective killing by T-cells, which contributes to the
measured tumour diameter.
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Figure 4.8: (A) Percentage of PmelKO cells in simulations, taken at tumour size of 10 mm, varying
parameter α and initial size of the tumour. Initial portion of PmelKO cells always at 17.1%. (B)
Percentage of PmelKO cells in simulations, taken at varying tumour sizes and parameters α. Initial
tumour of medium size with 17.1% PmelKO cells.
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Shielding effect

The parameter α, which scales the effect of differentiated cells being shielded from T-cell
infiltration by other melanoma cells, is chosen to fit the percentages in Figure 4.5B (results in
Figure 4.16B). The parameter has little influence in the simulations with pure WT tumours,
which is why we determine it after fitting the other therapy parameters. An increase in
α corresponds to a larger shielding effect. Since the experimental data in Figure 4.5B has
a broad spectrum, we investigate several sources of variation to determine α. In Figure
4.8A, the composition of the tumour is analysed at a diameter of 10 mm, while the initial
conditions are varied (keeping the initial percentage of PmelKO cells at 17,1%). Even though
we compare initial sizes that lie below and above the critical threshold for therapy success,
the percentages are very similar. Therefore, we fix the initial number of cells to a medium
amount of 105 cells in Figure 4.8B and vary the time point at which the percentage is taken
between the times when 9 and 11 mm diameter are reached. Since, in the experiments, the
tumour is sequenced at the time when it has a size of at least 10 mm diameter, we set α to
4 to obtain an average of around 60% PmelKO cells between 10 mm and 11mm.

Table 4.1 summarises the parameter sets corresponding to the pure wild type experiments
from [87] and the experiments with PmelKO variants from [88]. Notice that these parameters
correspond to the rescaled rates R̃e and the deterministic differential equation. Therefore,
some of them are rescaled by K (see the previous subsection for details).

[87], no METi [87], METi [88], no METi [88], METi
K 10e7 10e7 10e7 10e7
bDi = bDe 0.5 0.113 0.45 0.113
bKO - - 0.46 0.33
dDi = dDe = dKO 0.1 0.1 0.1 0.1
KcDi,Di = KcDi,De =
KcDe,Di = KcDe,De

0.0053 0.0002 0.0047 0.0002

KcKO,KO - - 0.0048 0.003
KcDi,KO = cDe,KO - - 0.00002 0.00002
KcKO,Di = cKO,De - - 0.0117 0.0117
dDead 0.5 0.5 0.5 0.5
sDi,De 0.05 0.05 0.05 0.05
sDe,Di 0.95 0.95 0.95 0.95
KsCyDi,De 2 0.02 2 0.02
KbCD 60 70 70 100
dCD 0.4 0.4 0.4 0.4
KkDi 200 250 100 120
Kh 1.2 0.6 1.5 1
` 3 3 3 3
dCy 1 1 1 1
α 4 4 4 4

Table 4.1: Parameter choices for the different simulation scenarios.
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4.3 Simulation results and comparison to experiments

Natural mutation and variation of parameters

In our model, we introduce the event of a natural mutation to investigate the spontaneous
occurrence of PmelKO mutants due to mutation from the WT population (in contrast to
artificially mixed HCmel12pcMix tumours in experiments). We choose the mutation prob-
ability such that the occurrence of a mutant is likely but fixation is not ensured. With
m = 10−7, the probability of at least one mutant occurring before the therapy starts at
day 14 is approximately 80% but the probability of more than three mutants occurring is
only 10%. This can be calculated using the fact that the growth of the WT melanoma cell
population is roughly exponential in the beginning and the occurrence of mutants is hence
a Poisson point process with a known distribution. Note that for most simulations, e.g. the
ones of HCmel12pcmix tumours, we set m = 0. This is however not significant since single
naturally occurring mutants are of no consequence in a larger PmelKO cell population.

In Figures 4.17 and 4.21, the birth rate bKO and natural death rate dKO of the PmelKO

mutants are varied between [0.3,0.55] and [0.01,0.26] respectively to obtain individual fitness
values rKO = bKO − dKO in [0.2,0.45].

