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Abstract

The best-established theory of particle physics up to now is the Standard Model.
The theory of strong interactions called quantum chromodynamics (QCD) is a
part of it. QCD leads to a wide range of phenomena, which still need to be
understood. For example, many experiments showed that the spectrum of QCD
bound states contains many states that are inconsistent with the most simple
quark model. To gain a better insight into their nature, theoretically sound stud-
ies are required, which preserve fundamental physical properties such as Lorentz
invariance, causality and probability conservation. The problem is complicated
because the standard perturbation theory approach in the strong coupling con-
stant is not applicable at the hadronic scale. A proper alternative method is
dispersion theory, which includes analyticity, unitarity and crossing by construc-
tion. However, its application is restricted to low energies due to the opening
of inelastic channels. Therefore, this thesis aims to construct an effective high-
energy extension of the dispersive framework in two subprojects.
The first project introduces a scattering matrix and form factor parametriza-

tion for ππ-interactions, which is applicable from threshold to about 2 GeV. We
focus primarily on the rich spectrum provided by the isoscalar, scalar final state
rescattering of the channels ππ and KK̄. In our method additional channels
to those two are coupled by s-channel resonance exchange. An application to
the decays B̄0

s → J/ψππ and B̄0
s → J/ψKK̄ allows for the extraction of the

scalar, isoscalar form factor up to about 2.2 GeV. In this approach the J/ψ
acts as a spectator and hence does not interact with the other final states. An
analytic continuation of the form factor allows us to extract resonance poles for
the f0(1500) and f0(2020).
The second project expands on providing a fully analytic and unitary solution

to the three-particle decay amplitudes. While the previous project assumes one
particle to be a spectator, we now allow for pairwise rescattering of all three
particles. For this we consider the decay Υ(5S) → Υ(nS)ππ with n = 1, 2, 3.
While the ππ scalar spectrum is fixed by the previous analysis we include the
exotic resonances Z±b (10610) and Z±b (10650) in the Υ(nS)π spectrum. Due to
their closeness to the BB̄? and B?B̄? thresholds, respectively they are modeled
as hadronic molecules by dynamic rescattering of these channels and further in-
elastic effects. Two approaches in order to determine the ππ S-wave amplitude
for the Υ(1S)ππ final state are employed. The first method is the standard
integration along the Khuri-Treiman path. On the other hand, the second ap-
proach employs a spectral density integral for the crossed-channel amplitude
to determine the partial-wave projection analytically. Both are consistent with
each other, allowing us to use the second approach for the Υ(nS)ππ final states
with n = 2, 3. An application to the Dalitz plot data is in progress.
Parts of this thesis have been published in the following articles:

• S. Ropertz, C. Hanhart and B. Kubis, A new parametrization for the scalar
pion form factors, Eur. Phys. J. C78 (2018) 1000 [arXiv:1809.06867 [hep-
ph]]
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1. Introduction

The ultimate goal of particle physics is to find a theory that unifies the four
fundamental forces the electromagnetic-, strong-, weak force and gravitation.
The Standard Model of particle physics covers the first three, while the inclusion
of gravitation has not been definitive yet. It is a local, Poincaré invariant locally
gauge invariant quantum field theory that describes the interaction of quarks
and leptons by the exchange of gauge bosons. These include the photon for
electromagnetic interactions, the Z and W± for the weak interaction and the
gluon for the strong force. Since the massive gauge bosons would spoil the gauge
symmetry, their masses are introduced by spontaneous symmetry breaking. This
mechanism at the same time leads to the Higgs boson.
Of primary interest in this thesis is the strong force, explained by the quan-

tum field theory called quantum chromodynamics (QCD), which describes the
interaction between quarks and gluons. In contrast to the theory of electro-
magnetic interactions, called quantum electrodynamics (QED), not only the
fermions carry a (color) charge but also the gauge bosons. This allows for a self-
interaction between the latter. The physical QCD bound states are color neutral
objects formed by quarks and gluons. Therefore there are no colored asymptotic
states. This property of QCD is called confinement. These QCD bound states,
called hadrons, are categorized as either mesons (bosons) or baryons (fermions).
In the conventional quark model mesons consist of a quark and an antiquark
and baryons of three quarks. While this has been fairly successful in describing
a large fraction of the spectrum, there are still exotic states which are not con-
sistent with the model predictions. For such states more sophisticated models
are required. These are e.g. states consisting of more than three quarks such as
tetra- and pentaquarks. There are also candidates for glueballs, which consist
only of gluons. Another model for exotics is a hybrid state containing con-
stituent quarks and gluons, which contribute to the overall quantum numbers.
Additionally, bound states of hadrons, so-called hadronic molecules, are excel-
lent candidates to explain many of the exotic states. In order to understand the
construction of QCD bound states, especially exotica, it is necessary to study
the hadronic spectrum and strong transitions between different states.
Calculations in the standard model are often performed in a perturbation the-

ory between fermions and gauge bosons as well as gauge bosons among them-
selves employing the strong coupling constant as an expansion parameter. As
this parameter is subject to renormalization, it depends on the energy scale
of the process. For the series to converge, the coupling constant needs to be
small. While the perturbation theory works with astounding precision for QED,
it is inadequate for QCD below 4 GeV due to a sizable coupling constant. At
higher energies the theory is asymptotically free as the running coupling con-
stant approaches zero. Since QCD shows a broad spectrum of states below
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1. Introduction

2 GeV experimentally, another framework is necessary for that energy region.
In order to describe hadronic interactions, effective field theories play an im-

portant role. They allow for perturbative calculations within a new power-
counting scheme, while still retaining the symmetries of the original theory.
However, this framework introduces several parameters, which either need to be
matched to the underlying theory or extracted from experiments. Furthermore,
its range of applicability is limited by non-perturbative effects at higher ener-
gies such as resonances. Using appropriate tools this problem can be alleviated,
however a breakdown still occurs at higher energies.
Based on first principles, it is numerically possible to solve QCD by discretiza-

tion of the space-time. This so-called Lattice QCD is another successful branch
of hadron physics and shows promising results not only for light quarks but also
in the charm and bottom sector. The trade-off, except for numerical artifacts
such as finite lattice size and spacing, is that the calculations are very expensive.
Furthermore, it requires a significant theoretical effort to extract the hadronic
spectrum from Lattice QCD. On the other hand, this can give great insight into
the nature of these states.
The last approach, which will be the focal point of this thesis, is S-matrix the-

ory. It allows for a proper description of the amplitude and its analytic structure
while retaining the constraints given by unitarity and crossing symmetry. This
is not only useful to constrain Standard Model properties such as CP -violating
phases but also for the particle identification in hadron spectroscopy. However,
this approach is in principle limited by the prerequisite knowledge about the
amplitude on the real axis, which needs to be determined separately.
The thesis is focused on three-particle heavy meson decays. They provide a

large phase space, which allows for the extraction of a rich spectrum in the final
state. We put much emphasis on the exotic meson states. In order to extract
correct information about their nature, it is crucial to employ a proper param-
eterization of the amplitude. For example, the often-used sum of Breit-Wigner
amplitudes violates unitarity and analyticity. Hence they are unfavorable for
spectroscopy.
This thesis is structured as follows: Chapter 1 gives an introduction to the

theoretical framework used in hadron physics. This not only includes an in-
troduction to QCD and its effective field theories but also an introduction to
S-matrix theory and its applications to hadron spectroscopy.
An effective parametrization for the isoscalar S-wave interaction of pions and

kaons to higher energies is provided in chapter 2. The framework is then applied
to extract isoscalar, scalar form factors from the decays B̄0

s → J/ψππ and
B̄0
s → J/ψKK̄. The corresponding resonance poles are then extracted via Padé

approximants.
Chapter 3 generalizes the framework to include crossed-channel rescattering,

which is modeled by a unitary analytic function. We provide a proper analytic
calculation for the partial-wave projection of an amplitude with a right-hand
cut, which can be used in an inhomogeneous Omnès problem. As an example,
we solve it for the decay Υ(5S)→ Υ(nS)ππ with n = 1, 2, 3 in two approaches,
which are shown to be consistent with each other. While the previously de-
termined amplitudes describe the ππ isoscalar S-wave spectrum, the Υ(nS)π

8



1.1. Standard Model of particle physics

spectrum shows two exotic resonances Z±b (10610) and Z±b (10650), which will
be described by unitary B meson rescattering with additional inelastic contri-
butions.
The thesis closes with a summary and an outlook.

1.1. Standard Model of particle physics

Symbol particle content SU(3)c SU(2)L

left handed quark qL

(
uL
dL

)
,
(
cL
sL

)
,
(
tL
bL

)
[3] [2]

right handed quark qR
uR , cR , tR
dR , sR , bR

[3] [1]

left handed lepton ψL

(
eL
νe

)
,
(
µL
νµ

)
,
(
τL
ντ

)
[1] [2]

right handed lepton ψR eR , µR , τR [1] [1]

gluon g g [8] [1]

W boson W W± , W 0 [1] [3]

Z boson Z Z [1] [1]

photon γ γ [1] [1]

Table 1.1.: Representation of the standard model particle content under SU(3)×
SU(2)L ×U(1)Y symmetry

The Standard Model of particle physics [1, 2, 3, 4] is a quantum field theory,
which simultaneously describes the electroweak and the strong interaction. The
tremendous efforts to include gravitation into the scheme were so far unsuccess-
ful.
Quarks and leptons are the fundamental fermionic particles. Whereas the

latter only take part in the electroweak interaction, quarks are also subject to
the strong one.
There are strong phenomenological evidences that quarks (q) and leptons

(ψ) as well as their antiparticles come in three families. Each one consists of
a doublet under the weak interaction. For leptons they are electron (e) and
electron-neutrino (νe), muon (µ) and muon-neutrino (νµ) as well as tauon (τ)
and tauon-neutrino (ντ ). The quark families consist of up- (u) and down-quark
(d), charm- (c) and strange-quark (s) as well as top- (t) and bottom-quark (b).
In the Standard Model, the strong, weak and electromagnetic force are com-

bined into a SU(3)c × SU(2)L × U(1)Y gauge theory. The SU(3)c denotes the
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1. Introduction

color group corresponding to the strong interaction. On the other hand, the
electroweak part is covered by the gauge group SU(2)L×U(1)Y . Note that only
left-handed particles transform non-trivially under the SU(2)L group, which is
the origin of the parity violation of the weak interaction.
In order to allow for local gauge symmetries, several gauge bosons need to be

introduced. These correspond to the 8 gluons (g) for the strong, the W± and
Z bosons for the weak and the photon (γ) for the electromagnetic interaction.
As a mass term of the W± and Z would break the SU(2)L-symmetry, masses

need to be introduced dynamically via the Higgs mechanism [5, 6], which was
experimentally confirmed in 2012 [7, 8]. In order to do that, a scalar Higgs field
is introduced, which transforms as a doublet under SU(2)L. It is coupled via
a Yukawa term to the quark and lepton fields. The Higgs potential has a non-
trivial degenerate vacuum, which produces a spontaneously broken symmetry.
Through this, theW and Z gauge bosons as well as the quarks and leptons gain
an effective mass. Although some of the neutrinos have a non-vanishing mass,
as indicated by e.g. neutrino oscillations [9, 10, 11], a mechanism to produce
these is not yet clear.

1.2. Quantum chromodynamics

1.2.1. Introduction

The theory of strong interactions is governed by a quantum field theory named
quantum chromodynamics (QCD) [4, 12]. It corresponds to the SU(3)c gauge
theory mentioned previously and thus considers the quarks qi, antiquarks q̄i and
gluons ACµ as degrees of freedom.
The theory is described by the renormalizable Lagrangian density

LQCD =
∑

f=u,d,s,c,b,t

q̄af

(
iDab

µ γ
µ −mfδ

ab
)
qbf −

1

4
(Ga)µν(Ga)µν , (1.1)

with the covariant derivative

Dab
µ = ∂µδ

ab − igλabc Acµ (1.2)

and the gluonic field strength tensor

(Ga)µν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν . (1.3)

Here the λabc correspond to the adjoint representation of the SU(3)c generators.
The structure constants fabc are defined through the algebra

[λa, λb] = ifabcλc . (1.4)

While the quarks transform under the fundamental representation

qf → exp

(
−iφa(x)

λa
2

)
qf = U [x] qf (1.5)
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1.2. Quantum chromodynamics

the antiquarks are transforming under the antifundamental representation

q̄f → q̄f exp

(
iφa(x)

λa
2

)
= q̄f U

†[x] . (1.6)

In order to yield a gauge invariant Lagrangian density the gluon field needs to
transform as

Aµ = λaA
a
µ → U [x]AµU

†[x]− i

g
(∂µU [x])U †[x] . (1.7)

It is easy to proof, that the field strength tensor transforms according to the
adjoint representation

Gµν = λa(G
a)µν → U [x]GµνU

†[x] . (1.8)

Note that we omitted the QCD-Θ term defined by

LΘ =
g2Θ

32π2
εµνρσ(Ga)µν(Ga)ρσ . (1.9)

This term is gauge invariant and of mass dimension four and thus in principle
needs to be included in the standard QCD-Lagrangian. However due to the
Levi-Civita-tensor it transforms odd under parity (P ). As charge parity (C)
is still conserved this term introduces a CP -violation, leading to e.g. a non-
vanishing neutron electric dipole moment. A careful estimation of Θ leads to
an upper limit |Θ| ≤ 2.5 · 10−10 [13]. The reason why CP -violating term is so
small has not yet been understood. For all the following calculations it can be
safely ignored.
The renormalization group dictates, that the strong coupling constant

αs =
g2
s

4π2
(1.10)

depends on the transferred momentum Q of the interaction. This dependence
can be extracted from several experiments. The corresponding results for dif-
ferent values of Q are shown in Fig. 1.1. It shows that at large Q αs becomes
smaller, such that a perturbation theory should converge for Q > 4 GeV. This
phenomenon is called asymptotic freedom. However, at low momentum trans-
fers it becomes large and a perturbation theory in the coupling constant can no
longer be used.
As indicated by experiment and Lattice QCD, QCD at low temperatures is in

its confining phase. This means that asymptotic states are formed only as bound
states of quarks and gluons in a color singlet, whereas color charged objects are
never observed. The usual qualitative explanation of this phenomenon is that
the gluons, which are exchanged between two color charged objects, will form
a narrow flux tube carrying energy. By increasing the distance between the
charges or equivalently decreasing the momentum transfer, the energy density
will increase to a point, such that it is eventually energetically more favorable
to break the flux tube and generate a color-anti-color pair from the vacuum.
Thus two color neutral objects are created. An analytical proof of confinement

11



1. Introduction

QCD αs(Mz) = 0.1181 ± 0.0011

pp –> jets
e.w. precision fits (N3LO)  

0.1

0.2

0.3

αs (Q
2)

1 10 100
Q [GeV]

Heavy Quarkonia (NLO)

e+e–   jets & shapes (res. NNLO)

DIS jets (NLO)

April 2016

τ decays (N3LO)

1000

 (NLO

pp –> tt (NNLO)

)
(–)

Figure 1.1.: Strong running coupling constant. The figure is taken from Ref. [14].

by non-abelian gauge theories such as QCD still remains to be shown. The
intrinsic scale, which is set by renormalization, is the perturbatively calculated
QCD Landau pole ΛQCD, at which αs diverges. It is found to be about 200 to
400 MeV. However, since its exact value is dependent on the loop order of the
renormalization, it is nowadays not quoted anymore.
Since the asymptotic states of the theory are bound states of gluons and

quarks, called either mesons (integer spin) or baryons (half-integer spin), an
effective theory is needed describing their interaction, which is consistent with
the underlying theory, namely QCD.

1.2.2. Global symmetries of the QCD Lagrangian

Scale separation

According to the Weinberg conjecture [15, 16] the S-matrix, calculated from the
most general Lagrangian, containing all terms consistent with the assumed sym-
metry, will give the most general possible S-matrix consistent with perturbative
unitarity, analyticity, cluster decomposition and symmetries. A first application
to QCD has been done in Refs. [17, 18]. For a broader introduction to this topic
we refer to Refs. [19, 20, 21], whose reasoning we follow.
As the quarks are not asymptotic states, their masses cannot be measured

12



1.2. Quantum chromodynamics

directly. Thus they turn out to be scale-dependent quantities.
The PDG [14] quotes the most recent world averages for the light quarks u

and d as
mu =

(
2.16+0.49

−0.26

)
MeV andmd =

(
4.67+0.48

−0.17

)
MeV (1.11)

as well as s
ms = (93+11

− 5) MeV , (1.12)

where the MS-scheme fixed at a scale of 2 GeV was employed.
The top quark is so heavy that it decays before it can hadronize. However

the other two heavy quarks, namely charm and bottom quark, build hadronic
states. Their masses are

mc = (1.27± 0.02) GeV andmb = (4.18+0.03
−0.02) GeV , (1.13)

where the MS-scheme at the scale of the heavy mass was employed.
The lightest mesons are the pseudoscalar pions, kaons and the eta. These are

associated as the pseudo-Goldstone bosons of the spontaneously broken chiral
symmetry, as will be explained later. A rough estimate for the chiral breakdown
scale is given by Λχ ≈ 4πFπ ≈ 1170 MeV [22], where Fπ denotes the pion decay
constant. The first hadronic resonances show up at roughly 1 GeV, such as the
ρ meson at about 770 MeV. As resonances are genuine non-perturbative effects,
which cannot be described by a pure perturbation theory using the Goldstone
bosons, the breakdown scale might be even lower. Therefore using either of
these scales, we can separate the physics of the light quarks u, d and s from
those of the heavy quarks c and b.

Chiral symmetry

Projecting the quarks on their left- and right-handed components

qL/R = PL/R q with PL/R =
1

2
(1∓ γ5) (1.14)

allows us to rewrite the fermionic Lagrangian density as

Lfermion
QCD =

∑

f=u,d,s,c,b,t

q̄LfDµγ
µqLf − q̄Rf mfq

L
f + (L↔ R) . (1.15)

Let us furthermore focus on the light quarks only. As discussed in Sect. 1.2.2
the mass of up and down quark is small compared to ΛQCD. Although the
corrections coming from the strange quark are larger we first assume mu =
md = ms = 0. In this case the Lagrangian density reduces to

Lfermion
QCD =

∑

f=u,d,s

q̄LfDµγ
µqLf + q̄Rf Dµγ

µqRf . (1.16)

This term shows a global U(3)L ×U(3)R symmetry, which can be written as




uL
dL
sL


 ,



uR
dR
sR




 = (~qL, ~qR)→

(
e−iΘ

L
a
λa
2 e−iΘ

L
~qL, e

−iΘRa
λa
2 e−iΘ

R
~qR

)
.

(1.17)
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1. Introduction

In the following we refer to this as chiral symmetry. A more preferable way
to write this global symmetry group is U(3)L × U(3)R ∼= SU(3)V × SU(3)A ×
U(1)A × U(1)V . Here V stands for a vector-transformation and can be written
in the following way

(~qL, ~qR)→ (e−iΘ
V
a
λa
2 e−iΘ

V
~qL, e

−iΘVa
λa
2 e−iΘ

V
~qR) . (1.18)

The axialvector transformation denoted withA on the other hand can be parametrized
as

(~qL, ~qR)→ (e+iΘAa
λa
2 e+iΘA~qL, e

−iΘAa
λa
2 e−iΘ

A
~qR) . (1.19)

As a parity doubling of states is not observed experimentally, we need to as-
sume that the chiral symmetry is spontaneously broken. Since the Vafa-Witten
theorem [23] prevents vector-like symmetries from being broken, it follows that
the only possible scenario is U(3)L × U(3)R

SSB→ SU(3)V × U(1)V × U(1)A. In
principle, this would produce nine Goldstone bosons. However, the U(1)A sym-
metry is broken by an anomaly, and thus we are left with π±, π0, K±, K0, K̄0

and η whereas the anomaly dominates the η′ mass.
Note that the chiral symmetry is explicitly broken due to the non-vanishing

quark masses. Thus the Goldstone bosons gain a non-vanishing mass. However
as ms � (mu + md)/2 we also see a chiral symmetry concerning only u and d
quarks works better than also including the s quark.

Chiral perturbation theory

In the following, we want to establish a quantum field theory describing the
interactions of the Goldstone bosons among themselves. In this context, we
apply the Weinberg conjecture [24], which states that any plausible quantum
field theory does not contain anything else besides analyticity, unitarity, cluster
decomposition and symmetries. To achieve this goal, we first need the transfor-
mation properties of the Goldstone bosons.
The QCD Lagrangian is invariant under the group G = U(3)L × U(3)R and

thus every state Φ within its Hilbert space H will transform under a non-linear
realization f of G. For every g ∈ G we may now define it as

f(g, Φ) = Φ̃ ∈ H . (1.20)

Let 0 denote the ground state of QCD. Then we know that it is invariant under
h ∈ H = U(3)V as defined in Eq. (1.18) or explicitly f(h, 0) = 0. However, every
g /∈ H produces a non-trivial state f(g, 0) = πg, which can be identified with
the Goldstone bosons. In fact we may restrict ourselves to the left cosets gH =
{gh|h ∈ H} as every g̃ ∈ gH produces the same state from the ground state.
Therefore we have a correspondence between the quotient G/H = {gH|g ∈ G}
and the Goldstone bosons.
Look now explicitly at g̃ ∈ G which can be defined through g̃ = (L̃, R̃) with

L̃, R̃ ∈ U(3)L,R. The left coset may also be written as

g̃H = (L̃, R̃)H = (1, R̃L̃†)(L̃, L̃)H = (1, U)H with U = R̃L̃† . (1.21)

14



1.2. Quantum chromodynamics

Thus U represents the coset and can be used to specify the Goldstone bosons.
Since L̃ and R̃ are both SU(3) matrices also U can be parametrized as such. A
typical realization is given by

U(x) = exp

(
i
φ(x)

F0

)
(1.22)

where F0 denotes the meson decay constant in the chiral limit. The Goldboson
matrix φ(x) is then expressed as

φ(x) =

8∑

a=1

λaφa(x) =



π0 + η/

√
3

√
2π+

√
2K+

√
2π− −π0 + η/

√
3
√

2K0
√

2K−
√

2K̄0 −2η/
√

3


 . (1.23)

Furthermore it is easy to see that under chiral transformations g = (L,R) ∈ G
it transforms as

U → U ′ = RUL† . (1.24)

With this we have introduced the Goldstone boson fields and their transfor-
mation properties under chiral symmetry. Furthermore as they stem from axial
transformations they have the quantum numbers JP = 0−. However, in order
to obtain a systematically improvable effective field theory, we need to introduce
a power counting scheme [15], which allows us to estimate the importance of
different terms and thus also the accuracy of a perturbation calculation to a
given order. Considering that the momenta of the Goldstone bosons are small
compared to Λχ, an expansion in the ratio is sensible. In a theory with only
Goldstone bosons, Lorentz symmetry restricts the Lagrangian to even powers
in the momenta, thus the pure Goldstone boson Lagrangian may be ordered as

Lχ =

∞∑

n=0

L(2n)
χ with L(2n)

χ = O
((

p2

Λ2
χ

)n)
. (1.25)

The term L0
χ does not contain any momentum dependence and thus will give an

offset, which can be safely ignored. Consequently the lowest order term starts
at order O((p/Λχ)2) and can be written as

L(2)
χ =

F 2

4

〈
∂µU∂

µU †
〉
, (1.26)

where < · · · > denotes a trace in flavor space.
Vector- vµ and axial-vector sources aµ can be included by replacing ∂µ by the

covariant derivative

∂µU → DµU = ∂µU − irµU + iUlµ (1.27)

with
rµ = vµ + aµ and lµ = vµ − aµ , (1.28)

which ensures that it transforms under chiral symmetry covariantly

DµU → RDµUL
† . (1.29)
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1. Introduction

Scalar s and pseudoscalar sources p on the other hand are included by

χ = 2B(s+ ip) , (1.30)

which need to transform as
χ→ RχL† (1.31)

in order to preserve chiral symmetry.
Overall the full lowest order Lagrangian is then given as

L(2)
χ =

F 2

4

〈
DµUD

µU †
〉

+
F 2

4

〈
χU † + Uχ†

〉
. (1.32)

The decay constant F can be determined to each order in p2 by e.g. coupling
the Goldstone boson fields to a an external axial-vector current aµ = Aµaλa.
Then the transition matrix element can be evaluated as

〈0 |aµ|φb(q)〉 =
∑

a

iqµδabF0 . (1.33)

Thus F0 can be determined by the weak decays of the concerning meson such
as Fπ = (92.3± 0.1) MeV [14] from the decay π+ → l+νl.
By employing the spurion technique it is possible to introduce the explicit

chiral symmetry breaking through the non-vanishing quark masses. The Gell-
Mann-Oakes-Renner relations say that the squared pion mass is proportional
to the quark mass [25]. Therefore chiral symmetry breaking will contribute to
order p2 = m2

π through the term s = diag(mu,md,ms) =M resulting in

L(2)
χ =

F 2

4

〈
∂µU∂

µU †
〉

+
F 2B2

2

〈
MU † + UM†

〉
. (1.34)

The free parameter B can be determined to leading order by comparing the
energy density of the ground state between full QCD and the effective field
theory with U = 1

∂ 〈0|HQCD|0〉
∂mq

∣∣∣∣
mu=md=ms=0

=
∂
〈

0|H(2)
χ |0

〉

∂mq

∣∣∣∣∣∣
mu=md=ms=0

, (1.35)

which is equivalent to
3F 2B = −〈0|q̄q|0〉 . (1.36)

For an effective field theory it is important that the Weinberg power count-
ing scheme [15] is not disturbed by renormalization. Hence it is necessary to
determine the chiral dimension of each loop diagram. Following the discus-
sion presented in Ref. [21], consider a loop diagram A involving only Goldstone
bosons. It contains L loops with overall I internal lines and Vd vertices of chiral
order d. In terms of momenta p it scales as

A ∝
∫ (

d4p
)L

(p2)I

∏

d

(
pd
)Vd

(1.37)
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1.2. Quantum chromodynamics

By rescaling the momenta p→ Λp the amplitude transforms as

A→ ΛνA with ν = 4L− 2I +
∑

d

d Vd . (1.38)

Using momentum conservation at each vertex it is possible to relate the number
of loops to the internal lines and vertices, which allows us to rewrite the chiral
dimension of the diagram ν as

ν = 2L+ 2 +
∑

d

Vd (d− 2) . (1.39)

As d ≥ 2 the chiral dimension is always positive. Furthermore each additional
loop suppresses the chiral order of the diagram by (p/Λχ)2. For a broader
renormalization scheme involving also baryons we refer to Refs. [26, 27].

Heavy quark symmetries

Not only light quarks and their symmetries but also heavy ones are of interest.
In correspondence to the large mass gap between mq and mQ with q = u, d, s
and Q = c, b it is possible to derive a heavy quark effective theory (HQET)
under the assumption mQ → ∞ [28, 29, 30, 31, 32] and include systeamtically
the corrections of order O (ΛQCD/mQ). For a more detailed introduction we
refer to Refs. [33, 34, 35]. We will explicitly follow the construction presented
in Ref. [36].
Consider a hadron composed of a heavy quarkQ and some light quark content.

Its momentum can be written as

pµhad = mhad v
µ , (1.40)

where mhad is the hadron mass and vµ is the hadron velocity with v2 = 1. The
momentum of the heavy quark on the other hand can be expressed as

pµQ = mQv
µ + kµ . (1.41)

Considering only strong interactions the hadron is bound by the exchange of
soft gluons, which sets the scale kµ ≈ ΛQCD. The quark velocity therefore can
be obtained by

vµQ = vµ +
kµ

mQ
. (1.42)

Thus the heavy quark and hadron velocity are the same up to corrections of
order ΛQCD/mQ. For mQ →∞ this factor is suitable for a perturbation theory.
It is possible to define the velocity eigenstates

Q± = P±v Q with P±v =
1

2
(1± /v) . (1.43)

The projectors have the property

/vP±v = ±P±v . (1.44)
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1. Introduction

Therefore Q+ can be interpreted as moving along the hadron state, while Q−
has a negative velocity.
In order to separate both contributions in a quantum field theory it is possible

to apply a momentum boost in order to either obtain a solution for a heavy quark

h+
v = eimQ(v·x)Q+ and H+

v = eimQ(v·x)Q− (1.45)

or a heavy anti-quark

h−v = e−imQ(v·x)Q− and H−v = e−imQ(v·x)Q+ . (1.46)

Note that this procedure has also been applied to pion–nucleon interaction [19,
37, 38, 39, 40].
Using the particle solution the heavy quark Lagrangian

LHQ = Q̄
(
i /D −mQ

)
Q (1.47)

leads to

LHQ = h̄+
v ivµD

µh+
v − H̄+

v {ivµDµ + 2mQ}H+
v + h̄+

v i /D
⊥
H+
v + H̄+

v i /D
⊥
h+
v ,
(1.48)

where
/D = /vvµD

µ + /D
⊥ and /D

⊥
= γµ (gµν − vµvν)Dν . (1.49)

As now the field H+
v contains the heavy scale mQ it will be integrated out in

the path integral formalism [36]. Therefore it leads to the non-local operator

LHQ = h̄+
v ivµD

µh+
v − h+

v /D
⊥ 1

ivµDµ + 2mQ − iε
/D
⊥
h+
v . (1.50)

With the assumption that the eigenvalue of vµDµ is small compared to mQ the
operator can be expanded as the well-known terms [41, 42, 43, 44]

LHQ = h̄+
v ivµD

µh+
v +Kv +Mv +O

(
Λ2

QCD

m2
Q

)
(1.51)

with
Kv =

1

2mQ
h+
v D

µ (gµν − vµvν)Dνh+
v (1.52)

and
Mv =

g

4mQ
h̄+
v σ

µνFµνh
+
v . (1.53)

With v = (1, 0, 0, 0)t the term Kv corresponds to the non-relativistic kinetic
energy and Mv is the Pauli term, which describes the chromomagnetic coupling
of the gluon to the heavy quark. As expected from comparison to QED the
chromomagnetic moment scales with m−1

Q . For heavy mesons containing one
heavy quark the Lagrangian reads to leading order

LHQ = h̄+
v ivµD

µh+
v . (1.54)
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1.2. Quantum chromodynamics

As this term does not contain any Dirac structure a heavy quark spin symmetry
SU(2)v arises, which is consistent with e.g. the small mass difference between
the B and B?-meson. A heavy spin symmetry transformation can be applied
as [35]

hv → h′v = exp

(
i

3∑

k=1

εkS
v
k

)
hv (1.55)

and

h̄v → h̄′v = h̄v exp

(
−i

3∑

k=1

εkS
v
k

)
(1.56)

with the generators

Svk =
i

4
εkmn

[
/em, /en

]
P+
v . (1.57)

The vectors eµm define a set of spacelike orthonormal vectors, which are orthog-
onal to vµ

(em)µ(en)µ = −δmn and vµ(em)µ = 0 . (1.58)

Furthermore as the Lagrangian also does not depend onmQ it would introduce
a heavy flavor symmetry. Limitations of heavy quark spin symmetry are shown
by the mass difference of the heavy quark spin partners

mD? −mD ≈ 140 MeV and mB? −mB ≈ 45 MeV , (1.59)

as they are supposed to vanish.
For heavy quarkonia, the delicate balance between potential and kinematic

energy dictates that the term Kv cannot be neglected [45]. Therefore they break
heavy flavor symmetry while still retaining heavy spin symmetry.

