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Abstract

This thesis explores the connection between supersymmetric gauge theories on curved spaces of
dimensions two and three and geometries that arise in string theory. It does so by studying
quantum field theoretic objects such as the partition function and correlation functions on the
gauge theory and finding links to geometric information of its target space. An exact calculation
of the path integral is made possible using the localisation technique for supersymmetric gauge
theories.

A 2d gauge theory with N = (2, 2) supersymmetry on the Ω-deformed two-sphere subject to
the A-twist is the first object of study. Here we find that the correlation functions of the twisted
chiral field fulfil certain universal and non-trivial relations. These relations can be interpreted as
quantum operators that govern the moduli dependence of the ground state of the gauge theory
in a Hilbert-space picture. Furthermore, the relations can be imparted a representation as
differential operators that are shown to annihilate Givental’s cohomology-valued I-function on
the target space of the gauge theory. This is a consequence of the fact that the 2d gauge theory
provides an ultraviolet model for quantum cohomology on a manifold. In particular, for gauge
theories with Calabi-Yau target spaces, these operators coincide with Picard-Fuchs operators in
algebraic geometry. For a certain class of Calabi-Yau manifolds, we turn the argument around
and express the Picard-Fuchs operators in terms of a finite number of correlators in the gauge
theory.

In 3d we study N = 2 gauge theories on the solid torus D2 ×q S1, where q is the twist in
the fibration of D2 over S1, with Grassmannian manifolds as target spaces. These theories are
ultraviolet models for quantum K-theory on their target spaces. We compute the partition
function and extract from it Givental’s I-function of permutation symmetric quantum K-theory.
This facilitates a calculation of the algebra of Wilson loops which, for different values of the
Chern-Simons levels, is shown to be isomorphic to either the quantum K-theoretic ring of
Schubert structure sheaves on the Grassmannian or the Verlinde algebra. Additionally, we
evaluate difference equations that annihilate this I-function. A limit where the S1 contracts
to a point, all the computed quantities are shown to coincide with the corresponding objects
encountered in 2d.
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CHAPTER 1

Introduction

Point Particle Physics

Einstein’s theory of gravity is encapsulated in the Einstein-Hilbert action,

S ∼ 1

GN

∫
d4x
√
g R , (1.1)

expressed in natural units, where GN is the Newton’s gravitational constant. Here g is the
determinant of the metric tensor of spacetime gµν and R is a dynamical scalar that captures
the curvature of spacetime, known as the Ricci scalar. This theory was considered a complete
description of the gravitational force and inspired landmark findings at the cosmological scale
until a microscopic description of the electromagnetic force came along. For an exposition to
general relativity, see for instance [1, 2].

Quantum field theory is a formalism that elevates classical fields to quantum fields, going
beyond a (first) quantisation of particles and earning itself the term second quantisation. The
architects of quantum field theory set out trying to unify quantum mechanics of multi-particle
states with special relativity and were faced with explaining particle creation and annihilation.
This ultimately led them to postulate the wave-functions associated to particles as quantum-
mechanical objects themselves and gave birth to a vast network of ideas that we today call
quantum field theory. The first consistently constructed quantum field theory was that of
electrodynamics which paved way for the quantisation of weak and strong interactions. Some
comprehensive and pedagogical reviews include [3–6].

Soon after its conception, quantum field theory was faced with the problem of infinities.
Assuming that the principles of quantum field theory are applicable for infinite energy scales,
physical observables such as the mass and strength of interaction are also rendered infinite by the
underlying mathematical framework. This led to the birth of renormalisation, an idea whereby
the fields are renormalised in a way that restores the finiteness of physical observables. While
the original idea was conceived in the context of quantum electrodynamics, it was generalised
to a general Yang-Mills theory in four dimensions. This immense success of quantum field
theory as a mathematical framework was further boosted by the fact that it lent itself to
non-trivial state-of-the-art experimental checks. This ultimately led to the formulation of the
standard model of particle physics, a framework that describes matter and the three fundamental
interactions: electromagnetic, weak and strong, quantum mechanically.

Attempts to fit the fourth fundamental interaction, gravity, into the framework of quantum
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Chapter 1 Introduction

field theory failed for the reason that while one could conceive of the notion of a quantum-
mechanical particle, called the graviton, that mediates gravitational interaction, the interaction in
itself is non-renormalisable. This is evident from equation (1.1) where the strength of interaction
GN has units of (length)2, and thus the dimensionless coupling constant GN · (energy)2 diverges
in the ultraviolet regime. This negative mass dimension (or positive length dimension) of the
gravitational coupling constant is in contrast to the dimensionlessness of Yang-Mills coupling
constants. This early hurdle in quantising gravity led to the belief that quantum field theory
may be an effective theory and while it estimates the interactions at energy scales much less
than the Planck scale with near accuracy, it fails to be applicable for gravitational interaction,
which only comes into play in the vicinity of the Planck scale. A shift in the preconceived
relation of matter and interactions to spacetime was precedented.

String Theory

String theory postulates that the fabric of spacetime is constituted not of points, which are
zero-dimensional, but of strings, which are one-dimensional. In other words, the fundamental
objects that make up spacetime are one-dimensional strings which are characterised by their
tension T . Strings propagating in spacetime trace out a ‘worldsheet’, as opposed to the worldline
of a point particle. The advantage of a radical change of this sort in the way we view and
model spacetime is that not only does this theory give rise to a spin-two excitation of the string,
which is dubbed the graviton, but it does so in a way that causes no ultraviolet divergences.
This can be understood heuristically as a consequence of the fact that ultraviolet divergences
arise in point particle quantum theory as a result of phenomena at infinitesimal distances. In
string theory however the finite length of strings, given by

√
1/T , that constitute spacetime

forbid such a limit, in effect eliminating the region of configuration space that could lead to
ultraviolet divergences. Moreover, the tension T is the only free parameter in this theory and,
in principle, if this theory is to be the consistent unification of all known forces and matter into
one framework, then all the known parameters of the standard model as well as the Newton’s
gravitational constant GN must arise therefrom. For a pedagogical introduction to string theory,
see [7–11].

The spacetime in which a string theory can be consistently defined, i.e., in which strings can
consistently propagate without violating any of the fundamental symmetries of the theory, is
known as the target space. The dimension of the target space is constrained by the requirement
that the symmetries of the worldsheet theory, diffeomorphism- and Weyl-invariance1, remain
anomaly-free upon quantisation. If we assume that the target space is flat for simplicity, then
for a bosonic string this critical dimension turns out to be 26 whereas for the superstring, i.e., a
string whose modes fall into a representation of the supersymmetry algebra2, this dimension is
ten. The discrepancy between the critical dimension of superstring theory and that of observable
spacetime inspired the proposal that the six extra dimensions span a small and compact six
dimensional manifold. The length scale of this compactification manifold must be small enough
to remain unprobed in modern day experiments. Lifting the assumption of the flatness of target
space leads one to study the action of the string in curved spacetime and impose conservation

1 Diffeomorphism invariance implies that a reparametrisation of the coordinates leaves the action unchanged and
Weyl invariance implies that a local scaling of the metric leaves the action unchanged.

2 Supersymmetry links particles with integer spin to particles with half integer spins by a symmetry transformation.
For an introduction to supersymmetry see [4, 12,13].

2



of worldsheet symmetries. The consequences of this approach will be briefly touched upon in
forthcoming section on the target space approach to study spacetime geometry.

The diffeomorphism- and Weyl-invariance of the 2d worldsheet theory imply the existence of
conformal symmetry3. It was shown that a string theory the string worldsheet equipped with
N = 2 supersymmetry in addition to the conformal symmetry can give rise to a supersymmetry
on the target space by constructing an operator, known as spectral flow, in the worldsheet
superconformal algebra that generates spacetime supersymmetry. Upon equipping both the
left- and right-handed sector of the closed superstring with N = 2 superconformal symmetry
and requiring a tachyon-free spectrum, achieved by a projection of states into specific left- and
right-handed fermion numbers known as the GSO projection, leads to two distinct theories
known with the massless spectra of type IIA and type IIB supergravity. These are known as
type IIA/B string theories, respectively. Type IIB string theory is chiral and upon imposing
parity symmetry on the left and right handed sector one obtains type I string theory. This
theory has half the supersymmetry of the type IIB string and a non-orientable worldsheet.
Finally, conjuring a theory with N = 2 superconformal symmetry in the left handed-sector
and no supersymmetry in the right-handed sector results in the heterotic string theory. The
26-dimensional right handed bosonic string must be compactified down to 10 dimensions to match
the left-handed sector dimensionally. The two self-dual 16-dimensional lattices along which this
can be done consistently lead to heterotic string theory with the gauge groups Spin(32)/Z2 and
E8 × E8 [17, 18]. Summarising, the five consistent superstring theories with varying spacetime
spectra, gauge group and supersymmetry in ten dimensions are type I, type IIA, type IIB,
heterotic with gauge group Spin(32)/Z2 and E8×E8, respectively. These distinct theories are
all connected by a web of dualities and believed to be different limits of an eleven-dimensional
theory known as M-theory [19].

In the following discussion we will narrow our focus down to the type II string theories and we
will give a lightning-fast review of some of the foundational ideas. The fundamental string can be
open or closed. The simplest boundary conditions that the open string can have at its ends are
Neumann (N) or Dirichlet (D), where the Neumann boundary conditions denote the subset of
spacetime in which the ends of the open string can freely move whereas the Dirichlet boundary
conditions denote the subset in which the ends of the open string must remain stationary. The
latter are interpreted to span extended objects of dimension p+ 1, corresponding to the number
of N boundary conditions, and are known as Dp-branes. Dp-branes are dynamical objects that
propagate in the subset of spacetime spanned by the D boundary conditions. The fermionic
sector of the closed string can either be Ramond (R) or Neveu-Schwarz (NS) depending on
whether the condition on the fermionic oscillator modes upon circling the string is periodic or
anti-periodic, respectively. The closed sector consists of left and right-moving sectors which can
either be Ramond or Neveu-Schwarz, giving rise to two bosonic sectors, (R,R) and (NS,NS), and
two fermionic sectors, (R,NS) and (NS,R), respectively. The bosonic spectrum of these theories
along with the amount of symmetry they have is detailed in Table 1.1. The fermionic sectors
consist of the superpartners of the bosonic sector, modulo the GSO projection which ensures a
tachyon-free spectrum and causes the (non-)chirality of the theories. As is detailed in Table 1.1,
the graviton is a natural consequence of all the 10d superstring theories, which together with
the UV complete nature of string theory makes it a viable candidate for the quantum theory of
gravity.

3 Conformal symmetry consists of those transformations of the spacetime coordinates that leave the metric
invariant up to an overall scale factor. For a pedagogical exposition see [14–16].
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Chapter 1 Introduction

Superstring theory # Supercharges ; Massless spectrum (bosonic) Gauge

in 10d Chirality N = (NL, NR) (NS,NS) (R,R) Group

Type I 16 ; N = (1, 0) (ϕ, , gµν) (bµν) SO(32)

Type IIA 32 ; N = (1, 1) (ϕ, bµν , gµν) (Aµ, Cµνρ) −

Type IIB 32 ; N = (2, 0) (ϕ, bµν , gµν) (φ,Bµν , Dµνρσ) −

Heterotic E8 × E8 16 ; N = (1, 0) (ϕ, bµν , gµν) E8 × E8

Het. Spin(32)/Z2 16 ; N = (1, 0) (ϕ, bµν , gµν) Spin(32)/Z2

Table 1.1: The table shows the list of the five consistently defined superstring theories in 10d along with the
number of spacetime supercharges, their chirality denoted by the amount of left or right supersymmetry
(NL, NR) and the gauge group in 10d spacetime. The bosonic sector splits into (NS,NS) and (R,R)
sectors, respectively, in all but the heterotic theories where only the left handed sector is a superstring.
The dilaton ϕ, anti-symmetric tensor bµν and graviton gµν appear in all theories and the type II theories
additionally have p−forms A,B,C and D in the (R,R) sector. The gauge group of the type I theory is a
consequence of a stack of 32 D9-branes from the open string sector carrying Chan-Paton indices. The
gauge groups of the heterotic theories are a consequence of the 26-dimensional right-handed bosonic
sector being compactified along the 16 dimensions, to match the ten-dimensional left-handed sector,
along a 16d self-dual lattice.

Dp-branes in type II theories are understood [20] to be stable due to a balance between the
attractive gravitational force from coupling to the graviton and the repulsive electromagnetic
force from coupling with the p−form fields in the (R,R) sector. The 32 spacetime filling D9-branes
in type I theory on the other hand are required by the Green-Schwarz anomaly cancellation
mechanism [21] to cancel the non-zero tadpole contribution from the spacetime orientifold planes,
which are non-oriented counterparts of D-branes.

The analysis of the compactification manifold can be done in the context of any of the above-
mentioned string theories, where further constraints come from requiring that compactifying the
extra dimensions results in a 4d theory with the desired properties of observable spacetime. The
geometric properties of the compactification manifold determine how much of the supersymmetry
of the ten-dimensional theory survives in four dimensions. For instance, compactifying along an
n−dimensional torus preserves all of the supersymmetry. A certain class of compact complex
Kähler manifolds known as Calabi-Yau manifolds preserve a quarter of the supersymmetry. For
instance, upon compactifying a heterotic string theory in 10d along a 6d Calabi-Yau manifold,
also known as a Calabi-Yau threefold because of complex dimension 3, one gets a 4d theory with
4 supercharges. Such compactifications are attractive from a phenomenological perspective and
as they give rise to supersymmetric extensions of chiral gauge theories with standard model-like
spectra.

Two perspectives to study spacetime geometry

The quantum theory of maps from a specific worldsheet Σ to the total spacetime X̃ is known as
a non-linear sigma model (NLSM). Note that in a physicist’s parlance the quantum theory of
a map from a worldline to flat 4d Minkowski space is a quantum field theory. For simplicity
one imposes that the total spacetime is a direct product of the observable 4d spacetime and

4



the internal space X, i.e., X̃ =M1,3 ×X. Furthermore, usually one restricts these maps to the
internal space X, whose nature one wishes to probe further. The internal manifold inside the
total spacetime manifold is commonly referred to as the NLSM target space for simplicity. One
can adopt either a worldsheet or a target space approach to studying the NLSM target space
geometry. We emphasise that this is a novel pursuit as these geometries differ fundamentally
from point-like geometries that are the foundation of classical Riemannian geometry. The
geometries that arise in string theory are sometimes called quantum geometries, where the
‘quantum’ alludes to their quantum as well as string-like nature.

The worldsheet perspective calls for a study of families of superconformal field theories (SCFTs)
on the worldsheet. The central charge, which is an inherent property of an SCFT, is fixed
by requiring the cancellation of an anomaly in the Weyl symmetry, which is a subset of the
conformal symmetry. The worldsheet approach places constraints only of the nature of the
SCFT, that this SCFT admits a geometric description need not be required. For instance,
an NLSM mapping into either a geometrically well-defined Calabi-Yau manifold or a non-
Lagrangian non-geometric theory is equally interesting to study from a worldsheet perspective
if they are both equipped with the necessary SCFT characteristics. We mention as an aside
that the N = 2 superconformal algebra in 2d contains an operator which is instrumental in
generating a supersymmetric spacetime spectrum. A supersymmetric spectrum in spacetime
is phenomenologically attractive to those that strive to seek a proof of supersymmetry in the
observable world. To those for whom this is not a sturdy justification for the pursuit of spacetime
supersymmetry in string theory, one might cite radical computational control as the driving
reason for adhering to this setup.

The target space perspective on the other hand involves studying the geometry of the compac-
tification manifold via studying the action of the superstring, known as the Polyakov action,
perturbatively in the NLSM parameter α′ ∼ 1/T . A requirement of the vanishing β−functions
at first order in α′, needed for the superconformal symmetry to be maintained at the quantum
level, imposes definite conditions on the spacetime geometry. If the string length scale ∼

√
α′

is small enough or, alternatively, the spacetime has a large enough volume, then this one-loop
analysis offers a good estimation of the spacetime geometry. The low energy effective action is
obtained by constructing a Lagrangian in 10d (or whatever the consistent spacetime dimension
we are working with is) which reproduces the vanishing β−function equations of motion for
spacetime. One can then study this effective action to learn more about the internal manifold
geometry.

Either approach comes with its merits and drawbacks. The target space approach is powerful
in the large volume regime and captures the non-perturbative effects of D-branes. The worldsheet
approach, while oblivious to D-brane instanton effects, captures the quantum stringy nature
of spacetime as opposed to the target space approach which is typically only accessible in the
supergravity (large volume) approximation.

A specific worldsheet approach: Gauge theories

We will adopt a specific worldsheet approach to studying quantum geometries where instead of
studying worldsheet SCFTs that map to relevant NLSM target spaces, we study supersymmetric
gauge theories which are certain UV limits of these worldsheet SCFTs. These theories were
originally devised in [22] in 2d with 4 supercharges and termed gauged linear sigma models
(GLSMs). In the recent years higher dimensional supersymmetric gauge theories have become
actively researched on as well because of non-trivial connections to NLSM targets spaces.

5



Chapter 1 Introduction

The reason these gauge theories are more accessible as opposed to studying NLSM target
spaces directly has to do with the idea of localisation. Localisation was first conceived in the
context of NLSMs by Witten in [23]. The N = 2 superconformal algebra on the worldsheet of
type II theories can be ‘twisted’, i.e., deformed by taking appropriate linear combinations of the
generators of the algebra, in a way that results in a topological theory and makes calculating the
otherwise untameable path integral possible. This twisting can be done in two ways resulting in
distinct theories known as the A- and B-model. It is commonly said that the observables of the
A-model can be computed by counting holomorphic maps from the worldsheet to the target
space whereas those of the B-model can be computed by integrating over certain differential
forms on the target space. In essence, the A-model reduces all interesting physics captured
in the infinite dimensional path integral to integrals over the moduli space of instantons of
the NLSM and the B-model does so to integrals over the target space. As a side note, mirror
symmetry establishes a duality between these two models by identifying the A-model invariants
of a target space X with the B-model invariants of its mirror X̃. Thus a knowledge of mirror
pairs can help reduce the computationally challenging A-model integrals of one space to the
classical B-model integrals of the other.

The idea behind localisation was then applied also to supersymmetric gauge theories to
calculate the partition functions and certain observables exactly [24]. Despite there not being
an obvious connection to string theory, they have fascinating connections to NLSM target
spaces in string theory that we will discuss in this thesis. Another powerful application of
localisation in quantum field theory is that various duality webs that were conjectured for gauge
theories that flow to the same conformal field theory in the infrared, in the same vein as the
original electric-magnetic duality in 4d [25], were proven by comparing observables made exactly
calculable by localisation. This was a giant step in the direction of classifying all possible
worldsheet theories that give rise to the same spacetime physics. For a comprehensive review on
recent developments in on application of localisation to supersymmetric gauge theories see [26].

In this thesis we explore certain 2d and 3d supersymmetric gauge theories in search of novel
connections to quantum geometries.

In Chapter 2 we will review the technique of localisation to compute certain path integrals
exactly. We will begin in Section 2.1 by demonstrating the main idea behind why and how this
technique works. In Section 2.2, we will review the original work [23,27] for the computation of
the partition function of a non-linear sigma model with a topological twist, i.e., a twist in the
supersymmetry generators on the worldsheet that renders the theory independent of the metric
on the target space. The topological twist on a worldsheet with N = (2, 2) supersymmetry
comes in the form of an A- or a B-twist, which will be individually analysed. In Section 2.3 we
will review the application of localisation to a supersymmetric gauge theories in two and three
dimensional curved spaces with 4 supercharges. We will discuss the form of the supersymmetric
Lagrangian and state the main results for the partition function for the two dimensional case.
We will postpone the localisation results for three dimensions to Chapter 2 where they will be
explicitly employed.

In Chapter 3 we will focus on certain 2d N = (2, 2) gauge theories called gauged linear sigma
models [22]. In Section 3.1 we will explain the importance of these gauge theories for a study
of target spaces relevant for string theory. We will underline that these gauge theories flow
in the infrared to N = (2, 2) superconformal field theories which can made to take the form
of interesting target space geometries. In Section 3.2 we will review the results of applying
localisation to these gauge theories and specifically state the form of the localised path integral
for certain correlators [28, 29]. Sections 3.3 and 3.4 are based on the original work of the
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author [30] which explores various relations among the correlators and their pertinence as
operators governing a moduli-dependent ground state in a Hilbert space interpretation and as
generators of a differential ideal in the ring of correlators. For Calabi-Yau target spaces we will
interpret the relations in a differential representation as the well-known Picard-Fuchs operators.
For a Calabi-Yau threefolds with one Kähler parameter we will give universal expressions for
the Picard-Fuchs operators entirely in terms of correlators, but the interested reader is invited
to look at similar results for two parameter threefolds as well as one parameter fourfolds in [30].
Finally, in Section 3.5 we will give an an elementary overview of some of the mathematics
underlying the A-model of string theory, whose physics is intimately related to most of the
results discussed in this chapter. In particular, we will define moduli spaces of stable maps,
genus zero Gromov-Witten invariants and Givental’s cohomological I-function and review the
explicit connection of the latter to gauged linear sigma model correlators. The derived correlators
relations will then be shown to annihilate the cohomological I-function in the differential operator
representation.

The object of interest in Chapter 4 will be 3d N = 2 gauge theories. Starting with a
Lagrangian description, we will emphasise the appearance of Chern-Simons terms which become
important for later results. On shoulders of several important works on such theories which
will be cited in the chapter, in Section 4.2 we will compute the localised expression for the
partition function of N = 2 theories on a twisted solid torus D2 ×q S1 with a Grassmannian
target space and extract the permutation equivariant I-function of quantum K-theory [31]. The
content of Section 4.3 is based on the original work [32]. We first derive the algebra of Wilson
line operators on the 3d geometry and show that for specific Chern-Simons levels this algebra is
isomorphic to the quantum K-theory ring of Schubert structure sheaves on the target space or
to the Verlinde algebra for unitary groups, which itself is isomorphic to quantum cohomology on
the Grassmannian. We also compute difference equations annihilating the K-theoretic I-function,
which can be understood as a lift of the differential equation annihilating the cohomological
I-function. Finally, at the end of Section 4.3 we take the 2d limits of the partition function,
the I-function and the difference equations obtained from 3d gauge theory techniques and find
agreement with their 2d counterparts.

We conclude with a summary and a perspective on the several outlooks for the direction of
research embarked on in this thesis in Chapter 5. The Appendix A collects standard results on
Grassmannians, including important characteristic classes and generators of quantum cohomology
ring.
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CHAPTER 2

Localisation of Gauge Theories

In the recent years supersymmetric gauge theories have become a powerful probe for quantum
geometries, which is a commonly-used term for distinguishing the geometries arising in string
theory from those that arise in point-particle physics. They have certain advantages over the
original worldsheet approach to studying target spaces which will be highlighted in a later
section. Before delving into the anatomy of these gauge theories, we will summarise the powerful
technique of localisation which was first conceptualised to tame partition functions of non-linear
sigma models by deforming them into topological theories which are simpler by virtue of their
sole dependence on moduli spaces of the target space [23,33]. This idea was then extended to
supersymmetric gauge theories and has made possible an exact calculation of observables in
these theories [24, 27]. The theories of interest to us are a subset of these gauge theories and
ramifications of localisation computations therein form a large part of this thesis.

In Section 2.1 we will sketch the central idea behind localisation and how it enables an
exact computation of infinite dimensional path integrals. In Section 2.2 we will explain the
application of localisation to non-linear sigma models and motivate the topological twisting of
the supersymmetry algebra on the worldsheet, leading to the A- and B-model. The first two
sections follow the work [33] closely. In Section 2.3 we will review the application of localisation
to supersymmetric gauge theories of dimensions two and three with four supercharges [34–39],
which will be the key players of the subsequent chapters.

2.1 The Main Idea

The central idea behind localisation is to capitalise on the symmetry of a theory to reduce the
physical configuration space to be considered for a computation. It dates back to a theorem
of Lefschetz [40] to calculate the number of fixed points, i.e., points which are mapped to
themselves, of a mapping of a space to itself. This foundational fixed point theorem has several
generalisations, most famously the Atiyah-Bott fixed point theorem which proves the integral of
a closed form over a compact manifold to be a certain discrete sum over the fixed points of a
U(1) symmetry of the manifold [41–43].

In physics, localisation becomes a powerful tool to exactly compute path integrals of super-
symmetric theories. This is because under fitting circumstances the supersymmetry generator
can be made globally nilpotent — commonly referred to as a BRST generator1 in this context —

1 This terminology is borrowed from the BRST formalism of quantisation of non-Abelian gauge theories, for a
pedagogical introduction see [4].
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Chapter 2 Localisation of Gauge Theories

and can be utilised to localise a path integral in the following way. Given a theory with a BRST
group G action and a configuration space C of all paths, the physical domain of integration can
be reduced to those paths that are distinct up to all possible G-transformations, i.e.,∫

C

eiSO = vol(G)

∫
C/G

eiSO .

Here S stands for the action of the theory and O for a product of operator insertions. The volume
of G denoted by vol(G) quantifies the number of paths equivalent up to a G-transformation.
For instance, when G = U(1), vol(G) =

∫ 2π
0 dφ = 2π. Note that in the Fadeev-Popov method

of quantum field theory we only consider the symmetry-inequivalent factor by dividing the
total path integral by the volume of the symmetry group. This is so because the symmetry
in question is a gauge symmetry which signals a redundancy in the system, as opposed to the
BRST-symmetry in question for localisation.

Since the generator of a BRST symmetry group G is nilpotent, the infinitesimal variable of G
is given by Grassmann variable θ and,

vol(G) =

∫
dθ(1) = 0 ,

because integration and differentiation work equivalently for Grassmann variables. This implies
that for a theory with a BRST symmetry all path integrals will always identically vanish.
However, if the group G has fixed points in the configuration space, the extraction of volume
factor in the path integral is incorrect as that was done under the assumption that all distinct
paths appear with the same weight given by vol(G). The configuration space C can be split
in to a ‘smooth’ space C′, i.e., one containing no fixed points, and a set of all fixed points. A
path integral over C′ will identically vanish due to the argument above and the residual path
integral will amount to a sum over the set of all the fixed points of G. The set of fixed points
of the symmetry may not necessarily be discrete. The form of the BRST symmetries we will
encounter in the forthcoming sections will have a finite dimensional locus of fixed points in
the configuration space. In other words, the path integral will localise to a finite dimensional
integral and thus become exactly calculable.

2.2 Localisation in Non-Linear Sigma Models

In this section we will describe the theory in which the concept of localisation first found a
physical application, the non linear sigma model [23]. The results reviewed in this section will
not be called upon in the later chapters presenting the original work of the author, and can be
skipped if the reader so wishes.

The core idea behind localisation is that infinite dimensional integrals can be made to localise
on to a locus of finite dimensional integrals if the theory has a BRST symmetry. Recall that a
non-linear sigma model is the space of maps from the worldsheet Σ to the target space,

ϕ : Σ→M1,3 ×X ,

where the target space is assumed to be a direct product of the observable 4d Minkowski space
M1,3 and the internal compactification space X. We would like to focus on restriction of these
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2.2 Localisation in Non-Linear Sigma Models

maps to the internal space X in order to probe this space independently. In the following, target
space will refer to the internal space X and not the total space X̃. Additionally we would like
to assign N = (2, 2) supersymmetry to the worldsheet as our primary focus would be type II
theories. As briefly explained in the introduction, in order to get type II supergravity spectrum
in 10d, one must equip the worldsheet with N = (2, 2) supersymmetry. The action of such an
non-linear sigma model is given by,

SNLSM ∼
1

α′

∫
d2z gµν (∂zφ

µ ∂z̄φ
ν + iψµ− Dzψ

ν
− + iψµ+ Dz̄ψ

ν
+) + · · · . (2.1)

Here the measure d2z = dzdz̄ is given in terms of the so-called ‘light-cone’ coordinates (z, z̄) on
the worldsheet. These coordinates are linear combinations of the canonical coordinates on the
worldsheet (σ, τ), with σ parametrising the position on the string and τ the propagation of this
string in time. The metric on the worldsheet has been gauge fixed to the Minkowski metric ηαβ
using the Weyl symmetry, with which the (z, z̄) indices have been contracted. The target space
metric gµν captures the curvature of the target space. The fields φ are scalars on the worldsheet
and can be understood as the coordinates of the target space and thus are indexed by µ, ν.
The fields ψ+ and ψ− are left- and right-handed fermionic superpartners of the scalars φ on
the worldsheet and vectors on the target space. The operators Dz and Dz̄ are pull-backs of the
partial derivatives acting on elements of the tangent bundle TX of X. The ellipsis · · · in the
action stand for the contributions from other couplings to which the string can be coupled. For
instance, from the (NS,NS) sector these terms would correspond to coupling of the string to the
antisymmetric b−field and the dilaton.

At the outset this appears like a theory with N = (1, 1) supersymmetry on the worldsheet,
however a duplicity in supercharges can be explained by noting that for a complex target space
X, the tangent bundle of X splits as TX = T (1,0)X⊕T (0,1), implying a doubling of supercharges
corresponding to the holomorphic and anti-holomorphic sectors, respectively. The worldsheet
fermions can be projected on to either of these bundles and thus the action (2.1) can be written
as,

SNLSM ∼
1

α′

∫
d2z gµν ∂zφ

µ ∂z̄φ
ν + igīj(ψ

ī
− Dzψ

j
− + ψī+ Dz̄ψ

j
+) + · · · . (2.2)

The idea behind a topological twist is to note that in terms of the canonical bundle 2 K on Σ
and the tangent bundle on X the ψī+ ∈ Γ(K1/2⊗ϕ∗(T (0,1)X)) and ψj+ ∈ Γ(K1/2⊗ϕ∗(T (1,0)X)).
The fermion kinetic term in the Lagrangian is left unchanged with deforming the fermions such
that they are sections of slightly different bundles,

ψī+ Dz̄ ψ
j
+ ∈ Γ(K1/2 ⊗ ϕ∗(T (0,1)X)) ⊗ Γ(K−1) ⊗ Γ(K1/2 ⊗ ϕ∗(T (1,0)X))

def.−−→ Γ(K ⊗ ϕ∗(T (0,1)X)) ⊗ Γ(K−1) ⊗ Γ(ϕ∗(T (1,0)X)) .

This deformation is termed as a ‘+’ twist. One can equally well fashion a ‘−’ twist by taking
ψī+ ∈ Γ(ϕ∗(T (0,1)X)) and ψj+ ∈ Γ(K ⊗ ϕ∗(T (1,0)X)). One can similarly deform the ψ−Dzψ−
term to a ‘+’ and ‘−’ twisted term respectively. By doing such a deformation the Lagrangian
remains changed however the four infinitesimal parameters governing the each supersymmetry
transformation that were previously spinors, i.e., sections of the square-root of the canonical

2 For a complex manifold X with dimC(X) = n, the tangent bundle has the decomposition TX = T (1,0)X ⊕
T (0,1)X into holomorphic and anti-holomorphic parts. The kth exterior power of the cotangent bundle is a
k-form. The canonical bundle consists of (n, 0) forms and the anti-canonical line bundle of (0, n) forms.
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Chapter 2 Localisation of Gauge Theories

bundle, are now split into scalars and sections of inverse-canonical bundles. Heuristically
speaking we have split the product of two spinors into a vector and a scalar.

There are two combinations of the twists which are relevant for the following discussion,
namely the ‘(+,−)’ or the A-twist and ‘(−,−)’ or the B-twist. The first entry of (·, ·) denotes
the sign of the twist on the ψ+ fermion and the second entry denotes the sign of the twist
on ψ− fermion. The other two twists ‘(−,+)’ and ‘(+,+)’ are isomorphic, up to a reversal of
the complex structure of the target space, to the A- and B-twists, respectively. One can also
consider the so-called half twist which, as the name suggests, twists either one of the ψ+ or ψ−
fermions. The half twist is interesting in its own right however we will not study it in this thesis.

We will now discuss the ramifications of the A- and B-twist. Before delving into each of these
individually, let us first discuss their commonalities. In both theories, half the supersymmetry
parameters are scalars and can be set to constant values while the other half which are sections of
the inverse-canonical bundles can be set to zero. By this procedure the existing supersymmetries
are globally defined on the Riemann surface, and hence become BRST symmetries of the theory
which can be deployed to localise the path integrals.

Let the generator of this BRST symmetry be denoted by QA/B for the A- and B-twist,
respectively. The essence of doing the topological twist now becomes evident. The computation
of the path integral, with possible operator insertions, can be simplified by considering the
path integral over the BRST-inequivalent contributions and multiplying it by the volume of
the symmetry group. As discussed before, the computation of the path integral localises to the
fixed point locus of the BRST symmetry.

The fixed point locus differs for the A- and B-model given their distinct BRST symmetry
generators, however for both the A- and B-model the specific choice of supersymmetry parameters
leads to a simplification where the non-linear sigma model Lagrangian can be split into a BRST-
exact term and a model dependent term. That is,

LA(B)
NLSM = {QA(B), VA(B)}+ LA(B) . (2.3)

The fixed point locus over which the path integral is to be computed in each of the model in
addition in to the simplification of the Lagrangian above goes a long way in the exact calculation
of the partition function.

Let us now discuss the specificities of the A- and B-model.

2.2.1 A-Model

Because of the (+,−) twist in the A-model, the worldsheet fermions are now sections of the
following bundles,

ψi+ ∈ Γ(ϕ∗(T (1,0)X)) ; ψī+ ∈ Γ(K ⊗ ϕ∗(T (0,1)X)) (+ in (+,−))

ψī− ∈ Γ(ϕ∗(T (0,1)X)) ; ψi− ∈ Γ(K ⊗ ϕ∗(T (1,0)X)) (− in (+,−)) .

The infinitesimal parameters accompanying ψi+ and ψī− in the supersymmetry transformation

laws are thus scalars and those accompanying ψī+ and ψi− are sections of the inverses of canonical
and anti-canonical bundles, i.e., objects of the form az and az̄, respectively. As discussed
previously, the former can be set to constant values whereas the latter to zero. The existing
scalars parameterise a BRST symmetry whose generator we denote as QA. The fixed points of
this symmetry can be found by looking at the transformation laws of all the fields and setting
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2.2 Localisation in Non-Linear Sigma Models

them to zero. In this case they happen to lie along the locus of holomorphic curves from Σ to
X, i.e.,

∂z̄φ
i = 0 ; ∂zφ

ī = 0 , (2.4)

to which the previously infinite dimensional measure of the partition function localises. Recall
that the φ’s are coordinates of the target space and hence constraints on them imply constraints
on the maps from the worldsheet to the target space.

Also the action (2.2) can be rewritten for the A-model as,

SA
NLSM ∼

1

α′

∫
d2z ({QA, VA}+ ϕ∗K) . (2.5)

Here VA = igīj

(
ψī+∂z̄φ

j + ∂zφ
īψj−

)
and ϕ∗K is the pullback of the Kähler form K on the target

space, K = −igij̄ dzi ∧ dzj̄ . We have simplified the Lagrangian to a sum of a term dependent
only on the Kähler form and a term that is BRST-exact.

