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Development of a one-step three dimensional approach for the
phase unwrapping process in a di�erential InSAR stack based on

Small BAseline Subset (SBAS) interferograms

Abstract

Di�erential Interferometric Synthetic Aperture Radar (D-InSAR) is a unique technique to detect
and map deformations of the Earth's surface over large temporal and spatial scales. Processing
a whole stack of multitemporal data allows the generation of multidimensional deformation time
series. One of the most important and critical steps in the analysis is the determination of phase
ambiguities which is called phase unwrapping. The development of the phase unwrapping step in
the context of the Small BAseline Subset (SBAS) method to analyze interferograms is the main
focus of this work. In addition to the Permanent Scatterer Interferometry (PSI), the SBAS method
is one of the most widely used methods for the multitemporal analysis of a D-InSAR stack. The
SBAS method is especially suitable for noisy data because it provides a spatially more dense result.
State of the art in the SBAS analysis is the Minimum Cost Flow (MCF) algorithm to spatially
unwrap one single interferogram and the extended MCF (EMCF) algorithm to multitemporally
unwrap a D-InSAR stack in two steps. Therefore, the problem is divided into two problems of
smaller dimension, the temporal and the spatial phase unwrapping, which in turn can be solved as
a two dimensional MCF problem. The MCF problem can be de�ned as a Linear Program (LP). The
�rst contribution of this thesis is based on a detailed and consistent overview and discussion of the
di�erent formulations and solution methods of the MCF problem in order to �nd the most e�cient
solution for the problem in the context of SBAS.
Methodologically, the two-step algorithm is not optimal as the spatial phase unwrapping which
follows in the second step destroys the temporal constraints which are ful�lled after the temporal
phase unwrapping. So the goal of this thesis is the development of a one-step three dimensional
approach. The number of papers that solve the phase unwrapping multitemporally in one step with
help of the MCF problem is limited. Existing theoretical considerations and basic frameworks have
not been resulting in an optimal solution. In particular the problem of temporal inconsistency, which
occurs with spatially �ltered so called multilooked interferograms, remains unsolved. The spatial
�lter is of particular importance especially with noisy data as it reduces the noise and makes phase
unwrapping easier.
The second contribution of this thesis provides analysis and further re�nements of the two-step
EMCF algorithm. Based on these results a multitemporal one-step phase unwrapping procedure is
�nally developed. This approach is speci�cally designed for multilooked and multitemporally �ltered
SBAS interferograms. Both, simulated and real data are used to validate this approach. The test
region is the Lower-Rhine-Embayment in the southwest of North Rhine-Westphalia, Germany, a very
rural region with noisy data. Thus, there are only very few stable scatterers that can be evaluated.
However, this region requires regular monitoring observations since one of the largest brown coal
occurrences in Europe within this area leads to continuous movements of the Earth's surface. This
work shows that the new approach provides more consistent results so that the deformation time
series of the analyzed pixels can be improved. The performed simulations also demonstrate that
the new approach leads to an improvement, especially in the case of very noisy data. In conclusion,
using the methods developed in this work besides the stable scatterers, distributed scatterers can
also be included in the analysis leading to a spatially increased density of the deformation time
series.



Entwicklung eines einstu�gen dreidimensionalen Ansatzes zur
Lösung der Phasenmehrdeutigkeiten in einem di�erentiellen InSAR

Stapel basierend auf Small BAseline Subset
(SBAS)-Interferogrammen

Zusammenfassung

Das di�erentielle interferometrische Radarverfahren mit synthetischer Apertur (D-InSAR) ist eine
bewährte Technik zur Erkennung und Abbildung von Deformationen der Erdober�äche über groÿe
zeitliche und räumliche Skalen. Die Auswertung eines ganzen Stapels von multitemporalen Daten
ermöglicht die Erzeugung von mehrdimensionalen Deformationszeitreihen. Einer der wichtigsten
und kritischsten Schritte bei der Analyse ist die Au�ösung der Phasenmehrdeutigkeiten. Die Un-
tersuchung der Phasenabwicklung im Kontext der Small BAseline Subset (SBAS) Methode steht
im Mittelpunkt dieser Arbeit. Neben der Permanent Scatterer Interferometry (PSI) ist die SBAS
Methode eine der am weitesten verbreitetsten Methoden für die multitemporale Analyse eines D-
InSAR Stapels. Die SBAS Methode ist besonders für verrauschte Daten geeignet, da sie ein räumlich
dichteres Ergebnis liefert.
Stand der Technik in der SBAS Analyse ist der Minimum Cost Flow (MCF) Algorithmus zur Lösung
der Phasenmehrdeutigkeiten eines einzelnen Interferogramms und der erweiterte MCF (EMCF) Al-
gorithmus zur multitemporalen Phasenabwicklung eines D-InSAR Stapels in zwei Schritten. Dabei
wird das Problem in zwei einfachere Probleme mit kleinerer Dimension unterteilt, die zeitliche
und die räumliche Phasenmehrdeutigkeitslösung, die wiederum als zweidimensionales MCF Prob-
lem gelöst werden können. Das MCF Problem kann als lineares Programm de�niert werden. Der
erste Beitrag dieser Arbeit beruht auf einer detaillierten und konsistenten Übersicht und Diskussion
der verschiedenen Formulierungsarten und Lösungsmethoden des MCF Problems, um die für dieses
Problem e�zienteste Lösungsmethode zu �nden.
Methodisch ist der zweistu�ge Algorithmus nicht optimal, da die im zweiten Schritt durchgeführte
räumliche Phasenabwicklung die zeitlichen Bedingungen, die während der zeitlichen Phasenab-
wicklung erfüllt werden, wieder zerstört. Das Ziel dieser Arbeit ist daher die Entwicklung eines
einstu�gen dreidimensionalen Ansatzes. Die Anzahl der Arbeiten, die die dreidimensionale Phasen-
mehrdeutigkeitslösung in einem Schritt mit Hilfe des MCF Problems lösen, ist begrenzt. Existierende
theoretische Überlegungen und Grundgerüste haben zu keiner optimalen Lösung geführt. Insbeson-
dere das Problem der zeitlichen Inkonsistenz, das bei räumlich ge�lterten Interferogrammen auftritt,
bleibt ungelöst. Das räumliche Filtern ist jedoch gerade bei verrauschten Daten von groÿer Bedeu-
tung, da es das Rauschen reduziert und das Lösen der Phasenmehrdeutigkeiten somit erleichtert.
Der zweite Beitrag dieser Arbeit liefert Analysen und weitere Verfeinerungen des zweistu�gen EMCF
Algorithmus, so dass die Phasenmehrdeutigkeiten letztendlich in einem Schritt multitemporal mit-
tels eines selbst entwickelten Ansatzes gelöst werden können. Dieser Ansatz ist speziell für räumlich
und multitemporal ge�lterte SBAS-Interferogramme entwickelt. Zur Überprüfung dieses Ansatzes
werden sowohl simulierte als auch reale Daten verwendet. Die Testregion ist die Niederrheinische
Bucht im Südwesten Nordrhein-Westfalens, eine sehr ländliche Region mit verrauschten Daten. Da-
her gibt es nur sehr wenige stabile Rückstreuer, die ausgewertet werden können. Die Region erfordert
jedoch eine regelmäÿige Überwachung, da eines der gröÿten Braunkohlereviere Europas innerhalb
des Gebietes zu kontinuierlichen Bewegungen der Erdober�äche führt. Die Arbeit zeigt, dass der
neue Ansatz konsistentere Ergebnisse liefert, so dass die Deformationszeitreihen der analysierten
Pixel verbessert werden können. Anhand der simulierten Daten kann zudem gezeigt werden, dass
der neue Ansatz insbesondere bei sehr stark verrauschten Daten zu einer deutlichen Verbesserung
führt. Zusammenfassend lässt sich sagen, dass mit den in dieser Arbeit entwickelten Methoden neben
den stabilen auch noch verrauschte Rückstreuer in die Analyse einbezogen werden können, sodass
�ächendeckender Deformationszeitreihen resultieren.
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1

1. Introduction

1.1 General Aspects and Motivation

The Earth`s surface is subject to continuously occurring geophysical phenomena from geological
as well as anthropogenic origin. To detect and monitor these deformations globally, satellites
equipped with Synthetic Aperture Radar (SAR) systems have been orbiting the Earth since 1978.
The measured di�erential interferometric phases (D-InSAR) between two acquisition times contain
information about relative topography changes (Bamler and Hartl, 1998, p. R2). Since it is a
satellite based imaging system, large scale deformations can be recorded e�ciently compared to
the pointwise leveling and Global Navigation Satellite System (GNSS) measurements. Analyzing
repeated orbits, allows the creation of deformation time series. Therefore, typically data from
several decades are used and evaluated together in a so called D-InSAR image stack.

There are two most commonly used methods for the multitemporal analysis of a D-InSAR stack,
the Permanent Scatterer Interferometry (PSI) (Ferretti et al., 2001) and the Small Baseline Subset
(SBAS) (Berardino et al., 2002) method. Both methods aim to circumvent the two main limitations
of SAR interferometry, spatial and temporal decorrelation. With increasing temporal and spatial
baselines between the two repeating orbits, the noise in the interferogram becomes larger. To
overcome this, the PSI method uses only pixels that have stable backscattering characteristics over
time and therefore low noise. However, these pixels are very rare. They only occur in urban areas
or by man-made corner re�ectors. The SBAS method, on the other hand, prevents decorrelation
e�ects by limiting the maximum allowed temporal and spatial baseline between the SAR images.
Thus, interferograms are only generated between SAR images if the maximum temporal or spatial
baseline is not exceeded. Especially in rural areas, the SBAS method is better suited to obtain a
spatially more dense result.

The test region investigated here is the Lower-Rhine-Embayment in the southwest of North
Rhine-Westphalia, Germany. It is a very rural area with many forests in the south. Within this
region there is one of the largest brown coal occurrences in Europe with the still active open-cast
mines Hambach, Garzweiler and Inden and the closed coal mines Sophia-Jakoba in the mining
region Erkelenz and Emil Mayrisch in the mining region Aachen. To extract the brown coal, the
groundwater must be constantly pumped out so that the Earth's surface subsides in the area
around the active open-cast mines. After the cessation of the mines, the groundwater rises again
which causes the Earth's surface to elevate again. Consequently, the test region is subjected to
continuous ground movements which require regular monitoring observations (Boje et al., 2008).
To detect the deformations at a large scale, the SBAS method should be used, as stable scatterers
are very rare in this region.

The SBAS analysis performed in this work is done in cooperation with Joanneum Research Digital,
where the Remote Sensing Software Graz (RSG) is developed. One of the most critical steps in
the SBAS processing chain is the resolution of the phase ambiguities which is done in the context
of phase unwrapping. Due to the sinusoidal nature of the signal, the phase can only be measured
modulo 2π. State of the art in the SBAS analysis is the Minimum Cost Flow (MCF) (Costantini
and Rosen, 1999) algorithm. Originally, the algorithm was developed to solve phase ambiguities
of a single interferogram. An Extended MCF (EMCF) (Pepe and Lanari, 2006) algorithm exists
which takes the temporal information between the interferograms into account. Thus, it is possible
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to solve the phase ambiguities multitemporally in a D-InSAR stack. In the context of this work
the EMCF algorithm was also implemented in RSG. The EMCF algorithm works in two steps.
However, methodologically this stepwise approach is not optimal so the aim of this thesis is the
development of a one-step approach in order to unwrap the phase multitemporally.

1.2 Scienti�c Context

In many imaging systems, such as Fringe Projection Pro�lometry (FPP), Magnetic Resonance
Imaging (MRI) or radar interferometry (InSAR), the phase is used to get information about
physical and geometrical properties of the measured objects. In FPP the phase is related to the
surface geometry of objects, in MRI to the degree of magnetic �eld inhomogeneity and in InSAR
to the height of the Earth's surface. In all cases the phase unwrapping is required as the phases
can only be measured modulo 2π.

Phase unwrapping is a process to reconstruct the absolute phase φ from the measured wrapped
phase ψ. Given a phase image at a special time tα, the problem at a given pixel xj is stated as

φtαxj = ψtαxj + 2πktαxj (1.1)

with the unknown integer number of phase ambiguities k. To unwrap the phase, the 2π discontinu-
ities have to be identi�ed and removed by adding or subtracting multiple integer numbers of 2π.
However, this is an ill-posed problem as there is no unique solution if no further assumption is
made (e.g. Hanssen, 2001, p. 55). Most phase unwrapping algorithms estimate �nite di�erences
between adjacent pixels and assume that these are smaller than half of the wavelength. If this as-
sumption is true, the phase unwrapping problem can be considered as a �nite di�erence integration
problem (Tribolet, 1977). In reality, however, this is rarely the case due to a sub-sampling of the
signal or noise. Then, the phase unwrapping gets more complex as it depends on the integration path.

The phase image provides information in two dimensions. When measuring changes over time, a
third dimension is added: the time. Thus, measurements are available on a sparse multidimensional
grid of points. Phase unwrapping methods can be classi�ed into two categories: spatial and temporal
phase unwrapping. The former one solves the phase ambiguities in one phase image at one special
time by estimating phase di�erences between adjacent pixels of this image. There are local and
global optimization approaches for this purpose. Ghiglia and Pritt (1998) provide a review of a
number of spatial phase unwrapping methods. A commonly used local method is the quality-guided
phase unwrapping algorithm. Starting from a reference pixel, an integration path is chosen based
on a quality map, so that the highly quali�ed pixels are unwrapped �rst. A number of robust
quality-guided phase unwrapping algorithms are summarized and discussed in Su and Chen (2004).
Temporal phase unwrapping methods, in contrast, unwrap the phase at one pixel by analyzing
information at di�erent times. The knowledge of phase values of other pixels in the phase image
is not required. Depending on the application, there are specially developed and already proven
algorithms. In contrast to radar interferometry, where the signal is predetermined by the satellites,
FPP systems can generate di�erently structured patterns. Commonly used methods are the binary
coding method (e.g. Sansoni et al., 1999, Zheng et al., 2017) or the multifrequency method (e.g. Liu
et al., 2010, Zhang et al., 2017). However, all these procedures cannot be transferred to D-InSAR
data.
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Interesting for this work are three dimensional phase unwrapping algorithms, which jointly solve
the spatial and temporal phase unwrapping. Several algorithms have recently been developed that
include the temporal information as a third dimension as shown in Huntley (2001), Su and Zhang
(2010) for FPP data or in Cusack et al. (2001), Sal�ty et al. (2006) for MRI data. However, these
algorithms cannot be applied directly to D-InSAR data (Hooper and Zebker, 2007).

D-InSAR data already represent temporal di�erences as an interferogram always consists of the
phase di�erence between two SAR images. As it is a satellite based system, the interferometric
phases include disturbing signals such as atmospheric e�ects or in�uences due to incorrect satellite
orbits. These disturbing e�ects can be reduced by generating di�erences between adjacent pixels
in one phase image but not by generating di�erences between the phase measurements in time.
Therefore, the observations entering the phase unwrapping represent double di�erences in time
and space (Costantini et al., 2012). This reminds of Global Navigation Satellite System (GNSS)
signals where the problem of phase ambiguities occurs as well. The carrier phase measurement
is only measurable modulo 2π and the whole number of complete wave cycles is unknown. By
forming di�erences in space and time atmospheric e�ects, clock errors and orbital errors can be
eliminated (Teunissen, 1995). To solve the phase ambiguities, either the more inaccurate but
unambiguous code measurement can be added or, in case of permanent measurements, observations
over a certain time epoch can be used assuming constant ambiguities. Afterwards, the station
coordinates and the ambiguity factors can be estimated in an overdetermined system by using the
least squares adjustment. First of all, a �oat solution with real-valued phase ambiguity factors is
obtained. A �xing, for example by means of the Least Squares Ambiguity Decorrelation Adjustment
(LAMBDA) method (Teunissen, 1995) or the Ambiguity Function Method (AFM) (Counselman
and Gourevitch, 1981), results in integer factors. However, the interferometric data di�er from the
GNSS data so that these methods cannot be easily applied to D-InSAR data. In contrast to GNSS
the interferometric observations are only available in a single frequency and the measurements are
not continuous as the sampling time depends on the satellite repeat orbit cycle.

Three dimensional approaches speci�cally for D-InSAR data already exist. However, these ap-
proaches either work in several steps (Pepe and Lanari, 2006, Hooper et al., 2007) or they are
not based on the double di�erences and therefore cannot be integrated into the SBAS work�ow
(Shanker and Zebker, 2010, Costantini et al., 2012). At the moment, there is a lack of a three
dimensional phase unwrapping approach in the literature that works in one step and that is specif-
ically applicable to SBAS interferograms and to go one step further that is speci�cally applicable
to spatially �ltered so called multilooked SBAS interferograms.

1.3 Main Objectives and Challenges

The aim of this work is the development of a one-step phase unwrapping approach that includes
the multilooked double di�erences in time and space as input data. State of the art is the EMCF
algorithm which was developed speci�cally for SBAS interferograms and can be easily integrated
into the SBAS work�ow. Without going into too much detail at this point, the EMCF algorithm
works in two steps. First, each spatial phase gradient is temporally unwrapped. This temporal
phase unwrapping is done iteratively for a prede�ned set of modi�ed observations. These modi�ed
observations consist of a linear motion model, whereas the motion model parameters are unknown.
The results of the temporal phase unwrapping are then used in the second step to spatially unwrap
the phases independently for each image. The temporally unwrapped results serve on the one hand
as a starting solution for the spatial phase unwrapping and on the other hand they are used to
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weight the phase gradients for the spatial phase unwrapping. Three dimensional phase unwrapping
is thus performed by solving two simpler and less dimensional problems. The problems themselves
are formulated as Integer Linear Programs (ILPs), to be more precise as temporal ILPs during
the temporal phase unwrapping and as spatial ILPs during the spatial phase unwrapping. The
special properties of the problems lead to the fact that they can be solved as Linear Programs
(LPs) without considering the integer constraints and thus much more e�ciently than ILPs in
general. The solutions are always integer values. If several smaller LPs are replaced by one single
LP, the consequence is that the problem is of a much larger dimension and an e�cient solution
is required. The LP within the MCF algorithm can be set up in di�erent ways and solved with
di�erent methods. The �rst main objective of this thesis is a detailed and consistent overview and
discussion of these di�erent types of solutions.

Intuitively, the problem seems to be solved simply by putting all the individual LPs into one large LP
with a single large constraint matrix. The problem, however, is that the temporal phase unwrapping
is performed iteratively to estimate the optimal motion model parameters which are absolutely
necessary to detect the motion of a phase gradient in time. Furthermore, the results of the temporal
LPs are required to de�ne the weights of the spatial LPs. Therefore, the EMCF algorithm has to
be modi�ed so that the motion model parameters and the weights of the spatial LP are estimated
independently of the solution of the temporal LP. This is the second challenge of this work.

In addition to the challenges already mentioned, multilooked data poses another problem. Spatial
�ltering is carried out individually for each interferogram. This leads to the fact that the temporal
constraints which are established between the individual interferograms during the temporal phase
unwrapping are not completely ful�lled by the data. This is called temporal inconsistency and must
be taken into account. Otherwise, the temporal and spatial constraints, now combined in one single
large LP, will lead to con�icts. The aspect of temporal inconsistency is already mentioned in the
literature (e.g. Imperatore et al., 2015) and is also considered in the two-step EMCF algorithm by
a rounding operator. However, there is no solution in the literature for considering this aspect when
setting up a one-step phase unwrapping method with one large constraint matrix which includes
both, the spatial as well as the temporal constraints. Thus, the consideration of the temporal
inconsistency in a one-step three dimensional algorithm is the third and last challenge in this work.

The main objectives of this work can thus be summarized in the following three points:

1. Detailed and consistent overview of the di�erent formulations and solutions of the LP within
the MCF algorithm

2. Modi�cations of the EMCF algorithm so that the motion model is no longer estimated by an
iterative solution of the temporal LP and so that the spatial weights can be set up indepen-
dently of the temporal LP

3. Formulation of a one-step three dimensional algorithm that takes into account the temporal
inconsistencies of the multilooked data

1.4 Outline

The observations represent double di�erences in space and time. Therefore, a clear index notation
is necessary. The temporal assignment is always represented as a superscript index where ∆tαβ
represents a di�erence between the points in time tα and tβ . The spatial assignment is done by a
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subscript index where ∆xkl represents a di�erence between the two pixels xk and xl. A detailed list
of all used symbols and terms can be found at the end of this thesis, cf. Appendix B. Furthermore,
the observations are presented in two independent graphs which are referred to throughout the work.
A graph is de�ned in the azimuth/ range plane and consists of a set M of nodes, a set N of arcs
between which a set R of triangles are constructed. The second graph is in the temporal plane and
consists of a setM′ of nodes, a set N ′ of arcs between which a set R′ of triangles are constructed.
For a better overview the graphs are also de�ned at the end of the work, cf. Appendix B, so that
the reader can always refer to them. Finally, the list also includes de�nitions of the various problem
formulations, methods and weight functions analyzed in this thesis so that it is always possible to
look up which problem, method or weight function is meant.

The work is divided into a fundamental part, a review and evaluations of already existing methods
and a part containing own modi�cations and developments. All methods are tested on both simulated
and real data.

Chapter 2 starts with basics on di�erential SAR interferometry and multitemporal D-InSAR
analysis. Since the work focuses on a speci�c part of the analysis, it is important to know exactly
what happens before and after this step. This chapter is intended to provide an understanding of
the input data of the phase unwrapping process.

State of the art is the formulation of the phase unwrapping problem as an LP. For this reason,
Chapter 3 provides a basic knowledge about solving LPs. In this context terms like primal and dual
problem are treated and general LP solvers like the simplex method and the interior point method
are explained. The special property of total unimodularity is discussed, where the result obtains an
integer value even without considering the integer constraint. Finally, an LP can also be solved as
a network �ow problem if certain preconditions are given. This chapter ends with the description
of network �ow problems.

Chapters 4 and 5 include a review and an evaluation of existing methods. Chapter 4 deals with
the spatial phase unwrapping algorithms based on a single interferogram with special focus on
the MCF algorithm which represents the state of the art in the SBAS analysis. At this point, a
detailed and consistent overview of the di�erent formulation and solution types of the LP in the
context of the MCF problem is provided. Using simulated data, these di�erent approaches are
evaluated to �nd the most e�cient way to solve the problem. Chapter 5, on the other hand includes
three dimensional phase unwrapping algorithms which include both spatial and temporal phase
unwrapping. Again, the currently used two-step EMCF algorithm is examined in more detail and
evaluated using simulated data.

With regard to the merging of the two-step EMCF algorithm into a one-step approach, some
modi�cations are necessary. These include the estimation of the motion model independent of
the solution of the temporal LP and the de�nition of spatial weights that are independent of the
temporal phase unwrapping. Ideas of improvement are presented in Chapter 6 which are then
evaluated using both simulated and real data. The Lower-Rhine-Embayment serves as a case study.
A conscious decision was made to use data from the European Remote Sensing (ERS) satellites 1
and 2. These are older data which detect the deformation of the Earth's surface in the past. But
especially with these older data, which have a lower spatial and temporal resolution compared to
newer sensors, phase unwrapping errors occur more often, so that especially with these sensors
there is an increased potential for improvement. Moreover, these older data are of great interest
especially for a long-term evaluation. It should be noted, however, that all the methods presented
in this work can easily be transferred to other newer sensors, like Sentinel-1 or TerraSAR-X.



6 1. Introduction

Based on the �ndings of the previous chapters, a one-step procedure can �nally be developed in
Chapter 7. Here, the problem of temporal inconsistency is speci�cally addressed and a corresponding
solution is worked out by introducing slack variables. This self-developed method is also evaluated
using simulated and real data.

The work ends with a conclusion and an outlook in Chapter 8 where the main �ndings are summa-
rized and some thoughts for further works are developed.
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2. Background: Multitemporal D-InSAR

Analysis

Di�erential Interferometric Synthetic Aperture Radar (D-InSAR) is a unique technique to detect and
map deformations of the Earth's surface over large temporal and spatial scales with an accuracy in
the centimeter and even millimeter range (Bamler and Hartl, 1998, p. R2). Processing a whole stack
of multitemporal data allows the generation of deformation time series. As it is an active system, it
provides an all-weather and day/night capability. This chapter gives an overview of the D-InSAR
processing steps and later on of the multitemporal D-InSAR processing whereas the focus is on the
Small BAseline Subset (SBAS) method. One of the most challenging steps in the SBAS analysis is
the solution of the phase ambiguities as the phase can only be measured modulo 2π. This is done in
the context of phase unwrapping. The aim of this thesis is to optimize the phase unwrapping step
which represents one special step in the middle of the D-InSAR processing chain. Therefore, it is
important to know and understand what happens before and after this step. However, this chapter
will not give an holistic summary of the complete processing steps. There is enough literature,
cf. Bamler and Hartl (1998), Curlander and McDonough (1991), Currie and Brown (1992), Bamler
and Schättler (1993), Schwaebisch (1995), Hanssen (2001), which is also mentioned at given points
in order to refer to further details. This chapter is intended to provide a basic understanding of
the input data for the phase unwrapping step, the meaning of the output data and how it is to
be interpreted. Nevertheless, it is necessary to brie�y describe the basics of radar and synthetic
aperture radar (SAR) �rst.

2.1 Radar and Synthetic Aperture Radar

The abbreviation radar comes from radio detection and ranging. An antenna emits a series of short
radio pulses towards the Earth, which are re�ected from scatterers and received by the antenna
again. As it is an active system and operates in the microwave region, it is almost independent of
meteorological conditions and sun illumination (Bamler and Hartl, 1998, p. R1). One distinguishes
between monostatic and bistatic radar. In the case of a monostatic radar, transmitter and receiver
share one common antenna. Against that, a bistatic radar employs two separate antennas. Both
types result in a considerably di�erent radar characteristic (Skolnik, 1980). Since the satellite data
used in this work were acquired with only one antenna, a monostatic radar is assumed in the
following.

Once satellites were equipped with radar systems, radar became a useful method to measure the
Earth's surface. The �rst radar images of the Earth were obtained in 1978 with the American
satellite Seasat1. The spatial resolution of the image was 25m. For this, the Synthetic Aperture
Radar (SAR) was used which is a speci�c class of radar systems. The side-looking imaging
geometry, pulse compression techniques as well as the synthetic aperture concept enable geo-
metric resolutions in the order of some meters to tens of meters with a real antenna length of
modest size (Bamler and Hartl, 1998, p. R1). This chapter deals with the imaging geometry,
the resolution in azimuth and range direction and backscattering characteristics to provide a
basic understanding of SAR systems. More information about SAR in general, signal process-
ing for image formation or focusing can be found in several publications for example in Schreier
(1993), Curlander and McDonough (1991), Bamler and Schättler (1993) or Bamler and Hartl (1998).

1https://directory.eoportal.org/web/eoportal/satellite-missions/s/seasat last accessed on August 4,
2020

https://directory.eoportal.org/web/eoportal/satellite-missions/s/seasat
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The main focus of this thesis is the phase unwrapping problem which is one of the main error sources
in the D-InSAR analysis. Especially with older sensors, which have a lower spatial and temporal
resolution, phase unwrapping gets more complex and phase unwrapping errors often occur. So
especially with these sensors there is an increased potential for improvement. This work therefore
focuses on European Remote Sensing (ERS) satellites 1 and 2 from the European Space Agency
(ESA)2,3. The ERS-1 mission started in July 1991 and ended in March 2000. The almost identically
constructed ERS-2 satellite was launched in April 1995 which enabled a so called tandem mission.
For a period of nine months the ERS-2 satellite passed the same point on the Earth's surface one day
later than the ERS-1 satellite. An error in the gyroscope degraded the data provided by the ERS-2
satellite in February 2001. The mission ended in September 2011. The most important technical
data of the satellites are listed in Table 2.1.

2.1.1 Imaging Geometry and Signal

A typical imaging mode of SAR systems is represented in Fig. 2.1. The signal is transmitted in slant
range or Line Of Sight (LOS) direction. The satellite itself moves perpendicular to it in azimuth
direction. As the pulse duration τ is a tenth of magnitude smaller than the satellite speed, it is
permitted to suppose that the satellite retains its position during signal propagation (Bamler and
Hartl, 1998, p. R4). The transmitted signal is re�ected from scatterers and received by the antenna
again. Measurements are the amplitude Atαxj and the phase change φtαxj between the transmitted and
received signal for one pixel xj and one epoch tα. One pixel represents a resolution cell with a number
of scatterers. The measurement at one pixel thus represents the sum of several scatterers. More
information about this is given in Section 2.1.3. The amplitude Atαxj depends on the backscattering
coe�cient which varies with changing surface roughness and soil moisture. The phase change

φtαxj =
2π · 2rtαxj

λ
+ φtαscat,xj (2.1)

is proportional to the two-way distance 2rtαxj from the antenna to the Earth's surface and divided

by the wavelength λ. The additive scattering phase φtαscat,xj depends on the speci�c backscattering

Table 2.1: Technical data for the ERS-1/-2 satellites

technical parameters value

altitude HS 780 km
satellite speed v 7.43 km/sec
antenna size 10m long, 1m wide
period 100 minutes
repeat cycle 35-day
frequency f0 5.3GHz (C-band)
wavelength λ 5.6666 cm
bandwidth BW 15.55MHz
incidence angle θ 23◦

resolution in azimuth δxaz 5m
resolution in range δxrg 25m
swath width 100 km

2https://directory.eoportal.org/web/eoportal/satellite-missions/e/ers-1 last accessed on August 4,
2020

3https://directory.eoportal.org/web/eoportal/satellite-missions/e/ers-2 last accessed on August 4,
2020

https://directory.eoportal.org/web/eoportal/satellite-missions/e/ers-1
https://directory.eoportal.org/web/eoportal/satellite-missions/e/ers-2
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characteristic of this pixel. Due to the almost sinusoidal nature of the signal, the phase can only be
measured modulo 2π. The measured so called wrapped phase ψtαxj is given by

ψtαxj = 〈φtαxj 〉2π (2.2)

with the modulo 2π operator 〈.〉2π. In order to reconstruct the real so called unwrapped phase, the
integer number of 2π jumps must be estimated. The unwrapped phase is given by

φtαxj = ψtαxj + 2πktαxj (2.3)

with the integer ambiguity factor ktαxj . This factor is solved in the context of phase unwrapping
which is the main focus of this work and will be addressed in Chapters 4 and following. So far, it is
assumed that the unwrapped phase φtαxj is known. In general, the total signal utαxj is represented in
a complex way by

utαxj = Atαxj · exp (iφtαxj ) (2.4)

with the imaginary unit i.

As seen in Fig. 2.1, the SAR system is a side-looking radar. The radar looks with the incidence
angle θ in slant range direction and therefore is an imaging radar with azimuth and slant range
coordinates. The echos of near range scatterers are received before the echos of far range scatterers.
The incidence angle θ refers to the �at-earth or the ellipsoid. Due to the presented geometry, the
signal illuminates an elliptical area on the Earth`s surface which is called footprint. For the ERS-1
and ERS-2 satellites the size of the footprint is 100 km in ground range and 5 km in azimuth

ground range

H
S

v

near
range

far
range

slant
range

az
im
ut
hθ

100km

sw
at
h

Figure 2.1: Geometry of side-looking radar. The satellite looks with the incidence angle θ in slant range
direction to the Earth's surface. Near range scatterers are received before far range scatterers. The gray area
symbolizes the footprint illuminated by the signal on the Earth's surface. The satellite moves with speed v
in azimuth direction, so that the footprint traces the so called swath. Figure based on Bamler and Schättler
(1993, p. 55).
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direction. Using a �xed antenna, the footprint moves at the satellite speed along its orbit and
traces the so called swath.

The imaging geometry described so far is called stripmap mode. Beside this mode, there are other
imaging modes, like the scanning SAR (ScanSAR) (Moore et al., 1981, Currie and Brown, 1992) and
the spotlight SAR (Carrara et al., 1995) where the antenna is moving. In ScanSAR mode the antenna
is switching periodically in range direction to increase the swath width but the resolution in azimuth
direction is simultaneously reduced. In spotlight mode the resolution is increased by steering the
antenna electronically backwards in azimuth direction. This results in a longer illumination time but
a continuous operation is no longer possible. More recent satellites like TerraSAR-X and Sentinel-1
have another newer acquisition mode called Terrain Observation with Progressive Scans (TOPS)
mode. With the TOPS technique, in addition to steering the beam in range as in ScanSAR, the beam
is also electronically steered from backward to forward in the azimuth direction. This results in very
wide swaths with homogeneous image quality (De Zan and Monti Guarnieri, 2006). However, for the
ERS-1/-2 satellites used here, the stripmap mode is still the most commonly used mode(Hanssen,
2001, p. 11), so that all following considerations refer to this mode.

2.1.2 Resolution in Range and Azimuth Direction

The resolution in range direction depends on the duration τ of the transmitted pulse, see Fig. 2.2.
Projected on the Earth's surface the ground range resolution has got an inverse relationship with
the incidence angle θ and results in

δxrg =
c · τ

2 · sin(θ)
(2.5)

with the speed of light c. The factor 1/2 results from the fact that the signal travels twice the
distance between antenna and scatterer. Consequently, a short pulse duration is needed. However,
reducing the pulse duration τ at the same power leads to a reduced energy

E =

τ∫
0

P (t)dt (2.6)

which is the integral over the transmitted power P . Accordingly the power P must increase to keep
the energy E constant. However, high-power transmitters present technical challenges as they are
larger, heavier and more expensive. One way to further improve the resolution in range direction is
the use of a linear frequency modulated pulse over a certain bandwidth BW . This pulse is called
a chirp. With a chirp the bandwidth BW can be increased without reducing the pulse duration τ .
Using a matched �lter, the received signal is compressed afterwards so that the signal is as if a short
pulse was transmitted. This matched �lter is called range compression which can be computed
e�ciently by the use of Fast Fourier Transformations (Curlander and McDonough, 1991, pp. 182�).
Expressed with the bandwidth BW , the resolution in range direction becomes

δxrg =
c

2 ·BW · sin(θ)
. (2.7)

With an incidence angle of θ = 23◦ and a bandwidth of BW = 15.55MHz the range resolution for
the ERS-1 and ERS-2 satellites results in δxrg = 25m.

The resolution in azimuth direction for a real antenna depends on the altitude HS , the incidence
angle θ and the real aperture beamwidth Θr which is the fraction of the wavelength λ and the real
antenna size length dr. Thus, the resolution in azimuth direction is given by

δrxaz =
HS

cos(θ)
·Θr =

HS

cos(θ)
· λ
dr
. (2.8)
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For ERS-1 and ERS-2 satellites this results in an unusable resolution of about 5 km which represents
the size of the footprint in azimuth direction. As the wavelength and the altitude for measurements
with microwave signals are predetermined and an extension of the antenna length to a few kilometer
is not feasible, SAR is used to improve the resolution in azimuth direction. Therefore, the movement
of the antenna platform is exploited to extend the real antenna length synthetically.

As the antenna moves, one target is measured from several satellite positions, see Fig. 2.3. All these
measurements are combined as if they where measured at the same time from a synthetic antenna
with the length ds. The synthesis is based on the Doppler shift which occurs due to the relative
movement between antenna and scatterer. The frequency of the signal gets higher when the distance
between antenna and scatterer gets smaller and the other way around. If antenna and scatterer are
perpendicular to each other the Doppler shift gets zero. As the footprint passes over the point
target in Fig. 2.3, the distance between antenna and scatterer varies. It decreases to a minimum
and then increases again. Thus, one target traces a hyperbolic line in azimuth/ range plane. In a
further compression step all points of this curve are combined to one single pixel (Curlander and
McDonough, 1991, pp. 187�.). This technique allows an improvement of the resolution in azimuth
direction. This step is therefore also called azimuth compression. Requirement is that the signal is
coherent over time. It is mentioned that the antenna is not always steering perpendicular to the
�ight direction. Sometimes a slight squint angle occurs. This results in a Doppler centroid frequency,
representing the frequency at the minimum distance between antenna and scatterer which is unequal
to zero. This fact has to be considered in the azimuth compression step. This is done in a so called
zero-Doppler processing step where the data is deskewed, implying that the phase values correspond
with the zero-Doppler phase (Hanssen, 2001, p. 30). The length of the synthetic antenna ds is equal
to the size of the footprint in azimuth direction and therefore equal to the resolution in azimuth
direction for a real antenna δrxaz

ds = δrxaz =
HS

cos(θ)
· λ
dr
. (2.9)

ground range

H
S

θ

δxrg

c · τ

θ
.

