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Abstract
Lattice Monte Carlo plays an important role for non-perturbative descriptions of strong
interactions. Despite its success in recent years, some fundamental challenges remain. Two of
them are investigated in this work, namely simulating few-baryon systems from first principles
and the phase problem that plagues Monte Carlo in many cases.
Three nucleon forces are a major source of uncertainty in the equation of state of neutron

stars and the determination of the location of the neutron dripline, for example However,
lattice Quantum Chromodynamics calculations are restricted to relatively small systems by
a factorial increase of Wick contractions between quarks and notoriously poor signal-to-noise
ratios. Multi nucleon s-wave systems have been calculated from Lattice Quantum Chromo-
dynamics in the past. The three-neutron system was not included in those studies, however.
This thesis describes an approach for the measurement of p-wave three-neutron correlation
functions. Baryon blocks are used as a means for a systematic momentum projection onto p-
waves. The measurement program is computer generated in order to handle the large number
of Wick contractions and optimizes the usage of baryon blocks. Correlators of two nucleons
and three neutrons are measured and their energy shifts with respect to single neutrons are
calculated. Unsurprisingly, statistical noise dominates the novel three-neutron correlators.
A different application of lattice Monte Carlo is the simulation of the Hubbard model

of low dimensional lattices. Lattice Monte Carlo, and in particular Hybrid Monte Carlo,
simulations of the Hubbard model are not always ergodic. Some lattice formulations of
the model suffer from severe ergodicity problems and should thus be avoided. Others are
formally not ergodic because of potential barriers in phase space. This does not pose a
problem in practice, however, as those barriers can be crossed by a properly tuned Hybrid
Monte Carlo. A new Monte Carlo updating scheme is presented which allows jumping across
these barriers, thus further enhancing phase space coverage. Numerical tests are performed on
small, representative lattices, showing definitive improvement over non-ergodic simulations.
Finally, the complex phase problem prevents the application of Monte Carlo to doped ma-

terials as these systems exhibit a non-zero chemical potential. A similar phase problem occurs
with non-bipartite lattices like fullerenes. An algorithm for alleviating this phase problem is
presented and implemented. Neural networks are trained on field configurations generated
via holomorphic flow. Path integrals on the manifold defined through these networks have
a reduced phase problem. Compared to previous applications of this method, the training
procedure is simplified to decrease the required computer resources. Hybrid Monte Carlo
is augmented with these networks and used to generate ensembles of field configurations on
the non-bipartite triangle and tetrahedron lattices; the latter exhibits a phase problem so
severe that reliable results cannot be obtained with standard Monte Carlo simulations but
are readily obtainable when neural networks are included. Various correlation functions are
measured on these ensembles and are found to agree with results from exact diagonalization
of the Hamiltonian, providing evidence for the correctness of the new algorithm.
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Chapter

1 Introduction

Lattice stochastic methods are crucial for non-perturbative, ab-initio descriptions of strongly
interacting systems. Perhaps its most famous beneficiary has been the path integral of
Quantum Chromodynamics (QCD), but lattice field theory has been successfully applied to
many systems ranging from the traditional hadronic and nuclear physics [1, 2] to condensed
matter physics and even neuroscience. It has been enabled by an increase in available com-
puting power but more importantly owes its success to the development of new algorithms
like Hybrid Monte Carlo. In spite of recent advancements, a wide range of physical phe-
nomena remain inaccessible even with the expected increase in computer speed. This work
investigates two such frontiers, simulation of few-nucleon systems with maximal isospin and
the complex phase problem that prevents simulations in many fields of physics.

Lattice Quantum Chromodynamics has been successfully employed to calculate hadron
masses [3] and interactions between multiple hadrons [4–7]. Simulations of baryonic systems
remain constrained to a few small cases due to a bad signal-to-noise ratio [8]. While many
studies of two-baryon channels exist, see [6] for an overview, in the three-nucleon sector only
the isospin I = 1/2 s-wave channels have been investigated [7]. Correlation functions of
isospin 3/2 channels, that is three neutrons or three protons, are significantly more difficult
to compute for several reasons. The Pauli principle prohibits such interactions from being
s-waves, thus calling for a formalism that can handle higher momentum projections which
suffer from an increased degradation of signal-to-noise. Additionally, the Wick contractions
for I = 3/2 contain many more terms than for I = 1/2. This means that not only is it
unfeasible to write contraction codes by hand but numerical errors of quark propagators get
amplified by the large number of floating point operations.
Three-nucleon interactions, including the direct interaction between three neutrons, are im-

portant for a variety of phenomena. These include the binding energies of light nuclei [9], the
location of the neutron dripline of heavier elements [10] and the equation of state of dense
nuclear matter that dictates the maximum mass of neutron stars [11–13]. Three-nucleon
forces have been calculated in chiral effective field theory [14, 15] but a direct calculation
from QCD is still required in many cases where empirical data is insufficient or non-existent
to determine the unknown low-energy constants. An example is the three-neutron p-wave
interaction. Chapter 2 discusses the first measurement of three neutron correlation functions
on an ensemble of Lattice QCD gauge fields. Baryon blocks [16, 17] are used to control the
projection onto p-waves and automatic code generation is used to handle the many required
Wick contractions and produce an optimized program.

In addition to difficulties in performing measurements for large systems, many Monte Carlo
simulations face a severe problem that affects the sampling of configurations directly, the so-
called complex phase problem. This problem occurs whenever the action of a path integral
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is complex valued. This happens, for instance, in lattice QCD simulations with finite baryon
density [18,19] and more generally in the presence of a finite chemical potential. A complex
action implies that the Boltzmann weight can not be used for random sampling. This can
in principle be remedied by a procedure called reweighting. Here one samples configurations
with respect to only the real part of the action and accounts for the imaginary part when
taking averages of measurements. The complex phase stemming from the imaginary part
can fluctuate wildly, requiring delicate cancellations in expectation values and thus large
statistics. This prevents Monte Carlo simulations of many interesting systems. Furthermore,
the complex phase is an extensive quantity, that is, the phase problem becomes more difficult
with increasing lattice size. In fact, this phase problem is NP-hard [20] meaning that only
solutions for special cases can be expected. Here, a specific phase problem occurring in the
Hubbard model is investigated.
The Hubbard model [21–23] provides accurate descriptions of quasi low-dimensional mater-

ials [24,25]. It has been used with lattice Monte Carlo to compute the electronic structure on
honeycomb lattices [26–29] which is relevant for the understanding of materials like graphene
and carbon nanotubes. Hybrid Monte Carlo (HMC) is a good algorithm for these simulations
due to its typically mild volume scaling of O(V 5/4) [30]. Its continuous updating scheme is,
however, susceptible to ergodicity problems. Monte Carlo algorithms must be ergodic, that is
visit the neighborhood of every point of non-zero weight in phase space within a finite time,
otherwise it might not converge toward the correct result. Ref. [31] found codimension-1
manifolds of vanishing probability weight that segment the phase space into separate regions
and can not be crossed by an infinitely precise molecular dynamics integrator. This means
that, in principle, HMC is confined to one region and can not sample all important parts of
phase space. Chapter 3 analyzes ergodicity problems in the Hubbard model and classifies
two different types of problems that occur in different lattice formulations of the Hubbard
model. One type of problem stems from a multi-modal probability distribution which makes
efficient sampling impossible unless a workaround like that in Ref. [32] can be found. The
other type is caused by the phase space barriers found in [31] and can be avoided by tuning
the molecular dynamics integrator appropriately. This finding opens the way for further
applications of HMC in carbon nano systems. A firm understanding of ergodicity problems
is useful also for tackling the phase problem as some of its solutions can hamper ergodicity
by making the distribution multi-modal [33].
Chapter 4 finally introduces a method for alleviating the phase problem of the Hubbard

model on non-bipartite lattices. This kind of phase problem is relevant for topologically
closed carbon lattices like fullerenes and nanotubes with caps since such lattices contain
non-bipartite pentagonal faces. It also makes for a good testing ground because this phase
problem is extensive only in the number of frustrated bonds in contrast to the problem
coming from chemical potentials which is extensive in the number of atoms. This potentially
milder problem allows for the comparison of new algorithms with brute-force vanilla HMC
calculations and, on small lattices, exact diagonalization of the Hamiltonian.
Phase fluctuations can be reduced by transforming the contour of integration onto a suit-

able manifold in the complex plane [34]. There exist multiple methods for finding such a
manifold. One is to manually find sign-optimized manifolds [35–38], while another uses holo-
morphic flow to locate so-called Lefschetz thimbles [39–41]. The approach taken here is based
on Ref. [33] and uses neural networks trained to approximate such manifolds found via holo-
morphic flow. The original method is modified and a simpler training procedure is devised.
It is combined with HMC to produce correlation functions on the triangle and tetrahedron
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lattices.
A new software package “Isle” was created for MC simulations in the Hubbard model [42].

It is fully open source and available as a Python package. It has been used for the analysis
of ergodicity and phase problems in this thesis and also by collaborators of the author for
simulations of carbon nanoribbons whose publication is anticipated. It will continue to be
developed and is expected to remain in use for future work.
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Chapter

2 Three neutrons from Lattice QCD

This chapter is based on proceedings for the conference “Lattice2018” [43]
J.-L. Wynen, E. Berkowitz, T. Luu, A. Shindler, and J. Bulava
PoS LATTICE2018 (2018)

Lattice QCD has enabled ab initio simulations of hadronic systems of increasing size in
recent years. It has been successfully applied to simulate two [6, 44–46], three [7, 47] and
higher [48] s-wave nucleon systems. Investigations of the three-nucleon system thus far have
been restricted to systems of isospin 1/2, where the dominant contribution comes from s-
waves. Lifting this restriction requires greatly increased computational power and further
algorithmic development.
This chapter presents the first lattice QCD study of three-nucleon systems of maximal

isospin 3/2, that is three neutrons or equivalently three protons. These systems are necessarily
p-wave in nature due to the Pauli-exclusion principle. The method of baryon blocks [16,17] is
employed to provide a handle on the momentum projection, thus giving access to p-waves. A
code generator is developed to produce high-performance programs to measure three neutron
correlation functions. The generator optimizes its output to reduce the number of baryon
blocks that need to be constructed as that is a major computational cost of the method.
A new ensemble of Clover-Wilson gauge fields on a lattice of size 96 × 483 with mπ ≈

370MeV was generated. Measurements of pion, single nucleon, two nucleon, and three neut-
ron correlators were performed on this ensemble. Pion and single nucleon correlators are
consistent with previous measurements on a similar ensemble. The two nucleon as well as
the novel three neutron correlation functions are plagued by poor signal-to-noise and do not
permit an extraction of binding and/or scattering energies. The statistical noise of the three
neutron results is so large that a sufficient improvement through increased statistics seems
unfeasible. It is concluded that a methodological improvement is needed.
The code generator is flexible enough to handle additional channels containing, for in-

stance, hypernucleons or baryons at the SU(3) point. Those channels are currently under
investigation using programs produced by the code generator presented here.

2.1 Introduction
In recent years, large advances have been made in computing multi-baryon observables using
lattice QCD. Many studies have been published on two nucleon (2N) spectroscopy, an over-
view of which can be found in [6]. Additionally, calculations of s-wave three nucleon (3N)
systems, such as 3H and 3He, have been performed in the past [7]. Three neutron (3n) inter-
actions, however, have not been addressed by lattice QCD to date because their correlators
require non-trivial momentum projections due to the Pauli-exclusion principle. Further, the
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number of Wick contractions are substantially larger than their s-wave 3N counterparts.
An analysis of the full 3N spectrum (s-wave and beyond) is important however. Unknown

3N forces are responsible for the largest uncertainties in calculations of neutron rich isotopes,
such as the determination of the neutron dripline or equation of state of neutron stars.
Experiments are currently not able to measure 3n interaction energies directly as such systems
are very hard to create.
Lattice calculations can perform spectrometry on 3n systems but suffer from their own

problems. Apart form the aforementioned issues of computing 3n correlators, measurements
are expected to suffer from a worse signal-to-noise problem than the smaller 2N systems. In
this work we develop the formalism and computational tools to evaluate 3n correlators on
the lattice.

2.2 Formalism
We express the 3n correlator as a contraction CSS3

3n (p) = 〈OSS3
3n O

SS3

3n 〉. For simplicity, we
restrict the discussion to vanishing total momentum and a single relative momentum p. S
and S3 denote magnitude and third component of the total spin. The interpolating operator
O3n can be composed from the individual neutron operators n as shown for the sink side
operator (primed arguments indicate the sink):

OS S3
3n (x′1, x

′
2, x
′
3) =

(
nα
′
(x′1) Γα

′β′
s s3 n

β′(x′2)
)

Γs s3γ
′

S S3
nγ
′
(x′3) . (2.1)

Here Γs s3 denotes a Clebsch-Gordan coefficient projecting onto the cubic irreducible rep-
resentation1 s, s3, see [49]. Expressed in terms of quark operators, the neutron operators
are

nα
′
(x′) = εa′b′c′d

α′
a′ (x)

(
uβ
′

b′ Γ
β′γ′
1
2

1
2

dγ
′

c′
)
. (2.2)

At most two neutrons can be at the same site due to the Pauli exclusion principle. In order
to be able to access S3 = ±3/2, we even need to place all three neutrons at three distinct
sources. The sinks, too, need to be different from each other. This implies that we can
not simply project to an s-wave as that would put all three neutrons at the same site in
momentum-space.
We therefore need to control all three baryon momenta individually. To this end we employ

the formalism described in [16, 17] which combines quarks into baryon blocks B that have
the quantum numbers of a single baryon at the sink. Here, baryon blocks are defined as

Bα′ αβγ
abc (x′|f1, x1; f2, x2; f3, x3) = εa′b′c′S

α′α
a′a (f1, x

′ ← x1)

×
[
Sβ
′β

b′b (f2, x
′ ← x2)Γβ

′γ′
1
2

1
2

Sγ
′γ
c′c (f3, x

′ ← x3)

]
.

(2.3)

S(f, x′ ← x) denotes a single quark propagator of flavor f from source x to sink x′. B has
only one spin (α′) and one site (x′) label at the sink but is completely ‘open’ at the source.
In the interest of readability, we shorten the notation using superindices I and X defined via
BI(x

′|X) ≡ Bα′ αβγ
abc (x′|f1, x1; f2, x2; f3, x3).

1 For zero total momentum and s ∈ {0, 1/2, 1}, we can use spin and cubic labels interchangeably.
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Expressed in terms of baryon blocks, the correlators take the form

CSS3
3n (n2) = Fn2

( ∑
IJK

X1X2X3

TSS3
IJK(X1, X2, X3) BI(x

′
1|X1)BJ(x′2|X2)BK(x′3|X3)

)
. (2.4)

The tensor T encodes the combination of Γ’s and ε’s from (2.1) and (2.2) and projects onto
total spin S, S3. Note that all three baryon blocks have distinct parameters, mirrored by T .
We note that it is not possible to separate the dependencies on flavors and sites X from spins
and colors I, J,K.
In equation (2.4) n2 denotes a momentum shell on a cubic lattice rather than the continuum

momentum p from before. Setting the center-of-mass momentum to zero and picking a
relative momentum is not sufficient to specify the full momentum projection F for a three
particle system. There is some freedom in choosing F but not every projection has good
overlap with the physical 3n system. A choice that is easy to implement and fast to compute
is

F : (x′1, x
′
2, x
′
3) 7→ (+p,−p, 0), (2.5)

i.e. the di-neutron in eq. (2.1) is projected to zero momentum with its constituents having
back to back momenta and the singled out neutron has zero momentum on its own. The full
calculation2 of the projection onto the cubic n2 shows that some terms vanish with the chosen
projection, thus simplifying the calculation; more specifically, the di-neutron spin in (2.1) is
restricted to s = s3 = 1.

2.3 Implementation / Code Generation
Naively, a correlator of the form (2.4) has Nu!Nd! = 3! 6! = 4320 different combinations of
flavors and sites. In practice, some terms cancel and this number is slightly lower but still
too large to handle by hand. We therefore developed a software suite that generates high
performance C++ code on top of Chroma [50] from expressions of the form given in eqns. (2.1)
and (2.2).
It starts with a FORM [51] script that generates all possible quark contractions from expres-

sions like (2.1). The quark propagators are then combined into baryon blocks and all unique
(not counting spin and color indices) triples of baryon blocks B = B(x′1|X1)B(x′2|X2)B(x′3|X3)
are collected. The remaining factors are gathered into tensors T .
Constructing baryon blocks is computationally expensive but it is not possible to compute

all required blocks and store them because they require too much memory. In the next step,
the order of baryon block triples is thus optimized to reuse blocks as often as. To this end, all
unique triples B are taken as nodes of a graph. Two nodes are connected by an edge iff they
share at leas one baryon block and the edges are labeled by the number of shared blocks. This
makes for a graph as shown in figure 2.1. The task is now to find a Hamiltonian path with
the highest possible weight on its edges. It is a priori not clear whether such a Hamiltonian
path exists or the graph is even connected and indeed for two nucleon calculations, it is
disconnected. For three neutron correlators, there are so many edges however that it is no
2 Unfortunately, as with most calculations of this type, it is too long to present here. See in particular
Section 2.3.
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problem to construct a Hamiltonian path. Optimizing this path is costly however — it is
the traveling salesperson problem. The problem is greatly alleviated by the fact that only
two weights are possible for edges, 1 and 2. We solved the problem by constructing paths
through each weight-2 cluster and connecting those paths arbitrarily with paths through
weight-1 edges. This solution produces an optimal result and is fast to compute even for
graphs with thousands of nodes.

B0

B1

B2

B3

B4

1 2

2
2

1

1

Figure 2.1: Illustration of a graph of baryon blocks. Numbers on edges indicate the number
of blocks shared between nodes.

Finally, some C++ code is generated which follows the optimized path, constructs baryon
blocks, and contracts them into correlators. This is done for all correlation functions of
interest simultaneously as they share many baryon blocks, further reducing the number of
blocks that need to be constructed.

2.4 Ensemble
We only present results for a single ensemble because computing three neutron correlators is
computationally expensive despite the optimizations to the contraction code. We generated
Clover-Wilson fermions in 2+1 flavors with parameters modelled after the 96 × 323 CLS
ensemble H107 presented in [52], but with a larger spatial extent of 96 × 483. The strange
quark has physical mass ms = mphys

s and the lattice spacing is a = 0.085 fm. The pion mass
as measured by RQCD on H107 is mπ = 368MeV which gives mπL = 7.7 on our lattices.
The analysis presented here uses Ncfg = 175 configurations.

2.5 Results

2.5.1 Single Pion and Nucleon
We show results for single pion and nucleon effective masses in Figure 2.2 for s-wave propag-
ators. The effective mass of the pion is shown in symmetric form. The black dashed lines
in those figures are not fitted to the data. In case of the pion, it shows the mass measured
by the RQCD collaboration in [52]. Our data seems to agree with this value but shows large
fluctuations which are likely a sign of poor statistics. The 1.1GeV line in the single nuc-
leon plot has been placed manually to roughly match the data and agrees with the usually
observed mN ≈ mπ + 800GeV [53].
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Figure 2.2: Effective masses of single pion and nucleon s-wave propagators. The black lines
are not fit results but rather indicate where the particle masses should be according to
the measurements performed by [52].

2.5.2 Two Nucleons
The code generator described above can handle smaller systems as well. Correlators for 2
nucleons can be cast into a form similar to (2.4) containing only two Bs. These expressions
are much shorter than for three nucleons and it is feasible to treat all three relevant isospin
channels. Ultimately, this amounts to extending the tensor T with isospin indices. This
formalism has been applied to the 2N system before. Some 2N calculations can be found
in [6, 44–46].
Here, we follow the approach of [46] which places the quark propagators at spatially

separated sources. We used only a single displacement with maximally separated sources
∆sources = (L/2, L/2, L/2).
Some results for s-wave two nucleon systems are shown in Figure 2.3. Results in the

I = I3 = 0, S = 1, S3 = 0 channel are essentially the same as the S = S3 = 1 channel due to
isospin symmetry. The S = S3 = 0 channel should be different however, which is reflected
in the figure. The combinations not shown here (I = S = 1 and I = S = 0) vanish for zero
center-of-mass momentum; we have confirmed this.
Again, the black lines are not fits to the data but have been placed to guide the eye. Within

the statistics, the energy shifts are consistent with zero but do not show clear plateaus.

2.5.3 Three Neutrons
In the 3N systems, we focus on the novel three neutron correlators, i.e. maximal isospin. The
code generator is general enough to handle the other isospin channels as well however. The
other systems have already been discussed in [7] and hence, for simplicity, we do not discuss
them here.
All three quark sources have been placed at different lattice sites to avoid the Pauli prin-
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Figure 2.3: Energy shifts of some s-wave two nucleon systems. The black lines are not fitted
to the data. The I = I3 = 0, S = 1, S3 = 0 channel is similar to the shown S = S3 = 1
and has been omitted for clarity.
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The sinks are transformed into momentum space according to (2.5) which produces relative
p-waves with zero center-of-mass momentum.
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Figure 2.4: Comparison of effective masses of different particles.

Figure 2.4 shows the effective mass of one 3N system in comparison to other correlators
discussed above. It can be seen that the three neutron effective mass roughly exhibits similar
behavior to the two neutron one but with significantly greater noise as expected.
The effective masses for S = S3 = 1/2 and S = S3 = 3/2 are shown in igure 2.5. The

remaining channel, S = 3/2, S3 = 1/2, has been omitted because the data is qualitatively the
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same; as expected. The statistical uncertainties are more than an order of magnitude larger
than for two nucleons. Contrary to the usual strong increase of noise for medium times, they
are approximately constant across the whole range of t. The plots show plateaus over long
times which are consistent with the estimate of 3mN in Figure 2.2. This might be an artifact
of the low statistical quality however.
The energy shifts with respect to mN are shown in Figure 2.6. They exhibit an increase

in statistical errors for larger times due to the single nucleon correlators. For small times,
there are semblances of plateaus consistent with zero.
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Figure 2.5: Effective masses of three nucleon p-wave correlators. The black dashed lines are
not fitted to the data but placed at 3mN as estimated in Figure 2.2.
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Chapter

3 Avoiding Ergodicity Problems in Lat-
tice Discretizations of the HubbardModel

This chapter is based on [54]
J.-L. Wynen, E. Berkowitz, C. Körber, T. A. Lähde, and T. Luu
Phys. Rev. B 100 no. 7 (2019)

Lattice Monte Carlo techniques are not restricted to QCD and other hadron / particle physics
theories but have a wide range of applications in various fields of research. One such example
is the Hubbard model [21–23] which provides accurate descriptions of the electronic structure
of many condensed matter systems [24,25] such as graphene and other carbon nanomaterials.
Hybrid Monte Carlo (HMC) [55, 56], the standard algorithm of the lattice gauge theory
community and used for the previous chapter, is well suited to simulating the Hubbard model
as its favourable scaling allows it to be applied to large lattices. A potential drawback of
HMC is its susceptibility to ergodicity problems due to so-called exceptional configurations,
for which the fermion operator cannot be inverted. Recently, ergodicity problems were found
in some formulations of HMC simulations of the Hubbard model [32].
Implementations of Monte Carlo must be ergodic in order to converge toward the correct

result. For practical purposes, ergodicity means that the neighborhood of every point in
phase space can be visited within a finite Monte Carlo time. Not every algorithm is ergodic
on every distribution. HMC, for example, constructs a Markov chain by continuous updates
of a configuration via Molecular Dynamics (MD) integration of equations of motion. If the
probability density is multi modal and the modes are widely separated, it can be impossible
or at least highly unlikely for MD to move between them. Or, if there are barriers of large or
infinite potential energy — corresponding to zero probability weight — in phase space, MD
is repelled from those barriers and might not be able to cross them. HMC fails to sample all
relevant regions of phase space in either case; it is not ergodic.
In this chapter, the ergodicity problems that were reported for HMC in the Hubbard model

are analyzed and categorized analytically and backed up by numerical tests on small lattices.
Some lattice formulations of the Hubbard model suffer from severe problems due to multi
modality. Other formulations exhibit potential barriers in phase space. Those barriers are,
however, only a problem “in principle”, that is for a very precise MD integrator. In practice,
a coarse integrator can, when tuned properly, cross the barriers by making use of its finite
step size. In addition, a new highly efficient Monte Carlo update is proposed to jump across
those barriers thus further enhancing phase space coverage.
All investigations of this and the following chapter were done with the newly developed

software “Isle”. It is available as open source [42] and continues to be developed and used for
further simulations of the Hubbard model.
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3.1 Introduction
Modern Lattice QCD simulations are performed using the Hybrid Monte Carlo (HMC) al-
gorithm [55, 56]. While the basic structure of the HMC algorithm has remained unchanged
since it was introduced, much effort has been directed toward the development of efficient
iterative solvers, with accelerated convergence [57]. Such highly optimized solvers have been
instrumental in tearing down the so-called computational “Berlin Wall”, which for a long time
prevented simulations with dynamical fermions at the physical pion mass, for systems of a
realistic size [58–62]. An interesting aspect of Lattice QCD is that a large freedom of choice
exists for the formulation of the lattice action, provided that the proper continuum limit is
recovered as the lattice spacing a→ 0. This freedom has been exploited to formulate lattice
actions that conserve more symmetries at finite a, or sacrifice exact symmetries in order to
gain computational performance or scaling with system size V . This is particularly true for
chiral symmetry in Lattice QCD, which is intimately connected to the fermion “doubling
problem” through the Nielsen-Ninomiya theorem [63, 64]. While lattice actions have been
formulated which circumvent the doubling problem, and maintain exact or near-exact chiral
symmetry at non-zero a (such as overlap [65–68] or domain wall [69–71] fermions), they typ-
ically come at a high computational cost compared with lattice actions where exact chiral
symmetry needs to be recovered by extrapolation. For this reason, the development of Lat-
tice QCD has tended to emphasize computational simplicity and efficiency, together with
Symanzik improvement [72, 73] of the lattice action, which accelerates the approach to the
continuum limit by the systematic removal of lattice artifacts.
Remarkably, HMC has rarely been applied to problems in condensed matter physics. In

part, this can be traced back to the higher dimensionality of QCD—lattice QCD researchers
have few options besides relying on the expected ∼ V 5/4 scaling of HMC [30]. In contrast,
Monte Carlo (MC) simulations of Hamiltonian theories with electron-electron interactions,
such as the Hubbard model [21–23], are usually performed using one of the many possible
formulations of Auxiliary Field Quantum Monte Carlo (AFQMC). In the Blankenbecler-
Sugar-Scalapino (BSS) algorithm [74–77], the four-fermion interactions are split by means
of a Hubbard-Stratonovich (HS) or “auxiliary” field φ, which is sometimes taken to be dis-
crete [75], in analogy with lattice models of spin systems. Unlike the case of Lattice QCD,
early attempts at combining BSS with HMC updates [78, 79] were not pursued further,
largely because the configuration space of auxiliary fields becomes increasingly fragmented
into regions with positive and negative fermion determinant at low temperatures. The HMC
algorithm requires a continuous (rather than discrete) auxiliary field, and furthermore M [φ]
should be invertible at every point during the HMC Hamiltonian update, or trajectory, for
a new configuration proposal. At the boundaries between regions of different sign detM [φ]
vanishes, which causes HMC to become trapped in the region of the starting configuration.
As a result, algorithms which combine BSS with HMC updates are in general not ergodic1.
Note that similar ergodicity problems appear for overlap fermions in Lattice QCD, which
has prompted the development of a class of HMC algorithms which can reflect from or re-
fract through boundaries where detM [φ] changes sign [80–82]. However, such algorithms are
rather costly computationally, which suggests that a more amenable approach is to find a
lattice action free from ergodicity problems.