2.2.2 B-Model

The (−,−) twist of the B-model leads the worldsheet fermions to be the sections of the following
bundles,

ψi+ ∈ Γ(K ⊗ ϕ∗(T (1,0)X)) ; ψī+ ∈ Γ(ϕ∗(T (0,1)X)) ( First ‘− ’ in (−,−))

ψī− ∈ Γ(ϕ∗(T (0,1)X)) ; ψi− ∈ Γ(K ⊗ ϕ∗(T (1,0)X)) ( Second ‘− ’ in (−,−)) .

In this case the infinitesimal parameters accompanying ψī+ and ψī− in the supersymmetry
transformation laws are scalars and those accompanying ψi+ and ψi− are sections of the inverses
of canonical and anti-canonical bundles. Similar to the case of the A-model, the scalar parameters
can be set to constant values whereas the parameters which are sections of inverse anti-canonical
bundles can be set to zero. The surviving supersymmetry becomes a globally defined BRST
symmetry of theory and whose generator we term QB. The fixed points of this symmetry are
found to lie along constant maps from the worldsheet Σ to the target space X, i.e.,

dφi = 0 . (2.6)

The B-model action also simplifies to the form,

SB
NLSM ∼

1

α′

∫
d2z ({QB, VB}+W ) , (2.7)

as predicted in (2.3). Here VB = igij̄

(
ψi+∂z̄φ

j̄ + ∂zφ
j̄ψi−

)
and W is a term that depends only

on the complex structure of the target space.

Computing the path integral with the (2.5) and (2.7) for the A and B-model, we note that the
Q-exact term can be evaluated in the limit where 1/α′ is very large and the only contribution to
the integral are from the saddle points of the {Q, V } term. This is akin to taking the classical
limit ~→ 0 in quantum mechanics and requiring that the Euler-Lagrange equations of motion be
exactly satisfied, as opposed to taking the path integral over all configurations in the quantum
case. For both A- and B-models, the saddle points of the Q-exact terms coincide with the fixed
point loci of the symmetry transformation, as one can quickly check by requiring VA(B) to vanish.
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Chapter 2 Localisation of Gauge Theories

Thus the saddle points of the action in the large volume (or small α′) limit match the localised
configuration space due to the fixed point contributions. This may, however, not always be the
case. As we will soon encounter in the case of supersymmetric localisation, the BRST-exact
terms’ saddle points can be made to further restrict the configuration space to aid the exact
evaluation of the partition function. In principle, an addition of Q-exact terms to the action
should not alter the value of the partition function, or any other Q-closed observable for that
matter. We will underline that various ways of restricting the configuration space lead to the
same result upon integration.

Finally, a brief explanation of the terminology ‘topological’-twist for the above methodology
of simplifying the non-linear sigma model in two ways is to note that for the A-model the final
result after integration over the localised configuration space depends only the Kähler structure
of the target space whereas for the B-model the result depends only on the complex structure of
the target space X. Neither of these models depend on the complex structure of the worldsheet
Σ or the precise metric gµν on X. The topologically twisted models have the advantage of
certain observables, that are related to untwisted physical model, being exactly computable.
Additionally mirror symmetry postulates that A-model on X is equivalent to B-model on the
mirror X̃. This connection can be deployed to compute the complicated instanton sums of
the A-theory by instead doing the simpler ‘classical’ computation in the B-theory in the large
volume limit on the mirror manifold.

2.3 Localisation in Supersymmetric Gauge Theories

In the previous section we reviewed localisation in the context of non-linear sigma models to
calculate partition functions and certain observables exactly. This was indeed the subject where
idea behind localisation, which dates back to the Lefschetz and Atiyah-Bott fixed point theorems
of topology, found its first application in physics. For non-linear sigma models the topological
twist served the purpose of constructing a globally defined BRST symmetry, the fixed points
of which the configuration space localised to. The twist of the superconformal algebra of the
worldsheet was necessary because the infinitesimal supersymmetry parameters are do not have
global sections for a general Riemann surface of genus g.

In [24] localisation found an application in computing path integrals of supersymmetric
Yang-Mills theories on S4. Applying supersymmetric localisation to gauge theories on curved
spaces without the aid of a topological twist, to maintain the physicality of the theory, is not
without complications. In contrast to supersymmetry on flat space, where the infinitesimal
supersymmetry parameters are covariantly constant spinors, defining sections of the inverse of
square root canonical bundle must be handled with care on curved spaces. The early works on
application of localisation to the realm of gauge theories dealt with theories that also exhibited
superconformal symmetry [24,36]. This was done by considering the action of the generators
of the superconformal algebra on the fields in the theory with the parameters being required
to specify conformal Killing equations. The work in [44] developed a general methodology to
put supersymmetry on curved spaces focussing on 4d manifolds with four supercharges. The
general idea therein is to couple the corresponding supersymmetric theory in flat space to the
supergravity multiplet, which consists of the graviton, gravitino and two auxiliary fields, and
fix the metric to that of the desired curved space. Following that the supersymmetry can be
made ‘rigid’, i.e., decoupled to the fluctuations of the gravitational field, by taking the Planck
mass to infinity. It must be highlighted that developing techniques to equip curved spaces
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2.3 Localisation in Supersymmetric Gauge Theories

with supersymmetry is an indispensable task in the localisation project as infinite dimensional
integrals such as the partition function are subject to an infra-red cutoff on compact spaces.
This infrared cutoff along with the aid of a BRST symmetry makes such infinite dimensional
integrals exactly calculable. For a detailed review of the localisation project in supersymmetric
gauge theories of various dimensions see [26].

The ability to compute partition functions and special observables exactly using localisation
trickled soon after to supersymmetric gauge theories in lower dimensions. In [38], the results
of localisation of superconformal Chern-Simons theories on S3 with four supercharges was
extended to theories without conformal symmetry. In [34] and [35], these results were extended
to N = (2, 2) supersymmetric gauge theories on S2.

Localisation results are also applicable to manifolds with boundaries as was done in [45] for
N = 2 gauge theories on D2 × S1 and in [46, 47] for N = (2, 2) gauge theories on D2. While
boundary theories have the additional complexity from the choice of boundary conditions for
various fields, most simply Dirichlet or Neumann boundary conditions and higher dimensional lifts
thereof, for the theories stated above the D2 provides a flat space on which to define a covariantly
constant spinor thus eliminating the need of aforementioned curved space manipulations to
consistently define supersymmetry.

An exact calculation of certain observables serves many useful purposes in gauge theory.
They are playgrounds for worldsheet theories of non-linear sigma models, as we will delve
into in later sections, thus providing a channel to study relevant string theoretic target space
geometries. They provide tools to perform checks of Seiberg-like dualities [25,48,49] in various
dimensions by comparing partition functions on conjectured dual theories. They have highly
non-trivial connections with mathematical concepts such as quantum cohomology, quantum
K-theory and elliptic cohomology to name a few. These reasons, amongst many others, provide
a strong motivation to closely study supersymmetric gauge theories in the context of localisation
techniques.

2.3.1 2d

In this subsection we will first review the specific gauge theories in 2d that will be our focus in
the forthcoming sections. These are known as gauged linear sigma models (GLSMs) and are a
product of the work of Witten [22] which established a relation between these gauge theories and
non-linear sigma models. We will first describe the spectrum and Lagrangian of these theories
and their connection to worldsheet theories, we will discuss localisation of these gauge theories
to compute the partition function and discuss its significance.

Field Content and Lagrangian
We will start by considering an N = (2, 2) gauge theory on a flat 2d space with the Euclidean
metric. Since this theory has four supercharges, it can be obtained by starting with a 4d N = 1
gauge theory and compactifying two dimensions. For a pedagogical introduction to N = 1
gauge theories in 4d see [5, 12]. The superfields of the 2d theory are chiral and vector multiplets
obtained from the dimensional reduction of N = 1 4d chiral and vector multiplets, respectively.

The differential operators generating the supersymmetry algebra, Q± and Q± , can be used
to the construct the usual operators D± and D± which define the chiral field as a superfield
that obeys D±Φ = 0. The chiral superfield consists of a complex scalar φ, fermions ψ+ and ψ−
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of opposite chirality, and an auxiliary scalar F . In superfield notation,

Φ(y±, θ, θ̄) = φ(y±) + θαψα(y±) + θ+θ−F (y±) ,

where the the argument y± is a linear combination spacetime coordinate in the lightcone basis
x± and Grassmann coordinates θ± of the form y± = x± − iθ±θ̄±. In a generic situation the
chiral field is in a reducible representation R of the gauge group G of the theory.

The vector multiplet V is characterised by the reality condition, V = V †, and the fact that
it is in the adjoint representation of G. We will always work in Wess-Zumino gauge where V
consists of a vector vµ, a complex scalar σ, 2-component fermions λ and λ̄ which contain left
and rigt handed components, and the auxiliary scalar field D.

In addition to the chiral and vector superfield there exists a twisted chiral field Σ in 2d which
satisfies the condition D+Σ = D−Σ = 0. The field strength superfield of the vector multiplet V
is a twisted chiral superfield, i.e., 1

2{D+,D−} =: Σ. Thus supersymmetric gauge theory in 2d is
hinged on the dynamics of chiral and twisted chiral superfields. This terminology is analogous
to chiral and twisted-chiral primaries in N = (2, 2) superconformal algebra3.

The Lagrangian of the gauged linear sigma model gets contribution from the kinetic term of
the chiral supermultiplet with the vector multiplet V in the exponent being given by V = VaT

a
R

where T aR are the generators of G in the representation R defined by the chiral multiplet,

Lchiral =

∫
d2xd4θ

(
ΦeV Φ

)
, (2.8)

the kinetic term of the vector supermultiplet,

Lvector =
1

g2
s

∫
d2xd4θ tradj.

(
ΣΣ
)
, (2.9)

where gs is the gauge coupling and Σ = ΣaT
a with Ta’s being the generators of G in the adjoint

representation, and the superpotential,

LW =

∫
d2xdθ+dθ− W (Φ)|θ̄±=0 + h.c. , (2.10)

which is a gauge invariant holomorphic function of the chiral fields Φ. The chiral multiplet
can be assigned twisted masses m by the shift of the twisted chiral scalar σ → σ + m. The
relevance of the twisted masses, which are essentially expectation values of the complex scalar
σF corresponding to a background flavour symmetry F of the theory, will be explored further in
Chapter 3. In addition to these terms if the the gauge group G is such that U(1)` ⊂ G, then
corresponding to each U(1)s factor there exists a Fayet-Iliopolous(FI) term for ξs ∈ R,

LFI = −iξs
∫
d2xd4θ trs(V ) = −iξs

∫
d2x trs(D) , (2.11)

and a topological ϑ-term,

Ltop. = −i ϑs
2π

∫
d2x trs(F01) , (2.12)

where ϑ is a parameter periodic in 2π and F01 = ∂0v1− ∂1v0 is the scalar component of the field

3 For a pedagogical introduction of the N = (2, 2) superconformal algebra see [11].
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strength tensor. The trs(. . .) in the Fayet-Iliopolous and ϑ-term is to be taken so as to pick up
the component of the adjoint valued field (V,D or F01) corresponding to the U(1)s factor in
question. In fact, these terms can be neatly grouped together using the twisted chiral superfield
because of the property,

∫
d2xdθ+dθ̄− trΣ ∼

∫
d2x tr(D − iF01) , in the following way,

LFI+top. = iτs

∫
d2xdθ+dθ̄−Σs + h.c. , (2.13)

with the complexified Fayet-Iliopolous parameter τs = iξs + ϑs
2π . Thus in total there will be `

such complexified Fayet-Iliopolous terms for U(1)` ⊂ G. The Σs denotes a trace that picks
up the sth U(1) factor in Σ, i.e., for Σ = ΣαT

α where Tα are generators of G in the adjoint
representation, this trace will retain only those Σα’s corresponding to U(1)α ⊂ G. Equation

(2.13) is a special form of twisted chiral superpotential term W̃ (Σ), which is a term akin
to superpotential for chiral fields. The parameter ξ is classically marginal parameter which
renormalised due to 1-loop corrections to the D-field.

The theory also has a U(1)R symmetry. An R-symmetry is an outer automorphism of the
supersymmetry algebra which commutes with the gauge symmetry generators. The left and right
moving R-symmetries of the theory can be combined into vector and axial R-symmetries. We
will return to the topic of R-symmetries and renormalisation of the Fayet-Iliopolous parameter
in Chapter 3.

Localisation of Partition Function
We now review the application of supersymmetric localisation to gauged linear sigma models as
was performed in [34] and [35]. The Lagrangian we have looked at so far has lived on the flat
R2, however for the purpose of localisation this theory must be placed on a compact space. The
2d compact Riemann surface of choice will be the two-sphere S2 for the remaining treatment.

For employing localisation without needing to topologically twist the theory requires a subset of
spinors ε (where the chirality and holomorphicity indices have been supressed), that parameterise
infinitesimal transformations under the supersymmetry generators Q to be globally defined. As
explained in the previous section, a globally defined fermionic generator serves to define a BRST
symmetry of the theory. With the BRST symmetry at hand the path integral localises to the
fixed points of this theory. In order to do so one starts with the superconformal algebra of an
N = (2, 2) theory on S2 with spinors ε satisfying the most general conformal Killing spinor
equations. Then precisely those solutions to these equations that preserve all but the conformal
symmetry are considered. The Lagrangian must also be consistently deformed to be defined on
the curved space. This can be done by using the techniques of [44] as summarised previously.
These steps suffice in constructing a supersymmetric gauge theory on a curved space. Under a
specific choice of supercharge Q, the fixed point equations schematically read,

δQ(fermions) = 0 . (2.14)

We only consider transformations of fermionic fields as it is these equations that assign expectation
values to scalars of theory, thus maintaining Lorentz invariance.

Furthermore, we are free to deform the theory with Q-exact terms as they are irrelevant for all
path integral integral computations. This can be made evident by noting that for a deformation
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Chapter 2 Localisation of Gauge Theories

term t{Q, V }, tuned by the parameter t, deforms the partition function Z as,

Zdef.(t) =

∫
[Dφ][Dψ] eS+t{Q,V } . (2.15)

Differentiating with t and using that the action is Q-closed we conclude,

dZdef.(t)

dt
=

∫
[Dφ][Dψ] {Q, V } eS+t{Q,V } =

∫
[Dφ][Dψ] {Q, V eS+t{Q,V }} = 0 , (2.16)

i.e., the partition function is insensitive to fluctuations in t. This implies,

Z = Zdef.(0) = Zdef.(∞) ,

i.e., we are free to take the limit t → ∞ to compute the original partition function Z. In
this limit the partition function further localises to the saddle points of the deformation term
{Q, V }, which in the non-generic case will not exactly coincide with the fixed points of the
BRST symmetry and thus prove to simplify the calculation further. This tool will be deployed
in the computation of the partition function.

Specifically the Q-exact deformation that is the most useful for this computation is,

{Q, V } = Lchiral + Lvector , (2.17)

which is only possible because the vector and chiral multiplet contributions to the Lagrangian
happen to already be Q-exact under the choice of supercharge.

The fixed point equation (2.14) yields a system of equations that interpolates between BPS4

vortex and anti-vortex solutions at the north and nouth pole of the S2, respectively. With
the appropriate choice of deformation terms (2.17) the vortex and anti-vortex solutions are
rendered non-supersymmetric, i.e., not on the saddle points of the deformation term. This
leads to the localisation of the path integral onto the so-called Coulomb Branch locus. With a
different choice of the deformation term it is also possible to selectively take only the vortex
and anti-vortex solutions into account and yield a different formula for the partition function.
This representation of the localised path integral is known as Higgs Branch localisation. The
Coulomb and Higgs branch loci must not be confused with the Higgs and Coulomb branch
vacua of the supersymmetric gauge theory, although this nomenclature is motivated from the
supersymmetric vacua picture. Heuristically this can be explained by noting that the specific
scalar fields, corresponding to the vector and chiral multiplet, that acquire expectation values in
each of the two loci. Since ultimately adding the distinct deformation terms dies not physically
alter the theory, the values of the localised partition function along each of the two loci should,
and does, match.

To summarise, the two consecutive steps for localising the infinite dimensional partition
function are:

• Choice of the supercharge Q that becomes the BRST generator whose fixed points the
path integral localises to ;

• Choice of the Q-exact deformation {Q, V } to the action, the saddle points of which
(possibly) further localise the path integral.

4 BPS states in a supersymmetric theory refer to the states that satisfy the BPS bound and consequently preserve
a fraction of the bulk supersymmetry. For an exposition, see [5].
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2.3 Localisation in Supersymmetric Gauge Theories

In effect the total partition function reduces to an integration over the intersection of the
fixed point and saddle point locus with the integrand being a product of the classical value
of the original integrand at this locus, termed Zcl, and a measure factor from the quadratic
fluctuations around this locus commonly known as the one-loop determinant Z1-loop. For an
N = (2, 2) gauge theory with R-symmetry and gauge group G defined on a S2 localised to the
the Coulomb branch locus discussed previously, this partition function is given by,

ZS2(~k, τ) =
1

|WG|
∑
~k∈γm

∫ rk(G)∏
a=1

dσa
2πi

Zcl(σ,~k, τ) Z1-loop(σ,~k) , (2.18)

where |WG| is the order of the Weyl group of G, σa correspond to rk(G) scalars of the vector
multiplet which is now in the adjoint representation of U(1)rk(G) ⊂ G, i.e., the maximal torus
that G breaks down to on the Coulomb branch. This phenomenon of the gauge group breaking
down to its Cartan group will be discussed in detail in Chapter 3. The γm ' Zrk(G) ⊂ h is the
magnetic charge lattice of G with h denoting the Cartan subalgebra of G. The classical and
1-loop factors inside the partition function are explicitly given by,

Zcl(σ,~k, τ) = e−4πi〈ξ,tr(σ)〉−i〈ϑ,~k〉 ,

Z1-loop(σ,~k) = Zchiral(σ,~k) · Zvector(σ,~k) ,
(2.19)

where Zchiral and Zvector are the contributions by the chiral and vector multiplet Lagrangians to
the 1-loop determinant given by,

Zchiral(σ,~k) =
∏

ρi∈Irrep(ρ)

∏
β∈w(ρj)

Γ
(
qj
2 − i 〈β, σ〉 −

1
2 〈β,~k〉

)
Γ
(

1− qj
2 + i 〈β, σ〉 − 1

2 〈β,~k〉
) ,

Zvector(σ,~k) =
∏
α>0

(
〈α,~k〉

2

4
+ 〈α, σ〉2

)
.

(2.20)

Here the finite product in Zchiral runs over the set of weights w(ρ) of all the available irreducible
representations Irrep(ρ) of the gauge group G present in the chiral matter spectrum. The qj are
the R-charge assignments of the chiral multiplet containing the irreducible representation ρj .
The inner product 〈·, ·〉 follows from the canonical pairing of the elements in the Lie algebra g
and its dual g∗ of G. The finite product in Zvector runs over the set of positive roots α of the
gauge group G.

One application of the formula (2.18) for the partition function along the Coulomb branch
locus is that it can be used to verify conjectured dual gauged linear sigma models, for instance
Seiberg-like dual theories [48,49], by comparing their partition functions. This was done dual
gauge theories with unitary gauge groups in [34]. We will return to other applications of the
localisation technique on these gauge theories in the next chapter where we will in particular
focus on computing certain correlators exactly its consequences.

2.3.2 3d

The focus of this subsection is to summarise the application of localisation to supersymmetric
gauge theories on 3d manifolds. As with the case of the 2d theories, we will postpone the
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Chapter 2 Localisation of Gauge Theories

discussion of the relevance of these gauge theories from a string theory point of a view for later,
see Chapter 4. Although it must be stated that 3d gauge theories are interesting in their own
right due to new phenomena such as the appearance of Chern-Simons terms and connection to
knot theory [50].

Field Content and Lagrangian
In the presence of a gauge symmetry there is a new term in the Lagrangian on a 3d manifold M
known as the Chern-Simons(CS) term which adds interesting structure to the theory. For a
non-supersymmetric theory with a gauge group G and its vector potential A, the CS term in
the Lagrangian takes the form,

LCS =
k

4π

∫
M

tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
, (2.21)

where the constant k is known as the Chern-Simons level of the theory. While the term
Lagrangian (2.21) is classically gauge invariant, upon quantisation gauge covariance is only
maintained for the quantisation condition k ∈ Z. This is because the third homotopy group π3(G)
is non-trivial for a compact Lie group G leading to disconnected components corresponding to
non-zero winding numbers. For a non-zero winding number the Lagrangian shifts by constant
multiple of 2πk which preserves the action S ∼ eiL for k ∈ Z.

The superfield content of 3d N = 2 theories can be obtained, as in case of 2d N = (2, 2)
theories, by dimensional reduction from 4d N = 1 theories since these are all theories with four
supercharges [51, 52]. It consists of chiral multiplet Φ and vector multiplet V and as in case of
4d and 2d, the outer automorphism group of the supersymmetry algebra is U(1)R symmetry. In
addition one can define a ‘linear’ multiplet Σ whose lowest component is is the real scalar in the
vector multiplet corresponding to the component of the 4d vector multiplet gauge potential in

the extra direction. This is achieved by defining Σ := εαβDαDβV , such that D2Σ = D
2
Σ = 0,

where D is usual differential operator on superspace. The matter and vector Lagrangian takes
the form,

Lchiral+vector =

∫
d3xd4θ

(
ΦeV Φ +

1

g2
s

tradj.(Σ
2)

)
. (2.22)

Here in the first term the vector multiplet V in the exponent is given by V = VaT
a
R where T aR

are the generators of G in the representation R defined by the chiral multiplet. In the second
term gs is the gauge coupling and Σ = ΣaT

a with Ta’s being the generators of G in the adjoint
representation. There is also a superpotential contribution to the Lagrangian as in 4d and 2d,

LW =

∫
d3xd2θ W (Φ) + h.c. , (2.23)

and Fayet-Iliopolous term ζ for each U(1) factor in the gauge group G,

LFI = iζ

∫
d3xd4θ tr(V ) . (2.24)

The supersymmetric Chern-Simons term for G = U(1)r takes the form,

LCS = κij

∫
d3xd4θ tr (ΣiVj) , (2.25)
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2.3 Localisation in Supersymmetric Gauge Theories

where κij is the Chern-Simons level. The indices i, j could either label the dynamical gauge fields
or the background gauge fields corresponding to the flavour symmetries of the theory which
include the R-symmetry. We also postpone the discussion of the non-Abelian Chern-Simons
levels, the quantisation of Chern-Simons level in order to preserve gauge invariance, and the
corrections to them by heavy fermions running a loop and the subsequent parity anomaly to
Chapter 4.

Localisation
Historically the first implementation of localisation to a gauge theory in 4d [24] was followed by
tackling superconformal Chern-Simons matter theories on S3 with N = 2 supersymmetry [36].
The authors of [36] computed the partition function and the expectation value of certain Wilson
loop operators exactly. The work of [38,39] extended this result to the case of supersymmetric
gauge theory without conformal symmetry using the techniques of [44] of equipping curved
spaces with Killing spinors and adding appropriate O(r−1) terms to the the Lagrangian, where
r is the radius of the S3. The supercharge chosen to be the BRST generator Q for localisation
in these studies was such that the matter and vector multiplet Lagrangians were found to be
Q-exact as in the case of 2d, as we saw in the previous section. This implies that the partition
function or other indices have no dependence on the gauge coupling gs. The Chern-Simons and
the Fayet-Iliopolous terms have non-zero values at the saddle points of the chosen supercharge
and thus the resultant partition function depends on the corresponding parameters, i.e., the
Chern-Simons level and the Fayet-Iliopolous parameter. The finite dimensional integral is over
the Cartan subalgebra of the total group algebra g as for the 2d case.

In [45] localisation was employed to compute a certain index to count the BPS operators of
superconformal Chern-Simons matter theories on S1 × S2, which could be employed to test
the AdS4/CFT3 duality amongst other things. It was conjectured in [53] that the partition of
functions of 3d N = 2 CS theories on the the squashed sphere S3

b and S1×S2 decomposes into a
product of ‘holomorphic blocks’ which are partition functions of N = 2 CS theories on S1 ×D2,
i.e., the solid torus. This was one the motivations to compute the partition function on the
S1×D2 using localisation techniques in [54] so as to find agreement with the holomorphic block
conjecture. Actually both in [53] and [54], certain general twisted products of the geometries
were considered where the S2(or D2) is fibered over the S1 with a holonomy log(q). We will
expand on the relevance of this twisting parameter in Chapter 4.

Since the method to localise 3d theories to compute the partition function exactly does not
vary greatly compared to the method in 2d outlined before, besides the inclusion of CS terms
which have a similar form as the Fayet-Iliopolous terms, we will not review it here again. We
will come back to the results of [54] and utilise them to derive non-trivial connections to certain
target space geometries. The broad connection of 2d and 3d supersymmetric theories to quantum
stringy geometries will also be addressed in detail in the forthcoming chapters.
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CHAPTER 3

2d Gauge Theories and Relations of Correlators

The N = (2, 2) gauge theories in 2d that will be the focus of this chapter are known as Gauged
Linear Sigma Models (GLSMs) [22]. In Section 2.3 of Chapter 2 we reviewed the field content
and Lagrangian of such theories. In this chapter we begin in Section 3.1 by explaining their
raison d’être, in particular how these theories are connected to non-linear sigma models (NLSMs)
in string theory. This will shed some light on their pertinence as tools to probe quantum
geometries relevant for string theory. In Section 3.2 we review the application of localisation
techniques summarised in Chapter 2 to compute certain correlators of GLSMs exactly [28,29].
This equips us to deal with the central content of the author’s work [30] in Sections 3.3 and 3.4
where the previously highlighted results are utilised to compute universal relations between the
correlators and extract therefrom certain characteristic differential operators corresponding to
target spaces of the associated NLSMs. In Section 3.5 we review the explicit relation between
the correlators and Givental’s cohomology-valued I-function on the target space and employ it
to interpret the relations of correlators as differential operators annihilating the I-function.

3.1 GLSM to NLSM

A gauged linear sigma model is a 2d supersymmetric theory whose spectrum is symmetric w.r.t
a gauge group G which is generically a product of U(1) factors and semi-simple gauge groups
Hj modulo a discrete normal group Γ, i.e.,

G =
(
U(1)` ×H1 × . . .×Hm

)
/ Γ . (3.1)

The spectrum consists of chiral mutiplets Φi in a representation Ri of G with i = 1, . . . , N ,
a vector multiplet V in the adjoint representation of G. In addition, the theory is equipped
with an R-symmetry of the supersymmetry algebra. The Lagrangian of this theory consists
of a kinetic term of the chiral matter fields, a kinetic term of the vector superfield which can
be expressed entirely in term of a twisted chiral multiplet Σ, a term for the superpotential W
which is a holomorphic function of the chiral fields and a complexified Fayet-Iliopolous (FI)
term composed of a real term and a topological ϑ term. The Lagrangian density, which we
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Chapter 3 2d Gauge Theories and Relations of Correlators

consistently refer to as the Lagrangian in what follows, is explicitly given by,

L = L(matter kin.+gauge kin.) + LW + LFI,ϑ

=

(∫
d4θ

(
N∑
i=1

Φie
V Φi +

1

g2
s

tradj.(ΣΣ)

))
+

(∫
dθ+dθ−W (Φ)|θ̄±=0 + h.c.

)

+
∑̀
i=1

(
iτi

∫
dθ+dθ̄−(Σi)|θ−=θ̄+=0 + h.c.

)
.

(3.2)

In first term, which is the kinetic term for the matter multiplet, the vector multiplet V in the
exponent is given by V = VaT

a
R where T aR are the generators of G in the representation R defined

by the chiral multiplet. The parameter gs is the gauge coupling constant. The Σi denotes a
trace that picks up the ith U(1) factor in Σ, i.e., for Σ = ΣaT

a where T a are generators of G in
the adjoint representation, this trace will retain only those Σa’s corresponding to U(1)a ⊂ G.
The τi is the complexified Fayet-Iliopolous parameter, s.t., τi = iξi + ϑi

2π corresponding to the
ith U(1) factor. The last term corresponding to the complexified Fayet-Iliopolous coupling is

a special case of the so-called twisted chiral superpotential W̃ (Σ) term. As is evident, for the
classical Lagrangian we need only consider a linear dependence on thew twisted chiral field Σ of
the twisted superpotential. However we will observe that quantum correction to the classical
theory induces a more interesting dependence on Σ.

3.1.1 Infrared Dynamics of GLSMs

We will now discuss three major aspects of gauged linear sigma models that will interest us,
the anomalous R-symmetry, quantum corrections to the classical Lagrangian and finally the
infrared dynamics of the theory which will highlight their connection to non-linear sigma model
target spaces.

R-symmetry
The supersymmetry algebra has an outer automorphism group action under which the Grassmann
variables θ+, θ−, θ̄+ and θ̄− of the algebra transform non-trivially but the Lagrangian is invariant.
This group action corresponds to a symmetry which is global but doesn’t commute with
supersymmetry transformations, which is unlike generic flavour symmetries in a supersymmetric
theory. It is of course also possible to construct supersymmetric theories without an R-symmetry
but for the gauge theories in question we require the existence of an R-symmetry for the reason
that we wish these theories to flow to N = (2, 2) superconformal field theories (SCFTs) in the
infrared which necessarily have an R-symmetry generator in their algebra. This point will be
fleshed out in the discussion on infrared dynamics.

Gauged linear sigma models can be constructed by dimensional reduction of N = 1 supersym-
metric theory in 4d which has a U(1) R-symmetry. For a 2d N = (2, 2) theory where the left-
and right-handed supercharges are independent this becomes a U(1)L ×U(1)R symmetry corres-
ponding to the left- and right-handed supercharge transformations, respectively. In particular
the following U(1)L ×U(1)R charges can be assigned to the Grassmann variables,

ρ(θ+, θ−, θ̄+, θ̄−) := ((0, 1), (1, 0), (0,−1), (−1, 0)) , (3.3)

where the left and right arguments of (·, ·) corresponds to the U(1)L and the U(1)R charge,
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3.1 GLSM to NLSM

respectively. Various components of a supermultiplet thus have R-charges so as to preserve the
R-charge neutrality of the supermultiplet as a whole and that of the Lagrangian.

Quantisation of a supersymmetric theory renders the left- and right-handed R-symmetries
anomalous. Their respective anomalies A, for the gauge group defined in (3.1), are such that [28],

AL = −AR ∼
N∑
i=1

TrRiF01 ∼
N∑
i=1

rk(G)∑
j=1

ρij , (3.4)

where F01 is the adjoint-valued field strength tensor, ρij is the charge of the ith matter field, of

which there are N , under the jth factor of the maximal torus of the gauge group G given by
U(1)rk(G). The charge assignments of the chiral fields under the maximal torus can be given by
considering the weights of the occurring irreducible representations. Each independent weight
represents the charge under a U(1) ⊂ U(1)rk(G) and the components of the weight representing
the charges under the now-Abelianised chiral fields resulting from each irreducible representation.
The charge assignment of the matter fields under the Abelianised gauge group will become
more clear in Section 3.2, specifically the Table 3.2 summarises the spectrum of the Abelianised
theory.

We can instead consider linear combinations, JV := JL + JR and JA := JL − JR, of the left
and right R-symmetry generators JL and JR. They are also known as the vector and axial
R-symmetry generators, respectively. From the relation (3.4) it can be concluded that the vector
R-symmetry group U(1)V is non-anomalous while the anomaly resides in axial R-symmetry
group U(1)A. To impose anomaly cancellation the condition,

N∑
i=1

rk(G)∑
j=1

ρij = 0 , (3.5)

on the gauge charges of the N matter fields must be ensured. We will later note that this is
the criterion for conformal invariance in the infrared and thus the condition for obtaining a
Calabi-Yau target manifold as the target space.

Additionally, it is evident from (3.2) and the R-charge assignments of the Grassmann variables
that the superpotential must have a charge 2 under the U(1)V symmetry to ensure R-invariance
of the Lagrangian. We will return to this requirement in the discussion of the infrared dynamics.

Quantum Corrections and the Discriminant Locus
An essential advantage of any supersymmetric theory is the accompanying non-renormalisation
theorems that protect certain quantities, for instance the superpotential, from getting renormal-
ised [55,56]. The N = (2, 2) gauged linear sigma models of interest to us are super-renormalisable,
i.e., all potentially renormalisable quantities only get renormalised up to finite loop order. Spe-
cifically, the only term to receive a quantum correction that exhibits a divergence is the real
Fayet-Iliopolous parameter ξ. This correction is only to 1-loop order, with all higher correc-
tion vanishing, which will be our focus as it will encode important information about the
supersymmetric vacua of the theory.

The 1-loop correction to the real Fayet-Iliopolous parameter ξi comes from the expectation
value of the D-field which it multiplies to in the action. For the gauge group defined in (3.1),
there will be ` Fayet-Iliopolous parameters ξi of the theory. Since the D-field is an auxiliary
field of the theory required for the supersymmetry algebra to also be closed off-shell, it can
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be solved for by the Euler-Lagrange equations of motion. In order to do that let’s underline
those terms in the Lagrangian (3.2), after integrating over all the Grassmann variables, that are
dependent on the D-field,

L ⊃ 1

2g2
s

DaDa +Da

N∑
i=1

φ̄iT
a
i φi −

∑̀
j=1

ξjDj , (3.6)

where N are the total number of chiral fields and ` are number of U(1) factors in G. Recall
that like all other fields in the vector multiplet, the D-field is adjoint valued, i.e., Dij = T aijDa,
where i, j = 1, . . . ,dim(G) and T aij are the generators of G in the adjoint representation labelled
by index a = 1, . . .dim(G) which are normalised with respect to the usual Cartan-Killing form.
In the second term the generators T ai are in the representation defined by the chiral field φi. In
the last term, the Di denotes a trace that picks up the ith U(1) factor from Dij = T aijDa, i.e.,
the coefficients of the U(1) generator.