Figure 2.2: Resolution in range direction depends
on the pulse duration τ and is independent of the
satellite altitude HS . With the use of pulse com-
pression techniques the resolution can be improved
to some meters.

azimuth

Θr
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ds ≈ δrxaz

H
S

co
s(
θ
)

Figure 2.3: Resolution in azimuth direction for a
real antenna depends on the altitude HS and is in-
versely proportional to the real antenna length dr.
However, for a synthetic antenna with length ds the
resolution gets one half of the real antenna length dr.
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So on the one hand, the resolution in azimuth direction for a real antenna gets worse with increasing
altitude HS , but on the other hand the synthetic antenna length ds also gets bigger. At the bottom
line the resolution in azimuth direction for the synthetic antenna is independent of the altitude and
results in

δsxaz =
HS

cos(θ)
·Θs =

HS

cos(θ)
· λ

2ds
=

HS · λ
cos(θ) · 2 HS ·λ

cos(θ)·dr
=
dr
2
. (2.10)

The antenna beamwidth of a synthetic aperture Θs can be represented similar to the real aperture,
cf. (2.9), besides a factor of two. This factor results from the di�erent measurements. In case of
a real aperture the signals for each measurement are transmitted at the same time. Therefore,
di�erences between transmitted and received signal occur only at the way back from the scatterer
to the antenna. In case of a synthetic aperture the signals are not transmitted simultaneously. So
di�erences occur twice, at the way from the antenna to the scatterer as well as at the way back from
the scatterer to the antenna.
So at last, the resolution in azimuth direction is one half of the real antenna length dr. However, the
real antenna length is also limited as the signal power of the antenna gets smaller with decreasing
length. For the ERS-1 and ERS-2 satellites the real antenna length is set to 10m so that the
resolution in azimuth direction results in 5m.

2.1.3 Persistent Scatterers and Distributed Scatterers

After compression in range and azimuth direction the raw data is focused to an image. These so
called SAR single look complex products include the measurements, amplitude Atαxj and phase φtαxj
for one pixel xj at one time tα. These products provide standard level 1 data intended for the use
in interferometric processing (Hanssen, 2001, p. 42).
One pixel represents a resolution cell of 25m × 5m for the ERS missions. So the measure-
ments for one pixel are the sum of many individual scatterers located in this resolution cell.
The returning waves interfere randomly in a constructive or destructive way, depending on the
relative phase of each scattered waveform. This causes a pixel-to-pixel variation in amplitude
and phase which can be recognized as a salt and pepper e�ect, called speckle (Goodman, 1975).
There exist two extreme cases of scattering objects: a distributed scatterer and a persistent scatterer.

A distributed scatterer, also known as Gaussian scatterer, has a high number of random subscatter-
ers within the resolution cell. There is no single subscatterer which dominates. This is true for most
natural scatterers, as forests, agriculture �elds or rock surfaces. The observation can be de�ned as a
Gaussian random variable (Hanssen, 2001, p. 89). Relative movements of these individual scatterers
or changes in the looking angle causes the scatterer contributions to sum di�erently (Hooper, 2006,
p. 13). This can be seen in Fig. 2.4a. The phase of the pixel varies randomly with the number of
iterations. This e�ect is known as decorrelation.
In contrast, if one subscatterer dominates in the resolution cell, the phase varies little even
if the other subscatterers move with respect to the dominant scatterer or the looking angle
changes, see Fig. 2.4b. This pixel is known as persistent scatterer. Examples for persistent
scatterers are urban objects as corners of a house, bridges or streets. Moreover, there exist arti-
�cial constructed objects with a very stable backscattering characteristic, known as corner re�ectors.

As the speckle e�ect makes image interpretation di�cult, various ways have been evolved to suppress
it. These techniques are known as speckle �ltering algorithms. There are several standard speckle
�lters that are widely used in the SAR community. The common technique is the spatial domain
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(a) distributed scatterer (b) persistent scatterer

Figure 2.4: Simulated phase for a distributed and a persistent scatterer. The simulation is done for 100
iterations. The above pictures show the di�erent contributions of the individual scatterers in one resolution
cell. Figures based on Hooper (2006, p. 14).

multilooking. Several independent pixels are averaged in the spatial domain resulting in a spatially
compressed multilooked image. As an average �lter smooths the image and removes edges, adaptive
�lter windows are much better. Some examples are the local statistical �lters by Lee (1980), Frost
et al. (1982), Kuan et al. (1985) or Lopes et al. (1990). Alternative techniques are wavelet based
�lters (Ranchin and Cauneau, 1993, Odegard et al., 1995). The idea is that speckle noise is a high-
frequency component of the image and appears in wavelet coe�cient. A good comparison of spatial
and wavelet based �lters is provided in Hervet et al. (1998).

2.2 Di�erential Interferometric Synthetic Aperture Radar

As is shown in Fig. 2.5 for one single SAR image, it is impossible to distinguish two objects at the
same range. Point Pxk on the reference surface and point Pxj with height HPxj

are at the same
distance from the antenna. The solution to distinguish these two points is the use of a second SAR
image which measures the same point by a slightly di�erent geometry, see Fig. 2.6. The two points
can now be distinguished from each other due to di�erent incidence angles. The two SAR images can
be acquired either by two di�erent antennas operating simultaneously, known as single-pass inter-
ferometry or by using a single SAR system which images the area twice from slightly di�erent orbits
at di�erent times, known as repeat-pass interferometry. As this study works with ERS-1 and ERS-2
data which only have single SAR systems on board, the repeat-pass interferometry is discussed here.

The phase di�erence of the two SAR signals, known as interferometric phase, includes information
about the topography and surface deformations. The use of interferometric data for topography
mapping was �rst reported by Graham (1974). Today, Interferometric Synthetic Aperture Radar
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(InSAR) is an extremely powerful method for mapping Earth's land topography. Furthermore, the so
called di�erential InSAR (D-InSAR) method is a unique method for detection and mapping surface
displacements over large temporal and spatial scales with an accuracy in the centimeter and even
millimeter range (Bamler and Hartl, 1998, p. R2). The following sections will give an overview of the
most important steps to create an interferogram and the idea behind the di�erential interferometry
to detect ground deformations.

2.2.1 Interferogram Generation

Figure 2.6 shows the InSAR con�guration for a repeat-pass interferometry. The satellite passes the
same point at the Earth's surface after a special time di�erence ∆tαβ = tβ − tα, whereas the two
sensor positions Stα and Stα di�er by a spatial baseline ∆bαβ . For the ERS-1 and ERS-2 satellites the
time di�erence for the tandem mission is one day and otherwise 35 days or a multiple of 35 days. This
time di�erence is also known as temporal baseline. The point HPxj

is observed from two di�erent

incidence angles θtα and θtβ and thus with two di�erent distances rtαxj and r
tβ
xj . The path length

di�erence r
∆tαβ
xj is measured by determining the phase di�erence according to

r
∆tαβ
xj =

λ

4π
(φ
tβ
xj − φtαxj ) =

λ

4π
φ

∆tαβ
xj . (2.11)

The phase di�erence, also known as interferometric phase φ
∆tαβ
xj , is sensitive against height di�er-

ences according to the relation (Hanssen, 2001, p. 37)

∂HPxj
∼
λ · rtαxj · sin(θtα)

4π ·∆bαβ,⊥
· φ∆tαβ

xj (2.12)
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Figure 2.5: Single SAR con�guration. The
point Pxk on the reference surface and the point Pxj
withHPxj

cannot be distinguished in one single SAR
image. They show the same distance to the antenna.
Figure based on Hanssen (2001, p. 34).
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with the orthogonal spatial baseline ∆bαβ,⊥ which is the projection of the spatial baseline ∆bαβ
to the slant range, see Fig. 2.6. It is assumed that the wavefront of the signal arrives as a plane
at the antennas since the distances between the satellite positions Stα and Stβ and the point Pxj
on the Earth's surface are very large. The equation implies that with a larger baseline the height
gets more sensitive to phase changes. According to Schwaebisch (1995, p. 72) an orthogonal spatial
baseline of 50m leads to a height error of about 25m with an assumed phase variance of 0.7 rad.
In contrast, an orthogonal spatial baseline of 300m causes a height error of 3m only. However, the
orthogonal spatial baseline cannot be increased arbitrarily. This will be discussed in the following
sections which deal with necessary preprocessing steps for generating the interferogram. In addition,
the interferometric phase and a measurement to describe the quality of the phase are presented and
some postprocessing steps are discussed to further improve the quality of the interferogram.

2.2.1.1 Preprocessing Steps: Bandwidth Filter and Coregistration

Before the interferometric phase between the two SAR images at times tα and tβ can be estimated,
some preprocessing steps are necessary. Starting from the two focused SAR images, one image is
de�ned as the master image and remains unchanged during the preprocessing step. The other image
is de�ned as slave image. In the following, the SAR image at time tα is de�ned as master and the
other SAR image at time tβ is de�ned as slave scene.
As the two SAR images are measured from slightly di�erent incidence angles, the received spectral
bands do not completely overlap both in range and in azimuth direction. This can be considered
as noise in the interferometric phase. In range direction the shift is directly associated with the
orthogonal spatial baseline ∆bαβ,⊥ between the two SAR antennas. The frequency shift in range
direction ∆frxj at one pixel xj is given by

∆frxj = − 2∆bαβ,⊥
λrtαxj tan(θ − ζ)

(2.13)

with the terrain slope ζ (Bamler and Hartl, 1998, p. R13). Consequently, the frequency shift
increases with a larger spatial baseline ∆bαβ,⊥. This will be taken into account when dealing
with the conditions for interferometry later on. Due to the di�erent squint angles, the two
Doppler centroid frequencies, mentioned in Section 2.1.2 di�er from each other. This causes an
additional frequency shift in azimuth direction. Common bandwidth �lters are used in range and
azimuth direction to guarantee a maximum spectral overlap in both images. More about the spectral
�ltering can be found in Gabriel and Goldstein (1988) or Schwaebisch (1995, pp. 31�37) for example.

Beside the spectral shift, the slightly di�erent geometry of the two SAR images also causes a shift
of up to several thousands of pixels (Hanssen, 2001, p. 45). So a coregistration is necessary to geo-
metrically match the images. Just and Bamler (1994) have shown that a misregistration introduces
phase variance. Based on these investigations, a coregistration error of 0.1 to 0.2 pixel has become
widely accepted (Schwaebisch, 1995, p. 27).
The procedure of coregistration is usually separated in two steps: coarse and �ne coregistration. The
coarse coregistration is for pixel level accuracy. It is implemented by using orbital information and
image matching. For a point grid which refers to the master scene, the corresponding pixel coordi-
nates for the slave scene are determined. The cross-correlation coe�cient is a common parameter
for evaluating the matching results (Li and Goldstein, 1990). As already said, the coarse coregis-
tration occurs with an accuracy of approximately one pixel. However, this is not enough. So, in a
second step a �ne coregistration is done. For subpixel tie points a transformation equation is �tted
and the slave image is resampled with help of a bilinear or bicubic interpolation. More detail on
coregistration can be found in Gabriel and Goldstein (1988), Lin et al. (1992), Schwaebisch (1995,
pp. 28�31) and Schwaebisch and Geudtner (1995).



16 2. Background: Multitemporal D-InSAR Analysis

2.2.1.2 Interferometric Phase and Coherence Estimation

When both SAR images resemble the same geometry and contain completely overlapping object
spectra, the interferogram is computed according to

I
∆tαβ
xj = utαxj · u

tβ∗
xj (2.14)

with the complex conjugate of the second image u
tβ∗
xj . The interferometric phase results in

φ
∆tαβ
xj = φ

tβ
xj − φtαxj . (2.15)

Self-explanatory the interferometric phase can also only be measured modulo 2π only and the
measured so called wrapped phase is de�ned as

ψ
∆tαβ
xj = 〈φ∆tαβ

xj 〉2π. (2.16)

In order to reconstruct the unwrapped interferometric phase which is given by

φ
∆tαβ
xj = ψ

∆tαβ
xj + 2πk

∆tαβ
xj , (2.17)

the unknown integer ambiguity factor k
∆tαβ
xj has to be estimated in the phase unwrapping step.

However, this problem will be treated in Chapters 4 and following so that it is assumed that the
unwrapped interferometric phase φ

∆tαβ
xj is known at this moment.

A direct measure for the similarity between the two observations φ
tβ
xj and φtαxj is the degree of

coherence. An appropriate estimator for the coherence is the complex correlation coe�cient

γxj =

m∑
j=1

utαxi · u
tβ
xi√

m∑
j=1
|utαxj |2 ·

m∑
j=1
|utβxj |2

(2.18)

which is a spatial averaging over a number m of pixels (Seymour and Cumming, 1994). This
space-averaged coherence is biased. The bias decreases with the number m of pixels. Touzi et al.
(1999) derived an analytical expression for the coherence γ as a function of the unbiased coherence
and the number m of pixels. With help of a piecewise-linear model the unbiased coherence can be
estimated from the biased one. The coherence values range from zero, the interferometric phase is
just noise, to one, the two signals are fully coherent without any noise.

Typically a loss of coherence, known as decorrelation, has several causes. The two main sources
are due to spatial and temporal decorrelation e�ects. As already mentioned, larger spatial baselines
lead to an increased spectral shift in range direction. In extreme cases the spatial baseline is too
large resulting in a non-overlapping part of the spectrum and therefore completely uncorrelated
signals. Too large di�erent Doppler centroid frequencies lead to an increased spectral shift in az-
imuth direction and to a further decorrelation e�ect. For the ERS data the critical baseline ∆b⊥,crit
occurs at approximately 1100m and the critical di�erent Doppler centroid frequencies ∆fcrit are at
approximately 1380Hz (Hooper, 2006, p. 36). The second major limitation for the interferogram
generation is the temporal baseline ∆t between the two SAR images. Weather, vegetation or anthro-
pogenic activities lead to temporal decorrelation e�ects as the backscattering characteristics of the
individual scatterers in one pixel change. The ideal temporal baseline ∆t depends on the expected
deformation rate or whether the deformation is instantaneous. Then a very short temporal baseline
is ideal (Hanssen, 2001, p. 43). If no further information is available, according to Hooper (2006, p.
36) a typical value for the critical temporal baseline ∆tcrit is 5 years.
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2.2.1.3 Flattening and A Posteriori Filtering

The interferometric phase generated with (2.15) contains some disturbing signals which make the
interpretation of the topography and surface deformation more di�cult. As seen in Fig. 2.7a,
pixels on the �at-earth occur at di�erent slant ranges r

∆tαβ
xj and r

∆tαβ
xk . Due to the side-looking

geometry an additional phase e�ect arises which is not induced by the topography or deformation.
This e�ect is known as the e�ect of the �at-earth. A schematic representation of the �at-earth
phase is shown in Fig. 2.7b. Therefore, the interferogram of a �at area will show corresponding
periodic interferometric fringes which have nothing to do with topography or surface deformation.
It is recommended to eliminate the e�ect of the �at-earth. This reduces the number of fringes in
the interferogram which makes the phase unwrapping process and further processing steps easier.
Common methods calculate the �at-earth phase with help of orbit parameters and the use of an
external Digital Elevation Model (DEM). Another commonly used algorithm utilizes the frequency
information of the interferogram and subtracts constant or dominant rates of fringes in azimuth
and range direction (Li and Goldstein, 1990).

After subtracting the �at-earth, the quality of the interferogram can be further enhanced by �ltering
techniques. Due to decorrelation e�ects the interferogram is disturbed by noise. A standard method
to decrease the noise is the so called multilooking. The complex data are simply averaged in a
speci�ed window as already discussed in Section 2.1.3. As the resolution in azimuth direction is
better than in range direction the pixels are often averaged along the azimuth axis to get square
pixels. For the ERS-1 and ERS-2 satellites, therefore, �ve time more pixels are included during
averaging in the azimuth direction than in the range direction. To preserve edges and local structure
adaptive �lters are recommended, like the Goldstein �lter (Goldstein and Werner, 1998).

ground range Pxk Pxj

Stα

Stβ

∆bαβ
r ∆
t
α
β

x
k

r ∆
t
α
β

x
j

(a) scenario for the e�ect of the �at-earth

slant range

φ∆tαβ

2π

0
Pxk Pxj

(b) schematic representation of the �at-earth phase

Figure 2.7: E�ect of the �at-earth. Due to the side-looking geometry pixels Pxj and Pxk on the �at-earth

occur at di�erent slant ranges r
∆tαβ
xj and r

∆tαβ
xk . Figures based on Schwaebisch (1995, p. 40).
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2.2.2 Di�erential Interferometry

In reality, the interferometric phase does not only depend on di�erent slant ranges due to the
topography. Atmospheric e�ects, erroneous orbit parameters leading for example to incorrect �at-
earth phases, or noise also cause phase changes. An additional e�ect is the deformation which occurs
between the temporal baseline ∆t of the two SAR images. Hence, the interferometric phase between
the two SAR images at time tα and tβ at pixel xj is composed of several di�erent parts

φ
∆tαβ
xj = φ

∆tαβ
xj ,topo

+ φ∆
xj ,defo + φ

∆tαβ
xj ,orbit

+ φ
∆tαβ
xj ,atmo + φ

∆tαβ
xj ,noise

(2.19)

including the topographic phase φ
∆tαβ
xj ,topo

, a possible deformation phase φ
∆tαβ
xj ,defo

, orbit errors φ
∆tαβ
xj ,orbit

,

the atmosphere φ
∆tαβ
xj ,atmo and noise φ

∆tαβ
xj ,noise

. It is often di�cult to distinguish between the di�erent
parts because this is depending on prior knowledge.
In order to derive deformations of the Earth's surface, the phase part φ

∆tαβ
xj ,defo

is the target quantity.

Therefore, a di�erential interferogram is derived by subtracting the e�ect of the topography φ
∆tαβ
xj ,topo

.
This method was �rst applied by Gabriel et al. (1989), using Seasat data to an imaging site in
Imperial Valley, California, where the expansion of water-absorbing clays led to deformations of
the Earth's surface. The e�ect of the topography is removed by using a reference DEM coming
from an external source, like the Shuttle Radar Topography Mission (SRTM 4) or alternatively by
generating tandem SAR image pairs or image pairs where no displacement is expected during the
acquisition time.

Afterwards, the so provided di�erential interferogram can be used to detect deformations of the
Earth's surface. However, the phase also contains disturbances due to errors in the reference DEM,
known as topographic errors, orbit errors, atmospheric e�ects as well as noise. To reduce orbit errors
a baseline optimization is possible. This can be either done by an adjustment based on ground control
points or by a deramping, as orbit errors occur as spatial ramps in the interferograms. The other
e�ects can be removed by analyzing a whole stack of interferograms instead of one single SAR pair.
The temporal information allows the separation of the di�erent parts as they all show an individual
spatial and temporal behavior. Moreover, the analysis of a whole stack of interferograms allows the
generation of deformation time series. This leads to multitemporal D-InSAR processing which will
be addressed in the next section.

2.3 Multitemporal D-InSAR Processing

Multitemporal D-InSAR processing is used to generate deformation time series with respect to one
reference time where the deformation is initialized to be zero. Considering a setM′ with m′ SAR
images of the same scene measured at times t[m′×1]. In order to process these data altogether in
a multitemporal way several methods were adopted. The following section gives a short overview
of the most widely used methods. This work concentrates on the Small BAseline Subset (SBAS)
method (Berardino et al., 2002) which will be described in more detail.

2.3.1 Processing Methods: Overview

The aim of multitemporal D-InSAR processing is the estimation of the deformation and the
topographic errors as well as the separation of the atmospheric e�ects. The most widely used

4https://www2.jpl.nasa.gov/srtm/ last accessed on August 4, 2020

https://www2.jpl.nasa.gov/srtm/
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methods are the Permanent Scatterer Interferometry (PSI) and the Small BAseline Subset (SBAS)
method. The two main limitations of SAR interferometry are the spatial and temporal decorrelation
e�ects which increase with larger baseline sizes, cf. Section 2.2.1.2. To overcome these e�ects,
the PSI method, �rst proposed by Ferretti et al. (2001), only uses persistent scatterers which
show consistent backscattering characteristics over the time series, see Fig. 2.4b. To identify them
Ferretti et al. (2001) analyze the time series of the amplitude values as a measure of phase stability.
However, good persistent scatterers are rare and mostly occur at urban areas. Over the years
other persistent scatterer processing methods have been developed to get a more dense result
even in non-urban areas. Two examples are SqueeSAR (Ferretti et al., 2011) where persistent
and distributed scatterers are jointly processed or the Stanford Method for Persistent Scatterers
(StaMPS) (Hooper et al., 2004, 2007) where the pixel selection is based on phase characteristics
rather than on amplitudes.

Figure 2.8 shows an example of a multitemporal D-InSAR stack based on ERS-1/-2 data from
May 1992 to December 2000 as used in the numerical studies, cf. Sections 6.3 and 7.4. The D-InSAR
stack can be visualized as a graph in the temporal/ orthogonal spatial baseline plane. The white
dots are the nodes represented by the setM′ with m′ SAR scenes at one special time and with the
corresponding orthogonal spatial baseline relating to the master scene. The black lines are the arcs
of the graph represented by the interferograms between the corresponding SAR images.

Here, the master scene is at the end of 1997. The master scene is chosen so that the so called stack
coherence, cf. (Kampes, 2005, p. 6),

γtα =
1

m′ − 1

∑
∀tβ∈t,tβ 6=tα

g(∆bαβ,⊥,∆b⊥,crit) · g(∆tαβ,∆tcrit) · g(∆fαβ,∆fcrit) (2.20)

with

g(x, c) =

{
1− |x|c |x| ≤ c
0 |x| > c

(2.21)

is maximized. As mentioned in Section 2.2.1.2, typical values for the critical orthogonal spatial
baseline are ∆b⊥,crit = 1100m, for the critical temporal baseline ∆tcrit =5 years and for the critical
di�erent Doppler centroid frequencies ∆fcrit = 1380Hz (Hooper, 2006, p. 36).

The PSI method only processes persistent scatterers which do not su�er from decorrelations as
they remain coherent in all interferograms. Thus, there are no limitations on the size of the spatial
and temporal baselines. Therefore, the interferograms are generated with respect to one mas-
ter scene resulting in the star-like single-master stack with m′−1 interferograms, shown in Fig. 2.8a.

By applying the SBAS method a set N ′ with n′ interferograms is generated under the condition
that the maximum temporal and spatial baselines are not exceeded. Thereby, the decorrelation
e�ects are reduced. This leads to a network with more than one master scene. Figure 2.8b shows
an optimized network for the ERS-1/-2 data set following Pepe et al. (2015).

The SBAS method was �rst proposed by Berardino et al. (2002) based on multilooked im-
ages to reduce phase noise and a coherence based pixel selection criterion. This results in an
increased spatial sampling with respect to the original PSI approach (Crosetto et al., 2016).
Furthermore, it includes an approach to link independent baseline subsets which can occur due to
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(a) PSI method with m′ − 1 interferograms (b) SBAS method with n′ interferograms

Figure 2.8: Multitemporal SAR data representation as a graph in the temporal/ orthogonal spatial baseline
plane for the ERS-1/-2 data from May 1992 to December 2000 covering the test region of the Lower-Rhine-
Embayment. All scenes are coregistrated to one master scene at the end of 1997. The white dots are the nodes
of the graph represented by the set M′ with m′ SAR images at one time with corresponding orthogonal
spatial baseline relating to the master scene. The black lines are the arcs of the graph represented by the
interferograms. The interferogram selection is represented once for the PSI and once for the SBAS method.

the limitations of baseline sizes. Lanari et al. (2004) extended the SBAS approach to work with
full-resolution interferograms which are not multilooked in order to detect local deformations as well.

The aim is to detect the deformation of the test region in the Lower-Rhine-Embayment. This region
is characterized by a very rural area with many forests in the south. Moreover, within this region
there is one of the largest brown coal occurrences in Europe. The groundwater extraction and the
�ooding after the closing of the open-cast mines lead to extensive Earth's surface motions. To detect
them in a large scale the SBAS method is used in this work as persistent scatterers are very rare in
this region.

2.3.2 Small BAseline Subset Method

The aim of the SBAS method is to estimate a deformation time series by processing a series of
SAR images multitemporally. Therefore, a D-InSAR stack is generated according to Fig. 2.8b under
the condition that the maximum temporal and spatial baselines are not exceeded. The resulting
di�erential interferometric phases include the deformation signal, orbit and topographic errors,
atmospheric e�ects and noise. To reduce the noise which is e�ected by decorrelation e�ects, only so
called coherent pixels are analyzed. These are pixels with a stable backscattering characteristic. The
identi�cation is based on the coherence, cf. (2.18). Hence, only pixels that show a coherence value
greater than a speci�c threshold in a minimum number of interferograms are taken into account.
In the following m′ SAR images are considered resulting in n′ D-InSAR images based on the SBAS
method.

2.3.2.1 Preprocessing Steps

Before the SBAS work�ow is applied, two preprocessing steps based on Pepe et al. (2015) are
inserted in order to improve the resulting deformation time series. These preprocessing steps imply
an e�ective noise �ltering and an e�cient interferogram selection procedure.
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A posteriori �ltering steps, like the multilooking are performed individually for each interferogram,
cf. Section 2.2.1.3. This leads to the fact that the interferometric phases are not fully time consistent.
Due to the multilooking, the so called loop closure phase, expressed here for the three SAR images
at times tα, tβ and tγ

φ
∆tαβ
xj + φ

∆tβγ
xj + φ

∆tγα
xj 6= 0 (2.22)

is unequal to zero. This is called temporal inconsistency. With help of the overdetermined system,
the unknown wrapped phases at each SAR image (see white nodes in Fig. 2.8b) are estimated to
reconstruct new time consistent SBAS interferograms. To overcome the rank defect, the phase of
the �rst SAR image is assumed to be zero. Nevertheless, in some cases the phase quality of the
new reconstructed interferogram gets worse. To further increase the quality of the whole stack the
observed and reconstructed interferograms are combined through a weighted averaging operation.
This new stack of SBAS interferograms o�ers an increased level of coherence compared to the
original interferograms and the time consistency gets better. However, it has to be mentioned that
the interferograms are not fully time consistent.

The second step identi�es the optimum set of previously �ltered interferograms. Therefore, a Delau-
nay triangulation in the temporal/ orthogonal spatial baseline plane based on the m′ SAR images
is used. For this purpose, a normalized length is de�ned for each arc ∆tαβ

L∆tαβ =

√
(
∆tαβ
δt

)2 + (
∆bαβ,⊥
δb⊥

)2 (2.23)

with the normalization factors δt = 1500days and δb⊥ = 300m (Pepe and Lanari, 2006). Along each
arc the interferograms are generated whereas all arcs with too large baselines are removed. Starting
from this reduced Delaunay triangulation an averaged coherence value is calculated and maximized
by a simulated annealing algorithm. This searching procedure mutates the current triangulation
by performing a so called edge �ip operation (Aichholzer et al., 2003). Therefore, one inner arc is
randomly selected and replaced with the other diagonal of the quadrilateral around this arc. If the
averaged coherence of this new triangulation is larger it is accepted and a new mutation is done until
an abort criterion is achieved. However, if the averaged coherence of the new triangulation is lower,
it is not directly rejected. It is accepted with a de�ned acceptance probability. This guarantees that
the algorithm does not immediately end at a local optimum. The acceptance probability decreases
with the iterations and �nally reaches zero meaning that a worse state is not accepted anymore.
Simulated annealing will also be used in Section 6.1 where it will be described in more detail. The
identi�ed optimum set of multitemporally �ltered interferograms is used as input for the SBAS
work�ow which is described in the next section.

2.3.2.2 SBAS Work�ow

The SBAS work�ow is shown in Fig. 2.9 and the following derivations are based on Berardino et al.
(2002). Starting point is the multitemporal D-InSAR stack of multilooked and multitemporally �l-
tered SBAS interferograms. Due to the sinusoidal nature of the signal the di�erential interferometric
phase is ambiguous. These phase ambiguities are solved in the context of phase unwrapping which
represents the main focus of this work and will be addressed in Chapters 4 and following in more
detail. After the phase unwrapping, the unwrapped phases are used to estimate the deformation
and the topographic error for each pixel. Removing the deformation and the topographic error,
applying a further phase unwrapping step and adding the deformation back leads to the modi�ed
unwrapped and corrected phases. An inversion step o�ers the single epoch phases for one epoch.
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Figure 2.9: SBAS Work�ow according to Berardino et al. (2002) starting from multitemporally �ltered
SBAS interferograms, cf. Pepe et al. (2015).

Beside the deformation, these phases include variations caused by the atmosphere. A spatial and
temporal �lter allows the separation of these two e�ects leading to the deformation time series in
slant range direction. The individual steps are shortly described in the following.

Deformation and Topography Estimation

The unwrapped di�erential phase is temporally low-pass �ltered by estimating a mean deformation
and a topographic error for each pixel over the entire stack. If, for example, the pixel xj in the entire
D-InSAR stack is considered

φ∆t
xj =

[
φ∆t1
xj . . . φ

∆t′n
xj

]T
, (2.24)

the functional model results in

φ∆t
xj =

4π

λ
∆t · vxj +

4π

λ

∆b⊥
r sin θ

·∆hxj (2.25)

with the temporal and orthogonal spatial baselines ∆t and ∆b⊥, the unknown mean velocity vxj
and the unknown topographic error ∆hxj . Considering more than two D-InSAR images, the param-

eters ṽxj and ∆h̃xj can be estimated by using the least squares adjustment. The observations are
assumed to be equal weighted and uncorrelated. The estimated phase components for the deforma-
tion and the topographic error are given by

φ̃
∆t

xj ,defo =
4π

λ
∆t · ṽ∆t

xi (2.26)

φ̃
∆t

xj ,topo =
4π

λ

∆b⊥
r sin θ

∆h̃xj (2.27)

and respectively, the complete estimated di�erential interferometric phase results in

φ̃
∆t

xj = φ̃
∆t

xj ,defo + φ̃
∆t

xj ,topo. (2.28)
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Modi�ed Unwrapped Corrected Di�erential Phase

After the initial deformation and topography estimation, the complete estimated phase φ̃
∆t

xj is

subtracted from the observed wrapped phase ψ∆t
xj modulo 2π resulting in the corrected di�erential

phase

ψ∆t
xj ,corr = 〈ψ∆t

xj − (φ̃
∆t

xj ,defo + φ̃
∆t

xj ,topo)〉2π. (2.29)

This step minimizes the phase ambiguities and makes the phase unwrapping step easier. The cor-
rected di�erential phase includes possible phase unwrapping errors as well as atmospheric and noise
e�ects. In order to correct supposed phase unwrapping errors, the corrected di�erential phases are
unwrapped again resulting in the unwrapped corrected di�erential phases φ∆t

xj ,corr. These phases are
extended by the before subtracted deformation part, leading to the so called modi�ed unwrapped
corrected di�erential phases

φ∆t
xj ,mod = φ∆t

xj ,corr + φ̃
∆t

xj ,defo. (2.30)

Inversion Step

The modi�ed unwrapped corrected di�erential phases φ∆t
xj ,mod are further regarded for each pixel xj

over the entire stack. One phase between the two SAR images at times tα and tβ at pixel xj is given

by the di�erence of the two phases of the corresponding SAR images φ
tβ
xj ,mod and φtαxj ,mod

φ
∆tαβ
xj ,mod = φ

tβ
xj ,mod − φtαxj ,mod. (2.31)

The task is to estimate the unknownm′ phase values φt
xj ,mod with help of the n

′ modi�ed unwrapped

corrected di�erential phases φ∆t
xj ,mod. As the observations are relative values, the system has a rank

defect. To overcome this, it is assumed that the phase and thus the deformation at the �rst time t1
is zero. With help of the functional model which is already given in (2.31), the system results in

φ∆t
xj ,mod = Aφt

xj ,mod (2.32)

with the design matrix A ∈ Zn′×m′−1. Each row of A represents one interferogram and is �lled
with two entries: one and minus one at the respective positions of the corresponding SAR images.
Providing n′ > m′ − 1, the system is overdetermined and the solution is given by the least squares
adjustment and results in

φ̃
t

xj ,mod = (ATPA)−1ATPφ∆t
xj ,mod (2.33)

with the weight matrix P which is set to a unit matrix.

Due to the limitations of baseline sizes independent baseline subsets can occur. Figure 2.10
shows such an example. Seven SAR images are used to produce eight di�erential interferograms
resulting in two independent subsets. The design matrix A has a rank defect resulting in a singular
matrix ATA. The linear equation system in (2.32) can be solved by using a Singular Value
Decomposition (SVD) and the pseudo inverse of A. However, this results in large discontinuities in
the cumulative deformations which cannot be physically interpreted.

As solution Berardino et al. (2002) replaces the unknown phase values by the mean velocity occurring
between neighboring SAR scenes. The mean velocity represents the slope between two following SAR
scenes, see Fig. 2.11. This results in the new parameter vector

v∆t
xj =

[
v∆t1
xj . . . v

∆tm′−1
xj

]T
=

[
φ
t2
xj,mod

t2−t1 . . .
φ
tm′
xj,mod

−φ
tm′−1
xj,mod

tm′−tm′−1

]T
. (2.34)
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Figure 2.10: Temporal/ orthogonal spatial baseline network with subsets. In order to reduce decorrelation
e�ects, large baselines are avoided after the SBAS method. This may lead to independent subsets.

Considering the di�erential interferometric phase φ∆t13
xj ,mod, the functional model is given by

φ∆t13
xj ,mod = (t2 − t1) · v∆t12

xj + (t3 − t2) · v∆t23
xj (2.35)

or to be general, the di�erential interferometric phase φ
∆tαβ
xj ,mod is represented by

φ
∆tαβ
xj ,mod =

β∑
i=α

(ti+1 − ti)v∆ti
xj . (2.36)

With the design matrix A′ ∈ Zn′×m′−1 the functional model can be formulated as

φ∆t
xj ,mod = A′v∆t

xj . (2.37)

To link independent subsets, the system can also be solved by using the SVD and the pseudo
inverse of A′ in this case. The individual phases φt

xj ,mod result from an additional integration of

the estimated velocities v∆t
xj .

Estimation of the Atmosphere

Beside the deformation, the single phases φt
xj ,mod include an atmospheric e�ect. The atmosphere is

considered to be uncorrelated in time and therefore temporally very highly frequented. In contrast,
it correlates in space and is therefore spatially low frequented. Using a spatial low-pass and a
temporal high-pass �lter, the atmosphere can be separated from the deformation. Therefore, the
single phases are averaged over a de�ned window, for example 25 pixels, in space in order to reduce
the noise. The averaged signal φt

xj ,LP
is then averaged individually in time for each pixel. In time

the window can be set to 300 days for example. The spatial low-pass and temporal high-pass �ltered
signal represents the noise and atmospheric corrected signal and therefore consists of a deformation
signal only.

Estimation of the cumulative deformation time series

Using the spatial low-pass and temporal high-pass �ltered signal φtx, the cumulative deformation in
LOS can be estimated for each pixel xj and each time tα according to

dtαxj =
λ

4π
φtαxj (2.38)
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Figure 2.11: Replacing the unknown phase values φt
xj with the mean velocity v∆t

xj between neighboring
SAR scenes. Figure based on Berardino et al. (2002).

with respect to time t1 where the deformation is set to zero. This time series can be used to esti-
mate a trend where the slope represents the mean deformation velocity at the corresponding pixel xj .

However, it has to be considered that the deformation refers to LOS direction. In reality the move-
ment takes place in the three dimensional space. Based on a one dimensional measurement, it is
impossible to derive the entire three dimensional ground motion. Radar satellites have either an
almost north-south direction for descending orbits or an almost south-north direction for ascend-
ing orbits. Combining ascending and descending orbits, as it is possible with the recently available
Sentinel-1A/B5 data free of charge, a division into a vertical elevation and an east-west movement
component can be made, see Yin and Busch (2018). The north-south component must be neglected
due to the poor intersection condition of the ascending and descending orbits. If there is only one
data set, ascending or descending, the LOS motion can be converted into a height change with the
help of the angle of incidence

∆Htα
xj =

dtαxj
cos(θtα)

. (2.39)

However, this is based on the assumption that no horizontal movement takes place.

5https://directory.eoportal.org/web/eoportal/satellite-missions/content/-/article/sentinel1 last
accessed on August 4, 2020

https://directory.eoportal.org/web/eoportal/satellite-missions/content/-/article/sentinel1
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3. Linear Programming

A rather popular phase unwrapping operation to solve the phase ambiguity factors k
∆tαβ
x of the

interferometric phases between the two SAR images tα and tβ is the Minimum Cost Flow (MCF)
algorithm (Costantini, 1997). It is the current state of the art in the SBAS analysis for spatial
phase unwrapping and will also be the main focus of this work. The phase unwrapping task is
de�ned as a weighted L1-norm minimization problem where the unknown parameters are the integer
values k

∆tαβ
x . Thus, the problem is de�ned as an Integer Linear Program (ILP). However, due to its

special characteristic, the problem can be solved as a Linear Program (LP) without considering the
integer constraints. Before the phase unwrapping problem is solved in detail, the general solution of
an LP is discussed. In this context, an overview of the interaction between primal and dual problems
is given. Moreover, LP solvers (Dantzig, 1963, Karmarkar, 1984) are summarized and the solution
with network �ow algorithms (Fulkerson, 1961, Bertsekas and Tseng, 1988) is explained. Detailed
information about LP and ILP can be found in Schrijver (1986) or Vanderbei (2001), for example.

