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Introduction

This dissertation consists of three self-contained essays in microeconomic theory.
The first chapter examines how pre-election polls affect the election outcome
through the voters’ participation decision and studies the resulting incentives that
arise for the poll participants. The second chapter, which is joint work with Tobias
Rachidi, compares two search technologies—evaluating one or multiple candidates
at a time in each time period—in a committee search framework in terms of wel-
fare and acceptance standards. The third chapter analyzes the equilibria of three-
candidate plurality-rule elections in a costly voting framework, revisiting Duverger’s
law.

In chapter 1, I study the effect of pre-election polls on the participation decision
of citizens in a large, two-candidate election and the resulting incentives for the poll
participants. Citizens have private values, and voting is costly and instrumental. The
environment is ex ante symmetric and features aggregate uncertainty about the dis-
tribution of preferences. An opinion poll conducted prior to the election publishes
its results of preferences for each candidate as expressed by those participating in
the poll. Citizens base their participation decision in the election on their own pref-
erences and on the information provided in the poll.
Starting with the voting equilibrium, I show that there exists an equilibrium for any
posterior belief induced by the polling outcome. As the population size grows large,
the limit of the ratio of participation rates of supporters of either candidate is unique.
This limit ratio reflects the underdog effect—the expected minority participates at
higher rates than the expected majority—and it is monotonic in the posterior belief.
However, the underdog effect is only partial, meaning that the increased turnout of
the expected minority does not fully offset the majority’s initial advantage. Thus, in
the limit, the majority candidate wins the election almost surely, regardless of voters’
posterior beliefs. If all participants answer the poll truthfully, the results imply that
the supporters of the trailing candidate turn out at higher rates than the support-
ers of the leader of the poll, and that this effect is monotonic in the poll’s margin.
This yields incentives for the poll participants to misrepresent their preferences to
encourage the voters who have the same preferences to turn out. If poll participants
are strategic, however, there does not exist an equilibrium in which the poll conveys
any information.
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In chapter 2, we study committee search where members either assess candi-
dates “one at a time”, i.e., on a rolling basis, or they simultaneously review a set of
candidates of fixed size in each time period. The former search procedure has been
studied before, whereas the exploration of the latter search technology is novel in
the committee search literature. We compare both search procedures in terms of
acceptance standards and welfare. There is a trade-off between the expected value
of a candidate conditional on stopping and the expected search costs. The resolu-
tion of this trade-off depends on the voting rule and the specification of search costs
associated with the simultaneous evaluation of multiple candidates. The adoption
of a qualified majority rule changes the evaluation of search procedures compared
to the unanimity rule, revealing that the presence of a search committee alters the
search design problem in comparison with the single decision-maker case, which is a
special case of a committee operating under unanimity voting rule. This is the main
qualitative insight and we discuss its implications for committee search in practice.

In chapter 3, I consider a large election with three candidates under plurality
voting rule. I examine whether Duverger’s law—which stipulates that plurality-rule
elections favor a two-party system (cf. Duverger (1954))—holds in a framework
in which participation is endogenous, i.e., in which voting is costly and voluntary.
Citizens have private values. In the limit as the population size grows large, the
existence of an equilibrium in which only two candidates receive a positive vote
share, aDuvergerian equilibrium, follows from the analysis of Xefteris (2019). I study
the question whether any non-Duvergerian equilibria exist in the limit. I show first
that there cannot exist an equilibrium in which only one candidate receives any
votes. Next, I prove that an equilibrium in which all three candidates are expected
to receive positive vote shares in the limit does not exist if one candidate is expected
to be behind the others. The only potential non-Duvergerian equilibria are thus
the ones in which either all candidates tie, or two candidates are expected to tie
for second and third place behind a front-runner. I give necessary and sufficient
conditions on the distribution of voter types for the former equilibrium to exist for
any finite population size. These conditions are knife-edge. Finally, I discuss the
latter type of equilibrium.

References

Duverger, Maurice. 1954. Political Parties: Their Organization and Activity in the Modern State.
John Wiley & Sons. Transl. Barbara and Robert North. [2]

Xefteris, Dimitrios. 2019. “Strategic Voting When Participation is Costly.” Games and Economic
Behavior 116: 122–27. [2]
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Chapter 1

Polls and Elections: Strategic
Respondents and Turnout Implications

1.1 Introduction

Polls matter. They receive widespread attention in the media, and they are perceived
to have an influence on voting behavior and turnout. As an example, on 23 June
2016, the United Kingdom decided to leave the European Union with a 52% major-
ity. By contrast, opinion polls released on the eve of the referendum predicted that
51% of voters would support remaining (cf. Wells (22 June 2016)). Later, several
sources, such as Low (24 October 2016), voiced concern that many citizens might
not have voted because they had believed that “Brexit” would be defeated. Gov-
ernment regulations restricting the timing of the publication of polls in the run-up
to elections reflect the perceived influence of polls. Several countries prohibit the
publication of opinion polls in specific circumstances, usually quite close to Election
Day itself. In a study of policies that address the publication of voter polls in 133
countries, Frankovic, Johnson, and Stavrakantonaki (2018) find that 60% of these
countries ban the publication of polls before elections for a certain period of time,
called the blackout period. In France, for example, the blackout period is currently
set at two days.

Generally, turnout decisions are strategic and depend on the citizens’ beliefs
about the preferences and turnout decisions of other voters.1 Polls inform citizens
about these preferences and allow rational voters to update their beliefs. Therefore,
polls can influence elections by updating beliefs, which, in turn, affect the incentives
of poll participants. The aim of this paper is to analyze the effect of the information
provided through polls on voter turnout, the incentives of the poll participants, and

1 For empirical evidence, see Agranov, Goeree, Romero, and Yariv (2018), Klor and Winter (2018),
Morton, Muller, Page, and Torgler (2015), Blais, Gidengil, and Nevitte (2006), and Cantoni, Yang,
Yuchtman, and Zhang (2019).
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the implications for regulations. To this end, I study and build upon the canonical
model of costly voting as introduced by Palfrey and Rosenthal (1983). I add the
feature that there is aggregate uncertainty about the distribution of preferences.
This captures the observation that voters rarely know with certainty whether they
are part of the majority. Finally, I introduce polls that inform citizens about the
preferences of others.

In more detail, I consider a large election taking place between candidates A
and B. Citizens have private values, and there is aggregate uncertainty about the
preference distribution, which is governed by the state of the world. In state α, the
probability that a randomly drawn voter supports candidate A is q> 1

2 , and in state
β , the probability that a randomly drawn voter supports candidate A is 1− q, where
each state is equally likely. Thus, ex ante, it is equally likely that a random voter
prefers candidate A or B. Each voter knows his or her own preferences, but does not
knowwhether he or she is part of themajority. An opinion poll conducted prior to the
election publishes its results of preferences for each candidate as expressed by those
participating in the poll. Voters in the electorate use the information from the poll as
well as their own preference type to update their beliefs about the state of the world.
It is assumed that a known and finite number of citizens, randomly drawn from the
population, participate in the opinion poll and indicate their preferred candidate.
So, the sample of citizens surveyed in the pre-election poll is representative.2
Voting is costly and voluntary, and costs are drawn from a smooth distribution that
has bounded support [0, c̄] and a strictly positive density everywhere on the support.
The election is decided by majority voting. The candidate with the most votes wins
the election, and ties are broken randomly.

I solve the game backwards, starting with the voting equilibrium. For any given
polling outcome, and for any strategy the poll participants pursue, voters hold some
posterior belief about the state of the world. I show that there always exists a vot-
ing equilibrium with strictly positive participation rates by both groups. Focusing
on large elections, i.e., taking the limit as the size of the population goes to infinity,
I show that there exists a unique limit of the ratio of participation rates. This limit
ratio reflects the underdog effect: the expected minority participates at higher rates.3
Mentioned informally decades ago in Palfrey and Rosenthal (1983), the underdog
effect has been observed repeatedly in the experimental literature, e.g. Levine and
Palfrey (2007). As formalized in Ledyard (1984), a vote for the expected minority
candidate is pivotal with higher probability because it pushes the election closer
to a tie; by contrast, a vote for the majority candidate pushes the likely outcome

2 To isolate effects, the citizens participating in the poll are excluded from voting in the election,
but it is assumed that they derive the same utility from the election outcome as eligible voters who
share their preferences.

3 Note that if there are no polls, supporters of both candidate A and B have the same probability of
turning out.
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further away from a tie. Consequently, because a voter’s perceived benefit of voting
increases with his or her belief in the likelihood that his or her vote will be pivotal,
those supporting the perceived underdog in the race have a higher incentive to vote,
implying higher participation rates.⁴ Importantly, I show that this underdog effect
is monotonic in the sense that the limit ratio of participation rates is monotonic in
the posterior beliefs. However, the underdog effect is only partial: the limit ratio of
participation rates is closer to one than the ratio of the respective population shares
of A and B supporters. Consequently, in the limit, the majority candidate almost
surely wins the election. Notably, this holds for any posterior belief voters might
hold, including the case in which any aggregate uncertainty about the distribution
of preferences is resolved and, thus, the state of the world is known.
The solution of the voting stage has interesting implications if polls are answered
truthfully. Due to the partial underdog effect, the margin of victory decreases, but
the majority candidate still wins the election in the limit almost surely. Yet, prior
research has found that poll participants do not necessarily answer truthfully⁵. So,
I next consider the strategic behavior of participants in the polling stage of the elec-
tion by initially assuming that all participants behave in strategic ways. By contrast,
suppose that all poll participants answer truthfully and that the electorate believe
this to be the case. In such a situation, posterior beliefs are monotonic in the poll’s
margin, and, thus, so is the underdog effect. However, given this monotonicity, there
cannot exist an equilibrium with any information transmission. In equilibrium, the
poll is uninformative. Intuitively, misrepresenting preferences is profitable because it
simultaneously stimulates the participation of voters who have the same preferences
and discourages the participation of opponent voters. In Appendix 1.C, I consider an
extension in which a fixed share of poll participants is prescribed to answer the poll
truthfully and the other poll participants are strategic. Then, it holds again that the
majority candidate almost surely wins the election in the limit. The direction of the
underdog effect will depend on the share of exogenously truthful poll participants.
If this share is larger than one-half, the poll is informative. Else, the poll is not infor-
mative. In any case, the strategic poll participants have an incentive to misrepresent
their preferences.

In conclusion, in the limit, polls do not prevent the almost sure election of the
majority candidate. If the poll result is informative, it stimulates participation of
voters who support the minority candidate. However, the higher participation rate
is not sufficient to overturn the election outcome. In contrast, if poll participants are

⁴ Note that the underdog effect is related to the free-riding problem in public goods games because
voting is comparable to contributing to the public good.

⁵ See, for example, Clarke and Whiteley (2016) who are concerned with false answers regarding
voting intention, or Keeter and Samaranayake (2007) and Hopkins (2009) who consider the Bradley
effect.
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strategic, the poll is uninformative and voters behave as if there were no poll in the
first place.

Goeree and Großer (2007) study the effect of exogenously truthful information
on the distribution of preferences. They find that this information (for example, as
provided by truthful polls) is detrimental for welfare because, as a result, both can-
didates are equally likely to win. In their paper, all voters face homogenous voting
costs, which are set such that turnout is incomplete and positive. For voters to be
willing to employ mixed strategies and, thus, to be indifferent between abstaining
and voting, given the homogenous cost, the expected benefit of voting needs to
coincide for all voter types, implying equal pivot probabilities for votes for either
candidate. Since a vote for the trailing candidate has a higher probability of being
pivotal, pivot probabilities (and, thus, expected voting benefits) can only be equal
if the expected vote shares coincide. As a result, models with homogenous voting
costs (such as the model of Goeree and Großer (2007)) observe a full underdog
effect because the minority’s heightened participation has to completely offset the
majority’s advantage in equilibrium. By contrast, if one assumes, as I do, that the
distribution of costs is smooth, the underdog effect must be partial. Intuitively, if the
underdog effect were to fully compensate for the majority’s advantage such that
expected vote shares would be equal, the pivot probabilities would be equal for the
two groups. However, in my model, if the probability of being pivotal would indeed
be the same for both groups, the participation rates would be equal, and, thus, vote
shares would necessarily be strictly different. This contrasts with Goeree and Großer
(2007), where the vote shares can be the same if the pivot probabilities are the same.
Overall, while they show how drastic the effects of polls can be, I demonstrate that
the negative welfare effects do not carry over when considering a slightly different
model framework. Coming back to the “Brexit” example, my results can be inter-
preted to demonstrate that in equilibrium, and in a large election, polls should not
have been of concern for the election outcome. However, polls generally do matter
in the sense that they reduce the margin of victory in elections (or referenda) com-
pared to the actual advantage of the majority candidate (or alternative) through the
partial underdog effect. This effect has consequences if the margin of victory or vote
shares themselves matter.

The remainder of this paper is organized as follows: Section 1.2 gives an
overview of the related literature. Section 1.3 introduces the model, and section
1.4 analyzes the voting equilibrium. Section 1.5 analyzes the polling equilibrium,
and section 1.6 concludes. All omitted proofs appear in Appendix 1.A. Appendix
1.B contains the properties of posterior beliefs. Appendix 1.C considers a poll with
a share of exogenously truthful participants.
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1.2 Related Literature

The theory of costly participation in a two-candidate election was introduced by
Palfrey and Rosenthal (1983), Ledyard (1984), and Palfrey and Rosenthal (1985),
who explore the paradox of not voting and give conditions for equilibria with posi-
tive turnout for given candidate platforms. Palfrey and Rosenthal (1983) character-
ize multiple equilibria in a setting in which voting costs are identical for all voters.
Nöldeke and Peña (2016) provide missing proofs. Ledyard (1984) considers spatial
preferences of voters and a smooth cost distribution. He characterizes the voting
equilibrium, showing that if candidates can freely set their platforms, the welfare
maximizing platform is chosen by all candidates, and there is no turnout in equi-
librium. Palfrey and Rosenthal (1985) also consider fixed platforms and allow for
different distributions of costs across groups. They show that in large elections, only
voters with negative or zero costs of voting turn out.

The partial underdog effect has been identified in the literature studying idiosyn-
cratic uncertainty about voters’ preferences, assuming, as I do, a smooth distribution
of costs. Herrera, Morelli, and Palfrey (2014) contrast the voting systems of major-
ity and proportional representation in a setting with population uncertainty; they
characterize the differences in turnout. Krishna and Morgan (2015) give conditions
under which simple majority rule selects the utilitarian candidate.⁶ In a model of
ethical voting, Evren (2012) assumes that a fraction of agents is altruistic, and that
there is aggregate uncertainty about the expected share of altruists for supporters of
either candidate. While selfish agents abstain from voting, altruistic agents turn out
if their private voting cost is outweighed by their vote’s contribution to the welfare
of society.

Myatt (2017) studies protest voting in a setting in which voting is not costly,
but the possibility to protest bears opportunity costs, and voting for the opponent
potentially influences policy. He observes an “offset” effect which is directly related
to the underdog effect. The anticipation of a larger protest reduces the motivation of
like-minded agents to join the protest—thus reducing the size of the protest, but not
fully compensating for the increase in enthusiasm. I show that the partial underdog
effect exists for any posterior belief that can be induced by a pre-election poll if there
is aggregate uncertainty about the distribution of preferences and voters only expect
to be part of the majority or the minority, but do not know this with certainty.

Aggregate uncertainty about the distribution of preferences in costly voting mod-
els has been studied by Goeree and Großer (2007), Taylor and Yildirim (2010b),
and Myatt (2015). In similar papers, Goeree and Großer (2007) and Taylor and
Yildirim (2010b) both contrast the effects that occur in two different environments.
The first is an environment in which voters are informed about the distribution of

⁶ Grüner and Tröger (2019) study utilitarian-optimal voting rules if voting is costly.
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preferences; the second is an environment in which there is aggregate uncertainty
about this distribution and the prior over the state distribution is symmetric. Voting
costs are homogenous for all voters. Their papers differ in that Goeree and Großer
(2007) consider two states of the world and focus on small elections, whereas Tay-
lor and Yildirim (2010b) allow for finitely many states of the world and consider
small and large elections. Under their common assumptions on costs, the underdog
effect implies that expected vote shares are equal. In the informed case, this results
in a toss-up election in expectation. In the case with aggregate uncertainty about
the preference distribution, the symmetric prior yields identical participation rates
for both types of voters, such that the majority candidate is more likely to win the
election. Goeree and Großer (2007) and Taylor and Yildirim (2010b) thus conclude
that information provision that resolves the aggregate uncertainty is unambiguously
detrimental to voters’ welfare since it decreases the probability of the majority can-
didate winning the election. My modeling of aggregate uncertainty about the pref-
erence distribution follows Goeree and Großer (2007). I show that their conclusion
about the welfare implications of information is sensitive to assumptions on the dis-
tribution of costs. My work is distinct in two other aspects: I consider the incentives
of poll participants, and I do not require the poll to perfectly reveal the state of the
world.

In Myatt (2015), the probability that candidate A is preferred by a randomly
drawn voter is given by p, which is itself a random variable with mean p̄ and den-
sity f(p). He studies the response of turnout and the election outcome to, amongst
others, varying assumptions on costs, the importance of the election, the preference
intensities, or the perceived popularity of candidates. He also finds that there exists
an underdog effect, which is complete if costs are the same for all voters, and partial
if the cost distribution is smooth. Our two models are not nested. First, Myatt (2015)
assumes full support on [0, 1] for the density f . Further, in Myatt (2015), reducing
the aggregate uncertainty about the distribution of preferences corresponds to de-
creasing the variance; if the uncertainty is resolved, voters’ beliefs coincide with the
mean p̄. By contrast, in my model, if the state of the world is known, the probability
of preferring A is either q or 1− q, but never their mean.⁷ Further, Myatt (2015) does
not consider the incentives faced by poll participants but only studies the impact of
different beliefs about preferences on voting.⁸

This paper is also related to the literature on information provision in elections
and on signaling in elections.

Burke and Taylor (2008) study polls with signaling incentives, assuming that
the same voters participate in the poll and in the election. There is only idiosyn-
cratic uncertainty about voters’ preferences, and voting costs are the same for all
voters. They find that truthful reporting is an equilibrium in the pre-election poll

⁷ A similar argument is made in Agranov et al. (2018).
⁸ Cvijanović, Groen-Xu, and Zachariadis (2020) study corporate voting, building on Myatt (2015).
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for a three-person electorate and low voting costs. This holds because in the case
of a two-citizen majority, if preferences are known, there is no underdog effect for
sufficiently low voting costs, and therefore, the majority is more likely to win. The
incentive to truthfully reveal preferences in the case of a two-citizen majority dom-
inates the incentive to misrepresent in all other cases. For general n, Burke and
Taylor (2008) derive sufficient conditions for the non-existence of a truthful report-
ing equilibrium. Finally, they show that if a truthful equilibrium exists, it is welfare
enhancing because the minority is discouraged from participating in the election.
My model marries the incentive considerations in a poll that is intended to inform
the electorate about the prevailing preferences with the assumption that the dis-
tribution of these preferences is initially unknown. Then, truthtelling cannot be an
equilibrium of the polling stage.

Another subject of study of the roles played by polls concerns their ability to
serve as signaling and coordination devices, or a means to inform politicians about
the desired policy.

Hummel (2011) proposes a model of polling in sequential elections, in which
the winner of the first election faces a third candidate, and finds incentives to mis-
represent preferences to increase the winning probability of one’s favorite candi-
date in the second election. Piketty (2000) analyzes a similar sequential election,
in which there are no polls, but voters use their votes in the first election round to
communicate their preferences—thereby trading off sincere with strategic voting.
Hummel (2014) considers a three-candidate election, in which the third candidate
is supported by a minor party; he explains why third party candidates achieve better
results in pre-election polls than in elections.

Meirowitz (2005) andMorgan and Stocken (2008) analyze the incentives of poll
participants if candidates use the information revealed in the poll to select policy
platforms. To be more precise, Morgan and Stocken analyze a setting in which a
policy maker polls the constituents, who differ in terms of information they have
and ideology they hold, about their preferred policy, and provide conditions for full
information aggregation. Relatedly, Battaglini (2017) and Ekmekci and Lauermann
(2019) study information aggregation through informal elections, such as public
protests.

Communication in committees prior to a binding vote has also been modeled
through straw votes (a full poll). Coughlan (2000) and Austen-Smith and Feddersen
(2006) give conditions for full information revelation in a non-binding straw vote for
a Condorcet jury setting. Gerardi and Yariv (2007) allow for general communication
protocols; they show that the set of equilibrium outcomes is invariant to the voting
institution, as long as it is non-unanimous.

The incentives of poll participants and the effects of polls, or exogenous infor-
mation release, on voters’ beliefs have been studied in the experimental literature
as well. Agranov et al. (2018) study the effect of the release of exogenous infor-
mation by testing the model proposed by Goeree and Großer (2007). They do not
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observe an underdog effect and find that information about the distribution of pref-
erences does not reduce welfare. Agranov et al. (2018) argue that the data can be
explained by assuming that voters have preferences to vote for the winner.⁹ Klor
and Winter (2018) also consider exogenous information; they find that close polls
stimulate turnout, and that the effect is greater for majority voters because of false
beliefs about the probability of casting a pivotal vote. Morton et al. (2015) employ a
natural experiment featuring exit polls in France; their findings show that the pub-
lication of exit polls while the election was ongoing led to a decrease in turnout by
11%, and an increase in bandwagon voting, i.e., voting for the expected winner of
the election. Großer and Schram (2010) find that polls stimulate turnout, and that
this is driven by undecided voters. Blais, Gidengil, and Nevitte (2006) examine the
impact of polls in the 1988 Canadian election. They find that the polls affected the
beliefs about the outcome of the election and voting itself by discouraging turnout
of supporters of a party that was not considered likely to win. They do not observe a
bandwagon effect. Because I abstract from voter preferences that prescribe that par-
ticipants want to vote for the winner, I avoid the effect described by Blais, Gidengil,
and Nevitte (2006) that would counteract some of my results. Cantoni et al. (2019)
conduct a field experiment to elicit the beliefs of individuals about others’ planned
participation in a public protest and the effects on turnout. The authors find that
there is strategic substitutability related to the underdog effect in the sense that
turnout is stimulated if and only if others are believed not to participate.

Methodically, this paper is related to the seminal work of Myerson (1998a), My-
erson (1998b), and Myerson (2000) on population uncertainty. It is also related to
Krishna and Morgan (2012), who study welfare properties of majority voting in a
two-candidate election with common values and population uncertainty, in which
the state of the world indicates which candidate is more competent.

1.3 The Model

Two candidates, A and B, vie for election. Citizens have independent private val-
ues. An A supporter receives a utility of v> 0 if and only if A is elected, and zero
otherwise, and a B supporter receives a utility of v> 0 if and only if B is elected,
and zero otherwise. There is aggregate uncertainty about the distribution of pref-
erences that is governed by two states, ω ∈ Ω = {α,β}. In state α, the probability
that a randomly drawn citizen prefers A is Pr(A|α)= q> 1

2 , while, in state β , the
probability that a randomly drawn citizen prefers A is Pr(A|β)= 1− q. The number
of eligible voters is finite but uncertain, and it is Poisson distributed with mean n.
Hence, the probability that the electorate consists of k citizens is e−n nk

k! . This induces
an extended Poisson game as introduced by Myerson (1998a).

