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Abstract

This work consists of two parts. In the first part we give a general intro-
duction to the chapter 7 of [L1], and settle down some bases needed for the
second chapter in which we prove that the order of the poles of a residual
Eisenstein series on an arbitrary reductive group G which satisfies the condi-
tions of the chapter 1 of this work is uniformly bounded by a constant which
depends only on the number of elements of a subgroup of the Weyl group
of G via the methods developed in [F1] and [F2]. Having a general under-
standing of the main assertions and di�culties that Langlands had faced and
solved through his treatment of Eisenstein series is crucial in understanding
[F1] and [F2], on them this work has been built, consequently we start this
work with an introduction to Eisenstein series and afterwards in chapter 1 we
review Eisenstein systems, and in chapter two we will prove the main claim
of this work.



Chapter 0

Introduction

(0.1) The spectral decomposition of the regular representation of certain
topological groups G on the Hilbert spaces of the form L

2(� \ G), in which
� is a discrete subgroup of G, lies at the intersection of several disciplines
of mathematics such as number theory, functional analysis, and the theory
of algebraic groups. The heart of spectral decomposition is the study of the
Eisenstein series which is the starting point of the theory of Automorphic
forms, which came out to be one of the fruitful branches of mathematics in
the past decades with far reaching applications and deep conjectures.
In this introduction we will try to give an overview of the origins of the cen-
tral problems that we are going to consider in this work, and to do so we
start with a review of the classical Eisenstein series and after that we give
the adelic interpretation of the classical situation due to Langlands which
follows by a short discussion of the main problem considered in the second
chapter this thesis.

We begin our discussion by fixing some notation.
We denote by H = {z 2 C|=(z) > 0} ⇠= PSL(2,R)/SO(2) the upper half
plane model of hyperbolic plane. The group PSL2(R) acts on H by

�
a b
c d

�
·z 7!

az+b

cz+d
. We will fix a fundamental domain F for this action. The Laplacian on

H will be denoted by �H = y
2( @

2

@x2 +
@
2

@y2
).

Now we can introduce the main object of this theory in the simplest setting,
i.e., the Eisenstein series defined on a Fuchsian subgroup � of PSL(2,R) of the
first kind. This means that � is a discrete subgroup of PSL(2,R) with finite
covolume and such that that every point of R[1 is a limit point for the action
of � on H. This implies that � has a finite complete set {1, ...n} ⇢ R [1
of inequivalent cusps. By definition a point  2 R[1 is a cusp for � if the
subgroup � of � defined by � = {� 2 � | � ·  = } is conjugate to the
subgroup N(Z) =

��
1 n
0 1

�
| n 2 Z

 
. By definition, a parabolic subgroup is

a subgroup that fixes a cusp. We will give the general definition of them in
the next chapter. From now on we assume without los of generality that we
have only one cusp . Fix an element � 2 SL(2,R) such that �(1) = 

and ����1

⇠= N(Z). Then the Eisenstein series for the cusp  is the

i
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series
E(s, z) =

X

�2�\�

=(��1


· � · z)s, (z 2 H, s 2 C).

The main properties of this series proved by Selberg in [S1] are:
(a) E(s, z) converges absolutely and uniformly in the region <s > 1 to an
analytic function.
(b) E(s, z) has meromorphic continuation to the whole plane with values in
the Frechet space C1(� \H). The possible poles of E(s, z) in {s 2 C | <s �
1
2} all lie in the interval (12 , 1]. These poles are simple and the residue of
E(s, z) with respect to them is an element of L2(� \ H).
(c) For <s > 1 this series is an eigenfunction of the Laplacian �HE(s, z) =
s(1 � s)E(s, z), the analytic continuation of this series to the whole plane
satisfies this functional equation too, and if s 2 1

2 + iR, the Eisenstein series
are generalized eigenfunctions of �H.
For the proof of these we refer to [B] theorems 10.4, 11.4 and 11.9.

(0.2) If s 2 1
2+iR then the Eisenstein series E(s, z) play the same role for

the spectrum of Laplace operator �H on the space L
2(� \ H) as it is played

by the continuous family of functions {e
2⇡i�x

| � 2 R} for the spectrum
of the operator d2

dx2 on L
2(R). In other words the function E(s, z) is the

generalization of exponential function on R to locally symmetric spaces of
the group SL(2,R). Like the exponential function, although they are the
building blocks of the L

2 spectrum, they are not square integrable.
These properties were first observed by A.Selberg in his seminal paper [S],
in which he was mainly concerned with the analytical properties his famous
trace formula. Since then there was an e↵ort to generalize the ideas of Selberg
to more general groups and also under the adelic language which is important
in number theory and has applications in physics too. This happened to be
a major challenge which was done by R.Langlands in [L1]. In that paper
Langlands generalized the results of Selberg to the discrete subgroups of real
reductive groups of finite covolume. To gain a glimpse of this theory in the
sense of Langlands we will work in the context of a general reductive algebraic
group G defined over Q and its adelization G(A), since in addition to several
enhancements, it makes the exposition of the theory much easier. With this
principle at hand The general form of the Langlands-Eisenstein series will
look like

E(�, f)(g) =
X

�2P (Q)\G(Q)

e
h�+⇢P ,HP (�g)i

f(�g),

in which the function f(g) belongs to a space of quadratic integrable au-
tomorphic forms A

2(P ), defined in (1.4). In the above expression P is a
parabolic subgroup of G, � a parameter that belongs to the Lie algebra ǎP

of the maximal split torus of G, HP (.) denotes a height function on G(A)
with values in the maximal Q-split torus of the center of the Levi component
L ⇢ P , and ⇢P is the half sum of the positive roots with respect to P . All
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these terms will be defined in the paragraphs (1.1) and (1.3) of the next
chapter.

One of the di�culties of the Langlands theory of Eisenstein series relies
on the fact, that a direct approach to these series, at least with the meth-
ods developed by Langlands, seems to be impossible. Langlands developed
his theory by starting from cusp forms f(.) on the Levi component L of P
and from them he created a family of Eisenstein series that he called the
cuspidal Eisenstein series. See chapter 1 paragraphs (1.1) and (1.3). He
proved that these series satisfy similar properties (a) to (c) of the classical
situation (mentioned in (0.1)) in a much more general setting. If we drop the
cuspidality condition and assume that f(.) is a general quadratic integrable
automorphic form, we will obtain the most general form of Eisenstein series.
For these series there is no known direct way of meromorphic continuation
which enables us to generalize the property (a) to (c) to this more general
setting, but such a generalization is vital for the spectral decomposition and
also for the applications in the trace formula. In the lack of a direct way,
Langlands developed an approach to generate most general Eisenstein se-
ries by treating these series as the iterating residues of cuspidal Eisenstein
series and called them the residual Eisenstein series. One of his remark-
able achievements was that he showed that in this way one obtains all the
Eisenstein series needed to exhaust the complete spectral decomposition of
the space L

2(G(Q) \ G(A)). Langlands showed also that a�ne hyperplanes
which carry the parameters of the Langlands-Eisenstein series are real1 and
also that the residual series are holomorphic on the unitary axis consequently
generalized the first part of (b) to the residual series. But the second property
(b), the realness of the poles for residual series, was not directly obtainable
from the methods of Langlands. The generalization of the second property
in (b) was first proved by J.Franke as the theorem 1 in [F2]:

Let H ⇢ (ǎP )C be singular hyperplane of a residual Eisenstein series

E(�, f) such that H \ (ǎG+i ǎP + ǎ
G+
P

) 6= ;. Then H is real and meets ǎG+
P

.2

The third part of the property (b), the simplicity of the poles was proved
to be wrong for the residual series. Langlands computed a counterexample
in the case of the group G2 in the appendix (III) of [L1] and showed that
there exists poles of residual Eisenstein series which are not simple and the
real part of them lie in the positive Weyl chamber. A natural question arises
here that what are the possible orders of these poles? In the second chapter
of this work we give a partial answer to this question by proving the following
theorem in paragraph (2.2) of this work:

1
see the definition of Eisenstein systems in (1.11) of the next chapter

2
All the terms and spaces used here are defined in the next chapter.
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Theorem. Let H be singular hyperplane of a residual Eisenstein se-

ries such that H \ (ǎG + i ǎP + ǎ
G+
P

) 6= ;. Then the order of H is at most
max
Q2{P}

#⌦(P,�, , Q).

In other words, the order of the poles of a residual Eisenstein series is
bounded by a constant which depends on the order of the Weyl group of
G and consequently to the group G itself. The proof will follow from the
remark 3 in [F2]:

...assume that [the singular hyperplane] H meets ǎ
G+
P

, let k > 0 and
let ! 2 ⌦(H,P,�, , Q) be such that Nk(!,�) 6⌘ 0 and such that if !̃ 2
⌦(H,P,�, , Q) and Nk(!̃,�) 6⌘ 0 then | (!(x))+ |�| (!̃(x))+ | for all x in
an open subset of H \ ǎ

G+
P

. Then Nj(!,�) ⌘ 0 for j > k.

We reformulate this remark as the theorem 1 of the chapter two and de-
fine all the needed terms in chapter one of this work. To prove this theorem
we have to prove that for an quadratic integrable automorphic form f(.) de-
fined on the quotient G(Q)AG(R)�\G(A) and a standard parabolic subgroup
Q of G, the fQ,�(HQ(g)) (defined in (2.3)) operators, which are known to
be polynomials (lemma 4.2 of [L1]), are actually monomials. This is done
in Lemma 1 of the chapter 2. To prove this lemma we need some struc-
tural results which rely on some results of Harish-Chandra and Helgason.
Afterwards it will be an easy consequence that the fQ,�(HQ(g)) operators
are actually harmonic polynomials with respect to the subgroup W� of the
Weyl group W (G,A) of G which leaves � invariant. After these preparations
the machinery of the Eisenstein systems leads us to obtain the same result
for the N(., .) operators (defined in (2.1)) attached to residual Eisenstein
series. Then through the techniques developed in [F2] we prove the above
mentioned upper bound on the order of the poles of a residual Eisenstein
series.



Chapter 1

A Review of Eisenstein Systems

(1.1) In this chapter we follow two goals. First of all, since we are going to
use a part of the machinery of Eisenstein systems in the proof of our main
lemma in the second chapter of this work, we have to give an overview of this
concept which was introduced in chapter 7 and appendix II of [L1], following
the presentations of [A1], [A2], and [OW] in the language of Adeles. Our
second goal is to show that how the axioms given in 5.2 of [F1] (which served
as a black box for the proofs given there) are deduced from the lemmas and
the main theorem of the chapter 7 of [L1]. This will be done at the end of
this chapter in paragraph (1.20). We use a combination of the notations of
[F1], [F2] and [M2] which is almost identical with [A1] and [A2].

Let G be a reductive algebraic group defined over Q with the Lie al-
gebra g of G(R). We denote by gC the complexification of g. The Lie
algebra g admits the so called Levi decomposition of g = rad(g) � l, with
l the Levi subalgebra and rad(g) the radical, i.e., the largest solvable ideal
of g. A Levi subalgebra l is always semisimple since the natural projec-
tion ⇡ : g ! g/rad(g) maps isomorphically any Levi subalgebra l of g onto
the semisimple lie algebra s = g/rad(g). Reductive Lie algebras admit the
decomposition g = z(g) � [g, g] with respect to the Killing form, in which
the center z(g) consist of semi simple elements and the derived subalgebra
g
0 = [g, g] is a semisimple subalgebra. We will denote the Killing form of g by
hx, yi which satisfies the identity h[x, y], z]i +hy, [x, z]i=0. In what follows,
the dual subspace of a subalgebra a of g with respect to the Killing form will
be denoted by ǎ.
Suppose for the moment that g is a complex semisimple Lie algebra. Let
us fix a Cartan involution ✓ : g ! g, and decompose g = k � p with re-
spect to this involution to the eigenspaces corresponding to ±1 eigenvalues
respectively. We recall that a Cartan subalgebra h of g is by definition a
maximal nilpotent subalgebra of g invariant under ✓, which coincides with its
normalizer n(h). We can extend the definition of Cartan subalgebra from the
complex semisimple case to complex reductive Lie algebras by just adjoin-
ing the center z(g) of g to a Cartan subalgebra of the [g, g], the semisimple

1



2 CHAPTER 1. A REVIEW OF EISENSTEIN SYSTEMS

part of g. Then we can extend this definition to the real reductive Lie al-
gebras g by requiring that a subalgebra h of g is a Cartan subalgebra if its
complexification hC is a Cartan subalgebra of the gC, the complexification of
g.

We define a parabolic subalgebra p ✓ g to be any subalgebra of the
real reductive Lie algebra g that contains a maximal solvable subalgebra of g,
i.e., a Borel subalgebra b of g. It is clear that rad(g) ⇢ b. Let us denote by
nP the maximal normal subalgebra of p \ [g, g] whose image in adg consists
of nilpotent elements, and let mP denote the maximal subalgebra of p whose
image in adg is reductive. Hence we have the decomposition p = mP + nP .
Let us denote by aP the maximal diagonalizable subalgebra of z(mP \ [g, g])
and denote by m

1
P
the orthogonal complement of aP in mP with respect to

the Killing form. Then we have aP \ m
1
P

= {0} and these considerations
lead us to the Langlands decomposition p = m

1
P
+ aP + nP . We call the

subalgebra mP = m
1
P
+ aP the Levi subalgebra, and the subalgebra aP the

split component of p. We will give a characterization of these subspaces
soon.

On the other hand we define a parabolic subgroup P of G to be a
Zariski closed subgroup which contains a Borel subgroup. By definition, a
Borel subgroup of G is a subgroup whose Lie algebra is a Borel subalgebra
b as defined above. There is a correspondence between the Borel subalgebras
of g and Borel subalgebras of g/rad(g) since by maximal solvability we have
rad(g) ⇢ b for each Borel subalgebra b of g. The maximal solvability of the
subalgebras b implies that the quotient space G/P is complete, which is a
consequence of the well known Borel fixed point theorem. Again by virtue
of the solvability we deduce the existence of parabolic subgroups which are
minimal in the quasi projective variety of parabolic subgroups of G. By
the definition it is clear that the minimal parabolic subgroups are Borel
subgroups. We fix once and for all a minimal parabolic subgroup P� of G
and call a parabolic subgroup P standard if it contains P�. For the reasons
that will be clarified soon, we deal only with standard parabolic subgroups
in this work.

Each parabolic subgroup P can be decomposed as P = MPNP , which is
the analog of the Langlands decomposition of the Lie algebras given above.
The subgroup MP is the Levi subgroup of P and the subgroup NP is the
unipotent radical. It is clear that mP and nP are the Lie algebras of MP

and NP . As in the discussion about the Lie algebras above we can decom-
pose the Levi component further as MP = M

1
P
AP , in which AP is the Q-split

torus (or the split component) of the center of MP with the Lie algebra aP .
The rank of a Parabolic subgroup is the dimension of its split component
AP over Q and is denoted by rankQ(P ).
The corresponding Langlands decomposition for the minimal parabolic sub-
group P� will be M

1
�A�N�. Observe that AP ⇢ A� and M� ⇢ MP for all the

standard parabolic subgroups P ⇢ G. The inclusion AP ⇢ A� defines an
inclusion aP ! a� which gives us the direct sum decomposition a� = aP �a

P

�
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for a
P

� the orthogonal complement of aP in a� with respect to the Killing
form. There is also a decomposition of the corresponding dual subspaces as
ǎ� = ǎP � ǎ

P

� . More generally for the parabolic subgroups P ⇢ Q we will
have a decomposition of the Q-split torus as aP = aQ � a

Q

P
, in which a

Q

P

could be characterized either as the intersection of aP and a
Q

� in a� or as the
orthogonal complement of aQ in aP . We have also the analog decomposition
ǎP = ǎP � ǎ

P

Q
for the dual spaces. For an intrinsic characterization of these

subgroups and subspaces appearing in the Langlands decomposition in the
real situation we need to review briefly the root systems.

Let X(A�)Q ⇢ ǎ� denote the group of Q-rational characters of A�. We
denote by �� ⇢ X(A�)Q the set of roots of A� in g. The set of roots of
the pair (P,AP ) will be denoted by �(nP ), the positive roots by �+(nP ),
the subset of simple roots by �+

P
, and their duals by �̌(nP ), �̌+(nP ) and

�̌+
P
. The corresponding set of roots with respect to (P�, A�) will be denoted

by �̌+
� etc. For standard parabolic subgroups P ⇢ R the decomposition

ǎP = ǎR � ǎ
R

P
gives us the corresponding subsets �+(nR

P
), �̌R+

P
and �R+

P
.

Then the set �+(nR
P
) will be the set of positive roots which occur in nP but

not in nR. The half sum of the positive roots of the pair (P,AP ) will be
denoted by ⇢P = 1

2

P
↵2�+(nP ) ↵̌. Then for parabolic subgroups P ⇢ R, ⇢R is

the projection of ⇢P on the ǎ
R

P
.

Now we can characterize the components of the Langlands decomposition
for the Lie subalgebra p as follows. For each root ↵ 2 �(nP ) we define a root
subalgebra n↵ = {X 2 n | [H,X] = ↵(H)X, 8H 2 aP} which yields the
decomposition nP = �↵2�(nP )n↵ of the Lie algebra of the unipotent radical
NP of P . The split component aP (or AP ) is distinguished by the property
that tr(ad(Y )|n↵) = 0 for all Y 2 m

1
P
and all ↵ 2 �(nP ), and the subgroup

M
1
P
is characterized by the property that it consists of the elements m 2MP

such that det(Ad(m)|n↵) = ±1 for all ↵ 2 �(nP ). We can also obtain this
characterizations by introducing X(MP )Q, the group of rational characters
of MP defined over Q, and observing that aP ⇠= HomZ(X(MP )Q,R), and also
the dual isomorphism ǎP

⇠= X(MP )Q ⌦Z R with respect to the Killing form.
The transfer from the real situation to rational situation is obvious now.

As in the introduction, the group of adeles of Q will be denoted by A.
The groups over Q or adelic points will be denoted by G(Q) or G(A) etc.
We also fix once and for and all a compact subgroup K = KKf ⇢ G(A)
in which Kf =

Q
⌫<1 K⌫ for K⌫ ⇢ G(Q⌫) a maximal compact open sub-

group and K ✓ K1 a compact subgroup such that the Iwasawa de-

composition G(A) = P�(A)K holds. This decomposition is also valid
for P any standard parabolic subgroup, which gives us the decomposition
G(A) = M

1
P
(A)AP (R)0NP (A)K and any g 2 G(A) can be decomposed as

g = namk for n 2 N(A), a 2 A(R)0, m 2 M
1(A), and k 2 K. If we denote
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the Lie algebra of K1 by k then this decomposition is supposed to satisfy the
admissibility condition hk, aP i = 0, for aP the Lie algebra of the subgroup
AP of P .