1 We stress that the BSS algorithm with discrete auxiliary fields is ergodic, and we do not consider such
algorithms further in this paper.
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The Hubbard and Hubbard/Coulomb models are key components of the ab initio descrip-
tion of electron-electron interactions in low-dimensional materials [24,25] (e.g. graphene), so
the problem of combining HMC with the Hubbard Hamiltonian has recently been revisited.2

The dimensionality of such systems is between that of QCD and problems of great interest in
applied condensed matter physics and materials science, such as quantum dots and nanorib-
bons [83, 84]. For any 2-d lattice, one therefore expects that the (expected) superior scaling
with V of HMC over BSS would be advantageous in the study of critical phenomena, such
as high Tc superconductivity for the square lattice or the anti-ferromagnetic Mott insulating
(AFMI) phase for the honeycomb lattice (and possibly other types of spin-liquid phases)
which appears at moderate values of the on-site electron-electron coupling U [26, 27, 85].
Recently, new attempts have been made by Beyl et al. in Ref. [32] to circumvent the er-
godicity problem of the BSS+HMC method by making the auxilliary field φ complex-valued.
While this doubles the number of lattice degrees of freedom, it would represent an acceptable
trade-off, if the computational scaling would be dramatically improved. However, it was
found that HMC simulations of the complexified theory failed to deliver the expected ∼ V 5/4

scaling. For the Su-Schrieffer-Heeger (SSH) electron-phonon Hamiltonian [86], which lacks
the ergodicity problem of the Hubbard case, this scaling was realized. The recent studies of
Ref. [87] also found favorable scaling with HMC when using Hasenbusch preconditioning.
From the perspective of the Lattice QCD community, MC simulations of the Hubbard

model have several attractive features. Some of these features are the apparent simplicity
of the Hubbard model in comparison to the QCD Lagrangian, the possibility to identify the
spatial lattice discretization a with the physical lattice spacing, and the potential of applying
the versatile and sophisticated toolbox of numerical methods developed for Lattice QCD to
a problem with many promising applications. The seminal work of Ref. [88] introduced the
Brower-Rebbi-Schaich (BRS) algorithm for the Hubbard model, which is inspired by Lattice
QCD methods. The BRS algorithm has recently been applied not only to graphene [89, 90],
but also to carbon nanotubes [91, 92]. The BSS and BRS algorithms are closely related.
The main differences are the treatment of the hopping matrix h in the fermion operator M
and that BRS uses a purely imaginary auxiliary field. Specifically, BSS uses a “compact”
operator M [φ] ∼ 1 − exp(h) exp(φ) (as in AFQMC) where both the hopping term and
the auxiliary field appear as arguments of exponentials, while BRS uses the “half-compact”
operator M [φ] ∼ 1 − h − exp(iφ) (as in Lattice QCD, where the phase is replaced by the
parallel transporter, or gauge link). Ref. [90] found that “non-compact” formulations with
M [φ] ∼ 1 − h − iφ are numerically unstable due to round-off error. These studies in terms
of BRS found no indication of an ergodicity problem.
Still, the ergodicity of BRS remains controversial. It has been noted [31, 32, 93] that the

ergodicity problem related to the use of HMC with BSS cannot be eliminated simply by
switching to an imaginary auxiliary field, as in BRS. Irrespective of whether the auxiliary
field is purely real or purely imaginary, the BSS fermion determinant detM [φ] factorizes,
becoming proportional to real-valued function which is not positive definite. Hence, the
configuration space of BSS should remain fragmented into regions separated by boundaries
of exceptional configurations, which have vanishing determinant, that HMC cannot cross.
However, Ref. [32] found that using a complex auxiliary field solved the ergodicity problem of
2 We restrict our presentation for simplicity to the Hubbard model, but our conclusions hold for the Hub-
bard/Coulomb model because, as we will see, the ergodicity problems we address here depend only on
the fermion operator, and not on the form of the gaussian part of the action of the auxiliary field, where
fermion-fermion interactions ultimately appear.
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BSS. The argument for factorization of Ref. [31] only applies to the compact version (BSS) of
M [φ], which may explain why no ergodicity problem was found in previous BRS simulations.
Here, we show in detail that BRS avoids the ergodicity problem associated with factorization
of detM [φ], and we also reproduce the ergodicity problems reported in earlier work using
BSS+HMC (with both real-valued and imaginary-valued auxiliary fields). We note that the
compact and half-compact versions ofM [φ] are equivalent, up to terms of higher order in the
Euclidean time step δ. We also discuss the relative merits of each formulation including the
extrapolation of observables to the temporal continuum limit δ → 0. It can be argued that
BRS represents a case where symmetries of the continuum theory are sacrificed on the lattice,
in order to improve computational scaling and gain the applicability of the computational
toolbox of Lattice QCD. Unlike the complexified BSS formulation, we find no indication of
adverse computational scaling with BRS. A thorough analysis of the computational scaling
will be given in an upcoming publication.
This paper is organized as follows. We describe HMC and the Hubbard model in Sec-

tion 3.2, including different choices of basis and discretization, the associated symmetries,
and the properties of the fermion matrix M and its eigenvalues. We study the ergodicity
problem in Setion 3.3, and show its connection to the eigenvalues ofM . We also give explicit
examples for small numbers of lattice sites, which demonstrates how and when ergodicity
issues appear. We explore possible ways to circumvent such issues in Section 3.4. By tak-
ing into account the symmetries of the system, we propose novel ways to effect large jumps
between configurations, thereby crossing regions of low or zero probability. We recapitulate
and conclude in Section 3.5.

3.2 Formalism
We start by giving a cursory description of the HMC algorithm and describing the different
discretizations of the Hubbard model in the literature. Throughout, we assume the system
is at half-filling (with zero chemical potential) and when we discretize the number of time
slices Nt is even.

3.2.1 Hybrid Monte Carlo
The Hybrid Monte Carlo (HMC) algorithm is a Markov chain Monte Carlo (MCMC) method
which can be used to estimate multi-dimensional integrals(

Nd∏
d=1

∫
dφd

)
W [φ]O[φ] ' 1

Nc

Nc∑
i=1

O[φ(i)], φ(i) ∼W, (3.1)

using importance sampling according to W [φ]. Each HMC step generates a new configur-
ation, or integration point φ(i) in the Nd-dimensional space, based on the previous config-
uration φ(i−1) in the Markov chain. The larger the integration probability density W [φ(i)]
for a configuration φ(i), the higher the probability that φ(i) will be generated during the
MC evolution. Once an ensemble consisting of Nc configurations {φ(1), · · · , φ(Nc)} has been
generated, operator expectation values can be estimated stochastically, by performing the
sum over i in (3.1).
HMC is a global algorithm: all Nd field components of a configuration φ are updated

simultaneously. Each field component φd is assigned a canonically conjugate momentum
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component πd, and the resulting (φ, π) system is evolved in a fictitious time by numerical
integration of the Hamiltonian equations of motion. This is done using the Hybrid Molecular
Dynamics (HMD) algorithm, which combines the stochastic Langevin and deterministic Mo-
lecular Dynamics (MD) methods. Specifically, each Langevin update (where the conjugate
momenta are refreshed from a random Gaussian distribution) is interspersed with a number
of MD integration steps, where the field φ follows a trajectory through the field space. The
key advantage of HMC is the treatment of the HMD update as the proposal machine for
the Metropolis algorithm. In principle, energy is conserved during an MD trajectory, but as
numerical integration schemes have finite truncation errors energy conservation is violated.
This violation is incorporated into the acceptance criterion of the Metropolis test—if the en-
ergy were exactly conserved, every proposed configuration would be accepted. Unlike HMD
and similar algorithms, HMC does not require extrapolation of the step size of the MD in-
tegration rule to the continuum. The computational scaling of HMC as a function of system
size V is expected to be ∼ V 5/4 [30,87], superior to the cubic (or nearly cubic) scaling of local
updates in theories of dynamical fermions. For this reason, HMC is the method of choice for
computing ensembles of configurations in high-dimensional theories, such as Lattice QCD.
Viewed as a Markov process, HMC converges to the desired equilibrium probability distri-

bution W [φ] if:

1. The detailed balance condition W [φ]Ω(φ → φ′) = W [φ′]Ω(φ′ → φ) is satisfied, where
W [φ] is the normalized Boltzmann distribution exp(−S[φ])/Z, and S[φ] the Euclidean
action of the theory. Also, Ω(φ → φ′) is the transition probability from configuration
φ to φ′.

2. The Markov chain is ergodic meaning that the equilibrium distribution W [φ] is unique
and independent of the starting configuration of the chain. In other words, given a
configuration φ for which W [φ] 6= 0, every other configuration φ′ for which W [φ′] 6= 0
should be reachable from φ in a finite number of steps (or amount of MC time).

For detailed balance to be satisfied, the MD integration should be performed with an integra-
tion rule which is reversible and symplectic (such as the leapfrog and Omelyan integrators).
Such integrators also ensure that the acceptance rate of HMC only depends weakly on V , as
there is a priori no guarantee that HMC can perform large global updates with significant
decorrelation between successive configurations.
The second criterion is much harder to enforce, especially for multi-dimensional probability

densities. While indicators for ergodicity issues can be monitored during the generation of
configurations (for example one can monitor the force, watch for large changes in the accept-
ance rate, or the freezing of observables), a formal proof that HMC is ergodic for a particular
system is usually not available. In some cases, a physical understanding of ergodicity prob-
lems is possible, such as the difficulty of tunneling between different topological sectors in
Lattice QCD. Note that the ergodicity problems referred to here should not be confused with
the lack of ergodicity in algorithms that effect updates in terms of pure MD trajectories, with
no periodic refreshment of the conjugate momenta or Metropolis accept/reject step.
The violation of energy conservation during the MD trajectory should remain small if an

HMC update should be accepted with high likelihood. The classical MD evolution is driven
by the functional derivative F [φ] = −δS[φ]/δφ, the HMC force term. HMC is susceptible to
barriers or discontinuities in the landscape ofW [φ]. Such barriers can occur whenW [φ0] = 0
and exceptional configurations φ0 can separate the integration domain into disconnected
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regions. As exceptional configurations correspond to singularities in the force term, attempts
to cross the barrier generate a large energy violation, and the HMC update is rejected with
a high probability. The inability of the standard HMC algorithm to cross barriers between
disconnected regions of W [φ] leads to an ergodicity problem. In other words, the HMC
Markov chain becomes locked in a region with boundaries φ0, where W [φ0] = 0. It should
be noted that HMC can cross such boundaries infrequently if the numerical integration of
the Hamiltonian equations of motion is sufficiently coarse. In general too coarse MD updates
cannot maintain a high acceptance rate as V is increased.

As we have already noted, an ergodicity problem appears whenever the fermion determ-
inant detM [φ] becomes proportional to a real-valued function f [φ] which is not positive
definite [31]. While such a problem can appear also for complex-valued φ and detM [φ], it
is usually more severe in theories where φ and detM [φ] are real-valued, such as the overlap
formulation of chiral fermions in Lattice QCD. Another example is the AFQMC treatment
of Ref. [78], which combined the HMC algorithm with the BSS formulation of the Hubbard
model. There, the fermion matrix M [φ] is not guaranteed to satisfy detM [φ] > 0, which
becomes apparent at low T and at strong on-site coupling U , where the energy landscape
fragments into multiple regions of the positive and negative detM [φ]. For overlap fermions,
specialized HMC algorithms have been developed which can tunnel through or reflect from
infinite-force barriers in a reversible manner, maintaining ergodicity and a high acceptance
rate [80–82]. Here, we take a different approach and instead seek an optimal representation
of M [φ], which minimizes or eliminates ergodicity problems altogether.

3.2.2 Choice of basis
The nearest-neighbor tight-binding Hamiltonian H0,

H0 = −κ
∑
〈x,y〉

(
a†x,↑ay,↑ + a†x,↓ay,↓

)
(3.2)

contains a kinetic term only, which describes free electrons of spin ↑ and spin ↓ hopping
between different lattice sites with hopping parameter κ. The bracket 〈x, y〉 denotes pairs of
nearest neighbors. The Hubbard model adds on-site interactions,

H = H0 −
U

2

∑
x

(nx,↑ − nx,↓)2 (3.3)

where number operator nx,s ≡ a†x,sax,s counts electrons of spin s at position x.
We can change basis via a particle-hole transformation on the spin-↓ electrons

b†x,↓ ≡ ax,↓, bx,↓ ≡ a†x,↓ . (3.4)

Up to an overall irrelevant constant, the Hamiltonian under this transformation is

H = −κ
∑
〈x,y〉

(
a†xay − b†xby

)
+
U

2

∑
x

(nx − ñx)2 , (3.5)

where the number operator ñx ≡ b†xbx counts spin-↓ holes at position x. The degrees of
freedom here are electrons of spin ↑ and holes with spin ↓. This lets us drop the spin indices.
Both bases describe the same system and give the same relative spectrum.
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In the case of bipartite lattices (like the honeycomb lattice of graphene and carbon nan-
otubes) it is possible to modify transformation (3.4) to switch signs on one sublattice,

b†x,↓ ≡ Pxax,↓, bx,↓ ≡ Pxa†x,↓ , (3.6)

where Px is +1 if x is on one sublattice and −1 if it is on the other. This keeps H0 invari-
ant under the particle-hole transformation, but still flips the sign of the on-site interaction
compared to (3.3),

H = −κ
∑
〈x,y〉

(
a†xay + b†xby

)
+
U

2

∑
x

(nx − ñx)2; (3.7)

we recognize the first term as simply the tight binding Hamiltonian H0 given in (3.2) with b
in lieu of a↓ and spin labels dropped. We henceforth specialize to bipartite lattices. We say
that this Hamiltonian is written in the particle/hole basis, while (3.3) is in the spin basis.
The only difference between (3.3) and (3.7) is the sign in front of the on-site interaction term.
It is possible to write down a Hamiltonian that includes both types of interactions, para-

meterized via α ∈ [0, 1] as

H = H0 + α
U
2

∑
x

(nx,↑ − nx,↓)2 − (1− α)
U

2

∑
x

(nx,↑ − nx,↓)2 . (3.8)

Ignoring the superficial difference in labelling of spin-↓ electrons or spin-↓ holes, when α = 0
one recovers the Hamiltonian of the spin basis (3.3) while α = 1 yields the Hamiltonian
in the particle/hole basis (3.7) if U = U . For arbitrary α ∈ (0, 1), Hubbard-Stratonovich
transformations will introduce auxiliary fields with both real and imaginary components, as
thoroughly investigated in Ref. [32], which found ergodicity problems for the extreme values
0 and 1.
As our investigations revolve around issues related to ergodicity, in what follows we con-

centrate only on the extreme values α = 0, the spin basis, and α = 1, the particle/hole basis.
Sometimes we use α to label the different bases for brevity.

3.2.3 Discretization
Discretizing the Hubbard model path integral, and the introduction of auxiliary fields φ by
Hubbard-Stratonovich transformation, has been discussed before (see [88–91], for example).
After discretization, the partition function in the spin basis, up to an overall normalization,
can be written

Z↑↓ =

∫ [∏
x,t

dφxt

]
W [φ] (3.9)

=

∫ [∏
x,t

dφxt

]
detM [φ] detM [−φ] exp

(
− 1

2Ũ

∑
x,t

φ2
xt

)
(3.10)

=

∫ [∏
x,t

dφxt

]
exp

(
− 1

2Ũ

∑
x,t

φ2
xt + log detM [φ] + log detM [−φ]

)
, (3.11)
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where W [φ] is the probability weight of a configuration φ and M [φ] is the fermion matrix.
M is also a function of the hopping matrix hx′,x = κ̃δ〈x′,x〉 which corresponds to the nearest-
neighbor connections in the tight-binding Hamiltonian H0 with hopping strength κ̃ = κδ,
with δ = β/Nt the discretization of the inverse temperature into Nt evenly-spaced slices.
The interaction strength is Ũ = Uδ.

The partition function in the particle/hole basis uses imaginary fields in the fermion matrix
which is a consequence of the different sign in front of the on-site interaction term in (3.7)
compared to (3.3). The partition function is otherwise identical to the on in the spin basis

Zph =

∫ [∏
x,t

dφxt

]
exp

(
− 1

2Ũ

∑
x,t

φ2
xt + log detM [iφ] + log detM [−iφ]

)
. (3.12)

A negative sign in front of the interaction requires completely real auxiliary fields, whereas
a positive sign requires completely imaginary fields.
Differences in discretizations manifest themselves in the structure of the fermion matrix

M . In Refs. [27,31,32], for example, matrix elements of the fermion operator have the form

M e[φ]x′t′,xt = δx′,xδt′,t − [eh]x′,xe
φxtBt′δt′,t+1 (exponential discretization) , (3.13)

where space and time directions are combined and x′t′ denote the row and xt the column
index. Bt′ = +1 for 0 < t′ < Nt and B0 = −1 explicitly encodes the anti-periodic boundary
condition in time. In Ref. [90], on the other hand, the matrix elements are

M `[φ]x′t′,xt = δx′,xδt′,t −
(
hx′,x + eφxtδx′,x

)
Bt′δt′,t+1 (linear discretization) , (3.14)

Finally, in Refs. [88, 91,92], the hopping term is moved to the time diagonal3,

Md[φ]x′t′,xt =
(
δx′,x − hx′,x

)
δt′,t− eφxtδx′,xBt′δt′,t+1 (diagonal discretization) . (3.15)

This last discretization is more akin to what is done in lattice gauge theories, where the gauge
links (parallel transporters) reside between discretization slices. The exponential, linear, and
diagonal discretizations in (3.13), (3.14), and (3.15) formally agree up to O(δ2), and thus
have the same continuum δ → 0 (Nt →∞) limit. Observables calculated with these different
discretizations should only be compared after a continuum limit extrapolation. In this work
we will focus on the exponential and diagonal discretizations, only occasionally commenting
on the linear discretization.
It will prove useful to consider the matrix S = M − 1 for the various discretizations with

matrix elements

Se[φ]x′t′,xt = −
[
eh
]
x′,x

eφxtBt′δt′,t+1 (exponential) (3.16)

Sd[φ]x′t′,xt = −hx′,xδt′,t − eφxtδx′,xBt′δt′,t+1 (diagonal) (3.17)

which in the exponential case is entirely off-diagonal. Each eigenvalue of M differs from an
eigenvalue of S by 1.

3 In addition to moving the hopping term to the time diagonal, in [91, 92] a mixed forward and backward
differencing scheme was applied to the underlying sublattices.
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3.2.4 Symmetries, Fermion Determinants, and Fermion Matrix
Eigenvalues

Understanding the symmetries and limits of the physical problem and the discretizations
will prove valuable for later discussion and inspiration for how to alleviate some ergodicity
problems. The impatient reader may prefer to skip this detailed discussion, though we do
rely on observations here throughout the rest of the paper.

It is useful to consider the probability weight of a field configuration φ

W [φ] = detM [φ] detM [−φ] exp

(
− 1

2Ũ

∑
x,t

φ2
xt

)
(3.18)

that appears in the spin-basis partition function (3.11) and its analog in (3.12) where the
arguments of the fermion matrices get an i.

3.2.4.1 Charge Conjugation
The first, most obvious symmetry of the probability weight is the change of the sign of φ.
When one sends φ→ −φ the quadratic piece is invariant and the determinants change roles,
so that

W [φ] = W [−φ]. (3.19)

The two determinants arise from the different spins or species, depending on the basis. Thus,
sending φ → −φ exchanges the spins, or exchanges particles and holes. This symmetry is
broken when away from half filling, or, put another way, with nonzero chemical potential.
Away from half filling one must also negate the chemical potential to achieve equality of W .
This is the analog to charge conjugation symmetry C. Interestingly, for non-bipartite lattices
the sign of the tight binding Hamiltonian differs between the two determinants, and φ→ −φ
fails to be a symmetry, even at half filling.

3.2.4.2 Characteristic Polynomials
To go beyond this observation it will prove useful to have a firm understanding of the fer-
mion matrix, its eigenvalues, and its determinant in the four different cases described in the
previous section. It is simpler to consider the eigenvalues of S = M − 1, given in (3.16) and
(3.17). We restrict our attention to even Nt for simplicity.
We will demonstrate equalities of the characteristic polynomial of S,

P [φ](s) = det(S[φ]− s1). (3.20)

When s is a root of P [φ] it is an eigenvalue of S[φ], and λ = s+ 1 is an eigenvalue of M [φ].
Note that since M = S + 1, we know detM [φ] = P [φ](−1). In the fully general case P also
depends on the chemical potential and on the sign of the adjacency matrix. We suppress
these dependencies for clarity and focus on the bipartite, half-filling case and only comment
when ignoring these assumptions invalidates a conclusion.
First let us consider the exponential case with even Nt. We will use the identity (3.102)

shown in Appendix 3.A, letting

Dx′,x = −sδx′,x [Tt]x′,x = −
[
eh
]
x′,y

Ft[φ]y,x (3.21)
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where

Ft[φ]x′,x =

{
e−φx(t−1)δx′,x α = 0

e−iφx(t−1)δx′,x α = 1
(3.22)

is a diagonal matrix of auxiliary fields on a given timeslice and the t index is understood
modulo Nt.4 Note that F has the property

Ft[φ]−1 = Ft[−φ] (3.23)

generally and

Ft[φ]∗ =

{
Ft[φ] α = 0

Ft[−φ] α = 1
. (3.24)

Then the characteristic polynomial is given by

P e[φ](s) = det(−s1Nx)Nt det

(
1Nx +

1Nx
s
ehFNt−1

1Nx
s
ehFNt−2 · · ·

1Nx
s
ehF0

)
= det

(
sNt1Nx

)
det
(
1Nx + s−NtehFNt−1e

hFNt−2 · · · ehF0

)
= det

(
sNt1Nx + ehFNt−1e

hFNt−2 · · · ehF0

)
(3.25)

which is a polynomial in the variable sNt . So, if s is a root of P e[φ], any other s with the
same Nt

th power is also a root. This establishes that, in the fully-interacting exponential
case, if s is an eigenvalue, so is s exp(2πi/Nt), which can be bootstrapped all the way around
the circle. That is, the eigenvalues come equally spaced around rings in the exponential case,
independent of α.
In the diagonal case we use (3.103), an equivalent determinant identity also shown in

Appendix 3.A but now with

Dx′,x = −sδx′,x − hx′,x [Tt]x′x = −Ft(φ)x′,x. (3.26)

One finds, dropping Nt powers of minus signs,

P d[φ](s) = det(FNt−1 · · ·F0) det
(
1+ F0

−1(s1Nx + h) · · ·FNt−1
−1(s1Nx + h)

)
=

(∏
t

det(Ft)

)
det
(
1+ F0

−1(s1Nx + h) · · ·FNt−1
−1(s1Nx + h)

)
. (3.27)

This is not a polynomial in sNt and we do not expect to find perfect rings — were h = 0 we
would.
In the linearized case (3.14), the diagonal of S is again zero, s can be gathered in the

characteristic polynomial as for P e[φ], and we expect perfect rings. We have verified this
expectation numerically.

4 Note that here we have explicitly included the α-dependent factor of i in F so that we can always just
think of φ as real.
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3.2.4.3 Field Shifts and Periodicity
From (3.22) it is clear that in the α = 1 case, F remains invariant if any field component
changes by 2π, and the determinant is therefore invariant under such a shift. In fact, we can
make a more generic transformation,

φxt → φxt + θt (3.28)

shifting the all the fields on timeslice t by a constant θt. Under that transformation, F
changes by an overall phase

Ft[φ+ θ] = Ft[φ]e−iθt−1 . (3.29)

In the exponential case, the characteristic polynomial of the transformed configuration,

P e[φxt + θt](s) = det
(
sNt1+ ehFNt−1e

−iθNt−2 · · · ehF1e
−iθ0ehF0e

−iθNt−1

)
= det

(
sNt1+ e−i

∑
t θtehFNt−1 · · · ehF0

)
(3.30)

which is equal to P e[φ](s), so long as∑
t

θt ≡ 0 (mod 2π) . (3.31)

The same condition holds for the diagonal discretization, analogously. Of course, these shift
transformations are only symmetries of the fermion determinant; the gaussian part of the
action changes, in general. These shifts leave each Polyakov loop, the time-ordered product
of links around the temporal direction,

Px =
∏
t

eiφxt = eiΦx Φx =
∑
t

φxt (3.32)

invariant.
In the α = 0 case we can make analogous field shifts to each timeslice. However, rather

than finding a periodic requirement on the sum of the shifts, the requirement to get the same
eigenvalues is that the sum of the shifts vanishes,

∑
t θt = 0, as the links in the Polyakov

loop lose their factor of i.
We also see that if we send an even number of F s to minus themselves, the determinant is

invariant. When α = 1 we can flip a single F by shifting all of the fields on a single timeslice
by ±π, making an independent choice for each,

φx → φx + πjx (3.33)

where each jx is an odd integer. In fact, we can think of this transformation as a composition
of individual 2π jumps and the coordinated field shift (3.28), setting θt = π. One choice that
leaves the sum of all the field variables invariant on a bipartite lattice is jx = ±Px, where
Px is +1 on one sublattice and −1 on the other, as in the particle-hole transformation (3.6).
As long as an even number of timeslices get so transformed, the eigenvalues are invariant,
though the gaussian part of the action may change.



24 Avoiding Ergodicity Problems in Lattice Discretizations of the Hubbard Model Chapter 3

3.2.4.4 The Non-Interacting Case
In the non-interacting U = 0 case we can solve the fermion matrix exactly. The gaussian
controlling the auxiliary field φ in equations (3.11) and (3.12) becomes infinitely narrow and
we need only consider φ = 0, so all F s are the identity matrix. In this case we can find the
exact spectrum of the fermion matrix. Independent of whether α is 0 or 1, the eigenvalues
are given by

si,n =

{
eδεi+iωn exponential
−δεi + eiωn diagonal

λi,n = si,n + 1 (3.34)

where the Matsubara frequencies ωn = 2π
Nt

(
n+ 1

2

)
for n in the integers from 0 to Nt− 1 and

εi are the non-interacting eigenvalues of H0/κ.
In the exponential case the eigenvalues ofM come in rings concentric around 1, as discussed

following (3.25), with radii ri = exp δεi. When the hopping is bipartite, the eigenvalues ε
come in additive-inverse pairs and the corresponding radii are multiplicative inverses. That
is, if one ring has a radius r, another has radius 1/r—if s is an eigenvalue of S, so is 1/s∗.
We will show, below, that this remains true in the exponential α = 1 case and that generally,
in the interacting exponential case, if s is an eigenvalue for one species, 1/s is an eigenvalue
for the other, a statement of exact chiral symmetry.
In the diagonal case the eigenvalues of M come in rings, all of radius 1, centered on

1 − δεi. In the continuum limit δ → 0 both discretizations give the same Nx-degenerate
ring of eigenvalues, as expected. In both cases, the eigenvalues are evenly distributed around
their respective rings, at angles given by the Matsubara frequencies; with interactions this
perfect spacing is true for the exponential case, as already shown. Figure 3.1 shows in black
the non-interacting eigenvalues for the four-site honeycomb lattice, which has ε in {±1,±3},
with Nt = 96.
In both discretizations, the eigenvalues in (3.34) come in complex conjugate pairs. However,

this simple picture of perfect rings is broken when φ 6= 0, corresponding to U 6= 0. Moreover,
once interactions are turned on the spectra differ depending on α. Figure 3.1 shows in red
an example fermion matrix spectrum for the same example lattice, using the same field
configuration for each discretization.

3.2.4.5 Reality of the Probability Weight
Starting from (3.25) and using the fact that det(A∗) = det(A)∗, one finds

P [+φ](s) = det
(

(s∗)Nt1+ ehF ∗Nt−1 · · · ehF ∗0
)∗

=

{
P [+φ](s∗)∗ α = 0

P [−φ](s∗)∗ α = 1
(3.35)

where we used the properties of F under complex conjugation in (3.24) and the fact that h is
real. In the α = 0 case, the eigenvalues of a single fermion matrix come in complex-conjugate
pairs or as real singletons, each determinant is independently real, and so the probability
weight is real. In the α = 1 case, the probability weight is guaranteed to be real and positive
because, as (3.35) shows, the particle eigenvalues are the complex conjugates of the hole
eigenvalues. An analogous argument starting from (3.27) shows that (3.35) holds for the
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Figure 3.1: In the four panels we show as lighter red points the spectrum of a fermion
matrix with a particular α and discretization, as indicated, for a four-site honeycomb
lattice with Nt = 96. The darker, black points are the spectrum of the noninteracting
case (φ = 0), which depends only on which discretization is used. We show light gray
rings to guide the eye for the eigenvalue rings as described by (3.34). There are four
rings because there are four spatial sites; each ring has Nt = 96 points. In all four cases
we use the same configuration φ which was randomly sampled from a gaussian with
width

√
Uβ/Nt, where Uβ = 60.

diagonal discretization as well. We will return to the question of positivity in the α = 0 in
Section 3.2.4.11.

