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Abstract 

Cells of the myeloid lineage form the innate part of the immune system 

and are characterized by a high level of functional plasticity, which is required to 

address the diverse set of functions of these mononuclear cells. Monocytes, 

Macrophages and dendritic cells (DC) are collectively categorized as the 

mononuclear phagocyte system (MPS), to highlight their functional equipment 

that specializes them to the phagocytosis of pathogens as a starting point to elicit 

an immune response. Besides this role, cells of the MPS are also involved in a 

wide variety of homeostatic functions including early development and regulation 

of physiological processes.  However, the multitude of mechanisms required to 

acquire this functional plasticity remains poorly understood. The work that has 

been performed in the scope of this dissertation aimed to advance current 

knowledge of the causes and consequences of functional and cellular plasticity 

of the myeloid immune system. High-dimensional characterization of the effects 

of a Western diet on myeloid immune cell progenitor cells revealed a long-term 

transcriptional and epigenetic reprogramming of the myeloid cell compartment. 

The formation of an innate immune memory in myeloid progenitor cells leads to 

lasting inflammatory priming of monocytes, which may directly contribute to the 

progression of myeloid cell-associated diseases.  

In addition, single-cell RNA-seq elucidated unreported cellular heterogeneity of 

the monocyte and dendritic cell compartment in human peripheral blood. A 

combination of phenotypic and transcriptional analyzes resulted in a precise 

categorization of the human DC compartment consisting of pDCs, cDC1, two 

cDC2 subsets, and a deeply characterized preDC subset. Furthermore, a 

universal strategy for the integration of cellular atlases was conceptualized and 

applied to establish a consensus map of the human DC and monocyte cell space. 

This thesis provides mechanistic insights into the cellular composition of myeloid 

cells and their functional plasticity, which will form the foundation for further 

investigations into the dynamic changes of the immune cell compartment during 

diseases and will be critically relevant for designing effective treatments for a wide 

variety of pathologies linked to myeloid cells.   
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Chapter 1 Literature review 

1.1 Introduction 

A multicellular organism is continuously challenged by a diverse set of 

agents, including invading pathogens like viruses and bacteria, but also by 

malignant changes of its tissue or environmental toxins. To adapt to this broad 

repertoire of challenges, the immune system has developed, so that it cannot 

only recognize these dangers but also integrate, communicate, and eliminate 

them (Parkin and Cohen, 2001). The immune system has evolved basic 

principles ranging from the production of antimicrobials in simple organisms to 

the existence of a highly complex network of signaling and effector molecules 

and various immune cells in vertebrates (Buchmann, 2014; Zou et al., 2016; 

Müller et al., 2018). In addition, this host defense system is not only limited to 

fighting invading pathogens but also plays crucial roles in sensing non-microbial 

dangers, regulating physiological processes, orchestrating early development, 

and maintaining homeostasis.  

In order to fulfill this diverse set of functions, the immune system has developed 

a variety of approaches. One of the primary strategies is the functional 

compartmentalization of tasks, which has led to the development of specialized 

immune cell types (Arendt, 2008; Buchmann, 2014; Arendt et al., 2016). These 

specialized cell types can conduct particular tasks, like sensing and activating 

other cells, while others are equipped to attack invading pathogens. The cellular 

heterogeneity of the host defense system is one of the critical aspects that results 

in the incredible plasticity of the immune system of higher vertebrates.  

Another essential strategy is the context-specific behavior of immune cell types 

that by integration of diverse signals including localization, signaling molecules, 

microbial substances, and the local microenvironment can respond adequately 

to the particular situation. This functional plasticity is crucial to balance the 

responses of immune cells varying between maintaining homeostasis and 

fighting pathogens. Especially, cells of the myeloid lineage demonstrate a high 

level of functional plasticity (Buchmann, 2014; Xue et al., 2014; Guilliams et al., 

2014; Lavin et al., 2014; Ginhoux et al., 2016; Schultze et al., 2019).  
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Taken together, cellular heterogeneity and functional plasticity are essential 

principles of the immune system, but the direct consequences and dynamics of 

cellular diversity are not yet fully understood. Advances in identifying these 

mechanisms will improve our knowledge of the regulation of such processes and 

will significantly benefit our ability to understand and treat diseases.  

Of note, recent technological discoveries have paved the way to map cellular 

diversity and its consequences in a comprehensive fashion. To summarize the 

latest technological developments that have increased our knowledge about the 

cellular heterogeneity in myeloid cells, Joachim L. Schultze and I published a 

review article in Frontiers in Immunology (Günther and Schultze, 2019). A copy 

of the published manuscript is reprinted in the appendix. 
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1.2 Publication 
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Publication I: The manuscript is reprinted in the appendix with permissions from 
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1.3 Objectives of the thesis 

This thesis aimed to investigate the consequences of functional and 

cellular plasticity in the myeloid cell system. It is crucial to understand the exact 

mechanisms of myeloid cell plasticity since this cell compartment is involved in 

almost all major causes of death including cardiovascular diseases (CVDs), 

stroke, chronic obstructive pulmonary disease (COPD), different types of cancer, 

diabetes, Alzheimer’s disease and infectious diseases. The studies reported in 

this thesis aim to investigate the cellular composition, mechanisms of cellular 

differentiation, and signal integration of the myeloid cell compartment. 

 In this regard, the aims of the studies represented here were: 

• to evaluate and improve current strategies for cell-type classification 

• to investigate the consequences of Western diet regarding myeloid cells 

and their hematopoietic precursors  

• to define the heterogeneity of the dendritic cell compartment in human 

peripheral blood  

• to improve the current classification of human mononuclear myeloid cells 

in peripheral blood  

• to develop a universal approach to establish consensus maps from 

scRNA-seq datasets 

• to create a model for the early generation of tissue-resident macrophages 

from precursor states. 
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Chapter 2 Methods 

In the following chapter, I would like to summarize the critical technologies 

that have been utilized in this thesis.  

A series of discoveries in the areas of microfluidics, flow cytometry and the 

application of fluorescent dyes or fluorescent-labeled antibodies for biological 

research (Coulter, 1949; Coons and Kaplan, 1949; Parker and Horst, 1959; 

Kamentsky et al., 1965; Van Dilla et al., 1969; Hulett et al., 1969; Salzman et al., 

1975) have all paved the way for modern cell type discovery. These technologies 

were further advanced by the ability to sort cells according to their phenotypical 

characteristics as introduced by the development of the first fluorescent activated 

cell sorter (FACS) (Hulett et al., 1969; Hulett et al., 1973). Flow cytometry (FC) is 

used to detect the expression of specific cell type marker genes allowing for 

classification of heterogeneous cell populations. A primary principle of this is the 

combination of positive and negative protein markers that creates a well-defined 

profile of a cell type. However, the specific markers for cell type detection must 

be defined before the analysis of the sample, which may reduce the potential for 

finding new cell populations. One of the main advantages of flow cytometry is that 

the process itself does not require fixation of the cells, therefore enabling the 

analysis of living specimens. In addition, it permits the sorting of cell types and 

the further use in experiments to examine the specific functions of these cell types 

including transcriptional and epigenetic profiling. 

The ability to sequence the whole messenger RNA (mRNA) content of a sample 

by high-throughput RNA-seq represents a key technology that is used in all areas 

of life sciences (Nagalakshmi et al., 2008; Wang et al., 2009). The process of 

RNA-seq is initiated by the generation of cDNA from (messenger) RNA, followed 

by the ligation of DNA sequencing adaptors, and the amplification of the construct 

by polymerase chain reaction (PCR). The resulting cDNA library is sequenced by 

next-generation sequencing (NGS) to provide information about the abundance 

and sequence of RNA species (Ozsolak and Milos, 2011). While the applications 

of this method are manifold, RNA-seq is primarily used to examine transcriptional 

changes in a system as a consequence of perturbations (Han et al., 2015). The 
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strength of transcriptional profiling is the unbiased measurement of thousands of 

genes within a sample. This does not only allow stratification of cell types by 

expression of signature genes, but it enables the understanding of deep 

regulatory circuits within cells. Hence, RNA-seq data is used to understand the 

transcriptional changes during processes including cell activation, cell 

differentiation, and cell communication. Notably, the power to model the 

dynamics of the transcriptional networks and to understand the causal effects of 

stimulations has made a significant impact on modern life science. However, 

population-based RNA-seq is limited considering the detection of cellular 

heterogeneity, since the quantification of population-based RNA represents an 

average of all measured cells, which may hide bimodal expression of genes. 

RNA-seq of individual cells rather than a population of cells was first reported in 

2009. Here, RNA-Seq of a small number of cells yielded the first sparse 

transcriptomes of individual cells. Since then, a multitude of scRNA-seq methods 

have been reported, which enable parallel profiling of thousands of cells with high 

sensitivity and low costs. According to the cell isolation strategy, two major single-

cell technologies are frequently used including well/ microwell-based and droplet-

based methods. 

One of the first technologies that incorporated unique molecular identifier (UMI) 

to increase the precision of RNA molecule quantification allows massively parallel 

single-cell RNA-sequencing (MARS-Seq) (Jaitin et al., 2014; Jaitin et al., 2015). 

MARS-seq enables profiling FACS sorted single-cells by using a robotics-

assisted protocol. Another well-established protocol is called SMART-Seq2, 

which creates single-cell libraries by using a template-switching mechanism 

leading to a robust method with high sensitivity (Picelli et al., 2013; Picelli et al., 

2014; Ziegenhain et al., 2017). Since MARS-Seq and SMART-Seq2 are plate-

based technologies, their setup allows the combination of protein information 

recorded during cell sorting with unbiased transcriptome analysis of individual 

cells, which qualifies them for cell type discovery approaches (Jaitin et al., 2014; 

Paul et al., 2015; Mass et al., 2016; See et al., 2017; Giladi et al., 2018; Montoro 

et al., 2018). 
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One of the biggest challenges of scRNA-seq experiments is the analysis of the 

sparse and noisy datasets (Ning et al., 2014; Macaulay and Voet, 2014; Stegle 

et al., 2015; Bacher and Kendziorski, 2016; Vallejos et al., 2017). Although 

generally speaking the scientific questions may differ, the general outline of data 

analysis is similar (Baßler et al., 2019). Pre-processing pipelines are designed to 

perform quality control, read alignment and barcode correction resulting in the 

compilation of count matrices that contain the number of gene-specific reads or 

UMIs for every cell respectively (Tian et al., 2018). Dimensionality reduction of 

high-dimensional data by applying a combination of linear- and non-linear 

dimensionality reduction methods is a prerequisite for representing the data in a 

low-dimensional space (Becht et al., 2019). A primary goal of data analysis is the 

clustering of cells into groups of transcriptionally similar cells, which is followed 

by the detection of cluster-specific genes by differential expression analysis.  

One of the current challenges of scRNA-seq data analysis is the annotation of 

cell clusters (Stegle et al., 2015; Ilicic et al., 2016). One common approach is to 

check the expression of specific cell type markers. However, the sparsity of 

single-cell data may lead to unsatisfying results. Hence, the employment of gene 

signature scores is a valid tool for cell-type classification (Mass et al., 2016; See 

et al., 2017; Aran et al., 2019). 

The advent of scRNA-seq has led to the release of a multitude of single-cell 

transcriptome datasets creating detailed maps of cell types from complex tissues. 

Also, large international consortia aim to produce comprehensive datasets of all 

tissues of the human body (Rozenblatt-Rosen et al., 2017). To benefit from such 

efforts, it will be crucial to combine diverse datasets establishing unified 

consensus maps of cell types.  
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Chapter 3 Western diet Triggers NLRP3-Dependent Innate 

Immune Reprogramming 

3.1 Introduction 

Significant breakthroughs in modern medicine including the use of 

antibiotics and vaccines, lead to a substantial decrease in deaths by infectious 

diseases in western societies. However, changes in our lifestyle favored the 

increase in deaths caused by non-communicable diseases (NCD). Nutrient-

dense and high caloric Western diets (WD) promote obesity, which is linked to 

increased risk for several diseases including type 2 diabetes, CVDs like 

atherosclerosis and cardiac infarction.  

Like most CVDs, the pathogenesis of atherosclerosis is associated with the 

formation of an inflammatory environment, which is followed by a massive 

infiltration of monocytes into the tunica intima of arterial walls. Subsequent 

differentiation of monocytes is a prerequisite for the generation of arterial plaques, 

a major hallmark of atherosclerosis. An inflammatory environment induces 

transcriptional and epigenetic reprogramming of monocytes, which facilitates 

their differentiation into foam cells, further promoting plaque generation. While 

the direct action of Western diet on these terminal cell types is well studied, it 

remains elusive whether the effects of WD on monocytes are already introduced 

earlier during hematopoiesis, e.g. in the progenitors of monocytes termed 

granulocyte-monocyte progenitor (GMP). 

Given the regular challenge by nutritional ingredients, the inflammatory response 

of monocytes during the pathogenesis of atherosclerosis might be explained by 

the concept of trained immunity. Here, innate immune cells like monocytes have 

been shown to react to lipopolysaccharides (LPS) stronger, if they already have 

had contact with a particular group of stimuli (e.g. Bacille Calmette–Guérin (BCG) 

vaccine or β-glucan), leading to the formation of an innate immune memory 

(Netea et al., 2016; Netea et al., 2019). In the outlined context, it can be assumed 

that innate immune training of GMPs contributes to transcriptional and epigenetic 

reprogramming of monocytes and hence may enhance the progression of 

atherosclerosis. 
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In cooperation with Dr. Anette Christ and Prof. Eicke Latz located at the Institute 

of Innate Immunity at the University of Bonn, we investigated the consequences 

of a WD on GMPs and examined whether it can induce innate immune training in 

GMPs and monocytes.  

The results of this study were published in Cell by Christ and Günther et al. (Christ 

et al., 2018). A copy of the published article is reprinted in the appendix.  
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3.2 Publication 
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3.3 Summary 

In this study, we investigated the consequences of a Western diet on the 

hematopoietic system in a murine atherosclerosis model (Ldlr-/- mice).  

WD induces both systemic inflammation and peripheral priming of specific 

myeloid cell subsets, which is characterized by increased responsiveness to 

certain inflammatory stimuli. Remarkably, after setting the mice back on a chow 

diet (CD), myeloid cells still retained a primed state, clearly suggesting a WD 

triggered long-term reprogramming of myeloid cells. In addition to a long-lasting 

reprogramming of myeloid cells, we also observed quantitative changes in the 

composition of peripheral blood including an increase of red blood cells, 

monocytes, and granulocytes indicating a stimulation of the myeloid precursors 

residing in the bone marrow.  

By performing high-depth transcriptomics of GMPs, we identified a unique gene 

signature induced by WD, which is highly enriched for monocyte and granulocyte 

markers. Indeed, further analysis showed that WD led to a transcriptional lineage 

bias of GMPs towards monocytes at the expense of granulocytes. 

When assessing the activation status of monocytes and granulocytes after a 

systemic LPS challenge, it became clear that WD causes priming of myeloid cells 

resulting in a stronger activation phenotype. Similarly, LPS induced a stronger 

inflammatory signature in bone marrow precursor cells isolated from WD-fed 

mice, suggesting a WD induced functional reprogramming of myeloid cells and 

precursor cells. 

Strikingly, the analysis of GMPs from mice fed with WD and subsequent CD 

showed that the response to LPS was still strongly affected. By using gene co-

expression networks and transcription factor predictions, we showed that the LPS 

response in WD/ CD GMPs is more similar to the LPS response of WD GMPs 

and moreover displays a unique signature. Collectively, these results imply that 

WD triggers the formation of innate immune memory by long-lasting 

reprogramming of myeloid precursor cells. To understand the mechanism of this 

phenomenon, an assay for transposase-accessible chromatin using sequencing 
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(ATAC-seq) was performed on GMPs after WD, which demonstrated substantial 

and long-term epigenetic reprogramming of GMPs. 

Next, we performed a functional trained immunity (quantitative trait locus) QTL 

study in human monocytes, which indicated that members of the IL1 pathway are 

linked to oxidized LDL (ox-LDL) induce trained immunity. To test this hypothesis, 

we analyzed the response to a WD of the bone marrow compartment from mice 

lacking NLRP3 (Ldlr-/-Nlrp3-/-). In line with the results from the QTL study, NLRP3-

deficient mice did not show similar reprogramming towards WD, suggesting 

NLRP3 as a critical player in the sensing of Western diet-induced sterile 

inflammation.  
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Chapter 4 Mapping the human DC lineage through the 

integration of high-dimensional techniques 

4.1 Introduction 

In the previous chapter, we showed that myeloid cells show a substantial 

ability to respond to a variety of stimuli highlighting the extensive plasticity of 

these cells. One of the main strategies to facilitate this plasticity is the functional 

compartmentalization into different types of immune cells, including monocytes 

and DCs.  

Initially identified by Ralph Steinmann in the early 1970s, DCs are equipped to be 

very efficient in antigen presentation to naïve lymphocytes (Steinman and Cohn, 

1973; Steinman, 1991; Banchereau and Steinman, 1998). Decades of focused 

research have shown that DCs are not a homogenous population, but rather 

consist of different functional entities resulting from variability in their phenotype, 

tissue localization, and ontogeny (Thomas et al., 1993; O’Doherty et al., 1994; 

Fanger et al., 1997; Anderson et al., 2000; Lindstedt et al., 2005; Randolph et al., 

2008). Human DCs in the blood are identified by using a combination of lineage 

markers and the receptors HLA-DR and CD11c. Three distinct populations can 

be identified by using established flow cytometry schemes involving the cell type-

specific markers CD141 for cDC1, CD1c for cDC2 and CD123 for plasmacytoid 

DCs (pDCs). However, flow cytometry heavily relies on already known marker 

genes impeding the discovery of the full heterogeneity in complex tissues.  

One of the technologies that has revolutionized cell type discovery is scRNA-seq, 

which allows users to perform parallel transcriptomic profiling on thousands of 

cells. The transcriptome information is used to identify transcriptionally similar 

populations of cells by unsupervised machine learning and is therefore not relying 

on a priori knowledge. In order to study the human DC compartment in peripheral 

blood, we applied scRNA-seq to the Lin-HLA-DR+CD135+ fraction of PBMCs. In 

collaboration with the group of Florent Ginhoux from the Singapore Immunology 

Network, we published the results of this study in Science (See et al., 2017). A 

copy of the published manuscript is reprinted in the appendix with permissions of 

AAAS.  
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4.2 Publication 
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4.3 Summary 

To study the heterogeneity of DCs in an unbiased fashion, peripheral blood 

cells were sorted into 384-well plates and analyzed by MARS-Seq. Since the 

number of dendritic cells in peripheral blood is low, sorted cells were enriched by 

sampling from the Lin-(CD3/14/16/19/20/34)CD45+CD135+HLA-DR+CD123+ 

CD33+ population containing all DC populations. Performing a detailed quality 

control yielded a scRNA-seq dataset containing transcriptome information of 710 

cells.  

To reduce the complexity of the gene space, we applied a non-linear 

dimensionality reduction by t-stochastic neighbor embedding (tSNE), which was 

used to perform a density-based spatial clustering with noise (DBSCAN) model. 

tSNE embedding and clustering allowed us to define five transcriptionally distinct 

clusters within the HLA-DR+CD135+ cell space. To annotate these clusters, we 

generated cell-type-specific signatures for pDCs, cDC1s, and cDC2s by 

analyzing previously published microarray data. Overlay of signature scores onto 

the tSNE map allowed to identify the three main DC populations in the scRNA-

seq dataset. To understand the transcriptional relationship of cell clusters, 

different trajectory analysis algorithms allowed us to define distinct branches of 

cells suggesting developmental connections between cells on the same branch. 

The close relationship to the cDC clusters suggested a mixed phenotype for one 

of the groups which were further validated by a diverse expression of both pDC 

and cDC marker genes. Investigation of single-cell RNA-seq data allowed the 

identification of a population of cells with a close relationship to cDCs and a mixed 

expression of cDC and pDC marker genes, indicating a progenitor phenotype of 

these cells. This assumption was further supported by the analysis of the HLA-

DR+CD135+ cell compartment by cytometry by time-of-flight (CyToF). 

After establishing the CD33+CD123+ character of the putative progenitor 

population, the progenitor capacity was tested by using a stromal culture system. 

While the pDCs and cDCs mostly stayed within their phenotype, the putative DC 

progenitor cells contributed to both cDC1s and cDC2s, suggesting their role as 

circulating preDC. Remarkably, functional assays clearly showed that some of 
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the functional attributes that have been published for pDCs may be attributed to 

a contaminating preDC population, which underlines the importance of unbiased 

discovery approaches by high-dimensional technologies. While the ’pure’ pDC 

fraction was able to produce interferon-α (IFN-α), the production of IL-12p40 and 

the ability to stimulate naïve CD4+ T cells in a T cell stimulation assay was clearly 

attributed to preDCs rather than pDCs. Taken together, these results revealed 

that these two populations present two transcriptionally, phenotypically and 

functionally distinct subsets.    

High-content scRNA-seq data was generated from human peripheral blood 

preDCs to investigate their transcriptional heterogeneity. Trajectory analysis and 

signature score calculation could clearly show a transcriptional stratification of 

preDCs with cDC1-like and cDC2-like gene expression signatures and a 

population of unprimed preDCs. With the phenotypic characterization at hand, all 

preDC and other DC subsets were sorted and analyzed by population-based 

RNA-seq, which allowed deep transcriptional profiling of these subsets. 

Bioinformatic analysis revealed DC subset specific signatures for all major 

subpopulations and besides allowed to visualize the similarity between 

committed preDC subsets and their progeny. Furthermore, analysis of 

transcription factors (TF) exposed discrete patterns of cell type-specific TF and 

their dynamic expression during preDC development.  

To understand the ontogeny of these blood-derived preDC populations, human 

blood, and bone marrow cells were analyzed by CyTOF. Unsupervised 

dimensionality reduction clearly distinguished between CDPs, pDC, and preDCs 

in the bone marrow. Interestingly, this analysis suggested that polarization of 

preDCs into the committed preDC subsets is already established in the bone 

marrow.   
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Chapter 5 Inference of high-resolution single-cell transcriptomic 

consensus maps illustrated for HLA-DR+ and CD34+ cells from 

human peripheral and cord blood 

5.1 Introduction 

Single-cell RNA-seq is a powerful technology that has paved the way for 

categorizing the cellular space in humans and other organisms. Creating a map 

of all human cell types will generate a reference to detect and fully understand 

how imbalances of this system can build the basis for disease pathogenesis 

(Regev et al., 2017). However, to develop unified consensus maps it is crucial to 

design strategies that allow combining datasets across different individuals, 

studies, or even different tissues. Furthermore, the wealth of single-cell omics 

technologies will create diverse sets of data including epigenetic, transcriptomic 

and protein expression data in part enriched by spatial and temporal information 

(Neu et al., 2017; Marioni and Arendt, 2017; Packer and Trapnell, 2018). It will 

be crucial to design strategies to channel the knowledge of these technologies 

towards creating meaningful, interpretable and comprehensive consensus maps. 

Only recently, single-cell technologies including mass cytometry and scRNA-seq, 

have described an unprecedented heterogeneity in the monocyte/ DC 

compartment (Breton et al., 2016; Villani et al., 2017; See et al., 2017; Alcántara-

Hernández et al., 2017). In our study, we have extended these findings to create 

the next iteration of the monocyte/ DC space by combining unbiased cellular 

characterization using scRNA-seq with the assessment of crucial protein markers 

by flow cytometry assisted index-sorting of major cell populations. The 

combination of both allows us to connect the results from an unbiased 

characterization of this cell space to the enormous body of knowledge that has 

been created in the past decades. To consolidate the monocyte/ DC 

compartment we utilized a strategy to unambiguously classify these cell types 

and their subsets. Importantly, we also show that a similar approach can be used 

to detect rare cell types in large top-down scRNA datasets. 
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In cooperation with Dr. Branko Cirovic, Kevin Baßler and Prof. Dr. Andreas 

Schlitzer, we created a new and improved consensus map of the human 

monocyte and DC cell space and developed a widely applicable strategy to study 

rare cell types in top-level scRNA-seq datasets. While the paper is under review, 

we have published the results on the preprint server biorxiv (Günther et al., 2019). 

A copy of the published article is reprinted in the appendix.  
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5.2 Publication 
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5.3 Summary 

To improve our knowledge on the heterogeneity of human monocytes and 

DC, we generated a consensus dataset by index-sorting and high-content 

scRNA-seq. This approach allowed us to compare recently published legacy 

maps and to form a consensus dataset of the HLA-DR+ cell compartment in 

human peripheral blood, mainly containing monocyte and DC subpopulations. 

We showed that the human DC compartment in peripheral blood consists of one 

type of cDC1, two transcriptionally distinct types of cDC2s (DC2 and DC3), one 

pDC population, and an AXL+SIGLEC6+ preDC population. To unambiguously 

define the human DC map, we identified the nature of the newly suggested DC4 

as a mixed population of mainly preDCs and CD16+ monocytes. Next, we re-

established the structure of three main populations of human peripheral blood 

monocytes, by identifying a contaminating CD56dim natural killer (NK) cell 

population as these cells had been suggested as a fourth monocyte subset 

(Villani et al., 2017). 

To show the wide applicability of our approach, we successfully applied the 

developed strategy to identify rare cell populations in top-level datasets. This 

enabled us to stratify human peripheral blood CD34+ hematopoietic stem cells 

(HSC). As a result, while CD34+ cells in adult peripheral blood revealed strong 

erythroid-lineage priming, our data suggest that CD34+ cells in cord blood exhibit 

a multi-lineage primed state.       

Taken together, we have developed a versatile approach to study and improve 

cellular maps that can be applied to other cell types and tissues. By employing 

this approach, we could not only expand the human monocyte and DC cell atlas 

but also define the lineage priming of human CD34+ cells in adult peripheral and 

cord blood. 
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Chapter 6  Overall Discussion 

Cells of the myeloid cell lineage have crucial roles in regulating 

physiological processes, keeping tissue homeostasis, and representing the first 

line of protection against a multitude of dangers. To accomplish this high degree 

of functional diversity myeloid cells are characterized by a high level of plasticity 

as a consequence of a highly regulated integration of diverse signals (see Figure 

1). Myeloid cells have evolved into a complex system of different immune cell 

types, each specialized in a range of tasks. This diversity of myeloid cells is 

extended by the ability to quickly respond to a wide range of signals, further 

increasing their functional plasticity. Both cellular and functional plasticity of 

myeloid cells are a strong focus of current research efforts in immunology 

because there is still a significant need to understand the mechanisms and effects 

of myeloid cell heterogeneity. The specification of cellular and functional plasticity 

is the result of a multitude of molecular decisions. Here, every signal a cell 

perceives is integrated with the current state of interconnected networks like the 

transcriptome, epigenome, metabolome, and proteome (Figure 1). Of note, these 

interconnected networks build an intrinsic regulatory memory as they reflect the 

result of earlier molecular decisions.  

 

 

Figure 1: Strategies of functional diversification and the regulatory decision making. 
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The work that has been performed in the scope of this dissertation aimed to 

advance our understanding of causes, regulation, and consequences of context-

specific plasticity of myeloid cells. In this regard, the response of the mononuclear 

myeloid cell compartment to a Western diet was studied in an atherosclerosis 

mouse model. Both peripheral and splenic monocytes showed evident signs of 

inflammation when isolated from WD-fed animals (Christ et al., 2018). 

Furthermore, WD induced a substantial increase of total erythrocyte, granulocyte, 

and monocyte numbers in peripheral blood, suggesting the involvement of 

myeloid cell precursors. Similar to this study, Béliard et al. reported that WD or 

its nutritional components induced myelopoiesis in mice and led to an activated 

phenotype of peripheral blood monocytes (Béliard et al., 2017). Of note, in 

humans there is a clear correlation of body fat with the number of CD16+ 

nonclassical monocytes. Furthermore, the decrease of intermediate monocytes 

is associated with a reduction of subclinical atherosclerosis (Poitou et al., 2011). 

Clearly, the induction of myelopoiesis suggested an involvement of the 

hematopoietic compartment (Singer et al., 2014).  

The effect of WD can be partially explained by the results of a transcriptome-wide 

analysis of GMPs showing a strong inflammatory activation signature of these 

myeloid cell precursors (Christ et al., 2018). Strikingly, this inflammatory priming 

of GMPs persisted after resting the mice on CD, suggesting a long-term 

reprogramming of the hematopoietic progenitor cells. Here, WD leads to the 

formation of a lasting innate immune memory (Netea et al., 2016; Netea et al., 

2019), which might be the reason for an enhanced inflammatory response of 

peripheral monocytes in atherosclerosis and other pathologies. Recently, several 

studies demonstrated the relationship between diet-induced myelopoiesis and 

epigenetic regulation of peripheral monocytes and hematopoietic progenitors 

(van Kampen et al., 2014; Short et al., 2017). However, these studies were limited 

to the epigenetic analysis of selected TFs. To investigate the global changes in 

the epigenome, we performed a genome-wide assessment of open chromatin by 

ATAC-seq. WD induced global changes in the chromatin accessibility landscape 

leading to lasting transcriptional consequences for GMPs. Notably, one of the 

reported genes made accessible by WD is the dioxygenase Tet2, recently directly 
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associated with an anti-atherogenic effect (Jaiswal et al., 2017). It might be part 

of prospective studies to clarify whether the increased accessibility negatively 

regulates the expression of TET2. Besides, Tet2 is a very well-studied tumor 

suppressor gene as somatic mutations are frequently observed in myeloid 

neoplasms including MDS, CMML, and AML (Ko et al., 2010) and mutations are 

associated with poor prognosis (Metzeler et al., 2011). This is very interesting in 

regard to the reported association of overweight and obesity with an increased 

incidence of AML (Li et al., 2017) and poor prognosis for obese patients (Orgel 

et al., 2016), which is in line with the role of chronic inflammation in tumorigenesis 

(Elinav et al., 2013). Taken together, these results show that WD leads to an 

inflammatory environment, which has direct effects on peripheral blood cells but 

also leads to a long-term transcriptional and epigenetic reprogramming of 

myeloid precursor cells. 

Chronic low-grade inflammation induced by Western diet is a significant risk 

factor for several diseases, including obesity, type 2 diabetes, chronic liver 

disease, cardiovascular diseases (Christ and Latz, 2019). Our study shows that 

WD leads to lasting changes in the myeloid cell precursor compartment in the 

bone marrow, which may provide additional means for therapeutic intervention in 

different pathologies. Importantly, we could identify NLRP3 as a critical sensor of 

WD induced inflammation (Christ et al., 2018), which offers a potential therapeutic 

target for chronic low-grade inflammation. To design effective therapeutics, a 

better understanding of the direct mechanisms of how WD induces this low-grade 

inflammation is needed. Here, it will be crucial to clarify the exact stimulus of 

NLRP3 and weather NLRP3 senses this inflammation on the level of the bone 

marrow compartment or already in the gastrointestinal tract. Remarkably, several 

studies suggest that WD triggers changes of the gut microbiome leading to the 

influx and activation of myeloid cells (David et al., 2014; Wilson et al., 2018). WD 

induced trained immunity in the bone marrow compartment might contribute to 

this strong inflammatory response.  

The lineage-priming of GMPs is heavily influenced by WD as shown by the 

transcriptional priming towards monocytes at the expense of the granulocyte 
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signature (Christ et al., 2018). Lifestyle-induced changes of the cellular 

composition in peripheral blood in mice and humans are clearly associated with 

onset, progression and poor therapeutic success of various diseases including 

cancer, type 2 diabetes and atherosclerosis (Jaiswal et al., 2017; Short et al., 

2017; Li et al., 2017; Christ and Latz, 2019). Hence, it is crucial to understand the 

dynamics of changes in the peripheral blood composition in order to design 

effective therapeutic strategies.  

To investigate the cellular heterogeneity of myeloid cells belonging to the 

dendritic cell compartment in human peripheral blood, high-throughput single-cell 

RNA-seq of sorted DCs from a healthy donor was performed (See et al., 2017). 

In addition to the expected major DC populations, including pDCs, cDC1, and 

cDC2, we also detected another group of cells, namely predendritic cells (preDC), 

sharing transcriptional similarities to both pDC and cDCs underlining the 

necessity of single-cell RNA-seq for unbiased cell-type discovery.  

In differentiation assays, preDCs generate cells of the cDC subsets but fail to 

produce pDCs, which suggests that this cell type is a progenitor of classical 

dendritic cells, previously identified in mice (Naik et al., 2007). By using a 

combined strategy of single-cell RNA-seq and CyToF, transcriptional and 

phenotypic profiles of preDCs in human peripheral blood were established 

leading to a new sorting strategy for human peripheral blood DCs (See et al., 

2017). Updating the way of how DCs are defined is crucial, as functional assays 

showed that several functions previously attributed to pDCs, e.g. IL12 production 

or T cell stimulatory capacity (Cella et al., 1999a; Matsui et al., 2009), are a result 

of contaminating preDCs in the pDC fraction. The lineage-priming of preDCs 

towards both classical DC subsets is already eminent in the bone marrow 

extending previously reported lineage-priming in mice and humans (Breton et al., 

2015; Schlitzer et al., 2015; Breton et al., 2016). Collectively, a high-resolution 

map of the dendritic cell space in human peripheral blood was established, 

creating a reference for further investigation of changes in DC subset composition 

in diseases.  
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Our study emphasizes the importance of unbiased high-dimensional approaches 

for cell type discovery. Interestingly, Villani and colleagues (2017) performed a 

similar study investigating the heterogeneity of the monocyte and DC 

compartment in human peripheral blood by single-cell RNA-seq. When 

comparing both studies it became apparent that the suggested maps of human 

DCs differed significantly in the detected types of DC. Therefore, we developed 

a strategy to unify the results of both studies and created a universal approach to 

harmonize single-cell RNA-seq datasets. Application of this strategy led to the 

improvement of the human consensus map of the DC and monocyte cell space. 

Our results clarified (i) the nature and phenotype of a suggested DC4 population 

(Villani et al., 2017) as mixture of non-classical monocytes and preDCs, (ii)  

identified the Mono4 (Villani et al., 2017) population as contaminating CD56dim 

NK cells and (iii) showed the transcriptional and phenotypical similarity of DC5/ 

AS-DCs and preDCs, which collectively cumulated in the harmonization of the 

human DC and monocyte space (Günther et al., 2019).  

Next, we applied the same approach to different datasets showing the broad 

applicability of our strategy. For instance, integration of a high-content map and 

a top-level map from human blood CD34+ cells were used to stratify the human 

peripheral blood HSC continuum. While CD34+ cells from adult human peripheral 

blood primarily showed a lineage-priming for the erythroid lineage, CD34+ cells 

from human cord blood showed a more unprimed signature (Günther et al., 

2019). Our approach may represent an important strategy to consolidate cellular 

maps generated by large international consortia aiming to create cell atlases of 

different tissues during health and disease (Rozenblatt-Rosen et al., 2017).  

Our efforts to map the human DC and monocyte cell space (See et al., 2017; 

Günther et al., 2019) will serve as a reference to detect imbalances of 

mononuclear myeloid cells in several diseases including atherosclerosis and 

chronic inflammatory diseases. However, further efforts are required to identify 

the relationship of blood monocytes and DCs with their counterparts in solid 

tissues including skin, lymph nodes, lung, spleen, etc. Furthermore, future studies 

need to investigate the assignment of pDCs to the DC lineage. Their mixed 
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phenotype,  but close relationship to DCs impeded an assignment to a cell 

lineage (Lennert and Remmele, 1958; Facchetti et al., 1988; Chehimi et al., 1989; 

Siegal et al., 1999; Cella et al., 1999b). Although pDCs display an inefficient 

antigen presentation capacity, they were classified as dendritic cells (Banchereau 

et al., 2000). A new study in mice by Dress et al. (2019) reported that priming of 

progenitors towards the pDCs lineage is already evident in common lymphoid 

progenitors (CLP), suggesting an early separation from the cDC lineage.  

However, further information is required to unambiguously identify the cell lineage 

of pDCs (Günther and Schultze, 2019). 

Another important observation from our study is the mixed potential of preDCs 

that is already acquired in the bone marrow compartment and still present in 

peripheral blood (See et al., 2017; Günther et al., 2019). This transcriptional 

priming implies that a part of the preDCs is already committed to either the cDC1 

or cDC2 lineage when entering the tissue. This phenomenon is in line with a 

previous report on the limited effects of the tissue microenvironment on 

reprogramming of DCs, suggesting a minor influence of signals from the local 

environment (Heidkamp et al., 2016). In contrast to DCs, monocytes and 

macrophages are more strongly influenced by the microenvironment as outlined 

in various studies (Xue et al., 2014; Lavin et al., 2014; Schmidt et al., 2016). This 

implication is also observable in the ontogeny of tissue-resident macrophages. 

Single-cell RNA-seq was used to investigate the generation of tissue-resident 

macrophages from erythroid-myeloid progenitors (EMP) in early murine 

development (Mass et al., 2016). The analysis of scRNA-seq data contributed to 

formulating a model of specification of tissue-resident macrophages. Here, during 

early development EMPs are generated in the yolk sac (YS) progressively 

differentiating towards tissue-resident macrophages. Following, an intermediate 

population termed preMac is committed to the macrophage lineage as these cells 

already acquire a key macrophage core signature and migrate to the developing 

tissues in a CXCR3-dependent fashion (Mass et al., 2016). Once, the preMacs 

have reached the organs; the tissue microenvironment favors maturation of 

preMacs into tissue-resident macrophages, equipped to perform tissue-specific 

functions (Paolicelli et al., 2011; Haldar et al., 2014; Okabe and Medzhitov, 2014).    
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In conclusion, the work that has been carried out in the scope of this thesis has 

significantly enhanced our understanding of functional heterogeneity in the 

myeloid cell system. The mechanisms reported in the studies included in this 

thesis will help further investigating the roles of myeloid cells in various disease, 

including obesity, CVDs, cancer, and autoimmune diseases.  
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The myeloid cell system shows very high plasticity, which is crucial to quickly adapt to

changes during an immune response. From the beginning, this high plasticity has made

cell type classification within the myeloid cell system difficult. Not surprising, naming

schemes have been frequently changed. Recent advancements in multidimensional

technologies, including mass cytometry and single-cell RNA sequencing, are challenging

our current understanding of cell types, cell subsets, and functional states of cells.

Despite the power of these technologies to create new reference maps for the myeloid

cell system, it is essential to put these new results into context with previous knowledge

that was established over decades. Here we report on earlier attempts of cell type

classification in the myeloid cell system, discuss current approaches and their pros and

cons, and propose future strategies for cell type classification within the myeloid cell

system that can be easily extended to other cell types.

Keywords: monocytes, dendritic cells, human peripheral blood, multidimensional, single-cell RNA sequencing,

mass cytometry

INTRODUCTION

Cell-type identification is an integral part of current immunology (1–5). The immune system as an
organ is an assembly of an incredibly complex network of different types of immune cells including
T and B lymphocytes, NK cells, innate lymphoid cells, monocytes, macrophages, and dendritic
cells (DC), granulocytes including neutrophils, basophils and eosinophils, and mast cells (6). These
cell types have specialized roles during homeostasis and infection. Moreover, it became clear that
each of these significant immune cell types consists of cell type-specific cell subsets, for example,
three monocyte subsets have been described in human peripheral blood, the so-called classical,
intermediate, and non-classical monocyte (7). To understand the individual role of each of these
subsets, it is crucial to understand the full heterogeneity of these cell types and their subsets to
pinpoint the dedicated functions (8). This also needs to be considered in a spatiotemporal fashion,
since immune cells are influenced in their function by their respective microenvironment as well as
over time (9–11). For example, monocytes accumulate in peripheral reservoirs under homeostatic
conditions, but during inflammation, they exert primarily pro-inflammatory effector functions
(11–13). At a later time point during the repair phase of an inflammatory response, monocytes
are characterized by regulatory properties necessary for tissue repair (14). During the last decade,
technological advancements have been used to further refine our understanding of the diversity of
cell types and subgroups within the immune system (15). These novel technologies must be put
into context with the traditional way of defining cell types mostly relying on low-dimensional data
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including microscopy, functional assays, and expression of single
marker genes. In the first part of the review, we discuss the
current principles and strategies of defining cell types and
subsets, while highlighting the different aspects of resolving
cellular heterogeneity. Here we want to outline how these
principles have been applied to the DC/monocyte cell space.
Moreover, we will provide a framework for the integration
of these recent technological advances to define cell types,
subsets, but also functional states of these subsets in an
iterative process.

THE MONONUCLEAR MYELOID CELL

SPACE AS AN EXAMPLE FOR CELL TYPE

DEFINITION

Monocytes and DC arise from the myeloid lineage of the
hematopoietic system and makeup about 11% of human
blood leukocytes (monocytes ∼10%, DC ∼1%). In humans,
monocytes and DC are defined asMHCII+CSF-1R+ cells, mostly
generated through a cascade of continuously differentiating
progenitors in the bone marrow. The last shared intermediate
is the monocyte-DC progenitor, MDP, which is characterized
as a CD45RA+CD123intCD115+ fraction of a heterogeneous
granulocyte-monocyte progenitor (GMP) population (16). Using
CLEC12A and CD64 expression, a focused monocyte progenitor
without DC potential, the common monocyte progenitor
(cMoP), was described recently (17). This restricted precursor
differentiates via pre-monocytes to monocytes, which in mice
egress the bone marrow in a CCR2-dependent fashion (18).

Monopoiesis is highly dependent on the hematopoietic
growth factor receptor CSF-1R and is enhanced, especially during
infection or “sterile” inflammation (19–22). This phenomenon
highlights the function of blood monocytes, which mainly serve
as a reservoir for tissue-residing monocyte-derived macrophages
and monocyte-derived DCs, especially during inflammation.
Under homeostatic conditions, the majority of monocytes are
weak phagocytic cells and are less efficient in antigen presentation
when compared to DCs and macrophages (14, 23).

Initially described by Steinman and Cohn in the early
1970s DC have been extensively studied in recent decades
(24, 25). Nevertheless, the high variability regarding ontogeny,
phenotype, tissue localization, and function has hampered to find
a comprehensive description of this cell type for a long time.
On a functional level, DC are very efficient in phagocytosis and
antigen presentation and are therefore crucial for the initiation of
an adaptive immune response (23). DC are generated fromMDPs
giving rise to DC-committed precursor cells called common DC
progenitors (CDP) which serve as precursor for plasmacytoid
DCs and the two classical DC subtypes cDC1 and cDC2 (26, 27).
Recently, a cDC-restricted progenitor cell, the pre-cDC, has been
described in mouse and human (5, 28–30). Concerning pDCs,
a new model has been recently suggested (1, 31). In fact, 70–
90% of pDCs seem to be IRF8-dependent and derive from a
different pre-pDC precursor. These cells actively produce type I
interferons and do not present antigen very well. Further studies
are required to corroborate these recent findings.

WHICH ASPECTS DEFINE CELLULAR

IDENTITY?

The Traditional Approach: Morphology,

Phenotype, and Function
Several characteristics have been used to describe and define cell
types and subsets. Initially, morphological characterization by
early microscopy and functional observations laid the ground
for the idea of different categories of cells. Primarily, features
like size, shape of the cell, and/or nucleus, density, and staining
behavior for specific dyes were used to separate immune cells into
several cell types and subsets (24, 32–37).

Collectively described as mononuclear phagocytic cells,
macrophages and monocytes were defined by their unique
morphology and ability to take up pathogens and debris (32,
33, 38, 39). Several experiments suggested that blood-derived
monocytes will give rise to different types of tissue-resident
macrophages, which was comprehended by van Furth and Cohn
as the “mononuclear phagocyte system” (MPS) (40). Later,
Ralph Steinmann described cells that display a characteristic
morphology when cultured on glass surfaces (24). Due to their
morphology, he termed them dendritic cells. These DCs were
quickly found to be professional antigen presenting phagocytes
and were incorporated into the definition of the MPS (25, 41, 42).

The MPS has been defined based on morphology and shared
functionality of monocytes, DCs, and macrophages as a broader
framework to describe the role of these cell types during
homeostasis and immunity. However, the original definition
of the MPS cannot adequately explain the heterogeneity of
these cell types concerning their origin, tissue localization,
disease association, regulation, and function. For example,
contrary to the original ideas, blood monocytes are not the
only reservoir for tissue-resident macrophages. An enormous
body of research established that tissue-resident macrophages
are mostly generated by early progenitors during embryogenesis
and exhibit to a limited extend the partial ability for self-renewal
(43–47). Only some tissues of barrier organs like the intestine
rely on the replenishment of tissue-resident macrophages by
differentiation of monocytes during adult life, especially during
infection or inflammatory conditions (48). Nevertheless, when
looking at monocyte-derived and tissue-resident macrophages,
we must acknowledge that these cells have a high phenotypic
and functional similarity. This redundancy is essential for
the (functional) replacement of yolk-sac derived tissue-resident
macrophages in some tissues but makes it difficult to find a
unified classification.

The use of surface marker detection bymonoclonal antibodies
and flow cytometry has revolutionized the way of cell
type definition throughout immunology. While a functional
heterogeneity of monocytes was suggested by several earlier
studies (34–37, 49), it was two-color flow cytometry that provided
a tool to clearly define two major monocyte subsets by their
expression of CD14 and CD16 (50, 51). About 80 to 90%
percent of peripheral blood monocytes express CD14 but lack
the expression of the Fcγ-receptor III (FcγRIII/CD16). This
subset is characterized by a higher phagocytic activity compared
to the minor subset expressing CD16 and intermediate levels
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of CD14. Also, CD16+ monocytes can be further separated
based on their expression of CD14 into CD14dim CD16+

population and a less frequent CD14+ CD16+ subset (52,
53). The CD14+CD16− subset of monocytes is referred to as
classical monocytes, monocytes expressing CD14 and CD16 as
intermediate monocytes and non-classical monocytes are defined
as the CD14dimCD16+ subset (7, 52, 53). Furthermore, during
the last decade, several markers have been suggested for defining
the monocyte cell heterogeneity, including Slan and CD2/FcεRI
(54–56). However, these markers do not reach the specificity that
would be required for an unambiguous definition of cell types or
cell subsets (also see below and Box 1).

Like monocytes DC have been first described on the basis
of their morphological and functional aspects. Here, pDCs
are characterized as main type-I interferon (IFN-α/β) secreting
cells with plasma cell-like morphology (57). Activation and
secretion of type-I interferons are facilitated by recognition
of virus-derived nucleic acids, especially by endosomal nucleic
acid-sensing Toll-like receptors (TLRs) TLR7 and TLR9 (57).
Initially, these cells were identified by several groups under
different names, including natural interferon-producing cells,
plasmacytoid monocytes, and plasmacytoid T-cells (58–61).

Finally, a consensus name, the plasmacytoid DC was introduced
and phenotypic markers were defined including human blood
dendritic cell antigen (BDCA)-2, human IL-3Rα (CD123) and
BDCA-4 (57, 62–65). However, as already mentioned before and
described in more detail later, previously reported experiments
suggest that this consensus is once again challenged (1, 31)
strongly arguing for an iterative process of cell type definition
continuously including new information.