Heavy meson chiral perturbation theory

In the previous section we introduced heavy quark symmetries. However, as
only hadrons, consisting of quarks and gluons, are observed in experiment, it is
advantageous to formulate an effective field theory involving those. For this note
that the operators h±v defined in Eq. (1.45) and (1.46) interpolate an incoming
heavy quark or antiquark with velocity v.
We will illustrate the construction of meson states according to the lectures

of Georgi [35]. A B and a B? meson consist of a b-quark and a light quark
and gluon cloud with the quantum numbers of a light antiquark coupled in an
S-wave. With q1 = u, q2 = d and q3 = s it is possible to define a meson wave
function for the B meson with velocity v as

Ba(v) ∝ 〈0 |bv q̄a|Ba, v〉 (1.60)

and for a B? with velocity v and polarization ε

B?
a(v, ε) ∝ 〈0 |bv q̄a|B?

a, v, ε〉 . (1.61)

Note that since bv q̄a contains two open Dirac indices alsoBa(v) andB?
a(v, ε) need

to be matrices in Dirac space. Furthermore the field operator transforms as a
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reducible representation of the Lorentz symmetry and hence can be decomposed
in the pseudoscalar Ba and the vector B?

a. Therefore these two states form a
doublet with respect to heavy quark spin symmetry. Thus it is useful to define
the generalized state in the Hilbert space

|Ha, v〉 = b |Ba, v〉+
∑

ε

bε |B?
a, v, ε〉 . (1.62)

in analogy to coherent states of the harmonic oscillator. The coefficients b and
bε determine if the state is either a B or B? meson.
Its wave function reads

Ha(v) ∝ 〈0 |bv q̄a|Ha, v〉 = bBa(v) +
∑

ε

bεB
?
a(v, ε) . (1.63)

The transformation property
/vbv = bv (1.64)

directly relates to
/vHa = Ha . (1.65)

Considering also Lorentz invariance and parity of the B and B? the wave func-
tions can be parametrized by

Ba(v) = −P+
v γ5 (1.66)

and
B?
a(v, ε) = P+

v /ε . (1.67)

To summarize it is possible to define the field operator

Ha = P+
v ((B?

a)µγ
µ −Baγ5) (1.68)

where the field operators B?
a and Ba have the normalizations

〈0 |Ba|Ba, v〉 =
√
mB and 〈0 |(B?

a)µ|B?
a, v, ε〉 = εµ

√
mB? . (1.69)

A generalization for higher spin states is given in Ref. [46]. The wave function
transforms under heavy spin symmetry as

Ha → exp

(
i

3∑

k=1

εkS
v
k

)
Ha (1.70)

and under Lorentz symmetry as

Ha → D(Λ)−1HD(Λ)−1 , (1.71)

where D(Λ) is the Dirac representation of the Lorentz group.
As it contains the quantum numbers of a light antiquark it transforms under

the antifundamental representation of chiral vector symmetry. The state is
coupled to the pseudo-Goldstone bosons via non-linear realizations [47, 48].
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1.2. Quantum chromodynamics

Commonly for this the Goldstone boson realization U of Eq. (1.22) is written
as

U(x) = u(x)2 =

(
exp

(
i
φ(x)

2F0

))2

. (1.72)

Under the chiral transformation defined in Eq. (1.24) it transforms as

u(x)→ RuK†(x) = K(x)uL† (1.73)

with the unitary matrix

K(x) =
√
RU(x)L†Ru(x) . (1.74)

The transformation of the heavy field Ha is thus given as

Ha → HbK
†
ba(x) . (1.75)

Correspondingly, the wave function for the heavy antiparticle H̄a is defined by

H̄a(v) ∝
〈
Ha, v

∣∣qab̄v
∣∣ 0
〉

(1.76)

and thus can be related to Ha by

H̄a(v) = γ0H†a(v)γ0 . (1.77)

Hence the corresponding field operator can be written as

H̄a =
(
(B̄?

a)µγ
µ − B̄aγ5

)
P−v . (1.78)

The most general Lagrangian involving the interaction of pions and heavy
mesons [49, 50, 51, 52] to leading order in the momentum expansion is given by

L = i
〈
Hbv

µ(δab∂
µ + V µ

ab)H̄a

〉
+ ig

〈
Hbγµγ5A

µ
baH̄a

〉
(1.79)

with

V µ =
1

2

(
u†∂µu+ u∂µu†

)
and Aµ =

1

2

(
u†∂µu− u∂µu†

)
. (1.80)

The terms 〈. . . 〉 denote a trace in Dirac space.
For heavy quarkonia states this formalism can be adapted [53, 54]. Consid-

ering e.g. the pseudo-scalar bottomonium ground state η(1S) and the corre-
sponding vector state Υ(1S), which are both singlets under chiral rotations, the
field operator can be written as

J = P+
v (Υµγ

µ − ηγ5)P−v . (1.81)

Contact terms for the transition between different bottomonia J and J ′ can be
e.g. described by the Lagrangian [55, 56]

L = −2
〈
J†J ′

〉
(c1 〈AµAµ〉+ c2 〈AµAν〉 vµvν) + h.c. . (1.82)

Even exotic mesons such as the Zb can be involved in this framework [57].
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1.3. Dispersion theory

1.3.1. S-Matrix theory

The renormalization procedure in quantum field theories has been established for
the singularities of quantum electrodynamics at the end of the forties [58, 59, 60,
61, 62, 63, 64, 65, 66]. However a proper understanding of the renormalization of
quantum chromodynamics has only been provided in the seventies [12, 67, 68].
In the meantime a different approach to quantum field theory, which was named
S-matrix theory, was investigated [69, 70, 71, 72, 73, 74]. For an introduction
to dispersion theory, which we will follow here, we refer to Refs. [75, 76, 77].
Both methods are not in conflict with each other. However, the application of
dispersion theory is most feasible in the low energy region, thus covering the
problematic region for quantum field theoretical studies of QCD.
Consider an experiment with a short ranged interaction of the involved par-

ticles. An initial state is prepared in the distant past

|i, in〉 = |i, t→ −∞〉 , (1.83)

where t denotes the time. These states are normalized

〈i, in|j, in〉 = δij (1.84)

and furthermore fulfill a completeness relation

1 =
∑

m

|m, in〉 〈m, in| . (1.85)

Here the sum runs over all the different states, which are allowed by symmetries
and kinematics.
In analogy one can define the final state in the future

|f, out〉 = |f, t→∞〉 , (1.86)

which involves a similar normalization and completeness relation.
The intent of S-matrix theory is to determine the so called S-matrix, which

describes the probability for the transition from the initial state to the final
state

|〈f, out|i, in〉|2 = |〈f, in |S| i, in〉|2 = |〈f, out |S| i, out〉|2 . (1.87)

Due to probability conservation a proper definition of the S-matrix is given by

S =
∑∫

m

|m, in〉 〈m, out| , (1.88)

which implies, using Eq. (1.85), the unitarity of the S-matrix

SS† = S†S = 1 . (1.89)

As the basis for the in and out states define the same Hilbert space, we will
drop their notion in the following.
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1.3. Dispersion theory

Since the momenta of relativistic particles are easier to measure than their
position it is advantageous to work in momentum space. Each state |i〉 is a
state consisting of n particles with quantum numbers κj and momenta pj with
j = 1, . . . , n

|i〉 = |κ1, p1〉 ⊗ |κ2, p2〉 ⊗ · · · ⊗ |κn, pn〉 . (1.90)

The particles fulfill the on-shell condition

p2
j = m2

j (1.91)

and thus the normalization for each single-particle state is

〈κi, p|κj , k〉 = 2p0 δκi,κj (2π)3δ3
(
~p− ~k

)
. (1.92)

Also the completeness relation needs to be adjusted to

1 =

∞∑

n=0

n∏

k=1

∑

κk

∫
d4pk
(2π)4

2πδ(p2
k −m2

k) |κk, pk〉 〈κk, pk| =
∑∫

m

|m〉 〈m| , (1.93)

where n denotes the number of particles in each state.
As the particles have a defined momentum they are not localized in position

space due to the Heisenberg uncertainty principle. Therefore it is highly likely
that they will pass each other without interaction. The definition

S = 1 + iR (1.94)

properly separates off the interaction part R.
Since the probability does not depend on the reference frame, S needs to be

Lorentz invariant. To also preserve overall momentum conservation, R in is
usually defined as a distribution

〈f |R|i〉 = (2π)4δ4(pi − pf ) 〈f |T |i〉 , (1.95)

where pi and pf are the overall momenta of the initial and final state. The
transition amplitude T on the other hand can only depend on Lorentz invariants.
Invoking the unitarity of the S matrix in Eq. (1.89) leads to

〈f |R|i〉 −
〈
f |R†|i

〉
= i
〈
f
∣∣∣R†R

∣∣∣ i
〉
. (1.96)

The most common form of the unitarity relation is obtained by inserting the
completeness relation, the definition of the transition amplitude T and integrat-
ing out the overall momentum conservation (2π)4δ4(pf − pi)

〈f |T |i〉 − 〈i|T |f〉? = i
∑∫

m

(2π)4δ4(pi − pm) 〈m|T |f〉? 〈m|T |i〉 . (1.97)

For strong interactions PT invariance and the Schwarz reflection principle leads
to

〈i|S|f〉 = 〈f |S|i〉 , (1.98)
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which simplifies the unitarity equation to

2i Im 〈f |T |i〉 = i
∑∫

m

(2π)4δ4(pi − pm) 〈f |T |m〉? 〈m|T |i〉 . (1.99)

Another important property of the S-matrix is analyticity. It is related to the
micro-causality condition for some arbitrary field operator φ(x)

[φ(x), φ(y)] = 0 if (x− y)2 < 0 , (1.100)

which says that information cannot be transmitted faster than light speed.
Greens functions calculated under this assumption can be related to the S-
matrix via the Lehmann-Symanzik-Zimmerman reduction formula [78, 79]. A
Fourier transform to momentum space ensures an extended range of applicabil-
ity for complex momenta [80, 81].
To illustrate further properties of the S-matrix we restrict ourselves to the

scattering process of four scalar particles

φ1(p1) + φ2(p2)→ φ3(p3) + φ4(p4) . (1.101)

The initial momenta p1 and p2 as well as the final state momenta p3 and p4 are
restricted by the mass-shell condition

p2
a = m2

a with a = 1, . . . , 4 . (1.102)

Considering only scalar particles the transition amplitude will only depend on
the momenta

〈φ3(p3)φ4(p4)|T |φ1(p1)φ2(p2)〉 = T fi (p1, p2; p3, p4) . (1.103)

As discussed in Ref. [75, 82] the amplitude T can only depend on the Lorentz
invariant products

sxy = px · py with x, y = 1, . . . , 4 (1.104)

and
εabcd = εµναβ p

µ
ap

ν
bp
α
c p

β
d (1.105)

in order to preserve Lorentz invariance. It is commonly written as

T fi(p1, p2; p3, p4) = T fis (sxy) + εabcd T
fi
abcd(sxy) . (1.106)

While the first term T fis transforms even under parity, the second term changes
sign. Since the strong interaction is parity conserving, the last term can often
be neglected. However, not all possible contractions sxy are independent from
each other. Due to the on-shell conditions and momentum conservation only
two of them are necessary to describe the amplitude. A common choice are the
Mandelstam variables [83] given by

s = (p1 + p2)2 , t = (p1 − p3)2 and u = (p1 − p4)2 . (1.107)

24



1.3. Dispersion theory

With these the transition amplitude can be expressed as

T fi(p1, p2; p3, p4) = T fi(s, t, u) , (1.108)

where one of the Mandelstam variables can be expressed by the others through
the equation

s+ t+ u = m2
1 +m2

2 +m2
3 +m2

4 . (1.109)

In the center-of-mass system (CMS) the momenta may be written as

p1 =

(
p0

1

~p12

)
, p2 =

(
p0

2

−~p12

)
, p3 =

(
p0

3

~p34

)
and p4 =

(
p0

4

−~p34

)
(1.110)

with
p0

1/2 =
√
|~p12|2 +m2

1/2 and p0
3/4 =

√
|~p34|2 +m2

3/4 . (1.111)

The center-of-mass three-momenta are defined by

|~p12|2 =
λ(s,m2

1,m
2
2)

4s
and |~p34|2 =

λ(s,m2
3,m

2
4)

4s
, (1.112)

whereas the Källén function λ(a, b, c) is given as

λ(a, b, c) =

(
a−

(√
b+
√
c
)2
)(

a−
(√

b−√c
)2
)
. (1.113)

With this notation the Mandelstam variables t and u can be expressed through
s and the scattering angle θs between ~p12 and ~p34 as

t =
1

2

(
4∑

i=1

m2
i − s+

(
m2

2 −m2
1

) (
m2

3 −m2
4

)
+ 4 |~p12| |~p34| cos θs

)
(1.114)

and

u =
1

2

(
4∑

i=1

m2
i − s−

(
m2

2 −m2
1

) (
m2

3 −m2
4

)
− 4 |~p12| |~p34| cos θs

)
. (1.115)

The transition amplitude can be partial-wave projected - in case of scalar par-
ticles the resulting expression is

T fi(s, t, u) = T (s, cos θs) = 16πS

∞∑

`=0

(2`+ 1)P`(cos θs)t
fi
` (s) . (1.116)

For a discussion of particles with spin we refer to Ref. [84]. Here S denotes the
corresponding symmetry factor, P`(cos θs) the standard Legendre-polnomials
and t`(s) the partial-wave amplitude. Considering only two-particle interme-
diate states with masses ma and mb the unitarity equation for partial-waves
reads

Im tfi` (s) = S
∑

m={ma,mb}

(tfm` )?(s)σ(s,ma,mb)t
mi
` (s) , (1.117)
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with the phase space factor

σ(s,ma,mb) =

√
λ(s,m2

a,m
2
b)

s
θ
(
s− (ma +mb)

2
)
. (1.118)

Note that the symmetry factor can be absorbed by the redefinition

t̃fi` = S tfi` (1.119)

leading to the equation

Im t̃fi` (s) =
∑

m={ma,mb}

(t̃fm` )?(s)σ(s,ma,mb)t̃
mi
` (s) . (1.120)

Furthermore it is important that the presented derivation only applies for s >
max

{
(m1 +m2)2, (m3 +m4)2

}
as the initial and final states were assumed to

be asymptotic states.
The CPT -theorem [85, 86, 87, 88] in quantum field theory allows one to relate

the s-channel process

φ1(p1) + φ2(p2)→ φ3(p3) + φ4(p4) (1.121)

to the t-channel

φ1(p1) + φ̄3(−p3)→ φ̄2(−p2) + φ4(p4) (1.122)

and the u-channel processes

φ1(p1) + φ̄4(−p4)→ φ3(p3) + φ̄2(−p2) (1.123)

by replacing a particle in an incoming state with an antiparticle in the outgoing
state with reversed momentum. If e.g. m1 is heavy enough to decay into the
other three, the decay amplitude

φ1(p1)→ φ̄2(−p2) + φ3(p3) + φ4(p4) (1.124)

can also be obtained. In a similar fashion in S-matrix theory they are related
by requiring crossing symmetry. It says, that these different processes are
described by the same amplitude T (s, t, u), which is continued into different
energy regions of the Mandelstam variables s, t and u. An example of the
Mandelstam plane is shown in Fig. 1.2.
The partial-wave unitarity equation of Eq. (1.117) shown for the s-channel

can be similarly applied to the t- and u-channel. While the s-channel produces
imaginary parts for

s > max
{

(m1 +m2)2, (m3 +m4)2
}

= sthr (1.125)

the t-channel gets contributions for

t > max
{

(m1 +m3)2, (m2 +m4)2
}

= tthr (1.126)
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Decay

s-channel

t-channelu-channel

t− u

s

Figure 1.2.: Exemplary Mandelstam plane

and the u-channel

u > max
{

(m1 +m4)2, (m2 +m3)2
}

= uthr . (1.127)

Accordingly the partial-wave amplitude in the s-channel does not only have an
imaginary part for s > sthr, which will denoted as right-hand cut, but also an
imaginary part extending to −∞, called left-hand cut.

Analyticity in terms of partial-waves means, that the partial-wave ampli-
tude t`(s) can be analytically continued to the upper complex s-plane, without
encountering singularities. Invoking the Schwarz reflection principle

t`(s) = t?` (s?) (1.128)

it possible to define the partial-wave amplitude in the entire complex s-plane.
The left- and right-hand cuts will show up as discontinuities

disc t`(s) = lim
ε→0

(t`(s+ iε)− t`(s− iε)) = 2i Im t`(s) . (1.129)

Hence t`(s) is an analytic function in the entire first sheet of the complex s-
plane, except for left- and right-hand cuts along the real axis and maybe bound
states below the lowest threshold.
Furthermore, note that the Schwarz reflection principle in the decay region is

broken, as left- and right-hand cuts may overlap. A proper description is then
done e.g. by analytically continuing in the external masses mi with i = 1, . . . , 4
starting from a region, where the decay is not possible.
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1.3.2. Dispersion integral

Consider an amplitude f(s), which is holomorphic in the entire complex s-
plane, except for a left-hand cut CL = {s ∈ R|s < sL}, a right-hand cut CR =
{s ∈ R|s > sR} and a bound state pole at sp. Then for any s ∈ C with s /∈
CL ∪CR ∪ {sp} the amplitude f(s) can be written with the residue theorem as

f(s) =
1

2πi

∫

C
dz

f(z)

z − s , (1.130)

where C is any closed path with a mathematical positive orientation, which
encircles z = s but not any of the non-analyticities mentioned above.

Re(s)

Im(s)

s C

sRsL sp

(a) Initial integration contour

Re(s)

Im(s)

s

sRsL sp

(b) Deformed integration contour

Figure 1.3.: Integration contours for the dispersive representation in the complex
s-plane.

Using Cauchy’s theorem it is possible to deform the integration path as long
as the singularities such as the cuts and the pole are avoided. In order to obtain
the integration path in Fig. 1.3b the residue

R

(
f(z)

z − s, sp
)

= Res

(
f(z)

z − s

)∣∣∣∣
z=sp

(1.131)

at sp needs to be subtracted, due to the clockwise orientation of the integral
around sp. With a large but finite radius r the integral can be written as

f(s) = −R
(
f(z)

z − s, sp
)

+ Ic(s,−r, sL) + Ic(s, sR, r) + Ia(s, 0, π) + Ia(s, π, 2π) ,

(1.132)
Here Ic is the integration along the real axis

Ic(s, a, b) = lim
ε→0

1

2πi

b∫

a

dz
f(z + iε)− f(z − iε)

z − s− iε , (1.133)
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1.3. Dispersion theory

which can be expressed through the discontinuity

Ic(s, a, b) = lim
ε→0

1

2πi

b∫

a

dz
disc f(z)

z − s− iε . (1.134)

The integration along the complex arc can be written as

Ia(s, φ1, φ2) =
r

2π

φ2∫

φ1

dφ eiφ
f(reiφ)

reiφ − s . (1.135)

If f(s) is sufficiently convergent, such that it behaves as

|f(s)| → 0 for |s| → ∞ (1.136)

the limit r →∞ is well defined. Furthermore this ensures, that the contribution
of the complex arcs vanish, such that the dispersive representation of f(s) is
given as

f(s) = −R
(
f(z)

z − s, sp
)

+
1

2πi




sL∫

−∞

dz
disc f(z)

z − s +

∞∫

sR

dz
disc f(z)

z − s


 . (1.137)

Note that the values on the cuts can be accessed by an analytic continuation of
f(s) by approaching with the prescription s→ s+ iε. Hence the integral reads

f(s) = −R
(
f(z)

z − s, sp
)

+
1

2πi




sL∫

−∞

dz
disc f(z)

z − s− iε +

∞∫

sR

dz
disc f(z)

z − s− iε


 . (1.138)

For the evaluation of s on either the left- or right-hand cut the Sokhotski-Plemelj
theorem is required, which says

b∫

a

dz
h(z)

z − s± iε = −
b∫

a

dz
h(z)

z − s ∓ iπ
b∫

a

dz h(z) δ(z − s) . (1.139)

The principal value integral is defined as

−
b∫

a

dz
h(z)

z − s = lim
ε→∞



s−ε∫

a

dz
h(z)

z − s +

b∫

s+ε

dz
h(z)

z − s


 . (1.140)

If f(s) does not vanish fast enough so called subtractions can be introduced.
For this consider a function

g(s) =
f(s)

Pn(s)
, (1.141)

where Pn(s) is a polynomial in s of order n, hence it can be expressed by its
zeroes s̃i with i = 1, . . . , n as

Pn(s) =

n∏

i=1

(s− s̃i) . (1.142)
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They are chosen, such that they do not coincide with either the left- or right-
hand cut.
Since Pn(s) does not have any discontinuities, the analytic structure of g(s)

is the same as f(s) except for the poles at z = s̃i. Additionally g(s) shows an
improved high energy behavior, such that for high enough n the limit r →∞ is
well defined. Hence it can be reconstructed dispersively as shown above

g(s) = −R
(
g(z)

z − s, sp
)
−

n∑

i=1

R

(
g(z)

z − s, s̃i
)

+
1

2πi

sL∫

−∞

dz
disc g(z)

z − s− iε +
1

2πi

∞∫

sR

dz
disc g(z)

z − s− iε .
(1.143)

Expressing the dispersion relation in terms of f(s) leads to

f(s) = P̃ (s)+
Pn(s)

2πi

sL∫

−∞

dz

Pn(z)

disc f(z)

z − s− iε+
Pn(s)

2πi

∞∫

sR

dz

Pn(z)

disc f(z)

z − s− iε . (1.144)

The term

P̃ (s) = −Pn(s)

(
R

(
g(z)

z − s, sp
)

+
n∑

i=1

R

(
g(z)

z − s, s̃i
))

(1.145)

is called subtraction polynomial. In exchange for an improved high energy
behavior it contains information about the low energy regime, which cannot
be restricted by dispersion theory alone. If f(s) does not contain a pole P̃ (s)
reduces to a polynomial

P̃ (s) =
n−1∑

k=0

aks
k , (1.146)

where the coefficients ak are called subtraction constants.

1.3.3. Homogeneous Omnès problem

The simplest application of dispersion theory is the so called homogeneous Om-
nès problem [89] or homogenous Hilbert-type problem [90]. It considers a func-
tion, which contains only a right-hand cut starting at s0 and is holomorphic
otherwise. Its application to hadron physics is e.g. the transition of a source ψ
with spin ` to a final state consisting of two particles φ1 and φ2

〈f |S|i〉 = 〈φ1(p1), φ2(p2)|T |ψ(p1 + p2)〉 ∝ F f`
(
(p1 + p2)2

)
(1.147)

These so-called form factors have been studied extensively with the use of
dispersion theory [89, 91, 92, 93, 94, 95, 96].
Consider as an example a vector of form factors F f` (s), where i = 1, . . . , n

denotes the open channels taking part in the rescattering process in a fixed
partial-wave `. According to Eq. (1.117) they fulfill the unitarity condition

ImF f` (s) =
n∑

m=1

(
tfm` (s)

)?
σm(s)Fm` (s) , (1.148)
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1.3. Dispersion theory

where σm(s) is a short-hand notation for the phase space of the channel m
as defined in Eq. (1.118). The partial-wave scattering amplitude tkm` between
channels k and m on the other hand serves as input to set up the dispersion
relation.
Also define the Omnèsmatrix Ωfi

` (s) which fulfills the unitarity condition

Im Ωfi
` (s) =

n∑

m=1

(
tfm` (s)

)?
σm(s)Ωmi

` (s) (1.149)

and an unsubtracted dispersion relation

Ωfi
` (s) =

n∑

m=1

1

π

∞∫

s0

dz

(
tfm` (z)

)?
σm(z)Ωmi

` (z)

z − s− iε (1.150)

with a normalization
Ωfi
` (0) = δfi . (1.151)

The function

f i(s) =
n∑

k=1

(
Ω−1
` (s)

)ik
F k` (s) (1.152)

is analytic and free of any discontinuities. Therefore a Taylor expansion of f i(s)
converges for all s and it can be written as a polynomial P i(s). Hence the form
factor is entirely determined by

F i` (s) =
n∑

k=1

Ωik
` (s)P k(s) . (1.153)

Considering only a single channel as final and intermediate state, called elastic in
the following, the Omnès function can be determined analytically. The partial-
wave amplitude t`(s) above s0 can be entirely described by the phase shift δ`(s)
as

t`(s) =
sin δ`(s)

σ1(s)
eiδ`(s) . (1.154)

As the imaginary part is a real number the phase of both F`(s) as well as Ω`(s)
needs to be equal to the phase shift δ`(s), which is called Watson theorem [97].
With the restriction |Ω`(s)| > 0 for all s ∈ C the unitarity condition can be
expressed as

disc log Ω`(s) = 2iδ`(s) . (1.155)

As δ`(s) approaches a constant value for s → ∞ one subtraction is enough
to obtain a convergent dispersion integral. The unknown subtraction constant
can be absorbed into the polynomial P (s) of Eq. (1.153). Hence for the elastic
Omnès function can be written as

Ω(s) = exp


 s

π

∞∫

s0

dz

z

δ`(z)

z − s− iε


 . (1.156)
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In order to determine its high energy behavior assume that for s→∞ the phase
shifts approaches a value δ∞` . Using a cutoff Λ, such that Λ� s but δ`(Λ) ≈ δ∞`
allows to estimate the dispersion integral

s

π
−
∞∫

s0

dz

z

δ`(z)

z − s ≈
1

π

Λ∫

s0

dz

z
δ`(z) +

δ∞`
π

log

(
Λ

s− Λ

)
. (1.157)

Hence the Omnès function scales at high energies like

Ω(s) ∝
(

Λ

s− Λ

) δ∞`
π

. (1.158)

The multi-channel Muskhelishvili-Omnès problem (MO) [90] does not have a
closed analytical expression. Therefore the integral equation (1.150) needs to be
solved numerically. The common procedure [98, 99, 100, 101] is to approximate
the principal value dispersion integral by a quadrature and solving the system
of equations via singular value decomposition.
The unitarity equation (1.149) can be expressed as

Im Ωfi
` (s) =

n∑

k=1

Xfk
` (s) Re Ωki

` (s) (1.159)

with
X`(s) = [1− it?` (s)σ̂(s)]−1 t?` σ̂ . (1.160)

Here σ̂(s) is a diagonal matrix containing the phase space factors as entries

σ̂ij(s) =
n∑

k=1

δikδjkσk(s) . (1.161)

Inserting the newly derived unitarity equation into the dispersion integral of
Eq. (1.150) reads

Re Ωij
` =

n∑

k=1

1

π
−
∞∫

s0

dz
Xik
` (z)

z − s Re Ωkj
` (z) . (1.162)

To proceed split the integral into two

Re Ωij
` =

n∑

k=1

1

π
−
Λ∫

s0

dz
Xik
` (z)

z − s Re Ωkj
` (z) +

n∑

k=1

1

π
−
∞∫

Λ

dz
Xik
` (z)

z − s Re Ωkj
` (z) (1.163)

and discuss each integral separately.
The first integral takes on the generic form

I1 = −
∫ b

a
dz

f(z)

z − s . (1.164)
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Using the substitution

z(y) =
b− a

2
y +

a+ b

2
(1.165)

with y ∈ (−1, 1) the integral I1 can be written as

I1 = −
1∫

−1

dy
g(y)

y − s̃ with g(y) = f(z(y)) and s̃ =
2s− a− b
b− a . (1.166)

The transformed function g(y) on the other hand can expanded in terms of
Legendre polynomials

g(y) =

∞∑

k=0

ckPk(y) with ck =
2k + 1

2

1∫

−1

dy g(y)Pk(y) (1.167)

To proceed use a Gauss-Legendre quadrature of order N for all coefficients ck

ck ≈
2k + 1

2

N∑

n=1

wNn g(yn)Pk(y
N
n ) , (1.168)

where yNn with n = 1, . . . , N are the zeroes of PN (y) and wNn are the weights

wNn =
2

(1− y2
n)

[
∂PN
∂y

(yn)

]−2

. (1.169)

Truncating the series expansion of Eq. (1.167) at N leads to

g(y) ≈
N−1∑

k=0

Pk(y)
N∑

n=1

2k + 1

2
wNn g(yNn )Pk(y

N
n ) , (1.170)

as the order N vanishes by definition. Hence I1 can be written as

I1 =

N∑

n=1

WN
n

(
2s− a− b
b− a

)
g(yNn ) (1.171)

with

WN
n (s̃) = −

N−1∑

k=0

(2k + 1)wNn Pk(y
N
n )Qk(s̃) . (1.172)

The Legendre polynomials of second kind Qk

Qk(s̃) = −1

2
−
∫ 1

−1
dy

Pk(y)

y − s̃ (1.173)

are precisely determined and implemented in e.g. the GNU-GSL libraries [102]
for all regions of s̃.
In a similar fashion the integral

I2 = −
∫ ∞

c
dz

f(z)

z − s (1.174)
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can be determined. The corresponding transformation

z =
2c

1− ŷ . (1.175)

leads to

I2 = −
1∫

−1

dŷ
2c

1− ŷ
ĝ(ŷ)

ŷ − ŝ with ĝ(ŷ) = f(z(ŷ)) and ŝ = 1− 2c

s
. (1.176)

Following the same steps we obtain

I2 =
1

s

M∑

m=1

WM
m

(
1− 2c

s

)
2c

1− 2yMm
ĝ(yMm ) . (1.177)

Considering N1 Gauss-Legendre points for the finite range integral and N2 for
the other the full integral can be written as

Re Ωij
` (s) =

1

π

N1∑

α=1

WN1
α

(
2s− s0 − Λ

Λ− s0

) n∑

k=1

Xik
` (z̃N1

α ) Re Ωkj
` (z̃N1

α )

+
1

πs

N2∑

β=1

WN2
β

(
1− 2Λ

s

)
ẑN2
β

n∑

k=1

Xik
` (ẑN2

β ) Re Ωkj
` (ẑN2

β ) .

