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THE MUKAI SYSTEM OF RANK TWO AND GENUS TWO

ISABELL HELLMANN

Abstract. We study the Mukai system f : M → P5 of rank two and genus two from three

di�erent points of view. We compute the degrees and multiplicities of the irreducible compo-

nents of the �bers over non-reduced curves. We provide examples of algebraically coisotropic

and constant cycle subvarieties in M . We �nd all smooth birational models of M in a sequence

of �ops.

Introduction

Being asked what this thesis is about, the most precise answer would be

`Everything we know about the Mukai system of rank two and genus two'.

Let us explain, why this informal title, taken with a grain of salt, is very much to the point.

What is the Mukai system?

Let (S,H) be a polarized K3 surface of genus g (i.e. H ∈ Pic(S) is primitive and ample such

that H2 = 2g − 2) and assume that there is a smooth curve C ∈ |H| (necessarily of genus

g ≥ 2). Fix two coprime integers n ≥ 1 and s. We consider the moduli space MH(0, nH, s)

of H-Gieseker stable coherent sheaves on S with Mukai vector v = (0, nH, s). This is an

irreducible holomorphic symplectic manifold, which is deformation equivalent to the Hilbert

scheme of n2(g − 1) + 1 points on S. A point in MH(0, nH, s) corresponds to a stable sheaf

E on S such that E is pure of dimension one with support in the linear system |nH| and such

that χ(E) = s. Taking the (Fitting) support equips MH(0, nH, s) with a Lagrangian �bration

f : MH(0, nH, s) −→ |nH| ∼= Pn
2+1, E 7→ Supp(E),

known as the Mukai system of rank n and genus g [8], [44]. Over a point in |nH| which corre-

sponds to a smooth curve D ⊂ S, the �bers of f are abelian varieties isomorphic to Picδ(D),

where δ = s+n2(g− 1). This way MH(0, nH, s) can be viewed as a compacti�ed relative Jaco-

bian of the universal curve C → |nH|. The Mukai system has several beautiful features that we

will take up below. For example, it specializes to the Hitchin system of rank n (associated to a

smooth curve C ∈ |H|). Or if s = ±1, it is the birational model of S[n2(g−1)+1] at the extreme
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of the DFG (German Research Foundation) and the Bonn International Graduate School.
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4 I. HELLMANN

end of the movable cone.

Why rank two and genus two?

The Mukai system of rank one appears in the literature for various applications. One could

say, that it is the prototypical example of a Lagrangian �bration in the Hyperkähler world.

One usually assumes that Pic(S) = Z · H. Then the linear system |H| has the crucial fea-

ture, that every curve C ∈ |H| is integral. This implies, for example, that every �ber of

MH(0, H, s) → |H| is irreducible and generically smooth. Moreover, the Brill�Noether theory

of a general curve C ∈ |H| is well-understood [36] and has an interpretation for the birational

geometry of MH(0, H,±1) [40]. If n ≥ 2, it is no longer true, that every curve in |nH| is
reduced. Hence, most of the above results fail. Therefore, the lowest dimensional case n = 2

and g = 2 deserves an in-depth study, to understand which phenomena can arise. This is the

purpose of my thesis.

Summary.

We study the Mukai system of rank two and genus two from three di�erent points of view. It

turns out, that the isomorphism class of MH(0, 2H, s) for odd s is independent of the choice of

s. Therefore, we specialize to the case

M := MH(0, 2H,−1).

In Part I, we see f : M → |2H| as a generalisation of the Hitchin system [20]. In this context,

we want to understand the structure of the �bers over non-reduced curves. In analogy with

the Hitchin system, such a �ber NC := f−1(2C) is called the nilpotent cone (associated to the

curve C ∈ |H|). In contrast to the general �bers, NC is reducible and its components can have

higher multiplicities. Our main result is

Theorem (Thm 0.1). Let C ∈ |H| be an irreducible curve. The nilpotent cone NC := f−1(2C)

has two irreducible components

(NC)red = N0 ∪N1,

where N0
∼= MC(2, 1) is isomorphic to the moduli space of stable vector bundles of rank two and

degree one on C. The degrees of the two components are given by

degN0 = 5 · 29 and degN1 = 52 · 211

and their multiplicities are

multNC N0 = 23 and multNC N1 = 2.

Moreover, any �ber F of the Mukai system has degree 5 · 3 · 213.
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We also provide a description of the corresponding cohomology classes. The �rst step in the

proof of the above theorem is to give a description of the component N1, which we will also use

in Part II.

In Part II, we study the Chow group of zero cycles in M . More precisely, the Mukai system

is our playground for the hunt of constant cycle subvarieties. We combine results of Voisin [55]

and Marian, Shen, Yin and Zhao [41, 50] in order to decide, whether a point E ∈M is contained

in a constant cycle subvariety of given dimension. This allows us to produce several examples

of algebraically coisotropic and constant cycle subvarieties in M . Speci�cally, we �nd a series

coming from singular curves and two examples from Brill�Noether theory.

Proposition (cf. Prop 7.3). De�ne Vi := {D ∈ |2H| | g(D̃) ≤ i} ⊂ |2H| for i = 0, . . . , 4 and

let Zi ⊂ Vi be an irreducible compoenent. Then

MZi := f−1(Zi) ⊂M

is an algebraically coisotropic subvariety of codimension 5 − i and there is a 2i-dimensional

scheme Ti with a rational map

MZi 99K Ti

whose �bers are 5− i-dimensional constant cycle subvarieties in M .

Proposition (Prop 7.1). Let B◦ ⊂ B be the open subset of smooth curves and set M◦ :=

f−1(B◦). We de�ne

Z1 := {E ∈M◦ | h0(E) ≥ 1} ⊂M and Z3 := {E ∈M◦ | h0(E) ≥ 2} ⊂M.

Then Zi ⊂ M, i = 1, 3 is algebraically coisotropic of codimension 5 − i and there is a rational

map

Zi 99K S
[i]

whose �bers are 5− i-dimensional, rational constant cycle subvarieties in M .

In fact, the subvarieties Z1 and Z3 are generically projective bundles and play an important

role in Part III.

In Part III, we approach the Mukai system as a birational model of the Hilbert scheme S[5].

Precisely, we will assume that Pic(S) = Z ·H and study the geometry of the essentially unique

birational map S[5] 99KM , which leads to an analysis of the Brill�Noether loci inM . Moreover,

we apply the techniques of Bayer and Macrì [6], to determine all birational models of M . Our

main result is
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Theorem (Thm 7.18). Let (S,H) be a polarized K3 surface with Pic(S) = Z ·H and H2 = 2.

There are �ve smooth birational models of S[5] or M := MH(0, 2H,−1), respectively. They are

connected by a chain of �opping contractions

BlW2 S
[5]

  }}

BlW̃3
X1

  ~~

BlZ̃3
X3

����

BlZ1 M

����

S[5]
g1

// X1
g2

// X2 X3
g3

oo M
g4

oo

for some subvarieties W2 ⊂W3 ⊂ S[5] such that

• W2 is a P3-bundle over MH(0, H,−6),

• W3 \W2 is a P2-bundle over an open subset of MH(0, H,−5)× S
and subvarieties Z1 ⊂ Z3 ⊂M such that

• Z1 is a P4-bundle over S,

• Z3 \ Z1 is a P2-bundle over an open subset of S[3].

Here, W̃3 (resp. Z̃3) is the strict transform of W3 (resp. Z3) under g1 (resp. g4).

The three parts are rather self-contained and we refer to the respective introductions for a

more precise statement of the results.

Thanks.

I'm extremely grateful to Daniel Huybrechts for all his advice and support over the years.

Particular thanks go to Thorsten Beckmann for answering so many questions. It's a pleasure to

acknowledge helpful discussions with Alberto Cattaneo, Hsueh-Yung Lin, Mirko Mauri, Denis

Nesterov, Georg Oberdieck, Giulia Saccà, Johannes Schmitt and Andrey Soldatenkov. I thank

them all.
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I. The nilpotent cone in the Mukai system of rank two and

genus two

Abstract. We study the nilpotent cone in the Mukai system of rank two and genus two.

We compute the degrees and multiplicities of its irreducible components and describe their

cohomology classes.

Introduction

Let (S,H) be a polarized K3 surface of genus g and �x two coprime integers n ≥ 1 and

s. The moduli space M = MH(v) of H-Gieseker stable coherent sheaves with Mukai vector

v = (0, nH, s) is a smooth Hyperkähler variety of dimension 2(n2(g − 1) + 1). A point in M

corresponds to a stable sheaf E on S such that E is pure of dimension one with support in the

linear system |nH|. Taking the (Fitting) support de�nes a Lagrangian �bration

f : M −→ |nH| ∼= Pn
2(g−1)+1, [E ] 7→ Supp(E)

known as theMukai system [8], [44]. Over a general point in |nH| which corresponds to a smooth

curve D ⊂ S the �bers of f are abelian varieties isomorphic to Picδ(D), where δ = s−n2(1−g).

So, M can also be viewed as a compacti�ed relative Jacobian associated to the universal curve

C → |nH|.
The Mukai system is of special interest because of its relation to the classical and widely

studied Hitchin system, see [28] for a survey. Let C be a smooth curve of genus g. A Higgs

bundle on C is a pair (E , φ) consisting of a vector bundle E on C and a morphism φ : E → E⊗ωC ,
called Higgs �eld. The moduli space MHiggs(n, d) of stable Higgs bundles of rank n and degree

d is a smooth and quasi-projective symplectic variety. Sending (E , φ) to the coe�cients of its

characteristic polynomial χ(φ) de�nes a proper Lagrangian �bration

χ : MHiggs(n, d) −→
n⊕
i=1

H0(C,ωiC).

It is equivariant with respect to the C∗-action that is given by scaling the Higgs �eld on

MHiggs(n, d) and by multiplication with ti in the corresponding summand on the base. As

a corollary the topology of MHiggs(n, d) is controlled by the �ber over the origin. This �ber

N := χ−1(0) = {(E , φ) ∈MHiggs(n, d) | φ is nilpotent}

is called the nilpotent cone. In the late '80s Beauville, Narasimhan, and Ramanan discovered

a beautiful interpretation of the space of Higgs bundles [7]. They showed that a Higgs bundle
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(E , φ) with characteristic polynomial s corresponds to a pure sheaf of rank one on a so called

spectral curve Cs ⊂ |ωC | inside the total space of the canonical bundle. The curve Cs is de�ned
in terms of s = χ(φ) and is linearly equivalent to nC, the n-th order thickening of the zero

section C ⊂ |ωC |. This idea was taken up by Donagi, Ein, and Lazarsfeld in [20]: The space

MHiggs(n, d) appears as a moduli space of stable sheaves on |ωC | that are supported on curves in

the linear system |nC|. Consequently, MHiggs(n, d) has a natural compacti�cation MHiggs(n, d)

given by a moduli space of stable sheaves on the projective surface S0 = P(ωC ⊕ OC) with

respect to the polarization H0 = OS0(C). The Hitchin map extends to

MHiggs(n, d)→ |nH0| ∼= P(⊕ni=0H
0(C,ωiC))

and is nothing but the support map; the nilpotent cone is the �ber over the point nC ∈ |nH0|.
However, MHiggs(n, d) cannot admit a symplectic structure as it is covered by rational curves.

At this point the Mukai system enters the picture. If S is a K3 surface that contains the

curve C as a hyperplane section, one can degenerate (S,H) to (S0, H0) and consequently the

Mukai system MH(v) → |nH| with v = (0, nH, d + n(1 − g)) degenerates to the compacti-

�ed Hitchin system [20, �1]. From our perspective, this is a powerful approach to studying

the Hitchin system. For instance, in a recent paper [14], de Cataldo, Maulik and Shen prove

the P=W conjecture for g = 2 by means of the corresponding specialization map on cohomology.

In this note, we study the geometry of the nilpotent cone in the Mukai system, which is

de�ned in parallel to the Hitchin system

NC := f−1(nC),

for some curve C ∈ |H|. Alternatively, one could say that we study the most singular �ber type,

see (2.2). We will �x the invariants n = 2 and g = 2 and the Mukai vector v = (0, 2H,−1). In

this case and if C is irreducible, the nilpotent cone has two irreducible components

(NC)red = N0 ∪N1,

where the �rst component is isomorphic to the moduli space MC(2, 1) of stable vector bundles

of rank two and degree one on C and the second component is the closure of NC \ N0. Both

components are Lagrangian subvarieties ofM = MH(v). If C is smooth, then N0 is smooth and

the singularities of N1 are contained in N0∩N1 (each understood with their reduced structure).

However, both components occur with multiplicities.

Our �rst result is the computation of the multiplicities of the components as well as their

degrees. Here, the degree is meant with respect to a naturally de�ned distinguished ample class

u1 ∈ H2(M,Z), see De�nition 3.7.
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Theorem 0.1. Let C ∈ |H| be an irreducible curve. The degrees of the two components of the

nilpotent cone NC are given by

degu1
N0 = 5 · 29 and degu1

N1 = 52 · 211

and their multiplicities are

multNC N0 = 23 and multNC N1 = 2.

Moreover, any �ber F of the Mukai system has degree 5 · 3 · 213.

As the smooth locus of every component with its reduced structure deforms from the Mukai

to the Hitchin system, the multiplicities and degrees must coincide. Here, indeed, the same

multiplicities can be found in [51, Propositions 34 and 35] and [29, Proposition 6], whereas,

up to our knowledge, the degrees have not been determined in the literature. In our case, the

degrees determine the multiplicities.

Our second result is a description of the cohomology classes [N0] and [N1] ∈ H10(M,Z).

The projective moduli spaces of stable sheaves on K3 surfaces are known to be deformation

equivalent to Hilbert schemes of points. In our case, M is actually birational to S[5] (cf. Section

8). In particular, there is an isomorphism H∗(M,Z) ∼= H∗(S[5],Z). The cohomology ring of

S[5] is well understood, e.g. [37, �4] and the references therein. Recall that for any Hyperkähler

variety X of dimension 2n there is an embedding SiH2(X,Q) ↪→ H2i(X,Q) for all i ≤ n [52,

Theorem 1.7].

Theorem 0.2. The classes [N0] and [N1] ∈ H10(M,Q) are linearly independent and span a

totally isotropic subspace of H10(M,Q) with respect to the intersection pairing. They are given

by

[N0] =
1

48
[F ] + β and [N1] =

5

12
[F ]− 4β,

where [F ] is the class of a general �ber of the Mukai system and 0 6= β ∈ (S5H2(M,Q))⊥

satis�es β2 = 0. As degu1
β = 0, the class β is not e�ective.

Outline. In Section 1 we introduce the Mukai system. In Section 2 we reduce the study of NC

to the case of a smooth curve C. We describe the irreducible components of the nilpotent cone

following [20, �3], where it is shown that any point [E ] ∈ NC \N0 �ts into an extension of the

form

0→ L(x)⊗ ω−1
C −→ E −→ L → 0,

where L ∈ Pic1(C) is a line bundle and x ∈ C a point. We specify a space W → Pic1(C)× C
parameterizing such extensions, and a compacti�cation W of W that comes with a birational

map ν : W → N1. In the Hitchin case, this idea originates from [51].

In Section 3 we prove Theorem 0.1. The proof relies on the functorial properties of the de�nition

of u1 via the determinant line bundle construction, see Section 3.1. It allows us to relate u1|F
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and u1|N0 with the (generalized) theta divisor on F = f−1(D) ∼= Pic3(D) for D ∈ |nC| smooth

and MC(2, 1), respectively, see Propositions 3.8 and 3.10. For [N1] the degree computation is

achieved by determining ν∗u1 ∈ H2(W,Z). Finally, the multiplicities are inferred from knowing

the degrees. The last Section 4 is devoted to the proof of Theorem 0.2. It uses our previous

results.

Notation. All schemes are of �nite type over k = C. In the entire paper, S is a K3 surface

polarized by an ample class H ∈ NS(S) with H2 = 2g − 2.

1. Basics

In this section, we give a brief recollection on moduli spaces of sheaves on K3 surfaces and

de�ne the Mukai system. Recall that the Mukai vector induces an isomorphism

v : K(S)num
∼−→ H∗alg(S,Z) = H0(S,Z)⊕NS(S)⊕H4(S,Z).

It is given by

v(E) := ch(E)
√

td(S) = (rk(E), c1(E), χ(E)− rk(E)).

We write MH(v) for the moduli space of pure, H-Gieseker stable sheaves on S with Mukai

vector v. If v is primitive and positive and H is v-generic then MH(v) is an irreducible holo-

morphic symplectic manifold of dimension 〈v, v〉 + 2, which is deformation equivalent to the

Hilbert scheme of 1
2〈v, v〉+ 1 points on S [34, Theorem 10.3.1]. Here, 〈 , 〉 is the Mukai pairing

given by

〈(r, c, s), (r′, c′, s′)〉 = cc′ − rs′ − r′s.

Consider the Mukai vector

v := (0, nH, s) ∈ H∗alg(S,Z),

and assume that v is primitive. A pure sheaf F of Mukai vector v has one-dimensional support,

�rst Chern class nH and Euler characteristic s. In particular, F admits a length one resolution

0→ V f−−→ Ṽ −→ F by two vector bundles of the same rank r [31, �1.1]. We de�ne the (Fitting)

support of F to be

Supp(F) := V (det f) ⊂ S

the vanishing scheme of the induced morphism det f = ∧rf : ∧r V → ∧rṼ, for any resolution

0 → V f−→ Ṽ of F as above. This de�nition is well-de�ned, i.e. independent of the chosen

resolution [23, De�nition 20.4].

Example 1.1. Let i : C ↪→ S be an integral curve and E a vector bundle of rank n on C. Then

Supp(i∗E) = nC

is the n-th order thickening of C in S.
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By de�nition, Supp(F) is linearly equivalent to c1(F) and Supp(F) contains the usual support

de�ned by the annihilator of F . Moreover, the reduced locus Supp(F)red is the set-theoretic

support of F . The advantage of the above de�nition is, that it behaves well in families and thus

induces a morphism [38, �2.2]

f : MH(v) −→ |nH| ∼= Pg̃, [E ] 7→ Supp(E).

Here, g̃ = n2(g − 1) + 1. Moreover, MH(v) is irreducible holomorphic symplectic of dimension

n2H2+2 = 2g̃ and hence, by Matsushita's result [42, Corollary 1] this morphism is a Lagrangian

�bration (for an explicit proof see [20, Lemma 1.3]), called the Mukai system (of rank n and

genus g).

2. The nilpotent cone for n = 2 and g = 2

We now specialize to the case that n = 2 and s = 3 − 2g with g = 2, i.e. we �x the Mukai

vector

v = (0, 2H,−1).

In particular, a stable vector bundle of rank two and degree one on a smooth curve C ∈ |H|
de�nes a point in M := MH(v). We have dimM = 8g − 6 = 10 and M is birational to the

Hilbert scheme S[5] of �ve points on S.

Taking (Fitting) supports de�nes a Lagrangian �bration

f : M −→ |2H| ∼= P5.

We use the Segre map m : |H| × |H| → |2H| to de�ne the subloci

∆ := m(∆|H|) ⊂ Σ := im(m) ⊂ |2H|. (2.1)

Then Σ ∼= Sym2 |H| is four-dimensional and its generic member is reduced and has two smooth

irreducible components in the linear system |H| meeting transversally in two points. The subset

∆ ∼= |H| ∼= P2 is the locus of non-reduced curves. If ρ(S) = 1, then Σ is exactly the locus of

non-integral curves. In this case, we can distinguish three �ber types following [13, Proposition

3.7.1]:

f−1(x)


is reduced and irreducible if x ∈ |2H| \ Σ

is reduced and has two irreducible components if x ∈ Σ \∆

has two irreducible components with multiplicities if x ∈ ∆.

(2.2)

If ρ(S) ≥ 1, the list is still valid for the geometric generic point in the respective subvariety.

However, over points that correspond to curves with more irreducible components, one also

�nds more irreducible components in the �ber [13, Proof of Lemma 3.3.2] (see also Section 5.2).

We will study �bers of the third type, namely

NC := f−1(2C),
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where C ∈ |H| is irreducible. In analogy with the Hitchin system, we call NC the nilpotent

cone.

For the rest of this part, we �x a smooth curve C ∈ |H| and write N instead of NC . We will

now identify the irreducible components of N following the ideas of [20].

2.1. Pointwise description of the nilpotent cone N = NC . Let [E ] ∈ N and consider its

restriction E|C to C. There are two cases, either E|C is a stable rank two vector bundle on C or

E|C has rank one. By dimension reasons, the sheaves of the �rst kind contribute an irreducible

component N0 of N isomorphic to the moduli space MC(2, 1) of stable rank two and degree one

vector bundles on C. In the second case, E|C ∼= L⊕OD, where the �rst factor L := E|C /torsion
is a line bundle on C and D ⊂ C is an e�ective divisor. We set

E1 := N \N0

with reduced structure.

Lemma 2.1. Let [E ] ∈ E1 and write E|C = L ⊕ OD. There is a short exact sequence of

OS-modules

0→ i∗(L(D)⊗ ω−1
C ) −→ E −→ i∗L → 0. (2.3)

Moreover, k := degL = 1 and d := degD = 2g − 2k − 1 = 1.

Proof. Noting that ω−1
C is the conormal bundle of C in S, it is straightforward to obtain the

sequence (2.3). Let us prove the numerical restrictions. From (2.3) we have

1 + 2(1− g) = χ(E) = χ(L(D)⊗ ω−1
C ) + χ(L) = 2k + d− (2g − 2) + 2(1− g).

Thus d = 2g − 2k − 1 and we �nd k ≤ g − 1. On the other hand, E is stable, so the reduced

Hilbert polynomials [31, De�nition 1.2.3] of E and L satisfy p(E , t) < p(L, t), which amounts to

1
2(1 + 2(1− g)) < k + 1− g

or equivalently k ≥ 1. �

Remark 2.2. For n = 2 and arbitrary genus g, one has degL ∈ {1, . . . , g− 1} and a decompo-

sition into locally closed subsets Nred = N0 tE1 t . . .tEg−1 corresponding to the degree of L.
In fact, N0 and the closures of Ek are the irreducible components of N .

