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gegengebrachte Vertrauen und die vielfältigen Ermutigungen. Andreas Schilling

hat sich um meinen Dank verdient gemacht, indem er fachliche Fragen mit

dieser unnachahmlichen Begeisterung für Detail und Tiefe mit mir erörtert

hat und auch in schwierigen Momenten zu ermuntern wusste. Bei Frank Kurth

bedanke ich mich für die mannigfache Unterstützung, nicht zuletzt in Fragen
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The content of this dissertation is based on three first author publications

that have been presented at different conferences with a focus on computer

graphics.

The publication with the name Pushpins for Edit Propagation [MK17] was

published at the International Conference on Computer Graphics (WSCG

2017). The paper presents a novel approach to propagating a bipartite stroke

input over a near-regular-textured material. I implemented, evaluated, and

wrote the paper. My co-author, Prof. Dr. Reinhard Klein, supported the

work by proof-reading and discussing technical aspects.

The paper Appearance Bending: A Perceptual Editing Paradigm for Data-

Driven Material Models [MGZ+17] was published and presented at the 22nd

International Symposium on Vision, Modeling and Visualization (VMV 2017).

This paper transfers an affordance manipulation scheme from the field of visual

perception, where it had been tested on photographies, to the field of computer

graphics, where I could show that it may be applied to complex material

representations. I implemented, evaluated, and wrote the paper. Prof. Dr.

Matthias Hullin and Prof. Dr. Reinhard Klein supported the work by proof-

reading and discussed technical issues with me and Dr. Qasim Zaidi and
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The paper Linear Subspaces of the Appearance Space was published and pre-
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In this paper I introduce a model of the visual cortex to learn different ma-

terial editing schemes. I implemented, evaluated, and wrote the paper. My

co-author, Prof. Dr. Reinhard Klein, supported the work by proof-reading

and technical discussions.

The work at hand contains text parts of the three mentioned papers that

were transferred to this thesis without further modification. To make these

copied sentences recognizable among the newly written parts they are high-

lighted in gray.



Abstract

The modeling of consistent 3D-Worlds and the rendering of photo-realistic im-

ages and films is a difficult task even for well-trained 3D-designers. This is in

particular the case if the resulting media show material surfaces which do not

or not yet exist. An established approach is to derive the reflectance-proper-

ties and the mesostructure of an imaginary material surface from reflectance-

properties and mesostructure of existing material surfaces. In other words

this problem is approached by manipulating measured, digitalized material-

surfaces. According to the importance of the problem, there have been pub-

lished many computer graphical research papers in this field. As the rendering

of photo-realistic images is essentially done by simulation of ray-optics, most

publications concentrate on manipulating the physical properties of the mea-

sured materials. But those measured optical properties often do not allow to

draw inferences about the underlying physical phenomena. That is why this

approach often fails. In this thesis we are trying to find editing-systems which

make use of the spatial contrast between those measured reflectance mod-

els. We want to reach this target by analysing and manipulating the spatial

frequency-structure of the local reflectance-models.

First we want to investigate how to make use of the Fourier-analysis to
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propagate a bichromatic stroke-input robustly over a material which bears

at least one near-regularly textured channel. We will show that this near-

regular-structure may be used to robustly generate high-quality editing masks

to separate a foreground-pattern from the background.

In the following we suggest perceptually motivated operations on the fre-

quency spectrum. We will transfer a bandpass-filtering scheme, which has

shown astonishing results in material-image editing, to bidirectional texture

functions. To evaluate our approach we present many editing examples which

show that this transfer of the original editing-scheme is reasonable and leads

to good results.

To motivate our next step we formulate the hypothesis, that this approach

is in fact a manipulation of the perception. So we will evolve our approach by

doing the frequency-analysis in an empirically founded computational cortex

transform model instead of a Fourier- or a wavelet-analysis. Editing operations

in this model are linear operations which have to be learned by the use of

editing examples. We will show by exemplary comparisons that this model

is not only capable of learning the mentioned editing-scheme but can also

represent optical phenomena which then may be used as editing operation.



Zusammenfassung

Die Modellierung konsistenter 3D-Welten und das Rendering fotorealistischer

Bilder und Filme stellt auch geübte 3D-Designer vor eine schwer lösbare Auf-

gabe. Insbesondere dann, wenn in den resultierenden Medien Materialoberflächen

zu sehen sein sollen, die in dieser Form nicht oder noch nicht existieren. Oft ver-

sucht man hier die Reflektanzeigenschaften und die Mesostruktur imaginärer

Materialoberflächen aus denen existierender herzuleiten also gemessene, digi-

talisierte Materialoberflächen zu editieren. Entsprechend der Wichtigkeit des

Themas weist die Computergrafik einen beachtlichen Korpus an Veröffentlichungen

hierzu auf. Weil das Rendering fotorealistischer Bilder im Wesentlichen durch

eine Simulation der Strahlenoptik, also der Physik, erreicht wird, konzentrieren

sich die meisten Veröffentlichungen auf die Manipulation der physikalischen

Eigenschaften digitalisierter Materialoberflächen. Die gemessenen optischen

Eigenschaften lassen bei der Digitalisierung existierender Materialien jedoch

oft wenig Rückschlüsse auf die zugrunde liegenden physikalischen Vorgänge

zu, deswegen führt dieser Ansatz mitunter ins Leere. In der vorliegenden Dis-

sertation geht es darum, Editiermethoden zu finden, die die räumlichen Kon-

trastverhältnisse zwischen den gemessenen lokalen Reflektanzmodellen aus-

nutzen. Dies soll durch Analyse und Manipulation der räumlichen Frequen-
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xvi Zusammenfassung

zstruktur der lokalen Reflektanzmodelle erreicht werden.

Zunächst werden wir untersuchen, wie die Fourieranalyse genutzt werden

kann, um zweifarbige Stricheingaben robust über Materialien zu propagieren,

die mindestens über einen Kanal verfügen, der ein nahezu gleichmäßiges Wieder-

holungsmuster trägt. Wir werden zeigen, dass auf Basis der Wiederholungsstruk-

tur mit hoher Robustheit hochqualitative Editiermasken erstellt werden können

mit denen ein Muster im Vordergrund vom Materialhintergrund getrennt wer-

den kann.

Die im Weiteren vorgeschlagenen Operationen auf dem Frequenzspektrum

sind perzeptuell motiviert. Wir werden ein Bandpassfiltersystem, welches auf

Materialfotos zu erstaunlichen Ergebnissen führt, auf bidirektionale Textur-

funktionen übertragen. Anhand von zahlreichen Editierbeispielen werden wir

belegen, dass diese Übertragung sinnvoll ist und zu guten Ergebnissen führt.

Vor dem Hintergrund der Hypothese, dass es sich hier um Manipulationen

der Wahrnehmung handelt, werden wir im Anschluss die Frequenzzerlegung

nicht mehr mithilfe der Fourierbasis oder einer orthogonalen Waveletbasis

vornehmen sondern in einem auf empirischen Daten beruhenden rechnerischen

Cortex Transformationsmodell. Editieroperationen werden in diesem Modell

als lineare Transformationen dargestellt, die auf Basis von Editierbeispielen

erlernt werden. Wir werden anhand von exemplarischen Vergleichen zeigen,

dass nicht nur die angesprochenen Editieroperationen in diesem Modell gel-

ernt werden können, sondern auch andere optische Phänomene, die mit Hilfe

des vorgestellten Ansatzes nunmehr als Materialeditieroperation zur Verfügung

gestellt werden können.



CHAPTER 1

Introduction

Computer graphical progress has ever since been the figurehead of develop-

ments in computer science. As early as 1979, the astonishing results of the

Whitted-raytracer gave already proof of the principal possibility to render a

digital 3D-scene description to a photo-like 2D-image. But neither were com-

puters powerful enough to cope with the vast quantities of data, necessary

to describe a relatively simple all day scene, nor was the computer graphi-

cal progress far enough to allow for calculations of the light-exchange on the

material surface of more complex materials.

Many things have changed since then. Today it is possible to generate

pictures of highest complexity which are nearly indistinguishable from pho-

tographies. In this rendering process the material surface has a key role. If

the light exchange on the material surface is not modelled neatly surfaces will

not appear to be realistic.

One approach to cope with this problem is to sample the reflectance proper-

ties of an existing material surface over a discrete light- and viewing-direction

grid and use those tabulated reflectance data for rendering. This very suc-

1



2 Chapter 1. Introduction

cessful technique has the significant limitation that it is extremely difficult to

apply meaningful and still realistic changes to the measured data. But of course

making realistic and meaningful changes to the material appearance is highly

desirable for 3D-Computer artists. So manipulating measured reflectance data

has been an intensively studied topic in computer graphics during the last two

decades and it is also the subject of this thesis.

To be more precise we are investigating in this thesis how to make use of

the spatial frequency spectrum of parameter maps of measured materials to

achieve realistic, predictable and meaningful manipulations.

The oldest mathematical means to investigate the frequency domain of a

given time signal f is the Fourier transform F,

Ff(ν) =
1√
2π

∫ ∞
−∞

f(t)e−i2πνtdt. (1.1)

The Fourier transform may be seen as an idealized frequency analyser. We

call it idealized because frequencies are represented by infinite sine and cosine

waves. The simplest remedy of this idealization is to limit the range of the

Fourier-transform. That is, to calculate the short time Fourier transform by

multiplying the signal in question with a L2-integrable window function (w):

Fw,µf(ν) =
1√
2π

∫ ∞
−∞

f(t)w̄(t− µ)e−i2πνtdt. (1.2)

A Gaussian windowed Fourier transform is called Gabor transform.

Γµf(ν) =
1√
2π

∫ ∞
−∞

f(t)e−π(t−µ)2e−i2πνtdt. (1.3)

The idea of the window-function is to confine the frequency analysis to a cer-

tain range in time, so the window function does not depend on the frequency-

parameter ν. This differs from the scaling analysis done by the wavelet trans-
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form:

Wfs,r =
1√
s

∫ ∞
−∞

f(t)ψ̄

(
t− r
s

)
dt. (1.4)

If the scaling analysis function ψ is compactly supported the support shrinks

with a shrinking scaling factor s. So the support adapts to the scaling and

enables localized scaling analysis. And finally we may use the Gabor-function

as mother wavelet. A formula for a two dimensional Gabor mother-wavelet is

given by:

ψκ =
1√
2π
e−

1
8

(4x2+y2) ·
[
eiκx − e−

κ2

2

]
, (1.5)

where κ is a function of the bandwidth of the Gaussian filter.

Those operators will be used in two different scenarios:

1. for frequency based similarity detection and

2. to model frequency born attributes in human visual system.

1.1 Frequency Based Similarity Detection

Periodical recurrence has a certain magic inherent. First asked for periodically

recurring phenomena, we are inclined to think of a clock hand, of the change

of day and night, and, perhaps after some reflection, of the year with its four

seasons. Once we take a closer look, we see that periodicity is all over there,

like in the pattern of the paved side walk, or in the transient regulation of

the heating system. Material surfaces in particular bear often a periodically

recurring structure, like the slings in a knit work or the imprinted pattern of

structural metal.

We want to decompose such a surface pattern into an editable foreground

and a non-editable background region. Periodicity supports the solution of

this matting-problem in a two-fold way:
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1. we may mask the frequency spectrum of the material to highlight similar

regions and

2. we may calculate an average master tile to gather statistics on which

part of the pattern should be considered as foreground and which as

background.

Depending on the number of repetitions of the recurring structure the gen-

eration of the master tile is increasingly robust. By recombining the matted

master-tile we may obtain a high-quality editing mask for a given material

patch. In Chapter 3 we present such an algorithm. For our algorithm it suf-

fices if one of the materials channels bears a near-regular pattern.

1.2 Frequency Born Attributes in Human Sen-

sory System

A totally different approach to frequency-based material editing comes from

the field of visual perception. Giesel and Zaidi could tie certain affordances

to specific frequency bands in the Fourier domain of material photographies.

Affordance is a concept from psychology; it describes a property or a quality of

an object which suggests a possible use of this object. Those affordances may

be weakened or strengthened by scaling of the appropriate frequency band. For

realistic material editing this is a piece of good fortune as those frequency ma-

nipulations are not only realistic, predictable and meaningful but due to their

linearity they may be applied to the base of compressed reflectance tensors.

This makes affordance editing an ideal candidate for bidirectional texture func-

tion editing. In Chapter 4 we will investigate this approach and show that we

may substitute the Fourier-transform by a member of Daubechies orthogonal

wavelet transform family. Using the wavelet family brings a better localization

of the edit and therefore admits editing of multi-component materials without

the occurrence of strong artefacts.



1.2. Frequency Born Attributes in Human Sensory System 5

Our results indicate that frequency based affordance editing is a promising

approach to material editing. We can even present an example where manip-

ulating a BTF-material brings more stable results than manipulating a photo

of the material. While we leave aside the physical aspects of those frequency

space manipulations we want to have a closer look at the chosen frequency

analysis. The Fourier transform is a good choice to get a first impression of

the effects of specific frequency manipulations. But as the base vectors of the

discrete Fourier transform span the whole image the resulting manipulation

is not robust against irregularities in the material. As mentioned before, the

robustness may be increased by the use of a multi-scale analysis. The chosen

Daubechies-wavelets have the additional advantage that they allow for a fast

wavelet transform.

In Chapter 5, we want to give up the aspect of computational performance

and deepen the idea of a manipulation of the visual perception. That is from

neuroscience we gather the results on the filtering system of the visual stri-

ate cortex and compose an artificial Gabor-filter based filtering system which

respects the neuroscientific empirical analysis. We show that such a system

admits reconstruction of a given input by weighted summation of the filter

responses. To transfer the results of Chapter 4, we will learn how to represent

bandpass-filtering in our new cortex transform model. Additionally we will

show that our cortex transform model is capable of representing other optical

phenomena like edge enhancement or small movements of a light source.

The contribution of this thesis will be described in detail within the next

section. We want to support the point of view that appearance manipulation

is not only a matter of the underlying optical phenomena but also a matter of

visual perception.

Throughout this publication we are trying to keep the same notation for

the same object (see Appendix A) and we are trying to avoid ambiguities with

exception of radiometric quantities, which we notate like given in [NRH+77],

and citations from third party publications where we use the same notation as

in the publication to increase readability. We identify a given direction, mostly
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Figure 1.1: A direction and the elevation angle and the azimuth.

notated as ω, with the unit vector into this direction and we write ω = (θ, ϕ)

for the elevation angle θ and the azimuthal angle ϕ with implicit reference to

a suitable local coordinate system. We use both, φ and ϕ, the first of which

for scaling functions, the second for azimuthal angles.
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1.3 Contribution

In this thesis we want to find answers to the question how the spatial frequency

spectrum of parameter- or reflectance-maps of measured materials may be

utilized to apply plausible editing-operations to the measured material. The

term plausible will be refined in the second Chapter, Subsection 2.3.1. We

want to contribute to the field of material editing by presenting the following

results:

� we introduce pushpins, a correlation based technique to identify similar

regions in near regular textured texture channels,

� those pushpins are embedded in a novel workflow to identify a foreground

component of a measured material,

� we transfer an editing scheme of material images to parameter-maps of

complex local reflectance models,

� we explore how this Fourier-transform based editing scheme may be

transferred into a wavelet based editing scheme to circumvent undesired

global effects of the Fourier-transform,

� starting with the previous findings, we develop a model of the visual

cortex to represent the editing scheme in this cortical filter model,

� finally we show that our novel cortex transform model is capable of learn-

ing new plausible material edits.
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1.4 Publications

This cumulative thesis is based on the following publications:

1. Marlon Mylo, and Reinhard Klein. Pushpins for edit propagation. In In-

ternational Conference on Computer Graphics, Visualization and Com-

puter Vision, volume 25 of WSCG proceedings, pages 143 – 152, [MK17].

Figure 1.2: Pushpins for edit propagation.

2. Marlon Mylo, Martin Giesel, Qasim Zaidi, Matthias Hullin, and Rein-

hard Klein. Appearance Bending: A Perceptual Editing Paradigm for

Data-Driven Material Models. In Proceedings of Vision, Modeling & Vi-

sualization, The Eurographics Association, [MGZ+17]

Figure 1.3: Appearance Bending.

3. Marlon Mylo, and Reinhard Klein. Linear Subspaces of the Appearance

Space. In International Conference on Computer Graphics, Visualization

and Computer Vision, volume 26 of Journal of WSCG, pages 95 – 103,

[MK18]

4. Zaidi, Qasim and Giesel, Martin and Mylo, Marlon and Klein, Reinhard.

Perception and appearance bending of material properties. In Journal
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Figure 1.4: Linear Subspaces of the Appearance Space.

of Vision, volume 17(15), page 21, year 2017, [ZGMK17]
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CHAPTER 2

Preliminaries

In this chapter we want to collect the fundamentals. We start by introducing

the foundational ideas and definitions of digital image synthesis. In the first

section we describe the tools, models and workflows, necessary to render a

photorealistic image from the description of a 3D-scene.

It follows the concept of digitalized materials. We will present three different

local reflectance models in form of analytical models of bidirectional reflectance

distribution functions (BRDF ). An important representation of digitalized

material optics is the bidirectional texture function (BTF ). The computer

graphics department of the university of Bonn has established considerable

expertise in measuring, manipulating and editing BTFs and it is a focal point

of this thesis, too. BTFs will be introduced after the local reflectance models.

With regard to editing schemes it is necessary to outline the state of the art of

the different material measurement schemes and the resulting data structures.

It feels a little bit preposterous to denote an artificially modified digital

material representation as realistic. Still realism is the currency, so we will

introduce the term plausible for manipulated material surfaces which occur as

11



12 Chapter 2. Preliminaries

if they were / could be real. Evaluated is the plausibility by computer graphics

experts. This definition and an overview over existing editing schemes with

focus on manipulations of high-dimensional materials will be given in the fourth

section of this chapter.

This work is about the usability of spatial frequency descriptions of mea-

sured material maps for the process of editing those material maps. So the

first section introduces the Fourier transform. Fourier uses an ad-hoc defi-

nition of the integral whereas we assume in this thesis of course Lebesgues

integral definition. A particularly useful tool is the convolution theorem. We

want to emphasise its fundamental meaning for computer-graphical applica-

tions in general and stress that the convolution theorem is a core element

of our first contribution, presented in the next chapter (Chapter 3). Subse-

quently we will introduce localized frequency analysis techniques, namely, the

orthogonal Wavelet-transforms (Subsection 2.4.2) and filtering a signal by the

use of Gabor-base (Subsection 2.4.2) functions. We close the chapter with a

tabulated overview over the systems we used in our experiments.

2.1 Physically Based Rendering

In this section we want to gather the facts and notations from 3D-rendering

necessary for the understanding of the subsequent chapters. A very good

introduction to physically based rendering may be found in [PH04], which

is also freely available online under https://www.pbrt.org/. According to

[PH04], by 3D-rendering we denote the process of producing an image from

the description of a 3D-scene.

Physically based rendering is a form of digital image synthesis [Gla95], which

will be explained in more detail in Subsection 2.1.1. Rendering a scene with

opaque material-surfaces may be done by integrating the rendering equation

(Subsection 2.1.3). The last subsection is left for some words on colour-spaces

and dynamic range.

https://www.pbrt.org/
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2.1.1 Digital Image Synthesis

While the term may be used in a broader sense, by digital image synthesis

we denote here the synthesis of realistic images by the use of a computer. A

special form of digital image synthesis is 3D-Rendering. 3D-Rendering is the

process of evaluating a scene to a digital image. This evaluation is done by

simulating the light exchange on the surfaces of the objects in the scene and

in the participating media.