Hence, in effect, there are two independent subsets of the Lagrangian to be extremised, those
that stem from U(1) factors (LD1) in G versus those that stem from semi-simple subgroups
(LD2) in G. They are given by,

LD1 =
∑̀
j=1

(
1

2g2
s

DjDj +Dj

N∑
i=1

ρij φ̄iφi − ξjDj

)
,

LD2 =

m∑
k=1

dim(Hk)∑
α=1

(
1

2g2
s

Dk
αD

k
α +Dk

α

N∑
i=1

φ̄iT
α
k,iφi

) ,

(3.7)

where recall from (3.1) that Hk ⊂ G is one semi-simple group in G and there are a total of m of
them. Here ρij is the charge of the ith chiral field under the jth U(1)-factor in G. The generator

Tαk,i denotes generator of the kth semi-simple subgroup Hk of G in the representation Ri defined
by chiral field φi. From the first equation in (3.7), we get,

Dj = −g2
s

(
N∑
i=1

(ρij φiφi)− ξj

)
, (3.8)

and from the second we get,

Dk
α = −g2

s

(
N∑
i=1

φ̄iT
α
k,iφi

)
. (3.9)

Now, since the Fayet-Iliopolous-terms only make an appearance for the ‘Abelian components’
of the D-term (3.8), those will be the relevant ones for the quantum corrections. In any case,
the expectation value of the D-term for semi-simple gauge groups will vanish and thus not
contribute. The 1-loop correction to this expectation value of the D-term would come from
additional ‘mass’ terms generated for the chiral fields whose source will be discussed in the next
subsection on the infrared dynamics of these theories. For this discussion it suffices to assume
that these additionally generated masses are given by µi for the chiral field scalar φi, i.e., a term
of the form µiφ̄iφi is generated for all chiral fields. Such a term would contribute to (3.8) to
alter the expectation value of the D-term. The 1-loop integral diverges and can be regularised
using Pauli-Villars technique by subtracting from a propagator with mass term with mass Λi.
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This results in the 1-loop behaviour of the D-term being given by,

〈Dj〉1−loop ∼ −g
2
s

N∑
i=1

ρij ln

(
Λi
µi

)
. (3.10)

As we will note shortly, in the infrared such a mass term is generated from the term in
the potential V stemming from Lchiral = Φie

V Φi ⊃ ΦiV
2Φi in the Lagrangian. There is an

unfortunate degeneracy in the notation for the potential and the vector multiplet in the literature,
however we will be explicit when using the symbol V . The mass term in the potential V is
explicitly given by,

V ⊃
N∑
i=1

φ̄i

{
σ(ρi)†, σ(ρi)

}
φi , (3.11)

where σ(ρ) denotes the canonical pairing between elements of the Lie algebra g and the dual Lie
algebra g∗, respectively . When σ acquires an expectation value this is becomes a mass term for
φi, i.e.,

µi =
{
σ(ρi)†, σ(ρi)

}
. (3.12)

Now the correction to the D-term can be reinterpreted as a cutoff-dependent quantum correction
in the real Fayet-Iliopolous parameter. Recall from Chapter 2 that the Fayet-Iliopolous term is
a special case of a general twisted chiral superpotential term in the Lagrangian,

L
W̃

=

∫
dθ+dθ̄−W̃ (Σ)|θ−=θ̄+=0 + h.c. , (3.13)

where the twisted superpotential W̃ is linear in Σ, specifically,

W̃ (Σ) =
i

2

∑̀
i=1

τi Σi . (3.14)

The 1-loop correction to the Fayet-Iliopolous coupling can then be dressed as correction to the
twisted superpotential which takes the form of a logarithmic dependence of Σ such that the new
twisted superpotential reads,

W̃ (Σ) ∼
∑̀
j=1

Σj

2

iτj − 1

2π

 N∑
i=1

ρij ln

 ∑̀b=1

ρibΣb

Λi



 , (3.15)

which clarifies how W̃ deforms away from linearity. We will note that as the theory flows
to the infrared, the complexified Fayet-Iliopolous parameters τj span the moduli space of
supersymmetric vacua. This moduli space exhibits a singular locus, i.e., values of the Fayet-
Iliopolous parameter at which the space becomes singular due to non-compact directions opening
up. This singular locus can be solved for by noting that the contribution of the twisted
superpotential to the potential V must vanish in the infrared,

∂W̃ (σ)

∂σ
= 0 =⇒ e2πiτj =

N∏
i=1

(∑̀
b=1

ρibσb

)ρij
. (3.16)
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This equation on the moduli space of vacua is commonly known discriminant locus. In the work
of [28] this result was elemental in proving that in correlation functions of A-twisted gauged
linear sigma models the singular locus is the sole source of all singularities. Strictly speaking this
derivation of the discriminant locus is applicable for models with non-Abelian gauge groups along
the so-called Coulomb branch locus where the gauge group breaks to the maximal torus, i.e.,
G→ U(1)rkG. For ease of calculation one can introduce auxiliary Fayet-Iliopolous parameters
for all the newly generated U(1)’s and have the chiral fields be charged under the Abelianised

gauge group. In order to rid the condition on W̃ of the sliding scale Λi the condition,

N∑
i=1

∑̀
j=1

ρij = 0 ,

has been employed. This condition coincides with the condition derived in (3.5) for supercon-
formal invariance. As it happens, models for which this condition is not satisfied do not flow to a
superconformal theory and do not exhibit a discriminant locus. In the examples of Section 3.3, a
projective space and a Grassmannian manifold, this phenomenon of there being no discriminant
locus will be illustrated explicitly.

Infrared Dynamics
Finally, we address explicitly how the gauged linear sigma models, whose properties we have
studied so far, are interesting from the perspective of string theory. The defining ingredients of
these models, i.e., the matter spectrum, the gauge group, R-charges and the superpotential, can
be tuned such that in the renormalisation group flow to the infrared this gauge theory flows to
a superconformal field theory (SCFT) with N = (2, 2) supersymmetry. The family of SCFTs in
the infrared are parametrised by the Fayet-Iliopolous parameter τ which is classically marginal
and gets corrected to one-loop order. The effective value then serves as a marginal parameter
that parametrises an SCFT for each distinct value that it takes. For special values of τ the
corresponding SCFT corresponds to geometric spaces that arise as target spaces of non-linear
sigma models. Not all SCFTs in the family of supersymmetric vacua enjoy a description as
geometric spaces. For special values of τ they might take the form of other renowned SCFTs
such as Landau-Ginzburg orbifolds, however, most generically a clear Lagrangian description of
these theories evades us. We will note that (a priori) very distinct theories lie at various ends of
the moduli space spanned by the Fayet-Iliopolous parameter τ corresponding to a certain gauged
linear sigma model. Moreover there exist distinct models with moduli space of infrared fixed
points that can be identified by relating the Fayet-Iliopolous parameters of the two theories.
Such gauged linear sigma models are with the same infrared physics are said to be dual [49]. For
this analysis, we will broadly refer to [22,48]. The idea of dualities of gauged linear sigma models
is parallel to the electric-magnetic duality of Seiberg for N = 2 theories in 4d [25]. Finally,
we note that for models with a geometric target space in the infrared, the Fayet-Iliopolous
parameter plays the role of the Kähler modulus of this target space and the family of infrared
theories form the Kähler moduli space. This terminology does not coincide exactly with the
usual Kähler modulus of a Kähler manifold because the Fayet-Iliopolous parameter can also be
negative.

To observe the nature of the theory in the infrared of a gauged linear sigma model, we first
note that the scalar potential V in the Lagrangian receives contributions from the chiral kinetic
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term,

L ⊃
N∑
i=1

(
φ̄i

{
σ(ρi)†, σ(ρi)

}
φi + F †i Fi

)
, (3.17)

and from the gauge kinetic term,

L ⊃ 1

2g2
s

(
tradj.[σ, σ

†] +DaDa

)
, (3.18)

where the Da is the component of the adjoint valued D-term corresponding to the ath generator
T aij , i.e., Dij = T aijDa, with, i, j, a = 1, . . . ,dim(G). The F and D fields are auxiliary which
means they can be integrated out of the Lagrangian. For the Fi-field corresponding to the chiral
scalar φi this implies,

Fi =
∂W

∂φi
, (3.19)

whereas for the D-field, these expectation values were given in (3.8) and (3.9).
In the infrared we require the scalar potential to vanish which can facilitated by noting that

each term therein is positive definite and vanishes independently. We split V into three parts,
the contribution of the D-field, F -field and σ-dependent terms, respectively,

V = VD + VF + Vσ , (3.20)

and observe what the vanishing of each term implies. Before looking at each term individually
a brief discussion of the phase that the theory in in is warranted. The value that the Fayet-
Iliopolous parameters τi take defines an SCFT in the infrared. There exists more structure
to the family of SCFTs in the infrared determined by the parameter space of τi being split
into sectors, each of which corresponds to a phase of the theory. The phase boundaries are
determined by the values of τi at which the moduli space of infrared theories becomes singular.
These in turn are given by the roots of the discriminant locus (3.16), the derivation of which was
discussed above. Descriptions of the theory across phase boundaries are topologically distinct
from one another. Moreover, not all the phases of the theory correspond to a geometric NLSM
target space description as they could be non-smooth quotient spaces or admit an entirely
non-geometric description. The conception of a gauged linear sigma model that flows to a
non-linear sigma model target space in a particular phase of the theory thus also yields dualities
between the target space and the attained theories in other phases of the moduli space. An
illustrative example touching upon these concepts will be outline after the analysis of the
vanishing scalar potential. We now successively study the vanishing of the terms VD, VF and Vσ
and the ramifications thereof.

• D-term and symplectic quotients :

The vanishing of the D-field contribution, VD, to the total potential V serves to achieve a
symplectic quotient of the target space Y spanned by the complex scalars of the theory.
Symplectic quotients are defined for manifolds with a compact group action that are
equipped with a non-degenerate closed 2-form ω. The group action is said to be symplectic
when the symplectic form ω is left invariant under the group action on the manifold. For
the gauged linear sigma model the natural group action stems from the gauge group G of
the theory. From the form of the value of the D-field (3.8) it can be inferred that it plays
the role of the moment map µ which is a map from the symplectic manifold Y spanned by
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the scalars to the dual Lie algebra g∗ of the compact group G, i.e.,

µ : Y → g∗ , (3.21)

where we note that the real Fayet-Iliopolous parameters correspond to the U(1) factors in
G. Mathematically this can be stated as,

ξ ∈ Ann([g, g]) ⊂ g∗.

The vanishing of VD restricts the space Y to the space,

V (ξ) := µ−1(ξ) /G , (3.22)

where the quotient by the gauge group G is required by gauge invariance of the theory.
The properties of the space V (ξ) are dependent on the value of ξ and the broadly on the
phase that the theory is in.

Focussing on that phase of the family of SCFTs which yields the desired NLSM target
space, an important observation to make is that upon taking the symplectic quotient
gauged linear sigma models with purely Abelian gauge groups beget toric varieties as
target spaces whereas those with non-Abelian gauge groups beget general determinantal
varieties.

• F-term and hypersurfaces :

The F-term contribution to the scalar potential is given by,

VF =
N∑
i=1

(
F †i Fi

)
. (3.23)

While the D-field necessarily takes a non-trivial value upon being subject to equations of
motion, the same is only true of the F -field if the superpotential W (Φ) is non-vanishing
as is clear from the relation (3.19). We recall that the superpotential is gauge-invariant
holomorphic function of the chiral fields with a U(1)V R-charge assignment that ensures
the R-charge neutrality of the Lagrangian. For the convention (3.3) this would correspond
to the U(1)V R-charge of +2 for the superpotential and thus it is only when the available
chiral fields possess non-trivially distributed U(1)V R-charges that can be arranged in
gauge invariant way with the required R-charge that a superpotential can be constructed.
For the class of models for which a superpotential exists, the vanishing of the F -term
contribution to the scalar potential VF imposes a further condition on the symplectic
quotient V (ξ), see (3.22), obtained from the vanishing D-term contribution.

The relevant target space X is given by,

X(ξ) := V (ξ) ∩
(
∂W

∂φi
= 0

)
, (3.24)

i.e., an intersection locus of the symplectic quotient space and the vanishing F -term locus.
In cases where V (ξ) is a toric variety or a determinantal variety this intersection locus
might correspond to hypersurfaces or complete intersection varieties inside the ambient
variety V (ξ).
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• Sigma-term and branches of supersymmetric vacua :

The σ-term contribution to the scalar potential reads,

Vσ =

N∑
i=1

(
φ̄i

{
σ(ρi)†, σ(ρi)

}
φi

)
+

1

2g2
s

(
tradj.[σ, σ

†]
)
. (3.25)

The effect of the vanishing σ varies with respect to the value of the real Fayet-Iliopolous
parameter ξ. In order to understand the consequences of the vanishing Vσ contribution
better we first return to a couple of open threads from the previous sections, namely,
the discriminant locus and phase boundaries in the moduli space parametrised by Fayet-
Iliopolous couplings.

The phase boundary is defined by the vanishing of the quantum-corrected ξeff which in
turn is given by the values of the bare ξ corresponding to the roots of the discriminant
locus. Inside the moduli space far enough away from any phase boundary not all the
chiral scalars can vanish in order to maintain the vanishing D-term contribution to the
scalar potential. Looking at the first term in Vσ this implies that σ must vanish, which
automatically ensures the vanishing of the second term in Vσ. Such a configuration where
(at least some) scalars of the chiral multiplet are bound to take non-zero expectation
values whereas as the scalars of the twisted chiral multiplet are required to take vanishing
expectation values is known as a Higgs branch the moduli space of supersymmetric vacua.
The convention of calling this a ‘Higgs’ branch is borrowed from 4d N = 2 theories where
expectation values of the hypermultiplet, composed of two N = 1 chiral multiplets, are
non-zero. Heuristically it can also be noted that a chiral scalar acquiring an expectation
value leads to the gauge group G breaking to a discrete group (at best) by the Higgs
mechanism, hence the name: Higgs branch.

On the other hand at the phase boundary the constraint on a subset of chiral scalars to be
non-zero is lifted leading to no constraint on the expectation values of σ from the first term
of Vσ. Thus the twisted chiral scalars can acquire generic expectation values which are in
accordance with the vanishing of the second term in Vσ. Since this term only exists for
non-Abelian gauge groups G, for gauged linear sigma models with purely Abelian gauge
groups σ can acquire arbitrarily large expectation values. This phenomenon is known
as the emergence of non-compact Coulomb branch. For non-Abelian gauge groups the
vanishing of the second term implies,

[σ, σ†] = 0 , (3.26)

which means that the gauge group G breaks down to the corresponding maximal torus
U(1)rk(G). Again the nomenclature ‘Coulomb’ branch is inspired from 4d N = 2 theories
where when the expectation values of the vector multiplet, composed of one chiral multiplet
and one vector multiplet of an N = 1 theory in 4d, are non-zero this is termed as the
Coulomb branch of the moduli space of supersymmetric vacua. Since the gauge group
breaks down to an Abelian group, this theory is a generalisation of the Coulomb interaction
corresponding to gauge group U(1), hence the name: Coulomb branch.

At this point we could also make connection to (3.11) which was assumed in the derivation
of the quantum correction at 1-loop lever for ξ to be the mass generated for the chiral
scalars. Looking at Vσ the mechanism of this mass generation becomes evident. On the
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Higgs branch,

(i) the chiral scalars with vanishing expectation values, i.e., those that do not correspond
to the coordinates of the symplectic quotient space V (ξ), acquire masses from the
VF ∼ |dW |2 term in the scalar potential ;

(ii) the twisted chiral scalars acquire masses proportional to the non-vanishing chiral
scalar expectation values the due to the first term in (3.25).

On the Coulomb branch,

(i) all the chiral scalars acquire masses proportional to the expectation value of σ as
stated in (3.11) ;

(ii) the twisted chiral scalars remain massless.

To conclude, the infrared dynamics of a gauged linear sigma model holds key to the specific
NLSM target space we seek to make a connection to via the spectrum and superpotential of
the gauge theory. The desired NLSM target space in the infrared is only part of the story
because of the intricate structure of the family of SCFTs in the infrared. The moduli space of
supersymmetric vacua splits into the Higgs branch, Coulomb branch and/or mixed Coulomb-
Higgs branch depending on the phase structure and phase boundaries of the theory. These
branches are characterised by the specific subsets of chiral and twisted chiral scalars acquiring
expectation values.

3.1.2 Illustrative Example: Hori-Tong GLSM

We will now overview many of the above mentioned concepts in the context of the specific
example of the gauged linear sigma model designed in [48] to realise two Calabi-Yau threefolds
as NLSM target spaces in different phases of the same model. One of these target space is
the complete intersection X17 in a Grassmannian Gr(2, 7) and the other a Pfaffian threefold
which is realised as a rank constraint on a matrix defined using the homogenous coordinates
of P6. A Grassmannian manifold Gr(k,N) is the vector space of a complex k-planes in CN
and X17 ⊂ Gr(2, 7) denotes the complete intersection therein from 7 hypersurfaces of degree 1.
These threefolds were first studied in [57] and were proven to satisfy a derived equivalence at
the level of derived categories of coherent sheaves on the respective spaces in [58,59].

(i) Spectrum: This theory is characterised by the gauge group U(2) which has the isomorphism,

U(2) ∼ (SU(2)×U(1)) /Z2 , (3.27)

and matter fields φi and P j whose gauge and R-charge under the U(1)V R-symmetry are
summarised in Table 3.1.

(ii) Superpotential: Given the spectrum, a gauge invariant superpotential W (Φ) of all the
chiral fields Φ with the R-charge +2 can be constructed as,

W (Φ) = AkijP
k
(
εαβφ

α
i φ

β
j

)
, (3.28)

where Akij are coefficients required to contract flavour indices of the matter fields and the

ε-tensor contracts the non-Abelian gauge indices α, β of φi. The variables εαβφ
α
i φ

β
j are
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Chiral Field U(2) Representation U(1)V Charge

φi , i = 1, . . . , 7 �+1 0

P j , j = 1, . . . , 7 1−2 2

Table 3.1: This table shows the matter spectrum and the corresponding gauge representation of the
Hori-Tong GLSM with gauge group U(2) ∼ (SU(2)×U(1)) /Z2 for the Rødland Calabi-Yau threefold
target spaces. The representation �+1(1−2) denotes the fundamental (trivial) representation under the
SU(2) ⊂ U(2) and charge +1(−2) under U(1) ⊂ U(2). Additionally the non-trivial R-charges under the
U(1)V R-symmetry are also displayed.

also known as Plücker coordinates as they correspond to the so-called Plücker embedding

of a Grassmannian Gr(k,N) into a projective space P(Nk )−1. For a mathematical definition
of the Grassmannian and the Plücker embedding, see the Appendix A. In the case of the
fundamentals φi of the Hori-Tong model, k = 2 and N = 7.

(iii) Infrared Dynamics: From the rewriting (3.27) of the gauge group it is evident that there
is one complexified Fayet-Iliopolous parameter τ and a corresponding real Fayet-Iliopolous
parameter ξ corresponding to the U(1) ⊂ U(2). Consequently, there are two phases in
the infrared that can be studied corresponding to the Higgs branch branch vacua, given
by ξ � 0 and ξ � 0, which are separated by the Coulomb branch vacuum directions.
We will now study the specific form of the target spaces in each of the phases and the
locus of singularities, the zeroes of which correspond to the emergence of the non-compact
Coulomb branches in the moduli space of infrared theories.

Phase ξ � 0:

The D-term contributions to the scalar potential (3.8),

VD =

7∑
i=1

(
φ̄iφi − 2|P i|2

)
− ξ , (3.29)

when required to vanish in the ξ � 0 phase requires the expectation value of the P fields

to vanish in order to ensure no contribution from
∣∣∣∂W∂φi ∣∣∣2 ⊂ VF to the scalar potential. This

results in a symplectic quotient space inside the target space Y ∼ C7 of the fundamentals
φi. It is given by the space of 2-planes therein because of the fundamental 2-representation
of the φ’s, also denoted as the �-representation. Therefore the space (3.22) becomes a
Gr(2, 7). It is worth noting that the φ’s acquiring expectation values implies that the
gauge group U(2) breaks down completely in this phase.

The F -term contribution to the scalar potential,

VF =
∑

i∈chirals

F †i Fi =
∑

i∈chirals

∣∣∣∣∂W∂Φi

∣∣∣∣2 , (3.30)

upon vanishing results in the complete intersection of 7 hyperplanes given by the equations,

Akij

(
εαβφ

α
i φ

β
j

)
= 0 , (3.31)
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for k ∈ {1, . . . , 7}, inside the symplectic quotient space Gr(2, 7). These hyperplanes are
sections of the dual determinant line bundle of the Gr(2, 7). For more details, see the
Appendix A.

The σ-term contribution to the scalar potential gives a trivial contribution because the
non-trivial expectation values of the φ’s impose a vanishing expectation value on the σ.
This is clear upon looking at the first term of Vσ in (3.25).

To conclude, in the ξ � 0 or the ‘large volume’ phase, termed so because of the large
value of the Kähler modulus which quantifies the volume of the target space, the infrared
limit is the geometric target space X17 ⊂ Gr(2, 7).

Phase ξ � 0:

The infrared dynamics of this phase is slightly more subtle as opposed to the large volume
phase. The vanishing of the scalar potential from the D-field (3.29) in this phase requires
the expectation value of all P ’s to not simultaneously vanish. The symplectic quotient
space is determined by the 7 P ’s providing homogenous coordinates on a P6. The vanishing
of the scalar potential from the F -field required the expectation values of the φ’s to vanish.
In contrast to the large volume phase where the gauge group breaks down entirely, in
this case the P ’s which are trivially charged under the SU(2) ⊂ U(2) break only the U(1)
subgroup. Since at least some of the chiral scalars acquire expectation values this forces
the twisted chiral scalars σ to acquire a vanishing expectation value so as to ensure the
vanishing of the Vσ contribution to the scalar potential (3.20).

Furthermore, the rank of the 7× 7 matrices A(P ) := (AkP k)ij have constraints imposed
on their rank from the masses that the φ’s acquire due P getting an expectation value.
Since the kth matrix Akij is antisymmetric in the (ij) indices it must have even rank, i.e.,
0, 2, 4, or 6. The ranks 0 and 2 are excluded because we choose the matrix A to be generic
enough so as to impose the infrared flow to a smoothly defined Grassmannian in the large
volume phase. The rank 6 is excluded because this would correspond to one massless
flavour and hence no supersymmetric ground state [49]. This implies that in the ξ � 0
phase the space P6 localises to the rk(A(P )) = 4 locus. This space is a Pfaffian Calabi-Yau
threefold.

Coulomb Branch:

In the large volume and strong coupling phases studied above Higgs branch dynamics was
at play given the chiral field scalars were the ones to acquire non-zero expectation values
whereas the twisted chiral scalars had vanishing expectation values. When the Fayet-
Iliopolous parameter lies on one of the roots of the discriminant locus, discussed below,
the unbounded expectation values that the σ’s can acquire correspond to a non-compact
Coulomb branch opening up.

Specifically, the expression for Vσ (3.25) the vanishing of the first term is ensured by the
vanishing expectation values of the chiral scalars, which also implies the vanishing of D-
and F -term contributions to the scalar potential. The vanishing of the second term (3.25)
implies that the gauge group breaks down to the maximal torus group U(1)2 as is typical
of a pure Coulomb branch.

(iv) Discriminant locus: The equations (3.16) can be solved to extract the locus of singularities
on the quantum Kähler moduli space. This system of equations was originally devised
for purely Abelian gauge groups. However we can employ the trick of ‘Abelianisation’
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to extend the application to non-Abelian gauged linear sigma models. To facilitate
this computation we introduce auxiliary Fayet-Iliopolous parameters in addition to the
original Fayet-Iliopolous parameters for the extra U(1)’s that emerges along the Coulomb
branch corresponding to the rank of the semi-simple gauge group inside the total gauge
group. The Abelianisation also imposes all the chiral fields to acquire consistent charges
under the maximal torus group as well as for the twisted chiral field to become an adjoint
representation of the maximal torus group. This purely Abelian theory is sometimes referred
to as the Cartan theory and will be studied in detail in Section 3.2. The discriminant
locus can be calculated in the Cartan theory and the auxiliary Fayet-Iliopolous parameters
can be set to one later.

In the case of the Rødland model this would mean introducing one extra Fayet-Iliopolous
parameter, upon doing this we get a system of two equations,

Q =
(
(−2σ1)2(σ1 + σ2)(σ1 − σ2)

)7
,

Qaux =
(
(σ1 + σ2)(σ1 − σ2)−1

)7
,

(3.32)

where Q = e2πiτ and Qaux is the auxiliary parameter in the Cartan theory. The twisted
chiral scalars σ1 and σ2 correspond to the components of the twisted chiral under each of

the two U(1)’s in the maximal torus U(1)2 on the Coulomb branch. The ratio
(
σ1
σ2

)
can

be eliminated and Qaux can be set to one to get the discriminant locus on the quantum
Kähler moduli space,

(1 + 57Q− 289Q2 −Q3) = 0 . (3.33)

We note that upon eliminating the ratio
(
σ2
σ1

)
instead of the inverse thereof, a spurious

pole on the moduli space appears at Q = 1
128 , i.e., the solution to the discriminant locus

equations yield,
(1− 128Q)(1 + 57Q− 289Q2 −Q3) = 0 . (3.34)

We postulate that the appearance of this spurious pole can be understood the violation
of some genericness condition on the σ’s as described in [48]. The genericness conditions
ensure the emergence of a pure Coulomb branch at the poles of the discriminant locus,
thus this spurious pole might correspond to a mixed Coulomb-Higgs branch.

3.2 Partition Functions and Correlators of GLSMs

Gauged linear sigma models provide a fertile playground for an exact computation of the
partition function and correlators which in turn give an insight into the enumerative properties
of the corresponding NLSM target space. Before the application of localisation techniques to
compute these quantities, the authors of [28] devised a method to compute certain correlation
functions of an A-twisted GLSM with Abelian gauge group exactly. Abelian GLSMs leads
to NLSM target spaces that are intersections inside toric varieties, for instance, the quintic
Calabi-Yau threefold P4[5]. The topological twist introduced in the first section of Chapter 2 in
the context of NLSMs is applicable to the case of N = (2, 2) supersymmetric gauge theories
in 2d with U(1)R symmetry. This is so because at the level of the superconformal algebra the
twist merely implies the shift of the spin generator by the R-symmetry generator with the sign
of the shift determined by the type of twist, i.e., A or B twist. Since the GLSM is designed such
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that the in the infrared a superconformal algebra emerges, the requisite shift of generators can
performed already in the ultraviolet to produce an A- or B-twisted GLSM which flows to an A-
or B-twisted NLSM target space.

In the A-twisted GLSMs considered in the work of [28], the twisted chiral fields are non-trivial
in the BRST cohomology. This implies that the relevant correlators are in the twisted chiral fields
whereas all other fields are rendered BRST exact with vanishing correlators. The correlators
are postulated and proven to holomorphic in the Fayet-Iliopolous parameters of the gauge
theory which can be identified suitably with the quantum Kähler moduli parameters of the
corresponding NLSM target space X. The computation relies on associating the twisted chiral
fields of the gauge theory with the elements of H2(X) and computing n-point insertions of the
σ using the properties of the moduli space of the A-twisted theory. This method restricts the
number of insertions in the twisted chiral correlators to the dimC(X) with all higher insertions
vanishing.

Mirror symmetry identifies the A-model on a Calabi-Yau manifold X to the B-model on the
corresponding mirror manifold X̃. The relevant correlators of the A-model receive instanton
contributions, a closed formula for the summation of which does not exist, and the corresponding
correlators on the B-model are classical and relatively easy to compute. This disparity in the
solvability of A- and B-model leads mirror symmetry to assume an important role such that
the A-model on X can be solved by constructing the mirror X̃ and solving for the B-model on
it and extracting the instanton contributions to the A-model correlators. The crux lies in the
ability to construct the mirror manifold for all X’s of interest and to translate the B-model
correlators of X̃ into the A-model correlators of X using a canonical ‘mirror map’. Since the
former are functions of the complex structure moduli parameters and the latter of the Kähler
moduli parameters, the mirror map translates between these moduli parameters. Unfortunately,
the method of computing A-twisted correlators of the gauged linear sigma model is unable to
compute the mirror map directly.

The power of the technique employed in [28] lies in the fact that the construction of the
mirror manifold to compute the B-model coupling is rendered unnecessary. Once the ultraviolet
GLSM corresponding to the NLSM target space X is at hand, it can be A-twisted and the
correlators of twisted chiral fields match exactly with the B-model correlators on the mirror X̃
when the Fayet-Iliopolous parameter of the gauge theory is identified with the complex structure
moduli parameter of X̃. A formula to further translate this result in terms of the Kähler moduli
parameters of X remains ambiguous from the correlator approach.

The exact result for the two-sphere partition function of a GLSM, ZS2 , computed in [34,35]
and briefly reviewed in Chapter 2 Section 2.3 was employed in [60] to compute the mirror map
and the Gromov-Witten invariants of Calabi-Yau threefold target spaces without the need to
resort to the mirror manifold construction. This was facilitated by the conjecture in [60] that the
ZS2 yields the exact Kähler potential on the quantum Kähler moduli space of the target space.
This was a landmark result in displaying the potential of GLSMs and localisation techniques
to extract enumerative information of target spaces of interest which previously required the
construction of a mirror manifold and the mysterious mirror map.

3.2.1 A-twisted GLSM correlators on S2
Ω

We will now review the results of [29] which exactly computed correlators of A-twisted gauged
linear sigma models on the Ω-deformed two-sphere S2

Ω using localisation. This method has the
two-fold advantage of applicability to higher-point correlators and non-Abelian models over the
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earlier work of [28]. The formula devised in [29] to compute twisted chiral field correlators will
be of utmost relevance in the analysis and review of the work [30] of the author which will be
done in the forthcoming sections.

A-twist The premise of the localisation technique applied to compute correlators in [29] was
an N = (2, 2) gauged linear sigma model topologically twisted to the A-model and defined on an
Ω-deformed two-sphere S2

Ω. As mentioned previously the topological twist assists in isolating the
topological A- or B-sectors such that the two types of BRST-closed operators are twisted chiral
and chiral fields, respectively. The topological twist serves to construct from the pre-existing
supercharges a globally defined BRST charge. Localisation can be performed with respect to this
BRST generator such that computation of correlators reduces to a finite-dimensional integral
over the fixed point locus of the BRST symmetry.

Ω-deformation In addition to the A-twisting, the S2 on which the gauged linear sigma model
is defined is Ω-deformed. An Ω-deformation can be achieved by coupling the S2 to an off-
shell supergravity background, which is a method devised to define supersymmetry on curved
spaces in [44], and giving a certain background value to the graviphoton field in the graviton
supermultiplet. The idea behind such a deformation was introduced in the context of N = 2
theories in 4d to compute the instanton contributions to the Seiberg-Witten prepotential [61,62].
In effect this is a way of ‘compactifying’ the manifold on which the gauge theory is defined in
order to perform localisation. This value is parameterised by a complex deformation parameter
commonly denoted as εΩ. For the purpose of this thesis we will use the briefer notation ε. This
deformation singles out the north and south pole of the S2 as the fixed points of the isometry
generated by the Killing vector field chosen to define the Ω-deformation. This implies that the
theory shifts from being purely topological. The relevant correlators are those of the twisted
chiral fields inserted at the north (N) and south (S) pole, respectively.

Field Content and Lagrangian The theory is defined by the non-Abelian gauge group G, as
in (3.1), chiral fields φi, with i ∈ 1, . . . , N , in representation Ri of G and a vector field V in the
adjoint representation. The twisted chiral superfield Σ can be constructed as the field strength
of V and has the scalar component σ, also in the adjoint representation of V . There are ` real
and complexified Fayet-Iliopolous parameters, ξi and τi, and the exponentiated Fayet-Iliopolous
parameters Qi = e2πiτi . The Lagrangian (3.2) is deformed by relevant O(1/r) terms, where r is
the length scale of the S2, for consistently-defined supersymmetry [44, 63], and the appropriate
Killing vector field is chosen for the Ω-deformation. The theory is A-twisted and the BRST-exact
term to be added to the Lagrangian is chosen such that the theory localises on the Coulomb
branch vacua. This means the infinite dimensional path integral measure localises to the finite
dimensional integral over the expectation value of twisted chiral field σ.

Twisted Masses The final ingredient to be introduced before delving into the localisation
formula are the twisted masses mi for chiral fields φi. The twisted masses were briefly alluded to
in the discussion of the gauged linear sigma model in Chapter 2. If the gauge theory in question
has a flavour symmetry then the background vector field, and correspondingly twisted chiral
field, can be turned on for the flavour group and subsequently required to acquire an expectation
value. In particular, the expectation value of the twisted chiral scalar σF corresponding to the
flavour group F can be termed mF and the weights ρi(mF ) = ρi ·mF of the representation RF,i
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Chapter 3 2d Gauge Theories and Relations of Correlators

of F that chiral field φi is in can be denoted as mi. In practice this can be achieved by shifting
the value of the twisted chiral field for the gauge group G such that for chiral field φi,

ρi · σ → ρi · σ + mi ,

where ρ are the weights under the representation R of the gauge group G. Here the pairing ρ · x
comes from the canonical pairing between the elements of the dual Lie algebra g∗ and g of G.

Localisation Formula The values assigned to twisted chiral fields inserted at the north and
south pole, denoted σN and σS , are ε-deformation dependent as follows,

σN = ~σ − ε
~k

2
; σS = ~σ + ε

~k

2
, (3.35)

with ~k ∈ γm, where γm ' Zrk(G) is the so-called magnetic charge lattice of G [64]. The vector ~σ
represents rk(G)-dimensional twisted chiral scalar on the maximal torus U(1)rk(G) that G breaks
down to on the Coulomb branch. The final formula for the correlators that are functions f(·, ·)
of twisted chiral fields inserted at the north and south pole, respectively, using the Coulomb
branch localisation technique [29] is given by ,

〈f(σN , σS)〉 =
1

|WG|
∑
~k∈γm

~Q
~k Z̃~k(f(σN , σS), ε,mi) , (3.36)

where |WG| is the order of the Weyl group WG of G. The Weyl group of G is defined as the
set of all reflections of the roots of G. The Fayet-Iliopolous parameter vector ~Q = e2πi~τ is
an `-dimensional vector and ~k is an rk(G)-dimensional vector. The pairing 〈~τ ,~k〉 that defines

the notation ~Q
~k = e2πi〈~τ,~k〉 is the canonical pairing of elements in g∗ and g, with canonical

embeddings of ~τ and ~k into these algebras. The factor Z̃~k is a specific residue of the contour
integral along the Coulomb branch vacua given by,

Z̃~k(f(σN , σS), ε,mi) =

∮ rk(G)∏
a=1

dσa
2πi

Z1-loop(~σ, ε,mi) f

(
~σ − ε

~k

2
, ~σ + ε

~k

2

)
,

= R̃es
~ξ

~σ

(
Z1-loop(σ, ε,mi) f

(
~σ − ε

~k

2
, ~σ + ε

~k

2

))
.

(3.37)

Here the specific residue prescription denoted by R̃es
~ξ

~σ will be explained shortly. The factor
Z1-loop is a product from the 1-loop contributions from the chiral fields and the vector field, i.e.,

Z1-loop = Zchiral · Zvector with ,

Zchiral(~σ,mi, ε) =
N∏
i

Zi(~σ,mi, ε) ; Zi(~σ,mi, ε) = εqi−~ρ·
~k−1

Γ
(
~ρi·~σ+mi

ε + qi−~ρi·~k
2

)
Γ
(
~ρi·~σ+mi

ε − qi−~ρi·~k
2 + 1

) ,

Zvector(~σ, ε) =
∏
~ωα>0

(−1)~ωα·
~k+1

(
~ωα ·

(
~σ +

~k

2
ε

))(
~ωα ·

(
~σ −

~k

2
ε

))
.

(3.38)
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Here qi are U(1)V R-charges of chirals φi, the pairing ~a ·~b comes from the canonical pairing
between the elements of the dual Lie algebra g∗ and the Lie algebra g of G, respectively. The ~ρi
is the charge vector of the ith chiral field under the Cartan group U(1)rk(G), discussed in detail
below, and ~ωα are the roots of G.

Before explaining the residue R̃es
~ξ

~σ to be taken the second equality of in (3.37), we make two
assumptions about the form of the gauged linear sigma model in question:

(i) For GLSMs with non-Abelian gauge group G, we work with the respective Abelianised
theory. This ‘Abelianisation’ trick was mentioned briefly when calculating the discriminant
locus of the Hori-Tong GLSM at the end of Section 3.1. On the Coulomb branch of the
theory, which is the relevant locus for the localisation computation that yields correlators,
the gauge group G breaks down to U(1)rk(G) as discussed after Equation (3.26). This
is because the previously G-adjoint-valued twisted chiral field σ acquires non-generic
expectation values.

