
Domain Adaptation for

Image Recognition and

Viewpoint Estimation

Dissertation

zur

Erlangung des Doktorgrades (Dr. rer. nat.)

der

Mathematisch-Naturwissenschaftlichen Fakultät

der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Pau Panareda Busto
aus

Barcelona, Spanien

Bonn, 2020



Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät

der Rheinischen Friedrich-Wilhelms-Universität Bonn

1. Gutachter: Prof. Dr. Jürgen Gall

2. Gutachter: Prof. Dr. Zeynep Akata

Tag der Promotion: 02.09.2020

Erscheinungsjahr: 2020



Abstract
by Pau Panareda Busto

for the degree of

Doctor rerum naturalium

Image-based recognition tasks require in their training phase large amounts of data

to capture as much visual traits as possible. In many situations, however, the collection

of image data implies a tedious effort or, even worse, the test scenarios remain unknown.

On top of that, the labelling process is very time consuming, expensive and prone to

error. This means that the access to fast, cheap and accurate labelled data arises as

ones of the main challenges in classification problems. In this work, we present three

major contributions that pursue the attenuation of these issues in image recognition

and viewpoint estimation problems. Overall, the main goal is reducing the amount of

data collection and labelling effort.

In order to achieve that, we firstly introduce a novel domain adaptation method

that allows datasets from different domains to take part in the training process and

contribute to improved classification accuracies. We also revise the unrealistic setting

of domain adaptation evaluation datasets and introduce open set domain adaptation

for target domains that also contain irrelevant samples that belong to unknown classes.

Then, we also propose an optimisation process for fine viewpoint labelling and

use synthetic data to refine viewpoints that are coarsely annotated by humans in real

images. To this end, due to the differences between the real and the synthetic data, we

apply domain adaptation to align both domains and improve the viewpoint refinement.

The results have shown that 3D generated models can be successfully used to refine

labels in real images.

We finally present an end-to-end multi-task neural network that jointly trains view-

points and keypoints of rigid objects. We also reinforce the real training data with a

novel synthetic dataset that contains annotations for both problems. The experiments

show that the proposed approach successfully exploits this implicit correlation between

the tasks and outperforms previous techniques that are trained independently.
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Chapter 1

Introduction

”The Bundesliga is different from La

Liga, it’s different from Serie A, it’s

different from the Premier League, so

you have to adapt to the

circumstances.”

—MICHAEL LAUDRUP (1964−)

ex-football player & coach
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1.1 Motivation

We define computer vision as the understanding of the real world through the analysis

of an image or a video sequence with one or more cameras. In an abstract way, it tries

to replicate human vision capabilities which, at some point, will enhance our own ones.

These comprise from the visual perception of tangible elements to the interpretation

of events, just in the way a cognitive process would do. Therefore, a vision system

usually provides a response in the form of visual enhancements and/or decisions from

prior scene estimations.

Computer vision applications have become an efficient solution to daily tasks that

involve a wide range of interactions between humans and their surroundings. Indeed,

the recognition of well-defined objects using cameras is one of the most critical as-

pects of these systems. Some examples include the early detection of errors in the

automatised quality control of manufacturing factories that produce large quantities

of the same product, the suggestions of similar items to indecisive customers in online
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shopping sites and the correct detection of speed limit signs in highways for sticking to

the maximum speeds allowed by law for road vehicles. For these three scenarios, be-

haviours like overlooking faulty products, the inclusion of non-related sale items on the

customer’s screen and the configuration of wrong numbers in the speed regulation func-

tion, respectively, derive in the immediate degradation of the offered feature, which

therefore becomes unusable. The source of all these problems: a poor image-based

object recognition.

More specifically, computer vision applications are often focused on identifying

the differences of a set of discrete categories. Therefore, they classify an object to

a known class by assigning a label to a given image or a selected region of it. This

class identification has been coined in the field of computer vision as object recognition

or classification. This recognition process might be applied to not only identifiable

objects, e.g. car, motorbike, and truck, but also to any discretisable information seen

in the image, e.g. set of viewpoints of a specific object, global image information that

defines weather conditions or geographic traits and unique instances like human faces.

In general, image-based object recognition makes use of supervised machine learn-

ing techniques in order to learn, in the training phase, the best possible classifier that

decides, in the test phase, what label is assigned to every new incoming image. As

illustrated in Figure 1.1, this learning process requires as input images and manu-

ally annotated labels that specify what class is associated to what image region. The

training of the classifier usually happens before the test phase starts, i.e. offline, and

optimises the best possible separation among all labelled classes in a multi-dimensional

space of feature descriptors computed for every image. Then, test images are sent to

the classifier, which outputs the predicted result in the form of a class label or a list

of class probabilities.

Classifier
training
images

manual 
annotations

class
label

Test 
(Recognition)

class 4

class 3

class 1

class 2

Training

supervised
learning

test
image

"car"

Figure 1.1: Pipeline of a standard object recognition task, including an offline training
phase (blue) and its posterior test phase (red), where the trained classifier assigns a
label to the incoming test images.

In order to guarantee the best possible recognition results and consequently a

classifier that accurately recognises the list of trained objects, the images used in

the training phase must derive from the same scenario where the test phase happens.

Besides, the amount of training images must suffice and provide enough examples of the

object classes involved in this task. Both requirements are, however, very challenging

in many situations and might not be fully satisfied.
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1.2 Problem Description

The collection of high quality training data becomes a key component in the success

of object recognitions tasks. Under these circumstances, we encounter two important

challenges when preparing the training data.

Firstly, the lack of training samples of the scenarios we want to deploy the recog-

nition system. Due to the specificity or rareness of some situations, it might be very

hard to find enough data of the classes of interest, regardless of the amount of stored

images. Similarly, we can gather a considerable amount of images, but unfortunately

only find object samples with the same shape and viewpoint, inducing not enough

variety to describe the class in the training set. In extreme cases, it is possible to have

no training data for a given class, either for not finding any sample in the recorded

scenes or because the test scenario is still unknown.

Secondly, the biological constraints of humans when annotating images also have

an impact in the trained classifier. Humans are very efficient at high-level labelling,

where visual differences among classes are clear and well defined. However, they lack

precision at fine tasks that go beyond human levels of perception. On top of that, the

labelling effort is very taxing and quality decreases over time, i.e. manual annotations

are prone to error, at the same time that the labelling process slows down.

A straightforward solution to the presented issues is including additional training

data that has been previously collected for other or similar purposes [Park et al.,

2016, Dobrescu et al., 2017]. The drawback of this first attempt is not the availability

of usable datasets, but the visual differences between this additional training data

and the expected test images. That is, although we can re-use or even re-annotate

existing images for our application, the differences between training and test images

will likely hinder the quality of our trained system. For instance, the multi-dataset

image collection by Saenko et al. [2010] exemplifies the negative impact of learning

classifiers with datasets that do not belong to the same domain as the test images. This

data collection includes 4 datasets with the same 10 classes. Examples of one of these,

monitor, for each dataset are shown in Figure 1.2a. If we evaluate the performance of

the trained classifiers against the test data of all datasets, as depicted in Figure 1.2b,

we observe that the accuracies, defined as the percentage of correct classified categories,

of the 10-class classifiers that belong to the same dataset obtain the best results by

a significant margin. We use support-vector machines [Cortes and Vapnik, 1995] (see

Section 2.1.2 for more details) as decision classifiers. For the DSLR and Webcam

datasets, which were recorded in the same scenarios but with different camera sensors,

this behaviour still holds but to a lesser extent. Therefore, less visual differences among

datasets, also known as domain shift, implies better accuracies.

In general, common dissimilarities among datasets arise due to the following set-

tings and characteristics:

• Camera specification (hardware and software): colour filter array, exposure times,

lens distortion, level of sharpness, undesired noise, . . .

• Extrinsic factors: day vs. night light conditions, sunny vs. foggy weather condi-
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Amazon Caltech DSLR Webcam

(a) Examples of monitor instances of 4 different datasets.
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Average classification accuracy in a 10-object recognition task

Amazon Caltech DSLR Webcam

Training Data

(b) Classification accuracies of 4 datasets with 10 object classes.

Figure 1.2: Evaluation of classification accuracies on the multi-dataset collection in-
troduced by Saenko et al. [2010]. We present all possible combinations of trained
classifiers evaluated on test samples for a total of 4 datasets: Amazon, Caltech, DSLR
and Webcam. We make use of the supervised learning model called support-vector ma-
chines [Cortes and Vapnik, 1995] as decision classifier. The best results are reported
by the classifiers learned and tested on the same dataset. The number of training and
test images for each dataset is equated and do not affect the final results.
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INRIA TUD DaimlerBahnhof OwnCVC

Real Images Virtual (Synthetic) Images

Figure 1.3: Examples of human datasets with their summed intensities of humans sam-
ples (top) and non-human related samples (bottom), i.e. background, from histograms
of oriented gradients [Dalal and Triggs, 2005]. From left to right, these datasets were
presented by Dalal and Triggs [2005], Wojek et al. [2009], Ess et al. [2008], Enzweiler
and Gavrila [2009] and Maŕın et al. [2010].

tions, urban vs. countryside background scenes, . . .

• Intrinsic configurations: viewpoint, pose of non-rigid objects, subclasses, tex-

tures, attached accessories, . . .

Figure 1.3 includes real images of humans that despite of differing in all three

categories are still grouped in the same object class pedestrian.

Another widely used approach is the creation of synthetic data, either by generat-

ing new images from rendered 3D graphics models for each object class or by altering

the already existing training images, e.g. calculating linear and perspective transfor-

mations.

From the former, only a selection of refined 3D models and a graphics engine are

required to generate thousands of samples in just a few minutes [Peng et al., 2015,

Su et al., 2015]. Annotations are also fully automatised, providing pixel-precision

bounding boxes that represent the image region containing the object of interest. Other

labels such as viewpoints and depth can also be extracted from the render without

human intervention. However, the preparation of a considerable number of fine meshes

with textures might become very challenging. Besides, these virtual images barely

contribute to the overall performance due to their poor photorealistic results. A visual

comparison between real and computer generated images of pedestrians is shown in

Figure 1.3. We observe that the differences of the features computed from histograms

of oriented gradients [Dalal and Triggs, 2005] (see Section 2.2.1 for more details) are

more noticeable on the synthetic datasets. Renders with high levels of realism are

unfortunately a very costly and time consuming effort and still differ to a large degree

from real datasets when comparing their computed feature descriptors. The impact of

including computer generated data with two different levels of realism is reported in

Figure 1.4. We observe that textured cars allow for a slight classification improvement

compared to the non-textured cars that even decrease the accuracy when estimating

the viewpoint of vehicles at different fine levels.
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Synthetic (Textures)Real - EPFL Synthetic (No textures)

(a) Exemplars of the three car datasets.
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(b) Classification accuracies on the EPFL dataset for 4, 8 and 16 viewpoints.

Figure 1.4: Classification accuracies on the real dataset EPFL presented by Ozuysal
et al. [2009] for different levels of car viewpoint granularities: 4, 8 and 16 views. A
textured and a non-textured synthetic datasets are also employed for training the
support-vector machine classifiers evaluated on the test data. The addition of well
curated synthetic images (with textures in this example) to the real training data
leads to better results.

From the latter approach, we can process the images by computing linear trans-

formations, adding noise and altering the light conditions, among others, in order to

modify the appearance of the object sample, as presented in Figure 1.5. Nonetheless,

the quantity of additional valuable information is highly constrained by the provided

data and thus classification improvements are marginal. Hence, data augmentation

is mostly applied to avoid overfitting, i.e. prevent a poor generalisation of the object

classification based on the limited number, given the case, of training images.

These aforementioned strategies that introduce training data that differ from the

test domain derived in a new field of study that intends to alleviate the dissimilarities

between training and test datasets in order to produce better classification results [Wu

and Dietterich, 2004, Yang et al., 2007, Mansour et al., 2009]. This methodology is

called domain adaptation and addresses the problem of leveraging training images

recorded in other scenarios, denoted as source data, to the problem relevant train-

ing and test images (if available), denoted as target data. Therefore, the source and

target datasets belong to at least partially different domains, i.e. there exist a do-

main shift. While these adaptation techniques have a lot of potential, current domain

adaptation algorithms are highly hand-crafted for specific scenarios, e.g. semantic seg-
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(a) Original Image

(b) Cropped object region

(c) Data augmented samples

Figure 1.5: Data augmentation of an image portion (a) for a single object sample
(b). The image transformations in (c) are the following (from top to bottom and from
left to right): mirroring, bounding box offset, Y-axis scaling, bounding box scaling,
perspective transformation and contrast alteration.

mentation [Zhang et al., 2017b], or techniques, e.g. tuning the level of adaptation of

each layer in deep neural networks [Cariucci et al., 2017].

More recently, multi-task learning appears as another interesting solution to im-

prove the classification performance when the amount of training data is limited [Socher

et al., 2012, Doersch and Zisserman, 2017, Kendall et al., 2018]. We define multi-task

learning strategies as the joint training process of correlated problems that benefit

from each other in order to improve the overall results. More concretely, other com-

puter vision problems such as optical flow and depth estimation with different labels

but with a common interest in the object understanding, will likely transfer relevant

information to our recognition task. Another side-effect of this approach is the saved

effort of not re-annotating datasets for our specific needs or not having the need to

collect new images, but simply adding new labels to our dataset.

1.3 Contributions

Based on the presented data collection issues and solutions, we propose several im-

provements in order to alleviate the process of curating training data, while at the

same time we improve the object recognition accuracies.

Firstly, this dissertation contributes in the field of object recognition by introducing

a novel domain adaptation algorithm that is very flexible to a wide range of problems

and simultaneously obtains significant improvements in classification accuracies. This

technique alleviates the issues presented in the utilisation of training data from other

domains and allows them to become an active part of the learning process. In addition,

we focus on understanding the insights of viewpoint estimation for rigid objects, e.g.

7
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Figure 1.6: Domain adaptation from the source to the target domain in an itera-
tive process with progressive linear transformations of the source towards the target
dataset. There are 8 classes represented in the image. The source domain contains 8
clusters (circles) and the target domain contains unlabelled samples (crosses).

vehicles, appliances and daily tools, and present state-of-the-art results on this topic.

Particularly, we pay attention to the unseen applicability of domain adaptation in the

estimation of viewpoints between real and synthetic, i.e. computer generated, images.

We thus bridge the gap between the accurate fine pose annotations of unrealistic

synthetic images and the coarse but real images of the test scenario we evaluate our

method. Finally, we also introduce an efficient end-to-end pipeline that combines in

its learning framework viewpoints and keypoints and validates the usage of multi-task

learning approaches. We also obtain state-of-the-art results on both topics.

1.3.1 Domain Adaptation

The main contribution presented in this thesis applies to the field of domain adapta-

tion for object recognition tasks. We present a novel domain adaptation algorithm that

transforms (and thus aligns) the source data towards the target data, which is part

of a different but similar visual domain, as shown in Figure 1.6. This process is done

iteratively and associates in every iteration the labelled training samples, clustered

per class label, and the unlabelled test images. We demonstrate that this technique

combines several positive aspects that have not been presented in the literature before.

In first place, this algorithm accommodates to scenarios where not only all test images

belong to the same known classes of the training data, but also to more challenging sce-

narios where some classes are still unknown (see contribution in Section 1.3.2 for more

details). Then, we also demonstrate that the proposed domain adaptation also works

for action recognition, where we evaluate video sequences and not single frames, and

viewpoint estimation, where we adapt poses as classes at sub-category level. Thirdly,

this iterative process is resilient to data compression, reporting the same accuracies

with up to 20% of the feature descriptor dimensions. And last but not least, the overall

results of our method outperform well-established domain adaptation algorithms in all

the test evaluations, including several deep learning approaches. This algorithm be-

longs to our work presented in Panareda Busto and Gall [2017], which is also adapted

in Panareda Busto et al. [2015] for viewpoint estimation problems.

8
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1.3.2 Open Set Recognition

Source

Labelled classes Irrelevant classes

Target

Unknown data with relevant images

Figure 1.7: Outline of an open set domain adaptation problem. The target data
contains not only relevant images for our application, but also samples that belong
to unknown and uninteresting classes. Optionally, this might also occur to unsorted
source data.

All domain adaptation publications prior to our work in Panareda Busto and Gall

[2017] and Panareda Busto et al. [2018] were evaluated on a unique setting, where the

same classes are shared between the source and target domains. However, in many

real applications, the target images contain irrelevant images that do not belong to any

class of interest. The same applies to the training images of other domains, where the

re-used datasets contain additional classes that are not part of the recognition system

under development. Therefore, we introduce open set domain adaptation, including

additional training and test samples of unknown classes that are not relevant for the

primary recognition task, as shown in Figure 1.7. This new scenario broadens the

field of domain adaptation and encourages future works to take more realistic and

challenging configurations into account. We also report that our adaptation technique,

mentioned as a contribution of this thesis in Section 1.3.1, directly acclimates to this

new scenario. Therefore, all these uninteresting and/or unknown images are processed

to reduce an undesired impact on the relevant classes of interest in the learning phase

of our application.

1.3.3 Viewpoint Estimation

In addition, we also present two contributions in the field of viewpoint estimation for

rigid objects.

In the first approach, we take advantage of the full 360◦ span of viewpoint anno-

tations that are automatically created when rendering synthetic images. Based on the

assumption that humans fail at labelling fine-grained poses, we request them to sim-

ply annotate coarse viewpoints. These labels are then refined using a classifier trained

with domain adapted synthetic images, i.e. aligned to the feature space of real images

with our proposed domain adaptation technique. As illustrated in Figure 1.8, this

adaptation process associates target samples to clusters of synthetic images with fine

9
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"front-right" "rear""rear-right" "right"

200°
330° 175° 265°

Figure 1.8: Assignment of real images with coarse annotated viewpoints to clusters of
fine-grained viewpoints of synthetic data. These are then used on a standard optimi-
sation problem to compute a transformation matrix that aligns the source towards the
target domain.

viewpoints and transform them based on these associations. The viewpoint classifiers

learned with the resulting refined training datasets can easily be embedded after any

traditional object detector, taking the detected bounding boxes as input. This part

of the thesis was presented in the following publications: Panareda Busto et al. [2015]

and Panareda Busto and Gall [2018].

The second contribution shows how the joint training of viewpoints and keypoints

using an end-to-end deep neural network architecture allows for better estimations on

both problems. Specifically, embedding the viewpoint classifiers into a backbone for

keypoint estimation produces increased accuracies and reduced median errors in the

viewpoint angle. This is especially noticeable when no synthetic data supports the

neural network learning process. This second contribution in viewpoint estimation

was recently published in Panareda Busto and Gall [2019], obtaining state-of-the-art

results on popular evaluation datasets.

All articles mentioned in this Section also demonstrate through a rigorous evalu-

ation that dealing with the estimation of viewpoints as a standard object recognition

problem usually obtains better results than regression formulations. In this configura-

tion, fine viewpoints are treated as independent classes.

1.3.4 Keypoint Estimation

The annotation of keypoints requires a tedious effort. Therefore, we propose two

solutions in order to improve the keypoint estimation while not requiring any additional

labelling.

10
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Figure 1.9: Visualisation of the 3 viewpoint angless, i.e. azimuth (orange), elevation
(red) and tilt (yellow), and the keypoints of a car. The displacement of the non-
occluded keypoints will remain the same for all car instances that are placed with the
same pose.

As already discussed in the previous Section 1.3.3, including viewpoint annota-

tions in the learning process suffices to get more precise keypoints. This proofs that

highly-correlated tasks can benefit from each other when trained together on the same

supervised model. A sketch of both tasks is shown in Figure 1.9, including the 3

viewpoint angles, azimuth, elevation and tilt, and all keypoints of a vehicle.

Furthermore, we present a novel synthetic dataset with automatically generated

keypoints for a total of 12 rigid classes. Given a 3D rendering of a rigid object, the only

necessary manual intervention is placing spheres at every 3D location of interest. All

remaining steps, including the occlusion handling and the projection of the 3D keypoint

from its world position to the 2D image coordinate, are fully automatised. The learning

process using this dataset outperforms those with only the real images. This second

contribution in viewpoint estimation was recently published in Panareda Busto and

Gall [2019].

1.4 Dissertation Outline

The dissertation is structured in seven chapters, being chapters 4, 5 and 6 the core of

this work. Before this main block, the two chapters that follow this introduction are

focused on the fundamentals needed to better understand the major contributions of

this thesis.

The code of this thesis is publicly available at: https://www.github.com/Heliot7.

We refer to the summary of Publications on page xix for the code repositories of each

specific publication.

• In Chapter 2 we present the fundamentals needed to better understand the

algorithms and strategies introduced in this thesis.

• In Chapter 3 we summarise the literature that is highly related to the topics

presented in this thesis.

11
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• In Chapter 4 we present open set domain adaptation and a domain adaptation

technique that deals with irrelevant data on the target domain. This method

works not only for open sets, but also for standard domain adaptation protocols.

• In Chapter 5 we present the applicability of domain adaptation to the task of

viewpoint estimation and propose a pipeline to avoid the labelling errors made

by humans on fine annotations.

• In Chapter 6 we present a joint training of viewpoints and keypoints with real

and synthetic data by designing an end-to-end deep neural network.

• In Chapter 7 we expose the conclusions of this thesis. Extensions of the pre-

sented methodologies are also extensively discussed.
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Chapter 2

Technical Background

”I find it terrible when talents are

rejected based on computer stats.

Based on the criteria at Ajax now I

would have been rejected. When I

was 15, I couldn’t kick a ball 15

meters with my left and maybe 20

with my right. My qualities technique

and vision, are not detectable by a

computer.”

—JOHAN CRUYFF (1947−2016)

ex-football player & coach
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2.1 Visual Object Classification

As we already discussed in Chapter 1, object classification tasks generally require a

supervised classifier that decides whether an incoming test image belongs to one of

several known classes, learned from a set of training images that are accordingly la-

belled. These classifiers are divided into two distinctive approaches: generative and

discriminative. Formally, the two categories can be described as follows: given an

input example in feature space x ∈ RD, with D dimensions, and an object class y, a

generative classifier learns a statistical model of the joint probability p(x, y) and clas-

sifies test images based on posterior probabilities p(y|x). These are obtained by using

Bayes’ rule, i.e. with prior probabilities p(y) and class-conditional densities p(x|y). In

contrast, a discriminative classifier directly models the posterior probability p(y|x) or
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p(x|y=+1)
p(x|y=-1)p(y|x)

Figure 2.1: 2D sketch of two distributions for classes y = {−1,+1} and their discrimi-
native decision boundaries based on the conditional probability of being class y given
the observation x.
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Figure 2.2: Test images containing either cars or motorbikes are correctly classified,
excepting an image with motorbikes that are wrongly classified as car.

learns a map from the input sample to the class label y = f(x), based on the training

data. For instance, if we want to assign a label y from two classes {−1,+1}, a dis-

criminative learning approach reduces to the binary question if a given image contains

one object or the other. Figure 2.1 depicts the differences between both models in

such a binary problem. A more specific example of a discriminative model between

the classes motorbike and car is shown in Figure 2.2 with a linear separation between

test images of both classes and a misclassified sample of a motorbike that lies on the

wrong side of the decision boundary.

Empirically, not only discriminative approaches tend to result in better recognition

accuracies, but are also usually easier to formulate, since generative models hardly build

robust models with only a few parameters [Ng and Jordan, 2002]. For this reason, the

great majority of current methodologies have opted for using discriminative classifiers

for object recognition tasks. This thesis also emphasises on discriminative solutions,

including the 3 classifiers described in the following sections.
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(a) Initialisation of NN (b) 1-NN Classifications (c) 3-NN Classifications

Figure 2.3: Class assignment using a Nearest Neighbour (NN) approach for 5 different
classes. (a) In the initial setting, we encounter labelled training samples (coloured)
and unlabelled test samples (grey). (b) k = 1: a given test sample gets the label of its
closest training sample. (c) k = 3: a given test sample obtains the most represented
label among its 3 closest training samples.

2.1.1 k-Nearest Neighbour

One of the simplest methods for object classification is the so-called nearest neighbour

(NN), which requires no training process. For every new test sample that we want to

classify, the algorithm assigns the object class label of the closest training example.

In order to increase the robustness against outliers, the algorithm generalises to the

k-nearest neighbours, i.e. checks the annotated label of the k closest training examples.

The assigned class label is therefore the one with the highest number of occurrences.

Examples of NN and k-NN are shown in Figure 2.3.

This method, however, has two major drawbacks: (1) an exhaustive search of all

training examples is necessary for each test example and (2) outcomes tend to be

biased when one class dominates over the others with many more examples. Both

issues are typically attenuated by using fast search structures like kd-trees [Mount,

2010] and weighting the distances between training and test examples, respectively.

A more robust version is presented in the Naive-Bayes nearest neighbour (NBNN).

Assuming uniform class priors, the posterior probabilities are reduced to maximum

likelihoods, which are efficiently approximated using the closest example neighbours for

each class [Boiman et al., 2008]. In some applications, this method reports competitive

results regardless of its extremely modest formulation.

2.1.2 Support-Vector Machine

Given a set of training images from two different classes that are linearly separable,

a support-vector machine (SVM) constructs a hyperplane in a D-dimensional space,

which separates the training examples of both classes by maximising the margin be-

tween them [Cortes and Vapnik, 1995]. We define the following quadratic formulation,

represented in Figure 2.4a:
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Figure 2.4: Visual representation in 2D of a 2-class linear separation using a support-
vector machine. (a) Maximum separability with a linear SVM. (b) Soft-margin sepa-
rability with slack variables ξ..

argmin
w,b

1

2
||w||2

subject to

yn(wTxn + b) ≥ 1 n = 1..M +N,

(2.1)

where M and N are the amount of training samples for class labels y = +1 and

y = −1, respectively, and xn is a training sample associated to yn. The decision

values of the classifier y(x) = wTx + b for the test sample x are formed by affine

weights w and a bias term b, which can be computed using standard quadratic solvers,

e.g. Lagrange multipliers. However, features from different classes are commonly non-

separable and additional unknowns, namely slack variables ξn, extend the formulation

to allow for misclassifications, i.e. moving from a hard to a soft margin scheme, as shown

in Figure 2.4b. Therefore, the final minimisation function of (2.1) adds C
∑M+N

n=1 ξn
with 1− ξn on the right hand side of its constraint with the input parameter C, which

modules the tolerance of wrong classifications. The lower the value C, the softer the

margin.

SVMs can also define non-linear separations by mapping the data into a higher di-

mensional space, φ(x). Since this mapping appears in dot products throughout the ex-

tended formulations, they can be replaced by kernel functions, k(xi, xj) = φ(xi)
Tφ(xj),

known as kernel trick, that implicitly map the data to the higher-dimensional space

without having to compute φ explicitly. Valid kernel functions must be positive def-

inite symmetric and thus satisfy the Mercer’s theorem [Smola and Schölkopf, 1998].

Examples of commonly used kernels are the polynomial kernel, k(xi, xj) = (xTi xj+1)p,

and the radial basis function kernel, k(xi, xj) = exp− (xi−xj)2
2θ2

.
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Figure 2.5: Representation of a biologically inspired perceptron (a) and its multi-layer
version with hidden layers (b).

There are two main strategies that extend the binary decision nature of SVMs into

a discriminative method for K object classes, being K > 2. The one-vs-all approach

learns K classifiers, training each object category against all training samples from

the remaining classes. We assign the label y = max(y1..K(x)) to the test example x.

On the contrary, the one-vs-one approach learns K(K− 1)/2 classifiers by training all

possible combinations of the K classes. The class with the most number of votes is

assigned.

2.1.3 Neural Network

Neural network models derive from the family of the biologically inspired percep-

trons. A (single-layer) perceptron corresponds to a generalised linear discriminant

that through an activation function σ, e.g. Sigmoid,

σ(x) =
1

1 + e−x
, (2.2)

or hyperbolic tangent (tanh), returns a discriminative prediction given an input vector

x, as depicted in Figure 2.5a. Activation functions are usually non-linear, i.e. con-

tinuous differentiable, in order to better model complex data, e.g. images, and decide

whether an input vector (neuron) must be triggered or not, approximating a binary

decision. Adding an additional hidden layer with an arbitrary number of nodes, con-

tinuous functions are then approximated in the form of a fully connected network that

at the end of its model contains k different outputs. The network weights W are then

trained by minimising the error between true training labels yn for the examples xn
and the estimated output labels fk(xn):

Ek(W ) =
∑
n

L(yn, fk(xn;W )) , (2.3)
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where L represents the loss function, e.g. least-squares (L2 distance) or cross-entropy,

for the final learnt decision function of output k with one hidden layer, as illustrated

in Figure 2.5b:

fk(xn) = σ(
h∑
i=0

W
(2)
ki (

d∑
j=0

W
(1)
ij xnj)) . (2.4)

By stacking more hidden layers, neural networks, i.e. multi-layer perceptrons, become

deep enough to better describe and discriminate object categories at the cost of having

a training phase that is computationally expensive, since the weights in every hidden

layer need to be jointly updated. This process can be done by using the gradient

descent method provided f is differentiable, whose gradients of the loss function are

computed through backpropagation [LeCun et al., 1998].