We conclude that every point in E1 de�nes a class in Ext1
S(i∗L, i∗(L(x)⊗ω−1

C )) for some point

x ∈ C and some line bundle L ∈ Pic1(C). Conversely, an extension class in Ext1
S(i∗L, i∗(L(x)⊗

ω−1
C )) de�nes a point in E1 if and only if its middle term is stable and has the point x as support

of its torsion part when restricted to C, i.e. if it is not pushed forward from C. It turns out

that all such extensions are stable.
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Lemma 2.3. Consider a coherent sheaf E on S that is given as an extension

0→ i∗L → E → i∗L′ → 0,

where L′ and L are line bundles on C of degree k and 1−k, respectively, with k ≥ 1. Moreover,

assume that E itself does not admit the structure of an OC-module. Then E is H-Gieseker

stable.

Proof. We have to prove p(E , t) < p(M, t) or, equivalently, χ(E)
c1(E).H < χ(M)

c1(M).H for every surjec-

tion E �M. We can assume that Supp(M) = C andM = i∗M′, whereM′ is a line bundle

on C. Then because E|C ∼= L′ ⊕ T for some torsion sheaf T , we �nd

HomOS (E , i∗M′) ∼= HomOC (E|C ,M′) ∼= HomOC (L′,M′)

and thus i∗L′
∼−→M. �

Corollary 2.4. The closed points of E1 are in bijection with the following set⊔
L∈Pic1(C)

x∈C

P(Ext1
S(i∗L, i∗(L(x)⊗ ω−1

C ))) \ P(Ext1
C(L,L(x)⊗ ω−1

C )),

i.e. with extension classes [v] ∈ P(Ext1
S(i∗L, i∗(L(x)⊗ω−1

C ))) such that v is not pushed forward

from C. Here, L varies over all line bundles on C with degL = 1, and x varies over all points

in C. The bijection is established by Lemma 2.1.

In Proposition 2.5 below, we will see that there is a short exact sequence

0→ Ext1
C(L,L(x)⊗ ω−1

C )→ Ext1
S(i∗L, i∗(L(x)⊗ ω−1

C ))
ρL,x−−→ H0(C,OC(x))→ 0,

where ρL,x has the following interpretation modulo a scalar factor. If E is the middle term of a

representing sequence of v ∈ Ext1
S(i∗L, i∗(L(x)⊗ ω−1

C )), then

E|C ∼= L ⊕OV (ρL,x(v)).

Hence, another way to phrase Corollary 2.4 is by �xing for every x ∈ C a de�ning section

sx ∈ H0(C,OC(x)) as follows. Let ∆ ↪→ C × C be the diagonal, yielding a section s∆ ∈
H0(C × C,O(∆)). For every x ∈ C, we set sx = s∆

∣∣{x}×C . Then we can write

points of E1
1:1←→

⊔
L∈Pic1(C)

x∈C

{v ∈ Ext1
S(i∗L, i∗(L(x)⊗ ω−1

C )) | ρL,x(v) = sx}. (2.4)
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2.2. Extension spaces. So far, we have given a pointwise description of the nilpotent cone.

Next, we will identify its irreducible components and their scheme structures. This subsection

is a technical parenthesis in this direction. The reader may like to skip it.

Let S be a smooth projective surface and i : C ↪→ S a smooth curve with normal bundle

NC/S ∼= OC(C). Let T be any scheme and let F and F ′ be two vector bundles on T × C

considered as families of vector bundles on C. Denote by π : T × S → T and πC : T × C → T

the projections. For a morphism f : X → Y , we write Extf instead of Rf∗RHom.

Proposition 2.5. There is a short exact sequence of OT -modules

0→ Ext1
πC

(F ′,F)→ Ext1
π((id×i)∗F ′, (id×i)∗F)

ρ−→ Ext0
πC

(F ′ �OC(−C),F)→ 0, (2.5)

as well as for every t ∈ T a short exact sequence of vector spaces

0→ Ext1
C(F ′t,Ft)

ξ−−→ Ext1
S(i∗F ′t, i∗Ft)

ρt−−→ Ext0
C(F ′t ⊗OC(−C),Ft)→ 0. (2.6)

Note that the �bers of (2.5) must, in general, not coincide with (2.6), see Lemma 2.6.

Proof. Apply RπC∗RHom( ,F) or RHom( ,Ft), to the exact triangle

F ′ �OC(−C)[1]→ L(id×i)∗(id×i)∗F ′ → F ′
[1]−→

in Db(T × C) (see [32, Corollary 11.4]) or its counterpart in Db(C), respectively, and consider

the induced cohomology sequence. �

We can explicitly describe the morphism ρt in the sequence (2.6). Represent v ∈ Ext1
S(i∗F ′t, i∗Ft)

by 0→ i∗Ft → E → i∗F ′t → 0. Restriction to C yields

. . .→ F ′t ⊗OC(−C)
δ(v)−−→ Ft → E|C → F ′t → 0,

where we inserted T orOS1 (i∗F ′t, i∗OC) ∼= F ′t ⊗OC T or
OS
1 (i∗OC , i∗OC) = F ′t ⊗ OC(−C). This

gives a well-de�ned, linear map

δ : Ext1
S(i∗F ′t, i∗Ft)→ Ext0

C(F ′t ⊗OC(−C),Ft).

As im ξ = ker δ, it follows by dimension reasons, that δ has to be surjective. So, ρt = δ up to

post-composition with an isomorphism of Ext0
C(F ′t ⊗OC(−C),Ft).

Lemma 2.6. For every t ∈ T there is a commutative diagram of short exact sequences

Ext1
πC

(F ′,F)(t) //

∼=
��

Ext1
π((id×i)∗F ′, (id×i)∗F)(t)

ρ(t)
//

��

Ext0
πC

(F ′ �OC(−C),F)(t)

��

Ext1
C(F ′t,Ft) // Ext1

S(i∗F ′t, i∗Ft)
ρt

// Ext0
C(F ′t ⊗OC(−C),Ft),

where the �rst vertical arrow is an isomorphism. If Ext0
C(F ′t ⊗ OC(−C),Ft) has constant

dimension for all t ∈ T all vertical arrows are isomorphisms.
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Proof. The vertical morphisms are the usual functorial base change morphisms. The lower line

is (2.6) and hence also exact on the left. The �rst vertical arrow is an isomorphism because

Ext2
C(F ′t,Ft) = 0. Consequently, also the upper line is exact on the left. �

2.3. Irreducible components of N . In this section, we show that E1 is irreducible and has

the same dimension as N . Therefore its closure

N1 := E1 ⊂ Nred,

with reduced structure is an irreducible component of N . For the proof, we need some more

notation. Let P1 be a Poincaré line bundle on Pic1(C)× C and ∆ ⊂ C × C the diagonal. Set

T := Pic1(C)× C and on T de�ne the following sheaves

V := R1p12∗(p
∗
23O(∆)⊗ p∗3ω−1

C ),

W := R1p12∗RHom((id×i)∗p∗13P1, (id×i)∗(p∗13P1 ⊗ p∗23O(∆)⊗ p∗3ω−1
C ) and

U := p12∗p
∗
23O(∆),

where pij are the appropriate projections from Pic1(C)× C × C. Considering the �ber dimen-

sions, we see that V and U are vector bundles of rank 2 and 1, respectively. In fact, s∆ induces

an isomorphism s∆ : OT
∼−−→ U = p12∗p

∗
23O(∆). Moreover, by Proposition 2.5 they �t into a

short exact sequence

0→ V −→W ρ−−→ OT → 0. (2.7)

Consequently, also W is a vector bundle and ρ induces a map of geometric vector bundles

|ρ| : |W| = SpecT (Sym•W∨) −→ T × A1.

We set

W := |ρ|−1(T × {1})

with the projection τ : W → T . We retain some immediate consequences of the construction.

(i) W is a principal homogeneous space under |V|. In particular, it is an a�ne bundle over

T .

(ii) Let t = (L, x) ∈ T . Then by Lemma 2.6 we have

Wt = τ−1(t) ∼= P(Ext1
S(i∗L, i∗(L(x)⊗ ω−1

C ))) \ P(Ext1
C(L,L(x)⊗ ω−1

C )).

(iii) dimW = 5.

(iv) W is compacti�ed by the projective bundle W := P(W) with boundary isomorphic to

P(V), i.e.

W = W ∪ P(V).

Remark 2.7. Actually, V ∼= p∗2(ωC ⊕ ωC) and hence P(V) ∼= P1 × Pic1(C)× C.
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Next, we relate E1 and W . Recall that N1 := E1 ⊂ Nred. We keep all the notations from the

previous section, and

W × C

τC

��

� � // W × S π′
//

τS

��

W := P(W)

τ

��

T × C �
�

// T × S π
// T.

Proposition 2.8. There exists a `universal' extension represented by

0→ τ∗S(id×i)∗(P1 �O(∆)� ω−1
C )�Oτ (1)→ Guniv → τ∗S(id×i)∗p∗13P1 → 0,

such that Guniv ∈ Coh(W × S) de�nes a birational morphism

ν : W −→ N1.

In particular, Nred = N0 ∪N1 is a decomposition into irreducible components.

Proof. We set F := P1�O(∆)�ω−1
C and F ′ := p∗13P1. We are looking for a `universal' extension,

i.e. for

vuniv ∈ Ext1
W×S(τ∗S(id×i)∗F ′, τ∗S(id×i)∗F ⊗ π′∗Oτ (1)),

such that for w ∈W ⊂W the restriction of vuniv to {w} × S is the extension corresponding to

w ∈Wτ(w) ⊂ Ext1
S(i∗F ′τ(w), i∗Fτ(w)).

By de�nition, W = R1π∗RHom((id×i)∗F ′, (id×i)∗F). Hence, there is a base change map

τ∗W → R1π′∗Lτ
∗
SRHom((id×i)∗F ′, (id×i)∗F).

We get

H0(W, τ∗W ⊗Oτ (1))→ H0(W,R1π′∗Lτ
∗
SRHom((id×i)∗F ′, (id×i)∗F)⊗Oτ (1))

∼←− H1(W × S,Lτ∗SRHom((id×i)∗F ′, (id×i)∗F)⊗ π′∗Oτ (1)))

= Ext1
W×S(τ∗S(id×i)∗F ′, τ∗S(id×i)∗F ⊗ π′∗Oτ (1)),

(2.8)

where the indicated isomorphism comes from the Leray spectral sequence. It is an isomor-

phism, because

R0π′∗Lτ
∗
SRHom((id×i)∗F ′, (id×i)∗F) ∼= R0π′C∗Lτ

∗
CRHom(L(id×i)∗(id×i)∗F ′,F) = 0,

where πC : T × C → T . The last equality follows from the long exact sequence

. . .→ 0 = R0π′C∗Lτ
∗
CRHom(F ′,F)→ R0π′C∗Lτ

∗
CRHom(L(id×i)∗(id×i)∗F ′,F)

→ 0 = R0π′C∗Lτ
∗
CRHom(F ′ �OC(−C)[1],F)→ . . . .

Finally, we consider the universal surjection as an element in H0(W, τ∗W ⊗Oτ (1))) and take

its image under (2.8). This produces the desired extension.
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By construction, Guniv ∈ Coh(W × S) de�nes a morphism ν : W → N1 ⊂ M which restricts

to a bijection W → E1 (see Corollary 2.4 and (2.4)). By degree reasons an extension on C of

the form 0→ L → E → L′ → 0, where degL′ = 1 and degL = 0 is stable or split. However, the

split extensions do not occur in P(V). Hence, ν is everywhere de�ned. Moreover, the boundary

W \W = P(V) maps to N1 \ E1 = N0 ∩N1. �

Remark 2.9. One can show that ν : W → E1 is actually an isomorphism of schemes. Moreover,

ν : W → N1 is �nite and hence a normalization map. Its tangent map is analyzed in [21,

Proposition 7.5] and provides a characterization of the singularities of N1.

3. Proof of Theorem 0.1

We will now prove Theorem 0.1.

Theorem. Let C ∈ |H| be an irreducible curve. The degrees of the two components of the

nilpotent cone NC = N0 ∪N1 are given by

degu1
N0 = 5 · 29 and degu1

N1 = 52 · 211

and their multiplicities are

multNC N0 = 23 and multNC N1 = 2.

Moreover, any �ber F of the Mukai system has degree 5 · 3 · 213.

All degrees will be computed with respect to a naturally de�ned distinguished ample class

u1 ∈ H2(M,Z), which we construct in Section 3.1. We set

di = degu1
(Ni) :=

∫
M

[Ni]u
5
1

for i = 0, 1, where by abuse of notation [Ni] ∈ H10(M,Z) is the Poincaré dual of the fundamental

homology class [Ni] ∈ H10(M,Z).

The multiplicity is de�ned as follows. Let ηi be the generic point of Ni. Then

mi = multN Ni := lgON,ηi
ONi,ηi = lgONi,ηi

ONi,ηi .

In particular, we have an equality [F ] = m0[N0] + m1[N1] ∈ H10(M,Z) for any �ber F .

Consequently, inserting m0 = 23 and m1 = 2, we �nd

degu1
(F ) = 5 · 212 + 52 · 212 = 5 · 3 · 213.

as stated in the theorem. We will see that the multiplicities are small in comparison with the

degrees. Therefore, it is possible to determine the multiplicities from the knowledge of the

degrees but not vice versa.
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Proof of the multiplicities knowing all the degrees. Let F ⊂ M be a smooth �ber. Then, we

have degF = m0d0 +m1d1 and hence

5 · 3 · 213 = m0 · 5 · 29 +m1 · 52 · 211.

The only possible solutions are (m0,m1) = (28, 1) or (m0,m1) = (8, 2). However, by [16,

Proposition 4.11]

dimT[E]N = dim Ext1
2C(E , E) = dimN + 1 for all [E ] ∈ E1.

So N1 is not reduced and the �rst solution is ruled out. �

Remark 3.1. We will prove Theorem 0.1 for a �xed smooth curve C ∈ |H|, which implies

the case of an irreducible and possibly singular curve by a deformation argument as follows.

According to the careful analysis in [13, Section 3.7, in particular Propositions 3.7.23 & 3.7.19]

the above description of the irreducible components of f−1(2C) is valid for every irreducible

curve C ∈ |H|. Hence, if one deforms from a smooth to a singular, irreducible curve in |H|, the
irreducible components of the �ber with their reduced structure deform as well. Consequently,

degrees and multiplicities remain constant.

3.1. Construction of the ample class u1. We use the determinant line bundle construction

[31, Lemma 8.1.2] in order to produce an ample class on the moduli space M .

Let X and T be two projective varieties and assume that X is smooth. Let p : T ×X → T

and q : T ×X → X denote the two projections. For anyW ∈ Coh(X×T ) �at over T , we de�ne

λW : K(X)num → H2(T,Z) to be the following composition

K(X)num
q∗−→ K0(T ×X)num

·[W]−−→ K0(T ×X)num
Rp∗−−→ K0(T )num

det−−→ NS(T ) ⊂ H2(T,Z).

We will take advantage of the functorial properties of this de�nition. These are

(i) f∗λW = λ(f×id)∗W for any morphism f : T ′ → T and

(ii) λ(id×i)∗W(x) = λW(Li∗x) for all x ∈ K(X)num if i : Y ↪→ X is the inclusion of a closed,

smooth subscheme and W ∈ Coh(T × Y ).

The construction is especially interesting if X = MT (c) is a �ne moduli space, that parame-

terizes coherent sheaves on T of class c ∈ K(T )num. Let Euniv be a universal sheaf on MT (c)×T ,
then

λEuniv⊗p∗M(x) = λEuniv(x) + χ(c · x)c1(M)

for allM∈ Pic(MT (c)). Hence,

λMT (c) := λEuniv : c⊥,χ −→ NS(MT (c))

is well-de�ned and does not depend on the choice of a universal sheaf. Here,

c⊥,χ = {x ∈ K(T )num | χ(x · c) = 0}.
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Example 3.2. Let C be a smooth curve of any genus g ≥ 0. Then

(rk,deg) : K(C)num
∼−−→ Z⊕ Z.

Fix n ≥ 1 and d ∈ Z coprime and let c = (n, d) ∈ K(C)num. Then MC(c) = MC(n, d) is the

moduli space of stable vector bundles of rank n and degree d on C and we �nd

c⊥,χ = 〈(−n, d+ n(1− g)〉.

The generalized Theta divisor can be de�ned by

ΘMC(n,d) := λMC(n,d)(−n, d+ n(1− g)),

see [22, Théorème D]. A special case is MC(1, k) = Pick(C). In this case,

c⊥,χ = 〈(−1, k + 1− g)〉 and Θk := λPick(C)(−1, k + 1− g)

is the class of the canonical Theta divisor in Pick(C).

Remark 3.3. Denote by SMC(n, d) the moduli space of vector bundles with �xed determinant,

i.e. a �ber of det : MC(n, d)→ Pic(C) and by ΘSMC(n,d) the restriction of ΘMC(n,d) to SMC(n, d).

Taking the tensor product de�nes an étale map

h : SMC(n, d)× Pic0(C) −→ MC(n, d)

of degree n2g. Using [19, Corollary 6], we �nd the following relation if (n, d) are coprime

h∗ΘMC(n,d) = p∗1ΘSMC(n,d) + n2p∗2Θ0. (3.1)

Lemma 3.4. Let C be a smooth curve of genus g and P a Poincaré line bundle on Pick(C)×C.
Then

λP : K(C)num → H2(Pick(C),Z)

is given by

(r, d) 7→ (d+ (k + 1− g)r)µ− rΘk,

where p∗1µ = c2,0
1 (P) ∈ H2(Pick(C)× C,Z) is the (2, 0) Künneth component of c1(P).

By tensoring with a suitable line bundle on Pick(C), we can assume that c2,0
1 (P) = 0.

Proof. Let us abbreviate Pick(C) to Pick. We decompose

c1(P) = c2,0 + c1,1 + c0,2

into its Künneth components and write c2,0 = p∗µ for some µ ∈ H2(Pick,Z). Then by [2, VIII

�2] the class γ = c1,1 satis�es γ2 = −2ρp∗Θk. Moreover, by de�nition, c0,2 = kρ, where ρ is the

pullback of the class of a point on C. Together, c1(P) = p∗µ+ γ + kρ and

ch(P) = 1 + p∗µ+ γ + kρ+ ρp∗(kµ−Θk).
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Now, let x = (r, d) ∈ K(C)num. The Grothendieck�Riemann�Roch theorem gives

ch(Rp∗(P ⊗ q∗x)) = p∗(ch(P ⊗ q∗x) td(Pick×C)) = p∗(ch(P) ch(q∗x)q∗ td(C))

= p∗(ch(P)(r + ((1− g)r + d)ρ))

= kr + (1− g)r + d+ (kr + (1− g)r) + d)µ− rΘk.

In particular, λP(x) = c1(Rp∗(P ⊗ q∗x)) = ((k + 1− g)r + d)µ− rΘk. �

We come back to our original situation, i.e. (S,H) is a polarized K3 surface of genus 2 and

M = MH(v) parameterizes H-stable sheaves with Mukai vector v = (0, 2H,−1) or equivalently,

with Chern character vch = (0, 2H,−1). In this setting λM induces an isomorphism, [31,

Theorem 6.2.15]

λM : v⊥,χch
∼−−→ NS(M). (3.2)

As v and vch coincide, we will notationally not distinguish between them anymore. We �nd

v⊥,χ = {(2c.H, c, s) | c ∈ NS(S), s ∈ Z}.

Warning 3.5. In this setting, one usually wants to consider the morphism λM in terms of the

Mukai vector instead of the Chern character and the Mukai pairing instead of the intersection

product, i.e. one considers the composition

v⊥,〈,〉
∼−−→ v⊥,χch

λM−−→ NS(MH(v)),

which identi�es the Mukai pairing on the left hand side with the Beauville�Bogomolov form on

the right hand side. Here v = vch ·
√

td(S). Explicitly, if v = (r, c, s), then vch = (r, c, s − r)
and

〈(r′, c′, s′), (r, c, s)〉 = χ((−r′, c′,−s′ − r′) · (r, c, s− r)).

Thus the �rst arrow is given by (r′, c′, s′) 7→ (−r′, c′,−s′ − r′).

De�nition 3.6. For all s ∈ Z we de�ne

ls := λM ((−4,−H, s)) ∈ H2(M,Z).

The value of s does not have any relevance for our computations. However, with the results of

[5], it can be proven that ls is ample for s� 0 and one can even compute the precise boundary

of the ample cone (cf. 10.1).

De�nition 3.7. For everything what follows, we �x s0 � 0 such that ls0 is ample and set

u1 := ls0 .
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3.2. Degree of a general �ber. We compute the degree of a general �ber.

Proposition 3.8. Let D ∈ |2H| be a smooth curve and let F := f−1(D) be the corresponding

�ber. Let u = λM (x) with x = (2c.H, c, s) ∈ v⊥,χ. Then

u|F = −2c.H ·Θ3,

where Θ3 ∈ H2(Pic3(D),Z) is the class of the Theta divisor. In particular, we have

degu1
F = 5! · 210.

Proof. Let i : D ↪→ S be the inclusion. The inclusion Pic3(D) ∼= F ↪→ M is de�ned by

(id×i)∗P3, where P3 is a Poincaré line bundle on Pic3(D)×D. Hence,

u|Pic3(D) = λ(id×i)∗P3
(x) = λP3(Li∗x).

Now, Li∗ : K(S)num → K(D)num
∼= Z⊕2 maps (r, c, s) to (r, c.D) and thus x to 2c.H · (1, 1),

whereas by de�nition θ3 = λP3(−1,−1). Finally,

degu1
F =

∫
Pic3(D)

(4Θ3)5 = 210 · 5!.

�

Remark 3.9. One can also prove the above result using the Beauville�Bogomolov form ( , )BB

on H2(M,Z). Let u0 = f∗c1(O(1)) ∈ H2(M,Z). Then [F ] = u5
0 ∈ H10(M,Z) and

degu1
(F ) =

∫
M
u5

0u
5
1 = 5! · (u0, u1)5

BB,

where we use that (u0, u0)BB = 0 and that M is birational to S[5] in order to determine the

correct Fujiki constant. One veri�es that u0 = λM ((0, 0, 1)) [58, Lem 4.4] whereas, by de�nition,

u1 = λM (−4,−H, s0) with s0 � 0. After correct identi�cation (cf. Warning 3.5), one has

(λM (r, c, s), λM (r′, c′, s′))BB = 〈(r, c, s), (r′, c′, s′)〉+ 2rr′.

This gives (u0, u1)BB = 4.

3.3. Degree of the vector bundle component N0. Next, we deal with the component N0,

which is isomorphic to MC(2, 1).