Following [A1] we define for the Levi subgroup MP of a parabolic sub-
group P a homomorphism HMP (m) from MP (A) to the additive group aMP

as follows. Let m = ⇧⌫m⌫ 2 MP (A), for ⌫ places of Q, and let � be any
rational character of MP . Then HMP (m) is the vector in aM which satisfies
the relation e

h�,HMP
(m)i = |�(m)| = ⇧⌫ |�(m⌫)|⌫ . The kernel of the homo-

morphism HMP : MP (A) ! aMP is the subgroup M
1
P
(A) . Then HMP (.)

factors through M
1
P
(A) \MP (A) and also HMP (M

1
P
(A) \MP (A)) = <(aMP ).

We can extend this homomorphism to a homomorphism HP (g) on G(A) by
setting HP (g) = HMP (ma) = HMP (a). Observe that |det(Adp)|nP (A)| =
e
h2⇢P ,HP (p)i. Then for parabolic subgroups P ⇢ Q the additive group a

Q

P
is

the image of MQ(A) under HP (.).

It is well-known that any rational parabolic subgroup P ✓ G is conju-
gate to a standard parabolic subgroup via an element of G(Q). For two
parabolic subgroups P and Q of G let ⌦(ǎP , ǎQ) denote the set of linear
transformations from ǎP to ǎQ obtained by restricting Ad g to ǎP for g 2 G.
It is a subquotient set of the Weyl group of G. If ⌦(ǎP , ǎQ) happens to be
non empty then P and Q are called associated parabolic subgroups. For
the groups defined over R the relation of being associated breaks the set of
parabolic subgroups of G into finitely many equivalence classes. Alterna-
tively two parabolic subgroups P and Q are associated if and only if their
Levi components are conjugate over Q, or equivalently if and only if P and
xQx

�1 have a common Levi subgroup for some x 2 G(Q). Therefore the as-
sociated classes are also detectable through the Levi subgroups of parabolic
subgroups. Any two Levi subgroups of a parabolic subgroup P are also con-
jugate via an element of P (Q). Since in the adelic situation we have to deal
with only one cusp, we need only to consider one class of conjugate Levi
subgroups of parabolic subgroups. We fix such an associated class {P} of
standard parabolic subgroups of G whose Levis are conjugate to each other
via the conjugation by an element of ⌦(ǎP , ǎQ), i.e. if P,Q 2 {P}, then for
each element of ! 2 ⌦(ǎP , ǎQ) there exists an element s = s! 2 G(Q) such
that sMP s

�1 = MQ.
We mention two consequences of the above definitions which will be impor-
tant for us in the definition of Eisenstein systems:
(A) Let P and Q be parabolic subgroups of G. If P in conjugate to Q and
if P \Q is a parabolic subgroup then P = Q.
(B) Conjugate parabolic subgroups of G are associated, but the converse is
not generally true.
For example in SL(3,R) two parabolic subgroups with respect to the decom-
positions 3 = 2 + 1 and 3 = 1 + 2 are associated but not conjugate. To
justify (A), suppose that for some x 2 G we have P = xQx

�1. We first
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observe that P is self-normalizer in G, i.e., NG(P ) = P , and let us take a
Borel subgroup B of P . Then the subgroups B and xBx

�1 are both Borel
subgroups of P . Since B is contained in P

0, the connected component of P ,
we observe that xBx

�1 is also a Borel subgroup of P 0. Since all the Borel
subgroups are conjugate to each other, we see that there is a y 2 P

0 such
that xBx

�1 = yBy
�1. Since the Borel subgroups are also self normalized,

this implies that yx�1 lies in B and hence x 2 P
0. Consequently x lies in P

and P = Q. For more comments on these properties we refer for example to
[War] section 1.2. Minimal parabolic subgroups are associated if and only if
they are conjugate. Consequently, without loss of generality, we can restrict
our attention to the standard parabolic subgroups which contain the mini-
mal parabolic subgroup P� fixed above. From now on we assume that all the
parabolic subgroups appearing in this work are standard.

After this discussion of parabolic subgroups we consider some subspaces
which will be important for us in what follows. Let F ⇢ �+

P
. We call the

subspace
cF = {� 2 (ǎP )C| ↵(�) = 0 for all ↵ 2 F}

a distinguished subspace of (ǎP )C. We write ǎ0 instead of cF if F is the
fixed subset of the roots which define a parabolic subalgebra p0 and hence
associate a parabolic subgroup P0 to this distinguished subspace ǎ0.

Let
a
+
P
= {� 2 aP | ↵(�) > 0 8↵ 2 �+

P
},

and
+
aP = {� 2 aP | ↵̌(�) > 0 8↵ 2 �̌+

P
}.

Then we have a
+
P
⇢

+
aP . If we denote the Cartan subalgebra h fixed above

by aG (i.e., by regarding the group G as a parabolic subgroup in itself), we
can form the subspaces a

G

� and ǎ
G

� with respect to P�. Then the subspaces
a
G+
� ⇢ a

G

� and ǎ
G+
� ⇢ ǎ

G

� are called the open positive Weyl Chambers, and
the subspaces +

a
G

� ⇢ a
G

� and +
ǎ
G+
� ⇢ ǎ

G

� are the open positive cones dual to
the positive Weyl chambers with respect to the simple positive roots �+

� .

For a constant c 2 R>0 let also

A
+
P
(c) = {� 2 aP | e

h↵,�i
> c 8↵ 2 �+

P
},

and
+
AP (c) = {� 2 aP | e

h↵̌,�i
> c 8↵̌ 2 �̌+

P
}.

Fix a compact subset ! 2MPNP , we define a Siegel Domain associated to
P to be the set

SP (c) =
n
g = nmak | mn 2 !, a 2 exp

�
A

MP+
M�

(c)
�
, k 2 K

o
.
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The space A
MP+
M�

(c) is defined just like above with respect to the roots in

�MP+
M�

. Since in the adelic formalism we can consider all the cusps at once, we
will fix once and for all a Siegel domain S� with respect to the fixed minimal
parabolic subgroup P� and a positive parameter c = minm2M�,↵2��{e

h↵̌,a�(m)i
}

and A
+
M�

. We will return to the subject of Siegel domains in (1.3) when we
discuss the reduction theory.

Let P ⇢ R be two standard parabolic subgroups. There is a geometrical
decomposition of the elements of ǎP introduced by Langlands which will be
crucial for us in the next chapter. We introduce the basis �̂R+

P
= {w

R

↵̌
| ↵ 2

�R+
P

} of ǎR
P

which is dual to the basis �̌R+
P

. We can define the elements
w̌

R

↵̌
2 a

R

P
similarly. We can now state our decomposition:

Let � 2 ǎ
R

P
. Then according to the theorem 2.3 of [L1], there exists a

parabolic subgroup R(�) which satisfies P ✓ R(�) ✓ R and a subset P (�) ✓
�R+

P
such that

� =
X

↵2�R+
P �P (�)

a↵w
R

↵̌
�

X

�2P (�)

b��

with a↵ > 0 and b� � 0. We will write

(�)+ =
X

↵2�R+
P �P (�)

a↵w
R

↵̌
2 ǎ

R+
R(�),

and
(�)� = �

X

�2P (�)

b�� 2 �
+
ǎ
R(�)
P

.

For the proof we refer to [W] p.164.

Finally we fix a height function k . k on G coming from the Killing form
and satisfies the properties mentioned in I.2.2 of [MW].

(1.2) In this subsection we discuss shortly the universal enveloping al-
gebra of gC which plays a pivotal role in the theory of Eisenstein series and
automorphic forms. As a general reference for this subsection we refer to
[L1] chapters 4, [H1] chapter IV and [H2]. We denote by B the univer-
sal enveloping algebra of gC. Then the center Z(g) of B is noetherian and
will be identified with the algebra of polynomials on hC invariant under the
Weyl group WG of G and further to the algebra of the left invariant di↵er-
ential operators on G. For a parabolic subgroup P ⇢ G the decomposition
p = m

1
P
+aP+nP yields a decomposition in the enveloping algebras as follows.

Let n
�
P
denote the negative of nP such that gC = n

�
PC + m

1
PC + aPC + nPC.

Let us denote by N
�, M, A, and N the corresponding sub algebras of B

respectively. Then we have an isomorphism N ⌦M ⌦ A ⌦N
�
! B. If we

identify 1⌦ A⌦M⌦ 1 with A⌦M and denote the center of M by Z(mP ),
then we can identify each element of Z(g) with an element of A ⌦ Z(mP )
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modulo nPCB.
There is a distinguished element of Z(g) called the Casimir operator of g,
which will play a crucial role for us in the second part of this work. We will
define it first under the restriction that g is semisimple, then we will show
that the reductive situation is a slight generalization of the semisimple situa-
tion. Let us choose a basis X1, ..., Xn for gC and put gij = hXi, Xji and let gij

denote the corresponding elements of the inverse matrix. Then the element
!g =

P
i,j
g
ij
XiXj is the Casimir element of gC which lies in Z(g). More

precisely, we take the Cartan involution ✓ of g which gives us the Cartan de-
composition g = p�k, and the Cartan subalgebra h of g fixed at (1.1). We fix
a fundamental system of roots for the pair (gC, hC), then, for each fundamen-
tal root ↵, we choose a pair of normalized bases {X↵} and {H↵} such that
[X↵, X�↵] = H↵, where H↵ are the elements of h such that hH,H↵i = ↵(H)
for all H 2 h, which gives us the decomposition gC = hC�

L
↵>0(g↵C+g�↵C).

Fix a basis {H1, ..., Hm} of h over R such that hHi, Hji = �ij and such that
{H1, ..., Hl} is a basis of h \ p, and {Hl+1, ...Hm} is a basis of h \ k over R.
Then the Casimir operator !g of gC can be written as

!g = H
2
1 + ...+H

2
m
+

X

↵2�+(nP )

(X↵X�↵ +X�↵X↵)

= H
2
1 + ...+H

2
m
+ 2

X

↵2�+(nP )

X↵X�↵ �
X

↵2�+(nP )

H↵.

We put !h = H
2
1 + ...+H

2
m
.

More generally, suppose that the algebra g is reductive. Then we have a
decomposition g = c� g

0, in which c is the center of g and g
0 is, as usual, the

derived subalgebra of g. We fix a basis C1, ..., Cr of c over R. Then we have
the decomposition Z(g) = C⌦ Z(g0) with the obvious notation. This shows
that the Casimir element of g is the sum of the Casimir elements of C and of
Z(g0). If we put !c = C

2
1 + ...+C

2
r
we can finally write the Casimir element

of B as
!g = !g0 � !c,

in which we compute !g0 (with respect to the Cartan subalgebra h
0 such that

h
0
C = hC\ [gC, gC]) via the element !h0 , just like the above construction in the

semisimple case. The above discussion clarifies that this procedure could be
repeated if we restrict ourselves to the reductive subalgebras aP +mP since it
contains a Cartan subalgebra. Consequently we can associate to each stan-
dard parabolic subgroup P ✓ G a Casimir element in A ⌦ Z(mP ) modulo
nPCB which we denote by !p. This finishes our discussion about Casimir
element .

Now we introduce a finite subset of a�ne transformations ⌦(P,�, , Q)
which we need later. Let Q and P be associated parabolic subgroups. We call
two characters  : Z(mQ) ! C⇤ and � : Z(mP ) ! C⇤associated if the fol-
lowing condition holds. There is a g 2 G(A) which satisfies Int(g)mP = mQ
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for the inner automorphism Int(.) of g, and such that g identifies � with
 . This is an equivalence relation and we denote equivalence class of such
associated infinitesimal characters by  . We will denote by  

Q
the subset

of  which consists merely of characters of Z(mQ). For P , Q, � and  we
have a finite set ⌦(P,�, , Q) of a�ne transformations from ǎP to ǎQ such
that for each ! 2 ⌦(P,�, , Q) the linear part !̂ of ! is the restriction to ǎP

of an element of the Weyl group WG of G, and !(0) is orthogonal to !̂(ǎP ).
If Q ✓ P let ⌦�(P,�, , Q) ⇢ ⌦(P,�, , Q) denote the subset of all a�ne
transformations ! 2 ⌦(P,�, , Q) such that !̂ is the identity embedding of
ǎP to ǎQ. Observe that it is possible that ⌦�(P,�, , Q) = ?.

In what follows we denote by S(V ) the symmetric algebra on a vector
space V . Then S(V ⇤), the symmetric algebra over the dual space of V , is
isomorphic to the polynomial ring P(V ⇤) on V in indeterminates that are
basis vectors for V ⇤.

(1.3) In this section we introduce the type of functions which we will
consider in the rest of this work. We will follow [A1], [A2] and [F2]and [B1] in
this presentation. The central object throughout this review will be the space
L
2(ZG(A)G(Q) \G(A)) of square integrable functions f : G(Q) \G(A)! C

modulo the center and L
2
�
MP (Q)NP (A)AP (R)0 \G(A)

�
and also subspaces

of L2(K). They will be explained in this and the next two subsections.
For the rest of this work we fix once and for all a finite set FK of irreducible

representations of K on a vector space V , and let � denote the space of
functions on K spanned by the matrix elements of the representations in
FK. We say a function f(.) is �-finite (or of type �) if f(gk) for k 2 K
belongs to � for almost all g 2 G. In what follows the subscript � under a
space (like L

2(.)� and so on) means the subspace of functions in the space
under consideration which satisfy the property just explained. The set of all
such equivalence classes � will be denoted by {�}. The set of all equivalence
classes of finite dimensional irreducible representations of K will be denoted
by EK.

Let f : G(A) ! C be a function. A function is smooth if it is smooth
at the archimediean places and locally constant on an open neighborhood of
the non-Archimediean places. The space of smooth functions on G(A) will
be denoted by C

1(G(A)). We say that a continuous function f : G(A)! C
has moderate growth if there is a constant r 2 R such that |f(g)| k g kr

for all g 2 G(A). The notion of moderate growth could be extended to the
space C

1(G(A)) as follows. Let X 2 g and f 2 C
1(G(A)), the element X

acts on the right on this space by the rule X · f(g) = d
dtf(g.exp tX) |t=0. We

extend this action from g to all X 2 B by the universal property. A function
f 2 C

1(G(A)) has uniform moderate growth if there is a r 2 R and for
each X 2 B a constant cX such that |X · f(g)|  cX k g k

r. We extend these
definitions to the other quotient spaces by trivial modifications.

In what follows we will use also the notion of the constant term. To
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define it we fix a parabolic subgroup P = MPNP of G and let f be a mea-
surable locally L

1 function on NP (Q) \ G(A). Then the constant term of f
will be the measurable locally L

1 function on NP (A) \G(A) defined by

fNP (g) =

Z

NP (Q)\NP (A)
f(ng)dn.

This function has the property that if f(g) is left G(Q)-invariant, smooth
and of moderate growth, then fNP (g) will be left MP (Q)-invariant, smooth
and of moderate growth. If for a function f(g) we have fNP (g) = 0 for all
parabolic subgroups P $ G, we call f(g) a cusp form.

(1.4) Let P be a parabolic subgroup of G. Let us consider the space of
functions � : MP (Q)NP (A)AP (R)� \ G(A) ! C of moderate growth which
satisfy the following conditions:
1)

R
K
R
MP (Q)\M1

P (A)⇥K |�(mk)|2dmdk <1.

2) There is a character ⇠ : ZMP (A) ! C⇤ such that we have �(zg) =
e
h⇢P+⇠,zi

�(g) for all g 2 G(A) and all z 2 ZMP (A).
3) The space spanned by {k · �(g) = �(gk) | k 2 K} is finite dimensional
and contains only irreducible representations of K equivalent to those lying
in FK of (1.3).
4) The space spanned by {X · �(g) | X 2 Z(g)} is finite dimensional.

This space will be denoted by A
2(P ) and will be called the space of

square integrable automorphic forms onMP (Q)NP (A)AP (R)�\G(A). The
corresponding subspace of cuspidal automorphic forms will be denoted by
A

2
cusp(P ). This definition is related to the classical situation of functions

defined on the quotient spaceMP (Q)\MP (A) by corresponding � 2 A
2(P ) 7!

�k = e
�h⇢P ,HP (m)i

�(mk) 2 A
2(MP (Q) \MP (A)) for m 2 MP (A). The space

A
2(MP (Q) \MP (A)) satisfies analog of the conditions 1)-4) above.
Let us denote the orbit of a fixed character � : Z(mP ) ! C⇤ under the

Weyl group WG of G by �. Then the subspace of A2(P ) of functions which
satisfy the extra conditions X · �(g) = �(X)�(g), for � 2 �, and �(gk) 2 �
for all g 2 G will be denoted by A

2(P,�,�). We denote the subspace of the
cusp forms by A

2
cusp(P,�,�). All the spaces A

2(P ), A2(MP (Q) \ MP (A)),
A

2(P,�,�) etc. are finite dimensional, according to [H1].

(1.5) We now introduce some spaces which are basic to what follows. Let
P be a parabolic subgroup and let � be as in (1.4). Let

L
2
�
MP (Q)NP (A) \G(A)

�
�,�

, (1.1)

denote the space of quadratic integrable functions of type � such that for
every g 2 G(A) and l 2MP (A)AP (R)0 the function f(lg) is an eigenfunction
of A ⌦ Z(mP ) associated to some element of the orbit �, if A denotes the
universal enveloping algebra of aP and Z(mP ) the center of the universal
enveloping algebra MP of the Levi component mP of p as it is described
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in (1.4). In other words if X 2 A ⌦ Z(mP ) is a di↵erential operator then
X · f(g) = �(X)f(g) for all f in (1.1) and a character � 2 �.

Let Q be a parabolic subgroup associated to P and let us fix a class {P}
of associated subgroups, let the character � be as in paragraph (1.4), and
let  be as in (1.2). The spaces relevant for us to construct Eisenstein series
will be the following subspace of (1.1):

L
2
�
P (Q)NP (A)AP (R)o \G(A)

�
�,�

, (1.2)

and the subspace:

L
2
�
P (Q)NP (A)AP (R)o \G(A)

�
�,{P}, ,�

, (1.3)

of (1.2) which we define as follows. By definition (1.3) is the space of functions
f(.) such that their constant term fNQ(g) =

R
NQ(Q)\NQ(A) f(ng)dn has the

property that if k 2 K and l 2 MQ(A)AQ(A) then fNQ(lk) is orthogonal to
the space of cusp forms if Q /2 {P} and is a sum of cusp forms transforming
under infinitesimal characters of Z(mQ) which belong to  

Q
if Q 2 {P}.

If P contains no element of {P} then (1.3) is zero by this definition and
Lemma 3.7 in [L1].