In the case of nonzero chemical potential (3.35) is not enough to show the reality of the
probability, as the exchange of determinants also requires flipping the chemical potential and
the right-hand side is not the characteristic polynomial for the other species. Similarly, in
the case of non-bipartite lattices, the sign of h flips for the other species but is unchanged by
this manipulation and we again find an identity between characteristic polynomials, but not
the ones we need to demonstrate reality. Thus, we expect a sign problem at nonzero chemical
potential or on non-bipartite lattices; the difficulty of those sign problems is a question for
future work.
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3.2.4.6 Particle-Hole Symmetry

We can take advantage of the bipartite structure of the adjacency matrix. Let Σ be a diagonal
matrix that is +1 on one sublattice and −1 on the other. Then

Σ2 = 1Nx ΣhΣ = −h ΣFΣ = F. (3.36)

By repeatedly inserting Σ2 we see that

P [+h, φ](s) = P [−h, φ](s) (3.37)

independent of discretization or choice of α. In the general case without applying (3.6) one
species’ characteristic polynomial naturally occurs with a −h; in the bipartite case the sign
of h can be flipped without repercussion for the eigenvalues of the fermion matrix.
When Nt is even we see that the eigenvalues come in additive inverse pairs,

P d[−h, φ](s) =

(∏
t

det(Ft)

)
det
(
1Nx + F0

−1(s1Nx − h) · · ·FNt−1
−1(s1Nx − h)

)
=

(∏
t

det(Ft)

)
× det

(
1Nx + (−1)NtF0

−1(−s1Nx + h) · · ·FNt−1
−1(−s1Nx + h)

)
= P d[+h, φ](−s) (3.38)

so that if s is a root of P d[φ], −s is too. In the exponential case this is already guaranteed
by the fact that the eigenvalues come evenly spaced around rings.

3.2.4.7 Temporal Shifts

By using Sylvester’s determinant identity

det(1+AB) = det(1+BA) (3.39)

we can cyclically permute matrices around the determinant.
In particular, from both (3.25) and (3.27) we see immediately, by shifting both the hopping

and the first F , that

P [φt](s) = P [φt+1](s) (3.40)

where φt+1 is the field configuration φt but shifted by one timeslice (modulo Nt). Since φ is
bosonic, we need not worry about antiperiodic boundary conditions; they are built into the
fermion matrix directly through Bt. This shift can be repeatedly applied and ultimately guar-
antees the time-translation invariance of the probability weight, independent of discretization
scheme and α.
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3.2.4.8 Time Reversal

We also immediately see that φ has a time-reversal symmetry T . Since the determinant is
invariant under transposition, starting from (3.25) one sees

P [φ+t](s) = det
(
sNt1T + F0

T ehT · · ·FNt−1
T ehT

)
= det

(
sNt1+ F0e

h · · ·FNt−1e
h
)

= det
(
sNt1+ ehF0 · · · ehFNt−1

)
= P [φ−t](s) (3.41)

where we used the fact that h is symmetric, F is diagonal, and Sylvester’s identity (3.39).
This shows that the field configuration φ−t, which is time-reversed with respect to φ+t, so
that φ−t on the first timeslice is φ+t on the last and so on, yields the same eigenvalues. An
analogous proof holds for the diagonal case, starting from (3.27). Thus, time reversal T holds
independent of discretization scheme and α.

3.2.4.9 Spatial Symmetries

The spatial lattice may have some rotational, translational, or parity or reflection symmetries.
An operation P of these kinds permutes spatial sites,

x→ Px (3.42)

and is a symmetry if its application commutes with the Hamiltonian (3.8).5 Since every on-
site interaction is of the same strength U it is automatically invariant under any relabeling
of sites; the symmetries of the lattice are those permutations that commute with the tight-
binding Hamiltonian or h, [P, h] = 0. Two configurations related by one of these symmetries
have the same weight in the path integral. They manifestly have the same gaussian factor.
Note that the action of a permutation P on F [φ] is

PF [φx]P−1 = F [φPx] (3.43)

where φPx is configuration where the fields have changed sites according to the permutation.
Since P commutes with h (and also, obviously, eh), we may insert 1Nx = P−1P everywhere,
and find

P [φx](s) = P [φPx](s) (3.44)

independent of discretization scheme and α.

5 Strictly speaking, an operation commuting with the Hamiltonian is not enough to guarantee an invariance
of the discretized action for a particular field configuration. On the honeycomb lattice, for example, some
parity symmetries of the lattice exchange sublattices. In the mixed differencing scheme of Refs. [91, 92]
those sublattices have different differencing operators and the weight is not guaranteed to be invariant under
those parity operations. However, those operations followed by a time reversal and charge conjugation keep
the overall action invariant.
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3.2.4.10 Exact Chiral Symmetry
We can calculate the characteristic polynomial in the exponential case using the other iden-
tity, (3.103), and massage it such that we can identify (3.25),

P e[+h,+φ+t](s) = det
(
ehFNt−1 · · · ehF0

)
× det

(
1Nx + F0

−1e−hs1Nx · · ·FNt−1
−1e−hs1Nx

)
=

(∏
t

det(Ft)

)
det
(
sNt1Nx

)
× det

(
s−Nt1Nx + F0

−1e−h · · ·FNt−1
−1e−h

)
=

(∏
t

det(Ft)

)
det
(
sNt1Nx

)
P e[−h,−φ−t](1/s)

=

(∏
t

det(Ft)

)
det
(
sNt1Nx

)
P e[−h,−φ+t](1/s) (3.45)

where we used the fact that the determinant of eh is unity to simplify the leading factor, and
we applied the time reversal identity for the characteristic polynomial (3.41). This identity
shows that the eigenvalues s for one species are the reciprocal of the eigenvalues for the other,
even without the assumption of a bipartite lattice. Using the “other” determinant identity
for the diagonal case yields no useful identity, because s does not appear alone, but rather
in combination with the tight binding Hamiltonian, and cannot be gathered together and
factored out. In the linearized case of (3.14) we also find no useful identity, as suggested in
Ref. [93].
Since, in the exponential case, the off-diagonal blocks in S are the timeslice-to-timeslice

transfer matrices, (3.45) shows that the transfer matrix for one species has the inverse eigen-
values of the transfer matrix for the other. This is the exact chiral symmetry discussed in
Ref. [93], and only appears in the exponential case. Note that this identity does not rely on
particle-hole symmetry.
Using (3.37) in the bipartite case and (3.35) in the α = 1 case, we arrive at

P e[φ](s) =

(∏
t

det(Ft)

)
det
(
sNt1Nx

)
P e[φ](1/s∗)∗ (α = 1). (3.46)

As long as s 6= 0, if s is a root of P e[φ], so is 1/s∗. This demonstrates that in the exponential
α = 1 case each ring of eigenvalues has a partner ring with a reciprocal radius and the same
angular alignment, as we observed in the non-interacting exponential case. We say that P e[φ]
is proportional to its own conjugate reciprocal polynomial P e[φ]†. The conjugate reciprocal
polynomial p† of a polynomial p is given by

p†(z) = znp(z̄−1) (3.47)

here we use the overbar to indicate complex conjugation to avoid confusion with the asterisk
that sometimes indicates the reciprocal polynomial.
Essential to demonstrating this conjugate reciprocity in the interacting case was (3.35) and

therefore the properties of F (3.24). Although it is true for the noninteracting case and it is
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visually plausible for the interacting exponential α = 0 example in Figure 3.1, the radii are
not, in fact, multiplicative inverses.
Also essential was the particle-hole symmetry that allowed us to flip the sign of h. Without

that symmetry, we find a relation between two characteristic polynomials, but not a relation
that can be used to show this conjugate reciprocity.
Recall that setting s = −1 in a characteristic polynomial gives det(M [φ]). It is now helpful

to return the α dependence to the argument of M rather than implicit in F as in (3.22).
Starting from (3.45), using the particle-hole identity (3.37), and plugging in s = −1 leads to
the identity

detM e[+φ] = e+Φ detM e[−φ]

f [φ] = e−Φ/2 detM e[+φ] = e+Φ/2 detM e[−φ] = f [−φ] (3.48)

where we define Φ =
∑

x,t φx,t, f [φ] = e−Φ/2 detM e[φ] and immediately see that f is even.
When α = 0, f [φ] must be real, because the determinant is real, as shown in (3.35). When
α = 1, we can use (3.35) and find

f [iφ] = e−iΦ/2 detM e[+iφ] = e+iΦ/2 detM e[−iφ] = e+iΦ/2 detM e[+iφ]∗ = f [iφ]∗ (3.49)

so that f is also real when α = 1. Put another way, starting from (3.46) one finds

det(M e[iφ]) = eiΦ det(M e[iφ])∗ (3.50)

Writing, in radial coordinates, det(M [iφ]) = f [iφ]eiθ(φ), one finds

θ(φ) =
Φ

2
+Qπ. (3.51)

where Q is an integer. So

e−iΦ/2 detM [iφ] ∈ R (3.52)

but of either sign, as discussed in (28) of Ref. [31]6. Since f is continuous in φ, changing
Q requires passing through f = 0. This is the origin of formal ergodicity problems, as we
discuss later.
When α = 0 it is not guaranteed that f must take both signs. Indeed, as we later show for

the one-site problem (3.66) and a simple two-site problem (3.80), it may be that the sign of
f [φ] is fixed in this case. That is, at least for some examples f [φ] does not change sign and
there are no formal ergodicity problems, but we stress that this is not necessarily generic.
We will see, one way or the other, that there are also in-practice problems in the exponential
α = 0 case.
In the diagonal discretization there is no analog of (3.45), no natural factorization of the

determinant emerges, and there are no sectors that are separated by a vanishing determinant,
even when α = 1. Thus, the diagonal discretization does not formally suffer from the
ergodicity problems the exponential discretization suffers. In Section 3.3.3 we provide a
simple two-site example where this claim may be directly verified. If one insists on writing
6 Actually, Ref [31] differs by a factor of two in the exponent. For the one-site problem we later give the
explicit form in (3.67), confirming our result. Note that one does get

∏
t detFt = exp(−Φ) in forms like

(3.27) but no demonstration of a partitioning of the configuration space follows.
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detMd[φ] = eΦ/2f [φ], in the α = 0 case of course f will still be real, but only because the
determinant itself is real. We find no restriction forcing f [iφ] to be real in the diagonal case.
We later provide an example of f wandering off-axis in the complex plane in Figure 3.2.

As shown, the partitioning of the field space into sectors is a result of the conjugate
reciprocity of the bipartite, exponential, α = 1 case. It may be that in other cases there are
other as-yet formally undemonstrated partitionings. In Section 3.3.1 we show examples of
the determinant flipping sign by crossing zero for both α = 0 cases.
Let us continue to focus on the α = 1 case and on the properties of f [iφ]. Consider now

what happens when we increase one of the auxiliary field variables by 2π,

φx,t → φx,t + 2πδx,x0δt,t0 (3.53)

where x0 and t0 are the space and time coordinates of the field we are changing. Since F
is 2π-periodic in each field variable individually, the determinants must be equal. Then, we
find,

f [iφx,t]e
iΦ/2 = detM e[iφ]

= detM e[iφ+ 2πiδx,x0δt,t0 ]

= f [iφx,t + 2πiδx,x0δt,t0 ]ei(Φ/2+π) ,

thus

f [iφx,t] = −f [iφx,t + 2πiδx,x0δt,t0 ] (3.54)

so that shifting any field variable by 2π flips the sign of f . Since this flip is independent of
all other field variables, this shows the manifolds of zeroes are codimension 1.

3.2.4.11 Summary
We collect in Table 3.1 constraints on the eigenvalues in the different discretizations and
bases. Independent of discretization or basis we have, on a half-filled bipartite lattice, charge
conjugation symmetry, particle hole symmetry, temporal translation symmetry, time reversal
symmetry, and whatever spatial symmetries the lattice exhibits. In the exponential case we
have exact chiral symmetry and when α = 1 conjugate reciprocity.
Earlier we showed the weight W was real. For a straightforward Monte Carlo method,

W should have an interpretation as a probability measure, and should therefore be positive.
When α = 1, each particle eigenvalue is the complex conjugate of a hole eigenvalue. This
guarantees positivity of the weight W . When α = 0 the complex conjugate guarantee is
not enough. In the exponential case, we can use (3.48) to demonstrate positivity, though
each determinant individually is not guaranteed to be positive—but the chiral symmetry is
enough to guarantee that the two species determinants have the same sign.
Consider the α = 0 diagonal case. If s is real it is its own complex conjugate. If the

corresponding eigenvalue of M , λ = s + 1, is real and negative it need not have another
negative partner in the eigenvalues of either spin species. Thus, positivity is not, in general,
guaranteed in this case. We later give a simple example in (3.80) and find that positivity
can be guaranteed with small enough κ̃2. We observe that positivity can be lost when Nt is
odd and κ̃ is large and have not found an Nt-even example; we conjecture that this is generic
and positivity can always be guaranteed by increasing Nt and approaching the continuum
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exponential diagonal
α = 0 s ↔ se2πi/Nt s ↔ −s

s ↔ s∗ s ↔ s∗

s↑ ↔ 1/s↓
α = 1 s ↔ se2πi/Nt s ↔ −s

sp ↔ s∗h sp ↔ s∗h
sp ↔ 1/sh

Table 3.1: Demonstrated relationships between the eigenvalues s in the half-filled bipartite
case. The eigenvalues of the fermion matrix are these eigenvalues plus one. When no
subscript is attached the relationship is between eigenvalues for the same species. When
α = 0 we attach ↑ and ↓ subscripts to indicate eigenvalues for the different spin species;
for α = 1 we attach p and h for particles and holes. The last two relationships for the
exponential α = 1 case imply conjugate reciprocity and lead to a partitioning of the
configuration space into sectors separated by exceptional configurations.

limit. Since we know of no large-scale computational effort using this combination of basis,
discretization, and odd Nt we leave a precise determination of how large Nt must be to ensure
positivity to future work. We focus on Nt even.

Knowledge of eigenvalues of S can help us discover eigenvectors of M . Solving the eigen-
value equation using a known eigenvalue s, (S−s1)v = 0 yields the eigenvector v of S. Since
S = M − 1, S and M share all their eigenvectors. But S may be much better conditioned
than M and thus much easier to invert. It may also provide a numerical speedup to find
an additional eigenvector for the cost of a single solve if the associated eigenvalue comes
for free. We are investigating the acceleration of the inversion of M using knowledge of the
relationships between eigenvalues in Table 3.1.

3.2.5 Extreme Limits
In the general case it is hard to analytically extract features of the probability weight function.
However, in particular limits additional symmetries emerge and yield additional information
about the weight.
First, when U/κ gets very small, for fixed Uβ, the interaction is effectively turned off

and F gets close to 1Nx . Then the path integral nearly factorizes into Nt copies of the
non-interacting path integral,

lim
U/κ→0

ZNt = (Z1)Nt (3.55)

where the right-hand side is Nt powers of the Nt = 1 problem with the same Ũ . We call this
limit the weak coupling limit.
In the opposite limit—the limit of no hopping, κ→ 0 with fixed Uβ, the partition function

on Nx sites factorizes into Nx copies of the one-site the partition function,

lim
κ→0
ZNx = (Z1)Nx . (3.56)

where now the right-hand side is Nx powers of the one-site problem. We call this limit the
strong coupling limit, U/κ→∞ (with Uβ held fixed implicit).
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In the general case we have the charge conjugation symmetry discussed in Section 3.2.4.1,

φ→ −φ (3.57)

In the two limits we can make independent negations of φ,

φx,t →
{
signtφx,t (weak coupling)

signxφx,t (strong coupling)
. (3.58)

In the general case we have invariance under temporal shifts and time reversal, as discussed
in Sections 3.2.4.7 and 3.2.4.8,

φt → φt+τ φ+t → φ−t (3.59)

In the two limits we again can make a larger set of transformations. In the weak coupling
limit the symmetry is enhanced and we can arbitrarily permute the timeslices,

φt → φT t (weak coupling) (3.60)

where T is a permutation. In the strong coupling limit we can independently perform these
operations on each thread of spatial sites,

φxt → φx(t+τx) φxt → φx(signxt). (strong coupling) (3.61)

In the general case we have the spatial symmetries discussed in Section 3.2.4.9,

φxt → φ(Px)t (P a lattice symmetry) (3.62)

where the same operation P is a symmetry of the lattice and is applied to every timeslice.
In the weak coupling limit we can apply a different spatial transformation on each timeslice
and in the strong coupling limit we can arbitrarily permute the threads of spatial sites,

φxt →
{
φ(Ptx)t (weak coupling, P a lattice symmetry)

φ(Px)t (strong coupling, P any permutation)
. (3.63)

These operations will provide inspiration for proposal machines which give large field trans-
formations that are still accepted often enough, helping overcome ergodicity problems HMC
may encounter. This strategy is discussed in Section 3.4.3.

3.3 Ergodicity Problems
We now turn to the issue of ergodicity, which is required for an accurate, unbiased Markov-
Chain Monte-Carlo (MCMC) algorithm. An ergodicity problem arises when the algorithm
for updating the state of the Markov chain is unable to visit the neighborhood of every field
configuration. In this case we can introduce bias and find inaccurate results. We can fur-
ther delineate between in-principle or formal ergodicity problems and in-practice ergodicity
problems. In a formal ergodicity problem there are regions of configuration space that the
update algorithm cannot find, by any means. An in-practice problem might arise when the
update algorithm could explore the whole space but is unlikely to find important regions of
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configuration space in the finite amount of time you are willing to run your computer. We
emphasize that in this context ergodicity is a property of an algorithm, and not of physics
itself.
As Hybrid Monte Carlo (HMC) is an MCMC algorithm, it relies on the previous state

to propose a new state which is subjected to the Metropolis-Hastings accept/reject step.
This final step is essential for maintaining detailed balance and ultimately corrects (via the
ensemble average) for any numerical errors in the evolution of the state [55]. The proposed
state is obtained by integrating the equations of motion (EoMs) derived from an artificial
Hamiltonian H in a newly-introduced time direction. In the case of the Hubbard model and
α = 0, this artificial Hamiltonian is the Legendre transform of the action (3.11)

H[π, φ] =
1

2

∑
x,t

(
π2
xt +

1

Ũ
φ2
xt

)
− log detM [φ]− log detM [−φ] , (3.64)

where π are newly-introduced momenta conjugate to the field variables φ. For α = 1 given
by (3.12), replace φ → iφ in the fermion matrices. Details of this method can be found in
the pioneering Ref. [55].
Areas where the integrand of the partition function ((3.11) and (3.12)) has zero weight,

for example when detM(φ) = 0, are represented by infinitely tall potential barriers in the
Hamiltonian (3.64) which repel the state during the integration of the EoMs. This, in general,
is a wanted feature, since such locations in configuration space contribute nothing to the
partition function and should thus be avoided. Problems arise, however, when such barriers
separate regions that do contribute to the partition function. If there are manifolds in
configuration space of codimension-1 (NxNt − 1 dimensional, when there is only one degree
of freedom per site) the configuration space is partitioned and HMC trajectories cannot
propagate to these different sectors, thereby violating ergodicity. This is an in-principle
problem.
It may be that there are extended codimension-1 manifolds in configuration space that

terminate on boundaries, in which case it is in principle possible for HMC to find a sequence
of updates that visits states on both sides of the manifold. Whether this is a problem in
practice depends on the model of interest; if these manifolds are very big they might take a
long time to circumnavigate. The manifolds in the cases discussed here are boundary-free.
If there are zero-weight manifolds of higher codimension, the configuration space isn’t

partitioned and HMC can always explore the whole space, though there could still be a
problem in practice.
Reference [31] pointed out that the factorization (3.48) and reality of f [iφ] implies a formal

ergodicity problem for the exponential discretization when α = 1. Since f [iφ] is real and takes
both positive and negative values, by the intermediate value theorem, there must be zeros
separating the two regions, as discussed at the end of Section 3.2.4.10. As first suggested
in Ref. [31], there exist codimension-1 manifolds in φ where the determinant is zero. We
can understand this result by seeing that Q in (3.51) cannot be changed by a continuous
change in f unless f passes through zero. Were the manifolds smaller in dimension, HMC
would find its way around, without having to go through the barriers, though there could
nevertheless have been an issue in practice, as it might take a long time to circumnavigate
the zeros. Formally, an infinitely precise HMC integrator cannot penetrate these barriers and
is therefore not ergodic.
When considering the diagonal discretization in (3.15), the factorization (3.48) does not

naturally emerge. As discussed in Section 3.2.4.10, this factorization was the result of the
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exact chiral symmetry found in the exponential discretization. When considering the spin
basis (α = 0) with these discretizations the determinant is still real, and may (but need
not) still have both negative and positive values and the intermediate zeros may obstruct the
exploration of configuration space by HMC.
For the particle/hole basis using the diagonal discretization in (3.15), the situation is quite

different. The factorization still does not naturally emerge. If one insists on writing it that
way, the function f [iφ] is complex and thus we can avoid the conclusion of the intermediate
value theorem that would force HMC to go through a zero in order to change the sign of
f . The function f [iφ] may still have zeros, but there no longer need be codimension-1 zero
manifolds and thus the space is not partitioned into regions that trap HMC trajectories. We
provide numerical examples of this in the following sections.
We stress that our arguments here do not prove unequivocally that the particle/hole basis

using the diagonal discretization (3.15) does not suffer from any formal ergodicity issues,
only that it does not suffer from those identified in Ref. [32]. However, we are not aware of
any other formal ergodicity issues this discretization may have. As one nears the continuum
limit, since the two discretizations must agree, very tall potential barriers can rise between the
exceptional configurations. This raises the possibility of an in practice problem; how difficult
it is to overcome depends on the exact example and how fine a temporal discretization one
uses. This is later demonstrated for a simple problem in Figures 3.5 and 3.6. When we
propose a general solution to the formal ergodicity problem of the exponential α = 1 case in
Section 3.4.3, such a solution can also resolve the in-practice problem in the diagonal α = 1
case that emerges near the continuum limit.
In the remainder of this section we discuss the dynamics of the eigenvalues and the role

they play in formal ergodicity problems, and then present numerical examples that support
our discussion above, detailing in-principle and in-practice problems. We investigate small
systems where we can perform direct comparisons with exact solutions. Though the systems
are small in dimension, they capture all the relevant aspects of ergodicity (or lack thereof)
that are present in larger simulations, and provide the added benefit that these aspects can
be visualized.
In all our HMC simulations, unless otherwise stated, we always target an acceptance rate
≥ 80% by adjusting the accuracy of our numerical integration of the EoMs. As previously
stated, the error in our integration is corrected by the accept/reject step. A more accurate
integration corresponds to a higher acceptance rate, but the configuration space probed by
each trajectory is diminished. Conversely, a less accurate integrator allows HMC to probe
more configuration space at the expense of a lower acceptance rate. Since these examples are
so small, we produce an ensemble of fields {φ} by thermalizing for a few thousand trajectories
and generating 10,000 to 100,000 HMC trajectories per simulation. We compute correlators
only on every 10th configuration to reduce autocorrelations. Our uncertainties are given by
the standard deviation of bootstrap samples of the particular quantity in question.
The HMC ensembles and correlator data are available online in Ref. [94]. This data was

generated using Isle [95], a new library currently in development for HMC calculations in the
Hubbard model.

3.3.1 Exceptional Configurations And Zero Eigenvalues
An exceptional configuration is one with zero weight in the path integral. The zero weight
implies an infinite potential in the classical EoMs used in HMC, and as a trajectory nears
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an exceptional configuration the force diverges. In the case of the Hubbard model these
zeros arise from a vanishing fermion determinant, which in turn corresponds to a vanishing
eigenvalue of the fermion matrix.
For α = 0, the fact that detM can be positive and negative, and is always real, implies that

manifolds of exceptional configurations partition the configuration space; there is a formal
ergodicity problem. We observe that the frequency with which exceptional configurations
are encountered increases as one approaches the continuum limit Nt → ∞. This can be
understood by considering the non-interacting eigenvalues in (3.34). Two factors drive the
increased frequency. First, δ, which vanishes with increasing Nt, controls how close eigen-
values are to the origin. In the exponential discretization the radii go to 1 with vanishing δ.
In the diagonal discretization the rings’ centers converge on 1 with vanishing δ. The other
issue is that the rings of eigenvalues become increasingly dense with Nt, as the Matsubara
frequencies come closer together. This observation also holds for the interacting case with
typical auxiliary field configurations.
The frequency of exceptional configurations also depends on the spatial lattice. Again

considering the non-interacting limit and assuming the hopping term H0/κ has a vanishing
energy eigenvalue ε = 0. In the exponential case there is at least one ring of eigenvalues with
unit radius which puts the eigenvalues close to the origin; in the diagonal case one of the
rings is centered exactly on 1.
Moreover, as the infinite-volume limit is taken the eigenvalues become more dense. For

regular lattices with n nearest neighbors, the nearest-neighbor hopping Hamiltonian H0/κ
has eigenvalues ε bounded by −n ≤ ε ≤ n. The number of eigenvalues of the non-interacting
Hamiltonian is given by the number of sites; going towards the infinite volume limit means
more and more rings will appear and can get close to the origin. This observation, again, is
borne out of the interacting case with typical auxiliary field configurations. Of course, with a
nonzero field configuration the eigenvalues move and the observations are only qualitatively
true—the eigenvalues are no longer exactly controlled by the noninteracting energies, for
example.
Even when the lattice is large, some geometries may be more favorable than others. The

square lattice with periodic boundary conditions always has a zero eigenvalue; the honeycomb
lattice only has a zero eigenvalue when the lattice dimensions are congruent to 0 (mod 3).
In Figure 3.1 we show the spectra of fermion matrix eigenvalues in the complex plane.

The interacting eigenvalues for the example exponential α = 0 configuration lie on rings
centered on 1 + 0i at angles determined by the Matsubara frequencies. Were this generically
true for all φ, the determinant would always be positive and there would be no in-principle
ergodicity problem. However, the eigenvalues are only constrained to obey the partnerships
in the exponential α = 0 portion of Table 3.1.
Another way to satisfy those relationships emerges when two rings of eigenvalues have

the same radius. Then, as φ changes, the two rings can counter-rotate by the same angle,
still obeying the constraints of Table 3.1. When the two counter-rotated rings of eigenvalues
eventually meet they can then part, moving radially. Since the counter-rotation is always by
the same angle, when the rings part the eigenvalues always lie on the rays determined by the
Matsubara frequencies, or exactly halfway between those frequencies—putting eigenvalues
on the real axis. If one ring crosses r = 1, the determinant changes sign.

We conjecture that once the eigenvalues are off of these rays the only way to maintain all
the symmetry properties of the fermion matrix’s spectrum is to remain locked to the radius
where they first collided, and then once apart the symmetry properties cannot be maintained



36 Avoiding Ergodicity Problems in Lattice Discretizations of the Hubbard Model Chapter 3

unless the eigenvalues are locked to the rays. We have not seen examples where more than
two rings all have the same radius and perform an even more complicated dance, though
such a dance may be possible.

Figure 3.2: Eigenvalues λ and f as in (3.48) for φ = τφ−, where detM [φ−] < 0 in all cases.
The fictional time τ runs from 0 (purple), so that φ is the non-interacting case and the
determinant is positive, to 1 (yellow) so that the determinant is negative; intermediate
values of τ are shown in the color bar on the right. The eigenvalue trajectories are
described in the text. The eigenvalue locations were computed on an Nt = 20 4-site
honeycomb lattice with κβ = 4. See the supplementary material [96] for animations of
these eigenvalue dances.

To illustrate the above statements, we track eigenvalues of M from a configuration with
positive determinant to a configuration with negative determinant in Figure 3.2. Animations
of the processes depicted in the figure are available in the supplementary material [96]. In
the animation of the α = 0 exponential case, one can see the inner ring crosses r = 1 between
τ = 0.8430 and τ = 0.8431 and the determinant flips sign.
We generated a single configuration φ− with a real, negative determinant for all four bases

and discretization choices. We show the spectrum ofM [τφ−] where the fictitious time τ runs
from 0 (purple) to 1 (yellow), so that the spectrum goes from the noninteracting spectrum,
which has a positive determinant, to the spectrum of φ− with negative determinant. The
two leftmost panels shows the eigenvalue trajectories for the exponential α = 0 case, and
f , related to the determinant by (3.48). While it looks like the eigenvalues meet and rotate
around the point 1 at a radius r = 1, this is only approximately true.
The other cases are similar to the exponential α = 0 case, though the constraints on

the eigenvalues are different. In the exponential α = 1 case, the eigenvalues enjoy conjugate
reciprocity. If one eigenvalue crosses the origin, another eigenvalue must cross in the opposite
direction, preserving the sign of the determinant. When instead two rings meet at r = 1, the
eigenvalues are their own conjugate reciprocals. Then, the rings can rotate oppositely, though
the angles they rotate by need not be equal as there is no complex-conjugation constraint as
in the α = 0 case. The determinant changes sign while the two rings rotate. When the two
rings again meet, they can part radially, preserving the conjugate reciprocity constraint.
Eigenvalues in the α = 0 diagonal case are no longer locked to the rays, because the
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eigenvalues do not come in perfect rings. However, the complex-conjugate pairing still means
a real eigenvalue must cross the origin to flip the sign of the determinant.
In the α = 1 diagonal case the eigenvalues need not meet at all to traverse from a real

and positive determinant to a real and negative determinant. We show the movement of
eigenvalues and f (defined by (3.48) even for the diagonal case where such a factorization
does not naturally emerge) for each case in Figure 3.2.