The Scene

The greek word skené means tent or hut. With respect to the Greece Theatron,

skené meant a building in the back of the stage. So the skené holds an assembly

of the figures and objects to be presented to the audience and this is a our

starting point.

Here the scene describes all objects, their optical behaviour, their position

and extent in a three-dimensional space and the audience of the scene in form

of a camera-model. The temporal behaviour of those objects is not necessarily

part of a scene and does not play a role in this thesis. A formal and computable

description of a scene may be done by a scene-graph. Pharr et al. [PH04] name

seven objects / phenomena which have to be part of every scene:

1. the camera,

2. a description to enable ray-object intersection,

3. light sources,

4. a visibility function which decides whether two points may be connected

via a ray,

5. surface scattering, which describes the light exchange on the material

surface,

6. indirect light transport and
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7. rules for the ray propagation through the medium of the scene.

this list is taylored to the demands of raytracing algorithms, but it holds in

comparable form for rasterizers. Here we are concerned with the fifth point:

the light exchange on the material surface.

2.1.2 Radiometric Quantities

Before we describe the rendering equation and subsequently the BRDF we

have to introduce the involved radiometric quantities. An overview with a

short description is given in Table 2.1.

2.1.3 The Rendering Equation

To evaluate a scene to a digital image we have to calculate the light exchange in

the scene. The massive increase of computational power during the 1970s lead

during the early 1980s to enhanced interest on modeling and calculating the

light exchange in a scene [CPC84, Whi79, SH81]. In 1986 James Kajiya pub-

lished an equation which summarized the mathematical formulation of those

different approaches, the rendering equation [Kaj86]: With his first formula-

tion of the rendering equation

I(x,x′) = g(x,x′)

[
ε(x,x′) +

∫
S

ρ(x,x′,x′′)I(x′,x′′)dx′′
]
. (2.1)

Kajiya does not only summarize the mathematical formulation of the former

approaches under one equation but also connects the geometrical description

of a scene with the relevant radiometric quantities by the use of transport

quantities : given three arbitrary points x,x′ and x′′ ∈ R3 of a scene, then

I(x,x′) unoccluded transport intensity

is an intensity, passing from one point to the other,
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Quantity
Symbol
Unit

Explanation Sketch

Radiant
Flux

Φ [W ]

The radiant flux is the
power propagated as op-
tical electromagnetic ra-
diation.

Irradiance
E
[W/m2]

Irradiance is the flux per-
area-density on a given
surface-element.

Exposure
H
[J/m2]

Exposure is the radio-
metric energy per area
which has been received
by a surface-element. It
is the integral of the irra-
diance over time. CCD-
sensors measure the ex-
posure.

Radiance
L
[W/(m2·
sr)]

Radiance is the flux
per-area- and per-solid-
angle-density on a given
surface-element within
a given solid-angle-
element.

L =
∂Φ

∂A∂Ω cos Θ

Table 2.1: Radiometric quantities

g(x,x′) mutual visibility

describes the mutual visibility of the two points x and x′, and
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ρ(x,x′,x′′) unoccluded three point transport reflectance

describes how much light is scattered in point x′ from point x′′ to point

x.

ε(x,x′) unoccluded two point transport emittance

describes the intensity of emitted light from x to x′.

S integration range

S ranges over all surface elements in the scene.

The physical dimensions of the transport quantities differ slightly from those

in the final rendering equation but we will not go into detail here.

Kajiya shows, how to derive a formulation of the rendering equation in

terms of ordinary radiometric quantities [Kaj86, eq. 5-11]:

Lo(x, ωo) = Le(x, ωo) +

∫
S
ρ(x, ωi, ωo)Li(x, ωi)〈ωi,n〉dωi. (2.2)

Here x is a surface point, ωi is the direction of the incoming light, ωo is the

direction of reflectance, and the vector n = n(x) stands normal to the surface

element in x.

L(o,e,i)(x, ω(o,o,i)) is a radiance. For Lo and Le the radiance is outgoing, the

radiance Li is incoming.

ρ(x, ωi, ωo) is a bidirectional reflectance distribution function. The BRDF is

by definition the ratio between the reflected radiance into direction ωo,

confined to reflections from direction ωi and the irradiance confined to

the incoming direction ωi (see Figure 2.1 and Subsection 2.2.1-BRDF).

ρ(x, ωi, ωo) :=
∂L(x, ωi, ωo)

∂E(x, ωi)
. (2.3)

The unit is [sr−1].
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Figure 2.1: The BRDF is the quotient between the incoming irradiance E
confined to a direction ωi and the outgoing radiance L, confined to ωi.

〈ωi,n〉 the cosine between the surface normal and the incoming light direction

accounts for the foreshortening of the unit area perpendicular to the in-

coming ray.

The rendering equation makes a couple of assumptions:

1. it is based on a geometrical approximation of optics,

2. in its plain form it does not allow any treatment of diffraction,

3. the media between surfaces is not taken into consideration,

4. W.r.t the distribution ρ, Kajiya speaks explicitly about a reflectance-

distribution, meaning that his formulation of the rendering equation con-

fines to opaque materials.

In spite of adverse effects over mesh edges, all surfaces are assumed to have

finite curvature, meaning that the tangent space, the surface normals and the
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Figure 2.2: To explain perspective drawing, Leon Battista Alberti uses as early
as 1436 visual rays for his argumentation (left image). Though visual rays lost
their ontological meaning since then, they describe exactly the concept which
has been used in the early raytracing algorithms from the 1960’s (right image
from [App68]).

upper hemisphere S are well-defined. This thesis is about opaque materials,

so ωo, ωi ∈ S.

Solving the rendering equation

While Kajiya also introduces a new solver for the light-exchange integration

problem, rendering techniques are no topic of this thesis, so we leave Kajiyas

traces here, but not without mentioning, that Immel et al. [ICG86] indepen-

dently published another approach to the rendering equation in the same year.

To produce a picture, the rendering equation is evaluated on the pixels of

an image. That is the irradiance received by each pixel of the pixelated pro-

jection surface of a camera model is calculated for each wavelength-filter of the

selected colour space with the desired colour-intensity-dynamics. This recur-

sive integration of the rendering equation is mostly been done by a derivative

of the raytracing-algorithm. The first raytracers may be seen as implementa-

tion of the medieval idea that the human eye feels for its environment by the

use of eye-rays [App68] though the modern idea is of course not the simulation



2.1. Physically Based Rendering 19

of eye-rays but an approximation of geometrical optics.

2.1.4 Colour Spaces and Dynamic Range

In this thesis pixels occur in three different contexts: as elements of parameter

maps for spatially varying BRDFs, as colour dependent reflectance values of

bidirectional reflectance maps and as colour-values of photos or renderings. In

this subsection we want to clarify the meaning of the pixel values of photos

and reflectance maps, starting with the colour.

As humans are trichromatic it is approximately possible to express every

perceptible colour in a trichromatic colour-space. The RGB-colour space is

additive and derived from human colour-sensation. Additivity is important for

compression. It is somewhat tricky to speak of the RGB-colourspace because

every camera and every monitor has its own filtering system. Of course there

exist standardizations like eci-RGB (ISO 22028).

In this thesis we used mostly the YUV-colour encoding system. The trans-

formation between RGB and YUV is linear. YUV separates the RGB-color

space into luma and chrominance. This may be exploited by the fact, that

the human perception is more sensible to luma changes than to chrominance

changes [Alb13]. So, for compression techniques it is profitable to distin-

guish between luma and chrominance because the chrominance-channel may

be highly compressed with comparably low quality loss.

As we are doing physically based rendering the amount of a pixel-value in an

image should always be seen as representative of a radiometric quantity. For

material acquisition we use of-the-shelf cameras. The CCDs (charge-coupled

device) of those cameras measure the exposure and map the irradiated energy

(E∆t) non-linearly to pixel values. The most significant mark of this non-

linearity is the saturation barrier. As we want to recover reflectance functions

from the photos, we need a linear relation between the pixel-values and the

irradiance. This is necessary to obtain energetically correct renderings because

in the rendering equation (Equation 2.2) the reflectance values are multiplied
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with a radiance value and sum up to a power density.

The process of acquiring energy linear radiance-maps (from the perspective

of the scene) is described in detail by Debevec and Malik [DM97]. If we want

to measure the reflectance of a material surface, we can use their setting to

estimate a radiance from the material surface into the direction of the camera.

In order to calculate reflectance-values from those radiance maps, we still have

to estimate the irradiance onto the material surface. This can be done by a

radiometric calibration with a material surface with known reflectance proper-

ties. Schwartz et al. use e.g. SphereOptics Zenith UltrawWhite© [SSW+14].

The dynamic range is a term from signal-processing and describes for a

given quantity the ratio between the largest and the smallest possible value.

Under the assumption, that the smallest value is also the smallest possible

step size, the dynamic range is a measure for the amount of information which

may be represented by that quantity. In computer graphics it is not unusual

to speak of a dynamic range w.r.t. a non-linear scale. In this case inferences

about the amount of information are not possible.

In computer-numbers the amount of representable information is limited by

the number of bits. According to Fechners law the visual system responds to

changes in energy with logarithmic changes in stimulus. This makes floating-

point numbers more suitable for representing radiometric values. In this thesis

values are stored in three different number types:

1. Images are mostly stored as 8 bit integer RGB-values.

2. The values stored in reflectance arrays like BTFs are stored in floating

point numbers with half precision (16 bit).

3. The parameters of the analytical reflectance models are stored as floating

point numbers (32 bit).
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2.1.5 Realism and Methodology

It is crucial to get an idea of what we understand under the term realism.

From [PH04]: The goal of photorealistic rendering is to create an image of a

3D scene that is indistinguishable from a photograph of the same scene. [. . . ]

it is important to understand that in this context the word indistinguishable is

imprecise because it involves a human observer, and different observers may

perceive the same image differently. [. . . ] accounting for the precise character-

istics of a given observer is a very difficult and largely unsolved problem. For

the most part, we will be satisfied with an accurate simulation of the physics of

light and its interaction with matter, relying on our understanding of display

technology to present the best possible image to the viewer. Next to the men-

tioned difficulties when it comes to finding precise characteristics of human

observers, in this thesis we have an even worse problem: we do not want to

evaluate a rendering algorithm which may as well be applied to the modeling

of an existing scene, but we want to edit materials, meaning we want to ap-

ply changes to the reflectance properties of a given material that leads to an

appearance which is not realistic but which could be realistic. In our case a

real-world pendant of the manipulated material-surface does not exist. So we

cannot use reality as ground-truth.

Altogether we see three possibilities to evaluate the realism of a given scene:

1. determination of the quantitative difference from a photography of a real

world pendant of the rendered scene by the use of an appropriate metric,

2. by a user study

3. or by validation through other experts like it is done in the peer-review

process of a conference or a journal.

Comparison by the use of a metric, may it be radiometric, photometric or

perceptual (see [MRC+86,FKH+18,LMS+19]), necessitates that the rendered

image corresponds exactly to a photography which is in most cases not avail-
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able. Furthermore different metrics may contradict each other and it is not

per se clear, which metric to choose.

User studies are a strong but costly instrument to evaluate a research result

and have to be designed carefully to avoid misleading interpretations [KHI+03].

So finally we depend on the judgement of other computer-graphics experts

to decide whether an image is realistic or not.

2.2 Material

By material we mean the digital representation of an existing or imaginary

material-surface represented as a description of the light exchange in every

point of the surface.1 The influence of the material is represented in the

rendering equation (Equation 2.2) by the spatially varying reflectance term

ρ(x, ·, ·) : Ωi × Ωo → R. We confine ourselves to opaque materials so that

Ω{i,o} ⊆ S. In the next section we will discuss bidirectional reflectance distri-

bution functions (Subsection 2.2.1) and bidirectional texture functions (Sub-

section 2.2.2). A last subsection is dedicated to an overview over material

acquisition systems (Subsection 2.2.3).

2.2.1 Bidirectional Reflectance Distribution Functions

The foundational work for the definition of the BRDF has been developed

during the 1960’s by Nicodemus [Nic63,Nic65]. In 1977 Nicodemus introduced

the concept, the definition and the nomenclature of the BRDF as part of a

standardization process for the US-government [NRH+77, Eq. 9]. For the

definition see Equation 2.3.

Here we do not want to give an exhaustive overview over existing BRDFs

as this has been done before in many variations [MU12,NDM05] but we want

to highlight those techniques which are essential for the understanding of

the role of the BRDF for the rendering process and we want to introduce

1from Pushpins for Edit Propagation.
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Figure 2.3: The parameters of a BRDF.

the BRDF-model which is used in this thesis, namely the Ashikhmin-Shirley-

BRDF model.

BRDF A BRDF maps an incoming and an outgoing light direction onto a

reflectance probability density. Being reflectance distributions, BRDFs

are limited to the upper directional hemisphere.2 As the radiant flux

is part of the definition of the BRDF, it also depends on the radiation

parameters frequency, phase and polarization [NRH+77]. The frequency,

in the rendering process often represented by the colour channel, can of

course not be neglected. Phase and polarization will not be subject of this

thesis. And the materials will neither be fluorescing nor phosphorescent.

We concentrate on analytical, measured BRDFs, meaning, that an an-

alytical reflectance model has been optimized to fit a given set of re-

flectance measurements. We tested our algorithms also on tabulated

reflectance representations. But to describe those reflectance tables in

order to make them applicable for usage with a classifier it is necessary

to bring them into a comparable format like for example Rusinkiewicz-

parametrization [Rus98] which makes a resampling-step necessary and

2from Pushpins for Edit Propagation.
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to collect at least some elementary statistics.3 Investigations of this kind

are beyond the scope of this thesis.

The Torrance-Sparrow reflectance model To explain the phenomenon of

the off-specular peaks, Torrance and Sparrow published 1967 a reflectance

model for isotropically roughened surfaces [TS67]. The authors de-

scribe those surfaces as consisting of small randomly disposed mirror-like

facets [TS67, Page 1114].

Cook-Torrance model The microfacet-model, originally suggested by Tor-

rance and Sparrow in 1967, has been been further developed by Cook

and Torrance in 1981 [CT81]. The Cook-Torrance reflectance model is

strictly based on plausible physical assumptions.

ρ(ωi, ωo) =
FDG

π〈ωi,n〉〈ωo,n〉
(2.4)

with the Beckmann-distribution D [BS63], the Fresnel-term F [SC78]

and the geometric term G, which accounts for masking and shadowing.

Ward-model In his paper from 1992 [W+92], Ward presents an isotropic

and an anisotropic BRDF-model. Here we may confine to the isotropic

model, as this is the reflectance model first fitted by the linear light source

reflectometer (see subsection 2.2.3-SVBRDF acquisition) [GTHD03].

ρ(ωi, ωo) =
Rd

π
+Rs ·

1√
cos θi cos θo

·
exp

(
− tan2 δ

α2
s

)
4πα2

s

(2.5)

with the diffuse reflectance factor Rd, the specular reflectance factor Rs,

the specular roughness αs and the angle δ = ∠(n, ωi + ωo).

Ashikhmin Shirley reflectance model The Ashikhmin-Shirley model [AS00]

is a Phong-like model which additionally controls the eccentricity of the

3from Pushpins for Edit Propagation.
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specular lobe and is given by:

ρ(ωi, ωo)

=

√
(nx + 1)(ny + 1)

8π

〈n,h〉nx cos2 ϕ+ny sin2 ϕ

〈ωi,h〉max(〈ωi,n〉, 〈ωo,n〉)
·(Rs + (1−Rs)(1− 〈ωi,h〉)5)

+Rd(1−Rs)
28

23π

·

(
1−

(
1− 〈ωi,n〉

2

)5
)(

1−
(

1− 〈ωo,n〉
2

)5
)

(2.6)

for the incoming and outgoing directions ωi and ωo. The vector n is the

surface normal, h = (ωi + ωo)/||ωi + ωo|| and ϕ is the azimuth of h.

This model has four reflectance parameters: the wavelength dependent

diffuse and specular reflectance shares Rd and Rs and the surface rough-

ness along the x-axis nx and the surface roughness along the y-axis ny.

In the following, we will refer to Rd and Rs as the diffuse colour and the

specular colour . We will assume that those colours are RGB colours and

the term lightness will refer to the HSL description of the RGB-space.

We assume that the parameters are stored in rectangular maps.4

SVBRDF A spatially varying BRDF (SVBRDF ) S is a material where the

light exchange is described by a BRDF

S : A× Ωi × Ωo → R, (2.7)

where A is the spatial domain, i.e., the extent of a material, and Ωi,o

are the space of all (incident) lighting and (outgoing) viewing directions,

respectively. S(x, ωi, ωo) is the amount of light scattered at point x from

direction ωi into direction ωo. The unit of the SVBRDF is [sr−1].

4from Pushpins for Edit Propagation.
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2.2.2 Bidirectional Texture Functions

Our focus lies on advanced representations of spatially varying material ap-

pearance, and in particular the bidirectional texture function (BTF), which

is capable of capturing a wide range of optical phenomena including nonlocal

shading and volumetric effects5 produced by mesostructural material compo-

nents.

The BTF is a digital representation of an opaque real-world material surface

with the same domain and codomain as the SVBRDF (see equations 2.7 and

2.8). Dana sees the difference between BRDF and BTF in the scaling of the

reflecting surface [DvGNK97]: where BRDFs see surfaces from a scale which

is that coarse that texturing and local variations cannot be resolved by the

acquisition device, the BTF is capable of describing local surface variations

and texturing. That is the BTF holds a texture to each light-view-direction of

a given sampling of the bidirectional domain.

So the BTF is a high-dimensional collection of sampled data and there-

fore not easily factorized into meaningful components like colour, reflectance,

texture and mesostructure. Consequently, the development of decompositions

and user interfaces for the editing of such material models is still an active

field of research. 6

BTF compression

In this subsection, we will describe a BTF-compression scheme which may be

found in [KMBK03] (full matrix factorization) and in [Mül09] and is called

decorrelated full matrix factorization (DFMF ). We will make use of it in

Chapter 4.

The BTF B maps each surface position and each light and viewing direction

5from Appearance Bending: A Perceptual Editing Paradigm for Data-Driven Material
Models.

6from Appearance Bending: A Perceptual Editing Paradigm for Data-Driven Material
Models.
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Figure 2.4: Directional sampling of the camera-dome. The light-sampling and
the view-sampling differ only slightly (see Figure 2.6). From [FH09].

and each colour-channel to a reflectance value:

B : X × Y × ΦΩi ×ΘΩi × ΦΩo ×ΘΩo × C → R, (2.8)

where X and Y are the spatial dimensions of the texture-function, Ωi and Ωo

are the incoming and outgoing light-directions, C is the colour-domain with

dimension K and R is the reflectance. ΘΩ describes the domain of the elevation

angle and ΦΩ the domain of the azimuth angle. Equation 2.8 describes the

same functional domain and codomain as Equation 2.7. As the support is a

discrete sampling, we may interprete the BTF as a stack of textures, which we

enumerate over all captured bidirections (ϕi, θi, ϕo, θo)m ∈ (ΦΩi ×ΘΩi ×ΦΩo ×
ΘΩo) and we may also enumerate the Pixel (x, y)n ∈ X × Y and obtain:

Bk((x, y)m, (ϕi, θi, ϕo, θo)n) =: ρmnk. (2.9)

For a fixed colour-channel k, ρmnk is a matrix and we can apply a singular

value decomposition to every channel k of it:

ρmnk =
∑
i,j

UmikΣijkV
τ
jnk. (2.10)

The columns of the orthogonal base Umik are the eigen-textures , and the rows
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Figure 2.5: BTF-compression by the DFMF. The unwound, distorted and
radiometrically calibrated images from the different light-view combinations
are combined to a huge matrix. For the materials used in this thesis the
directional half-sphere has been sampled equally for lights and views. The
hemisphere sampling is illustrated in Figure 2.4.

of Cτ
ijk :=

∑
l

ΣilkV
τ
ljk are called eigen-apparent BRDF s or eigen-ABRDF s (see

Figure 2.5).