(1.178)

The grid points

z̃N1
α =

Λ− s0

2
yαN1 +

Λ + s0

2
α = 1, . . . , N1 (1.179)

and
ẑN2
β =

2Λ

1− yN2
β

β = 1, . . . , N2 (1.180)

are defined by the zeros yNγ with γ = 1, . . . , N of the correspondingN th Legendre
polynomial PN (y).
In order to obtain a solution for the Omnèsmatrix evaluate Eq. (1.178) for

all the different grid points z̃N1
α and z̃N2

β . Additionally evaluate it for s =
0, which gives the restriction of Eq. (1.151). The thus obtained system of
equations is overdetermined and can by solved for Re Ωij(z̃N1

α ) and Re Ωij(ẑN2
β )

via singular value decomposition. The corresponding imaginary parts can then
be determined by Eq. (1.159). In order to improve this procedure numerically
it is possible to introduce more mesh points by either increasing the order of
the Gauss-Legendre quadrature, or dividing the integration intervals into more
subintervals.

1.3.4. Inhomogenous Omnès problem

The next more complicated application is the inhomogenous Omnès problem.
Here the function does not only have a right-hand cut but also a left-hand
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cut is considered. For example the decay amplitude of the particle Ψ into a
three-particle final state with particles φ1, φ2 and Φ

〈f |T | i〉 = 〈φ1(p1), φ2(p2),Φ(p3) |T |Ψ(p)〉 ∝ A(s, t, u) , (1.181)

where s is the invariant mass of the φ1-φ2 system, has such an analytic structure.
The other two Mandelstam variables t and u can be expressed through s and
the scattering angle θ between φ1 and Ψ.
Assume that the scattering amplitude A(s, t, u) is separated into two parts

A(s, t, u) = M(s, t, u) +K(s, t, u) . (1.182)

Accordingly also the partial-wave amplitudes can be split in a similar manner

A(s, t, u) = 16π
∑

`

(2`+ 1)f`(s)P`(cos θ) (1.183)

with
f`(s) = M`(s) +K`(s) . (1.184)

Along the right-hand cut the partial-wave amplitude fL(s) fulfills the disconti-
nuity equation

discR f` = 2it∗` σ̂f` , (1.185)

where t` is the partial-wave meson-meson scattering amplitude as introduced in
the previous section with the right-hand cut discontinuity

discR t` = 2i t?` σ̂t` . (1.186)

Furthermore assume that M` is free of left-hand cuts and all of those shall be
explained through K`, which will be called inhomogeneity in the following.
Using the Omnèsmatrix Ω` defined by the unitarity equation

discR ΩL(s) = 2i t?` (s)σ̂(s)Ω`(s) (1.187)

one may define

ζ`(s) = Ω−1
` (s)M`(s) = Ω−1

` (s)(f`(s)−K`(s)) , (1.188)

which is an analytic function free of left-hand cuts. Its discontinuity along the
right-hand cut is given by

discR ζ` = Ω−1
` M` − (Ω−1

` )∗M∗` +
(
Ω−1
`

)?
M` −

(
Ω−1
`

)?
M`

= −(Ω−1
` )∗ (discR Ω`) Ω−1

` M` + (Ω−1
` )∗discR(f` −K`)

= 2i(Ω−1
` )∗t∗` σ̂K` − (Ω−1

` )∗discRK` .

(1.189)

With the assumption that discRK` = 0 it reduces to

discR ζ` = 2i(Ω−1
` )?t?` σ̂K` . (1.190)

Solving the discontinuity equation of Ω` and t` as

(Ω−1
` )? = (1− 2it?` σ̂) (1.191)
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and
t?` = (1− 2it?` σ̂)−1 t` (1.192)

allows us to rewrite the discontinuity of ζ` as

discR ζ` = 2iΩ−1
` t`σ̂K` . (1.193)

The inhomogeneity K` may contain additional branch cuts, which will in-
fluence the chosen path for the dispersion integral. Assuming for now, that
the branch points lie on unphysical Riemann sheets ζ`(s) can be reconstructed
dispersively as

ζ`(s) = P (s) +
sn

π

∞∫

s0

ds′

(s′)n
(Ω−1

` )(s′)
t`(s

′)σ̂(s′)K`(s
′)

s′ − s− iε (1.194)

and thus

M`(s) = Ω(s)


P (s) +

sn

π

∞∫

s0

ds′

(s′)n
(Ω−1

` )(s′)
t`(s

′)σ̂(s′)K`(s
′)

s′ − s− iε


 . (1.195)

Here the subtraction polynomial P (s) of order n − 1 is a vector in channel
space. To fix the subtraction constants additional input from either experiment
or theory is needed.
For a single channel the inhomogeneous Omnès problem of Eq. (1.195) reduces

to

M`(s) = Ω`(s)


P (s) +

sn

π

∞∫

s0

ds′

(s′)n
sin δ`(s

′)K`(s
′)

|Ω`(s′)| (s′ − s− iε)


 , (1.196)

where δ` is the phase shift of the partial-wave amplitude t`.

1.4. Hadron spectroscopy

1.4.1. Introduction

In order to obtain a better insight into quantum chromodynamics, it is important
to measure the interaction between quarks and gluons. However, since neither
of them are directly observable in the experiment due to confinement, a different
approach needs to be taken.
Similar to quantum electrodynamics, where information about the underlying

theory can be inferred from the atomic spectra, it is possible to understand the
strong interaction by observing the hadronic spectra. Therefore the first task is
to identify proper hadronic states.
Another complication is that most of the states are short-lived and thus can-

not be directly measured in a detector. But due to tremendous effort on the
experimental side, it is possible to see the effect of these unknown states X in
either production processes

I1 + I2 → X + (S)→ F1 + F2 + · · ·+ Fn + (S) (1.197)
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1.4. Hadron spectroscopy

with or without a spectator particle S or in decays

I → X + (S)→ F1 + F2 + · · ·+ Fn + (S) . (1.198)

While most states show up as bumps in the concerning cross-sections, for a
proper understanding, a partial-wave amplitude analysis needs to be done, hence
fixing particle properties such as spin, mass, width and transformation proper-
ties under internal symmetries. In order to avoid a strong bias, the amplitude
should build only on the basic principles of scattering theory, such as unitarity,
analyticity, Lorentz invariance and internal symmetries.
Physical states, produced by the dynamics of the underlying theory, show up

as poles of the S-matrix. To be more specific, they lie in the complex s-plane of
the partial-wave projection S`. A restriction by causality is that they can only
appear on the real s-axis below the lowest threshold. They are called bound
states and are stable under the concerned interaction, as dictated by energy
conservation. A prime example is the deuteron, which is a proton-neutron bound
state.
Also the unstable particles are proper hadronic states and thus must show

up as poles of the S-matrix. While the causality restriction applies for the
„physical“ complex s-plane, which is also called the first Riemann sheet, it does
not apply to the analytic continuation of the S-matrix to unphysical Riemann
sheets.
Consider a function f(s), which is analytic in the entire complex s-plane,

except for a cut between the branch points s1 and s2. For the sake of notation,
assume that they lie on the real axis. Then for all s1 < s < s2 the function
f(s) can be smoothly continued to a second complex plane, the so called second
Riemann sheet. Using Feynman +iε prescription it is customary to approach
the second Riemann sheet from below

lim
ε→0

f II(s+ iε) = lim
ε→0

f(s− iε) for s1 < s < s2 . (1.199)

The analytic continuation is then done by subtracting the discontinuity

f II(s+ iε) = f(s+ iε)− disc f(s) for s1 < s < s2 . (1.200)

Afterward f II(s) can be continued analytically into the entire second Riemann
sheet. As it also has discontinuities the procedure can be repeated as many
times as necessary. Note that since the two sheets are smoothly connected the
location of the branch cut is arbitrary, while the branch points are fixed.
As an example consider the partial-wave amplitude t`(s) with a single channel

consisting of two particles with mass m. Its discontinuity for s > 4m2 is given
by

disc t`(s) = lim
ε→0

2i t?` (s+ iε)σ(s+ iε)t`(s+ iε) , (1.201)

where

σ(s) =

√
1− 4m2

s
. (1.202)

Its analytic continuation on the second Riemann sheet reads

tII` (s) = t`(s)− 2i t∗` (s+ iε)σ(s+ iε)t`(s+ iε) . (1.203)
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Using the Schwarz reflection principle and the smooth connection between first
and second sheet above s = 4m2

t`(s− iε) = t?` (s+ iε) = tII(s+ iε) (1.204)

leads to

tII` (s+ iε) = [1 + 2i t`(s+ iε)σ(s+ iε)]−1 t`(s+ iε) . (1.205)

With a natural analytic continuation in s the final result reads

tII` (s) = [1 + 2it`(s)σ(s)]−1 t`(s) (1.206)

where σ(s) for complex s is defined as

σ(s) =

√∣∣∣∣1−
4m2

s

∣∣∣∣ exp

(
i

2
arg

(
1− 4m2

s

))
. (1.207)

Hence
lim
ε→0

σ(s− iε) = −σ(s) for s ∈ R and s > 4m2 . (1.208)

The discontinuity of tII` (s) for s > 4m2 is

disc tII` (s) = −2it?` (s+ iε)σ(s+ iε)t`(s+ iε) . (1.209)

Therefore analytically continuing tII` (s) onto the next Riemann sheet leads to

tIII` (s) = tII` + 2i t∗` (s+ iε)σ(s+ iε)t`(s+ iε) = t`(s) . (1.210)

For this reason a partial-wave amplitude considering only two-particle interme-
diate states has only two Riemann sheets.
Poles show up at zeroes of the single-channel S-matrix

S`(s) = 1 + 2it`(s)σ(s) . (1.211)

They are categorized as virtual states, if the pole lies on the real axis of the
second Riemann sheet, or resonances which appear at complex s. While virtual
states very close to threshold strongly influence threshold parameters, such as
the scattering length for nucleon-nucleon scattering with isospin 1 and spin 0,
resonances show up mostly as bumps in the cross-section. An example of such
a resonance is shown in Fig. 1.4.
For a problem with N two-particle channels the formalism can be generalized,

such that for each additional open channel the number of Riemann sheets dou-
bles. The analytic continuation to the nth sheet with n = 2, 3, . . . , 2N is given
by

(
t
(n)
` (s)

)
ij

=

N∑

k=1

[
1 + t`(s)σ

(n)(s)
]−1

ik
(t`(s))kj , (1.212)
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Figure 1.4.: Exemplary scattering amplitude on the first Riemann sheet (green)
with one pole on the second sheet (red).

where σ(n)(s) are 2N − 1 different matrices in channel space containing all com-
binations of corresponding phase space factors σk(s) on its diagonal. As an
example the two-channel problem with ππ and KK̄ the matrices are given as

σ(2)(s) =

(
σππ(s) 0

0 0

)
, σ3(s) =

(
0 0
0 σKK̄(s)

)
(1.213)

and

σ4(s) =

(
σππ(s) 0

0 σKK̄(s)

)
. (1.214)

The same procedure can also be applied for a form factor F (s) with the discon-
tinuity

discF i(s) = 2i

N∑

k=1

(
tik` (s)

)?
σk(s)F

k(s) . (1.215)

Its analytic continuation on different Riemann sheets is defined by

(
F (n)(s)

)i
=

N∑

k=1

[
1 + 2it`(s)σ

(n)(s)
]−1

ik
F k(s) . (1.216)
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This illustrates, that the pole positions of t(n)
` (s) and F (n)(s) are the same,

which allows one to postulate, that the pole positions are indeed universal and
the same for every process.
In order to establish a particle, it is not enough to search for bumps in the

cross-section, as also other kinematics, such as threshold cusps and triangle
singularities, can produce similar effects [103]. A proper parametrization of the
amplitude, consistent with analyticity, unitarity and crossing, that allows for
the pole extraction is necessary.

1.4.2. QCD bound states

The conventional quark model [104, 105] is based on the assumption that a
meson is described by a quark-antiquark system and baryons by three quarks in
a color singlet. For a short introduction, we refer to the „Quark model“ review
by the Particle Data Group [14]. The lightest mesonic states have the JPC

quantum numbers 0−+, 1−−, 0++, 1++, 1+− and 2++. Considering also an
SU(3) flavor symmetry, they will show up as an octet and a singlet.
For baryons the group theory is a bit more complicated. The baryon wave

function
|qqq〉 = |color〉 ⊗ |space〉 ⊗ |spin〉 ⊗ |flavor〉 (1.217)

consists of a color, space, spin and flavor wave function. To fulfill the Fermi
statistics it needs to be fully antisymmetric under the exchange of two quarks.
As the color wave function always needs to be in an antisymmetric singlet the
rest needs to symmetric. The spin wave function on the other hand can be
decomposed into the subspaces

2⊗ 2⊗ 2 = (2)M ⊕ (2)M ⊕ (4)S , (1.218)

where M denotes mixed symmetry and S fully symmetric. Assuming SU(3)
flavor symmetry the flavor wave function can be decomposed into

3⊗ 3⊗ 3 = (10)S ⊗ (8)M ⊗ (8)M ⊗ (1)A . (1.219)

By using Jacobi coordinates it is possible to identify the space wave function
as a representation of SO(3) spacial symmetry, thus denoting it by an angular
momentum L. For L = 0 this leads to the baryon octet with JP =

(
1
2

)+

and the baryon decouplet with JP
(

3
2

)+. Angular excitations can be calculated
accordingly.
Any observed state that does not have the quantum numbers allowed by the

quark model can safely be considered exotic. Examples are e.g. the π1(1400)
and π1(1600) with JPC = 1−+ [106, 107, 108].
However, even with the allowed quantum numbers, there are states which

do not agree with the quark model spectrum, given in e.g. the „Quark model“
review of the PDG [14], such as the baryon states P+

c (4380) and P+
c (4450) [109]

or the Λ(1405) [110]. We will give further mesonic examples in the next sections.
There are many different interpretations of these exotic hadrons. As already

predicted by Gell-Mann [104], group theory allows color singlet states consisting
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1.4. Hadron spectroscopy

of more than three quarks or one quark and one antiquark. The simplest ex-
tensions of the quark model are tetraquarks, containing four quarks, for mesons
or pentaquarks, containing five quarks, for baryons. However, also a bound
state consisting only of gluons, the so-called glueball, has been predicted. On
the other hand, hybrid states are bound states of quarks and gluons, where the
latter also contribute to the hadron quantum numbers.
Another kind of state, which we want to advocate is a hadronic molecule. For

an extensive review, we refer to Ref. [111]. The first proof for the existence of
hadronic molecules was done by Weinberg [112]. The nowadays knownWeinberg
criterion was used to show that deuteron is not a compact quark state but
consists of a neutron-proton bound state. By construction, it only considered
a two-particle channel as well as one compact core. The criterion then allows
one to relate the probability of finding a compact component in a physical state
to its coupling constant to the continuum. However, the derivation is only
applicable to shallow S-wave bound states with narrow constituents [113, 114]
and therefore cannot be applied to resonances. Further generalizations of the
criterion have already been considered [115].
Another approach is to count the number of corresponding poles. This pole-

counting approach [116] says that a compact bound state has two near-threshold
singularities. One of them lies on the first Riemann sheet, the other on the
second. On the other hand, the molecular state only produces one pole close the
threshold on the first Riemann sheet. The correspondence of the two approaches
was first observed in Ref. [115].
This shows again the strength of a fully analytical approach. If it is possible

to relate the amplitudes to QCD via e.g. an effective field theory, it is possible
to track the pole trajectories as fundamental parameters such as the number of
colors or quark masses get changed. For example in Ref. [117] a single channel
S-matrix with two particles of mass m and two poles on the second Riemann
sheet at

s1/2 = 4
(
k2
p + ξ(kp)

2 +m2 ± i
√
s− 4m2ξ(kp)

)
(1.220)

has been considered. A given partial-wave L the width ξ(kp) contains a cen-
trifugal barrier term

ξ(kp) = ξ0k
2L
p . (1.221)

They observed that for L > 0 the poles meet upon a continuation in kp at
threshold s1/2 = s1/2(kp = 0) = 4m2. Decreasing kp further lets one pole move
through the unitarity cut to the first Riemann sheet, while the other stays on
the second sheet. One of them will move on the positive s-axis and the other
on the negative one. Therefore two near-threshold poles emerge. For L = 0
resonances, the position, where both poles meet, is not fixed but depends on
the parameters kp and ξ. Hence they can meet below the threshold, such that
the pole on the first sheet will be close to threshold, while the other moves
far away. In the context of the pole counting approach, this corresponds to a
molecular state. The parameters ξ and kp can be related to physical threshold
parameters such as the scattering length and effective range.
For isolated near-threshold resonances the lineshape depends strongly on the

nature of the resonance. A proper non-relativistic parameterization of the scat-
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tering amplitude is given by

T (E) =
g2

E − Er + g2

2 (ik(E) + γ) + iΓ0/2
(1.222)

with the non-relativistic hadron momentum k =
√

2µE and the generalized
binding moment Er. Inelastic effects due to other channels are all absorbed in
the constant Γ0. As already mentioned previously the coupling constant between
physical state and vacuum g can be related to the possibility of a compact state.
For a molecular state g2 becomes very large, thus the line shape is asymmetric
in E around E = 0 MeV. For a predominantly compact state g2 is small, hence
the amplitude will be symmetric.
The symmetries of QCD will translate to those of the QCD bound states.

Therefore depending on the binding mechanism, it is possible to predict sym-
metry partners. This is especially useful for heavy mesons since heavy spin
symmetry predicts in some cases that, when two heavy mesons form a molecule,
also their spin partners need to do the same. If for example a molecular state
is seen in BB̄? scattering, then there must also exist one in B?B̄? scattering.

1.4.3. Light meson spectroscopy

While the vector and tensor mesons at low energies have been widely observed
and understood, the scalar mesons below 2 GeV show a rich spectrum with many
unanswered questions. For an extensive review, we refer to the „Note on Scalar
Mesons below 2 GeV“ and the „Non-qq̄ Mesons“ by the Particle Data Group
and references therein [14].
Although the isospin 1/2 and 1 channels show interesting features as well, we

here will restrict ourselves to the scalar isoscalar channel. It is in particular in-
teresting, because according to lattice calculations it should contain the glueball
ground state [118, 119, 120, 121] between 1.6 and 1.7 GeV. It is important to
note that these results are obtained by quenched Lattice QCD, such that the
fermion determinant is set to a constant.
The problem is that the spectrum contains broad states that overlap with

each other and are close to several thresholds that open up in a range over
several hundred MeV.
The lowest state called f0(500) or σ for example is a very broad resonance.

Furthermore the related peak position in a production rate is very reliant on
the production mechanism. Hence the pole parameters extracted from data are
very uncertain

√
sσPole = ((400− 550)− i (200− 350)) MeV . (1.223)

As described by Refs. [92, 122] a Breit-Wigner parametrization for it is inappro-
priate. Since the pole position is also dependent on the left-hand cut a dispersive
Roy-Steiner analysis for ππ scattering is the most precise [123, 124]. Averaging
only the dispersive results [125, 126, 127] gives the very precise value [128]

√
sσPole =

(
449+22
−16 − i (275± 12)

)
MeV . (1.224)
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The σ-meson is not only considered exotic due to its large width, but also its
non-qq̄-like behavior in a large Nc expansion [129] as well as its deviation from
the assumed Regge trajectory [130]. The most widely accepted interpretation
is that it owes its existence to non-perturbative ππ interactions, but a definitive
interpretation is still yet unclear [128, 131].
The next scalar resonance is the f0(980) with a pole at [126]

√
s
f0(980)
Pole =

(
(996± 7)− i(25+10

− 6 )
)

MeV . (1.225)

Due to its closeness to the KK̄ the cusp effect needs to be taken into account.
For this a standard Flatté parametrization is appropriate. However due to the
overlap with the tail of the f0(500) a pure parametrization involving Breit-
Wigner and Flatté would break unitarity. This is also one of the last states
pure dispersion theory is able to describe, as further inelasticities need to be
taken into account above this point. Its nature is still inconclusive as it can be
described in the tetraquark picture [132, 133, 134, 135, 136] but also as a KK̄
molecule [137].
The resonances f0(1370) and f0(1500) are shown to have strong contributions

from the 4π decay mode [138, 139, 140]. Due to the large overlap between the
two, a mass extraction is difficult. The last heavy scalar state below 2 GeV is the
f0(1710), which mostly decays intoKK̄. While it is indicated [141, 142] that the
f0(1370) is a non-strange quark model state, the f0(1710) a strange quark model
state and the f0(1500) might be dominantly a glueball, further investigations
are necessary. For a broader discussion of these three states, we refer to the
„Non-qq̄ Mesons“ as well as „Scalar Mesons below 2 GeV“ minireviews of the
Particle Data Group [14] and the references therein.

1.4.4. Heavy meson spectroscopy

Experiments involving heavy quarks such as the charm or bottom quark are
fascinating as they show a rich spectrum. Interestingly new exotic states show
up above open flavor threshold, while below it is consistent with the conven-
tional quark model. Advantageous for the study of those states is that most of
the resonances are well separated from each other. However, various of them
are measured in three-particle decays. Since the phase space is large, many
crossed-channel resonances need to be taken into account. A thorough theoret-
ical framework is necessary to describe the interference between the resonances
in the different channels correctly. As always, it should be consistent with uni-
tarity and analyticity to provide reasonable pole positions. The reviews used
for this summary are Ref. [111] as well as the Particle Data Group reviews [14]
about „Non-qq̄ Mesons“ and „Spectroscopy of Mesons Containing Two Heavy
Quarks“.
For the heavy-light sector for example the two narrow states D?

s0(2317)± and
Ds1(2460)± seem to be exotic, as they are located well below the predicted mass
for P -wave cs̄mesons. As they lie close to theDK andDK? thresholds, they can
be interpreted as the corresponding hadronic molecules [143, 144, 145, 146, 147].
But also an interpretation as four-quark states [148, 149, 150, 151] is advocated.
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For the doubly heavy system, information about the QCD potential can be
inferred, showing a great similarity to the positronium potential at small dis-
tances but a linear behavior at larger distances. For a broader discussion about
different potential models we refer to Refs. [152, 153]. Interestingly, the Bc and
its radial excitations also probe the interaction between different quark flavors.
In particular, in the doubly charmed or double bottom sector, many exotic

resonances show up. In the new naming scheme of the Particle Data Group [14],
they are named Y for isoscalar JPC = 1−− states and X or Z for the isoscalar
or isovector states with other quantum numbers.
An example is the X(3872) with the quantum numbers JPC = 1++ [154,

155]. It was observed in the J/ψππ invariant mass distribution. A particular
feature is its closeness to DD̄? threshold. However further confirmation for its
hadronic molecule [156] or tetraquark structure [150, 157] is still needed. It
is also expected that a similar state Xb shows up in the bottominium sector.
However, a search in the Υ(1S)ππ invariant mass distribution [158] has not
been fruitful. As pointed out in Refs. [159, 160, 161] this decay is suppressed by
isospin violation, and hence they suggested better channels for the Xb search.
The vector resonances denoted by Y are directly accessible by e+e− an-

nihilations. The first observed state with exotic features was the Y (4260)
seen in the J/ψπ+π− invariant mass spectrum of the initial state radiation
reaction e+e− → γISR Jψπ

+π− [162]. Compared to conventional cc̄ states
it does not decay into a DD̄ pair or give an enhanced contribution to the
inclusive cross section e+e− → hadrons. It could be a hybrid charmonium
state [163, 164, 165, 165, 166]. But also a D1D̄ molecular picture [167] as well
as the tetraquark picture [168] are plausible.
The last states, which are of particular interest for us, are the Z states.

The states in the charm sector are called Zc(3900)± [169] and Zc(4020)± [170].
They decay predominantly in a DD̄? and D?D̄? pair, respectively and thus
contain a charm-anticharm pair. They are exotic in nature, since a quarko-
nium cannot be charged, hence they need to be in at least a cc̄qq̄ configuration.
Their analog for the bottom sector are the Zb(10610)±,0 and Zb(10650)± dis-
covered in the reaction Υ(5S) → Υ(nS)π+π− and Υ(5S) → hb(mP )π+π− in
the invariant mass spectrum of Υ(nS)π+ and hb(mP )π+ with n = 1, 2, 3 and
m = 1, 2[171, 172]. Later it was shown that they predominantly decay into BB̄?

and B?B̄? [173]. The rates of the Υ(nS) and hb(mP ) final states are of the same
order, indicating a heavy quark spin symmetry violation. This problem can be
naturally avoided in a molecular picture. The transition to the hb(mP ) final
states is driven solely by the Zb resonances, but those with Υ(nS) in the fi-
nal states show additionally strong ππ dynamics. Thus the latter channels call
for a proper description of the data the ππ interaction [56, 174]. Due to the
closeness to the open charm and bottom thresholds a molecular picture was pro-
posed [175]. But it also appears to be consistent with a tetraquark picture [176].
If the molecular picture is correct it leads to the prediction of spin partnersWbJ

of the Zb states [177, 178, 179, 180]. If they were measurable in the decays
Υ(5S)→WbJγ → χbJ(ηb)πγ it would be a strong confirmation of the hadronic
molecule picture.
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2. A new parametrization for the
scalar pion form factors

2.1. Introduction

The scalar isoscalar sector of the QCD spectrum up to 2GeV has been of high
theoretical and experimental interest for many years. One of the main motiva-
tions for these investigations is the hunt for glueballs: their lightest representa-
tives are predicted to occur in the mass range between 1600 and 1700MeV with
quantum numbers 0++ [118, 119, 120, 121]. The most straightforward way to
identify glueball candidates is to count states with and without flavor quantum
number and see if there are supernumerary isoscalar states; see, e.g., the minire-
view on non-q̄q states provided by the Particle Data Group (PDG) [14] or the
reviews Refs. [181, 182]. Unfortunately, regardless of the year-long efforts, the
scalar isoscalar spectrum is still not fully resolved: e.g. there is still an ongoing
debate whether the f0(1370) exists or not [181]. One problem might be that
most analyses of experimental data performed so far are based on fitting sums of
Breit–Wigner functions, which can lead to reaction-dependent results. To make
further progress, it therefore appears compulsory to employ parametrizations
that allow one to extract pole parameters, for those by definition do not depend
on the production mechanism. This requires amplitudes that are consistent with
the general principles of analyticity and unitarity. In this paper we present a
new parametrization for the scalar pion form factors that has these features built
in, and in addition maps smoothly onto well constrained low-energy amplitudes.
The two-pion system at low energies is well understood from sophisticated in-

vestigations based on dispersion theory—in particular the ππ–KK̄ phase shifts
and inelasticities can be assumed as known from threshold up to an energy of
about s = (1.1GeV)2 [123, 124, 183, 184, 185, 186]. From this information,
quantities like the scalar non-strange and strange form factors for both pions
and kaons can be constructed, again employing dispersion theory [91, 98, 100,
187, 188, 189, 190, 191]. The resulting amplitudes, which capture the physics of
the f0(500) (or σ) and the f0(980), were already applied successfully to analyze
various meson decays, see, e.g., Ref. [190]. In particular the non-Breit–Wigner
shape of these low-lying resonances [122] is taken care of automatically. How-
ever, to also include higher energies in the analysis, where additional inelastic
channels become non-negligible and higher resonances need to be included, one
is forced to leave the safe grounds of fully model-independent dispersion theory
and to employ a model. Ideally this is done in a way that the amplitudes match
smoothly onto those constructed rigorously from dispersion relations. More-
over, to allow for an extraction of resonance properties, the extension needs to
be performed in a way consistent with analyticity.
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A formalism that has all of these features was introduced for the pion vector
form factor in Ref. [95]. In that case, the low-energy ππ interaction can safely be
treated as a single-channel problem in the full energy range where high-accuracy
phase shifts are available, since the two-kaon contribution to the isovector P -
wave inelasticity is very small [185, 192].1 However, this is not true for the
isoscalar S-wave, clearly testified by the presence of the f0(980) basically at
the KK̄ threshold with a large coupling to this channel [127, 194]. Thus, in
order to apply the formalism of Ref. [95] to the scalar isoscalar channel it needs
to be generalized. This is the main objective of the present article. As an
application we test the amplitudes on data for B̄0

s → J/ψππ/KK̄ recently
measured with high accuracy at LHCb [195, 196], which allows us to extract the
strange scalar form factor of pions and kaons up to about 2GeV and to constrain
pole parameters and branching fractions of two of the heavier f0 resonances in
that energy range.
This paper is organized as follows. In Sect. 2.2, we derive the unitary and

analytic scalar form factor parametrization to be used. In Sect. 2.3 we illustrate
its application in a coupled-channel analysis of the decays B̄0

s → J/ψππ and
B̄0
s → J/ψKK̄. Specifically, we discuss the stability of our fits under changing

assumptions for the parametrization concerning the number of resonances, the
degree of certain polynomials, as well as the approximation in the description
of the effective four-pion channel. In addition, in Sect. 2.4 we extract pole
parameters, in particular for both the f0(1500) and the f0(2020), via the method
of Padé approximants for the analytic continuation to the unphysical sheets.
The paper ends with a summary and an outlook in Sect. 2.5.