Proposition 3.10. Let x = λM (u) with u = (2c.H, c, s) ∈ v⊥,χ. Then

x|N0 = −c.HΘ,

where Θ ∈ H2(N0,Z) is the the generalized Theta divisor. In particular,

u1|N0 = 2Θ



23

and given xi = λM (2ci.H, ci, si) for i = 1, . . . , 5, we �nd∫
M
x1 . . . x5[N0] = −

5∏
i=1

ci.H

∫
N0

Θ5 = −5 · 24
5∏
i=1

ci.H.

Hence, degu1
N0 = 5 · 29.

Proof. Let i : C ↪→ S be the inclusion. The inclusion N0 ↪→M is de�ned by (id×i)∗Euniv, where

Euniv is the universal vector bundle on N0 × C. Hence,

x|N0 = λ(id×i)∗Euniv
(u) = λN0(Li∗u).

Now, Li∗ : K(S)num → K(C)num
∼= Z⊕2 maps (r, c, s) to (r, c.H). In particular,

Li∗u = c.H(2, 1),

whereas by de�nition θ = λN0(−2,−1).

Next, we compute
∫
N0

Θ5 by pulling back along h : SMC(2, 1)×Pic0(C)→ N0 from Remark

3.3. ∫
MC(2,1)

Θ5 (3.1)
=

1

24

∫
SMC(2,1)×Pic0(C)

(p∗1ΘSM + 4p∗2Θ0)5

=
1

24

(
5

3

)∫
SMC(2,1)

Θ3
SM

∫
Pic0(C)

(4Θ0)2 = 5 · 24.

The value
∫

SMC(2,1) Θ3
SM = 4 is given by the leading term of the Verlinde formula [60]. �

Remark 3.11. The general formula is∫
MC(n,d)

Θdim MC(n,d) = dim MC(n, d)!(22g−2 − 2)
(−1)g22g−2B2g−2

(2g − 2)!
,

where Bi is the i-th Bernoulli number. The second Bernoulli number is B2 = 1
6

Remark 3.12. In the general case, where v = (0, nH, s) and u1 = λM (−n(2g− 2), sH, ∗) with
s = n+ d(1− g), we �nd u1|F = n(2g − 2)Θδ and u1|N0 = (2g − 2)Θ. Thus

degu1
F = (n(2g − 2))dimN · dimN ! and degu1

N0 = (2g − 2)dimN
∫

MC(n,d) Θdim MC(n,d).

Here, dimN = n2(2g − 2) + 2.

3.4. Degree of the other component N1. We complete the proof of Theorem 0.1 by dealing

with the remaining component N1. Recall from Proposition 2.8 that there is a birational map

ν : W → N1, where τ : W = P(W)→ T = Pic1(C)× C.

Proposition 3.13. Let xi = λM (ui) with ui = (2ci.H, ci, si) ∈ v⊥,χ for i = 1, . . . , 5. Then

∫
M
x1 . . . x5[N1] =

∫
W

5∏
i=1

ν∗(xi|N1 ) = −52 · 26
5∏
i=1

ci.H. (3.3)
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In particular, degu1
N1 = 52 · 211.

Note that the �rst equality in (3.3) is immediate, because ν : W → N1 is birational. For the

proof of the proposition, we need to introduce some more notation. We abbreviate Pic1(C) to

Pic1 and in the following all cohomology groups have Z coe�cients. We set

ζ = c1(Oτ (1)) ∈ H2(W ) and write ρ = p∗2[pt] ∈ H2(Pic1×C)

for the pullback of the class of a point on C. If no confusion is likely, we suppress pullbacks

from our notation, e.g. we will write Θ1 ∈ H2(Pic1×C) and also Θ1 ∈ H2(P(W)) instead of

p∗1Θ1 and τ∗p∗1Θ1, respectively. Moreover, we de�ne

π := c1(P)− c2,0
1 (P) ∈ H2(Pic1×C),

where P is a Poincaré line bundle. Note that π is independent of the choice of P.

Proof of Proposition 3.13. We will split the proof into the following three steps.

(i) Let x = λM (2c.H, c, s). Then

ν∗(x|N1 ) = λGuniv(x) = c.H(−4Θ1 + 2π − 7ρ− ζ) ∈ H2(W ).

(ii) We have

(−4Θ1 + 2π − 7ρ− ζ)5 = −5225ζ2ρΘ2
1 ∈ H10(W ).

(iii) The top cohomology group H10(W ) generated by 1
2ζ

2ρΘ2
1 and we have∫

P(W)
ζ2ρΘ2

1 = 2.

Proof of (i). In Proposition 2.8, we de�ned the morphism ν : W → N1 by means of Guniv ∈
Coh(W × S), which sits in the (universal) extension

0→ τ∗S(id×i)∗(P1 �O(∆)� ω−1
C )�Oτ (1)→ Guniv → τ∗S(id×i)∗p∗13P1 → 0,

where τS = τ × idS : W × S → Pic1×C × S. So, by construction, we have

λGuniv(x) = λτ∗S(id×i)∗(P1�O(∆)�ω−1
C )�Oτ (1)(x) + λτ∗S(id×i)∗p∗13P1

(x)

= λτ∗S(id×i)∗(P1�O(∆)�ω−1
C )(x) + k(Li∗x) · ζ + τ∗p∗1λP1(Li∗x)

= τ∗(λP1�O(∆)(Li
∗x · ω−1) + p∗1λP1(Li∗x)) + k(Li∗x) · ζ,

where ω = c1(ωC) and k(Li∗x) = rkRp∗(P1 �O(∆)� ω−1
C � Li

∗x) = χ(Li∗x) = −c.H.
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The term λP1�O(∆)(Li
∗x · ω−1) + p∗1λP1(Li∗x), is determined in Lemmas 3.14 and 3.4. Note

that each summand depends on the choice of a Poincaré line bundle, whereas the sum does not.

Together,

ν∗(x|N1 ) = τ∗(λP1�O(∆)(Li
∗x · ω−1) + p∗1λP1(Li∗x))− c.Hζ

= c.H(p∗1(λP1(2,−3) + λP1(2, 1)) + 2c1(P1)− 7ρ− ζ)

= c.H(−4Θ1 + 2π − 7ρ− ζ).

�

Lemma 3.14. Let F ∈ Coh(X × C). Then

λF�O(∆)(x) = p1
∗λF (x) + rc1(F) + c0(F)(d− 2r)ρ

for all x = (r, d) ∈ K(C)num. In particular,

λP1�O(∆)(Li
∗x · ω−1) = c.H(p∗1λP(2,−3) + 2c1(P1)− 7ρ).

Proof. We have

[F �O(∆)] = [p∗13F ] + [(id×i∆)∗(p
∗
2ω
−1
C ⊗F)] ∈ K(X × C × C),

where i∆ : C → C × C is the diagonal and thus

λF�O(∆)(x) = λp∗13W(x) + λ(id×i∆)∗(p∗2ω
−1
C ⊗F)(x) ∈ H2(X × C)

for all x ∈ K(C)num. Now,

λ(id×i∆)∗(p∗2ω
−1·[F ])(x) = detRp12∗((id×i∆)∗(p

∗
2ω
−1 · [F ]) · p∗3x)

= detR(p12 ◦ (id×i∆))∗([F ] · p∗2(ω−1 · x))

= det([F ] · p∗2(ω−1 · x)) = rc1(F) + c0(F)(d− r(2g − 2))ρ.

�

To prove the remaining steps, we need to understand the cohomology ring H∗(W ).

Lemma 3.15. We have

H∗(W ) ∼= H∗(Pic1×C)[ζ]/ζ3 + 4ρζ2.

In particular,

H10(W ) = ζ2 ·H6(Pic1×C).

Proof. By de�nition, W = P(W). Hence,

H∗(W ) ∼= H∗(Pic1 × C)[ζ]/ζ3 + c1(W)ζ2 + c2(W)ζ + c3(W).
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We use the short exact sequence 0 → V → W → OT → 0 from (2.7) to compute the Chern

classes of W. Note that

V = R1p12∗(p
∗
23O(∆)⊗ p∗3ω−1

C ) ∼= p∗2R
1p1∗(O(∆)⊗ p∗2ω−1

C ).

So the Chern classes of V can be computed by the push forward along the �rst projection of

the following the short exact sequence

0→ p∗2ω
−1
C → O(∆)� ω−1

C → p∗2ω
−2
C |∆ → 0.

We �nd

0 −→ ω−2
C → OC ⊗H

1(C,ω−1
C )→ R1p1∗(O(∆)⊗ p∗2ω−1

C ) −→ 0.

Hence, c1(W) = 4ρ and ci(W) = 0 if i ≥ 2. �

Proof of (ii) and (iii). We want to show that

(−4Θ1 + 2π − 7ρ− ζ)5 = −5225ζ2ρΘ2
1 ∈ H10(W ).

We compute

(−4Θ1 + 2π − 7ρ− ζ)5 =

(
5

3

)
(−ζ3)(−4Θ1 + 2π − 7ρ)2 +

(
5

2

)
ζ2(−4Θ1 + 2π − 7ρ)3

= 10 · ζ2((4ρ(−4Θ1 + 2π − 7ρ)2 + (−4Θ1 + 2π − 7ρ)3).

The result is a combination of π, θ and ρ, which are classes of type (1, 1)+(0, 2), (2, 0) and (0, 2),

respectively. Moreover, in the proof of Lemma 3.4 we computed π = ρ+γ and π2 = γ2 = −2ρΘ1.

Hence, the only non-zero combinations are π2Θ1 = −2ρΘ2
1 = −2πΘ2

1. We �nd

10 · ζ2((4ρ(−4Θ1 + 2π − 7ρ)2 + (−4Θ1 + 2π − 7ρ)3)

= 10 · ζ2(26ρΘ2
1 + 3(−24π2Θ1 + 25πΘ2

1 − 7 · 24ρΘ2
1)

= 10(26 + 3(25 + 25 − 7 · 24))ζ2ρΘ2
1 = −5225ζ2ρΘ2

1.

Finally, we want to show that
∫
W ζ2ρΘ2 = 2. Indeed,∫

W
ζ2ρΘ2 = τ∗ζ

2

∫
Pic1

Θ2

∫
C
ρ = 2.

�

This concludes the proof of the proposition. �
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4. Proof of Theorem 0.2

In this section we prove Theorem 0.2.

Theorem. The classes [N0] and [N1] ∈ H10(M,Q) are linearly independent and span a totally

isotropic subspace of H10(M,Q) with respect to the intersection pairing. They are given by

[N0] =
1

48
[F ] + β and [N1] =

5

12
[F ]− 4β,

where [F ] is the class of a general �ber of the Mukai system and 0 6= β ∈ (S5H2(M,Q))⊥

satis�es β2 = 0. As degu1
β = 0, the class β is not e�ective.

From now on, all cohomology groups have Q-coe�cients.

Before coming to the proof, we want to point out, that the irreducible components over points

in Σ \∆ (see (2.2)) are of di�erent cohomological nature. Let D ∈ Σ \∆ be a reducible curve

with two smooth components C1 and C2 meeting transversally. Then the two components N ′1
and N ′2 of f

−1(D) contain an open sublocus parameterizing line bundles on D of bi-degree (2, 1)

and (1, 2), respectively [13, Proposition 3.7.1 and Lemma 3.3.2]. The monodromy around Σ\∆

exchanges C1 and C2 and consequently the classes of the irreducible components. We �nd

[N ′1] = [N ′2] = 1
2 [F ].

In particular, the two components are linearly dependent. This is not true over ∆.

Proposition 4.1. The classes [N0] and [N1] ∈ H10(M) are linearly independent.

The proof uses the following simple observation.

Lemma 4.2. Let M → B be a Lagrangian �bration and F a smooth �ber. Then

ci(TM )|F = 0 for all i > 0.

Proof. We have a short exact sequence 0 → TF −→ TM |F −→ NF/M → 0. Now, F ⊂ M is

Lagrangian and hence NF/M ∼= ΩF . Moreover, F is an abelian variety and hence all its Chern

classes of degree greater than zero are trivial. �

Proof of Proposition 4.1. Assume that [N0] and [N1] are linearly dependent. Then there is some

λ ∈ Q such that [F ] = λ[N0], where F ⊂ M is a smooth �ber. In particular, by the above

lemma, any product of [N0] and the Chern classes of M vanishes. However, we will show that∫
M
c2(TM ) · u3

1 · [N0] 6= 0,

leading to the desired contradiction. We have c(TM |N0 ) = c(TN0)c(ΩN0) and thus

c2(TM )|N0 = (2c2 − c2
1)(TN0).
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Moreover, our computation will use the following two inputs. Let α ∈ H2(SMC(2, 1)) be the

degree two Künneth component of (c2
1 − c2)(Vuniv) with Vuniv being a universal bundle on

SMC(2, 1)× C. It is known, e.g. [59, �5A], that

c1(TSMC(2,1)) = 2α, c2(TSMC(2,1)) = 3α2 and
∫

SMC(2,1) α
3 = 4.

Further, by [22, Théorème F] it is known that OSMC(2,1)(−2Θ) ∼= ωSMC(2,1). Hence,

Θ = −1

2
c1(ωSMC(2,1)) =

1

2
c1(TSMC(2,1)).

This gives,∫
c2(TM )u3

1[N0]
3.10
=

∫
N0

(2c2 − c2
1)(TN0) · (2Θ)3

=
1

24

∫
SMC(2,1)×Pic0

h∗((2c2 − c2
1)(TN0) · (2Θ)3)

(3.1)
=

23

24

∫
SMC(2,1)×Pic0

p∗1(2c2 − c2
1)(TSM) · (p∗1ΘSM + 4p∗2Θ0)3

=
1

2

∫
SMC(2,1)×Pic0

p∗1(2c2 − c2
1)(TSM) · (3p∗1ΘSM · 42p∗2Θ2

0)

= 3 · 23

∫
SMC(2,1)

(2c2 − c2
1)(TSM) · 1

2
c1(TSM)

∫
Pic0

Θ2
0

= 3 · 24

∫
SMC(2,1)

(6α2 − 4α2)α = 3 · 27 6= 0.

�

Proof of Theorem 0.2. We set V := S5H2(M) ⊂ H10(M) so that we have an orthogonal decom-

position with respect to the cup productH10(M) = V ⊕V ⊥. Accordingly, we write [Ni] = αi+βi

with αi ∈ V and 0 6= βi ∈ V ⊥ for i = 1, 2. We claim that

20[N0]− [N1] ∈ V ⊥. (4.1)

To see this, we decompose the second cohomology group into its transcendental and algebraic

part, i.e. H2(M) = T (M)⊕NS(M). Now, for i = 1, 2 consider

T (M)→ H12(M), α 7→ α · [Ni]. (4.2)

As the symplectic form σ ∈ T (M) vanishes on Ni, it follows by irreducibility of the Hodge

structure T (M) that the assignment (4.2) is trivial. Hence, it su�ces to show that 20[N0] −
[N1] ∈ (S5 NS(M))⊥. By (3.2) any element in S5 NS(M) is of the form x1x2 . . . x5, where

xi = λM (2ci.H, ci, si). According to Propositions 3.10 and 3.13∫
[N1]x1x2 . . . x5 = −5226

5∏
i=1

ci.H = 20

∫
[N0]x1x2 . . . x5.
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This proves (4.1).

Next, we write [N1] − 20[N0] = α1 − 20α0 + β1 − 20β0 ∈ V ⊥ and conclude α1 = 20α0. We

set α = α0. On the one hand, we have by Theorem 0.1

23[N0] + 2[N1] = [F ] = u5
0 ∈ V,

but also

u5
0 = 48α+ 8β0 + 2β1.

This gives 48α = u5
0 and β1 = −4β0. Setting β = β0 gives the desired expression.

The last assertion follows from [N0]2 = ( 1
48u

5
0 + β)2 = β2 and

[N0]2 =

∫
N0

c5(NN0/M ) =

∫
N0

c5(ΩN0) = −e(N0),

which is known to vanish, see [3, �9]. Hence also [N1]2 = 0 and [Ni] · β = 0 for i = 1, 2. �
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II. Constant cycle subvarieties in the Mukai system of rank

two and genus two

Abstract. Combining theorems of Voisin and Marian, Shen, Yin and Zhao, we compute the

dimensions of the orbits under rational equivalence in the Mukai system of rank two and genus

two. We produce several examples of algebraically coisotropic and constant cycle subvarieties.

Introduction

By a theorem of Beauville and Voisin [9], any point lying on a rational curve in a K3 surface

S, determines the same zero cycle of degree one

cS ∈ CH0(S),

called the Beauville�Voisin class. This class has the striking property that the image of the

intersection product

Pic(S)⊗ Pic(S)→ CH0(S)

and c2(S) are contained in Z·cS . It is expected that the Chow ring of an irreducible holomorphic

symplectic manifold has a similar and particularly rich structure provided by the conjectural

Bloch�Beilinson �ltration and its conjectural splitting [10]. In this context, Voisin introduced

in [55] the notion of an algebraically coisotropic subvariety, which is an generalization of La-

grangian subvariety.

The goal of this note is to investigate the Chow group of zero cycles for the Mukai system of

rank two and genus two. Speci�cally, we produce several examples algebraically coisotropic

subvarieties �bered into isotropic constant cycle subvarieties.

As before, let (S,H) be a polarized K3 surface of genus two, that is a double covering

π : S → P2 rami�ed over a smooth sextic curve R ⊂ P2 and H = π∗OP2(1) is primitive. We

consider the the Mukai system of rank two and genus two

f : M := MH(0, 2H, s) −→ B := |2H| ∼= P5,

where s ≡ 1 mod 2. This is an irreducible holomorphic symplectic variety of dimension 10,

which is birational to S[5].

For any irreducible, holomorphic symplectic manifold X of dimension 2n, a brute force ap-

proach to �nding constant cycle subvarieties (see Section 6.1 for the de�nition) is to consider
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the orbit under rational equivalence of a point x ∈ X. This is the countable union of algebraic

subvarieties de�ned by

Ox := {x′ ∈ X | [x] = [x′] ∈ CH0(X)} ⊂ X.

Then dimOx is de�ned to be the supremum over the dimensions of the components of Ox. In

[55], Voisin de�nes an increasing �ltration F0X ⊂ F1X ⊂ . . . ⊂ FnX = X on the points of X,

where

FiX := {x ∈ X | dimOx ≥ n− i}

is again a countable union of algebraic subvarieties. Our examples are based on the combination

of two theorems. The �rst one is due to Voisin.

Theorem 4.3 ([55, Thm 1.3]). We have dimFiX ≤ n + i and if Z ⊂ FiX is an irreducible

component of dimension n+ i. Then Z is algebraically coisotropic and the �bers of the isotropic

�bration are constant cycle subvarieties of dimension n− i.

The second theorem applies in the case that X = Mσ(v) is a smooth projective moduli of

Bridgeland stable objects in Db(S) and is due to Marian, Shen, Yin and Zhao. It establishes

a link between rational equivalence in X and in S, which in particular results in a connection

between Voisin's �ltration F•X and O'Grady's �ltration S•CH0(S) (See Section 6.1 for the

de�nition).

Theorem 4.4 ([50],[41], Thms 6.2, 6.5). (i) Any two points E , E ′ ∈Mσ(v) are rational equiv-

alent in Mσ(v) if and only if ch2(E ′) = ch2(E) ∈ CH0(S).

(ii) Let E ∈ Mσ(v) such that ch2(E) ∈ Si CH0(S). Then E ∈ FiMσ(v). If Mσ(v) is birational

to the Hilbert scheme S[n], then also the converse implication holds true, i.e. in this case

FiMσ(v) = {E ∈Mσ(v) | ch2(E) ∈ Si CH0(S)}.

We remark that both parts of the theorem can equally be formulated with c2 instead of ch2.

This opens the door to �nding in�nitely many examples of constant cycle or algebraically

coisotropic subvarieties inM = MH(0, 2H,−1). For example, a �rst straightforward application

yields.

Lemma 4.5 (Cor 6.9). The �ber F = f−1(D) is a constant cycle Lagrangian if and only if

D ∈ |2H| is a constant cycle curve in S.

Or one can prove, that given E ∈M such that Supp(E) = D. Then E ∈ Fg(D̃)M , where g(D̃)

is the geometric genus of D. Here, the geometric genus of D is the genus of the normalization

of D (resp. of Dred) and the sum over the genera of the normalizations of the irreducible
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components if D is reducible. This way, we �nd algebraically coisotropic subvarieties over

singular curves. Precisely, for i = 0, . . . , 4 let

Vi := {D ∈ |2H| | g(D̃) ≤ i} ⊂ |2H|

and set MVi := f−1(Vi).

Proposition 4.6 (Prop 7.3). The subvarieties MVi are equidimensional of codimension n − i
and satisfy

MVi ⊂ FiM.

In particular, they are algebraically coisotropic.

We will see that Vi is reducible due to reducible and non-reduced curves in the linear system

|2H|. For every component we �nd the isotropic �bration and comment on the resulting constant

cycle subvarieties. Most of them are rational. However, over the component of non-reduced

curves ∆ ⊂ V2, we �nd three-dimensional constant cycle subvarieties that are not rational (cf.

Proposition 7.6).

Another series of examples comes from Brill�Noether theory. Let B◦ ⊂ B be the locus of

smooth curves and C◦ → B◦ the restricted universal curve. For any i, we have an isomorphism

MH(0, 2H, i− 4)◦ ∼= PiciC◦/B◦ ,

where MH(0, 2H, i− 4)◦ is the preimage of B◦ under the support map MH(0, 2H, i− 4)→ B.

For i = 1, . . . 4, we de�ne

BN0
i (B

◦) := {L ∈MH(0, 2H, i− 4)◦ | H0(S,L) 6= 0} ⊂MH(0, 2H, i− 4)◦.

We consider the closures for odd i. Namely,

Z1 := BN0
1(B◦) ⊂MH(0, 2H,−3) and Z3 := BN0

3(B◦) ⊂M := MH(0, 2H,−1).

As MH(0, 2H,−3) and M are isomorphic (Lemma 5.1), Z1 can also be seen as subvarieties in

M .

Proposition 4.7 (Prop 7.1). The subvarieties Zi ⊂ M, i = 1, 3 have codimension 5 − i and
satisfy

Zi ⊂ FiM.