In the technical implementation of the BTF-acquisition device, described

below, the foreshortened material images are rectified against the normal di-

rection of the BTF.

In our setting, compression is reached by heuristically choosing a number

Nk and croping all base vectors with index greater Nk. We use the YUV-colour

space and stored N′Y ′ = 100 and N′U ′ = N′V ′ = 51 components.

DFMF-compressed data may be decompressed by a simple linear combina-

tion of eigen-textures. Let us say we have a linear transformation which we

want to apply to each texture, then, by linearity of the decompression step,

it is possible to apply it to the eigen-textures before the decompression step,
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Figure 2.6: The camera dome. From [MK05].

instead. A BTF in our camera-dome-Sampling consists of about 22000 tex-

tures [MMS+05], whereas the base consists of 50 to 100 eigen-textures. It

follows that applying the linear transformation to the eigen-base reduces the

computational costs to less than half a percent of the original cost (compare

Chapter 4).

2.2.3 Acquisition of Measured Materials

Here we want to describe two material acquisition devices. All materials we

use in this thesis have been measured with those devices. The first device is

the camera-dome from the university of Bonn to record BTFs and the second

device is the linear light scanner in the version introduced by Meseth et al.

[MHW+12] to record Ashikhmin-Shirley-SVBRDFs (see Subsection 2.2.1).

BTF acquistion

As described in the last subsection (Subsection 2.2.2) BTFs may be seen

as pure texture stack. For the acquisition of this texture stack Dana et

al. [DvGNK97] suggest to use a robot arm and a video camera. To allow

for a faster acquisition of the BTF the university of Bonn developed an BTF-

acquisition apparatus where the whole viewing hemisphere is registered in a

single pass. This apparatus (Figure 2.6) has been suggested in [MMS+05] and
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presented in [MBK05]. In this camera-dome, 151 cameras are assembled to a

fixed sampling of the viewing hemisphere. As the light sources of this camera

dome are the build-in flash lights of the cameras, the spherical view-sampling

does differ only slightly from the light-sampling and there are exactly 151 light-

directions. As the full BTF contains textures to all light-viewing-direction

pairs, this sums up to 151x151=22801 textures.

All cameras are focussed onto a sample holder in the spherical centre of the

dome. The post processing is described in detail in [MBK05] and in [SSW+14].

For a motivation of the post processing see also Subsection ??.

SVBRDF acquistion

There is a vast corpus of literature on BRDF-acquisition. We may distinguish

between approaches to estimate one bidirectional reflectance distribution as

done in the MERL database [MPBM03] or spatially varying bidirectional re-

flectance distributions. Here we want to present only the linear light scanner,

presented in 2003 by Gardner et al. [GTHD03] and extended to anisotropic

materials in 2012 by [MHW+12] et al. as the input data used in Chapter 3 have

been acquired with this linear light source device. For further approaches to

SVBRDF-acquisition, see Paragraph 2.3.2-Analytical Reflectance Models.

With his new anisotropic BRDF model, Ward suggested to use a specialized

Gonioreflectometer to measure the BRDF-parameters. This approach has a

couple of drawbacks:

1. The acquisition process is lengthy,

2. the equipment is relative expensive,

3. only one BRDF is measured.

Gardner et al. suggest a reflectometry apparatus made from of-the-shelf com-

ponents, like LEGO©, for about 1000,- $ [GTHD03]: a neon bulb, the linear

light source, is moved over a material probe while a fixed installed camera

measures the reflected radiance. The reflectance data is fitted to the isotropic
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ward model (Paragraph 2.2.1-Ward model, [W+92]). So the light scanner

has to estimate the surface normal n, the diffuse reflectance Rd, the specular

reflectance Rs and the specular roughness αs.

By the movement of the light source we obtain in each point of the material

surface a sampling of the bidirectional domain. Additionally the linear light

scanner estimates the surface displacement by the use of a laser stripe, parallel

to the linear light source. The following restriction: ∠(ωi, ωo) ≈ π for this

construction, so it cannot measure anisotropy in one pass. As the camera

does not move, camera-pixels correspond directly with surface-elements of the

measured material so BRDF-parameter estimation may be done on a pixel-wise

base.

Meseth et al. improve this apparatus by placing the camera in the zenith

above the material probe [MHW+12]. They ensure that the important angles

directly under the light bulb are visible to the camera by the use of a half-

silvered glass construction. Specular and diffuse reflectance components are

isolated by the use of polarization filters. The system is used in two orthogonal

directions in order to estimate the parameters of the anisotropic Ashikhmin-

Shirley reflectance model (see Paragraph 2.2.1-Ashikhmin-Shirley model,

[AS00]).

2.3 Material Editing

The goal of this dissertation is to find new ways of editing measured materials.

Before we give an overview over former and current developments in this field,

we want to introduce three criteria to assess image manipulations. Those

criteria are based on our understanding of the term realism (see Subsection

2.1.5).
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Figure 2.7: From [GTHD03]. Above the photography you can see a sketch of
the linear light scanning device introduced by Gardner et al. The linear light
source (LLS) is a white neon tube. It moves horizontally across the material
probe with a fixed height h. To each pixel (u, v) there is a time 1. when the
light bulb is exactly above the pixel (td) and 2. when the light bulb is at
the mirror angle (θr) to the surface with respect to the camera (tm). The grey
curve shows the amount of light reflected by point P as function of the position
of the LLS. The lower image shows a photo of the device while scanning an old
book page. One can see the diffuse reflection and the laser-stripe to estimate
the geometry.
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2.3.1 Plausible, Predictable and Meaningful Editing Op-

erations

We will call a manipulation plausible if we may easily produce realistic ren-

derings from it. An edit is predictable if a user has an idea of the effect. In

particular adequate scaling of parameters of analytical BRDFs may be consid-

ered as predictable. We will call a material-manipulation meaningful if it may

be linked to a real world attribute.

2.3.2 State of Research

Editing of realistic material surfaces has an outstanding role in visualisation,

in advertisement and in film making. This has a couple of different reasons:

1. Measuring reflectance properties in good quality is difficult and costly. So

given a measured material, it is desirable to change some of the materials

properties and keep others. Let us for example assume we measured a

blue wool. We do not want to measure a green wool but would like to

simply change the colour.

2. A director of a cine-film might wish to use materials which look plausible

but simply do not exist like e.g. fantastic stones or metals.

3. A new material based on existing material-probes is planned on a com-

puter. For example a furniture manufacturer wants to try a new leather

embossment.

Here we want to summarize the state of research in general. Publications which

are relevant for only one chapter will be referenced in the according chapter.

In addition we give in each chapter a handful of tightly related publications

to localize the research work of the chapter in the current state of the art. We

want to divide the state of research into four paragraphs:
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Editing on base of analytical reflectance models and general ap-

proaches to material editing. This is perhaps the area with the most

previous work. Particularly Chapter 3 belongs here.

Editing of tabulated reflectance data. For our research this is the

most important case because the acquisition and processing of BTFs

are among the core capabilities of our research group.

Appearance Space Transformations. Recently transformations of the

appearance space got much attention because neural network-based ap-

pearance transfer techniques allow for probability based descriptions of

the appearance space. This terminology is misleading in so far as there

does not exist a fixed definition of appearance space. In Chapter 5 we

will introduce an own definition of such a space.

Edge aware imaging. Edge aware imaging has a special meaning for ma-

terial editing because edges are extremely simple non-trivial features of

textures. In Chapter 5 we learn an edge aware imaging operator.

Analytical reflectance models

In analytical reflectance models we have meaningful local parameters at hand

like diffuse reflectance color or surface normal. The majority of prior work

approximates material appearance in terms of analytical models. Those ana-

lytical models are mostly based on spatially varying BRDFs (SVBRDFs) that

are associated with the geometry of the object surface. Following the pio-

neering work by Lensch et al. [LK01] to recover SVBRDFs in a practical way

from a small number of input images, other researchers went on fitting similar

models to BTF data [RK09, WDR11, WDR11, GTHD03, MHW+12]. There is

a growing number of learning based algorithms to find SVBRDF parametriza-

tions which represent real life materials based on a small number of photog-

raphys [AWL+15, AAL16]. Since SVBRDFs readily separate reflectance from

geometry, they lend themselves to a number of editing techniques. Among
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the approaches proposed are the transfer of reflectance functions from one

measured material to another [ATDP11], the use of one-dimensional nonlinear

appearance manifolds to simulate aging processes [WTL+06], as well as tech-

niques using graph-based [PL07] and low-rank representations [AP08]. These

are the works that we consider most representative for a larger body of prior

work in SVBRDF fitting and editing. Due to the underlying model assump-

tions, all of them share similar problems with materials with a complex sur-

face structure that may not adequately be represented by SVBRDFs. In 2015

Schmidt et al. [SPN+15] published a state of the art report for editing of Ap-

pearance, Lighting, and Material. The focus of this paper is on combined

manipulation of illumination and material properties with the target to obtain

a good final rendering result. 7

Table-based reflectance models

According to [DvGNK97], interpolated reflectance data may directly be used

for rendering materials. Since the BTF describes material reflectance by its

spatial and angular variation alike, it can be approached either as a collection of

spatially varying angular reflectance distributions, or as a collection of textures

that vary by angle.

Among the image based approaches, there is the work of Pellacini and

Lawrence, who suggested, to use an k-nearest neighbour graph to construct

a sparse adjacency matrix [PL07]. An and Pellacini made another step in

this direction with AppProp [AP08], which has been extended to tabulated

reflectance data by Xu et al. [XWT+09]. Müller et al. [MSK07] presented a

texture synthesis approach for BTFs that guides the placement of local features

using a given mesostructure constraint. Ruiters et al. present an interpolation

scheme which is based on a separation of the BTF into a heightmap and a par-

allax compensated BTF [RSK13]. More recent publications [HLLC17] concen-

trate on the usability of the editing scheme. An algorithm that is particularly

7from Appearance Bending: A Perceptual Editing Paradigm for Data-Driven Material
Models.
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suited for repetitive textures was introduced by Haindl and Hatka [HH05] with

their BTF Roller.

Haindl and Havĺıček [HH17] suggest a stoachastic process based BTF-model.

For the compression of BTFs (see Paragraph 2.2.2-BTF compression), we

refer the reader to the exhaustive state-of-the-art survey by Filip and Haindl

[FH09].

The perspective on the BTF as stack of ABRDFs has been taken up by

Kautz et al. [KBD07] who showed that transferring operators from picture

editing to the spatial or the angular domain of a BTF may bring reasonable

results.8

Appearance Space transformations

A strong impulse into the direction of appearance transfer had been given by

AppWarp, an algorithm introduced by An et al. in 2011 [ATDP11]. AppWarp

is an algorithm to retarget measured materials, meaning to use the spatial

pattern of one material and the set of reflectance distributions of another

material. This is done by an appearance space warping. Here the author

means by appearance space the span of the BRDF-parameters.

Wang et al. suggest to use of one-dimensional nonlinear appearance mani-

folds to simulate aging processes [WTL+06].

Appearance transfer has recently gathered increasing attention because neu-

ral networks allow to estimate reflectance properties of one indicated and

masked object and to transfer it to another indicated and masked object in

one step [LCY+17].

Yamada et al. investigated how properties like roughness and glossiness are

represented by wood eigen-textures [YHH17], that is they tried to tie attributes

like glossiness to a particular eigen-texture in the principal component analysis

of a stack of wood textures. A similar but more general approach has been

presented by Serrano et al. [SGM+16]. Serrano et al. calculated a PCA on a

8from Appearance Bending: A Perceptual Editing Paradigm for Data-Driven Material
Models.
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base for MERL-formated [MPBM03] BRDFs. Based on user-studies they learn

functionals from the first five components of this PCA-based representation of

given materials into four different attributes. Editing may be done by solving

a minimization problem to find the coefficients for a given desired attribute-

value. Malpica et al. [MBG+17] refine this approach by using two different

PCA-representations.

Zsolnai-Fehér et al. published a system which learns the user preferences for

materials directly and translates these learned preferences into a parametriza-

tion of a principled shader [ZFWW18].

Edge aware imaging

Edge aware imaging has been subject of intensive study during the last years.

Bilateral filters [TM98, PKT+09] are among the most popular tools for edge-

aware image processing. One recent approach gives a linear approximation of

a bilateral filter [NPC17]. He et al. suggest to improve the edge-preservation

property of filters by the use of a guidance map [HST13]. Paris et al. use

Laplacian Pyramids for strengthening or weakening edges in images: they

argue, that edges are a jump in not only one level in the laplacian pyramid

but merely in all levels [PHK11]. Laparra et al. use those insides to build a

system for perceptually optimized image rendering [LBBS17]. Fattal [Fat09]

detects edges by the use of second generation wavelets. Using Gabor-filters for

edge detection has a long tradition, e.g. [MNR92]. 9

2.4 Analysis of the Frequency Spectrum

Exploration of the frequency domain in order to allow for plausible material

manipulations is the core topic of this thesis. Here we want to introduce inte-

gral transforms and filter kernels suitable to investigate the frequency domain.

Note that the term frequency domain is not unambiguous. To distinguish

9from Linear Subspaces of the Appearance Space.
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between functions before and after a transformation step, we will refer to the

function space as the time-domain for functions in R→ K or the space-domain

for functions in R2 → K and the frequency domain is the image of all allowed

functions under the given frequency or scaling transformation. Note that this

distinction may become a little bit awkward for the description of processing

pipelines which concatenate more than one frequency- or scaling-analysis-step

without recurring into the original modelling context like for example the hi-

erarchical analysis of signals in neural networks.

2.4.1 The Fourier Transform

Joseph Fourier published the Theorie analytique de la chaleur after significant

struggle in 1822 [Fou22]. Given a real-valued function f , we decompose f into

an even and an odd part:

fe(x) := (f(x) + f(−x))/2 ∧ fo(x) := (f(x)− f(−x))/2. (2.11)

Fourier delivers - with slightly different notation - the following reconstruc-

tion equations for fe and fo [Fou22, Paragraph 361 - Chap.IX Sect.I]:

fo(x) =
2

π

∫ ∞
0

∫ ∞
−∞

f(a) sin(qa)da sin(qx)dq. (2.12)

fe(x) =
2

π

∫ ∞
0

∫ ∞
−∞

f(a) cos(qa)da cos(qx)dq. (2.13)

Note that ∫ ∞
−∞

f(a) sin(qa)da = 2

∫ ∞
0

fo(a) sin(qa)da.

The Fourier transform in modern notation Today we use the Fourier

transform in the following form: for

f ∈ L1(Rn) (2.14)
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f̂(ν) := Ff(ν) :=
1

(2π)n/2

∫ ∞
−∞

f(t)e−i〈ν,t〉dt (2.15)

where the integral-operator F is realized by a Lebesgue-integral.

The Fourier inversion theorem states, that if fandf̂ ∈ L1(Rn), then:

ˆ̂
f(x) = f(−x). (2.16)

This motivates the definition of the Fourier-inverse (F−1):

F−1f̂(ν) =
1

(2π)n/2

∫ ∞
−∞

f̂(ν)ei〈ν,t〉dν. (2.17)

The convolution between f and k: The convolution between two functions

f, k : Rd → K is defined by

(f ∗ k)(x) :=

∫
Rn
f(τ)k(x− τ)dτ. (2.18)

and is again a function f ∗k over Rd if the integral is well-defined. The function

k is often referred to as the convolution kernel.

The convolution theorem The convolution theorem states a very impor-

tant connection between the convolution in the time domain and point-wise

multiplication in the frequency domain:

F(f ∗ k)(ν) = Ff(ν) · Fg(ν) (2.19)

For two matrices F and G we obtain:

(F ∗G)ij =
∑
kl

FklGi−k,j−l. (2.20)

In this thesis, higher mode tensors, like coloured images, are convolved matrix

wise along the first two dimensions.
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An image channel is a matrix. As there are also eigen-image channels with

negative values, we will not restrict the value domain to a limited positive

range. An image is an ordered set of image channels or alternatively a mode-

three tensor. In the course of this thesis, the height will be the first dimension.

Our use of the word texture corresponds to the TextureImage-class of the pbrt-

project [PH04]. Operations on textures are identified with the corresponding

operations on the image matrix. Depending on the context, we will refer to an

image-channel as two dimensional signal or as discrete function.

The discrete Fourier transform

Trigonometric series had been known before Fouriers’ Theory of Heat. Fourier

developed his integral-transform from those trigonometric series. Altogether

we have four different kinds of Fourier-transformations:

1. Aperiodic continuous signal, continuous, aperiodic spectrum

2. Periodic continuous signal, discrete aperiodic spectrum

3. Aperiodic discrete signal, continuous periodic spectrum

4. Periodic discrete signal, discrete periodic spectrum

The classical Fourier-series are of the second type and the Fourier transform

(Equation 2.15) is of the first type. In this thesis, we deal with discretised

data, meaning that both, the time-signal as well as the frequency spectrum

are discrete.

The one-dimensional discrete Fourier transform

For a given sequence (ak)N ∈ Cn, the discrete Fourier transform (DFT ) is

defined as:

Fak =
N−1∑
n=0

ane
− 2πink

N . (2.21)
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where we used the same symbol F for the Fourier operator for the discrete case

as we have used in the continuous case. The inverse transform is then

F−1an =
1

N

N−1∑
n=0

ake
2πink
N . (2.22)

This definition is in accordance with the DFT-implementation of Matlab© and

the fftw.

The two-dimensional Fourier transform

The discrete two-dimensional Fourier transform is given by:

Fak,l =
M−1∑
m=0

N−1∑
n=0

am,ne
−2iπ(mkM +nl

N ) (2.23)

The fast Fourier transform

The fast Fourier transform is an important algorithm because it reduces the

computational complexity of the discrete Fourier transform from O(n2) to op-

timally O(n log n). This is particularly interesting in combination with the

convolution theorem: it is possible, to convolve two images with edge length

ne in n2
e log n2

e instead of n4
e steps. This is possible because of the periodic

character of the trigonometric functions combined with the regularity of the

points of support of the discretization: the Cooley and Tukey algorithm de-

composes the Fourier transform into a Fourier transform of the even indexed

elements and a Fourier transform of the odd indexed elements of the sequence.

Fak =
N−1∑
n=0

ane
− 2πink

N =

N/(2−1)∑
m=0

a2me
− 2πimk

N/2 +

N/(2−1)∑
m=0

a2m+1e
− 2πimk

N/2

 e−
2πik
N .

(2.24)

By recursively applying this rule and counting steps, we obtain the com-

plexity of O(n log n).



42 Chapter 2. Preliminaries

2.4.2 The Wavelet Transform

This thesis is about image transformations. When we talk about an edit, we

mean a set of scalable image transformations, which contains at the very least

the identity. So, what we want to do is, we want to change to a frequency

description of a given texture, do appropriate manipulations and change back

to the spatial domain. Convolution with a Gabor-kernel produces a frequency

description of a given image but we cannot recover the image from the filter

response. One way to obtain a localized frequency description is, to define a

wavelet transform.

Definition A function ψ ∈ L2(R) is admissible if:

∫ ∞
−∞

|ψ̂(ν)|2

|ν|
dν <∞. (2.25)

It follows:

ψ̂(0) = 0, (2.26)

and ∫ ∞
−∞

ψ(ν)dν = 0. (2.27)

ψ may be interpreted as mother wavelet. From this mother wavelet we may

derive a family of wavelets:

ψs,r(t) =
1√
s
· ψ
(
t− r
s

)
.