3.3.2 The One-site Problem
Strictly speaking, the one-site problem is not bipartite. However, since there is no hopping
in this case, the tight-binding Hamiltonian H0 can be ignored (κ = 0) and the exponential,
linear, and diagonal discretizations (3.13), (3.14), and (3.15) are all equivalent

M [φ]x′t′,xt = δx′,xδt′,t − eφxtδt′,t+1 . (3.65)

The determinant of the fermion matrix in this case can be expressed in closed form,

detM [φ] = 2 cosh

(
Φ

2

)
eΦ/2 (3.66)

detM [iφ] = 2 cos

(
Φ

2

)
eiΦ/2 , (3.67)

where Φ =
∑Nt

t φt as in (3.32). We see that

f [φ] = 2 cosh(Φ/2) f [iφ] = 2 cos(Φ/2), (3.68)

that f is even, and that f [φ] does not go through zero, while f [iφ] does. Thus we expect
that the particle/hole basis has infinite barriers in the artificial Hamiltonian, and formally
has ergodicity issues, while the spin basis has no formal ergodicity issue.
However, as we shall show shortly, calculations in the spin basis exhibit a bimodal distri-

bution that becomes increasingly separated for large Uβ. Though calculations in this basis
do not formally suffer from ergodicity issues as detM [φ] never vanishes for any φ, in practice
the separation of the modes for large Uβ essentially separates two regions that are extremely
unlikely to be connected via HMC, regardless of the accuracy of the integration of the EoMs.
This presents an in practice ergodicity issue.
Using (3.66) with (3.11), one finds that the weight of a field configuration φ is given, up

to an overall normalization, by

W [φ] = detM [φ] detM [−φ]e−
1

2Ũ

∑
t φ

2
t (3.69)

= 4 cosh2

(
Φ

2

)
e−

1
2Ũ

∑
t φ

2
t (3.70)

= 4 cosh2

(
Φ

2

)
e
− 1

2Uβ
Φ2

exp

(
− 1

4Uβ

∑
t1,t2

(φt1 − φt2)2

)
. (3.71)

Note that after completing the squares in the exponent, we have completely exposed the Φ
dependence of the probability weight. The other factor,

exp

(
− 1

4Uβ

∑
t1,t2

(φt1 − φt2)2

)
(3.72)
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can be shown to be independent of Φ, by directly differentiating with respect to Φ and
using ∂Φ/∂φt = 1 and ∂φi/∂φj = δij for simplification. Thus, the distribution of Φ is
bimodal, as seen in the factor 4 cosh

(
Φ
2

)2
e
− 1

2Uβ
Φ2

in (3.71). This distribution is strongly
peaked about Φ ≈ ±Uβ, implying that the peaks of the modes are separated by a distance
2Uβ, and is exponentially small in between. This analysis also shows that the modes become
further separated when either U is increased (strong coupling limit), or β is increased (zero
temperature limit), or both.
For the α = 1 case, using (3.67) with (3.12) gives

W [φ] = detM [iφ] detM [−iφ]e−
1

2Ũ

∑
t φ

2
t = 4 cos2

(
Φ

2

)
e
− 1

2Uβ
Φ2

e
− 1

4Uβ

∑
t1,t2

(φt1−φt2 )2

. (3.73)

The last factor is the same as before and is Φ-independent, and thus the manifold of zeroes is
indeed codimension 1 so that a precise HMC integrator cannot circumnavigate the zeros and a
formal ergodicity problem arises. The distribution of Φ is determined by 4 cos2

(
Φ
2

)
e
− 1

2Uβ
Φ2

,
a product of a gaussian of width

√
Uβ centered at Φ = 0 and a simple, periodic cos2

(
Φ
2

)
function. The zeros of cos

(
Φ
2

)
dictate the zeros of the kernel, and we find zeros at Φ =

(2n+ 1)π for all integers n, independent of the value Uβ. This function is multimodal, but
the modes remain close together, even as U or β are taken large. Rather than separating two
important modes, taking the low-temperature or strong-coupling limit broadens the gaussian
and increases the number of important modes. We can analytically determine the probability
distribution for Φ,

W [Φ] =
e
− Φ2

2Uβ
−Uβ

4 cosh2
(

Φ
2

)
√

2πUβ cosh
(
Uβ
4

) (α = 0) (3.74)

W [iΦ] =
e
− Φ2

2Uβ
+Uβ

4 cos2
(

Φ
2

)
√

2πUβ cosh
(
Uβ
4

) (α = 1). (3.75)

Note that these expressions depend only on the product Uβ, and in particular are independent
of Nt.
As a visual aid, we consider theNt = 2 case. Here there are only two Hubbard-Stratonovich

degrees of freedom, φ1 and φ2. We plot contours of the kernels for the two bases ((3.71)
and (3.73)) in the case when Uβ = 18, so that the modes in the α = 0 case are well-separated,
in Figure 3.3 and also show the codimension-1 manifolds that produce a formal ergodicity
problem in the case of α = 1. Note that such lines are absent in the α = 0 case. Nevertheless,
in both cases we will get a biased result—the α = 0 case has an in-practice problem caused
by the isolation of modes by a region of very small probability density. For both cases we
generated 10,000 configurations using a precise HMC integrator (with 20 leapfrog steps for
a unit-length molecular dynamics trajectory, yielding a near-100% acceptance rate), shown
as points. The Φ axis in these plots runs along the diagonal from bottom-left to top-right,
and the numerical distribution generated by HMC is clearly not symmetric around Φ = 0, a
feature clear in the analytic expressions (3.74) and (3.75) and guaranteed by the fact that f
is even (3.48).
We can also study problems with substantially larger Nt, or equivalently, finer discretiza-

tions. One observable that is of interest is the correlation function Cij(τ), where i, j refer to
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Figure 3.3: Contours of constant probability, (3.71) (left, α = 0) and (3.73) (right, α = 1)
with Uβ = 18 and Nt = 2 for the 1-site problem, where the subscript on the Hubbard-
Stratonovich fields φ indicates the timeslice. The dark contours represent high probab-
ility density, which decreases as the contours get lighter. The Φ axis runs from bottom
left to top right. In the right panel the diagonal (black) lines correspond to locations
where the probability weight (3.73) is exactly zero, creating barriers to HMC; their
regular spacing is a consequence of the periodicity of the determinant, discussed in Sec-
tion 3.2.4.3. We show every tenth configuration of 10,000 configurations (generated with
a very precise integrator) as points. It is evident that the HMC algorithm was trapped
in a region of high probability density in the α = 0 case by the wide separation with
low probability density and in the α = 1 case by the lines of zero weight.
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Figure 3.4: Histograms of Φ and correlators for the one-site problem with very fine integra-
tion. Monte Carlo evolution was started in different lobes and the trajectories are stuck
in those lobes, shown by the different colors. All ensembles consist of 50k thermalized
configurations. Single particle correlators to the right are color coded to match the
histograms in the left column. Points where C(τ) ≤ 0 are not shown because of the log
scale. The black lines show the exact results. The histograms are all normalized but,
because HMC was trapped, the numerically generated histograms are much taller and
thinner than the exact results.
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spatial locations. For the 1-site problem we are restricted to i = j = 1. In the continuum
limit we can compute the correlation function exactly

C11(τ) ≡
〈
a(τ) a†(0)

〉
=

〈∑
t

(
M−1

11

)
t+τ,t

〉
=

cosh(U(β − 2τ)/4)

2 cosh(Uβ/4)
(3.76)

which, being a continuum-limit quantity, is independent of δ. We can estimate C as an
ensemble average over configurations generated by HMC by

Cij(τ) ≈ 1

Nc

∑
φ∈{φ}

∑
t

M−1
ij

[{
φ if α = 0

iφ if α = 1

]
t+τ,t

(3.77)

where Nc is the number of generated Hubbard-Stratonovich field configurations in the en-
semble {φ}. Lack of ergodicity in our sampling of φ will give disagreement between simulated
and exact correlators. To demonstrate this, we consider in Figure 3.4 as case using a precise
MD integrator (acceptance rate > 99%) with extreme U/κ = 10 and βκ = 6, so that when
α = 0 the modes are widely separated and when α = 1 many modes contribute. The top
row corresponds to α = 0, whereas the bottom row is α = 1. The left column shows the
histogram of Φ =

∑
t φt for different runs, while the right column shows the calculated correl-

ators. In all plots the black line is the exact result. Different HMC runs are differentiated by
color. For the α = 0 case it is clear that the HMC trajectories are trapped in one of the two
modes (top left panel), despite there being no regions with detM = 0. The corresponding
correlators calculated with these fields are color-matched and shown in the top right panel.
Clearly the sampling of fields is grossly biased, and this is reflected in the large disagree-
ment between simulated and exact correlators. For the α = 1 case three different runs (red,
blue, green) were performed with different starting points for Φ, each separated by a point
where detM = 0. From the histogram (lower left panel) it is clear that the runs are trapped
within their respective sectors, and their corresponding correlators (color matched with the
histograms) each differ from the exact result. Presumably, the correct linear combination of
these correlators (with relative weights given by (3.75)) would give the exact correlator. Of
course, in a more complicated system we do not know such weights a priori, and therefore
would not know how to combine such correlators to produce the correct result.
These examples, though extreme, demonstrate how both formal (for α = 1) and in practice

(for α = 0) ergodicity problems can arise in HMC simulations, even when simulations are of
the same physical system. The choice of basis greatly influences the behavior of the sampled
field configurations, and in turn can drastically impact calculated observables such as the
correlator.

3.3.3 The Two-site Problem

We now consider the two-site problem to demonstrate how different discretizations can lead
to ergodicity issues. To keep the presentation reasonable, we restrict our analysis to the
exponential and diagonal discretizations given by (3.13) and (3.15), respectively, using the
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α = 0 and 1 bases7. In (3.15) the term h is given by

hx′,x = κ̃δ〈x′,x〉 =

(
0 κ̃
κ̃ 0

)
, (3.78)

while the matrix in (3.13) is its exponential, given by[
eh
]
x′,x

=

(
cosh κ̃ sinh κ̃
sinh κ̃ cosh κ̃

)
. (3.79)

For extreme simplicity, we turn to the problem of two sites on a single timeslice where, as
in the previous section, there are two degrees of freedom, φ1 and φ2, the label now indicates
the spatial site. Adopting the factorization shown in (3.48) of the determinant of the fermion
matrix, we have that

f [φ] =


2
[
cosh(Φ/2) + cosh

(
φ1−φ2

2

)
cosh(κ̃)

]
exponential discretization

2
[
cosh(Φ/2) + cosh

(
φ1−φ2

2

)
− κ̃2

2 e
−Φ/2

]
diagonal discretization

(3.80)

where again Φ = φ1 + φ2. Close inspection of the equations above shows that both f [φ] and
f [iφ] are always real in the exponential discretization. In the diagonal discretization, on the
other hand, only f [φ] is real and f [iφ] is in general complex.

The probability density

W [φ] ∝ f [φ]f [−φ]e
−φ

2
1+φ2

2
2Uβ (3.81)

is positive semi-definite for both discretizations with α = 1 because f [iφ]f [−iφ] = |f [iφ]|2.
In the exponential α = 0 case it is positive definite as well because f [φ] is. Positive (semi)-
definiteness is however not guaranteed in the diagonal discretization with α = 0. For large
enough values of κ̃ the product f [φ]f [−φ] can become negative, which means that (3.81)
cannot be interpreted as a probability distribution. Normally this is not an issue; we can
increase Nt and positivity is eventually assured. However, for this particular example we
must enforce an additional constraint to maintain positivity, namely κ̃2 ≤ 1.
Figure 3.5 shows probability contours of this single-timeslice problem in the case when

Ũ = Uβ = 18 and κ̃ = κβ = 1 for these different discretizations and bases as well as field
configurations generated by HMC with a fine integrator (acceptance rate > 99%).

Regardless of discretization, α = 0 exhibits no field configurations of zero weight when
κ̃ ≤ 1, so there is no formal ergodicity problem. HMC nevertheless gets trapped in single
lobes of the probability distribution, and there is a problem in practice. In the case of
the diagonal discretization, the two modes are symmetric about the φ1 = φ2 line, and the
histogram of Φ will not show evidence of this bimodal structure as Φ is peaked about zero
in both modes in the same way.
With α = 1 there are field configurations with zero weight. With the exponential discret-

ization given by (3.13) there are entire lines of zero weight, separating the field space into

7 In simple cases we have found that the linear discretization (3.14) exhibits the same behavior as that of the
diagonal discretization (3.15) but have not explored the linear case as extensively. The lack of conjugate
reciprocity suggests there ought to be no formal ergodicity problem when α = 1.
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Figure 3.5: Contours of constant probability weight (3.81) using the exponential discretiz-
ation (left column) and the diagonal discretization (right column) with α = 0 (top row)
and α = 1 (bottom row) for the 2-site problem with Uβ = 18, κβ = 1, and Nt = 1.
Contour colors range from orange (light) for large to blue (dark) for small values in arbit-
rary units. In the bottom panels, the black diagonal squiggly lines and regularly-spaced
black dots correspond to locations where (3.81) is exactly zero; their regular spacing is a
consequence of the periodicity of the determinant, discussed in Section 3.2.4.3. Crossing
a black line changes the sign of the fermion determinant. The colored points show 10k
HMC trajectories. For α = 0, evolution was started in different modes of the field space,
shown in different colors. For α = 1, evolution was started at the origin with a small
random deviation. The outer histograms show the marginal distributions in φ1 and φ2

where the black lines are the exact results obtained from (3.81).

different sectors, and giving rise to a formal ergodicity problem. With a fine integrator, HMC
gets trapped between the infinite barriers.
The α = 1 case with the diagonal discretization given by (3.15) is particularly interesting

since the probability density vanishes only at isolated points, not lines. Regions of relevant
weights are no longer separated by infinite barriers, and therefore ergodicity is formally pre-
served. Evidence of this is seen in the distribution of field configurations generated by HMC,
shown as red points. The HMC algorithm successfully reached into nearby basins that would
have been unreachable in the case of the other discretization. The diagonal discretization is
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clearly less restrictive in the α = 1 case, compared to the exponential discretization.
The preceding example has only little bearing on a realistic calculation due to the fact

that it represents a single timeslice calculation. Before considering a larger Nt case, we point
out that we can mimic a finer time discretization by reducing κ. This can also be viewed
as taking the strong coupling U/κ � 1 limit. Figure 3.6 shows the contours in the case
where κ has been reduced by an order of magnitude compared to Figure 3.5. Note that all
contours within their respective α bases are nearly the same for both discretizations, giving
credence to our claim that the discretizations become equivalent in the continuum limit. This
is despite the fact that for α = 1 the allowed values where detM [iφ] = 0 (black lines and
dots of bottom row) are topologically different.
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Figure 3.6: Analogous contours to Figure 3.5 but using κ = 0.1 to mimic approaching the
continuum limit. The exponential and diagonal discretizations now have very similar
probability contours. For the α = 1 case, the black lines of zero weight of the exponen-
tial discretization pinch and nearly close, while the zero-weight configurations remain
isolated in the diagonal discretization.

We now consider Nt = 40 again with extreme U/κ = 10 and βκ = 6. In Figure 3.7 we
show the distribution of Φx ≡

∑
t φxt as in (3.32) from different HMC simulations using the

different bases and discretizations. We again use a high precision integrator with acceptance
rate > 99%. The left column represents the exponential discretization and the right the
diagonal one. The top row has α = 0, the bottom α = 1. Histograms of Φ1 and Φ2 are also
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shown in the figures. Recall that in the large U/κ limit, the hopping term becomes negligible
compared to the on-site interaction and the 2-site problem factors into the product of two
1-site problems, as discussed in Sec. 3.2.5. One expects then that the distributions of Φx are
given by (3.74) and (3.75), which are shown as black lines in the marginal histograms. The
fact that our simulated distributions qualitatively agree with these distributions is due to
the fact that Uβ = 60 is in the strong coupling regime. For the α = 0 case, it is clear that
there is a multi-modal distribution and HMC trajectories are separated into these modes,
even though there are no configurations with detM = 0, which is similar to the 1-site case.
HMC samplings are again grossly biased. For the exponential α = 1 case (bottom left panel),
trajectories are also biased because of the separation of regions by detM = 0. The sampling
of fields for the diagonal α = 1 case (bottom right) on the other hand is relatively symmetric
and seemingly unbiased.
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Figure 3.7: HMC history of Φx =
∑

t φxt for the 2-site problem with 100k trajectories
with Uβ = 60, κβ = 6, and Nt = 40. Only every 100th trajectory of each ensemble
is shown. Several HMC streams for each case were produced by starting in different
modes in configuration space as indicated by color. Only for α = 1, diagonal there is
no difference, where the run is started, so only one stream is shown. The black lines
in the marginal distributions for Φ1 and Φ2 are the exact 1-site distributions which are
recovered in the strong coupling limit. The contours show the product of the 1-site
distributions and are not exact results for this case.
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For the two-site system there are two linearly independent correlators. If we label one site
A, and the other B, then the two correlators are

C±(τ) =
1

2
(CAA(τ) + CBB(τ)± [CAB(τ) + CBA(τ)]) , (3.82)

where Cij(τ) represents the correlator of a quasi-particle starting at site i and propagating to
site j and is estimated by (3.77). In the strong coupling limit these two correlators approach
the 1-site correlator solution of (3.76). In Figure 3.8 we show the corresponding calculated
correlators from the field distributions in Figure 3.7, arranged and colored in the same way.
As expected, the correlators for the α = 0 case agree very poorly with the exact result given
by the black lines due to the biased sampling of fields. In the exponential α = 1 case, the red
points sampled from the diagonal band in Figure 3.7 show only a small deviation from the
exact result in regions with small noise. If a different band is sampled however, deviations
can be larger as demonstrated by the blue points which show a clear deviation from the
black line. The impact of an ergodicity problem on correlators depends on the contributing
states as demonstrated in the next section. On the other hand, correlators calculated in the
diagonal α = 1 case have better agreement with the exact results, particularly for early and
late times, due to a less biased sampling of fields.
These examples give further evidence of how the choice of bases can impact the sampled

fields, as discussed in the previous section. In addition to this, however, is the fact that
different discretizations can also lead to disparate sampling of fields, and ultimately impact
the fidelity of observable calculations. In Appendix 3.D we use these same ensembles to
calculate other observables and similarly find that the exponential discretization can suffer
from ergodicity problems that are absent in the diagonal case.

3.3.4 The Four Site Problem
Up to this point only the exponential α = 1 discretizaton has exhibited cases where detM
is always real and can be negative. With four and more sites, the exponential α = 0 discret-
ization also exhibits detM < 0 cases, as was originally pointed out in Ref. [32]. It would be
interesting to understand why the two site problem is protected from negative determinants
in the other cases.
Reference [32] argued that the initial starting point of the HMC evolution can lead to

drastically different results due to the separation of detM < 0 and detM > 0 in the ex-
ponential α = 0 case. The authors provide an explicit example of the equal-site 〈Cii(τ)〉
correlator calculated on a 4× 4 square lattice, showing a clear dependence of the correlator
determined from HMC runs that originated from either a detM > 0 or a detM < 0 con-
figuration (Figure 1 of Ref. [32]). Ergodicity is clearly violated in these extreme cases. We
reproduce these results in Appendix 3.B. However, we find that the diagonal α = 1 seems
not to suffer from this problem (see Figure 3.17 of Appendix 3.B).
To substantiate our claim, we consider instead the 2× 2 square lattice Hubbard model (4

sites) and repeat the exercise that was done for the 4×4 case of Ref. [32]. The added benefit
here is that we can compare directly to exact solutions obtained via direct diagonalization.
We do exactly this by considering correlators in momentum space,

C±(~k, τ) =
1

2

∑
~x

ei
~k·~xC±(x, τ) , (3.83)
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Figure 3.8: Correlators from Eq. (3.82) color coded to match the ensembles shown in Fig-
ure 3.7. Points where C(τ) ≤ 0 are not shown because of the log scale. The black lines
show exact results from direct diagonalization of the 2-site Hubbard model. For clarity,
the figure shows only C+, C− behaves in the same way.

where the sum is over unit cell locations (each unit cell containing one A site and one B-site)
and C±(~x, τ) is given by Eq. (3.82) but now with explicit unit cell location x in its argument.
As there are two allowed momenta for this system, a~k = (0, 0) and (π/2, π/2), there are in
principle a total of four possible correlators. However, at a~k = (π/2, π/2) one has C+ = C−,
and thus we have only three distinct correlators.
In Figure 3.9 we show these three correlators for the four different discretization schemes

and bases. For both α = 0 cases we start the HMC evolution from a detM [φ] < 0 configur-
ation while for the α = 1, exponential discretization the evolution starts at a configuration
such that 0 > e−iΦ/2 detM [φ] ∈ R in accordance with equation (3.52). For the remaining
diagonal α = 1 case, no such criterion can be formulated since the determinant is complex
and does not factorize as in the exponential case. In all cases we use a very precise MD
integrator. It is clear from the disagreement with the exact result that the HMC trajectories
are not properly sampling all the important regions of configuration space. It is worth not-
ing that not all correlators are affected by the lack of ergodicity in the same way. For the
exponential α = 1 case, the higher energy correlators (green and blue) are very precise, only
the ground state correlator shows a strong deviation.
When we consider the histograms of the MC histories of detM for the α = 0 and expo-

nential α = 1 cases, as shown in Figure 3.10, we find that detM is confined to the negative
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Figure 3.9: Dependence of correlators on initial HMC configuration. The red correlators
are calculated at a~k = (π/2, π/2) which for this case means that C+ = C−. The
green and blue correlators (lower, off center minima) are calculated at a~k = (0, 0).
For α = 0 the initial configuration was chosen such that detM [φ] < 0. For α = 1,
exponential discretization the starting configuration satisfies 0 > e−iΦ/2 detM [φ] ∈ R.
For α = 1, diagonal no particular starting criterion was set. All plots show data from
2400 trajectories. The starting criteria stayed fulfilled for all of those configurations.

region only. Ergodicity is indeed violated. The lone exception is the diagonal α = 1 case
whose correlators agree very well with the exact result (bottom right panel of Figure 3.9).
The corresponding histogram of the MC history is shown in the bottom right panel of Fig-
ure 3.10. In this case, since detM is complex, the histogram is shown as a density on the
complex plane. In this case the zero of detM can be easily circumnavigated and there does
not exist an ergodicity problem.

3.4 Overcoming Ergodicity Issues

Reference [32] already showed that one may avoid ergodicity issues by complexifying the
auxilliary field (taking an intermediate value of α). In this section we will examine a variety
of other solutions.
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Figure 3.10: Histograms of detM for the α = 0 basis (top row) and diagonal α = 1 case
(bottom right), and e−iΦ/2 detM [φ] for the exponential α = 1 case (bottom left) for
the ensembles used for Figure 3.9. Except for the diagonal α = 1 case, all quantities
are real. In the diagonal α = 1 case detM is complex and the domain of the histogram
is the complex plane.

3.4.1 Coarse Molecular Dynamics Integration
When the molecular dynamics integrator is not very precise, the Markov Chain can hop over
the barriers that separate neighboring basins in configuration space in the particle/hole basis.
This, for all practical purposes, avoids the ergodicity issues as long as the integrator takes
sufficiently coarse steps. We have found that targeting an acceptance rate of around 70%
allows the integrator to readily explore the areas in field space that would be separated by
an impenetrable barrier in the case of a very precise integrator.
We emphasize that the numerical “errors” introduced by using an imprecise molecular

dynamics integrator do not invalidate the stochastic algorithm. In other words, HMC with a
coarse integrator is still a valid proposal generator from a Metropolis-Hastings perspective.
As long as the accept/reject step is maintained and the integration is reversible, the algorithm
still faithfully samples the distribution dictated by the action in the path integral.
In the spin basis, the basins of Φ for the one-site problem grow farther apart when increasing

Uβ. Between the two modes the probability is never zero, but is nevertheless exponentially
small. Unless an extremely coarse integrator with a long trajectory length is used, it seems
unlikely that molecular dynamics can cross such a wide exponentially small region.
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With a fixed molecular dynamics time between trajectories, there is a limit to how coarse
the integration may be made. With either a very or moderately coarse integrator combined
with a long molecular dynamics time between configurations, we expect the acceptance rate
to plummet. There thus may be an in-practice problem of rejecting too frequently, not
evolving the configuration enough, or an explosion of computational cost.
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Figure 3.11: Same as Figure 3.4 but with coarser integration with an acceptance rate of
about 60%. For α = 0 Monte Carlo evolution was started in the right hand lobe and
got stuck there. Both ensembles consist of 50k thermalized configurations. The purple
correlator is CH(φ) = (C•(φ) +C•(−φ))/2, the result of the symmetrization discussed
in Section 3.4.2.

In Figure 3.11 we see that coarse integration allows the α = 1 case to jump over the exact
zeros, whereas the fine integration was trapped in the initial mode, as seen in Figure 3.4. In
contrast, we can see that coarse integration does not alleviate the in-practice problem seen
in the α = 0 case because the modes are so widely separated.

A similar improvement can be observed in two-site problem when using a coarse integrator
with ≈ 60% acceptance rate. Figure 3.12 shows that configurations in this case are more
evenly distributed for α = 1, especially in the exponential discretization; compare with
Figure 3.7. For α = 0, however, there is no change compared to the fine integrator as
expected.
The correlators in Figure 3.13 show no significant improvement over those in Figure 3.8 for

a fine integrator. It is however no longer possible to construct an ensemble that is stuck in
a specific region of configuration space and leads to a systematically biased correlator in the
exponential α = 1 case, c.f. Figure 3.7 and 3.8. Noise in the systematically wrong medium τ
range has increased for α = 0, particularly strongly in the diagonal discretization.

Once many sites are included, it may be infeasible to rely on a coarse integrator for crossing
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zeroes, so it is worthwhile to consider additional techniques to aid ergodic exploration of the
configuration space [31,32].
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Figure 3.12: HMC history of Φx for the 2-site problem with 100k trajectories and a coarse
integrator. Only every 100th trajectory of each ensemble is shown. The black lines in
the marginal distributions for Φ1 and Φ2 are the exact 1-site distributions which are
recovered in the strong coupling limit. The contours show the product of the 1-site
distributions and are not exact results for this case.

3.4.2 Symmetrization
For the one-site problem in the spin basis, the in-practice ergodicity problem arises entirely
because of the large separation of the modes in Φ in (3.74) and a possible solution immediately
presents itself. If the configuration φ corresponds to Φ, the field configuration −φ corresponds
to −Φ.
Then, we can perform Monte Carlo on equivalence classes of φ—for each step in the

Markov Chain, we receive two (entirely correlated) field configurations, φ and −φ, perform
measurements on both configurations and average the result. Since their weights are exactly
equal, we know they appear equally often in the original method of simply sampling individual
field configurations—we simply ensure the different Φ lobes are sampled equally without the
need to cross over the wide, exponentially small barrier.
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Figure 3.13: Correlators from Equation (3.82) for the ensembles shown in Figure 3.12.
Points where C(τ) ≤ 0 are not shown because of the log scale. The black lines show
exact results from direct diagonalization of the 2-site Hubbard model. For clarity, the
figure shows only C+, C− behaves in the same way.

This approach is not restricted to the one-site problem. Recall that, as discussed in Sec-
tion 3.2.4.1, W [φ] = W [−φ] independent of basis and α at half-filling on a bipartite lattice.
In Figure 3.11 the α = 0 case has coarse HMC integration that is trapped in one of the two

modes. The purple correlator in the top-right panel is the average of the correlation function
measured on φ and −φ for each configuration. The improvement is obvious.
Looking at the basins and boundaries in the lower-left panels of Figure 3.5 and Figure 3.7

makes it clear that this symmetrization is not a complete solution for the exponential α = 1
case. For example, if HMC winds up in a basin that does not include φ = 0, no symmet-
rization will ever get it there. For the α = 0 cases in those figures, it is clear that this
symmetrization still fails to join different regions of nonzero probability.
Generalizing from just the charge conjugation operation φ→ −φ, we can also immediately

symmetrize in terms of the other operational symmetries discussed in Section 3.2.4: temporal
shifts, time reversal, and the spatial symmetries of the lattice. Put another way, if observables
are formulated that are invariant under these operations, the ergodicity problem is reduced
from the full configuration space to only the configuration space with these symmetries
modded out.
This symmetrization may be performed stochastically, as well. For example, one often

finds that in lattice QCD literature the chiral condensate is evaluated on stochastic noise
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sources or that correlation functions are measured from sources on different randomly chosen
sites in the lattice for each field configuration.
Unfortunately, this is not a cure-all. Since the determinant is invariant under many of these

symmetries, it cannot repair the in-principle problem we might encounter in, for example,
the exponential α = 0 many-site problem where we know, from (3.48), a formal problem that
requires flipping the determinant’s sign can arise.

