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Summary

This thesis contains three chapters, each dealing with one
particular aspect of the theory of higher Segal spaces intro-
duced by Dyckerhoff and Kapranov:
(1) By exhibiting the simplex category as an∞-categorical

localization of the dendrex category of Moerdijk and
Weiss, we identify the homotopy theory of 2-Segal spaces
with that of invertible ∞-operads.

(2) Inspired by a heuristic analogy with the manifold cal-
culus of Goodwillie and Weiss, we characterize the var-
ious higher Segal conditions in terms of purely categor-
ical conditions of higher weak excision on the simplex
category and on Connes’ cyclic category.

(3) We establish a large class of ∞-categorical Morita-
equivalences of Dold–Kan type. As an application we
describe higher Segal simplicial objects in the additive
context as truncated coherent chain complexes; in the
stable context, we identify higher Segal Γ-objects with
polynomial functors in the sense of Goodwillie.
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Chapter 0

Introduction

A well-known scientist (some say it was
Bertrand Russell) once gave a public
lecture on astronomy. He described how
the earth orbits around the sun and how
the sun, in turn, orbits around the center
of a vast collection of stars called our
galaxy. At the end of the lecture, a little
old lady at the back of the room got up
and said: “What you have told us is
rubbish. The world is really a flat plate
supported on the back of a giant
tortoise.” The scientist gave a superior
smile before replying, “What is the
tortoise standing on?” “You’re very
clever, young man, very clever,” said the
old lady. “But it’s turtles all the way
down!”

“A Brief History of Time”, Chapter 1
S. W. Hawking

This thesis begins with a short story about algebraic structures, homotopy types and the
nature of equality. The goal is not yet to delve into the actual mathematics that the author has
produced in the last three years and a half, but rather to transmit a particular way of thinking
that he has acquired while doing so. Of course, none of these ideas are original in any way;
they are just the author’s personal glimpse into a paradigm that is still unfolding in modern
mathematics.

The impatient reader who immediately wants to know what this thesis is actually about is
welcome to skip ahead to Section 0.3.

0.1 Higher algebraic structures—a very informal introduction

Mathematical objects come in many shapes and forms and—barring tautological answers like
“that which mathematicians study”—it is probably impossible to give a precise and complete
general definition of what a mathematical object is. In many areas of mathematics such as
Geometry, Topology, Algebra or Representation Theory a central role is often played, however,
by objects which can roughly be described as follows:
• An underlying thingamajig
• equipped with some structure
• satisfying certain properties.
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For example, an abelian monoid is
• a set M
• equipped with a special element 0 ∈ M , and a binary operation +: M ×M → M which

to each pair (a, b) of elements of M associates a new element a+ b,
• satisfying the familiar axioms of

– unitality: 0 + a = a = a+ 0,
– associativity: (a+ b) + c = a+ (b+ c),
– commutativity: a+ b = b+ a

for all a, b, c ∈M .
This example shows a pattern very common for mathematical objects which are of “algebraic”

nature: the underlying thingamajig is a set, the structure consists of a bunch of operations, and
the axioms postulate certain equalities between various ways of applying these operations.

The notion of equality is so basic that most mathematicians rarely stop and give it a second
thought. One reason for this is that we are used to dealing with sets, where equality is very
easy, very black-and-white: either two elements of a set are equal, or they are not. Furthermore,
given two random1) mathematical objects—say the real number π and the abelian group Z—few
mathematicians would ever consider asking whether they are equal; in fact, many2) would argue
that the statement “π = Z” (or “π 6= Z” for that matter) is intrinsically ill formed and that one
should only ever ask about equality between objects which are known a priori to be elements of
a common set. From this perspective, the question of equality is at the very core of the concept
of a set, which we might thus introduce via the slogan:

A set is a collection of objects with a well behaved notion of equality.

What happens then, when the notion of equality in the underlying thingamajig gets more com-
plicated? For example, think about the case of a (suitably well behaved) geometric/topological
object like a CW complex, which will henceforth just call a space. It is a perfectly valid question
to ask whether two points in a space are equal or not, but usually a topologist is uneasy about
any situation where this question of equality is—or seems to be—an essential feature. One rea-
son for this uneasiness is that not all non-equalities are equal: if two points are different but
connected by a path one might say that they are “less non-equal” than if they lie in different
path components entirely.

Of maybe bigger interest to the algebraically minded reader, we might consider the related
question of equality between algebraic objects; let’s say vector spaces (over some fixed field k)
for concreteness. Assume that we wanted to consider the set3) of all (finite dimensional) vector
spaces as an algebraic structure, for instance by equipping it with the (external) direct sum (⊕)
or the tensor product (⊗). Equality in the set of all vector spaces is just as easy as in any
other set: either two vector spaces are the same—they consist of the same elements and the
same addition/scalar multiplication—or they are not. There are many trivial vector spaces, e.g.,
{0}, {1} and {(0, 1)} = {0} ⊕ {1}, which are pairwise non-equal; yet even the most pedantic
mathematician will often just denote “the” zero vector space by 0 and happily write the “equation”
0 ⊕ 0 = 0. The situation for the tensor product is even worse: asked to explicitly define “the”
vector space V ⊗W , different mathematicians might even write down non-equal definitions. Does
this mean that the tensor product is an ill defined concept? Of course not: in practice, nobody4)

is confused about what V ⊗W is, even though it is not so easy to say what “is” really means in
this context. So where did we go wrong?

An easy answer would be that we were not considering the correct notion of equality on the
underlying thingamajig to begin with: maybe we should define points in a space to be equal if

1) in the colloquial sense of the word
2) including the author
3) don’t worry about size issues
4) except every student who learns about tensor products for the first time
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there is a path connecting them and maybe we should define two vector spaces to be equal if
there is an isomorphism between them.

The examples outlined above highlight two different problems with this simple-minded ap-
proach:
• If we declare path connected points in a space X to be equal then we are no better off than

studying the set of path components of X. This would mean that the theory of spaces just
collapses to the theory of sets.
• Let V be a vector space equipped with some additional structure, let’s say an inner product.

If we now have some other vector spaceW which is (abstractly) isomorphic to V , we might
still not be able to write down an inner product on W . Even if we are somehow able to
choose isomorphisms along which to transfer the additional structure, this procedure could
be ambiguous and we might end up (after many such transfers) with a new inner product
on the original vector space V that is different from the original one.

More abstractly:
• Declaring objects to be equal might make an interesting theory collapse and lose its richness.
• Equal objects should behave the same; moreover it should be possible to transfer properties

and structure across equality without getting into trouble.
The problem is not just that we gave an answer that is too naive, but that we were implicitly

trying to answer a subtly flawed question: When are two things to be considered equal?
The hidden—and potentially pernicious—assumption in this question lies in the unassuming word
“when”; it encapsulates the fundamental dogma that equality is a property which two objects
might or might not have; a property which is either true or false. This does often not reflect
mathematical practice: when a mathematician writes an “equation” V = W between vector
spaces, they typically have a specific isomorphism in mind; this isomorphism is then implicitly
used whenever some structure is transferred from one side to the other. In other words, they
are not just keeping track when two objects are equal (a property), but how they are equal
(a structure). This shift of perspective is the core of homotopy theory, which, in the words
of Barwick, should be thought of “as an enrichment of the notion of equality, dedicated to the
primacy of structure over properties” [Bar17] or, slightly catchier:

Equality is not a property, but a structure.

Whenever we would formerly say that two objects are equal, we should now have to explicitly
pick and remember an equality witnessing this fact. These equalities should then be treated on
the same footing as any other structure; in particular it should make sense to ask whether two
equalities are themselves equal5), or rather—keeping the fundamental slogan in mind—how they
are equal. These equalities should also allow to perform basic deductive steps. For instance,
there should be
• for each object x, a special equality x = x from x to itself (reflexivity),
• a way to compose two equalities x = y and y = z to an equality x = z (transitivity),
• a procedure for reversing an equality x = y into an equality y = x (symmetry).

So what sort of higher structures are we supposed to be studying? What sort of object is formed
by such infinite hierarchies of highly structured higher equalities? Giving a precise mathematical
answer is unfortunately a difficult question which is outside the scope of this informal introduction
so we will have to make do with a slogan:

A homotopy type6) is a collection of objects with a well behaved notion of equality.

5) Of course it only makes sense to ask about equality for pairs of equalities between the same two objects.
6) This perspective on the word “homotopy type” and its accompanying discussion about the nature of equality

is heavily inspired by the ideas of homotopy type theory [HoTT13].
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The attentive reader will not have missed that this slogan is the same that was supposed to
characterize sets; the difference, of course, is the new interpretation of the crucial word “equality”:
in the case of sets, equality was a mere property; now it is a structure. Between two objects
of a homotopy type, there is a collection of equalities which themselves need to have a well
behaved notion of equality, i.e., form a homotopy type. We can view every set as a homotopy
type where the homotopy type of equalities between any two objects is either the singleton type
{?} (which is the set with exactly one element ?) if they are equal, or the empty type ∅ (which
is the set with no objects) if they are not. A homotopy type whose homotopy types of equalities
are actual sets is precisely a groupoid, i.e., a category with only invertible morphisms; from
this perspective it is natural to use the synonym “∞-groupoid” instead of “homotopy type”.
Between two homotopy types we may consider functors, which—generalizing functions between
sets and functors between groupoids—are maps that send objects to objects and equalities to
equalities.

For vector spaces—as for many basic algebraic objects—one usually considers the identity as
the only possible equality between isomorphisms; in other words, equality between isomorphisms
is a property. Hence the hierarchy of equalities stops after three steps:
(0) vector spaces
(1) isomorphisms between vector spaces
(2) (actual) equality of isomorphisms.

This state of affairs makes the situation seem deceptively simple, since it gives the impression
that higher equalities do not play a role. However, even in such a simple situation, higher
equalities have a tendency to creep into the picture as soon as one wants to perform any sort of
universal construction. Let us illustrate with an example: The set of finite dimensional vector
spaces up to isomorphism is an abelian monoid under direct sum ⊕; freely adding inverses to this
monoid—a process called group completion—gives rise to the abelian group K0(k), isomorphic
to Z7). If one wants to perform the analogous procedure while taking into account the full
homotopy type vectk of vector spaces (which has non-trivial levels 0 and 1), one should consider
(vectk,⊕) as a “higher abelian monoid”8) and then group complete it with respect to ⊕. When
this group completion is performed in the correct homotopy theoretic sense9), it gives rise to a
“higher abelian group”10) K(k)—called the connective K-theory spectrum of k—whose underlying
homotopy type contains non-trivial information in all degrees.

The concept of a homotopy type first arose in algebraic topology were historically it was
roughly synonymous with “space up to homotopy equivalence”. Every space X does indeed give
rise to a homotopy type—called the fundamental∞-groupoid of X—whose objects are the points
of X and whose homotopy types of equalities are, recursively, the homotopy types associated
to the spaces of paths between pairs of points. Grothendieck’s11) homotopy hypothesis12) states
that this procedure should provide an equivalence between the homotopy theory of spaces and
that of homotopy types. In this context, a homotopy theory—also called (∞, 1)-category, or
∞-category for short—is the homotopy theoretic version of a category, which we can summarize
in the following slogan:

An ∞-category is a collection of objects equipped with homotopy types of compos-
7) K0(k) becomes more interesting when k is no longer a field, but an arbitrary ring or scheme.
8) The usual name for this structure is symmetric monoidal∞-groupoid, or, since vectk has no higher equalities,

symmetric monoidal (1-)groupoid.
9) i.e., it satisfies the correct universal property in the world of symmetric monoidal ∞-groupoids

10) From the perspective of algebraic topology, these “higher abelian groups” are called grouplike E-algebras,
or—in view of the recognition principle of Boardman and Vogt [BV73] and May [May72]—infinite loop spaces or
connective spectra.

11) Grothendieck explained these ideas in a letter to Quillen which appears as the beginning of the manuscript
“Pursuing stacks”. Scans of the original manuscript are hosted at Maltsiniotis’s web-page [Gro]; see also https:
//thescrivener.github.io/PursuingStacks/ps-online.pdf for a version retyped in LATEX.

12) The name “homotopy hypothesis” was popularized by Baez [Bae07]

https://thescrivener.github.io/PursuingStacks/ps-online.pdf
https://thescrivener.github.io/PursuingStacks/ps-online.pdf
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able arrows between them.

Note how this slogan would describe an ordinary category if we were to replace the expression
“homotopy type” with the word “set”; and since every set is a homotopy type, each ordinary
category is an example of an ∞-category. Moreover just like sets and functions form a category,
one can define an ∞-category whose objects are the homotopy types themselves: just like the
functions between two given sets S and T assemble naturally into a set TS , the functors between
two given homotopy types S and T assemble canonically into a homotopy type TS . The ho-
motopy theory of spaces has spaces as objects and between two spaces X and Y the homotopy
type of the mapping space Map(X,Y ). Nowadays there are various ways to make the notion of
homotopy types and homotopy theories precise; the first test each of these frameworks always
needs to pass is that the homotopy hypothesis must hold, either by definition or by theorem. The
fact that homotopy types were historically first modeled via spaces and homotopies is the reason
why in many mathematical writings (including this one) the word “space” is used synonymously
with “homotopy type” and the higher equalities are typically referred to as (higher) homotopies.
Echoing Barwick again we would like to stress, however, that there is nothing intrinsically topo-
logical in the notion of a homotopy type and that the theory of spaces just “so happens to be
one way (and historically the first way) to model homotopical thinking” [Bar17].

The correct notion of equality between homotopy types is called equivalence and is the analog
of the notion of isomorphism but now in the ∞-category of homotopy types rather than in the
ordinary category of sets. Hence, just like the—slightly pretentious—answer to the question
“What is a vector?” goes “An element of a vector space!”, the question “What is a homotopy
type?” can only be answered conclusively once one understands what it means to be “an object
of the ∞-category of homotopy types”.

Making rigorous and useful the notion of an ∞-category is a hard problem which in recent
decades has generated a variety of different solutions and frameworks, each suited for different
situations and needs. It would go far beyond the scope of this introduction to go deeper into
this issue; the interested reader is referred to Bergner’s survey book [Ber18].

At this point the reader is hopefully convinced that the homotopy-theoretic ideal of equality-
as-structure—and the resulting extension of the theory of sets and categories to that of homo-
topy types and ∞-categories—is a natural and ubiquitous extension of the equality-as-property
paradigm. Let us then go back to the study of basic algebraic objects, but this time through
the lens of homotopy theory. We will attempt to define the homotopy theoretic analog of an
abelian monoid with an underlying homotopy type (instead of set)M. By turning equality from
a property to a structure at every opportunity, we can then start to define an abelian monoid
with underlying homotopy typeM to consist of
• a binary operation +: M×M→M and a special object 0 ∈M.
• for each a, b, c ∈M, equalities13)

la : 0 + a = a

ra : a+ 0 = a

assa,b,c : (a+ b) + c = a+ (b+ c)

syma,b : a+ b = b+ a

If we were to stop our definition here, we would not do justice to many common situations
including our running example of vectors spaces and the operation ⊕. In this case, for example,
we wouldn’t want to choose any old isomorphism symV,W : V ⊕ W

∼=−→ W ⊕ V . Instead, we
probably have the specific choice (v, w) 7→ (w, v) in mind which has many special properties; for
instance, it satisfies that the composition V ⊕W ∼=−→ W ⊕ V ∼=−→ V ⊕W is equal to the identity

13) We should of course also require the families l, r, ass and sym to be equipped with suitable naturality
equalities.
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on V ⊕W . Hence it is reasonable to continue the definition with various equalities involving sym
(and also l, r, ass). For example,
• for each a, b ∈ M, an equality ffa,b between the composition a + b

sym
= b + a

sym
= a + b and

the identity Ida+b : a+ b = a+ b.
In the case of vector spaces, whose homotopy type is just a groupoid, we are done now, because
there are no non-trivial higher equalities whose compatibility could be questioned; we have
thus defined what it means for the homotopy type of vector spaces with the operation ⊕ to be
a so-called symmetric monoidal groupoid14). For a general homotopy type we would have to
keep going by adding suitable equalities—involving ff, for example—and then equalities between
those equalities, and so on, adding more structure at every level to witness the coherence of the
level before it. In other words, this enhanced version of an abelian monoid—typically called a
symmetric monoidal ∞-groupoid15)—is turtles structure all the way down up.

0.2 Segal presheaves

This begs the question: How can one efficiently write down homotopy coherent algebraic struc-
tures? One possible strategy to answer this question goes back to the following brilliant insights
of Segal [Seg74] which explain how to define the homotopy theoretic analog of an abelian monoid:

(1) There is a certain category Γ such that an abelian monoid can be encoded as a Γ-set (i.e., a
functor Γop → Set from the opposite of Γ to the category of sets) satisfying certain special
conditions.

(2) The aforementioned special conditions still make sense for functors Γop → S which now
take values in the ∞-category S of spaces rather than sets; furthermore it is a good idea
to define a symmetric monoidal ∞-groupoid to be such a special presheaf.

Before we explain in more detail what the category Γ is and how Γ-sets encode abelian
monoids, let us first abstract Segal’s ideas to obtain the following general recipe for extending
the definition of an algebraic object 〈X〉 to the homotopy theoretic world:

(1) Find a suitable category Z and identify the category of 〈X〉es with the category of functors
Zop → Set satisfying certain conditions 〈P 〉.

(2) Define the∞-category of∞-〈X〉es to be the∞-category of space-valued functors Zop → S

satisfying the correct homotopy theoretic version of 〈P 〉.
How useful such a definition of an ∞-〈X〉 turns out to be does of course depend crucially on

the specific choice of the category Z and the conditions 〈P 〉. Segal’s notion of a special Γ-space,
for instance, became a convenient framework for studying the theory of algebra and modules over
“higher rings” [BF78; Lyd99; Sch99] and inspired Lurie’s definitions of (symmetric) ∞-operads
and symmetric monoidal ∞-categories [Lur17].

There is one such category Z which towers high over all others in terms of historical and
mathematical significance: The simplex category ∆—whose detailed introduction we hereby add
to the queue of explanations owed to the reader—was introduced by Eilenberg and Zilber [EZ50]
who without ever using the words “category” or “functor”16) developed a theory of homology for
what are nowadays called simplicial sets17), namely set-valued presheaves ∆op → Set on ∆. The
goal of studying simplicial sets, just like that of simplicial complexes before them, was to make
algebraic topology more combinatorial. The main idea was that one should consider topological
spaces built from simplices—points, lines, triangles, tetrahedra, and so on—by specifying only a
discrete set of data which determines how these simplices are glued together along their faces. A

14) See [Mac98, VII and XI] for a full list of axioms, including the famous pentagon and hexagon equations.
15) or, from the point of view of spaces, E∞-algebra
16) The language of category theory had in fact been introduced by Eilenberg himself and MacLane [EM45] only

a couple of years prior.
17) At the time Eilenberg and Zilber called them “complete semi-simplicial complexes”.
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topological 2-sphere could be built, for instance, by gluing all faces of a 2-simplex (a.k.a. triangle)
to a single 0-simplex (a.k.a. point) but also by gluing two 2-simplices to each other along their
boundary. The hope was that by expressing spaces in terms of combinatorial data, one could
easier compute—maybe even algorithmically with the help of computers—fundamental invariants
like homology or homotopy groups. From this perspective, what ultimately matters about a
simplicial set is the homotopy type it encodes, called its geometric realization. Kan [Kan58a], for
instance, defined the homotopy groups of a simplicial set—i.e., those of its geometric realization—
using only its combinatorial structure18). It is a famous result due to Quillen [Qui67] that
geometric realization induces an equivalence between the homotopy theory of certain simplicial
sets—called Kan complexes—and the homotopy theory of spaces. Since then it has become very
common in algebraic topology and homotopy theory to work with simplicial sets rather than
topological spaces, since they are typically easier to manipulate and reason about.

Before we come to the promised definitions of the simplex category ∆ and Segal’s category Γ,
let us explain one way—the most important way—in which ∆ fits into Segal’s recipe for defining
algebraic structures: Rezk’s model for ∞-categories [Rez01].

(1) The data of a category C can be encoded into a simplicial set N(C) : ∆op → Set called its
nerve; the simplicial sets arising this way are precisely those which satisfy what Rezk calls
the Segal conditions.

(2) Rezk then defines an ∞-category to be a simplicial space ∆op → S satisfying the correct
analog of the Segal conditions.

As an aside, let us address an apparent circularity that appears here: it seems that in order to talk
about simplicial spaces we already need to have a good notion of∞-categories or, at the very least,
the ∞-category of spaces. Rezk—just like many mathematicians before and after him—solved
this issue by using the language of model categories which was introduced by Quillen [Qui67] long
before there was any usable framework to work with ∞-categories directly. Model categories—
which Baez calls “a trick for getting (∞, 1)-categories” [Bae07]—make it possible to reason about
the homotopy theory of spaces (and many others ∞-categories) in an indirect way, without ever
having to leave the world of ordinary categories.

So then, without further ado, let us answer the question which is surely burning in the reader’s
mind by now: What are Γ and ∆ and how do Γ-sets and simplicial sets encode abelian groups
and categories, respectively?

• The category Γ := Finop
? is the opposite of the category Fin? of finite pointed sets 〈n〉 :=

{?, 1, . . . , n} (with basepoint ?) and pointed (a.k.a. basepoint-preserving) maps between
them. Each abelian monoid M gives rise to a functor N(M) : Γop = Fin? → Set which
maps the object 〈n〉 to the set N(M)〈n〉 := Mn and each pointed map f : 〈n〉 → 〈m〉 to the
function N(M)f : Mn → Mm given by the formula (ai)

n
i=1 7→ (

∑
i∈f−1{j} ai)

m
j=1. What is

more, one can show that a Γ-set X : Γop → Set is isomorphic to N(M) for some abelian
monoid M if and only if satisfies the following special conditions:

– for each natural number n ≥ 0, the canonical projections δi : 〈n〉 → 〈1〉, which send
i to 1 and all other elements to the basepoint, induce an equivalence (i.e., bijection)
(Xδi)ni=1 : X〈n〉

∼=−→∏n
i=1X〈1〉.

The abelian monoid associated to a special Γ-set X has underlying set X〈1〉; its addition is
the map X〈1〉 ×X〈1〉 ∼= X〈2〉 → X〈1〉 encoded in the value of X at the pointed map 1, 2 7→ 1
from 〈2〉 to 〈1〉. The procedure M 7→ N(M) extends to a functor from the category of
abelian monoids to the category of special Γ-sets; it is easy to show that it is actually
equivalence of categories.

18) Kan gives a direct combinatorial formula only for those simplicial sets—nowadays called Kan complexes—
which satisfy what he calles the extension condition. He also introduces a combinatorial procedure which replaces
an arbitrary simplicial set K by a Kan complex Ex∞K that represents the same homotopy type.
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Since homotopy types, just like sets, admit a well-behaved notion of Cartesian products,
one can translate the definition of a special Γ-set verbatim to obtain the definition of a
special Γ-space.
• The simplex category ∆ is the category of finite non-empty linearly ordered sets and

weakly monotone maps between them. A more fancy way of saying this is that ∆ is the
full subcategory of the category Cat of categories spanned by the categories which are
isomorphic to those of the form [n] := {0→ 1→ · · · → n}. The nerve of a category C is
the simplicial set defined by the composition

N(C) : ∆op ↪−→ Catop Cat(−,C)−−−−−−→ Set.

Explicitly, the first few values of N(C) are at [0] the set of objects of C, at [1] the set of
morphisms of C, and at [2] and at [3] the set of commutative triangles and tetrahedra

•1

•0 •2
and

•1

•0 •2

•3

in C, respectively. The Segal conditions encode the following fundamental property of
X = N(C): Specifying a commutative simplex (e.g., a triangle or tetrahedron) in C is the
same as specifying just its spine consisting of the arrows •i−1 → •i drawn in red above:
every other arrow in the simplex is then uniquely determined as a composition of arrows
in the spine. Formally, this can be phrased by saying that the canonical map

X[n]

∼=−−→ X{0,1} ×X{1} X{1,2} ×X{2} · · · ×X{n−1} X{n−1,n}

(induced by the inclusions {(i− 1)→ i} ↪→ [n]) is an equivalence for all n ∈ N. As in
the case of abelian monoids and Γ-sets, it is not hard to show that the nerve construction
induces an equivalence between the category of categories and the category of Segal sim-
plicial sets. The category associated to a Segal simplicial set X : ∆op → Set has X[0] and
X[1] as its sets of objects and arrows, respectively; the composition of composable arrows
is determined by the span

X{0,1} ×X{1} X{1,2}
∼=←−− X[2] −→ X{0,2},

where the first map is invertible by the Segal condition.

By replacing fiber products of sets with the correct analog19) for homotopy types, the Segal
conditions for simplicial sets translate again verbatim to those for simplicial spaces. These
so-called Segal spaces20) form Rezk’s famous model for ∞-categories.

0.3 Higher Segal spaces, or: What is this thesis about?

After having illustrated what higher algebraic structures are and how they can sometimes be
encoded as special presheaves on suitably chosen categories, we come to a two-paragraph overview

19) The fiber product of homotopy types does not correspond to the ordinary pullback in the category of CW
complexes (which would not be invariant under homotopy equivalence) but rather to the so-called homotopy
pullback which has the correct universal property in the ∞-category of spaces.

20) For the sake of simplicity we are sweeping one additional condition—called completeness—under the rug
here: roughly speaking it states that in an ∞-category described by a Segal space X , the equivalences agree with
the equalities already present in the homotopy type X[0] of objects.
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summarizing what this thesis is actually about, which shall then be expanded and explained in
much greater detail.

In 2012 Dyckerhoff and Kapranov introduced a new type of simplicial object satisfying a
weakening of Rezk’s Segal conditions and gave many examples, including a construction of Wald-
hausen famous for its homotopical meaning in algebraic K-theory. One of their main insights
was that these 2-Segal spaces carry not just homotopical but also higher algebraic information
as witnessed by the fact that they give rise to a certain class of algebras—called Hall algebras—
of great representation-theoretic interest. But this was just the beginning: they also observed
that Segal and 2-Segal spaces are just the start of a fascinating hierarchy of so-called higher Se-
gal spaces whose basic properties and fundamental examples—generalizing the constructions of
Waldhausen and Segal—were then established by Poguntke. The fundamental question guiding
this thesis is:

What are higher Segal spaces?

And, more specifically:

What higher algebraic structure is encoded in a higher Segal space?

This thesis consists of three chapters, each dealing with a different aspect of the theory of
higher Segal spaces:
(1) The first chapter exclusively discusses 2-Segal spaces and gives a complete explanation of

their algebraic structure by relating them to the ∞-operads of Cisinski and Moerdijk.
(2) The second chapter contains an intrinsic characterization of higher Segal spaces in terms

of purely categorical notions of higher excision.
(3) In the third and last chapter we establish a generalized and homotopy coherent version of

the Dold–Kan correspondence which we then apply to study higher Segal objects in the
additive context.

For a graphical overview of the results in this thesis, see Figure 1 below.

0.3.1 Previous publications

Most of the results of this thesis were previously made available in separate publications/preprints:

• Section 0.4 and Chapter 1 cover the material of [Wal17].
• Section 0.5 and Chapter 2 cover the material of [Wal19a].
• Section 0.6 and Sections 3.1–3.6 of Chapter 3 cover the material of [Wal19b].
• Section 3.7.1 contains a slightly stronger version of results first obtained with G. Jasso and

T. Dyckerhoff [DJW19].
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Figure 1: An artistic depiction of the hierarchy of higher Segal spaces: Chapter 1 (cyan) ex-
plains how simplicial spaces and ∞-operads intersect precisely in the 2-Segal spaces/invertible
∞-operads. In Chapter 2 (red), lower odd Segal and even Segal objects are characterized sep-
arately via weak excision on ∆ and Λ, respectively. In the additive situation we can use the
∞-categorical Dold–Kan correspondence discussed in Chapter 3 (violet) to translate between
higher Segal conditions and truncation conditions on chain complexes; the shaded discrepancy
between lower (2k − 1)-Segal objects and 2k-Segal objects disappears in this case.



Introduction 19/118

0.4 2-Segal spaces as invertible ∞-operads (Chapter 1)

We have seen how a simplicial set X : ∆op → Set encodes a category if and only if it satisfies
Rezk’s Segal conditions. Recall that the category corresponding to X has X[0] as its set of objects
and X[1] as its set of morphisms; composition of morphisms is defined by the span

µ : X[1] ×X[0]
X[1]

∼=←−− X[2] −→ X[1], (0.4.1)

where the left pointing map is guaranteed to be a bijection by the first of the Segal conditions.
It was Rezk’s fundamental insight [Rez01] that one can model ∞-categories as simplicial spaces
which satisfy the correct homotopy coherent analog of the Segal conditions, obtained by replacing
bijections of sets by weak equivalences of spaces and fiber products by their homotopy coherent
counterparts; the contractible homotopy fibers of the left pointing map in (0.4.1) parameterize
the choices of composition.

Dyckerhoff and Kapranov [DK12] study the case where the first map in the span (0.4.1) is
not an equivalence anymore. In this case one can still interpret µ as a “multi-valued composition
law”, where the space of possible results of a composition is parameterized by the possibly
non-contractible or even empty fibers of the first map in the span (0.4.1). This multi-valued
composition law is unital and associative (up to coherent homotopies) precisely if the simplicial
object X satisfies the 2-Segal conditions, a weakening of Rezk’s Segal conditions. 2-Segal spaces
were also introduced independently by Gálvez-Carrillo, Kock and Tonks [GKT18a; GKT18b;
GKT18c] under the name decomposition spaces for applications in combinatorics.

The main source of examples of 2-Segal spaces—apart from all ordinary Segal spaces—is
Waldhausen’s S-construction [Wal85], which assigns to a suitable (∞-)category C a 2-Segal sim-
plicial space S(C) (see Example 1.3.3.7). While Waldhausen was originally interested in the
homotopical meaning of the S-construction—the homotopy groups of S(C) compute the alge-
braic K-theory of C—, it turns out that the S-construction also carries interesting algebraic
information: under suitable finiteness assumptions, one can turn the simplicial space S(C) into
the so called Hall algebra of C by an appropriate linearization procedure. In this context, the
2-Segal property enjoyed by S(C) can be seen to be directly responsible for the unitality and
associativity of the multiplication in the Hall algebra. Variants of Hall algebras, such as the
cohomological Hall algebra of Kontsevich and Soibelmann [KS11] or the derived Hall algebra
of Toën [Toë06], can be obtained by considering variants of this construction; see [Dyc18] for
a survey on this perspective. Dyckerhoff and Kapranov also recover classical convolution alge-
bras such as the Iwahori and Hecke algebra as linearizations of certain 2-Segal spaces. Hall and
Hecke algebras play an important role in representation theory, for instance due to their close
connection to quantum groups.

When constructing (strictly) associative algebras out of 2-Segal spaces, one really only needs
the 3-skeleton of these simplicial spaces and the corresponding truncated version of the 2-Segal
conditions. It is thus natural to ask: What precisely is the higher algebraic structure encoded in
a 2-Segal space? In Chapter 1 we establish the following theorem (see Corollary 1.3.4.2) which
provides the first complete answer to this question.

Theorem 1. There is a canonical equivalence between
• the ∞-category of 2-Segal spaces and
• the ∞-category of invertible ∞-operads21). ♦

The theory of ∞-operads, originally introduced in the setting of algebraic topology by
May [May72] and Boardman–Vogt [BV73] to study the algebraic structure of iterated loop
spaces, has since become a fundamental organizational tool in the study of higher algebraic

21) colored, non-symmetric
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structures. Roughly speaking, an operad is a generalized category which admits not just mor-
phisms x→ y from one object to another, but also “many-to-one” morphisms (x1, . . . , xn)→ y,
called operations, together with suitably associative composition laws (see Definition 1.1.1.1).

An operad is called invertible (see Definition 1.3.3.1) if each operation can uniquely be
decomposed into other operations, as long as the shape of this decomposition is specified in
advance; more precisely, we require that each 1-ary operation is the identity and that, after fixing
0 ≤ i ≤ j ≤ n, each n-ary operation (x1, . . . , xn)→ z can be written uniquely as a composition of
two operations (xi+1, . . . , xj)→ y and (x1, . . . , xi, y, xj+1, . . . , xn)→ z. A trivial example of an
invertible operad is the commutative operad which has a unique operation of each arity. More
interestingly, there is, for each abelian category A, an invertible operad S(A)—corresponding
to the aforementioned Waldhausen S-construction under the equivalence of Theorem 1—whose
colors and 1-ary operations are the objects of A and whose 2-ary operations are short exact
sequences (see Example 1.3.3.7).

The passage from operads to ∞-operads is analogous to the passage from categories to
∞-categories and arises by replacing strict composition of operations by composition laws which
are only well-defined and associative up to a coherent system of higher homotopies. To study
∞-operads we use the convenient framework of dendroidal spaces introduced by Moerdijk and
Weiss [MW07] and later developed further by Cisinski and Moerdijk [CM11; CM13]. In this
framework the simplex category ∆ is replaced by a bigger category Ωπ of plane rooted trees
whose definition we recall in Section 1.1.1. Generalizing Rezk’s ideas from the simplicial case,
Cisinski and Moerdijk observe that operads are identified via a dendroidal version of the nerve
functor with dendroidal sets Ωop

π → Set satisfying the dendroidal analog of the Segal conditions
(see Definition 1.3.1.1). More generally, they show that∞-operads are modeled by (complete22))
Segal dendroidal spaces.

The equivalence in Theorem 1 is constructed by pulling back along an explicit functor

Lπ : Ωπ −→ ∆

(see Section 1.1.2) of ordinary categories, which we prove to be an ∞-categorical localization
in the following sense: There is an explicit class S of maps in Ωπ which are sent by Lπ
to equivalences in ∆ and, moreover, Lπ is universal with this property among all functors of
∞-categories. More precisely, we have the following result (see Theorem 1.2.0.1).

Theorem 2. Let C be an ∞-category. The functor

L?π : Fun(∆,C) −→ Fun(Ωπ,C)

induced by Lπ is fully faithful; the essential image is spanned by those functors Ωπ → C which
send all maps in S to equivalences in C. ♦

Theorem 1 follows from Theorem 2 (after passing to opposite categories) by observing that
L?π identifies 2-Segal simplicial objects in its domain with (complete) Segal dendroidal objects in
its essential image.

It is often worthwhile to enhance simplicial objects with “additional symmetries”. We consider
the following two main examples:
(1) Segal’s special Γ-spaces [Seg74]—used to model the homotopy theory of connective spectra—

can be seen as Segal simplicial spaces X enhanced by compatible actions

Sn y Xn
of the symmetric groups. In terms of the algebraic structures described in Section 0.2, these
additional symmetries account for the difference between monoids and abelian monoids.

22) Completeness is an additional technical condition which will be vacuous in the cases we consider.
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(2) Cyclic symmetries on X : ∆op → C are encoded by lifts of X to Connes’ cyclic category
Λ ⊃ ∆ and described informally by a compatible system of actions

Cn+1 y Xn

by cyclic groups. 2-Segal cyclic objects play a central role in Dyckerhoff–Kapanov’s con-
struction [DK18] of topological Fukaya categories of surfaces.

One important feature of our proof of Theorem 1 is that it can be generalized to clarify how
cyclic (resp. symmetric) enhancements of 2-Segal spaces correspond precisely to cyclic (resp.
symmetric) structures on the corresponding invertible ∞-operads. To do this we consider two
variants of the category Ωπ of plane rooted trees:
(1) The category Ωsym is precisely the category Ω of Moerdijk and Weiss. The objects of

Ωsym are rooted trees (without a chosen plane embedding); by the work of Cisinski and
Moerdijk [CM13], (complete) Segal presheaves on Ωsym are known to model symmetric
∞-operads.

(2) By slightly modifying a construction of Joyal and Kock [JK09], we introduce the cate-
gory Ωcyc of plane rootable trees (see Section 1.4); it is expected23) that (complete) Segal
presheaves on Ωcyc are a model for cyclic ∞-operads.

These categories of trees come equipped with canonical functors

Lsym : Ωsym −→ Γ and Lcyc : Ωcyc −→ Λ

(see Section 1.1.3 and Section 1.4). Our methods directly generalize to obtain the following ver-
sion of Theorem 2 and Theorem 1 (see Theorem 1.1.3.2, Theorem 1.4.0.18 and Remark 1.3.4.13).

Theorem 3. The functors Lsym and Lcyc are ∞-categorical localizations. Moreover the functor
Lsym induces an equivalence of ∞-categories between:
• 2-Segal Γ-spaces and
• invertible symmetric ∞-operads. ♦

Since the localization functor Lcyc identifies 2-Segal cyclic objects with invertible Segal den-
droidal objects, Theorem 3 also implies the following conjecture if we assume the conjectural
existence of a complete Segal cyclic dendroidal model for cyclic∞-operads (see Remark 1.4.0.20).

Conjecture 1. The functor Lcyc induces an equivalence between 2-Segal cyclic spaces and
invertible cyclic ∞-operads. ♦

Remark 0.4.0.1. The functor Lsym : Ωsym → Γ was already considered by Boavida de Brito
and Moerdijk [BM17, Theorem 1.1]; their main theorem states that this functor induces an
equivalence between the ∞-category of special Γ-spaces and the ∞-category of what they call
covariantly fibrant complete Segal dendroidal spaces. We obtain their equivalence—as well as
the obvious variants for Λ and ∆—by restricting our equivalences to the appropriate full sub-
categories (see Corollary 1.3.2.2). ♦

Remark 0.4.0.2. Throughout Chapter 1 we write “2-Segal” to denote what Dyckerhoff and Kapra-
nov originally called “unital 2-Segal”. This is justified by the recent observation of Feller, Garner,
Kock, Proulx and Weber [FGK+19] that unitality follows automatically from the 2-Segal condi-
tions. In Section 2.5 we generalize this result to higher Segal spaces of all dimensions. ♦

Remark 0.4.0.3. Theorem 2 makes it possible to construct homotopy-coherent simplicial objects
by specifying (possibly strict) dendroidal objects which send certain maps to weak equivalences.
While this is easier a priori, the author does not know of any new simplicial objects that arise
this way. When it comes to 2-Segal spaces, one should probably not expect new examples to

23) For instance, see [DH18, Remark 6.9] for a precise conjecture.
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arise from our result: first, because most operads appearing in the literature are not invertible
and second, because every 2-Segal space can already be constructed by a generalized version
of Waldhausen’s S-construction [BOO+18]. Therefore, the results of Chapter 1 should not be
seen as a way to construct new 2-Segal spaces but rather as a new way of repackaging the
higher algebraic structure encoded in such an object. This operadic perspective makes available
tools and generalizations that were not evident in the original theory: While it is, for instance,
not immediately obvious how to define 2-Segal objects with values in a general (not necessarily
Cartesian) symmetric monoidal (∞-)category, the definition of invertible (∞-)operads directly
generalizes to this setting; moreover, one can now hope to obtain new information about a 2-Segal
space by studying algebras over the associated ∞-operad. ♦

Remark 0.4.0.4. Recently, a different algebraic interpretation of 2-Segal spaces was given by
Stern [Ste19], who identified the ∞-category of 2-Segal objects in C with an ∞-category of
algebras in correspondences in C. Similarly, Stern shows that 2-Segal cyclic objects are identified
with Calabi-Yau algebras in correspondences. ♦

0.5 Higher Segal spaces via higher excision (Chapter 2)

The starting point of Chapter 2 is the easy but little-known observation that Rezk’s Segal objects
can be characterized by a condition which is purely categorical, in the sense that it can be defined
without having to know anything about the inner workings of ∆.