Define

Wfs,r := 〈f, ψs,r〉 =

∫ ∞
−∞

f(t)
1√
s
ψ

(
t− r
s

)
dt. (2.28)
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Figure 2.8: Comparison between scale and frequency, based on the result of
the Matlab function scal2frq.

By ψ we denote the complex conjugate of ψ. If {ψs,r : s, r ∈ Z} is a Hilbert

Base, we call ψ an orthonormal wavelet. With ψs,r being a Hilbert Base the

following formula holds:

∀f : f =
∑
s,r

〈f, ψs,r〉ψs,r. (2.29)

Scale and Frequency

While it is not problematic from a purely heuristic point of view to speak of the

frequency of a wavelet, we have to point out, that the term frequency is usually

reserved for correlation with the trigonometric functions. The choice of the

scaling-factor s has an obvious influence on the granularity of the structure

which ψs,r correlates with. Here we speak of the scale of the wavelet. In

general, there is no canonical mapping between scale and frequency. But

the pseudo-frequency of a wavelet may be declared as the frequency of the

appropriately translated and scaled sine-wave best fitting the wavelet in the

interval [−π, π].

The Discrete Wavelet Transform

From equation 2.29 it follows, that it is in principle possible, to manipulate

certain scales from a wavelet analysis and reconstruct the parameter map sub-

sequently, meaning that wavelets allow in principle manipulations confined

more or less exactly to a certain frequency band. Let us now assume that:
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m := a
−j∈Z
0 and n := b0k∈Z for some fixed values a0 and b0. We then consider

the wavelet at position n and scale m:

1√
aj0

ψ(a−j0 x− b0k). (2.30)

We will discretize the wavelet transform in two different contexts:

1. For the definition of orthogonal wavelet families in order to apply the fast

wavelet transform as substitute for the Fourier transform. The wavelet

transform has the advantage that it allows localisation of the image ma-

nipulations. In this setting a0 = 2 and b0 = 1.

2. For the Gabor-wavelets in order to have a multi-scale analysis based on

a filtering system with high similarities to the receptive fields profiles in

the visual cortex.

In the following paragraphs we will collect the theoretical principles of those

two points.

Multi Resolution Analysis

A multi resolution analysis [Mal89] is a sequence of nested, closed subspaces

of L2(R):

{0} · · · ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 . . . L
2(R), (2.31)⋃

j∈Z

Vj = L2(R), (2.32)

⋂
j∈Z

Vj = {0}, (2.33)

f ∈ Vj ⇐⇒ f(2j·) ∈ V0 and (2.34)

f ∈ V0 =⇒ f(· − k) ∈ V0. (2.35)

Equation 2.34 assures, that all spaces are scaled versions of V0. We require,

that there is a function φ, such that {φ0k}k∈Z is a Riesz-base of V0:
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V0 = span({φ0k}k∈Z), (2.36)

with φjk(x) :=
√

2−jφ(2−jx− k). Then it follows that

Vj = span({φjk}jk∈Z×Z)

and there are hk, such that:

φ(x) =
√

2
∑
k∈Z

hkφ(2x− k). (2.37)

Given such a sequence of closed subspaces, then there exists an orthonormal

wavelet basis {ψjk} of the complement Wj : Vj−1 = Vj ⊕Wj, Vj ⊥ Wj such

that:

∀f ∈ L2(R) Pj−1f = Pjf +
∑
k∈Z

〈f, ψjk〉ψjk, (2.38)

with Pj an orthogonal projection on Vj [Dau93]. Wj is called detail space. It

follows that {ψjk} is an orthonormal basis of L2(R). The wavelet may be

derived from the scaling-coefficients hk (for further information see [LMR94]):

gk = (−1)kh1−k, (2.39)

ψ(x) =
√

2
∑
k∈Z

gkφ(2x− k). (2.40)

And ψj,k(x) :=
√

2
−j
ψ(2−jx− k).

The Fast Wavelet Transform

From the scaling-function and the wavelet function, we derive a discrete low-
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pass filter function and a discrete high pass filter function. Define:

dj,k = 〈f, ψj,k〉, dj := {dj,k}k∈Z (2.41)

sj,k = 〈f, φj,k〉, sj := {sj,k}k∈Z (2.42)

then

dj,k = 〈f, ψj,k〉 =
∑
i∈Z

gi〈f, φj−1,2k−i〉 =
∑
i∈Z

gi−2ksj−1,i (2.43)

sj,k = 〈f, φj,k〉 =
∑
i∈Z

hi〈f, φj−1,2k−i〉 =
∑
i∈Z

hi−2ksj−1,i (2.44)

Note that we do not need the function f itself, anymore, but may apply the

algorithm recursively to the starting sequence s0k := 〈f, φ0k〉. This interprets

the discrete signal s0 as the low pass filtered version of s signal with a higher

resolution. Finally we define the linear filters H,G : l2(Z)→ l2(Z) by:

(Hs)k :=
∑
i∈Z

hi−2ksi (2.45)

(Gs)k :=
∑
i∈Z

gi−2ksi (2.46)

Note that for a finite signal s ∈ Rm every filtering step reduces the number of

coefficients by the factor of two. This leads to the characteristic downsampling

scheme (Figure 2.9).

The synthesis works exactly the opposite but with zero-padding in the up-

sampling step.

Extension to images

For the two-dimensional case we may use the same argumentation as in the

one-dimensional case. It is assumed that both, the scaling function Ψ and the

wavelet function Φ, are separable: Ψ(x, y) = ψ(x)ψ(y) and Φ(x, y) = φ(x)φ(y).



2.4. Analysis of the Frequency Spectrum 47

Figure 2.9: The downsampling scheme of the fast wavelet transform. Subsam-
pling (↓ 2) is part of the definition of H and G.

This results in the known coefficient scheme (see Figure 2.10):

sj,(m,n) = 〈f, φj,mφj,n〉 (2.47)

d1
j,(m,n) = 〈f, ψj,mψj,n〉 (2.48)

d2
j,(m,n) = 〈f, φj,mψj,n〉 (2.49)

d3
j,(m,n) = 〈f, ψj,mφj,n〉 (2.50)

with (n,m) ∈ Z× Z.

Daubechies Wavelets

In her work, Ten Lectures on Wavelets, [Dau92], Ingrid Daubechies presents

us with her famous orthogonal wavelet family. Daubechies-wavelets are char-

acterized by vanishing moments and compact support.

The wavelet function ψ has A vanishing moments means that for every

polynom p(x) =
∑

n∈N<A
anx

n:∫ ∞
−∞

p(t)ψ(t)dt = 0, (2.51)

meaning that all polynoms with degree less than A may be completely repre-
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Figure 2.10: The downsampling scheme for two dimensional wavelets.

sented by the coefficients of the scaling filter.

This equation holds also for the discrete case. So with an increasing num-

ber of vanishing moments the wavelets are capable of representing polynomial

signals with increasing degree. This is a nice feature for compression but we

are merely interested in the frequency response. The length of the non-zero

wavelet sequence is twice the number of vanishing moments. In fact the fre-

quency response of ψ and φ approximates with increasing number of vanishing

moments increasingly a bandpass and a low-pass filter [LMR94, Lemma 2.4.31].

So by choosing an appropriate number of vanishing moments, we may apply

a band-pass filter by raising or reducing the coefficients of the corresponding

wavelet-coefficient-octave (see Figure 2.10).

We obtain the two dimensional daubechies filter db6 with 6 vanishing mo-

ments, by rotating the one-dimensional filters (see Figure 2.11) around the

z-axis (see Figure 2.12).

The Gabor wavelet

As explained in the last section, the Fourier-integral considers phenomena in

an infinite interval, sub specie aeternitatis, meaning that ”changing frequency”

becomes a contradiction in terms. To circumvent this problem, Dennis Ga-
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Figure 2.11: Scaling and wavelet function for Daubechies db6 wavelet. The
right plot shows the frequency response, which approximates a low-pass and a
band-pass filter.

Figure 2.12: Frequency response of the rotated scaling and wavelet function
for Daubechies db6 wavelet.

bor introduces Gabor functions as ”elementary signals” which are constructed

as harmonic oscillations modulated by a ”probability pulse” in time [Gab46].

Those elementary signals have a limited life-time and allow therefore to com-

pose signals with changing frequencies.

The uncertainty principle

Based on the results of quantum mechanics, Dennis Gabor develops Gabor

signals γ(t) to describe atomic information portions in signal-processing. To

be more precise, Gabor signals are the only signals s(t) for which the inequality∣∣∣∣∫ ∞
−∞

ts(t)dt

∣∣∣∣ ∣∣∣∣∫ ∞
−∞

νFs(ν)dν

∣∣∣∣ ≥ 1

2
||s||22 (2.52)

is an equality. It is hardly imaginable to investigate properties of local-

ized frequency- or scaling-analysis without mentioning the uncertainty princi-

ple [Küp24, Hei27, Nyq24], first published by Karl Küpfmüller in 1924. And

there has been considerable work during the 80s and 90s on mathematical prop-
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erties of filter responses in visual cortex (see e.g. [Dau85]), which also lead to a

vivid academic debate. [SW90,Yan92]. While interesting from a general point

of view, those properties are only in so far relevant for our work as the recep-

tive fields recorded from neurons have similarities with two-dimensional Gabor

filters. Whether the uncertainty principle plays a role in the development of

those receptive fields is to our knowledge an unanswered question.

Certainly the most prominent adaptation of the Gabor functions from one

dimension to two dimensions stems from John Daugman [Dau85] and has been

published in 1985. Daugman introduces a two dimensional pendant of Gabors

signal atoms and shows that those two dimensional Gabor functions also fulfil

an uncertainty principle. He fits those functions to empirically gained response

rates of the retinal receptive fields from cats striate cortex. In other words:

two dimensional Gabor functions have explicitly been developed to describe

the cortical neural response to optical stimuli of the retina. This is exactly the

context we use them in here.

The one dimensional Gauss-function

The probability pulse, mentioned by Gabor, is a Gauss-function:

Gσ,µ(t) =
1√
2πσ

e−
1
2( t−µσ )

2

(2.53)

with the mean µ and the standard deviation σ.

The one-dimensional Gabor filter

According to [Gab46, Sec. 5, eq. 1.27], we declare the one dimensional Gabor

base function as the product of a harmonic oscillation and a probability pulse

in form of a Gaussian. The Gabor base function is the product of a wave-

function, called carrier , and a Gaussian envelope:

γσ,µ,ν,β(t) =
1√
2πσ

e−
1
2( t−µσ )

2

ei(2πνt+β) (2.54)



2.4. Analysis of the Frequency Spectrum 51

with the frequency ν and the phase angle β.

The two-dimensional Gaussian filter

It is convenient, to introduce the two dimensional filter-functions by starting

with a transformation of the euclidean plane:

Rϕ ◦ Tp(x, y) =

(
cosϕ − sinϕ

sinϕ cosϕ

)(
x− px
y − py

)
(2.55)

with the point p :=
(
px
py

)
and the rotation angle ϕ. We define the local

coordinates (u, v):

(u
v

)
=

(
(x− px) cosϕ− (y − py) sinϕ

(x− px) sinϕ+ (y − py) cosϕ

)
. (2.56)

To get an eccentric gaussian filter, we multiply two gaussian filters with dif-

ferent standard deviations:

Gσu,σv =
1

2πσuσv
e
− 1

2

(
( u
σu

)
2
+( v

σv
)
2
)
. (2.57)

We will use the symbol G for the discretized filter kernel.

The two-dimensional Gabor filter

Then we obtain for the two dimensional Gabor filter:

γν,σu,σv ,β(u, v) =
1

2πσuσv
e
− 1

2

(
( u
σu

)
2
+( v

σv
)
2
)
ei(2πνu+β). (2.58)

Note that we assumed that the wave vector of the carrier is parallel to the

u-axis.

Daugman derived the two-dimensional Gabor filter function by merging his

own work [Dau80], where he introduced two dimensional response functions

to model the perceptive field profiles, with the work of Marcelja [Mar80], who

used one-dimensional Gabor filter functions to describe the perceptive field.
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Two dimensional Gabor Wavelets

It is possible, to use a Gabor-filter function as mother wavelet. Tai Sing Lee

presented an approach in 1996 by using the mother wavelet:

ψγ(x, y) =
1√
2π
e−

1
8(4x2+y2) ·

[
eiκx − e−

κ2

2

]
(2.59)

where the admissibility is reached by subtracting the mean e−
κ2

2 from the wave

function [Lee96]. κ is a non-linear function of the half-amplitude bandwidth.

Note that rotations and translations are part of the parameter-set of his wavelet

frame and are therefore no part of the mother-wavelet definition. It is yet not

possible, to construct an orthogonal (equation 2.29) Gabor wavelet. But we

may reconstruct an image from a Gabor-analysis, if the analysing function

system forms a tight frame. A frame is a family of functions ψP , so that there

exist two constants, the frame bounds, 0 < A ≤ B < ∞ and the following

formula holds:

∀f : A||f ||2 ≤
∑
i∈I

|〈f, ψi〉|2 ≤ B||f ||2. (2.60)

If the frame bounds A and B are close to each other, then:

∀f : f ≈ 2

A+B

∑
i∈I

〈ψi, f〉ψi, (2.61)

in which case we call the frame a tight frame.

Note that we may neither make use of the performance gain, provided by a

multiscale analysis nor can we profit from the storage scheme, available from

the downsampling step (see figures 2.9, 2.10). Gabor wavelets are resource-

hungry.
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2.5 Systems

Experiments have been done on three different architectures

ID Name # cpu CPU clock rate RAM

(kernel/threads) [GH] [GB]

A i5-2500 4/4 3.3 8

B Pentium Dual Core E6600 4/4 3.066 8

C i7-4770 4/8 3.4 8
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CHAPTER 3

An Application of the Convolution Theorem

In this chapter we want to present an approach to segregating user indicated

editable foreground patterns against the uneditable background in measured

SVRBDF-materials bearing at least one near regular textured channel. The

content of this chapter is based on a peer-reviewed publication

Marlon Mylo, and Reinhard Klein. Pushpins for edit propagation. In In-

ternational Conference on Computer Graphics, Visualization and Com-

puter Vision, volume 25 of WSCG proceedings, pages 143 – 152, [MK17].

[MK17]).

Figure 3.1: Pushpins for edit propagation.

All self-citations in the current chapter refer to this publication. Our prob-

lem is closely related to the matting problem where we seek to find an opacity

55
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Figure 3.2: Given a near regular textured SVBRDF-material (1) and a stroke
input (2). Our algorithm produces reliably an editing mask (3-mask) so that
edits can be confined to the foreground material (3-edit).

value α so that the colour of each pixel C may be represented as convex-

combination of a foreground colour F and a background colour B:

C = αF + (1− α)B (3.1)

but in our context, α should be merely interpreted as share of the texel surface

area. The presented workflow contains an application of a convolution based

technique, we call pushpins . While the whole workflow is new, our focus lies on

the development of the pushpins. Those pushpins make use of the frequency

spectrum in two different ways:

1. the localized frequency information is used to identify similar structure

(see 2.4.2) and

2. the convolution theorem in connection with the fast Fourier transform

enables fast identification of those structures (see ?? and 2.4.1).

So in this chapter we do not manipulate the spatial frequency spectrum itself

but use it as means to propagate a given stroke input. The contribution of

our approach to the realism of the final edit depends on an exact segregation

of foreground and background. In contrast to that the following two chapters
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(Chapter 4 and Chapter 5) present approaches, where the influence of manip-

ulations of the frequency spectrum on the visual perception are explored.

The technical description of pushpins will be given in Section 3.1. This

technical description is followed by an overview (Section 3.2) and a detailed

description of the single steps of the presented workflow (Section 3.3). Af-

terwards we will describe the test setup, the competing algorithms and the

results (Section 3.3.7). To obtain a deeper understanding of the mechanisms

of pushpins, we will suggest as future work to investigate our technique with

the focus on its applicability in the field of signal processing (Section 3.5).

In this chapter we present an approach to propagating a given bipartite

stroke input. This is closely related to the propagation algorithms of An

and Pellacini [PL07, AP08] and to the BTF-version of AppProp by Xu et

al. [XWT+09]. With Deepprop Endo et al. present a deep learning based

approach to edit propagation [EIKM16].

3.1 PushPins

Masking the frequency domain in order to isolate particular features is a com-

mon technique in signal processing but we did not find our approach in the

computer graphics literature so we will briefly introduce it. The target is, to

highlight all positions in a near regular textured image-channel T which have

a high similarity with a given patch P ⊂ T . It is important to note that we

want a seedless approach in order to be robust with respect to energy barriers

within the texture T .

Lets first assume that we are looking for a texture X with the same size as

P so that:

P ∗ X = δ

where δ models a spike in form of the dirac distribution. By convolution and
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application of the convolution theorem, we get:

FPFX = C (3.2)

for a constant texture C. F is the fourier-transform and F−1 its inverse. Thus,

a candidate for X is:

X = F−1

(
C

FP

)
(3.3)

so

P ∗ F−1

(
C

FP

)
= δ (3.4)

Here we presumed correct scaling and frequency sampling and point wise mul-

tiplication.

For numerical reasons it is advisable to suppress high frequencies. Thus

we substitute the dirac spike δ in the time-domain by a gaussian filter (see

subsection 2.4.2) G−σ with variance σ so that we obtain G−1/σπ2 as frequency

response instead of C and get:

P ∗ F−
1

(
G−1/σπ2

FP

)
= G−σ (3.5)

for the variance σ. Note that equation 3.5 becomes wrong, when P is not

continued by zeros, but by the surrounding pixels in the material. This can

be circumvented by calculating X not by convolution but by deconvolution as

the solution of

n−1∑
i=0,j=0

X (i, j)T (i0 − i, j0 − j) = Gσ(i0, j0) (3.6)

∀i0, j0 ∈ supp(P). n is the edgelength of P . As n is also the edge length of X ,

we have the same number of variables and equations.

We will call the solution X of equation 3.6 a pushpin and P(bn
2
c, bn

2
c) the

puncture of the pushpin. By nailhead we mean the support of P .

A pushpin, constructed in this way, does respond a bit stiff: tiles have to
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be very similar to the original tile to generate a detectable spike. This may

be relaxed massively by using a regularization: instead of solving the equation

system 3.6, we constrain this equation system by a spatial smoothing term

namely by the minimization of the discrete laplace operator (∆). This leads

to a minimization problem:

X = argminW(

n−1∑
i0=0,j0=0

||
n−1∑

i=0,j=0

W(i, j)T (i0 − i, j0 − j)− Gσ(i0, j0)||

+||
n−1∑

i=0,j=0

∆(k,l)(i,j)W(i, j)||

)
(3.7)

3.2 Overview

Given an SVBRDF, where at least some of the parameter channels bear a

roughly periodic pattern in the following sense: there exists a periodic pattern

which may be warped into those channel maps alongside of a small continuous

flow field. Here we mean by periodic pattern an image which may be generated

from a model tile and a concatenation of translations and rotations according

to an appropriate wallpaper group. The geometrical aspect of this definition

coincides with the definition of near regular textures (NRT ), given in [LLH04].

A specification of the term small is difficult and depends not only on the

settings of the algorithm but also on the texturizing of the SVBRDF, itself.

Further we assume, that a user has marked a foreground component F of

the SVBRDF and a background component B by the use of a stroke input SF
for the foreground and a stroke input SB for the background stroke. Than

we want to propagate this stroke input in a way that the periodic pattern is

respected and a texel with the index i and the average reflectance distribution

ρi obtains a value αi which decomposes ρi into a convex combination of a
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foreground BRDF ρF and a background BRDF ρB

ρi = αiρ
F
i + (1− αi)ρBi (3.8)

For the classical matting problem, the parameter α is described as opacity or

transparency. For our application, this interpretation is not good, as trans-

parency leads to complicated reflectance properties. α should be merely seen

as area share of the foreground reflectance distribution.