4.3 Simulation results and comparison to experiments

In this section we want to discuss the results of our simulations. We are able to characterise
important mechanisms that need to be included in the model in order to reproduce the
experimental data, like T-cell inhibition and the shielding of differentiated WT melanoma
cells from T-cells. Moreover, we identify the most likely causes for the variable enrichment
of PmelKO melanoma cells in ACTMETi-recurrent HCmel12pcMix tumours, namely the time
point of sequencing the tumour and subclone fitness variability within the PmelKO cell
population. Finally, in simulations we can predict the evolution of the tumour in the case
of a spontaneous occurrence of single PmelKO cells through mutation, and thus validate the
clinical relevance of the experimental results.

4.3.1 T-cell inhibition and threshold for therapy success

The first step in deriving the current model (as described in the previous section) was to
adjust the model of Baar et al. [11] to the new experiments with pure WT melanomas in
[87]. On the one hand, the HCmel12 melanoma cells in those experiments display much more
aggressive growth dynamics than the HCmel3 melanoma cells in the experiments of [117],
which are the foundation for the simulations of Baar et al. On the other hand, injections of
METi were added to the therapy protocol.

Our first approach was to leave the systemic level of the model intact, i.e. keep the structure
of the rates the same and only adjust the parameters to fit the experimental data. How-
ever, simulations of the tumour evolution under ACTMETi therapy could not reproduce the
experimental data (compare Figure 4.11A). As Figure 4.9 shows, depending on the para-
meters for T-cell efficiency (reproduction rate and killing of differentiated WT cells), either
all tumours went into a relapse or all tumours could be contained apart from exceptionally

135



4 A stochastic model for melanoma T-cell therapy

small tumours. Both of these scenarios do not fit the experimental findings, where tumours
both respond well to treatment and escape the therapy, with a tendency of better treatment
success in small tumours.
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Figure 4.9: Growth curves of tumours undergoing ACTMETi therapy according to the old model,
generated by simulations for different initial tumour sizes, shown as tumour diameter [mm]. T-cell
efficiency either low (A) or high (B). Vertical lines mark beginning of METi injections, injection of
Pmel-1 T-cells, and end of METi injections. Dashed lines indicate tumours undergoing eradication.

An explanation for the type of behaviour that we see in the simulations is the fact that, in
the old model, T-cells and differentiated WT melanoma cells interact in a predator-prey like
manner, where the T-cell proliferation and melanoma cell killing rates are proportional to
the number of differentiated WT melanoma cells and T-cells, i.e. of the form bCDNDiffNCD8
and kDiffNDiffNCD8. As a result, T-cell activity increases with the size of the targeted cell
population and large tumours trigger a more effective treatment. Independent of the initial
conditions, the system converges to the same stable state balancing T-cells and melanoma
cells. Depending on the parameters for T-cell efficiency, this stable state is either at a high
level of melanoma cells, causing a tumour relapse, or a low level, resulting in containment
of the tumour. This can be compared to the discussion of the simpler pure predator-prey
system (1.7) in Section 1.2. Figure 1.1B shows the same fluctuating convergence towards an
equilibrium state that depends on the rate at which predators kill their prey, which is the
equivalent of T-cell efficiency. The relapse of very small tumours under high T-cell efficiency
is caused by the extinction of T-cells due to random fluctuations, as shown in Figure 4.10.

To counteract this effect, and since T-cells cannot physically proliferate infinitely fast, we
include aspects of negative feedback within the immune system into our new model. In-
flammatory cytokines like INF-γ promote the up-regulation of negative immune checkpoint
molecules (PD-L1) on melanoma cells, which inhibit the immune reaction. To model this, we
introduce the factor (1− hNCyto)+ into the rates for T-cell proliferation and melanoma cell
killing, which decreases T-cell activity as the number of cytokines increases until eventually,
at a cytokine level of NCyto = 1/h, the T-cells are shut down. Since the cytokines themselves
are secreted at T-cell proliferation in our model, this constitutes a negative feedback loop
within the immune system that limits the efficacy of treatment.
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Figure 4.10: Simulation (and log-plot) of the evolution of different cell/molecule types for for tumours
undergoing ACTMETitherapy in a very small tumour for high T-cell efficiency. Vertical lines mark
beginning of METi injections, injection of Pmel-1 T-cells, and end of METi injections.