⁹ Callander (2007) shows in a theoretical model that preferences to vote for the winner can result
in the so-called bandwagon effect.



1.4 Voting Equilibrium | 11

Voting is costly and voluntary. Each citizen can decide between the actions “vote
for A”, “vote for B”, and “abstain”. If a citizen chooses to vote for one of the candi-
dates, he or she incurs a voting cost c. The voting cost is distributed according to the
cumulative distribution function F with density f that is strictly positive on its sup-
port [0, c̄], with c̄≥ v.1⁰ Further, F is assumed to be differentiable. Costs are drawn
independently for each individual citizen and, thus, do not depend on preferences.
The candidate who obtains the majority of votes wins, and ties are broken by the
toss of a fair coin. Prior to the election, but after the state and preferences have been
realized, an opinion poll is conducted. To this end, m independently drawn citizens
are asked which candidate they prefer. Then, the poll result is published in the form
of the pair τ= (τA,τB), where τi denotes the number of poll participants who indi-
cated a preference for candidate i, for i ∈ {A, B}. For tractability, the m participants
of the poll are assumed not to take part in the main election. That is, they will not
belong to the electorate. They will, however, have the same preferences over the
election outcome as the members of the electorate, and so, have the same stakes in
the election, absent the cost of voting.

Thus, the overall timing is as follows: Nature draws the number of voters and the
state of the world, preferences are determined by independent draws from the state-
dependent Bernoulli distribution, the pre-election poll is conducted and published,
and, finally, the election is held.

I will consider symmetric Perfect Bayesian equilibria, in which all supporters of
the same candidate employ the same strategy.11

1.4 Voting Equilibrium

This section addresses the equilibrium of the election stage and collects its properties.
I take as given the citizens’ posterior beliefs about the state of the world. First, I
derive the existence of voting equilibria and show that for all n, participation rates
are equal if and only if the posterior beliefs coincide with the prior beliefs. Then,
I turn to the analysis of large elections. I show that the limit ratio of participation
rates is unique and that it reflects the underdog effect, which is monotonic in the
posterior beliefs. Finally, I show that the majority candidate almost surely wins the
election in the limit, independently of posterior beliefs.

1.4.1 Equilibrium Existence

Observe first that given the assumption that voting is costly, for every supporter of
candidate i, voting for candidate j is strictly dominated by abstention. Thus, if a

1⁰ This condition is sufficient, but not necessary to guarantee positive and incomplete turnout.
11 Given the Poisson setting, the assumption of symmetric strategies is without loss of generality. For

details, see Myerson (1998a).
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citizen chooses to vote, he or she will vote for his or her preferred candidate. Voting
is always sincere.

So, a citizen trades off voting for his or her favorite candidate against abstaining.
To that end, a citizen will contrast the expected benefit of his or her vote with the
associated costs. His or her vote will directly benefit him or her only if the vote
changes the outcome of the election, i.e., only if his or her vote is pivotal. A vote
for candidate A is pivotal in two cases: 1) if both candidates are tied, that is, if
there are 2k other voters, where k are voting for A and k are voting for B, and 2),
if candidate A is exactly one vote behind, that is, if there are 2k+ 1 other voters,
where k are voting for A and k+ 1 are voting for B. PivA denotes the event that a
vote for candidate A is pivotal, analogously, PivB denotes the event that a vote for B
is pivotal.

Upon observing their own preference type, citizens do not hold uniform priors.
That is, a citizen of type i, for i ∈ {A, B}, holds the prior Pr(ω|i) forω ∈ {α,β}. After
observing a poll result τ, the posterior belief of a citizen of type i that the state is
ω is denoted by Pr(ω|i,τ). The properties of these beliefs are derived in Appendix
1.B.
The expected benefit of voting for an i supporter is thus given by

Pr(α|i,τ) · Pr(Pivi|α) · v + Pr(β |i,τ) · Pr(Pivi|β) · v.

A citizen will vote for his or her preferred candidate if and only if the expected
benefit of voting is weakly larger than his or her voting cost c. Since the expected
benefit of voting is independent of c, there exist cost cutoffs c∗A, c∗B,12 satisfying

Pr(α|A,τ) · Pr(PivA|α) · v + Pr(β |A,τ) · Pr(PivA|β) · v = c∗A (1.1)

Pr(α|B,τ) · Pr(PivB|α) · v + Pr(β |B,τ) · Pr(PivB|β) · v = c∗B.13 (1.2)

The cost cutoffs determine the voters’ participation decision. Thus, the equilibrium
strategy for a voter of type i, for i ∈ {A, B}, will now be identified by the cutoff cost
c∗i . A voting equilibrium is a pair of cutoff costs (c∗A, c∗B) such that it is optimal for
a citizen of type i with cost c≤ c∗i to turn out and vote for candidate i if all other
citizens in the electorate pursue this strategy.
Let pA denote the probability that an A supporter chooses to vote for A, and analo-
gously, let pB denote the probability that a B supporter chooses to vote for B. Then,

12 The cost cutoffs may depend on τ. The dependence is omitted in the notation for the sake of
readability.
13 The probability that a vote is pivotal is larger if the election is expected to be close. The above

equations imply that close elections induce higher turnout because higher pivot probabilities increase
the cost cutoffs.
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the probability that an i supporter abstains is 1− pi. I will call pA and pB the partici-
pation rates of A and B supporters, respectively.
Given the pair of cost cutoffs, these participation rates are

pA := F(c∗A), pB := F(c∗B).

Since the size of the electorate follows a Poisson distribution with mean n, the
number of votes for candidate i conditional on the state of the worldω is distributed
according to a Poisson distribution with mean denoted by λ(i|ω), i ∈ {A, B},ω ∈
{α,β}. Note that the number of votes for candidate i is independent of the number
of votes for candidate j conditional on the state, cf. Myerson (2000).
These means, which I also call expected conditional votes, are given by

λ(A|α) := n · q · pA,

λ(A|β) := n · (1 − q) · pA,

λ(B|α) := n · (1 − q) · pB,

λ(B|β) := n · q · pB.

Since in an extended Poisson game, the pivot probabilities depend only on the
expected conditional votes for either candidate, I can now calculate these probabil-
ities. As mentioned above, a vote is pivotal if it either creates a tie or breaks a tie.
Let T be the event of a tie, let TA

−1 be the event that candidate A is one vote behind,
and TB

−1 be the event that candidate B is one vote behind. The probabilities of these
events are given by

Pr(T|ω) = e−λ(A|ω)−λ(B|ω) ·
∞
∑

k=0

λ(A|ω)k

k!
·
λ(B|ω)k

k!
,

Pr(TA
−1|ω) = e−λ(A|ω)−λ(B|ω) ·

∞
∑

k=1

λ(A|ω)k−1

(k − 1)!
·
λ(B|ω)k

k!
,

Pr(TB
−1|ω) = e−λ(A|ω)−λ(B|ω) ·

∞
∑

k=1

λ(A|ω)k

k!
·
λ(B|ω)k−1

(k − 1)!
.

Therefore, the probability that an A supporter’s vote for A is pivotal in state ω is

Pr(PivA|ω) =
1
2

Pr(T|ω) +
1
2

Pr(TA
−1|ω),

and the probability that a B supporter’s vote for B is pivotal for B in state ω is

Pr(PivB|ω) =
1
2

Pr(T|ω) +
1
2

Pr(TB
−1|ω).

The existence of a voting equilibrium is now established in the following proposition.
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Proposition 1.1 (Existence). There exists an equilibrium of the election stage; that
is, there exist equilibrium cutoff costs (c∗A, c∗B) for every pair τ= (τA,τB). All voting
equilibria involve interior participation rates, i.e., pA, pB ∈ (0,1).

Proof. Recall that pA := F(c∗A) and pB := F(c∗B). Further, λ(i|ω), for i ∈ {A, B} and
ω ∈ {α,β}, are functions of pA, pB, and the pivot probabilities are functions of λ(i|ω).
This defines the pivot probabilities as functions of the cost cutoffs. Note that all
above functions are continuous, and so are the cost cutoffs as functions of the pivot
probabilities.

Define h, g : [0, c̄]× [0, c̄]→ [0, c̄]× [0, c̄], with c∗A =: h(cA, cB), c∗B =: g(cA, cB).
Since [0, c̄]× [0, c̄] is a compact convex subset of R2, Brouwer’s fixed-point the-
orem guarantees the existence of cutoff costs c∗A, c∗B that simultaneously satisfy
c∗A = h(c∗A, c∗B) and c∗B = g(c∗A, c∗B). This establishes the existence of the voting equi-
librium.

To see that the equilibrium cutoffs must be interior, i.e., c∗A, c∗B ∈ (0, c̄), assume
first, by contradiction andwithout loss of generality, that c∗A = 0. Then, pA = 0. In this
case, an A supporter is pivotal if either no B supporter or if exactly one B supporter
shows up at the ballot. But then, the probability of a vote being pivotal for candidate
A is strictly positive in both states, implying a positive cost cutoff c∗A, which is the
desired contradiction. Secondly, by equation (1.1), and since c̄≥ v, c∗A < c̄, so
pA = F(c∗A)= 1 is impossible.

For the equilibrium analysis, it is crucial to understand the influence of the vot-
ers’ beliefs about the state of the world on their participation rates. Consider a se-
quence of equilibria with the corresponding sequence of equilibrium participation
rates (pA(n), pB(n))n. Lemma 1.1 establishes that along all equilibrium sequences,
participation rates coincide if and only if the voters hold their prior beliefs. Intu-
itively, since the prior beliefs are symmetric, both A and B supporters have the same
incentives to participate in the election.1⁴ Therefore, the participation rates must
coincide.

Lemma 1.1. Along all equilibrium sequences, the participation rates of A and B sup-
porters coincide for all n if and only if voters hold their prior beliefs. That is, for all n,
pA(n)= pB(n) if and only if Pr(α|A,τ)= Pr(α|A)= q and Pr(β |B,τ)= Pr(β |B)= q.

1.4.2 Pivot Probabilities

Having established the common properties of all voting equilibria, let me now turn
to the limiting case of a large election. That is, for the remainder of the paper, I
assume that n goes to infinity. I start with rather technical results which will allow

1⁴ Note that upon learning his or her own preferences, any voter believes to be in the majority. For
this, see also the derivations in Appendix 1.B.
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the application of an approximation of the pivot probabilities, making the model
more tractable. All subsequent results will rely on this approximation.

Lemma 1.2 establishes that in the limit, as n goes to infinity, the participation
rates must go to zero. To see why this is the case, suppose that, to the contrary,
participation rates are strictly positive in the limit. Then, the probability of being
pivotal goes to zero in the limit; with this, the gross benefit of voting also disappears.
But this means that any randomly drawn voter would be better off by abstaining than
by voting, contradicting positive participation rates.

Lemma 1.2. As n→∞, the participation rates pA, pB go to zero along every sequence
of equilibria, that is, lim supn→∞ pA(n)= lim supn→∞ pB(n)= 0.

Lemma 1.3 reveals that the participation rates converge slowly enough to zero
such that expected conditional votes nevertheless go to infinity as n grows large.
For this result, it is essential that zero is in the support of the cost distribution. To
see this, suppose total turnout were finite in the limit. Then, the pivot probabilities
would have strictly positive limits, yielding a strictly positive gross benefit of voting.
If costs can arbitrarily become close to zero, there will be voters who are better
off voting than abstaining—implying strictly positive participation rates and contra-
dicting finite turnout as n goes to infinity. However, if costs are bounded away from
zero, even with a strictly positive gross benefit of voting, abstaining might be more
profitable than voting, yielding finite turnout.

Lemma 1.3. As n→∞, the expected conditional votes λ(A|α), λ(B|α), λ(A|β),
λ(B|β) go to infinity. That is, lim infn→∞λ(i|ω)=∞ for i ∈ {A, B} and ω ∈
{α,β}. Further, the participation rates are of the same order of magnitude, that is,
lim infn→∞

pA(n)
pB(n) > 0 and lim supn→∞

pA(n)
pB(n) <∞.

Given these properties in large elections, the pivot probabilities can be approxi-
mated by employing modified Bessel functions (cf. Abramowitz and Stegun (1965)),
as suggested by Myerson (2000).

Lemma 1.4. As n→∞,

Pr(PivA|ω) ≈
1
2

e−
�p
λ(A|ω)−

p
λ(B|ω)

�2

q

4π
p

λ(A|ω)λ(B|ω)

�

1 +

√

√λ(B|ω)
λ(A|ω)

�

, (1.3)

Pr(PivB|ω) ≈
1
2

e−
�p
λ(A|ω)−

p
λ(B|ω)

�2

q

4π
p

λ(A|ω)λ(B|ω)

�

1 +

√

√λ(A|ω)
λ(B|ω)

�

. (1.4)

1.4.3 Underdog E�ect

Based on these approximations, I can prove three important results: (i) the limit
ratio of participation rates reflects the underdog effect; (ii) this limit ratio is unique
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in large elections; and (iii) the underdog effect is monotonic in beliefs, meaning that
the limit ratio of participation rates is monotonic in the posteriors.

The underdog effect captures that the supporters of the expected underdog (i.e.,
the voters who are expected to be in the minority) participate with higher probabil-
ity than the supporters of the expected leader. This is already a well-known result
given the assumption that there is only idiosyncratic uncertainty about voters’ pref-
erences. Evren (2012), Myatt (2015), and Myatt (2017) also observe this result.
Consider the posterior probabilities Pr(α|τ), Pr(β |τ). Supporters of candidate A are
the expected minority if and only if Pr(α|τ)< Pr(β |τ).1⁵

Proposition 1.2 (Underdog effect). Fix some posterior probabilities Pr(α|τ),
Pr(β |τ). Along all equilibrium sequences,

(1) if Pr(α|τ)> Pr(β |τ), limn→∞
pA(n)
pB(n) < 1, and

(2) if Pr(α|τ)< Pr(β |τ), limn→∞
pA(n)
pB(n) > 1.

For an intuition, consider the effect of a vote for the expected underdog com-
pared to the expected leader. A vote for the leader increases the expected margin
between the candidates and pushes the election further away from a tie. In contrast,
a vote for the expected underdog decreases the margin and increases the probability
of an election toss-up. Thus, a vote for the underdog is pivotal with higher probabil-
ity, yielding a higher expected benefit of voting for the supporters of the underdog.
Consequently, the supporters of the expected minority candidate turn out at higher
rates. Further note that the turnout decision is related to a public goods problem,
since (costly) voting is comparable to contributing to the public good. Therefore, just
as in the public goods problem, there is an incentive to free ride on the participation
of like-minded voters. The underdog effect can be interpreted as a situation in which
the free-riding problem is less pronounced among the minority.
Proposition 1.3 establishes the uniqueness of the limit ratio of participation rates.

Proposition 1.3 (Uniqueness). The limit of the ratio of participation rates,
limn→∞

pA(n)
pB(n) , is unique.

I can now prove that in a large election, the underdog effect that is reflected by
the unique limit ratio of participation rates is actually monotonic in the posterior
beliefs.

Proposition 1.4 (Monotonicity). In a large election, the limit of the ratio of par-
ticipation rates of the A supporters relative to B supporters, limn→∞

pA(n)
pB(n) , is strictly

decreasing in Pr(α|τ).

1⁵ If Pr(α|τ)= Pr(β |τ), then Lemma 1.1 has bite.
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Consider two poll results τ and τ0, and suppose that the state is more likely
to be α upon observing τ, than when observing τ0. Then, the limit of the ratio of
participation rates of A supporters over those of B supporters is lower under poste-
rior beliefs induced by τ than under posterior beliefs induced by τ0. Intuitively, as
posterior beliefs shift toward state α, supporters of candidate A become increasingly
optimistic of their victory, leading them to adopt relatively ever lower cost thresholds
compared to supporters of candidate B. This monotonicity will be the main driver
of poll participants’ incentives.

1.4.4 Election Outcome

Because the underdog effect favors the expected minority—attenuating the ex-
pected majority candidate’s advantage through relatively lower turnout probabili-
ties of the expected majority—one might worry about the implications for election
outcomes. That is, one might now worry that the underdog will be more likely to
win the election because of this effect. Indeed, in Goeree and Großer (2007), the
underdog effect yields a toss-up election, in which both candidates are equally likely
to win.

By contrast, in my model, the partial underdog compensation result by Herrera,
Morelli, and Palfrey (2014) carries over to the present setting with aggregate uncer-
tainty about the distribution of preferences. The advantage of themajority candidate
is only partially attenuated by the increased turnout of the minority. Therefore, in
both states of the world, the majority candidate wins the election almost surely. The
result holds for any fixed posterior belief induced by any poll. In particular, the re-
sult is independent of the poll size, the polling outcome, and the poll participants’
strategies.

Proposition 1.5. As n→∞, in each state of the world, the majority candidate will
win the election almost surely, regardless of the poll result. That is, the probability that,
in the limit, A will win in state α, and candidate B will win in state β , is 1.

For an intuition, assume that the state of the world is α, and hence, candidate
A is the majority candidate. If posterior beliefs (mistakenly) indicate that the state
of the world is more likely to be β , i.e., Pr(β |τ)> 1

2 , it holds that limn→∞
pA(n)
pB(n) > 1.

So, candidate A will win the election with probability one because A is preferred by
the majority and, at the same time, A supporters turn out at higher rates.

The more intricate case is one in which beliefs accurately reflect that the state of
the world is more likely to be α, i.e., Pr(α|τ)> 1

2 . Here, in the limit, the underdog
effect leads B supporters to turn out at higher rates. Proposition 1.4 implies that
the limit of the ratio of participation rates is monotonic in the beliefs. Therefore, pA

is lowest relative to pB if the beliefs are such that citizens are convinced that the
state of the world is α—that is, if the aggregate uncertainty about the state of the
world is completely resolved. Yet, this is equivalent to a model setup in which the
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state of the world is known from the outset. For this setup it has already been shown
that the underdog effect is only partial (e.g., Herrera, Morelli, and Palfrey (2014)).
Intuitively, if the underdog effect were fully compensating such that expected vote
shares would be equal, both groups of voters would have the same cost cutoffs be-
cause of equal pivot probabilities. Given that the share of A supporters is strictly
larger than one-half, this then contradicts equal expected vote shares. Finally, if the
majority candidate almost surely wins at the relatively lowest participation rates of
the majority, he or she will win for all intermediate cases as well.

1.5 Polling Equilibrium

Having analyzed the equilibrium of the voting subgame for any induced posterior
belief, let me now focus on the polling stage. To isolate effects, I first assume that
all citizens participating in the opinion poll answer truthfully such that τ represents
the participants’ true underlying preferences. Understanding the way voters react
to exogenously truthful information about the state of the world is necessary to
understand poll participants’ incentives.

1.5.1 Truthful Reporting

Assuming truthful reporting in the poll, how do different poll results translate into
posterior beliefs and, eventually, into participation rates? Consider first the posterior
beliefs that are induced if a poll of fixed size is assumed to be answered truthfully,
its result being given by (τA,τB). The derivations in Appendix 1.B reveal that a lead
for candidate A in the poll induces posteriors according to which state α is more
likely than state β , and that these beliefs are monotonic in the poll’s margin. More
formally, Pr(α|τ)> Pr(β |τ) if and only if τA > τB; and Pr(α|τ) is increasing in the
poll’s margin τA −τB (Claim 1.3). Lastly, if the poll is balanced such that τA = τB,
posterior beliefs are the same as if no poll had been released. Applying now Lemma
1.1 and Proposition 1.2 yields that if τA = τB, A and B supporters will turn out at
the same rates, and if the poll favors candidate A, A supporters will turn out at lower
rates than B supporters, and vice versa. This is summarized in Corollary 1.1.

Corollary 1.1. Fix a poll of size m. Assume that polled agents state their preferences
truthfully and that the poll result is given by τ= (τA,τB). Then,

(1) If no poll is conducted (m= 0), or if τA = τB, then pA(n)= pB(n) for all n.

(2) If τA > τB, limn→∞
pA(n)
pB(n) < 1.

(3) If τA < τB, limn→∞
pA(n)
pB(n) > 1.

To summarize, the supporters of the trailing candidate turn out at higher rates.
Finally, applying Proposition 1.4 yields that in a large election, this relation is mono-
tonic in the poll result: As the perceived support of candidate A in comparison to
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candidate B increases—which is measured by an increasing margin τA −τB—the
participation rate of A supporters relative to the participation rate of B supporters
decreases. The result is summarized in Corollary 1.2.

Corollary 1.2. Fix the poll size m= τA +τB, and assume that poll participants state
their preferences truthfully. Then, in a large election, the limit of the ratio of participa-
tion rates of the A supporters relative to B supporters is strictly increasing in the margin
of the poll τB −τA, i.e., limn→∞

pA(n)
pB(n) is a strictly increasing function of τB −τA.

Importantly, these results imply that each vote in the poll affects the participa-
tion rates unambiguously. A vote for candidate A in the poll decreases the partici-
pation rate of A supporters relative to the participation rate of B supporters in the
limit.

1.5.2 Incentives

In Section 1.5.1, the analysis was based on the premise that citizens participating in
the pre-election poll state their preferences truthfully. Suppose now that all poll par-
ticipants are strategic. Consider the incentives of an A supporter who is questioned
by a pollster. Even though poll participants are excluded from the main election,
they still have the same stakes concerning the election winner. Therefore, the A sup-
porter seeks to maximize the probability that A wins, which is increasing in pA

pB
. If the

A supporter assumes that all other poll participants answer truthfully, Corollary 1.1
and Corollary 1.2 together imply that an additional vote for A in the poll decreases
the limit of pA

pB
in the election. This reveals an incentive to misrepresent the prefer-

ences in the poll and yields that truthtelling cannot be an equilibrium. Intuitively,
if an A supporter claims to prefer candidate B in the poll, he or she increases free-
riding among the B supporters, and simultaneously decreases free-riding among the
A supporters, shifting limn→∞

pA(n)
pB(n) in a favorable direction.

Likewise, there cannot exist an equilibrium in which everybody misrepresents
their preferences because this would be understood and the true preferences could
be worked out by the electorate, giving an incentive to deviate to revealing prefer-
ences truthfully.

Say that there is information transmission if the voters update their beliefs about
the state of the world after observing the poll’s publication such that Pr(α|τ) 6=
Pr(β |τ), and call the corresponding equilibrium of the polling stage informative.
Proposition 1.6 states that there does not exist an informative equilibrium of the
polling stage. Consequently, there can only exist the babbling equilibrium and the
poll is discarded by the electorate.

Proposition 1.6. The babbling equilibrium is the unique equilibrium of the polling
stage.

The implications of Proposition 1.6 are as follows: If it is reasonable to assume
that all citizens participating in a poll are strategic, the poll result does not convey
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any information. Thus, eligible voters can ignore it. As a result, the beliefs of the
electorate coincide with their prior beliefs. Lemma 1.1 implies that in this case, for
all n and along all equilibrium sequences, the probability of turning out to vote is the
same for both A and B supporters. Therefore, by the law of large numbers, in each
state, the probability that the majority candidate wins goes to one as n grows large.
With this in mind, if the poll participants behave strategically—behavior which un-
dermines the purpose of the poll—the results do not reduce the probability that the
majority candidate will be elected.