We define the foreground

F = {ti ∈ T |αi = 1}, (3.9)

the background

B = {ti ∈ T |αi = 0}, (3.10)

and the boundary

∂ = {ti ∈ T |0 < αi < 1}. (3.11)

Note that an important requirement for a successful classification step is:

SF ∩ B = SB ∩ F = ∅

In Figure 3.3 you can see an overview over our new algorithm. As input

we take a SVBRDF together with a stroke input. Than we apply in parallel a

segmentation via a support vector machine (Subsection 3.3.2) on the descrip-

tors described in Subsection 3.3.1 and estimate a lattice on the diffuse colour

(Subsection 3.3.3-3.3.5). Based on the detected lattice we extract a model tile

(Subsection 3.3.6), calculate an optical flow between this model tile (Subsec-

tion 3.3.7) and all other tiles and warp the tiled SVM-classification results into
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the model tile. This set of warped masks is used to compose an average tile-

mask which is then warped into the original tile positions (Subsection 3.3.8).

And finally the edit is applied (Subsection 3.3.9).

3.3 Detailed Description of the Workflow

We start on the left side of figure 3.3 with the classification step. Based on the

stroke input, we classify in this step all texels of the material probe, without

reference to the near regular structure, into foreground and background texels.

We tried several different descriptors and several different classifiers:

3.3.1 Descriptors

Additionally to the 8 reflectance parameters and the 2 parameters of the sur-

face normal provided by the Ashikhmin-Shirley model (Equation 2.6), we add

the filter responses of Gabor filters (Equation 2.58). We use 8 different orien-

tations and a wavelength of 3 texels. Gabor filters are applied to the volume-

channel of the diffuse color. This strengthens the influence of line features

on the classification result. We compare every texel on a patch with size 5x5

texel. So the dimension of our descriptor is altogether (8 + 2 + 8 ) x 5 x 5 =

450.

3.3.2 Classifier

We tried different state of the art classifiers: Support Vector Machines [CV95],

Deep Belief Networks [HOT06] and Convolutional Neural Networks [LBD+89].

The latter have been implemented in Theano for Python, for the SVM we used

the implementation by Chang [CL11].

Though we made good experiences with neural networks in the past, they

failed in the current scenario. According to a rule of thumb given in [Mas93],

the number of samples should be equal or more than the number of weights of
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Figure 3.3: Overview.
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Figure 3.4: The mask resulting from the SVM classification step.

the neural network. As stated in Paragraph 3.3.1, the descriptor of a texel has

the dimension of 450 which makes, dependent on the concrete topology, about

50,000 weights in a three layer neural network, whereas a stroke input provides

between 100 and 500 samples. So the networks have simply not enough data

for training. SVMs, in contrast, can be trained with a small amount of data

and are easy to apply and quickly trained. We use radial basis functions and

parameter estimation is done by grid-search and 5-fold cross-validation.

In Figure 3.4 you can see that the result of the svm classification step is

already a good segmentation. Still there are some noticeable misclassifications.

To handle this problem, we aim at getting an average tile. To obtain such an

average tile, we need a tiling first. But before detecting the lattice, we add

another channel to our material, which we obtain by the use of pushpins. The

next step is found on the top of the right column of the overview image (Figure

3.3) .

3.3.3 Pushpins

To make the results of the lattice detection more stable and more predictable,

we guide this following step (subsection 3.3.5) by a weaker but therefore global

repetition detector. The main idea is to mask the frequency spectrum of a given

material T in such a way that the region with the stroke input P⊃SF ,⊃SB ⊂ T
shows a peak in the spatial domain and therefore all similar regions in the

spatial domain show a peak. This may be done by convolving T with P ,
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Figure 3.5: The effect of regularization to pushpins. From left: the response
of the original tile to an unregularized pushpin, the reponse to a regularized
pushpin, the response of distorted material-patch to the unregularized pushpin
and the reponse of the same material-patch to the regularized filter.

but simple cross correlation does not bring the desired results. Instead,

we construct a patch which generates a peak when convolved with P . This

technique is described in detail in section 3.1.

3.3.4 Convolution with a Pushpin

Pushpins can be made tolerant against noise or small distortions by adding

energyterms to equationsystem 3.7. To justify the regularization step (Equa-

tion 3.7) we want to illustrate its effectiveness in Figure 3.5 by comparing the

result of the convolution with a regularized pushpin against convolution with

an unregularized pushpin.

And the other way round it is possible to concentrate on certain regions of

the pushpin by adding weights to the corresponding equations.

To conctruct a pushpin, it is necessary to determine a centerpoint and a

radius. We have chosen the mean of the positions of the stroke inputs P as

puncture and the size of the nailhead was chosen so as to cover the whole

stroke.

Nested symmetry groups Pushpins generate automatically a region of

dominance. This shall be demonstrated by a simple example. In figure 3.6

you may see a simple texture consisting of small squares arranged in groups

to bigger squares. On the left side, you can see the response of a pushpin with

a nailhead diameter in the size of a small square, on the right side we used
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Figure 3.6: On the left side you can see in light blue the filter response of a
pushpin with nailhead radius approximately equal to the size of half a small
square on the right side we used a pushpin with a nailhead radius approxi-
mately equal to half a big square.

a pushpin with a nailhead diameter in the size of a big square. The clipped

filter response of the smaller pushpin is held blue, the filter response of the

bigger pushpin is shown in yellow. You can see that the pushpin on the left

side detected the crossings between the small squares whereas the pushpin on

the right side detected exclusively the crossings between the big squares. This

means that pushpins can distingquish between nested symmetry groups. That

is an improvement against plain mean shift belief propagation because MSBP

simply uses the symmetry group it gets first.

Though pushpins are not limited to a certain number of channels, particu-

larly not to 1, we confine their use to the lightness channel of Rs or Rd. Note

that the use of more channels does also lead to more noise in the filter response.

Our algorithm gains its strength from the combination of lattice detection

and pattern-recognition. In our tests, the most successful approach to detect-

ing lattices was the mean shift belief propagation (MSBP), published by Park

et al. [PCL08].

3.3.5 The Lattice Detector: MSBP

MSBP makes the assumption that a repeating structure in an image is a

slightly deformed periodic pattern. As such it is possible to find an ideal
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pattern element and two linearly independent lattice base vectors to recon-

struct this periodic pattern by operating via the corresponding wallpaper

group [GS87, LCT04]. By clustering points of interest, MSBP estimates the

base vectors for the periodic pattern and a seed point, and the algorithm ex-

tracts a characteristic tile around this seed point. The lattice base vectors

define symmetry-mappings, so the seed point and all symmetry-images of this

seed point may be mapped to further symmetry-images by translation along

the base vectors. Those images are the vertices of the constructed lattice. As

the lattice is deformed by assumption, the exact symmetry mapping has to be

found by searching for a good fit for the characteristic tile in the area of the

estimated new vertex position. This search is done for all new lattice-vertex

candidates simultaneously, meaning that the search for two neighbouring ver-

tices is constrained by an energy term which punishes deviation from the ac-

cording base translation. Mean shift belief propagation has proven to be an

extremely powerful algorithm. Still we had to struggle with two problems:

1. The results are not deterministic.

2. Regions of big distortions like the fold in the grey mesh material often

stop the expansion of the lattice.

Both difficulties are illustrated in figure 3.7. The result of MSBP, reflected

by the red lattice in the left image was successful: the algorithm found the

smallest possible tile and the lattice covers the whole material patch. On the

right image, we have an example for an abortive run of MSBP: you can see

that the algorithm was not able to cross the fold in the material and the base

vectors are the sum and the difference of the base vectors found in the right

image. Those problems may be solved by summing the pushpin-responses

into the diffuse colour-channel.

In figure 3.8 we visualize the influence of pushpins to the lattice detection

process. We have made several test runs some of which had one or two nodes

missing, but we obtained always the same lattices covering the whole material

patch.
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Figure 3.7: Two different runs of mean shift belief propagation on the grey
mesh material.

Figure 3.8: The left image shows the grey mesh material, the image in the
middle depicts the filter response of a pushpin applied to the volume channel
of the diffuse color of the grey mesh material and the third image shows the
result of MSBP on a combined map of the filter response and the diffuse
channel. Now the lattice detection is extremely stable.
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In the next step we combine the results of the classification and of the lattice

detection to obtain a model mask tile and a warping field to plaster the whole

material patch with this model mask patch. After cutting the mask and the

material into a set of tiles which we interpret as distorted version of the same

model tile, we extract a model tile, we calculate an optical flow between the

model tile and all other tiles and we compose a mask for the whole material

probe.

3.3.6 Finding a Model Tile

To generate a single tile bearing a reliable segmentation we first choose one

tile which is every bodies friend Pmodel ∈ tiling:

Pmodel = argminX

( ∑
W∈tiling

d(X ,W)

)
(3.12)

The simplest way to define a distance d between different tiles is, to bring

all tiles to the same size and apply the euclidean norm to the diffuse colour

channel.

We assume that changes in the size of tiles are due to perspective distortion.

Thus the best fit for an average tile should be a tile with maximum edge-length.

So in the first step we resize all tiles to the maximum edge-length and store the

resize-factors. As the number of tiles is small, we simply apply a brute force

approach and compare all tiles pairwise. This procedure is quadratic in the

number of tiles, so for big numbers, the time requirement may be optimized

by using a dynamic programming approach. Note that generating a mean tile

instead of searching the tile with the most friends is not advised as we want

to calculate the optical flow between this model tile and all other tiles. This

is more difficult with a mean tile because the algorithm has to find features,

which are prone to be smoothed out by averaging.
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3.3.7 Calculating the Optical Flow and Composing a

Tile Mask

With the model tile at hand, we may calculate the optical flow between the

model tile and all other tiles. For the estimation of the optical flow between

the model tile and the test tile, we use the algorithm suggested by Sun et

al. [SRB10] and apply it to the diffuse colour-channel. The resulting optical

flows are applied to the resized tile masks. This and the following back-warping

step are done by the use of thin-plate splines [Boo89]. We obtain a principal

tile mask by averaging over all resized and warped tile masks.

3.3.8 Recombination

Now every tile mask of the original mask is substituted by the appropriately

back-warped and back-sized principal tile mask.

3.3.9 Applying the Edits

Our algorithm assigns an alpha value to every texel. This value will scarcely

be exactly one or zero. So we will do a segmentation by thresholding. Aside

from distortions the alpha-values may be seen as voting for the background

or the foreground, so 0.5 is a good threshold. The segmentation mask is of

course not suitable for editing as it will obviously lead to strong artefacts. So

we will substitute all texels, which have at least one corner-neighbour from the

opposite component, by its alpha-value, so that the intuitive use of the word

boundary and the definition given in Equation 3.11 coincide.

On the foreground component, editing can of course be done as e.g. de-

scribed in the literature cited in Subsection 2.3.2, but on the boundary we

have to be more careful. The manipulation of a reflectance value may trouble-

free be done by convex-combining the old and the manipulated value. But it

has to be kept in mind that not all parameters of all analytical BRDF-models

superpone.
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Figure 3.9: On the top the binary mask, on the right the original superposed
mask and on the left the mixed mask.

3.4 Evaluation

In this section we want to show the potential of our approach. Evaluation

targets into three directions:

1. we will show that our algorithm is capable of dealing with materials,

which do not show the strong colour-contrasts, mostly necessary for mat-

ting and foreground-segmentation purposes.

2. the other strength of our algorithm is, that it provides us even for strongly

distorted material surfaces with an editing mask, which shows almost no

artefacts.

3. The coincidence between perceived structure and warped mask tile is

very good.

3.4.1 Test Set-Up

To describe our test set-up we will start with a short description of the input

data. Next, we will give a detailed overview over the competing algorithms to

convey an idea where those algorithms run into problems. Of course the test

set-up is strongly biased into the direction of our algorithm as both algorithms,

AppProp and RepSnapping are by far more general. But we did not find a

more fitting approach in literature.
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Input data

The materials we use in this paper have been acquired with an enhanced version

of the linear light source reflectometer (LLSR), introduced by Gardner et al.

[GTHD03]. This new system has been developed by Meseth et al. [MHW+12]

and is capable of measuring anisotropic reflectance distributions (subsection

2.2.3-SVBRDF Acquisition). Meseth et al. use the Ashikhmin-Shirley

reflectance model (Subsection 2.2.1-Ashikhmin Shirley reflectance model)

Additionally to the reflectance properties (Equation 2.6), LLSR has to esti-

mate a surface normal n. All values have been stored as 16 bit integer values.

One texel represents a surface of roughly 1/4 mm2.

We use two different materials for the comparison: the grey mesh material

which we have used to demonstrate the single steps of the algorithm and a

structured steel material (see Figure 3.10).

The grey mesh material is nearly uni coloured. It is particularly difficult

to derive a near regular structure because it contains a strong bulge and the

material normals do not convey much information.

While it is really simple, to derive the regular structure from the structured

steel material, the only visible difference between foreground and background

is a slightly less isotropic distribution of the noise. The metal material does

not have a diffuse colour channel Rd so we have to use Rs, instead.

Comparison with other algorihtms

Our algorithm combines techniques from the field of material manipulation

with techniques from the field of repetition finding in images. Thus for com-

parison we have chosen one outstanding algorithm from each of those field.

For the task of segmenting repetitions in images we decided for the RepSnap-

ping algorithm [HZZ11], published in 2011 by Huang et al. And to cover the

field of SVBRDF-editing we will compare against AppProp [AP08], published

by An and Pellacini in 2008. Moreover, we compare those results with the

segmentation of the SVM from step 3.3.2.
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AppProp The authors use a low rank approximation of the full appearance

adjacency matrix and minimize the following functional:

∑
i,k

wkzik(ei − gk)2 + λ
∑
i,j

zij(ei − ej)2

with

zij := exp(−||fi − fj||2/σa) exp(−||xi − xj||2/σs).

Where i and j go over all texel in the texture, k goes over all texels in the stroke

input, w are weights, e is the edit and therefore the solution of the optimization

problem, g is the stroke-input and therefore the right hand of the optimization

problem, x is the position of the texel, λ the weight of the smoothing term

and f is a texel-dependent appearance term. The resulting equation system is

roughly solved by a low-rank approximation. The appearance comparison of

AppProp is not limited to three dimensions or a single texel, so we can apply

it to our descriptor (Section 3.3.1).

The spatial parameter σs is not interesting in our setting, but to find a

reasonable value for σa is difficult for our high dimensional descriptor and has

to be done in a preprocessing step for every material separately. This is not

surprising because the term

exp(−||xi − xj||2/σs) =
∏
k

1

e(xki−xkj )2/σs

consists in our case of 450 factors and has therefore the inclination to explode

or to collapse beyond numerical accuracy. λ controls the consistency of the

edit and had not much influence. We set λ and wk to one. Thresholding has

been done manually, in order, to get the best possible segmentation.

RepSnapping RepSnapping has been published by Huang et al. in 2011

[HZZ11], and is based on the idea of co-segmentation [HS09]. It is specialized

to cutting out repeated elements in natural images. The algorithm solves the
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energy functional:

E(e) :=
∑
i

Di(ei) +
∑
i<j

Vi,j(ei, ej) +
∑
i,j∈H

Ui,j∈Nbh(ei, ej)

by the use of graph cuts [KZ04]. Here Di describes the probability that ei ∈ F
and is given as a normalized set distance to a clustering (H) of the foreground.

Di(ei = 1) =
mink∈H(F ) ||fi − fk||

mink∈H(F ) ||fi − fk||+ mink∈H(B) ||fi − fk||

with the appearance function f and

Di(ei = 0) = 1−Di(ei = 1)

The term

Vi,j = λ|ei − ej| exp(−β||fi − fj||2)

is a smoothing term and goes over all adjacent pixel pairs. And

Uj,j = µ|ei − ej| exp(−βγ(i, j)2)

assures that pixels with similar appearance are treated similar. The main idea

is that the neighbourhood graph is extended by the neighbourhood-system

Nbh which contains edges between the pixels i and j iff γ(i, j) < ε, where γ is

a correlation based similarity measure, described in [HS09].

We applied RepSnapping with the parameters given in [HZZ11], namely:

µ = 10, β = 0.1, λ = 2 and ε = 4. RepSnapping might easily be extended to

the high-dimensional descriptor used in our algorithm but it would suffer from

the same stability issues as AppProp.
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(a) Input (b) PushPin (c) RepSnap (d) AppProp (e) SVM

Figure 3.10: On the left a patch from the original SVBRDF-channel with the
stroke input the second image shows the mask generated by RepSnapping.
The third mask is the result of AppProp and the last mask is our result. The
first row shows the grey mesh material the second row shows a metal.

3.4.2 The Results

In Figure 3.10 we present the comparison of the image segmentation step.

You can see that our algorithm delivers artefact-free masks for both materials

(3.10.b). The other three algorithms are more successful on the grey mesh

material than on the metal material. An interesting result is, that the raw SVM

delivers the second best results. We see the main reason in the descriptors:

AppProp is numerically overcharged with the big number of descriptors, which

results in this big amount of noise, and RepSnapping uses a correlation based

approach to describe texel neighbourhoods. Autocorrelating the Rs-channel

of the metal material reveals that the surface does not have enough structure

to provide significant correlation results. Together with the fact that Rs is

uni-coloured, this explains, why RepSnapping fails completely.

3.4.3 Editing Examples

In this section we want to present edits on four different materials (figure 3.11

- figure 3.14).
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(a) Original (b) Changed Rd (c) Changed Rs

Figure 3.11: On the left the original material in the middle a rather subtle edit
of Rd, on the right a more noticeable manipulation of Rs.

Figure 3.12: In the close-up of the edit of the grey mesh material one may see
that the editing boundary coincides exactly with the perceived boundary of
the foreground material.

Figure 3.13: A shiny material.
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Figure 3.14: The edited metal material.

3.4.4 Time Requirement

Tests have been done on system A (see 2.5). The bottleneck of the algorithm

was to calculate the optical flow on all tiles (Paragraph 3.3.7). For the grey-

mesh material we had about 180 tiles. Calculating the optical flow on one tile

(˜80x40 texel) took about 2.2 s, which sums up to about 7 min. Depending

on the number of training samples, the SVM classification step took between

10 s and 3 min (Paragraph 3.3.2). MSBP (Paragraph 3.3.5) ran for about 45

s. Warping a tile with tps took about 0.03 s. Finding a principal tile took less

than a second. So the overall processing time lay between 8 and 12 minutes.

3.5 Conclusion and Future Work

In this chapter we developed an algorithm to solve the task of extracting a

repeating foreground pattern from a high dimensional reflectance representa-

tion map in a way, which is even in many difficult cases robust and reliable

enough, to allow for editing the foreground component and makes additional

optical debugging steps unnecessary. While the task is relatively simple on

suitable materials, we could show, that the competing state of the art algo-

rithms failed for difficult material probes. Our algorithm permits high quality

foreground-segregation and editing on complex materials.
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We laid our focus on the exploration of the frequency domain in order to

find quickly and globally repetitions of a given pattern. By this global ap-

proach, we could provide additional information to the seed based repetition

finding algorithm, which made the lattice detection more reliable and robust.

As recommendation for future work, we want to emphasize two aspects of the

pushpins, which may be of further interest:

1. Pushpins are in the presented form scarcely applicable to classical signal-

processing tasks as they are too sensitive to noise. We could show, on

the other hand, that autocorrelation, which is widely used in signal-

processing, is not sensitive enough to fine structural elements, to allow

for a repetition finder like the presented. It would be interesting to find

a more general concept which incorporates pushpins and autocorrelation

as special-cases.