3.4.3 Large Jumps
Rather than restricting Markov chain updates to HMC only, one can use a mix of proposal
generators followed by the Metropolis accept/reject step. Those proposal machines must
be statistically balanced so that the first criterion discussed in Section 3.2.1 is fulfilled. In
addition, selecting which proposer to use based on the current field configuration is not
allowed. One approach is that of tempered transitions [97, 98] which have found recent
application in, for example, the study of the 0+1-dimensional Thirring model [99].
Another approach is to interleave large mode jumps [100] with normal HMC. By making a

large change to the field configuration that is not produced by integrating equations of motion,
the barriers that repel HMC trajectories, or the uncrossable valleys separating modes, can
be bypassed. However, as shown by the inefficacy of simple random updates, it can be a
challenge to make a proposal with a large change to the field configuration such that the new
configuration contributes meaningfully to the partition function and the proposal is thus
likely to be accepted.
By taking advantage of some of the features of the problem we can propose large jumps

to new regions in configuration space where the weight of the new field configuration is non-
negligible. In the general case it is hard to analytically extract features of the probability
weight function. In the previous section we saw that we could use symmetries to better cover
the configuration space.
In fact, the symmetries that emerge in the strong or weak coupling limits can also be used

to generate proposals. However, while a true symmetry operation is guaranteed to produce
an accepted configuration, these other operations need not be accepted by the Metropolis
step. The symmetries that emerge in the strong and weak coupling regime were reviewed in
Section 3.2.5.
It may be possible to craft proposals based on knowledge of the probability distribution

in the weak-coupling limit. However, the failure of perturbation theory for problems of
interest suggests these proposals will hardly ever be accepted in a calculation. We therefore
leave the detailed description of these proposals to other work and focus on the approximate
factorization of (3.56).
In the strong coupling limit we can flip the sign of φ on a thread of spatial sites, temporally

shift or time-reverse threads individually, and arbitrarily permute the spatial threads rather
than remain restricted to symmetries of the lattice. Proposals adjusting φ according to those
manipulations are likeley to be accepted if the system of interest is sufficiently close to the
appropriate limit.

3.4.3.1 Spin Basis
As an example, in the strong coupling limit we can take advantage of our knowledge of
the probability distribution for the one-site field configurations. For convenience we repro-
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duce (3.74) here,

W1[φ] =
e
− Φ2

2Uβ
−Uβ

4 cosh2
(

Φ
2

)
√

2πUβ cosh
(
Uβ
4

) (α = 0) (3.84)

where we attach a 1 subscript to emphasize it is for the one-site problem.
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Figure 3.14: HMC history of Φx =
∑

t φxt for the 2-site problem with 100k trajectories and
a sign flip every 100 trajectories according to (3.85). Only every 100th trajectory of
each ensemble is shown. The black lines in the marginal distributions for Φ1 and Φ2

are the exact 1-site distributions which are recovered in the strong coupling limit. The
contours show the product of the 1-site distributions and are not exact results for this
case.

The one-site probability distribution is symmetric under Φ→ −Φ. In the strong coupling
limit the probability distribution for a problem with Nx spatial sites is simply the product
of the one-site distribution for each site. The probability is concentrated on the corners of
an Nx-dimensional hypercube whose 2Nx vertices have value Φx ' ±Uβ.

That distribution is invariant if we send Φ→ −Φ independently for each single spatial site
across all time,

Φx → signxΦx (3.85)
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Figure 3.15: Correlators from Eq. (3.82) from the ensembles with sign flips shown in Fig-
ure 3.14. Points where C(τ) ≤ 0 are not shown because of the log scale. The black
lines show exact results from direct diagonalization of the 2-site Hubbard model. For
clarity, the figure shows only C+, C− behaves in the same way.

where Φx =
∑

t φx,t, the auxiliary field summed across all time but only on a single site, as
in (3.32) (and so Φ =

∑
x Φx). We can pick any subset of the spatial lattice, and negate all

the auxiliary fields for all time for those sites.
For the one-site problem with α = 0 in the strong-coupling limit, this operation allows us

to propose a new configuration with the same weight but in another mode that will always
be accepted. Away from strong coupling the guarantee of equal weight no longer holds as
the factorization of the path integral fails. Assuming the probability weight does not deform
too much, we can visit all the modes with proposals of this type. Regardless of Uβ, this
eliminates the in-practice sampling problem one might encounter due to widely-separated
modes, but does not resolve the possible formal problems.
We demonstrate the success of this method in Figures 3.14 and 3.15. They show results

from a run using a coarse integrator with an acceptance rate of ≈ 60% augmented by random
sign flips based on (3.85) every 100 trajectories. The sign is chosen for each spatial lattice site
separately and with equal probability for either sign. Evidently, these jumps allow sampling
the far apart lobes for α = 0 which is not possible with just the fine or coarse integrator
(compare to Figures 3.7 and 3.12).
The correlators in Figure 3.15 are similar to those in Figure 3.8. The most notable difference

for is that for α = 0 the minimum is now in the correct place whereas it was shifted to the
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right for the fine integrator without sign flips. Another unknown systematic remains however.

3.4.3.2 Particle-Hole Basis
For the one-site problem with α = 1 in the strong-coupling limit, the sign-flipping operation
in (3.85) yields a proposed configuration in a different domain from where HMC might be
currently stuck. However, as mentioned in Section 3.4.2, this operation helps to symmetrize
the distribution around zero, but it does not allow us to access all the modes and thus does
not offer a complete solution.
We nonetheless use those sign flips in Figures 3.14 and 3.15. In this simple case this

operation (paired with a coarse MD integrator) is sufficient to sample the relevant region
of configuration space properly. This has no discernible impact on the correlators however
which is likely caused by the large noise for medium τ .
When α = 1 the one-site result is (3.75)

W1[iφ] =
e
− Φ2

2Uβ
+Uβ

4 cos2
(

Φ
2

)
√

2πUβ cosh
(
Uβ
4

) (α = 1). (3.86)

The full probability distribution in the strong coupling limit is simply the product of this
distribution for each site, and is concentrated around the origin Φx = 0.
In this case we can also propose a new configuration by increasing or decreasing all the

auxiliary fields on a single spatial thread by 2π/Nt,

φx,t → φx,t ±
2π

Nt
δx,x0 (3.87)

which changes Φx0 by 2π, putting it on the other side of an exact zero and thus into a different
mode. Such a proposed update will be accepted according to the ratio of probabilities8

W [i(φx,t ± 2π
Nt
δx,x0)]

W [iφ]
= (ratios of determinants that cancel at strong coupling)×e−

2π
Uβ

(π±Φx0 )
,

(3.88)

meaning that if the proposal drives Φx0 towards zero it will always be accepted and will
occasionally be accepted if it drives Φx0 away from zero. This update will allow us to access
all the modes of Φx0 without encumbrance from exact zeros in the probability distribution.
In the strong coupling limit we may make this proposed update to each thread of spatial sites
independently. Away from strong coupling this proposal may nevertheless prove beneficial,
assuming the probability weight doesn’t deform too much. In fact, the 2π change in Φx0 need
not be evenly spread across all the timeslices, at the cost of reducing the likelihood according
to a change in (3.72).
In a similar spirit, we can use the field-shift transformation (3.28), shifting each timeslice

by its own θt, and as long as the shifts sum to 0 modulo 2π, according to (3.31), we can make
the cancellation of the determinant exact,

W [i(φx,t + θt)]

W [iφ]
= (ratios of determinants that exactly cancel)×e−

1
2Ũ

∑
t 2φtθt+Nxθ2

t . (3.89)

8 This identity holds in general and not only in the strong coupling limit.
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If we pick a constant θt = ±2π/Nt we can simplify further,

W [i(φx,t ± 2π/Nt)]

W [iφ]
= e
− 2π
Uβ

(πNx±Φ)
. (3.90)

The average acceptance rate is analyzed in Appendix 3.C. In Figure 3.3, such a coordinated
jump is a jump in the diagonal Φ direction, orthogonal to the lines of zero determinant.
Most generally, we know that when α = 1 the determinants are 2π periodic in each field

variable. For a ±2π change on site x0 at time t0 the ratio of the weights is simply given by
the ratio of the gaussian factors,

W [i(φx,t ± 2πδx,x0δt,t0)]

W [iφ]
= (ratios of determinants that exactly cancel)× e−

2π
Ũ

(π±φx0,t0 ).

(3.91)

We can independently propose and accept or reject a change by ±2π on each site, knowing the
determinant will remain invariant. Again, if this drives the auxiliary field on a site towards
zero it will be accepted and it will occasionally be accepted when the field is driven away from
zero. This proposal is entirely local and extremely speedy, not requiring an evaluation of the
determinant. Moreover, in the exponential α = 1 case, each accepted change hops over a zero
manifold, as can be seen from (3.54). This alleviates the formal ergodicity problem arising
from conjugate reciprocity. In the diagonal α = 1 case, while there is no formal ergodicity
problem, interleaving such a proposal can help in practice, especially as barriers are raised
as one approaches the continuum limit.
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Figure 3.16: HMC trajectories and correlator for the exponential α = 1 case with the
same parameters as Figures 3.7, and 3.8 but with large jumps as in equations (3.90)
and (3.91) every 100 trajectories. Only every 100th trajectory is shown in the left
panel and the ensemble consists of 100k trajectories in total.

Reconsidering Figure 3.3, it is clear that an evenly-distributed change of Φ by 2π is more
likely to be accepted than a 2π shift in either auxiliary field variable alone, because a co-
ordinated jump tends to keep you close to the middle of the gaussian. As discussed in
Appendix 3.C, the acceptance rate of coordinated jumps remains finite in the continuum
limit, while the acceptance rate for jumps in individual field components vanishes in the
continuum limit. Whether such coordinated changes are guaranteed to cross every ergodicity
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barrier remains obscure to us, while it seems apparent that independent changes provide such
assurance.
In Figure 3.16 we show an example run in the two site system with the exponential dis-

cretization. The integrator is as fine as in Figures 3.7 and 3.8 but every 100 trajectories two
jumps are performed. First, NtNx single site jumps by 2π are performed on random sites
and each is accepted or rejected according to (3.91). Then, all field variables are shifted by
±2π/Nt in a coordinated jump and the change is accepted or rejected according to (3.90).
The result shows a similar improvement to the sign flips in Figures 3.14 and 3.15. The histo-
gram shows marked improvement, showing no hint of trapping, and the correlation function
is no longer incompatible with the exact result, especially visible around κτ ∼ 1.5− 2.

3.5 Conclusion
The issue of ergodicity is of great significance for the validity of any stochastic calculation
which relies on an MCMC process. Throughout this work, we have emphasized that ergodi-
city (or the lack thereof) has a formal as well as a practical meaning. In the former case,
regions in the configuration space exist which are formally disconnected due to appearance
of boundaries of co-dimension 1, at which detM [φ] = 0. In the latter case, such bound-
aries do not exist, yet MCMC cannot sample all relevant regions of configuration space in
a practical amount of computing time. In other words, thermalization and decorrelation
would be exponentially slow. In such cases, we speak of an in practice ergodicity issue. We
have investigated both situations, in terms of the Hubbard model in 2D. In particular, we
have shown that the exponential discretization in the particle-hole basis exhibits a formal
ergodicity problem arising from conjugate reciprocity, while the diagonal discretization in
the particle-hole basis does not.9 Furthermore, for the case of α = 0 (spin basis) at large
Uβ, an in practice ergodicity problem also appears, as the field distributions fragment into
widely separated multi-modal lobes. HMC algorithms become trapped in one of these lobes
and require an exponential simulation time to traverse to any other lobe, despite there being
no boundaries where the fermion determinant changes sign.
We note that ergodicity issues have been encountered numerous times in MCMC simu-

lations of lattice gauge theories. In cases where the problem is formal, it is often observed
that it is sufficient (at least for small systems) to reduce the accuracy of the MD integrator
so that the detM [φ] = 0 barriers can be traversed. We have observed such behavior for
the α = 1 exponential discretization which has detM [φ] = 0 boundaries, which nevertheless
could be traversed with sufficiently coarse MD integration. However, this comes at the price
of reducing the acceptance rate of the HMC algorithm, and for cases where U and β are
very large, ergodicity can no longer be restored by such brute force methods. For the α = 0
basis (both exponential and diagonal), the separation of the field distributions into widely
spaced lobes at large Uβ presents a more serious challenge for HMC, despite it being an in
practice rather than formal issue. For such cases, we have proposed a new algorithm which
takes advantage of the symmetries of the action and the fermion matrix M . Effectively, we
augment the standard HMC algorithm with large, carefully crafted jumps between regions of

9 In Ref. [101] the authors use a fermion operator not considered here, where transport in time alternates
between a linearized hopping operator and interaction through the auxiliary field. They claim that the
simulations are free from ergodicity problems because the determinant is complex, in line with our detailed
argument.
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large probability. The accept/reject step of the algorithm ensures that each region is sampled
with the correct relative probability. We have found that such jumps fix this particular type
of in practice ergodicity problem.

Our studies were concentrated on histograms of the HS field and single particle correlators.
We stress that this does not present a full proof that the algorithm is ergodic. It is, of course,
still possible that there is a problem caused by a barrier that has escaped notice. It is therefore
useful to carefully verify that observables match known results that might be calculated. If
the algorithm is ergodic one expects a faithful ensemble and that every observable match its
true value.
In the α = 0 basis, we have observed the appearance of configurations with detM [φ] ≤ 0

for lattices with 4 or more sites, as was also found in Ref. [32] for the 16-site problem. We
observe that the frequency with which negative determinants occur increases dramatically
with system size, which we have attributed to an accumulation of states with nearly zero
energy. This is highly detrimental to the HMC algorithm and its evolution, as the frequency
with which exceptional configurations are encountered also increases.
Our studies show how the reduction of symmetries removed formal ergodicity issues. Miss-

ing from this discussion are the implications of reduced symmetry for observables. The
reduction of symmetries had little to no effect on the two-point correlators we have concen-
trated on (which give access to quasi-single-particle energies). We note that this is by no
means a general statement. Still, a similar behavior for the spin-density wave (SDW) order
parameter was found in Ref. [32]. On the other hand, in Ref. [102] the diagonal discretiza-
tion led to chiral symmetry violations that impacted the spin-density wave order parameter,
which can only be restored in the continuum limit. Thus the restoration of ergodicity in this
case made the calculation of the SDW order parameter more difficult, and emphasizes the
need for a robust continuum limit extrapolation. For additional evidence that the diagonal
discretization compromises on exact symmetries in favor of better ergodic properties, the
reader is pointed to Appendix 3.D.
In the examples we have considered here, we have taken values of U and β which are

deliberately chosen to be large (such as Uβ ' 60), in order to ensure that ergodicity issues
are not unduly suppressed. However, we note that the α = 1 diagonal discretization was
found to suffer from neither formal nor practical ergodicity issues, even for extreme values of
U and β. When comparisons with exact results are feasible (such as for 1-site, 2-site, and 4-
site square and hexagonal lattices), we have found that this discretization performed equally
well as the other ones (after application of the remedies mentioned above). For cases with
large U and β, the diagonal α = 1 discretization was found to be superior, as it requires no
modification to the HMC algorithm, nor monitoring for exceptional configurations. For the
16-site calculation, we were able to reproduce published results from the BSS algorithm and
never encountered any exceptional configurations. For these reasons, we conclude that the
diagonal discretization with α = 1 is optimal for our purposes, even though it only recovers
the exact chiral symmetry of the exponential discretization in the continuum limit.
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Appendix

3.A Determinants
3.A.1 Cyclic Lower Block Bidiagonal Matrices
In this section we derive the central equations for the determinants of the fermion matrices.
We look at matrices of the form

Mx′t′,xt = Dx′,xδt′,t − (Tt′)x′,xBt′δt′,t+1 , (3.92)

where

Bt ≡
{

+1, 0 < t < Nt

−1, t = 0
(3.93)

encodes anti-periodic boundary conditions in time and is factored out to simplify representing
M = M e or M = Md. In time-major layout M is a cyclic lower block bidiagonal Nt × Nt

matrix with blocks of size Nx ×Nx. Written in matrix form this is

M =


D T0

−T1 D
−T2 D

. . . . . .
−TNt−1 D

 . (3.94)

We can compute the determinant of M by means of an LU-decomposition in terms of the
matrices D and Tt. This decomposition can be performed by hand thanks to the sparsity of
M . We use the following ansatz which is an adaptation of the ansatz presented in Ref. [104]

L =



1
l0 1

l1
. . .
. . . 1

ln−3 1
ln−2 1


, U =



d0 v0

d1 v1

d2
...

. . . vn−3

dn−2 vn−2

dn−1


(3.95)

Multiplying out LU = M and solving the straightforward recursive equations gives

di = D for 0 ≤ i < Nt − 1 (3.96)
dNt−1 = D(1 +A) (3.97)

vi = DA0,i (3.98)

li = −Ti+1D
−1 . (3.99)
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Here we have used

At,t′ ≡ D−1Tt′D
−1Ti−1 · · ·D−1Tt , (3.100)

A ≡ A0,Nt−1 . (3.101)

The determinant can be computed from the determinants of the blocks on the diagonals
using

detM = detLdetU

=

(
Nt−1∏
i=0

det 1

)(
Nt−1∏
i=0

det di

)
= (detD)Nt−1 detD(1 +A)

= (detD)Nt det
(
1 +D−1TNt−1D

−1TNt−2 · · ·D−1T1D
−1T0

)
. (3.102)

This result can alternatively be written as

detM = det(TNt−1TNt−2 · · ·T0) det
(
1 + T−1

0 DT−1
1 D · · ·T−1

Nt−2DT
−1
Nt−1D

)
(3.103)

= det(TNt−1TNt−2 · · ·T0) det
(
1 +A−1

)
(3.104)

which can be beneficial depending on the forms of D and T . Expression (3.103) can be
obtained from (3.102) by factoring in one D and factoring out one T at a time.

3.A.2 Fermion Determinants
The determinant of M e (3.13) can be calculated from (3.102) by inserting

D 7→ 1 , Tt′ 7→ ehFt′ , (3.105)

with

Ft′ [φ]x′,x ≡ eφx(t′−1)δx′,x . (3.106)

Thus

detM e[φ, h] = det
(

1 + ehFNt−1[φ]ehFNt−2[φ] · · · ehF1[φ]ehF0[φ]
)

(3.107)

= det(1 +B[φ, h]) . (3.108)

We can proceed in a similar way for the matrix in the diagonal discretization Md (3.15).
This time we insert the following into the alternate form (3.103)

D 7→ 1− h , Tt′ 7→ Ft′ , (3.109)

with the same F as before (3.106). Thus

detMd[φ, h] = eΦ det
(
1 + F−1

0 [φ](1− h)F−1
1 [φ](1− h) · · ·F−1

Nt−1[φ](1− h)
)

(3.110)

= eΦ det
(
1 +A−1[φ, h]

)
. (3.111)
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At this point, a note on numerical stability is in order. The calculation of determinants of
denseNx×Nx matrices via a standard LU-decomposition should not be a problem. Especially
so since we are ultimately interested in log detM which is more stable for large matrices.
The spatial matrices A and B are however constructed from a product of 2Nt matrices.
Such a product can incur large round-off errors when the involved matrices have significantly
different scales. Both 1− h and eh have elements . 1 and present no problem.
For the spin basis, the matrices F ∼ eφ on the other hand have elements of widely varying

size which can be significantly larger than one. We have observed instabilities of the action
and therefore HMC evolution as well as the solver for systems of linear equations based on
equations (3.107) and (3.110).
For the particle/hole basis, the problematic matrices are replaced by F ∼ eiφ whose ele-

ments are on the unit circle. All matrices that contribute to A and B are therefore of the
same order and floating point errors are greatly reduced. Our tests show that both action
and solver are precise to 12 or more digits for lattices of size Nx ≈ 100 and greater.
We use algorithms based on (3.107) and (3.110) for α = 1. For α = 0 we use dense

L − U based algorithms for the full space-time matrices M . Other algorithms have been
used to solve this problem, including a stabilization of this algorithm using singular value
decompositions [105] and a different solver based on Schur complements [106].

3.B Sixteen-site Problem
For completeness we reproduce Figure 1 of Ref. [32] which outlines the susceptibility of
correlators to the starting configuration in case HMC is not ergodic. The correlators examined
in this case are the equal-site correlators,

C(τ) =
1

Nx

∑
i

〈Cii(τ)〉 ,

where the sum is over all lattice sites. We show three different HMC runs in Figure 3.17
as well as the result obtained from the Blankenbecler-Scalapino-Sugar method (BSS) taken
from Ref. [32]. The latter is claimed to be free of any ergodicity problems and thus provides
a benchmark for our HMC results.
One HMC run is in the exponential discretization in the spin basis and starts with a

configuration φ0 such that detM [φ0] < 0. The MD integrator is very fine (acceptance rate
> 98%) in this particular example, to ensure no barriers are accidentally jumped by coarse
integration. This run clearly deviates from the BSS result and matches the (green) correlator
shown in Figure 1 of Ref. [32] (shown as black ×s in Figure 3.17). Because of the very fine MD
integration, HMC gets trapped in a part of the integration domain where the determinant is
negative. For a coarser integrator HMC is able to traverse to detM > 0 regions and in this
case we find good agreement with the BSS points, though we do not show these results here.
The second HMC run is again in the exponential discretization but in the particle-hole

basis, again with a very fine MD integrate to ensure that the ergodicity barriers are impen-
etrable. While matching the BSS results at early times, in the middle of the temporal extent
it differs markedly from the BSS result.
The third HMC run is in the diagonal discretization in the particle/hole basis. Since the

determinant is complex in this case, there is no particular starting criterion to be chosen and
we stress that we do not find any dependence on the initial configuration. The correlator
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agrees well with the BSS result at intermediate times; at early times there is a systematic
discrepancy; recall that different discretizations need only agree in the continuum.
To emphasize this point, we also show a third HMC run in the diagonal discretization in

the particle/hole basis, but with twice as many time slices. On each common timeslice, the
finer discretization is closer to the BSS result than the coarser.
Also note that at early times the trend towards the BSS result is upward, while at later

time it is downward. Averaging the correlator and its time-reversed partner results in a
correlator indistinguishable from the BSS result. In future work we will detail methods for
reducing discretization artifacts of correlator measurements. We emphasize that one still
must take a controlled continuum limit, even if results are formally closer to the continuum.
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Figure 3.17: Comparison of correlators on a 4× 4 square lattice. The data points for BSS
are taken from Ref. [32]. The exponential α = 0 HMC run has negative detM [φ]
for all configurations. Started from a positive determinant this case produces results
consistent with BSS and α = 1.

3.C Jump Acceptance
In this section we analyze the acceptance rate of the jumps proposed in Section 3.4.3 that
take advantage of the periodicity of the determinant, a coordinated jump uniform across all
sites

φx,t → φx,t +
2π

Nt
(3.112)

and an individual jump

φx,t → φx,t + 2πδx,x0δt,t0 (3.113)
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in the field component on site (x0, t0).
For the coordinated proposal, the acceptance rate is given by (3.90),

W [i(φx,t ± 2π/Nt)]

W [iφ]
= e
− 2π
Uβ

(πNx±Φ) (3.114)

To calculate the average acceptance rate, we should average that weight change in such a way
that Φ is generally representative of a field configuration. Were the action entirely controlled
by the gaussian part, φ would be distributed normally with mean 0 and variance σ2 = Ũ .
Then, summing NxNt such random variables, we expect Φ to be drawn from a zero-mean
gaussian with variance NxNtŨ = NxUβ. So, we find that the acceptance rate is independent
of Nt, but decreases markedly with spatial volume.
When implementing the ergodicity jumps of individual field components it is natural to

ask: should each site’s jump be accepted or rejected independently? Or should they be
amalgamated into one proposal and considered as a whole? Here we will argue that it is
better to consider each decision independently.
The change in the weight (3.91) for a 2π shift on site at location x0 and time t0 is given

by

W [i(φxt ± 2πδx,x0δt,t0)]

W [iφ]
= (ratios of determinants that exactly cancel)

× exp

(
−2π

Ũ
(π ± φx0,t0)

)
, (3.115)

while if we did many 2π jumps, the change in the action would be summed, so that the
acceptance would be controlled by

exp

(
−2π2

Ũ

∑
x

(
1±x

φ

π

))
(3.116)

where x summarizes the space and time coordinates and the subscript on ±x is there to
remind us that the sign choice is x-dependent and can be zero for some sites.
To calculate the average acceptance rate we should again average that weight change in

such a way supposes we start in a very likely configuration. As above, we assume each φ is
a normal, random variable with variance Ũ .

If, in a single proposal, each site is given a probability p of undergoing a jump, on average
we have to sum the action changes from pNxNt jumps. We would like to find the best possible
p, deciding whether we should completely amalgamate the proposals into one, consider each
individually, or something in between. We can estimate∑

x

(
1±x

φ

π

)
= pNxNt +

ϕ

π
(3.117)

where ϕ is drawn from a zero-mean gaussian with variance pNxNtŨ . On average ϕ is 0 and
we get an acceptance probability of

exp

(
− 2π2

Uβ/Nt
pNxNt

)
. (3.118)
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That is, the acceptance rate is reduced with increasing pNxNt. The best choice is to set
p = 1/NxNt—that is, to accept or reject a jump in one auxiliary field at a time. Still, in that
case, the acceptance rate exponentially decreases with Nt, so that these jumps are much less
important as one takes the continuum limit, though they increase in importance with Uβ.
Moreover, when making proposals of jumps in individual components, there is no suppression
with the spatial volume Nx, unlike the case of coordinated jumps.

3.D Other Observables
In this appendix we consider other observables. In particular, we consider correlations
between local bilinear operators.
Letting x denote a spatial index, we define the bilinear operators

S0
x =

1

2

[
axa
†
x − bxb†x + 1

]
S1
x =

1

2
(−1)x

[
b†xa
†
x + axbx

]
S2
x =

i

2
(−1)x

[
b†xa
†
x − axbx

]
S3
x =

1

2

[
axa
†
x + bxb

†
x − 1

]
, (3.119)

raising and lowering operators,

S±x = S1
x ± iS2

x (3.120)

and the charge-density operator ρ = 1− 2S0 so that at half-filling, the expectation value 〈ρ〉
vanishes. The correlation functions

Cijxy(τ) =
1

Nt

∑
t

〈
Six,t+τS

j†
y,t

〉
(3.121)

carry two spatial indices x and y which can be projected to definite irreps of the lattice
(the dagger is just to provide a consistent notation with (3.76); the S and ρ operators
are hermitian). The two irreps we will consider here are the spatially uniform irrep and
its doubler, the alternating irrep. Let A and B be the two sublattices and Â and B̂ be
idempotent orthogonal projection operators that sum to the identity. Denoting the uniform
irrep + and the alternating, staggered irrep −, projection to those irreps requires performing
the sums

+ : Nx
−1/2

(∑
x∈A

+
∑
x∈B

)
= Nx

−1/2
∑
x

(Â+ B̂) (3.122)

− : Nx
−1/2

(∑
x∈A
−
∑
x∈B

)
= Nx

−1/2
∑
x

(Â− B̂) (3.123)

where A and B indicate the set of sites belonging to the two different sublattices. Once
projected to definite irrep, the correlation functions are diagonal. We denote irrep-projected
correlators with the + and − subscripts, rather than spatial subscripts.
We can study these correlators themselves or boil them down into order parameters. One

possible charge density wave (CDW) order parameter is given by10

CDW = V −1 lim
τ→0

Cρρ−−(τ) (3.124)

10 At equal time this definition matches the definition in Ref. [27].
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where the ρ index indicates that we should use the charge operator, rather than one of the spin
operators11, and we can also define the (extensive) antiferromagnetic structure factor [109]

SAF = lim
τ→0

C33
−−(τ) (3.125)

and the antiferromagnetic susceptibility [109]

χAF = V −1 lim
τ→0

C+−
−− (τ). (3.126)

With this formalism we can also characterize spatially uniform order parameters, such as the
mean squared magnetization [93]〈

m2
i

〉
= V −1 lim

τ→0
Cii++(τ). (3.127)

The antiferromagnetic order parameters in Ref. [93] can similarly be extracted from same-
time information in the correlators. There, the authors explain that the true indication of a
staggered order is a spin (or charge) separation between the two sublattices, but that in a
finite volume this order parameter will exactly vanish unless a bias is introduced, simulated
with, and ultimately taken to zero. Rather than simply squaring this difference, which
corresponds to considering the above correlators projected to the alternating irrep on both
indices at vanishing temporal separation, they define additional quadratic observables. The
total-per-sublattice order parameters

〈
q2
〉
and

〈
S2
i

〉
in Ref. [93] are given by〈

q2
〉

= V −1 lim
τ→0

(ÂCρρÂ+ B̂CρρB̂)−−〈
S2
i

〉
= V −1 lim

τ→0
(ÂCiiÂ+ B̂CiiB̂)−− (3.128)

which differ from those parameters defined above by the absence of cross-terms ÂCB̂ and
B̂CÂ. Note that the signs these cross terms carry are what distinguish the + irrep from the
− irrep, in the sense that dropping them from the ++ correlators yields the same numerical
data as dropping them from the −− correlators,

(ÂCρρÂ+ B̂CρρB̂)−− = (ÂCρρÂ+ B̂CρρB̂)++, (3.129)

for example. Hence, once the cross terms are dropped, the distinction between staggered
and uniform order is lost. In order to distinguish a uniform order from a staggered order, it
makes physical sense to consider∑

x ∈A
y∈B

+
∑
x ∈B
y∈A

Cρρxy(τ) or
∑
〈x,y〉

Cρρxy(τ) (3.130)

where the sum can be taken over x ∈ A and y ∈ B (and vice-versa) or, if contributions
from wide spatial separations contribute too much noise, over nearest neighbors 〈x, y〉. In
the two-site example considered below we simply do irrep projection.
The uniform irreps yield correlations between the operators summed over space. These

operators commute with the Hamiltonian and are therefore conserved. Commuting with
11 This definition matches, for example, equations (2) and (3) of Ref. [107] which was also studied in Ref. [108]
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the Hamiltonian also implies the time-independence of the spectral decomposition of the
respective correlator. We may still calculate the correlation function as a function of time
and average over time to get an estimator for the same-time correlator,

〈ρ+ρ+〉 =
1

Nt

∑
τ

Cρρ++(τ), (3.131)

for example.