Neural networks for computer vision applications receive images as input data and

therefore a few modifications in the model are necessary to understand the 2D spatial

layout of images. Hence, this considerably more complex network architecture requires

a few adaptations to efficiently cope with an additional dimension and the implicit

spatial relations among neighbouring pixels. The first and most relevant building

block are convolutional layers, which substitute fully connected layers from standard

neural networks to save computational time with the assumption that the network is

locally connected and that the information is shared by using the same parameters

and convolutions, i.e. learned weights. A convolution of functions f and g is expressed

as

(f ∗ g)(t) =

∫ −∞
∞

f(x)g(t− x)dx (2.5)

in its continuous formulation shifted by t. Its discretisation for a given pixel (i, j) in

image I is written as

(f ∗ I)[i, j] =

bP2 c∑
pi=−bP2 c

bP2 c∑
pj=−bP2 c

f [pi, pj ]I[i− pi, j − pj ] (2.6)

for a squared kernel g of path size P ×P . In this type of layer, function f operates as

a 2D weighting kernel over I, which is an input image or a feature map for initial or

intermediate layers, respectively. Besides, there is at each convolutional layer not just

one but a list of filters that are appended in the depth channel, resulting in structures

of size width×height×depth. Networks that use convolutional layers receive the name

of convolutional neural networks (CNNs).

After the convolutional layer, a non-linear activation function is applied. Currently,

rectified linear units (ReLu),

σ(xi) = max(0, xi) , (2.7)
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Figure 2.6: Two basic layers in convolutional neural networks: (a) plot with popular
non-linear activation functions and (b) example of max-pooling subsampling from a
4x4 to a 2x2 patch.

are preferred than Sigmoid and hyperbolic tangent functions, since its simplicity speed-

up the optimisation process. In addition, ReLus favour sparsity, which tend to be more

beneficial than dense representations, and for values of xi > 0 the gradient does not

vanish and remains constant. Figure 2.6a shows these three different types of activation

functions.

The next major building layer produces spatial pooling to reduce the image di-

mensionality, i.e. subsampling. Standard strategies either average among all pixels or

propagate the highest value of a given patch. An example of a reduction by half is

shown in Figure 2.6b. Downsampling is also achieved with a stride in the convolu-

tions, which skips after each convolution a given number of pixels. The main goal of

pooling is capturing higher-levels of image information and gaining spatial robustness

in the computed features. More specifically, the initial levels of hidden layers become

self-crafted feature descriptors moving from a lower to a higher-level of abstraction by

appending consecutive convolutions with interleaved pooling layers.

At the end, the concatenation of these layers result in a feature map, previously

normalised, that becomes the input of deeper layers based on the same principle. Slight

changes, including different types of convolutions and avoiding pooling steps are used

along the CNN architecture. The last part of the system contains fully connected

layers that act as object classifiers. A softmax activation function is commonly used

for transforming the last layer into class probabilities that sum to 1 and is expressed

as

σ(x)i =
exp(xi)∑K
j=1 exp(xj)

(2.8)

for the feature x of class i normalised by the sum of all K output dimensions, i.e.

classes, which is usually optimised defining a cross-entropy loss function, Lcross, that

measures the error of the softmax probabilities given by

Lcross = −
K∑
i=1

yilog(σ(xi)) , (2.9)
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Figure 2.7: Scheme of a convolutional neural network for digit recognition with con-
catenated convolutional, pooling and fully connected layers. A 32x32 input image feeds
the network with 10 outputs from digit ’0’ to ’9’. From [LeCun et al., 1998].

where yi is a binary indicator that states whether class i is assigned to the input

sample of the network. An example of an end-to-end architecture for digit recognition

is shown in Figure 2.7.

Currently, deep CNNs have significantly outperformed previous supervised learn-

ing methods and produce state-of-the-art results in object classification tasks. Since

CNNs are also widely used for learning complex feature encoders, the output of CNN

layers as feature descriptors are further described in Section 2.2.2.3. In spite of its

high accuracy in object recognition, neural networks require large amounts of data

and a deep structure, i.e. a large number of concatenated layers, to cope and process

as much scene and class information as possible. Although these requirements pro-

duce impractical computational times for training models with millions of unknowns,

the recent advances in hardware and design optimisations have highly reduced the

training times of deep neural networks. The first seminal work with top object clas-

sification accuracies was presented in the AlexNet model by Krizhevsky et al. [2012],

which outperformed by a large margin not only previous CNN methods, but also other

techniques, e.g. SVM-based methods, in popular object recognition challenges. This

network is modelled as a 1000-object classification system.

Some computer vision problems are solved by estimating a 2-dimensional feature

map as output of the CNN. In this case, image labelling appears at pixel level when

annotating semantic labels, e.g. segmentation tasks, or heat maps, e.g. keypoint esti-

mation. The networks are in most of the cases fully convolutional and are optimised

employing a modified cross-entropy loss of (2.9) in 2D space or a regression formu-

lation that predicts continuous values, respectively. From the latter, the Euclidean

loss function between the predicted value y in the last layer of the CNN and a given

training sample x is formulated as

Lreg =
∑
i=1

∑
j=1

‖f(xij)− yij‖22 (2.10)

along all indexes of a 2D map of a given height and width.
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Image gradients Keypoint descriptor

Figure 2.8: Extracted SIFT features from a region of interest with its 4x4 sub-patch
representation. From [Lowe, 2004].

2.2 Feature Descriptors

During the last decades, there has been many ways of representing images, interest

points or annotated objects, in order to better describe their visual traits while keeping

robustness against image transformations and variations within the same class. These

encoded image representations are called features or feature descriptors. Currently,

appearance-based approaches, which extract such features from the pixel values of

the images, e.g. from coloured and greyscale channels, are used in all relevant object

recognition tasks.

2.2.1 Local Features

In some scenarios, certain regions contain more discriminative information than others.

For instance, corners, unique shapes or textured regions are likely to provide better

feature descriptors that straight lines or flat textures. Local features appear from

this assumption, extracted from small interest points in the image, previously selected

through low-level vision techniques, such as corner detectors [Harris et al., 1988]. Using

a selection of local features to describe an object provides a lot of robustness against

occlusions and small transformations that can affect the correspondences between fea-

tures in order to identify the object. Although these features are mainly applied to

image matching algorithms and not strictly for recognition purposes, it creates the

basis for further widely used feature descriptors. The most popular local descriptor is

the Scale Invariant Feature Transform (SIFT) Lowe [2004]. From an initially smoothed

image, its extraction starts dividing the region of an interest point into 4x4 subpatches

for a total of 16 cells. For each pixel, it calculates the gradient magnitude and ori-

entation later accumulated in a histogram of oriented gradients (usually 8 reference

angles) at each sub-patch. As shown in Figure 2.8, the descriptor results in a feature

vector of 128 dimensions that shows robustness against small scale invariances. Other

relevant captured invariances are illumination changes due to the use of gradients,

small rotations due to the discretised orientations and small translation shifts by using

sub-patches.
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Figure 2.9: Example of a Bag-of-words feature descriptor using a bust, a bicycle and a
violin as the object classes (top). Their computed global histograms/features (middle)
are based on a set of local regions of interest (bottom). From Fei-Fei et al. [2005].

2.2.2 Global Features

In contrast to features extracted from interest points, global features make use of the

whole annotated object class to describe it as a whole. Before the abrupt arrival

of CNNs that produce state-of-the-art feature descriptors, object recognition methods

were mainly designed with hand-crafted global features, which in practical applications

outperformed locally-based approaches. Hand-crafted features represent those that

are manually fixed to problem needs and are no longer modified. In contrast, neural

networks belong to the family of learnt features, since their filters and convolutions are

learned from training images without user intervention.

2.2.2.1 Bag-of-Words

The main idea behind Bag-of-words (BoW) [Csurka et al., 2004] is computing local

features from interest regions and then generating a histogram from these descriptors.

This histogram is used as a global feature descriptor, which represents unordered points

with a single vector. However, the object’s spatial layout is removed, as illustrated

in Figure 2.9. This theoretical drawback is indeed robust against deformations and

occlusions, but lacks the inclusion of spatial cues which might end up playing a big

role in the later recognition. Therefore, a spatial pyramid representation has also been

proposed for an in-between solution to preserve spatial information [Lazebnik et al.,

2006].
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(a) (b) (c)

Figure 2.10: HOG descriptors mainly provide cues of contours. (a) Average gradient
image over all training examples. (b) Test image. (c) Visual representation of the
extracted HOG features. Pedestrian dataset and figures from Dalal and Triggs [2005].

2.2.2.2 Histogram of Oriented Gradients

The most popular global descriptor and with the most prominent classification re-

sults in the family of hand-crafted features is the Histogram of Oriented Gradients

(HOG) [Dalal and Triggs, 2005]. Based on the same idea as SIFT descriptors, using

gradients and bins for maximising invariance against transformations, HOGs move to

a global dense extraction of features, which has been proven to be of great success

in well-defined object classes, i.e. relatively rigid objects, with not so high level of

intra-class variation and few occlusions. The steps are summarised as follows, given

an input image region:

1. Gamma correction to reduce the impact of strong gradients.

2. Compute gradients in all colour channels and take the strongest one.

3. Weighted vote in spatial and orientation cell bins (8x8 pixels for 8 orientations),

in the same fashion as SIFT.

4. Contrast normalisation over overlapping spatial cells. Trilinear interpolation is

crucial for robustness: bilinear in image space where each pixel contributes to

3 neighbouring cell histograms and then another linear interpolation over the

measured gradient angles.

5. Create the descriptor as an array of all these cell channels. The resulting feature

descriptor for an object class is shown in Figure 2.10c for pedestrian detection.

The preserved spatial layout, if the classifier allows it, perfectly fits in standard

sliding window approaches, including their speed-ups, convolving such feature

descriptor, seen as a template, all over the extracted dense features of the detec-

tion image. Therefore, the detection score map obtained indicates regions that

are likely to contain pedestrians.
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Figure 2.11: LBP example from an extracted 3x3 patch. All decimal outputs for each
cell are then represented in a 256-bit histogram. From Wang et al. [2009].

In addition, HOG features are easily extendable by appending new feature data.

From all introduced extensions, Local Binary Patterns (LBP) [Ojala et al., 1994] arise

as the HOG enhancement with the best recognition results [Wang et al., 2009]. In

every cell of the computed feature and for each pixel p, one computes from a 3x3 patch

formed by the 8-connected neighbours of p:

LBP (xi, yj) =

{
1, if patch(xi, yj) ≥ p
0, if patch(xi, yj) < p

for i, j = [1, 2, 3] . (2.11)

The computed binary values for all neighbours are then concatenated, converted to

decimal (0...255) and appended to the HOG cell using a 256-bit histogram. A visual

description of LBPs is shown in Figure 2.11.

2.2.2.3 Neural Networks

As explained in Section 2.1.3, architectures based on deep neural networks currently

obtain state-of-the-art results in a wide range of image classification problems. Al-

though this end-to-end system embeds a classifier in its last layer, another major trait

of this methodology is the learning of features, in the early layers, instead of using

hand-crafted structures designed by the user. Therefore, intermediate neural network

layers, namely feature maps, are extracted and used as powerful feature descriptors

that are then applied to other supervised learning models.

The first widely used feature encoder from a CNN was the last fully connected

layer of the AlexNet model [Krizhevsky et al., 2012]. Then, more advanced CNNs were

introduced, contributing in some critical aspects: (1) more stacked convolutional layers

divided in more efficient 3-by-3 convolution kernels from the VGG model [Simonyan

and Zisserman, 2014], (2) parallelisation of multiple layers with their own specific filters

that are concatenated in a later stage from the GoogLeNet/Inception model [Szegedy

et al., 2015] and (3) the inclusion of residual connections that append early layers in

later stages, skipping one or more intermediate layers, that avoid vanishing gradients

in early training stages and therefore allow for a much deeper design, e.g. up to 152

layers, from the ResNet model [He et al., 2016]. These models are usually fine-tuned by

retraining them with a new output layer, i.e. class-probabilities, based on the specific

needs of the problem that needs to be solved. The advantage of fine-tuning is that

only a small portion of new training exemplars are necessary to obtain substantial
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improvements, since all network weights from the previous layers are initialised with

pre-trained values that already provide decent accuracies. These CNN weights are

typically trained with an extremely large database, e.g. ImageNet [Deng et al., 2009],

with millions of exemplars and data augmentation strategies.

A noticeable constraint in these CNNs is the fixed image size, e.g. 224x224, required

as input due to the rigid nature of containing fully connected layers in the later stages

of the network. Extracting feature encoders from the fully convolutional part of the

network, however, do not require a fixed input size and thus becomes more manageable

for problems that include object categories with variable resolutions.
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3.1 Domain Adaptation

The interest in studying domain adaptation techniques for computer vision problems

increased with the release of a benchmark by Saenko et al. [2010] for domain adaptation

in the context of object classification. The first relevant works on unsupervised domain

adaptation for object categorisation were presented by Gopalan et al. [2011] and Gong

et al. [2012], who proposed an alignment in a common subspace of source and target

samples using the properties of Grassmanian manifolds. Jointly transforming source

and target domains into a common low dimensional space was also done together

with a conjugate gradient minimisation of a transformation matrix with orthogonality

constraints [Baktashmotlagh et al., 2013] and with dictionary learning to find subspace

interpolations [Ni et al., 2013, Shekhar et al., 2013, Xu et al., 2015]. Sun and Saenko

[2014] and Sun et al. [2015a] presented a very efficient solution based on second-order

statistics to align a source domain with a target domain. Herath et al. [2017] also

match second-order statistics with a joint estimation of latent spaces. To obtain an

estimate of the target distribution in the latent space, Gholami et al. [2017] introduce a

Bayesian approximation to jointly learn a softmax classifier across-domains. Similarly,

Csurka et al. [2016] jointly denoise source and target samples to reconstruct data

without partial random corruption. Zhang et al. [2017a] also align distributions, but
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they include geometrical differences in a joint optimisation. Sharing certain similarities

with associations between domains, Gong et al. [2013a] minimise the Maximum Mean

Discrepancy (MMD) [Gretton et al., 2006] of two datasets. They assign instances to

latent domains and solve it by a relaxed binary optimisation. Ming Harry Hsu et al.

[2015] use a similar idea and allow instances to be linked to all other samples.

Semi-supervised domain adaptation approaches take advantage of knowing the class

labels of a few target samples. Aytar and Zisserman [2011] proposed a transfer learn-

ing formulation to regularise the training of target classifiers. Exploiting pairwise

constraints across domains, Saenko et al. [2010] and Kulis et al. [2011] learn a trans-

formation to minimise the effect of the domain shift while also training target classi-

fiers. Following the same idea, Hoffman et al. [2013] considered an iterative process to

alternatively minimise the classification weights and the transformation matrix.

The idea of selecting the most relevant information of each domain has been stud-

ied in early domain adaptation methods in the context of natural language process-

ing [Blitzer et al., 2006]. Pivot features that behave the same way for discriminative

learning in both domains were selected to model their correlations. Gong et al. [2013b]

presented an algorithm that selects a subset of source samples that are distributed

most similarly to the target domain. Another technique that deals with instance se-

lection has been proposed by Sangineto [2014]. They train weak classifiers on random

partitions of the target domain and evaluate them in the source domain. The best

performing classifiers are then selected. Other works have also exploited greedy al-

gorithms that iteratively add target samples to the training process, while the least

relevant source samples are removed [Bruzzone and Marconcini, 2010, Tommasi and

Caputo, 2013].

During the last years, a large number of domain adaptation methods have been

based on deep CNNs [Krizhevsky et al., 2012], which learn more discriminative feature

representations than hand-crafted features and substantially reduce the domain bias

between datasets in object recognition tasks [Donahue et al., 2014]. Non-adapted clas-

sifiers trained with features extracted from CNN layers outperform domain adaptation

methods with shallow feature descriptors [Donahue et al., 2014, Sun et al., 2015a].

Many of these deep domain adaptation architectures are inspired by the traditional

methods and seek to minimise the MMD distance as a regulariser to learn features

for source and target samples jointly [Ghifary et al., 2014, Tzeng et al., 2014, Long

et al., 2015, 2016, Yan et al., 2017]. Going one step further, Saito et al. [2018a] utilise

a minimax problem that finds two classifiers that maximise the discrepancy on the

target sample, but at the same time generate features that minimise it. The impact

of intra-class discrepancies are addressed by Kang et al. [2019], who jointly train an

intra- and inter-class discrepancy loss in alternating updates. Extending this type of

networks, Carlucci et al. [2017] use intermediate layers for the alignment of distribu-

tions before batch normalisation. They learn a parameter that steers the contribution

of each domain at a given layer. Similarly with one backbone network for each domain,

Rozantsev et al. [2018] introduced loss functions shared by both source and target net-

works at each intermediate layer that prevent weights from being too dissimilar. Ganin

and Lempitsky [2015] added a domain classifier network after the CNN to maximize
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the discriminatory loss of both domains while jointly minimising the classification loss

using source data. More recently, Tzeng et al. [2017] propose a generalised framework

for adversarial adaptation, extended by Long et al. [2018] with a randomised multi-

linear map between feature representations and class predictions that improves the

discriminability among classes.

In the semi-supervised setting, Motiian et al. [2017] present a deep domain adapta-

tion method that exploits the domain loss minimisation while maximizing the distances

between labelled samples from different domains and classes.

From a different visual perspective, Bousmalis et al. [2017] tackles the problem

of domain adaptation by introducing an adversarial network that transforms source

images at pixel level with a joint minimisation of the classification and similarity loss.

Other forms of data representation, such as hash codes [Venkateswara et al., 2017] and

scatter tensors [Koniusz et al., 2017, Lu et al., 2017], have also been combined with

deep domain adaptation architectures to further reduce the domain bias.

Lately, some works expanded the application of domain adaptation techniques to

not just object classification, but also localisation. Inoue et al. [2018] fine-tune a model

trained with only source data by using generated target images from a generative

adversarial network that transforms source images to visually similar target samples.

Another approach is presented by [Chen et al., 2018], who model a consistency loss at

sample and image level after the Faster R-CNN object detector [Ren et al., 2015].

3.2 Open Set Recognition

The inclusion of open sets in recognition tasks appeared in the field of face recognition,

where evaluation datasets contain unseen face instances as impostors that have to be

rejected [Phillips et al., 2000, Li and Wechsler, 2005]. Such open set protocols are

nowadays widely used for evaluating face recognition approaches [Sun et al., 2015b].

The generalisation towards an open set scenario for multi-object classification was

introduced by Scheirer et al. [2013], who addressed the more realistic case of a finite set

of known objects mixed with many unknown ones. Based on this principle, Jain et al.

[2014] and Scheirer et al. [2014] propose multi-class classifiers that detect unknown

instances by learning SVMs that assign probabilistic decision scores instead of class

labels. More recently, Bendale and Boult [2016] adapt traditional neural networks for

open set recognition tasks by introducing a new layer that estimates the probability of

an object to be labelled as unseen class. Closely related are also the works by Zhang

and Metaxas [2006] and Bartlett and Wegkamp [2008] that add a regulariser to detect

uninformative data and penalise a misclassification during training. Lately, Gavves

et al. [2015] present an active learning technique, whose initially trained SVMs on a

subset of known classes are used as priors to further train novel object classes from

other target datasets.

Its application to domain adaptation, presented in this thesis, was further re-

searched by Saito et al. [2018b], which modifies the closed set specific network by Ganin

and Lempitsky [2015] and propose an adversarial network for open set domain adap-

tation with an additional unknown class.
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3.3 Viewpoint Estimation

Methods for viewpoint estimation are often based on popular object class detec-

tors [Leibe et al., 2004, Dalal and Triggs, 2005, Felzenszwalb et al., 2010, Girshick

et al., 2014] and learn a discrete set of pose classifiers. In [Liebelt and Schmid, 2010,

Fidler et al., 2012, Pepik et al., 2012, Hejrati and Ramanan, 2014], annotations from

2D images are enhanced with 3D metadata to formulate 3D geometric models. On the

contrary, Gu and Ren [2010] learn a mixture-of-templates that inherently captures the

characteristics of projected views and Ozuysal et al. [2009] refine the hypothesis of 16

viewpoint detectors from 2D images with additional view specific Näıve Bayes classi-

fiers. More recently, CNNs for object classification [Krizhevsky et al., 2012] have been

retrained using 2D pose annotations in order to provide viewpoint probabilities as out-

put channels coupled with the object class probability [Tulsiani and Malik, 2015, Pepik

et al., 2015]. In the study pursued by Ghodrati et al. [2014], simple frameworks that

extract features from 2D bounding boxes with powerful encoders provided the same

or even better viewpoint accuracies than state-of-the-art methods based on complex

3D models. Su et al. [2015] propose a classification-based CNN model with one bin

per degree, i.e. 360 bins for the azimuth angle, and a Gaussian function that spreads

the optimisation to neighbouring bins. The training phase uses millions of synthetic

samples to compensate the fine viewpoint representation. A coarser discretisation was

introduced by Tulsiani and Malik [2015], which showed better accuracies when trained

on real data. More recently, Divon and Tal [2018] introduced a triplet loss to increase

the dissimilarity of viewpoints that are far apart. Viewpoint estimation can also bene-

fit from 3D object detections, as shown by Kehl et al. [2017], who extended a popular

real-time object detector with 3D viewpoint predictions.

In contrast to classification approaches, regression approaches [Torki and Elgam-

mal, 2011, Fenzi et al., 2013] do not require a discretisation of the viewpoints. In the

work by He et al. [2014], the viewpoint regression is integrated into a joint discrim-

inative continuous parametrised model. The localisation and the continuous pose of

objects are jointly estimated by Redondo-Cabrera et al. [2014] using a Hough forest

regression voting scheme. Accumulated votes in the Hough space are later refined with

a kernel density estimator to consolidate votes in a local region close to the current

maxima. Similarly, Hough forests have been used for head pose estimation [Fanelli

et al., 2013] where patches from depth images are used. Glasner et al. [2012] also

utilise a voting process to refine the prediction of discretised pose classifiers. Recent

studies [Massa et al., 2016, Pepik et al., 2015] concluded, nonetheless, that CNNs for

viewpoint classification outperform CNNs for viewpoint regression by a considerable

margin when the number of discrete viewpoints is formed by at least 16 bins. For

further details on joint object detection and pose estimation, we refer to the studies

by Massa et al. [2014] and Elhoseiny et al. [2016].

The 3D spatial information of graphics models was already addressed in several

works to estimate the viewpoint of object instances, as well as its localisation [Mottaghi

et al., 2015, Liebelt and Schmid, 2010, Pepik et al., 2012, Schels et al., 2012, Stark

et al., 2010, Zia et al., 2013]. These algorithms are computationally expensive, since
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the object geometry is used to learn the spatial 3D relations of parts or features.

Some approaches already used the spatial information of keypoints to estimate ac-

curate viewpoints. Torki and Elgammal [2011] learn a regression function to compute

the azimuth angle of vehicles based on pre-computed local features and their spatial ar-

rangements. Pepik et al. [2012] extend the deformable part model [Felzenszwalb et al.,

2010] to 3D objects, optimising at the same time the location and the viewpoint of the

object for a fixed number of bins. Concretely for hand pose estimation, Zimmermann

and Brox [2017] compute the camera parameters by using keypoint confidence maps

as input of the network. A deep regression technique is presented by Wu et al. [2016],

where 2D keypoints are used to estimate the camera parameters after concatenating

several fully connected layers. Lately, Grabner et al. [2018] use the Perspective-n-Point

algorithm to extract the viewpoint from a detected 3D bounding box and Zhou et al.

[2018a] takes as input RGB-D images for 3D keypoint localisation combined with an

unsupervised domain adaptation technique among views to obtain better accuraciess.

3.4 Keypoint Estimation

Research in keypoint estimation with CNNs has mostly been centred on human articu-

lated poses. Toshev and Szegedy [2014] initially proposed a 2-stage architecture, which

firstly estimates the 2D coordinates of each keypoint using a fully connected layer as

input of its regression loss, and then refines the prediction feeding the region of interest

on a second CNN model. Later, Tompson et al. [2015] improved the keypoint localisa-

tion with a cascade architecture that overlaps croppings. The human pose estimation

proposed by Wei et al. [2016] optimises confidence maps for each keypoint. This model

appends the later portion of the network several times, i.e. the input of the new stage

comes from the output of the previous one, creating larger receptive fields. The deeper

the stacked network the more it suppresses ambiguities and better captures the spatial

layout of the keypoints. Similar in spirit, Belagiannis and Zisserman [2017] designed

a recurrent model with multiple stages to reduce ambiguities and thus the amount

of false positives combined with the prediction of keypoint visibility. Newell et al.

[2016] refined this type of multi-stage architecture by adding transposed convolutions

at the end of each stage for finer confidence maps. This model was extended with a

Conditional Random Field (CRF) model that adds spatial cues [Chu et al., 2017].

Previous to the work presented in this dissertation, keypoint estimation in rigid

objects has already been in focus. Long et al. [2014] initially addressed the capabilities

of CNNs for keypoint estimation by dividing the last convolutional layer in smaller

cells and training each keypoint as an independent class in a multi-class SVM. Moving

towards a purely neural network approach, Tulsiani and Malik [2015] concatenate the

spatial information in a fully connected layer and only activate through the network

those receptive fields that include the corresponding keypoints. The prediction is

further refined with independently computed viewpoints. The human pose estimation

by Newell et al. [2016] has been modified by Pavlakos et al. [2017] and Zhou et al.

[2018b] to detect 3D keypoints of multiple rigid classes to consequently estimate the
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translation and rotation of the object by fitting the keypoints into a shape model.

The impact of multi-task learning in deep neural networks to improve keypoint

estimation has been researched by Liu et al. [2016], who designs a hierarchical CNN

that recognises human grouping and their individual actions. On a more generalised

approach, Zamir et al. [2018] also trains 2D and 3D keypoints combined with a total

of 26 2D, 2.5D and 3D semantic supervised tasks.

3.5 Synthetic Data

The use of synthetic images from rendered models and scenes as training data started

to gain attention in the context of pedestrian detection. While Maŕın et al. [2010]

only use synthetic data generated from a popular game engine, Pishchulin et al. [2011]

combine real with synthetic data from highly accurate 3D reconstructed humans. Both

methods, however, do not consider the 3D information and collect only 2D images with

automatically annotated bounding boxes.

In recent years, new published datasets based on computer generated models with

accurate 3D pose information have been proposed. For instance, ShapeNet [Chang

et al., 2015] provides a large dataset of 3D graphics models for hundreds of object

classes. Its drawback comes from the low quality of most of their 3D models. Tremblay

et al. [2018] introduce synthetic data of 21 household objects with fine 3D annotations

that handle occlusions. However, they only use one 3D model for each object class.

More in the direction of human pose estimation, Varol et al. [2017] generate synthetic

humans to include 3D joint information, i.e. depth, in the learning process. Instead

of rendering 3D data, synthetic data can also be generated by defining a parametric

model for synthesising geometric shapes from a particular object class, used in both

recognition and reconstruction, as proposed by Hejrati and Ramanan [2014]. Recently,

Su et al. [2015] and Peng et al. [2015] tested the impact of synthetic data in CNNs

by training millions of synthesised images from 3D models. Thus, the main challenge

becomes the generation of extremely large amounts of data with as much intra-class

variation as possible, e.g. viewpoint and shape, to avoid overfitting.

3D models have also been used to annotate datasets [Matzen and Snavely, 2013,

Xiang et al., 2014, Wang et al., 2018] by manually superposing them on top of 2D

object instances. While the 3D models are supported by humans and improve the

accuracy of the annotation, the annotation process with 3D models is very slow and

still prone to annotation errors. Instead of using synthetic data, Sedaghat and Brox

[2015] proposed a supervised approach that automatically annotates cars, bounding

boxes and azimuth angles, in videos using structure from motion.

In the context of domain adaptation, Peng et al. [2018] recently published a novel

dataset for adapting synthetic data to real data. Influenced by our work presented in

this thesis [Panareda Busto and Gall, 2017], this dataset also specifies challenges for

both closed and open sets.

Specifically, the field of autonomous driving, which already counts with well es-

tablished datasets, is starting to incorporate synthetic datasets with precise 3D in-
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formation. While the KITTI [Geiger et al., 2012] and Cityscapes [Menze and Geiger,

2015] datasets provide fine 3D annotations based on expensive lidar and radar systems,

Cordts et al. [2016] published a fully self-supervised synthetic dataset with optical flow

and depth information.
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4.1 Introduction

In the last years, impressive results have been achieved on large-scale datasets for image

classification or action recognition. Acquiring such large annotated datasets, however,

is very expensive and there is a need to transfer the knowledge from existing annotated

datasets to unlabelled data that is relevant for a specific application. If the labelled

and unlabelled data have different characteristics, they have been sampled from two

different domains. In particular, datasets that have been collected from the Internet,

e.g. from platforms for sharing videos or images, differ greatly from data that needs

to be processed for an application. To address the domain shift between the labelled

dataset, which is the source domain, and the unlabelled data from the target domain,

various unsupervised domain adaptation approaches have been proposed. If the data

from the target source is partially labelled, the problem is termed semi-supervised

domain adaptation. In this work, we address unsupervised and semi-supervised domain

adaptation in the context of image and action recognition.

Although the methods for domain adaptation have been advanced tremendously in

the last years [Saenko et al., 2010, Gopalan et al., 2011, Gong et al., 2012, Chopra et al.,

2013, Hoffman et al., 2014, Ganin and Lempitsky, 2015, Ming Harry Hsu et al., 2015,
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Source Target
car chair dog

(a) Closed set domain adaptation

Source Target
car dogchair unknown

(b) Open set domain adaptation

Figure 4.1: (a) Standard domain adaptation benchmarks assume that source and target
domains contain images or videos only of the same set of categories. This is denoted as
closed set domain adaptation since it does not include samples of unknown categories
or categories which are not present in the other domain. (b) We propose open set
domain adaptation. In this setting, both source and target domain contain images
or videos that do not belong to the categories of interest. Furthermore, the target
domain contains images or videos that are not related to any image or video in the
source domain and vice versa.
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Ghifary et al., 2016, Tzeng et al., 2017, Motiian et al., 2017], the evaluation protocols

were restricted to a scenario where all categories in the target domain are known and

match the categories in the source domain. Figure 4.1a illustrates such a closed set

domain adaptation setting. The assumption that all images or videos that are in the

target domain belong to categories in the source domain, however, is violated in most

cases. In particular if the number of potential categories is very large as it is the case for

object or action categories, the target domain contains images or videos of categories

that are not present in the source domain since they are not of interest for a specific

application. We therefore propose a more realistic evaluation setting for unsupervised

or semi-supervised domain adaptation, namely open set domain adaptation, which

builds on the concept of open sets [Scheirer et al., 2013, 2014, Bendale and Boult,

2016]. As illustrated in Figure 4.1, the source and target domains are not any more

restricted in the open set case to share the same categories as in the closed set case,

but both domains contain images or videos from categories that are not present in the

other domain.