2.2. Formalism

The derivation of the form factor parametrization is presented for the strange
scalar isoscalar pion (kaon) form factor Γsπ (ΓsK). These are related to the matrix
elements

〈
π+(p1)π−(p2) |mss̄s| 0

〉
=

2M2
K −M2

π

2
Γsπ(s) ,

〈
K+(p1)K−(p2) |mss̄s| 0

〉
=

2M2
K −M2

π

2
ΓsK(s) , (2.1)

where s = (p1 + p2)2. The Γsi (s), i = π, K, defined this way are invariant
under the QCD renormalization group. Since the scalar isoscalar ππ system
is strongly coupled to the KK̄ channel via the f0(980) resonance, a coupled-
channel description becomes inevitable even for energies around s = 1GeV2.
In this paper we present a parametrization for the scalar form factors valid at
even higher energies. This becomes possible via the explicit inclusion of further
inelasticities and resonances. Below 1GeV the system is strongly constrained
by dispersion theory using a coupled-channel treatment of ππ and KK̄ [190].

1Note that a recent analysis of Nf = 2 and Nf = 2 + 1 lattice data revealed indications for
the necessity to include a KK̄ component for the ρ meson in the formalism [193].
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At higher energies experimental data indicate that further inelasticities are usu-
ally accompanied by resonances. We thus derive a parametrization that allows
for resonance exchange at higher energies. Those resonances also act as door-
ways for the coupling of the system to the additional channels. At the same
time we make sure that their presence does not distort the amplitude at lower
energies. To be concrete, here we consider in addition to ππ (channel 1) and
KK̄ (channel 2) an effective 4π channel (channel 3), modeled by either ρρ or
σσ. Three-channel models with an effective σσ channel have been considered
in the literature before [98, 197], while some of the f0 states between 1.3 and
2GeV have even been hypothesized to be dynamically generated by attractive
interactions between ρ mesons [198, 199, 200, 201]. It should become clear from
the derivation, however, that the formalism allows for the inclusion of additional
channels in a straightforward manner.
The derivation starts from the scalar isoscalar scattering amplitude T (s)if ,

where i and f denote the initial- and final-state channels. To implement uni-
tarity and analyticity we use the Bethe–Salpeter equation, which reads

Tif = (V + V GT )if = Vif + VimGmmTmf (2.2)

in operator form. Here Vif denotes the scattering kernel of the initial channel i
into the final channel f . The loop operator G is diagonal in channel space and
provides the free propagation of the particles of channel m. For example, at the
one-loop level the above equation generates an expression of the form

Vi1G11V1f ∝
∫

d4k

(2π)4
Vi1(k, . . . )

i

k2 −M2
π + iε

× i

(k − P )2 −M2
π + iε

V1f (k, . . . ) (2.3)

for ππ rescattering, with P being the total 4-momentum of the system such
that P 2 = s. For m = 1, 2, the discontinuity of the loop operator element Gmm
reads

discGmm = 2iσm , (2.4)

where σm(s) =
√

1− 4M2
m/s is the two-body phase space in the given channel,

and Mm denotes the pion and kaon masses for channels 1 and 2, respectively.
For the third channel, we need to include the finite width of the two intermediate
(ρ and σ) mesons; we write

discGk33 = 2i

∫ ∞

4M2
π

dm2
1 dm

2
2 ρk(m

2
1) ρk(m

2
2)
λ1/2(s,m2

1,m
2
2)

s
, (2.5)

where λ(a, b, c) = a2 + b2 + c2− 2(ab+ ac+ bc) is the Källén function. Here the
spectral density for the state k, ρk(m2), is given as

ρk(q
2) =

1

π

mkΓk(q
2)

(q2 −m2
k)

2 +m2
k Γ2

k(q
2)
, (2.6)
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Figure 2.1.: Real (blue) and imaginary (red) parts of the Omnès matrix elements
Ω11, Ω12, Ω21, and Ω22.

with the energy-dependent width

Γk(s) =
Γkmk√

s

(
pπ(s)

pπ(m2
k)

)2Lk+1 (
F

(Lk)
R (s)

)2
,

pπ(s) =

√
s

2
σπ(s) ,

(2.7)

where Γk (mk) denotes the nominal width (mass) of the resonance and Lk
the angular momentum of the decay with Lk = 1 and 0 for the ρ and the σ,
respectively. The F (L)

R (s) denote barrier factors that prevent the width from
growing continuously. We employ the parametrization of Refs. [202, 203], where
their explicit forms for L = 0, 1, 2 are given by

F
(0)
R = 1 , F

(1)
R =

√
1 + z0

1 + z
, F

(2)
R =

√
9 + 3z0 + z2

0

9 + 3z + z2
, (2.8)

with z = r2
R p

2
π(s), z0 = r2

R p
2
π(m2

k), and the hadronic scale rR = 1.5GeV−1.
Note that as long as no exclusive data are employed for the 4π final state, the
amplitudes are not very sensitive to the details how, e.g., the spectral density
of the σ meson is parametrized, since it enters only as the integrand in the self
energies of the resonances. However, the analysis is somewhat sensitive to the
differences between a ρρ and a σσ self energy, since the energy dependence of the
two is quite different, given the different resonance parameters and the different
threshold behavior. We come back to this discussion later in this section.
To proceed with the derivation we split the scattering kernel into two parts,

V = V0 +VR, conceptually following the so-called two-potential formalism [204].
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2.2. Formalism

The effect of V0 will eventually be absorbed into the dispersive piece fixed by
the low-energy ππ–KK̄ T -matrix input. Its explicit form is needed at no point;
one may think of it as the driving term of a Bethe–Salpeter equation

T0 = V0 + V0GT0 . (2.9)

Since T0 it is the solution of a scattering equation, T0 is unitary. In particular,
we may write

T0 =



η0e2iδ0−1

2iσπ
g0e

iψ0 0

g0e
iψ0 η0e2i(ψ0−δ0)−1

2iσK
0

0 0 0


 , (2.10)

where δ0 is the scalar isoscalar ππ phase shift, ψ0 the phase of the ππ → KK̄
scattering amplitude, and g0 its absolute value. The inelasticity η0 is related to
g0 via

η0 =
√

1− 4 (g0)2 σπ σK Θ
(
s− 4M2

K

)
. (2.11)

The effects of resonances heavier than the f0(980) enter the amplitude via VR.
By means of VR we can construct the resonance T -matrix TR, related to the
full T -matrix via T = TR + T0. Since T0 is unitary by itself, TR cannot be
independent of T0 in order to respect the Bethe–Salpeter equation (2.2). Solving
for TR we obtain

(1− V0G− VRG)TR = VR (1 +GT0) . (2.12)

To proceed, we define the vertex function Ω via

Ω = 1 + T0G . (2.13)

Its discontinuity is given by

discΩij = 2i (T0)∗im σm Ωmj , (2.14)

which agrees with the discontinuity of the Omnès matrix derived from the scat-
tering T -matrix T0 [89, 90]. Therefore it can be constructed from dispersion
theory:

Ω =




Ω11 Ω12 0
Ω21 Ω22 0
0 0 1


 , Ωij(s) =

1

2πi

∫ ∞

4M2
π

dz
discΩij(z)

z − s− iε . (2.15)

Numerical results for Ωij(s) based on the T -matrix of Ref. [205] are shown in
Fig. 2.1. One observes in particular the signature of the f0(500) or σ-meson,
i.e. the broad bump in the imaginary part of Ω11(s) below 1GeV, accompanied
by a quick variation of the real part, which clearly cannot be parametrized by
a Breit–Wigner form. For an earlier discussion about this fact see Ref. [122].
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Figure 2.2.: Real (blue) and imaginary (red) parts of the self-energy functions
Σ11, Σ12 = Σ21, Σ22, and Σ33, using the Omnès matrix displayed
in Fig. 2.1. Note that Σ33 is a once-subtracted dispersion integral
over the four-particle phase space factor taken as a σσ (solid) or a
ρρ (dashed) state.
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2.2. Formalism

Using TR = Ω tR Ωt and V0GΩ = Ω−1, which follows from inserting Eq. (2.9)
into Eq. (2.13), one obtains a Bethe–Salpeter equation for tR,

tR = VR + VR (GΩ) tR . (2.16)

Note that Eq. (2.16) does not depend on V0 explicitly. It appears only implicitly,
since the loop operator G, describing the free propagation of the two-meson
states, needs to be replaced by the dressed loop operator (GΩ), which describes
the propagation of the two-meson state in the presence of the interaction T0, in
order to preserve unitarity. The discontinuity of this self-energy matrix Σ = GΩ
is given by

discΣij(s) = 2iΩ†im(s) discGmm(s) Ωmj(s) . (2.17)

The discontinuities of the loop functions for the two–body channels and the 4π
channel were given in Eqs. (2.4) and (2.5), respectively. Equation (2.17) allows
us to write Σ as a once-subtracted dispersion integral,

Σij(s) = Σij(0) +
s

π

∫
dz
z

discΣij(z)

z − s− iε . (2.18)

The resulting self-energy functions Σij(s) are displayed in Fig. 2.2. The subtrac-
tion constants can be absorbed in a redefinition of the yet undefined potential
VR. Please observe that the component Σ33 looks very different for the two
different model assumptions employed. For example, the self energy from σσ
intermediate states rises very quickly right from the 4π threshold, while the one
for ρρ sets in significantly later. This difference reflects that the σ decays into
two pions in an S-wave, while the ρ decays in a P -wave. On the other hand,
since the discontinuity of G33 enters in the expression for Σ33 only as the inte-
grand, this component of the self energy is not very sensitive to the details of
the concrete parametrizations employed for the spectral functions.
The full solution for the scattering matrix is thus given by

T = T0 + Ω [1− VRΣ]−1 VRΩt . (2.19)

In order to obtain a parametrization for the form factor, we adapt the P -vector
formalism [206] to the system at hand. The isoscalar scalar form factor Γsi is
written as

Γsi = Mi + TijGjjMj , (2.20)

where Mi is an analytic term describing the transition from the source to the
channel i. Inserting the parametrization of Eq. (2.19) we obtain, after some
straightforward algebra,

Γsi = Ωim [1− VRΣ]−1
mnMn . (2.21)

As T0 captures the physics in the ππ and KK̄ channels at energies below 1GeV
including the f0(500), the f0(980), and the impact of the corresponding left-hand
cuts (left-hand cuts in the other channel(s) are neglected by construction), the
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2. A new parametrization for the scalar pion form factors

potential VR should predominantly describe the resonances above 1GeV. In
order to reduce their impact at low energies, we subtract VR at s = 0 and arrive
at

(VR)ij =
∑

r

gri
s

m2
r (m2

r − s)
grj . (2.22)

The bare resonance masses, mr, as well as the bare resonance–channel coupling
constants, gri , are free parameters that need to be determined by a fit to data.
The subtraction constants are effectively absorbed into T0 that by construction
captures all physics close to s = 0.
The most general ansatz for M reads

Mi = ci + γi s+ · · · −
∑

r

gri
s

m2
r − s

αr , (2.23)

where the parameters ci = Γsi (0) provide the normalizations of the different
form factors. Here the isospin Clebsch–Gordan coefficients were absorbed into
the definition of the form factors. This means explicitly

Γs2 →
2√
3

Γs2 and M2 →
2√
3
M2 , (2.24)

while for the third channel we absorb these factors into the coupling constants.
The bare resonance masses and the corresponding couplings gri are the same as
before. The parameters αr, which quantify the resonance–source couplings, and
the slope parameters γi are additional free parameters.
This completely defines the formalism. Clearly, the number of inelastic chan-

nels can be extended in a straightforward way, however, for the concrete appli-
cation studied in the following section, three channels turn out to be sufficient
as long as no exclusive data for additional channels become available.

2.3. Application: B̄0
s → J/ψ π+π− and B̄0

s → J/ψK+K−

2.3.1. Parametrization of the decay amplitudes

As an example, we now apply the formalism introduced in the previous section
to the decays B̄0

s → J/ψ π+π−(K+K−), analyzing data taken by the LHCb
collaboration [195, 196]. The dominant tree-level diagram for the corresponding
weak transition on the quark level is displayed in Fig. 2.3.
It has been argued previously [190, 207] that the S-wave projection of the ap-

propriate helicity-0 amplitude for B̄0
s → J/ψM1M2 transitions are proportional

to the corresponding strange scalar form factors of the light dimeson system
M1M2; in particular, there are chiral symmetry relations between the differ-
ent dimeson channels that fix the relative strengths to be equal to those of the
matrix elements in Eq. (2.1) at leading order in a chiral expansion [207]. We
conjecture here that the same will still hold true for the inclusion of the effective
third (4π) channel. In this sense, the B̄0

s decays allow to test the pion and kaon
strange scalar form factors, up to a common overall normalization.
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B̄0
s

J/ψ

π+π−

b

c

s

c̄

s̄
s̄

Γsπ

W−

Figure 2.3.: Tree-level W -exchange diagram for the decay process B̄0
s →

J/ψ π+π−. The hadronization of the s̄s quark pair into π+π− (S-
wave dominated) is given by the scalar form factor Γsπ.

A previous dispersive analysis [190], which considered the ππ–KK̄ coupled-
channel system, worked well in the energy region up to 1.05GeV. However, due
to higher resonances and the onset of additional inelasticities the framework
could not be applied beyond this energy. Our new parametrization allows us
to overcome this limitation, while it guarantees at the same time a smooth
matching onto the amplitudes employed in Ref. [190]. The data are provided in
terms of angular moments Y 0

L (
√
s), which are given as angular averages of the

differential decay rates

〈
Y 0
L

〉
=

∫
d cos Θ

dΓ

d
√
s d cos Θ

Y 0
L (cos Θ) , (2.25)

where Θ is the scattering angle between the momentum of the dipion system in
the B̄0

s rest frame and the momentum of one of the pions. We express the decay
amplitude in terms of the partial-wave-expanded helicity amplitudes HLλ , where
L denotes the angular momentum of the pion or kaon pair, and λ = 0, ‖,⊥
refers to the helicity of the J/ψ. The angular moments are then given as

〈
Y 0

0

〉
=
pψpπ√

4π

{ ∣∣H0
0

∣∣2 +
∑

λ=0,‖,⊥

(∣∣H1
λ

∣∣2 +
∣∣H2

λ

∣∣2
)}

(2.26)

and

〈
Y 0

2

〉
=
pψpπ√

4π

{
2Re

[
H0

0

(
H2

0

)∗]

+
1√
5

[
2
∣∣H1

0

∣∣2 −
∣∣∣H1
‖

∣∣∣
2
−
∣∣H1
⊥
∣∣2
]

+

√
5

7

[
2
∣∣H2

0

∣∣2 +
∣∣∣H2
‖

∣∣∣
2

+
∣∣H2
⊥
∣∣2
]}

(2.27)

for the moments of relevance for this work; see Refs. [190, 207] for details. In
addition to the pion momentum in the dipion rest frame pπ introduced earlier, we
also use the J/ψ momentum in the B̄0

s rest frame, pψ = λ1/2(s,M2
ψ,m

2
B)/(2mB).
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2. A new parametrization for the scalar pion form factors

The scalar helicity amplitude H0
0 can be related to the scalar isoscalar form

factor Γsi as

H0
0 = NpψmBΓsi , (2.28)

where the normalization factor N absorbs weak coupling constants and the
pertinent Wilson coefficients, as well as meson mass factors and decay con-
stants [190, 207]. Here i denotes the relevant channel. For the form factors we
use the parametrization introduced in Sect. 2.2. Since the main focus of our
analysis lies on the S-waves, we approximate the P - and D-waves as Breit–
Wigner functions [208],

HLλ√
2L+ 1

= wLλ
∑

R

hRλ e
iφRλAR

× F (J)
B F

(L)
R

( pψ
mB

)J( pπ√
s

)L
, (2.29)

for L ≥ 1. The free parameters introduced here are the strength hRλ of the
resonance R with helicity λ, its phase φRλ , and a total rescaling factor wLλ for
the helicity amplitude HLλ . The factors F (J)

B and F (L)
R are the Blatt–Weisskopf

factors of Eq. (2.8). Two different scales are employed therein: while F (J)
B

depends on the argument z = r2
B p

2
ψ with rB = 5.0GeV−1, for F (L)

R we use
z = r2

R p
2
π with rR = 1.5GeV−1 as in Eq. (2.8) [203]. The position as well

as width of the corresponding resonance is then included in the Breit–Wigner
function

AR(s) =
1

m2
R − s− imR ΓR(s)

(2.30)

with an energy-dependent width ΓR(s) (2.7). Since the only interference term
in the angular moments considered, Eqs. (2.26) and (2.27), is the S-D-wave
interference in

〈
Y 0

2

〉
, our fits are only sensitive to the relative phase motion of

H0
0 and H2

0. To reduce the total number of free parameters for all partial-waves
except the S-wave, we fix the resonance masses mR as well as their respective
widths to the central values found in Refs. [195, 196]. Furthermore we fix both
hRλ as well as φRλ with λ =‖,⊥ to the central values of the LHCb fits. However,
since the phase motion of our S-wave will be different from the one of the LHCb
parametrization [190], we allow wRλ to vary. For the helicity amplitude H2

0 we
keep both hR0 as well as φR0 flexible. To avoid unnecessary parameters we set
w2

0 = 1. The number of free parameters is discussed in more detail in Sect. 2.3.2.

2.3.2. Fits to the decay data

In this section we discuss the fit using the form factor parametrization of
Eq. (2.21) to the data measured for B̄0

s → J/ψπ+π− [195] and B̄0
s →

J/ψK+K− [196], which are presented as angular moments related to the he-
licity amplitudes via Eqs. (2.26) and (2.27). Note that these angular moments

54



2.3. Application: B̄0
s → J/ψ π+π− and B̄0

s → J/ψK+K−

have an arbitrary normalization and need to be rescaled to their physical values.
The integrated partial width is given by

Γ
(
B̄0
s → J/ψ h+h−

)
=

∫
d
√
s d cos Θ

dΓ

d
√
s d cos Θ

=
√

4π

∫
d
√
s
〈
Y 0

0

〉
. (2.31)

The correctly normalized angular moments,
〈
Y 0
L

〉
norm

, can be obtained from
those published,

〈
Y 0
L

〉
LHCb

, by

〈
Y 0
L

〉
norm

=
Γ
(
B̄0
s → J/ψ h+h−

)
√

4π
∫
d
√
s
〈
Y 0

0

〉
LHCb

〈
Y 0
L

〉
LHCb

. (2.32)

We determine the partial decay rates Γ
(
B̄0
s → J/ψ h+h−

)
via the total decay

rate ΓB̄0
s

= τ−1
B̄0
s
with [14]

τB̄0
s

= (1.509± 0.004) 10−12 s (2.33)

and the branching ratios [14]

B
(
B̄0
s → J/ψ π+π−

)
= (2.09± 0.23)× 10−4 ,

B
(
B̄0
s → J/ψK+K−

)
= (7.9± 0.7)× 10−4 . (2.34)

The dispersive approach using the Omnès matrix already captures the physics
of the f0(500) and f0(980) resonances. In order to extend the description further,
we use NR additional resonances. As outlined above, the S-wave contains in
total up to (Nc +Ns + 1)NR + 2NcNs parameters, where Nc (Ns) denotes the
number of channels (sources) included; in this study Ns = 1, Nc = 3, and NR is
either 2 or 3, depending on the fit. The last term in the sum above comes from
the non-resonant couplings of the system to the source. The number of those
parameters can be reduced from the observation that the normalizations of the
pion and the kaon form factors can be fixed to c1 = 0 and c2 = 1 [190]. Since
the four-pion channel is expected to couple similarly weakly to an s̄s source as
the two-pion one (given OZI suppression at s = 0), we also set c3 = 0. Thus the
only free parameter from the constant terms in the sources Mi can be absorbed
into the overall normalization N introduced in Eq. (2.28). Below we present fits
without (γi = 0, resulting in 5NR parameters) as well as with linear terms in
the production vertex defined in Eq. (2.23) (γi 6= 0, providing three more free
constants).
For the decay B̄0

s → J/ψ ππ the dipion system is in an isoscalar configuration;
due to Bose symmetry the pions can therefore only emerge in even partial-waves.
Since we restrict ourselves to a precision analysis of the S-wave, we adopt the D-
waves of Ref. [195] and accordingly include two resonances, namely f2(1270) and
f ′2(1525). For the 0 polarization we introduce four new parameters given by the
amplitude hR0 and φR0 , while we fix w0

0 = 1. For the other two helicity amplitudes
we constrain hRλ and φRλ while keeping w0

λ variable. This gives another two free
parameters. In total we obtain six additional free parameters.
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2. A new parametrization for the scalar pion form factors

χ2/ndf σσ ρρ

Fit 1 429.9
384−30−1 = 1.22 376.2

384−30−1 = 1.07

Fit 2 413.3
384−33−1 = 1.18 361.4

384−33−1 = 1.03

Fit 3 366.9
384−35−1 = 1.05 335.4

384−35−1 = 0.96

Table 2.1.: Reduced χ2 for the best fits. See main text for details.

Since K+ and K− do not belong to the same isospin multiplet, they do
not follow the Bose symmetry restrictions. Thus the P -wave in the decay B̄0

s →
J/ψK+K− is non-negligible and, in fact, dominant. It shows large contributions
of the φ(1020) as well as of the φ(1680). Since the P -wave does not interfere with
S- or D-waves in the angular moments

〈
Y 0

0

〉
and

〈
Y 0

2

〉
, we adopt the parameters

of LHCb [196]. In order to allow for some flexibility, we also fit w1
λ, resulting

in three parameters. The D-wave includes the resonances f2(1270), f ′2(1525),
f2(1750), and f2(1950). For λ = 0 we fit both hR0 as well as φR0 with fixed w2

0 = 1,
resulting in eight free parameters. For the other helicity amplitudes we stick to
the LHCb parametrization and keep w2

λ free, which results in two additional fit
parameters. Therefore in total we have 13 additional free parameters for this
channel.
All in all we have 5NR + 20(+3) free parameters for γi = 0 (γi 6= 0). Clearly

this number is larger than the number of parameters of two single-channel Breit–
Wigner analyses, however, the advantage of the approach advocated here is that
it allows for a combined analysis of all channels in a way that preserves unitarity,
and for a straightforward inclusion of the 4π channel in the analysis. Note that
the scalar resonances studied here are known to have prominent decays into four
pions [14]; cf. also theoretical approaches modeling some of them as dynamically
generated ρρ resonances [198, 199, 200, 201].
The LHCb collaboration extracted two additional S-wave resonances from

their data [195], namely f0(1500) and f0(1790). Since there is no f0(1790) in
the listings of the Review of Particle Physics by the PDG [14], we use the name
f0(2020) for the higher state, in particular since the parameters we extract
below are close to those reported for that resonance. The first fit includes our
parametrization with NR = 2 and γi = 0 (Fit 1). To test the stability of this
solution, we also include a fit with NR = 2 and γi 6= 0 (Fit 2) as well as a
fit with NR = 3 and γi = 0 (Fit 3). In order to obtain an estimate of the
systematic uncertainty, we repeat each fit with two different assumptions about
the third channel, which we take to be dominated by either σσ or ρρ. The
respective reduced χ2 of the best fit results are listed in Table 2.1. We show
the corresponding angular moments in Figs. 2.4 (ρρ) and 2.5 (σσ). In principle
we could have also investigated mixtures of σσ and ρρ intermediate states or
parametrizations representing the channels π(1300)π or a1(1260)π reported to
be relevant for the f0(1500) [14], however, since with the given choices we already
find excellent fits to the data although the corresponding two-point function
Σ33 look vastly different for the σσ and the ρρ case (cf. the lower right panel of
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Figure 2.4.: Angular moments
〈
Y 0

0

〉
and

〈
Y 0

2

〉
for the decay B̄0

s → J/ψ π+π−

(top two) and B̄0
s → J/ψK+K− (bottom four) with an effective ρρ

channel. The picture shows Fit 1 in blue, Fit 2 in red, and Fit 3
in green. On the lower axis we show the fit residuals defined by
χ =

(〈
Y 0
L

〉
measured

−
〈
Y 0
L

〉
fit

)
/σmeasured.

Fig. 2.2), studying other possible decays will be postponed until data for further
exclusive final states become available.
We note first of all that the ρρ fits have a lower reduced χ2 compared to

the σσ fits. Allowing for a linear term in the source further improves the data
description, as witnessed by the differences of Fits 1 and 2. The overall best
reduced χ2 is obtained by including another, third, resonance.
For the ρρ fit (see Fig. 2.4) we see that Fit 2 improves the description of〈
Y 0

0

〉
ππ

in the energy region between 1.6 and 2.0GeV. The biggest change
between Fit 3 and the other ones is given by the better description of the high-
energy tail in the decay B̄0

s → J/ψK+K−.
For the σσ fit, Fig. 2.5, we observe a similar picture. Fit 2 provides a very

slight overall improvement of Fit 1. However, here the main difference between
Fit 3 and the rest resides in the better description of the f0(1500) especially
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Figure 2.5.: Angular moments
〈
Y 0

0

〉
and

〈
Y 0

2

〉
for the decay B̄0

s → J/ψ π+π−

(top two) and B̄0
s → J/ψK+K− (bottom four) with an effective

σσ channel. The picture shows Fit 1 in blue, Fit 2 in red, and Fit 3
in green. On the lower axis we show the fit residuals defined by
χ =

(〈
Y 0
L

〉
measured

−
〈
Y 0
L

〉
fit

)
/σmeasured.

for the decay B̄0
s → J/ψ π+π−, while the high-energy tail of B̄0

s → J/ψK+K−

remains nearly untouched.
For a better comparison of the different fits we discuss the resulting form

factors Γsi in some detail. We begin by comparing the strange scalar pion form
factor Γs1 as shown in Fig. 2.6. In all fits three resonances are clearly visible,
namely the f0(980), f0(1500), and a broad structure around 2GeV related to
the f0(2020) resonance. Furthermore we also know that the input contains the
broad f0(500) resonance. Fit 3 contains an additional resonance: in the case of
the ρρ fit, it has its pole around 2.4GeV and is relatively narrow. Notice that the
maximum energy available for the ππ system in the decay studied is 2.27GeV,
thus this additional resonance in fact only contributes with its low-energy tail,
giving small corrections for the high-energy parts of the angular moments. This
is clearly visible in

〈
Y 0

0

〉
KK

at high energies in Fig. 2.4, where Fit 3 can describe
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s → J/ψK+K−
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Figure 2.6.: Modulus (left) and phase (right) of the pion form factor Γs1 for the
fits with an additional ρρ (top) and σσ (bottom) channel. The
input scalar isoscalar scattering phase δ0 is depicted in black. Fit 1
is shown in blue, Fit 2 in red, and Fit 3 in green. The dotted vertical
lines mark the kinematic upper limit for

√
s in the B̄0

s decay.
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Figure 2.7.: Modulus (left) and phase (right) of the kaon form factor Γs2 for the
fits with an additional ρρ (top) and σσ (bottom) channel. Fit 1 is
shown in blue, Fit 2 in red, and Fit 3 in green. The dotted vertical
lines mark the kinematic upper limit for

√
s in the B̄0

s decay.

the last data points better than Fits 1 and 2. In comparison we see that the
σσ fit lacks any such high-energy resonance. For this fit the difference between
Fit 3 and the rest is only visible in the argument of Γs1, showing a shift in the
range 1.5 . . . 2GeV. This improves the description of

〈
Y 0

2

〉
ππ

near the f0(1500)
resonance. From this discussion it becomes clear that the data analyzed here do
not allow us to extract information on any further resonance beyond f0(500),
f0(980), f0(1500), and f0(2020).
By comparing the extracted kaon form factors Γs2 in Fig. 2.7 we see very

similar features as for the pion form factor. However, the f0(1500) couples more
weakly to the KK̄ channel than to ππ, which is in line with what is reported
about this state by the PDG [14]. The impact of the additional resonance in
Fit 3 that appears outside the accessible data range is even more pronounced.
In Fig. 2.8 we compare the form factor of the additional, effective 4π, channel

Γs3. We see that the results of the fits with the 4π channel parametrized as
ρρ differ significantly from the ones employing the σσ variant. Moreover, also
Fits 1–3 differ strongly from each other, even in the kinematic regime that can
be reached in B̄0

s decays. To further constrain these amplitudes it is compulsory
to include data on B̄0

s → J/ψ4π in the analysis, which is so far unavailable in
partial-wave-decomposed form [209].
Finally in Fig. 2.9 we show the phases, δ, and inelasticities, η, that result for

T11 in the different fits, where we use the standard parametrization

T11 =
(
ηe2iδ − 1

)
/(2iσπ) . (2.35)
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Figure 2.8.: Modulus (left, in arbitrary units) and phase (right) of the effective
4π form factor Γs3 for the fits with an additional ρρ (top) and σσ
(bottom) channel. Fit 1 is shown in blue, Fit 2 in red, and Fit 3 in
green. The dotted vertical lines mark the kinematic upper limit for√
s in the B̄0

s decay.
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2. A new parametrization for the scalar pion form factors

In the figure we also show the two-channel input phase δ0 and inelasticity η0

introduced in Eq. (2.10) as black solid lines. The comparison of the different
lines demonstrates that the high-energy extension maps smoothly onto the low-
energy input, as it should. In the phases one clearly sees the effect of the
f0(1500), which leads to a deviation of the phase of T11 from the input phase.
In the inelasticity the full model starts to deviate from the input already at
about 1.1GeV as a consequence of the inclusion of the 4π channel. As in the
phase the f0(1500) also leads to a pronounced structure in the inelasticity. It is
interesting to observe that neither in the phase nor in the inelasticity there is a
clear imprint of the f0(2020), which can be understood from its small coupling
to the two-pion channel.
In Fig. 2.9 we also show a comparison of our phases and inelasticities to

those extracted in Ref. [210] (plotted as purple dashed lines) and the preferred
solution [182] of the CERN–Munich ππ experiment [211] (data points with error
bars). As one can see in the phase shifts, all analyses agree up to about 1.5GeV.
However, the effect of the f0(1500), present in all analyses, is very different. Also
for the inelasticity there is no agreement between our solution and those from
the two other sources, but here the deviation starts basically with the onset of
the K̄K channel; for a more detailed discussion of the current understanding of
the inelasticity in the scalar isoscalar channel, we refer to Ref. [124]. Note that
there is also no agreement between the amplitudes of Ref. [182] and Ref. [210].
Thus, at this time one is to conclude that T11 above 1.1GeV is not yet known.
In a similar way, we can also compare the extracted ππ → KK̄ scattering

amplitude T12 with its absolute value g as well as its phase ψ, which are both
shown in Fig. 2.10. While the resonance effects of the f0(1500) look qualitatively
well-described by our high-energy extension, we see some differences to the
actual data [212, 213]. Note that the shown results are a prediction based solely
on the B̄0

s decay data and could be improved upon by explicitly taking the phase
motion into account in the fit.