The chiral fields φi which were previously in representation Ri of G split into dim(Ri)
fields. These fields are charged under U(1)rk(G) with the charges ~ωi that are the weights
of representations Ri. The spontaneous breaking of the gauge group G yields massive
W bosons from the vector multiplet, or equivalently the twisted chiral multiplet, with
charges ~ωα which are simply the roots of G [29]. These W -bosons carry a U(1)V R-charge
of +2. In fact this contributions from the W -bosons is what ultimately leads to the 1-loop
contribution from the vector multiplet, Zvector, in the Coulomb branch localisation formula.
The spectrum in the Coulomb branch has been summarised in Table 3.2.

In evaluating the correlators we resort to the ‘Cartan theory’ where there are auxiliary
Fayet-Iliopolous parameters corresponding to the all the unaccounted for U(1) subgroups
of maximal torus U(1)rk(G). This provides ease of calculation of the discriminant locus
Hori-Tong model and that of the summation over the magnetic charge lattice that counts
the topological sectors. Additionally it facilitates the definition of a consistent residue
prescription for for the Coulomb branch integral.

(ii) The twisted masses mi of the chiral fields φi are non-vanishing. This will assist in defining
the residue prescription cleanly and, as we will note later, is indispensable in defining the
correlator relations, to be defined in Section 3.3, of gauge theories that do not satisfy the
Calabi-Yau condition, i.e., those with non-vanishing U(1)A-anomaly.

With these two broad facts in mind we define the residue R̃es
~ξ

~σ that is taken in the Coulomb
branch localisation formula. Firstly, this is a phase-dependent residue as is evident in the
superscript ~ξ, which determines the phase. The charge vectors ~ωij of the chiral fields φij of
the Abelianised theory, see Table 3.2 for notation, take values in the electric charge lattice
γe ' Zrk(G). The Fayet-Iliopolous parameter vector ~ξ, containing the physical as well as the
auxiliary parameters, takes values in Rrk(G). A set of rk(G) charge vectors, ~ωi1 , . . . , ~ωjrk(G)

, that
need not belong to the descendants of the same chiral multiplet of the unbroken theory, span

a cone Π
~ξ
a1 in the electric charge lattice γe. The Fayet-Iliopolous parameter vector ~ξ will be

contained in a set of such cones {Π~ξ
ai} depending on the phase of the theory.

The residue prescription is as follows: Let one of the cones in the electric charge lattice γe

in the set of cones containing ~ξ be denoted as Π
~ξ
aj . The residue R̃es

~ξ

~σ must be taken for each

topological sector that is numbered by ~k. Furthermore, it must be taken such that the chiral
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Chapter 3 2d Gauge Theories and Relations of Correlators

non-Abelian spectrum Coulomb branch spectrum U(1)V twisted

non-Abelian fields G-rep. Abelian fields U(1)rkG-rep. charge mass

twisted chiral adj(G) chiral field W1 ~ωα1 2 0

field σ
...

...
...

...

chiral field Wdim(adj(G)) ~ωαdim(adj(G))
2 0

chiral field φi Ri chiral field φi1 ~ωi1 qi mi

i = 1, . . . , N
...

...
...

...

chiral field φidim(Ri)
~ωidim(Ri)

qi mi

Table 3.2: The table shows the decomposition of the non-Abelian gauge theory spectrum into the
Abelian spectrum of the Coulomb branch of the gauge theory, where the non-Abelian gauge group G is
spontaneously broken to the maximal torus U(1)rk(G). The Abelian charge vectors ~ωαi and ~ωij are the
weights of the non-Abelian representations of the multiplets that descend from the twisted chiral and the
chiral multiplets charged under the unbroken G, respectively.

fields that define each cone Π
~ξ
aj in the set of cones {Π~ξ

ai} contribute simultaneous poles to the
one-loop determinant Zchiral . This result must then be summed over contributions from all

cones in {Π~ξ
ai} for ~ξ in a certain phase. In other words, from (3.38),(

Zi(~σ,mi, ε)
)−1

= 0 , (3.39)

must hold simultaneously for all i corresponding to chiral fields φi that define the cone Π
~ξ
aj in

the set {Π~ξ
ai}, and,

R̃es
~ξ

~σ(. . .) =
∑
{Π

~ξ
ai
}

Res~σ(. . .) , (3.40)

where the residue inside the summation is the usual Grothendieck residue, see for reference [65].
We note that this residue prescription is consistently defined for entirely generic twisted masses

mi as it ensures that for a certain cone Π
~ξ the pole sets defined by (3.39) are disjoint for all

topological sectors.

The definition of the A-twisted Ω-deformed gauged linear sigma model correlators using
localisation (3.37) is now complete. This concludes our discussion of the relevant results of [29]
that will be employed heavily in sections Sections 3.3 and 3.4 that draw from the work of the
author [30].

3.3 Relations of GLSM Correlators

The correlators defined in (3.36) are functions of the twisted chiral field inserted at the north
and south pole of the S2

Ω. In order to have uniformity of notation for such correlators with
Abelian and well as non-Abelian gauge groups G, we establish the following two points for the
entirety of this chapter:
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1. Abelian Gauge Groups: For G = U(1)`, the 〈f(σN , σS)〉 in (3.36) is simply a product of
arbitrary ~σ insertions at the north and south pole and hence can be written as,

κ~n,~m( ~Q,mi, ε) := 〈σ~nNσ ~mS 〉 , (3.41)

where `-dimensional vectors ~n, ~m denote ni,mi insertions for ith components of σN and
σS , respectively.

2. Non-Abelian Gauge Groups: The correlators insertions are physical observables and are
required to be gauge covariant. For general non-Abelian gauge groups of the form (3.1)
this is a non-trivial statement. In particular, in (3.36) it implies for ∀g ∈ G,

〈f(σN , σS)〉 = 〈f(g−1σNg, g
−1σSg)〉 . (3.42)

Because of its cyclicity property, the trace operator is considered to construct gauge
invariant operators from twisted chiral operators and makes for an ideal function f in
above equation. The correlators of interest to us will be those that are gauge invariant
products of north and south pole insertions, i.e.,

〈f(σN , σS)〉 = 〈fN (σN ) fS(σS)〉 =: κfN ,fS ( ~Q,mi, ε) . (3.43)

The non-Abelian correlators κfN ,fS ( ~Q,mi, ε) defined in (3.43) in terms of functions fN
and fS reduce to Weyl group WG-invariant polynomials of ~σ in the Abelianised theory.
This is so because the Weyl group, which is the isometry group of the root vectors of G,
preserves the maximal torus algebra of G by definition. Since on the Coulomb branch the
gauge group G breaks down to the maximal torus subgroup U(1)rk(G), the correlators of
~σ ∈ g are Weyl group invariant.

Ultimately, in the Abelianised theory we can work with correlators that are WG-invariant
insertions of σN and σS . Assuming this holds true, we can unambiguously rename the
non-Abelian correlators,

κfN ,fS ( ~Q,mi, ε) =: κ~n,~m( ~Q,mi, ε) , (3.44)

with ~n, ~m being rk(G)-dimensional vectors that again signify ni,mi insertions for ith

components of σN and σS , respectively.

For the correlators in Abelian and non-Abelian GLSMs alike, see (3.41), (3.43) and (3.44),
there exists a selection rule [28, 29], that depends on the powers of the twisted masses, ε-
deformation parameter, gauge charges and ~σ-insertions into the correlator.

It is given by,

d+ #(ε) + #(m`) +
∑̀
k=1

(
N∑
i

ρik

)
#(Qk) ∈ pow(f) . (3.45)

Here the #(·) the power of the specified argument when the correlator is considered as a power
series in that argument, ρik is the gauge charge of the ith chiral field under the kth U(1) factor in
G and pow(f) denotes set of degrees of all monomials in σN and σS that appear in f(σN , σS).
The d denotes the gravitational contribution to the U(1)A-anomaly which, if the GLSM admits
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Chapter 3 2d Gauge Theories and Relations of Correlators

a geometric interpretation, is the complex dimension of the target space. It is given by,

d =
N∑
i

(1− qi) dim ρi − dim g , (3.46)

with qi, ρi denoting the U(1)V R-charge and the gauge charge of the ith chiral field, respectively,
and g the Lie algebra of the gauge group G.

3.3.1 Derivation of Relations

The form of the Coulomb branch localisation formula for correlators (3.36), (3.37) provides
motivation for there to exist linear relations among these correlators. In this section we
aim to deduce such relations, which are independent of the north pole insertions, among the
correlators κ~n,~m. The derivation of relations among correlators applies Abelian and non-Abelian
gauged linear sigma models alike following the notation in (3.41) and (3.44). For this purpose,
we will consistently work in the Abelianised theory, whose spectrum is given by Table 3.2,
where the gauge group is U(1)rk(G) and ~Q is a rk(G)-dimensional vector appended by auxiliary
Fayet-Iliopolous parameters that can be set to one later.

We will start with an ansatz for the relations, substitute into it the localisation formula for
correlators, and by an appropriate change of the variable of integration and a Gamma-function
identity we will arrive at an equation for the coefficients in the ansatz for the relations. We
trace this derivation in the following steps:

1. The ansatz for the south-pole relations is given by,

RS( ~Q,ml, ε, κ~n, · ) =

~N∑
~m=0

c~m( ~Q,ml, ε)κ~n,~m( ~Q,ml, ε) = 0 , (3.47)

with ~N denoting the highest south pole insertions. We require the coefficient functions
c~m( ~Q,ml, ε) to be polynomial in ~Q. They can be expanded as,

c~m( ~Q,ml, ε) =
~s∑
~p=0

c~m,~p(ml, ε) ~Q
~p =

s1∑
p1=0

. . .

sr∑
pr=0

c~m,p1,...,pr(ml, ε)Q
p1
1 · · ·Q

pr
r , (3.48)

for some suitable finite vector ~s.

2. The localisation formula for the correlators with the specific residue prescription defined
in (3.40) is given by,

κ~n,~m(Q,ml, ε) =
∑
~k∈ γm

~Q
~k R̃es

~ξ

~σ

[(
~σ − ε

2
~k
)~n (

~σ +
ε

2
~k
)~m

Z~k(~σ,ml, ε)

]
. (3.49)

Recall that this residue prescription is consistently defined when the twisted masses are
completely generic.

3. We now insert eq. (3.49) in the definition (3.47) and collect common powers of ~Q. After

the change of variables ~w = ~σ + ε
~k+~p

2 , which maps the pole lattices, used in the definition
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of R̃es
~ξ

~σ, to themselves, we arrive at,

0 = RS( ~Q, κ~n, · ) =
∑
~k∈γm

~Q
~k

~N∑
~m=0

~s∑
~p=0

c~m,~p R̃es
~ξ

~w

[
(~w − ε~k)~n(~w − ε~p)~mZ~k−~p(~w − ε

~k+~p
2 ,ml, ε)

]
.

(3.50)

4. Note that the expression at the end of the previous step can only be zero if the coefficients
of all powers of ~Q vanish separately. In order to separate the factors that are independent
of ~k that determines the power of ~Q we use the Gamma function identity,

Γ(x− y) = Γ(x) ·
∏+∞
s=1+y(x− s)∏+∞
s=1(x− s)

, (3.51)

obtain the constraint,

0 = R̃es
~ξ

~w

[
(~w − ε~k)~nZ~k(~w − ε

~k
2 ,ml, ε)

~s∑
~p=0

~N∑
~m=0

c~m,~p (~w − ε ~p)~m
M∏
l=1

∞∏
s=1

(
~w · ~ρl + ml + ε (1− ql

2 − s)
)

∞∏
s=1+~ρl·~p

(
~w · ~ρl + ml + ε (1− ql

2 − s)
)
 . (3.52)

5. As the equation obtained above must hold for ~k, it is necessary that the expression within
the residue symbol vanishes itself. The constraint for a south pole relation thus takes the
simple form,

0 =

~s∑
~p=0

α~p(~w,ml, ε) · g~p(~w,ml, ε) , (3.53)

in terms of the polynomials α~p and rational functions g~p given by,

α~p(~w,ml, ε) =

~N∑
~n=0

c~n,~p(ml, ε) (~w − ε ~p)~n ,

g~p(~w,ml, ε) =
M∏
l=1

∞∏
s=1

(
~w · ~ρl + ml + ε (1− ql

2 − s)
)

∞∏
s=1+~ρl·~p

(
~w · ~ρl + ml + ε (1− ql

2 − s)
) .

(3.54)

Since we aim to attain relations between south pole correlators, this expression must be
manifestly independent of the north pole insertions, as is evident in (3.54).

6. We observe that the rational functions g~p are entirely fixed by the spectrum of the gauge
theory under consideration. Since the α~p contain all information appearing in the south
pole relations RS , determining these relations for a given gauge theory thus amounts to
finding polynomials α~p satisfying the constraints (3.53). This can be identified with a
well-studied problem in commutative algebra: The set of polynomial solutions α~p forms
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Chapter 3 2d Gauge Theories and Relations of Correlators

the syzygy module over the polynomial ring C(ml)[~w, ε] of the rational function g~p. The
elements of the polynomial ring C(ml)[~w, ε] are polynomials in ~w and ε with coefficients
in the field of complex rational functions in the twisted masses ml, which is denoted by
C(ml).

From a given element α~p in the south pole syzygy module we can then reconstruct the
south pole correlator relation as,

RS( ~Q,ml, ε, κ~n, · ) =

~s∑
~p=0

~Q~p
〈
~σ~nN α~p(~σS + ε~p,ml, ε)

〉
= 0 . (3.55)

This concludes the derivation of south-pole relations RS of correlators given by (3.53), (3.54)
and (3.55). Note that these relations are independent of the north pole insertions, however, we
could just as well have analogously defined north-pole relations RN that are independent of
south pole insertions. To work with the north or south pole relations is a matter of convention
and we choose the latter for the purpose of this work.

3.3.2 Correlator Relations and the Differential Ideal

The moduli space of the gauged linear sigma model is parametrised by the physical Fayet-
Iliopolous parameters of the theory. It is this moduli space that parametrises the infrared family
of SCFTs and exhibits the Coulomb and Higgs branch vacua. We assume that at each point on
this moduli space there exists a Hilbert space of states HQ with a ground state |Ω(~ξ, ~ϑ)〉. From
this point of view the correlators of the twisted chiral fields enjoy an interpretation as matrix
elements in this Hilbert space. This interpretation of gauge theoretic quantities from the point
of view of a Hilbert space is motivated by [66] and the work on 3d supersymmetric theories
by [53].

We can interpret the south pole correlator relations RS derived in (3.55) as operators RS

annihilating the moduli-dependent ground state
∣∣∣Ω(~ξ, ~θ)

〉
of the gauge theory. Explicitly this

can be written as,

RS(~Q,~σS ,ml, ε)
∣∣∣Ω(~ξ, ~θ)

〉
= 0 . (3.56)

The boldface letters RS , ~Q and ~σS indicate that they are operators acting on the Hilbert space
of states HQ.

Additionally there exists a non-trivial commutation relation between operators σS,i and Qj ,

[σS,i,Qj ] = δijεQj . (3.57)

Here i = 1, . . . , rk(G) since we are working in the Abelianised theory. This can be seen in two
steps that we now explain.

(i) We note that for every relation of the form (3.55) derived from solutions to α~p(~w,ml, ε)
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that satisfy (3.53), there exist descendant relations R′S by defining α′~p of the form,

0 =
~s∑
~p=0

(
wi α~p(~w,ml, ε)

)
· g~p(~w,ml, ε) ; where i = 1, . . . , rk(G)

=
~s∑
~p=0

(
α′~p(~w,ml, ε)

)
· g~p(~w,ml, ε) =: R′S( ~Q,ml, ε, κ~n, · ) .

(3.58)

(ii) From the relations R′S we can define operators R′S that act on HQ. These operators can
also be interpreted as a multiplication of σS,i to the left of R′S ,

R′S(~Q,~σS ,ml, ε) = σS,i

~s∑
~p=0

~Q~pα~p(~σS + ε~p,ml, ε) =
~s∑
~p=0

~Q~p(σS,i + εpi)α~p(~σS + ε~p,ml, ε)

=

~s∑
~p=0

~Q~pα′~p(~σS + ε~p,ml, ε) ,

(3.59)
where the second equality makes use of the commutation relation (3.57).

In case of non-Abelian GLSMs the commutation relation (3.57) consists of operators σS,i, with
i ∈ {1, . . . , rk(G)}, that are not gauge invariant in the sense of (3.42). We can construct from
them commutation relations of linear gauge invariant operators of the from tr(σS) ∼

∑
i σS,i with

the physical Fayet-Iliopolous parameter ~Qphys(= ~Q for Abelian gauge groups) by eliminating
the auxiliary parameters (3.57). These commutation relations cannot be written, at least in this
form, for the non-linear gauge-invariant operators, for instance, tr(σ2

S). However this observation
is irrelevant for the mathematical consequences we wish to draw from the form of relations,
as defined in (3.55), although achieving a commutation relation for non-linear gauge-invariant
operators with ~Qphys would be of interest for a more complete picture of the Hilbert space
interpretation of correlator relations [67,68].

Relations as Generators of a Differential Ideal The commutation relation (3.57) characterises
the non-commutative south pole ring,

RS = C(ml)〈~Q,~σS , ε〉
/

[σS,i,Qj ] = δijεQj
, (3.60)

and the set of south pole operators RS annihilating the ground state
∣∣∣Ω(~ξ, ~θ)

〉
, as in (3.56),

forms a left ideal IS in this ring RS , which according to eq. (3.53) is explicitly given by,

IS =

∑
~p

~Q~pα~p(~σS + ε~p,ml, ε) ∈RS

∣∣∣∣∣∣ 0 =
∑
~p

α~p(~σS ,ml, ε) · g~p(~σS ,ml, ε)

 . (3.61)

An explicit representation for the ring RS that satisfies the commutation relation (3.57) can
devised for Abelian and non-Abelian GLSMs separately. For Abelian GLSMs we note that an

45



Chapter 3 2d Gauge Theories and Relations of Correlators

explicit representation is given by,

Qi = Qi , σS,i = εQi
∂

∂Qi
=: εΘi , (3.62)

for i = 1, . . . , rk(G), where rk(G) = dim(G) for Abelian groups.
For the non-Abelian GLSMs, as discussed before, the commutation relations for the unbroken

gauge group can only be written for linear gauge invariant operators of the form tr(σS). The
explicit representation of Qi for a gauge group of the form (3.1) in this case is given by,

Qi =

{
Qi ; i = 1, . . . , `

1 ; otherwise .
(3.63)

This representation may certainly change depending on the choice of basis for the Abelianised
group on the Coulomb branch, as we will note to be the case for the example of the Grassmannian
Gr(2, 4) to be studied next.

The representation for the non-Abelian operator tr(σS) is given by,

tri(σS) = εQi
∂

∂Qi
=: εΘi . (3.64)

We refer to IS as the differential ideal, and the solutions to its differential equations,

RS( ~Q, ε~Θ,ml, ε)f( ~Q) = 0 ,

capture the ~Q-dependence of the gauge theory ground state
∣∣∣Ω( ~Q)

〉
. For gauge theories with a

geometric target space interpretation IS becomes the differential ideal governing the Gromov–
Witten theory of the target space as we will note in the subsequent sections.

3.3.3 Examples

We now illustrate the aforementioned relations between correlators for an Abelian and a non-
Abelian gauged linear sigma model. Their geometric target space description is given by the
projective line P1 and the Grassmannian Gr(2, 4), respectively. These are both, in fact, examples
of Fano varieties. From a gauge theory perspective we denote a theory with an U(1)A anomaly
of the R-symmetry arising from

∑
` ~ρ` > 0 for all ` as a gauged linear sigma model with the Fano

property, as will be the case for the forthcoming examples. In each of the examples we will begin
by briefly discussing the geometric target space attained in the infrared of the gauge theory,
the general structure of the correlators and the existence, or lack thereof, of the discriminant
locus. We will then derive the relations among the correlators and the differential operators
corresponding to the relations.

The Projective Line P1

We consider a gauged linear sigma model with the Abelian gauge group U(1) and charged matter
spectrum as listed in Table 3.3.

Geometric Target Space In the infrared the classical scalar potential vanishes for a positive
Fayet–Iliopoulos parameter, the symplectic quotient (3.22) yields the complex projective line
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Chiral multiplets U(1) charge U(1)V charge twisted masses

φi, i = 1, 2 +1 0 mi

Table 3.3: Matter spectrum of the U(1) gauged linear sigma model of the projective line P1.

P1 as classical target space geometry. Since the superpotential is trivially zero, because of a
lack of chiral fields with non-vanishing U(1)V R-charge, there appears no intersection atop the
symplectic quotient P1, according to (3.24).

Discriminant Locus and Correlators Since this GLSM is of the Fano type, the infrared
dynamics corresponding to the ξ < 0 phase does not correspond to geometric target space
associated to an NLSM . Furthermore, there exists no solution to the equations (3.16) and
thus there is no discriminant locus in the infrared theory. This implies that the correlators are
polynomials in the parameters Q, ε and the twisted masses.

The first few south pole correlators can be solved using (3.36) and are given by,

κ0,0 = 0 , κ0,1 = 1 , κ0,2 = −(m1 + m2) , κ0,3 = (m2
1 + m1m2 + m2

2) +Q . (3.65)

The correlators can be easily confirmed to satisfy the selection rule given by (3.45) for each
monomial in the expression.

Relations of Correlators We now compute relations of the form (3.47). From the matter
spectrum in Table 3.3 we determine the functions defined in eq. (3.54) as,

gp(w,mi, ε) =

p−1∏
s=0

(w + m1 − εs)(w + m2 − εs) , p = 0, 1, 2, . . . . (3.66)

The smallest one-dimensional vector ~s in (3.53) for which the constraint (3.53) can be solved
equals two. Thus g0 = 1 and g1 = (w + m1)(w + m2) and (3.53) is solved by the polynomials,

α0(w,mi, ε) = (w + m1)(w + m2) , α1(w,mi, ε) = −1 . (3.67)

Together with eq. (3.55) these determine the south pole correlator relation,

RS(Q,mi, ε, κn, · ) = 〈σnN (σS + m1)(σS + m2)〉 −Q 〈σnN 〉 , (3.68)

for arbitrary north pole insertions of degree n.

Differential Ideal This relation can be interpreted as the differential ideal associated to the
non-commutative polynomial ring defined by (3.60). According to eqs. (3.56) and (3.62) the
corresponding differential operator can be written as,

L(Q, ε,mi) = (εΘ + m1)(εΘ + m2)−Q , (3.69)

given in terms of the logarithmic derivative Θ = Q∂Q. It can be checked that this operator
generates the entire differential ideal IS of the gauge theory. That is to say, other south
pole correlator relations obtained from the higher degree polynomials (3.66) yield differential
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Chapter 3 2d Gauge Theories and Relations of Correlators

operators in the differential ideal generated by the above operator (3.69).

The Grassmannian Gr(2, 4)

We now consider the gauged linear sigma model with the non-Abelian gauge group U(2) and
non-Abelian matter spectrum as displayed in Table 3.4.

Geometric Target Space In the infrared the scalar potential vanishes which leads to, for
positive Fayet–Iliopoulos parameter ξ, the symplectic quotient (3.22) yielding the complex
Grassmannian fourfold Gr(2, 4) as classical target space geometry of this gauge theory. The
matter fields φi span the vector space C4×2 as they transform under the �+1 of the U(2). The
vanishing of the D-term in the scalar potential is equivalent to the vanishing of the inverse of
the moment map µ from the ambient space C4×2 to the Lie algebra u(2) corresponding to the
action of the gauge group U(2) on the target space of φi’s. This non-Abelian action yields the
final target space Gr(2, 4).

The Plücker embedding Pl : Gr(2, 4) ↪→ P(Λ2C4) of the Grassmannian fourfold Gr(2, 4) with
its unique quadratic Plücker relation identifies this particular Grassmannian with a quadratic
hypersuface in P5, i.e.,

Gr(2, 4) ' P5[2] . (3.70)

We refer the reader to the Appendix A for details on the Plücker embedding.

non-Abelian gauge theory spectrum:

Chiral multiplets U(2) Representation U(1)R charge twisted masses

φi, i = 1, . . . , 4 �+1 0 mi

Abelian Coulomb branch gauge theory spectrum:

Chiral multiplets U(1)×U(1) charge U(1)R charge twisted masses

φ
(1)
i , i = 1, . . . , 4 (+1, 0) 0 mi

φ
(2)
i , i = 1, . . . , 4 (0,+1) 0 mi

W± (±1,∓1) 2 0

Table 3.4: The top part of the table shows the chiral matter multiplets of the U(2) gauged linear sigma
model of the complex Grassmannian fourfold Gr(2, 4), where the U(2) representation is specified in
terms of the Young tableau of the non-Abelian subgroup SU(2) together with the charge of the diagonal
U(1) subgroup as a subscript. The bottom part of the table lists the chiral spectrum in the Coulomb
branch of the gauge theory, which comprises the decomposition of the non-Abelian matter multiplets
into representations of the unbroken Abelian subgroup U(1)×U(1) together with the W± bosons that
are part of the Abelianised spectrum.

The Coulomb branch gauge theory with the Abelian gauge group U(1)×U(1) has two Fayet–
Iliopoulos parameters (ξ1, ξ2) corresponding to the parameters (Q1, Q2). These Abelianised
parameters stem from the non-Abelian Fayet-Iliopolous parameter Q′ such that in the fully
non-Abelian theory Q1, Q2 → Q′. Note that in this basis for the Fayet–Iliopoulos parameters
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3.3 Relations of GLSM Correlators

the formal parameters ~Q used in used in the subsection 3.3.2 correspond to,

~Q = (
√
Q1Q2,

√
Q1/Q2) or,

~τ =

(
τ1 + τ2

2
,
τ1 − τ2

2

)
.

(3.71)

Working in this basis of the maximal torus U(1)×U(1) has the advantage that under the action
of the Weyl group WG of U(2), given by Z2, the two U(1) factors of U(1)×U(1) get exchanged.
At the level of the correlator insertions, this action permutes the σSi , i = 1, 2, insertions in the
Coulomb branch correlators.

In the Coulomb branch the matter spectrum decomposes into representations of the Abelian
subgroup U(1)×U(1) together with the W± multiplets of the broken gauge group U(2), as listed
in the second half of Table 3.4.

Discriminant Locus and Correlators Since this GLSM is of the Fano type, as discussed above,
there exists no solution to the equations (3.16) and thus there is no discriminant locus in the
infrared theory.

The first few non-zero correlators of this gauge theory for degree 4 insertions, i.e., κ0,fS (Q′,mi, ε),
with the gauge invariant function fS of degree 4 in the south pole insertions, are given by,〈

tr(σS)4
〉

= 2 ,
〈
tr(σS)2 tr(σ2

S)
〉

= 0 ,
〈
tr(σ2

S)2
〉

= 2 , (3.72)

and for degree 8 insertions are given by,〈
tr(σ2

S)4
〉

= 20(7m4
1 − 20m3

1m2 + 30m2
1m

2
2 − 20m1m

3
2 + 7m4

2)− 8Q′
mi→0−−−→ −8Q′〈

tr(σS)2 tr(σ2
S)3
〉

= 80m1m2(m2
1 + m2

2)
mi→0−−−→ 0〈

tr(σS)4 tr(σ2
S)2
〉

= 40m1m2(2m2
1 + 5m1m2 + 2m2

2)
mi→0−−−→ 0〈

tr(σS)6 tr(σ2
S)
〉

= 80m1m2(3m2
1 + 5m1m2 + 3m2

2)
mi→0−−−→ 0〈

tr(σS)8
〉

= −140(m1 + m2)2(m2
1 − 6m1m2 + m2

2) + 8Q′
mi→0−−−→ 8Q′ .

(3.73)

The first three correlators, that are of degree four, compute the classical intersection numbers of
the Grassmannian Gr(2, 4), whereas the remaining correlators show the degree one contributions
in some of the quantum products. Note that the quantum products (3.73) are in accord with
the non-Abelian selection rule (3.45).

Relations of Correlators We first consider the Coulomb branch spectrum in order to arrive at
the correlator relations of the non-Abelian gauge theory. The relevant polynomials (3.54) read,

gp1,p2(w1, w2,mi, ε) =

4∏
i=1

[
p1−1∏
s1=0

(w1 + mi − s1ε)

p2−1∏
s2=0

(w2 + mi − s2ε)

]

× (−1)p1−p2
w1 − w2 − (p1 − p2)ε

w1 − w2
. (3.74)
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These polynomials lead to the syzygy polynomials αp1,p2 . The two syzygies are given by the
following equations, for varying ~p and ~s in (3.53),

~s=(1,0)∑
~p=(0,0)

α~p(~w,m`, ε) · g~p(~w,m`, ε) = 0 ,

~s=(1,2)∑
~p=(0,1)

α~p(~w,m`, ε) · g~p(~w,m`, ε) = 0 .

(i) For the first syzygy over g0,0 and g1,0 we find the solution,

α0,0 = (w1 + m1) · · · (w1 + m4)(w1 − w2 − ε) , α1,0 = (w1 − w2) . (3.75)

This syzygy together with its Weyl orbit thus determines the Coulomb branch south pole
correlator relations,

R
(i)
S (κ~n, · ) =

〈
~σ~nN (σS,i + m1) · · · (σS,i + m4)(σS,i − σS,i+1 − ε)

〉
+Qi

〈
~σ~nN (σS,i − σS,i+1 + ε)

〉
,

(3.76)
for i = 1, 2 and with the identification σS,3 ≡ σS,1.

The relation obtained at this point is in the Abelianised theory and must be required to
respect the Weyl symmetry group. Restricting to the non-Abelian physical parameter Q′

by taking the limit Q1, Q2 → Q′ and by projecting to the WG-invariant part, which for
the choice of basis implies a symmetry on the exchange of σS,1 and σS,2, we obtain from
both relations (3.76) the Z2 invariant correlator relation,

RZ2
S =

1

2
〈fN (~σN )(σS,1 + m1) · · · (σS,1 + m4)(σS,1 − σS,2 − ε)〉

+
1

2
〈fN (~σN )(σS,2 + m1) · · · (σS,2 + m4)(σS,2 − σS,1 − ε)〉+Q′ε 〈fN (~σN )〉 . (3.77)

(ii) For the second syzygy over the rational functions g0,1, g1,0, g1,1, and g0,2 we get the
solution,

α0,1 = (w2 + m1) · · · (w2 + m4)− ε
[
2

 ∑
1≤i<j<k≤4

mimjmk

+

 ∑
1≤i<j≤4

mimj

 (w1 + 3w2)

+

(
4∑
i=1

mi

)(
4w2

2 + w1w2 + w2
1

)
+
(
5w3

2 + w3
1 + w2

1w2 + w1w
2
2

) ]

+ ε2

(w2
1 + 2w1w2 + 9w2

2

)
+

(
4∑
i=1

mi

)
(w1 + 5w2) + 2

 ∑
1≤i<j≤4

mimj


− ε3

[
(w1 + 7w2) + 2

(
4∑
i=1

mi

)]
+ 2ε4 ,

α1,0 = −(w2 + m1) · · · (w2 + m4) , α1,1 = −1 , α0,2 = 1 .
(3.78)

Analogous to the first syzygy, the second syzygy (3.78) yields the WG-invariant south pole
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correlator relation

TZ2
S =

〈
fN (~σN )(σS,1 + σS,2)(σ2

S,1 + σ2
S,2)
〉
+

(
4∑
i=1

mi

)〈
fN (~σN )(σ2

S,1 + σS,1σS,2 + σ2
S,2)
〉

+

 ∑
1≤i<j≤4

mimj

 〈fN (~σN )(σS,1 + σS,2)〉+

 ∑
1≤i<j<k≤4

mimjmk

 〈fN (~σN )〉 . (3.79)

We have thus obtained two independent Weyl group invariant south pole correlator relations.
From these relations, given by (3.77) and (3.79), we must still construct the G-invariant non-
Abelian south pole correlator relations. This can be done by noting that the U(2)-invariant
polynomial ring C[u(2)]U(2) is generated by the expressions tr(σ) and tr(σ2), which map in
the Coulomb branch to the symmetric polynomials σ1 + σ2 and σ2

1 + σ2
2, respectively. Thus,

obtaining the non-Abelian correlator relations amounts to replacing the symmetric functions in
two variables in terms of the U(2)-invariant generators tr(σ) and tr(σ2).

We thus arrive at the non-Abelian south pole relations,

R
U(2)
S =

1

2

〈
fN (σN )

[
tr(σS)3 tr(σ2

S)− 2 tr(σS) tr(σ2
S)2 − ε

(
tr(σS)4

2
− tr(σS)2 tr(σ2

S)−
tr(σ2

S)2

2

)]〉
+

(
4∑
i=1

mi

4

)〈
fN (σN )

[
tr(σS)4 − tr(σS)2 tr(σ2

S)− 2 tr(σ2
S)2 + ε

(
3 tr(σS) tr(σ2

S)− tr(σS)3
)]〉

+

 ∑
1≤i<j≤4

mimj

2

〈fN (σN )
[
tr(σS)3 − 2 tr(σS) tr(σ2

S) + ε tr(σ2
S)
]〉

+

 ∑
1≤i<j<k≤4

mimjmk

2

〈fN (σN )
[
tr(σS)2 − 2 tr(σ2

S) + ε tr(σS)
]〉

+ε
(
m1m2m3m4 −Q′

)
〈fN (σN )〉 ,

(3.80)

and,

T
U(2)
S =

〈
fN (σN ) tr(σS) tr(σ2

S)
〉

+

(
4∑
i=1

mi

2

)〈
fN (σN )

[
tr(σS)2 + tr(σ2

S)
]〉

+

 ∑
1≤i<j≤4

mimj

 〈fN (σN ) tr(σS)〉+

 ∑
1≤i<j<k≤4

mimjmk

 〈fN (σN )〉 . (3.81)

The derived correlators relations enjoy a geometric interpretation as the relations defining the
quantum Cohomology ring of the Grassmannian [69]. For simplicity we consider the limit of
vanishing twisted masses mi = 0, i.e., the non-equivariant case. For vanishing twisted masses,
the correlator relation (3.81) generalises to,

T
(k),U(2)
S =

〈
fN (σN ) tr(σS)k tr(σ2

S)
〉
, k = 1, 2, . . . ,

T ′
U(2)
S =

〈
fN (σN ) tr(σS) tr(σ2

S)2
〉

+ 2Q′ε 〈fN (σN )〉 ,
(3.82)
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which are obtained from the syzygy polynomials (3.78) after an overall multiplication with
suitable powers of the (w1 + w2) or (w2

1 + w2
2). Combining these relations with the correlator

relation (3.80), we obtain the modified correlator relation,

R′
U(2)
S =

〈
fN (σN )

(
−tr(σS)4

4
+ tr(σS)2 tr(σ2

S) +
tr(σ2

S)2

4

)〉
+Q′ 〈fN (σN )〉 . (3.83)

In the Appendix A we discuss dictionary between the gauge invariant operator insertions and
the Newton polynomials of the Chern roots of the universal subbundle of the Gr(2, 4) that
generate the quantum cohomology ring of the Grassmannian, see Appendix A for details. Using

this dictionary we can see that the correlator relations T
(k),U(2)
S and R′

U(2)
S precisely realise the

quantum cohomology relations . This demonstrates that the correlators of the studied non-
Abelian gauged linear sigma model compute quantum cohomology products of the Grassmannian
fourfold Gr(2, 4).