Simulations using this adjusted model recapitulated the tumour growth kinetics of HCmel12
WT melanomas treated with ACTMETi from [87] as shown in Figure 4.11.

When comparing the experimantal and simulated data, note that tumours with a diameter
below 1 mm will likely not be detected in the experiments. Tumours that are marked as
undergoing eradication in Figure 4.11 are more likely to exists at a small population size,
contained by the T-cell population and undergoing predator-prey like oscillations. This is
predicted by the mathematical model and has also been witnessed in experiments, see [152],
where this state was described as a so-called immune equilibrium. While our simulations
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Figure 4.11: (A) Tumour growth curves from experimental data published in Glodde et al. [87]. (B)
Tumour growth curves generated by simulations for different initial tumour sizes. Shown as tumour
diameter [mm], vertical lines mark beginning of METi injections, injection of Pmel-1 T-cells, and end
of METi injections. Dashed lines indicate tumours undergoing eradication.

can recapitulate the size of the tumour at treatment onset and the approximate duration of
tumour remission and eradication, it is of note that they also predicted a critical threshold
for treatment success. Below a critical tumour size at treatment onset (roughly 6 mm),
ACTMETi achieves long-term melanoma control or eradication. Above this threshold, the T-
cells cannot contain the tumour and a remission occurs. This is in line with the experimental
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4 A stochastic model for melanoma T-cell therapy

data.

In the corresponding deterministic system, this threshold marks a critical point. Slight
perturbations at the time of treatment onset amplify and lead to very different paths of
tumour evolution. In our simulations, we can witness both courses of treatment for the same
initial conditions, see Figure 4.12. This is a case of stochastic behaviour in the interior of the
state space, where no subpopulation is small and in danger of dying out due to fluctuations.
However, simulations also show that the fate of the melanoma cell population is decided
early on, due to fluctuations in the beginning of tumour growth that determine whether the
tumour size at treatment onset is sub- or super-critical.
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Figure 4.12: Simulations of the evolution of different cell/molecule types for tumours undergoing
ACTMETitherapy. Both trajectories are generated with the same initial conditions that produce
tumours near the critical threshold for size at treatment onset. Vertical lines mark beginning of
METi injections, injection of Pmel-1 T-cells, and end of METi injections.

Overall, our mathematical modelling approach for pure WT melanomas was able to identify
T-cell inhibition as a key mechanism in the immune response and predict a critical threshold
for therapy success.

4.3.2 Competitive pressure and shielding effect

Next, we simulate the dynamics of pre-existing PmelKO melanoma cells within a bulk WT
melanoma cell population, because we seek to explain the different enrichment of PmelKO

cells found in untreated or ACTMETi-recurrent HCmel12pcMix melanomas from the new ex-
periments (see Figure 4.5B). In the mathematical model, we distinguish two notions of fitness,
similar to the concepts in our theoretical work in the previous chapters. The fixed individual
fitness r of a certain cell type is composed of its cell division rate b and natural death rate
d and describes its growth rate in a competition-free environment. The context-dependent
fitness f(N) describes the growth rate of a cell type taking into account the competition c
between individuals in a population of state N . For a single mutant individual within a bulk
population at equilibrium, the context-dependent fitness is equal to its so-called invasion
fitness (first introduced in [139] under a different name). For example, the fixed fitness of
PmelKO cells is rKO = bKO − dKO while their context-dependent fitness in a population of
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4.3 Simulation results and comparison to experiments

state N is

fKO(N) = bKO − dKO − cKO,DiNDiff − cKO,DeNDedi − cKO,KONKO. (4.12)

Since the overall growth rate is very similar for untreated pure WT or PmelKO melanomas
(Figure 4.6), their individual fitness and self-competition parameters are also chosen as
similar. The reduced (context-dependent) fitness of PmelKO cells in HCmel12pcMix tumours
is modelled via a high competitive pressure cKO,Di and cKO,De that WT melanoma cells
impose on PmelKO melanoma cells. Figure 4.13 shows how the growth of the unfit PmelKO

melanoma cell population slows down until a critical number of WTmelanoma cells is reached
and its overall growth rate (context-dependent fitness) becomes negative. The number of
PmelKO melanoma cells then decreases and would eventually reach zero. In the experiments,
however, mice needed to be sacrificed before this would happen.
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Figure 4.13: Simulation of the evolution of different cell/molecule types for the untreated case
(number of cells in 107). The vertical line marks the time that a 10 mm tumour diameter is reached.