The space of �-finite cusp forms onG(Q)\G(A) belonging to the character
⇠ : Z(g)! C⇤ will be denoted by

L
2
cusp

�
G(Q) \G(A)

�
⇠,�

. (1.4)

The C1-cuspidal functions that lie in a Sobolov subspace of (1.4) are of rapid
decay. For each parabolic subgroup P there is a bijection between the set
of parabolic subgroups of MP and the set of those parabolic subgroups of
G contained in P ([H1] lemma 2). Consequently in the above discussion we
can define the analog of this space for the Levi subgroups and the characters
� : Z(mP )! C⇤, which we denote by

L
2
cusp

�
MP (Q)) \M1

P
(A)

�
�,�

. (1.5)

(1.6) Now let f belong to A
2(P ). For � 2 (ǎP )C, the Eisenstein series

attached to f is by definition the series

E
G

P
(�, f)(g) =

X

�2P (Q)\G(Q)

e
h�+⇢P ,HP (�g)i

f(�g) (1.6)

which is known to converge uniformly and absolutely on compact subsets of
the Cartesian product of the domain of absolute convergence

AP = {� 2 (aP )C | <(�) 2 ⇢P + a
+
P
},
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and G(A)�. Then E
G

P
(�, f)(g) is an infinitely di↵erentiable function with

respect to � and g and analytic with respect to � for fixed g which is an
automorphic form on G(Q) \G(A).

For the sake of the induction argument used in theorem 7.1 in [L1], Lang-
lands defined a new kind of Eisenstein series which are suitable for descent
arguments. They are constructed as follows. Fix two standard parabolic
subgroups P ✓ R and for f(.) 2 A

2
cusp(P,�,�) define the Eisenstein series:

E
R

P
(�, f)(g) =

X

�2P (Q)\R(Q)

e
h�+⇢P ,HP (�g)i

f(�g),

which converges for a suitable � 2 AP and can be meromorphically continued.
It is clear that E

G

P
(�, f)(g) =

P
�2R(Q)\G(Q) E

R

P
(�, f)(�g). These new series

are introduced in the discussion following the theorem 4.1 of [L1], and their
main properties are proved there. For non-cuspidal functions f(.) in A

2(P )
their existence are guarantied by the theorem 7.1 in [L1].

In what follows we will need the constant term of Eisenstein series (1.6)
computed along parabolic subgroups of G. The concept of constant term
is introduced in section (1.3) above. Suppose that P and Q are parabolic
subgroups of G. Then the constant term of the Eisenstein series EG

P
(�, f)(g)

along Q is the integral

(EG

P
(�, f)(g))Q =

Z

NQ(Q)\NQ(A)
E

G

P
(�, f)(ng)dn.

The cuspidal component of this integral is zero if P and Q are not associated,
or better said, it is orthogonal to the space of cusp forms over Q. On the
other hand if P and Q are associated then for each � 2 AP such that � is
not a pole of EG

P
(., .), and for each ! 2 ⌦(ǎP , ǎQ) there exist linear operators

N(!,�) : A2
cusp(P,�,�)! A

2
cusp(Q,!�,�) such that

(EG

P
(�, f)(g))Q =

X

!2⌦(ǎP ,ǎQ)

e
h⇢Q+!�,HQ(�g)i(N(!,�)f(g)).

For the sake of the functional equation of Eisenstein series given in (1.20)

below, we modify the Haar measure on Q such that vol(NQ(Q)\NQ(A)) = 1,
which gives then N(1,�) = id.
For the partial Eisenstein series ER

P
(�, f)(g), the constant term along Q will

be �
E

R

P
(�, f)(g)

�
Q
=

X

!2⌦(ǎP ,ǎQ)

!̃|ǎR=Id

e
h⇢Q+!�,HQ(�g)i(N(!,�)f(g)).

Although we have not yet defined the residual Eisenstein series, but here
is a good place to introduce their constant term to show the contrast between
the two situations. Intuitively they are built out of cuspidal Eisenstein series
given above by taking residues on the intersection of their singularities with
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certain a�ne subspaces of ǎP . These singularities will be proved to be hyper-
planes. The exact meaning of them will be clear soon when we investigate
Eisenstein systems in (1.11) below.

Let P andQ be like above and let S
�
(ǎG

Q
)C
�
denote as usual the symmetric

algebra over (ǎG
Q
)C. If f belongs to A

2(P ) then there is a meromorphic
functions N(!,�) from (ǎP )C to the K-equivariant linear transformations
from the space (1.3) to the space

HomK

✓
S
�
(ǎG

Q
)C
�
, A

2
cusp(Q,�,�)

◆
, (1.7)

(notation just like (1.2)) such that

�
E

G

P
(�, f)

�
Q
(g) =

Z

NQ(Q)\NQ(A)
E

G

P
(�, f)

�
(ng)dn =

X

!2⌦(P,�, ,Q)

e
h⇢Q+!�,HQ(g)i

✓�
N(!,�)f

�
(HQ(g)

�◆
(g). (1.8)

It is known from lemma 7.2 of [L1] (proved in lemma 7.5 there) that the
operators N(!,�) are independent of � if ! 2 ⌦�(P,�, , Q).

(1.7) Fix a parabolic subgroup P ⇢ G and let � have the same meaning
as in (1.4). We fix once and for all a constant R such that R > h⇢, ⇢i

1
2 .

Let us denote by PW
�
(ǎG

MP
)C) the space of complex valued holomorphic

functions f defined on (ǎG
MP

)C which satisfy the growth condition

sup
�2(ǎGMP

)C

|f(�)|e�rk=�k(1+ k � k)n <1, 9 r > 0, 8n 2 N.

We call this space the space of Paley-Wiener functions on (ǎG
MP

)C.
More generally, let us denote by PWR

�
(ǎG

MP
)C) the space of complex

valued holomorphic functions �(�) defined on the strip

StrG
MP

(R) = {� 2 (ǎG
MP

)C| k <� k< R},

which satisfy the growth condition

sup
�2StrGMP

(R)

|�(�)|(1+ k � k)n <1

for all n 2 N. This implies that such functions decay faster than any polyno-
mial in the direction of the imaginary axis, i.e., k p(=�)�(�) kL2 is bounded
on StrMP (R) for each polynomial p(.) on StrG

MP
(R). Each such function �(.)

defines an element d�(.) of the space (1.7) via developing it as a Taylor series
⌘ 7�! �(⌘ + �) in a small neighborhood of the origin.
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With these spaces at hand we can define a subspace of functions on (ǎG
MP

)C
with values in the space

A
2
cusp(P,�,�)⌦ PW

�
(ǎG

MP
)C).

Analogously, we will consider the subspace of functions defined on StrG
MP

(R)
with values in the space

A
2
cusp(P,�,�)⌦ PWR

�
(ǎG

MP
)C).

We call the functions belonging to these spaces again Paley-Wiener functions.

Let us consider the space PW
�
(ǎG

MP
)C). These Paley-Wiener functions

are characterized by the property that they are Fourier transforms of C1

functions defined on MP (Q)ZG(A)\G(A) with compact support. We explain
this property more precisely.
Let D(MP )�,� denote the set of continuous �� and ��finite functions '(g)
on MP (Q)NP (A)Ap(R)� \G(A) such that the projection of their support on
M

1
P
(A)ZG(A) \MP (A) is compact and '(mg) 2 A

2
cusp(P,�,�) for all g 2 G.

Fix �0 2 ǎ
G

MP
. Each '(.) 2 D(MP )�,� can be represented as a Fourier

integral

'(g) =

✓
1

2⇡i

◆dim(ǎGMP
) Z

<(�)=�0

e
h�+⇢P ,HP (g)i�(g,�)d�,

where, for � 2 (ǎG
MP

)C, �(g,�) is a well-defined holomorphic function on
(ǎG

MP
)C, which in general does not belong to the spaceA2

cusp(MP (Q)\MP (A))�,�
since the property of MP (A)\K-finiteness is lost at the archimedean places.
But this function belongs to the subspace of the right M�translations of
A

2
cusp(MP (Q) \ MP (A))�,� which we denote by Ã

2
cusp(MP (Q) \ MP (A))�,�.

We call �(.) the Fourier transform of '(.). Let g = nam
0
k 2 G(A). Then

the function '(m0
mk) is well defined on LP (A)⇥K, take values in the space

Ã
2
cusp(MP (Q) \MP (A))�,�. Then for � 2 (ǎG

MP
)C

�(m0
k,�) =

Z

M
1
P (A)ZG(A)\MP (A)

e
�h�+⇢P ,HP (m)i

'(m0
mk)dm,

is a Paley-Wiener function on (ǎG
MP

)C.
This discussion (see also II.1.3 in [MW]) shows that there is an isomor-

phism between

D(P )�,� ⇠= A
2
cusp(P,�,�)⌦ C

1
c
(M1

P
(A)ZG(A) \MP (A))

and
A

2
cusp(P,�,�)⌦ PW

�
(ǎG

MP
)C)

defined by

(⇤)
X

( j ⌦ �j)(g)(m)�̃!
X

 j(mg)⌦ �j(m,HP (g))e
�⇢P (m)

,
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if g 2 G(A).

For the space PWR

�
(ǎG

MP
)C) the situation is more complicated since

unlike the space PW
�
(ǎG

MP
)C) the Fourier transform of the functions in

PWR

�
(ǎG

MP
)C) do not have compact support in general. To achieve an iso-

morphism like (⇤) we have to restrict ourselves to the subspace of func-
tions of exponential type, like the classical Paley-Wiener theorem (see [R]

chapter 19). Consider the subspace gPWR

�
(ǎG

MP
)C) ✓ PWR

�
(ǎG

MP
)C) con-

sisting of complex valued functions f defined on (ǎG
MP

)C such that for all
m 2 M

1
P
(A)ZG(A) \MP (A) there is a constant c and for R fixed above we

have |f(HG

P
(m))|  c.e

�RhHG
P (m),HG

P (m)i. Then there is a isomorphism, which
we denote by (⇤⇤), between

A
2
cusp(P,�,�)⌦ gPWR

�
(ǎG

MP
)C)

and the set of functions

� : G(A)! Ã
2
cusp(MP (Q) \M1

P
(A))�,�,

which are of exponential type, i.e., there is a � which satisfies <� > �0 and
a constant c such that |�(g)|  c.e

h�,HP (g)i for all g 2 SP . This is the iso-
morphism we sought and will use further on.

(1.8) Let �(.) lie in the image of the one of the isomorphisms (⇤) or (⇤⇤)
given just above. It is proved in theorem 3.6 of [L1] that the so called pseudo

theta series X

�2P (Q)\G(Q)

�(�g)

converge absolutely to a function b�(g) which satisfies the growth condition

| b�(g) | max
↵2�+(nP )

e
r↵(H�(g)),

in a Siegel domain S� associated to the minimal parabolic subgroup P� (fixed
in (1.1)) for a real number r and g 2 S�.

If �(.) lies in the image of (⇤) then we have b�(g) 2 L
2(G(Q) \ G(A)).

This justifies the interchange of integration and summation in the following
computations:

b�(g) =
X

�2P (Q)\G(Q)

�(�g) =

X

�2P (Q)\G(Q)

✓
1

2⇡i

◆dim(ǎP ) Z

<�=�0
�(�m,�)eh�+⇢P ,HP (g)id� =

✓
1

2⇡i

◆dim(ǎP ) Z

<�=�0

X

�2P (Q)\G(Q)

�(�m,�)eh�+⇢P ,HP (g)id� =
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✓
1

2⇡i

◆dim(ǎP ) Z

<�=�0
E(g,�,�)d�.

This computation shows that the L2 closure of the space spanned by the
functions b�(.), i.e.,

⌦b� | � 2 D(P )�,�, for all P 2 {P}
↵

is the closed subspace L
2(ZG(A)G(Q) \ G(A))�,{P},� of L

2(G(Q) \ G(A)),
which we denote by

L
2
�
{P},�,�

�
. (1.9)

So we achieve the decomposition of L2(G(Q) \ G(A)) if we decompose the
spaces (1.9) or equivalently the space L2

�
{P},�,�

�
. We try to give an intu-

itive description of how to achieve this goal here and more comprehensively
in the next sections. Suppose we have ↵(�0) > h↵, ⇢i for all ↵ 2 �+(nP ).
Then if in the integral

b�(g) =
✓

1

2⇡i

◆dim(ǎP ) Z

<(�)=�0

EP (g,�(�),�)d�,

we could shift the contour <(�) = �0 to <(�) = 0 we obtain all functions
b�(g) which lie in (1.9) and eventually produce the whole space. This is the
main result of the chapter 7 of [L1]. By shifting this contour we have to deal
with singularities and residues of Eisenstein series which show several un-
wanted behavior including having poles of higher order and that during this
shifting the contour will leave the domain of absolute convergence AP and
the behavior of the intertwining operators are unknown beyond this domain.
Some of these di�culties are partially explained in the only known example
of the group G2 in [L1].

(1.9) The above considerations show us that if we decompose the space
L
2(ZG(A)G(Q) \ G(A))�,{P},�, which as we saw, is the closure in the space

L
2(G(Q) \ G(A))� of the space generated by pseudo theta series, into the

subspaces under the action of the regular representation of G, we achieve
our goal of decomposing L

2(G(Q) \ G(A))�. One of the first results in this
direction is the theorem 4.6 of [L1] which gives the direct sum

L
2(G(Q) \G(A)) =

M

�

M

�2EK

M

{P}

L
2
�
{P},�,�

�
.

The subscript {P} means that the sum is taken over all equivalence classes
of associated parabolic subgroups of G. The EK and � and � have the same
meaning as already introduced at (1.3) and (1.4). Now to achieve a finer
decomposition it is necessary to decompose each of the subspaces

L
2
�
{P},�,�

�
.
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This goal can be equivalently achieved if we decompose the closure of the
space spanned by the pseudo theta series defined on the Levi components of
the parabolic subgroups belonging to {P}.

More precisely, let us fix a parabolic P 2 {P} and a parabolic subgroups
Q such that P ✓ Q, and let us assume that the function �(.) comes from a
Paley-Wiener function � 2 PWR

�
(ǎQ

P
)C)�,� in the sense that we described

in (1.7), and denote the closure of the space spanned by such functions

b�(g) =
X

�2P (Q)\Q(Q)

�(�g),

in the space
L
2
�
MQ(Q) \M1

Q
(A)

�
�,{P},�,

by
Q
L
2
�
{P},�,�

�
, (1.10)

as P varies over all parabolic subgroups contained in Q. Then if we decom-
pose (1.10) we actually achieve the decomposition of the space L

2(G(Q) \
G(A)).

(1.10) We now take a closer look at the problem of spectral decomposi-
tion and how it leads to the idea of Eisenstein systems. The Hilbert space
L
2(G(Q) \G(A)) with the action of the regular representation admits a de-

composition L
2(G(Q) \ G(A)) = L

2
dis(G(Q) \ G(A)) � L

2
cont(G(Q) \ G(A)).

The L
2
dis(G(Q) \ G(A)) part is the closure of the space spanned by closed

irreducible invariant subspaces of L2(G(Q) \G(A)). The L2
cont(G(Q) \G(A))

is generated by the direct integrals of representations which are induced from
the Levi factors of standard parabolic subgroups of G.

Let us denote by L2
cus(G(Q)\G(A)) the subspace of L2

dis(G(Q)\G(A)) con-
sisting merely of cuspidal functions. The orthogonal complement of L2

cus(G(Q)\
G(A)) in L

2
dis(G(Q) \G(A)) consists of residual functions, which we will de-

note by L
2
res(G(Q) \ G(A)). This space is not 0 since it is known that the

constant functions are belonging to it. We have the decomposition

L
2
(G(Q) \G(A)) = L

2
cont(G(Q) \G(A))�L

2
cus(G(Q) \G(A))�L

2
res(G(Q) \G(A)),

into closed invariant subspaces. The last two constitute the discrete spec-
trum and the last one is generated by the residual forms, which we call for
brevity residual spectrum, but it does not have anything to do with the usual
residual spectrum of Hilbert spaces, as it is defined for example in [Y] page
209 and should not be mistaken with it. The main building block of the
residual spectrum consists of the square integrable functions � : G(A) ! C
such that for a parabolic subgroup P 2 {P} satisfy the conditions:
1) �(.) is left invariant under the action of the group P (Q)NP (A)AP (R)�.
2) for any g 2 G, the function k ! �(gk) belongs to � ⇢ L

2(K).
3) for any g 2 G, the functionm! �(mg) belongs to L2

res(MP (Q)\M1
P
(A))�.
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We will denote this subspace by A
2
res(P,�,�). The same reasoning as it is

done in [H1] for the subspace A2
cus(P,�,�) shows the finite dimensionality of

A
2
res(P,�,�). See also chapter 6 of [OW]. It is also evident that this space is

invariant under the left convolution with functions ↵ 2 C
1
c
(G(A)) satisfying

↵(kxk�1) = ↵(x) for all k 2 K and x 2 G(A). If we attach an Eisen-
stein series E

G

P
(�,�)(m), � 2 ⇢P + ǎ

G+
P

, to each element � 2 A
2
res(P,�,�)

and continue it meromorphically from the complex tube over the positive
Weyl chamber ǎ

G+
P

+ iǎG
P

to all (ǎP )C then we can generate the subspace
L
2
res(MP (Q) \ M

1
P
(A))�. The same discussion holds for the whole discrete

part L2
dis(MP (Q) \M1

P
(A))� with the subspace A2

dis(P,�,�), which is defined
through the analog of the properties 1) to 3) above plus the meromorphic
continuation from the complex tube over the positive Weyl chamber to all
(ǎP )C . In turns out that with some extra e↵ort we can (roughly saying)
generate the space L

2
dis(G(Q) \ G(A)) by going through all the elements of

{P}, � and �. It was a marvelous insight of Langlands that this goal could
be reached by taking successive residues of Eisenstein series attached to cusp
forms along their singular hyperplanes, and he proved that this process ex-
hausts the space L

2(G(Q) \ G(A)) completely. These residues satisfy a set
of axioms which are called Eisenstein Systems which we discuss in the
following paragraph.

(1.11) We have to lay the geometrical foundations on which the Eisen-
stein systems are constructed. To begin with let us fix a parabolic subgroup
P 2 {P}. Let s ⇢ (ǎP )C denote an a�ne subspace which is defined by
equations of the form

↵(�) = µ, for ↵ 2 �+(nB),� 2 (ǎ�)C, and µ 2 C,

with a distinguished normal vector X(s) such that

s = X(s) + s̃,

in which the s̃ is a subspace of ǎ� defined by the real linear equations like
above for µ = 0. In this work we will consider only a�ne subspaces of this
type and denote them by s or t.