To address the problem of open set domain adaptation, we propose a generic ap-

proach that learns a linear mapping that maps the feature space of the source domain

to the feature space of the target domain. It assigns a subset of images or videos of the

target domain to the categories of the source domain and transforms the feature space

of the source domain gradually towards the feature space of the target domain. By

using a subset instead of the entire set, the approach handles images or videos in the

target domain that are not related to any sample in the source domain. The approach

can be applied to any feature space, which includes features extracted from images as

well as features extracted from videos. The approach works in particular very well for

features spaces that are extracted by convolutional networks and outperforms most

end-to-end learning approaches for domain adaptation. The good performance of the

approach coincides with the observation that deep convolutional networks tend to lin-

earise manifolds of image domains [Bengio et al., 2013, Upchurch et al., 2017]. In this

case, a linear mapping is sufficient to map the feature space of the source domain to the

feature space of the target domain. In particular, the flexibility of the approach, which

can be used for images and videos, for open set and closed set domain adaptation, as

well as unsupervised and semi-supervised domain adaptation, makes the approach a

versatile tool for applications. An overview of the approach for unsupervised open set

domain adaptation is given in Figure 4.2.

In this chapter, we introduce open set domain adaptation for object and action

recognition tasks, describing our novel adaptation algorithm, and provide a thorough

experimental evaluation. We revisit popular domain adaptation data collections with

our new open set protocol, both unsupervised and semi-supervised. We also present

an open set evaluation for a new action recognition adaptation, from synthetic data to

real data and an evaluation of the proposed approach for standard closed set protocols.

In total, we evaluate the approach on 26 open set and 34 closed set combinations of

source and target domains including the Office dataset Saenko et al. [2010], its exten-

sion with the Caltech dataset Gong et al. [2012], the Cross-Dataset Analysis Tommasi

and Tuytelaars [2014], the Sentiment dataset Blitzer et al. [2007], synthetic data Peng

37



Chapter 4. Open Set Domain Adaptation for Image and Action Recognition

Input Source Input Target

(a)
Assigned Target

(b)

Transformed Source

(c)

Labelled Target - LSVM

(d)

Figure 4.2: Overview of the proposed approach for unsupervised open set domain
adaptation. (a) The source domain contains some labelled images, indicated by the
colours red, blue and green, and some images belonging to unknown classes (grey).
For the target domain, we do not have any labels but the shapes indicate if they
belong to one of the three categories or an unknown category (circle). (b) In the first
step, we assign class labels to some target samples, leaving outliers unlabelled. (c) By
minimising the distance between the samples of the source and the target domain that
are labelled by the same category, we learn a mapping from the source to the target
domain. The image shows the samples in the source domain after the transformation.
This process iterates between (b) and (c) until it converges to a local minimum. (d) In
order to label all samples in the target domain either by one of the three classes (red,
green, blue) or as unknown (grey), we learn a classifier on the source samples that
have been mapped to the target domain (c) and apply it to the samples of the target
domain (a). In this image, two samples with unknown classes are wrongly classified as
red or green.

et al. [2017], and two action recognition datasets, namely the Kinetics Human Action

Video Dataset Kay et al. [2017] and the UCF101 Action Recognition Dataset Soomro

et al. [2012]. Our approach achieves state-of-the-art results in all settings both for

unsupervised and semi-supervised open set domain adaptation and obtains competi-

tive results compared state-of-the-art deep leaning approaches for closed set domain

adaptation.
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4.2 Open Set Domain Adaptation

We present an approach that iterates between solving the labelling problem of target

samples, i.e. associating a subset of the target samples to the known categories of

the source domain, and computing a mapping from the source to the target domain

by minimising the distances of the assignments. The transformed source samples

are then used in the next iteration to re-estimate the assignments and update the

transformation. This iterative process is repeated until convergence and is illustrated

in Figure 4.2.

In Section 4.2.1, we describe the unsupervised assignment of target samples to

categories of the source domain. The semi-supervised case is described in Section 4.2.2.

Section 4.2.3 finally describes how the mapping from the source domain to the target

domain is estimated from the previous assignments. This part is the same for the

unsupervised and semi-supervised setting.

4.2.1 Unsupervised Domain Adaptation

We first address the problem of unsupervised domain adaptation, i.e. none of the

target samples are annotated, in an open set protocol. Given a set of classes C in

the source domain, including |C − 1| known classes and an additional unknown class

that gathers all instances from other irrelevant categories, we aim to label the target

samples T = {T1, . . . , T|T |} by a class c ∈ C. We define the cost of assigning a target

sample Tt to a class c by dct = ‖Sc − Tt‖22 where Tt ∈ RD is the feature representation

of the target sample t and Sc ∈ RD is the mean of all samples in the source domain

labelled by class c. To increase the robustness of the assignment, we do not enforce

that all target samples are assigned to a class as shown in Figure 4.2b. The cost of

declaring a target sample as outlier is defined by a parameter λ, which is discussed in

Section 4.3.1.

Having defined the individual assignment costs, we can formulate the entire assign-

ment problem by:

minimise
xct,ot

∑
t

(∑
c

dctxct + λot

)
subject to

∑
c

xct + ot = 1 ∀t ,∑
t

xct ≥ 1 ∀c ,

xct, ot ∈ {0, 1} ∀c, t .

(4.1)

By minimising the constrained objective function, we obtain the binary variables xct
and ot as solution of the assignment problem. The first type of constraints ensures

that a target sample is either assigned to one class, i.e. xct = 1, or declared as outlier,

i.e. ot = 1. The second type of constraints ensures that at least one target sam-

ple is assigned to each class c ∈ C. We use the constraint integer program package

SCIP [Achterberg, 2009] to solve all proposed formulations.
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As it is shown in Figure 4.2b, we label the targets also by the unknown class.

Note that the unknown class combines all objects that are not of interest. Even if the

unknowns in the source and target domain belong to different semantic classes, a target

sample might be closer to the mean of all negatives than to any other positive class. In

this case, we can confidentially label a target sample as unknown. In our experiments,

we show that it makes not much difference if the unknown class is included in the

unsupervised setting since the outlier handling discards target samples that are not

close to the mean of negatives.

4.2.2 Semi-supervised Domain Adaptation

The unsupervised assignment problem naturally extends to a semi-supervised setting

when a few target samples are annotated. In this case, we only have to extend the

formulation (4.1) by additional constraints that enforce that the annotated target

samples do not change the label, i.e.

xĉtt = 1 ∀(t, ĉt) ∈ L, (4.2)

where L denotes the set of labelled target samples and ĉt the class label provided for

target sample t. In order to exploit the labelled target samples better, one can use

the neighbourhood structure in the source and target domain. While the constraints

remain the same, the objective function (4.1) can be changed to

∑
t

∑
c

xct

(
dct +

∑
t′∈Nt

∑
c′

dcc′xc′t′

)
+ λot

 , (4.3)

where dcc′ = ‖Sc − Sc′‖22. While in (4.1) the cost of labelling a target sample t by the

class c is given only by dct, a second term is added in (4.3). It is computed over all

neighbours Nt of t and adds the distance between the classes in the source domain as

additional cost if a neighbour is assigned to another class than the target sample t.

The objective function (4.3), however, becomes quadratic and therefore NP-hard

to solve. Thus, we transform the quadratic assignment problem into a mixed 0-1 linear

program using the Kaufman and Broeckx linearisation [Kaufman and Broeckx, 1978].

By substituting

wct = xct

∑
t′∈Nt

∑
c′

dcc′xc′t′

 , (4.4)
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we derive to the linearised problem

minimise
xct,wct,ot

∑
t

(∑
c

dctxct +
∑
c

wct + λot

)
subject to

∑
c

xct + ot = 1 ∀t ,∑
t

xct ≥ 1 ∀c ,

actxct +
∑
t′∈Nt

∑
c′

dcc′xc′t′ − wct ≤ act ∀s, t ,

xct, ot ∈ {0, 1} ∀c, t ,

wct ≥ 0 ∀c, t ,

(4.5)

where act =
∑

t′∈Nt
∑

c′ dcc′ .

4.2.3 Mapping

As illustrated in Figure 4.2, we iterate between solving the assignment problem, as

described in Section 4.2.1 or 4.2.2, and estimating the mapping from the source domain

to the target domain. We consider a linear transformation, which is represented by a

matrix W ∈ RD×D. We estimate W by minimising the following loss function:

f(W ) =
1

2

∑
t

∑
c

xct‖WSc − Tt‖22 , (4.6)

which can be written in matrix form:

f(W ) =
1

2
||WPS − PT ||2F . (4.7)

The matrices PS and PT ∈ RD×L with L =
∑

t

∑
c xct represent all assignments,

where the columns denote the actual associations. The quadratic nature of the convex

objective function may be seen as a linear least squares problem, which can be easily

solved by any available QP solver. State-of-the-art features based on convolutional

neural networks, however, are high dimensional and the number of target instances is

usually very large. We use therefore non-linear optimisation [Svanberg, 2002, Johnson,

2007–2010] to optimise f(W ). The derivatives of (5.2) are given by

∂f(W )

∂W
= W (PSP

T
S )− PTP TS . (4.8)

If L < D, i.e. the number of samples, which have been assigned to a known class, is

smaller than the dimensionality of the features, the optimisation also deals with an

underdetermined linear least squares formulation. In this case, the solver converges to

the matrix W with the smallest norm, which is still a valid solution.
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After the transformation W is estimated, we map the source samples to the target

domain. We therefore iterate the process of solving the assignment problem and esti-

mating the mapping from the source domain to the target domain until it converges.

After the approach has converged, we train linear SVMs in a one-vs-one setting on

the transformed source samples. For the semi-supervised setting, we also include the

annotated target samples L (4.2) to the training set. The linear SVMs are then used

to obtain the final labelling of the target samples as illustrated in Figure 4.2d.

4.3 Experiments

We evaluate our method in the context of domain adaptation for image classification

and action recognition. In this setting, the images or videos of the source domain

are annotated by class labels and the goal is to classify the images or videos in the

target domain. We report the accuracies for both unsupervised and semi-supervised

scenarios, where target samples are unlabelled or partially labelled, respectively. For

consistency, we use libsvm [Chang and Lin, 2011] since it has also been used in other

works, e.g. [Fernando et al., 2013] and [Sun et al., 2015a]. We set the misclassification

parameter C = 0.001 in all experiments, which allows for a soft margin optimisation

that works best in such classification tasks [Fernando et al., 2013, Sun et al., 2015a].

4.3.1 Parameter Configuration

Our algorithm contains a few parameters that need to be defined. For the outlier

rejection, we use

λ = ρ
(

max
t,c

dct + min
t,c

dct
)
, (4.9)

i.e. λ is adapted automatically based on the distances dct and ρ, which is set to 0.5

unless otherwise specified. While higher values of λ closer to the largest distance barely

discard any outlier, lower values almost reject all assignments. We iterate the approach

until the maximum number of 10 iterations is reached or if the distance√∑
t

∑
c

xct ‖WkSc − Tt‖22 (4.10)

is below ε = 0.01, where Wk denotes the estimated transformation at iteration k. In

practice, the process converges after 3-5 iterations.

4.3.2 Open Set Domain Adaptation

4.3.2.1 Office Dataset

We evaluate and compare our approach on the Office dataset [Saenko et al., 2010],

which is the standard benchmark for domain adaptation with CNN features. It pro-

vides three different domains, namely Amazon (A), DSLR (D) and Webcam (W).

While the Amazon dataset contains centred objects on white background, the other
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two comprise pictures taken in an office environment but with different quality levels.

In total, there are 31 common classes for 6 source-target combinations. This means

that there are 4 combinations with a considerable domain shift (A → D, A → W, D

→ A, W → A) and 2 with a minor domain shift (D → W, W → D). Following the

standard protocol and for a fair comparison with the other methods, we extract feature

vectors from the fully connected layer-7 (fc7) of the AlexNet model [Krizhevsky et al.,

2012].

We introduce an open set protocol for this dataset by taking the 10 classes that

are also common in the Caltech dataset [Gong et al., 2012] as shared classes. In

alphabetical order, the classes 11-20 are used as unknowns in the source domain and

21-31 as unknowns in the target domain, i.e. the unknown classes in the source and

target domain are not shared. For evaluation, each sample in the target domain needs

to be correctly classified either by one of the 10 shared classes or as unknown. In order

to compare with a closed setting (CS), we report the accuracy when source and target

domain contain only samples of the 10 shared classes. Since OS is evaluated on all

target samples, we also report the numbers when the accuracy is only measured on

the same target samples as CS, i.e. only for the shared 10 classes. The latter protocol

is denoted by OS∗(10) and provides a direct comparison to CS(10).

Unsupervised domain adaptation. We firstly compare the accuracy of our method

in the unsupervised set-up with state-of-the-art domain adaptation techniques embed-

ded in the training of CNN models. DAN [Long et al., 2015] retrains the AlexNet

model by freezing the first 3 convolutional layers, finetuning the last 2 and learning

the weights from each fully connected layer by also minimising the discrepancy between

both domains. RTN [Long et al., 2016] extends DAN by adding a residual transfer

module that bridges the source and target classifiers. BP [Ganin and Lempitsky, 2015]

trains a CNN for domain adaptation by a gradient reversal layer and minimises the

domain loss jointly with the classification loss. For training, we use all samples per

class as proposed in Gong et al. [2013a], which is the standard protocol for CNNs on

this dataset. As proposed in Ganin and Lempitsky [2015], we use for all methods linear

SVMs for classification instead of the soft-max layer for a fair comparison.

To analyse the formulations that are discussed in Section 4.2, we compare several

variants: ATI (Assign-and-Transform-Iteratively) denotes our formulation in (4.1) as-

signing a source class to all target samples, i.e. λ = ∞. Then, ATI-λ includes the

outlier rejection and ATI-λ-N1 is the unsupervised version of the locality constrained

formulation corresponding to (4.3) with 1 nearest neighbour. In addition, we denote

LSVM as the linear SVMs trained on the source domain without any domain adapta-

tion.

The results of these techniques using the described open set protocol are shown

in Table 4.1. Our approach ATI improves over the baseline without domain adapta-

tion (LSVM) by +6.8% for CS and +14.3% for OS. The improvement is larger for

the combinations that have larger domain shifts, i.e. the combinations that include

the Amazon dataset. We also observe that ATI outperforms all CNN-based domain

adaptation methods for the closed (+2.2%) and open setting (+5.2%). It can also
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A→D A→W
CS (10) OS∗ (10) OS (10) CS (10) OS∗ (10) OS (10)

LSVM 87.1 70.7 72.6 77.5 53.9 57.5

DAN 88.1 76.5 77.6 90.5 70.2 72.5

RTN 93.0 74.7 76.6 87.0 70.8 73.0

BP 91.9 77.3 78.3 89.2 73.8 75.9

ATI 92.4 78.2 78.8 85.1 77.7 78.4

ATI-λ 93.0 79.2 79.8 84.0 76.5 77.6

ATI-λ-N1 91.9 78.3 78.9 84.6 74.2 75.6

D→A D→W
CS (10) OS∗ (10) OS (10) CS (10) OS∗ (10) OS (10)

LSVM 79.4 40.0 45.1 97.9 87.5 88.5

DAN 83.4 53.5 57.0 96.1 87.5 88.4

RTN 82.8 53.8 57.2 97.9 88.1 89.0

BP 84.3 54.1 57.6 97.5 88.9 89.8

ATI 93.4 70.0 71.1 98.5 92.2 92.6

ATI-λ 93.8 70.0 71.3 98.5 93.2 93.5

ATI-λ-N1 93.3 65.6 67.8 97.9 94.0 94.4

W→A W→D AVG.
CS (10) OS∗ (10) OS (10) CS (10) OS∗ (10) OS (10) CS OS∗ OS

LSVM 80.0 44.9 49.2 100 96.5 96.6 87.0 65.6 68.3

DAN 84.9 58.5 60.8 100 97.5 98.3 90.5 74.0 75.8

RTN 85.1 60.2 62.4 100 98.3 98.8 91.0 74.3 76.2

BP 86.2 61.8 64.0 100 98.0 98.7 91.6 75.7 77.4

ATI 93.4 76.4 76.6 100 99.1 98.3 93.8 82.1 82.6

ATI-λ 93.7 76.5 76.7 100 99.2 98.3 93.7 82.4 82.9

ATI-λ-N1 93.4 71.6 72.4 100 99.6 98.8 93.5 80.6 81.3

Table 4.1: Open set domain adaptation on the unsupervised Office dataset with 10
shared classes (OS) using all samples per class [Gong et al., 2013a]. For comparison,
results for closed set domain adaptation (CS) and modified open set (OS∗) are reported.

be observed that the accuracy for the open set is lower than for the closed set for all

methods, but that our method handles the open set protocol best. While ATI-λ does

not obtain any considerable improvement compared to ATI in CS, the outlier rejection

allows for an improvement in OS. The locality constrained formulation, ATI-λ-N1,

which we propose only for the semi-supervised setting, decreases the accuracy in the

unsupervised setting.

The evolution of the percentage of correct assignments and the intermediate classi-

fication accuracies are shown in Table 4.2. The approach converges after two or three

iterations. While the accuracy of the LSVMs that are trained on the transformed

source samples increases with each iteration, the accuracy of the assignment can even

decrease in some cases.

Additionally, we report accuracies of popular domain adaptation methods that are

not related to deep learning. We report the results of methods that transform the

data to a common low dimensional subspace, including Transfer Component Analysis

(TCA) [Pan et al., 2009], Geodesic Flow Kernel (GFK) [Gong et al., 2012] and Subspace
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A→D A→W D→A D→W W→A W→D
assign-λ LSVM assign-λ LSVM assign-λ LSVM assign-λ LSVM assign-λ LSVM assign-λ LSVM

init 72.6 57.5 45.1 88.5 49.2 96.6

it 1 78.4 76.8 74.5 69.8 73.6 68.1 90.4 90.3 71.9 70.0 89.6 97.8

it 2 77.7 79.1 80.1 77.6 80.4 71.3 91.5 93.5 77.2 75.9 84.7 98.3

it 3 75.3 79.8 77.8 76.7

Table 4.2: Evolution of the percentage of correct assignments (assign-λ) when taking
into account the selected target samples and the average class accuracy of all target
samples using linear SVMs (LSVM). The approach converges after 2 or 3 iterations.

alignment (SA) [Fernando et al., 2013]. In addition, we also include CORAL [Sun et al.,

2015a], which whitens and recolours the source towards the target data. Following the

standard protocol of Saenko et al. [2010], we take 20 samples per object class when

Amazon is used as source domain, and 8 for DSLR or Webcam. As in the previous

comparison with the CNN-based methods, we extract feature vectors from the last

convolutional layer (fc7) from the AlexNet model [Krizhevsky et al., 2012]. Each

evaluation is executed 5 times with random samples from the source domain. The

average accuracy and standard deviation of the five runs are reported in Table 4.3.

The results are similar to the protocol reported in Table 4.1. Our approach ATI

outperforms the other methods both for CS and OS and the additional outlier handling

(ATI-λ) does not improve the accuracy for the closed set but for the open set.

Impact of unknown class. The linear SVM that we employ in the open set protocol

uses the unknown classes of the transformed source domain for the training. Since

unknown object samples from the source domain are from different classes than the

ones from the target domain, using an SVM that does not require any negative samples

might be a better choice. Therefore, we compare the performance of a standard SVM

classifier with a specific open set SVM (OS-SVM) [Scheirer et al., 2014], where only the

10 known classes are used for training. OS-SVM introduces an inclusion probability

and labels target instances as unknown if this inclusion is not satisfied for any class.

Table 4.4 compares the classification accuracies of both classifiers in the 6 domain

shifts of the Office dataset. While the performance is comparable when no domain

adaptation is applied, ATI-λ obtains significantly better accuracies when the learning

includes negative instances.

As discussed in Section 4.2.1, the unknown class is also part of the labelling set C for

the target samples. The labelled target samples are then used to estimate the mapping

W (5.2). To evaluate the impact of including the unknown class, Table 4.5 compares

the accuracy when the unknown class is not included in C. Adding the unknown class

improves the accuracy slightly since it enforces that the negative mean of the source

is mapped to a negative sample in the target. The impact, however, is very small.

Additionally, we also analyse the impact of increasing the amount of unknown sam-

ples in both source and target domain on the configuration Amazon→DSLR+Webcam.

Since the domain shift between DSLR and Webcam is close to zero (same scenario, but

different cameras), they can be merged to get more unknown samples. Following the
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A→D A→W
CS (10) OS∗ (10) OS (10) CS (10) OS∗ (10) OS (10)

LSVM 84.4±5.9 63.7±6.7 66.6±5.9 76.5±2.9 48.2±4.8 52.5±4.2

TCA 85.9±6.3 75.5±6.6 75.7±5.9 80.4±6.9 67.0±5.9 67.9±5.5

gfk 84.8±5.1 68.6±6.7 70.4±6.0 76.7±3.1 54.1±4.8 57.4±4.2

SA 84.0±3.4 71.5±5.9 72.6±5.3 76.6±2.8 57.4±4.2 60.1±3.7

CORAL 85.8±7.2 79.9±5.7 79.6±5.0 81.9±2.8 68.1±3.6 69.3±3.1

ATI 91.4±1.3 80.5±2.0 81.1±2.8 86.1±1.1 73.4±2.0 75.3±1.7
ATI-λ 91.1±2.1 81.1±0.4 82.2±2.0 85.5±2.1 73.7±2.6 75.3±1.4

D→A D→W
CS (10) OS∗ (10) OS (10) CS (10) OS∗ (10) OS (10)

LSVM 75.5±2.1 36.1±3.7 42.2±3.3 96.2±1.0 81.5±1.5 83.1±1.3

TCA 88.2±1.5 71.8±2.5 71.8±2.0 97.8±0.5 92.0±0.9 91.5±1.0

gfk 79.7±1.0 45.3±3.7 49.7±3.4 96.3±0.9 85.1±2.7 86.2±2.4

SA 81.7±0.7 52.5±3.0 55.8±2.7 96.3±0.8 86.8±2.5 87.7±2.3

CORAL 89.6±1.0 66.6±2.8 68.2±2.5 97.2±0.7 91.1±1.7 91.4±1.5

ATI 93.5±0.3 69.8±1.4 70.8±2.1 97.3±0.5 89.6±2.1 90.3±1.8

ATI-λ 93.9±0.4 71.1±0.9 72.0±0.5 97.5±1.1 92.1±1.3 92.5±0.7

W→A W→D AVG.
CS (10) OS∗ (10) OS (10) CS (10) OS∗ (10) OS (10) CS OS∗ OS

LSVM 72.5±2.7 34.3±4.9 39.9±4.4 99.1±0.5 89.8±1.5 90.5±1.3 84.1 58.9 62.5

TCA 85.5±3.3 68.1±5.1 68.6±4.6 98.8±0.9 94.1±2.9 93.6±2.6 89.5 78.1 78.2

gfk 75.0±2.9 43.2±5.1 47.6±4.6 99.0±0.5 92.0±1.5 92.2±1.4 85.2 64.7 67.3

SA 76.5±3.2 49.7±5.1 53.0±4.6 98.8±0.7 92.4±2.9 92.4±2.8 85.7 68.4 70.3

CORAL 86.9±1.9 63.9±4.9 65.6±4.3 99.2±0.7 96.0±2.1 95.0±2.0 90.1 77.6 78.2

ATI 92.2±1.1 75.1±1.7 76.0±2.0 98.9±1.3 95.5±2.3 95.4±2.1 93.2 80.7 81.5

ATI-λ 92.4±1.1 75.4±1.8 76.4±1.8 98.9±1.3 96.5±2.1 95.8±1.8 93.2 81.5 82.3

Table 4.3: Open set domain adaptation on the unsupervised Office dataset with 10
shared classes (OS). We report the average and the standard deviation using a subset
of samples per class in 5 random splits [Saenko et al., 2010]. For comparison, results
for closed set domain adaptation (CS) and modified open set (OS∗) are reported.

described protocol, we take 20 samples per known category, also in this case for the

target domain, and we randomly increase the number of unknown samples from 20 to

400 in both domains at the same time. As shown in Table 4.6, that reports the mean

accuracies of 5 random splits, adding more unknown samples decreases the accuracy

if domain adaptation is not used (LSVM), but also for the domain adaptation method

CORAL [Sun et al., 2015a]. This is expected since the unknowns are from different

classes and the impact of the unknowns compared to the samples from the shared

classes increases. Our method handles such an increase and the accuracies remain

stable between 80.3% and 82.5%.

Subsampling of target samples. In order to evaluate the robustness of our method

when having a reduced amount of target samples for domain adaptation, we subsample

the target data. Figure 4.3 shows the results for ATI-λ on the 6 domain shifts of the

Office dataset with the standard open set protocol (OS). We vary the number of target
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A→D A→W D→A
OS-SVM LSVM OS-SVM LSVM OS-SVM LSVM

No Adap. 67.5 72.6 58.4 57.5 54.8 45.1

ATI-λ 72.0 79.8 65.3 77.6 66.4 71.3

D→W W→A W→D AVG.
OS-SVM LSVM OS-SVM LSVM OS-SVM LSVM OS-SVM LSVM

No Adap. 80.0 88.5 55.3 49.2 94.0 96.6 68.3 68.3

ATI-λ 82.2 93.5 71.6 76.7 92.7 98.3 75.0 82.9

Table 4.4: Comparison of a standard linear SVM (LSVM) with a specific open set SVM
(OS-SVM) [Scheirer et al., 2013] on the unsupervised Office dataset with 10 shared
classes using all samples per class [Gong et al., 2013a].

A→D A→W D→A D→W W→A W→D AVG.
OS(10)

ATI-λ (C w/o unknown) 79.0 77.1 70.5 93.4 75.8 98.2 82.3

ATI-λ (C with unknown) 79.8 77.6 71.3 93.5 76.7 98.3 82.9

Table 4.5: Impact of including the unknown class to the set of classes C. The evaluation
is performed on the unsupervised Office dataset with 10 shared classes using all samples
per class [Gong et al., 2013a].

Amazon → DSLR+Webcam

number of unknowns 20 40 60 80 100 200 300 400
unknown / known 0.10 0.20 0.30 0.40 0.50 1.00 1.50 2.00

LSVM 74.2 70.0 66.2 63.4 61.4 53.9 50.4 48.2

CORAL 77.2 76.4 76.2 74.8 73.7 71.5 70.8 69.7

ATI-λ 80.3 82.4 81.2 81.7 82.5 80.9 80.7 81.9

Table 4.6: Impact of increasing the amount of unknown samples in the domain shift
Amazon → DSLR+Webcam on the unsupervised Office dataset with 10 shared classes
using 20 random samples per known class in both domains.
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samples from 50 to the total number of instances. For a fixed number of target samples,

we randomly sample 5 times from the target data and plot the lowest, highest and

average accuracy of the 5 runs. The accuracy is always measured on the whole target

dataset. The results show that between 300 and 400 target instances are sufficient to

achieve similar accuracies than our method with all target samples. When the domain

shifts are smaller, e.g. D→ W and W→ D, even less target samples are required.

Scalability analysis of target samples. The number of sampled target samples has

an impact on the execution time of the assignment and the transformation steps of the

iterative process. Therefore, we also test the scalability of the two steps of our method

with respect to the number of target samples. The average execution times of both

techniques in the domain shift Amazon → DSLR+Webcam for all the random splits

and unknown sets of the previous evaluation are shown in Figure 4.4. We observe that

the assignment problem takes less than a second to be solved for any size of target data

from the evaluated settings. Most of the computation time is required for estimating

the transformation W , which requires at least 120 seconds. The computation time

of this step, however, increases only moderately with respect to the number of target

samples.

Impact of parameter ρ. The cost that determines whether a target sample is

considered as outlier during the assignment process is defined by λ (4.9), which is

based on the current minimum and maximum distance between the source clusters

and target samples. Thus, λ is updated at each iteration. The value of λ, however,

also depends on the parameter ρ. For all experiments, we use ρ = 0.5 as default

value, aiming for a moderate outlier rejection. Figure 4.5 shows the impact of ρ on the

accuracy. Using ρ = 0.5, which rejects around 10-20% of the target samples, achieves

the best results in 5 out of the 6 domain shifts on the Office dataset. When ρ gets

closer to 0 the accuracy drops substantially since too many samples are discarded.

Impact of constraint
∑

t xct ≥ 1. Our formulation in (4.1) ensures that at least

one target sample is assigned to an object category. Therefore, all classes contribute to

the estimation of the transformation matrix W . In order to measure its impact on the

adaptation problem, we run experiments with
∑

t xct ≥ 1 and without the constraint,

i.e. when a class might not be assigned to any target sample at all. As illustrated in

Figure 4.6, the inclusion of this constraint provides higher accuracies when ρ < 0.3.

For greater values of ρ, the constraint can be omitted since it does not influence the

accuracy.

