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Abstract 

Discrimination and classification of eight strains related to meat spoilage 

microorganisms commonly found in poultry meat were successfully carried out using two 

dispersive Raman spectrometers (Microscope and Portable Fiber-Optic systems) in 

combination with chemometric methods. Principal Components Analysis (PCA) and Multi-

Class Support Vector Machines (MC-SVM) were applied to develop discrimination and 

classification models. These models were certified using validation data sets which were 

successfully assigned to the correct bacterial genera and even to the right strain. The 

discrimination of bacteria down to the strain level was performed for the pre-processed 

spectral data using a 3-stage model based on PCA. The spectral features and differences 

among the species on which the discrimination was based were clarified through PCA 

loadings. In MC-SVM the pre-processed spectral data was subjected to PCA and utilized to 

build a classification model. When using the first two components, the accuracy of the MC-

SVM model was 97.64% and 93.23% for the validation data collected by the Raman 

Microscope and the Portable Fiber-Optic Raman system, respectively. The accuracy reached 

100% for the validation data by using the first eight and ten PC’s from the data collected by 

Raman Microscope and by Portable Fiber-Optic Raman system, respectively. The results 

reflect the strong discriminative power and the high performance of the developed models, the 

suitability of the pre-processing method used in this study and that the low accuracy of the 

Portable Fiber-Optic Raman system does not adversely affect the discriminative power of the 

developed models. 

Using the same portable fiber-optic Raman spectrometer (a QE Pro-Raman 

spectrometer with a laser excitation wavelength of 785 nm from Ocean Optics); the freshness 

changes in poultry fillets during storage were studied. Poultry fillets with the same storage life 

(9 days) and expiry date were purchased from a local store and stored at 4 °C. Their Raman 

spectra were measured on a daily basis up to day 21. The complex spectra were analysed 

using PCA, which resulted in a separation of the samples into three quality classes according 

to their freshness: fresh, semi-fresh, and spoiled. These classes were based on and similar to 

the information inferred from the product label on the packages of poultry fillets. The PCA 

loadings revealed a decrease in the protein content of the poultry meat during spoilage, an 

increase in the formation of free amino acids, an increase in oxidation of amino acid residues, 

and an increase in microbial growth on the surface of the poultry fillets, as well as revealing 

information about hydrophobic interaction around the aliphatic residues. Similar groupings 
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(fresh, semi-fresh, and spoiled) were also obtained from the results of an Agglomerative 

Hierarchical Cluster Analysis (AHCA) of the first five principal components. The results 

allow the conclusion that the portable fiber-optic Raman spectrometer can be used as a 

reliable and fast method for real-time freshness evaluation of poultry during storage. 

Further, the characterization and discrimination of fillets samples from different 

poultry meat production lines (conventional and alternative) of a German poultry producer 

were successfully accomplished using portable fiber-optic Raman spectrometer in tandem 

with chemometric analysis (PCA, Canonical Discriminant Analysis (CDA) and AHCA). The 

investigations were conducted at five repeated investigation times during storage started 24 h 

after slaughter at 0, 72, 120, 168 and 240 h of the experiment. Raman measurements were 

conducted directly on fillets surfaces parallel with microbiological and nutrients analysis. A 

total of 80 fillets were investigated in two repeated storage trials under the same conditions. 

PCA model was constructed using the 1st storage trial (1st investigation time; 0 h). The model 

was able to group the poultry samples according to their production line into two classes: 

conventional and alternative. The testing data points from the 2nd storage trial (1st 

investigation time; 0 h) were used to validate the model and all have been successfully 

assigned to the correct cluster. Similar results were also obtained from CDA and AHCA 

models. The origin of the separation in PCA model was investigated by analysing the loading 

plots. The results show that the alternative production line has higher collagen, protein and 

carbohydrates content than the conventional. These results were consistent with the analysis 

of nutrients in both production lines. The alternative production line also shows a higher 

carotenoids content which may account for the color difference between both production 

lines, with the alternative production line displaying more yellowish fillets. Moreover, CDA 

models were constructed for each production line to classify poultry fillets according to their 

storage time (five investigation times) and their microbial load (three quality classes). The 1st 

storage trial (training set) was used to build the models and the 2nd storage trial (testing set) 

was used to validate these models. For both production lines, all constructed CDA models 

showed good ability to classify poultry fillets according to their storage time and to their 

microbial load with error rates less than 25.00%. However, the classification ability of the 

constructed CDA models showed different results when tested with the 2nd storage trial. For 

the classification according to the storage time, CDA models showed poor classification 

ability for both production lines (error rate: 42.06% and 62.99% for conventional and 

alternative, respectively). The high error rates could be correlated to the high variations of the 

bacterial load between the two storage trials for each production line. For the classification 
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according to the microbial load, CDA models classification ability was good for the 

conventional production line (error rate: 24.60%) and poor for the alternative production line 

(error rate: 54.33%). The low error rate for the conventional production line indicates that the 

variations between the two storage trials were low. While the high error rate for alternative 

production line indicates that the variations between the two storage trials were too high and 

that the microbial load is not the only factor that has an impact on the collected Raman spectra 

from the two storage trials. Since fillets of the alternative line had significantly higher protein 

and lower water and intramuscular fat content in comparison to the conventional production 

line, and taking into account that the lipid oxidation and autolytic enzymatic spoilage are also 

considered one of the main mechanisms for meat spoilage; high variations from different 

storage trials will appear in the collected Raman spectra which will affect the classification 

ability. The results allow the conclusion that the Raman spectra collected by the portable 

fiber-optic Raman spectrometer in conjunction with chemometric analysis can be used as a 

reliable and fast method to characterize and discriminate samples from different poultry meat 

production systems. 
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Zusammenfassung 

Die Diskriminierung und Klassifizierung von acht Stämmen von Fleischverderb-

Mikroorganismen, die üblicherweise in Geflügelfleisch vorkommen, wurde erfolgreich unter 

Verwendung von zwei dispersiven Raman-Spektrometern (Mikroskop- und tragbare 

Fiberoptik-Systeme) in Kombination mit chemometrischen Methoden durchgeführt. Die 

Hauptkomponentenanalyse (PCA, engl. Principal Components Analysis) und Multi-Class 

Support-Vektor-Maschine-Methode (MC-SVM) wurden zur Entwicklung von 

Diskriminierungs- und Klassifizierungsmodellen verwendet. Diese Modelle wurden anhand 

von Validierungsdatensätzen überprüft, die erfolgreich den richtigen bakteriellen Gattungen 

und sogar dem richtigen Stamm zugeordnet werden konnten. Die Diskriminierung von 

Bakterien bis auf das Stammniveau wurde für die vorverarbeiteten Spektraldaten unter 

Verwendung eines 3-stufigen Modells auf PCA-Basis durchgeführt. Die spektralen Merkmale 

und Unterschiede zwischen den Arten, auf denen die Unterscheidbarkeit beruhte, wurden 

durch PCA-Loadings identifiziert. Mittels MC-SVM wurden die vorverarbeiteten 

Spektraldaten einer PCA unterzogen und zur Erstellung eines Klassifizierungsmodells 

verwendet. Bei Verwendung der ersten beiden Hauptkomponenten betrug die Genauigkeit des 

MC-SVM-Modells 97,64% und 93,23% für die vom Raman-Mikroskop bzw. vom tragbaren 

Fiberoptik Raman-System gesammelten Validierungsdaten. Die Genauigkeit erreichte 100% 

für die Validierungsdaten, indem die ersten acht und zehn PCs aus den Daten verwendet 

wurden, die vom Raman-Mikroskop bzw. vom tragbaren Fiberoptik Raman-System 

gesammelt wurden. Die Ergebnisse zeigen, dass die entwickelten Modelle inklusiver der 

Datenvorverarbeitung und Messmethoden eine hohe Unterscheidbarkeit bei hoher 

Leistungsfähigkeit der Auswertung ermöglichen und dass auch das in dieser Studie 

verwendete tragbare Fiberoptik Raman-System mit geringerer Auflösung der spektralen 

Daten mit dem entwickelten Verfahren ein vergleichbares Ergebnis erzielt. 

Unter Verwendung des tragbaren Fiberoptik Raman-Spektrometers (ein QE Pro-

Raman-Spektrometer mit einer Laseranregungswellenlänge von 785 nm von Ocean Insight, 

ehemals Ocean Optics) wurden die Frischeveränderungen in Geflügelfilets während der 

Lagerung untersucht. Geflügelfilets mit derselben Haltbarkeit (9 Tage) und demselben 

Verfallsdatum wurden von einem örtlichen Geschäft gekauft und bei 4 °C gelagert. Ihre 

Raman-Spektren wurden täglich bis zum 21. Tag gemessen. Die komplexen Spektren wurden 

unter Verwendung von PCA analysiert, was zu einer Trennung der Proben in drei 

Qualitätsklassen nach ihrer Frische führte: frisch, halbfrisch und verdorben. Diese Klassen 
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basierten auf den Informationen, die aus dem Produktetikett auf den Verpackungen abgeleitet 

wurden. Die PCA-Loadings lieferten Hinweise auf eine Abnahme des Proteingehalts des 

Geflügelfleisches während des Verderbs, eine Zunahme der Bildung freier Aminosäuren, eine 

Zunahme der Oxidation von Aminosäurerückständen und eine Zunahme des mikrobiellen 

Wachstums auf der Oberfläche der Geflügelfilets sowie Informationen über hydrophobe 

Wechselwirkungen um die aliphatischen Rückstände. Ähnliche Gruppierungen (frisch, 

halbfrisch und verdorben) wurden auch aus den Ergebnissen einer Agglomerativen 

Hierarchischen Clusteranalyse (AHCA) der ersten fünf Hauptkomponenten gewonnen. Die 

Ergebnisse lassen den Schluss zu, dass das tragbare Fiberoptik Raman-Spektrometer als 

zuverlässige und schnelle Methode zur Echtzeit-Auswertung der Frische von Geflügel 

während der Lagerung eingesetzt werden kann. 

Weiterhin wurde die Charakterisierung und Diskriminierung von Filetproben aus 

verschiedenen Geflügelfleischproduktionslinien (konventionell und alternativ) eines 

deutschen Geflügelherstellers erfolgreich unter Verwendung von einem tragbaren Fiberoptik 

Raman-Spektrometer in Verbindung mit chemometrischen Analysen (PCA, Kanonische 

Diskriminanzanalyse (CDA, engl. Canonical Discriminant Analysis ) und AHCA) 

durchgeführt. Die Untersuchungen wurden zu fünf wiederholten Untersuchungszeiten 

während der Lagerung durchgeführt, die 24 Stunden nach dem Schlachten bei 0, 72, 120, 168 

und 240 Stunden des Experiments begann. Raman-Messungen wurden direkt an 

Filetoberflächen parallel zur mikrobiologischen Bestimmung und Nährstoffanalyse 

durchgeführt. Insgesamt 80 Filets wurden in zwei wiederholten Lagerversuchen unter den 

gleichen Bedingungen untersucht. Das PCA-Modell wurde unter Verwendung des 1. 

Lagerversuchs (1. Untersuchungszeit; 0 h) konstruiert. Das Modell war in der Lage, die 

Geflügelproben entsprechend ihrer Produktionslinie in zwei Klassen in konventionell und 

alternativ zu gruppieren. Die Testdatenpunkte aus dem 2. Lagerungsversuch (1. 

Untersuchungszeit; 0 h) wurden zur Validierung des Modells verwendet und alle wurden 

erfolgreich dem richtigen Cluster zugewiesen. Ähnliche Ergebnisse wurden auch von CDA- 

und AHCA-Modellen erzielt. Der Ursprung der Trennung im PCA-Modell wurde durch die 

Analyse des Loadingdiagramms untersucht. Die Ergebnisse zeigen, dass die alternative 

Produktionslinie einen höheren Kollagen-, Protein- und Kohlenhydratgehalt aufweist als die 

konventionelle. Diese Ergebnisse stimmten mit der Analyse der Nährstoffe in beiden 

Produktionslinien überein. Die alternative Produktionslinie zeigt auch einen höheren 

Carotinoidgehalt, der den Farbunterschied zwischen beiden Produktionslinien erklären kann, 

wobei die alternative Produktionslinie mehr gelbliche Filets anzeigt. Darüber hinaus wurden 
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für jede Produktionslinie CDA-Modelle bestimmt, um Geflügelfilets nach ihrer Lagerzeit 

(fünf Untersuchungszeiten) und ihrer mikrobiellen Belastung (drei Qualitätsklassen) zu 

klassifizieren. Der 1. Lagerversuch (Trainingsdatensatz) wurde verwendet, um die Modelle zu 

erstellen, und der 2. Lagerversuch (Testdatensatz) wurde verwendet, um diese Modelle zu 

validieren. Für beide Produktionslinien zeigten alle CDA-Modelle ein gutes Ergebnis, 

Geflügelfilets nach ihrer Lagerzeit und ihrer mikrobiellen Belastung mit Fehlerraten von 

weniger als 25,00% zu klassifizieren. Die Klassifizierungsfähigkeit der verwendeten CDA-

Modelle zeigte jedoch unterschiedliche Ergebnisse, wenn sie mit der dem 2. Lagerversuch 

überprüft wurden. Für die Klassifizierung nach Lagerzeit wiesen CDA-Modelle für beide 

Produktionslinien eine schlechte Klassifizierungsfähigkeit auf (Fehlerquote: 42,06% bzw. 

62,99% für konventionelle und alternative Modelle). Die hohen Fehlerraten können mit den 

hohen Variationen der gemessenen bakteriellen Belastung zwischen den beiden 

Lagerversuchen für jede Produktionslinie korreliert werden. Für die Klassifizierung nach der 

mikrobiellen Belastung war die Klassifizierungsfähigkeit der CDA-Modelle für die 

konventionelle Produktionslinie gut (Fehlerrate: 24,60%) und für die alternative 

Produktionslinie schlecht (Fehlerrate: 54,33%). Die niedrige Fehlerrate für die herkömmliche 

Produktionslinie zeigt, dass die Variationen zwischen den beiden Lagerversuchen gering 

waren,während die hohe Fehlerrate für alternative Produktionslinien darauf hinweist, dass die 

Variationen zwischen den beiden Lagerversuchen zu hoch waren und dass die mikrobielle 

Belastung nicht der einzige Faktor ist, der sich auf die gesammelten Raman-Spektren aus den 

beiden Lagerversuchen auswirkt. Da Filets der alternativen Linie im Vergleich zur 

herkömmlichen Produktionslinie einen deutlich höheren Protein- und niedrigeren Wasser- und 

intramuskulären Fettgehalt aufwiesen und unter Berücksichtigung der Tatsache, dass die 

Lipidoxidation und der autolytische enzymatische Verderb ebenfalls als einer der 

Hauptmechanismen für den Fleischverderb angesehen werden, wird dies zu  großen 

Unterschieden bei den verschiedenen Lagerversuchen führen, die die 

Klassifizierungsfähigkeit über die aufgenommenen Raman-Spektren beeinträchtigen wird. 

Die Ergebnisse lassen aber dennoch den Schluss zu, dass die Raman-Spektren, die vom 

tragbaren Fiberoptik Raman-Spektrometer in Verbindung mit chemometrischer Analyse 

gesammelt werden, als zuverlässige und schnelle Methode zur Charakterisierung und 

Diskriminierung von Proben aus verschiedenen Geflügelfleischproduktionssystemen 

eingesetzt werden können. 
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1 General Introduction 

1.1 Background 

Muscle foods, including poultry and red meat, are rich sources of protein, essential 

amino acids and a wide variety of micronutrients essential for human nutrition and health [1–

3]. However, fresh meat ranks among the highly perishable food due to its nutritional 

composition, which transforms it into a susceptible product for the growth of spoilage and 

pathogenic microorganisms [4–8]. 

From a consumer and industry perspective, high safety, quality and long shelf life 

times are the most important criteria for meat and meat products [9].Therefore, the production 

of high quality and safe meat products with a long shelf life is one of the meat industry’s 

major tasks [10]. Currently, the spoilage and pathogenic microorganisms are determined by 

culture and colony counting methods which are laborious and time-consuming [11–13]. This 

is inconvenient in modern food industrial applications [12]. As meat freshness is important to 

consumers, the meat industry and retailers, a high demand, therefore, remains for the 

development of effective, rapid, simple, non-destructive and inexpensive sensing technologies 

for detecting microbial contamination on meat [14–16]. 

Several methods have been developed to achieve fast and reliable bacterial 

identification such as Raman spectroscopy [17–23]. Although much research has employed 

Raman spectroscopy in identifying clinically relevant bacteria [24–27], less has been done 

with food-related bacteria [28–30]. Several research groups have investigated various 

methods for the rapid detection of microbiological spoilage on different kinds of meat [31–

34]. However, research on and investigations into fast methods for precisely predicting 

bacterial loads in poultry meat, which production and consumption has risen dramatically in 

recent years leading to a significant increase in its commercial value [14, 35], are rare even 

though they are urgently needed for efficient management in the poultry industry [36, 37]. 

Moreover, Raman spectra usually treated as mathematical data and only little or no attention 

is paid to interpreting the spectra, which obscures the spectral features and differences among 

the species on which the classification is made [30, 38–40]. The individual spectral 

contributions need to be understood better if the field is to move forward.  
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1.2 Raman Spectroscopy 

1.2.1 Theory 

Raman spectroscopy is an increasingly popular technique in many areas because it is a 

non-destructive, non-invasive, rapid, being label-free and relatively inexpensive compared to 

other methods. Moreover, it requires simple up to no sample preparation and allows for both 

organic and inorganic substances to be measured in a variety of states. Raman spectroscopy 

provides information about the concentration, the molecular composition and structure of a 

sample based on vibrational information. Given these advantages, Raman spectroscopy has 

already been applied in numerous fields, including physics, chemistry, geology, material 

sciences, pharmaceutical analysis, and semiconductor technology and many others. Raman 

spectroscopy is almost insensitive to water, making it an ideal method for biological 

applications [41–46]. 

Raman spectroscopy is one kind of spectroscopic technique based on Raman 

scattering. Raman scattering is a phenomenon results from the interaction of the light with 

molecules through inelastic scattering of light, in which the incident light induces molecular 

vibrations in the sample. The phenomenon of inelastic scattering of light was predicted 

theoretically in 1923 by A. Smekal, and experimentally confirmed in 1928 by C. V. Raman, 

which is the reason why the inelastic scattering is called Raman scattering. For which 

discovery, Prof. Raman received the 1930 Nobel Prize in Physics [44, 47–51]. 

When light interact with matter this will lead to several different processes such as 

transmission, reflection, absorption or scattering. In the process of scattering, the incident 

light interacts with molecules by distorting (polarizing) the electron cloud, as a result, 

promotes the system to a higher-energy state generally identify as a ‘virtual state’. This 

‘virtual state’ is not stable, the photons are scattered immediately to another state which is 

relatively stable, giving rise to the phenomenon of light scattering [47, 52, 53]. 

There are two types of scattering that may occur, Rayleigh (elastic) and Raman 

(inelastic) scattering. The predominant form is Rayleigh scattering, approximately one in 103 

photons undergoes Rayleigh scattering. Rayleigh scattering occurs when the scattered light is 

of the same frequency as the incident light. Since there is no change in energy or frequency, 

Rayleigh scattering are called elastic scattering. As shown in Figure 1.1(a), an incident light 

excites a molecule from an initial vibrational state to the ‘virtual state’. After being excited, 



3 

the molecule spontaneously drops back to the same initial state [44, 48, 52, 54–57]. The other 

type of scattered light called Raman scattering which is a weak phenomenon, approximately 

one of about 106 to 108 photons undergoes Raman scattering. Raman scattering occurs if the 

scattered light have energy or frequency different from that of the incident light. As there is a 

change in energy (lost or gained), Raman scattering are called inelastic scattering. As shown 

in Figure 1.1(b) and (c), Raman scattering can be classified into two types, Stokes and Anti-

Stokes Raman scattering. In the case of Stokes Raman scattering (Figure 1.1(b)), a molecule 

is excited from the ground vibrational state to the ‘virtual state’ and spontaneously relaxes to a 

higher energy vibrational state in the ground state, thus scattered light holds a lower frequency 

than the incident light. While in the case of Anti-Stokes Raman scattering (Figure 1.1(c)), the 

molecule is already in excited vibration state, after interacting with the incident light the 

molecule excited to the ‘virtual state’ and spontaneously relaxes to a lower energy vibrational 

state in the ground state, thus scattered light holds a higher frequency than incident light. The 

difference in energy between incident and scattered photons is equal to the energy of 

transition between two vibrational modes. Accordingly; the energy of emitted photons (being 

shifted down or up) gives information about the vibrational structure of the sample [44, 47, 

48, 52–55, 57]. 

 

Figure 1.1: Energy level diagram for: (a) Rayleigh scattering, (b) Stokes Raman scattering and (c) Anti-Stokes 

Raman scattering. 
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According to classical theory, the polarizability (α) of a molecule represents the ability 

of an external electric field of strength E to induce a dipole moment (P) in the molecule. The 

induce dipole moment can be defined by: 

𝑃 =  𝛼𝐸  (1.1) 

and the strength of the electric field of the incident light of frequency v0 is given by: 

𝐸 =  𝐸0 cos 2𝜋𝑣0 𝑡  (1.2) 

where E0 is the amplitude of the electrical field at time t. For any molecular bond, the 

individual atoms in a molecule are confined to specific vibrational modes. The displacement 

(q) of atoms about their equilibrium position due to a particular vibrational mode can be 

expressed as: 

𝑞 =  𝑞0 cos 2𝜋𝑣𝑚 𝑡  (1.3) 

where q0 is the vibrational amplitude and νm is the frequency of vibration. For a small 

amplitude of vibration, α is a linear function of q. Thus, it can be approximated as a Taylor 

series expansion in normal coordinates as follows: 

𝛼 =  𝛼0 +  (
𝜕𝛼

𝜕𝑞
)

0
 𝑞 + .  .  .  .  (1.4) 

where α0 stands for the polarizability at the equilibrium position, and (∂α/∂q)0 is the rate of 

change of α with respect to the change in q evaluated at the equilibrium position. 

Approximating equation (1.4) to the first order term and substituting it and equations (1.2) 

and (1.3) into equation (1.1) yields: 

𝑃 = 𝛼0 𝐸0 cos 2𝜋 𝑣0𝑡 +  
1

2
 (

𝜕𝛼

𝜕𝑞
)

0
𝑞0 𝐸0[cos{2𝜋(𝑣0 + 𝑣𝑚)𝑡} + cos{2𝜋(𝑣0 −  𝑣𝑚)𝑡}] (1.5) 

From a classical approach, the first term in equation (1.5), (𝛼0 𝐸0 cos 2𝜋 𝑣0𝑡), represents 

Rayleigh scattering in which the scattered radiation has a frequency, ν0, equal to the incident 

light. The second term in the equation, (
1

2
 (

𝜕𝛼

𝜕𝑞
)

0
𝑞0 𝐸0 cos{2𝜋(𝑣0 +  𝑣𝑚)𝑡}), corresponds to 

the Anti-Stokes Raman scattering in which the scattered radiation has a frequency, (𝑣0 +

 𝑣𝑚), higher than the incident light (blue shifted). The third term in the equation, 

(
1

2
 (

𝜕𝛼

𝜕𝑞
)

0
𝑞0 𝐸0 cos{2𝜋(𝑣0 −  𝑣𝑚)𝑡}), represents Stokes Raman scattering in which the 

scattered radiation has a frequency, (𝑣0 −  𝑣𝑚), lower than the incident light (red shifted). 

As indicated by equation (1.5) the Stokes or Anti-Stokes Raman scattering will vanish 

if the differential term is equal to zero. This gives rise to the selection rule of Raman 

spectroscopy, which states that, in order to be Raman active, a vibration must involve a 
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change in the polarizability of the system, i.e.: (∂α/∂q)0 ≠ 0. The Quantum description and 

more detailed aspects of Raman are discussed elsewhere [44, 52, 58–60] 

The intensity of Stokes and Anti-Stokes Raman scattering light is proportionate to the 

number of scattering molecules. As different departure vibrational levels involved, the 

intensity of the two processes will be different. At room temperature, the Boltzmann 

distribution of vibrational states has the majority of molecules in their ground vibrational 

states and therefore; the intensity of Stokes scattering light is greater than the intensity of the 

Anti-Stokes. As the Stokes scattering light is the more intense and since the same information 

can be obtained from both processes; Stokes scattering light is typically measured in the 

conventional Raman spectroscopy [47, 48, 52, 57–59]. 

The Raman scattering process as illustrated above occurs spontaneously. Thus, this 

process is called spontaneous Raman scattering. Since this process is very weak; it has a very 

small cross-section (∼10-30 cm2). Therefore, numbers of various techniques of Raman 

Spectroscopy such as Surface Enhanced Raman Spectroscopy, Coherent Anti-Stokes Raman 

Scattering, Resonance Raman Spectroscopy, Transmission Raman Spectroscopy, Stimulated 

Raman scattering, Tip-Enhanced Raman Spectroscopy have been developed to enhance 

sensitivity, to improve intensity, to reach better spatial resolution and other improvements [44, 

58, 59, 61–64]. This thesis deals only with spontaneous Stokes Raman scattering. 

A typical Raman spectrum is obtained by plotting the intensity of the scattered light 

(in arbitrary units (a.u.)) on the vertical axis against the Raman shift on the horizontal axis. 

Raman shift defined as the difference in frequency between the incident and scattered light, 

and it is usually in units of wavenumbers (cm-1). Raman shift is determined by: 

Raman shift =  (
1

𝜆𝑖𝑙
−

1

𝜆𝑠𝑙
) × 107     (1.6) 

where λil and λsl are the wavelengths (in nm) of incident light and scattered light, respectively. 