Appendix 1.C extends this result by assuming that a fixed share of poll partici-
pants is exogenously truthful. Again, strategic poll participants never have an incen-
tive to truthfully reveal their preferences. Yet, the poll is informative if and only if
the share of truthful agents is strictly larger than one-half. In any case, Proposition
1.5 applies, and, in the limit, the majority candidate almost surely wins the election.

1.6 Conclusion

This paper analyzes the effect of pre-election polls on election outcomes. I analyze
how information revealed through polls affects the participation decision of citizens
in large elections, and the incentives this yields for poll participants. My analysis
relies on a framework with aggregate uncertainty about the distribution of prefer-
ences, in which the poll is conducted to resolve the aggregate uncertainty; voting is
voluntary and costly, and the cost is drawn from a smooth cost distribution.

My main findings are that for any posterior belief about the state of the world in-
duced by the poll (i) there exists a unique limit of the ratio of participation rates. This
limit ratio (ii) reflects the underdog effect, and (iii) it is monotonic in the posterior
belief. However, the limit ratio of participation rates is (iv) closer to one than the ra-
tio of the respective population shares of supporters of candidates A and B, such that,
in the limit, the majority candidate almost surely wins for any given belief. Given the
underdog effect and its monotonicity in beliefs, (v) citizens participating in the poll
always have an incentive to avoid truthfully reporting their preferences. There does
not exist an equilibrium in which the poll provides any information transmission.

My findings contrast with those of Goeree and Großer (2007), who study the
effect of exogenously truthful information about the state of the world in a frame-
work in which voting costs are homogenous. This assumption on the cost of voting
implies that the authors obtain a full underdog effect, where the increased turnout
by the minority completely offsets the majority’s initial advantage. Because the cost
of voting is set such that turnout is incomplete and positive, voters are employing
mixed strategies in equilibrium. To be willing to mix, the expected benefit of voting
needs to equal the voting cost. Therefore, given homogenous costs for all voters, ex-
pected benefits of voting coincide for all voters. These can only be the same if the
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expected vote shares coincide, yielding the full underdog effect.1⁶
However, if the cost distribution is smooth, and its support is bounded below by
zero, cost cutoffs are interior. If expected vote shares would coincide, the participa-
tion rates would also be the same, contradicting equal vote shares, because there
is a strict majority. The underdog effect can therefore only be partial. This has al-
ready been observed for idiosyncratic preference uncertainty, e.g. Herrera, Morelli,
and Palfrey (2014), and under different forms of aggregate uncertainty, e.g. Evren
(2012) or Myatt (2015). Note that these assumptions on the voting costs allow the
inclusion of voters who vote because of a sense of duty or ethical reasons. Thus, the
assumptions capture the potential for voting costs to differ across voters.
The full underdog effect implies that both candidates are equally likely to win the
election, supporting the conclusion that polls are detrimental to welfare. Goeree
and Großer (2007) conclude that their results may explain why several countries
impose a black-out period prior to elections. By contrast, I show that the partial un-
derdog effect does not result in such a toss-up election. Rather, for any posterior
belief induced by the poll, the majority candidate almost surely wins in the limit.
This includes the extreme cases where the poll is either uninformative—and the
game is as if no poll were conducted in the first place—or perfectly reveals the state
of the world. Consequently, my work demonstrates that the conclusions of Goeree
and Großer (2007) on the possibly drastic effect of polls do not hold if the model
framework is slightly altered.

While, in my model, polls do not overturn election outcomes, polls still matter
because the partial underdog effect has real implications. Affecting the turnout mar-
gin and vote shares, the partial underdog effect implies that referenda or elections
will be closer than they truly are. If vote shares themselves have policy implications,
this effect of polls might be concerning. This is an interesting topic which will be
left for future research.

1⁶ The same result is obtained if costs are continuously distributed but bounded away from zero.
Then, only those voters with a cost realization at the lower bound turn out to vote, and the argument
boils down to the one with fixed costs. This is the case in Taylor and Yildirim (2010a).
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Appendix 1.A Proofs

1.A.1 Preliminaries

For the subsequent analysis, it is useful to express the pivot probabilities in terms
of modified Bessel functions (cf. Abramowitz and Stegun (1965) and Krishna and
Morgan (2012)), which are defined as

I0(z) =
∞
∑

k=0

( z
2)k( z

2)k

k! · k!
, I1(z) =

∞
∑

k=1

( z
2)k−1( z

2)k

(k − 1)! · k!
.

Reformulating the pivot probabilities yields for all ω ∈ {α,β}:

Pr(T|ω) = e−λ(A|ω)−λ(B|ω) · I0
�

2
Æ

λ(A|ω)λ(B|ω)
�

,

Pr(TA
−1|ω) = e−λ(A|ω)−λ(B|ω) ·

√

√λ(B|ω)
λ(A|ω)

· I1
�

2
Æ

λ(A|ω)λ(B|ω)
�

,

Pr(TB
−1|ω) = e−λ(A|ω)−λ(B|ω) ·

√

√λ(A|ω)
λ(B|ω)

· I1
�

2
Æ

λ(A|ω)λ(B|ω)
�

.

So,

Pr(PivA|ω) =
1
2

e−λ(A|ω)−λ(B|ω)

�

I0
�

2
Æ

λ(A|ω)λ(B|ω)
�

+

√

√λ(B|ω)
λ(A|ω)

· I1
�

2
Æ

λ(A|ω)λ(B|ω)
�

�

,

Pr(PivB|ω) =
1
2

e−λ(A|ω)−λ(B|ω)

�

I0
�

2
Æ

λ(A|ω)λ(B|ω)
�

+

√

√λ(A|ω)
λ(B|ω)

· I1
�

2
Æ

λ(A|ω)λ(B|ω)
�

�

.

For z→∞, Abramowitz and Stegun (1965) show that I0(z)≈ ez
p

2πz
≈ I1(z).1⁷

1.A.2 Proof for Section 1.4.1 (Existence)

Proof of Lemma 1.1.
“If”
Recall that citizens update their beliefs about the state of the world upon observing
their own type. It is derived in Appendix 1.B that Pr(α|A)=Pr(β |B)= q.
Assume that the voters’ posterior beliefs coincide with these prior beliefs, that is,
Pr(α|A,τ)= q= Pr(β |B,τ).
Recall that the cost cutoffs are defined as follows

Pr(α|A,τ) · Pr(PivA|α) · v + Pr(β |A,τ) · Pr(PivA|β) · v = c∗A(n),

Pr(α|B,τ) · Pr(PivB|α) · v + Pr(β |B,τ) · Pr(PivB|β) · v = c∗B(n).

1⁷ Suppose xn and yn are functions of n. Then, xn ≈ yn indicates that limn→∞
xn
yn
= 1
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Suppose without loss of generality that along some subsequence, there exists n s.t.
pA(n)> pB(n)⇔ c∗A(n)> c∗B(n). Suppressing the dependence on n,

c∗A − c∗B = q · v · [Pr(PivA|α) − Pr(PivB|β)] + (1 − q) · v · [Pr(PivA|β) − Pr(PivB|α)]

=
1
2
· q · v ·

¦

I0
�

2
Æ

n2q(1 − q)pApB

�

·
�

e−n[qpA+(1−q)pB] − e−n[(1−q)pA+qpB]
�

+ I1
�

2
Æ

n2q(1 − q)pApB

�

·
√

√1 − q
q
·
�√

√pB

pA
e−n[qpA+(1−q)pB] −

√

√pA

pB
e−n[(1−q)pA+qpB]

��

+
1
2

(1 − q) · v ·
¦

I0
�

2
Æ

n2q(1 − q)pApB

�

·
�

e−n[(1−q)pA+qpB] − e−n[pqpA+(1−q)pB]
�

+ I1
�

2
Æ

n2q(1 − q)pApB

�

·
√

√ q
1 − q

·
�√

√pB

pA
e−n[(1−q)pA+qpB] −

√

√pA

pB
e−n[qpA+(1−q)pB]

��

.

Rearranging yields

c∗A − c∗B

=
1
2
· v
¦

(2q − 1) · I0
�

2
Æ

n2q(1 − q)pApB

�

·
�

e−n[qpA+(1−q)pB] − e−n[(1−q)pA+qpB]
�

+ I1
�

2
Æ

n2q(1 − q)pApB

�

·
p

q(1 − q) ·
��√

√pB

pA
−
√

√pA

pB

�

·
�

e−n[qpA+(1−q)pB] + e−n[(1−q)pA+qpB]
�

��

<0,

contradicting the assumption that c∗A(n)> c∗B(n).
The inequality holds, since e−n[qpA+(1−q)pB] < e−n[(1−q)pA+qpB], q> 1

2 , and
Ç

pB
pA
<
Ç

pA
pB

because of pA > pB.
c∗B(n)> c∗A(n) is analogous. Thus, for all equilibrium sequences and for all n,
pA(n)= pB(n) if Pr(α|A,τ)= Pr(α|A)= Pr(β |B)= Pr(β |B,τ).

“Only if”
Assume now that for all n, pA(n)= pB(n)=: p.

0 = c∗A(n) − c∗B(n)

= Pr(α|A,τ) ·
1
2

e−np ·
�

I0

�

2np
p

q(1 − q)
�

+

√

√1 − q
q
· I1

�

2np
p

q(1 − q)
�

�

+ Pr(β |A,τ) ·
1
2

e−np ·
�

I0

�

2np
p

q(1 − q)
�

+
√

√ q
1 − q

· I1

�

2np
p

q(1 − q)
�

�

− Pr(α|B,τ) ·
1
2

e−np ·
�

I0

�

2np
p

q(1 − q)
�

+
√

√ q
1 − q

· I1

�

2np
p

q(1 − q)
�

�

− Pr(β |B,τ) ·
1
2

e−np ·
�

I0

�

2np
p

q(1 − q)
�

+

√

√1 − q
q
· I1

�

2np
p

q(1 − q)
�

�

=
1
2

e−np ·
�

I0

�

2np
p

q(1 − q)
�

·
�

Pr(α|A,τ) + Pr(β |A,τ) − Pr(α|B,τ) − Pr(β |B,τ)
�

+ I1

�

2np
p

q(1 − q)
�

·
�√

√1 − q
q
[Pr(α|A,τ) − Pr(β |B,τ)] +

√

√ q
1 − q

[Pr(β |A,τ) − Pr(α|B,τ)]

��

=
1
2

e−np · I1

�

2np
p

q(1 − q)
�

·
�√

√1 − q
q
[Pr(α|A,τ) − Pr(β |B,τ)] +

√

√ q
1 − q

[Pr(β |A,τ) − Pr(α|B,τ)]

�

,
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where the last step follows from

Pr(α|A,τ) + Pr(β |A,τ) − Pr(α|B,τ) − Pr(β |B,τ) = 0.

Now,
√

√1 − q
q
· [Pr(α|A,τ) − Pr(β |B,τ)] +

√

√ q
1 − q

· [Pr(β |A,τ) − Pr(α|B,τ)]

=

√

√1 − q
q
· [Pr(α|A,τ) − Pr(β |B,τ)] +

√

√ q
1 − q

· [(1 − Pr(α|A,τ)) − (1 − Pr(β |B,τ))]

=

√

√1 − q
q
· [Pr(α|A,τ) − Pr(β |B,τ)] +

√

√ q
1 − q

· [Pr(β |B,τ) − Pr(α|A,τ)]

=[Pr(α|A,τ) − Pr(β |B,τ)] ·
�√

√1 − q
q
+
√

√ q
1 − q

�

.

This term is zero if and only if Pr(α|A,τ)= Pr(β |B,τ). Since I1(·)> 0, it follows
that pA(n)= pB(n)= 0 holds if and only if Pr(α|A,τ)= Pr(β |B,τ). In Appendix 1.B,
I show that this is equivalent to Pr(τ|α)= Pr(τ|β). Thus, the participation rates
coincide only if the poll is uninformative and the posterior beliefs are equal to the
prior beliefs about the state of the world.

1.A.3 Proofs for Section 1.4.2 (Pivot Probabilities)

Proof of Lemma 1.2.
Assume, by contradiction, that, along some subsequence, limn→∞ c∗A(n)> 0, imply-
ing limn→∞ pA(n)> 0. Then,

limn→∞ Pr(α|A,τ) · Pr(PivA|α) · v + Pr(β |A,τ) · Pr(PivA|β) · v > 0,

suppressing the dependence on n for notational simplicity.

Since limn→∞ pA(n)> 0, λ(A|α),λ(A|β)→∞.

If limn→∞
p

λ(A|ω) ·λ(B|ω)<∞, Pr(PivA|ω)→ 0, since e−λ(A|ω)−λ(B|ω)→ 0,

I0
�

2
p

λ(A|ω)λ(B|ω)
�

is finite and e−λ(A|ω)−λ(B|ω)
r

λ(B|ω)
λ(A|ω) → 0.

If limn→∞
p

λ(A|ω) ·λ(B|ω)=∞, the modified Bessel functions can be approxi-
mated by

I0
�

2
Æ

λ(A|ω)λ(B|ω)
�

≈
e2
p
λ(A|ω)λ(B|ω)

Ç

2π
�

2
p

λ(A|ω)λ(B|ω)
�

≈ I1
�

2
Æ

λ(A|ω)λ(B|ω)
�

,
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yielding

Pr(PivA|ω) →
1
2

e−
�p
λ(A|ω)−

p
λ(B|ω)

�2

q

4π
p

λ(A|ω)λ(B|ω)

�

1 +

√

√λ(B|ω)
λ(A|ω)

�

.

This probability converges to 0 in both states of the world, since the denominator is
unbounded, whereas the numerator is bounded.
But then, in any case,

limn→∞ Pr(α|A,τ) · Pr(PivA|α) · v + Pr(β |A,τ) · Pr(PivA|β) · v = 0,

contradicting limn→∞ pA(n)> 0.

Proof of Lemma 1.3.
Recall that

λ(A|α) = n · q · pA,

λ(A|β) = n · (1 − q) · pA,

λ(B|α) = n · (1 − q) · pB,

λ(B|β) = n · q · pB.

Assume, by contradiction, that it is not true that ∀i ∈ {A, B} ∀ω ∈ {α,β},
lim infn→∞λ(i|ω)=∞.
Suppose first that along some subsequence, λ(A|α),λ(A|β),λ(B|α),λ(B|β)<∞ as
n→∞, i.e., the expected number of votes for each candidate is finite in each state.
Then, along this subsequence, the pivot probabilities are strictly positive in every
state: Pr(PivA|ω)> 0, Pr(PivB|ω)> 0 ∀ω.

This implies that limn→∞ c∗i (n)> 0 for i ∈ {A, B}, and, given the assumptions
on the cdf F and the corresponding density f , the participation rates pA, pB must
remain strictly positive in the limit as n→∞: limn→∞ pi(n)> 0 for i ∈ {A, B}. But
then, expected turnout must go to infinity for every candidate in every state as
n→∞—a contradiction.

Suppose now that along some subsequence, λ(A|α)<∞ and λ(B|α)→∞ as n→
∞.
Given the definitions of λ(·|ω), this implies that λ(A|β)<∞ and λ(B|β)→∞ as
n→∞.
Consider limn→∞

λ(B|β)
λ(A|α) :

limn→∞
λ(B|β)
λ(A|α)

= limn→∞
n · q · pB(n)
n · q · pA(n)

= limn→∞
pB(n)
pA(n)

.
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Since limn→∞ pi(n)= 0, i ∈ {A, B}, a Taylor expansion of F around zero yields

limn→∞
pA(n)
pB(n)

= limn→∞
F(c∗A(n))

F(c∗B(n))

≈ limn→∞
F(0) + f(0) · (c∗A(n) − 0) + 1

2 f 0(0)(c∗A(n) − 0)2 + ...

F(0) + f(0) · (c∗B(n) − 0) + 1
2 f 0(0)(c∗B(n) − 0)2 + ...

≈ limn→∞
f(0) · c∗A(n)

f(0) · c∗B(n)

= limn→∞
c∗A(n)

c∗B(n)
.

By the assumption above, limn→∞
λ(B|β)
λ(A|α) =∞ and this implies

limn→∞
c∗B(n)

c∗A(n)
= ∞.

For ease of exposition, define for the following step z := λ(A|α) and y := λ(B|β)
and observe that λ(A|β)= 1−q

q z and λ(B|β)= q
1−qy. Since λ(B|β)/λ(A|α)→∞,

y/z→∞.
Working towards a contradiction, derive an expression for limn→∞

c∗B(n)
c∗A(n) .

limn→∞
c∗B(n)

c∗A(n)

= limn→∞
Pr(α|B,τ) · Pr(PivB|α) + Pr(β |B,τ) · Pr(PivB|β)
Pr(α|A,τ) · Pr(PivA|α) + Pr(β |A,τ) · Pr(PivA|β)

= lim y
z→∞
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p
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p
4π
p
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�

1 +
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z
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�
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p
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�
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�

+ Pr(β |A,τ)1
2

e
−(
È

1−q
q z−

r q
1−q y)2

p
4π
p

zy

�

1 + q
1−q

q

y
z

�

= lim y
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�
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�

+ Pr(β |B,τ)e−(
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q
1−q y)2 �

1 + 1−q
q

q

z
y

�

Pr(α|A,τ)e−(
p

z−py)2
�

1 +
q

y
z

�

+ Pr(β |A,τ)e−(
r

1−q
q z−

Ç

q
1−q y)2 �

1 + q
1−q

q
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�

= lim y
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Pr(α|B,τ)
�

1 +
q

z
y

�

+ Pr(β |B,τ)e−(
r

1−q
q z−
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q
1−q y)2+(
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�
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y
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�
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q
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1 + q
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≤1.

The last step follows from lim y
z→∞

e−(
r

1−q
q z−

Ç

q
1−q y)2+(

p
z−py)2

= 0 and
Pr(α|A,τ)> Pr(α|B,τ). The second step follows from y→∞, allowing to apply the
approximation of the modified Bessel functions.



Appendix 1.A Proofs | 27

Overall, limn→∞
c∗B(n)
c∗A(n) ≤ 1 contradicts limn→∞

c∗B(n)
c∗A(n) =∞.

The case in which λ(B|ω)<∞ and λ(A|ω)→∞ is analogous.
Therefore, it must be the case that expected turnout goes to infinity for each candi-
date and in each state when n goes to infinity.
From the last part of the proof it follows immediately that it is not possible that
along some subsequence either lim infn→∞

pA(n)
pB(n) = 0 or that lim supn→∞

pA(n)
pB(n) =∞,

proving the lemma.

Proof of Lemma 1.4.
Since Lemma 1.3 implies that 2

p

λ(A|ω)λ(B|ω)→∞ as n→∞, by Abramowitz
and Stegun (1965), it holds that

I0
�

2
Æ

λ(A|ω)λ(B|ω)
�

≈
e2
p
λ(A|ω)λ(B|ω)

Ç

2π
�

2
p

λ(A|ω)λ(B|ω)
�

≈ I1
�

2
Æ

λ(A|ω)λ(B|ω)
�

.

Therefore, the pivot probabilities can indeed be approximated by

Pr(PivA|ω) ≈
1
2

e−
�p
λ(A|ω)−

p
λ(B|ω)

�2

q

4π
p

λ(A|ω)λ(B|ω)

�

1 +

√

√λ(B|ω)
λ(A|ω)

�

,

Pr(PivB|ω) ≈
1
2
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�p
λ(A|ω)−

p
λ(B|ω)

�2

q

4π
p

λ(A|ω)λ(B|ω)

�

1 +

√

√λ(A|ω)
λ(B|ω)

�

.

1.A.4 Proofs for Section 1.4.3 (Underdog E�ect)

Proof of Proposition 1.2.
Before commencing the proof, let me state some preliminary claims.
Preliminaries:
By the Taylor expansion from the proof of Lemma 1.3,

limn→∞
pA(n)
pB(n)

= limn→∞
c∗A(n)

c∗B(n)
.

Thus, suppressing the dependence of pi on n, for n→∞,

pA

pB
≈

Pr(α|A,τ)e−(
p

nqpA−
p

n(1−q)pB)2
�

1 +
Ç

1−q
q

q

pB
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�

+ Pr(β |A,τ)e−(
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q

pB
pA

�
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q

q
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�
.

If qpA 6= (1− q)pB,
�p

nqpA −
p

n(1− q)pB

�2 diverges for n→∞, and
if (1− q)pB 6= qpB,

�p

n(1− q)pA −
p

nqpB

�2 diverges for n→∞, given that q 6= 1
2 .

This implies that for n→∞

pA > pB ⇒ e−
�p

nqpA−
p

n(1−q)pB

�2
+
�p

n(1−q)pA−
p

nqpB

�2

→ 0, (1.A.1)

pA < pB ⇒ e−
�p

n(1−q)pA−
p

nqpB

�2
+
�p

nqpA−
p

n(1−q)pB

�2

→ 0. (1.A.2)
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I will now prove the proposition.
Assume without loss that candidate A is the underdog, that is, Pr(α|τ)< Pr(β |τ)
and suppose, by contradiction, that limn→∞

pA(n)
pB(n) ≤ 1.

The assumption that Pr(α|τ)< Pr(β |τ) together with Lemma 1.1 imply that for all
n, pA(n) 6= pB(n). Therefore, it must hold that for n sufficiently large, pA(n)< pB(n).
By (1.A.2), as n→∞,

pA(n)
pB(n)

→
Pr(α|A,τ)
Pr(α|B,τ)

·

p
qpA(n)+

p
(1−q)pB(n)p

qpA(n)
p

qpA(n)+
p

(1−q)pB(n)p
(1−q)pB(n)

=
Pr(α|A,τ)
Pr(α|B,τ)

·
√

√1 − q
q
·
√

√pB(n)
pA(n)

.

However,

Pr(α|A,τ)
Pr(α|B,τ)

=
Pr(A|α)
Pr(B|α)

·
Pr(B|α)Pr(τ|α) + Pr(B|β)Pr(τ|β)
Pr(A|α)Pr(τ|α) + Pr(A|β)Pr(τ|β)

=
q

1 − q
·

(1 − q)Pr(τ|α) + q · Pr(τ|β)
q · Pr(τ|α) + (1 − q)Pr(τ|β)

>
q

1 − q
,

where the last inequality holds, since given Claim 1.1,

Pr(α|τ) < Pr(β |τ) ⇔ Pr(τ|α) < Pr(τ|β)

⇒
(1 − q)Pr(τ|α) + q · Pr(τ|β)
q · Pr(τ|α) + (1 − q)Pr(τ|β)

> 1.

Therefore,

pA(n)
pB(n)

→
Pr(α|A,τ)
Pr(α|B,τ)

·
√

√1 − q
q
·
√

√pB(n)
pA(n)

>

√

√ q
1 − q

·
√

√pB(n)
pA(n)

> 1,

a contradiction to limn→∞
pA(n)
pB(n) ≤ 1!