3.1 Primal/ Dual Form

In a general LP a linear objective function has to be minimized subject to a set of lin-
ear ≥- inequalities with respect to the variables x which should not be negative. Any LP can be
transformed into this standard form. Maximizing problems or ≤- inequalities are multiplied by
minus one and every equality can be represented by two inequalities. An LP in standard form is
written as

Objective function: cTx . . .min

Constraint: BTx ≥ b
Variable: x ∈ R≥0

(3.1)

with the target function vector c ∈ Rn, the parameter vector x ∈ Rn which should be non-negative,
the constraint matrix BT ∈ Rr×n and the right-hand side vector b ∈ Rr. Figure 3.1 shows a two
dimensional example of an LP subject to three linear inequality constraints. Geometrically, the
linear inequalities de�ne a convex polytope over which the objective function should be minimized.
The optimal solution always lays on one of the corner points of the polytope or, if the solution is
ambiguous, on an arc. In this case the optimal solution is in the bottom left corner.

The initial form of an LP is always named as primal program. Associated with the primal problem
is another LP, the dual one (Dantzig, 1963, p. 123). Therefore, the example in Fig. 3.1 is considered
once again. A valid solution for the primal problem can be x1 = 5 and x2 = 2 with an objective
function value of Φ(x) = 7. However, obviously the �rst two constraints indicate a maximum lower
bound so that x1 = 3 and x2 = 2 with an objective function value of Φ(x) = 5 seems to be the
optimal solution. This is exactly the idea of the dual problem. It should represent a maximum lower
bound, see Fig. 3.2 for clari�cation. This maximum lower bound is obtained by a linear combination
of the primal constraints by multiplying them from both sides with the vector yT

yTBTx ≥ yTb. (3.2)

For the example shown in Fig. 3.1 this results in y1 = 1, y2 = 2 and y3 = 0. Since a maximum lower
bound for the primal minimization problem is required, it follows:

min . . .Φ(x) = cTx ≥ yTBTx ≥ yTb = Φ(y) . . .max. (3.3)
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primal:

Objective function: Φ(x) = x1 + x2 . . .min

Constraint: x1 ≥ 3

x2 ≥ 2

− 2x1 − x2 ≥ −12

Variable: x ∈ R≥0

LPopt : x1 = 3, x2 = 2

dual:

Objective function: Φ(y) = 3y1 + 2y2 − 12y3 . . .max

Constraint: y1 − 2y3 ≤ 1

y2 − y3 ≤ 1

Variable: y ∈ R≥0

LPopt : y1 = 1, y2 = 1, y3 = 0

Figure 3.1: Two dimensional example for an LP. The linear inequality constraints de�ne a feasible region
represented as gray �lled polygon. The white triangle minimizes the objective function. The problem is
de�ned in its primal and its dual form.

The vector y consists of the dual variables. The number of dual variables is equal to the number
of primal constraints. The conversion between primal and dual LPs can also be derived from the
Tucker diagram in Table A.1 in the Appendix A. Accordingly, the following dual problem results
for the primal problem described in (3.1)

Objective function: Φ(y) = yTb . . .max

Constraint: By ≤ c
Variable: y ∈ R≥0.

(3.4)

The dual LP is again a linear optimization program and taking the dual of the dual LP returns to
the primal LP with the variables x, again. As the dual LP gives a maximal lower bound for the
primal LP, the objective value Φ(x) of the primal LP is always greater than or equal to the solution
of the dual LP Φ(y). This results in the relationship

Φ(x) ≥ Φ(y) (3.5)

which is also known as weak duality (Vanderbei, 2001, pp. 55�). The sentence of strong duality
(Vanderbei, 2001, pp. 57�) intensi�es this relationship. Strong duality means that for both, the
primal and the dual LP, the optimal solutions have the same objective values:

Φ(x) = Φ(y). (3.6)

With (3.3) follows

cTx = yTBTx = yTb (3.7)

and consequently

cTx = yTBTx ⇔ (cT − yTBT )x = 0 (3.8)

yTBTx = yTb ⇔ yT (BTx− b) = 0. (3.9)
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dual program

Φ(y) . . .max

primal program

Φ(x) . . .min

Figure 3.2: Relationship between primal and dual LP. The primal objective function Φ(x) should be
minimized and the dual one Φ(y) maximized. The dual program is a maximum lower bound for the primal
one. The dual objective function value is therefore less than or equal to the primal objective function value.
Figure based on Vanderbei (2001, p. 56).

De�ning so called primal slacks sx and dual slacks sy, so that

BTx− sx = b (3.10)

By + sy = c (3.11)

holds, the optimality constraints can be formulated as

BTx− sx = b (3.12)

By + sy = c (3.13)

xjsyj = 0 ∀j ∈ n (3.14)

yjsxj = 0 ∀j ∈ n (3.15)

x,y, sx, sy ≥ 0 (3.16)

with the so called complementary slackness condition de�ned in (3.14) and (3.15).

3.2 Solving Linear Programs

There are two main classes of LP solvers, the simplex method and the interior point method. Both
classes exploit the primal and dual form of the program and its relationship to verify the optimality
of a solution. Their main features are described in the following. For further information on this
matter Vanderbei (2001) or Vanderbei (2001) can be consulted.

3.2.1 Simplex Method

The simplex method was one of the �rst algorithm used for the solution of an LP and was
introduced by Dantzig (1963). The approach uses a simplex tableau to perform row operations on
the LP model as well as to check a solution for optimality. As a reminder, the optimal solution
always lays on a corner point of the polytope or on an arc if the solution is ambiguous. The
simplex method takes advantage of this fact and starts at one feasible corner, not necessary the
optimal one. This is done by choosing r basic variables with a feasible solution unequal to zero
and consequently n − r nonbasic variables equal to zero, provided that the matrix BT ∈ Rr×n
has a rank of r. In a next step, the optimal solution is found by base changes. Geometrically, the
approach iteratively moves from corner to corner and tests for the optimal solution. The solution
is optimal when the objective function cannot be reduced further by a basis substitution.

The standard simplex method always starts with a program in canonical form, specifying a
unique representation for the r basic variables with a feasible primal solution. In practice, it is
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often di�cult to �nd a starting feasible canonical form. One possibility is the two phase simplex
method or alternatively the dual simplex algorithm (Lemke, 1954). There also exist primal-dual
simplex methods which simultaneous try to get a primal feasible solution while optimizing the dual
program. However, these methods have limited success for general LPs (Curet, 1993).

Although it is established that the primal or dual simplex method is very e�cient and works
in linear time for the most cases, there exists a number of LPs for which the algorithm runs in
exponential time. This motivates the development of the polynomial-time interior point method
described in the following.

3.2.2 Interior Point Method

The interior point method, also referred to as barrier method, follows a di�erent approach. The
algorithm moves across the interior of the feasible region and not along the boundary like the sim-
plex method. The �rst interior point method was invented by Karmarkar (1984), known as ellipsoid
algorithm. Many variations have been proposed afterwards, including the primal-dual interior point
method which is known as the most common. Under the assumption that the primal and the dual
LP are bounded and feasible, a solution is optimal if it ful�lls the optimality constraints de�ned
in (3.12) to (3.16). The optimal solution is found in an iterative way by temporarily ignoring the
non-negative constraints and relaxing the complementary slackness conditions with a tolerance.
This tolerance gets smaller after each iteration. So the method starts with a non-negative solution
and iteratively generates a new point in an update step where the search direction is obtained by
solving (3.12), (3.13) and the relaxed complementary slackness conditions with help of Newton's
method (Nocedal and Wright, 2006, p. 51).

The interior point method is a competitive alternative to the simplex method, especially for LPs with
a high number of parameters and constraints (Gondzio, 2012). However, the performance depends
on the speci�c LP. So it is often a good idea to try both methods and then decide which works best
for the given problem.

3.3 Solving Integer Linear Programs

An Integer Linear Program (ILP) has the same structure as an LP with the additional condition
that the variables must take integer values. An ILP in standard form is written as

Objective function: cTx . . .min

Constraint: BTx ≥ b
Variable: x ∈ Z≥0

(3.17)

with the target function vector c ∈ Rn, the parameter vector x ∈ Zn which should be non-negative
and take on integer values, the constraint matrix BT ∈ Rr×n and the right-hand side vector b ∈ Rr.
If only some of the variables are constrained to be integers, the problem is known as a Mixed
Integer Linear Program (MILP).

The computational complexity of ILPs is much higher than for LPs. In general, solving ILPs is
NP-hard (Schrijver, 1986, p. 20). Figure 3.3 shows a two dimensional example of an ILP subject
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Objective function: Φ(x) = x1 + 2x2 . . .min

Constraint: − x1 ≥ −3

− 5x1 − 7x2 ≥ −35

− 5x1 + 8x2 ≥ 2

Variable: x1, x2 ∈ Z≥0

LPopt : x1 = 0, x2 = 0.25

ILPopt : x1 = 0 , x2 = 1

Figure 3.3: Two dimensional example for an ILP. The linear inequality constraints de�ne a feasible region
represented as gray �lled polygon. Without integer constraints the white triangle minimizes the objective
function, also known as the solution of the LP relaxation. However, the feasible integer points are shown
in black with their convex hull represented as dashed line. This is the smallest feasible region that contains
these points. The point with the smallest objective function value is thus at x1 = 0 and x2 = 1. So the
solution of ILP cannot be achieved by simply rounding the solution of the LP.

to three linear inequality constraints. Due to the additional condition that the variables should be
integers, the feasible region is restricted to a discrete set of points. A naive way to solve the problem
is to simply disregard the integer constraints and solve the so called LP relaxation problem and
then round the solution to the next integer values. For the example in Fig. 3.3 this leads to the
solution x1 = 0 and x2 = 0. This solution provides an optimal solution with regard to minimizing
the objective function, however, one constraint is violated.

3.3.1 Total Unimodularity and Totally Dual Integrality

Solving ILPs is not an easy task. Fortunately, there are LPs whose solutions are automatically inte-
gers, see for example the LP given in Fig. 3.1. Even without the integer constraints, the parameters
are integers. One su�cient condition is the total unimodularity of the constraint matrix BT ∈ Zr×n
and additionally the vectors c ∈ Zn and b ∈ Zr must have all integer entries. A matrix is totally uni-
modular if every square submatrix has a determinant of zero, plus or minus one. Since the smallest
square submatrix is the entry itself, this implies that the matrix itself may only have ones, minus
ones or zeros as entries. Given these conditions, the solutions of the LP will be integers (Schrijver,
1986, p. 266). Besides total unimodularity, there is another category of LPs whose solutions are
integers, the so called totally dual integrality systems. A linear system with rational constraint ma-
trix BT ∈ Rr×n and rational right-hand vector b ∈ Rr is totally dual integral if for each integer
cost vector c ∈ Zn an optimal dual integer solution exists. If the system is totally dual integral and
the right-hand side vector b ∈ Zr consists of integer values, then the corner points of the match-
ing polytope which describe the convex hull of the perfect matches are automatically integers and
therefore the primal solution is also an integer value (Edmonds and Giles, 1977).
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3.3.2 Integer Linear Programming Solver

When the total unimodularity or the totally dual integrality is not given and the solution needs to
be an integer value, an ILP solver is necessary. If only some of the parameters are constrained to
be integers an MILP solver is required. The optimal solution may not be achieved at a corner point
of the polytope. It is found at one corner of the convex hull of all feasible points. In the following,
no distinction is made between ILP and MILP solver, as an MILP solver can be used if some or
even all of the variables are constrained to be integers.

One class of solvers is the cutting plane method. It starts with the solution of the LP relaxation and
iteratively adds some linear constraints, known as cutting planes, to drive the solution or a part
of the solution towards integer values without eliminating any feasible integer solution. Therefore,
the cutting plane should be placed between the solution of the LP relaxation and the convex hull
of the feasible points. Gomory's cutting plane method (Gomory, 1958) was the �rst MILP solver
and until today all cutting plane methods are based on this method.

Another class of algorithms is the branch and bound method, �rst proposed by Land and Doig
(1960). It also starts with the solution of the LP relaxation. Then some variable, say xj , is picked
that is restricted to be integer and its value in the LP relaxation is fractional, say 3.2. This variable
is branched by producing two new subproblems, one with the additional restriction that xj ≤ 3
and one with the additional restriction xj ≥ 4. Afterwards, the same idea is applied to the two
subproblems by solving the LP relaxation and if necessary selecting new branching variables. The
set of feasible solutions is partitioned into smaller more restricted subsets of the solution resulting
in a search tree. The search tree ends when all required variables are integers. Cutting planes can be
used to speed up the process of �nding the optimal solution. This combination is known as branch
and cut algorithm.

3.4 Network Flow Problems

Many LPs can be considered as network �ow problems. A special type of a network �ow problem
is called the Minimum Cost Flow (MCF) problem which will be addressed here. A network or
sometimes called a graph G consists of a set M with m nodes which are connected by a set N
with n directed arcs. Fig. 3.4 shows an example of a small network. It consists of m = 4 nodes and
n = 5 arcs. Each node j o�ers an amount bj of �ow, whereas a positive amount is understandable
as a supply and a negative amount as a demand. Based on the �ow conservation, the sum of the
incoming and outcoming �ow Π has to satisfy the supply/demand at each node, meaning that∑

{k|(kj)∈N}
Πkj −

∑
{k|(jk)∈N}

Πjk = bj ∀j ∈M. (3.18)

Moreover, the total sum of all supplies and demands has to be zero∑
j∈M

bj = 0. (3.19)

Each arc (jk) is associated with a cost cjk that arises when the �ow Πjk moves from node j to
node k. The task is to minimize the total cost∑

(jk)∈N
cjkΠjk . . .min. (3.20)
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Figure 3.4: Example of a small network �ow problem consisting of m = 4 nodes and n = 5 arcs. Each
node j o�ers an amount bj which should be satis�ed by the incoming and outcoming primal �ows Π. Each
arc (jk) is weighted with a cost value cjk which represents an arc capacity for the dual �ow yk − yj . The
thick arcs represent a possible spanning tree.

Moreover, each arc (jk) can have an upper capacity ujk for the �ow. Together with the non-negative
constraint, the minimum cost �ow problem is de�ned as

Objective function: Φ(Π) = cTΠ . . .min

Flow conservation: ATΠ = b

Variable: 0 ≤ Π ≤ u
(3.21)

with the constraint matrix AT ∈ Zm×n also called the node-to-arc incidence matrix of the graph.
One row of AT represents one node with zeros except the columns belonging to the outcoming and
incoming arcs. These are �lled with ones for the incoming ones and minus ones for the outcoming
ones. For the small network in Fig. 3.4 the �ow conservation results in


−1 1 0 0 0

1 0 −1 1 0
0 −1 1 0 −1
0 0 0 −1 1


︸ ︷︷ ︸

AT


Π12

Π31

Π23

Π42

Π34


︸ ︷︷ ︸

Π

=


b1
b2
b3
b4


︸ ︷︷ ︸

b

. (3.22)

Assuming integer values for the costs, the upper capacity and the supply/demand vector, the values
for the �ow Π are integers as the matrix AT ful�lls the characteristics of a totally unimodular
matrix, cf. Section 3.3.1. The network �ow problem de�ned in (3.21) is called the primal problem. A
�ow is primal feasible if the conservation in (3.21) is ful�lled and all �ows are in the capacity bounds.
With the help of the Tucker diagram in Table A.1 in the Appendix A, the associated dual problem
can be established which is helpful to verify the optimality of the solution. The dual problem is
de�ned as

Objective function: Φ(y, zu) = bTy − uzu . . .max
Capacity contraint: Ay − zu ≤ c

Variable: zu ≥ 0

(3.23)

with the dual variable y which represents the node potential and zu which is the bound of the
variable. The dual problem is a maximal �ow network with the arc capacities represented by the
costs. The solution is dual feasible if it ful�lls the capacity constraints, meaning that the di�erence
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of the node potentials yk−yj along one arc (jk) minus the bound of the variable zujk is not allowed
to exceed the arc capacity cjk. The solution is optimal when the complementary slackness conditions

ATΠ = b (3.24)

Ay − zu + sy = c (3.25)

Πjksyjk = 0 ∀jk ∈ n (3.26)

zujk(ujk −Πjk) = 0 ∀jk ∈ n (3.27)

Π, sy, zu ≥ 0 (3.28)

are ful�lled. The dual slack

syjk = cjk − (yk − yj − zujk) (3.29)

gives a statement how much capacity is left.

Network �ow problems can be solved e�ciently due to the speci�c network form. The simplex
algorithm for example always starts with a feasible basic solution with for this case m − 1 basic
variables which are unequal to zero as the matrix AT ∈ Zm×n has a rank of m − 1. Assuming
that the network is connected, a spanning tree T is related to a base of the simplex method. A
subnetwork is called a spanning tree if it connects every node without containing any cycle. For
the small network in Fig. 3.4 the thick arcs are corresponding to a spanning tree. Starting at a root
node, the �ows can successively be solved for the arcs (jk) ∈ T belonging to the spanning tree with
help of the �ow conservation. All other �ows along the arcs (jk) /∈ T are set to zero. Analogously,
the dual variables can be solved relating to the spanning tree. The node potential for the root node
is set to zero and the m− 1 other variables can be solved corresponding to the capacity constraints.
Along each arc (jk) ∈ T corresponding to the spanning tree the dual slack has to be zero so that
the di�erence of the node potentials yk − yj has to be maximal and equals the arc capacity.

Depending on whether the solution is primal or dual feasible, the primal or dual network simplex
method is used. The basic idea of the primal network simplex method is to pick an arc (jk) /∈ T
that is dual infeasible and let it enter the tree. Therefore, the tree has cycles. To reconstruct a new
spanning tree, the arc on the cycle with the opposite direction to the entering arc and with the
smallest �ow has to leave the tree. Contrary, the basic idea of the dual network simplex method
is to pick an arc (jk) ∈ T that is primal infeasible and let it leave the spanning tree. Therefore,
the tree is split into two subtrees. To reconstruct a new spanning tree the arc with the opposite
direction than the leaving arc and with the smallest dual slack is entered to the basis.
Well-known network �ow algorithms are the out-of-kilter algorithm by Fulkerson (1961) or the
relaxation method by Bertsekas and Tseng (1988).

Most network �ow algorithms assume non-negative �ows. However, in some cases there are non-zero
lower capacities l resulting in

Objective function: Φ(Π) = cTΠ . . .min

Flow conservation: ATΠ = b

Variable: l ≤ Π ≤ u.
(3.30)
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For this case, the problem can be transformed to

Objective function: Φ(Π′) = cTΠ′ . . .min

Flow conservation: ATΠ′ = b+AT l

Variable: 0 ≤ Π′ ≤ u+ l

(3.31)

with the non-negative transformed �ow Π′. Afterwards, the solution of Π′ has to be retransformed
to the origin �ow

Π = Π′ − l. (3.32)
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4. Spatial Phase Unwrapping � Review

and Evaluation of Methods

The main problem of interferometric data is that the interferometric phase ψ
∆tαβ
xj of two SAR

images at times tα and tβ at pixel xj can only be measured modulo 2π. To derive the information
of interest, for instance the deformation, the phase ambiguities have to be solved. This is done in
the context of phase unwrapping. According to Pepe and Lanari (2006) this part remains a critical
task in the analysis as phase unwrapping errors may lead to misinterpretations in the deformation.

This chapter will address the problem of unwrapping the observed interferometric phase. It starts
with an overview of existing phase unwrapping approaches based on one single interferogram. An in-
terferogram provides information in two dimensions represented by the azimuth and range direction.
As there are many phase unwrapping algorithms, only the widespread techniques are mentioned here.
In this work, the focus is set to the rather popular Minimum Cost Flow (MCF) approach, which
is the state of the art in the SBAS analysis. The problem is formulated as a weighted L1-norm
problem. In this work, the multitemporal D-InSAR processing is done with the Remote Sensing
Software Graz (RSG). Currently, RSG solves the weighted L1-norm problem using a standard LP
solver, cf. Section 3.2. Due to its structure the MCF problem can also be solved very e�ciently as
a network �ow problem, cf. Section 3.4. This chapter focuses on di�erent ways of formulating the
MCF problem. The basic idea can already be found in the literature, but there is no detailed and
precise comparison of the di�erent formulations. This work should help to demonstrate and discuss
di�erent ways to solve the phase unwrapping problem. The di�erent approaches are applied to a
simulated D-InSAR stack and validated afterwards.

4.1 Problem Formulation

The problem is that the interferometric phase ψ
∆tαβ
xj of two SAR images at times tα and tβ at pixel xj

can only be measured within an interval from [−π, π]. Consequently, if the surface displacement is
greater than a quarter of the radar wavelength (equal to 1.42 cm for the ERS satellites) or other
e�ects, like topographic errors, atmosphere or noise occur, the interferogram cannot be uniquely
inverted. This ambiguous phase is called the wrapped phase. The absolute, so called unwrapped
phase

φ
∆tαβ
xj = ψ

∆tαβ
xj + 2πk

∆tαβ
xj ∀xj ∈M (4.1)

is obtained by adding an integer multiple k
∆tαβ
xj of 2π to the wrapped phase. This has to be done

for each pixel of the set M of pixels in the interferogram. Fig. 4.1a represents an example for a
simulated settlement depression for one interferogram. The absolute unwrapped phases exceed the
measurable range so that the measured wrapped phases, shown in Figure 4.1b, include the typical
phase fringes due to the phase ambiguities. To obtain the absolute unwrapped phases the so called
unknown phase ambiguity vector k

∆tαβ
x ∈ Z has to be solved. This is done during the process

called phase unwrapping and is a critical task in D-InSAR analysis (Pepe and Lanari, 2006).

Several methods to estimate the unknown phase ambiguity factors exist. Basically all of them start
with the measured wrapped D-InSAR phases and consider the unwrapped phase as a continuous
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(a) reference phase φ̂
∆tαβ
x (b) measured wrapped phase ψ

∆tαβ
x

Figure 4.1: Simulated ground settlement depression for one interferogram with a temporal baseline
of ∆tαβ =315 days and an orthogonal spatial baseline of ∆b⊥,αβ =76.322m.

curve. Under the assumption that there are no 2π phase jumps between neighboring pixels, the
unwrapped phase can be considered as an integral of the phase gradients (Tribolet, 1977). A pre-
liminary estimate of the unwrapped phase gradient between two adjacent pixels xk and xl is de�ned
via the numerical di�erentiation (Costantini, 1998)

ψ
∆tαβ
∆xkl

= 〈ψ∆tαβ
xl − ψ∆tαβ

xk 〉−π,π ∀∆xkl ∈ N (4.2)

with the modulo 2π operator 〈.〉−π,π and the setN of phase gradients in the interferogram. The mod-
ulo operator is necessary to transform the gradient in a range from −π to π according to the above
assumption that the unwrapped phase will not change by as much as half a cycle between adjacent
pixels. If the assumption is true, there are no discontinuities and both wrapped and unwrapped
gradients do not di�er from each other, meaning that

φ
∆tαβ
∆xkl

= ψ
∆tαβ
∆xkl

(4.3)

holds true. The unwrapped phase φ
∆tαβ
xj at pixel xj can then be easily reconstructed up to an

additive constant by integrating the wrapped phase gradients along any set Nxj of phase gradients
that connect a reference point x0 and the pixel xj

φ
∆tαβ
xj =

∑
∀∆xkl∈Nxj

ψ
∆tαβ
∆xkl

+ φ
∆tαβ
x0 . (4.4)

The integral is replaced by a sum due to the pixel based representation. The solution is path-
independent and does not depend on the set Nxj of phase gradients.

In reality, assumption (4.3) is not generally true. Phase noise, atmospheric e�ects, sub-sampling or
topographic e�ects lead to inconsistencies, meaning that the oriented sum of the phase gradients,
cf. (4.2), in one loop is unequal zero in some cases. This oriented sum is referred to as residue. The
residues are assumed to be located at the centroids of the corresponding loops. Figure 4.2 shows an
inconsistency with a corresponding positive residue on a square of four sampled pixels. The task is
to correct or to avoid these inconsistencies. To better detect at which arc the inconsistency exactly
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Figure 4.2: Example for one spatial inconsistency. The oriented sum over the spatial wrapped phase gradi-

ents is unequal to zero and leads to a positive residue: ψ
∆tαβ
∆xkl

+ ψ
∆tαβ
∆xkl

+ ψ
∆tαβ
∆xlm

+ ψ
∆tαβ
∆xmj

= 6.28.

occurs, it is also possible to investigate redundant loops. Costantini et al. (2012) has done this
and found that the phase unwrapping result is more reliable and accurate. However, this leads to
overlapping arcs which can be problematic with speci�c formulation types of the phase unwrapping
problem. The di�erent types of formulations and solutions of the phase unwrapping problem will
be presented and discussed later.

4.2 Most Popular Approaches

One of the �rst phase unwrapping algorithm was introduced by Tribolet (1977). Since then several
algorithms have been developed. This section will give an overview of the existing spatial phase
unwrapping algorithms.

Spatial phase unwrapping approaches are based on the analysis of one single interferogram. In
the following an interferogram between the two SAR images at times tα and tβ with a set M
of m pixels and accordingly a set N of n gradients between these pixels is assumed. To unwrap the
measured interferometric phases one classi�es local and global methods which are described in the
next subsections.

4.2.1 Local Methods

Local unwrapping algorithms are also known as path following methods as they �nd a suitable
integration way and unwrap each pixel locally, starting from a reference point. The phase of the
reference point is either known a priori or assumed to be zero.

Sequential paths are the simplest paths as they do not use quantities to de�ne a preferred way.
One of the �rst and classic path following algorithm for spatial phase unwrapping is Goldstein's
algorithm (Goldstein et al., 1988). So called branch cuts are de�ned by connecting residues
with opposite sign so that the cut is neutralized. The phases can then be unwrapped in a
consistent way if the branch cuts are not crossed. The algorithm works well for images with
high coherence values. However, areas which are trapped by branch cuts are inaccessible for the
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algorithm resulting into spatially incomplete and disconnected solutions. If the branch cuts become
very dense, the algorithm also fails. Zebker and Lu (1998) illustrate this with help of simulated data.

Beside the sequential way another class of path following methods exists that uses quality maps
which show the quality of individual pixels. The quality can be de�ned by the coherence, the phase
di�erence between neighboring pixels, the signal-to-noise ratio or the spatial frequency of the fringe
pattern for example. The integration path is then chosen in such a way that the high quality pixels
are unwrapped �rst. Su and Chen (2004) present a review on reliability guided phase unwrapping
algorithms. The success of these algorithms strongly depends on the quality map.

4.2.2 Global Methods

Global methods �nd a global solution by minimizing a certain measure of mis�t between the wrapped
data and the unwrapped solution∑

∀∆xkl∈N
g(φ

∆tαβ
∆xkl

, ψ
∆tαβ
∆xkl

) . . .min (4.5)

with a general cost function g(.). The advantage of this global method is that it does not depend
on path following approaches.

Ghiglia and Romero (1994) suggest a minimum-norm method, so that the cost function results in

g(φ
∆tαβ
∆xkl

, ψ
∆tαβ
∆xkl

) = |φ∆tαβ
∆xkl

− ψ∆tαβ
∆xkl
|p (4.6)

which is known as the Lp-norm. A typical algorithm is the least squares method for the case p = 2.
The least squares phase unwrapping problem is mathematically identical to the solution of the
discrete form of Poisson's Equation which can be e�ciently solved by a discrete cosine transform
approach (Ghiglia and Romero, 1994). The major di�erence to the local methods is that any value
may be added to the measurements to ensure a continuity in the solution. It has the advantage that
the phase can be unwrapped everywhere in the image. However, the solution underestimates the
phase gradients as shown in Zebker and Lu (1998). The algorithm tends to distribute unwrapping
errors globally instead of isolating the residues to a small set of points. If some points are more
reliable than others, weighting strategies may be used. However, the solution of the weighted
least squares approach cannot be reduced to the simple Poisson's Equation and requires iterative
methods using repeated discrete cosine transforms (Ghiglia and Romero, 1994). The weights can be
de�ned by functions of the signal-to-noise ratio or coherence values. Various methods for selecting
weights are described by Pritt (1996).

A second technique to unwrap the phase in a global way is the Minimum Cost Flow (MCF) al-
gorithm. Costantini (1997) developed a branch cut based algorithm to solve the regular sampled
spatial phase unwrapping problem. Costantini and Rosen (1999) adapted the algorithm to solve
sparse networks by using a Delaunay triangulation of a set of pixels. The MCF approach deals with
the assumption that the wrapped phase gradients di�er from the unwrapped ones by an unknown
multiple of 2π

φ
∆tαβ
∆xkl

= ψ
∆tαβ
∆xkl

+ 2πk
∆tαβ
∆xkl

(4.7)

with the phase ambiguity factor of the phase gradient k
∆tαβ
∆xkl

.
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According to the MCF approach, the phase unwrapping is seen as the weighted L1-norm minimiza-
tion problem of the deviation between the estimated and unknown phase gradients of the unwrapped
phases under the above assumption that both di�er by an integer multiple of 2π. This assumption
prevents the errors from spreading e�ects (Costantini, 1997). The cost function can therefore be
summarized as

g(φ
∆tαβ
∆xkl

, ψ
∆tαβ
∆xkl

) = |p∆tαβ
∆xkl

k
∆tαβ
∆xkl
| (4.8)

with the weights p
∆tαβ
∆xkl

. Considering the structure, the problem can be transformed into a network
searching for the weighted minimum cost �ow de�ned by the unknown phase ambiguity factors.
This will be discussed in more detail in the next section.

The weight p
∆tαβ
∆xkl

de�nes the probability of a branch cut (Costantini, 1998). If the weights are
constant, the MCF approach minimizes the total length of branch cuts. However, usually the costs
are de�ned by the user or quality maps relating to information extracted from the data (Costantini,
1998). The choice of the weights is an essential quality factor for the phase unwrapping solution
(Even and Schulz, 2014). There are di�erent kinds of methods to extract them from coherence
values, amplitudes, residue densities or �atness (Costantini, 1998, Eineder et al., 1998). Based on
this approach, Chen (2001) extended the problem by generalized statistical cost functions g(.).
These generalized costs can be represented as a conditional probability density function of the
unwrapped phase gradients depending on the observed wrapped phase, the image intensity and
the coherence. Although these individually adapted costs suggest great promise (Chen, 2001), the
statistical model must be modi�ed according to the application so that there is no universally
valid model for generating the costs. The generalized costs also lead to a non-linear optimization
problem which can be seen as a maximum a posteriori probability estimation approach. To get
an approximated solution Chen (2001) developed an iterative non-linear network �ow solver
technique, implemented in the open source software Statistical cost Network �ow Algorithm for
PHase Unwrapping (SNAPHU) 1.

This work will focus on the weighted L1-norm minimization problem with linear cost functions based
on the MCF approach by Costantini and Rosen (1999). The MCF approach is a rather popular
spatial phase unwrapping operation and will be described in more detail in the next section.

4.3 Minimum Cost Flow Approach

The Minimum Cost Flow (MCF) algorithm by Costantini and Rosen (1999) only uses so called
coherent pixels in the analysis to reduce the noise. These are pixels with a stable backscattering
characteristic identi�ed by the coherence values, cf. (2.18). Figure 4.3 shows the coherent pixels for
the above mentioned simulated settlement depression. In this case, one pixel is de�ned as coherent
when its coherence value is greater than or equal to 0.7. Based on the set M with m coherent
pixels a Delaunay triangulation in the azimuth/ range plane with the set N of n spatial arcs and
the set R of r de�ned triangles is computed. The corresponding triangulation of the simulation is
shown in Fig. 4.4.

It is not necessarily required to use a Delaunay triangulation. As investigated in Costantini et al.
(2012), redundant loops are also possible. It is only important that loops exist to locate the in-
consistencies. The Delaunay Triangulation has the advantage that no arcs overlap and the graph

1https://web.stanford.edu/group/radar/softwareandlinks/sw/snaphu/ last accessed on August 4, 2020

https://web.stanford.edu/group/radar/softwareandlinks/sw/snaphu/
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(a) coherent pixels of reference phase φ̂
∆tαβ
x (b) coherent pixels of measured wrapped phase ψ

∆tαβ
x

Figure 4.3: Coherent pixels of simulated settlement depression for one interferogram with a temporal
baseline of ∆tαβ =315 days and an orthogonal spatial baseline of ∆b⊥,αβ =76.322m. A pixel is de�ned as
coherent if its coherence value is greater than or equal to 0.7.

is therefore plane. This allows a special formulation of the problem which can be solved with very
e�cient algorithms. Before these di�erent formulations and solutions are discussed in Section 4.3.1,
the problem is de�ned, in the following.

Along each arc the wrapped phase gradient ψ
∆tαβ
∆xkl
∀∆xkl ∈ N is calculated, cf. (4.2). To ensure

that the solution of the minimization problem does not depend on the integration path, following
constraint

φ
∆tαβ
∆xkl

+ φ
∆tαβ
∆xkl

+ φ
∆tαβ
∆xlj

= 0 (4.9)

in each of the r Delaunay triangles, here referred to the triangle shown in Fig. 4.5, has to be ful�lled.
Using the relation expressed in (4.7) this results in the constraint

k
∆tαβ
∆xkl

+ k
∆tαβ
∆xkl

+ k
∆tαβ
∆xlj

= −b
ψ

∆tαβ
∆xkl

+ ψ
∆tαβ
∆xkl

+ ψ
∆tαβ
∆xlj

2π
e (4.10)

with the round symbol b.e to ensure that the estimated phase ambiguity factors are integer numbers.
As the phase gradients are consistent in space, the rounding operator is only necessary for numerical
issues. The problem is carried out by choosing the weighted L1-norm for the error criterion∑

∀∆xkl∈N
|p∆tαβ

∆xkl
k

∆tαβ
∆xkl
| . . .min. (4.11)

The weights p
∆tαβ
∆xkl

, the wrapped phase gradients ψ
∆tαβ
∆xkl

and the phase ambiguity factors k
∆tαβ
∆xkl

for

all ∆xkl ∈ N are collected in the vectors p
∆tαβ
∆x ,ψ

∆tαβ
∆x and k

∆tαβ
∆x , respectively. For the representation

of the L1-norm the unknown phase ambiguity vector k
∆tαβ
∆x is split into a positive and a negative

part

k
∆tαβ
∆x = k

∆tαβ ,+
∆x − k∆tαβ ,−

∆x with: k
∆tαβ ,+
∆x ,k

∆tαβ ,−
∆x ∈ Z≥0 (4.12)
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Figure 4.4: Spatial Delaunay triangulation of coher-
ent pixels shown in Fig. 4.3.
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Figure 4.5: Spatial Delaunay triangulation for an
example of three pixels. To ensure that the solution
is rotation-free, the sum of the unwrapped phase gra-
dients in one triangle has to be zero.

characterized by a superscript plus and a superscript minus. This leads to the constrained weighted
MCF L1-norm problem

Objective function: C(k
∆tαβ,+
∆x ,k

∆tαβ,−
∆x ) =

[
p

∆tαβ
∆x

T
p

∆tαβ
∆x

T
] [k∆tαβ,+

∆x

k
∆tαβ,−
∆x

]
. . .min

Constraint:
[
BT

spatial −BT
spatial

] [k∆tαβ,+
∆x

k
∆tαβ,−
∆x

]
= −b

BT
spatialψ

∆tαβ
∆t

2π
e︸ ︷︷ ︸

bspatial

Variable: k
∆tαβ,+
∆x ,k

∆tαβ,−
∆x ∈ Z≥0

(4.13)

with the constraint matrix BT
spatial ∈ Zr×n and the right-hand side vector bspatial ∈ Zr. One

row of BT
spatial contains zeros except the columns which belong to the de�ning arcs of the actual

triangle. These are �lled with one or minus one depending on the orientation of the arc.

In general, the solution of an ILP problem is NP-hard (Schrijver, 1986, p. 20). There often are
di�erent formulations and solution types of the problem which di�er in the number of parameters,
the number of constraints and the performance. For this reason, it is useful to analyze the di�erent
solution types in some more detail in the next section.