Besides pDCs, there are two subsets of myeloid or classical
DC (mDC/cDC) that can be distinguished in the Lin–MHC-
II+CD11c+ fraction (66, 67) by using the non-overlapping
markers CD1c (BDCA1) or CD141 (BDCA3) in flow cytometry
(64, 65). These DC subsets have been termed cDC1 (CD141+

DC) and cDC2 (CD1c+ DCs), respectively, which have been
reviewed extensively elsewhere (68–73). While these classical
markers are widely used, further markers have also been
suggested for subset classification of DCs (73, 74). For instance,
CD141+ cDC1 can be identified by using antibodies against
XCR1 (75, 76), CLEC9A (77–79) and CADM1 (80). Interestingly,
all DC populations vary regarding their expression of the pattern
recognition receptor family toll-like receptors, which is highly
correlated with the functional roles these cells play in T-cell

BOX 1 | Proposed framework for the de�nition of cell types, cell subsets, and functional states of cell types and subsets.

Cell type definition based on a single parameter space (e.g. only ontogeny) will be inferior to integrated approaches utilizing additional information (ontogeny, -omics

data, phenotypic, and functional data). Nevertheless, even with such a large heterogeneous parameter space at hand, cell type definition is still not trivial. We propose

a framework to define cell types and their subsets that is based on knowledge from decades of developmental and cell biology, further substantiated with recent

developments and results in the field of single-cell omics (165–168). Certainly, such proposal will require larger community involvement and is mentioned as a starting

point for discussion. This principle can be extended to define other cell types as well.

According to this framework, “cell types” would be defined as follows:

“Cell types” constitute the highest category. Cell types are defined by the lack of transdifferentiation capacity in more than 95% of all physiological and non-physiological

conditions. Furthermore, cell types exhibit certain phenotypic, functional and genome-wide (transcriptome, epigenome, other) characteristics that are unique to all

cells of a particular type. For immune cells that are terminally differentiated, cell types would include T and B lymphocytes, NK cells, monocytes, macrophages

and DC, neutrophils, basophils and eosinophils, mast cells and innate lymphoid cells. For the stem cell and precursor compartment, the hematopoietic stem cell

would be one cell type, while all precursors could be another cell type. Particularly in the precursor space, more research is required to define whether—based

on this definition—further cell types or only cell subsets (see below) exist. This is similarly true for cell type development during embryogenesis. However, such a

framework would certainly guide future research, specifically exploiting experimental systems that would allow answering the question, whether a cell is still capable

of transdifferentiating toward another cell type.

“Cell subsets” would be defined as follows:

“Cell subsets” are a secondary category within any given cell type. Cell subsets share certain phenotypic, genome-wide (transcriptome, epigenome) and functional

features within a given cell type, but are distinct in other phenotypic, functional, or genome-wide features that are unique to them within a cell type. In an ideal setting,

these features should not overlap with those features that characterize the cell type. Furthermore, the feature set characterizing a cell subset should not change if cells

are analyzed from different compartments (tissues, organs) and under differing conditions (homeostasis, acute inflammation, repair conditions, etc.). Cell subsets can

be further distinguished from cell types in that cell subsets can change into another subset of the same cell type to the degree that is higher than 5%. For example,

it is known that classical monocytes can further differentiate into non-classical monocytes via the intermediate monocyte subset.

“Functional states” are defined as follows:

“Functional states” are the overall current program of any given cell. Again, “functional states” would be defined by a specific pattern of phenotypic, functional and

genome-wide characteristics, which ideally would exclude features characterizing cell types or subsets. “Functional states” rely on spatiotemporal information (e.g.,

location, the cell’s individual age, the age of the organism), the activation state (homeostasis, acute, chronic inflammation, repair phase, etc.) and any combination

thereof. Clearly, “functional states” can only be defined by integrated approaches and patterns or signatures of many parameters. Single parameter definitions

for functional states are very unlikely. Any given cell can be described by combinations of “functional states.” In other words, “functional states” can be linked to

intracellular biological modules responsible for different cellular functions. A cell could express pro-inflammatory cytokines and have elevated migratory capacity.

“Functional states” can even be shared among different cell types and cell subsets. However, together with the definition of the cell type and subset, a cell can be

defined unambiguously according to the three levels of cell type classification.

“Cell types,” “cell subsets,” and “functional states” will be governed by transcriptional programs that are linked to defined and specific networks of transcription

factors (TFs) not only single TFs. Therefore, the description of such networks might be another means of defining cells accordingly.

The introduction of functional states will reduce the excessive introduction of new cell types or subsets and—in our view—also represents the well-known plasticity

of the myeloid cell space better.
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activation. For example, human CD141+cDC1 cells express high
amounts of TLR3 (81), a pattern recognition receptor highly
associated with cross-presentation (82) and thus cDC1s are
specialized in presenting intracellular antigens to CD8+ T-cells
in human and mice (83).

The most abundant subset of blood DCs are CD1c+ cDC2s,
which can be defined analytically by expression of CD11c, CD1c
(BDCA1), and FCεRIa (54, 64, 84). Furthermore, CD1c+ cDC2
express high levels of class II MHC molecules like HLA-DR,
HLA-DQ, and show a high endocytic capacity, which specializes
this DC type for the presentation of exogenous antigen to CD4+

T cells (64, 84). As we will outline below, future work will require
community efforts to integrate the differential usage of cell subset
classification markers to generate consensus nomenclatures.

Collectively, the definition of cell types of the MPS and
their subsets was initially based on cellular morphology, further
developed by introducing immunophenotyping using antibodies
against the respective cell surface markers and complemented by
a functional assessment of the cell subsets identified.We spare the
many controversial findings throughout this period, which only
reflects the limitations of these approaches to generate a widely
accepted nomenclature of cell types and subsets.

Ontogeny as a Concept for Cell Type

Definition
A group of leading experts in the field of monocyte, DC,
and macrophage biology has recently proposed a nomenclature,
which is based mainly on the ontogeny and tissue localization
of cells (73). The proposed two-level model defines a cell type,
first by its origin (level 1), which is further improved by adding
a functional, phenotypic or location information (level 2) of the
particular cell type. This aspect of cell type classification and the
ontogeny of DCs and monocytes have been reviewed extensively
(48, 72, 85).

The usage of cellular origin for cell type classification
is beneficial since such approach already segregates distinct,
functional units. For example, it was suggested that all phagocytes
that are generated by yolk-sac derived progenitors should
be referred to as macrophages and cells derived from the
hematopoietic lineage as monocyte-derived cells (8, 68). A
further advantage of using origin and development of immune
cells as a guiding principle for cell type definition is the
conservation of ontogeny across species. However, although
there is a substantial overlap of ontogenies in human and
murine macrophage, monocyte and DC development, there is
also considerable disagreement (16, 83, 86–88). Additionally, the
ontogeny of myeloid cells is difficult to study in humans, and
most results are obtained bymice experiments and then projected
to human myeloid cells. Clearly, the ontogeny approach is a
very important aspect of cell type definition, but it needs to be
combined with other characteristics of cells.

HIGH-DIMENSIONAL APPROACHES

SHAPE THE MYELOID CELL SPACE

Here, we introduce the latest technological advancements that
have made substantial contributions to clarify the monocyte/DC

compartment. Furthermore, we want to discuss open questions
and challenges associated with these new technologies. Multi-
dimensional approaches have significantly improved our
understanding of the myeloid cell space by providing more
features resulting in higher resolution for cell typing. To
contextualize this, we want to provide examples that outline how
high-dimensional methods have shaped our understanding of
heterogeneity in human blood-derived monocytes and DC.

Although conventional flow cytometry has revolutionized cell
type classification, it is limited in the number of parameters
(markers <20) being analyzed at the same time. In the early
2000s, there were a couple of technological advancements that
paved the way to the development of mass cytometry enabling
parallel analysis of up to 40 parameters (89–93). This higher
depth of data simultaneously enabled a multitude of possibilities
for immunological and biomedical sciences, including the high-
dimensional assessment of cross-patient cell type dynamics
during acute myeloid leukemia (94–97). More recently, multi-
color flow cytometry (MCFC) has been introduced, increasing
the parameter space to a similar range, as seen in mass cytometry.
However, although mass cytometry and MCFC allow high-
throughput protein profiling of thousands of cells, the restriction
to <40 protein markers may be underrepresenting the true
number of variables that are necessary to define the heterogeneity
in highly complex biological samples. Besides, thesemarkers have
to be selected a priori, which may put a bias on the results
obtained by mass spectrometry or MCFC. Another revolution
was introduced by the development of high-throughput gene
expression profiling methods like microarray-based technologies
and RNA-sequencing enabling to profile thousands of genes in a
single sample (98, 99). This second genomic revolution enables
the genome-wide assessment of gene expression, which not only
allows to characterize cellular subsets but also to investigate
regulatory networks (20, 100–102).

One of the first studies that performed microarray analysis
of human DCs compared the transcriptomes of sorted cDC1,
cDC2, and pDCs populations from peripheral blood and
tonsils to deeply characterize these subsets (103). Robbins
et al. performed a comparative study to put the transcriptome
data of DC subsets into context of other myeloid and
lymphocyte populations in blood (104), which resulted in
the identification of important conserved signature genes,
thereby strengthening cDC1, cDC2, and pDC as distinct
DC subsets. Moreover, assessing transcriptomic data of both
murine and human immune cells allowed to align DC subsets
across species (104, 105). Another important study performed
transcriptome profiling of human blood CD14 and CD16
monocyte populations, three DC subsets pDC, cDC1, and cDC2
as well as their skin counterparts cDC1, cDC2, and skin derived
CD14+ cells (80).

Notably, cell types like skin cDC1 and cDC2 grouped
together with their counterparts isolated from blood, suggesting
a high similarity of DC subsets independent from the
microenvironment. We extended these findings to compare
different DC subsets in many individuals and different
tissues [lymphohematopoietic (blood, thymus, spleen) and non-
lymphohematopoietic (skin, lung)] allowing to characterize the
impact of the microenvironment on the identity of a cell
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type (74). Integration of immune phenotyping, gene expression
profiling, and bioinformatic analysis revealed that DC subsets
from blood, spleen, and thymus were transcriptionally conserved,
with only minor transcriptomic differences between the same
DC subsets across tissues. In contrast, the transcriptomic
consequence of the respective microenvironment was stronger in
lung and skin subsets. This suggests a higher tissue imprinting
of non-lymphohematopoietic DC subsets in barrier organs like
lung and skin, when comparing to the tissue imprinting that has
been reported for tissue-resident macrophage subsets (47, 100,
106, 107). However, the difference between different DC subsets
(cDC1 vs. cDC2) is still larger than the differences between the
same DC subset among different tissues (e.g., skin cDC1 vs.
blood cDC1).

Collectively, gene expression profiling and comparative
bioinformatic analysis have substantially contributed to
understand the complex DC networks across species further
improving current descriptions of unified and more unbiased
classifications (73, 105, 108).

Early transcriptomic approaches of human and mouse
monocyte subsets not only helped to deeply characterize these
cell types but also presented a framework to validate high
conservation of gene expression profiles between mouse and
humans (104, 109). For example, a combination of well-designed
functional assays and gene expression profiling helped to refine
the role of non-classical monocytes as the counterpart to murine
“patrolling” Gr1− monocytes (110). Other studies sharpened
the definition of the intermediate and non-classical monocytes
as distinct cell subset (110–112). Interestingly, these studies
revealed a high similarity of non-classical and intermediate
monocytes, underlining the transitional nature of these cells,
as they show intermediate expression for most of the marker
genes differentially expressed between classical and non-classical
monocytes. Interestingly, a unique module of class-II MHC
genes was highest expressed in the intermediate monocyte
population (111).

Measuring RNA rather than protein levels represents one
of the major limitations of gene expression profiling methods.
While the overall correlation of transcriptome and proteome
is relatively high (113, 114), RNA-seq and microarrays do
not allow to assess post-translational modifications, which
represent a central part of cellular regulation (115, 116). To
overcome this limitation, mass cytometry has been utilized
to profile post-translational modifications like phosphorylation,
methylation, and glycosylation (117, 118). A good example of
the value of methods with larger feature size compared to
single or few marker studies is the definition of cells expressing
the carbohydrate modification 6-Sulfo LacNAc (Slan) on the
PSGL1 protein. Indeed, myeloid cells presenting Slan initially
were termed “SlanDCs” (119–121), while others described an
overlap of Slan+ cells with non-classical monocytes (122, 123).
However, all these studies largely rely on low-dimensional
marker assessment by flow cytometry and are not always
directly comparable due to differences in their choice of markers
or gating strategies. To investigate this in a more unbiased
fashion, Roussel et al. defined a 38-marker panel to study
human myeloid cells from peripheral blood by mass cytometry

(124). A semi-supervised analysis of the data resulted in the
identification of distinct monocyte populations, two subsets
overlap with markers from classical and intermediate monocytes
while there are two subsets of monocytes that are similar
to non-classical monocytes. The multi-dimensional analysis
maps Slan+ cells to the non-classical monocytes and does not
show alignment with any DC population. In this study, Slan
separates the non-classical monocytes into a Slanhigh and a
Slanlow CD14dimCD16+ population. However, earlier genomic
comparisons of sorted Slanhigh vs. Slanlow subsets did not reveal a
significant difference between those two populations (110). More
recently, by combining index sorting and high-content single-cell
RNA-sequencing, we show further evidence that Slan expression
does not reflect different cell subsets as the underlying overall
transcriptional program is not different between Slanhigh and
Slanlow cells. Moreover, we clearly show that Slan+ cells are all
non-classical monocytes (125).

Manual gating of monocytes by CD14 and CD16 is
biased by the investigator, which is a disadvantage for
large multi-center clinical studies. Unsupervised and semi-
supervised computational analyses improve the accuracy and
reproducibility of subset definitions (95, 117, 124, 126–128).
However, interpretation of these results must be performed with
special care, since the primary analysis is still dependent on
manual parameter settings by the investigator. For example,
in contrast to an earlier study utilizing mass cytometry
(124) similar profiling of human mononuclear myeloid cells
revealed three subsets of human monocytes in two other
studies, while others report significant heterogeneity including
three non-classical, one intermediate and four classical subsets
(22). Interestingly, Hamers et al. identified a non-classical
population, which is quite different to other non-classical
populations and expresses CD9+ CD41+ and CD61+, which
may represent an eosinophil/basophil contamination (129–131).
Another interesting observation is the rather low inter-individual
difference of human monocyte populations during homeostasis
when assessed by mass cytometry (22, 132).

High-throughput gene expression profiling by microarray
or RNA-seq has paved the way to understand the regulatory
networks within human monocytes and DC. These technologies
are indispensable for high-depth characterization of immune
cell types. Nevertheless, these population-based methods are
not designed to detect further cellular heterogeneity within a
sample. The gene expression measurement in a population-
based RNA-seq represents an average signal of typically more
than 10,000 individual cells, resulting in leveling out any
further heterogeneity. Frequently, samples are generated by flow
cytometry assisted cell sorting, which relies on the information
of a limited set of marker genes. However, if these markers are
not sufficient for detecting the full heterogeneity of the tissue, the
results may be underestimating the true heterogeneity.

Transcriptional profiling of individual cells by single-cell
RNA-seq has been introduced in 2009 (133, 134) and has
revolutionized cell type discovery in all fields of biology
(135–142), therefore it may be claimed as “third genomic
revolution.” Single-cell RNA sequencing approaches allow
transcriptional profiling of 10,000s of individual cells. In contrast

Frontiers in Immunology | www.frontiersin.org 5 October 2019 | Volume 10 | Article 2287

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Günther and Schultze Technology Shapes Myeloid Cell Space

to population-based RNA-seq, the groups of cells are not defined
a priori, rather the cell classification is based on the similarity of
gene expression profiles.

A series of studies applied single-cell RNA-seq to understand
the heterogeneity of human blood DCs and DC progenitors
(5, 30, 143). See et al., as well as Villani et al., detected
and characterized the conventional subsets, including cDC1,
cDC2, and pDC. Surprisingly, beyond these similarities the
results differed significantly, strongly arguing that such high-
dimensional data require particular care when assigning cell
types and cell subsets. We defined cell types and subsets by a
combination of function, phenotype and transcriptional profile,
which lead to the identification of precursors (pre-cDCs) for
the cDC1 and cDC2 subsets in addition to the three main DC
subsets (5). To reconcile these two major initial reports, we
developed a strategy that allows developing cell type classification
consensus based on phenotypic and transcriptional features
also including prior knowledge (125). This approach revealed
that (1) the AXL+Siglec6+ DCs (AS-DCs) described by Villani
et al. are mainly pre-cDCs as described in (5), (2) Mono4 are
contaminating CD56dim NK cells, and (3) cells introduced as
CD16+ CSF1-R+ CTSS+ DCs are not belonging to the DC
lineage. This general strategy is not restricted to myeloid cells
but can be applied to any cell type classification problem in any
species (125).

Recently, single-cell RNA-seq has also been used for
improving our knowledge about the generation of DCs from
bone marrow-derived progenitors. There is evidence that there is
much higher flexibility in the development of DC and monocytes
than already appreciated. Hematopoietic models that are not
based on repeating rounds of division and differentiation (72,
144, 145) allow for incorporation of recent findings that suggest
that cDCs can be generated by lymphoid progenitors (146). Also,
the latest reports show important evidence that the large majority
of pDCs arise from lymphoid progenitors rather than CDPs
(1, 31). Probably, a community effort to clarify future naming and
nomenclature of these cells is now warranted. Importantly, the
recent high-dimensional characterization of pDCs (5, 125, 132,
143) and new insights into their ontogeny in mice (1) could form
the basis for such new discussions.

Clearly, this is only the beginning of applying these
technologies to open questions concerning the plasticity of
the myeloid cell compartment. We also recognize that single-
cell RNA-seq data are currently challenging our view on
cell type classification and function within the myeloid cell
compartment. However, in the long run, we are convinced that
the higher information content per cell will give us a much better
understanding of individual cells within any given tissue, organ,
or inflammatory response.

PROPOSAL OF GENERAL PRINCIPLES

FOR CELL TYPE DEFINITIONS

Considering the apparent ease, with which different cell types
were characterized based on morphological differences a century
ago (39), our capabilities to simultaneously measure hundreds
to thousands of parameters per single cell seem to decrease

our ability to agree on defined cell types and cell subsets (1, 5,
31, 143). The ability to detect heterogeneity between individual
cells has extended to biological differences that are not related
to questions concerning cell type or cell subset. The best-
characterized biological process in single cell –omics data being
cell cycle in proliferating cells (147–149). Certainly, cell cycle
differences should not classify two cells of the same type as
different cell types or subsets. Stochastic behaviors of single cells,
e.g., in transcription (150, 151) would be another biological
phenomenon that should not impact on cell classification aspects.
Furthermore, data sparsity, still very apparent in all sequencing-
based single cell technologies, requires attention, when dealing
with cell type definitions.

Similarly, important is the question, whether all biased
approaches requiring feature selection (e.g., which markers to be
analyzed) prior to analysis are good starting points for cell type
definitions. These would include all multi-color flow cytometry
and single-cell mass spectrometry approaches. Potentially a more
appropriate approach would be the combination of markers
(chosen by the investigator) with unbiased approaches provided
by single cell sequencing-based technologies. This is crucial since
it allows to link the enormous body of research that has been
performed with flow cytometry-defined cell populations (e.g.
ontogeny) with results obtained by analysis of high-dimensional
data. For example, index sorting based on previously defined cell
surface markers combined with scRNA-seq might be a better way
of defining the cell population structure as well as the practicality
of certain protein markers to capture the population structure
(125, 152, 153). Alternative but significantly more expensive
approaches are based on the combination of full transcriptome
scRNA-seq and oligonucleotide-labeled antibodies (154, 155).
It can be expected that these approaches require iterations of
experiments until markers are identified that truly reflect the
underlying population structure. In this context, it is important to
note that even such large endeavors such as the Human Cell Atlas
will require the integration of additional layers of information
in addition to scRNA-seq data. Furthermore, we postulate that
these iterations will lead to consensus maps as a basis for cell type
definitions (125). Very much like the cluster of differentiation
(CD) workshops for antibodies (156), a community effort will
be necessary to agree on the different versions of such consensus
maps of individual cell types.

However, even if the combination of truly unbiased single
cell –omics approaches and antibody-based techniques leads to
novel consensus maps of immune cells including the myeloid cell
space, we propose that each cell type and more importantly each
cell subset requires to be functionally characterized, as we have
previously demonstrated for human DCs in blood (5). In other
words, we strongly argue that a final definition of a cell subset
should be validated on functional differences and not only on
transcriptional and phenotypic differences.

Once cell types are defined under homeostatic conditions,
which is a major goal of the Human Cell Atlas (157), an even
more daunting task will be to define cell types and subsets under
pathophysiological processes. While certain cell types will be
under developmental trajectories (cell states) under physiological
conditions, the space for different cell states in disease settings
will further increase (158). More importantly, under these
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conditions, there will be mainly changes in parameters related
to biological function rather than features defining cell types or
subset. A major goal for further cell type definitions will be to
integrate these functional states and trajectories. In this context,
we propose cell types as the highest level to distinguish cells.
For example, DC, monocytes, and macrophages would qualify as
individual cell types, while pDC, cDC1, and cDC2 would qualify
as DC subsets (5, 125). Each of these subsets can exist in different
functional states that depend on location, differentiation stage,
acute or chronic activation signals, to name only a few (69, 74).
Again, even for functional states, we would propose to define cells
based on hundreds of parameters measured by single cell –omics
technologies to be combined with classical marker strategies but
finally also integrate functional readouts for these cellular states.

Even if we can agree on such an approach, the question
remains, how this can be realized technically? In fact, this
is not a mere technical question, as it requires to consider
methods that are more independent of investigator bias. For
example, we strongly suggest building approaches that will allow
us to build cell type definitions based on machine learning
rather than on investigator-driven and individualized analysis
pipelines. Single-cell transcriptomics algorithms as they are
implemented in singleR (159) or scMatch (160) are good
starting points. Nevertheless, they still heavily rely on an
investigator’s interpretation of such high-feature data spaces.
Cell type definition could be a classification problem requiring
the respective machine learning as they are used for classifier
generation in other areas (161, 162). We do not favor solely
data-driven machine learning but would suggest the integration
of prior knowledge. First attempts to develop such methods
are currently underway, and we will soon know, whether the
introduction of machine learning based cell class prediction
will truly aid our attempts to make sense of the hundreds to
thousands of parameters that we now can routinelymeasure from
single cells.

SUMMARY AND OUTLOOK

Since the discovery of myeloid cells more than a century ago, we
have learned a lot about these important immune cells. Their

enormous plasticity is fascinating and challenging at the same
time. Not surprisingly, cell type definitions and nomenclature—
up to the day—have been changed or updated regularly (48,
68, 108, 163, 164). A unified nomenclature is the basis for an
effective communication among scientists and will accelerate
discovery of novel therapeutics. Moreover, high-dimensional
profiling of samples will facilitate to compare results and cell
types across experiments, tissues and species. Even with the
highest number of parameters known per any given cell, we
still differ in our interpretations of certain cell types within
the myeloid compartment. While it will be rather critical to
include prior knowledge when labeling cells based on high-
dimensional single cell data, we need to develop better tools based
on robust mathematical rules that help us to determine cellular
phenotypes and functions less ambiguously. With the emergence
of powerful machine learning and AI-based methodology, the
time has probably come to utilize such approaches to our benefit
when describing cell types, cell subsets, and their functional
states. Irrespective of the power of such approaches, we also need
to accept that we are far from a complete understanding of these
cells. Additional layers of information, for example, epigenetic
information, will have to be included in cell type definitions as
they arise. Therefore, we foresee numerous iterations of defining
cell types and their functions in the decades to come. In other
words, consensus maps of cell types and subsets that we agree
on today will form the basis for newer maps with updated
information content in the future. A potential framework for
such a community-based effort has been outlined here.
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Long-term� epigenetic� reprogramming� of� innate� immune� cells� in� response� to�

microbes,� also� termed� trained immunity,� causes� prolonged� altered� cellular�

functionality� to�protect� from�secondary� infections.�Here�we� investigated�whether�

sterile� triggers� of� inflammation� induce� trained� immunity� and� thereby� influence�

innate� immune� responses.� Western� diet� (WD)� feeding� of� Ldlr-/-� mice� induced�

systemic� inflammation,�which� was� undetectable� in� serum� soon� after�mice�were�

shifted� back� to� a� chow� diet� (CD).� In� contrast,� myeloid� cell� responses� towards�

innate� stimuli� remained� broadly� augmented.� WD-induced� transcriptomic� and�

epigenomic� reprogramming� of� myeloid� progenitor� cells,� led� to� increased�

proliferation� and� enhanced� innate� immune� responses.� QTL� analysis� in� human�

monocytes� trained�with� oxidized� low-density� lipoprotein� (oxLDL)�and�stimulated�

with� LPS� suggested� inflammasome-mediated� trained� immunity.� Consistently,�

Nlrp3-/-/Ldlr-/-�mice�lacked�WD-induced�systemic�inflammation,�myeloid�progenitor�

proliferation� and� reprogramming.� Hence,� NLRP3� mediates� trained� immunity�

following� WD� and� could� thereby� mediate� the� potentially� deleterious� effects� of�

trained�immunity�in�inflammatory�diseases.��

�

A� major� shift� in� the� burden� of� infectious� diseases� has� occurred� over� the� last� two�

centuries.� Whereas� approximately� half� of� all� deaths� were� accounted� for� by� microbial�

infections� in� the� late� 19th� century,� today� this� burden� has� dropped� to� 15%� (GBD� 2015�

Mortality� and�Causes�of�Death�Collaborators,� 2016).� Three�prominent� changes�driving�

this� change� include:� i.� widespread� sanitation� improvement� in� the� 19th� century,� ii.�

continued� introduction� and� larger� deployment� of� vaccines� in� this� period,� and� iii.�

deployment� of� antibiotics.� However,� as� infectious� disease� burden� has� dropped�

predominantly� in� the� last� century,� the� development� of� chronic� non-communicable�
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diseases�has�dramatically� increased.�Today,� in�Western�societies�over� 80%�of� deaths�

are� due� to� non-communicable� diseases� including� those� associated� with� aging� and�

diseases�caused�or�influenced�by�the�consumption�of�Western-type�calorically�rich�diets,�

such�as�type�II�diabetes,�obesity�and�cardiovascular�diseases.��

For� atherosclerosis� development,� increased� circulating� levels� of� LDL� cholesterol� have�

been� linked�mechanistically� and�genetically� to� clinical� event� risks� (Mega� et� al.,� 2015).�

However,�it�is�also�well�appreciated�that�disease�progression�is�strongly�associated�with�

inflammatory�processes�involving�cells�of�the�innate�immune�system,�mainly�monocyte-

derived�macrophages� (Hansson�and�Hermansson,�2011;�Ridker�et�al.,�2017).�Hence,�it�

is�of�fundamental�and�translational�importance�to�understand�explicitly�the�mechanisms�

that�link�the�consumption�of�calorically�rich�diets�to�increased�inflammation.��

To� respond� to� invading� pathogens� vertebrates� have� evolved� innate� and� adaptive�

immune� systems.� Contrary� to� the� adaptive� immunity� arm,� which� can� induce� antigen-

specific�memory� formation�upon� pathogen�encounter,� the� innate� immunity� arm�quickly�

mounts� non-antigen� specific� protective� responses� towards� pathogens.� Protective� anti-

pathogenic� innate�immune�responses�are�evoked�by�the�activation�of�a�series�of�innate�

immune�signaling�receptors�including�amongst�others,�Toll-like�receptors�(TLRs)�and�the�

nucleotide-binding�oligomerization� (NOD)-like� receptors� (NLRs)� (Cao,� 2016).�However,�

these� receptors� can� further� recognize� ‘sterile’� danger� signals,� which� are� thought� to�

trigger� inflammation� in� non-communicable� diseases� (Zimmer� et� al.,� 2015).� These�

observations� link� activation� of� innate� immune� receptors� with� the� development� of�

cardiovascular�diseases.�

Emerging�evidence�has�indicated�that�the�vertebrate�innate�immune�system�has�evolved�

elaborate� adaptive� mechanisms� allowing� them� to� respond� more� vigorously� to� future�

infections.� This� type� of� functionally� adapted� response� after� an� initial� trigger� known� as�
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‘innate� immune� memory’� or� ‘trained� immunity’� and� is� mediated� by� epigenetic� and�

metabolic� reprogramming� which� can� last� for� prolonged� periods� of� time� (Netea� et� al.,�

2016;� 2011).� Innate� immune� memory� has� likely� evolved� to� provide� non-specific�

protection�from�secondary�infections,�and�most�studies�that�characterized�innate�immune�

memory� effects� have� focused� on� the� ability� of� microbial� triggers� to� induce� cellular�

reprogramming.�However,�it� is�also�conceivable�that�‘sterile’� inflammatory�triggers,�such�

as�WD,� can� induce� trained� immunity.� In� such�a�scenario,� a� secondary� stimulus�would�

then�trigger�altered�and�potentially�pathological� immune� responses.� Indeed,� recent�cell�

culture� data� suggest� that� oxLDL� particles,� which� are� known� to� trigger� innate� immune�

responses,� can� induce� memory� responses� via� epigenetic� modification� of� human�

monocytes�(Bekkering�et�al.,�2014).��

Here�we� have� investigated�whether�WD� feeding� triggers� trained� immunity� in� the Ldlr-/-�

atherosclerosis�mouse�model.�We�show�that�WD� induced�systemic�inflammation�which�

subsided� after� shifting� mice� to� CD.� Furthermore,� WD� triggered� a� proliferative�

hematopoietic� cell� expansion� associated� with� functionally� reprogrammed� granulocyte�

monocyte� precursor� cells� (GMPs).� These� responses� were�maintained� over� prolonged�

times� after� reversing� the� diet� from�WD� to� CD� indicating� that�WD� can� induce� trained�

immunity.� Mechanistically,� we� identified� the� NLRP3� inflammasome� as� the� central�

receptor,� which� mediates� WD-induced� systemic� inflammation� and� myeloid� precursor�

reprogramming,� opening� therapeutic� opportunities� to� interfere� with� WD-associated�

pathologies.��

�

�

�
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Results�

WD� induces� systemic� inflammation� and� functional� reprogramming� of� myeloid�

cells�

Given� the� inflammatory� nature� of� a�WD,� we�sought� to� test�whether�WD� feeding� in�an�

experimental� model� of� atherosclerosis� induces� innate� immune� memory.�We� chose� to�

study�the�effects�of�WD�after�4�weeks�feeding�since�at�this�early�time�point�only�minimal�

atherosclerotic�lesions�can�be�observed�(Duewell�et�al.,�2010)�and�thus�a�contribution�of�

plaque-derived� immune� cells� and� potential� anti-inflammatory� effects� during� plaque�

regression� is�minimized.�Ldlr-/-�mice�were� fed�a�regular�CD,�a�WD�for�4�weeks,�or� first�

WD�for�4�weeks�followed�by�4�weeks�CD�(Figure�1A).�Circulating�cholesterol�peaked�by�

4�weeks�and�returned�to�baseline�in�mice�that�were�shifted�back�to�CD�after�WD�feeding�

(Figure� 1B,� Figure� S1A).� Likewise,� circulating� levels� of� growth� factors,� cytokines� or�

chemokines,�as�well�as�acute�phase�proteins,�which�were�all�elevated�after�4�weeks�WD�

feeding,� returned� to�baseline� in�mice�fed� the�WD�for�4�weeks� followed�by�4�weeks�CD�

(Figure�1C;�Figure�S1C;�Table�S1).�Mice�had�minimal,� non-significant�weight�gain�over�

the�course�of�4�weeks�WD�and�no�significant�weight� loss�was�observed�after�changing�

mice�back� to�CD�for�4�weeks�following�the�4�weeks�WD�(Figure�S1B).�Together,�these�

studies�showed�that�WD�feeding�induces�a�transient�hypercholesterolemia�concomitant�

with� a� systemic� inflammatory� response.� To� test� whether� the� WD� provoked� functional�

immune� cell� reprogramming� we� isolated� bone� marrow� cells� and� splenic� CD11b+�

monocytic�cells�from�mice�fed�either�regular�CD,�4�weeks�WD,�or�4�weeks�WD�followed�

by�4�weeks�CD.�These�cells�were�stimulated�ex vivo�with�a�panel�of�TLR�ligands�(LPS,�

PGN,� R848� and� CpG)� and� secretion� of� cytokines� and� chemokines� was� analyzed.�

Immune� cells� isolated� from�WD� fed� mice� had� significantly� enhanced� TLR� responses�

indicating� a� primed� cell� state.� Intriguingly,� even� though� the� systemic� cytokines� had�
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normalized� upon� shifting�mice� back� to� the� CD� after�WD,� the� TLR� responses� of� cells�

isolated� from� the� WD� fed� and� then� CD� rested� mice� remained� augmented� when�

compared� to� cells� isolated� from� CD� fed� mice.� Of� note,� in� addition� to� the� quantitative�

changes� of� cytokine� responses,� we� found� qualitative� changes.� For� example,� bone�

marrow� cells� isolated� from�WD�fed�mice� that�were� then�CD�rested�had� even� stronger�

mKC�and�TNF�responses,�yet� displayed�decreased� IL-6�responses�when�compared� to�

cells� isolated� from�mice�on�WD� (Figure�1D,�E;�Figure�S1D,�E).�These� results� suggest�

that�WD� feeding� induced� a� complex�myeloid� cell� reprograming� leading� to� long-lasting�

and�qualitatively�altered�hyper-responsiveness�even�after�resting�mice�from�WD�feeding.��

�

WD� triggers� myelopoiesis� and� transcriptional� reprogramming� of� myeloid�

precursor�cells�

We�next�determined�the�effect�of�WD�on�circulating�blood�cell�populations�(Figure�S2A).�

Absolute�numbers�of�circulating�red�blood�cells�(RBCs)�as�well�as�myeloid�cell�subsets,�

including� monocytes� and� granulocytes,� were� markedly� increased� after� WD� feeding�

(Figure� 2A,� B).� Additionally,� WD� feeding� induced� an� increased� activation� status� in�

circulating�myeloid�subsets,�as�indicated�by�CD86�surface�expression�(Figure�2C;�Figure�

S3A).� Splenic� inflammatory� monocyte� and� granulocyte� numbers� were� significantly�

increased� as� well� (Figure� S2B),� though�CD86� surface� expression� remained� unaltered�

(Figure�S2C;�Figure�S3A).��

To�test�whether� the�observed� changes� in�specific� leukocyte�subsets� in�the�blood�were�

also�apparent�at� the�bone�marrow�level,�we�determined�the�quantities�of�hematopoietic�

precursor�subsets�by�comparing�WD�to�CD� fed�mice.�We�found� that� the�abundance�of�

hematopoietic� stem� cell� progenitors� (HSPCs),�multipotent� progenitor� cells� (MPPs),� as�

well� as� granulocyte-monocyte� progenitor� cells� (GMPs)� were� all� significantly� increased�
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after� WD� (Figure� 2D).� To� better� understand� the� mechanisms� whereby� WD� induces�

myelopoiesis� and� functional� reprogramming�of�myeloid� cells,�we�next� isolated�myeloid�

progenitor�subsets�from�the�bone�marrow�compartment�by�FACS�sorting�(Figure�S2D).��

As� GMPs� are� the� most� differentiated� myeloid� progenitor� subsets� that� give� rise� to�

monocytes�and�granulocytes,�we�decided�to�study�these�cells�by�an�unbiased�approach�

and�performed� transcriptional�RNA�profiling�by�RNAseq�and�subsequent�computational�

analysis�(Figure�S2E).��

Principal�component�analysis�(Figure�2E)�and�unsupervised�hierarchical�clustering�of�the�

1000� most� variable� genes� (Figure� 2F)� demonstrated� that� GMPs� globally� reprogram�

transcriptional� responses� after�WD.� Analysis� of� the�most� changed� genes� (Figure� 2G)�

suggested� that� WD� induced� up-regulation� of� genes� involved� in� cell� proliferation,�

including�KLF2, DUSP1, CDKN1A, CCND1, SOX4, SMO and BCL2,�and�a�skewing�of�

GMP� development towards� the� monocytic� cell� lineage� (JUND, FOSB, FLT3 and 

HDAC9).�To�test�for�a�WD-induced�lineage�bias�in�GMPs,�we�first�identified�specific�gene�

signatures� for�monocytic� or�granulocytic� lineage-commitment� by�differential� expression�

(DE)� gene� analysis� between� the� monocytic� and� granulocytic� branches� of� the� GMP�

developmental� trajectory� (Figure� 2H)� generated� from� publicly� available� single-cell�

RNAseq�data�sets�(GSE70235).�Monocytic�signature�genes�were�highly�enriched�(CD34, 

CSF1R, CFP, LY86),� while� most� of� the� granulocytic� signature� genes� were� down-

regulated� (S100A8/9, ETS1, PGLYRP1, CD63, CEACAM1)� in�GMPs� isolated�from�WD�

fed� as� compared� to� CD� fed�mice� (Figure� 2I).� These� data� were� in� accordance� with� a�

linear� support� vector� regression� analysis� indicating� an� increase� in� monocytic� lineage�

potential�after�WD�(Figure�2J).�We�next�analyzed�which�Gene�Ontology�(GO)�terms�and�

KEGG�pathways�were�enriched�in�the�DE�genes�after�WD�(Figure�S2F).�GO�enrichment�

analysis�using� the�genes� that�were�up-regulated�after�WD,�was� further�visualized�as�a�
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biological�GO�enrichment�network�(Figure�2K).�Together,� these�analyses� identified�that�

genes� up-regulated� in� GMPs� from� WD� fed� mice� were� associated� with� regulatory�

processes� involved� in� hematopoiesis,� cell� proliferation,� programmed� cell� death,�

metabolic�processes�and�cell�migration,�as�well�as�immune�cell�differentiation,�leukocyte�

activation� and� immune� processes� involved� in� cellular� stress� responses� and� WNT�

receptor� signaling� (i.e.,� hedgehog� signaling� pathway,� IL-17� signaling� pathway/Th17�

differentiation,� JAK-STAT� signaling� pathway,� viral� carcinogensis).� Furthermore,�

transcription� factor� (TF)� binding� prediction� analysis� suggested� that� the� WD-induced�

transcriptional� skewing� of� GMPs� into� the� monocyte� direction� was� influenced� by� the�

transcription� factors� GATA1-3, KLF4� and� TCF7,� certain� FOS, JUN,� and� ATF� family�

members,� as� well� as� CREB1� and� EGR1� (functional� involvement� in� induction� of� cell�

reprogramming,� survival,� and� monocytic� differentiation;� Figure� S2G).� Together,� these�

data�indicate�that�the�bone�marrow�compartment�strongly�responds�to�WD�feeding�with�

an� increased� myelopoiesis� and� a� deep� transcriptional� reprogramming� of� myeloid�

precursor�cells.�

�

WD�causes�functional�reprogramming�of�myeloid�precursor�cells�

Given� that�WD� feeding� induced� a� global� transcriptional� reprogramming� of� GMPs,� we�

next� asked� whether� the� immune� responses� towards� a� model� ligand� (i.e.,� LPS)� were�

altered� in vivo.�We�fed�Ldlr-/-�mice�the�CD�or�WD�for�4�weeks�and�intravenously�injected�

LPS�(10µg)�or�vehicle�control� (PBS)�six�hours�before�sacrifice�and�cell�harvest�(Figure�

3A).�LPS�treatment�of�WD�fed�mice�resulted�in�higher�serum�levels�of�most�inflammatory�

cytokines� and� chemokines� when� compared� to� LPS� treated� mice� fed� CD� (Figure� 3B).�

Furthermore,� the� activation� status� of� circulating� and� splenic� monocyte� subsets� as�

measured�by�CD86�surface�expression�was�amplified� in�LPS�challenged�WD�fed�mice�
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when� compared� to� LPS� challenged� CD� fed� mice� (Figure� 3C,� D).� In� contrast,� CD86�

surface� expression� in� circulating� and� splenic� granulocytes� remained� unchanged� upon�

LPS� treatment� in�WD� fed�mice� (Figure� 3C,� D).� These� data� suggest� that�WD� feeding�

primes�the�immune�system�for�systemic�and�local�innate�immune�responses�towards�an�

inflammatory�trigger.��

To�better�define�how�WD-induced� reprogramming�of�myeloid�precursor�cells� influences�

the�responses�towards�LPS,�we�next�performed�RNASeq�analysis�of�sorted�GMPs�from�

mice� that� received� the�WD� or� CD� and�were� exposed� to� an� LPS� or� PBS� challenge� 6�

hours� prior� to� sacrifice.� Pearson� correlation� matrix� analysis� of� the� transcriptional�

changes� in� the�different� treatment�conditions� showed� that�WD� treatment�mimicked� the�

effects�of�LPS�in�CD�fed�mice�and�that�LPS�and�WD�treatment�had�synergistic�effects�on�

gene� transcription� (Figure� 3E),� which� was� also� evident� when� the� gene� expression�

differences� are� represented� as� a� Volcano� plot� (Figure� 3F).� Detailed� inspection� of� the�

most� highly� differentially� expressed� genes� revealed� that� many� type� I� interferon� (IFN)�

response� genes,� including� IRG1,� CCL5,� CXCL10,� GBP4 and 6,� IRF1,� IFI203,� were�

expressed� more� strongly� in� WD� fed� mice� receiving� LPS� compared� to� CD� fed� mice�

receiving�LPS.�Furthermore,�functional�annotation�enrichment�analysis�for�GO�terms�and�

KEGG�pathways�demonstrated�that�the�WD�primed�GMPs�for�LPS�responses�and�led�to�

a�shift�towards�increased�inflammatory�signaling�(Figure�3G).�As�expected,�WD�feeding�

was� associated� with� a� down-regulation� of� cholesterol� biosynthesis� pathways,� innate�

immune�defense�responses�and�in�particular�anti-viral�responses�were�greatly�enriched�

(Figure�S3B-E).�These�data�demonstrate� that�WD� feeding� results� in�GMP�priming� that�

triggers�enhanced�innate�immune�responses�towards�LPS.�

�

�
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Long-lasting�reprogramming�of�GMPs�following�WD��

We�observed�that�a�four�weeks�CD�resting�period�normalized�the�WD-induced�systemic�

cytokine� response� in� the�circulation,�whereas� the� innate� immune� responses�of�myeloid�

cells� remained� enhanced� and� qualitatively� altered� (Figure� 1C-E).� We� next� sought� to�

decipher�to�what�extend�the�transcriptional�changes�in�GMPs�induced�by�WD�persisted�

and�how�this�affected�the�GMP�responsiveness�towards�LPS.�Mice�fed�CD,�4�weeks�WD�

or�4�weeks�WD�followed�by�4�weeks�CD�were�intravenously�challenged�with�LPS�or�PBS�

six� hours� prior� to� cell� isolation,� and� then� RNAseq� analysis� of� purified� GMPs� was�

performed� (Figure� 4A;� Figure� S4A).� Principal� component� analysis� (Figure� 4B)� and�

Pearson� correlation� matrix� analysis� (Figure� 4C)� demonstrated� that� the� transcriptomic�

reprogramming�of�GMPs�after�WD�did�not�reverse�in�GMPs�isolated�from�mice�that�had�

been�switched� to�CD�feeding�for�4�weeks�after�WD�feeding.�A�detailed�assessment�of�

genes� that� were� regulated� by� the� different� dietary� interventions� demonstrated� that�

certain�gene�sets�were�commonly�expressed�in�GMPs�isolated�from�WD�as�well�as�from�

WD� fed�mice� that�were� rested�on�CD� (Figure�S4B).� Interestingly,� other�sets� of� genes�

were�only�expressed�in�GMPs�isolated�from�WD�fed�mice�or�only�in�GMPs�isolated�from�

WD� fed�mice� that� were� rested� on� CD.�We� therefore� analyzed� which�GO� terms� were�

commonly�or�selectively�enriched�in�GMPs�isolated�from�mice�subjected�to�the�different�

dietary�interventions�(Figure�S4B).�We�found�genes�that�were�commonly�up-regulated�in�

GMPs� from� both� feeding� groups� were� associated� with� immune� processes� and�

lymphocyte�activation� (Figure�S4B).�This�shows� that�even�after� resting�mice� from�WD,�

GMPs� remain� in� an� activated� state� and� keep� a� persistent� transcriptionally� remodeled�

state�that�is�qualitatively�distinct�from�that�of�cells�isolated�from�CD�fed�mice.�

Next,�we�aimed� to�better�define�the�effects�of� the�different�dietary� interventions�on� the�

functional� responses� of� GMPs� to� in vivo� LPS� challenge.� To� visualize� changes� in� the�



 12

transcriptional�programs�that�occur�after LPS�challenge�in�mice�fed�CD,�4�weeks�WD�or�

4�weeks�WD�followed�by�4�weeks�CD,�we�performed�a�co-expression�network�analysis�

of�all�genes�with�changed�expression�and�visualized�the�changes�as�standardized�gene�

expression�(Figure�4D-F)�or�fold�changes�(Figure�4G-I). This�analysis�revealed�that�LPS�

challenge� induced� the�expression�of�many�more� gene�clusters� in�mice� fed�a�WD� than�

CD�(Figure�4D,�E,�G,�H)�and�that�the�LPS�response�remained�altered�in�GMPs�in�mice�

shifted�back�to�CD�after�WD�feeding�(Figure�4F,�I).�We�found�that�numerous�of�the�LPS�

regulated�genes�under�CD� feeding� (Figure�4G)�were�more� strongly� up-regulated�or� in�

some� cases� even� counter-regulated� after�WD� feeding� (Figure� 4H).�Of� note,� the� LPS-

induced� gene� expression� in�GMPs� isolated� from�mice� that� had� been� switched� to� CD�

after�WD�feeding�remained�altered�and�largely�similar�to�the�WD�only�conditions�(Figure�

4I).� We� additionally� performed� TF� motif� enrichment� analysis� for� DE� genes� in� GMPs�

isolated� from�mice� subjected� to� the� different� dietary� and� LPS� challenges.� Genes� that�

were� higher� expressed� upon� LPS� challenge� in� WD� fed� compared� to� CD� fed� mice�

exhibited�increased�abundance�for�TF�binding�sites�such�as�RELA/B,�NF-kB1/2,�STAT1-

4/5a,b/� 6,� IKZF1/2� as� well� as� IRF1/3/7/8/9,� JUN/FOS� and� KDM4A,B,C,D� in� the�

regulatory� regions� (Figure� S4C-E).� In� addition,� assessment� of� TF� binding� prediction�

analysis� for�genes�expressed� in�GMPs� that�were�not� regulated�upon�LPS� treatment� in�

CD� fed�mice,� but�up-regulated�upon�WD�and�LPS� treatment� revealed�a� defined� set�of�

transcriptional�regulators�including�NRF1,�YY1/YY2,�STAT1/2,�IRF1/3/5/7/8/9,�GATA1-3,�

JUN/FOS�and�MEF2A/C/D� (Figure�S4D).�Notably,�TFs� that�were� the�most� enriched� in�

GMPs�from�mice�treated�with�WD�and�LPS�remained�partly�enriched�in�GMPs�from�mice�

fed� 4� weeks�WD� followed� by� 4� weeks� CD� and� treated� with� LPS,� including� amongst�

others,�YY1/2,�NRF1/2,�MEF2A/C/D�and�ERG�(Figure�S4E).��
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Moreover,� fold-change� analysis� of� the� most� strongly� LPS-induced� genes� revealed� a�

preservation� of� the� distinctive� type� I� IFN� signature� in� GMPs� (for� example� GBP6,�

CXCL10,�Ifi44,�Ifit3b)�from�the�WD�fed�and�CD�rested�mice�compared�to�those�mice�fed�

only�CD� (Figure� 5A).�Whereas� the�marked� increase� in�circulating�monocyte�quantities�

seen�after�WD�feeding�was�not�maintained�in�CD�rested�mice�(Figure�5B),�the�quantity�of�

circulating�granulocytes�was�found�to�be�further�increased�in�CD�rested�mice�compared�

to�WD�fed�mice.�Additionally,�splenic�granulocytes�displayed�a�more�activated�phenotype�

upon�WD� feeding,� and� tended� to� remain� more� activated� in�WD� and� CD� rested�mice�

compared�to�CD�fed�mice�(Figure�5D).�

To�test�whether�WD�changes�the�overall�accessibility�of�chromatin�we�performed�global�

epigenetic�profiling�of�open�chromatin�by�Assay�for�Transposase-Accessible�Chromatin�

with�high�throughput�sequencing�(ATAC-Seq)�in�GMPs�isolated�from�4�weeks�WD�or�CD�

fed�mice�(Figure�5E-F).�While�WD�clearly�induced�changes�in�the�chromatin�landscape,�

these� changes� were� discrete� in� comparison� to� LPS� stimulation� (Figure� 5E).� Next,�

differentially� regulated�peaks�were�clustered�and�presented�as�a�heatmap� (Figure�5F).�

We� identified� 8� clusters� of� peaks� with� some� genomic� loci� showing� similar� chromatin�

status�in�GMPs�derived�from�WD-fed�or�LPS-treated�mice�but�differing�from�GMPs�from�

CD-fed� control�mice� (Figure�5�F,� clusters� 3).�Genes� associated� with� this� cluster�were�

linked�to�GO-terms�such�as�‘leukocyte�differentiation’�or�‘T�cell�activation’.�Furthermore,�

peaks�particularly�enriched�in�GMPs�from�WD-fed�mice�(cluster�4)�were�associated�with�

genes� linked� to� ‘IL-6� production’� and� the� ‘JAK/STAT� pathway’.� Of� interest,� enhancer�

regions�including�Tet2�and�Tlr4�were�found�to�be�more�open�in�both�GMPs�isolated�from�

WD� fed� mice� and� WD� followed� by� CD� fed� mice� (p� <� 0.05,� |FC|>2;� Figure� 5G).� In�

contrast,�gene�loci�for�Oxysterol-binding�protein-related�protein�3�(Osbpl3)�and�Abca1�(p�

<�0.05,�|FC|>2)�were�more�closed�in�GMPs�isolated�from�mice�fed�WD,�but�reopened�in�
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mice� fed�WD� followed� by�CD� and�were� thus� comparable� to� the� CD� fed�mice� (Figure�

S4F).� These� data� indicate� that� WD� can� effectively� reprogram� GMPs� both� on� the�

transcriptional� and� epigenetic� level.� Importantly,� the� broad� transcriptional� changes� in�

GMPs�from�LPS�injected�mice�fed�WD�and�then�CD�for�4�weeks�more�closely�resembled�

the�altered� responses� seen� in�GMPs� isolated� from�WD� fed�and� LPS�challenged�mice�

suggesting� persistence�of� a� long-lasting� reprogrammed�state� after� removal� of� the�WD�

insult.�

�

The�IL-1�pathway�is�part�of�WD-induced�GMP�reprogramming�

The� training� effect� we� observed� in� our� murine� model� might� be� further� modulated� by�

genetic� variation� in� major� pathways� involved.� To� determine� such� genetic� effects� and�

identify�those�pathways,�we�performed�a�functional�trained�immunity�(FTI-)�QTL�study�in�

human�monocytes.�We�used�the�pro-inflammatory�oxidized�form�of�LDL�(oxLDL)�that�has�

been�associated�with�WD�and�is�known�to�induce�trained�immunity�in�human�monocytes�

(Bekkering�et�al.,�2014).�We�subjected�adherent�monocytes�to�oxLDL�or�control,�rested�

cells�after�a�wash�step�for�5�days�and�re-stimulated�with�LPS�using�monocytes�from�122�

healthy� individuals� (Figure� 6A)� from� the� 200� FG� cohort� (Li� et� al.,� 2016).� Training� of�

monocytes�with�oxLDL�resulted� in�an� increased� responsiveness� to�LPS� re-stimulation,�

compared� to� cells� pre-incubated�with� culture�medium.�The�FTI-QTL� analysis� identified�

several�single�nucleotide�polymorphisms�(SNPs)�in�the�putative�regulatory�gene�regions�

of� (1)�PYCARD,� the�gene�encoding� the� inflammasome�adapter� ASC,�and� (2)� IL1RAP,�

the� gene� encoding� the� IL-1� receptor� antagonist� (IL-1ra).� Importantly,� several� of� these�

genetic�variants�showed�a�significant�effect�on�the�capacity�of�oxLDL�to� induce� trained�

immunity�(Figure�6B,�D:�Manhattan�plots� representing�clustered�reference�SNPs�(rs)� in�

the� proximity� of� the� gene� coding� regions� for� PYCARD� or� IL1RAP),� assessed� by� the�
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diminished�release�of�TNF�(p�<�10-4,�linear�regression�model;�Figure�6C,�E)�or�IL-6�(p�<�

10-4,� linear� regression� model;� Figure� 6E).� A� role� of� IL-1ra� in� oxLDL� mediated� innate�

immune� training� could� be� confirmed� in� an� independent� cohort� of� humans.� Addition� of�

recombinant�IL-1ra�during�the�oxLDL-induced�training�period�resulted�in�lower�responses�

upon�LPS�challenge�after�the�training�period,�as�analyzed�by�TNF�and�IL-6�levels�in�the�

culture� supernatants� (Figure� 6F).� Given� the� important� role� of� inflammasomes� in�

regulating� IL-1� and� the� suggestion� by� the� companion� papers� that� IL-1� is� involved� in�

cellular� reprogramming,�we� further� tested� the�effects�of� IL-1�blockage�on� the� systemic�

WD-induced�inflammatory�response�in vivo.�We�subjected�Ldlr-/-�mice�to�recombinant�IL-

1ra�or�PBS�vehicle�control�during�a�4�weeks�course�of�CD�or�WD�feeding.�The�results�

demonstrated� that� IL-1� blockade� during� WD� feeding� did� not� significantly� alter�

hypercholesterolemia,�yet� it� tended� to�(Figure�6G).�Additionally,� IL-1�blockade�reduced�

the�WD-induced�systemic�inflammation,�demonstrated�by�the�decrease�of� inflammatory�

cytokines� (Figure�6H),�as�well�as� the� acute�phase�protein�SAA3�(Figure� 6I).�Together,�

these� data� provide� evidence� for� the� importance� of� the� inflammasome� and� the�

downstream�IL-1R�signaling�pathway�for� the� induction�of� trained� immunity�by�oxLDL� in�

vitro�or�by�WD�in�vivo.��

�

The�NLRP3�inflammasome�is�required�for�sensing�WD��

Previous� work� has� identified� that� oxLDL� is� capable� of� activating� the� NLRP3�

inflammasome� and� that� NLRP3� activation� has� been� shown� to� be� part� of� the�

pathogenesis� of� atherosclerosis� (Duewell� et� al.,� 2010;� Sheedy� et� al.,� 2013).� We�

hypothesized� that� triggering� of� the� NLRP3� inflammasome� by� pro-inflammatory� factors�

arising�after�WD�could�contribute�to�trained�immunity,�as�observed�by�the�hematopoietic�

response� in� mice.� We� therefore� generated� Nlrp3-/-/Ldlr-/-� mice� and� analyzed� their�
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systemic� and� cellular� responses� to� WD.� Strikingly,� WD� did� not� induce� peripheral�

monocytosis� in� Nlrp3-/-/Ldlr-/- mice� compared� to� WD� fed� Ldlr-/-� mice� (Figure� 7A).� WD�

furthermore� failed� to� induce�GMP�activation� as�assessed�by�CD86�surface�expression�

(Figure� 7B)� and�WD� did� not� induce� increased�GMP� proliferation� in Nlrp3-/-/Ldlr-/- mice�

(Figure� 7C).� Additionally,� the�WD-induced� augmentation� of� the� LPS� induced� systemic�

inflammatory�cytokine�responses�observed�in�Ldlr-/-�were�largely�blunted�in�Nlrp3-/-/Ldlr-/-�

mice,� especially� in� inflammasome� dependent� cytokines� (Figure� 7E).� Transcriptional�

profiling�of�GMPs�isolated�from�WD�or�CD�fed�Ldlr-/- or�Nlrp3-/-/Ldlr-/-�mice�combined�with�

computational� network� analysis� (Figure� 7F)� and� rank� plot� visualization� (Figure� 7G)�

demonstrated�that� the�WD-induced�transcriptional�reprogramming�of�GMPs�was�mostly�

dependent�on�NLRP3.�In�agreement�with�the�lack�of�inflammatory�effects�of�WD,�Nlrp3-/-

/Ldlr-/- mice�showed�markedly� reduced�atherosclerotic�plaque�size�after�8�weeks�of�WD�

feeding�(Figure�7D).��

Together,� our� data� strongly� support� a� key� function� of� the� NLRP3� inflammasome� in�

myeloid�cell�reprogramming�in�the�context�of�WD�feeding.�

�

Discussion�

Genetic�and�lifestyle�factors�are�key�drivers�of�chronic�non-communicable� inflammatory�

diseases,� which� currently� represent� the� vast� majority� of� death� burden� in� Western�

societies�(Mega�et�al.,�2015).�Importantly,�an�unhealthy� lifestyle,�which�includes�factors�

such�as�noxious�diets,�little�exercise�and�sleep,�and�unfavorable�environmental�triggers,�

can� independently� of� the� genetic� risk� strongly� increase� the� rate� of� incident�

cardiovascular� events� and� increase� the� susceptibility� for� other� chronic� inflammatory�

diseases�(Khera�et�al.,�2016).�Therefore,� it� is�of� great� importance�to�better�define�how�

these�factors�mechanistically�influence�inflammatory�processes.���
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Alterations� in� diets� can� have� deleterious� effects� on� immune� responses� and� drive� the�

development�of�a�range�of�inflammatory�diseases�(Thorburn�et�al.,�2014).�Yet,�whether�

and�how� ‘inflammatory’� diets�can�provoke� trained� immunity� leading� to�potentially� long-

lasting�alterations�of� immune� responses� was�unknown.�Early� studies�documented� that�

WD�feeding�of�rabbits�induced�enhanced�cytokine�production�towards�LPS�stimulation�in�

cells� within� the� aortic� tissue� suggesting� that� WD� could� prime� for� augmented� innate�

immune�responses�(Clinton�et�al.,�1991;�Fleet�et�al.,�1992).�Here,�we�have�investigated�

whether� WD� consumption� can� trigger� trained� immunity� and� whether� this� results� in�

modified�secondary�immune�responses�in�a�mouse�model� for�atherosclerosis,�because�

wild-type�mice�do�not�spontaneously�develop�atherosclerosis,�unless�serum�cholesterol�

levels� are� raised� experimentally� by� genetic� deletion� of� LDLR� or� APOE.� The� LDLR�

deficient� mouse� model� is� relevant� to� human� atherosclerosis� as� patients� with� LDLR�

mutations� are� highly� susceptible� for� the� development� of� early� atherosclerosis.� In� our�

studies� we� have� focused� on� deciphering� inflammatory� effects� of� WD� in� the� early,�

initiation�phase�of�atherosclerosis�before�significant�amounts�of�plaque�have�deposited�in�

the� vessel� walls� in� Ldlr-/-� mice.� This� minimized� the� potential� contribution� of� plaque-

derived� immune� cells� and� also� putative� changes� that� might� occur� due� to� plaque�

regression�that�can�occur�after�changing�the�diet� from�WD�to�CD.�Our�studies�revealed�

that�while�WD�provoked�only� transient�systemic�inflammatory�responses,� it� led�to� long-

lasting� alterations� of� myeloid� cell� responses� towards� different� innate� immune� stimuli.�

These� studies� thus� establish� that� not� only� microbes� but� also� complex� sterile�

inflammatory�triggers,�such�as�a�WD,�can�induce�trained�immunity.��

To� better� understand� how�WD� induces� trained� immunity,� and� because� other� studies�

have� linked� hypercholesterolemia� to� reprogramming� of� hematopoietic� stem� cells�

(Murphy�et�al.,�2011;�Seijkens�et�al.,�2014;�van�Kampen�et�al.,�2014;�Yvan-Charvet�et�al.,�



 18

2010),� we� performed� functional� and� transcriptional� analyses� of� GMPs,� the� proximate�

precursors� of� circulating� myeloid� subsets.� Notably,� blood� leukocyte� counts� and� in�

particular�the�numbers�of�circulating�monocytes�were�shown�to�be�tightly�associated�with�

hypercholesterolemia� and� incidence� of� cardiovascular� events� (Friedman� et� al.,� 1974;�

Swirski� and�Nahrendorf,� 2013).�Furthermore,� inflammatory�blood�monocytes� that� arise�

from� activated� hematopoietic� precursors� during� WD� feeding� develop� into� disease�

promoting�macrophages�in�atherosclerotic�plaques�and�likely�other�organs�(Swirski�et�al.,�

2007).�Our� studies� revealed� that�WD� induces�GMP� proliferation� and� skewing� towards�

the� development� of� activated� and� potentially� harmful� monocytes,� which� was�

accompanied� by� long-lived� transcriptional� and� epigenetic� reprogramming.� While� the�

ATAC�sequencing�results�suggest� that�epigenetic�changes�are� induced�by�WD�feeding�

and� might� contribute� to� the� transcriptomic� reprogramming,� other� mechanisms� of�

epigenetic� regulation�may� also� be� induced.� Indeed,� opening� of� chromatin� is� only� one�

aspect�of�the�epigenetic�processes�that�control�transcription,�and�it�is�likely�that�there�are�

further�mechanisms� that� drive� the� complex� long-term� transcriptomic� changes�we� have�

demonstrated.�Nevertheless,�our�studies�suggest�that�the�immune�system�misinterprets�

a�WD�as� a� threat� to� the�host� as� it�sets� in�motion�powerful� anti-infectious�mechanisms�

such�as�hematopoiesis�and�maintenance�of�a�hyper-responsive�state�with�the�generation�

of� myeloid� cells� that� are� programmed� to� respond� to� secondary� inflammatory� triggers�

more�potently.�

Recent�studies�support� the� idea�that�cell-fate�decisions�and�a�potential�reprogramming�

already�happens�at�the� level�of�non-committed�HSPCs,�particularly�under�conditions�of�

systemic�stress�induced�by�bacterial�or�viral� infections� (Boettcher�and�Manz,�2017)�but�

also�during�hyperlipidemia�and�hyperglycemia�(Brasacchio�et�al.,�2009;�Nagareddy�et�al.,�

2014;�Singer�et�al.,�2014).�The�work�by�the� International�Trained�Immunity�Consortium�
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(INTRIM),�reported�in�this�issue�of�Cell�now�demonstrates�that�trained�immunity�can�be�

induced� on� the� level� of� HSPCs.�Mitroulis et al.� show� that� the� trained� immunity�model�

ligand�β-glucan� induces�metabolic�and�transcriptional� rewiring� in�HSPCs�through�IL-1R�

signaling,� which� protects� the� hematopoietic� system� from� chemotherapy-induced�

myeloablation.��

By� showing� that�WD� induces� a� ‘memory’� in� myeloid� progenitors� our� work� raised� the�

question�of�which�mechanisms�are�involved�in�sensing�the�complex�inflammatory�trigger.�

LDL�cholesterol�overload,�oxidation�of�LDL�(oxLDL)�as�well�as�fatty�acids�can�all�induce�

a� continuous� state� of� intracellular� stress� and� activate� innate� immune� pathways�

(Dorrestein� et� al.,� 2014;� Sheedy� et� al.,� 2013).� Additionally,� WD-induced� microbial�

alterations� could� also� drive� for� innate� immune� cell� re-programming,� which� could� be�

tested�using�germ-free�mice� in�future�studies.�However,�the�metabolic,�neuroendocrine,�

and�molecular�control�mechanisms� that�mediate� the�biological�effects�of�WD�are�wide-

ranging� and� their� individual� contributions� are� difficult� to� decipher� in vivo.� We� thus�

performed� a� reductionist� in vitro� trained� immunity�QTL� study� in� human�monocytes� to�

exploit� human� genetic� variability� as� a� discovery� approach.� Intriguingly,� this� analysis�

revealed� that� oxLDL-induced� trained� immunity�was� influenced� by� several� independent�

genetic�polymorphisms�in�the�putative�regulatory�region�of�PYCARD,�the�gene�encoding�

the� principal� inflammasome� adapter� protein� ASC,� and� also� in� the� gene� for� the�

endogenous� IL-1� inhibitory� molecule� IL-1RAP.� Together� with� a� large� array� of� studies�

linking�NLRP3�to�the�inflammatory�response�in�metabolic�diseases�(Duewell�et�al.,�2010;�

Rhoads�et�al.,�2017;�Sheedy�et�al.,�2013),�this�provided�evidence�for�a�potential�key�role�

of� the� NLRP3� inflammasome� pathway� in� the� induction� of� trained� immunity� under�

conditions�of�WD� feeding.�Strongly�supporting�this�hypothesis,�we�observed�an�almost�

complete� protection� from�WD-induced� changes� in� systemic� inflammation,� induction� of�
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hematopoiesis� and� functional� and� transcriptomic� reprogramming� of� GMPs� in� Ldlr-/-

/NLRP3-/-�mice.�Future�studies�using�cell�specific�deletions�will�have�to�be�performed�to�

clarify� the� important� question� as� to� which� cell� type� activation� of� the� inflammasome� is�

required� to� induce� the� observed� epigenetic� reprogramming� effects� we� have�

demonstrated.��

Nevertheless,� NLRP3� qualifies� as� a� principal� WD� insult� sensor� that� mediates� most�

aspects�of�the�WD-induced�inflammation�and�trained�immunity�we�have�demonstrated�in�

bone� marrow� precursor� cells.� In� support� of� this� hypothesis,� patients� with� primary�

hypercholesterolemia�reportedly�have� increased� levels�of� inflammasome-dependent� IL-

18�and�evidence�for�systemic�inflammation�(Messal�et�al.,�2006;�Narverud�et�al.,�2011).�

Additionally,� cholesterol� overload� in� hematopoietic� progenitors� could� also� lead� to� a�

sustained�state�of� intracellular�stress,� linked� to� increased� inflammatory�signaling�and�a�

potential� long-term� reprogramming.� Supportively,� the� studies� by� Bekkering et al.�

reported� in� this� issue� of� Cell� show� that� dysbalanced� cholesterol� biosynthesis� with� an�

accumulation�of�mevalonate�can�drive�trained� immunity� induction.�On�the�other�hand� it�

appears�plausible� that�NLRP3�could� also� instigate� inflammatory�pathologies� towards�a�

range�of�sterile�danger�signals�not� limited�to�WD,�as�numerous�triggers�of� relevance�in�

human�chronic�inflammatory�pathologies�have�been�linked�to�NLRP3�activation�(Heneka�

et�al.,�2013;�Hornung�et�al.,�2008;�Martinon�et�al.,�2006).�

Our� study� together� with� work� by� Mitroulis et al.� in� this� issue� of� Cell� implies� that� an�

inflammasome-mediated� product,� such� as� IL-1,� is� likely� the� central� endogenous�

mediator�of�the�mechanisms�resulting�in�the�induction�of�trained�immunity.�Indeed,�early�

work�had�already�established� that� injections�of� IL-1�before�experimental� infection�can�

prevent�lethality�from�infections�(Van�der�Meer�et�al.,�1988).�Additionally,�IL-1,�produced�

by�activated�adipose� tissue�macrophages�in�obesity,�was�shown�to� interact�with�the�IL-



 21

1R�expressed�on�CMPs,�which�stimulated� the�proliferation�of�GMPs�(Nagareddy�et�al.,�

2014).�Hence,�it�is�likely�that�IL-1�is�the�key�messenger�generated�by�NLRP3�following�

WD-mediated�activation.� It� is� further� tempting� to�speculate� that� these�mechanisms�are�

part� of� the� clinical� benefit� observed� in� the� recent� CANTOS� trial,� which� tested� IL-1�

blockade�in�humans�at�cardiovascular�risk�(Ridker�et�al.,�2017).�

Curiously,� functional� annotation� analysis� of� the� transcriptomic� changes� demonstrated�

that�GMPs�responded�in�a�fashion�that�shares�features�of�a�viral� infection�characterized�

by� the� appearance� of� a� strong� type� I� IFN� signature.� It� would� be� interesting� to� better�

understand�the�complex�interplay�between�type�I�IFNs�signaling�and�the�IL-1�signaling�

after�WD�exposure,�given�that�type�I�IFNs�can�regulate�inflammasome�activation�and�IL-

1�synthesis�(Labzin�et�al.,�2016).�Furthermore,�a�causal�link�between�WD-induced�type�

I� IFN�production�and� the� risk�of�virus� infections� and�auto-immunity� is�conceivable�and�

should� prospectively� be� investigated� in� rodent� models� of� infections� or� in� human�

populations.� In�addition,�we�detected�signaling�pathways� in�GMPs�associated�with� cell�

proliferation,� anti-apoptosis,� loss� of� stem� cell� quiescence� and� favored� lineage�

differentiation� into� monocytes� (Olsson� et� al.,� 2016),� which� potentially� raises� GMP� life�

span�and� facilitates�memory� induction.�These�cell�phenotypes�were� largely�maintained�

even�four�weeks�after�shifting�mice�to�CD�feeding.�

In� summary,�WD� feeding� can� result� in� a� remodeled� cellular� compartment� in� the� bone�

marrow� leading� to� increased� proliferation,� skewing� of� hematopoiesis� and� generating�

exaggerated� responds� to� exogenous� and� endogenous� triggers� of� inflammation.� By�

integrating� the� inflammatory� effects� of�WD,� the� NLRP3� inflammasome� appears� to� be�

critical� for� this� response.� Hence,� this� may� pave� the� road� for� new� therapeutic� CVD�

interventions,� such� as� the� use� of� small� molecule� inhibitors� that� block� the� NLRP3�

signaling�pathway.��
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Figure�legends�

Figure� 1-� WD� feeding� induces� systemic� inflammation� and� functional�

reprogramming.� A.� Schematic� of� dietary� interventions.� Female� Ldlr-/- mice� were� fed�

either�CD,�WD�for�4�weeks�or�WD�for�4�weeks�followed�by�CD�for�4�weeks�(WD>CD).�B.�

Systemic� serum� cholesterol� in� response� to�dietary� intervention� in�Ldlr-/- mice.�C.�Heat-

map�representing�normalized�serum�cytokine�levels�from�mice�fed�as�indicated�D.�Bone�

marrow�cells�or�E.�splenic�CD11b+�monocytes,�isolated�from�Ldlr-/-�mice�following�dietary�

intervention�treated�ex vivo�with�vehicle�or�different�TLR�stimuli�for�6h.�Log�2�transformed�

data� represented�as�spider� plots� for� the� following� stimulations:�Pam3Csk4,� LPS,�R848�

and�CpG.�For�(B)�n�=�6-10�animals;�for�(C)�n�=�3-5�animals�per�group;��SEM,�p�<��0.05�

vs.�CD;�vs.�un-stimulated�cells�(D,�E).�Experiments�were�performed�twice�independently�

and�data�are�representative�of�a�single�experiment.�See�also�Figure�S1�and�Table�S1.�

�

Figure�2-�WD�induces�hematopoiesis�and�transcriptional�reprogramming�of�GMPs.�

A.�Total�counts�of�the�indicated�blood�cell�populations�in�CD�or�WD�fed�(4�weeks)�female�

Ldlr-/-� mice.� B.� Relative� numbers� (%)� and�C.� activation� status� of� circulating� myeloid�

subsets�isolated�from�female�Ldlr-/-�mice.�D.�Percentage�of�hematopoietic�precursor�cells�

as� indicated� in� female�Ldlr-/-�mice� fed�either�CD�or�WD�(4�weeks).�E.�PCA�of�RNAseq�

data�of�GMPs�isolated�from�CD�or�WD�fed�mice.�PCA�is�based�on�variable�genes�(non-
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adj.�p-value�<� �0.05,�n�=�4672)�F.�Gene�and�sample�wise�hierarchical�clustering�based�

on� the�1000�genes�with� the�highest� variance�within� the�dataset� of�GMPs�purified� from�

WD� or� CD� fed� mice.� Gene� expression� values� are� z-score� standardized.�G.� MA-plot�

showing�DE�genes� in�GMPs�of�WD�or�CD� fed�mice.�DE�genes� (|FC|>1.5,� non-adj.� p-

value�<�0.05)�are�colored�in�red�(up-regulated�in�WD)�and�blue�(down-regulated�in�WD)�

and� notable� genes� are� highlighted.�H.� Trajectory� analysis� of� single-cell� RNAseq� data�

(GSE70235)�with�computational�clustering�(top)�representing�the�expression�of�Csf1R�or�

S100a8,�overlaid�onto�the�developmental�trajectory�to�identify�monocytic�or�granulocytic�

lineage�determination.�Cells�of� the�monocytic�(turquoise)�and�granulocytic� (dark�green)�

branches�were�used�to�determine�signature�genes�to�test�for�lineage�potential�in�I�and�J.�

I.� Expression� differences� of� monocytic� (turquoise)� and� granulocytic� (dark� green)�

signature�genes� in�GMPs� from�mice� fed�as� indicated.�J.�Enrichment�of�monocytic�and�

granulocytic� signatures� in� GMPs� isolated� from� CD� and� WD� fed� mice,� and�

computationally� inferred�by� linear� support� vector� regression�analysis.�Enrichments� are�

significant� (non-adj.� p-value� <� 0.001).� K.� GO� term� enrichment� network� analysis� of�

differentially�expressed�genes�from�GMPs�isolated�from�WD�and�CD�fed�mice.�Each�dot�

represents� a� significantly� enriched� GO� term� and� connections� indicate� shared� genes�

between�GO�terms.�Significance� (FDR)�is�indicated�by�color� (lower�FDR:�more� intense�

color)� and� size� (lower� FDR:� bigger� nodes/� thicker� borders)� of� nodes� (up-regulated�

genes)�or�borders� (down-regulated�genes);��SEM,�p�<�0.05�vs.�CD;� for�(A-C)�n�=�3-5�

animals� per� group.� Experiments� were� performed� twice� independently� and� data� are�

representative�of�a�single�experiment.�See�also�Figure�S2.�

�

Figure� 3-� WD� primes� for� inflammatory� responses� to� LPS.� A.� Schematic�

representation� of� the�WD�and�LPS�manipulations.� Female�Ldlr-/- mice�were� fed�CD�or�
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WD�for�4�weeks.�6�hours�prior�to�sacrifice�mice�were�intravenously�challenged�by�LPS�or�

PBS.�B.�Serum�cytokine�levels�in�LPS-treated�CD�or�WD�fed�mice�were�normalized� to�

levels� in� PBS� control� groups� and� represented� as� fold-change.� Activation� status� of�C.�

circulating�and�D.�splenic�myeloid�subsets�from�female�Ldlr-/-�mice�treated�as�indicated.�

E.� Pearson� correlation� analysis� of� top� 1000� DE� genes� of� transcriptomes� from� GMPs�

isolated� from� mice� treated� as� indicated.� F.� Volcano� plot� indicating� transcriptomic�

changes�between�CD/LPS�and�WD/LPS.�Significantly�up-regulated� (FC�>1.5,�FDR-adj.�

p-value� <� 0.05,� red)� and� down-regulated� (FC� <� -1.5,� FDR-adj.� p-value� <� 0.05,� blue)�

genes�are�shown�and�the�most�significantly�regulated�genes�are�highlighted.�G.�Number�

of�significantly�up-�(red)�and�down-�(grey)�regulated�GMP�genes�within�immune�system�

associated�GO�terms�in�WD/LPS�compared�to�CD/LPS�treated�mice.�n�=�3-8�animals�per�

group� in� B;� n�=� 3�animals� in�C-D;�� SEM,�p�<� 0.05� vs.�CD� (B-D);� vs.�CD-GMPs� (H).�

Experiments�were�performed�twice�independently�and�data�are�representative�of�a�single�

experiment.�See�also�Figure�S3.�

�

Figure� 4-�WD� induces� long-lasting� reprogramming� in�GMPs.� A.�Schematic� of�diet�

and�LPS�manipulations.�B.�PCA�of�genes�with�highest�variance�(non-adj.�p-value�<�0.05,�

n�=�4672).�C.�Pearson�correlation�analysis�of�top�1000�DE�genes�of�transcriptomes�from�

GMPs� isolated� from�mice� treated�as� indicated.�D.� –� I.�Co-expression�network�analysis�

(genes�=�4,360,�correlation�>�0.85)�based�on�highly�correlated�genes�among�the�11306�

expressed�genes.�To�allow�identification�of�specific�gene�signatures�z-score�transformed�

average�gene�expression� (D-F)�or� fold�changes�in�gene�expression� (G-I)�of� respective�

conditions�were�overlaid�onto�the�co-expression�network.�See�also�Figure�S4.�

�
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Figure�5-�WD�induces�epigenetic�reprogramming�of�GMPs.�A.�FC-FC�plot�comparing�

the�LPS�response�of�GMPs�with�amplitude�of�difference�in�LPS�responses�visualized�as�

color�code�(red:�up-regulated�genes;�blue:�down-regulated�genes).�B.�Total�counts�of�the�

indicated� blood� cell� populations� in� female� mice� fed� as� shown.� Activation� status� of�

circulating�C.�and�splenic�D.�myeloid�subsets�from�mice�treated�as�indicated.�E.�Volcano�

plot�displaying�open�chromatin� loci�as�determined�by�ATACseq� in�GMPs� isolated�from�

mice� treated� as� indicated.� Average� signal� is� represented� as� log2� fold� change.�

Significantly�up-�(non-adj.�p-value�<�0.05,�log2FC�>�1)�and�down-regulated�(non-adj.�p-

value�<��0.05,�log2FC�<� �-1)�peaks�are�shown.�F.�Hierarchical�clustering,�standardized�

and�visualized�as�a�heatmap�show� the�significant� differentially�accessible�genomic� loci�

(p-value� <� 0.05)� in� GMPs� isolated� from� mice� treated� as� indicated.� G.� Coverage� of�

ATACseq�signal�for�TET2�(top�panel)�and�TLR4�loci�(bottom�panel).�n�=�3-5�for�groups�in�

(B-D);� ��SEM,�p�<�0.05�vs�CD.�Experiments�were�performed� twice� independently�and�

data�are�representative�of�a�single�experiment.�See�also�Figure�S4.�

�

Figure�6-�PYCARD� and� IL-1RAP� SNPs� influence� oxLDL-induced� training� effects.��

A.� �Schematic�overview�of�the� in vitro�FTI-QTL�protocol.�Manhattan�plots� representing�

reference�single�nucleotide�polymorphisms� (rs)� in� the�B.�PYCARD�gene� locus�or�D.� in�

the�IL1RAP�gene locus.�C.�TNF�production�capacity�in�different�genotyping�groups�from�

B�and�E.�TNF�and�IL-6�production�capacity�between�different�genotyping�groups�from�D.�

F.�Monocyte�oxLDL�training�was�performed�in�presence�or�absence�of�recombinant�IL-

1ra� followed� by� LPS� stimulation.� Shift� in� cytokine� levels� represented� as� fold-change�

(oxLDL/+/-� IL-1ra).� G.� Systemic� serum� cholesterol� levels,� H.� cytokines� and� I.� acute�

phase�response�in�Ldlr-/- mice�treated�as�indicated.�n�=�3-4�mice�per�group�(G-I);�means�

� SEM,� p� <� 0.05� vs.� non-IL-1ra� treatment� (RPMI� only)� (F);� vs.� i.� CD� and� ii.� PBS�



 30

treatment�(G-I).�

Figure� 7-� NLRP3� dependent� myeloid� progenitor� priming.� A.� Total� counts� of�

circulating�cell�subsets�from�female�Ldlr-/-�and�Nlrp3-/-/Ldlr-/- mice�treated�as�indicated.�B.�

Activation�status�and�C.�proliferative�capacity�of�GMPs�isolated�from�Ldlr-/-�or�Nlrp3-/-/Ldlr-

/- mice� fed� as� indicated.� D.� Atherosclerotic� plaque� lesion� size� in� WD� fed� (8� weeks)�

female� Ldlr-/-� or� Nlrp3-/-/Ldlr-/-� mice.� E.� Serum� cytokine� response� 6� hours� post� LPS�

injection� in� female� Ldlr-/-� and� Nlrp3-/-/Ldlr-/-� mice� fed� as� indicated.� F.� Co-expression�

network�analysis�of�transcriptional�changes�induced�by�WD�in� female�Ldlr-/-�and�Nlrp3-/-

/Ldlr-/-� mice.� Fold� changes� are� overlaid� onto� co-expression� networks.� � G.� Rank� plot�

visualization�of� fold� changes� of� genes� represented� in� F.� n�=� 2-5� for�groups� in� A-C,� E�

(experiments� were� performed� twice� independently� and� data� are� representative� of� a�

single�experiment),�n�=�5-9�animals�in�D;��SEM,�p�<�0.05�vs.�CD�(A-C,�E),�vs.�Ldlr-/-�(D).�

�

Legends�for�Supplemental�Figures�

Supplemental� Figure� 1-� A.� Systemic� lipoprotein� levels� in� female� Ldlr-/-� mice� fed� as�

shown.� B.� Body� weights� of� female� Ldlr-/-� mice� treated� as� indicated� C.� Acute� phase�

reactant� levels� in� female� Ldlr-/- mice� treated� as� indicated.� Cytokine� and� chemokine�

response�of�D.�bone�marrow�cells�or�E.�splenic�CD11b+�monocytes�isolated�from�female�

Ldlr-/-�mice�following�diet�manipulation�and�treated�ex vivo�with�vehicle�or�different�TLR�

stimuli�for�6h�as�indicated.�n�=�5�mice�per�group�in�B�and�n�=�6-9�mice�per�group�in�C;��

SEM,�p�<�0.05�vs.�CD�(C),�vs.�un-stimulated�cells�(D,�E).�Figure�S1.�related�to�Figure�1.�

�

Supplemental�Figure�2-��
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A.� FACS� gating� strategy.� B.� Relative� numbers� and� C.� activation� status� of� splenic�

myeloid�subsets� isolated� from� female�Ldlr-/-�mice� treated�as� indicated�D.�FACS�sorting�

gating�strategy�for�the�different�myeloid�progenitor�subsets.�E.�Schematic�representation�

of� the� computational� analysis� as� indicated�F.� Functional� enrichment� analysis� showing�

overrepresentation� of� genes� up-regulated� in� GMPs� isolated� from� female Ldlr-/-� mice�

treated�as�indicated�in�Gene�Ontology�terms�or�KEGG�pathways.�G.�Transcription�factor�

binding� prediction� analysis� of� significantly� up-regulated� genes� in� GMPs� isolated� from�

female� Ldlr-/-� mice� fed�WD� or� CD.� Motif� enrichment� analysis� was� performed� on� 20kb�

area� centered� around� the� transcriptionally� start� site� of� up-regulated� genes.� Log2FC� in�

genes�expressed�in�GMPs�and�visualized�for�predicted�transcriptional�regulators.�Boxes�

represent�TFs�with�high�motif�similarity� (FDR-adj.�p-value�<�0.001).�Colors� indicate�the�

normalized�enrichment�score�of�motif�enrichment.�n�=�3-5�animals�per�group;��SEM,�p�<�

0.05�(B,�C).�Figure�S2.�related�to�Figure�2.�

�

Supplemental�Figure�3-��

A.�Representative�flow�cytometry�histogram�analysis�from�myeloid�cell�subsets�from�CD�

and� WD� fed� female� Ldlr-/-� mice.� B.� -� E.� Functional� enrichment� analysis� showing�

overrepresentation� of� genes� up-regulated� (B,� C)� or� down-regulated� (D,� E)� in� GMPs�

isolated�from�mice�treated�as�indicated.�Figure�S3.�related�to�Figure�3.�

�

Supplemental�Figure�4-��

A.� Schematic� describing� the� procedure� of� computational� analysis� of� RNAseq� data� for�

Figure�4�and�S4.�B.�Functional�analysis�of�genes�commonly�up-regulated�in�GMPs�from�

mice�treated�as�indicated.�Top�five�enriched�gene�ontology�terms�of�these�gene�lists�are�

shown.� DE� genes:� non-adjust.� p-value� <� 0.05,� FC>� 1.5.� C.� -� E.� Transcription� factor�

binding�prediction�of� regulated�genes� in�GMPs� isolated� from�mice� treated�as� indicated�
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and�selected�genes�as�depicted�in�the�schematics.�Selection�of�input�genes�for�analysis:�

C:�Genes�up-regulated� in�WD/LPS�vs�CD/LPS� (FC�>� 1.5,� non-adj.� p-value�<�0.05),�D:�

Genes�not�regulated� in�LPS�response�under�CD�(-1.3�<�FC�<�1.3),�but�significantly�up-

regulated� in� LPS� response� upon�WD� feeding� in�GMPs� (FC� >� 1.3,� non-adj.� p-value� <��

0.05)� and� E:� Genes� not� regulated� in� LPS� response� under� CD� (-1.3� <� FC� <� 1.3),� but�

significantly� up-regulated� in�LPS� response�upon�WD>CD� feeding� in�GMPs� (FC�>� 1.3,�

non-adj.� p-value� <� � 0.05).� Motif� enrichment� analysis� was� performed� on� a� 20kb� area�

centered�around�the�transcription�start�site�of�up-regulated�genes.�Log2�FC�is�visualized�

for� predicted� transcriptional� regulators� from� conditions� as� indicated.� Boxes� represent�

TFs�with�high�motif�similarity�(FDR-adj.�p-value�<�0.001).�Color�indicates�the�normalized�

enrichment� score� of� motif� enrichment.� Selected� clusters� are� shown.� F.� Coverage� of�

ATACseq�signal�for�OSBPL3�(left�panel)�and�ABCA1�loci�(right�panel).�Figure�S4.�related�

to�Figure�4�and�Figure�5.�

�

Supplemental� Table� 1:� �Serum�cytokine� levels� in� response� to�CD,�4�weeks�WD,�or�4�

weeks�WD�followed�by�a�resting�period�of�4�weeks.�Table�S1.�related�to�Figure�1.�

�

�
STAR�methods�

�

Contact�for�Reagent�and�Resource�sharing�

Further�information�and�requests�for�reagents�may�be�directed�to,�and�will�be�fulfilled�by�

the�corresponding�author�Eicke�Latz�(eicke.latz@uni-bonn.de).�

�

�
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Experimental�Model�and�Subject�details��

Mice  

Experiments�were�approved�by�the�Institutional�Animal�Care�and�Use�Committees�of�the�

University� of� Massachusetts� Medical� School� and� performed� according� to� local� ethics�

regulations� (IACUC� 1945,� UMass� Medical� School),� and� in� accordance� with� the� NIH�

guidelines.�C57Bl/6J� were� purchased� from� The� Jackson� Laboratory.� Ldlr-/-�and�Nlrp3-/-�

were�originally�purchased�from�The�Jackson�Laboratory�and�kept�in�house.�Nlrp3-/-/Ldlr-/-�

were�bred� in�house.�All�mice�were�previously�backcrossed�over� ten�generations�to� the�

C57Bl6/J�background.�For�all� in vivo�animal�studies�(Western�Diet� feeding�studies,�LPS�

challenge,� in vivo�cell�proliferation)�age�(8�weeks�of�age)�and�sex-matched�female�wild�

type,�Ldlr-/-, Nlrp3-/-/Ldlr-/- mice were� used�with� at� least�3�mice� per�genotype.� If�mouse�

numbers� per� genotype� were� <� 3,� experiments� were� at� least� performed� twice�

independently.� During� experimental� settings� mice� had� ad� libitum� access� to� food� and�

water,�and�were�housed�under�a�12�hour�light-dark�cycle.�

Human subjects 

Experiments�were�conducted�according�to�the�principles�expressed�in�the�Declaration�of�

Helsinki� as� Ethics� Statement.� Healthy� individuals� of�Western� European� descent� gave�

written� informed�consent� to�donate� venous�blood� to�use� for� research� (Li� et� al.,� 2016).�

122� volunteers�were�between� 23-73� years�old,� and� consisted�of� 77%�males� and�23%�

females. During�all�in vitro�culture�assays�human�isolated�monocytes�were�kept�in�RPMI�

1640�culture�medium�supplemented�with�50�μg/mL�gentamycin,� 2�mM�glutamax�and�1�

mM�pyruvate�at�37C�in�a�5%CO2�atmosphere.�

�
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�

Methods�Details�

Mouse in vivo studies 

To� induce� hyperlipidemia/� hypercholesterolemia� female�mice� were� fed� a�Western� diet�

(Teklad� 88137)� consiting� of� 17.3%� protein,� 21.2%� fat� (saturated� fat� 12.8%,�

monounsaturated� fat� 5.6%,� polyunsaturated� fat� 1%)� and� 48.5%� carbohydrates.� Chow�

diet� (Prolab�Isopro�RMH�30;�LabDiet)�consisted�of�25%�protein,�14%�fat�(ether�extract)�

and�60%�carbohydrates.�To� study�diet� effects� on� long-term�reprogramming�of�myeloid�

(progenitor)� subsets,� female� mice� were� fed� a� WD� for� 4� weeks,� and� subsequently�

subjected� to� regular� chow� diet� for� additional� 4� weeks.� To� study� diet-induced� innate�

immune� cell� priming� in vivo� female� mice� received� an� intravenous� injection� of� PBS�

(vehicle�control)�or�E. coli�derived�ultrapure�LPS�(0111:B4;�10µg/�mouse)�six�hours�prior�

to� sacrifice.� To� study� the� involvement� of� the� IL-1/IL-1R� signaling� pathway� in� innate�

immune� cell� reprogramming� in vivo� female� mice� were� daily� i.p.� injected� with� PBS�

(vehicle�control)�or�Anakinra�(human�recominant�IL-1ra;�10�mg/kg�BW)�during�a�4�weeks�

course�of�CD�or�WD� feeding.�Blood,� spleen�and�bone�marrow�(BM)�were�collected� for�

single� cell� isolation� and� additional� flow� cytometry� analysis,� for� immunohistochemical�

tissue� preparation,� for� RNA� isolation� and� further� gene� expression� analysis,� or� for�

additional�in vitro�stimulation�experiments.��

 

Isolation of mouse plasma lipoproteins by FPLC 

For� lipoprotein�separation�by� FPLC,� total� sera� cholesterol� levels� were� first� determined�

with�standard�enzymatic�assays�(see�below�for�kit�description).�Then�a�50�μl�sera�aliquot�

was� pre-warmed� to� 37°C� for� 5� min.� followed� by� filtration� through� a� PVDF� 0.45� μm�

membrane� filter.� The� filtered� samples� (20� μl)� were� subsequently� fractionated� by� fast�
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performance� liquid� chromatography� (FPLC)� gel� filtration� on� a� Superose� 6� PC� 3.2� /30�

column�at�4°C�(GE�Healthcare,�Uppsala,�Sweden).�The�elution�fractions�were�monitored�

using�absorbance�at�280�nm,�with�a�constant�flow�of�40�μl/min�and�fractions�(40�μl)�were�

collected� beginning� 18� min.� after� sample� injection.� Cholesterol� in� each� fraction� was�

measured�by�the� Infinity cholesterol reagents�(Thermo�Fisher�Scientific,�VA,�USA),�and�

the�area�under� the�curve� for� vLDL,�LDL�and�HDL�was�determined� in� comparison� to�a�

standard�of�known�amounts�of�human�vLDL,�LDL�and�HDL�run�in�parallel.�

 

Mouse serum MultiPlex Cytokine Measurements 

Multi-cytokines�in�mouse�sera�were�measured�with�the�BioPlex�Mouse�Cytokine�23-plex�

assay�together�with�BioPlex�mouse�cytokine�single-plexes�of�IL-18�and�VEGF�(Bio-Rad�

Laboratories,� Hercules,� CA)� on� a� Bio-Plex� 200� system� powered� by� Luminex� xMAP�

Technology.� In� some� experiments� a� Procarta� Plex� 10-plex� bead� assay� from�

ThermoFisher� and� measured� on� a� MAGPIX� instrument� using� Luminex� xMAP�

Technology.�The�analysis�was�performed�according� to� the�manufacturer’s�protocol�with�

the� following�modifications:� use� of� only� half� of� the� volumes,� adapted� incubation� times�

(serum:�60-30-30),�serum�centrifugation�for�10�min.�at�13200�x�rpm�before�analysis.�

�

Measurement of mouse serum acute phase proteins 

Acute� phase�proteins� in�mouse�sera�were�measured� using� commercial�ELISA�kits� for�

SAA3� (Invitrogen/� ThermoFisher� Scientific)� and� CRP� (R&D)� in� accordance� with� the�

manufacturer’s�instructions.�

�

Murine White Blood Cell (WBC) counts 



 36

Total�WBC�counts�in�freshly�isolated�murine�blood�were�performed�by�collecting�blood�in�

EDTA-coated�tubes�and�analyzing�them�using�a�hematology�cell�counter�(Abaxis�HM5).�

 

 

Flow cytometry of circulating and splenic leukocyte subsets in mouse 

Total� number� of� myeloid� cells,� monocyte� subsets� and� neutrophils� were� identified� as�

depicted�in�Figure�S2A.�Blood�was�collected�via�cardiac�puncture�into�ethylene-diamine-

tetraacetate�(EDTA)�lined�tubes�and�immediately�placed�on�ice.�Mice�were�perfused�wth�

10ml�of�sterile� phosphate�buffered� saline� (PBS)�via� the� left�ventricle�before�harvesting�

and�further�processing�of�organs.�Spleens�were�collected�into�RPMI1640/�0.1%�fetal�calf�

serum� (FCS)� containing� vials� and� stored� on� ice� until� further� processing.� All� following�

steps�were�performed�on�ice.�Red�blood�cells�(RBCs)�were�lysed�(3�times�for�5�minutes)�

and� leukocytes�were�centrifuged,�washed�and�resuspended�in�flow�cytometry�buffer�for�

staining�(PBS�containing�0.5%�bovine�serum�albumine�(BSA)�and�2mM�EDTA).�Spleens�

were�minced� into� small� pieces,� gently� crushed� and� filtered� twice� with� PBS� through� a�

70µm�cell� strainer.�RBC� lysis�was�performed�once� for� 3�minutes�before� resuspending�

splenic�cells�in�flow�cytometry�buffer�and�antibody�staining�with�a�cocktail�of�antibodies�

against� CD45� PerCp-Cy5.5,� CD11b� BV510,� CD11c� BV421,� Ly6C-APC,� Ly6G-FITC,�

F4/80� PE,� CD64� PE-Cy7,� MHCII� APC-Cy7,� CD86� Pacific� Blue� (all� from� BioLegend).�

Monocytes�were� identified�as�CD45hi�CD11b+� Ly6G-�and� further� separated� into�Ly6Chi,�

Ly6Cint� and� Ly6C-;� neutrophils� were� identified� as� CD45hi�CD11b+� Ly6G+� Ly6Clo.� Cells�

were� analyzed� by� LSRII� using� the� FACS�Diva� software� (BD).� All� flow� cytometry� data�

were�analyzed�using�FlowJo�Software�(Tree�Star�Inc.).�

�

In vivo proliferation assay 
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For� in vivo� proliferation� studies,� mice� were� injected� intraperitoneally� with� 1� mg� of� 5-

(ethynyl-2’-deoxyuridine)�(EdU)�24�hours�prior�to�sacrifice.�In�preparation�for�subsequent�

flow�cytometry�analysis,�cell�populations�were�immunostained�as�described�above,�fixed�

in� 4%� paraformaldehyde� (PFA)� and� further� treated� for� EdU� staining� following� the�

manufacturer’s� instructions� of� the� Click-iT� System� (ThermoScientific).� AlexaFluor647-

conjugated�azide�was�used�to�detect�incorporated�EdU.�Stained�cells�were�analyzed�by�

LSRII�using�the�BD�Diva�software�and�analyzed�by�FlowJo.�Proliferation�was�quantified�

and�expressed�as�percentage�of�EdU-positive�cells.�

�

Ex vivo stimulation of bone marrow cells and splenic monocytes 

Bone�marrow�and� splenic� single� cell� suspensions�were� prepared�as� described� above.�

Splenic�CD11b+�monocytes�were�further�purified�by�positive�selection�using�a�cocktail�of�

CD11b�magnetic�beads�(Miltenyi),�reaching�a�purity�of�95%.�Cells�in�96-well�flat-bottom�

wells� (100.000� cells/� well)� were� cultured� in� RPMI1640� supplemented� with� L-Glut,�

10%FCS,� 1%� Ciprofloxacin� at� 37C� in� a� 5%CO2� atmosphere.� After� a� 2� hour� resting�

period� in� the� incubator� (37C,� 5%CO2),� cells� were� stimulated� with� TLR-ligands� for� 6�

hours:� Pam3CysK4� (10ng/ml;� TLR2� ligand),� LPS� (10ng/ml;� TLR4� ligand),� R848�

(10µg/ml;�TLR7/8� ligand),� and�CpG� (10µM;�TLR9� ligand).� Subsequently,� supernatants�

were�collected�for�cytokines�measurement�by�MultiPlex�bead�array�(ThermoFisher).�

�

Flow cytometric cell sorting of murine bone marrow hematopoietic stem cells�

Hematopoietic�stem�cell�precursor�cells�(HSPCs)�and�myeloid�progenitor�cells�including�

common� myeloid� progenitor� cells� (CMPs)� and� granulocyte-monocyte� progenitor� cells�

(GMPs)�from�bone�marrow�were�analyzed�by�flow�cytometry�as�described�in�Figure�S2D.�

Bone�marrow�was�harvested�from�femurs�and�tibias�by�flushing�bones�with�cold�Hank’s�
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balanced� salt� solution� (HBSS)� containing� 0.1%�BSA� and� 2mM�EDTA.� RBC� lysis� was�

performed�once�for�5�minutes,�followed�by�antibody�staining�with�a�cocktail�of�antibodies�

against� lineage-committed�cells� (CD3e,�CD19,�CD45R�(B220),�CD11b,�TER-119,�CD2,�

CD8b,� CD4,� Ly6G;� all� FITC-labeled� and� from� eBioscience),� Sca-1� Pacific� Blue,� c-kit�

(CD117)� APC-Cy7,� CD34� APC,� CD16/CD32� (FcyRII/III)� PerCp-Cy5.5� (all� from�

BioLegend).�HSPCs�were�identified�as�lin-�Sca-1+�c-kit+;�CMPs�as�lin-�Sca1-�c-kit+�CD34int�

FcγRII/IIIint;� GMPs� as� lin-� Sca1-� c-kit+� CD34int� FcγRII/IIIhi.� Isolated� and� stained� bone�

marrow�cells�were�either�directly�analyzed�by�LSRII�(BD),�or�flow�sorted�by�FACS�Aria�II�

for�further�RNA�isolation�and�RNA/�ATAC-sequencing,�or�in vitro�assays.�

 

RNA Isolation�

1.7� ×�105–16�×�105�GMPs�were�sorted�and�subsequently� lysed� in�TRIZOL�(Invitrogen)�

and� total� RNA� was� extracted� using� the� miRNAeasy� kit� (Quiagen)� according� to� the�

manufacturer’s� protocol.� The� precipitated� RNA� was� solved� in� RNase-free� water.� The�

quality�of� the�RNA�was�assessed�by�measuring�the�ratio�of�absorbance�at�260�nm�and�

280�nm�using�a�Nanodrop�2000�Spectrometer�(Thermo�Scientific)�and�by�visualization�of�

28S�and�18S�band�integrity�on�a�Tapestation�2200�(Agilent).�

�

Generation of cDNA Libraries and Sequencing 

Total� RNA� was� converted� into� libraries� of� double-stranded� cDNA� molecules� as� a�

template� for� high-throughput� sequencing� using� the� Illumina� TruSeq� RNA� Sample�

Preparation�Kit�v2.�Briefly,�mRNA�was�purified�from�100–500�ng�of�total�RNA�using�poly-

T�oligo-attached�magnetic�beads.�Fragmentation�was�carried�out�using�divalent�cations�

under� elevated� temperature� in� Illumina� proprietary� fragmentation� buffer.� First� strand�

cDNA� was� synthesized� using� random� oligonucleotides� and� SuperScript� II.� Second�
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strand� cDNA� synthesis� was� subsequently� performed� using� DNA� Polymerase� I� and�

RNase� H.� Remaining� overhangs� were� converted� into� blunt� ends� via�

exonuclease/polymerase� activities�and�enzymes�were� removed.�After� adenylation�of�3′�

ends� of� DNA� fragments,� Illumina� adaptor� oligonucleotides� were� ligated� to� prepare� for�

hybridization.�DNA� fragments�with� ligated�adaptor�molecules�were� selectively�enriched�

using�Illumina�PCR�primers�in�a�15�cycles�PCR�reaction.�Size-selection�and�purification�

of� cDNA� fragments� with� preferentially� 200� bp� in� insert� length� was� performed� using�

SPRIBeads�(Beckman-Coulter).�Size�distribution�of�cDNA�libraries�was�measured�using�

the�Agilent�high�sensitivity�DNA�assay�on�a�Tapestation�2200� (Agilent).�cDNA� libraries�

were�quantified�using�KAPA�Library�Quantification�Kits�(Kapa�Biosystems).�After�cluster�

generation�on�a�cBot,�75�bp�single�read�sequencing�was�performed�on�a�HiSeq1500�and�

de-multiplexed�using�CASAVA�v1.8.2.�

�

RNAseq Data Analysis�

Pre-processing� of� RNAseq� data� was� performed� by� a� standardized� and� reproducible�

pipeline� based� on� the� Docker� system� (Docker� image� is� available� via� docker� hub,�

limesbonn/hisat2).�Briefly,�alignment�to�the�mouse�reference�genome�mm10�from�UCSC�

was� conducted� by� Hisat2� (Hisat2,� 2.0.6)� (Kim� et� al.,� 2015)using� standard� settings�

Aligned�BAM� files�were� imported� into�Partek�Genomics�Suite� (PGS)� software� (version�

6.6,�Partek)� for� further�analysis,�and�mRNA�quantification�was�performed�using�mm10�

RefSeq�Transcripts� (2015-11-03)�as�annotation�file.�Afterwards,� raw�gene�counts�were�

normalized� using� the� DESeq2� algorithm� in� R� (package� version� 1.14.1).� After� DESeq�

normalization,�the�normalized�read�counts�were�imported�back�into�PGS�and�floored�by�

setting�all�read�counts�less�than�1�to�a�value�of�exactly�1.�Subsequently,�we�removed�all�
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genes� that� had� a� maximum� overall� group� mean� below� 10.� After� filtering� the� data�

comprised�11306�present�genes.�Correlation�was� calculated� as�Pearson� correlation� of�

normalized� read� counts.� Differentially� expressed� genes� were� identified� by� a� two-way�

ANOVA�model�taking�the�diet�and�treatment�as�factors,�with�genes�with�highest�variance�

(n�=� 4672)�being�defined� as�genes� with�a� significant� p-value� (p-value� <� � 0.05)� for� the�

interaction� of� diet� and� treatment.� � Principal� component� analysis� was� performed� using�

PGS.� Heatmaps� and� several� plots� were� generated� using� the� ggplot2� plotting� library.�

Functional�annotation�of�gene�sets�was�performed� using� the�clusterProfiler�R�package�

(version�3.2.11).�RNAseq�data�from�Nlrp3-/- / Ldlr-/-�mice�were�normalized�and�analyzed�

separately�from�data�obtained�from�Ldlr-/-�mice�following�the�same�workflow�as�described�

above.� Network� visualization� of� Gene� Ontology� Enrichment� Analysis� (GOEA)� was�

performed� with� Cytoscape� (version� 3.3)�and� the� BiNGO� plugin� (Version� 2.44)� with� a�

FDR-corrected�hypergeometric�p-value�of�0.001.�The�Cytoscape�plugin�enrichment�map�

(Version�1.2)�displayed�the�GOEA�results�as�a�network�of�GO-terms,�and�for�assistance�

of�annotation�we�used�the�word�cloud�cytoscape�app�(version�3.1.0).�

�

Co-expression network analysis 

In�order�to�perform�a�topological�mapping�of�global�changes�in�gene�expression�we�used�

a�co-expression�network�approach�based�on�correlation.�The�gene�expression�matrices�

containing�the�normalized�read�counts�for� the�11306�present�genes�were�imported�into�

BioLayout� (Version� 3.3)� and� co-regulation� networks� were� generated� with� a� Pearson�

correlation�cutoff�of�0.85.�Co-expressed�genes�were�visualized�as�a�network�(n�=�4,360�

genes)�by�Cytoscape�applying�a�Force-directed�layout.�To�identify�the�topology�of�the�co-

expression� network� the� positive� standardized� gene� expression� (scaled� and� centered�
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average� expression)� was� calculated� and� mapped� onto� the� co-expression� network.� In�

addition,�we�mapped� the�expression� differences� in� a�LPS� response�under�CD�as� fold�

change� to� the�network.�To�visualize� the�diet�dependent�effects�on� a�LPS�response�we�

overlaid� the�color-coded� fold�changes�between�WD/LPS�and�CD/LPS�or�WD>CD/LPS�

and�CD/LPS,�respectively.���

�

Transcription factor prediction analysis 

In� order� to� predict� potential� regulators� of� the� observed� gene� expression� changes� we�

performed� transcription� factor� binding�prediction� (TFBP)� in� the� region� 20kb� around� the�

transcriptional� start� site� (TSS).� To� identify� transcriptional� regulators� of� genes� up-

regulated� in� a�WD� vs.�CD� LPS� response,� genes� with� a� significant� difference� in� gene�

expression� (FC� >1.5,� non-adj.� p-value� <� � 0.05)� between�WD/LPS� and� CD/LPS� were�

used� for� TFBP.� In� addition,� we� examined� transcriptional� regulators� of� genes� only�

regulated� in� a�WD/LPS�or�an�WD>CD/LPS�but�not� in� a�LPS�response�under�standard�

chow�diet.�Therefore,�genes�were�used�for�TFBP�with�no�considerable�gene�expression�

changes� between� CD/LPS� and� CD� (-1.3� <� � FC� <� � 1.3)� and� a� significant� difference�

between�WD/LPS�and�CD/LPS�or�WD>CD/LPS�and�CD/LPS,�respectively.�For�the�gene-

based�motif�enrichment�analysis,�we�used�iRegulon�(version�1.3)�in�combination�with�the�

provided� 10K�position�weight�matrices� (PWMs)�motif� collection.�To� identify� only� highly�

enriched�transcription�factor�predictions�we�filtered�the�results�by�an�enrichment�score�of�

3�and�only�reported�transcription�factors�with�a�maximum�false�discovery�rate�(FDR-adj.�

p-value)� of� less� than� 0.001.� Resulting� transcriptional� regulators� were� grouped� into�

clusters� with� high�motif� similarity� using� the� STAMP� algorithm� with� iRegulon� standard�
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parameters.� The� transcriptional� regulators� in� their� respective� clusters�were�ordered�by�

decreasing�fold�change�and�their�gene�expression�was�visualized�as�log2FC.���

�

Assessment of GMP-commitment using single cell RNAseq data combined with 

support vector regression 

To� investigate�the�effect�of�nutrition�on�GMP�commitment�towards�either�the�monocytic�

or�the�granulocytic�developmental�branch,�we�utilized�a�publicly�available�dataset,�which�

comprised� single� cell� transcriptome� data� of� various� murine� hematopoietic� progenitor�

cells�(GSE70240).�Here,�we�used�the�available�normalized�count�data�of�only�GMPs�that�

were� found� either� in� the� monocytic� or� granulocytic� cluster� (109� cells).� Next,� we�

constructed� a� developmental� trajectory� using� Monocle� 2.� For� this� purpose,� we�

transformed� the� expression� levels� in� transcripts� per� million� mapped� reads� (TPM)� to�

estimate�mRNA�counts�per�cell� (RPC)�using� the�Census� implementation�of�Monocle�2.�

We�set� the� lower� detection� limit� to�an�RPC�of�1� and�defined� variable�genes�by� taking�

advantage�of�a�dispersion�plot�for�which�the�mean�expression�cutoff�was�set�to�1�and�the�

dispersion� cutoff� was� set� to� 1.75.� Based� on� these� variable� genes,� we� computed� a�

trajectory,� which� consisted� of� three� branches� with� two� of� them�were� either�monocytic�

(enriched� for� Csfr1)� or� granulocytic� (enriched� for� S100a8)� committed.� Next,� we�

calculated� differentially� expressed� (DE)� genes� between� the� GMPs� either� committed�

towards�the�monocytic�or� the�granulocytic�lineage�using�Seurat.�As� tests�for�differential�

expression,�we�utilized�a�likelihood-ratio�test�for�single�cell�gene�expression,�a�standard�

AUC�classifier� and�Tobit-test.�When� limiting� the�evaluation� to�genes�which� showed�on�

average�at� least� 1-fold� difference� (natural� log-scale)� between� the� two�populations� and�

which�were�detected�in�at�least�25%�of�the�cells�in�either�of�the�two�populations,�all�three�
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tests� resulted� in� the� same� number� of� DE� genes� (195� genes).� For� support� vector�

regression,�we�defined� the�calculated�DE�genes�as�support�vectors.�The�signature� file�

was� generated� by� population-wise� calculation� of� the� total� TPM� count� per� gene� and�

filtering� for� the�defined�support� vectors.�The�mixture� file�was�based�on� variable�genes�

(ANOVA,�non-adj.�p-value�<�0.05)�across�all�conditions� in� the�present�dataset.�Support�

vector� regression� was� performed� with� 100� permutations� and� by� disabling� quantile�

normalization.�

�

Cell preparation for ATAC-sequencing 

For� ATAC-sequencing,� 5.000� -� 50.000� flow� sorted� GMPs� were� collected� in� ice-cold�

HBSS� containing� 0.1%BSA� and� 2mM� EDTA,� and� immediately� processed� following�

previously�published� protocols.� In�brief,� sorted� cells� were� spun�down�at� 500� x�g� for� 5�

minutes�at�4C,�washed�once�in�cold�PBS,�and�spun�down�in�50�µl�cold� lysis�buffer�at�

500� x� g� for� 10�minutes� at� 4C.� Immediately� thereafter� the� transposition� reaction� was�

started� by� adding� Nextera’s� Tn5� Transposase� (TDE1)� in� reaction� buffer.� The�

transposition�reaction�mix�was�incubated�for�30�minutes�at�37C,�DNA�was�purified�using�

a�Quiagen�MinElute�PCR�purification�kit.�ATAC-seq�libraries�were�purified�using�a�PCR�

purification�MinElute�kit� (Quiagen)�and�quantified�using�KAPA� library�quantification�kits�

(Kapa�biosystems)�and�a�D1000�assay�on�a�Tapestation�2200�(Agilent).�Libraries�were�

sequenced�in�a�50�bp�single�read�run�on�a�HiSeq�1500�(Illumina).�

�

Analysis of ATACseq data 

For� Assay� for� Transposase-Accessible� Chromatin� sequencing� (ATAC-seq)� data�

analysis,� short� reads� were� aligned� to� the�mouse� genome� version� mm10� with� Bowtie�
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v1.1.1.� Duplicate� reads� were� flagged� with� Picard� v1.134� prior� to� peak� calling� with�

MACS2�v2.1.0.20140616.�Consensus�peak�regions�across�all�samples�were�generated�

with� the� ‘reduce’� function� of� the� Bioconductor� GenomicRanges� v1.26.3� package,�

followed� by� read� counting� per� sample,� which� was� done� with� bedtools� multiBamCov�

v2.25.0.�Blacklisted�analysis�regions�with�coordinate�adjustments�by�the�LiftOver�tool�to�

mm10,�as�well�as�regions�that�were�not�consistently�present�across�samples�of�the�same�

analysis�group�were�excluded� from� the�analysis.�Differentially� accessible� regions�were�

determined�with� the�DESeq2� v1.14.1� package�and�mapped� to� nearest�genes�with� the�

ChIPseeker� v1.10.3� package.� To� read� coverage� tracks� of� ATAC� signal� we� combined�

replicate�samples�(2�biological�replicates,�for�WD>CD/PBS)�and�created�normalized�(to�

10,000,000� reads)� bigWig� files� using� the� HOMER� (version� 4.6)�

command�makeUCSCfile. For�visualization,�the�read�coverage�tracks�were�smoothed�by�

averaging� over� a� sliding� window� of� 200� bases� and� all� tracks� for� a� given� region� were�

scaled�to�the�highest�overall�peak�and�visualized�by�the�Gviz�package�(version�1.18.1).�

Global� changes� in� chromatin� accessibility� are� visualized� as� heatmap� and� similarly�

accessible� regions� are� clustered� by�hierarchical� clustering� using� pheatmap� package� v�

1.0.8�in�R.�

�

Histology of mouse atherosclerotic lesions 

Mice�were�anesthesized�by�an�overdose�isoflurane�and�perfused�through�the�left�cardiac�

ventricle�with�PBS�containing�1%�PFA.�Hearts�were�dissected,�fixed�overnight�in�4%PFA�

frozen�in�OCT�Tissue�Tek�Compound�(Sakura),�and�cut� into�4�µM�thick�serial�sections.�

To�measure�plaque�volume�in�the�aortic�root,�plaque�area�was�measured�for�each�valve�

for�consecutive�sections�at�20�μm�intervals�that�covered�the�entire�lesion.�H&E�staining�

was� performed� as� described� previously� (Duewell� et� al.,� Nature� 2010).� Slides� were�
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analyzed� in� a� blinded� manner� using� a� Leica� DM3000� light� microscope� (Leica�

Microsystems)�coupled�to�a�computerized�morphometric�system�(Leica�Qwin�3.5.1).�

�

Isolation of human PBMCs and in vitro trained immunity model 

Venous�blood�was�drawn�from� the�cubital�vein�of�healthy�volunteers� into�10�mL�EDTA�

tubes�(Monoject).�PBMCs�were�isolated�by�density�centrifugation�of�blood�diluted�1:1�in�

pyrogen-free�saline�over�Ficoll-Paque�(Pharmacia�Biotech).�Cells�were�washed�twice�in�

saline�and� resuspended� in�RPMI� 1640�culture�medium� (Invitrogen)�supplemented�with�

50� μg/mL� gentamycin,� 2�mM� glutamax� (GIBCO),� and� 1� mM� pyruvate� (GIBCO).� Cells�

were�counted�in�a�Coulter�counter�(Coulter�Electronics)�and�adjusted�to�5�x�106�cells�per�

milliliter.�A�100�μL�volume�was�added�into�flat-bottom�96-well�plates�(Corning)�and�cells�

were�incubated�at�37˚C.�After�1�hour,�cells�were�washed�three�times�with�200�μL�warm�

PBS� to� remove� non-adherent� cells.� Subsequently,� monocytes� were� incubated� with�

culture�medium�only�(negative�control)�or�10�μg/mL�oxLDL�for�24�hours�in�10%�pooled�

human� serum.� In� an� additional� experimental� setup� Anakinra� (recombinant� IL-1ra;�

10ug/ml)�was�added�during�oxLDL�incubation�for�24�hours.�Cells�were�washed�once�with�

200�μL�warm�PBS�and�incubated�for�5�days�in�culture�medium�with�10%�human�pooled�

serum.� The� medium� was� changed� once� on� day� 3� of� incubation.� On� day� 6,� the�

supernatant�was�discarded�and�the�cells�were�re-stimulated�with�200�μL�culture�medium�

or�10�ng/mL�E. coli LPS�(serotype�055:B5,�Sigma-Aldrich).�After�24�hours,�supernatants�

were�collected�and�stored�at�-20˚C�until�cytokine�measurement.�Cytokine�production�was�

measured�in�supernatants�using�commercial�ELISA�kits�for�TNF�and�IL-6�(R&D�systems)�

in�accordance�with�the�manufacturer’s�instructions.��

�

Mapping of genetic variants in human PBMCs 
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Raw� cytokine� levels� were� first� log-transformed.� Then,� the� ratio� of� cytokine�

measurements�between� the� second�and� the� first�stimulation�was�computed� to� capture�

the�enhanced�trained�response�or�tolerant�response.�Individuals�of�200FG�cohort�were�

genotyped� using� the� Illumina� HumanOmniExpressExome-8� v1.0� and� the� data� was�

imputed,� as�previously�described.� In� total� there�were�122�samples�with�both�DNA�and�

cytokine�measurements.�We� focused� on� the� genetic� effect� of� polymorphisms�within� a�

window� of� 250kb� around� PYCARD,�NLRP3,� CASPASE1 and� IL-1RAP� genes� on� the�

oxLDL-induced� trained� immunity.� The� ratio� of� log-transformed� cytokine� data� was�

mapped�to�genotype�data�using�a�linear�model�with�age�and�gender�as�covariates.�

�

Quantification�and�Statistical�analysis�

Statistical�parameters�including�the�exact�value�of�n,� the�definition�of�center,�dispersion�

and� precision� measures� (mean±SEM)� and� statistical� significance� are� reported� in� the�

Figures�and�Figure�Legends.�All�data�are�expressed�as�the�mean�SEM.�Data�is�judged�

to� be� statistically� significant� when� p� <� 0.05� by� two-tailed� Student’s� t� test� (if� normally�

distributed);�nonparametric�data�are�analyzed�using�a�Mann‐Whitney�U‐test.�To�compare�

several� groups,� a� one-way� ANOVA� (with� Dunnet’s� post-test)� or� repeated� measures�

ANOVA�with�multiple� testing�correction�are�used.� In� figures� asterisks�denote� statistical�

significance� (*,� p� <� 0.05;� **,� p� <� 0.01;� ***).� Statistical� analysis� was� performed� in�

GraphPad�PRISM�7�(Graph�Pad�Software�Inc.).��

�

Data�and�software�availability��
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Raw� data� files� for� the� RNA� sequencing� and� ATAC� sequencing� analysis� have� been�

deposited� in� the� NCBI� Gene� Expression� omnibus� under� accession� number� GEO:��

GSE97926.�
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Figure 7
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Abstract: 

Dendritic cells (DC) are professional antigen-presenting cells that orchestrate immune 

responses. The human DC population comprises two main functionally-specialized lineages, 

whose origins and differentiation pathways remain incompletely defined. Here we combine two 

high-dimensional technologies — single-cell mRNA sequencing and Cytometry by Time-of-

Flight (CyTOF), to identify human blood CD123+CD33+CD45RA+ DC precursors (pre-DC). 

Pre-DC share surface markers with plasmacytoid DC (pDC) but have distinct functional 

properties that were previously attributed to pDC. Tracing the differentiation of DC from the 

bone marrow to the peripheral blood revealed that the pre-DC compartment contains distinct 

lineage-committed sub-populations including one early uncommitted CD123high pre-DC subset 

and two CD45RA+CD123low lineage-committed subsets exhibiting functional differences. The 

discovery of multiple committed pre-DC populations opens promising new avenues for the 

therapeutic exploitation of DC subset-specific targeting. 
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Main Text: 

Introduction (4500 max including ref, notes and caption) 

Dendritic cells (DC) are professional pathogen-sensing and antigen-presenting cells that 

are central to the initiation and regulation of immune responses (1). The DC population is 

classified into two lineages: plasmacytoid DC (pDC), and conventional DC (cDC), the latter 

comprising cDC1 and cDC2 sub-populations (2, 3). Dissecting the origins and differentiation 

pathways giving rise to DC sub-populations is necessary to understand their homeostasis and 

role in immune responses, and for the development of DC subset-specific therapeutic 

interventions. Murine DC arise from unique DC-restricted bone-marrow (BM) progenitors 

known as common DC progenitors (CDP), which differentiate into pDC and DC precursors (pre-

DC) and migrate out of the BM into peripheral tissues (4-7). Human equivalents of murine CDP 

and pre-DC have recently been described (8, 9); human pre-DC comprise ~0.001% of peripheral 

blood mononuclear cells (PBMC) and were identified by their expression of cytokine receptors 

that mark and drive DC differentiation in mice, including CD117 (c-kit, SCF), CD116 

(GMCSF), CD135 (FLT3) and CD123 (IL3-Rα) (9). Previous studies have observed similar 

receptor expression patterns within human pDC populations, which can differentiate into cDC-

like cells when stimulated with IL-3 and CD40L (10, 11). Therefore, either pDC are precursors 

of cDC, as proposed (11), or the conventionally-defined pDC population is heterogeneous, 

incorporating an independent pre-DC sub-population. 

To answer this question, we interrogated the blood CD135+HLA-DR+ fraction, that 

should contain DC and their precursors (12-14), using several integrated, high-dimensional 

analysis techniques, including single-cell mRNA sequencing (scmRNAseq) and Cytometry by 
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Time-of-Flight (CyTOF). Using these approaches, we identified a novel population of pre-DC 

within the conventionally-defined pDC population. These pre-DC exhibit a unique phenotype 

and distinct functional properties, which were previously attributed to pDC. Extending our 

analysis to all DC populations in human blood and BM, we identified the entire DC lineage 

arising from the BM, and revealed the transcriptional priming of pre-DC towards distinct DC 

subsets. These data offer new insights into DC heterogeneity and ontogeny, and highlight 

unexplored avenues for investigation of the therapeutic potential of DC subset-specific targeting.  

 

Results 

Unbiased identification of DC precursors by unsupervised single-cell RNAseq and CyTOF 

Using PBMC isolated from human blood, we employed massively-parallel single-cell 

mRNA sequencing (MARS-seq) (15) to assess the transcriptional profile of 710 individual cells 

within the lineage marker (Lin)(CD3/CD14/CD16/CD20/CD34)–, HLA-DR+CD135+ population 

(Fig. 1, A to G, and fig. S1a (16), fig. S1, b to j (17), Table S1 (18)). The MARS-seq data were 

processed using non-linear dimensionality reduction via t-stochastic neighbor embedding 

(tSNE), which enables unbiased visualization of high-dimensional similarities between cells in 

the form of a two-dimensional map (19-21). Density-based spatial clustering of applications with 

noise (DBSCAN) (22) on the tSNE dimensions identified five distinct clusters of 

transcriptionally-related cells within the selected PBMC population (Fig. 1A, and fig. S1g). To 

define the nature of these clusters, we calculated gene signature scores for pDC, cDC1 and cDC2 

(as described in (23), Table S2 (24)), and overlaid the expression of the signatures attributed to 

each cell onto the tSNE visualization. Clusters #1 and #2 (containing 308 and 72 cells, 

respectively) were identified as pDC, cluster #3 (containing 160 cells) as cDC1, and cluster #5 

(containing 120 cells) as cDC2. Cluster #4 (containing 50 cells) lay in between the cDC1 (#3) 
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and cDC2 (#5) clusters and possessed a weak, mixed pDC/cDC signature (Fig. 1A). We then 

performed a connectivity MAP (cMAP) analysis (25) to calculate the degree of enrichment of 

pDC or cDC signature gene transcripts in each individual cell. This approach confirmed the 

signatures of pDC (#1 and #2) and cDC (#3 and #5) clusters, and showed that most cells in 

cluster #4 expressed a cDC signature (Fig. 1B). The Mpath algorithm (26) was then applied to 

the five clusters to identify hypothetical developmental relationships based on these 

transcriptional similarities between cells (Fig. 1C, and fig. S2, a and b). Mpath revealed that the 

five clusters were grouped into three distinct branches with one central cluster (cluster #4) at the 

intersection of the three branches (Fig. 1C, and fig. S2a). The Mpath edges connecting cluster #4 

to cDC1 cluster #3 and cDC2 cluster #5 have a high cell count (159 and 137 cells, respectively), 

suggesting that the transition from cluster #4 to clusters #3 and #5 is likely valid, and indicates 

that cluster #4 could contain putative cDC precursors (Fig. 1C). In contrast, the edge connecting 

cluster #4 and pDC cluster #2 has a cell count of only 7 (Fig. 1C, and fig. S2b), which suggests 

that this connection is very weak. The edge connecting cluster #4 and #2 was retained when 

Mpath trimmed the weighted neighborhood network (fig. S2b), simply due to the feature of the 

Mpath algorithm that requires all clusters to be connected (26). To confirm these findings, we 

tested Monocle (27), principal component analyses (PCA), Wishbone (28) and Diffusion Map 

algorithms (29). Monocle and PCA resolved the cells into the same three branches as the original 

Mpath analysis, with the cells from the tSNE cluster #4 again falling at the intersection (Fig. 1, D 

and E). Diffusion Map and Wishbone analyses indicated that there was a continuum between 

clusters #3 (cDC1), #4 and #5 (cDC2): cells from cluster #4 were predominantly found in the 

DiffMap_dim2low region, and cells from clusters #3 and #5 were progressively drifting away 

from the DiffMap_dim2low region towards the left and right, respectively. The pDC clusters (#1 

and #2) were clearly separated from all other clusters (Fig. 1F, and fig. S2c). In support of this 

observation, cells from these pDC clusters had a higher expression of pDC-specific markers and 
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transcription factors (TF) than the cDC clusters (#3 and #5) and central cluster #4. Conversely, 

cells in cluster #4 expressed higher levels of markers and TF associated with all cDC lineage 

than the pDC clusters (Fig. 1G). This phenotype led us to hypothesize that cluster #4 represented 

a population of putative uncommitted cDC precursors. 

We next employed CyTOF, which simultaneously measures the intensity of expression of 

up to 38 different molecules at the single cell level, to further understand the composition of the 

delineated sub-populations. We designed a panel of 38 labeled antibodies to recognize DC 

lineage and/or progenitor-associated surface molecules (Table S3, Fig. 1, H to J, and fig. S3), 

and the molecules identified in cluster #4 by MARS-seq, such as CD2, CX3CR1, CD11c and 

HLA-DR (Fig. 1I). Using the tSNE algorithm, the 

CD45+Lin(CD7/CD14/CD15/CD16/CD19/CD34)–HLA-DR+ PBMC fraction (fig. S3a) resolved 

into three distinct clusters representing cDC1, cDC2 and pDC (Fig. 1H). An intermediate cluster 

at the intersection of the cDC and pDC clusters that expressed both cDC-associated markers 

(CD11c/CX3CR1/CD2/CD33/CD141/BTLA) and pDC-associated markers 

(CD45RA/CD123/CD303) (Fig. 1, I to J, and fig. S3b) corresponded to the MARS-seq cluster 

#4. The delineation of these clusters was confirmed when applying the phenograph unsupervised 

clustering algorithm (30) (fig. S3c). The position of the intermediate CD123+CD33+ cell cluster 

was distinct, and the cells exhibited high expression of CD5, CD327, CD85j, together with high 

levels of HLA-DR and the cDC-associated molecule CD86 (Fig. 1, I to J). Taken together, these 

characteristics led us to consider whether CD123+CD33+ cells might represent circulating human 

pre-DC. 

 

Pre-DC exist within the pDC fraction and give rise to cDC 
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We analyzed the CD123+CD33+ cell cluster within the Lin–HLA-DR+ fraction of the 

PBMC by flow cytometry. Here, we identified CD123+CD33– pDC, CD45RA+/–CD123– cDC1 

and cDC2, and CD33+CD45RA+CD123+ putative pre-DC (Fig. 2A, and fig. S4a). The putative 

pre-DC expressed CX3CR1, CD2, CD303 and CD304, with low CD11c expression, whereas 

CD123+CD33– pDC exhibited variable CD2 expression (Fig. 2, A and B, and fig. S4, b and c). 

We then extended our analysis to immune cells from the spleen and identified a similar putative 

pre-DC population, which was more abundant than in blood and expressed higher levels of 

CD11c (Fig. 2, A and C, and fig. S4d). Both putative pre-DC populations in the blood and spleen 

expressed CD135 and intermediate levels of CD141 (fig. S4c). Wright-Giemsa staining of 

putative pre-DC sorted from the blood revealed an indented nuclear pattern reminiscent of 

classical cDC, a region of perinuclear clearing, and a basophilic cytoplasm reminiscent of pDC 

(Fig. 2D). At the ultra-structural level, putative pre-DC and pDC exhibited distinct features, 

despite their morphological similarities (Fig. 2E, and fig. S4e): putative pre-DC possessed a 

thinner cytoplasm, homogeneously-distributed mitochondria (m), less rough endoplasmic 

reticulum (RER), an indented nuclear pattern, a large nucleus and limited cytosol, compared to 

pDC; pDC contained a smaller nucleus, abundant cytosol, packed mitochondria, well-developed 

and polarized cortical RER organized in parallel cisterna alongside numerous stacks of rough ER 

membranes, suggesting a developed secretory apparatus, in agreement with previously-published 

data (31). 

We then compared the differentiation capacity of pre-DC to that of cDC and pDC, 

through stromal culture in the presence of FLT3L, GMCSF and SCF, as previously described 

(8). After 5 days, the pDC, cDC1 and cDC2 populations remained predominantly in their initial 

states, whereas the putative pre-DC population had differentiated into cDC1 and cDC2 in the 

known proportions found in vivo (14, 23, 32, 33) (Fig. 2F, fig. S4f, and fig. S5). Altogether, 

these data suggest that CD123+CD33+CD45RA+CX3CR1+CD2+ cells are circulating pre-DC 
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with cDC differentiation potential. Breton and colleagues (9) recently reported a minor 

population of human pre-DC (highlighted in fig. S6a), which shares a similar phenotype with the 

Lin–CD123+CD33+CD45RA+ pre-DC defined here (fig. S6, a and b). Our results reveal that the 

pre-DC population in blood and spleen is markedly larger than the one identified within the 

minor CD303–CD141-CD117+ fraction considered previously (fig. S6, c and d).  

 

Pre-DC are functionally distinct from pDC  

IFNα-secreting pDC can differentiate into cells resembling cDC when cultured with IL-3 

and CD40L (10, 11), and have been considered DC precursors (11). However, when we used 

traditional ILT3+ILT1– (10) or CD4+CD11c– (11) pDC gating strategies, we detected a 

“contaminating” CD123+CD33+CD45RA+ pre-DC sub-population in both groups (fig. S6, e and 

f). We questioned, therefore, whether other properties of traditionally-classified “pDC 

populations” might be attributed to pre-DC. TLR7/8 (CL097) or TLR9 (CpG ODN 2216) 

stimulation of pure pDC cultures resulted in abundant secretion of IFNα, but not IL-12p40, 

whereas pre-DC readily secreted IL-12p40 but not IFNα (Fig. 2G, and fig. S7). Furthermore, 

while pDC were previously thought to induce proliferation of naïve CD4+ T cells (10, 34), here 

we found that only the pre-DC sub-population exhibited this attribute (Fig. 2H). Reports of 

potent allostimulatory capacity and IL-12p40 production by CD2+ pDC (34) might then be 

explained by CD2+ pre-DC “contamination” (35) (fig. S8). 

Pitt-Hopkins Syndrome (PHS) is characterized by abnormal craniofacial and neural 

development, severe mental retardation, and motor dysfunction, and is caused by haplo-

insufficiency of TCF4, which encodes the E2-2 transcription factor — a central regulator of pDC 

development (36). We confirmed that patients with PHS had a marked reduction in their blood 

pDC numbers compared to healthy individuals, but that they retained a population of pre-DC 
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(Fig. 2I, and fig. S9), which likely accounts for the unexpected CD45RA+CD123+CD303lo cell 

population reported in these patients (37). Taken together, our data indicate that, while pre-DC 

and pDC share some phenotypic features, they can be separated by their differential expression 

of several markers, including CD33, CX3CR1, CD2, CD5 and CD327. pDC are bona fide IFNα-

producing cells, but the reported IL-12 production and CD4+ T-cell allostimulatory capacity of 

pDC can likely be attributed to “contaminating” pre-DC, which can give rise to both cDC1 and 

cDC2. 

 

Identification and characterization of committed pre-DC subsets 

The murine pre-DC population contains both uncommitted and committed pre-cDC1 and 

pre-cDC2 precursors (7). We asked whether the same was true for human blood pre-DC using 

microfluidic scmRNAseq (fig. S10a (38), fig. S10, b and c (39), Table S4 (40)). The additional 

single cell gene expression data relative to the MARS-seq strategy used for Fig. 1, A to G (2.5 

million reads/cell and an average of 4,742 genes detected per cell vs 60,000 reads/cell and an 

average of 749 genes detected per cell, respectively) was subjected to cMAP analysis, which 

calculated the degree of enrichment for cDC1 or cDC2 signature gene transcripts (23) for each 

single cell (Fig. 3A). Among the 92 analyzed pre-DC, 25 cells exhibited enrichment for cDC1 

gene expression signatures, 12 cells for cDC2 gene expression signatures, and 55 cells showed 

no transcriptional similarity to either cDC subset. Further Mpath analysis showed that these 55 

“unprimed” pre-DC were developmentally related to cDC1-primed and cDC2-primed pre-DC, 

and thus their patterns of gene expression fell between the cDC1 and cDC2 signature scores by 

cMAP (Fig. 3B, and fig. S11). These data suggest that the human pre-DC population contains 

cells exhibiting transcriptomic priming towards cDC1 and cDC2 lineages, as observed in mice 

(7). 
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We next asked whether we could identify this heterogeneity within the pre-DC 

population by flow cytometry, using either pre-DC-specific markers (CD45RA, CD327, CD5) or 

markers expressed more intensely by pre-DC compared to cDC2 (BTLA, CD141). 3D-PCA 

analysis of the Lin–HLA-DR+CD33+ population (containing both differentiated cDC and pre-DC) 

identified three major cell clusters: CADM1+ cDC1, CD1c+ cDC2 and CD123+ pre-DC (Fig. 3C, 

and fig. S12a). Interestingly, while cells located at the intersection of these three clusters (Fig. 

3D) expressed lower levels of CD123 than pre-DC, but higher levels than differentiated cDC 

(Fig. 3C), they also expressed high levels of pre-DC markers (Fig. 3D, and fig. S12a). We 

reasoned that these CD45RA+CD123lo cells might be committed pre-DC that are differentiating 

into either cDC1 or cDC2 (Fig. 3E). The Wanderlust algorithm (41), which orders cells into a 

constructed trajectory according to their maturity, confirmed the developmental relationship 

between pre-DC (early events), CD45RA+CD123lo cells (intermediate events) and mature cDC 

(late events) (Fig. 3F). Flow cytometry of PBMC identified CD123+CADM1–CD1c– putative 

uncommitted pre-DC, alongside putative CADM1+CD1c– pre-cDC1 and CADM1–CD1c+ pre-

cDC2 within the remaining CD45RA+ cells (Fig. 3G, and fig. S12b). These three populations 

were also present, and more abundant, in the spleen (fig. S12c). Importantly, in vitro culture of 

pre-DC subsets sorted from PBMC did not give rise to any CD303+ cells (which would be either 

undifferentiated pre-DC or differentiated pDC), whereas early pre-DC gave rise to both cDC 

subsets, and pre-cDC1 and pre-cDC2 differentiated exclusively into cDC1 and cDC2 subsets, 

respectively (Fig. 3H, fig. S12d, and fig. S13). 

Scanning electron microscopy confirmed that early pre-DC are larger and rougher in 

appearance than pDC, and that committed pre-DC subsets closely resemble their mature cDC 

counterparts (Fig. 3I, and fig. S14a). Phenotyping of blood pre-DC by flow cytometry (fig. S14b) 

identified patterns of transitional marker expression throughout the development of early pre-DC 

towards pre-cDC1/2 and differentiated cDC1/2. Specifically, CD45RO and CD33 were acquired 
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in parallel with the loss of CD45RA; CD5, CD123, CD304 and CD327 were expressed 

abundantly by early pre-DC, intermediately by pre-cDC1 and pre-cDC2, and rarely if at all by 

mature cDC and pDC; FcεRI and CD1c were acquired as early pre-DC commit towards the 

cDC2 lineage, concurrent with the loss of BTLA and CD319 expression; early pre-DC had an 

intermediate expression of CD141 that dropped along cDC2 differentiation but was increasingly 

expressed during commitment towards cDC1, with a few pre-cDC1 already starting to express 

Clec9A; and IRF8 and IRF4 - transcription factors regulating cDC lineage development (2, 3) - 

were expressed by early pre-DC and pre-cDC1, while pre-cDC2 maintained only IRF4 

expression (fig. S14c). 

We next sorted pre-DC and DC subsets from blood and performed microarray analyses to 

define their entire transcriptome. 3D-PCA analysis of the microarray data showed that pDC were 

clearly separated from other pre-DC and DC subsets along the horizontal PC1 axis (Fig. 4A, and 

fig. S15). The combination of the PC2 and PC3 axes indicated that pre-cDC1 occupied a position 

between early pre-DC and cDC1 and, although cDC2 and pre-cDC2 exhibited similar 

transcriptomes, pre-cDC2 were positioned between cDC2 and early pre-DC along the PC3 axis 

(Fig. 4A). Hierarchical clustering of differentially-expressed genes (DEG) confirmed the 

similarities between committed pre-DC and their corresponding mature subset (fig. S16). The 

greatest number of DEG was between early pre-DC and pDC (1249 genes) among which CD86, 

CD2, CD22, CD5, ITGAX (CD11c), CD33, CLEC10A, SIGLEC6 (CD327), THBD, CLEC12A, 

KLF4 and ZBTB46 were more highly expressed by early pre-DC, while pDC showed higher 

expression of CD68, CLEC4C, TCF4, PACSIN1, IRF7 and TLR7 (Fig. 4B). An evolution in the 

gene expression pattern was evident from early pre-DC, to pre-cDC1 and then cDC1 (Fig. 4C), 

whereas pre-cDC2 were similar to cDC2 (Fig. 4D, and fig. S16). The union of DEGs comparing 

pre-cDC1versus early pre-DC and cDC1 versus pre-cDC1 has 62 genes in common with the 

union of DEGs from comparing pre-cDC2 versus early pre-DC and cDC2 versus pre-cDC2. 
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These 62 common genes include the transcription factors BATF3, ID2 and TCF4 (E2-2), and the 

pre-DC markers CLEC4C (CD303), SIGLEC6 (CD327), and IL3RA (CD123) (Fig. 4E, fig. S17 

and Table S5). The progressive reduction in transcript abundance of SIGLEC6 (CD327), CD22 

and AXL during early pre-DC to cDC differentiation was also mirrored at the protein level (Fig. 

4F). Key transcription factors involved in the differentiation and/or maturation of DC subsets 

showed a progressive change in their expression along the differentiation path from pre-DC to 

mature cDC (Fig. 4G). Finally, pathway analyses revealed that pre-DC exhibited an enrichment 

of cDC functions relative to pDC, and were maintained in a relatively immature state compared 

to mature cDC (fig. S18). 

 

Committed pre-DC subsets are functional 

We then asked to what extent the functional specializations of DC (1, 42) were acquired 

at the precursor level by stimulating PBMC with TLR agonists and measuring their cytokine 

production (Fig. 5A). Pre-DC produced significantly more TNFα and IL-12p40 when exposed to 

CpG ODN 2216 (TLR9 agonist), than to either LPS (TLR4 agonist) or polyI:C (TLR3 agonist) 

(p=0.03, Mann-Witney test). We confirmed that pDC were uniquely capable of robust IFN 

production in response to CL097 and CpG ODN 2216. CpG ODN 2216 stimulation also 

triggered IL-12p40 and TNFα production by early pre-DC, pre-cDC1, and to a lesser extent pre-

cDC2. Although TLR9 transcripts were detected only in early pre-DC (fig. S19a), these data 

indicate that, contrary to differentiated cDC1 and cDC2, pre-cDC1 and pre-cDC2 do express 

functional TLR9. Interestingly, while pre-cDC2 resembled cDC2 at the gene expression level, 

their responsiveness to TLR ligands was intermediate between that of early pre-DC and cDC2. 

Pre-DC subsets also expressed T-cell co-stimulatory molecules (Fig. 5B) and induced 

proliferation and polarization of naïve CD4+ T cells to a similar level as did mature cDC (Fig. 

5C, and fig. S19b).  
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Unsupervised mapping of DC ontogeny 

To understand the relatedness of the cell subsets, we performed an unsupervised isoMAP 

analysis (43) of human BM cells, obtained from CyTOF analysis, for non-linear dimensionality 

reduction (Fig. 6A, and fig. S20a). This analysis focused on the Lin-CD123hi fraction and 

identified CD123hiCD34+ CDP (phenograph cluster #5), from which branched CD34-

CD123+CD327+CD33+ pre-DC (clusters #1 and #2) and CD34-CD123+CD303+CD68+ pDC 

(clusters #3 and #4) which both progressively acquired their respective phenotypes. Cells in the 

pre-DC branch increasingly expressed CD2, CD11c, CD116 and, at a later stage, CD1c. IsoMAP 

analysis of Lin–CD123+ cells in the peripheral blood identified two parallel lineages, 

corresponding to pre-DC and pDC, in which a CDP population was not detected (Fig. 6B). 

IsoMAP and phenograph analysis of pre-DC extracted from the isoMAP analysis of Fig. 6A 

(BM, clusters #1 and #2) and Fig. 6B (blood, cluster #6) revealed the three distinct pre-DC 

subsets (Fig. 6C) as defined by their unique marker expression patterns (fig. S20, b and c). 

In summary, we traced the developmental stages of DC from the BM to the peripheral 

blood through CyTOF, showing that the CDP population in the BM bifurcates into two 

pathways, developing into either pre-DC or pDC in the blood (Fig. 6, A to C). This pre-DC 

population is heterogeneous and exists as distinct subsets detectable in both the blood and BM 

(Fig. 6C, and fig. S20, b and c). Furthermore, we uncovered an intriguing heterogeneity in blood 

and BM pDC that warrants further investigation (Fig. 6C, and fig. S20, d and e). 