In particular, they are algebraically coisotropic.
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Outline. In Section 5, we collect general results on the Mukai system and describe the nature

of its �bers. This requires an analysis of the singular curves in |2H|. In Section 6, we state

Theorems 4.3 and 4.4 in more detail and apply them to M = MH(0, 2H,−1). Section 7 is

devoted to present explicit examples. These include the examples from Brill�Noether theory

(Section 7.1), the examples from singular curves together with their isotropic �brations (Section

7.2) and a less conceptual mixture of examples of constant cycle Lagrangians and examples in

S[5] (Section 7.3).

5. The Mukai system

Let (S,H) be a polarized K3 surface of genus 2 such that the linear system |H| contains a
smooth irreducible curve, i.e. S is a double covering π : S → P2 rami�ed over a smooth sextic

curve R ⊂ P2 and H = π∗OP2(1) is primitive. We consider the moduli spaceM = MH(0, 2H, s)

of H-Gieseker stable coherent sheaves on S with Mukai vector v = (0, 2H, s) where s ≡ 1 mod

2. This is an irreducible holomorphic symplectic variety of dimension 10, which is birational

to S[5], cf. Section 8. A point in MH(0, 2H, s) corresponds to a stable sheaf E on S such that

E is pure of dimension one with support in the linear system |2H| and χ(E) = s. Taking the

(Fitting) support de�nes a Lagrangian �bration

f : MH(0, 2H, s) −→ B := |2H| ∼= P5

known as the Mukai system of rank two and genus two [8], [44].

As tensoring with OS(H) induces an isomorphism

τH : MH(0, 2H, s)
∼−→MH(0, 2H, s+ 4),

it is immediate that the isomorphism class of MH(0, 2H, s) depends only on s modulo 4. The

following Lemma shows that actually the isomorphism class is the same for all odd s. If

Pic(S) = Z · H one could also characterize MH(0, 2H, s) for odd s as the unique birational

model of S[5] admitting a Lagrangian �bration (cf. Section 10).

Lemma 5.1. There is an isomorphism

M(0, 2H, 1) −→M(0, 2H,−1), E 7→ E∨ := Ext1
OS (E ,OS).

In particular, all the moduli spaces MH(0, 2H, s) for odd s are isomorphic.

Proof. Every E ∈M(0, 2H, 1) is pure of dimension one. Therefore, Ext iOS (E ,OS) = 0 for i 6= 1

and the natural map

E ∼−−→ E∨∨ = Ext1
OS (Ext1

OS (E ,OS),OS)

is an isomorphism, [31, Prop 1.1.10]. Finally, one easily sees that E∨ is again H-Gieseker

stable. �
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In the following, we usually choose s = −1 and set

M := MH(0, 2H,−1).

With this choice of s, a stable vector bundle of rank two and degree one on a smooth curve

C ∈ |H| de�nes a point in M .

5.1. The linear systems |H| and |2H|. The geometry of the Mukai system is closely related

to the structure of the curves in the linear systems |H| and |2H|, which we want to analyze in

this section. A curve in the linear system |H| (resp. |2H|) has geometric genus 2 (resp. 5). In

(2.1), we already introduced the subloci

∆ := m(∆|H|) ⊂ Σ := im(m) ⊂ |2H|,

where m : |H| × |H| → |2H| comes from the Segre map. We have Σ ∼= Sym2 |H| and its generic

member is reduced and has two smooth irreducible components in the linear system |H| meeting

transversally in two points. The subset ∆ ∼= |H| ∼= P2 is the locus of non-reduced curves.

Recall that π : S → |H| ∼= P2 is a double covering, which is rami�ed along a smooth sextic

curve R ⊂ P2. We have

H0(S,OS(kH)) ∼= H0(P2,OP2(k))⊕H0(P2,OP2(k − 3)),

and so in particular

H0(S,OS(kH)) ∼= H0(P2,OP2(k)) if k = 1, 2.

We conclude that every curve in |H| (resp. in |2H|) is the pullback of a line ` (resp. a quadric

Q) in P2. In particular, every curve in |H| (resp. in |2H|) has singularities depending on the

intersection behavior of the rami�cation sextic R with ` (resp. Q) and has at most two (resp.

four) irreducible components. For example, let ` ⊂ P2 be a line and C := π−1(`) ∈ |H|. Assume

that C is reducible. Then C consists of two irreducible components C1 and C2, each isomorphic

to P1 with C1.C2 = 3. This is only possible if ρ(S) ≥ 2. If S is general, then all curves C ∈ |H|
are irreducible. We give a complete list of the possible singularities in the following table.
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#(` ∩R)red
intersection

multiplicities
g(C̃) C irred. ? singularities of C

5 1, 1, 1, 1, 2 1
√

1 node

4 1, 1, 2, 2 0
√

2 nodes

4 1, 1, 1, 3 1
√

1 cusp

3 2, 2, 2 0 × 3 transversal intersection pts.

3 1, 2, 3 0
√

1 node &1 cusp

3 1, 1, 4 0
√

1 A4-singularity

2 3, 3 0
√

2 cusps

2 2, 4 0 × 2 intersection pts. with mult. 2 and 1 resp.

2 1, 5 0
√

1 A5-singularity

1 6 0 × 1 intersection pt. with mult. 3

For an ample line bundle L on S and 0 ≤ i ≤ L2

2 + 1, we can consider the closed subvariety

V (i, |L|) := {D ∈ |L| | g(D̃) ≤ i} ⊂ |L|, (5.1)

which is called a (generalized) Severi variety. We have dimV (i, |L|) ≤ i and there are various

results about non-emptiness, irreducibility or smoothness of V (i, |L|) in the literature, e.g. [17].

However, most of the results apply to a primitive linear system on a general K3 surface, but

not to our situation, where we deduce a description of V (i, |H|) from the above table.

Corollary 5.2. The varieties V (i, |H|) are non-empty of dimension i for i = 0, 1. Moreover,

V (1, |H|) is irreducible and the locus of nodal curves is dense in V (1, |H|).
If (S,H) is general. Then V (1, |H|) ⊂ |H| ∼= P2 is a nodal curve of degree 30 and V (0, |H|)
consists of 324 points. Any curve in V (1, |H|)\V (0, |H|) is irreducible and has exactly one node

or one cusp as singularities. Any curve in V (0, |H|) has exactly two nodes as singularities.

Proof. It follows from the above table that V (1, |H|) is parameterized by the tangents of R, i.e.

V (1, |H|) ∼= R∨ ⊂ (P2)∨ = |OP2(1)|,

and the dual sextic R∨ has degree 30 if R is smooth. A curve in V (1, |H|) is nodal if it

corresponds to a tangent line that is tangent to R in exactly one point. Hence, this locus is

dense. A general smooth sextic has exactly 324 bitangents [26, IV Ex. 2.3]. �

Next, we study the linear system |2H| and de�ne

Vi := V (i, |2H|) (5.2)

for i = 0, . . . , 5. Recall that m : |H| × |H| → |2H| was the map coming from the Segre embed-

ding. We set

Σ{i,j} := m(V (i, |H|)× V (j, |H|)) ⊂ Vi+j
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for 0 ≤ i ≤ j ≤ 2 and

∆1 := m(∆V (1,|H|)) ⊂ V1,

i.e. Σ{i,j} ⊂ Σ is the locus of reducible curves, whose components have geometric genus bounded

by i and j, respectively and ∆1 ⊂ ∆ is the locus of non-reduced curves, with underlying singular

curve. We keep writing Σ for Σ{2,2}.

Corollary 5.3. We have

dim Σ{i,j} = i+ j and dim ∆1 = 1.

Moreover, Σ{i,j} and ∆1 are irreducible if i 6= 0 and Σ{0,j} has 324 irreducible components.

Finally, we let

Λi := {D ∈ Vi | D is integral} ⊂ Vi.

The same considerations leading to the above table in the case of quadrics instead of lines in

P2 show that Λi is an irreducible subvariety of dimension i. Moreover, a general curve in Λi

has exactly 5 − i nodes as its only singularities. We sum up our discussion in the following

proposition.

Proposition 5.4. The Severi varieties Vi ⊂ |2H| are non-empty of pure dimension i. Their

irreducible components correspond to integral, reducible and non-reduced curves, respectively.

More precisely, we have

V4 = Λ4 ∪ Σ

V3 = Λ3 ∪ Σ{1,2}

V2 = Λ2 ∪ Σ{0,2} ∪ Σ{1,1} ∪∆

V1 = Λ1 ∪ Σ{0,1} ∪∆1.

Here, all varieties occurring on the right hand side but Σ{0,2} and Σ{0,1} are irreducible. �

Note that V4 = Λ4 ∪Σ ⊂ |2H| ∼= P5 is the discriminant divisor of f . We compute the degree

of its components.

Lemma 5.5. We have

deg[Σ] = 3 and deg[Λ4] = 42.

In particular, the discriminant divisor of f has degree 45.

Proof. The easiest way, to see that deg[Σ] = 3 is a geometric argument. Choose 4 points

x1, . . . , x4 in general position and consider the line ` = {D ∈ |2H| | xi ∈ D for all i = 1, . . . 4}.
There is a unique (resp. no) curve C ∈ |H| passing through two (resp. three) points in general

position. Hence, deg Σ = #(` ∩ Σ) = 3, corresponding to the three possible partitions of
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x1, . . . , x4 into pairs of two points. Alternatively, after a choice of coordinates Σ ∼= Sym2 P2 is

embedded into P5 via the map induced by

P2 × P2 → P5

[x0 : x1 : x2], [y0 : y1 : y2] 7→ [x0y0 : x1y1 : x2y2 : x0y1 + x1y0 : x0y2 + x2y0 : x1y2 + x2y1].

(5.3)

One checks that the image is cut out by the equation,

f0f
2
5 + f1f

2
4 + f2f

2
3 = 4f0f1f2 + f3f4f5,

where the coordinates fi of P5 are ordered as in (5.3).

To prove deg[Λ4] = 45, we use the computation from [49, �5]. Let C′ =
⋃
t∈P1 Ct be a general

pencil of curves in the linear system B = |2H|, i.e. C′ = C ∩ (S × P1), where C ⊂ S × B

is the universal curve and P1 ⊂ B a general line. Then C′ ⊂ S × P1 is de�ned by a section

s ∈ H0(S × P1,OS(2H)�OP1(1)) and

C′sing := V (s⊕ ds) =
⋃
t∈P1

(Ct)sing

is the union of the singular points of Ct, where ds ∈ H0(S×P1,ΩS(2H)�OP1(1)). We compute

deg c3((OS(2H)�OP1(1))⊕ (ΩS(2H)�OP1(1))) = 48, (5.4)

i.e. C′sing consists of 48 points. As a general pencil contains three curves in Σ which have

two singular points and a generic integral singular curve has exactly one nodal singularity, we

conclude deg Λ4 = 42. �

Remark 5.6. In [49, �5] the computation (5.4) serves as a demonstration for a formula of

the degree of the discriminant locus of a Lagrangian �bration with `good singular �bers'. An

example of such a �bration is the Beauville�Mukai system over a primitive curve class and the

discriminant divisor is irreducible of degree 6(n + 3), where n is the dimension of the base of

the �bration. However, in our example the �bers over ∆ are not `good singular �bers' and we

�nd a di�erent result.

5.2. Fibers of the Mukai morphism and structure of M . In this section, we collect some

information on the �bers of the Mukai morphism. Part of this has already appeared in Section 2.

The moduli spaceM = MH(0, 2H,−1) contains a dense open subset consisting of the sheaves

that are line bundles on their support. The restriction of the Mukai morphism to this locus is

smooth [38, Prop 2.8] and the image of the restricted morphism is B \ ∆ [13, Lem 3.5.3]. In

particular, MΣ := f−1(Σ) contains a dense open subset that parameterizes the push forwards

of line bundles, but M∆ := f−1(∆) does not.
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Following [13, Proposition 3.7.1], we can give a description of the �bers of the Mukai mor-

phism. To this end, �rst assume that Pic(S) = Z · H. The �bers of the Mukai morphism

f : M → B show the following characteristics:

f−1(x) =


is reduced and irreducible if x ∈ B \ Σ

is reduced and has two irreducible components if x ∈ Σ \∆

has two irreducible components with multiplicities if x ∈ ∆.

(5.5)

Let us make this more precise for generic points:

• In the �rst case, let x ∈ B \Σ correspond to a smooth curve D, then f−1(x) ∼= Pic3(D).

• In the second case, let x ∈ Σ \∆ correspond to the union D = D1 ∪D2 of two smooth

curves meeting transversally in two points. Then f−1(x) contains a dense open subset

parameterizing line bundles onD. The two irreducible components of f−1(x) correspond

to line bundles with partial degree (2, 1) and (1, 2).

• In the third case, let x ∈ ∆ correspond to a non-reduced curve with smooth underlying

curve C ∈ |H|. Then f−1(x) has two non-reduced irreducible components, which we

denote as follows

M2C := f−1(x)red = M0
2C ∪M1

2C . (5.6)

The �rst component M0
2C consists of those sheaves, that are pushed forward from the

reduced curve C. With its reduced structure it is isomorphic to the moduli space of

stable vector bundles of rank two and degree one on C. The other component M1
2C is

the closure of those sheaves that can not be endowed with an OC-module structure. All

these sheaves �t into a short exact sequence

0→ i∗(L(x)⊗ ω−1
C )→ E → i∗L → 0, (5.7)

where i : C ↪→ S is the inclusion, and L ∈ Pic1(C) is the torsionfree part of E|C and

x ∈ C is the support of the torsion part of E|C . This extension is intrinsically associated

to E , see Part I.

In the case of a K3 surface of higher Picard rank, the general picture remains the same. But

due to reducible curves in the linear system |H| or B \ Σ, the �bers could exceptionally have

more irreducible components. For example, if x ∈ B \ Σ corresponds to a reducible curve with

two smooth components, then f−1(x) still contains a dense open subset parameterizing line

bundles. However, following [13, Lem 3.3.2] one �nds, that the numerical restrictions imposed

by the stability now allow partial degrees (5,−1), (4, 0), (3, 1), (2, 2), (1, 3), (0, 4), (−1, 5). Thus,

in this case f−1(x) has seven irreducible components.
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The decomposition (5.6) also exists globally over the locus of curves D = 2C with C ∈ |H|
smooth, which we denote by ∆◦ ⊂ ∆. Here, we have

M∆◦ = f−1(∆◦)red = M0
∆◦ ∪M1

∆◦ ,

where M0
∆◦ is a relative moduli space of stable vector bundles and M1

∆◦ the closure of its

complement, [13, Proposition 3.7.23]. We set

M0
∆ = M0

∆◦ and M
1
∆ = M1

∆◦ . (5.8)

6. Orbits under rational equivalence

Our strategy to �nd algebraically coisotropic subvarieties is to single out points whose orbit

under rational equivalence has a high dimension. In this section, we explain how this can be

done combining results of Voisin and Shen, Yin and Zhao.

6.1. Preliminaries. We start by recalling some general de�nitions. Let (X,σ) be an irre-

ducible holomorphic symplectic manifold of dimension 2n. For a smooth subvariety Y ⊂ X, we

let

T ⊥Y := ker(TX
∼−→ ΩX � ΩY ),

where the �rst arrow is given by σ.

(i) A subvariety Y ⊂ X is a constant cycle subvariety [33] if all its points are rationally

equivalent in X. Note that this is the case, if Y contains a dense open subset U , such

that all points in U are rationally equivalent in X. Mumford's theorem [45] implies that

a constant cycle subvariety Y is isotropic [55, Cor 1.2], i.e.

TZreg ⊂ T ⊥Zreg
or equivalently σ|Yreg = 0.

In particular, dimY ≤ n and if dimY = n, then Y is a Lagrangian subvariety.

(ii) A subvariety Z ⊂ X is algebraically coisotropic [55, Def 0.6] if Z is coisotropic (i.e. T ⊥Zreg
⊂

TZreg) and the corresponding foliation is algebraically integrable. For a subvariety of

codimension i, this is equivalent to the existence of a 2n− 2i-dimensional variety T and a

rational surjective map φ : Z 99K T such that

T ⊥Zreg
∼= TZ/T (where de�ned) or equivalently σ|Z = φ∗σT for some (2, 0) form σT on T.

Actually, T and φ are unique up to birational equivalence. We call φ the associated

isotropic �bration.

(iii) For a point x ∈ X, its orbit under rational equivalence is

Ox := {x′ ∈ X | [x] = [x′] ∈ CH0(X)} ⊂ X,

which is a countable union of closed algebraic subvarieties [53, Lem 10.7]. Its dimension

is de�ned to be the supremum over the dimensions of its irreducible components.
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Following [55, Def 0.2], we set

FiX := {x ∈ X | dimOx ≥ n− i}1.

for i = 0, . . . , n. This is again a countable union of closed algebraic subvarieties and de�nes a

�ltration on the points of X

F0X ⊂ F1X ⊂ · · · ⊂ FnX = X. (6.1)

From [55, Thm 1.3] it is known that

dimFiX ≤ n+ i (6.2)

and conjecturally [55, Conj 0.4] equality holds true. The following theorem says that a compo-

nent of maximal dimension is algebraically coisotropic.

Theorem 6.1 ([55, Thm 0.7]). Let Z ⊂ X be a subvariety of codimension n − i such that

Z ⊂ FiX, then Z is algebraically coisotropic and the �bers of the associated isotropic �bration

φ : Z 99K T are constant cycle subvarieties of dimension n− i.

Now, let X = Mσ(v) be a smooth, projective moduli space of (Bridgeland-)stable objects in

Db(S). In this situation, we have the following beautiful criterion for rational equivalence.

Theorem 6.2 ([41],[50, Conj 0.3]). Two points E , E ′ ∈Mσ(v) satisfy

[E ] = [E ′] ∈ CH0(Mσ(v))

if and only if

ch2(E) = ch2(E ′) ∈ CH0(S).

Remark 6.3. As ch2(E) = 1
2c1(E)2− c2(E), and c1(E) is �xed for all E ∈Mσ(v), one could also

phrase the theorem using c2.

In particular, for E ∈Mσ(v) we have

OE = {E ′ ∈Mσ(v) | ch2(E ′) = ch2(E) ∈ CH0(S)} ⊂Mσ(v).

Using that the union of all constant cycle curves in S is Zariski dense and Theorem 6.2 allows

one to prove.

Theorem 6.4 ([50, Thm 0.5(i)]). For all 0 ≤ i ≤ n there is an algebraically coisotropic sub-

variety Z ⊂ Mσ(v) of codimension i such that the isotropic �bration Z 99K T has generically

constant cycle �bers of dimension i. In particular,

dimFiMσ(v) = n+ i,

i.e. (6.2) is actually an equality.

1We reversed the numbering from [55].
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Next, one could ask how the �ltration FiMσ(v) interferes with the second Chern classes. The

answer is to consider O'Grady's �ltration on CH0(S). Let us recall some results about CH0(S).

In [9], Beauville and Voisin prove that any point lying on a rational curve in S determines

the same class

cS ∈ CH0(S),

which has the property that the image of the intersection product Pic(S)⊗ Pic(S) → CH0(S)

is contained in Z · cS . In [48], building on this class, now called the Beauville�Voisin class,

O'Grady introduces an increasing �ltration S• on CH0(S),

S0 CH0(S) ⊂ S1 CH0(S) ⊂ . . . ⊂ Si CH0(S) ⊂ . . . ⊂ CH0(S),

where Si CH0(S) is the union of cycles of the form [z] + d · cS for some e�ective zero-cycle z

of degree i and d ∈ Z. In particular, S0 CH0(S) = Z · cS . O'Grady's �ltration S•CH0(S) has

several useful properties, [48, Cor. 1.7 and Claim 0.2]:

(1) The �ltration is compatible with addition, i.e. if α ∈ Si CH0(S) and β ∈ Sj CH0(S), then

α+ β ∈ Si+j CH0(S).

(2) Each step of the �ltration Si CH0(S) is closed under multiplication with Z, i.e. if α ∈
Si CH0(S) then m · α ∈ Si CH0(S) for every m ∈ Z.

(3) If C is an irreducible, smooth projective curve and f : C → S. Then

f∗CH0(C) ⊂ Sg(C) CH0(S).

Theorem 6.5 ([50, Thm 0.5(ii)]). Let Mσ(v) be a smooth projective moduli space of Bridgeland

stable objects in Db(S) with dimMσ(v) = 2n. If E ∈Mσ(v) satis�es ch2(E) ∈ Si CH0(S), then

E ∈ FiMσ(v). Moreover, ifMσ(v) is birational to the Hilbert scheme S[n], then also the converse

implication holds true, i.e. in this case

FiMσ(v) = {E ∈Mσ(v) | ch2(E) ∈ Si CH0(S)}.

Proof. We sketch the proof along the lines of [50, Proof of Thm 0.5(ii)], where the �rst part of

the theorem is proven. The case of S[n], i.e. that for all ξ ∈ S[n]

dimOξ ≥ n− i ⇐⇒ [Supp(ξ)] ∈ Si CH0(S)

is proven in [54, Thm 1.4]. Note that only the implication from left to right needs a proof. The

other implication follows because any point representing the Beauville-Voisin lies on a rational

curve and hence if Supp(ξ) contains (n− i) · cS , we have dimOξ ≥ n− i.
For the general case, let E ∈M = Mσ(v). By [50, Thm 0.1], we can write

ch2(E) = [Supp(ξ)] + d · [cS ] ∈ CH0(S)
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for some ξ ∈ S[n] and d ∈ Z depending on the degree of ch2(E), which is �xed. After knowing

the result for S[n], the theorem translates into the statement

dimOξ ≥ n− i⇒ dimOE ≥ n− i (resp. dimOξ ≥ n− i⇔ dimOE ≥ n− i, if M ∼bir S
[n]).

The two orbits can be compared by means of the incidence variety

R = {(E , ξ) ∈M × S[n] | ch2(E) = [Supp(ξ)] + d · [cS ] ∈ CH0(S)},

which is a countable union of Zariski closed subsets in M × S[n]. There exists an irreducible

component R0 ⊂ R which projects generically �nite and surjective to both factors, and hence

yields a correspondence between the two orbits. However, in order to compare their dimen-

sions, one needs to know that the components of maximal dimension in every orbit under

rational equivalence are dense. This is known for the Hilbert scheme, whence the inclusion

SSYZ
i CH0(M) ⊂ SV

i CH0(M) always holds. The reverse inclusion is true if M is birational to

S[n] but in general not known. �

6.2. Orbits under rational equivalence in M . We turn back to our favorite example M =

MH(0, 2H,−1) with the goal in mind, to give explicit constructions of constant cycle subvarieties

in M . The �rst step is to understand the orbits under rational equivalence in M and the

�ltration

F0M ⊂ F1M ⊂ . . . ⊂ F5M = M.