4.3.1 Solving the L1-norm Phase Unwrapping Problem

In this section the principles of linear programming described in Chapter 3 are applied to the phase
unwrapping problem. Figure 4.6 shows a small network consisting of m = 5 nodes which correspond
to the stable pixels where the unwrapped phase values are measured. In the following a Delaunay
triangulation is assumed, since a plane graph is necessary in a later formulation of the problem.
The Delaunay triangulation of these pixels results in n = 8 arcs along which the phase gradients
are estimated and r = 4 triangles. First, the phase unwrapping problem is solved with help of an
LP solver and afterwards as a network �ow problem. Therefore, the phase unwrapping problem is
seen as a graph, where the graph of the network shown in Fig. 4.6 is called the primal graph.
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4.3.1.1 Solution as a Linear Program

The phase unwrapping problem is similar to a leveling network with the unknown phase ambiguity
factors equal to the residues. The adjustment problem can be solved by minimizing the weighted
L1-norm of the phase ambiguity factors subject to the constraint, that in each triangle the sum
of the adjusted observations, here of the unwrapped phase gradients, should be zero. For the net-
work in Fig. 4.6 four constraints are necessary, symbolized by the colored loops. The corresponding
constrained weighted L1-norm problem is de�ned in (4.13). As already said, the solution of the LP
relaxation is an integer solution if the target function vector cT and the right-hand side vector b have
only integer entries and if the matrix BT is totally unimodular. The target function vector cT has
integer entries when choosing integer weights and the right-hand side of the constraints bspatial con-
sists of integer values due to the rounding operator. The constraint matrix BT

spatial for the network
in Fig. 4.6 in an outwritten form has the structure

BT
spatial =


1 −1 0 1 0 0 0 0
0 0 0 −1 1 0 −1 0
0 1 −1 0 0 1 0 0
0 0 0 0 0 −1 1 1

 (4.14)

with

k
∆tαβ
∆x =

[
k

∆tαβ
∆x12

k
∆tαβ
∆x13

k
∆tαβ
∆x14

k
∆tαβ
∆x23

k
∆tαβ
∆x25

k
∆tαβ
∆x34

k
∆tαβ
∆x35

k
∆tαβ
∆x54

]T
. (4.15)
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Figure 4.6: Small phase unwrapping network consisting of m = 5 nodes/ pixels with unknown unwrapped

phases φ∆tαβ
x , n = 8 arcs with unwrapped phase gradients φ

∆tαβ
∆x , weights p

∆tαβ
∆x and unknown phase ambi-

guity vectors k
∆tαβ
∆x . This results in a redundance of r = n−m = 4 resulting in four independent constraints

with the right-hand side vector b.
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It can be proven that this matrix is totally unimodular. Consequently, the constrained weighted L1-
norm phase unwrapping problem can be de�ned as an LP problem without considering the integer
constraints. So the �rst considered problem formulation in its primal and dual form results in

PROBLEM 1:

primal:

Objective function: C(k
∆tαβ,+
∆x ,k

∆tαβ,−
∆x ) =

[
p

∆tαβ
∆x

T
p

∆tαβ
∆x

T
] [k∆tαβ,+

∆x

k
∆tαβ,−
∆x

]
. . .min

Constraint:
[
BT

spatial −BT
spatial

] [k∆tαβ,+
∆x

k
∆tαβ,−
∆x

]
= −b

BT
spatialψ

∆tαβ
∆t

2π
e︸ ︷︷ ︸

bspatial

Variable: k
∆tαβ,+
∆x ,k

∆tαβ,−
∆x ∈ R≥0

dual:

Objective function: C(y) = bTy . . .max

Constraint: − p∆tαβ
∆x ≤ Bspatialy ≤ p∆tαβ

∆x

Variable: y ∈ R

(4.16)

For the conversion between primal and dual program the reader is kindly referred to the Tucker
diagram in Table A.1 in the Appendix A. The LP can be solved with the simplex method for
example.

As mentioned in Costantini et al. (2012), the phase unwrapping can also be solved as parametric
adjustment considering the functional model

φ
∆tαβ
xk − φ∆tαβ

xl − 2πk
∆tαβ
∆xkl

= ψ
∆tαβ
∆xkl

(4.17)

between the wrapped phase gradient ψ
∆tαβ
∆xkl

along the arc ∆xkl and the unwrapped phases φ
∆tαβ
xk

and φ
∆tαβ
xl at pixels xk and xl. First, the relationship (4.1) is inserted for each pixel, resulting in

ψ
∆tαβ
xk + 2πk

∆tαβ
xk − ψ∆tαβ

xl − 2πk
∆tαβ
xl − 2πk

∆tαβ
∆xkl

= ψ
∆tαβ
∆xkl

(4.18)

which divided by 2π and some reformulations results in

k
∆tαβ
xk − k∆tαβ

xl − k∆tαβ
∆xkl

=
ψ

∆tαβ
∆xkl

− ψ∆tαβ
xk + ψ

∆tαβ
xl

2π
. (4.19)

As the wrapped measured phase gradient ψ
∆tαβ
∆xkl

already is a wrapped value in a range from −π
to π, inserting relationship

ψ
∆tαβ
∆xkl

= ψ
∆tαβ
xk − ψ∆tαβ

xl − 2πbψ
∆tαβ
xk − ψ∆tαβ

xl

2π
e (4.20)

into (4.19) leads to

k
∆tαβ
xk − k∆tαβ

xl − k∆tαβ
∆xkl

= −bψ
∆tαβ
xk − ψ∆tαβ

xl

2π
e. (4.21)

For all arcs the functional model matrix Aprimal ∈ Zn×m, also called the arc-to-node incidence
matrix of the primal graph, is de�ned. One row contains zeros except the two columns which belong
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to the de�ning nodes of the actual arc. These are �lled with one for the end node and minus one
for the start node. For the graph displayed in Fig. 4.6 the matrix has the structure

Aprimal =



−1 1 0 0 0
−1 0 1 0 0
−1 0 0 1 0

0 −1 1 0 0
0 −1 0 0 1
0 0 −1 1 0
0 0 −1 0 1
0 0 0 1 −1


. (4.22)

This matrix also is totally unimodular. With this property the phase unwrapping problem can
again be formulated as an LP without taking into account the integer constraints. Thus, the second
formulated LP to describe the phase unwrapping problem in its primal and dual form results in

PROBLEM 2:

primal:

Objective function: C(x) =
[
0[1×m] p

∆tαβ
∆x

T
p

∆tαβ
∆x

T
]

︸ ︷︷ ︸
cT


k

∆tαβ
x

k
∆tαβ,+
∆x

k
∆tαβ,−
∆x


︸ ︷︷ ︸

x

. . .min

Constraint:
[
Aprimal −1[n×n] 1[n×n]

] 
k

∆tαβ
x

k
∆tαβ,+
∆x

k
∆tαβ,−
∆x


︸ ︷︷ ︸

x

= −bAprimalψ
∆tαβ
x

2π
e︸ ︷︷ ︸

b

Variable: k
∆tαβ
x ∈ R, k

∆tαβ,−
∆x ,k

∆tαβ,+
∆x ∈ R≥0

dual:

Objective function: C(y) = bTy . . .max

Constraint: AT
primaly = 0

Variable: − p∆tαβ
∆x ≤ y ≤ p∆tαβ

∆x .

(4.23)

The variable vector x is extended by the phase ambiguity factors k
∆tαβ
x at each pixel. This has the

advantage that the integration step of the unwrapped phase gradients is no longer necessary to get
the unwrapped phase values at the pixels. However, the problem is then of higher dimension. The
LP can be solved again with the simplex method for example.

4.3.1.2 Solution as Network Flow Problem

Beside the LP solver, the phase unwrapping problem can be solved more e�ciently as a network
�ow problem. Therefore, the PROBLEM 1 formulated in (4.16) is considered �rst. As described
in Section 3.4, the network �ow problem is based on a graph. To formulate PROBLEM 1 as a
network �ow problem, the dual graph is required. The dual graph G′ of a plane graph G, also called
primal graph, is a graph that has a node for each face of G including the outside face (Wilson, 1986,
p. 73). The arcs of the dual graph connect these nodes by cutting the arcs of the graph G. The
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phase unwrapping problem is based on a Delaunay triangulation represented by the primal graph G
with m nodes, n arcs and r triangles. As a Delaunay triangulation is a plane graph a corresponding
dual graph G′ with r + 1 nodes and n arcs exists (Wilson, 1986, p. 73). The dual graph of the
network shown in Fig. 4.6 is represented in Fig. 4.7. Based on this graph, the phase unwrapping
problem can be formulated as a network �ow problem. Each node has a potential b expressed by the
right-hand side vector of the triangle constraint in (4.16). The potential of the node, corresponding
to the outside face, represents the sum over the outlying arcs of the primal graph. There is a �ow
along each arc ∆xkl of the dual graph represented by the phase ambiguity factor k

∆tαβ
∆xkl

which is

weighted with a cost value p
∆tαβ
∆xkl

. The goal is to minimize the costs under the �ow conservation
that the sum of the incoming and outcoming �ow has to satisfy the potential at each node. This
results in the third phase unwrapping problem, this time formulated as a network �ow problem.
The network �ow problem in its primal and dual form is given by

PROBLEM 3:

primal:

Objective function: C(Π) =
[
p

∆tαβ
∆xkl

T
p

∆tαβ
∆xkl

T
]

︸ ︷︷ ︸
cT

[
k

∆tαβ,+
∆x

k
∆tαβ,−
∆x

]
︸ ︷︷ ︸

Π

. . .min

Flow conservation:
[
AT

dual −AT
dual

] [k∆tαβ,+
∆x

k
∆tαβ,−
∆x

]
︸ ︷︷ ︸

Π

= −bA
T
dualψ

∆tαβ
∆x

2π
e︸ ︷︷ ︸

b

Variable: 0 ≤ k∆tαβ,+
∆x ≤ u+

0 ≤ k∆tαβ,−
∆x ≤ u−

dual:

Objective function: C(y, z+
u , z

−
u ) = bTy − u+Tz+

u − u−
T
z−u . . .max

Capacity contraint:

[
Adual 1[n×n] 0[n×n]

−Adual 0[n×n] 1[n×n]

] yz+
u

z−u

 ≤ [p∆tαβ
∆xkl

p
∆tαβ
∆xkl

]
Variable: z+

u , z
−
u ≥ 0

(4.24)

with the constraint matrix AT
dual ∈ Zr+1×n also called the arc-to-node incidence matrix of the dual

graph. This arc-to-node incidence matrix equals the transposed constraint matrix of (4.14) with the
additional outlying loop constraint

AT
dual =


1 −1 0 1 0 0 0 0
0 0 0 −1 1 0 −1 0
0 1 −1 0 0 1 0 0
0 0 0 0 0 −1 1 1
−1 1 1 0 0 0 0 −1


T

. (4.25)

Assuming integer values for the costs and the upper capacity, the values for the variables will be
integers. The upper capacities u+ and u− describe the maximum numbers of estimated phase am-
biguity factors along each arc. The application of this upper capacity can re�ect previous knowledge
or reduce the run time but it is not mandatory (Costantini, 1998). Consequently, the phase unwrap-
ping problem can be solved using network �ow algorithms like the out-of-kilter algorithm (Fulkerson,
1961) or the relaxation method (Bertsekas and Tseng, 1988). Since this formulation depends on the
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Figure 4.7: Dual graph of Fig. 4.6. The constraints of the primal problem de�ne the new nodes with node
potential b. The arcs connect these nodes by cutting the arcs of the primal graph. Along the arcs runs the

weighted �ow in form of the phase ambiguity factors k
∆tαβ
∆x . According to the �ow conservation, the sum of

the incoming and outcoming �ow has to be equal to the node potential.

dual graph, it is only applicable if the primal graph is plane (Wilson, 1986, p. 73). Thus, redundant
arcs are not allowed in this formulation.

Referring to the parametric weighted L1-norm problem, formulated as PROBLEM 2 in (4.16), the
problem can also be seen as a network �ow problem. Therefore, the primal graph in Fig. 4.6 is
regarded. The constraint in (4.23) can be seen as the capacity constraint of the dual �ow problem,

cf. (3.23). The phase ambiguity factors at each pixel k
∆tαβ
xk and k

∆tαβ
xl represent the node potential y,

the phase ambiguity factor along the arc k
∆tαβ
∆xkl

the bound variable zu and the right-hand side vector
the arc capacity c. Altogether, the fourth phase unwrapping problem formulated again as network
�ow problem can be de�ned in its primal and dual form as

PROBLEM 4:

primal:

Objective function: C(zu) =
[
p

∆tαβ
∆xkl

T
p

∆tαβ
∆xkl

T
]

︸ ︷︷ ︸
u

[
k

∆tαβ,+
∆x

k
∆tαβ,−
∆x

]
︸ ︷︷ ︸

zu

. . .min

Capacity constraint: Aprimalk
∆tαβ
x −

[
1[n×n] − 1[n×n]

] [k∆tαβ,+
∆x

k
∆tαβ,−
∆x

]
︸ ︷︷ ︸

zu

= −bAprimalψ
∆tαβ
x

2π
e︸ ︷︷ ︸

c

Variable: zu ≥ 0

dual:

Objective function: C(Π) = cTΠ . . .max

Flow conservation: AT
primalΠ = 0

Variable:− p∆tαβ
∆x

T
≤ Π ≤ p∆tαβ

∆x

T

(4.26)



4.3. Minimum Cost Flow Approach 49

with the arc-to-node incidence matrix Aprimal ∈ Zn×m of the primal graph. Assuming integer values

for p
∆tαβ
∆x , the values for the variables will be integers. On this basis, the problem can also be solved

using network �ow algorithms like the out-of-kilter algorithm or the relaxation method. Compared
with the before mentioned formulation as constrained L1-norm problem, this formulation has the
advantage that the generation of the dual graph is not necessary. It depends on the primal graph
and therefore, redundant arcs are possible which results in more reliable and accurate solutions
(Costantini et al., 2012).

4.3.2 Application to Simulated Data

4.3.2.1 Simulation Scenario

To analyze the phase unwrapping process in some more detail, a D-InSAR stack is simulated based
on the ERS-1/-2 con�guration in time and space. For this purpose, 64 SAR images from May 1992
to December 2000 are used which cover the test region of the Lower-Rhine-Embayment. The test
region is restricted to 401 pixels. The whole work�ow for generating the simulated interferometric
phases is summarized in Fig. 4.8. In the center of the test region a ground settlement depression
is simulated with respect to the �rst SAR image. The deformation consists of a linear trend and
the deformation velocity is restricted to a range from 8 to 12 cm/yr reaching a dimension from 120
to 240 pixels. The deformation velocities in the Lower-Rhine-Embayment are within the ground
settlement basins of the active open-cast mines at several centimeters per year, so this simulation
environment represents a realistic scenario. In addition to the deformation a topographical error is
modeled. In di�erential SAR interferometry the e�ect of topography is removed by subtracting a
reference DEM. The modeled topography error is intended to simulate errors in the used DEM. In
the simulation this error reaches values from -5 to 40 m. To make the simulation more realistic a
noise per SAR image is added which is assumed to be independent and identical distributed with a
standard deviation of 0.4 rad.

With respect to the SBAS method, 161 interferograms are generated, as can be seen in the corre-
sponding temporal triangulation shown in Fig. 2.8b. Filtering operations that are applied individu-
ally to each interferogram, such as the multilooking, cause the real data to be inconsistent over time.
To simulate this, an additional normally distributed noise is added to each simulated interferogram.
The standard deviation depends on the unbiased coherence Lee et al. (1994) taken from the real co-
herence values of the ERS-1/-2 data set. These coherence values are also used to select the so called
stable pixels. Pixels are de�ned as stable if they have a coherence value greater than or equal to 0.7
in at least 80 % of the interferograms. Within the 401× 401 test region there are m= 15 347 stable

ground settlement
topographical

error

noise per

SAR image

simulated

SAR images

interferogram generation
simulated

interferograms

noise per in-

terferogram

simulated

noisy reference

interferograms

+ + =

+=

Figure 4.8: Work�ow for generating simulated interferometric reference phases. The simulated SAR images
consist of a ground settlement, a topographical error and a noise part. On this basis, interferograms are
generated which in turn are provided with noise.
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pixels de�ning n= 45 842 arcs and r= 30 496 triangles. Figure 4.9a shows the simulated phases of
the stable pixels in the test region for one interferogram with a temporal baseline of ∆tαβ =315 days
and an orthogonal spatial baseline of ∆b⊥,αβ =76.322m. The associated measured wrapped phase
in the interval from −π to π is represented in Fig. 4.9b. The lines between the pixels in Fig. 4.9a
symbolize the phase gradients that exceed the measurable value range. Dark blue indicates that a
double negative 2π phase jump must be added to the measured phase gradient, the corresponding
phase ambiguity factor k

∆tαβ
∆xkl

of this arc ∆xkl is -2, light blue means a single negative 2π phase

jump (k
∆tαβ
∆xkl

= −1), dark red a double positive 2π phase jump (k
∆tαβ
∆xkl

= 2) and light red a single

positive 2π phase jump (k
∆tαβ
∆xkl

= 1).

The task of the phase unwrapping process is to estimate these phase ambiguity factors k
∆tαβ
∆x . As

demonstrated in Section 4.3.1, the problem can be de�ned in di�erent ways see PROBLEM 1 to 4
in (4.16), (4.23), (4.24) and (4.26). This section deals with the phase unwrapping of the simulated
D-InSAR stack with help of these four problem formulations. Therefore, all 161 interferograms
are unwrapped individually. For the solution of PROBLEM 1 and PROBLEM 2 the commercial
optimization solver Gurobi2 is used. To solve LPs, Gurobi uses the concurrent optimizer which uses
multiple algorithms simultaneously and returns the solution from the �rst one to �nish. As standard
it uses the primal simplex, the dual simplex and the interior point method. To solve PROBLEM 3
and PROBLEM 4, the open source RELAX-IV3 implementation described in Bertsekas and Tseng
(1994) is used. It is an extremely e�cient solver for network �ow problems with integer data. The

weights p
∆tαβ
∆x of the phase ambiguity factors are all set to one.

(a) reference phase (b) measured wrapped phase

Figure 4.9: Coherent pixels of simulated ground settlement depression for one interferogram with a temporal
baseline of ∆tαβ =315 days and an orthogonal spatial baseline of ∆b⊥,αβ =76.322m. The lines between the
pixels in Fig. 4.9a symbolize the phase gradients that exceed the measurable value range. Dark blue indicates
that a double negative 2π phase jump must be added to the measured phase gradient, the corresponding

phase ambiguity factor k
∆tαβ
∆xkl

of this arc ∆xkl is -2, light blue means a k
∆tαβ
∆xkl

of -1, dark red a k
∆tαβ
∆xkl

of 2

and light red a k
∆tαβ
∆xkl

of 1.

2http://www.gurobi.com/ last accessed on August 4, 2020
3http://www.di.unipi.it/di/groups/optimize/Software/MCF.html last accessed on August 4, 2020

http://www.gurobi.com/
http://www.di.unipi.it/di/groups/optimize/Software/MCF.html
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4.3.2.2 Results of Closed Loop Simulation

Figure 4.10 shows the unwrapped phases for the interferogram already shown in Fig. 4.9. For
Fig. 4.10a the phase unwrapping is solved according to the PROBLEM 1 formulation with
Gurobi. For one interferogram the problem consists of 2·45 842 parameters with 30 496 constraints.
Figure 4.10b shows the solution of PROBLEM 2 solved with Gurobi, as well. The dimension of
the problem extends to 2·45 842 +15 347 parameters with 45 842 constraints as the phase ambiguity
factor at each pixel is added. Consequently, the problem is of highest dimension resulting in a higher
run time which is about twenty times larger than the solution of PROBLEM 1. In Figs. 4.10c and
4.10d the phase unwrapping is solved as a network �ow problem using the RELAX-IV algorithm.
Figure 4.10c shows the solution of PROBLEM 3. The problem formulation refers to the dual
graph consisting of 30 496 +1 nodes and 2·45 842 parameters in form of the �ow represented by the
phase ambiguity factors. Beside this, Fig. 4.10d shows the results according to the PROBLEM 4

(a) solution of PROBLEM 1 solved with Gurobi (b) solution of PROBLEM 2 solved with Gurobi

(c) solution of PROBLEM 3 solved with RELAX-IV (d) solution of PROBLEM 4 solved with RELAX-IV

Figure 4.10: Unwrapped phases using the spatial MCF algorithm formulated in a constrained or parametric
way and solved as LP or network �ow problem for the interferogram already shown in Fig. 4.9. The lines
between the pixels symbolizes if a phase ambiguity factor is estimated or not. Light blue mean a phase
ambiguity factor of -1 and light red of 1.
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formulation. The problem refers to the primal graph and consists of 15 347 nodes and 45 842 arcs.
Comparing the run time between a standard LP solver which is used in Gurobi and the network
�ow solver, a signi�cant reduction of run time can be observed when solving the problem as a
network �ow problem. On the basis of the detailed formulation presented here, the solution of the
phase unwrapping problem using RELAX-IV was integrated into the current stable version of the
RSG software. The utilization of the network-like structure results in a four times shorter run time.

In the following, the results will be examined in more detail. Looking at the results in Fig. 4.10,
it can �rst of all be seen that for all four solutions the settlement depression is not correctly
reconstructed compared to the reference phase shown in Fig. 4.9a. In addition to the unwrapped
phases, the �gures show, analogous to Fig. 4.9a, the corresponding estimated phase ambiguity
factors per phase gradient. Light blue means again a phase ambiguity factor of k

∆tαβ
∆xkl

= −1 and

light red a phase ambiguity factor of k
∆tαβ
∆xkl

= 1. Phase ambiguity factors greater than one or
smaller than minus one are not estimated.

For all four problem formulations the objective function value which is equal to the weighted
L1-norm of the phase ambiguity factors k

∆tαβ
∆x is 107. As can already be seen in Fig. 4.9a, phase

ambiguity factors greater than one or smaller than minus one occur especially in the area of the set-
tlement depression. To reconstruct the reference phase gradients a total number of

∑ |k∆tαβ
∆x | = 210

is necessary. However, to obtain spatially consistent phase gradients, a smaller number is su�cient.
As a solution is sought, in which the weighted L1-norm of the phase ambiguity factors should be
minimal, the results shown in Fig. 4.10 are therefore optimal. If one compares the arcs for all four so-
lutions where a phase ambiguity factor unequal zero is estimated, it can be seen that 2π phase jumps
are not always inserted at exactly the same arc. Therefore, the solution is not unique. However, fol-
lowing the problem de�nition all unwrapped phase gradients in Fig. 4.10 are optimal and equivalent.

The question is why the spatial phase unwrapping is not able to reconstruct the reference phase.
The considered interferogram has a temporal baseline ∆tαβ of 315 days. With a wavelength
of λ = 5.6666 cm, a phase gradient between the pixels xk and xl should have a mean deformation
velocity variation v∆xkl in a range from -1.65 cm/yr to 1.65 cm/yr according to the Nyquist sampling
theorem so that the signal can be reconstructed exactly. In this case no inconsistencies occur. The
phase gradients are within the measurable range and spatially consistent, i.e. the sum of the phase
gradients in a loop is zero. In the simulation, however, the mean deformation velocity variation
of the phase gradients is far above this value, especially in the area of the settlement depression
values above 6 cm/yr occur. If too many phase gradients exist which exceed the measurable value
range from −π to π, as it is the case in Fig. 4.9a, it is always possible to get spatially consistent
phases by inserting a smaller number of 2π phase jumps. Therefore, the methods used are not able
to reconstruct the reference phase.

For interferograms with a larger temporal baseline, the problem becomes worse as the phase
gradients show an even greater displacement. Figures 4.11a and 4.11b show the results for all 161
unwrapped interferograms depending on the temporal baseline between the two corresponding
SAR images. Figure 4.11a represents the absolute number of phase ambiguity factors

∑ |k∆tαβ
∆x |

for the corresponding interferograms which is equal to the objective function value. The results
of the individual solutions are marked in di�erent symbols and colors. The solutions of the
PROBLEM 1 formulation is symbolized as dark blue squares, the solutions of the PROBLEM 2
as green squares, the solutions of the PROBLEM 3 as orange points and the solutions of the
PROBLEM 4 as light blue points. Again, it is obvious that all solutions result in the same objective
function values. However, comparing the individual results with the reference phase, shown as
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black stars, it can be seen that the unwrapped phases do not reconstruct the reference phases. The
objective function values of the reference data are always higher or equal to the unwrapped results.
This con�rms the above statements. At mean deformation velocity variations of 5 to 6 cm/yr
between the pixels and a temporal baseline of less than 100 days, the deformation can still be
reconstructed exactly according to the Nyquist sampling theorem. This is also shown in Fig. 4.11b.
The �gure presents the percentage of correctly unwrapped phase gradients depending on the
temporal baseline between the two corresponding SAR images. It can be seen that especially
with larger temporal baseline it is not possible to unwrap the phase correctly with the used methods.

(a) absolute number of phase ambiguity factors compared to the observed phase gradients
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Figure 4.11: Solution of the spatially unwrapped phase gradients depending on the temporal baseline. The
dark blue color represents the results of the PROBLEM 1 formulation, the orange of the PROBLEM 2 for-
mulation, the green of the PROBLEM 3 and the light blue of the PROBLEM 4 formulation. For comparison,
the black stars in Fig. 4.11a show the reference solution.
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One way to avoid this problem is to distribute the data more densely so that the phase gradients
are smaller and fewer phase gradients extend the measurable value range from −π to π. The distri-
bution of the data is, however, predetermined by the coherence. Adding pixels with less coherence
means that the pixels have a higher noise level which makes phase unwrapping more complex. One
possibility is to down-weight these less reliable pixels by using low weights. The choice of weights
will be discussed further in Section 6.2. Another way is to re�ne the problem formulation and to
insert additional information, like the time. The idea is not to analyze each interferogram individ-
ually, but to integrate the temporal information provided by the D-InSAR stack into the problem.
By considering and applying a linear motion model, the number of phase ambiguities can be further
reduced which is the idea of the so called three dimensional phase unwrapping.

4.4 Summary

It can be concluded that the phase unwrapping problem can be formulated and solved in di�erent
ways. In this thesis a total of four problem formulations to solve the LP within the MCF method
are presented. Thus, the �rst main objective of this work is achieved. It has been shown that all
formulations lead to the same objective function values. They are optimal according to the problem
formulation. Di�erences in the results only arise if the solution is not unique. However, looking at
the complexity and the dimension of the problem, the parametric L1-norm problem, described in
PROBLEM 2 and PROBLEM 4 is not recommended compared to the constrained formulations.
Furthermore, on the basis of the simulated data it can be shown that the reference phase cannot
be reconstructed by unwrapping each interferogram separately. Without further extensions or ad-
ditional information the methods used are unable to unwrap the phase correctly. Therefore, the
problem formulation has to be re�ned by inserting the temporal information which is given by the
D-InSAR stack, for example. Figure 4.11a already hypothesized that there is a linear relationship
between the temporal baseline and the total number of phase ambiguity factors. This leads to the
three dimensional phase unwrapping which will be addressed in the next chapter.
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5. Three Dimensional Phase Unwrapping

� Review and Evaluation of Methods

So far phase unwrapping is done for one single interferogram using the spatial, two dimensional
information in the azimuth/ range plane, cf. Fig. 4.4. With respect to a multitemporal D-InSAR
stack a set M′ of m′ SAR images at times t1, t2, . . . , tm′ is available. The images are assembled
to a set N ′ of n′ D-InSAR images with respect to the SBAS method. The idea is to exploit the
temporal relationship between the interferograms in order to multitemporally unwrap D-InSAR
images. According to Hooper et al. (2007), the inclusion of the time as an additional information leads
to an improvement in the accuracy of the solution in a similar way to which two dimensional phase
unwrapping provides an improvement over one dimensional methods. This chapter starts with an
overview of the most popular three dimensional approaches where the temporal relationship between
the interferograms represents the third dimension. As already mentioned there are many phase
unwrapping algorithms. With the growing interest towards the multitemporal D-InSAR analysis
and the generation of deformation time series, especially the three dimensional phase unwrapping
becomes a research focus. As discussed before for the spatial phase unwrapping, the MCF approach
by Costantini (1997) is a rather popular method and an extended version for the three dimensional
case, the so called Extended MCF (EMCF) algorithm exists. In the context of this work, the EMCF
algorithm has become state of the art in the RSG software and will be described in more detail.

5.1 Most Popular Approaches

The main literature relating to multitemporal phase unwrapping can be found in Pepe and Lanari
(2006), Hooper et al. (2007), Shanker and Zebker (2010) and Costantini et al. (2012). Three dimen-
sional phase unwrapping can be achieved either by using multiple steps or by a one-step algorithm.
The edgelist algorithm by Shanker and Zebker (2010) allows the exploitation of redundant arcs
as the problem is formulated as an parametric L1-norm problem based on the primal graph, see
PROBLEM 2 formulation in Section 4.3.1. In the three dimensional case this means that temporal
arcs between the interferograms are allowed. However, as described in Costantini et al. (2012) it
has to be considered that disturbing signals like the atmosphere, orbit errors etc. are removed by
generating di�erences between the phase measurements in space but not by generating di�erences
between the phase measurements in time. Therefore, the observation remains the double di�erences
in time and in space, resulting in the functional model

φ
tβ
xl − φtαxl − (φ

tβ
xk − φtαxk)− 2πk

∆tαβ
∆xkl

= ψ
∆tαβ
∆xkl

(5.1)

for one phase gradient ψ
∆tαβ
∆xkl

between two pixels xk and xl computed from two SAR images at
times tα and tβ . The interferograms can be generated following either the SBAS or the PSI method.
Compared to the spatial phase unwrapping, the functional model can be reformulated by inserting
the relationship (4.1) for each pixel at each time and considering that the wrapped phase gradi-

ent ψ
∆tαβ
∆xkl

is already a wrapped value in a range from −π to π. Consequently, the functional model
for the phase unwrapping in three dimensions results in

k
tβ
xl − ktαxl − k

tβ
xk + ktαxk − k

∆tαβ
∆xkl

= −bψ
tβ
xl − ψtαxl − ψ

tβ
xk + ψtαxk

2π
e. (5.2)

The rounding operator b.e is only necessary for numerical issues to ensure that the phase ambiguity
factors will be integer numbers. Due to the double di�erences, the problem is not really described
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by a three dimensional graph. Moreover, there are two graphs. One is de�ned in the azimuth/ range
plane where the nodes are represented by the m stable pixels and the arcs represent the n spatial
phase gradients. The second one is represented in time where the m′ SAR images represent the
nodes and the n′ interferograms the arcs. It should be noted that the term in the denominator on
the right-hand side of (5.2) is not equal to the measured wrapped interferometric phase gradient

〈ψtβxl − ψtαxl − ψ
tβ
xk + ψtαxk〉−π,π 6= ψ

∆tαβ
∆xkl

. (5.3)

This is due to the fact that the interferograms are individually handled in a preprocessing step,
for example during the multilooking. So the observations are no longer the interferometric phase
gradients but rather the phases per SAR image and per pixel. Collecting all phases of each SAR
image and each pixel in one vector

ψt
x =

[
ψtαxj ψ

tβ
xj . . . ψtαxk ψ

tβ
xk . . .

]T
, (5.4)

the functional model, cf. (5.2), for the three dimensional case results in

A3Dk
t
x − k∆t

∆x = −bA3Dψ
t
x

2π
e (5.5)

with the functional model matrix A3D ∈ Zn′·n×m′·m. One row of the matrix contains four entries
each at the corresponding position of the pixel and the SAR image which is needed to generate the
interferometric phase gradient. To get a better idea how the matrix looks like, Fig. 5.1 shows a small
D-InSAR stack consisting of three SAR images between which three interferograms are formed and
each interferogram contains four pixels between which �ve phase gradients are generated. Thus,
the A3D matrix has a size of 15×12. The phase unwrapping problem is again de�ned by minimizing
the weighted L1-norm of the phase ambiguity factors k∆t

∆x. If these factors are further split into a

Example:

A3D ∈ Z15×12

0 5 10

nz = 60

0

5

10

15

Φ
∆tγα
∆x

Φ
∆tβγ
∆x

Φ
∆tαβ
∆x

Figure 5.1: Exemplary structure of global A3D matrix for a small D-InSAR stack consisting of three
interferograms and �ve spatial gradients.
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positive and a negative component to represent the L1-norm, the weighted L1-norm problem for the
three dimensional case results in

Objective function: C(x) =
∑

∀∆tαβ∈N ′

∑
∀∆xkl∈N

p
∆tαβ
∆xkl

k
∆tαβ,+
∆xkl

+ p
∆tαβ
∆xkl

k
∆tαβ,−
∆xkl

. . .min

Constraint:
[
A3D −1[n′·n×n′·n] 1[n′·n×n′·n]

]  ktx

k
∆t+
∆x

k
∆t−
∆x


︸ ︷︷ ︸

x

= −bA3Dψ
t
x

2π
e︸ ︷︷ ︸

b

Variable: ktx ∈ R, k
∆t+
∆x ,k

∆t−
∆x ∈ R≥0

(5.6)

with the unknown phase ambiguity factors at each pixel and each SAR image ktx and the phase
ambiguity factors at each phase gradient k∆t

∆x. Considering that a whole D-InSAR image with
thousands of pixels and gradients will be unwrapped, the A3D matrix is high dimensional.
Moreover, the matrix is no longer an arc-to-node incidence matrix, since the observations cannot
be represented in a three dimensional graph, but rather in the two two dimensional graphs in the
azimuth/range plane and the temporal plane. Thus the problem cannot be solved as a network �ow
problem. However, assuming integer values for the weights p∆t

∆x, the estimated phase ambiguity
factors will be integers, as the constraint matrix is totally unimodular.

A remarkable problem is that the observations are no longer the interferometric phase gradients,
but rather the phases per SAR image and per pixel. Remember that the three dimensional phase
unwrapping method should be inserted into the SBAS work�ow, shown in Fig. 2.9. Looking at
the work�ow, the phase unwrapping is applied to the multilooked interferograms. This �ltering
step is necessary as the here described test region is characterized by a very rural and therefore
noisy area. However, this means that the one-step approach described in Costantini et al. (2012)
and summarized in (5.6) cannot easily be integrated into the SBAS work�ow. Assuming an
equal sign in (5.3) and taking as observations the multilooked interferometric phase gradients,
inconsistencies in the constraints occur so that the problem cannot be solved. However, the problem
will be discussed in more detail in Chapter 7 where a one-step three dimensional approach will be
developed based on the results of this and the following chapter.

In contrast, the EMCF algorithm by Pepe and Lanari (2006) works in two steps. The problem
is downscaled to two simpler problems that are two dimensional and can therefore be solved
easily as an LP as discussed for the spatial phase unwrapping in Section 4.3.1. It is a method
which is fully compatible to the SBAS method. First, the phase gradients are individually
unwrapped in the temporal space and afterwards the temporally unwrapped phase gradients
are used to unwrap every single interferogram in the spatial domain. As this algorithm has be-
come the state of the art in the RSG software, motivated by this study, it is discussed in more detail.

To conclude the most popular three dimensional phase unwrapping approaches, one last method
has to be mentioned. Hooper and Zebker (2007) developed a framework by extending the branch-
cut algorithm to three dimensions. Unlike the EMCF algorithm it works for both SBAS and PSI
interferograms. A branch-cut line in the two dimensional case represents a branch-cut surface in
three dimensions. These branch-cut surfaces can be divided into single cycle and multiple cycle
discontinuity surfaces, depending on the size of the residues, one cycle for the �rst case and greater
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one for the second case. For the single cycle discontinuity surfaces they develop a minimum Lp-norm
algorithm∑

∀∆tαβ∈N ′

∑
∀∆xkl∈N

|φ∆tαβ
∆xkl

− ψ∆tαβ
∆xkl
|p . . .min (5.7)

whereas the constraint that unwrapped values di�er from the wrapped phase values only by integer
multiples of 2π is desirable. For p = 0 and p = 1 this can be the case. However, for p = 2 the
unwrapped phase gradients are underestimated, as shown by Zebker and Lu (1998). For multiple
cycle discontinuity surfaces a stepwise three dimensional algorithm is described. The phase gradients
are �rst unwrapped in the temporal domain by low-pass �ltering the complex phase gradient time
series in the frequency domain. The result is then used in the second step as initial solution for
unwrapping each interferogram in the two dimensional way. Similar to the EMCF algorithm, this
stepwise solution is not optimal in a three dimensional case.

5.2 Extended Minimum Cost Flow Approach

The EMCF algorithm by Pepe and Lanari (2006) works in two main steps, based on two indepen-
dent triangulations. One is generated in the azimuth/ range plane, analogous to the spatial MCF
approach as shown in Fig. 4.4. The other one is generated in the so called temporal/ perpendicular
baseline plane, see again Fig. 2.8b. As already discussed within the scope of SBAS interferogram
generation, one temporal arc in the temporal/ perpendicular baseline plane represents one D-InSAR
data pair. In order to avoid too strong decorrelation e�ects, interferograms with too long baselines
or large Doppler frequency di�erences are removed from the triangulation.
On the basis of these two triangulations the EMCF approach can be applied according to the follow-
ing two main steps: the temporal and the spatial unwrapping. To keep in mind, one interferogram
consists of m stable pixels and n gradients resulting in r triangles and altogether there are m′ SAR
images resulting in n′ interferograms and r′ triangles in the temporal plane.