Differential Ideal As discussed previously, the correspondence of the relations to the differential
ideal of the ring generated by the correlators is limited to the trσS operators for a non-Abelian
gauge theory as in (3.64). We need to rewrite the relations purely in terms of such operators
in order to make the identification (3.63), (3.64) so as to obtain a differential operator that
generates the differential ideal IS of the theory.

Upon multiplying the first set of syzgy polynomials (3.75) with the overall factor (w1 +w2) we
arrive at a correlator relations of degree five in the adjoint insertion σS . Removing the quadratic
insertions tr(σ2

S) with the help of correlator relations of the type (3.82), it is straight forward to
then deduce the degree five relation,

0 =
〈
fN (σN ) tr(σS)5

〉
− 2Q′ 〈fN (σN )(2 tr(σS) + ε)〉 , (3.84)

which yields the differential operator as per (3.64),

L(Q′, ε) = (εΘ)5 − 2Q′(2εΘ + ε) . (3.85)

This result is in agreement with the work of [70] which was computed using the GKZ Hypergeo-
metric system to compute the differential operator annihilating the I-function.

3.4 Picard-Fuchs Operators from Correlators

In Section 3.3 we studied the relations among south pole correlators of gauged linear sigma
models. The form of the Coulomb branch localisation formula for correlators can be appropriately
massaged to obtain these relations. Furthermore, equipped with the interpretation of these
relations as operators that annihilate the quantum Kähler moduli dependent ground state in a
Hilbert space of states, they could be given a representation in terms of differential operators
whose solutions could be interpreted to capture the moduli dependence of the ground state. In
this section we consider the gauged linear sigma models with Calabi-Yau target spaces. Calabi-
Yau manifolds exhibit certain properties such that to each such manifold is an associated unique
differential operator L, known as the Picard-Fuchs differential operator, that annihilates the
periods of the top-dimensional holomorphic form on this space. We will discuss the fundamental
properties of Calabi-Yau manifolds and the Picard-Fuchs operators more closely in the upcoming
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subsection 3.4.1. For an overview on the Calabi-Yau manifolds and related properties we refer
the reader to [71–75] .

In fact, the relations of the previous section happen to give rise to the Picard-Fuchs differential
operator for the Calabi-Yau case. Aided with this fact we can now approach the problem of the
relations of correlators from a different perspective. We assume that the relations of the form,

RS( ~Q,ml, ε, κ~n, · ) =

~N∑
~m=0

c~m( ~Q,ml, ε)κ~n,~m( ~Q,ml, ε) = 0 , (3.86)

are known to exist, as is certainly the case for gauged linear sigma models with Calabi-Yau
target spaces due to the existence of the Picard-Fuchs operators. Then the finite number of
coefficients c~m can be reconstructed in terms of correlators κ~n,~m by considering a finite set of
relations with increasing north pole insertions. We will explore this calculation for Calabi-Yau
threefolds with one Kähler parameter, i.e., ` = 1 in (3.1) at the level of the gauge theory, in
subsection 3.4.2.

3.4.1 Calabi-Yau Manifolds

In the discussion of the source and cancellation of the U(1) axial anomaly (3.5) for gauged linear
sigma models it was mentioned that the anomaly cancellation at the level of the gauge theory is
akin to obtaining in the infrared a non-linear sigma model target space which is Calabi-Yau.
Geometrically a Calabi-Yau manifold X of dimC = d is defined as a complex Kähler manifold
with a SU(d) holonomy group. We now briefly explain each of the terms that go into defining a
Calabi-Yau manifold.

A complex manifold M is defined to be equipped with a complex structure. A complex
structure is induced from the so-called almost complex structure J , which is an endomorphism
on the tangent bundle of M , s.t., J 2 = −1 , under the condition that the Nijenhuis tensor
acting on two vector fields on M vanishes. A manifold is said to be Kähler when the Kähler
form, that is a (1, 1)-form defined using the hermitian metric on the manifold, is closed. For a
complex orientable manifold of dimension d the holonomy group is most generally given by U(d).
However, for Calabi-Yau manifolds, the U(1) part of the connection vanishes, thus restricting
the holonomy group to SU(d). In fact, the U(1) part of the holonomy is generated by the
Ricci tensor and hence the condition for SU(d) holonomy is equivalent to the condition that
the manifold admits a Ricci flat metric. Due to the theorem of [76] the requirement of Ricci
flatness is tantamount to the vanishing of the first Chern class, c1(X) = 0. The axial anomaly
U(1)A of a gauged linear sigma model can be shown to be related to the first Chern class of the
target space geometry and the vanishing of one ensures the vanishing of the other. This is a
heuristic explanation for why the anomaly cancellation condition is equivalently addressed as
the Calabi-Yau condition.

A gauge theory that satisfies the Calabi-Yau condition where all the matter fields have trivial
U(1)V R-charge assignments yields a non-compact target space. This can be understood by
noting that for trivial R-charges, the superpotential W is also trivial, as ρU(1)V

(W ) = 2. Thus
the vanishing of the scalar potential implies a Calabi-Yau target space which is a vector bundle
with the base space, that is a Fano variety, defined by the positively charged fields and the fibres
defined by the negatively charged fields. The terminology of the positive and negative charges is
applicable only to the case of Abelian gauge groups, however the technique of Abelianisation
discussed in Section 3.2 can be applied to heuristically extend this discussion to the non-Abelian
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case as well. Contrarily, the Calabi-Yau condition in addition to non-trivial R-charge assignments
ensures a non-trivial superpotential. In the infrared, the vanishing scalar potential traces an
intersection inside the Fano variety defined by the positively charged fields. If the polynomials
appearing in the superpotential condition satisfy certain rank conditions, sometimes known as
‘transversality conditions’, then the target space Calabi-Yau is compact. For the purpose of
the discussion in this section we will adhere to the compact Calabi-Yau case, however, for a
complete discussion the reader is invited to study the original work [30].

The geometric properties of the Calabi-Yau d-fold X ensure the existence of a unique
holomorphic and nowhere-vanishing (d, 0)-form, usually called Ω, which is a section of the
canonical bundle. This statement can be reformulated as the fact the vanishing of the first Chern
class is tantamount to the triviality of the canonical bundle. For any d-cycle γ on X, one can
define periods Π of the holomorphic (d, 0)-form Ω as Π :=

∫
γ Ω. The periods satisfy a differential

equation with respect to the complex structure moduli coordinate known as the Picard-Fuchs
differential equation, i.e, L Π = 0. The Picard-Fuchs differential equation can be calculated
using several methods. The authors of [77] do this by an explicit computation of periods. Other
methods such can be found in [78–83]. However for the manifolds of interest, these approaches
require the construction of the mirror manifold X̃, except the method of Givental in [83] which
yields the mirror map by equating the cohomological I- and J-functions.

In the forthcoming section we will discuss the derivation of Picard-Fuchs operators using
the gauged linear sigma model data alone, rendering obsolete the need to construct the mirror
manifold and the periods thereof.

3.4.2 Relations of one parameter CY threefolds

The identification of the differential operator representation of relations of south pole correlators
to Picard-Fuchs operators can be written as,

L( ~Q,m`, ε) = RS( ~Q, ε ~Θ,m`, ε) =

~N∑
~m=0

c~m( ~Q,m`, ε)
(
ε ~Θ
)~m

, (3.87)

For this analysis for the case of non-Abelian gauge theories the notation for correlators follows
(3.64). Thus subscripts to κ denote degrees of the trσ operator.

For simplicity we consider the case of vanishing twisted masses, m` = 0. We aim to express
the Picard–Fuchs operator L in terms of correlators. Any such operator L can be expanded as,

L( ~Q, 0, ε) =

~N∑
~m=0

c~m( ~Q, 0, ε)
(
ε ~Θ
)~m

with

~N∑
~m=0

c~m( ~Q, 0, ε)κ~n,~m( ~Q, 0, ε) = 0 (3.88)

for all possible north pole insertions ~n. Assuming that we have the information of the order of
this operator ~N we can construct descendant equations from (3.88) for ascending north pole
insertion ~m. This system of equation can be solved for the coefficients c~m( ~Q, ε) in the following
schematic way, for a detailed methodology we refer the reader to the original paper [30]. We
introduce the matrix M of correlators that appear in the system of equations,

Mj,i = (−1)|j| κj,i . (3.89)
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The relation (3.88) can then be schematically described by coefficient vectors ci’s that satisfy,

Mj,i · ci = 0 ∀ j . (3.90)

In other words, the vector ci of coefficient functions is in the kernel of M for all north pole
insertions indexed by j.

We will now discuss the case in which the target space is a three-dimensional Calabi–Yau
manifold with a single Kähler parameter as target space, i.e., dimCX = 3 and ` = 1 in (3.1).
The correlators can be shown to obey,

εΘκn,m = κn,m+1 − κn+1,m , (3.91)

κn,m = (−1)1+n+mκm,n , (3.92)

κn,m = 0 for n+m < 3 . (3.93)

using the Coulomb branch localisation formula (3.36) and (3.37).

The knowledge of the order of the operator, i.e., the highest power of Θ in L must be a
pre-requisite in order for this method to work. The variation of Hodge structures shows that
the single Picard-Fuchs operator is of order N = 4. We therefore take the north pole insertions
~n in the set I = {0, 1, 2, 3, 4} and consider the matrix,

M =


0 0 0 κ0,3 κ0,4

0 0 −κ1,2 −κ1,3 −κ1,4

0 κ1,2 0 κ2,3 κ2,4

−κ0,3 κ1,3 −κ2,3 0 −κ3,4

−κ0,4 κ1,4 −κ2,4 κ3,4 0

 , (3.94)

which due to its antisymmetry is required to have a kernel. The solution to the equation M ·c = 0
is unique up to rescaling and leads to the Picard–Fuchs operator,

L =κ2
0,3(εΘ)4 − κ0,3κ0,4(εΘ)3 + (κ0,4κ1,3 − κ0,3κ1,4) (εΘ)2

+ (κ0,4κ2,3 − κ0,3κ2,4) (εΘ) + (κ1,4κ2,3 − κ1,3κ2,4 − κ0,3κ3,4) .
(3.95)

By fully exploiting eq. (3.91) in order to reduce the number of required correlators in the above
formula for the Picard-Fuchs operator, this can be rewritten as,

L = + κ2
0,3(εΘ)4 − 2κ0,3 (εΘκ0,3) (εΘ)3 +

[
2 (εΘκ0,3)2 − κ0,3

(
ε2Θ2 κ0,3 + κ2,3

)]
(εΘ2)

+ [2κ2,3 (εΘκ0,3)− κ0,3 (εΘκ2,3)] (εΘ)

+
[
κ2

2,3 − κ0,3κ3,4 − (εΘκ0,3) (εΘκ2,3) + κ2,3

(
ε2Θ2 κ0,3

)]
.

(3.96)

These formulae are valid for all three-dimensional Calabi–Yau manifolds with a single Kähler
parameter.

The concept behind the derivation of the formula (3.96) remains the same for all Calabi-Yau
manifolds, i.e., for a sufficiently high number of north pole insertions, the system of equations
stemming from the relations of correlators can be employed to construct a matrix of correlators
whose kernel yields the vector of coefficients. These coefficients then determine the Picard-Fuchs
operator, as per (3.88).
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3.4.3 Examples

We now consider two one-parameter gauged linear sigma models, Abelian and non-Abelian, with
Calabi-Yau target spaces in order to illustrate the potential of equation (3.96) in computing the
Picard-Fuchs operator directly.

The Quintic threefold P4[5]

The quintic hypersurface P4[5] in the complex projective space P4 is the simplest non-trivial
example of a compact Calabi–Yau threefold. The quintic arises as the target space of the
gauged linear sigma model with the Abelian gauge group U(1) and the matter spectrum listed
in Table 3.5.

Chiral multiplets U(1) charge U(1)V charge twisted masses

φi, i = 1, . . . , 5 +1 0 mi

P −5 2 mP

Table 3.5: Matter spectrum of the U(1) gauged linear sigma model of the quintic Calabi–Yau threefold
P4[5].

Geometric Target Space The infrared dynamics of this gauge theory was studied in detail
in the original work of Witten [22]. This gauge theory is characterised by the non-trivial
superpotential,

W (Φ) = P ·G(5)(φi) , (3.97)

with the degree 5 polynomial G(5)(φi) that satisfies the ‘transversality condition’,

∂G

∂φi
= 0 , ∀i iff φi = 0 , ∀i .

For the vanishing of the scalar potential in the ξ > 0 phase, the D-term ensures that the
symplectic quotient space is given by P4 and the F-term imposes that the intersection locus
in P4 is given by G(5)(φ) = 0, i.e., the final target space in the geometric phase is the quintic
threefold P4[5].

On the other hand in the ξ < 0 phase, the vanishing of the scalar potential results in the P
field acquiring an expectation value. Due to the non-minimal charge of the P -field there is a
residual Z5 symmetry and thus the symplectic quotient space is given by a Landau-Ginzburg
orbifold C5/Z5, where the C5 corresponds to the target space of the φ’s.

Discriminant Locus and Correlators The equation for the discriminant locus (3.16) is given
by,

Q = (−5σ)−5(σ)5 ⇒ (1 + 55Q) = 0 . (3.98)

We also compute a few correlators, noting that for the formula (3.96) only the κ0,3, κ2,3 and
κ3,4 are required,

κ0,3 =
5

1 + 55Q
, κ2,3 =

−6250Q

(1 + 55Q)2
ε2 , κ3,4 =

100Q(−6 + 59375Q)

(1 + 55Q)3
ε4 . (3.99)
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Note that these correlators satisfy the selection rule (3.45).

Picard-Fuchs Operator We now discuss the derivation of the Picard-Fuchs operator using the
techniques of section Sections 3.3 and 3.4.

From the method of Section 3.3 the south pole correlator relations RS and the differential
operators L can be computed and eventually yields the differential operator,

L(Q, ε,mi,mP ) = (εΘ + m1) · · · (εΘ + m5) +Q(5εΘ−mP + ε) · · · (5εΘ−mP + 5ε) . (3.100)

In the limit of vanishing twisted masses we find the reduced differential operator,

L(Q, ε) = Θ4 + 5Q (5Θ + 1)(5Θ + 2)(5Θ + 3)(5Θ + 4) , (3.101)

which is the well-known Picard–Fuchs differential operator of the quintic Calabi–Yau threefold.
We should emphasis that from the reduced syzygy module M0

S we directly obtain the order
four Picard–Fuchs operator for the quintic threefold. Other methods — for instance obtaining
the GKZ system from the defining toric data of the quintic hypersurface — often yield the
order five differential operator, which is given by eq. (3.100) in the limit of vanishing twisted
masses. Arriving at the Picard–Fuchs operator of the desired minimal order is not a coincidence
for specific examples of compact Calabi–Yau manifolds, but instead is a general feature of the
presented approach.

We now illustrate the computation of the Picard–Fuchs differential operator from gauged
linear sigma model correlators using methods of Section 3.4. Inserting the correlators (3.99)
into the formula (3.96) yields the differential operator,

L =
52ε4

(1 + 55Q)3

[
Θ4 + 5Q (5Θ + 1)(5Θ + 2)(5Θ + 3)(5Θ + 4)

]
, (3.102)

which, up to a prefactor, agrees with the expected Picard–Fuchs operator (3.101) of the quintic
Calabi–Yau threefold [77].

The Rødland Calabi–Yau threefold

As our next example we consider the non-Abelian gauged linear sigma model studied by Hori
and Tong [48]. This gauge theory realizes as its two geometric phases the two derived-equivalent
families of Calabi–Yau threefold target space varieties [58, 59], first constructed by Rødland [57].
The non-Abelian gauge group is U(2) together with the charged chiral matter spectrum listed
in Table 3.6. Furthermore, the table shows the decomposition of the non-Abelian spectrum
into Abelian chiral multiplets in the Coulomb branch spectrum with unbroken gauge group
U(1)×U(1).

Geometric Target Space The geometric phases of this Hori–Tong gauged linear sigma model
were summarised Section 3.1. A brief synopsis of the same reads: In the ξ > 0 phase the geometric
target space is a complete intersection Grassmannian threefold given by X17 ⊂ Gr(2, 7) whereas
in the ξ < 0 phase the target space corresponds to a Pfaffian threefold corresponding to a rk 4
locus of the matrix A defined in terms of the coordinates of the P6.
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non-Abelian gauge theory spectrum:

Chiral multiplets U(2) Representation U(1)R charge twisted masses

φi, i = 1, . . . , 7 �+1 0 mi

P j , j = 1, . . . , 7 1−2 2 mj
P

Abelian Coulomb branch gauge theory spectrum:

Chiral multiplets U(1)×U(1) charge U(1)R charge twisted masses

φ
(1)
i , i = 1, . . . , 7 (+1, 0) 0 mi

φ
(2)
i , i = 1, . . . , 7 (0,+1) 0 mi

P j , j = 1, . . . , 7 (−1,−1) 2 mj
P

W± (±1,∓1) 2 0

Table 3.6: The table shows the chiral matter multiplets of the U(2) Hori–Tong gauged linear sigma model
for the Rødland Calabi–Yau threefold target spaces. The U(2) representation is specified in terms of
the Young tableau of the non-Abelian subgroup SU(2) together with the charge of the diagonal U(1)
subgroup as a subscript. Moreover, the table lists the chiral spectrum in the Coulomb branch of the
gauge theory, where the Coulomb branch chiral fields fall into representations of U(1)×U(1).

Discriminant Locus and Correlators The discriminant locus for the Rødland model was also
computed in Section 3.3 and is given by the equation (3.33).

Let us first connect the correlators of the Hori–Tong gauged linear sigma model to the
geometry of the Calabi–Yau threefold X17 . The correlators of respectively gauge invariant south
and north pole insertions arise from insertions of the type tr(σ) and tr(σ2). There are two
distinct correlators with south pole insertions cubic in the adjoint field σ (in the absence of
north pole insertions),

κ0,3 =
〈
tr(σS)3

〉
=

14(3 +Q)

1 + 57Q− 289Q2 −Q3
,〈

tr(σS) tr(σ2
S)
〉

=
14(1− 9Q)

1 + 57Q− 289Q2 −Q3
.

(3.103)

Apart from the Yukawa coupling correlator κ0,3 the formula (3.96) to compute the Picard-Fuchs
operators requires the correlators κ2,3 and κ3,4, which for the given example are calculated to
be,

κ2,3 =
28Q(−51 + 787Q+ 75Q2 +Q3)

(1 + 57Q− 289Q2 −Q3)2
ε2 ,

κ3,4 =
14Q(−15 + 3340Q− 32415Q2 + 614760Q3 + 20747Q4 − 20Q5 + 3Q6)

(1 + 57Q− 289Q2 −Q3)3
ε4 .

(3.104)

Picard Fuchs Operator We want to extract the Picard–Fuchs differential equation of the
quantum Kähler moduli space of the Rødland Calabi–Yau threefolds by using the universal
correlator formula (3.96). This example demonstrates that correlator formulas for Picard–Fuchs
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3.5 Givental’s Cohomological I-function and GLSMs

equations are applicable and particularly powerful for non-Abelian gauged linear sigma models,
as other methods are often more intricate to implement. Upon explicitly plugging in the values of
these correlators, computed in (3.103) and (3.104), into formula (3.96), we find the Picard–Fuchs
operator,

L =
196ε4

(1 + 57Q− 289Q2 −Q3)3

[
(3 +Q)2(1 + 57Q− 289Q2 −Q3)Θ4

+ 4Q(3 +Q)(85− 867Q− 149Q2 −Q3)Θ3 + 2Q(408− 7597Q− 2353Q2 − 239Q3 − 3Q4)Θ2

+ 2Q(153− 4773Q− 675Q2 − 87Q3 − 2Q4)Θ +Q(45− 2166Q− 12Q2 − 26Q3 −Q4)
]
,

(3.105)

which is in agreement with the literature [57] up to an overall factor. Note that the Picard–Fuchs
operator exhibits an apparent singularity at Q = −3. While this corresponds to a smooth
point in moduli space with regular solutions, we observe that the Yukawa coupling κ0,3 vanishes
with the above discussed implications on the chiral ring. Such apparent singularities are a
consequence of the universal form of the Picard–Fuchs operator (3.95), which implies either
that κ0,3 vanishes (as in the given example) or that the discriminant locus has a spurious
singular component. Similarly as for the complex Grassmannian fourfold Gr(2, 4), it is also
possible to deduce non-Abelian correlator relations from the Abelian Coulomb branch spectrum
summarised at the bottom of Table 3.6, which then — upon restricting to the linear gauge
invariant insertions trσ — yield differential operators. However for this higher dimensional case,
the method universal formula for Calabi-Yau target spaces proves to come in more handy.

This example illustrates that simply computing the three correlators κ0,3, κ2,3, and κ3,4 is
a powerful approach to derive Picard–Fuchs operators of any Calabi–Yau threefolds with a
single Kähler modulus — even for projective non-complete intersection varieties or complete
intersections in non-toric varieties. The Rødland sigma model target space at the large volume
point in the Kähler moduli space, X17 ⊂ Gr(2, 7), is an example of the latter.

3.5 Givental’s Cohomological I-function and GLSMs

We will now discuss the connection of the correlator relations as generators of a differential ideal
over the quantum Kähler moduli space of the gauged linear sigma model target space X to
the cohomology — of the target space X — valued formal function known as the Givental’s
cohomological I-function, referred to as simply the I-function in this section. Certain enumerative
invariants known as Gromov-Witten invariants can be interpreted as entities that connect these
two seemingly entirely distinct concepts. We will proceed in this section by giving a lightning-
quick review of the Gromov-Witten invariants and the I-function to the extent required to
understand the connection to gauged linear sigma model correlators and relations thereof. This
summary, which is inspired from [71, 73], will be followed by an important result of [84, 85]
which spells out an explicit relationship between the I-function and the A-twisted gauge theory
correlators. In particular, their technique provides a methodology to obtain the latter entirely
from the former. Finally, we state how this correspondence manifests itself in the context of the
differential operator representation of the correlator relations.
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3.5.1 Gromov-Witten Invariants and the I-function

Gromov-Witten invariants are invariants in enumerative geometry associated to a Riemann
surface Σ and a target space X. They are a consequence of the study of the moduli space
Mg of complex one-dimensional curves Σg, also know as Riemann surfaces, of genus g. For
instance, the g = 0 curve is the two-sphere S2 ' P1 and the g = 1 curve is the two-torus T 2.
The terminology ‘curve’, which frequently used to denote Riemann surfaces, can understood
by noting that dimC(Σg) = 1. Although, strictly speaking, a complex curve corresponds to an
oriented Riemann surface equipped with a complex strucure. A generalisation of the such a
complex curve is to consider one with n marked points with the corresponding moduli space
being denoted by Mg,n. Furthermore, we define stable curves as curves with no continuous
automorphism group. It is possible to consider the compactifications of these moduli spaces,
denoted by Mg and Mg,n, by considering stable curves.

Moduli Space of Stable Maps
A further generalisation of the compactified moduli space of stable curves,Mg,n, can be achieved
by considering the compactified moduli space Mg,n(X,β) of stable maps ϕ from a curve Σg,n of
genus g with n marked points to a target space X with β ∈ H2(X,Z). Here the map ϕ, with
ϕ : Σg,n → X, is such that ϕ([Σg,n]) = β. A special case is that of a map, from the curve to
a point in X, which is the curve itself. From the perspective of physics, the map ϕ can be
understood as a non-linear sigma model from the worldsheet to the target space.

The moduli space Mg,n(X,β) has a so-called virtual dimension,

vdim Mg,n(X,β) =

∫
β

c1(TX) + (dimCX − 3)(1− g) + n , (3.106)

where c1(TX) ∈ H2(X) is the first Chern class of the tangent bundle TX on X. The virtual
dimension can be understood as the expected dimension of the moduli space as all deformations
modulo the obstructions contribute to it.

Of primary interest to us are Riemann surfaces of genus g = 0 where the virtual dimension of
the moduli spaces of stable maps vanishes, implying that heuristically the moduli space collapses
to a countably finite set of points for a certain multiple of β ∈ H2(X,Z). For instance, this
happens to be the case when X is a Calabi-Yau threefold for M0,0(X,β) or alternatively for

MD1,D2,D3

0,3 (X,β), where D1, D2, and D3 are divisors on X such that,

MD1,D2,D3

0,3 (X,β) =
{(

P1, p1, p2, p3, ϕ
)
∈M0,3(X,β) | ϕ(pi) ∈ Di, for i ∈ {1, 2, 3}

}
. (3.107)

It is for this reason that Calabi-Yau threefolds, that play an essential role in string theory
as ideal candidates for internal compactification spaces, are of importance to Gromov-Witten
theory as well.

The final ingredient are the n evaluation maps evi,

evi :Mg,n(X,β)→ X , (3.108)

such that evi(Σg,n, p1, . . . , pn, ϕ) = ϕ(pi).
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Gromov-Witten Invariants
Ultimately, the Gromov-Witten invariants corresponding to the moduli spaces Mg,n(X,β) are
defined using the pullback evaluation maps as,

〈Ig,n,β〉 (α1, . . . , αn) =

∫
[Mg,n(X,β)]vir

ev∗1(α1) ∪ ev∗2(α2) ∪ . . . ∪ ev∗n(αn) , (3.109)

where the α1, . . . αn ∈ H∗(X) are the Poincaré duals of the divisors D1, . . . , Dn considered in
(3.107) for the case n = 3 and the ∪ is the usual cup product of the elements of a cohomology
ring. The domain of integration is defined precisely in mathematics as the virtual fundamental
class corresponding to the moduli space Mg,n(X,β), such that [Mg,n(X,β)]vir is a cycle of the
expected dimension (3.106). Thus the virtual dimension, while physically intangible for generic
moduli spaces, plays an important role in defining Gromov-Witten invariants.

Let us focus on the case described in (3.107) of a Calabi-Yau threefold X equipped with
the complexified Kähler class ω = B + iJ , where B is an antisymmetric two-form and J is
the real Kähler form on X. In the A-model, the operators that are in the BRST cohomology
correspond to elements of the cohomology group H(1,1)(X). Then the A-model correlator for the
BRST-closed operators α1, α2, α3 ∈ H(1,1)(X) can be defined in terms of the Gromov-Witten
invariants as,

〈α1, α2, α3〉 =
∞∑
~d=0

〈I
0,0,~d
〉 (α1, α2, α3) ~Q

~d , (3.110)

where,

~Q
~d := exp

(
2πi

∫
~d
ω

)
, (3.111)

and ~d ∈ H2(X,Z) with ω being expressed in the basis ωk of H2(X) as
∑

k t
k ωk. The degeneracy

in notation of this ~Q with the Fayet-Iliopolous parameter of the gauged linear sigma model is not
entirely coincidental as both of them signify parameters on the complexified Kähler moduli space
of the target space X. From the theory of topologically twisted non-linear sigma models [23],
reviewed briefly in Chapter 2, the A-model correlators are expected to be of the form,

〈α1, α2, α3〉 =

∫
X

α1 ∧ α2 ∧ α3 +
∑
~d

n~d

∫
~d
α1

∫
~d
α2

∫
~d
α3

~Q
~d

1− ~Q~d
, (3.112)

where n~d ∈ Z≥0 counts the holomorphic curves corresponding to degree ~d. The first term in
this formal series corresponds to the classical intersection number of the 2-cycles dual to α1, α2

and α3. Thus, the curve counting information stored in the numbers n~d directly yields the
Gromov-Witten invariants defined in (3.109).

Specifically, for a Calabi-Yau threefold with a one dimensional Kähler moduli space, i.e.,
dimH1,1(X) = 1 the A-model correlator (3.110) simplifies in the following way. For H ∈ H1,1(X)
denoting the hyperplane class,

〈H,H,H〉 =

∫
H ∧H ∧H +

∞∑
d=0

nd d
3 Qd

1−Qd
. (3.113)
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From a gauged linear sigma model perspective would correspond to a one-parameter model with
` = 1 in (3.1).

Mirror symmetry postulates and proves an equivalence of A- and B-model correlators for
mirror manifolds X and X̃. Thus the A-model correlators of a target space X, and hence the
corresponding Gromov-Witten invariants, can be computed given the B-model of the mirror
manifold X̃ and the so-called ‘mirror map’ between the Kähler moduli space parameter and the
complex structure moduli space parameter or X and X̃, respectively. As a starting point, the
Riemann surfaces of interest to us are those with genus g = 0, i.e, two-spheres. The advantage
of computing the correlators of an A-twisted gauged linear sigma model on a two-sphere is
that these correlators yield precisely the B-model coupling of the mirror target space when the
Fayet-Iliopolous parameter ~Q is identified the complex structure moduli space parameter of
the mirror. Thus, this method circumvents the need to construct the mirror manifold which
is a non-trivial procedure in itself [77, 86]. However, from the existing techniques the gauge
theory has to yet been shown to yield the mirror map, which is needed for extracting the
Gromov-Witten invariants from the B-model couplings.

Givental’s Cohomological I-function
A seminal development in the field of mirror symmetry came with Givental devising the
cohomological I- and J-function of a space X [83]. Givental’s proof of the mirror theorem
equates these functions in a way that indeed identifies A- and B-model correlators of mirror
manifolds. While the J-function can be computed as a solution to the so-called ‘quantum
differential equations’, the I-function is a formal function that can be constructed for Fano toric
varieties and intersections therein. In [87] Ciocan-Fontanine, Kim and Maulik generalise the
Givental I-function to more general GIT quotients than toric varieties. These geometries relate
to gauged linear sigma model target spaces of non-Abelian gauge groups.

In order to provide a schematic explanation of [85], which we will cover in the forthcoming
section, we start this discussion by introducing complete intersections in a compact weak Fano
toric variety in the language of gauged linear sigma model target spaces. A weak Fano toric
variety — denoted by Pd∆ — can be obtained from a U(1)` gauge theory with chiral multiplets
Xi, i = 1, . . . , d + `, of gauge charge ~ρxi and vanishing U(1)R charge qx` = 0. The weak Fano
condition implies that

∑
` ρ

x
`,s ≥ 0 for all s = 1, . . . , r. The gauge theory now realises the target

space geometry Pd∆ as the vector space Cd+` spanned by the chiral multiplets Xi modulo the
gauge transformations acting on the fields Xi. This geometric space is described precisely in
terms of the symplectic quotient defined in (3.22). In particular the complete intersection of
codimension n is given by X = Pd∆(~ρ p1 , . . . , ~ρ

p
n).

Givental introduced a cohomology-valued function known as the I-function in [83] for such
spaces. The I-function is a formal function in terms of the ‘input’ ~t = (t1, . . . , t`) — the
coordinates on H2(X) with respect to the basis ~p = (p1, . . . , p`) of H2(X) — and in the
parameter ~. It maps to the (even) cohomology ring Hev(X) and reads,

IX(~t, ~) = e
~t·~p/~

∑
~k

e
~t·~k
∏n
i=1

∏~k(vi)
s=−∞(vi + s~)

∏d+`
j=1

∏0
s=−∞(uj + s~)∏n

i=1

∏0
s=−∞(vi + s~)

∏d+`
j=1

∏~k(u`)
s=−∞(uj + s~)

∈ Hev(X) . (3.114)

Here ui, i = 1, . . . , d+ `, are the toric hyperplane classes of Pd∆ generating the ring Hev(Pd∆), and
vi, i = 1, . . . , n, are the first Chern classes of the non-negative line bundles O∆(~ρ pi ) associated
with the complete intersection X. The sum runs over the semi-group of compact holomorphic
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curves ~k in the variety X, and ~k( · ) abbreviates the intersection pairing
∫
~k
· . The I-function

upon being suitably expanded in the basis of Hev(Pd∆) yields the mirror-map as a ratio of the
second to the first term, which coincide with the log-period and the fundamental period of target
space. Furthermore, Givental’s mirror theorem, which associates the I- and the J-function in a
suitable way, also provides the B-model correlator directly from the I-function. With these two
facts at hand, the I-function can yield Gromov-Witten invariants of the associated target space.

In [85], a formula for the cohomological I-function was also stated for the Grassmannian
Gr(M,N) using localisation methods, which we present here now. A complex Grassman-
nian Gr(M,N) =: X has an M -dimensional universal subbundle with Chern roots given by
x1, . . . , xM ∈ H2(X), see appendix A for details on the standard bundles on the Grassmannian.
In terms of an input t, the I-function is given by,

IGr(M,N)(~t, ~) =
∑
~d∈ZM≥0

(−1)
(M−1)

M∑
i
di
e

M∑
i

(di+xi/~)t
·

∏
1≤i<j≤M

(xi − xj + (di − dj)~)

∏
1≤i<j≤M

(xi − xj)
M∏
i=1

di∏
l=1

(xi + l~)N
. (3.115)

We will recall this form of the I-function in Chapter 4 in order to compare it with its lift in 3d
to the quantum K-theoretic I-function of Givental [83].

3.5.2 I-function and GLSM correlators

The work of [85] conjectures and proves for certain classes of examples a direct relationship
between the Givental I-function and the gauged linear sigma model correlators. The authors
define a function Φ as a bilinear pairing of Givental I-function as,

Φ(~t,~t′, ~) =

∫
X
IX(~t,−~) ∪ IX(~t′, ~) . (3.116)

The conjecture of [85] asserts that Φ is the generating function of the discussed gauge linear
sigma model correlators.

Chiral multiplets U(1)r charge U(1)R charge twisted masses

Xi, i = 1, . . . , d+ ` ~ρxi 0 mi

P j , j = 1, . . . , n −~ρ pj 2 mj
P

Table 3.7: This table shows the matter spectrum of the U(1)r gauged linear sigma model with the
semi-classical large volume target space X = Pd∆(~ρ p1 , . . . , ~ρ

p
n). The U(1)` charge vectors of the chiral

fields Xi correspond to the one-dimensional cones in the fan ∆, realising the toric variety Pd∆ as the
ambient space of X. Furthermore, the chiral fields P j are responsible for the complete intersection locus
X ⊂ Pd∆, which arises in the gauge theory from the F-terms of the superpotential.

We expect that the stated correlator conjecture (3.118) holds beyond the class of Abelian
gauged linear sigma models. In fact the authors of [85] prove the correspondence for Grass-
mannian target spaces. For a further connection, appended by several non-trivial examples,
between non-Abelian gauged linear sigma models and I-function on the target spaces, see [88].
However, in order to understand the essence of this relation, let us consider the Abelian gauged
linear sigma model with the chiral matter spectrum displayed in Table 3.7. It realises the
complete intersection X as its semi-classical target space in the large volume phase. Then, upon
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identifying the arguments of the Givental’s I-function (3.114) with the gauge theory parameters
according to the dictionary,

ε = ~ , e
~t·~k = (−1)

∑n
i=1 ~ρ

p
i ~Q

~k , (3.117)

the correlators (3.41) of the gauged linear sigma model in Table 3.7 are given by,

κ~n,~m( ~Q, 0, ε) = ε|~m|1(−ε)|~n|1 ∂|~n|1+|~m|1Φ(~t,~t′, ε)

∂tn1
1 · · · ∂t

nr
r ∂t′1

m1 · · · ∂t′rmr

∣∣∣∣∣
~t=~t′=log(± ~Q)

. (3.118)

For the correspondence we focus on the correlators for vanishing twisted masses mi and mj
P .