As an example; see Figures 1.2(a) and (b) for Raman spectra of polystyrene and fresh 

boneless skinless chicken breast fillet, respectively. The Raman spectra are typically featured 

by a series of narrow and sharp peaks. The position of each peak is related to a particular 

molecular vibration at a fixed frequency, which can be used to analyse the composition of a 

sample. The intensity of the Raman peak is linearly proportional to the concentration of 

molecules, which can be used for quantitative analysis of the analyte. Since it is a difference 

value, the Raman shift of materials is usually independent of the wavelength of the incident 

light. Therefore; Raman shift is an intrinsic property of a molecule, which makes the Raman 

spectroscopy a powerful experimental tool for analytical studies [47, 52, 56, 59, 62, 65–68]. 
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As shown in Figures 1.2(a) and (b), Raman spectra for organic and biological 

molecules can be divided into three parts: the fingerprint region (below 1800 cm-1), the silent 

region (from 1800 cm-1 to 2800 cm-1) and the high frequency region (above 2800 cm-1). For 

biological samples, approximately 90% of the peaks are found in the fingerprint region and 

associated with bond vibrations of nucleic acids (DNA and RNA), proteins, carbohydrates, 

lipids and additional cellular biomolecules. This region gets its name from the diversity of 

sharp and localized spectral features that give molecules unique fingerprints. These molecular 

fingerprints can allow sample classification and chemometric analysis. The silent region is 

mostly empty of contributions from biological molecules. The remaining of the peaks are 

found in the high frequency region and associated with bond vibrations of CH, NH and OH 

stretching in lipids, proteins and water. Bands in this region are much broader, leading to 

increased spectral overlap [44, 58, 69–72]. 
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Figure 1.2: Mean Raman spectra of: (a) Polystyrene, (b) Fresh boneless skinless chicken breast fillet. The 

spectra were collected by Portable Fiber-Optic Raman system (QE Pro-Raman system, Ocean 

Optics, Netherlands) using a 785 nm laser at 250 mW power. The exposure time was 1 s for 

polystyrene and 10 s for the fresh boneless skinless chicken breast fillet. The fingerprint region is 

highlighted in green, the silent region in red and the high frequency region in violet. 

1.2.2 Instrumentation 

1.2.2.1 Raman Spectrometer 

A spectrometer is the instrument used to collect Raman spectra. The major typical 

components of Raman spectrometer are an excitation source, light collection system, 

monochromator and a detector. A typical Raman spectrometer is shown schematically in 
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Figure 1.3. The excitation light is delivered to the sample and Raman scattered light is 

collected back and directed towards the detector by some intermediate optics. These 

intermediate optics can include lenses, mirrors and filters [54, 64, 73, 74]. The main elements 

of a Raman spectrometer and their roles are summarized below. 

 

 

Figure 1.3: Schematic layout of a typical Raman spectrometer. 

1.2.2.1.1 Excitation Source 

Since the Raman effect is a very weak process, lasers are preferable as an excitation 

source to produce quality Raman spectra. Lasers offered many advantages such as 

monochromaticity, brightness, high accuracy of collimation and power density. The 

wavelengths of most used lasers in Raman spectroscopy are listed in Table 1.1. The intensity 

of the Raman scattering is linearly proportional to the laser power, but it depends on the 

fourth power of the excitation light frequency, hence shorter wavelength provides higher 

Raman signal. However, with a short excitation wavelength a thermal decomposition of a 

biological sample can occur. For most biological samples, Autofluorescence is an additional 

issue associated with the excitation laser emitting in the visible range. Fluorescence usually 

occurs when the laser light is absorbed by the analyte or chromophore group, as well as 

crystal defects. The appropriate selection of the incident laser wavelength is necessary to 

avoid this problem. A lower energy excitation laser reduces the likelihood of fluorescence 

excitation. Hence, Fluorescence is suppressed or even diminished when the excitation 

wavelength moves to the Near-Infrared for biological samples. Thus, Near-Infrared lasers, 



9 

most commonly at 785 and 830 nm, have been extensively applied in biological studies [48, 

54, 55, 58, 70, 73–76]. 

Table 1.1: List of wavelengths in nm of the most used lasers in Raman spectroscopy. 

       Ultra-Violet        Visible         Near-Infrared 

   
244 (Argon ion) 488 (Argon ion) 785 (Diode laser) 

325 (Helium–Cadmium) 514.5 (Argon ion) 830 (Diode laser) 

363 (Argon ion) 532 (Neodymium–Yttrium 

Aluminum Garnet) 

1064 (Neodymium–Yttrium 

Aluminum Garnet) 

 632.8 (Helium–Neon)  

  647.1 (Krypton ion)   

 

1.2.2.1.2 Monochromators 

Single monochromator comprise a diffraction grating, which is used to disperse the 

Raman scattered light. Dispersive Raman spectroscopy and Fourier transform (FT) Raman 

spectroscopy are the two main techniques used to collect Raman spectra. Dispersive Raman 

spectroscopy uses gratings and multistage monochromators to disperse the signal into its 

spectral components, whereas FT-Raman spectroscopy involves the use of a multiplexing 

spectrometer system, such as a Michelson interferometer, to detect and analyse the radiation 

scattered from a sample [70, 73]. 

1.2.2.1.3 Light Collection System 

1.2.2.1.3.1 Fiber Optics 

Fiber optics are often used to deliver the excitation light to the sample and to deliver 

collected Raman scattered light back to the instrument. Nearly all Raman fiber optic probes 

use multimode silica fiber optics. Even though silica fibers are very efficient across the visible 

and Near-Infrared portions of the spectrum, it is also generates a spectral background due to 

the Raman scattering of the silica and a fluorescence background. This spontaneous 

background can be reduced through the use of low hydroxyl content optical fibers and further 

suppress by using optical filters at the end of the probe. The excitation laser light is filtered 
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using a short-pass or a notch filter, while the collected Raman scattered signal is filtered with 

a long-pass or a notch filter. The optical paths for excitation and collection can be overlapped 

using a dichroic or a notch filter, either of which can be used to reflect the laser beam but 

transmit the Raman scattered light [74]. 

1.2.2.1.3.2 Filters 

Filters such as interferential, edge and density filters can be integrated into the 

spectrometer. The interference filter used to eliminates the parasitic radiation emitted by the 

laser. The interference filter located just after the laser source, thus improving the quality of 

the excitation beam. The edge rejection filter eliminates the contribution of the Rayleigh 

scattering. Since Rayleigh scattering is more intense than Raman scattering, it can easily 

overwhelm the Raman scattering signal, so it must be optically filtered. The most commonly 

used Rayleigh filters are holographic notch and dielectric edge filters. Edge filters only 

transmit light wavelengths above that of the laser in use, while notch filters will effectively 

filter only the laser wavelength, allowing both Stokes and Anti-Stokes measurements. The 

density filter used to control the power of the laser according to the analysis requirement [54, 

70]. 

1.2.2.1.4 Detector 

The detector included in the Raman system needs to be extremely sensitive to detect 

the weak intensity of Raman scattering. The detector was initially the human eye, later more 

sensitive detectors in the form of photomultiplier tubes (PMTs), which are characterized by 

single-channel recording, were available. By contrast, the multichannel technique can record a 

large number of spectral elements simultaneously with a sensitivity per channel that is 

comparable to a photomultiplier, which delivers a drastic reduction in the amount of time 

required to obtain Raman data. The availability of charge-coupled devices (CCDs) led to the 

development of a new generation of multichannel Raman spectrometers. CCDs are 

multichannel arrays made up of thousands of pixels, each of which can collect charge from 

scattered photons. This charge is directly proportional to the Raman scattering intensity. 

CCDs are commonly integrated in Raman systems, because they exhibit high quantum 

efficiencies and low signal-to-noise ratios, compared with early alternative detectors such as 
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PMTs. Dark, or thermal, noise can be notably improved by detector cooling, often by using 

liquid nitrogen cryogenic or thermoelectric Peltier cooling [70, 73]. 

1.2.2.1.5 Computer System 

The computer system transforms the electrical signal into a signal which can be used 

by the user, enabling the device control with different commands and processing the data with 

the dedicated software [54]. 

1.2.2.2 Raman Microspectroscopy 

Raman microspectroscopy used to investigate very small quantities of materials, or 

even domains within materials, at a resolution of a few square micrometers. In Raman 

microspectroscopy, Raman spectrometer is interfaced to a standard microscope. The 

microscope is used to focus the laser beam onto the sample via a microscope objective lens 

and then collects scattered photons and redirects them to the spectrometer. This enables the 

visual inspection of sample and facilitates spectroscopic analysis of a limited amount of 

sample or a selected small region within a sample. Raman microspectroscopy enables both 

visual and spectroscopic examinations, either as single point, mapping or imaging 

measurements. To reduce interference from Fluorescence emission, avoid sample damage and 

achieve reasonable experiment times in Raman microspectroscopy measurements, parameters 

such as the laser wavelength, laser power, focusing element (objective lens), spectrometer 

grating, the acquisition time and pixel size and number have to be carefully selected [48, 54, 

73, 74, 76, 77]. 

1.2.2.3 Raman Systems Used in this Work  

1.2.2.3.1 Portable Fiber-Optic Raman System 

As shown in Figure 1.4, the Portable Fiber-Optic Raman system used in this work 

consists of four components: a QE Pro-Raman spectrometer, a Turnkey Raman laser of 

785 nm excitation wavelength, an RPB785 fiber-optic probe and a computer running 

OceanView version 1.4.1 software. All four components are from Ocean Optics (Ocean 
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Optics, Netherlands). A more detailed description of this system can be found in chapter 3, 

section 3.2.2. 

 

 

Figure 1.4: Components of Portable Fiber-Optic Raman system used in this work.     

1.2.2.3.2 Raman Microscope System 

The Raman microscope system used in this work is SENTERRA Raman microscope. 

SENTERRA Raman microscope (see Figure 1.5) is a bench-top model of dispersive Raman 

spectrometer (Bruker Optics, Ettlingen, Germany), hereafter referred to as ‘SENTERRA’. It is 

equipped with 488, 532 and 785 nm laser sources. The spectral range depends on the 

frequency of the laser and on the resolution mode. In the low resolution mode (9-15 cm-1) the 

spectral ranges for 488, 532 and 785 nm laser sources are 80-4500 cm-1, 60-4450 cm-1 and 60-

3500 cm-1 respectively. While in the high resolution mode (3-5 cm-1), several spectral 

windows are exist within the spectral range for each laser source. To reduce the intensity of 

the laser light SENTERRA spectrometer uses neutral density filters. The intensity can be 

reduced from 100% (no filter) down to 50%, 25%, 10% and 1% of the original laser intensity. 

In SENTERRA spectrometer an Olympus microscope (model BX51) is used to visualise the 

sample and to focus the laser beam on it. A digital video camera is coupled to the microscope, 

delivering digital images of the samples. The laser light or the visible light is focussed on the 

sample using the objectives of the microscope. The microscope has 5×, 20×, 50× and 100× 



13 

objectives, with spot sizes of approximately 50, 10, 4 and 2 μm, respectively. SENTERRA 

spectrometer has an XYZ motorised stage which is used to select the region of interest of the 

sample. This motorised stage can be controlled by the OPUS software and by a joystick. The 

motorised stage provides automatic point measurements of a list of predefined spots on the 

sample. SENTERRA spectrometer has two different types of apertures: a slit-type aperture of 

25 x 1000 μm and one of 50 x 1000 μm for high-throughput; and two pinhole-type apertures 

of 25 μm and 50 μm for confocal spectroscopy and depth profiling. SENTERRA spectrometer 

contains two different diffraction gratings: one with 400 lines/mm to measure in low 

resolution mode (9-15 cm-1) and one with 1200 lines/mm to measure in high resolution mode 

(3-5 cm-1). The system uses a thermoelectrically cooled CCD detector, operating at -70 °C. 

The format of the CCD in the SENTERRA spectrometer is 1024 x 256 pixels. The instrument 

is controlled via the OPUS software version 7.5 [78–80]. 

 

 

Figure 1.5: SENTERRA Raman microscope.  
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1.3 Meat  

1.3.1 Meat Composition 

Meat is the edible postmortem component originating from live animals, such as 

domesticated cattle, hogs, sheep, goats and poultry, as well as wildlife such as deer, rabbit and 

fish. During the postmortem period, complex changes take place in the muscle that results in 

its conversion to meat. The composition of the carcass relies on the market segment for which 

the meat is destined. Traditionally, carcass composition refers to the absolute or relative 

amounts of muscle, fat and bone, or of protein, lipid, ash and water. From a processor point of 

view, this definition can be refined to include quantities of retail meat, fat trim and bone. The 

meat of any animal has a composition associated with the age and nutritional state of the 

animal. Meat is a muscular tissue that is composed of skeletal muscles, connective tissue, fat, 

and little amounts of smooth muscles like veins and arteries. As shown in Figure 1.6, skeletal 

muscles are, in turn, composed of muscle fibers, that consist of rod-shaped myofibrils. 

Myofibrils and connective tissues are the major structural components of muscles. The animal 

muscle is generally composed of 60–80% water, 18–20% proteins, 0.5–19% lipids, 1–1.5% 

minerals and a very small amount of carbohydrate [81–85].  
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Figure 1.6: The structure of muscle (From: Frontera and Ochala [86], Figure 3). 

1.3.2 Meat Quality 

The quality can be described as the measure of traits that are sought and valued by the 

consumer. The meat quality is a wide term and covers a variety of characteristics and can be 

defined in various ways from palatability to technological aspects to safety. The properties 
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used to define the quality of meat can be divided into four groups of parameters (Figure 1.7); 

animal nutrition, hygiene and toxicological, meat processing and sensory parameters which 

have the highest influence on the consumers’ purchase decision [87–89].  

 

 

Figure 1.7: Parameters of meat quality for meat-producing animals. 

In the first half of the 20th century, the intrinsic set of quality factors (i.e., the 

characteristics of the product itself) were the most important factors used to judge meat at its 

point of purchase or on consumption after cooking. To minimize variability in these intrinsic 

factors, much of the work done on best practices for genetic selection, animal production, 

slaughter methods and post-mortem handling of meat. A further set of extrinsic factors gained 

a remarkable position in the minds of current consumers of meat and meat products. These 

factors can’t immediately be detected by physical or sensory examination of the meat itself, 

but are associated with the way that the meat is produced. These extrinsic parameters center 

on animal welfare, the nutritional values of meat in the human diet and the ecological 

sustainability of production systems [87, 90].  

The microbial spoilage regarded as the main cause of quality deterioration in meat, 

and it is causes pH change, off odors, slime formation, structural components degradation and 

appearance change [91–93]. 
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1.3.3 Microbial Spoilage and Shelf Life of Meat 

Food spoilage is the process which decreases the desirability of food for consumption 

by changing several biochemical properties of food caused by microbiological, chemical or 

physical changes. Microbiological food spoilage is a result of the growth of microorganisms 

which produce enzymes that lead to undesirable by-products in the food [94, 95]. Meat is one 

of the most sensitive food products regarding spoilage and prediction of minimum shelf life. 

Fresh meat is excellent basic nutrients for microbial activity as it is rich in nutrients (sugars, 

amino acids, nucleotides, peptides, vitamins, etc.), it possesses a pH between 5.5 and 6.5 and 

a high water activity which supports the growth of a wide variety of microorganisms [96–99]. 

The shelf life of meat and meat products is the period of time a product can be stored without 

becoming unacceptable for human consumption or becoming a health risk. The main reason 

for meat spoilage is the presence of microorganisms and their metabolites [97, 100, 101].  

A maximum acceptable microbial level and (or) unacceptable off-odor and off-flavor 

identify the exact point of spoilage, which is rigidly dependent on the initial numbers and 

types of contaminating microorganisms and their growth, lipid oxidation and autolytic 

enzymatic reactions. Commonly, the initial microbial count of fresh meat and meat products 

is about 4-5 log CFU/cm2 and the spoilage is determined by up to 108-109 CFU/g of different 

microorganisms. If the meat is maintained in air at temperatures lower than 5 °C, the shelf life 

of the meat will be limited by microbial growth. The unpleasant odors develop when the 

number of microorganisms reaches about 107 CFU/cm2 and a slimy coating appears with the 

count of 108 CFU/cm2 [97]. 

Fresh meat can be contaminated by a large variety of microorganisms. The 

composition of these microorganisms depends on several factors: (a) preslaughter husbandry 

practices, (b) age of the animal at the time of slaughtering, (c) handling during slaughtering, 

evisceration and processing, (d) temperature controls during slaughtering, processing and 

distribution, (e) preservation methods, (f) type of packaging and (g) handling and storage by 

consumer. Or in other words; these factors can be categorized into five groups: intrinsic, 

extrinsic, processing, implicit and the emergent. These factors can influence the growth and 

predominance of specific microbial groups [93, 96–98, 102]. Meat spoilage depends on the 

composition of a heterogeneous microflora, but in some cases, spoilage is caused by one 

specific organism. The groups of microorganisms responsible for the spoilage of meat and 

poultry under different storage conditions are mainly belonging to a few genera, including: 

Pseudomonas, Shewanella, Psychrobacter, Moraxella, Acinetobacter, Bacillus, Escherichia, 
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Enterobacteriaceae, Flavobacterium, Staphylococcus, Micrococcus, Corynebacterium, 

Clostridium, Brochothrix and Lactic acid bacteria [41, 93, 97, 98, 100, 101, 103].  

1.3.4 Microbial Spoilage Detection Methods 

Traditionally, evaluating the spoilage process of fresh meat has focused on evaluating 

the presence of microorganisms by detection and enumeration. The conventional analytical 

methods, such as colony counting methods, have been used almost exclusively in the actual 

evaluation of spoilage. The conventional methods were developed many years ago and have 

been in use ever since as the official methods of most food microbiology laboratories, that’s 

why it’s called ‘conventional’. These methods are well established, reliable and accurate. 

However, these methods have major drawbacks related to excessive laboratory work, time 

consumption, culture media, technique failures associated with high agar temperature, 

laboratory glassware requirement and high risk of contamination due to all the stages involved 

in culture medium preparation and inoculation. This is an explicit inconvenience in modern 

food industrial applications since those methods are not appropriate for on-line and real-time 

detection of microbial spoilage in a fast and non-destructive or non-invasive means. 

Therefore, demand remains high for the development of cost effective, rapid, simple, reagent-

free and non-destructive methods to detect microbial contamination on meat [41, 95, 104–

109]. 

Several methods have been developed to achieve fast and reliable bacterial 

identification, such as Matrix Assisted Laser Desorption Ionization-Time Of Flight Mass 

Spectrometry (MALDI-TOF MS) [110], Polymerase Chain Reaction (PCR) based methods 

[111] and Enzyme-Linked Immunosorbent Assay (ELISA) techniques [112]. These methods 

are objective, reliable, highly specific and rapid [17, 113–116]. However, they are destructive 

[115, 117] and require complex sample preparation steps [117, 118]. Moreover, PCR and 

ELISA methods require specific primers and antibodies [118].  

As an alternative to those methods, bacteria are increasingly being identified using 

Raman spectroscopy based detection techniques such as conventional Raman spectroscopy 

and surface-enhanced Raman spectroscopy [17–23, 117, 119–122]. Raman spectroscopy has 

several advantages over other methodologies as it is a non-destructive, non-invasive, 

relatively inexpensive compared to other methods, rapid and being a label-free method. 

Furthermore, it requires simple up to no sample preparation. Moreover, the presence of 
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microorganisms or DNA in the laboratory environment is not a concern in Raman 

spectroscopy. Additionally, strains can be identified extremely accurately [24, 121, 123, 124]. 

1.4 Raman Spectral Data Analysis 

In general, Raman spectral data analysis can be divided into two steps: (1) data set pre-

processing and (2) information extracting using chemometric techniques. 

1.4.1 Data Pre-processing 

Raman spectra can provide a molecular structural signature of a substance. Despite 

Raman fingerprint information, the Raman spectrum contains other contributions that 

influence the Raman signal and thereby obscure the desirable information. A variety of 

common contaminants can be observed in Raman spectra, some of which can be sample or 

instrument dependent. Contributions such as fluorescence background, substrate background, 

cosmic spikes, Gaussian noise, CCD background noise, varying in sampling geometries and 

other effects dependent on experimental parameters; have to be corrected or removed before 

the analysis, in order to ensure that the analysis is based on the Raman measurements and not 

on other effects. The effect of these interferents can be reduced by applying pre-processing 

methods such as visually assessing the quality of the spectra, outliers detection and 

elimination, cosmic spikes corrections or removal, baseline corrections, smoothing and 

normalization. Pre-processing the raw data helps eliminate unwanted variation such as 

instrumental and experimental artifacts, enhances Raman spectral features and allows more 

reproducible data for qualitative and quantitative analysis [41, 59, 70, 105, 125–128].  

Since there is no single standard method for pre-processing Raman spectra, and the 

choice of pre-processing steps and the order in which they are conducted has been shown to 

have a major impact on the outcomes of spectral analysis [105]; several pre-processing steps 

with different orders were applied in this work to the raw Raman spectra to achieve the 

optimal results. 

1.4.2 Chemometric Techniques 

Raman data can be analysed through two main approaches: univariate and multivariate 

(chemometrics). Raman band features (e.g. area, intensity and center of gravity) are used in 
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the univariate approach to understand the sample chemistry. Despite that a univariate data 

analysis is straightforward to utilize; it needs that the components of interest have distinctive 

and unique Raman bands. Since biological samples are heterogeneous mixtures of different 

biomolecules; their Raman spectra have a complex structure. They have numerous peaks in a 

broad band. Only slight spectral differences are visible if Raman spectra of different 

biological states are measured and compared. A manual differentiating and rating of these 

slight changes are not possible or practical. Consequently, the use of chemometrics techniques 

is required [45, 128–130].  

Chemometric techniques can be defined as the chemical discipline that uses 

mathematical, statistical and other methods to design or select optimal measurement 

procedures and experiments, and to provide maximum relevant chemical information by 

analysing chemical data. Chemometric techniques enhance the sensitivity of Raman 

spectroscopy, which are capable of distinguishing subtle spectral differences between classes. 

Furthermore, chemometric techniques make biological diagnostics more objective since litt le 

to no human intervention is required. In addition, chemometrics dramatically speed up 

biological diagnostic procedures, making it possible to deal with large-size Raman spectral 

datasets within an acceptable time [41, 131, 132].  

In this work, the following chemometric methods were used to analyse the collected 

Raman data: (a) Principal Components Analysis (PCA) using the covariance matrix; 

unsupervised chemometric method (i.e., it makes no a priori assumptions about the data set), 

(b) Hierarchical Cluster Analysis (HCA); unsupervised chemometric method, (c) Support 

Vector Machines (SVM); supervised chemometric method and (d) Canonical Discriminant 

Analysis (CDA); supervised chemometric method [41, 76, 133]. 

1.5 Objective, Research Questions and Outline of the Thesis 

The main objective of this thesis is to investigate the feasibility of Raman 

spectroscopy in conjunction with chemometric methods for the characterization and analysis 

of quality and shelf life of poultry meat. For this purpose, the following research questions are 

proposed: 

1. Can two dispersive Raman spectrometers with different characteristics (Microscope 

and Portable Fiber-Optic systems) be used to characterize, discriminate and classify 

important strains of meat spoilage microorganisms commonly found in poultry meat? 
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2. Can the accuracy of the used Raman systems affect the accurate discriminating and 

classifying of bacteria down to the strain level? 

3. Can Raman spectral features and differences on which the discrimination is made be 

identified? 

4. Is Raman spectroscopy able to monitor the spoilage process of poultry fillets through 

the evaluation of their freshness quality? 

5. Is Raman spectroscopy able to investigate the influence of different production 

systems on the quality and shelf life of poultry meat? 

 

Besides the introduction (chapter 1), this thesis contains four more chapters. In the 

second part of this thesis (chapter 2); characterization, discrimination and classification of 

eight important strains related to meat spoilage microorganisms, commonly found in poultry 

meat, were carried out using two dispersive Raman spectrometers (Microscope and Portable 

Fiber-Optic systems) in combination with chemometric methods. From each bacterial strain, a 

small amount of the biomass was placed on a disinfected stainless steel slide and was used for 

the Raman measurements. After the pre-processing step for the data collected by each system, 

chemometric methods were applied to develop discrimination and classification models. 

Thereafter, the obtained results from both systems were compared. Furthermore, the influence 

of the accuracy of the used Raman systems on the accurate discrimination and classification 

of bacteria down to the strain level was investigated, and the spectral features and differences 

on which the discrimination is made were identified. 

Chapter 3 was based on the findings in chapter 2 in which the same portable fiber-

optic Raman spectrometer was used to study the ability of Raman spectroscopy to monitor the 

spoilage process of poultry fillets through the evaluation of their freshness quality. The 

collected time-dependent Raman spectra were pre-processed and then combined with 

chemometric methods to investigate information about the quality and the remaining shelf 

life. The fillets samples were successfully separated into three quality classes according to 

their freshness: fresh, semi-fresh, and spoiled. These classes were based on the information 

inferred from the product label on the packages of poultry fillets. Furthermore, a conclusion 

was drawn on the poultry meat spoilage mechanism. 

The aim of chapter 4 is to confirm the findings and investigate other scenarios. 

Therefore, the influence of two commercial production lines (conventional and alternative) of 

a German poultry producer on the quality and shelf life of poultry meat were studied using 

Raman spectroscopy. In two repeated storage trials; Raman spectra of a total of 80 fillets (40 
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conventional and 40 alternative) were collected using portable fiber-optic Raman 

spectrometer. The investigations were conducted at five repeated investigation times during 

storage. Raman measurements were conducted directly on fillets surfaces parallel to the 

microbiological and nutrients analysis. The duration of each trial was 11 days. After the pre-

processing step for the collected data from each production line was done; chemometric 

methods (PCA, CDA and AHCA) were applied to study the ability of Raman spectroscopy to 

assess the quality parameters and shelf life. The results were compared to the data obtained 

from the physicochemical parameters’ measurements and microbiological analyses. 

The models were constructed using the 1st storage trial (first investigation time) and 

were able to group the poultry samples according to their production line into two classes; 

conventional and alternative. The testing data points from the 2nd storage trial (first 

investigation time) were used to validate the models and all have been successfully assigned 

to the correct cluster. The origin of the separation in PCA model was investigated by 

analysing the loading plots. The results were consistent with the analysis of nutrients in both 

production lines.  

Further, CDA model was constructed for each production line to classify poultry fillets 

according to their storage time (five investigation times) and their microbial load (three 

quality classes). For both production lines, the constructed models showed good ability to 

classify poultry fillets according to their storage time with error rates less than 25.00%. 