Observation. A simplicial object ∆op → C is Segal if and only if it sends biCartesian squares
in ∆ to Cartesian squares in C. ♦

In 2012, Dyckerhoff and Kapranov generalized Rezk’s Segal condition and introduced what
they call higher Segal spaces24). Their definition is very geometric in nature: They consider the
so called cyclic polytopes C(n, d), defined as the convex hull of n+ 1 points on the d-dimensional
moment curve t 7→ (t, t2, . . . , td). The main feature of these polytopes in this context is that they
have two canonical triangulations, called the lower triangulation and the upper triangulation,
respectively. Each of these triangulations defines a simplicial subcomplex T of the standard n-
simplex ∆n; Dyckerhoff and Kapranov then impose conditions on simplicial objects by requiring
that the value25) on the inclusion T ↪→ ∆n is an equivalence: a simplicial object is called lower
(resp. upper) d-Segal if this is true for the lower (resp. upper) triangulation of C(n, d) and
d-Segal if this is true for all triangulations of C(n, d).

The purpose of Chapter 2 is to characterize the various flavors of higher Segal conditions in
terms of purely categorical notions of higher excision. We first do this for lower (2k − 1)-Segal
spaces, since they are the most fundamental26) amongst all versions of higher Segal spaces. The
following is the first main result of this chapter:

Theorem 4 (Theorem 2.6.2.2). Let X : ∆op → C be a simplicial object in an∞-category C with
finite limits. The following are equivalent:
(1) the simplicial object X is lower (2k − 1)-Segal;
(2) the functor X sends every strongly biCartesian27) (k+ 1)-dimensional cube in ∆ to a limit

diagram in C. ♦

24) not to be confused with Barwick’s n-fold Segal spaces [Bar05]
25) Every simplicial object can be canonically evaluated on simplicial sets by Kan extension along the Yoneda

embedding; see Section 2.4.1.
26) This vague assertion is made precise by the path space criterion [Pog17, Proposition 2.7] which expresses all

higher Segal conditions in terms of lower (2k − 1)-Segal conditions.
27) A cube is strongly biCartesian if each of its 2-dimensional faces is biCartesian; see Definition 2.2.3.4.
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0 1 2 3 4 5

Figure 2: The lower triangulation of the cyclic polytope C(n, 1), here depicted with n = 5.

We call a functor Zop → C satisfying condition (2) of Theorem 4 weakly k-excisive; com-
pare this with Goodwillie’s calculus of functors [Goo92], where a (covariant) functor Z → C is
called k-excisive if it sends strongly coCartesian (k+1)-dimensional cubes in Z to limit diagrams
in C.

We illustrate Theorem 4 with some examples.

• The cyclic polytope C(n, 1) is just the interval ∆{0,n}; its lower triangulation (see Figure 2)
yields the simplicial complex

Sp[n] := ∆{0,1} ∪ · · · ∪∆{n−1,n} ⊂ ∆n.

Rezk’s Segal condition for a simplicial object says precisely that the inclusion Sp[n] ↪→ ∆n

needs to be sent to an equivalence; this is what Dyckerhoff and Kapranov call the lower
1-Segal condition. For n = 1, this condition says precisely that the biCartesian square

1 12

01 012

� (0.5.1)

in ∆ needs to be sent to a limit diagram. More generally, every square of the form

{i} {i, . . . , n}

{0, . . . , i} {0, . . . , n}
�

(for 0 < i < n) is biCartesian in ∆; it is in fact an often used characterization of Segal
objects to require these squares to be sent to pullbacks.
• The cyclic polytope C(4, 3) is a double triangular pyramid; its lower triangulation (see

Figure 3) induces the simplicial complex

T = ∆{1,2,3,4} ∪∆{0,1,3,4} ∪∆{0,1,2,3} ⊂ ∆4.

By definition, a simplicial object satisfies the first lower 3-Segal condition if it sends the
canonical inclusion T ↪→ ∆4 to an equivalence; this is equivalent to sending the cube

13 134

123 1234

013 0134

0123 01234

which is strongly biCartesian in ∆, to a limit diagram.
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Figure 3: The three 3-simplices ∆{1234}, ∆{0134} and ∆{0123} (depicted in cyan, magenta and
yellow, respectively) assemble into the lower triangulation of the double triangular pyramid
C(4, 3).

In general, the first non-trivial lower (2k − 1)-Segal condition (i.e., the one for n = 2k) can
always be expressed in terms of a strongly biCartesian cube in ∆ of dimension k + 1 and this
cube is the unique such cube which is in a certain sense “basic”. However, for bigger n both the
number of simplices in the lower triangulation of C(n, 2k − 1) and the number of basic strongly
biCartesian cubes grows very rapidly so that, a priori, the behavior of weakly k-excisive simpli-
cial objects and lower (2k − 1)-Segal objects diverges dramatically.

In the work of Dyckerhoff and Kapranov [DK18] on topological Fukaya categories and in the
work of Stern [Ste19] related to Calabi-Yau algebras and 2-dimensional quantum field theories, a
special role is played by cyclic 2-Segal spaces. The next results show that this is no coincidence
and that the 2-Segal conditions—and more generally the 2k-Segal conditions—are most naturally
expressed in terms of higher weak excision relative to Connes’ cyclic category Λ.

Theorem 5 (Theorem 2.6.2.2). Let X : ∆op → C be a simplicial object in an∞-category C with
finite limits. The following are equivalent:
(1) the simplicial object X is 2k-Segal;
(2) the functor X sends to Cartesian cubes in C those (k + 1)-dimensional cubes in ∆ which

become strongly biCartesian in Λ (under the canonical functor ∆→ Λ). ♦

Corollary 1 (Corollary 2.6.2.3). Let C be an ∞-category with finite limits. The cyclic 2k-Segal
objects in C are precisely the weakly k-excisive functors Λop → C. ♦

We again illustrate the theorem with some examples:
• The square (0.5.1) encoding the first Segal condition is typically not sent to a Cartesian

square by 2-Segal objects. This is explained by Theorem 5: while the square (0.5.1) is
biCartesian in ∆, it is no longer a pushout square in Λ.
• The 2-dimensional cyclic polytope C(4, 2) is a square. It has the two triangulations (see

Figure 4) whose corresponding Segal condition expresses that the two squares

13 123

013 0123

and
02 012

023 0123

(0.5.2)
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Figure 4: The lower and the upper triangulations of the cyclic polytope C(4, 2).

in ∆ are sent to a limit diagram. Both of the squares (0.5.2) are biCartesian in Λ.
• The squares

11′ 011′

1 01

d0

s0 s1

d0

and
0′0 0′01

0 01

d2

s0 s0

d1

are biCartesian both in ∆ and in Λ. Hence they need to be sent to pullback squares by
every Segal object (by Theorem 4) and by every 2-Segal object (by Theorem 5). While
the first of these facts is easy, the second is non-trivial; it is precisely the statement that
2-Segal spaces are automatically unital, which was discovered only very recently by Feller,
Garner, Kock, Proulx and Weber [FGK+19].

Finally, we remark that our main theorem implies a non-trivial bound (Proposition 2.6.3.1)
on how many values of a higher Segal object can be trivial without the whole object collaps-
ing. Whether this bound is sharp is still unknown (at least to the author) and remains to be
investigated in future research.

0.6 Homotopy coherent theorems of Dold–Kan type (Chapter 3)

The classical Dold–Kan correspondence [Dol58; Kan58b] is a remarkable equivalence of categories

Fun(∆op, A)
'←−→ Ch≥0(A) (0.6.1)

between simplicial objects in A and connective chain complexes in A, where A is the category
of abelian groups or, more generally, any abelian category [DP61]. In the past decades, many
related equivalences have been constructed [Pir00; Sło04; Sło11; Hel14; CEF15; LS15] where the
simplex category ∆ is replaced by other categories which are of similar “combinatorial nature”.

The first goal of Chapter 3 is to simultaneously generalize these equivalences in the homotopy
coherent context of∞-categories. To this end we study categories B equipped with the structure
B = (B,E,E∨) of a so-called DK-triple (see Definition 3.2.1.1); to each such DK-triple B
we associate a pointed category N0 = N0(B)28) and prove the following homotopy coherent
correspondence of Dold–Kan type:

28) unrelated to the nerve N(C) of a category C despite the typographic similarity
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Theorem 6 (Corollary 3.2.3.4). For each weakly idempotent complete29) additive30)∞-category
A, the DK-triple B induces a natural31) equivalence

Fun(B,A)
'←−→ Fun0(N0,A) (0.6.2)

between the ∞-categories of diagrams B → A and of pointed diagrams N0 → A. ♦

Before going into more details about DK-triples, we explain how Theorem 6 subsumes and
generalizes previous results in the literature.

(1) In the case where A is an abelian category, we recover the classical Dold–Kan correspon-
dence (0.6.1) by applying Theorem 6 to A = Aop and to a suitable DK-triple B∆ =
(∆, E∆, E

∨
∆) whose associated pointed category N0(B∆) = Ch≥0 is the shape of connective

chain complexes; see Section 3.3.1 for more details.
(2) More generally, Theorem 6 specializes to the∞-categorical Dold–Kan correspondence orig-

inally sketched by Joyal [Joy08, Section 35]

Fun(∆op,A)
'←−→ Ch≥0(A) (0.6.3)

between simplicial objects and coherent connective chain complexes in any weakly idem-
potent complete additive ∞-category A.

(3) Denote by Fin? the category of finite pointed sets and by Surj the category of (possibly
empty) finite sets and surjections between them. Pirashvili[Pir00] constructed an equiva-
lence

Fun(Fin?,Ab)
'←−→ Fun(Surj,Ab) (0.6.4)

between Fin?-shaped and Surj-shaped diagrams32) of abelian groups. We recover this
equivalence from Theorem 6 which more generally yields a natural equivalence

Fun(Fin?,A)
'←−→ Fun(Surj,A), (0.6.5)

between Γ-objects and Surj-shaped diagrams in any weakly idempotent complete pread-
ditive33) ∞-category A; see Section 3.3.2 for more details.

(4) Denote by FI] the category of finite sets and partial injections; let Fin' be the groupoid
of finite sets and bijections. For each commutative ground ring R, [CEF15, Theorem 4.1.5]
(which is a special case of [Sło04, Theorem 1.5]) describes an equivalence

Fun(FI],Mod−R)
'←−→ Fun(Fin',Mod−R) '

∏
n∈N

(Sn−RepR) (0.6.6)

between the categories of FI]-modules and of tuples of representations of all symmetric
groupsSn. Again, our main result generalizes this equivalence to coherent diagrams/representations
with values in arbitrary weakly idempotent complete preadditive ∞-categories.

(5) When A is an idempotent complete additive ordinary category, Theorem 6 recovers the
general Dold–Kan type equivalence of Lack and Street [LS15, Theorem 6.8] which includes
as special cases (0.6.1), (0.6.4), (0.6.6) and many more. See Section 3.5.1 for a detailed
comparison.

29) weakly idempotent complete = closed under direct complements
30) additive = has direct sums and is enriched in abelian groups
31) natural in A with respect to additive functors
32) To be precise, Pirashvili only considers diagrams whose value on ? ∈ Fin? and on ∅ ∈ Surj is zero; these

diagrams correspond to each other under the equivalence (0.6.4)
33) preadditive = has direct sums
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(6) Some of the equivalences of Theorem 6—including the one for Γ = Finop
? but not the one for

∆—were already established by Helmstutler [Hel14] in the language of model categories;
see Remark 3.3.2.3 for more details. Note that unlike Theorem 6, Helmstutler’s result
cannot be dualized so easily to yield, for instance, a model categorical version of the
equivalence (0.6.5).

(7) In a stable ∞-category D, coherent connective chain complexes can be encoded more
conveniently as filtered objects, i.e., as diagrams N→ D; an explicit equivalence

Fun(N,D) ' Ch≥0(D) (0.6.7)

is part of Stefano Ariotta’s Ph.D. thesis [Ari]. In this stable context, Lurie proved an
∞-categorical Dold–Kan correspondence [Lur17, Theorem 1.2.4.1] in the form of an equiv-
alence

Fun(∆op,D)
'−−→ Fun(N,D), (0.6.8)

of ∞-categories; we expect this equivalence to agree with (0.6.1) under the identification
(0.6.7). Note that while both equivalences (0.6.7) and (0.6.8) need the stability of D to
work, Theorem 6—just like the ordinary Dold–Kan correspondence—only needs that A is
weakly idempotent complete additive. See Section 3.5.2 for a more detailled discussion.

We now introduce the notion of a DK-triple B = (B,E,E∨) on which Theorem 6 is based.
It consists of a three-fold factorization system of type

• E−−→ • −−→ • E∨−−→ •,

where the unnamed middle piece together with suitably encoded zero relations gives rise to the
pointed category N0(B) appearing on the right side of the equivalence (0.6.2). This notion is
inspired by similar concepts appearing in [Sło04; Hel14; LS15]. We give an illustration in the
examples of Γ and ∆, which are discussed in greater detail in Section 3.3.2 and Section 3.3.1.
• Every map f : I ← J in Γ = Finop

? can be written uniquely as the composition

I ←− Im f ←− J

Ker f
←− J, (0.6.9)

where

– the leftmost map is a bijection onto its image,
– the middle map is surjective and sends only the basepoint to the basepoint; in other

words it just amounts to a surjection between the (possibly empty) sets obtained by
omitting the basepoints,

– the rightmost map is bijective outside of its kernel (such maps are often called inert).

The category of those arrows which appear as the middle piece of (0.6.9) is precisely (the
opposite of) the category Surj; there are no zero relations in this case.
• Every arrow in ∆ can be written uniquely as the composition

• s≥0

−−→ • (d0)−−→ • d>0

−−→ •

where

– the left arrow s≥0 is a (possibly empty) composition of codegeneracy maps,
– the middle arrow is either the identity or a 0-th coface map,
– the right arrow is a (possibly empty) composition of i-th coface maps di for i > 0.

If one focuses only on the arrows of the second type, one obtains a category Ch≥0

0 1 2 · · ·d0 d0 d0
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with zero relations by declaring the composite of two 0-th coface maps to vanish (because
it is not again a 0-face map). Connective chain complexes are then exactly zero-preserving
presheaves on Ch≥0. In order to properly encode the coherent zero relations in the ∞-cat-
egorical context, we actually consider Ch≥0 as a pointed category by adding an additional
zero object through which all zero morphisms factor; for a more detailed explanation of
this issue, see Section 3.1.2.

0.6.1 Applications: additive higher Segal objects and stable Goodwillie cal-
culus

The Dold–Kan type theorems are a very useful tool in the study of higher Segal objects in the
additive context. For example, we can use the Dold–Kan correspondence to compute a large
class of membrane spaces as introduced in Section 2.5 (see Proposition 3.7.1.3). It is then easy
to deduce, for instance, the following characterization of higher Segal objects.

Theorem 7 (Proposition 3.7.1.9 and Proposition 3.6.1.6). Let X : ∆op → A be a simplicial
object in a weakly idempotent complete additive ∞-category and denote by X ∈ Ch≥0(A) the
coherent chain complex corresponding to X under the ∞-categorical Dold–Kan correspondence
(0.6.3). The following are equivalent:
• the simplicial object X is weakly k-excisive (i.e., lower (2k − 1)-Segal);
• the simplicial object X is lower weakly k-Λ-excisive (i.e., lower 2k-Segal);
• the simplicial object X is upper weakly k-Λ-excisive (i.e., upper 2k-Segal);
• the functor X : ∆op → A is a left Kan extension of its restriction to ∆op

≤k;

• the chain complex X is k-truncated, i.e., X n ' 0 for all n > k. ♦

Remark 0.6.1.1. Many of these ideas were already present in [DJW19, Section 4] where the
case of lower/upper 2k-Segal objects is covered in abelian and stable (∞-)categories using the
classical Dold–Kan correspondence (0.6.1) and Lurie’s stable Dold–Kan correspondence (0.6.8),
respectively. ♦

Another application is the following result which in the stable context identifies higher Segal
Γ-spaces with higher excisive functors in the sense of Goodwillie [Goo92].

Theorem 0.6.1.2 (Theorem 3.7.3.1). Let D be a presentable stable ∞-category and fix k ∈ N.
Restriction along Γop = Fin? ↪→ S? induces an equivalence between the ∞-categories of
• Γ-objects Γop → D whose underlying simplicial object is weakly k-excisive and
• k-excisive functors S? → D which preserve filtered colimits �

In a similar spirit we can use the ∞-categorical version (0.6.5) of Pirashvili’s equivalence to
better describe how (filtered-colimit-preserving) k-excisive functors S? → D in some presentable
stable ∞-category D can be assembled from representations (in D) of the various symmetric
groups Sn for n ≤ k; see Section 3.7.2.

0.7 Basic tools of ∞-categories

Most statements in this thesis are intrinsically homotopy coherent and are most naturally formu-
lated and proven by employing a language of (∞, 1)-categories which extends that of ordinary
category theory. Since homotopy coherent thinking requires one to keep in mind infinite hier-
archies of higher structures at once, it is not obvious that humans are even capable of it. It is
the author’s hope that one day the foundations of mathematics will have reached a state where
it is possible for mathematicians to grow up as native speakers of such a homotopy theoretic
language, just like today many of us take for granted the basic language of category theory.
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Until that day, however, we have to rely on ever more sophisticated crutches and tools to make
our intuitions precise and to make sure that our proofs stay correct.

In this thesis we employ the framework of quasi-categories which are simplicial sets satisfying
the restricted Kan condition of Boardman and Vogt [BV73]; their homotopy theory is described
by Joyal’s model structure34) on simplicial sets. The theory of quasi-categories was developed
extensively by Joyal [Joy02; Joy08] and Lurie [Lur09; Lur17]. Our main references are Lurie’s
books—whose notation and terminology we mostly adopt—as well as Cisinski’s [Cis19]. For a
non-technical introduction, see Groth’s survey [Gro10]. The reason that the theory of quasi-
categories—which, following Lurie, we just call ∞-categories—is so useful for us is that it allows
many basic ∞-categorical arguments to be performed on a very high level while the delicate
combinatorics of simplicial sets remains in the background and makes the machine work. In
particular, most statements and constructions from category theory have an analog for quasi-
categories.

For the convenience of the reader we collect here some of the basic notation, conventions
and results which throughout this thesis are used without further mention. Readers comfortable
with the language of category theory are encouraged to skip this section and proceed directly to
Chapter 1.

0.7.1 The basic language

We view the theory of ∞-categories as an extension of ordinary category theory by identify-
ing an ordinary category C with its nerve N(C). Typically, we use ordinary capital letters
(e.g., C,Z, P,A) for 1-categories and the corresponding Euler Script letters (e.g., C,Z,P,A) for
∞-categories.

• We denote by S the ∞-category of spaces/∞-groupoids [Lur09, Section 1.2.16]; it contains
the category Set of sets as a full subcategory.
• The opposite of an ∞-category C is denoted Cop.
• Each ∞-category C is equipped with a functor MapC(−,−) : Cop × C → S which assigns

to each pair of objects the homotopy type of arrows (called mapping space) between
them [Cis19, Section 5.8]. The mapping space functor takes values in Set if and only
if C is (equivalent to) an ordinary category; in this case Map(−,−) is just the ordinary
Hom-functor.
• We write Fun(Z,C) for the ∞-category of functors Z → C [Lur09, Section 1.2.7]. The

arrows in Fun(Z,C) are called natural transformations. Given ∞-categories Z,Z′ and C,
there is a canonical “currying” equivalence Fun(Z′ × Z,C) ' Fun(Z′,Fun(Z,C)).
• A functor F : C→ C′ is called fully faithful if it induces, for each c, d ∈ C, an equivalence

MapC(c, d) ' MapC′(Fc, Fd) on mapping spaces. The essential image of F consists of
the objects which are up to equivalence of the form F (c) for c ∈ C.

Given an∞-category C, we can talk about the full subcategory35) of C spanned by some
collection of objects; its mapping spaces are inherited from C and the inclusion is—by
definition—fully faithful.
• A functor Zop → C is sometimes called a C-valued presheaf on Z or just presheaf in the

case C = S. Each small category Z admits the fully faithful Yoneda embedding Z ↪→
P(Zop) := Fun(Zop, S) which shares most formal properties of its 1-categorical counterpart
[Lur09, Section 5.1] .
• An adjunction [Cis19, Section 6.1][Lur09, Section 5.2] between ∞-categories C′ and C

consists of two functors L : C −→←− C′ :R together with an equivalence Map(L(−),−) '
34) Unfortunately, Joyal’s original paper containing its construction is not publicly available; instead, see for

instance his lecture notes [Joy].
35) Here “subcategory” is synonymous with “sub-∞-category”; we use the former out of convenience.
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Map(−, R(−)) of functors Cop × C′ → S. Each adjunction has a unit η : IdC → RL and a
counit ε : LR→ IdC′ .
• The inclusion Set ↪→ S has a left adjoint π0 : S → Set which sends a space to its set of

path components (or, in terms of homotopy types, identifies equal objects).36)

• Given an ∞-category Z and an object x ∈ Z one can form the under-category Zx/ and
the over-category Z/x [Lur09, Section 1.2.9]. In this thesis we only really need it when
Z = Z is an ordinary category, in which case its objects are given by arrows x → • (resp.
• → x) in Z and its arrows are given by commutative triangles under (resp. over) x. If we
are also given a functor f : Z′ → Z then we abuse notation and write Z′x/ := Zx/×ZZ

′ and
Z′/x := Z′ ×Z Z′/x where ×Z denotes the fiber product of ∞-categories with the functor
f implicit. When Z′ = Z ′ and Z = Z are ordinary categories, the categories Z ′x/ and
Z ′/x have objects given by pairs (• ∈ Z ′, x → f(•)) and (• ∈ Z ′, f(•) → x), respectively;
morphisms are given between the bullets in Z ′ with the obvious commutativity requirements
in Z.
• Given two ∞-categories Z′ and Z, we can form their join Z′ ?Z [Lur09, Section 1.2.8]. We

only really need the special cases of the right cone Z. := Z ? {+∞} and the left cone
Z/ := {−∞} ? Z obtained from Z by adjoining a new terminal object +∞ or initial object
−∞, respectively.
• The classifying space BZ := |N(Z)| of a category Z is the geometric realization of its

nerve. A category is called weakly contractible if BZ has the homotopy type of a point.
• The inclusion S ↪→ Cat∞ of∞-groupoids into∞-categories has a right adjoint which takes

an ∞-category C to its groupoid core C' obtained by throwing away all non-invertible
arrows. It also has a left adjoint which sends each 1-category to its classifying space and
is given in general by localizing at all arrows (see Section 0.7.3 below).
• We denote by Cat∞ the∞-category of (small)∞-categories whose mapping spaces are the

groupoid core Map(−,−) = Fun(−,−)' of the functor categories. As a full subcategory,
Cat∞ contains the (2, 1)-category of (small) categories, functors and natural isomorphisms;
the inclusion has a left adjoint which sends an ∞-category C to its homotopy category
hC obtained by applying π0 to each mapping space.
• We treat each partially ordered set (poset) as a category with objects given by its elements

and a unique arrow x→ y if and only if x ≤ y. In the spirit of invariance, we use the word
“poset” also for categories which are only equivalent to partially ordered sets, i.e., have at
most one arrow between any two objects37).
• Throughout this thesis we mostly avoid set theoretic issues of size. Implicitly, we work

with respect to three nested Grothendieck universes containing “small”, “large” and “very
large” objects, respectively; when necessary, we may pass to an even larger selection of
universes where formerly large objects are small. By default, sets and spaces are small,
while categories and ∞-categories are large.

0.7.2 Coherent diagrams, (co)limits and Kan extension

A commutative square

• •

• •

f

g g′

f ′

(0.7.1)

in an ordinary category consists of arrows f, g, f ′, g′ such that the equality g′ ◦ f = f ′ ◦ g holds.
In an ∞-category, this equality is an additional structure which also must be specified. To make

36) The inclusion Set ↪→ S does not have a right adjoint because it does not preserve colimits.
37) From the perspective of order theory such a category amounts to what is called a preorder, i.e., a set with a

reflexive and transitive relation.
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this precise, we define a commutative square in an ∞-category C to be a functor α : � → C,
where � := {0→ 1} × {0→ 1} is the walking commutative square (a category). Such a functor
sends the equality (00 → 01 → 00) = (00 → 10 → 00) (which is unique, since � is an ordinary
category) to a homotopy α(00→ 01→ 00) ' α(00→ 10→ 00) (for which there might be many
non-equivalent choices) in the ∞-category C. More complicated commutative diagrams in C can
be similarly described as functors from suitably chosen categories or ∞-categories. The upshot
is that we typically don’t have to explicitly worry about coherence when specifying diagrams
indexed by a category we can write down: the formalism of functors automatically encodes all of
the necessary higher data. We will often be a bit sloppy and just say, for instance, that (0.7.1)
“is a commutative square”, leaving the rest of the implicit structure unspoken.

Commutative diagrams in ∞-categories admit a well behaved calculus of limits, colimits and
Kan extensions; see [Lur09, Chapter 4] and [Cis19, Section 6.2]:
• Objects ∅ and ? of C are called initial and terminal, respectively, if the homotopy types

Map(∅, c) and Map(c, ?) are contractible for all c ∈ C. Initial/terminal objects of C are
essentially unique in the sense that they form an ∞-groupoid which is either contractible
or empty.

• A diagram α : Z. → C is a colimit cone if it is initial amongst all cones with the base
α
∣∣
Z

: Z ⊂ Z. → C. A diagram α : Z/ → C is a limit cone if it is terminal amongst all
cones with the base α

∣∣
Z

: Z ⊂ Z/ → C. In this case we also say that α exhibits α(+∞)

(resp. α(−∞)) as the colimit (resp. limit) of the diagram α
∣∣
Z
.

• More generally let Z ↪→ Z′ be a fully faithful functor. We say that a functor α : Z′ → C is
a left/right Kan extension38) of its restriction α

∣∣
Z
if it is initial/terminal amongst all

functors extending α
∣∣
Z
.

• [Lur09, Definition 4.3.2.2] Right/left Kan extension along a fully faithful functor Z ↪→ Z′

can be computed and characterized pointwise at each x ∈ Z′ by the induced limit/colimit
of shape Zx/ and Z/x, respectively.

• [Lur09, Proposition 4.3.2.15] Restriction along a fully faithful functor Z ↪→ Z′ induces
an equivalence of ∞-categories between the full subcategories of Fun(Z′,C) and Fun(Z,C)
consisting of those functors which are a right/left Kan extension and those functors which
have a right/left Kan extension, respectively.

• [Lur09, Corollary 4.3.2.16, Proposition 4.3.2.17] If every functor Z→ C admits a right/left
Kan extension along the fully faithful functor Z ↪→ Z′ then there is a unique fully faithful
right/left Kan extension functor Fun(Z,C)→ Fun(Z′,C) which is right/left adjoint to the
restriction functor; its essential image is spanned by those functors Z′ → C which are a
right/left Kan extension along Z ↪→ Z′.

• [Lur09, Proposition 4.1.3.1] A functor Z ′ → Z between ordinary categories is homotopy
terminal39) if and only if each under-category Z ′x/ (for each x ∈ Z) is weakly con-
tractible. Dually Z ′ → Z is homotopy initial if and only if each over-category Z ′/x is
weakly contractible. It follows in particular that left/right adjoint functors are homotopy
initial/terminal since in this case the relevant over/under-categories have a terminal/initial
object.

• [Lur09, Proposition 4.1.1.8] The limit/colimit of a Z-shaped diagram Z → C can be com-
puted after precomposing with any homotopy initial/terminal functor Z ′ → Z.

38) It does also make sense to define Kan extensions along functors which are not fully faithful [Lur09, Sec-
tion 4.3.3]; such Kan extensions play no role in this thesis.

39) Joyal and Lurie would say cofinal which, confusingly, is the word Cisinski uses for the dual concept (what
we call homotopy initial). We avoid this potential confusion by using the hopefully unambiguous terminology of
Dugger [Dug].
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0.7.3 Localization

Categorical localization is the procedure of formally adding inverses to arrows which might
previously not have them. A localization40) [Cis19, Definition 7.1.2] of an ∞-category Z at a
classW ⊂ Z of arrows is a functor Z→ Z[W−1] which is universal amongst all functors that send
the arrows in W to equivalences. More precisely for each ∞-category C the restriction functor

Fun(Z[W−1],C) −→ Fun(Z,C)

is fully faithful with essential image consisting of those functors Z → C that send all arrows in
W to equivalences in C Such ∞-categorical localizations always exist and are essentially unique,
see [Cis19, Proposition 7.1.3].

An important special case occurs when we want to invert all arrows of the ∞-category Z.
In this case the result Z[Z−1] is an ∞-groupoid; the assignment Z 7→ Z[Z−1] assembles to a
groupoidification functor Cat∞ → S which is left adjoint to the inclusion. If we think of Z

as a simplicial set (which we rarely do) then the space Z[Z−1] can be computed explicitly as
its geometric realization; in particular, localizing an ordinary category Z at all arrows yields
precisely its classifying space BZ = |N(Z)|.

Let the reader be warned that only under very special circumstances41) is the localization of
a category an (ordinary) category again; in general the result will be an honest ∞-category with
non-discrete mapping spaces. Strikingly, every ∞-category is the localization of a category at
some collection of arrows42) and every ∞-groupoid can even be obtained by localizing a suitable
poset.

40) Here our terminology differs from Lurie’s who uses the word “localization” to refer to a special kind of
localization functor which admits a fully faithful right adjoint (see [Lur09, Definition 5.2.7.2 and Warning 5.2.7.3]).

41) One example of such a special situation is discussed in Lemma 1.2.1.1.
42) In fact, there is a homotopy theory of “categories with arrows to be inverted” which is equivalent to that of
∞-categories [BK12]



Chapter 1

2-Segal spaces as invertible ∞-operads

1.1 The localization functors

Recall that the simplex category ∆ is the category of finite non-empty linearly ordered sets and
weakly monotone maps between them; when convenient we identify ∆ with its skeleton consisting
of the standard ordinals [n] = {0 < · · · < n}.

1.1.1 The category Ωπ of plane rooted trees

We recall some basic facts about (colored, non-symmetric) operads and the category Ωπ of plane
rooted trees as introduced by Moerdijk and Weiss [MW07].

Definition 1.1.1.1. A colored, non-symmetric operad (or operad for short) O = (O, O, ◦)
consists of
• a collection O of objects (or colors),
• given colors x1, . . . , xn, y ∈ O, a setO(x1, . . . , xn; y) of n-ary operations from (x1, . . . , xn)

to y and
• for each k, n1, . . . , nk ∈ N and colors xiji , z ∈ O (for 0 ≤ ji ≤ ni, 0 ≤ i ≤ k), a composition
map  ∐

y1,...,yk∈O

(
O(x1

1, . . . , x
1
n1

; y1)× · · · × O(xk1, . . . , x
k
nk

; yk)
)
×O(y1, . . . , yk; z)

(1.1.1)

◦−−→ O(x1
1, . . . , x

1
n1
, . . . , xk1, . . . , x

k
nk

; z)

• a unit map
1 : O −→

∐
x,y∈O

O(x; y) (1.1.2)

which assigns to each color x ∈ O the 1-ary identity operation 1x ∈ O(x;x)

such that the obvious associativity and unitality conditions are satisfied. There is an obvious
notion of a morphism of operads, we denote the resulting category of operads by Op. ♦

Remark 1.1.1.2. By plugging suitable identity operations into the general composition law (1.1.1)
one can define the special compositions

◦i+1 :

∐
y∈O
O(xi+1, . . . , xj ; y)×O(x1, . . . , xi, y, xj+1, . . . , xn; z)

 −→ O(x1, . . . , xn; z) (1.1.3)

for all 0 ≤ i ≤ j ≤ n and all x1, . . . , xn, z ∈ O. It is called ◦i+1 (the j is left implicit) because the
output of the first operation is inserted at position i + 1 into the second. It is a easy to verify
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that every general composition map (1.1.1) can be assembled as a suitable composition of such
◦i+1-compositions (for varying i and j). ♦

Remark 1.1.1.3. As originally introduced by Boardman–Vogt and May, an “operad” would be
assumed to be mono-colored. Since there is no reason for us to single out this special case
we will instead take operads to be colored by default. Moreover it is most convenient for us
to reserve the word “operad” for the least structured situation and add further adjectives (e.g.
symmetric or cyclic) whenever we equip our operad with extra structure (see also Section 1.4 and
Section 1.1.3). We warn the reader that this is a rather uncommon convention: most authors
(including Moerdijk and Weiss and Cisinski and Moerdijk) will define operads to be symmetric
by default. ♦

Remark 1.1.1.4. Each operad (O, O, ◦) has an underlying category with objects x ∈ O and
morphism sets O(x; y). Conversely, each category can be viewed as an operad which has only
1-ary operations. More precisely, we have an adjunction Cat −→←− Op with fully faithful left
adjoint. ♦

An object of Ωπ is called a plane rooted tree and consist of a finite plane rooted trees in
the usual graph-theoretic sense together with a marking of some degree 1 vertices including the
root-vertex. An edge between unmarked vertices is called internal, the other edges are called
external. The unique external edge connected to the root-vertex is called the root (or output
edge); an external edge attached to a marked non-root vertex is called a leaf (or input edge).

Example 1.1.1.5. We depict some trees in Ωπ, including the special tree η, some corollas (C0,
C1, C3) and two typical trees (of arity 3 and 4, respectively).

g

j
k

i
η C0 C1 C3

f h

d

c

e

�� �� �� �� ��

b

a

��

The root is marked with a little arrow and drawn towards the bottom. ♦

Remark 1.1.1.6. From now on we completely ignore the marked vertices of a tree and never speak
of them again. Thus “vertex” always means “unmarked vertex”. When drawing trees, we omit
the marked vertices and instead draw the external edges “towards infinity”. ♦

The number of leaves of a tree is its arity. Each vertex of a tree has some number (the arity
of that vertex) of input edges and a unique output edge (which is the one that points in the
direction of the root). The input edges of a vertex are linearly ordered left-to-right by the plane
embedding. We denote by η or [0] the tree with only a single edge (which is both the root and
a leaf); we denote by C[n] or Cn the n-corolla, i.e. the unique n-ary tree with a single vertex.
Given two edges e, e′ in a plane tree T , we say that e is a predecessor of e′ and that e′ is a
successor of e, if the unique path in T going from e to the root of T goes through e′; note that
every edge is a predecessor of the root. Given two edges d, e in T , we say that d lies to the
left of e and that e lies to the right of d, if there are successors d′ of d and e′ of e which are
input edges at a common vertex v and such that e′ lies (strictly) to the left of e with respect to
the left-to-right linear order at v. Observe that for any two edges e, d we have the following two
mutually exclusive cases:
• d is a successor or a predecessor of e (this includes the case d = e) or
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• d lies to the left or to the right of e.

Example 1.1.1.7. In the last tree of Example 1.1.1.5: The predecessors of the edge e are e itself,
h, j, k and i; the successors of e are e itself, c and the root a. To the left of e lie the edges d, f ,
g and b; no edge lies to the right of e. ♦

Each plane rooted tree T gives rise to a free operad (also denoted by T ): it has a color for
each edge of T and its operations are freely generated by the vertices of T (an n-ary vertex is
seen as an n-ary operation from its input edges to its output edge). A morphism in Ωπ between
two trees is defined to be a morphism of the corresponding operads.

Example 1.1.1.8. Consider the following two plane rooted trees. The operad associated to the left
tree has colors {a′, a, c, d, e, f} and three non-unit operations s : a′ → a and r : (e, f, c, d) → a′

and r ◦ s : (e, f, c, d) → a. The other one has colors {a, b, c, d, e, f , g, h} and eleven non-unit
operations (t, u, v, w and all their composites).

e

1

0

2f c

d

4

4′
r •

a′

s•
a

��

//
e

1
f

2
g

h

3

u•

b
0

v•
c

w•

d

4

•
a

��

t

The depicted morphism is described on colors by a′ 7→ a, a 7→ a, c 7→ c etc. and on generating
operations by s 7→ 1a and r 7→ (u, 1c, 1d) ◦ t. (The red numbers are for later reference.) ♦

A (planar) dendroidal object in an ∞-category C is functor Ωop
π → C. We denote by

dπSet := [Ωop
π ,Set] the category of (planar) dendroidal sets, i.e. dendroidal objects in Set.

Given a plane rooted tree T , we denote by Ωπ[T ] the dendroidal set represented by T . There is
a canonical fully faithful embedding ∆ ↪→ Ωπ of the simplex category ∆ by interpreting every
linearly ordered set as a linear tree. This embedding gives rise to an adjunction sSet −→←− dπSet
with fully faithful left adjoint. The inclusion Ωπ ↪→ Op (which is full by construction) gives rise
to a realization/nerve adjunction

dπSet −→←− Op :Nd

by the formula Nd(O) : T 7→ HomOp(T,O), which extends the usual adjunction

sSet −→←− Cat :N.

1.1.2 The localization functor Lπ : Ωπ → ∆

Let us introduce the main player in our game.

Construction 1.1.2.1 (Covariant description of Lπ). Each plane rooted tree T ∈ Ωπ (which
we visualize with its external edges going towards infinity) partitions the plane into a set LπT of
“areas” which is linearly ordered clockwise starting from the root. It is straightforward to extend
this assignment to a functor Lπ : Ωπ → ∆. ♦

We give an alternative, more formal, construction of the functor Lπ at the end of this section,
see Construction 1.1.2.10 below.