2. Under the condition, that the examined function is relatively smooth,

pushpins provide sharp, detectable peaks. Acoustic signals, in particular

pieces of music, are often relatively smooth. It would be interesting to

investigate how pushpins perform in music-mining tasks.
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CHAPTER 4

Frequency Editing of Bidirectional Texture Functions

In the current chapter we transfer a band-filtering scheme first published by

Giesel and Zaidi [GZ13] from images to the compressed representation (Para-

graph 2.2.3-BTF compression) of bidirectional texture functions. The con-

tent of this chapter is based on a peer-reviewed publication:

Marlon Mylo, Martin Giesel, Qasim Zaidi, Matthias Hullin, and Rein-

hard Klein. Appearance Bending: A Perceptual Editing Paradigm for

Data-Driven Material Models. In Proceedings of Vision, Modeling & Vi-

sualization, The Eurographics Association, [MGZ+17]

Figure 4.1: Appearance Bending.

All self-citations in the current chapter refer to Appearance Bending: A

Perceptual Editing Paradigm for Data-Driven Material Models.

79
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In the first year of my Doctorial-course I heard a talk of Martin Giesel on a

connection between certain affordances and spatial frequencies in the images of

material patches. I was intrigued from the very first moment because from this

work followed that a single parameter decided in each case, whether we perceive

a material as thick or shallow, as flat or undulated or as soft or rough. As this

parameter did not control a physical quantity, we assume, that there has to

be a process in the human brain which is comparable to the scaling of those

frequency bands. This process may be identified with the associated property.

On the other side the frequency manipulation gives rise to an image based

material editing system which is in the sense of 2.3 plausible and predictable.

Next to the related work given in Section 2.3 the band sifting system pub-

lished by Boyadzhiev et al. [BBPA15] is closely related to our frequency based

material bending scheme. Katsunuma et al. [KHH17] use the results of Giesel

and Zaidi to concept a texture transfer system. Their work is based on fre-

quency and colour-channel transfer and closely related to the work presented

in this chapter.

The rest of the thesis deals with this relation between frequencies and per-

ceptual properties.

The first section (Section 4.1) gives an overview over Giesel and Zaidis

work and introduces an operator-notation to make those insights usable for

editing measured materials. This is followed by a detailed description of our

new technique, which we call appearance bending (Section 4.2) and we will

evaluate appearance bending by showing and discussing representative results

(Section 4.3). We feel that our results permit to speak of a successful transfer

from vision resarch results into the field of computer graphics but we have to

mention that our edited materials are probably physically incorrect (Section

4.4).

In this and the following chapter, we present an approach to editing mate-

rials, which operates by scaling directly on the frequency- or scaling-domain

of material reflectance maps. This stands in contrast to Chapter 3, where the

editing operation itself has implicitly considered to be an arbitrary manipu-
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Freq band [cpd] Operation Operator
0.57 -2.29 Inflated and deflated FDU

2.29 -4.28 Deep and flat FDT

6.57 -15.14 Soft and rough FDR

15.14 -19.42 Sparkling and dull

Table 4.1: Affordances in cycles per degree (cpd) in Giesel and Zaidis work.
In the last column, we give the symbol of the associated scaling operator. The
upper F indicates, that the scaling FD operates on the Fourier-domain.

lation of reflectance parameters, changing spatially only with respect to the

support of the calculated mask.

4.1 From Affordances to Appearance Bending

The concept of affordance has been introduced by Gibson in 1977 to psy-

chology and it describes the possibilities of actions which may be done on a

given object [Gib77]. Affordances are not only transported by the shape of

the object, but also by the material it consists of [Ade01]. This is the start-

ing point for Giesels and Zaidis work [GZ12, GZ13]. Test observers had been

confronted with the task to assign images of material patches to certain prop-

erties, related to the use of a material, like whether the material was stiff, soft

or water repellant. Consistently rated materials had been investigated on their

frequency contents. In this way it was possible to correlate 4 properties to fre-

quency bands, see table 4.1. The last frequency band had been omitted in the

following discussions, so it will not be part of the discussion in this chapter,

too.

Image based material manipulations by bandpass filtering

The connection between affordance and spatial-frequencies gives rise to a

semantically founded editing scheme by simply enhancing or weakening par-
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Figure 4.2: From [GZ13]: Material patches, used in Giesel and Zaidis affor-
dance classification experiments. The researchers cropped 256 color images
of fabrics to a size of 150 x 150 pixels. Images were presented on a monitor
against a black background. The viewing distance was 70 cm.
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ν min

ν ma
x

Figure 4.3: Frequency-domain support of the editing kernel FD.

ticular frequency bands [GZ13]. Because the underlying physical effects are

too complicated, those effects may not be seen as the result of inverse op-

tics [GZ13]. We want to note, that those effects may be seen as examples for

complex physical operations with a linear representation in the visual cortex.

Lets give an operator based description of this editing scheme: given a

texture-image T . Than the researchers applied the following operators:

E = F−1 ◦ FD
k ◦ F(T ) (4.1)

The kernel FD
k

performs a pointwise multiplication in frequency domain, with

a gain factor k that determines the amount of effect desired:

Dk(~ν) =

k, if νmin < |ν| < νmax

1, otherwise
(4.2)

The kernel’s ring-shaped support in Fourier domain (Figure 4.3) needs to

be derived from Table 4.1. For design purposes it may be advised to use a

less abrupt transition between edited and non edited regions by applying an

appropriate filter.

Although the Fourier spectrum of a texture is complex-valued, this manner

of editing will not introduce an imaginary component to the signal, as long as
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the kernel is symmetric about the origin (ν = 0).

4.2 Appearance Bending: Scale-Space Manip-

ulation of Materials

Before we transfer appearance bending to BTFs, we want to derive a more

general formulation of equation 4.1. Mathematically speaking, our goal is to

transform a given material T into an edited, or “bent”, material E , a process

we abstract as a bending operator E:

E = ET (4.3)

We assume the material being represented by a multi-channel image. E, in

turn, is composed as the chain

E := R−1 ◦M−1 ◦D ◦M︸ ︷︷ ︸
B

◦R (4.4)

where R is a range transform and B is an editing operator, which consists of a

multiplicative kernel D acting pointwise on the coefficients in the basis M. In

the following, we will motivate and discuss the individual components of this

chain, and how we address the differences and technical challenges that arise

when marrying Giesel and Zaidi’s frequency-based operations to data-driven

reflectance models.

4.2.1 Choice of Basis

When it comes to selecting the basis in which the editing shall be performed,

the most straightforward choice is a Fourier transform (M = F), which was

also used by Giesel and Zaidi. This means that certain frequency components

will be amplified or attenuated globally. In Section 4.3 (Figure 4.9), we will see

that Fourier editing may fail for certain multi-component materials. Thanks

to the generality of appearance bending, however, it is possible just as well to

operate in a wavelet basis, also enabling local manipulations of inhomogeneous
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Associated Property Operator Freq band [cpd] Octave
Undulation WDU 0.57 – 2.29 1 - 3
Thicken WDT 2.29 – 4.28 4 - 5
Roughen WDR 6.57 – 15.14 5

Table 4.2: Affordances in frequency-octaves.

materials.

As it turns out, for many textures with a certain degree of randomness, the

Fourier domain is a good choice. For others, however, we have become aware

that the global support of the basis functions can cause objectionable artifacts

in the form of ringing – textures consisting of multiple basis materials are

particularly susceptible. A wavelet basis is better suited to these situations.

Contrary to the tight spacing of frequencies in Fourier domain, wavelets are

organized in octaves (see Subsection 2.4.2-The Fast Wavelet Transform).

It is striking, that those manipulations cover nearly the whole frequency range

of the visual cortex (Figure 4.4). In order to emulate the effect of the main

frequency bands as given by Giesel and Zaidi [GZ13], we round the given cutoff

frequencies upwards to the nearest octave, avoiding that the resulting bands

overlap. For a 256 px×256 px image corresponding to an edge length of 3.7 cm,

we come up with the scale-space octaves, listed in Table 4.2.

So the shape of the scaling operator WD has to change in a way, that all

coefficients of a given scaling-octave are edited. This leads to the support

illustrated in Figure 4.5. For further explanations see Subsection 2.4.2.

4.2.2 Color Spaces and Dynamic Range

As in Giesel and Zaidi’s perceptual studies, we perform our manipulations on

the intensity channel in YUV color space (see Subsection 2.1.4). Contrary to

their example, however, our data is of much higher dynamic range, and so the

same arithmetic produces significant artifacts (Figure 4.6). Therefore, we use
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Inflate Thicken Roughen Glittering 

0.57 2.29  4.28  6.57 15.14 19.42 

c/° 

P 

Figure 4.4: The green bars indicate the frequency distribution in [cpd] of
our new computational cortex model, presented in Chapter 5. Beneath this
distribution we illustrated the frequency-range of the editing operator. Note,
that the frequency values on the x-axis increase exponentially, meaning that
octaves have constant width.

Figure 4.5: Scale space-domain support of the editing kernel WD.
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the range transform operator R to transform the BTF data to a logarithmic

scale before the editing step, and transform the result back by its inverse,

an exponential function. This is in accordance with the Weber-Fechner law

according to which the perceived change of a physical stimulus is logarithmic

in the strength of the stimulus [FHB66].

←
lin

→
log

Figure 4.6: This leather material, represented as BTF with high dynamic
range, was edited using a näıve adaptation of Giesel and Zaidi’s algorithm
(left) and in log space (right). In the center is the unedited version. All patches
are equally tone-mapped; negative values are marked in red. It is evident that
the log-space version is robust to overshooting (it will never produce negative
values) and generally less prone to implausible artifacts.

4.2.3 Appearance Bending on BTFs

Now we concretize our approach to BTFs. We may see a BTF as an image

with many channels, so the operators may be applied texture by texture. Our

first point concerns the editing of compressed BTF-data.

Bending compressed BTFs

Appearance bending seamlessly integrates into systems operating on com-

pressed data, provided that the decompression operator is linear. Suitable

compression schemes include full matrix factorization [KMBK03] or Müller’s

decorrelated full matrix factorization [Mül09]. The tabulated data are unrolled

into a two-dimensional matrix where textures form the columns and the local

reflectance distributions, the aBRDF s, form the rows. To compress the BTF,
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the PCA is calculated and the resulting eigen-base is truncated by setting a

certain threshold (see Paragraph 2.2.2-BTF Compression)

Due to the linearity of the reconstruction step, the bending operator can

be applied directly to the eigen-textures. For the lower frequencies, this yields

the same results as manipulating the whole base. Manipulation of higher

frequencies may suffer from the loss of such frequencies (fine-scale details) in

compression.

Fourier based Appearance Bending

Now we can express the bending operator on the Fourier-domain as per Equa-

tion 4.4 as
FEk
{u,t,r} := Exp ◦ F−1 ◦ FD

k

{u,t,r} ◦ F ◦ Ln (4.5)

While Giesel and Zaidi used textures of 150 px×150 px subtending 3.5◦ of

visual angle, we want to make use of the full native resolution of the BTF

database (346 px×346 px) for Fourier editing, and cropped versions

(256 px×256 px) for “power-of-2 convenience” in wavelet editing. At a res-

olution of 6.92 px/mm (160 dpi), this corresponds to sample sizes of 50 mm

and 37 mm, respectively, and roughly the same visual angle when viewing the

real-world samples at 70 cm distance. This leads to a conversion factor of

12.211 mm/◦ to transform the original frequency bands to our working reso-

lution. Table 4.3 shows the transformed frequency values and introduces the

according scaling operators.

Wavelet based Appearance Bending

For the wavelet-based bending operator, we obtain the following equation:

WEk
{u,t,r} := Exp ◦W−1 ◦WD

k

{u,t,r} ◦W ◦ Ln (4.6)
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Frequency [cpmm] Associated opposing
properties

0.0467– 0.1874 straight– undulated
0.1874– 0.3503 flat– thick
0.5378– 1.2392 soft– rough

Table 4.3: Affordances in cycles per millimetre ([cpmm]) with regard to the
metrics of our concrete BTF-implementation.

U T R

Figure 4.7: HDR-VDP-2 error plots for a reference (Fourier) gain factor of
FK = 2. The horizontal axis is the wavelet gain factor Wk, and the vertical
axis the type of wavelet (D1–D6).

We compared different wavelets and obtained the best results with wavelets

from the Daubechies-series (D). To obtain a scaling that most closely resembles

that of Fourier-domain edits, we employed Mantiuk’s HDR-VDP-2 predictor

[MKRH11] to formulate a minimization problem:

kopt,{u,t,r} = arg min
k
||WE{u,t,r}k −F E{u,t,r}||HDR-VDP-2 (4.7)

We sampled the range of k for Fourier editing at four values (0.5, 0.66, 1.5

and 2.0), and found the scalings given in Table 4.4 to be most appropriate.

Linear regression reveals the following approximate relations between the
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Fk{u,t,r} 0.5 0.66 1.5 2
Wku 0.7 0.85 1.4 1.7
Wkt 0.65 0.75 1.4 1.8
Wkr 0.85 0.9 1.2 1.3

Table 4.4: Scaling of the wavelet-edit strength by edit type and fourier-edit
strength.

Fourier and the wavelet gain factors:

Wku − 1 ≈ 0.66 (Fku − 1)

Wkt − 1 ≈ 0.77 (Fkt − 1)

Wkr − 1 ≈ 0.31 (Fkr − 1)

Figure 4.7 shows plots of the HDR-VDP-2 error as a function of gain factor

and wavelet type. Our experiments suggest to use wavelets with a number

of vanishing moments greater or equal to 6 for the “roughen” operation; for

“thicken” and “undulate”, vanishing moments of 3 and 2, respectively are

sufficient. Further explanations on the relation between vanishing moments

and bandpass filtering may be found in Subsection 2.4.2.

We note that higher vanishing moments increase the spatial support, so we

use the lowest-order wavelet that produces no visible artifacts.

As expected, wavelets can act as a good replacement for the Fourier basis

(Figure 4.8), and their use pays off particularly for materials with strong spatial

variation (Figure 4.9).

4.3 Evaluation

In this section, we present a variety of results that were obtained using appear-

ance bending. Although we process the textures purely in a signal process-

ing framework, the edits often appear to correspond to a semantic meaning.

Figure 4.10 shows a wool material processed with the “roughen” operator at
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R

Figure 4.8: A comparison of Fourier- and wavelet-edited materials. Note that
the strength of the editing operator, k, has been adapted to obtain the best
possible match according to HDR-VDP-2 [MKRH11].



92 Chapter 4. Frequency Editing of Bidirectional Texture Functions

FE0.5
R I FE2

R

WE0.5
R I WE2

R

Figure 4.9: Comparison of Fourier (top) and wavelet (bottom) editing for the
“roughen” operator. From left to right: k = 0.5, k = 1 (identity), k = 2. Note
the absence of regularly patterned artifacts in the wavelet results, even for a
gain factor of k = 2.

Figure 4.10: ER applied to a wool material.
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various gain levels. The edit amplifies the structure of the knitware on the

finest scale, conveying an impression of fiber-level detail.

Figures 4.13-4.15 show various operators applied to a selection of material

classes ranging from grainy leather over textiles to stone and wallpaper. It be-

comes evident that not every material responds to each operator in the exact

same way – however, within a class of materials, the results are consistent (Fig-

ure 4.15). We note that uncompressed materials contain more high-frequency

details and are therefore better bending candidates - at an increased compu-

tational cost.

4.3.1 Extreme Edits

In Figure 4.11, we see the editing result of a material before and after editing

in two different presentations: as a flat texture and on a 3D material with

environment lighting. The 3D version is more forgiving, producing a plausible

impression of a material even for extreme edits. We attribute this to the

generally increased realism of the scene, but in particular to the low-pass nature

of the environment illumination.

4.3.2 Comparison with Image Based Editing

In this section, we want to compare the result of editing materials to directly

editing on the rendered image. Of course the bending operators might have

been applied directly to the rendered images. But then the result of the oper-

ations depended on the distance of the material surface from the camera and

on the angular between the material surface and the image plane. This effect

shall be demonstrated for the undulation operator.

In the left column of figure 4.12, we rendered the material probe first and

applied the undulation operation afterwards. In the right column we applied

the operator to the material base vectors. Shifting of the frequency window has

been done appropriately as you can see in the yellow framed image sections:

the results are nearly indistinguishable. But the green framed image sections
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Figure 4.11: Flat texture (left) vs. 3D presentation with environment light
(right). The top left image shows the input texture. The top right image
shows the rendered material. On the bottom left you can see the influence of
a strong undulation edit and on the right you can see the effect of this edit on
the rendered material.
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Figure 4.12: Comparison between material bending and image editing. In
Flat regions there is no difference between the bending operation applied to
the material base and the appropriately scaled bending operation applied to
the rendered image. But the image operator is not capable of editing rendered
surfaces under changed perspective as may be seen by comparing the image
sections with the green boundary. Particularly in the red surrounded region
the image operator fails.
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show that pure manipulations of the image spectrum may not account for

perspective distortion.

4.3.3 Performance

On compressed BTF data with 100 (Y), 50 (U) and 50 (V) principal compo-

nents, data processing took no more than 0.5 s (Fourier), 1.2 s (D1 wavelet) and

4.8 ,s (D6 wavelet). For uncompressed data, the time scales up linearly with

the number of textures, resulting in processing times of about 5 minutes for

applying the a Fourier-based operator and 12 to 45 minutes for wavelet-based

edits.

4.4 Conclusion and Physical Aspects

In this chapter we have transferred the image based affordance-manipulation

scheme by Giesel and Zaidi to a BTF-affordance-editing system. The edits

performed by appearance bending do, of course, not change the surface geom-

etry. When moving an object that is textured with a strongly edited BTF, the

parallax effect (or lack thereof) may result in a lack of realism. Above that

the changes in singular textures are not necessarily consistent with changes in

the other textures of a given BTF. To stay physically correct the reflectance-

values over any BRDF have to integrate to a number smaller than 1. It can

not be guaranteed, that the ABRDFs of an edited material are still correct

with regard to this law.

In the current version, appearance bending can only strengthen or weaken

such qualities that are present in the original material. The transfer of fre-

quencies from one material to the other would be an interesting prospective

and will be the subject of further investigation.

Still Appearance bending, or the editing of materials by scaling bands of

spatial frequencies, has proven to be a versatile tool. The transfer from images

to complex material representations such as the BTF yields results that match
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the original data in realism.

We are hopeful that further developments in psycho-visual perception will

further contribute to advance the state of the art in semantically meaningful

and predictable editing processes for appearance.

In the following chapter we want to deepen our understanding of the fre-

quency band manipulations by adapting the frequency filtering system to cur-

rent models of the visual cortex. It remains to be seen to which extent a

deeper understanding of human perception can be used to further increase the

meaningfulness and realism of editing interfaces for appearance.
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The undulation operator applied to different materials.

Figure 4.13: Result renderings. For a discussion, see section 4.3.
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Different edits on the same material (blue wallpaper).
From top to bottom: undulate, thicken, roughen.

Figure 4.14: Result renderings. For a discussion, see section 4.3.
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Effect of the “roughen” operator on three different materials.
From top to bottom: Wool, Corduroy, Carpet.

Figure 4.15: Result renderings. For a discussion, see Section 4.3.