Starting from these spaces, we can consider a sequence of a�ne subspaces
of ǎP

S : t0 ⇢ ... ⇢ tr ⇢ ǎP ,

in which tr is defined by the equations of the form above and each ti is defined
recursively by

t̃i = {� 2 t̃i+1|↵(�) = 0,↵ 2 �+(nP )},

and for each ti a distinguished normal vector X(ti) like above. The set of
all such finite resolutions S along with the distinguished unit normal vectors
will be denoted by

SP (t).
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The minimum a�ne subspace t0 = X(t0) + t̃0 is of special importance for
the residual process which lies at the heart of the Langlands construction. If
we restrict our situation to residual Eisenstein series then t̃0 will be a distin-
guished subspace (defined in (1.1)) of ǎP and there is a parabolic subgroup
Q containing P such that t̃0 = ǎQ. But for the general situation of theorem
7.1 of [L1] (see (1.18) below), this is not the case since there are subspaces
s ⇢ h that carry an Eisenstein system which are not in general distinguished
subspaces. We will comment on this when we investigate the lemma 7.2 of
[L1] below in (1.13).

With these spaces at hand we try to motivate the definition of Eisenstein
Systems by considering a simpler situation. Let us fix parabolic subgroups
P ✓ Q for P 2 {P}. Recall from (1.6) that the Langlands Eisenstein series
have been defined as the in A

Q

P
convergent series

E
Q

P
(g,�,�) =

X

�2P (Q)\Q(Q)

e
h�+⇢QP ,HP (�g)i

�(�g),

for any cuspidal functions �(.) 2 A
2
cusp(P,�,�). Since all the other Eisenstein

series appearing in the spectral decomposition are constructed from these
Eisenstein series by taking residues along suitable hyperplanes, we need also
the concept of local residues of meromorphic functions which we explain
briefly as follows and more detailed in the next chapter. Let �P (�) be a
meromorphic function defined on (ǎP )C with values in a locally convex vector
space with singularities along the hyperplanes of the form given above and let
us denote by t a hyperplane of (ǎP )C not necessarily a singular hyperplane of
�P (�). We choose a unit real normal vectorH0 to t and define a meromorphic
function

Rest�P (�) =
1

2⇡ i

Z

C✏

�P (�+ zH0)dz,

for a small circle C✏ in C about the origin. ✏ is chosen such that no other
singular hyperplane of �P (� + zH0) cuts the circle C✏. We will refine this
definition in the next chapter of this work.

Now take �P to be an analytic function defined on (ǎP )C with values in
A

2
cusp(P,�,�). Then for each g 2MQ(Q)NQ(A)\G(A) the series EQ

P
(g,�P ,�)

is a cuspidal Eisenstein series which is meromorphic on (ǎP )C. It is shown in
chapter 6 and 7 of [L1] that the singularities of EQ

P
(g,�P ,�) are lying along

hyperplanes of the form given above. This discussion shows that the singular
hyperplanes of Rest E

Q

P
(g,�P ,�) and their intersections define a resolution

S like above and we can define the function

�(x) =
X

S2S̃P (t)

ResS
�!X(t0)

E
Q

P
(x,�P (�),�),

(� 2 (tS)C and x 2 G(A)) in which the set S̃P (t) ✓ SP (t) is dependent on
the path taken in the process of shifting the contour of integration to X(t0)
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(which is indicated by � ! X(t0)) and eliminating the parameters by tak-
ing residues successively until we reach the zero dimensional spectrum and
this sum will represent an element of L2(G(Q) \ G(A)). These residues will
not generate the whole space L

2(G(Q) \ G(A)) unless we could include all
a�ne hyperplanes of (ǎP )C which carry some Eisenstein series in the above
sense. It will be shown that there are only a finite number of such a a�ne
hyperplanes, but the choices are not canonical. Consequently to generate all
Eisenstein series which are relevant to the spectral decomposition one has to
proceed as follows.

Fix a parabolic subgroup P 2 {P} and a choose parabolic subgroup
Q ◆ P . Let FP be a function from (ǎP )C to A

2
cusp(P,�,�) defined and

analytic in a neighborhood of the point � 2 (ǎQ
P
)C and let us choose an

a�ne subspace s defined by root equations like above such that s̃ contains
ǎQ. Let us denote by s

? the orthogonal complement of s̃ in ǎ
Q

P
. If we

identify S
�
s
�
with a subalgebra of holomorphic di↵erential operators with

constant coe�cients on (ǎQ
P
)C then there is a linear map dFP (�) = dSFP (�) 2

Hom
�
S
�
s
�
, A

2
cusp(P,�,�)

�
obtained by developing the analytic function

⌘ 7�! FB(⌘ + �), ⌘ 2 (ǎQ
P
)C \ s

?

as a Taylor series around ⌘ = 0. The least degree of the nonzero terms occur-
ring in this expansion is called the degree of F . Langlands has shown that
all the Eisenstein series which are appearing in the spectral decomposition
are constructed starting from such a cuspidal functions and then taking their
residues at suitable a�ne subspaces introduced above. This process will lead
us to the definition of Eisenstein systems. To proceed to the definition we
need a finite set of complex a�ne subspaces of the form

s = X(s) + s̃,

of (ǎP )C such that, as claimed in the lemmas 7.2 and proved in 7.5 of [L1]
(see (1.13) and (1.15) below), there is a finite (non-canonical) sequence

SP (Q, s) : s0 ⇢ ... ⇢ sr ⇢ ǎP ,

of a�ne subspaces s of ǎP with the distinguished normal as above such that
s̃0 ◆ ǎQ. These sets are clearly non canonical. But we can construct a
canonical system of functions on this set of non-canonical subspaces which
in turn generate the residual spectrum. This is mainly done in the course
of the proof of the theorem 7.1 of [L1] (see paragraph (1.18) below) and
we will define them in a moment. To proceed to the definition, let us fix a
filtration S and write �s = dFP (�) for a function FP (�) like above. For the
a�ne subspace s defined by the root equations given above and satisfy the
condition ǎQ ✓ s̃ ✓ ǎP , let us denote by s

Q

P
the projection of s on ǎ

Q

P
. Then

an Eisenstein System is by definition a collection of functions
�
E

Q

s,P
(x,�s,�) : Q � P, ǎQ ✓ s̃
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which are defined on the set

NQ(A)MQ(Q)AQ(R)+ \G(A)⇥ Hom
�
S
�
s
�
, A

2
cusp(P,�,�)

�
⇥ (sQ

P
)C, (1.11)

which satisfy the following (i) to (v) conditions:

(i). Fix parabolic subgroups P 2 {P} and Q ◆ P . For each g 2 G and
FP 2 Hom

�
S(s), A2

cusp(P,�,�)
�
the function E

Q

s,P
(g, FP ,�) is meromorphic

on s
Q

P
. Moreover if �0 is any point of s

Q

P
there is a polynomial p(�) =Q

↵2�+(nQP )

�
↵(�)�µ↵

�k↵ , for µ↵ 2 C and k↵ 2 N[ {0}, which dos not vanish

identically on (sQ
P
)C, and a neighborhood U of �0 such that p(�)EQ

s,P
(g, FP ,�)

is a continuous function on NQ(A)MQ(Q)AQ(R)+\G(A)⇥U which is analytic
on U for each g and such that if S� is a Siegel domain associated to the
minimal parabolic subgroup P� (fixed in (1.1)) and FP as above then there
are constants b and c such that

|p(�)EQ

s,P
(mk, FP ,�))|  c max

↵2�+(nPP� )
e
bh↵,a�(m)i

,

for all m 2 S�, k 2 K and all � 2 U . The function E
Q

s,P
(g, FP ,�) is for

each g and � a linear function of FP and there is an n such that it vanishes
identically if the order of FP is bigger than n. ⇧

To proceed to the next definition we need some new notation. Let
P 2 {P} and let us choose an arbitrary parabolic subgroup R. For a fixed
a�ne subspace s ✓ ǎP let ⌦(s, ǎR) denote the set of distinct linear transfor-
mations from s to ǎR obtained by restricting the elements of ⌦(ǎP , ǎR) to s.
The linear part of an a�ne transformation ! 2 ⌦(ǎP , ǎR) will be denote by
!̃. We can now proceed further.

(ii). Let P 2 {P} and Q ◆ P . Let us choose another parabolic subgroup
P

0 such that ǎQ ✓ ǎP 0 .
Let ! 2 ⌦(s, ǎP 0) be such that !̃ | ǎQ = Id and put

s! = {�(!�)|� 2 s},

s! is a complex a�ne subspace of ǎP 0 . Then for such ! there is a function
N(!,�) on s

Q

P
, the projection of s on (ǎQ

P
)C, with values in the space of linear

transformations from Hom
�
S(s), A2

cusp(P,�,�)
�
to S(s!) ⌦ A

2
cusp(P

0
,!�,�)

such that if F belongs to Hom
�
S(s), A2

cusp(P,�,�)
�
and F

0 belongs to S(s!)⌦

A
2
cusp(P

0
,!�,�), the function (N(!,�)F, F 0) is meromorphic on s

Q

P
. If �0 is

a point of sQ
P
there is a polynomial p(�) and a neighborhood U of �0 in s

P

B

such that p(�)(N(!,�)F, F 0) is analytic on U for all F and F
0 and there is

an integer n such that (N(!,�)F, F 0) ⌘ 0 if the order1 of F or F 0 is greater

1
The order of F is the degree of the lowest nonzero term which appears in the power

series expansion of F .
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than n. Finally
Z

NP 0 (Q)\NP 0 (A)
E

Q

s,P
(nmk, F,�)dn =

8
><

>:

is orthogonal to the space of cusp forms, if P 0
62 {P}

P
!2⌦(s,ǎP 0 )
!̃|ǎQ=Id

�
e
h⇢P 0+!�,HP 0 (m)i�

N(!,�)F (mk), if P 0
2 {P}.⇧

(iii). Let P 2 {P} and let R and Q be a parabolic subgroup such that
P ✓ R ✓ Q and let P

0 be a parabolic subgroup such that ǎP 0 ◆ ǎQ. Let
s be an a�ne subspace of (ǎP )C such that ǎQ ✓ ǎR ✓ s̃ ✓ ǎP . Suppose
that F belongs to Hom

�
S(s), A2

cusp(P,�,�)
�
. Consdier two Eisenstein func-

tions EQ

s,P
(g, F, ⌘) and E

R

s,P
(g, F, ⌫) on AQ(R)0NQ(A)MQ(Q)\G(A)⇥s

Q

P
and

AR(R)0NR(A)MR(Q) \ G(A) ⇥ s
R

P
respectively, in which s

Q

P
and s

R

P
are the

projections of s on ǎ
Q

P
and ǎ

R

P
respectively. Thus ⌫ 2 s

Q

P
, and if ✓ 2 s

Q

P
then

✓ = ✓
Q

R
+ ✓

R

P
which ✓Q

R
2 (ǎQ

R
)C and ✓R

P
2 s

R

P
. Let

✓ 2

[

ǎP 0
ǎQ✓ǎP 0

[

!2⌦(ǎP ,ǎP 0 )
!̂|ǎQ=Id

!
�1
A

Q

P 0 , (1.12)

in which
A

Q

P 0 = {� 2 (aQ
P 0)C | <(�) 2 ⇢Q

P 0 + a
Q+
P 0 }.

Then if ✓ lies in the convex hull of the right hand side of (1.12) there is a
decomposition

E
Q

s,P
(g, F, ✓) =

X

�2R(Q)\Q(Q)

e
h✓QR+⇢QR ,HQ(�g)i

E
R

s,P
(�g, F, ✓R

P
), (1.13)

if ER

s,P
(�g, F, ✓R

P
) is analytic at ✓R

P
. The convergence of the right hand side of

(1.13) follows from the discussions after the theorem 4.1 in [L1]. Moreover, for
✓ like above, if we take the constant term of EQ

s,P
(g, F, ✓) along the parabolic

subgroup P
0 (as it is explained in (ii) above), we obtain

N
0(!, ✓) = N

R

P
(!, ✓R

P
) (1.14)

if ! 2 ⌦(s, ǎP ) is such that !̃ | ǎQ = Id.⇧

(iv) Since as we mentioned already in (A) in (1.1), in adelic setting,
associated parabolic subgroups which are also conjugate through an element
of G(Q) are equal, this definition (which is originally formulated for the real
groups) will be trivial in the language of adeles. See the page 169 of [L1] for
the original definition.⇧
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To state the part (v) we need some definitions which we give them in
a footnote since they are only relevant to this definition in order to not to
interrupt the main text.2

(v). Let k 2 K and F 2 A
2
cusp(P,�,�) and ✓ 2 ǎP . Then k.E(g, F, ✓) =

E(g, k.F, ✓) for the usual action of the subgroup K. Let f be a continu-
ous function with compact support on G(A) such that f(gk�1) and f(k�1

g)
both belong to the space spanned by the matrix elements of an irreducible
representation of K (i.e. f belongs to �, for � defined at (1.3)). Then
f ⇤ E(g, F, ✓) = E(g, d

�
⇡(f, ✓)

�
⇤ F, ✓).⇧

(1.12) Now we can explain the main construction of [L1]. We recall
that for the parabolic subgroups P ✓ Q and a�ne subspace s of (ǎQ

P
)C

such that ǎQ ✓ s̃ ✓ ǎP , the symmetric algebra S(s) is isomorphic to a
subalgebra of the algebra of holomorphic di↵erential operators with constant
coe�cients on (ǎQ

P
)C. Now, at the first step suppose that in the above setting

we have s = ǎ�, the split component of the minimal parabolic P� which
was fixed at (1.1). Then S(s) consists of constant functions, and for all
standard parabolic subgroups P 2 {P} with split component ǎP = ǎ� and
for all the functions FP : (ǎP )C ! A

2
cusp(P,�,�) as in (1.11), the map

FP 7�! FP (1) is an isomorphism between Hom
�
S(s), A2

cusp(P,�,�)
�
and

A
2
cusp(P,�,�). Let us choose a parabolic subgroup Q satisfying P ✓ Q and a

parameter � 2 A
Q

P
= {� 2 (ǎQ

P
)C | <(�) 2 ⇢Q

P
+ ǎ

Q+
P

}. Then we can construct

2
In the definition v) below we need to define two operators d(.) and ⇡(., .) and the

convolution of functions defined on G(A). Let us begin with convolution. Let � be

a locally integrable function on G(A) and f(.) 2 C
N

c
(G(A)). Then we can form the

convolution of these two functions as (f ⇤ �)(x) =
R
G(A) f(y)�(xy)dy. The convolution

is a compact operator on the space of cuspidal automorphic forms. More precisely, if

�(.) 2 A
2
cusp(P,�,�) then the map �! (f ⇤�)(x) on A

2
cusp(P,�,�) is a compact operator.

This fact is proved in the corollary of the lemma 3.1 of [L1], see also [H1] page 14.

To define d(.) suppose that R and Q are parabolics such that ǎR ✓ s̃ ✓ ǎQ and let

✓ 2 S(s). Then we have ✓R = ✓ ⌦ ✓
Q

R
2 S(sR) = S(s)⌦ S(s

R

Q
). Let F a function from ǎ

R

Q

to Hom
�
S(s), A

2
cusp(P,�,�)

�
which is analytic in a neighborhood of a point �, then the

d operator is defined as dF (�)(✓ ⌦ ✓
R

Q
) = D(✓)F (�)(✓

R

Q
), for � 2 ǎ

R

Q
. It is clear from the

definition that ddF (�)(.) = dF (�)(.).

Let us proceed to define the operator ⇡(y, ✓). Fix a standard parabolic subgroup P and

a function �(x) 2 A
2
cusp(P,�,�). Let us consider functions of the form �(x)e

h✓+⇢P ,HP (x)i

for ✓ 2 (ǎP )C and x 2 G(A). If y 2 G(A) then there is a function '(x) 2 A
2
cusp(P,�,�)

such that

�(xy)e
h✓+⇢P ,HP (xy)i

= '(x)e
h✓+⇢P ,HP (x)i

.

We will write '(x) = ⇡(y, ✓)�(xy). Then ⇡(y, ✓) is a bounded linear operator from

A
2
cusp(P,�,�) ! A

2
cusp(P,�,�), ⇡(xy, ✓) = ⇡(x, ✓).⇡(y, ✓) and ⇡(1, ✓) = id. It is read-

ily seen that there are constants c and N such that k ⇡(y, ✓) kop c.(1+✓)
N

which implies

that ⇡(y, ✓) is a strongly continuous representation of A
2
cusp(P,�,�). We can define the

convolution for the operators ⇡(y, ✓) as follows. Let �(.) 2 A
2
cusp(P,�,�) and f(.) be a

continuous function with compact support on G. Then ⇡(f, ✓) ⇤� =
R
G(A) f(y)⇡(y, ✓)�dy.
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the cuspidal Eisenstein series

E
Q

P
(�, F )(g) =

X

�2P (Q)\Q(Q)

e
h�+⇢QP ,HP (�g)i

F (1)(�g).

The collection {E
Q

P
(�, F )| Q � P for P fixed} defines an Eisenstein system

which can be checked directly from the definitions (i) to (v) in (1.11). At the
second step it has to be shown that the residues of these cuspidal Eisenstein
series satisfy the definition of the Eisenstein Systems and and all the other
Eisenstein series appearing in the spectral decomposition are obtained from
systems of this type by taking residues. This is done through the lemmas 7.5,
7.6 and theorem 7.1 in [L1]. This construction can be explained intuitively
as follows. We proceed from the above situation by dropping the assumption
that P is minimal and let P and Q be standard parabolic subgroups such
that P 2 {P} and P ✓ Q. Then we construct the disjoint union SP (Q) =S

s
SP (Q, s) over all the subspaces s which carry an Eisenstein system and

satisfy ǎQ ✓ s ✓ ǎP . Note that the spaces SP (Q, s) were defined at the
beginning of (1.11). Let the function

FP : (ǎP )C ! A
2
cusp(P,�,�)

be regular at the point X(s0) for S 2 SP (Q). Then the vector

� =
M

P

M

S2SP (Q)

(dSFP )(X(s0))

belongs to a subspace of
M

P

M

S2SP (Q)

Hom
�
S(s), A2

cusp(P,�,�)
�
.

Then the main construction of the theorem 7.1 of [L1] shows that the func-
tions defined by

�(x) =
X

{P2{P}:P⇢Q}

X

S2SP (Q)

ResS,�!X(s0)E
Q(x, FP (�),�),

(X(s0) as in (1.11)) lies is A
2(Q,�,�) and the whole space is spanned by

such a functions, and the map � ! � is a surjective linear map, which he
had proved to be actually an isomorphism.