Example 1.1.2.2. The functor Lπ sends the morphism depicted in Example 1.1.1.8 to the map
{0, 1, 2, 4, 4′} → {0, 1, 2, 3, 4} in ∆ which sends i′, i 7→ i. ♦
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Remark 1.1.2.3. Specifying two adjacent “areas” of a plane rooted tree T ∈ Ωπ uniquely deter-
mines an external edge of T that separates them. If we write [n] := LπT (where n is the arity of
T ) then
• each minimal edge {i− 1, i} ↪→ [n] (for 1 ≤ i ≤ n) corresponds precisely to a leaf of T and
• the maximal edge {0, n} ↪→ [n] corresponds to the root of T . ♦

Remark 1.1.2.4. Usually the category of trees is related to the simplex category by the inclusion
∆ ↪→ Ωπ of the linear trees. The composition ∆ ↪→ Ωπ

Lπ−−→ ∆ is constant with value [1] ∈ ∆. The
two occurrences of the category ∆ in relation to the category Ωπ are in some sense “orthogonal”:
the first is sensitive to the “height” of a tree, the second measures the “width”. ♦

Definition 1.1.2.5. A map of plane rooted trees is called boundary preserving if it maps
the root to the root and each leaf to a leaf. ♦

Definition 1.1.2.6. A collapse map in Ωπ is a boundary preserving map C[n] → T out of a
corolla (where n is the arity of T ). A dendroidal object X : Ωop

π → C in some ∞-category C is
called invertible if X maps all collapse maps to equivalences in C. ♦

Remark 1.1.2.7. A boundary preserving map α : T → S of plane rooted trees induces a bijection
between the leaves of T and the leaves of S. Hence the functor Lπ maps boundary preserving
maps to isomorphisms. ♦

Remark 1.1.2.8. The motivation for the word “invertible” in Definition 1.1.2.6 will become ap-
parent in Section 1.3.3 when we discuss invertible operads (in the sense of Dyckehoff and Kapra-
nov [DK12]) and show that an operad is invertible if and only if its nerve is an invertible den-
droidal set (Lemma 1.3.3.5). ♦

Here is one version of our main result which we explain and prove in Section 1.2 below:

Theorem 1.1.2.9. The functor Lπ exhibits ∆ as an ∞-categorical localization of Ωπ at the set
of collapse maps. �

Before going forward, we give a “contravariant” description of the functor Lπ. This description
is useful because unlike the covariant one it can easily be adapted to the case of symmetric trees
(see Section 1.1.3). Denote by ∆b the following category: objects are (possibly empty) linearly
ordered sets; a morphism N →M is a weakly monotone map

{−∞} ∪̇N ∪̇ {+∞} → {−∞} ∪̇M ∪̇ {+∞}

which preserves −∞ and +∞ (where −∞ and +∞ are a new minimal and maximal element,
respectively). It is an easy fact (see also Lemma 2.5.2.2) that the category ∆ is isomorphic to
∆op

b via the assignment (described here only on objects)

∆ 3 N 7−→ {non-empty proper initial segments of N} ∈ ∆op
b .

Using the identification ∆ ' ∆op
b we can give the following description of the functor

Lπ : Ωπ → ∆op
b , which is easily seen to be equivalent to Construction 1.1.2.1.

Construction 1.1.2.10 (Contravariant description of Lπ). To each plane rooted tree T ∈ Ωπ

we associate the (possibly empty) linearly ordered set LπT ∈ ∆b of its leaves. This association
extends to maps in the following way: Given a map α : S → T of trees, we need to define a map
{−∞} ∪̇LπT ∪̇ {+∞} → {−∞} ∪̇LπS ∪̇ {+∞}. We have no choice but to send −∞ and +∞ to
−∞ and +∞, respectively. Denote by rS the root of S and let a ∈ LπT ; there are three cases:
• If a is a predecessor of α(rS) then there is a unique leaf b of S such that α(b) is a successor

of a; in this case we define (Lπα)(a) := b to be this unique leaf.
• If a lies to the left of α(rS) then we define (Lπα)(a) := −∞.
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• If a lies to the right of α(rS) then we define (Lπα)(a) := +∞.
It is straightforward to verify that this assignment defines a functor Lπ : Ωπ → ∆op

b . ♦

Example 1.1.2.11. The map of trees from Example 1.1.1.8 gets sent by Lπ to the map{
−∞, e, f , g, h,+∞

}
→ {−∞, e, f, c, d,+∞}

in ∆b given by e 7→ e, by f 7→ f and by g, h 7→ c. ♦

1.1.3 Symmetric operads and Segal’s category Γ

Before moving on with the proof of our main localization theorem, we briefly describe the analog
construction in the world of symmetric operads, i.e., operads (O, O, ◦) equipped with permuta-
tion isomorphisms

O(x1, . . . , xn; y)
∼=−−→ O(xσ(1), . . . , xσ(n); y),

(for all n ∈ N, x1, . . . , xn, y ∈ O and σ ∈ Sn), which form actions of the symmetric groups
compatible with composition of operations.

Denote by Ωsym the category of symmetric rooted trees (i.e. trees without a plane embed-
ding), defined as a suitable full subcategory of the category symOp of symmetric operads; this
is the category of trees which Moerdijk and Weiss [MW07, Section 3] simply call Ω. Boundary
preserving maps and collapse maps in symOp are defined in the same way as for plane trees.

The symmetric analog of the simplex category is Segal’s category Γ := Finop
? , the opposite

of the category of finite pointed sets. We define a functor Lsym : Ωsym → Γ, which is analogous
to Lπ by adapting Construction 1.1.2.10:

Construction 1.1.3.1 (The functor Lsym). We define the functor Lsym : Ωsym → Finop
? = Γ as

follows: To each tree T we assign the set of external edges which is pointed at the root. Given
a morphism α : S → T of rooted trees and a leaf a of T there is at most one leaf b of S such
that α(b) is a successor of a; we define (Lsymα)(a) := b if such a b exists and (Lsymα)(a) := ?
otherwise. ♦

It is straightforward to show that Lsym : Ωsym → Finop
? is well defined and extends the functor

Lπ in the sense that the following diagram commutes:

Op Ωπ ∆ ∆op
b

symOp Ωsym Finop
?

sym

Lπ '

Lsym

where the leftmost arrow is the symmetrization functor and the rightmost diagonal arrow forgets
the linear ordering and adds a basepoint.

We have the following localization result (see Section 1.2):

Theorem 1.1.3.2. The functor Lsym : Ωsym → Γ exhibits Γ as an ∞-categorical localization of
Ωsym at the set of collapse maps. �

Remark 1.1.3.3. The functor Lsym : Ωsym → Finop
? can be described as Lsym : T 7→ λ(T ) ∪̇ {?},

where λ(T ) is the set of leaves of a tree T . In this guise, it was introduced by Boavida de Brito
and Moerdijk [BM17]. ♦
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1.2 The localization theorem

The following theorem expresses that the functor Lπ : Ωπ → ∆ (and its symmetric sibling Lsym)
is universal (in the ∞-categorical sense) with the property of inverting the collapse maps in Lπ.

Theorem 1.2.0.1. For every ∞-category C, the functor Lπ : Ωπ → ∆ induces a fully faithful
functor

L?π : Fun(∆,C) −→ Fun(Ωπ,C)

of∞-categories with essential image spanned by those functors Ωπ → C which map collapse maps
C → T to equivalences. The analogous statement holds for the functor Lsym : Ωsym → Γ. �

Corollary 1.2.0.2. The categories Ωπ and Ωsym are weakly contractible �

Proof. Clearly the categories ∆ and Γ are contractible because they have a terminal object
and a zero object, respectively. Since the localization functors of Theorem 1.2.0.1 induce weak
equivalences on classifying spaces, the result follows. �

Remark 1.2.0.3. The weak contractibility of Ωsym (and implicitly of Ωπ) was proved with a
different method by Ara, Cisinski and Moerdijk [ACM19]. ♦

1.2.1 The general situation

Our strategy to prove Theorem 1.2.0.1 is to apply the following general lemma which we will
prove separately in Section 1.2.2 below.

Lemma 1.2.1.1. Let L : W → D be a functor of (ordinary) categories and for each n ∈ D
let Bn ⊂ Wn be a subcategory of the weak fiber Wn of L such that (with the notation of
Remark 1.2.1.2 below)
• Bn has an initial object cn and
• the inclusion N(Bn) ↪→ N(W )/n is homotopy terminal.

Then for every ∞-category C, composition with L induces a fully faithful functor

L? : Fun(N(D),C) −→ Fun(N(W ),C)

of ∞-categories with the essential image spanned by those functors N(W ) → C which send all
the edges of the form cn → t in N(Bn) (for n ∈ D) to equivalences. �

Remark 1.2.1.2. Recall that the weak fiber Wn of L : W → D is the category whose objects
consist of an object t ∈ W and an isomorphism t

∼=−→ n in D. The left fiber W/n ⊃ Wn has
objects (t, f : t→ n) where f is not required to be an isomorphism. ♦

Let Ω be any one of the categories Ωπ and Ωsym; let L be the corresponding functor (among
Lπ and Lsym) and denote its target (which is either ∆ or Γ) by D. For every object [n] ∈ D
we denote by Ω/[n] the left fiber, by Ω[n] the weak fiber and by bp[n] ⊂ Ωn the subcategory
of Ω[n] with the same objects but only boundary preserving morphisms. We shall now show
that the functors L satisfy the requirements for Lemma 1.2.1.1, thus concluding the proof of
Theorem 1.2.0.1.

Proposition 1.2.1.3. Fix an object [n] ∈ D.
(1) The n-corolla C[n] (together with any identification LC[n]

∼=−→ [n]) is an initial object in the
category bp[n].

(2) The inclusion bp[n] ⊂ Ω[n] ↪→ Ω/[n] has a left adjoint; in particular it is homotopy terminal.
�



2-Segal spaces as invertible ∞-operads 39/118

T
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f(j − 1) + 1
. . .

f(j) f(m− 1)

f(m− 1) + 1
. . .

f(m)

· · · · · ·

0

1

...
...

n

f(0) f(m)

Figure 1.1: The construction of the tree Tf in the case L = Lπ. The little arrows decorate
the roots of the various trees. Forgetting the root and/or the plane embedding describes the
analogous construction in the cases L = Lcyc,Lsym,Labs

Proof (of Proposition 1.2.1.3). The first statement is obvious.
The functor Ω/[n] → bp[n] is constructed as follows: Given an object (T, f : LT = [m]→ [n]) we
define the tree Tf by glueing some corollas to T along its outer edges (see also Figure 1.1). We
only describe this process explicitly for L = Lπ; the construction is analogous for Lsym.
• To a leaf of T corresponding to the minimal edge {j− 1, j} ↪→ [m] we glue a corolla Cf

j−1,j

(of arity f(j) − f(j − 1)) with leaves {i − 1, i} for f(j − 1) < i ≤ f(j) (this might be a
0-corolla if f(j − 1) = f(j)).
• To the root (corresponding to the maximal edge {0,m} ↪→ [m]) we glue a corolla Cf

max

with leaves

{0, 1}, {1, 2}, . . . , {f(0)− 1, f(0)}, {f(0), f(m)}, {f(m), f(m) + 1}, . . . , {n− 1, n}

along the special leaf {f(0), f(m)} of Cf
max.

The adjunction unit at (T, f) is the inclusion T ↪→ Tf which we denote by fT . We need to
prove that given a morphism of trees α : T → S over f : [m]→ [n] there is a unique factorization

T
fT−→ Tf

αbp

−−→ S with αbp in bp[n]. We have no other choice than to define αbp as α on the
subtree T ↪→ Tf and to make it the identity on the boundary; hence uniqueness is clear. It is
straightforward to verify that this map of trees is indeed well defined. �

1.2.2 Proof of the key lemma

This section is devoted to the proof of Lemma 1.2.1.1
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Let M be defined as the Grothendieck construction of the functor ∆1 → Cat which param-
eterizes the functor L : W → D. Explicitly, an object in M is either an object t ∈ W or an
object n ∈ D; for s, t ∈W and m,n ∈ D we put M(t, s) = W (t, s) and M(n,m) = D(n,m) and

M(t, n) = D(Lt, n) and M(n, t) = ∅. We have a factorization L : W ↪→M
L−→ D where the first

arrow is the obvious fully faithful inclusion and the second arrow has a fully faithful right adjoint
D ↪→ M . We identify D with its image in M and we denote by η : IdM → L the unit of the
adjunction L : M −→←− D; it is an isomorphism (in fact the identity) at exactly those objects in M
that belong to D.1) We deal with the two components of L : W ↪→M −→←− D individually by using
standard techniques from Higher Topos Theory [Lur09]. Lemma 1.2.1.1 is a direct consequence
of Corollary 1.2.2.4 and Corollary 1.2.2.9 below.

Remark 1.2.2.1. For each n ∈ D the forgetful functor Bn ⊂ Wn → W extends to a functor
Bn

. ↪→ M by sending the new vertex v to n and the new arrow (t, f) → v (for (t, f) ∈ Bn) to
the arrow f : t→ n of M . ♦

Fix an ∞-category C. We recall the following result.

Lemma 1.2.2.2. [Lur09, Proposition 5.2.7.12] Let L : M → D be a reflective localization
functor of∞-categories (i.e. L has a fully faithful right adjoint) and let C be another∞-category.
Then composition with L induces a fully faithful functor

Fun(D,C) −→ Fun(M,C)

with essential image consisting of those functors that map an edge f inM to an equivalence in
C provided that Lf is an equivalence in D. �

Lemma 1.2.2.3. Let F : N(M)→ C be a functor of∞-categories. The following are equivalent:
(1) For every edge f in N(M), if Lf is an equivalence in D then Ff is an equivalence in C.
(2) For every n ∈ D, the functor F maps all edges in N(Bn). to equivalences in C.
(3) F sends every component ηt : t→ Lt of the unit to an equivalence in C.

We denote by K+ the full subcategory of Fun(N(M),C) spanned by such functors. �

Proof. Clearly (1) implies (2) (because L(f) is the identity for each edge f of N(Bn).) and (2)
trivially implies (3).
Observe that if f : t→ s is a morphism in M then we have a commutative naturality square

t Lt

s Ls

f

ηt

Lf

ηs

Hence (3) implies (1) by the two-out-of-three property for equivalences in C. �

Corollary 1.2.2.4. Composition with the functor L : M → D induces a fully faithful functor
Fun(N(D),C) ↪→ Fun(N(M),C) with essential image K+. �

Let us recall the following result.

Lemma 1.2.2.5. [Lur09, Proposition 4.3.1.12] Let C be an ∞-category and let F : B. → C be
a diagram where B is a weakly contractible simplicial set and F carries each edge of B to an
equivalence in C. Then F is a colimit diagram in C if and only if it carries every edge in B. to
an equivalence in C. �

Lemma 1.2.2.6. Let F : N(W )→ C be a functor. The following are equivalent:
1) The components ηt : t → Lt of the adjunction are precisely the coCartesian morphisms of the coCartesian

fibration M → ∆1.
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(1) The functor F admits a left Kan extension along W ↪→ M and the resulting functor
N(M)→ C lies in K+.

(2) For every n ∈ D the functor F maps every edge of N(Bn) to an equivalence in C.
(3) For every n ∈ D and every t ∈ Bn the functor F maps the unique edge cn → t in N(Bn)

to an equivalence in C.
We denote by K the full subcategory of Fun(N(W ),C) spanned by such functors. �

Proof. The equivalence between (2) and (3) is obvious because cn is an initial element in Bn.
Using description (2) of Lemma 1.2.2.3 it is clear that (1) implies (2).

Let us prove the converse: By the pointwise construction of Kan extensions [Lur09, Lemma
4.3.2.13], a left Kan extension of F along W ↪→M can be assembled from colimit cones for the
diagrams N(W )/n → N(W )

F−→ C (for n ∈ D). Recall that Bn ↪→ W/n is homotopy terminal,

hence we can reduce to finding colimits for the diagrams N(Bn) ↪→ N(W/n)→ N(W )
F−→ C. All

edges of these diagrams are equivalences by condition (2) and N(Bn) is contractible (because Bn
has an initial element). Therefore by Lemma 1.2.2.5 these colimits exists and the corresponding
colimit cones N(Bn). → C map all edges to equivalences in C, thus verifying condition (2) of
Lemma 1.2.2.3. �

Fix the following notation:
• Denote by H+ the full subcategory of Fun(N(M),C) spanned by those functors which are

the left Kan extension of their restriction to W ⊂M .
• Denote by H the full subcategory of Fun(N(W ),C) spanned by those functors which admit

a left Kan extension along W ↪→M .
Recall the following result.

Lemma 1.2.2.7. [Lur09, Proposition 4.3.2.15] The restriction functor along N(W ) ↪→ N(M) is
a trivial fibration H+ → H of simplicial sets. �

Lemma 1.2.2.8. We have inclusions K+ ⊂ H+ and K ⊂ H and a pullback square

K+ H+

K H

of simplicial sets with vertical arrows given by restriction along W ↪→M . �

Proof. This follows directly from Lemma 1.2.2.3 and Lemma 1.2.2.6 �

Since trivial fibrations of simplicial sets are stable under pullbacks we obtain:

Corollary 1.2.2.9. The restriction functor along the inclusion W ↪→ M is a trivial fibration
K+ → K of simplicial sets. �

This concludes the proof of Lemma 1.2.1.1 and therefore of Theorem 1.2.0.1.

1.3 Applications

Consider the category sSet := [∆op,Set] of simplicial sets equipped with the Kan–Quillen left
proper combinatorial simplicial model structure [Qui67]. Denote by S := N∆(sSet◦) the corre-
sponding ∞-category of spaces obtained as the simplicial nerve of the subcategory of fibrant-
cofibrant objects [Lur09, Definition 1.2.16.1]. A dendroidal (resp. simplicial) object in S is called
a dendroidal (resp. simplicial) space.
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1.3.1 2-Segal simplicial objects and Segal dendroidal objects

In this section we compare the dendroidal Segal conditions due to Cisinski and Moerdijk [CM13]
and the simplicial 2-Segal conditions due to Dyckerhoff and Kapranov [DK12].

Definition 1.3.1.1. [CM13, Definition 2.2] The Segal core of a tree η 6= T ∈ Ωsym is the
union

Sc[T ] :=
⋃
v

Ωsym[Cn(v)]

where v runs over all vertices of T and Cn(v) ↪→ T denotes the subtree with vertex v. We use
the convention Sc[η] := Ωsym[η] for the trivial tree.

A symmetric dendroidal space X : Ωop
sym → S is Segal if for any tree T ∈ Ωsym the map

XT = Hom(Ωsym(T ),X ) −→ Hom(Sc[T ],X )

is a trivial fibration. ♦

We adapt this definition as follows.

Definition 1.3.1.2. A dendroidal object X : Ωop
π → C in some ∞-category C is called Segal if

X sends the diagram
T T2

T1 e

(1.3.1)

to a pullback square in C whenever the tree T ∈ Ωπ arises by grafting two trees T1 and T2 along
a common edge e. ♦

Remark 1.3.1.3. Clearly Definition 1.3.1.1 and Definition 1.3.1.2 make sense, mutatis mutandis,
for symmetric dendroidal objects. Another way of saying this is that a symmetric dendroidal
object is Segal if and only if the underlying dendroidal object is Segal. ♦

Remark 1.3.1.4. If a tree T arises by grafting two trees T1 and T2 along a common edge e then
clearly Sc[T ] = Sc[T1] te Sc[T2]. By successively decomposing a tree along its inner edges we
therefore see that Definition 1.3.1.1 and Definition 1.3.1.2 agree for dendroidal objects in the
∞-category S of spaces. ♦

The importance of the dendroidal Segal conditions is highlighted by the following result,
which has an obvious analog for non-symmetric operads and dendroidal sets.

Proposition 1.3.1.5. [CM13, Corollary 2.6] The symmetric dendroidal nerve functor

Nd : symOp −→ dSet

is fully faithful and the essential image consists precisely of the Segal symmetric dendroidal
sets. �

Definition 1.3.1.6. [DK12, Proposition 2.3.2] A simplicial object X : ∆op → C in some
∞-category C is called 2-Segal (or unital 2-Segal) if for each 0 ≤ i ≤ j ≤ m it maps the square

{0, . . . ,m} {i, . . . , j}

{0, . . . , i, j, . . .m} {i, j}

(1.3.2)

in ∆ to a pullback square square in C. ♦
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Remark 1.3.1.7. We always interpret the elements i and j in the lower row of Diagram 1.3.2 as
distinct; thus in the case i = j the vertical arrows are codegeneracy maps. ♦

Remark 1.3.1.8. The original definition of 2-Segal objects only includes the case i 6= j of
(1.3.2); the condition for i = j is called unitality. Since unitality is now known to be re-
dundant [FGK+19], we drop that adjective entirely. ♦

Lemma 1.3.1.9. A simplicial object X : ∆op → C in some ∞-category C is 2-Segal if and only
if the composition L?πX : Ωop

π
Lπ−−→ ∆op X−→ C is a Segal dendroidal object. �

Proof. Let T = T1 ∪e T2 be a grafting of trees where e is the root of T2 and a leaf of T1. Put
[m] := LπT . Applying Lπ to the inclusion e ↪→ T defines a map [1] = Lπe

f−→ [m], so we can
define i := f(0) and j := f(1). It is easy to see that with this notation Lπ sends Diagram (1.3.1)
to Diagram (1.3.2) and that every instance of Diagram (1.3.2) arises this way. �

1.3.2 Segal simplicial objects and covariantly fibrant dendroidal objects

Recall that a simplicial object X : ∆op → C in some ∞-category C is called reduced Segal if
X[n]

'−→ X n[1] via the inert maps {i − 1, i} ↪→ [n] in ∆ (in particular X[0] is a terminal object in
C). A similar condition makes sense when replacing ∆ by Γ := Finop

? ; such functors X : Γop → C

were introduced (in the case C := S) by Segal [Seg74] under the name special Γ-spaces.

Definition 1.3.2.1. [BM17] A dendroidal object X : Ωop
π → C (or X : Ωop

sym → C) is covariantly
fibrant if for each n-ary tree T the inclusion of its leaves l1, . . . , ln, induces an equivalence
XT '−→∏n

i=1Xli . ♦

It is clear from the definitions that
• a simplicial object X in C is reduced Segal if and only if L?πX is covariantly fibrant,
• every covariantly fibrant X : Ωop

π → C maps collapse maps to equivalences.
(And similarly for the symmetric case.) Therefore Theorem 1.2.0.1 immediately implies the
following result, proved by Boavida de Brito and Moerdijk [BM17, Theorem 1.1] for C = S in
the language of model categories.

Corollary 1.3.2.2. For every∞-category C, the functor Lπ (resp. Lsym) induces an equivalence
of ∞-categories between
• reduced Segal simplicial (resp. Γ-) objects in C

• covariantly fibrant plane (resp. symmetric) dendroidal objects in C. �

1.3.3 2-Segal simplicial sets and invertible operads

Definition 1.3.3.1. [DK12, Definition 3.6.7] An operad O is called invertible if the unit map
(1.1.2) and all the composition maps (1.1.1) are invertible. ♦

Remark 1.3.3.2. It follows from Remark 1.1.1.2 that an operad is invertible if and only if the
unit map (1.1.2) and all ◦i+1-compositions (1.1.3) are invertible. ♦

Remark 1.3.3.3. It follows from the condition on the unit map that if an operad is invertible
then its underlying category is discrete, i.e., has only identity arrows. ♦

Proposition 1.3.3.4. [DK12, Theorem 3.6.8] Fix a set B of colors. Then there is an equivalence
of categories between invertible B-colored operads and 2-Segal simplicial sets X : ∆op → Set with
X[1] = B. �

We can characterize invertibility of an operad in terms of its dendroidal nerve.

Lemma 1.3.3.5. Let O be an operad and let Nd(O) : Ωop
π → Set be its dendroidal nerve. The

following are equivalent:
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(1) The dendroidal set Nd(O) maps all boundary preserving maps to isomorphisms.

(2) The dendroidal set Nd(O) is invertible, i.e. it inverts all collapse maps.

(3) The operad O is invertible. �

Proof. If α : T → S is boundary preserving, then clearly the collapse map for S factors through
the collapse map for T as C → T

α−→ S. Hence (1) and (2) are equivalent by the 2-out-of-3-
property for isomorphisms.

The unit map (1.1.2) in Definition 1.1.1.1 is precisely the image under Nd(O) of the collapse
map C1 → η. Taking the coproduct over all the composition maps for fixed k, n1, . . . , nk ∈ N
yields (putting n :=

∑k
i=1 ni) precisely the image of the collapse map Cn → Tn1,...,nk

k , where
Tn1,...,nk
k is tree obtained by glueing (for all 0 ≤ i ≤ k) the corolla Cni to the i-th leaf of the

corolla Ck. Hence (2) implies (3). The converse holds because every “generalized composition
map” represented by a collapse map C → T can be written as the composition of unit and
composition maps as in Definition 1.1.1.1. �

Using

• the characterization of operads as Segal dendroidal sets (the non-symmetric analogue of
Proposition 1.3.1.5),

• the characterization of invertible operads (Lemma 1.3.3.5),

• our main result (Theorem 1.1.2.9) in the case C = Set and

• the corresponcence between Segal dendroidal objects and 2-Segal simplicial objects (Lemma 1.3.1.9)

we recover the following more elegant version of Proposition 1.3.3.4.

Corollary 1.3.3.6. The composition sSet
L?π−−→ dπSet −→ Op restricts to an equivalence of

categories between the full subcategories of 2-Segal simplicial sets on one side and invertible
operads on the other. �

Before moving on, we discuss some examples of invertible operads.

Example 1.3.3.7 (Waldhausen’s S-construction [Wal85]). Let A be an abelian category2). Con-
sider the following operad S(A):

• The colors of S(A) are the objects of A (up to isomorphism).

• The 2-ary operations of S(A) are short exact sequences

0x1 1x2

0 0x2

�

(up to isomorphism) each of which is viewed as a 2-ary operation (0x1, 1x2)→ 0x2.

2) Waldhausen’s S-construction applies in much greater generality; we restrict to abelian categories for simplicity.
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• More generally, the n-ary operations (0x1, 1x2, . . . , n−1xn) −→ 0xn of S(A) are diagrams

0x1 0x2 · · · 0xn−2 0xn−1 0xn

0 1x2 · · · 0xn−2 0xn−1 0xn

0 · · · 0xn−2 0xn−1 0xn

. . .
...

...
...

0 n−2xn−1 n−2xn

0 n−1xn

� � �

� �

�

(1.3.3)

in A (up to isomorphism), where each square is required to be biCartesian, i.e., both a
pushout and a pullback.
• The ◦i+1 composition of an operation

f : (ixi+1, . . . , j−1xj) −→ ixj

with an operation
g : (0x1, . . . , ixj , . . . , n−1xn) −→ 0xn

(for 0 ≤ i ≤ j ≤ n) is the operation

(g ◦i+1 f) : (0x1, 1x2, . . . , n−1xn) −→ 0xn

whose associated diagram (1.3.3) is uniquely characterized by the fact that it extends the
corresponding diagrams for f and g.

It is not hard to verify that S(A) is a well defined operad; it is invertible because, for each
fixed 0 ≤ i ≤ j ≤ n, each operation (1.3.3) arises as the composition g ◦i+1 f for a unique pair
of operations (f, g) as above. Under the equivalence of Theorem 3 this operad corresponds to
Waldhausen’s S-construction which is the 2-Segal simplicial set S(A) : ∆op → Set that maps
[n] ∈ ∆ to the set of isomorphism classes of diagrams (1.3.3) with face/degneracy maps given by
simultaneously omitting/duplicating rows and columns. If instead of working up to isomorphism
we keep track of those isomorphisms, we get an invertible operad/2-Segal object in groupoids
rather than sets. ♦

Remark 1.3.3.8. Let X be an invertible Segal dendroidal object. Let T be the closed n-corolla
(i.e. the grafting of n many 0-corollas on top of a n-corolla). We have two maps

X (C0)
'←−− X (T )

'−−→ X (Cn)×X (η)n X (C0)n

which are equivalences by invertibility and the Segal conditions respectively. In the example
where X = S(A) is the Waldhausen S-construction of an abelian category A, the groupoid
X (C0) ' {0} is trivial, hence this condition says precisely that a flag (1.3.3) of length n with
trivial subquotients is trivial. Note, however, that in general a flag is not determined by its
subquotients, which would be the Segal condition X (Cn)

'−→ X (η)n. ♦



46/118 Tashi Walde

Example 1.3.3.9 (Ek-operads). The commutative operad E∞ (viewed as a symmetric operad)
has a contractible space of operations in each degree, hence is invertible for trivial reasons;
it corresponds to the constant Γ-space on a point. Its underlying non-symmetric operad is the
associative operad which is invertible and corresponds to the constant simplicial space on a point.
For all other 1 ≤ k <∞, the operad Ek of little k-cubes is easily seen to not be invertible. ♦

Example 1.3.3.10. Each monoid M (multiplicatively written) gives rise to an invertible operad
N(M) as follows: The set of colors is M . The set of n-ary operations is Mn, where each tuple
(0m1, . . . , n−1mn) ∈Mn is viewed as an operation

(0m1, . . . , n−1mn) −→ 0m1 · · · n−1mn =: 0mn

and is, for each 0 ≤ i ≤ j ≤ n, the ◦i+1-composition of

(imi+1, . . . , j−1mj) −→ imj

and
(0m1, . . . , i−1mi, imj , jmj+1, . . . , n−1mn) −→ 0mn.

IfM is abelian then the operad N(M) can be canonically enhanced to a symmetric operad. Under
the equivalence of Theorem 3, the operad N(M) corresponds to the nerve N(M) : ∆op → Set
which is not just 2-Segal but Segal.

This example can be categorified to interpret each monoidal ∞-groupoid as an invertible
∞-operad; see Example 1.3.4.3 and Remark 1.3.4.4. ♦

1.3.4 2-Segal simplicial spaces and invertible ∞-operads

As a direct consequence of Theorem 1.1.2.9 and Lemma 1.3.1.9 we obtain the following compar-
ison result.

Corollary 1.3.4.1. Composition with Lπ : Ωπ → ∆ induces an equivalence between the ∞-cat-
egory of 2-Segal simplicial spaces and the ∞-category of invertible Segal dendroidal spaces. �

The goal of this Section 1.3.4 is to give an interpretation of this result by identifying the
∞-category of invertible Segal dendroidal spaces as a full subcategory of the ∞-category of
complete Segal dendroidal spaces. We treat the latter as a model for (non-symmetric)∞-operads
(in analogy to results due to Cisinski and Moerdijk [CM13] in the symmetric case) so that we
can rephrase Corollary 1.3.4.2 as follows:

Corollary 1.3.4.2. Composition with Lπ : Ωπ → ∆ induces an equivalence between the ∞-cat-
egory of 2-Segal simplicial spaces and the ∞-category of invertible (non-symmetric) ∞-oper-
ads. �

Example 1.3.4.3. Every monoidal category (M,⊗) gives rise to an operad OM in groupoids:
Its groupoid of colors OM(η) := M' is the groupoid core of M and its groupoid of 1-ary
operations is the groupoid OM(1) := Fun(∆1,M)

' of arrows in M. The groupoid OM(n) of
n-ary operations is the groupoid of arrows •1 ⊗ · · · ⊗ •n → •, i.e., the pullback

OM(n) OM(1)

OM(η)n OM(η)

y
s

⊗

(1.3.4)

Composition in the operad OM is induced by composition of arrows inM. The operad OM is
invertible if and only if all arrows in the underlying categoryM are invertible, i.e., if and only
if M is a monoidal groupoid. In this case, the right vertical map in (1.3.4)—which sends each
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arrow to its source—is an equivalence; hence the same is true for the left vertical map. This
amounts to saying that, viewed as a Segal dendroidal groupoid, OM is covariantly fibrant.

Under the equivalence of Corollary 1.3.2.2, the operad OM corresponds to the complete Segal
simplicial space obtained by interpreting M as an ∞-category with a single object, M as its
space of arrows and composition given by ⊗. This generalizes Example 1.3.3.10, where the
monoidal groupoidM is discrete. ♦

Remark 1.3.4.4. In view of Example 1.3.4.3 and considering that complete reduced Segal simpli-
cial spaces are a model for monoidal ∞-groupoids3), Corollary 1.3.2.2 allows us to interpret “be-
ing covariantly fibrant” as the property which characterizes those∞-operads which are monoidal
∞-groupoids. ♦

The theory of complete Segal dendroidal spaces was developed by Cisinski and Moerdijk [CM13]
and spelled out in detail for symmetric dendroidal spaces. They prove that complete Segal sym-
metric dendroidal spaces are a model for symmetric∞-operads (see Theorem 1.3.4.6 below). We
briefly retrace their main definitions in the world of non-symmetric operads. We will use the
resulting model category of complete Segal planar dendroidal spaces (or rather, its underlying
∞-category) as a model for (non-symmetric) ∞-operads.

Construction 1.3.4.5. [CM13, Sections 5 and 6] We build the simplicial model category
[Ωop
π , sSet]cS of complete Segal dendroidal spaces (also called dendroidal Rezk model

category) as constructed by Cisinski and Moerdijk in the symmetric case:

Take the Reedy model structure4) on the functor category dsSet := [Ωop
π , sSet] and then

Bousfield-localize [Lur09, Proposition A.3.7.3] two times:
(1) at the Segal core inclusions Sc[T ] −→ Ωπ[T ] and
(2) at the maps Ωπ[T ]⊗Jd −→ Ωπ[T ], where Jd is the dendroidal nerve of the category •

∼=−→ •
with two objects and a single isomorphism between them. ♦

The Reedy model category [Ωop
π , sSet]Reedy has a canonical simplicial enrichment [RV14,

Theorem 10.3] which is maintained by the Bousfield localization processes [Lur09, Proposition
A.3.7.3]. Therefore we can construct what we call the ∞-category of ∞-operads as the
simplicial nerve of the fibrant-cofibrant objects:

Op := N∆([Ωop
π , sSet]

◦
cS)

The name is justified by the following result.

Theorem 1.3.4.6. [CM13, Corollary 6.8] The inclusion dSet ↪→ [Ωsym, sSet]cS is a left Quillen
equivalence between the model category of symmetric ∞-operads as defined by Cisinski and
Moerdijk [CM11] and the model category of complete Segal symmetric dendroidal spaces. �

Definition 1.3.4.7. We denote by [Ωop
π , sSet]iS the Bousfield localization of [Ωop

π , sSet]cS at the
collapse maps

Ωπ[Cn] −→ Ωπ[T ]

for each n-ary tree T ; we call it the model category of invertible Segal dendroidal spaces.
We denote by

iOp := N∆([Ωop
π , sSet]

◦
iS)

the corresponding ∞-category of invertible ∞-operads ♦
3) For instance, Lurie [Lur17, Definition 4.1.3.6] defines (non-symmetric) monoidal ∞-categories as those co-

Cartesian fibrations over ∆op which under the straightening/unstraightening equivalence correspond to reduced
Segal simplicial ∞-categories; monoidal ∞-groupoids are then precisely those that take values in ∞-groupoids
rather than ∞-categories.

4) Cisinski and Moerdijk actually use a generalized version of the Reedy model structure since the category
Ωsym of symmetric rooted trees is not a Reedy category (unlike Ωπ, which is).
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Remark 1.3.4.8. It is immediate from the characterization of Bousfield localization that [Ωop
π , sSet]◦iS

is a full simplicial subcategory of [Ωop
π , sSet]◦cS. Hence the ∞-category iOp of invertible ∞-oper-

ads is a full subcategory of the ∞-category Op of (all) ∞-operads. ♦

Lemma 1.3.4.9. The ∞-category iOp of invertible ∞-operads is equivalent to the full subcate-
gory of Fun(Ωop

π , S) consisting of those dendroidal spaces X : Ωop
π → S which are invertible Segal

and satisfy the following completeness condition:
• For each tree T , the map Ωπ[T ] ⊗ Jd → Ωπ[T ] from Construction 1.3.4.5 induces an

equivalence
Hom(Ωπ[T ]⊗ Jd,X )

'−−→ XT .

in S. �

To prove Lemma 1.3.4.9 we use the following result.

Proposition 1.3.4.10. [Lur09, Proposition 4.2.4.4.] Let A be a combinatorial simplicial model
category, D a small simplicial category and S a simplicial set equipped with an equivalence
C[S]

'−→ D. Then the induced map

N∆([D,A]◦) −→ Fun(S,N∆(A◦))

is a categorical equivalence of simplicial sets. �

Remark 1.3.4.11. In Proposition 1.3.4.10 it does not matter whether we equip [D,A] with the
injective, projective or (if D is a Reedy category) with the Reedy model structure, since they
are all Quillen equivalent [Lur09, Remark A.2.9.23]. ♦

Proof (of Lemma 1.3.4.9). We specialize Proposition 1.3.4.10 to A := sSet and D := Ωop
π (seen

as a discrete simplicial category); we put S := N(Ωop
π ) = N∆(Ωop

π ) equipped with the adjunction
counit C[N∆(Ωop

π )]
'−→ Ωπ. We obtain an equivalence

N∆([Ωop
π , sSet]

◦
Reedy)

'−−→ Fun(N(Ωop
π ), S) (1.3.5)

of∞-categories. Passing to Bousfield localizations replaces the simplicial category [Ωop
π , sSet]◦Reedy

by the full subcategory of the new fibrant-cofibrant objects. Therefore the equivalence (1.3.5)
restricts to an equivalence between iOp := N∆([Ωop

π , sSet]◦iS) and some full subcategory of
Fun(N(Ωop

π ), S) whose objects are determined by the fibrancy conditions in the three localization
steps. Each of these steps corresponds precisely to one of the three conditions (invertibility,
Segal, completeness) in Lemma 1.3.4.9. �

We will now see that the completeness condition in Lemma 1.3.4.9 is redundant.

Lemma 1.3.4.12. An invertible Segal dendroidal space is automatically complete. �

Proof. A dendroidal Segal space X : Ωop
π → S is complete if and only the underlying simplicial

Segal space X
∣∣
∆op : ∆op ⊂ Ωop

π → S (obtained by restricting to linear trees) is complete. If X is
invertible then X

∣∣
∆op is constant, hence trivially complete. �

Lemma 1.3.4.12 motivates the name “invertible Segal” (rather than “invertible complete Se-
gal”) in Definition 1.3.4.7 and completes the transition from Corollary 1.3.4.1 to Corollary 1.3.4.2.
Remark 1.3.4.13. The story of Section 1.3.4 can be retold, mutatis mutandis, in the world of
symmetric∞-operads, symmetric dentroidal spaces and Γ-spaces; hence we obtain an equivalence
between the ∞-categories of
• 2-Segal Γ-spaces and
• invertible symmetric ∞-operads. ♦

Remark 1.3.4.14. Example 1.3.4.3 and Remark 1.3.4.4 have obvious analogs in the world of
symmetric ∞-operads and reduced Segal (a.k.a. special) Γ-spaces. ♦
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1.4 Variant: Cyclic operads and cyclic objects

We recall the definition of Connes’ cyclic category Λ.

Definition 1.4.0.1. [Con83] To each natural number n ∈ N corresponds an object [n] ∈ Λ
which we interpret as the unit circle S1 in the complex plane with n + 1 many equidistant
marked points. The morphisms are homotopy classes of weakly monotone maps S1 → S1 of
degree 1 that send marked points to marked points. ♦

Remark 1.4.0.2. We fix the inclusion ∆ ↪→ Λ which arranges the n + 1 many elements of an
object [n] ∈ ∆ as marked points on a circle. This inclusion is dense and faithful but not full. ♦

We define the category Ωcyc of plane rootable trees. In analogy to how Ωπ is a full
subcategory of the category Op of operads, we define Ωcyc as a full subcategory of the category
of cyclic operads whose definition due to Getzler and Kapranov5) [GK95] we now recall briefly.