3.D.1 Numerical Results
In Figure 3.18 we reuse the ensembles of field configurations from the two-site problem of
Section 3.3.3 (in particular, the α = 1 ensembles used in Figures 3.7 and 3.8, produced with a
very fine molecular dynamics integration), measuring a variety of correlation functions, which
are shown in different colors. We show the exponential and diagonal discretizations in the
left and right columns, respectively, and the uniform irrep and the staggered irrep in the top
and bottom rows, respectively. The results from an exact diagonalization are shown as thin
lines, while the numerical results are shown as error bars without markers. In the exponential
case, we show two data sets—the darker corresponds to the red ensemble of the mentioned
figures and the lighter to the blue ensemble. For visibility, C11 and C33 are slightly offset
horizontally, as are C−+ and C+−.
As mentioned, the uniform irrep has time-independent correlators. The exact uniform

charge-charge correlator is not shown because it is approximately 5.8 × 10−12. The darker
exponential ensemble is clearly incompatible with this result, while the lighter is entirely
uncertain 0.007(10); the diagonal ensemble is similarly uncertain, 0.001(5), except for the
first timeslice, which is incompatible with the exact result.
Additionally, in the diagonal case we see that C−+ and C+− are not time independent (we

average them, shown as black points). We expect this behavior to vanish in the continuum
limit, though we emphasize that according to (3.131) the time average is a good estimator
of the true value. The reason for this non-constant behavior is presumably related to the
violations of chiral symmetry in the diagonal case. We see the further effects of chiral sym-
metry breaking—C11 and C33 differ, as do C−+ and C+−, while those pairs are the same
in the exponential case, as in Reference [102]. Further, in the uniform irrep we see that the
diagonal correlators are not perfectly equal from timeslice to timeslice (the first timeslice, in
particular, differs markedly), in contrast to the exponential case.
This figure also emphasizes the need for a controlled continuum limit, even in the ex-

ponential case where, remarkably, the SAF and χAF order parameters are very near to
their continuum values that come from direct diagonalization, though the corresponding
intermediate-time behaviors differ from the exact result. Absent a continuum limit, a formal
demonstration that the equal-time correlator is improved is needed to justify not performing
a controlled limit. Interestingly, the diagonal C33

++ correlator gets very close to the continuum
(though the C11

++ differs—it should converge to the exact answer in the continuum limit). At
intermediate times the diagonal discretization seems to give results closer to the exact result;
this observation is in line with what was found in Appendix 3.B. Nevertheless, we stress that
in either discretization a continuum limit is required for reliable, systematically controlled
results.
The CDW order parameter, which is known to be susceptible to ergodicity problems when

using the exponential discretization [93], can be seen to be incompatible with the exact result
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using that discretization, even in this small example—and the two different ensembles give
different values, indicating a dependence on the ensemble, and therefore, sensitivity to a viol-
ation of ergodicity. In contrast, the CDW order parameter comes out correct for the diagonal
discretization, bolstering our claim that the diagonal discretization can be advantageous for
large-scale simulations. The exact Cρρ−− correlator falls extremely quickly for these values
of Uβ and κβ—and neither exponential ensemble gives much indication of decay, while the
diagonal discretization is statistically compatible with zero after the third timeslice.
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Figure 3.18: A variety of correlation functions (shown in different colors) of local bilinear operators as a function of Euclidean time,
for the exponential and diagonal discretizations, projected to the uniform and staggered irreps on both spatial indices. Exact
results are shown as thin solid lines, while numerical results are shown as markerless error bars, and the respective equal-time
order parameters are indicated in text, though the volume factors are omitted for clarity. In the left panel, the dark and light
results correspond to different ensembles, as described in the text. For additional details and discussion, see the text.
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Chapter

4 Leveraging Machine Learning to Alle-
viate Hubbard Model Sign Problems

This chapter is based on [110]
J.-L. Wynen, E. Berkowitz, S. Krieg, T. Luu, and J. Ostmeyer
arXiv:2006.11221 (submitted for publication)

Once the ergodicity problem of the previous chapter is taken care of, another, greater hurdle
remains for Monte Carlo calculations of the Hubbard model in many interesting physical
systems. In the presence of a non-zero chemical potential, for instance caused by doping, or
on non-bipartite lattices, the action of the Hubbard model is complex-valued1. This implies
that the Boltzmann weight is complex as well and can thus not be used as a probability
distribution for random sampling. This problem can in principle be circumvented easily
by employing reweighting. In many systems this however requires calculating expectation
values of strongly oscillating quantities which is numerically expensive as fine cancellations
are needed. This is the so-called complex phase or sign problem.
In this chapter, a method based on neural networks and holomorphic flow is investigated

to alleviate the phase problem on small non-bipartite lattices. The equations of holomorphic
flow define a smooth transformation of the real plane to a complex manifold. Integration
on these manifolds has no phase problem for infinite flow time or a reduced phase problem
for finite flow time. However, solving the flow equations and in particular their Jacobian is
computationally expensive and intractable for large lattices. Here, neural networks are em-
ployed to approximate the transformation defined through holomorphic flow. This approach
was first introduced for and tested on the 1 + 1 dimensional Thirring model [33]. This work
applies the method to the Hubbard model and simplifies the training procedure.
Clearly, the approach can only be successful if the training data is of high quality. That is,

it must be representative of the part of the manifold probed by HMC and capture sufficient
symmetries of the system in question. Previous works used a Monte Carlo procedure to
produce such training data. Here, a simpler gaussian sampling is used to generate random
vectors. Those vectors are then flowed using holomorphic flow until a maximum flow time
is reached. Small two-layer neural networks are then trained to map the original gaussian
vectors to their image under flow. This approach has several parameters and guidelines for
tuning them are described. Importantly, a long flow time introduces new ergodicity problems,
distinct but similar in nature to those described in the previous chapter.
These neural networks are incorporated into Hybrid Monte Carlo and it is shown that this

method retains detailed balance, which, together with ergodicity, is sufficient for HMC to
sample from the correct distribution. The algorithm is tested on triangle and tetrahedron
1 This problem is not unique to the Hubbard model but appears in many theories like QCD with finite
baryon density.
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lattices. The inclusion of networks alleviates the phase problem in both cases. While integ-
ration on the real plane is in principle sufficient for the triangle, the phase problem on the
tetrahedron is too severe and can not be overcome with standard reweighting techniques. The
neural networks solve this problem and reproduce known, exact, observables. In particular,
correlation functions were measured and found to agree with exact results.
The method presented here, while powerful on small lattices, does not scale to large systems

because the calculation of the Jacobian of the neural network is expensive. An outlook
for a potential solution by way of coupling layers is given which promises to reduce the
computational complexity of the network’s Jacobian.

4.1 Introduction
Lattice-field-theories allow for a first-principles construction of non-perturbative interacting
quantum field theories. Beyond being a mathematical footing, they provide a computa-
tional strategy for solving such systems numerically, typically via Markov-chain Monte Carlo
(MCMC). However, for this numerical approach to succeed, a Euclidean field theory requires
a real-valued action, providing a positive-definite integration measure. When the action is
complex, additional steps must be taken because the path integral can potentially oscillate
wildly which requires intricate cancellations for numerical estimates to yield accurate results
— a phase problem — rendering vanilla lattice methods powerless.
The complex phase problem (or sometimes: “sign problem”) is prevalent in many areas of

computational physics that rely on lattice stochastic methods to tackle non-perturbative phe-
nomena. Lattice quantum chromodynamics (LQCD) calculations at finite baryon chemical
potential [18,19] suffer from a phase problem and this precludes any numerical investigation of
quark matter in dense astrophysical objects such as neutron stars and supernovae [111–113].
Furthermore, there can be terms in the QCD action, such as the strong-θ term [114], whose
presence induces a sign problem. Without the development of methods to alleviate the sign
problem, assuming these terms are perturbatively small is the only recourse [18,115,116].
In nuclear lattice effective field theory (NLEFT) [2, 117, 118], where nucleons are degrees

of freedom as opposed to quarks, the sign problem prevents lattice MCMC studies of very
neutron-rich nuclei. These nuclei, near the neutron drip line, play an important role in
today’s nuclear reactors and in the industrial and astrophysical synthesis of heavy elements.
A wide variety of condensed-matter systems, including the doped fermionic Hubbard

model, exhibit a rich multi-quasi-particle spectrum (see, for example, Refs. [119–122]) and
comprise tantalizing theoretical systems with commercial relevance. Unfortunately, many
of these systems exhibit a sign problem as well. Indeed, the sign problem poses a major
stumbling block for MCMC studies in all computational subdisciplines of physics.
Finding a general solution to the phase problem with polynomial scaling in the severity

of the problem is NP-hard [20]. However, techniques that take advantage of a particular
model’s structure may still be achievable. Therefore, many strategies for alleviating the sign
problem have been developed.
The most obvious and widespread is reweighting which we describe in more detail Sec-

tion 4.2.3. Reweighting can be applied when the sign problem is mild but can fail spectacu-
larly when the problem is difficult, much as perturbation theory fails when the interactions
become strong.
Another strategy is analytic continuation. For example, in QCD one may simulate with
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purely imaginary baryon chemical potential, removing the complex phase completely (see,
for example, Refs. [123–125]). However, the issue is in how one analytically continues results
back to the real axis, which is not known a priori and thus relies on model assumptions.
Moreover, analytically continuing Monte Carlo data with uncertainties is no easy task.
Complex Langevin methods do away completely with MCMC and have had various degrees

of success (see, for example, Refs. [126–129], and more recently, [130]). Failures are prevalent
here as well, and worse, there seems to be little consensus in understanding which systems
have Langevin methods that are guaranteed correct and which do not, though progress has
been made in quantifying certain conditions for success [131].
Recently, tensor networks [132–134] have shown promise in tackling many-body systems

in both one and two dimensions. Their formalism is agnostic to the presence of a chemical
potential. There are first results for fermionic systems [135], such as spinless fermions on the
hexagonal lattice [136] and the Hubbard model on a square lattice [137]. It remains to be
seen, however, whether such calculations are preferable in terms of precision, scalability and
computing resources. The same can be said for methods that involve direct integration over
the group manifold that provide polynomial exactness [138].
The method we leverage here is related to integration on Lefschetz thimbles. By analyt-

ically continuing the integration variables into the complex plane [34] one can locate higher-
dimensional steepest-descent analogues called Lefschetz thimbles for each critical point. On
a thimble the phase is not oscillatory, but constant, up to the residual phase of the Jacobian
(which can reintroduce wild oscillations if the thimble is strongly curved [139]). Each thimble
has its own constant phase; lattice Monte Carlo on a given thimble can be performed because
the phase is global and can be factored out of the integral. A combination of all thimbles
which can be reached by holomorphic flow yields the original integral over the real vari-
ables, but finding those thimbles (or equivalently, identifying their critical points) is usually
difficult.
Early investigations with this method looked at bosonic gauge systems in low dimen-

sions [140–142]. The Thirring model — non-relativistic fermions with a chemical poten-
tial in one dimension — was studied using only one “main” thimble [143–145] before yield-
ing to a flow-based method [39–41] that approaches a thimble in the limit of long flow
times. Moreover, Lefschetz thimbles have found use in higher dimensions, including the
1+1-dimensional Thirring model [146] and small examples of the doped 2+1-dimensional
Hubbard model [147]. Gauge symmetry complicates the story but the efficacy of Lefschetz
Thimbles in gauge theories is a field of active research [148–151]. Beyond Lefschetz thimbles
one may find sign-optimized manifolds where even the residual Jacobian phase is handled
cleanly [35,36,38].
The most difficult aspect of attempting a Lefschetz decomposition is that the thimbles’

locations and shapes are not generally known a priori, and that their determination is a
complicated and numerically intensive endeavor, especially as systems get larger in higher
dimensions. Even when locating critical points is straightforward, deciding whether their
thimbles must be included to reproduce the integral of interest is not.
Numerical difficulties abound, as well. For example, the calculation of the Jacobian as-

sociated with the transformation from the real plane to these complex manifolds and its
determinant can be numerically prohibitive as the system size becomes larger. These issues
make an exact Lefschetz Thimble decomposition potentially as difficult as the original sign
problem.
Instead one can approximate the thimbles by use of holomorphic flow equations. Rather
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than completely solving the sign problem, this strategy may merely alleviate it [39, 152].
Moreover, numerical techniques to estimate the determinant of the Jacobian in an efficient
manner fix scaling problems [153]. Still, the determination of these approximate manifolds
is less computationally intensive than determining the exact manifolds, especially since they
live in high-dimensional spaces.
Machine learning provides a good tool for parameterizing the flowed manifold [33]. We

can train a neural network to parameterize an approximate flowed manifold because these
manifolds are continuous and smooth. Then, manifolds defined via networks, or learnifolds,
can be integrated on to alleviate the sign problem. The gain in speed by use of neural
networks can be substantial.
We study the Hubbard model on small non-bipartite lattices which suffer a severe phase

problem by incorporating a learnifold into HMC. Even though standard reweighting tech-
niques are completely ineffective, even for some of these small problems, we find that learnifold-
HMC allows us to extract correlation functions well, reproducing exact results. In the future
we plan to leverage this technique to study fullerenes, such as buckyballs, and anticipate a
straightforward application to doped systems as well.
Our paper is organized as follows. In Section 4.2 we describe our formalism in detail. In

Section 4.3 we then describe our algorithm, giving details about how we incorporate ma-
chine learning into HMC without compromising the algorithm’s exactness. In Section 4.4
we leverage our method, and show that it reproduces exact results for a number of differ-
ent observables on some simple systems that may be solved exactly, even when standard
reweighting might fail. We point out that there is generally a tradeoff between ergodicity
and the sign problem. Finally, we give some conclusions in Section 4.5.

4.2 Formalism
Here we introduce the Hamiltonian that we use in our studies and discuss the consequences of
using a non-bipartite lattice. We then explain reweighting — an exact method for handling
complex actions. Finally, we discuss correlation functions and mention the operators we use
to construct them.

4.2.1 The Hamiltonian
We use the Hubbard model in the particle/hole basis [54,88–91] to perform simulations. The
Hubbard model consists of a tight-binding Hamiltonian,

H0 = −
∑
x,y

(
a†x,↑hxyay,↑ + a†x,↓hxyay,↓

)
, (4.1)

where hxy is nonzero if x and y are nearest neighbors, coupled with an onsite interaction of
the form

H = H0 −
U

2

∑
x

(nx,↑ − nx,↓)2 , (4.2)

where the number operator nx,s ≡ a†x,sax,s counts electrons of spin s at position x. We now
change to the hole basis for the spin-↓ electrons,

b†x,↓ ≡ ax,↓, bx,↓ ≡ a†x,↓ , (4.3)
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which gives, up to an irrelevant constant,

H = −
∑
x,y

(
a†xhxyay − b†xhxyby

)
+
U

2

∑
x

ρ2
x , (4.4)

ρx = nax − nbx (4.5)

where nax = a†xax counts the number of (spin-↑) particles nbx = b†xbx counts the number of
spin-↓ holes at site x; we use the convention of positively-charged particles.

4.2.2 Non-bipartite lattices
Bipartite graphs are those that admit a two-coloring, such that no vertex has a neighbor of
the same color. Examples include the standard square lattice (consisting of two underlying
square lattices), the honeycomb lattice (consisting of two underlying triangular lattices), or
simply two connected sites. A non-bipartite graph, in contrast, cannot be so colored.
Graphs with odd-length cycles are not bipartite. Examples include fullerene refinements of

a 2-sphere, such as the buckyball (C60) or the dodecahedron (C20). In this case the presence
of 12 pentagonal faces (required to make the geometry closed) destroys the bipartiteness.
The simplest, non-trivial non-bipartite graph is a single triangle, which is small enough for
exact diagonalization. The tetrahedron, topologically the complete graph on four vertices, is
similarly tractable but not bipartite. The Hubbard model has been studied on non-bipartite
quasi-one-dimensional chains [154–156] and has been exactly solved on small clusters [157]
because solutions on such chains and clusters may be taken as input data for many-body
methods. The discovery of unusual heavy-fermion behavior of LiV2O4 triggered direct studies
of the Hubbard model on the pyrochlore lattice with tetrahedral unit cells [158] and other
extended non-bipartite structures (for example, see [159–161]).
As discussed in Ref. [54], when the Hubbard model is formulated on a bipartite graph its

formulation as a lattice field theory exhibits special features. Discretizing the Euclidean time
β into Nt timeslices yields a temporal lattice spacing

δ =
β

Nt
(4.6)

and we denote quantities made dimensionless with factors of δ with a tilde, so that Ũ = Uδ.
The partition function can be cast into the form of a path integral [88–91] yielding

Z =

∫ [∏
x,t

dφxt

]
e−βH[φ] =

∫ [∏
x,t

dφxt

]
W [φ] (4.7)

W [φ] = det
(
M [φ, h]M †[φ,−h]

)
exp

(
− 1

2Ũ

∑
x,t

φ2
xt

)
, (4.8)

where we assume Ũ > 0 and the fermion matrix is in the exponential discretization (see
Ref. [54] for a comparison with other discretizations),

M [φ, h]x′t′,xt = δx′,xδt′,t − [eh̃]x′,xe
iφxtBt′δt′,t+1, (4.9)
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where h̃ is the dimensionless hopping matrix and Bt = +1 for 0 < t < Nt and B0 = −1
explicitly encodes anti-periodic temporal boundary conditions.
In the case of bipartite lattices, the particle-hole transformation (4.3) can be modified to

include an additional sign

b†x,↓ ≡ Pxax,↓ bx,↓ ≡ Pxa†x,↓ , (4.10)

where Px is the parity of the sublattice, so that we perform a site-dependent sign flip—
Px = +1 if x is on one sub-lattice, −1 if on the other—for holes. This flips the sign of the
hopping term in the hole matrix such that the weight becomes

W [φ] = det
(
M [φ, h]M †[φ, h]

)
exp

(
− 1

2Ũ

∑
x,t

φ2
xt

)
(4.11)

as shown in, for example, Refs. [88–91]. Since MM † is positive-semidefinite, W is real and
positive-semi-definite as well2. Such systems are thus easily amenable to standard Monte-
Carlo simulations.
On non-bipartite lattices the signed particle-hole transformation (4.10) does not exist, as

the bipartitioning fails, so we cannot apply it and the weight (4.8) is of indefinite sign. The
next section describes how Monte-Carlo techniques can nonetheless be applied in this case
and the problem those calculations typically face.
We restrict our attention to cases where the hopping matrix h is always just a constant

times the graph’s adjacency matrix,

hxy = κ δ〈x,y〉 (4.12)

though this assumption could be relaxed to model realistic molecules where bond lengths and
corresponding hopping strengths vary. In general, the symmetry of the underlying lattice
should be considered when determining the Hamiltonian. For example, the regular dodeca-
hedron is vertex- and edge- transitive, so it is natural to assign uniform interaction strengths
to every site and uniform hopping strengths along every edge. In contrast, while the trun-
cated icosahedron (C60 buckyball) is vertex-transitive and thus every site should have the
same interaction strength, it is not edge-transitive: some edges separate two hexagons, while
others separate a hexagon from a pentagon and these two different kinds of edges could have
different hopping strengths (which physically reflects the fact that the bond lengths differ).
In larger fullerenes with Ih symmetry there are a wider variety of bond lengths, even between
hexagonal faces, because some hexagons are closer to or farther from pentagons; in fullerenes
with smaller symmetry groups (such as C70, which enjoys a D5h symmetry) we can naturally
incorporate its structure by adjusting hopping strengths in h and adjusting U from site to
site in a way that respects its symmetry. Since we here are interested in proof-of-principle
work we ignore all effects of this kind.

4.2.3 Reweighting
The expectation value of an observable Ô is given by

〈Ô〉 =
1

Z

∫
Dφ Ô[φ] e−S[φ] (4.13)

2 In the case of non-zero chemical potential, W is complex-valued even for bipartite lattices. This has been
investigated recently for small bipartite systems in the context of holomorphic flow [147,162]
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where S is the action, φ the fields, and Z the integral without the operator. For the purpose
of this discussion we include the fermionic determinants in the action S by taking the log
and casting them up into the exponential.
When the action is real-valued we can construct a Monte Carlo method, sampling config-

urations of the field φ according to their importance under a probability distribution given by
the Boltzmann weight exp(−S)/Z. Generated in such a way, we can estimate the expectation
value by the mean of observables measured on each configuration.
When the action is complex-valued the Boltzmann weight is complex as well and does

not directly provide a probability distribution. Reweighting is an exact, straightforward
procedure by which we can overcome this difficulty, given enough computer time. Rather
than sampling according to the action, one samples according to the real part of the action
SR and incorporates the phase associated with the imaginary part of the action SI into each
observable, estimating

〈Ô〉 =
〈Ôe−iSI 〉R
〈e−iSI 〉R

≈
∑

j Ô [φj ] e
−iSI [φj ]∑

j e
−iSI [φj ]

(4.14)

where j runs over the ensemble and the R-subscripted angle brackets indicate an expectation
value according to the real part of the action only3.
If the phase given by the imaginary part of the action is constant or narrowly distrib-

uted, this procedure can successfully estimate observables. However, if the phase is widely
distributed or, in the worst case, evenly covers the unit circle, the expectation value in the
denominator nears zero and reweighting becomes computationally intractable. We call the
absolute value of the denominator the statistical power

Σ =
∣∣∣〈eiθ〉R∣∣∣ , θ ≡ argW . (4.15)

When all configurations have the same imaginary action, Σ = 1 and each configuration
is valuable. When θ[φ] varies strongly for different field configurations φ, Σ is near zero
and the configurations tend to cancel; each additional configuration is hardly informative
at all. Quenching the phase, that is, estimating expectation values by the uncontrolled
approximation 〈Ô〉 ' 〈Ô〉R, can lead to a dramatic distortion of observables.

4.2.4 Correlation Functions
Two-point correlation functions between two operators Ôi and Ô

†
j at different times

Cij(τ) =
1

Z tr

{
e−βH

1

Nt

∑
t

Ôi(t+ τ)Ô†j(t)

}
=

1

Nt

∑
t

〈
Ôi(t+ τ)Ô†j(t)

〉
(4.16)

can be computed as a function of temporal separation by solving for propagators on each
configuration and tying them together in the required Wick contractions. They admit spectral

3 Unless otherwise mentioned, uncertainties presented here via reweighting come from a correlated bootstrap
procedure, where, on each bootstrap resampling, the numerator and denominator are both measured and
divided.
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decompositions

Cij(τ) =
1

Z tr

{
e−βH

1

Nt

∑
t

Ôi(t+ τ)Ô†j(t)

}
=

1

Nt

∑
t

1

Z tr
{
e−βH e+H(t+τ)Ôie

−H(t+τ) e+HtÔ†je
−Ht

}
=

1

Z tr
{
e−(β−τ)H Ôi e

+H(t+τ) e−HtÔ†j

}
=

1∑
a e
−Eaβ

∑
bc

e−Ebβe−(Ec−Eb)τzaibzbj†a (4.17)

where we moved to the Heisenberg picture and inserted resolutions of the identity in the
energy eigenbasis and defined the overlap factors

zaib =
〈
a
∣∣∣Ôi∣∣∣b〉 zbj†a =

〈
b
∣∣∣Ô†j ∣∣∣a〉 = z∗ajb (4.18)

where a and b label energy eigenstates. In the low temperature limit β → ∞ the sum is
dominated by the lowest energy state; otherwise thermal artifacts may be seen. In this limit
the long-euclidean-time limit τ → ∞ reveals the energy gap between the ground state and
the first excitation with the quantum numbers with nonzero overlaps, as all the heavier states
decay more quickly.
So, we can use single ladder operators to extract the single-particle and single-hole spec-

trum, letting Ô†j = a†j , for example. Then at each time Cij(τ) is quadratic in the volume;
diagonalizing it reveals a volume’s worth of single-particle eigenfunctions. For the simple
lattices we study here, diagonalizing can be accomplished by projecting i and j to the same
irreducible representation of the lattice symmetry.
We can also calculate correlation functions between composite operators at additional

computational expense. The composite operators we consider are the number operators nax
and nbx, their sum the total number operator nx, their difference the charge operator ρx, spin
raising and lowering operators S±x , and the spin operators Six (where i runs over all 3 spatial
directions); we also consider the two doubly-charged local bilinears. In Appendix 4.A we
detail the operators, the correlation functions we measure and how to construct conserved
quantities from them.