2.4. Extraction of resonance poles

In this section we present the extraction of resonance poles in the complex s-
plane from the parametrizations discussed above. Traditionally those are given
in terms of a mass M and a width Γ, connected to the pole position sp via [14]

√
sp = M − iΓ

2
. (2.36)

For narrow resonances located far from relevant thresholds, these parameters
agree with the standard Breit–Wigner parameters. However, for broad and/or
overlapping states, significant deviations can occur between the parameters de-
rived from the pole location and those from Breit–Wigner fits. Since the analytic
continuation to different Riemann sheets needs the on-shell scattering T -matrix
as input, which, due to left-hand cuts induced by crossing symmetry, has a
complicated analytic structure that cannot be deduced from the phase shifts
straightforwardly, we use the framework of Padé approximants to search for the
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Figure 2.9.: Scalar isoscalar pion–pion scattering phase shift δ (left) and in-
elasticity η (right) defined by the ππ S-wave amplitude T11 =(
ηe2iδ − 1

)
/(2iσπ) for the fits with an additional ρρ (top) and σσ

(bottom) channel. Fit 1 is shown in blue, Fit 2 in red, Fit 3 in green,
and the input δ0 and η0 [205] in black. The purple dashed line shows
the K-matrix solution of Ref. [210]. In addition we plot the pre-
ferred phase shifts and inelasticities [182] of the CERN–Munich ππ
experiment [211], which are denoted by data points with error bars.

poles on the nearest unphysical sheets. For a thorough introduction into this
topic, see e.g. Refs. [214, 215, 216].
As the form factor Γs1(s) (Fig. 2.6) as well as T11(s) (Fig. 2.9) are smooth

functions when moving from the upper complex s-plane of the first Riemann
sheet to the lower complex s-plane of the neighboring unphysical sheet, we may
expand both around some properly chosen expansion point s0 according to

PNM (s, s0) =

∑N
n=0 an(s− s0)n

1 +
∑M

m=1 bm(s− s0)m
. (2.37)

The denominator allows for the inclusion of M resonance poles lying on the
unphysical Riemann sheet. In the following we set M to 1, allowing for the
extraction of the resonance that lies closest to the expansion point s0. The
numerator ensures the convergence of the series to the form factor or the scat-
tering matrix for N → ∞. In order to obtain the complex parameters an and
bn, we fit Padé approximants to both the form factor and the scattering matrix
simultaneously. As both T11 and Γs1 have the same poles, the parameters bn are
the same for both, however, the an are different. Note furthermore that the a0

parameters are constrained by Γs1(s0) or T11(s0), respectively.

63



2. A new parametrization for the scalar pion form factors

√
s [GeV]

0.5 1 1.5 2 2.5

ψ

0

2

4

6

8

10

√
s [GeV]

0.5 1 1.5 2 2.5

g

0

0.5

1

1.5

2

2.5

√
s [GeV]

0.5 1 1.5 2 2.5

ψ

0

2

4

6

8

10

√
s [GeV]

0.5 1 1.5 2 2.5

g

0

0.5

1

1.5

2

2.5

Figure 2.10.: Scalar isoscalar ππ → KK̄ scattering phase shift ψ (left) and
absolute value g (right) defined by the S-wave amplitude T12 =
g eiψ for the fits with an additional ρρ (top) and σσ (bottom)
channel. Fit 1 is shown in blue, Fit 2 in red, Fit 3 in green, and
the input g0 and ψ0 [205] in black. For comparison we show the
amplitude analyses of Refs. [212] (open diamonds) and [213] (filled
stars).

For near-threshold poles such as the f0(500) and f0(980), we perform the
Padé approximation not in s, but in the conformal variable

w(s) =

√
s− 4M2

π −
√

4M2
K − s

√
s− 4M2

π +
√

4M2
K − s

(2.38)

instead [214]. This variable transformation maps the upper half complex s-plane
of the first Riemann sheet to the inner upper half of a unit circle in the complex
w plane, without introducing any unphysical discontinuities. The lower half of
the second Riemann sheet is then mapped onto the lower half of the unit circle
in the complex w-plane. This allows us to search for the two lowest poles within
a circle around the expansion point s0, without being limited by the proximity
of the ππ and KK̄ thresholds, which are automatically taken care of.
The statistical uncertainty is obtained through a bootstrap analysis of the fit

results presented in Sect. 2.3.2. The systematic uncertainty coming from the
Padé approximation on the other hand is estimated by [215]

∆N =

∣∣∣∣
√
sNp −

√
sN−1
p

∣∣∣∣ , (2.39)
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2.4. Extraction of resonance poles

Fit
√
s0

GeV Re√sp/MeV −2× Im√sp/MeV |rT |/GeV2 arg(rT ) |rΓ|/GeV2 arg(rΓ)

f0(500) ρρ 1 0.481 441± 1 504± 2 0.204± 0.002 −145± 1 0.0309± 0.0028 −160± 3

f0(500) σσ 1 0.466 440± 1 521± 1 0.205± 0.001 −149± 1 0.0254± 0.0010 −169± 2

f0(500) ρρ 2 0.483 441± 1 503± 1 0.204± 0.001 −145± 1 0.0275± 0.0010 −159± 2

f0(500) σσ 2 0.486 443± 1 521± 2 0.205± 0.002 −147± 1 0.0279± 0.0032 −161± 4

f0(500) ρρ 3 0.481 441± 2 505± 3 0.202± 0.002 −145± 2 0.0279± 0.0039 −159± 4

f0(500) σσ 3 0.485 442± 1 510± 1 0.203± 0.001 −146± 1 0.0284± 0.0023 −161± 3

f0(980) ρρ 1 0.941 998± 2 65± 3 0.099± 0.006 −164± 3 0.258± 0.016 107± 4

f0(980) σσ 1 0.941 998± 1 48± 2 0.082± 0.007 −164± 5 0.258± 0.019 109± 5

f0(980) ρρ 2 0.941 1001± 2 65± 3 0.114± 0.011 −160± 6 0.270± 0.020 109± 5

f0(980) σσ 2 0.941 998± 1 50± 2 0.082± 0.006 −166± 5 0.249± 0.014 108± 4

f0(980) ρρ 3 0.941 993± 3 65± 3 0.094± 0.005 −168± 3 0.261± 0.012 103± 3

f0(980) σσ 3 0.941 998± 2 60± 2 0.099± 0.007 −163± 5 0.281± 0.016 109± 4

f0(1500) ρρ 1 1.459 1460± 6 109± 7 0.131± 0.017 −82± 3 0.18± 0.03 −53± 5

f0(1500) σσ 1 1.449 1456± 4 107± 8 0.047± 0.005 −86± 3 0.23± 0.02 −74± 4

f0(1500) ρρ 2 1.517 1465± 4 116± 4 0.115± 0.007 −86± 2 0.18± 0.02 −50± 2

f0(1500) σσ 2 1.449 1452± 5 103± 8 0.045± 0.005 −82± 6 0.23± 0.02 −54± 6

f0(1500) ρρ 3 1.466 1465± 5 105± 7 0.097± 0.018 −87± 3 0.18± 0.03 −57± 4

f0(1500) σσ 3 1.476 1477± 6 90± 9 0.097± 0.010 −86± 7 0.12± 0.04 −51± 16

f0(2020) ρρ 1 2.145 1996± 67 998± 163 0.215± 0.407 4± 82 2.23± 0.62 18± 15

f0(2020) σσ 1 1.900 1888± 9 344± 12 0.005± 0.002 −104± 24 0.48± 0.04 106± 4

f0(2020) ρρ 2 1.949 1869± 9 461± 15 0.026± 0.013 31± 33 0.51± 0.06 −10± 11

f0(2020) σσ 2 1.900 1908± 10 344± 19 0.008± 0.006 −101± 64 0.41± 0.10 103± 13

f0(2020) ρρ 3 1.949 1919± 23 366± 47 0.011± 0.006 77± 51 0.45± 0.11 32± 15

f0(2020) σσ 3 1.900 1910± 50 414± 42 0.014± 0.016 82± 69 0.72± 0.34 66± 34

Table 2.2.: Padé poles for f0(500), f0(980), and f0(1500) for N = 5, as well as
f0(2020) for N = 6. The error is the uncorrelated sum of statistical
and systematic uncertainty.

where sNp denotes the pole extracted by employing PN1 (s, s0).
As in principle the results still depend on the expansion point s0, we proceed

as follows. We first calculate Padé approximants for a varying s0; near the true
pole position, the extracted Padé pole stabilizes. Finally we choose the s0 that
minimizes ∆N for the maximum order of N employed.
Corresponding residues of the poles are then described by the coupling

strength gRππ of the resonance R to ππ and the coupling gRss of the s̄s source
to the resonance R. They are defined by the near-pole expansions [126, 127]

lim
s→sp

T11(s) =
rT

sp − s
=

g2
Rππ

32π(sp − s)
,

lim
s→sp

Γs1(s) =
rΓ

sp − s
= − gRππgRss√

3(sp − s)
.

(2.40)

The extracted poles and residues for the resonances are shown in Table 2.2.
As we did not include any variation of the input phases, we see that the statis-

tical uncertainty coming from the fit parameters of the higher-mass resonances
has only a small impact on the poles of f0(500) and f0(980). In fact the uncer-
tainty is dominated by the systematic error coming from the Padé expansion.
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Figure 2.11.: Poles for the f0(500) (left top), f0(980) (right top), f0(1500) (left
bottom), and f0(2020) (right bottom). We show the three fits
with a σσ channel, namely Fit 1 (red), Fit 2 (green), and Fit 3
(blue), as well as the fits with the ρρ channel with Fit 1 (cyan),
Fit 2 (magenta), and Fit 3 (orange). The mean values are shown
in black.

At higher energies the statistical uncertainty becomes more significant.
However, overall we have strong systematic effects due to the assumptions

on the parametrization such as the number of additional resonances and the
linear terms in the polynomials. As we do not have a criterion that allows us to
decide which fits we should prefer, we keep them all and perform a conservative
estimate of the uncertainty: we choose a range for the resonance parameters
such that all poles with their corresponding errors are included. The quoted
mean is the middle of the resulting box as illustrated in Fig. 2.11.
In order to see whether the pole extraction leads to sensible results, we first

compare our findings for the f0(500) and f0(980) to the literature [125, 126, 127,
205]. In our parametrization the f0(500) has a mass of (442± 2)MeV with a
width of (512± 10)MeV. For the f0(980) we find a mass of (996± 6)MeV and
a width of (57± 11)MeV. As Ref. [205] serves as our input below 1GeV, their
pole positions are taken as a benchmark, which lie at (441− i 544/2)MeV and
(998− i 42/2)MeV, respectively. While the real parts are therefore perfectly
consistent, we see that our parametrization slightly shifts the imaginary parts
of the poles with respect to the input.
Furthermore we can compare the coupling strengths gRππ and gRss to the

ones found in Ref. [127], which we adjust for the fact that the latter are quoted
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2.4. Extraction of resonance poles

for the complex conjugate poles. For the f0(500), we obtain
∣∣gf0(500)ππ

∣∣ = (4.53± 0.03)GeV ,

arg
(
gf0(500)ππ

)
= (−73± 2)◦ ,∣∣gf0(500)ss

∣∣ = (11± 2)MeV ,

arg
(
gf0(500)ss

)
= (90± 7)◦ .

(2.41)

This is to be compared to
∣∣gf0(500)ππ

∣∣ = 4.76GeV and arg
(
gf0(500)ππ

)
= −76.4◦

as well as
∣∣gf0(500)ss

∣∣ =
(
17± 5+1

−7

)
MeV and arg

(
gf0(500)ss

)
= 80.2◦ [127]. With

the exception of |gf0(500)ππ|, which appears to be shifted by about 5%, these
numbers are consistent with our findings. For the f0(980) pole, we find

∣∣gf0(980)ππ

∣∣ = (3.1± 0.5)GeV ,

arg
(
gf0(980)ππ

)
= (−81± 5)◦ ,∣∣gf0(980)ss

∣∣ = (147± 14)MeV ,

arg
(
gf0(980)ss

)
= (9± 4)◦ ,

(2.42)

in comparison to the reference values
∣∣gf0(980)ππ

∣∣ = 2.80GeV, arg
(
gf0(980)ππ

)
=

−85.3◦,
∣∣gf0(980)ss

∣∣ =
(
146± 44+14

−7

)
MeV, and arg

(
gf0(980)ss

)
= 14.2◦ [127]. In

this case therefore all parameters are consistent within uncertainties, with a
small tension for the argument of gf0(980)ss. In particular, we reproduce the
well-known hierarchy in the couplings to the s̄s current: the f0(980) couples to
the strange scalar current an order of magnitude more strongly than the f0(500)
does. Overall we find good agreement of our pole parameters for f0(500) and
f0(980) with the literature. We see that, a posteriori, the subtraction of the ad-
ditional term in the scattering amplitude that introduces the explicit resonances,
cf. Eq. (2.22), suppresses its influence on the lower-mass poles sufficiently. The
agreement between the reference parameters and ours gives us confidence for an
extraction of the higher poles via Padé approximants.
As a reference for the higher resonance poles, we compare to the Breit–Wigner

parameters of LHCb [203]. For the f0(1500), the collaboration quotes a reso-
nance with mass (1465.9± 3.1)MeV and width (115± 7)MeV. The pole we ex-
tract corresponds to a mass of (1465± 18)MeV and a width of (100± 19)MeV,
which lies within the previously quoted uncertainties of LHCb. The uncertain-
ties we find are significantly larger: this is most likely due to the more flexible
range of resonance parametrizations we employ; the masses and widths extracted
using Breit–Wigner functions only are probably too optimistic. In addition we
can extract the corresponding residues, which are given by

∣∣gf0(1500)ππ

∣∣ = (2.9± 1.0)GeV ,

arg
(
gf0(1500)ππ

)
= (−42± 4)◦ ,∣∣gf0(1500)ss

∣∣ = (125± 76)MeV ,

arg
(
gf0(1500)ss

)
= (167± 21)◦ .

(2.43)

The main uncertainties stem from the assumptions made on the parametrization
of the form factor, such as the number of resonances and the additional channels.
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2. A new parametrization for the scalar pion form factors

Nevertheless, we note that, despite a large uncertainty, the central value for∣∣gf0(1500)ss

∣∣ seems to be comparable to
∣∣gf0(980)ss

∣∣. For further comparison,
according to Refs. [127, 217] the a0(1450) couples to an isovector scalar ūd
current with

∣∣ga0(1450)ud

∣∣ = (284± 54)MeV, which is of the same order as our
extracted value for gf0(1500)ss. The precise relation between the two couplings
might be used to elucidate the structure of a scalar nonet around 1.5GeV, which
is however beyond the scope of the present study.
For broad, overlapping resonances a definition of branching ratios is not

straightforward. Here we follow a prescription originally proposed to define
the width of f0(500)→ γγ [218] by using the narrow-width formula of the form

BR→ππ =
ΓR→ππ

ΓR
=
|gRππ|2

32πmRΓR

√
1− 4M2

π

m2
R

, (2.44)

with the residues as coupling constants. With this we can deduce a branching
ratio Bf0(1500)→ππ = (58 ± 31)%, where the main uncertainty stems from the
difference between Fits 1 and 2 with an additional σσ channel compared to the
rest of the fits. This is compatible with the (much more precise) branching ratio
quoted by the PDG, Bf0(1500)→ππ = (34.9± 2.3) % [14].
The last resonance identified by LHCb as the f0(1790) has a mass of

(1809± 22)MeV with a width of (263± 30)MeV. As we do not impose a Breit–
Wigner line shape, our fits seem to prefer a significantly heavier and much
broader resonance with mass (1910± 50)MeV and a width of (398± 79)MeV.
Note that for the average we neglected the pole extracted from Fit 1 with the
ρρ parametrization, since this fit describes the prominent resonance structure
in the ππ spectrum less accurately than the rest of the fits. As the pole posi-
tion of the higher pole extracted in our analysis is in better agreement with the
f0(2020) of the PDG (which quotes a mass of (1992± 16)MeV and a width of
(442± 60)MeV [14]), we will refer to it as such in the following. Furthermore
we see that this pole allows for a stronger variance in the different fits. As its
line shape does not only depend on the interference with other resonances, but
also on further inelasticities, additional information about these channels would
be appreciable.
Finally, we can also constrain the coupling strengths of this resonance to ππ

and s̄s, which are given as
∣∣gf0(2020)ππ

∣∣ = (1.2± 0.9)GeV ,

arg
(
gf0(2020)ππ

)
= (2± 89)◦ ,∣∣gf0(2020)ss

∣∣ = (1019± 786)MeV ,

arg
(
gf0(2020)ss

)
= (−72± 149)◦ .

(2.45)

As we can see the coupling strength to the ππ-channel is consistent with 0 within
1.5σ. The big uncertainty also strongly influences the extraction of gf0(2020)ss,
which in addition is affected by a strong systematic uncertainty coming from
the parametrization and can hardly be constrained in a meaningful manner.
Using the narrow-width formula of Eq. (2.44), the branching ratio into ππ is
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Bf0(2020)→ππ = (1.3 ± 1.8)%, which is obviously also consistent with zero. No
meaningful branching ratios are quoted by the PDG in this case.
Since the bare resonance coupling strengths gri as well as the bare resonance

masses mr are source-independent, we can use the same parameters for any de-
cay with ππ S-wave final-state interactions and negligible left-hand cuts. There-
fore a simultaneous study of B̄0

s → J/ψππ and B̄0
d → J/ψππ [219] should be

useful to constrain the resonances in the scalar isoscalar channel further.

2.5. Summary and outlook

In this article, we have shown that the parametrization of Ref. [95] for the pion
vector form factor can be adapted to the scalar form factors of pions and kaons,
marrying the advantages of a rigorous dispersive description at low energies with
the phenomenological success of a unitary and analytic isobar model beyond.
For the scalar isoscalar channel, the low-energy part must already be provided
in terms of a dispersively constructed coupled-channel Omnès matrix. We rely
on the conjecture that the resulting strange scalar form factors can be tested in
a simultaneous study of the S-waves in the helicity amplitudes for the decays
B̄0
s → J/ψππ and B̄0

s → J/ψKK̄, whose leading angular moments we can
describe successfully. In this way, we have in fact determined the corresponding
strange scalar form factors up to

√
s ≈ 2GeV, in particular for the pion with

rather good accuracy. To quantify the uncertainties of the method, we compared
fits based on different assumptions, such as different numbers of resonances as
well as different final-state channels. Although they describe the data almost
equally well, we see a significant systematic uncertainty at higher energies, which
should be reduced significantly, however, once further information about the
inelastic channels becomes available. For now, we only included an effective 4π
channel modeled either by ρρ or σσ intermediate states; for a more detailed
description of the branching ratios of the heavier scalar isoscalar resonances, we
might need to include further inelastic channels such as a1π, ηη, or ηη′.
As the parametrization developed is fully unitary and analytic, we extracted

resonance parameters as pole positions and residues in the complex energy plane,
employing Padé approximants. In particular, we determined resonance poles as
well as coupling constants for f0(1500) and f0(2020). While the pole location
for the f0(1500) is consistent with the one derived from the LHCb Breit–Wigner
extraction, we find a significantly shifted pole for the f0(2020). This shift ought
to be tested experimentally in other processes with prominent S-wave pion–pion
final-state interactions. Alternatively—or in addition—we might also include
scattering data at higher energies in the fits explicitly [210, 220].
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3. Zb contributions to the decay of
the Υ(5S)

3.1. Introduction

While heavy meson decays involving pions have already been discussed in the
previous chapter, we want to extend the applicability by allowing crossed-
channel effects between the heavy meson-pion system. Therefore, the corre-
sponding dispersion theory does involve not only a right-hand cut but also a
left-hand cut. While the stable resonance exchange is often a good first approx-
imation to capture the dominant left-hand cut effects, we want to consider a
more sophisticated model. This is necessary since we aim for a detailed study of
near-threshold line shapes that shall eventually reveal the nature of the studied
states.
Especially interesting for this approach are exotic resonances such as the

Z±b (10610) and Z±b (10650), which decay into a bottomonium and a pion. Since
the bb̄ pair in the final state cannot be produced in the decay, the Zb resonances
need to contain a bottom-antibottom quark system. However, since they are also
charged, they need to consist of at least four quarks and thus are fundamentally
not consistent with the conventional quark models that treat mesons as QQ̄
states.
The first measurements came from the Belle Collaboration for the decays

Υ(5S) → Υ(nS)ππ with n = 1, 2, 3 and Υ(5S) → hb(mP )ππ with m =
1, 2 [172]. Here both of the Zb resonances show up as peaks in the Υ(nS)π+ mass
projections. Not only do tetraquark interpretations of the Zb [157, 221, 222] but
also hadronic molecule pictures [57, 175, 223, 224, 225, 226, 227, 228, 229, 230,
231] seem to be consistent with the data. However, since none of the mentioned
studies involve a proper treatment of the ππ interactions a Dalitz plot analysis
cannot be done so far. Dispersive analyses for the heavy bottominium decays
have been applied for Υ(3S)→ Υ(1S)ππ [56] and Υ(4S)→ Υ(nS)ππ with n =
1, 2 [174], however those are only sensitive on the low-energy tail of the Zb res-
onances. Therefore these ideas will be applied to the decay Υ(5S)→ Υ(nS)ππ
with n = 1, 2, 3, where thanks to the larger masses of the Υ(5S) the Zb states
can be produced as physical states.
Due to the closeness of the Zb resonances to the BB̄? and B?B? thresholds,

we proceed to model those resonances as hadronic molecules as presented in
Ref. [223]. This involves a coupled-channel Lippmann-Schwinger equation with
the channels BB̄?, B?B̄?, Υ(1S)π, Υ(2S)π, Υ(3S)π, hb(1P )π and hb(2P )π.
The potential is modeled by heavy meson chiral perturbation theory. For sim-
plicity, we take the easiest model, which only consists of an S-wave contact term
between the elastic channels BB̄? and B?B̄? and a contact term between the
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3. Zb contributions to the decay of the Υ(5S)

elastic channels and the others. With this assumption, the Lippmann-Schwinger
equation can be solved analytically.
As in these decays the available dipion energy reaches up to 0.51 GeV for

Υ(3S), 0.84 GeV for Υ(2S) and 1.40 GeV for Υ(1S) a multi-channel dispersive
framework needs to be employed. We provide a two-channel Omnèsmatrix
involving the scattering amplitude from Ref. [205], which is valid up to 1.05 GeV.
For higher energies further inelasticities need to be taken into account. Thus
we also provide a three-channel solution with the scattering amplitude from
Ref. [232] in chapter 3.6.1, which also includes a f0(1500) resonance.
Afterward, we provide two different approaches to solve the inhomogenous

Omnès problem for the decay Υ(5S) → Υ(1S)ππ. The first one involves the
standard Khuri-Treimann path deformation [192, 233], while the second one
employs a spectral density [234, 235, 236]. As both are consistent with each
other, we apply the second formalism to the other two decays.

3.2. Kinematics

P

Q

p2

p1

Figure 3.1.: Decay of a particle with mass P 2 = m2
i into one with mass Q2 = m2

f

and two with p2
1 = p2

2 = m2
π.

Consider the decay

Υ(5S) (P )→ Υ(nS) (Q) + π (p1) + π (p2) n = 1, 2, 3 (3.1)

as depicted in Fig. 3.1. The particles have the masses

P 2 = m2
i , Q2 = m2

f and p2
1 = p2

2 = m2
π . (3.2)

The Mandelstam variable s is given by the dipion center-of-mass energy

s = (p1 + p2)2 . (3.3)
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3.2. Kinematics

Then the other two Mandelstam variables may then be expressed in terms of s
and the angle θ between ~P and ~p1 as

t(s, cos θ) = (P − p1)2 =
1

2

(
m2
i +m2

f + 2m2
π − s+ κ(s) cos θ

)
(3.4)

and

u(s, cos θ) = (P − p2)2 =
1

2

(
m2
i +m2

f + 2m2
π − s− κ(s) cos θ

)
. (3.5)

Here the kinematic function κ(s) is given by

κ(s) = σ(s,m2
π)
√
λ(s,m2

i ,m
2
f ) (3.6)

with the pion phase space function

σ(s,m2
π) =

√
1− 4m2

π

s
(3.7)

and the Källén function

λ(s,m2
i ,m

2
f ) =

(
(mi −mf )2 − s

) (
(mi +mf )2 − s

)
. (3.8)

Note that in order to be consistent with the prescription m2
i → m2

i + iε and
m2
f → m2

f + iε with an infinitesimal ε, we need to choose a branch of the square
roots, that appear in Eq. (3.6). The proper choice

κ(s) =

√
1− 4m2

π

s

√
(mi −mf )2 − s

√
(mi +mf )2 − s (3.9)

shows two branch cuts. One coming from σπ(s) lies between the branch points
0 and 4m2

π. The other one is between the pseudo-threshold (mi−mf )2 and the
crossed-threshold (mi +mf )2. Furthermore κ(s) contains a pole at s = 0 GeV2.
An illustration of this is given in Fig. 3.2.

ar
b
.
u
n
it
s

Re s

Im
s

ar
b
.
u
n
it
s

Re s

Im
s

Figure 3.2.: Illustration of the real (left) and imaginary part (right) of −κ(s) as
given in Eq. (3.9) in the complex s-plane.
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3. Zb contributions to the decay of the Υ(5S)

3.3. The decay amplitude

The full decay amplitude [56, 174] can be written as

Mfull(s, t, u) = εΥ(5S) · ε?Υ(nS)M(s, t, u) , (3.10)

where εΥ(5S) and εΥ(nS) are the polarization vectors of the Υ(5S) and Υ(nS),
respectively. Note that contractions of the polarization vectors with momenta
would contribute to higher order corrections in the heavy quark power counting
scheme and hence are neglected in the following.
The scalar amplitudeM(s, t, u) can then be partial-wave projected

M(s, t, u) =
∞∑

L=0

fL(s)PL(cos θ) , (3.11)

where θ is the pion scattering angle as introduced in Sect. 3.2. The Lth Legendre
polynomial is given by the standard representation PL(cos θ). Accordingly the
partial-wave amplitude fL(s) can be extracted through

fL(s) =
1

2L+ 1

1∫

−1

d cos θM (s, t(s, cos θ), u(s, cos θ)) PL(cos θ) . (3.12)

Assume that each partial-wave can be decomposed into

fL(s) = ML(s) +KL(s) , (3.13)

where KL(s), which is called inhomogeneity, contains only a left-hand cut
and ML(s) only a right-hand cut. Furthermore assume that we have a reliable
model for KL(s), then concerning pion rescatteringML(s) can be reconstructed
dispersively via an inhomogenous Omnès problem [237], namely

fL(s) = Ω(s)


PL(s) +

sn

π

∞∫

4m2
π

ds′

(s′)n
Ω−1(s′)tL(s′)σ̂(s′)KL(s′)

s′ − s


+KL(s) .

(3.14)
As the available pion energy for Υ(5S)→ Υ(1S)ππ lies beyond the KK̄ thresh-
old it is inevitable to employ a coupled-channel formalism. In this case KL(s)
is a vector containing the partial-wave projections

KL(s) =
1

2L+ 1

1∫

−1

dz

(
K(s, t(s, z), u(s, z))Υ(5s)→Υ(ns)ππ

K(s, t(s, z), u(s, z))Υ(5s)→Υ(ns)KK

)
PL(z) . (3.15)

The corresponding light-meson partial-wave amplitude t`, for e.g. isoscalar
scalar ππ-scattering, can be parametrized by the ππ scattering phase shift
δ(s) [124, 184] as well as the ππ → KK̄ modulus g(s) and its phase ψ(s) [185]
as

tL(s) =



tππ→ππ tππ→KK

tππ→KK tKK→KK


 =




ηe2iδ−1
2iσ(s,m2

π)
geiψ

geiψ ηe2i(ψ−δ)−1
2iσ(s,m2

K)


 . (3.16)
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Accordingly the Omnèsmatrix is given by the numerical solution of the Muskhelishvili-
Omnès (MO) problem

Ω(s) =
1

π

∞∫

4m2
π

ds′
t?L(s′)σ̂(s′)Ω(s′)

s′ − s , (3.17)

where σ̂(s) is a diagonal matrix containing the phase space factors above thresh-
old

σ̂(s) =

(
σ(s,m2

π)Θ(s− 4m2
π) 0

0 σ(s,m2
K)Θ(s− 4m2

K)

)
. (3.18)

In case of a single channel the scattering amplitude reduces to

tL(s) =
sin(δ(s))

σ(s,m2
π)
eiδ(s) . (3.19)

The corresponding Omnès -function can be determined analytically

Ω(s) = exp


 s

π

∞∫

4m2
π

ds′

s′
δ(s′)

s′ − s


 . (3.20)

Accordingly for a single channel the inhomogeneous Omnès problem of Eq. (3.14)
can be written as

fL(s) = Ω(s)


PL(s) +

sn

π

∞∫

4m2
π

ds′

(s′)n
sin(δ(s′))KL(s′)

|Ω(s′)|(s′ − s)


+KL(s) (3.21)

3.4. Model for crossed-channel amplitude

Prominent resonances showing up in the Υ(nS)π amplitude are the Zb(10610),
Zb for short, and Zb(10650) or Z ′b for short. As they lie close to the BB̄? and
B?B̄? thresholds, respectively, it is sensible to model them as dynamic bound
states of these channels. In order to appropriately include their widths further
inelastic channels such as Υ(nS)π with n = 1, 2, 3 and hb(mP )π with m = 1, 2
are taken into account. An illustration of the t- and u-channel diagrams is shown
in Fig. 3.3.
Note that no charged bottomonium-like state with strangeness content, which

may be identified with a Zbs, has been measured yet. As such evidence is lacking,
we do not include it as the primary contribution to the left-hand cut of the decay
Υ(5S) → Υ(nS)KK̄. Furthermore, direct contributions coming from further
inelastic channels such as 4π are also neglected. Therefore the inhomogeneity is
only driven by the crossed-channel contributions of the Zb and Z ′b to the decay
Υ(5S)→ Υ(nS)ππ.
The crossed-channel amplitude, which produces the left-hand cut, can thus

be modeled by
K(s, t, u) = φ(t) + φ(u) , (3.22)

75



3. Zb contributions to the decay of the Υ(5S)

Υ(5S)

π

Υ(nS)

π

B?