Impact of wrong assignments. During the iterative process of our method, wrong

assignments take part in the optimisation of W , introducing false associations between

the source and the target domain that negatively affect the final transformation. A

general assumption in our method is that the correct assignments largely compensate

the wrong ones and, thus, the transformed source data allows for better classification

accuracies in the target domain. Therefore, we artificially generate assignments in

the first iteration by assigning a random subset of target samples to the correct class

in the source domain and the remaining target samples to random classes. We then

run our approach without any additional modifications until it converges. We report
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Figure 4.3: Impact of using a random subset of target samples. The blue region shows
the difference between the best and worst result of the 5 randomly sampled subsets
for a given number of target samples and the black line within the region is the mean
accuracy of the 5 subsets. The red line indicates the classification accuracy when using
all target samples. The results are reported for ATI-λ using the open set protocol on
the unsupervised Office dataset with 10 shared classes using all samples per class.
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Figure 4.5: Impact of varying ρ in order to restrict the outlier handler λ. An interme-
diate value, i.e. ρ = 0.5, tends to obtain the best accuracies. We follow the presented
open set protocol on the unsupervised Office dataset with 10 shared classes using all
samples per class [Gong et al., 2013a].

in Table 4.7 the average percentage of correct assignments of 5 random splits for the

domain shift Amazon → DSLR+Webcam with 400 unknown samples. While the first

iteration represents the accuracy of correct and random assignments that we generate,

the last row shows the accuracies after the approach has converged. As it can be

observed, the approach ends in a local optimum, but the accuracies increase for all

cases except if we initialise the approach with 100% correct assignments. It is expected

that the assignment accuracy does not remain at 100% since the image manifolds are

not perfectly linearised and even for the best estimate of W wrong assignments can

occur.
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Figure 4.6: The black and grey curves show the classification accuracies for varying
values of ρ when including or not the constraint

∑
t xct ≥ 1, respectively. ρ = 0.5

obtains the best accuracies in 5 out of 6 domain shifts. The blue curve shows the
percentage of selected assignments to compute the transformation matrix W in the
first iteration. The results are reported for ATI-λ using the open set protocol on the
unsupervised Office dataset with 10 shared classes using all samples per class.
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Amazon → DSLR+Webcam (400 unknown samples)

%gt (+rnd) 10 20 30 40 50 60 70 80 90 100 std

iteration 1 18.2 27.0 36.1 45.2 54.3 63.5 72.7 81.7 90.7 100.0 85.1

final 24.4 40.1 54.7 65.4 72.8 79.2 83.6 88.8 93.1 96.7 88.6

Table 4.7: Impact of limiting the amount of correct assignments in the first iteration.
We report the average percentage of correct assignments over 5 random splits and
increase the percentage of correctly selected assignments from 10% to 100%, leaving the
rest randomly selected. The last column shows the percentage of correct assignments
of the method without modifying the initial assignments.

Semi-supervised domain adaptation. We also evaluate our approach for open

set domain adaptation on the Office dataset in its semi-supervised setting. Applying

again the standard protocol of Saenko et al. [2010] with the subset of source samples,

we also take 3 labelled target samples per class and leave the rest unlabelled. We

compare our method with the deep learning method MMD [Tzeng et al., 2014]. As

baselines, we report the accuracy for the linear SVMs without domain adaptation

(LSVM) when they are trained only on the source samples (s), only on the annotated

target samples (t) or on both (st). As expected, the baseline trained on both performs

best as shown in Table 4.8. Our approach ATI outperforms the baseline and the CNN

approach [Tzeng et al., 2014]. As in the unsupervised case, the improvement compared

to the CNN approach is larger for the open set (+4.8%) than for the closed set (+2.2%).

While the locality constrained formulation, ATI-λ-N , decreased the accuracy for the

unsupervised setting, it improves the accuracy for the semi-supervised case since the

formulation enforces that neighbours of the target samples are assigned to the same

class. The results with one (ATI-λ-N1) or two neighbours (ATI-λ-N2) are similar.

4.3.2.2 Dense Cross-Dataset Analysis

In order to measure the performance of our method and the open set protocol across

popular datasets with more intra-class variation, we also conduct experiments on the

dense set-up of the Testbed for Cross-Dataset Analysis [Tommasi and Tuytelaars,

2014]. This protocol provides 40 classes from 4 well known datasets, Bing (B), Cal-

tech256 (C), ImageNet (I) and Sun (S). While the samples from the first 3 datasets

are mostly centred and without occlusions, Sun becomes more challenging due to its

collection of object class instances from cluttered scenes. As for the Office dataset, we

take the first 10 classes as shared classes, the classes 11-25 are used as unknowns in the

source domain and the classes 26-40 as unknowns in the target domain. We use the

provided DeCAF features (DeCAF7). Following the unsupervised protocol described

by Tommasi et al. [2015], we take 50 source samples per class for training and we test

on 30 target images per class for all datasets, except Sun, where we take 20 samples

per class.

The results reported in Table 4.9 are consistent with the Office dataset. ATI

outperforms the baseline and the other methods by +4.1% for the closed set and by

+5.3% for the open set. ATI-λ obtains the best accuracies for the open set.
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A→D A→W
CS (10) OS∗ (10) OS (10) CS (10) OS∗ (10) OS (10)

LSVM (s) 85.8±3.2 62.1±7.9 65.9±6.2 76.4±2.1 45.7±5.0 50.4±4.5

LSVM (t) 92.3±3.9 68.2±5.2 71.1±4.7 91.5±4.9 59.6±3.7 63.2±3.4

LSVM (st) 95.7±1.3 82.5±3.0 84.0±2.6 92.4±1.8 72.5±3.7 74.8±3.4

MMD 94.1±2.3 86.1±2.3 86.8±2.2 92.4±2.8 76.4±1.5 78.3±1.3

ATI 95.4±1.3 89.0±1.4 89.7±1.3 95.9±1.3 84.0±1.7 85.1±1.5

ATI-λ 97.1±1.1 89.5±1.4 90.2±1.3 96.1±2.0 84.1±1.8 85.2±1.5

ATI-λ-N1 97.6±1.0 89.5±1.3 90.3±1.2 96.4±1.7 84.4±3.6 85.5±1.5
ATI-λ-N2 97.9±1.4 89.4±1.2 90.1±1.0 92.8±1.6 84.3±2.4 85.4±1.5

D→A D→W
CS (10) OS∗ (10) OS (10) CS (10) OS∗ (10) OS (10)

LSVM (s) 85.2±1.7 40.3±4.3 45.2±3.8 97.2±0.7 81.4±2.4 83.0±2.2

LSVM (t) 88.7±2.2 52.8±6.0 57.0±5.5 91.5±4.9 59.6±3.7 63.2±3.4

LSVM (st) 91.9±0.7 68.7±2.5 71.2±2.3 98.7±0.9 87.3±2.3 88.5±2.1

MMD 90.2±1.8 69.0±3.4 71.3±3.0 98.5±1.0 85.5±1.6 86.7±1.4

ATI 93.5±0.2 74.4±2.7 76.1±2.5 98.7±0.7 91.6±1.7 92.4±1.5

ATI-λ 93.5±0.2 74.4±2.5 76.2±2.3 98.7±0.8 91.6±1.7 92.4±1.5

ATI-λ-N1 93.4±0.2 74.6±2.5 76.4±2.3 98.9±0.5 92.0±1.6 92.7±1.5

ATI-λ-N2 93.5±0.1 74.9±2.3 76.7±2.1 99.3±0.5 92.2±1.9 92.9±1.7

W→A W→D AVG.
CS (10) OS∗ (10) OS (10) CS (10) OS∗ (10) OS (10) CS OS∗ OS

LSVM (s) 78.8±2.9 32.4±3.8 38.2±3.4 99.5±0.3 88.7±2.2 89.6±1.9 87.1 58.4 62.0

LSVM (t) 88.7±2.2 52.8±6.0 57.0±5.5 92.3±3.9 68.2±5.2 71.1±4.7 90.9 60.2 63.8

LSVM (st) 90.8±1.3 66.2±4.4 69.0±4.1 99.4±0.7 93.5±2.7 94.0±2.5 94.8 78.4 80.3

MMD 89.1±3.2 65.1±3.8 67.8±3.4 98.2±1.4 93.9±2.9 94.4±2.7 93.8 79.3 80.9

ATI 93.0±0.5 71.3±4.6 74.3±4.3 99.3±0.6 96.3±1.8 96.6±1.7 96.0 84.4 85.7

ATI-λ 93.0±0.5 71.5±4.8 73.6±4.4 99.5±0.6 96.3±1.8 96.6±1.7 96.3 84.6 85.7

ATI-λ-N1 93.0±0.6 72.2±4.5 74.2±4.1 99.3±0.6 96.7±2.1 97.0±1.9 96.4 84.9 86.0

ATI-λ-N2 93.0±0.6 72.8±4.2 74.8±3.9 99.3±0.6 95.5±2.2 95.9±2.0 96.6 84.8 86.0

Table 4.8: Open set domain adaptation on the semi-supervised Office dataset with 10
shared classes (OS). We report the average and the standard deviation using a subset
of samples per class in 5 random splits [Saenko et al., 2010].

4.3.2.3 Sparse Cross-Dataset Analysis

We also introduce an open set evaluation using the sparse set-up from Tommasi and

Tuytelaars [2014] with the datasets Caltech101 (C), Pascal07 (P) and Office (O). These

datasets are quite unbalanced and offer distinctive characteristics: Office contains

centred class instances with barely any background (17 classes, 2300 samples in total,

68-283 samples per class), Caltech101 allows for more class variety (35 classes, 5545

samples in total, 35-870 samples per class) and Pascal07 gathers more realistic scenes

with partially occluded objects in various image locations (16 classes, 12219 samples

in total, 193-4015 samples per class). For each domain shift, we take all samples of the

shared classes and consider all other samples as unknowns. Table 4.10 summarises the

amount of shared classes for each shift and the percentage of unknown target samples,

which varies from 30% to 90%.
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B→C B→I B→S
CS (10) OS (10) CS (10) OS (10) CS (10) OS (10)

LSVM 82.4±2.4 66.6±4.0 75.1±0.4 59.0±2.7 43.0±2.0 24.2±3.0

TCA 74.9±3.0 62.8±3.8 68.4±4.0 56.6±4.5 38.3±1.7 29.6±4.2

gfk 82.0±2.2 66.2±4.0 74.3±1.0 58.3±3.1 42.2±1.4 23.8±2.0

SA 81.1±1.8 66.0±3.4 73.9±0.9 57.8±3.2 41.9±2.4 24.3±2.6

CORAL 80.1±3.5 68.8±3.3 73.7±2.0 60.9±2.6 42.2±2.4 27.2±3.9

ATI 86.3±1.6 71.4±1.8 80.1±0.7 68.0±1.9 49.2±3.2 36.8±1.2

ATI-λ 86.7±1.3 71.4±2.3 80.6±2.4 69.0±2.8 48.6±2.5 37.4±2.6

C→B C→I C→S
CS (10) OS (10) CS (10) OS (10) CS (10) OS (10)

LSVM 53.5±2.1 40.1±1.9 76.9±4.3 62.5±1.2 46.3±2.7 28.2±1.4

TCA 49.2±1.1 38.9±1.9 73.1±3.6 60.2±1.4 45.9±3.6 29.7±1.6

gfk 53.2±2.6 40.2±1.8 77.1±3.3 62.2±1.5 46.2±3.0 28.5±1.0

SA 53.4±2.5 40.3±1.7 77.3±4.2 62.5±.8 46.1±3.3 29.0±1.5

CORAL 53.6±2.9 40.7±1.5 78.2±5.1 64.0±2.6 48.2±3.9 31.4±0.8

ATI 53.2±3.4 45.4±3.4 81.7±3.7 66.7±4.2 52.0±3.4 35.8±1.8

ATI-λ 54.2±1.9 45.7±3.0 82.2±3.7 67.9±4.2 53.1±2.8 37.5±2.7

I→B I→C I→S
CS (10) OS (10) CS (10) OS (10) CS (10) OS (10)

LSVM 59.1±2.0 42.7±2.0 86.2±2.6 73.3±3.9 50.1±4.0 32.1±3.2

TCA 56.1±3.8 40.9±2.9 83.4±3.2 68.6±1.8 49.3±2.6 34.5±3.8

gfk 58.7±1.9 42.6±2.4 86.1±2.7 73.3±3.6 49.5±3.6 32.7±3.6

SA 58.7±1.8 43.1±1.6 85.9±2.9 72.8±3.1 50.0±3.6 32.2±3.7

CORAL 58.5±2.7 44.6±2.5 85.8±1.5 74.5±3.4 49.5±4.8 35.4±4.4

ATI 57.9±1.9 48.8±2.3 89.3±2.2 77.1±2.6 55.0±5.0 42.2±4.0

ATI-λ 58.6±1.4 48.7±1.8 89.7±2.3 77.5±2.2 55.3±4.3 43.4±4.8

S→B S→C S→I AVG.
CS (10) OS (10) CS (10) OS (10) CS (10) OS (10) CS (10) OS (10)

LSVM 33.1±1.7 16.4±1.1 53.1±2.6 27.9±2.9 52.3±1.8 25.2±0.5 59.3 41.5

TCA 30.6±1.3 19.4±2.1 47.5±3.5 32.0±3.9 45.2±1.9 31.1±4.6 55.2 42.0

gfk 33.3±1.4 16.9±1.5 53.1±3.0 28.6±3.8 52.5±2.0 26.4±1.1 59.0 41.6

SA 34.2±1.1 17.5±1.6 52.5±3.2 29.2±4.2 52.6±2.4 27.1±1.3 59.0 41.1

CORAL 32.9±1.6 18.7±1.2 52.1±2.8 33.6±5.3 52.9±1.8 31.3±1.3 59.0 44.2

ATI 34.9±2.6 22.8±3.1 59.8±1.3 46.9±2.5 60.8±3.4 32.9±2.2 63.4 49.5

ATI-λ 34.1±2.4 23.2±3.2 60.2±2.7 47.3±2.9 60.3±2.4 33.0±1.1 63.6 50.2

Table 4.9: Unsupervised open set domain adaptation on the Testbed dataset (dense
setting) with 10 shared classes (OS). In addition, the results for closed set domain
adaptation (CS) are reported for comparison.

Unsupervised domain adaptation. For the unsupervised experiment, we conduct

a single run for each domain shift using all source and unlabelled target samples. The

results are reported in Table 4.10. ATI outperforms the baseline and the other methods

by +5.3% for this highly unbalanced open set protocol. ATI-λ improves the accuracy

of ATI slightly.
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C→O C→P O→C O→P P→C P→O AVG.

shared classes 8 7 8 4 7 4

unknown / all (t) 0.52 0.30 0.90 0.81 0.54 0.78

LSVM 46.3 36.1 60.8 29.7 78.8 70.1 53.6

TCA 45.2 33.8 58.1 31.1 63.4 61.1 48.8

gfk 46.4 36.2 61.0 29.7 79.1 72.6 54.2

SA 46.4 36.8 61.1 30.2 79.8 71.1 54.2

CORAL 48.0 35.9 60.2 29.1 78.9 68.8 53.5

ATI 51.6 52.1 63.1 38.8 80.6 70.9 59.5

ATI-λ 51.5 52.0 63.4 39.1 81.1 71.1 59.7

Table 4.10: Unsupervised open set domain adaptation on the sparse set-up from Tom-
masi and Tuytelaars [2014].

C→O C→P O→C O→P P→C P→O AVG.

LSVM (s) 46.5±0.1 36.2±0.1 60.8±0.3 29.7±0.0 79.5±0.3 73.5±0.7 54.4

LSVM (t) 53.1±3.7 44.6±2.1 73.7±1.5 40.5±3.0 81.1±2.5 70.5±4.3 60.6

LSVM (st) 56.0±1.3 44.5±1.2 68.9±1.1 40.9±2.2 80.9±0.6 76.7±0.3 61.3

ATI 59.6±1.2 55.2±1.3 75.8±1.2 45.2±1.4 81.6±0.2 77.1±0.8 65.8

ATI-λ 60.3±1.2 56.0±1.2 75.8±1.1 45.8±1.2 81.8±0.2 76.9±1.3 66.1

ATI-λ-N1 60.7±1.2 56.3±1.2 76.7±1.6 45.8±1.4 82.0±0.4 76.7±1.1 66.4

Table 4.11: Semi-supervised open set domain adaptation on the sparse set-up
from Tommasi and Tuytelaars [2014] with 3 labelled target samples per shared class.

Semi-supervised domain adaptation. In order to evaluate the semi-supervised

setting, we take all source samples and 3 annotated target samples per shared class

as it is done in the semi-supervised setting for the Office dataset [Saenko et al., 2010].

The average and standard deviation over 5 random splits are reported in Table 4.11.

While ATI improves over the baseline trained on the source and target samples to-

gether (st) by +4.5%, ATI-λ and the locality constraints with one neighbour boost the

performance further. ATI-λ-N1 improves the accuracy of the baseline by +5.1%.

4.3.2.4 Action Recognition

We extend the applicability of our technique to the field of action recognition in video

sequences. We introduce an open set domain adaptation protocol between the Kinet-

ics Human Action Video Dataset [Kay et al., 2017] (Kinetics) and the UCF101 Action

Recognition Dataset [Soomro et al., 2012] (UCF101). The Kinects dataset is used as

source domain and contains a total of 400 human action classes. The UCF101 dataset

serves as target domain including 101 action categories, mainly of sports events. Since

the labels of the same action differ between the datasets, e.g. massaging persons head

(Kinetics) and head massage (UCF101), we manually map the class labels between the

datasets. Additionally, we also merge all action classes in one dataset if they corre-

spond to a single class in the other dataset, e.g. dribbling basketball, playing basketball,

shooting basketball (Kinetics) are merged and associated to basketball (UCF101). We
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Kinetics → UCF101

LSVM TCA gkf SA CORAL ATI ATI-λ

64.9 71.2 64.9 65.1 69.4 76.6 76.9

Table 4.12: Unsupervised open set domain adaptation for action recognition.

Kinetics → UCF101

LSVM (st) ATI ATI-λ ATI-λ-N1

73.5±0.5 84.1±0.7 84.2±0.8 84.5±0.6

Table 4.13: Semi-supervised open set domain adaptation for action recognition.

finally obtain an open set protocol with 66 shared action classes, with 391 actions from

Kinetics and 97 from UCF101. The list of shared classes, as well as all unrelated cat-

egories between both datasets, are given in Table A.1 and Table A.2 of Appendix A,

respectively. The list also includes what similar actions are clustered for each common

class.

For action recognition, we use the features extracted from the 5c layer of the

spatial and temporal stream of the I3D model [Carreira and Zisserman, 2017], which

is pre-trained on Kinetics [Kay et al., 2017]. We forward the complete video sequences

through the spatial and temporal stream of I3D [Carreira and Zisserman, 2017] and

the 5c layer of each stream provides an 7× 7× 1024 output for a temporal fragment.

We then apply spatial average pooling using a 7 × 7 kernel and average over time to

obtain a 1024-dimensional feature vector from both the spatial and temporal stream

of the I3D model [Carreira and Zisserman, 2017]. Finally, the feature vectors from

the spatial and temporal streams are concatenated to get a single 2048-dimensional

feature vector per video sequence.

Unsupervised domain adaptation. In the unsupervised setting, we evaluate our

method by taking all source samples in a single run. Table 4.12 shows that the proposed

approach outperforms the baseline and other approaches. ATI-λ achieves the highest

accuracy and improves the accuracy by +12.0% compared to LSVM. The resulting con-

fusion matrices of LSVM and ATI-λ are shown in Figure 4.7. LSVM misclassifies many

instances of shared classes in the target domain as unknown instances (last column of

confusion matrix), which is a well-known problem for open set recognition. Although

ATI-λ does not resolve this problem completely, it reduces this effect substantially.

Semi-supervised domain adaptation. We extend the unsupervised protocol to

evaluate our method on a semi-supervised setting by labelling 3 target samples per

shared class. We report the average accuracies of 5 random splits in Table 4.13. Like

in the previous semi-supervised experiments, ATI-λ-N1 obtains the best classification

accuracies, outperforming the baseline without adaptation, LSVM (st), by +11.0%.
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(a) No adaptation (LSVM): 64.9% (b) ATI-λ: 76.9%

Figure 4.7: Confusion matrices without (a) and with adaptation (b) for the 66 shared
classes and unknowns (last row and last column) for the unsupervised open set protocol
for Kinetics [Kay et al., 2017] and UCF101 [Soomro et al., 2012]. Many instances of
the shared classes in the target domain are wrongly classified as unknown instances
(last column) if domain adaptation is not applied. The figure is best viewed by zooming
in.

4.3.2.5 Synthetic Data

We also introduce another open set protocol with a domain shift between synthetic

and real data. In this case, we take 152,397 synthetic images of the VISDA’17 chal-

lenge [Peng et al., 2017] as source domain and 5970 instances of real images from the

training data of the Pascal3D dataset [Xiang et al., 2014] as target domain. Since both

datasets contain several types of vehicles, we obtain 6 shared classes, namely, aero-

plane, bicycle, bus, car, motorbike and train, within the 12 categories of each dataset.

Following the protocol used in Section 4.3.2.1, we extract deep features from the fully

connected layer-7 (fc7) from the AlexNet model [Krizhevsky et al., 2012] with 4096

dimensions. In addition, we also extract features from the VGG-16 model [Simonyan

and Zisserman, 2014] to evaluate the impact of using deeper features.

The results of the classification task are shown in Table 4.14. The proposed domain

adaptation method achieves the best results for both types of CNN features. When

we compare the performance of the deep features from AlexNet and VGG-16, the

accuracy of the baseline (LSVM) increases by +5.6% when using the deeper network

VGG-16 instead of AlexNet. ATI and ATI-λ, however, benefit even more from the

deeper architecture. For instance, the accuracy of ATI-λ increases by +10.5%. This

coincides with the observation that deeper networks have a stronger linearisation effect

on manifolds of image domains [Bengio et al., 2013, Upchurch et al., 2017] than shallow
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VISDA → Pascal3D
LSVM TCA gkf SA CORAL ATI ATI-λ

AlexNet 48.0 49.7 50.1 51.2 52.0 61.1 61.4

VGG-16 53.6 55.0 55.2 56.5 60.0 72.0 71.9

Table 4.14: Open set domain adaptation using synthetic images from the VISDA’17
challenge [Peng et al., 2017] as source and real data from the Pascal3D dataset [Xiang
et al., 2014] as target dataset. There are 6 shared classes between both datasets.

aeroplane

bicycle

bus

car

motorbike

train

unknown

aero bike bus car mbike train unkn

(a) No adaptation (LSVM): 53.6% (b) ATI-λ: 71.9%

Figure 4.8: Confusion matrices without (a) and with adaptation (b) for an open set
classification task with 6 shared classes and a domain shift between synthetic [Peng
et al., 2017] (source) and real [Xiang et al., 2014] (target) data. The features are
extracted from the fc7 layer of the VGG-16 model [Simonyan and Zisserman, 2014].

networks. Since the proposed approach learns a linear mapping from the feature space

of the source domain to the feature space of the target domain, it benefits from a better

linearisation. The confusion matrices of the classification task with features extracted

from the VGG-16 model are shown in Figure 4.8. ATI-λ improves the overall accuracy

of LSVM by +18.3% since it resolves confusions between similar classes. For instance,

LSVM frequently misclassifies bicycle as motorbike and car as instances of trucks,

which are part of the unknown class.

4.3.3 Closed Set Domain Adaptation

We also report the accuracies of our method for popular domain adaptation datasets

using the standard closed set protocols, where all classes are known in both domains.
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A→D A→W D→A D→W W→A W→D AVG.

NN 51.3±1.4 45.7±2.1 26.0±0.9 65.5±1.4 28.0±0.5 69.8±1.8 47.7

LSVM 62.3±3.8 55.8±3.1 42.8±1.6 90.1±0.6 41.2±0.4 92.6±1.5 64.1

TCA 60.3±4.0 54.7±3.0 49.4±1.6 90.7±0.4 46.9±2.3 92.0±0.9 65.7

gfk 61.3±3.7 55.7±3.0 45.6±1.6 90.6±0.4 43.1±2.3 93.4±0.9 65.0

SA 60.6±3.5 55.0±3.1 47.3±1.6 90.9±0.6 44.4±1.4 93.3±0.8 65.3

CORAL 64.4±3.9 58.9±3.3 52.1±1.2 92.6±0.3 50.0±1.0 94.0±0.6 68.7

ATI 67.6±3.0 62.3±3.1 54.8±1.3 90.3±0.8 52.4±2.1 92.6±1.7 70.0

ATI-λ 67.3±2.3 62.6±2.5 55.2±2.6 90.1±0.6 53.4±2.5 92.7±2.5 70.2

ATI-λ-N1 64.6±2.9 60.9±1.3 51.9±1.9 90.2±0.9 48.1±1.6 93.7±2.1 68.2

Table 4.15: Comparison on the unsupervised Office dataset [Saenko et al., 2010] with
31 shared classes and 6 domain shifts using the protocol from Saenko et al. [2010] and
features from the AlexNet model (fc7 layer).

4.3.3.1 Office Dataset

For the Office dataset [Saenko et al., 2010], we run experiments for the 6 domain shifts

of the three provided datasets and use deep features extracted from the fc7 feature map

from the AlexNet [Krizhevsky et al., 2012] and VGG-16 [Simonyan and Zisserman,

2014] models.

Unsupervised domain adaptation. For unsupervised domain adaptation, we first

report the results for the protocol from Saenko et al. [2010], where we run 5 experiments

for each domain shift using randomised samples of the source dataset. The results are

shown in Table 4.15, where we compare our method with generic domain adaptation

methods, i.e. TCA [Pan et al., 2009], gfk [Gong et al., 2012], SA [Fernando et al., 2013]

and CORAL [Sun et al., 2015a] using AlexNet features. The results are in accordance

with the observations from Section 4.3.2.1. While ATI outperforms all generic domain

adaptation methods in average and ATI-λ performs slightly better than ATI, ATI-λ-

N1 decreases the accuracy in the unsupervised setting. In addition, we also include the

accuracies of using nearest neighbours without domain adaptation, NN, which reports

significant lower accuracies than LSVM. LSVM also outperforms NN in other closed

set evaluation protocols by a large margin.

We also compare our method with current state-of-the-art CNN-based domain

adaptation methods [Long et al., 2015, 2016, Ganin and Lempitsky, 2015, Venkateswara

et al., 2017, Tzeng et al., 2017, Carlucci et al., 2017]. In this case, we report the ac-

curacies when all source samples are used in a single run as described by Gong et al.

[2013a]. As shown in Table 4.16, our method achieves competitive results even for the

standard closed set protocol.

Semi-supervised domain adaptation. We also evaluate our approach for semi-

supervised domain adaptation on the Office dataset. We follow the protocol from Saenko

et al. [2010] and report the accuracies and standard deviations over 5 runs with ran-

dom samples. In the first experiment with AlexNet features, we also include ATI-λ-N2

with locality constraints using 2 nearest neighbours and compare our approach with
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A→D A→W D→A D→W W→A W→D AVG.
AlexNet features (fc7)

NN 55.9 49.7 27.4 75.3 31.5 86.2 54.3

LSVM 65.7 60.3 43.2 94.7 44.0 98.9 67.8

DAN 66.8 68.5 50.0 96.0 49.8 99.0 71.7

DAH 66.5 68.3 55.5 96.1 53.0 98.8 73.0

RTN 71.0 73.3 50.5 96.8 51.0 99.6 73.7

BP - 73.0 - 96.4 - 99.2 -

ADDA - 75.1 - 97.0 - 99.6 -

ATI 70.3 68.7 55.3 95.0 56.9 98.7 74.2

ATI-λ 69.0 67.0 56.2 95.0 56.9 98.7 73.8

VGG-16 features (fc7)

NN 61.3 55.4 33.1 78.6 49.4 88.8 61.1

LSVM 76.1 68.6 55.3 95.9 61.5 99.6 76.2

DAN 74.4 76.0 61.5 95.9 60.3 98.6 77.8

AutoDIAL 82.3 84.2 64.6 97.9 64.2 99.9 82.2

ATI 80.6 81.4 67.1 96.1 66.4 99.3 81.8

ATI-λ 80.8 81.3 66.9 96.1 66.5 98.9 81.8

Table 4.16: Comparison on the unsupervised Office dataset [Saenko et al., 2010] with
31 shared classes and 6 domain shifts taking all source samples as in Gong et al. [2013a].

state-of-the-art CNN-based methods [Tzeng et al., 2014, Long et al., 2015, Tzeng et al.,

2015]. As in Section 4.3.2.1, we train the SVMs on the transformed source samples

and labelled target samples (st). The results are reported in Table 4.17.

Our method achieves the same average accuracy as MMC [Tzeng et al., 2015]

and performs slightly worse than the method by Motiian et al. [2017] for the VGG-16

features. In addition, we report the accuracy for AlexNet features when the mappingW

(5.2) is estimated using only the labelled target samples without solving the individual

assignments (4.1). This variant is denoted by ATI (labels t) and performs worse than

ATI.

4.3.3.2 Office+Caltech dataset

We also evaluate our approach on the extended version of the Office evaluation set [Gong

et al., 2012], which includes the additional Caltech (C) dataset. This results in 12

domain shifts, but reduces the amount of shared classes to only 10. As shown in

Table 4.18, our method obtains very competitive results with AlexNet features, out-

performing in overall the generic domain adaptation method [Sun et al., 2015a] and 3

out of 4 CNN-based methods. If features from a deeper network such as VGG-16 are

used, our method obtains the best overall results.