This construction is done mainly in the course of the proof of the above
mentioned theorem, but before reaching that goal, Langlands had to prove
that the relevant subspaces satisfy some properties which are stated in lemma
7.2 and settled down in lemmas 7.4, 7.5 and 7.6, which we give an overview
of them.
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(1.13) Let us fix a parabolic subgroup P 2 {P} and choose a parabolic
subgroup Q � P . Let Q

S
P

m
denote a collection of distinct a�ne subspaces s of

(ǎP )C of dimension m such that ǎQ ✓ s̃ ✓ ǎP as in (1.11), and an Eisenstein
system defined on each of them. Set S

P

m
= [{Q|Q◆P}

Q
S
P

m
. This collection

is locally finite, as it is proved in lemma 7.5 of [L1], which we will explain
briefly in (1.15) below. For ! 2 ⌦G and the a�ne subspace s like above set
s! = {�!�|� 2 s}. Let P 0 be a parabolic subgroup satisfying ǎQ ✓ ǎP 0 , and
let t be an a�ne subspace of ǎP 0 such that ǎQ ✓ t ✓ ǎP 0 and let ⌦Q(s̃, t̃)
be the subgroup of the elements ! 2 ⌦G which leave ǎQ pointwise fixed and
which map s̃ ! (ǎP 0)C linearly and satisfying the property that s̃! = t̃. We
call two elements s and t of SP

m
equivalent if ⌦R(s̃, t̃) is not empty. We will

denote by ⌦(s, t) the set of linear transformations s ! {�| � � 2 t}. Then
for each s 2 S

P

m
there is an element s� 2 ⌦(s, s) such that

s
�(X(s) + �) = �X(s) + �

for all � 2 s̃. 3 To construct the general residual Eisenstein series and prov-
ing their functional equations, Langlands had to prove that:
1) The collection of relevant hyperplanes are locally finite.
2) Let P 2 {P} and let R � P be a parabolic subgroup. Then s = �!ǎR
is a hyperplane along which an Eisenstein system is defined. Suppose Q is
the smallest parabolic subgroup containing P such that ǎQ ⇢ !̂ǎR. Then
<(X(s)) 2 +

ǎ
Q

P
and and lies in a compact subset of ǎP .

3) For each relevant hyperplane t like above, there is an element !0 2 ⌦(t, t)
which leaves the t̃ point-wise fixed.
4) The operators N(!,�) defined for � 2 t are non zero only if there is a
hyperplane s such that t! = s.

These items are stated in the lemma 7.2 of [L1] as assumptions, and they
imply that the collection S as above is finite (proved in lemma 7.5), and for
each s the point X(s) is real (proved at the very end of the proof of the
theorem 7.1), and for any choice of ǎR, every equivalence class in S contains
an element s such that each s̃ is the complexification of a split component
of a parabolic subgroup, which is a subspace of h (proved in lemma 7.5).
Furthermore s

?, the orthogonal complement of s̃ \ ǎR in ǎP is spanned by
the vector X(s). Item 1) is also a consequence of the theorem 7.5 which
proves that the singularities of the Eisenstein series relevant to the spectral
decomposition are lying along root hyperplanes and consequently locally fi-
nite.
To prove 4) Langlands uses the lemma 7.3 which we state here as:

3
There is a slight ambiguity in the notation here. we use letters s, s

�
, t etc. to denote

the elements of the Weyl group when they are supposed to act on the hyperplanes rather

than subspaces, for the subspaces instead we use the letters !, � etc. Since there may

(and do) exist subspaces in the relevant (shifted) hyperplanes, this notation would mix up

at some places but it wont lead to confusion.
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Lemma 7.3. Let � belongs to the space L
2
�
{P},�,�

�
and suppose that

there are distinct points {�1, ...,�n} in (ǎP )C such that

Z

NP (Q)\NP (A)
�(ng)dn =

nX

k=1

e
h�k+⇢P ,Hp(g)i�P,�k

(HP (g))(g),

for �P,�k
(HP (g))(g) products of some polynomials and some NP (A)-invariant

functions. If �P,�k
(HP (g))(g) 6⌘ 0 then the points �k are all real.

The significance of this lemma can be explained as follows. The Eisen-
stein system E

G

P
(g,�s,�), defined on a hyperplane s = �!ǎR for a function

�s(.) = dFP (.) (see the beginning of (1.11)), does not belong to the space
(1.2) for general � unless � = X(s). Then this lemma and the equation
(1.8) (given in (1.8)) imply that the intertwining functions N(!,�k)�s are
not vanishing only if �<(!�) = <(Xs!) 2

+
ǎ
Q

P
for Q the largest parabolic

subgroup such that ǎQ ⇢ !̂ǎR.

(1.14) The lemma 7.3 plays a pivotal role in lemma 7.4 which in turn
proves the functional equation for the general Eisenstein series which is based
on the functional equation for the cuspidal Eisenstein series. To state it let
us fix like in (1.13) a parabolic subgroups P 2 {P}, a parabolic subgroup
Q such that P ✓ Q, and another parabolic subgroup P

0 satisfying ǎQ ✓ ǎP 0 ,
a�ne subspaces s and t such that ǎQ ✓ s̃ ✓ ǎP , and ǎQ ✓ t̃ ✓ ǎP 0 . Let us
fix an equivalence class C in Q

Sm = [{P |Q◆P}
Q
S
P

m
under the action of the

Weyl group of G, ⌦G, and fix an element s in C such that s̃ is a distinguished
subspace of ǎ� and let ⌦Q(s, t) be the subset of such a linear transformations
that leave (ǎQ)C fixed. Let ⌦(s, C) = [t2C⌦Q(s, t) and let ⌦0(s, C) denote
the set of elements in ⌦(s, C) which leave each point of s̃ fixed. If t1 and t2

belong to C and s
� is as defined in (1.13), then every element of ⌦(t1, t2)

can be written as ts�s�1 for s 2 ⌦(s, t1) and t 2 ⌦(s, t2). If � 2 ǎ
Q

P
then we

have a matrix

M(�) =

✓
M(ts�s�1

, ss
�
�)|s, t 2 ⌦(s, C)

◆

which is a meromorphic function of �, and a matrix

M =

✓
M(ts�s�1

, ss
�
�)|s, t 2 ⌦0(s, C)

◆
,

which has constant coe�cients. These matrices have finite dimensional range
and the dimension of their range is their rank. Then the lemma 7.4 states
that the rank of these two matrices are equal. This implies the functional
equation of all Eisenstein series as we will see it soon.
They are linear transformations between the following two spaces:



26 CHAPTER 1. A REVIEW OF EISENSTEIN SYSTEMS

M

s2⌦0(s,C)

HomK
�
S(ss), A

2
cusp(

s
P, s�,�)

�

!

M

s2⌦0(s,C)

S(ss)⌦ A
2
cusp(

s
P, s�,�) (1.15)

such that if �(.) belongs to the left hand side of (1.15), then the compo-
nent of M(s,�)�(.) on the right hand side of (1.15) is N(s,�)�(.). By s

P

we denote the parabolic subgroup whose Levi component is sMP s
�1, and

⌦0(s, C) stands for ⌦(., .) or ⌦0(., .) respectively for M(�) and M . The key
feature to prove the functional equation of all Eisenstein series, which is
a consequence of the equality of the ranks of the above matrices, is that
if �s2⌦0(s,C)M(tsos�1

, ss
o
�)�s belong to the range of M(�) in (1.15) and

and �t2⌦0(s,C)�
0
t
be a function lying in that range, and �s2⌦0(s,C) �t2⌦0(s,C)�

M(tsos�1
, ss

o
�)�s,�

0
t

�
vanishes, then it vanishes for all s, t 2 ⌦(s, C). A

direct consequence of this is that if we have E(g,�s�s,�) = 0 for some
�s�s lying in (1.15), then �s = 0 for all s 2 ⌦(s, C). In particular, if �
belongs to a space of cusp forms, then for  (�) = M(�)� �M� we have
E(g, ,�) = 0 and consequently  (�) ⌘ 0. The functional equation of the
cuspidal Eisenstein series (given in lemma 6.1 of [L1]) says that we have
E(g,M(s,�)�, s�) = E(g,�,�). Then the above vanishing result implies
that for the function  s(�) = (M(�) �M)�(�) we have E(g, s(�),�) = 0
for all s 2 ⌦0(s, C), consequently  s(�) = 0 for all s 2 ⌦(s, C) identically.
Now we can prove the functional equation of residual Eisenstein series. Let
� be like above. Then by taking residues, we will obtain

RessE(g,M(s,�)�, s�) = RessE(g,M(s, s�1
�
0)�,�0) |�0=s�

= Resss E(g,M�,�) = RessE(g,�,�). (1.16)

The first equality comes from the above mentioned vanishing result. The
second one is a consequence of lemma (7.2) which says that the functions
M(s,�) are zero unless ss = t for some t 2

Q
S
P

m
.

This implies also that in the process of taking residue of product of pseudo
theta series we can bring the residue inside the product. Since lemma 7.5
in [L1] shows that the residues of Eisenstein series are holomorphic in the
complex tube above the positive Weyl chamber, the problem of analytic con-
tinuation (which was tightly interrelated to the functional equation in the
cuspidal case) is automatically achieved in the residual situation. An impor-
tant consequence of this lemma, which is the content of the corollary 1 to
the lemma 7.4, is that the highest residues of Eisenstein series are also eigen-
functions for the Casimir operator. As a consequence the functions defined
by Eisenstein systems are representable as the residues of cuspidal Eisenstein
series. Then the corollary 2 to this lemma (page 202 in [L1]) says that for
each subspace ǎR ✓ s̃ and each function F in (1.2) the collection Q

S
P

m
and
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the associated Eisenstein system are uniquely determined if E(g, F,X(s))
(which lie in L

2(G(Q) \G(A))) are given. This corollary gives the meromor-
phic continuation of residual Eisenstein series almost immediately, so that
for �(.) 2 A

2
res(P,�,�) and � 2 AP + iǎP the Eisenstein series E(g,�,�) can

be meromorphically continued to ǎP + iǎP .

(1.15) From now on we fix the collection S
P

m
as defined in (1.13). The

lemma 7.5 is the analytic heart of the Langlands construction. It singles out
a (non-canonical) collection of hyperplanes S like what we have mentioned
above, which are appearing in the spectral decomposition of theorem 7.1.
The main analytical properties of residual Eisenstein series are settled down
in this lemma. To state it we need some definitions from the spectral theory.
Fix a parabolic subgroup P with Levi component MPAp. Then there is a
decomposition of the Cartan algebra of (hG)C ⇢ gC as

(hG)C = (ǎP )C � (hMP )C,

for hMP the Cartan subalgebra of mP . Suppose X 2 Z(mP ) ⌦ A(aG). A
famous theorem of Harish-Chandra shows that there is an isomorphism X !

pX(H) between the center of universal enveloping algebra Z(g) of g and the
algebra of polynomials on hG invariant under the Weyl group ⌦G of g. Let
this isomorphism map Y 2 Z(g) to pY , then a simple calculation given in
chapter 4 of [L1] shows that for any X 2 Z(g) and � 2 A

2(P, pX(.),�) there
is a point Z 2 hMP such that

X · E(g,�, H) = pX(Z)E(g,�, H),

for the action X· of the universal enveloping algebra defined as X · f(g) =
d
dtf(g.exptX)|t=0.
In particular, for the Casimir operator !G of g and for a function � 2

A
2(P,�,�) we will have

!G · E(g,�, H) = {hH,Hi � h⇢, ⇢i+ h�,�i}E(g,�, H).

Suppose that �(g) is the Fourier transform of a Paley-Wiener function �(g,�).
Suppose also that for a constant R > h⇢, ⇢i the points H are belonging to
StrP (R). Then the values of hH,Hi are bounded from above by R and the
pointwise multiplication

� = (�1, ...,�r)!  (H) = (hH,Hi�1, ..., hH,Hi�r)

of functions �(H) lying in StrP (R) defines an unbounded self adjoint linear
operator

b�!  ̂ = Ab�,

on the space (1.2) which is one to one with dense range on (1.1). These
A operators are of type mentioned in iv) of Eisenstein systems in (1.11).
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The resolvent of the operator A will be denoted by R(µ,A) = (µ� h�,�i)�1

and is analytic for µ o↵ the interval (�1, R
2]. Let Q denote an orthogonal

projection from (1.9) to a subspace which commutes with the right multipli-
cation by bounded analytic functions f(.) = (fR(.))ǎR⇢ǎP defined on the tube
StrQ

P
(R) satisfying the property fR(�) = fR0(!�) if ! 2 ⌦(ǎR, ǎR0) for R and

R
0 are associated parabolic subgroups such that ǎQ is contained in ǎR and

ǎR0 . Then the lemma 7.5 states that for each collection S
P

m
of hyperplanes

defined as above, if ǎQ is the distinguished subspace contained in s̃! = �!ǎR
for ! 2 ⌦(ǎR, ǎP ) then �!0 = <X(s) 2 +

ǎ
Q

P
and X(s) 2 StrP (R), and if only

a finite number of the elements of SP

m
meet each compact subset of (ǎP )C,

and if, for arbitrary � (chosen so that it vanishes to a su�ciently high degree
on the singular hyperplanes of N(!,�) meeting the domain of integration
below), the di↵erences �

R(µ,A)Q�̂,  ̂
�
�

X

s2S

X

!2⌦(ǎP ,ǎQ)

Z

X(s)+i ǎ
Q
P

,

k=(�)k<a

�
N(!,�)d

✓
�(�)

µ� (�,�)

◆
, d (�!�)

�
d�,

and �
Q�̂, R(µ,A) ̂

�
�

X

s2S

X

!2⌦(ǎP ,ǎQ)

Z

X(s)+i ǎ
Q
P

,

k=(�)k<a

�
N(!,�)d�(�), d

✓
 (�!�)

µ� (�!�,�!�)

◆�
d�,

are analytic for <(µ) > R
2
� a

2, for a positive number a satisfying a <p
R2+ k <(µ) k2, then there is an element s0 2 ⌦(ǎP , ǎP ) which leaves each

point of s̃ pointwise fixed, and the functions N(., .) are vanishing identically
unless there is a hyperplane t in this class such that s! = t, and then

N(!,�) = N(!�1,�!�).

The collection of a�ne subspaces fixed by the lemma 7.5 will be used in
the lemma 7.6 to produce functions which generate the spectral decomposi-
tion. It will be shows in the lemma 7.6 that these functions are integrals of
residual Eisenstein Series on some unitary axes. To explain it we need some
definitions from the spectral theory. For the proofs we refer to [Y] or [S].

(1.16) Let A be a self adjoint operator on a Hilbert space H and let
R(z, A) = (A�z IdH)�1, z 2 C denote its resolvent. Let A be the ��Algebra
of Borel functions on R. Then there exists a positive measure µ = µA which
maps every X 2 A to a self adjoint projection µA(X) 2 Hom(H,H) such that
the following properties are satisfied:
a. For all X 2 A the operator µ(X) 2 Hom(H,H) is self-adjoint and we have
hµ(X)v, vi 2 [0,1).
b. For all X, Y 2 A such that X \Y = ; we have µ(X [Y ) = µ(X)+µ(Y ).
In particular µ(0) = 0.
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c. µ(R) = IdH and k µ(X)v kk µ(R) k |v|2 = |v|
2. In particular µ(t)µ(s) =

µ(s)µ(t) = µ(t) if t < s and
d. Let X1 ✓ X2 ✓ ..., Xi 2 A and X = [1

i=1Xi. Then for all v 2 H we
have µ(X) = s. limi!1 µ(Xi) in the strong operator topology, as well in the
weak-topology.
Then this collection of measures defines for each �-measurable function f on
R a self adjoint operator If (X) on H by hIf (X)v, vi =

R
X
f(t)dhµ(t)v, vi for

each X 2 A, with the domain DIf = {v 2 H|
R
R f

2(t)dhµ(t)v, vi < 1}. Let
u, v 2 H. There is a canonical unique representation of the operator A via
the spectral measure µ as hu,Avi =

R
R tdhµ(t)v, vi and h(A�� IdH)�1

u, vi =R
R

1
t��dhµ(t)u, vi. Observe that then DIf = DA. An important consequence

of this construction is the famous formula

h(IdH�µ(�))u, vi = lim
�!0

1

2⇡ i

Z

C(↵,�,�,�)

hR(z, A)u, vidz

for ↵ < (⇢, ⇢) < �, � < � and ↵ = �, due to Stone (in the form which is used
by Langlands). The Contour consists of two oriented polygonal ways with
vertices at ↵+ i �, ↵+ i �, � + i �, � + i �, and ↵� i �, ↵� i �, �� i �, �� i �.
We usually take H to be a subspace of (1.0).

(1.17) Now we are ready to state the lemma 7.6. Fix as usual P 2 {P}
and P ✓ Q. Let C1, ..., Cu be equivalence classes of m-dimensional a�ne
hyperplanes in Q

S
P

m
under the action of the Weyl group. For each 1  n  u

choose an element s
n
2 Cn such that s̃

n contains the complexification of a
distinguished subspace ǎ

n of h. If P 2 {P} and ǎQ ✓ ǎP and if �(.) is like
above then X

!2⌦P
n (sn,Cn)

E(g, d�(!!�
n
�),!!�

n
�)

is analytic on the unitary axis X(sn
!
)+ i!ǎn

P
. The space ǎn

P
is the orthogonal

complement of ǎn in ǎP . The subset ⌦P

n
(sn, Cn) is defined like our discussion

about the lemma 7.4 above to be the subset of ⌦n(s, C) = [t2C⌦n(s, t),
restrictions to sn of elements of ⌦(s, C), such that for some t 2

�
S
P

m
we have

ss = t. Furthermore, if !sn = #⌦P

n
(sn, Cn), then the function

�T (g) =
uX

n=1

1

!sn(2⇡ i)m

Z
E(g, d�(!�),!�)d�,

in which the integration is taken over the unitary axis

U(sn
!
, X(sn

!
), T ) = {X(sn

!
) + i�| � 2 s̃

n

!
\ ǎ

n

P
, k � k< T},

belongs to the closed subspace

Q
L
2
m

�
{P},�,�

�
✓

Q
L
2
�
{P},�,�

�
,
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spanned by the functions of the form (IdH�µ(t))Q�̂ for the correspondence
�(g) $ �(�) described above as we discussed the Paley-Wiener functions,
and the projection of �̂(.) on this subspace is equal to limT!1 �T . Further-
more for functions �(.) and  (.) and Q ◆ P , the inner product

X

✓2⌦Q
n (sn,Cn)

X

!2⌦P
n (sn,Cn)

�
N(✓!�

n
!
�1
,�)d�(!!�

n
�), d (�✓�)

�

is analytic on the unitary axis X(sn
!
) + i!ǎn

Q
.

There is an important corollary to the lemma 7.6, which we have men-
tioned previously and we state it as follows. We use the notation introduced
in (iii) of (1.11).
Suppose that P 2 {P} and let P ✓ Q be a parabolic subgroup such that
ǎQ ✓ s̃ ✓ ǎP for s 2 SQ(P ), and let FQ(.) 2 Hom

�
S
�
(sP

Q
)C
�
, A

2(Q,�,�)
�
.