Definition 1.4.0.3. A cyclic structure on an operad (O, O, ◦) consists of
• an involution (−)∨ : O → O on colors (called duality) and
• a system of rotation isomorphisms

O(x1, . . . , xn; y)
∼=−−→ O(y∨, x1, . . . , xn−1;x∨n)

which is compatible with the composition of operations;
such that for each n ∈ N the (n+ 1)-fold composition

O(x1, . . . , xn; y)
∼=−−→ O(y∨, x1, . . . , xn−1;x∨n)

∼=−−→ O(x∨n , y
∨, x1, . . . , xn−2;x∨n−1)

∼=−−→ · · · ∼=−−→ O(x2, . . . , xn, y
∨;x∨1 )

∼=−−→ O(x1, . . . , xn; y)

of rotation isomorphisms is equal to the identity.
A cyclic operad is an operad together with a cyclic structure. The cyclic operads are

assembled into a category cycOp where the morphisms are required to be compatible with the
additional structure in the obvious way. ♦

Remark 1.4.0.4. We have an adjunction Op −→←− cycOp where the right adjoint forgets the cyclic
structure and the left adjoint adds a cyclic structure freely. ♦

Definition 1.4.0.5. A plane rootable tree consists of vertices and (unoriented) edges arranged
in the plane, where an edge can connect two vertices or go to infinity in one or (in the case of
the unique tree η with no vertices) both directions. We require our trees to have at least one
external edge (this is what we mean by “rootable”). We think of each unoriented edge as a pair
of anti-parallel arrows. ♦

Example 1.4.0.6. A typical example of a plane rootable tree looks as follows:

•

• •

• • • •

• ♦

5) Getzler and Kapranov introduced cyclic operads in their mono-colored and symmetric version.
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We call an arrow a leaf if comes from infinity and a root if it goes to infinity. An arrow a
is called a direct predecessor of an arrow b (and b is then a direct successor of a) if there is
a vertex which is both the target t(a) of a and the source s(b) of b. We say a is a predecessor
of b (or b is a successor of a), if a is an iterated direct predecessor of b (this includes the case
a = b). The arity of a tree (resp. a vertex) is n, where n + 1 is the number of arrows leaving
(or, equivalently, entering) the tree (resp. the vertex).

Remark 1.4.0.7. For every arrow b in a tree T , the set of predecessors of b in T forms a plane
rooted tree (the root is b itself). In particular there is a preferred linear order (clockwise along
the boundary) on the set of those leaves a of T which are predecessors of b. ♦

Construction 1.4.0.8. Each plane tree T gives rise to a cyclic operad (also denoted T ) as
follows:
• Each arrow is a color.
• Each pair (v, a) consisting of an n-ary vertex v ∈ T and an arrow a starting in v gives rise

to an n-ary operation
va : (a1, . . . , an) −→ a

where the ai’s are the direct predecessors of a (hence t(ai) = v) in clockwise order. All
other operations are freely generated by these va’s.
• The involution on the colors exchanges the two anti-parallel arrows associated to a single

edge.
• The rotation isomorphisms are given on generators by va 7→ va∨n . ♦

Definition 1.4.0.9. We define the category Ωcyc ⊂ cycOp of plane rootable trees to be the full
subcategory spanned by the cyclic operads T constructed as above. A cyclic dendroidal object
in an ∞-category C is a functor Ωop

cyc → C. ♦

Remark 1.4.0.10. Our category Ωcyc is very close to the category of plane unrooted trees intro-
duced by Joyal and Kock [JK09]; the only difference is that we require our trees to have at least
one external edge. For instance, we do not allow the tree • which consists only of a single vertex,
since this tree can not be interpreted as a cyclic operad in a meaningful way. ♦

Remark 1.4.0.11. The free-cyclic-structure functorOp→ cycOp induces an inclusion Ωπ → Ωcyc

which replaces each edge with two anti-parallel arrows and forgets the root. ♦

Remark 1.4.0.12. The cyclic operad corresponding to the tree η (which has no vertices and
exactly two mutually anti-parallel arrows) consists of two colors which are dual to each other
and no non-identity operations. This cyclic operad η has an involution given by exchanging the
two colors, i.e. the two arrows. A morphism η → O to some cyclic operad O corresponds to a
color of O; the involution on the colors of O is induced by the involution on η. ♦

Remark 1.4.0.13. It is easy to check that an operation in the cyclic operad T ∈ Ωcyc is uniquely
determined by its input and output colors. Hence a map S → T between such operads is uniquely
determined by the value at each arrow. Such a map would not, however, be determined by its
values on unoriented edges; for instance, every unoriented edge e of a tree T gives rise to two
different maps η → T in Ωcyc corresponding to the two mutually dual colors described by e.

If one were only interested in mono-colored cyclic operads or, more generally, cyclic operads
with trivial duality (i.e. every color is self-dual), then it would be enough to consider unoriented
edges. This point of view is taken by Hackney-Robertson-Yau [HRY19]. ♦

Definition 1.4.0.14. A map of plane rootable trees is called boundary preserving if it maps
leaves to leaves and roots to roots. A collapse map in Ωcyc is a boundary preserving map
C → T out of a corolla. A cyclic dendroidal object Ωop

cyc → C in some ∞-category C is called
invertible if it maps all collapse maps to equivalences in C. ♦
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As the notation suggests, the category Ωcyc of plane rootable trees has a close relationship
to the cyclic category: the latter is a localization of the former as we will see next.

Construction 1.4.0.15 (Covariant description of Lcyc). Analogously to the case of plane rooted
trees, a plane rootable tree partitions the plane into “areas” which are arranged clockwise around
a circle. This assignment is a functor Lcyc : Ωcyc → Λ which extends the functor Lπ : Ωπ → ∆. ♦

Construction 1.4.0.16 (Contravariant description of Lcyc). Using the self-duality Λ ∼= Λop

(which interchanges marked points and intervals on a circle) we can define the functor L : Ωcyc →
Λop instead:

A tree T gets mapped to its set of leaves which are naturally arranged around a circle. The
image of a morphism α : S → T sends each leaf a of T to the unique leaf b of S such that α(b) is
a successor of a. This assignment does not yet uniquely determine Lα as a morphism in Λ; we
still need to specify a linear order on the pre-images (Lα)−1(b) (for every leaf b of S) but this is
taken care of by Remark 1.4.0.7. ♦

Remark 1.4.0.17. By combining the ideas from Section 1.4 and Section 1.1.3 we can construct
a category of (non-plane) rootable trees as a full subcategory of cyclic symmetric operads6).
The corresponding functor Labs : Ωabs → Finop

6=∅ maps a tree to its non-empty set of leaves (i.e.
incoming arrows). ♦

Proposition 1.2.1.3 still holds for L ∈ {Lcyc,Labs} with essentially the same proof, hence
Lemma 1.2.1.1 yields the following cyclic version of Theorem 1.2.0.1:

Theorem 1.4.0.18. The functor Lcyc : Ωcyc → Λ (resp. Labs : Ωabs → Finop
6=∅) exhibits Λ (resp.

Finop
6=∅) as an ∞-categorical localization of Ωcyc (resp. Ωabs) at the set of collapse maps. �

Corollary 1.4.0.19. The classifying space of Ωcyc is BS1. �

Proof. Follows immediately from Theorem 1.4.0.18 because the classifying space of the cyclic
category Λ is known to be BS1 [Con83, Theorem 10]. �

Remark 1.4.0.20. Analogously to Corollary 1.3.4.1 one can show that the functor Lcyc induces
an equivalence between the ∞-categories of
• 2-Segal cyclic objects and
• invertible cyclic Segal dendroidal objects

in any ∞-category C, where 2-Segal/Segal are defined either as the obvious analogs of Def-
inition 1.3.1.2 and Definition 1.3.1.6 or, alternatively, by referring to the underlying simpli-
cial/dendroidal object.

Unfortunately, there is currently no result in the literature exhibiting (complete) Segal cyclic
dendroidal spaces as a model for cyclic∞-operads. One promising approach to resolve this issue
is proposed by Drummond-Cole and Hackney who construct [DH18, Theorem 6.5] a Dwyer–
Kan type model structure on the category of simplicially enriched cyclic operads7) and conjec-
ture[DH18, Remark 6.9] that it should be Quillen equivalent to a “complete Segal space”-type
model structure on cyclic dendroidal simplicial sets lifted from the complete Segal model struc-
ture of Cisinski and Moerdijk. Conditional on their conjecture, we can then say that 2-Segal
cyclic spaces are equivalent to invertible cyclic ∞-operads. ♦

6) Such operads have both a cyclic and a symmetric structure which are compatible when regarding the sym-
metric group Sn and the cyclic group Z / (n+ 1) as a subgroup of Sn+1.

7) Drummond-Cole and Hackney call non-Σ positive cyclic operads what we simply call cyclic operads.
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Chapter 2

Higher Segal spaces via higher excision

The main conceptual framework which informs our approach in this chapter is a version for the
simplex category of the Goodwillie–Weiss [Wei99; GW99] manifold calculus. In Section 2.1 we
explain a system of heuristic analogies between manifold calculus (in its version described by
Boavida de Brito and Weiss [BW13]) and a “manifold calculus” on ∆. While the mathematics in
the rest of the chapter stands on its own, it is the author’s opinion that these informal analogies
to manifold calculus can be very helpful when digesting the definitions and building intuition.
Interestingly, they also explain how one might have guessed the definition of higher Segal spaces
without knowing about cyclic polytopes. One practical upshot of the analogy to manifold calculus
is that it inspires the definition of polynomial simplicial objects, a notion which is implied by
higher weak excision (while being, a priori, weaker) and which can be compared more easily to
the higher Segal conditions.

In Section 2.2 we recall basic definitions and facts about the categories ∆ and Λ, (co)Cartesian
and strongly (co)Cartesian cubes, as well as general notions of excision, weak excision and de-
scent. In Section 2.3, we explicitly classify strongly Cartesian and biCartesian cubes in ∆ and in
Λ. In Section 2.4 we explain a descent theory on ∆ and study polynomial simplicial objects in this
framework. In Section 2.5 we show that polynomial simplicial objects agree with weakly excisive
ones; our key arguments here are a version of the ones in [FGK+19] repackaged in a way which
directly generalizes to arbitrary dimensions. The main theorem (Theorem 2.6.2.2)—comparing
higher Segal conditions with weak excision—is proved in the last section (Section 2.6) by con-
sidering a series of descent conditions which interpolate between the higher Segal conditions and
the conditions of being polynomial.

2.1 A “manifold calculus” for the simplex category

A contravariant functor X defined on the topological (i.e., ∞-) category Man of smooth d-
manifolds and smooth embeddings is usually called polynomial of degree ≤ 1 if its value on a
manifold M can be computed by cutting M up into smaller open pieces, evaluating X piece by
piece and then reassembling the values. More precisely, for each pair of disjoint closed subsets
subsets A0, A1 ⊂M , one requires the canonical map

X (M) −→ X (M \A0)×X (M\A0∪A1) X (M \A1)

to be an equivalence.
Boavida de Brito and Weiss [BW13] show that polynomial functors of degree ≤ 1 are pre-

cisely the (homotopy) sheaves on Man for the Grothendieck topology J1 of open covers. More
generally, they consider a hierarchy Jk of Grothendieck topologies on Man (with k ≥ 1), where
Jk consists of those open covers (called k-covers) which have the property that every set of k (or
fewer) points is contained in some open set of the cover. The manifold calculus of Boavida de
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Brito and Weiss is concerned with the systematic study of sheaves on (Man,Jk). They introduce
the following classes of open covers:
(1) the class J h

k consists of open covers of the form

{M \Ai ↪→M | i = 0, . . . , k} (2.1.1)

for pairwise disjoint closed subsets A0, . . . , Ak ⊂M of M .
(2) the class J ◦k consists of good k-covers, i.e., k-covers with the property that every finite

intersection of open sets is diffeomorphic to a disjoint union of at most k balls.
While the classes J h

k and J ◦k are not Grothendieck topologies anymore, they are so called cover-
ages, hence they admit a well-behaved theory of descent and sheaves. Sheaves for the coverage
J h
k are called polynomial functors of degree ≤ k. One of the main results of Boavida de Brito

and Weiss in this context is the following theorem:

Theorem 2.1.0.1. [BW13, Theorem 5.2 and Theorem 7.2] The coverages Jk, J h
k and J ◦k define

the same class of sheaves on Man. �

We shall now describe a similar theory for simplicial objects, i.e., presheaves on the simplex
category ∆ (see Section 2.2.1 for the notation). It turns out that the following list of analogies
is useful; we put terms coming from the language of manifold in quotes to emphasize that they
should be thought of heuristically:
• We think of the object [n] = {0, . . . , n} ∈ ∆ as a “manifold” with “points” given by pairs

(x− 1, x) with x = 1, . . . , n.
• An “open subset” of [n] is simply an ordinary subset U ⊆ {0, . . . , n}; it contains the “points”

(x− 1, x) such that {x− 1, x} ⊆ U .
• We say that two “open subsets” U,U ′ of the “manifold” [n] are “disjoint” if they are disjoint

as subsets of [n]; note that this is a stronger condition than requiring U and U ′ to share
no “point”.
• A “closed set” A of [n] is an ordinary subset of A ⊆ [n]; it contains all the points not

contained in its complement [n] \ A ⊆ [n] (viewed as an “open set”); explicitly, A contains
all “points” (x− 1, x) with x ∈ A or x− 1 ∈ A.
• We say that two “closed sets” A,A′ ⊆ [n] are “disjoint” if they share no “point”; note that

this is stronger than being disjoint as subsets of [n].
• Each “point” p = (x− 1, x) has a unique minimal “open neighborhood” given by the subset
Up = {x− 1, x} ⊆ [n], which we think of as a very small “open ball” around the “point” p.

Armed with this intuition, we can define analogs of the coverings J h
k and J ◦k in the simplex

category:

(1) The open covers (2.1.1) can be translated to ∆ by putting everything in quotation marks:
For every collection A0, . . . , Ak of “nonempty and pairwise disjoint closed subsets” of the
“manifold” [n], we can define the “open cover”

{[n] \Ai ↪→ [n] | i = 0, . . . , k} (2.1.2)

of [n]. See also Section 2.4.2.
(2) Heuristically1), one way to produce good k-covers of a manifold M is as follows: Fix a

Riemannian metric on M and, for every tuple p = (p1, . . . , pk) of k points in M , choose
very small (with respect to the geodesic distance between the points pi) balls Upi 3 pi.

Then the collection
{⋃̇k

i=1U
p
i

∣∣∣ p ∈Mk
}

is a k-good cover of M .

1) See Proposition 2.10 in [BW13] for an actual proof.
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In our analogy, every “point” p of a “manifold” [n] ∈ ∆ has a canonical/minimal “open ball”
Up surrounding it. Hence each [n] ∈ ∆ has a canonical “good k-cover” containing all those
“open subsets” of [n] ∈ ∆ that can be written as union of the form⋃̇k

i=1
Upi ,

where p1, . . . , pk are “points” of the “manifold” [n] with “pairwise disjoint neighborhoods”
Upi . See also Section 2.6.1.

Inspired by the analogy, we call a functor ∆op → C polynomial of degree ≤ k if it is a
sheaf for the “open covers” of type (1) (see Definition 2.4.2.1).

The following easy observation was the author’s original motivation for this line of inquiry
because it shows on one hand that the canonical “good k-covers” are a meaningful concept and
on the other hand that a “manifold calculus” of ∆ can be a powerful organizational principle for
higher Segal spaces.

Observation 2.1.0.2. Sheaves on ∆ with respect to the canonical “good k-covers” of (2) are
precisely the lower (2k − 1)-Segal spaces of Dyckerhoff and Kapranov. �

The notion of polynomial simplicial objects might be a bit unsatisfying because its very
definition relies on an informal analogy to manifold calculus; without this analogy, the “open
covers” (2.1.1) might seem a bit mysterious and devoid of intrinsic meaning. We will clarify this
issue by showing that a functor ∆op → C is polynomial of degree ≤ k if and only if it is weakly
k-excisive (see Theorem 2.5.1.1). In this light, our main result (Theorem 2.6.2.2) relating lower
(2k − 1)-Segal objects with weakly k-excisive functors should be seen as a discrete analog of
Theorem 2.1.0.1 of Boavida de Brito and Weiss.

We will not spell out the whole story for 2k-Segal objects since it is very similar. Let us just
say that one should now consider a “manifold calculus” not on the simplex category ∆ but on
Connes’ cyclic category Λ, where the “manifold” [n] = {0, . . . , n} now has an additional “point”
given by (n, 0).

2.2 Preliminaries

2.2.1 The simplex category

The augmented simplex category ∆+ is the category of finite linearly ordered sets and order
preserving (i.e., weakly monotone) maps between them. The simplex category ∆ ⊂ ∆+ is
the full subcategory spanned by the nonempty finite linearly ordered sets. Every object in ∆ is
isomorphic, by a unique isomorphism, to a standard ordinal of the form [n] := {0 < 1 < · · · < n}
for some n ∈ N; when convenient can we therefore identify ∆ with its skeleton spanned by
{[n] |n ∈ N}.

Definition 2.2.1.1. A simplicial object in an (∞-)category C is a functor ∆op → C. ♦

The augmented simplex category has a monoidal structure

? : ∆+ ×∆+ −→ ∆+,

given by left-to-right concatenation or join of linearly ordered sets. Explicitly we have

{a0 < · · · < an} ? {b0 < · · · < bm} := {a0 < · · · < an < b0 < · · · < bm} ;

the monoidal unit for ? is the empty set ∅ ∈ ∆+. We use the convention [−1] := ∅ ∈ ∆+ and
[n \ i] := {i+ 1 < · · · < n} for all −1 ≤ i ≤ n so that we always have [n] = [i] ? [n \ i]. Given a
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simplicial object X : ∆op → C, the left path object P /X and the right path object P .X are
defined as the compositions

P /X : ∆op [0]?−−−−−→ ∆op X−−→ C and P .X : ∆op −?[0]−−−−→ ∆op X−−→ C,

respectively.
A morphism f : [m]→ [n] in ∆ is called left active if it preserves the minimal element (i.e.,

f(0) = 0) and right active if it preserves the maximal element (i.e., f(m) = n). We call f
active if it is both left and right active. Denote by ∆min, ∆max and ∆act := ∆min ∩∆max the
wide subcategories of ∆ containing the left active, right active and active morphisms, respectively.
Call a morphism f : [m]→ [n] left strict (resp. right strict) if it satisfies f−1{0} = {0} (resp.
f−1{n} = {m}). For each n ∈ N, we denote by an : [1] → [n] the unique active map; explicitly
given as an(0) = 0 and an(1) = n.

2.2.2 The cyclic category

We have already introduced Connes’ cyclic category Λ in Section 1.4. Since some of the results
in this chapter require explicit computations of pullbacks and pushouts in Λ, a more detailed
combinatorial definition is now in order.

A finite cyclic set is a pair (N,T ) consisting of a finite setN together with an endomorphism
T : N → N which is transitive, i.e., for each x, y ∈ N there is some i ∈ N such that T ix = y. A
linearly ordered subset L = (L0,≺) of (N,T ) is a subset L0 of N (called the underlying set
of L) equipped with a linear order ≺ such that the restriction of T to L agrees with the successor
function induced by ≺. A morphism (f, f?) : (N ′, T ′) −→ (N,T ) of finite cyclic sets consists of
• a map of sets N ′ → N which we also denote by f and
• an assignment f?, which for each linearly ordered subset L ⊂ N produces a linearly ordered

subset f?L ⊂ N ′ with underlying set f−1L such that f?L = f?L′ ? f?L′′ whenever the
linerly ordered subset L ⊂ N is decomposed as L = L′ ? L′′.

Composition of morphisms N ′′
(f ′,f ′?)−−−−→ N ′

(f,f?)−−−−→ N between finite cyclic set is given by the
usual composition of underlying set maps and (f ◦ f ′)? = f ′? ◦ f?.

Definition 2.2.2.1. [Con83] Connes’ cyclic category Λ consists of nonempty finite cyclic
sets and morphisms between them. A cyclic object in some (∞-)category C is a functor
X : Λop → C. ♦

Remark 2.2.2.2. Following the usual naming convention, a cyclic object in the category of sets
would also be called a cyclic set, hence produce a naming clash with the finite cyclic sets intro-
duced above. This will not be an issue since cyclic objects in the category of sets never explicitly
appear in this thesis. ♦

For each n ∈ N, we have the standard finite cyclic set

〈n〉 :=
(
Z
/

(n+ 1),+1
)
.

It is easy to see that every nonempty finite cyclic set is (non-canonically) isomorphic to exactly
one such standard cyclic set. Motivated by this, we use the notation +m := Tm and −m := T−m

for arbitrary finite cyclic sets (N,T ) and omit T from the notation entirely.
For every finite cyclic set (N,+1), the automorphism group AutΛ(N) is cyclic of order |N |

and is generated by the structure morphism +1: N → N where (+1)? := −1 is given by

N ⊃ L 7−→ L− 1 := {x− 1 |x ∈ L} ⊂ N.
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Specifying a morphism f : N → 〈0〉 amounts to the choice of what we call a linear order on
the cyclic set N , namely a linearly ordered subset f?{0} ⊂ N with underlying set f−1{0} = N .
A commutative triangle

N ′ N

〈0〉
f ′ f

corresponds precisely to an order preserving map f ′?{0} → f?{0}. We conclude that the assign-
ment f 7→ f?{0} describes a functor

Λ/〈0〉
∼=−−→ ∆,

which is easily seen to be an isomorphism of categories between ∆ and the slice of Λ over 〈0〉.
Under this identification, the object [n] ∈ ∆ corresponds to 〈n〉 ∈ Λ which is equipped with the
structure map [n] : 〈n〉 → 〈0〉 induced by the standard linear order 0 < 1 < · · · < n on Z / (n+1).

Composition in Λ induces a free and transitive right group action

Λ(N, 〈0〉)×AutΛ(〈n〉) −→ Λ(N, 〈0〉);
(f,+m) 7−→ f+m

which corresponds to cyclic rotation of linear orders: if [n] : 〈n〉 → 〈0〉 is the structure map
corresponding to the standard order < on [n], then [n]+m corresponds to the linear order ≺ on
the set {0, 1 . . . , n} given by n−m+ 1 ≺ · · · ≺ n ≺ 0 ≺ · · · ≺ n−m.

2.2.3 Cartesian and coCartesian cubes

Fix a finite set S and denote by P(S) the powerset of S, partially ordered by inclusion.

Definition 2.2.3.1. An S-cube in some (∞-)category C is a functor Q : P(S)→ C. ♦

Remark 2.2.3.2. Since the poset P(S) is canonically isomorphic to its opposite (via the assign-
ment S ⊇ T 7→ S \ T ), we will often write cubes in an (∞-)category Z as functors Pop(S)→ Z.
This is convenient when studying contravariant functors X : Zop → C, where we can then say
that the cube Pop(S) → Z in Z is sent by X to the composite P(S) → Zop X−→ C; the main
example in this thesis is of course the case where Z = ∆ and X : ∆op → C is a simplicial object
in C. ♦

Let s ∈ S and write S′ := S \ {s}. We have an isomorphism of posets

∆1 ×P(S′)
∼=−−→ P(S)

given by (0, T ) 7→ T and (1, T ) 7→ T ∪̇{s}. For every∞-category C we get an induced equivalence

Fun(P(S),C)
'−−→ Fun(∆1,Fun(P(S′),C))

of∞-categories, which we denote by Q 7→ Qs. We say that a cube Q is the pasting in s-direction
of two cubes Q′ and Q′′ if we have an identification Qs = Q′s ◦Q′′s.

Denote by P∗(S) := P(S) \ {∅} the poset of nonempty subsets of S.

Definition 2.2.3.3. An S-cube Q : P(S)→ C is called
• Cartesian if it is a limit diagram in C; i.e., if Q is the right Kan extension of its restriction

to P∗(S).
• coCartesian if it is a colimit diagram in C; i.e., if Q is the left Kan extension of its

restriction to P(S) \ {S}.
A cube is called biCartesian if it is both Cartesian and coCartesian. ♦
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Definition 2.2.3.4. An S-cube Q : Pop(S) → Z is called strongly Cartesian or strongly
coCartesian if, for each T ⊂ S and s, s′ ∈ S \ T with s 6= s′, the 2-dimensional face

T T ∪̇ {s}

T ∪̇ {s′} T ∪̇ {s, s′}

is sent by Q to a pullback square or a pushout square in Z, respectively. A cube is called strongly
biCartesian if it is both strongly Cartesian and strongly coCartesian. ♦

Remark 2.2.3.5. Denote by Pop
≤1(S) and by Pop

≥|S|−1(S) the subposet of Pop(S) spanned by the
subsets T ⊂ S of cardinality |T | ≤ 1 and |T | ≥ |S| − 1, respectively. It is easy to see that a cube
Q : Pop(S)→ Z is strongly Cartesian if and only if it is the right Kan extension of its restriction
to Pop

≤1(S); it is strongly coCartesian if and only if it is the left Kan extension of its restriction
to Pop

≥|S|−1(S). ♦

Remark 2.2.3.6. If |S| ≥ 2, then every strongly (co)Cartesian cube is also (co)Cartesian; thus
justifying the terminology. Beware however, that for |S| = 1 an S-cube is just an arrow; it is
always strongly biCartesian and is (co)Cartesian if and only if it is an equivalence. ♦

Lemma 2.2.3.7. Let C be an ∞-category. Let s ∈ S and put S′ := S \ {s}. The restriction
functor

p : Fun(P(S′),C) −→ Fun(P∗(S
′),C)

is a coCartesian fibration which is Cartesian if and only if C admits limits of shape P∗(S). An
S-cube Q : P(S)→ C is Cartesian if and only if the corresponding edge Qs : ∆1 → Fun(P(S′),C)
is p-Cartesian. �

Proof. Lemma 2.2.3.7 is the higher dimensional analog of [Lur09, Lemma 6.1.1.1]; the proof is
essentially the same. �

We say that an S-cube Q is degenerate in direction s ∈ S if the corresponding natural
transformation Qs of S \ {s}-cubes is an equivalence. It follows directly from Lemma 2.2.3.7
that degenerate cubes—cubes that are degenerate in at least one direction—are automatically
Cartesian and coCartesian.

The following lemma is a standard argument which is useful to compare Cartesian cubes of
different dimensions.

Lemma 2.2.3.8. Let Q : P(S) → C be an S-cube in an ∞-category C with finite limits. Fix
s ∈ S and write S′ := S \ {s}. Assume that the S′-cube Qs(1) : T 7→ Q(T ∪̇ {s}) is Cartesian.
Then the canonical map

limQ
∣∣
P∗(S)

−→ limQ
∣∣
P∗(S′)

is an equivalence. In particular, the original S-cube Q is Cartesian if and only if the restricted
S′-cube Q

∣∣
P(S′)

= Qs(0) : T 7→ Q(T ) is Cartesian. �

Proof. Consider the following commutative diagram in C

Q(∅) limQ
∣∣
P∗(S)

Q({s})

limQ
∣∣
P∗(S′)

limQs(1)
∣∣
P∗(S′)

y ' (2.2.1)

which is induced by the universal properties of the various limits. By a standard decomposition
argument for limits, the rightmost square in the diagram (2.2.1) is Cartesian; moreover, the
rightmost vertical map is an equivalence by assumption. It follows that the left vertical map is
also an equivalence; the result follows. �
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2.2.4 Čech cubes, descent and weak excision

Let Z be an ∞-category.

Definition 2.2.4.1. Let S be a finite set. An S-pronged claw (or just S-claw, for short) F on
an object N in Z is an S-indexed tuple F = (fs : Is → N | s ∈ S) of maps fs in Z with common
codomain N ∈ Z or, equivalently, a diagram F : Pop

≤1(S)→ Z with F(∅) = N . ♦

Example 2.2.4.2. A [2]-pronged claw F |= N looks as follows

I0 I1 I2

N
f0

f1
f2

(recall that [2] ∈ ∆ has three elements). ♦

Given an S-claw F = (fs : Is → N | s ∈ S) on N ∈ Z, we write F |= N to make the codomain
N explicit in the notation while keeping the fs, the Is and sometimes even the S anonymous.
In a similar spirit we will use the symbol f ∈ F to mean fs for some s. With this convention fs
and fs′ should be considered distinct if s 6= s′, even if they are the same map in Z. Each subset
T ⊂ S induces a restricted T -claw of F given by F

∣∣
T

:= (ft | t ∈ T ) |= N .

Definition 2.2.4.3. An S-claw F |= N in Z is called a candidate S-covering if it can be
extended to a strongly Cartesian S-cube ČF : Pop(S) → Z. In this case we call ČF the Čech
cube associated to F . ♦

If it exists, the Čech cube ČF is given by the formula

S ⊇ T 7−→ limF
∣∣
T
. (2.2.2)

We shall sometimes think of the prongs fs : Is → N as generalized subobjects of N ; the values
(2.2.2) of the Čech cube should then be thought of as generalized intersections. In this spirit it is
sometimes convenient to use the notation

⋂
t∈T ft := ČF(T ) = limF

∣∣
T
and denote, for instance,

the Čech square of two maps f : I → N and f ′ : I ′ → N as follows:

I ∩ I ′ I ′

I N

f∩I′

I∩f ′ f∩f ′ f ′

f

Definition 2.2.4.4. Let F be a candidate covering in Z. A functor X : Zop → C is said to
satisfy descent with respect F if it sends the Čech cube ČF to a Cartesian cube in C; in this
case we also say that F is X -local. ♦

Following Boavida de Brito and Weiss we say that a coverage τ on Z is a collection of
candidate coverings. If F |= N is an element of τ then we say that F is a τ-covering; if the
coverage τ is implicit from the context then we say that F is a covering of N .

Definition 2.2.4.5. A C-valued sheaf for the coverage τ is a functor X : Zop → C which satisfies
descent with respect to all τ -coverings. ♦

Remark 2.2.4.6. For each k ≥ 0, there is a canonical coverage τk on Z which consists of all
candidate [k]-coverings. A presheaf Zop → C is a sheaf for this coverage τk if and only if it
is an k-excisive (covariant) functor in the sense of Goodwillie [Goo92], i.e., if it sends strongly
coCartesian [k]-cubes in Zop to Cartesian cubes in C. ♦
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We say that an S-claw is strongly biCartesian if it is a candidate covering and if its Čech
cube is strongly coCartesian (hence strongly biCartesian).

Definition 2.2.4.7. A functor Zop → C is called weakly S-excisive if it is a sheaf for the
coverage of strongly biCartesian S-claws, i.e., if it sends all strongly biCartesian S-cubes to
Cartesian cubes in C. ♦

We will also need the following relative notion:

Definition 2.2.4.8. Let Z → Z′ be a limit-preserving functor. We call a functor X : Zop → C

weakly S-Z′-excisive (with the functor Z → Z′ left implicit) if it is a sheaf with respect to
those candidate S-coverings which become strongly biCartesian in Z′. ♦

Clearly the property of being weakly S-excisive (both in the relative and in the absolute
sense) only depends on the cardinality of S. For k ∈ N, we say that X : ∆op → C is weakly
k-excisive if it is weakly [k]-excisive. We will stick to S-cubes instead of [k]-cubes whenever
possible, because the latter might suggest a dependency on the linear order of the coordinates.

Remark 2.2.4.9. In the setting of Definition 2.2.4.8, if every candidate covering in Z′ admits a
lift to a candidate covering in Z then a functor Z′op → C is weakly S-excisive if and only if its
restriction to Z is weakly S-Z′-excisive. ♦

2.2.5 Sheafification

One of the most fundamental features of Goodwillie calculus is the existence of Taylor approx-
imations [Goo03, 1.8 Theorem] [Lur17, Theorem 6.1.1.10]: given a functor X : Z → C between
suitable ∞-categories (for instance S, S? or Sp), there exists a tower

X

· · · P2X P1X P0X
. . .

where X → PkX is a universal k-excisive approximation of X , i.e., induces an equivalence
Map(PkX ,X ′) '−→ Map(X ,X ′) for each k-excisive functor X ′. Another way of saying this is that
for each k ∈ N, the inclusion

Exck(Z,C) ↪→ Fun(Z,C)

of the full subcategory spanned by the k-excisive functors admits a left adjoint Pk; the map
X → PkX is the adjunction unit.

From the sheaf-theoretic perspective discussed in Section 2.2.4, the k-excisive approximation
PkX of a functor Z → C is called the sheafification of X (viewed as a presheaf on Zop) with
respect to the coverage τk on Zop of all candidate [k]-coverings.

In this thesis, we are mostly interested in sheaves on small categories, like ∆ of Λ. It turns out
that in this case a sheafification/approximation always exists, at least when the target category
is presentable (see [Lur09, Section 5.5]), e.g., spaces or spectra or any ∞-category arising from
a combinatorial simplicial model category.

Lemma 2.2.5.1. Let Z be a small ∞-category and fix a small set R = {αi : K/
i → Z | i ∈ I} of

cones in Z (where each Ki is a simplicial set). Let C be a presentable ∞-category which admits
limits of all shapes Ki. Then the full subcategory FunR(Z,C) ⊂ Fun(Z,C) spanned by those
functors which send all cones in R to limit diagrams in C is presentable and the inclusion

FunR(Z,C) := {∀α ∈ R : α 7→ limit cone} ↪−→ Fun(Z,C)

admits a left adjoint. �
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Proof. The ∞-category FunR(Z,C) fits into the following pullback square of ∞-categories

FunR(Z,C) Fun(Z,C)

Fun(
∐
i∈I

Ki,C) Fun(
∐
i∈I

K/
i ,C)

y
α?i (2.2.3)

where:
• all other∞-categories are C-valued diagram categories, hence presentable because C is (see

[Lur09, Proposition 5.5.3.6]);
• the lower horizontal arrow is given by right Kan extension along

∐
i∈I

Ki ↪→
∐
i∈I

K/
i and has

a left adjoint given by restriction;
• the right vertical arrow α?i has a left adjoint given by left Kan extension.

The (very large) category PrR of presentable∞-categories and right adjoint functors has all limits
and the inclusion PrR ↪→ CAT∞ preserves them (see [Lur09, Theorem 5.5.3.18]). It follows that
the ∞-category FunR(Z,C) is presentable and that both structure maps in the pullback (2.2.3)
have left adjoints. This concludes the proof. �

Corollary 2.2.5.2. Let Z be a small ∞-category and let τ be coverage on Z. Let C be a
presentable ∞-category. Then the inclusion

{τ -sheaves} ↪−→ Fun(Zop,C)

admits a left adjoint; in other words, each C-valued presheaf on Z can be τ -sheafified. �

Proof. Since Z is small, so is the set of τ -coverings. Hence Corollary 2.2.5.2 follows by applying
Lemma 2.2.5.1 to the ∞-category Zop and to the small set R :=

{
ČF

∣∣F ∈ τ} of Čech cubes
arising from τ -coverings. �

2.3 Strongly biCartesian cubes in ∆ and Λ

The goal of this section is to classify and explicitly describe the strongly biCartesian cubes in
the simplex category and the cyclic category.

2.3.1 Strongly biCartesian cubes in the simplex category

Definition 2.3.1.1. An S-claw F = (fs | s ∈ S) on [n] in ∆+ is called
• backwards compatible if for each i ∈ [n] there is at most one s ∈ S such that the

preimage f−1
s {i} has more than one element;

• compatible if it satisfies the following two conditions:

(BC1) for each i ∈ [n], there is at most one s ∈ S such that the preimage f−1
s {i} is not a

singleton;
(BC2) for each 0 < i ≤ n, there is at most one s ∈ S such that the subset {i− 1, i} ⊆ [n] is

not contained in the image of fs. ♦

Remark 2.3.1.2. The S-claw F satisfies condition (BC1) if and only if it is backwards compatible
and: if the preimage f−1

s {i} is empty for some i ∈ [n] and s ∈ S then the preimage f−1
s′ {i} is a

singleton for all s′ ∈ S \ s. In the language of Section 2.1, condition (BC2) says precisely that
the images of the maps fs are of the form [n] \ As, where the (As | s ∈ S) are “pairwise disjoint
closed subsets” of the “manifold” [n]. ♦

We call a diagram in ∆+ left active or right active if it takes values in the subcategory
of ∆ spanned by the left active or right active morphisms, respectively.
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Remark 2.3.1.3. It will be useful to visualize S-claws F |= [n] in ∆+ as arrays as in the following
example (with n = 9 and S = [3]):

0 1 2 3 4 5 6 7 8 9

0 ∗ ∗ ∗ ∗ ∗ 3 2 ∗ ∗ ∗
1 ∗ ∅ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∅ ∅ ∗ ∗ ∗ ∗ ∗
3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∅ 2 ∅

(2.3.1)

There is one row for each prong fs : Is → [n] of F and one column for each i ∈ [n]; in the entry
(s, i) we draw:
• a star ∗ if the preimage f−1

s {i} is a singleton,
• the symbol ∅ if the preimage f−1

s {i} is empty or
• a number l if the preimage f−1

s {i} has l > 1 many elements.
A claw is backwards compatible if and only if in each column there is at most one entry with a
number l > 1. It is compatible if and only if it satisfies the following two conditions:
• in each column there is at most one “special” entry, i.e., a cell which is not a star ∗;
• each pair of two empty cells is either in the same row or separated by a column with no

empty cells.
The example (2.3.1) depicts the left active compatible claw

{0, 2, 3, 4, 5, 6, 7, 8, 9} {0, 1, 2, 5, 6, 7, 8, 9} {0, 1, 2, 3, 4, 5, 6, 8, 8′}

{0, 1, 2, 3, 4, 5, 5′, 5′′, 6, 6′, 7, 8, 9} [9]

defined by i, i′, i′′ 7→ i ∈ [9]. ♦

Proposition 2.3.1.4. Let F |= [n] be an S-claw in ∆+.
(a) The claw F is a candidate S-covering in ∆+ if and only if F is backwards compatible. The

Čech cube ČF : Pop(S)→ ∆+ is given explicitly by the formula

ČF : T 7−→ F
i∈[n]

∏
t∈T

f−1
t {i}. (2.3.2)

(b) The S-claw F is strongly biCartesian (i.e., the Čech cube ČF of F is strongly biCartesian)
if and only if F is compatible. �

Corollary 2.3.1.5. A claw in ∆ is strongly biCartesian if and only if it is compatible. �

Proof. Corollary 2.3.1.5 follows directly from Proposition 2.3.1.4 and the easy observation that
the whole Čech cube of a compatible claw F |= [n] in ∆+ lies in ∆ provided that n 6= −1. �

Example 2.3.1.6. The [1]-claw
0 1 2

∅ ∗ ∗
∗ ∗ ∅

(2.3.3)

is compatible and gives rise to the biCartesian square

1 12

01 012

� (2.3.4)

in ∆ which encodes the lowest instance of Rezk’s Segal conditions. ♦
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Proof (of Proposition 2.3.1.4). (a) A priori, the formula (2.3.2) describes a strongly Cartesian
extension ČF : Pop(S)→ Pos of F in the category of posets. Since the canonical inclusion
∆+ ↪→ Pos preserves limits, we conclude that ČF is a strongly Cartesian extension of F
in ∆+ if and only if ČF takes values in linearly ordered posets. This happens if and only
if each product

∏
t∈T f

−1
t {i} has at most one factor which is not empty or a singleton; this

is precisely the backwards compatibility condition on F .
(b) Assume that F is backwards compatible so that the Čech cube ČF := Pop(S)→ ∆+ is well

defined by part (a). We need to understand when ČF is additionally strongly coCartesian.
By definition, the cube ČF is strongly coCartesian if and only it for every subset T ⊂ S
and every pair of distinct elements s, s′ ∈ S \ T , the square

F
i∈[n]

(
f−1
s {i} × f−1

s′ {i} ×
∏
t∈T f

−1
t {i}

)
F
i∈[n]

(
f−1
s′ {i} ×

∏
t∈T f

−1
t {i}

)
=: B′

B := F
i∈[n]

(
f−1
s {i} ×

∏
t∈T f

−1
t {i}

)
F
i∈[n]

(∏
t∈T f

−1
t {i}

)
=: N

(2.3.5)

is a pushout in ∆+.
To show “if” in the claimed equivalence, assume that F is compatible; we will show that
then each square (2.3.5) is a pushout in ∆+. Condition (BC1) implies that, for every
i ∈ [n], if one amongst f−1

s {i} and f−1
s′ {i} is empty then the other is a singleton; it follows

that the square (2.3.5) is a pushout on the level of underlying sets. It remains to show that
a map of sets β : N → M is weakly monotone if it is weakly monotone when composed
with B → N and B′ → N ; for this it is sufficient to show that each pair of adjacent
elements in N is contained in the image of B → N or in the image of B′ → N . Let
x < x + 1 =: x′ be two adjacent elements of N and denote by i and i′ their respective
images in [n]. It is enough to show that the subset {i, i′} ⊆ [n] is contained in the image
of fs or in the image of fs′ . If i = i′ then this follows from condition (BC1); if i′ = i + 1
then this follows from condition (BC2). We may therefore assume i < i+ 1 ≤ i′ − 1 < i′.
For each i < i′′ < i′ the product

∏
t∈T f

−1
t {i′′} must be empty by adjacency of x and x′.