5.2.1 Temporal Phase Unwrapping

With time, the pixels are moving with a certain motion model. The goal is to detect these move-
ments. In spatial phase unwrapping, it has been shown that phase unwrapping becomes di�cult if
the motion and the temporal baseline of the interferogram is large. The idea of the temporal phase
unwrapping is to consider each phase gradient individually in all interferograms. For example, look-
ing at the red arc in Fig. 5.1, assuming it is the arc ∆xkl between the two pixels xk and xl. The
relative deformation of this phase gradient is measured three times between three di�erent acquisi-
tion times, collected in the ambiguous observation vector ψ∆t

∆xkl
. The temporal information is used

to estimate the motion model of the phase gradient, whereas a linear motion model

M(v∆xkl ,∆h∆xkl) =
4π

λ
∆t · v∆xkl +

4π

λ

∆b⊥
r sin (θ)

·∆h∆xkl (5.8)

is assumed with the temporal baseline ∆t and the orthogonal spatial baseline ∆b⊥ between the SAR
images, the wavelength λ, the sensor target distance r in LOS and the incidence angle θ and the
two unknown parameters, the error of the scene topography ∆h∆xkl and the deformation velocity
variation v∆xkl between the pixels xk and xl. In the following, the modelM(v∆xkl ,∆h∆xkl) is brie�y
referred to as M .
This motion model is used as preliminary information to estimate new modi�ed observations

χ∆t
∆xkl

= M + 〈ψ∆t
∆xkl
−M〉−π,π (5.9)
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which o�er a reduced number of phase ambiguities. This makes the phase unwrapping easier.

Assuming that the modi�ed and unwrapped gradients di�er again by a multiple of 2π, but this time
by a smaller multiple than the original observations ψ∆t

∆xkl
, the relationship is given by

φ∆t
∆xkl

= χ∆t
∆xkl

+ 2πk∆t
∆xkl

(5.10)

with the unknown phase ambiguity factors k∆t
∆xkl

.

As a reminder, in spatial phase unwrapping, spatial consistency is assumed as a constraint, i.e. the
sum of the unwrapped phase gradients in a triangle of the spatial triangulation should be zero.
The same applies to the temporal phase unwrapping. The unwrapped phase gradients should be
consistent in time. This means that the sum of the unwrapped phase gradients in a triangle of the
temporal triangulation, the so called loop closure phase should be zero. Considering again the red
arc in Fig. 5.1 which is measured in a total of three interferograms. These gradients must therefore
ful�ll the following temporal constraint:

φ
∆tαβ
∆xkl

+ φ
∆tβγ
∆xkl

+ φ
∆tγα
∆xkl

= 0. (5.11)

As mentioned in Section 2.3.2 in (2.22), the interferograms are not all fully consistent in time.
However, this assumption is made for the temporal phase unwrapping. The temporally unwrapped
phase gradients serve only as a preliminary solution which will be included in the spatial phase
unwrapping, afterwards.

If (5.10) is inserted into (5.11), the temporal constraint results in

k
∆tαβ
∆xkl

+ k
∆tβγ
∆xkl

+ k
∆tγα
∆xkl

= −b
χ

∆tαβ
∆xkl

+ χ
∆tβγ
∆xkl

+ χ
∆tγα
∆xkl

2π
e.

At this point, the rounding operator b.e is absolutely necessary and does not only serve for
numerical purposes, since the right-hand side will usually not be an integer due to temporal
inconsistency.

Analogous to the spatial MCF approach, the problem is de�ned as minimizing the L1-norm of the
phase ambiguity factors. So for the arc ∆xkl the temporal phase unwrapping results in

Objective function: Ctemp(x) =
[
p∆t

∆xkl

T
p∆t

∆xkl

T
]

︸ ︷︷ ︸
cTtemp

k∆t,+
∆xkl

k∆t,−
∆xkl


︸ ︷︷ ︸

x

. . .min

Constraint:
[
BT

temp −BT
temp

] [k∆t,+
∆xkl

k∆t,−
∆xkl

]
︸ ︷︷ ︸

x

= −b
BT

tempχ
∆t
∆xkl

2π
e︸ ︷︷ ︸

btemp

Variable: x ∈ R≥0

(5.12)

with the target function vector ctemp ∈ Z2n′ , the parameter vector x ∈ Z2n′ , the constraint
matrix BT

temp ∈ Zr′×n′ and the right-hand side vector btemp ∈ Zr′ . One row of BT
temp contains zeros

except the columns which belong to the de�ning arcs of the actual triangle. These are �lled with one
or minus one depending on the orientation of the arc. For the sake of simplicity, the weights p∆t

∆xkl
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are generally set to one. As the constraint matrix is totally unimodular, the estimated parameters
will be integers.

Consequently, the problem can be solved with an LP solver analogous to the spatial phase unwrap-
ping, see PROBLEM 1 formulation in Section 4.3.1. It has to be mentioned that the network in
the temporal/ perpendicular baseline plane must always contain loop closure constraints for the
application of the EMCF algorithm. However, this does not necessarily have to be a triangulation.
Fornaro et al. (2011) allows a free choice of the network in the temporal/ perpendicular baseline
plane with overlapping arcs and consequently an increased degree of freedom. The advantage
of a triangulation without overlapping arcs is that the network represents a planar graph and
can therefore be solved very e�ciently as a network �ow problem (Costantini, 1997), see PROB-
LEM 3 formulation in Section 4.3.1. Theoretically, it is also possible to solve the temporal phase
unwrapping as a parametric L1-norm problem as done in the PROBLEM 2 and PROBLEM 4
formulations in Section 4.3.1 for the spatial phase unwrapping. However, this implies that the
modi�ed observations χt

∆xkl
for every SAR image are needed and this cannot be easily integrated

into the SBAS work�ow. Consequently, the temporal phase unwrapping is solved as a constrained
L1-norm problem, see (5.12).

The problem remains that the variables v∆xkl and ∆h∆xkl which are included in the sequence of
modi�ed observations χ∆t

∆xkl
are unknown. Therefore, the parameter vector k∆t

∆xkl
is sequentially

estimated for each (v∆xkl , ∆h∆xkl)-pair in a prede�ned discrete search space Ω resulting in one cost
function value Ctemp. The optimal solution is obtained by the pair where the cost value is minimal.
This solution is symbolized with a bar, afterwards.

5.2.2 Spatial Phase Unwrapping

So far, the unknown phase ambiguity factor k̄
∆tαβ
∆xkl

and thus the corresponding unwrapped phase
gradient

φ̄
∆tαβ
∆xkl

= χ̄
∆tαβ
∆xkl

+ 2πk̄
∆tαβ
∆xkl

(5.13)

for each spatial arc in each D-InSAR image is estimated via the temporal phase unwrapping. In a
second step, the phase is unwrapped for each single interferogram separately. With this step, the
previously created temporal constraint in (5.12) is destroyed again.

In the following one single D-InSAR image, computed out of the di�erence of two SAR acquisitions
at times tα and tβ is assumed. The phase is unwrapped along each arc via the spatial MCF approach,

cf. (4.13), whereas the previously calculated temporally unwrapped phase gradients φ̄
∆tαβ
∆x are used as

starting point. The required weights along each spatial arc ∆xkl can be derived using the previously
calculated cost value C̄temp∆xkl

for the corresponding arc ∆xkl. Large costs mean that the probability
of an occurring phase ambiguity is large and therefore the unwrapped phase can be erroneous. Hence,
this arc is less familiar and its in�uence is lowered by low weights. The weights are derived by an
inverse exponential relation (Pepe and Lanari, 2006)

p
∆tαβ
∆xkl

=

{
2S/2

C̄temp∆xkl C̄temp∆xkl
< ρ

1 C̄temp∆xkl
≥ ρ

(5.14)
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with an upper limit for the maximum cost 2S and a threshold ρ. The quotient of two logarithmic
quantities to base 2 and the integer costs ensure that the weights are also integer values. The �nal
absolutely unwrapped phase at each pixel can be determined by integrating the unwrapped phase
gradient along each arc independently of the integration path.

5.2.3 Application to Simulated Data

In this section, the EMCF algorithm discussed above will be applied to the simulated D-InSAR
stack, cf. Section 4.3.2.1. To �nd the optimal motion model parameters, the search area is chosen
in a range from −8 cm/yr to 8 cm/yr with a step width of 0.5 cm/yr for the deformation velocity
variation v∆xkl and in a range from −50 m to 50 m with a step width of 5 m for the error of the
scene topography ∆h∆xkl between the pixels xk and xl. For every possible (v∆xkl ,∆h∆xkl)-pair the
modi�ed observations are estimated and the corresponding temporal LP, cf. (5.12), is solved. The
pair which minimizes the cost function is de�ned as optimal.

Figure 5.2b shows the phase unwrapping results using the EMCF algorithm for the already ana-
lyzed interferogram with a temporal baseline of ∆tαβ =315 days and an orthogonal spatial baseline
of ∆b⊥,αβ =76.3225m. Figure 4.9a shows the reference phase. Using the spatial MCF approach
without considering the temporal information, the method is not able to reconstruct the settlement
depression correctly, see Fig. 4.10. However, comparing the reference phase with Fig. 5.2b, it can
be seen that the reference phase is reconstructed more correctly via the EMCF approach. In this
case this is mainly due to the estimated motion model. Figure 5.2a shows the modi�ed observations
that include the motion model, see (5.9). The lines between the pixels symbolize the phase gradients
where a phase ambiguity factor unequal zero occurs in contrast to the observed phase gradients.

(a) modi�ed observation (b) unwrapped phase using the EMCF algorithm

Figure 5.2: Phase unwrapping results of the simulated ground settlement depression for one interferogram
with a temporal baseline of ∆tαβ =315 days and an orthogonal spatial baseline of ∆b⊥,αβ =76.322m using
the EMCF algorithm. The lines in Fig. 5.2a between the pixels show the phase gradients where a phase
ambiguity factor unequal zero occurs in contrast to the observed phase gradients, see Fig. 4.9b. Dark blue
means a phase ambiguity factor of -2, light blue of -1, dark red of 2 and light red of 1. Between the modi�ed
observation in Fig. 5.2a and the unwrapped phase in Fig. 5.2b is no longer a di�erence.
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Dark blue means a phase ambiguity factor of -2, light blue of -1, dark red of 2 and light red of 1.
These modi�ed observations enter the temporal phase unwrapping, cf. (5.12), and then in a second
step the spatial phase unwrapping is done. In these two steps, however, nothing happens anymore
so that in Fig. 5.2b no lines between the pixels can be seen. Thus, the modi�ed observations already
correspond to the unwrapped phase gradients.

However, this is not always the case. In addition, a second interferogram is examined, this time
with a very large temporal baseline. Figure 5.3 shows the results of an interferogram with a
temporal baseline of ∆tαβ =1669 days and an orthogonal spatial baseline of ∆b⊥,αβ =8.220m.

(a) reference phase (b) unwrapped phase using the MCF algorithm without
considering the temporal information

(c) modi�ed observations (d) unwrapped phase using the EMCF algorithm with
considering the temporal information

Figure 5.3: Phase unwrapping results of the simulated ground settlement depression for one inter-
ferogram with a very large temporal baseline of ∆tαβ =1669 days and an orthogonal spatial baseline
of ∆b⊥,αβ =8.220m using the MCF and the EMCF algorithm. For Fig. 5.3a to Fig. 5.3c, the lines be-
tween the pixels show the phase gradients where a phase ambiguity factor unequal zero occurs in contrast
to the observed phase gradients. For Fig. 5.3d the estimated phase ambiguity factors refer to the modi�ed
observations in Fig. 5.3c. Dark blue means a phase ambiguity factor smaller than -1, light blue of -1, dark
red of greater than 1 and light red of 1.
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Figure 5.3a shows the reference phase. This time, the phases have a much wider range of values
from −30π to 2π, because of the movement resulting from the large temporal baseline. The lines
again symbolize the phase gradients that exceed the measurable range of values. The dark colors
indicate that the phase ambiguity factor has a value greater than 1 or less than -1. A detailed
di�erentiation of the multiple phase jumps is omitted here for reasons of clarity. In total, the
absolute sum of the phase ambiguity factors is 1789, in contrast to the observed phase. Figure 5.3b
shows the results of the spatial phase unwrapping without considering the temporal information. As
expected, it is not possible to reconstruct the settlement depression correctly without considering a
motion model. The absolute sum of the estimated phase ambiguity factors is 521, i.e. well below the
reference. Figure 5.3c shows the modi�ed observations that include the estimated motion model. In
contrast to the observed phase the absolute sum already includes 1762 estimated phase ambiguity
factors. This is very close to the reference. These observations already show a reduced number of
phase ambiguities. They enter into the EMCF algorithm �nally resulting in the unwrapped phases
displayed in Fig. 5.3d. During the phase unwrapping more phase ambiguity factors are estimated,
see the lines in the �gure. In the absolute sum, 1789 phase ambiguity factors are added so that the
reference phase is reconstructed correctly.

For an overall comparison, Fig. 5.4a shows the total number of phase ambiguity factors in contrast
to the observed phase gradients. The blue squares are the results of the MCF approach. As already
seen the MCF approach is not able to reconstruct the reference shown as black stars. The results of
the EMCF approach are represented as green triangles. The extension of the temporal information
and the associated consideration of a motion model leads to an improvement. The results of the
EMCF approach reproduce the reference. Figure 5.4b veri�es this. The �gure shows the percentage
of correctly unwrapped phase gradients depending on the temporal baseline. Again, the blue bars
are the results of the MCF approach and the green bars the results of the EMCF approach. It is
obvious that the EMCF approach shows an improvement against the MCF approach. The inclusion
of the temporal phase unwrapping results in a higher percentage of correctly unwrapped phase
gradients which con�rms the �ndings of Pepe and Lanari (2006). For every interferogram, even for
the ones with a larger baseline and therefore larger movements, nearly 100 % of phase gradients are
unwrapped correctly.

It can be concluded that the three dimensional phase unwrapping algorithm leads to an improvement
in the correctness of the results. However, when implementing the EMCF algorithm and applying it
to simulated and real data, it has been shown that there are aspects that can be further improved
and optimized. These aspects will be discussed in the following chapter.
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(a) absolute number of phase ambiguity factors compared to the observed phase gradients
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Figure 5.4: Solution of the unwrapped phase gradients depending on the temporal baseline. The dark blue
color represents the results using the MCF approach and the green color represents the results using the
EMCF approach. For comparison, the black stars in Fig. 5.4a show the reference solution.
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6. Extended Minimum Cost Flow

Approach � Ideas of Improvements

As shown on the basis of the simulated D-InSAR stack, the inclusion of the temporal information
results in a higher percentage of correctly unwrapped gradients. However, there are some aspects
which can be further improved. The �rst aspect involves the estimation of a suitable motion model
to calculate modi�ed observations, cf. (5.9). These modi�ed observations contain a reduced number
of phase ambiguities which makes phase unwrapping much easier. The second aspect deals with the
choice of weights when setting up the LPs. In the following, some ideas of improvements are discussed
and compared with the conventional EMCF approach. The aspect of estimating the motion model
has already been published in Esch et al. (2019a). For a better comparison, the individual steps of
the conventional EMCF algorithm are summarized in the �owchart shown in Fig. 6.1.

6.1 Estimation of the Motion Model

The estimation of the optimal motion model during the temporal phase unwrapping is an important
step. Considering the spatial arc ∆xkl, the motion model includes the unknown deformation velocity
variation v∆xkl and the error of the scene topography ∆h∆xkl . This model is used to estimate the
modi�ed observations χ∆t

∆xkl
, cf. (5.9), which are inserted into the temporal LP, cf. (5.12). In the

conventional work�ow, the optimal motion model is determined in an iterative search process.
Therefore, the range of the scene topography and the deformation velocity is limited to a special
search space Ω and discretized with a certain step width, see Fig. 6.1. For each (v∆xkl , ∆h∆xkl)-pair,
the temporal LP is solved and the pair that results in the minimal cost value C̄temp is de�ned as
optimal. However, this procedure has some disadvantages. It is not straightforward how to select
the search space and the step width e�ectively. Increasing the search space and re�ning the step
width, the complexity grows. Moreover, the choice depends on the Euclidean distance between the
pixels xk and xl of the regarded phase gradient ψ∆t

∆xkl
. For larger gradients the error of the scene

topography and the deformation velocity variation may be greater compared to shorter gradients.
Moreover, due to the discrete optimization function the solution is typically not unique. In this
case it is assumed that the deformation velocity variation and the error of the scene topography of
the phase gradient are as small as possible.

The problem of multiple potential local minima is also addressed in Imperatore et al. (2015). To
�nd a robust motion model, it is proposed not to estimate the parameters directly based on the
total search space, but to calculate successive solutions over a sequence of nested search spaces.
For each search space, an optimal motion model is estimated and then the phase is unwrapped.
The individual solutions of each search space are then combined using a weighted average. This
approach has proven to be very robust against local minima of the discrete temporal cost function
(Imperatore et al., 2015).

However, this procedure still has the disadvantages listed above, a search space must �rst be de�ned
with a certain discretization and it remains an iterative procedure, where the temporal LP has to
be solved in each iteration step. The goal is to �nd an estimation method for the motion model
parameters that is independent of the solution of the temporal LP. This has the advantage that the
temporal LP has to be solved only once for each spatial gradient. Therefore, an alternative way is
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Figure 6.1: Flowchart of conventional stepwise EMCF algorithm by Pepe and Lanari (2006) for a D-InSAR stack of a set N ′ of interferograms whereas each
interferogram consists of a set N of phase gradients. To estimate the motion model parameters a prede�ned search space Ω is used.
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proposed here which uses the so called Ensemble Phase Coherence (EPC) (Zhang et al., 2014). The
EPC gives a value for the quality of the estimated model for each phase gradient. For the arc ∆xkl
it is de�ned as

EPC(v∆xkl ,∆h∆xkl) =

∣∣∣∣∣∣ 1

n′
∑

∀∆tαβ∈N ′
e
i(ψ

∆tαβ
∆xkl

−M)

∣∣∣∣∣∣ (6.1)

with M from (5.8) which depends on the parameters v∆xkl and ∆h∆xkl . The EPC function is
continuous with values between zero and one. A value of zero means that model and observation
do not �t and a value of one corresponds to an optimal �t. Figure 6.2 shows the EPC function
exemplary for one simulated phase gradient. It can be seen that the function shows a clear
maximum. At this maximum the error of the scene topography and the deformation velocity
variation �t best to the observations. The idea is to �nd this maximum of the EPC function and to
use the corresponding parameters as optimal motion model parameters to calculate the modi�ed
observations. The modi�ed �owchart of this alternative EMCF algorithm is shown in Fig. 6.3.

However, with an increasing noise level the maximum value of the function decreases and it gets
di�cult to �nd the global maximum. Three di�erent methods are used for this purpose: the Nelder-
Mead method (Nelder and Mead, 1965), a grid search approach and simulated annealing (Kirkpatrick
et al., 1983). Some of them need a starting point which results from a two-step weighted least squares
adjustment, cf. Zhang et al. (2014). First, it is assumed that the observed wrapped phase gradients
do not di�er from the unwrapped ones. Therefore, the functional model for one phase gradient ψ∆t

∆xkl
becomes

ψ∆t
∆xkl

=
4π

λ
∆t · v∆xkl +

4π

λ

∆b⊥
r sin (θ)

·∆h∆xkl (6.2)

with the temporal baseline vector ∆t ∈ Rn′ and the orthogonal spatial baseline vector ∆b⊥ ∈ Rn′ .
After applying a weighted least squares adjustment, the estimated parameters result in[

v̂∆xkl

∆ĥ∆xkl

]
= (ATPA)−1APψ∆t

∆xkl
(6.3)

Figure 6.2: EPC function exemplary for one phase gradient depending on the error of the scene topography
and the deformation velocity variation.
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Figure 6.3: Flowchart of alternative stepwise EMCF algorithm for a D-InSAR stack of a set N ′ of interferograms whereas each interferogram consists of a
set N of phase gradients. The optimal motion model is found by maximizing the EPC. Compared to Fig. 6.1, the sequentially solution of the LP for each (v∆xkl ,
∆h∆xkl)-pair in a prede�ned discrete search space Ω is no longer needed.
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with the design matrix

A =
[

4π
λ ∆t 4π

λ
∆b⊥
r sin (θ)

]
(6.4)

and the weight matrix P ∈ Rn′×n′ which is a diagonal matrix with the vector

p =
1

|4πλ ∆t · 4π
λ

∆b⊥
r sin (θ) |

(6.5)

on its diagonal. The weights are chosen so that phase gradients with longer temporal and spatial
baselines are considered less reliable. As the assumption that the wrapped and unwrapped phase
gradients are equal is not always true in reality, the estimated parameters v̂∆xkl and ∆ĥ∆xkl might
not be a feasible starting solution. Therefore, some new modi�ed observations

χ∆t
∆xkl

= M(v̂∆xkl ,∆ĥ∆xkl) + 〈ψ∆t
∆xkl
−M(v̂∆xkl ,∆ĥ∆xkl)〉−π,π (6.6)

are estimated. Again, it is assumed that these new observations are equal to the unwrapped phase
gradients. The �nal estimated motion model parameters result in[

ṽ∆xkl

∆h̃∆xkl

]
= (ATPA)−1ATPχ∆t

∆xkl
. (6.7)

These parameters are used to initialize the search processes which will be described in the following.

Grid Search Method

One of the easiest search processes is the grid search process. Similar to the iterative search process
a special search space is analyzed with a de�ned step width. At each grid the objective function
is evaluated and the optimum is de�ned at the smallest or the highest one, depending on the
optimization task. The whole algorithm is described in Algorithm 1 for a general maximization
task with an objective function f(x). To �nd the optimal motion model parameters, the EPC is
calculated in each iteration step. So the problem of the de�nition of a search space and the step
width remains. However, when compared to the conventional method the advantage is that the
temporal LP has only to be solved once and not in each iteration step.

Nelder-Mead Method

The downhill simplex or Nelder-Mead method (Nelder and Mead, 1965) is a direct search algorithm
to �nd the optimum of a non-linear unconstrained objective function without knowing the deriva-
tives. The algorithm compares the function values at the nodes of a simplex which is a triangle for

Algorithm 1: Grid Search Method for maximizing the objective function f(x)

Data: search parameter space: x
Result: best parameter vector : x̃
fmax = 0;
for j = 1 . . . Nx do

f = f(x(j));
if f>fmax then

fmax = f ;
x̃ = x(j);

end

end
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two variables. The initial triangle is generated around a given starting point. The worst node with
the smallest function value, when searching for the maximum, is rejected and replaced with a new
one. This new node is placed in a direction away from the worst one. Therefore, three operations
are used: re�ection, contraction and expansion. In the following the best node is symbolized by x1,
the second best by x2, the worst one by x3 and the centroid of the two best nodes by xm. The
re�ected node is de�ned as

xr = (1 + α)xm − αx3 (6.8)

with a positive re�ection coe�cient α. If the re�ected point is better than the second best and
inferior to the best one, a new triangle is generated and the algorithm starts again. Otherwise, if
the re�ected point is better than the best one, the expansion by the relation

xe = γxr + (1− γ)xm (6.9)

with the expansion coe�cient γ which is greater than one is used. If this expanded point is a further
improvement to the best one, the expanded one is used to generate a new triangle. Otherwise, the
re�ected one is used. Remains the case if the re�ected point is inferior to the second best. Then,
the contraction is used by the relation

xc = βxh + (1− β)xm (6.10)

with the contraction coe�cient β which lies between zero and one. Point xh is the better point of x3

and xr. If the contracted point is better than the worst one, the worst is replaced by the contracted
point. Otherwise, a new reduced triangle around the best point is generated. The algorithm stops
if the abort criterion is ful�lled. According to Nelder and Mead (1965) the standard error of the
objective values

∆f =

√√√√1

2

2∑
i=1

(f(xi)− f(xm))2 (6.11)

is compared to a given threshold ε and it stops if ∆f is below this value. The whole algorithm is
described in Algorithm 2 for a general objective function f(x) with a two dimensional parameter
vector x.

Simulated Annealing

Simulated annealing is a heuristic algorithm to �nd a global optimum of a given function. It �nds
a solution that is good enough in a reasonable amount of time. The name simulated annealing
is inspired by the process of annealing in metal work. Annealing involves heating and cooling a
material. With changing temperatures, the internal structure alters. A high temperature means a
high dynamic and as the metal cools its new structure becomes �xed. With help of a temperature
variable simulated annealing simulates this heating process. Metropolis et al. (1953) introduced the
algorithm in order to simulate substances consisting of interacting molecules. Later on, Kirkpatrick
et al. (1983) applied the algorithm to combinatorial optimization problems. A typical example is
the traveling salesman problem. The description of simulated annealing is shown in Algorithm 3 for
a general objective function f(x) which has to be maximized. The algorithm works iteratively. It
starts at a point x which is set to the actual optimal solution x̃. In each iteration a neighboring
point x′ is randomly chosen by a sampling process. If the new objective function f(x′) is higher
than the actual objective function f(x̃), the new sample is used in the next iteration as actual
optimal solution x̃. However, if the objective function of the new point is lower, it is not directly
rejected. It is accepted with a de�ned acceptance probability. This guarantees that the algorithm
does not immediately end at a local optimum. Comparable to the annealing process, the probability
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decreases for lower temperature T and for larger di�erences between the two objective values as
described in Metropolis et al. (1953). Therefore, the probability is de�ned as

P (x̃,x′, T ) = exp (
−(f(x̃′)− f(x))

T
). (6.12)

The probability is compared to a random number uniformly distributed in an interval (0,1) to
implement the random part of the algorithm (Kirkpatrick et al., 1983). If the probability is larger
than the random sample, the new sample is selected and if not, the actual state is used to start the
next iteration. Beginning with a temperature T0, the temperature decreases according to a so called

Algorithm 2: Nelder-Mead Method for maximizing the objective function f(x) with a two dimen-
sional parameter vector x
Data: starting simplex with the nodes: x = [x1,x2,x3]
Result: best parameter vector : x̃
// While abort criterion ∆f is greater than a given threshold ε
while ∆f > ε do

// evaluate the function at each point and sort the values so that

f(x1) > f(x2) > f(x3)
// estimate centroid of the two best points

xm = 1/2 · (x1 + x2) ;
// generate reflected point

xr = (1 + α)xm − αx3;
if f(x1) > f(xr) > f(x2) then

x3 = xr;
else if f(xr) > f(x1) then

// calculate the expansion point to proof if step length for reflected point

was to small

xe = γxr + (1− γ)xm;
if f(xe) > f(x1) then

x3 = xe;
else

x3 = xr;
end

else if f(xr) < f(x2) then
if f(xr) < f(x3) then

// Contract inside

xc = βx3 + (1− β)xm;
else

// Contract outside

xc = βxr + (1− β)xm;
end
if f(xc) > f(x3) then

x3 = xc ;
else

// Shrink triangle around the best point

x2 = 1/2 · (x2 + x1) ;
x3 = 1/2 · (x3 + x1) ;

end

end

end
x̃ = x;
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Algorithm 3: Simulated annealing for maximizing the objective function f(x)

Data: starting point: x
Result: best parameter vector : x̃
x̃ = x;
for j = 1 . . . Nj do

T = T (j);
x′ = sample(x̃);
P = P (x̃,x′, T );
if P ≥ rand(0, 1) then

x̃ = x′

end

end

annealing schedule. The temperature can decrease quadratically, for example. It �nally reaches
zero meaning that no worse state is accepted anymore. At each temperature the system must stay
long enough for the system to reach a steady state (Kirkpatrick et al., 1983). Consequently, for a
given number of iterations the temperature remains the same. During this temperature period the
new samples are generated using a probability distribution. In the classic version of the simulated
annealing uniformly distributed samples are generated within a certain search space (Kirkpatrick
et al., 1983). The search space has to be increasingly restricted depending on the temperature,
so that new samples are only locally generated at the end. These step sizes must be de�ned. In
this paper, an alternative way is chosen using a Gaussian probability distribution to generate new
samples (Geman and Geman, 1984). Based on all samples generated during the corresponding
temperature period, mean values and standard deviations are estimated for the parameters de�ning
a bivariate normal distribution. Since no a priori information are available an uncorrelated normal
distribution is assumed. After each period the temperature is lowered thus the standard deviations
for the parameters change which automatically reduces the value range of the new samples. In the
�rst period the standard deviations are comparable to a given search space.

6.1.1 Application to Simulated Data

To examine the three search methods and to check whether maximizing the EPC is a possible al-
ternative to the conventional process which minimizes the costs of the temporal LP, two spatial
gradients of the simulated D-InSAR stack are analyzed in more detail. The arcs are chosen near
the simulated settlement depression. The �rst one has a distance of 2 pixels and thus 160 m with a
pixel size of 80 m and the second has a distance of 55 pixels and thus 4400 m. Figures 6.4a and 6.4c
show the discrete and iteratively solved cost function values resulting from the temporal LP. It
is obvious that there are several minima with a function value of zero. Since the assumption is
made that the optimum parameters have a minimum norm, the green triangles indicate the opti-
mum. In Fig. 6.4a the optimal parameters for arc 1 are v∆xkl =0.5 cm/yr and ∆h∆xkl =0m and
in Fig. 6.4c v∆xkl = 6 cm/yr and ∆h∆xkl = 0m for arc 2, see also Tab. 6.1. For comparison pur-
poses, the black stars show the reference parameters of the simulated unwrapped phase gradients
which are v∆xkl =0.1 cm/yr and ∆h∆xkl = -1m for arc 1 and v∆xkl =5.9 cm/yr and ∆h∆xkl = -9m
for arc 2. For both arcs the estimated parameters are very close to the reference. However, as the
solution is not unique, it is possible that there are other optimal parameters which �t even better
to the reference.

Figures 6.4b and 6.4d show the EPC function. The results of the individual search algorithms are
marked in di�erent symbols. The orange point is the maximum found with Algorithm 2, the dark
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blue triangle is the maximum found with Algorithm 1 and the light blue point is the result of us-
ing Algorithm 3. For Algorithm 1 the search area is chosen analogous to the conventional iterative
cost minimization task. For Algorithm 2 the starting point results from the two-step weighted least
squares adjustment. The black dot indicates the initial solution. This point is also used in Algo-
rithm 3 as starting point. The black star again symbolizes the reference parameters of the simulated
unwrapped phase gradients. Looking �rst at arc 1 in Fig. 6.4b, it becomes clear that all three search
methods work and produce approximately identical results. Algorithm 3 �nds the maximum EPC
value of 0.80 at v∆xkl =0.2 cm/yr and ∆h∆xkl = -1m which together with Algorithm 1 �ts best to
the reference parameters. For arc 2, considered in Fig. 6.4d, it becomes clear that Algorithm 2 is
not able to �nd the global maximum. Starting from the initial solution, it stops at a local maxi-
mum. The EPC value found with Algorithm 2 is 0.17 which is smaller than the values found using
Algorithm 1 (0.76) and Algorithm 3 (0.77). The estimated parameters using Algorithm 1 and 3
are very consistent with the minimum of the cost value in Fig. 6.4c. They are v∆xkl =6.0 cm/yr

(a) cost values resulting from temporal LP for arc 1 (b) EPC for arc 1

(c) cost values resulting from temporal LP for arc 2 (d) EPC for arc 2

Figure 6.4: Cost values and corresponding EPC values for two simulated spatial gradients with a noise
level of 0.4 rad. The green triangles in the �gures on the left symbolize the optimal point resulting from
the conventional process where the costs of the temporal LP are minimized. For comparison, the black
star is the reference solution. The other symbols in the �gures on the right represent the optimum point
from maximizing the EPC. The orange point is obtained using Algorithm 2, the dark blue triangle using
Algorithm 1 and the light blue point using Algorithm 3. The black point represents the starting solution.
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Table 6.1: Estimated motion model parameters during the temporal phase unwrapping using di�erent
approaches

(a) parameters for arc 1 corresponding to Figs.6.4a and 6.4b

reference conventional Algorithm 1 Algorithm 2 Algorithm 3 start

v∆x[cm/yr] 0.1 0.5 0.0 0.2 0.2 0.2
∆h∆x[m] -1 0 0 -1 -1 0
C∆x 1 0 1 1 1 1
EPC∆x 0.77 0.78 0.68 0.80 0.80 0.78

(b) parameters for arc 2 corresponding to Figs.6.4c and 6.4d

reference conventional Algorithm 1 Algorithm 2 Algorithm 3 start

v∆x[cm/yr] 5.9 6.0 6.0 -0.3 5.9 0.0
∆h∆x[m] -9 0 0 -2 -1 -2
C∆x 5 0 0 22 0 20
EPC∆x 0.29 0.12 0.76 0.17 0.77 0.12

and ∆h∆xkl =0m for the Algorithm 1 and v∆xkl =5.9 cm/yr and ∆h∆xkl = -1m for Algorithm 3
which are also close to the reference parameters.

In order to investigate the in�uence of the di�erently estimated parameters on the phase unwrapping
results, Fig. 6.5 shows an overall comparison. First, Fig. 6.5a shows the results after the temporal
phase unwrapping without considering the spatial information. The �gure shows the percentage of
correctly unwrapped phase gradients depending on the temporal baseline. The di�erent colors refer
to the di�erent methods for estimating the motion model. The green bars are the results of the
conventional way by minimizing the costs of the temporal LP in an iterative search process. The
orange bars are the results of the alternative way by maximizing the EPC using Algorithm 2, dark
blue using Algorithm 1 and light blue using Algorithm 3. All results represent a valid solution after
the de�nition of the phase unwrapping problem. They deliver minimal costs and meet the speci�ed
constraints. The results di�er only in the choice of the motion model parameters. The above
statements can be con�rmed on the basis of Fig. 6.5a. Maximizing the EPC using Algorithm 2 does
not work well. However, if Algorithm 1 or 3 is used, it can be seen that the results are comparable
to the conventional method, shown as green bars. Almost all gradients can be unwrapped correctly
by the temporal phase unwrapping alone. The last few percentages are reached after applying the
spatial phase unwrapping, see Fig. 6.5b. Some errors caused by wrong estimated motion model
parameters using Algorithm 2 can still be �xed by the spatial phase unwrapping, but the result
remains that Algorithm 2 is the worst compared to the other methods.

It can be concluded that maximizing the EPC function using Algorithm 1 or 3 is a good alternative
to �nd a suitable motion model. The conventional method has the disadvantage that the discrete
function may consist of a set of potential solutions and especially if the search area is unknown or very
large, the method results in a long run time as the temporal phase unwrapping problem has to be
solved sequentially for each (v∆xkl , ∆h∆xkl)-pair. In this simulation, the cost function was evaluated
sequentially in 693 steps. For a single arc the temporal LP has to be solved 693 times. Compared to
this, the temporal LP only needs to be solved once with the alternative method. The run time1 to
solve the temporal phase unwrapping for one spatial phase gradient is approximately 5.57 seconds
using the conventional method. If the alternative method is used the run time can be reduced on
average to 0.01 seconds using Algorithm 2, to 0.02 seconds using Algorithm 1 and to 0.23 seconds
using Algorithm 3. The run time of about 6 seconds does not look very critical at the �rst look.

1run time refers to a prototype implementation in MATLAB c©. The computations were performed on a workstation
equipped with two Intel Xeon E5-2650 v4 (2.20GHz) 12 core (24 threads) CPUs and 512 GB of main memory.
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However, it must be considered that the times refer to the temporal phase unwrapping of one single
phase gradient. In total, the temporal LP for several ten thousands of phase gradients must be
solved. Figure 6.6 shows the run time required to solve the temporal phase unwrapping for each
of the 45 842 phase gradients. The green triangles show the run time when using the conventional
method and the other colors when using the alternative method. The orange points are the run
times when using Algorithm 2, the dark blue triangles when using Algorithm 1 and the light blue
points when using Algorithm 3. With the alternative method a signi�cant run time reduction can
be achieved which is essential for the implementation in the operational RSG software.

Comparing the three search algorithms to �nd the maximum of the EPC function, it can be sum-
marized that Nelder-Mead (Algorithm 2) needs the shortest run time. However, it is often not able
to �nd the global maximum as it gets stuck in a local maximum. The grid search approach (Algo-
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Figure 6.5: Percentage of correctly unwrapped phase gradients for simulated D-InSAR stack depending on
the temporal baseline. The motion model is estimated with di�erent approaches. The green bars show the
results of the conventional way by minimizing the costs of the temporal LP in an iterative search process.
The orange bars show the results using Algorithm 2 to estimate the motion model by maximizing the EPC,
the dark blue bars when using Algorithm 1 and the light blue bars when using Algorithm 3.