B(?)

Tαj

Υ(5S)

π

Υ(nS)

π

B?

B(?)

Tαj

Figure 3.3.: Crossed-channel amplitudes coming from BB̄? and B?B̄? scattering
in the t- (left) and u-channel (right).

where the single-variable amplitude φ(t) is given by

φ(t) = ABB?→Υ(nS)π(t) +AB?B?→Υ(nS)π(t) (3.23)

with

ABB?→Υ(nS)π(t) = cBB?JNR(t,m2
B,m

2
B?)TBB?→Υ(nS)π(t) (3.24)

and

AB?B?→Υ(nS)π(t) = cB?B?JNR(t,m2
B? ,m

2
B?)TB?B?→Υ(nS)π(t) . (3.25)

Here the coupling constants for the transition Υ(5S)π → B(?)B? given by
cB(?)B? are free parameters. However employing heavy quark spin symmetry
leads to

cBB? = −cB?B? . (3.26)

The non-relativistic loop function JNR(t,m2
1,m

2
2) is given by

JNR(s,m2
1,m

2
2) =

Λ∫

0

dq q2

2π2

2µ(m1,m2)

q2 − p2(s,m1,m2)− iε (3.27)

with the reduced mass
µ(m1,m2) =

m1m2

m1 +m2
(3.28)

and the center-of-mass momentum

p2(s,m1,m2) = 2µ(m1,m2)(
√
s−m1 −m2) . (3.29)

For p2(t,m1,m2) ∈ R and p2(t,m1,m2) > 0 and p2(t,m1,m2) < Λ2 it can be
analytically evaluated to be

JNR(t,m2
1,m

2
2) =

µΛ

π2

(
1−

√
p2

Λ2

(
arctanh

(√
p2

Λ2

)
− iπ

2

))
. (3.30)

For any other case it amounts to

JNR(t,m2
1,m

2
2) =

µΛ

π2

(
1−

√
− p

2

Λ2
arctan

(
Λ√
−p2

))
. (3.31)
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3.4. Model for crossed-channel amplitude

In the following we set the cutoff Λ = 1 GeV. Due to the square root in Eq. (3.29)
JNR(t) has a left-hand cut starting from t = 0. This is a non-relativistic artifact
and unphysical.
The B(?)B? → Υ(ns)π scattering amplitude TB(?)B?→Υ(ns)π(t) will be mod-

eled through a coupled-channel Lippmann-Schwinger equation as presented in
Refs. [223, 238].
Therefore the Zb and Z ′b resonances are produced as dynamic rescattering

effects of the elastic channels BB? (α = 1) and B?B? (α = 2) denoted by greek
indices α, β, γ, . . . . They gain a width by including further inelastic channels
enumerated by latin indices i, j, k, . . . . The considered inelastic ones are Υ(1S)π
(i = 1), Υ(2S)π (i = 2), Υ(3S)π (i = 3), hb(1P )π (i = 4) and hb(2P )π (i = 5).
In this manner the elastic-to-elastic amplitude may be expressed by

Tαβ = vαβ −
∑

γ

vαγJγTγβ −
∑

k

vαkJkTkβ , (3.32)

where Jγ and Jk are short hand notations for JNR(t,m2
1,m2) with the corre-

sponding masses of the elastic and inelastic channels. The elastic potential vαβ
is be approximated as a constant

vαβ =

(
cd cf
cf cd

)
=

(
−3.3 −0.06
−0.06 −3.3

)
. (3.33)

The values of the coupling constants were determined in a fit to the data [223].
On the other hand the elastic-to-inelastic potential may be parametrized as

viα = vαi = giαk
Li
i , (3.34)

where ki is the center-of-mass momentum of the ith inelastic channel, with the
masses mi

1 and mi
2,

ki(t) =

√
λ(t,mi

1,m
i
2)

2
√
t

. (3.35)

As the inelastic channel needs to have the same quantum numbers as the ZB
resonance, their angular momenta Li also need to be included for the transition.
Explicitly their values are

L1 = L2 = L3 = 0 and L4 = L5 = 1 . (3.36)

The values of giα are fixed by comparison to Ref. [223] resulting in

giα =




g11 g12

g21 g22

g31 g32

g41 g42

g51 g52




=
1√

2mπ




0.30 −0.30
1.01 −1.01
1.28 −1.28
3.29 3.29
11.38 11.38



. (3.37)

Note that the parameters were rescaled by a factor of 1/
√

2mπ in order to be
consistent with the newer analysis [180]. Notice that gi1 and gi2 are related by
to each other by heavy quark spin symmetry.
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3. Zb contributions to the decay of the Υ(5S)

The corresponding elastic-to-inelastic transition amplitude is given by the
Lippmann-Schwinger equation

Tαi = Tiα = viα −
∑

γ

viγJγTγα −
∑

k

vikJkTkα . (3.38)

For the inelastic-to-inelastic transition amplitude the equation

Tij = vij −
∑

γ

viγJγTγj −
∑

k

vikJkTkj (3.39)

holds. As indicated by effective field theories [239] and lattice calculations [240]
the transition between the inelastic channels are very weak. Thus we can safely
set

vij = 0 . (3.40)

Since the employed potentials are separable, the Lippmann-Schwinger equations
Eqs. (3.32), (3.38) and (3.39) can be solved analytically. Further simplifica-
tions can be applied due to the vanishing of the inelastic-to-inelastic potential.
Namely

Tαβ = veff
αβ −

∑

γ

veff
αγJγTγβ (3.41)

for the elastic-to-elastic amplitude;

Tiα = viα −
∑

γ

viγJγTγα (3.42)

for the elastic-to-inelastic amplitude and finally for the inelastic-to-inelastic am-
plitude

Tij = −
∑

γ

viγJγTjγ . (3.43)

Therefore the elastic-to-elastic equation is reduced to an effective elastic Lippmann-
Schwinger equation with the effective potential

veff
αβ = vαβ −

∑

k

vαkJkvkβ . (3.44)

For further consistency with Ref. [223] the real part of Jk is absorbed into
the definition of the coupling constants. The imaginary part of Jk is fixed by
unitarity to the phase space of the kth channel σk. However in order to avoid
the continuation of σk into the complex plane we choose

veff
αβ = vαβ − i

∑

k

vαk vkβ Im(Jk) . (3.45)

Note that Ref. [223] replaced Im(Jk) by the relativistic phase space

Im(Jk(s)) =
4mamb

8π

√
ν

s
(3.46)
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3.5. Calculation of the inhomogeneity

and
ν = λ(s,m2

a,m
2
b) . (3.47)

For a proper analytic continuation we keep the relativistic loop function, which
is normalized non-relativistically by multiplying with the factor 4mamb. It reads
for real and positive ν

J(s,ma,mb) =
−4mamb

16π2

((
m2
a −m2

b

s
− m2

a +m2
b

m2
a −m2

b

)
log

(
ma

mb

)
− 1

+

√
ν

s

(
log

(
s−m2

a −m2
b +
√
ν

s−m2
a −m2

b −
√
ν

)
− 2iπΘ(s− (ma +mb)

2)

)) (3.48)

and otherwise

J(s,ma,mb) =
−4mamb

16π2

((
m2
a −m2

b

s
− m2

a +m2
b

m2
a −m2

b

)
log

(
ma

mb

)
− 1

+

√−ν
s

(
arctan

(
m2
a −m2

b + s√−ν

)
− arctan

(
m2
a −m2

b − s√−ν

)))
.

(3.49)

Note that due to the non-relativistic loop function in Eqs. (3.24) and (3.25) the
single-variable amplitude φ(t) in Eq. (3.23) also has a left-hand cut starting at
t = 0 GeV2. The right-hand cut on the other hand starts at t = (mΥ(1S) +mπ)2.
As the amplitude in Eq. (3.23) is a superposition of the BB̄? and B?B̄? inter-

mediate states it is possible to separate their contributions by setting cBB? = 1
and cB?B? = 0 for the BB̄? intermediate state or cBB? = 0 and cB?B? = 1 for
the B?B̄? one. A figure of each of these amplitudes is shown in Fig. 3.4.
Since the potential vαβ of Eq. (3.33) is almost diagonal and the inelastic

channels only produce a small correction, both the BB̄? and B?B̄? channel will
mostly decouple. As the Zb resonances are dynamically generated by rescatter-
ing of these channels, the Zb will predominantly couple to the BB̄? channel and
the Z ′b to the B?B̄? channel. This phenomenon is shown in Fig. 3.4 by the two
sharp peaks near the corresponding thresholds. As the channels are not entirely
decoupled a small contribution of the Z ′b to the BB̄? intermediate state and the
Zb to the B?B̄? intermediate state is still visible. Two other sharp structures
show up, which are artifacts of the non-relativistic propagators and are located
at p(t,mB,mB?) = 1 GeV2 and p(t,mB? ,mB?) = 1 GeV2 corresponding to the
non-relativistic cutoff at Λ = 1 GeV.
In the present model the transition amplitude between an inelastic state i and

the elastic one α is directly proportional to |viα|. On the other hand, its line
shape is dictated by the elastic-to-elastic scattering amplitude. Hence we expect
that the amplitude φ(t) has the same line-shape for the different final states
Υ(1S), Υ(2S) and Υ(3S). However, they are rescaled to each other according
to Eq. (3.37), whose parameters were determined by a fit [223]. Therefore the
higher mass final states have a stronger contribution.

3.5. Calculation of the inhomogeneity

In order to evaluate the inhomogeneous dispersion integral of Eq. (3.14) the
partial-wave projection of Eq. (3.15) with the in the previous section introduced
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Figure 3.4.: Modulus (left) and phase (right) of φ(t) using a BB? (top) and
B?B? (bottom) intermediate state for the Υ(1S) (blue), Υ(2S) (or-
ange) and Υ(3S) (red) final state.

amplitude needs to be evaluated first.
As explained in Appendix A.1, the integration over the scattering angle

cos θ = z can be rewritten as an integration over the Mandelstam variables
t(s, cos θ) or u(s, cos θ). In our case the partial-wave projection may therefore
be written as

KL(s) =
2

(2L+ 1)κ(s)




t+(s)∫

t−(s)

dt φ(t)PL(zt) +

u−(s)∫

u+(s)

duφ(u)PL(zu)


 (3.50)

where the scattering angle is given as

zt =
2t−m2

i −m2
f − 2m2

π + s

κ(s)
(3.51)

and

zu = −
2u−m2

i −m2
f − 2m2

π + s

κ(s)
. (3.52)

Furthermore we use the short hand notation for the endpoints

t± = u∓ = t(s,±1) = u(s,∓1) . (3.53)

For the S-wave projection the t- and u-channel amplitudes contribute equally
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3.5. Calculation of the inhomogeneity

and thus the inhomogeneity simplifies to

K0(s) =
4

κ

t+(s)∫

t−(s)

dt φ(t) . (3.54)

As the cut in φ(t) for Υ(5S)→ Υ(1S)ππ starts at t = (mΥ(1S) +mπ)2 we may
integrate along the Khuri-Treiman path (KT) as explained in Appendix A.2.
For the S-wave this amounts to evaluating the integral

K0(s) =
4

κ(s)




4m2
π∫

s

ds′
∂t−(s′)

∂s′
φ(t−(s′)) +

s∫

4m2
π

ds′
∂t+(s′)

∂s′
φ(t+(s′))


 . (3.55)

Due to the coupled-channel approach used here (see Sect. 3.4), the right-hand
cut for the amplitudes Υ(5S)→ Υ(nS)ππ with n = 2, 3 also start at the lowest
threshold (mΥ(1S) + mπ)2. In a dispersive approach this however leads to the
appearance of anomalous thresholds as introduced in Appendix B. Therefore a
straight forward integration as for the decay Υ(5S) → Υ(1S)ππ is not valid,
but needs to be modified.
While the KT solution may be modified in order also to describe the higher

mass final states, we want to present an alternative approach, which is entirely
consistent to the KT path for the decay Υ(5S)→ Υ(1S)ππ but can be applied
more easily to Υ(5S)→ Υ(nS)ππ with n = 2, 3.
Since φ(t) falls off fast outside of the ZB and Z ′B region it may be written as

a unsubtracted dispersion integral

φ(t) =
1

π

∞∫

m2
0

dm2 ρ(m2)

t−m2 + iε
(3.56)

over the right-hand cut starting at

m2
0 =

(
mΥ(1s) +mπ

)2
. (3.57)

The spectral density ρ(m2) is related to φ(t) via

ρ(m2) = −Imφ(m2) . (3.58)

Note that in principle φ(t) as well as ρ(m2) are vectors in channel space. How-
ever due to our model only the ππ component contributes to the further calcu-
lations.
By choosing a proper integration path all singularities are formally avoided.

Therefore it is possible to swap the order of integrations in Eq. (3.14), such that
the S-wave amplitude of the decay is determined by

f0(s) = ΩL(s) [P0(s) + I0(s)] +K0(s) (3.59)
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3. Zb contributions to the decay of the Υ(5S)

with the full inhomogeneous dispersion integral

I0(s) =
1

π

∞∫

m2
0

dm2 Ĩ0(s,m2) ρ(m2) (3.60)

and the inhomogeneous dispersion integral for the t-channel exchange of a stable
particle with mass m

Ĩ0(s,m2) =
sn

π

∞∫

4m2
π

ds′

(s′)n
4

κ(s′)

Ω−1
0 (s′)t0(s′)σ̂(s′)

(s′ − s) A0(s′,m2) . (3.61)

The inhomogeneity A0(s′,m2) of a stable propagator with mass m2 is defined
by

A0(s,m2) =

t+(s)∫

t−(s)

dt

t−m2
. (3.62)

Its correct analytical continuation is discussed in detail in Appendix A.4.
For m2 < (mf +mπ)2 Eq. (3.61) needs to be modified to take the anomalous

threshold into account as explained in Appendix B. This amounts to

Ĩmod
0 (s,m2) = Ĩ0(s,m2) + ξanom(s,m2) (3.63)

with

ξanom(s,m2) = − sn

2πi

1∫

0

dx
16πΩ−1

0 (z(x))t0(z(x))σ̂(z(x))v

zn(x)κ(z(x)) (z(x)− s)
dz

dx
. (3.64)

As only the inhomogeneity of the ππ channel contributes in our model we intro-
duce the vector v in channel space pointing in the ππ direction. The integration
path z(x) should be chosen in order to avoid singularities of the denominator.
This procedure for the evaluation of ĨL(s,m2) has been crossed-checked by

comparison to the scalar triangle graph, as explained in Appendix C.
The spectral density dispersion integral (SD) will be our preferred technique

since it not only allows for the treatment of anomalous thresholds, but it is
universal up to the spectral density and thus can be applied to different decays.

3.5.1. Dispersive construction of the left-hand cut amplitude

As already pointed out in Sect. 3.4 the crossed-channel amplitude φ(t) does
not only have a right-hand cut in the complex t-plane but also inherits an
artificial left-hand cut coming from the non-relativistic loop function. As it is a
purely non-relativistic artifact we want to remove it, especially since it can have
a non-negligible contribution for the full inhomogeneous Omnès problem. We
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3.5. Calculation of the inhomogeneity

therefore compare the crossed-channel amplitude φ(t) as defined in Eq. (3.23)
with its dispersive reconstruction with only a right-hand cut

φdisp(t) = − 1

π

∞∫

(mΥ(1s)+mπ)2

dm2 Imφ(m2)

t−m2
. (3.65)

As previously shown the amplitude falls off quickly outside of the ZB region and
thus no subtraction is needed.
For the further calculation only the values along the Khuri-Treiman path,

which is depicted in Fig. 3.5, are necessary. In order to have a better compari-
son between φ(t+(s)) and φdisp(t+(s)) we consider three different energy range.
Range 1 is restricted to 4m2

π ≤ s ≤ (mi −mf )2 and therefore real and positive
values of t±(s). While range 2 with (mi −mf )2 ≤ s ≤ (mi + mf )2 allows also
for complex values of t±(s) range 3 with (mi + mf )2 ≤ s allows only for real
and negative t±(s).

t−(s)

t+(s)

range 1:
4m2

π ≤ s ≤ (mi −mf)
2

range 2:
(mi −mf)

2 ≤ s ≤ (mi +mf)
2

range 3:
(mi +mf)

2 ≤ s

Re t

Im t

Figure 3.5.: Khuri-Treimann integration path between the endpoints t−(s) and
t+(s). In the first range 4m2

π ≤ s ≤ (mi −mf )2 the end points will
lie on the red path. For (mi −mf )2 ≤ s ≤ (mi + mf )2 they lie on
green and for (mi +mf )2 ≤ s on the blue path.

In range 1 t±(s) are restricted to values m2
π + mimf ≤ t+ ≤ (mi − mπ)2

and (mf + mπ)2 ≤ t− ≤ 1
2

(
m2
i +m2

f − 2m2
π

)
. Hence it is only necessary to

calculate φ(t) and φdisp(t) for (mf + mπ)2 ≤ t ≤ (mi −mπ)2 which is shown
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3. Zb contributions to the decay of the Υ(5S)

in Fig. 3.6. Note that we use the +iε-prescription in order to determine values
for the real axis. Values for t−(s) using the −iε-prescription can be determined
by the Schwarz reflection principle. As especially this energy range covers the
ππ phase space in the decay Υ(5S) → Υ(1S)ππ it makes sense to illustrate
the differences between the crossed-channel amplitude φ(t) and its dispersive
reconstruction with only a right-hand cut φdisp(t) in more detail. Therefore we
plot their relative difference 2|(φ(t)−φdisp(t))/(φ(t)+φdisp(t))| in Fig. 3.7. Thus
even at low s, which is equivalent with the largest values of t and therefore the
farthest away from the left-hand cut, both functions differ at most to 5%.
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Figure 3.6.: Modulus and phase of φ(t) (blue) and φdisp(t) (red) in range 1 with
either the BB? or the B?B? intermediate state.
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Figure 3.7.: Modulus of 2|(φ(t)−φdisp(t))/(φ(t)+φdisp(t))| in range 1 with either
the BB? or the B?B? intermediate state.
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3.5. Calculation of the inhomogeneity

Range 2 describes the complex arc of the KT path in the complex t plane. We
only need to consider the values of φ(t+(s)) and φdisp(t+(s)) as the lower arc can
be inferred by the Schwarz reflection principle. Fig. 3.8 shows both functions.
As the energy is increased, t±(s) move closer to the left-hand cut. Therefore
the deviation between them quickly becomes large, which is especially apparent
in the phase motion at high energies.
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Figure 3.8.: Modulus and phase of φ(t+(s)) (blue) and φdisp(t+(s)) (red) for
range 2 with either the BB? or the B?B? intermediate state.

Lastly energy range 3 deals with s ≥ (mi +mf )2. Hence t±(s) are restricted
to t+(s) ≤ m2

π −mimf and m2
π −mimf ≤ t−(s) ≤ 0. The comparison between

φ(t+) and φdisp(t+) is shown in Fig. 3.9. For φ(t−) and φdisp(t−) we refer to
Fig. 3.10. The non-trivial phase motion of φ(t±) clearly shows the presence of
a left-hand cut. The dispersive reconstruction φdisp(t±) on the other hand has
only has real values as required by construction.
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Figure 3.9.: Modulus and phase of φ(t+) (blue) and φdisp(t+) (red) for range 3
with either the BB? or the B?B? intermediate state.
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Figure 3.10.: Modulus and phase of φ(t−) (blue) and φdisp(t−) (red) for range 3
with either the BB? or the B?B? intermediate state.
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3.5. Calculation of the inhomogeneity

3.5.2. Partial-wave projection of the KT method

While the parametrization of Eq. (3.55) is formally valid for all energies, nu-
merically is proofs to be inefficient because of large cancellations along the inte-
gration path. Hence we choose a different parametrization in order to calculate
the partial-wave projection K0(s).

For 4m2
π < s <

mπ(m2
i−m2

f )

mf+mπ
the integration between t−(s) and t+(s) is entirely

on the real axis determined with the +iε prescription. As the limit

lim
ε→0

φ(t+ iε) = φ(t) (3.66)

is considered, the inhomogeneity may be written as

K0(s) =
4

κ(s)

t+(s)∫

t−(s)

dt φ(t) . (3.67)

For
mπ(m2

i−m2
f )

mf+mπ
< s < (mi−mf )2 t−(s) turns around the threshold at (mf +mπ)2

onto the real axis approaching from the lower half t-plane. As φ(t) fulfills the
Schwarz reflection principle the partial-wave projection may be expressed by

K0(s) =
4

κ




(mf+mπ)2∫

t−(s)

dt φ?(t) +

t+(s)∫

(mf+mπ)2

dtφ(t)


 . (3.68)

Note that for s = (mi−mf )2 the real part of both end-points are equal t+(s) =
t−(s) = m2

π + mimf . Therefore Eq. (3.68) reduces to an integral over the
discontinuity of φ(t)

K0((mi −mf )2) =
4

κ

mimf+m2
π∫

(mf+mπ)2

dt 2i Imφ(t) . (3.69)

For (mi − mf )2 < s < (mi + mf )2 the partial-wave projection also includes
the integration along the complex arc. However, since in this energy range
t+(s) = t?−(s) holds it is possible to apply the Schwarz reflection principle again
resulting in

K0(s) =
8i

κ




s∫

(mi−mf )2

dx Im

(
∂t+(x)

∂x
φ(t+(x))

)
+

mimf+m2
π∫

(mf+mπ)2

dt Imφ(t)


 .

(3.70)
For larger values s > (mi + mf )2 one needs to add an integration below the
real axis coming from t−(s) to t−((mi + mf )2) = m2

π −mimf and one above
the real axis from t+((mi + mf )2) = m2

π − mimf to t+(s). In this case the
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inhomogeneity reads

K0(s) =
8i

κ

[ (mi+mf )2∫

(mi−mf )2

dx Im

(
∂t+(x)

∂x
φ(t+(x))

)
+

mimf+m2
π∫

(mf+mπ)2

dt Imφ(t)

]

+
4

κ



−mimf+m2

π∫

t−(s)

dt φ?(t) +

t+(s)∫

−mimf+m2
π

dt φ(t)


 .

(3.71)

The prefactor 1/κ(s) has singularities arising at s = 4m2
π and s = (mi ±mf )2.

They are formally avoided by the prescriptionm2
i → m2

i +iε. In order to analyze
the s dependence we define the function

K̂0(s) =
κ(s)

2
K0(s) (3.72)

which is free of the kinematical singularities in 1/κ(s). A plot is shown in
Fig. 3.11. For s < (mi−mf )2 it shows both real and imaginary parts. However
above that value it is purely imaginary as already expected by the Schwarz re-
flection principle. It is furthermore interesting that there is a difference between
the crossed-channel amplitude φ(t) and its dispersive reconstruction considering
only a right-hand cut φdisp(t). For s < (mi −mf )2 the deviation tends to be
small, but non-negligible. This is an artifact of the previously shown difference
between the two (see Sect. 3.5.1). The deviations accumulate upon integration
over the KT path and become clearly visible. This is even more severe for
s > (mi −mf )2, since the integrand is evaluated closer to the left-hand cut in
t. However the line shape of both of them looks very similar. Note that the ZB
and Z ′B resonance contribute to the two peaks below (mi −mf )2.
Another interesting observation is that K̂0(s) for the BB? and the B?B?

intermediate state almost look the same except for a sign difference. This is
a consequence of heavy quark spin symmetry, which is slightly broken by the
BB? mass difference.
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Figure 3.11.: S-wave projection K̂0 = κ(s)
2 K0(s) of φ(t) (blue) and φdisp(t) (red)

for the BB? and B?B? intermediate state.
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3.6. Evaluation of the inhomogeneous integral

3.6.1. Omnès matrix

Before solving the inhomogeneous Omnès problem of Eq. (3.21) the Omnèsmatrix
for the isoscalar scalar channel needs to be constructed. As the available dipion
energy of the Υ(5S) decay is limited to 0.51 GeV for Υ(3s), 0.84 GeV for Υ(2S)
and 1.40 GeV for Υ(1S) in the final state we discuss the Omnèsmatrices for a
single channel (only ππ), two channels (including KK̄) and a three channels
(mimicking the effects at higher energies).
For a single channel the scattering amplitude above the pion-threshold may

be expressed as

t0(s) =
e2iδ(s) − 1

2iσπ(s)
(3.73)

whereas δ(s) is the isoscalar scalar pion-phase shift determined by not only
several experiments [210, 211, 220] but also dispersively [124, 184, 185]. Note
that most of the mentioned studies do not only include the ππ channel but
also further inelasticities coming from e.g. KK̄. We will use the phase shifts
and inelasticities presented in Ref. [205] not only for the single-channel but also
for the two-channel case. The single-channel Omnès function can be calculated
analytically as

Ω(s) = exp


 s

π

∞∫

4m2
π

dz

z

δ(z)

z − s


 . (3.74)

The scattering amplitude for two-channels has been introduced in Eq. (3.16).
As shown in Ref. [90] this Muskhelishvili-Omnès problem (MO) cannot be solved
analytically anymore but needs to be obtained by solving the integral equation

Ω(s) =
1

π

∞∫

4m2
π

dz t?0(z)σ̂(z)Ω(z) (3.75)

numerically with the additional requirement

Ω(0) = 1 (3.76)

as explained in Sect. 1.3.3.
As above roughly 1.3 GeV further inelastic channels become relevant, we use

an effective parametrization [232], introduced in chapter 2, in order to extend
the description. Explicitly we take the central values of Fit 1 of that reference
with an additional ρρ-channel.
A comparison between the one-, two- and three-channel scattering matrices

are depicted in Figs. 3.12, 3.13 and 3.14. Below the KK̄ threshold the single-
channel and the two-channel amplitudes are identical as expected, see Fig. 3.12.
The three-channel scattering amplitude also has small deviations below 1 GeV.
Additionally it shows signs of the f0(1500) resonance, which both the two-
and single-channel solutions lack. These differences also show up in the other
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3.6. Evaluation of the inhomogeneous integral

matrix elements as depicted in Fig. 3.13. The additional scattering channels
(Fig. 3.14) show strong contributions from the f0(1500). However due to final
state rescattering they also include the lower lying resonances such as f0(500)
and f0(980).
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Figure 3.12.: Modulus and phase for the one-channel (blue), two-channel (red)
and three channel (green) scattering amplitude tij0
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Figure 3.14.: Modulus and phase of the three-channel scattering amplitude tij0
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3.6. Evaluation of the inhomogeneous integral

The presented Omnèsmatrices are computed with these scattering amplitudes
as input. Comparing the single-, two- and three-channel Omnès function leads
to Fig. 3.15. The three-channel solution is a modification of the two-channel
one. As already for the scattering amplitude, it includes the f0(1500) resonance,
allowing to extend the energy range for a possible description. However, there
are also deviations below 1 GeV, which propagate from the scattering amplitude.
These observations are also visible in the other channels (Fig. 3.16).
The single-channel solution includes a broad f0(500) and a f0(980) resonance.

The latter shows up as a sharp peak. Since the phase motion still knows about
the KK̄ threshold, the line shape is distorted from the typical Breit-Wigner
resonance. Furthermore, it is not useful to directly compare the single-channel
solution to the multi-channel ones. This is because they have a different high
energy behavior. The single-channel Omnès function scales as s−2 for high en-
ergies, while the others follow a s−1 behavior by construction. It is possible to
construct comparable objects in terms of a homogeneous Omnès problem. If the
multi-channel needs a polynomial of order n, then the single-channel one needs
one of order n+1. This additional parameter would then also allow to include a
zero in the amplitude. Therefore the f0(980) resonance can also show up as dip
instead of a peak. To avoid the additional subtraction in the inhomogeneous
Omnès problem, we will only consider the two- and three-channel amplitude in
the following.
The additional channels in the three-channel parametrization are shown in

Fig. 3.17. The visible effects are coming from the f0(980) and f0(1500) reso-
nance.
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Figure 3.16.: Modulus and phase for the two-channel (red) and three-channel
(green) Omnèsmatrix Ωij

94



3.6. Evaluation of the inhomogeneous integral

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

2

4

6

8

10

√
s [GeV]

(a) modulus Ω13

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

1

2

3

4

5

6

√
s [GeV]

(b) phase Ω13

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

1

2

3

4

5

6

√
s [GeV]

(c) modulus Ω23

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

1

2

3

4

5

6

√
s [GeV]

(d) phase Ω23

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

√
s [GeV]

(e) modulus Ω31

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

2

4

6

8

10

12

14

√
s [GeV]

(f) phase Ω31

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.1

0.2

0.3

0.4

0.5

√
s [GeV]

(g) modulus Ω32

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

1

2

3

4

5

6

7

√
s [GeV]

(h) phase Ω32

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

√
s [GeV]

(i) modulus Ω33

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

1

2

3

4

√
s [GeV]

(j) phase Ω33

Figure 3.17.: Modulus and phase of the three-channel Omnèsmatrix Ωij
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3.6.2. Evaluation of the Khuri-Treiman integral

We first proceed to solve the dispersive integral

IKT
0 (s) =

sn

π

∞∫

4m2
π

ds′

(s′)n
Ω−1(s′)t0(s′)σ̂(s′)K0(s′)

s′ − s , (3.77)

where K0(s) has been introduced as the S-wave projection of either the crossed-
channel amplitude φ(t) or its dispersive reconstruction with only a right-hand
cut φdisp(t) in Sect. 3.5.2. For the Omnèsmatrix Ω(s) and the scattering am-
plitude t0(s) we either take the two- or three-channel amplitude as defined in
the Sect. 3.6.1. The number of subtractions n, which are needed to render the
dispersion integral convergent, can be determined by the high-energy behavior
of |Ω−1(s′)t0(s′)σ̂(s′)K0(s′)| for s′ →∞.