However, the constructed models showed poor classification ability when tested with the 2nd 

storage trial. The high error rates could be correlated to the high variations of the bacterial 

load between the two storage trials for each production line. The data were regrouped 

according to their microbial load to three quality classes (fresh, semi-fresh and spoiled) to 

minimize these variations. For the conventional production line, the constructed model 

showed good ability to classify poultry fillets according to their microbial load with error 

rates less than 25.00% for the training set and for the testing set. This indicates that the 

variations between the two storage trials are not high. The alternative production line showed 

good ability to classify poultry fillets according to their microbial load. Nevertheless, the 

model failed to classify poultry fillets when tested with the 2nd storage trial. This indicates 

that the variations between the two storage trials are too high and that the microbial load is not 

the only factor that has an impact on the collected Raman spectra from the two storage trials. 

The last chapter (chapter 5) displays the conclusion of the entire thesis. It answers the 

research questions in regard to the empirical results.  



23 

2 In Vitro Discrimination and Classification of Microbial Flora 

of Poultry Using Two Dispersive Raman Spectrometers 

(Microscope and Portable Fiber-Optic Systems) in Tandem 

with Chemometric Analysis 

This chapter is adapted from: S. Jaafreh, O. Valler, J. Kreyenschmidt, K. Günther, P. 

Kaul, In vitro discrimination and classification of Microbial Flora of Poultry using two 

dispersive Raman spectrometers (microscope and Portable Fiber-Optic systems) in tandem 

with chemometric analysis, Talanta. 202 (2019) 411–425. doi:10.1016/j.talanta.2019.04.082. 

2.1 Introduction 

Global production and consumption of poultry meat has increased over the last 

decades, and per capita consumption is expected to grow [4, 35, 105]. However, fresh poultry 

meat ranks among the highly perishable food due to its nutritional composition, which 

transforms the poultry meat to a susceptible product for growth of spoilage and pathogenic 

microorganisms [4–6]. Worldwide more than 20% of the meat produced is not consumed 

[134]. This waste leads to economic losses, food waste and loss of consumer confidence in the 

meat market. Therefore, the production of high quality and safe meat products with a long 

shelf life is one of the meat industry’s major tasks. By supplying meat of high quality and an 

adequate shelf life, the industry can optimize its storage management and thus reduce losses 

[10, 134–136]. 

The microorganisms commonly found in meat and poultry are Acinetobacter, 

Campylobacter, Flavobacterium, Micrococcus, Brochothrix, Bacillus, Pseudomonas and 

Escherichia [28, 83, 137, 138]. Currently, the gold standards in determining the spoilage 

microorganisms and foodborne pathogens are culture and colony counting methods [11, 12]. 

These methods are well established and reliable but at the same time laborious and time-

consuming, which is inconvenient in modern food industrial applications [11–13, 28, 94]. 

Several methods have been developed to achieve fast and reliable bacterial 

identification, such as Polymerase Chain Reaction (PCR) based methods [111], Enzyme-

linked immunosorbent assay (ELISA) techniques [112] and Matrix Assisted Laser Desorption 

Ionization-Time Of Flight Mass Spectrometry (MALDI-TOF MS) [110]. 

https://www.researchgate.net/publication/332928319_In_vitro_discrimination_and_classification_of_Microbial_Flora_of_Poultry_using_two_dispersive_Raman_spectrometers_microscope_and_Portable_Fiber-Optic_systems_in_tandem_with_chemometric_analysis
https://www.researchgate.net/publication/332928319_In_vitro_discrimination_and_classification_of_Microbial_Flora_of_Poultry_using_two_dispersive_Raman_spectrometers_microscope_and_Portable_Fiber-Optic_systems_in_tandem_with_chemometric_analysis
https://www.researchgate.net/publication/332928319_In_vitro_discrimination_and_classification_of_Microbial_Flora_of_Poultry_using_two_dispersive_Raman_spectrometers_microscope_and_Portable_Fiber-Optic_systems_in_tandem_with_chemometric_analysis
https://www.researchgate.net/publication/332928319_In_vitro_discrimination_and_classification_of_Microbial_Flora_of_Poultry_using_two_dispersive_Raman_spectrometers_microscope_and_Portable_Fiber-Optic_systems_in_tandem_with_chemometric_analysis
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These methods are objective, reliable, highly specific and rapid [17, 113–116]. 

However, they are destructive [115, 117] and require complex sample preparation steps [117, 

118]. Moreover, PCR and ELISA methods require specific primers and antibodies [118]. 

As an alternative to those methods, bacteria are increasingly being identified using 

Raman spectroscopy based detection techniques such as conventional Raman spectroscopy 

and surface-enhanced Raman spectroscopy [17, 18, 121, 122, 19–23, 117, 119, 120]. Raman 

spectroscopy has several advantages over other methodologies as it is a non-destructive, non-

invasive, relatively inexpensive compared to other methods, rapid and being a label-free 

method. Furthermore, it requires simple up to no sample preparation. Moreover, the presence 

of microorganisms or DNA in the laboratory environment is not a concern in Raman 

spectroscopy. Additionally, strains can be identified extremely accurately [24, 121, 123, 124]. 

The Raman spectra of each microorganism are highly specific because each microorganism 

has a unique spectral pattern. Raman and Micro-Raman Spectroscopy have the potential to 

investigate bulk samples as well as a single cell. The analyses can be performed directly from 

colonies grown on culture plates or from bacterial smears on an optical substrate [19, 25, 139, 

140].  

To provide specificity to minute biochemical differences between samples and to 

enable the bacteria to be characterized, discriminated and identified, the Raman spectra have 

to be analysed by chemometric techniques [139, 140].  

Although much research has employed Raman spectroscopy in identifying clinically 

relevant bacteria [24–27], less has been done with food-related bacteria [28–30]. Using 

Raman microspectroscopy, Meisel et al. identified meat-associated pathogens [28]. On a 

single-cell level, they created a spectral database of 19 bacterial species of the most important 

harmful and nonpathogenic bacteria associated with meat and poultry. Despite their promising 

recognition rate, single-cell analysis of bacteria by Raman microscopy requires a larger 

amount of spectra to include variations between individual cells or variations caused by 

different cultivation conditions. Furthermore, when using Raman microscopy, the methods 

used to isolate microorganisms can affect their identification. Moreover, spectra are treated as 

mathematical data and only little or no attention is paid to interpreting the spectra, which 

obscures the physical evidence (spectral features and differences among the species) on which 

the classification is made. Additionally, Raman microscopy needs much more time to analyse 

an individual cell, which leads to inadequate evaluation of large samples [30, 38–40, 141]. 
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The objective of this study was to discriminate and classify important strains of meat 

spoilage microorganisms commonly found in poultry meat. The usability of two dispersive 

Raman spectrometers with different characteristics (Microscope and Portable Fiber-Optic 

systems) were compared by conducting the measurements directly from a stainless steel slide 

without the need for any pretreatments like purification or singulation steps. The possibility of 

accurately discriminating and classifying bacteria down to the strain level using the less 

accurate measurement system (Portable Fiber-Optic) was investigated as well. Furthermore, 

the study aimed to identify the spectral features and differences on which the discrimination is 

made. 

2.2 Material and Methods 

2.2.1 Bacterial Strains, Growth Conditions and Sample Preparation 

The eight bacterial strains selected for the study, Micrococcus luteus DSM 20030 (M. 

lute), Brochothrix thermosphacta DSM 20171 (B. ther), Bacillus coagulans DSM 1 (B. coag), 

Bacillus subtilis DSM 10 (B. subt), Pseudomonas fluorescens DSM 4358 (P. fluo 4), 

Pseudomonas fluorescens DSM 50090 (P. fluo 5), Escherichia coli K12 (E. coli K12) and 

Escherichia coli HB101 (E. coli HB101), were obtained from culture collections available in 

the Department of Natural Sciences of Bonn-Rhein-Sieg University of Applied Sciences and 

in the Institute of Animal Sciences of Bonn University. The bacteria were cultivated under 

aerobic conditions on nutrient agar containing 10 g/l peptone from meat, 10 g/l meat extract, 

5.0 g/l sodium chloride and 18.0 g/l agar-agar (Merck, Darmstadt, Germany) for 24 hours at 

37 °C except B. coag, which was incubated for 48 hours at 55 °C (to increase the biomass 

accumulation). An overview of the genera, species and strains used throughout this study is 

provided in Table 2.1.  
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Table 2.1: List of used bacteria, abbreviations, number of spectra collected by each system and standard 

deviation of means (SDM) per strain. For more details on SDM, see Section 2.3.2 Chemometric 

techniques. 

Genus Species Strain Abbr. 

Microscope  Portable Fiber-Optic  

No. of 

Spectra  
SDM 

 No. of 

Spectra  
SDM 

Micrococcus luteus DSM 20030 M. lute 115 0.08  25 0.18 

Brochothrix thermosphacta DSM 20171  B. ther 114 0.07  25 0.26 

Bacillus coagulans DSM 1 B. coag 98 0.13  25 0.11 

subtilis DSM 10 B. subt 87 0.14  24 0.12 

Pseudomonas fluorescens DSM 4358 P. fluo 4 112 0.12  22 0.14 

DSM 50090 P. fluo 5 111 0.12  25 0.12 

Escherichia coli K12 E. coli K12 115 0.06  25 0.10 

HB101 E. coli HB101 115 0.08  24 0.15 

 

2.2.2 Raman Spectrometers and Acquisition Parameters 

For the Raman Microscope system; all measurements were carried out using the 

SENTERRA Raman microscope (Bruker Optics, Ettlingen, Germany) [78], hereafter referred 

to as ‘Microscope system’. The acquisition parameters were a laser wavelength of 785 nm for 

excitation, a laser power of 100 mW, a 50X long working distance objective with a laser spot 

size of ~4 µm, an aperture of 50x1000 μm, a 1200 lines/mm grating (high resolution mode of 

3-5 cm-1), an integration time of 15 seconds and with five co-additions. To cover the most 

relevant bacterial Raman features, the spectral window covering the spectral range of 410-

1790 cm-1 was chosen. Raman spectra were acquired using OPUS software (Bruker Optics, 

Ettlingen, Germany). 

For the Portable Fiber-Optic Raman system; all measurements were carried out using 

the QE Pro-Raman system (Ocean Optics, Netherlands) [105], hereafter referred to as 

‘Portable Fiber-Optic system’. The Portable Fiber-Optic system has an RPB785 fiber-optic 

probe. The fiber probe configuration consists of a permanently aligned combination of two 

single fibers (105-μm excitation fiber and a 200-μm collection fiber) with filtering and 

steering micro-optics (Numerical Aperture = 0.22), in a rugged polyurethane jacket. No 

objectives were used in the Portable Fiber-Optic system. The acquisition parameters were a 

laser excitation wavelength of 785 nm and a laser power of 250 mW; the distance between the 

sample and the laser fiber optic probe was 7.5 mm, with a laser spot size of ~155 µm, and the 

integration time was 10 seconds. The average of five scans was used in each collected 



27 

spectrum. Raman spectra were acquired using OceanView software (Ocean Optics, 

Netherlands). 

To take into account both biological variability and possible daily variations during 

Raman measurements, Raman bulk spectra of bacteria were recorded from four independently 

prepared batches of each strain. From each batch; a small amount of the biomass was scraped 

off the Agar plates using a sterile disposable loop. The collected biomass was then placed on a 

disinfected stainless steel slide and used for the Raman measurements (this step was repeated 

three times). For the Microscope system nine to ten Raman spectra were collected from each 

bacterial bulk sample. In this manner, around 115 Raman spectra for each bacterial strain 

were collected. For the Portable Fiber-Optic system only two or three Raman spectra were 

collected from each bacterial bulk sample due to the larger laser spot. Thus, around 25 Raman 

spectra for each bacterial strain were collected. More details are provided in Table 2.1. 

For both Raman systems, the spectra were collected from random positions 

chosen manually and with a new bacterial smear for each instrument system. To eliminate 

ambient light from Raman spectra, all Raman measurements were taken inside a dark 

enclosure. For both Raman systems, the dark spectrum subtraction was performed during the 

spectral acquisition. Bacterial bulk samples were measured directly without air drying. No 

further sample treatments were required. All of the Raman spectra were collected in a sterile 

environment and under ambient conditions.  

2.2.3 Raman Data Evaluation 

2.2.3.1 Data Pre-processing 

To reduce the wavenumber region to the fingerprint region, the spectra for the Portable 

Fiber-Optic system was cut to the wavenumber region from 497 to 1803 cm-1 while, for the 

Microscope system, the wavenumber region was kept the same as the chosen spectral window 

(from 410 to 1790 cm-1). Subsequently, the same pre-processing steps were performed for 

both systems. All spectra with cosmic spike(s) were searched for by visual inspection. These 

spectra were then eliminated from further analysis. Then, the baselines of all spectra were 

corrected using the concave rubber band correction method [20] (available in OPUS software; 

Bruker Optics) with 10 iterations and 64 baseline points. The spectra were then smoothed 

based on the Savitzky-Golay algorithm; the number of smoothing points was 7 with a second-
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order polynomial. Subsequently, the area under curve for each spectrum was normalized to 

one. Finally, the second-order derivative was calculated for each spectrum to improve 

resolution and minimize baseline variability [70, 105, 123, 142]. For each Raman system, the 

pre-processed spectral data were consecutively numbered in the order of their recording. 

Then, the data were divided into two sets: a training set (75%) and a validation set (25%). All 

the multiples of the measurement number four were placed in the validation set while the 

remaining measurements were placed in the training set. The training set was used to build the 

models for bacterial discrimination or classification, and the validation set was used to 

validate the presented pre-processing method and to test the models for their robustness. Data 

pre-processing were performed using OPUS software for the concave rubber band correction 

method and OriginPro 2018 software (OriginLab Corporation, United States) for all other 

steps. 

2.2.3.2 Chemometric Techniques 

To distinguish between the bacterial strains, chemometric techniques were applied to 

the data. These techniques enhance the sensitivity of Raman spectroscopy, which are capable 

of distinguishing subtle spectral differences between classes. Furthermore, chemometric 

techniques make biological diagnostics more objective since little to no human intervention is 

required. In addition, chemometrics dramatically speed up biological diagnostic procedures, 

making it possible to deal with large-size Raman spectral datasets within an acceptable time 

[21, 143]. In this study, the unsupervised chemometric method PCA and the supervised 

chemometric method SVM were used to differentiate between bacterial strains. 

2.2.3.2.1 Principal Components Analysis, PCA 

PCA is an unsupervised classification method used to reduce the dimensionality as 

well as to investigate and visualize the grouping of different samples into different clusters. 

Briefly, PCA linearly transforms the original data (Raman spectra in this work) into new 

orthogonal variables called principal components (PCs). Potentially, there are as many PCs 

extracted from the data matrix as there are original variables (Raman wavenumbers in this 

work). The first PCs explain the largest amount of variance observed in the features, which 

can be used to identify the samples’ differences [105, 144, 145]. For each Raman system in 

this work, bacterial samples were discriminated through a 3-stage PCA model. Before 
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performing the PCA calculation in each stage, the standard normal variate [146] was 

calculated for the training and the validation data sets. Standard normal variate and PCA 

calculations were performed using OriginPro 2018 software. 

2.2.3.2.2 Support Vector Machines, SVM 

SVM are supervised machine learning algorithms that have been widely used in data 

classification and regression analysis. The strategy of SVM is to find an optimal separating 

hyperplane or hyperplanes with the maximum margin between two or more classes by 

focusing on the training samples located at the edge of the class distribution and minimizing 

the classification error between each class. SVM are not relatively sensitive to training sample 

size. SVM can be built to discriminate between both linear and non-linearly separable data by 

using different kernel functions. Each kernel function has a particular parameter that must be 

optimized to obtain the optimal performance. For the linear kernel function, two parameters 

have to be defined: the regularization parameter (C) and gamma (γ) [147–153]. The high 

dimension of Raman spectral space may result in computational complexity and inefficiency 

when optimizing and implementing the SVM algorithms. As such, PCA was performed on the 

pre-processed spectra to reduce the dimensionality of the Raman spectral space while 

retaining the most diagnostically significant information for bacterial classification.  

To eliminate the influence of inter and (or) intra-subject spectral variability on PCA, 

the entire spectra were standardized by using the standard normal variate [146]. PC scores 

were used as an input to develop SVM models for multi-class classification using the 

following number of consecutive components: 2, 4, 6, 8, 10, 15 and 20. The maximal number 

of PCs was calculated using Kaiser-Guttman test. Classification was accomplished through a 

linear SVM (One-Against-One strategy [146]) with a linear kernel function. The C value was 

set to 1.0, while the γ value was adjusted to 1/n features (n is the number of principle 

components used). To evaluate model performance, the metrics accuracy, sensitivity and 

specificity were calculated using a confusion matrix, which was computed for the 

classification (75%) and validation (25%) datasets. SVM implementations were based on the 

Python Package Scikit-learn [154]. 
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2.3 Results and Discussion 

2.3.1 Raman Measurements and Analysis 

Raman scattered light quantitatively reflects the chemical composition of bacterial 

samples. However, Raman spectra contain other contributions that influence the Raman signal 

and thereby obscure the desirable quantitative information. For instance, Raman spectra of 

bacterial bulk samples are often masked by the appearance of fluorescence and substrate 

background. To minimize the fluorescence background, we chose the operation wavelength of 

the Raman excitation laser in the near-infrared spectral region at 785 nm for both Raman 

systems. To reduce the substrate background, stainless steel was used because of its low 

Raman background contribution, low cost and robust durability instead of the traditional 

substrates like fused silica or CaF2. Cosmic spikes and other effects dependent on 

experimental parameters also influence the Raman signal. By applying pre-processing 

methods, these effects were reduced prior to the analysis, thus ensuring that the chemometric 

analysis was based on the Raman measurements and not on other effects. The pre-processing 

step is crucial to obtain robust and accurate quantitative information from Raman spectra. The 

pre-processing method used in this work is described in the Data Pre-processing subsection. 

All collected Raman spectra from both Raman systems were pre-processed by the same 

procedure to ensure sufficient comparability [105, 155–159]. 

Figures 2.1(a) and (b) show the average, baseline corrected, smoothed and intensity-

normalized Raman spectra from each bacterial strain collected using Microscope and Portable 

Fiber-Optic systems, respectively. To determine the variations within the Raman spectra in 

each strain, the double standard deviation for each mean spectrum has been added as gray 

coronas to the mean spectra [28] (the mean spectrum for a certain strain represents the mean 

of all Raman spectra collected for that strain). As shown in Figure 2.1(a), the Raman spectra 

collected using the Microscope system share similar characteristic peaks. The peak at 

1661 cm-1 could be attributed to the amide I band [105, 122, 160, 161]. Another important 

peak at 1448 cm-1 corresponding to a CHn deformation vibration (δCH2, δCH3) originates 

from the CH bindings in lipids, proteins and carbohydrates [105, 122, 158, 161–164]. The 

band at 1337 cm-1 is assigned to Amide III, CH deformation and to the ring breathing modes 

in the DNA bases adenine and guanine [122, 161, 163, 164]. An additional broad band 

centered at around 1250 cm-1 was observed and could be attributed to Amide III [122, 161–

163]. In this work, this band is always notable and unavoidable whenever 
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weak Raman scatterer, such as bacterial samples, is measured. It is suspected that this band 

appears because of the microscope objective and (or) the internal parts of the microscope. The 

=C–C= vibration of unsaturated fatty acids in the lipids band, C-C stretching (νCC) and C-N 

stretching (νCN) are also observed at 1124 cm-1 [119, 122, 165, 166]. Another notable band at 

1100 cm-1 could be attributed to the PO2
- stretching of DNA/RNA and the C–C stretching 

(νCC) or C–O–C stretching (νCOC) of carbohydrates [122, 163–165]. Furthermore, the peak 

at 1004 cm-1 corresponds to the ring breathing vibration of the amino acid phenylalanine [105, 

122, 158, 160–162]. An additional band can be seen at 782 cm-1; it could be attributed to 

Guanine, Thymine, Cytosine and Uracil ring stretching vibration [122, 158, 161, 163, 164, 

166]. Further vibrations attributed to adenine at 725 cm-1 were recognizable [122, 161–164]. 

Moreover, additional notable band around 521-542 cm-1 could correspond to S-S stretching 

(νSS) and C–O–C glycosidic ring deformation (δCOC) [119, 167, 168]. Another band around 

410-482 cm-1 was recognizable and could be attributed to carbohydrates [119, 167, 168]. 

However, subtle differences between spectra can be still observed. One of the obvious 

differences found in the spectrum of M. lute, that are absent in the other strains, are peaks 

associated with carotene-like pigments at 1157 cm-1 and 1529 cm-1 [22, 120, 160, 169]. In 

Figure 2.1(b), the spectra collected using the Portable Fiber-Optic system also shared similar 

characteristic bands. Moreover, the peaks associated with carotene-like pigments were notable 

and only found in the spectrum of M. lute (see Figure 2.1(c)).  

The spectral features for the spectra collected by the Portable Fiber-Optic system 

compared to the Microscope system are not all cleanly resolved; the bands are broader due to 

the lower resolution spectrometer (~13 cm-1) while in the Microscope system, the resolution is 

3-5 cm-1. The broad band centered at around 1250 cm-1 in the spectra collected by the 

Microscope system was absent in the Fiber-Optic system. Variations in bands intensity were 

also notable. These variations may occur due to the fluorescence backgrounds, which can 

limit or prohibit the relatively weaker Raman signal and thus make the detection of useful 

spectral lines difficult. Fluorescence backgrounds are usually removed in the pre-processing 

step by computational methods. However, the resulting spectrum can be distorted and may 

contain artifacts, especially in weak Raman signals [105]. The intensity and variations of the 

fluorescence backgrounds were higher in the Raman spectra collected by the Portable Fiber-

Optic system compared to the spectra collected by the Microscope system (see Figure 6.1 in 

the Appendix). This may possibly be the reason behind the relatively high standard deviation 

for the spectra collected by the Portable Fiber-Optic system. Unlike the Portable Fiber-Optic 

system, which has a large laser spot size (~155 µm), the objective lenses of the Microscope 
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system focus the laser beam to ~4 µm, which enhances fluorescence quenching [170]. The 

high fluorescence background problem that appears when using the Portable Fiber-Optic 

system can be reduced by photobleaching, in which the sample is irradiated for a period of 

time before the spectrum is acquired. The Raman spectrometer’s laser acts as the light source 

for the photobleaching [171, 172]. Despite the differences and divergences described above, 

there is some similarity among the spectra collected by the two systems.  

The spectral features were compiled with a more detailed tentative assignment of the 

Raman signals in the Appendix in Tables 6.1 and 6.2 for spectra collected using Microscope 

and Portable Fiber-Optic systems, respectively. The spectral features were found to be 

consistent with those in the literature. Nonetheless, most signals are a superposition of bands 

from several compounds, as the entirety of biochemical compounds in a bacterial cell 

contributes to the Raman spectrum [23]. 

On the basis of the spectra collected using the Microscope and the Portable Fiber-

Optic systems, it was assessed whether it is possible to maintain accurate discrimination and 

classification of bacteria down to the strain level. 
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Figure 2.1: Mean Raman spectra collected by the Microscope system (a) and the Portable Fiber-Optic system 

(b): (a) Micrococcus luteus, (b) Brochothrix thermosphacta, (c) Bacillus coagulans, (d) Bacillus 

subtilis, (e) Pseudomonas fluorescens DSM 4358, (f) Pseudomonas fluorescens DSM 50090, (g) 

Escherichia coli K12, (h) Escherichia coli HB101. (c) Mean Raman spectra for Micrococcus luteus 

collected by the Microscope system and the Portable Fiber-Optic system. All spectra were baseline 

corrected, smoothed and intensity-normalized (area under curve normalized to one). The double 

standard deviation is depicted as gray corona of all analysed bacterial strains. The spectra are offset 

for clarity. 
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2.3.2 Chemometric Techniques 

To compare the bacterial strains and to check whether the pre-processed data could be 

used to create a discrimination and classification system, the mean of the standard deviation 

per channel (Raman wavenumber) within each bacterial strain was normalized to the standard 

deviation of the channel means, resulting in a standard deviation of the means (SDM). Thus, 

the standard deviation per channel was placed into a relation of a mean spectrum statistical 

property. High SDM numbers (i.e. nearly 1) denote high intensity variations per channel. In 

contrast, low SDM numbers represent low variations per channel and therefore indicate high 

reproducibility and reliability of the statistical dataset. The calculated SDM for each strain are 

given in Table 2.1. In both Raman systems, the calculated SDM are significantly lower than 1. 

For the Raman spectra collected using the Microscope system, SDM values lie between 0.06 

and 0.14, while, for the Portable Fiber-Optic system, SDM values lie between 0.10 and 0.26. 

Thus, the spectral dataset show a high reproducibility for both Raman systems. Consequently, 

the mean Raman data collected by Microscope and Portable Fiber-Optic systems could be 

used to create a discrimination and classification systems [173, 174]. 

2.3.2.1 Principal Components Analysis 

In both systems, the discrimination of bacteria down to the strain level was 

successfully accomplished for the pre-processed spectral data using a 3-stage PCA model. 

The PCA model was validated using the validation data samples, which were successfully 

assigned to the correct bacterial genera and even to the right strain. Figure 2.2 shows a 

schematic representation of the PCA model for both systems. 