Figure 6.6: Run time of the temporal phase unwrapping for the individual spatial phase gradients. The
green triangles show the run time when using the conventional method, the orange squares when using the
alternative method with Algorithm 2, the dark blue triangles with Algorithm 1 and the light blue points
with Algorithm 3.
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rithm 1) is similar to the Nelder-Mead method regarding the run time, but it is able to �nd the
global maximum depending on the sampling. However, this sampling has the disadvantage that
the prior de�nition of an exact search range is necessary which is not straightforward. Although
simulated annealing (Algorithm 3) requires a slightly longer run time, it delivers the largest EPC
value in all cases considered here and, in contrast to the conventional method, the run time can
be reduced enormously as the temporal LP only has to be solved once for each phase gradient.
Moreover, simulated annealing is a very robust method which is especially important for increased
noise behavior. With increasing noise, the maximum of the EPC function decreases, because model
and observations do not �t together well. Thus, it becomes more di�cult to �nd the maximum or
to decide which parameters represent the optimal motion. The noise level until which the methods
are still applicable is examined in the following chapter.

6.1.2 Analysis for Di�erent Scenarios

For a more general conclusion, the studies are repeated for di�erent simulation scenarios. As a
reminder, each SAR image is provided with an independent normally distributed noise, see the
work�ow for the simulation scenario in Fig. 4.8. The noise was previously selected with a standard
deviation of 0.4 rad. The typical signal-to-noise ratio for ERS data is 10 to 20 dB (Schwaebisch,
1995, p. 26). This corresponds to a standard deviation of 15 ◦ to 40 ◦ (Just and Bamler, 1994), equal
to 0.3 to 0.7 rad. Therefore, the standard deviation of the noise per SAR image varies from 0.2
to 0.9 rad in the simulation scenario. In all cases, it can be shown that the global maximum of the
EPC function can be reliably found by Algorithm 3. Figure 6.7 shows the percentage of correctly
unwrapped gradients for the entire D-InSAR stack depending on the noise level. For a noise
level below 0.6 rad the results described above are con�rmed. For a noise level above 0.6 rad the
results look di�erent. In this case Algorithm 2, shown as orange bars, provides the best results.
For a higher noise level, the EPC values become generally smaller and there is no unique global
maximum anymore. Figure 6.8 shows the relative frequency of the occurring EPC values found by
Algorithm 3 for the di�erent noise levels. The darker the color of the histogram, the higher the noise.
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Figure 6.7: Percentage of correctly unwrapped
phase gradients depending on the noise level which
is added per SAR image. The motion model is esti-
mated with di�erent approaches. The green bars show
the results of the conventional way. The orange bars
show the results using Algorithm 2 to maximize the
EPC, the dark blue bars using Algorithm 1, the light
blue bars using Algorithm 3 and the red bars using
Algorithm 4.

Figure 6.8: Relative frequency of occurring EPC
values using Algorithm 3. The darker the color of
the histogram, the higher the noise level. It varies
from 0.2 rad to 0.9 rad.
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Furthermore, Fig. 6.9 shows exemplary for one spatial arc of the simulated D-InSAR stack with a
noise level of 0.8 rad the iteratively reduced cost function (Fig. 6.9a) and the EPC values (Fig. 6.9b).
It is obvious that the EPC reaches very small values and that there is no signi�cant maximum.
Although Algorithm 3 and 1 �nd the global maximum at 0.24 and 0.20 with a deformation velocity
variation of around 8 cm/yr and a topographic error of about 30 m. The reference values are at a
slightly smaller EPC value of 0.14 with motion model parameters near zero, see also Tab. 6.2. Since
there are several local maxima, Algorithm 2 ends near the starting solution, which in this case �ts
better to the reference.

With a higher noise level and thus smaller EPC values, the estimated motion model parameter
cannot be reliably estimated. In such cases it is better to use motion model parameters that
correspond to a local maximum with a small norm instead of using an extreme motion model which
is very unreliable and may lead to phase unwrapping errors as it cannot be compensated by the
following spatial phase unwrapping. Based on this conclusion, the idea is to use a modi�ed search
algorithm to �nd the optimal motion model parameters using the EPC function. The modi�ed
search algorithm is described in Algorithm 4 for a general maximization task with objective
function f(x). This search algorithm relies on the results of simulated annealing as long as the
function value is above a certain threshold. For smaller values it is assumed that the motion
model cannot be estimated reliably and instead the local maximum around zero is taken using
the Nelder-Mead method. For this simulation, the threshold is set to 0.3 based on the histogram
in Fig. 6.8.

(a) cost values resulting from temporal LP (b) EPC

Figure 6.9: Cost values and corresponding EPC values for one spatial gradient of the simulated D-InSAR
stack with a noise level of 0.8 rad. The green triangle in the left �gure shows the results of the conventional
way by minimizing the costs of the temporal LP in an iterative search process. The black star is the reference
solution. The orange point in the right �gure shows the results using Algorithm 2 to maximize the EPC,
the dark blue triangle when using Algorithm 1, the light blue point when using Algorithm 3 and the red
triangle when using Algorithm 4. The black point represents the starting solution which is necessary for some
algorithms.

Table 6.2: Parameters for phase gradient 1 corresponding to Fig.6.9

reference conventional Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 start

v∆x[cm/yr] -0.0 7.5 8.0 -0.2 7.8 -0.2 0.0
∆h∆x[m] -0 -30 30 -4 31 -4 -1
C∆x 17 8 16 19 16 19 17
EPC∆x 0.14 0.14 0.20 0.19 0.24 0.19 0.14
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Algorithm 4: Modi�ed Search Algorithm for maximizing the objective function f(x)

Data: starting point: x0

Result: best parameter vector : x̃
// Maximize f(x) with simulated annealing

x̃ = simulated_annealing(x0);
// if objective function is below a given threshold ε
if f(x̃) < ε then

// search local maxima around (0, 0) using Nelder-Mead

x̃ = NelderMead(0);
end

For the arc analyzed in Fig. 6.9b, the optimum point found using Algorithm 4 is marked as a
red triangle which �ts better to the reference compared to the solution found by Algorithm 3. A
corresponding overall result of the percentage of correctly unwrapped phase gradients is shown
as red bars in Fig. 6.7. For a noise level below 0.6 rad the results are identical to Algorithm 3 as
the EPC values are not below the threshold of 0.3, see the histogram in Fig. 6.8. However, with a
noise level above 0.6 rad an improvement can be seen, also with respect to the conventional way by
minimizing the costs of the temporal LP in an iterative search process.

Finally, it can be concluded that the estimation of a correct motion model plays a critical role
in the temporal phase unwrapping steps. A few errors can be compensated by the spatial phase
unwrapping which follows in a second step. However, as has been demonstrated, this is not always
the case. Simulated annealing (Algorithm 3) reliably �nds the global maximum in all examined
scenarios. However, especially with higher noise levels, no unique global maximum can be obtained,
since model and observation no longer �t together due to the high noise level. In such a case,
the motion model can no longer be reliably estimated. Before assuming an extreme and unreliable
motion model, it is better to take a local maximum with a small norm. The modi�ed approach
(Algorithm 4) shows its e�ect especially at a noise level above 0.6 rad. Since the standard deviation
of the ERS data ranges from 0.3 to 0.7 rad, the use of the modi�ed algorithm combining simulated
annealing and Nelder-Mead is recommended.

6.2 Choice of the Weights

In general, the phase unwrapping problem is de�ned as an MCF problem in both time and space,
see (4.13) and (5.12). The phase ambiguity factor represents the �ow which is weighted with costs.
The task is to search for an optimal �ow which minimizes the total sum of costs. In the optimization
process the weights are a critical design parameter. For the temporal phase unwrapping, the weights
are assumed to be constant, cf. Pepe and Lanari (2006). For the spatial phase unwrapping di�erent
weight functions have been evolved. In general, the weights should be low in areas where the data
is noisy, atmospheric, deformation or topographic e�ects occur and thus a phase ambiguity factor
is likely. In contrast, it should be expensive to insert a phase ambiguity factor in areas with low
phase noise.

Following Costantini (1998) the weights for the spatial phase unwrapping should be based on in-
formation extracted from the data, for example the coherence values or the spatial inconsistency,
meaning the investigation of the spatial loop constraint. When such a priori knowledge is not avail-
able all weights should be chosen equal to one. However, this is the worst choice. It is always better
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to take additional information from the data into account when de�ning the weights. Eineder et al.
(1998) generated binary cost maps, limiting the three variables of amplitude, inconsistency and
�atness to estimate the costs for the optimization. Chen (2001) developed statistical models for
non-linear cost functions depending on the observed wrapped phase, the image intensity and the
coherence. The phase unwrapping problem is recast into a maximum a posterior probability esti-
mation problem which can be solved in an approximate way using a non-linear network �ow solver.
In Fornaro et al. (2011) the weights for the spatial phase unwrapping are related to the phase

gradient ψ
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meaning that short gradients are considered more reliable. The term in brackets reaches values close
to zero as soon as there is a motion between the two considered pixels. If there is no movement, the
phase gradient will be very small resulting in a large weight factor and therefore the observation
will be more reliable. Furthermore, Fornaro et al. (2011) introduced a weighting based on the EPC
values

p∆xkl(EPC∆xkl) = EPC∆xkl . (6.14)

The higher the EPC value the better �t observation and model, and the more reliable the result
should be. Another possibility are the coherence based weights. However, the coherence values are
de�ned for the individual pixels and the weights refer to a phase gradient. Based on the variance
propagation law, the coherence value per phase gradient is calculated from the sum of the coherence
values per pixel resulting in the coherence based weights
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It remains to ensure that the estimated parameters in form of the phase ambiguity factors k∆t
∆x

must be integer values. To get an integer solution from the LP, the weights must also be integers,
see Section 3.3.1. The coherence value, (6.13) and (6.14) return values between 0 and 1. A simple
rounding only returns values of 0 and 1 or 2 for (6.15). In order to obtain a slightly more detailed
classi�cation, the weight factors are �rst increased by a factor of ten and then rounded. An increase
by a further factor is not necessary. Since only integer values are allowed, the solution is less sensitive
to a small change of the weights (Costantini, 1998). In order to obtain a clearer classi�cation, the
weight factor is then potentiated to base 2. This results in the following three integer weights on
the basis of the coherence, the phase gradient and the length as well as on the basis of the EPC values
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Weight 3: p∆xkl(EPC∆xkl) = 2bEPC∆xkl
·10e.

(6.16)

(6.17)

(6.18)

So far, the conventional weights for the spatial phase unwrapping result from the costs of the tem-
poral LP according to Pepe and Lanari (2006). The higher the costs, i.e. the higher the absolute
number of phase ambiguity factors, the less reliable are the results from the temporal phase un-
wrapping. Thus, the weights for the spatial LP result from an inverse relationship to the temporal
costs, see (5.14). The idea now is to test and compare the di�erent weightings.
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6.2.1 Application of the Weighting Procedures to Simulated Data

The in�uence of the weights is tested using the simulated D-InSAR stack, cf. Section 4.3.2.1. To
estimate the motion model, the EPC function is maximized using the modi�ed Algorithm 4. Thus,
di�erences in the results are only the consequence of di�erent weight choices. Therefore, Weights 2

and 3, cf. (6.17) and (6.18), are analyzed and compared with the conventional weighting. The
simulated D-InSAR stack, designed here in a simpli�ed way, does not allow a reliable analysis
of the Weight 1. In general, the coherence values are calculated within the framework of the
multilooking process. In the case of ERS-1/-2 data a multilooking over 80 looks, 20 in azimuth
and 4 in range direction, is performed. The simulation already refers to multilooked data and the
coherence values are taken from the real ERS-1/-2 data. The noise is added to the simulated data
on two levels, for each SAR image and for each interferogram depending on the coherence value.
The noise per SAR image is kept variable in the analysis from 0.2 to 0.9 rad. If the coherence
based Weight 1 is used, the coherence values would also have to be adjusted according to the noise
level. To do this, the simulation has to start before the multilooking process in order to be able
to calculate new coherence values depending on the noise level. However, since the application to
real data will show that the coherence based Weight 1 is worse than the Weights 2 and 3, this step
is omitted and the analysis of the coherence basedWeight 1 is limited to the application to real data.

In a �rst step, Weights 2 and 3 are only used for the spatial phase unwrapping. For the temporal
phase unwrapping constant weights are still used. The investigation of di�erent temporal weights
will be done later.

6.2.1.1 In�uence of Spatial Weights

Figure 6.10 shows the percentage of correctly unwrapped phase gradients after the temporal and
spatial phase unwrapping depending on the noise level per SAR image. The temporal weights are
assumed to be constant in all cases. The di�erences arise only in the choice of the spatial weights. The
green bars represent the results using the conventional weights according to Pepe and Lanari (2006),
where the spatial weights are inversely proportional to the temporal costs. For the orange bars the
phase and length based Weights 2 are used and for the blue bars the EPC based Weights 3. Due to
the di�erent spatial weighting, signi�cant di�erences can be observed at a noise level above 0.6 rad.
At a lower noise level there are no di�erences and in all cases the phase gradients can be unwrapped
correctly at almost 100%. However, in the case of a high noise level above 0.6 rad,Weights 3 show the
highest percentage of correctly solved phase gradients, 98.5% for a noise level of 0.8 rad and 97.1%
for a noise level of 0.9 rad. For Weights 2 and the conventional weights the percentage values are
smaller. For Weights 2 they are 96.3% (noise level 0.8 rad) and 93.9% (noise level 0.9 rad) and for
the conventional weights 96.7% (noise level 0.8 rad) and 92.9% (noise level 0.9 rad). As a reminder
a noise level of 0.9 rad is a worst case scenario as the typical values of the standard deviation for
ERS data are between 0,3 and 0,7 rad.

The question is why the Weights 2 and the conventional weights fail. Therefore, Fig. 6.11 shows
the estimated mean deformation velocity per pixel for the simulated D-InSAR stack with a noise
level of 0.8 rad. Figure 6.11a shows the results of the reference phase and Figs. 6.11b to 6.11d
show the di�erences between the reference and the phase unwrapping results using di�erent
spatial weightings. It can be seen that the settlement depression in Fig. 6.11c does not represent
the reference. The di�erences to the reference are up to -6 cm/yr in the basin of the settlement
depression. The estimated motion is too small. Looking at the equation for calculating Weight 2,
cf. (6.17), it becomes obvious that observations which involve motion and thus have large phase



6.2. Choice of the Weights 81

0
.2

0
.4

0
.6

0
.8

0
.9

Figure 6.10: Percentage of correctly unwrapped phase gradients depending on the noise level which is added
per SAR image. The motion model parameters are estimated by maximizing the EPC using the modi�ed
method. The weight factors for the spatial phase unwrapping are chosen in di�erent ways. The green bars are
the results with the conventional weights, the orange bars with Weights 2 and the blue bars with Weights 3.
For the temporal phase unwrapping constant weights are used.

gradients, will have small weights. Consequently, all observations close to the settlement depression
will be weighted down. This weighting does not take into account that the estimated motion
model may �t well and should be trusted. This leads to the fact that these phase gradients are
changed during the spatial phase unwrapping and the motion cannot be reconstructed well. This
works better for the conventional weights and the Weights 3. In this case the di�erences are
almost zero everywhere. When using conventional weights, there are di�erences of 6cm/yr at
individual pixels, see red boxes in Fig. 6.11b. Too much movement is assumed at these pixels.
Looking at the corresponding phase gradients of these pixels, it can be seen that the estimated
motion model parameters are very large. However, the motion model does not �t well to the
observations. This is indicated by a low EPC value. Nevertheless, these phase gradients show low
temporal costs and therefore very large spatial weights when using the conventional weighting.
Consequently, these gradients are not further modi�ed in the spatial phase unwrapping, because
it is too expensive to estimate a phase ambiguity factor. Thus, the motion model that was
erroneously estimated as too large is still in the data and leads to the erroneous pixels, see red
boxes in Fig. 6.11b. This is di�erent with Weights 3. Since the EPC values are small, this results
in low spatial weights. Thus, the phase gradients which contain the incorrectly estimated motion
model are changed in the spatial phase unwrapping, so that the unwrapped pixels reconstruct
the reference. This is also possible with Weights 2 at these pixels. Since, too large motion model
parameters are estimated, this weighting also results in low spatial weights. But as already men-
tioned, withWeights 2 it is not possible to reconstruct the deformation in the settlement depression.

For a more precise analysis, the percentage of correctly unwrapped interferograms per phase gradient
is calculated for the results based on the noise level of 0.8 rad and plotted against the estimated
topography error, cf. Fig. 6.12a, and the estimated deformation velocity variation, cf. Fig. 6.12b.
The green triangles show the results for conventional weights, the orange points for Weights 2

and the blue stars for Weights 3. As already suspected, Weights 2 fail as soon as there are large
movements or large topography errors. With conventional weights, this behavior is not as obvious.
Here it is rather noticeable that the results are faulty with very small gradients which show almost
no movements or topography errors. Looking at these gradients, it is evident that the temporal costs
again do not match the EPC values. Gradients ful�ll the temporal constraints and have low temporal
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(a) reference (b) di�erence: reference minus conventional weights

(c) di�erence: reference minus Weights 2 (d) di�erence: reference minus Weights 3

Figure 6.11: Mean deformation velocity per pixel with a noise level of 0.8 rad using di�erent spatial weight
factors. The results di�er in the choice of weights for the spatial phase unwrapping. Constant weights are
used for the temporal phase unwrapping.

costs, but the estimated motion model does not �t well. These gradients are therefore incorrectly
strongly trusted. Just as well the opposite case can occur. The situation is di�erent with Weights 3.
Even with large movements and topography errors, the phase gradients are unwrapped correctly at
almost 90%. Even with smaller movements, the Weights 3 show a clear improvement over the other
two weightings. All in all, with Weights 3 in 75% of the cases gradients are unwrapped correctly
in more interferograms than with Weights 2, in 12% of cases equally and in 13% of cases in less
interferograms. Compared with the conventional weighting, the Weights 3 are better for 57% of
gradients, for 29% equal and for 14% worse.

6.2.1.2 In�uence of Temporal Weights

So far, the temporal weights have been assumed to be constant. In the literature, this is also the
most common case (Pepe and Lanari, 2006, Fornaro et al., 2011), besides non-linear statistical costs
according to Chen (2001). Since the phase unwrapping problem should be solved further as an LP,
linear temporal costs are required. In the following two possibilities are tested. On the one hand,
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(a) correctness depending on the topography error (b) correctness depending on the deformation velocity
variation

Figure 6.12: Percentage of correctly unwrapped interferograms per phase gradient for a noise level of 0.8 rad.
The results di�er in the choice of spatial weighting factors. The green triangles are the results with conven-
tional weights, the orange points with Weights 2 and the blue stars with Weights 3. Constant weights are
used for the temporal phase unwrapping.

Weights 2, cf. (6.17) are used for the temporal weights. Since the same spatial phase gradient is
considered for the temporal phase unwrapping in time, the Euclidean distance L∆xkl of the phase
gradient is irrelevant. The weight depends only on the phase gradient. Phase gradients which are
considered over a longer temporal or spatial baseline or which include a temporal deformation are
larger and are thus weighted down. On the other hand, a similar weighting which is carried out when
�nding the starting solution by means of a two-step weighted least squares adjustment according
to Zhang et al. (2014), cf. (6.5), is used as temporal weights. The weight depends directly on the
temporal and spatial baseline. Since the weighting must also be an integer value, the weight is
increased by a power of ten, rounded and potentiated to base 2, resulting in the fourth analyzed
weighting function

Weight 4: p∆tαβ (∆tαβ,∆b⊥,αβ) = 2
b| 4π
λ

∆tαβ · 4πλ
∆b⊥,αβ
r sin (θ)

|
−1

·10e
. (6.19)

So Weights 2 and Weights 4 are used as weights to temporally unwrap the phase gradients of the
simulated D-InSAR stack and compared with the results using constant temporal weights.

Figure 6.13 shows the percentage of correctly unwrapped phase gradients after temporal phase
unwrapping depending on the noise level per SAR image. The green bars symbolize the results with
constant temporal weights, the orange bars with Weights 2 and the blue bars with Weights 4. It
can be seen, especially for the higher noise levels, that the Weights 2 lead to a higher percentage
of correctly unwrapped phase gradients compared to the other two weightings. Weights 4 which
include the direct relation to the spatial and temporal baselines seem to work less well.

The idea now is to combine the temporal Weights 2 with the previously investigated spatial
weights. The results are shown in Fig. 6.14. Again, the percentage of correctly unwrapped phase
gradients is shown depending on the noise level. The green bars show the results when using
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Figure 6.13: Percentage of correctly unwrapped
phase gradients for simulated D-InSAR stack after
temporal phase unwrapping depending on the noise
level which is added per SAR image. The green bars
are the results using constant temporal weights, the
orange bars are the results using Weights 2 as tem-
poral weights and the blue bars using Weights 4 as
temporal weights.
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Figure 6.14: Percentage of correctly unwrapped
phase gradients for simulated D-InSAR stack after
temporal and spatial phase unwrapping depending on
the noise level which is added per SAR image. For the
temporal phase unwrapping Weights 2 are used. The
green bars are the results using the conventional spa-
tial weights, for the orange bars Weights 2 and for
the blue bars Weights 3 are used as spatial weights.

conventional spatial weights, the orange bars when using Weights 2 and the blue bars when using
Weights 3. In contrast to the results shown in Fig. 6.10, Weights 2 are used as temporal weights
instead of constant temporal weights. Here, again, only the results from a noise level above 0.6 rad
are interesting. Previously, almost 100% of the phase gradients are correctly reconstructed in all
cases. For a noise level above 0.6 rad, it can be seen that the inclusion of di�erent temporal weights
has led to a further improvement. Especially for the spatial Weights 2, the accuracy increases
from 96.3% to 97.3% at a noise level of 0.8 rad and from 93.9% to 95.4% at a noise level of 0.9 rad.
For the conventional weights the percentage increases from 96.7% to 97.2% (noise level 0.8 rad) and
from 92.9% to 93.8% (noise level 0.9 rad). For Weights 3 the improvements are not as signi�cant,
from 98.5% to 99.0% (noise level 0.8 rad) and from 97.1% to 97.9% (noise level 0.9 rad).

However, with spatial Weights 2 the problem remains that errors occur especially with phase gra-
dients with large motion model parameters. For the noise level of 0.8 rad, Fig. 6.15 again shows the
percentage of correctly unwrapped interferograms per phase gradient depending on the estimated
topography errors and the estimated deformation velocity variations. The results are shown as green
triangles when conventional spatial weights are used, as orange points when spatial Weights 2 are
used, and as blue stars when spatialWeights 3 are used. In contrast to the results in Fig. 6.12, where
constant temporal weights were assumed, an improvement can be seen, but the problem already
described remains.

It can be concluded that Weights 3 have proven to be a good alternative to conventional spatial
weights at all noise levels. Even at a high noise level of 0.9 rad, which represents a worst case scenario,
an improvement is observed.Weights 2 are most unsuitable for the choice of spatial weights. For this
simulated D-InSAR stack it is not possible to reconstruct the simulated settlement depression with
Weights 2. Large motions are always down weighted and thus these phase gradients are changed
during the spatial phase unwrapping. However, the introduction of Weights 2 as temporal weights
has proven to be suitable and has led to a further increase in the percentage of correctly unwrapped
phase gradients.
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(a) correctness depending on the topography error (b) correctness depending on the deformation velocity
variation

Figure 6.15: Percentage of correctly unwrapped interferograms per phase gradient for a noise level of 0.8 rad.
For the temporal phase unwrapping Weights 2 are chosen. The green triangles show the results based on
the conventional spatial weights. The orange squares are the results using Weights 2 and the blue bars using
Weight 3 as spatial weights.

6.3 Case Study 1: ERS-1/-2 D-InSAR Stack of the Lower-Rhine-
Embayment

In this section, the EMCF algorithm and the above described ideas of improvement, which have
already been veri�ed on the basis of simulated data, are tested and applied to the analysis of real
data. The test region is the Lower-Rhine-Embayment in the southwest of North Rhine-Westphalia,
Germany, bounded by the cities Aachen and Cologne in the west and east and Mönchengladbach
and Euskirchen in the north and south. Characteristic for the Lower-Rhine-Embayment are the
mining regions. The coal mine Sophia-Jacoba in the mining region Erkelenz and the coal mine
Emil Mayrisch in the mining region Aachen had been extracted underground until 1992 and 1997,
respectively (Boje et al., 2008). The consequent rise of the groundwater level in the pits results in
an elevation of the Earth's surface. In contrast, the three still active open-cast mines Garzweiler,
Hambach and Inden in the Rhineland brown coal mining area are causing subsidence of the Earth's
surface. Thus, the region is in a continuous motion. Regular monitoring measurements of these
ground movements are therefore necessary. The aim is to detect these deformations with help of a
multitemporal D-InSAR analysis.

6.3.1 Data Basis and Data Processing

The considered data set consists of the previously mentioned 64 SAR images collected by ERS-1/-2.
These data cover the Lower-Rhine-Embayment from May 1992 to December 2000. They are stacked
together to 161 D-InSAR images. The temporal data distribution is already shown in Fig. 2.8b.
This triangulation is optimized according to Pepe et al. (2015). Again, pixels are de�ned as coherent
if they have a coherence value greater than or equal to 0.7 in at least 80% of interferograms.
For the whole ERS-1/-2 scene this is the case for n =143 474 pixels de�ning m =430 115 arcs
and r =286 643 triangles.
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To detect the ground deformation in a large scale the SBAS method is used. The SBAS processing
is carried out with the RSG Software. As already described in Section 2.3.2, the phase unwrapping
is done twice to reduce phase unwrapping errors. However, this step remains a critical task in
the analysis (Pepe and Lanari, 2006). Since it has been shown that the inclusion of the temporal
information leads to considerably better results, the two-step EMCF algorithm is used. The state of
the art in the RSG software is the estimation of the motion model using the conventional method.
In this section the alternative method by maximizing the EPC function will be tested. Furthermore,
various weight functions will be analyzed, afterwards. For this purpose, the phase unwrapping is
performed twice externally in MATLAB c© after all preprocessing steps from the coregistration of
the individual SAR images to the wrapped, multilooked and multitemporally �ltered di�erential
interferograms have been completed in RSG. The unwrapped phase gradients are again included in
RSG for the �nal SBAS analysis resulting in the deformation time series of the individual pixels,
projected in vertical height changes with respect to (2.39). Since the phase gradients represent
temporal and spatial double di�erences, both a temporal and a spatial reference must be chosen to
overcome the datum defect. The spatial reference is a pixel in Cologne, since it can be assumed
that the region in Cologne is stable. The �rst SAR observation in May 1992 is chosen as temporal
reference.

Figure 6.16a shows the mean deformation velocity map of the stable pixels using the conventional
EMCF approach. It can be seen that the Earth's surface around the still active open-cast mines
Garzweiler and Hambach subsides in a range from −6 to −8 cm/yr. On the contrary, closing the
mines Sophie-Jacoba in the mining region Erkelenz in 1997 and Emil Mayrisch in the mining
region Aachen in 1992 still causes the Earth's surface to rise by a few cm/yr. On a more detailed
examination of the results, the �gure shows isolated irregularities and jumps that may indicate a
phase unwrapping error. Therefore, some individual pixels in the highlighted test regions 1 to 8
will be considered in more detail below.

For comparison purposes, the leveling data measured by GeoBasis NRW in a four-year cycle are
used. Each campaign is evaluated in an individual adjustment following Halsig et al. (2013). Data
from 1993 to 2001 are used to ensure that the evaluations are in the same time span as the ERS-1/-2
data. The leveling observations are relative height di�erences, so that the system has also a rank
defect, however, this time only in space. To solve this problem, the system is forced to a total of four
reference points. These points should preferably not be located in a deformation area and should be
distributed over the area. In this evaluation the reference points are in Viersen, Cologne, Aachen and
Rheinbach. The results are estimated normal heights of 2472 leveling points measured in all epochs.
A mean deformation velocity map is shown in Fig. 6.16b. The leveling data also show the lowering
of the region around the still active open-cast mines and the lifting of the mining regions Erkelenz
and Aachen around the mines Sophia-Jacoba and Emil Mayrisch. The individual subsidence above
the mine Sophia-Jacoba cannot be explained geologically and indicates irregularities in the leveling
data.

6.3.2 In�uence of the Estimated Motion Model

To investigate the in�uence of the motion model, the �nal SBAS analysis is performed again.
However, now the motion model is estimated using the alternative way by maximizing the EPC
function. To maximize the EPC function simulated annealing (Algorithm 3) is used in one case and
the modi�ed algorithm (Algorithm 4) in the other case. The resulting mean deformation velocity
maps are very similar to the one shown in Fig. 6.16a. This �rst of all shows that both methods
work. The occurring subsidence in the area around the active open-cast mines and the uplift in the
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(a) conventional approach

(b) leveling data

Figure 6.16: Mean deformation velocity map of the Lower-Rhine-Embayment based on ERS-1/-2 data from
May 1992 to December 2000 and based on the leveling data from 1993 to 2001. The deformation model for
the phase unwrapping in Fig. 6.16a is estimated using the conventional approach for pixels with a coherence
value greater than 0.7 in at least 80% of interferograms. The highlighted test regions 1 to 8 are examined in
more detail as time series in Figs. 6.18 to 6.20.
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area around the closed mines can be detected. The average di�erences comparing the conventional
EMCF approach with the EMCF approach using Algorithm 3 and using Algorithm 4 is for both
cases 0.002 cm/yr. For only 0.2% of the pixels a di�erence of more than 0.1 cm/yr occurs. In order
to be able to compare the results with each other, other criteria have to be found.

Looking at the estimated EPC values per phase gradient after the �rst phase unwrapping, it
is noticeable that the EPC values are generally very high, in 80% of the cases the value is
higher or equal to 0.8, see Fig. 6.17. The dark blue histogram shows the EPC values when using
the conventional method and the light blue histogram when using Algorithm 3 or respectively
Algorithm 4. Since the EPC value is below the threshold value of 0.3 in only 0.01% of the cases,
there are almost no di�erences between these two methods. The histogram shows that the EPC
value can be further increased using Algorithm 3 or 4 in contrast to the conventional method.

Since the true phase is not known, the accuracy of the results cannot be assessed as easily as with the
simulated data. The following subsections therefore focus on determining criteria that can compare
the results and verify the accuracy of the results.

6.3.2.1 Smoothness in Space

A criterion for evaluating whether there are errors in the results is to consider the smoothness of the
results in space. If large movements from pixel to pixel are excluded, pixels whose movements deviate
from their surrounding pixels indicate possible phase unwrapping errors or incorrectly assumed
motion model parameters. Therefore, a Root Mean Square (RMS) error is calculated for each pixel xj
in space. For each pixel xj ∈M there is a deformation time series htαxj , ∀tα ∈M′. This deformation
time series is compared to the deformation time series of the setMxj of mxj pixels within a radius
of 300m around xj . If at least 5 pixels lie within this radius, the di�erence is squared and averaged
over the number of mxj pixels. Then, the average over all m

′ time acquisition is taken to obtain one
RMS value for each pixel

RMSxj =
1

m′
∑
tα∈M′

√ ∑
xk∈Mxj

(htαxk − htαxj )2/mxj , ∀xj ∈M. (6.20)

Figure 6.17: Relative frequency of occurring EPC values based on ERS-1/-2 data and using di�erent meth-
ods to estimate the motion model parameters. The dark blue histogram is the result using the conventional
method and the light blue histogram using Algorithm 3 or respectively Algorithm 4. There are almost no
di�erences between Algorithms 3 and 4.
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In this way, RMS values can be determined for a total of 98.7% of pixels. Table 6.3 shows
a summary of the RMS values for the di�erent methods used to estimate the motion model
parameters. The RMS values are classi�ed into di�erent orders of magnitude. It turns out very well
that with the conventional method individual pixels have RMS values larger than the wavelength λ.
Such large jumps are untypical and clearly indicate irregularities in the results. If individual pixels
deviate from their neighboring pixels by a whole or half wavelength, this can indicate that a phase
unwrapping error has occurred. By using the alternative Algorithm 3, the number of pixels with an
RMS error greater than λ can be reduced from 8 to 1 and the number of pixels with an RMS error
between λ and λ/2 from 45 to 10. Using Algorithm 4, no pixel has an RMS value greater than λ
and only 9 pixels have values between λ and λ/2. Similar results can also be seen in the other classi-
�cations. It can be shown that the use of the alternative methods lead to smoother results in space,
which is expressed in smaller RMS values. Using Algorithm 4, the RMS values can be further re-
duced. This shows that the number of phase unwrapping errors can be minimized using this method.

This conclusion will be further veri�ed in the following by looking at individual deformation time
series. In this context, pixels with very di�erent RMS values depending on the method used to
estimate the motion model are of particular interest.

6.3.2.2 Single Pixel Evaluations

Figures 6.18 to 6.20 give a more detailed view of the test regions 1 to 8 marked in Fig. 6.16a. The
deformation time series of �ve pixels located in these test regions are shown from May 1992 to
December 2000. The green triangles are the results using the conventional approach to estimate
the motion model parameters. The results of the alternative Algorithm 3 are shown as blue squares
and the results of the alternative Algorithm 4 as red points. To evaluate the results, the closest
leveling point, shown as black squares, is added. In order to indicate the trend of the deformation
time series, data from 2005 are represented in addition to the level data from 1993, 1997 and 2001.

When comparing interferometric data and leveling data sets, the problem of di�erent spatial
and temporal resolution and the problem of di�erent temporal reference points occur. With the
exception of test region 8, the nearest leveling point is at most 300m away from the interferometric
data. It can therefore be assumed that all examined data show similar behavior, since no abrupt
deformation changes are expected. At test region 8 the nearest leveling point is 1600m away from
the interferometric data. The comparison of these two data sets should therefore be considered
with caution. In general, correctly comparing the data would also have to take into account that
the D-InSAR data observe only movements in LOS and the leveling data refer to vertical height
changes. The used projection of the D-InSAR data into vertical height change is only allowed if the
horizontal movement is assumed to be zero. However, since only ERS-1/-2 data from descending
orbits are available, this assumption is necessary.

Table 6.3: RMS error in space with respect to pixels located in a radius of 300 meters, where at least
5 pixels must be within this radius. The RMS is classi�ed and listed for di�erent options to estimate the
motion model parameters.

motion model RMS > λ λ > RMS > λ/2 λ/2 > RMS > λ/4 RMS < λ/4

conventional 8 45 255 141411
Algorithm 3 1 10 124 141584
Algorithm 4 0 9 122 141588
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The time o�set is compensated by linearly interpolating the leveling data piecewise over time
according to Esch et al. (2019b). For each coherent pixel, a local o�set is calculated using a weighted
average. The weights are chosen so that heights that are close to the leveling points are weighted
more strongly and the weights between the leveling points decrease quadratically. Figures 6.18 to
6.20 show the corresponding deformation time series after applying the local o�set. The reader is
reminded that the vertical axes of the plots were chosen di�erently, since the examined pixels show
di�erently strong motions.

First, pixels are considered where both the conventional and the alternative methods show
comparable results that also agree well with the leveling data. Figure 6.18a examines pixels in
Thorr, Bergheim next to the still active open-cast mine Hambach. Brown coal mining causes the
surface of the surrounding areas to subside. This can also be seen in the Fig. 6.18a. All data sets
and methods show that the Earth's surface decreased by a few decimeters between 1992 and 2001,
respectively 2005. The pixels in test region 2 are located in Aldenhoven, Düren in the basin of
the mining region Aachen near the mine Emil Mayrisch, see Fig. 6.18b. Coal was mined there
until 1992, as can be seen from the corresponding subsidence of the ground which slowly decreases
at the end of 2000. The subsequent rise in the groundwater level causes a renewed uplift which is
already becoming apparent at the end of the D-InSAR data. Again all methods, the conventional
and both alternative methods, provide identical results and agree with the leveling data. The third
considered test region is located in Wassenberg, Heinsberg near the mining region Erkelenz next
to the mine Sophia-Jacoba, see Fig. 6.18c. Coal mining took place there until 1997. The resulting
subsidence is re�ected much more strongly in the D-InSAR data than in the leveling data. The
following �ooding of the mine galleries led to a renewed uplift of the Earth's surface which becomes
clearly visible in the temporally more highly resolved D-InSAR data in 2000. Once again, all
methods lead to nearly the same motion model.