In fact, the twisted mass dependence can be quickly recovered by noting that the equivariant
parameters of the toric C∗-symmetries, Λi, i = 1, . . . , d+ `, and those of the C∗-symmetries of
the line bundles O∆(~ρ pj ), Λ′j , j = 1, . . . , n, correspond precisely to the twisted masses mi and

mj
P , respectively. Thus it is straight-forward to restore the twisted masses in order to obtain

the generalised correlator correspondence in the equivariant setting. Inserting the geometric
definition (3.118) of the gauge theory correlators into a south pole correlator relation (3.47) and
using eqs. (3.56) and (3.62), we find,

0 = RS( ~Q, ε, κ~n,·) = (−1)|n|1
∫
X

(ε~Θ)~nIX( ~Q,−ε) ∪

(∑
~m

c~m( ~Q, ε)(ε~Θ)~mIX( ~Q, ε)

)

= (−1)|n|1
∫
X

(ε~Θ)~nIX( ~Q,−ε) ∪
(
RS( ~Q, ε~Θ, ε)IX( ~Q, ε)

)
.

(3.119)

Using the relation between ~t and ~Q as in (3.111) and (3.117), we express the Givental I-function
in terms of the gauge theory parameters ~Q instead of the parameters ~t. As the above relation
holds for general ~n, we conclude that the differential operators RS of the south pole correlator
relations annihilate the Givental I-function, i.e.,

RS( ~Q, ε~Θ, ε)IX( ~Q, ε) = 0 . (3.120)

This result explicitly connects the differential operators obtained from the gauge theory correlator
relations with the quantum cohomology of the target space geometry. The established relationship
of the correlator relations to the Givental I-function also reflects the close relationship between
the analysed correlators and the quantum A-periods of the A-twisted gauged linear sigma model
considered in [89].

3.5.3 Examples

We now flesh out the ideas mentioned above by stating the I-functions for the gauged linear sigma
model target spaces discussed in Sections 3.1, 3.3 and 3.4 from the literature and noting that
these I-functions are annihilated by the differential operator representations of the respective
correlators relations computed in the previous sections.
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3.5 Givental’s Cohomological I-function and GLSMs

Projective Line P1

For the projective line the Givental I-function takes the form [83,90],

IP1(H,Q, ε,mi) =

∞∑
k=0

1∏k
`=1(H + m1 + `ε)(H + m2 + `ε)

Q
H
ε

+k . (3.121)

Here, H is the hyperplane divisor of P1 and the twisted masses mi correponds to the equivariant
parameters of the (C∗)2-action canonically acting on the homogeneous coordinates of the
projective line P1. The differential operator representation of the correlator relations given by
(3.69),

L(Q, ε,mi) = (εΘ + m1)(εΘ + m2)−Q , (3.122)

annihilates the stated I-function as predicted in (3.120), with θ = Q∂Q.

Quintic P4[5]
The Givental I-function of the quintic hypersurface for generic twisted masses is given by [83,90],

IP4[5](H,Q, ε,mi,mP ) =

∞∑
k=0

∏5k
`=1(5H −mP + `ε)∏k

`=1(H + m1 + `ε) · · · (H + m5 + `ε)
(−Q)

H
ε

+k . (3.123)

The differential operator given by (3.100) annihilates this I-function,

L(Q, ε,mi,mP ) = (εΘ + m1) · · · (εΘ + m5) +Q(5εΘ−mP + ε) · · · (5εΘ−mP + 5ε) , (3.124)

namely LIP4[5] = 0 as expected.

Grassmannian Gr(2, 4)
For this example we focus on the isomorphism Gr(2, 4) ' P5[2] from (3.70) attained from the
Plücker embedding of the Grassmannian into a projective space along with a Plücker relation.
The Givental I-function of quadratic hypersurfaces in P5 for vanishing twisted masses is given
by [83,90],

IP5[2](H,Q
′, ε) =

∞∑
k=0

∏2k
`=1(2H + `ε)∏k
`=1(H + `ε)6

Q
H
ε

+k , (3.125)

where H is the hyperplane class of P5. The differential operator that annihilates this I-function
is given by,

L(Q, ε) = (εΘ)5 − 2Q(2εΘ + ε) , (3.126)

and it evidently coincides with our computation (3.85).
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CHAPTER 4

3d Gauge Theories and Wilson Loop Algebras

The focus of this chapter will be supersymmetric gauge theories in 3d, specifically N = 2
theories on the solid torus D2 × S1. The broad study of supersymmetric gauge theories with
four supercharges in three dimensions was initiated by the works of [51, 91, 92], which were
themselves followed by the study of N = 4 theories in 3d in [93–96]. The comprehensive work
in [97] established a correspondence between 3d gauge theories with N = 2 supersymmetry
and quantum K-theory on their target spaces, motivated in [98–100]. In particular, this work
proposed that 3d N = 2 gauge theories with a target space X serve as an ultraviolet lift of
permutation equivariant quantum K-theory on X [31], much in the same way the 2d gauged
linear sigma models of Chapter 3 are ultraviolet lifts of quantum cohomology on the target
space. The results and implications of this work provide fodder for the original work of the
author [32] which will be covered in this chapter. As in the case of the previous chapter on
2d, we will begin in Section 4.1 by briefly summarising the Lagrangian in flat 3d and we will
note that while various key players of 2d theories make a reappearance, there are additional
phenomena specific to 3d that provide this class of theories a further layer of complexity. In
Section 4.2 we will hone in on theories defined on the solid torus D2×S1 and state the partition
function obtained via localisation in [54], although other methods to compute the partition
function exist [101, 102]. Furthermore, we will focus explicitly on the gauge theories with
target spaces that are Grassmannian manifolds Gr(M,N) and compute their localised partition
function. Motivated by the of 3d gauge theory/quantum K-theory correspondence of [97], from
the partition function of gauge theories with Grassmannian target spaces we will extract and
explain the I-function of Givental’s permutation symmetric quantum K-theory. We will move
on in Section 4.3 by first giving a brief introduction to objects of quantum K-theory that will
be relevant to us. We will then evaluate the relations of the quantum K-theory ring on the
Grassmannian and compute the so-called ‘quantum difference equations’ that annihilate this
I-function. Finally, we will briefly study the 2d limits of each of the quantities computed in
Section 4.3 to find agreement with the results from 2d computations in Chapter 3.

4.1 Lagrangian in 3d

Since we glimpsed the Lagrangian of gauge theories in 3d with four supercharges in Section 2.3
of Chapter 2, we will collect all the terms here. Recall that the major ingredients are the
chiral multiplet Φ in a representation R of the gauge group G, vector multiplet V and the
outer automorphism group of the supersymmetry algebra U(1)R symmetry. There is also a
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linear multiplet Σ, a cousin of the twisted chiral multiplet in 2d, whose lowest component
is is the real scalar in the vector multiplet corresponding to the component of the 4d vector
multiplet gauge potential in the extra direction. It is defined as Σ := εαβDαDβV , where D
is usual differential operator on superspace. In addition there is a supersymmetric Chern-
Simons term in 3d theories with a gauge group G, a descendant of Chern-Simons terms in
non-supersymmetric theories. The gauge group G takes the generic form it did in the previous
chapter, i.e., G =

(
U(1)` ×H1 × . . .×Hm

)
/ Γ where Hi’s are semi-simple groups and Γ is a

discrete normal subgroup. The Lagrangian consists of kinetic terms for the chiral and vector
multiplet, a term for the superpotential W , a Fayet-Iliopolous (FI) term for each U(1) factor in
G and finally a supersymmetric Chern-Simons (CS) term. It takes the form,

L = L(matter kin.+gauge kin.) + LW + LFI + LCS

=

(∫
d4θ (ΦeV Φ +

1

g2
s

tradj.(Σ
2))

)
+

(∫
d2θ W (Φ) + h.c.

)
+
∑̀
a=1

(
iζa

∫
d4θ Va

)
+ LCS .

(4.1)

As for the 2d case, the expression above is actually the Lagrangian density, however we will
consistently refer to it as the Lagrangian. As always, in the kinetic term for the matter multiplet,
the vector multiplet V in the exponent is given by V = VaT

a
R where T aR are the generators of G

in the representation R defined by the chiral multiplet. The parameter gs is the gauge coupling
constant and ζa is the real Fayet-iliopolous parameter. In the gauge kinetic term Σ = ΣaT

a

with T a being the generators of G in the adjoint representation. Note that unlike the 2d case
there is no topological theta term because the term in Lagrangian that corresponded to the
theta-coupling is absent in 3d. In the Fayet-Iliopolous term, the Va denotes a trace that picks
up the ath U(1) factor in V , i.e., for V = VαT

α where Tα are generators of G in the adjoint
representation, this trace will retain only those Vα’s corresponding to U(1)α ⊂ G.

We now discuss the Chern-Simons term LCS in the Lagrangian. Unlike the other terms in the
Lagrangian, the Chern-Simons term does not look much simpler in the superspace notation,
however the interested reader may refer to [103–107]. In terms of the components of the vector
superfield it is given by,

LCS =
κ

4π
tradj.

(
A ∧ dA+

2

3
A ∧A ∧A− λ̄λ+ 2Dσ

)
, (4.2)

where A is the gauge connection, λ is the gaugino, D is the auxiliary D-field and σ is the real
scalar in V obtained from the dimensional reduction of the gauge connection of the 4d N = 1
vector superfield. The overall constant κ is known as the Chern-Simons level and is subject to a
quantisation condition in order to ensure invariance under large gauge transformations [50, 108].
Large gauge transformations refer to those elements of the gauge group G that are disconnected
from the identity, which in 3d is given by the third homotopy group π3(G) of G. For instance,
π3(SU(N)) = Z, i.e., the winding numbers of SU(N) are integral.

We refine the notation of the Chern-Simons level κ by noting that there exists the pure
Chern-Simons term κi for the Abelian as well as the non-Abelian factors in G labelled by i ,

κi
4π

tradj.

(
Ai ∧ dAi +

2

3
Ai ∧Ai ∧Ai

)
, (4.3)
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and the mixed Chern-Simon term κij for just the U(1) factors in G,

κij
4π

tradj. (Ai ∧ dAj + dAi ∧Aj) , (4.4)

where we focus on the gauge connection dependent terms in (4.2) for simplicity. The indices i, j in
(4.4) could either label the dynamical gauge fields or the background gauge fields corresponding
to the flavour symmetries of the theory which include the R-symmetry. There are no mixed
terms for Abelian and non-Abelian factors in G because the trace would render lone non-Abelian
factors zero.

In supersymmetric Chern-Simons theories, such as the one we are dealing with, an additional
subtlety arises because of the charged fermions. In the following we will refer to the Chern-
Simons level κ in the Lagrangian (4.2) as the bare Chern-Simons level. Due to an argument
of [109, 110], massive charged fermions that have been integrated out contribute to the bare
Chern-Simons level as potentially half integer terms. The total Chern-Simons level, together
with the contribution from the massive fermions, is known as the effective Chern-Simons level κ̂.
Gauge invariance requires κ̂ ∈ Z, thus if the fermion contribution is an half-integer, so must
the bare Chern-Simons level κ be. This case with non-vanishing Chern-Simons level leads to
the so-called ‘parity anomaly’ of supersymmetric Chern-Simons theory. On the other hand, if
one opts to preserve the parity symmetry then the gauge symmetry must necessarily be broken.
Hence, in interest of preserving the gauge symmetry we adhere to the parity anomaly.

The renormalisation group flow of 3d theory with four supercharges functions analogously
to the 2d case in the previous chapter, however the extra degree of freedom along the third
dimension leads to more enumerative insight into the target space geometry X. For details on
the infrared dynamics of the 3d theories in question, we refer the reader to [103]. Whereas in
the case of the 2d, the resulting I-function was an element of the quantum cohomology ring on
X, in 3d a new I-function will emerge from the gauge theory computation which takes values in
the so-called quantum K-theory ring on X.

4.2 Partition Function on D2 ×q S1

The partition function of a gauge theory in 3d with four supercharges was first done in [38] on a
three-sphere S3 and the squashed three-sphere S3

b using localisation [39]. In [45] a certain index
of an N = 2 gauge theory on an S2×q S1 was computed in order count the BPS states, i.e., those
states that preserve half of the supersymmetry. Here q is a twisting parameter that quantifies
the holonomy along the S1 and appears in the index formula as the chemical potential for the
combined U(1)R and S2 rotations. Following these works Yoshida and Sugiyama computed the
partition function on the D2 ×q S1 with N = 2 supersymmetry. It is this reference that we will
closely follow in this section.

The methodology to localise the supersymmetric partition function on a curved space is
as discussed in Chapters 2 and 3. One tries to find a solution to the conformal Killing
spinor equations corresponding to the curved space metric that preserve the desired amount of
supersymmetry and subsequently computes the supersymmetric transformation of all the fields
with respect to the Killing spinor solutions. This helps append the flat space Lagrangian with
the necessary curved space terms of order 1/r and 1/r2, where r is the characteristic length
scale of the manifold. The solution to the Killing spinor equations is constrained by the chosen
BRST generator with respect to which the localisation is to be performed. We briefly note that

69



Chapter 4 3d Gauge Theories and Wilson Loop Algebras

in order to perform a twist on the supersymmetry generator in 3d, akin to the topological twist
in 2d introduced in Chapter 2, there must be at least 8 supercharges, i.e., twice the amount
that we are interested in.

The manifold in question, i.e., D2 × S1, has a two-dimensional boundary S1 × S1. Supersym-
metric theories on manifolds with boundaries exhibit subtleties as the entire supersymmetry
algebra doesn’t close on the boundary. The boundaries of open manifolds can preserve at most
half of the supersymmetry that exists in the bulk. The subset of the supersymmetry that is
preserved on the boundary can be chosen and one choice that is of particular interest from a
string theory perspective is the 2d N = (0, 2) algebra. This is so, amongst other reasons, because
a 2d N = (0, 2) is the worldsheet theory of a ten-dimensional heterotic string which has various
phenomenological applications. Since the boundary supersymmetry is chiral, these boundary
conditions are also known as those of the B-type. Alternatively a choice of the generators
that preserves an N = (1, 1) supersymmetry in 2d corresponds to a boundary condition of
the A-type. Equipping an open curved manifold with supersymmetry must also preserve the
chosen supersymmetry on the boundary, in this case that of the B-type. This leads to a choice
amongst a ‘Dirichlet’ versus a ‘Neumann’ boundary condition for the chiral as well as the
vector multiplet. The nomenclature has been borrowed from the boundaries on a 2d worldsheet
because, heuristically, for the chiral multiplet in 3d the Neumann condition corresponds to the
vanishing of the derivative of the chiral field scalar whereas the Dirichlet condition corresponds
to the vanishing of the chiral scalar itself. This holds similarly for the scalar σ of the linear
multiplet Σ in 3d. In general all the chiral multiplets and the vector multiplets can be assigned
any permutation of Neumann and Dirichlet boundary conditions. Since the original work of the
author [32] deals with models where all fields have Neumann boundary conditions, that will be
the focus for the course of this thesis. That is also to say that all contributions to the partition
function will only be stated for Neumann b.c. without mention, for details on Dirichlet b.c. we
refer the reader to [54,102].

Furthermore, the localisation computation must be done so as to preserve the BRST symmetry
on the boundary S1 × S1 as well. On the saddle point of localisation, the component of the
gauge potential Aµ along the S1 is Cartan subalgebra h-valued and the components of along
the D2 are trivial. The localised path integral reduces to a finite dimensional integral over the
U(1) Wilson line z along the S1 which takes values in the Cartan subgroup U(1)rk(G) ⊂ G, i.e.,

z = Pei
∫
Aµdxµ = Pei

∫
S1 A3dx3

,

= Pe
i

(
rkG∑
c=1

acT c

)∫
S1 dx

3

= Pe
iβr

(
rkG∑
c=1

acT c

)
,

=: e~σ ,

(4.5)

where P is the path ordering operator required to define a Wilson loop and in the second line r
is the radius of the D2 and βr is the length of the perimeter of the S1. In the last equation we
introduce the Cartan subalgebra h-valued field ~σ which is a rk(G)-dimensional vector. All the
other fields are trivial at the saddle point of localisation. Finally, the path integral takes the
form [54] 1,

ZD2×qS1 =
1

|WG|

∮ rk(G)∏
a=1

dσa
2πi

Zcl(ζ, ~σ, q) Z1-loop(~σ, q) , (4.6)

1 q here is square of the one that appears in [54].
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where WG is the Weyl group of G. We now state the individual classical and one-loop contribu-
tions and the ingredients therein.

(i) The classical contribution to the path integral Zcl at the saddle point of localisation locus
is given by Fayet-Iliopolous and Chern-Simons terms in the Lagrangian, i.e.,

Zcl = ZFI · ZCS .

The Fayet-Iliopolous term is given by,

ZFI = e
−2π

∑̀
i=1

ζi
log(q)

tri(~σ)
,

(4.7)

where the sum runs over the U(1) factors in G and tri(~σ) is the component of ~σ corres-
ponding to the ith U(1) generator. The Chern-Simons term is given by,

ZCS = e

1
log(q)

∑
i,j
κijtr(~σi~σj)

. (4.8)

Here κij denotes all possible Chern-Simons levels, including both the pure and the mixed
ones. In particular, the entry of this vector corresponds to the subgroups of G paired
with themselves and mixed terms for the U(1) factors paired with the U(1)R symmetry
as introduced in in (4.1). For instance, for G = U(2) ' (SU(2)×U(1)) /Z2, the Chern-
Simons coefficient vector would have three non-trivial entries, κij = (κS , κA, κR), where the
levels κS and κA are for the self-paired (SU(2),SU(2)) and (U(1),U(1)) terms, respectively,
and κR is the mixed (U(1),U(1)R) level.

(ii) The one loop contribution Z1-loop to the partition function around the saddle point is a
product of the chiral and the vector multiplet terms, i.e.,

Z1-loop = Zchiral · Zvector .

For a gauge theory with N chiral multiplets φi with the charge vector ~ρi under the maximal
torus U(1)rk(G) of G, see Chapter 3 Section 3.2, U(1)R charge ∆i and charge fir under the
flavour symmetry group with the chemical potential yr,

Zchiral =

N∏
i=1

e

(
− log(q)

24
− 1

4(u2
i−ui)

)
1(

e~ρi·~σq∆i/2yfirr , q
)
∞

, (4.9)

where the product ~ρ · ~σ arises from the natural pairing between the elements of the dual
Lie algebra h∗ and the Lie algebra h, respectively. The flavour charges can be reinterpreted
as a shift in the value of ~σ by real masses. The ui is defined as,

qui = e~ρi·~σq∆i/2yfirr . (4.10)

The vector multiplet contribution is a product over the non-zero root vectors ~α of G
corresponding to the charges of the W -bosons that appear in the abelianised theory,

Zvector =
∏
α

e
(~α·~σ)2

4logq

(
e~α·~σ, q

)
∞

, (4.11)
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see Table 3.2 in Chapter 3 for details on the Abelianised spectrum.

In both the chiral and vector 1-loop determinants, (4.9) and (4.11), the q-Pochhammer
symbol makes an appearance and is defined as,

(x, q)k =
k−1∏
n=0

(1− xqn) . (4.12)

The inverse of the q-Pochhammer symbol (x, q)−1
k acquires poles when x = q−d, where

d ∈ Z≥0 and d < k. Additional properties of the q-Pochhammer symbol will be discussed
in the forthcoming subsection on the example of the Grassmannian target space.

4.2.1 Grassmannian Gr(M,N) Target Space

The aim of this section is to evaluate the partition function (4.6) for a gauge theory with gauge
group G = U(M) with the matter content displayed in Table 4.1. A gauge theory with the
characteristics as displayed in this table has a Grassmannian manifold Gr(M,N) as its target
space. The content presented here is dominantly motivated from the work of the author [111].

non-Abelian gauge theory spectrum:

Chiral multiplets U(M) Representation U(1)R charge real masses

φi, i = 1, . . . , N �+1 0 0

Abelianised gauge theory spectrum:

Chiral multiplets U(1)M charge U(1)R charge real masses

φ
(1)
i , i = 1, . . . , N (+1, 0, · · · , 0) 0 0

φ
(2)
i , i = 1, . . . , N (0,+1, · · · , 0) 0 0

...
...

...
...

φ
(M)
i , i = 1, . . . , N (0, · · · , 0,+1) 0 0

W12 (W21) (+1,−1, 0, · · · , 0) (with +↔−) 2 0

W23 (W32) (0,+1,−1, · · · , 0) (with +↔−) 2 0
...

...
...

...

W1N (WN1) (+1, 0, · · · , 0,−1) (with +↔−) 2 0

Table 4.1: The top part of the table shows the chiral matter multiplets of the U(M) gauged linear sigma
model of the complex Grassmannian manifold Gr(M,N), where the U(M) representation is specified in
terms of the Young tableau of the non-Abelian subgroup SU(M) together with the charge of the diagonal
U(1) subgroup as a subscript. We work with the case where all the real masses, i.e., the flavour charges,
have been set to zero. The bottom part of the table lists the chiral spectrum in the Abelianised theory,
which comprises the decomposition of the non-Abelian matter multiplets into representations of the
unbroken Abelian subgroup U(1)M together with the 2 ·

(
M
2

)
W -bosons that are part of the Abelianised

spectrum.

Before we discuss the specific form of the classical and one-loop contributions to the partition
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function, let us take note of the fact that the chiral multiplet contribution to the one-loop
determinants simplifies to,

Zchiral =

 M∏
j=1

e

(
− log(q)

24
− 1

4

(
~ρ(j)·~σ
log(q)

)2

+ 1
4

(
~ρ(j)·~σ
log(q)

))
1(

e~ρ
(j)·~σ, q

)
∞


N

. (4.13)

The q-Pochhammer symbol in the expression above acquires poles when,

e~ρ
(j)·~σ = q−(dj−εj) = e−log(q)(dj−εj) =: e−log(q)(d̃j) , (4.14)

with dj ∈ Z≥0 and d̃j = nj− εj . Here the variables εj ’s have been introduced in order to redefine
the dummy variable of integration from σa to εj . Since the path integral simplifies to a sum
over the poles of the integrand, according to the residue theorem we evaluate all the expressions
within the integrand at the pole locus. The individual expressions for the classical and one-loop
contributions at the pole locus are stated and simplified as follows.

(i) The classical Fayet-Iliopolous term is given by,

ZFI = e
2π ζ

log(q)
tr(~σ)

=: Q̃

(
M∑
i=1

d̃i

)
,

(4.15)

where Q̃ := e−2πζ .

(ii) The classical Chern-Simons term is given by,

ZCS = q
1
2
κStrSU(M)(d̃

2)+ 1
2
κAtrU(1)(d̃

2)+κRtrR(d̃) , (4.16)

where the parameters κS and κA are the Chern-Simons levels for the SU(M) and U(1)
subgroups of U(M) and the parameter κR is the Chern-Simons level for the mixed U(1)-
U(1)R term. Here, for the M -dimensional vector d̃ = diag(d̃1, . . . , d̃M ) the trace symbols
are defined as,

trU(M)(d̃
2) =

∑
a

d̃2
a , trU(1)(d̃

2) =
1

M

(∑
a

d̃a

)2

,

trSU(M)(d̃
2) = trU(M)(d̃

2)− trU(1)(d̃
2) , trR(d̃) =

∑
a

d̃a .

(iii) The one-loop determinant from the chiral matter can be simplified by inserting (4.14) in
(4.13),

Zchiral =

 M∏
j=1

q

(
− 1

24
− 1

4(d̃j)
2− 1

4(d̃i)
)

1(
q−d̃j , q

)
∞

N

,

= q

(
−MN

24
−N

4

M∑
j=1

(d̃2
j+d̃i)

)
·
M∏
j=1

1(
q−d̃j , q

)N
∞

.

(4.17)
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Simplifying one q-Pochhammer term as follows,

1(
q−d̃j , q

)
∞

=
1

(q, q)∞
· Γq(−d̃j)

(1− q)1+d̃j
,

=
1

(q, q)∞
· 1

(1− q)1+d̃j
· (−)djq(

dj+1

2
)−djεj · Γq(εj)Γq(1− εj)

Γq(1 + nj − εj)
,

=
(−)dj

(q, q)∞
· q

(dj+1

2
)−djεj

(1− q)1−εj · Γq(εj) ·

 1
dj∏
r=1

(1− qr−εj )

 .

(4.18)

In the first equality we used the identity relating the q-Gamma function2 to the q-
Pochhammer function,

Γq(x) =
(q, q)∞
(qx, q)∞

(1− q)1−x , (4.19)

and in the second equality we used the identity,

Γq(x− k)Γq(1− x+ k) = (−)kq
k(k+1)

2
−kx Γq(x)Γq(1− x) . (4.20)

Plugging the modified expression for the single q-Pochhammer (4.18) into the chiral
one-loop determinant (4.17) and simplifying the exponent of q we finally obtain,

Zchiral = q

(
−MN

24
+N

4

M∑
j=1

(d̃2
j+d̃j−2(εj

2
))

)
M∏
j=1

(
(−)dj

(q, q)∞
· Γq(εj)

(1− q)1−εj

)N
·

 1
dj∏
r=1

(1− qr−εj )N

 .

(iv) The vector multiplet contribution to the one-loop determinant comes from the W -bosons
in the abelianised theory such that starting from (4.11),

Zvector =
∏
α

e
(~α·~σ)2

4logq

(
e~α·~σ, q

)
∞

,

=
∏

1≤i<j≤M
q
d̃2ij
2 (qd̃ij , q)∞ (q−d̃ij , q)∞ ,

(4.21)

where d̃ij := d̃i − d̃j . Introducing x := εj − εi and k := dj − di and using (4.20), the
product of q-Pochhammer symbols in the above expression can be rewritten as,

(qd̃ij , q)∞ (q−d̃ij , q)∞ =

(
(−)k

(q, q)2
∞(1− q)

Γq(x)Γq(1− x)

)
·
(

(1− qk−x · qkx−
k
2

(k+1))
)
,

=

(
(−)k

(q, q)2
∞(1− q)

Γq(x)Γq(1− x)

)
· q−

(k−x)2

2

(
q−

k−x
2 − q

k−x
2

)
q(
x
2) .

(4.22)

2 The q-Gamma function is a q-extension of the Gamma function with limq→1 Γq(x) = Γ(x). For a formal
definition, see [97,112].
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Substituting x and k in the last expression of the above equation and substituting this into
the one-loop determinant for the vector multiplet (4.21), the final expression for Zvector

reads,

Zvector =
∏

1≤i<j≤M
(−)dj−di

(q, q)2
∞(1− q)

Γq(−εij)Γq(1− εij)
q(
εij+1

2
)q−

d̃2ij
2 ·
(
q
d̃2ij
2 (q

d̃ij
2 − q−

d̃ij
2 )

)
.

(4.23)

Collecting all the simplified expressions for the classical and the one-loop terms into the path
integral, summing over the poles of the q-Pochhammer symbols and changing the variable of
integration from ~σ to ~ε we obtain,

ZD2×qS1 =
(logq)M

M !

∑
~d∈ZM≥0

∮ ( M∏
a=1

dεa
2πi

)
Q̃

(
M∑
i=1

d̃i

)
· q

1
2
κStrSU(M)(d̃

2)+ 1
2
κAtrU(1)(d̃

2)+κRtrR(d̃) ·

× q

(
−MN

24
+N

4

M∑
j=1

(d̃2
j+d̃i−2(εj

2
))−

∑
i<j

d̃2ij
2

)
·

×
M∏
j=1

(
(−)dj

(q, q)∞
· Γq(εj)

(1− q)1−εj

)N
·
∏
i<j

(−)dj−di
(q, q)2

∞(1− q)
Γq(−εij)Γq(1− εij)

q(
εij+1

2
) ·

×


∏

1≤i<j≤M

(
q
d̃2ij
2 (q

d̃ij
2 − q−

d̃ij
2 )

)
M∏
j=1

dj∏
r=1

(1− qr−εj )N

 .

(4.24)

In the expression above the Chern-Simons levels κS , κA and κR can be redefined to incorporate
the contributions in the form of the q(...) terms from the one-loop determinants. We note that
this correction of the bare Chern-Simons levels from the one-loop determinants is in fact caused
by the massive fermions mentioned in Section 4.1. The new Chern-Simons levels are denoted by
κ̂S , κ̂A and κ̂R are the effective Chern-Simons levels introduced in Section 4.1 and they fulfil
the quantisation condition,

κ̂S ∈ Z ,
κ̂S − κ̂A
M

∈ Z , 2κ̂R ∈ Z . (4.25)

The quantisation condition that mixes κ̂S and κ̂S is a consequence of the global structure of the
gauge group U(2) ' (SU(2)×U(1)) /Z2.

Moreover the expression for the partition function can be split into a factor that is the
summation index ~d-dependent, known as Givental’s permutation symmetric ISQK-function for
quantum K-theory on the Grassmannian Gr(M,N), and a ~d-independent factor, known as the
folding factor fD2 . The consolidated expression reads,

ZD2×qS1 =

∮ ( M∏
a=1

dεa
2πi

)
fD2(q,~ε) · ISQKGr(M,N)(q,Q,~ε) . (4.26)
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Givental’s permutation symmetric I-function, ISQKGr(M,N), is given by,

ISQKGr(M,N)(q,Q,~ε) = c0

∑
~d∈ZM≥0

(−Q)

(
M∑
i=1

d̃i

)
qCS(d̃)


∏

1≤i<j≤M

(
q
d̃2ij
2 (q

d̃ij
2 − q−

d̃ij
2 )

)
M∏
j=1

dj∏
r=1

(1− qr−εj )N

 . (4.27)

Here the normalisation factor c0 is chosen such that ISQK
Gr(M,N)|Q=0 = (1− q) in order to compare

with the formulae in [31] and is explicitly given as,

c0 =
1− q

qCS(−ε) ∏
1<≤i<j≤M

qε
2
ij/2

(
q−εij/2 − qεij/2

) .
The factor CS(−ε) is such that qCS(d̃)|(d=0) =: qCS(−ε). In subsequent reference to the ISQKGr(M,N)-
function we will not state the factor c0 explicitly, but it will be implicit in all the calculations.
As we will see, for the purpose of the derivation of the Wilson loop algebra for canonical Chern-
Simons levels, it will not play an important role. The new parameter Q has been introduced
in (4.27) such that Q = (−)N+M Q̃. The Chern-Simons term qCS(d̃) is given in terms of the
effective Chern-Simons levels as,

qCS(d̃) = q
1
2
κ̂StrSU(M)(d̃

2)+ 1
2
κ̂AtrU(1)(d̃

2)+κ̂RtrR(d̃) , (4.28)

where the effective levels κ̂ are expressed in terms of the bare levels κ as follows,

κ̂S = κS −M +
N

2
, κ̂A = κA +

N

2
κ̂R = κR +

N

4
. (4.29)

The folding factor fD2(q,~ε) in (4.26) for X := Gr(M,N) is given by,

fD2(q,~ε) =(−)
(1−M−N)

M∑
i=1

εi
· (logq)M

M !
(−η(q))−MN (q, q)

2(M2 )
∞ qg(ε) (1− q)(−1+c1(ε))

×

∏
i<j

(logq)2 εij · εji

M∏
i=1

(logq εi)N
· ΓX,q tdβ′(X) ,

(4.30)

where η(q) = q1/24(q, q)∞ is usual eta function, and β′ = β~ = −logq. The exponent of q in the
folding factor is a characteristic class dependent quantity and is explicitly given by,

g(ε) = −c1

2
− ch2(ε) + CS(−ε) ,

where c1(ε) and ch2(ε) are the first Chern class and the second Chern character of the tangent
bundle on Gr(M,N).

The characteristic classes ΓX,q and tdβ′(X) of the target space X = Gr(M,N) appearing in
the folding factor are known as the q-Gamma class and the β′-dependent Todd class, respectively.
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They are defined as follows [112,113] ,

ΓGr(M,N),q =

M∏
i=1

Γq(1 + εi)
N

M∏
i<j

Γq(1 + εij)Γq(1− εij)
,

tdβ′(Gr(M,N)) =

(
M∏
i=1

(logq) εi
(1− q−εi)

)N
·

 M∏
i<j

(1− qεij )(1− qε−ij )
(logq)2 εij · εji

 .

(4.31)

Here the ε’s play the role of the Chern roots of the universal subbundle on the Grassmannian.
For more details on the Grassmannian and its characteristic classes we refer the reader to the
Appendix A. We note in passing that the expression for the folding factor is sensitive to the
boundary conditions of the fields, thus the expression in (4.30) is specific to the case when all
fields have Neumann boundary conditions.

This concludes our analysis of the partition function on D2 ×q S1 for Grassmannian target
spaces.

4.3 Quantum K-theoretic I- and J-functions

In the previous section we precociously split the partition function on a D2×q S1 for a Gr(M,N)
target space into an I-function, precisely the Givental’s permutation symmetric I-function
which was denoted by ISQKGr(M,N), and a folding factor that was determined by the boundary

conditions of the gauge theory content and the characteristic classes of the target space Gr(M,N).
We will now briefly review quantum K-theory and Givental’s quantum K-theoretic I- and J-
functions to the extent required to understand the concepts and new results. This will be
far from a comprehensive review of these purely mathematical concepts and will stand in
primarily as a physicist’s interpretation owing to the author’s background as a physicist. For an
introduction to K-theory we refer the reader to [114,115]. The definitions of Givental’s quantum
K-theoretic I- and J-functions [31] and statements about the 3d gauge theory/quantum K-theory
correspondence follow the work in [97] closely.

In order to define the K-theory group K(X) on a target space X one starts with the semigroup,
i.e., a group without the inverse operation, of vector bundles on X where the composition of
two elements is done with the Whitney sum of vector bundles. To augment this semi-group
with the inverse elements, the following equivalence relation must be obeyed for three arbitrary
vector bundles E,F and H on X,

(E,F ) ∼ (E ⊕H,F ⊕H) .

This implies that the inverse element for a pair of vector bundles (E,F ) is given by the pair
(F,E). As in the case of [97], in this work as well the K-theory group K(X) denotes the free
part topological K-theory group K0(X). The Chern character ch(·), see Appendix A for details,
defines a ring homomorphism from K0(X) to the even-cohomology ring on X over the field of
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rationals Q,

ch : K0(X)→ Hev(X,Q)

(E,F ) 7→ ch(E)− ch(F ) ,
(4.32)

known as the Chern homomorphism. Atiyah and Hirzebruch established the ring isomorphism
for K0(X)⊗Q [116],

ch : K0(X)⊗Q ∼−→ Hev(X,Q) . (4.33)

In K-theory the analog of the classical intersection pairing between elements of cohomology
is the K-theory pairing given by Euler characteristic, i.e., χ(X;E,F ) =: (E,F ) for the vector
bundles E,F ∈ K(X). The Euler characteristic can be computed using the Hirzebruch-Riemann-
Roch theorem,

(E,F ) := χ(X;E,F ) =

∫
X

td(X) ∧ ch(E) ∧ ch(F ) , (4.34)

for the Todd class td(X) of the tangent bundle TX on X and the Chern characters ch(·) of the
vector bundles E and F .