2.3.2.1.1 PCA Stage 1  

Figures 2.3(a) and 2.4(a), solid circles, show the PCA stage 1 scores plots obtained 

from the training sets for the Raman spectra of all 8 types of bacteria collected using the 

Microscope and Portable Fiber-Optic systems, respectively. Three separated clusters were 

visible in the scores plots. M. lute and B. ther were clustered into two distinct groups, while 

Bacillus subspecies (B. coag and B. subt), Escherichia strains (E. coli K12 and E. coli 

HB101) and Pseudomonas strains (P. fluo 4 and P. fluo 5) were clustered together into the 

same group. The ellipses depict the 95% Prediction Interval for each class. Subsequently, 

validation sets were rotated into the PCA space of the training data by the respective PCA 
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loadings from each system. Figures 2.3(a) and 2.4(a), empty circles, show that nearly all 

validation data points have been assigned to the correct cluster. To investigate the origin of 

the separation of the scores plots, the loading plots were analysed. The loadings values from 

stage 1 are plotted in Figures 2.5(a) and 2.6(a) for Microscope and Portable Fiber-Optic 

systems, respectively. The spectral features that represent the differences among the bacterial 

species are summarized in Table 2.2. These spectral features explain the distinct cluster of M. 

lute and B. ther in comparison to other bacterial species. Owing to the more discrete spectral 

features of M. lute and B. ther compared to other bacteria species, the PCA scores of the latter 

(Bacillus, Escherichia and Pseudomonas) were closely spaced in the presence of M. lute and 

B. ther; showing non-significant grouping. Hence, another PCA (stage 2) was performed for 

Bacillus, Escherichia and Pseudomonas to confirm the PCA’s ability to discriminate these 

genera. 
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Figure 2.2: Schematic representation of the PCA model for bacterial spectra collected by the Microscope system 

(SENTERRA) and the Portable Fiber-Optic system (QE Pro-Raman). Stage 1: discrimination of 

bacterial genera to three groups; group 1 (Micrococcus), group 2 (Brochothrix) and group 3 

(Bacillus, Escherichia and Pseudomonas). Stage 2: discrimination of bacterial genera from group 3 

in stage 1 into three groups; group 1 (Bacillus), group 2 (Escherichia) and group 3 (Pseudomonas). 

Stage 3-A: discrimination of Bacillus subspecies into two groups; group 1 (Bacillus coagulans) and 

group 2 (Bacillus subtilis). Stage 3-B: discrimination of Escherichia strains into two groups; group 1 

(Escherichia coli K12) and group 2 (Escherichia coli HB101). Stage 3-C: discrimination of 

Pseudomonas strains into two groups; group 1 (Pseudomonas fluorescens DSM 4358) and group 2 

(Pseudomonas fluorescens DSM 50090). 
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Table 2.2: Analysis of stage 1 loading plots for Microscope and Portable Fiber-Optic systems. The spectral 

differences among the bacterial species were based on the Raman bands with the highest variance 

values. The values of Raman shift (RS) were sort in ascending order. 

Microscope Portable Fiber-Optic  

PC1 and PC3; Figure 2.5(a) PC2 and PC4; Figure 2.6(a) 

RS (cm-1) Observations RS (cm-1) Observations 

515-530 Absent in B. ther  . . . . .   . . . . .   

827 B. ther has the lowest intensity value . . . . .    . . . . .   

905 M. lute has the highest intensity value 

and a slight shift in position compared to 

the other bacterial species 

. . . . .   . . . . .   

. . . . .   . . . . .   940 M. lute has the lowest intensity value 

1004 B. ther has the lowest intensity value 1003 B. ther has the lowest intensity value  

1031 M. lute has the lowest intensity value . . . . .   . . . . .   

1100 M. lute has the lowest intensity value . . . . .   . . . . .   

1157 M. lute has a strong intensity value 1159 Present only in M. lute 

1175 Absent in M. lute and B. ther  . . . . .   . . . . .   

1190 Present only in M. lute . . . . .   . . . . .   

. . . . .   . . . . .   1403 B. ther followed M. lute has the highest 

intensity value and a slight shift in 

position compared to other bacterial 

species 

1529 Present only in M. lute 1529 M. lute has a strong intensity value 

 

2.3.2.1.2 PCA Stage 2  

Before performing a second PCA (stage 2), the spectra of M. lute and B. ther were 

excluded from the training as well as from the validation sets. Figures 2.3(b) and 2.4(b), solid 

circles, show the PCA stage 2 scores plots obtained for the training sets for all 3 types of 

bacteria collected using Microscope and Portable Fiber-Optic systems, respectively. As 

shown in the scores plots, Bacillus, Escherichia and Pseudomonas were clustered into three 

distinct groups. Subsequently, the validation spectra were rotated into the PCA space of the 

training data by the respective PCA loadings from each system. Figures 2.3(b) and 2.4(b), 

empty circles, show that nearly all validation data points were assigned to the correct cluster. 

To investigate the origin of the separation of the scores plots, the loading plots were analysed. 

The loadings values from stage 2 are plotted in Figures 2.5(b) and 2.6(b) for Microscope and 

Portable Fiber-Optic systems, respectively. The spectral features that represent the differences 

among the bacterial genera are summarized in Table 6.3 in the Appendix. In this stage, the 

PCA scores of each cluster were closely spaced in the presence of other clusters, showing 
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non-significant grouping with respect to subspecies (Bacillus) and strains (Escherichia and 

Pseudomonas). Hence, PCA stage 3-A, 3-B and 3-C were performed to discriminate Bacillus 

subspecies (B. coag and B. subt), Escherichia strains (E. coli K12 and E. coli HB101) and 

Pseudomonas strains (P. fluo 4 and P. fluo 5), respectively. 

2.3.2.1.3 PCA Stages 3-A, 3-B and 3-C 

The PCA stages 3-A, 3-B and 3-C were similar, but they differ in the subspecies, 

strains, training and validation sets where 3-A is for Bacillus subspecies (B. coag and B. subt), 

3-B is for Escherichia strains (E. coli K12 and E. coli HB101) and 3-C is for Pseudomonas 

strains (P. fluo 4 and P. fluo 5). Figures 2.3(c), (d) and (e) for the stages 3-A, 3-B and 3-C, 

respectively show the PCA scores plots obtained for the training sets (solid circles) for the 

Microscope system, and Figures 2.4(c), (d) and (e) for the stages 3-A, 3-B and 3-C, 

respectively show the PCA scores plots obtained for the training sets (solid circles) for the 

Portable Fiber-Optic system. As shown in the scores plots, each strain was clustered into a 

distinct group. Subsequently, in each of these stages, the validation sets were rotated into the 

PCA space of the training data by the respective PCA loadings from each system. Figures 

2.3(c), (d) and (e) for the stages 3-A, 3-B and 3-C, respectively show that nearly all validation 

data points (empty circles) for the Microscope system were assigned to the correct cluster. 

The same result is obtained for the Portable Fiber-Optic system which can be seen in Figures 

2.4(c), (d) and (e) for the stages 3-A, 3-B and 3-C, respectively. To investigate the origin of 

the separation of the scores plots, the loading plots were analysed. The loadings values from 

each of these stages for the Microscope system are plotted in Figures 2.5(c), (d) and (e) for the 

stages 3-A, 3-B and 3-C, respectively, while for the Portable Fiber-Optic system the loadings 

values are plotted in Figures 2.6(c), (d) and (e) for the stages 3-A, 3-B and 3-C, respectively. 

The spectral features that represent the differences among the bacterial subspecies and strains 

for each of these stages are summarized in the Appendix in Tables 6.4, 6.5 and 6.6 for the 

stages 3-A, 3-B and 3-C, respectively. 

2.3.2.1.4 Comparison between Both Systems 

The results show that both systems were able to separate the bacterial strains in the 3-

stage PCA model. Both systems show that almost all training and validation data were 

assigned to the right cluster. Furthermore, the physical evidence on which the discrimination 
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was made was clarified through the loadings profiles e.g., presence or absence of certain 

peaks in a certain strain, variation in peaks intensity, peaks splitting and peaks shifting. For 

instance, from the spectra collected by the Microscope system, the peaks at 1190 and 

1529 cm-1 are present only in M. lute, the peak at 1175 cm-1 is absent in M. lute and B. ther, 

the peak at 1484 cm-1 is absent in B. coag and B. subt, the peak at 455 cm-1 is absent in E. coli 

K12, the peak at 977 cm-1 is absent in P. fluo 5, at the peak 1004 cm-1 B. ther has the lowest 

intensity among the examined bacterial species and at the peak 905 cm-1, M. lute has the 

highest intensity value and a slight shift in position when compared to the other bacterial 

species. The origin of the separation of the bacterial strains resulting from each Raman system 

was not always similar; there were some differences especially in the variations in bands 

intensity. These variations may be caused by the fluorescence backgrounds (see Section 2.3.1 

Raman Measurements and Analysis). Nevertheless, the results show that the broader bands 

due to the low resolution spectrometer and the relatively high fluorescence backgrounds in the 

Portable Fiber-Optic system do not adversely affect the discriminative power of the developed 

PCA model. The results also show that the broad band which is centered at around 1250 cm-1 

in the spectra collected by the Microscope system (see Section 2.3.1 Raman Measurements 

and Analysis) does not affect the developed PCA model as shown in the loadings profiles. 
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Figure 2.3: Stages and scores of PCA for bacterial spectra collected by the Microscope system: (a) Stage 1, 

discrimination of bacterial genera to three groups; group 1 (Micrococcus), group 2 (Brochothrix) 

and group 3 (Bacillus, Escherichia and Pseudomonas). (b) Stage 2, discrimination of bacterial 

genera from group 3 in stage 1 into three groups; group 1 (Bacillus), group 2 (Escherichia) and 

group 3 (Pseudomonas). (c) Stage 3-A, discrimination of Bacillus subspecies from group 1 in stage 

2 into two groups; group 1 (Bacillus coagulans) and group 2 (Bacillus subtilis). (d) Stage 3-B, 

discrimination of Escherichia strains from group 2 in stage 2 into two groups; group 1 (Escherichia 

coli K12) and group 2 (Escherichia coli HB101). (e) Stage 3-C, discrimination of Pseudomonas 

strains from group 3 in stage 2 into two groups; group 1 (Pseudomonas fluorescens DSM 4358) and 

group 2 (Pseudomonas fluorescens DSM 50090). PCA model based upon the training sets (colored 

filled circles) and validation sets (colored empty circles). The ellipses (or ellipsoids) depict the 95% 

Prediction Interval for each class. 
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Figure 2.4: Stages and scores of PCA for bacterial spectra collected by the Portable Fiber-Optic system: (a) 

Stage 1, discrimination of bacterial genera to three groups; group 1 (Micrococcus), group 2 

(Brochothrix) and group 3 (Bacillus, Escherichia and Pseudomonas). (b) Stage 2, discrimination of 

bacterial genera from group 3 in stage 1 into three groups; group 1 (Bacillus), group 2 (Escherichia) 

and group 3 (Pseudomonas). (c) Stage 3-A, discrimination of Bacillus subspecies from group 1 in 

stage 2 into two groups; group 1 (Bacillus coagulans) and group 2 (Bacillus subtilis). (d) Stage 3-B, 

discrimination of Escherichia strains from group 2 in stage 2 into two groups; group 1 (Escherichia 

coli K12) and group 2 (Escherichia coli HB101). (e) Stage 3-C, discrimination of Pseudomonas 

strains from group 3 in stage 2 into two groups; group 1 (Pseudomonas fluorescens DSM 4358) and 

group 2 (Pseudomonas fluorescens DSM 50090). PCA model based upon the training sets (colored 

filled circles) and validation sets (colored empty circles). The ellipses depict the 95% Prediction 

Interval for each class. 
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Figure 2.5: Stages and loadings of PCA for bacterial spectra collected by the Microscope system: (a) Stage 1, 

PC1 and PC3. (b) Stage 2, PC1, PC2 and PC3. (c) Stage 3-A, PC1 and PC2. (d) Stage 3-B, PC1 and 

PC2. (e) Stage 3-C, PC1 and PC3. For clarity; bands with significant contributions are marked by 

gray bars. The loading values were raised to the power of 5 to enable better visualization in loading 

curves. 
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Figure 2.6: Stages and loadings of PCA for bacterial spectra collected by the Portable Fiber-Optic system: (a) 

Stage 1, PC2 and PC4. (b) Stage 2, PC1 and PC3. (c) Stage 3-A, PC1 and PC2. (d) Stage 3-B, PC1 

and PC2. (e) Stage 3-C, PC1 and PC2. For clarity; bands with significant contributions are marked 

by gray bars. The loading values were raised to the power of 5 to enable better visualization in 

loading curves. 
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2.3.2.2 Support Vector Machines 

Confusion matrices were used to evaluate the performance of the SVM-models for 

each Raman system in terms of sensitivity, specificity and accuracy as formulated below: 

Sensitivity (%) =  
TP

TP+FN
 × 100  (2.1) 

Specificity (%) =  
TN

TN+FP
 × 100  (2.2) 

Accuracy (%) =  
TP+TN

TP+FP+TN+FN
 × 100  (2.3) 

Where TP (True Positive) and TN (True Negative) were the number of spectra of 

bacterial strains whose class was correctly predicted while FP (False Positive) and FN (False 

Negative) were the number of spectra of bacterial strains whose class was falsely predicted 

[150, 175]. 

2.3.2.2.1 Microscope System 

In accordance with the two-dimensional PCA score plots, the SVM-model was 

initially restricted to the first two principal components (PC1 and PC2), which explain 

72.67% of the total variance. Table 6.7 in the Appendix summarizes the classification results. 

The overall accuracy of the bacterial strains was 97.33% from 655 spectra. However, the 

sensitivity varied among strains used in the study. The highest rate was given for M. lute 

(100%; 87/87), B. ther (100%; 86/86) and E. coli K12 (100%; 87/87) while the lowest rate 

was reported for B. subt (66.67%; 44/66). The validation results have been summarized in 

Table 6.8 in the Appendix. Thus, the overall accuracy of the bacterial strains was 97.64% 

from 212 spectra. The highest sensitivity rate was reported for M. lute (100%; 28/28), B. ther 

(100%; 28/28) and E. coli K12 (100%; 28/28) while the lowest rate was reported for B. subt 

(71.43%; 15/21). For better separation, the number of principal components available to the 

SVM-model was gradually increased. Consequently, an improvement in classification and 

validation efficiency was observed, as shown in Table 2.3. The sensitivity, specificity and 

accuracy reached 100% for classification and validation data when using the first eight PC’s. 
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Table 2.3: Overall percentage of sensitivity (Sens. [%]), specificity (Spec. [%]) and accuracy (Acc. [%]) of the 

classification (75%; 655 Spectra) and validation (25%; 212 Spectra) results of the bacterial strains 

collected by the Microscope system via MC-SVM using 2, 4, 6, 8 and 10 PCs. 

 
 

Classification, 655 Spectra Validation, 212 Spectra 

No. of 

PC used 

% of cumulative 

variance explained 

Sens. 

[%] 

Spec. 

[%] 

Acc. 

[%] 

Sens. 

[%] 

Spec. 

[%] 

Acc. 

[%] 

2 PCs 72.67 88.45 98.48 97.33 89.80 98.66 97.64 

4 PCs 84.02 98.33 99.79 99.62 97.40 99.67 99.41 

6 PCs 86.56 99.85 99.98 99.96 99.55 99.93 99.88 

8 PCs 88.14 100.00 100.00 100.00 100.00 100.00 100.00 

10 PCs 89.07 100.00 100.00 100.00 100.00 100.00 100.00 

 

2.3.2.2.2 Portable Fiber-Optic System 

In accordance with the two-dimensional PCA score plots, the SVM-model was 

initially restricted to the first two principal components (PC1 and PC2), which explain 

76.25% of the total variance. Table 6.9 in the Appendix summarizes the classification results. 

The overall accuracy of the bacterial strains was 96.26% from 147 spectra. However, the 

sensitivity varied among strains used in the study. The highest rate was given for M. lute 

(100%; 19/19) and E. coli HB101 (100%; 18/18) while the lowest rate was reported for P. 

fluo 5 (63.16%; 12/19). The validation results are summarized in Table 6.10 in the Appendix. 

The overall accuracy of the bacterial strains was 93.23% from 48 spectra. The highest 

sensitivity rate was reported for M. lute (100%; 6/6), E. coli K12 (100%; 6/6) and E. coli 

HB101 (100%; 6/6) while the lowest rate was reported for B. coag (33.33%; 2/6). For better 

separation, the number of principal components available to the SVM-model was gradually 

increased. Consequently, an improvement in classification and validation efficiency was 

observed, as shown in Table 2.4. The sensitivity, specificity and accuracy reached 100% for 

classification and validation data when using the first eight or ten PC’s, respectively. 
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Table 2.4: Overall percentage of sensitivity (Sens. [%]), specificity (Spec. [%]) and accuracy (Acc. [%]) of the 

classification (75%; 147 Spectra) and validation (25%; 48 Spectra) results of the bacterial strains 

collected by the Portable Fiber-Optic system via MC-SVM using 2, 4, 6, 8 and 10 PCs. 

 
 

Classification, 147 Spectra Validation, 48 Spectra 

No. of 

PC used 

% of cumulative 

variance explained 

Sens. 

[%] 

Spec. 

[%] 

Acc. 

[%] 

Sens. 

[%] 

Spec. 

[%] 

Acc. 

[%] 

2 PCs 76.25 85.22 97.86 96.26 72.92 96.13 93.23 

4 PCs 81.95 98.56 99.81 99.66 85.42 97.92 96.35 

6 PCs 84.52 99.34 99.90 99.83 95.83 99.40 98.96 

8 PCs 86.19 100.00 100.00 100.00 97.92 99.70 99.48 

10 PCs 87.54 100.00 100.00 100.00 100.00 100.00 100.00 

 

2.3.2.2.3 Comparison between Both Systems 

In both systems, 10 PCs (or less) were needed to reach 100% sensitivity, specificity 

and accuracy for each bacterial strain investigated in this study when classifying and 

identifying data. These results reflect the strong discriminative power of the developed SVM 

model and the high performance, as well as the suitability of the pre-processing method used. 

Furthermore, the results show that the broader bands due to the low resolution spectrometer 

and the relatively high fluorescence backgrounds in the Portable Fiber-Optic system do not 

adversely affect the discriminative power of the developed SVM model. 

2.4 Conclusion 

Discrimination and classification of eight important strains of meat spoilage 

microorganisms were successfully carried out using two dispersive Raman spectrometers 

(Microscope and Portable Fiber-Optic systems) which have different characteristics such as 

the detector, the spectral resolution, the laser spot size and the laser power. The ability of both 

systems to discriminate and classify bacterial strains were evaluated and compared. For both 

systems, PCA and MC-SVM were successfully applied to develop discrimination and 

classification systems. An accurate discrimination and classification of bacteria down to the 

strain level was successfully accomplished. The spectral features and differences among the 

species on which the discrimination was made were clarified through the loadings profiles. 

Moreover, the results show that the broader bands due to the low-resolution spectrometer and 

the relatively high fluorescence backgrounds in the Portable Fiber-Optic Raman system do 
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not adversely affect the discriminative power of the developed models. The results also reflect 

the high performance and suitability of the pre-processing method used in this study. 

Compared to traditional microbial analytical methods, Raman spectroscopy has proven to be a 

faster, non-destructive, noncontact and objective method. However, more samples of 

microorganism (different strains of the same species, phylogenetically similar bacteria) have 

to be tested by the models to make sure that the developed models are effective and to 

investigate scenarios in which the models may fail the discrimination. 

2.5 Authors Contribution Statement 

This chapter is adapted from the research article “S. Jaafreh, O. Valler, J. 

Kreyenschmidt, K. Günther, P. Kaul, In vitro discrimination and classification of Microbial 

Flora of Poultry using two dispersive Raman spectrometers (microscope and Portable Fiber-

Optic systems) in tandem with chemometric analysis, Talanta. 202 (2019) 411–425. 

doi:10.1016/j.talanta.2019.04.082”. For this research article; the following paragraphs specify 

the individual contributions of each author.  

Author 1; S. Jaafreh: Conceptualization, conceived and designed the experiments, performed 

the experiments, analysis and interpretation of data, performed the PCA calculations, analysed 

the results which formed from PCA and SVM calculations, writing (original draft 

preparation), writing (review and editing), designed the figures, literature review.  

Author 2; O. Valler: Performed the SVM calculations, writing (review and editing). 

Author 3; Prof. Dr. J. Kreyenschmidt: Writing (review and editing), supervision. 

Author 4; Prof. Dr. K. Günther: Writing (review and editing), supervision. 

Author 5; Prof. Dr. P. Kaul: Writing (review and editing), supervision. 
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3 Rapid Poultry Spoilage Evaluation Using Portable Fiber-Optic 

Raman Spectrometer 

This chapter is adapted from: S. Jaafreh, R. Breuch, K. Günther, J. Kreyenschmidt, P. 

Kaul, Rapid Poultry Spoilage Evaluation Using Portable Fiber-Optic Raman Spectrometer, 

Food Anal. Methods. 11 (2018) 2320–2328. doi:10.1007/s12161-018-1223-0. 

3.1 Introduction 

Muscle foods, including poultry and red meat, are rich sources of protein, essential 

amino acids, and a wide variety of micronutrients essential for human nutrition and health [1–

3]. Fresh meat is a highly perishable product [6, 176, 177] because of microbial growth and 

their metabolism [93, 178]. Traditionally, evaluating the spoilage process of fresh meat has 

focused on evaluating the presence of microorganisms [179] by detection and enumeration 

using time-consuming traditional microbial analyses [12]. As the microbial load and 

composition of microflora are important parameters in determining the quality loss and shelf 

life of meat [180, 181], it is necessary to develop rapid objective methods to detect 

microbiological spoilage [32]. 

In recent years, several detection methods have been developed including Gas 

Chromatography-Mass Spectrometry [10, 182], Proton Transfer Reaction-Mass Spectrometer 

[183, 184], and Polymerase Chain Reaction [185]. But these technologies are usually 

expensive and destructive and require a sample pretreatment and highly-skilled personnel. 

Furthermore, they are time-consuming. Further difficulties lie in the fact that there is presently 

no consensus as to what indicators are representative of the early signs of incipient spoilage of 

meat. In addition, the changes in the technology of meat preservation (e.g. vacuum, modified 

atmosphere, packaging materials, etc.) make it more difficult to evaluate the spoilage 

objectively [34]. Therefore, demand remains high for the development of effective, rapid, 

simple, non-destructive, and inexpensive sensing technologies for detecting microbial 

contamination on meat [14–16]. 

A promising way to overcome the current difficulties is to apply non-destructive 

vibrational spectroscopic methods and techniques such as Fourier transform infrared (FT-IR) 

and Raman spectroscopy. The basic concept underlying these methods states that, as bacteria 

grow on meat, they utilize nutrients and produce by-products that cause spoilage. The 
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quantification of these metabolites represents a fingerprint characteristic of any biochemical 

substance and thus provides information about the type and the rate of spoilage [186]. Infrared 

(IR) spectroscopy supplies information on the conformational structure of polypeptides and 

proteins, particularly on protein secondary structure, whereas the Raman spectroscopy offers 

structural information about both secondary protein structure and the modifications in the 

local environments of amino acid residues, which are related to the protein tertiary structure 

[187]. However, in contrast to the IR absorption method, water does not disturb the Raman 

measurements in the fingerprint range [188, 189] because the water bending mode has a weak 

Raman signal. This is an important precondition for measuring meat, which possesses a high 

water content of about 75% [190]. FT-IR and Raman spectral data provide copious 

information, requiring an advanced data analysis approach. This has been achieved through 

the integration of modern analytical platforms with computational and chemometric 

techniques [191]. 

 In tandem with chemometrics, the vibrational spectra have been used for real-time 

freshness evaluation of beef meat [192], pork meat [193], and chicken breast [194] using FT-

IR spectroscopy and of pork meat [31–33] using Raman spectroscopy. The suitability of both 

methods to predict meat spoilage was studied by Argyri et al. [34], who used several 

computing and machine learning methods to develop prediction models of microbiological 

loads based on different biological measurements as well as on FT-IR and Raman spectra 

obtained from minced beef samples stored under different packaging conditions. They 

highlighted FT-IR and Raman spectroscopy as methods for the rapid and accurate assessment 

of meat spoilage. Another comparison of both methods was presented by Zając et al. [195]. 

They used attenuated total reflectance FT-IR and FT-Raman techniques to study the time-

dependent changes of chicken stored in air at 22 °C for 10 days. The analysis of the results 

was based on the deconvolution of the chosen IR and Raman contours into Lorentzian 

components and the comparison of their integral intensities for the pairs of the bands 

corresponding to the specific vibrations of protein frameworks and the products of their 

decomposition. Although their results show that such an approach allows detection of the 

biochemical changes occurring in the meat as a result of its bacterial and chemical spoilage, 

using FT-Raman requires longer acquisition times and higher laser powers to increase the 

Raman signal [196, 197], which can often lead to sample damage and destruction by heating 

[32, 197, 198]. In addition, FT-Raman instruments are typically large and expensive with 

integral interferometers, which are sensitive to mechanical vibration [197]. Resultingly, FT-

Raman spectroscopy does not easily lend itself to on-line applications [197, 199]. 
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In recent years, poultry meat consumption has risen dramatically and its production is 

expected to grow [4, 35], which has significantly increased poultry’s commercial value [14]. 

However, research on and investigations into fast methods for precisely predicting bacterial 

loads in poultry meat are rare even though they are urgently needed for efficient management 

in the poultry industry [36, 37]. As meat freshness is important to consumers, the meat 

industry and retailers, the purpose of the present study was to investigate the feasibility of a 

portable fiber-optic Raman spectrometer in conjunction with chemometric analysis for 

monitoring the spoilage process of poultry fillets through the evaluation of their freshness 

quality. Raman system used in this work was specifically chosen due to its relatively low cost, 

portability, non-destructiveness, rapidity, the use of a laser in the near-infrared region and the 

simplicity in coupling it with optical fibers.  

For the work, commercial boneless skinless chicken breast fillets were purchased from 

a local store, and their storage time-dependent Raman spectra were measured in the laboratory 

daily for 21 days starting from the date of purchase. The results obtained from the Raman 

spectra combined with chemometric analysis provided information about the quality and the 

remaining shelf life. These results were similar to that inferred from the product label on the 

packages of poultry fillets. This finding indicates that this method could be used to classify 

samples with unknown storage time, which could lead to an evaluation of the total viable 

count on the surface of poultry fillets. 

3.2 Material and Methods 

3.2.1 Sample Preparation 

Commercially packed fresh boneless skinless chicken breast fillets with the same 

storage life (9 days), and batch number (i.e. the same production date and the same expiry 

date) were ordered and purchased from a local store in a total of 42 packages. Each package 

weighed 600 g, with two fillets in each package. The fillets were packed under modified 

atmosphere (O2 = 68%, CO2 = 26% and N2 = 6%). Approximately 10 minutes after 

purchasing, the packages were stored in a fridge at 4 °C (recommended storing conditions) 

during the course of the study (21 consecutive days). The measurements started on the day the 

chicken breast fillets packages were delivered to and purchased from the retailer. On each day 

of the experiment, two packages of chicken breast fillets chosen at random were opened and 
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their Raman spectra were measured. The measured fillets samples were disposed later on the 

same day of measurement. All the spectral measurements were done directly on the fillet 

surface without any pre-preparation of the fillet such as removal of fat or connective tissues, 

inoculation with bacteria, washing, or mincing. 