CHAPTER 5

A Cortical Appearance Space Model

In the current chapter we suggest to use a model of the primates striate cortex

to learn linear material editing operations. The content of this chapter is based

on a peer-reviewed publication:

Marlon Mylo, and Reinhard Klein. Linear Subspaces of the Appearance

Space. In International Conference on Computer Graphics, Visualiza-

tion and Computer Vision, volume 26 of Journal of WSCG, pages 95 –

103, [MK18]

All self-citations in the current chapter refer to this publication.

The American cognitive scientist Roger Newland Shepard opens his publi-

cation Perceptual-cognitive universals as reflections of the world [She01] with

the words: The universality, invariance, and elegance of principles governing

the universe may be reflected in principles of the minds that have evolved in

that universe-provided that the mental principles are formulated with respect to

the abstract spaces appropriate for the representation of biologically significant

101
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Figure 5.1: Rendering of an edited wool-BTF. The left part of the image shows
the result of a combination of the edge aware operator and the thickening
operator (sections 5.4.2 and 5.4.3), the right image shows the result of the
corresponding band-pass filter, according to [MGZ+17] and in the middle, we
show the original material.

objects and their properties.

We want to follow this train of thought. The work of Marcelja and Daugman

[Mar80,Dau80] prepared the ground for Gabor-filter based models of the simple

cells of the primary visual cortex (V1 or striate cortex). Bandpass filters (see

Chapter 4) may be realized by combining Gabor-filters (see Figure 5.4). The

depth or the roughness of a surface is without doubt a biologically significant

property. So if we accept the Fourier transform as a very rough computational

model of the striate cortex, we may consider the band-scaling as a principle

of the mind which reflects physical properties like thickness and undulation.

This is the motivation for composing an empirically born computational model

of the V1-region of the visual cortex. The idea is to find physical phenomena

which have a simple representation in our new model. We will show that our

new cortex model allows for learning linear representations of complex physical

phenomena. Such a linear representation enables plausible, predictable and

meaningful manipulations and is therefore predestined as editing operation.

According to Poggio and Serre [PS13], models of the visual cortex provide

the much-needed framework for summarizing and integrating existing data and

for planning, coordinating, and interpreting new experiments. Poggio and Serre

concentrate on computational models of vision. They state, that biological
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plausibility is elusive. There exist several different computational models of

the visual cortex, mainly as feedforward-model. We assume a feedforward

hierarchical model of the visual cortex and we use empirically data to estimate

parameters like the distribution of the frequency resolution of the receptive

fields.

Using models of the visual cortex has a long tradition in computer vision for

pattern recognition tasks and for the description of perceptual image-metrics

but it is not yet an integral component of computer graphics. We will introduce

the term appearance space which has mostly been used implicitly [LH06,HB95].

We argue, that the set of all possibly occurring neuronal states in the visual

cortex may be seen as this appearance space. So given a computational cortex

transform model, we may define a computational appearance space as part of it.

Seeing computer graphics from the perspective of human physiology is fruitful:

Bayer filter in digital image sensors follow the cone distribution in the retina,

retinal displays mimic the cone-density and photo-sensors filter and cumulate

the incoming energy comparable to photo receptor cells. Our approach is a

kind of frequency editing. Frequency editing is a very old technique. Blurring

e.g. has already been used hundred years ago in silent film. But it has mostly

not been seen as an operation in the visual cortex but merely as a given visual

effect.

This work contributes to the field of material editing by presenting a system

to transfer image manipulations into a model of the visual cortex which in many

cases brings better results than the original editing scheme and we will provide

a novel realistic material manipulation, namely frequency based moving of a

light source.

5.1 Cortex Models

Our understanding of the structure and the modes of action of the animals

visual cortex goes back to the work of Hubel and Wiesel during the late 50.

and 60. of the last century [HW59, HW62, HW68]. Twenty years later Daug-
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man fitted Gaussian and Gabor-filters to the cortical responses measured by

Hubel and Wiesel [Dau80, Dau88]. It is noticeable that neural networks de-

velop Gabor-filter like structures by their own, when trained with random

input [San90]. Olshausen and Field found that optimizing a vector base for

sparse linear coding of images leads to a set of Gabor-like base vectors which is

in spatial frequency and orientation coverage comparable to the filtering sys-

tem in the visual cortex [OF96, OF97]. A publication which concentrates on

mathematical aspects of the Gabor-filter-systems compatible with the neural

responses of the V1-cortex is the work of Lee [Lee96]. Lee gives explicit param-

eters for his filter systems and calculates the tightness of the Gabor-frames.

A good overview over publications on cortical parameter measurements may

be derived from [MR02, Table 1]. Recently Huth et al. published a python-

toolbox for simulations of early vision [HMA17].

The presented approach stands in the tradition of the pyramid-based tex-

ture analysis and synthesis published by Heeger and Bergen in 1995 [HB95].

Heeger and Bergen use steerable pyramids to model the behaviour of the visual

cortex. Gutman and Hyvärinen derive a probabilistic model of image statistics

by modeling two cortical layers of simple and complex cells [GH13]. This pub-

lication may also be consulted for further references to Bayesian perception. In

her dissertation Diana Turcsány [Tur16] uses a convolutional neural network

to model the deeper levels of the visual cortex for image editing.

Glassner gives a good computer graphics oriented introduction into the

visual system [Gla95].

5.2 Our New Cortex Model

The insight that light is not coloured but that the energy in a light beam

provokes a sensation of colour goes back to Newton [New04]. In their trend-

setting paper Pyramid-Based Texture Analysis/SynthesisHeeger and Bergen

used the word appearance to bridge the gap between the sensation of a texture

and the physical phenomena on the surface of the texture [HB95]. We can
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locate the term appearance between the sole occurrence of physical phenomena

and the only inter-subjectively examinable set of sensations by identifying

the appearance space with the set of all neural response-states in the visual

cortex. In the ventral stream of the human visual system, the primary visual

cortex follows after the lateral geniculate nucleus (LGN ). Mathematically

the receptive field is described by the receptive field profile (rfp), a bivariate

real-valued function which simulates the neuronal response to a given stimulus

[Dau80]. As receptive fields have directly been measured while exposing the

macaque retina to visual stimuli, the influence of the LGN is an implicit part

of the model but does not have to be modelled explicitly.

As frame for our (computational) appearance space we will use a cortex

transform model [W+87] which we will derive from empirical data (section

5.2.1).

Our formal scaffold consists of

1. a model of the space of retinal responses,

2. a model of the neural responses of simple cells in V1,

3. a model of the visual stream from the retina to the neural response and

4. an interpretation model for the retinal responses .

The space of retinal responses describes the entrance of pictorial data

into the visual system. We will use RGB-images with an edge-length of 256

pixels. Decorrelating the color space as in [HB95, Sec. 3.5], lead to strong

artefacts. Confining the manipulations to the value-channel of the HSV-color-

space brought good results. So we define I := [0, 1]256×256 as retina model.

The images, we use for testing, correspond to real-world patches with an edge

length of approximately 5 cm. If a patch of this size has a distance of 57 cm

from the observer, its retinal image approximately covers the fovea.
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Our model of the visual stream is limited to the early ventral stream

up to V1. While there have been suggested different filters for modeling V1-

receptive fields [Lin13], we use Gabor-filters [Dau80], (see Section 5.2.1). Our

whole V1-model consists of a filter bank of 517 filters {γξ}ξ∈Ξ (see section 5.2.3)

and we define the operators Γx := γx?.

The space of neural responses will be modelled as a stack of matrices

G := R256×256×517. We do not limit the amplitude of neural responses. It is not

self-telling, that the spatial dimension of the neural responses (256×256) equals

the dimension of I (see Paragraph 5.2.3) but it enables a direct comparison

between the input and the result of the V1-transform.

The interpretation space is a set of mappings G : G → I with G :=∑
ξ aξ{ΓξT }.
Now we define the appearance space A as the image of the interpretation

space. This leads to the following diagram, modeling the relations, depicted

in Figure 5.2:

T∈I {ΓξT }∈G GIT∈A

P(T )∈I {ΓξP(T )}∈G GIP(T )∈A

{Γξ}

P

GI

GP
EP

{Γξ} GI

(5.1)

The filter bank {Γξ} maps the texture T to the neural response space G.

By the definition of G and A, we may identify I and A. Neural responses are

recombined to a texture TX := GXT in the appearance space. A physical

phenomenon P induces a mapping from the appearance space EP : A → A
to itself (compare with Figure 3.3). If we identify GX and GX ◦ {Γξ}, the

operator GP may be constructed as linear approximation of EP.

GP ≈ EP (5.2)

Note that GI ≈ I is an approximation of the identity on A. GP is the operator,
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Figure 5.2: Visual path of a material patch, seen under different optical con-
ditions. The physical phenomenon induces a mapping in the space of cor-
tical responses. Brain drawing taken from http://universe-review.ca/I10-85-
opticpath.jpg.
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we want to learn. For a full clarification of the symbols, see the following

section.

5.2.1 The Computational Model of the Early Vision

In this section we will introduce the V1-model. The concept that the neural

response of a simple cell in V1 cortex is linear in the intensity of the incom-

ing optical stimulus is essential not only for the model of the visual path-

way [Dau80, AP79] but also for all measuring methods of the receptive fields

like subspace reverse correlation [RSS97]. The function describing the weighted

contribution from each position of the receptive field to the response of this

cell is called weighting function and may be modelled by a linear filter [W+87].

This means that if we may reconstruct a texture by summing up the filter

responses according to the receptive field system of the visual cortex, we may

influence the neural response in the V1 directly.

5.2.2 An Empirically Based Model of the Visual Cortex

There exist many publications on the frequency distribution in Macaque V1-

area [FGNP85, Sel16]. We used empirical data, measured and fitted by De

Valois et al. [DVAT82]. We use two dimensional Gabor-base functions for

spatial frequency filtering [Dau80].

Our filter function will be the 2D-Gabor filter from Equation 2.58. Here we

confine to the real part and obtain:

γν,σu,σv ,β(u, v) =
1

2πσxσy
e
− 1

2

(
( u
σu

)
2
+( v

σv
)
2
)

cos(2πνu+ β) (5.3)

The preimage of the directional standard deviation of the Gaussian envelope

forms an ellipse. The semi-minor axis, here the u-axis, of this ellipse is accord-

ing to [Lee96] and [JP87, Fig. 8A] parallel to the wave-vector of the carrier.

We confine to a real plane-wave (see 5.2.3). So, with ξ := {ν, σu, σv, β, ϕ}, we

may define:
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aΓξ,p := aγν,σu,σv ,β ◦Rϕ ◦ Tp(x, y) (5.4)

Rϕ and Tp are the rotation and the translation as given in equation 2.55.

5.2.3 Parameters

To compose the Gabor filter bank, we have to specify the parameters. We

distinguish between the parameters, which we set up according to given publi-

cations in the field of neuro-science (the parameter set ξ, Paragraph 5.2.3), the

position of the filter center p (Paragraph 5.2.3) and the amplitude a (Para-

graph 5.2.3), which we will use for the definition of the editing operator G.

The parameter-set ξ

The parameter-set ξ contains all parameters which have to be distributed

according to measurements in the macaques or in the cats striate cortex.

The spatial frequency 2πν

In the visual cortex, frequency sensitivity occurs not in exact but in rough steps

of 0.3 to 0.5 octaves. As we drew the spatial frequency according to [DVAT82,

Fig. 6.], we were limited to the bin width in this figure, which is 0.5 octaves.

Differences between human and macaque visual system The mon-

key visual system as model for the human visual system has been validated

under several different aspects [RSD15]. While the human visual system is

from an anatomical and physiological perspective extremely similar to the

macaque visual system, it has a slightly higher retinal magnification factor

(about 0.291/0.223), which hints to a higher angular resolution [MK90]. There-

fore we add another frequency bin at 20.8c/° and so we have to extrapolate to

a plausible histogram of the human frequency distribution.

The distribution given by de Valois In [DVAT82, Fig. 6.] De Valois

et al. describe their measurements of the spatial frequency distribution of the
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Spatial frequency distribution of simple cells in primary visual cortex: histogram and gauss-fit

< 0.5 (0.375) 0.5 0.7 1.0 1.4 2.0 2.8 4.0 5.6 8.0 11.2 16.0 20.8

c/°

0

0.05

0.1

0.15

0.2

0.25

P

extended to Human frequency range
measured in Macaque V1

Figure 5.3: The blue part of the bars shows the histogram given in [DVAT82].
The green part describes the extrapolation results and has been added to
account for the slightly wider frequency range of human vision [MK90].

receptive fields of simple cells in macaques primary visual cortex. They distin-

guish between the cells with receptive fields in the fovea and in the parafovea

region of the retina. We assume that our texture covers a visual angle of

5°. As we cannot expect observers to concentrate on a texture without any

eye-movement, we merged the distributions for the fovea and the parafovea

by normalized summation. The blue (including green-blue) bars in Figure 5.3

belong to the merged histogram from [DVAT82]. To extend this histogram to

the slightly bigger frequency range of the human vision, we fitted a gaussian by

an iterative Least Mean Square algorithm, moved the mean of the gaussian to

the logarithmic middle of the new frequency distribution range and stretched

the standard deviation proportional to the ratio of logarithmic ranges.

The following table shows the number of filters we have in every frequency

bin. The absolute number of 517 filters has been chosen in order to have a
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good fitting to the histogram and still stay comparable with the reconstruction

scheme for tight frames (Section 5.4.1).

c/° 0.4 0.5 0.7 1.0 1.4 2.0 2.8 4.0 5.6 8.0 11.2 16.0 20.8

# filters 3 8 20 39 64 84 92 82 61 37 18 7 2

The standard deviation in direction of the wave-vector σu

σu and ν are connected via the bandwidth. As Gaussian kernels have infinite

support, the bandwidth is defined as half amplitude bandwidth. Bandwidths

have been drawn on base of [DVAT82, Fig. 7]. In this diagram, De Valois et

al. visualized the bandwidth with standard deviation as a function of the spa-

tial frequency. As spatial frequencies were known, bandwidth-samples could

be drawn under the assumption of normal-distribution within the same fre-

quency range. Given the bandwidth B and the spatial frequency 2πν, we may

calculate:

σu =

√
2 ln 2

(
(2B + 1)/(2B − 1)

)
2πν

(5.5)

The standard deviation orthogonal to the wave-vector σv

According to [Rin02, Fig. 4.], there is a relation between νσu and νσv. This

relation may be interpreted as functional graph with a small deviation. To

make use of this relation, we fitted a cubic spline to the data and used this

spline as function graph.

The Phase angle β

To draw the phase parameter β, we used the histograms given in [Rin02, Fig.

7A/B].
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The orientation ϕ

By definition of u = (x−px) cosϕ+(y−py) sinϕ, ϕ is the angle between the u

and the x-axis. We drew the orientation equally distributed from {iπ
8
}i∈{1,...,16}.

Where possible, directions have been drawn in orthogonal pairs.

All random experiments have been done in several passes and brought com-

parable results. The set of all parameter-sets ξ in the Gabor-filter bank, will

be denoted by Ξ.

The position p

Every neural measurement provides us just one sample of the domain of neural

responses. Be γ the Gabor filter, best fitting the receptive field of a given

neuron with filter center p: now the neural response is modelled as a〈γp, T 〉.
〈〉 is the standard inner product in the image domain. γ has to be appro-

priately sized and evaluated on the spatial grid of the image and T has to be

zero-padded, where necessary. The filter-centers are often chosen to be ele-

ments of the spatial image grid (p ∈ {1, . . . , 256}2) [Dau88], sometimes with

the constant stride (h := pzi+1
−pzi) between consecutive grid points increasing

with an increasing wavelength and/or starting with a stride smaller than one

(e.g. [Lee96]). In order to make use of the convolution theorem and to avoid

a resampling step we will assume the parameter set ξ to be constant over the

whole grid and set the stride h = 1 to one and keep the image-grid. Never-

theless we have to emphasize that our approach might distract the statistics:

as the statistics of DeValois et al. [DVAT82] are based on the measurements

of individual cells, a higher spatial resolution goes to the cost of the angular

resolution and the variety of the phase values. Particularly in the case of low

frequencies, the spatial domain is probably oversampled. The results of the

undulation experiment 5.4.3 might indicate this problem (see figure 5.11).

To locate the neural response, we multiply it by the canonical base matrix

ep ∈ R256×256 at position p and sum those matrices up
∑

p〈γp, T 〉ep. As we

confined to real-valued Gabor-base functions (Equation 2.58), meaning γ∗ = γ,
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we may write that summation-formula as cross-correlation ?:

a
∑
p

〈γp, T 〉ep = aγ ? T = aΓT (5.6)

Where we appoint the amplitude a to be fixed for a changing position p. We

should hold the following point of criticism in mind: for deeper frequencies a

sparser sampling of the image-plane is probable.

The amplitude a

We use the amplitude to combine filter responses to operators. Be E : A→ A
an operator, then we want to find aEξ to approximate E (see section 5.3.1):

E ≈
∑
ξ∈Ξ

aEξ Γξ (5.7)

This mapping operates via cross-correlation, it may be visualized by applying

it to the discrete dirac δ ∈ A.

Gabor filtering systems are often described by a log-polar overview of the

frequency responses in the euclidean plane (see Figure 5.4).

5.3 Transferring Edits to the Model of the Vi-

sual Cortex

Now, that we have introduced our model of the visual cortex, we want to

introduce the operators. First we will discuss the editing scheme itself and how

to transform into it. Than we will present the editing paradigms to transfer.



114 Chapter 5. A Cortical Appearance Space Model

Figure 5.4: From [Lee96]: an ensemble of Gabor wavelets in the frequency
domain.

5.3.1 Learning an Operator

To transfer a given edit, we take a collection of test-textures Ti∈{1,...,m} and

solve

aE
i = min argc∈Rn ||ETi −

∑
ξ∈Ξ

cξΓξTi||2 (5.8)

for each texture Ti. We could define

aE := min argc∈Rn
∑
i

||ETi −
∑
ξ

cξΓξT ||2 (5.9)

but this definition lead to undesired activities in higher frequency-bands. In-

stead, we apply a singular value decomposition to A := aiξ:

A = UΣV′ (5.10)



5.3. Transferring Edits to the Model of the Visual Cortex 115

and use the base vector aE := (aEξ )ξ∈Ξ := (Vξ1)ξ∈Ξ. So we may declare our new

editing operator

GE :=
∑
ξ∈Ξ

aEξ Γξ (5.11)

5.3.2 The Operators

We will explore four different operators: the identity, linear edge enhancement,

bandpass filters and spotlight moving.

The identity

The first operator maps the image to itself. This is a reconstruction. There is

no canonical reconstruction scheme for Gabor-Wavelets as they are overcom-

plete. There has been many efforts to produce models of the visual cortex

which had good mathematical properties [SA00, Lee96]. Lee introduces a re-

construction scheme which relies on the tightness of the frame [Lee96, DS52].

There are many approaches, to adjust the filter responses of a Gabor-filter

bank to a partition of unity in the frequency domain [W+87].

Edge aware imaging

Edge aware imaging is a very important editing operation. An overview over

existing approaches can be found in Paragraph 2.3.2-Edge Aware Imaging.

Bandpass filtering

Here we want to learn the editing scheme presented in Chapter 4.

Moving spotlight

Given a directionally illuminated texture patch. We will show, that it is possi-

ble in our model to learn and reproduce small movements of the light source.
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(a) 500 · |L −EI(L)| (b) log(EI(δ) + 2−32)

Figure 5.5: 500 times amplified reconstruction error of Lena image. Boundary
cut off in a distance of 10 pixel. (a). To get a better impression of the delta-
spike, we added 2−32 and applied the binary logarithm (b).