 

Discussion 

Using unsupervised scmRNAseq and CyTOF analyses, we have unraveled the 

complexity of the human DC lineage at the single cell level, revealing a continuous process of 

differentiation that starts in the BM with CDP, and diverges at the point of emergence of pre-DC 
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and pDC potentials, culminating in maturation of both lineages in the blood. A previous study 

using traditional surface marker-based approaches had suggested the presence of a minor pre-DC 

population in PBMC (9), but the combination of high-dimensional techniques and unbiased 

analyses employed here shows that this minor population had been markedly underestimated: we 

reveal a population of pre-DC that overlaps with that observed by Breton and colleagues (9) 

within the CD117+CD303-CD141- fraction of PBMC, but accounts for >10 fold the number of 

cells in peripheral blood than was originally estimated, and is considerably more diverse fig. 

S6c). 

Recent work in mice found uncommitted and subset-committed pre-DC subsets in the 

BM (7, 44). Here, we similarly identified three functionally- and phenotypically- distinct pre-DC 

populations in human PBMC, spleen and BM: uncommitted pre-DC and two populations of 

subset-committed pre-DC (fig. S21 and fig. S22). In line with the concept of continuous 

differentiation from the BM to the periphery, the proportion of uncommitted cells was higher in 

the pre-DC population in the BM than in the blood. Altogether, these findings support a two-step 

model of DC development whereby a central transcriptomic subset-specific program is imprinted 

on DC precursors from the CDP stage onwards, conferring a core subset identity irrespective of 

the final tissue destination; in the second step of the process, peripheral tissue-dependent 

programming occurs to ensure site-specific functionality and adaptation (7, 44). Future studies 

will be required to reveal the molecular events underlying DC subset lineage priming and the 

tissue-specific cues that regulate their peripheral programming, and to design strategies that 

specifically target DC subsets at the precursor level. In addition, how the proportions of 

uncommitted pre-DC versus committed pre-DC are modified in acute and chronic inflammatory 

settings warrants further investigation. 

An important aspect of unbiased analyses is that cells are not excluded from 

consideration on the basis of preconceptions concerning their surface phenotype. We found that 
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pre-DC express most of the markers that classically defined pDC, such as CD123, CD303 and 

CD304. Thus, any strategy relying on these markers to identify and isolate pDC will have 

inadvertently included CD123+CD33+ pre-DC as well. While this calls us to urgently reconsider 

some aspects of pDC population biology, it may also explain earlier findings including that: pDC 

cultures possess cDC potential and acquire cDC-like morphology (10, 11), as recently observed 

in murine BM pDC (45); pDC mediate Th1 immunity through production of IFNα and IL-12 (10, 

46-50); pDC exhibit naïve T-cell allostimulatory capacity (34, 48); and pDC express co-

stimulatory molecules and exhibit antigen-presentation/cross-presentation capabilities at the 

expense of IFNα secretion (46, 51). These observations could be attributed to the undetected pre-

DC in the pDC populations described by these studies, and indeed it has been speculated that the 

IL-12 production observed in these early studies might be due to the presence of contaminating 

CD11c+ cDC (52). We directly addressed this possibility by separating 

CX3CR1+CD33+CD123+CD303+CD304+ pre-DC from CX3CR1-CD33-CD123+CD303+CD304+ 

“pure” pDC and showing that pDC could not polarize or induce proliferation of naïve CD4 T 

cells, whereas pre-DC had this capacity; and that pDC were unable to produce IL-12, unlike pre-

DC, but were the only cells capable of strongly producing IFN in response to TRL7/8/9 

agonists, as initially described (53). Thus, it is of paramount importance that pre-DC be excluded 

from pDC populations in future studies, particularly when using commercial pDC isolation kits. 

Finally, if pDC are stripped of all their cDC properties, it raises the question as to whether they 

truly belong to the DC lineage, or rather are a distinct type of innate IFN-I-producing lymphoid 

cell. It also remains to be shown whether the BM CD34+CD123hi CDP population is also a 

mixture of independent bona fide cDC progenitors and pDC progenitors. 

Despite their classification as precursors, human pre-DC appear functional in their own 

right, being equipped with some T-cell co-stimulatory molecules, and with a strong capacity for 

naïve T-cell allostimulation and cytokine secretion in response to TLR stimulation (Fig. 2, Fig. 5, 
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fig. S7, and fig. S19). Pre-DC produced low levels of IFN-α in response to CpG ODN 2216 

exposure, and secreted IL-12 and TNF-α in response to various TLR ligands. Hence, it is 

reasonable to propose that pre-DC have the potential to contribute to both homeostasis and 

various pathological processes, particularly inflammatory and autoimmune diseases where 

dysregulation of their differentiation continuum or their arrested development could render them 

a potent source of inflammatory DC ready for rapid recruitment and mobilization. 

Beyond the identification of pre-DC, our data revealed previously-unappreciated 

transcriptional and phenotypic heterogeneity within the circulating mature DC populations. This 

was particularly clear in the case of cDC2 and pDC, which were grouped into multiple Mpath 

clusters in the single-cell RNAseq analysis, and showed marked dispersion in the tSNE analysis 

of the CyTOF data with phenotypic heterogeneity. IsoMAP analysis of the CyTOF data also 

revealed another level of pDC heterogeneity by illustrating the progressive phenotypic transition 

from CDP into CD2+ pDC in the BM, involving intermediate cells that could be pre-pDC. 

Whether a circulating pre-pDC population exists remains to be concluded. Finally, defining the 

mechanisms that direct the differentiation of uncommitted pre-DC into cDC1 or cDC2, or that 

maintain these cells in their initial uncommitted state in health and disease could lead to the 

development of new therapeutic strategies to modulate this differentiation process. 

 

Materials and Methods 

Blood, bone marrow and spleen samples 

Human samples were obtained in accordance with a favorable ethical opinion from 

Singapore SingHealth and National Health Care Group Research Ethics Committees. Written 

informed consent was obtained from all donors according to the procedures approved by the 

National University of Singapore Institutional Review Board and SingHealth Centralised 

Institutional Review Board. Peripheral blood mononuclear cells (PBMC) were isolated by Ficoll-
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Paque (GE Healthcare) density gradient centrifugation of apheresis residue samples obtained 

from volunteer donors through the Health Sciences Authorities (HSA, Singapore). Blood 

samples were obtained from 4 patients with molecularly confirmed Pitt-Hopkins syndrome 

(PHS), who all showed the classical phenotype (54). Spleen tissue was obtained from patients 

with tumors in the pancreas who underwent distal pancreatomy (Singapore General Hospital, 

Singapore). Spleen tissue was processed as previously described (23). Bone marrow 

mononuclear cells were purchased from Lonza.  

 

 

 

Generation of single cell transcriptomes using MARS-seq 

MARS-Seq using the Biomek FXP system (Beckman Coulter) as previously described (15) 

was performed for scmRNAseq of the DC compartment of the human peripheral blood. In brief, 

Lineage marker (Lin)(CD3/14/16/19/20/34)-CD45+CD135+HLA-DR+CD123+CD33+ single cells 

were sorted into individual wells of 384-well plates filled with 2 µl lysis buffer (Triton 0.2% 

(Sigma Aldrich) in molecular biology grade H2O (Sigma Aldrich), supplemented with 0.4 U/μl 

protein-based RNase inhibitor (Takara Bio Inc.), and barcoded using 400 nM IDT. Details 

regarding the barcoding procedure with poly-T primers were previously described (15). Samples 

were pre-incubated for 3 min at 80°C and reverse transcriptase mix consisting of 10 mM DTT 

(Invitrogen), 4 mM dNTPs (NEB), 2.5 U/μl SuperScript III Reverse Transcriptase (Invitrogen) in 

50 mM Tris-HCl (pH 8.3; Sigma), 75 mM KCl (Sigma), 3 mM MgCl2 (Sigma), ERCC RNA 

Spike-In mix (Life Technologies), at a dilution of 1:80*107 per cell was added to each well. The 

mRNA was reverse-transcribed to cDNA with one cycle of 2 min at 42°C, 50 min at 50°C, and 5 

min at 85°C. Excess primers were digested with ExoI (NEB) at 37°C for 30 min then 10 min at 

80°C, followed by cleanup using SPRIselect beads at a 1.2x ratio (Beckman Coulter). Samples 
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were pooled and second strands were synthesized using a Second Strand Synthesis kit (NEB) for 

2.5 h at 16°C, followed by a cleanup using SPRIselect beads at a 1.4x ratio (Beckman Coulter). 

Samples were linearly amplified by T7-promoter guided in vitro transcription using the T7 High 

Yield RNA polymerase IVT kit (NEB) at 37°C for 12 h. DNA templates were digested with 

Turbo DNase I (Ambion) for 15 min at 37°C, followed by a cleanup with SPRIselect beads at a 

1.2x ratio (Beckman Coulter). The RNA was then fragmented in Zn2+ RNA Fragmentation 

Solution (Ambion) for 1.5 min at 70°C, followed by cleanup with SPRIselect beads at a 2.0 ratio 

(Beckman Coulter). Barcoded ssDNA adapters (IDT; details of barcode see (15)) were then 

ligated to the fragmented RNAs in 9.5% DMSO (Sigma Aldrich), 1 mM ATP, 20% PEG8000 

and 1 U/μl T4 RNA ligase I (NEB) solution in 50 mM Tris HCl pH7.5 (Sigma Aldrich), 10 mM 

MgCl2 and 1mM DTT for 2 h at 22°C. A second reverse transcription reaction was then 

performed using Affinity Script Reverse Transcription buffer, 10 mM DTT, 4 mM dNTP, 2.5 

U/μl Affinity Script Reverse Transcriptase (Agilent) for one cycle of 2 min at 42°C, 45 min at 

50°C, and 5 min at 85°C, followed by a cleanup on SPRIselect beads at a 1.5x ratio (Beckman 

Coulter). The final libraries were generated by subsequent nested PCR reactions using 0.5 μM of 

each Illumina primer (IDT; details of primers see (15)) and KAPA HiFi HotStart Ready Mix 

(Kapa Biosystems) for 15 cycles according to manufacturer’s protocol, followed by a final 

cleanup with SPRIselect beads at a 0.7x ratio (Beckman Coulter). The quality and quantity of the 

resulting libraries was assessed using an Agilent 2200 TapeStation instrument (Agilent), and 

libraries were subjected to next generation sequencing using an Illumina HiSeq1500 instrument 

(PE no index; read1: 61 reads (3 reads random nucleotides, 4 reads pool barcode, 53 reads 

sequence), read2: 13 reads (6 reads cell barcode, 6 reads unique molecular identifier)). 

 

Pre-processing, quality assessment and control of MARS-seq single cell transcriptome data 
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Cell specific tags and Unique Molecular Identifiers (UMIs) were extracted (2,496 cells 

sequenced) from sequenced data-pool barcodes. Sequencing reads with ambiguous plate and/or 

cell-specific tags, UMI sequences of low quality (Phred <27), or reads that mapped to E. coli 

were eliminated using Bowtie1 sequence analysis software (55), with parameters “-M 1 -t --best 

--chunkmbs 64 –strata”. Fastq files were demultiplexed using the fastx_barcode_splitter from 

fastx_toolkit, and R1 reads (with trimming of pooled barcode sequences) were mapped to the 

human hg38 + ERCC pseudo genome assembly using Bowtie “-m 1 -t --best --chunkmbs 64 –

strata”. Valid reads were then counted using UMIs if they mapped to the exon-based gene model 

derived from the BiomaRt HG38 data mining tool provided by Ensembl (56). A gene expression 

matrix was then generated containing the number of UMIs for every cell and gene. Additionally, 

UMIs and cell barcode errors were corrected and filtered as previously described (15). 

 

 

 

Normalization and filtering of MARS-seq single cell transcriptome data 

In order to account for differences in total molecule counts per cell, we performed a down-

sampling normalization as suggested by several studies (15, 57). Here, we randomly down-

sampled every cell to a molecule count of 1,050 unique molecules per cell (threshold details 

discussed below). Cells with molecule counts <1,050 were excluded from the analysis (Table S1 

(18)). Additionally, cells with a ratio of mitochondrial versus endogenous genes exceeding 0.2, 

and cells with <90 unique genes, were removed from the analysis. Prior to Seurat analysis (58), 

expression tables were filtered to exclude mitochondrial and ribosomal genes to remove noise. 

The validation of down sampling threshold for normalization of MARS-seq single cell 

transcriptome data is detailed in the Supplementary Methods. 
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Analysis of MARS-seq single cell transcriptome data 

Analysis of the normalized and filtered single-cell gene expression data (8,657 genes across 

710 single cell transcriptomes used in the final expression table) was achieved using Mpath (26), 

PCA, tSNE, connectivity MAP (cMAP) (25) and several functions of the Seurat single cell 

analysis package. cMAP analysis was performed using DEGs between pDC and cDC derived 

from the gene expression omnibu data series GSE35457 (23). For individual cells, cMAP 

generated enrichment scores that quantified the degree of enrichment (or “closeness”) to the 

given gene signatures. The enrichment scores were scaled and assigned positive or negative 

values to indicate enrichment for pDC or cDC signature genes, respectively. A permutation test 

(n=1,000) between gene signatures was performed on each enrichment score to determine 

statistical significance. For the tSNE/Seurat analysis, a Seurat filter was used to include genes 

that were detected in at least one cell (molecule count = 1), and excluded cells with <90 unique 

genes. To infer the structure of the single-cell gene expression data, a PCA was performed on the 

highly variable genes determined as genes exceeding the dispersion threshold of 0.75. The first 

two principle components were used to perform a tSNE that was combined with a DBSCAN 

clustering algorithm (22) to identify cells with similar expression profiles. DBSCAN was 

performed by setting 10 as the minimum number of reachable points and 4.1 as the reachable 

epsilon neighbourhood parameter; the latter was determined using a KNN plot integrated in the 

DBSCAN R package (59) (https://cran.r-project.org/web/packages/dbscan/). The clustering did 

not change when using the default minimal number of reachable points. 

To annotate the clusters, we used the gene signatures of blood pDC, cDC1 and cDC2 

derived from the Gene Expression Omnibus data series GSE35457 (23) (Table S2 (24), data 

processing described below) to calculate the signature gene expression scores of cell type-

specific gene signatures, and then overlaid these signature scores onto the tSNE plots. Raw 

expression data of CD141+ (cDC1), CD1c+ (cDC2) DCs and pDC samples from blood of up to 

https://cran.r-project.org/web/packages/dbscan/
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four donors (I, II, V and VI) was imported into Partek® Genomics Suite® software, version 6.6 

Copyright©; 2017 (PGS), where they were further processed. Data were quantile-normalized and 

log2-transformed, and a batch-correction was performed for the donor using PGS. Differential 

probe expression was calculated from the normalized data (ANOVA, Fold-Change ≥ 2 and FDR-

adj. p-value < 0.05) for the three comparisons of every cell type against the remaining cell types. 

The three lists of differentially-expressed (DE) probes were intersected and only exclusively-

expressed probes were used for the cell-type specific gene signatures. The probes were then 

reduced to single genes, by keeping the probe for a corresponding gene with the highest mean 

expression across the dataset. Resulting gene signatures for blood pDCs, CD1c+ and CD141+ 

DCs contained 725, 457 and 368 genes, respectively. The signature gene expression score was 

calculated as the mean expression of all signature genes in a cluster. In order to avoid bias due to 

outliers, we calculated the trimmed mean (trim = 0.08). 

Monocle analysis was performed using the latest pre-published version of Monocle v.2.1.0 

(27). The data were loaded into a monocle object and then log-transformed. Ordering of the 

genes was determined by dispersion analysis if they had an average expression of ≥0.5 and at 

least a dispersion of two times the dispersion fit. The dimensionality reduction was performed 

using the reduceDimension command with parameters max_components=2, reduction_method = 

"DDRTree" and norm_method = "log". The trajectory was then built using the 

plot_cell_trajectory command with standard parameters. 

Wishbone analysis (28) was performed using the Python toolkit downloaded from 

https://github.com/ManuSetty/wishbone. MARS-seq data were loaded using the 

wishbone.wb.SCData.from_csv function with the parameters data_type='sc-seq' and 

normalize=True. Wishbone was then performed using wb.run_wishbone function with parameter 

start_cell= "run1_CATG_AAGACA", components_list=[1, 2, 3, 4], num_waypoints=150, 

branch = True. Start_cell was randomly selected from the central cluster #4. Diffusion map 

https://github.com/ManuSetty/wishbone
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analysis was performed using the scdata.run_diffusion_map function with default parameters 

(29). Wishbone revealed three trajectories giving rise to pDC, cDC1 and cDC2 respectively. 

Along each trajectory, the respective signature gene shows increasing expression (fig. S2c). 

Although Wishbone results might be interpreted to suggest that cDC2 are early cells and 

differentiate into pDC and cDC1 on two separate branches, this is simply because Wishbone 

allows a maximum of two branches and assumes all cells fall on continuous trajectories. 

Nevertheless, it is able to delineate the three trajectories that are in concordance with Mpath, 

monocle, and diffusion map analysis. 

 

C1 Single cell mRNA sequencing 

Lin(CD3/14/16/19/20)-HLA-DR+CD33+CD123+ cells at 300 cells/µl were loaded onto two 

5–10 μm C1 Single-Cell Auto Prep integrated fluidic circuits (Fluidigm) and cell capture was 

performed according to the manufacturer’s instructions. Individual capture sites were inspected 

under a light microscope to confirm the presence of single, live cells. Empty capture wells and 

wells containing multiple cells or cell debris were discarded for quality control. A SMARTer 

Ultra Low RNA kit (Clontech) and Advantage 2 PCR Kit (Clontech) was used for cDNA 

generation. An ArrayControl™ RNA Spots and Spikes kit (with spike numbers 1, 4 and 7) 

(Ambion) was used to monitor technical variability, and the dilutions used were as recommended 

by the manufacturer. The concentration of cDNA for each single cell was determined by Quant-

iT™ PicoGreen® dsDNA Reagent, and the correct size and profile was confirmed using DNA 

High Sensitivity Reagent Kit and DNA Extended Range LabChip (Perkin Elmer). Multiplex 

sequencing libraries were generated using the Nextera XT DNA Library Preparation Kit and the 

Nextera XT Index Kit (Illumina). Libraries were pooled and subjected to an indexed PE 

sequencing run of 2x51 cycles on an Illumina HiSeq 2000 (Illumina) at an average depth of 2.5-

million row reads/cell. 
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C1 Single cell analysis  

Raw reads were aligned to the human reference genome GRCh38 from GENCODE (60) 

using RSEM program version 1.2.19 with default parameters (61). Gene expression values in 

transcripts per million were calculated using the RSEM program and the human GENCODE 

annotation version 22. Quality control and outlier cell detection was performed using the 

SINGuLAR (Fluidigm) analysis toolset. cMAP analysis was performed using cDC1 versus cDC2 

DEGs identified from Gene Expression Omnibus data series GSE35457 (23), and the enrichment 

scores were obtained. Similar to the gene set enrichment analyses, cMAP was used to identify 

associations of transcriptomic profiles with cell-type characteristic gene signatures. 

 

Mpath analysis of MARS- or C1 single cell mRNA sequencing data 

Developmental trajectories were defined using the Mpath algorithm (26), which constructs 

multi-branching cell lineages and re-orders individual cells along the branches. In the analysis of 

the MARS-seq single cell transcriptomic data, we first used the Seurat R package to identify five 

clusters: for each cluster, Mpath calculated the centroid and used it as a landmark to represent a 

canonical cellular state; subsequently, for each single cell, Mpath calculated its Euclidean 

distance to all the landmarks, and identified the two nearest landmarks. Each individual cell was 

thus assigned to the neighborhood of its two nearest landmarks. For every pair of landmarks, 

Mpath then counted the number of cells that were assigned to the neighborhood, and used the 

determined cell counts to estimate the possibility of the transition between landmarks to be true. 

A high cell count implied a high possibility that the transition was valid. Mpath then constructed 

a weighted neighborhood network whereby nodes represented landmarks, edges represented a 

putative transition between landmarks, and numbers allocated to the edges represented the cell-

count support for the transition. Given that single cell transcriptomic data tend to be noisy, edges 
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with low cell-count support were considered likely artifacts. Mpath therefore removed the edges 

with a low cell support by using ) (   represents cell count) to quantify the distance 

between nodes followed by applying a minimum spanning tree algorithm to find the shortest path 

that could connect all nodes with the minimum sum of distance. Consequently, the resulting 

trimmed network is the one that connects all landmarks with the minimum number of edges and 

the maximum total number of cells on the edges. Mpath was then used to project the individual 

cells onto the edge connecting its two nearest landmarks, and assigned a pseudo-time ordering to 

the cells according to the location of their projection points on the edge. In the analysis of the C1 

single cell transcriptome data, we first used the cMAP analysis to identify cDC1-primed, un-

primed, and cDC2-primed clusters, and then used Mpath to construct the lineage between these 

three clusters. The Mpath analysis was carried out in an un-supervised manner without prior 

knowledge of the starting cells or number of branches. This method can be used for situations of 

non-branching networks, bifurcations, and multi-branching networks with three or more 

branches.  

 

Mass cytometry staining, barcoding, acquisition and data analysis 

For mass cytometry, pre-conjugated or purified antibodies were obtained from Invitrogen, 

Fluidigm (pre-conjugated antibodies), Biolegend, eBioscience, Becton Dickinson or R&D 

Systems as listed in Table S3. For some markers, fluorophore- or biotin- conjugated antibodies 

were used as primary antibodies, followed by secondary labeling with anti-fluorophore metal-

conjugated antibodies (such as the anti-FITC clone FIT-22) or metal-conjugated streptavidin, 

produced as previously described (19). Briefly, 3 x 106 cells/well in a U-bottom 96 well plate 

(BD Falcon, Cat# 3077) were washed once with 200 µL FACS buffer (4% FBS, 2mM EDTA, 

0.05% Azide in 1X PBS), then stained with 100 µL 200 µM cisplatin (Sigma-Aldrich, Cat# 

479306-1G) for 5 min on ice to exclude dead cells. Cells were then incubated with anti-CADM1-
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biotin and anti-CD19-FITC primary antibodies in a 50 µL reaction for 30 min on ice. Cells were 

washed twice with FACS buffer and incubated with 50 µL heavy-metal isotope-conjugated 

secondary mAb cocktail for 30 min on ice. Cells were then washed twice with FACS buffer and 

once with PBS before fixation with 200 µL 2% paraformaldehyde (PFA; Electron Microscopy 

Sciences, Cat# 15710) in PBS overnight or longer. Following fixation, the cells were pelleted 

and resuspended in 200uL 1X permeabilization buffer (Biolegend, Cat# 421002) for 5 mins at 

room temperature to enable intracellular labeling. Cells were then incubated with metal-

conjugated anti-CD68 in a 50 µL reaction for 30 min on ice. Finally, the cells were washed once 

with permeabilization buffer and then with PBS before barcoding. 

Bromoacetamidobenzyl-EDTA (BABE)-linked metal barcodes were prepared by dissolving 

BABE (Dojindo, Cat# B437) in 100mM HEPES buffer (Gibco, Cat# 15630) to a final 

concentration of 2 mM. Isotopically-purified PdCl2 (Trace Sciences Inc.) was then added to the 2 

mM BABE solution to a final concentration of 0.5 mM. Similarly, DOTA-maleimide (DM)-

linked metal barcodes were prepared by dissolving DM (Macrocyclics, Cat# B-272) in L buffer 

(MAXPAR, Cat# PN00008) to a final concentration of 1 mM. RhCl3 (Sigma) and isotopically-

purified LnCl3 was then added to the DM solution at 0.5 mM final concentration. Six metal 

barcodes were used: BABE-Pd-102, BABE-Pd-104, BABE-Pd-106, BABE-Pd-108, BABE-Pd-

110 and DM-Ln-113. 

All BABE and DM-metal solution mixtures were immediately snap-frozen in liquid 

nitrogen and stored at -80oC. A unique dual combination of barcodes was chosen to stain each 

tissue sample. Barcode Pd-102 was used at 1:4000 dilution, Pd-104 at 1:2000, Pd-106 and Pd-

108 at 1:1000, Pd-110 and Ln-113 at 1:500. Cells were incubated with 100 µL barcode in PBS 

for 30 min on ice, washed in permeabilization buffer and then incubated in FACS buffer for 10 

min on ice. Cells were then pelleted and resuspended in 100 µL nucleic acid Ir-Intercalator 

(MAXPAR, Cat# 201192B) in 2% PFA/PBS (1:2000), at room temperature. After 20 min, cells 
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were washed twice with FACS buffer and twice with water before a final resuspension in water. 

In each set, the cells were pooled from all tissue types, counted, and diluted to 0.5x106 cells/mL. 

EQ Four Element Calibration Beads (DVS Science, Fluidigm) were added at a 1% concentration 

prior to acquisition. Cell data were acquired and analyzed using a CyTOF Mass cytometer 

(Fluidigm).  

The CyTOF data were exported in a conventional flow-cytometry file (.fcs) format and 

normalized using previously-described software (62). Events with zero values were randomly 

assigned a value between 0 and –1 using a custom R script employed in a previous version of 

mass cytometry software (63). Cells for each barcode were deconvolved using the Boolean 

gating algorithm within FlowJo. The CD45+Lin (CD7/CD14/CD15/CD16/CD19/CD34)-HLA-

DR+ population of PBMC were gated using FlowJo and exported as a .fcs file. Marker 

expression values were transformed using the logicle transformation function (64). Random sub-

sampling without replacement was performed to select 20,000 cell events. The transformed 

values of sub-sampled cell events were then subjected to t-distributed Stochastic Neighbor 

Embedding (tSNE) dimension reduction (21) using the markers listed in supplementary Table 

S3, and the Rtsne function in the Rtsne R package with default parameters. Similarly, isometric 

feature mapping (isoMAP) (43) dimension reduction was performed using vegdist, spantree and 

isomap functions in the vegan R package (65).  

The vegdist function was run with method=“euclidean”. The spantree function was run with 

default parameters. The isoMAP function was run with ndim equal to the number of original 

dimensions of input data, and k=5. Phenograph clustering (30) was performed using the markers 

listed in supplementary Table S3 before dimension reduction, and with the number of nearest 

neighbors equal to 30. The results obtained from the tSNE, isoMAP and Phenograph analyses 

were incorporated as additional parameters in the .fcs files, which were then loaded into FlowJo 

to generate heat plots of marker expression on the reduced dimensions. The above analyses were 
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performed using the cytofkit R package which provides a wrapper of existing state-of-the-art 

methods for cytometry data analysis (66). 

 

Human cell flow cytometry: Labeling, staining, analysis and cell sorting 

All antibodies used for fluorescence-activated cell sorting (FACS) and flow cytometry were 

mouse anti-human monoclonal antibodies (mAbs), except for chicken anti-human CADM1 IgY 

primary mAb. The mAbs and secondary reagents used for flow cytometry are listed in Table S6. 

Briefly, 5 x 106 cells/tube were washed and incubated with Live/Dead blue dye (Invitrogen) for 

30 min at 4 C̊ in phosphate buffered saline (PBS) and then incubated in 5% heat-inactivated fetal 

calf serum (FCS) for 15 min at 4 ̊C (Sigma Aldrich). The appropriate antibodies diluted in PBS 

with 2% fetal calf serum (FCS) and 2 mM EDTA were added to the cells and incubated for 30 

min at 4 ̊C, and then washed and detected with the secondary reagents. For intra-cytoplasmic or 

intra-nuclear labeling or staining, cells were fixed and permeabilized with BD Cytofix/Cytoperm 

(BD Biosciences) or with eBioscience FoxP3/Transcription Factor Staining Buffer Set 

(eBioscience/Affimetrix), respectively according to the manufacturer’s instructions. Flow 

cytometry was performed using a BD LSRII or a BD FACSFortessa (BD Biosciences) and the 

data analyzed using BD FACSDiva 6.0 (BD Biosciences) or FlowJo v.10 (Tree Star Inc.). For 

isolation of precursor dendritic cells (pre-DC), PBMC were first depleted of T cells, monocytes 

and B cells with anti-CD3, anti-CD14 and anti-CD20 microbeads (Miltenyi Biotec) using an 

AutoMACS Pro Separator (Miltenyi Biotec) according to the manufacturer’s instructions. FACS 

was performed using a BD FACSAriaII or BD FACSAriaIII (BD Biosciences). Wanderlust 

analysis (41) of flow cytometry data was performed using the CYT tool downloaded from 

https://www.c2b2.columbia.edu/danapeerlab/html/cyt-download.html. As Wanderlust requires 

users to specify a starting cell, we selected one cell at random from the CD45RA+ CD123+ 

population. 

https://www.c2b2.columbia.edu/danapeerlab/html/cyt-download.html
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Cytospin and Scanning Electron Microscopy 

Cytospins were prepared from purified cells and stained with the Hema 3 system according 

to the manufacturer’s protocol (Fisher Diagnostics). Images were analyzed at 100X 

magnification with an Olympus BX43 upright microscope (Olympus). Scanning electron 

microscopy was performed as previously described (23). 

 

Dendritic cell (DC) differentiation co-culture assay on MS-5 stromal cells 

MS-5 stromal cells were maintained and passaged as previously described (8). MS-5 cells 

were seeded in 96-well round-bottom plates (Corning) at 3,000 cells per well in complete alpha-

Minimum Essential Media (α-MEM) (Life Technologies) supplemented with 10% fetal bovine 

serum (FBS) (Serana) and 1% penicillin/streptomycin (Nacalai Tesque). A total of 5,000 sorted 

purified cells were added 18-24 h later, in medium containing 200 ng/mL Flt3L (Miltenyi 

Biotec), 20 ng/mL SCF (Miltenyi Biotec), and 20 ng/mL GM-CSF (Miltenyi Biotec), and 

cultured for up to 5 days. The cells were then resuspended in their wells by physical dissociation 

and filtered through a cell strainer into a polystyrene FACS tube. 

 

Intracellular cytokine detection following stimulation with TLR ligands 

A total of 5x106 PBMC were cultured in Roswell Park Memorial Institute (RPMI)-1640 

Glutmax media (Life Technologies) supplemented with 10% FBS, 1% penicillin/streptomycin 

and stimulated with either lipopolysaccharide (LPS, 100ng/mL; InvivoGen), LPS (100ng/mL) + 

interferon gamma (IFN, 1,000U/mL; R&D Systems), Flagellin (100 ng/mL, Invivogen), polyI:C 

(10 µg/mL; InvivoGen), Imidazoquinoline (CL097; Invivogen) or CpG oligodeoxynucleotides 

2216 (ODN, 5 µM; InvivoGen) for 2 h, after which 10 μg/ml Brefeldin A solution (eBioscience) 

was added and the cells were again stimulated for an additional 4 h. After the 6 h stimulation, the 
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cells were labeled with cytokine-specific antibodies and analyzed by flow cytometry, as 

described above. 

 

Mixed lymphocyte reaction 

Naïve T cells were isolated from PBMC using Naïve Pan T-Cell Isolation Kit (Miltenyi 

Biotec) according to the manufacturer’s instructions, and labeled with 0.2μM carboxyfluorescein 

succinimidyl ester (CFSE) (Life Technologies) for 5 min at 37 °C. A total of 5,000 cells from 

sorted DC subsets were co-cultured with 100,000 CFSE-labeled naïve T cells for 7 days in 

Iscove’s Modified Dulbecco’s Medium (IMDM; Life Technologies) supplemented with 10% 

KnockOut™ Serum Replacement (Life Technologies). On day 7, the T cells were stimulated 

with 10 μg/ml phorbol myristate acetate (InvivoGen) and 500 μg/ml ionomycin (Sigma Aldrich) 

for 1 h at 37 °C. 10 μg/ml Brefeldin A solution was added for 4 h, after which the cells were 

labeled with cytokine-specific antibodies and analyzed by flow cytometry, as described above. 

 

Electron microscopy 

Sorted cells were seeded on poly-lysine-coated coverslips for 1 h at 37°C. The cells were 

then fixed in 2 % glutaraldehyde in 0.1 M cacoldylate buffer, pH 7.4 for 1 h, post fixed for 1 h 

with 2% buffered osmium tetroxide, then dehydrated in a graded series of ethanol solutions, 

before embedding in epoxy resin. Images were acquired with a Quemesa (SIS) digital camera 

mounted on a Tecnai 12 transmission electron microscope (FEI Company) operated at 80kV. 

 

Microarray analysis  

Total RNA was isolated from FACS-sorted blood pre-DC and DC subsets using a RNeasy® 

Micro kit (Qiagen). Total RNA integrity was assessed using an Agilent Bioanalyzer (Agilent) 

and the RNA Integrity Number (RIN) was calculated. All RNA samples had a RIN ≥7.1. 
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Biotinylated cRNA was prepared using an Epicentre TargetAmp™ 2-Round Biotin-aRNA 

Amplification Kit 3.0 according to the manufacturer's instructions, using 500 pg of total RNA 

starting material. Hybridization of the cRNA was performed on an Illumina Human-HT12 

Version 4 chip set (Illumina). Microrarray data were exported from GenomeStudio (Illumina) 

without background subtraction. Probes with detection P-values > 0.05 were considered as not 

being detected in the sample, and were filtered out. Expression values for the remaining probes 

were log2 transformed and quantile normalized. For differentially-expressed gene (DEG) 

analysis, comparison of one cell subset with another was carried out using the limma R software 

package (67) with samples paired by donor identifiers. DEGs were selected with Benjamini-

Hochberg multiple testing (68) corrected P-value <0.05. In this way, limma was used to select up 

and down-regulated signature genes for each of the cell subsets in the pre-DC data by comparing 

one subset with all other subsets pooled as a group. Expression profiles shown in Fig. 4E were 

from 62 common genes identified from the union of DEGs from comparing pre-cDC1 versus 

early pre-DC and cDC1 versus pre-cDC1, and the union of DEGs from comparing pre-cDC2 

versus early pre-DC and cDC2 versus pre-cDC2 (Table S5 (69), fig. S17 (70)). 

 

Luminex® Drop Array™ assay on sorted and stimulated pre-DC and DC populations  

A total of 2,000 cells/well of sorted pre-DC and DC subsets were seeded in V-bottom 96 

well plates and then incubated for 18 h in 50 µL complete RPMI-1640 Glutmax media (Life 

Technologies) supplemented with 10% FBS and 1% penicillin/streptomycin, and stimulated with 

either LPS, LPS + IFN, Flagellin, polyI:C, Imidazoquinoline or CpG oligodeoxynucleotides 

(ODN) 2216. Cells were then pelleted and 30 µL supernatant was collected. A Luminex® Drop 

Array™ was performed using 5 µL of the supernatant. Human G-CSF, GM-CSF, IFN-a2, IL-10, 

IL-12p40, IL-12p70, IL-15, IL-1RA, IL-1a, IL-1b, IL-6, IL-7, IL-8, MIP-1b, TNF-, TNF- 

were tested by multiplexing (EMD Millipore) with DropArray-bead plates (Curiox) according to 
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the manufacturer's instructions. Acquisition was performed using xPONENT 4.0 (Luminex) 

acquisition software, and data analysis was performed using Bio-Plex Manager 6.1.1 (Bio-Rad). 

 

Statistical analyses 

The Mann-Whitney test was used to compare data derived from patients with Pitt-Hopkins 

Syndrome and controls and the intracellular detection of IL-12p40 and TNF in pre-DC 

stimulated with LPS or poly I:C versus CpG ODN 2216. The Kruskal-Wallis test, followed by 

the Dunn’s multiple comparison test, was used to compare the expression level of individual 

genes in single cells in the MARS-seq single cell RNAseq dataset. Differences were defined as 

statistically significant when adjusted P<0.05. All statistical tests were performed using 

GraphPad Prism 6.00 for Windows (GraphPad Software). Correlation coefficients were 

calculated as Pearson’s correlation coefficient. 
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Figure legends: 

 

Fig. 1. MARS-seq and CyTOF identify rare CD123+CD33+ putative DC precursors (pre-

DC). (A-E) Lin(CD3/CD14/CD16/CD20/CD34)–HLA-DR+CD135+ sorted PBMC were 

subjected to MARS-seq. (A) t-stochastic neighbor embedding (tSNE) plot of 710 cells fulfilling 

all quality criteria, colored by clusters identified by tSNE plus Seurat clustering, or by the 

relative signature score for pDC, cDC1 and cDC2. (B) Connectivity MAP (cMAP) analysis 
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showing the degree of enrichment for pDC or cDC signature genes in the tSNE/Seurat clusters. 

(C) Mpath analysis applied to the tSNE/Seurat clusters defining their developmental relationship. 

Representations of the 710 cells by (D) Monocle, (E) Principal component analysis (PCA) and 

(F) Diffusion Map, highlighting the tSNE/Seurat clusters identified in (A). (G) Violin plots of 

tSNE/Seurat pDC clusters, cluster #4 and cDC clusters showing the expression of pDC and cDC 

signature genes with differential expression between cluster #4 and pDC clusters. Adjusted P-

values calculated by Kruskal-Wallis test followed by Dunn’s multiple comparisons procedure. 

(H, I) tSNE plots of CyTOF data from CD45+Lin(CD7/CD14/CD15/CD16/CD19/CD34)–HLA-

DR+ PBMC, showing (H) gates defining the CD123+CD33+ cells and DC subsets, and (I) 

relative expression of selected markers. (J) Subsets defined in (H) were overlaid onto 2D-

contour plots for phenotypic comparison. The gating strategy prior to MARS-seq is shown in fig. 

S1a. 

Fig. 2. Characterization of human pre-DC. (A) Flow cytometric identification of pre-DC and 

pDC within PBMC and spleen cell suspensions. (B) Expression of 

CD303/CD304/CD123/CD11c by blood pre-DC and DC subsets. (C) % pre-DC within spleen 

(n=3) and PBMC (n=6) CD45+ populations. (D) Wright-Giemsa staining of sorted blood pre-DC 

and DC subsets. (E) Electron micrographs of pre-DC and pDC [(RER (arrowheads), centriole 

(C) and microtubules (small arrows), near RER cisterna are indicated). (F) DC subsets or pre-DC 

were co-cultured for 5 days with MS-5 feeder-cells, FLT3L, GM-CSF and SCF. Their capacity 

to differentiate into cDC1 or cDC2 was measured by flow cytometry. (n=3) (G) Intracellular 

detection of cytokines in DC subsets and pre-DC post-TLR stimulation. IFN and IL-12p40 

production by pDC and pre-DC, alongside mean % cytokine-positive pre-DC and DC subsets 

exposed to LPS, LPS+IFN (L+I), polyI:C (pI:C), CL097 (CL) or CpG-ODN2216 (CpG) (n=4). 

(H) Proliferation of naïve CD4+ T cells cultured for 6 days with allogeneic pDC, total 

CD123+HLA-DR+ cells or pre-DC (n=2). (I) Frequency of pDC and pre-DC from control 
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subjects (Ctrl, n=11) and Pitt-Hopkins Syndrome (PHS) patients (n=4). P-values calculated by 

Mann-Whitney test. Error bars represent mean +/- SEM. 

Fig. 3. Identification of committed human pre-DC subsets. (A-B) Single-cell mRNA 

sequencing (scmRNAseq) of 92 Lin(CD3/14/16/19/20)–HLA-DR+CD33+CD123+ cells (sort 

gating strategy in fig. S8a). (A) Connectivity MAP (cMAP) enrichment score of cells (cDC1- vs 

cDC2-specific signatures). (B) Mpath analysis showing the developmental relationship between 

“unprimed”, cDC1-primed or cDC2-primed cells defined in (A). (C) Lin–HLA-DR+CD33+ 

PBMC analyzed by flow cytometry and visualized as 3D-PCA of three cell clusters (pre-DC, 

cDC1 and cDC2) and the relative expression of CADM1, CD1c and CD123. (D) Relative 

expression of CD45RA, BTLA, CD327, CD141 and CD5 in the same 3D-PCA plot. The dashed 

black circles indicate the intermediate CD45RA+ population. (E) CD45RA/CD123 dot plots 

showing overlaid cell subsets defined in the 3D-PCA plot (left panel) with the relative expression 

of BTLA, CD327, CD141 and CD5. (F) Overlay of the Wanderlust dimension (progression from 

early (dark) to late (clear) events is shown) onto the 3D-PCA and CD45RA/CD123 dot plots. (G) 

Gating strategy starting from live CD45+Lin(CD3/14/16/19/20)–CD34–HLA-DR+ PBMC to 

define pre-DC subsets among CD33+CD45RA+ cDC. (H) Pre-DC subsets were co-cultured for 5 

days with MS-5 feeder-cells, FLT3L, GM-CSF and SCF (n=3). Their capacity to differentiate 

into Clec9A+CADM1+ cDC1 (red), or CD1c+CD11c+ cDC2 (beige) was analyzed by flow 

cytometry. (I) Scanning electron microscopy of pre-DC and DC subsets (scale bar: 1µm). 

Fig. 4. DC and pre-DC subset gene expression analysis. (A) Microarray data from sorted DC 

and pre-DC subsets (shown in Fig. 3) were analyzed by 3D PCA using differentially-expressed 

genes (DEG). For each PCA dimension (principal component, PC), the variance explained by 

each component is indicated. (B-D) Heat maps of DEG between (B) early pre-DC/pDC, (C) 

early pre-DC/pre-cDC1/cDC1 and (D) early pre-DC/pre-cDC2/cDC2. (E) Expression profiles of 
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62 common genes identified from DEG analysis comparisons along the lineage progression from 

early pre-DC to mature cDC, for cDC1 and cDC2 respectively. The profiles were plotted with 

the log2 fold-change values (versus early pre-DC). (F) Expression level of CD327 (SIGLEC6), 

CD22 and AXL proteins by DC and pre-DC subsets evaluated by flow cytometry. The mean 

fluorescence intensities are indicated. (G) Expression profile of selected transcription factors. 

Fig. 5. Functional analysis of DC and pre-DC subsets. (A) Frequency of cytokine production 

by pre-DC and DC subsets upon TLR stimulation was measured by intracellular flow cytometry. 

Dot plots (left panel) show IFN, IL-12p40 and TNF production by pDC, early pre-DC, pre- 

DC2, cDC2, pre-DC1 and cDC1. Bar charts (right panel) show the mean relative numbers of pre-

DC and DC subset cells producing IFN+, IL-12p40+ or TNF+ in response to LPS, LPS+IFN 

(L+I), pI:C, CL097 (CL) or CpG ODN2216 (CpG) (n=4). (B) Expression level (represented as 

mean fluorescence intensity (MFI)) of costimulatory molecules (CD40, CD80, CD83, CD86) by 

blood pre-DC and DC subsets (n=4). (C) Proliferation of naïve CD4+ T cells after 6 days of 

culture with allogenic pre-DC and DC subsets (n=3). P-values calculated by Mann-Whitney test. 

Error bars represent mean +/- SEM. 

Fig. 6. Unsupervised mapping of DC ontogeny using CyTOF. CyTOF data from bone marrow 

(BM) and PBMC were analyzed using isoMAP dimensionality reduction to compare overall 

phenotypic relatedness of cell populations, and were automatically subdivided into clusters using 

the phenograph algorithm. (A, B) IsoMAP1-2 plots showing the expression level of common DC 

progenitor (CDP), pDC, pre-DC and cDC -specific markers within (A) BM and (B) blood 

Lin(CD3/CD7/CD14/CD15/CD19/CD34)–HLA-DR+CD123+ cells. (C) Phenotypic association 

between Lin-HLA-DR+CD123hi BM and CD123+ PBMC, showing progression from CDP 

towards pDC or pre-DC in the BM, and the clear separation of pDC and pre-DC in the blood. 

Cells within the pre-DC phenograph clusters (clusters #1 and #2 in the BM, and #6 in the blood) 
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and cells within the pDC phenograph clusters (clusters #3 and #4 in the BM, and #7 in the blood) 

were further analyzed by isoMAP to define pre-DC subsets (left panels, and fig. S20, c and d) 

and heterogeneity among pDC (right panels, and fig. S20, d and e). 
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Figure 2 
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Figure 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Accepted Manuscript: See et al., Science 2017, Vol. 356, Issue 6342, eaag3009, doi:10.1126/science.aag3009 

Figure 4 
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Figure 5 
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Figure 6 
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Highlights 

 Defining a consensus of the human myeloid cell compartment in peripheral blood 

 3 monocytes subsets, pDC, cDC1, DC2, DC3 and precursor DC make up the 

compartment  

 Distinguish myeloid cell compartment from other cell spaces, e.g. the NK cell space 5 

 Providing a generalizable method for building consensus maps for the life sciences 
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Abstract  

Single-cell genomic techniques are opening new avenues to understand the basic units of life. 

Large international efforts, such as those to derive a Human Cell Atlas, are driving progress in 

this area; here, cellular map generation is key. To expedite the inevitable iterations of these 

underlying maps, we have developed a rule-based data-informed approach to build next 5 

generation cellular consensus maps. Using the human dendritic-cell and monocyte compartment 

in peripheral blood as an example, we performed computational integration of previous, partially 

overlapping maps using an approach we termed ‘backmapping’, combined with multi-color flow-

cytometry and index sorting-based single-cell RNA-sequencing. Our general strategy can be 

applied to any atlas generation for humans and other species.  10 
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Introduction 

Since Robert Hooke’s first observations of cells as the basic unit of life, generations of life 

scientists have been driven to understand, map and characterize individual cells (Cavaillon, 

2011). For many decades, morphological parameters were the major driving force to establish 

new cell identities (Hussein et al., 2015). In immunology, technologies such as flow cytometry 5 

have been developed that permit quantitative enumeration of single cells based on measuring 

combinations of predominantly cell-surface proteins (Hulett et al., 1969; Perfetto et al., 2004). 

These technologies, however, have some undisputable limitations, most notably, their reliance on 

a predefined subset of biomolecules. Conversely, single-cell-omics, particularly single-cell 

transcriptomics, allow for cells to be assessed, in principle, without predefined markers. Here, the 10 

complete spectrum of transcriptomic parameters is investigated and used as a defining unit of cell 

identity (Islam et al., 2014; Macosko et al., 2015; Tang et al., 2009). Such single-cell technologies 

allow for a fully data-driven analysis to establish cell maps of an organism, such as those 

proposed by the Human Cell Atlas consortium (Rozenblatt-Rosen et al., 2017). We have learnt 

from other disciplines that maps require iterations over time, often due to new data generated as 15 

a result of technological advances. These iterations improve the precision, accuracy and available 

content per data point (Edney, 2019; Monmonier, 2015; Ridpath, 2007). 