3.2.2 Raman System 

The Raman system used to collect Raman spectra consists of four components. The 

first component was a QE Pro-Raman spectrometer (Ocean Optics, Netherlands), which is a 

scientific-grade spectrometer with a small footprint, lightweight, and fiber optic-based. It is 

preconfigured for 785 nm Raman excitation, using a 600 lines/mm grating, and 50 µm 

entrance slit. The wavelength range was from 784 to 1135 nm with a resolution of around 

13 cm-1. At the heart of the QE Pro-Raman is a Hamamatsu scientific grade detector (back-

thinned, thermoelectrically cooled, and 1044 x 64 element charge-coupled device array) with 

a high quantum efficiency up to 90%, and a high signal-to-noise ratio (> 1000:1). The cooled 

detector enables low-light-level detection and long integration times with virtually no spectral 

distortion. The second component was a Turnkey Raman laser of 785 nm excitation 

wavelength (Ocean Optics, Netherlands), which is a diode laser with an adjustable output 

power (> 350 mW). The third component was an RPB785 fiber-optic probe (Ocean Optics, 

Netherlands), which is a Raman probe for 785 nm excitation wavelength. The fiber probe 

configuration consists of a permanently-aligned combination of two single fibers (105 µm 

excitation fiber and a 200 µm collection fiber) with filtering and steering micro-optics 

(Numerical Aperture = 0.22), in a rugged polyurethane jacket. One fiber is coupled to the 

laser and the other to the spectrometer. The probe default working distance is 7.5 mm with a 

spot size about 155 µm. The probe length and diameter are 107 mm and 12.7 mm 

respectively, and the fiber length is 1.5 m. The fourth component was a computer running 

OceanView version 1.4.1 software (Ocean Optics, Netherlands), which provides full control 

of the QE Pro-Raman spectrometer. The spectrometer is connected to the computer via a USB 

port. 

3.2.3 Raman Measurements 

Raman spectra were collected with constant measurement parameters as follows: laser 

power of 250 mW at the sample, the distance between the sample and the laser fiber-optic 
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probe 7.5 mm with a laser spot size of around 155 µm, and with an integration time of 10 

seconds. Three scans were used to obtain an average in each collected spectrum (i.e. three 

replicate scans were averaged for each collected spectrum). To reduce the noise, the detector 

temperature was set to -10 °C by the spectrometer’s thermoelectric cooler. To eliminate 

ambient light from Raman spectra as well as to protect from reflected or scattered laser light 

during acquisition, all Raman measurements were taken inside a dark enclosure. The laser 

source is safety class 3B and was handled in accordance with national safety regulations. 

Raman spectra were acquired using OceanView software. The dark spectrum subtraction was 

performed during the spectral acquisition. For each fillet, five spectra from different positions 

were collected. During the measurements, the positions of fat were avoided. The fillets 

samples were homogenous, and there were no or weak spectral variations within the sample. 

Overall, 20 spectra were collected on every measurement day (i.e. 5 spectra × 4 fillets), with a 

total of 420 spectra during the 21 measurement days.  

3.2.4 Spectral Processing and Chemometrics  

3.2.4.1 Data Processing 

For the 420 collected spectra, the pre-processing consisted of a cut-off to reduce the 

spectral variables to 269 variables, which corresponds to the wavenumber region from 

450 cm-1 to 1750 cm-1 (fingerprint region). Then, spectra with cosmic spike(s) [200, 201] 

were searched for by visual inspection, and they were then eliminated from further analysis 

[159]. Next, the spectra containing signals of adipose tissue [202] or adipose tissue with meat 

were identified using the carbonyl stretching vibration of the ester and the methylene twisting 

vibration [203, 204] and then eliminated from further analysis. Thus, around 4% of the spectra 

were identified containing spikes and (or) adipose tissue (or adipose tissue with meat) and 

removed from the data set. After that, the average spectrum for each day of measurement was 

calculated and used in the analysis. The average spectra were then smoothed based on the 

Savitzky-Golay algorithm; the number of smoothing points was five with a second-order 

polynomial. Finally, the average spectra were normalized to the intensity of the phenylalanine 

(Phe) peak at 1006 cm-1. The intensity and location of the Phe band are not sensitive to the 

protein conformation and can therefore be used for normalizing the Raman spectra [205–207]. 
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3.2.4.2 Principal Components Analysis 

PCA, which is built on the assumption that variation implies information, is a 

generally used method for feature extraction and qualitative analysis of samples. Briefly, PCA 

linearly transforms the original data (Raman spectra in this work) into new orthogonal 

variables called principal components (PCs). There are as many PCs extracted from the data 

matrix as there are original variables (Raman wavenumbers in this work). Each PC accounts 

for a consecutive decrease in the amount of data variance, which results in the compression of 

significant data into just a few PC variables. The first few PCs contains the maximum feature 

information, which could be used to observe the distribution of samples and identify their 

differences. Each data object has a score value on each PC, and each original variable is 

associated with a loadings value on each PC. The loadings profiles indicate the wavenumber 

variables in which the higher absolute values of the loadings significantly contribute to the 

discrimination of the objects described. Correlated variables will have loadings values with 

the same sign (either positive or negative), while loadings values with opposite signs 

represent anti-correlated variables. Once uncovered, PCs may be represented by scatter plots 

in an Euclidean plane, and the correlation structure among the variables may be inspected 

through loading plots. As a result, the spectra can be grouped into clusters and the extent to 

which these clusters correspond to classes of the sample can be determined [208, 209]. In this 

way, PCA was applied on pre-processed Raman spectra with a spectral region from 450 to 

1750 cm-1 (269 variables) for the daily average spectra during 21 days. 

3.2.4.3 Agglomerative Hierarchical Cluster Analysis  

Hierarchical Cluster Analysis (HCA) is an algorithmic approach that aims to construct 

a hierarchy of clusters, and it is one of the most popular clustering methods used in the 

literature. HCA is a procedure for transforming a proximity matrix into a nested partition, 

which can be graphically represented by a tree, called a dendrogram. HCA is mainly 

classified into agglomerative methods (bottom-up methods) and divisive methods (top-down 

methods), based on how the hierarchical dendrogram is formed. Agglomerative Hierarchical 

Cluster Analysis (AHCA) methods are dominant in the hierarchical clustering family. In this 

method, clusters are consecutively formed from objects. Initially, this type of procedure starts 

with each object representing an individual cluster. These clusters are then sequentially 

merged according to their similarity. First, the two most similar clusters are merged to form a 

new cluster at the bottom of the hierarchy. In the next step, another pair of clusters is merged 
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and linked to a higher level of the hierarchy, and so on. This allows a hierarchy of clusters to 

be established from the bottom up and a dendrogram is formed [210, 211]. Here; AHCA of 

the first five principal components (i.e. PC1, PC2, PC3, PC4, and PC5) was carried out with 

cosine similarity measure and Ward linkage algorithm. 

3.2.4.4 Software 

All mathematical and statistical analyses were performed using OriginPro 2018 

software (OriginLab Corporation, United States). 

3.3 Results and Discussion 

Storage time-dependent Raman spectra with the labels of the Raman bands of poultry 

fillets in the range 450–1750 cm-1 are presented in Figure 3.1. For clarity, the spectra are 

offset and only 6 spectra of days 1, 2, 9, 10, 20 and 21 are displayed.  

 

Figure 3.1: Selected Raman spectra of poultry fillets at different times of storage at 4 °C in a modified 

atmosphere package. The spectra are offset for clarity. 

As shown in Figure 3.1, poultry fillets samples show a typical protein spectrum where 

Raman bands of amide I at 1657 cm-1, amide III at 1319 and 1272 cm-1 and C-C stretch (νCC) 
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at 935 cm-1 can be observed [161, 212]. In addition, the strong CHn bending modes (δCH2, 

δCH3) at 1453 cm-1 as well as the vibrations attributed to the aromatic amino acids Phe at 

1006 cm-1, tyrosine (Tyr) at 1211, 1177, 859, 828 and 644 cm-1 and tryptophan (Trp) at 1556 

and 755 cm-1 were clearly identified [40, 161]. Further, characteristic bands of residues and of 

the protein backbone (C-C stretch (νCC) and C-N stretch (νCN)) at 1080 and 1050 cm-1 along 

with C-N stretch (νCN) at 1129 cm-1 were notable [212]. Moreover, vibrations attributed to 

the nucleobase adenine (Ade) at 719 cm-1 and S-S stretching vibration (νSS) at 525 cm-1 were 

recognizable [161]. In line with the storage time, the Raman spectra generally kept their basic 

structure, but all major Raman signals gradually changed. Visual examinations of these 

changes are difficult. To determine more detailed information about the complex spectral 

changes of the storage time-dependent samples, the PCA multivariate statistical tool was 

applied on pre-processed Raman spectra.  

Preliminary to the PCA, it is necessary to apply pre-processing to the collected 

spectra. The pre-processing step of data analysis removes unwanted variation such as 

instrumental and experimental artifacts. This removal is crucial to obtain robust and accurate 

quantitative information from Raman spectra [125, 127, 157]. Since there is no single 

standard method for pre-processing Raman spectra [39], and the choice of pre-processing 

steps and the order in which they are conducted has been shown to have a major impact on the 

outcomes of spectral analysis [70, 213], several pre-processing steps with different orders 

were applied to the raw Raman spectra. The optimal result was achieved using the method 

described in Section 3.2.4.1. 

A common challenge in Raman analysis of meat and other biological samples is the 

background fluorescence problem, which can limit or prohibit the relatively weaker Raman 

signal and thus make the detection of useful spectra difficult [70, 171, 212, 214]. For meat, 

the major absorption in the visible and near-infrared region is caused by the heme pigments of 

myoglobin as well as by water [31, 32, 190]. Fluorescence background is usually removed in 

the pre-processing step by computational methods, which are most often based on polynomial 

fitting, wavelet transform, and derivatives. However, these methods have major limitations 

e.g. the optimal choices of key parameters depends on the user’s experience, the data 

processing can be time-consuming, the resulting spectrum could be distorted, as in the 

derivative method, and may contain artifacts especially in weak Raman signals [171]. Due to 

the use of near-infrared excitation laser at 785 nm [155, 157, 190, 198, 215] and to the 

myoglobin content being low in poultry compared to other kinds of meat [216, 217], the 

collected spectra were less susceptible to interference by fluorescence, as shown from the 
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gently sloping background in Figure 3.1. As a consequence, fluorescence background removal 

was omitted from the pre-processing step. 

In the PCA results, PC1 and PC2 were found to carry most of the spectral variations 

between poultry samples, with PC1 describing 87.4% of variance and PC2 describing 11.7%. 

All remaining PCs explained less than 1% of variance. Figure 3.2(a) depicts a plot of the 

scored Raman data for the first two principal components (PC1, PC2), which revealed a 

separation of the samples according to their freshness. A distinction of spectra was found 

between the 9th (storage life; 9 days) and 10th day. The results show that the poultry samples 

can be grouped into three quality classes: fresh (1st day until the 3rd day), semi-fresh (4th day 

until the 9th day) and spoiled (10th day until the 21st day). These classes (fresh, semi-fresh, 

and spoiled) were based on and similar to the information inferred from the product label on 

the packages of poultry fillets (i.e. the days remaining until the expiry date and the quality 

classes). The scores in the fresh class have a positive sign in PC1 and a negative sign in PC2, 

except for the 2nd day, which has a positive sign with respect to PC2. In the semi-fresh class, 

the scores show a negative sign in PC1 and a positive sign in PC2, except for the 5th day, 

which has a positive sign with respect to PC1. In the spoiled class, the scored Raman data 

have a negative sign in PC1 and PC2, except for the 11th, 12th and 19th days, which have a 

positive sign with respect to PC2. PC1 could also be used to separate poultry samples 

according to storage time in an almost correct order from the 1st day until the 9th day. Similar 

groupings were obtained from the results of the AHCA of the first five principal components, 

as shown in the dendrogram (Figure 3.2(b)). These groups were, Group 1 (fresh; 1st day until 

the 3rd day), Group 2 (semi-fresh; 4th day until the 9th day), and Group 3 (spoiled; 10th day 

until the 21st day). 
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Figure 3.2: Classification of Raman spectra of poultry fillets samples using chemometric methods: (a) PCA. 

Scores of PCA of the Raman data plotted for PC1 and PC2. The poultry samples can be grouped 

into three quality classes; fresh (1st day until the 3rd day), semi-fresh (4th day until the 9th day), and 

spoiled (10th day until the 21st day). The dashed line indicates the distinction of spectra, separating 

spoiled from unspoiled poultry fillets samples with respect to the storage life (9 days). Ellipses and 

dashed line are only drawn as guides to the eye. (b) AHCA of the first five principal components. 

The poultry samples were grouped to three quality classes; Group 1 (fresh; 1st day until the 3rd 

day), Group 2 (semi-fresh; 4th day until the 9th day), and Group 3 (spoiled; 10th day until the 21st 

day). The dendrogram is based on the Ward’s amalgamation method; distance measure: cosine 

similarity. 

To analyse the spectral changes in the Raman data that were responsible for the 

separation found in the PCA, plots of PC1 and PC2 loadings are displayed in Figure 3.3. With 

no or only slight changes in peaks’ positions with respect to the first day of measurements, the 

main contributions for PC1 were from the amide I band at 1657 cm-1, a CH bending vibration 

at 1457 cm-1, and amide III bands at 1315 and 1268 cm-1. These bands are correlated with a 

positive sign of loadings. Significant contributions arise for PC2 from the amide I band at 

1653 cm-1, a CH bending vibration at 1453 cm-1, and amide III bands at 1319 and 1277 cm-1. 

These bands are correlated with a positive sign of loadings. PC2 also revealed major 

contributions from other correlated bands but with a negative sign of loadings represented by 

Tyr bands at 859, 833 and 650 cm-1, Trp band at 755 cm-1, Ade band at 724 cm-1, and S-S 

stretching vibration at 531 cm-1. 
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Figure 3.3: Loadings of the PCA of the Raman data plotted for PC1 (a) and PC2 (b). For clarity and 

comparison; bands with significant contributions are marked by asterisks and compared with the 

Raman spectrum for the first day of measurements (c) by gray bars. 

To correlate bands intensity with loading values, the relation between the storage time 

and the intensity of one of the significant contributing bands from the loading values, such as 

amide I band at 1657 cm-1, have to be investigated. The amide I band is considered to be an 

indicator of the overall concentration of proteins [205]. Figure 3.4 shows an inverse 
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relationship between the storage time of the poultry fillets and the intensity ratio of the Raman 

bands at 1657 cm-1 and 1006 cm-1 (the Phe peak at 1006 cm-1 was assumed to be constant and 

was used for normalization). Thus, the intensity of all correlated bands with the amide I band 

at 1657 cm-1 will decrease with time while the anti-correlated bands will increase. Hence, the 

loadings from PC1 and (or) PC2 show a decrease in the intensity of the bands at 1657 cm-1, 

1319 cm-1, and 1272 cm-1. These bands can be assigned to the amide I and III modes of α-

helical proteins, which are known to decrease during storage [32, 190, 195, 205]. 

Furthermore, a decrease in the intensity of the band at 1453 cm-1 was observed. This band can 

be assigned to the CH2 and CH3 bending vibration. The decrease in the intensity of this band 

may result from hydrophobic interactions around the aliphatic residues [205, 218–220]. 

Moreover, an increase in Tyr bands at 859 cm-1, 828 cm-1 and 644 cm-1, and the Trp band at 

755 cm-1 were shown. This increase may result from extra free amino acids which were 

formed during storage due to autolysis of meat and an increase in microbial growth [221]. The 

result also shows an increase in S-S stretching vibration at 525 cm-1. The disulfide band may 

increase during storage due to oxidation of the amino acid residues cysteine and methionine 

[222, 223]. In addition, an increase in the Ade band at 719 cm-1 was observed. 

 

Figure 3.4: The relation between the storage time of poultry meat and the intensity ratio of the Raman bands at 

1657 cm-1 and 1006 cm-1. For clarity, a solid line was added to show that the intensity ratio decreases 

with storage time. 
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To count the effect of smoothing on spectral data, the data was pre-processed without 

the smoothing step, and then PCA was performed on the new pre-processed data. The new 

PCA scores and loadings were almost the same as those obtained when the smoothing step 

was included. This suggests that the adjacent peaks are positively correlated and smoothing 

the spectrum does not destroy their information content, which means that it is possible to 

reduce the resolution of the Raman spectral measurement without affecting accuracy [39]. 

3.4 Conclusion 

The Raman spectra could be used in tandem with chemometric analysis (PCA and 

AHCA) to successfully group poultry fillets into three quality classes: fresh, semi-fresh, and 

spoiled. From the PCA results, a conclusion can be drawn on the poultry meat spoilage 

mechanism: The protein content of the meat decreases during spoilage, which is clearly seen 

from the lowering of the intensities of the amide I and amide III vibrational bands as well as 

from the growing amount of free amino acids from an increase in the intensity of Tyr and Trp 

bands. Furthermore, the growing amounts of free amino acids during storage are considered 

as an indicator of microbial growth. Moreover, the oxidation of amino acid residues was 

observed from the increase in the intensity of the S-S stretching vibrational band. 

Additionally, the hydrophobic interaction around the aliphatic residues was observed through 

a decrease in the intensity of the CH2 and CH3 bending vibrational band.  

In conclusion, the Raman spectra collected by the portable fiber-optic Raman 

spectrometer in conjunction with chemometric analysis are able to monitor the spoilage 

process of poultry fillets at different storage days through the evaluation of poultry fillets 

freshness quality. This method is considered to be a simple and fast method for predicting 

bacterial loads in poultry, which could make off-line (or even on-line) applications possible in 

the poultry industry. However, further investigations along with microbial and sensory 

analysis are required to determine if it is possible to use this method to calculate the real shelf 

life of a product. 
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4 Investigation of the Influence of Different Production Systems 

on the Quality and Shelf Life of Poultry Meat Using a Portable 

Fiber-Optic Raman Spectrometer 

This chapter is adapted from: S. Jaafreh, M. Hebel, J. Kreyenschmidt, K. Günther, P. 

Kaul, Investigation of the Influence of Different Production Systems on the Quality and Shelf 

Life of Poultry Meat Using Portable Fiber-Optic Raman Spectrometer, In preparation. 

4.1 Introduction 

Muscle foods, including poultry and red meat, are rich sources of protein, essential 

amino acids, and a wide variety of micronutrients essential for human nutrition and health [1–

3, 105]. In recent years, global production and consumption of poultry meat has risen 

dramatically and per capita consumption is expected to grow [4, 35, 41, 105]. This has 

significantly increased poultry’s commercial value [14, 105]. 

Poultry production underwent a remarkable development of intensification to meet the 

growing consumption and consumer demands. As a consequence of intense selection 

processes, poultry breeding lines were modified for shorter generation times, higher meat 

content and enhanced animal performance. With the selection for growth velocity, an increase 

of health issues and muscle failures of the animals emerged [224]. Animal health issues were 

combated by increased application of antibiotics in industrial animal production, which leads 

to the proliferation of microorganisms with antibiotic resistance with humongous impact on 

human health [224, 225]. In the context of these problems, the sustainability of poultry 

production is discussed growingly, and consumer knowledge is growing for animal health and 

welfare issues [224, 226, 227]. The rising demand for extensive production systems that are 

watchful for animal welfare led to the establishment of high-quality meat lines, a growing 

organic sector and local certified products [224, 228]. 

In Germany, the meat market reached the saturation point. Thus, meat quality as well 

as animal welfare and sustainability have an increasing impact on the purchase decision of the 

consumer. Accordingly, a production system was developed focusing on enhanced animal 

welfare, antibiotics-free, corn-based fattening and a slow-growing breed [224]. The use of 

more sustainable systems, such as corn-fed poultry lines, may increase consumer acceptance 

and the willingness-to-pay higher prices. Nevertheless, any modification of the production 
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system may also lead to differences in the nutritional parameters, meat quality and the shelf 

life of the final product [224]. Even though the production-specific factors (e.g. breeding, diet 

and stress) are known to affect meat quality; the effect of different husbandry systems on the 

development of quality parameters and shelf life has barely been investigated [224].  

From a consumer and industry perspective, high safety, quality and long shelf life 

times are the most important criteria for meat and meat products [9]. In addition, the demand 

for extensive production systems that are watchful for animal welfare is rising [224]. The 

quality can be described as the measure of traits that are sought and valued by the consumer. 

The meat quality is a wide term and covers a variety of characteristics and can be defined in 

various ways from palatability to technological aspects to safety. The properties used to 

define the quality of meat can be divided into four groups of parameters; animal nutrition 

(e.g.: protein content, composition of fatty acids and mineral content), hygiene and 

toxicological (e.g.: microbiological status and heavy metal content), meat processing (e.g.: 

shear force value, pH value, drip loss and specific water content) and sensory parameters 

(e.g.: texture, color, juiciness, odor, taste, marbling and structure) which have the highest 

influence on the consumers’ purchase decision [87–89]. The microbial spoilage regarded as 

the main cause of quality deterioration in meat, and it is causes pH change, off odors, slime 

formation, structural components degradation and appearance change [91–93]. 

The efficient assessment of meat quality is one of new challenges brought by the 

recent development in meat industry and the increase in public demand for high-quality meat 

[229]. Control procedures must be carried out on meat to keep the quality standards as close 

as possible to the preference of the target consumer and to keep competitive in the market. 

Therefore, various techniques such as chemical methods, mechanical measurement, sensory 

analysis and screening methods have been used to provide information about meat quality [2, 

230]. However, most of the traditional techniques are costly, tedious, destructive and time-

consuming, which cannot meet the requirements of the modern meat industry. Consequently, 

these techniques are unsuitable for on-line or at-line applications. Therefore, there is a 

demand for rapid, non-invasive and cheap alternatives for meat quality assessment and 

assurance [2, 89, 230–232].  

The disadvantages of traditional methods for food quality evaluations can be 

overcome using Raman spectroscopy [231]. Raman spectroscopy has several advantages over 

other methodologies as it is a non-destructive, non-invasive, relatively inexpensive compared 

to other methods, rapid and being a label-free method. Furthermore, it requires simple up to 
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no sample preparation. Moreover, the presence of microorganisms or DNA in the laboratory 

environment is not a concern in Raman spectroscopy. Additionally, strains of the spoilage and 

pathogenic microorganisms can be identified extremely accurately [24, 121, 123, 124]. These 

attractive characteristics have made Raman spectroscopic techniques a powerful analytical 

tool for food quality evaluation [231]. 

Several research groups have investigated various methods for meat quality evaluation 

and the rapid detection of microbiological spoilage on different kinds of meat [31, 32, 233–

237]. However, research on and investigations into fast methods, such as Raman 

spectroscopy, for evaluating the quality and predicting the bacterial loads in poultry meat are 

rare even though they are urgently needed for efficient management in the poultry industry 

[36, 37, 105]. Thus, the focus of this study was to investigate the ability of Raman 

spectroscopy in the revealing of the nutritional value and muscle characteristics, comparison 

and differentiation of two different industrial production lines (alternative and conventional) 

of a German poultry producer. Furthermore, the study aimed to investigate the ability of 

Raman spectroscopy in classifying of poultry fillets in each production line according to their 

storage time and their microbial load. Raman measurements were conducted directly on fillets 

surfaces parallel with nutritional and quality parameters and microbiological analyses. 

4.2 Material and Methods 

4.2.1 Study design 

This study investigates the ability of Raman spectroscopy on the characterization of 

conventional and alternative industrial production lines of a German poultry producer. For the 

alternative production line, the producer recently changed breeds for a new slow-growing race 

showing optimized muscle growth within the prolonged production time. The characteristics 

of both production lines are provided in Table 4.1. 
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Table 4.1: Characteristics of conventional and alternative production lines. 

  
      

Characteristics 
  

Production line  

 

Conventional   Alternative 

 
 

   
Birds race  Ross 308   Ranger Classic  

Stocking rate  39 kg/m2   32 kg/m2  

Birds diet  Grain-based diet   Contained more than 50% corn  

Antibiotic medication  Administered when required   No antibiotic medication  

Birds slaughter age    30–35 days   42–45 days  

  

     

All animals were slaughtered and processed at the same day and in the same industrial 

slaughterhouse. The breast fillets were transported under temperature-controlled conditions to 

the laboratory of the University of Bonn. A total of 80 fillets were investigated in two 

repeated storage trials. After packaging aerobically in polypropylene trays with snap-on lids, 

the samples were stored in high-precision low-temperature incubators (Sanyo Mir 154-PE, 

Sanyo Electric Co., Ora-Gun, Gunma, Japan) at 4 °C for 240 h. The investigations were 

conducted at five repeated investigation times (measurement days) during storage. For each 

investigation time, a total of 4 alternative and 4 conventional fillets were investigated. The 

first Raman measurements and microbial analyses of the poultry fillets started 24 h after 

slaughtering. This timestamp was set to zero for the experiment. The second, third, fourth and 

fifth investigation times started at 72, 120, 168 and 240 h of the experiment, respectively. 

For each fillet, a standardized surface of meat tissue (5 cm2) was defined with a sterile 

circular frame of radius 2.24 cm. For each fillet, the Raman measurements and the microbial 

analyses were measured for the same standardized surface. First, the Raman measurements 

were conducted and then the same surface was extracted aseptically and used for the 

microbial analyses. 

4.2.2 Raman spectrometer and acquisition parameters 

The Raman system used to collect Raman spectra was portable fiber-optic Raman 

system (QE Pro-Raman system) [105]. QE Pro-Raman system consists of four components: a 

QE Pro-Raman spectrometer, a Turnkey Raman laser of 785 nm excitation wavelength, an 
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RPB785 fiber-optic probe and a computer running OceanView version 1.4.1 software. All 

four components are from Ocean Optics (Ocean Optics, Netherlands).  