The proof for the case in which B is the underdog is analogous and therefore omitted.
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Proof of Proposition 1.3.
From Proposition 1.2 and Lemma 1.1, along all equilibrium sequences, either
pA(n)= pB(n) for all n, limn→∞

pA(n)
pB(n) < 1 or limn→∞

pA(n)
pB(n) > 1.

If pA(n)= pB(n), the claim obviously holds.

Next, assume that in equilibrium, limn→∞
pA(n)
pB(n) < 1.

Then, for n sufficiently large, pA(n)< pB(n) and by (1.A.2), as n→∞,

pA(n)
pB(n)

≈
Pr(α|A,τ)
Pr(α|B,τ)

·

p
qpA(n)+

p
(1−q)pB(n)p

qpA(n)
p
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=
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·
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�

pA(n)
pB(n)

�
3
2

=
Pr(α|A,τ)
Pr(α|B,τ)

·
√

√1 − q
q

.

Since the left-hand side is strictly increasing in pA(n)
pB(n) and the right-hand side is

independent of pA(n)
pB(n) , the limit of the ratio of participation rates is unique for any

equilibrium sequence that satisfies limn→∞
pA(n)
pB(n) < 1.

Analogously, the limit of the ratio of participation rates is unique for any equilibrium
sequence that satisfies limn→∞

pA(n)
pB(n) > 1.

Proof of Proposition 1.4.
Consider two poll results τ,τ0 such that Pr(α|τ0)< Pr(α|τ). Abusing notation,
denote by p0

A, p0

B the equilibrium participation rates if the poll result is τ0 and by
pA, pB the participation rates if the poll result is τ. Recall that given some beliefs,
the limit of the ratio of participation rates is unique. Thus, the limit of the ratio
of participation rates is monotonic in the beliefs if and only if Pr(α|τ0)< Pr(α|τ)

implies limn→∞
pA(n)
pB(n) < limn→∞

p0

A(n)
p0

B(n) .

Assume, by contradiction, that there exist poll results τ,τ0 with Pr(α|τ0)< Pr(α|τ)

such that limn→∞
pA(n)
pB(n) ≥ limn→∞

p0

A(n)
p0

B(n) .

Case 1: Pr(α|τ0)< Pr(α|τ)< 1
2 .

Then, by Proposition 1.2, limn→∞
p0

A(n)
p0

B(n) > 1. Thus, by (1.A.1) and by the Taylor ap-
proximation around zero,
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limn→∞
p0

A(n)

p0

B(n)
≤ limn→∞

pA(n)
pB(n)

⇔
Pr(β |A,τ0)
Pr(β |B,τ0)

·

√

√

√

limn→∞
p0

B(n)

p0

A(n)
≤

Pr(β |A,τ)
Pr(β |B,τ)

·
√

√

limn→∞
pB(n)
pA(n)

⇔
Pr(β |A,τ0)
Pr(β |B,τ0)

Pr(β |A,τ)
Pr(β |B,τ)

≤

√

√

√

√

√

limn→∞
pB(n)
pA(n)(x)

limn→∞
p0

B(n)
p0

A(n)

≤ 1.

By Claim 1.2, Pr(β |A,τ)
Pr(β |B,τ) is strictly decreasing in Pr(α|τ), meaning that the left hand

side of the above inequality is strictly larger than 1—a contradiction!

Case 2: Pr(α|τ0)< 1
2 ≤ Pr(α|τ)

Then, by Proposition 1.2, limn→∞
pA(n)
pB(n) ≤ 1 for all n and limn→∞

p0

A(n)
p0

B(n) > 1, a
contradiction.

Case 3: Pr(α|τ0)≤ 1
2 < Pr(α|τ)

Then, limn→∞
p0

A(n)
p0

B(n) ≥ 1 for all n and limn→∞
pA(n)
pB(n) < 1, a contradiction.

Case 4: 1
2 < Pr(α|τ0)< Pr(α|τ)

By Proposition 1.2 and by (1.A.2),

limn→∞
p0

A(n)

p0

B(n)
≤ limn→∞

pA(n)
pB(n)

⇔
Pr(α|A,τ0)
Pr(α|B,τ0)

·

√

√

√

limn→∞
p0

B(n)

p0

A(n)
≤

Pr(α|A,τ)
Pr(α|B,τ)

·
√

√

limn→∞
pB(n)
pA(n)

⇔
Pr(α|A,τ0)
Pr(α|B,τ0)

Pr(α|A,τ)
Pr(α|B,τ)

≤

√

√

√

√

√

limn→∞
pB(n)
pA(n)(x)

limn→∞
p0

B(n)
p0

A(n)

≤ 1.

However, by Claim 1.2, Pr(α|A,τ)
Pr(α|B,τ) is strictly decreasing in Pr(α|τ), implying that

Pr(α|A,τ0)
Pr(α|B,τ0)
Pr(α|A,τ)
Pr(α|B,τ)

> 1—a contradiction!

Thus, the limit of the ratio of participation rates is monotonic in the beliefs.

1.A.5 Proof for Section 1.4.4 (Election Outcome)

Proof of Proposition 1.5.
Candidate A is the majority candidate in state α and candidate B is the majority
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candidate in state β . As n→∞, by the law of large numbers, themajority candidate
wins the election in each state if and only if

1 − q
q

< limn→∞
pA(n)
pB(n)

<
q

1 − q
.

If τA = τB or if no poll is considered, for all n, pA(n)= pB(n)=: p̂(n). Then, for all
n, pA(n)

pB(n) = 1 and the result holds.
If limn→∞

pA(n)
pB(n) < 1, by (1.A.2), as n→∞,

q
1 − q

·
pA(n)
pB(n)

≈
q

1 − q
·

Pr(α|A,τ)
Pr(α|B,τ)

·
√

√1 − q
q

√

√pB(n)
pA(n)

>
q

1 − q
·
√

√1 − q
q

√

√pB(n)
pA(n)

=
√

√ q
1 − q

√

√pB(n)
pA(n)

> 1,

where the third to last step follows from Pr(α|A,τ)
Pr(α|B,τ) > 1, which is derived in Appendix

B, and the last step follows because limn→∞
pA(n)
pB(n) < 1 and q> 1

2 by assumption.
Finally, if limn→∞

pA(n)
pB(n) > 1, by (1.A.1), as n→∞,

q
1 − q

·
pB(n)
pA(n)

→
q

1 − q
·

Pr(β |B,τ)
Pr(β |A,τ)

·
√

√1 − q
q

√

√pA(n)
pB(n)

>
q

1 − q
·
√

√1 − q
q

√

√pA(n)
pB(n)

=
√

√ q
1 − q

√

√pA(n)
pB(n)

> 1,

since Pr(β |B,τ)
Pr(β |A,τ) > 1.

Therefore, as n→∞, candidate A wins in state α and candidate B wins in state β
with probability 1, so the majority candidate is elected almost surely.

1.A.6 Proof for Section 1.5.2 (Incentives)

Proof of Proposition 1.6.
Following the derivations in Appendix 1.C, in particular Proposition 1.7, and set-
ting γ= 0 immediately yields that the unique equilibrium strategy prescribes poll
participants to reveal their preferences truthfully with probability 1

2 (µ= 1
2). Con-

sequently, Pr(α|τ)= Pr(β |τ), and babbling is the unique equilibrium of the polling
stage.
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Appendix 1.B Posterior Beliefs

This section is concerned with the derivation of posterior beliefs about the state
of the world, firstly after observing one’s own preference type, and secondly after
additionally observing the result of the pre-election poll. Further, useful properties
of related conditional probabilities will be derived.

Priors upon observing the preference type

Recall that it is assumed that Pr(α)= Pr(β)= 1
2 and that Pr(A|α)= q= Pr(B|β),

where the Pr(A|α) indicates the probability that a randomly drawn citizen prefers
candidate A over B given that the state is α. Learning about his or her own prefer-
ences, a citizen updates his or her beliefs about the state of the world as follows:

Pr(ω = α|A) =
Pr(ω = α, A)

Pr(A)
=

q

q · 1
2 + (1 − q)1

2

= q,

Pr(β |A) = 1 − q,

Pr(α|B) = 1 − q,

Pr(β |B) = q.

Posteriors after observing the poll

Additionally observing the pre-election poll result τ= (τA,τB) yields the posterior
beliefs

Pr(α|A,τ) =
Pr(α,τ, A)
Pr(τ, A)

=
Pr(A,τ|α) · Pr(α)

Pr(A,τ|α) · Pr(α) + Pr(A,τ|β) · Pr(β)

=
Pr(τ|α) · Pr(A|α) · Pr(α)

Pr(τ|α) · Pr(A|α) · Pr(α) + Pr(τ|β) · Pr(A|β) · Pr(β)
,

where Pr(τ|ω) denotes the posterior probability that the state is ω if the poll result
is τ.
For q> 1

2 ,
Pr(α|A,τ) > Pr(α|B,τ), Pr(β |B,τ) > Pr(β |A,τ),

and
Pr(α|A,τ) − Pr(α|B,τ) = Pr(β |B,τ) − Pr(β |A,τ).

The following relation will be prove useful:

Claim 1.1.

Pr(α|A,τ) < Pr(β |B,τ) ⇔ Pr(τ|α) < Pr(τ|β) ⇔ Pr(α|τ) < Pr(β |τ)
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Proof.

Pr(α|A,τ)
Pr(β |B,τ)

=
Pr(τ|α)
Pr(τ|β)

·
(1 − q) · Pr(τ|α) + q · Pr(τ|β)
q · Pr(τ|α) + (1 − q) · Pr(τ|β)

⇒
Pr(α|A,τ)
Pr(β |B,τ)











= 1 ⇔ Pr(τ|α) = Pr(τ|β)

> 1 ⇔ Pr(τ|α) > Pr(τ|β)

< 1 ⇔ Pr(τ|α) < Pr(τ|β),

and further,

Pr(α|τ) =
Pr(τ|α) · Pr(α)

Pr(τ)
=

Pr(τ|α)
2 · Pr(τ)

,

⇒ Pr(α|τ) < Pr(β |τ) ⇔ Pr(τ|α) < Pr(τ|β).

The following claim is used in the proof of Proposition 1.4.

Claim 1.2. Pr(α|A,τ)
Pr(α|B,τ) and Pr(β |A,τ)

Pr(β |B,τ) are strictly decreasing in Pr(α|τ).

Proof. By the derivations above and since Pr(α)= Pr(β),

Pr(α|A,τ)
Pr(α|B,τ)

=
q

1 − q
Pr(τ|α)(1 − q) + Pr(τ|β)q
Pr(τ|α)q + Pr(τ|β)(1 − q)

Pr(β |A,τ)
Pr(β |B,τ)

=
1 − q

q
Pr(τ|α)(1 − q) + Pr(τ|β)q
Pr(τ|α)q + Pr(τ|β)(1 − q)

.

Since Pr(τ|ω)= 2 Pr(ω|τ)Pr(τ) for ω ∈ {α,β}, and Pr(β |τ)= 1− Pr(α|τ),

Pr(α|A,τ)
Pr(α|B,τ)

=
q

1 − q
Pr(α|τ)(1 − 2q) + q

Pr(α|τ)(2q − 1) + (1 − q)
Pr(β |A,τ)
Pr(β |B,τ)

=
1 − q

q
Pr(α|τ)(1 − 2q) + q

Pr(α|τ)(2q − 1) + (1 − q)
.

Since

d
d Pr(α|τ)

Pr(α|τ)(1 − 2q) + q
Pr(α|τ)(2q − 1) + (1 − q)

=
1 − 2q

(Pr(α|τ)(2q − 1) + 1 − q)2
< 0,

the claim follows, since q> 1
2 .
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Truthfully answered polls

Assuming now that the poll was answered truthfully, the posterior beliefs become

Pr(α|τ) =

�

τA+τB
τA

�

· qτA · (1 − q)τB

�

τA+τB
τA

�

·
�

qτA · (1 − q)τB + (1 − q)τA · qτB
� ,

=
1

1 + ( q
1−q)τB−τA

,

Pr(β |τ) =
1

1 + ( q
1−q)τA−τB

.

Thus, τA > τB ⇔ Pr(α|τ)> Pr(β |τ) and Pr(α|τ)= Pr(β |τ) if and only if τA = τB.

Claim 1.3. The posterior probability Pr(α|τ) is increasing in τA −τB.

Proof.

d
d(τA − τB)

Pr(α|τ) =
( q

1−q)(τB−τA) log( q
1−q)

�

( q
1−q)(τB−τA) + 1

�2 > 0.

Pr(α|A,τ) =

�

τA+τB
τA

�

· qτA · (1 − q)τB · q · 1
2

�

τA+τB
τA

�

· 1
2 · (qτA · (1 − q)τB · q + (1 − q)τA · qτB · (1 − q))

,

=
1

1 + ( q
1−q)−τA+τB−1

,

Pr(β |A,τ) =
1

1 + ( q
1−q)τA−τB+1

,

Pr(α|B,τ) =
1

1 + ( q
1−q)−τA+τB+1

,

Pr(β |B,τ) =
1

1 + ( q
1−q)τA−τB−1

.

Note that Pr(ω|A)= Pr(ω|A,τ) if and only if either τA = τB or q= 1
2 . This implies

that a balanced poll where τA = τB has the same effect as if no poll was published
at all.
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Appendix 1.C Polls with Exogenously Truthful Participants

In this extension, I prescribe a share γ > 0 of poll participants to always state their
preferences truthfully.1⁸ The share 1− γ is strategic, and states preferences truth-
fully with probability µ ∈ [0, 1]. I show that the majority candidate is elected with
probability one in the limit. Further, I demonstrate how the underdog effect extends,
and how this affects the incentives of the strategic share of poll participants.

Fix the strategy µ ∈ [0, 1], and denote the probability that a poll participant
states a preference for candidate i in state ω by Pr(“i”|ω). Define κ := Pr(“A00|α).
Then,

Pr(“A”|α) = q · (γ · 1 + (1 − γ) · µ) + (1 − q) · (1 − γ) · (1 − µ),

=: κ,

= Pr(“B”|β),

Pr(“B”|α) = q · (1 − γ) · (1 − µ) + (1 − q) · (γ · 1 + (1 − γ) · µ),

= 1 − κ,

= Pr(“A”|β).

Note that κ= q if and only if γ= 1 or µ= 1, and κ < q else.
The posterior beliefs after observing the poll become

Pr(α|A,τ) =

�

τA+τB
τA

�

· κτA · (1 − κ)τB · q · 1
2

�

τA+τB
τA

�

· 1
2 · [κτA · (1 − κ)τB · q + (1 − κ)τA · κτB · (1 − q)]

,

=
1

1 + ( κ
1−κ)τB−τA · 1−q

q

,

Pr(β |A,τ) =
1

1 + ( κ
1−κ)τA−τB · q

1−q

,

Pr(α|B,τ) =
1

1 + ( κ
1−κ)τB−τA · q

1−q

,

Pr(β |B,τ) =
1

1 + ( κ
1−κ)τA−τB · 1−q

q

.

Lemma 1.5 reveals that the underdog effect depends on κ. For any fixed µ, if
κ > 1

2 , as before, supporters of the candidate obtaining the higher vote count in the
poll turn out at lower rates. Intuitively, as κ > 1

2 , a vote for A is more likely to occur
if the state is α, and, thus, leads voters to update their beliefs toward α. However,
if κ < 1

2 , the effect is reversed. Supporters of the candidate with the higher vote
count in the poll turn out at higher rates because voters understand that τA > τB

1⁸ If γ= 0, all poll participants are strategic. Plugging in γ= 0 in the analysis below yields the proof
for Proposition 1.6.
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actually implies that the state is more likely to be β . If κ= 1
2 or τA = τB, the poll is

not informative, and both groups turn out at equal rates.

Lemma 1.5.

(1) Let κ > 1
2 . Then,

a. if τA > τB, limn→∞
pA(n)
pB(n) < 1,

b. if τA = τB, pA(n)= pB(n) ∀n,

c. and if τA < τB, limn→∞
pA(n)
pB(n) > 1.

(2) Let κ= 1
2 . Then, pA(n)= pB(n) ∀n.

(3) Let κ < 1
2 . Then,

a. if τA > τB, limn→∞
pA(n)
pB(n) > 1,

b. if τA = τB, pA(n)= pB(n) ∀n,

c. and if τA < τB, limn→∞
pA(n)
pB(n) < 1.

Proof. Suppose κ > 1
2 and τA > τB.

Assume, by contradiction, that as n→∞, pA(n)> pB(n).1⁹ By (1.A.1), as n→∞,

pA(n)
pB(n)

→
Pr(β |A,τ)
Pr(β |B,τ)

·
√

√ q
1 − q

·
√

√pB(n)
pA(n)

.

Claim 1.4. Pr(β |A,τ)
Pr(β |B,τ) ·

Ç

q
1−q < 1.

Proof.

Pr(β |A,τ)
Pr(β |B,τ)

·
√

√ q
1 − q

< 1

⇔
1 + ( κ

1−κ)τA−τB · 1−q
q

1 + ( κ
1−κ)τA−τB · q

1−q

< 1

⇔
√

√ q
1 − q

− 1 <
� κ

1 − κ

�τA−τB
·
�

q
1 − q

−
√

√1 − q
q

�

.

The last statement is true because
�

κ
1−κ

�τA−τB > 1 given that κ > 1
2 and τA > τB by

assumption, and because q
1−q −

Ç

1−q
q >

Ç

q
1−q − 1.

1⁹ By Lemma 1.1, pA(n)= pB(n) can be excluded.
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This yields a contradiction because pA(n)
pB(n) > 1 by assumption, but

Pr(β |A,τ)
Pr(β |B,τ) ·

Ç

q
1−q ·

r

pB(n)
pA(n) < 1.

The proofs of parts 1 c), 3 a) and 3 c) are analogous.
For the proofs of parts 1 b), 2 and 3 b), observe that if either τA = τB or κ= 1

2 ,
Pr(ω|i,τ)= Pr(ω|i). Hence, by Lemma 1.1, the result obtains.

Similarly, the direction of the monotonicity of the underdog effect in the poll
margin depends on κ.

Corollary 1.3.

(1) If κ > 1
2 , in a large election, the limit of the ratio of participation rates of the A

supporters relative to B supporters is strictly increasing in the margin of the poll
τB −τA, i.e., limn→∞

pA(n)
pB(n) is a strictly increasing function of τB −τA.

(2) If κ < 1
2 , in a large election, the limit of the ratio of participation rates of the A

supporters relative to B supporters is strictly decreasing in the margin of the poll
τB −τA, i.e., limn→∞

pA(n)
pB(n) is a strictly decreasing function of τB −τA.

The result immediately follows by observing that given τA > τB, Pr(α|τ)> 1
2 if

and only if κ > 1
2 , and given τA < τB, Pr(α|τ)< 1

2 if and only if κ > 1
2 .

How does this affect the incentives of the share 1− γ of poll participants who
are strategic? As it turns out, the optimal strategy µ∗ depends on the share of exoge-
nously truthful poll participants, γ.

Proposition 1.7. Fix the share of exogenously truthful poll participants, γ.

(1) If γ > 1
2 , µ

∗ = 0. That is, all strategic poll participants misrepresent their prefer-
ences to be exactly the opposite of their true preferences. Since κ > 1

2 , the poll is
informative.

(2) If γ= 1
2 , µ

∗ = 0. Since κ= 1
2 , the poll is not informative.

(3) If γ < 1
2 , µ

∗ = 1−2γ
2(1−γ) . Since κ=

1
2 , the poll is not informative.

Proof. Note first that dκ
dµ > 0, dκ

dγ > 0 and that κ= 1
2 if γ= 1

2 and µ= 0.

Case 1: γ > 1
2 .

Then, κ > 1
2 for all µ ∈ [0, 1]. By Lemma 1.5 and Corollary 1.3, limn→∞

pA(n)
pB(n) is a

strictly increasing function of τB −τA. Therefore, it is optimal for all strategic poll
participants to play µ∗ = 0 and claim to have the exact opposed preferences. Since
κ > 1

2 , the poll is informative.

Case 2: γ= 1
2 .

Then, κ≥ 1
2 and the inequality is strict if µ= 0. Suppose, by contradiction, that all
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other poll participants play according to µ > 0. Since κ > 1
2 , by Lemma 1.5 and

Corollary 1.3, it is optimal for an individual poll participant to deviate to µ= 0,
thereby increasing the relative participation rate of like-minded voters. So, µ > 0
cannot be part of an equilibrium. In contrast, if all other poll participants play
according to µ= 0, κ= 1

2 . Then, the poll is not informative and in particular, voters
do not take the poll into account. Thus, µ∗ = 0 is the equilibrium best response.

Case 3: γ < 1
2 .

Then, there exists a uniqueµ∗ such that κ= 1
2 if and only ifµ= µ∗ = 1−2γ

2(1−γ) . Suppose
that µ < µ∗. Then, κ < 1

2 and by Lemma 1.5 and Corollary 1.3, limn→∞
pA(n)
pB(n) is

a strictly decreasing function of τB −τA. Thus, µ= 1 is an optimal deviation. If
µ > µ∗, then, κ > 1

2 and µ= 0 is an optimal deviation. Finally, if µ= µ∗, the poll is
uninformative and does not affect the voters’ beliefs. Then, µ= µ∗ is the equilibrium
best response.

Proposition 1.7 reveals that the poll is informative if and only if the share of ex-
ogenously truthful poll participants is strictly larger than one-half. While the strate-
gic poll participants will again misrepresent their preferences, the truthful response
of the majority of poll participants allows the electorate to derive some information
from the poll.

Finally, Corollary 1.4 states that utilitarian efficiency also holds in a large elec-
tion if poll participants play mixed behavioral strategies.

Corollary 1.4. In the limit, the majority candidate wins the election with probability
1.

Proof. The result follows by repeating the same steps as in the proof of Proposition
1.5, and observing that

Pr(α|A,τ)
Pr(α|B,τ)

=
1 + ( κ

1−κ)τB−τA · q
1−q

1 + ( κ
1−κ)τB−τA · 1−q

q

> 1.
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Chapter 2

Committee Search: Evaluating One or
Multiple Candidates at a Time?

Joint with Tobias Rachidi

2.1 Introduction

Academic hiring is mostly conducted by search committees. Often several candidates
are reviewed simultaneously after the application deadline has been reached, and
the committee either selects one suitable candidate or the hiring process starts over if
neither of the candidates satisfied the committee’s acceptance standards. So far, the
literature on committee search has mainly focused on a search process where candi-
dates are reviewed “one at a time”, i.e., hiring is conducted on a rolling basis. Define
this search procedure as single-option sequential search.1 In this paper, we consider a
search technology in which committees evaluate several candidates simultaneously
in each time period, which we denote bymulti-option sequential search. Our aim is to
explore whether single- or multi-option sequential search yields higher acceptance
standards and a higher ex ante utilitarian welfare for the search committee.2 Un-
der multi-option sequential search, committee members can directly compare candi-
dates. This has two implications: On the one hand, the expected value of a candidate
conditional on hiring increases; on the other hand, the probability of hiring a partic-
ular candidate decreases, and, thus, the expected search costs are altered. Generally,
there is a trade-off between these two objects that determine the committee’s wel-
fare. The resolution of this trade-off depends on the voting rule and the specification
of search costs associated with the simultaneous evaluation of multiple candidates.