If Pmel-1 T-cell killing of WTDiff melanoma cells was not influenced by the presence of
PmelKO melanoma cells, our simulations predict that the enrichment of PmelKO cells in
ACTMETi-recurrent melanomas would be a lot higher than what was measured experiment-
ally, making up nearly the entire melanoma cell population (see Figure 4.14).

However, if the portion of PmelKO melanoma cells is high, one may assume that differenti-
ated WT melanoma cells will be ’shielded’ from Pmel-1 T-cell recognition and killing due to
physical obstruction, an immunosuppressive tumour microenvironment, and other mechan-
isms. Our model is per se non-spatial and assumes a well-mixed population. We therefore
represent this shielding effect by introducing the percentage of differentiated WT melanoma
cells (out of all tumour cells) as a factor into the killing rate of Pmel-1 T-cells and also their
proliferation rate since Pmel-1 T-cell activation depends on Pmel antigen presentation. The
influence of this factor is determined by its exponent α, which we termed shielding parameter.
The killing rate thus takes the form

Re(N) = kDiNDiffNCD8

(
NDiff

NDiff +NDedi +NKO

)α
(1− hNCyto)+. (4.13)
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Figure 4.14: Simulation (and zoom-in) of the evolution of different cell/molecule types under
ACTMETi, not taking into account a shielding effect (number of cells in 107). Vertical lines mark
beginning of METi injections, injection of Pmel-1 T-cells, end of METi injections, and the time that
a 10 mm tumour diameter is reached.

The T-cell proliferation rate has the same structure. A higher value of α causes a larger
shielding effect through dedifferentiated WT and PmelKO melanoma cells. Details on the
determination of the parameter α are given in the previous section.

Figure 4.15 shows how, under ACTMETi, the PmelKO cell population grows rapidly, as soon
as the number of WT cells drops low enough to no longer impose a large competitive pressure
(right zoom-in panel). As a result, the few remaining differentiated WT cells are protected
by the abundant PmelKO cells, which allows for the recovery of the WT population. As soon
as WT cells surpass the critical level for competition, the number of PmelKO cells decreases
again.
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Figure 4.15: Simulation (and zoom-in) of the evolution of different cell/molecule types under
ACTMETi (number of cells in 107). Vertical lines mark beginning of METi injections, injection
of Pmel-1 T-cells, end of METi injections, and the time that a 10 mm tumour diameter is reached.

To sum up the results of this subsection, we model the reduced fitness of PmelKO cells in
the untreated case through a high competitive pressure that is imposed by the WT cell
population. We identify the shielding of differentiated WT melanoma cells from Pmel-1
T-cells through other melanoma cells as an important mechanism to prevent a full invasion
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4.3 Simulation results and comparison to experiments

by PmelKO cells under ACTMETi therapy, which is not witnessed in experiments.

4.3.3 Variable enrichment of KO through sequencing time and subclone fitness
variability

In this subsection we try to explain the highly variable immune selection of PmelKO cells
in ACTMETi-recurrent HCmel12pcMix melanomas. Figure 4.8A has shown that the tumour
size at therapy onset surprisingly has very little influence on the PmelKO cell percentage,
even when lying above and below the critical threshold for tumour eradication. However,
Figure 4.16A shows that the enrichment of PmelKO cells is highly dependent on the time
point of tumour tissue harvesting and sequencing analysis. Temporarily, those cells make
up a large portion of the tumour with up to 80%, before the wild type cells recover and the
percentage of PmelKO cells drops down to almost 0%. Due to these high fluctuations, part
of the variation in the measured percentage of PmelKO cells can be explained.
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Figure 4.16: (A) Simulation of the evolution of tumour size, shown as diameter [mm], and percentage
of PmelKO cells. Initial tumour of medium size and α = 4. Vertical lines mark beginning of METi
injections, injection of Pmel-1 T-cells, and end of METi injections. (B) Comparison of experimental
data from Figure 4.5B and simulation results for the frequency of PmelKO alleles in ACTMETi-
recurrent HCmel12pcMix melanomas. Percentage determined at a random time ±0.5 mm of the
measured diameter in experiments.