4.3 Algorithm
We gave an extensive overview of our application of Hybrid Monte Carlo (HMC) to the
Hubbard model in Ref. [54]. In all our reweighting-only examples we run HMC in a standard
way, performing the Metropolis accept-reject step according to the real part of the action.
In the rest of this section we detail how we incorporate learnifolds into HMC.
In Section 4.3.1 we give a summary of why integrating over a manifold given by holomorphic

flow is advantageous for reducing the sign problem. Then in Section 4.3.2 we give an overview
of how we use machine learning to quickly produce the learnifold, over which we will integrate.
We explain how we incorporate this manifold into HMC and comment on our update scheme’s
ergodicity in Section 4.3.3.
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4.3.1 Holomorphic Flow
Here we summarize the holomorphic flow and why it yields a nice integration manifold.
Holomorphic flow is the generalization of the steepest descent method to multi-dimensional

complex space. Given a holomorphic functional, in our case the action S, of theN -dimensional
complex φ, the flow equations are

dφ
dτf

= ±
(
∂S[φ]

∂φ

)∗
, (4.19)

where τf is the flow time. A minus sign indicates downward flow, while a plus sign upward
flow. Splitting the components φi = φRi + iφIi and the action S[φ] = SR[φ] + iSI [φ] into their
real and imaginary parts, yields

dφR

dτf
= ±∂S

R

∂φRi
= ±∂S

I

∂φIi
(4.20)

dφI

dτf
= ±∂S

R

∂φIi
= ∓ ∂S

I

∂φRi
, (4.21)

which are the Cauchy-Riemann equations. The equations containing SR show that the flow
equations are equivalent to the heat equation (laplacian) for the real part of the action, mean-
ing that under the flow, the real part of the action will either grow or diminish monotonically,
depending on the direction of flow. The other equations are Hamilton’s equations for the
imaginary part of the action. That is, SI remains a constant of motion during the flow. It is
easily seen that downward holomorphic flow is the generalization of gradient flow, or steepest
descent, for real fields.
The critical points φ̂cr of S[φ] are vectors of complex numbers and satisfy

∂S[φ]

∂φ

∣∣∣∣
φ̂cr

= 0 . (4.22)

They are saddle points; the associated Lefschetz thimble is the manifold in CN which flows to
a given critical point under downward flow, while the dual thimble flows to the critical point
under upward flow. Models with many variables have many critical points and associated
thimbles that must be integrated over to produce the same result as the integral on the real
manifold.
Flowing the integration region of φ ∈ Rn to the manifold(s) φ̂ eliminates the sign problem

since SI is constant on each manifold. Because there are no poles in the integration kernel,
Cauchy’s integral formula guarantees that the integral over the thimbles φ̂ ∈ Cn will be
exactly equal to the original integral over φ ∈ Rn,∫

Dφ e−S[φ] =
∑
σ

e−iS
I [φ̂cr,σ ]

∫
Dφ̂σ e−S

R[φ̂σ ] , (4.23)

where σ runs over included thimbles and φ̂cr,σ is the critical point associated with this thimble.
The number of thimbles, their critical points, and their relative weights depend on the lattice
action and the original integration region (typically RN ). Not all the thimbles in CN are
included in the sum; only those that are required to preserve the integral’s homology class.
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Thimbles do not cross each other, but are connected at places where the action diverges so
that the integration kernel vanishes. The gaussian part of the action diverges when |φ̂| → ∞;
the fermionic part of the action diverges when det

(
M [φ̂]M [−φ̂]

)
= 0. We call these zero-

weight places in the complex space neverland, as they never appear in an importance-sampling
scheme.
Because the locations of the needed critical points and their associated thimbles are not

known a priori, their determination requires extensive numerical resources; an analytic de-
termination would amount to a solution of the lattice model. Instead we follow Alexandru,
Basar, and Bedaque [40] and use the fact that the thimbles are fixed points of the flow to
our advantage: we flow only a modest amount to get an integration manifold that tends
towards the set of relevant thimbles, not solving the sign problem entirely but alleviating it
to the point where standard reweighting techniques are sufficient to address any remaining
sign problem.
To ensure our method remains exact, it is important that our ultimate integration man-

ifold is in the same homology class as the original. Because the holomorphic flow preserves
the homology class, the manifold resulting from any finite flow time is in the right class.
Moreover, because the flow’s fixed points are thimbles, a finite-flow manifold approaches
those thimbles that contribute to the integral [40]; we need not analytically decide which
thimbles to include—the flow discovers this automatically.
One point on the original manifold flows to a thimble’s critical point, and only a vanishing

neighborhood arround that point flows to the rest of the thimble—most of the original mani-
fold flows to neverland—the place where thimbles meet and vanish in the integration kernel,
typically due to zeros of the fermion determinant. These zeros act as attractors, and most
configurations flow to these zeros after a finite amount of flow time [40,145,163]. Because the
thimbles must meet at these zeros, attempting an update method like HMC on the thimbles
themselves in a naive way will be obstructed by these zeros, an ergodicity problem. However,
under only a modest flow, the manifold will not touch these zeros. We provide some visual
evidence of ergodicity in Section 4.4.1.1 and reproduce a wide range of exactly-known correl-
ation functions. So, deciding how much to flow is a balancing act—one hopes to flow enough
that the sign problem is alleviated but not so much that an ergodicity problem emerges.
Any transformation of integration variables, including the one provided by the flow, comes

with an associated Jacobian, and this Jacobian must be included in the Monte Carlo weight
(or incorporated by reweighting) for a correct method. There are flow equations for the
Jacobian as well [39],

dJ
dτf

(t) = [H[φ(t)]J(t)]∗ , (4.24)

where H is the Hessian,

Hij [φ] ≡ ∂2S

∂φi∂φj

∣∣∣∣
φ

(4.25)

=
δij

Ũ
+
(
tr
{
M−1(∂iM)M−1(∂jM)

}
− tr

{
M−1∂i∂jM

})∣∣
+κ,+φ

+ (κ, φ→ −κ,−φ) . (4.26)

Flowing the Jacobian is the most time-consuming aspect of this calculation and thus the
reason for considering neural networks, as we discuss in the next section.
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To perform the numerical integration of the flow equations (4.19), and when necessary of
the Jacobian (4.24), we use 4th order adaptive Runge-Kutta. Because the flow preserves the
imaginary part of the action, we monitor the latter during the numerical integration and
adjust the integration stepsize to keep deviations within a prescribed tolerance.

4.3.2 Networks
4.3.2.1 Architecture
We use feed-forward neural networks of dense layers to tackle the sign-problem. Like Refs. [33,
38] these networks produce the imaginary part of a field configuration from the real part and
keep the latter fixed. The transformation into complex space is thus

φ̃ = φ+ i NN(φ), (4.27)

where NN is the neural network. In addition to the ability of the network to avoid dealing
with complex numbers directly, Ref. [33] points out two advantages this formulation enjoys
over φ̃ = NN(φ): it might ameliorate the ergodicity problem that flowing can induce (for
an enlightening discussion and illustration see their Figure 2); and it tends to yield a more
stable Jacobian (Figure 3 of Ref. [33]).
We encode φ as a spacetime vector and use neural networks with a single hidden layer

with twice as many neurons as input and output layers. The hidden layer has a Softplus
activation function

Softplus(x) = log(1 + exp(x)) (4.28)

and the output layer has none. We found this to be sufficient for all cases we tested. Wider
or deeper networks as well as convolutional layers or different activation functions did not
yield significantly better results. It remains to be seen whether that scales to larger spatial
lattices.
Neural networks of the chosen architecture can be evaluated very efficiently. Unfortunately,

this is only half the story. We also need to compute the Jacobian determinant for the change
of variables, which will appear in the transformed integral (4.36). Given (4.27), it is

det J [φ] = det

(
1+ i

∂NNi(φ)

∂φj

)
. (4.29)

This operation is O
(
(NsNt)

3) (cubic in the spacetime volume), because both the determinant
and matrix multiplications in the derivative need to be performed with a general algorithm
for dense matrices. No speedup seems possible for vanilla dense networks as the weight
matrices are unconstrained. We still find our network-based transformation to significantly
outperform flow-based transformations in terms of run time, however. But this approach
does not scale to larger lattices. It is possible to improve on the scaling by estimating the
Jacobian as in Ref. [33] which uses a different network that produces only one component
of φ̃I at a time. Alternatively, one can use coupling layers which were designed to have
simple Jacobians. This requires complex valued networks in our case, however, as described
in Appendix 4.B.
We implemented neural networks and training procedures using PyTorch [164] and used

Isle [42] to implement Monte-Carlo for the Hubbard model. Section 4.3.3 describes the HMC
scheme we used to accommodate neural networks.
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4.3.2.2 Training: Procedure
We train our models using a supervised approach. To that end, we generate random real
configurations φ and flow them upward according to Eq. (4.19) for a fixed flow time to φ̂.
It is non-trivial how to generate useful data and we provide explicit details on our approach
in Section 4.3.2.3. Once the data is generated, we use Re φ̂ as inputs and Im φ̂ as target
outputs to train the networks. We do so by using the Adam algorithm [165] to minimise a
smooth L1 loss

loss(x, y) =
1

n

n∑
i

{
(xi − yi)2/2, for|xi − yi| < 1

|xi − yi| − 1/2, otherwise
(4.30)

as defined in PyTorch [164].
We know our action has exact symmetries (see Ref. [54] for a catalogue), comprising

transforms T that change field configurations but leave the action invariant, S[Tφ] = S[φ].
By symmetry, we know that a uniformly-flowed manifold exhibits many of those symmetries,
the most obvious being the temporal and spatial translation symmetries. Naturally it is
desirable that our neural networks preserve as many of these symmetries as possible.
Ref. [33] accomplishes this by training a network that takes a whole spacetime vector and

produces only the flowed configuration at the spacetime origin and using translational invari-
ance to construct the other vector elements. This technique suffers a number of constraints,
most notably, it requires full translational invariance of the lattice. This is not the case for
many interesting non-bipartite lattices, however, as they are not necessarily vertex-transitive.
Then a network with a single output is not enough because spatial symmetries cannot take
every element to every other.4

As described above, our neural networks produce a full spacetime vector as output and we
encode symmetries by augmenting the training data. One symmetry that all lattices have is
temporal translational invariance. We thus train our networks not only on the configurations
generated according to Section 4.3.2.3 but also on all possible temporal shifts of the input
and target output configurations. This effectively increases the size of the data set by a factor
of Nt. The lattices considered in this work, triangle and tetrahedron, are vertex-transitive
and we tried augmenting the training data by all possible spatial permutations but did not
find an improvement. Adding temporal translations proves very useful for increasing model
quality, however.
Every model was trained on minibatches of size 16 drawn from 1000 random configurations

plus temporal translations. The only exception is the tetrahedron with Nt = 32 whose model
was trained with 4000 configurations. We found this larger number necessary to train the
network well. For larger Nt, 1000 configurations were enough for the tetrahedron which
might be due to the higher number of added configurations from augmentation by temporal
translations.

4.3.2.3 Training: Data
Several different methods have been used to generate training data. Ref. [38] uses HMC with
a partially trained model to generate data for the next iteration of training. This is expensive

4 It may still be possible for the network to produce a much smaller vector — for example, the size of a unit
cell, or just a single timeslice.
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as new configurations have to be generated every time model hyperparameters are changed.
Because it is self-reinforcing, it is possible that such an approach can find and remain in a
local minimum or overfit a part of the phase space.
Ref. [33] uses HMC without a neural network to generate training data before fitting a

model. In order to achieve large phase space coverage, several MC ensembles with different
temperatures were generated. This approach needs to generate data only once per para-
meter set and therefore allows for faster tuning of hyperparameters. It is still susceptible to
autocorrelations, though, meaning that a large number of configurations might be needed for
sufficient phase space coverage.
Part of the goal of this work is to simplify the generation of training data in order to

develop a more scalable approach. Ref. [34] conjectures that a single thimble can be enough
to estimate the path integral. One thimble of the Hubbard model on non-bipartite lattices is
easy to find — the image of Re φ ≡ 0 under the flow. It connects to a critical point φ̂cr ≡ ic
for some U , β, and Nt dependent value c < 0. In concordance with literature, we call this
the “main” thimble. It has been shown that a single thimble is often not enough to solve the
integral [39–41,145]. We therefore identified additional thimbles, all with spacetime-constant
φ̂cr but close to the main thimble. Figure 4.1 shows the critical points for a sample system.
We produced training data by first generating random field configurations close to the

critical points that we found and then flowing them for a short, fixed flow time. In order to
reduce the required flow time, we sampled the initial configurations on the plane tangent to
the main thimble in the critical point; we call this the “tangent plane” from now on. Models
trained on these configurations for a triangle lattice can sometimes reduce the sign problem
but are prone to producing learnifolds with a wrong homology class. This problem becomes
worse the larger Nt is and we did not obtain any successful models for the tetrahedron. The
reason is that all thimbles we used are close to the origin, locating them near or in the mode
of the probability distribution but far away from the probability mass.
Empirically, we found that the dependence of the typical set of the probability distribution

W on the vector norm |Re φ| is almost the same as that of a normal distribution. In high
dimensions, the typical set of a gaussian, that is the region of phase space that contains most
of the probability, is a thin hyperspherical shell around the origin. Importance sampling, by
definition, generates fields that lie in the typical set. We can thus use HMC to visualize the
set, an example is shown in orange in Figure 4.1. The critical points of all thimbles that
we used are shown as crosses in the figure. It can be seen that those points are close to the
origin and far away from the typical set. Therefore, it should not be surprising that neural
networks trained on fields near the critical points do not generalize well to the typical set
and yield poor performance of HMC.
The approach used in this work is motivated by the dominance of the gaussian part of

action. We draw Re φ randomly from a Gaussian and set Im φ to be on the tangent plane
of the main critical point. These φ are then flowed upwards. This method has two numerical
parameters that need to be tuned. One is the width of the Gaussian σ, the other is the
flow time. Plots like Figure 4.1 provide good estimates for the quality of training data. The
better the overlap between training data and HMC in these projections the better the neural
network performs. Fortunately, the distributions explored by HMC with and without neural
networks are largely identical in these projections for well trained models. It is thus sufficient
to sample configurations on the real plane in order to estimate the HMC distribution — even
though the figure shows an ensemble generated with a network. The overlap shown in the
figure, while not perfect, is enough and the figure shows data from a successful run with
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Figure 4.1: Distributions of configurations used for training data (blue-shaded region) and
an ensemble produced via HMC with a neural network (orange-shaded region) trained
on this data. The system is a triangle with Nt = 32, κβ = 6, and U/κ = 3. The
distributions were estimated from 105 training and 106 HMC configurations. The black
crosses mark critical points of spacetime-constant φ.

reduced sign problem shown in more detail below.
Samples drawn from a normal distribution of fixed width σ =

√
Ũ have poor overlap in

figures like Figure 4.1. To remedy this, we draw the width of every sample randomly from a
uniform distribution U

σ ∼ U
(√

Ũ/x,
√
Ũ
)
, x =

√
1 +

16

Nt
(4.31)

and then draw φ from a normal distribution with that width Re φ ∼ N (0, σ). The factor x
was chosen empirically and is not based on an underlying model. This choice does however
yield good results in all cases considered here.
The other parameter, the flow time τf needs to be chosen such that plots like Figure 4.1

show good overlap but also strike a balance between reducing the sign problem and avoiding
ergodicity problems as described in Section 4.3.1. It is easy to show that for spacetime-
constant φ the gradient of the action is invariant under simultaneous Nt → aNt and φ→ φ/a.
The starting position for flow, which is on the main tangent plane, has therefore the same
Nt dependence. We use this scaling for the flow time as well and choose it to be

τmax
f = 0.1× 16/Nt (4.32)

in all cases. As with σ, this scaling was found purely based on numerical experiments.
We found significant improvements in both the time required to make training data and

the performance of the final neural networks by not requiring a fixed flow time. When using
holomorphic flow directly within MC, it is necessary to fix the flow time in order for all
configurations to be on the same manifold. In our case, the neural network ensures this
regardless of how the training data was created. Many configurations generated from a
Gaussian quickly flow into neverland and flowing becomes numerically unstable. It is thus
impossible to reach the targeted flow time. Instead of discarding these configurations, we
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monitor the integrator for stability, abort early in such a case, and add the last configuration
that could be reached in a stable way to the set of training data. It does not make sense
to use configurations that could only be flowed for very short times as those provide little
information to the neural network. We thus require a minimum flow time of

τmin
f = 0.04× 16/Nt (4.33)

for all training configurations.

4.3.3 HMC
Rather than attempt to implement HMC on the curved manifold of Lefschetz thimbles defined
through holomorphic flow [166] or learnifolds, we pull back to the real plane before performing
molecular dynamics, as will now be explained.
Given a transformation into complex space as implemented by holomorphic flow or neural

networks, we need to incorporate that transformation into Hybrid Monte-Carlo. Let

f : RN → CN , φ 7→ φ̃ and Jij [φ] ≡ ∂fi(φ)

∂φj
, (4.34)

withM≡ f(RN ) the image of f . We want to calculate observables by integrating over the
manifoldM because with suitably chosen f the sign problem is alleviated on that manifold.
SinceM is in the same homology class as RN and the integrand is regular in φ, by Cauchy’s
theorem the expectation value of an observable Ô is

〈Ô〉 =
1

ZRN

∫
RN
Dφ Ô[φ]e−S[φ] =

1

ZM

∫
M
Dφ̃ Ô[φ̃]e−S[φ̃] . (4.35)

We do not know M, however, and can thus not evaluate the integral on the right hand
side directly. Instead, we parameterize it using f . That is, we perform a transformation of
integration variables:

1

ZM

∫
M
Dφ̃ Ô[φ̃]e−S[φ̃] =

1

ZRN

∫
RN
Dφ Ô[φ̃(φ)]e−S[φ̃(φ)] det J [φ] . (4.36)

Now define the effective action as

Seff[φ̃(φ)] ≡ S[φ̃(φ)]− log detJ [φ] . (4.37)

We can estimate the integral stochastically by generating an ensemble {φ ∼ e−ReSeff[φ̃(φ)]},
where we use the real part of Seff as per the reweighting procedure described in Sec. 4.2.3.
This effectively produces an ensemble {φ̃ = f(φ) ∼ e−ReS[φ̃]} on which the observables Ô
can be measured.
We use HMC to generate the ensembles. To this end, we augment the integral by mul-

tiplying with a one in the form of an integral over the artificial conjugate momentum p such
that

〈Ô〉 =
1

Z

∫
DφDp Ô[φ̃(φ)]e−i ImSeff[φ̃(φ)]e−H[p,φ̃(φ)], (4.38)

H[p, φ̃(φ)] ≡ p2

2
+ ReSeff[φ̃(φ)] . (4.39)
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All integrals are to be understood as integrating over RN from now on. We can encapsulate
all dependencies on f in a modified HMC algorithm such that it produces configurations on
M suitable for measurements. The following summarizes the algorithm:

complexified HMC in: φ̃ out: φ̃′

φ← f−1(φ̃) # transform to RN

p← N0,1 # draw random momentum
ψ′, p′ ← molecular_dynamics(φ, p) # generate candidate on RN

ψ̃′ ← f(ψ′) # transform toM
φ̃′ ← accept_reject(H[p′, ψ̃′], H[p, φ̃]) # pick new field

A new configuration is obtained from an old one by first transforming the old complex field
φ̃ to the real plane5 where it is then updated using molecular dynamics (MD), or any other
suitable updating scheme, such as the large jumps explained in Ref. [54]. The new candidate
field ψ is then transformed toM where it is accepted or rejected using a Metropolis-Hastings
step.
It remains to prove that this algorithm produces a Markov Chain. For this, we adopt the

picture that we are producing real fields {φ ∼ e−ReSeff[φ̃(φ)]}. Such a proof is equivalent
to showing that {φ̃} is a Markov Chain sampled from e−ReS[φ̃]. We do so by first proving
detailed balance

P(φ)P(φ′|φ) = P(φ′)P(φ|φ′) (4.40)

with (ignoring normalization factors)

P(φ) = e−ReSeff[φ̃(φ)] (4.41)

P(φ′|φ) =

∫
Dp′Dp e−p2/2PMD(p′, φ′|p, φ)Pa/r(p

′, φ̃(φ′)|p, φ̃(φ)) . (4.42)

PMD and e−p2/2 are the same molecular dynamics and gaussian probabilities as in standard
HMC. The prior P(φ) and accept/reject

Pa/r(p
′, φ̃(φ′)|p, φ̃(φ)) = min

1,
exp

(
−p′2

2 − ReSeff[φ̃(φ′)]
)

exp
(
−p2

2 − ReSeff[φ̃(φ)]
)
 (4.43)

probabilities use the effective action which encapsulates φ̃. Thus the proof of detailed bal-
ance (4.40) proceeds as usual for HMC. The only ingredient missing to fully prove correctness
of our algorithm is a proof of ergodicity. Such a proof is generally not available even for stand-
ard HMC. We thus rely on a posteriori analyses to verify ergodicity. Certainly with a long
flow time we expect many configurations to flow to neverland, creating large zero-probability
regions that separate important islands of configurations. However, if we only flow a little,
few if any configurations flow to neverland and the manifold of integration is not partitioned.
Our ability to reproduce exact results in Section 4.4 suggests that our method successfully
explores fields whose images are near different thimbles. A well trained network inherits these
properties from the flowed manifold of its training data.
5 The inverse transformation f−1 can be unstable and/or expensive to evaluate. But there is no need to
perform this calculation if we just keep track of φ as well as φ̃.
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Figure 4.2: The entire spectrum of the Hubbard model on a triangle as a function of U/κ,
changing from 0 to 5 in 20 equal steps, with colors corresponding to different U/κ.
Energy eigenfunctions carry Q, S, Sz and Lz quantum numbers; each panel projects
the five-dimensional space onto one quantum number and the energy. Each U/κ is
slightly offset, so that each point in the spectrum for U/κ = 0 is to the left of that
point’s quantum numbers, while U/κ = 5 is to the right. One translucent point is
plotted per state; more opaque circles correspond to more highly degenerate states. The
ground-state manifold qualitatively changes at U4/κ = 3.61775 . . ., shown in a deep
blue.

4.4 Results
To demonstrate the efficacy of the neural network methods we will explore small lattices,
leaving larger lattices for future work. In particular, we here consider the triangle and tetra-
hedron, both maximally connected and therefore, where we expect the worst sign problem.

4.4.1 The Triangle
Three spatial sites is the smallest nontrivial non-bipartite graph we might study—the two-
site problem is bipartite and the one-site problem has no hopping at all. We studied those
problems extensively using the lattice methods applied here in Ref. [54].
The hopping matrix is given by

h = κ

 0 1 1
1 0 1
1 1 0

 , (4.44)

and the Hamiltonian has D3 dihedral symmetry. When diagonalized, the hopping matrix
reveals one spatially uniform (trivial) irrep with eigenvalue 2κ and a dimension-two irrep
with eigenvalue −κ.
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The unitary site permutation operator P

P ax P
† = ax+1 P bx P

† = bx+1

P a†x P
† = a†x+1 P b†x P

† = b†x+1 (4.45)

rotates the sites into one another (the indices on the ladder operators are understood mod
3). P trivially commutes with the potential and nontrivially with the hopping (4.1).

The three irreducible single-particle destruction operators are

Ôk =
1√
3

2∑
j=0

e2πijk/3aj (4.46)

which are labeled by k = ±1, 0, which corresponds to their transformation properties,

PÔkP
† = e2πik/3Ôk, (4.47)

a spherical-tensor-like relation, and the hopping Hamiltonian can be decomposed

H0 = κ
[(
Ô†−1Ô−1 + Ô†+1Ô+1 − 2Ô†0Ô0

)
− (a→ b)

]
, (4.48)

corresponding to the irreps described above. We label the spatial permutation quantum
number by Lz = k, since it corresponds to an angular momentum around the center of the
triangle.
The spectrum for this system, which can be obtained from direct diagonalization of the

Hamiltonian, consists of 43 = 64 states in the entire Fock space. When U = 0, a single state
with Q = −1, S = 0, Sz = 0 Lz = 0 has the lowest energy, and a partner with Q = +1,
S = 0, Sz = 0, Lz = 0 has the highest energy. Explicitly, the spectrum is not symmetric in
Q, though of course the spectrum is symmetric in Sz and Lz. When U becomes large, the
lowest energy is shared by a degenerate quadruplet of states with Q = 0, S = 1/2, Sz = ±1

2
and Lz = ±1. At approximately U4/κ = 3.61775 the low-U/κ ground state and high-U/κ
four-plet are degenerate. When U/κ is very large the spectrum nearly exhibits symmetry in
Q.
Spectra, like those shown in Figure 4.2 and operator overlap factors (4.18), can be used to

directly calculate the single-particle correlator via the spectral decomposition (4.17). Using
the single-particle operators (4.46) we can also use Monte Carlo to compute the single-particle
correlators numerically.

4.4.1.1 Ergodicity and the Sign Problem
In the language of Refs. [32, 54] we use the exponential α = 1 discretization. As detailed in
Ref. [54] there is a formal ergodicity problem on bipartite lattices. When the lattice is not
bipartite the codimension-1 manifolds of exceptional configurations are reduced in dimension
and there is no formal ergodicity problem. First, we give a small toy problem confirming this
claim and then reproduce the exact results obtained through direct diagonalization. Then,
we examine the statistical power for HMC alone as a function of U/κ and κβ and find that,
for a given temperature, the sign problem is worst when U/κ = U4/κ ≈ 3.61775, the value
where the vacuum changes character, as shown in Figure 4.2.
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To visually appreciate that the codimension-1 manifolds that prevent HMC alone from
being formally ergodic in the bipartite case are reduced in dimension, consider a problem
with Nt = 1 and let φx live on spatial site x. Then, the product of the fermion determinants
is

detMpMh =
4

9

[
3 cos

(1

2
Φ
)

+

3∑
j=1

(
2 cosh

(
κ+

i

2
(Φ− 2φj)

)

+ cosh
(

2κ− i

2
(Φ− 2φj)

))]2

(4.49)

where Φ =
∑

x φx. Figure 4.3 shows the absolute value (left panel) and complex argument
(right panel) of this determinant at Φ = 0 and two orthogonal combinations of the field
variables. The only zeros are where the lines of different phase meet—in the two-dimensional
projection of the phase in Figure 4.3, points around which the phase winds. As Φ changes,
those points move but they never become extended. So, even with an exponential discret-
ization, the codimension-1 zeros are reduced when the lattice is not bipartite; the fermion
determinant allows free exploration the complex plane, rather than constraining it by the
reality condition that arises in the bipartite case, as explained in Ref. [54].

Figure 4.3: The absolute value and phase of (4.49) for κ = 1 and Φ = 0, shown as a
function of two directions in field space orthogonal to the Φ direction. In the left panel,
yellow indicates large absolute values and purple small ones. In the right panel the color
scheme is periodic; the exact zeros occur at the six points on each dark circle where the
phase wraps around the point.

The gaussian part of the weight encourages the fields to stay in the central mode. When the
gaussian becomes wider, more than one mode in Figure 4.3 might become important. There
is no formal ergodicity problem, even in the exponential case, and HMC can take us from
mode to mode. However, at the mode boundaries, the phase changes rapidly, causing a sign
problem. In this small example, if the gaussian is wide enough, HMC can sample trajectories
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Figure 4.4: The histograms (left) of the phase for two different values of U/κ as a function
of β and the corresponding statistical power (right) with bootstrap errors. In the right
panel different Nt are shown from left to right: 16, 32, 48, and 64.
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that near this rapid change we would expect to encounter a sign problem, but if the width
were very narrow we would not. In examples with more lattice sites and timeslices, the huge
growth of phase space of configurations further from φ = 0 can counterbalance a narrow
gaussian (the width is controlled by Uβ/Nt), so it is a priori unclear whether increasing Nt

will help or hurt; since the action is extensive, one expects a sign problem exponentially bad
with β. However, increasing Nt also increases the number of variables and the odds that
some are near the mode boundaries.
In Figure 4.4 we show the phase histogram (left panels) and the statistical power (right

panels) of ensembles generated with HMC with real valued fields for two values of U/κ as
functions of βκ. We generated 100,000 trajectories with one molecular dynamics time unit
and the number of steps in the leapfrog integrator to give better than 75% acceptance.
The histograms are actually results for multiple Nts superimposed, to show the very mild
sensitivity to the discretization scale. We also generated additional ensembles at U/κ from
one to nine in integer steps and U4/κ, and found that the sign problem modestly improved,
for fixed κβ, for couplings further from U4/κ. By analogy, we expect worse sign problems for
critical points, where the system must tunnel between qualitatively different ground states.

4.4.1.2 Results

Since we can exactly calculate the spectrum and overlap factors for this small problem,
we can generate the exact, continuum-limit correlation functions according to the spectral
decomposition (4.17). This provides us a means to directly check the accuracy of our NN
method.
We ran HMC in three different ways — on the real plane, on the tangent plane of the main

thimble, and on the learnifold. The left panel of Figure 4.5 shows running averages of the
statistical power as a function of Monte Carlo time for U/κ = 3 and κβ = 8. After many
configurations, Σ on real and tangent planes converges to similar small but non-vanishing
values, while the neural network produces a markedly greater statistical power. Remember,
an improved statistical power indicates an exponential reduction of the sign problem. So,
while the sign problem is not solved, per se, we provide evidence here that it is significantly
alleviated.
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Figure 4.5: Left panel shows statistical power as a function of sample size on a triangle
lattice with Nt = 64, U/κ = 3, κβ = 8. Right panel shows statistical power for different
parameters on a triangle lattice. Each point was estimated using 105 configurations.
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This chosen set of parameters shows the worst statistical power on real and tangent plane
out of the sets we tested. See the right panel of Figure 4.5 for a summary for different
parameters. The large variations in Σ for neural network based calculations stem from
different qualities of the trained models. It should be possible to tune the networks better
and thus increase statistical power. These networks perform well enough, however. Generally,
we found that the sign problem is not a complete impediment on the triangle and a plain
calculation on the real plane with reweighting can suffice.
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Figure 4.6: Single particle correlators 〈aa†(τ)〉 on a triangle lattice with Nt = 64, U/κ = 3,
κβ = 8. Each column shows correlators obtained from ensembles of the given number of
configurations, while each row shows a different implementation of HMC. Sample sizes
show the total number of Monte Carlo configurations but correlators were measured
only on every 10th configuration. The dotted lines are placed at max(C)/

√
Sample size

and indicate the scale at which even a sign-problem-free method would show sizeable
statistical fluctuations.

In Figure 4.6 we show how the different methods’ measurements of diagonalized6 single-
particle correlation functions converge as a function of the number of configurations. With
many configurations all three methods reproduce the exact correlators (shown in black).
However, the network reproduces the exact results (up to the expected 1/

√
N relative scale

from statistical noise) with fewer configurations.
Focusing on learnifold-enhanced HMC calculations, Figure 4.7 shows single particle correl-

ators for several different parameters and discretization scales measured on ensembles of 105

configurations. The figure also shows deviations from the exact results as

E = CMC/Cexact − 1 . (4.50)

6 All correlators shown in this work are projected to irreps of the lattice, as in (4.46). We found this method
suitable to produce diagonal all-to-all correlation matrices on triangle and tetrahedron lattices.
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Figure 4.7: Single particle correlators 〈aa†(τ)〉 on a triangle lattice for a sample size of
105. The low energy correlators are averages of two degenerate results. The top panels
show the correlators for different Nt from HMC with a neural network and the results
from exact diagonalization of the Hamiltonian. The lower panels show the relative
error (4.50). Errors for the low and high energy correlators are labeled E− and E+,
respectively.