1. In the search literature, this is mostly denoted as sequential search.
2. A second application is a family searching for a house. The decision to purchase can be made

after each showing or after a certain number of houses have been seen. Compte and Jehiel (2010)
suggest an application to project selection: Suppose that a firm has scarce resources and needs to
decide on a new project to fund, where project ideas arrive randomly.
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We find that under unanimity voting, the ranking of the two search procedures de-
pends on how the search costs vary with the number of candidates simultaneously
evaluated in each period. In contrast, under qualified majority voting distinct from
unanimity, this sensitivity to the shape of the cost function partly disappears. Conse-
quently, the problem of the design of search technologies for committees is different
from the search design problem for a single decision-maker, noting that the latter
is a special case of a search committee operating under the unanimity voting rule.
This insight constitutes the main contribution of this paper.

In our model, a search committee consisting of at least one member seeks to
hire one candidate, and we consider two search technologies: Under single-option
sequential search, exactly one candidate arrives per period, and under multi-option
sequential search, the committee reviews in each time period a fixed number K > 1
of candidates simultaneously. The time horizon is infinite, and rejected candidates
cannot be recalled. Note that multi-option sequential search can also be interpreted
as delayed voting: Suppose that one candidate per period arrives. Then, simultane-
ously evaluating K candidates in some round of the dynamic search procedure can
be viewed as taking voting decisions only every K periods instead of every single
period. In other words, choosing the number of candidates to be evaluated simulta-
neously can be viewed as selecting voting times.3

The committee members’ preferences feature independent private values. For
every member, the value of a candidate is a random variable, which is distributed
independently and identically across time, members, and candidates. Each commit-
tee member observes his or her own value realization for every candidate and has
distributional knowledge about the other members’ values.

We consider a class of voting rules where each member may either vote for one
of the available candidates or may opt to continue search. A candidate is then hired
if and only if the number of votes he or she receives exceeds a qualified majority
threshold ranging from simple majority to unanimity. This class of voting rules is
frequently used in practice, for example in certain resolutions of the German Car-
itas (cf. Deutscher Caritasverband e.V. (2018)), in the election of the President of
Germany (cf. Bundesrepublik Deutschland (2019)),⁴ or in the papal conclave (cf.
Benedict XVI (2013)).⁵ In the latter circumstances, it is common that more than
two candidates are in contention.

If a candidate is hired, search stops; otherwise, search continues, and each com-
mittee member bears an additive search cost c · h(K)> 0. We restrict the committee
members’ voting strategies to symmetric and neutral⁶ stationary Markov strategies.

3. We thank Olivier Compte for suggesting this interpretation.
4. In these cases, abstaining is equivalent to voting in favor of continuing search
5. Abstention is not allowed in the papal conclave. However, since any male Catholic is a po-

tential candidate for papacy, voting for a person without a chance is equivalent to voting to continue
search.

6. A strategy is neutral if it does not condition on the identity of the candidate.
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Then, a member votes in favor of some candidate if and only if the candidate’s value
is the highest among all observed K values and it exceeds some cutoff represent-
ing the member’s acceptance standard. Acceptance standards coincide with welfare
because values are private.⁷

We first prove the existence and uniqueness of a symmetric and neutral station-
ary Markov equilibrium in the single- and multi-option sequential search setting
for all qualified majority voting rules including unanimity voting. The uniqueness
of equilibrium is shown for value distributions that admit a log-concave density. In
the subsequent comparison of the two search procedures, we maintain this distribu-
tional assumption.

Then, we study the case of unanimity voting in detail. We find that if the cost
function h is superadditive or linear in the number of evaluated candidates, single-
option sequential search yields higher acceptance standards and higher welfare than
multi-option sequential search. Intuitively, given some acceptance standard, the ex-
pected value of a candidate conditional on stopping is higher if K > 1 than if K = 1.
However, at the same time, expected search costs are also higher because the prob-
ability of hiring a particular candidate is lower and costs are superadditive or linear.
We show that the increase in the expected value conditional on stopping is limited
and that the overall trade-off is resolved in favor of single-option sequential search.
In contrast, if the cost function h is strictly subadditive in the number of candidates,
multi-option sequential search yields higher welfare if the magnitude of search costs
quantified by the parameter c is sufficiently small. Here, if c is small, acceptance stan-
dards are close to the upper bound of the support of the value distribution. Hence,
while the probability of hiring a particular candidate is higher under single-option
sequential search, it is low for both search protocols. Therefore, if c is sufficiently
small, expected search costs are actually lower under multi-option sequential search
because h is assumed to be subadditive. In addition, as before, the expected value
conditional on stopping for K > 1 is not lower than the respective value for K = 1.
Extensions to interdependent values and correlated values show the robustness of
these results.

Next, we consider qualified majority voting rules that do not require full una-
nimity. We find that multi-option sequential search yields a higher welfare than
single-option sequential search for all cost functions h as long as c is sufficiently
small. Thus, the sensitivity to the shape of the cost function h that we find for the
unanimity rule partly disappears. To prove this result, we first establish that the
ranking of the expected values conditional on stopping from the unanimity voting
case carries over to qualified majority, meaning, the respective expected value is
higher if K > 1 compared to K = 1. Then, we show that if c is sufficiently small, this
increase in the expected value conditional on stopping outweighs the potential rise

7. To be precise, this holds if and only if the equilibrium cutoff is interior.
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in expected costs.⁸ Consequently, as alluded to above, the comparison of single- to
multi-option sequential search differs considerably if the search committee operates
under qualified majority voting instead of unanimity voting. Thus, our results imply
in particular that the conclusions for the single decision-maker case do not carry
over to committee search with qualified majority voting.

We are aware of only one other paper analyzing the differences between the com-
mittee search setting and the single-searcher case with respect to the search technol-
ogy and the implications for its design. In independent work, Cao and Zhu (2019)
compare single-option sequential search to fixed-sample-size search, where the com-
mittee first determines the total number of candidates to be reviewed, then reviews
the candidates sequentially, and finally selects one of these candidates. The latter is
conceptually different to multi-option sequential search. Cao and Zhu (2019) show
that previous results from the single-searcher setup do not carry over to the com-
mittee search setting. We will discuss further details and differences in the next
section.

The paper is organized as follows: Section 2.2 reviews the related literature, Sec-
tion 2.3 introduces the model, and Section 2.4 proves the existence and uniqueness
of the equilibrium. Section 2.5 treats the unanimity voting case, Section 2.6 con-
tains the results for qualified majority voting rules, and Section 2.7 concludes while
discussing the implications of our results for committee search in practice. Appendix
2.A contains the proofs, and Appendix 2.B derives expressions for the probability of
approving a particular candidate and the expected value conditional on stopping.

2.2 Related Literature

Our paper contributes to the growing literature on committee search where a com-
mittee conducts search dynamically over time.⁹ Albrecht, Anderson, and Vroman
(2010), Compte and Jehiel (2010), and Moldovanu and Shi (2013) assume that
the committee employs single-option sequential search, where, in each time period,
the committee draws exactly one alternative from a known distribution and decides
by voting whether to accept the current alternative or to continue costly search by
drawing a new alternative. The time horizon is infinite, and there is no recall.

In Albrecht, Anderson, and Vroman (2010) and Compte and Jehiel (2010), pref-
erences feature private values, and search is costly because of multiplicative dis-
counting. Albrecht, Anderson, and Vroman (2010) show that there exists a unique

8. Depending on the shape of the cost function h, expected search costs might also decrease. Of
course, this only reinforces our reasoning.

9. The static case of committee decision-making has also been analyzed in depth, cf. the survey
by Li and Suen (2009).
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equilibrium if the density of the value distribution is log-concave.1⁰ Further, they
compare the committee search problem and the single-agent search problem in
terms of acceptance standards and expected search duration. More generally, they
study the effect of increasing either the committee size or the majority requirement
on acceptance standards and the expected search duration. Finally, they show that
the welfare-maximizing majority requirement increases in the members’ patience.
Our paper focuses on the effect of different search procedures on acceptance stan-
dards and welfare given the voting rule, whereas Albrecht, Anderson, and Vroman
(2010) study the implications of different voting rules or committee sizes while fix-
ing the search technology, i.e., single-option sequential search.

In Compte and Jehiel (2010), in each period, one candidate or proposal is drawn
from a potentially multi-dimensional proposal space. The members’ values of some
proposal are given by utility functions mapping proposals into values. Compte and
Jehiel (2010) show how different aspects shape the final outcome under single-
option sequential search. If the proposal space is multi-dimensional, they find a
systematic difference between unanimity voting and qualified majority voting. In
the former case, the size of the agreement set, meaning, the set of proposals that
are approved by at least as many members as the majority threshold requires for
acceptance, becomes small, while, in the latter case, the size of the agreement set
does not vanish as members become arbitrarily patient. When restricting attention
to single-option sequential search, in the framework of Compte and Jehiel (2010),
our model essentially corresponds to the case of a multi-dimensional proposal space
with linear utility. The proposal space is a hypercube whose dimension is equal to
the committee size, each member is associated with one distinct dimension of the
proposal space, and the members’ values are given by the characteristic of the pro-
posal they are linked to. Consequently, this systematic difference between unanimity
and qualified majority voting arises in our setting as well, and it turns out to be im-
portant for our results concerning the comparison of different search technologies.

Moldovanu and Shi (2013) assume that committee members have interdepen-
dent preferences, and they focus on the unanimity voting rule. Committee members
face additive search costs. Each member is linked to a signal about the candidate ar-
riving in some period, and amember’s value of this candidate amounts to a weighted
average of this member’s own signal and the signals associated with the other mem-
bers. The weight attached to a member’s own signal is interpreted as the level of
partisanship in the committee. If members only observe their own signals, they are
called specialists, whereas, if members observe all signals, they are termed gener-
alists. Moldovanu and Shi (2013) analyze how acceptance standards and welfare
react to varying degrees of partisanship and compare the decisions of committees

10. Conceptually, the proof strategy of our uniqueness result follows Albrecht, Anderson, and
Vroman (2010), but, as outlined below, the presence of more than one candidate per period requires
a substantial amount of supplementary arguments.
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composed of either generalists or specialists. For the case of unanimity voting, our
results concerning acceptance standards and partly welfare extend when committee
members have interdependent preferences.

We know of only one other contribution that is concerned with the comparison
of different search technologies in the committee search environment.11 In indepen-
dent work, Cao and Zhu (2019) compare single-option sequential searchwith simple
majority voting to a fixed-sample-size search technology that can be described as fol-
lows: First, the committee determines the total sample size via the random proposer
mechanism. Then, in each period, one alternative is drawn until the predetermined
sample size is reached. Finally, the committee selects an alternative according to
plurality voting. There is no discounting, but members bear additive search costs
that are linear in the number of alternatives. Moreover, their main model focuses
on committees with two members and uniformly distributed values.12 Cao and Zhu
(2019)’s main insight is that the finding from the single decision-maker setting that
single-option sequential search always dominates fixed-sample-size search, as for
example established in Rothschild (1974), does not extend to the committee search
setting. In contrast, fixed-sample-size search dominates sequential search if the per-
observation search cost is very small or large enough. These results are driven by
the trade-off of the flexibility advantage of single-option sequential search, which
captures that search can be stopped as soon as an appropriate alternative is drawn,
against the commitment advantage of fixed-sample-size search, which captures that
the number of observations is ex ante optimal. While Cao and Zhu (2019) indepen-
dently ask a similar research question to ours, they study a conceptually different
search technology, inducing different results driven by different effects. Therefore,
we view our paper to be complementary to their work.

In the literature on search conducted by a single decision-maker, not only single-
option sequential search due to McCall (1970), but also other search technologies
such as fixed-sample-size search have been discussed and contrasted, see for in-
stance Stigler (1961), Rothschild (1974), and Burdett and Judd (1983). In Morgan
(1983) as well as Manning and Morgan (1985), search is conducted by a single
decision-maker, and they consider general classes of search procedures, in which,
in each period, the single agent decides how many alternatives to draw in the fol-
lowing period if search continues, and whether to stop search in the current period.
Therefore, multi-option sequential search conducted by a single decision-maker is

11. In the literature on auctions, the comparison between different selling technologies has been
studied before. Wang (1993) compares auctions to posted-price selling in terms of revenue and prices,
and finds that the ranking of the two technologies depends on the seller’s auctioning costs and on the
steepness of the marginal revenue curve.

12. Cao and Zhu (2019) show that their results extend to values that are drawn from the expo-
nential distribution. Further, they establish via numerical simulations that their findings also partly
carry over to larger committees.
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part of the search technologies studied in Morgan (1983) as well as Manning and
Morgan (1985).

Morgan (1983) derives properties of the optimal sample size in each time period
depending on the searcher’s recall, time horizon, and outside option, but he does not
analytically identify conditions on the primitives of the model under which single-
option sequential search is optimal. However, he mentions numerical simulations
indicating in particular that single-option sequential search might not be optimal
if there is no recall and there are intraperiodic economies of scale in the simulta-
neous evaluation of multiple alternatives. To some extent, our analytical result for
committee search with unanimity voting and subadditive costs specialized to the
single-agent case addresses this point.

Manning and Morgan (1985) show analytically that single-option sequential
search conducted by a single agent is optimal if the time horizon is infinite, there
is full recall, and the searcher bears additive search costs that are non-decreasing
and strictly convex in the number of alternatives per period. This result resembles
our finding for committee search with unanimity voting and superadditive or lin-
ear search costs when specializing to the single-searcher case. Note that Manning
andMorgan (1985) assume full recall, whereas we assume that rejected alternatives
cannot be recalled. Yet, as long as the sample size per period does not depend on
calendar time (as it is the case under single-option as well as multi-option sequential
search), in the single-agent case, the no recall assumption is without loss.13 There-
fore, our finding for committee search with unanimity voting and superadditive or
linear search costs specialized to the single-agent case can be derived fromManning
and Morgan (1985)’s result.1⁴

2.3 The Model

A committee consisting of members N := {1, ..., N} with N ≥ 1, who are indexed
by i, seeks to hire one candidate. In each discrete period of time t, a set of candi-
datesK := {1, ..., K} with 1≤ K <∞ arrives. If K = 1, we call the resulting search
procedure single-option sequential search, whereas, if K > 1, the search technology
is termed multi-option sequential search.

Preferences feature private values. For each committee member i ∈ N , the value
of hiring candidate k ∈K is governed by the random variable Xk

i , where Xk
i is dis-

tributed independently and identically across time periods, candidates, and mem-
bers according to the cumulative distribution function F with density f . We assume
that the distribution of Xk

i has full support on the bounded interval [0, x̄] with x̄ > 0.

13. For single-option sequential search and a single decision-maker, this point has been made
previously by Albrecht, Anderson, and Vroman (2010).

14. However, note that our assumption on the shape of the cost function is slightly more general
because non-decreasing and strictly convex costs are also superadditive or linear.
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Let µ denote the mean of the random variable Xk
i . For all candidates k ∈K , commit-

teemember i ∈ N observes the realization of Xk
i perfectly and has only distributional

knowledge about the value Xk
j that any committee member j other than i assigns to

candidate k.
The timing is as follows: In every time period, member i observes a realization of

the vector of random variables (X1
i , . . . , XK

i ), that is, K values. Then, members simul-
taneously cast a vote, voting either for one candidate k (action k) or for the option
to continue search (action 0). Candidate k is hired and search is stopped if and only
if the number of votes in favor of k is larger than or equal to the (qualified) majority
threshold M ∈ {1, . . . , N}, with M > N

2 .1⁵ This class of voting rules encompasses, for
instance, unanimity voting corresponding to the case where M = N or simple major-
ity voting with an odd number of members, that is, M = N+1

2 . If search is continued,
each committee member incurs a per period cost of c · h(K)> 0, where h(K) is the
value of some function h : N+→ R>0 evaluated at K, and c> 0 represents a scaling
parameter. Finally, we assume that the search horizon is infinite, and that rejected
candidates cannot be recalled.

2.4 Equilibrium Analysis

Committee member i’s strategy is a sequence of functions σi = {σi(Ht)}t, mapping
from any history Ht until period t to ∆({0}∪K ), i.e., all probability distributions
over the set of actions {0}∪K that are available in each period. As is common in the
literature on committee search, we restrict strategies to be (1) Markovian, meaning,
the action that member i’s strategy prescribes in period t does not depend on the en-
tire history up to period t, but only on the evaluation of the most recent K candidates,
and we focus on (2) stationary and (3) symmetric equilibria, that is, the equilibrium
strategies are neither sensitive to calendar time nor to the identity of the committee
member. In addition, we assume strategies to be (4) neutral, that is, they have to be
invariant with respect to permutations of the candidates’ labels.1⁶ Essentially, neu-
trality rules out stationary and symmetric equilibria in Markov strategies in which
voters coordinate on ignoring one or more candidates. Apart from conditions (1) -
(4), we also impose that search terminates in finite time, excluding dominated equi-
libria in which all members always vote to continue search, independently of the
value realizations. Subsequently, we simply write equilibrium when referring to a
stationary and symmetric Markov equilibrium in neutral strategies.
Strategies that satisfy these refinements are characterized by cutoffs z ∈ [0, x̄). More

15. The assumption M > N
2 ensures that no two distinct candidates meet the (qualified) majority

requirement at the same time.
16. Any stationary Markov strategy can be described by a mapping s : [0, x]K →∆({0}∪K ).

A strategy s satisfies neutrality if, for all (x1, . . . , xK) ∈ [0, x]K, it holds that s(xρ(1), . . . , xρ(K))=
(s0(x1, . . . , xK), sρ(1)(x1, . . . , xK), . . . , sρ(K)(x1, . . . , xK)) for any permutation ρ of the set K .
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specifically, in any time period, upon observing the value realizations (x1
i , ..., xK

i ) ∈
[0, x̄]K, member i ∈ N votes in favor of candidate k ∈K if and only if

xk
i ≥ max

l6=k
xl

i and xk
i ≥ z.

We call these strategies maximum-strategies with cutoff. In words, every member
chooses the best among the K available candidates and approves this candidate if
and only if the respective value exceeds the cutoff, or acceptance standard, z. Intu-
itively, since candidates are identical ex ante and because members treat candidates
in a neutral way, all candidates have the same chance to be elected from the perspec-
tive of an individual member. Consequently, no member has an incentive to vote in
favor of any candidate but the best.1⁷

Interior equilibrium cutoffs z ∈ (0, x̄) solve z= v, where v is the continuation
value implied by this strategy profile.1⁸ The continuation value which coincides with
the ex ante utilitarian welfare per committee member is given by

v = −
c · h(K)

K · Pr(candidate k hired)
+ E[Xk

i |candidate k hired].

The continuation value amounts to the difference between the expected value
conditional on stopping E[Xk

i |candidate k hired] and the expected search costs
c·h(K)

K·Pr(candidate k hired) .
Let QK(z, N, M) be the cumulative distribution function of the Binomial distribu-

tion with parameters N and Pr(Xk
i ≥ z and Xk

i ≥maxl6=k X l
i) evaluated at M− 1. Also,

for any b ∈ N0 with b≤ N, qK(z, N, b) denotes the corresponding probability mass
function evaluated at b. Further, we argue in Appendix 2.B.2 that

Pr(Xk
i ≥ z and Xk

i ≥ max
l6=k

X l
i) =

1
K
[1 − F(z)K].

Then, the equilibrium equation can be written as

z = −
c · h(K)

K · [1 − QK(z, N, M)]
+ E[Xk

i |candidate k hired]. (2.1)

Intuitively, acceptance standards z arising in equilibrium are calibrated in a way such
that a member is indifferent between stopping and continuing search whenever the
value of some candidate coincides with the cutoff z. A derivation of the equilibrium
strategies and the equilibrium equation (2.1) can be found in Appendix 2.A.1.

17. Note that mixed strategies do not arise in equilibrium.
18. Boundary solutions, i.e., equilibria involving some maximum strategy with cutoff z= 0, may

arise if the search costs c · h(K) are large. Subsequently, we take care of this issue.
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2.4.1 Equilibrium Existence

We claim that there exists an equilibrium. The reasoning in the previous part implies
that there exists an equilibrium if and only if there either exists 0≤ z< x that solves
equation (2.1), or there is a boundary equilibrium in which the maximum-strategy
with cutoff z= 0 forms an equilibrium.

Proposition 2.1. There exists an equilibrium.

We prove the existence of an equilibrium while making use of the intermedi-
ate value theorem. Similar existence arguments appear in Albrecht, Anderson, and
Vroman (2010), Compte and Jehiel (2010), and Moldovanu and Shi (2013).1⁹

2.4.2 Equilibrium Uniqueness

We turn to the problem of equilibrium uniqueness. Apart from being of interest
in itself, the uniqueness of equilibrium is important for a transparent comparison
between single-option sequential search and multi-option sequential search. It turns
out that the equilibrium is unique if we impose the assumption that the density f is
log-concave.2⁰

Proposition 2.2. If the density f is log-concave, the equilibrium is unique.

Many well-known distributions including, for instance, the uniform distribution
or the truncated normal distribution meet this requirement.21
Conceptually, the proof strategy follows Albrecht, Anderson, and Vroman (2010),
but, as discussed below, the presence of more than one candidate per period requires
a substantial amount of supplementary steps that are not needed if K = 1. The ar-
guments from the previous parts imply that there is a unique equilibrium if and
only if either equation (2.1) admits exactly one solution and there is no supplemen-
tary boundary equilibrium, or there is a boundary equilibrium and the equilibrium
equation has no solution. Rearrange equation (2.1):

c · h(K)
K · [1 − QK(z, N, M)]

= E[Xk
i |candidate k hired] − z.

The essential part of the proof is to establish that the left-hand side of this equation
is increasing in z, whereas the right-hand side is decreasing in z. Then, the unique-
ness result follows from the opposite monotonicities of the discussed functions.

19. In particular, Moldovanu and Shi (2013) show the existence of an equilibrium for the case of
single-option sequential search with unanimity voting, i.e., K = 1 and M = N.

20. For the case of single-option sequential search with unanimity voting, i.e. K = 1 and M = N,
the uniqueness of equilibrium has been established in Moldovanu and Shi (2013).

21. For a comprehensive list of distributions that admit a log-concave density, we refer to Bagnoli
and Bergstrom (2005).
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First, it is straightforward to derive that the left-hand side is increasing in z. Intu-
itively, if the acceptance standard z increases, the probability of voting in favor of
some candidate k decreases, and, hence, the probability of hiring this candidate k
and the overall probability of stopping decrease as well. Thus, the expected search
costs increase. Consequently, it remains to show that E[Xk

i |candidate k hired]− z
is decreasing in z. This claim is stated as Lemma 2.1.22 Define SK(z, N, M) :=
E[Xk

i |candidate k hired] to emphasize that the expected value conditional on hir-
ing depends on K and M.

Lemma 2.1. Consider any K ≥ 1. If the density f is log-concave, the function

SK(z, N, M) − z

is decreasing in z.

Subsequently, we discuss the proof of Lemma 2.1. Define

µK
a (z) := E[Xk

i |X
k
i ≥ z and Xk

i ≥ max
l6=k

X l
i], and

µK
r (z) := E[Xk

i |X
k
i < z or Xk

i < max
l6=k

X l
i].