4.3.3.3 Dense Testbed for Cross-Dataset Analysis

We also present an evaluation on the Dense dataset of the Testbed for Cross-Dataset

Analysis [Tommasi et al., 2015] using the provided DeCAF features. This protocol

comprises 12 domain shifts between the 4 datasets Bing (B), Caltech (C), ImageNet
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A→D A→W D→A D→W W→A W→D AVG.
AlexNet features (fc7)

LSVM (st) 82.6±5.5 77.0±2.5 63.4±1.6 94.0±0.8 61.8±1.1 96.3±0.8 79.2

DDC - 84.1±0.6 - 95.4±0.4 - 96.3±0.3 -

DAN - 85.7±0.3 - 97.2±0.2 - 96.4±0.2 -

MMC 86.1±1.2 82.7±0.8 66.2±0.3 95.7±0.5 65.0±0.5 97.6±0.2 82.2

ATI (labels t) 85.0±2.1 78.3±2.3 63.6±1.5 94.0±0.8 62.3±0.9 96.4±0.8 79.9

ATI 85.5±2.9 82.4±1.1 65.1±1.3 93.4±0.9 65.6±1.5 95.7±1.1 81.3

ATI-λ 85.6±2.6 82.6±0.5 65.3±1.3 93.3±1.0 65.7±1.7 95.7±1.1 81.4

ATI-λ-N1 88.1±1.7 83.1±2.3 66.0±1.4 93.9±1.2 65.9±1.5 96.2±0.8 82.2

ATI-λ-N2 87.0±3.5 84.6±3.5 65.3±1.0 93.6±1.2 65.9±1.8 95.8±1.3 82.0

VGG-16 features (fc7)

LSVM (st) 86.1±1.5 83.4±1.2 67.9±1.0 96.1±0.7 67.1±0.6 96.6±1.0 82.9

SO 84.5±1.7 86.3±0.8 65.7±1.7 97.5±0.7 66.5±1.0 95.5±0.6 82.7

CCSA 88.2±1.0 89.0±1.2 72.1±1.0 97.6±0.4 71.8±0.5 96.4±0.8 85.8

ATI-λ-N1 90.3±1.9 88.0±1.4 70.8±0.9 95.1±0.7 70.3±2.0 96.3±0.9 85.1

Table 4.17: Comparison on the semi-supervised Office dataset [Saenko et al., 2010]
with 31 shared classes and 6 domain shifts, following the protocol from Saenko et al.
[2010].

(I) and Sun (S), which share 40 classes. Following the protocol described in Tommasi

et al. [2015], we take 50 source samples per class for training and we test on 30 target

images per class for all datasets, except Sun, where we take 20 samples per class.

The results reported in Table 4.19 show that ATI-λ outperforms other generic domain

adaptation methods.

4.3.3.4 Sentiment Analysis

To show the behaviour of our method with a different type of feature descriptor, we

also present an evaluation on the Sentiment analysis dataset [Blitzer et al., 2007].

This dataset gathers reviews from Amazon for four products: books (B), DVDs (D),

electronics (E) and kitchen appliances (K). Each domain contains 1000 reviews labelled

as positive and another set of 1000 reviews as negative. We use the data provided

by Gong et al. [2013b], which extracts bag-of-words features from the 400 words with

the largest mutual information across domains. We report the mean accuracy over

20 splits, where for each run 1600 samples are randomly selected for training and the

other 400 for testing. The results in Table 4.20 show that our approach not only works

very well for image and video data, but it can also be applied to other types of data.

This demonstrates the versatility of the proposed approach.

4.4 Summary

We have introduced the concept of open set domain adaptation in the context of image

classification and action recognition. In contrast to closed set domain adaptation, we

do not assume that all instances in the source and target domain belong to the same set
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A→C A→D A→W C→A C→D C→W
AlexNet features (fc7)

NN 78.4 78.1 71.7 90.7 84.4 80.8

LSVM 83.3 84.1 77.5 91.8 89.1 82.3

CORAL 83.2 86.5 79.6 91.4 86.6 82.1

BP 84.6 92.3 90.2 91.9 92.8 93.2

DDC 83.5 88.4 83.1 91.9 88.8 85.4

DAN 84.1 91.1 91.8 92.0 89.3 90.6

RTN 88.1 95.5 95.2 93.7 94.2 96.9

ATI 86.5 92.8 88.7 93.8 89.6 93.6

ATI-λ 87.1 90.6 90.7 93.4 85.4 93.4

VGG-16 features (fc7)

NN 86.7 84.4 83.4 91.4 88.2 88.0

LSVM 87.8 88.7 87.2 93.3 91.8 91.4

ATI 91.0 92.4 95.9 94.7 93.1 97.4

ATI-λ 90.4 92.4 91.4 94.5 93.9 96.0

D→A D→C D→W W→A W→C W→D AVG
AlexNet features (fc7)

NN 64.2 58.6 89.0 63.2 58.8 95.4 76.1

LSVM 79.4 70.2 97.9 80.0 72.7 100.0 84.0

CORAL 87.3 77.5 99.3 85.2 76.1 100.0 86.2

BP 84.0 74.9 97.8 86.9 77.3 100.0 88.2

DDC 89.0 79.2 98.1 84.9 73.4 100.0 87.1

DAN 90.0 80.3 98.5 92.1 81.2 100.0 90.1

RTN 93.8 84.6 99.2 95.5 86.6 100.0 93.4

ATI 93.4 85.9 98.9 93.6 86.3 100.0 91.9

ATI-λ 93.6 85.8 99.3 93.6 86.1 100.0 91.8

VGG-16 features (fc7)

NN 78.9 75.0 95.2 80.9 78.5 100.0 85.6

LSVM 82.5 77.9 98.4 87.8 84.9 100.0 89.3

ATI 93.7 89.8 98.1 95.1 90.3 99.5 94.3

ATI-λ 94.6 89.4 98.4 95.3 89.4 99.6 93.8

Table 4.18: Classification accuracies on the unsupervised Office+Caltech dataset [Gong
et al., 2012] with 10 shared classes and 12 domain shifts using deep features. We take
all source samples on a single run [Gong et al., 2013a].

of classes, but allow that each domain contains instances of classes that are not present

in the other domain. We furthermore proposed an approach for unsupervised and semi-

supervised domain adaptation that achieves state-of-the-art results for open sets and

competitive results for closed sets. In particular, the flexibility of the approach, which

can be used for images, videos and other types of data, makes the approach a versatile

tool for real-world applications.
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B→C B→I B→S C→B C→I C→S

LSVM 63.8±2.2 57.4±0.7 20.2±1.0 38.3±0.8 62.9±0.9 21.7±1.6

TCA 53.8±1.3 49.1±1.1 17.1±1.1 35.6±1.8 59.2±0.8 18.9±1.2

gfk 63.4±1.8 57.2±1.1 20.6±1.3 38.3±0.9 62.9±1.2 21.7±1.4

SA 63.0±1.9 57.1±1.4 20.2±1.4 38.3±0.9 62.8±1.0 21.5±1.2

CORAL 63.9±2.1 57.8±0.8 20.4±2.0 38.3±0.8 63.4±0.9 22.5±1.2

ATI 69.1±1.3 62.4±1.9 23.4±1.1 39.0±1.4 66.9±1.2 25.2±0.9

ATI-λ 69.4±1.4 62.9±1.3 23.6±1.0 39.0±1.4 66.9±1.1 25.3±0.9

I→B I→C I→S S→B S→C S→I AVG

LSVM 39.3±1.4 70.8±1.5 24.6±1.8 16.6±1.0 26.1±2.0 26.3±0.7 39.0

TCA 36.4±1.2 66.3±2.3 22.2±1.4 13.8±1.4 23.2±1.5 23.2±1.5 34.9

gfk 38.8±1.3 70.9±1.1 24.4±1.4 16.3±0.9 26.7±1.8 26.1±1.0 38.9

SA 39.0±1.3 71.1±1.3 24.2±1.4 16.0±0.9 26.8±1.9 26.4±1.1 38.9

CORAL 39.0±1.2 71.2±1.3 24.9±1.6 16.8±1.0 27.4±2.2 27.7±0.5 39.4

ATI 39.7±1.8 74.4±1.6 25.9±2.1 18.3±1.1 37.1±3.2 35.0±1.0 42.8

ATI-λ 39.8±1.8 74.8±1.5 25.8±2.0 18.7±0.7 37.4±2.9 34.8±0.8 43.2

Table 4.19: Testbed dataset [Tommasi and Tuytelaars, 2014] with 40 common classes
and 12 domain shifts.

B→E D→B E→K K→D AVG.

LSVM 75.5±1.6 78.2±2.5 83.1±1.8 73.3±1.8 77.5

TCA 76.6±2.2 78.5±1.6 83.8±1.5 75.0±1.4 78.5

gfk 77.0±2.0 79.2±1.8 83.7±1.7 73.7±1.9 78.4

SA 75.9±1.9 78.4±2.1 83.0±1.7 72.1±1.9 77.4

CORAL 76.2±1.7 78.4±2.0 83.1±2.0 74.2±3.0 78.0

ATI 79.9±2.0 79.2±1.9 83.7±2.1 75.6±1.9 79.6

ATI-λ 79.6±1.4 79.0±1.8 83.6±2.1 74.4±1.7 79.2

Table 4.20: Accuracies of 4 domain shifts on the Sentiment dataset [Blitzer et al., 2007]
using the bag-of-words features and the protocol from Gong et al. [2013b].
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5.1 Introduction

In Chapter 4, we presented a domain adaptation approach that improves the classi-

fication accuracies in object and action recognition tasks. In this chapter, we extend

this idea and propose a specifically tailored domain adaptation algorithm for view-

point estimation problems, where classification-based approaches have recently shown

excellent results [Tulsiani and Malik, 2015, Massa et al., 2016, Divon and Tal, 2018].

Compared to standard classification of object categories, viewpoint estimation presents

more challenges than just gathering training data that copes with the intra-class vari-

ation of objects. In order to estimate the viewpoint of objects in images precisely,

an accurate annotation of the training data is also required. Humans, however, per-

form poorly for estimating the viewpoint of an object accurately as illustrated in

Figure 5.1. Instead of annotating real images, synthetic data can be generated using
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Synthetic samples with the same fine annotations:

Training sample #1 Training sample #2

Human annotation #1 Human annotation #2

69°

left

71°

left

(a)

Training sample #1 Training sample #2

Synthetic samples with the same fine annotations:

Human annotation #1 Human annotation #2

285°

right

244°

right

(b)

Figure 5.1: Faulty annotations of fine viewpoints are introduced in human-annotated
training datasets. While coarse labels like left or right are correct, the viewpoint
annotations in degrees are not precise (a) and sometimes inconsistent (b). Samples
and fine annotations are taken from the Pascal3D+ dataset [Xiang et al., 2014].

HumanRcoarseR
poseRdiscretization

(labels)

3DRModelRfine
poseRdiscretization

(angles)

AnnotationRimage

45°

Front/RightRview

Figure 5.2: Humans are perfect for annotating coarse viewpoints of objects in real
images, but fail to estimate pose accurately at a fine level. 3D graphic models can be
used to synthesize data at very accurate fine angles, but it is time-consuming to model
all appearance variations present in real images. We therefore propose to leverage the
abilities of humans of estimating coarse viewpoints and the pose accuracy of synthetic
data.

3D models [Mottaghi et al., 2015, Sun and Saenko, 2014, Vázquez et al., 2011, 2014,

Pishchulin et al., 2011, Maŕın et al., 2010]. While synthetic data provides accurate

viewpoints, it either lacks the realism of real images or it is very expensive to generate.

In particular, collecting a large variation of textured 3D shapes and combining them

with coherent background scenes and illumination conditions is time-consuming.

We address this issue by leveraging human annotators and synthetic data, as de-

picted in Figure 5.2, to avoid manual annotation by humans of fine viewpoints, which

is time-consuming and erroneous, and to avoid the synthesis of a realistic dataset that

captures the variations of real images, which is time and memory consuming. To

this end, we ask humans to annotate only four coarse views, sketched in Figure 5.3a,

and introduce an approach that refines the labels using synthetic data. Since syn-
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45°

135°225°

315°

back

right

front

left

(a) Coarse views

Source
(synthetic)

Target
(real)

feature dimension 1

feature dim
ension

 2

(b) Illustration of features space

Figure 5.3: (a) The four views available for real images. (b) Synthetic and real images
with the same annotated viewpoint lie in different domains within the feature space.

thetic data and real images belong to different domains as illustrated in Figure 5.3b,

a domain adaptation approach is used for the refinement. General domain adaptation

approaches like Gong et al. [2012] and Hoffman et al. [2013], however, are not sufficient

for label refinement since they fail to distinguish viewpoint rotations by 180 degrees.

We therefore present a task-specific approach that takes advantage of the coarse labels

of the real training samples. While in the previous chapter we focused on unsuper-

vised and semi-supervised classification problems, we introduce a 2-step approach with

a weekly supervised step using human labels and the resulting coarse views that are 4

unsupervised domain adaptation tasks.

In order to test the performance of our method, we provide a thorough experi-

mental evaluation on several rigid object categories, focusing especially on cars, com-

puting different feature descriptors, including state-of-the-art features extracted from

CNNs [Krizhevsky et al., 2012, Simonyan and Zisserman, 2014]. In addition, we study

the effect of truncated and occluded object instances and also show how the refined

datasets are able to obtain in some cases comparable or even better results than anno-

tated training data with full human supervision. The evaluation, which is performed

on six datasets for viewpoint estimation, reveals that our approach outperforms state-

of-the-art domain adaptation methods.

5.2 Adapted Synthetic Data for Viewpoint Refinement

and Estimation

In this section we describe the automatic process of refining coarse annotations of real

data into fine viewpoints using adapted synthetic data. As depicted in Figure 5.4,

we initially request humans to coarsely annotate viewpoints of given 2D bounding

boxes. Additionally, we also generate synthetic data with fine viewpoint annotations.

This process is discussed in Section 5.2.1. Then, we adapt the synthetic data towards

the real data, explained in Section 5.2.2, and assign fine viewpoints to the real data,
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T∈TargetTraining*Real*Data
Coarse*Annotation

S∈SourceSynthetic*Data
Fine*AnnotationReal*background

3D*Models

Domain
Adaptation

transformation*W

W***S

T Viewpoint
Refinement

Real*data

Humans

Viewpoint
Estimation

Test*real*data*(2D*Localisations)

Test*real*data
Fine*viewpoints

Adapted*synthetic

Refined*real

Figure 5.4: Proposed pipeline for viewpoint refinement and estimation of real data.

further detailed in Section 5.2.3. We evaluate our approach for viewpoint refinement

and viewpoint estimation. For viewpoint refinement, the coarse viewpoint is given and

the goal is to estimate the fine viewpoint. For viewpoint estimation, the refined real

and adapted synthetic data is used to train an estimator for fine-grained viewpoint

estimation. The estimator is then evaluated on unseen test instances.

5.2.1 Generation of Synthetic Data from 3D Models

In order to produce thousands of synthetic images, we first download free available 3D

graphics models from the Internet. We then render the models, centred in the screen

coordinate system, with 8 different light sources evenly spread around the object.

Based on a Phong reflection model [Phong, 1975], we emphasise the usage of diffuse

lighting to highlight shape variations and deformations, reducing the impact of ambient

illuminations and specular reflections. The resulting rendered virtual classes used

in the experiments are shown in Figure 5.5a. The scene is completed with a real

background image taken from Geiger et al. [2012] placed behind the rendered object.

Finally, the generation process reduces to a parametrised camera displacement with

azimuth θ, elevation φ and object distance r. Although this configuration allows to

move along the whole view-sphere, we simplify the fine viewpoint annotations to the Y-

axis rotation, being the azimuth angle the most dominant factor to recognise viewpoint

differences in feature space, as well as the most relevant plane in viewpoint estimation

tasks [He et al., 2014]. Figure 5.5b shows some examples of synthetic images. While

the process of synthesizing images does not require much effort, it does not generate

realistic images since the unknown 3D geometry and light conditions of the background

are not taken into account.

5.2.2 Domain Adaptation of Synthetic Data

Since synthetic data and real images belong to different domains, as illustrated in Fig-

ure 5.3b, we adapt the domain of the synthetic data to the real data. Our approach
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(a) 3D models for the 11 object classes used for the Pascal3D+ dataset [Xiang
et al., 2014].

(b) Synthesised images with different azimuth, elevation and distance configurations.

Figure 5.5: 3D graphics models for different object classes are rendered in front of
real background images from Geiger et al. [2012] in order to automatically generate
thousands of synthetic images with different accurate viewpoint annotations.
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clusters the source (synthetic) and target (real) domains, and establishes correspon-

dences between the clusters. The correspondences are then used to learn a mapping

from the source domain to the target domain. The viewpoint annotations of the real

images are then refined with viewpoint classifiers trained on the transformed synthetic

data.

The learning of the mapping from the source to the target domain is discussed

in Section 5.2.2.1 and the establishment of correspondences between clusters of both

domains is discussed in Section 5.2.2.2.

5.2.2.1 Alignment from Synthetic to Real Domain

To map the source data to the target domain, we have to learn a mapping from S ∈ RD
to T ∈ RD, where D denotes the dimensionality of the features. For label refinement,

the dimensionality of the source and the target domain is the same. We consider a

linear transformation, which is represented by a matrix W ∈ RD×D, i.e. t = Ws.

Let S = {s1, ..., sM} and T = {t1, ..., tN}, where s ∈ S and t ∈ T , denote the

training samples of the source and target domains, respectively. M and N are the total

amount of samples of each domain and we can assume that M ≥ N , since we can always

generate more synthetic data than annotated real images. We first assume that for a

subset of the target elements tk we have already established a corresponding element

in the source domain. The establishment of the correspondences C = {c1, ..., cK} with

(sck , tk) and K ≤ N will be explained in Section 5.2.2.2.

Given the correspondences, W can be learned by minimizing the objective

f(W ) =
1

2

K∑
k=1

||Wsck − tk||
2
2, (5.1)

which can be expressed in matrix form:

f(W ) =
1

2
||WPS − PT ||2F . (5.2)

The matrices PS and PT ∈ RD×K represent all assignments between source and target

elements, where the columns denote the actual correspondences. We optimise the

objective by non-linear optimisation. To this end, the derivatives of (5.2) are calculated

by
∂f(W )

∂W
= W (PSP

T
S )− PTP TS . (5.3)

In our implementation, we use the local gradient-based optimization method of moving

asymptotes [Svanberg, 2002], which is part of the NLOPT package [Johnson, 2007–

2010].

The advantage of this method compared to other widely used algorithms, such as

stochastic gradient descent or conjugate gradient, is that, in each iteration, the opti-

misation is reduced into a convex approximating sub-problem, which is easier to solve.

This formulation is thus suitable for solving large-scale unconstrained optimisation
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correspondence
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Front

Left
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Figure 5.6: Each cluster in the target domain is assigned to a source cluster that
belongs to the same coarse viewpoint. In this example, for an 8-view refinement:
Vi = 2 and Ki = 4.

problems like (5.1), a very expensive function evaluation due to the size of trans-

formation matrix W , which is still differentiable. However, dimensionality reduction

techniques may also be considered for feature descriptors with extremely large D. e.g.

data compression with Principal Component Analysis [Pearson, 1901]. Experiments

regarding viewpoint refinement with dimensionality reduced features are presented in

Section 5.3.

5.2.2.2 Source-Target Correspondences

In order to minimize (5.1), we first have to establish correspondences between the

source and the target data. To this end, we cluster the data in both domains. For the

synthetic data, we use the known fine-grained poses where each pose can be associated

with one of the four coarse viewpoints i = {front,back, left, right}, i.e. V =
∑

i Vi,

where Vi is the number of fine viewpoints for refinement in each coarse region. Fine

viewpoints that lie between two coarse views are always assigned to the front or back

views. For the target domain, we only have the coarse viewpoints and therefore cluster

the Ni training samples of one coarse viewpoint further by K-Means, where the number

of clusters for each coarse viewpoint is given by Ki, i.e. K =
∑

iKi. and Vi ≤ Ki ≤ Ni.

If Ki = Ni clustering is not performed since each target instance is considered as one

cluster. If Ki = Vi, the number of clusters is equal to the number of fine viewpoints.

For the clustering, we represent each image by a HOG or CNN feature vector and

append the aspect ratio of the bounding box surrounding the object.

As illustrated in Figure 5.6, we establish correspondences between the clusters in

the source and target domains, separately for each coarse viewpoint. To this end,

we represent each cluster by its centroid. The sets of centroids are denoted by Ŝi =

{ŝi1, ..., ŝiVi} and T̂ i = {t̂i1, ..., t̂iKi}. The correspondences are then established by solving

a bipartite matching problem:

argmin
evk

Vi∑
v=1

Ki∑
k=1

evk
∥∥ŝiv − t̂ik∥∥2

2

subject to
∑
v

evk = 1 ∀k ,
∑
k

evk = av ∀v and evk ∈ {0, 1} ∀v, k .
(5.4)
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It assigns to each cluster in the target domain a unique cluster in the source domain.

Since there can be more clusters in the target domain than in the source domain, each

source is associated to av = Ki/Vi target clusters. If Ki is not a multiple of Vi, i.e.

aVi < Ki < (a+1)Vi, we set av = a+1 for the first Ki−aVi source clusters and av = a

otherwise. We use the Hungarian algorithm [Kuhn, 1955] to solve the problem and

for any cluster pair with evk = 1, we obtain a correspondence ck. Due to the nature

of the Hungarian method, which requires all combinations of centroid distances to

be precomputed, we have not observed noticeable differences when solving (5.4) with

other norms. The correspondences from all coarse views are then used to estimate the

transformation W in (5.1).

5.2.3 Viewpoint Refinement and Estimation

The last step in our pipeline is the viewpoint refinement of the real training images.

This is seen as a classification problem where we train on the transformed synthetic

samples a linear SVM for each of the fine viewpoints v = {1, ..., V }, as effectively

presented in other works [Liebelt and Schmid, 2010, Pepik et al., 2012, Glasner et al.,

2011]. Then, we apply the linear SVMs corresponding to the coarse viewpoint i of the

real image and assign the fine pose with the highest scoring function:

f(x, i) = argmax
v={1,...,Vi}

wTv x+ bv, (5.5)

where wv and bv are the weights and bias of the linear SVM for the fine viewpoint v.

Since the transformation of synthetic data is guided by correspondences that deal with

a discretised representation of viewpoints, i.e. source samples are clustered in exactly

V centroids, we consider that the usage of classifiers for the final viewpoint refinement

naturally fits in the overall formulation.

For pose estimation on real test images, we also use linear SVMs in a one-vs-all

classification procedure. For each fine viewpoint, we train a linear SVM using the real

training images with refined pose labels and the synthetic training images, which have

been transformed by domain adaptation, together.

5.3 Experiments

We evaluate our algorithm on three car and three multi-object datasets with fine

annotated poses. From the former group, the Multi-View Car [Ozuysal et al., 2009]

dataset contains sequences of 20 cars as they rotate by 360◦, where one image is taken

every 3-4◦. These fine-grained poses allow us to test the refinement at higher levels of

viewpoint discretisation. We take the first 10 car sequences as training (1179 images)

and the last 10 as test data (1120 images). Since the cars in this dataset are in a

fixed location, we also evaluate our method on the more realistic KITTI [Geiger et al.,

2012] benchmark, where images are recorded while driving along streets and roads.

Due to the lack of bounding box annotations in the test data, we perform a 2-fold

cross validation on the fully visible cars of the training set, containing 7481 images
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with 17463 cars, 7811 of those which are non-occluded. For a cross-dataset experiment

in Section 5.3.5, we also use the dataset [Sedaghat and Brox, 2015] where the bounding

boxes and viewpoints have been annotated in a fully unsupervised manner. From the

latter, the 3D Object Categorization [Savarese and Fei-Fei, 2007] dataset provides 10

image sets of cars and bikes in 8 different angles (every 45 degrees), permitting a

refinement from 4 to 8 fine viewpoints. There are 2 elevations and 3 distances for

each view, giving 48 images per object. We take 7 sets for training and 3 for testing.

We also evaluate the method on the Pascal3D+ [Xiang et al., 2014], which contains

occlusions and truncated object instances of several classes. The main part of this

dataset enriches the PASCAL VOC 2012 [Everingham et al., 2010] categories with 3D

annotations for 11 rigid objects (In the original protocol, the class “bottle” is discarded

due to its lack of viewpoint reference): aeroplane, bike, boat, bus, car, chair, dining

table, motorbike, sofa, train and tv monitor. The dataset has been further increased by

images from the ImageNet dataset [Deng et al., 2009], which are also augmented with

3D annotations for the same rigid objects, and contain a larger amount of samples

but with reduced number of occluded instances. Therefore, we opt for evaluating

both subsets separately, denoted in our experiments as Pascal3D and ImageNet3D,

respectively, using their validation sets as test data. The setup for the experiments is

as follows. At first, we automatically generate synthetic data of textured 3D models

for each object class. Following the evaluation protocol of Panareda Busto et al. [2015],

we take 10 graphics models for each of the 11 rigid object categories, thus decreasing

the number of cars from 15 to 10 in order to keep an even quantity among all classes.

The attached background images, randomly taken from the KITTI dataset [Geiger

et al., 2012], point towards the car’s driving direction, allowing for synthetic vehicle

placements, e.g. bike, bus, car and motorbike classes, in the centre of the image. In

comparison to Panareda Busto et al. [2015], the synthetic images are obtained with

a finer viewpoint granularity, rotating the θ angle of the camera every 1 degree in

clockwise order, instead of every 10 degrees, allowing for a total of 360 fine viewpoints.

Since elevation φ varies among the objects classes, we take the elevation ranges of

each object class from the training data of Xiang et al. [2014] and discretise them in

4 different levels, independently. Besides, we make use of one single distance, r = 2.0,

in virtual world coordinates. The pose labels are then quantised to their closest angle

of the V fine poses. The first viewpoint v = 1 lies at θ = 0 in all quantisation levels.

Overall, we generate 14400 samples per object class. Some examples of the synthesised

data are illustrated in Figure 5.5b.

Our first evaluation, in Section 5.3.1, measures the accuracy of our viewpoint re-

finement, extracting the bounding boxes of the real training images and converting

the given viewpoints into the four coarse views, that is: front = (315◦, ..., 45◦),

right = [45◦, ..., 135◦], back = (135◦, ..., 225◦) and left = [225◦, ..., 315◦]. Then, in

Section 5.3.2, we evaluate the viewpoint estimation of the real test images having as

training the adapted synthetic data and the refined real data. We use the given bound-

ing boxes if the images are not already cropped. Neither coarse nor fine viewpoints

are used for the test images. Section 5.3.3 discusses the impact of occluded object

instances and Section 5.3.4 evaluates the accuracy of CNN-based methods for pose
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estimation using the refined datasets. We finally perform a cross-dataset experiment

in Section 5.3.5.

Several widely used feature descriptors are evaluated to measure the performance

of the method in different feature spaces. For the hand-crafted features, we rescale

the bounding boxes to 128×128 pixels and extract HOG descriptors [Dalal and Triggs,

2005] with 8 bins (31 channels/bin), as in Panareda Busto et al. [2015]. For the

deep features, we take the AlexNet [Krizhevsky et al., 2012] and VGG [Simonyan and

Zisserman, 2014] models and we extract the feature maps from the last convolutional

layer (CNN-pool5), with 9216 and 25088 dimensions from the standard 227×227 and

224×224 input patches, respectively. As we will show in Section 5.3.1, we reduce the

dimensionality for AlexNet to 3041 dimensions (33%) and for VGG to 6272 dimensions

(25%) without loss of accuracy. Additionally, we also evaluate the features from the last

fully connected layer (CNN-fc7) of a re-trained VGG model, using the synthetic dataset

and modifying the output layer with 360 classification channels. In the experiments

with hand-crafted features, the annotated instances are rescaled preserving the aspect

ratio. For the evaluations with deep features, the annotations are warped as in Tulsiani

and Malik [2015].

5.3.1 Viewpoint Refinement

We first evaluate the accuracy of our approach for pose refinement on the real training

images. To this end, we use the coarse labels of the real training images and refine

the viewpoints as described in Section 5.2.3. We then evaluate the accuracy of the

refined labels on the real training images in conjunction with the transformed synthetic

samples after the domain adaptation process. For the initial parameter evaluation of

our method, we stick to extracted AlexNet (CNN-pool5) features of car models. Then,

we test the performance of our viewpoint refinement for all descriptors and classes.

Impact of number of target clusters As described in Section 5.2.2.2, we cluster

each coarse view by K-Means. We therefore evaluate the impact of the number of

target clusters K on the viewpoint refinement. The results for the different datasets

and V refined viewpoints used for evaluation are shown in Figure 5.7. As baseline,

we use linear SVMs trained on the synthetic data without domain adaptation. The

accuracy tends to stabilize when the number of clusters is sufficiently large. The finer

the viewpoints are the more clusters are also needed.

Impact of number of target samples Although annotating real images by coarse

viewpoints is easy to do, it also takes time. We therefore evaluate the impact of the

number of coarsely labelled target samples N . To avoid any clustering artefacts, we

set Ki = Ni, i.e. each target sample itself is a cluster. We also keep the numbers of the

real images Ni for each of the four viewpoints equal while increasing N . The results in

Figure 5.8 show that already 100-150 annotated samples per coarse view give a boost

in performance compared to the baseline. This means that very little time is actually

required for the annotation task.
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(c) ImageNet3D dataset

Figure 5.7: Impact of the number of target clusters K for viewpoint refinement.
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(c) ImageNet3D dataset

Figure 5.8: Impact of the number of target samples Ni per coarse view for the refine-
ment.

Impact of number of 3D models We also evaluate the impact of the amount of

3D models used to generate synthetic data. Figure 5.9 shows how the accuracy tends

to stabilise with already 5 models.

Weak supervision If the target samples are not annotated by the four coarse views,

we can still perform unsupervised domain adaptation. In this case, we observe a

substantial amount of wrong viewpoint estimates by 180 degrees as shown by the

confusion matrix in Figure 5.10a. In contrast, we resolve these errors by using the

coarse viewpoints of the real images as weak supervision as shown in Figure 5.10b.