In addition, we compute and diagonalize a variety of correlation functions between bilinear
operators, as mentioned in Section 4.2.4 and detailed in Appendix 4.A.1. In Figure 4.8 we
show two — the diagonalized charge-charge and spin-spin correlators. Additional correlators
can be found in Figure 4.13.

4.4.2 The Tetrahedron
Many arrangements of four sites are not bipartite. Of these the “most non-bipartite”, and
therefore the one where we expect the worst sign problem, is the tetrahedron, where the
connectivity matrix is proportional to the adjacency matrix of the complete graph on 4 sites,

h = κ


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 (4.51)

so that each subset of 3 sites forms a frustrated triangle; we label the sites 0–3. The Hamilto-
nian commutes with the permutation operator P that acts on any triangular face (4.45) and
leaves the other site alone. We conventionally pick the symmetry axis through the fourth
site to be the axis of symmetry around which we have a rotational quantum number.
The four irreducible single-particle destruction operators are

Ô0
0 =

1

2

3∑
j=0

aj Ô0
1 =

1

2
√

3

3a3 −
2∑
j=0

aj

 Ô±1
1 =

1√
3

2∑
j=0

e±
2πi
3
jaj (4.52)

where the lower index indicates an L2-like quantum number ` and the upper index an Lz-like
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Figure 4.8: Correlation functions between two charge operators ρ or two S3 spin operators
separated by euclidean time κτ on a triangle for different discretization scales given by
Nt and the exact result (in black). The bottom panels show the relative error (4.50)
for the constant correlator (0) and the average of two heavy correlators (+) which have
k = 0 and ±1, respectively.

quantum number m. The free Hamiltonian may be written in terms of these operators,

H0 = κ

[(
−3Ô0†

0 Ô
0
0 +

1∑
m=−1

Ôm†1 Ôm1

)
− (a→ b)

]
(4.53)

and the translationally-invariant interaction term transforms as an ` = 0, m = 0 “spherical
tensor”. Therefore, these are good quantum numbers and correlation functions put into this
basis are diagonal.
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Figure 4.9: Left panel shows the statistical power as a function of sample size on a tetra-
hedron lattice with Nt = 64, U/κ = 3, κβ = 6. Right panel shows statistical power for
different parameters on a triangle lattice. Each point was estimated using 106 configur-
ations.
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4.4.2.1 Results

We expect the sign problem to be worse than on a triangle because the tetrahedron is sub-
stantially more frustrated since it has four triangular faces. This is an opportunity to test
our method in a system where calculations on the real plane are, as far as we can tell, just
not possible.
Indeed, HMC on both the real and tangent planes has essentially 0 statistical power as

shown in the left panel of Figure 4.9, an extremely difficult sign problem. In contrast, the
neural network method converges to a finite statistical power. Even though this value is
small, it is sufficient as shown below. The right panel of Figure 4.9 shows this improvement
in statistical power holds for all the ensembles we consider.
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Figure 4.10: Single particle correlators 〈aa†(τ)〉 on a tetrahedron lattice with Nt = 64,
U/κ = 3, κβ = 6. Each column shows correlators obtained from ensembles of the
given number of configurations, while each row shows a different implementation of
HMC. Correlators are computed only on every 10th configuration. The dotted lines are
placed at max(C)/

√
Sample size and indicate the scale at which even a sign-problem-

free method would show sizeable statistical fluctuations.

Figure 4.10 shows the drastic improvement obtained when simulating with the neural
network. By studying the single-particle correlators, it is apparent that while the network
method converges to the exact answer, the real and tangent plane methods are completely
ineffective — their uncertainties remain large and their match to the exact results poor.
In Figure 4.11 we show network-method results for different discretizations, and their rel-

ative errors E (4.50). Those correlators were computed on an ensemble of 106 configurations,
measuring on only every 10th configuration to reduce autocorrelations. The light correlator
is an average of the ` = 1 triplet of correlation functions. The error of the heavy correl-
ator grows for intermediate euclidean time, but this is expected given the concrete sample
size, see Figure 4.10. In addition, we computed bilinear correlation functions as described in
Section 4.2.4 and Section 4.A.1. Figure 4.12 shows the continuum-limit convergence of the
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Figure 4.11: Single particle correlators 〈aa†〉 on a tetrahedron lattice. The low energy cor-
relators are averages of three degenerate results. The top panels show the correlators
for different Nt from HMC with neural network and the results from exact diagonaliz-
ation of the Hamiltonian. The lower panels show the relative error (4.50). Errors for
the low and high energy correlators are labeled E− and E+, respectively.

charge-charge and S3-S3 correlators projected to the singlet and triplet (as in (4.52)) towards
the exact result. Additional examples can be found in Figure 4.14.

4.5 Conclusions
In this work we adapted the learnifold method proposed by Alexandru, Bedaque, Lamm, and
Lawrence [33] to alleviate the sign problem in small, frustrated Hubbard model examples.
As shown in Figs. 4.5 and 4.9, our method definitively improves the statistical power, thus
providing an exponential improvement in the sign problem. With the NN, it reproduces
results obtained from exact diagonalization on a variety of correlation functions, c.f. Figures
4.7, 4.8, 4.13, 4.11, 4.12, 4.14. The agreement with exact results provides a posteriori evidence
that we have an accurate, ergodic method.
By approximating the holomorphic flow with a neural network, we have developed an

HMC method well-suited for tackling sign problems in the Hubbard model. As opposed to
most previous work involving Lefschetz thimbles, our method does not rely on obtaining the
precise location of the main thimble nor on the locations of less critical thimbles. In fact,
our neural networks perform better when not using prior knowledge of thimble locations.
The reason is two-fold. First, during HMC evolution, the gaussian part of our action drives
configurations to regions that are not dominated by a single thimble, bur rather multiple
thimbles. If we instead only trained on the main thimble, HMC would quickly force config-
urations into regions outside the trained network and we immediately encounter a numerical
runaway problem — the imaginary part of the fields become arbitrarily large in an attempt
to minimize the action. Second, our goal is to alleviate the sign problem to a point where
standard reweighting techniques can be applied to obtain sufficiently accurate observables.
Thus our maximum flow time was relatively small, yet sufficient to obtain accurate results.
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Figure 4.12: Correlation functions between two charge operators ρ or two S3 spin operators
on a tetrahedron. The bottom panels show the relative error (4.50) for the constant
correlator E0 and the average of three heavy correlators E+, respectively.

The modest flow times also prevented us from coming too close to points where the integ-
ration kernel vanishes, which in turn kept any ergodicity issues at bay. Though integrating
directly on the thimbles eliminates the sign problem altogether, we believe that determining
the exact location of these manifolds and the subsequent manifold integration is a daunting
task (perhaps as difficult as the original sign problem), and becomes only more difficult if
one considers gauge theories in higher dimensions.
A drawback of our method is still the need to calculate the determinant of a Jacobian

induced by the complexified fields. Though our network was able to calculate the Jacobian
much more quickly than a direct numerical flowing of the Jacobian as needed by holomorphic
flow, the calculation still scales with the cubic power of the spacetime volume. Thus we
anticipate that calculations of larger dimensional systems with our network method will
ultimately run into this scaling barrier. We are actively researching methods to reduce this
computational scaling, and we see some promise in networks that work directly with complex
variables, see Appendix 4.B.
The sign problem we addressed was due to the non-bipartite spatial lattices, thus providing

a basis for extensions to quasi-zero-dimensional systems like C20 and the buckyball C60
7. Our

framework is nonetheless easily adapted to other sign problems. In future work, we anticipate
simulating systems away from half filling and extended models with sufficiently strong non-
local couplings [102], both of which suffer a sign problem not only extensive in euclidean time
but also in space.
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Appendix

4.A Correlation Functions of Bilinear Operators
Spin-spin correlation functions are correlation functions between local spin operators Six
where x is a lattice site and i runs over the indices of the Pauli matrices,

Six =
1

2

∑
ss′

cxsσ
i
ss′c
†
xs′ (4.54)

and where c is a doublet of operators,

cxs =

(
ax

(−σκ)xb†x

)
(4.55)

where σκ is +1 on bipartite lattices and must be −1 on non-bipartite lattices, following the
convention of Isle (bipartite graphs can also have σκ = −1). In Ref. [93] the authors also
define, just after (1), the electric charge operator

ρx = c†x,↑cx,↑ + c†x,↓cx,↓ − 1 (4.56)

which can be rewritten as ρx = 1 − 2S0
x, where the 0th Pauli matrix is the 2 × 2 identity

matrix. The S operators are Hermitian. Rewriting those operators into the Isle basis,

S0
x =

1

2

[
axa
†
x − bxb†x + 1

]
S1
x =

1

2
(−σκ)x

[
b†xa
†
x + axbx

]
ρx = nax − nbx = 1− 2S0

x = bxb
†
x − axa†x S2

x =
i

2
(−σκ)x

[
b†xa
†
x − axbx

]
(4.57)

nx = nax + nbx = 1− 2S3
x = a†xax + b†xbx S3

x =
1

2

[
axa
†
x + bxb

†
x − 1

]
where the σκ squares away when two b operators are multiplied and no sum is implied on
the right-hand sides. The other two spin bilinears have absolute charge 2,

(S+
+)

x
= a†xbx (S−−)

x
= b†xax. (4.58)

There are, of course, other doubly-charged operators but none that live on a single site, by
Pauli exclusion.
The three spin operators obey the commutation relation[

Six, S
j
y

]
= iδxyε

ijkSkx (4.59)

which may be checked explicitly by writing out the operators and using the anticommutation
properties of a and b. By a similar exercise one may show[

S0
x, S

j
y

]
= 0. (4.60)
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Single-particle and single-hole operators O with a definite third component of spin s3 obey
the operator eigenvalue equation

[S3
x,Oy] = s3Oyδxy. (4.61)

This equation is satisfied when (O, s3) = (a,+1
2), (a†,−1

2), (b,+1
2), and (b†,−1

2). Single-
particle and single-hole operators O with a definite electric charge q obeys the operator
eigenvalue equation

[ρx,Oy] = qOyδxy. (4.62)

This equation is satisfied when (O, q) = (a,−1), (a†,+1), (b,+1), and (b†,−1). Note that
the signs differ from the S3 case.

One may also construct spin raising and lowering operators in the standard way,

S+
x = S1

x + iS2
x = (−σκ)xaxbx S−x = S1

x − iS2
x = (−σκ)xb†xa

†
x (4.63)

which obey the eigenvalue relations

[S3
x, S

±
y ] = ±S±y δxy, (4.64)

which can be shown using the single-particle and single-hole eigenvalue equations and the
Leibniz rule.
The construction of the number operators proceeds in a similar fashion,

δxx − nax = S0
x + S3

x = axa
†
x = δxx − a†xax (4.65)

nbx = S0
x − S3

x = −bxb†x + δxx = −δxx + b†xbx + δxx = b†xbx. (4.66)

We can of course drop the constant term in the first definition. The number operators obey
the equations

[nax, ay] = −ayδxy
[
nax, a

†
]

= +a†yδxy (4.67)

and similarly for holes. It is easy to see using the eigenoperator equations (4.61) and (4.62)
and the Leibniz rule that these operators commute with the local electric charge and spin,
so that they have vacuum quantum numbers, while the doubly-charged operators satisfy

[ρx, (S
+
+)

y
] = +2(S+

+)
y
δxy [ρx, (S

−
−)

y
] = −2(S−−)

y
δxy (4.68)

and are spin-0 because they commute with the spin operators. The one-point functions may
be computed by Wick contraction

1

Nt

∑
t

〈nax〉 =

〈
1− 1

Nt

∑
t

Pxtxt

〉
1

Nt

∑
t

〈nbx〉 =

〈
1− 1

Nt

∑
t

Hxtxt

〉
(4.69)

where we denoted the Wick contraction of ax,tfa
†
y,ti

= (Mp)−1
xtfyti

≡ Pxtfyti , defining the

particle propagator P , and similarly for holes bx,tf b
†
y,ti

= (Mh)−1
xtfyti

≡ Hxtfyti the hole
propagator. These may be combined according to (4.57) to get one-point expectation values
for nx, ρx, and S3

x. Bilinears not having vacuum quantum numbers have vanishing one-point
expectation values.
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4.A.1 Correlation Functions
Now we can write two-point correlation functions

Cuvxy (τ) =
1

Nt

∑
t

〈
Sux,t+τS

v
y,t

〉
(4.70)

and we do not need to track time separately, until we start analyzing how to actually analyze
these correlation functions via their spectral decompositions, though we always put the x
position at the initial time i = t and the y position at the final time f = t + τ , so one can
read x and y as superindices. When calculating numerically we sum over all initial timeslices
t to ensure the only time dependence is on the time difference τ . In these correlator
expressions x and y are unsummed.

The simplest correlation function is between S+ and S−,

C+−
xy =

〈
S+
x S
−
y

〉
= (−σκ)x+y

〈
axbxb

†
ya
†
y

〉
= (−σκ)x+y 〈PxyHxy〉 (4.71)

C−+
xy =

〈
S−x S

+
y

〉
= (−σκ)x+y

〈
b†xa
†
xayby

〉
= (−σκ)x+y

〈
(δyx − byb†x)(δyx − aya†x)

〉
= (−σκ)x+y 〈(δyx −Hyx)(δyx − Pyx)〉 (4.72)

where we have taken advantage of the anticommutator rules and that the Wick contractions
yield the particle and hole propagators P andH (suppressing the time dependence for clarity).
At half filling on a bipartite lattice, the cost to create or destroy a spin from the vacuum
should be equal and the correlators should match, in the limit of large statistics. At equal
time τ = 0, these correlation functions provide access to the spin-flip information [167].
Correlations between the number operator na and itself or nb are also simple to write,

Cphxy =
〈
naxn

b
y

〉
=
〈

(δxx − axa†x)(δyy − byb†y)
〉

= 〈(δxx − Pxx)(δyy −Hyy)〉 (4.73)

Cppxy =
〈
naxn

a
y

〉
=
〈

(δxx − axa†x)(δyy − aya†y)
〉

=
〈
δxxδyy − axa†xδyy − δxxaya†y + axa

†
xaya

†
y

〉
=
〈
δxxδyy − axa†xδyy − δxxaya†y + ax(δxy − aya†x)a†y

〉
= 〈δxxδyy − Pxxδyy − δxxPyy + Pxyδxy + PxxPyy − PxyPyx〉 (4.74)

and we can interchange the p/h species superscripts by exchanging the P and H propagat-
ors.While these correlators are between operators as simple as S+ and S−, computationally
these Wick contractions are tougher to compute because they are “quark-line disconnected”.
We can also build correlators between the spin operators Si. For example C11 is given by

C11
xy =

〈
S1
xS

1
y

〉
=

1

4
(−σκ)x+y

〈[
b†xa
†
x + axbx

] [
b†ya
†
y + ayby

]〉
=

1

4
(−σκ)x+y

〈
axa
†
ybxb

†
y + (δyx − aya†x)(δyx − byb†x)

〉
=

1

4
(−σκ)x+y 〈PxyHxy + (δyx − Pyx)(δyx −Hyx)〉 (4.75)

where we have used the fact that we will only get a non-zero result if we have the same number
of as as a†s (and likewise for b) to drop the four-dagger and no-dagger terms. Computing
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C22
xy requires

〈
S2
xS

2
y

〉
=

1

4
(−σκ)x+y

〈[
b†xa
†
x − axbx

] [
ayby − b†ya†y

]〉
(4.76)

though when written out in their complete glory, only the non-vanishing operator content
in
〈
S1
xS

1
y

〉
remains, so C22

xy = C11
xy configuration-by-configuration (the vanishing operators

have the opposite sign). In fact, using the definition of the spin raising and lowering operat-
ors (4.63) one concludes

C11
xy + C22

xy =
1

2

(
C+−
xy + C−+

xy

)
C12
xy − C21

xy =
i

2

(
C+−
xy − C−+

xy

)
(4.77)

and we have explicitly checked the first identity by computing the Wick contractions (4.71),
(4.72), and (4.75), and the fact that C22

xy = C11
xy. It is easy to show that once the all-dagger

or no-dagger operators are dropped,〈
S1
xS

2
y

〉
= −

〈
S2
xS

1
y

〉
so that C12

xy =
i

4

(
C+−
xy − C−+

xy

)
(4.78)

which may be checked explicitly, and is true configuration-by-configuration.
The other two spins S0 and S3 do not enjoy such simplifications, because unlike the raising

and lowering operators the number operators (4.66) have vacuum quantum numbers, so there
are no zero- or four-dagger terms which may be dropped from the Wick contractions. We
are stuck computing four correlators,

C00
xy =

1

4

(
Cppxy + Chhxy − Cphxy − Chpxy +

〈
1− nax − nay + nbx + nby

〉)
C03
xy =

1

4

(
Cppxy − Chhxy + Cphxy − Chpxy +

〈
1− nax − nay + nbx − nby

〉)
C30
xy =

1

4

(
Cppxy − Chhxy − Cphxy + Chpxy +

〈
1− nax − nay − nbx + nby

〉)
C33
xy =

1

4

(
Cppxy + Chhxy + Cphxy + Chpxy +

〈
1− nax − nay − nbx − nby

〉)
and we define Cρρxy = Cppxy + Chhxy − Cphxy − Chpxy (4.79)

Cρnxy = Cppxy − Chhxy + Cphxy − Chpxy (4.80)

Cnρxy = Cppxy − Chhxy − Cphxy + Chpxy (4.81)

Cnnxy = Cppxy + Chhxy + Cphxy + Chpxy (4.82)

so that a ρ superscript indicates the charge operator (4.57) and an n superscript the total
number operator. The Wick contractions may be explicitly computed or built by rewriting
the definition of the number operators (4.66) as

S0
x =

1

2

(
1 + nbx − nax

)
S3
x =

1

2

(
1− nbx − nax

)
(4.83)

and using the particle-hole (4.73) and particle-particle (4.74) correlators and the one-point
functions (4.69). Note that S1,2 cannot be correlated with S0,3 because each term would
not have the right constituent operator content to contract completely, so those correlators
automatically vanish.
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The doubly charged operators have simple Wick contractions. Note that (S+
+)
†

= (S−−) so
that

(C+
+
−
−)

xy
=
〈
a†xbxb

†
yay

〉
=
〈
a†xaybxb

†
y

〉
=
〈

(δyx − aya†x)bxb
†
y

〉
= 〈(δyx − Pyx)Hxy〉

(4.84)

C−−
+
+ =

[
C+

+
−
− with P ↔ H

]
. (4.85)

Based on the exact results, a Lepage-style argument [168] suggests these doubly-charged
correlators should suffer from a signal-to-noise problem.

4.A.2 Conserved Quantities
When the Hamiltonian takes a Hubbard-Coulomb-like form,

H = −
∑
xy

(
a†xhxyay + σκb

†
xhxyby

)
+

1

2

∑
xy

ρxVxyρy (4.86)

some of the bilinears may correspond to conserved quantities. For example, we can calculate
the commutator with a local charge density operator,

[H, ρz] =

[∑
xy

a†xhxyay + σκb
†
xhxyby, ρz

]
(4.87)

=
∑
x

−a†xhxzaz +
∑
y

a†zhzyay − σκ(a↔ b) (4.88)

where we immediately dropped the interaction term since the charge operator commutes with
itself. If we sum z over all space the two terms cancel, so that the total charge

Q =
∑
z

ρz (4.89)

is conserved. One similarly finds the total spins in each direction conserved,[
H,Si

]
= 0 Si =

∑
z

Siz (4.90)

for i ∈ {1, 2, 3} and in fact the total spin also commutes with the Hamiltonian

[H,S2] = 0 S2 =
∑
i

(Si)2. (4.91)

When the operators are conserved, their two-point correlation functions are constant,

CQQ(τ) =
1

Z tr
{
Q(τ)Q(0)e−βH

}
=

1

Z tr
{
e+HτQ(0)e−HτQ(0)e−βH

}
=

1

Z tr
{
Q(0)e−HτQ(0)e−(β−τ)H

}
=

1

Z tr
{
Q(0)Q(0)e−βH

}
(4.92)

where we wrote the Heisenberg-picture Q(τ) in terms of the zero-time operator and the
Hamiltonian and repeatedly used the fact that Q commutes with the Hamiltonian. We can
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turn this relation on its head and get an estimate for the equal-time correlator
〈
Q2
〉
by

averaging over the temporal separation,〈
Q2
〉

=
1

Nt

∑
τ

CQQ(τ) =
1

Nt

∑
τ

Cρρ++(τ), (4.93)

where a + subscript indicates that the spatial index is summed over—in this case, implement-
ing (4.89). This same observation holds for the total spin operators Si (and therefore also for
S±), with the Hamiltonian shown above. We can measure the mean-squared magnetization〈
S2
〉
by

〈
S2
〉

=
3∑
i=1

1

Nt

∑
τ

Cii++(τ) (4.94)

On small test examples one observes numerically that the correlators are flat with the
exponential discretization and seem linear with time in the diagonal discretization; averaging
properly still yields good values—for an explicit example see the last appendix of Ref. [54].

4.A.3 Numerical Results
This section shows results for additional correlators that are not covered in the main text.
Correlators in Figures 4.13 and 4.14 are computed on the same ensembles (“network”) as
those in Sections 4.4.1.2 and 4.4.2.1, respectively.
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Figure 4.13: Numerical results for some correlation functions on a triangle lattice with
U/κ = 3, κβ = 8 and 105 configurations.
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Figure 4.14: Numerical results for some correlation functions on a tetrahedron lattice with
U/κ = 3, κβ = 8 and 105 configurations.

4.B Coupling Layers
As described above, the networks used here have a significant disadvantage, their Jacobians
are expensive to compute. Using coupling layers with a suitable coupling rule as introduced in
Ref. [169] instead of dense layers, can effectively reduce that cost to zero in most applications.
For x, y ∈ RΛ, let {A,B} be a partition of the integer interval J1,ΛK. Λ is the lattice

spacetime volume NxNt and we restrict ourselves to even Λ and |A| = |B| = Λ/2. A
coupling layer is defined as

f(x) =

{
yA = xA

yB = g(xA, xB)
(4.95)

Here, we focus on affine coupling layers which have a coupling rule of 8

g(xA, xB) = xB � s(xA) + t(xA) , (4.96)

where � denotes element wise multiplication and s and t are arbitrary functions which can
be parameterized through neural networks. The Jacobian determinant of a network made
out of layers, meaning NN(x) = fn(fn−1(· · · f1(x))), factorizes into separate determinants
for each layer:

det J = det
∂NN
∂x

= det

(
∂fn(x)

∂x

)
det

(
∂fn−1(x)

∂x

)
· · · det

(
∂f1(x)

∂x

)
(4.97)

In the case of affine coupling layers, the rows and columns of the layer Jacobians can be
permuted under the determinants such that for each layer A = J1,Λ/2K, B = JΛ/2 + 1,ΛK
8 The multiplicative part is typically written as es(xA) in the literature in order to simplify inversion. Since
we do not need to invert the network here, we do not need the exponential.
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thus making the matrices triangular and the determinant fast to compute:

det

(
∂f

∂x

)
= det

(
1Λ/2 0
∂yB
∂xA

s(xA)

)
=

Λ/2∏
i=1

s(xA)i , (4.98)

where s(xA) is to be understood as a diagonal matrix in the second expression.
This procedure can not be applied with the approach taken in this work as the transform-

ation Eq. (4.27) has Jacobian (see Eq. (4.29))

det J [φ] = det

(
1+ i

∂NN(φ)

∂φ

)
. (4.99)

This determinant does not factorize and we can not bring the derivative of each layer into
triangular shape. A and B can also not be chosen such that the product of layers ∂NN(φ)/∂φ
itself is triangular because that would mean that not all components of φ could influence all
components of φ̃ which would limit the expressive power of the network.
The root cause for the problem is the different treatment of real and imaginary parts in

Eq. (4.27) because it leads to the “1+” in the determinant. A potential solution would be
changing the transformation to φ̃ = NN(φ). However, this requires networks which deal with
complex numbers and forgoes the potential benefits of Eq. (4.27) described in the main text.
It is not trivial to formulate complex valued neural networks. One difficulty comes from
the loss functions which are typically non-analytic. This problem can be avoided by using
Wirtinger calculus to construct an optimization procedure [170, 171]. Another difficulty is
finding complex activation functions [172]. Here, the problem is complicated further because
the chain rule of Wirtinger derivatives contains a sum:

z = f(y), y = g(x) ⇒ ∂z

∂x
=
∂f

∂y

∂g

∂x
+
∂f

∂y∗
∂g∗

∂x
(4.100)

This would ultimately produce a sum in the determinant of the Jacobian, preventing factoriz-
ation. The efficient Jacobian of Eq. (4.98) can thus only be realized with holomorphic neural
networks, which implies holomorphic activation functions. For this first stage of our work
we relied on professionally-optimized, third-party machine learning libraries but support for
complex-valued networks is currently incomplete. We plan to develop an implementation
with support for complex-valued coupling layers and pursue the approach described here.
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5 Conclusions

Three-neutron interactions are a major uncertainty in calculations of the equation of state of
neutron stars and the neutron dripline of heavy elements. This thesis described an approach
for the measurement of three-neutron correlation functions, a necessary step in ultimately ob-
taining information about the p-wave three-nucleon interaction. Contraction codes for several
channels were computer generated and baryon blocks were used to control the momentum
projection. The effective masses of all two-nucleon and particularly the maximum isospin
three-nucleon channels were found to be plagued by statistical noise. It seems unfeasible to
reduce the noise by increasing statistics to a level that is sufficient to extract energy shifts
of the three-neutron channels. Further algorithmic improvements will be needed in order to
improve the signal-to-noise ratio.
In addition, ergodicity problems arising in Hybrid Monte Carlo simulations of the Hubbard

model were investigated. Two basis choices for creation and annihilation operators were found
to lead to two different types of ergodicity problems. The Boltzmann weight in the spin basis
is multi-modal and the modes are separated too far from each other for HMC to transition
between them in a reasonable amount of computing time. This causes a severe ergodicity
problem that can only be overcome by a modification of the algorithm. The situation is
different for the particle-hole basis. Here, there are codimension-1 manifolds where the action
diverges or is very large in the exponential and diagonal discretizations, respectively. These
manifolds form barriers that segment phase space causing an in principle ergodicity problem.
In practice, however, HMC can be tuned to cross those barriers in both discretizations making
it ergodic. A new MCMC update scheme was presented that is guaranteed to jump over the
barriers of the particle-hole basis. Field ensembles for small lattices were generated using
properly tuned HMC plus the new jumps. Correlation functions measured on these ensembles
were found to agree with exact results, thus giving confidence that realistic HMC simulations
are ergodic.
Finally, the complex phase problem that arises in MC simulations of the Hubbard model

on non-bipartite triangle and tetrahedron lattices was alleviated using neural networks. The
networks were trained on configurations produced using holomorphic flow in order to ap-
proximate the Lefschetz thimble manifolds. The training procedure was simplified compared
to previous publications by sampling training data from a gaussian distribution instead of
using HMC to sample from the action. These vectors were transformed using holomorphic
flow with an early termination criterion which increased efficiency. Neural networks were
then trained to reproduce the imaginary parts of these flowed vectors from the real parts.
HMC was augmented with these networks and was found to converge toward the exact res-
ults more quickly than standard HMC on the triangle lattice. On the tetrahedron lattice,
where standard HMC did not yield correct results within realistic computing times, neural
networks alleviated the sign problem sufficiently for the augmented HMC to converge toward
the exact results.
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This work opens up the way to simulations of physical non-bipartite carbon lattices like C60

and other fullerenes. The described method is not restricted to this kind of phase problem,
however, and can be applied to simulations of the Hubbard model in the presence of a non-
zero chemical potential. The method’s efficacy in these systems will be ascertained in future
work. A major drawback of the neural networks that were used here is the O(V 3) scaling of
the calculation of the Jacobian determinant, which currently prevents the application of the
method to large lattices. A potential solution by using complex coupling layers was outlined
which might reduce the cost of the Jacobian to effectively zero. This approach will also be
pursued in future work. Ultimately, the phase problem of lattice QCD with finite baryon
potential needs to be solved in order to expand the range of simulations of the QCD phase
diagram. This work is a stepping stone on the way to a potential solution.
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