Recall that M is birational to S[5] and thus by Theorem 6.5, we know

FiM = {E ∈M | dimOE ≥ 5− i} = {E ∈M | ch2(E) ∈ Si CH0(S)}

and

dimFiM = 5 + i

for 0 ≤ i ≤ 5. The following is a straightforward computation using the Grothendieck�Riemann�

Roch theorem.

Lemma 6.6. Let i : D ↪→ S be a reduced curve and let F be a vector bundle on D.

(i) Assume that D is irreducible and let ν : D̃ → D be its normalization. Then

ch2(i∗F) = i∗ν∗c1(ν∗F)− rk(F)(1
2 i∗ν∗c1(ωD̃)−

∑
p∈D

mp[p]) ∈ CH0(S), (6.3)

where mp = lg(ν∗OD̃/OD)p. In particular,

ch2(i∗F) ∈ im(CH0(D̃)
i∗ν∗−−→ CH0(S)) ⊂ Sg(D̃) CH0(S).

(ii) Assume that D = D1 ∪D2 has two irreducible components. Then

ch2(i∗F) = ch2(i1∗F|D1) + ch2(i2∗F|D2)− rk(F)(D1.D2)cS ∈ CH0(S), (6.4)
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were ik : Dk ↪→ S, k = 1, 2 are the inclusions of the components. In particular,

ch2(i∗F) ∈ Sg(D̃1)+g(D̃2) CH0(S).

�

Example 6.7. Using Lemma 6.6 we compute ch2(E) for some cases of stable sheaves E occuring
in M :

(i) Let E ∈ M such that D = Supp(E) is smooth, then E = i∗L, where i : D ↪→ S is the

inclusion and L ∈ Pic3(D). We �nd

ch2(E) = −4cS + i∗c1(L). (6.5)

(ii) Let E ∈M be the pushforward of a line bundle L on its support D = Supp E and assume

that D = D1 ∪D2 has two smooth and connected components. We write E = i∗L, then

ch2(E) = −4cS + i1∗c1(L|D1) + i2∗c1(L|D2), (6.6)

where ik : Dk ↪→ C, k = 1, 2 are the inclusions.

(iii) Let E ∈ M0
2C for a smooth curve C ∈ |H|, i.e. Supp(E) = 2C and E = i∗E0, where

i : C ↪→ S is the inclusion and E0 is a vector bundle of rank 2 and degree 1 on C. Then

ch2(E) = −2cS + i∗c1(E0). (6.7)

(iv) Let E ∈ M1
2C \M0

2C for a smooth curve C ∈ |H|, i.e. Supp(E) = 2C but E is not pushed

forward along the inclusion i : C ↪→ S. However, E �ts into a short exact sequence

0→ i∗(L(x)⊗ ω−1
C )→ E → i∗L → 0,

for some L ∈ Pic1(C) and x ∈ C. Hence

ch2(E) = ch2(i∗(L(x)⊗ ω−1
C )) + ch2(i∗L) = −4cS + [i(x)] + 2i∗c1(L). (6.8)

Corollary 6.8. Let E ∈M and let D = Supp(E). Then

ch2(E) ∈ Fg(D̃)M,

where g(D̃) is the geometric genus of D. �

The geometric genus of D is the genus the normalization of D (resp. of Dred) and the sum

over the genera of the normalizations of the irreducible components if D is reducible.

Corollary 6.9. The �ber F = f−1(D) over a curve D ∈ |2H| is a constant cycle Lagrangian if

and only if D is a constant cycle curve in S. If D ∈ ∆ this means that the underlying reduced

curve is constant cycle.
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Proof. It su�ces to consider a dense open subset of F , in order to decide whether F is a constant

cycle subvariety. First assume that i : D ↪→ S is reduced. Then F contains a dense open subset

parameterizing line bundles of �xed degree. In Lemma 6.6 we saw that the class of i∗L in

CH0(M) depends on

Pick(D)→ CH0(S), L 7→ i∗c1(L),

which is constant if D is a constant cycle curve. Conversely, assume that F ⊂M is a constant

cycle subvariety. Then in particular,

i∗c1(OD(kx)) = ki∗[x] ∈ S0 CH0(S)

and hence [x] = cS for all x ∈ D. (We use that CH0(S) is torsionfree).

If D = 2C is non-reduced, we apply the same argument to the explicit description (5.6) of the

�ber F . �

7. Algebraically coisotropic subvarieties in M

We give several examples of algebraically coisotropic subvarieties in M = MH(0, 2H,−1).

7.1. Horizontal examples from Brill�Noether loci. Brill�Noether theory allows one to

produce examples of constant cycle subvarieties.

Let B◦ ⊂ B be the locus of smooth curves and C◦ → B◦ the restricted universal curve. For

any k, we have an isomorphism

MH(0, 2H, k − 4)◦ ∼= PickC◦/B◦ ,

where MH(0, 2H, k− 4)◦ is the preimage of B◦ under the support map MH(0, 2H, k− 4)→ B.

For k = 1, 3, we de�ne

BN0
k(B

◦) := {L ∈MH(0, 2H, k − 4)◦ | H0(S,L) 6= 0} ⊂MH(0, 2H, k − 4)◦

and consider the closures

Z1 := BN0
1(B◦) ⊂MH(0, 2H,−3) and Z3 := BN0

3(B◦) ⊂M. (7.1)

One can show that Z3 is strictly contained in BN0(M) := {E ∈M | H0(S, E) 6= 0} as BN0(M)

has an additional component over ∆.

Proposition 7.1. The subvarieties Zi ⊂ MH(0, 2H, i− 4) have codimension 5− i for i = 1, 3

and satisfy

Zi ⊂ FiMH(0, 2H, i− 4).

In particular, they are algebraically coisotropic.
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Proof. A point in BN0
i (B

◦) is of the form E = i∗OD(ξ), where D ∈ B◦ and ξ ⊂ D is an e�ective

divisor of degree i. Hence

ch2(E) ≡ [Supp(ξ)] mod Z · cS
in CH0(S) and we conclude ch2(E) ∈ Si CH0(S), which in turn gives Zi ⊂ FiMH(0, 2H, i− 4).

By Theorem 6.2, this implies dimZi ≤ 5 + i, whereas the reverse inequality is known from

Brill�Noether theory [2, IV Lem 3.3]. �

In Proposition 9.6, we prove that Z1 is actually a projective bundle over S. Precisely, let

D ∈ |2H| and L ∈ Z1 ∩ f−1(D), i.e. L ∈ Pic1(D) is e�ective and can uniquely be written as

OD(x) for some x ∈ D. This way, Z1 is isomorphic the universal curve C ⊂ |2H|×S, which is a

P4 bundle with respect to the second projection. With the same arguments, we also prove that

Z3 is generically a P2-bundle over S[3], which parameterizes the line bundles OD(ξ) over ξ ∈ S[3].

In the following, we will consider Z1 as a subvariety of M via the isomorphism

MH(0, 2H,−3)→M, E 7→ Ext1(E ,OS)⊗OS(−H). (7.2)

In particular, over a smooth curve D ∈ |2H|, we have

Pic1(D)→ Pic3(D), L 7→ L∨ ⊗OS(H)|D.

Lemma 7.2. We have

Z1 ⊂ {E ∈M | h0(E) ≥ 2}.

In particular, there is an inclusion

Z1 ⊂ Z3.

Proof. It su�ces to show the result over a smooth curve D ∈ |2H|. Let L ∈ Pic1(D) such that

H0(D,L) 6= 0. We want to show that dimH0(D,L∨ ⊗OS(H)|D) ≥ 2. Write L = OD(x) for a

point x ∈ D. On S, we have a short exact sequence

0→ OS(−H)→ Ix(H)→ OD(−x)⊗OS(H)|D → 0

and the resulting long exact cohomology sequence proves the lemma. �

One can also de�ne Z1 directly as a subvariety of M . In Corollary 10.5, we prove that Z1 is

the closure of the Brill�Noether locus

BN1
3(B◦) := {L ∈M◦ | h0(S,L) ≥ 2} ⊂M.

Due to the non-primitivity of the linear system |2H|, unexpected things happen here. Namely,

the smooth curves D ∈ |2H| are hyperelliptic and we have W 1
3 (D) 6= ∅ for all irreducible curves

D ∈ |2H|, even though the Brill�Noether number ρ(5, 1, 3) = 5 − 2(5 − 3 + 1) is negative (see

also Remark 9.8).
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7.2. Vertical examples from singular curves. In this section, we give examples of alge-

braically coisotropic subvarieties, that arise as preimages of subvarieties in B. In Corollary 6.9,

we already treated the case of a �ber over a point D ∈ B. Namely, f−1(D) is a constant cycle

Lagrangian, if and only if D is a constant cycle curve.

We set

MVi := f−1(Vi) ⊂ FiM,

where Vi := {D ∈ |2H| | g(D̃) ≤ i} for i = 1, . . . , 4 was de�ned in (5.2).

Proposition 7.3. The subvarietiesMVi are equidimensional of codimension 5−i for i = 1, . . . , 4

and satisfy

MVi := f−1(Vi) ⊂ FiM.

In particular, they are algebraically coisotropic.

Proof. We saw in Proposition 5.4 that dimVi = i and in Corollary 6.8 that g(D̃) ≤ i implies

that f−1(D) ⊂ FiM for every D ∈ |2H|. �

In the following section, we �nd the isotropic �brations for MVi .

7.2.1. Isotropic �brations. In order to understand the constant cycle subvarieties resulting from

the above examples, we write down the isotropic �bration for MΣ ⊂ MV4 and M∆ ⊂ MV2 and

MΛi ⊂MVi for i = 1, . . . , 4.

Proposition 7.4. For every i = 1, . . . , 4, there is a quasi-projective scheme Ti of dimension 2i

�tting into a diagram

MΛi

φi
// //

f !! !!

Ti

~~

Λi.

The �bers of φi are rational constant cycle subvarieties of M of dimension 5− i.

Proof. A general point in MΛi is the pushforward of a line bundle on a singular curve in Λi. Its

class in CH0(S) however, depends only on the pullback of the line bundle to the normalization

(cf. Lemma 6.6). This is what MΛi 99K Ti encodes.

Consider the universal curve over |2H| and let Ci → Λi be its restriction to Λi ⊂ |2H|. By

construction, the generic �ber of Ci is singular and so must be the total space Ci. Hence, the

normalization

C̃i → Ci
generically parameterizes the normalization of the curves in Λi. We set

Ti := Pic3
C̃i/Ui

.
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Then pulling back along C̃i → Ci de�nes

φi : MΛi ⊃ Pic3
Ci/Λi 99K Ti := Pic3

C̃i/Ui

and by Lemma 6.6(i) the �bers are constant cycle subvarieties of M . Over the open dense

subset of curves in Λi, that have exactly 5− i nodes as their only singularities, the �bers of φi

are isomorphic to G5−i
m . �

Proposition 7.5. There is an eight-dimensional quasi-projective scheme TΣ �tting into a dia-

gram

MΣ
φΣ

// //

f !! !!

TΣ

~~

Σ.

The �bers of φΣ are rational constant cycle curves in M .

Proof. A general point inMΣ is the pushforward of a line bundle on a reducible curve i : D ↪→ S

and by Lemma 6.6 (ii) the class [i∗L] ∈ CH0(S) depends exactly on the restriction of L to each

component. This is, what TΣ shall parameterize.

Let CΣ\∆ → Σ\∆ be the universal curve over Σ\∆. Even though every �ber has two irreducible

components, the total space CΣ\∆ is irreducible. However, after the base change

C̃Σ\∆ //

��

CΣ\∆

��

P2 × P2 \∆ // Σ \∆,

we have a decomposition C̃Σ\∆ = C̃1
Σ\∆ ∪ C̃

2
Σ\∆ into two irreducible components, which are

identi�ed under the natural Z/2Z-action. Note that the horizontal arrows are principal Z/2Z-
bundles and the vertical arrows are Z/2Z-equivariant. On the level of Picard schemes, restricting

to each component gives a Z/2Z-equivariant map

PicC̃Σ\∆/Σ\∆ −→ PicC̃1
Σ\∆/Σ\∆

×Σ\∆ PicC̃2
Σ\∆/Σ\∆

. (7.3)

Here, Z/2Z = 〈τ〉 acts on the right hand side via

τ · (L1,L2) = (τ∗L2, τ
∗L1).

(By a slight abuse of notation, τ also denotes the map identifying the isomorphic components

C̃1
Σ\∆ and C̃2

Σ\∆). The quotient

PicC̃Σ\∆/Σ\∆ /τ
∼= PicCΣ\∆/Σ\∆ −→ (PicC̃1

Σ\∆/Σ\∆
×Σ\∆ PicC̃2

Σ\∆/Σ\∆
)/τ
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of (7.3) by τ is what we are looking for, once the correct degree has been �xed. We set

TΣ := (Pic1
C̃1

Σ\∆/Σ\∆
×Σ\∆ Pic2

C̃2
Σ\∆/Σ\∆

tPic2
C̃1

Σ\∆/Σ\∆
×Σ\∆ Pic1

C̃2
Σ\∆/Σ\∆

)/τ

and take φΣ to be the above map, whose �bers are isomorphic to Gm. �

Proposition 7.6. There is a four-dimensional quasi-projective scheme T∆ �tting into a diagram

M i
∆

φi∆
// //

f     

T∆

~~

∆

for i = 0, 1. The �bers of φ0
∆ are three-dimensional rational constant cycle subvarieties in M .

Over 2C ∈ ∆, the �bers of (φ1
∆)2C are birational to a P2-bundles over a curve of genus 17 that

is étale of degree 16 over C. In particular, they yield examples of three-dimensional constant

cycle subvarieties in M that are not rationally connected.

Proof. We consider the component M0
∆ �rst. A general point in M0

∆ is of the form E = i∗E0,

where i : C ↪→ S is the inclusion of a smooth curve C ∈ |H| ∼= ∆ and E0 is a vector bundle of

rank 2 on C. The class [i∗E0] ∈ CH0(S) is determined by i∗c1(E0). This suggests to set

T∆ := Pic1
CU/U ,

where U ⊂ |H| is the open subset of smooth curves and CU → U denotes the universal curve

and then de�ne φ0
∆ as the determinant map. The �bers of φ0

∆ are isomorphic to a moduli space

of stable vector bundles of rank two with �xed determinant of degree one, which is rational [46],

[47, Prop 2].

To deal withM1
∆, let E ∈M1

∆ \ (M0
∆∩M1

∆) such that C := Supp(E)red ∈ U . Then, by (5.7) and

Lemma 6.6 the class ch2(E) is determined by i∗c1(L⊗2(x)⊗ω−1
C ), where L := E|C/T ∈ Pic1(C)

and x := Supp(T ) ∈ C with T being the torsion subsheaf of E|C and i : C ↪→ S being the

inclusion. Consequently, we de�ne

φ1
∆ : M1

∆ 99K T∆, E 7→ L⊗2(x)⊗ ω−1
C .

We want to compute the �bers of (φ1
∆)2C . First, we forget the twist with ω−1

C . Then we can

factor (φ1
∆)2C as follows

M1
2C 99K Pic1(C)× C → Pic3(C), E 7→ (L, x) 7→ L⊗2(x).

The �rst arrow is de�ned outside the intersection M0
2C ∩M1

2C and its �bers are a torsor under

Ext1
C(i∗L, i∗(L(x)⊗ ω−1

C )) ∼= C2, cf. Corollary 2.4. Thus the �bers of (φ1
∆)2C are an A2-bundle

over the �bers of the second arrow, which we factor as follows

Pic1(C)× C → Pic2(C)× C µ−→ Pic3(C), (L, x) 7→ (L⊗2, x) 7→ L⊗2(x).
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Here, the �rst map is étale of degree 16 and the �bers of the second map

µ : Pic2(C)× C → Pic3(C), (L, x) 7→ L(x)

are isomorphic to C. To see this, let M ∈ Pic3(C) and consider p2 : µ−1(M) → C. As

L(x) ∼=M for �xed x ∈ C determines L ∈ Pic2(C), this projection is an isomorphism and the

claim follows. �

Remark 7.7. A combination of the proofs of Propositions 7.4, 7.5 and 7.6 allows one to �nd

the isotropic �brations for the remaining cases MVi , i = 1, 2, 3.

7.3. More examples. We construct some more examples of algebraically coisotropic subva-

rieties.

7.3.1. Horizontal constant cycle Lagrangians. To start with, we produce a constant cycle La-

grangian that dominates B. For example, any section of M → B would work. Unfortunately,

f does not admit a section [4]. Below, we produce a multisection of degree of 210. Recall that

M◦ ∼= Pic3
C◦/B◦

and there is an exact sequence [24, (9.2.11.5)]

0→ Pic(C◦)/Pic(B◦)→ PicC◦/B◦(B
◦)→ Br(B◦)→ . . . .

Moreover, one can show that

Pic(C◦)/Pic(B◦) ∼= Pic(C)/Pic(B) ∼= Pic(S),

where the last isomorphism holds because C ⊂ B × S is a P4-bundle over S with Op2(1) =

p∗1OB(1). For L ∈ Pic(S) with n = 2H.L, the corresponding section is given by

sL : B◦ → PicnC◦/B◦ , D 7→ L.D.

If Pic(S) = Z ·H, for example, one gets sections for n ≡ 0 mod 4. There is always a section of

Pic2
C◦/B◦ that does not come from S.

Lemma 7.8. There is a section

g1
2 : B◦ → Pic2

C◦/B◦

such that a curve D ∈ B◦ maps to the unique line bundle g1
2(D) ∈ Pic2(D) with h0(g1

2(D)) = 2.

In particular,

(g1
2)⊗ (g1

2) = sH : B◦ → Pic4
C◦/B◦

and g1
2 is not of the form sL for L ∈ Pic(S).
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Proof. This is a consequence of the same phenomenon occurring for the universal family of

smooth quadrics in P2. We identify B = |OP2(2)| and we will see that the lemma holds true for

B◦ = B \Σ. Let Q◦ ⊂ B◦×P2 be the universal quadric, which is an étale P1-�bration, but not

a projective bundle. We claim that there is a section

s : B◦ → Pic1
Q◦/B◦

that is not induced by a line bundle on Q◦. Indeed, �x a line ` ⊂ P2 and consider

B̃◦ := Q◦ ∩ (B◦ × `)→ B◦.

This morphism is �nite, �at of degree 2 and the base change Q̃◦ → B̃◦ admits a section.

Therefore we get

s̃ : B̃◦ → Pic1
Q̃◦/B̃◦ .

As the two points in B̃◦ lying over a �xed point in B◦ de�ne the same line bundle, s̃ descends

to a section s. By de�nition, s⊗ s is the section de�ned by p∗2OP2(1), which does not admit a

square root. Pulling back s along C◦ → Q◦ de�nes g1
2. �

Remark 7.9. In all our examples, it does not matter if we identify M and MH(0, 2H,−3) via

the isomorphism (7.2) (given by tensorization and dualization) or the birational map induced

by the section g1
2. The composition of the one map with the inverse of the other is the rational

involution on M that comes from the natural involution ι[5] on S[5].

Now, we use the squaring map

ρ2 : Pic1
C◦/B◦ −→ Pic2

C◦/B◦ , L 7→ L
⊗2,

to construct a constant cycle Lagrangian from g1
2(B◦). Speci�cally, we set

L1
2 := ρ−1

2 (g1
2(B◦)) ⊂MH(0, 2H,−3)

∼−→M.

Lemma 7.10. The subvariety L1
2 is a constant cycle Lagrangian in M , which is generically

�nite of degree 210 over B.

Proof. It is clear, that dimL1
2 = 5. We will show that L1

2 ⊂ F0MH(0, 2H,−3). Let D ∈ B◦ and
L ∈ Pic1(D) such that L⊗2 = g1

2(D). Then

4 · i∗c1(L) = i∗c1(OS(H)|D) = 4cS ∈ CH0(S).

This implies i∗c1(L) = cS because CH0(S) is torsionfree. We conclude that a general point in

L1
2 is contained in S0 CH0(S) as desired. Finally, ρ2 is �nite, étale of degree 210. �

Remark 7.11. Another example of a horizontal constant cycle Lagrangian is constructed more

generally for any Lagrangian �bration by Lin [39].
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7.3.2. Examples in M∆. Starting from φi∆ : M i
∆ 99K T∆ (cf. Proposition 7.6), we construct

two examples of constant cycle Lagrangians in M0
∆ and M1

∆. Recall that T∆ = Pic1
CU/U ,

where U ⊂ |H| is the open subset consisting of smooth curves and the �bers of φi∆ are three-

dimensional constant cycle subvarieties in M .

The idea of Example 7.12 is to �nd a constant cycle surface in T∆. Then the preimage

under φi∆ is a constant cycle Lagrangian in M contained in M i
∆. This idea is taken further in

Example 7.13. Here, we �nd a surface in T∆, that consists of line bundles whose �rst Chern

class is a multiple of the Beauville�Voisin class, when pushed forward to S. By Theorem 6.5,

the preimage of this surface is also a constant cycle Lagrangian in M .

For simplicity, we assume from now on that Pic(S) = Z ·H. Then every curve in |H| is integral
and Pic1

C|H|/|H| is representable by a smooth, quasi-projective scheme.

Example 7.12. We construct a constant cycle subvariety of Pic1
C|H|/|H| applying the same trick

as for the construction of L1
2. Namely, let

ρ2 : Pic1
C|H|/|H| → Pic2

C|H|/|H|

and consider the section sH of Pic2
C|H|/|H| de�ned by H. We set

ZH := ρ−1
2 (sH(|H|)).

Since Pic2
C|H|/|H| can be embedded as an open subset of MH(0, H, 2), we can apply Theorem

6.5 to see that ZH is a constant cycle subvariety, as in the proof of Lemma 7.10. Now, ZH ⊂
Pic2
C|H|/|H| is a smooth, quasi-projective surface and the morphism ZH → |H| is �nite, étale of

degree 24, when restricted to the open subset of smooth curves U ⊂ |H|. By Corollary 5.2,

we know that U = |H| \ V (1, |H|) is the complement of a nodal curve of degree 30. Therefore

π1(U) ∼= Z/30Z [18, Prop 1.3 & Thm 1.13]. Consequently, ZH must have 8 pairwise isomorphic

connected components that restrict over U to the unique degree 2 cover of U . We replace ZH

by one of its irreducible components and de�ne

Li := (φi∆)−1(ZH) ⊂M i
∆ for i = 0, 1.