Since the Omnèsmatrix is determined by an unsubtracted dispersion relation,
each of its elements will behave as s−1 for high-energies. Its inverse thus will
scale as s for each element.

For the scattering amplitude t0 we proceed with the conservative estimate
t0(s) ∝ s−1 for high s. For the two-channel case defined in Eq. (3.16) it is
possible to show that for t12

0 ∝ s−1 for high s, (t0)11 and t22
0 need to scale

as s−2. Numerically we extrapolate the three-channel amplitude in a similar
manner.
The high energy behavior of K0(s) can be estimated through Eq. (3.71). The

integral from t−(s) to −mimf + m2
π converges to a constant for s → ∞ as

lim
s→∞

t−(s) = 0. In order to estimate the high-energy behavior of the integral

between −mimf + m2
π and t+(s) we proceed by assuming φ(t) ∝ 1/

√
t for

|t| → ∞. Overall K0(s) scales as
√

(t+(s))/κ(s) and thus
√

(s)/κ(s) for high s.
With lim

s→∞
σ̂(s) = 1 the whole integrand scales as

√
s/κ(s) at high energies.

Therefore one subtraction is necessary such that the dispersion integral con-
verges.
In order to treat this integral numerically the integral is split into two parts

IKT
0 (s) = J0(s, 4m2

π,Γ
2) + J0(s,Γ2,∞) (3.78)

with

J0(s, a, b) =

b∫

a

ds′
F (s′)√

spt − s′(s′ − s)
(3.79)

and

F (s′) =
sn

π(s′)n
Ω−1(s′)t0(s′)σ̂(s′)K̂0(s′)√

1− 4m2
π
s

√
st − s′

. (3.80)

Here we introduced the short hand notations

spt = (mi −mf )2 (3.81)

and
st = (mi +mf )2 . (3.82)
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3.6. Evaluation of the inhomogeneous integral

Note thatK0(s) is regular at st if the left-hand cut in φ(t) is absent. For our case
we choose the separation scale at Γ2 = 280 GeV2, which lies above (mi −mf )2

and below (mi+mf )2. As the pion phase space in the decay Υ(5S)→ Υ(1S)ππ
is limited to spt the cutoff is set to be far away from the interesting region.
In order to estimate the contribution of the high-energy integral we make the

assumption

J0(s,Γ2,∞) ≈ sn

π
Ω−1(Γ2)t0(Γ2)σ̂(Γ2)K0(Γ2)

∞∫

Γ2

ds′

(s′)n(s′ − s) . (3.83)

Since K̂0

(
(mi −mf )2

)
is non-vanishing as shown in Eq. (3.69) one needs to

avoid the singularity properly by using the prescription m2
i → m2

i + iε.
For real values s < 4m2

π or complex ones the other integral can be evaluated
through

J0(s, 4m2
π,Γ

2) = Q0(s, 4m2
π,Γ

2) (3.84)

with

Q(s, a, b) =

b∫

a

ds′
F (s′)− F (spt)√
spt − s′(s′ − s)

+ Q̂(s, a, b) (3.85)

and

Q̂(s, a, b) =
F (spt)√
spt − s

log

(√
s− spt −

√
b− spt√

s− spt +
√
b− spt

√
s− spt +

√
a− spt√

s− spt −
√
a− spt

)
.

(3.86)
Note that the integral in Eq. (3.85) is regular as F (s′) can be expanded near
spt in a power series

F (s′) ≈ F (spt) + c1

√
spt − s′ + c2(spt − s) + . . . . (3.87)

For real s > 4m2
π also the Cauchy kernel singularity needs to be taken into

account. To achieve this goal we split the integral to separate the singularity at
s′ = s and s′ = spt. To this end define

sv =
spt + s

2
. (3.88)

If s > spt the integral is given as

J0(s, 4m2
π,Γ

2) = Q(s, 4m2
π, sv) +R(s, sv,Γ

2) (3.89)

with

R(s, a, b) =

b∫

a

ds′
F (s′)− F (s)√
spt − s(s′ − s)

+ R̂(s, a, b) (3.90)

and

R̂(s, a, b) =
F (s)√
spt − s

[
log

(
−
√
s− spt −

√
b− spt√

s− spt +
√
b− spt

√
s− spt +

√
a− spt√

s− spt −
√
a− spt

)
+iπ

]
.

(3.91)
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3. Zb contributions to the decay of the Υ(5S)

On the contrary if s < spt the integral may be evaluated as

J0(s, 4m2
π,Γ

2) = Q(s, sv,Γ
2) +R(s, 4m2

π,Γ
2) . (3.92)

The inhomogeneous integral IKT0 (s) is a vector consisting of two entries for the
two-channel problem or three for the three-channel. Results of the computation
are shown in Figs. 3.18, 3.19 and 3.20.
Overall, the numerical evaluation of the dispersion integral still shows small

instabilities, which need to be taken care of in the future. These are especially
visible in the energy range between 0.98 GeV and 1 GeV, which lies close to the
KK̄ threshold. Further instabilities show up close to √spt ≈ 1.406 GeV arising
from large cancellations in the presented method for the numerical evaluation of
the dispersion integral. Some remaining instabilities, such as between 1.28 and
1.32 GeV, which get amplified in the three-channel case by the presence of the
f0(1500) resonance, still need to be understood. Furthermore, it is noteworthy
that because the KK̄ and 4π components of the IKT0 (s) vector are smaller by
orders compared to the ππ component, they are more sensitive to the numerical
instabilities. Apart from these numerical problems, the evaluation seems to be
plausible.
Assuming a natural size for the subtraction constants, we indeed see that

IKT0 (s) is a small correction to the homogeneous Omnès problem. As the in-
homogeneity is driven by the ππ channel only, the contributions to IKT0 for
the KK̄ and 4π channel can only enter via pion-rescattering. Therefore the
magnitude of IKT0 is smaller in the other channels.
The integral also contributes a non-vanishing phase motion for small s, which

is a consequence of the Υ(1S)π rescattering. Since in this energy range, most of
the energy is contained in the Υ(1S)π-system, they can produce the ZB and Z ′B
resonances. For higher energies, the Υ(1S) becomes a spectator, and therefore,
the phase goes to a constant.
The main difference between the two- and the three-channel solution shows

up especially near the f0(1500) resonance, which also was already expected by
the difference of the scattering as well as the Omnèsmatrix (see Sect. 3.6.1).

To test if the numerical implementation of the dispersion integral is correct, we
not only calculate the once- but also twice-subtracted integral. Their difference
for each matrix element is shown in Figs. 3.21, 3.22 and 3.23. Each one of them
shows that the deviation between the over-subtracted and the once-subtracted
dispersion integral is a linear polynomial with a constant phase. Thus it can
be absorbed in a subtraction polynomial, which is fully consistent with the
analytical properties of the dispersion integral. Consequently, the numerical
implementation appears to be correct.
As already suspected in Sect. 3.5.2 a visible difference shows up between

the solution using the crossed-channel amplitude with a left-hand cut φ(t) and
without φdisp(t). This also allows us to estimate the influence of the left-hand
cut in φ(t) on the inhomogeneous Omnès problem, which amounts to a few
percent. This illustrates that especially for high-precision experiments a proper
analytic structure and continuation of the amplitude is essential.
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Figure 3.18.: Modulus and phase of the ππ-final state component (IKT0 (s))1 with
one subtraction. The two-channel solution using φ(t) is shown in
blue, while its dispersive reconstruction with only a right-hand cut
φdisp(t) is shown in red. Similarly for the three-channel φ(t) is in
purple, while φdisp(t) is orange.
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Figure 3.19.: Modulus and phase of the KK̄ final-state component (IKT0 (s))2

with one subtraction. The two-channel solution using φ(t) is shown
in blue, while its dispersive reconstruction with only a right-hand
cut φdisp(t) is shown in red. Similarly for the three-channel φ(t) is
in purple, while φdisp(t) is orange.
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Figure 3.20.: Modulus and phase of the 4π final-state component (IKT0 (s))3 with
one subtraction. The three-channel solution shows the solution
using φ(t) in purple, while its dispersive reconstruction with only
a right-hand cut φdisp(t) is orange.
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0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

s
[

GeV2
]

ar
b
.
u
n
it
s

(a) modulus BB?

0 1 2 3 4 5
0.460

0.465

0.470

0.475

0.480

0.485

0.490

0.495

0.500

s
[

GeV2
]

(b) phase BB?

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

s
[

GeV2
]

ar
b
.
u
n
it
s

(c) modulus B?B?

0 1 2 3 4 5
2.810

2.805

2.800

2.795

2.790

2.785

2.780

s
[

GeV2
]

(d) phase B?B?

Figure 3.21.: Modulus and phase of the difference between the once- and twice
subtracted integral for the ππ final-state component (IKT0 (s))1.
The two-channel solution using φ(t) is shown in blue, while its dis-
persive reconstruction with only a right-hand cut φdisp(t) is shown
in red. Similarly for the three-channel φ(t) is in purple, while
φdisp(t) is orange.
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Figure 3.22.: Modulus and phase of the difference between the once- and twice
subtracted integral of the KK̄ final-state component (IKT0 (s))2.
The two-channel solution using φ(t) is shown in blue, while its dis-
persive reconstruction with only a right-hand cut φdisp(t) is shown
in red. Similarly for the three-channel φ(t) is in purple, while
φdisp(t) is orange.
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Figure 3.23.: Modulus and phase of the difference between the once- and twice
subtracted integral of the 4π final-state component (IKT0 (s))3.
The three-channel solution shows the solution using φ(t) in pur-
ple, while its dispersive reconstruction with only a right-hand cut
φdisp(t) is orange.
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3.6. Evaluation of the inhomogeneous integral

3.6.3. Evaluation of the spectral density integral

Consider the spectral density dispersion integral defined by Eq. (3.60). It is a
regular integral consisting of the product between the spectral density ρ(m2)
and the inhomogeneous dispersion integral Ĩ0(s,m2) for a stable particle with
mass m. Therefore a restriction of the m2 integration to the main contributions
of the integrand gives a good approximation for the integral.
The spectral density ρ

(
m2
)
is mostly located in the energy region between

110 GeV2 and 120 GeV2 as shown in Fig. 3.24. The strongest contributions
come from the Zb resonances. Due to the nearby threshold, the numerical
evaluation needs to take them into account properly. We split the integral with
the thresholds as endpoints and integrated each one with a Gauss-Legendre
quadrature.
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Figure 3.24.: Spectral density ρ(m2) with an intermediate BB? or B?B? state
for the decay Υ(5S)→ Υ(1S)ππ (blue), Υ(5S)→ Υ(2S)ππ (red)
and Υ(5S)→ Υ(3S)ππ (green).

The inhomogeneous dispersion integral Ĩ0(s,m2) can be evaluated in a simi-
lar fashion to Eq. 3.78 in Sect. 3.6.2. The only modification, which is required,
is the inclusion of anomalous thresholds for m2 < (mf + mπ)2 as shown in
Eq. (3.63). For this, information about the scattering amplitude t0 in the com-
plex s-plane is necessary. Since the analytic continuation is very involved, this
is problematic. For single-channel problems, it is customary [241] to obtain a
scattering amplitude by the inverse amplitude method. Since it is not a valid
parametrization for a coupled-channel method, a continuation needs to be done
via e.g. Roy-equations, which lies beyond the scope of this thesis. There-
fore we want to restrict the range of integration to masses above the crossed-
channel thresholds (mΥ(1S)+mπ)2 ≈ 92.1 GeV2, (mΥ(2S) + mπ)2 ≈ 103.2 GeV2

and (mΥ(3S)+mπ)2 ≈ 110.1 GeV2 and thus avoid anomalous thresholds.
In order to illustrate the behavior of Ĩ0(s,m2) we show two examples of

the first component, where we neglected the anomalous threshold, with s =
0.5 GeV2 in Fig. 3.25 and s = 2.5 GeV2 in Fig. 3.26.
Three different thresholds show up atm2 = (mi−mπ)2,m2 = mimf+m2

π and
m2 = (mf +mπ)2, which we used to distinguish the cases for the inhomogeneity
(see Appendix A). The prominent gap in the imaginary part atm2 = (mf+mπ)2
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3. Zb contributions to the decay of the Υ(5S)

can be repaired by including an anomalous threshold term.
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Figure 3.25.: ππ final-state component (Ĩ0(s,m2))1 for s = 0.5 GeV2 coming
from a two-channel (blue) or three-channel solution (red).
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Figure 3.26.: ππ final-state component (Ĩ0(s,m2))1 for s = 2.5 GeV2 coming
from a two-channel (blue) or three-channel solution (red).
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3. Zb contributions to the decay of the Υ(5S)

The support of the spectral density gives the dominant contributions for the
integral I0(s). Hence for the decay Υ(5S) → Υ(1S) we set the integral lim-
its to 105 GeV2 < m2 < 125 GeV2, which ensures that most of the important
structure in ρ(m2) is taken into account. The numerical results of the disper-
sive reconstruction is shown in Figs. 3.27, 3.28 and 3.29. Up to a few percent
difference, the SD solution is consistent with the KT solution. It is in better
agreement with the one using φdisp(t) rather than φ(t). Thus the left-hand cut
in φ(t) changes the inhomogeneous Omnès problem by a few percent. However,
both the SD as well as the KT solution are consistent with each other. As al-
ready seen for the KT solution, the three-channel analysis is in agreement with
the two-channel one up to about 1.9 GeV2.
Numerical instabilities, as discussed for the KT solutions (see Sect. 3.6.2), are

also available here and still need to be removed.
With this, we have shown that not only the SD solution is consistent with

the KT one, but also that as long as we take into account the dominant parts
of ρ(m2) a restriction in the m2 integration range is possible.
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Figure 3.27.: ππ final-state component (I0(s))1 for Υ(5S) → Υ(1S)ππ. The
two-channel solution contains the KT-integral using φ(t) (blue), its
dispersive reconstruction with only a right-hand cut φdisp(t) (red)
and the SD-integral (green). The three-channel solution shows
similarly the KT using φ(t) (purple), its dispersive reconstruction
with only a right-hand cut φdisp(t) (orange) and the SD-integral
(black).
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Figure 3.28.: KK̄ final-state component (I0(s))2 for Υ(5S) → Υ(1S)ππ. The
two-channel solution contains the KT-integral using φ(t) (blue), its
dispersive reconstruction with only a right-hand cut φdisp(t) (red)
and the SD-integral (green). The three-channel solution shows
similarly the KT using φ(t) (purple), its dispersive reconstruction
with only a right-hand cut φdisp(t) (orange) and the SD-integral
(black).
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Figure 3.29.: 4π final-state component (I0(s))3 for Υ(5S) → Υ(1S)ππ. The
three-channel solution contains the KT-integral using φ(t) (pur-
ple), its dispersive reconstruction with only a right-hand cut
φdisp(t) (orange) and the SD-integral (black).
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3.6. Evaluation of the inhomogeneous integral

Therefore we can also apply the SD solution for the decays Υ(5S)→ Υ(2S)ππ
and Υ(5S) → Υ(3S)ππ. In order to avoid the anomalous thresholds we have
to make sure, that the m2 integration starts above (mf + mπ)2. Therefore we
restrict it to 105 GeV2 < m2 < 125 GeV2 for Υ(2S) and 110.2 GeV2 < m2 <
125 GeV2 for Υ(3S).
The numerical solutions are shown in Figs. 3.30, 3.31 and 3.32. The line-

shapes look very similar, except for a rescaling in favor of the heavier final
states as already discussed in Sect. 3.4.
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Figure 3.30.: SD dispersion integral ππ final-state component (I0(s))1 for
Υ(5S) → Υ(nS)ππ with n = 1, 2, 3. The two-channel solutions
are given in blue (Υ(1S)), red (Υ(2S)) and green (Υ(3S)). The
three-channel solutions on the other hand are in purple (Υ(1S)),
orange (Υ(2s)) and black (Υ(3S)).
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Figure 3.31.: SD dispersion integral KK̄ final-state component (I0(s))2 for
Υ(5S) → Υ(nS)ππ with n = 1, 2, 3. The two-channel solutions
are given in blue (Υ(1S)), red (Υ(2S)) and green (Υ(3S)). The
three-channel solutions on the other hand are in purple (Υ(1S)),
orange (Υ(2S)) and black (Υ(3S)).
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Figure 3.32.: SD dispersion integral 4π final-state component (I0(s))3 for
Υ(5S) → Υ(nS)ππ with n = 1, 2, 3. The three-channel solutions
are shown in purple (Υ(1S)), orange (Υ(2S)) and black (Υ(3S)).
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3.7. Conclusion and outlook

In this work we showed an application of dispersion theory to decays of heavy
meson on the example of Υ(5S)→ Υ(nS)ππ with n = 1, 2, 3.
The model for the crossed-channel amplitude is consistent with a hadronic

molecule picture. For this, the B(?)B̄? amplitudes, that contain the Zb(10610)
and the Zb(10650), were constructed in such a way that they are analytic in the
Mandelstam variable t and fulfill the Schwarz reflection principle. The left-hand
cut of the function φ(t) is an artifact of the non-relativistic propagator and thus
is unphysical. As it is an unphysical branch cut, we removed it by a dispersive
reconstruction φdisp(t) considering only a right-hand cut. The deviation between
the inhomogeneous Omnès solutions is a few percent.
In order to describe the ππ interaction under the influence of crossed-channel

effects, Omnèsmatrices need to be calculated. While the two-channel isoscalar
scalar Omnès -matrix with ππ and KK̄ is well established, we created an effec-
tive three-channel solution with additionally a 4π(ρρ) channel, which allows for
an extension of the range of application. For this, we used the results of our
previous work (see chapter 2). However, not only an uncertainty estimation still
needs to be done, but also an application to other decays is necessary in order
to show the validity of this matrix. Note that the application of the formalism
in chapter 2 to the decay B̄0

s → ψ(2S)ππ is in progress [242]. This allows us to
test the universality of the parameters.
The dispersion integral for the final state Υ(1S) was solved in two different

ways. The first one is the KT solution, where the partial-wave projection is cal-
culated by integrating the crossed-channel amplitude along the Khuri-Treiman
path. The second solution, which we denoted as SD, rewrites the crossed-channel
amplitude as a dispersion integral over a stable propagator with mass m2, which
will be weighted by the corresponding spectral density. Due to the correct ana-
lytical continuation of the partial-wave projection for a stable propagator with
m2 > 0, which has been cross-checked by applying it to the well-known scalar
triangle graph, the order of integrations can be interchanged, thus allowing
for evaluating the m2 integral at last. After removing the left-hand cut in t
from the crossed-channel amplitude, the SD solution is consistent with the well
established KT up to numerical artifacts. In order to treat, or in our case
avoid, anomalous thresholds, the SD method can also be applied for the decays
Υ(5S)→ Υ(nS)ππ with n = 2, 3.
The advantages of the SD method is three-fold. Firstly it is well established

how to include anomalous thresholds for stable propagators. Therefore it can
be applied directly to the present case here. Secondly, the model dependence
for the crossed-channel amplitude only comes in through the spectral density
ρ(m2) while the rest of the dispersion integral is universal. This is especially
important if the amplitude contains exotic resonances, as here many different
models can be employed. Hence the SD method will help to discern the nature
of those exotics by allowing the description of them in a decay involving light
meson rescattering effects. The third advantage is that it is better applicable
for a fit involving free parameters in ρ(m2). Since the integration over m2 is
done at last, it is possible to calculate the rest of the dispersion integral outside
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of the fit, which speeds up the computation time immensely.
The goal of this work has been to show that the KT solution and SD solu-

tion are consistent with each other, such that the latter can also be applied in
a broader context. To obtain a proper uncertainty estimate of e.g. the Om-
nèsmatrix or crossed-channel amplitude model parameters, a Dalitz plot fit of
the decay Υ(5S)→ Υ(nS)ππ is still necessary.
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4. Thesis summary and outlook

In this thesis we provided a toolkit based on dispersion relations, which is suit-
able to analyze heavy meson decays involving the rescattering of light mesons
such as pions. With it, amplitudes can be constructed that are consistent with
the constraints from unitarity and analyticity. Dispersion theory depends only
on the scattering phases of the final and intermediate states employing analytic-
ity and unitarity. It is a model-independent way to describe strong final state in-
teractions. However, it is only applicable if the scattering amplitudes are known.
Fully analytic and unitary amplitudes for light mesons are provided by disper-
sive integrals, e.g. for the S-waves of the channels ππ [124, 184, 243], πK and
KK̄ [185, 186, 244, 245] and πη [246, 247]. However, their dispersive application
is not only limited by the range of applicability of each extracted partial-wave
amplitude but also the opening of multi-particle intermediate channels such as
4π. For heavy meson rescattering such a dispersive analysis is unfeasible, as it
requires multiple channels from the beginning. Hence effective models are re-
quired, which allow for the introduction of additional resonances and channels
and are consistent with the low energy constraints by the previously mentioned
dispersive analysis. Therefore good models, which are analytic and unitary, are
necessary. Effective field theories such as heavy meson chiral perturbation the-
ory provide amplitudes, which can be unitarized by e.g. a Lippmann-Schwinger
equation, thus providing the required construction [180]. Therefore both in
the light and heavy meson sector, an analytic continuation of the amplitude is
possible to extract pole parameters of previously badly determined resonances.
Identifying the QCD bound states then helps us to understand the QCD spec-
trum and its interaction as well.
We generalized the effective parametrization of pion rescattering at higher

energies [95] to the S-wave. The formalism considered a single-channel disper-
sive approach as input, which is coupled to additional channels by s-channel
resonance exchange. It was extended by allowing a two-channel dispersive ap-
proach as input. In order to test the framework the decays B̄0

s → J/ψπ+π−

and B̄0
s → J/ψKK̄ have been analyzed. These decays are in particular suit-

able as the J/ψπ+ and J/ψK invariant mass spectra do not show any struc-
ture [196, 209] and they provide a dipion phase space up to about 2.2 GeV. Fur-
thermore the decay B̄0

s → J/ψπ+π− shows a strong S-wave contribution. The
D-wave contributions to the decay are modeled in analogy to the LHCb analysis
as Breit-Wigner functions. On the other hand, the process B̄0

s → J/ψKK̄ is
less clean, as it contains not only a S-wave but also strong P - and D-wave con-
tributions, which are also modeled as Breit-Wigner amplitudes. However, the
inherent coupled-channel approach helps us to determine the free parameters
contained in the new parameterization for the S-wave.
In comparison to a previous dispersive analysis [190], which was valid up to
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4. Thesis summary and outlook

a dipion energy of about 1.05 GeV, this new work allows for the description of
the whole energy range of the decay. This however came at the cost of intro-
ducing several new free parameters. While the number of free parameters is
larger than for a sum of single-channel Breit-Wigner functions, it is comparable
to a multi-channel K-matrix and allows for a coupled-channel description. In
order to estimate the systematic uncertainty introduced by the parameteriza-
tion, six different fits to the angular moments

〈
Y 0

0

〉
and

〈
Y 0

2

〉
were performed.

Fit 1 considers two additional resonances, Fit 2 allows for a linear subtraction
polynomial and Fit 3 contains three additional resonances and a constant sub-
traction polynomial. Each of the fits has an effective four pion channel modeled
by either ρρ or by σσ. The fit improves for every additional degree of freedom
and prefers the ρρ inelastic channel.
The framework does not only provide an analytic parameterization for the

form factor, which was used for the fit, but with the same set of parameters
also a scattering amplitude. Hence in principle, it can be analytically continued
onto different Riemann sheets, allowing for the extraction of resonance poles.
This however needs information about the input scattering amplitude T0(s) in
the complex s-plane. As it contains left- and right-hand cuts, this task was
beyond the scope of this thesis and thus an analytic continuation of the form
factor via Padé approximants has been performed. As a cross-check for the
validity of our extraction we compared the pole parameters for the f0(500) and
f0(980) to Ref. [127]. Except for a deviation of about 5% of the strange f0(500)
coupling strength, they are consistent within the uncertainties. The deviation
might be reduced by including further subtractions of the resonance exchange
potential, which still remains to be shown. The extraction of the f0(1500) gives
a similar pole position to the LHCb Breit-Wigner one. However, our fit prefers
a significantly shifted pole for the f0(2020), which was identified by LHCb as
a f0(1790). We also observed that while the parameters for the f0(1500) were
stable, stronger uncertainties for the f0(2020) were found. In order to alleviate
this problem, it is necessary to include data for further inelastic channels in the
fit.
Another interesting property of the parameterization is that the scattering

amplitude parameters are independent of the decay. This universality is cur-
rently being tested for example in the decay B̄0

s → ψ(2S)ππ [242]. For this, the
scattering amplitude parameters, such as bare resonance masses and resonance-
channel couplings, are adapted from Ref. [232], whereas the source dependent
parameters are adjusted by a fit. For an easy application the pion form factor
is given as

Fπ(s) =

Nc∑

i=1

(ci + lis) Γi(s) +

NR∑

r=1

αrXr(s) . (4.1)

HereNc are the number of channels andNR the number of additional resonances.
The source parameters ci, li and αr are obtained by a Dalitz plot fit, whereas
the basis functions are fixed by the previous analysis.
With the extracted scattering matrix as input, it is possible to calculate a

multi-channel Omnèsmatrix, as shown in this thesis. While several tests for
the validity of the matrix and uncertainty estimation are still necessary, it
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matches smoothly onto the two-channel solution with a deviation starting near
the f0(1500) resonance. Hence we assume that it provides a reasonable high
energy extension for pion-pion rescattering to higher energies.
Therefore it is also possible to analyze heavy meson decays involving pion-pion

rescattering where the additional complication of a a left-hand cut amplitude
coming from crossed-channel resonances arises. Here we consider the decay of
Υ(5S) into Υ(nS)ππ with n = 1, 2, 3. Two exotic resonances Zb and Z ′b show
up in the Υ(nS)π invariant mass distribution. Due to their closeness to the
BB̄? and B?B̄? thresholds, respectively, they can be modeled as dynamically
produced resonance in B-meson rescattering [180]. While the model works ex-
ceptionally well for BB̄? and B?B̄? scattering as well as the decay amplitudes
Υ(5S)→ hb(mP )ππ with m = 1, 2 problems for the decays Υ(5S)→ Υ(nS)ππ,
since here ππ-rescattering cannot be neglected, a full Dalitz plot analysis is re-
quired.
In order to find the inhomogeneous multi-channel Omnès solution for the ππ-

S-wave, it is necessary to first calculate the inhomogeneity by partial-wave
projection of the crossed-channel amplitude. This proceeds in two different
approaches. The first method denotes as KT, involves integrating the crossed-
channel amplitude along the Khuri-Treiman path. The second option is to first
write the crossed-channel amplitude as an integral over the spectral density de-
noted by SD. By reversing the order of integration, it involves the analytically
correct partial-wave projection of a crossed-channel stable resonance exchange.
We have provided this analytic continuation for decays involving exchanged res-
onances with arbitrary positive masses. Depending on the mass range, it also
involves anomalous thresholds, which can be treated in this approach. This
procedure was verified by applying it to the dispersive reconstruction of the
scalar triangle diagram. The remaining integrals can be solved in the standard
procedure. We showed for the decay Υ(5S) → Υ(1S)ππ that the KT and SD
method are consistent with each other, such that either one can be applied.
We especially want to advocate the SD method. It can be easily general-

ized in order to include anomalous thresholds, such as required for the decays
Υ(5S)→ Υ(nS)ππ with n = 2, 3. However, depending on the kinematical situ-
ation, anomalous thresholds might be required. This requires knowledge of the
scattering amplitude in the complex plane. Furthermore, it should be suited for
fits, as all the crossed-channel model parameters are contained in the spectral
density integral, which is evaluated in the last step.
This work has been a proof of principle and a real application to the Dalitz plot

data still needs to be performed. While we considered only the simplest model
for the crossed-channel amplitude, a generalization to more advanced models is
straightforward. This procedure will allow one to test different models for the
nature of the Zb states, while correctly describing light meson rescattering. The
first extension is the inclusion of one-pion exchange potentials in the Lippmann-
Schwinger equation for BB̄?-B?B̄? scattering[223]. Compared to the study in
this thesis, only the spectral density in the SD approach needs to be adjusted.
Also the inclusion of a Zb with strangeness content is possible. For this, the
Lippmann-Schwinger equation in the presented crossed-channel amplitude has
to include strange B-meson channels. The resonance would primarily contribute
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to the inhomogeneity of the KK̄ channel. The SD method needs to be slightly
adjusted due to the different kinematics of the ππ and KK̄ final states. In
order to constrain the model parameters a coupled-channel fit of the Dalitz
plots Υ(5S) → Υ(nS)ππ with n = 1, 2, 3 and Υ(5S) → Υ(1S)KK̄ would be
preferred.
A similar analysis can also be applied in the charm sector to the decay

Y (4260) → J/ψππ [169]. It shows the exotic Zc(3900) resonance in the J/ψπ
invariant mass spectrum. As pointed out in Ref. [248], triangle singularities in
the crossed-channel amplitude might play a significant role in the production of
the Zc. For this, the SD method needs to be adjusted to take these singularities
into account.
Furthermore, data on the decay of the Υ(6S) is expected to be published

by the Belle collaboration in the future. Due to the larger phase space, it
might show further exotic resonances. However, this also means that improved
methods for ππ rescattering at higher energies are necessary. The framework
we have provided in this thesis is especially suited for this endeavor.
To summarize, we provided a dispersive toolkit which not only allows an

analytic and unitary extension of light meson scattering to higher energies but
also their application to heavy meson decays with a non-vanishing left-hand cut.
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A. Analytic partial-wave projections

A.1. General considerations about the partial-wave
projection

Consider the decay of a particle with mass mi into one with mass mf as well as
two with mass mπ. The kinematics has already been introduced in Sect. 3.2.
This chapter aims to introduce a valid partial-wave projection for an ampli-

tude K(t) with only a right-hand cut in the t-plane. The following reasoning
can be applied analogously to a function depending on u only.
Since K(t) is fully analytic in the complex t-plane except for a right-hand cut

starting at m2
0 it can be written as

K(t) =
1

π

∞∫

m2
0

dm2
r

ρ(m2
r)

t−m2
r

. (A.1)

The spectral density is given by

ρ(m2
r) = −ImK(m2

r) . (A.2)

In the case that ρ(t) does not fall fast enough for |t| → ∞ subtraction can be
introduced. However these do not change the analytic structure and are thus
irrelevant for the following discussion.
The partial-wave projection of this amplitude is given by

K`(s) =
1

2`+ 1

1∫

−1

d cos θ P`(cos θ)K(t(s, cos θ)) , (A.3)

where t(s, cos θ) was already introduced in Eq. (3.4).
By properly constructing the analytic continuation of the partial-wave pro-

jection in the external masses it is possible to switch the order of integration

K`(t) =
1

π

∞∫

m2
0

dm2
r ρ(m2

r)
1

2`+ 1

1∫

−1

d cos θ
P`(cos θ)

t(s, cos θ)−m2
r

. (A.4)

The angular integral

A`(s,m
2
r) =

1

2`+ 1

1∫

−1

d cos θ
P`(cos θ)

t(s, cos θ)−m2
r

(A.5)
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can be transformed to a path integral in the complex t plane via variable trans-
formation

A`(s,m
2
r) =

2

(2`+ 1)κ(s)

t+(s)∫

t−(s)

dt
F`(t)

t−m2
r

(A.6)

with
t±(s) =

1

2
(m2

i +m2
f + 2m2

π − s± κ(s)z) (A.7)

and

F`(t) = P`

(
2t+ s−m2

i −m2
f − 2m2

π

κ(s)

)
. (A.8)

Choose now m2
r to be large enough that for all s > s0 = 4m2

π it never interferes
with the integration in the complex t-plane. Each direct path between t+(s) and
t−(s) as well as their contour deformations consistent with Cauchy’s theorem
are valid in order to evaluate the integration.