This shows that using coarse annotations of real images, which are inexpensive to

annotate, significantly increases the viewpoint refinement accuracy.

Accuracy of the viewpoint refinement We finally compare the refinement ac-

curacy of our method with popular domain adaptation techniques [Gong et al., 2012,

Fernando et al., 2013, Sun et al., 2015a]. The geodesic flow kernel (GFK) [Gong

et al., 2012] is an unsupervised domain adaptation method that maps both domains

to a common subspace in a Grassmannian manifold. The same applies to the sub-

space alignment technique (SA) [Fernando et al., 2013], that maps both domains to

a common subspace using the d largest eigenvectors. In both cases, the number of

chosen sub-dimensions d is kept as large as possible to avoid a significant loss in ac-

curacy. Lastly, we also test the current state-of-the-art adaptation method named
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Figure 5.9: Impact of the number of 3D car models for viewpoint refinement.

(a) Unlabelled target samples (b) 4 viewpoint labels in target samples

Figure 5.10: Confusion matrix for the Multi-View Car dataset in a 16-viewpoint refine-
ment. (a) Without supervision rotations by 180 degrees are sometimes confused. (b)
When weak supervision from the four coarse viewpoint labels is used, these confusions
are resolved.

CORAL [Sun et al., 2015a]. Without any dimensionality reduction, it decorrelates

the source samples by whitening and re-colours them by the covariance matrix of the

target data. For all methods, we exploit the weak supervision and apply them for each

coarse viewpoint, independently. As already shown in Panareda Busto et al. [2015],

supervised methods that internally process the coarse labelling [Hoffman et al., 2013]

report worse viewpoint accuracies than the unsupervised methods. For the refinement

after domain adaptation, we use linear SVMs as described in Section 5.2.3. As base-

line, we use the linear SVMs trained on the synthetic data without domain adaptation

(w/o DA).

For our method, we report the refinement accuracy for four different clustering

settings. For the first three, we set V equal to the number of views for fine-grained

viewpoint estimation as in the previous experiments. We report numbers for K = V ,

K = 100 and K = N . For the first two settings, we report the mean accuracy and its

standard deviation over 10 runs since K-Means depends on the random initialization.
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In the last setting, each target sample is a cluster.

We first report the results only for the fully visible object exemplars and compare

the hand-crafted features (HOG) and the deep features, i.e. the last convolutional fea-

tures from AlexNet and VGG models (CNN-pool5) after dimensionality reduction and

the re-trained fully connected layer of VGG (CNN-fc7), in Table 5.1. The accuracies

of CNN-pool5 features from both models outperform the results of the HOG features,

obtaining VGG slightly better results than AlexNet, especially for finer viewpoints.

While both CNN-pool5 features achieve the best overall results, VGG CNN-fc7 per-

forms slightly better on the Multi-View Car dataset for V ≥ 72.

While K = N performs best in almost all cases, K = 100 and K = V achieves the

highest accuracy in only very few cases, with only marginal improvements compared to

K = N . Overall, K = N with CNN-pool5 features performs best. We also evaluated

the accuracy when V is also set to the number of synthetic samples M , i.e. each

synthetic image is a cluster. In this case, the accuracy drops significantly for all

datasets and feature descriptors. This shows that the synthetic data needs to be

quantized according to the fine-grained views.

Table 5.1 also compares our approach to other domain adaptation methods [Gong

et al., 2012, Fernando et al., 2013, Sun et al., 2015a]. In nearly all setting and feature

combinations, our method outperforms the generic domain adaptation methods. Al-

though CORAL obtains better results with CNN-fc7 features, the reported accuracies

are still lower than the results of the CNN-pool5 features with our method.

In contrast to the datasets [Ozuysal et al., 2009, Geiger et al., 2012, Savarese and

Fei-Fei, 2007], the datasets Pascal3D and ImageNet3D contain many occluded and

truncated objects. The results for these two datasets are reported in Table 5.2. We

report the accuracies for both CNN models with the CNN-pool5 features using K = N

and compare it to the baseline without domain adaptation. Except for the 8 view

refinement on ImageNet3D, our approach outperforms the baseline by around 4-6%.

In general, the reported results of the AlexNet and VGG models are comparable.

Viewpoint refinement without coarse annotations We complete the evalua-

tion of the viewpoint refinement by showing how it behaves if the real images are not

weakly labelled by humans. Concretely, we test ATI-λ for closed set domain adapta-

tion, presented in Chapter 4, and compare it against the baseline, whose real images

also remain unsupervised. In this scenario, the total number of source clusters V and

the amount of target samples N are the input parameters of the adaptation algorithm.

We report their accuracies in Table 5.3 and 5.4, which show a substantial accuracy

reduction, with and without domain adaptation, compared with the methods that use

coarse annotations, shown in Table 5.1 and 5.2. This implies that just a small amount

human effort produces remarkable improvements in the quality of viewpoint annota-

tion. Besides, we observe that ATI-λ only outperforms the baseline in datasets with

more differences between mirrored angles, proving the advantages of weakly supervised

domain adaptation in viewpoint estimation tasks. The adaptation also fails when us-

ing fc7 features, since its fully connected layer highly diminishes the subtle differences

of similar viewpoints.
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3DObjCat Multi-View Car KITTI

HOG

views 8/car 8/bike 8 16 24 36 72 180 360 8 16

w/o DA 98.2 98.4 88.8 78.1 68.5 55.6 30.9 13.3 6.5 82.5 69.9

GFK [Gong et al., 2012] 98.2 98.0 89.3 79.7 71.3 55.9 31.7 14.9 6.5 82.2 69.1

SA [Fernando et al., 2013] 96.4 98.4 87.5 77.0 69.4 55.2 31.8 13.2 6.4 87.4 69.3

CORAL [Sun et al., 2015a] 95.8 95.8 89.9 79.1 65.7 52.4 24.6 10.2 4.4 78.3 66.5

V=views, K=V 83.4
(0.8)

81.6
(0.7)

78.6
(1.7)

63.7
(2.1)

63.0
(2.2)

51.5
(1.8)

30.6
(1.4)

14.5
(1.0)

7.0
(0.6)

65.7
(1.9)

65.8
(1.4)

V=views, K=100 99.4
(0.2)

98.8
(0.4)

92.1
(0.6)

81.2
(0.8)

71.1
(1.5)

59.3
(1.2)

32.2
(1.1)

14.6
(0.9)

7.6
(0.4)

80.4
(1.4)

67.5
(1.5)

V=views, K=N 100.0 99.8 91.0 85.3 76.8 64.4 38.1 15.6 7.4 83.8 69.0

V=M, K=N 98.2 98.4 89.3 78.1 67.6 53.8 28.8 13.4 7.1 82.0 67.5

AlexNet CNN-pool5

views 8/car 8/bike 8 16 24 36 72 180 360 8 16

w/o DA 99.7 97.0 93.5 81.5 76.8 61.4 35.1 12.8 6.1 81.9 70.4

GFK [Gong et al., 2012] 99.4 97.8 94.9 83.5 78.5 60.4 35.1 14.4 6.8 83.2 67.4

SA [Fernando et al., 2013] 99.7 96.8 92.5 81.4 76.1 61.1 35.5 13.0 6.8 83.5 71.3

CORAL [Sun et al., 2015a] 98.8 94.8 94.4 81.5 71.5 54.8 27.1 7.0 2.0 79.7 64.1

V=views, K=V 83.3
(1.7)

68.5
(2.2)

70.8
(2.7)

52.7
(1.5)

42.2
(1.3)

29.2
(1.7)

30.2
(1.0)

14.4
(0.5)

8.3
(0.8)

67.3
(2.2)

40.1
(2.8)

V=views, K=100 99,7
(0.0)

95.6
(0.9)

94.7
(0.5)

83.2
(1.2)

71.2
(1.1)

56.4
(1.4)

30.9
(1.2)

14.5
(0.8)

8.7
(0.8)

75.9
(1.9)

64.9
(1.7)

V=views, K=N 100.0 99.0 96.7 87.5 81.7 67.7 40.5 16.3 7.3 84.7 68.8

V=M, K=N 99.7 97.0 93.6 81.2 71.4 60.0 34.3 13.3 6.9 82.1 63.3

VGG CNN-pool5

views 8/car 8/bike 8 16 24 36 72 180 360 8 16

w/o DA 99.7 96.2 93.5 84.4 76.2 62.5 34.5 13.0 6.7 82.1 68.3

GFK [Gong et al., 2012] 99.4 97.0 95.1 85.0 78.1 61.0 33.9 14.0 7.1 83.1 66.1

SA [Fernando et al., 2013] 98.2 91.3 93.3 83.9 75.5 59.6 33.4 13.2 7.2 82.5 67.6

CORAL [Sun et al., 2015a] 98.2 94.6 95.0 82.8 75.4 60.0 31.3 9.8 4.6 77.2 65.8

V=views, K=V 54.5
(3.4)

60.1
(3.7)

54.8
(4.1)

37.0
(3.2)

22.4
(2.8)

25.4
(2.0)

20.4
(1.7)

11.9
(1.0)

7.9
(1.1)

49.5
(4.0)

30.7
(2.2)

V=views, K=100 97.3
(0.5)

93.5
(0.6)

92.6
(0.7)

73.6
(1.1)

60.2
(1.3)

41.1
(0.9)

21.2
(0.5)

12.4
(0.8)

8.0
(0.6)

82.0
(1.0)

64.5
(1.3)

V=views, K=N 100.0 98.8 95.5 87.0 82.1 70.1 42.7 19.5 9.0 84.7 68.5

V=M, K=N 99.4 96.2 93.6 84.1 72.2 60.8 34.0 13.3 7.5 82.5 62.2

VGG CNN-fc7

views 8/car 8/bike 8 16 24 36 72 180 360 8 16

w/o DA 96.4 96.8 90.6 79.8 74.2 63.6 43.2 20.2 9.0 78.9 65.3

GFK [Gong et al., 2012] 96.5 96.9 91.2 81.1 76.0 63.3 42.8 19.9 10.0 78.1 64.5

SA [Fernando et al., 2013] 95.5 96.2 90.5 80.1 73.4 61.9 43.6 18.9 10.7 79.4 64.7

CORAL [Sun et al., 2015a] 91.7 94.1 93.9 83.6 76.0 63.9 42.0 19.1 9.2 74.9 59.6

V=views, K=V 86.9
(1.2)

97.4
(0.5)

89.8
(1.0)

72.9
(1.5)

69.3
(2.0)

58.9
(1.8)

40.9
(2.1)

19.7
(0.9)

10.4
(0.7)

66.4
(2.3)

56.3
(1.7)

V=views, K=100 97.0
(0.5)

96.8
(0.5)

90.9
(0.7)

80.2
(0.9)

76.2
(0.9)

63.8
(1.1)

43.5
(0.8)

21.5
(0.8)

10.2
(0.6)

76.8
(2.1)

63.2
(2.2)

V=views, K=N 97.9 96.8 90.8 80.6 74.8 63.9 43.3 22.2 9.9 78.6 67.2

V=M, K=N 96.4 97.0 90.7 81.4 75.9 63.6 39.1 20.2 9.7 79.8 64.4

Table 5.1: Accuracy of the coarse-to-fine viewpoint refinement for different domain
adaptation techniques. For the methods with K-Means clustering, the mean and stan-
dard deviation (brackets) over 10 runs are provided.
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PASCAL3D

AlexNet CNN-pool5

views aero bike boat bus car chair table mbike sofa train tv Avg.

8
w/o DA 63.4 67.5 57.6 69.3 68.2 58.6 64.9 70.6 61.4 65.2 64.4 64.6

V=views, K=N 59.0 68.6 60.7 72.0 70.9 63.2 66.5 70.1 66.0 67.8 68.4 66.7

16
w/o DA 42.0 42.0 31.5 53.9 47.8 38.4 41.3 44.8 43.2 42.6 41.2 42.6

V=views, K=N 36.0 49.3 35.1 57.6 49.5 42.4 45.0 54.5 44.1 47.4 34.3 45.0

24
w/o DA 28.6 34.2 19.2 43.8 36.2 29.4 28.7 34.1 32.3 23.7 19.7 30.0

V=views, K=N 28.0 39.8 27.5 44.7 39.3 31.1 27.7 39.4 35.7 30.4 35.6 34.5

VGG CNN-pool5

aero bike boat bus car chair table mbike sofa train tv Avg.

8
w/o DA 62.1 67.3 55.6 68.7 67.8 60.0 47.9 68.5 64.1 66.8 55.4 62.2

V=views, K=N 57.4 72.5 58.2 67.9 70.7 63.6 46.7 69.4 76.0 70.1 59.7 64.7

16
w/o DA 38.7 40.9 32.1 62.7 46.4 36.1 34.6 47.5 35.3 38.7 43.8 41.5

V=views, K=N 36.1 53.2 36.0 56.8 50.7 41.5 45.2 52.1 40.0 52.4 49.1 46.6

24
w/o DA 24.3 30.7 18.2 43.3 36.1 26.2 22.2 32.7 25.6 30.0 29.6 29.0

V=views, K=N 29.0 39.4 26.5 46.1 40.4 30.8 27.7 38.9 38.2 37.8 37.4 35.7

ImageNet3D

AlexNet CNN-pool5

aero bike boat bus car chair table mbike sofa train tv Avg.

8
w/o DA 64.8 78.8 56.5 94.9 91.3 75.5 73.0 73.8 77.4 64.8 81.6 75.7

V=views, K=N 60.1 78.7 55.9 92.8 91.5 75.8 76.6 77.5 77.2 63.6 81.6 75.6

16
w/o DA 46.5 56.0 36.3 70.7 73.6 62.1 34.9 52.1 57.0 34.7 39.3 51.2

V=views, K=N 42.1 60.0 37.8 74.6 74.2 62.5 60.0 58.8 63.8 45.5 37.3 56.1

24
w/o DA 37.5 41.3 25.7 54.4 60.5 48.9 28.7 36.1 45.0 28.1 40.0 40.6

V=views, K=N 36.8 48.2 27.8 62.4 63.2 53.3 50.8 40.6 43.4 34.7 35.3 45.1

VGG CNN-pool5

aero bike boat bus car chair table mbike sofa train tv Avg.

8
w/o DA 64.8 76.4 60.7 92.2 91.5 77.3 71.4 71.8 85.1 77.4 80.5 77.2

V=views, K=N 61.1 76.5 58.3 87.9 90.1 73.7 74.8 77.7 73.8 70.7 74.5 74.5

16
w/o DA 44.2 55.0 36.7 69.0 73.5 55.8 44.1 52.5 57.6 44.0 25.2 50.7

V=views, K=N 44.2 59.1 38.6 73.3 72.6 59.0 57.9 57.1 60.3 40.8 46.5 55.4

24
w/o DA 33.5 40.4 26.0 53.9 63.5 44.1 33.2 34.2 42.0 22.1 22.1 37.7

V=views, K=N 35.2 50.1 30.2 57.1 63.2 47.4 44.5 43.1 56.1 26.7 22.5 43.3

Table 5.2: Accuracy of the coarse-to-fine viewpoint refinement for the Pascal3D and
ImageNet3D datasets that contain occlusions and truncated object instances.

Impact of dimensionality reduction For the results shown from Table 5.1 to 5.4,

we reduced the dimensionality of the convolutional feature maps. Since in most of

the experiments D > M +N , we employ randomised singular value decomposition to

reduce the dimensionality for efficiency. Figure 5.11 shows that deep features from con-

volutional layers can be strongly reduced. While the performance of the HOG features

start to decrease with less than 40% of the feature dimensionality, the dimensionality

of the AlexNet and VGG CNN-pool5 features can be reduced without significant loss

in accuracy by 33% and 25%, respectively.

79



Chapter 5. Viewpoint Refinement and Estimation with Adapted Synthetic Data

3DObjCat Multi-View Car KITTI

HOG

views 8/car 8/bike 8 16 24 36 72 180 360 8 16

w/o DA 74.1 73.0 69.4 58.9 52.0 37.1 21.0 9.2 6.4 32.4 27.1

ATI-λ 86.9 73.0 77.3 70.5 63.7 46.7 27.4 11.6 7.2 27.5 27.5

AlexNet CNN-pool5

views 8/car 8/bike 8 16 24 36 72 180 360 8 16

w/o DA 95.5 81.8 80.7 69.6 66.7 52.1 29.7 10.7 5.1 62.1 44.5

ATI-λ 98.8 84.7 86.1 82.5 75.3 62.2 37.0 14.5 6.6 44.9 44.4

VGG CNN-pool5

views 8/car 8/bike 8 16 24 36 72 180 360 8 16

w/o DA 93.5 81.8 81.4 70.5 62.3 48.9 25.2 7.5 3.8 60.5 41.0

ATI-λ 98.2 85.1 87.4 78.6 71.8 61.1 36.7 15.7 8.9 53.7 38.4

VGG CNN-fc7

views 8/car 8/bike 8 16 24 36 72 180 360 8 16

w/o DA 61.3 47.8 56.4 35.9 24.0 17.9 8.6 3.9 1.2 31.8 18.6

ATI-λ 69.1 48.4 38.9 23.6 18.0 12.7 6.0 2.8 1.3 26.4 14.3

Table 5.3: Accuracy of the viewpoint refinement without annotated coarse viewpoints
in the target domain on the 3D Object Categorization, Multi-View Car and KITTI
datasets.

PASCAL3D

AlexNet CNN-pool5

views aero bike boat bus car chair dtable mbike sofa train tv Avg.

8
w/o DA 42.1 56.5 24.2 47.1 70.8 52.3 29.8 62.7 42.2 30.6 30.6 44.4

ATI-λ 47.7 59.8 22.1 43.7 64.4 56.9 29.7 65.8 57.2 24.3 18.8 44.6

16
w/o DA 27.4 36.6 10.2 52.8 49.8 31.9 8.7 49.0 27.8 28.1 18.9 31.0

ATI-λ 24.8 33.8 11.0 47.0 53.5 44.6 7.1 58.4 30.4 17.1 17.1 31.4

24
w/o DA 17.7 20.4 6.7 46.5 38.1 31.9 15.0 28.2 31.0 9.4 13.9 23.5

ATI-λ 13.0 35.5 6.2 30.1 38.8 36.6 15.1 31.7 41.1 4.7 13.0 24.2

ImageNet3D

AlexNet CNN-pool5

aero bike boat bus car chair table mbike sofa dtrain tv Avg.

8
w/o DA 42.2 57.3 23.0 62.5 76.1 56.2 30.4 68.4 72.3 37.2 50.9 52.4

ATI-λ 33.2 65.2 20.8 60.2 80.4 65.3 35.5 72.6 67.3 38.0 44.8 53.0

16
w/o DA 30.8 35.0 14.0 54.1 60.6 46.1 17.2 42.0 53.0 9.3 20.7 34.8

ATI-λ 21.0 39.1 9.3 45.7 65.6 52.4 22.1 56.7 54.5 15.1 19.7 36.5

24
w/o DA 20.8 27.6 8.9 40.8 49.4 42.6 11.6 24.9 41.8 11.8 25.2 27.8

ATI-λ 16.0 32.0 6.9 36.2 54.9 44.2 14.7 33.2 37.8 12.9 26.5 28.7

Table 5.4: Accuracy of the viewpoint refinement without annotated coarse viewpoints
in the target domain on the Pascal3D and ImageNet3D datasets.
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Figure 5.11: Impact of dimensionality reduction using randomised singular value de-
composition for different feature descriptors on the Multi-View Car dataset with a
24-viewpoint refinement setting.

5.3.2 Viewpoint Estimation

We then evaluate the accuracy of the pose estimation on the real test images. To this

end, we train the viewpoint estimator described in Section 5.2.3 on the synthetic data

(syn), the real training data (real) with refined viewpoint labels or on both datasets

(joint). For the refinement, we use our approach with K = N (with DA) and compare

it to the refinement without domain adaptation (w/o DA). We report the results for

the datasets with non-occluded object instances in Table 5.5, where we also compare

the accuracy of the pose estimator when the fine ground-truth viewpoint annotations

of the real training images (gt) are used for training. This serves as an upper bound

of the accuracy in comparison to the setting with only weak supervision.

When comparing the results of the domain adaptation for the synthetic, real or both

training sets with the results without domain adaptation, we observe that the domain

adaptation improves the viewpoint estimation for all scenarios with HOG and CNN-

pool5 features, with the exception of the KITTI dataset with 16 viewpoint refinement,

since it mainly contains cars facing coarse directions. On the contrary, the CNN-fc7

features only obtain minor improvements for some of the settings, which is consistent

with the previous results.

Using refined real target images (with DA real) for training is in most cases suffi-

cient. The adapted synthesized training data, however, performs better for fine-grained

viewpoints V ≥ 72 since the real images do not necessary provide enough samples for

each viewpoint. Combining the real and synthetic data for training (with DA joint)

also works very well for any viewpoint discretisation.

Table 5.6 reports the accuracies for the Pascal3D and ImageNet3D datasets using

CNN-pool5 features from the VGG model. On these datasets the adapted synthesized

training data performs already better than the real data for V ≥ 16 fine viewpoints. As
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3DObjCat Multi-View Car KITTI

HOG

views 8/car 8/bike 8 16 24 36 72 180 360 8 16

gt 100.0 100.0 77.7 69.1 61.1 53.3 35.0 13.1 1.7 85.8 82.5

w/o DA

syn 77.1 84.7 67.8 61.1 53.4 35.9 19.8 6.9 4.2 58.8 54.8

real 100.0 99.1 76.2 64.5 53.5 41.3 20.8 2.7 0.6 77.4 64.8

joint 87.5 97.7 74.1 65.7 55.5 43.7 22.5 6.5 4.3 80.1 66.8

with DA

syn 86.1 94.0 73.1 66.3 59.5 43.7 22.6 8.5 4.5 68.1 46.3

real 100.0 99.5 76.5 68.1 63.1 48.5 22.8 7.8 1.1 76.9 61.7

joint 91.0 98.2 74.2 67.9 62.0 45.4 23.3 8.0 4.9 77.8 62.9

AlexNet CNN-pool5

8/car 8/bike 8 16 24 36 72 180 360 8 16

gt 100.0 98.2 82.6 74.8 68.1 57.1 33.5 12.0 1.7 92.5 85.0

w/o DA

syn 91.0 81.0 84.5 66.8 55.8 44.5 23.7 8.5 4.5 60.3 46.2

real 100.0 97.2 81.4 71.5 62.5 46.9 24.4 2.2 0.1 75.7 64.0

joint 96.5 93.1 80.6 70.5 62.8 47.5 25.7 10.6 5.1 77.8 66.4

with DA

syn 98.6 95.4 82.4 73.2 61.4 50.2 26.7 9.3 5.2 69.5 36.0

real 100.0 97.7 82.9 73.4 66.3 53.5 26.7 7.0 0.5 78.0 61.4

joint 98.6 94.9 83.0 74.8 64.1 52.4 27.3 10.4 4.8 78.5 62.8

VGG CNN-pool5

8/car 8/bike 8 16 24 36 72 180 360 8 16

gt 100.0 99.1 85.0 75.7 70.0 56.5 34.2 10.1 1.0 87.6 82.0

w/o DA

syn 91.7 83.3 77.3 64.9 53.6 40.9 18.6 5.3 2.9 63.6 42.2

real 100.0 97.2 83.3 73.3 65.2 45.4 20.8 2.8 1.2 75.4 63.7

joint 97.9 95.8 81.9 73.3 61.9 48.5 20.9 7.2 2.8 79.0 66.8

with DA

syn 100.0 97.2 82.8 74.1 62.8 49.1 22.6 8.6 3.2 76.9 39.8

real 100.0 99.5 84.5 74.5 69.5 53.6 27.7 10.5 1.6 77.1 61.7

joint 100.0 98.6 83.9 74.9 63.9 50.9 23.6 10.1 3.4 81.5 62.9

VGG CNN-fc7

8/car 8/bike 8 16 24 36 72 180 360 8 16

gt 88.2 93.1 71.2 66.0 60.6 51.2 34.2 14.7 0.8 81.5 71.1

w/o DA

syn 76.4 78.2 67.3 61.2 55.0 44.7 26.0 11.9 4.5 59.8 49.6

real 84.7 91.7 69.0 62.0 55.0 45.9 25.2 11.9 0.2 71.8 57.3

joint 84.7 87.5 68.6 62.0 54.3 45.0 26.2 9.5 6.1 70.6 58.1

with DA

syn 79.9 82.9 67.4 61.0 55.6 44.9 26.8 10.2 5.9 62.6 49.0

real 87.5 91.2 68.5 61.8 55.8 46.0 26.0 10.6 0.4 71.1 57.3

joint 87.5 88.0 69.6 61.6 53.9 44.6 25.9 9.5 5.6 70.4 58.5

Table 5.5: Pose estimation accuracy on unlabelled test data using real training data,
synthetic data or both training sets. All datasets contain non-occluded object in-
stances.

before, combining the refined real data and the adapted synthesized data for training

performs well for any viewpoint discretisation V = 8, 16, 24. It is interesting to note

that our weakly supervised approach (with DA joint) even outperforms the fully super-

vised approach (gt) due to the training data augmentation by the adapted synthetic

images.
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PASCAL3D

VGG CNN-pool5

views aero bike boat bus car chair dtable mbike sofa train tv Avg.

8

w/o DA
gt 49.0 46.0 29.4 36.6 43.2 44.4 25.0 52.8 26.4 21.6 18.6 35.7

syn 40.7 47.9 22.7 42.0 37.2 36.1 22.9 48.4 37.4 32.3 31.3 36.3

with DA

syn 34.6 51.7 18.9 45.5 41.5 41.1 16.7 51.7 43.3 31.6 35.7 37.5

real 34.8 52.1 26.8 33.8 41.6 42.1 18.0 56.4 27.1 18.4 24.4 34.1

joint 35.3 50.9 19.6 47.8 43.9 42.3 17.7 51.4 46.2 30.7 34.4 38.2

16

w/o DA
gt 29.7 23.6 16.0 21.7 28.5 25.7 12.4 28.7 18.8 15.5 10.3 21.0

syn 22.2 23.9 11.9 30.4 25.6 22.1 10.6 28.5 24.0 23.3 15.9 21.7

with DA

syn 20.9 25.1 13.0 28.8 27.5 26.3 10.1 30.5 25.5 20.9 18.4 22.5

real 21.3 23.8 12.0 22.8 28.2 22.6 12.4 30.6 17.4 17.2 12.8 20.1

joint 21.4 26.4 11.8 29.4 29.3 25.1 16.6 31.2 25.0 23.9 25.7 24.2

24

w/o DA
gt 23.1 16.1 10.7 17.9 21.9 18.9 7.7 16.1 12.8 13.6 11.0 15.4

syn 14.8 18.0 7.8 21.0 18.6 15.6 8.0 20.0 18.0 14.9 9.9 15.1

with DA

syn 16.0 18.9 8.0 22.9 19.8 16.7 7.7 20.8 18.2 16.6 14.4 16.4

real 15.6 16.7 8.3 21.0 21.5 15.1 7.6 21.2 13.6 12.1 8.2 14.6

joint 18.4 18.6 8.7 24.1 20.7 17.0 7.6 21.2 18.3 15.4 14.2 16.7

ImageNet3D

VGG CNN-pool5

aero bike boat bus car chair table mbike sofa train tv Avg.

8

w/o DA
gt 59.2 66.4 55.4 51.4 87.6 42.9 38.8 66.6 31.7 22.9 33.8 50.6

syn 40.3 62.9 27.2 65.7 75.4 60.4 2.1 60.1 46.6 30.0 22.4 46.6

with DA

syn 40.8 69.3 35.8 72.7 80.8 59.7 39.0 64.1 60.8 27.5 47.5 54.4

real 43.3 67.4 40.7 58.4 84.6 48.8 33.3 64.0 28.5 21.0 39.2 48.1

joint 43.1 71.4 39.1 77.1 83.6 61.1 44.6 63.7 61.4 36.8 48.6 57.3

16

w/o DA
gt 42.3 44.4 39.0 35.6 71.2 29.4 24.1 41.0 22.3 22.8 16.2 35.3

syn 30.1 35.5 13.0 46.8 60.6 37.7 12.3 35.8 36.3 15.1 10.3 30.3

with DA

syn 26.4 47.3 20.4 52.8 66.4 33.0 23.5 42.3 36.1 25.1 31.3 36.8

real 24.5 42.8 23.9 39.3 68.2 24.3 16.5 34.8 26.2 16.7 18.2 30.5

joint 29.0 46.1 23.3 54.8 67.5 42.1 23.8 44.1 35.0 27.7 34.7 38.9

24

w/o DA
gt 28.5 32.1 30.8 31.7 62.6 2.7 18.9 28.1 13.6 12.1 13.1 26.8

syn 20.4 28.0 10.8 34.3 50.1 35.4 13.3 23.8 18.4 14.6 3.5 23.0

with DA

syn 18.6 36.1 15.1 35.1 54.0 37.2 20.4 39.6 26.5 21.1 15.1 29.0

real 16.7 15.9 3.5 30.3 57.0 26.1 13.2 28.3 21.1 13.8 9.5 21.4

joint 18.6 37.1 15.4 38.0 57.7 36.7 19.6 31.5 36.5 18.2 16.5 29.6

Table 5.6: Pose estimation accuracy for the Pascal3D and ImageNet3D datasets that
contain occlusions and truncated object instances.

5.3.3 Occlusion

In order to measure the actual impact of occluded instances, we also compare the

viewpoint refinement for the Pascal3D and ImageNet3D datasets when we only take

non-occluded object instances for training and testing (non-occ). As shown in Ta-

ble 5.7, the accuracies for the setting with non-occluded instances in comparison to

the complete dataset (all) are higher as expected. This is especially the case for Pas-

cal3D since it contains a smaller portion of fully visible samples, i.e. 38% vs. 75%. The

gain of our approach compared to the baseline, however, remains similar for all and

non-occ with +6.7% and +5.0%, respectively. This shows that our approach is robust

to occlusions.