Suppose that ǎQ is the largest distinguished subspace which is contained in
s̃, and also suppose that r denotes the inverse image in s of a singular hyper-
plane of the function E(g, FQ(�),�), � 2 X(s)+ s

Q

P
, which meets the unitary

axis X(s) + i šQ
P
. Then r̃ contains ǎQ.

This corollary implies that the singular hyperplanes considered in lemmas
7.5 and 7.6 wont meet the unitary axis X(s) + i ǎQ.

(1.18) The subspace Q
L
2
m

�
{P},�,�

�
constructed in lemma 7.6 are ex-

actly those subspaces appearing in the decomposition of the space Q
L
2
�
{P},�,�

�
.

We can now state the main theorem of chapter 7:

Theorem 7.1. Let P 2 {P} and let P ✓ Q. Let p = dim(ǎP ) and
consider the p + 1 collection Sm = [{Q|P✓Q}

Q
S
P

m
, 0  m  p, of a�ne

subspaces of ǎP of dimension m and the unique Eisenstein systems belonging
to Sm, which satisfy the hypothesis of the lemma 7.5. Consider the subspace

Q
L
2
m

�
{P},�,�

�

which is a closed subspace of

Q
L
2
�
{P},�,�

�

associated to Sm by lemma 7.6. Then there is an orthogonal decomposition

Q
L
2
�
{P},�,�

�
=

pM

m=dimAQ

Q
L
2
m

�
{P},�,�

�
,

in which L
2
s
(.) and L

2
r
(.) are orthogonal if r 6= s.

(1.19) Since the Eisenstein series which were used in the spectral decom-
position may have singular hyperplanes which intersect the complex tube
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above the region of absolute convergence, we have to settle down a kind
of Cauchy theorem suitable for the situation. This is the content of the
lemma 7.1 which is used only in the proof of the theorem 7.1 to deal with
the three kind of singularities introduced at the beginning of the theorem
7.1. Through the proof of this theorem it was also proved implicitly that
the singularities of Eisenstein systems which are relevant to the spectral de-
composition are only of these three kinds. We review them briefly. To begin
with, beside the collection Sm introduced above we have to consider the
collection Tm of not necessarily distinguished subspaces of ǎP of dimension
m � 1. Suppose that only a finite number of these a�ne subspaces inter-
sect any compact subspace of ǎP . Moreover, the points X(s) are lying in
StrP (R) and <(X(s)) lies in the +

ǎ
0
P
if ǎ0 is the largest distinguished sub-

space contained in s̃. For each a�ne subspace s ⇢ ǎP there is a subset
�+(s) ⇢ �+(nP ) and constants µ 2 C such that this space can be defined by
the equations of the form ↵(�) = µ for � 2 ǎP and ↵ 2 �+(s). For s 2 Sm

put +
ǎ(s) = {� 2 ǎP | ↵(�) > 0 for ↵ 2 �+(s)}. The unitary axis above s

will be denoted by

U(s, X(s), T ) = {X(s) + i�| � 2 s̃ \ ǎP , k � k< T},

for T a non-negative real number possibly infinite. Associated with these
unitary axes there are open convex cones defined as follows. Let 0 < a < 1
be a real number. Let V(s, a) denote a non-empty open convex cone in
X(s) + (s̃ \ ǎP ) with vertex X(s) and base U an open subset of a sphere of
radius ✏ in s̃ \ ǎP :

V(s, a) = {X(s) + (1� x)�|a < x < 1,� 2 U}.

These cones fulfill the condition V(s, a1) ✓ V(s, a2) if a1 > a2, which is
explained in the Lemma 7.1 of [L1].

Let also that C(s, ✏, a) denote a cylinder

C(s, ✏, a) = {X(s) + �| � 2 s̃, k <� k< ✏, k =
�
X(s) + �

�
k< a}.

Then the singularities of relevant Eisenstein systems carried by a�ne hy-
perspaces are of three kinds:
Type A. Let s 2 Sm. A hyperplanes of type A satisfies the property that
each singular hyperplane of the associated Eisenstein system which meets the
closure of C(s, ✏, a) meets the closure of the unitary axis U(s, X(s), a) too,
but no singular hyperplane meets the closure of U(s, Z, a) if Z 2 V(s, a), and
so that the closure of V(s, a) lies in StrP (R).4

Type B. Let t 2 Tm�1. Let ǎ0 ⇢ t̃ be the largest distinguished subspace, R

4
There is an implicit restriction on the values of a. More precisely, let us write X(s) =

<X(s) + i=X(s). then <hX(s), X(s)i =k <X(s) k
2
� k =X(s) k

2
. Then in the lemmas

7.5 and 7.6 it was assumed that <hX(s), X(s)i > R
2
� a

2
. Since k <X(s) k

2
< R

2
this

implies that k =X(s) k
2
< a

2
.
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and R̃ be parabolic subgroups such that ǎR ⇢ ǎP and ǎ
R̃
⇢ ǎR, and finally

let F 2 Hom
�
S
�
(̌tR̃

R
)C
�
, A

2(R,�,�)
�
. Then the hyperplane t is of type B

if the inverse image in t of a singular hyperplane r of the function E(., F, .)
which is defined on ǎ

R̃

R
and which meets the unitary axis U(ǎR̃

R
, X(t),1) then

ǎ0 ⇢ r̃.
Type C. Let t 2 Tm�1 and f 2 A

2(P,�,�). Then t is of type C if no singular
hyperplane of E(., f, .) meets the closure of U(t, Z, a) if Z 2 V(t, a) and such
that the set {<Z|Z 2 V(t, a)} contained in the interior of the convex hull of
ǎ
+
P
and +

ǎ(t).

The proof of the theorem 7.1 is incomplete unless one shows that how we
can have to shift the contour of the integration to X(t0) (as it explained in
(1.12)) and collect the residues. This is done via a variant of the Cauchy
theorem, stated in lemma 7.1. We state a variant of it due to Langlands
(given in page 181 of loc.cit. above) which is more suitable for the root
spaces. Suppose we have an Eisenstein system {E(., ., .)} belonging to s and
let t1, ...tl be its singular hyperplanes.

Let us fix two cones Vi(s, a), i = 1, 2, such that no singular hyperplane
meets the closure of U(s,W, a) if W 2 Vi(s, a) and Vi(s, a1) ✓ Vi(s, a2) if
a1 � a2. Fix also a cone C(., ., .) like above and suppose that for all a each
singular hyperplane of the Eisenstein system which meets the closure of it
meets the closure of the unitary axis U(s, X(s), a). There is also a subset T
of the set of singular hyperplanes such that <X(s) = X(t) and two nonempty
convex cones Wi(s, a1) ✓ Vi(s, a2) with vertex X(t) for all t 2 T . Choose
and an arbitrary point W(t) 2 V(t, a). Then there exists an open subset
U

0 of some real subspace of dimension m
0 = dim s̃ � dim ǎ0 of the space ǎ

0
P

which is either s itself or a singular hyperplane t of the Eisenstein system
such that t̃ contains ǎ0, and is contained in {� 2 ǎ

0
P
| k =� k> a}. Now,

if one (and hence each, according to the corollary of the lemma 7.6) of the
(shifted) singular hyperplanes t̃k, k = 1, ..., l, does not contain ǎ

0
P
then

1

(2⇡ i)m

Z

U(ǎ0P ,W1,a)

�d��
1

(2⇡ i)m

Z

U(ǎ0P ,W2,a)

�d� =

1

(2⇡ i)m0

Z

U 0
�d�,

and if one of (and consequently all of) them contains ǎ0
P
then

1

(2⇡ i)m

Z

U(ǎ0P ,W1,a)

�d��
1

(2⇡ i)m

Z

U(ǎ0P ,W2,a)

�d��

lX

k=1

1

(2⇡ i)m�1

Z

U(ǎ0P ,Wk,a)

Restk �d� =

1

(2⇡ i)m0

Z

U 0
�d�,
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in which � stands for either E(g,�,�) or (N(!,�)d�(�), d (�!�)). The
points Wi are belonging to Wi(s, a) and Wk to V(tk, a).

This finishes our description of the main constructions given in the chap-
ter 7 of loc. cit. above. The proof of these statements are very involved and
a detailed account will be found in [MW] or [OW].

(1.20) We wont need the full force of the above construction, but rather
a black-box view given in [F1] pages 38-42 will serve us as well. We summa-
rize the main points here and show where they are related to our previous
discussion.

First of all, the lemma 7.4 mentioned in (1.14) gives the functional equa-
tions of the general Eisenstein series and the intertwining operators. To
explain it let t 2 ⌦(ǎP , ǎQ) like above. For this t we choose a representative
in G(Q) which we denote by !. For � lying in the domain of holomorphy AP

defined above we define the intertwining operator M(!,�) by an absolutely
convergent integral

�
M(t,�)�

�
(g) =

Z

NQ(A)\!NP (A)!�1\NQ(A)
�(!

�1
ng)e

h�+⇢P ,HP (!�1
ng)i

e
�h!�+⇢Q,HQ(g)i

dn,

with values in the space of linear operators from A
2(P,�, �) to A

2(Q,�, �)
which admits an analytic continuation to a meromorphic function of � 2
(ǎP )C.

Let R be another parabolic subgroup associated to Q. Then the lemma
7.4, discussed in (1.14), guaranties that for � 2 (ǎG

P
)C and � 2 G(Q) a repre-

sentative of a transformation w 2 ⌦(ǎQ, ǎR) we have the functional equations:

Fun 1 E(!�,M(!,�)�) = E(�,�).

Fun 2 M(!�,�) = M(!, ��)M(�,�)

for !, � 2 G(Q). More generally, we decompose ! = !↵n ...!↵1 such that
if !i = !↵i ...!↵1 then Mi = !iM!

�1
i

is the standard Levi of a parabolic
subgroup Pi with unipotent radical Ni, and ↵i+1 is a simple root of �(ni)+

such that !�1
i
(↵i+1) > 0. Then we can decompose the above integral over

Nn(A) \ !NP (A)!�1
\Nn(A) to n integrals over

�
Nn(A) \ !!�1

i�1Ni�1(A)!i�1!
�1
�
\
�
Nn(A) \ !!�1

i
Ni(A)!i!

�1
�

to obtain the general decomposition

M(!,�)� = M(!↵n ,!n�1�)M(!↵n�1 ,!n�2�) · · ·M(!↵1 ,�)�.

⇧
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We can also attach a generalized symmetry s↵ to each simple root in the
sense of page 13 of [MW], and obtain that

Fun 3 M(s↵,�) depends only on h↵̌,�i.

⇧

For a general partial Eisenstein series (analog of the cuspidal ones were
defined in (1.6)), the part (iii) of the definition of Eisenstein system (see
(1.11)) implies that if P ✓ R and Q associated to P then

Fun 4
�
E

R

Q
(�,�)

�
P
(g) =

P
!2⌦(ǎQ,ǎP )
!̌|âR=Id

e
h!�+⇢P ,HP (g)i�

N(!,�)�
�
(Hp(g))(g).

The theorem 7.2 (discussed in (1.13)) implies that if there is no a�ne
function ! : ǎQ ! ǎP such that !�1(↵) > 0 8↵ 2 �+(nP ) and !MQ(A)!�1 is
not a standard Levi of MP (A) then the right hand side of the above equation
is zero.

⇧

In the case of cuspidal Eisenstein series the N(., .) and M(., .) operators
coincide, in the general case they are di↵erent but related by the functional
equation

Fun 5 N(!�,�) = N(!, ��)M(�,�)

for � and � like above. To see this we have to combine the computa-
tion (1.16) given in (1.14) and the process of taking the constant term of a
general Eisenstein series ER

Q
(�,�) along a parabolic subgroup P ✓ R, which

is be the right hand side of the Fun 4. On the other hand we know from
(1.14) that if � 2 ⌦(ǎ

Q̃
, ǎQ) for a parabolic subgroup Q̃ ✓ R associated to

P then E
R

Q̃
(M(�,�)�, ��) = E

R

Q
(�,�), which gives

�
E

R

Q̃
(M(�,�)�,��)

�
P
(g) =

X

!2⌦(ǎQ̃,ǎP )

!̌|âR=Id

e
h!��+⇢P ,HP (g)i�

N(!,��)M(�,�)�
�
(Hp(g))(g).

The left hand side of the Fun 4 and this equation are meromorphic functions
which by the meromorphic continuation of Eisenstein series are coincide on
the convex hull of the disjoint union of the cones of absolute convergence of
their corresponding Eisenstein series, and consequently the right hand side
of them are identical which gives the functional equation Fun 5.

⇧

Let ! 2 ⌦(ǎR, ǎP ), R ◆ P , and let Q be the smallest parabolic subgroup
containing P subject to the condition that ǎQ is contained in !̂ǎR. We have
shown above that the a�ne subspace s = �!ǎR is an a�ne subspace along
which an Eisenstein system is defined and X(s) = �!0 is the point of min-
imum norm in that subspace. One of the main features of the subspaces
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carrying Eisenstein systems is the fact proven in the second to the last page
of [L1] (page 230) that

Fun 6 !0 2 �+
ǎ
Q

P
.

This fact was part of the assumptions of the lemma 7.2 mentioned in (1.13)

and is proved only after the main structure of the induction in the proof of
the theorem 7.1 has been settled down.

⇧

This finishes our review of the main features of the Eisenstein systems which
we need in the next section.
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Chapter 2

Uniform Boundedness of the

Pole Order

(2.1) In this section we prove the remark (3) in [F2], which says simply that
the order of the poles of an Eisenstein series defined on a reductive group
G is bounded by a constant which depends on the group G. Suppose that
h is a meromorphic function on ǎ

G

P
with a singularity along a hyperplane

H ⇢ ǎ
G

P
, t0 a unit vector normal to H and z 2 H a generic point. We

will denote by
�
ResH,k(h)

�
(z) the �k-th coe�cient in the Laurent series

h(z + ⌧ t0) =
P1

k�1 ak⌧
k. Let us fix parabolic subgroups P and Q such that

the set ⌦(P,�, , Q) 6= ? and recall the definition of �+ given in (1.1).

Our goal is to prove the following

Theorem 1 (Remark 3 in [F2]). Let H be a singular hyperplane of the
Eisenstein series

E
G

P
(�, f)(g) =

X

�2P (Q)\G(Q)

e
h�+⇢P ,HP (�g)i

f(�g)

which meets
ǎG + i ǎP + ǎ

G+
P

.

For an a�ne function � : H ! (ǎG
Q
)C, let Ni(�, .) be the function on ǎ

G

Q
with

values in the space of linear transformations from (1.3) to

S
�
(ǎG

Q
)C
�
⌦ A

2
cusp(Q,�,�),

defined by

⇣
Ni(�,�)f

⌘
(x) = e

�h�(�),xi
X

!|H=�

⇣
ResH,i e

h!(⌘),xi
N(!, ⌘)f

⌘
(�), (2.1)

for a parameter ⌘ which lies in a small convex neighborhood of x in (ǎG
P
)C.

Let ⌦i(H,P,�, , Q) be the set of linear transformations � such that Ni(�, .)

37
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does not vanish identically and let ⌦(H,P,�, , Q) be the union of these sets
over i. Let k > 0 and let ! 2 ⌦(H,P,�, , Q) be such that Nk(!,�) 6⌘ 0 and
such that if !̃ 2 ⌦(H,P,�, , Q) and Nk(!̃,�) 6⌘ 0 then 1

���!(x)
�
+

�� �
���!̃(x)

�
+

��

for all x in some open subset of H \ ǎ
G+
P

. Then Nj(!,�) ⌘ 0 for j > k.

(2.2) We explain how this theorem yields the uniform boundedness of the
pole order of general Eisenstein series. Let H be a singular hyperplane of the
Eisenstein series (1.3) like above. Recall that by definition (ii) of Eisenstein
systems given in (1.11) we have

Z

NQ(Q)\NQ(A)
ResH,i E(nmk, F,�)dn =

⇢
is orthogonal to the space of cusp forms, if Q 62 {P}P

!2⌦i(H,P,�, ,Q))

�
e
h⇢+!�,HQ(m)i��ResH,i N(!,�)F

�
(mk), if Q 2 {P}

Then the lemma 3.7 of [L1] implies that the residue of the residual Eisenstein
series should vanish if its constant term vanishes for all Q 2 {P}.

Using this fact, we reformulate the theorem as follows. Write the i-th
term of the principal part of the Laurent expansion of the constant term of
the Eisenstein series as

(ResH,i E
G

P
f)Q(�) =

X

�2⌦i(H,P,�, ,Q)

�
(Ni(�,�)f)(HQ(g))

�
(g),

and suppose that the other assumptions of the theorem 1 are fulfilled. Our
claim is that the leading summand in the constant term of the i-th residue
of the above Eisenstein series with parameters lying in the positive Weyl
chamber may not contribute to the constant terms of the residues of or-
der > i. This implies that the order of a singular hyperplane intersecting
the positive Weyl chamber is bounded by a maximum over Q 2 {P} and
the number of elements of ⌦(H,P,�, , Q) which in turn is bounded by
a constant depending only on G. To see this, observe first, as mentioned
above, that for a function f 2(1.1) there are only finitely many i such that
(ResH,i E

G

P
f)Q(�) 6⌘ 0 and also there are finitely many ! 2 ⌦(H,P,�, , Q))

such that Ni(!,�)f 6⌘ 0 (lemma 7.2 of [L1]). Choose a neighborhood V like
in the proof of the main theorem of [F2], page 314. There is a constant T ,
such that for the character � fixed in (1.1) we have | � |

2 + | � |
2
< T for

all � 2 V . There are only finitely many characters � such that the space
(1.1) does not vanish, which implies that there are only finitely many such a

1
Which is actually the condition !0 2 ⌦

lead
x

in [F2] which implies that H = {x 2

(ǎ
G

P
)C| !0x 2 �(ǎR)C}.
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neighborhoods V . Between these neighborhoods there is at least one neigh-
borhood such that for all x 2 H \ ǎ

G+
P

which lie in that neighborhood there
is an ! such that the inequality

���!(x)
�
+

�� �
���!̃(x)

�
+

�� is valid for all other
!̃ 2 ⌦(H,P,�, , Q) such that Nk(!̃,�) 6⌘ 0. If there is no such a ! then we
will have ! 2 ⌦0(H,P,�, , Q)) which implies that N(!,�) is independent
of � and consequently Ni(!,�) ⌘ 0 for all i which is a contradiction. If all
these assumptions were fulfilled then the theorem 1 says that we will have
Nj(!,�) ⌘ 0 for all j > i, which means that the leading summand in the
constant term of the i�th residue of an Eisenstein series in the positive Weyl
chamber does not contribute in the constant terms of the residues of order
greater than i. This means that this ! wont contribute to the terms of order
higher than i in the Laurent expansion of the constant term of EG

P
(f,�) in the

direction of Q. Then if we move to the next term in the principal part of the
Laurent expansion we see that either for some !0

2 ⌦(H,P,�, , Q)\{!} the
next term Ni+1(!0

,�) of the Laurent expansion does not vanish identically
and the inequality

���!0(x)
�
+

�� �
���!̃(x)

�
+

�� and Ni+1(!̃,�) 6⌘ 0 are valid, or it
is identically zero and this procedure could be repeated until all the members
of the ⌦(H,P,�, , Q) are exhausted. Say it simply, to each non-zero term of
the principal part of the Laurent expansion (which is an analytic object) we
have associated an element of the Weyl group (which is an algebraic object),
which wont appear in the higher non-zero terms of the principal part and
since the order of the Weyl group in finite the pole order of the Laurent series
is universally bounded.
Consequently the pole order depends on the order of the polynomialsN(!,�),
the length of the gaps between the non-zero terms of the Laurent expansion
and the number of elements in ⌦(P,�, , Q). If we could show that these
polynomials are actually monomials (which is the content of lemma 1 in
(2.3)), and the length of the gaps in the principal part of the Laurent ex-
pansion is at most 1(which is the content of proposition 4 at (2.6)), we can
state our main theorem:

Theorem 2. For P,Q and k as in the theorem 1 we have

k  max
Q2{P}

#⌦(P,�, , Q).