Hence there must be t, t′ ∈ T such that f−1
t {i+ 1} and f−1

t′ {i′ − 1} are empty; in particular
the subsets {i, i+ 1} and {i′ − 1, i} of [n] are not contained in the image of ft and ft′ ,
respectively. Condition (BC2) implies that the sets {i, i+ 1}, {i′ − 1, i} and, a fortiori,
{i, i′} are contained in the image of both fs and fs′ .
To show “only if”, assume that the cube ČF is strongly biCartesian. We show that condi-
tions (BC1) and (BC2) hold, i.e., that F is compatible.

(BC1) Let i ∈ [n] and s ∈ S be such that f−1
s {i} is empty. For each s′ ∈ S \ {s} con-

sider the following commutative diagram, where the inner solid square is the pushout
square (2.3.5) (for T = ∅):

F
j∈[n]

f−1
s {j} × f−1

s′ {j} F
j∈[n]

f−1
s′ {j}

F
j∈[n]

f−1
s {j} [n]

F
j∈[n]\{i}

f−1
s {j} [n] \ {i} [i− 1] ? f−1

s′ {j} ? {i+ 1, . . . , n}

The dashed arrow—which exists by the pushout property—exhibits f−1
s′ {i} as a retract

of the singleton {i}, hence as a singleton itself.
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(BC2) Fix 0 < i ≤ n and distinct elements s, s′ ∈ S. Consider the commutative diagram

F
j∈[n]

f−1
s {j} × f−1

s′ {j} F
j∈[n]

f−1
s′ {j}

F
j∈[n]

f−1
s {j} [n]

[n]

where [n]→ [n] is the (not order preserving) map that exchanges i− 1 and i. By the
pushout property of the solid square, at least one of the dashed composites must be
not order preserving; this can only happen if least one of the maps fs and fs′ contains
the subset {i− 1, i} ⊆ [n] in its image. �

Remark 2.3.1.7. An S-claw F = (fs | s ∈ S) is backwards compatible if and only if for each pair
of distinct elements s, s′ ∈ S the induced {s, s′}-subclaw is backwards compatible. Hence it
follows from Proposition 2.3.1.4, that F admits a Čech cube in ∆+ if and only if each pair fs, fs′
(for distinct s, s′ ∈ S) admits pullback in ∆+. Similarly, an S-claw admits a strongly biCartesian
Čech cube if and only if each two-pronged subclaw is compatible. ♦

2.3.2 Strongly biCartesian cubes in the cyclic category

In this section, we characterize strongly biCartesian cubes in Λ. To this end, we introduce the
cyclic analog of a compatible claw. Heuristically, this corresponds to adding the new “point”
(n, 0) to the “manifold” [n] ∈ ∆.

Definition 2.3.2.1. An S-claw F |= [n] in ∆ is called cyclically compatible if the claw F is
compatible and all but at most one f ∈ F have the set {0, n} ⊆ [n] in their image. ♦

Remark 2.3.2.2. Let ι : I ′′ ↪→ I0 ? I
′′ ? I1 = I and α : I ′′ → I ′ be an inert map and an active

map in ∆, respectively. Define [n] := I0 ? I
′ ? I1. It is easy to see that the [1]-claw (I ′ ↪→

[n], Id ? α ? Id : I → [n]) is cyclically compatible and that I ′′ is the associated pullback. By
definition, the decomposition spaces of Gálvez-Carrillo, Kock and Tonks [GKT18a; GKT18b;
GKT18c] are precisely those simplicial objects which send to Cartesian squares the biCartesian
squares that arise this way. ♦

Example 2.3.2.3. The [1]-claws

0 1 2 3

∅ ∗ ∗ ∗
∗ ∗ ∅ ∗

and
0 1

∗ 2
∅ ∗

are cyclically compatible and arise as the pushouts of the inert map d0 : [1]→ [2] along the active
maps d1 : [1]→ [2] and s0 : [1]→ [0], respectively. They encode the first upper 2-Segal condition
and an instance of unitality. The [1]-claw (2.3.3) of Example 2.3.1.6 is not cyclically compatible
because the “point” (2, 0) of the “manifold” [2] is not covered by any prong; the corresponding
Čech square (2.3.4) is not coCartesian in the cyclic category. ♦

The following is the main result of this section:

Proposition 2.3.2.4. An S-claw F |= [n] in ∆ has a strongly biCartesian image in Λ if and
only if it is cyclically compatible. �

Corollary 2.3.2.5. The following three classes of S-cubes in Λ agree:
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• strongly biCartesian S-cubes in Λ

• images of left active strongly biCartesian S-cubes in ∆

• images of right active strongly biCartesian S-cubes in ∆. �

Before we can prove Proposition 2.3.2.4 and Corollary 2.3.2.5 we need a couple of lemmas.

Lemma 2.3.2.6. Let F = (fs : Is → [n] | s ∈ S) be an S-claw in ∆. If F is compatible and
either left active or right active then F is cyclically compatible. Moreover, the following are
equivalent:
(1) the claw F is cyclically compatible;
(2) for every m ∈ [n], the cyclic rotation F+m :=

(
fs

+m : Is
+m → [n]+m

∣∣ s ∈ S) of the claw F
is compatible;

(3) there is an m ∈ [n] such that the cyclic rotation F+m of the claw F is left active and
compatible;

(4) there is an m ∈ [n] such that the cyclic rotation F+m of the claw F is right active and
compatible. �

Proof. The first statement follows directly from the definitions. It is clear from the definition
that the property of being cyclically compatible is preserved under cyclic rotation; hence we
have the implications ((1) =⇒ (2)), ((3) =⇒ (1)) and ((4) =⇒ (1)). Given a compatible S-claw
F = (fs | s ∈ S) on [n] in ∆, there is an element m ∈ [n] which is in the image of all the fs. Then
for any such m, the rotated claws F−m and F−m−1 are left active and right active, respectively.
We thus obtain the implications ((2) =⇒ (3)) and ((2) =⇒ (4)). �

Lemma 2.3.2.7. Let Q : Pop(S) → Λ be an S-cube in the cyclic category. The following are
equivalent:
(1) the cube Q is strongly Cartesian;
(2) there is a strongly Cartesian S-cube in ∆ which is mapped to Q under the canonical functor

∆→ Λ;
(3) every S-cube Q′ in ∆ which maps to Q is strongly Cartesian. �

Proof. The implications (2) =⇒ (1) =⇒ (3) follow from the general fact about slice categories
that the projection ∆ ∼= Λ/〈0〉 → Λ preserves and reflects pullbacks. The implication (3) =⇒ (2)
holds because the cube Q lifts to a cube in ∆ ∼= Λ/〈0〉 by choosing any map Q(∅)→ 〈0〉. �

Lemma 2.3.2.8. Let
I ∩ I ′ I ′

I [n]

f∩I′

I∩f ′ � f ′

f

(2.3.6)

be the left active biCartesian Čech square associated to a left active compatible claw (f, f ′) |= [n]
in ∆. Then the image in Λ of the square (2.3.6) is a pushout. �

Proof. Consider a solid commutative diagram

I ∩ I ′ I ′

I 〈n〉

N

f∩I′

I∩f ′

p′
f ′

p

f (2.3.7)

in Λ, where the top left square is the image of the square (2.3.6). We need to show that there is
a unique dashed morphism p : 〈n〉 → N of cyclic sets making the diagram (2.3.7) commute.
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• First, we treat the case N = 〈0〉. In this case the maps p : I → 〈0〉, p′ : I ′ → 〈0〉 and
p′′ : I∩I ′ → 〈0〉 correspond to cyclic rotations ≺ of the linear order on I, I ′ and I ′′ := I∩I ′,
respectively; we have to show that there is a unique linear order ≺ on the cyclic set 〈n〉 such
that both f and f ′ are order preserving with respect to ≺. Uniqueness is clear, because by
compatibility of (f, f ′) each set {i− 1, i} (for i ∈ [n]) is in the image of f or of f ′.

To construct the linear order ≺ on [n], denote by x and x′ the maximal elements in the
linearly ordered sets (I,≺) and (I ′,≺), respectively, i.e., the unique elements with x+1 ≺ x
and x′ + 1 ≺ x′. Without loss of generality, assume i′ := f(x′) ≤ f(x) =: i. Define ≺ to
be the unique linear order on the cyclic set 〈n〉 which has i as its maximum. We need to
show that f and f ′ preserve the orders ≺; for this it is enough to verify that i < f(x+ 1)
and i < f ′(x′ + 1) (because f(x) ≤ i and f ′(x′) ≤ i).

Denote by z′′, z′ and z the <-minimal elements of I ′′, I ′ and I, respectively; they satisfy
(f ∩ I ′)(z′′) = z′, (I ∩ f ′)(z′′) = z and f(z) = 0 = f ′(z′) because the square (2.3.6) was
assumed to be left active.

– Assume that i = f(x) = f(x + 1). Then by backwards compatibility of (f, f ′) we
must have a unique y′ ∈ I ′ with f ′(y′) = i. By the explicit formula for Čech cubes we
deduce that the order preserving map (with respect to both ≺ and <) I ∩ f ′ : I ′′ → I

restricts to a bijection I ′′ ∩ {i} ∼=−→ I ∩ {i} which is therefore an isomorphism (with
respect to ≺ and <). Denote by x, x+ 1 ∈ I ′′ the (unique) preimages under I ∩ f ′ of
x and x+1, respectively; they satisfy x+1 = x+ 1 ≺ x by the isomorphism property,
which means they are the maximal and minimal element of the linearly ordered set
(I ′′,≺), respectively. Since both x and x+ 1 are mapped to y′ by f ∩ I ′ we deduce
that f ∩ I ′ : I ′′ → I ′ is constant. This can only happen if f was already constant and
f ′ was an equivalence. Hence the square (2.3.6) is degenerate and therefore trivially
a pushout in Λ.

– The case i′ = f ′(x′) = f(x′ + 1) is analogous.

We may therefore assume that x and x′ are the maximal elements (with respect to both
< and ≺) of their corresponding preimages f−1{i} and f ′−1{i′}. It follows directly that
f(x + 1) > i and f ′(x′ + 1) > i′; it remains to show f ′(x′ + 1) > i and we may assume
that i′ < i. Next, we show that there is no j ∈ [n] with i′ < j ≤ i which is in the image of
f ′′ := f ∩ f ′ : I ′′ → [n]:

– Otherwise, choose w′′ ∈ I ′′ with f ′′(w′′) = j. Set w′ := (f ∩ I ′)(w′′) ∈ I ′ and
w := (I ∩ f ′)(w′′) ∈ I. We have z < w and z′ ≤ x′ < w′ by construction and w ≤ x
because x is maximal for < in the preimage f−1{i}. Hence we have (after cyclic
rotation and using that x and x′ are ≺-maximal) z ≺ w � x and w′ ≺ z′ � x′, which
implies z′′ ≺ w′′ and w′′ ≺ z′′, respectively. Contradiction.

Since i is in the image of f (by definition) and each j with i′ < j ≤ i is not in the image
of f ′′, it follows from the compatibility of (f, f ′) that each such j is not in the image of f ′.
Since we already know f ′(x′ + 1) > i′ we obtain f ′(x′ + 1) > i, as desired; this concludes
the case N = 〈0〉.

• We prove the case of a general N . To see the existence of the dashed map in the dia-
gram (2.3.7), choose any map N → 〈0〉. By the case N = 〈0〉 which we have just shown,
we can fill the dotted morphism 〈n〉 → 〈0〉 of cyclic sets in the following commutative
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diagram

I ∩ I ′ I ′

I 〈n〉

N 〈0〉

f∩I′

I∩f ′

p′

f

p

f (2.3.8)

Thus we have constructed a diagram in the overcategory Λ/〈0〉. Under the canonical iden-
tification ∆ ∼= Λ/〈0〉, the top left square of the diagram (2.3.8) gets identified with a cyclic
rotation of the original diagram (2.3.6). Since any cyclic rotation of a left active compatible
claw is compatible, we deduce from Corollary 2.3.1.5 that the corresponding Čech square
is a pushout in ∆ ∼= Λ/〈0〉. We conclude by the pushout property that the desired dashed
map 〈n〉 → N in (2.3.8) and a fortiori in (2.3.7) exists.

To prove uniqueness, recall that the square (2.3.6) is a pushout on the level of underlying
sets, so that the dashed map is unique as a function of underlying sets. If 〈n〉 → N is
constant then it factors uniquely as 〈n〉 → 〈0〉 → N , hence is unique by the case N = 〈0〉.
If 〈n〉 → N is not constant then it is uniquely determined by its underlying function of
sets. �

Proof (of Proposition 2.3.2.4). If F is cyclically compatible then by Lemma 2.3.2.6 there is a
cyclic rotation F−m of F which is left active and compatible. Since F and F−m have isomorphic
images in Λ, it is enough to show that the latter image is strongly biCartesian. Since the
Čech cube ČF−m is left active and strongly biCartesian, it follows from Lemma 2.3.2.7 and
Lemma 2.3.2.8 (applied to each 2-dimensional face of the cube) that its image in Λ is still
strongly biCartesian.

Conversely, let Q be a strongly biCartesian cube in Λ extending F . Then every choice of
m ∈ [n] yields a structure map [n]+m : Q(∅) = 〈n〉 → 〈0〉 which gives rise to a cube Qm in
Λ/〈0〉 ∼= ∆ that maps to Q and extends the claw F+m. Since the slice projection ∆→ Λ reflects
pullbacks and pushouts, we deduce that each of these cubes Qm is strongly biCartesian. Hence
by Corollary 2.3.1.5 the corresponding claw F+m is compatible. We conclude by Lemma 2.3.2.6
that the original claw F is cyclically compatible. �

Proof (of Corollary 2.3.2.5). Recall from Corollary 2.3.1.5 that strongly biCartesian S-cubes in
∆ are precisely the Čech cubes of compatible S-claws. Hence Corollary 2.3.2.5 follows directly
from Proposition 2.3.2.4 and Lemma 2.3.2.6. �

2.3.3 Primitive decomposition of biCartesian cubes

In this section we show how a strongly biCartesian cube in ∆ can be decomposed into simpler
building blocks.

Definition 2.3.3.1. A map f : I → [n] in ∆ is called primitive if there is exactly one i ∈ [n]
such that f−1{i} is not a singleton; the map f is called preprimitive if it is primitive or an
isomorphism. A candidate covering F in ∆+ (and the corresponding Čech cube ČF) is called
(pre)primitive if the claw F consists only of (pre)primitive maps. ♦

Construction 2.3.3.2. Let f : I → [n] be a map in ∆. For each i ∈ {−1, 0, . . . , n}, we define
objects

Ii := f−1[i] ? [n \ i]
in ∆. Then f admits a canonical factorization

f : I = In
fn−−→ . . .

f i+1−−−→ Ii
f i−−→ . . .

f1−−→ I0
f0−−→ I−1 = [n] (2.3.9)
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where each map f i : Ii → Ii−1 is given as

f i := Idf−1[i−1] ?
(
f ∩ {i} : f−1{i} → {i}

)
? Id[n\i].

Observe that each map f i is preprimitive. ♦

Lemma 2.3.3.3. Let (f : I → [n], f ′ : I ′ → [n]) be backwards compatible and factorize f as in
Construction 2.3.3.2.
(1) For each i ∈ [n], the composition Ii → [n] in (2.3.9) is backwards compatible with f ′ so

that by Proposition 2.3.1.4 we can form the pullbacks

I ∩ I ′ In−1 ∩ I ′ . . . I1 ∩ I ′ I0 ∩ I ′ I ′

I In−1 . . . I1 I0 [n]

I∩f ′ In−1∩f ′ I1∩f ′ I0∩f ′ f ′

fn

f

fn−1 f2 f1 f0

which factorize the Čech square of f and f ′ into smaller Čech squares.
(2) The original claw (f, f ′) is compatible if and only if the claw (f i, Ii−1 ∩ f ′) |= Ii−1 is

compatible for each i ∈ [n].
(3) The original claw (f, f ′) is cyclically compatible if and only if the claw (f i, Ii−1∩f ′) |= Ii−1

is cyclically compatible for each i ∈ [n]. �

Proof. Follows by direct inspection of the explicit constructions. �

Lemma 2.3.3.4. (1) Every strongly biCartesian cube Q in ∆ can be decomposed into a past-
ing of preprimitive strongly biCartesian cubes. If Q was left active then each of these cubes
can be chosen to be left active. If Q was right active then each of these cubes can be chosen
to be right active.

(2) Every cube in Q in ∆ which becomes strongly biCartesian in Λ can be decomposed into
a pasting of preprimitive strongly biCartesian cubes, each of which is left active or right
active.

(3) If the original cube Q in (1) or (2) is non-degenerate then the pastings can be chosen to
consist of primitive cubes. �

Proof. By Corollary 2.3.1.5, each strongly biCartesian cube in ∆ is the Čech cube ČF of some
compatible S-claw F = (fs | s ∈ S). By Proposition 2.3.2.4, each cube in ∆ which becomes
strongly biCartesian in Λ is of this form ČF where F is cyclically compatible. For each s ∈ S,
consider the factorization of fs into preprimitive maps from Construction 2.3.3.2. By a repeated
application of Lemma 2.3.3.3, we can decompose the cube ČF into a pasting of Čech cubes of
compatible claws which are cyclically compatible if F was. Parts (1) and (2) of Lemma 2.3.3.4
now follow by applying Corollary 2.3.1.5, Proposition 2.3.2.4 and by the observing that preprim-
itive cyclically compatible claws are automatically either left active or right active. Part (3)
follows with the same procedure by dropping all identities appearing in the factorizations pro-
duced by Construction 2.3.3.2. �

2.4 Precovers and intersection cubes

Let F |= [n] be a S-claw on [n] in ∆. If all of the maps in the claw F are injective then we call F
an (S-)precover on [n]. Since precovers are trivially backwards compatible, Proposition 2.3.1.4
guarantees the existence of the Čech cube ČF ; we call it the intersection cube of F . If we
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view the injective maps F 3 fs : Is ↪→ [n] as subsets Is ⊆ [n] of [n] then the intersection cube of
F is given explicitly by the intersections

T 7−→
⋂
t∈T

It,

(where the empty intersection is [n] by convention); thus the terminology “intersection cube” is
justified. A cover (not to be confused with covering as in Section 2.2.4) is a precover F whose
prongs are jointly surjective, i.e.,

⋃F = [n] when we identify the prongs of F with subsets of
[n].

2.4.1 Membrane spaces and refinements

By right Kan extension along the Yoneda embedding ∆ ↪→ Fun(∆op,Set), we can extend any
simplicial object X : ∆op → C to a functor

X : Fun(∆op,Set)op −→ C,

which we still denote by X . Given any simplicial set K, we can calculate the value of X at
K—which Dyckerhoff and Kapranov call the object of K-membranes in X—by the pointwise
formula for Kan extensions:

XK ' lim
((

∆/K

)op → ∆op X−−→ C
)

The inclusion ∆ ↪→ Fun(∆op,Set) factors as ∆ ↪→ ∆+ ↪→ Fun(∆op,Set), where the second map
sends the initial object ∅ to the initial presheaf. We can therefore evaluate any simplicial objet
X : ∆op → C at ∅ and the value will be a terminal object in C.

Given a candidate covering F = (fs : Is → [n] | s ∈ S) in ∆, we obtain a simplicial set F̃ as
the colimit

F̃ := colim

(
P∗

op(S)
ČF−−→ ∆ ↪−→ Fun(∆op,Set)

)
which comes equipped with a canonical map F̃ → ∆n. It is easy to see that if F is a precover
(i.e., if all maps fs are injective) then F̃ ⊆ ∆n can be identified with the simplicial subset
F̃ :=

⋃
Is∈S ∆Is of the n-simplex. We say that a precover F ′ |= [n] is a refinement of F |= [n]—

written F ′ � F—if and only if F̃ ′ is a simplicial subset of F̃ ; explicitly, this means that for
every I ′ ∈ F ′ there is at least one I ∈ F such that I ′ ⊆ I (as subobjects of [n]). We say the
refinement F ′ � F is degenerate if F̃ ′ = F̃ . For each [n] ∈ ∆ the assignment F 7→ F̃ describes
an equivalence of categories between the category (which is just a preorder) of precovers and
refinements on [n] and the full subcategory of the overcategory Fun(∆op,Set)/∆n spanned by
the simplicial subsets of ∆n. An explicit inverse is given by identifying each simplicial subset
K ⊆ ∆n with the precover given by the maximal simplices of K. We will implicitly use this
identification and write

F̃ :=
(
I
∣∣∣∆I ↪→ F̃ maximal

)
|= [n]

for the precover obtained from a precover F by “removing redundant subsets”.
Remark 2.4.1.1. For every precover F , the restriction ČF

∣∣
P∗op(S)

: P∗
op(S)→ ∆+/F̃ of the Čech

cube of F has a left adjoint given by

([m], α : ∆m → F̃) 7−→
{
s ∈ S

∣∣α(∆m) ⊆ ∆Is
}

which becomes a right adjoint after passing to opposite categories. Since left adjoints are homo-
topy initial, the canonical map

XF̃ ' limX
∣∣(

∆+/F̃

)op '−−→ limX ◦ ČF
∣∣
P∗(S)

is an equivalence. In particular, X satisfies descent with respect to F if and only if X sends the
inclusion F̃ ↪→ ∆n to an equivalence. ♦
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Definition 2.4.1.2. We say that a refinement F ′ � F of precovers [n] is X -local if the induced
morphism F̃ ′ → F̃ of simplicial sets is sent by X to an equivalence in C. ♦

The following lemma (which is essentially [DJW19, Corollary 3.16]) is the main tool to
compare to one another descent conditions with respect to various precovers.

Lemma 2.4.1.3. Let F |= [n] be a precover in ∆ and I ⊂ [n] a subset. Let X : ∆op
+ → C be an

augmented simplicial object and assume that the restricted precover

F ∩ I :=
(
I ′ ∩ I

∣∣ I ′ ∈ F) |= I

on I is X -local. Then the refinement F � F̃ ∪ {I} is X -local. In particular, the original precover
F is X -local if and only if the extended precover F̃ ∪ {I} is X -local. �

Proof. The refinement F � F̃ ∪ {I} can be written as the composition of refinements

F � F ∪ {I} � F̃ ∪ {I}. (2.4.1)

The first refinement in the composition (2.4.1) is X -local by Lemma 2.2.3.8 (due to the assump-
tion of the Lemma 2.4.1.3 and using the identification of Remark 2.4.1.1); the second refinement
is degenerate, hence always local. The claim follows. �

2.4.2 Polynomial simplicial objects

Recalling the analogy to manifold calculus described in Section 2.1, we observe that compatible
precovers can be identified precisely with the “open covers” of the form (2.1.2). Indeed, an S-
precover F on [n] ∈ ∆ is compatible if and only if every “point” (x− 1, x) of the “manifold” [n] is
contained in all but at most one of the elements of F , which we think of as “open subsets” of [n];
in other words, F consists precisely of “open subsets” with “pairwise disjoint closed complements”.
The analogy thus motivates the following definition:

Definition 2.4.2.1. We call a functor ∆op → C polynomial of degree ≤ |S| (or S-polynomial,
for short) if X satisfies descent with respect to all compatible S-covers in ∆. ♦

Example 2.4.2.2. We depict, for k = 1, 2, 3, the unique non-degenerate compatible [k]-cover on
[2k]:

0 1 2

∅ ∗ ∗
∗ ∗ ∅

0 1 2 3 4

∅ ∗ ∗ ∗ ∗
∗ ∗ ∅ ∗ ∗
∗ ∗ ∗ ∗ ∅

0 1 2 3 4 5 6

∅ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∅ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∅ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∅

Note that for n < 2k, there are no non-degenerate compatible [k]-covers on [n]. ♦

The number of compatible S-covers on [n] ∈ ∆ grows quite rapidly in n. Thus a priori to
determine that a simplicial object is S-polynomial, there is an increasing number of conditions
to check in each dimension. We show now that it suffices to check any one non-trivial condition
in each dimension.

Proposition 2.4.2.3. Let X : ∆op → C be a simplicial object in some ∞-category with finite
limits. Assume that for each n ≥ 2k there exists a non-degenerate compatible [k]-cover F |= [n]
in ∆ which is X -local. Then all compatible [k]-covers are X -local. �

Proof. Assume the assumption of Proposition 2.4.2.3. Recall that degenerate covers are auto-
matically local. Hence there is nothing to show for n < 2k because in this case there are no
non-degenerate compatible [k]-covers on [n]. We prove by induction on n ≥ 2k that all non-
degenerate compatible [k]-covers are X -local. The inductions start is the case n = 2k, which is
trivial because there is a unique non-degenerate compatible [k]-cover on [2k]. For the induction
step consider the following directed graph:
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• Vertices are non-degenerate compatible [k]-covers on [n].
• Let F be a non-degenerate compatible [k]-cover and let I ∈ F and x ∈ [n] \ I such that
I ′ := I ∪ {x} 6= [n]. Then the cover F ′ := ˜F ∪ {I ′} is easily seen to be again [k]-pronged,
compatible and non-degenerate. We add the refinement

F � ˜F ∪ {I ′}

to the graph as an arrow F → F ′. Observe that in the language of Remark 2.3.1.3, the
cover F ′ arises from the cover F by choosing a row with at least two ∅’s and replacing one
of them by ∗.

With the notation above it is easy to see that the restricted [k]-cover F∩I ′ |= I ′ is still compatible,
hence X -local by the induction hypothesis (since I ′ ( [n]). It follows from Lemma 2.4.1.3 that
every arrow in the graph corresponds to an X -local refinement. The proof of Proposition 2.4.2.3
is concluded by the easy combinatorial observation that the graph is connected as an undirected
graph, i.e., one can connect every pair of non-degenerate compatible [k]-covers by a zigzag of
X -local refinements as above. �

Remark 2.4.2.4. The directed graph constructed in the proof of Proposition 2.4.2.3 is just the
Hasse diagram of the poset of non-degenerate compatible [k]-covers under refinement. Our proof
therefore shows that if there is an n ≥ 2k such that X satisfies descent with respect to all
compatible [k]-covers in ∆<n then all refinements between non-degenerate compatible [k]-covers
on [n] are X -local. ♦

2.5 Weakly excisive and weakly Λ-excisive simplicial objects

Fix an ∞-category C with finite limits. Recall from Section 2.2.4 that a simplicial object
X : ∆op → C is
• weakly S-excisive if it sends strongly biCartesian S-cubes in ∆ to Cartesian cubes in C.
• weakly S-Λ-excisive if it sends to Cartesian cubes in C those S-cubes in ∆ which become

strongly biCartesian in Λ after applying the canonical functor ∆→ Λ.

Remark 2.5.0.1. It follows from Remark 2.2.4.9 that a cyclic object Λop → C is weakly S-excisive
if and only if its restriction to ∆ is weakly S-Λ-excisive. ♦

We can refine the notion of weak Λ-excision as follows:

Definition 2.5.0.2. A simplicial object X : ∆op → C in C is called
• lower weakly S-Λ-excisive if X sends every left active strongly biCartesian S-cube in

∆ to a Cartesian cube in C;
• upper weakly S-Λ-excisive if X sends every right active strongly biCartesian S-cube in

∆ to a Cartesian cube in C. ♦

The terminology is justified by the following easy lemma.

Lemma 2.5.0.3. A simplicial object is weakly S-Λ-excisive if and only if it is both lower weakly
S-Λ-excisive and upper weakly S-Λ-excisive. �

Proof. By Lemma 2.3.3.4, every S-cube in ∆ with strongly biCartesian image in Λ can be
decomposed into a pasting of strongly biCartesian cubes each of which is left active or right
active; thus we have “if”. The converse “only if” follows from the fact (Corollary 2.3.2.5) that
every strongly biCartesian in ∆ which is left active or right active has a strongly biCartesian
image in Λ. �
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2.5.1 Weakly excisive = polynomial

As explained in Section 2.4.2, a polynomial functor of degree ≥ k is a simplicial object ∆op → C

which sends all strongly biCartesian intersection [k]-cubes to Cartesian cubes in C. A priori,
this does not agree with weak k-excision, because it only takes into account strongly biCartesian
cubes which consist of injective maps. The next theorem states that this discrepancy is illusory
both for weak (∆-)excision and for (lower and/or upper) weak Λ-excision.

Theorem 2.5.1.1. Let C be an∞-category with all finite limits. A simplicial object X : ∆op → C

is
(a) weakly S-excisive if and only if it sends primitive strongly biCartesian intersection S-cubes

in ∆ to Cartesian cubes in C;
(b) lower weakly S-Λ-excisive if and only if it sends primitive strongly biCartesian left active

intersection S-cubes in ∆ to Cartesian cubes in C;
(c) upper weakly S-Λ-excisive if and only if it sends primitive strongly biCartesian right active

intersection S-cubes in ∆ to Cartesian cubes in C. �

Before we prove Theorem 2.5.1.1, we deduce the following criterion for detecting weak Λ-ex-
cision of a simplical object in terms of weak (∆-)excision of its path objects.

Corollary 2.5.1.2 (Path space criterion). A simplicial object X : ∆op → C in an ∞-category
with all finite limits is
• lower weakly S-Λ-excisive if and only if the left path object P /X := X ◦ ([0] ?−) is weakly
S-excisive;
• upper weakly S-Λ-excisive if and only if the right path object P .X := X ◦(−? [0]) is weakly
S-excisive. �

Proof. Observe that composition with the functor [0]?− : ∆→ ∆ identifies compatible S-covers
in ∆ with left active compatible S-covers in ∆; hence by Corollary 2.3.1.5 it identifies strongly
biCartesian intersection S-cubes in ∆ with left active strongly biCartesian intersection S-cubes
∆. The first statement of Corollary 2.5.1.2 now follows directly from Theorem 2.5.1.1; the proof
of the second statement is analogous. �

Remark 2.5.1.3. The proof of Corollary 2.5.1.2 makes crucial use of Theorem 2.5.1.1 because in
general a left active diagram in ∆ need not factor through the functor [0] ?− : ∆→ ∆. It is the
fact that we can reduce to diagrams of injective maps that makes this argument work. ♦

To prove Theorem 2.5.1.1 we isolate the following key lemma which we prove separately
below. Recall that, for each m ≥ 0, we denote the unique active maps [1]→ [m] in ∆ by am.

Lemma 2.5.1.4 (Key lemma). Let p : C → B be a Cartesian fibration of ∞-categories. Let
X : ∆op → C be a simplicial object. Assume that, for all m ≥ 1, the edge X (am) of C is
p-Cartesian. Then the edge X (α) is also p-Cartesian for every active morphism α in ∆. �

Proof (of Theorem 2.5.1.1). We will prove part (a); the proof for (b) or (c) is the same, word by
word, by only considering cubes which are left or right active, respectively. The direction “only
if” is trivial.

To prove “if” let X : ∆op → C be a simplicial object which sends primitive strongly biCarte-
sian intersection S-cubes in ∆ to Cartesian cubes in C. Assume that there is a counterexample
to Theorem 2.5.1.1, i.e., a compatible S-claw F = (fs | s ∈ S) on [n] ∈ ∆ such that the corre-
sponding Čech cube ČF is not sent by X to a Cartesian cube in C. By Lemma 2.3.3.4 we may
choose F to be preprimitive. We may assume that F is primitive because otherwise it would
be degenerate; and degenerate cubes are always sent to Cartesian cubes. By induction we may
additionally assume that the number

dF := |{s ∈ S | fs is not injective}|
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is minimal amongst all counterexamples. The number dF has to be at least one, because other-
wise ČF would be an intersection S-cube which is not a counterexample by assumption. Choose
an s ∈ S such that fs is not injective and write S′ := S \ {s}. Since fs is primitive, it is of the
form

fs = Id[i−1] ?
(
f−1
s {i} → {i}

)
? Id[n\i].

for some i ∈ [n]. Denote by L, A and R the S-claws obtained by restricting the S-claw F to
[i− 1], {i} and [n \ i], respectively. Hence we have F = L ? A ? R. Denote by L′ and R′ the
S′-claws induced from L and R, respectively. Since the restriction of fs to both [i− 1] and [n \ i]
is the identity, the edges

ČsL : ∆1 −→ Fun(Pop(S′),∆) and ČsR : ∆1 −→ Fun(Pop(S′),∆),

corresponding to the Čech cubes ČL and ČR, are the identity on the objects ČL′ and ČR′ of
Fun(Pop(S′),∆), respectively. Denote by const : ∆ → Fun(Pop(S′),∆) the constant-diagram
functor and define a cosimplicial object Y in Fun(Pop(S′),∆) by

Y : ∆
const−−−→ Fun(Pop(S′),∆)

ČL′?(−)?ČR′−−−−−−−−−−→ Fun(Pop(S′),∆)

Denote by Y the simplicial object

Y : ∆op Y op

−−→ Fun(Pop(S′),∆)op = Fun(P(S′),∆op)
X◦−−−−→ Fun(P(S′),C)

and by
p : Fun(P(S′),C) −→ Fun(P∗(S

′),C)

the Cartesian fibration of Lemma 2.2.3.7. Observe, that the value of Y at the (active) edge
fs ∩{i} : (f−1

s {i} → {i}) is precisely the edge ČsF in Fun(P(S′),∆) associated to the Čech cube
ČF . By Lemma 2.2.3.7, the simplicial object X sends the cube ČF to a Cartesian cube if and
only if the edge Y(fs ∩ {i}) is p-Cartesian.

To complete the proof we set up an application of the key lemma (Lemma 2.5.1.4) to show
that this edge Y(fs ∩ {i}) is p-Cartesian, so that the cube ČF was not a counterexample after
all. Let m ≥ 1 and consider the S-claw Fm =

(
fms′
∣∣ s′ ∈ S) on [i− 1] ? [m] ? [n \ i] given by

fms′ := (fs′ ∩ [i− 1]) ? Id[m] ? (fs′ ∩ [n \ i])

for all s′ 6= s and by
fms := Id[i−1] ? (am : [1]→ [m]) ? Id[n\i].

It is clear that the S-claw Fm inherits compatibility from F and that the Čech cube ČFm
corresponds precisely to the edge

Y (am) : ∆1 am−−→ ∆
Y−−→ Fun(Pop(S′),∆).

For every s′ ∈ S\{s}, the map fms′ is injective if and only if fs′ is injective. Furthermore, the map
fms is injective (this is where we use the condition m 6= 0); hence the number dFm is smaller than
dF . By the minimality assumption on the counterexample F , we conclude that the simplicial
object X sends the Čech cube ČFm to a Cartesian cube. By Lemma 2.2.3.7 this translates to the
fact that the corresponding edge X ◦ ČsFm = Y(am) in Fun(P(S′),C) is p-Cartesian. Finally,
we apply the key lemma (Lemma 2.5.1.4) to the Cartesian fibration p and the simplicial object
Y to deduce that Y sends all active maps in ∆ to p-cartesian edges; in particular this is true for
the active map fs ∩ {i} : f−1

s {i} → {i}. This completes the proof. �
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2.5.2 Proof of the key lemma

Construction 2.5.2.1. Via the functor

J 7−→ J ∪̇ {∞}

we identify the augmented simplex category ∆+ with the wide subcategory ∆rstr ⊂ ∆max spanned
by the right strict morphisms. For every right active morphism f : [m] → [n] in ∆ we define a
left active morphism f− : [n]→ [m] by the formula

f− : j 7−→ min f−1 {j, . . . , n} .

For every left active morphism g : [n]→ [m] in ∆ we define a left active morphism g+ : [m]→ [n]
by the formula

g+ : i 7−→ max g−1 {0, . . . , i} . ♦

Lemma 2.5.2.2 (Joyal duality). The assignments f 7→ f− and g 7→ g+ of Construction 2.5.2.1
are mutually inverse and assemble to an isomorphism of categories

∆max ∼=←−→ ∆min,op

(given by the identity on objects) which restricts to an isomorphism

∆+
∼= ∆rstr ∼=←−→ ∆act,op. �

Proof. This is a straightforward calculation. �

The category ∆act has an initial object [1] and a terminal object [0] which, under the identi-
fication ∆+

∼= ∆act,op of Lemma 2.5.2.2 correspond to the objects [0] and ∅ of ∆+, respectively.