Raman spectra were collected with constant measurement parameters as follows: laser 

power of 250 mW at the sample, the distance between the sample and the laser fiber-optic 

probe was around 7.5 mm with a laser spot size of about 155 µm, and with an integration time 

of 10 seconds (s). The average of five scans was used in each collected spectrum (i.e. five 

replicates scans were averaged for each collected spectrum). To reduce the noise, the detector 

temperature was set to -10 °C by the spectrometer’s thermoelectric cooler. To eliminate 

ambient light from Raman spectra as well as to protect from reflected or scattered laser light 

during acquisition, all Raman measurements were taken inside a dark enclosure. The dark 

spectrum subtraction was performed during the spectral acquisition. Raman spectra were 

acquired using OceanView software (Ocean Optics, Netherlands). Inside the 5 cm2 

standardized surface of each fillet, five to eight Raman spectra were collected from random 

positions chosen manually. In this manner, Raman spectra collected from each production line 

were ~25 spectra on every measurement day and with a total of ~124 spectra during the 

measurement days (more details are provided in Table 4.2). During the measurements, the 

positions of fat were avoided. No further sample treatments were required. All of the Raman 

spectra were collected in a sterile environment and under ambient conditions. 

Table 4.2: Number of spectra collected for each production line. Spectra containing cosmic spike(s), very high 

fluorescence background and signals of adipose tissue or adipose tissue with meat are not included 

in this table. 

              

Measurement 

time (h) 

 

Conventional          

production line   

Alternative              

production line  

 

1st        

storage trial 

2nd       

storage trial  

1st        

storage trial 

2nd       

storage trial 

0 
 

22 23 
 

21 23 

72 
 

24 24 
 

28 24 

120 
 

24 27 
 

24 27 

168 
 

24 24 
 

24 25 

240 
 

23 28 
 

29 28 
  

 
    

 
    

Total   117 126   126 127 
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4.2.3 Microbiological analyses 

For microbial investigations, the standardized surface of each fillet (i.e. the area of 

5 cm2 where the Raman measurements were conducted) was extracted aseptically using a 

sterile punch and a scalpel. The samples were transferred to a sterile, filtered stomacher bag. 

The ninefold amount of saline peptone diluent (0.85% NaCl with 0.1% peptone Saline tablets, 

Oxoid BR0053G, Cambridge, United Kingdom) was added with an accuracy of 0.1 g for the 

first dilution step. The samples were mixed with a Stomacher 400 (Kleinfeld Labortechnik, 

Gehrden, Germany) for 60 s. Tenfold dilutions of the homogenate were prepared in saline 

peptone diluents. The total viable count (TVC) was determined by the pour plate technique on 

Plate Count Agar (Merck, Darmstadt, Germany), and the results were recorded in 

log10 (colony-forming units (cfu)/ cm2). The plates were incubated at 30 °C for 72 h. 

4.2.4 Raman data evaluation 

In this section, all calculations were performed using OriginPro 2019 software 

(OriginLab Corporation, United States). 

4.2.4.1 Data pre-processing 

For the collected spectra, the pre-processing consisted of a cut-off to reduce the 

spectral variables to 253 variables, which corresponds to the wavenumber region from 

498 cm-1 to 1722 cm-1 (fingerprint region). Then, spectra with cosmic spike(s) [200, 201] and 

the spectra with a very high fluorescence background were searched for by visual inspection, 

and they were then eliminated from further analysis. Next, the spectra containing signals of 

adipose tissue [202] or adipose tissue with meat were identified using the carbonyl stretching 

vibration of the ester and the methylene twisting vibration [203, 204] and then eliminated 

from further analysis. After that, the spectra were smoothed based on the Savitzky-Golay 

algorithm; the number of smoothing points was nine with a second-order polynomial. The rest 

of the pre-processing steps were varied according to the use of the constructed model. For the 

models which constructed to characterize and discriminate samples from different poultry 

meat production systems; the area under curve for each spectrum was normalized to one, and 

then the second-order derivative was calculated for each spectrum. For the models which 

constructed to classify poultry fillets according to their storage time and their microbial load; 

the spectra were normalized to the intensity of the phenylalanine (Phe) peak at 1001 cm-1. The 
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intensity and location of the Phe band are not sensitive to the protein conformation and can 

therefore be used for normalizing the Raman spectra [205–207]. 

The 1st storage trial was used as training set to build models to characterize and 

discriminate samples from different poultry meat production systems and to classify poultry 

fillets according to their storage time and their microbial load. The 2nd storage trial was used 

as the testing set to validate the presented pre-processing method and to test the models for 

their robustness. 

4.2.4.2 Chemometric techniques 

Chemometric techniques can be defined as the chemical discipline that uses 

mathematical, statistical and other methods to design or select optimal measurement 

procedures and experiments, and to provide maximum relevant chemical information by 

analysing chemical data [131, 132]. In this study, unsupervised chemometric methods 

Principal Components Analysis (PCA) and Agglomerative Hierarchical Cluster Analysis 

(AHCA) [41, 76], and a supervised chemometric method Canonical Discriminant Analysis 

(CDA) [191] were used to analyse the collected Raman data. 

4.2.4.2.1 Principal components analysis 

PCA, which is built on the assumption that variation implies information, is an 

unsupervised classification method (i.e., it makes no a priori assumptions about the data set) 

used to reduce the dimensionality as well as to investigate and visualize the grouping of 

different samples into different clusters. Briefly, PCA linearly transforms the original data 

(Raman spectra in this work) into new orthogonal variables called principal components 

(PCs). Potentially, there are as many PCs extracted from the data matrix as there are original 

variables (Raman wavenumbers in this work). Each PC accounts for a consecutive decrease in 

the amount of data variance, which results in the compression of significant data into just a 

few PC variables. The first PCs explain the largest amount of variance observed in the 

features, which can be used to identify the samples’ differences. Each data object has a score 

value on each PC, and each original variable is associated with a loadings value on each PC. 

The loadings profiles indicate the wavenumber variables in which the higher absolute values 

of the loadings significantly contribute to the discrimination of the objects described. Once 
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uncovered, PCs may be represented by scatter plots in an Euclidean plane, and the correlation 

structure among the variables may be inspected through loading plots [41, 76, 105, 144, 145]. 

PCA was applied on pre-processed Raman spectral data of the 1st storage trial 

(training set). Subsequently, pre-processed Raman spectral data of the 2nd storage trial 

(testing set) were rotated into the PCA space of the training data by the respective PCA 

loadings. Before performing the PCA calculation, the standard normal variate [41, 146] was 

calculated for the training and testing data sets. The standard normal variate was calculated 

separately for each set of data.  

4.2.4.2.2 Canonical discriminant analysis 

Canonical discriminant analysis (CDA) is a multivariate statistical technique acting in 

a supervised manner. The supervised methods start with a number of objects whose group 

membership is known (sometimes called the training objects), and use these objects to find a 

rule for allocating a new object of unknown group to the correct group [191, 238–241]. CDA 

can identify differences among groups of objects and improve understanding the relationships 

among the variables measured within those groups. CDA finds linear functions of quantitative 

variables that maximally separate two or more groups of objects (i.e. maximizes variation 

between the groups of objects) while keeping variation within-groups as small as possible (i.e. 

minimizing within-group variation of the original variables). This approach distinguishes 

several uncorrelated canonical variables (CVs). CVs are linear combinations of the original 

variables that best separate the means of groups of observations relative to within-group 

variation. The maximum number of CVs is equal to the number of variables or one less than 

the number of groups, whichever is smaller. The first CV, CV1, yields the maximum possible 

variation between groups with respect to within-group variation (maximum ratio between 

groups and within-group variances), providing the most overall discrimination between 

groups. CV2 provides the group differences which are not displayed by CV1, with the 

condition of no correlation between CV1 and CV2. Similarly, CV3 is not correlated with CV1 

and CV2; it provides the group differences which are not displayed by CV1 and CV2, and so 

on. The absence of correlation means that each CV extracts a unique dimension of 

information from the data set. In performing CDA, the aim is that the first few CVs will 

account for almost all differences between groups. Plotting the values of these CVs (canonical 

scores) enables a simple graphical representation that reveals relationships existing between 

groups. These plots may also be used to assign a new observation with unknown grouping to 
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an existing group. The canonical scores of the new object are calculated for the first few CVs 

and its position plotted. The new object is assigned to the group whose mean is closest to its 

position. Sometimes (though not as a general rule) the PC scores are analysed with CDA [13, 

132, 238, 240–242]. 

There are two types of discriminant analysis; linear discriminant analysis (LDA) and 

quadratic discriminant analysis (QDA). LDA is a conventional classifier used to determine 

linear decision boundaries between classes, and it assumes equality of covariance matrix for 

all of the classes. The most popular extension of LDA is the QDA, which is more flexible 

than LDA in the sense that it does assume different covariance matrices for all the classes. 

The decision boundaries determine in QDA are quadratic curves (nonlinear). To decide 

whether LDA or QDA should be applied to a given problem; a preliminary test of equality of 

covariance matrices is often used in discriminant analysis [243–246]. 

In this work, the equality test of covariance matrices of the training data showed that 

the covariance matrices are not equivalent. Hence, CDA with a quadratic discriminant 

function was applied. CDA was performed based on the first few PCs generated from PCA of 

the pre-processed Raman spectral data of the training set. Thereafter, the prediction potential 

of the trained CDA model was checked using the testing set. More details on CDA models 

and the number of PCs used are mentioned in Section 4.3 Results and Discussion. 

4.2.4.2.3 Agglomerative hierarchical cluster analysis 

Hierarchical Cluster Analysis (HCA) is an algorithmic approach that aims to construct 

a hierarchy of clusters, and it is one of the most popular clustering methods used in the 

literature. HCA is a procedure for transforming a proximity matrix into a nested partition, 

which can be graphically represented by a tree, called a dendrogram. HCA is mainly 

classified into agglomerative methods (bottom-up methods) and divisive methods (top-down 

methods), based on how the hierarchical dendrogram is formed. Agglomerative Hierarchical 

Cluster Analysis (AHCA) methods are dominant in the hierarchical clustering family. In this 

method, clusters are consecutively formed from objects. Initially, this type of procedure starts 

with each object representing an individual cluster. These clusters are then sequentially 

merged according to their similarity. First, the two most similar clusters are merged to form a 

new cluster at the bottom of the hierarchy. In the next step, another pair of clusters is merged 

and linked to a higher level of the hierarchy, and so on. This allows a hierarchy of clusters to 

be established from the bottom-up and a dendrogram is formed [105, 210, 211]. Here; AHCA 
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of the first two principal components (i.e. PC1 and PC2) was carried out with Euclidean 

distance and Ward linkage algorithm [247]. 

4.3 Results and Discussion 

4.3.1 Raman measurements and analysis 

For the five investigation times (0, 72, 120, 168 and 240 h of the experiment), Raman 

spectra of fillets samples were collected from conventional and alternative production lines. 

Figures 4.1(a) and (b) show the storage time-dependent Raman spectra of fillets samples 

collected from conventional and alternative production lines, respectively. For each 

production line, each spectrum in Figures 4.1(a) and (b) represents the average of all Raman 

spectra of fillets collected in each investigation time. As shown in Figures 4.1(a) and (b), the 

Raman spectra of samples collected from both production lines share similar characteristic 

peaks. The peak observed at 1657 cm-1 could be attributed to the Amide I band, C=C and 

C=O stretching vibrations [41, 105, 122, 160, 161, 212, 248]. Another recognizable band at 

1614 cm-1 is assigned to vibrations attributed to the aromatic amino acids Phenylalanine (Phe), 

Tyrosine (Tyr) and Tryptophan (Trp); and to COO− asymmetric vibration of carbohydrates 

[41, 161, 165–168, 212, 249]. The Trp vibration and C=C stretching vibration were also 

observed at 1556 cm-1 [41, 105]. An additional band can be seen at 1525 cm-1; it could be 

attributed to C=C stretching, carotene and carotenoids vibration [22, 41, 169]. Another 

important peak at 1453 cm-1 corresponding to a CHn deformation vibration (δCH2, δCH3 and 

δCH2CH3) originates from the CH bindings in lipids, collagen, proteins and carbohydrates 

was recognizable [41, 105, 161, 212]. The COO– symmetric stretching vibration of 

carbohydrates was also observed at 1403 cm-1 [41, 164, 167, 168]. Further, vibrations 

attributed to Amide III at 1324 and 1272 cm-1 were notable [105, 161, 212]. Furthermore, the 

peaks at 1211, 1167, 864, 828 and 650 cm-1 corresponds to the Tyr vibration were 

recognizable [40, 105, 161]. The stretching vibrations of C–C (νCC) and C–N (νCN) were 

also observed at 1124, 1080 and 1050 cm-1 [41, 105, 212]. In addition, the vibration attributed 

to Phe and Phe (collagen assignment) at 1001 cm-1 was observed [40, 41, 105, 161, 212]. 

Another notable band at 940 cm-1 could be attributed to the C–C stretching and C–O–C glycos 

bond vibration of carbohydrates [41, 105, 161, 212]. Moreover, vibrations attributed to Trp at 

761 cm-1, the nucleobase Adenine (Ade) at 719 cm-1 and S–S stretching vibration (νSS) at 

531 cm-1 were recognizable [40, 41, 105, 161].   
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Figure 4.1: Mean Raman spectra of fillets samples collected from (a) conventional and (b) alternative 

production lines at different times of storage. The standard deviation is depicted as gray corona of 

all analysed fillets samples at different times of storage. The spectra are stacked for clarity. 

The spectral features were found to be consistent with those in the literature as 

described before. Nonetheless, most signals are a superposition of bands from several 

compounds of molecular constituents (e.g., DNA, proteins, lipids, etc.), as the entirety of 

biochemical compounds contributes to the Raman spectrum [23, 41]. In line with the storage 

time, the Raman spectra generally kept their basic structure, but all major Raman signals 

gradually changed. Single visual discrimination between samples from both production lines 
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and the examinations of the changes during storage time for samples from each production 

line are difficult. To characterize and discriminate samples from different poultry meat 

production systems and to determine more detailed information about the complex spectral 

changes of the storage time-dependent samples from each production line; multivariate 

statistical methods were applied on pre-processed Raman spectra.  

Even though Raman scattered light can provide a molecular structural signature 

(fingerprint information) and quantitatively reflects the chemical composition of biological 

samples; the Raman spectrum contains other contributions that influence the Raman signal 

and thereby obscure the desirable information (e.g.: fluorescence background, substrate 

background, cosmic spikes, Gaussian noise, CCD background noise, varying in sampling 

geometries). Pre-processing the raw data helps eliminate unwanted variation such as 

instrumental and experimental artifacts, enhances Raman spectral features and allows more 

reproducible data for qualitative and quantitative analysis [41, 59, 70, 105, 125–128, 157]. 

The background fluorescence, which can limit or prohibit the relatively weaker Raman signal 

and thus make the detection of useful spectra difficult, is a common challenge in Raman 

analysis of meat and other biological samples [70, 105, 171, 212, 214]. Fluorescence 

background is usually removed in the pre-processing step by computational methods. 

However, these methods have major limitations, for instance, the data processing can be time-

consuming, the resulting spectrum could be distorted and may contain artifacts especially in 

weak Raman signals [105, 171]. Due to the use of near-infrared excitation laser at 785 nm 

[105, 155, 157, 190, 198, 215] and to the myoglobin content (cause major absorption in the 

visible and near-infrared region) being low in poultry compared to other kinds of meat [105, 

216, 217]; the collected spectra were less susceptible to interference by fluorescence, as 

shown from the gently sloping background in Figures 4.1(a) and (b). As a consequence, 

fluorescence background removal was omitted from the pre-processing step. Since there is no 

single standard method for pre-processing Raman spectra, and the choice of pre-processing 

steps and the order in which they are conducted has been shown to have a major impact on the 

outcomes of spectral analysis [105]; the pre-processing steps applied in this work to the raw 

Raman spectra achieved the optimal results (see Section 4.2.4.1 Data pre-processing). 

4.3.2 Chemometric techniques and constructed models 

Since biological samples are heterogeneous mixtures of different biomolecules; their 

Raman spectra have a complex structure. They have numerous peaks in a broad band. Only 



74 

slight spectral differences are visible if Raman spectra of different biological states are 

measured and compared. A manual differentiating and rating of these slight changes are not 

possible or practical. Consequently, the use of chemometrics techniques is required [45, 128].  

To characterize and discriminate different poultry meat production systems and to 

classify poultry fillets according to their storage time and their microbial load, chemometric 

techniques were applied to the pre-processed Raman spectral data. These techniques enhance 

the sensitivity of Raman spectroscopy, which are capable of distinguishing subtle spectral 

differences between classes. Furthermore, chemometric techniques make biological 

diagnostics more objective since little to no human intervention is required. In addition, 

chemometrics dramatically speed up biological diagnostic procedures, making it possible to 

deal with large-size Raman spectral datasets within an acceptable time [21, 143].  

4.3.2.1 Characterization and discrimination of samples from different production 

systems  

To avoid the effects of the growth of microorganisms and the changes in poultry fillets 

during storage on the characterization and discrimination of samples from different 

production systems; the training and testing data sets used in the calculations of the following 

subsections represent only the 1st investigation time (0 h of the experiment; 24 h after 

slaughter). 

4.3.2.1.1 PCA model 

The characterization and discrimination of fillets samples from different poultry meat 

production systems (see Tables 4.1 and 4.2) were successfully accomplished using PCA 

model. The training data points (pre-processed Raman spectral data of the 1st storage trial) 

were used to build the PCA model while the testing data points (pre-processed Raman 

spectral data of the 2nd storage trial) were used to validate the presented pre-processing 

method and to test the model for its robustness. 

In the PCA results, PC1 and PC2 were found to carry most of the spectral variations 

between poultry samples, with PC1 describing 19.67% of variance and PC2 describing 

8.18%. Figure 4.2 depicts a plot of the scored training data points (solid circles) for the first 

two principal components (PC1, PC2), which revealed a separation of the samples according 

to their production system. The results show that the poultry samples can be grouped into two 
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classes: conventional and alternative poultry meat production systems. Subsequently, testing 

data points were rotated into the PCA space of the training data by the respective PCA 

loadings. Figure 4.2, empty circles, shows that all testing data points have been assigned to 

the correct cluster.  
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Figure 4.2: Scores of PCA model of the pre-processed Raman spectral data plotted for PC1 and PC2. The fillets 

samples from different poultry meat production systems can be grouped into two classes; 

conventional (red circles) and alternative (blue circles). The dashed line indicates the distinction of 

spectra, separating conventional from alternative poultry fillets samples. Solid and empty circles 

represent the training and testing data points, respectively. Dashed line is only drawn as guides to 

the eye. The training and testing data sets uesd in this calculations represent only the 1st 

investigation time. 

To investigate the origin of the separation of the scores plot, the loading plots were 

analysed. The loadings values are plotted in Figures 4.3(a) and (b) for PC1 and PC2, 

respectively. The loadings profiles show that the main contributions for PC1 were from the 

peaks: 1657 cm-1 (Amide I band, C=C and C=O stretching vibrations [41, 105, 122, 160, 161, 

212, 248]), 1453 cm-1 (δCHn [41, 105, 161, 212]) and 1001 cm-1 (Phe vibration and collagen 

[40, 41, 105, 161, 212]). These peaks are correlated with a positive sign of loadings. While for 

PC2, the significant contributions arise from the peaks: 1525 cm-1 (C=C stretching, carotene 

and carotenoids vibration [22, 41, 169]) and 1167 cm-1 (Tyr vibration [40, 105, 161]). These 

peaks are correlated with a negative sign of loadings. PC2 also revealed major contributions 
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from other correlated peak at 1556 cm-1 (Trp vibration and C=C stretching vibration [41, 

105]) but it correlated with a positive sign of loading. 
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Figure 4.3: Loadings of the PCA of the training data points (shown as the second derivative of spectra) plotted 

for PC1 (a) and PC2 (b). For clarity and comparison; bands with significant contributions are 

marked by asterisks and compared with the Raman spectrum for the conventional (c) and alternative 

production lines (d) by gray bars. For each production line, Raman spectrum represents the average 

of all Raman spectra of fillets collected in the 1st investigation time. The loading values were raised 

to the power of 9 to enable better visualization in loading curves. 

To investigate more about these peaks; the average area under each peak for the fillets 

samples from each production system was calculated and compared. First, the smoothed 43 

Raman spectra (conventional: 22 spectra; alternative: 21 spectra) collected from the fillets 
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samples in the 1st investigation time (see Table 4.2) were cut to intervales (bands) related to 

these peaks (see Table 4.3). After that, the intensity values for each band were background 

corrected in such a way that the smallest intensity value was set to zero. Next, the area under 

each curve was calculated for each Raman spectrum. Finally, the average area under each 

curve was calculated for each production system. 

Table 4.3 provides the average area under each peak for each production system. The 

results show that the alternative production line showed higher values of average area under 

peak for all peaks except the peak at 1556 cm-1. The higher values at 1657, 1453, 1167 and 

1001 cm-1 indicate that the alternative production line has higher collagen and protein content. 

Additionally, the alternative production line has a higher carbohydrates content indicated by 

the higher value of the average area under peak at 1453 cm-1. These results were consistent 

with the analysis of nutrients in the alternative and conventional production lines [224]. The 

alternative production line also shows a higher value of the average area under peak at 

1525 cm-1. This indicates that the alternative production line has higher carotenoids content. 

Carotenoids are present in ingredients of feed for poultry [250]. They are compounds that are 

synthesized naturally by higher plants. Poultry reared on high forage rations pass a portion of 

the ingested carotenoids into the muscle [251]. The high carotenoids content in alternative 

production line could be due to their diet system which contained more than 50% corn (corn 

contains significant amounts of carotenoids [252]). The high carotenoids content in alternative 

production line may also account for the color difference between both production lines, with 

the alternative production line displaying more yellowish fillets. 

Table 4.3: Average area under peak for the fillets samples from each production system.  

                

Raman shift (cm-1) at the 

highest absolute loading 

values   
Average area under peak 

  

Area ratio                   

(Alternative to Conventional) 

PC Peak Band Conventional Alternative   

      

  

 1 1453 1434-1485 
 

19038.04 ± 3641.50 23607.34 ± 2679.58 
 

1.24 ± 0.38 

1001   985-1031 
 

4466.07 ± 947.25 5933.36 ± 760.76 
 

1.33 ± 0.45 

1657 1635-1679 
 

  7019.97 ± 1556.60   8885.73 ± 1093.37 
 

1.27 ± 0.44 

    
    

2 1525 1516-1538 
 

114.68 ± 49.86 209.47 ± 97.90 
 

1.83 ± 1.65 

1556 1538-1570 
 

1010.91 ± 241.59   897.76 ± 155.74 
 

0.89 ± 0.37 

1167 1143-1173 
 

  532.49 ± 113.18   830.50 ± 177.18 
 

1.56 ± 0.66 
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4.3.2.1.2 CDA model 

The classification of poultry fillets according to their production systems (see Table 

4.2) was successfully accomplished using CDA model. The 1st storage trial (training set) was 

used to build the model using the cross-validation method and the 2nd storage trial (testing 

set) was used to validate the constructed model. In the cross-validation method, which is a 

data resampling method to assess the generalization ability of predictive models, the training 

data divides into several disjointed parts. Each part is selected in turn as the testing data, 

whereas the remaining parts are used as the training data. The CDA model built on the 

training data is then applied to predict the class labels of testing data. This process is repeated 

until all parts have been masked once. Then the prediction error rates across all blinded tests 

are combined to give an overall performance estimate [191, 253–255]. Here, CDA was 

performed based on the first few PCs generated from PCA of the pre-processed Raman 

spectral data of the training set (1st storage trial: 1st investigation time; 43 Raman spectra).To 

select the optimal number of PCs for model construction, a CDA of the classification between 

the two production systems was performed for different numbers of PCs from one to 20. The 

maximum PCs number used was 20 because computational problems will arise if the 

corresponding number of variables (here: PCs) is higher than the number of samples in the 

smallest group (here: alternative production line; 21 Raman spectra) [241]. Thus, the usage of 

a higher number of PCs for the analysis was avoided. The model with the lowest cross-

validation error rate from the training data set will perform best on the testing data and avoids 

underfitting and overfitting [256, 257]. As can be seen in Figure 4.4; the first two PCs give 

the minimum error rate (0.00%), where all samples were correctly classified (see Table 4.4; 

confusion matrix). Therefore; the first two PCs has been selected for model construction. 

Subsequently, the performance of the constructed CDA model was checked using the testing 

set (pre-processed Raman spectral data of the 2nd storage trial: 1st investigation time; 46 

spectra). First, the testing data points were rotated into the PCA space of the training data 

(pre-processed Raman spectral data of the 1st storage trial: 1st investigation time; 43 spectra) 

which used to build the CDA model by the respective PCA loadings. After that, the new PCs 

resulted from the testing data points were converted to new scores in the space of the training 

data set using the loadings obtained from the CDA model. Subsequently, the performance of 

the CDA model was checked. Here, CDA classification error rate was 0.00%. As can be seen 

in the confusion matrix (see Table 4.5), all samples were correctly classified. Since there is 

only one canonical variable, canonical score plot can’t be shown.  
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Figure 4.4: The CDA cross-validation error rate over the number of PCs for the conventional and the alternative 

production lines (training set: 1st storage trial; 1st investigation time). 

 

Table 4.4: Cross-validation confusion matrix by CDA for the conventional and the alternative production lines 

(training set: 1st storage trial; 1st investigation time). Rows represent the true class and the columns 

the assigned class. 

    

Groups: Production 

lines and their size 
 

Predicted Groups 

 
Conventional Alternative 

    

Conventional; 22 
 

22 0 

Alternative; 21 
 

0 21 
        

    

 

Table 4.5: Validation confusion matrix by CDA for the conventional and the alternative production lines 

(testing set: 2nd storage trial; 1st investigation time). Rows represent the true class and the columns 

the assigned class. 