These conditional expectations capture the expected value of an arbitrary candidate
k ∈K for an arbitrary member i ∈ N conditional on approving or rejecting this
candidate, respectively. We argue in Appendix 2.B.1 that

E[Xk
i |candidate k hired] = wK(z)µK

a (z) + [1 − wK(z)]µK
r (z), (2.2)

with wK(z) being defined as

wK(z) :=
N
∑

l=M

qK(z, N, l)
1 − QK(z, N, M)

l
N

.23

Intuitively, conditional on stopping, the accepted candidate k might be supported
or rejected by an arbitrary member. Therefore, the expected value of k conditional
on stopping amounts to an average of the expected values conditional on support-
ing as well as rejecting candidate k. The weight wK(z) represents the expected
share of members supporting k conditional on k meeting the majority requirement.
Note that under unanimity voting, hired candidates must be accepted by every
member. Thus, in this case, the expected value conditional on hiring simplifies to
E[Xk

i |candidate k hired]= µK
a (z).

22. For single-option sequential search, i.e., K = 1, this property has been shown in Albrecht,
Anderson, and Vroman (2010).

23. This kind of representation of the expected value conditional on stopping is due to Albrecht,
Anderson, and Vroman (2010).
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After some intermediate steps that are similar to those in the proof of Albrecht, An-
derson, and Vroman (2010) we obtain that, for z ∈ (0, x̄),

dE[Xk
i |candidate k hired]

dz
< wK(z)

dµK
a (z)

dz
+ [1 − wK(z)]

dµK
r (z)

dz
.

Hence, the key proof step is to show that dµK
a (z)
dz ≤ 1 and dµK

r (z)
dz ≤ 1. Notice that if

K = 1, these conditional expected values are truncated means:

µ1
a(z) = E[Xk

i |X
k
i ≥ z], and µ1

r (z) = E[Xk
i |X

k
i < z].

It is well-known that log-concavity of f implies the desired Lipschitz conditions on
the truncated means, i.e., dµ1

a(z)
dz ≤ 1 and dµ1

r (z)
dz ≤ 1 (see e.g. Bagnoli and Bergstrom

(2005)). However, for K > 1, the discussed implications are not standard because
the involved expected values conditional on rejecting or supporting a candidate do
no longer constitute truncated means. To obtain that dµK

a (z)
dz ≤ 1, we establish that

the conditional density Pr(Xk
i = x|Xk

i ≥maxl6=k X l
i) is log-concave by employing the

fact that log-concavity is preserved under integration, which has been shown in
Prékopa (1973). Then, like in the case of K = 1, log-concavity implies the desired
Lipschitz condition on µK

a (z). Next, we show that dµK
r (z)
dz ≤ 1 by directly invoking the

log-concavity of f as well as its implications. Again, the preservation of log-concavity
under integration due to Prékopa (1973) is important. Taking both aspects together,
Lemma 2.1 follows, and we obtain that the right-hand side of the equation above
is decreasing in z. When comparing the welfare induced by single-option sequential
search and multi-option sequential search, we repeatedly make use of Lemma 2.1.
We believe that the technical property established in Lemma 2.1 might be useful
beyond its application in this paper.

2.5 Unanimity Voting

Having established equilibrium existence and uniqueness, in this section we assume
that the committee employs unanimity voting, i.e., we set M = N. We contrast the
unique equilibria under single-option and multi-option sequential search in terms of
acceptance standards and welfare and show how the superiority of one or the other
search technology depends on the structure of the search costs.

2.5.1 Superadditive or Linear Costs

In this part, we study cost functions h that satisfy

h(K)
K

≥ h(1) (2.3)
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for all K > 1. In a slight abuse of wording, we say that condition (2.3) gives rise to
superadditive or linear costs.2⁴ Intuitively, the restriction on the function h means
that the search costs per candidate under multi-option sequential search are at least
as high as under single-option sequential search. For instance, if h(K)= Kα for some
α≥ 1, costs are superadditive or linear.

Denote the ex ante utilitarian welfare per committee member in the game with
K ≥ 1 candidates per period by vK. Proposition 2.3 establishes that the welfare un-
der multi-option sequential search with arbitrarily many candidates K > 1 is strictly
lower than the welfare under single-option sequential search.

Proposition 2.3. Suppose that the voting rule is unanimity, i.e., M = N, and assume
that the density f is log-concave. If the search costs are superadditive or linear in the
number of candidates, i.e., satisfy (2.3), the committee’s ex ante utilitarian welfare is
higher under single-option sequential search relative to multi-option sequential search,
i.e., v1 > vK for all K > 1.

The basic trade-off when moving from K = 1 to K > 1 is that, on the one hand,
the expected value conditional on stopping rises, but on the other hand, expected
search costs rise, too. The former effect arises because unanimity voting means that,
conditional on stopping, all members vote in favor of the hired candidate, and when
there are multiple candidates, members only approve some candidate if the associ-
ated value is the maximum out of the K values they observe. The latter effect is due
to two aspects: First, the probability of hiring an arbitrary candidate k is smaller
if K > 1, and, second, since costs are superadditive or linear, the search costs per
candidate are weakly higher if K > 1 compared to K = 1. Thus, a priori, the ranking
of the two search procedures in terms of welfare is ambiguous. The key proof step
is to show that the increase in the expected value conditional on stopping is limited
when moving from single-option sequential search to multi-option sequential search.
Concretely, for any K > 1 and any fixed cutoff z, we derive an upper bound for the
ratio

µK
a (z) − z

µ1
a(z) − z

=
E[Xk

i |X
k
i ≥ maxl6=k X l

i , Xk
i ≥ z] − z

E[Xk
i |X

k
i ≥ z] − z

.

Lemma 2.2. Consider any K > 1. For all z ∈ [0, x),

µK
a (z) − z

µ1
a(z) − z

<
1 − F(z)

1
K [1 − F(z)K]

.

24. Note that the condition is actually weaker than (strict) superadditivity or linearity.
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Note that it is easy to see that a lower bound of this ratio is 1 because in the numera-
tor, the maximum over K > 1 values is considered. Lemma 2.2 reveals that an upper
bound of the ratio is given by the ratio of the probability that an individual mem-
ber votes in favor of candidate k if there is only one candidate to this probability if
there are K > 1 candidates. We believe that this technical property might be useful
beyond its application in this paper.

Now, let us sketch the proof of Proposition 2.3 for interior cutoffs. In this case,
acceptance standards coincide with welfare.2⁵ Consider the ratio of the expected
value conditional on stopping net of the cutoff when K > 1 compared to the net
value when K = 1, that is,

E[Xk|Xk ≥ maxl6=k X l, Xk ≥ zK] − zK

E[Xk|Xk ≥ z1] − z1
,

where zK denotes the cutoff when there are K ≥ 1 candidates. Towards a contra-
diction, assume that z1 ≤ zK. By the equilibrium equation, i.e., equation (2.1), the
considered ratio is equal to the ratio of the expected search costs when K > 1 ver-
sus when K = 1. Then, the superadditive or linear cost assumption yields a lower
bound on this ratio of expected search costs. Moreover, recall that Lemma 2.1 re-
veals that the log-concavity of f implies the Lipschitz condition dµK

a (z)
dz ≤ 1. While

invoking dµK
a (z)
dz ≤ 1 and making use of Lemma 2.2, we obtain an upper bound on

the discussed ratio of expected values conditional on stopping. It turns out that the
derived lower bound is larger than the upper bound, which constitutes the desired
contradiction.

2.5.2 Subadditive Costs

Next, we consider cost functions h that satisfy

h(K)
K

< h(1) (2.4)

for all K > 1. We say, again in a slight abuse of wording, that condition (2.4) gives
rise to subadditive costs.2⁶ This assumption is reasonable if there are fixed costs asso-
ciated with the hiring process, or if there are cost savings when multiple candidates
can be considered. For example, if h(K)= Kβ for some β < 1, costs are subadditive.
Proposition 2.4 reveals that under the assumption of subadditive costs, the conclu-
sion of the previous part of this section is partly reversed: If the magnitude of the
search costs as quantified by the parameter c is sufficiently small, evaluating multi-
ple candidates at a time improves welfare.

25. We emphasize that the result also holds if some equilibria constitute boundary solutions.
26. Note that the distinction between superadditive or linear costs and subadditive costs is not

exhaustive.
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Proposition 2.4. Suppose that the voting rule is unanimity, i.e., M = N, assume that
the density f is log-concave, and consider any function h giving rise to subadditive costs,
i.e., satisfying (2.4). Then, for all K > 1, there exists c̄K > 0 such that for all c< c̄K, the
committee’s ex ante utilitarian welfare is higher under multi-option sequential search
with K candidates per period relative to single-option sequential search, i.e., vK > v1.

Intuitively, again, the expected value conditional on stopping is not lower for K >
1 relative to K = 1. However, in contrast to the previous cost regime, for subadditive
costs and sufficiently small magnitudes of search costs c, the expected search costs
are actually lower if K > 1 compared to K = 1, yielding a higher welfare for the
committee if multi-option sequential search is employed.

Let us sketch the proof of Proposition 2.4 in more detail. Assume, by contradic-
tion, that there exists K > 1, such that for all c̄K > 0, there exists c< c̄K such that
v1 ≥ vK. Without loss of generality, suppose that both cutoffs are interior. Then, they
coincide with welfare and, thus, we have that z1 ≥ zK. First, we show that given
z1 ≥ zK, the expected value conditional on stopping is increasing when moving from
K = 1 to K > 1. This is a consequence of the log-concavity of f and, more precisely,
the Lipschitz condition dµK

a (z)
dz ≤ 1 we derived in Lemma 2.1. The equilibrium condi-

tion (2.1) then implies that the expected search costs should also be higher if K > 1
compared to K = 1. However, if c becomes small, under both search procedures, the
equilibrium acceptance standards are close to the upper bound of the value distribu-
tion, x̄. This conclusion crucially relies on the fact that the voting rule is unanimity
and fails in the case of qualified majority rules distinct from unanimity. Then, even
though the probability of hiring an arbitrary candidate k is higher for K = 1, this
probability is small for K = 1 as well as for K > 1. In fact, if c is small enough, the
difference is low enough such that, given subadditive costs, the expected search
costs are overall actually smaller for K > 1 than for K = 1. This is the desired con-
tradiction.

2.5.3 Extensions

For the unanimity voting rule, we explore the robustness of our results via two ex-
tensions: Allowing for interdependent values instead of private values, and allowing
for correlated values instead of independent values.2⁷

For the case of interdependent values, we follow the approach in Moldovanu and
Shi (2013), assuming that the value a member derives from hiring some candidate is
a weighted average of his own observed signal and the signals of all other members.
We find that our results regarding acceptance standards carry over from the analysis
under private values. As far as welfare is concerned, note that under the assumption
of interdependent values, acceptance standards and welfare no longer coincide even

27. The arguments for these extensions are available on request.
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if the equilibrium cutoff is interior (cf. Moldovanu and Shi (2013)). If costs are
subadditive, the ranking of single-option andmulti-option sequential search in terms
of welfare from the private-values case extends to interdependent values. Overall,
this suggests that our results concerning unanimity voting are not driven by the
private-values assumption on preferences.

To relax the assumption that candidates’ values are distributed independently
across committee members, we introduce an unknown state of the world sk for each
candidate k ∈K , which we assume to be independently and identically distributed
across time and candidates. Conditional on the state realization sk, the values asso-
ciated with candidate k are then independently and identically distributed across
committee members. The state-dependent value distributions are assumed to be
stochastically ranked according to the likelihood-ratio ordering. While relaxing the
independence of values across members, we maintain the assumption that commit-
tee members have private values. Thus, acceptance standards and welfare again
coincide whenever the equilibrium is interior. We find that both results for the una-
nimity voting rule carry over from the private-values case to correlated values. There-
fore, we conclude that while the assumption of independently distributed values is
admittedly strong, it does not drive our results for the unanimity voting rule.

2.6 Qualified Majority Voting

Having studied the case of unanimity voting, in this section, we turn to qualified ma-
jority voting, considering a majority requirement M such that M < N. As before, we
compare the unique equilibria of multi-option sequential search and single-option
sequential search in terms of acceptance standards and welfare. Again, let vK be
the ex ante utilitarian welfare per committee member if there are K ≥ 1 candidates
per period. As already stated, the welfare induced by a search procedure is deter-
mined by two ingredients: the expected value conditional on hiring and the expected
search costs. To start, in Lemma 2.3 we compare the expected values conditional
on stopping when there are K > 1 versus K = 1 candidates per period. Recall that
SK(z, N, M)= E[Xk

i |candidate k hired].

Lemma 2.3. Consider any K > 1. For all z ∈ [0, x̄),

S1(z, N, M) < SK(z, N, M).

Lemma 2.3 reveals that, when fixing a cutoff value z, the expected value con-
ditional on stopping when K > 1 is higher than the corresponding expected value
when K = 1. If the voting rule is unanimity, this conclusion is immediate because,
in this case, for any K > 1,

S1(z, N, N) = E[Xk
i |X

k
i ≥ z] < E[Xk

i |X
k
i ≥ z and Xk

i ≥ max
l6=k

X l
i] = SK(z, N, N).
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Yet, if the voting rule is qualified majority, the conclusion is not obvious because
there are two forces pulling in opposite directions.
Consider the average representation of the expected value conditional on hiring as
introduced in equation (2.2):

SK(z, N, N) = wK(z)µK
a (z) + [1 − wK(z)]µK

r (z).

Note that for M < N, in contrast to unanimity, it does not hold that wK(z)= 1 for
all K ≥ 1, but wK(z) depends non-trivially on K. Now, take any K > 1, and fix a cut-
off value z. Observe that µK

a (z)> µ1
a(z) as well as µK

r (z)> µ1
r (z), that is, both the

expected value conditional on approving as well as conditional on rejecting an arbi-
trary candidate are higher under multi-option sequential search compared to single-
option sequential search. Similar to the case of unanimity voting, µK

a (z) increases
since a member approves a candidate only if the candidate’s value is the highest
among the K values that this member observes. The reason why µK

r (z) increases
is, in intuitive terms, as follows: If K = 1, rejecting some candidate means that this
candidate’s value is below the cutoff z. In contrast, if K > 1, a member might also
reject some candidate with a value above the cutoff z in case another candidate has
an even higher value.

However, at the same time, we have that wK(z)< w1(z). Conditional on stop-
ping, the expected share of members who approve some candidate k decreases when
moving from single-option to multi-option sequential search. This holds because the
probability that a single member approves some candidate k decreases, since the
candidate’s value has to be the maximum out of K values in addition to being above
the cutoff z.

Finally, since µK
a (z)> µK

r (z) as well as µ1
a(z)> µ1

r (z), the overall effect on the
expected value conditional on stopping is a priori ambiguous. We prove Lemma
2.3 by employing a technical result from Albrecht, Anderson, and Vroman (2010)
related to the expected share of members who approve some candidate k conditional
on stopping.

In Proposition 2.5, we claim that multi-option sequential search dominates
single-option sequential search independently of the shape of the cost function (su-
peradditive or linear, subadditive, or none of the two) as long as the magnitude of
the search costs is sufficiently small.

Proposition 2.5. Suppose that the density f is log-concave, take any qualified majority
voting rule distinct from unanimity, i.e., M < N, and consider any function h. Then, for
all K > 1, there exists c̄K > 0 such that for all c< c̄K, the committee’s ex ante utilitarian
welfare is higher under multi-option sequential search with K candidates per period
relative to single-option sequential search, i.e., vK > v1.

Intuitively, the increase in the expected value conditional on hiring whenmoving
from single-option sequential search to multi-option sequential search as revealed by
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Lemma 2.3 outweighs the potential rise of expected search costs2⁸ if the magnitude
of costs c is sufficiently small. We emphasize once again that this result does not
depend on the type of the cost function. For any function h, and for any K > 1, there
are cost levels c such that single-option sequential search is dominated by multi-
option sequential search.2⁹

Let us discuss the proof of Proposition 2.5. To the contrary, suppose that there
exists K > 1, such that for all c̄K > 0, there exists c< c̄K such that v1 ≥ vK. Again,
without loss of generality, focus on interior cutoffs. Thus, we have that z1 ≥ zK

where, again, zK denotes the equilibrium cutoff if there are K ≥ 1 candidates per
period. Recall that Lemma 2.1 implies that the log-concavity of f is sufficient for
dS1(z,N,M)

dz ≤ 1. When employing this Lipschitz condition, we obtain that the differ-
ence SK(zK, N, M)− S1(zK, N, M) is bounded above by the difference in expected
search costs between K > 1 and K = 1. Now, in contrast to unanimity voting, if
M < N, the equilibrium cutoffs arising under single-option as well as under multi-
option sequential search do not converge to the upper bound of the value distribu-
tion as the magnitude of search costs c becomes small, but they remain bounded
away from x̄.3⁰ The intuition for this result is as follows: Under qualified majority
voting, conditional on stopping, a candidate might be hired even though some par-
ticular member has rejected this candidate. Taking that scenario—which does not
arise under unanimity voting—into account, members do not become arbitrarily
picky if search costs become small. Consequently, if c goes to 0, the difference in
expected search costs discussed above vanishes. However, due to Lemma 2.3, the
difference SK(zK, N, M)− S1(zK, N, M) remains strictly positive.31 This is the desired
contradiction.

Our analysis reveals that the ranking of the two types of search technologies
for the single-searcher case does not generally extend to the committee search case.
Again, note that the single decision-maker case is equivalent to the case of a com-
mittee with size N = 1 operating under the unanimity voting rule. Thus, our results
from section 2.5 apply. For the committee search case, we have shown that if costs
are superadditive or linear and themagnitude of search costs c is small, single-option
sequential search is superior if the voting rule is unanimity, whereas multi-option se-
quential search yields a higher welfare under qualified majority voting. What drives
this difference? If the voting rule is unanimity, there is a race between the difference

28. We write potential rise of expected search costs because depending on the shape of the func-
tion h the expected search costs might also be lower under multi-option sequential search compared
to single-option sequential search. Of course, this only reinforces our reasoning.

29. However, as emphasized in Proposition 2.5, the threshold c̄K depends on the number of can-
didates K > 1 that are simultaneously evaluated in each time period.

30. For the case of single-option sequential search, this observation has been made previously in
Albrecht, Anderson, and Vroman (2010) as well as Compte and Jehiel (2010).

31. This step fails if the voting rule is unanimity because, in this case, if c goes to 0, zK converges
to x̄ and, thus, SK(zK, N, N)− S1(zK, N, N) would vanish as well.



2.7 Conclusion | 61

in the expected value conditional on stopping and the difference in the expected
search costs between K > 1 and K = 1: if c becomes small, the difference in expected
search costs between K > 1 and K = 1 vanishes, and, in addition, the difference in
the expected value conditional on hiring also goes to 0. In contrast, under qualified
majority voting, if c becomes small, as in the unanimity voting case, the difference
in the expected search costs goes to 0. However, in contrast to the unanimity voting
case, the difference in the expected value conditional on stopping does not vanish
because equilibrium cutoffs do not converge to x̄, but they stay bounded away from
it. This discrepancy explains why the ranking of the two types of search procedures
is different when the voting rule is qualified majority instead of unanimity. There-
fore, when comparing the single-searcher case with the committee search case, the
choice of the voting rule crucially matters.

2.7 Conclusion

In this paper, we contrast two committee search procedures: the well-known se-
quential search procedure, in which candidates are evaluated “one at a time”, and
multi-option sequential search, where, in each period, committees simultaneously
evaluate a set of candidates of fixed size. We study the equilibrium behavior un-
der these search procedures and show equilibrium existence as well as uniqueness
within some reasonably restricted class of equilibria. Based on the equilibrium anal-
ysis, we compare single-option and multi-option sequential search in terms of ac-
ceptance standards and welfare. We identify circumstances under which the “one at
a time”-policy commonly studied in the committee search literature is not optimal.
Generally, the superiority of one or the other search technology depends on two im-
portant ingredients of the search problem: the voting rule and the specification of
the search costs associated with the simultaneous evaluation of multiple candidates.

If the committee operates under the unanimity rule, single-option sequential
search outperforms any multi-option sequential search procedure if the search costs
increase at least linearly in the number of candidates evaluated in each period. In
contrast, if the search costs are strictly below the linear benchmark, even if they
are only slightly below it, multi-option sequential search improves welfare if the
magnitude of costs is sufficiently small. Therefore, in the case of unanimity voting,
the conclusion is sensitive to the shape of the cost function. Allowing for correlation
among the committee members’ values does not alter these findings. Similarly, our
results concerning acceptance standards and partly welfare also carry over to the
case of interdependent-value preferences. Thus, these findings appear to be robust.

This dependence on the form of the cost function partly vanishes when commit-
tees employ a qualified majority rule different from unanimity. In this case, evalu-
ating multiple candidates in each time period improves welfare compared to single-
option sequential search for any type of cost function as long as the magnitude of the
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search costs is sufficiently small. Consequently, the assessment of single-option and
multi-option sequential search considerably changes whenmoving from the unanim-
ity rule to qualified majority rules. This is the main qualitative insight of this paper.
Again, note that the search conducted by a single agent is a special case of commit-
tee search with unanimity voting. Consequently, our analysis reveals that the results
for the single decision-maker case (cf. section 2.2 for references) do not carry over
to the committee setting, but the presence of a committee alters the search design
problem and implies different rankings of search procedures.

Finally, let us discuss the implications of our results for committee search in
practice. First, consider the application to academic hiring, and suppose that a uni-
versity seeks to hire a full professor. It seems reasonable to assume that search costs
are rather negligible in view of the importance of the hiring decision. Therefore, in
this case, if the hiring committee employs a qualified majority rule distinct from
unanimity, our results suggest that the committee should not hire on a rolling basis,
but rather evaluate multiple candidates at a time. In reality, we indeed observe that
hiring committees often employ some kind of multi-option sequential search pro-
cedure, making their choice of the search procedure consistent with our results.32
Second, go back to the example of a family searching for a house. Here, it seems
natural that the voting rule is unanimity. Now, the family might search for a house
in their current area of residence or they might be planning to move to an ulterior
region. The former situation might correspond to the case of linear costs whereas the
latter circumstances give rise to subadditive costs because the family has to travel to
the region where they search for a house. Thus, our findings suggest that the family
should employ single-option sequential search in the first case and multi-option se-
quential search in the second case. Third, consider the application of project search
conducted by a committee in a firm. If the project choice is of high importance for the
firm, the situation appears to be similar to academic hiring, and, hence, as long as the
voting rule is not unanimity, our results suggest relying on multi-option sequential
search instead of single-option sequential search. In contrast, if the required search
effort is substantial relative to the importance of the value of the projects, search
should rather be conducted according to the “one at at time”-policy. The above dis-
cussion demonstrates that our findings have practically relevant implications which
appear to be intuitive.