Lemma 2.5.2.3. Let X : ∆op → C be a simplicial object in any ∞-category C. Then the
restriction of X to the subcategory ∆act,op ⊂ ∆op is a limit cone. �

Proof. [Lur09, Lemma 6.1.3.16] states (after passing to opposite categories) that every aug-
mented cosimplicial object ∆+

∼= ∆rstr → C which extends to a diagram ∆max → C is automati-
cally a limit diagram. Hence by Lemma 2.5.2.2 every diagram ∆min,op → C and, a fortiori, every
simplicial object ∆op → C restricts to a limit diagram ∆act,op → C. �

Proof (of they key lemma, Lemma 2.5.1.4). Denote by X act the restriction of X to ∆act. De-
note by ∆act

≥1 the full subcategory of ∆act spanned by the objects [m] with m ≥ 1. Applying
Lemma 2.5.2.3 twice we deduce that X act and p ◦ X act are limit cones; it follows from [Lur09,
Proposition 4.3.1.5] that X act is also a p-limit cone, i.e., a right p-Kan extensions of its restric-
tion to ∆act,op

≥1 . Since the object [1] ∈ ∆act is initial, the assumption of Lemma 2.5.1.4 expresses
precisely that the restriction of X act to ∆act,op

≥1 is the right p-Kan extension of its restriction to
{[1]} ⊂ ∆act. We conclude by transitivity of p-Kan extensions [Lur09, Proposition 4.3.2.8] that
X act is a right p-Kan extension of its restriction to {[1]}, which implies by the pointwise formula
at [0] ∈ ∆act that the edge X (a0 : [1]→ [0]) is p-Cartesian. For every active map α : [m]→ [n] in
∆ we have an ◦ α = am and we already know that the edges X (an) and X (am) are p-Cartesian;
it follows by the left cancellation property of p-Cartesian edges [Lur09, Proposition 2.4.1.7] that
the edge X (α) is also p-Cartesian. �

2.6 Higher Segal conditions

In this last section, we explain the relationship between the higher Segal spaces of Dyckerhoff
and Kapranov and the notions of higher weak excision studied in 2.5.
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2.6.1 Higher Segal covers

Fix a positive natural number k ≥ 1. Given a subset I ⊆ [n], a gap of I (with [n] implicit) is an
element x ∈ [n] with x /∈ I. A gap x of I ⊆ [n] is called even if the cardinaity |{y ∈ I | x < y}|
is even. A subset I ⊆ [n] is called even if all its gaps are even. Note that even subsets I ⊆ [n]
of cardinality 2k are precisely those which can be written as a disjoint union of the form

I =
⋃̇k

i=1
{xi − 1, xi},

with 0 ≤ x1 − 1 < x1 < x2 − 1 < · · · < xk−1 < xk − 1 < xk ≤ n.
Definition 2.6.1.1. For each n ≥ 2k, the lower (2k− 1)-Segal cover on [n] ∈ ∆ is defined as
follows:

lSegkn := {I ⊂ [n] | I even with of cardinality |I| = 2k} |= [n] ♦

Observe that the lower (2k − 1)-Segal covers are precisely the canonical “good k-covers”
described in Section 2.1. The first lower (2k − 1)-Segal cover lSegkn, i.e., the one for n = 2k, is
the unique non-degenerate compatible [k]-cover on [n]. As n grows bigger, the behavior of lower
(2k−1)-Segal covers on [n] and non-degenerate compatible [k]-covers on [n] diverges dramatically:
In the first case the number of prongs increasingly rapidly with [n], but each subset of [n] remains
of constant size 2k; in the second case it is the number of prongs (k + 1) that stays constant,
while most of the subsets appearing in a compatible [k]-cover are large. This dichotomy should
remind the reader of the analogous behavior of J ◦k and J h

k described in Section 2.1:
• Good k-covers of a manifold typically consist of a large number of open subsets; however,

each of these subsets is simple and small (just a disjoint union of at most k balls)
• The open covers in J h

k always contain exactly k+ 1 open subsets M \Ai; however, each of
these open subsets is usually big and complicated.

Example 2.6.1.2. The following is a depiction of the first two lower 3-Segal covers:

0 1 2 3 4

∅ ∗ ∗ ∗ ∗
∗ ∗ ∅ ∗ ∗
∗ ∗ ∗ ∗ ∅

and

0 1 2 3 4 5

∅ ∅ ∗ ∗ ∗ ∗
∅ ∗ ∗ ∅ ∗ ∗
∗ ∗ ∅ ∅ ∗ ∗
∅ ∗ ∗ ∗ ∗ ∅
∗ ∗ ∅ ∗ ∗ ∅
∗ ∗ ∗ ∗ ∅ ∅

Observe that the left cover is the unique non-degenerate compatible [2]-cover on [4] = [2k]. ♦

We now come to the definition of higher Segal objects. The definition we will use is not the
original one, but rather a reformulation called the path space criterion [Pog17, Proposition 2.7].

Definition 2.6.1.3. A simplicial object X : ∆op → C is called
• lower (2k − 1)-Segal if, for each n ≥ 2k, it satisfies descent with respect to the lower

(2k − 1)-Segal cover lSegkn;
• lower 2k-Segal if the left path object P /X is lower (2k − 1)-Segal;
• upper 2k-Segal if the right path object P .X is lower (2k − 1)-Segal;
• 2k-Segal if X is both lower and upper 2k-Segal. ♦

2.6.2 Segal = polynomial = weakly excisive

We come now to the main result of this chapter, the comparison of higher Segal conditions and
weak excision. The key ingredient is the following theorem, which identifies the hierarchy of
lower odd Segal objects with the hierarchy of polynomial functors.
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Theorem 2.6.2.1. Let C be an ∞-category with finite limits. The lower (2k− 1)-Segal objects
in C are precisely the polynomial functors ∆op → C of degree ≤ k. �

Before we prove Theorem 2.6.2.1, we use it to deduce our main theorem.

Theorem 2.6.2.2. A simplicial object in an ∞-category with finite limits is
(1) lower (2k − 1)-Segal if and only if it is weakly k-excisive.
(2) lower 2k-Segal if and only if it is lower weakly k-Λ-excisive.
(3) upper 2k-Segal if and only if it is upper weakly k-Λ-excisive.
(4) 2k-Segal if and only if it is weakly k-Λ-excisive. �

Proof (of Theorem 2.6.2.2). In Theorem 2.5.1.1 we have seen that a functor ∆op → C is polyno-
mial of degree ≤ k if and only if it is weakly k-excisive; thus part (1) is an immediate consequence
of Theorem 2.6.2.1. The rest of Theorem 2.6.2.2 then follows immediately from the path space
criterion for weak Λ-excision (Corollary 2.5.1.2). �

Recall that a cyclic object Λop → C is defined to be 2k-Segal if the underlying simplicial
object ∆op → Λop → C is 2k-Segal.

Corollary 2.6.2.3. A cyclic object in an ∞-category with finite limits is 2k-Segal if and only if
it is weakly k-excisive. �

Proof. Corollary 2.6.2.3 follows directly from Theorem 2.6.2.2 and Remark 2.5.0.1. �

We now give the proof of Theorem 2.6.2.1.

Proof (of Theorem 2.6.2.1). Fix a simplicial object X : ∆op → C in an ∞-category C with finite
limits. By the characterization of strongly biCartesian intersection cubes in ∆ (Corollary 2.3.1.5)
we only need to show that X satisfies descent with respect to all lower (2k−1)-Segal covers if and
only if X satisfies descent with respect to all compatible [k]-covers. In view of Proposition 2.4.2.3,
we only have to relate, for each n ≥ 2k, the lower (2k − 1)-Segal cover to one non-degenerate
compatible k-cover. For each n ≥ 2k and each j ∈ {−1, 0, . . . , k}, we define a cover Fnj |= [n]
(with the k left implicit since it is fixed throughout the proof) to consist of the following subsets
of [n]:
• Ini := [n] \ {2i} for i = 0, . . . , j

• those I ∈ lSegnk that satisfy [2j] = {0, 1, . . . , 2j} ⊂ I.
Clearly Fn−1 is nothing but the lower (2k − 1)-Segal cover lSegnk |= [n]. Moreover, we have a

chain of refinements
lSegnk = Fn−1 � Fn0 � . . . � Fnk (2.6.1)

because every I ∈ lSegnk with [2(j − 1)] ⊂ I must either satisfy [2j] ⊂ I or 2j /∈ I. The last cover
Fnk = (Ini | i ∈ k) in the refinement (2.6.1) is a non-degenerate compatible [k]-claw; in this sense,
the chain (2.6.1) is an interpolation between the Segal condition and the descent condition with
respect to the family {Fnk |n ≥ 2k} of non-degenerate compatible [k]-covers in ∆.

We establish the following two facts:
(1) If n = 2k then the chain (2.6.1) of refinements collapses, i.e., we have

lSeg2k
k = F2k

−1 = F2k
0 = · · · = F2k

k .

(2) For every n > 2k and every j = 0, . . . , n the refinement Fnj−1 � Fnj is X -local provided
that the cover Fn−1

j−1 |= [n− 1] is X -local.

Fact (1) is immediate from the definition. For each j = 0, . . . , k we have Fnj =
˜Fnj−1 ∪

{
Inj

}
and the cover Fnj−1 ∩ Inj |= Inj is easily seen to be isomorphic (under the unique isomorphism
Inj
∼= [n− 1]) to the cover Fn−1

j−1 |= [n− 1]; hence fact (2) follows from Lemma 2.4.1.3.
By a straightforward inductive argument, facts (1) and (2) imply that the following three

conditions are equivalent:
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• For all n ≥ 2k, the cover lSegnk = Fn−1 |= [n] is X -local.
• For all n ≥ 2k and all j = −1, . . . , k, the cover lSegnk = Fnj |= [n] is X -local.
• For all n ≥ 2k, the (nondegenerate, compatible, [k]-pronged) cover Fnk |= [n] is X -local.

We have therefore related the Segal conditions to one hierarchy of descent conditions with respect
to non-degenerate compatible [k]-covers; Proposition 2.4.2.3 precisely states that this is enough,
hence the proof is concluded. �

2.6.3 Triviality bounds for higher Segal objects

Let X : ∆op → C be a lower or upper d-Segal object in C. Since for each m > d the d-Segal
conditions express the value Xm as a cubical limit of the values Xn with n ≤ d, it is obvious
that X is trivial (i.e., Xn is a terminal object in C for each [n] ∈ ∆) as soon as X is trivial when
restricted to ∆≤d. From the comparison with weak excision we can deduce the following sharper
bounds:

Proposition 2.6.3.1. Fix d ≥ 2 and let X : ∆op → C be a lower or upper d-Segal object in an
∞-category C with finite limits. If X is trivial when restricted to ∆<d then X is trivial. �

Remark 2.6.3.2. Since not every monoid is trivial, it is not true that a lower 1-Segal object (i.e.,
a Segal object in the sense of Rezk) is trivial as soon as its restriction to ∆≤0 is trivial. Hence
the assumption d ≥ 2 in Proposition 2.6.3.1 is necessary. ♦

Proof (of Proposition 2.6.3.1). First, we prove the case of lower odd Segal objects. Let k ≥ 2
and assume that X : ∆op → C is lower (2k − 1)-Segal and trivial on ∆<2k−1. It suffices to show
that X[2k−1] is trivial. Consider the following compatible [k]-claw F on [2k − 2]:

0 1 2 3 4 · · · 2k − 4 2k − 3 2k − 2

0 ∗ 2 ∗ ∗ ∗ · · · ∗ ∗ ∗
1 ∅ ∗ ∗ ∗ ∗ · · · ∗ ∗ ∗
2 ∗ ∗ ∅ ∗ ∗ · · · ∗ ∗ ∗
3 ∗ ∗ ∗ ∗ ∅ · · · ∗ ∗ ∗
...

k − 1 ∗ ∗ ∗ ∗ ∗ · · · ∅ ∗ ∗
k ∗ ∗ ∗ ∗ ∗ · · · ∗ ∗ ∅

(2.6.2)

The corresponding biCartesian Čech cube ČF : Pop([k]) → ∆ satisfies ČF({0}) ∼= [2k − 1] and
ČF(T ) ∈ ∆<2k−1 for all T 6= {0}. It follows that the [k]-cube X ◦ČF sends every T ⊆ [k], except
possibly T = {0} , to a terminal object in C. Since X is weakly k-excisive by Theorem 2.6.2.2,
this cube in C is Cartesian. It then follows that we have a Cartesian square

(X ◦ ČF)(∅) lim
0/∈T⊆[k]
∅6=T

(X ◦ ČF)(T )

(X ◦ ČF)({0}) lim
0∈T⊆[k]
{0}6=T

(X ◦ ČF)(T )

y

in C, where all but the lower left corner are trivial; we conclude that (X ◦ ČF)({0}) ' X[2k−1] is
also trivial.
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If d = 2k is even with k ≥ 1 then the same proof works for lower or upper 2k-Segal objects
by considering instead of (2.6.2) the left active compatible k-claw

0 1 2 3 · · · 2k − 3 2k − 2 2k − 1

0 2 ∗ ∗ ∗ · · · ∗ ∗ ∗
1 ∗ ∅ ∗ ∗ · · · ∗ ∗ ∗
2 ∗ ∗ ∗ ∅ · · · ∗ ∗ ∗
...

k − 1 ∗ ∗ ∗ ∗ · · · ∅ ∗ ∗
k ∗ ∗ ∗ ∗ · · · ∗ ∗ ∅

on [2k − 1] or its obvious right active analog.
Recall from [Pog17, Proposition 2.7] that a simplicial object is upper (2k + 1)-Segal if and

only if its left path object is upper 2k-Segal (or, equivalently, if its right path object is lower
2k-Segal); the result for upper odd Segal objects thus follows immediately from the one for (lower
or upper) even Segal objects. �

It is not known to the author if the bounds in Proposition 2.6.3.1 are sharp. More precisely,
the author does not know the answer to the following question, which remains to be investigated
in future work:

Question 2.6.3.3. Let k ≥ 1 and let X be a simplicial object which is lower (2k − 1)-Segal, or
upper 2k-Segal or lower 2k-Segal. If X is trivial when restricted to ∆≤k, does it follow that X is
trivial? ♦



Chapter 3

Homotopy coherent theorems of
Dold–Kan type

3.1 Preliminaries

3.1.1 Pointed ∞-categories

Recall that an∞-category P is called pointed if it has a zero object, i.e., an object 0 ∈ P which
is both initial and terminal in P. A functor P′ → P between pointed ∞-categories is called
pointed if it sends one (equivalently, each) zero object of P′ to a zero object of P. We denote
by Cat0∞ the ∞-category of (small) pointed ∞-categories and pointed functors between them;
it comes equipped with a canonical forgetful functor

Cat0∞ −→ Cat∞.

Given two pointed ∞-categories P′ and P, we denote by Fun0(P′,P) ⊂ Fun(P′,P) the full sub-
category spanned by the pointed functors.

Construction 3.1.1.1 (Free pointed category). Let Z be an ordinary category. We define a
pointed category Z+ by freely adjoining a zero object to Z. Explicitly, it is described as follows:
• The objects of Z+ are the objects of Z plus an additional object 0.
• For every object x ∈ Z+ we put

Z+(x, 0) = {0} and Z+(0, x) = {0}

(in other words, 0 ∈ Z+ is a zero object as the notation suggests). Given objects x, y ∈ Z,
we set

Z+(x, y) := Z(x, y) ∪̇ {0}
where here 0 denotes the composite map x→ 0→ y.
• The composition in Z+ is inherited from the composition in Z. ♦

The pointed category Z+ comes equipped with the canonical (non-full) inclusion functor Z → Z+.

Construction 3.1.1.2 (Free pointed ∞-category). Let Z be an ∞-category. Denote by

Z/. := {−∞} ? Z ? {+∞}

the ∞-category obtained from Z by freely adjoining an initial object −∞ and a terminal object
+∞. We define Z+ to be the localization of Z/. at the (essentially unique) edge −∞ → +∞
connecting the initial to the terminal object. The ∞-category Z+ is pointed (since localizations
preserve both initial and terminal objects1)) and comes equipped with the defining functor Z ↪→
Z/. → Z+. ♦

1) This follows, for instance, from [Cis19, Proposition 7.1.10]
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If the category Z in Construction 3.1.1.2 happens to be an ordinary category, then Z/. is
again an ordinary category. It is however not clear a priori that the the same is true for Z+,
because the localization procedure has the potential to turn an ordinary category into one that
isn’t. The following lemma addresses this issue.

Lemma 3.1.1.3. Let Z be an ordinary category. Then the functor Z → Z+ from Construc-
tion 3.1.1.2 agrees with the one from Construction 3.1.1.1. In particular, Z+ is an ordinary
category again. �

Proof. Let Z+ be as in Construction 3.1.1.1 and consider the canonical functor

γ : Z/. = {−∞} ? Z ? {+∞} −→ Z+

given by the canonical inclusion of Z and by −∞,+∞ 7→ 0. We need to show that γ exhibits Z+

as the ∞-categorical localization of {−∞} ? Z ? {+∞} at the unique map −∞ → +∞. Denote
by 〈−∞,+∞〉 the full subcategory of Z/. spanned by −∞ and +∞. Since 〈−∞,+∞〉 ∼= ∆1

is weakly contractible, it follows by comparing universal properties that the desired localization
can be computed as the pushout Z/. t〈−∞,+∞〉 {0} (of ∞-categories). To conclude the proof, it
therefore suffices to show that—after passing to nerves—the canonical square

〈−∞,+∞〉 {0}

Z/. Z+

of categories becomes a (Joyal) homotopy pushout of simplicial sets. Since the left vertical map
is a monomorphism, it suffices to show that the map

N({0}) tN(〈−∞,+∞〉) N(Z/.) −→ N(Z+) (3.1.1)

from the (strict) pushout of simplicial sets is a (Joyal) weak equivalence; we will now show that
it is in fact an inner anodyne extension.

The simplices of N(Z+) can be described explicitly as follows: Each m-simplex of N(Z+) is
of the form

σ(k, x, t) : 0t(0) → x1 → 0t(1) → x2 → 0t(2) → · · · → 0t(k−1) → xk → 0t(k), (3.1.2)

where
• k is a natural number
• each xi : xi0 → · · · → xin(i) (for 1 ≤ i ≤ k) is an n(i)-simplex of N(Z).
• t(0), . . . , t(k) are natural numbers of which all but t(0) and t(k) are required to be positive.
• 0t(i) denotes a chain 0→ · · · → 0 with t(i) many zeros.
• the dimension m := t(0)− 1 +

∑k
i=1 (n(i) + 1 + t(i)) is non-negative.

Denote by N(Z+)≤d ⊂ N(Z+) the simplicial subset containing those simplices σ(k, x, t) with
k ≤ d. The following are straightforward to verify:
(1) The map (3.1.1) induces an isomorphism N({0}) tN(〈−∞,+∞〉) N(Z/.)

∼=−→ N(Z+)≤1.
(2) For each d ≥ 1, we have a pushout of simplicial sets∐

k,x,t

∆t(0)+n(1)+t(1) t∆t(1)−1 ∆m′ N(Z+)≤d−1

∐
k,x,t

∆m N(Z+)≤d
p

(σ(k,x,t))

(3.1.3)
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which corresponds to the decomposition of each chain (3.1.2) into the two overlapping
chains

0t(0) → x1 → 0t(1) and 0t(1) → x2 → 0t(2) → · · · → 0t(k−1) → xk → 0t(k)

of dimensions t(0) +n(1) + t(1) and m′ := −1 + t(1) +
∑k

i=2 (n(i) + 1 + t(i)) , respectively.
(3) The simplicial set N(Z+) is the union of the ascending chain N(Z+)≤1 ⊂ N(Z+)≤2 ⊂ · · ·

of simplicial subsets.
The left vertical map in the square (3.1.3) is an inner anodyne extension; it follows from (1), (2)
and (3) that the same is true for the map (3.1.1); this concludes the proof. �

Remark 3.1.1.4. In view of Lemma 3.1.1.3, we are justified in tacitly assuming that the free
pointed ∞-category Z+ on an ordinary category Z is given by the explicit description of Con-
struction 3.1.1.1. ♦

The following lemma establishes the universal property of the free pointed ∞-category con-
struction.

Proposition 3.1.1.5. Let Z be a (small) ∞-category. For every pointed ∞-category P, restric-
tion along the functor Z→ Z+ induces an equivalence

Fun0(Z+,P)
'−−→ Fun(Z,P).

of ∞-categories. In particular, the construction Z 7→ Z+ yields a left adjoint to the forgetful
functor Cat0∞ → Cat∞ �

Proof. The functors Z ↪→ Z/ ↪→ Z/. −→ Z+ induce the following commutative diagram of
functor ∞-categories and their various subcategories defined as indicated:

Fun(Z+,P) Fun0(Z+,P)

{inverts −∞→ +∞} {inverts −∞→ +∞ and −∞,+∞ 7→ 0}

Fun(Z/.,P)

{+∞ 7→ 0} {−∞,+∞ 7→ 0}

Fun(Z/,P) {−∞ 7→ 0}

Fun(Z,P)

'
1

'
2

= 6

'
3

'
4

'
5

Restriction along Z/. → Z+ induces the equivalence 1 by the universal property of the localiza-
tion. The functors labeled by 3 and 5 are equivalences because they have an inverse given by
right Kan extension and left Kan extension, respectively (using that 0 ∈ P is a terminal and an
initial object, respectively). The equivalences 2 and 4 are induced by restricting to appropriate
full subcategories. Since MapP(0, 0) ' pt, every functor Z/. → P which sends −∞ and +∞ to
zero objects must invert the edge −∞ → +∞; thus the inclusion labeled 6 is an equality of full
subcategories. The result follows. �
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Remark 3.1.1.6. If C is an ∞-category which is not necessarily pointed but still has a terminal
object ?, then the proof of Proposition 3.1.1.5 still shows that restriction along Z/ → Z+ induces
an equivalence between the ∞-categories Fun?(Z+,C) and Fun?(Z/,C) consisting of those func-
tors that send the zero object 0 ∈ Z+ and the cone point −∞ ∈ Z/ to a terminal object ? ∈ C.
The category Fun?(Z/,C) is canonically equivalent to the ∞-category Fun(Z,C?) of Z-shaped
diagrams in the pointed ∞-category C? := C?/ of pointed objects in C. Hence restriction along
Z→ Z+ induces an equivalence

Fun?(Z+,C)
'−−→ Fun(Z,C?)

which explicitly sends the diagram X ∈ Fun?(Z+,C) to the diagram x 7→ (? = X (0)→ X (x)). ♦

Lemma 3.1.1.7. Let P be a pointed ∞-category and let {fi : xi → yi | i ∈ I} be a finite set of
morphisms in P. Assume that the product∏

i∈I
fi :

∏
i∈I

xi −→
∏
i∈I

yi

exists in P and is an equivalence. Then for each i ∈ I, the morphism fi : xi → yi is an equivalence.
�

Proof. Given an inverse g :
∏
i yi →

∏
i xi to

∏
fi, it is easy to see that for each j ∈ I the

composition

yj
ιj−−→
∏
i

yi
g−−→
∏
i

xi
πj−−→ xj , where πiι

j :=

{
Id : yj → yj if i = j

0: yj → yi if i 6= j

is an inverse of fj . �

In a pointed ∞-category it makes sense to talk about fibers and cofibers which are the
∞-categorical analog of kernels and cokernels. The fiber and cofiber of an arrow f : x→ y are
the pullback and pushout of the diagrams

0

x y
f

and
x y

0

f

respectively. More generally, we define the total cofiber tot-fibD of a conical diagramD : K. →
P as the cofiber of the canonical map

colim(K ⊂ K. D−−→ P)→ D(+∞)

and the total fiber tot-cof D of a conical diagram D : K/ → P as the fiber of the canonical map

D(−∞)→ lim(K ⊂ K/ D−−→ P).

To recover the case of the ordinary fiber/cofiber set K = ∆0, hence K. ∼= ∆1 ∼= K/.
Another way of computing the total cofiber (resp. total fiber) of a K.-shaped (resp. K/-

shaped) diagram D is to first pass to its right (resp. left) Kan extension along the first inclusion
K. ↪→ K. tK K. (resp. K/ ↪→ K/ tK K/)—which is given explicitly by setting the value on
the cone point of the second copy of K. (resp. K/) to 0 ∈ P—and then taking the colimit (resp.
limit) of this diagram. The advantage of this description is that it is well defined even if the
colimit (resp. limit) of D

∣∣
K

does not exist in P.
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3.1.2 Quotient categories and coherent chain complexes

A chain complex in an ordinary pointed category P is a diagram Zop → P , which we might
depict as

· · · d←−− • d←−− • d←−− • d←−− · · ·

such that any composite of more than one d is sent to the zero morphism in P . In other words,
the category of chain complexes in P is a full subcategory of the category Fun(Zop, P ) of P -
valued presheaves on Z. In the ∞-categorical world, this naive definition would no longer be
satisfactory because
• for a map in an ∞-category, being zero is no longer a property but the structure of an

explicit null-homotopy and
• there should be be higher coherence data exhibiting all the trivializations d ◦ · · · ◦ d ' 0 as

compatible
Let Z be a category equipped with an ideal S ⊆ Z (i.e., a set of arrows satisfying Z ◦S ◦Z ⊆ S),
we would like to say what it means to equip a diagram Z → P with a coherent trivialization of
all arrows in S.

Construction 3.1.2.1. We define a pointed category Z
S as follows:

• The objects of ZS are the objects x ∈ Z plus an additional zero object 0.
• The morphisms of ZS are determined by setting

Z

S
(x, y) :=

Z(x, y)

S
∼= {f ∈ Z(x, y) | f /∈ S} ∪̇ {x→ 0→ y}

for x, y ∈ Z, with composition induced by the one in Z.
The category Z

S comes equipped with the canonical functor Z → Z
S which is the identity on

objects and sends precisely the arrows in S to zero. ♦

Remark 3.1.2.2. If x ∈ Z is an object with Idx ∈ S then the unique morphisms x→ 0 and 0→ x
are mutually inverse isomorphisms in Z

S . ♦

Definition 3.1.2.3. Let Z → P be a Z-shaped diagram in a pointed ∞-category P. We say
that a trivialization of all arrows in S is an extension of Z → P along Z → Z

S to a pointed
functor Z

S → P. ♦

Example 3.1.2.4. • The quotient Z
∅ of Z by the empty ideal is the free pointed category Z+.

Hence Proposition 3.1.1.5 can be read as saying that the empty set of arrows can always
be trivialized in a unique way.
• If the category Z is already pointed and S = (0) consists of all zero maps • → 0→ • then

Z
(0)
∼= Z.

• Every category Z has an ideal consisting of all non-isomorphisms; the corresponding quo-
tient Z

6' is the free pointed category Z'+ on the groupoid core Z' of Z. ♦

Definition 3.1.2.5. We denote by Ch := Z
(→→) the quotient of the poset Z by the ideal (→→)

of all maps n → m with m − n ≥ 2. A coherent chain complex in P is a pointed presheaf
Chop → P; we denote by Ch(P) := Fun0(Chop,P) the∞-category of coherent chain complexes in
P. Similarly, we set Ch≥0 := N

(→→) and define the∞-categories of connective chain complexes

in P as Ch≥0(P) := Fun0
(

Chop
≥0,P

)
. ♦

Remark 3.1.2.6. If P is a pointed 1-category then it is straightforward to check that the restriction
functor

Fun0

(
Z

S
, P

)
↪−→ Fun(Z,P )
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is fully faithful and that the essential image consists of those functors Z → P which send arrows
in S to zero maps in P . This means that “sending arrows in S to zero” is a property which a
diagram Z → P might or might not have. If P is an∞-category, this is no longer true in general:
specifying a lift of a diagram Z → P to a pointed diagram Z

S → P might require an infinite
amount of additional structure. ♦

Remark 3.1.2.7. Another way to make the notion of trivialization of arrows in S precise would
have been to work with ∞-categories enriched in pointed spaces or even in pairs of spaces. Then
we could study pairs-enriched diagrams Z → P, where Z is pairs-enriched via S and where P

is pairs-enriched (even S?-enriched) via the zero maps. From this perspective one can see in a
different way how the additional structure encoded in such trivializations comes in: unlike the
forgetful functor Set? → Set from pointed sets to sets, the “forgetful” functor S? → S from the
∞-category of pointed spaces to the ∞-category of spaces is not faithful and in fact not even
injective on π0 of mapping spaces. ♦

3.1.3 Additive and preadditive ∞-categories

Definition 3.1.3.1. [GGN15, Definitions 2.1 and 2.6] An ∞-category A with finite products
and coproducts is called preadditive if
• it is pointed, i.e., the canonical map ∅ '−→ ? from the initial objects to the terminal object

is an equivalence.
• for any two objects X,X ′ ∈ A, the canonical morphism(

Id 0
0 Id

)
: X tX ′ '−−→ X ×X ′

(which exists, since A is pointed) is an equivalence.
The ∞-category A is called additive if additionally
• for each object X ∈ A, the shear map(

Id Id
0 Id

)
: X tX '−−→ X ×X

is an equivalence.
A functor between preadditive∞-categories is called additive if it is pointed and preserves finite
products (or, equivalently, finite coproducts). ♦

Remark 3.1.3.2. Since products and coproducts in a preadditive ∞-category are canonically
identified, it is customary to call them direct sums and denote them by the same symbol
⊕. ♦

Remark 3.1.3.3. When specializing to the case where A is an ordinary category, Definition 3.1.3.1
recovers the classical notion of an additive category (as defined, for instance, in [Mac98, Chap-
ter VIII]). However, we warn the reader that our use of the word “preadditive” (which is taken
from [GGN15]) might be confusing, since many authors write “preadditive category” to mean a
category enriched in abelian groups. ♦

Lemma 3.1.3.4. [Lur18, Definition C.1.5.1] Let A be an ∞-category with finite products and
coproducts. Then A is preadditive/additive if and only if its homotopy category hA is preaddi-
tive/additive. �

Proof. The three maps defining the preadditivity/additivity of A in Definition 3.1.3.1 are sent
by the functor A→ hA to the corresponding three maps defining the preadditivity/additivity of
hA. Since a map is an equivalence in A if and only if it is an equivalence (i.e., isomorphism) in
hA, the result follows. �

Example 3.1.3.5. Every stable∞-categoryD (see [Lur17, Chapter 1]) is additive. More generally,
every full subcategory A ⊂ D closed under direct sums is additive. ♦
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The following lemma states that every additive ∞-category A arises this way; at least if one
is willing to pass to a larger universe where A is small.

Lemma 3.1.3.6. For every (small) additive ∞-category A there exists a stable ∞-category D

and a fully faithful, additive functor A ↪→ D. �

Proof. Let D stable be the ∞-category of additive spectral presheaves Aop → Sp. It follows
from Proposition C.1.5.7 and Remark C.1.5.9 in [Lur18] that there is a fully faithful, additive
Yoneda embedding A ↪→ D. �

Finally, we need the following easy lemma.

Lemma 3.1.3.7. Let A be an additive ∞-category. Consider two n-tuples (Xi)
n
i=1, (Yi)

n
i=1 of

objects of A and a matrix F = (fi,j : Xi → Yj)
n
i,j=1 of maps between them. Assume that

• all diagonal entries fi,i : Xi → Yi are equivalences
• all entries below the diagonal (i.e., fi,j with i > j) factor through a zero object 0 ∈ A.

Then F , viewed as a map

F :

n∐
i=1

Xi
'−−→

n∏
i=1

Yi,

is an equivalence. �

Proof. By passing to the homotopy category, we may reduce to the case of ordinary additive
categories; Lemma 3.1.3.7 is standard in this case. �

3.1.4 Weakly idempotent complete ∞-categories

Recall that an additive 1-category A is called idempotent complete (or Karoubian) if every
idempotent endomorphisms p : X → X induces a direct sum decomposition X ∼= Im p ⊕ Ker p.
If A is embedded as a full additive subcategory of some abelian category, this amounts to saying
that A is closed under summands; in particular, every abelian category is idempotent complete.

In the ∞-categorical world, the situation is a bit less favorable; for instance, even stable
∞-categories are not idempotent complete in general2). Fortunately the weaker condition of
weak idempotent completeness will suffice for our purposes. While idempotent completeness is
a way to say that the category is “closed under summands”, weakly idempotent completeness
should be read as “closed under direct complements”; in other words A is weakly idempotent
complete additive if for each X ∈ A and each direct sum decomposition X ∼= X ′ ⊕X ′′ (in some
ambient abelian category) we have X ′ ∈ A if and only if X ′′ ∈ A. One way to intrinsically make
this definition without reference to any ambient category is to say that an additive category A is
weakly idempotent complete if each retraction (a.k.a. split epimorphism) has a kernel and each
section (a.k.a. split monomorphism) has a cokernel (see for instance [TT90, A.5.1] and [Büh10,
Definition 7.2]).

Next, we define weak idempotent completeness in the ∞-categorical setting. Let P be a
pointed ∞-category. A section-retraction pair in P, is a composable pair (r, s) of maps in
P whose composite r ◦ s is an equivalence. We say that two section-retraction pairs (r, s) and
(r′, s′) are complementary, if they fit in a commutative diagram

0 • 0

• • •

0 • 0

� s′ �
s

�

r

r′ �

(3.1.4)

2) Splitting a 1-categorical idempotent p amounts to computing the kernels of p and of Id − p which exist in
any abelian category. In contrast, the splitting a (coherent) ∞-categorical idempotent must be computed as an
infinite limit which is not always possible.
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where all squares are biCartesian (i.e., both a pushout and a pullback); more precisely, we say
that the diagram (3.1.4) exhibits (r′, s′) as the complement of (r, s), and vice versa.

Remark 3.1.4.1. It is not hard to show using Kan extensions that the evident forgetful functor

{diagrams (3.1.4) in P} '−−→ {section-retraction pairs in P which admit a complement}

is an equivalence∞-categories. This is the sense in which the complement of a section-retraction
pair (together with the data exhibiting it as complementary) is essentially unique (if it exists). ♦

Definition 3.1.4.2. A pointed∞-category P is called weakly idempotent complete if every
section-retraction pair has a complement. ♦

Remark 3.1.4.3. When P = A is an additive 1-category, specifying a diagram (3.1.4) amounts to
exhibiting s′ as the kernel of r and r′ as the cokernel of s. Hence in this case Definition 3.1.4.2
agrees with the classical notion of weak idempotent completeness. ♦

Example 3.1.4.4. Every stable ∞-category is weakly idempotent complete. More generally, each
stable ∞-category gives rise to many examples by passing to subcategories which are closed
under direct complements. ♦

3.2 Dold–Kan type theorems

3.2.1 DK-triples

In this section we describe the axiomatic framework of DK-triples which encompasses—and is
essentially equivalent—to the setting of Lack and Street [LS15]; see Section 3.5.1 for a detailed
comparison. Similar ideas were already present in prior work of Słomińska [Sło04; Sło11] and of
Helmstutler [Hel14] (cf. Remark 3.3.2.3).

Let B be a category equipped with two subcategories E,E∨ ⊂ B, each of which contains all
isomorphism (in particular all objects). Arrows in E and E∨ are called Epis and dual Epis,
respectively; we depict them with the symbols→→ (a two-headed arrow) and� (a tailed arrow),
respectively. For each b ∈ B we denote by E(b) the category of Epis under b3); similarly, we
denote by E∨(b) the category of dual Epis over b.

We make the following auxiliary definitions:
• We call an arrow in B singular if it lies in the right ideal Sing := E∨6' ◦B generated by the

non-invertible dual Epis.
• An arrow which is not singular is called regular; we denote by Reg := B \ Sing the set of

regular arrows.
• We call an arrow a Mono if it does not lie in the left ideal generated by the non-invertible
Epis. We denote by M := B \ (B ◦ E6') the set of Monos.
• For each b ∈ B we have a pairing −◦− : E(b)×E∨(b)→ ArB given by composition (where

ArB denotes the category of arrows in B). We denote by

〈−;−〉b : π0E(b)× π0E
∨(b) −→ π0 ArB

the induced pairing on isomorphism classes.

Definition 3.2.1.1. The datum B := (B,E,E∨) is called
• A DK-triple4) if it satisfies the following properties (using the auxiliary notation intro-

duced above):
3) The category E(b) is nothing but the undercategory Eb/ (where b is viewed as an object of E). We do not

use the latter notation because it can unfortunately be confused with the undercategory Eb/ = Bb/ ×B E (where
b is viewed as an object of B).

4) Unsurprisingly, DK stands for Dold–Kan.
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(T1) Every arrow f of B can be written uniquely (up to unique isomorphism) as a compo-
sition of the form

• • • •e′∈E f∈(M∩Reg) e∨∈E∨ (3.2.1)

(T2) For each b ∈ B, the pairing 〈−;−〉b can be described by a finite square matrix which
is “unipotent upper triangular modulo non-isomorphisms”,
i.e., there is a number n ≥ 1 and bijections π0E(b) ∼= {1, . . . , n} ∼= π0E

∨(b), such that
the pairing 〈−;−〉b induces an n× n-matrix

' ? · · · ?

6' . . . . . .
...

...
. . . . . . ?

6' · · · 6' '


with values in π0 ArB which has invertible arrows on the diagonal and non-invertible
arrows below the diagonal (there is no condition on the arrows above the diagonal).

(T3) The set B := E∨ ◦ E is closed under composition.
(T4) The composition of two regular Monos is a (not necessarily regular) Mono,

i.e., (M ∩ Reg) ◦ (M ∩ Reg) ⊂M
(T5) The singular arrows form a left module over M , i.e., we have M ◦ Sing ⊆ Sing.
• a diagonalizable DK-triple if it if satisfies all axioms (T1)–(T5) above and the matrix

in (T2) can even be made diagonal modulo non-isomorphisms.
• reduced if B = E∨ ◦ E. ♦

The following observations follow immediately from Definition 3.2.1.1.

Lemma 3.2.1.2. Let B = (B,E,E∨) be a DK-triple.
(1) For each b there is a unique bijection (−)∨ : π0E(b)←→ π0E

∨(b) such that for each e ∈ E(b)
the composition e ◦ e∨ is an isomorphism in B.

(2) Every Epi is a split epimorphism and every dual Epi is a split monomorphism in B.
(3) For each b ∈ B, the categories E(b) and E∨(b) are both (equivalent to) posets.
(4) Both Reg and M contain all isomorphisms of B.
(5) An arrow B decomposed as in (3.2.1) is regular if and only if the component e∨ ∈ E∨ is

invertible and it is a Mono if and only if the component e′ ∈ E is invertible.
(6) We have M = (M ∩ Reg) ◦ E and Reg = E∨ ◦ (M ∩ Reg).
(7) The datum B := (B,E,E∨) is again a DK-triple which is automatically reduced.
(8) If B is reduced then we have M = E∨ and Reg = E and M ∩ Reg = B'.
(9) If B is reduced then the dual datum Bop := (Bop, (E∨)op, Eop) is again a (reduced) DK-

triple. �

Proof. Straightforward and left to the reader. �

Each DK-triple B = (B,E,E∨) induces a canonical partial order ≤ on the set π0B by
declaring b′ ≤ b if there exists a dual Epi b′� b or equivalently (by (1)) an Epi b→→ b′. To see
that ≤ is antisymmetric (i.e., b ≤ b′ ≤ b implies b ∼= b′) choose an Epi e : b′ →→ b and an Epi
b→→ b′: the induced maps −◦ e : π0E(b) ↪→ π0E(b′) and π0E(b′) ↪→ π0E(b) are injective because
Epis are (split) epimorphisms. Since the sets π0E(b) and π0E(b′) are finite by (T2), this implies
that e ◦− is a bijection; hence e is a split monomorphism because Idb′ lies in the image of e ◦−;
hence e is an isomorphism.