 

Reliable consensus maps are a prerequisite to reconcile conflicting data that might have been 

generated based on different data generating approaches (Edney, 2019; Monmonier, 2015). Here 20 

we generalize the approach of building geographic or astronomic consensus maps to human 

cellular consensus maps. We exemplify our approach by integrating two recently introduced 

single-cell transcriptomics-based cellular maps of the human blood mononuclear myeloid cell 

compartment (See et al., 2017; Villani et al., 2017) with novel single-cell transcriptomics and flow 

cytometry data. The human blood mononuclear myeloid cell compartment has been recognized 25 

to harbor a complex mixture of cells of diverse origins exemplified by the ongoing efforts to map 
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this cellular compartment with increasing resolution (Dutertre et al., 2019). The two mapping 

efforts present with discrepancies and commonalties in terms of cell type identification, naming 

and breadth of sampling. In order to establish a consensus map of the human mononuclear 

myeloid cell compartment we allow for the integration of prior knowledge in that we define a priori 

criteria for the cellular compartment under study in order to increase resolution and to allow 5 

building of a consensus map. Overall, our approach generates rule-based data-informed cellular 

consensus maps that resolve discrepancies between the two recently generated maps, and 

clarifies cellular identities of human dendritic-cell (DC) and monocyte subsets resulting in a novel, 

integrated consensus map of the human blood myeloid compartment.  

10 
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Results 

Integrated phenotypic characterization of the myeloid cell compartment in human 

peripheral blood 

We aimed to build a consensus map of healthy human blood myeloid cells that integrates legacy 

dataset knowledge into a revised consensus map. To do so, we generated a novel single-cell-5 

omics dataset of the blood CD45+Lin-HLA-DR+ cell space using a 17 parameter index sorting 

panel incorporating important markers from two recently published single-cell–omics datasets, 

here termed map 1 (Villani et al., 2017) and 2 (See et al., 2017) and an established panel of 

myeloid cell markers including CD14, CD16, HLA-DR, CD1c and CADM1 (Dutertre et al., 2014; 

Guilliams et al., 2016; Haniffa et al., 2012), to link the data to the body of knowledge already 10 

present within the literature (Figure 1A, S1A-C, Table S1). This strategy allowed us to directly 

include several cell populations defined by either map 1 or 2 into our single-cell transcriptomics 

dataset, compare these populations within an unbiased myeloid cell space dataset, and assess 

differences and commonalities between the two maps.  

To understand the organization of the blood-derived myeloid cell compartment, we performed 15 

dimensionality reduction using the uniform manifold approximation and projection (UMAP) 

algorithm (Becht et al., 2018) on the complete flow cytometry space of live CD45+ Lin-  cells 

(Figure 1B). UMAP revealed a complex topology of the flow cytometry data, segregating a large 

cluster on the right and multiple small entities on the left of the topology. A fraction of the Lin- cells 

(Figure 1C, cluster two) was not part of the monocyte or DC cell space according to CD16, CD14 20 

and HLA-DR expression (Figure 1D). These cells most likely represent basophils due to their lack 

of HLA-DR expression but high CD123 expression (Figure 1D, Figure S1). To fully understand 

the population structure of the presented FACS-based UMAP, we performed Phenograph 

clustering of the live CD45+ Lin- blood-derived flow cytometry UMAP space and detected 27 

clusters (Figure 1C). To link these novel data to the two existing maps for the blood myeloid cell 25 

compartment (Guilliams et al., 2014; See et al., 2017; Villani et al., 2017) we reapplied the gating 
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strategies of either map 1 or map 2 and overlaid these onto our novel flow cytometry-derived 

UMAP topology (Figure 1E, Figure S1A-C). This analysis revealed several commonalities and 

discrepancies between maps 1 and 2 in the combined novel flow cytometry panel used in this 

study. On the upper-most level, map 1 was less stringent in excluding HLA-DR- cells within the 

myeloid cell space (cells labeled light grey, Figure 1D, S1B), a feature rigorously adhered to in 5 

map 2 (cells labeled dark grey, Figure 1D, S1C). Furthermore, Axl+Siglec6+ DCs (AS-DC; DC 5, 

Table S1) in map 1 occupied the same topological space as pre-DCs in map 2, indicating potential 

cellular overlap. Finally, map 1 mono 2/4, resembling non-classical monocytes (ncMono) (Table 

S1), occupied two different locations on the UMAP topology: one of them being within the HLA-

DR- compartment of the topology and the other being within the space assigned to monocytes by 10 

a classical investigator-derived flow cytometry gating (Figure 1D, 1E, S1). These data suggest 

that there is a commonality in the identity of map 1 Axl+Siglec6+ DCs (AS-DC; DC 5) and map 2 

pre-DCs whereas mono 2/4 may represent a heterogeneous mixture of various cell types – 

apparently not all of them related to the myeloid cell lineage. 

 15 

Novel integrated single cell-omics data identifies commonalties and discrepancies 

between two recent myeloid cell maps  

To investigate the cell population structure at the transcriptomic level we performed single-cell 

RNA-sequencing (scRNA-seq) of 2,509 blood-derived single cells following index sorting to 

encompass all major populations identified in either map 1 or 2 after lineage exclusion and 20 

generated a UMAP dimensionality reduction-based transcriptome map (Figure 1B, S2A-F). De 

novo clustering of the scRNA-seq data revealed 11 transcriptionally different clusters (Figure 2A, 

2B, Data Table S1). We projected the cluster identities onto the flow cytometry-derived UMAP 

topology, which allowed us to validate our index sorting strategy and link identities across the flow 

cytometry and scRNA-seq data (Figure 2A).  25 
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Gene level inspection of these clusters revealed that cluster one had a natural killer (NK) cell 

signature, as indicated by PRF1, GNLY and NKG7 gene expression. Cluster two was identified 

by high IGH family gene expression, thus implying contaminating B cells with a strong plasmablast 

signature (Shi et al., 2015) (Figure 2B). Cluster three was represented by a minor fraction of the 

cells within our dataset, with a profile of microRNA-related transcripts. Cluster four expressed 5 

SPINK2, GAS5, SATB1and STMN1 genes, and thus corresponded to blood-derived CD34+ 

hematopoietic stem cells (Satoh et al., 2013; Will et al., 2013). Cluster five expressed the 

plasmacytoid DC (pDC)-related IRF7, TCF4 and GZMB transcripts (See et al., 2017; Villani et al., 

2017), whereas cluster six expressed a conventional dendritic cell 1 (cDC1) gene-set, with high 

expression of CLEC9A, IDO1 and CD74 (van der Aa et al., 2015; Zhang et al., 2012). Interestingly, 10 

cluster seven expressed genes either affiliated to pre-DCs (See et al., 2017) or AS-DCs (DC5) 

(Villani et al., 2017), such as SIGLEC6, AXL, PLAC8 or LILRA4, thus associating them to the 

human pre-DC continuum. As expected from our sorting strategy, we also detected several 

clusters belonging to the monocyte lineage. Cluster eight represented CD16+ ncMono cells based 

on high FCGR3A (CD16) with SERPINA1 and DUSP6 expression. Conversely, cluster nine 15 

expressed S100A8, S100A9 and S100A12 together with VCAN and FCN1, identifying them as 

classical CD14+ monocytes (Mono1/cMono). Clusters 10 and 11 represented two cDC2 identities 

(DC2, DC3): both clusters expressed high levels of the cDC2-related CD1C, CD1E and several 

HLA-DR transcripts. Interestingly, and as shown in map 1 (Villani et al., 2017), cluster 11 co-

expressed certain monocyte-affiliated gene products, such as S100A8, S100A89 and FCN1 20 

(Figure 2B), as also shown in Dutertre et al. (Dutertre et al., 2019). 

To develop our consensus map, we utilized the index sorting data of the populations identified in 

map 1 and 2 and mapped them onto our single-cell transcriptomic dataset (Figure 2C). 

Overlaying this index-sorting data onto the scRNA data-derived UMAP topology reiterated several 

commonalities between maps 1 and 2, including DC1/cDC1 (purple), DC6/pDC (pink), 25 

Mono1/cMono (ochre) and CD14+CD16+ intermediate monocytes (Mono3/intMono, dark red). 
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Importantly, the detected discrepancies between maps 1 and 2 were also apparent on the 

transcriptomic level. Firstly, we noticed that map 1 double negative DCs (DN-DC) populated the 

same position within the UMAP topology as cDC2s in map 2. Furthermore, mapping the index 

sorting data of the map 1 ncMono population (transcriptionally defined in map 1 as Mono2 and 4, 

Table S1) revealed two separate cell clusters within the transcriptomic UMAP topology, indicating 5 

considerable cell-type heterogeneity within this population as defined by map 1. Interestingly one 

of the Mono2/4 clusters overlapped with the ncMono (magenta) cluster, whereas another cluster 

was mapped as HLA-DR- within the flow cytometry gating strategy used in map 2 (Figure S1). 

Moreover, we noticed that map 1 AS-DCs (red) and map 2 pre-DCs (red) occupied the same 

topological space, indicating considerable transcriptomic similarity despite different markers were 10 

used for their flow cytometric identification (Figure 2C). Taken together, the combined phenotypic 

and transcriptomic analysis presented here strongly argues for the need to further assess cellular 

identities within the myeloid cell compartment.  

 

Axl+Siglec6+ DCs phenotypically and transcriptionally overlap with human pre-DC  15 

To clarify the relationships and cellular identities of the different DC subsets and their progenitors 

in maps 1 and 2, we mapped individual protein and transcript information (Figure S3) and the 

transcriptomic signatures of DC subsets and their progenitors derived from map 2 (pDC, cDC1, 

cDC2, pre-DC) onto our scRNA-seq myeloid-cell-space data set (Figure 3A). By overlaying index 

sorting information and the initial unbiased clustering data, we revealed that specific map 2 pDC, 20 

cDC1 or pre-DC signatures were enriched in dense discrete cell clusters within the UMAP 

topology of the myeloid-cell-space scRNA-seq data, whereas the cDC2 signature was more 

broadly enriched within both the clusters associated with cDC2 and monocytes (Figure 2A, 3A) 

suggesting a close relationship between these two cell types which is studied in further detail by 

Dutertre et al.. 25 
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To integrate the identified DC subsets in map 1 and map 2 with each other, we computed a UMAP 

topology from the original map 1 single-cell transcriptome data comprising the DC cell space and 

overlaid the signatures of the map 2 DC subsets (pDC, cDC1, cDC2, pre-DC) (Figure 3B). This 

analysis showed that within the original map 1 transcriptomic data, map 2 pDC signatures mapped 

to the same topological space as DC6, thus identifying DC6 as bona fide pDCs. Similarly map 2 5 

cDC1 transcriptomic signatures were enriched within map 1 DC1, whereas map 2 cDC2 

signatures enriched in map 1 DC2, DC3 and DC4. Furthermore, mapping map 2 pre-DC 

signatures revealed the highest enrichment of this signature in map 1 DC5 (AS-DC), indicating 

the highest level of similarity between map 1 DC5 and map 2 pre-DC. 

To validate these correlations between the DC types defined in maps 1 and 2, we investigated 10 

the enrichment of map 1-defined DC1-6 signatures within our new scRNA-seq consensus data 

(Figure 3C). Visualizing the scaled signature enrichment scores for DC1 showed correspondence 

between maps 1 and 2 cDC1 locations and between map 1 DC2, DC3 and map 2 cDC2 locations, 

respectively. Similarly, map 1 DC6 and map 2 pDC localized to the same topological space within 

our new scRNA sequencing data. The highest enrichment of map 2 pre-DC signatures (Figure 15 

3A) and map 1 DC5 signatures (Figure 3C) was seen in cluster seven of our new scRNA-seq 

consensus data (Figure 2A), again indicating substantial transcriptomic overlap between map 1 

DC5 and map 2 pre-DC. 

We then investigated the potential differences in cell-type identity between map 1 AS-DCs (DC5) 

and map 2 pre-DCs (Figure 2C). We separately projected cells identified as pre-DCs by unbiased 20 

clustering of the flow cytometric data (cluster 26 in Figure 1C), map 1 DC5, map 2 pre-DC gated 

cells and cluster seven from our new scRNA-seq consensus data, which displayed precursor 

gene expression patterns, onto the novel combined flow cytometric-based UMAP topology 

(Figure 3D). This approach showed that FACS cluster 26 represented the intersection of map 1 

DC5, map 2 pre-DCs and scRNA-seq cluster 7 and best reflected these progenitor cells at the 25 

protein level in an unbiased fashion. Certain differences between map 1 AS-DCs and map 2 pre-
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DCs, however, became visible. Specifically, map 1 DC5 located only to a very discrete part of the 

topology and reached into a contaminating cDC2 space. FACS cluster 26 and map 2 pre-DCs 

occupied almost identical topological locations within the UMAP space, further illustrating the 

difficulties in discriminating pre-DCs and pDCs (Figure 3D, 1C-D, 2A). Interestingly, both map 1 

AS-DCs and map 2 pre-DCs were best defined by FACS cluster 26, indicating that these cells 5 

represent the same cellular identity at both the surface marker and transcriptomic level. This 

finding was further supported when enriching transcriptomic signatures of map 2 pre-DCs across 

the spectrum of identified DC subtypes in map 1, resulting in a high enrichment of map 2-derived 

pre-DC signature genes within map 1 AS-DCs (Figure 3E). This enrichment was further 

reinforced by comparing hallmark genes within the cell populations defined in the legacy maps 1 10 

and 2 (Figure 3F). In conclusion, these analyses demonstrate that map 1 DC5 and map 2 pre-

DCs represent, to a large extent, the same pre-DC identities and therefore, might be best named 

according to already published guidelines (Guilliams et al., 2014; Schlitzer and Ginhoux, 2014) 

as pre-DCs. 

 15 

DN-DCs/DC4 resemble CD16+ non-classical monocytes 

We were unable to locate the novel map 1 DC4 (DN-DC) subtype within a distinct cluster in our 

new scRNA-seq consensus data (Figure 2C). According to map 1 DC4 derived from a DN-DC 

subtype, being negative for the classical cDC subset markers CD1c, CD141 and CADM1 and 

pDC marker CD123 but positive for CD11c (Villani et al., 2017). To understand the role and 20 

placement of DC4 within the entire monocyte and DC space of both maps, we recapitulated the 

gating strategy originally used to delineate DC4 by map 1 (Figure 4A). Using the additional 

information from the newly included surface markers, such as CD16, we revealed that the large 

majority of DC4/DN-DCs (96.6%) were CD16+ mononuclear cells (Figure 4A). We subsequently 

mapped the CD16- and CD16+ fraction of the DC4/DN-DC compartment of map 1 onto our 25 

integrated flow cytometry-derived and scRNA-seq-derived UMAP topologies (Figure 4B). 
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Mapping onto the flow cytometry and scRNA-seq-derived UMAP topologies revealed that the 

CD16+ DC4/DN-DC compartment was associated with the location traditionally occupied by 

ncMono and the CD16- fraction mapped into the topological region of the UMAP associated with 

pre-DCs and cDCs on both the phenotypic and transcriptomic level. To address the ambiguous 

DN-DC identity, we cross-referenced map 1 DN-DCs towards map 2 ncMono and the flow 5 

cytometry-based Phenograph cluster 15 (Figure 4C). Here we detected map 1 CD16+ DN-DCs 

almost exclusively within the map 2 ncMono cluster and primarily contained within Phenograph 

cluster 15 (Figure 1C) derived from the combined flow cytometry panel, expressing ncMono-

associated surface markers. 

To extrapolate these surface phenotypic findings to the transcriptome level and understand the 10 

transcriptomic identity of map 1 DN-DCs, we correlated all transcriptomes of map 1 DC subsets 

with the map 1 monocyte subsets (mono 1-4) (Figure 4D). Pearson correlation revealed the 

highest level of correlation between DC4 and the map 1 mono 2 subset, with intermediate 

correlation with the mono 1, 3 and 4 subsets, and poor correlation with any map 1-identified DC 

subset (Figure 4D). Furthermore, enrichment of a mono 2-specific gene signature across all map 15 

1-identified mononuclear cell identities showed enrichment in all monocyte-associated cell entities 

and DC4, further supporting that DC4 might be ncMono (Figure 4E, S4A-C). Additionally, we 

used map 1-derived DC4 signature genes and mapped them onto our scRNA-seq consensus 

data of the blood myeloid cell space (Figure 4F). This analysis showed a strong enrichment of 

DC4 signature genes within the cluster identified by unbiased cluster detection as having ncMono 20 

identity. 

To reconcile DC4 with the existing spectrum of monocyte and DC subsets, we examined DC4 

expression of SLAN — a marker for inflammation-associated ncMono (Hansel et al., 2011) using 

a new marker panel (Figure 4G) and UMAP-based visualization (Figure 4H). DC4 showed the 

expected SLAN expression levels for ncMono. To validate this finding and to exclude that DC4 25 

are another subset within peripheral blood mononuclear cells (PMBCs) that we might not have 
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accounted for, we performed dimensionality reduction of the flow cytometric analysis in Figure 

4G (Figure 4H) and mapped both CD16- and CD16+ DN-DCs onto the UMAP topology (Figure 

4I). Again, we found that DC4 associated with two different positions within this UMAP topology. 

Putting these two separate clusters within the DC4/DN-DC in the context of a conventional gating 

strategy of PBMC-derived mononuclear cells revealed a co-association between (i) classically 5 

defined ncMono and DC4/DN-DC that are CD16+ and constitute the already known ncMono 

fraction (Schakel et al., 1999), and (ii) a CD16- pre-DC contamination associating with the areas 

within the UMAP defined as cDC2 and pre-DC by traditional investigator-informed gating (Figure 

4I). Taken together, our new consensus map clarifies that map 1 DC4 is comprised of CD16+ 

ncMono and pre-DCs, rather than a phenotypically defined novel cell type within the human 10 

mononuclear myeloid cell compartment (Calzetti et al., 2018). 

 

Backmapping identifies mono 4 as bona fide CD56dim NK cells 

Next, we wanted to use our new consensus map to define the monocyte population structure. In 

particular, we aimed to consolidate the newly defined map 1 subtype structure with the four 15 

monocyte subtypes (mono 1-4) (Villani et al., 2017) in light of the traditional view of only three 

phenotypically different monocyte subsets based on CD14 and CD16 expression (Ziegler-

Heitbrock et al., 2010). As a first step, we recapitulated the map 1 flow cytometry sorting strategy 

and overlaid the cellular contents of this gate onto our novel flow cytometry-derived UMAP 

topology (Figure 5A). Within the CD16+ compartment of map 1, two different monocyte 20 

populations (mono 2 and 4) were defined by phenotypical and transcriptional differences. 

Mapping the CD16+CD14- compartment of map 1 onto the new UMAP topology indeed showed 

that it is composed of two transcriptionally different cellular entities, one mapping into the HLA-

DR- space of the flow cytometry-derived UMAP topology and one mapping to the location 

occupied by ncMono in an investigator-driven gating approach and named mono 2 in map 1 25 

(Figure 1E, 2A, S1). 
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To understand the identity of the cells mapping to the HLA-DR- cell space, we utilized the 

transcriptomic marker genes derived from map 1 mono 4, as mono 2 mapped to the ncMono 

space. We then interrogated a publicly available database of population-based proteome 

fingerprints (Rieckmann et al., 2017) from a variety of blood-borne immune cells for the mono 4 

signature (Figure 5B). Here, we found high expression of mono 4-related proteins in NK cell 5 

subsets, including a CD56dim/neg subset (NKdim). To validate these findings, we generated a 

transcriptomic NK-cell signature based on previous knowledge (Costanzo et al., 2018; Liberzon 

et al., 2011; Rieckmann et al., 2017; Subramanian et al., 2005) and calculated the signature 

enrichment scores across all monocyte subsets defined in map 1 (Figure 5C-D). This calculation 

revealed that the mono 4 subset was significantly enriched in NK-cell-specific transcripts. 10 

Subsequently, we integrated the original monocyte map 1 single-cell transcriptome data (mono 

1-4) into an external dataset of 33,148 PBMCs (short: 33k-PBMC dataset, 

https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc33k) and 

performed dimensionality reduction of the corresponding monocyte and NK-cell-related cellular 

spaces using UMAP (Figure 5E-F). We termed this approach ‘backmapping’, where we utilized 15 

an unrelated single-cell data set derived from the same tissue origin. In a next step, we annotated 

the integrated map 1 specific monocyte subsets within the combined UMAP topology according 

to the terminology used in map 1, to understand where these cells would associate in the context 

of an unbiased assessment of the complete mononuclear PBMC fraction. This analysis showed 

that the mono 1-3 subsets mapped to the topological UMAP space initially assigned to monocytes, 20 

whereas mono 4 mapped to the topological UMAP space of NK cells, further supporting the 

hypothesis that mono 4 are NK cells. Overlaying of the NK cell signature onto the original map 1 

also revealed strong enrichment in the mono 4 cluster (Figure 5G).  

We then modified our combined flow cytometry panel to specifically verify NK cell contamination 

within the map 1-defined flow cytometry CD16+ monocyte cell space (Figure 5H, S5A). 25 

Specifically, we removed CD56 from the lineage to track the expression of this NK-cell marker 



 

16 
 
 

separately and added the granulocyte marker CD66b, the lymphoid marker CD7 and the NK cell 

markers NKp46, CD160 and CD107 (Figure S5A). We then examined CD16 and CD56 

expression within the CD14- compartment of the PBMC CD45+Lin- fraction and generated a 

reference UMAP topology of the CD45+Lin- cell space (Figure 5H, S5A-B). This analysis identified 

seven cell populations based on CD16 and CD56 expression levels (Figure S5B-C). Two 5 

populations (turquoise and pink) displayed high CD16 and SSC and no (light blue) to mid (pink) 

CD56 expression, with granulocytic forward and sideward scatter characteristics identifying them 

as granulocyte contaminants (Figure S5C). 

Next, we focused our analysis on the CD16+ compartment of this cell space (green and purple 

gates). Two populations were identified as CD16+, in which one CD16+CD56+ population (purple) 10 

matched the surface phenotype of classical CD56+ NK-cells that are normally dismissed by 

including CD56 in the lineage panel of map 1. To determine the identity and heterogeneity of the 

remaining CD16+CD56- cell compartment (green, orange, yellow, grey gates, Figure S5B), we 

mapped this compartment back to a UMAP topology of either the Lin-CD16+, Lin-CD56-CD16+ or 

the Lin-CD56-CD16+HLA-DR+ cell space, to represent a stepwise cleanup of non-monocytic 15 

CD16+ cells (Figure 5H). This analysis showed that if the totality of the Lin-CD16+ compartment 

is mapped back onto the Lin- UMAP topology (Figure 5H, pink overlay, most left panel), NK cells 

(CD56+), monocytes (CD56-CD16+/-) and granulocyte fractions (CD16high) are included in this 

cellular compartment. When excluding CD56 in the UMAP topology, classical CD56+ NK cells are 

excluded; however, within the CD16+ gate a CD56- population became apparent that mapped to 20 

the UMAP space previously associated with classical NK cells (Figure 5H, pink overlay, mid 

panel). Another CD16+CD56- population mapped to the topological UMAP space occupied by 

ncMono, as defined by their high expression of HLA-DR and CD11c and no expression of classical 

NK-cell markers, including CD56, CD7, CD160 and Nkp46 (Figure S5C). We next excluded HLA-

DR- cells and mapped the remaining CD16+ cells onto the UMAP topology. This step revealed 25 

that including a positive HLA-DR threshold successfully removed mono 4 / NK cells (pink overlay, 
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Figure 5H, right panel). This subclass of NK cells is not easily distinguishable from monocytes, 

as also evidenced by their very similar morphology (Figure S5D). Taken together, we identified 

the map 1 mono 4 subset as HLA-DR-CD16+CD56- NK-cells, intruding into the CD16+CD14-Lin-

CD45+ map 1 monocyte sorting gate that was performed without HLA-DR gating stratification 

according to map 1. Collectively, within our new consensus map, we define the borders between 5 

the myeloid compartment and the NK cell compartment and re-stablish a structure of three 

monocyte subsets in peripheral blood.  

 

PBMC derived monocyte subsets form a transcriptional continuum during homeostasis 

De novo clustering (Figure 2A, 6A) did not reveal intMono as a transcriptionally distinct cluster; 10 

rather, they were identified as forming part of clusters eight and nine (Figure 6A, 6B, S6A, S6B). 

Pseudo-time analysis of the scRNA-seq data, however, placed intMono in between cMono and 

ncMono (Figure 6C). The visualization of genes changing over the pseudo-time depicts a gradual 

decrease in expression of cMono marker genes (CD14, etc) and an increase of ncMono marker 

gene expression (CD) along the trajectory (Figure 6D). This was further corroborated by plotting 15 

CD14 and CD16 mRNA expression of single cells within the three monocyte subsets (Figure 6E). 

Therefore, these analyses clearly corroborate an existing transcriptional continuum of monocytes 

within human PBMC and reveal the transcriptional identity of intMono during homeostasis. 

 

 20 

Backmapping integrates legacy datasets and enhances cell type resolution creating novel 

consensus maps 

To evaluate our findings and put our new consensus map into the framework of data-driven maps 

of the complete human PMBC compartment, we combined our new scRNA-seq data with three 

independent PBMC datasets and performed backmapping and cell type prediction (Figure 7, S7). 25 

This approach permitted a detailed annotation of previously undefined cellular identities within the 
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external PBMC-derived datasets. De novo analysis of a combined data set (Figure S7A) 

consisting of a publicly available dataset of approximately 33.000 cells (33k-PBMC) and our new 

scRNA-seq dataset revealed NK, CD8+, CD4+ and B cells alongside megakaryocytes, CD16+ and 

CD14+ monocytes, cDC1, DC2, DC3, pDCs and CD34+ progenitor cells (Figure 7A). When using 

the new scRNA-seq-based consensus map as a reference to predict cell annotations in the data-5 

driven PBMC dataset by a nearest neighbor classifier (Kiselev et al., 2018), we obtained similar 

but not identical results (Figure 7B, left panel). We therefore applied the backmapping approach 

by projecting the cluster identities of our new scRNA-seq dataset onto the UMAP dimensionality 

reduction of the combined dataset.  Backmapping revealed commonalities between all cell types 

of the myeloid cell compartment including previously unidentified pre-DCs, DC2 and DC3 clusters 10 

within the 33-K PBMC dataset (Figure 7B) as well as NK cells, CD34+ and plasma cells derived 

from both datasets (Figure S7B). We next applied the above outlined approach including 

backmapping to a larger data set provided by the Human Cell Atlas (HCA) with approximately 

255.000 cells (Figure 7C, 7D, 7E). In a first step, we categorized all major subtypes (Figure 7C) 

and predicted cells associated with the mono 4 population of map 1 and found that all cells fell 15 

within the NK cell cluster (Figure S7C, S7D), further supporting that cells of the mono 4-subset 

are bona fide NK cells. Next, we reduced the datasets to clusters that were part of the myeloid 

cell compartment (Figure 7D, S7C) and again performed the backmapping and prediction 

approaches. Because of the solely cluster-driven reduction of the dataset, we observed some 

lymphoid cells in the reduced dataset, which might derive from misclustered cells (Figure 7D). 20 

Nevertheless, this approach allowed us to identify smaller myeloid cell populations within the 

larger dataset (Figure 7E). Finally, we used a third PBMC dataset based on a targeted scRNA-

seq approach, which also allowed us to better define subsets in the unbiased dataset (Figure 

S7E, S7F, S7G) making this overall approach independent of single-cell technology and dataset 

size. 25 
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Collectively, we demonstrate the value of an iterative, rule-based, data-informed approach based 

on previously existing maps to integrate additional information layers into new consensus maps. 

Backmapping to whole data-driven tissue maps and providing a connection to previous 

knowledge are important steps to derive the next iterations of maps that finally serve as the entry 

point for further iterations.  5 

 

 

Discussion 

Consensus maps are an important instrument within an iterative process of producing cellular 

maps of all organs and tissues in different species, including humans. As within other scientific 10 

disciplines, such as geography or astronomy, the maps generated in the life sciences require 

much iteration to allow for the integration of new content. By combining single-cell transcriptomics 

with index sorting, and multi-color flow cytometry and applying simple but very effective 

computational strategies, such as ‘backmapping’ to cellular maps generated in a purely data-

driven fashion, we have generated a new consensus map of the myeloid cell compartment 15 

including monocytes, DCs and their precursors (Figure 7, S7). Because we propose to include 

prior knowledge in the respective scientific field into the algorithm for generating such consensus 

maps, we define the overall strategy as being ‘data-informed’, combining prior knowledge and 

data-driven technologies including single-cell omics.  

The two previous maps based on single-cell RNA-seq used in our approach as well as a 20 

phenotypic analysis of the human blood and tissue myeloid cells were developed to improve our 

understanding of myeloid cell heterogeneity (Alcantara-Hernandez et al., 2017; See et al., 2017; 

Villani et al., 2017). Yet there were shortcomings to these maps, which we have overcome in our 

new consensus map. First, map 2 only identified one cDC2 subset, whereas map 1 and our new 

consensus map defined two subsets. Furthermore, we established a proximity between DC3 and 25 

cMono, which has been further dissected by Dutertre et al. (Dutertre et al., 2019), thus already 
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providing the next iteration of this particular subspace in the myeloid cell map of human peripheral 

blood. Second, map 1 identified a novel monocyte subset named mono 4. Using backmapping, 

we reveal that mono 4 are CD56dim NK cells and are not related to monocytes, supporting the 

current definition of three major monocyte subsets (classical CD14+, non-classical CD16+, and 

intermediate double positive monocytes), consisting of two transcriptionally distinct entities and a 5 

continuum of intermediate, double-positive monocytes between them (Figure 6). This finding is 

further supported by the changes in expression of the CD14 and CD16 cell-surface markers and 

results derived from genetic mouse models showing that Ly6chi monocytes (murine equivalents 

of classical monocytes) can transition into Ly6clow monocytes (murine equivalents of non-classical 

monocytes) with only a few cells detectable in the transitory state (Mildner et al., 2017). Third, we 10 

could clearly define AS-DCs (DC5) from map 1 as pre-DCs within the consensus map, consistent 

with their functional definition in map 2 (See et al., 2017). Together with the complete overlap of 

the three differentiated DC populations between the original maps, these results reassure the 

validity of single-cell transcriptomic analyses.  

We define backmapping as an integral component of the strategy to define novel consensus 15 

maps. Here, we use cellular maps derived from tissues – in this case peripheral blood - without 

prior experimental enrichment of certain cell types. This relatively simple computational approach 

allows to unequivocally overlay cell subsets from different maps onto a common cell space. As 

exemplified here for the monocyte / NK cell space, we postulate that potential conflicts for new 

cell types in other organs can be resolved in a similar fashion. 20 

Collectively, we report on a new consensus map of the myeloid cell compartment in human blood, 

which was built on two previously introduced maps (See et al., 2017; Villani et al., 2017). The 

myeloid cell compartment is of particular interest due to its intrinsic heterogeneity, its involvement 

in many if not all major tissues and organs, and its prime involvement in almost any major disease 

(Bassler et al., 2019). It is therefore of utmost importance to establish a precise baseline during 25 

homeostasis as provided here by our new consensus map, to allow for a better understanding of 
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any deviations of the myeloid cell compartment during stress, pathophysiological conditions and 

diseases. Furthermore, the dynamic processes of myelopoiesis during homeostasis but even 

more so during inflammatory conditions requires precise mapping of cellular identities as a 

prerequisite to identify targets for precise therapeutic intervention (Dick et al., 2019; Schultze, 

2019; Schultze et al., 2019). Furthermore, the necessity to continuously iterate the process of 5 

improving the consensus maps is nicely illustrated by the accompanying manuscript by Dutertre 

et al. (Dutertre et al., 2019), further defining the cellular relationship of DC2/3 and monocytes. As 

many institutions world-wide continue to generate cellular maps, consensus maps will become an 

increasingly important instrument to reconcile and integrate information. Our approach provides 

a guide to integrate and value legacy datasets together with newly generated single-cell omics 10 

data and build new iterations of consensus maps applicable to any other tissue. These maps can 

also be adapted to include further technological advancements. With the continuation of technical 

advances, we anticipate that consensus map building will become a major task within our efforts 

to create complete cellular atlases for the major species.  

 15 
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Figure Legends 

Figure 1. Generating a new consensus map of the mononuclear myeloid cell compartment 

in human peripheral blood. (A) Workflow to generate a new consensus map of the human 

mononuclear myeloid cell compartment. (B) Visualization of ~1.4 mio. live CD45+Lin(CD3, CD19, 5 

CD20, CD56)- cells after UMAP dimensionality reduction of the flow cytometry panel introduced 

in A (left panel), mononuclear myeloid cell compartment (second panel), overlay of index-sorted 

cells (third panel), UMAP topology of the index-sorted cells based on the single-cell transcriptome 

data (most right panel, see also Figure 2). Grey areas in the third panel represent the CD45+Lin- 

cell space. (C) Phenograph clustering of the flow cytometry data projected onto the FACS-based 10 

UMAP topology. (D) Color-coded visualization of markers used to define the mononuclear myeloid 

cell compartment. (E) Overlay of the cell gating strategies according to maps 1 (Villani et al., 2017) 

and 2 (See et al., 2017). See also Figure S1. 

 

Figure 2. Index-sorted scRNA-seq dataset of the myeloid cell compartment in human 15 

blood. (A) De novo clustering of the 2,509 index-sorted cells onto the scRNA-based UMAP 

topology (left panel) and cluster projection onto the FACS-based UMAP topology (right panel, 

grey background: complete CD45+Lin- cell space). (B) Heatmap of 10 most significant marker 

genes for each of the 11 clusters identified and visualized in Figure 2A. (C) Overlay of cell types 

defined for maps 1 (left panel) and 2 (right panel) onto the scRNA-based UMAP topology of the 20 

new consensus map. 
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Figure 3. Harmonizing the DC space within the mononuclear myeloid cell compartment. 

(A) Overlay of signatures derived from map 2 DCs onto the new scRNA-seq-based UMAP 

topology consensus map. (B) UMAP topology based on map 1 single-cell transcriptomes of map 

1 DC1-6 cells and overlay of signatures derived from map 2 DCs. (C) Overlay of signatures 

derived from map 1 DC1-6 cells onto the new scRNA-seq-based UMAP topology consensus map. 5 

(D) UMAP topology based on flow cytometry data derived from ~1.4 mio live CD45+Lin(CD3, 

CD19, CD20, CD56)- cells (see Figure 1A) and separate overlays of cluster 26 defined by 

Phenograph (see Figure 1C), map 1 DC5, map 2 pre-DC, and scRNA-seq-based cluster seven 

representing transcriptomic progenitor DC signatures (see Figure 2A). (E) Enrichment of map 2 

defined pDC, cDC1, cDC2 and pre-DC signatures in the map 1 DC1-6 subsets. (F) Heatmap of 10 

the average expression values of hallmark genes defined for map 1 DC1-6 subsets in both map 

1 DC1-6 as well as map 2 DCs subsets. 

 

Figure 4. Integrating newly defined DN-DCs into the new consensus space of the myeloid 

cell compartment. (A) Recapitulation of the map 1 gating strategy to identify a putative DC4 15 

subset within CD11c+ DN-DCs and visualization of CD16 expression. (B) CD16+ and CD16- DN-

DC mapping (as in A) onto the flow cytometry derived UMAP topology (left panel, see Figure 1B, 

3A) and scRNA-seq data (right panel). (C) Relationship analysis of CD16+ or CD16- DC-DN cells 

(see Figure 3A) and their corresponding annotation according to map 2, FACS Phenograph 

clustering and scRNA-seq data. (D) Pearson correlation matrix of all cell types defined in map 1. 20 

(E) Signature enrichment analysis of map 1 mono 2 signature in all other map 1-defined cell types. 

(F) Enrichment of the DC4 (DN-DC) signature visualized on the scRNA-seq data derived UMAP 

topology. (G) Gating strategy to define SLAN expression on the cell population defined as DN-

DC based on CD16 expression. (H) Visualization of DN-DC cells in the complete CD45+Lin-HLA-

DR+ UMAP topology (grey). (I) Mapping of the phenotypic information of cell populations onto the 25 

new UMAP topology. 
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Figure 5. Relationship of the previously introduced fourth monocyte subset (mono 4) in 

context of the new consensus map of the myeloid cell compartment. (A) Mapping flow 

cytometric- and scRNA-seq-defined map 1 mono 2 and 4 onto the flow cytometry based UMAP 

topology (see Figure 1B, E, 2A). (B) Heatmap of the protein expression pattern for mono 4 

signatures genes derived from mass-spectrometric data of FACS-sorted population as described 5 

by Rieckmann et al. (Rieckmann et al., 2017). (C) Enrichment of a NK cell signature in map 1 

mono 1-4 subsets. (D) Heatmap of NK cell hallmark genes within the map 1 defined cell subsets. 

(E) Backmapping by overlaying map 1 mono 1-4 cells onto the 33k-PBMC scRNA-seq dataset. 

Only monocytes and NK cells are shown. (F) Visualization of the percentage of cells that are 

aligned with either monocytes or NK cells derived from the unrelated 33k-PBMC scRNA-seq 10 

dataset. (G) UMAP topology of scRNA-seq data derived from the map1 DC and mono subsets 

(left panel) and overlay of the NK cell signature onto this UMAP topology. (H) Top panels: classical 

gating strategy and stepwise cleanup of CD45+ cells based on lineage (CD3/CD19/CD20) marker 

expression, then based on CD56 expression followed by HLA-DR expression, left to right. Middle 

panels: UMAP topology derived from the respective cell populations marked within the 15 

corresponding top panels. Mono/DC by HLA-DR expression, green; NK by CD7 expression, 

violet; and granulocytes by CCR3 or CD66b expression, orange. Bottom panels: Effect of cleanup 

as shown in top panels on the CD16+ CD14- cell population. 

 

Figure 6. Focused analysis of the monocyte compartment (A) Overlay of the the cluster 8 20 

and 9 defined by de novo clustering of the scRNA-Seq data onto the scRNA-UMAP topology of 

the new consensus map. (B) Bar chart showing the original FACS annotation of cells derived from 

cluster 8 or 9 following the sorting scheme of map 1 or map 2, respectively. (C) Trajectory analysis 

of the monocyte subset containing cells from cluster 8 and 9. Monocle-based UMAP 

dimensionality reduction overlaid with cell estimated pseudo-time (left panel) and the FACS 25 
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annotations derived from map 1 (center panel) or map 2 (right panel). (D) Transcriptional changes 

of genes that are considered as differentially expressed along the inferred trajectory. Heatmap 

shows scaled gene expression changing over the pseudo-time (x-axis, early to late). Selected 

marker genes of cMono and ncMono are highlighted. (E) Expression of CD14 and CD16 in relation 

to the estimated pseudo-time of cells. Cells are colored by their FACS annotation from map 1 or 5 

map 2. 

 

Figure 7. Backmapping strategy combining the new scRNA-seq data and different PBMC 

datasets. (A) Annotation of cell types within the combined dataset (33-K PBMC and new scRNA-

seq dataset). (B) Graphs in the left panel predict cell labels from the 33-K PBMC dataset by using 10 

the transcriptome information from the new scRNA-seq dataset. Graphs in the right panel show 

the visualization of the cells from the new scRNA-seq dataset after integration with the 33-k PBMC 

dataset. (C) UMAP dimensionality reduction of around 260.000 human cord blood cells and cell 

annotation based on markers obtained from the unrelated 33k-PBMC dataset (Figure 7A-B). (D) 

Reduction of the HCA dataset to cells, which were found within clusters associated with 15 

monocytes or dendritic cells. (E) Graphs within the left panel show the prediction scores 

calculated for the respective cell types of the new scRNA-seq data. Graphs in the right panel 

show the visualization of the cells from the new scRNA-seq data after “anchoring” together with 

the HCA dataset. 
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Supplementary Figure Legends 

Figure S1. Classical flow cytometry gating strategies applied for the generation of the 

legacy maps 1 and 2. (A) Common part of the flow cytometry gating strategy applied for the 

generation of the legacy maps 1 and 2. (B) Map 1-specific part of the flow cytometry gating 

strategy with the resulting cell subsets (colored boxes). (C) Map 2-specific part of the flow 5 

cytometry gating strategy with the resulting cell subsets (colored boxes). Some cell types shown 

here are based on a priori definitions (e.g. monocytes) and were not part of the transcriptionally 

defined cells in the legacy map 2.  

 

Figure S2. Quality control criteria for the scRNA-seq data established for the new 10 

consensus map of the myeloid cell compartment. (A) Visualization of the number of reads for 

all 8 384-well plates analyzed within this project. Violin plot of the number of genes observed to 

be present within all cells measured. (B) Visualization of the number of reads (left panel), the 

number of genes (middle panel), and the percent of aligned reads (right panel) as a violin plot for 

each of the 8 384-well plates individually. (C) Comparison and visualization of cell distribution 15 

across all identified clusters in relationship to the 8 384-well plates utilized within this experiment. 

(D) Mapping of single-cell information concerning the total number of reads, unaligned reads, 

number of genes, and number of transcripts onto the UMAP topology of the final consensus map 

based on scRNA-seq data. (E) Cluster relationship analysis (F) Distribution of cells within each of 

the identified cluster in relation to the 8 384-well plates used in this study. 20 

 

Figure S3. Overlay of phenotypic and transcriptomic data onto the new consensus map of 

the myeloid cell compartment. (A) Visualization of cell surface markers detected by index 

sorting on the 2,509 cells which were used to define the UMAP topology of the index-sorted cells 

based on the single cell transcriptome data. (B) Visualization of gene-level expression of the 25 
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respective cell surface markers within the 2.509 cells which were used to define the UMAP 

topology of the index-sorted cells based on the single cell transcriptome data. 

 

Figure S4. Defining the relationship of map 1 DN-DC within the new consensus map of the 

myeloid cell compartment. (A) Enrichment of map 1 mono 1,3,4 signatures in map 1 mono1-4 5 

and DC1-6 subsets. (B) Violin plots for normalized gene expression of FCGR3A, TCF7L2, RHOC, 

MTSS1 in map 1 mono1-4 and DC1-6 subsets. (C) Overlay and visualization of map 1 mono 1-4 

subset gene signature enrichment on the UMAP topology based on scRNA-seq of 2.509 index-

sorted cells (see Figure 2A).  

 10 

Figure S5. The relationship between the myeloid and the NK cell compartment in human 

peripheral blood. (A) Schematic representation of the development of a new focus strategy (panel 

adjustment) to define the relationship between the myeloid and the NK cell compartment in human 

peripheral blood. (B) Classical gating strategy to determine those cell populations that need to be 

placed either into the myeloid or the NK cell compartment followed by the development and 15 

visualization of the UMAP topology of both cellular compartments. (C) Color-coded visualization 

of markers used to define the mononuclear myeloid and NK cell compartments on the flow 

cytometry data-based UMAP topology. (D) Cytospins of cells sorted according to the gating 

strategy depicted in Figure S5B. 

 20 

Figure S6. Focused analysis of the monocyte compartment (A) UMAP dimensionality 

reduction calculated on the focused subset of cluster 8 and 9 containing the monocyte 

populations. Overlaid are the cell annotations from the clustering and (B) the FACS annotation 

derived from Map 1 (upper panel) and Map 2 (lower panel).  
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Figure S7. Integration of the new scRNA-seq dataset with three individual PBMC datasets. 

(A) UMAP dimensionality reduction based on the combined dataset of the new mononuclear 

myeloid scRNA-seq data and the external 33k-PBMC dataset.  Cells originating from the new 

scRNA-seq data are colored black and cells from the external PBMC dataset are colored grey. 

(B) Overlay of cell annotations of cells from NK cells, CD34+, plasma cells, CD4+ T cells, CD8+ T 5 

cells, and B cells from the 33-k PBMC dataset. (C) Clustering of the HCA dataset. (D) Prediction 

and backmapping of NK cells from the novel scRNA-seq dataset onto the complete HCA dataset. 

Left UMAP graph shows the computed prediction score for NK cells of the HCA dataset using the 

new scRNA-seq consensus map information. Red color indicates highest prediction score.  Right 

UMAP graph shows the location of NK cells from the new scRNA-seq data within the combined 10 

dataset. (E) UMAP dimensionality reduction based on the combined dataset of the new 

mononuclear myeloid scRNA-seq data-based consensus map and a PBMC dataset processed 

by the BD Rhapsody technology. Cells originating from the new scRNA-seq consensus map are 

colored black and cells from the Rhapsody PBMC dataset are colored grey. (F) Overlay of cell 

annotations of the DC subsets from the new scRNA-seq data-based consensus map on the 15 

combined UMAP. (G) Overlay of cell annotations of NK cells and monocyte subsets identified in 

the new scRNA-seq data-based consensus map (top panel) and the respective cell annotations 

of NK cells, CD14+ and CD16+ monocytes from the Rhapsody PBMC dataset. (H) Overlay of cell 

annotations of CD4+ T cells, CD8+ T cells and B cells from the external PBMC dataset. 

 20 
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Table legends 

Tables S1:  

Cell types classified in the respective studies 

 

Data Table S1:  5 

Data Table S1.csv. Gene signatures of the 11 clusters identified in our new scRNA-seq 

consensus map 

 

Data Table S2:  

Data Table S2.xlsx. Gene signatures derived from map 2  10 

 

 



Cell�types�identified�in�Map1�(12 ) Cell�types�in�Map2�(13 ) Cluster�identified�in�the�consensus�Map Cell�types�in�the�consensus�Map
DC1 cDC1 Cluster�6 cDC1
DC2 cDC2 Cluster�10 DC2
DC3 cDC2 Cluster�11 DC3
DC4 - - ncMonos,�Cd34
DC5�(AS-DC) preDC Cluster�7 preDC
DC6 pDC Cluster�5 pDC
Mono1 - Cluster�9 CD14�Mono
Mono2/�DC4 - Cluster�8 CD16�mono
Mono3 - - intMonos
Mono4 - Cluster�1 NK�cells

- Plasma�cells
- Undef.

Table�S1.�Cell�types�classified�in�the�respective�studies
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EXPERIMENTAL PROCEDURE 

 

CONTACT FOR REAGENT AND RESOURCE SHARING 

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact jschultze@uni-bonn.de 5 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Peripheral blood mononuclear cells (PBMC) 

Buffy coats or venipuncture blood were obtained from healthy donors (University hospital Bonn, 

local ethics vote 203/09) after written consent was given according to the Declaration of Helsinki. 10 

Peripheral blood mononuclear cells (PBMC) were isolated by Pancoll (PAN-Biotech) density 

centrifugation from buffy coats.  

 

METHOD DETAILS 

Flow cytometric analysis 15 

Whole blood or buffy coat was diluted in room temperature PBS (1:2 or 1:5, respectively) and 

layered onto polysuccrose solution (Pancoll; PAN Biotech, Germany) for the enrichment of 

mononuclear cells by density gradient centrifugation according to the manufacturer's instructions. 