By construction, these are constant cycle Lagrangians in M .

Example 7.13. The idea of this example is to consider the preimage of two-dimesional sub-

varieties in T∆ that are not constant cycle subvarieties themselves, but consist of line bundles

whose �rst Chern class is the Beauville�Voisin class when pushed forward to S.

To begin with, we have an embedding

Θ: C|H| ↪→ Pic1
C|H|/|H|, C 3 x 7→ OC(x).
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Then, for example a vector bundle E ∈M0
∆ lies over Θ(C|H|) if and only if its determinant line

bundle is e�ective (of degree one). Therefore,

(φi∆)−1(Θ(C|H|)) ⊂ F1M and codim(φi∆)−1(Θ(C|H|)) = 4.

In particular, (φi∆)−1(Θ(C|H|)) is algebraically coisotropic. The isotropic �bration is given by

the composition of the projection C → S with φi∆.

Re�ning this example yields constant cycle Lagrangians in M i
∆ as follows. For example, let

Ccc ⊂ S be a constant cycle curve and set

LCcc
:= (φi∆)−1(Θ(C|H| ∩ Ccc × |H|)).

7.3.3. Examples in S[5]. We can also produce easily examples of algebraically coisotropic sub-

varieties in S[5]. As M and S[5] are birational, we have

CH0(S[5]) ∼= CH0(M),

[25, Expl 16.1.11] and algebraically coisotropic varieties that are not contained in the excep-

tional locus of a birational map can be transferred from S[5] to M and vice versa.

Example 7.14. This example can also be found in [55, �4 Exa 1]. For i = 1, . . . , 4, de�ne

Ei := {ξ ∈ S[5] | lg(Oξred
) ≤ i }.

Then Ei ⊂ S[5] is closed subvariety of codimension 5 − i [12]. For example, E := E4 is the

exceptional divisor of the Hilbert�Chow morphism s : S[5] → S(5). The irreducible components

E
n
i of Ei are indexed by ordered tuples of positive natural numbers n = (n1 ≥ n2 ≥ . . . ≥ ni)

such that
∑i

k=1 nk = 5. In particular, E4 and E1 are irreducible, whereas E3 and E2 consists

of two irreducible components. To sum up

E1 ⊂ E2 ⊂ E3 ⊂ E4 = E ⊂ S[5]. (7.4)

By de�nition of Ei and Theorem 6.2, we have

Ei ⊂ FiS[5]

for all i = 1, . . . , 4 and hence Ei is algebraically coisotropic.

Example 7.15. We have P2 ⊂ S[2] given by x 7→ π−1(x), where π : S → P2. Consider the

generically injective rational maps

g3 : P2 × S[3] 99K S[5] and g1 : P2 × P2 × S 99K S[5]

and set

Pi := im(gi) ⊂ S[5] for i = 1, 3.

Clearly, Pi ⊂ FiS[5] and codimPi = 5− i.
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Example 7.16. This example is taken from [35]. As in (5.1), we consider the locus V (j, |H|) ⊂
|H| of curves C with g(C̃) ≤ j for j = 0, 1, 2. Speci�cally, V (2, |H|) is everything, V (1, |H|) ⊂
|H| is irreducible and 1-dimensional and the generic curve in V (1, |H|) has exactly one node,

V (0, |H|) is the discrete set of rational curves. We let Cj → V (2 − j, |H|) be the respective

restriction of the universal curve C|H| → |H| and C̃j its normalization. For 2 − j ≤ i ≤ 4,

consider the diagram

S[7−i−j] × S[i+j−2] //

s×id
��

S[5]

Sym7−i−j
V (2−j,|H|)(Cj)× S

[i+j−2]

fji

))

// S(7−i−j) × S[i+j−2],

in which the lower horizontal map and hence f ji turns out to be generically injective [35, Thm

6.4]. We de�ne

W j
i := im(f ji ) ⊂ S[5].

This is a subvariety of codimension 5− i, which is irreducible for j 6= 2. We have the following

table of inclusions:

W 0
2 ⊂ W 0

3 ⊂ W 0
4

∪ ∪ ∪
W 1

1 ⊂ W 1
3 ⊂ W 1

3 ⊂ W 1
4

∪ ∪ ∪ ∪
W 2

0 ⊂ W 2
1 ⊂ W 2

2 ⊂ W 2
3 ⊂ W 2

4 .

A generic point ξ ∈W j
i corresponds to a subscheme in S that contains exactly 7− i− j points,

which lie on a curve in V (2− j, |H|) and the other i+ j − 2 points can move freely outside C.

Hence, [ξ] ∈ CH0(S) is contained in the (2− j) + (i+ j − 2)-th step of O'Grady's �ltration. In

other words,

W j
i ⊂ FiS

[5]

and W j
i is algebraically coisotropic. The isotropic �bration on W j

i is given by the Abel map

Sym7−i−j
V (2−j,|H|)(Cj)→ Pic7−i−j

C̃j/V (2−j,|H|)

and endows W j
i generically with the structure of a P5−i-bundle. By [35, Thm 6.4] the class of

a line in the �bers is H − (8− i+ 2j)δ∨.

In Proposition 9.4, we show directly that W 0
2 is the P3-bundle over MH(0, H,−6) parame-

terizing extensions Ext1
S(E ,OS(−H)). Moreover, W 0

3 \W 0
2 has the structure of a P2-bundle
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over a dense open subset of S × MH(0, H,−5). This bundle parameterizes ideal sheaves

I ∈MH(1, 0,−4) = S[5] that �t into an extension

0→ Ix(−H)→ I → E → 0.
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III. Birational geometry of the Mukai system of rank two and

genus two

Abstract. Using the techniques of Bayer�Macrì, we determine the walls in the movable cone

of the Mukai system of rank two for a general K3 surface S of genus two. We study the

birational map to S[5] and decompose it into a sequence of �ops. We give an interpretation of

the exceptional loci in terms of Brill�Noether loci.

Introduction

As before, let (S,H) be a polarized K3 surface of genus two, that is a double covering

π : S → P2 rami�ed over a smooth sextic curve and H = OS(1) = π∗OP2(1). We assume in this

part that Pic(S) = Z ·H.
For any n, we consider the Mukai system of genus two

f : MH(0, n,−1) −→ |nH| ∼= Pn
2+1, E 7→ Supp(E).

This is a particular nice example of an irreducible holomorphic symplectic manifold with a

Lagrangian �bration and comes with a rich geometrical structure. An instance of this, shall be

demonstrated below, where we determine all birational models in the case n = 2.

It is easy to see that M := MH(0, n,−1) is birational to S[n2+1]. Namely, let ξ ∈ S[n2+1]

such that Supp(ξ) consists of n2 + 1 points in general position. Then there is a unique smooth

curve D ∈ |nH| such that ξ ⊂ D and this allows to de�ne a rational map

T : S[n2+1] 99KMH(0, n,−1), ξ 7→ OD(−ξ)⊗OS(n)|D.

Conversely, a general point in M is given by L ∈ Picn
2−1(D), for a smooth curve D ∈ |nH| and

thus generically dimH0(S,L∨ ⊗OS(n)|D) = 1. Hence, T is birational.

The morphism T can be de�ned more conceptually via the spherical twist

TOS(−n) : Db(S)
∼−→ Db(S)

[32, �8.1]. Let Iξ ∈ MH(1, 0,−n2) be the ideal sheaf of a point ξ ∈ S[n2+1], which is contained

in the open subset, where h0(Iξ(n)) = 1. By de�nition, TOS(−n)(Iξ) �ts into a short exact

sequence

0→ OS(−n)→ Iξ → TOS(−n)(Iξ)→ 0.

We conclude T (Iξ) = TOS(−n)(Iξ)(n). In other words, T is the composition

S[n2+1] = MH(1, 0,−n2)
TOS(−n)−−−−−→Mσ(0, n,−2n2 − 1)

−⊗OS(n)−−−−−−→Mσ(0, n,−1) 99KMH(0, n,−1),
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where the �rst two arrows are isomorphisms and σ is a suitable stability condition. The last

arrow is the birational transformation coming from wall-crossing along a path from σ into the

Gieseker chamber.

If n = 1, then all curves in |H| are irreducible and therefore TOS(−1)(Iξ) is a stable sheaf

provided that h0(Iξ(1)) = 1. The indeterminancy of T is exactly the closed subset of ξ ∈ S[2]

through which passes a pencil of curves in |H|, which is identi�ed with

P2 ⊂ S[2], x 7→ π−1(x).

A resolution of T is the original example of a Mukai �op [44]:

BlP2 S[2] ∼= Hilb2(C/|H|)

vv
**

(ξ ⊂ C)C

��

�
((

S[2] // MH(0, 1,−1), ξ OC(−ξ)⊗OS(1)|C .

For n = 2, we show

Proposition 7.17 (Prop 8.1). The spherical twist at OS(−2) induces an isomorphism

T : S[5] \ {ξ ∈ S[5] | h0(Iξ(2)) ≥ 2} ∼−→M \ ({E ∈M | h0(E) ≥ 1} ∪M0
∆).

Here, ∆ ⊂ |2H| is the locus of non-reduced curves and M0
∆ ⊂ M is the irreducible component

of f−1(∆) that consists of vector bundles of rank two and degree one on the underlying reduced

curve.

From the birational geometer's point of view, MH(0, n,−1) and S[n2+1] are extremal in the

following sense. If one considers the decomposition of the movable cone

Mov(S[n2+1]) ⊂ NS(S[n2+1])R ∼= R2

into chambers corresponding to birational models, S[n2+1] is at the one end, for it admits a divi-

sorial contraction given by the Hilbert�Chow morphism and MH(0, n,−1) with the Lagrangian

�bration is at the other end. For n = 1, the Mukai system MH(0, 1,−1) is the only other

smooth birational model of S[2]. If n > 1, the presence of reducible and non-reduced curves in

the linear system |nH| makes the situation more complicated. The article in hand, deals with

the case n = 2. We prove the following result.

Theorem 7.18 (Thm 10.2). Let (S,H) be a polarized K3 surface with Pic(S) = Z · H and

H2 = 2. There are �ve (smooth) birational models of S[5] or M := MH(0, 2,−1), respectively.

They are connected by a chain of �opping contractions

BlW2 S
[5]

  }}

BlW̃3
X1

  ~~

BlZ̃3
X3

����

BlZ1 M

����

S[5]
g1

// X1
g2

// X2 X3
g3

oo M
g4

oo
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for some subvarieties W2 ⊂W3 ⊂ S[5] such that

• W2 is a P3-bundle over MH(0, 1,−6),

• W3 \W2 is a P2-bundle over an open subset of MH(0, 1,−5)× S

and subvarieties Z1 ⊂ Z3 ⊂M such that

• Z1 is a P4-bundle over S,

• Z3 \ Z1 is a P2-bundle over an open subset of S[3].

Here, W̃3 (resp. Z̃3) is the strict transform of W3 (resp. Z3) under g1 (resp. g4).

We prove Theorem 7.18 using the methods of Bayer�Macrì [6]. Their machinery gives a

procedure to compute the walls in the movable cone and to identify the curves which are

contracted at every step. The exceptional loci are components of the Brill�Noether loci

BNi(S[5]) := {ξ ∈ S[5] | h0(Iξ(2)) ≥ i+ 1} ⊂ S[5], i = 1, 2

and

BNi(M) := {E ∈M | h0(E) ≥ i+ 1} ⊂M, i = 0, 1.

More precisely, W2 andW3 (resp. Z1 and Z3) are the algebraically coisotropic subvarieties, that

were de�ned in Example 7.16 (resp. in (7.1)).

Proposition 7.19. (i) We have

W2 = {ξ ∈ S[5] | there is C ∈ |H| such that ξ ⊂ C} ⊂ BN2(S[5]), and

W3 = {ξ ∈ S[5] | there is x ∈ ξ and C ∈ |H| such that ξ \ {x} ⊂ C} ⊂ BN1(S[5]).

(ii) Z1 (resp. Z3) is the component of BN1(M) (resp. BN0(M)) that dominates the locus of

smooth curves in |2H|.

Outline. The core of this part is the application of the results of [6] to the Mukai system of

rank two and genus two in Section 10. In particular, we compute the walls in Mov(S[5]) and

at each wall, we get a numerical characterization of the projective bundles that get contracted.

The preceding sections can be seen as the foundation for the geometrical interpretation of these

computations. Precisely, in Section 8, we prove Proposition 7.17 by explicit considerations and

in Section 9, we study likewise explicitly components of the appearing Brill�Noether loci leading

to Proposition 7.19. These components will later be identi�ed with the exceptional loci of the

transformations in Theorem 7.18.



58

Notation. In this part, we assume throughout Pic(S) = Z ·H and therefore suppress H from

the notation. Moreover, we identify H∗alg(S,Z) ∼= Z3 and (other than in Part I) always equip it

with the Mukai pairing denoted by (−,−). As before,

f : M := MH(0, 2,−1) −→ B := |2H| ∼= P5

is the Mukai system of rank two and genus two and we have the subloci ∆ ⊂ Σ ⊂ B of non-

reduced and non-integral curves as in (2.1). In Lemma 5.1, we saw that M ∼= MH(0, 2, k) for

every k ≡ 0 mod 2.

8. The birational map T : S[5] 99KM

In this section, we study the birational map T : S[5] 99K M from the introduction, which is

induced by the spherical twist at OS(−2). For the de�nition of the spherical twist, we refer to

[32, �8.1].

Proposition 8.1. The spherical twist at OS(−2) de�nes a birational map

T : S[5] 99KM, ξ 7→ TOS(−2)(Iξ)⊗OS(2)

which induces an isomorphism

S[5] \ {ξ ∈ S[5] | h0(Iξ(2)) ≥ 2} ∼−→M \ ({E ∈M | h0(E) ≥ 1} ∪M0
∆).

In particular, T is de�ned in ξ ∈ S[5] if there is a unique curve D ∈ |2H| such that ξ ⊂ D. In

this case,

T (ξ) ∼= ker(OS(2)|D → Oξ).

We want to point out that, due to ρ(S) = 1, there are actually no proper birational auto-

morphisms of S[5]. Precisely, we have

Aut(S[5]) = Bir(S[5]) = 〈id, ι[5]〉,

where ι[5] is the automorphism induced by the involution ι on S [11, Thm 1.1]. Hence, T is

the only birational morphism S[5] 99K M , up to precomposition with ι[5]. Also note that the

subvariety BN1(S[5]) = {ξ ∈ S[5] | h0(Iξ(2)) ≥ 2} ⊂ S[5] is left invariant under ι[5].

Proof of Proposition 8.1. By de�nition of the spherical twist, there is an exact triangle in Db(S)

RΓ(Iξ(2))⊗OS(−2)→ Iξ → TOS(−2)(Iξ)
[1]−→ .

So, TOS(−2)(Iξ) is a complex in degrees −1 and 0, which is concentrated in degree 0 if and only

if h0(Iξ(2)) = 1, as χ(Iξ(2)) = 1. In this case, TOS(−2)(Iξ) is as stated.
Let ξ ∈ S[5] and s ∈ H0(Iξ(2)). We claim that if

E := T (ξ) ∼= ker(OS(2)|D → Oξ)
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is unstable, then h0(Iξ(2)) ≥ 2. Here, D is the curve de�ned by the composition of s with the

inclusion Iξ(2) ↪→ OS(2).

First, assume D ∈ D \ Σ. Then E is a rank one sheaf on the integral curve Ds and necessarily

stable.

Next, if D ∈ Σ \∆ write D = D1 ∪D2. Then E is stable, if and only if

χ(E ⊗ OS(−1)|Di) <
χ(E)

2 = −1
2 < χ(E|Di) for i = 1, 2.

Otherwise, the inclusion E ⊗ OS(−1)|Di ↪→ E or the restriction E � E|Di to one component is

destabilizing. Conversely, every destabilizing subbundle or surjection factors through the above.

We �nd

χ(E|Di) = − lg(Oξ ⊗ODi) + χ(OS(2)|Di) + lg(T orOD1 (Oξ,ODi)) = lg(Oξ ⊗OD3−i)− 2,

where we used lg(T orOD1 (ODi ,Oξ)) = 5− lg(Oξ ⊗OD1)− lg(Oξ ⊗OD2). Similarly,

χ(E ⊗ OS(−1)|Di) = lg(Oξ ⊗OD3−i)− 4.

Hence, E is unstable if and only if lg(Oξ ⊗ODi) ≥ 4 for one i = 1, 2. Without loss of generality

assume that lg(Oξ ⊗OD1) ≥ 4. There are two cases. Either there is a reduced point x ∈ ξ such
that ξ \ {x} ⊂ D1. Otherwise, ξred ⊂ D1 and there is a point x ∈ ξ whose multiplicity drops by

one, when restricting to D1. In both cases, D2 can move in the pencil of curves in |H| passing
through x and thus h0(Iξ(2)) ≥ 2, cf. Lemma 8.2 below.

Finally, if D = 2C ∈ ∆, the above arguments remain valid with D1 = D2 = C. This is, if E is

unstable, then either lg(Oξ ⊗OC) = 4 and Lemma 8.2 applies or ξ is completely contained in

C. But then ξ ⊂ C ∪ C ′ for every curve C ′ ∈ |H|.
So far, we have proven that T is well-de�ned for all ξ ∈ S[5] such that h0(Iξ(2)) = 1. A birational

morphism between projective irreducible holomorphic symplectic manifolds is an isomorphism

on the regular locus [30, 2.2]. Therefore, it is left to see that

T (S[5] \ {ξ ∈ S[5] | h0(Iξ(2)) ≥ 2}) = M \ ({E ∈M | h0(E) ≥ 1} ∪M0
∆).

For sure, we have an inclusion from left to right, since H0(T (ξ)) = 0, whenever T is de�ned and

over ∆, the sheaf T (ξ) always has rank one on the reduced curve. More precisely, let ξ ∈ S[5]

such that 2C is the only curve in |2H| containing ξ. Then E := T (ξ) �ts into an extension on

2C

0→ L(x)⊗ ω−1
C → E → L → 0,

where x is the support of T orO2C
1 (OC ,Oξ) and L = ω⊗2

C (−ξ ∩ C) ∈ Pic1(C).

The converse inclusion is clear over B \Σ. Let D = D1∪D2 ∈ Σ\∆ and E ∈ f−1(D) such that

h0(E) = 0. We have to �nd s : E → OS(2)|D. Then ξ := Supp(coker(s)) ∈ S[5] and E = T (ξ).
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Assume �rst that Li := E|Di is torsionfree and without loss of generality that χ(Li) = i− 1, i.e.

for smooth Di, we have Li ∈ Pici(Di). Now, we have an exact sequence

0→ Hom(L1,OS(1)|D1)→ Hom(E ,OS(2)|D)→ Hom(L2,OS(2)|D2)

→ Ext1(L1,OS(1)|D1)→ . . . . (8.1)

If hom(L1,OS(1)|D1) = 1, then everything is clear and if hom(L1,OS(1)|D1) = 0, then also

ext1(L1,OS(1)|D1) = 0. Thus in this case Hom(E ,O(2)|D) ∼= Hom(L2,O(2)|D2) 6= 0. (Actu-

ally, we must have hom(E ,O(2)|D) = 1 because we assumed h0(E) = 0). Next, if E|Di has
torsion, then E|Di ∼= Li ⊕ T , where Li is torsionfree with χ(Li) = 0 and T is supported on the

intersection D1 ∩D2 with lg(T ) = 1. In particular, also in this case the sequence (8.1) proves

that Hom(E ,O(2)|D) 6= 0.

Over ∆ the argument is the same. LetD = 2C ∈ ∆ and assume that we are given E ∈M1
2C\M0

2C

such that h0(E) = 0. Again, E = T (ξ) if and only if Hom(E ,OS(2)|2C) 6= 0. This time, we have

E|C = L⊕Ox for some L ∈ Pic1(C) and x ∈ C and the sequence (8.1) with C = D1 = D2 and

L = L1 = L2 proves what we need. �

We will see in Proposition 10.2, how the indeterminancy of T can be resolved by a sequence

of blow-ups and blow-downs.

Lemma 8.2. Let ξ ⊂ S be a zero-dimensional subscheme of length n supported in a point p ∈ S.
Assume there is an integral curve C1 ⊂ S such that lg(Oξ ⊗OC1) = n− 1. Then

ξ ⊂ C1 ∪ C2

for every curve C2 passing through p.

Proof. We can assume that S = SpecA, where A is a local ring with maximal ideal m. Moreover,

ξ = V (I), and C1 = V (f) for some f ∈ A. By assumption, lg(A/I) = n and lg(A/(I, f)) = n−1,

hence lg((I, f)/I) = 1. We we want to show that f · m ⊂ I or equivalently (I, f · m) = I. We

have a short exact sequence of C-vector spaces

0→ (I, f ·m)/I → (I, f)/I → (I, f)/(I, f ·m)→ 0,

where the middle term is of dimension one. Hence, (f ·m, I) = I is true if and only if the right

outer term is non-zero. Assume (I, f) = (I, f · m), then we can write f = af + b for some

a ∈ m and b ∈ I. This implies (1 − a)f ∈ I and thus f ∈ I, which is a contradiction to our

assumption. �

9. Brill�Noether loci in M and S[5]

In Proposition 8.1, we established the isomorphism

T : S[5] \ {ξ ∈ S[5] | h0(Iξ(2)) ≥ 2} ∼−→M \ ({E ∈M | h0(E) ≥ 1} ∪M0
∆).
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In this section, we undertake a hands-on analysis of certain components of the Brill�Noether

loci appearing here. Namely,

BNi(S[5]) := {ξ ∈ S[5] | h0(Iξ(2)) ≥ i+ 1} ⊂ S[5]

and

BNi(M) := {E ∈M | h0(E) ≥ i+ 1} ⊂M
for i ≥ 0. The �rst is also an actual Brill�Noether locus after the identi�cation

S[5] ∼= MH(1, 2, 0), Iξ 7→ Iξ(2).

All these Brill�Noether loci generically have the structure of a projective bundle, which we

explicitly state for certain components in Propositions 9.4 and 9.6.