For each b ∈ B the set {b′ ∈ π0B | b′ ≤ b} of predecessors of b is finite by (T2), hence the
poset (π0B,≤) is suited for inductive arguments.
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3.2.2 Key constructions

Construction 3.2.2.1. Assume thatB is a DK-triple. We define a pointed categoryN0 = N0(B)
as the quotient

N0 :=
M

M ∩ Sing

of M by the two-sided ideal M ∩ Sing. Explicitly:
• The pointed category N0 has a zero object 0 and for each object b ∈ B an object b ∈ N
• For every pair of objects b′, b ∈ N , we have the hom-set

N0(b′, b) :=
M(b′, b)

(M ∩ Sing)
= (M ∩ Reg)(b′, b) ∪̇

{
b′ → 0→ b

}
.

• Composition in N0 is induced by composition in B; it is well defined because of (T4) and
(T5).

For convenience we write N for the full subcategory of N0 spanned by all objects except the zero
object 0. ♦

Remark 3.2.2.2. A particularly simple case of Construction 3.2.2.1 occurs when the set M ∩Reg
of regular Monos is closed under composition. In this case, M ∩ Reg is a subcategory of B and
the quotient N0 := M

M∩Sing
∼= M∩Reg

∅
∼= N

(0) is simply the free pointed category on the category
M ∩ Reg. ♦

Notation 3.2.2.3. To minimize the potential confusion, we adopt the following conventions:
Objects in N are denoted by n, n′, n′′. Objects in B are denoted by b, b′, b′′. Given an object
n ∈ N , we denote by [n] the corresponding object in B. ♦

We now come to the key construction of this chapter.

Construction 3.2.2.4. Let B be a DK-triple. We define the pointed category V = V (B) as
the “upper triangular” category

V :=

(
N0 R0

0 B+

)
:=

( M
Sing Sing\B
0 B+

)
associated to the N0-B+-bimodule R0 := Sing\B. More precisely, the category V is given
explicitly as follows:
• The objects of V are given by the objects n ∈ N , the objects b ∈ B and a zero object 0; in

other words we have ObV := ObN0 t{0} ObB+.
• The hom-sets in V between two objects of N0 or between two objects of B+ are inherited

from N0 or from B+, respectively.
• The only arrow in V from an object n ∈ N0 to an objects b ∈ B+ is the zero arrow
n→ 0→ b

• The set of arrows in V from b ∈ B to n ∈ N is defined to be

V (b, n) := R0(b, n) := Sing

∖
B(b, [n]) = Reg(b, [n]) ∪̇ {b→ 0→ n}

• Composition in V is induced by the composition in N0 and in B+; the composition

N0(n, n′)×R0(b, n)×B+(b′, b) −→ R0(b′, n′)

is well defined because M ◦ Sing ◦B ⊆ Sing.
The pointed category V comes equipped with the two fully faithful embeddings

B+ ↪−→ V ←−↩ N0;

for convenience we identify B+ and N0 with their images in V . ♦
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Notation 3.2.2.5. We denote by ! : [n] → n the arrow corresponding to the identity Id[n] ∈
Reg([n], [n]). For every non-zero arrow u : b → n in V we denote by [u] ∈ Reg(b, [n]) the
corresponding regular arrow in b; in other words, [u] : b → [n] is the unique arrow satisfying
![u] = u. ♦

Remark 3.2.2.6. Assumptions (T4) and (T5) are needed to guarantee that Construction 3.2.2.1
and Construction 3.2.2.4 are well defined. In many examplesM is actually a subcategory of B; in
this caseM∩Sing is a two-sided ideal inM in the usual sense and Construction 3.2.2.1 becomes an
instance of Construction 3.1.2.1. The notation in Construction 3.2.2.1 and Construction 3.2.2.4
should be understood with this more special (but still very general) case in mind. ♦

3.2.3 Statement

We now state the main theorem of this chapter.

Theorem 3.2.3.1 (Homotopy coherent correspondences of Dold–Kan type). Let B = (B,E,E∨)
be a DK-triple with associated pointed category N0 = N0(B).
(a) For any weakly idempotent complete additive ∞-category A, the restriction functors

Res: Fun0(V,A) −→ Fun0(B+,A) and Res: Fun0(V,A) −→ Fun0(N0,A)

from Construction 3.2.2.4 admit a left adjoint LKE (left Kan extension) and a right adjoint
RKE (right Kan extension), respectively.

(b) The composite adjunction

Fun0(B+,A) Fun0(V,A) Fun0(N0,A)
LKE

⊥
Res

Res

⊥
RKE

(3.2.2)

is an adjoint equivalence of ∞-categories.
(c) The adjoint equivalence (3.2.2) is natural in A with respect to additive functors.
(d) Consider a pointed functor X : B+ → A and denote by X : N0 → A the pointed functor

corresponding to X under the equivalence (3.2.2). Then for each n ∈ N the canonical maps

colim
b∈E∨6'([n])

Xb −→ X[n] −→ lim
b∈E6'([n])

Xb (3.2.3)

form a section-retraction pair with complement equivalent to X n. �

Remark 3.2.3.2. The notions of (pre)additivity and weak idempotent completeness are manifestly
self-dual. Therefore in Theorem 3.2.3.1 (and all of the results below) we can replace the target
∞-category by its opposite, or, equivalently, B+ by (B+)op and N0 by (N0)op. ♦

Remark 3.2.3.3. Since we are not assuming that our target category A has finite limits or colimits,
it is not clear a priori that the limits/colimits indicated in (3.2.3) even exist; part of the statement
of Theorem 3.2.3.1 (d) is that they do. Similarly, (a) is not automatic; in fact, the heart of the
proof of Theorem 3.2.3.1 is an explicit inductive pointwise construction of the Kan extensions
(3.2.2) in the case where B is reduced (see Proposition 3.4.2.1). ♦

Corollary 3.2.3.4. In the situation of Theorem 3.2.3.1, the span B ⊂ B+ ↪→ V ←↩ N0 induces
a natural equivalence

Fun(B,A)
'←−→ Fun0(N0,A) (3.2.4)

of ∞-categories for each weakly idempotent complete additive ∞-category A. �
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Proof. Compose the equivalence of Theorem 3.2.3.1 with the natural equivalence

Fun(B,A)
'←−− Fun0(B+,A)

produced by the universal property of the free pointed category B → B+. �

Remark 3.2.3.5. In the situation of Remark 3.2.2.2, where N0 = (M ∩ Reg)+ is a free pointed
category, we can simplify the statement of Corollary 3.2.3.4 even more and obtain a natural
equivalence

Fun(B,A)
'←−→ Fun(M ∩ Reg,A)

between ordinary (i.e., non-pointed) ∞-categories of diagrams. All equivalences discussed in
Section 3.3.2 are of this form. ♦

Specializing Corollary 3.2.3.4 to the 1-categorical case, we recover the main theorem of Lack
and Street.

Corollary 3.2.3.6. [LS15, Theorem 6.8] Each DK-triple B = (B,E,E∨) induces a natural
equivalence

Fun(B,A)
'←−→ Fun0(N0(B), A)

of categories for each weakly5) idempotent complete additive category A. �

Remark 3.2.3.7. Since the functor A→ hA to the homotopy category is additive, the naturality
of equivalence (3.2.4) implies the existence of a commutative square

Fun(B,A) Fun0(N0,A)

Fun(B, hA) Fun0(N0,hA)

'

'

where the lower equivalence is an instance of Corollary 3.2.3.6. ♦

Remark 3.2.3.8. If the DK-triple B is diagonalizable, then in all of the results above one
can weaken the assumption on A and only require it to be weakly idempotent complete and
preadditive. Indeed, the additivity of A is only used once (in the proof of Proposition 3.4.2.1)
to invert certain upper triangular matrices in A obtained from the matrices 〈−;−〉b defined in
(T2); if B is diagonalizable then these matrices in A are diagonal, hence inverting them only
requires preadditivity. See also Remark 3.4.2.4. ♦

Remark 3.2.3.9. Theorem 3.2.3.1 (d) implies that one can compute the value X n of the diagram
X : N0 → A at an object n ∈ N in two seemingly unrelated ways: as a total fiber

X n ' tot-fib
(
E([n])→ B

X−−→ A
)

(3.2.5)

along the Epis, or as a total cofiber

X n ' tot-cof
(
E∨([n])→ B

X−−→ A
)
.

along the dual Epis. ♦

5) To be precise, Lack and Street assume A to be idempotent complete.
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3.3 Examples

3.3.1 The ∞-categorical Dold–Kan correspondence

We explain how to equip the simplex category B = ∆ with the structure of a DK-triple; see also
[LS15, Example 3.2] for a similar discussion. Recall that ∆ is the category of finite non-empty
linearly ordered sets and weakly monotone maps between them. We denote by [n] the standard
ordinal {0 < 1 < · · · < n}; every object of ∆ is of this form up to unique isomorphism. Let E ⊂ ∆
be the wide subcategory of surjective maps and let E∨min ⊂ ∆ be the wide subcategory of those
injectives maps that preserve minimal elements. The following observations are straightforward
to verify and imply that B∆

min = (∆, E,E∨min) is a DK-triple:
• A map f : [n]→ [m] is singular if and only if there is a non-minimal element of [m] which

is not in the image of f .
• The set M of Monos consists precisely of the injective maps in ∆. Since M is closed under

composition, (T4) is satisfied.
• The set M ∩ Reg of regular monos consists of the identities and the 0-th coface maps

d0 : [n− 1] ∼= {1 < · · · < n} ↪−→ [n].

Note that M ∩ Reg is not closed under composition.
(T1) Each map [n] → [m] in ∆ admits a unique (up to unique isomorphism) factorization of

type E∨min ◦ (M ∩ Reg) ◦ E, namely

[n] −→→ (Im f) ↪−→ ({0} ∪ Im f)� [n].

(T3) The set E∨min ◦E consists of the minimum-perserving arrows in ∆, hence E∨min ◦E is closed
under composition.

(T5) If 0 6= i ∈ [m] is a non-minimal element which is not in the image of f : [n] → [m] then,
for each injective map g : [m] → [m′], the element 0 6= g(i) ∈ [m′] is not minimal and not
contained in the image of g ◦ f .

(T2) For each [n], [m] ∈ ∆ we have a bijection

(−)∨ : E([n], [m])
∼=−−→ E∨min([m], [n])

which sends a surjection e : [n] → [m] to its minimal section e∨ : [n] → [n] given by the
formula i 7→ min e−1{i}. A composition e′ ◦ e∨ of an Epi e′ : [n] →→ [m] with a dual Epi
e∨ : [n]� [m] is

– an isomorphism if e′ = e
– not an isomorphism if e∨ 6≥ e′∨ poinwise as maps [m]→ [n]

(note that we make no claim when e′∨ < e∨). Hence, for each [n] ∈ ∆, the lexicographic
ordering on π0E

∨
min([n]) makes the matrix

π0E
∨
min([n])× π0E

∨
min([n])

∼=←−−−
(−)∨

π0E([n])× π0E
∨
min([n])

〈−;−〉[n]−−−−−→ π0 Ar ∆

into upper triangular shape modulo non-isomorphisms.

Example 3.3.1.1. The matrix 〈−;−〉[2], can be depicted as follows

0 01 02 012

(012) 0 (01) (12) (012)
0(12) 0 01 02 0(12)
(01)2 0 (01) 02 (01)2
012 0 01 02 012
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where the rows are labeled by equivalence classes of Epis [2]→→ [m] (written by grouping elements
with the same image); dually, the rows are labeled by equivalence classes of dual Epis [m]→→ [2]
(written by listing the elements in the image). The isomorphisms are highlighted in red and
bold, showing that the matrix is—modulo non-isomorphisms—unipotent upper triangular but
not diagonal. In particular, this example shows that the DK-triple B∆

min is not diagonalizable. ♦

There is an equivalence Ch≥0 := N
(→→)

'−→ N0 := M
M∩Reg of pointed categories which is given

on objects by n 7→ [n] and is determined on morphisms by sending the arrow n → n+ 1 to
the 0-th coface map d0 : [n] → [n+ 1]. Applying Corollary 3.2.3.4 to the DK-triple B∆

min thus
establishes a natural equivalence

Fun(∆,A)
'←−→ Fun0(Ch≥0,A)

for each weakly idempotent complete additive∞-category A. Replacing A by its opposite (which
is again weakly idempotent complete additive) yields the more familiar form of the following
∞-categorical Dold–Kan correspondence:

Corollary 3.3.1.2. The DK-triple B∆
min = (∆, E,E∨min) induces a natural equivalence of∞-cat-

egories
Fun(∆op,A)

'←−→ Fun0
(

Chop
≥0,A

)
=: Ch≥0(A) (3.3.1)

between simplicial objects and connective chain complexes in any weakly idempotent complete
additive ∞-category A. �

The simplex category ∆ is part of a second DK-triple B∆
max, where E is again the set of

surjections and E∨max is the set of maximum-preserving injections in ∆. The DK-triples B∆
min

and B∆
max have canonically isomorphic quotient categories N0(B∆

min) ∼= Ch≥0
∼= N0(B∆

max) and
correspond to each other under the canonical involution l : ∆

∼=←→ ∆ which reverses the linear
order on each object of ∆. Hence we have a commutative diagram

Fun(∆op,A) Fun(∆op,A)

Ch≥0(A)

l
'

DKmin

'
DKmax

'

which intertwines the corresponding two versions of the Dold–Kan functor (3.3.1).

Lemma 3.3.1.3. For every additive ∞-category A, the autoequivalence l : Fun(∆op,A)
'←→

Fun(∆op,A) is equivalent to the identity; in other words, the two Dold–Kan functors DKmin and
DKmax agree (up to equivalence). �

In the 1-categorical context, one can check explicitly that DKmin and DKmax both agree
(up to natural isomorphism) with the normalized chain functor, hence with each other. For
∞-categories we provide the following alternative argument:

Proof. Choose a stable ∞-category A ⊆ D into which A is embedded as a full additive subcat-
egory (see Lemma 3.1.3.6). Since the involution l : ∆

∼=←→ ∆ preserves the filtration

∆≤0 ⊂ ∆≤1 ⊂ · · · ⊂ ∆≤n ⊂ · · · ⊂ ∆,

the functor Fun(∆op,D)→ Fun(N,D), which sends a simplicial objects to its sequence of partial
colimits, is l-invariant. Since D is stable, Lurie’s stable Dold–Kan correspondence (which we
also discuss in Section 3.5.2) states that this functor is an equivalence; hence the (l-invariant)
composition

Fun(∆op,A) ↪→ Fun(N,D),

is fully faithful. The result follows. �
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3.3.2 Categories of partial maps

An important class of examples of diagonalizable DK-triples arises by considering partial maps
with respect to certain factorization systems; we sketch here the corresponding discussion by
Lack and Street [LS15, Example 3.1]. Let (E ,M ) be a factorization system on a category A ,
i.e.,
• E and M are subcategories of A containing all isomorphisms and
• arrows in A factor, uniquely up to unique isomorphism, as compositions of the type M ◦E ;

assume furthermore that
• the arrows in M are monomorphisms,
• each object of A has only finitely many M -subobjects and
• the pullback of an arrow in M along an arbitrary map in A exists and lies again in M .

The category ParopA = Parop
M A of co-M -partial maps is defined to have

• the same objects as A ;
• morphism in ParopA are equivalence classes of spans in A of the type • A←− • M−→ •, i.e.,

where the second leg is required to lie in M ;
• composition in ParopA is that of spans, i.e., by pullback.

We define two wide subcategories E,E∨ ⊂ ParopA to consist of the spans of the type

• M←−− • ∼=−−→ • and • ∼=←−− • M−−→ •,

respectively. With the notation of Section 3.2.1, the Monos are the spans of type • E←− • M−→ •.
The set Reg of regular morphisms consists of those morphisms in ParopA which are totally
defined, i.e., the spans of type • A←− • ∼=−→ •; hence we have Reg ∼= A op.

Lemma 3.3.2.1. The datum B := (ParopA , E,E∨) is a diagonalizable DK-triple. �

Proof. The proof is straightforward and left to the reader. �

The regularMonos in ParopA are the spans of the type • E←− • ∼=−→ •; they form a subcategory
equivalent to E op. Hence Remark 3.2.2.2 says that the pointed category N0(B) constructed in
Construction 3.2.2.1 is just the free pointed category E op

+ on M ∩ Reg ∼= E op.
The upshot of this discussion is the following corollary of Corollary 3.2.3.4, taking into account

that N0 = E op
+ is a free pointed category (see Remark 3.2.3.5) and that the DK-triple B is

diagonalizable (see Remark 3.2.3.8).

Corollary 3.3.2.2. Let A and (E ,M ) be as above. The DK-triple (Parop
M A , E,E∨) induces a

natural equivalence
Fun(Parop

M A ,A)
'←−→ Fun(E op,A)

for each weakly idempotent complete preadditive ∞-category A. �

The prototypical example of Corollary 3.3.2.2 comes from the category Fin of finite sets,
equipped with its canonical surjective-injective factorization system (Surj, Inj); in this case
ParopFin is precisely Segal’s category Γ = Finop

? [Seg74], hence we get a natural equivalence

Fun(Γ,A)
'←−→ Fun(Surjop,A)

or, after dualizing (see Remark 3.2.3.2),

Fun(Γop,A)
'←−→ Fun(Surj,A), (3.3.2)

for all weakly idempotent complete preadditive ∞-categories A.
We refer the reader to [LS15, Section 7] for many more examples in this spirit.
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Remark 3.3.2.3. Up to minor differences6), the pairs (ParM A ,E ) arising from a factorization
system (E ,M ) as above are the conjugate pairs (B,A) of Helmstutler [Hel14]. For the conve-
nience of the reader we provide a table translating Helmstutler’s notation to the one of Lack and
Street (which we are using in this section):

Lack and Street A M E ParM A
Helmstutler U I A B

Helmstutler calls the arrows in A ⊂ ParM A regular (because they are totally, and not
just M -partially, defined) and the other arrows in ParM A singular ; this matches our use of
those words. Moreover, he constructs a bimodule U+ : Aop ×B −→ Set? (which is precisely our
bimodule R0 from Construction 3.2.2.4) and proves [Hel14, Theorem 6.2] that it induces, for
each left proper stable model category C, a Quillen equivalence [Bop,C] −→←− [Aop,C] (left adjoint
on top). Corollary 3.3.2.2 is our version of this result, where we replace a Quillen equivalence
of model categories by an equivalence of ∞-categories. Note that the self-duality inherent to
our ∞-categorical approach (see Remark 3.2.3.2) fixes the asymmetry problem addressed by
Helmstutler in the note at the end of Section 6 in [Hel14]. ♦

3.4 Proof of the Dold–Kan type theorems

3.4.1 Cofinality lemmas

In order to get a better understanding of the Kan extensions appearing in Theorem 3.2.3.1 we
use cofinality arguments to simplify the relevant pointwise formulas.

Construction 3.4.1.1. Fix an element n ∈ N . Consider the category

Xn := E∨([n]) tE∨6'([n]) E
∨
6'([n])

.
,

equipped with the functor Xn → B+/n given by sending each b ∈ E∨([n]) to the composition
b � [n] → n (which is the zero map for all b ∈ E∨6'([n])) and the cone point of E∨6'([n]). to
0→ n. Since E∨6'([n]) is (equivalent to) a poset, the same is true for Xn; the latter poset arises
from E∨([n]) by adding one new element which is bigger than all elements of E∨([n]) except its
terminal object Id : [n]� [n].
Fix an element b ∈ B. Denote by Yb ⊂ (N0)b/ the (non-full) subcategory defined as follows:
• objects are the maps b→→ b′ corresponding to Epis b→→ b′ in B (recall that b′ ∈ N denotes

the object corresponding to b′ ∈ B) and the unique map b→ 0.
• the only morphisms are isomorphisms under b and the zero morphisms b′ → 0.

Observe that Yb is equivalent to the right cone{
b→→ b′

}.
on the discrete set {b→→ b′} containing some choice of representatives for the isomorphism classes
of Epis out of b; the cone point corresponds to the object b→ 0 of Yb. ♦

Lemma 3.4.1.2. For each n ∈ N , the inclusion Xn ↪−→ B+/n is homotopy terminal. �

Before we go into the rather technical proof of Lemma 3.4.1.2, we state the direct following
corollary which is what we will use going forward.

6) For instance, Helmstutler’s M is not required to contain all isomorphisms. Unlike Lack and Street (hence
us) he does however require the pullback of an arrow in E along an arrow in M to lie in E again; this amounts
to saying that the set M of Monos is closed under composition.
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Corollary 3.4.1.3. Let P be a pointed ∞-category and X : B+ → P a pointed diagram. Then
a left Kan extension X 1 of X along the inclusion B+ ↪→ V exists if and only if for each n ∈ N
the total cofiber of the diagram

E∨([n]) −→ B+
X−−→ A

exists in A. If it exists, this left Kan extension X 1 is characterized pointwise at n ∈ N by the
fact that it extends the diagram

Xa −→ B+/n −→ B+
X−−→ A

to a colimit cone in A with colimit X 1(n). �

Remark 3.4.1.4. If the colimit of the diagram

E∨6'([n]) −→ B+
X−−→ A

exists for each n ∈ N then we can characterize the left Kan extension as in Corollary 3.4.1.3 by
the fact that it induces cofiber sequences

colim
b∈E∨6'([n])

Xb X0 ' 0

X[n] X 1
n

p

We will show in Proposition 3.4.2.1 that this colimit always exists when A is weakly idempotent
complete additive. ♦

Proof (of Lemma 3.4.1.2). Fix n ∈ N and let us abbreviate X := Xn to avoid proliferating
subscripts. For each b ∈ B and each arrow u : b → n in V , the undercategory Xu/ can be
described explicitly as follows:
• objects are factorizations

b′

b n

x

u

f

of u in V , where the arrow x : b′ → n is required to lie in X;
• a morphism (x, f) → (x′, f ′) between such factorizations is simply an arrow x → x′ in X

compatible with f and f ′.
Observe that Xu/ is a poset (because X is). To prove that X ↪→ B+/n is homotopy initial we
have to show that all these categories of factorizations are weakly contractible. We distinguish
two cases:
• Assume that u : b→ n is a non-zero. Then the only factorization of u through an object of

X is the tautological factorization u : b
[u]−→ [n]

!−→ n hence the category Xu/ is a singleton.

• Assume that u : b
0−→ u is the zero map. In this case there are three types of factorizations:

(1) given a non-invertible dual Epi [x] : b′
6'� [n] and given any map f : b → b′ in B+,

there is a factorization 0: b
f−→ b′

x−→ n;
(2) for each singular map s : b→ [n] in B+, there is a factorization 0: b

s−→ [n]
!−→ n;

(3) there is the zero factorization 0: b −→ 0 −→ n.
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Denote by (x, f), (!, s) and 0 the objects of Xu/ corresponding to the factorizations of type
(1), (2) and (3), respectively. Denote by Z ⊂ Xu/ the subposet consisting of the objects
(x, f). For each singular map s : b → [n], denote by Zs ⊂ Z the subposet consisting of

those (x, f), where the composite b f−→ b′
[x]−→ [n] is equal to s : b → [n] . We now describe

the morphisms in the category Xu/.

– For each factorization (x, f) with s := [x] ◦ f (as maps b → [n]), we have a unique
map (x, f)→ (!, s). There are no other maps between factorizations of types (1) and
(2). In other words, the subposet Zs ∪ {(!, s)} ⊂ Xu/ is a (right) cone on Zs with
maximum (!, s)

– There are no maps between factorizations of types (2) and (3) (because there are no
maps between [n]→ n and 0→ n in X)

– For each factorization (x, f), we have a unique map (x, f) → 0. There are no other
maps between factorizations of types (1) and (3). In other words, the subposet Z ∪
{0} ⊂ Xu/ is a (right) cone on Z with maximum 0.

It follows that we have the following pushout of simplicial sets:∐
s∈Sing(b,[n])

N(Zs)
∐

s∈Sing(b,[n])

N(Zs)
.

N(Z). N(Xu/)

(3.4.1)

which is a (Kan) homotopy pushout because the top horizontal map is a monomorphism.
By (T1), each singular arrow s : b → [n] admits a unique (up to unique isomorphism)
factorization s : b→ b′

6'� [n], where b→ b′ is regular and b′ 6'� [n] is a non-invertible dual
Epi; viewed as a factorization of 0: b→ n it is an initial object of the category Zs, which
is hence contractible. Therefore the top horizontal map in the square (3.4.1) is a (Kan)
weak equivalence, hence also the bottom horizontal map; this concludes the proof because
N(Z). is contractible. �

Lemma 3.4.1.5. For each b ∈ B, the inclusion Yb ↪−→ (N0)b/ is homotopy initial. �

Proof. Fix b ∈ B and abbreviate Y := Yb. Similarly to the proof of Lemma 3.4.1.2, we have to
show that, for each n ∈ N0 and each map u : b→ n, the groupoid Y/u of factorizations

b′

b n

f

u

y (3.4.2)

(with y ∈ Y ) is weakly contractible. Again, we distinguish two cases:
• If the arrow u : b→ n is non-zero then factorizations (3.4.2) are the same as (M ∩Reg)◦E-

factorizations of the corresponding regular map [u] : b → [n]. By (T1), the groupoid of
such factorizations is (equivalent to) a point.
• If the arrow u is the zero then the zero factorization u : b→ 0→ n is a terminal object of

the category Y/u, which is hence contractible. �

Corollary 3.4.1.6. Let A be a pointed∞-category with finite products. Every pointed diagram
X : N0 → A admits a right Kan extension X : V → A along the inclusion N0 ↪→ V . Moreover,
this right Kan extension is characterized pointwise by the product cones

Xb '−−→
∏
b→→n
X n (3.4.3)

indexed by equivalence classes of Epis out of b. �
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Proof. Let X : N0 → A be a pointed diagram and fix an objects b ∈ B. By Lemma 3.4.1.5 we
can compute the pointwise right Kan extension X of X along N0 ↪→ V at b as the limit

Xb '−−→ lim

(
(N0)b/ → N0

X−−→ A

)
'−−→ lim

(
Yb → N0

X−−→ A

)
' lim

(
{b→→ n}. → N0

X−−→ A

)
.

This limit formula is the same as the product formula (3.4.3) because the value of X on the cone
point of {b→→ n}. is X 0 ' 0. �

3.4.2 Inductive construction in the reduced case

Throughout this section we assume that the DK-triple B = (B,E,E∨) is reduced, i.e., that
B = E∨ ◦E and hence N0 = B'+ . By applying Construction 3.2.2.4 to the reduced DK-triple B
and to its dual Bop, we obtain two categories

V = V (B) :=

(
N1

0 R0

0 B+

)
and V ∨ := V (Bop)op =

(
B+ M0

0 N0
0

)
where N0

0 and N1
0 are both just (a copy of) N0, decorated with superscripts 0 and 1 to avoid

confusing them. For every n ∈ N we denote by n0 its copy in N0 ⊂ V ∨ and by n1 its copy in
N1 ⊂ V . Furthemore, we denote by V≤n ⊂ V the full subcategories spanned by B+ and by all
the objects n′1 with n′ ≤ n; similarly, V ∨≤n ⊂ V ∨ is the full subcategory which contains B+ and
all the objects n′0 with n′ ≤ n.

Proposition 3.4.2.1. Let A be a weakly idempotent complete additive ∞-category A and let
X : B+ → A be a pointed functor. Then there exist functors

X 0 : V ∨ → A and X 1 : V → A

which are right and left Kan extension of X , respectively. Moreover the functors X 0 and X 1 are a
left Kan extension and a right Kan extension of their restriction to N0

0 and N1
0 , respectively. �

Remark 3.4.2.2. By Corollary 3.4.1.6, the “moreover” part of Proposition 3.4.2.1 is saying that
for each b ∈ B the diagrams X 0 and X 1 induce direct sum decompositions∐

n�b

X 0(n)
'−−→ X 0(b) = Xb and Xb = X 1(b)

'−−→
∏
b→→n
X 1(n) (3.4.4)

where the coproduct/product is indexed over equivalence classes of dual Epis into b and Epis
out of b, respectively. ♦

Remark 3.4.2.3. It follows from the universal property of the coproduct that each dual Epi b′� b
induces a commutative square ∐

n�b′
X 0(n) Xb′

∐
n�b
X 0(n) Xb

'

'

where the left vertical map is the inclusion of those summands that are labeled by a dual Epi
which factors through b′� b. Similarly each Epi b→→ b′ induces projection onto those factors of
the decomposition Xb '

∏
b→→nX 1(n) that are indexed by Epis which factor through b→→ b′. ♦

Proof. For each n ∈ N we prove:
(1) A right Kan extension X 0

≤n of X along B+ ↪→ V ∨≤n exists.
(2) A left Kan extension X 1

≤n of X along B+ ↪→ V≤n exists.
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(3) Each choice of such Kan extensions X 0
≤n and X 1

≤n induces, for each b ≤ [n], direct sum
decompositions as in (3.4.4); moreover, the composition

X 0
≤n(n0) −→ X[n] −→ X 1

≤n(n1)

is an equivalence in A.
By induction on the number |π0E

∨(n)| = |π0E(n)| we may assume that we have proved (1), (2)
and (3) for all objects of N which are strictly smaller than n. Choose a right Kan extension
X 0
<n : V ∨<n → A and a left Kan extension X 1

<n : V<n → A of X : B+ → A (they exist pointwise
by assumption). By assumption, X 0

<n induces coproduct decompositions
∐
n′�b

X 0
<n(n′)

'−→ Xb for
all b < [n]. Since all dual Epis induce compatible inclusions of summands (see Remark 3.4.2.3),
the diagram X 0 provides an identification∐

n′ 6'�[n]

X 0
<n(n′) ' colim

b∈E∨6'([n])
Xb (3.4.5)

where the coproduct is indexed over equivalence classes of non-invertible dual Epis; moreover,
this identification (3.4.5) is compatible with the respective structure maps to X[n]. By applying
the dual argument to X 1

<n : V<n → A we obtain an identification

lim
b∈E6'([n])

Xb '
∏

[n] 6'→→n′
X 1
<n(n′),

again compatible with the structure maps from X[n]. We analyze the two composable maps∐
n′ 6'�[n]

X 0
<n(n′) −→ X[n] −→

∏
[n] 6'→→n′′

X 1
<n(n′′) (3.4.6)

and their composite Φ in terms of the components Φn′′,n′ : X 0
<n(n′)→ X[n] → X 1

<n(n′′). We have
the commutative diagram in V ∨<n tB+ V<n

[n′′]

n′0 [n] n′′1

[n′]

!

!

where the vertical morphisms are the dual Epi [n′] � [n] and the Epi [n] →→ [n′]; their com-
position is—by definition—the map 〈[n′′]; [n′]〉[n]. Therefore, the map Φn′′,n′ is equivalent to the
composition

Φn′′,n′ : X 0
<n(n′0) −→ X[n′]

X (〈[n′′];[n′]〉[n])−−−−−−−−−−→ X[n′′] −→ X 1
<n(n′′1).

It follows that:
• If 〈[n′′]; [n′]〉[n] is an isomorphism in B+ (without loss of generality, the identity) then Φn′′,n′

is an equivalence by the induction hypothesis (3);
• If 〈[n′′]; [n′]〉[n] is not an isomorphism in B+ then it must be either singular or cosingular.

If it is singular then the composition [n′] → [n′′] → n′′1 factors through 0 ∈ V ; if it is
cosingular then the composition n′0 → [n′] → [n′′] factors through 0 ∈ V ∨; in either case
Φn′′,n′ factors through X0 ' 0.
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Therefore it follows from (T2) that (Φn′′,n′) is an upper triangular matrix with invertible diagonal
entries; hence Φ is invertible because A is additive (see Lemma 3.1.3.7). This means that the two
composable maps (3.4.6) are a section-retraction pair. Since A is weakly idempotent complete,
this section-retraction pair admits a complement, i.e., there is an essentially unique diagram

0 K 0

∐
n′ 6'�[n]

X 0
<n(n′) X[n]

∏
[n] 6'→→n′′

X 1
<n(n′′)

0 Q 0

� �

� �

(3.4.7)

where all squares are biCartesian. By 3.4.1.3 (or, more precisely, by 3.4.1.4) and the identification
(3.4.5), we conclude that the pointwise left Kan extension X 1(n) of X at n1 exists and that its
value on the structure map ! : [n] → n1 is equivalent to the projection X[n] → Q. By the dual
argument, we conclude that the pointwise right Kan extension X 0(n) of X at n0 exists and that
its value on the structure map ! : n0 → [n] is equivalent to the inclusion K → X[n]. To establish
the inductive step for property (3), note that the diagram (3.4.7) encodes the required coproduct
decompositions ∐

n′�[n]

X 0(n′) = K t
∐

n′ 6'�[n]

X 0
<n(n′)

'−−→ X[n]

(and similarly the required product decomposition) and the fact that the composition

K ' X 0(n)
X 0(!)−−−→ X[n]

X 1(!)−−−→ X 1(n) ' Q

is an equivalence. �

Remark 3.4.2.4. If the DK-triple B is diagonalizable then the matrix (Φn′′,n′)n′′,n′ is actually a
diagonal matrix. Hence to invert it, we do not need A to be additive but only preadditive. ♦

Remark 3.4.2.5. From the proof of Proposition 3.4.2.1 we can extract more detailed information.
For each n ∈ N , the extensions X 0 and X 1 encode two complementary section-retraction pairs

0 colim
b∈E∨6'([n])

Xb 0

X 0(n) X[n] X 1(n)

0 lim
b∈E6'([n])

Xb 0

�
�

� �

(in particular, the indicated limits/colimits exist). ♦

3.4.3 The general case

Proof (of Theorem 3.2.3.1). We first prove (a), (b), and (d) in the case where the DK-triple
(B,E,E∨) is reduced. In this case, we have the following ingredients:
• Corollary 3.4.1.6 guarantees that the right Kan extension functor RKE: Fun0(N0,A) →

Fun0(V,A) exists. Moreover, the explicit formula (3.4.3) implies that for any natural
transformation α : X ′ → X of pointed diagrams N0 → A, the component αn : X ′n → X n
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at n ∈ N is a factor of the corresponding right Kan extended transformation (with the
notation as in 3.4.1.6)

X ′[n] X[n]

∏
[n]→→n′

X ′n′
∏

[n]→→n′
X n′

RKE(α)[n]

' '

∏
αn′

at [n] ∈ B; hence it follows from Lemma 3.1.1.7 that the composition

Fun0(N0,A)
RKE−−−→ Fun0(V,A)

Res−−→ Fun0(B+,A)

is conservative, i.e., reflects equivalences.
• Proposition 3.4.2.1 states in particular—if we focus only on the statements about V and

not about V ∨—that

– the left Kan extension functor LKE: Fun0(B+,A)→ Fun0(V,A) exists and
– on the image of this functor LKE, the unit IdFun0(V,A) → RKE ◦Res of the adjunction

Res: Fun0(V,A) −→←− Fun0(N0,A) : RKE

is an equivalence.

Since left Kan extension along the fully faithful functor B+ ↪→ V is fully faithful, the unit
IdFun0(B+,A) → Res ◦LKE is an equivalence. We conclude that the unit

IdFun0(B+,A) −→ Res ◦LKE = Res ◦IdFun0(V,A) ◦ LKE −→ Res ◦RKE ◦Res ◦LKE

of the composite adjunction 3.2.2 is also an equivalence.
This already proves (a); assertion (b) follows from the general fact about adjunctions that if the
right adjoint is conserative and the unit is an equivalence then the whole adjunction is an adjoint
equivalence. Assertion (d) is spelled out in Remark 3.4.2.5 since X n is by definition equivalent
to X 1(n).

To prove (a), (b) and (d) when B is not necessarily reduced, we make the following key
observation:
• the criterion for constructing and detecting left Kan extension along B+ ↪→ V (Corol-

lary 3.4.1.3) and the criterion for constructing and detecting right Kan extension along
N0 ↪→ V (Corollary 3.4.1.6) both only depend on the values of a diagram on the dual Epis
E∨ and on the Epis E.

Therefore we can reduce to the reduced case (no pun intended) by replacing the original DK-triple
with the reduced DK-triple

B := (E∨ ◦ E,E,E∨).

To prove (c), note that the right Kan extension RKE: Fun0(N0,A) −→ Fun0(V,A) is natural
in A with respect to all functors which preserve the relevant pointwise limits; since all these
pointwise limits are just products, this is true for every additive functor. �

3.5 Comparison with...

3.5.1 ...the setting of Lack and Street

We provide a short dictionary/comparison between our setup described in Section 3.2.1 and
Section 3.2.2 and the setting of Lack and Street [LS15, Section 2]. Unless stated otherwise,



Homotopy coherent theorems of Dold–Kan type 101/118

references in this section refer to their revised arXiv paper[LS14], not the published one [LS15]
(see also the corrigendum [LS20]); we freely use the notation of [LS14, Section 2].

Their category P is the dual of our category B. Under this duality we have the following
table of correspondence:

Lack and Street P M M ∗ R D S {u | su ∈ R}
our setup B E E∨ M ∩ Reg N M Reg

Lack and Street take as part of the data an isomorphism (−)∗ : M op ∼= M ∗ (which in our
language would be written as (−)∨ : Eop ∼= E∨) which is the identity on objects and satisfies
m∗ ◦m = Id for all arrows m in M . Their Assumption 2.5 translates to the fact that the set
π0E(b) is finite for each b ∈ B; Assumption 2.6 is saying that for each b ∈ B there exists a linear
order on π0E(b) such that the matrix 〈−; (−)∨〉b : π0E(b)× π0E(b)→ π0 ArB has only singular
entries below the diagonal. In our setup, (T2) replaces all these ingredients and repackages them
as a property which more directly reflects the final use: what we ultimately want to exploit is
that certain unipotent upper triangular matrices (3.4.6) induced from the matrices 〈−;−〉b can
be inverted in any additive ∞-category. Note that while Lack and Street require the matrix
entries below the diagonal to be singular, it suffices for our purposes if they are non-invertible.
Furthermore:
• Their Assumption 2.1 and Assumption 2.4 correspond precisely to our axioms (T1) and

(T3), respectively.
• Their Assumption 2.2 translates to our axiom (T4).
• Their Assumption 2.3 translates to (M ∩Reg)◦E∨6' ⊂ B\(M ∩Reg) and is, a priori, weaker

than our axiom (T5). However, they use Assumption 2.3 (in the presence of the other
assumptions) to prove Proposition 2.10(b) which states that if two composable arrows v, u
satisfy sv 6∈ R and u ∈ S , then also svu 6∈ R. This statement translates toM◦Sing ⊆ Sing,
which is precisely (T5).