5.4 Evaluation

In this section we want to show and discuss some results. The presented results

have been calculated on colour or reflectance maps. The colour-values had been

stored as half-precision floating point-values (16 bit) and the reflectance-values

had been stored as full-precision floating points (32 bit). All operations on the

HDR-images had been performed in log-space. As training samples, we used

textures from the USC-SIPI Image Database from the University of Southern

California and the describable texture dataset [CMK+14].

5.4.1 Identity

Figure 5.5 visualizes the learned identity operator. The difference between

the reconstructed and the original image is with bare eyes intractable. The

maximum pixel intensity difference between the Lena image (L) and the re-

construction of it was maxij |Lij −GI(L)ij| = 6.9 · 10−3 which corresponds to

2 steps in an 8 bit grey-scale image. While such a small deviation will not

stand-out when affecting the intensity channel, sensible people might perceive
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colour aberrations if the operator was applied channel-wise to an RGB-image.

As it is not possible, to reconstruct an Gabor-filtered image perfectly, we

will compare against the approximative reconstruction scheme, presented by

Lee [Lee96]: a frame {ψγI } (for a definition and constraints on the parameter

set I, see [DS52,Lee96]) is tight when the following equation holds for a given

constant c and a small positive number ε:

∀T : c||T ||2 ≤
∑
I

|〈ψγI , T 〉| ≤ (c+ ε)||T ||2 (5.12)

Lee investigated for which parameter sets I this frame becomes a tight frame

(ε↘ 0). Note that Lee uses complex-valued Gabor-base functions, which does

not make sense in our setting as we do not apply filters to filtered values and

have therefore no complex multiplications. In his definition of the Gabor-base

functions, the amplitude a is part of the definition of ψγ and the position p

is an element of the parameter set I and he uses a pyramid sampling scheme.

For a tight frame the following reconstruction formula may be applied:

T ≈ 2

2c+ ε

∑
I

〈T , ψγI〉ψγI (5.13)

To compare against [Lee96], we sample over 16 directions θ, made three steps

per octave and set the stride h to 0.5. This yields a value for ε of approximately

0.0001, the number of base-vectors was 864.

Figure 5.6 visualizes that even with this very tight frame the quality of this

reconstruction scheme is not high enough to allow for applications in computer

graphics. We cannot expect the frame to be tight enough [SA00].

5.4.2 Edge Aware Imaging

For this edit, we learned randomly linear edge aware filtering kernels: we used

Gabor and Sobel-filters ((1, 2, 1)′ ⊗ (1, 0,−1), we will write: SX,SY). Note

that the parameters of the filter kernels and the intensity of the filters had been
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Figure 5.6: The upper right of the image shows the Lena image reconstructed
by the formula 5.13. The wavelet family forms a frame with δ = 0.0001. The
lower left shows our reconstruction.

drawn randomly and so they were in general not in the set γΞ. Intensities

were always enhanced. We used 1000 editing samples of varying photos for

learning. The resulting filter (Figure 5.8) may be seen as the average of all

projected filter-kernels. It is a good approximation of the sign-inverted discrete

Laplace operator with weights on the diagonals. In comparison with other state

of the art edge aware imaging operators (Figure 5.7), it is noteworthy, that

the learned operator enhances very fine structure and the material still looks

realistic. A physical effect, bound to this appearance, is a higher fibrousness.

5.4.3 Affordance Editing

In this section we will compare our results against pure frequency band scaling.

While there is evidence, that the frequency-bands are subject to a recognition

step [GZ13] and consecutively to a scaling step in the visual cortex, according

to the original perceptional studies, an edge length of a material patch should

cover a viewing angle of 3.5◦. With an edge length of 5 cm on the monitor,
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𝐈 𝟎. 𝟓 ⋅ 𝐒𝐗 + 𝐈  𝐒𝐗 + 𝐈  

𝟎. 𝟓 ⋅ 𝐒𝐘 + 𝐈  𝐒𝐘 + 𝐈  𝐈 

(a) SX and SY

(b) EAW (c) LP

(d) GSX,SY,Γ (Our) (e) Original

Figure 5.7: In the top rows you can see the increasing influence of the Sobel
filters. Beneath we compare the results of two non-linear edge filters: the edge
avoiding wavelets of Fattal et al. (5.7b, [Fat09]) with an exponent of 1.15
(slightly enhancing fine details, see publication) and the local Laplacian filters
of Paris et al. (5.7c, [PHK11]) with σpubl = 0.2 and αpubl = 0.2. The bottom
row shows the result of our algorithm (5.7d) and the original material (5.7e).
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(a) Mesh

0,009 0,033 -0,017 0,040 -0,001

0,054 -0,103 -0,436 -0,123 0,067

0,012 -0,551 3,155 -0,568 0,038

0,072 -0,120 -0,462 -0,090 0,049

0,000 0,053 0,008 0,012 0,023

(b) Values

Figure 5.8: The learned filter.

this corresponds to an observer-distance of approximately 82 cm. We will

confine to the roughen and the undulation operation. The thicken and the

glitter-operator will be compared on bidirectional texture functions (Section

5.4.5).

The comparison edit The influence of the absolute value for the strength of

the edit is not directly comparable. The learned edits were mostly weaker than

the originals. To compensate for that, we made a relaxation step based on the

HDR VDP 2.2-metric as published by Mantiuk et al. in 2015 [NMDSLC15],

by scaling the edit with a positive number s with

s := argminr>0 | d(T ,ET )V DP − d(T , rGET )V DP | (5.14)

to minimize the visual difference between E and GE. Of course rGE :=

r · (GE −GI) + GI

Roughening

Roughening seems to work comparably good in the Fourier-domain (operator

F) and in the Cortex-filter-bank. For stronger edits (Images 5.9c and 5.9d)
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our operator shows less artefacts.

Inflation

For relatively small structures, the undulation-operation works slightly better

in the cortical filter bank (Image 5.10a) than in the fourier domain (Image

5.10b, operator F). For bigger structures, the manipulation in the cortical

filter bank is not capable of reproducing the results of the bandpass filtering

in the Fourier-domain (Figure 5.11).

5.4.4 Spotlight Moving

To make the moving spotlight experiment, we used the BTF-measurements

of the UBO14-database of the university of Bonn [WGK14]. For learning, we

used the leather materials with the numbers 1-3 and 5-12. The testing results

will be presented on the leather4 material. The camera position had been in

the zenith above the material. Material-patches which were illuminated from

a polar angle of approximately 30° against the zenith and from an azimuthal

angle of 0° were considered as unedited material samples. We interpreted

material patches, taken under the same conditions but illuminated from an

azimuthal angle of 15° or −15° respectively as the edited versions of the original

material patch and used those patches for learning the motion of the spotlight.

The results are presented in figure 5.12 and in a short movie in the additional

material.

We can see that small moves of a spotlight can be represented and learned

in the cortical domain.

5.4.5 Editing of High-Dimensional Material Represen-

tations

For an introduction to BTFs see Subsection 2.2.2. Energy preservation and

other expressions of physical phenomena are lost after the editing step. Instead
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(a) G (our) (b) F

(c) G6 (our) (d) F6

Figure 5.9: Comparison of the roughening filter. The original material in the
top right corner.
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(a) G (our) (b) F

(c) G (our) (d) F

Figure 5.10: Inflating a material. The original material in the top right corner.
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(a) G (our) (b) F

Figure 5.11: Inflating a material. The original material in the top right corner.

of using the suggested thicken or the undulation-operator, one may estimate

the surface structure and operate on the new geometry. For higher frequencies,

the inverse optics are highly complicated.

5.4.6 Time Requirement

Experiments have been done on an i7-4770 CPU @ 3.4 GHz with 8 GB RAM.

Learning took between 51′′ (spotlight moving, 5.4.4) and 90′ (edge aware imag-

ing, 5.4.2). The editing step took about 0.4′ for a texture and 40′ for a BTF.

5.5 Conclusion

In this chapter we have presented different linear editing operations based on a

model of the V1-region of the visual cortex. We could show, that it is possible

to reconstruct material patches in an appropriate quality by simple summa-

tion of the filter responses of the suggested Gabor-filter bank (section 5.4.1).

We learned band-pass filtering which shows in many cases less artefacts when
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15° 

-15° 

-15° 
15° 

0° 

Figure 5.12: In the middle of the bottom row, you can see the original material
test-patch. To compare against the real physical operation, we show in the top
row a photography of the same patch, illuminated under an azimuthal angle
of −15° (left) and illuminated under an azimuthal angle of 15° (right). We
compare those results against the application of the spotlight moving-operator
(bottom row, left (−15°) and right (15° )). Here we show only the value channel
of the material patch.
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Figure 5.13: A wool material edited with our new cortex based editing sys-
tem. The bars above and below the letters show the original material. The
background is manipulated by our new edge aware image filter. The letters
are made deeper and more sparkling.
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the corresponding band-pass filter in the fourier domain (section 5.4.3). This

effect might be due to the immanent pre-filtering but we have to pronounce

that prefiltering the bandpass in the fourier-domain is difficult because it varies

between destroying the effect and producing strong sidelobes. Applying those

learned operators to a BTF brought notably better results than the corre-

sponding band-pass filters (section 5.4.5). Above that, we could also learn a

physical effect (section 5.4.4).

An important subset of the appearance space is the set of all realistic ap-

pearances, meaning appearances which are inter-subjectively considered as pic-

torial representations of a real environment like e.g. photos. We have shown,

that starting with a valid element of the space of realistic appearances, the

presented operators define an affine linear subspace with limited diameter.
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CHAPTER 6

Conclusion

In this thesis we explored several techniques to make use of the spatial fre-

quency spectrum of parameter- or reflectance-maps of measured materials for

editing purposes. Frequency or scaling-analysis may be done by linear oper-

ators like the Fourier or the Wavelet analysis. Those two operators have the

additional advantage that they allow for fast analysis and synthesis. In this

thesis we have shown that we can use the Fourier-transform for fast global

similarity detection. This global similarity detector has been used to sup-

port a seed based near regular pattern detector. The combination of the two

algorithms enabled a robust and statistically well founded edit propagation

algorithm for near regular textures.

We presented a more heuristically based approach to image editing by evolv-

ing an image based affordance-editing system to a material based editing algo-

rithm. The most important advantage of the affordance editing system, which

stems originally from visual perception research, is, that it enables plausi-

ble, predictable and meaningful edits. The affordance-editing system is based

on the heuristic observation that enhancing or weakening specific frequency

129
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bands leads to meaningful effects in the material appearance. We observed

that those bands nearly gaplessly cover the whole frequency range of human

V1-cortex filters. This motivated the question whether there are other filtering

constellations in the human visual system that represent physical phenomena.

Consequently the new editing scheme has been driven forward to a cortex-

simulation based material editing system. Our new cortex-transform model

has been parametrized according to measured results from neuroscientific re-

search. We could show, that it is possible to use this new model not only to

represent the known manipulations from the affordance editing system but we

could also learn an edge-enhancing operator and the physical phenomenon of

a slightly moving light-source.

This gives rise to the question whether there exist other optical phenomena

which have linear representations in the visual cortex. As we could pose the

same question with some justification for e.g. the auditory cortex, we want

to formulate our question more general: are there more examples of complex

physical phenomena which have a linear representation in the human brain?
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APPENDIX A

Notation

〈, 〉 Standard inner product:

〈f, g〉L2([a,b]) :=

∫ b

a

fg

|| · || ||f || :=
√
〈f, f〉

¯ Complex conjugate: x+ iy := x− iy
∗ Covolution, for the discrete case in 2D:

(F ∗G)ij =
∑
kl

FklGi−k,j−l

? Correlation, for the discrete case in 2D:

(F ? G)ij =
∑
kl

FklGk−i,l−j

L1(Rn) Space of Lebesgue-integrable functions

L2(Rn) Space of Lebesgue-square-integrable functions



133

A Appearance space

G Model space of neural responses

I Retinal model space

S The upper hemisphere:

S = {x|x3 ≥ 0 ∧ |x| = 1}

C Constant texture

G Discretized Gauss-kernel texture

L
P Patch of a texture

X ,W Test-textures

E Variable edit operation

EΓ Gabor manipulation

EF Fourier edit

EW Wavelet edit

F Fourier-transform

FC Cosine transform

FS Sine transform

M Linear texture transform

P Push-pin

W Wavelet-transform

∆ Laplace operator

Γ Gabor-filter

∂ Boundary operator

γ Gabor kernel

G Gauss kernel

α Probability that a pixel belongs to the foreground

β Phase angle

δ Dirac distribution

θ Elevation angle

µ Mean
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ν Frequency

ξ Parameter-set of Gabor-filter

Ξ All parameter-sets of the Gabor-filter in a given

database

ρ Reflectance distribution

σ Standard deviation

φ Scaling function

ϕ Azimuth angle, orientation of a Gabor filter

ψ Mother wavelet

ω Direction

A Amplitude

Rs,d Reflectance-parameter: specular s and diffuse d

p Position

ep
p
|p|

h Half vector

n Normal vector

UΣV Svd. See [GK65]

P Phenomenon; P : I→ I
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Abbreviations

BRDF: bidirectional reflectance distribution functions page 11

BTF: bidirectional texture function page 11

SVBRDF: spatially varying BRDF page 25

DFMF: decorrelated full matrix factorization page 26

LLS: linear light source page 32

STFT: short time Fourier transform page ??

DFT: discrete Fourier transform page 40

NRT: near regular textures page 59

LGN: lateral geniculate nucleus page 105

rfp: receptive field profile page 105
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Tables

Table 4.1: Affordances in cycles per degree (cpd) in

Giesel and Zaidis work. In the last column,

we give the symbol of the associated scal-

ing operator. The upper F indicates, that

the scaling FD operates on the Fourier-domain.

page 81

Table 4.2: Affordances in frequency-octaves. page 85

Table 4.3: Affordances in cycles per millimetre ([cpmm])

with regard to the metrics of our concrete

BTF-implementation.

page 89

Table 4.7: HDR-VDP-2 error plots for a reference

(Fourier) gain factor of FK = 2. The horizon-

tal axis is the wavelet gain factor Wk, and the

vertical axis the type of wavelet (D1–D6).

page 89
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Table 4.4: Scaling of the wavelet-edit strength by edit

type and fourier-edit strength.

page 90
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List of Figures

Figure 1.1: A direction and the elevation angle and the

azimuth.

page 6

Figure 3.1: Pushpins for edit propagation. page 55

Figure 4.1: Appearance Bending. page 79

Figure 1.4: Linear Subspaces of the Appearance Space. page 9

Figure 2.1: The BRDF is the quotient between the incom-

ing irradiance E confined to a direction ωi and

the outgoing radiance L, confined to ωi.

page 17
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Figure 2.2: To explain perspective drawing, Leon Battista

Alberti uses as early as 1436 visual rays for

his argumentation (left image). Though visual

rays lost their ontological meaning since then,

they describe exactly the concept which has

been used in the early raytracing algorithms

from the 1960’s (right image from [App68]).

page 18

Figure 2.3: The parameters of a BRDF. page 23

Figure 2.4: The camera dome. From [FH09]. page 27

Figure 2.5: BTF-compression by the DFMF. page 28

Figure 2.6: The camera dome. 151 consumer-class, off-

the-shelf cameras with an image resolution

of 2048 x 1536 pixel have been assembled to

cover a hemisphere with a radius of 1 meter.

The cameras flashlights are used as directional

light sources. Figure taken from [MK05].

page 29

Figure 2.7: Photo of the linear light scanning device.

From [GTHD03].

page 32

Figure 2.8: Comparison between scale and frequency,

based on the result of the Matlab function

scal2frq.

page 43

Figure 2.9: The downsampling scheme of the fast wavelet

transform. Subsampling (↓ 2) is part of the

definition of H and G.

page 47

Figure 2.10: The downsampling scheme for two dimensional

wavelets.

page 48
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Figure 2.11: Scaling and wavelet function for Daubechies

db6 wavelet. The right plot shows the

frequency response, which approximates a

low-pass and a band-pass filter.

page 49

Figure 2.12: Frequency response of the rotated scaling and

wavelet function for Daubechies db6 wavelet.

page 49

Figure 3.1: Pushpins for edit propagation. page 55

Figure 3.2: Teaser for the PushPins algorithm. page 56

Figure 3.3: Overview over the pushpin based foreground

segregation algorithm

page 62

Figure 3.4: The mask resulting from the SVM classifica-

tion step.

page 63

Figure 3.5: The effect of regularization to pushpins.

From left: the response of the original tile to

an unregularized pushpin, the reponse to a

regularized pushpin, the response of distorted

material-patch to the unregularized pushpin

and the reponse of the same material-patch to

the regularized filter.

page 64

Figure 3.6: On the left side you can see in light blue the

filter response of a pushpin with nailhead

radius approximately equal to the size of half

a small square on the right side we used a

pushpin with a nailhead radius approximately

equal to half a big square.

page 65
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Figure 3.7: Two different runs of mean shift belief propa-

gation on the grey mesh material.

page 67

Figure 3.8: The left image shows the grey mesh material,

the image in the middle depicts the filter

response of a pushpin applied to the volume

channel of the diffuse color of the grey mesh

material and the third image shows the result

of MSBP on a combined map of the filter

response and the diffuse channel. Now the

lattice detection is extremely stable.

page 67

Figure 3.9: On the top the binary mask, on the right the

original superposed mask and on the left the

mixed mask.

page 70

Figure 3.10: On the left a patch from the original SVBRDF-

channel with the stroke input the second image

shows the mask generated by RepSnapping.

The third mask is the result of AppProp and

the last mask is our result. The first row shows

the grey mesh material the second row shows

a metal.

page 74

Figure 3.11: On the left the original material in the middle

a rather subtle edit of Rd, on the right a more

noticeable manipulation of Rs.

page 75

Figure 3.12: In the close-up of the edit of the grey mesh ma-

terial one may see that the editing boundary

coincides exactly with the perceived boundary

of the foreground material.

page 75
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Figure 3.13: A shiny material. page 75

Figure 3.14: The edited metal material. page 76

Figure 4.1: Appearance Bending. page 79

Figure 4.2: From [GZ13]: Material patches, used in Giesel

and Zaidis affordance classification experi-

ments. The researchers cropped 256 color

images of fabrics to a size of 150 x 150 pixels.

Images were presented on a monitor against a

black background. The viewing distance was

70 cm.

page 82

Figure 4.4: The green bars indicate the frequency dis-

tribution in [cpd] of our new computational

cortex model, presented in Chapter 5. Beneath

this distribution we illustrated the frequency-

range of the editing operator. Note, that

the frequency values on the x-axis increase

exponentially, meaning that octaves have

constant width.

page 86

Figure 4.8: A comparison of Fourier- and wavelet-edited

materials. Note that the strength of the

editing operator, k, has been adapted to

obtain the best possible match according to

HDR-VDP-2 [MKRH11].

page 91
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Figure 4.9: Comparison of Fourier (top) and wavelet

(bottom) editing for the “roughen” operator.

From left to right: k = 0.5, k = 1 (identity),

k = 2. Note the absence of regularly patterned

artifacts in the wavelet results, even for a gain

factor of k = 2.

page 92

Figure 4.10: ER applied to a wool material. page 92

Figure 5.3: The histogram of macaque frequency distribu-

tion [DVAT82], extended to human vision.

page 110

Figure 5.4: From [Lee96]: an ensemble of Gabor wavelets

in the frequency domain.

page 114
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[Küp24] Karl Küpfmüller. Transient phenomena in wave filters. Elektr.

Nachrichtentechn., 1(5):141–152, 1924.

[KZ04] Vladimir Kolmogorov and Ramin Zabin. What energy functions

can be minimized via graph cuts? IEEE transactions on pattern

analysis and machine intelligence, 26(2):147–159, 2004.



Bibliography 153

[LBBS17] Valero Laparra, Alex Berardino, Johannes Ballé, and Eero P
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