Now pixels are considered where di�erent motion parameters are estimated using the conventional
and the alternative methods, which is also re�ected in di�erent RMS values. In test region 4,
pixels in Kirchherten, Bedburg between the two active open-cast mines Garzweiler and Hambach
are considered, see Fig. 6.19a. Similar to the pixels in test region 1, brown coal mining causes the
Earth's surface to sink by a few centimeters. One pixel, however, shows a very extreme subsidence.
In this case, the conventional method fails. Looking at the corresponding phase gradients and the
estimated motion model parameters, it becomes clear that wrong motion model parameters are
estimated with the conventional method. Table 6.4a shows the estimated deformation velocity
variations and the estimated topography errors as well as the corresponding EPC values for the
phase gradients where the conspicuous pixel is involved. The values are listed for the conventional
method, Algorithm 3 and Algorithm 4. At phase gradient 4 the conventional method estimates
a too extreme deformation velocity variation. The corresponding EPC value of 0.3 is extremely
low which also indicates that the method fails. This is also re�ected in the high RMS value
calculated to the nearest 19 pixels within a radius of 300 meters. The RMS value is greater than
the wavelength λ. The alternative Algorithms 3 and 4 show better results. The RMS values are
below λ/4. Both methods are identical, since Algorithm 4 is only relevant if an EPC value below 0.3
occurs. Since this is not the case, in both cases the maximum is determined by simulated annealing.
The obtained results �t better with the neighboring pixels and the leveling data.

Similar results can be seen in test regions 5 and 6. Figure 6.19b shows pixels in Holzweiler, Erkelenz
next to the active mine Garzweiler. The open-cast mining again leads to a subsidence of the
area. However, it is clearly visible that the conventional method indicates a strong uplift at one
pixel. This behavior deviates clearly from the neighboring pixels, which is re�ected in a high RMS
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(a) test region 1: Thorr, Bergheim

(b) test region 2: Aldenhoven, Düren

(c) test region 3: Wassenberg, Heinsberg

Figure 6.18: Deformation time series of �ve pixels lying in each of the highlighted test regions 1 to 3 shown
in Fig. 6.16a. The green triangles are the results using the conventional approach, the blue squares using
Algorithm 3 and the red points using Algorithm 4. For comparison the black squares indicate the data from
the closest leveling point.
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(a) test region 4: Kirchherten, Bedburg

(b) test region 5: Holzweiler, Erkelenz

(c) test region 6: Rheydt, Mönchengladbach

Figure 6.19: Deformation time series of �ve pixels lying in each of the highlighted test regions 4 to 6 shown
in Fig. 6.16a. The green triangles are the results using the conventional approach, the blue squares using
Algorithm 3 and the red points using Algorithm 4. For comparison the black squares indicate the data from
the closest leveling point.
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Table 6.4: Motion model parameters belonging to the phase gradients of the conspicuous pixels in the test
region 4 to 8, cf. Figs 6.19a to 6.20b. The motion model parameters are estimated with the conventional and
the alternative approach using simulated annealing (Algorithm 3) and the modi�ed algorithm (Algorithm 4).

(a) Kirchherten

idx
conventional Algorithm 3 Algorithm 4

v[cm/yr] ∆h[m] EPC v[cm/yr] ∆h[m] EPC v[cm/yr] ∆h[m] EPC

1 0.0 -5 0.35 0.0 -2 0.38 0.0 -2 0.38
2 0.0 0 0.37 -0.1 0 0.39 -0.1 0 0.39
3 0.0 5 0.34 0.0 4 0.35 0.0 4 0.35
4 2.0 -50 0.03 0.1 -0 0.41 0.1 -0 0.41
5 0.0 5 0.35 -0.1 2 0.42 -0.1 2 0.42
6 0.0 0 0.38 -0.1 2 0.41 -0.1 2 0.41

(b) Holzweiler

idx
conventional Algorithm 3 Algorithm 4

v[cm/yr] ∆h[m] EPC v[cm/yr] ∆h[m] EPC v[cm/yr] ∆h[m] EPC

1 3.5 40 0.07 -1.0 -0 0.30 -1.0 -0 0.30
2 1.0 -25 0.10 0.3 3 0.37 0.3 3 0.37
3 -3.5 -45 0.07 0.3 1 0.37 0.3 1 0.37
4 2.0 -45 0.16 -0.3 -3 0.33 -0.3 -3 0.33

(c) Rheydt

idx
conventional Algorithm 3 Algorithm 4

v[cm/yr] ∆h[m] EPC v[cm/yr] ∆h[m] EPC v[cm/yr] ∆h[m] EPC

1 -1.0 -5 0.37 -0.2 -1 0.66 -0.2 -1 0.66
2 1.0 0 0.42 0.2 0 0.67 0.2 0 0.67
3 0.5 -5 0.46 0.2 -1 0.59 0.2 -1 0.59
4 0.5 0 0.51 -0.3 0 0.67 -0.3 0 0.67
5 1.0 5 0.25 0.3 -1 0.58 0.3 -1 0.58
6 -0.5 0 0.57 -0.2 2 0.69 -0.2 2 0.69

(d) Gevenich

idx
conventional Algorithm 3 Algorithm 4

v[cm/yr] ∆h[m] EPC v[cm/yr] ∆h[m] EPC v[cm/yr] ∆h[m] EPC

1 0.5 5 0.21 7.5 9 0.26 -0.1 0 0.24
2 -3.5 -5 0.16 0.8 1 0.23 0.2 -3 0.16
3 0.0 -25 0.08 7.5 9 0.28 -0.2 -0 0.24
4 -0.5 0 0.20 -1.7 -3 0.24 0.1 0 0.23
5 0.0 0 0.24 0.9 3 0.26 0.1 -2 0.25

(e) Eschweiler

idx
conventional Algorithm 3 Algorithm 4

v[cm/yr] ∆h[m] EPC v[cm/yr] ∆h[m] EPC v[cm/yr] ∆h[m] EPC

1 0.0 0 0.89 0.0 0 0.89 0.0 0 0.89
2 0.0 0 0.93 0.0 -1 0.93 0.0 -1 0.93
3 0.0 0 0.95 0.0 1 0.95 0.0 1 0.95
4 0.0 0 0.91 0.0 0 0.91 0.0 0 0.91
5 -0.5 0 0.56 -0.1 0 0.61 -0.1 0 0.61
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value, larger than λ. Looking at the associated phase gradients in Table 6.4b, the reason can be
found in the high deformation velocity variations estimated using the conventional method. Here,
again, very low EPC values arise. Algorithms 3 and 4 estimate motion model parameters that
produce EPC values greater than 0.3, so there are no di�erences between the two methods. In
addition, the results �t better to the neighboring pixels expressed by low RMS values, below λ/4.
Moreover, the results are consistent with the leveling data. Figure 6.19c shows pixels in Rheydt,
Mönchengladbach within the basin of the still active open-cast mine Garzweiler. The pixels in this
region decrease and again the conventional method fails at one pixel. This results in an RMS value
greater than λ/2. Table 6.4c shows the corresponding estimated parameters, where the conventional
method estimates too large deformation velocities. The results of the alternative methods �t better
to the neighboring pixels (RMS<λ/4) and better to the leveling data. The corresponding EPC
values are good with approx. 0.6, so there are no di�erences between Algorithms 3 and 4.

Test region 7 provides an example where Algorithm 4 shows its e�ect. Figure 6.20a shows pixels
in Gevenich, Linnich in the area of in�uence of the active open-cast mines. These lead to a
subsidence of the area. Depending on the used method, a di�erent behavior can be recognized for
one pixel. The estimated motion model parameters of the corresponding phase gradients are listed
in Table 6.4d. Remarkable are the extremely low EPC values which result from the estimated
motion model parameters. Using Algorithm 3, all EPC values are below the threshold of 0.3. So
it can be assumed that the estimation is not reliable. Thus, Algorithm 4 uses the local maximum
around zero found by the Nelder-Mead method. The extreme values, such as those that occur for
phase gradients 1 and 3 using Algorithm 3, are avoided. Algorithm 3 results in an RMS value
greater than λ for the conspicuous pixel. Using Algorithm 4, the value is smaller λ/2 and the result
�ts better to the neighboring pixels and also better to the leveling data. Using the conventional
method, a slightly too large movement is estimated, especially for the phase gradient 2. In the
deformation time series, it is noticeable that the pixel also deviates signi�cantly more from the
neighboring pixels (RMS greater λ/2) than with Algorithm 4. In this case, Algorithm 4 delivers
the best results.

The last considered test region is located in Eschweiler, Aachen near the still active open-cast mine
Inden and near the mine region Aachen with the closed mine Emil Mayrisch. The closest leveling
point is 1600m away. This is also shown by the fact that the leveling points show a slight increase of
the Earth's surface, whereas the interferometric data show no movement or rather a slight decrease.
This is due to the fact that the leveling point is more in the basin of the closed mine Email Mayrisch
and the interferometric data 1600m southeast and therefore more in the basin of the still active open-
cast mine Inden. However, it is noticeable that one pixel in the D-InSAR data shows a signi�cantly
di�erent behavior towards the neighboring pixels. All methods, both the conventional and the two
alternative Algorithms 3 and 4, indicate a strong decrease of the pixel. Looking at the estimated
motion model parameters of the associated phase gradients in Table 6.4e, it can be seen that the
estimated deformation velocities are some mm/yr and the corresponding EPC values are 0.5-0.6
on average. If one now considers the estimated deformation velocities of the phase gradients that
belong to the neighboring pixels, it can be seen that these are almost zero and that the associated
EPC values are greater than 0.8. So it can happen that even with Algorithm 4 wrong movements
are still estimated which do not �t to the neighboring pixels. These errors can be further minimized
by weighting the phase gradients of the neighboring pixels, which were obviously estimated more
reliably due to the higher EPC values, with a higher factor. The in�uence of the weights will now
be discussed in the following section.
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(a) test region 7: Gevenich, Linnich

(b) test region 8: Eschweiler, Aachen

Figure 6.20: Deformation time series of �ve pixels lying in each of the highlighted test regions 7 and 8
shown in Fig. 6.16a. The green triangles are the results using the conventional approach, the blue squares
using Algorithm 3 and the red points using Algorithm 4. For comparison the black squares indicate the data
from the closest leveling point.

6.3.3 In�uence of the Weights

On the basis of the simulated data, it could already be shown that the choice of weights has an
in�uence on the phase unwrapping result. For the temporal phase unwrapping constant weights can
be assumed or the weights are set in dependence of the phase gradients, seeWeights 2, cf. (6.17). For
the spatial phase unwrapping it is possible to choose between the conventional weights depending on
the temporal costs, Weights 2 or the EPC based Weights 3, cf. (6.18). Coherence based Weights 1,
cf. (6.16), are an additional option. To investigate only the in�uence of the weights, the motion model
is estimated using Algorithm 4, as it has proven to be the best. As with the simulated data, the
in�uence of spatial weights will be investigated �rst, followed by the in�uence of temporal weights.

6.3.3.1 In�uence of Spatial Weights

To validate the results, the RMS is calculated again for each pixel in space. The results of the
di�erent spatial weights are shown in Table 6.5. To remember, weights that are constant over time
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Table 6.5: RMS error in space with respect to pixels located in a radius of 300 meters, where at least �ve
pixels must be in this radius. The RMS is classi�ed and listed for di�erent spatial weights. The temporal
weights are assumed to be constant in all cases.

weights RMS > λ λ > RMS > λ/2 λ/2 > RMS > λ/4 RMS < λ/4

conventional 0 9 122 141588
Weights 1 0 16 150 141553
Weights 2 0 8 112 141599
Weights 3 0 8 107 141604

are assumed in all cases. It can be seen that Weight 1 clearly has the highest RMS values. With
this choice of weights, the results are not smooth in space and in sum 16 pixels have RMS values
between one and half a wavelength. Since the RMS value refers to a radius of 300m, such jumps are
rather unlikely and indicate phase unwrapping errors. With Weights 2, these jumps can be slightly
minimized to 8 compared to 9 for the conventional weighting. A more signi�cant reduction of the
RMS can be seen in the value range from λ/2 to a λ/4 .The number can be reduced from 122 to 112
by using Weights 2 instead of the conventional ones. However, the smallest RMS values result from
Weights 3. Thus, with help of the RMS values, it can be observed that on the basis of the real data
the use of Weights 3 lead to an improvement with regard to the conventional weighting. This will
be further validated by single pixel analysis.

For the single pixel analysis, especially pixels where di�erences in the resulting deformation time
series result from the choice of spatial weights are considered more closely. First, the 8 previously
considered test regions are investigated. For the pixels in test regions 1, 3, 4, 6 and 7 there are
no signi�cant di�erences, so that a closer examination is omitted here. It should be remarked,
however, that some of these pixels have signi�cant movements, which can also be reproduced using
Weights 2. At �rst, this is in contrary to the previous statement that large movements cannot be
reproduced by means of this weighting. If, however, one considers the temporal phase gradients in
these regions, it becomes apparent that the phase gradients already ful�ll the spatial constraints.
The choice of spatial weights therefore has no in�uence here.

The situation is di�erent for the pixels in test regions 2, 5 and 8. For these test regions, the
deformation time series for a total of �ve pixels are shown again in Fig. 6.21. The green triangles
show the results when using the conventional weights, the light blue squares when using Weights 1,
the orange points when using Weights 2, and the dark blue points when using Weights 3. As
a reference the deformation time series of the nearest leveling point are drawn again as black squares.

Test region 2 shows pixels in Aldenhoven, Düren, near the mine Emil Mayrisch which was closed
in 1992, see Fig. 6.21a. The estimated motion model parameters �t well and clearly show that
the Earth's surface subsides until the end of 2000 as a result of the mining that took place. The
corresponding EPC values are on average 0.9 and the temporal costs are 0, so that the weights
are very high for both Weights 3 and the conventional weights. The coherence values are also
very high resulting in very high Weights 1. Weights 2 are the smallest which can explain why
the resulting deformation time series results in the lowest rate of subsidence. This con�rms the
previously established assumption that Weights 2 cannot reproduce deformations as well. In this
case, however, the lower rate of subsidence is better suited to the leveling data.

In test region 5, displayed in Fig. 6.21b, pixels in Holzweiler, Erkelenz near the still active mine
Garzweiler are shown. The open-cast mining leads to a subsidence of the surrounding area. One



6.3. Case Study 1: ERS-1/-2 D-InSAR Stack of the Lower-Rhine-Embayment 97

(a) test region 2: Aldenhoven, Düren

(b) test region 5: Holzweiler, Erkelenz

(c) test region 8: Eschweiler, Aachen

Figure 6.21: Deformation time series of �ve pixels lying in each of the test regions. The analysis is done
with di�erent spatial weights. For the temporal weights constant values are assumed. The green triangles
are the results using the conventional spatial weights, for the light blue squares Weights 1 are used, for the
orange points Weights 2 and for the dark blue points Weights 3.
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pixel now shows a much stronger lowering when usingWeights 1. The corresponding phase gradients
of this pixel also show a larger motion than the phase gradients of the surrounding pixels. The
corresponding EPC values are on average 0.34 and the temporal costs are over 20. Weights 3 and
the temporal costs are therefore rather low. For the surrounding phase gradients, which show less
movement and where the EPC values are on average 0.9 and the temporal costs are on average zero,
the corresponding weights are therefore very high. Weights 2 also trust the less strong movements,
so that for all three cases, conventional, Weights 3 and Weights 2, there is no di�erence. The
situation regarding Weights 1 is now di�erent. For all phase gradients, also for the one with a larger
movement, the coherence values and thus the weights are high. So all phase gradients, regardless
of large or less large, are equally trusted. This can explain why in this case one pixel has a much
stronger decrease than the surrounding pixels.

Test region 8 shows pixels in Eschweiler, Aachen near the still active mine Inden and the closed
mine Emil Mayrisch in the mine region Aachen, see Fig. 6.21c. The nearest leveling point is 1600m
away towards the closed mine Emil Mayrisch. The leveling point thus shows an elevation of the
Earth's surface, whereas the interferometric data show a decrease. It can be clearly seen that
one pixel does not match its neighboring pixels. The conventional weighting shows the largest
deviation. For the corresponding phase gradients the movement is estimated too high in comparison
to the surrounding phase gradients. The EPC values of the overestimated motion model are on
average 0.5-0.6. For the surrounding phase gradients, which have a less large motion, the EPC
value is greater than 0.8. These phase gradients are therefore more familiar with Weights 3, so
that the remarkable pixel is pulled down. This works even better with Weights 1 and Weights 2.
This is not surprising with Weights 2, since large phase gradients are generally less familiar with
this weighting. In this case, these large phase gradients also show lower coherence values, so that
Weights 1 also work well.

Finally, the pixel is examined which has an RMS value smaller than λ/2 forWeights 2 and 3 and an
RMS value larger than λ/2 for the conventional weighting, see Table 6.5. It is a pixel in Odenkirchen,
Mönchengladbach about 4 km south of the region in Rheydt investigated in test region 8. The related
deformation time series is shown in Fig. 6.22. It can be clearly seen that for the conventional weights
andWeights 1 and 2, there is a conspicuous pixel that decreases too much. The RMS value is 0.028m
for the conventional weights, 0.025m for Weights 1 and 0.016m for Weights 2. Weights 3 can lower
the RMS value of this pixel to 0.003m, so that it optimally matches the neighboring pixels. In this
case, the phase gradients of the conspicuous pixel were not su�ciently down-weighted by Weights

2. There is an improvement compared to the conventional weighting, but Weights 3 �t even better
in this case.

It can be concluded that the spatial weights of course only have an in�uence when the temporally
unwrapped phase gradients in this region do not ful�ll the spatial constraints. With all four tested
spatial weights, conventional, Weights 1, Weights 2 and Weights 3, it is therefore possible to detect
a settlement in the region around the active open-cast mines Garzweiler, Hambach and Inden and
an uplift around the closed mines Sophie-Jacoba and Emil Mayrisch. However, Weights 1 provides
the worst results. The results are not smooth in space and occasionally show more jumps than with
conventional weights. Consequently, the coherence value does not seem to be a good criterion. Al-
though it indicates the correlation between the two signals of the SAR images used for interferogram
generation, it does not indicate the degree of reliability of the temporally unwrapped phase gradi-
ents in which an estimated motion model is already involved. The reliability of the motion model is
re�ected in the EPC value. This value seems to be very suitable as a spatial weight. In contrast to
the conventional weighting, which is based on the temporal costs, spatially smoother results can be
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Figure 6.22: Deformation time series of �ve pixels lying in the test region 9. The analysis is done with
di�erent spatial weights. For the temporal weights constant values are assumed. The green triangles are the
results using the conventional spatial weights, for the light blue squares Weights 1 are used, for the orange
points Weights 2 and for the dark blue points Weights 3.

achieved usingWeights 3.Weights 2 trust small gradients which show almost no movement stronger
than large gradients. In the test region studied here, this weighting is also very well suited. In the
cases where the spatial constraints are not ful�lled, the assumption that no or only a very small
movement occurs is usually correct.

6.3.3.2 In�uence of Temporal Weights

After studying the spatial weights, the in�uence of the temporal weights is analyzed. Therefore,
Weights 2 are used in the temporal phase unwrapping instead of the previously assumed constant
temporal weights. For the spatial weights, a choice is made between the conventional weights,
Weights 2 andWeights 3.Weights 1 are neglected as they have already been found to be less suitable.
In all cases, the motion model is estimated by maximizing the EPC function using Algorithm 4.
The modi�ed observations χ∆t

∆xkl
entering the temporal phase unwrapping, cf. (5.12), are therefore

the same in all cases. Since the EPC values are usually very high, i.e. the motion model �ts the
observations very well, the modi�ed observations already ful�ll the temporal constraints for the
most part. In 77.9% of the cases the phase gradient is already consistent in time, so all temporal
constraints are ful�lled, and in 18.9% of the cases an inconsistency occurs only in less than 5
temporal triangles. Thus, the in�uence of the temporal weights is rather small.

This is also re�ected in the RMS values in Table 6.6. The RMS values for di�erent spatial
weights are shown, whereby in contrast to the values in Table 6.5 Weights 2 are used as temporal

Table 6.6: RMS error in space with respect to pixels located in a radius of 300m, where at least �ve pixels
must be in this radius. The RMS is classi�ed and listed for di�erent spatial weights. For the temporal phase
unwrapping Weights 2 are used.

weights RMS > λ λ > RMS > λ/2 λ/2 > RMS > λ/4 RMS < λ/4

conventional 0 9 126 141584
Weights 2 0 9 107 141603
Weights 3 0 8 107 141604
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weights instead of constant weights. A comparison of the two tables shows that there are no large
di�erences. With the conventional spatial weights, a change in the temporal weights tends to
lead to a moderate deterioration. With constant temporal weights, the RMS value at 122 pixels
is between λ/2 and λ/4 and with Weights 2 as temporal weights the number rises to 126. If
Weights 2 are used both in space and in time, the RMS value at 9 pixels is between λ and λ/2 and
at 107 pixels between λ/2 and λ/4. With constant temporal weights, the numbers are 6 and 112,
respectively. With Weights 3 as spatial weights, there is no di�erence or the di�erences lie within a
value range of less than one and a half centimeter.

Figures 6.23 and 6.24 show the deformation time series of the test regions 2, 5, 8 and 9 analogous
to Figs. 6.21 and 6.22. The only di�erence is that Weights 2 are used as temporal weights instead
of constant ones. The green triangles again show the results for conventional spatial weights, the
orange points for Weights 2 also as spatial weights and the dark blue points for Weights 3 as spatial

(a) test region 2: Holzweiler, Erkelenz

(b) test region 5: Holzweiler, Erkelenz

Figure 6.23: Deformation time series of �ve pixels lying in each of the highlighted test regions 2 and
5. The analysis is done with di�erent spatial weights. The temporal weights are based on Weights 2. The
green triangles are the results using the conventional spatial weights, the orange points are the results using
Weights 2 also as spatial weights and for the dark blue points Weights 3 are used as spatial weights. For
comparison the black squares indicate the data from the closest leveling point.
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weights. Looking at test region 2, see Figs. 6.21a and 6.23a, there is almost no di�erence. Only at the
boundaries of the data gap around 1994 and towards the end of the time series minimal di�erences
can be observed. At test region 5, see Figs. 6.21b and 6.23b, Weights 2 as temporal weights result
in deformation time series of the neighboring pixels all matching very well in themselves and with
the leveling data. Especially the o�sets of the conspicuous pixel occurring at the boundaries of the
time series and directly after the data gap can be �xed. However, the di�erences are very small
and lead to an improvement of the RMS value of this pixel by about 0.8 cm only. In test region 8,
see Figs. 6.21c and 6.24a, Weights 2 as temporal weights also partly lead to an improvement. The
results when using Weights 2 or Weights 3 as spatial weights �t better to the neighboring pixels,
so that the RMS value can be improved by 0.7 cm or 1.0 cm. When conventional spatial weights
are used, no signi�cant di�erence can be detected. Test region 9, see Fig. 6.22 and 6.24b, looks a
little di�erent. Using Weights 2 as temporal weights results in a slight deterioration compared to

(a) test region 8: Eschweiler, Aachen

(b) test region 9: Odenkirchen, Mönchengladbach

Figure 6.24: Deformation time series of �ve pixels lying in each of the highlighted test regions 8 and 9.
The analysis is done with di�erent spatial weights. The temporal weights are based on the Weights 2. The
green triangles are the results of using the conventional spatial weights, the orange points are the results of
usingWeights 2 also as spatial weights and for the dark blue points Weights 3 are used as spatial weights.
For comparison the black squares indicate the data from the closest leveling point.
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the constant temporal weights. The RMS value increases by 0.1 cm for Weights 2 and by 0.3 cm for
Weights 3 as spatial weights. With the conventional spatial weights again no signi�cant di�erence
can be noticed.

6.4 Summary

It can be concluded that all discussed ideas lead to an improvement when applied to simulated
and to real data of the ERS-1/-2 stack. The alternative approach for estimating the motion model
parameters by maximizing the EPC function can prevent some phase unwrapping errors in contrast
to the conventional method by estimating the cost of the temporal LP iteratively. Maximization the
EPC function using Algorithm 4, which is a modi�ed algorithm that combines simulated annealing
and the Nelder-Mead method, has proven to be the most appropriate method. It is very robust
even with a high noise level. The alternative approach also has the advantage that the motion
model can be estimated independently of the temporal phase unwrapping. The temporal phase
unwrapping only needs to be solved once. With the conventional approach the temporal LP has to
be solved iteratively several times depending on the choice and discretization of the search space for
the motion model parameters. Consequently, the alternative method also provides a considerable
advantage in terms of run time.

The analysis of the choice of spatial weights has shown that Weights 2 and 3 have led to an
improvement. Weights 2 are phase and length dependent, so that large phase gradients get a low
weight and with Weights 3 the EPC value is relevant. Phase gradients where the estimated motion
model �ts well with the observations, i.e. where the EPC value is high, become more reliable in
spatial phase unwrapping. They therefore receive a high weight. For conventional weights, the
result of the temporal phase unwrapping is important. If the temporal costs are high, the phase
gradient is less reliable and the weight in the spatial phase unwrapping is low. The alternative
spatial Weights 2 and 3 lead to better, spatially smoother deformation time series compared to
the conventional weights. Furthermore, the alternative weights have the advantage that they are
independent of the temporal phase unwrapping.

The modi�ed observations entering the temporal phase unwrapping already ful�ll the temporal
constraints for the most part. Thus, the temporal weights do not have a very large in�uence when
applied to the real data. With the conventional method the temporal weights are assumed to
be constant. This is also a widely used procedure (Pepe and Lanari, 2006, Fornaro et al., 2011).
Alternatively, Weights 2, which are di�erent in time for a phase gradient, are used as temporal
weights. In sum, however, the di�erent temporal weights only have a very small in�uence on
the �nally estimated deformation time series. In some cases the results are smoother, so that an
improvement can be expected when compared to the constant temporal weights, but in some cases
they are also less smooth. Thus, in the following, constant temporal weights will be assumed, as
this is also the standard case.

In this chapter, the EMCF algorithm could be modi�ed in such a way that the temporal phase
unwrapping only has to be performed once and that the spatial weights are independent from the
solution of the temporal phase unwrapping. This modi�cation is the second main objective of this
thesis, which is thus ful�lled. With the help of these modi�cations it is now possible to combine the
EMCF algorithm, which runs in two steps, into a one-step three dimensional approach.
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7. One-Step Three Dimensional Phase

Unwrapping Approach

So far, the phase unwrapping problem has been seen as a stepwise problem, solving �rst the
temporal and afterwards the spatial phase unwrapping. Therefore, the three dimensional problem
is recast into two smaller dimensional problems. A two-step solution is never optimal in contrast
to a global one-step solution (Imperatore et al., 2015). So the goal of this work is to develop a
three dimensional phase unwrapping approach that solves both the temporal and the spatial phase
unwrapping in one single step. Furthermore, the approach should be easy to integrate into the
SBAS work�ow. The following considerations refer again to a multitemporal D-InSAR stack with
a set M′ of m′ SAR images at times t1, t2, . . . , tm′ resulting in a set N ′ of n′ D-InSAR images
according to the SBAS method which de�ne a set R′ of r′ triangles in the temporal/ perpendicular
baseline plane. For evaluation, the same set M of m stable pixels is used in each interferogram.
On its basis a Delaunay triangulation is generated in the azimuth/ range plane with a set N of n
gradients and a set R of r triangles.

When the one-step three dimensional approach is developed, it becomes apparent that the previ-
ously identi�ed alternative approaches have not only led to an improvement of the two-step EMCF
approach, but that these ideas of improvement are now essential for this global approach. Temporal
and spatial phase unwrapping are no longer performed sequentially, so the results of the temporal
LP cannot be used to estimate the motion model parameters and to calculate weights for the spa-
tial phase unwrapping. Once the problem has been de�ned and further re�ned, it is applied in a
closed loop simulation scenario and later on real data. The aspects of the developed one-step three
dimensional approach have already been published in Esch et al. (2020).

7.1 Problem Formulation

Costantini et al. (2012) have de�ned the phase unwrapping in general as the integration of �nite
multitemporal di�erences. As mentioned in Chapter 5, the observation itself is a so called double
di�erence in time and space resulting in the functional model

φ
tβ
xl − φtαxl − (φ

tβ
xk − φtαxk)− 2πk

∆tαβ
∆xkl

= ψ
∆tαβ
∆xkl

(7.1)

for one phase gradient ψ
∆tαβ
∆xkl

between two pixels xk and xl computed from two SAR images at
times tα and tβ . Inserting relationship (4.1) for each pixel at each time and considering that the

wrapped phase gradient ψ
∆tαβ
∆xkl

is already a wrapped value in a range from −π to π, this results in
the functional model

k
tβ
xl − ktαxl − k

tβ
xk + ktαxk − k

∆tαβ
∆xkl

= −bψ
tβ
xl − ψtαxl − ψ

tβ
xk + ψtαxk

2π
e. (7.2)

So the observations are the wrapped phases at each single SAR images and at each pixel. The
phase unwrapping step follows after several �ltering steps, such as multilooking, which are applied
individually to each interferogram. As mentioned in Chapter 5, it holds that

〈ψtβxl − ψtαxl − ψ
tβ
xk + ψtαxk〉−π,π 6= ψ

∆tαβ
∆xkl

. (7.3)
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Therefore, the phase values per SAR image and per pixel are included as observations and not
the measured wrapped phase gradients. Since the phase unwrapping is applied to the multilooked
images, this approach is di�cult to integrate into the SBAS work�ow.

The idea now is to de�ne a one-step three dimensional phase unwrapping approach on the basis of
the interferometric, multilooked and multitemporally �ltered phase gradients which can easily be
integrated into the already existing SBAS work�ow as implemented in the RSG software. Therefore,
the two steps, temporal and spatial phase unwrapping, are combined in a single step. However, before
the phase unwrapping step is done, it is necessary to estimate a motion model to make the phase
unwrapping step easier (Pepe and Lanari, 2006). Thus, the phase unwrapping refers to the modi�ed
observations χ∆t

∆x collected to one vector, whereby all observations of one spatial phase gradient in
time follow one after the other resulting in

χ∆t
∆x =

[
χ

∆tαβ
∆xkl

χ
∆tβγ
∆xkl

χ
∆tγα
∆xkl

. . . χ
∆tαβ
∆xlm

χ
∆tβγ
∆xlm

χ
∆tγα
∆xlm

. . .
]T
. (7.4)

So, the one-step three dimensional phase unwrapping approach can be de�ned as

Objective function: C3D(x) =
[
p∆t

∆x
T
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T
]
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= −bB
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∆x

2π
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Variable: x ∈ Z≥0

(7.5)

with one single but high dimensional constraint matrix BT
3D ∈ Zr′·n+r·n′×n′·n which contains both,

the temporal and the spatial constraints for all modi�ed observations χ∆t
∆x. Figure 7.1 shows

an example of the structure of the global constraint matrix for a small sample stack consisting
of n′ = 6 interferograms between which a total of r′ = 3 temporal constraints can be generated
and n = 5 spatial phase gradients between which r = 2 spatial constraints must be ful�lled. The
dimension of the constraint matrix BT

3D is therefore 3 · 5 + 2 · 6× 5 · 6 = 27× 30.

For an entire D-InSAR stack, the constraint matrix is thus very quickly expanded to a high
dimension in the order of BT

3D ∈ Z106×106
. But as seen in the example it is sparse with three

entries for each row. The disadvantage of this global three dimensional approach is that the
structure no longer corresponds to a three dimensional network, since the observations represent
double di�erences in time and space. The already mentioned two independent networks in the
azimuth/ range and temporal/ perpendicular baseline plane provide the data basis. Thus, the
above described LP can no longer be solved as a network �ow problem. Due to special properties:
totally unimodular constraint matrix BT

3D, integer weights cT3D and an integer right-hand side
vector b3D, the problem can be solved using a standard LP solver, ideally accounting for the sparsity.

As the conditions refer to the modi�ed observations χ∆t
∆x, the motion model parameters have to

be estimated before the phase unwrapping step. It is of particular importance at this point that
an alternative approach has been examined in Section 6.1. This approach is independent of the
solution of the temporal LP. The motion model parameters are estimated by maximizing the
EPC function using Algorithm 4 which combines simulated annealing and the Nelder-Mead method.
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Example:
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Figure 7.1: Exemplary structure of global constraint matrix for a small D-InSAR stack consisting of 6 inter-
ferograms between which a total of 3 temporal constraints can be generated and 5 spatial gradients between
which 2 spatial constraints must be ful�lled.

Another topic is the choice of the weights. Here, again, it is of particular importance that weights that
are independent of the solution of the temporal LP were examined previously in Section 6.2. It has
been demonstrated thatWeights 2. cf. (6.17), andWeights 3, cf. (6.18), are suitable to use as spatial
weights. In time,Weights 2 are also useful, but when applied to the real data, it has been shown that
they have a minor in�uence. Sometimes smoother results can be achieved, but sometimes also less
smooth results. Thus, constant temporal weights will be assumed here as it is also the standard case.
With the one-step three dimensional approach, one weight p

∆tαβ
∆xkl

is needed for one interferometric

phase gradient or, to be more correct, for one modi�ed interferometric phase gradient χ
∆tαβ
∆xkl

. Thus,
it is no longer possible to distinguish between temporal and spatial weights. The use of Weights 2

in space and constant temporal weights is consequently not possible. Weights 3, however, which are
based on the EPC values, are constant for one phase gradient in time. Therefore, Weights 3 are
used as weighting function for the one-step three dimensional phase unwrapping approach.

Theoretically, the approach is now completely de�ned. However, the problem of temporal inconsis-
tency and the associated rounding problem occurred during the application, so that the problem
must be further re�ned.

7.2 Temporal Inconsistency

A posteriori �ltering steps which are done for each interferogram separately, like the multilook-
ing, lead to temporally inconsistent interferograms. Thus, the temporal constraints for one phase
gradient φ∆t

∆xkl
are not necessarily ful�lled, so that

BT
tempφ

∆t
∆xkl

6= 0 (7.6)

holds. This problem is already addressed in Imperatore et al. (2015). The temporal inconsistency is
compensated by an additional term D∆t

xj , so that the temporal constraint becomes

BT
tempk

∆t
∆xkl

= −
BT

temp(χ∆t
∆xkl

+Aprimal,spaceD
∆t
xj )

2π
(7.7)
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with the modi�ed observations χ∆t
∆xkl

which include the motion model parameters and the arc-

to-node incidence matrix Aprimal,space of the primal graph in the spatial plane. For the case D∆t
xj

unequal to zero it is di�cult to �nd a solution (Imperatore et al., 2015). A rounding operator is
therefore introduced, as with the EMCF algorithm, so that the temporal constraint results in

BT
tempk

∆t
∆xkl

= −b
BT

tempχ
∆t
∆xkl

2π
e︸ ︷︷ ︸

btemp

. (7.8)

A rounding operation always includes errors. It is not clear if rounding down or up represents the
truth. Therefore, the rounding can lead to con�icts in the constraints, if the problem is de�ned in
a one-step three dimensional approach as desired in this work.

When formulating the problem in a one-step three dimensional approach, it must therefore be taken
into account that these contradictions are compensated by so called slack variables. The temporal
constraints for the phase gradient between the pixels xk and xl are thus extended to

BT
tempk

∆t
∆xkl

+ 1[r′·n+r·n′×r′·n]y = −b
BT

tempχ
∆t
∆xkl

2π
e︸ ︷︷ ︸

btemp

. (7.9)

There is one slack variable y for each temporal constraint. With the help of these slack variables the
temporal inconsistency of the data is compensated. However, the inclusion of the slack variables is
not intended to replace the estimation of a phase ambiguity factor. It must be expensive to insert
such slack variables. Therefore, the objective function must also be adapted accordingly. Overall,
the one-step three dimensional LP can be de�ned as

ONE-STEP THREE DIMENSIONAL APPROACH:

Objective function: C3D(x) =
[
p∆t
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(7.10)

with the constraint matrix BT
y ∈ Zr′·n+r·n′×r′·n which consists of an identity matrix for the tem-

poral constraints and has only zero columns for the spatial constraints. Thus, the whole constraint
matrix BT

3D,y expands to a dimension of r′ ·n+r ·n′×n′ ·n+r′ ·n. For the above example the whole
constraint matrix BT

3D,y gets a size of 27× 30 + 3 · 5 = 45, see Fig. 7.2. However, the matrix is very
sparse again, so that there are a maximum number of four non-zero entries per row. The weights of
the slack variables pTy must be chosen very high, so that it is more expensive to insert a slack variable
than to estimate a phase ambiguity factor. The constraint matrix remains totally unimodular, so
that the LP can still be solved with standard LP solvers resulting in integer parameters.
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Example:
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Figure 7.2: Exemplary structure of global constraint matrix with slack variables for a small D-InSAR stack
consisting of 6 interferograms between which a total of 3 temporal conditions can be generated and 5 spatial
gradients between which 2 spatial conditions must be ful�lled.