The preceding discussion proves:

Corollary 3.5.1.1. Let P, M , M ∗ and D be as in [LS14, Section 2]. ThenB = (Pop,M op, (M ∗)op)
is a DK-triple with associated pointed category N0(B) = Dop

(0) . �

The main tool in the proof by Lack and Street is what they call the kernel module [LS15,
Section 4]

M : Dop ×P −→ 1/Set

(where 1/Set is their notation for the category of pointed sets); it corresponds to our N0-B+-
bimodule

R0 : Bop
+ ×N0 −→ Set?

which we encode in its upper triangular category V . Their main theorem [LS14, Theorem 6.7] [LS15,
Theorem 6.8] states that for each idempotent complete additive 1-category X , the kernel module
M induces an equivalence

Fun(P,X ) ' FunSet?(D ,X )

where FunSet? denotes the category Set?-enriched functors. Instead of using Set?-enriched
categories (or rather S?-enriched ∞-categories; see also Remark 3.1.2.7) we chose to work with
pointed categories and phrase our main result in terms of pointed functors onN0 = N

(0) . Therefore
Corollary 3.2.3.6 recovers their result because, for each pointed 1-category P and each Set?-
enriched category N , the inclusion N ↪→ N0 induces an equivalence of categories Fun0(N0, P )

'−→
FunSet?(N,P ) (see Remark 3.1.2.6).
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3.5.2 ...Lurie’s stable Dold–Kan correspondence

Let D be an ∞-category with finite colimits and consider the functor

Fun(∆op,D) −→ Fun(N,D), (3.5.1)

which sends a simplicial object X : ∆op → D to the filtered object

X̂ : colimX≤0 −→ · · · −→ colimX≤n−1 −→ colimX≤n −→ · · ·

of its partial colimits X̂n := colimX≤n = colim(X≤n : ∆op
≤n ↪→ ∆op X−→ D). Lurie’s stable Dold–

Kan correspondence [Lur17, Theorem 1.2.4.1] states that the functor (3.5.1) is an equivalence
when the target D is a stable ∞-category. The functor (3.5.1) lifts the ordinary Dold–Kan
correspondence in the following sense: Each filtered object X̂ in a stable∞-category D gives rise
to a connective chain complex

hX 0 ←− · · · ←− hX n−1 ←− hX n ←− · · · (3.5.2)

in the homotopy category hD, with X n := Ωn cof(X̂n−1 → X̂n). Moreover, there is a commutative
diagram

Fun(N,D) X̂

Fun(∆op,D) Ch≥0(D) X

Fun(∆op,hD) Ch≥0(hD) hX

'

'

'

(3.5.3)

where the top diagonal functor is (3.5.1) and the lower commutative square is the naturality
square of Remark 3.2.3.7. In particular, the dotted equivalence X̂ 7→ X exists and functorially
lifts the incoherent chain complex (3.5.2) to a coherent one.

If we only assume that the target D is weakly idempotent complete additive but not nec-
essarily stable then, even if sufficient colimits exist to define the functor (3.5.1), it need not
be an equivalence anymore; similarly, the dotted functor X̂ 7→ X (or even X̂ 7→ hX ) does not
exist in this generality. For instance, in the ∞-category of connective spectra the filtered object
0 → S → S → S → . . . (which would correspond to the chain complex 0 ← S[−1] ← 0 ← 0 ←)
does not arise from a simplicial object.

Remark 3.5.2.1. A systematic study of the relationship between coherent chain complexes and
filtered objects in stable∞-categories is part of Stefano Ariotta’s Ph.D. thesis [Ari]. In particular,
he directly constructs an equivalence Fun(N,D) ' Ch≥0(D) of ∞-categories which we expect
to agree with the vertical dotted equivalence in (3.5.3) obtained by combining our result with
Lurie’s. ♦

3.6 Further tools

3.6.1 Measuring Kan extensions

Let B = (B,E,E∨) be a DK-triple with associated quotient N0 = N0(B). Let X : B → A be
a diagram in a weakly idempotent complete additive ∞-category A and let X : N0 → A be the
pointed functor corresponding to X under the equivalence of Corollary 3.2.3.4.

In this section, we set out to answer the following question:

Question 3.6.1.1. What do the values of the diagram X : N0 → A tell us about the original
diagram X : B → A? ♦
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The rough answer is that in favorable situations X “measures” how far away X is from being
a Kan extension of its restriction X<n. To make this precise, we make the following definition:

Definition 3.6.1.2. The DK-triple B is called monotone if all Monos make objects bigger,
i.e., if we have b′ ≤ b whenever there exists a Mono m : b′ → b. We say that B is partially
monotone if Monos at least do not make objects smaller, i.e., there are no Monos b′ → b if
b′ > b. ♦

Remark 3.6.1.3. If the partial order ≤ on π0B is total, then the notions of monotone and partially
monotone agree; in general being partially monotone is weaker than being monotone. ♦

Remark 3.6.1.4. Whether the DK-triple (B,E,E∨) is (partially) monotone does not depend on
E∨, since both the partial order ≤ and the class M of Monos are defined only in terms of the
Epis. ♦

Example 3.6.1.5. • In both the DK-triples B∆
min and B∆

max on ∆ defined in Section 3.3.1 the
partial order ≤ on the objects [n] ∈ ∆ is just the usual comparison of cardinalities; the
monos are the injective maps. Hence B∆

min and B∆
max are both monotone.

• Denote by BΓ the DK-triple on Γ defined in Section 3.3.2. It is monotone since the Monos
are opposite to the surjective maps in Fin? and the order ≤ is again just given by comparing
cardinalities of finite pointed sets. ♦

Proposition 3.6.1.6. Let B = (B,E,M) be a partially monotone DK-triple with associated
quotient N0 = N0(B). Fix a diagram X : B → C in an arbitrary ∞-category C and an object
n ∈ N .
(1) The functor X is pointwise at [n] ∈ B a right Kan extension of its restriction to B<[n] if

and only if
(E6'([n]))/ ' E([n]) ↪→ B

X−−→ C

is a limit cone in C.
(2) If the ∞-category A := C is weakly idempotent complete additive (or preadditive if B

is diagonalizable) then this happens if and only if the corresponding pointed diagram
X : N0 → A vanishes at n, i.e., if and only if X n is a zero object in A.

(3) Assume that B is monotone. Then X
∣∣
E(n)

is a limit cone if and only if X is pointwise at
[n] ∈ B a right Kan extension of its restriction to B�[n]. �

Proof. We only prove (1) and (2); the proof of (3) is analogous to (1). The pointwise right Kan
extension of X<[n] at [n] ∈ B is computed as the limit of the diagram

lim
((
B<[n]

)
[n]/
−→ B

X−−→ A
)

We show that if B is partially monotone then the canonical inclusion E6'([n]) →
(
B<[n]

)
[n]/

is
homotopy initial:
• This amounts to showing that for each object b ∈ B with b < [n] and each arrow [n]→ b,

the poset of factorizations
[n′]

[n] b

E6' (3.6.1)

is weakly contractible. The first leg in the unique (E,M)-factorization

[n′]

[n] b

ME (3.6.2)
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must be non-invertible because otherwise n′ ∼= n > b would contradict the assumption that
B is partially monotone. It follows that the unique factorization (3.6.2) is of type (3.6.1)
and is therefore a terminal object in the the poset we wish to contract.

It follows that the desired pointwise right Kan extension is computed as the limit

lim
(
E6'([n]) −→ B

X−−→ A
)

as required by (1). Statement (2) now follows from Theorem 3.2.3.1 (d) which states in particular
that the canonical map

X[n] −→ lim
b∈E6'([n])

Xb.

is retraction with complement X n. �

Fix a natural number k ∈ N. Recall that ∆≤k ⊂ ∆ denotes the full subcategory spanned by
the objects [n] with n ≤ k.

Corollary 3.6.1.7. A simplicial object X : ∆op → A in a weakly idempotent complete additive
∞-category is a left Kan extension of its restriction to ∆op

≤k if and only if the corresponding
connective chain complex X ∈ Ch≥0(A) is k-truncated, i.e., X n ' 0 for all n > k. �

Proof. Apply Proposition 3.6.1.6 (2) to the DK-triple B∆
min (or, equivalently, to the DK-triple

B∆
max) and dualize. �

3.6.2 Functoriality

Definition 3.6.2.1. Let B = (B,E,E∨) and B′ = (B′, E′, E′∨) be DK-triples. We say that a
functor F : B → B′ is a DK-morphism B → B′ if, for each b ∈ B, it induces an equivalence
F : E(b)

'−→ E′(Fb) between the respective posets of Epis. ♦

Remark 3.6.2.2. Whether a functor F : B → B′ is a DK-morphism only depends on the Epis of
the DK-triples, not on the dual Epis. ♦

Example 3.6.2.3. Let ∆op → Fin? be the standard simplicial circle ∆1 / ∂∆1. This functors
sends [n] to the pointed set 〈n〉 ∼= E∆([n], [1])+ and induces the map of posets

E∆([n]) −→ EΓ(〈n〉) ∼= P(E∆([n], [1])) (3.6.3)

which sends an Epi [n] →→ [n′] to the subset of E∆([n], [1]) consisting of those Epis [n] →→ [1]
that factor through [n]→→ [n′]. The map (3.6.3) has an inverse given by sending a set S of Epis
[n]→→ [1] to the unique quotient of [n] which identifies i, i′ ∈ [n] if and only if e(i) = e(i′) for all
e ∈ S.
It follows that the circle functor ∆→ Γ defines DK-morphisms B∆

min → BΓ and B∆
max → BΓ ♦

Remark 3.6.2.4. Let F : B→ B′ be a DK-morphism as in Definition 3.6.2.1. Let X : B′ → A be
a diagram with values in an weakly idempotent complete additive ∞-category. Then for each
b ∈ B, we have an equivalence

(X ◦ F )b ' tot-fib
(

(X ◦ F )
∣∣
E(b)

)
'−−→ tot-fib

(
X
∣∣
E′(b)

)
' XFb,

where the outer two equivalences come from the formula (3.2.5) in Remark 3.2.3.9 and the middle
arrow is an equivalence because the DK-morphism F identifies the posets E(b) and E′(b). ♦

Corollary 3.6.2.5. Let F : (B,E,E∨) → (B′, E′, E′∨) be a DK-morphism between partially
monotone DK-triples. Consider a diagram X : B′ → C in an ∞-category C and an object b ∈ B.
The following are equivalent:
• Pointwise at b, the functor X ◦ F is a right Kan extension of its restriction to B<b.
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• Pointwise at Fb, the functor X is a right Kan extension of its restriction to B′<Fb. �

Proof. Corollary 3.6.2.5 follows directly from Proposition 3.6.1.6 (1), since the DK-morphism
F identifies the posets E(b) and E′(Fb). �

Fix a natural number k ∈ N. Denote by Fin≤k? ⊂ Fin? the full subcategory spanned by the
pointed sets 〈n〉 := {?, 1, . . . , n} with n ≤ k,

Corollary 3.6.2.6. A Γ-object X : Fin? → C in an ∞-category C is a left Kan extension of its
restriction to Fin≤k? if and only if the underlying simplicial object X

∣∣
∆op : ∆op → Fin? → C is a

left Kan extension of its restriction to ∆op
≤k. �

Proof. Apply Corollary 3.6.2.5 to the circle functor ∆→ Γ. �

3.7 Higher Segal objects in the additive or stable context

3.7.1 Computing membrane spaces via the Dold–Kan correspondence

In this section we explain how to compute many membrane spaces of simplicial objects (see
Section 2.4.1) in weakly idempotent complete additive ∞-categories as direct sums of the terms
of the corresponding chain complex. This extends observation made in [DJW19].

By abuse of notation we identify a subset J ⊆ [n] with the precover {J} |= [n]; for instance,
given some precover F |= [n] which is refined by {J} (i.e., there is an I ∈ F with J ⊂ I) we
write J � F (instead of {J} � F) and say that J refines F .

Definition 3.7.1.1. We say that a precover F |= [n] ∈ ∆ is at least k-fold if each subset J ⊆ [n]
with |J | = k refines F . We say that F is exactly k-fold if it is at least k-fold but not at least
(k + 1)-fold. ♦

Remark 3.7.1.2. Clearly, each precover F |= [n] is exactly k-fold for a unique number k ∈ N,
which is non-zero precisely if F is a cover. ♦

Proposition 3.7.1.3. Fix a simplicial object X : ∆op → A in a weakly idempotent complete
additive ∞-category and denote by X ∈ Ch≥0(A) the corresponding chain complex. Consider
an object [n] ∈ ∆ and an element i ∈ [n]. For all precovers F |= [n] with i ∈ ⋂F there are
equivalences

XF '−−→
⊕
i∈J�F

X J

such that
(1) the Segal map Xn ' X{[n]} −→ XF is identified with the factor projection⊕

i∈J⊆[n]

X J −→
⊕
i∈J�F

X J (3.7.1)

along {i ∈ J � F} ⊆ {i ∈ J ⊂ [n]}
(2) for each refinement F � F ′ of such precovers, the induced map XF ′ → XF is identified

with the factor projection along {i ∈ J � F} ⊆ {i ∈ J � F ′}. �

Remark 3.7.1.4. Proposition 3.7.1.3 is a unified and slightly more refined version of Propositions
4.6 and 4.23 in [DJW19], which deal with the case i ∈ {0, n} in abelian and stable (∞-)categories,
respectively. ♦

Consider the category ∆? := ∆[0]/ of finite pointed linearly ordered sets. Denote by E? and
E∨? the surjective and injective maps in ∆?, respectively.
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Lemma 3.7.1.5. The datumB∆? = (∆?, E?, E
∨
? ) is a reduced DK-triple. The associated pointed

category N0(B∆?) ∼= (∆?)
'
+ is free on the discrete category/set π0(∆?) = {([n], i) | 0 ≤ i ≤ n}.

The forgetful functor ∆? → ∆ is a DK-morphism. �

Proof. Denote by ∆min and ∆max the wide subcategories of ∆ consisting of all minimum-
preserving and maximum-preserving maps, respectively. There are reduced DK-triples

B∆
min = (∆min = E∨min ◦ E,E,E∨min) and B∆

max = (∆max = E∨max ◦ E,E,E∨max)

underlying the DK-triplesB∆
min = (∆, E,E∨min) andB∆

max = (∆, E,E∨max) described in Section 3.3.1.
There is a canonical equivalence

∆max ×∆min '−−→ ∆? : (I, J) 7−→ (I ∨ J,max I = min J)

which identifies B∆? with the datum B∆
min × B∆

max. We conclude that B∆? is the product of
reduced DK-triples, hence itself a reduced DK-triple.

The rest of the claims are straightforward to check directly and left to the reader. �

Proof (of Proposition 3.7.1.3). We replace A by its dual so that we may work with diagrams
X : ∆ → A. By abuse of notation we also write X (instead of X

∣∣
∆?

) for the composition

∆? → ∆
X−→ A. Applied to the DK-triple B∆? of Lemma 3.7.1.5, Theorem 3.2.3.1—or, more

precisely, Corollary 3.2.3.4—produces an equivalence

Fun(∆?,A) '
∏

([n],i)

A

under which our functor X : ∆? → A corresponds to a tuple
(
X ([n],i)

)
n,i

. Since ∆? → ∆ is a

DK-morphism, for each i ∈ [n] ∈ ∆ we have X ([n],i) ' X n (see Remark 3.6.2.4), i.e., the value
of X does not depend on i. Proposition 3.4.2.1—or, more precisely, Remark 3.4.2.3—then states
that there are direct sum decompositions⊕

i∈J⊆[n]

X J '
⊕

i∈J⊆[n]

X (J,i)
'−−→ X([n],i) = Xn

with respect to which the value of X on a dual Epi (I, i) ↪→ ([n], i) is identified with the
inclusion of those summands X J which are indexed by a i ∈ J ⊆ [n] which is contained in I.
For each precover F |= [n] the membrane space XF ' colimi∈I�F XI is a colimit over a system
of inclusions of subsums of (3.7.1); hence it can be explicitly computed to yield the statements
of Proposition 3.7.1.3. �

Corollary 3.7.1.6. Let F |= [n] be a precover on [n] ∈ ∆ which is exactly k-fold and satisfies⋂F 6= ∅. Then the simplicial object X : ∆op → A in a weakly idempotent complete additive
∞-category A satisfies descent with respect to F if and only if the corresponding chain complex
X vanishes in the range {k + 1, . . . , n}. �

Proof. Since the intersection
⋂F is non-empty, we may pick an element i ∈ ⋂F and apply

Proposition 3.7.1.3 to identify the Segal map Xn −→ XF with the projection (3.7.1), which is an
equivalence if and only if X J ' 0 for all i ∈ J 6� F . Such a J must satisfy J \ {i} 6� F (because
i ∈ ⋂F), hence J = |J \ {i}| > k (because F |= [n] is at least k-fold). To show that the value
J = k + 1 (hence every value in the interval {k + 1, . . . , n}) is attained by such a J , choose
J ′ ⊂ [n] minimal such that J ′ 6� F ; then i /∈ J ′ (otherwise J ′ \ {i} would contradict minimality)
and |J ′| = k + 1 (because F is exactly k-fold), hence J ′ ∪̇ {i} = |J ′| = k + 1. �

Definition 3.7.1.7. We call a set P of precovers k-truncated if
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• every cover F ∈ P satisfies
⋂F 6= ∅,

• every cover F ∈ P is at least k-fold and
• for every k < m ∈ N there exists n ≥ m and a cover F |= [n] in P which is not at least
m-fold. ♦

Example 3.7.1.8. Fix a natural number k.
• The i-th n-dimensional horn

Λni := {[n] \ {j} | j 6= i} |= [n]

is always exactly (n − 1)-fold. Hence a subset of the set {Λni |= [n] | 0 ≤ i ≤ n > k} of
horns above dimension k is k-truncated if and only if it contains at least one horn of each
dimension n > k. For example,

– the set {Λn0 |= [n] |n > k} of left horns above dimension k and
– the set {Λnn |= [n] |n > k} of right horns above dimension k

are both k-truncated.
• A non-degenerate compatible [k]-cover (in the sense of Definition 2.3.1.1) is always exactly
k-fold. Hence any infinite set of non-degenerate compatible [k]-covers is k-truncated. We
highlight the following examples:

– Lower weak [k]-Λ-excision (a.k.a. the lower 2k-Segal-Segal condition) is equivalent to
descent with respect to the infinite set of left active non-degenerate [k]-covers.

– Upper weak [k]-Λ-excision (a.k.a. the upper 2k-Segal-Segal condition) is equivalent to
descent with respect to the infinite set of right active non-degenerate [k]-covers.

– weak [k]-(∆-)excision (a.k.a. the lower (2k−1)-Segal-Segal condition) is equivalent to
descent with respect to the infinite set of all non-degenerate [k]-covers. ♦

Definition 3.7.1.7 is made precisely to make the following statement true:

Proposition 3.7.1.9. Consider a simplicial object X : ∆op → A in a weakly idempotent com-
plete additive ∞-category A and a number k ∈ N. Let P be an k-truncated set of precovers.
The following are equivalent:
• The simplicial object X satisfies descent with respect to all precovers in P .
• The chain complex X ∈ Ch≥0(A) associated to X is k-truncated, i.e., satisfies X n ' 0 for

all n > k. �

Proof. Follows directly from Definition 3.7.1.7 and Corollary 3.7.1.6. �

Remark 3.7.1.10. Proposition 3.7.1.9 says in particular that, for a simplicial objects X in an
additive∞-category, all of the sets of descent conditions described in Example 3.7.1.8 are equiv-
alent to the corresponding chain complex X (potentially computed in some ambient weakly
idempotent complete ∞-category) being k-truncated; in particular, they are all equivalent to
each other. This subsumes, unifies and generalizes Theorems 4.12 and 4.27 in [DJW19], which
cover left/right horns and lower/upper even Segal conditions in the case of abelian categories
and stable ∞-categories. ♦

It follows from Proposition 3.7.1.9 that Question 2.6.3.3 has an affirmative answer if we
assume the target ∞-category to be additive.

Corollary 3.7.1.11. Let X : ∆op → A be a simplicial object in a additive ∞-category. Assume
that X is lower (2k − 1)-Segal (or, equivalently, lower/upper 2k-Segal) and that Xk ' 0. Then
X is trivial, i.e., Xn ' 0 for all n. �

Proof. By suitably enlarging A inside some ambient stable ∞-category, we may assume that
A is weakly idempotent complete. Then by assumption and Proposition 3.7.1.9, the chain com-
plex X ∈ Ch≥0(A) corresponding to X under the Dold–Kan correspondence vanishes in the
range {k, k + 1, . . . }. Moreover the value Xk '

⊕
[k]→→[n]X n (with the product decomposition of

Corollary 3.4.1.6) can only vanish if X vanishes in the range {0, . . . , k}. The result follows. �
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3.7.2 Goodwillie calculus in stable ∞-categories

Recall that in Goodwillie’s calculus [Goo92; Goo03] a functor F : Z → C is called k-excisive
if it sends strongly coCartesian [k]-cubes in Z to Cartesian [k]-cubes in C. For example, F is
1-excisive (or just excisive) if it sends pushouts squares to pullback squares.

In favorable situations, the fully faithful inclusion

Exck(Z,C) ↪−→ Fun(Z,C)

of the ∞-category of k-excisive functors into the ∞-category of all functors Z → C admits a
left adjoint Pk called Taylor approximation. A functor F : Z → C is called k-homogeneous if
it is k-excisive and its (k − 1)-th Taylor approximation Pk−1F is trivial (i.e., equivalent to the
terminal functor).

The goal of this section is to use the Dold–Kan type equivalence

Fun(Fin?,A)
'←−→ Fun(Surj,A)

established in Section 3.3.2 to better describe excisive and homogeneous functors from the∞-cat-
egory S? of pointed spaces to some presentable stable ∞-category D, e.g., the ∞-category Sp of
spectra.

We start with a more general discussion. Let Q be a small pointed category. Let

Q ↪→ P(Q) := Fun(Qop, S)

be the fully faithful Yoneda embedding of Q into the ∞-category of space-valued presheaves
on Q. We identify Q with its image in P(Q), hence each object q ∈ Q with the corresponding
representable presheaf MapQ(−, q) : Qop → S. Denote by

P?(Q) := {0 7→ ?} ⊂ P(Q)

the full subcategory consisting of those presheaves Qop → S which send the zero object 0 ∈ Q

to the terminal object ? ∈ S. The ∞-category P?(Q) contains all representables q ∈ Q because
0 is initial in Q, i.e., MapQ(0, q) is contractible. The ∞-category P?(Q) is presentable and
the inclusion i : P?(Q) ↪→ P(Q) has a left adjoint L (see Lemma 2.2.5.1) defined explicitly on
X ∈ P(Q) by the coCartesian square

constX (0) X

? LX
p

where the top map at q is the value of X at the unique map q → 0 (using that 0 ∈ Q is terminal).
The right vertical arrows X → LX assemble to give rise to the unit of the adjunction L a i.

Lemma 3.7.2.1. The inclusion P?(Q) ↪→ P(Q) preserves colimits of weakly contractible shape,
for example pushouts and filtered colimits. �

Proof. Colimits in P(Q) are computed pointwise and colimits in S of weakly contractible shape
preserve the terminal object (in a way, that is precisely what “weakly contractible shape” means).
Hence the weakly contractible colimit in question (computed in P(Q)) of a diagram in P?(Q) lies
again in P?(Q). The result follows. �

Remark 3.7.2.2. Since the inclusion P?(Q) ↪→ P(Q) does not preserve coproducts, one always
needs to specify in which ambient category we are computing coproducts. To make this distinc-
tion clearer, we denote the coproduct in P?(Q) by

∨
(instead of

∐
) and it wedge. ♦
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Given a small pointed category Q and a natural number k ∈ N, we define the full subcategories

P≤k? (Q) :=

∨
j∈I

qj

∣∣∣∣∣∣ |I| ≤ k, qj ∈ Q

 ⊂ P?(Q) and P≤k(Q) :=

∐
j∈I

qj

∣∣∣∣∣∣ |I| ≤ k, qj ∈ Q

 ⊂ P(Q)

spanned by those objects which are the wedge/coproduct of at most k representables. We
denote by P<∞? (Q) :=

⋃
k∈N P≤k? (Q) the full subcategory of P?(Q) spanned by all finite wedges

of representables.

Example 3.7.2.3. Consider the pointed category {1}+ obtained by freely adding a basepoint to
the terminal category {1}. Explicitly, {1}+ is the category

0 1

where the composite 0 → 1 → 0 is the identity Id0. It follows from Remark 3.1.1.6 (using that
{1}+ is self-dual) that there is a canonical equivalence

P?({1}+)
'−−→ S? (3.7.2)

which sends a presheaf X : {1}op
+ → S to the pointed space ? = X (0)→ X (1), hence in particular

the representables 0, 1 ∈ {1}+ to the pointed spaces 0 = pt and S0, respectively. It follows that
the equivalence (3.7.2) restricts to equivalences

P<∞? (Q)
'−−→ Fin? and P≤k? ({1}+)

'−−→ Fin≤k?

because Fin? and Fin≤k? are precisely the full subcategories of S? spanned by wedges of finitely
many/at most k many copies of S0. ♦

Lemma 3.7.2.4. Let Z be an ∞-category and let C be a presentable ∞-category. For each
object x ∈ Z, denote by x! : C→ Fun(Z,C) the left Kan extension functor along x : {?} → Z.
(1) The functor x! is given explicitly on X ∈ C by

x!(X) ' MapZ(x,−)⊗X.

where⊗ : S×C→ C is the canonical tensoring of C over S (see [Lur09, Proposition 4.8.1.15]).
(2) The functor category Fun(Z,C) is generated under colimits by the functors x!(X) for x ∈ Z

and X ∈ C. �

Proof. Lemma 3.7.2.4 is precisely the content of the first two paragraphs in the proof of [Lur17,
Theorem 6.1.5.6], where it is stated for the specific ∞-category Z = P≤n(C) but proved in a way
that works for all Z. �

Recall that a functor is called finitary if it preserves filtered colimits. We will need the
following theorem, which classifies finitary k-excisive functors in presentable stable∞-categories.

Theorem 3.7.2.5. [Lur17, Theorem 6.1.5.6]. Let Z be a small∞-category and D a presentable
stable ∞-category. Fix a natural number k ∈ N and let F : P(Z) → D be a functor. The
following are equivalent:
(1) The functor F is a left Kan extension of its restriction to P≤k? (Z)

(2) The functor F is k-excisive and preserves filtered colimits. �

More specifically, we need the following pointed version.

Corollary 3.7.2.6. Let Q be a small pointed∞-category andD a presentable stable∞-category.
Fix a natural number k ∈ N and let F : P?(Q)→ D be a functor. The following are equivalent:
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(1) The functor F is a left Kan extension of its restriction to P≤k? (Q)

(2) The functor F is k-excisive and preserves filtered colimits. �

Proof. We first prove that (1) implies (2), mimicking the proof of [Lur17, Theorem 6.1.5.6]. It is
enough to show (2) whenever F is a functor q!(X) : P?(Q)→ D for some q ∈ P≤k? (Q) and X ∈ D,
because these are the left Kan extensions of the homonymous functors q!(X) : P≤k? (Q)→ D which
by Lemma 3.7.2.4 generate under colimits the∞-category Fun(P≤k? (Q),D). If q is actually repre-
sentable (i.e., lies in Q ⊂ P≤k? (Q)) then it follows from Lemma 3.7.2.1 that MapP?(Q)(q,−) (which
by the Yoneda lemma is just evaluation at q) preserves filtered colimits and pushouts. If q =

∨
qj

is the wedge of at most k representables then if follows that MapP?(Q)(q,−) '∏j MapP?(Q)(qj ,−)
preserves filtered colimits (because in S filtered colimits commute with products) and sends
strongly coCartesian [k]-cubes to coCartesian [k]-cubes (because in S the product of at most k
strongly coCartesian [k]-cubes is coCartesian7)). It follows that q!(X) is finitary and k-excisive,
because −⊗X : S→ D preserves all colimits and because coCartesian cubes in D are Cartesian
by stability.

For the converse we must show that each finitary k-excisive functor P?(Q) → D is the left
Kan extension of some functor P≤k? (Q)→ D. Since the localization functor L sends coproducts
to wedges, it induces a commutative square

P≤k(Q) P(Q)

P≤k? (Q) P?(Q)

L L

to which we apply Fun(−,D) to obtain the following commutative square of adjoint pairs:

Fun(P≤k(Q),D) Fun(P(Q),D)

Fun(P≤k? (Q),D) Fun(P?(Q),D)

LKE

⊥
Res

L! a L? i?=L! a L?=i?

LKE

⊥
Res

(3.7.3)

For each finitary k-excisive functor F : P?(Q)→ D, the functor L?F : P(Q)→ D is again finitary
and k-excisive (because L preserves colimits); hence we can apply Theorem 3.7.2.5 to obtain a
functor g : P≤k? (Q) → D whose left Kan extension along P≤k(Q) ↪→ P(Q) is L?F . Then by the
commutativity of (3.7.3), the functor F ' L!L

?F is the left Kan extension along P≤k? (Q) ↪→ P?(Q)
of L!g. �

Denote by
Êxcf(P?(Q),D) ⊂ Funf(P?(Q),D)

the full subcategory generated under colimits by the finitary k-excisive functors for all k ∈ N.
We call the functors in Êxcf(P?(Q),D) coanalytic.

Corollary 3.7.2.7. With Q and D as in Corollary 3.7.2.6, restriction and left Kan extension
along P<∞? (Q) ↪→ P?(Q) give rise to an equivalence

Êxcf(P?(Q),D)
'←−→ Fun(P<∞? (Q),D).

which for each k ∈ N restricts to an equivalence

Exckf (P?(Q),D)
'←−→ Fun(P≤k? (Q),D). (3.7.4)

7) This follows from [Lur17, Lemma 6.1.5.8] using the fact that the cartesian product in S commutes with
colimits in each variable.
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between the ∞-categories of finitary k-excisive functors P?(Q) → D and (arbitrary) functors
P≤k? (Q)→ D. �

Proof. Left Kan extension along P<∞? (Q) ↪→ P?(Q) is fully faithful and induces equivalences (3.7.4)
by Corollary 3.7.2.6. We need to show that its essential image agrees with Êxcf(P?(Q),D)
as full sucategories of Fun(P?(Q),D). The essential image is closed under colimits (because
Fun(P<∞? (Q),D) has all colimits and left Kan extension preserves them), and contains all fini-
tary k-excisive functors (for all k); hence the essential image contains Êxcf . Conversely, every
functor F in the essential image can be written as the colimit F ' colimk∈N LKE(F

∣∣
P≤k? (Q)

)

because the category P<∞? (Q) is the ascending union of the full subcategories P≤k? (Q). �

Let us now focus on the special case Q = {1}+ described in Example 3.7.2.3. We have the
following commutative diagram where the left half is described by Corollary 3.7.2.7 and the right
half is induced from the Dold–Kan type equivalence (3.3.2).

Êxcf(S?,D) Fun(Fin?,D) Fun(Surj,D)

Exckf (S?,D) Fun(Fin≤k? ,D) Fun(Surj≤k,D)

Exck−1
f (S?,D) Fun(Fin≤k−1

? ,D) Fun(Surj≤k−1,D)

'

Pk a Pk

'

'

Pk−1 a Pk−1

LKE a Res

'

LKE a Res

' '

LKE a Res LKE a Res

(3.7.5)

We denote by Pk : Êxcf(S?,D)→ Exckf (S?,D) the functor corresponding to restriction along
Fin≤k? ↪→ Fin?; it is right adjoint to the inclusion Exckf (S?,D) → Êxcf(S?,D) hence deserves
the name k-coTaylor approximation. It follows from Corollary 3.7.2.7 that each coanalytic
functor F : S? → D is the colimit of its coTaylor filtration

P0(F ) −→ P1(F ) −→ · · · −→ Pk(F ) −→ · · · −→ F.

We say that a finitary functor S → D is k-cohomogeneous if it is k-excisive and has vanish-
ing k-coTaylor approximation. Under the equivalence of (3.7.5), the k-cohomogeneous functors
correspond precisely to those diagrams Surj→ D which are non-zero only in degree k.

Now we can describe the adjunctions appearing in the rightmost columns of (3.7.5) more
explicitly. Fix k ∈ N. Consider the full subcategories Surj≤k−1 and Surj=k ' BSk of Surj≤k

spanned by the objects 〈n〉 ∈ Surj≤k with n ≤ k and n = k respectively.
We have the following ladders of adjunctions given by Kan extension (left adjoints always on

top).

Fun(Surj≤k−1,D) Fun(Surj≤k,D) Fun(BSk,D)
LKE

⊥
Res

RKE

Res

⊥
RKE

Pk−1 LKE

(3.7.6)

Observe that in Surj≤k there are no arrows going from Surj≤k−1 to Surj=k; it follows that
• the essential image of left Kan extension along Surj≤k−1 ↪→ Surj≤k is precisely the kernel

of the restriction along BSk ↪→ Surj≤k and
• the essential image of right Kan extension along BSk ↪→ Surj≤k is precisely the kernel of

the restriction along Surj≤k−1 ↪→ Surj≤k.



112/118 Tashi Walde

This implies that the ladder (3.7.6) can be completed with the dashed adjoints to a ladder
of recollements in the sense of [BBD82; BGS88; AKLY17]. Note that under the correspon-
dence (3.7.5) the left dashed functor corresponds precisely to the Taylor approximation functor
Pk−1; its kernel—which corresponds to the ∞-category of finitary k-homogeneous functors—
is precisely the essential image of left Kan extension along BSk ↪→ Surj≤k. In other words,
restriction and left Kan extension give rise to an equivalence

Homogkf (S?,D)
'←−→ Fun(BSk,D) = Sk−repD

of ∞-categories between finitary k-homogeneous functors and coherent representations in D of
the symmetric group Sk. Similarly, restriction and right Kan extension along BSk ↪→ Surj≤k

give rise to an equivalence

coHomogkf (S?,D)
'←−→ Fun(BSk,D) = Sk−repD

of ∞-categories between finitary k-cohomogeneous functors and coherent representations in D

of the symmetric group Sk.

Warning 3.7.2.8. The ∞-categories of finitary k-homogeneous and k-cohomogeneous functors
S? → D are both abstractly equivalent to Sk−repD, hence to each other. However, they
do not form the same subcategory of Êxcf(S?,D) but are, in the language of semiorthogonal
decompositions [BK89], mutations of each other. ♦

3.7.3 Higher Segal objects in stable Goodwillie calculus

We conclude this chapter by identifying finitary k-excisive functors in the sense of Goodwillie
with higher Segal Γ-objects—at least when the target ∞-category is stable.

Theorem 3.7.3.1. Let D be a presentable stable ∞-category and let P be a k-truncated set
of precovers in ∆. Then restriction along Fin? ↪→ S? induces an equivalence of ∞-categories
between:
• Γ-objects Fin? → D whose underlying simplicial object satisfies P -descent and
• finitary k-excisive functors S? → D. �

Proof. Follows directly by combining Corollary 3.7.2.7 (relating finitary k-excisive functors S? →
D to Γ-objects which are left Kan extensions from Γop

≤k), Corollary 3.6.2.6 (relating left Kan
extensions along Γop

≤k ↪→ Γop to left Kan extensions along ∆op
≤k ↪→ ∆op), Proposition 3.6.1.6

(measuring left Kan extensions along ∆op
≤k ↪→ ∆op in terms of the truncation of associated chain

complexes) and Proposition 3.7.1.9 (which relates P -descent of a simplicial object to truncation
of its associated chain complex). �

Corollary 3.7.3.2. Let D be a presentable stable ∞-category and fix k ∈ N. Restriction along
Fin? ↪→ S? induces an equivalence between the ∞-categories of
• Γ-objects in D which are lower (2k − 1)-Segal (equivalently, lower/upper 2k-Segal) and
• finitary k-excisive functors S? → D. �

Proof. Apply Theorem 3.7.3.1 to the k-truncated sets of Example 3.7.1.8. �
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approximation, see also sheafification
coTaylor, 111
exisive, see Taylor
Taylor, 60, 108

(∞-)category, 13, 29
(pre)additive, 84
pointed, 79
associated to a DK-triple, 88
free, 79

stable, 84
weakly idempotent complete, 86

(coherent) chain complex, 83
circle functor, 37, 104
claw, 59

S-pronged, 59
backwards compatible, 61
biCartesian, 60
compatible, 61
cyclically compatible, 64
left/right active, 61

Connes’ cyclic category Λ, 21, 49, 56
corolla, 34
(pre)cover, see also claw

k-fold, 105
degenerate, 69
good cover, 54, 75
lower odd Segal, 75

coverage, 59
covering, 59

candidate, 59
cube, 57

Čech cube, 59
biCartesian, 57
strongly, 58

(co)Cartesian, 57
strongly, 58

degenerate, 58
intersection cube, 68
left/right active, 61

dendroidal set/space/object, 20, 35
covariantly fibrant, 43

cyclic, 21, 50
invertible, 36
Segal, 42
symmetric, 21

descent, 59
DK-morphism, 104
DK-triple, 25, 86

diagonalizable, 87
(partially) monotone, 103
reduced, 87

Dold–Kan correspondence, 25
∞-categorical, 92
generalized, 89
Lurie’s stable, 102

(dual) Epi, 86
excisive

k-excisive, 23, 59, 108
weakly k-excisive, 23, 60
weakly S-Z′-excisive, 60
weakly S-excisive, 60

factorization system, 93
fiber/cofiber, 82

total, 82
finite cyclic set, 56

Γ-set/space/object
special, 15, 20, 43

homotopy initial/terminal, 31
homotopy theory, see ∞-category
homotopy type, see also space

Kan extension, 31
pointwise formula, 31

limit/colimit, 31
X -local

claw, 59
refinement, 70

localization, 32

map in ∆
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active, 56
left/right active, 56
left/right strict, 56
primitive, 67

mapping space, 29
membrane space/object, 69
Mono, 86

nerve
dendroidal, 35
of a category, 16

(∞-)operad, 19, 33
∞-category of, 47
cyclic, 49
invertible, 20, 43
∞-category of, 47

symmetric, 37

(co)partial maps, 93
path space/object, 56

criterion
for higher Segal spaces, 75
for weak Λ-excision, 72

refinement, 69
X -local, 70

regular arrow, 86, 93

section-retraction pair, 85
complementary, 85

Segal’s category Γ, 15, 37
sheaf, 59

sheafification, 60
simplex category ∆, 16, 55

augmented, 55
simplicial set/space/object, 55

2-Segal, 19, 42
2-Segal and unital, 21, 42
2k-Segal, 75
d-Segal, 22
lower (2k − 1)-Segal, 75
polynomial, 70
reduced Segal, 43
Segal, 16
weakly S-∆-excisive, 71
weakly S-Λ-excisive, 71

singular arrow, 86
space
∞-category of, 29, 41

tree
cyclic, see plane rootable

map of
boundary preserving, 36, 50
collapse map, 36, 50

plane rootable, 49
plane rooted, 34
rooted, 37
symetric, see rooted

Waldhausen’s S-construction, 44
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