Example. Consider the only known computed example of the phe-
nomenon of non-simple singularities, G2. The set of positive roots with
respect to a maximal torus T ⇢ SU(3) will be denoted by �+ = {↵, �,↵ +
�, 2↵+ �, 3↵+ �, 3↵+ 2�} and the subset of simple roots by � = {↵, �}, in
which ↵ is the short and � is the long root.

The Weyl group of G2 is

WG = {1, ⇢↵, ⇢�, ⇢↵+�, ⇢3↵+2�, ⇢2↵+�, ⇢3↵+�, �(
⇡

3
), �(

2⇡

3
), �(⇡), �(

4⇡

3
), �(

5⇡

3
)},

in which the ⇢. denotes the reflection with respect to the roots and �(.)
the rotation with the indicated angle. G2 contains two maximal parabolic
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subgroups P and Q with Levi components MP
⇠= MQ

⇠= GL(2,R), associated
to the parabolic subalgebras

p = h� g↵ � g↵+� � g3↵+2� � g3↵+� � g2↵+� � g� � g�↵,

with split component (ǎP )C = X(MP )⌦ C = C(3↵ + 2�), and

q = h� g� � g↵+� � g3↵+2� � g3↵+� � g2↵+� � g↵ � g��,

with split component (ǎQ)C = X(MQ)⌦C = C(2↵+�); and we have a Borel
subgroup B

+ associated to the Borel subalgebra

b
+ = h� g� � g↵+� � g3↵+2� � g3↵+� � g2↵+� � g↵,

with split component (ǎB+)C = X(MB+)⌦ C = C(2↵ + �) + C(↵ + �). The
subalgebra h is isomorphic to gl2.

To compute the set ⌦(., .) for each of these parabolic subgroups we have
to compute the constant term of the relevant Eisenstein series. In what
follows we will write B and G instead of B+ and G2. We start with P . Let
� 2 A

2(P,�,�), � 2 (ǎP )C, ⇢P = 9
2↵ + 3�, and set

E
G

P
(�,�, g) =

X

�2P (Q)\G(Q)

e
h�+⇢P ,HP (�g)i

�(�g),

with the constant term

�
E

G

P
(�,�)

�
P
(g) = e

h�+⇢P ,HP (g)i�(N(1,�)�)(HP (g))
�
(g)

+ e
h⇢3↵+2��+⇢P ,HP (g)i�(N(⇢↵,�)�)(HP (g))

�
(g),

in the direction of P , which implies that ⌦(P,�, , P ) = {1, ⇢3↵+2�}. Doing
the same computations in the direction of Q gives that

�
E

G

P
(�,�)

�
Q
(g) is

orthogonal to the space of cusp forms and ⌦(P,�, , Q) = ?. The same
calculation for the group Q, in which we have ⇢Q = 5↵ + 5

2�, shows that
⌦(Q,�, , Q) = {1, ⇢2↵+�}.

For the Borel subgroup B we have the Eisenstein series

E
G

B
(�,�, g) =

X

�2B(Q)\G(Q)

e
h�+⇢B ,HB(�g)i

�(�g),

in which ⇢B = 5↵ + 3� and � 2 A
2(B,�,�), � 2 (ǎB)C, which gives the

constant terms

�
E

G

B
(�,�)

�
B
(g) =

X

!2WG

e
h!�+⇢B ,HB(�g)i�(N(!,�)�)(HB(g))

�
(g),

in the direction of B which gives us ⌦(B,�, , B) = WG. We also see that
⌦(B,�, , P ) and ⌦(B,�, , Q) are empty. This implies that for the group
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G we have k  12, which is a bad estimate, since the computations of Lang-
lands show that k = 2.

(2.3) To begin the proof of the theorems 1 and 2 we need the following
lemma. This lemma is true if we restrict ourselves to the representations in
the A

2(P ) spaces defined in (1.4) in chapter 1. The situation wont change
a lot if we consider a more general setting of the space

S1
�
G(Q)AG(R)� \G(A)

�

which is introduced in [F1] page 18, and which is a generalization of the A2(P )
spaces. We state this lemma in this more general setting to stay in coherence
with [F1] and [F2] which are the basic frames for this work. To define it we
introduce for each � 2 ǎ

G

� a weight function ⇢� on G(Q)AG(R)� \G(A)/K as
follows. Let � be a C

1 function which is equal to zero on (�1, D � 1] and
is equal to one on [D,1). Define

⇢�(g) =
X

�2P�(Q)\G(Q)

e
h�,HP� (�g)i

Y

↵2�P�

�(h↵, HP�(�g)i).

Let us denote the space of K-finite functions � on G(Q) \ G(A) such thatR
G(Q)AG(R)�\G(A) ⇢�(g)

2
|(X·�)(g)|2dg <1 for allX 2 B by S⇢�

�
G(Q)AG(R)�\

G(A)
�
. Now we define S1(G(Q)AG(R)� \ G(A)) = [⇢�S⇢�(G(Q)AG(R)� \

G(A)). Then the theorem 4.2 of [L1] shows that the constant terms of the ele-
ments of this space are combination of polynomial and exponential functions
and hence are of desired form for our main aim in the next lemma.

Lemma 1. Fix a standard parabolic subgroup Q 2 {P}. Let the automorphic
form f(.) which lies in the space

S1(G(Q)AG(R)� \G(A)) (2.2)

be a simultaneous eigenfunction of Z(g). Let us write the constant term of
f along NQ as a sum with but finitely many non-vanishing summands

fNQ(g) =

Z

NQ(Q)\NQ(A)
f(ng)dn =

X
�2(ǎQ)C

e
h�+⇢Q,HQ(g)i

fQ,�(HQ(g))(g),

in which g 2 G(Q)AG(R)o \G(A) and fQ,� belongs to

S
�
(ǎG

Q
)C
�
⌦ S1

�
NQ(A)AQ(R)�Q(Q) \G(A)

�
, (2.3)

and are products of polynomials on aQ with values in the space of cusp forms
on NQ(A)Q(Q)A(R)� \G(A) and functions in

C
1
umg

�
NQ(A)AQ(R)�Q(Q) \G(A)

�
,

([F1] proposition 2.3.2) . Then these polynomials are actually sums of mono-
mials which are products of ⇠ 2 (ǎQ)C that are orthogonal to � 2 (ǎQ)C with
respect to the dual of the Killing form of g.
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We prove this lemma for the situation h = aQ, the general situation is
similar.

Proof. We fix a basis {H1, ..., Hm} of hC which satisfies (Hi, Hj) = �ij such
that {H1, ..., Hl} is a basis for hC\(aQ)C and {H1+1, ..., Hm} a basis of hC\kC,
and for each ↵ 2 �+(nQ) choose a X↵ 2 (gC)↵ and X�↵ 2 (gC)�↵ such that
(X↵, X�↵) = 1. Then following the procedure explained in (1.2) we write
the Casimir operator as

!q = H
2
1 + ...+H

2
m
+

X

↵2�+(nP )

(X↵X�↵ +X�↵X↵)� !c

= H
2
1 + ...+H

2
m
+ 2

X

↵2�+(nP )

X↵X�↵ �
X

↵2�+(nP )

H↵ � !c.

If we apply it to the function F�(g) = e
h�+⇢Q,HQ(g)i

fQ,�(HQ(g)) we obtain an
equation

mX

i=1

✓
2h�, HiiHi · fQ,�(H) +H

2
i
· fQ,�(H)

◆
= {h�,�i � h⇢, ⇢i}fQ,�(H).

Our claim follows if we could show that the term

mX

i=1

2h�, HiiHi · fQ,�(H)

identically vanishes.
To show this we have to exploit the fact that f(g) (and consequently

fNQ(g)) is a simultaneous eigenfunction of not only Casimir operator but the
whole of Z(g). To do this we have to interpret the action of Z(g) on (2.3)
as the action of S(h)WG on it via the Harish-Chandra isomorphism

⇠G : Z(g)! S(h)WG

through the corresponding di↵erential operators. In what follows to avoid
confusion we will denote the operator X· defined above by DX .

For each X 2 h there corresponds a di↵erential operator DX which acts
on the space C1(h) by DX(f(Y )) = d

dtf(Y + tX)|t=0. Then the Killing form
induces an identification between h and a space of functions on h because
of its bilinearity. The mapping X ! DX extends trivially to an algebraic
isomorphism between S(h) and the algebra of di↵erential operators with
constant coe�cients on h. In this way each p 2 S(h) is mapped canon-
ically to a di↵erential operator Dp and for a polynomial q, Dp(q) is the
value of the derivative of q with respect to p at zero. Then for the poly-
nomials p(X1, ..., Xn) =

P
N

⌫=0 a⌫X
m

⌫
1

1 ...X
m

⌫
n

n (Xi 2 h), and q(X1, ..., Xn) =

X
m

⌫
1

1 ...X
m

⌫
n

n we have Dq(p) = m
⌫

1!...m
⌫

n
!a⌫ which implies that if Dq(p) = 0
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for all q 2 S(h) then p = 0. This implies that Dq(p) = Dp(q), and hence
D1(q) ⌘ 0 for all polynomials q 6= 1 and D1(1) = id. Moreover if s 2 WG

and if we denote its action on the polynomials in S(h) by s.q(X) = q(s�1
X),

then the Weyl-group invariance of the Killing form extends to this situation
and implies that s.

�
Dq(p)

�
= Ds.q(s.p) = Dq(p) and consequently Dq(p) will

be invariant under the WG-action and hence it defines a symmetric bilinear
form on S(h) whose restriction to h will be the usual Killing form of g, i.e.,
for X, Y 2 h, DY (X) = (Y,X). All these are taken from [H3].

For each � appearing on the right hand side of (2.2) let W �

G
denote the

subgroup of WG which leaves � fixed. Let I� ✓ S(h) denote the subalgebra
of di↵erential operators with constant coe�cients which are left fixed under
the action of W �

G
. Then S(h)WG ✓ I� ✓ S(h). This subalgebra is bigger than

the image of the Harish-Chandra isomorphism but it consists of a direct sum
of isomorphic images of Z(g). To see this let r = [WG : W �

G
]. Then according

to lemma 8 of [H4] there are homogeneous elements !1 = 1,!2, ...,!r in I�

such that there is a direct sum

I� =
rM

k=1

�
S(h)WG

�
!k, (+)

which is what we looked for. Now at first we deal with the situation that
we have a single F�(g) = e

h�+⇢Q,HQ(g)i
fQ,�(HQ(g)), � 2 (aQ)C, on the right

hand side of the fNQ(g) above which we supposed to be an eigenfunction of
S(h)WG . We will show in a moment for function of this form that being an
eigenfunction of S(h)WG is equivalent to be an eigenfunction of I�, conse-
quently we suppose that fNQ(g) is an eigenfunction of I�. Let q 2 I�. Since
F�(g) is an eigenfunction, there is a polynomial2 (q,�) such that

Dq

�
e
h�,HQ(g)i

fQ,�(g)
�
= (q,�)

�
e
h�,HQ(g)i

fQ,�(g)
�
.

The operators Dq were defined only on the S(h). Hence to compute the
left hand side we have to extend them as follows. Observe first that the
map q ! e

�h�,HQ(g)iDqe
h�,HQ(g)i is a homomorphism of S(h) into DS(h), the

image of S(h) under the operators Dq with q(.) as above. It is clear from the
Weyl group invariance of Dq that this homomorphism maps I� onto itself.
Consequently there is an element q̃(.) 2 I� such that e�h�,HQ(g)iDqe

h�,HQ(g)i =
Dq̃. If we compute both sides at the point 0 on a basis of S(h) we see that
q̃(0) = q(�), in other words Dq̃(H) = Dq(H+�) on each basis element H.

This justifies the following computation:

Dq

�
e
h�,HQ(g)i

fQ,�(g)
�
= e

h�,HQ(g)i
e
�h�,HQ(g)iDq

�
e
h�,HQ(g)i

fQ,�(g)
�
=

= e
h�,HQ(g)i�Dq(HQ(g)+�)fQ,�(g)

�
.

2
If q(.) = X 2 A(h)⌦Z(mG) then the polynomial (q,�) is the same as pX(Zi) of the

lemma 4.2 of Langlands.
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Now if we write q(HQ(g) + �) as q(HQ(g) + �) � q(�) + q(�), the above
expression is equal to

e
h�,HQ(g)i�

q(�)fQ,�(g) + Dq(·+�)�q(�)fQ,�(·)
�
.

Since the term q(HQ(g) + �) � q(�) has no constant term the total degree
of Dq(·+�)�q(�)fQ,�(·) is absolutely less than the total degree of fQ,�(g) which
implies that fQ,�(g) is an eigenfunction if and only if

Dq(·+�)�q(�)fQ,�(·) = 0, (++)

for all q 2 I�. In particular for the orthonormal basis {H1, ..., Hl} of aQ
given above, we have � = �1H1 + ... + �lHl, and interpret it as a linear
polynomial in S(h)WG , it belongs to I�, so then we have D�

�
fQ,�(g)

�
=P

l

i=1 �iDHi

�
fQ,�(g)

�
= 0 which is what we were looking for. It is evident

from the construction that if W �

G
= {1} then fQ,�(g) 2 C.

To finish the proof of the lemma we need to show that if F�(g) =
e
h�+⇢Q,·i

fQ,�(·) is an eigenfunction of S(h)WG then it is an eigenfunction of
I� too. This result goes back originally to Harish-Chandra which we give a
proof through the following propositions. We start by fixing some definitions.
Let

E
�
(h) = {f 2 C

1
(h) | Dq(f) = q(�)f for all q 2 S(h)

WG , � 2 ȟC}.

We denote the space of harmonic polynomials on h by

H(h) = {f 2 C
1
(h) | f is a polynomial such that Dq(f) = 0 for all q 2 S(h)

WG}.

Let also

H�(h) = {f 2 C
1(h) | f is a polynomial such that Dq(f) = 0 for all q 2 I�}.

We will call the functions in H�(h) the W
�

G
-harmonic polynomials. We

will denote by I
+
�

the subalgebra of the homogeneous elements of (+) of
degree � 1. Let Hs·�(h) and Is·� denote the analogs of H�(h) and I� for the
vectors s · � when s varies over a complete set s = {s0 = 1, s1, ...sr�1} of
representatives of the cosets of W �

G
in WG.

We will need the following two propositions which are theorem III.3.11
and lemma III.3.13 of [Hel].

Proposition 1. Any homomorphism �� : S(h)WG ! C is given by the eval-
uation map S(h)WG 3 q(.) 7! q(�) for some � 2 ȟC. Two such homomor-
phisms �µ and �� coincide if and only if µ 2 WG · �.

Proof. This is actually the famous theorem of Harish-Chandra on the char-
acters of the S(h)WG which could be found in [Hu] page 129.
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Proposition 2. Let the set of polynomials {pt(.) | t 2 W
s·�
G

} constitute a
basis of Hs·�(h). Then the set of functions {pt(.)ehs·�,.i | s 2 s, t 2 W

s·�
G

} is
a basis for E

�(h). More over dim(E�(h))  #WG.

In particular, if the element � is regular the polynomials {pt(.) | t 2 W
s·�
G

}

are all constants.

Proof. First we prove the second statement. Let l = dim(h) and let the
elements j1, ..., jl are linearly independent elements of S(h)WG . The map
hC 3 ✓ ! (j1(✓), ..., jl(✓)) 2 Cl is a bijection from hC/WG ! Cl. In fact
the proposition 1 shows that the map S(h)WG ! Cl given by (j1, ..., jl) !
(⇠1, ..., ⇠l) 2 Cl, ji 7! ji(✓) = ⇠i, ✓ 2 hC, gives this bijection via the evaluation
at a point ✓ 2 hC. Let {p

t(.) | t 2 WG} be a basis of H(h). To these
polynomials we can correspond a set of polynomials {P t(.) | t 2 WG}, P

t(.) 2
S(h)WG . For f 2 E

�(h) we put ct(f) = (DPt(f))(✓) for t 2 WG, ✓ 2 h. Since
S(h) = S(h)WGH(h) (theorem III.1.2 of loc.cit.) we see that if ct(f) = 0 for
all t 2 WG then f ⌘ 0. Consequently the mapping f 7! (ct(f))t2WG is a one
to one into mapping E

�(h)! C#WG . This implies that dim(E�(h))  #WG.
No we prove the first statement. Since the polynomials pt(.) are harmonic the
equation (++) shows that we have Dq(pt(.)) = 0 for all q(.) 2 S(h)WG . This
implies that the functions {pt(.)ehs·�,.i | s 2 s, t 2 W

s·�
G

} are belong to E
�(h).

From the theorem III.3.4 of loc.cit we know that dim(Hs·�(h)) = #W
s·�
G

.
Since the functions {ehs·�,Hi

| s 2 s} are linearly independent over S(h) and
since WG = [s2sW s·�

G
, the functions {pt(.)ehs·�,.i | s 2 s, t 2 W

s·�
G

} constitute
a basis of E�(h).

We can now prove our claim about the equivalence of the eigenfunctions
of S(h)WG and I�. For s 2 s let

Es·�(h) = {p(H)e
hs·�,Hi

| H 2 h, p(.) 2 S(h) such that Dq(p) = 0 for all q 2 I
+
s·�}.