9.1. Brill�Noether loci in MH(1, 2, 0) ∼= S[5]. We study the Brill�Noether locus in S[5] or

rather MH(1, 2, 0) �rst. Our �rst result shows that the only non-trivial cases are i = 1, 2. For

ξ ∈ S[5], we introduce the linear subspace

B(ξ) := P(H0(S, Iξ(2))) = {D ∈ |2H| | ξ ⊂ D} ⊂ |2H|.

Lemma 9.1. (i) We have the inequalities

0 ≤ h0(S, Iξ(1)) ≤ 1 ≤ h0(S, Iξ(2)) ≤ 3.

(ii) If h0(S, Iξ(1)) = 1, then h0(Iξ(2)) = 3 and

B(ξ) = m(C × |H|) ⊂ Σ ⊂ |2H|,

where C ∈ |H| is the unique curve containing ξ.

Proof. From the short exact sequence

0→ Iξ(2)→ OS(2)→ Oξ → 0,

it follows that h0(S, Iξ(2)) ≥ 1 for all ξ ∈ S[5].

First, assume that B(ξ) ⊂ Σ then dimB(ξ) ≤ 2, as there is no three-dimensional linear subspace

of P5 that is contained in Σ = Sym2 P2. So, in order to show h0(S, Iξ(2)) ≤ 3, we can assume

that B(ξ) ∩ B \ Σ 6= ∅, and we can even assume that there is a smooth curve D ∈ |2H| such
that ξ ⊂ D. We have compatible long exact sequences

0 // 0 = H0(Iξ)� _

��

// H0(Iξ(2))
� _

��

� � //

α

''

H0(Iξ(2)|D)

��

// . . .

0 // H0(OS) // H0(OS(2)) // H0(ωD) // 0,

where we inserted OS(2)|D ∼= ωD. Moreover,

Iξ(2)|D ∼= ωD(−ξ)⊕Oξ.
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Thus H0(Iξ(2)|D) = H0(Oξ) ⊕ H0(ωD(−ξ)) and the �rst summand is the kernel of the third

vertical map. Hence, dim im(α) ≤ h0(D,ωD(−ξ)). Together, this gives

h0(Iξ(2)) ≤ dim im(α) + h0(OS) ≤ h0(D,ωD(−ξ)) + 1 = h0(D,OD(ξ)) ≤ 3,

where the last inequality uses Cli�ord's theorem [26, IV Thm 5.4].

Next, assume that ξ ⊂ C for a curve C ∈ |H|. Then the analogous considerations yield

h0(Iξ(1)) ≤ dim ker(H0(OS(1))→ H0(OS(1)|C)) + h0(Iξ(1)|C)− 5 = 1 + 5− 5 = 1.

This �nishes the proof of (i).

Next, we prove (ii). Any non-zero section s ∈ H0(Iξ(1)) induces a short exact sequence

0→ OS(1)
s−→ Iξ(2)→ ker(OS(2)|C → Oξ)→ 0,

which gives the isomorphism H0(OS(1)) ∼= H0(Iξ(2)) that translates into the statement for

B(ξ). �

Next, we have two strategies to �nd explicit components of BNi(S[5]). The �rst relies on the

observation that, given a curve D ∈ |2H| and x ∈ D, then also ι(x) ∈ D, where ι : S → S is

the covering involution of π : S → |H| ∼= P2. Hence, the subvarieties in S[5] which parameterize

subschemes that are partly invariant under ι are candidates to provide a component of the Brill�

Noether locus. The second is based on Lemma 9.1(ii). Namely, we parameterize subschemes

that are already or almost contained in a curve of the primitive linear system |H|.

Example 9.2 (cf. Example 7.15). As mentioned in the introduction, we have an embedding

P2 ⊂ S[2], x 7→ π−1(x).

We get generically injective rational maps

g3 : P2 × S[3] 99K S[5] and g1 : P2 × P2 × S 99K S[5]

and set

Pi := im(gi) ⊂ S[5] for i = 1, 3.

Clearly, P3 ⊂ BN1(S[5]) and P1 ⊂ BN2(S[5]). Moreover, we note codimPi = 5 − i and Pi is

generically a P5−i-bundle over S[i].

Example 9.3 (cf. Example 7.16). We de�ne

W2 := {ξ ∈ S[5] | H0(Iξ(1)) 6= 0} = {ξ ∈ S[5] | there is C ∈ |H| such that ξ ⊂ C}.

Then W2 is the closure of the image of the generically injective rational map

Sym5
C|H|/|H|(C|H|) 99K S

[5]
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and therefore dimW2 = 7. Here, C|H| → |H| is the universal curve. We also de�ne

W3 := {ξ ∈ S[5] | there is x ∈ ξ and C ∈ |H| such that ξ \ {x} ⊂ C},

i.e. W3 is the closure of the image of the generically injective rational map

Sym4
C|H|/|H|(C|H|)× S 99K S

[5].

We conclude that dimW3 = 8.

Clearly, W2 ⊂ W3. By Lemma 9.1(i), W2 ⊂ BN2(S[5]). Similarly, one sees W3 ⊂ BN1(S[5]).

Namely, if ξ \ {x} ⊂ C as in the de�nition of W3, then ξ ⊂ C ∪C ′ for every C ′ ∈ |H| such that

x ∈ C ′ and thus dimB(ξ) ≥ 1.

The subvarieties W2 and W3 have also appeared in Subsection 7.3.3 or [35, Thm 6.4] as

examples of algebraically coisotropic subvarieties in S[5]. We can give the precise structure of a

projective bundle.

Proposition 9.4. (i) The subvariety W2 is a P3-bundle over MH(0, 1,−6). More precisely,

let E−6
univ be the universal bundle on MH(0, 1,−6)× S and de�ne the sheaf

E2 := p1∗RHom(E−6
univ, p

∗
2OS(−1)).

on MH(0, 1,−6). Then E2 is a vector bundle and

W2
∼= P(E2).

In particular, W2 is smooth.

(ii) The subvariety W3 \W2 is a P2-bundle over an open subset of S ×MH(0, 1,−5). More

precisely, let E−5
univ be the universal sheaf on MH(0, 1,−5)×S and I∆ the ideal sheaf of the

diagonal ∆ ⊂ S × S and de�ne the sheaf

E3 := p12∗RHom (p∗23E−5
univ, p

∗
3OS(−1)⊗ p∗13I∆)

on S ×MH(0, 1,−5). Then E3 a vector bundle on an open set U ⊂ S ×MH(0, 1,−5) and

W3 \W2
∼= P(E3|U ).

Proof. (i) For every E ∈MH(0, 1,−6) we have the base change map

E2(E)→ H0(S,RHom(E ,OS(−1))) ∼= Ext1
S(E ,OS(−1))

and ExtiS(E ,OS(−1)) = 0 for i 6= 1 because E is stable of rank 0. Hence dim Ext1(E ,OS(−1)) =

4 for all E ∈ MH(0, 1,−6) and P(E2) → MH(0, 1,−6) is indeed a P3-bundle parameterizing

extensions of E ∈ MH(0, 1,−6) by OS(−1). Moreover, as Ext1
S(E ,OS(−1)) is torsion free, any

non-split extension

0→ OS(−1)→ I → E → 0 (9.1)
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does not admit a local splitting. Hence, the middle term I of such an extension is torsion free

[31, Prop 1.1.10] and must be the ideal sheaf of a zero-dimensional subscheme [31, Expl 1.1.16].

In particular, I is H-Gieseker stable and the universal extension on P(E2)× S de�nes a map

ψ2 : P(E2) −→MH(1, 0,−4) = S[5]

whose image is W2. It is left to show that ψ2 is an isomorphism onto its image. For injectivity,

assume that there is ξ ∈ S[5] such that Iξ �ts into two di�erent extensions of the form (9.1). But

then h0(S, Iξ(1)) ≥ 2 which is absurd (cf. Lemma 9.1). Finally, we have Hom(OS(−1), E) = 0,

which signi�es that the extensions of the form (9.1) are rigid [24, Thm 6.4.5] and therefore ψ2

is really an immersion of schemes.

(ii) In the case of W3, we �nd

E3(x, E)→ H0(S,RHom(E , Ix(−1)))

and the right hand side is isomorphic to Ext1
S(E , Ix(−1)) if x 6= Supp(E) and isomorphic to

Ext1
S(E , Ix(−1)) ⊕ C if x ∈ Supp(E). As above, we have dim Ext1(E , Ix(−1)) = 3 for all

(x, E) ∈ S ×MH(0, 1,−5). Hence, E3 is a vector bundle on the open subset U ⊂ S ×M that is

the inverse image of the complement of the universal curve C|H| ⊂ S×|H| under the product of
the support morphism and the identity. Again, one checks that for (x, E) ∈ U the middle term

of every non-split extension

0→ Ix(−1)→ I → E → 0, (9.2)

is a pure, H-Gieseker stable sheaf with Mukai vector (1, 0,−4) and so the associated universal

extension de�nes a map

ψ3 : P(E3|U )→ S[5]

whose image is clearly contained in W3. We claim, that ψ3 is an isomorphism onto W3 \W2.

Again, Hom(Ix(−1), E) = 0 and so ψ3 is a local isomorphism. If Iξ can be written in two

di�erent extensions, say over (x, E) and (x′, E ′), it follows that ξ \ {x, x′} ⊂ Supp(E) as well

as ξ \ {x, x′} ⊂ Supp(E ′). However, a scheme of length 3 is at most contained in one curve

C ∈ |H|. Hence Supp(E) = Supp(E ′), which implies x = x′ and also identi�es the �rst arrow

up to a scalar. In other words, all the data match and ψ3 is injective. Finally, ξ ∈ im(ψ3) if

and only if there is x ∈ ξ such that ξ \ {x} is contained in a unique curve C ∈ |H| but x /∈ C.
Hence, im(ψ3) = W3 \W2. �

In Proposition 10.2, we encounter the �op at W2 and W3, respectively.

9.2. Brill�Noether loci in M . In this section, we study the Brill�Noether loci in M . Recall

that over a smooth curve D ∈ |2H|, the �ber f−1(D) is isomorphic to Pic3(D) and therefore

BNi(M) ∩ f−1(D) = W i
3(D) ⊂ Pic3(D)
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is the classical Brill�Noether locus W 1
3 (D) [2]. It is known, that a general curve in a primitive

linear system on a general K3 surface is Brill�Noether general [36]. This implies in particular

that W r
d (when non-empty) has the expected dimension

dimW r
d = ρ(g, r, d) = g − (r + 1)(g − d+ 1).

However, for non-primitive linear systems unexpected things may happen, as we encounter be-

low.

First, we deal with the structure of BNi(M) over the locus of smooth curves B◦ ⊂ B. Our

construction uses the fact, that the moduli spaces MH(0, 2, k) for odd k are all isomorphic

(cf. Lemma 5.1). Let C◦ → B◦ be the corresponding universal curve. For any k, we have an

isomorphism

MH(0, 2, k − 4)◦ ∼= PickC◦/B◦ ,

where MH(0, 2, k− 4)◦ is the preimage of B◦ under the support map MH(0, 2, k− 4)→ B. We

de�ne

BNi
k(B

◦) := {L ∈MH(0, 2, k − 4)◦ | h0(S,L) ≥ i+ 1} ⊂MH(0, 2, k − 4)◦

and consider its closure in two particular cases

Z1 := BN0
1(B◦) ⊂MH(0, 2,−3) and Z3 := BN0

3(B◦) ⊂M = MH(0, 2− 1).

We expect Z3 ⊂ BN0(M) to be a strict inclusion, as the latter might have components over Σ

or ∆.

In the following, we will consider Z1 as a subvariety of M via the isomorphism

MH(0, 2,−3)
∼−→M, E 7→ Ext1(E ,OS)(−1).

In particular, over a smooth curve D ∈ |2H|, we have

Pic1(D)→ Pic3(D), L 7→ L∨ ⊗OS(1)|D

and

Z1 ∩ f−1(D) = {L ∈ Pic3(D) | h0(L⊗OS(1)|D) ≥ 4} = {L ∈ Pic3(D) | h1(L⊗OS(1)|D) 6= 0}.

Lemma 9.5 (= Lemma 7.2). We have

Z1 ⊂ BN1(M).

In particular, there is an inclusion

Z1 ⊂ Z3.

In Corollary 10.5, we prove that actually Z3 ∩ BN1(M) = Z1.
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Proof. It su�ces to show the result over a smooth curve D ∈ |2H|. Let L ∈ Pic1(D) such that

H0(D,L) 6= 0. We want to show that h0(D,L∨ ⊗OS(1)|D) ≥ 2. Write L = OD(x) for a point

x ∈ D. On S, we have a short exact sequence

0→ OS(−1)→ Ix(1)→ OD(−x)⊗OS(1)|D → 0

and the resulting long exact cohomology sequence proves the lemma. �

Proposition 9.6. (i) There is an embedding

C �
�

//

��

M

f
��

B,

whose image is Z1. In particular, dimZ1 = 6 and Z1 is a P4-bundle over S.

(ii) Z3 is generically isomorphic to a P2-bundle over S[3]. In particular, dimZ3 = 8.

Proof. The proof of (i) and (ii) works analogously. The idea is that, over D ∈ B◦ we want to
parameterize the line bundles OD(−ξi), i = 1, 3 for a point ξ1 ∈ D and a divisor ξ3 ⊂ D of

degree 3, respectively. These are the ideal schemes of ξi ⊂ D and can be realized as the quotient

of the respective ideal sheaves in S

0→ ID/S = OS(−2)→ Iξi/S → Iξi/D = OD(−ξi)→ 0.

Hence, our task is to parameterize ξi ⊂ D for ξi ∈ S[i] and D ∈ B, de�ne the above sequence
universally and show that the cokernel de�nes a map to MH(0, 2,−i− 4) for i = 1, 3.

The �rst step is straightforward. For i = 1, 3 de�ne

Xi := P(p2∗(IZi ⊗ p∗1OS(2)))→ S[i],

where Zi ⊂ S × S[i] is the universal subscheme and pi are the projections from S × S[i] for

i = 1, 2. The inclusion

p2∗(IZi ⊗ p∗1OS(2)) ↪→ p2∗(OS×S[i] ⊗ p∗1OS(2)) ∼= H0(S,OS(2))⊗OS[i]

de�nes an embedding Xi ⊂ S[i] ×B. We could also think of Xi as Hilbi(C/B), i.e.

X1 = C = {p ∈ D} ⊂ S ×B and X3 = {ξ ⊂ D} ⊂ S[3] ×B.

Note that X1 is a P4-bundle over S and X3 is generically a P2-bundle over S[3]. On S ×Xi, we
have the sequence

0→ (id×pB)∗OS×B(−C)→ (pS × id)∗IZi → Qi → 0.
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Here, Qi is de�ned to be the cokernel, which is �at over Xi and v(Qi|S×{p}) = (0, 2,−i− 4) for

all p ∈ Xi. Consequently, Qi gives a map

Xi

��

ϕi
// MH(0, 2,−i− 4),

xx

p 7→ Qi|S×{p}

B

which is de�ned in p ∈ Xi, whenever Qi|S×{p} is stable. By de�nition, we have im(ϕi) ⊂ Zi.
For simplicity, we restrict to the case i = 1 in the rest of the proof. Actually, the more powerful

methods from Proposition 10.2 allow us to conclude without explicit computation, that Z3 \Z1

is a projective bundle.

We claim that ϕ1 is everywhere de�ned and immersive. Clearly, ϕ1 is de�ned and injective over

B \Σ and with the same arguments as in the proof of Proposition 8.1 this also holds true over

∆. So im(ϕ1) = Z1 and it is left to show that ϕ1 is an immersion. We show that the induced

map on tangent spaces is injective. To this end, let S[ε] := S ×C C[ε]
p−→ S and assume we are

given a C[ε]-valued point of C that maps to a trivial deformation of E ∈MH(0, 2,−5), i.e. this

point corresponds to a sequence

p∗OS(−2)→ S → p∗E → 0 (9.3)

on S[ε]. Here, we use that the line bundle OS(−2) is rigid. We want to see that S = p∗Ix,
where E , as before, sits in the sequence 0 → OS(−2) → Ix → E → 0. By de�nition, (9.3)

embeds into a diagram

p∗OS(−2) // S //

��

p∗E //

��

0

p∗OS(−2) // OS[ε]

��

// OD̃

��

// 0

Ox̃

��

Ox̃

��

0 0,

where x̃ ⊂ D̃ ⊂ S[ε] are deformations of x and D. As Supp(p∗E) = D[ε], we must have

p∗E = OD[ε](−x[ε]) and we can conclude that all deformations are trivial. Hence, S = p∗Ix. �

Note that the smooth curves in |2H| are hyperelliptic and so there is a unique line bundle

g1
2(D) ∈ Pic2(D) such that h0(g1

2) = 2.
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Corollary 9.7. Let D ∈ |2H| is a smooth curve and L ∈ f−1(D). Then

L ∈ Z1 ∩ f−1(D) ⇐⇒ L ∼= OD(x)⊗ g1
2 for some x ∈ D.

Proof. By dimension reasons, it su�ces to show one implication. Assume L ∼= OD(x)⊗ g1
2 for

some x ∈ D. We know that OS(1)|D ∼= (g1
2)⊗2 [26, Prop 5.3]. Thus

h1(L ⊗OS(1)|D) = h1(OD(x)⊗ (g1
2)⊗3) = h0(OD(−x)⊗ g1

2) 6= 0,

which proves the claim. �

Remark 9.8. Another consequence of Proposition 9.6 is that W 0
3 (D) has the expected dimen-

sion

dimW 0
3 (D) = ρ(5, 0, 3) = 3

and that

dimW 1
3 (D) ≥ 1

for D ∈ |2H| general, even though the Brill�Noether number ρ(5, 1, 3) = 5 − 2(5 − 3 + 1) is

negative. The latter also follows, since g1
2(D) ⊗ OD(x) ∈ W 1

3 (D) for all x ∈ D. In Corollary

10.5, we will see that every line bundle in W 1
3 (D) is of this form, i.e. dimW 1

3 (D) = 1. Finally,

we know

W 2
3 (D) = ∅

from Cli�ord's theorem [26, IV Thm 5.4].

10. Computation of the birational models

In this �nal section, we leave our hands-on methods behind and apply the techniques of Bayer

and Macrì to get a full picture of the birational models of S[5] and the associated birational

wall-crossing transformations. We �nd that there are �ve birational models of M (including

M and S[5]) and moreover match the exceptional loci of the �opping contractions with the

subvarieties from the previous section. By a birational model, we mean a smooth projective

variety with trivial canonical bundle that is birational to M .

10.1. Numerical characterization of the walls in Mov(M). We will compute the wall and

chamber decomposition of the movable cone of S[5] (resp. M), whose chambers correspond to

the birational models of S[5] (resp.M) using Bayer and Macrì's results [6]. We start by recalling

the basic de�nitions and relevant statements in this context.

Let X be an irreducible holomorphic symplectic manifold. Recall that the positive cone

Pos(X) ⊂ NS(X)R is the connected component of {x ∈ NS(X)R | (x, x) > 0} containing a
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Kähler class. The movable cone Mov(X) ⊂ NS(X)R is the open cone generated by the classes

of divisors D such that |D| has no divisorial base locus. We have the inclusions

Amp(X) = Nef(X) ⊂ Mov(X) ⊂ Pos(X) ⊂ NS(X)R.

The movable cone admits a locally polyhedral chamber decomposition, whose chambers corre-

spond to smooth birational models of X. More precisely,

Mov(X) =
⋃
g

g∗Nef(X ′),

where the union is taken over all birational maps g : X 99K X ′ from X to another irreducible

holomorphic symplectic manifold X ′ [27, Thm 7, Cor 19].

Assume that X = Mσ(v) is a smooth projective moduli space of σ-stable objects in Db(S)

with v2 > 0. In this case, the Mukai morphism [6, Thm 3.6] gives the identi�cation

λX : v⊥
∼−→ NS(X).

Here, v⊥ ⊂ H∗alg(S,Z). By [6, Thm 12.1], the nef (resp. movable) cone of X is one of the

chambers of the decomposition of the positive cone Pos(X) whose walls are the orthogonal

complement to linear subspaces

λX(H⊥),

where H ⊂ H∗alg(S,Z) is a primitive sublattice of signature (1, 1) that contains v. If H = 〈v, a〉,
then a ∈ H∗alg(S,Z) can be chosen such that a2 ≥ −2 and 0 ≤ (v, a) ≤ v2

2 (resp. (a2 = −2

and (v, a) = 0) or (a2 = 0 and (a, v) ∈ {1, 2})). Following [6, Thm 5.7], the lattice H governs

the geometry of the birational transformation at the respective wall. One can distinguish the

following cases:

(a) The lattice H is isomorphic to one of the following:
(−2 0

0 v2

)
,
(

0 1
1 v2

)
,
(

0 2
2 v2

)
. This case

corresponds to a divisorial contraction.

(b) The lattice H is none of the above and there is either s ∈ H such that s2 = −2 and

0 < (s, v) ≤ v2

2 or v is the sum v = a1 + a2 of two positive classes ai ∈ H (i.e. a2
i ≥ 0 and

(ai, v) > 0 for i = 1, 2). This case corresponds to a �opping contraction.

(c) In all other cases, the birational transformation is actually an isomorphism.

The rough idea here is, that a wall of the ample cone is induced by a wall-crossing in the

space of stability conditions and the associated contraction contracts precisely the curves of

objects that are S-equivalent with respect to the stability condition on the wall [5, Thm 1.4(a)].

To a wallW (with respect to v) of the stability manifold, Bayer and Macrì associate a rank two

sublattice [6, Prop 5.1]

H := {w ∈ H∗alg(S,Z) | φ0(w) = φ0(v) for all σ0 ∈ W} ⊂ H∗alg(S,Z).



70

Here, φ0 is the phase associated to σ0 = (Z0,A0). Then H has the property that if E is a

σ-stable object and Ai is a factor in its Harder�Narasimhan �ltration with respect to a stability

condition σ−, which lies su�ciently close on the other side of the wall, then v(Ai) ∈ H. Now, let
E1 and E2 ∈ Mσ(v) have the same Harder�Narasimhan factors with respect to σ−. As one can

always �nd a Jordan�Hölder �ltration that is a re�nement of the Harder-Narasimhan �ltration,

this implies that E1 and E2 are S-equivalent and therefore contracted under the transformation

induced from the wall-crossing. Consequently, in order to understand this transformation, one

has to parameterize possible Harder�Narasimhan �ltrations whose factors have Mukai vectors

in H. Unfortunately, it may also happen that the open subset M st
σ0

(v) ⊂ Mσ0(v) of stable

objects is empty. In this case, the behavior at the wall is harder to control and we call W a

totally semistable wall. By [6, Thm 5.7], W is totally semistable if and only if

(a') there is w ∈ H such that w2 = 0 and (v, w) = 1 or

(b') there is s ∈ H such that s2 = −2,Mσ0(s) 6= ∅ and (s, v) < 0.