For completeness, we also evaluate the scenario for viewpoint estimation. Table 5.8

reports the accuracies of all four combinations depending if the training or test data
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PASCAL3D

VGG CNN-pool5 - 24 views

aero bike boat bus car chair dtable mbike sofa train tv Avg.

non-occ/all 0.68 0.32 0.61 0.55 0.34 0.19 0.08 0.36 0.15 0.33 0.52 0.38

all
w/o DA 24.3 30.7 18.2 43.3 36.1 26.2 22.2 32.7 25.6 30.0 29.6 29.0

with DA 29.0 39.4 26.5 46.1 40.4 30.8 27.7 38.9 38.2 37.8 37.4 35.7

non-occ
w/o DA 29.2 33.3 15.4 49.1 56.6 32.5 20.0 31.1 41.1 50.6 35.1 35.8

with DA 32.2 43.9 24.5 44.6 54.0 45.0 21.0 53.5 50.6 39.9 40.1 40.8

ImageNet3D

VGG CNN-pool5 - 24 views

aero bike boat bus car chair dtable mbike sofa train tv Avg.

0.91 0.56 0.93 0.95 0.94 0.94 0.31 0.50 0.44 0.81 0.95 0.75

all
w/o DA 33.5 40.4 26.0 53.9 63.5 44.1 33.2 34.2 42.0 22.1 22.1 37.7

with DA 35.2 50.1 30.2 57.1 63.2 47.4 44.5 43.1 56.1 26.7 22.5 43.3

non-occ
w/o DA 34.3 43.1 27.1 55.6 64.4 47.4 32.7 34.0 44.9 25.5 22.6 39.2

with DA 36.2 50.4 30.5 57.3 64.1 49.0 45.1 49.7 41.9 43.2 26.5 44.9

Table 5.7: Accuracy of the coarse-to-fine refinement with 24 fine viewpoints for the
Pascal3D and ImageNet3D datasets. We compare the performance of our domain
adaptation technique when taking all (all) or only non-occluded samples (non-occ).

PASCAL3D

target VGG CNN-pool5 - 24 views

train test aero bike boat bus car chair dtable mbike sofa train tv Avg.

non-occ
all

14.0 19.8 9.8 21.0 18.1 14.1 16.0 20.0 24.8 15.7 11.8 16.8

all 18.4 18.6 8.7 24.1 20.7 17.0 7.6 21.2 18.3 15.4 14.2 16.7

non-occ
non-occ

16.8 18.1 11.3 38.9 33.1 22.6 11.1 34.9 18.3 21.5 16.2 22.1

all 19.2 24.0 8.7 24.1 39.0 17.0 7.6 21.0 18.3 15.4 14.2 19.0

ImageNet3D

VGG CNN-pool5 - 24 views

aero bike boat bus car chair dtable mbike sofa train tv Avg.

non-occ
all

18.6 32.2 15.4 38.1 57.3 37.0 18.1 27.6 23.2 18.9 15.5 27.4

all 18.6 37.1 15.4 38.0 57.3 36.7 19.6 31.5 36.5 18.2 16.5 29.6

non-occ
non-occ

18.6 35.3 16.3 36.9 59.1 38.3 25.5 35.0 30.4 27.6 15.6 30.8

all 19.0 40.6 15.8 38.1 59.3 38.5 24.0 38.2 36.7 22.0 16.1 31.7

Table 5.8: Pose estimation accuracy of our approach (with DA joint) for 24 fine view-
points on the Pascal3D and ImageNet3D datasets. We compare the impact of training
and testing with or without object occlusions.

contain occluded and truncated objects (all) or only fully visible objects (non-occ). For

Pascal3D, the best average accuracies are obtained if occluded and truncated objects

are discarded from the training data although the impact varies strongly among the

object categories. For ImageNet3D, which contains by far less occluded samples, the

best accuracy is achieved by taking all training samples. A major gain can be observed

for the categories bike, motorbike, and sofa, which are the categories with the highest

ratio of occluded or truncated samples.
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5.3.4 Viewpoint Estimation using CNNs

In order to demonstrate that our approach not only works with linear SVMs but also

with other methods for viewpoint estimation, we use our approach to train a state-of-

the-art CNN approach for viewpoint estimation [Tulsiani and Malik, 2015], which also

models viewpoint estimation as a classification task. In addition, we modify the CNN

for viewpoint regression by using Huber loss H of the azimuth angle θ in a continuous

representation F (θ) = [cos(θ), sin(θ)] as in Massa et al. [2016]. We augment the

training data with mirrored samples and jittered ground-truth bounding boxes that

overlap with the annotated bounding box with IoU > 0.7. We run a total of 40000

iterations for the CNNs trained with only real data and 60000 for those that include

the synthetic data. In both cases, we start with a learning rate of 0.001 and decrease

it by a factor of 10 each time a third of the iterations are completed.

The results for the Pascal3D dataset are given in Table 5.9 where we report the

viewpoint estimation accuracy for 24 views as in the previous tables and the median

error (MedError) as it was used in Tulsiani and Malik [2015]. When we train the

CNN with classification loss on the training data with ground-truth labels, we achieve

a lower median error and higher accuracy compared to the regression loss. This was

already observed in Massa et al. [2016].

When the CNN is trained not on the ground-truth but on the refined viewpoint

labels, our proposed approach with domain adaptation (with DA) outperforms the

baseline (w/o DA) for all settings. Training on the synthetic and refined real training

images (joint) also improves the accuracy and reduces the error compared to using

the real training images only (real). We finally compare the CNN-based viewpoint

classification Tulsiani and Malik [2015] with the linear SVMs (DA LSVM ), which

have been previously used for viewpoint estimation in Table 5.6. Using [Tulsiani and

Malik, 2015] instead of linear SVMs improves the viewpoint accuracy by +8%. The

results for ImageNet3D are reported in Table 5.10.

5.3.5 Cross-dataset Viewpoint Estimation

We finally perform a cross-dataset evaluation as in Sedaghat and Brox [2015]. We

evaluate the viewpoint estimation of cars from the Multi-View Car Dataset, Pascal3D,

ImageNet3D and the dataset [Sedaghat and Brox, 2015], denoted as Freiburg, whose

bounding boxes and viewpoints of cars were annotated in a fully unsupervised manner.

The Freiburg dataset contains recorded scenes of 47 cars for a total of 5836 training

images, on a full 360◦ rotation. For viewpoint estimation, we use the CNN approach

by Tulsiani and Malik [2015] as in Section 5.3.4 trained on the refined training data

(with DA) and compare it with the approach by Sedaghat and Brox [2015]. The results

reported in Table 5.11 show that our approach performs very well across datasets. Our

approach outperforms Sedaghat and Brox [2015] for 11 out of 13 configurations. For

some dataset combinations, the mean absolute error is reduced by about 14 degrees

compared to Sedaghat and Brox [2015].
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PASCAL3D

MedError

aero bike boat bus car chair dtable mbike sofa train tv Avg.

regression

real

gt 20.6 23.9 42.6 8.1 18.0 21.2 22.6 20.9 15.3 15.8 15.1 20.4

w/o DA 26.5 29.9 58.0 13.0 26.3 25.7 31.9 27.3 19.7 24.8 16.1 27.2

with DA 32.2 25.2 57.5 12.5 25.8 24.0 29.2 25.3 21.6 22.5 17.9 26.7

joint
w/o DA 28.4 25.0 53.9 10.3 23.8 25.8 30.5 22.5 18.6 23.2 15.5 25.2

with DA 31.8 20.6 56.5 10.6 22.3 24.9 31.4 20.1 15.9 19.0 13.8 24.3

classification

real

gt 17.7 20.3 47.8 5.8 18.1 21.0 12.1 18.0 13.8 14.7 17.2 18.8

w/o DA 35.3 28.1 52.3 18.4 22.8 32.8 45.0 23.4 24.9 27.5 23.2 30.3

with DA 32.8 21.3 70.4 8.6 20.8 26.9 30.0 20.6 18.7 16.8 17.5 25.9

joint
w/o DA 24.5 20.0 53.7 7.2 18.1 25.6 30.0 21.3 15.0 15.0 20.5 22.8

with DA 26.8 17.5 54.7 6.9 16.5 23.3 30.0 18.3 15.1 14.6 16.3 21.8

24 views

aero bike boat bus car chair dtable mbike sofa train tv Avg.

regression

real

gt 13.4 17.3 8.6 18.9 23.5 18.1 6.6 19.3 13.3 11.7 11.6 14.8

w/o DA 14.3 13.9 7.6 10.7 19.0 14.7 6.8 16.4 19.3 9.4 12.8 13.2

with DA 13.2 19.1 8.0 16.6 20.2 15.0 10.2 19.5 18.9 9.4 13.5 14.9

joint
w/o DA 13.2 19.1 7.9 16.6 20.2 15.0 10.2 19.5 18.9 9.4 12.5 14.8

with DA 13.6 19.8 7.8 21.6 22.1 17.3 7.8 24.8 13.3 10.8 18.4 16.1

classification

real

gt 25.1 19.4 12.3 30.3 29.2 23.8 15.4 22.5 16.9 15.6 15.4 20.5

w/o DA 14.8 19.1 8.8 8.9 26.2 16.8 11.9 22.0 18.0 11.1 7.8 15.0

with DA 16.2 20.3 5.0 21.4 24.9 20.6 12.2 19.4 23.5 15.5 9.6 17.1

joint

w/o DA 19.2 25.2 10.8 33.7 27.9 23.7 16.2 21.4 21.6 18.4 12.8 21.0

with DA 19.2 27.2 14.9 35.7 27.9 24.8 18.9 27.4 33.8 19.8 14.0 24.0

DA LSVM 18.4 18.6 8.7 24.1 20.7 17.0 7.6 21.2 18.3 15.4 14.2 16.7

Table 5.9: Pose estimation accuracies for the Pascal3D dataset using Tulsiani and
Malik [2015] for regression and classification.

ImageNet3D

CNN-classification

aero bike boat bus car chair dtable mbike sofa train tv Avg.

MedError

real

gt 8.3 8.7 11.1 4.2 4.4 4.7 5.2 10.6 4.0 5.7 7.6 6.8

w/o DA 20.2 12.5 26.6 5.7 5.8 9.4 22.5 14.2 6.9 9.0 15.7 13.5

with DA 22.5 11.4 22.5 5.2 5.7 7.4 16.0 12.6 7.5 8.4 15.0 12.2

joint
w/o DA 19.7 10.1 22.7 5.6 5.6 8.3 20.6 12.5 6.6 8.9 14.4 12.3

with DA 20.9 8.7 21.6 5.1 5.5 6.9 15.2 11.5 7.2 8.5 13.5 11.3

24 views

real

gt 41.8 41.9 35.4 57.6 69.9 42.0 46.2 38.0 26.2 23.2 24.9 40.6

w/o DA 24.8 36.6 17.8 42.2 60.7 32.1 21.0 27.7 23.4 23.0 24.9 30.4

with DA 22.4 36.3 18.9 47.0 59.7 41.6 26.4 31.0 24.0 28.7 23.3 32.7

joint

w/o DA 26.2 42.6 21.8 46.2 62.2 29.7 21.3 37.7 30.5 27..8 25.1 33.7

with DA 25.9 46.8 20.9 51.0 62.3 47.9 26.8 39.3 33.5 28.0 30.5 37.5

DA LSVM 18.6 37.1 15.4 38.0 57.7 36.7 19.6 31.5 36.5 18.2 16.5 29.6

Table 5.10: Pose estimation accuracies for the ImageNet3D dataset using Tulsiani and
Malik [2015] for classification.
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test
train Freiburg Multi-View Car Pascal3D ImageNet3D

Freiburg
Sedaghat

-
34.4 61.5 38.0

with DA 21.5 58.0 27.3

Multi-View Car
Sedaghat* 34.6

-
71.6 53.2

with DA 20.7 70.9 39.8

Pascal3D
Sedaghat* 26.9 37.0

-
29.3

with DA 15.4 22.6 17.9

ImageNet3D
Sedaghat 10.6 17.4 47.7 12.3
with DA 8.1 18.7 51.0 11.5

Table 5.11: Viewpoint estimation across datasets. The mean absolute error of view-
point estimation (in degrees) is reported. In the cases denoted by *, Sedaghat and
Brox [2015] uses the entire dataset for training while we use only the training data of
the dataset.

5.4 Summary

In this work, we have presented an approach for weakly supervised domain adaptation

for the task of viewpoint estimation. It uses synthetic data to refine the viewpoint an-

notations of the coarsely labelled training images. Using coarse viewpoint annotations

of real images as weak supervision together with accurately annotated synthesized

images is not only a very efficient approach to collect training data for fine-grained

viewpoint estimation, it also allows to achieve an accuracy that goes beyond the abil-

ities of human annotators. An extensive evaluation on five datasets for viewpoint

estimation showed that our approach outperforms generic domain adaptation meth-

ods, proves effective for a large number of object classes and presents a considerable

tolerance against occlusions.
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6.1 Introduction

In Chapter 5 we showed that the quality of training data for viewpoint estimation

tasks highly improves if we combine real images with coarse viewpoint annotations,

using minimal human supervision, and synthetic images from graphics models, which

lack realism, but with accurate viewpoints. The domain shift that is present in the

features extracted from both types of datasets is reduced by applying an unsupervised

domain adaptation technique that aligns the synthetic data to the domain of real im-

ages. In consequence, the resulting training data naturally produces better viewpoint

estimations. In this chapter, we present another approach that improves the accuracy

of viewpoint estimation without increasing the time spent collecting new training data

and the consequent labelling effort. Specifically, we exploit the spatial correlations be-

tween object keypoints and viewpoints and introduce a multi-task learning approach

that also uses keypoint annotations to improve the quality of viewpoint estimations.
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Many camera-based applications need to identify and analyse certain object classes

for a better understanding of their surroundings. While 2D object detection is often

a starting point, it is usually required to extract more detailed information from the

detected objects. For instance, 2D keypoints provide additional details regarding the

shape of an object and the 3D viewpoint provides the information about the orientation

of an object. Both tasks, however, are correlated since the locations of the 2D keypoints

depend on the orientation of the object and the 2D keypoints are a cue for the 3D

orientation. Based on this implicit correlation, we introduce a joint model for 3D

viewpoint and 2D keypoint estimation. The proposed network generalises the human

pose estimator by Wei et al. [2016] to multiple objects and it is trained jointly for

the two tasks. For the 3D viewpoint estimation, we propose a simple yet effective

multi-granular viewpoint classification approach.

The labelling process for training our network requires nonetheless large amounts of

accurate labelled data. While human annotations excel in annotating object instances

by bounding boxes, they fail to accurately estimate fine 3D viewpoints (see Chapter 5).

The same applies for annotating keypoints, which require pixel precision and a correct

handling of occlusions. In order to alleviate the collection of training data, we propose

two solutions. Firstly, we design our network such that it can be trained with images

from different datasets. The datasets can provide annotations for only viewpoints,

keypoints or both. Secondly, we make use of synthetic data to increase the amount

of training samples since computer generated images are a quick way to collect many

training samples, as well as precise ground truth. Specifically, we introduce a novel

synthetic dataset that includes not only viewpoints, but also accurate keypoints.

We evaluate our method on 12 popular classes of the ObjectNet3D [Xiang et al.,

2016] dataset, which contains both viewpoint and keypoint annotations. We demon-

strate that our method outperforms current well established methods for multi-class

viewpoint and keypoint estimation.

6.2 Joint Viewpoint and Keypoint Estimation

In this work, we propose a multi-task network that leverages 3D viewpoint and 2D

keypoint estimation. We assume that an object has been already detected and our

goal is to estimate the keypoints as well as the viewpoint. Our network is trained for

all object classes C = {c1, . . . , c|C|} where the number of keypoints per object class

Kc varies. A second important aspect of the network is that it can be trained on

various types of data including real and synthetic data at the same time. Since the

data might be annotated for only one of the two tasks, M denotes the set of training

samples with viewpoint and 2D keypoint annotations, N denotes the set with only

viewpoint annotations and O the set with only keypoint annotations. An overview of

the proposed CNN architecture is presented in Figure 6.1. We first discuss the parts

that are relevant for keypoint estimation.
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Figure 6.1: Overview of the proposed multi-class CNN for joint viewpoint and keypoint
estimation. The network uses a multi-stage architecture. The first row shows the first
stage, which predicts for each keypoint per class a heatmap. For the later stages
(second row), the features of the first and the previous stage after the last ReLU
are used as input. At each stage, an L2-loss is used, which compares the predicted
heatmaps for the class of the training sample to the ground truth heatmaps. After the
last stage, additional layers for viewpoint estimation are added (third row). We use a
multi-resolution loss where fully connected layers map the 128 × 28 × 28 features to
nine vectors corresponding to three different discretisations (15◦, 30◦, 60◦) of azimuth
(az), elevation (el) and tilt (ti).

6.2.1 Keypoint Estimation

The proposed network is a multi-stage architecture with intermediate loss functions

after each stage and the first part is similar to the convolutional pose machines proposed

by Wei et al. [2016], which is a multi-stage network for 2D human pose estimation.

The cropped image of an detected object is fed to a VGG-16 model [Simonyan and

Zisserman, 2014] and additional convolutional layers are used to generate heatmaps

for each keypoint and each object class. In total, we have
∑

c∈C Kc heatmaps, where

Kc denotes the number of keypoints of the c-th class. Since the object class c is known

for an image during training, the L2-loss is computed only for the heatmaps of the

corresponding class. At the first stage s = 1, the loss is therefore given by

Lkps =
∑

xi∈{M,O}

1

Kci

Kci∑
k=1

‖yi,k − fs(xi)c,k‖22 , (6.1)

where xi denotes a training sample from the set M or O and fs(xi) denotes all

heatmaps that are predicted for the stage s. The estimated heatmap for the k-th

keypoint of class c is then denoted by fs(xi)c,k and yi,k is the corresponding ground-
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truth heatmap for the training sample xi. The L2-loss is computed over all pixels in

the heatmap, but we write ‖a− b‖22 instead of
∑

ω∈Ω ‖a(ω)− b(ω)‖22.

As in Wei et al. [2016], we do not use one stage but 6 stages. For each stage except

of the first one, we use the heatmaps of the previous stage and the feature maps of the

first stage after the last ReLU layer as input. Since heatmaps are computed at each

stage s, we sum the loss functions (6.1) over all stages, i.e.
∑

s Lkps .

6.2.2 Viewpoint Estimation

As shown in Figure 6.1, the proposed network not only predicts the 2D keypoints but

also the 3D viewpoint encoded by the three angles {φ, ψ, θ}, which denote azimuth

(φ ∈ [0◦, 360◦]), elevation (ψ ∈ [−90◦, 90◦]) and in-plane rotation (θ ∈ [−180◦, 180◦]),

respectively. We opt for a classification-based approach to estimate the viewpoints and

discretise each angle using a bin size of 15◦. We obtain the probabilities for each bin

by a fully connected layer and a softmax layer for each angle. The cross-entropy loss

for bin size b = 15◦ is then given by

Lvpb =
∑

xi∈{M,N}

∑
v∈{φ,ψ,θ}

− log (fb(xi)c,v,vi) , (6.2)

where xi denotes a training sample from the setM or N , vi denotes the ground-truth

bin for angle v and fb(xi) denotes the vector with the bin probabilities for all classes

and angles. The estimated probability for the vi-th bin of class c and angle v is then

denoted by fb(xi)c,v,vi .

In addition, the network predicts during training the viewpoint for each class for

two coarser discretisations of the angles, namely for 60◦ and 30◦. In this way, the

coarse discretisations guide the network to the correct bin of the finer discretisation

and improve the accuracy as we will show as part of the experimental evaluation. The

multi-task loss for the network is then expressed as

L =
∑
s

Lkps +
∑
b

Lvpb . (6.3)

Since we aim at a finer viewpoint prediction than 15◦, we upsample the estimated

viewpoint probabilities to an angular resolution of 1◦ during inference. To this end,

we interpolate the probabilities by applying a cubic filter [Keys, 1981] as illustrated in

Figure 6.2. For the azimuth and the in-plane rotation, we convolve the discrete bins

as a circular array.

6.3 Experiments

In this section we evaluate the performance of our method, denoted as JVK (Joint

Viewpoint and Keypoints), and compare its results with several popular viewpoint

and keypoint estimation algorithms. We train our network for 12 popular object cate-

gories, i.e. |C| = 12, namely: airplane, bicycle, boat, bottle, bus, car, chair, diningtable,
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Figure 6.2: Using a cubic filter, the probabilities of the viewpoint quantised at 15◦ are
upsampled to an angle resolution of 1◦. Note that we have 24 bins for azimuth and θ
since they are circular, but only 13 bins for elevation where the 7th bin is centred at
zero elevation and the outer bins have only 7.5◦.

motorbike, sofa, train and tvmonitor. We then evaluate our method on the test images

of the ObjectNet3D [Xiang et al., 2016] dataset.

6.3.1 Datasets

ObjectNet3D [Xiang et al., 2016]

Large dataset that contains real images of 100 object categories. From all of them, the

12 classes that we selected include not just viewpoints from aligned 3D shapes, but

also manually annotated keypoints. The selected subset is evenly separated between

training and test data with 11421 and 11327 images, respectively. Most of the classes

contain between 500 and 1000 samples in every set. The classes bottle and diningtable

are above 1000 samples and car above 2000 samples.

ShapeNet [Chang et al., 2015]

Large-scale dataset of 3D shapes whose most relevant subset contains the 12 object

categories, providing a considerable amount of models for each class. Although this

setting allows for an extensive image dataset with a great variety of object orientations,

the low quality of the renderings produce training samples that greatly differ from real

images. This dataset only provides 3D viewpoints, automatically generated from the

camera parameters in the image rendering. For our experiments, we make use of all

models and generate 100000 images per class with random camera viewpoints, i.e.

1200000 images in total.
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New Synthetic Data

In this work, we introduce a new synthetic dataset from 3D graphics models for the

12 object categories. For each class, we collect 10 graphics models with higher levels

of realism and more detailed meshes compared to ShapeNet. In addition to the 3D

viewpoint annotations that are directly extracted from the camera rotation, we go

one step further and introduce automatically generated 2D keypoints. In order to

easily obtain keypoints from synthetic data, we firstly set deformable spheres in the

3D rendered model locations that we consider to be valid using the keypoints from

ObjectNet3D as reference. Figure 6.3a shows some 3D graphics models with spheres

placed as keypoints. Then, we project the centre of each sphere to pixel coordinates

for a given camera orientation to create the 2D keypoints. For the projection, we take

occlusions into account. We generate synthetic data with 10000 samples per class with

random orientations. Examples of rendered images are illustrated in Figure 6.3b with

the 2D bounding boxes and the visible 2D keypoints. The resulting images also include

a background image from the KITTI dataset [Geiger et al., 2012].

6.3.2 Network Configuration

We train the proposed CNN model for a total of 150000 iterations when using only

real images for training, 250000 iterations when including one of the two synthetic

datasets and 350000 iteration for all 3 datasets. The weight decay is set to 0.0005 and

the learning rate to 0.00005, which is multiplied by 0.1 every 100000 iterations. The

input image will be cropped in all experiments to 224x224 pixels while preserving the

aspect ratio. The batch contains 20 samples per iteration where we sample uniformly

across the datasets if we use more than one for training. In addition, standard data

augmentation techniques are employed during the training of the network: flipping,

in-plane rotation [−45◦, 45◦], image scaling (0.4,1.0) and translation. However, we only

add the transformed image if the intersection over union of the transformed bounding

box compared to the original one is above 0.8.

For the test phase, we will extract the samples of each object class using their

annotated 2D bounding boxes, i.e. without any prior object detector. We run 5 passes

with different scaling factors and average all of them to obtain the final confidence

map of keypoints and 3D viewpoints.

From our model, we analyse two modifications. In JVK-KP, we only train the

keypoint estimation, ignoring the viewpoint extension. Then, JVK denotes the stan-

dard network for both keypoint and viewpoint sections. We also modify the training

datasets that we utilise, combining the real samples from ObjectNet3D [Xiang et al.,

2016] with manually labelled viewpoints and keypoints (Re), ShapeNet [Chang et al.,

2015] images with only viewpoints (Sh) and our novel synthetic dataset with generated

viewpoints and keypoints (Sy).
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(a) Rendered models with spheres as keypoints (b) Generated 2D images

Figure 6.3: In (a) we show renderings of our graphics models with spheres that repre-
sent each keypoint for cars, chairs and motorbikes. In (b) we provide some examples
of automatically generated images with their 2D bounding boxes and the projected
keypoints that are visible.
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ObjectNet3D (12 classes) aero bike boat bottle bus car chair dtable mbike sofa train tv Avg.

PCK
α = 0.1

VpKp (192) 74.4 80.6 60.7 81.9 80.7 89.6 71.1 52.4 78.0 76.2 57.4 47.1 70.8
VpKp (384) 80.1 88.6 70.7 90.0 93.7 96.5 76.7 65.4 85.2 89.1 68.7 78.7 82.0
VpKp (192-384) 84.1 90.0 74.4 91.3 94.4 97.5 84.9 73.3 87.4 91.0 71.3 80.1 85.0
VpKp (pLike) 82.7 90.7 69.2 92.6 95.8 95.6 89.5 76.3 85.9 92.5 72.0 80.3 85.3
JVK-KP (Re) 85.7 92.7 74.8 94.5 98.1 98.4 89.4 83.9 89.7 93.8 73.4 75.7 87.5
JVK (Re-Sh) 87.9 94.7 75.3 94.3 98.6 98.5 89.6 84.5 90.6 94.0 75.0 77.0 88.3
JVK-KP (Re-Sy) 87.7 95.2 73.6 93.9 97.8 98.5 90.1 81.5 91.3 93.5 75.2 83.4 88.5
JVK (Re-Sy) 88.8 95.2 75.1 93.6 98.0 98.5 90.9 83.6 91.2 93.8 73.3 82.3 88.7
JVK (Re-Sy-Sh) 89.5 95.9 77.1 93.9 98.2 98.5 91.5 83.3 93.0 93.9 74.2 84.0 89.4

Table 6.1: Keypoint estimation on the ObjetNet3D dataset [Xiang et al., 2016] for 12
object classes. We report the keypoint localisation metric (PCK) introduced by Yang
and Ramanan [2011].

6.3.3 Keypoint Estimation

To measure the quality of our keypoint localisation, we use the PCK[α = 0.1] evaluation

introduced by Yang and Ramanan [2011]. An estimated keypoint is valid if the Eu-

clidean distance with respect to the corresponding ground truth is below α×max(h,w),

where h and w are the height and width of the object’s bounding box, respectively.

As a baseline, we compare our method with the popular keypoint estimation for

rigid objects [Tulsiani and Malik, 2015] (VpKp). We report the results of VpKp

with 192x192 input resolution (192), 384x384 input resolution (384), both resolutions

trained one after the other (192-384) and in a setting where the viewpoint is first

estimated for the low resolution and used as input to refine the keypoints for the

higher resolution (pLike).

We report the results in Table 6.1. Firstly, we observe that JVK-KP (Re), which

uses the same real data as in VpKp, already outperforms all variations of VpKp. For

instance, our method has +2.2% accuracy compared to VpKp (pLike). In contrast to

VpKp that requires several sequential steps and higher resolutions, we only require a

small amount of forward passes of our network with rescaled images. If we compare our

modifications, we see a comparable improvement when including synthetic images with

only keypoints, JVK-KP (Re-Sy), or only viewpoints, JVK (Re-Sh). This shows the

benefits of estimating 3D viewpoint and 2D keypoints jointly. The network trained

with all three training datasets (Re-Sy-Sh) obtains the best overall PCK accuracy,

which is +0.7% higher compared to the result without Shapenet (Re-Sy).

6.3.4 Viewpoint Estimation

We evaluate our viewpoint estimation using two widely used metrics. The first met-

ric [Tulsiani and Malik, 2015] is the geodesic distance between the ground truth and

predicted rotation matrices from φ, ψ and θ, which is given by

∆(Rgt, Rpred) =
||log(RTgtRpred)||F√

2
. (6.4)
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ObjectNet3D (12 classes) aero bike boat bottle bus car chair dtable mbike sofa train tv Avg.