7.3 Application to Simulated Data

The new one-step three dimensional approach described in (7.10) will now be applied to the simu-
lated D-InSAR stack. In advance, the motion model parameters are estimated by maximizing the
EPC function using Algorithm 4. Weights 3 are used for the phase ambiguity factors p∆t

∆x and the
weights of the slack variables py are set to a very high value that is greater than the maximum
of Weights 3, i.e. higher than 210. This ensures that it is always more expensive to insert a slack
variable than a phase ambiguity factor. The results of the one-step three dimensional approach are
compared with the results of the conventional two-step EMCF algorithm and with the results of the
alternative two-step EMCF algorithm using Algorithm 4 and Weights 3.

Figure 7.3 shows the percentage of correctly unwrapped phase gradients depending on the noise
level added per SAR image. The green bars correspond to the results of the conventional EMCF
algorithm, the dark blue are the results using the alternative EMCF approach and �nally, the
results of the new one-step three dimensional approach are shown as orange bars. Up to a noise level
of 0.6 rad there are no signi�cant di�erences. Almost 100% of the phase gradients are unwrapped
correctly. From a noise level above 0.6 rad, however, it is clear that the one-step three dimensional
approach leads to a further improvement compared to the alternative EMCF approach. The
number of correctly unwrapped phase gradients can be increased from 98.5% to 99.2% with a noise
level of 0.8 rad and from 97.1% to 98.3% with a noise level of 0.9 rad. For the EMCF algorithm
with conventional methods, the proportion of correctly unwrapped phase gradients is 96.0% (noise
level 0.8 rad) and 88.1% (noise level 0.9 rad), which is therefore the least.

The temporal consistency is checked for further investigation. Due to the slack variables, the results
of the one-step three dimensional approach will not be completely consistent in time. As explained,
this is not possible due to the preprocessing steps. However, it can be assumed that they are more
consistent than with the two-step EMCF approach since the spatial phase unwrapping partially
destroys the temporal consistency previously established in the temporal phase unwrapping. To
check the temporal consistency, the total number of temporal inconsistencies for each unwrapped
phase gradient is calculated

TINC∆xkl =
∑
|bB

T
timeφ̃

∆t

∆xkl

2π
e| ∀∆xkl ∈ N (7.11)

and again summarized for all phase gradients resulting in

TINC =
∑

∀∆xkl∈N
TINC∆xkl . (7.12)
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Figure 7.3: Percentage of correctly unwrapped phase gradients depending on the noise level added per
SAR image. The green bars show the result of the conventional EMCF approach, the dark blue bars are the
results using the alternative EMCF algorithm and the orange bars are the results using the one-step three
dimensional approach.

The total sum of temporal inconsistencies is listed for the di�erent noise levels and di�erent phase
unwrapping methods in Table 7.1. For comparison purposes, the temporal inconsistency of the refer-
ence data is given. The noise refers to the noise that is added to each SAR image. Consequently, the
absolute total sum of temporal inconsistencies should remain the same regardless of the noise level.
The table shows that this is the case with the one-step three dimensional approach. Independent
of the noise level, the number is 127. With the alternative EMCF approach, temporal inconsis-
tency can also be decreased compared to the conventional EMCF approach, but the one-step three
dimensional approach clearly shows the most consistent results. Especially with the higher noise
levels, it is noticeable that in the two-step approach the spatial phase unwrapping destroys the
temporal consistency that was established in the previous temporal phase unwrapping to a large
extent. Compared to the reference data, up to a noise level of 0.6 rad all phase unwrapping methods
lead to temporally more consistent results. As a result, not all phase gradients are unwrapped cor-
rectly, only nearly 100%. To solve the phase ambiguities, however, an additional assumption must
be made. In this case the phase unwrapping problem is de�ned in such a way that the absolute
number of inserted phase jumps should be minimal and according to the de�nition of the one-step
three dimensional procedure the results should be temporally as consistent as possible. According to
this de�nition, optimal results have been achieved in all cases. However, especially from a noise level
above 0.6 rad it becomes apparent that the additional assumption of temporal consistency which is
included in the one-step three dimensional approach leads to better results and is therefore valid.

Table 7.1: Number of total temporal inconsistencies for di�erent noise levels. In addition to the reference,
the number is listed for di�erent phase unwrapping methods.

method
total number of temporal inconsistencies

for di�erent noise levels [rad]
0.2 0.4 0.6 0.8 0.9

reference 352 352 352 352 352
conventional EMCF approach 159 155 213 56110 259265
alternative EMCF approach 148 143 289 47714 107168
one-step three dimensional approach 127 127 127 127 127
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7.4 Case Study 2: ERS-1/-2 D-InSAR Stack of the Lower-Rhine-
Embayment

In the following, it will be tested if the additional assumption that the results should be temporally
as consistent as possible leads to better results when applied to ERS-1/-2 real data. The test region
is again the Lower-Rhine-Embayment with the deformation areas due to the still active open-cast
mines and the already closed coal mines. The wrapped, multilooked and multitemporally �ltered
di�erential interferograms taken from RSG are again unwrapped twice using the one-step three
dimensional approach and inserted into RSG again for the �nal SBAS analysis. The results are
compared with the results from the EMCF algorithm, once using the conventional and once using
the alternative approach with Algorithm 4 and Weights 3.

7.4.1 Data Basis

As before, the data consist of m′ = 64 SAR images collected from May 1992 to December 2000 by
ERS-1/-2. The temporal triangulation remains the same as in the study carried out previously in
Section 6.3. A total of n′ = 161 D-InSAR images are generated according to the SBAS method
resulting in r′ = 98 temporal constraints. Since the dimension of the whole condition matrix BT

3D,y

in the one-step three dimensional approach grows to r′ · n + r · n′ × n′ · n + r′ · n, a somewhat
smaller spatial triangulation is built up due to a lack of computing capacity in the current test
system. Therefore, the threshold for the de�nition of a coherent pixel is slightly increased. Instead
of the 80%, the pixels in 95% of the interferograms must have a coherence value greater than 0.7.
For the whole ERS-1/-2 scene this is the case for m = 96 531 pixels de�ning n = 289 489 arcs
and r = 192 959 triangles. Increasing the threshold to select the stable pixels reduces the noise level
of the data accordingly. But as the simulated data has shown, the approach also works with higher
noise, so the thresholds for selecting the pixels can be lowered again without any problems as long
as the system has the computing capacity to solve the problem.

Figure 7.4 shows the mean deformation velocity map of the n stable pixels using the conventional
EMCF approach. Analogous to the Case Study 1 in Section 6.3, it is clearly visible that the Earth's
surface decreases from −6 to −8 cm/yr around the still active open-cast mines Garzweiler and
Hambach. In contrast, the closing of the coal mines Sophie-Jacoba in the mining region Erkelenz
and Emil Mayrisch in the mining region Aachen leads to an elevation of the Earth's surface of
several cm/yr. The same can be seen when using the alternative EMCF approach. The average
di�erence when comparing with Fig. 7.4 is 0.004 cm/yr. For only 0.5% of the pixels a di�erence of
more than 0.1 cm/yr occurs. Therefore, as in the �rst case study, other criteria have to be found to
compare the results.

7.4.2 EMCF vs. One-Step Three Dimensional Approach

The phase unwrapping is now carried out twice again using the new one-step three dimensional
approach. Compared with the alternative EMCF approach, the same motion model parameters and
weights are used. The two results di�er only in the fact that the alternative EMCF approach is
performed in two steps and the new approach in a single step under the assumption that the results
should be as consistent as possible in time, meaning that the temporal constraints should be ful�lled
for the most part. The resulting mean deformation velocity map also looks very similar to the one
shown in Fig. 7.4. As in the study in Section 6.3, it is di�cult to verify the correctness of the results,
as the real movement behavior is unknown. In the following, criteria such as temporal consistency
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Figure 7.4: Mean deformation velocity map of the Lower-Rhine-Embayment based on ERS-1/-2 data from
May 1992 to December 2000 for pixels with a coherence value greater than 0.7 in at least 95% of inter-
ferograms and estimated using the conventional EMCF approach. The highlighted test regions 1 to 6 are
examined in more detail as time series in Figs. 7.6 and 7.7.

and smoothness in space are examined and a comparison with the leveling data already used in
Section 6.3 is made.

7.4.2.1 Temporal Consistency

As �rst criterion, the temporal consistency of the phase gradients is investigated. As reminder,
the phase unwrapping is based on multitemporally �ltered data (Pepe et al., 2015). These
interferograms show increased coherence values compared to the original interferograms and they
are more consistent in time. Thus, the phase unwrapping result should be as consistent as possible.
The total sum of the temporal inconsistency is calculated according to (7.12) both after the �rst
and after the second phase unwrapping step. After the second phase unwrapping, the unwrapped
phase gradients are the observations previously excluded from the motion model, see Fig. 2.9. The
values of the total sum of temporal inconsistencies are listed in Table 7.2 for the results using
the conventional and the alternative EMCF approach and for the results using the one-step three
dimensional approach. The values clearly show that the one-step three dimensional approach leads
to much smaller temporal inconsistencies. The results are therefore more consistent in time. As
with the simulated data, the alternative EMCF approach leads to lower temporal inconsistencies

Table 7.2: Number of total temporal inconsistencies for ERS-1/-2 data. The number is listed for di�erent
phase unwrapping methods after the �rst and the second phase unwrapping step in the SBAS work�ow.

method
total number of temporal inconsistencies after

1st phase unwrapping 2nd phase unwrapping

conventional EMCF approach 16309 2947
alternative EMCF approach 15711 2810
one-step three dimensional approach 10491 938
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compared to the conventional method. However, the two-step EMCF algorithm delivers clearly
temporally more inconsistent results in contrast to the one-step three dimensional algorithm,
since the spatial phase unwrapping, which is carried out after the temporal phase unwrapping
independently for each individual interferogram, destroys the temporal consistency produced before.

7.4.2.2 Smoothness in Space

As in the study in Section 6.3, the smoothness in space is analyzed to verify the accuracy of the
results. Therefore, the RMS of the deformation time series htαxj ∀tα ∈ M′ is calculated for each
pixel xj ∈M in space according to (6.20). All pixels in a radius of 300m are again considered and
the RMS is calculated if at least �ve pixels are within this radius. In this way, the RMS is calculated
for 89.4% of pixels for the results of the conventional and the alternative EMCF approach and for
the results of the one-step three dimensional approach. Figure 7.5a shows the comparison between
the conventional method and the one-step approach, where the di�erence is formed in such a way
that positive di�erences indicate that the RMS value is lower when the one-step approach is used
and the results are therefore smoother in space. The di�erences are mostly all close to zero. The
histogram shows the relative frequencies, which in sum results in one. The bar around zero thus
goes almost to one. However, it is exactly the range of interest, where the di�erences are not equal
to zero. In order to make anything visible in this range, the histogram has been cut o�. The RMS
values di�er also a few centimeters, for example 2.8 cm, which corresponds to half a wavelength and
thus indicates phase unwrapping errors. It can be seen that the larger di�erences are in the positive
range, so that the one-step three dimensional approach leads to a reduction of the RMS value.
Figure 7.5b shows analogously the histogram of the di�erences between the alternative EMCF and
the one-step three dimensional approach. Here again, the histogram is truncated at the top because
the di�erences are mostly zero. Positive di�erences also mean that the one-step approach leads to
lower RMS values than the alternative EMCF approach. However, it can be seen that the di�erences
are very small and less than 1 cm. Consequently, by just comparing the RMS values, it is not possible
to say which approach delivers better and which worse results.

(a) RMS of conventional EMCF approach minus RMS of
one-step three dimensional approach

(b) RMS of alternative EMCF approach minus RMS of
one-step three dimensional approach

Figure 7.5: Di�erence of RMS values of the deformation time series estimated with the conventional and
the alternative EMCF approach and with the one-step three dimensional approach.
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7.4.2.3 Single Pixel Evaluations

For further validation, the time series of individual pixels are analyzed and compared with the
closest leveling point. It is preferred to take a closer look at test regions in which a signi�cant
movement takes place and in which di�erences between the individual methods arise. A total
of six test regions are analyzed, which are highlighted in Fig. 7.4. The deformation time series
of �ve pixels located in this test regions are shown in Figs. 7.6 and 7.7 from May 1992 to
December 2000. The green triangles are the results using the conventional EMCF methods, the
dark blue points are the results using the alternative EMCF approach and the results of the
one-step three dimensional approach are shown as orange points. To evaluate the results, the
closest leveling point, shown as black squares, is added. In order to indicate the trend of the
deformation time series, data from 2006 are represented in addition to the level data from 1993, 1997
and 2001. As in the study in Section 6.3, the nearest leveling point is at most 300m away from
the interferometric data so that it can be assumed that all examined data show similar behaviors.
The di�erent occurring temporal reference points are compensated by transferring the interfero-
metric data to the leveling data with help of a local o�set, calculated according to Esch et al. (2019b).

Test region 1 examines pixels in Mohnheim at the Rhine. It is a region where movement is almost
non-existent, see Fig. 7.6a. Based on the leveling data, a slight elevation of the Earth's surface in
the range of one centimeter can be observed after 2001. Within this test region, however, there
is a pixel at which the RMS value using the conventional EMCF method is 3.84 cm, so greater
than half the wavelength, see Fig. 7.5a. For comparison with the other two methods the RMS
value of this pixel is 0.10 cm in both cases. The reason is that the motion model parameters of
the corresponding phase gradients are estimated too highly when using the conventional method.
With this method the pixel seems to experience a strong subsidence of the Earth's surface. Using
Algorithm 4 more realistic motion model parameters are obtained that match the neighboring
pixels and the leveling data better. There are no di�erences between the alternative EMCF and the
one-step three dimensional approach. Table 7.3a once again examines the temporal inconsistencies.
The total number of temporal inconsistencies is calculated for the phase gradients which include
the conspicuous pixel where the conventional method estimates too much motion. The number
is listed in the table after both the �rst and the second phase unwrapping step. After the �rst
phase unwrapping, it becomes clear that the results of the conventional EMCF algorithm are not
temporally consistent. The total number of temporal inconsistencies is 56. If the alternative EMCF
algorithm or the one-step approach is used, the number can be reduced to 26 or 24. After the
second phase unwrapping, the data is consistent in all cases. However, these are the phase gradients
already reduced by the motion model. The possibly erroneous motion model is then added again
after the phase unwrapping, see Fig. 2.9.

A similar example is shown in test region 2, see Fig. 7.6b, where pixels are shown in Gustorf,
Grevenbroich. Here, again, there is almost no movement. Only on the basis of the leveling data
from 2001 an elevation of the Earth's surface by about one centimeter can be observed. However,
again one pixel shows a strong decrease when using the conventional method, which does not �t
to the surrounding pixels and the leveling data. The RMS value of this pixel is 2.77 cm. Using
the alternative EMCF approach, the RMS can be reduced to 0.34 cm and using the one-step
three dimensional approach even further to 0.11 cm. Looking at the temporal inconsistencies in
Table 7.3b, it can be seen once again that due to the incorrect motion model, the temporal
inconsistencies are actually high with a value of 15 using the conventional EMCF approach.
When using the other two methods, which are based on Algorithm 4 and Weights 3, a temporal
inconsistency occurs only at one phase gradient. After the second phase unwrapping, all phase
gradients are again temporally consistent.
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So far, the observable di�erences between the methods are based on di�erent motion model param-
eters. This demonstrates once again that Algorithm 4 leads to improved results when compared
to the conventional method. However, it is of interest to see how the one-step three dimensional
phase unwrapping di�ers from the alternative EMCF algorithm to validate the performance of the
one-step approach. For this purpose, the following four test regions are considered.

Test region 3 shows pixels in Koslar, Jülich near the still active open-cast mine Inden. The resulting
subsidence of the Earth's surface is visible both in the interferometric and in the leveling data,
see Fig. 7.6c. Especially at the beginning of the D-InSAR time series it becomes apparent that the
results based on the alternative EMCF algorithm, represented as dark blue points, show a signi�cant
di�erence of about 2 cm in contrast to the other two methods. This jump is more of an unnatural
behavior and indicates a phase unwrapping error. This does not occur in the corresponding RMS
values, since all pixels show this behavior and the pixels �t together. However, if one looks at
the temporal inconsistencies of the associated phase gradients in Table 7.3c, it becomes apparent
again that the one-step three dimensional approach provides the most consistent results in time.
The temporal inconsistencies are conspicuously high after the second phase unwrapping step when
using the alternative EMCF approach. The spatial phase unwrapping carried out in the second
step caused these temporal inconsistencies resulting in the unnatural behavior at the beginning of
the deformation time series.

The next test region 4 is in Jülich itself. The open-cast mine Inden, which is still active, causes
a subsidence of the Earth's surface there as well. D-InSAR data and leveling data �t together
well again, see Fig. 7.7a. This time the results of the alternative EMCF algorithm show a jump of
about 2 cm at the end of the time series compared to the other two methods. This is also not visible
in the RMS values, since all surrounding points show this jump. The conventional EMCF and the
one-step approach show nearly the same results, in both cases temporaly consistent in contrast to
the alternative EMCF approach, see Table 7.3d.

Test region 5 shows pixels in Mersch, Jülich, also near the open-cast mine Inden. Both the
interferometric and the leveling data show a subsidence of the Earth's surface, see Fig. 7.7a. As
already shown several times, the results of the one-step three dimensional approach are more
consistent in time. This is also the case in this example, see Table 7.3e. This example is intended to
show that this temporal consistency can also lead to more noisy results. The �gure shows that the
deformation time series of the one-step three dimensional approach initially deviate slightly from
the original movement pattern. This also leads to a slightly higher RMS value, which is 0.68 cm for
this pixel and 0.46m for the other two methods. However, the di�erences are in the millimeter range
and the actual motion pattern can also be reproduced with the one-step three dimensional approach.

The last test region is in Odenkirchen, Mönchengladbach. This region also shows a slight subsidence
of the Earth's surface, see Fig. 7.7c. In this example all problems discussed before occur. Starting
with the conventional EMCF algorithm, it becomes apparent that one pixel has a slightly di�erent
behavior than the surrounding pixels. The RMS value of this pixel is 1.42 cm. The reason can be
found in incorrectly estimated motion model parameters of the corresponding phase gradients. This
also results in a temporal inconsistency after the �rst phase unwrapping, see Table 7.3f. Using the
alternative EMCF algorithm, the RMS value of this conspicuous pixel can be reduced to 0.36 cm. But
also here a temporal inconsistency is inserted by the two-step procedure. The situation is di�erent
with the one-step three dimensional approach. The results are temporally consistent and the RMS
value of the pixel can be further reduced to 0.16 cm.
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(a) test region 1: Monheim at the Rhine, Mettmann

(b) test region 2: Gustorf, Grevenbroich

(c) test region 3: Koslar, Jülich

Figure 7.6: Deformation time series of �ve pixels lying in each of the six highlighted test regions 1, 2 and 3
shown in Fig. 7.4. The green triangles are the results using the conventional EMCF approach, the dark blue
points are the results using the alternative EMCF approach and the orange points using the one-step three
dimensional approach. For comparison the black squares indicate the data from the closest leveling point.
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(a) test region 4: Jülich

(b) test region 5: Mersch, Jülich

(c) test region 6: Odenkirchen, Mönchengladbach

Figure 7.7: Deformation time series of �ve pixels lying in each of the six highlighted test regions 4, 5 and 6
shown in Fig. 7.4. The green triangles are the results using the conventional EMCF approach, the dark blue
points are the results using the alternative EMCF approach and the orange points using the one-step three
dimensional approach. For comparison the black squares indicate the data from the closest leveling point.
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Table 7.3: Number of total temporal inconsistencies of the phase gradients belonging to the conspicuous
pixels in the test region 1 to 6, cf. Figs 7.6a to 7.7c. The number is listed after the �rst and the second
phase unwrapping step in the SBAS work�ow. The phase unwrapping is done with the conventional and the
alternative EMCF approach and with the one-step three dimensional approach.

(a) Monheim at the Rhine

method
total number of temporal inconsistencies after

1st phase unwrapping 2nd phase unwrapping

conventional EMCF approach 56 0
alternative EMCF approach 26 0
one-step three dimensional approach 24 0

(b) Gustorf

method
total number of temporal inconsistencies after

1st phase unwrapping 2nd phase unwrapping

conventional EMCF approach 15 3
alternative EMCF approach 1 0
one-step three dimensional approach 1 0

(c) Koslar

method
total number of temporal inconsistencies after

1st phase unwrapping 2nd phase unwrapping

conventional EMCF approach 2 0
alternative EMCF approach 1 8
one-step three dimensional approach 0 0

(d) Jülich

method
total number of temporal inconsistencies after

1st phase unwrapping 2nd phase unwrapping

conventional EMCF approach 0 0
alternative EMCF approach 2 3
one-step three dimensional approach 0 0

(e) Mersch

method
total number of temporal inconsistencies after

1st phase unwrapping 2nd phase unwrapping

conventional EMCF approach 1 2
alternative EMCF approach 1 2
one-step three dimensional approach 1 1

(f) Odenkirchen

method
total number of temporal inconsistencies after

1st phase unwrapping 2nd phase unwrapping

conventional EMCF approach 1 0
alternative EMCF approach 1 0
one-step three dimensional approach 0 0
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7.5 Summary

It can be concluded that a one-step three dimensional phase unwrapping approach has been
successfully de�ned which can be integrated into the SBAS work�ow on the basis of multilooked
and multitemporally �ltered wrapped phase gradients. When the spatial and temporal constraints
are combined into a single large constraint matrix, it has been shown that there possibly arise
con�icts in the constraints. This is due to the multilooked data. Since the multilooking is performed
separately for each interferogram, the data do not exactly ful�ll the temporal constraints. This
problem can be avoided by inserting slack variables. These slack variables compensate the temporal
inconsistency of the data. Since inserting a slack variable is not intended to replace the estimation
of a phase ambiguity factor, the slack variables must be integrated into the objective function with
a high weight. Therefore, the one-step three dimensional approach is based on the assumption that
the phase gradients should be as consistent as possible in time.

Both on the basis of the simulated data and on the basis of the ERS-1/-2 real data, it has been
shown that this assumption is justi�ed. The resulting deformation time series re�ects the essential
movement patterns, i.e. the subsidence in the areas of the active open-cast mines Hambach, Inden
and Garzweiler and the uplift in the already closed mine regions Aachen and Erkelenz. Compared to
the two-step EMCF algorithm, the results are temporally more consistent and the analysis of single
pixels has shown that the movement pattern partly �ts better to the leveling data. Based on the
�ndings of Chapter 6, it was possible to successfully ful�ll the third and �nal main objective of this
thesis, to formulate a one-step three dimensional algorithm that takes into account the temporal
inconsistencies of the multilooked data.
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8. Conclusion and Outlook

8.1 Conclusion

One of the critical steps during the SBAS analysis is the solution of the integer phase ambiguity
factors which is done in the context of phase unwrapping. Within this thesis a contribution is made
to improve the phase unwrapping step. The current state of the art to multitemporally unwrap
the phases of a D-InSAR stack is the EMCF algorithm. Input variables are double di�erences
in space and time. The inclusion of the temporal information provided by the D-InSAR stack,
signi�cantly improves the phase unwrapping compared to the spatial phase unwrapping which is
based on one single interferogram only. The EMCF algorithm works in two steps: the temporal and
the spatial phase unwrapping. Within the temporal phase unwrapping a spatial phase gradient is
considered in all interferograms and a linear motion model is estimated �rst to calculate modi�ed
observations. These modi�ed observations have less phase ambiguities than the original observations,
which simpli�es the phase unwrapping and is essential for its success. Subsequently, the temporally
unwrapped phase gradients are used to perform the spatial phase unwrapping for each individual
interferogram. Therefore, the three dimensional problem is divided into two problems of smaller
dimension, each de�ned as weighted L1-norm problem and solvable as LP. However, solving in two
steps is not optimal, as the spatial phase unwrapping in the second step destroys the temporal
constraints that are ful�lled for each phase gradient in the temporal phase unwrapping. Therefore,
an approach was developed in this thesis which performs the temporal and spatial phase unwrapping
in one single step. This approach can easily be integrated into the SBAS work�ow. Furthermore,
the approach is able to deal with multilooked and therefore temporally inconsistent data. This is
especially important with noisy data.

The development of the one-step approach required some preliminary work. Since solving the three
dimensional phase unwrapping in one single step involves the solution of a very large LP, it was
necessary to understand in detail how the phase unwrapping problem looks like. The LP has special
properties so that the results are integer values and using a special ILP solver is not necessary.
The problem can be formulated in di�erent ways and due to its special structure it can be solved
by means of general LP solvers as well as by network �ow solvers. This thesis gives a detailed
and consistent overview and discusses di�erent formulations and types of solutions, in this case
related to the spatial phase unwrapping. However, the transition to the temporal phase unwrapping
is straightforward and analogous conclusions can be derived. It was shown that all formulations
lead to the same results. Di�erences only arise if the solution is not unique. However, looking at
the complexity, the formulation referred to in this thesis as PROBLEM 1 and PROBLEM 3 is the
most e�cient. The problem is presented as a constrained weighted L1-norm problem and is solved
once using a general LP solver and once using a network �ow solver. Based on this knowledge, the
temporal as well as the spatial phase unwrapping can be set up and solved e�ciently within the
EMCF algorithm.

To solve the temporal and spatial phase unwrapping in one step, it was necessary to improve the
EMCF algorithm. The estimation of the motion model, which is needed to calculate the modi�ed
and less ambiguous observations, is conventionally done iteratively. For a prede�ned search space
and discretization, the temporal LP is solved several times and the solution that generates the
lowest costs is considered as optimal. In this thesis, an alternative approach to estimate the motion
model parameters was developed, where the EPC function is maximized by a modi�ed approach
combining simulated annealing and the Nelder-Mead method, de�ned as Algorithm 4. The e�ciency
and performance of this approach was demonstrated on simulated data with di�erent noise levels
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from very good to worst case scenarios as well as on real data of the Lower-Rhine-Embayment. The
alternative approach is independent of the solution of the temporal phase unwrapping, so that the
temporal LP has to be solved once in contrast to the conventional iteratively way. Consequently,
besides improved phase unwrapping results, the run time can also be reduced signi�cantly. A second
modi�cation concerns the choice of weights. Conventionally, the spatial weights, required for setting
up the spatial LP in the second step, depend on the costs of the temporal LP. High temporal
costs lead to low spatial weights because the phase gradient is considered unreliable. To establish a
one-step three dimensional approach, the spatial costs must be independent of the solution of the
temporal phase unwrapping. For this purpose, di�erent weighting functions were investigated, both
for the spatial and for the temporal weights, which are conventionally considered to be constant.
It was found that EPC based spatial weights, referred to as Weights 3, are a good alternative.
The temporal weights do not have a very large in�uence, so that constant weights in time are still
assumed. Choosing EPC based spatial weights, it was shown on the basis of the simulated data that
the percentage of correctly unwrapped phase gradients can be further increased. An improvement
can also be seen on the basis of the real data, the results are spatially smoother. In this way,
an alternative EMCF approach was developed in the thesis, which estimates the motion model by
maximizing the EPC function using a modi�ed algorithm (Algorithm 4) and uses EPC based spatial
weights (Weights 3 ).

Based on the preliminary work, a one-step three dimensional approach was de�ned. This approach
can easily be integrated into the SBAS work�ow and works on the basis of multilooked and multitem-
porally �ltered phase gradients. The multilooked data lead to the fact that the temporal constraints
are not exactly ful�lled. To compensate this problem, slack variables for the temporal constraints
were inserted. These slack variables are highly weighted in the objective function to avoid that the
insertion of slack variables replaces the estimation of phase ambiguities. Thus, the phase unwrapping
can be solved multitemporally in one step by solving a single high dimensional weighted L1-norm
problem. The disadvantage in contrast to the EMCF algorithm is that the problem can no longer
be solved as a network �ow problem. However, due to certain properties, the problem can still be
solved with LP solvers, resulting in integer parameters. The new developed one-step approach has
shown its performance on the basis of simulated data, especially in worst case scenarios with high
noise. But also on the basis of real ERS-1/-2 data it was clearly shown that the �nal results of the
RSG software are more consistent if the interferometric phases are unwrapped externally using the
self-developed approach.

8.2 Outlook

In this thesis a conscious choice was made to use the ERS-1/-2 data. Especially with these older
data the phase unwrapping is more complex due to a lower spatial and temporal resolution
compared to newer sensors. So especially with these data phase unwrapping errors can often
be found and there is an increased potential for improvement. Moreover, the older data are of
particular interest with regard to long-term evaluations. Nevertheless, it should be noted that all
the approaches presented and discussed in this thesis can be applied one-to-one to other newer
sensors such as TerraSAR-X or Sentinel-1.

So far, the evaluation of real data has been limited to a smaller data set in which only pixels with
a coherence value greater than or equal to 0.7 in 95% of the interferograms were evaluated. Thus,
the noise level of the data is very low. Although it was clearly shown that the new approach led to
much more consistent results, the deformation time series of the individual pixels compared to the
two-step EMCF algorithm did not di�er signi�cantly. The simulated data showed that the one-step
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approach shows its performance especially at high noise levels. Consequently, the new approach is
well suited to also include less coherent pixels in the evaluation. Thus, spatially more dense results
can be achieved. However, this leads to the fact that the weighted L1-norm problem takes on a very
high dimension. This requires larger computing resources which were not available in the context
of this thesis. The dimension of the problem will also increase rapidly when the presented one-
step three dimensional approach is applied to newer sensors, since TerraSAR-X and Sentinel-1 data
have a higher spatial and temporal resolution. The current literature shows that there are research
projects in this �eld, so that the solution of such complex problems is quite feasible. One possibility
to apply the approach also to higher dimensional systems can be the transition to massively parallel
computers as well as the further investigation and analysis of the special structure of the constraint
matrix with respect to its e�ciency, cf. Breuer et al. (2018). Furthermore, it would be conceivable
to use a region growing based technology, similar to Yang et al. (2013) or Ojha et al. (2015), a
hierarchical algorithm (Carballo and Fieguth, 2002) or a tiling strategy (Chen and Zebker, 2002).

In the course of this work, it could be shown that the stepwise solution is not optimal. However, if one
is forced to use the two-step EMCF algorithm due to a lack of computing capacity, it is advisable,
especially with noisy data, to use the alternative EMCF algorithm developed here. In addition to a
more robust estimation of the motion model, the run time can be reduced signi�cantly. Also, here, the
potential to include more and less coherent pixels in the evaluation becomes apparent, resulting in
spatially more dense results in the future. Even if the motion model parameters cannot be estimated
reliably, this can be recognized by low EPC values, so that these areas are down-weighted with the
new weighting.

Nevertheless, it has to be mentioned that there is no phase unwrapping algorithm that can be used
for all scenarios. The approach presented here estimates the deformation parameters by maximizing
the EPC function. This function includes a linear motion model. This means that the proposed
approach assumes that the phase gradients move linearly with time. If non-linear motion components
are present, the EPC function has to be extended by this non-linear e�ect to estimate realistic
deformation model parameters.
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A. Connection between Primal and Dual

Linear Problems using the Tucker

Diagram

This chapter is intended to give an overview of how to derive the dual LP of a primal LP.
The following primary minimization problem is given in its standard form with three primal
variables x1, x2 and x3 and two constraints

Objective function: c1x1 + c2x2 + c3x3 . . .min

Constraint: B11x1 +B12x2 +B13x3 ≥ b1
B21x1 +B22x2 +B23x3 ≥ b2

Variable: x1, x2, x3 ∈ R≥0.

(A.1)

(A.2)

(A.3)

(A.4)

Every LP can be brought into this standard form. Each equation can be represented by two
inequalities and each ≤ − inequality can be transformed into a ≥ − inequality by multiplication
with minus one. In the same way every maximization task can be transformed into a minimization
task by multiplication with minus one.

To obtain the dual LP of the primal LP given in standard form, the Tucker diagram in Table A.1
is used. The primal problem is read from left to right and the dual problem from top to bottom.

The dual LP is obtained by transposing the coe�cients of the constraints Bij , exchanging the role
of the constant right-hand side vector bi with the role of the coe�cients of the object function cj ,
changing the direction of the inequalities and turning a minimization problem into a maximization
problem. This results in the following corresponding dual maximization problem with two dual
variables y1 and y2 and three constraints

Objective function: y1b1 + y2b2 . . .max

Constraint: B11y1 +B21y2 ≤ c1

B12y1 +B22y2 ≤ c2

B13y1 +B23y2 ≤ c3

Variable: y1, y2 ∈ R≥0.

(A.5)

(A.6)

(A.7)

(A.8)

(A.9)

The dual of the dual LP will again result in the primal LP.

Table A.1: Tucker diagram to show the connection between dual and primal LPs, based on (Dantzig, 1963,
p. 125).

primal
variables x1 ≥ 0 x2 ≥ 0 . . . xn ≥ 0 relation constants
y1 ≥ 0 B11 B12 . . . B1n ≥ b1
y2 ≥ 0 B21 B22 . . . B2n ≥ b2

...
... . . .

...
...

...
yr ≥ 0 Br1 Br2 . . . Brn ≥ br
relation ≤ ≤ . . . ≤ max

dual

constants c1 c2 . . . cn min
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B. Lists

List of Symbols and Terms

SAR Image

φtαxj unwrapped phase at pixel xj in SAR image at time tα
ψtαxj = 〈φtαxj 〉2π measured wrapped phase at pixel xj in SAR image at time tα
ktαxj phase ambiguity factor at pixel xj in SAR image at time tα

with the following relationship

φtαxj = ψtαxj + 2πktαxj (B.1)

Di�erential Interferogram

∆tαβ temporal baseline between the two SAR images at times tα and tβ
∆bαβ spatial baseline between the two orbits of the two SAR images

at times tα and tβ
∆b⊥,αβ orthogonal spatial baseline between the two orbits of the two

SAR images at times tα and tβ
φ

∆tαβ
xj = φ

tβ
xj − φtαxj unwrapped interferometric phase at pixel xj

ψ
∆tαβ
xj = 〈ψtβxj − ψtαxj 〉2π measured wrapped interferometric phase at pixel xj

k
∆tαβ
xj phase ambiguity factor of interferometric phase at pixel xj

with the following relationship

φ
∆tαβ
xj = ψ

∆tαβ
xj + 2πk

∆tαβ
xj (B.2)

∆xkl gradient between the pixels xk and xl

φ
∆tαβ
∆xkl

= φ
∆tαβ
xl − φ∆tαβ

xk unwrapped interferometric phase gradient

ψ
∆tαβ
∆xkl

= 〈ψ∆tαβ
xl − ψ∆tαβ

xk 〉2π measured wrapped interferometric phase gradient

k
∆tαβ
∆xkl

phase ambiguity factor of interferometric phase gradient

with the following relationship

φ
∆tαβ
∆xkl

= ψ
∆tαβ
∆xkl

+ 2πk
∆tαβ
∆xkl

(B.3)



iv List of Symbols and Terms

Graph in the Azimuth/ Range Plane

M set of nodes given by the stable pixels in the interferogram

m number of nodes, equal to the number of stable pixels in the
interferogram

N set of arcs given by the phase gradients in the interferogram

n number of arcs, equal to the number of phase gradients in the
interferogram

R set of triangles given by the constraints in the spatial phase un-
wrapping

r number of triangles, equal to the number of constraints in the
spatial phase unwrapping

Graph in the Temporal/ Orthogonal Spatial Baseline Plane

M′ set of nodes given by the SAR images

m′ number of nodes, equal to the number of SAR images

N ′ set of arcs given by the interferograms

n′ number of arcs, equal to the number of interferograms

R′ set of triangles given by the constraints in the temporal phase
unwrapping

r′ number of triangles, equal to the number of constraints in the
temporal phase unwrapping

Problem Formulations for the Spatial Phase Unwrapping

PROBLEM 1 constraint L1-norm problem formulated as LP and de�ned
in (4.16)

PROBLEM 2 parametric L1-norm problem formulated as LP and de�ned
in (4.23)

PROBLEM 3 constraint L1-norm problem formulated as network �ow problem
and de�ned in (4.24)

PROBLEM 4 parametric L1-norm problem formulated as network �ow problem
and de�ned in (4.26)

Used Methods to Estimate The Motion Model Parameters

Algorithm 1 grid search algorithm to maximize the EPC function, de�ned in
Section 6.1 on p. 69

Algorithm 2 Nelder Mead algorithm to maximize the EPC function, de�ned
in Section 6.1 on p. 71

Algorithm 3 simulated annealing to maximize the EPC function, de�ned in
Section 6.1 on p. 72

Algorithm 4 modi�ed algorithm combining simulated annealing and Nelder
Mead, de�ned in Section 6.1 on p. 78
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Used Weighting Functions to Set Up the Phase Unwrapping Problem

Weights 1 coherence based weights, de�ned in (6.16)

Weights 2 phase and length based weights, de�ned in (6.17)

Weights 3 EPC based weights, de�ned in (6.18)

Weights 4 weights directly depending on the temporal and spatial baseline
between the two SAR images, de�ned in (6.19)
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