The content of Bayer and Macrì's article [6] is a detailed study of the possible lattices and the

associated modi�cations of the moduli space, which in particular, yields the above lists.

For our computations, we �x the following notation: We set

v = (0, 2,−1) and v′ = (1, 0,−4).

The respective Mukai morphisms �t in the commutative diagram

H∗alg(S,Z)

T ∗∼=
��

v⊥

∼=
��

? _oo
λM

// NS(M)

T ∗∼=
��

H∗alg(S,Z) v′⊥? _oo
λ
S[5]
// NS(S[5]),

where, by abuse of notation, we also write T ∗ : H∗alg(S,Z) → H∗alg(S,Z) for the isomorphism

that makes the left square commute. It is de�ned as the composition

H∗alg(S,Z)
· ch(OS(−2))−−−−−−−−→ H∗alg(S,Z)

ρv(OS(−2))−−−−−−−→ H∗alg(S,Z),

where ρv(OS(−2)) is the re�ection at the hyperplane orthogonal to v(OS(−2)) = (1,−2, 5). In

our usual basis, T ∗ is given by the matrix −4 −4 −1

10 9 2

−25 −20 −4

 ◦
 1 0 0

−2 1 0

4 −4 1

 =

 0 0 −1

0 1 2

−1 −4 −4

 . (10.1)

We have the following basis of NS(S[5])

δ := λS[5](−1, 0,−4) and H := λS[5](0,−1, 0).
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For the Hilbert scheme S[n], computing the walls in Pos(S[n]) reduces to solving Pell's equa-

tion, cf. [6, Prop. 13.1] and also [15, Lem 2.5]. In our case, we get the following list of walls

with respective intersection properties:

i a′i ∈ H∗alg(S,Z) (a′i, a
′
i) (a′i, v

′) Di ∈ H2(S[5],Z) (Di, Di) Ri ∈ H2(S[5],Z) (Ri, Ri)

0 (0, 0, 1) 0 1 −δ −8 −δ∨ −1
8

1 (1,−1, 2) −2 2 4H − 3δ −40 H − 6δ∨ −5
2

2 (1,−1, 1) 0 3 8H − 5δ −72 H − 5δ∨ −9
8

3 (−1, 2,−5) −2 1 −16H + 9δ −136 −2H + 9δ∨ −17
8

4 (2,−3, 5) −2 3 24H − 13δ −200 3H − 13δ∨ −25
8

5 (−1, 2,−4) 0 0 −2H + δ 0 −H + 4δ∨ 0.

Here, ±Di ∈ NS(S[5]) is the integral class de�ning the same wall as a′i, i.e.

D⊥i = λS[5](a′
⊥
i ∩ v′

⊥
)

or, in other words, Di is a rational multiple of the orthogonal projection of a′i to (v′⊥)Q. The

sign here is chosen such that this multiple is positive, but it does not matter. In [43], the classes

±Di are called wall divisors. Moreover, Ri ∈ H2(S[5],Z) is the curve class corresponding to

Di ∈ H2(S[5],Z), i.e. Di is the smallest positive multiple of Ri contained in H2(S[5],Z) under

the embedding H2(S[5],Z) ⊂ H2(S[5],Z) coming from the intersection form. Below, we also

give the list of walls in coordinates of M .

Corollary 10.1. For a K3 surface S with Pic(S) = Z ·H and H2 = 2, there are �ve smooth

birational models of S[5] (including S[5] itself).

10.2. Geometrical characterization of the walls in Mov(M). So far, we know that the

movable cone of M or S[5], respectively, is divided into �ve chambers. The outer ones corre-

spond toM , with the Lagrangian �bration and to S[5] with the Hilbert�Chow morphism. Next,

we want to understand exceptional loci (and their strict transforms inM and S[5], respectively)

of the birational transformations between two models in adjacent chambers.

The geometry of the occuring contractions is studied in-depth in [6, �9], to which we refer

for the precise results. As mentioned above, the rough idea is to parameterize objects with

prescribed Harder-Narasimhan �ltration with respect to a stability condition on the other side

of the wall. This translates into �nding decompositions v = a1 + . . .+ am into e�ective classes

ai ∈ H, where H ⊂ H∗alg(S,Z) is the sublattice such that λMσ(v)(H⊥) cuts out the wall of the

ample cone. Here, a class a ∈ H is called e�ective if Mσ0(a) 6= ∅ [6, Prop 5.5], and a class

a ∈ H∗alg(S,Z) is called positive, if a2 ≥ 0 and (a, v) > 0. All positive classes are e�ective.

Let H de�ne a �opping wall for Mσ(v). By [6, Prop 9.1] there are two cases: Either
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(i) there is a decomposition v = a+ b into two positive classes and H = 〈v, a〉. Or
(ii) there is a spherical class s ∈ H such that 0 < (s, v) ≤ v2

2 .

In case (i), assume moreover that the wall is not totally semistable with respect to a or b (e.g.

if H does not contain any spherical or isotropic classes), and that φσ(a) < φσ(b), where φσ

is the phase of the stability condition σ. By [6, �9], the decomposition v = a + b de�nes an

irreducible component E of the exceptional locus of the contraction morphism associated to the

wall de�ned by H, such that a generic point E ∈ E is an extension

A → E → B [1]−→,

where A and B are σ-stable objects of Mukai vector a and b, respectively. By assumption on

the wall, A and B are generically also σ0-stable, where σ0 is a generic stability condition on the

wall. And by de�nition of H, we have φσ0(a) = φσ0(b). Hence, Hom(B,A) = 0 = Hom(A,B).

Finally, E de�nes a class in P1(Ext1
Db(S)(B,A)) and we �nd

r := dimP1(Ext1
Db(S)(B,A)) = (v − a, a)− 1.

Thus, E has generically the structure of a Pr-bundle over Mσ(a) ×Mσ(b). By assumption,

Mσ(a) and Mσ(b) are both non-empty and

codimE = (v, v) + 2− dimMσ(a)− dimMσ(b)− dimP1(Ext1
Db(S)(B,A))

= (v, v) + 2− ((a, a) + 2)− ((v − a, v − a) + 2)− ((v − a, a)− 1)

= (v − a, a)− 1 = r.

It may happen that case (ii) is a special case of (i). Otherwise H = 〈v, s〉 and the above results

also hold for the decomposition v = s+ (v − s) if s is e�ective and need extra care, if s is not

e�ective [6, Proof of Prop 9.1].

The relevant data for our example is listed in the following table:

i a′i ∈ H∗alg(S,Z) ai ∈ H∗alg(S,Z) (ai, ai) (ai, v) ri

0 (0, 0, 1) (−1, 0, 0) 0 1

1 (1,−1, 2) (−2, 1,−1) −2 2 3

2 (1,−1, 1) (−1, 1,−1) 0 3 2

3 (−1, 2,−5) (1, 0, 1) −2 1 2

4 (2,−3, 5) (−1, 1,−2) −2 3 4

5 (−1, 2,−4) (0, 0, 1) 0 0.

Here, T ∗ai = a′i (cf. (10.1)), so that

λM (a⊥i ∩ v⊥) = λS[5](a′i
⊥ ∩ v′⊥)

cuts out the walls in Pos(M) ∼= Pos(S[5]).
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When following the birational transformations from S[5] to M , not all exceptional loci can

naively be identi�ed in S[5] as their codimension ri = (v − ai, ai)− 1 is not strictly decreasing.

However, if we approach from either side, we get a beautiful description.

Theorem 10.2. The birational models of S[5] are connected by the following chain of �opping

contractions

BlW2 S
[5]

  }}

BlW̃3
X1

  ~~

BlZ̃3
X3

����

BlZ1 M

����

S[5]
g1

// X1
g2

// X2 X3
g3

oo M.
g4

oo

Here, W̃3 (resp. Z̃3) is the strict transform of W3 (resp. Z3) under g1 (resp. g4).

Remark 10.3. In the primitive case, the birational transformation S[g] 99KMH(0, 1, 1), where

H2 = 2g − 2 can be resolved in one step as follows (e.g. [1, �3])

Hilbg(C/|H|)

yy ''

(ξ,D)<

}}

	

$$

S[g] // MH(0, 1, 1), ξ OD(ξ),

where

Hilbg(C/|H|) = {(ξ,D) | ξ ⊂ D} ⊂ S[g] × |H|.

If g = 2, the birational map S[2] 99K MH(0, 1, 1) is the original example of a Mukai �op [44,

Expl 0.6].

More generally, the geometry of the birational map S[g] 99KMH(0, 1, 1), where H2 = 2g − 2 is

studied in [40].

Proof of Theorem 10.2. We verify wall by wall that the contracted locus is as claimed in the

Proposition. This means �rst of all, that we have to �nd decompositions v = a + b inside

Hi = 〈v, ai〉 for i = 1, . . . , 4 corresponding to a �opping contraction. If we set a = xai + yv,

solving for a positive decomposition reduces to solve{
a2
ix

2 + 2(ai, v)xy + 8y2 ≥ 0

0 < (ai, v)x+ 8y ≤ 4

for integer solutions (x, y) and similar for decompositions, where a is a spherical class. Due

to the small dimension of our example, we �nd by explicit computation that at every wall

v = ai + (v − ai) is the only suitable decomposition. We also compute that none of the walls

is totally semistable with respect to v. Moreover, for all i = 1, . . . , 4, the parallelogram inside

Hi ⊗R with vertices 0, ai, v− ai, v does not contain any other lattice points and so the decom-

position does not admit a re�nement. This is re�ected by the fact that the exceptional locus in
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each step is irreducible and actually a projective bundle.

We attack the �rst two walls starting from S[5]. The wall crossing can be realized by the

following path in the stability manifold

σ′t := σtH,−2H = (ZtH,−2H ,Coh−2(S)), t ∈ (0,+∞),

that actually hits every wall for v′ [5, Thm 10.8]. (For the de�nitions, see [12, Prop 7.1] or the

summary in [5, �6]). Explicitly, the walls arise when ZtH,−2H(v) and ZtH,−2H(ai) are R-linearly
dependent. We �nd

+∞ > t0 := 2 > t1 :=
√

2 > t2 :=
√

5
3 > t3 :=

√
2
3 > 0

such that

Mσ′t
(v′) ∼=


S[5] for t > t0

Xi for ti−1 > t > ti

M for t3 > t > 0.

At the �rst wall, we have the sublattice H1 = 〈a′1, v′〉 ∼= (Z2,
(−2 2

2 8

)
). This lattice admits no

decomposition of v′ into positive classes. But we have

v′ = a′1 + b′1 with a′1 = (1,−1, 2) = v(OS(−1)) and b′1 = (0, 1,−6)

and a′1 is the only spherical class s with 0 < (s, v) ≤ 4 in H1. Hence an ideal sheaf Iξ ∈ S[5] is

in the exceptional locus of g1 : S[5] 99K X1 if and only if it �ts into a short exact sequence

0→ OS(−1)→ Iξ → Q→ 0

with Q ∈ MH(0, 1,−6). By Proposition 9.4, this is equivalent to ξ ∈ W2. Hence g1 is the �op

at the projective bundle W2 (see also [5, Expl 10.2]).

The second wall corresponds to the lattice H2 = 〈a′2, v′〉 ∼= (Z2, ( 0 3
3 8 )), which contains no

suitable spherical classes and admits exactly one decomposition into positive classes. Namely,

v′ = a′2 + b′2 with a′2 = (1,−1, 1) and b′2 = (0, 1,−5).

Choose t1 < r < t0 such that X1 = Mσ′r(v
′). Let ξ ∈ S[5] \W2. Then Iξ is not destabilized at

the �rst wall and hence Iξ ∈ X1. Now, Iξ is in the exceptional locus of g2 : X1 99K X2 if and

only if there is an exact triangle

A → Iξ → B
[1]−→,

where A ∈ Mσ′r(a
′
2) and B ∈ Mσ′r(b

′
2) are stable objects. We claim that Mσ′r(a

′
2) is isomorphic

to the original K3 surface S, via S 3 x 7→ Ix(−1), where Ix ⊂ OS is the ideal sheaf of the

point x ∈ S. Indeed, Ix(−1) ∈ Coh−2(S) for all x ∈ S. Moreover, Mσ′r(b
′
2) ∼= MH(0, 1,−5),

as there is only one wall for b′2, which is de�ned by v(OS(−1)) = (1,−1, 2) and hit by our
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path for t =
√

2 = t1 (cf. Remark 10.3). Consequently, Iξ is contracted if and only if there is

x ∈ S,Q ∈MH(0, 1,−5) and an extension

0→ Ix(−1)→ Iξ → Q→ 0.

In other words, ξ ∈W3, see Proposition 9.4.

The remaining walls, we detect starting from M along the path σt := σtH,0 for t ∈ (1,+∞).

Then

Mσt(v) ∼=

{
M for t >

√
6

2 < t

X3 for
√

6
2 > t > 1,

i.e. this path only hits the �rst wall for t =
√

6
2 but it serves our purpose, in the sense that it

provides us with a classical moduli description of the exceptional loci.

The contraction g4 : M 99K X3 arises from the decomposition

v = a4 + b4 with a4 = (−1, 1,−2) = −v(OS(−1)) and b4 = (1, 1, 1),

which is the only suitable decomposition in H4 = 〈a4, v〉 ∼= (Z2,
(−2 3

3 8

)
). Let t >

√
6

2 . We

note that Mσt(a4) consists of the point OS(−1)[1] and S ∼= Mσt(b4) via x 7→ Ix(1). Moreover,

φt(a4) > φt(b4). Hence the exceptional locus of g4 consists of those sheaves E ∈ M that arise

as quotients

0→ OS(−1)→ Ix(1)→ E → 0

for some x ∈ S. This is the projective bundle Z1, as de�ned in Proposition 9.6.

Finally, there is the wall de�ned by H3 = 〈a3, v〉 ∼= (Z2,
(−2 1

1 8

)
), which only admits the

decomposition

v = a3 + b3 with a3 = (1, 0, 1) and b3 = (−1, 2,−2).

Let E ∈M \ Z1. Then E is not destabilized at the �rst wall and thus E ∈ X3. Now, E is in the

exceptional locus of g3 : X3 99K X2 if and only if there is an exact triangle

A → E → B [1]−→,

where A ∈ Mσt(a3) and B ∈ Mσt(b3) are stable objects and 1 < t <
√

6
2 . The space Mσt(a3)

consists of the point OS and S[3] ∼= Mσt(b3), via Iξ 7→ RHom(Iξ,OS)(−2)[1]. Indeed, there

are no walls for S[3] [11, Prop 5.6] and RHom(Iξ,OS)(−2) ∈ Coh0(S). Consequently, E is

contracted if and only if there is ξ ∈ S[3] and an exact triangle

OS → E → RHom(Iξ,OS)(−2)[1]
[1]−→

or equivalently an exact sequence

0→ OS(−2)→ Iξ → Ext1(E(2),OS)→ 0.

Here, E ′ := Ext1(E(2),OS) ∈ MH(0, 2,−7). By the proof of Proposition 9.6 we conclude that

the exceptional locus of g3 is Z̃3. �
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Remark 10.4. For v = (0, 2,−1), the wall-crossing can not be realized entirely in the (H,H)-

plane. Actually, only two walls intersect the (H,H)-plane.

Corollary 10.5. We have that Z3 \ Z1 is isomorphic to a P2-bundle over an open subset of

S[3]. Moreover,

Z3 ∩ BN1(M) = Z1.

Proof. The proof of Theorem 10.2 implies that the map ϕ3 : X3 99K MH(0, 2,−7) ∼= M from

Proposition 9.6 identi�es the open subset of X3, where ϕ3 is de�ned and injective with Z3 \Z1.

Let D ∈ |2H| be a smooth curve and L ∈ Pic3(D) such that h0(L) ≥ 2. Then ϕ3 is de�ned but

not injective in L∨. Consequently, we must have L ∈ Z1. �

We could have also determined (g3)−1 : X2 99K X3.

Proposition 10.6. We have

BlP̃3
X2
∼= BlZ̃3

X3,

i.e. P̃3 ⊂ X2 is the dual projective bundle of Z̃3 ⊂ X3.

Proof. We let t1 > r > t2 and X2 = Mσ′r(v
′). We want to see that P̃3 is the projective bundle

parameterizing extensions of the form

A → I → B [1]−→,

where A ∈Mσ′r(2,−2, 1) and B ∈Mσ′r(−1, 2,−5). Necessarily, B = OS(−2)[1] and

S[3] ∼= Mσ′r(2,−2, 1), Iξ 7→ Iξ(−1)⊕OS(−1).

Indeed, we verify that E [1] := (Iξ(−1) ⊕ OS(−1))[1] ∈ Coh−2(S). Assume that F ⊂ E is a

subbundle. Then either rkF = 2 and c1(F) = c1(E) = −2H. Or rkF = 1 and F embeds into

Iξ(−1) or into OS(−1), which implies c1(F).H ≤ −2. In both cases, we have H.c1(F)
rkF + 2 ≤ 0

and hence E [1] ∈ Coh−2(S).

Let Iξ be the ideal sheaf of a generic point in P3 ⊂ S[5]. Then ξ = ζ ∪ ξ′ for a subscheme

ζ ∈ S[2] such that Supp(ζ) = {x, ι(x)} and ξ′ ∈ S[3] is disjoint from ζ (cf. Example 7.15). The

assumption on ζ is equivalent to Iζ(1) being globally generated with h0(Iζ(1)) = 2. This gives

a short exact sequence

0→ OS(−2)→ OS(−1)⊕2 → Iζ → 0. (10.2)

Therefore, Iξ = Iζ · Iξ′ �ts into a diagram

0 // Iξ′(−2)

��

// Iξ′(−1)⊕2

��

// Iξ // 0

0 // OS(−2) // OS(−1)⊕ Iξ′(−1) // Iξ // 0.
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Here, the �rst line is (10.2) tensored with Iξ′ and the second line is the pushout along the left

vertical arrow. This �nishes the proof. �

Interestingly, the dual projective bundle of W̃3 ⊂ X1 does not yield a component of the

Brill�Noether locus in M .

Proposition 10.7. Let W̃∨3 ⊂ X2 be the exceptional locus of (g2)−1 : X2 99K X1 and B3 ⊂ M

its strict transform then

B3 ⊂MΣ.

More precicesly, let D = D1 ∪D2 ∈ Σ \∆. Then

B3 ∩ f−1(D1 ∪D2) = {E ∈ f−1(D1 ∪D2) | h0(E|Di) 6= 0 for both i = 1, 2}.

In particular, B3 is not contained in BN0(M) and T−1 is generically de�ned in B3.

Proof. As above, we let X2 = Mσ′r(v
′) with t1 > r > t2. We know that W̃∨3 parameterizes

extensions

A → F → B [1]−→,

where A ∈ Mσ′r(1, 0,−5) and B ∈ Mσ′r(1,−1, 1). If F ∈ W̃∨3 is a generic point, then we saw

in the proof of Theorem 10.2, that we can take A = Q ∈ MH(0, 1,−5) and B = Ix(−1) for a

point x ∈ S. This gives

Q → F → Ix(−1)
[1]−→ .

To �nd the strict transform in M , we have to apply the spherical twist T = TOS(−2) and tensor

with OS(2). We �nd an exact triangle in Db(S)

T (Q)→ T (F)→ T (Ix(−1))
[1]−→, (10.3)

where T (Q) is concentrated in degree zero and �ts into the sequence

0→ Q→ T (Q)→ OS(−2)→ 0. (10.4)

Moreover, we compute that

OS(−2)⊕2 → Ix(−1)→ T (Ix(−1))
[1]−→

and thus H−1(T (Ix(−1))) = OS(−3) and H0(T (Ix(−1))) = Oι(x). Then the long exact coho-

mology sequence of (10.3) reads

0→ H−1(T (F))→ OS(−3)→ T (Q)→ H0(T (F))→ Oι(x) → 0. (10.5)

Generically, T (F) is a Gieseker stable sheaf and in this case T (F)(2) is a generic point in B3.

Combining (10.4) and (10.5), we see that if T (F) is a sheaf, then Supp(T (F)) = D1∪D2, where

D1 = Supp(Q) and D2 ∈ |H| such that x ∈ D2. Hence B3 ⊂MΣ.
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Now, if we assume that x /∈ D1, then E := T (F)(2) is an extension

0→ Q⊗OS(2)|D1 → E → OD2(ι(x))→ 0. (10.6)

As T orOD1∪D2
1 (OD1 ,OD2(ι(x))) = 0, this implies E|D1 ∈ Pic2(D1), which is trivially e�ective.

Moreover, restricting (10.6) to D2 gives

0→ T orOD1∪D2
1 (OD2 ,OD2(ι(x)))

∼−→ OD1∩D2

0−→ E|D2

∼−→ OD2(ι(x))→ 0.

In particular, E|D2 is an e�ective line bundle of degree one. Conversely,

dim{E ∈ f−1(D1 ∪D2) | h0(E|Di) 6= 0 for both i = 1, 2} = 4.

Hence, by dimension reasons, B3 ∩ f−1(D1 ∪D2) is as claimed for every D = D1 ∪D2 ∈ Σ \∆.

It is left to show, that for a generic sheaf E ∈ B3, we have h0(E) = 0. To see this, we can

assume E ∈ Pic(1,2)(D1 ∪ D2) and that h0(E|Di) = 1 for i = 1, 2. If h0(E) 6= 0, necessarily

h0(E) = 1 and the restriction to each component induces an isomorphism on global sections.

However, this determines E completely. Indeed, we have E|D1 = OD1(x) and E|D2 = OD2(y+z),

for unique points x, y and z. Then any non-zero section OD1∪D2 → E is necessarily injective

with cokernel supported on ξ = {x, y, z}. In other words, E has a section if and only if E∨ =

ker(OD → Oξ). Finally, we saw in Proposition 8.1, that T−1 is de�ned for all E ∈ MΣ\∆ such

that h0(E) = 0. �
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