Figure 4.16B compares the percentage of PmelKO cells in harvested tumours between exper-
iments and simulations, with and without ACTMETi. The parameters of the mathematical
model were chosen such that they match the mean percentage of 7.8% PmelKO cells in the
untreated case and 58.5% under ACTMETi (from Figure 4.5B). In the simulations, the time
point of sequencing (harvesting) was varied by picking a random point close to the docu-
mented diameter from experiments (±0.5 mm). This is tenable since the diameter of the
tumour is only measured twice a week and will therefore never be exactly at 10 mm. Nev-
ertheless, especially in the case of ACTMETi, we still witness a much higher variation in the
experimental data compared to the simulations.
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4 A stochastic model for melanoma T-cell therapy

Tumour cell heterogeneity is another possible cause of variation. Experimentally, it is plaus-
ible since, in the polyclonal approach, each of the generated HCmel12 PmelKO subclones
may display a slightly different fitness due to pre-existing genetic or epigenetic heterogen-
eity or even CRISPR-Cas9 off-target effects, amongst others (for more details see the first
section of this chapter). Therefore, we run simulations for varying (individual) fitness rKO
of the PmelKO cells by changing the birth rate bKO or the natural death rate dKO. Figure
4.17 displays the simulated percentage of PmelKO cells in untreated and ACTMETi-recurrent
melanomas, determined at tumour sizes between 9 and 11 mm, plotted against their indi-
vidual fitness rKO.
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Figure 4.17: Predictions for enrichment of PmelKO cells, under varying subclone fitness rKO and
different tumour sizes at time point of harvesting, for untreated (A) and ACTMETi-recurrent (B)
HCmel12pcMix melanomas.

The results show no major difference between the two approaches of varying bKO and dKO.
They do, however, account for most of the variation seen in the experimental data as,
especially in the case of ACTMETi treatment, the percentage of PmelKO cells at the time
point of sequencing (harvesting) largely increases with increasing fitness rKO.

To experimentally confirm this prediction of subclone fitness variability, the Pmelindel dis-
tributions from ACTMETi-recurrent HCmel12pcMix melanomas were analysed. They showed
a predominance of only few frame-shift indels, in contrast to the widespread input distribu-
tion at tumour cell inoculation, which strongly supports a scenario where selection of a few
PmelKO subclones with superior fitness has occurred (for more details see [88]).

To further substantiate this finding, experiments with HCmel12 PmelKO single cell subclones
were conducted, asking whether they exhibited differences in fitness or not. For this purpose,
three PmelKO subclones were mixed with WT cells at different proportions (HCmel12sccMix),
injected into syngeneic mice, and treated with ACTMETi (following the protocol in Figure
4.1) or left untreated. The frequencies of the three PmelKO subclones were determined by
NGS and dual-color imaging and showed that, in ACTMETi-recurrent melanomas, clone #1
was predominantly enriched in all cases, whereas enrichment of the other subclones occurred
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4.3 Simulation results and comparison to experiments

only when the input frequency was increased (see Figure 4.18 and [88] for details). These
results confirm the prediction from our simulations that subclones substantially differ in
fitness.

Figure 4.18: Percentages of individual PmelKO single cell clones (subclones) in ACTMETi-recurrent
HCmel12sccMix tumours determined by amplicon NGS.

Overall, in contrast to the tumour size at therapy onset, the time point of sequencing (or
rather the tumour size at this time) and varying subclone fitness are likely explanations for
the highly variable enrichment of PmelKO cells found in ACTMETi-recurrent melanomas.