32. See for example the descriptions of the hiring processes of the Columbia University in the
City of New York (2016), The University of Arizona (2019) or The University of California, Berkeley
(2019).
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Appendix 2.A Proofs

2.A.1 Characterization

To begin with, we claim that the best response of any member i ∈ N against an
arbitrary neutral stationary Markov strategy that is symmetric across all other mem-
bers amounts to a maximum-strategy with cutoff, that is, member i votes in favor of
candidate k ∈K if and only if

xk
i ≥ max

l6=k
xl

i and xk
i ≥ z

with z ∈ [0, x̄) being some cutoff.
Assume that all members except for member i ∈ N in some period t behave ac-

cording to a common Markovian strategy that is stationary and neutral. First of all,
let v be the continuation value member i obtains when search continues. Note that
v does not depend on past or current actions, or value realizations since the contin-
uation strategy adopted by all members in periods following t is Markovian. Also,
it is neither sensitive to the identity i of the member nor to calendar time because
continuation strategies are symmetric across members and stationary. Now, suppose
that member i observes the value realizations (x1

i , . . . , xK
i ) in period t. Member i is

pivotal for candidate k if and only if exactly M− 1 out of the other N − 1 members
choose action k in the given period, that is, approve candidate k.

Let pk(a, b)> 0 with a ∈ N, b ∈ N0 and b≤ a denote the probability that exactly
b out of a members choose action k in the given period. Similarly, Pk(a, b)> 0 with
a, b ∈ N and b≤ a describes the probability that at most b− 1 out of a members
select action k. Then, the probability that member i is pivotal in favor of candidate
k is given by pk(N − 1, M− 1).

The expected utility that member i obtains when approving candidate k can be
expressed as follows:

[(1 − Pk(N − 1, M)) + pk(N − 1, M − 1)]xk
i +

∑

l∈{1,...,K}:l6=k

[1 − Pl(N − 1, m)]xl
i

+[Pk(N − 1, M) − pk(N − 1, M − 1) −
∑

l∈{1,...,K}:l6=k

(1 − Pl(N − 1, M))]v.

The expected payoff of member i when voting in favor of continuing search, i.e.,
selecting action 0, amounts to

∑

l∈{1,...,K}

[1 − Pl(N − 1, M)]xl
i + [1 −

∑

l∈{1,...,K}

(1 − Pl(N − 1, M))]v.

Since the stationary Markov strategy that is commonly adopted by members distinct
from i is neutral, it holds that Pd(a, b)= Pe(a, b) as well as pd(a, b)= pe(a, b) for
all d, e ∈K . For simplicity, write P(a, b) and p(a, b) to denote these probabilities.
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Consequently, the expected utility of choosing action k can be reformulated in the
following way:

p(N − 1, M − 1)xk
i + [1 − P(N − 1, M)]

∑

l∈{1,...,K}

xl
i

+ [1 − K(1 − P(N − 1, M)) − p(N − 1, M − 1)]v.

Similarly, the expected payoff of action 0 simplifies to the expression

[1 − P(N − 1, M)]
∑

l∈{1,...,K}

xl
i + [1 − K(1 − P(N − 1, M))]v.

Thus, voting in favor of candidate k is optimal for member i if and only if, for all
m ∈K with m 6= k,

p(N − 1, M − 1)xk
i + [1 − P(N − 1, M)]

∑

l∈{1,...,K}

xl
i

+ [1 − K(1 − P(N − 1, M)) − p(N − 1, M − 1)]v

≥ p(N − 1, M − 1)xm
i + [1 − P(N − 1, M)]

∑

l∈{1,...,K}

xl
i

+ [1 − K(1 − P(N − 1, M)) − p(N − 1, M − 1)]v,

and, at the same time,

p(N − 1, M − 1)xk
i + [1 − P(N − 1, M)]

∑

l∈{1,...,K}

xl
i

+ [1 − K(1 − P(N − 1, M)) − p(N − 1, M − 1)]v

≥ [1 − P(N − 1, M)]
∑

l∈{1,...,K}

xl
i + [1 − K(1 − P(N − 1, M))]v.

The former condition is equivalent to requiring that xk
i ≥maxl 6=j x

l
i. The latter condi-

tion reduces to xk
i ≥ v. This means that there exists a cutoff value zi(t) ∈ [0, x) such

that this condition is met if and only if xj
i ≥ zi(t). Moreover, the cutoff value solves

zi(t)= v whenever it is interior. Hence, given an arbitrary neutral stationary Markov
strategy commonly adopted by all members except for member i in period t, it is
optimal for member i to employ a maximum-strategy with cutoff zi(t) in this period.
In the following, we make use of this claim, and we establish the sufficiency and the
necessity part separately.

Regarding necessity, it is immediate from the previous claim that any symmet-
ric stationary Markov equilibrium in neutral strategies must involve a maximum-
strategy with cutoff z ∈ [0, x̄) solving z= v whenever being interior, and that this
strategy is commonly adopted by all members since, otherwise, at least one mem-
ber has a profitable deviation. In particular, the cutoffs are neither sensitive to the
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members’ identities nor to calendar time because, by assumption, equilibria are sym-
metric and stationary. Moreover, the consistency of continuation values and equilib-
rium strategies implies that v must satisfy

v = −c · h(K) + [1 − K(1 − P(N, M))]v + K · [1 − P(N, M)]E[Xk
i |candidate k hired].

Rearranging this equation yields

v = −
c · h(K)

K · [1 − P(N, M)]
+ E[Xk

i |candidate k hired].

Therefore, equilibrium cutoffs solve the equation

z = −
c · h(K)

K · [1 − P(N, M)]
+ E[Xk

i |candidate k hired]

whenever they are interior. Finally, recall that P(N, M) denotes the probability that
at most M− 1 out of N members approve some candidate k. Thus, when using the
notation introduced in the main text, we have that P(N, M)= QK(z, N, M). This con-
cludes the proof of the necessity part.

Next, we turn to sufficiency. First of all, observe that strategy profiles in which
all members adopt the same maximum-strategy with cutoff z ∈ [0, x) are symmetric,
neutral, and stationary Markov. Furthermore, as argued in the necessity part of this
proof, these strategy profiles give rise to continuation values satisfying

v = −
c · h(K)

K · [1 − QK(z, N, M)]
+ E[Xk

i |candidate k hired].

Consequently, it remains to verify that these strategy profiles constitute equilibria.
To this end, consider any strategy with cutoff z ∈ [0, x) solving

z = v = −
c · h(K)

K · [1 − QK(z, N, M)]
+ E[Xk

i |candidate k hired]

whenever the cutoff z is interior. First, by construction, the consistency of continu-
ation values and strategies is fulfilled. Second, if all members apart from member
i ∈ N in period t adopt the discussed strategy, the claim above implies that it is
optimal for member i to follow the same strategy in period t, that is, the maximum-
strategy with cutoff zi(t) solving zi(t)= v= z whenever it is interior. Now, the one-
shot deviation principle implies that no member has a profitable deviation. Thus,
the maximum-strategy with cutoff z solving

z = v = −
c · h(K)

K · [1 − QK(z, N, M)]
+ E[Xk

i |candidate k hired]

whenever being interior constitutes an equilibrium. This completes the sufficiency
part.
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2.A.2 Existence and Uniqueness

Proof of Proposition 2.1.
Recall that SK(z, N, M)= E[Xk

i |candidate k accepted]. Rewriting equation (2.1)
which characterizes equilibrium cutoff values yields

c · h(K)
K · [1 − QK(z, N, M)]

= SK(z, N, M) − z.

Suppose that z= 0. In this case, the left-hand side amounts to

c · h(K)
K · [1 − QK(0, N, M)]

=
ch(K)

K

1 − QK(0, N, M)
,

and the right-hand side reduces to SK(0, N, M).
In contrast, if z→ x̄, the left-hand side goes to ∞ whereas the right-hand side
amounts to SK(x̄, N, M)− x̄ ≤ 0.

Depending on the magnitude of the search costs c, we perform a case distinction:

1) c h(K)
K

1−QK(0,N,M) < SK(0, N, M)

In this case, we observe that the left-hand side is strictly smaller than the
right-hand side of the equilibrium equation when evaluating both sides at z= 0. In
contrast, if z is sufficiently close to x, the left-hand side is strictly larger than the
right-hand side. Moreover, note that both sides of the equation involve functions
that are continuous in z. Hence, the intermediate value theorem yields the existence
of a cutoff z that solves equation (2.1).

2) c h(K)
K

1−QKk(0,N,M) = SK(0, N, M)

Here, the cutoff z= 0 solves the equilibrium equation which means that the
maximum-strategy with cutoff z= 0 constitutes an equilibrium.

3) c h(K)
K

1−QK(0,N,M) > SK(0, N, M)

In this case, suppose that all members apart from member i ∈ N in period
t adopt the maximum-strategy with cutoff z= 0. In this case, the arguments in
Appendix 2.A.1 still apply, and, thus, it is optimal for member i to follow some
maximum-strategy with cutoff. However, since

v = −
ch(K)

K

1 − QK(0, N, M)
+ SK(0, N, M) < 0

by assumption, the optimal cutoff for member i in the given period is z= 0. The rea-
son is that member i wants to stop search as quickly as possible, and the probability
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of voting in favor of some candidate k is maximized at z= 0. Alluding to the one-
deviation-principle, this shows that there exists a boundary equilibrium such that
the maximum-strategy with cutoff amounting to z= 0 forms an equilibrium.

Proof of Lemma 2.1.
We establish that SK

z (z, N, M)≤ 1 which implies that the function SK(z, N, M)− z is
non-increasing in z. Subsequently, again, we make use of the notation

µK
a (z) = E[Xk

i |X
k
i ≥ z and Xk

i ≥ max
l6=k

X l
i] and

µK
r (z) = E[Xk

i |X
k
i < z or Xk

i < max
l6=k

X l
i].

Then, as shown in Appendix 2.B.1, SK(z, N, M) can be expressed as

SK(z, N, M) = wK(z)µK
a (z) + (1 − wK(z))µK

r (z),

where wK(z) is given by

wK(z) =
N
∑

l=M

qK(z, N, l)
1 − QK(z, N, M)

l
N

.

Further, to simplify the notation, define

1 − RK(z) := Pr(Xk
i ≥ max

l6=k
X l

i , Xk
i ≥ z).

First, we obtain that dwK(z)
dz ≤ 0.33 Observe that wK(z) constitutes the average of

terms of form l
N with weights

wK
l (z) :=

qK(z, N, l)
1 − QK(z, N, M)

.

We claim that, for all l< l0, wK
l (z)

wK
l0

(z)
is non-decreasing in z. This means that increasing

z yields a stochastic decrease according to the likelihood-ratio ordering which, as
is well-known, implies a stochastic decrease in terms of first-order stochastic dom-
inance. Hence, exploiting the average structure of wK(z), when increasing z, the
average wK(z) decreases. In other words, we have dwK(z)

dz ≤ 0. In order to see that
wK

l (z)

wK
l0

(z)
is increasing in z, note that

wK
l (z)

wK
l0 (z)

=

�N
l

�

�N
l0
�RK(z)l0−l(1 − RK(z))l−l0 ,

33. The argument yielding dwK(z)
dz ≤ 0 is analogous to step 2 in the proof of Lemma 1 in Albrecht,

Anderson, and Vroman (2010).
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and, therefore, straightforward differentiation yields

d
wK

l (z)

wK
l0

(z)

dz
=

�N
l

�

�N
l0
�

dRK(z)
dz

(l0 − l)RK(z)l0−l−1(1 − RK(z))l−l0−1.

The derivation in Appendix 2.B.2 reveals that

1 − RK(z) =
1
K
[1 − F(z)K].

Thus, dRK(z)
dz = F(z)K−1f(z)≥ 0 and we obtain that

d
wK

l (z)

wK
l0

(z)

dz ≥ 0 which is the desired
claim. Therefore, we conclude that dwK(z)

dz ≤ 0.

Second, we show that µK
a (z)− z is non-increasing or, in other words, dµK

a (z)
dz ≤ 1. Con-

sider the density

gK(x) : = Pr(Xk
i = x|Xk ≥ max

l6=k
X l

i)

=
Pr(Xk

i = x, Xk
i ≥ maxl 6=k X l

i)

Pr(Xk
i ≥ maxl6=k X l

i)

=
Pr(Xk

i = x, x ≥ maxl6=k X l
i)

Pr(Xk
i ≥ maxl6=k X l

i)

=
Pr(Xk

i = x)Pr(x ≥ maxl 6=k X l
i)

Pr(Xk
i ≥ maxl 6=k X l

i)

= Kf(x)[F(x)]K−1.

We know from Prékopa (1973) that the log-concavity of the density f implies that
the cdf F is also log-concave. Moreover, since the product of log-concave functions
must be again log-concave, we obtain that the density gK is log-concave as well.
Therefore, as is well-known, the log-concavity of gK implies that the random variable
Xk

i |X
k
i ≥maxl6=k X l

i has the decreasing mean residual life property which means that

µK
a (z)− z is non-increasing.3⁴ Thus, we conclude that dµK

a (z)
dz ≤ 1.

Third, we establish that dµK
r (z)
dz ≤ 1. By the law of total expectation, we obtain

µ = E[Xk
i ] = µK

a (z)[1 − R(z)] + µK
r (z)R(z).

Again, in Appendix 2.B.2, we derive that

1 − RK(z) =
1
K
[1 − F(z)K].

34. Bagnoli and Bergstrom (2005) discuss the relationship between log-concave densities and
concepts from reliability theory.
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Thus,

µ = µK
a (z)[

1
K

(1 − F(z)K)] + µK
r (z)[1 −

1
K

(1 − F(z)K)].

Let GK be the cdf of the random variable Xk
i |X

k
i ≥maxl6=k X l

i . Hence, rearranging
yields

µK
r (z) =

µ − µK
a (z)[ 1

K (1 − F(z)K)]

1 − 1
K (1 − F(z)K)

=

∫ x̄
0 sf(s)ds − [ 1

K (1 − F(z)K)]
∫ x̄

z s gK(s)
1−GK(z)ds

1 − 1
K (1 − F(z)K)

=

∫ x̄
0 sf(s)ds −

∫ x̄
z sf(s)F(s)K−1ds

1 − 1
K (1 − F(z)K)

.

Taking the derivative of µK
r (z) with respect to z yields

dµK
r (z)

dz

=
(zf(z)F(z)K−1)) · (1 − 1

K (1 − F(z)K)) −
�

∫ x̄

0 sf(s)ds −
∫ x̄

z sf(s)F(s)K−1ds
�

· f(z)F(z)K−1

[1 − 1
K (1 − F(z)K)]2

=
f(z)F(z)K−1

�

z(1 − 1
K ) + z 1

K F(z)K − sF(s)
�

�

�

x̄

0
+
∫ x̄

0 F(s)ds + s 1
K F(s)K

�

�

�

x̄

z
−
∫ x̄

z
1
K F(s)Kds

�

[1 − 1
K (1 − F(z)K)]2

=
f(z)F(z)K−1

�

z(1 − 1
K ) + z 1

K F(z)K − x̄(1 − 1
K ) − z 1

K F(z)K +
∫ x̄

0 F(s)ds −
∫ x̄

z
1
K F(s)Kds

�

[1 − 1
K (1 − F(z)K)]2

=
f(z)F(z)K−1

�

(z − x̄)(1 − 1
K ) +

∫ x̄

0 F(s)ds −
∫ x̄

z
1
K F(s)Kds

�

[1 − 1
K (1 − F(z)K)]2

=
f(z)F(z)K−1

�

∫ x̄

0 F(s)ds −
∫ x̄

z [1 −
1
K (1 − F(s)K)]ds

�

[1 − 1
K (1 − F(z)K)]2

=
f(z)F(z)K−1

�

∫ z

0 F(s)ds +
∫ x̄

z F(s)ds −
∫ x̄

z [1 −
1
K (1 − F(s)K)]ds

�

[1 − 1
K (1 − F(z)K)]2

=
f(z)F(z)K−1[

∫ z

0 F(s)ds +
∫ x̄

z F(s) − [1 − 1
K (1 − F(s)K)]ds]

[1 − 1
K (1 − F(z)K)]2

.

Since we have dµK
r (z)
dz

�

�

�

z=0
= 0≤ 1, for the remainder of the proof of dµK

r (z)
dz ≤ 1, sup-

pose that z 6= 0.
Again, due to Prékopa (1973), log-concavity is preserved under integration.

Hence, since the density f is log-concave, the cdf F(z)=
∫ z

0 f(s)ds is also log-concave
and, consequently, the left-hand integral

∫ z
0 F(s)ds must be log-concave as well. By
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definition of log-concavity, this means that
∫ z

0 F(s)ds≤ F(z)2

f(z) .3⁵

Moreover, note that, for all s ∈ [0, x̄],

1
K

(1 − F(s)K) = 1 − RK(s) = Pr(Xk ≥ max
l6=k

X l and Xk ≥ s)

≤ Pr(Xk ≥ s)

= 1 − F(s).

Thus, we obtain, for all s ∈ [0, x̄], that

F(s) − [1 −
1
K

(1 − F(s)K)] ≤ 0,

and, in particular, it holds that
∫ x̄

z
F(s) − [1 −

1
K

(1 − F(s)K)]ds ≤ 0.

Also, observe that F(z)− [1− 1
K (1− F(z)K)]≤ 0 is equivalent to

1

1 − 1
K (1 − F(z)K)

≤
1

F(z)
.

Employing the derived inequalities yields

dµK
r (z)

dz
=

f(z)F(z)K−1
�

∫ z
0 F(s)ds +

∫ x̄
z F(s) − [1 − 1

K (1 − F(s)K)]ds
�

[1 − 1
K (1 − F(z)K)]2

≤
f(z)F(z)K−1

∫ z
0 F(s)ds

[1 − 1
K (1 − F(z)K)]2

≤
f(z)F(z)K−1 F(z)2

f(z)

[1 − 1
K (1 − F(z)K)]2

=
F(z)K+1

[1 − 1
K (1 − F(z)K)]2

≤
F(z)K+1

F(z)2

= F(z)K−1

≤ 1.

35. Again, for a discussion of these kinds of implications, we refer to Bagnoli and Bergstrom
(2005).
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Therefore, we conclude that dµK
r (z)
dz ≤ 1.

Further, note that µK
a (z)> µK

r (z) or, equivalently, µK
a (z)−µK

r (z)> 0. Taking together

the three ingredients dwK(z)
dz ≤ 0, dµK

a (z)
dz ≤ 1 and dµK

r (z)
dz ≤ 1, we have

SK
z (z, N, M) =

d
�

wK(z)µK
a (z) + (1 − wK(z))µK

r (z)
�

dz

=
d
�

wK(z)[µK
a (z) − µK

r (z)] + µK
r (z)

�

dz

=
dwK(z)

dz

�

µK
a (z) − µK

r (z)
�

+ wK(z)

�

dµK
a (z)

dz
−

dµK
r (z)

dz

�

+
dµK

r (z)

dz

=
dwK(z)

dz

�

µK
a (z) − µK

r (z)
�

+ wK(z)
dµK

a (z)

dz
+ [1 − wK(z)]

dµK
r (z)

dz

≤ wK(z)
dµK

a (z)

dz
+ [1 − wK(z)]

dµK
r (z)

dz
≤ wK(z) + [1 − wK(z)]

= 1.

In conclusion, as desired, we infer that SK
z (z, N, M)≤ 1 which, implies that the func-

tion SK(z, N, M)− z is non-increasing in z. Additionally, the argument reveals that
SK

z (z, N, M)< 1 whenever z 6= 0 and, thus, SK(z, N, M)− z is strictly decreasing in
z.

Proof of Proposition 2.2.
To begin with, by Proposition 2.1, there exists an equilibrium. Moreover, we know
from Lemma 2.1 that the function SK(z, N, M)− z is decreasing in z. Next, we show
that the function

c · h(K)
K · [1 − QK(z, N, M)]

is increasing in z.
Again, to simplify the notation, define

1 − RK(z) := Pr(Xk
i ≥ max

l6=k
X l

i , Xk
i ≥ z).

Taking the derivative of the discussed function with respect to z yields

d
dz

�

c · h(K)
K · [1 − QK(z, N, M)]

�

=
c · h(K) · QK

z (z, N, M)

K · [1 − QK(z, N, M)]2
.
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Further, using the relationship between the Binomial and the Beta distribution,3⁶
we have

QK(z, N, M) =
M−1
∑

l=0

�

N
l

�

(1 − RK(z))l · RK(z)N−l

=
N!

(N − M)! · (M − 1)!

∫ RK(z)

0

sN−M(1 − s)M−1ds.

Taking the derivative of QK(z, N, M) with respect to z yields

QK
z (z, N, M) =

N!
(N − M)! · (M − 1)!

dRK(z)
dz

RK(z)N−M(1 − RK(z))M−1.

Again, the derivation in Appendix 2.B.2 reveals that

1 − RK(z) =
1
K
[1 − F(z)K].

Thus, we have that dRK(z)
dz = F(z)K−1f(z)≥ 0. Hence, we obtain that QK

z (z, N, M)≥ 0,
yielding the desired inference that

d
dz

�

c · h(K)
K · [1 − QK(z, N, M)]

�

=
c · h(K) · QK

z (z, N, M)

K · [1 − QK(z, N, M)]2
≥ 0.

Additionally, the argument shows that this derivative is strictly larger than 0
whenever z 6= 0 and, hence, c·h(K)

K·[1−QK(z,N,M)] is strictly increasing in z.

Consider the equation characterizing equilibrium cutoff values

SK(z, N, M) − z =
c · h(K)

K · [1 − QK(z, N, M)]
=

ch(K)
K

1 − QK(z, N, M)
.

Depending on the magnitude of the search costs, we perform a case distinction:

1) c h(K)
K

1−QK(0,N,M) < SK(0, N, M)

In this case, all cutoffs associated with equilibrium strategies are interior,
satisfying z 6= 0. In particular, these cutoffs must solve the equilibrium equation.
However, due to Lemma 2.1, the left-hand side of the discussed equation is strictly
decreasing, and the right-hand side is strictly increasing. Therefore, both sides
of the equation have at most one intersection which establishes uniqueness of
equilibrium.

36. Cf. Casella and Berger (2002)
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2) c h(K)
K

1−QK(0,N,M) ≥ SK(0, N, M)

Here, the cutoff z= 0 is part of an equilibrium. Either z= 0 solves the equilib-
rium equation, or there is a boundary equilibrium involving the cutoff z= 0. To the
contrary, suppose that there is another equilibrium with some cutoff z0 > 0. This cut-
off must solve the equilibrium equation because it is interior. However, employing
the monotonicity properties of the functions involved in the equilibrium equation
that are partly derived in Lemma 2.1, we have

ch(K)
K

1 − QK(z0, N, M)
>

ch(K)
K

1 − QK(0, N, M)
≥ SK(0, N, M) > SK(z0, N, M) − z0.

Hence, the cutoff z0 > 0 cannot be part of an equilibrium which constitutes the de-
sired contradiction.

2.A.3 Unanimity Voting

Proof of Lemma 2.2.
Consider any K > 1. Suppose, by contradiction, that there exists some z ∈ [0, x) such
that

µK
a (z) − z

µ1
a(z) − z

=
E[Xk

i |X
k
i ≥ maxl6=k X l

i , Xk
i ≥ z] − z

E[Xk
i |X

k
i ≥ z] − z

≥
K[1 − F(z)]
1 − F(z)K

.