Recall that in Section 3.5 of Chapter 3 the moduli space Mg,n(X,β) of stable maps ϕ from a
Riemann surface Σg,n of genus g with n marked points to a target space X was considered, where
the map ϕ, with ϕ : Σg,n → X, is represented by β ∈ H2(X,Z), s.t., ϕ([Σg,n]) = β. We also
introduced n evaluation maps, evi :Mg,n(X,β)→ X, such that evi(Σg,n, p1, . . . , pn, ϕ) = ϕ(pi).
The cohomological Gromov-Witten invariants are then defined using pullback evaluation maps
on elements of H∗(X) and appear as the coefficients of the Kähler parameters in the A-model
correlators.

Analogous to the augmentation of the classical cohomology ring on X to the quantum
cohomology ring by the cohomological Gromov-Witten invariants encoded in correlators, the
classical K-theory ring defined by pairing (4.34) can be augmented to a quantum K-theory ring
with the quantum corrections encoded in certain correlators. As in case of quantum cohomology
the Riemann surface of interest to us has genus zero. The correlators that are identified with
quantum K-theoretic invariants at genus zero are computed for inputs ti(q) ∈ K(X)[q, q−1], i.e.,
Laurent polynomials in q with coefficients in K(X). They are given by the holomorphic Euler
characteristic of their corresponding pulled back counterparts on the on the moduli space of
stable maps, i.e.,

〈t1(q), t2(q), . . . , tm(q)〉0,m,β = χ(M0,m(X,β) ; ev∗1t1(L1)⊗ . . .⊗ ev∗mtm(Lm)⊗Ovir) , (4.35)

where the Li’s denote the universal cotangent line bundles on M0,m(X,β) at the ith marked
point and Ovir is the so-called virtual structure sheaf on M0,m(X,β) [117] needed to define the
correlator as an Euler characteristic. The notation ev∗i ti(Li) denotes that for ti(q) = E · qk with
E ∈ K(X), ev∗i ti(Li) = ev∗i (E)⊗ (Li)

⊗k.

Now, as in the case of the quantum cohomology, the quantum K-theoretic invariants (4.35)
are encoded in the Givental’s J-function for quantum K-theory. The J-function for ordinary
quantum K-theory with the input t(q) is given by the expansion,

JK(t) = (1− q) + t(q) +
∑
β≥0

∑
n≥0

∑
i

Φi

n!

〈
Φi

1− qL1
, t(L2), . . . t(Ln+1)

〉
0,n+1,β

Qβ . (4.36)
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The first term is known as the dilaton shift and the second term spells out the input of the
J-function. The β ∈ H2(X,Z) indexes the instanton sector Qβ where Q is the Kähler parameter
as usual and is to be identified with the identically denoted Fayet-Iliopolous parameter in the
gauge theory. The Φi is the basis of ring K(X) and using the pairing (4.34),

χij := (Φi,Φj) =

∫
X

td(X) ∧ Φi ∧ Φj , (4.37)

a dual basis Φi can be defined by the relation Φi = χijΦ
j . The J-function (4.36) takes values in

the formal ring K := K(X)⊗C(q, q−1)⊗C[[Q]]. Here C(q, q−1) denotes the field of fractions of
the ring C[q, q−1] which itself is simply the ring of polynomials in q and q−1 over the C-field.
The formal ring K can split as K+ ⊕K− [118,119] where,

K+ = K(X)⊗ C[q, q−1]⊗ C[[Q]] ,

K− = K(X)⊗ {r(q) ∈ R(q)|r(0) 6=∞ and r(∞) = 0} ⊗ C[[Q]] ,
(4.38)

where R(q) denotes the field of rational functions in q. In particular, the input t ∈ K+ and the
quantum K-theory invariants are in K−. This differentiation is elemental in separating the input
from the invariants in the J-function expansion.

In the works [31] in addition to the ordinary quantum K-theory J-function JK(t), J-functions
Jeq
K (t) and J sym

K (t) were introduced for the permutation equivariant quantum K-theory and the
permutation symmetric quantum K-theory, respectively. The permutation equivariant quantum
K-theory invariants are refinements of the ordinary quantum K-theory invariants (4.35). They
are defined such that they are equivariant with respect to the action of the symmetric group Sn
on the last n marked points as permutations thereof. The permutation symmetric quantum K-
theory invariants are a special case of the equivariant invariants where only the one-dimensional
fully symmetric representation of Sn is considered.

As for the cohomological I- and J-functions, in quantum K-theory as well the I- and the
J-functions are connected by a 3d version of the mirror map. However as we will note shortly,
the gauge theories of interest yield a I-function with vanishing input, and at vanishing input,

JK(0) = Jeq
K (0) = J sym

K (0) = I(0) .

For the course of this thesis we will deal with geometries that yield unperturbed I-functions
thus a need to distinguish between I- and J-function is not merited.

In [97] it was noted that the D2 ×q S1 index yields the permutation symmetric I-function
of quantum K-theory which can have a non-zero input in the generic case. For projective
surfaces PN it was noted that the I-function that the gauge theory yields is in fact with zero
input. A similar phenomenon occurs for the I-function (4.27) obtained from gauge theory with
target space Grassmannian Gr(M,N) and canonical Chern-Simons levels considered in [32]. For
the quintic target space P4[5], however, the gauge theory yields the permutation symmetric
I-function with a non-zero input.

4.3.1 Wilson Loop Algebra

As we noted in Chapters 2 and 3, the 2d partition function of a supersymmetric gauge theory
with four supercharges encodes enumerative information of the target space related to its
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quantum cohomology ring. The correspondence in [97] establishes an analogous correspondence
between the 3d partition function and the quantum K-theory ring on the target spaces. In
particular this correspondence equates the vortex sum in the 3d gauge theory partition function
to the I-function for the permutation symmetric quantum K-theory. Moreover the quantum
K-theoretic chiral ring is generated by Wilson line operators on the S1 of the D2 ×q S1 at the
level of the gauge theory. This can be viewed as a parallel to the statement that the scalar σ of
the twisted chiral field Σ encountered in the 2d N = (2, 2) generates the quantum cohomology
ring on the target space. In this section we again zoom in on gauge theories with gauge group
G = U(M) and the Grassmannian manifold Gr(M,N) as a target space and compute the Wilson
loop algebra thereof. The chiral ring of Wilson loops thus obtained is shown to match with
the quantum product of the Schubert structure sheaves on the Gr(M,N) computed in [120] for
canonical Chern-Simons levels.

The Wilson line on the S1 was defined in (4.5) and from the expression of the partition
function (4.6) it becomes evident that in the abelianised theory an insertion of a Wilson loop
of charge wa under the ath U(1) factor of the maximal torus of G will contribute a factor of

q−wad̃a . Explicitly, the pole position defined by (4.14) for the ath U(1) factor is,

eσa = q−(da−εa) . (4.39)

We define an Abelianised I-function Iab by introducing auxiliary Fayet-Iliopolous parameters
corresponding to those U(1) factors in the maximal torus of G that arise from semi-simple
subgroups in G, i.e.,

Iab =
∑
~d∈Z≥0

c~d

rk(G)∏
i=1

(−Qi)d̃i

 , (4.40)

and when the auxiliary Fayet-Iliopolous parameters are set to one, we get the usual I-function,
i.e.,Iab| ~Qaux=1 = ISQK(q,Q,~ε).

The insertion of a factor ewaσa corresponding to a Wilson line of charge wa under the ath U(1)
factor in the path integral will shift the abelianised I-function Iab as,

Iab =
∑
~d∈Z≥0

c~d

rk(G)∏
i=1

(−Qi)d̃i

 −→ ∑
~d∈Z≥0

c~d

rk(G)∏
i=1

(−Qi)d̃i

 · q−wad̃a =: I ′ab . (4.41)

The insertion of such a Wilson line in the I-function can be emulated by the action of a shift
operator on the same and is given by,

q−waθa · Iab =
∑
~d∈Z≥0

c~d

rk(G)∏
i=1

(−Qi)d̃i

 · q−wad̃a = I ′ab , (4.42)

where θa = Qa∂Qa is the usual logarithmic derivative with respect to the ath Fayet-Iliopolous
parameter Qa.

Evaluating the algebra of Wilson line operators boils down to evaluating the expectation
value of compositions of such Wilson operators and expressing the result as a linear combination
of insertions of individual Wilson line insertions. Given two Wilson line operators W~a and W~b
with charge vectors ~w~a and ~w~b under the maximal torus group U(1)M of U(M), an insertion of
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the product of these operators will alter the Abelianised I-function as,

Iab −→ q−(~w~a+~w~b)·~θ · Iab , (4.43)

where ~θ is the M -dimensional vector of logarithmic derivatives. Thus classically the Wilson loop
algebra of the Abelianised theory is given by,

W~a ·W~b
= W

~a+~b
. (4.44)

Before we analyse the quantum corrections to the classical algebra of Wilson line operators
stated in the equation above, we note that for the gauge group U(M) with the maximal torus
U(1)M the Wilson lines must be expressible as permutation symmetric combinations of the
Wilson lines charges under each U(1) factor therein. This can be explained on a heuristic level
by observing that for the Abelianised spectrum of this gauge theory, detailed in Table 4.1, the
charge vectors of the chiral fields as well as the W -bosons under the Abelianised group are
completely symmetric with respect to permutations of the U(1) factors. This in turn can be
understood to be directly correlated with the fact the even cohomology ring of the Grassmannian
target space, Hev(Gr(M,N)), is generated by Schubert cycles that can be represented by Schur
polynomials of the Chern roots of the universal subbundle of Gr(M,N). A Schur polynomial σµ
is labelled by a Young tableau µ and is a permutation symmetric polynomial in its arguments,
see Appendix A for details.

Our focus is the algebra of Wilson line operators Wµ labelled by the Young tableaus µ that lie
in the M × (N −M) box. The vertical limit on the Young tableau comes the number of variables
to be symmetrise corresponding to the dimension of the universal subbundle and the horizontal
limit comes from the dimension of the universal quotient bundle, as is detailed in Appendix A.
Young tableaus outside the box either vanish identically or can be rewritten as Young tableaus
inside the box using the ideal of difference operators to be derived shortly. The horizontal
dimension, and hence the number of operators in the chiral ring, is susceptible to an increase if
the Chern-Simons level do not lie in a certain window which is defined in the original work [32].
We will stay in the regime where the acceptable operators lie in the M × (N −M) box. For the
correspondence between permutation equivariant quantum K-theory and 3d gauge theory at a
non-trivial Chern-Simons level and explicit connection between the K-theory correlators and
Verlinde numbers see [121,122].

The insertion of the Wilson line Wµ is akin to the action of an operator Dµ := σµ(q
~θ), where

σµ is the Schur polynomial with the shift operators qθi , i = 1, . . . ,M , as arguments. For instance,

σ�(q
~θ) = qθ1 + qθ2 + . . .+ qθM .

The aim is to compute the structure constants Cλµν in the algebra,

Dµ ∗Dν =
∑
λ

Cλµν Dλ , (4.45)

with the ∗ denoting the quantum product of the line operators.
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Derivation of the Wilson loop algebra

To compute the algebra of Wilson loops we start with the permutation symmetric I-function
extracted from the partition function which was given in (4.27). The effective Chern-Simons

level term qCS(d̃) was given in (4.28) and (4.29). We now outline a methodology to compute
quantum products between Wilson operators.

(i) The Abelianised I-function (4.40) corresponding to the physical I-function (4.27) can be
rewritten as,

ISQKGr(M,N),ab(q,Q,~ε) =
∑
~d∈ZM≥0

(
M∏
i=1

Qd̃ii

)
qCS(d̃)


∏

1≤i<j≤M

q d̃2ij2 −( d̃i+d̃j2

)
(qd̃i − qd̃j )


M∏
j=1

dj∏
r=1

(1− qr−εj )N


= ∆ · Ĩ ,

(4.46)

where ∆ =
∏
i<j

(pi − pj), with pi = qθi and,

Ĩ =
∑
~d∈ZM≥0

(
M∏
i=1

Qd̃ii

)
qCS(d̃)


∏

1≤i<j≤M

q d̃2ij2 −( d̃i+d̃j2

)
M∏
j=1

dj∏
r=1

(1− qr−εj )N

 . (4.47)

(ii) The function Ĩ in (4.47) can be rewritten using the definitions (4.28) and (4.29) as,

Ĩ =
∑
~d∈ZM≥0

q
γ
∑
i<j

d̃id̃j∏
i

IP
N−1

d̃i,α,β
(Qi) , (4.48)

where the constants α, β and γ are given for ∆κ = κA−κS
M by,

α = κ̂S + ∆κ +M
~̂κ=0−−−−→ M − 1 ,

β = κ̂R −
1

2
(M − 1)

~̂κ=0−−−−→ −1

2
(M − 1) ,

γ =
κ̂A − κ̂S
M

− 1
~̂κ=0−−−−→ −1 .

(4.49)

Here the limit ~̂κ = 0 corresponds to the canonical Chern-Simons levels, which is the regime

82



4.3 Quantum K-theoretic I- and J-functions

we work in to derive the Wilson loop algebra. The function IP
N−1

d̃i,α,β
is given by,

IP
N−1

d̃i,α,β
(Qi) =

Qd̃ii q
α
2
d̃2
i + βd̃i

di∏
r=1

(1− qr−εi)N
, (4.50)

is denoted in this way as it be interpreted as a generalised summand of the projective
space PN−1 quantum K-theoretic I-function. The complete I-function will involve a sum
over the vortex sectors by the integers di ≥ 0. The target space PN−1 is a special case of
the Grassmannian target space with M = 1, i.e., G = U(1) and Gr(1,M) ' PN−1. The
indices α and β can be exactly identified with the bare Chern-Simons levels corresponding
to the gauge group U(1) mixing with itself and with the U(1)R symmetry, respectively.
Furthermore, it is evident from (4.48) that the generically non-vanishing constant γ hinders
a factorisation of the function Ĩ into a product of I-functions of projective spaces. In
particular, for canonical Chern-Simons levels γ = −1 from (4.49).

(iii) The identity (4.46), schematically denoted as Iab = ∆Ĩ, implies that the Wilson loop
operator Du acts as,

Du · Iab = ∆ Du · Ĩ , ∵ [∆,Dµ] = 0 . (4.51)

The ideal of difference equations, i.e., equations in the shift operator pi = qθi , can be
obtained by studying the form of (4.47). For the values pf α, β and γ for the canonical
Chern-Simons levels in (4.49) it is given by the relation,

δNi Ĩ = (−Qi)
pMi
M∏
j=1

pj

Ĩ +O(εNi ) , i = 1, . . . ,M , (4.52)

for δi = 1 − pi. The correction term O(εNi ) corresponds to a trivial element in the
cohomology ring of the Gr(M,N) as it does not correspond to a Schur polynomial inside
the M × (N −M) box. In light of this ideal, we define shifted Wilson line operators

Ŵn = 1−Wn such that the shift operator that emulates their insertion in the path integral
corresponds to an action of δ−n instead of p−n. Consequentially, it is useful to compute a
Wilson loop algebra modified from (4.45) to,

D̂µ ∗ D̂ν =
∑
λ

Ĉλµν D̂λ , (4.53)

where D̂µ := σµ(1−q~θ), with σµ being the Schur polynomial labelled by the Young tableau
µ as before.

(iv) The algebra of the modified Wilson line operators must be reduced using the ideal of
relations (4.52). In other words, the quantum product between two Wilson line operators
is expressed the action of the modified shift operators D̂µ modulo the difference ideal.
That is, any time a δMi is encountered, it is replaced by the R.H.S of (4.52). In doing to
inverse powers of the pi will be encountered and they must be simplified in the following
way. Since the ideal of difference equations is a polynomial in the basic shift operators pi
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and the inverses thereof, we can re-express this ideal as,

(1− pi)N = 1 +
N∑
k=1

(
N

k

)
(−pi)k = (−Qi)

pM−1
i∏
i 6=j

pj
,

⇒ 1

pi
= (−Qi)

pM−2
i∏
i 6=j

pj
+

N∑
k=1

(
N

k

)
(−pi)k−1 ,

(4.54)

for i = 1, . . . ,M . The final expression can be used as a replacement for the inverse powers
of the shift operator pi encountered when substituting the ideal of relations. This is a
deceptively tautological step, however, the usefulness of this replacement lies in the fact
that it treats the operators pi as variables of a polynomial relation that generates an ideal.
This replacement will need to be done recursively in order to eliminate all inverse powers
of the shift operators.

(v) Finally, we note that the reduced algebra of Wilson line operators Ŵµ contains extra terms
of the order O(1− q). This is because when the Wilson loops in (4.53) are such that the
difference operator (δi)

L,with L > N , is encountered, then δL−Ni acts non-trivially on the
Q̃i after the replacement (4.52). This becomes quickly evident on noticing the modified
product rule for difference operators,

qθ(f1 · f2) =
∞∑
k≥0

(logq θ)k

k!
(f1 · f2) =

∞∑
k≥0

(logq)k

k!

k∑
n=0

(
k

n

)
θk−nf1 · θnf2

= qθf1 · qθf2 .

This implies that for difference operator δ = 1− p and a function f that is independent of
Q,

δ(Q f) = (1− qθ)(Q f) = Q f − (qQ)(qθf) = Q(δf) + (1− q)Q(qθf) . (4.55)

The last term is irrelevant for the Wilson loop algebra as it is a result for the non-trivial
action of the shift operator on the Q term in the ideal relations (4.52). This subtle point
can be understood by realising that the correspondence of the Wilson line insertions to
the action of the shift operator was only applicable to the Q-terms in the I-function
and not the extra Q-dependences that arise in the ideal. For more general Q-dependent
terms in the ideal relations one can similarly separate a spurious O(1− q) term or simply
set q to 1 to eliminate such terms. Interestingly in the 2d limit, that we will discuss in
subsection 4.3.3, q → 1 and this term vanishes. Hence, a quick way to obtain the physical
algebra from the reduced algebra is to set q to one.

Incorporating this limit on q and returning to the fully non-Abelian theory, i.e, where
~Qaux → 1, the algebra of Wilson line operators Ŵµ for canonical Chern-Simons levels is
given by,

Ŵµ ∗ Ŵν =
∑
λ∈BD

Ĉλµν(Q) Ŵλ , (4.56)

where BD denote the Young tableaux inside the M × (N −M) box.
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This concludes our discussion of the method to compute Wilson line operator products using
the ideal of relations.

Wilson Loop Algebra and Quantum Cohomology
Before we proceed to discuss the Wilson loop algebra with canonical Chern-Simons levels for an
explicit example, we discuss another important implication of the ideal of relations generating
the Wilson loop algebra. In the aforementioned window of Chern-Simons levels, the dimension
of the Wilson line algebra equals dimK(Gr(M,N)) =

(
N
M

)
. Furthermore, the algebra of Wilson

lines is isomorphic to the quantum cohomology ring of the Grassmannian Gr(M,N). This can
be seen explicitly for the special case of the Chern-Simons levels such that α = β = γ = 0 in
(4.48). The effective Chern-Simons levels for this case are given by,

κ̂S = −M , κ̂A = 0, , κ̂R =
M − 1

2
.

For this choice, the ideal of difference relations can be calculated analogously and is given by,

δNi = −Qi , (4.57)

for i = 1, . . . ,M and where δi = (1− pi) as usual. We can now interpret this ideal as the one
generates the algebra of quantum cohomology ring of the Grassmannian. This ring is generated
by by Schubert cycles labelled by Young tableaus, see Appendix A for details. Solving for
the algebra of cohomology classes using this ideal and projecting onto to the full non-Abelian
group U(M) results in algebra that is isomorphic to the quantum cohomology ring of the
Gr(M,N) [66,123,124].

The work of Witten in [125] establishes an isomorphism between the quantum cohomology
ring of the Grassmannian and the Verlinde algebra [126] of the gauged Wess-Zumino-Witten
model U(M)/U(M) at level N −M . Thus this certain K-theory algebra which is isomorphic to
quantum cohomology is interpreted as being isomorphic also to a special Verlinde algebra.

Example: Grassmannian Gr(2, 4)

In this section we want to study the Wilson loop algebra of N = 2 gauge theory on the D2×q S1

with the simplest non-trivial Grassmannian Gr(2, 4) as its target space. Specifically, the gauge
group is U(2) and there are four chiral fields in the fundamental representation, c.f. Table 4.1.

The ideal (4.52) for this space becomes the system of equations,

δ4
1 Ĩ = (−Q1)

p1

p2
Ĩ , δ4

2 Ĩ = (−Q2)
p2

p1
Ĩ . (4.58)

Correspondingly the inverse shift operators p−1
1 and p−1

2 are given by (4.54),

1

p1/2
= −

Q1/2

p2/1
+

4∑
k=1

(
4

k

)
(−p1/2)k−1 . (4.59)

Here the auxiliary parameters Qi’s are in the basis of the maximal torus group U(1)2 with
respect to which the Abelianised fields are charged in Table 4.1 and in the non-Abelian theory
Q1, Q2 → Q. The algebra (4.53) or equivalently (4.56) can explicitly computed for Schur
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polynomials σµ, where µ labels the Young tableau. We perform the quantum multiplication of
σ1 with itself and σ2 explicitly to illustrate the methodology.

σ1 ∗ σ1 :
The simplest Schur polynomial in two variables is given by,

σ1(δ1, δ2) = δ1 + δ2 , (4.60)

and the action of σ1 ∗ σ1 on the Abelianised permutation symmetric I-function (4.47) is given
by,

(δ1 + δ2)2 ISQKab = (δ1 + δ2)2∆Ĩ = (σ2 + σ1,1)∆Ĩ = (σ2 + σ1,1) ISQKab , (4.61)

where,
σ2(δ1, δ2) = δ2

1 + δ1δ2 + δ2
2 , σ1,1(δ1, δ2) = δ1δ2 . (4.62)

Thus,
σ1 ∗ σ1 = σ2 + σ1,1 .

Since neither δ4
1 nor δ4

2 was not encountered in this quantum product, the replacement by the
ideal was not required. In other words, this quantum product receives no quantum corrections.

σ1 ∗ σ2 :
The action of this product on the Abelianised I-function is given by,

(δ1 + δ2)(δ2
1 + δ1δ2 + δ2

2) ∆Ĩ = (δ4
2 − δ3

1δ2 + δ3
2δ1 − δ4

1)Ĩ , (4.63)

where again ∆ = p1 − p2 = δ2 − δ1.

First of all, the classical terms are those that do not require the ideal to be employed, i.e.,
appear as powers of the shift operators lower than 4, can be simplified as,

(−δ3
1δ2 + δ3

2δ1)Ĩ = (δ1 + δ2)(δ1δ2)(∆Ĩ) = (σ2,1) ISQKab . (4.64)

For the remaining terms we use (4.58) and (4.59) to write,

(δ1)4(Ĩ) = (−Q1)(−Q2 + p1

(
4− 6p2 + 4p2

2 − p3
2

)
) , (4.65)

and similarly for (δ2)4(Ĩ) with 1 ↔ 2 in the above equation. The consolidated Q-dependent
term in the quantum product becomes after setting Qi = Q and replacing pi = 1− δi is,

(δ4
2 − δ4

1)(Ĩ) = Q(2 + (δ1 + δ2) + (δ2
2 + δ2

1)− (δ2δ
2
1 + δ2

2δ1))(∆Ĩ)

= Q(2 + σ1 + σ2 − σ1,1 − σ2,1) ISQKab .
(4.66)

The total quantum product is given by,

σ1 ∗ σ2 = σ2,1 +Q(2 + σ1 + σ2 − σ1,1 − σ2,1) . (4.67)

The Multiplication Table In a similar fashion the quantum products corresponding to all
permissible Wilson line operators can be computed. Up to order O(1−q) terms the multiplication
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table is given by,

σ1 ∗ σ1 = σ2 + σ1,1 , σ2 ∗ σ2,2 = Q(σ1,1 + σ2,1 − σ2,2) +Q2 ,
σ1 ∗ σ2 = σ2,1 +Q(2 + ρ1) , σ1,1 ∗ σ1,1 = σ2,2 ,
σ1 ∗ σ1,1 = σ2,1 , σ1,1 ∗ σ2,1 = Qρ1 ,
σ1 ∗ σ2,1 = σ2,2 +Q(1 + ρ1) , σ1,1 ∗ σ2,2 = Q(σ2 − σ2,1) ,
σ1 ∗ σ2,2 = Qρ1 , σ2,1 ∗ σ2,1 = Q(σ2 + σ1,1 − σ2,2) +Q2 ,
σ2 ∗ σ2 = σ2,2 +Q(σ1 + ρ2) +Q2 , σ2,1 ∗ σ2,2 = Q(σ2,1 − σ2,2) +Q2 ,
σ2 ∗ σ1,1 = Q(1 + ρ1) , σ2,2 ∗ σ2,2 = Q2 .
σ2 ∗ σ2,1 = Qρ2 +Q2 , (4.68)

Here σµ stands for either the Wilson line Ŵµ of the algebra in (4.56) or the corresponding

shift operator D̂µ(δ) in (4.53). We used the abbreviations ρ1 = σ1 + σ2 − σ1,1 − σ2,1, ρ2 =
σ1 + σ2 + σ1,1 − σ2,2. The classical K-theory ring can be obtained by setting Q→ 0 and agrees
with the mathematical result on K-theoretic products [127].

Basis of Grothendieck Polynomials The Schur polynomials σµ(x) are related by a linear
transformation of determinant one to the Grothendieck polynomials, denoted by Oµ(x). These
were originally defined in [128] and an explicit formula to compute them is summarised in the
Appendix A. As with the Schur polynomials, they too are labelled by Young tableau however a
Grothendieck polynomial might be linear combination of Schur polynomials labelled by tableaux
of varying degrees.

The two basis are related for the Gr(2,4) as,

O1 = σ1 − σ1,1 , O2 = σ2 − σ2,1 , O1,1 = σ1,1 ,

O2,1 = σ2,1 − σ2,2 , O2,2 = σ2,2 . (4.69)

Using the Chern isomorphism the Oµ can equivalently be seen as the Chern characters of the
the structure sheaves of the Schubert cycles. After the basis change, we obtain for the quantum
multiplication of the structure sheaves,

∗ O1 O2 O1,1 O2,1 O2,2

O1 O2 +O1,1 −O2,1 − − − −
O2 O2,1 O2,2 − − −
O1,1 O2,1 Q O2,2 − −
O2,1 O2,2 +Q (1−O1) QO1 QO1 Q (O2 +O1,1 −O2,1) −
O2,2 QO1 QO1,1 QO2 QO2,1 Q2

(4.70)

Here the − represent the symmetry of the quantum product. These multiplications agree with
the result of ref. [120], which has been obtained by quite different methods. We mention here
that the well known geometric duality between Grassmanianns Gr(M,N) and Gr(N −M,N)
persists at the level of quantum K-theory. In the case of the Gr(2,4), which is self-dual, it
manifests itself as the symmetry under the exchange of O2 and O1,1. A more non-trivial example
of the Gr(2,5) and Gr(3,5) has been stated in the work [32].

The Inner Product Recall that the analog to the intersection pairing in quantum K-theory is
given by the pairing (4.37) between a basis of the quantum K-theoretic ring. We compute the
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Todd class of the tangent bundle on the Gr(2,4) and the Chern characters of the K-theoretic
basis in question in the Appendix A. Using these results the inner product in either the Schur
or the Grothendieck basis can be computed by performing the integral in (4.37) which amount
to selecting the coefficient of the top-form as the integral is over Gr(2,4).

The inner product on the Schur basis, indexed in the order,

{σ0, σ1, σ2, σ1,1, σ2,1, σ2,2} ,

is given by the matrix,

χ(σµ, σν) =


1 2 3 1 2 1
2 4 2 2 1 0
3 2 1 0 0 0
1 2 0 1 0 0
2 1 0 0 0 0
1 0 0 0 0 0

 . (4.71)

The inner product on the Grothendieck basis, indexed in the order,

{O0,O1,O2,O1,1,O2,1,O2,2} ,

is given by the matrix,

χ(Oµ,Oν) =


1 1 1 1 1 1
1 1 1 1 1 0
1 1 1 0 0 0
1 1 0 1 0 0
1 1 0 0 0 0
1 0 0 0 0 0

 . (4.72)

Here both σ0 and O0 correspond to the identity element in the quantum K-theory ring. Although
the determinants of both the inner product matrices is 1, the matrix is non-minimal in the Schur
basis as it does not consist of only 0’s and 1’s.

4.3.2 q-Difference Equations

Recall that in Section 3.5 of Chapter 3 we introduced and discussed Givental’s cohomological I-
function corresponding to a target space X which, as the name suggests, is a cohomology-valued
function. We derived relations among the correlators of twisted chiral scalars in a 2d gauged
linear sigma model and imparted them an interpretation as operators annihilating the Fayet-
Iliopolous parameter-dependent ground state. We further associated to these operators an ideal
in the ring of south pole correlators and gave the scalars of the twisted chiral field a differential
operator representation, tr(σ) ∼ Q∂Q, resulting in the correlator relations being represented
as a differential ideal. The corresponding differential operator was shown to annihilate the
cohomological I-function for explicit examples of target spaces. The pre-existing literature
presents techniques to compute differential operators that annihilate the I-function however the
derivation of correlator relations provides purely gauge theoretic approach to computing these
operators.

In this section we study Givental’s quantum K-theoretic permutation equivariant I-function,
which can be extracted from the partition function calculation, in a similar light. It becomes
evident from the form of the I-function that it is annihilated by difference operators, p ∼ qQ∂Q .
Our focus will continue to be the gauge theories with Grassmannian target spaces in the footsteps
of the analysis of difference operators for K-theoretic I-functions of toric varieties and complete
intersections therein done in [97,129].
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4.3 Quantum K-theoretic I- and J-functions

q-difference Equations for Projective Spaces

To illustrate the emergence of q-difference operator explicitly we start with the example compu-
tation of projective space PN−1 as target space. The 3d theory is gauged by U(1) and charged
matter spectrum as listed in Table 4.2.

Chiral multiplets U(1) charge U(1)R charge real masses

φi, i = 1, . . . , N +1 0 0

Table 4.2: Matter spectrum of the U(1) gauge theory of the projective space PN−1.

The permutation symmetric I-function for the canonical Chern-Simons terms is the unper-
turbed I-function, i.e, has a vanishing input and is explicitly given by,

ISQKPN−1(q,Q, ε) =

∞∑
d=0

Qd−ε

d∏
r=1

(1− qr−ε)N
. (4.73)

For generic Chern-Simons levels the projective space I-function was stated in (4.50). The

parameter Q in the I-function above has been scaled down by a power of (1− q)c1(PN−1), where
c1 stands for the first Chern class of the tangent bundle which for this space is equal to N . The
recursion relation for this I-function as power series in Q implies,

(1− qθ)NISQKPN−1 = Q · ISQKPN−1 , (4.74)

where θ = Q∂Q as usual. This is the q-difference equation annihilating the I-function of the
projective space. In the forthcoming we will discuss the 2d limits of these difference equations and
see that becomes precisely the differential equation annihilating the cohomological I-function.

q-difference Equations for Grassmannians

The technique of studying the recursion relation in order to derive the q-difference equation
annihilating the permutation symmetric I-function is not as straightforward for Grassmannian
target spaces as it was for the projective space. This becomes evident upon studying the
appearance of the quantum K-theory ring generators of the I-function stated in (4.27). Recall
that we defined the generators of the quantum K-theory on Gr(M,N) as the shifted Wilson

line operators Ŵµ, stated before (4.53), labelled by Young tableaux µ. The correspondence of
Wilson loops and q-difference operators,

Ŵµ(w1, . . . , wM ) = σµ(w1, . . . , wM ) −→ D̂µ(δ1, . . . , δM ) = σµ(δ1, . . . , δM ) , (4.75)

where wi = 1− q−εi and δi = 1− qθi , can only be consistently done in the Abelianised theory.
While the arguments of the Schur polynomials appears in expression for the I-function (4.27),
the explicit combinations of these arguments as Schur polynomials does not. This suggests that
it might be sensible to work in the Abelianised theory. However, this in turn must be done such
that upon returning to the physical theory the q-difference operators of the Abelianised theory
combine in a gauge covariant way in the physical theory.

It seems more expeditious to study the I-function as the J-function as at vanishing input,I(0) =
J(0). One can then utilise the relation of the J-function to a T ∈ End(K(Gr)) from [130] given
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by,

J(t) = (1− q)TΦ0 = (1− q)
∑
t

(TΦi,Φ0)Φi , (4.76)

where (·, ·) is the pairing of the K-theory generators given by the Euler characterstic (4.34). T
is an endomorphism in the K-group that satisfies the so-called ‘flatness equations’ [131]. This
relation implies that difference equations that annihilate the J-function can be associated to
relations among K-theory generators and certain covariant derivatives thereof.

At vanishing input, t = 0, this correspondence can be spelled out as follows. For a difference
equation, ∑

k

ak p
kJ = 0 , (4.77)

with p = qθ, exists a relation, ∑
k

ak ∇kΦ0 = 0 , (4.78)

where the covariant derivative is given by ∇(·) = (p − Φ1 ∗ p)(·). For the Gr(M,N) at hand
k ≤

(
N
M

)
as that is the number of independent Young tableaux in an N × (N −M) box and

hence the number of Schur/Grothendieck polynomials that generate the quantum K-theory ring.
Any higher covariant derivatives can necessarily be expressed as linear combination of lower
derivatives.

Thus a q-difference operator that annihilates the I-function at vanishing input can be computed
by evaluating successive covariant derivatives of the identity element in the quantum K-ring
and solving for a minimal set with maximal rank.

Illustrative Example: Gr(2, 4)
We will now illustrate the aforementioned technique utilising the quantum K-theoretic ring struc-
ture to compute the q-difference operators. We work in the basis of Grothendieck polynomials
defined in the Appendix A. The maximal rank of the matrix of all the covariant derivatives is 5,
i.e., one lower that the dimension 6. For instance,

∇(1) = (p−O1 ∗ p)(1) = 1−O1 ,

∇2(1) = (p−O1 ∗ p)(1−O1) = (1−O1)− (O1 − (O2 +O1,1 −O2,1))

= 1− 2O1 +O2 +O1,1 −O2,1 .

(4.79)

The list of covariant derivatives up to maximal rank is given by,

∇3(1) = (1 +Q) + (−Q− 3)O1 + 3O2 + 3O1,1 − 5O2,1 +O2,2 ,

∇4(1) = (1 + 5Q+ qQ) + (−4− 6Q− 2qQ)O1 + (6 + qQ)O2

+ (6 + qQ)O1,1 + (−14− qQ)O2,1 + 6O2,2 ,

∇5(1) = (14Q+ 5qQ+ q2Q+ q2Q2) +
(
−5− 20Q− 11qQ− 3q2Q− q2Q2

)
O1

+
(
10 + 6qQ+ 3q2Q

)
O2 +

(
10 + 6qQ+ 3q2Q

)
O1,1

+
(
−30− 6qQ− 5q2Q

)
O2,1 +

(
20 + q2Q

)
O2,2 .

(4.80)

Solving for ak’s in (4.78) and substituting the same in (4.77) yields the difference operator,

(δ5 +Q(pq + 1)(p2q − 1))IGr(2,4) = 0 , (4.81)
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with the identification of the I- and J-function at vanishing input. In the original work [32] the
difference operators for a few other Grassmannians as well as their 2d limits have been listed.
We find agreement with the differential operators listed in [70] that annihilate the cohomological
I-function.