4.3.4 Validation of clinical relevance through study of spontaneous mutations

So far, we only addressed scenarios were a substantial amount of pre-existing PmelKO cells
was mixed with WT melanoma cells before tumour inoculation. However, in a clinical
scenario, a mutation would occur spontaneously and start out with a single cell. In order to
determine whether a single PmelKO cell can fixate although it is unfit compared to the bulk
WT cell population, we introduced the possibility of spontaneous mutations from WT cells
to PmelKO cells into our stochastic model.
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Figure 4.19: Simulation (and zoom-in) of the evolution of different cell/molecule types under
ACTMETi, shown as number of cells in 107. Initial pure WT tumour size below critical threshold
for therapy success. Natural mutation to PmelKO cells at rate of m = 10−7. Vertical lines mark
beginning of METi injections, injection of Pmel-1 T-cells, end of METi injections, and the time that
a 10 mm tumour diameter is reached.
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With 1.5 mutations per day on average in a tumour of 3 mm in diameter (typical melanoma
size at treatment onset in our experiments), we have chosen a relatively low frequency of
mutational events to obtain Figure 4.19. For this choice of parameters, in more than half
of the simulation runs the PmelKO cells fixate and cause a relapse within the first 100 days
after tumour inoculation. Even when further decreasing the probability of mutation, this
still happens, but in less cases and at a later time points.

Whenever the PmelKO cells fixate, i.e. surpass a detectable number of cells, the same effects
as in the experimental setup can be witnessed. For a smaller pure WT tumour, below the
critical threshold for tumour eradication, the PmelKO cell population grows and thus protects
the WT cells from dying out. The latter can then recover and eventually expand within the
PmelKO tumour. Compared to the situations with a pre-existing portion of PmelKO cells,
this happens much later, because spontaneously occurring PmelKO cells start to grow from
a much lower number. However, the relapse phase itself takes a very similar course (Figure
4.19, right zoom-in panel).

Figure 4.20 shows the results of a number of different simulation runs, where the PmelKO

cells fixate at different times to cause a relapse. The occurrence of the mutation that caused
the relapse is marked with a cross. This variability is due to the stochasticity of our model
where mutations occur randomly at different time points and PmelKO mutants may die out
before they fixate and hence the first mutation may not always be successful.
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Figure 4.20: Simulations of tumour growth curves, shown as diameter [mm] on a log-scale. Red curve
shows no successful mutation while first successful mutations of blue and green curves are marked
with crosses. Vertical lines mark beginning of METi injections, injection of Pmel-1 T-cells, and end
of METi injections.

As above, in Figure 4.17, we again varied the individual fitness rKO of the PmelKO cells. For
the percentage of PmelKO cells in ACTMETi-recurrent melanoma at 9 to 11 mm diameter we
obtain a similar picture (Figure 4.21A). We see slightly more variability between simulation
runs, particularly for high fitness, and on average lower percentages for the intermediate
fitness values. However, the overall range between the highest and lowest values for rKO
remains the same and there is no major difference between the variation of bKO and dKO.

As mentioned before, not every simulation run shows a successful mutation where PmelKO

cells fixate in the population and and cause a relapse. We have analysed the time points
of occurring relapses (as the time when the tumour reaches a diameter of 10 mm) and
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4.3 Simulation results and comparison to experiments

summarised the results in Figure 4.21B. With increasing fitness rKO, the PmelKO population
can grow faster and thus causes an earlier relapse. As already pointed out in Figure 4.20,
mutations (and thus relapses) can arise at different time points. However, Figure 4.21B
shows that the bulk of the relapses occurs at an early time point and can therefore be traced
back to a mutation event during the first growth phase of the tumour, before the treatment
was initiated.
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Figure 4.21: Analysis of ACTMETi melanomas for sub-critical initial wild type tumour and natural
mutation at rate m = 10−7 under varying subclone fitness rKO = bKO − dKO. (A) Prediction of
enrichment of PmelKO cells for different tumour sizes at time point of harvesting. (B) Time points
when 10 mm diameter are reached (within one year after tumour inoculation). (C) Number of
successful relapses (within one year after tumour inoculation) out of 100 simulation runs.

In addition to the time point of a relapse and the percentage of PmelKO cells in ACTMETi-
recurrent melanoma, we also studied the likelihood of those relapses. Figure 4.21C shows the
number of simulation runs (out of 100) that exhibit a relapse within one year after tumour
inoculation. Besides the expectable higher number of relapses for higher fitness rKO, we also
observe different behaviour between the variation of bKO and dKO. In the cases where the
fitness decrease (compared to rKO = 0.36) is obtained by an increased death rate dKO or
the fitness increase is due to a higher birth rate bKO, we detect fewer relapses than in the
other cases. This is due to the fact that we have higher rates bKO and dKO (while keeping
rKO the same), which causes more birth and death events in the same time interval and thus
higher fluctuations in the PmelKO population. This makes it more likely for the mutant to
die out before fixation, i.e. before it reaches a population size at which it cannot go extinct
due to random fluctuations, and thus relapses become less likely.