Since we are concerned with the function F�(g) we will fix � in what follows
and denote by E(h) the subspace of E�(h) for this fixed �. Observe first that
since the algebra I� is invariant under the translation H 7�! H+�, the equa-
tion (++) implies that Dq(.)fQ,�(·) = 0 for all homogeneous polynomials q 2
I
+
�
of degree greater than or equal 1. consequently if F�(g) is an eigenfunction

of I� it has to be an eigenfunction of I+
�

and vice versa. From the lemma

3.4 of [H2] we know that dim(Es·�(h)) = dim
�

S(h)

S(h)I+
s·�

�
= #W

s·�
G

= #W
�

G
.

Since S(h)WG ⇢ Is·� we will have Es·�(h) ⇢ E(h). From the proposition 2
above we know that dim(E(h))  #WG. Since the functions {ehs·�,Hi

| s 2 s}

are linearly independent over S(h) the sum
P

r�1
k=0 Esk·�(h) is direct. SinceP

s2s dim(Es·�(h)) = r.(#W
�

G
) � #WG � dim(E(h)) this direct sum ex-

hausts the whole space E(h). Hence we will have E(h) =
L

r�1
k=0 Esk·�(h). Now

suppose that F�(g) is an eigenfunction of S(h)WG . Then by (++) we have
Dq(·+�)�q(�)fQ,�(·) = 0 for all q(.) 2 S(h)WG . Since S(h)WG is invariant under
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the translation H ! H + � we have Dq(·)fQ,�(·) = 0 for all q(.) 2 S(h)WG

and hence F�(g) 2 E(h). Since the functions {e
hs·�,Hi

| s 2 s} are linearly
independent over S(h) the function F�(g) can lie in only one summand of the
direct sum E(h) =

L
r�1
k=0 Esk·�(h). Since for s 2 s, s 6= s0 we have s · � 6= �

this summand should be Es0·�(h), hence F�(g) 2 E�(h) which is our claim.

The above proof is valid for the case of a single function F�(g) = e
h�+⇢Q,HQ(g)i

fQ,�(HQ(g)) on the right hand side of the fNQ(g). In the general case there
are several but finite number of them on the right hand side. To extend the
above result to this situation we proceed as follows. Recall the correspon-
dence X  ! DX given above with the usual action on C

1(g), we see that

for each F�(g) there is a d 2 N such that
�
DX � h�, Xi � ⇢(X)

�d
F�(g) = 0.

Now consider the function

fNQ(g) =
X

�2(ǎQ)C
e
h�+⇢Q,HQ(g)i

fQ,�(HQ(g))(g)

given above. Chinese remainder theorem implies that for each � appearing
on the right hand side there is a single variable polynomial ⇧� with constant
coe�cients such that ⇧�(DX)fNQ(g) = e

h�+⇢Q,HQ(g)i
fQ,�(HQ(g))(g). Since

the operators ⇧�(DX) commute with the operators in Z(g) we can apply
the above result for a single F�(g) to the case of multiple F�(g)s now. This
finishes the proof of lemma 1.

(2.4) It is evident from the proof of the lemma 1 that

Theorem 3. For the automorphic form f(.) that satisfies the conditions of
lemma 1 the length k � k of the parameters � appearing on the right hand
side of fNQ(g) are equal and k � k �h⇢, ⇢i � h�,�i is the eigenvalue of
fNQ(g) under the Casimir operator. Moreover, the polynomials fQ,�(HQ(g))
are separable and W

�

G
-harmonic.

Corollary 1. For a C
1 function f 2 L

2(Q(Q)NQ(A)AQ(R)+\G(A))�,K�finite

such that f(mg), m 2 MQ(R), is an eigenfunction of Z(mQ) with character
� the term (N(!,�)f)(HQ(g)) in (1.8) is a polynomial on aQ (with values
in a specific space of cusp forms), which can be represented by monomials,
which are products of ✓ 2 (ǎQ)C which are orthogonal to !� 2 (ǎQ)C with
respect to the dual of the Killing form.

Proof. Since the Eisenstein series EQ(f,�)(g) are Z(g)-eigenfunctions if �
lies inside the domain of holomorphy

AQ = {� 2 (aQ)C | <(�) 2 ⇢Q + a
+
Q
},

the above Lemma shows that the constant term of this Eisenstein series along
Q is a Z(mQ) eigenfunction as long as we remain in this domain.
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Remark. In the case of cuspidal Eisenstein series the functions N(!,�)
andM(!,�) (given in (1.20)) are equal and the functional equation of Eisen-
stein series implies that for the associated parabolic subgroups P ,Q and R

we have
N(!�,�) = N(!, ��)N(�,�),

for ! 2 ⌦(ǎP , ǎQ) and � 2 ⌦(ǎQ, ǎR). This implies also that the polynomials
N(., .) are decomposable as a product of the monomials with respect to the
elements of the Weyl group of length one. In general these functions are
related by the functional equation N(!�,�) = N(!, ��)M(�,�).

The following corollary is an immediate consequence of the definition (iii)
of the Eisenstein systems given in (1.11), equation (1.9) and the fact that if
R ⇢ R̃, then ⇢R = ⇢

R̃
+ ⇢

R̃

R
.

Corollary 2. If R ⇢ R̃ and suppose that Q,R 2 {P} and !̂ | ǎ
R̃

= Id,
then the terms in the polynomial N(!,�) are monomials which belong to the
symmetric algebra S(ǎR̃

Q
).

We will apply these corollaries (1) and (2) to theorem (1), but before that
we discuss the concept of local residue theorem tailored by Langlands for the
Eisenstein systems. This machinery is crucial for the main argument of the
theorem 1 which will be given soon.

(2.5) We start our discussion about the local residues by defining root
hyperplane arrangements. By a root hyperplane arrangemant we mean
a locally finite set of hyperplanes of H 2 (ǎG

P
)C defined by

H = {� 2 (ǎG
P
)C | h↵,�i = h↵, ti,↵ 2 �̌+(nP )},

in which t is a normal vector to the hyperplane H. For such a hyperplane,
following the notation of (1.11) we put

H̃ = {� 2 (ǎG
P
)C | h↵,�i = 0,↵ 2 �̌+(nP )},

i.e. H = t + H̃. Local finiteness means that only a finite number of these
hyperplanes intersect each compact subset K ⇢ (ǎG

P
)C. We denote such a

locally finite root hyperplane arrangement by by H. We will fix for each H

and t as above a unit normal vector to H as t0 = t

|t| . The open (and con-

nected) components of the complement of this hyperplane arrangement will
be denoted by reg

�
(ǎG

P
)C,H

�
, the subset of regular subsets of the subspace

(ǎG
P
)C.

Let M
�
(ǎG

P
)C,H

�
denote the set of meromorphic functions with singu-

larities along these hyperplanes. For a function f 2M
�
(ǎG

P
)C,H

�
we define

the residue ResHf along the hyperplane H to be the function

ResHf(�) =
1

2⇡i

Z

C✏

f(�+ zt0)dz (2.4)
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for � 2 (ǎG
P
)C and t0 as above, and z belongs to the circle C✏ around 0 with

the radius ✏ which is small enough such that the function f(� + zt0) has
no other singularities in it. Then for each hyperplane H there is a natural
number n = n(H) and a polynomial RH(�) = h↵,��ti and a compact subset
K 2 (ǎG

P
)C such that K \H 6= ; and such that RH(�)nf(�) is a holomorphic

function as long as � 2 K. Note that H is the null set of RH(�). Then just
like the classical residue theorem, we have

Proposition 3. For f 2M
�
(ǎG

P
)C,H

�
and n as above we have

ResH f(�) =
2⇡

(n� 1)!

1

h↵, t0i
n�1

D(t0)
n�1

�
RH(�)

n
f(�)

 
, (2.5)

where D(t0) belongs to the symmetric algebra S
�
(ǎG

P
)C
�
, which the action

on a function f is defined as usual by D(t0)f(�) = d
dtf(� + tt0) |t=0 and

D(t0)0f(�) = limt!0 f(�+ tt0).

Proof. Suppose that � 2 reg
�
H,H

0�, in which H
0 is the subset of elements

of H which intersect H. For each such a � define a function F�(z) on C by
F�(z) = f(�+ zt0). Then according to the one dimensional residue theorem
we have

Resz=0F�(z) =
2⇡

(n� 1)!

✓
d

dz

◆n�1�
z
n
F�(z)

 
|z=0

which is equal to

2⇡

(n� 1)!

1

h↵, t0i
n�1

D(t0)
n�1

�
RH(�)

n
f(�)

 
,

since by our definition RH(�+ zt0) = zh↵, t0i.

For a meromorphic function f in M
�
(ǎG

P
)C,H

�
, the �k-th coe�cient in

the Laurent series f(�+ zt0) =
P1

n��1 anz
n is given by

�
ResH,k(f)

�
(�) =

Z

C✏

f(�+ zt0)RH(�+ zt0)
k�1dz

i
.

The meaning of t0 and C✏ is like above. Then if the function f has a pole of
order n along the hyperplane H, the above proposition gives for k  n the
�k-th coe�cient as

ResH,k f(�) =
2⇡

(n� k)!

1

h↵, t0i
n�k

D(t0)
n�k

�
RH(�)

n
f(�)

 
(2.6)

(2.6) Before we prove the theorem 1 in the next section we prove the
important claim given in (2.2) ( just before the theorem 2), that there is
no gap between the successive terms of the Laurent expansion of a general
Eisenstein series.
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Proposition 4. Let f 2 A
2(P ) and let H be a singular hyperplane of the

residual Eisenten series EG

P
(g, f,�) which intersects the closure of the positive

Weyl chamber. Then there is no gap between the nonzero terms of the Laurent
expansion of EG

P
(g, f,�) around H.

Proof. Let � 2 H be a generic point and t0 be a unit normal vector to H,
and z 2 C. We develop the EG

P
(g, f,�+ zt0) as a meromorphic function in a

small neighborhood of � such that no other singular hyperplane of EG

P
(f, g,�)

intersects this neighborhood. The Laurent expansion around H is

E
G

P
(g, f,�+ zt0) =

1X

k=�N

z
k
Ek(g).

Recall the definition of Casimir operator !g in (1.2), we apply it to the both
sides of this expansion and obtain

!gE
G

P
(g, f,�+ zt0) = {h�+ zt0,�+ zt0i+ h⇢, ⇢i+ h�,�i}E

G

P
(g, f,�+ zt0) =

(az2 + bz + c)E(g, f,�+ zt0) = (az2 + bz + c)
1X

k=�N

z
k
Ek(g),

in which a = ht0, t0i2, b = h�, t0i and c = h�,�i+ h⇢, ⇢i+ h�,�i. We observe
that a is non zero and real since according to the main result of [F2] H
and (hence) t0 are real, b is also nonzero since otherwise this hyperplane
will intersect the unitary axis, which is impossible for the residual Eisenstein
series supported on distinguished subspaces (shown in the proof of the lemma
7.6 in [L1]), in contrast to the Eisenstein systems described in the theorem
7.1 of [L1], which are not necessarily supported on distinguished subspace.
We observe also that for � being in general position c wont vanish identically.
Now if we compare the Laurent coe�cients of the both sides of the above
identity we see that for all 2  n  N we have

!gEn = a.En�2 + b.En�1 + c.En,

which we write it as

(!g � c)En = a.En�2 + b.En�1.

We call this last identity (⇤).
Suppose that k is the smallest index such that Ek 6= 0. Then (⇤) implies that
(!g� c)Ek = 0. We claim that for all l 2 N we have (!g� c)l+1

Ek+l = 0, the
claim being true for l = 0. For the induction step we apply (!g � c)l to the
both sides of (⇤) for n = k + l and obtain

(!g � c)l+1
Ek+l =

a.(!g � c)(!g � c)l�1
Ek+l�2 + b.(!g � c)lEk+l�1.
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By induction hypothesis these two terms on the right hand side of the
above equality vanish and our claim follows. Now we apply successively
(!g�c)l�j, for j = 1, ..., l�1, to (⇤) for n = k+ l and performing a downward
induction, we obtain

(!g � c)lEk+l = b
l
.Ek 6= 0,

since b
l and Ek are non-zero. We conclude that the Laurent coe�cients

Ek+l 6⌘ 0 for all 0  l  �k. In other words there is no gap between the
nonzero coe�cients of the Laurent expansion of residual Eisenstein series
which is our claim.

(2.7) Now we consider Theorem 1 in which we are interested in the poles
of higher order. The main theorem of [F2], shows that if H ⇢ (ǎP )C is a
singular hyperplane of the Eisenstein series E

G

P
(�, f) which intersects the

complex strip above the positive Weyl chamber, then it is real. Suppose that
the function E

G

P
(�, f) has a pole of order n at the singular hyperplane H.

Since H is a singular hyperplane by our assumption, there is a k > 0
such that ResH,k E

G

P
(f,�) 6= 0. As it is shown in the proof of the theorem

1 of [F2], there is a generic point � 2 ǎ
+
P
\ H, a parabolic subgroup R, a

function g in (1.2), an element ✓ 2 +ǎR and a � 2 ⌦0(R,�R, , Q) such that
�✓ = !0�, that satisfy the relations !0H ✓ �(ǎR)C and !̂0� = �, and such
that the leading terms of

ResH,k E
G

P
(f,�), (2.7)

and according to (2.6), a linear combination of the derivatives of

E
G

R
(g, ⌘), (2.8)

are coincide at the point x = �, for a parameter ⌘ which lies in a small convex
neighborhood of x in (ǎG

P
)C. Since we have, as indicated in formula (2.1),

(ResH,k E
G

P
f)Q(�) =

X

�2⌦k(H,P,�, ,Q))

�
(Nk(�,�)f)(HQ(g))

�
(g),

the leading term of (2.7) is a sum of the derivatives with respect to the free
parameter ⌘ of the functions eh.,.iN(., .). The set ⌦k(H,P,�, , Q) is the set
of linear transformations � such that Nk(�,�) does not identically vanish.

Now suppose that t is a generator of H? and ↵ a positive root like (2.5),
and suppose that N(!0,�)f has a pole of order n at H. We will apply the
formula (2.6) to constant term of (2.8) in the direction of Q to compute the
k-th term (ResH,k E

G

P
f)Q(�). Suppose that the there is at least an !0 such

that the k-th term Nk(!0,�) 6⌘ 0 at H ⇢ (ǎP )C and such that the inequality���!0(x)
�
+

�� �
���!̃(x)

�
+

�� is fulfilled for all x 2 H \ ǎ
G+
P

. We can suppose
that there is only one such an !0. We have to show that Nj(!0,�) ⌘ 0 for
j > k, which means that for this !0 the constant term of the k�th residue
of an Eisenstein series in the positive Weyl chamber may not contribute to
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the constant terms of the residues of order > k. To show this we compute
the term of j�th order, j > k, by the formula (2.6):

1

(n� j)!

dn�j

dzn�j

�
h↵,�+ zt0 � ti

n
e
h!0(�+zt0),xiN(!0,�+ zt0)

 
|z=0,

using Leibniz rule (f.g.h)(j) =
P

l+m+n=j

�
j

l,m,n

�
f
(l)
.g

(m)
.h

(n)
, and the fact

that the operators N(., .) are monomials in the orthogonal complement of
!0�, we see3 that the leading term is a constant multiple of

h!̂0t0, H̃i
j
Fj + ...+ h!̂0t0, H̃iF1 + F0, (2.9)

in which H = t + H̃ is as in (2.5) and the functions Fi (according to the
formula (1.15) of the previous chapter) belong to various subspaces of

S
�
!̂0(ǎP )

?�
⌦ S1

�
NQ(A)AQ(R)�Q(Q) \G(A)

�
.

Now we consider the expression (2.9) and show that in order for it to be
comptible with [F1, Theorem 14] we have to have !̂0t0 ? �0, for � an a�ne
transformation like in the proof of the main theorem of [F2].

Let �̂ denote the linear part of the a�ne transformation �. By taking
derivatives of (2.8) with respect to the free parameter ⌘ at the point x some
factors of the form hx,Hi would be produced, in which x 2 �̂(ǎR). It is
shown in the page 230 of [L1] that �0 is real and orthogonal to �̂(ǎR) and
belongs to �+

ǎ
Q

R
in which Q is the smallest parabolic subgroup containing

R such that ǎQ is contained in !̂ǎR. As we know from corollary 1, the
polynomial N(�, ✓) consists of monomials from the S (!✓) at the point ✓ for
! such that !|H = �. Then this monomials are consisting of the elements of
the orthogonal complement of � = �� � �0 since we have �̂� = � (because
!̂0� = �) and consequently consisting of the elements from the orthogonal
complement of �0. This observation in accordance to lemma 1 yields that
the leading coe�cient of (2.7) has the form (2.9) only if

!̂0t0 ? �0. (2.10)

Then to prove that Nj(!0,�) ⌘ 0 for j > k we are reduced to prove that
(2.10) cannot occur.

3
For example, for n = 2, j = 1 the calculation is

d

dz

�
h↵,�+ zt0 � ti

2
e
h!0(�+zt0),xiN(!0,�+ zt0)

 
|z=0 =

�
2h↵, t0i.RH(�+ zt0)e

h!0(�+zt0),xi.N(!0,�+ zt) +

RH(�+ zt0)
2
.h!0t0, xi.e

h!0(�+zt0),xi.N(!0,�+ zt)+

RH(�+ zt0)
2
.e

h!0(�+zt0),xi.N 0
(!0,�+ zt)

 
|z=0,

which gives the leading term h!̂0t0, H̃iF2 + F1. Then the proof of the general case is a

simple induction.
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Suppose that (2.10) is true. We remind that �̂ǎR ? �0. It was also proved
in the main theorem of [F2] that �̂ǎR ◆ !0H. These facts along with (2.10)
imply that

!̂0(ǎP ) ? �0. (2.11)

Since !0(y) 2 �(0) + ǎ
G+
R

and we know that �(0) ? ǎ
G

R
we will have

(!0�)� = �0. Then we will have

���0
��2 = h(!0�)�, (!0�)�i =

h(!0�)�,!0�i = h(!0�)�,!00i 
��(!0�)�

����!00
�� =

���0
����!00

��

which implies
���0

�� 
��!00

��.
On the other hand we choose a point � as above we have

��!0�
��2 =

��(!0�)+ + �0
��2 =

��(!0�)+
��2 +

���0
��2 <

���
��2 +

���0
��2.

Here we used the inequality
��(!0�)+

�� <
���
�� which is proved in the lemma 1

of [F2]. This together with the equality

��!0�
��2 =

��!00
��2 +

���
��2

implies
���0

�� >
��!00

�� which is a contradiction. This proves that Nj(!0,�) ⌘ 0
for j > k which implies that the pole order of a of a general Eisenstein
series at a singular hyperplane which intersects the positive Weyl chamber is
bounded by the number max

Q2{P}
#⌦(P,�, , Q).
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