After three times washing in cold PBS, cells were resuspended in FACS-buffer (0.5% BSA, 2 mM 

EDTA in PBS) for surface marker staining (Table S2). Human FcR-Block (Miltenyi Biotec, 20 

Germany) was included to reduce unspecific staining. After 1 h incubation at 4º in the dark, cells 

were washed and optionally stained for additional 20 min with 1:400 anti-biotin BV421 in FACS-

buffer for CADM1-biotin secondary staining. Washed cells were incubated with L/D Marker 

DRAQ7 (BioLegend, USA) for 5 min at room temperature before acquisition and sorting of the 

cells using a BD FACSARIA III (BD BioSciences, USA). Single antibody staining was prepared in 25 
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parallel to assess fluorescence spillover. Fluorescence-minus-one (FMO) controls were prepared 

in addition for critical markers to set sorting gates. Post-sort data analysis was performed using 

FlowJo software (FlowJo, Tree Star Inc., USA). The packages "flowCore" and "flowWorkspace" 

were used to import raw data into R. For dimensionality reduction with UMAP fluorescence 

parameters were transformed with logicleTransform (Becht et al., 2018). 5 

 

Library preparation and sequencing using Smart-Seq2 

Our new index-sorted single cell transcriptome dataset was based on the Smart-Seq2 protocol 

(Picelli et al., 2013). For single cell sorting into 384-well plates and to ensure sufficient cell 

numbers and balanced representation from each main myeloid subset, loose sorting gates have 10 

been set covering the entire space of alive CD45+Lin (CD3, CD19, CD20, CD56)-CD14+, CD16+ 

or CD14-CD16-HLA-DR+ cells. To achieve this, the alive CD45+Lin- compartment was divided to 

sort 24 cells per plate each of CD14+CD16-, CD14-CD16+, CD14+CD16+, HLA-DR+CADM1+, HLA-

DR+CADM-AXL+SIGLEC6+, HLA-DR+CADM1-AXL-SIGLEC6-CD123+CD11c-, HLA-DR+CADM1-

AXL-SIGLEC6-CD123-CD11c- or HLA-DR+CADM-AXL-SIGLEC6-CD123-CD11c- cells. Cells were 15 

FACS sorted into eight 384-well plates containing 2.3µl lysis buffer (Guanidine Hydrochloride (50 

mM), dNTPs (17.4mM), 2.2µM SMART dT30VN primer) retaining protein expression information 

for every well to subsequently match with the respective single-cell transcriptomic data in an index 

sorting approach. Plates were sealed and stored at -80°C until further processing. Smart-Seq2 

libraries were finally generated on a Tecan Freedom EVO and Nanodrop II (BioNex) system as 20 

previously described (Picelli et al., 2013). 

In short, lysed cells were incubated at 95°C for 3 min. 2.7 µl RT mix containing  SuperScript II 

buffer (Invitrogen), 9.3mM DTT, 370mM Betaine, 15mM MgCl2, 9.3U SuperScript II RT 

(Invitrogen), 1.85U recombinant RNase Inhibitor (Takara), 1.85 µM template-switching oligo was 

aliquoted to each lysed cell using a Nanodrop II liquid handling system (BioNex) and incubating 25 
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at 42°C for 90 min and at 70°C for 15min. 7.5µl preamplification mix containing KAPA HiFi 

HotStart ReadyMix and 2µM ISPCR primers was added to each well and full-length cDNA was 

amplified for 16 cycles. cDNA was purified with 1X Agencourt AMPure XP beads (Beckman 

Coulter) and eluted in 14µl nuclease-free water. Concentration and cDNA size were checked for 

select representative wells using a High Sensitivity DNA5000 assay for the Tapestation 4200 5 

(Agilent). cDNA was diluted to an average of 200pg/µl and 100pg cDNA from each cell was 

tagmented by adding 1µl TD and 0.5µl ATM from a Nextera XT DNA Library Preparation Kit 

(Illumina) to 0.5µl diluted cDNA in each well of a fresh 384-well plate. The tagmentation reaction 

was incubated at 55°C for 8min before removing the Tn5 from the DNA by adding 0.5µl NT buffer 

per well. 1µl well-specific indexing primer mix from Nextera XT Index Kit v2 Sets A-D and 1.5µl 10 

NPM was added to each well and the tagmented cDNA was amplified for 14 cycles according to 

manufacturer’s specifications. PCR products from all wells were pooled and purified with 1X 

Agencourt AMPure XP beads (Beckman Coulter) according to manufacturer’s protocol. The 

fragment size distribution was determined using a High Sensitivity DNA5000 assay for the 

Tapestation 4200 (Agilent) and library concentration was determined using a Qubit dsDNA HS 15 

assay (Thermo Fischer). Libraries were clustered at 1.4pM concentration using High Output v2 

chemistry and sequenced on a NextSeq500 system SR 75bp with 2*8bp index reads. Single-cell 

data was demultiplexed using bcl2fastq2 v2.20. 

 

Proteomic Data  20 

To validate the gene signature associated with the mono 4 subset as described by Villani et al. 

on the protein level, we extracted copy numbers from key signature proteins from the publicly 

accessible proteomic resource (http://www.immprot.org/) described by Rieckmann et al. 

containing quantitative high-resolution mass-spectrometry data derived from FACS-enriched 
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human primary blood cells (Rieckmann et al., 2017). Copy numbers were visualized as a heatmap 

using the pheatmap package (v1.0.10) in R. 

 

Cytospin preparation and May-Grünwald/Giemsa staining 

Cell populations of interest were sorted into 1.5 ml reaction tubes containing 200 µl FACS-buffer 5 

using a BD FACSARIA III (BD BioSciences, USA). The cell suspension was centrifuged onto 

SuperFrost Plus glass slides (Thermo Scientific, USA) at 1000 rpm for 5 min using a Universal 

16A slide centrifuge (Andreas Hettich GmbH & Co.KG, Germany). Slides were air-dried overnight 

and subsequently stained with May-Grünwald/Giesma solution (Carl Roth GmbH, Germany) 

according to the manufacturer’s guidelines. Images were acquired with a BZ-9000 (Keyence, 10 

Japan). 

 

Targeted sequencing of human PBMC with the BD Rhapsody™ system 

Whole blood was diluted in room temperature PBS (1:2) and layered onto polysuccrose solution 

(Pancoll; PAN Biotech, Germany) for the enrichment of mononuclear cells by density gradient 15 

centrifugation according to the manufacturer's instructions. Granulocytes were isolated using 

erythrocyte lysis buffer (ELB, 0.15M NH4Cl, 0.01M KHCO3, 0.1mM EDTA, pH 7.4 at ca. 2-8°C) 

and mononuclear cells and granulocytes are mixed in a ratio of 2:1. After washing in cold PBS 

10.000 cells were loaded onto a BD Rhapsody™ cartridge and processed according to 

manufacturer’s instructions for targeted single-cell RNA-seq using the predesigned Immune 20 

Response Panel (Human). The library was clustered at 1.75pM on a NextSeq500 system 

(Illumina) to generate ~40.000 paired end (2*75bp) reads per cell using High Output v2 chemistry. 

Sequenced single-cell data was demultiplexed using bcl2fastq2 v2.20. 
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Single-cell RNA-Seq raw data processing  

Following sequencing by the Smart-Seq2 method (Picelli et al., 2013), RNA-Seq libraries were 

subjected to initial quality control using FASTQC (http://www.bioinformatics.babraham.ac.uk 

/projects/fastqc, v0.11.7) implemented in a scRNA pre-processing pipeline (docker image and 

scripts available at https://hub.docker.com/r/pwlb/rna-seq-pipeline-base/, v0.1.1; 5 

https://bitbucket.org/limes_bonn/bulk-rna-kallisto-qc/src/master/, v0.2.1). Next, raw reads were 

pseudoaligned to the human transcriptome (GRCh38, Gencode v27 primary assembly) using 

Kallisto with default settings (v0.44.0) (Bray et al., 2016). Based on the pseudoalignment 

estimated by Kallisto, transcript levels were quantified as transcripts per million reads (TPM). TPM 

counts were imported into R using tximport (Soneson et al., 2015) and transcript information was 10 

summarized on gene-level. We imported the resulting dataset of 43,612 features across 3,072 

samples and performed the downstream analysis using the R package Seurat (v.2.3.4, (Butler et 

al., 2018)). 

For processing of the single-cell data obtained by the BD Rhapsody™ system, we run the 

recommended BD Rhapsody™ Analysis Pipeline of Seven Bridges Genomics 15 

(sbgenomics.com/bdgenomics) with standard settings. The resulting count table that was 

accounted for UMI sequencing and amplification errors, was comprised of 488 features across 

7,873 cells. Normalization and further downstream analysis were conducted in R using Seurat 

(v.2.3.4, (Butler et al., 2018)). 

 20 

Quality control  

Concerning our new index-sorted and Smart-Seq2-based single cell transcriptome dataset the 

following quality control scheme using various meta information was performed to obtain high-

quality transcriptome data: 1) We removed genes that are detected in less than 6 cells (0.2 

percent of cells), 2) and removed cells that have less than 1,000 uniquely detected genes. Next, 25 
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we filtered further outlier cells with 3) less than 50,000 unique reads, 4) less than 30% 

pseudoalignment of reads to the transcriptome, 5) a lower rate of endogenous-to-mitochondrial 

count rate of 2, 6). This quality control scheme results in a dataset of 29,240 genes across 2,509 

cells.  

 5 

Normalization of single-cell transcriptomic data 

To reduce the influence of variation of sequencing depth among samples we applied a log-

normalization to the data and scaled each cells gene expression profile to a total count of 10,000. 

In addition, we corrected for other technical effects including differences in the fraction of 

mitochondrial counts as well of unique detected genes using a linear regression model for these 10 

factors. The residuals of this regression are scaled and centered and used for further downstream 

analysis. 

 

Dimensionality reduction and clustering 

In order to reduce the dimensionality of the dataset, we selected highly variable genes as genes 15 

with an average expression of at least 0.0125 and a scaled dispersion of at least 1. This resulted 

in a total of 2491 genes, which were used as input for a principal component (PC) analysis. We 

visualized the standard deviation of the first 20 PCs and identified the first 10 principal 

components with a minimum standard deviation of at least 2 as significant PCs. Next, we utilized 

Uniform Manifold Approximation and Projection (UMAP) to further reduce the data into a two-20 

dimensional representation (Becht et al., 2018). To test for cellular heterogeneity, we used a 

shared nearest neighbor (SNN)-graph based clustering algorithm implemented in the Seurat 

package. We used the first 10 principal components for constructing the SNN-graph and set the 

resolution to 1. Monocle was used to infer differentiation trajectories by using the Louvain 

clustering method, umap dimensionality reduction and the SimplePPT algorithm (Qiu et al., 2017)  25 
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Additional analysis 

Differentially expressed (DE) genes were defined using a Wilcoxon-based test for differential gene 

expression built in the Seurat pipeline (v.2.3.4) (Data Table S1). Unless otherwise stated genes 

have been considered as differentially expressed, if the adjusted p-value is smaller than 0.1. 

Top10 DE genes have been visualized using heatmap of hierarchical clustered gene expression 5 

profiles. DE genes have been verified with current literature. 

  

Gene signature enrichment analysis 

Single-cell RNA-Seq data is inherently sparse and a high-dropout rate is limiting the use of single 

marker genes to identify cell populations. In order to unambiguously identify the different cell 10 

types, we have used an updated version of a gene signature score analysis described earlier 

(Mass et al., 2016). A cell population is always characterized by genes that are significantly 

upregulated in comparison to other populations and genes that show significantly lower 

expression in comparison to the background populations. In order to increase the power, we use 

both up and downregulated gene signatures for the calculation of the gene expression scores. A 15 

cell i may be described by a gene expression profile A[i,j] as the combination of gene expression 

values of all genes j. To calculate a signature score for a cell i, we first calculate the scaled 

average expression of all genes jup from an upregulated list and of all genes jdown from a 

downregulated gene list. The difference between these two is scaled and visualized. The 

visualization is performed as color-coded overlay on the UMAP dimensionality reduction or as 20 

density distribution.  

 

Data analysis of external single-cell RNA-Seq datasets 

To assess the single-cell RNA-Seq data of human dendritic cells and monocytes publicly available 

under the Gene Expression Omnibus accession number GSE94820, we applied the processing 25 
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steps previously described (Villani et al., 2017). We focused on the “discovery” dataset and 

performed downstream analysis with the R software package Seurat 

(https://github.com/satijalab/seurat; http://satijalab. org/seurat/, v.2.3.4). Uniform manifold 

approximation (UMAP) algorithm integrated into the Seurat package was used as a dimensionality 

reduction method with standard settings. To define cell-type specific gene signatures for all cell 5 

populations, a Wilcoxon-based test was used. We considered genes as differentially expressed 

with an adjusted p-value of smaller 0.1 and a log2-fold change of higher than 1 or lower than -1, 

respectively. A global comparison of all cell types was performed by calculating the Pearson 

Correlation coefficients between the average expression profiles of all clusters. Scaled gene 

expression profiles have been used. 10 

In order to have a comprehensive single-cell RNA-Seq dataset of human PBMCs, we downloaded 

a dataset containing transcriptome data of 33,148 PBMCs from a healthy donor (short 33k-PBMC 

dataset), which is publicly available on the 10x Genomics webpage 

(https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc33k). Next, 

we followed the general data analysis scheme described at the Seurat package webpage 15 

(https://satijalab.org/seurat/get_started_v1_4.html). Briefly, we used the filtered cell-gene matrix 

provided by 10x Genomics and imported the data and performed the analysis with the Seurat 

package. We filtered genes that are expressed in less than three cells and removed cells from 

the data set that have gene counts for less than 500 genes or for more than 2500 genes. In 

addition, we removed cells that have more than 5% mitochondrial counts. This resulted in a 20 

dataset of 17943 genes across 28.823 cells. Next, a log-normalization was applied, and highly 

variable genes were identified by applying a dispersion cutoff of 0.8 (2.281 variable genes). To 

account for technical variability in the dataset, a linear model was used to regress out the effects 

of the number of measured molecules per cell, the fraction of mitochondrial counts as well as the 

effect introduced by processing the cells in different sets. The first 25 principal components were 25 
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used for a graph-based clustering approach. NK cell specific genes were identified by a Wilcoxon-

based test for differential gene expression (adj. p-value < smaller 0.1, |log2-fold change| > 1). 

 

Backmapping 

In order to compare the transcriptome profiles of monocytes isolated from the dataset derived 5 

from GSE94820 (Villani et al., 2017) with the comprehensive PBMC dataset, we used the 

previously introduced canonical correlation alignment to combine datasets (Butler et al., 2018). 

First, we isolated all monocyte populations from Villani et al. and all monocyte and NK cell 

populations of the 10x Genomics dataset. Both datasets are normalized, scaled and a linear 

regression was performed to account for differences in the number of detected genes. In both 10 

datasets, a feature selection was performed to identify genes with high dispersion. We determined 

the mutual highly variable genes as the overlap of the 4.000 genes from each dataset with highest 

dispersion. Next, we combined both datasets by performing the canonical correlation alignment, 

which resulted in an integrated dataset comprising 41.620 genes across 8.846 cells. UMAP 

dimensionality reduction was applied to the dataset using the first 8 canonical correlation 15 

alignment components and 40 neighbor points as well as a minimal distance of 0.01. 

In addition, we downloaded from the data portal (https://preview.data.humancellatlas.org/) of the 

HCA consortium a single-cell dataset comprised of immune cells from human cord blood samples. 

When analyzing this dataset, we observed a donor dependent batch effect and thus decided to 

use an “anchoring” approach to harmonize the different batches of the single-cell dataset and to 20 

integrate the new consensus map. To this end, we took advantage of the R package Seurat (v. 

3.0.0.9000). After filtering genes that were expressed in less than 10 cells of the HCA dataset 

with a cell being kept when 500 genes were detected, we ended up with a large dataset that 

contained 21,409 genes expressed across 254,937 cells. Next, we merged this Seurat object with 

the Seurat object of the new consensus map. We treated the different batches of the HCA dataset 25 

as individual datasets and normalized them and the expression table of the consensus map 



 

40 
 
 

separately. For each dataset, we calculated the top 2,000 most variable genes based on a 

variance stabilizing transformation followed by data integration by leaving the standard settings 

unaltered. The integrated dataset was visualized using UMAP based on the top 30 computed 

PCs. For cell type prediction of the cord blood cells based on the calculated clusters of the new 

consensus map, we followed the recommendations of the Seurat vignette for the 5 

‘FindTransferAnchors’ and the ‘TransferData’ functions. First, we repeated the steps above but 

without integration of the new consensus map data. We used the resulting integrated HCA dataset 

as query dataset and the new consensus map as reference dataset. Because of the large cell 

number of the HCA dataset, we projected the PCA from the query dataset onto the reference 

dataset. The remaining standard settings were left unaltered. Finally, we transferred the cluster 10 

information of the new consensus map onto the query dataset. The resulting prediction scores 

were visualized as color code onto the UMAP graph by coloring the highest prediction score red.  

Clustering of the dataset was done based on the construction of an SNN-graph by setting the 

resolution to 0.6. Cluster 5, 7, 9 and 13 were found to be associated with monocytes or DCs and 

thus the HCA dataset was filtered on these cells followed by repetition of the abovementioned 15 

steps. 

 

Population-based gene signatures of pDC, pre-DC, cDC1 and cDC2 

Specific gene signatures of up or downregulated in the comparison of human DC subsets have 

been identified as described earlier using the publicly available dataset (See et al., 2017) (GEO 20 

accession number: GSE80171). Gene signatures are available in supplementary Data Table S2. 

 

Data visualization 

In general, the ggplot2 package was used to generate figures (Wickham, 2016).   

 25 
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QUANTIFICATION AND STATISTICAL ANALYSIS 

Statistical analysis was performed using the R programming language. Statistical tests used are 

described in the figure legend or methods part, respectively. Differentially expressed genes have 

been identified using a Wilcoxon-based test for differential gene expression. If not otherwise 

stated a significance level of 0.1 was applied to adjusted p-values (Benjamini Hochberg). 5 

 

DATA AND SOFTWARE AVAILABILITY 

Processed and raw scRNA-seq datasets are available through the Gene Expression Omnibus 

(GSE126422). Additional Data tables are provided in form of EXCEL Tables (Data S1, S2) 

Data Table S1: Data Table S1.csv 10 

Gene signatures of the 11 clusters identified in our new scRNA-seq consensus map 

 

Data Table S2: Data Table S2.xlsx 
Gene signatures derived from map 2 

 15 

ADDITIONAL RESOURCES 

In addition, we provide an interactive web tool to visualize the single-cell RNA-Seq data together 

with the flow cytometry data at https://paguen.shinyapps.io/DC_MONO/ (external database S1).  
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One Sentence summary: Differentiation of ‘core’ macrophages is initiated in the E9.5 
embryo and followed by their rapid specification into tissue-specific macrophages.  
 
Abstract: 

Tissue-resident macrophages are functionally diverse cells that share an 

embryonic mesodermal origin. However, the mechanism(s) that control their 

specification remain unclear. We performed transcriptional, molecular and in situ 

spatio-temporal analyses of macrophage development in mice. We report that 

Erythro-Myeloid Progenitors generate pre-macrophages (pMacs) that 

simultaneously colonize the head and caudal embryo from embryonic day (E)9.5 

in a chemokine-receptor dependent manner, to further differentiate into tissue 

F4/80+ macrophages. The core macrophage program initiated in pMacs is rapidly 

diversified as expression of transcriptional regulators becomes tissue-specific in 

early macrophages from E10.25. This process appears essential for macrophage 

specification and maintenance, as for example inactivation of Id3 impairs the 

development of liver macrophages and results in selective Kupffer cell deficiency 

in adults. We propose a two-step model where colonization of developing tissues 

by differentiating macrophages is immediately followed by their specification as 

they establish residence, hereby generating the macrophage diversity observed in 

postnatal tissues. 



Accepted Version: Mass et al., Science 2016, Vol. 353, Issue 6304, doi: 10.1126/science.aaf4238 

Main text 
 

Tissue-resident macrophages are a diverse family of cells found in most organs, 

such as brain microglia, liver Kupffer cells, lung alveolar macrophages, and epidermal 

Langerhans cells. They share an embryonic origin and differentiate, at least in part, from 

yolk sac (YS) Erythro-Myeloid Progenitors (EMPs) (1, 2), and are self-maintained in 

adult tissues independently of hematopoietic stem cells (HSCs) under steady state 

conditions (3-6). However, the mechanisms responsible for the generation of 

macrophage diversity observed in adult mice remain unclear. It was proposed that 

resident macrophage diversity reflects their exposure to specialized tissue environments 

(7-10), or the contribution of distinct embryonic or fetal progenitors to distinct subsets (2, 

11-13). The preferential expression of transcription factors in macrophage subsets was 

also noted (7), and appears functionally important. Several such cases have been 

functionally validated by knockout mice, including Gata6 for large peritoneal 

macrophages (9, 10, 14), Runx3 for Langerhans cells (15), Nr1h3 for splenic marginal 

zone macrophages (16), SpiC for splenic red pulp macrophages (17) and Pparg for 

alveolar macrophages (18). To better understand how macrophage diversity is 

generated, we performed a molecular and spatio-temporal analysis of macrophage 

development in mice. 

 

EMPs (Csf1r+ Kit+ CD45low AA4.1+) are first detected in the YS at E8.5 (2, 19) and 

subsequently colonize the fetal liver (1, 2). Previous fate mapping analysis of EMP 

differentiation indicated that their progeny loses Kit expression and increases CD45 

expression as they invade the embryo, before acquiring F4/80 expression to give rise to 

fetal and postnatal tissue-resident macrophages (2) (Fig. 1A). To explore the spatio-

temporal and molecular determinants of macrophage differentiation and diversification, 

we first performed whole transcriptome sequencing of sorted CD45low Kit+ EMPs, CD45+ 

Kit- Lin- (Ter119, Gr1, F4/80) cells, and F4/80+ macrophages from embryonic and 

postnatal tissues up to 3 weeks after birth (Fig. 1A, S1A, B). We identified genes that 

were significantly upregulated between EMPs and CD45+ Kit- Lin- cells (adjusted p-

value≤0.05, DESeq2 (20), Benjamini Hochberg (BH)-correction, Table S1). Subsequent 

summarization and visualization of these genes via scorecard analysis (21) (Fig. 1B), 

indicated that the CD45+ Kit- Lin- cells signature was also present in F4/80+ macrophages 

across tissues and over the entire time course analysis in the embryo and postnatal 
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mice in the kidney, liver, and brain, albeit epidermal Langerhans cells and lung alveolar 

macrophage signatures were modified after birth (Fig. 1B). A second scorecard analysis 

of genes upregulated between EMPs and early (E10.25-E10.5) F4/80+ macrophages 

identified a signature that was already detectable in CD45+ Kit- Lin- cells, and conserved 

in later macrophages across tissues (Fig. S1C, Table S1). Unsupervised principal 

component analysis (PCA) showed a distinct grouping of EMPs, CD45+ Kit- Lin- cells and 

macrophages, irrespectively of their tissue of origin i.e. YS, liver, head or caudal region 

(Fig. S1D). Morphologically, CD45+ Kit- Lin- cells from the YS, fetal liver, head and caudal 

embryo displayed a similar morphology, as did macrophages from the same tissues (Fig. 

1C). CD45+ Kit- Lin- cells resembled EMPs, albeit with the presence of occasional 

phagocytic vacuoles, while phagocytic features become prominent in F4/80+ cells (Fig. 

1C).  

 

These data suggested that a macrophage differentiation program was initiated 

simultaneously in the whole embryo in CD45+ Kit- Lin- cells, which will be referred to 

below as pre-Macrophage (pMac). To further test this hypothesis, we performed 

independent unbiased whole transcriptome single-cell RNA sequencing (scRNA-seq) of 

CD45low/+ cells purified from the whole embryo at E10.25 (30-34 somite pairs).  Nonlinear 

dimensionality reduction in combination with unsupervised clustering of cells indicated 

that these cells are best described by three major clusters (Fig. 1D, Fig. S2). Overlay of 

EMP, pMac, and macrophage signatures from differentially expressed genes in bulk 

RNA-seq analysis (Table S1) indicated superimposition on cluster 1, 2, and 3 

respectively (Fig. 1E) albeit intermediate differentiation states in EMPs, pMacs, and 

macrophages were clearly apparent, which suggested a gradual differentiation path from 

EMP to macrophages via pMacs (Fig. 1E), consistent with the scorecard analysis. 

 

Analysis of genes differentially expressed in EMPs, pMacs, and early 

macrophages by scRNA-seq (Fig. 1F, G, Table S2) and bulk RNA-seq analysis (Fig. 1H, 

Table S1) confirmed that a ‘core macrophage’ transcriptional program was initiated in 

pMacs. As Kit, Gata1, and Gata2 expression was lost, pMacs upregulated expression of 

Csf1r, and the transcription factors Maf, Batf3, Pparg, Irf8, and Zeb2, the chemokine 

receptor Cx3cr1, cytokine receptors, complement and complement receptors, pattern-

recognition receptors, phagocytic receptors, Fc gamma receptors, the inhibitory receptor 

Sirpa, MerTK, cathepsins, Aif1 (Iba1), Emr1 (F4/80) and Grn (Granulin). Expression of 
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selected cytokine receptors for Il-4, Il-13, Interferon gamma and Tumor necrosis factor, 

phagocytic and activating receptors Mrc1 (CD206), Trem2, Dectin1 (Clec7a), Fc-gamma 

receptors (Fcgr1, Fcgr2/3, Fcgr4), Iba1, and Grn was confirmed at the protein level by 

flow cytometry and by immunofluorescence in situ on EMP-derived pMacs and early 

macrophages from the YS as well as from the head, caudal, limbs, and liver of the 

embryo proper, fetal macrophages and adult tissue macrophages in Csf1rMeriCreMer; 

Rosa26LSL-YFP mice pulsed with OH-TAM at E8.5 (Fig. 2A, B, Fig. S3, S4). Expression of 

these proteins was first detected in pMacs and increased as pMacs differentiated into 

F4/80+ macrophages (Fig. 2A,B, Fig. S3). Of note, pMacs and macrophages 

represented 70-90% of EMP-derived cells in the head and caudal embryo, while 80-90% 

of YFP+ cells in the E10.25 fetal liver represented progenitors (Fig. 2B, Fig. S4). 

 

Detection of the early expression of the cytokine receptor Tnfrsf11a in pMacs by 

RNA-seq and scRNA-seq analyses (Fig. 1H, 2C) predicted that pMacs or their progeny 

may express YFP in Tnfrsf11aCre (22); Rosa26LSL-YFP mice. Indeed, we observed YFP 

labeling by flow cytometry in 80% pMacs and early macrophages from the YS and 

embryo of Tnfrsf11aCre; Rosa26LSL-YFP mice (Fig. 2D, S5). Fetal macrophages in all 

tissues also expressed YFP at comparable levels at E10.25 and E14.5 (Fig. 2D). In 

addition, 80% of brain, lung, epidermis, kidney, and liver macrophages from 6-week old 

mice expressed YFP (Fig. 2D). Therefore, the whole resident macrophage lineage is 

labeled in Tnfrsf11aCre; Rosa26LSL-YFP mice, although Tnfrsf11a expression itself is lost in 

postnatal Langerhans cells and alveolar macrophages (Fig. 1H). Moreover, we noted 

that YFP expression was observed only in 15% of fetal HSCs, adult HSC, and HSC-

derived cells in the blood and tissues of adult mice (Fig. 2D, S5). Tnfrsf11aCre; 

Rosa26LSL-YFP mice thus represent an efficient and relatively specific model for genetic 

labeling of tissue-resident macrophages in fetuses and adult mice. 

 

Early Cx3cr1 expression by pMacs (Fig. 1H, 2C) is in line with previous reports 

showing Cx3cr1 expression in macrophage precursors (23), and suggested that this 

chemokine receptor may be involved in colonization of embryo tissues by pMacs. Time 

course analysis of GFP expression in Cx3cr1gfp/+ mice from E8.5 (19-21 somite pairs - 

sp) to E10.5 (38-39sp) indicated that GFP expression is not detected in Kit+ progenitors, 

but is upregulated in Kitlow Dectin+ pMacs and is highest in F4/80+ macrophages that 

appear at E10.25 (Fig. 2E). Next, we found that colonization of the head and caudal 
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tissues is delayed in Cx3cr1-deficient embryos as pMacs and macrophages numbers 

are decreased in the head and caudal/limbs tissues of E9.5 and E10.5 embryos in 

comparison with Cx3cr1+/- littermates, while they accumulate in the YS and fetal liver 

(Fig. 2F). Nevertheless, tissue macrophage numbers even out in the consecutive days of 

embryonic development in most tissues, with the exception of the kidney where a 50% 

lower number in resident macrophages is still observed in adult mice in line with 

previous research (24) (Fig. S6). 

 

A progressive enrichment of pMac and macrophage specific gene expression 

signatures was observed in gene set enrichment analysis (GSEA) of bulk RNA-seq data 

(Fig. S7A,B). Moreover, the 'core' macrophage signature identified in adult mice by the 

Immgen consortium (25) was already enriched in the genes upregulated in pMacs and 

macrophages compared to EMPs (Fig. S7C,D). In silico investigation of transcription 

factor binding sites identified using ChIP-seq in the proximity of upregulated genes (TSS 

+/- 20kb) in pMacs and macrophages further supports the proposition that pMacs 

undergo a coordinated macrophage differentiation program: a LOLA analysis (26) 

yielded a statistically significant association (adjusted p-value≤0.001, Benjamini 

Yekutieli-correction) with binding sites for Spi1, Egr1, Irf1, Irf8, Maf, Jun, Stat1, Stat3, 

Stat5b, Stat6, Rela, and Relb (Fig. S8A). These factors are expressed in our dataset 

(Fig. S8B, Table S1, S5) and their binding sites align at the same loci in enhancers and 

super-enhancers associated with differentially regulated genes, such as 

Thrombospondin1 (Thbs1) (27), Cx3cr1 (8), F4/80 (Emr1), and Mrc1, but not with control 

genes such as Gata1 and MyoD (Fig. S8C). Comparable results, with a higher statistical 

significance, were found for genes differentially upregulated in early macrophages when 

compared to EMPs (Fig. S8A).  

 

Altogether, these results characterize at the cellular and molecular level the 

EMP-derived macrophage precursors (pMacs) that acquire a ‘core’ macrophage 

transcriptional program as they colonize the head and caudal embryo from E9.5 in a 

Cx3cr1-dependent manner to give rise to tissue-resident macrophages. These data are 

consistent with our previous demonstration that the vast majority of resident 

macrophages in these tissues originate from a progenitor that does not express the stem 

cell and endothelial marker Tie2 after E10.5 (2), but do not exclude the possibility that 

later precursors may also contribute to the resident macrophage pool.  
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Following the acquisition of this ‘core’ program, we observed that F4/80+ 

macrophages soon display heterogeneity between different tissues (Fig. 1H). For 

example, expression of Timd4 is lost at E12.5 at the transcriptional and protein level in 

brain macrophages and later microglia, but maintained in liver macrophages and in adult 

Kupffer cells throughout development, while expression of the Il-4 and Il-13 receptors is 

lost in postnatal Kupffer cells but maintained in microglia (Fig. 1H, Fig. S3). To 

systematically investigate the kinetics and molecular determinants of macrophage 

diversification, we first characterized tissue-specific signatures of genes differentially 

upregulated in postnatal microglia, kidney macrophages, Langerhans cells, alveolar 

macrophages and Kupffer cells in the bulk RNA-seq dataset. Unsupervised clustering 

analysis suggested that macrophages in different tissues undergo characteristic 

differentiation trajectories (Fig. S9A). Supervised analyses identified lists of genes 

differentially upregulated in each cell population (Table S3, Fig. S9B, C). The signatures 

of adult tissue-resident macrophages of the brain, lung, and liver previously defined by 

independent research (7, 25, 28) were progressively enriched in our developing resident 

macrophage populations (Fig. S10A-D). Finally, scorecard (21) and GSEA analysis of 

differentially upregulated genes for each postnatal macrophage population in all tissues 

and over time from E9 to P21 (Fig. 3A,B, S10C) revealed that the tissue-specific 

signature of postnatal microglia, Kupffer cells, and kidney macrophages could be traced 

back to fetal macrophages, as early as E12.5 (Fig. 3A). The signatures of Langerhans 

cells and alveolar macrophages reflected important postnatal changes in gene 

expression (Fig. 3B), noted in previous studies (29), and which may reflect their 

anatomical location at epithelial barriers.  

 

A heat-map visualization of all transcriptional regulators present in the postnatal 

tissue-specific signatures (2-fold change, adj. p-value<0.05, BH-correction, Fig. 3C) 

confirmed the tissue-specific expression of the transcription factors Sall1 and Sall3 in 

microglia (7), Nr1h3 (Lxra) in Kupffer cells (30), Pparg in lung alveolar macrophages (18, 

31), and Runx3 and Ahr in Langerhans cells (15, 32) (Fig. 3C), and identified additional 

tissue-specific transcriptional regulators such as Id1 and Id3 in Kupffer cells (Fig. 3C). In 

addition, this analysis showed that many of these transcriptional regulators start to be 

differentially expressed in early tissue macrophages, as early as E10.25, for example in 

Sall1 and Sall3 in head macrophages, Nr1h3, Id1 and Id3 in the liver, and Ahr in limb 



Accepted Version: Mass et al., Science 2016, Vol. 353, Issue 6304, doi: 10.1126/science.aaf4238 

macrophages (Fig. 3C). Some genes, like Id1 and Sall3 are expressed by progenitors 

and pMacs before their expression becomes restricted to macrophages in the liver and 

the head, respectively (Fig. S10E), while expression of other genes such as Id3 and 

Sall1 is low in progenitors and upregulated in pMacs (Fig. S10E). In situ 

immunofluorescence confirmed expression of Id3 by E10.25 macrophages in the liver 

and head and of Id1 in liver macrophages (Fig. 3D). These data altogether suggested 

that the transcriptional programs of tissue-specific resident macrophages start to be 

established early on, as soon as macrophages or pMacs are present in tissues and 

identified a number of novel ‘candidate’ tissue-specific transcriptional regulators. 

 

We thus investigated whether specification of tissue macrophages takes place in 

F4/80+ macrophages or at the level of their pMac or EMP precursors. We plotted 

transcriptional co-expression of Id1, Id3, and Sall3 onto the tSNE representation of 

single CD45low/+ cells from our scRNA-seq dataset (see Fig.1D, Fig. 3E, Fig. S11). Co-

expression of Id1 and Id3 was found in pMacs and macrophages. However, Id1 and 

Sall3 were co-expressed in EMPs and pMacs and Id3 and Sall3 were co-expressed in 

pMacs, suggesting that cells at the pMac state are not completely committed to 

exclusive expression of tissue-specific transcription factors. These data confirmed that 

Id1 and Sall3 are expressed by progenitors and pMacs (Fig. S10E), while their 

expression is ultimately lost by tissue macrophages outside the liver and the brain, 

respectively (Fig. 3C,E and Fig. S10E). When common and tissue-specific E14.5-E18.5 

macrophage signatures (Table S2) were superimposed on the pMac population, we 

found that the common macrophage signature was expressed in pMacs with a gradual 

enrichment within this population (Fig. 3F). However, we did not observe pMac subsets 

expressing these tissue-specific signatures (Fig. 3F). The lack of tissue specificity within 

the pMacs was confirmed using an alternative bioinformatic approach based on analysis 

of multimodal expression followed by hierarchical clustering of genes with subsequent 

analysis of enrichment of tissue signatures within these clusters in pMacs (Fig. S11E). 

Taken together, these data suggest that expression of Id1/Id3 or Sall3 does not specify 

pMac subsets pre-committed to give rise to either Kupffer cells or microglia, and more 

generally that diversification of tissue macrophage takes place after pMacs have 

colonized tissues and differentiated into F4/80+ macrophages. 
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Next, to functionally validate the role of early tissue-specific transcriptional 

regulators on the development and specification of tissue macrophages, and thereby the 

significance of our findings, we studied the role of Id3 expression in Kupffer cell 

differentiation. E10.25 Id3-deficient embryos had normal or increased numbers of 

pMacs/early macrophages in the YS, but macrophages were reduced in numbers in the 

embryo proper (liver and head) in comparison with littermate controls (Fig. 4A). The 

further development of liver macrophages was severely impaired in E14.5 and E18.5 

Id3-deficient embryos as determined by flow cytometry and histology, and 4-week old 

Id3-deficient mice still presented with a marked Kupffer cell deficiency, while 

development of microglia and kidney macrophages appeared normal (Fig. 4B-D, S12C). 

The role of Id3 in Kupffer cells appears cell autonomous as targeted deletion of an Id3 

floxed allele in pMacs (Tnfrsf11aCre+; Id3f/f) recapitulated the phenotype of the Id3-

deficient mice in embryo and postnatal mice (Fig. 4C, E). Expression of Id3 in postnatal 

Kupffer cells was confirmed by qRT-PCR (Fig. S12A), and by immunofluorescence in 

Kupffer cells from Csf1rMeriCreMer; Rosa26LSL-YFP mice pulse-labeled with OH-Tamoxifen at 

E8.5 (Fig. 4F, Fig. S12B). In contrast, fate-mapped microglia do not express Id3 (Fig. 

S12B), in line with our RNA-seq data (Fig. 3C). Of note, the partial Kupffer cell deficiency 

observed in Id3-deficient and Tnfrsf11aCre+; Id3f/f embryo and adult was not associated 

with an abnormal liver lobular architecture or vasculature (Fig. 4C,E, Fig. S12D). Kupffer 

cell proliferation in the steady state was not affected by Id3 deficiency (Fig. S12E), but 

RNA-seq analysis of Id3-/- and Id3+/- adult Kupffer cells indicated the upregulation (>3-

fold) of Id1 expression, and GO-term analysis evidenced that Id3-/- cells overexpressed 

genes involved in the control of cell death and cytokine responses and down-regulated 

genes involved in metabolic processes (Fig. 4G, Fig. S12F,G, Table S6). These data 

suggest that Id3 is important for the development and maintenance of Kupffer cells in the 

liver, but dispensable for other macrophage subsets. As Id1 and Id3 are co-expressed, it 

will be interesting to investigate whether up-regulation of Id1 partially compensates for 

Id3-deficiency (33, 34).  

 

We show here that EMPs rapidly differentiate into a population of cells that we 

call pMacs, because they simultaneously colonize the whole embryo from E9.5 in a 

Cx3cr1-dependent manner while differentiating into macrophages. pMacs do not yet 

have macrophage morphology but are in the process of establishing a full ‘core’ 

macrophage differentiation program that includes cytokine receptors, phagocytic and 
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pattern recognition receptors, and complement. Starting from E10.5, almost immediately 

after colonization of embryonic tissues, tissue-specific expression of transcriptional 

regulators in F4/80+ tissue macrophages initiates their specification into adult type 

resident macrophages (Fig. 4H). Our data therefore suggest that a broad or ‘core’ 

macrophage program is progressively restricted or refined to a tissue-specific one in 

response to the absence and presence of tissue-specific cues, rather than the 

alternative possibility that ‘committed’ subsets of early macrophages, pMacs or even 

EMPs choose their future tissue of residence. The present results are consistent with an 

EMP origin of tissue-resident macrophages (2) albeit they do not exclude the additional 

contribution of ‘primitive’ precursors (23), fetal HSCs or of a second wave of EMPs (11, 

12), which would adopt a similar differentiation program when entering tissues. However, 

we note that the novel transcriptional dataset we provide here may lead to re-

interpretation of fate-mapping models used to characterize the contribution of such later 

waves. For example, the progressive YFP expression by fetal macrophages in 

S100a4Cre; Rosa26LSL-YFP mice (12) is compatible with our present findings, and do not 

require the existence of a ‘second wave’ of precursors, because expression of S100a4 

and several other S100a family members was found to be part of the pMac 

transcriptional profile (Fig. S13).  

 

In summary, we propose a two-step model for resident macrophage 

differentiation and specification where the establishment of a core macrophage 

differentiation program in EMP-derived pMacs as they colonize the embryo is followed 

by the initiation of macrophage specification via the acquisition of tissue specific 

transcriptional regulators, such as Id3 in Kupffer cells. This process initiated 

simultaneously in the whole embryo during the first two days of organogenesis, from 

E8.5 to E10.5. Differentiation of resident macrophages is thus a developmental process 

and an integral part of organogenesis, independent of postnatal changes in the 

environment in kidney, liver, and brain, but not in skin and lung. These results also 

identify a developmental window where the molecular mechanisms of macrophage 

specification can be best studied, tools to selectively label resident macrophages, and 

sets of tissue specific transcriptional regulators expressed by developing and adult 

macrophages that may control their differentiation, maintenance and function, as well as 

a molecular road map that will support efforts to differentiate specialized macrophages: 

microglia, Kupffer cells, kidney macrophages, alveolar macrophages and Langerhans 
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cells in vitro from multipotent progenitors. Finally, our work provides a framework to 

analyze and understand the consequence(s) of genetic variation for macrophage 

contribution to disease pathogenesis in different tissues.  
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Figures legends 

 
Fig. 1. A ‘core’ macrophage program is initiated simultaneously in pMacs in all 
tissues.  (A) Summary of surface phenotype used for EMPs, pMacs, and macrophages. 
(B) Scorecard visualization of differentially upregulated genes (DESeq2 Wald test, 
adjusted p-value < 0.05, BH-correction) in pMacs (E9.5 and E10.25) in comparison to 
EMPs. The table shows the relative enrichment of differentially upregulated genes in 
pMacs across cell types and tissues (y-axis) and developmental time points (x-axis, from 
E9 to P21). See Table S1, Fig. S1, and Methods for details of the scorecard. (C) May-
Gruenwald-Giemsa stained cytospin preparations of sorted EMPs, pMacs and early 
macrophages from yolk sac (YS), head, limbs and fetal liver (FL) at E10.25 and E12.5. 
n=3 independent experiments. (D) tSNE plot of scRNA-seq data showing distribution of 
CD45low/+ cells from E10.25 embryos into three clusters (see also Fig. S2). Cluster 
distribution based on DBScan is overlaid onto the graph. (E) Superimposition of EMP-, 
pMac-, or macrophage-specific signatures defined by the bulk RNA sequencing on the 
tSNE plot shown in D. (F) tSNE plot as in (D) overlaid with the relative expression values 
for Kit and Maf. (G) (upper panel) Developmental pseudotime diagram (q-value<0.05) 
showing down regulation of EMP-specific genes (differentially expressed compared to 
the macrophage and pMac cluster, p-value<0.05, FC>1.4) over the differentiation path 
from EMP to pMacs and macrophages. (lower panel) Similar plot depicting 
macrophage-specific genes significantly regulated over pseudotime (q-value<0.05) and 
differentially expressed compared to the EMP and pMac cluster (p-value<0.05, 
FC>1.4)). See Fig. S2G. (H) Heatmap representation of selected genes differentially 
regulated between EMPs vs. pMacs and EMPs vs. early macrophages in bulk RNA-seq 
analysis. Black boxes were drawn around those samples used for differential expression 
analysis. See also Table S1, S2. 
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Fig. 2.  EMP-derived pMacs colonize the embryo to generate macrophages. (A) 
Flow cytometry analysis of E10.25 Csf1rMeriCreMer; Rosa26LSL-YFP (OH-TAM at E8.5) 
tissues showing expression of Il4ra, Il13ra1, CD16.2, CD64, Ifngr, Tnfr2, Tim4, and 
CD206 on YFP+ Kit+ progenitors, pMacs, and macrophages. MFI: mean fluorescent 
intensity. Data are representative of n=4 independent experiments with 4-6 embryos per 
marker. See also Fig. S3A. (B) Quantification of immunostainings on cryosection from 
E10.25 Csf1rMeriCreMer; Rosa26LSL-YFP embryos, pulse-labeled with OH-TAM at E8.5 with 
antibodies against YFP, Iba1 and CD16/32, Dectin-1, Trem2, F4/80, CD206 or Granulin. 
n=2-4 embryos and 2 sections per embryo per marker. See Fig. S4. (C) tSNE plot as in 
(1D) overlaid with the relative expression values for Tnfrsf11a and Cx3cr1. (D) YFP 
labeling efficiency of Tnfrsf11aCre+; Rosa26LSL-YFP in pMacs and F4/80+ macrophages in 
YS and whole embryo at E10.25, fetal liver HSCs (long term (LT, Lin-

Kit+Sca1+CD150+CD48-), short term (ST, Lin-Kit+Sca1+CD150-CD48-) and multipotent 
progenitor (MPP, Lin-Kit+Sca1+CD150-CD48+)) and tissue macrophages at E14.5 and 6 
weeks, and blood leukocytes (B-cells (CD19+), T-cells (CD19-Ly6G-CD115-CD3+), NK 
cells (CD19-Ly6G-CD115-CD3-NKp46+), neutrophils (CD19-Ly6G+) and Ly6Chi monocytes 
(CD19-CD115+Ly6G-Ly6Chi), and tissue CD11bhigh myeloid cells from 6 week-old mice. 
Circles represent individual mice. n=4 independent experiments. See Fig. S5. (E) 
Expression of GFP and Dectin-1 in Cx3cr1gfp/+ mice during development (E8.5-10.5) in 
Kit+ cells (CD45low, Kit+), pMacs and macrophages. sp: somite pairs. Data are 
representative of n=9 independent experiments. Biological replicates have been 
aggregated per cell type, time point and tissue. (F) Flow cytometry analysis in Cx3cr1+/- 
and Cx3cr1-/- of pMacs and macrophages from yolk sac (YS), head, and caudal at E9.5 
(upper panel) and liver, YS, head, and limbs at E10.5 (lower panel). Circles represent 
individual mice. Data are representative of n=6 independent experiments. sp: somite 
pairs.  
 
Fig. 3. Early specification of tissue-resident macrophages. (A, B) Scorecard 
analysis of all differentially upregulated genes in postnatal macrophages. The 
scorecards show the relative enrichment of each set of upregulated genes across each 
cell type (y-axis) and developmental time point (x-axis). See Methods for details of the 
score card. Numbers for each population indicate differentially up-regulated transcripts in 
postnatal (P2-P21) brain, liver, kidney, epidermis or lung macrophages when comparing 
one population vs. the others. See also Table S3. (C) Heatmap representing all 
differentially upregulated transcriptional regulators (2-fold change, adj. p-value<0.05, 
BH-correction) between postnatal macrophages from brain, liver, kidney, skin and lung 
macrophages, and their relative expression in tissue macrophages from E10.25 to P21. 
(D) Immunostaining with antibodies against Id1 or Id3 (red), F4/80 (cyan) and YFP 
(green) on cryosections from E10.25 Csf1rMeriCreMer; Rosa26LSL-YFP embryos (OH-TAM at 
E8.5) (upper panel). Nuclei are counterstained with DAPI (white). Scale bar represents 2 
µm. (E) tSNE plots of scRNA-seq data from CD45low/+ cells from E10.25 embryo showing 
co-expression of Id1, Id3, and Sall3. See Fig. S11. (F) PCA plot of scRNA-seq data of 
cells from cluster 2 (pMacs) with superimposed fetal tissue macrophage-specific 
signatures. See Fig. S11, Table S2 and methods.  
 