4.3.3 The 2d Limit

Having studied both 2d and 3d gauge theories with four supercharges and having encountered
similar structures vis-à-vis the target space geometry, it is natural to compare these theories in
the limit where the length scale of the third dimension goes to zero. This is the primary aim of
this section. We will schematically compare the partition functions and the cohomological/K-
theoretic I-functions that can be extracted therefrom. Furthermore, the differential ideal and
difference ideal defining the quantum product in cohomology and K-theory, respectively, can
also be compared. A similar comparison follows for the differential and difference operators
annihilating the I-functions in either theory.

Partition Function
In Chapter 3 we studied gauge theories in 2d with four supercharges on a two-sphere S2 and we
summarised the computation of the partition function using localisation techniques in Chapter 2
following the work of [34,35]. The authors of [34] made a comparison of the partition function
on the S2 to the partition function of an N = 2 gauge theory on S2 × S1 of [45, 132] by taking
the radius of the S1 to zero and found agreement up to an overall normalisation factor.

Our focus in this chapter has been on theories defined on D2 × S1, and thus, to make an
appropriate comparison we refer to the works [46,47] in 2d. Amongst other results, they spell
out the the partition function of N = (2, 2) gauge theories on the disc D2. To interest of us are
Neumann boundary conditions for the vector and the chiral multiplets. For a matter content
consisting of N chiral multiplets with weights ~ρi and and a gauge group G with roots ~α, the
partition function on the D2 reads,

ZD2 =
1

|WG|

∮ rk(G)∏
a=1

dσa
2πi

Zcl(ζ, ~σ) Z1-loop(~σ) . (4.82)

The 1-loop determinant contribution reads,

Z1-loop(~σ) = Z2d
chiral · Z2d

vector ,

Z2d
chiral =

N∏
i=1

Γ

(
~ρi · ~σ −

∆i

2

)
; Z2d

vector =
∏
α>0

(−~α · ~σ)
sin(π~α · ~σ)

π
.

(4.83)

For simplicity we focus on the case with no non-trivial flavour symmetry which is akin to
vanishing twisted masses. The twisted chiral scalar σ of 2d is distinct from that used to define
the Wilson line operator eσ in 3d. In order to compare the expressions in 2d and 3d we must
perform a sum over residues and substitute the variable of integration accordingly. We will not
state this explicitly here as our aim is to make a schematic comparison of the expressions inside
the 1-loop determinant.

Recall that the corresponding 1-loop determinants in 3d are given by (4.9) and (4.11). The
circumference of the S1 is βr, introduced after (4.5), and q = e−β~, i.e., in the 2d limit q → 1.
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This has the consequence that all Chern-Simons-like terms of the form q(...) have a trivial
contribution in the 2d limit. The identity (4.19) allows for the (qx, q)∞ to be expressed as,

(qx, q)∞ ∼ Γq(x)−1 ,

where the ∼ camouflages overall q-dependent normalisation terms, similar to the analysis of [34].
Consequently, (4.9) becomes,

lim
β→0

Z3d
chiral = lim

β→0

N∏
i=1

q(...) 1

(qv, q)∞
=

N∏
i=1

Γ(v) , (4.84)

where v denotes the appropriate linear combination of the weights and R-charges after taking
the sum over residues and we use that limq→1 Γq(x) = Γ(x). This matches the structure of
Z2d

chiral. Similarly (4.11) becomes,

lim
β→0

Z3d
vector = lim

β→0

∏
α

q(...)
(
q~α·~σ, q

)
∞

=
∏
α>0

1

Γ(~α · ~σ)Γ(−~α · ~σ)
, (4.85)

which using the Γ-function identity, Γ(z)Γ(−z) = − π
x sin(πx) , becomes structurally equivalent to

Z2d
vector.

I-Function
For the comparison of the cohomological and K-theoretic I-function we hone in on the Grassman-
nian target space Gr(M,N). In [85] the cohomological I-function is stated up to a normalisation
factor as,

ICoh.
Gr(M,N) =

∑
~d∈ZM≥0

Q

(
M∑
i=1

d̃i

) ∏
1≤i<j≤M

(d̃i − d̃j)

M∏
j=1

dj∏
r=1

(r − εj)N
. (4.86)

The quantum K-theoretic I-function for Gr(M,N) given in (4.27) simplifies to the cohomological
I-function in the 2d limit up to a normalisation factor and with an appropriate identification of
the Kähler parameters. This becomes evident upon noting,

lim
β→0

∏
1≤i<j≤M

(
q
d̃2ij
2 (q

d̃ij
2 − q−

d̃ij
2 )

)
= lim

β→0

∏
1≤i<j≤M

(−)q
d̃2ij
2
−
d̃ij
2 (1− qd̃ij ) ,

and using the limit of vanishing S1 radius,

lim
β→0

1− qn

1− q
= n . (4.87)

Quantum Ring Structure
To compare the cohomological and K-theoretic ring structures we also utilise the identity (4.87)

for the difference operator, i.e., lim
β→0

1−qθ
1−q = θ . The ideal of difference equations (4.52) defining
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the quantum K-theory ring on target space Gr(M,N),

(βθa)
N = Qa , (4.88)

and after a renormalisation of the Fayet-Iliopolous parameter given by Q′ = Qβ−N , this becomes
the generating ideal for the quantum cohomology ring of the Grassmannian. The multiplication
table of the generators of quantum cohomology, given by Schur polynomials, can now be
computed using this differential ideal to yield results that agree with literature [123–125].

The q-difference equations that annihilate the quantum K-theoretic I-function can computed
in the 2d limit in a similar fashion. Explicitly, making the substitution,

q = e−β~ , Qa = Q′aβ
N , p = e−β~θ , (4.89)

in the q-difference operator and taking the limit β → 0 yields the differential operator that
annihilates the cohomological I-function. For the difference operator (4.81) for the Gr(2,4), this
limit yields,

θ5 − 2(2θ + 1)Q′ , (4.90)

and it matches exactly with our computation of the operator in 2d done in Chapter 3, see (3.85)
for ε → 1. The difference operators for several other Grassmannians and their respective 2d
limits have been listed in the work [32].
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CHAPTER 5

Summary and Outlook

This thesis deals with gauge theories with four supercharges in two and three dimensions. The
spacetime geometries that arise in string theory can be difficult to probe using direct methods
due to their novel ‘stringy’ nature. The supersymmetric gauge theories that are central to this
thesis can be modelled to play the role of string worldsheet theories and prove to be powerful
tools in studying these geometries. Several techniques available in the gauge theory setup can
be used to yield results that shed light on the stringy quantum geometry we are interested
in. Furthermore, the low dimensional gauge theories studied in this thesis encode a wealth
of interesting structures from the perspective of mathematics. We will expand upon these
multi-disciplinary axes with which to approach such theories shortly.

Supersymmetric gauge theories, including but not limited to those that are central to this
thesis, are attractive for another reason: solvability. This characteristic manifests itself cleanly
in the technique of localisation, discussed in Chapter 2. This technique allows for the partition
function and certain correlators of the gauge theory to be computed exactly. The crucial idea
behind the localisation toolset is to exploit the nilpotency of the BRST symmetry which can
be constructed using the underlying supersymmetry [44]. This nilpotency allows for the path
integral, needed to compute partition functions and correlators, to localise to a finite dimensional
fixed point locus of the BRST symmetry. This finite dimensional fixed point locus can be
made conveniently tangible using the nature of the BRST symmetry at hand. Localisation was
originally conceived in a seminal work of Witten [23,33] in the context of the supersymmetric
theory on the worldsheet, known as the non-linear sigma model, of string theory. The requisite
nilpotent BRST symmetry for localisation was fashioned in this case by performing the so-called
topological twist. Twisting of the non-linear sigma model might yield an A- or a B-model. Once
such a twist is performed, the computation of physical quantities like the Yukawa couplings on
the target space becomes easier. However, the degree of difficulty by the way of the A-model
is far higher than that of the B-model, which finds relevance in the field of mirror symmetry
which establishes an equivalence between the A- and B-models manifolds that are mirror to one
another.

Having motivated the pertinence of these gauge theories to compactification spaces in string
theory as well to solve supersymmetric quantum field theories exactly, we outline their conception
in 2d. The narrative started with the work of Witten on N = (2, 2) gauge theories in 2d, called
gauged linear sigma models [22]. This work establishes a clean correspondence of these 2d
supersymmetric gauge theories to target space geometries of string theory by studying how the
former flow to the latter in the infrared given the right starting ingredients, and is summarised
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in Chapter 3. The target space attained in the flow to the infrared is in fact a special case
of a superconformal field theory, various (not necessarily geometrical) facets of which can be
encountered in different phases of the gauge theory. The phase structure is provided to the
gauge theory due to the parameter space of a Fayet-Iliopolous coupling corresponding to each
U(1) factor in the gauge group. For the course of the work presented in this thesis, the focus
remains on the so-called geometric phase, i.e., one which corresponds to a string-theoretic target
space geometry.

Our original work [30] delves into gauged linear sigma models on the two-sphere S2, using
as fodder the work of [29] which provided a localisation-motivated technique to compute
certain correlators of gauged linear sigma models. In particular, we study the structure of
these correlators and find non-trivial relations between them. These relations assume a deeper
importance when given an interpretation as the generators of an ideal of the non-commutative ring
of correlators. A specific representation of this ideal associates differential operators annihilating
a moduli-dependent ground state to these correlator relations. This moduli-dependent ground
state can be perceived to lie in a Hilbert space of states labelled by the Fayet-Iliopolous moduli
and other equivariant parameters in the gauge theory. The differential operators thus obtained
are found to coincide with the GKZ-system of differential operators in mathematics [133]. This
is confirmed by noting that these operators annihilate Givental’s cohomological I-function,
named as such because it takes values in the cohomology of the target space. The cohomological
I-function is the generating function of certain enumerative invariants of the target space that
correspond to non-perturbative objects in string theory known as worldsheet instantons. The
work of [84,85] found an explicit correspondence between the A-twisted correlators of gauged
linear sigma models and the cohomological I-function, in that a bilinear pairing of the latter
was shown to be a generating function of the former. This ties in with the central idea that
correlators of these supersymmetric gauge theories in 2d yield the quantum cohomology ring of
the target space. The quantum cohomology ring encodes all the operator product expansions
between the operators in the so-called (a, c)-ring of an N = (2, 2) superconformal algebra, where
a stands for anti-chiral and c for chiral [134].

In conclusion, the original work presented provides a method to compute the defining differen-
tial operators corresponding to geometries from a purely gauge theory toolset. The geometries
for which this is done explicitly are toric varieties, complete intersections therein, Grassmannian
varieties and complete intersection spaces therein, too. The examples relevant from a string
theory target space perspective correspond to Calabi-Yau manifolds, which from a mathematical
perspective are Ricci flat complex Kähler manifolds and from a gauge theoretic perspective
arise in the infrared limits of gauged linear sigma models where the axial anomaly of the U(1)R
symmetry cancels. We highlighted the main idea of this work and its ramifications in Chapter 3.
Furthermore, specific examples illustrating the computation of the aforementioned correlator
relations and their differential operator representation was also done in that chapter. Specifically
for Calabi-Yau manifolds with one and two parameters, the original work also computed an
explicit formula yielding their respective Picard-Fuchs operators in terms of correlators alone
using a different perspective on the problem.

Supersymmetric gauge theories in 3d with 4 supercharges, i.e., those labelled as N = 2
theories in 3d, are the focus of study in Chapter 4. At first sight these theories do not seem to
be directly related to worldsheet theories of geometries relevant for string theory the way the
2d gauged theories are. However, they find relevance in several different ways to target space
geometries of string theory. The results of [97] have established a correspondence between 3d
N = 2 gauge theories and quantum K-theory. This statement is parallel to the correspondence
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of the 2d N = (2, 2) gauge theories to quantum cohomology. Our original work [32] which was
also presented in this thesis deals primarily with gauge theories defined on the twisted solid
torus D2 ×q S1, where q denotes the twisting parameter of the S1 fibered over the D2. This 3d
geometry is such that in the limit where the radius of the S1 vanishes, various results on the 3d
theory collapse to those on the 2d theory and consequently the 3d theory can be viewed as a lift
of the 2d theory. The parameter q quantifying the non-trivial fibration of the S1 over the D2

proves elemental in generalising various mathematical structures that were encountered in the
2d theory.

In the work [32] we utilise the 3d gauge theory/quantum K-theory correspondence for gauge
theories with Grassmannians as target spaces. Grassmannian target spaces can be achieved
when the gauge group in the 2d theory is U(M). This is a generalisation of the work in [97]
which focused on Abelian gauge groups. We study the algebra of Wilson line operators wrapping
the S1 and find that it gives rise to the quantum K-theory ring on the target space. This algebra
is dependent on a new ingredient specific to the 3d ecosystem known as the supersymmetric
Chern-Simons terms. For certain values of the Chern-Simons levels, known as the canonical
choice, this Wilson loop algebra is isomorphic to the quantum product between the K-theory
generators of the ring of Schubert structure sheaves and the result is shown to match with
the mathematical result of [120]. For a different value of the Chern-Simons levels the Wilson
loop algebra generates the Verlinde algebra [126] of the unitary group, which itself has been
proven to be isomorphic to the quantum cohomology algebra of the Grassmannian [123–125].
The limit to 2d can be achieved by contracting the S1 to zero and we find that, irrespective
of the value of the Chern-Simons levels, all inequivalent Wilson loop algebras collapse to the
quantum cohomology algebra on the target space. Finally, we compute the limit to 2d of the
partition function on the D2 ×q S1 and find schematic agreement with the 2d partition function
on D2 computed in [46,47]. The 3d partition function encodes a generating function of quantum
K-theoretic enumerative invariants, known as the quantum K-theoretic I-function, which we
also extract from our computation [31]. Lastly, we derive q-difference operators that annihilate
the K-theoretic I-function and find that they reduce to the differential operators computed in
Chapter 3 using correlator relations in the 2d limit.

Outlook

The field of exploration of supersymmetric gauge theories using localisation techniques is
relatively nascent and has many promising avenues to offer, having been set off by Pestun’s
computation of the partition function on the four-sphere S4 [24]. Supersymmetric gauge theories
in 2d have a variety of hitherto unscaled concepts and questions, one of which the author is
currently involved in the process of concluding. This has to do with the subtleties that come
with 2d Riemann surfaces with boundaries on which the gauge theory is defined. It is a well
known result in string theory that D-branes on Calabi-Yau manifolds form a category of coherent
sheaves on this manifold when the corresponding non-linear sigma model is B-twisted. Gauged
linear sigma models with non-Abelian gauge groups and suitable matter representations exhibit
dualities which relate distinct ultraviolet gauge theories with the same infrared physics [49].
Such dualities can be checked by comparing partition functions of dual gauge theories on S2 or
D2. In our work we test dualities by matching pairs of boundary conditions, which implies an
equivalence among brane spectra arising from dual gauge theories. Such equivalences among
boundary conditions are realised in terms of suitable duality defects, which separate pairs of

97



Chapter 5 Summary and Outlook

dual gauge theories along particular one-dimensional interfaces. In a geometric setting such
equivalences can be understood mathematically as derived equivalences between the bounded
derived category of coherent sheaves of the respective target space geometries. In particular, we
study the duality which relates the theory with gauge group U(k) and with N flavours in the
fundamental representation to the theory with gauge group U(N − k) and with N flavours in
the fundamental representation of this dual gauge group. This duality geometrically realises
the duality between the complex Grassmannians Gr(k,N) and Gr(N − k,N). We construct the
identity defects and the duality defects for such Grassmannian target spaces and prove them to
be quasi-isomorphic, thus accomplishing our goal. Furthermore, we generalise the identity defect
to hypersurfaces and complete intersections in Grassmannians. It would be very interesting
to extend these results to the wider array of Seiberg-like dualities [25] for SO(k) and USp(k)
gauge groups proposed in [49]. In particular, a certain duality involving USp(k) groups relates
two Calabi-Yau manifolds and is also known as the Grassmannian-Pfaffian duality. This relates
closely to the homological projective duality program of [58, 59] and thus would be a fruitful
endeavour to explore in detail.

The topic of supersymmetric gauge theories in 3d, in particular the mathematical connection to
quantum K-theory, is fledgling and proves to be fertile with unexplored and interesting questions.
While the 2d gauge theories can be directly associated to the worldsheet of a string, the 3d gauge
theory can be speculated to be the worldsheet of the 11-dimensional M-theory [19]. M-theory is
difficult to model or probe directly as a formalism to quantise the membranes that give rise to
M-theory does not exist. It is also known that the 3d gauge theories with four supercharges
arise as low energy theories of compactifications of M-theory on Calabi-Yau manifolds with
four complex dimensions. This is analogous to the connection between 2d gauge theories as
worldsheet theories of the type II string compactified on Calabi-Yau threefolds. Furthermore,
the fact that the 3d theory can be interpreted as a lift of the 2d theory is reminiscent of the lift
of the type II string theory to M-theory. All these results provide hints at the interpretation of
the 3d theory as a membrane theory in some limit. Exploring the 3d gauge theory setup further
to concretise a connection to M-theory is an attractive, if ambitious, problem.

We now shed light upon a technical aspect of our computation that can be generalised. We
brushed upon the topic of supersymmetric Chern-Simons levels and derived a majority of the
results for the canonical values of these levels. An added simplicity that accompanies this
choice is that the input of the quantum K-theoretic J-function resulting from the partition
function computation has a vanishing input. Givental’s reconstruction theorem states that
that a non-trivial input can be built into the J-function with vanishing input by the action
of a reconstruction operator. This exercise was illustrated for projective spaces and complete
intersection therein in the work of [97] and in an ongoing project the author is involved on
extending this technique to Grassmannian target spaces [111].

Another important direction which is being explored in the upcoming work is that of the
superfields in the 3d gauge theory on the D2 ×q S1 being subject to different permutations
of boundary conditions. In the presented work of the author [32], we adhered to Neumann
boundary conditions for all chiral fields as well as the vector field. Dirichlet boundary conditions
on the vector field break the gauge group to a global symmetry group and lead to several nuances
in the structure of the partition function [102]. It must be mentioned that the generators of
the quantum K-theory ring of the Grassmannian are Schur polynomials, thus making most
computations more expensive compared to the case of when the gauge group is simply U(1) and
the target space is a projective space. Tackling such complexity and finding ways to minimise it
remains an important aspect of this research. More broadly, in two dimensional gauge theories
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with boundary conditions there exists a robust understanding of the mathematical features
of D-branes [135–143] in the infrared. A similar understanding of the corresponding branes,
sometimes called membranes, appearing in the infrared of three dimensional gauge theories with
boundaries evades us [54,97,102] and unfolds several new directions of research.
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APPENDIX A

The Grassmannian

A.1 Basics of the Grassmannian Gr(M,N)

In this appendix we review some basic notions of complex Grassmannians, and we collect some
properties of the canonical vector bundles on Grassmannians that are relevant in defining the
quantum cohomology and quantum K-theory rings. Furthermore, we discuss certain characteristic
classes on the Grassmannian that made an appearance in the computation of separating the
3d partition function into the K-theoretic I-function and a folding factor in Chapter 4. For a
concise reference, we refer the reader to [65], from which many fundamental concepts presented
here are inspired.

A.1.1 Introductory Definitions

(i) A complex Grassmannian, generally denoted by Gr(M,V ), is the space of M -dimensional
linear subspaces of a finite-dimensional complex vector space V . For V ' CN , it is usually
denoted by Gr(M,N). This is the notation to which we adhere to in the entirely of this
thesis.

Let UM,N be the space of complex matrices of maximal rank with dimension M × N ,
where 0 < M < N . Then, an arbitrary element Λ ∈ UM,N which is explicitly given by,

Λ =

 v11 v12 . . . v1N

...
...

...
vM1 vk2 . . . vMN

 , vij ∈ C , rk(Λ) = M , (A.1)

describes an M -plane in V and therefore a point on the Grassmannian Gr(M,N). This is
not a unique representation of an M -plane in V in terms of a matrix Λ ∈ UM,N and this
can be understood by noting that for two elements Λ,Λ′ ∈ UM,N ,

Λ ∼ Λ′ iff Λ′ = g · Λ , for some g ∈ GL(M,C) ,

where GL(M,C) is the general linear group of M -dimensional complex matrices. Thus,
the Grassmannian Gr(M,N) can be viewed as the quotient space UM,N/GL(M,C).

In particular, for M = 1 we have GL(1,C) ' C∗ and Gr(1, N) = (CN \ {0})/C∗ ' PN−1,
i.e., the complex projective space of dimension N − 1.
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(ii) On any complex Grassmannian Gr(M,V ) three standard complex vector bundles can be
defined: the trivial bundle V , the universal subbundle S and the universal quotient bundle
Q. For over-arching definitions of fibre bundles we refer the physics reader to [144].

The trivial bundle V of rank N corresponds to the vector space V trivially fibered over
the Grassmannian Gr(M,V ), i.e.,

V := Gr(M,N)× V → Gr(M,N)

(l, v) 7→ l .

The universal subbundle S is a subbundle of the trivial bundle V. It is of rank M and is
defined as,

S := {(l, v) ∈ Gr(M,N)× V | v ∈ l} .

The dual of S is commonly known as the universal hyperplane bundle S∗.

A determinant line bundle L on the Gr(M,N) can be constructed corresponding to the
the dual universal subbundle by associating to each fibre in S∗, which is an M -plane,
the one-dimensional fibre of the M -dimensional exterior power of the plane. Owing to
its trivial transformation under a U(M) transformation, a section of this determinant
line bundle makes an appearance in constructing the gauge-invariant superpotential for
a gauged linear sigma model with a Grassmannian target space. For instance, for the
Rødland model discussed Chapter 3, the gauge group is U(2) and L = εαβφ

α
i φ

β
j ∈ ∧2(S∗)

where i, j are the flavour indices and α, β are the gauge indices.

The universal quotient bundle Q, or simply the quotient bundle, is defined as a quotient
of the trivial bundle and the universal subbundle, i.e., Q = V/S. The rank of the quotient
bundle is rk(V)− rk(S) = N −M .

Equivalently, the quotient bundle Q is defined via the short exact sequence of vector
bundles,

0→ S → V → Q → 0 . (A.2)

Note that Q⊗ S∗ ' TGr(k,N) is the tangent bundle on the grassmannian Gr(M,N). In
particular, for PN−1 = Gr(1, N), S ' O(−1), V ' O⊕N , Q ' TPN−1(−1) and the short
exact sequence (A.2) becomes the well-known Euler sequence of the complex projective
space PN−1,

0→ O(−1)→ O⊕N → TPN−1(−1)→ 0 .

(iii) A Grassmannian can be realised as a subvariety of a projective space using the Plücker
embedding. The essential idea is to map an M -plane of the Gr(M,N) to an exterior power
of the M (N -dimensional) vectors defining the M -plane, i.e.,

ι : Gr(M,N)→ P(∧MV ) = P(NM)−1

Λ 7→ v1 ∧ . . . ∧ vM ,

where Λ was defined in (A.1). The subvariety of the projective space P(NM)−1 that is
isomorphic to the Grassmannian Gr(M,N) is given by certain quadratic relations known
as the Plücker relations. For the simplest non-trivial Grassmannian Gr(2, 4), there is a
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single quadratic Plücker relation leading to the isomorphism,

Gr(2, 4) ' P5[2] ,

mentioned in Chapter 3.

This concludes a lightning-fast review of Grassmannian manifolds, important vector bundles
thereon and the Plücker embedding of Grassmannians into projective varieties.

A.1.2 Characteristic Classes on Gr(M,N)

Characteristic classes of vector bundles on a base space associate certain cohomology classes
on the space to the said vector bundles. There are a few recurring characteristic classes of
the tangent bundle TGr(k,N) on the Grassmannian Gr(M,N) in Chapters 3 and 4 that we
will compute in this subsection. For a review on the definitions of these and a wider range of
characteristic classes we refer the reader of a physics background to [144].

Chern Class
The Chern class, as most characteristic classes, help identify whether two seemingly identical
vector bundles on a base space are in fact identical by associating to the vector bundles a
topological invariant known as the Chern class. The total Chern class corresponding to a vector
bundle E can be expanded as,

c(E) = 1 + c1(E) + c2(E) + . . .+ cn(E) ,

where ci(E) ∈ H2i(E). For an m-dimensional base space, the jth Chern class cj with 2j > m
vanishes identically. Regardless of this constraint if the complex dimension of the fibre is k, then
cj with j > k vanishes as well. For any short exact sequence, say (A.2), the Chern class has a
property,

c(S) · c(Q) = c(V) .

Using the splitting principle of vector bundles and the additive property of the Chern class
under the Whitney sum, the Chern class over any vector bundle can be written as a product
over Chern roots ai as,

c(E) =

n∏
i=1

(1 + ai) . (A.3)

The Chern classes can be solved for to yield cj = sj(a1, . . . , an), where sj are the elementary
symmetric polynomials of order j.

For the specific case of the Grassmannian Gr(M,N) we note the following points.

(i) There are M Chern roots of the M -dimensional dual universal subbundle S∗ and they
are given by ε1, ε2, . . . εM ∈ H2(Gr(M,N)). This terminology is to be compared with
the appearance of ε’s in the permutation equivariant I-function of quantum K-theory in
Chapter 4.

(ii) For the trivial bundle V, c(V) = 1 since it is a trivially fibered bundle. Thus the Chern
class of the quotient bundle is the inverse of that of the universal subbundle by the short
exact sequence (A.2).
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(iii) The Chern class of the tangent bundle TGr(k,N) ' Q⊗ S∗ can be computed using the
Chern roots of Q, denoted by qi, and the Chern roots of S∗ using the splitting principle.
It is given by,

c(Gr(M,N)) := c(Q⊗ S∗) = c

((
N−M⊕
i

Qi

)
⊗

(
M⊕
i

S∗i

))

=
M∏
i=1

N−M∏
j=1

(1 + εi + qj) ,

(A.4)

where Qi and S∗i are the line bundles obtained upon the splitting of Q and S∗, respectively.
Consequently, they have as Chern roots qi and εi, respectively. In the last equality
we have used the property of the Chern class for a Whitney sum of vector bundles
c(A⊕B) = c(A) ∧ c(B) and .

(iv) Finally, we note that the Chern class of the tangent bundle can alternatively be computed
due the result of [113]. We now state this result in the language of gauge theory, which is
more relevant for us. If the Grassmannian is given by the symplectic quotient space X //G
with G = U(M) then we define the corresponding symplectic quotient space X // T , where
T is the maximal torus of G, i.e., T = U(1)M and the bundles E = ⊕α>0Lα, Ẽ = ⊕α<0Lα
where Lα is a line bundle associated to the the root α of G. Then,

c(X // G) =
c(X // T )

c(E) ∧ c(Ẽ)
.

Explicitly it is given by,

c(Gr(M,N)) =

M∏
i=1

(1 + εi)
N∏

1≤i<j≤M
(1 + εij)(1− εij)

, (A.5)

where εij = εi − εj . The expression (A.4) can be shown to match with the formula above
order by order.

This concludes our discussion of the Chern class of the Grassmannian.

Chern Character
The Chern character ch(·) is another characteristic class that makes an appearance in the
discussion of the inner product between generators of K-theory. In particular the formula for
the holomorphic Euler characteristic of vector bundles E ,F ∈ K(X) given by the Hirzebruch-
Riemann-Roch theorem takes as an input the Chern characters of these bundles and the Todd
class of X. In terms of the Chern roots defined in (A.3), the Chern character of a vector bundle
E can simply be written as,

ch(E) = ea1 + ea2 + . . .+ ean . (A.6)
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Using the expression in terms of the Chern roots the Chern character can be written in term of
Chern classes as,

ch(E) = rank(E) + ch1 + ch2 + . . . = rank(E) + c1(E) +
1

2

(
c2

1 − 2c2

)
+ . . . ,

where chi(E) ∈ H2i(E). The properties of the Chern character under a tensor product, ch(E ⊗
F) = ch(E) ∧ ch(F), and Whitney sum, ch(E ⊕ F) = ch(E)⊕ ch(F), of vector bundles can help
compute the characters of the modified Wilson loop algebra generators of Chapter 4.

Todd Class
The final ingredient to compute the holomorphic Euler characteristic is the characteristic class
known as the Todd class. The Todd class of the Grassmannian also makes an appearance in
the expression of the folding factor inside the partition function on the D2 ×q S1. For a vector
bundle E with n Chern roots ai as in (A.3), the Todd class td(E) given by,

td(E) =
n∏
i=1

(
ai

1− e−ai

)
. (A.7)

Using the formula above the Todd class can be written in terms of the Chern class at each level.
For the tangent bundle on the Grassmannian, one can either use the Chern roots given in (A.4)
to compute the Todd class, or alternatively one can also use the technique of [113] to write,

td(Gr(M,N)) =

M∏
i=1

(
εi

1− e−εi

)N
·
M∏
i<j

(
(1− e−εij )(1− e−εji)

(εij)(εji)

)
. (A.8)

This is can be compared with the expression for the β′-dependent Todd class inside the folding
factor of the partition function on the D2 ×q S1.

Gamma class
The Gamma class associated to a vector bundles is a certain square root of the Todd class, we
refer the reader to [112] for a comprehensive definition. The q-Gamma class was introduced
in [97] as a q-deformation of the Gamma class. For the case of the Grassmannian Gr(M,N) we
deduce the q-Gamma class from the folding factor. It takes the form,

ΓGr(M,N),q =

M∏
i=1

Γq(1 + εi)
N

M∏
i<j

Γq(1 + εij)Γq(1− εij)
.

The structure of the q-Gamma class, as a ratio of factors corresponding to the symplectic
quotient space with respect to the maximal torus of G and the line bundles corresponding to
the roots of the group G, falls in line with the argument of [113].
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A.2 Quantum Cohomology Ring on Gr(M,N)

The cohomology elements of the Grassmannian Gr(M,N) are generated by Schubert cycles Σν

of Young tableaux with ν with at most M rows and N −M columns. There is a surjective ring
homomorphism from the Schubert cycles Σν to the Schur polynomials σν such that to each
Schubert cycle can be associated a Schur polynomial labelled by the same Young tableau in
variables x1, . . . , xM .

First of all, we will explicitly define Schur as well Grothendieck polynomials, that made an
appearance in Chapter 4, for completion.

Schur Polynomials
Schur polynomials are symmetric polynomials that are indexed by integer partitions, which for
the purpose of the cohomology of the Grassmannian Gr(M,N) are Young tableaus that lie in
an M × (N −M) box. For a Young tableau labelled by the non-increasing integer partition
λ = (λ1, λ2, . . . , λM ), the Schur polynomial σλ(x1, . . . , xM ) is given by,

σλ(x1, . . . , xM ) =
det(Aλ)∏

1≤i<j≤M
(xi − xj)

, with Aλ =


xλ1+M−1

1 xλ1+M−1

2 . . . xλ1+M−1

M

xλ2+M−2

1 xλ2+M−2

2 . . . xλ2+M−2

M
...

...
...

x
λM
1 x

λM
2 . . . x

λM

M

 (A.9)

Grothendieck Polynomials
There exists another basis of symmetric polynomials which are related to the Schur polynomials
by a linear transformation of determinant one, known as the Grothendieck polynomials. These
become more relevant in defining the generators of the quantum K-theory ring as they appear
frequently in the mathematical literature in this context [128]. A Grothendieck polynomial Oλ
in variables x1, . . . , xM is labelled by a Young tableau λ and is defined as,

Oλ(x1, . . . , xM ) =
det(Bλ)∏

1≤i<j≤M
(xi − xj)

, with (Bλ)ij = (Aλ)ij · (1− xj)i−1 , (A.10)

where (Aλ)ij = (xj)
λi+M−i is borrowed from the definition of Schur polynomials (A.9). For the

sample case of the Gr(2,4) the basis change between Schur and Grothendieck polynomials was
spelled out in (4.69).

For complex Grassmannian varieties the deformation of the classical cohomology ring to the
quantum cohomology ring is established in refs. [123–125]. More generally, for Fano varieties
Siebert and Tian show that if the ordinary cohomology ring is a polynomial ring with relations
as in formula (A.13), then the quantum cohomology is captured by a Q-dependent deformation
of these relations [69].

The classical product of Schubert cycles generating the quantum cohomology ring can be
obtained by the Pieri and Giambelli rules, for a definition of which we refer the reader to [65].
When represented as Schur polynomials, the classical product coincides with the classical product
of the corresponding Young tableaus. The rules to perform the quantum product of the even
cohomology elements on the Grassmannian were given in [145].

Here we approach the problem of computing the quantum cohomology ring over the Grass-
mannian using the gauged linear sigma model correlator technique. To this end, we look at the
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specific example of the Grassmannian Gr(2,4) to highlight the correspondence between 2d gauge
theory and quantum cohomology.

Example: Gr(2, 4)
For the Grassmannian Gr(2, 4) the generators of the cohomology ring are the Schur polynomials
in two variables ε1, ε2 ∈ H2(Gr(2, 4)). Note that we use for them identical terminology as for
the Chern roots of the dual universal subbundle. Classically, they generate the symmetric
polynomial ring C[ε1, ε2]S2 and obeying,

σν · σµ = σν⊗µ , (A.11)

in terms of the tensor product ⊗ of Young tableaux of the permutation group S2. The kernel of
the ring homomorphism from Schubert cycles to corresponding Schur polynomials is given by
the two relations,

σ3(ε1, ε2) = ε31 +ε21ε2 +ε1ε
2
2 +ε32 = 0 , σ4(ε1, ε2) = ε41 +ε31ε2 +ε21ε

2
2 +ε1ε

3
2 +ε42 = 0 , (A.12)

Here the subscripts of Schur polynomials σ refer to the integer partition of a Young diagram.
The cohomology ring thus becomes,

H∗(Gr(2, 4),C) ' C[ε1, ε2]S2
/
〈σ3, σ4〉 ' C[N1, N2]

/〈
N1N2,−

N4
1

4 +N2
1N2 +

N2
2

4

〉
. (A.13)

In the last step the ideal 〈σ3, σ4〉 of the kernel of symmetric polynomials is expressed in terms of
the Newton polynomials N` = x`1 +x`2, ` = 1, 2, which in turn generate the symmetric polynomial
ring C[ε1, ε2]S2 .

When the quantum deformation of is applied to the Grassmannian Gr(2, 4) it yields the
quantum cohomology ring [69],

H∗? (Gr(2, 4),C) ' C[N1, N2][[Q]]
/〈

N1N2,−
N4

1
4 +N2

1N2 +
N2

2
4 +Q

〉
, (A.14)

i.e., the latter relation generating the classical cohomology relations is deformed by a factor of
Q. This is reminiscent of the deformation of the classical to the quantum cohomology ring for
projective spaces. The presented formulation relates directly to the gauge theory correlators
and its correlator relations, as discussed in Chapter 3. We first note that the gauge invariant
insertions are canonically identified with the Newton polynomials Nr = xr1 + xr2 according to,

tr(σr) ←→ Nr . (A.15)

The Schubert cycles are multiplied with the Q-dependent quantum product and then integrated
over the Grassmannian Gr(2, 4). Here, we have used the following relations among Newton and
Schur polynomials,

N1 = σ1 , N2 = σ2 − σ1,1 . (A.16)
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