    

Groups: Production 

lines and their size 
 

Predicted Groups 

 
Conventional Alternative 

    

Conventional; 23 
 

23 0 

Alternative; 23 
 

0 23 
        

    

4.3.2.1.3 AHCA model 

Similar groupings were obtained from the results of the AHCA. The poultry samples 

were grouped into two classes: class 1 (conventional production line) and class 2 (alternative 
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production line). Figures 4.5(a) and (b) show the AHCA dendrograms of the first two 

principal components for training and testing data sets, respectively. Prior to performing 

AHCA, the testing data set was rotated into the PCA space of the training data by the 

respective PCA loadings. 
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Figure 4.5: AHCA of the first two PCs of (a) training data set and (b) testing data set. The poultry samples were 

grouped into two classes: class 1 (conventional; red lines) and class 2 (alternative; blue lines). The 

dendrograms are based on the Ward’s amalgamation method; the distance measure was Euclidean. 
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4.3.2.2 Classifying poultry fillets according to their storage time and their microbial 

load 

To identify the classification potential of poultry fillets according to their storage time 

and their microbial load; CDA was applied for each production line. CDA calculation was 

performed on each production line separately to avoid the effect of the different 

characteristics between the two production lines on the classification ability. The 1st storage 

trial (training set) was used to build the models using the cross-validation method and the 2nd 

storage trial (testing set) was used to validate the constructed models. 

4.3.2.2.1 Storage time  

For the conventional production line, CDA was performed based on the first few PCs 

generated from PCA of the pre-processed Raman spectral data of the training set (1st storage 

trial: five investigation times; 117 Raman spectra). To select the optimal number of PCs for 

model construction, a CDA of the classification between the five investigation times was 

performed for different numbers of PCs from one to 21. As can be seen in Figure 6.2 in the 

Appendix; the first 10 PCs give the minimum error rate (22.22%), where 26 samples were not 

correctly classified (see Table 6.11 in the Appendix). Therefore; the first 10 PCs has been 

selected for model construction. The results of the CDA model using four CVs are depicted in 

scatter matrix plot in Figure 6.3 in the Appendix, with CV1, CV2, CV3 and CV4 describing 

64.61%, 27.77%, 5.62% and 2.00% of variance, respectively. The score diagram based on the 

first two CVs (see Figure 4.6) revealed that the group means are clearly separated. 

Subsequently, the performance of the constructed CDA model was checked using the testing 

set (pre-processed Raman spectral data of the 2nd storage trial: five investigation times; 126 

Raman spectra). First, the testing data points were rotated into the PCA space of the training 

data (pre-processed Raman spectral data of the 1st storage trial: five investigation times; 117 

Raman spectra) which used to build the CDA model by the respective PCA loadings. After 

that, the new PCs resulted from the testing data points were converted to new scores in the 

space of the training data set using the loadings obtained from the CDA model (see Figure 

4.7). Here, CDA classification error rate was 42.06%. As can be seen in the confusion matrix 

(see Table 6.12 in the Appendix), 53 samples were not correctly classified.  
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Figure 4.6: Score diagram based on the first two CVs of the first 10 PCs derived from the pre-processed Raman 

spectra of the training data set (1st storage trial) for the five investigation times of the conventional 

production line. 

 

 

 

Figure 4.7: Score diagram based on the first two CVs of the first 10 PCs derived from the pre-processed Raman 

spectra of the training data set (1st storage trial) including the testing set (2nd storage trial) for the 

five investigation times of the conventional production line. 

For the alternative production line, the calculations were carried out in the same way 

as in the conventional production line where CDA was performed based on the first few PCs 

generated from PCA of the pre-processed Raman spectral data of the training set (1st storage 

trial: five investigation times; 126 Raman spectra). The first 14 PCs give the minimum error 
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rate (15.87%), where 20 samples were not correctly classified (see in the Appendix Figure 6.4 

and Table 6.13). Therefore; the first 14 PCs has been selected for model construction. The 

results of the CDA model using four CVs are depicted in scatter matrix plot in Figure 6.5 in 

the Appendix, with CV1, CV2, CV3 and CV4 describing 77.98%, 14.02%, 6.88% and 1.12% 

of variance, respectively. The score diagram based on the first two CVs (see Figure 4.8) 

revealed that the group means are clearly separated. Subsequently, the performance of the 

constructed CDA model was checked using the testing set (pre-processed Raman spectral data 

of the 2nd storage trial: five investigation times; 127 Raman spectra). Here, CDA 

classification error rate was 62.99%, where 80 samples were not correctly classified (see 

Figure 4.9, and in the Appendix Table 6.14).  

 

 

Figure 4.8: Score diagram based on the first two CVs of the first 14 PCs derived from the pre-processed Raman 

spectra of the training data set (1st storage trial) for the five investigation times of the alternative 

production line. 
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Figure 4.9: Score diagram based on the first two CVs of the first 14 PCs derived from the pre-processed Raman 

spectra of the training data set (1st storage trial) including the testing set (2nd storage trial) for the 

five investigation times of the alternative production line. 

The results for both production lines are summarized in Table 4.6. For both production 

lines, the CDA models showed a good ability to classify poultry fillets according to their 

storage time by the cross-validation method (error rate: 22.22% and 15.87% for conventional 

and alternative, respectively). However, the CDA models showed a poor ability to classify 

poultry fillets when tested with testing sets (error rate: 42.06% and 62.99% for conventional 

and alternative, respectively). The high error rates for both production lines could be 

correlated to the high variations of the bacterial load between the two storage trials for each 

production line (see Figure 4.10). The microbial spoilage regarded as the main cause of 

quality deterioration in meat, and it is causes pH change, off odors, slime formation, structural 

components degradation and appearance change [91–93]. Accordingly, high variations of the 

bacterial load among different trials will affect the classification potential of the constructed 

models. To minimize these variations, thus minimizing the error rate, CDA was applied for 

each production line to identify the classification potential of poultry fillets according to their 

microbial load. 
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Table 4.6: The error rates for the conventional and the alternative production lines, and the number of PCs used 

to build each CDA model. The classification of poultry fillets was according to their storage time. 

            

Production line  

 
Number 

of PCs 

 

Error rate (%) 

 
  

Cross-validation 

(training set) 

 

 

Independent 

validation data 

(testing set) 
 

      

Conventional           
 

10 
 

22.22 42.06 

Alternative               
 

14 
 

15.87 62.99 
            

       

 

 

 

Figure 4.10: Average of TVC per investigation time of the fillets samples from (a) the conventional and (b) the 

alternative production lines. Red and blue bars represent the 1st and the 2nd storage trials, 

respectively. The error bars indicate standard deviations within each investigation time. 

* represent P value < 0.05, and ** represent P value > 0.05. P values were obtained by the t test 

(two-sample assuming unequal variances). 

0 72 120 168 240

0

2

4

6

8

10

 1st storage trial

 2nd storage trial

T
V

C
 l

o
g

1
0
 (

c
fu

/c
m

²)

Time (h)

(a)(a) Conventional (b) Alternative

**

*

*

**

*

**

*

*

*

0 72 120 168 240

0

2

4

6

8

10

 1st storage trial

 2nd storage trial

T
V

C
 l

o
g

1
0
 (

c
fu

/c
m

²)

Time (h)

**

*

*

*

*

*

*

*

*



86 

4.3.2.2.2 Microbial load 

The bacterial load variations were minimized by grouping the data according to their 

TVC (see Figure 4.11). The data were grouped into 3 quality classes: Fresh (TVC < 4.8), 

Semi-fresh (4.8 ≤ TVC < 7.5) and Spoiled (7.5 ≤ TVC). The chicken fillet considered spoiled 

for both production lines when TVC reached a level of 7.5 log10 cfu/cm2 [224]. 

 

 

Figure 4.11: Average of TVC per quality class of the fillets samples from (a) the conventional and (b) the 

alternative production lines. Red and blue bars represent the 1st and the 2nd storage trials, 

respectively. The error bars indicate standard deviations within each quality class. 

* represent P value < 0.05, and ** represent P value > 0.05. P values were obtained by the t test 

(two-sample assuming unequal variances). 
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diagram (see Figure 4.12), with CV1 and CV2, describing 93.55% and 6.45% of variance, 

respectively. The score diagram revealed that the group means are clearly separated. The 

classification error rate of the constructed CDA model using the testing set was 24.60%, 

where 31 samples were not correctly classified (see Figure 4.13, and in the Appendix Table 

6.16).  

 

 

Figure 4.12: Score diagram based on the two CVs of the first 9 PCs derived from the pre-processed Raman 

spectra of the training data set (1st storage trial) for the three quality classes of the conventional 

production line. 

 

 

 

Figure 4.13: Score diagram based on the two CVs of the first 9 PCs derived from the pre-processed Raman 

spectra of the training data set (1st storage trial) including the testing set (2nd storage trial) for the 

three quality classes of the conventional production line. 

-4 -2 0 2 4 6

-2

-1

0

1

2

3

 Fresh

 Semi-fresh

 Spoiled

C
V

2 
(6

.4
5%

)

CV1 (93.55%)

 Group means

-4 -2 0 2 4 6

-2

-1

0

1

2

3

 Fresh

 Semi-fresh

 Spoiled

C
V

2 
(6

.4
5%

)

CV1 (93.55%)

 Ungrouped



88 

For the alternative production line, the first 10 PCs give the minimum error rate 

(14.29%), where 18 samples were not correctly classified (see in the Appendix Figure 6.7 and 

Table 6.17). The results of the CDA model using the two CVs are depicted in the score 

diagram (see Figure 4.14), with CV1 and CV2, describing 73.70% and 26.30% of variance, 

respectively. The score diagram revealed that the group means are clearly separated. The 

classification error rate of the constructed CDA model using the testing set was 54.33%, 

where 69 samples were not correctly classified (see Figure 4.15, and in the Appendix Table 

6.18).  

 

 

Figure 4.14: Score diagram based on the two CVs of the first 10 PCs derived from the pre-processed Raman 

spectra of the training data set (1st storage trial) for the three quality classes of the alternative 

production line. 
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Figure 4.15: Score diagram based on the two CVs of the first 10 PCs derived from the pre-processed Raman 

spectra of the training data set (1st storage trial) including the testing set (2nd storage trial) for the 

three quality classes of the alternative production line. 

The results for both production lines are summarized in Table 4.7. For both production 

lines, the CDA models showed a good ability to classify poultry fillets according to their 

microbial load by the cross-validation method (error rate: 23.93% and 14.29% for 

conventional and alternative, respectively). These results are very close to the results obtained 

when the classification was based on the storage time (error rate: 22.22% and 15.87% for 

conventional and alternative, respectively). When the CDA models tested with testing sets, 

only conventional production line showed a good ability to classify poultry fillets (error rate: 

24.60%). However; error rates for both production lines were smaller than the one obtained 

when the classification was based on the storage time as can be seen in Table 4.8.  

The high error rate for alternative production line (54.33%) reflects that the microbial 

load is not the only factor that has an impact on the collected Raman spectra from the two 

storage trials. Since fillets of the alternative line had significantly higher protein and lower 

water and intramuscular fat content in comparison to the conventional production line 

(different production systems can have a significant influence on biochemical composition, 

nutritional value, and physicochemical characteristics of poultry meat) [224], and taking into 

account that the lipid oxidation and autolytic enzymatic spoilage are also considered one of 

the main mechanisms for meat spoilage after slaughtering and during processing and storage 

[93]; high variations from different storage trials will appear in the collected Raman spectra 

which will affect the classification ability. To take these factors into consideration, thus 

minimizing the error rate, a trial repetition with a higher sample size is desired. 
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Table 4.7: The error rates for the conventional and the alternative production lines, and the number of PCs used 

to build each CDA model. The classification of poultry fillets was according to their microbial load. 

            

Production line  

 
Number 

of PCs 

 

Error rate (%) 

 
  

Cross-validation 

(training set) 

 

 

Independent 

validation data 

(testing set) 
 

      

Conventional           
 

9  23.93 24.60 

Alternative               
 

10  14.29 54.33 
            

       

Table 4.8: Error rates for testing data for the conventional and the alternative production lines. The 

classification of poultry fillets was according to their storage time and their microbial load. 

     

Predicted Group 

  Error rate (%); Testing data 

 

Production line  

 

Conventional             Alternative               

     
Storage time 

 
42.06 

 

62.99 

Microbial load  

 

24.60 

 

54.33 
          

      

4.4 Conclusion 

The characterization and discrimination of fillets samples from different poultry meat 

production systems (conventional and alternative) and different storage trials were 

successfully accomplished using PCA, CDA and AHCA models. The 1st storage trial 

(training set: 1st investigation time; 0 h) was used to build the models and the 2nd storage trial 

(testing set: 1st investigation time; 0 h) was used to validate these models. The results show 

that the poultry samples can be grouped into two classes: conventional and alternative poultry 

meat production systems. The models were validated using testing data points (2nd storage 

trial) and all have been successfully assigned to the correct cluster. The origin of the 

separation in PCA model was investigated by analysing the loading plots. The results show 

that the alternative production line has higher collagen, protein and carbohydrates content 

than the conventional production line. These results were consistent with the analysis of 

nutrients in the alternative and conventional production lines. The alternative production line 

also shows a higher carotenoids content which may account for the color difference between 

both production lines, with the alternative production line displaying more yellowish fillets. 
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Further, CDA models were constructed for each production line to classify poultry 

fillets according to their storage time (five investigation times) and their microbial load (three 

quality classes). The 1st storage trial (training set) was used to build the models and the 2nd 

storage trial (testing set) was used to validate these models. For both production lines, the 

constructed CDA models showed good ability to classify poultry fillets according to their 

storage time with error rates less than 25.00%. However, the constructed CDA models 

showed poor classification ability when tested with 2nd storage trial (error rate: 42.06% and 

62.99% for conventional and alternative, respectively). The high error rates could be 

correlated to the high variations of the bacterial load between the two storage trials for each 

production line. To minimize these variations, the data were regrouped according to their 

microbial load to three quality classes (fresh, semi-fresh and spoiled). For the conventional 

production line, the constructed CDA model showed good ability to classify poultry fillets 

according to their microbial load. The error rates were 23.93% and 24.60% for training and 

testing set, respectively. This indicates that the variations between the two storage trials are 

not high. For the alternative production line, different results were obtained. Even though the 

constructed CDA model showed a good ability to classify poultry fillets according to their 

microbial load (error rate: 14.29%), it failed to classify poultry fillets when tested with the 

2nd storage trial (error rate: 54.33%). This indicates that the variations between the two 

storage trials are too high and that the microbial load is not the only factor that has an impact 

on the collected Raman spectra from the two storage trials. Since fillets of the alternative line 

had significantly higher protein and lower water and intramuscular fat content in comparison 

to the conventional production line, and taking into account that the lipid oxidation and 

autolytic enzymatic spoilage are also considered one of the main mechanisms for meat 

spoilage; high variations from different storage trials will appear in the collected Raman 

spectra which will affect the classification ability. To take these factors into consideration, 

thus minimizing the error rate, and to confirm our findings; a trial repetition with a higher 

sample size is desired. 

In conclusion, the Raman spectra collected by the portable fiber-optic Raman 

spectrometer in conjunction with chemometric analysis are able to characterize and 

discriminate samples from different poultry meat production systems. Compared to traditional 

methods (microbiological and nutrients analysis), Raman spectroscopy has proven to be a 

faster, non-destructive, noncontact and objective method. Raman spectroscopy could make 

off-line (or even on-line) applications possible in the poultry industry. However, further 

investigations with a higher sample size are required to confirm the findings.  
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5 General Conclusion 

The production and consumption of poultry meat which is rich sources of protein, 

essential amino acids and a wide variety of micronutrients essential for human nutrition and 

health; has risen dramatically in recent years leading to a significant increase in its 

commercial value. However, fresh poultry meat ranks among the highly perishable food due 

to its nutritional composition, which transforms it into a susceptible product for the growth of 

spoilage microorganisms. Therefore, the production of high quality and safe meat poultry 

products with a long shelf life is one of the meat industry’s major tasks. Currently, the 

spoilage microorganisms are determined by culture and colony counting methods which are 

laborious and time-consuming. This is inconvenient in modern food industrial applications. 

As meat freshness is important to consumers, the meat industry and retailers, a high demand, 

therefore, remains for the development of effective, rapid, simple, non-destructive and 

inexpensive sensing technologies for detecting microbial contamination on meat. Several 

methods such as Raman spectroscopy have been developed to achieve fast and reliable 

bacterial identification. Raman spectroscopy has several advantages over other methodologies 

as it is a non-destructive, non-invasive, relatively inexpensive compared to other methods, 

rapid and being a label-free method. Furthermore, it requires simple up to no sample 

preparation. Moreover, the presence of microorganisms or DNA in the laboratory 

environment is not a concern in Raman spectroscopy. Additionally, strains can be identified 

extremely accurately.  

Although much research has employed Raman spectroscopy in identifying clinically 

relevant bacteria, less has been done with food-related bacteria. Several research groups have 

investigated various methods for the rapid detection of microbiological spoilage on different 

kinds of meat. However, research on and investigations into fast methods for precisely 

predicting bacterial loads in poultry meat are rare even though they are urgently needed for 

efficient management in the poultry industry.  

Therefore, the main objective of this thesis was to investigate the feasibility of Raman 

spectroscopy in conjunction with chemometric methods for the characterization and analysis 

of quality and shelf life of poultry meat. Therefore, five research questions were proposed. 

The first three research questions were focused on (a) determining the ability of two 

dispersive Raman spectrometers with different characteristics (microscope and portable fiber-

optic systems) to characterize, discriminate and classify important strains of meat spoilage 
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microorganisms commonly found in poultry meat; (b) investigating the effect of the used 

Raman systems accuracy on the accurate discriminating and classifying of bacteria down to 

the strain level; and (c) identifying the Raman spectral features and differences on which the 

discrimination is made. For that, eight important strains of meat spoilage microorganisms 

were cultivated and their Raman spectra were collected using two dispersive Raman 

spectrometers with different characteristics (conventional and microscope). From each 

bacterial strain, a small amount of the biomass was placed on a disinfected stainless steel slide 

and was used for the Raman measurements. The measurements were conduct directly from a 

stainless steel slide without the need for any pretreatments steps. After the pre-processing step 

for the data collected by each system; chemometric methods were applied to develop 

discrimination and classification models. The obtained results from both systems were 

compared. An accurate discrimination and classification of bacteria down to the strain level 

was successfully accomplished for both systems. The constructed models were certified using 

validation data sets which were successfully assigned to the correct bacterial genera and even 

to the right strain. The spectral features and differences among the species on which the 

discrimination was based were clarified. The results reflect the strong discriminative power 

and the high performance of the developed models, the suitability of the used pre-processing 

method and that the low accuracy of the portable fiber-optic Raman system does not 

adversely affect the discriminative power of the developed models. 

The fourth research question aimed at investigation the ability of Raman spectroscopy 

to monitor the spoilage process of poultry fillets through the evaluation of their freshness 

quality. For that, commercially packed fresh boneless skinless chicken breast fillets with the 

same storage life (9 days) were purchased and their storage time-dependent Raman spectra 

were collected by the portable fiber-optic Raman spectrometer. The measurements started on 

the day the chicken breast fillets packages were delivered to and purchased from the retailer. 

The Raman spectra were collected on a daily basis up to day 21. On each day of the 

experiment, two packages of chicken breast fillets chosen at random were opened and their 

Raman spectra were measured. The measured fillets samples were disposed later on the same 

day of measurement. All the spectral measurements were done directly on the fillet surface 

without any pre-preparation of the fillet such as removal of fat or connective tissues, 

inoculation with bacteria, washing, or mincing. After the pre-processing step, the complex 

spectra were analysed using chemometric methods (PCA and AHCA).  

The constructed PCA model was successfully able to group the samples into three 

quality classes according to their freshness: fresh, semi-fresh, and spoiled. These classes were 
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based on and similar to the information inferred from the product label on the packages of 

poultry fillets. Similar groupings were also obtained from the AHCA of the first five PCs. 

From the PCA results, a conclusion can be drawn on the poultry meat spoilage mechanism: 

The protein content of the meat decreases during spoilage, which was clearly seen from the 

lowering of the intensities of the amide I and amide III vibrational bands as well as from the 

growing amount of free amino acids from an increase in the intensity of Tyr and Trp bands. 

Furthermore, the growing amounts of free amino acids during storage are considered as an 

indicator of microbial growth. Moreover, the oxidation of amino acid residues was observed 

from the increase in the intensity of the S-S stretching vibrational band. Additionally, the 

hydrophobic interaction around the aliphatic residues was observed through a decrease in the 

intensity of the CH2 and CH3 bending vibrational band.  

The results obtained from the Raman spectra combined with chemometric analysis 

provided information about the quality and the remaining shelf life. This finding indicates that 

this method could be used to classify samples with unknown storage time, which could lead to 

an evaluation of the total viable count on the surface of poultry fillets. The results also show 

that the portable fiber-optic Raman spectrometer can be used as a reliable and fast method for 

real-time freshness evaluation of poultry during storage. 

The final research question was focused on determining the ability of Raman 

spectroscopy to investigate the influence of different production systems on the quality and 

shelf life of poultry meat. For that, fillets samples from different poultry meat production lines 

(conventional and alternative) were purchased from a German poultry producer. The birds 

race were Ross 308 for conventional and Ranger Classic for alternative, and the birds diet 

were grain-based for conventional and contained more than 50% corn for alternative. All 

birds were slaughtered and processed the same day and in the same industrial slaughterhouse, 

and transported under temperature-controlled conditions to the laboratory of the University of 

Bonn. The samples were aerobically packaged and stored in incubators at 4 °C. The 

investigations were conducted at five repeated investigation times during storage started at 0 h 

of the experiment (24 h after slaughter). The 2nd, 3rd, 4th and 5th investigation times started 

at 72, 120, 168 and 240 h of the experiment, respectively. For each investigation time, a total 

of 4 conventional and 4 alternative fillets were investigated. Raman measurements were 

conducted directly on fillets surfaces parallel with microbiological and nutrients analysis. A 

total of 80 fillets were investigated in two repeated storage trials. After the pre-processing step 

for the collected Raman spectra, the characterization and discrimination of fillets samples 
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from different poultry meat production systems were successfully accomplished using 

chemometric methods (PCA, CDA and AHCA).  

PCA model was constructed using the 1st storage trial (1st investigation time; 0 h). 

The model was able to group the poultry samples according to their production line into two 

classes: conventional and alternative. The testing data points (2nd storage trial: 1st 

investigation time; 0 h) were used to validate the model and all have been successfully 

assigned to the correct cluster. Similar results were also obtained from the CDA and AHCA 

of the first two PCs. The origin of the separation in PCA model was investigated by analysing 

the loading plots. The results show that the alternative production line has higher collagen, 

protein and carbohydrates content than the conventional. These results were consistent with 

the analysis of nutrients in both production lines. The alternative production line also shows a 

higher carotenoids content which may account for the color difference between both 

production lines, with the alternative production line displaying more yellowish fillets.  

Further, CDA models were constructed for each production line to classify poultry 

fillets according to their storage time (five investigation times) and their microbial load (three 

quality classes). The 1st storage trial (training set) was used to build the models and the 2nd 

storage trial (testing set) was used to validate these models. For both production lines, the 

constructed CDA models showed good ability to classify poultry fillets according to their 

storage time with error rates less than 25.00%. However, the constructed CDA models 

showed poor classification ability when tested with 2nd storage trial (error rate: 42.06% and 

62.99% for conventional and alternative, respectively). The high error rates could be 

correlated to the high variations of the bacterial load between the two storage trials for each 

production line. To minimize these variations, the data were regrouped according to their 

microbial load to three quality classes (fresh, semi-fresh and spoiled). For the conventional 

production line, the constructed CDA model showed good ability to classify poultry fillets 

according to their microbial load. The error rates were 23.93% and 24.60% for training and 

testing set, respectively. This indicates that the variations between the two storage trials are 

not high. For the alternative production line, different results were obtained. Even though the 

constructed CDA model showed a good ability to classify poultry fillets according to their 

microbial load (error rate: 14.29%), it failed to classify poultry fillets when tested with the 

2nd storage trial (error rate: 54.33%). This indicates that the variations between the two 

storage trials are too high and that the microbial load is not the only factor that has an impact 

on the collected Raman spectra from the two storage trials. Since fillets of the alternative line 

had significantly higher protein and lower water and intramuscular fat content in comparison 



97 

to the conventional production line, and taking into account that the lipid oxidation and 

autolytic enzymatic spoilage are also considered one of the main mechanisms for meat 

spoilage; high variations from different storage trials will appear in the collected Raman 

spectra which will affect the classification ability. To take these factors into consideration, 

thus minimizing the error rate, and to confirm our findings; a trial repetition with a higher 

sample size is desired. 

The results allow the conclusion that the Raman spectra collected by the portable 

fiber-optic Raman spectrometer in conjunction with chemometric analysis can be used as a 

reliable and fast method to characterize and discriminate samples from different poultry meat 

production systems. 

 

 

The overall results of this thesis revealed that the Raman spectroscopy in conjunction 

with chemometric analysis were able to characterize and discriminate samples from different 

poultry meat production systems and to monitor the spoilage process of poultry fillets at 

different storage days through the evaluation of poultry fillets freshness quality. Moreover, 

the results show that the broader bands due to the low-resolution spectrometer and the 

relatively high fluorescence backgrounds in the portable fiber-optic Raman system do not 

adversely affect the discriminative power of the developed models. Further, the results also 

reflect the high performance and suitability of the pre-processing method used in this work. 

Compared to traditional methods (microbiological and nutrients analysis), Raman 

spectroscopy has proven to be a faster, non-destructive, noncontact and objective method. 

Raman spectroscopy could make off-line (or even on-line) applications possible in the poultry 

industry. However, to make sure that the developed models are effective, to confirm the 

findings and to investigate scenarios in which the models may fail the discrimination; higher 

sample size of microorganism (different strains of the same species, phylogenetically similar 

bacteria) and poultry (same and different production lines) have to be tested by the models. 
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6 Appendix 

 

 

Figure 6.1: Mean of raw Raman spectra for Pseudomonas fluorescens DSM 50090 (P. fluo 5) collected by the 

Microscope system (SENTERRA) and the Portable Fiber-Optic system (QE Pro-Raman). 
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Figure 6.2: The CDA cross-validation error rate over the number of PCs for the conventional production lines 

(training set: 1st storage trial; five investigation times). 
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Figure 6.3: Scatter matrix plot of the score diagrams for the four CVs of the first 10 PCs derived from the pre-

processed Raman spectra of the training data set (1st storage trial) for the five investigation times of 

the conventional production line.  
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Figure 6.4: The CDA cross-validation error rate over the number of PCs for the alternative production lines 

(training set: 1st storage trial; five investigation times). 
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Figure 6.5: Scatter matrix plot of the score diagrams for the four CVs of the first 14 PCs derived from the pre-

processed Raman spectra of the training data set (1st storage trial) for the five investigation times of 

the alternative production line.  