Fig. 4. Role of Id3 in development of Kupffer cells. (A) Flow cytometry analysis of 
pMacs and macrophages in yolk sac (YS) and liver from E10.25 Id3-/- and Id3+/- embryos. 
Circles represent individual mice. n=3 independent experiments. (B) Flow cytometry 
analysis of F4/80+ macrophages in liver, brain and kidney from E14.5 and E18.5 Id3-/- 
and Id3+/- mice. Circles represent individual mice. n=4 independent experiments. (C) 
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Immunostaining with antibodies against CD31 and F4/80 on liver cryosections from 
E14.5 Id3-/- and Id3+/-, and Tnfrsf11aCre-;Id3f/+ and Tnfrsf11aCre+; Id3f/f mice. The figure 
displays isovolume-rendered images. Bar graphs represent F4/80+ cells/mm2. Circles 
represent individual images. (D) Flow cytometry analysis of F4/80+ macrophages in liver, 
brain and kidney from 4 week-old Id3-/- and Id3+/- mice. Circles represent individual mice. 
n=2 independent experiments. (E) Immunostaining with antibodies against CD31 and 
F4/80 on liver cryosections from 2 week-old Tnfrsf11aCre+;Id3f/+ and Tnfrsf11aCre+; Id3f/f 

mice. The figure displays isovolume-rendered images. Bar graphs represent F4/80+ 
cells/mm2. Circles represent individual images. (F) Immunostaining with antibodies 
against Id3 (red), F4/80 (cyan) and YFP (green) on cryosections from on livers from 4 
week-old Csf1rMeriCreMer; Rosa26LSL-YFP (OH-TAM at E8.5) mice. Nuclei are counterstained 
with DAPI (white). Scale bar represents 5 um. (G) Scatterplot comparison of gene 
expression of 3 week-old Id3-/- and Id3+/- Kupffer cells. Both axes (in log2 scale) 
represent normalized gene expression values (average value from three Id3+/- and two 
Id3-/- replicates). Red circles mark the 3-fold cut-off in both directions in gene expression 
level. Top GO terms for genes enriched in either Id3+/- or Id3-/- are indicated. See also 
Fig. S12. (H) Graphic summary of the establishment of the core macrophage program 
and subsequent specification. 
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Supplemental figure legends 
 
Figure S1: Quality control and analysis of bulk RNA-seq. (A) Number of reliably 
detected transcripts (covered with a least 25 reads) in each library. The colored circles 
underneath indicate the batch (sequencing flow cell), time, cell type, and tissue of each 
sample with the color code as given below panel B. (B) Hierarchical clustering with 
Euclidean distance and complete linkage of all samples based on their RNA-seq gene 
expression profiles. The colored circles underneath the cluster dendrogram indicate the 
batch (sequencing flow cell), time, cell type, and tissue of each sample with the color 
code as given below. (C) Scorecard analysis of differentially up-regulated genes 
(DESeq2 Wald test, adjusted p-value<0.05, BH-correction) in early macrophages 
(E10.25, E10.5) in comparison to EMPs. The table shows the relative enrichment of 
differentially upregulated genes in macrophages across cell types and tissues (y-axis) 
and developmental time points (x-axis, from E9 to P21). See Methods for details of the 
scorecard. (D) Principal component analysis (PCA) plot of EMPs (red, E9-E10.25), 
pMacs (yellow, E9.5-E10.25) and macrophages  (purple, E10.25-E10.5) from the head, 
caudal, fetal liver (FL) and yolk sac (YS). The shape of each dot indicates the tissue 
the sample was taken from. The first and second principal component explain 18.9% 
and 11.1% of the entire variation in the data, respectively. 
 
Figure S2: Quality control and analysis of single-cell RNA-seq. (A) Workflow of the 
MARS-seq single cell data analysis. (B) Mean-variability plot shows average 
expression and dispersion for each gene. This analysis was used to determine highly 
variable genes (labeled by gene symbol). These 138 highly variable genes were used 
to perform a dimensionality reduction of the single-cell data by a principal component 
analysis. (C) The highest gene loadings in the first and second principal component 
from the PCA of 408 high quality cells, colored by batch association, showed even 
distribution of cells among the PCA plot based on the 138 most highly variable genes. 
(D) Heatmap of 138 highly variable genes among single-cell clusters as defined by 
DBScan clustering. (E) Optimal cluster number was identified by calculation of diverse 
indices for determining the best clustering scheme using the NbClust R package. (F) 
PCA plot of 408 single cells colored by cluster association. Clusters were defined by 
PCA + DBScan clustering. (G) Kinetic diagram shows the pseudotemporal ordering of 
single cells as determined by Monocle 2. Dots indicate individual cells and are colored 
according to the cluster association as in (F). Black line indicates the progression of 
single cells over developmental pseudotime. 
 
Figure S3 Expression of surface markers on EMP-derived cells during 
development. (A) Flow cytometry analysis of E10.25 Csf1rMeriCreMer; Rosa26LSL-YFP (OH-
TAM at E8.5) tissues showing expression of Il4ra, Il13ra1, Tnfr2, Ifngr, CD16.2, CD64, 
Tim4, and CD206 on YFP+ Kit+ progenitors (gray), pMacs (blue) and macrophages 
(orange). Histograms represent the fluorescence intensity for each antibody in each 
cell subset. Data are representative of n=4 independent experiments with 4-6 embryos 
per marker. (B,C) Flow cytometry analysis of Csf1rMeriCreMer; Rosa26LSL-YFP (OH-TAM at 
E8.5) liver and brain F4/80+ YFP+ cells from E14.5 embryos and adult mice (>8 week 
old) showing expression of Il4ra, Il13ra1, Tnfr2, Ifngr, Dectin-1, CD64, Tim4, and 
CD206 (purple). Gray histograms show the fluorescence intensity of the FMO controls. 
 
Figure S4   Expression of the ‘core’ macrophage program on EMP-derived cells. 
(A) Immunostaining on cryosections from E10.25 Csf1rMeriCreMer; Rosa26LSL-YFP embryos, 
pulse-labeled with OH-TAM at E8.5 with antibodies against YFP (green), Iba1 
(red/cyan), and CD206 (red), Ifngr (red), Tnfr2 (red), Dectin-1 (red), Trem2 (red), 
CD16/32 (red), Granulin (Grn, red), or F4/80 (cyan). Scale bars represent 10 µm. Data 
are representative of n=3 embryos for each marker. 
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(B) Whole mount immunostaining of E9.5 Csf1riCre; Rosa26LSL-YFP embryo labeled with 
antibodies against YFP (green), Iba1 (red), F4/80 (cyan) and DAPI (white). Scale bars 
represent 10 µm. Data are representative of n=3 embryos.	   (C) Immunostaining on 
cryosections from E10.25 Csf1rMeriCreMer; Rosa26LSL-YFP embryo liver, pulse-labeled with 
OH-TAM at E8.5 with antibodies against YFP (green), Dectin-1 (red) and Iba1 (cyan) 
(upper panel) or YFP (green), Kit (red) and F4/80 (cyan) (lower panel) Scale bars 
represent 15 µm. (D, E) Immunostaining on cryosection from E14.5 (D) and E18.5 (E) 
Csf1rMeriCreMer; Rosa26LSL-YFP mouse embryos stained with antibodies against YFP 
(green), Iba1 (red), and F4/80 (cyan). (F) Immunostaining on cryosection from E14.5 
Csf1rMeriCreMer; Rosa26LSL-YFP mouse embryo stained with antibodies against YFP 
(green), Granulin (Grn, red) and F4/80 (cyan). Scale bars represent 10 µm.	  
 
Figure S5 Analysis of Tnfrsf11aCre; Rosa26LSL-YFP mice. (A) Gating strategy for 
Tnfrsf11aCre; Rosa26LSL-YFP embryos in E10.25 YS pMacs (Kit- CD45+ F4/80- CD11blow 

Gr1- Ter119-; green) and macrophages (CD45+F4/80+CD11blo; blue) (upper panel), and 
in E14.5 fetal liver LT-HSCs (Lin-Kit+Sca1+CD150+CD48-; orange), ST-HSCs  (Lin-

Kit+Sca1+CD150-CD48-; blue) and MPPs (Lin-Kit+Sca1+CD150-CD48+; purple) (lower 
panel). Histograms represent YFP expression in Tnfrsf11aCre-; Rosa26LSL-YFP (grey) and 
Tnfrsf11aCre+; Rosa26LSL-YFP (color for cell type indicated in gating strategy). (B) 
Immunostaining on cryosection from E14.5 Tnfrsf11aCre; Rosa26LSL-YFP embryo, with 
antibodies against YFP (green), Iba1 (red) and F4/80 (cyan). Scale bars represent 10 
µm. 
 
Figure S6 Analysis of Cx3cr1-deficient mice. (A) Immunostaining on cryosection 
from E10.25 Cx3cr1gfp/+ embryo with antibodies against GFP (green), Iba1 (red) and 
F4/80 (cyan). (B, C, D) Flow cytometry analysis in Cx3cr1+/- and Cx3cr1-/- of F4/80+ 
macrophages from liver, brain, and limbs at E12.5 (B), liver, brain, limbs, and lung from 
at E14.5 (C) and liver, brain, limbs, lung, and epidermis from 12 week-old mice (D). 
Circles represent individual mice. Data are representative of n=7 independent 
experiments. 
 
Figure S7 Gene set enrichment analysis (GSEA) of cell type-specific expression 
patterns. (A) GSEA plots illustrating the relative enrichment of genes that we found 
statistically significantly upregulated (see Methods) in the comparison of macrophage 
vs. pMac (top row), macrophage vs. EMP (middle row), or pMac vs. EMP (bottom row). 
The black bars in the middle of each plot indicate the transcripts which are in each 
respective lists. The order in which transcripts were input into the analysis was defined 
by the relative expression change (logarithmic fold change) in macrophage vs. pMac 
(left), macrophage vs. EMP (center), or pMac vs. EMP (right), respectively. (B) The 
GSEA results from panel A are summarized here by the normalized enrichment score 
(NES) of each analysis. The colored squares indicate the two cell types compared with 
the color code as defined at the bottom right of this figure. Asterisks adjacent to bars 
indicate significance (FDR-corrected p-value); *: q≤0.05, **: q≤0.01, ***: q≤0.001. (C) 
Comparison of transcripts upregulated in macrophage vs. pMac, macrophage vs. EMP, 
and pMac vs. EMP, and the core macrophage signature extracted from Gautier et al. 
(2012). After translating gene denominators to Ensembl transcript IDs, Gautier's list 
matches 179 transcripts, only 27 of which occur in one of the lists of upregulated genes 
in this study. (D) GSEA results of Gautier's core macrophage signature genes in the 
comparisons of macrophage vs. pMac, macrophage vs. EMP, or pMac vs. EMP from 
this study (same gene rankings used in panels A and B). In all three comparisons, the 
core macrophage signature is enriched significantly (q≤0.01). 
 
Figure S8 LOLA enrichment analysis and enhancer regions. (A) Results of a LOLA 
(1) enrichment analysis of promoter-adjacentl regions (TSS +/- 20kb) of upregulated 
genes during transition from EMPs to pMacs (upper panel) or EMPs to early 
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macrophages (E10.25-E10.5; lower panel). Each dot represents one single ChIP-seq 
experiment with the size relative to the quantity of enrichment (log odds ratio) and 
colors indicating the cell type used in the respective experiment. The key below the 
plots denominates the color coding. The numbers (“x/y”) given behind the cell type 
specify the number of enriched (x) out of all available datasets (y) from the respective 
cell type. Shown are all transcription factors of the genomic binding locations, which 
are significantly enriched (adjusted p-value <0.001, Benjamini Yekutieli correction) in at 
least one dataset in either comparison. All transcription factors shown are expressed in 
at least one sample examined, with the exception of Gcgr and Maff (greyed out and 
marked with an asterisk). (B) Heat map representation of the expression of the 
transcription factors shown in (A) in EMPs, pMacs and early macrophages (E10.25-
E10.5) (C) Genome browser tracks showing ChIP-seq signals for the indicated 
transcription factors at the Emr1, Cx3cr1, Mrc1, Thbs1, Gata1 and Myod1 loci. The 
tracks display ChIP-seq data from macrophage populations, except for Maf (T cells), 
and Irf8 (dendritic cells). 
 
Figure S9 Coordinated changes of gene expression identified during the 
specification of tissue-resident macrophages. (A) Top panel shows an 
unsupervised, low-dimensional projection via principal component analysis of the RNA-
seq data in this study. The color of each dot indicates the tissue the sample was taken 
from. Bottom panels show only the macrophage datasets from one tissue at a time 
(gray dots). The mean of the coordinates at each time point was calculated and 
indicated as a colored dot (with the same color code as above). Consecutive time 
points were then connected with arrows to visualize the differentiation trajectory 
described by the transcriptional profiles of these samples. (B) Line plots illustrating 
average expression of tissue-specific gene signatures in macrophages over time. Each 
panel corresponds to one list of differentially upregulated tissue-specific genes (Table 
S3) and each line to the average of all macrophage samples of one tissue at the given 
time. Shaded areas indicate +/- standard deviation. (C) Heatmap showing the 
expression levels of all RNA-seq datasets across all transcript differentially upregulated 
in any tissue in either stage (early embryonic, fetal, postnatal). Expression values have 
been scaled as z-scores per row, resulting in a color scheme in which red values 
represent highly expressed and blue values represent lowly expressed transcripts. 
Hierarchical Ward clustering with Euclidean distance was used to arrange the samples 
and genes and the resulting dendrogram was cut at equal height into seven (column-
wise) or ten (row-wise) clusters to highlight the strongest clusters of genes and 
samples more clearly. The color bars on top of the heatmap indicate the time, cell type, 
and tissue of each sample.   
 
Figure S10 Gene set enrichment analysis (GSEA) of tissue-specific expression 
patterns in adult macrophages. (A) GSEA plots illustrating the relative enrichment of 
genes that were found to be statistically significantly upregulated (see Methods) in the 
comparison to Langerhans cells, microglia, kidney macrophages, Kupffer cells, and 
alveolar macrophages (from left to right) in comparison to the respective other adult 
macrophage populations. The black bars in the middle of each plot indicate the 
transcripts, which are in each respective lists. The order in which transcripts were input 
into the analysis was defined by the relative expression change (logarithmic fold 
change) in macrophages in the corresponding tissue (e.g. head/brain for microglia) 
compared to other macrophages at the same developmental stage (from top to bottom: 
early, fetal, or postnatal). The colored hashes (#) beneath each plot link to the bars in 
panel B. (B) The GSEA results from (A) are summarized here by the normalized 
enrichment score (NES) of each analysis. The colored squares underneath the bar 
plots indicate the tissue, cell type, and developmental stage of the sample for which 
enrichment is shown, following the color code as used in panel C. The bars highlighted 
in color correspond to the plots shown in panel A. Additionally, these and other bars 
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from samples from a tissue related to the signature at hand are indicated by shading. 
Asterisks adjacent to bars indicate significance (FDR-corrected p-value); *: q≤0.05, **: 
q≤0.01, ***: q≤0.001. (C) GSEA results against externally defined gene signatures 
extracted from Gautier et al. (2012), Gorgani et al. (2008), and Lavin et al. (2014) (1-3). 
The same color code, shading, and annotations are used as in panel B. (D) 
Hierarchical clustering of differentially up-regulated genes (2-fold change, adj. P-value 
< 0.05, BH-correction) in post-natal (P2-P21) brain, liver, kidney, epidermis or lung 
macrophages comparing one population vs. the others (see also Table S3). Each 
sample represents the mean of at least two biological replicates and two technical 
replicates, except for E14.5 liver macrophages and P8 and P21 lung macrophages, 
which consist of one biological replicate and two technical replicates. (E) Heatmap 
representation of the expression of Id1, Id3, Sall1, and Sall3 in EMPs and pMacs from 
bulk RNA-seq data. 
 
Figure S11 scRNA-seq analysis of specification of tissue-resident macrophages. 
(A) Workflow for overlaying transcription factor co-expression and tissue macrophage-
specific signatures onto the tSNE plots. (B) Normalized expression of Kit, Stab1, Maf, 
and Cx3cr1 within EMPs, pMacs, and macrophages. (C) Normalized expression of Id1, 
Id3, and Sall3 within EMPs, pMacs, and macrophages. (D) tSNE plots showing 
expression of Id1, Id3, and Sall3. (E) Heatmap depicting enrichment of tissue 
macrophage-specific signatures as in Fig. 3F or differentiation signatures as in Fig. 1E 
in pMacs on gene clusters defined by multimodal gene expression with subsequent 
hierarchical clustering of scRNA-seq data. 
 
Figure S12 Role of Id3 in Kupffer cell development (A) Relative expression of Id3 
and Nr3h1 transcript by qRT-PCR (normalized to GAPDH) in sorted Kupffer cells and 
hepatocytes of C57BL/6 mice n=3. (B) Immunostaining with antibodies against YFP 
(green), ID3 (red) and F4/80 (cyan) on cryosection from adult (4 week-old) liver (upper 
panel) or brain (lower panel) from a pulse labeled Csf1rMeriCreMer; Rosa26LSL-YFP mouse 
(OH-TAM at E8.5). Nuclei were counterstained with DAPI (white). Scale bar represents 
10 µm. (C) Immunostaining with antibodies against CD31 and F4/80 on liver 
cryosections from 4 week-old Id3-/- and Id3+/- mice. The figure displays isovolume-
rendered images. Scale bars represent 150 µm for the overview of the adult tissue and 
50 µm for insets. Data are representative of 5 adult mice. (D) CD31+ area quantification 
on liver sections from Id3+/- (n=3) and Id3-/- (n=4) 4 week-old mice (left panels) or from 
Tnfrsf11aCre+; Id3+/f (n=6) and Tnfrsf11aCre+; Id3f/f (n=6) 2 week-old mice (right panels). 
(E) Immunostaining with antibodies against F4/80 (green) phospho-histone 3 (PHis3, 
red) and DAPI (gray) on liver cryosections from 4 week-old Id3-/- and Id3+/- mice. Graph 
shows the PHis3+ cells percentage of total F4/80+ cells. Scale bar represents 10 µm. 
Data are representative of 5 mice per genotype. Each dot represents the mean of 
PHis3+ cells (in %) of total F4/80+ found in 5 sampling areas (830 µm2) for each 
individual liver. (F) Unsupervised hierarchical clustering on whole transcriptome from 
Id3+/- and Id3-/- Kupffer cells (Distance metric: Euclidian, linkage rule: Ward’s, number 
of genes: 18882) (G) Significantly enriched Gene Ontology (GO) terms identified for 2-
fold up-regulated (left table) or down-regulated (right table) genes in Id3-/- vs. Id3+/- 
Kupffer cells enriched by a t-test (P<0.05; FDR<0.05). GO analysis was performed 
using GeneSpring. GO terms are depicted and raked by corrected P-value (FDR false 
discovery rate corrected for multiple testing). 
 
Figure S13 Heat map representation of the normalized counts (log2) reads of 
S100a mRNA found in our dataset. 
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Supplemental tables 
 
Supplemental Table S1: Genes differentially regulated in pMacs and macrophages 
(E10.25-E10.5) in bulk RNA-seq experiments 
 
Supplemental Table S2: Gene signatures derived from bulk RNA-seq experiments 
used for single cell RNA-seq analysis 
 
Supplemental Table S3: Genes differentially regulated in postnatal macrophages (P2-
P21) in bulk RNA-seq experiments 
 
Supplemental Table S4: antibodies used for Flow cytometry 
 
Supplemental Table S5: complete bulk RNA-seq data http://www.biomedical-
sequencing.at/bocklab/fhalbrit/macro/data/EC7D8Y7EL5QDMYIOL7GW2SECRWZUN
1CWPQCUSJ47FFRO1WHD.zip 
 
Supplemental Table S6: RNA-seq analysis on Kupffer cells from Id3KO and control 
littermates 
 
Supplemental Materials and Methods 
 
Animals. Csf1rMeriCreMer, Csf1riCre, Rosa26YFP-LSL reporter mice (4) and Cx3cr1gfp/+ Rag2-/- 
Il2rg-/- (5) have been previously described. Tnfrsf11aCre mice were kindly provided by Dr 
Y. Kobayashi (6), Id3-/-; Id1fl/fl  and Id3f/f mice were kindly provided by R. Benezra (7-9). 
Embryonic development was estimated as previously (4) considering the day of vaginal 
plug formation as 0.5 days post-coitum (dpc), and staged by developmental criteria. 
E9: 20-25sp, E9.5: 26-29sp, E10.25: 30-35sp, E10.5: 36-44sp. All animal procedures 
were performed in adherence to our project licence issued by the United Kingdom 
Home Office under the Animals (Scientific Procedures) Act 1986 and by the 
Institutional Review Board (IACUC 15-04-006) from MSKCC. All mice were maintained 
under SPF conditions. 
 
Genotyping. PCR genotyping of Csf1riCre (10) Csf1rMeriCreMer (5), Cx3cr1gfp/+ Id3-/-; Id1fl/fl 

(7) and Tnfrsf11aCre (6) mice was performed according to protocols described 
previously. Cx3cr1gfp/+ genotyping was performed with following primers: Cx3cr1 F 5’-
CCC AGA CAC TCG TTG TCC TT-3’, Cx3cr1 R 5’-GTC TTC ACG TTC GGT CTG GT 
and Cx3cr1 R mut 5’CTC CCC CTG AAC CTG AAA C-3’ 
 
Pulse labelling of Csf1rMeriCreMer; Rosa26LSL-YFP. For genetic cell labelling to perform 
immunofluorescence we crossed tamoxifen-inducible Csf1rMeriCreMer transgenic mouse 
strains with Rosa26LSL-YFP/LSL-YFP reporter mice. In Csf1rMeriCreMer; Rosa26LSL-YFP embryos 
recombination was induced by single injection at E8.5 of 75 mg per g (body weight) of 
4-hydroxytamoxifen (OH-TAM, Sigma) into pregnant females. The OH-TAM was 
supplemented with 37.5 mg per g (body weight) progesterone (Sigma) to counteract 
the mixed oestrogen agonist effects of tamoxifen, which can result in fetal abortions. 
 
Processing of tissues for flow cytometry and cell sorting. Pregnant females were 
killed by cervical dislocation or by exposure to CO2. Embryos ranging from embryonic 
day (E) 9 to E18.5 were removed from the uterus, washed in 4ºC phosphate-buffered 
saline (PBS, Invitrogen) and dissected under a Leica M80 microscope. Yolk sacs (YS) 
were harvested from embryos between E9 and E10.5. To obtain single-cell 
suspensions for FACS sorting, tissues were included in cold PBS and mechanically 
disrupted under a 100um filter. Postnatal tissues were collected following the same 

http://www.biomedical-sequencing.at/bocklab/fhalbrit/macro/data/EC7D8Y7EL5QDMYIOL7GW2SECRWZUN1CWPQCUSJ47FFRO1WHD.zip
http://www.biomedical-sequencing.at/bocklab/fhalbrit/macro/data/EC7D8Y7EL5QDMYIOL7GW2SECRWZUN1CWPQCUSJ47FFRO1WHD.zip
http://www.biomedical-sequencing.at/bocklab/fhalbrit/macro/data/EC7D8Y7EL5QDMYIOL7GW2SECRWZUN1CWPQCUSJ47FFRO1WHD.zip
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procedure. For collection of Langerhans cells, epidermal sheets (from E18.5 to P21) 
were separated from the dermis after incubation for 45 min at RT in 4.8mg/ml of 
dispase (Invitrogen), 3% fetal calf serum (FCS, Invitrogen) and 1uM of flavopiridol 
(Sigma). The epidermis was further digested for 30min at RT in PBS containing 2 
mg/ml of collagenase D (Roche), 200U/ml DNase I (Sigma), 4.8 mg/ml of dispase 
(Invitrogen), 3% FCS (Invitrogen) and 1uM of flavopiridol (Sigma) followed by 
mechanical disruption under a 100um filter to obtain a single cell suspension. 
For blood phenotyping, mice were anaesthetized and blood was collected by cardiac 
puncture. For flow cytometry experiments, organs were incubated in PBS containing 
1mg/ml collagenase D (Roche), 100U/ml DNase I (Sigma), 2.4mg/ml of dispase 
(Invitrogen) and 3% FCS (Invitrogen) at 37ºC for 30 min prior to mechanical disruption. 
Epidermal sheet were obtained as previously described (4). For embryonic tissue 
incubation time at 37ºC was reduced to 20 min. Cell suspensions were centrifuged at 
320g for 7 min, resuspended in FACS buffer (PBS, 0.5% BSA and 2 mm EDTA) 
containing purified anti-CD16/32 (FccRIII/II) (1:100 dilution) and incubated for 15min at 
4ºC. Samples were immunostained with antibodies mixes for 30 min at 4ºC. The full list 
of antibodies used can be found in Table S4. 
 
Gating strategy and cell sorting for bulk sequencing. Cell sorting was performed 
using an Aria II BD cell sorter. Single live cells were gated on the basis of DAPI 
exclusion and identified using side (SSC-A) and forward scatter (FSC-A) gating 
followed by doublet exclusion using forward scatter width (FSC-W) against FSC-A. 
EMPs were identified after gating on Kit+CD45lo cells based on AA4.1 expression. 
pMacs were identified after gating on  Kit-CD45+ based on CD11b expression and no 
expression of F4/80. Additionally, Gr1+ or Ter119+ cells were excluded from the F4/80-

CD11b+ gate. Macrophage populations were identified after gating on CD45 based on 
expression of F4/80 and CD11b. 100 cells for each sample were directly sorted into a 
96 well plate (Biorad) in 4ul of H2O containing 0.2% of triton TXT (Sigma) and 0.8U/ul 
of RNAse inhibitor (Clontech), and processed as indicated below (Generation of ‘bulk’ 
transcriptomes from candidate EMP, pMac, and macrophage populations  from E9 to 
P21).  
 
Gating strategy and cell sorting for single cell sequencing. Cell sorting was 
performed as above, but after doublet exclusion all CD45low/+ single cells from a E10.25 
(30-34sp) embryo proper were sorted into 384-well plates filled with 2 µl lysis buffer 
(Triton-X 0.2% (Sigma) in molecular biology grade H2O (Sigma) supplemented with 0.4 
U/µl protein-based RNase inhibitor (Takara) and barcoded poly-T primers, and 
processed as described below (Generation of single cell transcriptomes).  
 
Cytospin. E10.25 embryos were staged by somite counting. E10.25 yolk sac, head, 
liver and limbs and E12.5 head, liver and limbs were dissected. Processing and 
labelling of cells was performed as described above. Cells were collected into FCS. 
Cytospin preparations were stained with May-Grunwald-Giemsa method for 
morphological inspection. Cytospin preparations were performed using a Cytospin 3 
(Thermo Shandon) by centrifuging sorted cells at 800 rpm for 10 min (low 
acceleration). Slides were air-dried for at least 30 min, and fixed for 5 min in methanol. 
Methanol-fixed cytospin preparations were manually stained in 50 % May-Grunwald 
solution for 5 min, 14 % Giemsa for 15 min, washed with Sorensons buffered distilled 
water (pH 6.8) for 5 min and rinsed with Sorensons buffered distilled water (pH 6.8). 
After air-drying, slides were mounted with Entellan New (Merck) and representative 
pictures were taken using an Axio Lab.A1 microscope (Zeiss) under a N-Achroplan 
100x/01.25 objective.  
 
Immunofluorescence, imaging, analysis and illustrations. For whole mount 
immunofluorescence E9.5 embryos were processed as described elsewhere (11). For 
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cryosections E10.25 Embryos were fixed for 4 hours in 4% formaldehyde (Sigma) 
under agitation and >E10.25 embryos were fixed overnight. After fixation, embryos 
were incubated overnight in 30% sucrose and embedded in OCT compound (Sakura 
Finetek). Cryoblocks were cut at a thickness of 10 -12µm and then blocked with PBS 
containing 5% normal goat serum (Invitrogen); 1 % BSA (w/v); 0.3% Triton X-100 for 1 
hour at room temperature. Samples were incubated overnight at 4˚C with rat anti-
mouse F4/80 (1:200, Biorad), rabbit anti-mouse Iba1 (1:200; Wako), chicken anti-GFP 
for YFP detection (1:500, Invitrogen), rat anti-mouse Dectin-1 (1:200, Biorad), anti-
Granulin (1:200, abcam), rat anti-mouse CD206 (1:200, Biorad), armenian hamster 
anti-mouse PECAM-1 (1:300, Thermo Scientific), rabbit anti-mouse/human ID3 (1:500, 
Biocheck), rabbit anti-mouse ID1 (1:500, Biocheck), rat anti-mouse CD16/CD32 (BD 
Biosciences), goat anti-mouse Trem2 (1:200, Abcam), armenian hamster anti-mouse 
CD119 (1:200, Clone 2E2, eBioscience), armenian hamster anti-mouse CD120b 
(1:200, clone 55R-286, Biolegend). Secondary antibodies used were anti-rabbit Cy3 
(1:500; Invitrogen), anti-chicken Alexa Fluor 488 (1:500; Invitrogen), anti-rat Alexa 
Fluor 555 (1:500; Invitrogen), anti-rat Alexa Fluor 488 (1:500; Invitrogen), anti-rat Alexa 
Fluor 647 (1:500; Invitrogen), anti-goat Alexa Fluor 568 and anti-armenian hamster 
Dylight 649 (Jackson ImmunoResearch Laboratories). Samples were then mounted 
with Fluoromount mounting medium with DAPI (eBiosciences) and visualized using a 
LSM880 Zeiss microscope with 20x/0.5 (dry), performing a tile scan and Z-stack on 
whole embryos or tissues. Image analysis and cell quantification was performed using 
Imaris (Bitplane) software. To determine the CD31+ area in Id3+/- and Id3-/- liver 
sections, maximum intensity Z-projections pictures were converted into binary images 
and the CD31+ area was measured using Image J (NIH, Bethesda, MD, USA) (12). 
Results were normalized per mm2 of tissue. Illustrations were created by adapting 
templates from Servier Medical Arts (http://www.servier.com/Powerpoint-image-bank, 
licensed under a Creative Commons Attribution 3.0 Unported License). 
 
 
qRT-PCR on Kupffer cells and hepatocytes. Cells were sorted as described above. 
Hepatocytes were enriched by centrifugation of the whole liver cell suspension at 50 g 
for 3 min (Sorvall Legend XTR centrifuge). Supernatant was taken for further staining 
of macrophages (CD45+, CD11blo, F4/80+). Hepatocytes were sorted using the FSC-A 
and SSC-A gate with subsequent exclusion of doublets and CD45+ cells. Cells were 
sorted into RNA lysis buffer and RNA extraction was performed as per manufacturers 
protocol (Macherey-Nagel). cDNA was synthesized using the QuantiTect Reverse 
Transcription Kit (Qiagen) as per manufacturers protocol. qRT-PCR was performed on 
a QuantStudio 6 Flex using TaqMan Fast Advanced Master Mix (applied biosystems) 
and TaqMan probes for Id3 (Mm00492575_m1), Nr1h3 (Mm00443451_m1), and 
GAPDH (Mm99999915_g1) (Life Technology). 
 
Statistics analysis (apart from RNA-seq experiments). Unpaired students t-tests 
were used to assess statistical differences between measurements where populations 
were distributed normally. Where populations were not normally distributed, Mann-
Whitney tests were used to assess statistical differences. Normal distribution was 
assessed using D’Agostino and Pearson omnibus normality test. All statistics were 
performed on GraphPad Prism 6 (GraphPad Software). 
 
RNA sequencing of Id3+/- and Id3-/- Kupffer cells. Kupffer cells were sorted into Trizol 
as described above. RNA from sorted cells was extracted using RNeasy mini kit 
(Qiagen) according to instructions provided by the manufacturer. After ribogreen 
quantification and quality control of Agilent BioAnalyzer, 400pg of total RNA underwent 
amplification (12 cycles) using the SMART-seq V4 (Clonetech) ultra low input RNA kit 
for sequencing. 10 ng of amplified cDNA was used to prepare Illumina hiseq libraries 
with the Kapa DNA library preparation chemistry (Kapa Biosystems) using 8 cycles of 
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PCR. Samples were barcoded and run on a Hiseq 2500 1T in a 50bp/50bp Paired end 
run, using the TruSeq SBS Kit v3 (Illumina).  An average of 54 million paired reads 
were generated per sample and the percent of mRNA bases was closed to 77% on 
average.The output data (FASTQ files) were mapped to the target genome using the 
rnaStar aligner (13) that maps reads genomically and resolves reads across splice 
junctions. 2 pass mapping method was used, outlined in Engstrom et al.(14) in which 
the reads are mapped twice. The first mapping pass uses a list of known annotated 
junctions from Ensemble. Novel junctions found in the first pass are then added to the 
known junctions and a second mapping pass is done (on the second pass 
the RemoveNoncanoncial flag is used). After mapping we post process the output SAM 
files using the PICARD tools to: add read groups, AddOrReplaceReadGroups which in 
additional sorts the file and coverts it to the compressed BAM format. We then 
compute the expression count matrix from the mapped reads using HTSeq and one of 
several possible gene model databases. The raw count matrix generated by HTSeq 
are then processed using the R/Bioconductor package DESeq, which was used to both 
normalize the full dataset and analyze differential expression between sample groups. 
Gene Ontology analysis was performed using the GO analysis function in GeneSpring 
GX 13.0 (Agilent), with the p-value calculated using a hypergeometric test with 
Benjamini–Yekutieli correction. For that, genes with a fold change difference of ± 2 
between Id3+/- and Id3-/- Kupffer cells were selected. Significantly regulated genes (t-
test p< 0.05; FDR <0.05) from this selection were grouped into gene ontology (GO) 
terms. 
 
Generation of ‘bulk’ transcriptomes from candidate EMP, pMac, and macrophage 
populations  from E9 to P21 
 
RNA Isolation and Library Construction. cDNA synthesis and enrichment was 
performed following the Smart-seq2 protocol as described (15, 16). ERCC spike-in 
RNA (Ambion) was added to the lysis buffer in a final dilution of 1:1,000,000. After the 
cDNA was synthesized and amplified from single cells using 18 cycles, quantitative 
PCR was performed with GoTaq-PCR master mix (Promega) on a C1000 Touch 
Thermal Cycler qPCR instrument (Bio-Rad) to test for house keeping gene expression. 
Library preparation was conducted on 1ng of cDNA using the Nextera XT library 
preparation kit (Illumina) as described (16). Sequencing was performed by the 
Biomedical Sequencing Facility at CeMM using a 50bp single-read setup on the 
Illumina HiSeq 2500 platform. 
 
RNA-seq Analysis. We first trimmed off sequencing adapter from the reads generated, 
and then aligned the reads using Bowtie v 1.1.1, (17) parameters: -q -p 6 -a -m 100 --
minins 0 --maxins 5000 --fr --sam --chunkmbs 200) to the cDNA reference 
transcriptome (mm10 cDNA sequences from Ensembl). For genome browser track 
visualization, we generated a second alignment with Tophat2 (18) (v 2.0.13, 
parameters: --b2-L 15 --library-type fr-unstranded --mate-inner-dist 150 --max-multihits 
100 --no-coverage-search --GTF) against the reference genome (mm10). Next, we 
removed duplicate reads before quantifying transcript levels with BitSeq (19) (v 1.12.0). 
The raw transcript counts were loaded into R and processed further. At this stage, we 
removed samples with a substandard quality, that is, all samples that had less than 2 
million reads, less than 33% of reads aligned, or less than 5,000 transcripts detected 
(with >= 25 reads). 20 out of 178 datasets failed these criteria (11.2%). Of the 
remaining datasets, we merged technical replicates creating 93 unique biological 
samples. We took forward only transcripts that were detected reliably (>=50 reads) in 
at least 4 samples (n = 37,521). For statistical analysis, we used raw read counts as 
input for DESeq2 (20), factoring in the flowcell identifier as a covariate to reduce the 
effect of technical variation. To identify genes of particular interest to the development 
of tissue-resident macrophages over time and in different tissues, we performed two 
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types of comparisons: (a) Cell type-specific: Pairwise comparisons (Wald test) between 
EMPs, pre-macrophages, and macrophages (up to E10.5) independent of their tissue 
of origin (treating time and tissue as covariates). (b) Tissue-specific: Pairwise 
comparisons (Wald test) between macrophages from all tissues stratified and stage 
(post-natal). We considered genes with an FDR-corrected p-value <= 0.05 as 
differentially expressed. For visualization and illustration purposes (PCA, 
supplementary tables, heatmaps), we used values adjusted by variance stabilizing 
transformation from DESeq2 in which batch-effects had been corrected for with 
ComBat (21). 
 
Evaluation of lists of differentially expressed genes from the RNAseq data. We 
bioinformatically investigated the differentially expressed transcripts (Table S5) from 
our statistical comparisons in several ways: To identify transcription factors specifically 
regulating each set of transcripts, we use LOLA(22) (v 0.99.4) together with its core 
database of ChIP-seq binding peaks from CODEX (23) to identify enrichment of 
experimentally-derived transcription factor binding  locations in a window around the 
promoter regions (TSS +/- 20kb) of differentially expressed transcripts. We corrected 
for multiple testing using the Benjamini & Yekutieli method. To visualize and 
summarize the expression patterns of many genes (lists of differentially expressed 
genes) in many different conditions (different tissues at different time points) and 
across replicates, we sought to use an adaptation of lineage scorecards(24). Briefly, 
we considered each list of differentially upregulated genes as a set of marker genes 
and determined the relative enrichment of these marker sets in each individual 
condition (tissue by cell type by time) in comparison to all other datasets using a 
modified version of parametric gene set enrichment analysis in R (package: PGSEA). 
We also used gene set enrichment analysis (GSEA) to test for the relative 
overrepresentation of gene signatures in sorted gene lists. To this end, we extracted 
lists of genes sorted by logarithmic fold change between the mean expression levels in 
any one tissue Mac, pMac, or EMP sample stratified by stage (early = E9 - E10.5, fetal 
= E12.5 - E18.5, postnatal = P2 - P21) compared to all other samples at the same 
stage. Additionally, we extracted lists of all genes we found differentially upregulated in 
any tissue-specific signature, cell type-specific signature, or in lists of genes extracted 
from the publications of Gorgani et al. (2008), Gautier et al. (2012), and Lavin et al. 
(2014) (1-3). External gene lists were translated to Ensembl Transcript IDs using 
g:profiler (25). Both sets of data were loaded into and analyzed using the GSEA tool 
(26) and the results read and summarized using the metaGSEA R library. A subset of 
genes was investigated manually in the UCSC genome browser from our track hub 
(http://genome.ucsc.edu/cgi-bin/hgTracks?db=mm10&position=chr2:91092057-
91120496&hubUrl=http://www.biomedical-
sequencing.at/bocklab/papers/mass2016/tracks/hub.txt).. We also incorporated ChIP-
seq binding profiles (bigWig) for factors identified in the LOLA analysis from the 
CODEX database. Heatmaps were generated using GeneSpring GX 13.0 (Agilent). All 
other analyses and plotting was performed in R. 
 
Generation of single cell transcriptomes 
 
For single-cell RNA sequencing the MARS-Seq approach described by Jaitin et al. (27) 
was applied using the Biomek FXP system (Beckman Coulter). In brief, single cells 
were sorted into each well of 384-well plates filled with 2 µl lysis buffer (Triton-X 0.2% 
(Sigma) in molecular biology grade H2O (Sigma) supplemented with 0.4 U/µl protein-
based RNase inhibitor (Takara)) and barcoded poly-T primers (400 nM (IDT); for 
barcode details see Jaitin et al., 2014). Samples were pre-incubated (3 min at 80°), 
reverse transcriptase mix (10 mM DTT (Invitrogen), 4 mM dNTPs (NEB), 2.5 U/µl 
Superscript III RT enzyme (Invitrogen) in 50 mM Tris-HCl (pH 8.3; Sigma), 75 mM KCl 
(Sigma), 3 mM MgCl2 (Sigma), ERCC RNA Spike-In mix (Life Technologies) at 
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1:80x107 dilution per cell) was added to each well and mRNA was reverse transcribed 
to cDNA (2 min at 42°C, 50 min at 50°C, 5 min at 85°C). Excess primers were digested 
(Exo I (NEB); 37°C for 30 min then 10 min at 80°C) followed by a 1.2 x SPRI bead 
(Beckman Coulter) cleanup, samples were pooled and second strands synthesized 
(second strand synthesis kit (NEB); 2.5 h at 16°C) followed by a 1.4 x SPRI bead 
(Beckman Coulter) cleanup. Samples were linearly amplified by T7-promoter guided in 
vitro transcription (T7 High Yield RNA polymerase IVT kit (NEB); 37°C for 12h). DNA 
templates were digested (Turbo DNase I (Ambion); 15 min at 37°C) followed by a 1.2 x 
SPRI bead (Beckman Coulter) cleanup and the RNA was fragmented (Zn2+ RNA 
fragmentation solution (Ambion); 1.5 min at 70°C) followed by a 2 x SPRI bead 
(Beckman Coulter) cleanup. Barcoded ssDNA adapters (IDT; for barcode details see 
Jaitin et al., 2014, (27)) were ligated to the fragmented RNA (9.5% DMSO (Sigma), 1 
mM ATP, 20% PEG8000 and 1 U/µl T4 RNA ligase I (NEB) in 50 mM Tris HCl pH7.5 
(Sigma), 10 mM MgCl2 and 1mM DTT; 22°C for 2 h) and a second RT reaction (Affinity 
Script RT buffer, 10 mM DTT, 4 mM dNTP, 2.5 U/µl Affinity Script RT enzyme (Agilent); 
2 min at 42°C, 45 min at 50°C, 5 min at 85°C) was performed followed by a 1.5 x SPRI 
bead (Beckman Coulter) cleanup. Final libraries were generated by subsequent nested 
PCR reaction (0.5 µM of each Illumina primer (IDT; for primers details see Jaitin et al., 
2014) and KAPA HiFi HotStart ready mix (Kapa Biosystems) for 15 cycles according to 
manufacturer’s protocol followed by a 0.7 x SPRI bead (Beckman Coulter) cleanup. 
Library quantity and quality were assessed using the Agilent 2200 Tapestation system 
and libraries were subjected to next generation sequencing using an Illumina 
HiSeq1500 instrument (PE with no index; read 1: 61 bases (3 bases random 
nucleotides, 4 bases pool barcode, 53 bases specific sequence), read 2: 13 bases (6 
bases cell barcode, 6 bases unique molecular identifier)). 
 
Pre-processing, quality assessment and control of single cell transcriptome data. From 
sequenced data, pool barcodes, cell specific tags and Unique molecular identifiers 
(UMI) were extracted (576 cells sequenced). Subsequently, sequencing reads with 
ambiguous plate/cell-specific tags or UMI sequence with low quality (Phred < 27) and 
reads which map to E. coli were eliminated using Bowtie with parameters “-M 1 -t --
best --chunkmbs 64 –strata”. Next, fastq files were demultiplexed using the 
fastx_barcode_splitter from the fastx_toolkit and R1 reads (after trimming of pool 
barcode sequences) were mapped to the mouse mm10 & ERCC pseudo genome 
assembly using Bowtie “-m 1 -t --best --chunkmbs 64 –strata”. 
Valid reads were then counted using unique molecular identifiers if they mapped to the 
exon based gene model derived from Ensembl’s biomart, mm10. Following this, a gene 
expression matrix was generated containing the number of unique UMIs associated 
with valid reads for every cell and every gene. Additionally, UMI sequencing errors 
were corrected for and filtered as described in (27).  
 
Filtering single cell transcriptome data. In order to avoid biases introduced by low 
quality data we performed the following filtering of single cell data. Removal of cells 
with a ratio of mitochondrial versus endogenous genes exceeding 0.15 and cells with 
less than 320 molecule counts or less than 150 unique genes were removed from the 
analysis. Prior to analysis expression tables were filtered for mitochondrial, ribosomal 
and predicted genes to reduce noise.  
 
Analysis of MARS-seq single cell transcriptome data. Analysis of the normalized and 
filtered single cell gene expression data (8657 genes across 408 single cell 
transcriptomes used in the final expression table) was done using several functions of 
the SEURAT single cell analysis package (28) and Monocle 2 (29). First, highly 
variable genes were determined as genes exceeding the dispersion threshold of 0.75. 
To infer the structure of the gene expression data a PCA was performed on the basis 
of highly variable genes. Following t-distributed stochastic neighbor embedding (tSNE) 
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DBScan clustering was performed to identify clusters of cells. The optimal number of 
clusters was identified by calculating several cluster indices by the NbClust R 
package(30). Relative expression for a cell was calculated as gene expression of a 
gene/gene set in relation to the total molecule counts in this cell. To identify clusters 
within the MARS-seq data the relative gene expression profiles of cell type specific 
gene signatures were overlaid to the tSNE plots. Pseudotime analysis was performed 
by the Monocle 2 algorithm by genes exceeding the average expression cutoff of 1 
while having an empirical dispersion higher than 1. To analyze expression of single 
genes, relative expression was overlaid onto the tSNA plots or visualized as dot plots. 
 
Generation of cell signatures for analysis of single-cell data. In order to unambiguously 
identify cell state specific genes for EMPs, pMacs and early macrophages we 
generated exclusive gene signatures. Here, differentially expressed (DE) genes were 
identified by a 1-way ANOVA model (|FC| > 1.4, FDR-adjusted p-value < 0.05 (31)) 
between EMPs (E10.25 yolk sac and fetal liver), pMacs (E10.25 yolk sac, fetal liver, 
head and limbs) and early macrophages (E10.25 and E10.5 yolk sac, fetal liver, head 
and limbs). The non-overlapping DE genes between these three contrasts were 
chosen as exclusive gene signatures for further analysis.  
 
Generation of tissue signatures for analysis of single-cell data. To identify genes that 
are upregulated in tissue macrophages in relation to early macrophages a 1-way 
ANOVA model (|FC| > 1.5, FDR-adjusted p-value < 0.05 (31)) was calculated. 
Upregulated non-overlapping DE genes between early macrophages (E10.25 and 
E10.5, fetal liver, head and limbs/skin) vs brain macrophages (E14.5 and E18.5 brain), 
liver macrophages (E14.5 and E18.5 liver) or limb/skin macrophages (E14.5 and E18.5 
limb/skin) were used as tissue macrophage specific gene signatures. Furthermore, a 
common early macrophage signature was defined as being upregulated in early 
macrophages (E10.25 and E10.5 fetal liver, head and limbs) vs. all other late tissue 
macrophages (E14.5 and E18.5 liver, head and limbs/skin). We assessed enrichment 
of these signatures in scRNA-seq data from pMacs by calculating an relative 
enrichment score for each signature in pMacs (molecule count of signature genes/(total 
molecule count * number of signature genes). 
 
Enrichment of tissue signatures in scRNA-seq data. To assess enrichment of tissue 
macrophage-specific signatures or differentiation signatures in scRNA-seq data from 
pMacs, we identified genes with multimodal expression using Hartigan’s Dip test 
statistic for unimodality. Next, multimodal genes were grouped by hierarchical 
clustering and enrichment of signatures within the clusters tested using hypergeometric 
testing with FDR correction (Benjamini-Hochberg). 
 
Data access and availability. Sequencing datasets described in this work have been 
submitted to the Gene Expression Omnibus (GEO) repository (GEO accession number 
for bulk RNA-seq: GSE81686, accession numbers for scRNA-seq and Id3+/- and Id3-/- 

littermates pending). Additionally, a genome browser track hub, as well as additional 
supplementary data are available at the following URL: http://macrophage-
development.computational-epigenetics.org/. 
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