Accπ
6

Regression (Re) 0.799 0.810 0.667 0.933 0.928 0.967 0.908 0.793 0.830 0.961 0.949 0.897 0.870
VpKp (Re) 0.887 0.794 0.743 0.917 0.967 0.963 0.922 0.823 0.808 0.954 0.957 0.831 0.880
Render4CNN (Sh) 0.710 0.761 0.451 0.837 0.863 0.899 0.885 0.630 0.684 0.904 0.823 0.923 0.781
Class-15 (Re) 0.836 0.770 0.719 0.896 0.954 0.950 0.904 0.848 0.766 0.954 0.935 0.791 0.860
Class-15-30-60 (Re) 0.858 0.815 0.719 0.924 0.961 0.959 0.927 0.855 0.811 0.951 0.946 0.837 0.879
Class-15-30-60 up. (Re) 0.867 0.825 0.735 0.928 0.959 0.966 0.931 0.857 0.816 0.960 0.945 0.852 0.887
Class (Re-Sy) 0.884 0.858 0.765 0.945 0.969 0.968 0.956 0.865 0.885 0.965 0.943 0.875 0.907
Class (Re-Sh) 0.915 0.854 0.803 0.945 0.976 0.973 0.975 0.868 0.866 0.978 0.955 0.899 0.917
Class (Re-Sy-Sh) 0.907 0.857 0.810 0.938 0.980 0.971 0.979 0.883 0.885 0.979 0.946 0.903 0.920
JVK (Re) 0.863 0.851 0.790 0.945 0.985 0.978 0.922 0.877 0.875 0.971 0.951 0.875 0.907
JVK (Re-Sy) 0.898 0.889 0.786 0.955 0.983 0.974 0.935 0.873 0.905 0.972 0.940 0.889 0.917
JVK (Re-Sh) 0.877 0.868 0.806 0.951 0.978 0.983 0.962 0.892 0.913 0.981 0.945 0.920 0.923
JVK (Re-Sy-Sh) 0.878 0.870 0.798 0.950 0.987 0.975 0.960 0.866 0.907 0.983 0.958 0.927 0.922

MedError

Regression (Re) 13.4 16.7 18.6 8.2 4.3 4.8 9.9 11.5 16.4 9.1 6.4 13.0 11.0
VpKp (Re) 12.2 16.0 15.4 12.7 6.8 8.9 11.6 11.1 16.8 12.3 8.0 14.0 12.2
Render4CNN (Sh) 14.9 18.6 35.5 11.4 8.2 7.5 9.5 17.4 20.1 12.9 13.0 14.6 15.3
Class-15 (Re) 13.0 17.0 15.8 10.0 5.9 8.1 10.3 9.3 18.1 11.7 8.1 15.0 11.9
Class-15-30-60 (Re) 11.7 15.2 15.2 9.3 5.8 8.0 9.7 9.5 17.3 11.3 8.0 14.1 11.3
Class-15-30-60 up. (Re) 9.8 13.8 13.6 8.6 4.5 5.5 7.6 7.3 15.6 9.4 6.9 13.2 9.7
Class (Re-Sy) 9.0 12.5 12.5 8.0 4.2 5.1 7.2 6.8 13.0 8.6 6.1 11.4 8.7
Class (Re-Sh) 8.0 11.5 11.2 8.4 4.2 4.9 6.9 6.7 13.0 8.3 6.0 10.5 8.3
Class (Re-Sy-Sh) 8.3 10.9 10.8 7.4 4.2 4.4 6.9 6.5 12.3 7.9 6.0 10.2 8.0
JVK (Re) 8.5 11.2 12.3 7.5 4.1 3.7 7.3 6.1 12.4 8.1 5.5 9.7 8.0
JVK (Re-Sy) 8.3 10.0 12.0 7.4 3.6 3.7 6.5 6.0 11.5 7.7 5.6 8.9 7.6
JVK (Re-Sh) 8.4 10.4 11.2 7.4 4.0 3.9 6.5 5.6 12.1 7.5 5.7 9.6 7.7
JVK (Re-Sy-Sh) 8.1 10.7 11.4 7.6 4.0 3.8 7.2 6.0 11.7 7.7 5.9 9.5 7.8

Table 6.2: Viewpoint estimation on the ObjectNet3D dataset [Xiang et al., 2016] from
ground truth bounding boxes. We report the percentage of estimated viewpoints with
a geodesic error below π/6 rad (Accπ6 ) and the median error (MedError).

The viewpoint is considered to be correct if the distance is below π
6 rad (Accπ6 ). The

second measure is the median error (MedError).

For this evaluation against other CNN-based approaches, we take as baseline a

standard regression approach by Massa et al. [2016], where continous angles are seen

as a circular array and represented in R2. VpKp [Tulsiani and Malik, 2015] pro-

poses a classification-based viewpoint with also several discretisation levels. Then,

Render4CNN [Su et al., 2015] presents a very fine discretisation with Gaussian fil-

ters to leverage the neighbouring bins by using millions of synthetic images. Finally,

we re-train a VGG-16 [Simonyan and Zisserman, 2014] model for testing different

classification-based configurations (Class): with only one level of discretisation (15◦),

our proposed approach with 3 quantisations with 15◦, 30◦ and 60◦, and including the

upsampling with cubic filtering (up.).

The evaluation results for all the presented baselines and our configurations are

shown in Table 6.2. Generally, we observe that the regression technique obtains sim-

ilar results compared to other classification-based techniques. However, the cubic

interpolation provides a significant reduction in median error and accuracy that favors

classification approaches. Compared to the same configuration without upsampling,

the error is reduced by −1.6◦ and the accuracy increases by +0.8%. The fine dis-

cretisaton of Render4CNN fails to compute robust viewpoints and ends up being the

worst performing method by a large margin. Using real images from ObjectNet3D
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would not solve the problem, since the amount of training samples is too scarce for

the large number of bins per angle. Class-15-30-60 outperforms Class-15, showing that

learning several angle quantisations at the same time provides better results. When

we compare JVK with Class, we observe that including a specific network for keypoint

estimation allows for better viewpoint accuracies and reduced angle errors. JVK (Re)

demonstrates to be superior compared Class upsampling (Re) by +2% in accuracy and

−1.7◦ in the median error. Although the gap is significantly smaller when training the

networks with synthetic data, JVK trained with additional synthetic data achieves the

best overall results. Specifically, the results of JVK trained on our new synthetic data

are comparable to the ones using ShapeNet, but employing 10 times less samples. The

better quality and additional labelled data of our dataset play an important role in

improving the overall results.

6.3.5 Experimental Results on Pascal3D+

We also evaluate our method on the popular Pascal3D+ dataset [Xiang et al., 2014],

which also contains the same 12 classes evaluated on the ObjectNet3D dataset [Xiang

et al., 2016]. Compared to ObjectNet3D, this dataset provides object instances that are

not centred in the middle of the image and can thus be found in any image location with

different resolutions, producing more challenging scenarios. We follow the standard

protocol when the keypoint and viewpoint accuracies are jointly evaluated. That is,

for training our network we make use of all 5790 samples included in the training subset

together with 28769 additional samples from the ImageNet dataset [Deng et al., 2009].

We only report our results on the fully visible objects of the test dataset, for a total

of 2136 samples, with roughly 200-300 samples per class.

We report our trained network JVK with only real images (Re) and with real

images together with the synthetic examples from the ShapeNet dataset [Chang et al.,

2015] (Re-Sh). For both keypoint and viewpoint estimation results, we compare our

method with the popular work by Tulsiani et al. (VpKp) and the State-of-the-Art

method by Zhou et al. [2018b] (StarMap).

In Table 6.3, we show that JVK (Re) outperforms VpKP by a large margin and

obtains comparable results to StarMap, but in a single joint pass and using a worse per-

forming base CNN (a comparison between VGG-16 and ResNet-152 is shown in Zhou

et al. [2018b]). JVK (Re-Sh) obtains the best overall results, where additional syn-

thetic data with only viewpoint annotations improves the keypoint accuracy (+1.8%

with respect to JVK (Re)).

In Table 6.4, we show that JVK (Re) outperforms StarMap in both viewpoint

accuracy and median error by +1.3% and -0.3, respectively. The best results are again

obtained by JVK (Re-Sh), which improves by +1.9% the viewpoint accuracy and by

-0.3 its median error compared to JVK (Re).
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Pascal3D+ (12 classes) aero bike boat bottle bus car chair dtable mbike sofa train tv Avg.

PCK
α = 0.1

VpKp 66.0 77.8 52.1 83.8 88.7 81.3 65.0 47.3 68.3 58.8 72.0 65.1 68.8
StarMap 75.2 83.2 54.8 87.0 94.4 90.0 75.4 58.0 68.8 79.8 54.0 85.8 78.6
JVK (Re) 77.3 87.0 68.1 90.1 97.9 95.4 63.6 75.8 84.9 75.9 57.7. 70.7 78.7
JVK (Re-Sh) 80.4 89.9 63.7 90.5 98.0 96.8 70.2 78.9 86.7 77.4 63.6 68.9 80.5

Table 6.3: Keypoint estimation on the Pascal3D+ dataset [Xiang et al., 2014] for 12
object classes.

Pascal3D+ (12 classes) aero bike boat bottle bus car chair dtable mbike sofa train tv Avg.

Accπ
6

VpKp 0.81 0.77 0.59 0.93 0.98 0.89 0.80 0.62 0.88 0.82 0.80 0.80 0.808
StarMap 0.82 0.86 0.50 0.92 0.97 0.92 0.79 0.62 0.88 0.92 0.77 0.83 0.823
JVK (Re) 0.82 0.79 0.61 0.97 0.98 0.95 0.83 0.65 0.89 0.97 0.83 0.78 0.836
JVK (Re-Sh) 0.83 0.89 0.63 0.97 0.99 0.94 0.89 0.65 0.86 0.90 0.82 0.84 0.855

MedError

VpKp (pLike) 13.8 17.7 21.3 12.9 5.8 9.1 14.8 15.2 14.7 13.7 8.7 15.4 13.6
StarMap 10.1 14.5 30.0 9.1 3.1 6.5 11.0 23.7 14.1 11.1 7.4 13.0 10.4
JVK (Re) 12.2 12.5 19.0 6.8 4.6 5.0 11.1 9.4 12.6 10.6 5.9 12.3 10.1
JVK (Re-Sh) 11.3 12.2 18.1 6.7 3.8 4.7 9.6 11.6 11.9 11.1 6.3 10.3 9.8

Table 6.4: Viewpoint estimation on the Pascal3D+ dataset [Xiang et al., 2014] for 12
object classes.

6.3.6 Qualitative Results

For completeness, we also show some qualitative results in Figure 6.4. For each class,

we show the results for the first three test images of ObjectNet3D [Xiang et al., 2016].

We observe that the predicted 2D keypoints and 3D viewpoints are in alignment. The

majority of the few wrongly estimated keypoints and viewpoints are due to lateral

symmetries of objects.

Our deep neural network also failed in some especial object configurations. As

depicted in Figure 6.5, ambiguous image symmetries were not correctly handled by our

technique in some cases. Additionally, the vast intra-class variation of many objects

promotes misplacements in special samples. An attached refinement to dynamically

adapt the resulting keypoints based on the test image might be of great interest.

6.4 Summary

In this chapter we have presented an approach for joint viewpoint and keypoint esti-

mation for multiple rigid object classes. The approach includes a simple yet effective

branch for viewpoint estimation with different discretisation levels and cubic upsam-

pling that produce more accurate results. In contrast to previous methods that train a

separate approach for each task, we have shown that viewpoint and keypoint estimation

benefit from each other. Our approach also handles different kinds of training datasets

containing real or synthesized images, as well as datasets where only one of the tasks

is annotated. While the main strength of the approach presented in Chapter 5 relies

on the accurate refinement of training data, this approach does not require additional

labels, but uses annotations from a correlated task. We evaluated our approach on the

ObjectNet3D and Pascal3D datasets, where it outperforms previous approaches.
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Figure 6.4: Qualitative results for the proposed approach JVK (Re-Sy-Sh). The di-
rectional arrow represents the projected 3D viewpoint. Blue (dots) and red (crosses)
denote correct and wrong estimations based on the PCK[α = 0.1] or Acc(π/6) measure,
respectively.
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(a) Symmetry confusion

(b) Class unexpected variations

Figure 6.5: Common failure test cases that could not handle symmetry (a) and sample-
specific keypoint variations (b).

101





Chapter 7

Conclusions

Contents

7.1 Overview and Discussion . . . . . . . . . . . . . . . . . . . . . . . 103

7.1.1 Open Set Domain Adaptation for Image and Action Recognition 104

7.1.2 Viewpoint Refinement and Estimation with Adapted Synthetic

Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.1.3 Joint Viewpoint and Keypoint Estimation with Real and Syn-

thetic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.2.1 Advances in Domain Adaptation . . . . . . . . . . . . . . . . . . 105

7.2.2 Synthetic Data from 3D Graphics Models . . . . . . . . . . . . . 106

7.2.3 Viewpoint and Keypoint Estimation . . . . . . . . . . . . . . . . 107

7.1 Overview and Discussion

Currently, image recognition techniques require large amounts of images with reli-

able annotations in order to train their image classifiers. However, the gathering of

meaningful images that best generalise the test scenario becomes quite frequently a

challenging task. Besides, the labelling process is very time consuming, expensive and

prone to errors. This means that the access to fast, cheap and accurate labelled data

arises as one of the main challenges in the field of computer vision. Even in some

special situations, no data collection for training purposes is possible at all. Several

solutions have been proposed in the last years to solve this critical situation. The most

popular approaches include (1) the usage of similar datasets from previous projects

that have already been annotated, (2) the generation of synthetic data from 3D com-

puter graphics models and (3) the simultaneous training of datasets with heterogeneous

labels but with a correlated task, i.e. the understanding of the object class that must

be recognised. In this dissertation, we proposed 3 contributions that optimise and im-

prove the classification performance for each of these solutions. We introduce a novel

domain adaptation method that acclimates to a variety of applications, including open

sets (see Section 7.1.1), we refine coarsely annotated object viewpoints with fine labels

from domain adapted synthetic images (see Section 7.1.2) and combine the estimation

of viewpoints and keypoints on a single end-to-end deep neural network to increase

the accuracies of both tasks at the same time (see Section 7.1.3), respectively.
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7.1.1 Open Set Domain Adaptation for Image and Action Recogni-
tion

We introduced in this dissertation a novel domain adaptation algorithm that linearly

transforms the source data towards the target data in an iterative approach. We

exploit the association between source classes and target samples, treated as a bipartite

matching problem, to guide the computation of the linear transformation in every

iteration. This layout is extremely flexible to modifications. Therefore, we also extend

standard adaptation techniques to open sets, namely open set domain adaptation, and

include irrelevant samples in the target domain, i.e. they do not belong to any of our

classes of interest, presenting a more realistic scenario. Introducing an outlier handling

in the assignment step of our algorithm, we reject uninteresting target samples for the

optimisation of the source data transformation. We also attach unknown samples in

the source dataset, showing that using them in the pipeline as unknown class might

still provide marginal accuracy increments. Another major strength of our approach is

that it reports better classification accuracies for a wide variety of problems and input

data, including object classification (image data), action recognition (video data) and

sentiment analysis (words), and different feature descriptors. An extensive validation

on popular evaluation datasets shows that our algorithm not only outperforms well-

established domain adaptation methods that are directly applied to feature descriptors,

but also achieves similar or even better results than state-of-the-art domain adaptation

approaches embedded in deep neural networks.

7.1.2 Viewpoint Refinement and Estimation with Adapted Synthetic
Data

Another proposal of this thesis is the alleviation of fine viewpoint labelling by humans

and the utilisation of synthetic data to refine the labels of real training images. We have

evaluated our approach in the context of pose estimation, where the real images are

manually labelled by only four coarse views, but finer viewpoint estimates are required.

Due to the differences between the real and the synthetic data, we apply domain

adaptation to align both domains and improve the viewpoint refinement. For domain

adaptation, we consider the real images as weakly labelled data and use the coarse

views to constrain the learning of the transformation from the synthetic data to the

real data. The results have shown that 3D generated models can be successfully used

to refine labels in real images and therefore overcome the cumbersome annotation of

real images by accurate and fine viewpoints. In particular, our approach leverages the

abilities of humans of estimating coarse viewpoints and the pose accuracy of synthetic

data.

7.1.3 Joint Viewpoint and Keypoint Estimation with Real and Syn-
thetic Data

We finally presented an end-to-end multi-task neural network that jointly trains view-

points and keypoints of rigid objects. This architecture utilises a state-of-the-art hu-
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man pose estimation as backbone [Wei et al., 2016] to replicate a multi-stage model

and extends it by appending a new branch for viewpoint estimation with different

levels of discretisation. The combined training of tasks that are highly correlated, i.e.

both seek a better understanding of the object’s positioning, outputs better viewpoint

accuracies and more precise keypoints. This finding is clearly shown when the keypoint

estimation improves by simply adding more training data with only viewpoint anno-

tations. Nonetheless, some failure cases appeared in objects that produced a keypoint

layout with symmetries, which led to mirrored results.

Another advantage of our model is that it can be trained with multiple datasets at

the same time. For instance, we introduce a new synthetic dataset with automatically

generated viewpoint and keypoints that further improves the results of both tasks.

This method thus fits into applications where no additional labelling is allowed and the

re-utilisation of other datasets with different labelling specifications, e.g. viewpoints,

keypoints or both, is necessary. Hence, it becomes a better choice than our proposed

method for viewpoint refinement and estimation of Chapter 5, whose coarse viewpoint

annotations by humans is a fundamental step to support the unsupervised domain

adaptation that follows for each coarse view. However, a drawback of our network is

that fine human annotations are not reliable and might lead to worse accuracies than

our method with the viewpoint refinement. A potential combination of both methods

is later detailed in Section 7.2.3.

7.2 Future Work

7.2.1 Advances in Domain Adaptation

The domain adaptation algorithm presented in this work allows for some interesting

extensions that go beyond the scope of this dissertation.

Open Set Domain Adaption with Deep Convolutional Neural Networks

The breakthrough of powerful programmable graphics cards and efficient deep neural

networks also had a significant impact in the performance of domain adaptation in

object classification tasks. The transfer from source to target domain is, at some extent,

implicitly learned in the training of the network models and Siamese networks are

perfectly suited to add adaptation loss functions across multiple datasets. Therefore,

the next natural step of our open set domain adaptation is its transition to deep

neural networks and consequently the exploitation of its usability in more powerful

supervised learning techniques. A first proposal has already been introduced in the

recent publication by Saito et al. [2018b].

Beyond Object Classification Tasks

Standard domain adaptation algorithms, including the one presented in this work,

expect as input data a set of features X ∈ RN×D of sample size N and feature dimen-

sionality D. We consider of great importance the investigation of domain adaptation
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given any type of feature descriptor, even at image level. At this point in time, some

applied works in the field of semantic segmentation [Zhang et al., 2017b] have been

published. More focused on our work, domain adaptation with image sequences pro-

cessed in long short-term memories, i.e. recurrent neural networks, arise as a plausible

extension for action recognition tasks.

7.2.2 Synthetic Data from 3D Graphics Models

In this thesis, we introduced a novel synthetic dataset with automatised generation

of 3D viewpoints and 2D keypoints for any available 3D mesh. Synthetic data has,

nevertheless, a lot of potential and still has many new topics of research.

Generation of 3D Annotations

Many new datasets are very rich in labelled data and provide many types of anno-

tations for different tasks. However, they do not provide higher levels of detail in

the annotation of object classes. Our framework for generating synthetic data is well

suited with just a few extensions to automatically provide 3D keypoints and depth

maps. For animated meshes, the inclusion of scene flow also provides relevant infor-

mation and the camera can be easily modified to support any sensor specification. All

these increments are of great interest when developing multi-task neural networks and

real data is scarce.

Generation of New Models from Real Data

The time spent in curating 3D graphics models for the generation of synthetic data

becomes a tedious bottleneck. Therefore, another interesting future work is the au-

tomatised creation of 3D meshes from real images. Using a set of existing 3D models

and a few images of the real objects in all possible viewpoints might suffice to pro-

vide interesting results. In extreme cases, partial annotations of the visible viewpoints

on single images may also be very helpful in the data collection. An early work has

already been presented by Krause et al. [2013].

Impact of Photorealistic Synthetic Data and Dataset Size

There are two parameters that play an important role in the usage of synthetic data for

training object classifiers that did not receive enough attraction. Firstly, the impact of

investing more time in extremely realistic renderings for better results in the classifiers.

How much level of realism is enough to get an improvement? Can photorealistic

virtual worlds replace real data if properly tuned for the expected test environment?

In the same direction, some application might request the minimum number of 3D

graphics models and images per model that are required to get the best possible results.

Assuming that generic tasks with large class variations demand more data: how many

additional images are enough for training our object classifier?
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7.2.3 Viewpoint and Keypoint Estimation

In spite of presenting in this work state-of-the-art viewpoint and keypoint estimators,

we still consider a few improvements in our pipeline.

Domain Adaptation from Synthetic to Real Domain

Compared to the methods presented in Chapters 4 and 5, our multi-task learning ap-

proach does not employ any domain adaptation technique to bridge the gap between

synthetic and real data. Based on the current research, which already reports promis-

ing results when domain adaptation is applied to deep neural networks [Ganin and

Lempitsky, 2015, Saito et al., 2018a, Long et al., 2018, Kang et al., 2019], the inclu-

sion of additional losses that minimise the discrepancy between both domains, while

maximising the discrepancy among discretised viewpoints, become an interesting ex-

tension.

In order to reduce the risks of inaccurate human viewpoint annotations, we can

coarsely re-label the viewpoints used in the training phase and apply the viewpoint

refinement presented in Chapter 5. This step does not even require re-annotation, since

the manually-annotated fine viewpoints can be transformed into coarse views and then

further refined with the synthetic dataset. Furthermore, the refinement can also be

easily integrated into the CNN network by simply providing coarse annotations and

use each coarse view as independent cluster of the aforementioned discrepancy losses,

in order to adapt the fine viewpoints from the synthetic data into the coarse ones from

the real data.

Inclusion of Poses in Object Detectors

A straightforward extension of our viewpoint and keypoint estimator is its inclusion

into a state-of-the-art object detector and exploiting its 3D information. This means

that a 3D bounding box is jointly trained with our estimators. This extension is similar

in spirit with the work published by Braun et al. [2016].

From 2D to 3D Pose Estimation Techniques

2D Keypoint estimation implicitly contains 3D spatial information based on the layout

of their detected keypoints. This information is, however, ambiguous is some config-

urations. Therefore, we propose the training of 3D keypoint estimators in case 3D

synthetic annotations, i.e. depth information, is available.
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Appendix A

Action Recognition Open Set

Protocol

The action recognition open set protocol for domain adaptation defines as shared classes

between two different domains all actions that reproduce the same movement for a well-

defined activity. If one dataset contains more than one class label that is identified as

the same action in the other dataset, these will be grouped in one single class.

The list of shared and unknown action classes for the open set domain adaptation

protocol between the Kinetics Human Action Video Dataset [Kay et al., 2017] (Kinet-

ics) and the UCF101 Action Recognition Dataset [Soomro et al., 2012] (UCF101) are

given in Table A.1 and Table A.2, respectively.
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Chapter A. Action Recognition Open Set Protocol

Action recognition open set protocol for Kinetics → UCF101 (Shared classes)

Kinetics UCF101 Kinetics UCF101 Kinetics UCF101

archery archery

dribbling
basketball,

playing
basketball,
shooting

basketball

basketball bench pressing bench press

biking through
snow, riding a

bike, riding
mountain bike

biking
blowing out

candles
blowing
candles

bowling bowling

brushing teeth brushing teeth
canoeing or

kayaking
kayaking

catching or
throwing
baseball

baseball pitch

catching or
throwing
frisbee

frisbee catch clean and jerk clean and jerk
climbing a

rope
rope climbing

crawling baby baby crawling

cutting
pineapple,

cutting
watermelon

cutting in
kitchen

diving cliff cliff diving

dunking
basketball

basketball
dunk

filling eyebrows
apply eye
makeup

getting a
haircut

haircut

golf driving golf swing hammer throw hammer throw high jump high jump

hula hooping hula hoop javelin throw javelin throw jetskiing skijet

contact
juggling,

juggling balls
juggling balls

juggling soccer
ball

soccer juggling
jumping into

pool
trampoline

jumping

knitting knitting long jump long jump lunge lunges

making pizza pizza tossing marching band marching
massaging

persons head
head massage

mopping floor mopping floor playing cello playing cello playing cricket cricket shot

playing drums drumming playing flute playing flute playing guitar playing guitar

playing piano playing piano playing tennis tennis swing playing violin playing violin

playing
volleyball

volleyball
spiking

pole vault pole vault pull ups pull ups

punching bag

boxing
punching bag,
boxing speed

bag

punching
person

punch push up
push ups, wall

pushups

riding or
walking with

horse
horse riding rock climbing

rock climbing
indoor

salsa dancing salsa spins

scuba diving diving shot put shotput skateboarding skate boarding

skiing, skiing
crosscountry,
skiing slalom

skiing skipping rope jump rope skydiving sky diving

kicking soccer
ball, shooting

goal
soccer penalty squat

body weight
squats

surfing water surfing

swimming
breast stroke

breaststroke swing dancing swing tai chi tai chi

throwing
discus

throw discus
trimming or

shaving beard
shaving beard

walking the
dog

walking with a
dog

Table A.1: Definition of shared classes for the open set protocol between the Kinet-
ics [Kay et al., 2017] and the UCF101 [Soomro et al., 2012] action recognition datasets.
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A.0.

Action recognition open set protocol for Kinetics → UCF101 (Unknown classes)

Kinetics

abseiling, air drumming, answering question, applauding, applying cream, arm wrestling, arranging flowers,
assembling computer, auctioning, baby walking up, baking cookies, balloon blowing, bandaging, barbe-
quing, bartending, beatboxing, bee keeping, belly dancing, bending back, bending metal, blasting sand,
blowing glass, blowing leaves, blowing nose, bobsledding, bookbinding, bouncing on trampolin, braiding
hair, breading or breadcrumbing, breakdancing, brush painting, brushing hair, building cabinet, building
shed, bungee jumping, busking, celebrating, capoeira, carrying baby, cartwheeling, carving pumpkin, catch-
ing fish, catching or throwing softball, changing oil, changing wheel, checking tires, cheerleading, chopping
wood, clapping, clay pottery making, cleaning floor, cleaning gutters, cleaning pool, cleaning shoes, clean-
ing toilet, cleaning windows, climbing ladder, climbing tree, contry line dancing, cooking chicken, cooking
egg, cooking on campfire, cooking sausages, counting money, cracking neck, crossing river, crying, curling
hair, cutting nails, dancing ballet, dancing charleston, dancing gangnam, dancing macarena, deadlifting,
decorating the christmas tree, digging, dining, disc golfing, dodgeball, doing aerobics, doing laundry, doing
nails, drawing, drinking, drinking beer, drinking shots, driving car, driving tractor, drop kicking, drum-
ming fingers, dying hair, eating burger, eating cake, eating carrots, eating chips, eating doughnuts, eating
hotdog, eating ice cream, eating spaghetti, eating watermelon, egg hunting, exercising arm, exercising with
an exercise ball, extinguishing fire, faceplanting, feeding birds, feeding fish, feeding goats, finger snapping,
fixing hair, flipping pancake, flying kite, folding clothes, folding napkins, folding paper, front raises, frying
vegetables, garbage collecting, gargling, getting a tattoo, giving or receiving award, golf chipping, golf
putting, grinding meat, grooming dog, grooming horse, gymnastics tumbling, headbanging, headbutting,
high kick, hitting baseball, hockey stop, holding snake, hopscotch, hoverboarding, hugging, hurdling, hurl-
ing, ice climbing, ice fishing, ice skating, ironing, jogging, juggling fire, jumpstyle dancing, kicking field goal,
kissing, kitesurfing, krumping, laughing, laying bricks, making a cake, making a sandwich, making bed,
making jewerly, making snowman, making sushi, making tea, massaging back, massaging feet, massaging
legs, milking cow, motorcycling, moving furniture, mowing lawn, news anchoring, opening bottle, opening
present, paragliding, parasailing, parkour, passing American football, passing American football, peeling
apples, peeling potatoes, petting animal, petting cat, picking fruit, planting trees, plastering, playing ac-
cordion, playing badminton, playing bagpipes, playing bass guitar, playing cards, playing chess, playing
clarinet, playing controller, playing cymbals, playing didgeridoo, playing harmonica, playing harp, play-
ing ice hockey, playing keyboard, playing kickball, playing monopoly, playing organ, playing paintball,
playing poker, playing recorder, playing saxophone, playing squash or racquetball, playing trombone, play-
ing trumpet, playing ukulele, playing xylophone, presenting weather forecast, pumping fist, pumping gas,
pushign cart, pushing car, pushing wheelchair, reading book, reading newspaper, recording music, ridin a
camel, riding elephant, riding mechanical bull, riding mule, riding scooter, riding unicycle, ripping paper,
robot dancing, rock scissors paper, roller skating, running on treadmill, sailing, sanding floor, scrambling
eggs, setting table, shaking hands, shaking head, sharpening knives, sharpening pencil, shaving head, shav-
ing legs, shearing sheep, shining shoes, shoveling snow, shredding paper, shuffling cards, side kick, sign
language interpreting, singing, situp, ski jumping, slacklining, slapping, sled dog racing, smoersaulting,
smoking, smoking hookah, snatch weight lifting, sneezing, sniffing, snorkeling, snowboarding, snowkiting,
snowmobiling, spinning poi, spray painting, spraying, springboard diving, stickin tongue, stomping grapes,
stretching arm, stretching leg, strumming guitar, surfing crowd, sweeping floor, swimming backstroke,
swimming butterfly stroke, swinging legs, swinging on something, sword fighting, taking a shower, tango
dancing, tap dancing, tapping guitar, tapping pen, tasting beer, tasting food, testfying, texting, throwing
axe, throwing ball, tickling, tobogganing, tossing coin, tossing salad, training dog, trapezing, trimming
trees, triple jump, tying bow tie, tying know, tying tie, unboxing, unloading truck, using computer, using
remote controller, using segway, vault, waiting in line, washing dishes, washing feet, washing hair, washing
hands, water skiing, water sliding, watering plants, waxing back, waxing chest, waxing eyebrows, waxing
legs, weaving basket, welding, whistling, windsurfing, wrapping present, wrestling, writing, yawning, yoga,
zumba

UCF101

apply lipstick, balance beam, billiards shot, blow dry hair, fencing, field hockey penalty, floor gymnastics,
front crawl, hammering, handstand pushups, handstand walking, horse race, ice dancing, jumping jack,
military parade, mixing batter, nun chucks, parallel bars, playing daf, playing dhol, playing sitar, playing
tabla, pommel horse, rafting, rowing, still rings, sumo wrestling, table tennis shot, throw discus, typing,
uneven bars, writing on board, yo yo

Table A.2: Definition of unknown classes for the open set protocol between the Kinet-
ics [Kay et al., 2017] and the UCF101 [Soomro et al., 2012] action recognition datasets.
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