Re t

Im t

t−(s)

t+(s)

Figure A.1.: Example for a Khuri-Treimann path.

A particular choice is the integration along the end-points of the integral

A`(s,m
2
r) =

2

(2`+ 1)κ(s)

∫

KT
dt

F`(t)

t−m2
r

(A.9)
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with

∫

KT
dt

F`(`)

t−m2
r

=

s0∫

s

ds′
∂t−(s′)

∂s′
F`(t−(s′))

t−(s′)−m2
r

+

s∫

s0

ds′
∂t+(s′)

∂s′
F`(t+(s′))

t+(s′)−m2
r

,

(A.10)
which we will call Khuri-Treiman path (KT). An example for such a path is
shown in Fig. A.1.

A.2. More on the Khuri-Treiman path

In the following we want to describe the KT path as a function of the Mandel-
stam variable s. For this note, that it is important to treat t±(s) as analytic
functions in the external masses. This can be illustrated by e.g. adding a small
imaginary part to the decay particle mass

m2
i → m2

i + iε . (A.11)

With this it is possible to describe the KT path as follows:

• 4m2
π ≤ s ≤ (mi −mf )2:

In this case we have

Re t±(s) =
1

2

(
m2
i +m2

f + 2m2
π − s± κ(s)

)
(A.12)

and

Im t±(s) =
ε

2


1±

√
1− 4m2

π
s (m2

i −m2
f − s)√

(mi +mf )2 − s
√

(mi −mf )2 − s


 . (A.13)

We immediately see that Re t−(s) ≤ Re t+(s) as well as Im t+(s) > 0.

Solving Im t−(sn) = 0 we obtain two points

sn = −
(m2

i −m2
f )mπ

mf −mπ
and sn =

(m2
i −m2

f )mπ

mf +mπ
. (A.14)

As we consider only s ≥ 4m2
π > 0 we discard the first solution. Thus for

s < sn = (m2
i −m2

f )mπ/(mf +mπ) the imaginary part of t−(s) is positive,
while for s > sn it is negative.

We may also calculate the extrema of Re t±(s) by solving

dRe t±(s)

ds
= 0 . (A.15)

The solutions are given by

s1/2 = ±
(m2

i −m2
f )mπ

mf ±mπ
and s3/4 = ±

(m2
i −m2

f )mπ

mi ∓mπ
. (A.16)
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Discarding the negative solutions we only consider s1 and s3. Under the
assumption mi > mf + 2mπ we also see that s1 > s3. Reinserting s1 in
t±(s) we obtain

Re t+(s1) =
m2
imf −m2

fmπ −mfm
2
π +m3

π

mf +mπ
with Im t+(s1) > 0

(A.17)

and

Re t−(s1) = (mf +mπ)2 with Im t−(s1) = 0 . (A.18)

A similar inspection for s3 gives

Re t−(s3) =
m2
f +mπm

2
i −mim

2
π −m3

π

mi −mπ
with Im t−(s3) > 0 (A.19)

and
Re t+(s3) = (mi −mπ)2 with Im t+(s3) > 0 . (A.20)

• (mi −mf )2 ≤ s ≤ (mi +mf )2:
In this case we see that

Re t±(s) =
1

2
(m2

i +m2
f + 2m2

π − s) (A.21)

and

Im t±(s) = ±1

2

√
1− 4m2

π

s

√
s− (mi −mf )2

√
(mi +mf )2 − s . (A.22)

Therefore Im t+(s) > 0 and Im t−(s) < 0. Furthermore we see that

Re t±(s) ≤ Re t±((mi −mf )2) = mimf +m2
π . (A.23)

• s > (mi +mf )2:
We obtain

Re t±(s) =
1

2
(m2

i +m2
f + 2m2

π − s∓ κ(s)) (A.24)

and

Im t±(s) =
1

2


1±

√
1− 4mπ2

s (s− (mi +mf)(mi −mf))
√
s− (mi +mf )2

√
s− (mi −mf )2


 . (A.25)

It is obvious that Re t+(s) is bounded from above by

Re t−((mi +mf )2) = Re t+((mi +mf )2) = −mimf +m2
π (A.26)

with a positive imaginary part. For t−(s) we obtain a maximum from
Eq. (A.2). As there are no solutions for s > (mi + mf )2 it follows, that
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Re t−(s) needs to be a monotonous function. It starts from t−((mi+mf )2)
and goes to 0. Its imaginary part can be estimated by

Im t−(s) ≤ ε̃(s−m2
i −m2

f )

(
1−

√
1− 4m2

π

s

)
≤ 0 (A.27)

with
ε̃ =

ε

2
√
s− (mi +mf )2

√
s− (mi −mf )2

. (A.28)

Fig. A.2 depicts KT paths for different energies. In the following, this path
will be the starting point of our discussion. Its analytic continuation for different
m2
r will include residues of the encountered poles, as discussed in the following

section.

A.3. Analytic continuation in the exchange mass

As the exchange masses m2
r are in reality not necessarily too heavy, we now

perform an analytic continuation within this variable.
For m2

r � (mi − mπ)2 the pole of the propagator never interferes with the
KT path as shown in Fig. A.3a. Even for masses m2

r ≥ (mf + mπ)2 the KT
path does not need to be deformed as shown in Fig. A.3b and Fig. A.3c.
However for m2

r < (mf + mπ)2 the pole drags along the contour as seen in
Fig. A.4a. Using the residue theorem, it is possible to express the analytic
continuation in terms of the previous KT path as well as the residue at m2

r

(Fig. A.4b). Note that the pole is enclosed in clockwise orientation, which is
why the residue contributes with a negative sign.
To summarize for m2

r > (mf +mπ)2 the partial-wave projection is given by

A`(s,m
2
r) =

2

(2`+ 1)κ(s)

∫

KT
dt

F`(t)

t−m2
r

. (A.29)

For 0 < m2
r < (mf +mπ)2 we obtain

A`(s,m
2
r) =

2

(2`+ 1)κ(s)

(∫

KT
dt

F`(t)

t−m2
r

− 2πiF`(m
2
r)

)
. (A.30)

This result may also be generalized by replacing F`(t) with any analytic function
Ψ(t) in the complex t-plane

(2`+ 1)A`(s,m
2
r) =

2

κ

(∫

KT
dt

Ψ(t)

t−m2
r

− 2πiΨ(m2
r)Θ(0 < m2

r < (mf +mπ)2)

)

(A.31)
Furthermore it is possible to use the position of m2

r within this path to distin-
guish the different cases. Namely case a) corresponds tom2

r > (mi−mπ)2, case
b) tomimf+m2

π < m2
r < (mi−mπ)2, case c) to (mf+mπ)2 < m2

r < mimf+m2
π

and case d) to 0 < m2
r < (mf +mπ)2.

125



A. Analytic partial-wave projections

t−(s) t+(s)

4m2
π < s < s3

t−(s)
t+(s)

s3 < s < s1

t−(s)

t+(s)

s1 < s < (mi −mf)
2 t+(s)

t−(s)

(mi −mf)
2 < s < (mi +mf)

2

t−(s)

t+(s)

(mi +mf)
2 < s

Figure A.2.: Integration path in the complex t-plane for real values of s in dif-
ferent energy regions.
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t−(s)

t+(s)

(a) (mi −mπ)2 < m2
r

t−(s)

t+(s)

(b) mimf +m2
π < m2

r < (mi −mπ)2

t−(s)

t+(s)

(c) (mf +mπ)2 < m2
r < mimf +m2

π

Figure A.3.: Analytic continuation of the partial-wave projection inm2
r ≥ (mf+

mπ)2 without path deformation.

t−(s)

t+(s)

(a) Analytic continuation

t−(s)

t+(s)

(b) KT path

Figure A.4.: Analytic continuation of the partial-wave projection inm2
r < (mf+

mπ)2 with a required path deformation.
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A.4. Analytic evaluation of the partial-wave projection

As the evaluation of the KT path is involved and time consuming it is advan-
tageous to use the residue theorem to express it in terms of a direct integration
D between t−(s) and t+(s). In case of a stable propagator the integration will
give logarithms, whereas the residue determines the correct sheet. However, the
following ideas are universal and can be applied to more general structures as
long as they only involve branch cuts or poles on the real axis.

Case (a): (mi −mπ)2 <m2
r

t+(s)

t−(s)

Figure A.5.: Deformed integral for case (a).

We see that for every s > 4m2
π we can use Cauchy’s theorem to deform the

path into a straight line (see Fig. A.5). Thus we can write

(2`+ 1)A`(s) =
2

κ

∫

KT
dt

Ψ(t)

t−m2
r

=
2

κ

∫

D
dt

Ψ(t)

t−m2
r

. (A.32)

For the projection of the stable propagator on the S-wave it reads

A0(s) =
2

κ

t+(s)∫

t−(s)

dt
1

t−m2
r

=
2

κ
log

(
t+(s)−m2

r

t−(s)−m2
r

)
. (A.33)

Case (b): mimf + m2
π <m2

r < (mi −mπ)2

Whereas it is still possible to connect t±(s) with each other via a straight line
for every s > 4m2

π (see Fig. A.6) we need to treat the singularity at t = m2
r for

ε→ 0 properly.
The pole only contributes for 4m2

π < s < (mi − mf )2 since otherwise we
can deform the path in order to avoid the singularity entirely. In this case the
projection is given by Eq. (A.33). We solve Re t±(s±) = m2

r which results in

s± =
(mi −mf )2 −

(√
λ(m2

i ,m
2
r ,m

2
π)∓

√
λ(m2

f ,m
2
r ,m

2
π)
)2

4m2
r

. (A.34)
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t+(s)

t−(s)

(a) s+ < s

t−(s)

t+(s)

(b) s− < s < s+

Figure A.6.: Deformed integral for case (b).

Consider now s− < s < s+. In this case we can evaluate the partial-wave
projection as a straight line integral with a positive imaginary part

(2`+ 1)A`(s) =
2

κ

t+(s)∫

t−(s)

dt
Ψ(t+ iε)

t−m2
r + iε

(A.35)

For the S-wave projection of a stable propagator this reduces to

A0(s) =
2

κ

t+(s)∫

t−(s)

dt

t−m2
r + iε

. (A.36)

Using the Sokhotski-Plemelj theorem we can evaluate it to be

A0(s) =
2

κ
−
∫ t+(s)

t−(s)

dt

t−m2
r

− 2iπ

κ

∫ t+(s)

t−(s)
dt δ(t−m2

r)

=
2

κ

[
log

(
− t+(s)−m2

r

t−(s)−m2
r

)
− iπ

]
.

(A.37)

Summarizing for all energy regions the solution is given by

(2`+ 1)A`(s) =





2
κ

t+(s)∫
t−(s)

dt Ψ(t+iε)
t−m2

r+iε
, s− ≤ s ≤ s+

2
κ

∫
D dt Ψ(t)

t−m2
r

, else

. (A.38)

For a S-wave projection of a stable propagator it reads

A0(s) =





2
κ

[
log
(
− t+(s)−m2

r
t−(s)−m2

r

)
− iπ

]
, s− ≤ s ≤ s+

2
κ log

(
t+(s)−m2

r
t−(s)−m2

r

)
, else

. (A.39)
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A. Analytic partial-wave projections

Case (c): (mf + mπ)2 <m2
r <mimf + m2

π

t+(s)

t−(s)

(a) sf < s

t+(s)

t−(s)

(b) s+ < s < sf

Figure A.7.: Deformed integral for case (c).

Additionally to a proper regularization of the pole as seen in case (b), we also
need to consider that the closed integration contour can encircle the pole entirely,
as shown in Fig. A.7b. Increasing the energy s then leads to an enclosure of the
pole.
For s− < s < s+ we have to avoid the pole by using the +iε prescription.

Thus in this region, the partial-wave projection is given by Eq. (A.37).
For s > s+ we see that the pole gets enclosed by the integration contour.

Hence the residue needs to be taken into account until

Re t±(sf ) = m2
r . (A.40)

Notice that in the corresponding energy region κ is purely imaginary. Thus we
can determine sf to be

sf = m2
i +m2

f + 2m2
π − 2m2

r . (A.41)

Restricting ourselves to the energy region s+ < s < sf allows us to calculate

(2`+ 1)A`(s) =
2

κ

[∫

D
dt

Ψ(t)

t−m2
r

− 2πiΨ(m2
r)

]
. (A.42)

and for the S-wave projection of a stable propagator

A0(s) =
2

κ

[
log

(
t+(s)−m2

r

t−(s)−m2
r

)
− 2πi

]
. (A.43)

Overall we thus obtain

(2`+ 1)A`(s) =





2
κ

t+(s)∫
t−(s)

dt Ψ(t+iε)
t−m2

r+iε
, s− ≤ s ≤ s+

2
κ

[∫
D dt Ψ(t)

t−m2
r
− 2πiΨ(m2

r)
]

, s+ < s ≤ sf

2
κ

∫
D dt Ψ(t)

t−m2
r

, else

(A.44)
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and for the S-wave projection

A0(s) =





2
κ

[
log
(
− t+(s)−m2

r
t−(s)−m2

r

)
− iπ

]
, s− ≤ s < s+

2
κ

[
log
(
t+(s)−m2

r
t−(s)−m2

r

)
− 2iπ

]
, s+ ≤ s < sf

2
κ log

(
t+(s)−m2

r
t−(s)−m2

r

)
, else

(A.45)

Case (d): 0 <m2
r < (mf + mπ)2

t+(s)

t−(s)

(a) sf < s

t+(s)

t−(s)

(b) s < sf

Figure A.8.: Deformed integral for case (d).

The last case can be treated in analogy to the other three. However as previ-
ously shown the partial-wave projection is given by

(2`+ 1)A`(s) =
2

κ

(
−2πiΨ(m2

r) +

∫

KT
dt

Ψ(t)

t−m2
r

)
. (A.46)

Compared to case (b) the ε → 0 prescription does not pose any problem for
the integration. For s < sf we see that

(2`+ 1)A`(s) =
2

κ

(
−2πiΨ(m2

r) +

∫

D
dt

Ψ(t)

t−m2
r

)
(A.47)

as the pole lies outside of the integration contour.
For s ≥ sf the pole is encircled in a counterclockwise direction. Therefore the

residue cancels out and we obtain

(2`+ 1)A`(s) =
2

κ

∫

D
dt

Ψ(t)

t−m2
r

. (A.48)

Therefore the partial-wave projection reads

(2`+ 1)A`(s) =





2
κ(−2πiΨ(m2

r) +
∫
D dt Ψ(t)

t−m2
r
) , s < sf

2
κ

∫
D dt Ψ(t)

t−m2
r

, else
(A.49)
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and explicitly for the S-wave of a stable propagator

A0(s) =





2
κ

[
log
(
t+(s)−m2

r
t−(s)−m2

r

)
− 2iπ

]
, s ≤ sf

2
κ log

(
t+(s)−m2

r
t−(s)−m2

r

)
, else

. (A.50)
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B. Anomalous thresholds

Consider the S-wave projections defined by Eqs. (A.33), (A.39), (A.45), (A.50).
They have a branch cut lying between the branch points s± from Eq. (A.34). In
this section we will show their influence on the inhomogeneous Omnès problem.
Assume first mf to be fixed in a range such that mf < mr + mπ and mr <

mf +mπ. This assumption is equivalent with (mr −mπ)2 ≤ m2
f ≤ (mr +mπ)2,

which guarantees that mr cannot go on-shell. In order to ensure that s± do not
lie on the integration path s′ ∈ [s0,∞), we make mi sufficiently small. In this
case the inhomogeneous Omnès solution defined in Sect. 1.3.4

ζ`(s) = P (s) +
sn

π

∞∫

s0

ds′

(s′)n
(Ω−1

` )(s′)
t`(s

′)σ̂(s′)K`(s
′)

s′ − s− iε (B.1)

is well defined.
Using the discontinuity

discR ζ` = 2iΩ−1
` t`σ̂K` . (B.2)

it is possible do an analytic continuation of ζ` onto the second Riemann sheet
by

ζII` (s) = ζ`(s)− discR ζ`(s) = ζ`(s) + 2i(Ω−1)t`σ̂K` . (B.3)

An interesting observation is that ζII` (s) additionally has the logarithmic branch
cut coming from K`.
As soon as this function is analytically continued inmi, the logarithmic branch

points s± move through the complex plane and may go though the unitarity cut
onto the first Riemann sheet. In order to illustrate this further we first search
the solution of

4m2
π = s±((m̃i)

2) =
(m̃2

i −m2
f )2 −

(√
λ(m̃2

i ,m
2
r ,m

2
π)∓

√
λ(m2

f ,m
2
r ,m

2
π)
)2

4m2
r

(B.4)
which is given by

m̃2
i = 2m2

π + 2m2
r −m2

f . (B.5)

Using this solution for s±(m̃2
i ) we obtain

s+(m̃2
i ) =

(m2
π −m2

f +m2
r)

2

m2
r

and s−(m̃2
i ) = 4m2

π . (B.6)

In order to better understand the motion of s±(m2
i ) near the unitarity cut, we

expand them up to second order in m2
i .
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B. Anomalous thresholds

While the first derivative is given by

ds+

dm2
i

∣∣∣∣
m2
i=m̃

2
i

=
m2
π −m2

f +m2
r

m2
r

,
ds−
dm2

i

∣∣∣∣
m2
i=m̃

2
i

= 0 (B.7)

the second derivative is evaluated to be

d2s+

d(m2
i )

2

∣∣∣∣
m2
i=m̃

2
i

= − 2m2
π

λ(m2
f ,m

2
r ,m

2
π)

,
d2s−

d(m2
i )

2

∣∣∣∣
m2
i=m̃

2
i

=
2m2

π

λ(m2
f ,m

2
r ,m

2
π)
.

(B.8)
Using the +iε prescription for m2

i we can calculate

s+(m̃2
i + iε+ δm2

i ) =
(m2

π −m2
f +m2

r)
2

m2
r

+
m2
πε

2

λ(m2
f ,m

2
r ,m

2
π)

+
m2
π −m2

f +m2
r

m2
r

iε

+ δm2
i

[
m2
π −m2

f +m2
r

m2
r

− m2
πδm

2
i

λ(m2
f ,m

2
r ,m

2
π)

]

− m2
π

λ(m2
f ,m

2
r ,m

2
π)

2iεδm2
i +O(ε3)

(B.9)

and

s−(m̃2
i + iε+ δm2

i ) = 4m2
π −

m2
πε

2

λ(m2
f ,m

2
r ,m

2
π)

+
m2
π(δm2

i )
2

λ(m2
f ,m

2
r ,m

2
π)

+
m2
π

λ(m2
f ,m

2
r ,m

2
π)

2iεδm2
i +O(ε3) .

(B.10)

Varying now δm2
i from negative to positive values we see that s+(m2

i ) does not
cross the unitarity cut, as it still has a nonvanishing imaginary part at δm2

i = 0.
However s−(m2

i ) will pass the unitarity cut if λ(m2
f ,m

2
r ,m

2
π) < 0.

Thus s−(m2
i ) goes to the physical Riemann sheet if

m2
i > 2m2

π + 2m2
r −m2

f and λ(m2
f ,m

2
r ,m

2
π) < 0 . (B.11)

The second restriction will be lifted by an additional analytic continuation
within mf . Therefore an additional branch point appears on the physical sheet
when

m2
i > 2m2

π + 2m2
r −m2

f . (B.12)

The additional logarithmic branch point on the first Riemann sheet is called
anomalous threshold.
It follows, that the inhomogeneous Omnès problem needs to be adjusted. Ad-

ditionally to the unitarity cut the anomalous logarithmic cut between s− and s+

coming from K`(s) needs to be avoided. Therefore the anomalous discontinuity
is given by

discanom ζ`(s) = 2i(Ω−1
L )t`σ̂ discK` . (B.13)
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For the S-wave projection of a stable propagator the anomalous discontinuity
is produced by the logarithmic branch cut leading to the discontinuity

discK0 = discA0 =
4iπ

κ(s)
(B.14)

with A0(s) as in Appendix A.4. Note that K0 is in general a vector in channel
space. Assume that only one channel contributes to the inhomogeneity, which
we call for simplicity ππ. Then the anomalous discontinuity can be written as

discanom ζL(s) = − 8π

κ(s)
Ω−1

0 (s)t0(s)σ̂(s)~v , (B.15)

where ~v is a unit vector in channel space pointing in the ππ direction. The
branch cut between s− on the first Riemann sheet and s+ on the second sheet
is parametrized by a straight line from s− to the unitarity branch point s0 and
from there to s+. Therefore the inhomogeneous Omnès problem is modified to

ζ0(s) = P (s) +
sn

π

∞∫

s0

ds′

(s′)n
Ω−1

0 (s′)
t0(s′)σ̂(s′)K0(s′)

s′ − s + ζanom(s) (B.16)

with

ζanom(s) = − sn

2πi

1∫

0

dx
8πΩ−1

0 (z(x))t0(z(x))σ̂(z(x))~v

zn(x)κ(z(x))(z(x)− s)
dz(x)

dx
(B.17)

and
z(x) = (1− x)s− + xs0 . (B.18)

This form is equivalent to

M0(s) = Ω0(s)


P (s) +

sn

π

∞∫

s0

ds′

(s′)n
Ω−1

0 (s′)
t0(s′)σ(s′)K0(s′)

s′ − s + ζanom(s)


 .

(B.19)
Note that in principle singularities in this integration can show up at the zeros
of κ(z(s)). Therefore one can choose the logarithmic cut between s− and s0 in
the complex plane such that these singularities are avoided.
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C. Dispersive reconstruction of the
scalar triangle

p2f = m2
f

p2i = m2
i

Q2 = spi − l mr

l
mπ

mπ

pi + pf − l

Figure C.1.: Scalar triangle graph.

The scalar triangle graph as shown in Fig. C.1 and is defined by the external
momenta pi, pf and Q = pi + pf . Their corresponding masses are given as
p2
i = m2

i , p
2
f = m2

f and Q2 = s. The internal masses are denoted by mr and
mπ. Additionally the diagram contains one free loop momentum l. With these
definitions the standard scalar triangle reads

C0 =
1

iπ2

∫
d4l

1

(pi − l)2 −m2
r

1

l2 −m2
π

1

(pi + pf − l)2 −m2
π

. (C.1)

A standard procedure for the evaluation of the integral is defined by the use
of Feynman-parameters. There are also many available libraries, which allow
for the numerical evaluation of loop integrals such as Looptools [249] or the
X-package [250].
Since the scalar triangle graph is a well-known function it allows us to test the

viability of our considerations in Appendix A and B. A dispersive reconstruction
of C0 as already discussed in Refs. [69, 251, 252, 253] will be applied here.
By restricting mi and mr to the regions mr − mπ < mi < mr + mπ and

mf − mπ < mr < mf + mπ the resonance with mass mr cannot go on-shell.
Therefore the only cut, which is operative is the dipion cut. Its discontinuity
can be calculated using the Cutkosky rules [254]

discC0 =
1

iπ2

∫
d4l

(−2πiδ(l2 −m2
π))

(pi − l)2 −m2
r

(−2πiδ((pi + pf − l)2 −m2
π)) . (C.2)
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Due to the δ-distribution each internal pion momentum will be set on-shell. In
this manner the kinematics of this process is similar to a 2-2 scattering process.
Thus define the Mandelstam variables in the dipion center-of-mass frame

(pi + pf )2 = Q2 = s (C.3)

and
(pi − l)2 = t =

1

2

(
m2
i +m2

f + 2m2
π − s+ κ(s) cos θ

)
(C.4)

as already defined in Eq. (3.4). The scattering angle θ is defined by the product

~pi ·~l = |~p||~l| cos θ . (C.5)

An evaluation of the δ distributions leads to

discC0(s) = 2πi
σπ(s)

2

1∫

−1

d cos θ
1

t(s, cos θ)−m2
r

= 2πi
σπ(s)

2
A0(s,m2

r) (C.6)

with the pion phase space

σπ(s) =

√
1− 4m2

π

s
. (C.7)

The most general analytic continuation in mi and mr does not only involve the
function A0(s,m2

r) as already discussed in the Appendix A.4 but also anomalous
thresholds of Appendix B.
Summarizing the discontinuity can be differentiated with four cases. Case a

considers m2
r > (mi −mπ)2 with a discontinuity

discCa0 (s) = 2πi
σπ(s)

κ(s)
log

(
t+(s)−m2

r

t−(s)−m2
r

)
. (C.8)

Case b, with mimf +m2
π < m2

r < (mi −mπ)2 on the other hand gives

discCb0(s) = 2πi
σπ(s)

κ(s)





[
log
(
− t+(s)−m2

r
t−(s)−m2

r
− iπ

)]
, s− ≤ s ≤ s+

log
(
t+(s)−m2

r
t−(s)−m2

r

)
, else

. (C.9)

The logarithmic branch points s± are defined in Eq. (A.34).
Case c extends the describtion to (mi + mπ)2 < m2

r < mimf + m2
π. Its

discontinuity is given by

discCc0(s) = 2πi
σπ(s)

κ(s)





[
log
(
− t+(s)−m2

r
t−(s)−m2

r
− iπ

)]
, s− ≤ s ≤ s+

[
log
(
t+(s)−m2

r
t−(s)−m2

r

)
− 2iπ

]
, s+ < s < sf

log
(
t+(s)−m2

r
t−(s)−m2

r

)
, else

, (C.10)
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where sf is defined in Eq. (A.41).
Each of these three cases can be reconstructed dispersively without an anoma-

lous threshold, as the logarithmic branch points lie on the second Riemann-sheet

Ca,b,c0 =
1

2πi

∞∫

4m2
π

dz

z − s discCa,b,c0 (z) . (C.11)

For m2
r < (mf +mπ)2, denoted as case d, the discontinuity is given as

discCd0 (s) = 2πi
σπ(s)

κ(s)





[
log
(
t+(s)−m2

r
t−(s)−m2

r

)
− 2iπ

]
, s < sf

log
(
t+(s)−m2

r
t−(s)−m2

r

)
, else

. (C.12)

It can be reconstructed dispersively by

Cd0 (s) =
1

2πi

∞∫

4m2
π

dz

z − s discCd0 (z) + Ianom(s) (C.13)

with

Ianom(s) =
1

2πi

1∫

0

dx
4π2σπ(z(x))

κ(z(x))(z(x)− s)
dz(x)

dx
(C.14)

and z(x) defined in Eq. (B.18).
Exemplary plots for the evaluation in the four different cases are shown in

Fig. C.2. It shows that the reconstruction works perfectly and thus signifies
the correctness of our approach. However, we want to point out again that this
approach only has been calculated for decay processes with s > 4m2

π as well as
m2
r > 0. An extension to other energy regions remains to be shown.
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Figure C.2.: Exemplary evaluation for C0 with mi = mΥ(5s) and mf = mΥ(1s).
The Looptools evaluation is shown blue and the dispersive recon-
struction in orange. The resonance mass is given bym2

r = 120 GeV2

(case a), m2
r = 110 GeV2 (case b), m2

r = 95 GeV2 (case c) and
m2
r = 80 GeV2 (case d).
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