  

CV1 

(77.98%)

-3.1 0.0 3.1 6.2

 1st investigation time

 2nd investigation time

 3rd investigation time

 4th investigation time

 5th investigation time

-4.2 -2.1 0.0 2.1 -2.4 0.0 2.4 4.8

-4.1

0.0

4.1

8.2

CV2 

(14.02%)

-3.1

0.0

3.1

6.2

CV3 

(6.88%)

-4.2

-2.1

0.0

2.1

CV4 

(1.12%)



103 

 

 

Figure 6.6: The CDA cross-validation error rate over the number of PCs for the conventional production lines 

(training set: 1st storage trial; three quality classes). 

 

 

 

 

Figure 6.7: The CDA cross-validation error rate over the number of PCs for the alternative production lines 

(training set: 1st storage trial; three quality classes). 
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Table 6.1: Raman bands (cm-1) observed in spectra of bacterial cells collected by the Microscope system and 

tentative assignment. 

Frequency Assignment References 

410-482 Carbohydrates [119, 167, 168] 

497 S–S vibration (Cysteine) [258, 259] 

521-542 S–S stretching (Cysteine), C–O–C glycosidic ring 

deformation 

[119, 161, 167, 168, 248, 258, 

260]  

578 C–O–C glycosidic ring deformation, Carbohydrates [166, 261] 

599 Cytochrome c [120] 

620 Phenylalanine [120, 161, 166]  

644 Guanine, Methionine, Tyrosine  [119, 120, 161, 164, 166]  

668 Cytosine, Guanine, Thymine [120, 161, 166, 249] 

725 Adenine, Glycoside [122, 161–164]  

743 Adenine, Thymine, Tryptophan [161, 166, 259, 261] 

758 Cytosine, Tryptophan, Uracil [161, 164, 166, 167] 

782 Cytosine, Guanine, Thymine, Uracil, O–P–O− vibration 

(DNA), Cytochrome c 

[120, 122, 158, 161, 163, 164, 

166, 249]  

812 C–C stretching, O–P–O stretching (RNA), Tyrosine [161, 166, 259]  

827 C–C stretching, Tyrosine (Proteins), O–P–O stretching 

(DNA/RNA) 

[120, 166–168, 259]  

854 C–C stretching, C–O–C skeletal mode of α-anomers 

(Polysaccharides, Pectin), Tyrosine 

[120, 122, 161, 167, 259] 

872-912 CH2 stretching, C–C stretching, C–O–C 1,4-glycosidic link [167, 168, 212, 248, 259] 

935 C–C stretching, α-helix (Protein), C–O–C glycos bond 

(Carbohydrates) 

[161, 166, 212, 249, 259] 

947-968 C–C stretching, C–N stretching, Tryptophan, Valine [163, 258, 259, 262–264] 

977 C–C stretching β-sheet (Proteins), =CH bending (Lipids) [161, 166] 

1004 Phenylalanine  [24, 105, 122, 158, 160–162, 

263, 264] 

1031 C–C and C–O stretching (Carbohydrates), Phenylalanine [120, 161, 166, 248, 249, 258]  

1082 C–C and C–O stretching (Carbohydrates), C–N stretching, 

O–P–O (DNA) 

[161, 164, 212, 248, 259]  

1100 Carbohydrates C–C, C–O, –C–OH deformation, C–C 

stretching, C–O–C glycosidic link, O–P–O (DNA) 

[122, 163–166, 248] 

1124 =C–C= (Lipids), C–N stretching, C–C stretching, 

Carbohydrates, Cytochrome c  

[119, 120, 122, 165–167]  

1157 C–C stretching, C–N stretching, Carotene, Carotenoids [22, 120, 160, 161, 167–169]  

1175 Cytosine, Guanine, Thymine, Tyrosine, Cytochrome c [120, 161, 166, 259]  

1190 Carotene, Carotenoids [40, 169, 212] 

1250 Amide III [122, 161–163, 262]  

1337 CH deformation, Amide III, Adenine, Guanine, Tryptophan [122, 161, 163, 164]  

1388 COO– stretching, CH3 bending, Cytochrome c [120, 166, 167, 265, 266] 

1448 CH deformation (Lipid, Protein), CH2 deformation, CH2CH3 

deformation 

[122, 161–164, 249]  

1484 CH deformation, Adenine, Guanine, Nucleic acids [120, 161, 258, 259]  

1529 C=C stretching, Carotene, Carotenoids [22, 24, 120, 167, 169]  

1553 COO− asymmetric (Carbohydrates), C=C stretching, 

Tryptophan 

[161, 166–168, 212, 259]  

1577 Adenine, Guanine, Exopolysaccharide-associated bands  [161, 166–168, 249] 

1607 COO− asymmetric (Carbohydrates), Phenylalanine, Tyrosine  [161, 166–168, 249] 

1661 C=C stretching, C=O stretching, Amide I [105, 122, 160, 161, 248]  
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Table 6.2: Raman bands (cm-1) observed in spectra of bacterial cells collected by the Portable Fiber-Optic 

system and tentative assignment.  

Frequency Assignment References 

519-540 S–S stretching (Cysteine), C–O–C glycosidic ring deformation [119, 161, 167, 168, 248, 258, 

260]  

544-578 C–O–C glycosidic ring deformation [21, 164] 

603 Cytochrome c [120] 

624 Phenylalanine [120, 161, 166] 

641-674 C–S stretching mode of Cystine, Guanine, Methionine, 

Thymine, Tyrosine   

[119, 164, 166, 249]  

700-742 Adenine, Glycoside [122, 162–164]  

780-797 Cytosine, Guanine, Thymine, Uracil, O–P–O (DNA), 

Cytochrome c 

[120, 122, 163, 164, 166, 249]  

797-822 C–C stretching, Tyrosine, Uracil, O–P–O stretching (DNA, 

RNA) 

[161, 164–166, 259, 267] 

830 C–C stretching, Ring breath Tyrosine (Proteins), O–P–O 

stretching (DNA/RNA) 

[120, 166–168, 259]  

847-919 C–C stretching (Carbohydrates), C–O–C 1,4-glycosidic link 

(Carbohydrates) 

[167, 168, 212, 248, 259] 

927-948 C–C stretching, α-helix (Protein), C–O–C glycos bond 

(Carbohydrates) 

[161, 166, 212, 249, 259] 

1003 Phenylalanine  [24, 105, 122, 158, 160–162, 

263, 264] 

1036 C–C and C–O stretching (Carbohydrates), Phenylalanine [120, 161, 166, 248, 249, 258] 

1049-1112 C–C stretching (Lipids, Carbohydrates), C–N stretching, C–O 

stretching (Carbohydrates), O–P–O− stretching (DNA/RNA) 

[119, 161, 164, 212, 248, 259] 

1125-1129 C–C stretching (Carbohydrates, Proteins, Lipids), C–N 

stretching (Proteins), C–O stretching (Carbohydrates), C–O–C 

glycosidic link (Carbohydrates), Cytochrome c 

[120, 158, 161, 167, 168, 212, 

259, 260] 

1159 C–C stretching, C–N stretching, Carotene, Carotenoids [22, 120, 160, 161, 167–169] 

1196-1209 Amide III, Hydroxyproline, Phenylalanine, Tryptophan, 

Tyrosine 

[119, 161, 166, 167, 212, 259]  

1255-1268 Amide III [161–164, 167, 259] 

1331 CH deformation, Amide III, Adenine, Guanine [120, 164, 167, 248]  

1390-1411 COO– symmetric stretching (Carbohydrates)  [164, 167, 168] 

1453-1462 CH2 deformation (Carbohydrates, Proteins, Lipids) [158, 164, 167, 260, 262, 267]  

1529 C=C stretching, Carotene, Carotenoids [22, 24, 120, 167, 169]  

1538 NH deformation, CH deformation, C=C stretching [119, 259] 

1554 COO− asymmetric (Carbohydrates), C=C stretching, 

Tryptophan 

[161, 166–168, 212, 259] 

1580-1592 COO− asymmetric (Carbohydrates), Adenine, Guanine [162, 164, 167, 168]  

1605-1618 COO− asymmetric (Carbohydrates), Phenylalanine, Tyrosine, 

Tryptophan 

[165, 167, 168, 212] 

1664 C=C stretching, C=O stretching, Amide I [105, 122, 160, 161, 248]  

1706 C=O stretching [161, 259] 

1744 C=O stretching (Carbohydrates, Lipids) [161, 167, 168, 212, 259] 
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Table 6.3: Analysis of stage 2 loading plots for Microscope and Portable Fiber-Optic systems. The spectral 

differences among the bacterial genera were based on the Raman bands with the highest variance 

values. The values of Raman shift (RS) were sorted in ascending order. 

 

Microscope Portable Fiber-Optic   

PC1, PC2 and PC3; Figure 2.5(b) PC1 and PC3; Figure 2.6(b) 

RS (cm-1) Observations RS (cm-1) Observations 

476 Pseudomonas has lowest intensity 

value, and it is appears slightly shifted 

in Escherichia when compared to 

Bacillus and Pseudomonas 

. . . . .   . . . . .   

. . . . .   . . . . .   531 Escherichia has the lowest intensity value 

. . . . .   . . . . .   721 Escherichia has the lowest intensity value 

. . . . .   . . . . .   784 Escherichia has highest intensity value and a 

slight shift in position in comparing to 

Bacillus and Pseudomonas 

935 Pseudomonas has lowest intensity 

value  

935 Bacillus has highest intensity value 

1004 Bacillus has highest intensity value  1003 Escherichia has the highest intensity value 

1031 Bacillus has highest intensity value  1036 Present only in Escherichia 

1100 Bacillus has highest intensity value 1100 Escherichia has the highest intensity value 

and a slight shift in position in comparing to 

Bacillus and Pseudomonas 

1124 Bacillus has highest intensity value 1125 Escherichia has the highest intensity value 

. . . . .   . . . . .   1209 Escherichia has the lowest intensity value 

and a slight shift in position compared to 

Bacillus and Pseudomonas 

. . . . .   . . . . .   1255 Escherichia has the highest intensity value 

and a slight shift in position compared to 

Bacillus and Pseudomonas 

1448 Bacillus has highest intensity value  1453 Escherichia has the highest intensity value 

1484 Absent in Bacillus . . . . .  . . . . . 

. . . . .   . . . . .   1538 Escherichia has the lowest intensity value 

and peak splitting compared to Bacillus and 

Pseudomonas 

1661 Pseudomonas has highest intensity 

value  

1664 Escherichia has the highest intensity value 
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Table 6.4: Analysis of stage 3-A loading plots for Microscope and Portable Fiber-Optic systems. The spectral 

differences among the bacterial subspecies were based on the Raman bands with the highest 

variance values. The values of Raman shift (RS) were sorted in ascending order. 

 

Microscope Portable Fiber-Optic   

PC1 and PC2; Figure 2.5(c) PC1 and PC2; Figure 2.6(c) 

RS (cm-1) Observations RS (cm-1) Observations 

425 B. coag has higher intensity value . . . . .   . . . . .   

. . . . . . . . . .   557 B. coag has higher intensity value 

668 B. coag has higher intensity value . . . . .   . . . . .   

725 B. coag has higher intensity value 717 B. coag has higher intensity value 

743 B. subt has higher intensity value  . . . . .   . . . . .   

782 B. coag has higher intensity value . . . . .   . . . . .   

854 B. subt has higher intensity value  . . . . .   . . . . .   

1004 B. subt has higher intensity value  1003 B. subt has higher intensity value 

. . . . .   . . . . .   1062 B. subt has higher intensity value 

1124 B. subt has higher intensity value  1129 B. subt has higher intensity value 

. . . . .   . . . . .   1264 B. subt has higher intensity value 

. . . . .   . . . . .   1331 B. subt has higher intensity value 

. . . . .   . . . . .   1399 B. subt has higher intensity value 

1448 B. subt has higher intensity value  1462 B. subt has higher intensity value 

1577 B. coag has higher intensity value . . . . .   . . . . .   

. . . . .   . . . . . 1664 B. subt has higher intensity value 
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Table 6.5: Analysis of stage 3-B loading plots for Microscope and Portable Fiber-Optic systems. The spectral 

differences among the bacterial strains were based on the Raman bands with the highest variance 

values. The values of Raman shift (RS) were sorted in ascending order. 

 

Microscope Portable Fiber-Optic   

PC1 and PC2; Figure 2.5(d) PC1 and PC2; Figure 2.6(d) 

RS (cm-1) Observations RS (cm-1) Observations 

455 Absent in E. coli K12 . . . . .   . . . . .   

482 E. coli K12 has higher intensity value . . . . .   . . . . .   

. . . . .   . . . . .   519-540 E. coli HB101 has higher intensity value  

. . . . .   . . . . .   573 E. coli K12 has the lowest intensity value 

and a slight shift in position compared to E. 

coli HB101 

. . . . .   . . . . .   624 Present only in E. coli K12 

644 E. coli HB101 has higher intensity value . . . . .   . . . . .   

668 E. coli HB101 has higher intensity value  . . . . .   . . . . .   

. . . . .   . . . . .   725 E. coli HB101 has higher intensity value  

782 E. coli K12 has higher intensity value . . . . .   . . . . .   

812 E. coli K12 has higher intensity value 813 E. coli HB101 has higher intensity value  

827 E. coli HB101 has higher intensity value 830 E. coli HB101 has higher intensity value  

854 E. coli K12 has higher intensity value 860 E. coli HB101 has higher intensity value  

881 E. coli HB101 has higher intensity value . . . . .   . . . . .   

935 E. coli K12 has higher intensity value . . . . .   . . . . .   

1004 E. coli HB101 has higher intensity value 1003 E. coli HB101 has higher intensity value  

. . . . .   . . . . .   1036 E. coli K12 has higher intensity value 

1082 E. coli K12 has higher intensity value 1049-1112 E. coli K12 has higher intensity value 

1124 E. coli K12 has higher intensity value . . . . .   . . . . .   

. . . . .   . . . . .   1209 E. coli K12 has higher intensity value  

. . . . .   . . . . .   1255 E. coli K12 has higher intensity value 

. . . . .   . . . . .   1331 E. coli K12 has higher intensity value 

1448 E. coli HB101 has higher intensity value 1453 E. coli HB101 has higher intensity value  

. . . . .   . . . . . 1613 E. coli HB101 has higher intensity value  

. . . . .   . . . . .  1664 E. coli HB101 has higher intensity value  

. . . . .   . . . . .  1744 E. coli HB101 has higher intensity value  
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Table 6.6: Analysis of stage 3-C loading plots for Microscope and Portable Fiber-Optic systems. The spectral 

differences among the bacterial strains were based on the Raman bands with the highest variance 

values. The values of Raman shift (RS) were sorted in ascending order. 

 

Microscope Portable Fiber-Optic   

PC1 and PC3; Figure 2.5(e) PC1 and PC2; Figure 2.6(e) 

RS (cm-1) Observations RS (cm-1) Observations 

413-437 P. fluo 5 has higher intensity value  . . . . .   . . . . .   

440-482 Broader and less intense for P. fluo 5 . . . . .   . . . . .   

497 P. fluo 5 has higher intensity value  . . . . .   . . . . .   

. . . . .   . . . . .   519-540 P. fluo 5 has higher intensity value  

. . . . .   . . . . .   544-578 P. fluo 5 has higher intensity value  

. . . . .   . . . . .   603 Absent in P. fluo 5 

. . . . .   . . . . .   641-674  P. fluo 5 has higher intensity value  

782 P. fluo 4 has higher intensity value  788 P. fluo 4 has higher intensity value and a 

slight shift in position compared to P. 

fluo 5 

854 P. fluo 4 has higher intensity value  864 P. fluo 5 has higher intensity value 

935 P. fluo 5 has higher intensity value  . . . . .   . . . . .   

959 P. fluo 5 has higher intensity value  . . . . .   . . . . .   

977 Absent in P. fluo 5 . . . . .   . . . . .   

1004 P. fluo 5 has higher intensity value 1003 P. fluo 4 has higher intensity value 

1124 P. fluo 5 has higher intensity value . . . . .   . . . . .   

. . . . .   . . . . .   1196 P. fluo 5 has higher intensity value 

. . . . .   . . . . .   1331 P. fluo 4 has higher intensity value  

. . . . .   . . . . .   1399 P. fluo 5 has higher intensity value  

. . . . .   . . . . .   1462 P. fluo 4 has higher intensity value 

1661 P. fluo 5 has higher intensity value 1664 P. fluo 4 has higher intensity value 
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Table 6.7: Classification results of the bacterial strains collected by the Microscope system via MC-SVM using 

2 PCs. Numbers between brackets represent 75% of the spectra collected for each bacterial strain. 

 
Classification Confusion Matrix, 2 PCs 

 Classif. 

 True 
M. 

lute 

B. 

 ther 

B. 

coag 

B. 

subt 

E. coli 

K12 

E. coli 

HB101 

P. fluo 

4 

P. fluo 

5 
  

M. lute (87) 87 0 0 0 0 0 0 0   

B. ther (86) 0 86 0 0 0 0 0 0   

B. coag (74) 0 0 59 15 0 0 0 0   

B. subt (66) 0 0 22 44 0 0 0 0   

E. coli K12 (87) 0 0 0 0 87 0 0 0   

E. coli HB101 (87) 0 0 0 0 0 75 8 4   

P. fluo 4 (84) 0 0 0 0 1 4 77 2   

P. fluo 5 (84) 0 0 0 0 0 11 3 70   

           

Sens. [%] 100.00 100.00 79.73 66.67 100.00 86.21 91.67 83.33 

A
v

er
ag

e 88.45 

Spec. [%] 100.00 100.00 96.21 97.45 99.82 97.36 98.07 98.95 98.48 

Acc. [%] 100.00 100.00 94.35 94.35 99.85 95.88 97.25 96.95 97.33 

 

 

 

Table 6.8: Validation results of the bacterial strains collected by the Microscope system via MC-SVM using 2 

PCs. Numbers between brackets represent 25% of the spectra collected for each bacterial strain. 

 
Validation Confusion Matrix, 2 PCs 

 Identif.       

 True 
M. 

lute 

B. 

ther 

B. 

coag 

B. 

subt 

E. coli 

K12 

E. coli 

HB101 

P. fluo 

4 

P. fluo 

5   

M. lute (28) 28 0 0 0 0 0 0 0   

B. ther (28) 0 28 0 0 0 0 0 0   

B. coag (24) 0 0 20 4 0 0 0 0   

B. subt (21) 0 0 6 15 0 0 0 0   

E. coli K12 (28) 0 0 0 0 28 0 0 0   

E. coli HB101 (28) 0 0 0 0 0 26 2 0   

P. fluo 4 (28) 0 0 0 0 0 3 25 0   

P. fluo 5 (27) 0 0 0 0 0 5 0 22   

           

Sens. [%] 100.00 100.00 83.33 71.43 100.00 92.86 89.29 81.48 

A
v

er
ag

e 89.80 

Spec. [%] 100.00 100.00 96.81 97.91 100.00 95.65 98.91 100.00 98.66 

Acc. [%] 100.00 100.00 95.28 95.28 100.00 95.28 97.64 97.64 97.64 
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Table 6.9: Classification results of the bacterial strains collected by the Portable Fiber-Optic system via MC-

SVM using 2 PCs. Numbers between brackets represent 75% of the spectra collected for each 

bacterial strain. 

 
Classification Confusion Matrix, 2 PCs 

 Classif. 

 True 
M. 

lute 

B. 

 ther 

B. 

coag 

B. 

subt 

E. coli 

K12 

E. coli 

HB101 

P. fluo 

4 

P. fluo  

5   

M. lute (19) 19 0 0 0 0 0 0 0   

B. ther (19) 0 14 0 0 2 3 0 0   

B. coag (19) 0 0 16 1 0 0 0 2   

B. subt (18) 0 0 1 13 0 0 1 3   

E. coli K12 (19) 0 0 0 0 18 1 0 0   

E. coli HB101 (18) 0 0 0 0 0 18 0 0   

P. fluo 4 (16) 0 0 0 1 0 0 15 0   

P. fluo 5 (19) 0 0 2 5 0 0 0 12   

           

Sens. [%] 100.00 73.68 84.21 72.22 94.74 100.00 93.75 63.16 

A
v

er
ag

e 85.22 

Spec. [%] 100.00 100.00 97.66 94.57 98.44 96.90 99.24 96.09 97.86 

Acc. [%] 100.00 96.60 95.92 91.84 97.96 97.28 98.64 91.84 96.26 

 

 

 

Table 6.10: Validation results of the bacterial strains collected by the Portable Fiber-Optic system via MC-SVM 

using 2 PCs. Numbers between brackets represent 25% of the spectra collected for each bacterial 

strain. 

 
Validation Confusion Matrix, 2 PCs 

 Identif. 

 True 
M. 

lute 

B. 

 ther 

B. 

coag 

B. 

subt 

E. coli 

K12 

E. coli 

HB101 

P. fluo 

4 

P. fluo 

5   

M. lute (6) 6 0 0 0 0 0 0 0   

B. ther (6) 0 5 0 0 0 1 0 0   

B. coag (6) 0 0 2 3 0 0 0 1   

B. subt (6) 0 0 0 3 0 0 0 3   

E. coli K12 (6) 0 0 0 0 6 0 0 0   

E. coli HB101 (6) 0 0 0 0 0 6 0 0   

P. fluo 4 (6) 0 0 0 2 0 0 4 0   

P. fluo 5 (6) 0 0 1 1 0 0 1 3   

          

Sens. [%] 100.00 83.33 33.33 50.00 100.00 100.00 66.67 50.00 

A
v

er
ag

e 72.92 

Spec. [%] 100.00 100.00 97.62 85.71 100.00 97.62 97.62 90.48 96.13 

Acc. [%] 100.00 97.92 89.58 81.25 100.00 97.92 93.75 85.42 93.23 
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Table 6.11: Cross-validation confusion matrix by CDA for the five investigation times of the conventional 

production line (training set: 1st storage trial). Rows represent the true class and the columns the 

assigned class. 

       

Groups: Investigation 

times and their size 
 

Predicted Groups 

 
1st 2nd 3rd 4th 5th 

       

1st; 22 
 

17 2 1 2 0 

2nd; 24 
 

2 18 2 2 0 

3rd; 24 
 

1 3 19 1 0 

4th; 24 
 

1 6 0 17 0 

5th; 23 
 

0 0 2 1 20 
              

       

 

 

 

Table 6.12: Validation confusion matrix by CDA for the five investigation times of the conventional production 

line (testing set: 2nd storage trial). Rows represent the true class and the columns the assigned class. 

       

Groups: Investigation 

times and their size 
 

Predicted Groups 

 
1st 2nd 3rd 4th 5th 

       

1st; 23 
 

15 4 4 0 0 

2nd; 24 
 

1 9 10 4 0 

3rd; 27 
 

7 1 14 5 0 

4th; 24 
 

0 5 2 15 2 

5th; 28 
 

1 1 0 6 20 
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Table 6.13: Cross-validation confusion matrix by CDA for the five investigation times of the alternative 

production line (training set: 1st storage trial). Rows represent the true class and the columns the 

assigned class. 

       

Groups: Investigation 

times and their size 
 

Predicted Groups 

 
1st 2nd 3rd 4th 5th 

       

1st; 21 
 

14 1 6 0 0 

2nd; 28 
 

2 26 0 0 0 

3rd; 24 
 

1 1 19 3 0 

4th; 24 
 

2 2 2 18 0 

5th; 29 
 

0 0 0 0 29 
              

       
 

 

 

Table 6.14: Validation confusion matrix by CDA for the five investigation times of the alternative production 

line (testing set: 2nd storage trial). Rows represent the true class and the columns the assigned class. 

       

Groups: Investigation 

times and their size 
 

Predicted Groups 

 
1st 2nd 3rd 4th 5th 

       

1st; 23 
 

5 5 6 7 0 

2nd; 24 
 

3 10 9 2 0 

3rd; 27 
 

0 8 11 8 0 

4th; 25 
 

0 18 1 6 0 

5th; 28 
 

1 1 1 10 15 
              

       
 

 

 

  



114 

Table 6.15: Cross-validation confusion matrix by CDA for the three quality classes of the conventional 

production line (training set: 1st storage trial). Rows represent the true class and the columns the 

assigned class. 

     

Groups: Quality classes 

and their size 
 

Predicted Groups 

 
Fresh Semi-fresh Spoiled 

     
Fresh; 46 

 
32 14 0 

Semi-fresh; 48 
 

11 37 0 

Spoiled; 23 
 

0 3 20 
          

     
 

 

 

Table 6.16: Validation confusion matrix by CDA for the three quality classes of the conventional production line 

(testing set: 2nd storage trial). Rows represent the true class and the columns the assigned class. 

     

Groups: Quality classes 

and their size 
 

Predicted Groups 

 
Fresh Semi-fresh Spoiled 

     
Fresh; 47 

 
38 9 0 

Semi-fresh; 51 
 

12 38 1 

Spoiled; 28 
 

0 9 19 
          

     
 

 

 

Table 6.17: Cross-validation confusion matrix by CDA for the three quality classes of the alternative production 

line (training set: 1st storage trial). Rows represent the true class and the columns the assigned class. 

     

Groups: Quality classes 

and their size 
 

Predicted Groups 

 
Fresh Semi-fresh Spoiled 

     
Fresh; 27 

 
22 3 2 

Semi-fresh; 34 
 

1 27 6 

Spoiled; 65 
 

3 3 59 
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Table 6.18: Validation confusion matrix by CDA for the three quality classes of the alternative production line 

(testing set: 2nd storage trial). Rows represent the true class and the columns the assigned class. 

     

Groups: Quality classes 

and their size 
 

Predicted Groups 

 
Fresh Semi-fresh Spoiled 

     
Fresh; 47 

 
11 17 19 

Semi-fresh; 46 
 

0 16 30 

Spoiled; 34 
 

0 3 31 
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