Mathematically this is in line with theoretical results calculating the probability of fixation,
within a population at state N , to be proportional to [fKO(N)]+/bKO (see [31]) and thus
to decrease with increasing rate bKO (for constant rKO and hence fKO(N)). Once a certain
population size is reached, the fluctuations have less influence and the PmelKO cells grow
according to their average dynamics, hence their enrichment at relapse is less sensitive to
the different approaches.
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4 A stochastic model for melanoma T-cell therapy

In conclusion, simulations with spontaneously occurring antigen loss mutations have shown
the clinical relevance of the conducted experiments since similar phenomena can be witnessed
during treatment. In this scenario, random events play an important role as they decide if
and when a relapse of the tumour may occur. Possible implications of these stochastic
fluctuations for treatment strategies are discussed in the next section.

4.4 Discussion

In this section we discuss the clinical relevance and implications of our results.

The experiments that are considered in this chapter have all been conducted in mouse models.
Nevertheless, we argue the relevance of our results. The epitope derived from murine Pmel
protein is a low affinity epitope and rather poorly recognised by Pmel-1 T-cells, in contrast
to the corresponding high affinity epitope derived from human Pmel [68, 151]. Thus, the
complex dynamics of antigen down-regulation and ablation under ACT therapy and the
facilitation of tumour immune escape are of even greater importance in the context of human
high affinity epitopes.

Our simulation results emphasise the importance of an early tumour discovery and therapy
initiation. Due to negative feedback within the immune system, there is a threshold for tu-
mour size at treatment onset, above which successful eradication through ACTMETi therapy
or at least control of the melanoma cells in an immune equilibrium is impossible. However,
in those scenarios, it could be promising to first remove a portion of the tumour by surgery
and afterwards treat the remaining cells with immunotherapy.

Moreover, our results underscore the importance of tumour heterogeneity on tumour immune
surveillance of melanomas, as also demonstrated by recent studies analyzing melanoma pa-
tient samples or using UVB-induced mouse melanomas as a models system [133, 176]. We
believe that our findings have important implications for the analysis of patient samples, be-
cause the genomic comparison of pre- and post-treatment tumour specimens, untreated and
recurrent melanomas in our experimental setting, is a standard approach to identify genetic
changes in tumour cells that cause resistance to immunotherapy [179]. A highly variable
enrichment of resistant tumour cell variants limits their detection likelihood, because the
chance of being identified as a recurrent event decreases. We therefore postulate that many
resistance mechanisms to immunotherapy remain to be discovered, in particular those ge-
netic events that are associated with a reduced tumour cell fitness prior to but an increased
fitness upon treatment. Hence, we envision that implementing mathematical models for
evolution into genomic analysis pipelines could help to identify such resistance mechanisms
more reliably.

Finally, our simulations of spontaneous antigen loss mutations further emphasised the im-
portance of stochastic events, in particular in small tumour cell populations. We have shown
that stochastic fluctuations can cause extinction of spontaneously occurring antigen loss vari-
ants even though their context-dependent fitness might be positive (as it is in smaller WT
tumours). This observation is applicable to any small cell population, as for example tu-
mours in remission. It is obvious to target tumours with treatments that impair the overall
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4.4 Discussion

growth of the cell population. We argue that it is most promising to do so with approaches
that actively induce cell death (rather than impair cell division) since this increases fluc-
tuations. In other words, treatments that enforce tumour cell death such as Bcl-2 family
antagonists [3] are predicted to efficiently eliminate residual, possibly resistant, tumour cells
and thus prevent melanoma recurrence. This scenario reminds of a recent study, where
tissue-resident memory CD8 T-cells were shown to achieve long-term immune surveillance
of residual melanoma cells in the skin of mice [152]. Experimental models like this seem to
be suitable to confirm the prediction regarding cell death induction and may eventually con-
tribute to improved therapeutic strategies that prevent tumour recurrences after successful
immunotherapy.
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