Rewriting the left-hand side of the inequality yields

E[Xk
i |X

k
i ≥ maxl6=k X l

i , Xk
i ≥ z] − z

E[Xk
i |X

k
i ≥ z] − z

=

∫ x
z f(s)F(s)k−1sds

1
K [1−F(z)K]

− z
∫ x

z f(s)sds
1−F(z) − z

=

∫ x
z f(s)F(s)k−1sds

1
K [1−F(z)K]

[1 − F(z)] − z[1 − F(z)]
∫ x

z f(s)sds − z[1 − F(z)]

=
K[1 − F(z)]
1 − F(z)K

∫ x
z f(s)F(s)K−1sds − z[1−F(z)K

K ]
∫ x

z f(s)sds − z[1 − F(z)]
,

where the first step uses the fact that

Pr(Xk
i ≥ max

l6=k
X l

i , Xk
i ≥ z) =

1
K
[1 − F(z)K],

which is derived in Appendix 2.B.2.
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Thus, we get
∫ x

z f(s)F(s)K−1sds − z[1−F(z)K

K ]
∫ x

z f(s)sds − z[1 − F(z)]
≥ 1.

Since
∫ x

z f(s)sds− z[1− F(z)]> 0, we have

∫ x

z
f(s)F(s)K−1sds − z[

1 − F(z)K

K
] ≥

∫ x

z
f(s)sds − z[1 − F(z)],

or, equivalently,
∫ x

z
f(s)[F(s)K−1 − 1]sds ≥ z

�

1 − F(z)K

K
− (1 − F(z))

�

.

Moreover, since z< x̄,
∫ x

z
f(s)[F(s)K−1 − 1]sds < z

∫ x

z
f(s)[F(s)K−1 − 1]ds

= z
�

1
K

(1 − F(z)K) − (1 − F(z))
�

.

Hence,

z

�

1 − F(z)K

K
− (1 − F(z))

�

>

∫ x

z
f(s)[F(s)K−1 − 1]sds

≥ z

�

1 − F(z)K

K
− (1 − F(z))

�

,

which is the desired contradiction.

Proof of Proposition 2.3.
We begin by deriving conditions for when boundary solutions of either of the search
procedures arise.
First of all, note that the proofs of Propositions 2.1 and 2.2 reveal that for K = 1,
the unique equilibrium is a corner solution if and only if c≥ µ

h(1) =: c1. Similarly, if
K > 1, a boundary equilibrium arises if and only if

c ≥
SK(0, N, N)[1 − QK(0, N, N)]

h(K)
K

=
µK

a (0)[ 1
K ]

N

h(K)
K

=: cK.

We claim that cK < c1.
Suppose not, i.e., assume that cK ≥ c1. By definition, this means that

µK
a (0)[ 1

K ]
N

h(K)
K

≥
µ

h(1)
.
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Applying Lemma 2.2 by setting z= 0 yields

µK
a (0)

µ
< K.

Combining the two inequalities, we obtain

h(1)µK
a (0)[ 1

K ]
N

h(K)
K

≥ µ >
µK

a (0)

K
.

Hence, since, by assumption, h(K)
K ≥ h(1),

[
1
K
]N−1 > 1.

If N = 1, we obtain that 1= [ 1
K ]

0 > 1 and, in the case that N ≥ 2, we must have
that K < 1. Thus, in both cases, we derived the desired contradiction.

We are now ready to perform a case distinction depending on the magnitude of
the scaling parameter c:

1) c≥ c1 > cK

In this case, single-option sequential search (K = 1) as well as multi-option se-
quential search (K > 1) give both rise to a boundary equilibrium with equilibrium
cutoffs z1 = 0 and zK = 0, respectively. The respective welfare levels of the two
search procedures amount to

v1 = −c · h(1) + µ, and

vk = µK
a (0) −

c · h(K)

K[ 1
K ]N

= µK
a (0) − KNc

h(K)
K

.

Towards a contradiction, suppose vK ≥ v1. Applying Lemma 2.2 and using h(K)
K ≥

h(1),

−c · h(1) + µ = v1 ≤ vK = µK
a (0) − KNc

h(K)
K

< Kµ − KNc
h(K)

K
≤ Kµ − KNc · h(1).

Thus, we conclude that

[KN − 1]c · h(1) < [K − 1]µ.

Since c≥ c1 = µ
h(1) , we have KN − 1< K − 1 or, equivalently, KN < K.

In the case of N = 1, there is a contradiction.
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If N ≥ 2, we must have that K < 1 which also constitutes a contradiction.

2) c1 > c≥ cK

Here, single-option sequential search (K = 1) admits an interior equilibrium de-
scribed by the cutoff value z1 > 0, whereas multi-option sequential search (K > 1)
has a boundary equilibrium with cutoff zK = 0. Therefore, the resulting welfare lev-
els of both search procedures are given by

v1 = z1, and

vK = µK
a (0) −

c · h(K)

K[ 1
K ]N

= µK
a (0) − KNc

h(K)
K

.

By definition of cK, and because of c≥ cK, we directly obtain that vK ≤ 0. In contrast,
it holds that v1 = z1 > 0, directly implying vK < v1.

3) c1 > cK > c

In this case, single-option sequential search (K = 1) as well as multi-option se-
quential search (K > 1) give both rise to an interior equilibrium. Denote the unique
equilibrium cutoff values in the game with K > 1 candidates per period by zK and
the unique equilibrium cutoff value in the search game with K = 1 candidate per pe-
riod by z1. Given private value preferences, cutoff values, or acceptance standards,
coincide with welfare, i.e., v1 = z1 and vK = zK.

Assume, by contradiction, that that v1 = z1 ≤ zK = vK. The equilibrium cutoff
values satisfy the following equations:

SK(zK, N, N) − zK =
c · h(K)

K · [1 − QK(zK, N, N)]

S1(z1, N, N) − z1 =
c · h(1)

1 − Q1(z1, N, N)
.

In the following, we derive bounds on the ratio

SK(zK, N, N) − zK

S1(z1, N, N) − z1
=
E[Xk

i |X
k
i ≥ maxl6=k X l

i , Xk
i ≥ zK] − zK

E[Xk
i |X

k
i ≥ z1] − z1

.

First, Lemma 2.1 yields that the log-concavity of f and the assumption z1 ≤ zK imply
the inequality

E[Xk
i |X

k
i ≥ maxl6=k X l

i , Xk
i ≥ zK] − zK

E[Xk
i |X

k
i ≥ z1] − z1

≤
E[Xk

i |X
k
i ≥ maxl6=k X l

i , Xk
i ≥ z1] − z1

E[Xk
i |X

k
i ≥ z1] − z1

.
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Lemma 2.2 then yields

E[Xk|Xk ≥ maxl6=k X l, Xk ≥ zK] − zK

E[Xk|Xk ≥ z1] − z1
<

K(1 − F(z1))
1 − F(z1)K

.

Second, by the equilibrium conditions,

E[Xk|Xk ≥ maxl6=k X l, Xk ≥ zK] − zK

E[Xk|Xk ≥ z1] − z1
=

c h(K)
K

1−QK(zK ,N,N)

c·h(1)
1−Q1(z1,N,N)

=

c h(K)
K

[Pr(Xk≥maxl6=k X l,Xk≥zK)]N

c·h(1)
[Pr(Xk≥z1)]N

=
h(K)

K
1

h(1)
[Pr(Xk ≥ z1)]N

[Pr(Xk ≥ maxl6=k X l, Xk ≥ zK)]N
.

Since h(K)
K ≥ h(1) and, by assumption, z1 ≤ zK, we obtain

h(K)
K

1
h(1)

[Pr(Xk ≥ z1)]N

[Pr(Xk ≥ maxl6=k X l, Xk ≥ zK)]N
≥

[Pr(Xk ≥ z1)]N

[Pr(Xk ≥ maxl6=k X l, Xk ≥ z1)]N

=
[1 − F(z1)]N

[ 1
K (1 − F(z1)K)]N

=
�

K(1 − F(z1))
1 − F(z1)K

�N

.

Therefore, we get

E[Xk|Xk ≥ maxl6=k X l, Xk ≥ zK] − zK

E[Xk|Xk ≥ z1] − z1
≥ [

K(1 − F(z1))
1 − F(z1)K

]N.

Putting both bounds on SK(zK ,N,N)−zK
S1(z1,N,N)−z1

together, we conclude

K(1 − F(z1))
1 − F(z1)K

> [
K(1 − F(z1))
1 − F(z1)K

]N. (2.A.1)

If N = 1, inequality (2.A.1) cannot be met. If N ≥ 2, observe that

K(1 − F(z1))
1 − F(z1)K

=
1 − F(z1)

1
K (1 − F(z1)K)

=
1 − R1(z1)
1 − RK(z1)

is the ratio of the acceptance probabilities for K = 1 candidate compared to K > 1
candidates for a fixed cutoff z1. Since the acceptance probability is smaller for K > 1
than for K = 1, this ratio must be strictly larger than 1. Hence, in the case of N ≥ 2,
inequality (2.A.1) yields also the desired contradiction.
Thus, it must be true that v1 = z1 > zK = vK.
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Proof of Proposition 2.4.
To begin with, denote the unique equilibrium cutoff value in the game with K > 1
candidates per period by zK, and the unique equilibrium cutoff value in the search
game with K = 1 candidate per period by z1. Suppose to the contrary that there
exists some K > 1 such that for all c̄K > 0 there exists c< c̄K such that v1 ≥ vK.
Without loss of generality, restrict attention to sufficiently small values of c such
that the equilibria under both procedures are interior. Then, cutoff values coincide
with welfare, i.e., v1 = z1 and vK = zK.

The respective equilibrium thresholds satisfy the following equations:

SK(zK, N, N) − zK =
c · h(K)

K · [1 − QK(zK, N, N)]

S1(z1, N, N) − z1 =
c · h(1)

1 − Q1(z1, N, N)
.

Lemma 2.1 implies that

SK(zK, N, N) − zK = E[Xk
i |X

k
i ≥ max

l6=k
X l, Xk

i ≥ zK] − zK

is non-increasing.
Therefore, the assumption z1 ≥ zK yields the inequality

E[Xk
i |X

k
i ≥ max

l6=k
X l

i , Xk
i ≥ z1] − z1 ≤ E[Xk

i |X
k
i ≥ max

l6=k
X l

i , Xk
i ≥ zK] − zK.

Moreover, since

E[Xk
i |X

k
i ≥ z1] ≤ E[Xk

i |X
k
i ≥ max

l6=k
X l

i , Xk
i ≥ z1],

we obtain that

E[Xk
i |X

k
i ≥ z1] − z1 ≤ E[Xk

i |X
k
i ≥ max

l 6=k
X l

i , Xk
i ≥ zK] − zK

⇔ S1(z1, N, N) − z1 ≤ SK(zK, N, N) − zK.

Exploiting the equilibrium equations, we get

c · h(1)
1 − Q1(z1, N, N)

≤
ch(K)

K

1 − QK(zK, N, N)

⇔
c · h(1)

[Pr(Xk
i ≥ z1)]N

≤
ch(K)

K

[Pr(Xk
i ≥ maxl6=k X l

i , Xk
i ≥ zK)]N

⇔ [Pr(Xk
i ≥ max

l6=k
X l

i , Xk
i ≥ zK)]N ≤

h(K)
K

1
h(1)

[Pr(Xk
i ≥ z1)]N.
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Furthermore, again because of z1 ≥ zK, we have [Pr(Xk
i ≥ z1)]≤ [Pr(Xk

i ≥ zK)].
Thus, we obtain

[Pr(Xk
i ≥ max

l6=k
X l

i , Xk
i ≥ zK)]N ≤

h(K)
K

1
h(1)

[Pr(Xk
i ≥ zK)]N.

Using the expressions for these probabilities derived in Appendix 2.B.2, we obtain

Pr(Xk
i ≥ max

l6=k
X l

i , Xk
i ≥ zK) =

1
K
[1 − F(zK)K]

Pr(Xk
i ≥ zK) = 1 − F(zK).

Finally, plugging these terms into the inequality yields

[
1
K
·

1 − F(zK)K

1 − F(zK)
]N ≤

h(K)
K

1
h(1)

.

Since, by assumption, h(K)
K < h(1), we have that the right-hand side of this inequality

is strictly smaller than 1. We claim that, no matter the fixed value of

0 <
h(K)

K
1

h(1)
< 1,

as long as the cost parameter c is sufficiently small, the left-hand side of the inequal-
ity is below 1, but arbitrarily close to it. The first part of this statement follows from
the proof of Proposition 2.3. To see the second part, note that as c→ 0, z→ x̄, im-
plying that F(zK)→ 1. Using L’Hôpital’s rule then yields that as c→ 0, the left-hand
side of the inequality tends to 1. Therefore, eventually, for small c, the left-hand
side of the inequality exceeds the right-hand side because h(K)

K
1

h(1) < 1. This is the
desired contradiction.

2.A.4 Qualified Majority Voting

Proof of Lemma 2.3.
To begin with, take any K > 1, and fix any value z ∈ (0, x̄). In order to improve
readability, we often drop the dependence of the involved functions on z. We tackle
the case of z= 0 at the end of this proof.
First, we derive an expression for S1(z, N, M) in terms of w1(z), µ1

a(z), F(z) and µ.
By the law of total expectation, we have

µ1
r =

µ − (1 − F)µ1
a

F
,

and, consequently, we obtain

µ1
a − µ

1
r = µ1

a −
µ − (1 − F)µ1

a

F
=
µ1

a − µ
F

.
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Therefore, S1(z, N, M) can be written as

S1(z, N, M) = w1µ1
a + [1 − w1]µ1

r

= µ1
r + w1[µ1

a − µ
1
r ]

=
µ − (1 − F)µ1

a

F
+ w1µ

1
a − µ

F

= µ

�

1 − w1

F

�

+ µ1
a

�

w1 − 1 + F
F

�

= µ +

�

w1 − 1 + F
F

�

[µ1
a − µ].

Further, the law of total expectation yields

S1(z, N, M) =

�

w1 − 1 + F
F

�

[µ1
a − µ] +

�

1
K

(1 − FK)
�

µK
a +

�

1 −
1
K

(1 − FK)
�

µK
r .

Second, we develop an expression for µK
a −µ

K
r as well as a lower bound on this term.

The law of total expectation implies

µK
r =

µ − 1
K (1 − FK)µK

a

1 − 1
K (1 − FK)

.

Thus, we obtain

µK
a − µ

K
r = µK

a −
µ − 1

K (1 − FK)µK
a

1 − 1
K (1 − FK)

=
µK

a − µ

1 − 1
K (1 − FK)

≥
µ1

a − µ

1 − 1
K (1 − FK)

,

where the inequality follows from µK
a ≥ µ

1
a.

Now, suppose to the contrary that S1(z, N, M)≥ SK(z, N, M). This means that

S1(z, N, M) =

�

w1 − 1 + F
F

�

[µ1
a − µ] +

�

1
K

(1 − FK)
�

µK
a +

�

1 −
1
K

(1 − FK)
�

µK
r

≥ µK
a wK + µK

r [1 − wK] = SK(z, N, M).

Rearranging this inequality yields
�

w1 − 1 + F
F

�

[µ1
a − µ] + µ

K
r

�

1 −
1
K

(1 − FK) − 1 + wK
�

≥ µK
a [w

K −
1
K

(1 − FK)]

⇔
�

w1 − 1 + F
F

�

[µ1
a − µ] ≥ [µ

K
a − µ

K
r ]
�

wK −
1
K

(1 − FK)
�

.
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Employing the lower bound on µK
a −µ

K
r , we have

�

w1 − 1 + F
F

�

[µ1
a − µ] ≥

�

µ1
a − µ

1 − 1
K (1 − FK)

�

�

wK −
1
K

(1 − FK)
�

,

because wK − 1
K (1− FK)> 0. To see the latter point, observe that

wK =
N
∑

l=M

qK(z, N, l)
1 − QK(z, N, M)

l
N

≥
M
N

N
∑

l=M

qK(z, N, l)
1 − QK(z, N, M)

=
M
N

>
1
2

.

Moreover, since K > 1, we have

1
K

(1 − FK) ≤
1
2

(1 − FK) ≤
1
2

.

Hence, it holds that wK − 1
K (1− FK)> 0.

Next, we note that [µ1
a −µ]> 0 because F has full support and, by assumption, z> 0.

Thus, we arrive at the following expression:

w1 − 1 + F
F

≥
wK − 1

K (1 − FK)

1 − 1
K (1 − FK)

.

Rewriting this inequality yields

1 − w1 ≤
F

1 − 1
K (1 − FK)

[1 − wK].

Now, Albrecht, Anderson, and Vroman (2010) provide an alternative expression for
the weights as a function of the probability that some member approves some can-
didate; they rely on the Gaussian hypergeometric function as well as the Euler in-
tegral.3⁷ We apply those expressions to the weights w1 and wK. In order to simplify
the notation, let A1 and AK be the probability of approving some candidate k if there
are one or K candidates respectively. In other words, define

A1(z) := 1 − F, as well as

AK(z) :=
1
K

(1 − FK).

37. See, for example, Abramowitz and Stegun (1965).
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Making use of this notation, the expressions in Albrecht, Anderson, and Vroman
(2010) read as follows:3⁸

w1 = A1 +
M
N

(1 − A1)

¨

∫ 1

0

�

1 +
A1

1 − A1
(1 − y

1
M )

�N−M

dy

«−1

, and

wK = AK +
M
N

(1 − AK)

¨

∫ 1

0

�

1 +
AK

1 − AK
(1 − y

1
M )

�N−M

dy

«−1

.

Therefore, we obtain

1 − w1 = 1 − A1 −
M
N

(1 − A1)

¨

∫ 1

0

�

1 +
A1

1 − A1
(1 − y

1
M )

�N−M

dy

«−1

= [1 − A1] ·



1 −
M
N

¨

∫ 1

0

�

1 +
A1

1 − A1
(1 − y

1
M )

�N−M

dy

«−1




= F ·



1 −
M
N

¨

∫ 1

0

�

1 +
A1

1 − A1
(1 − y

1
M )

�N−M

dy

«−1


 ,

as well as

1 − wK = 1 − AK −
M
N

(1 − AK)

¨

∫ 1

0

�

1 +
AK

1 − AK
(1 − y

1
M )

�N−M

dy

«−1

= [1 − AK] ·



1 −
M
N

¨

∫ 1

0

�

1 +
AK

1 − AK
(1 − y

1
M )

�N−M

dy

«−1




= [1 −
1
K

(1 − FK)] ·



1 −
M
N

¨

∫ 1

0

�

1 +
AK

1 − AK
(1 − y

1
M )

�N−M

dy

«−1


 .

Then, the inequality 1−w1 ≤ F
1− 1

K (1−FK)
[1−wK] becomes

F ·



1 −
M
N

¨

∫ 1

0

�

1 +
A1

1 − A1
(1 − y

1
M )

�N−M

dy

«−1




≤
F

1 − 1
K (1 − FK)

�

1 −
1
K

(1 − FK)
�



1 −
M
N

¨

∫ 1

0

�

1 +
AK

1 − AK
(1 − y

1
M )

�N−M

dy

«−1


 .

38. The derivation can be found on pages 1403 f. in Albrecht, Anderson, and Vroman (2010).



Appendix 2.A Proofs | 83

Simplifying and rearranging this inequality yields

∫ 1

0

�

1 +
A1

1 − A1
(1 − y

1
M )

�N−M

dy ≤
∫ 1

0

�

1 +
AK

1 − AK
(1 − y

1
M )

�N−M

dy.

In the following, we claim that, for all y ∈ [0, 1),

�

1 +
A1

1 − A1
(1 − y

1
M )

�N−M

>

�

1 +
AK

1 − AK
(1 − y

1
M )

�N−M

,

which implies that the former inequality cannot be true.
To begin with, note that A1 = A1(z)> AK(z)= AK since z 6= x. Now, take any y ∈
[0,1) and observe that

A1 > AK

⇔
A1

1 − A1
>

AK

1 − AK

⇔ 1 +
A1

1 − A1
(1 − y

1
M ) > 1 +

AK

1 − AK
(1 − y

1
M )

⇔
�

1 +
A1

1 − A1
(1 − y

1
M )

�N−M

>

�

1 +
AK

1 − AK
(1 − y

1
M )

�N−M

.

This establishes the claim yielding the desired contradiction. Therefore, overall, we
conclude that S1(z, N, M)< SK(z, N, M) for all z ∈ (0, x̄).

Finally, it remains to tackle the case of z= 0. Here, observe that S1(0, N, M)= µ.
Suppose, towards a contradiction, that µ= S1(0, N, M)≥ Sk(0, N, M). By the law of
total expectation, we obtain
�

1
K

(1 − [F(0)]K)
�

µK
a +

�

1 −
1
K

(1 − [F(0)]K)
�

µK
r = µ ≥ Sk(0, N, M)

= µK
a wK + µK

r [1 − wK].

Rearranging this inequality yields

0 ≥ [µK
a − µ

K
r ][w

K −
1
K
].

However, we have that

0 ≥ [µK
a − µ

K
r ][w

K −
1
K
] > 0,

because µK
a −µ

K
r > 0 as well as wK − 1

K (1− FK)> 0, as established in the first part
of this proof. Hence, we arrive at the desired contradiction.
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Proof of Proposition 2.5.
Suppose, by contradiction, that there exists K > 1 such that for all c̄K > 0 there exists
c< c̄K such that v1 ≥ vK. Without loss of generality, restrict attention to sufficiently
small values of c such that the equilibria under both procedures are interior. Let
z1 and zK denote the equilibrium cutoffs corresponding to single-option as well as
multi-option sequential search with K candidates, respectively. These cutoffs solve
the respective equilibrium equations

S1(z1, N, M) − z1 =
c · h(1)

1 − Q1(z1, N, M)

SK(zK, N, M) − zK =
c · h(k)

K[1 − QK(zK, N, M)]
=

ch(K)
K

1 − QK(zK, N, M)
,

and they coincide with welfare: z1 = v1 as well as zK = vK. Thus, by assumption,
z1 ≥ zK.
Lemma 2.1 implies that d[S1(z,N,M)−z]

dz ≤ 0 for all z ∈ [0, x̄). Making use of this prop-
erty and employing the equilibrium equations as well as z1 ≥ zK, we obtain

c · h(1)
1 − Q1(z1, N, M)

= S1(z1, N, M) − z1

≤ S1(zK, N, M) − zK

= S1(zK, N, M) +
ch(K)

K

1 − QK(zK, N, M)
− SK(zK, N, M).

Rearranging this inequality yields

SK(zK, N, M) − S1(zK, N, M) ≤
ch(K)

K

1 − QK(zK, N, M)
−

c · h(1)
1 − Q1(z1, N, M)

.

Now, we claim that there exists B< x̄ such that for all c> 0, it holds zK < B and
z1 < B.

First, towards a contradiction, suppose that for all B1 < x̄ there exist c> 0 such
that z1 ≥ B1. By the equilibrium equation and the monotonicity properties of the
involved functions established in the proofs of Lemma 2.1 and Proposition 2.2, we
have that z1 is weakly decreasing in c. Thus, the previous assumption requires that
z1→ x̄ as c→ 0. Consider the following rearranged version of the equilibrium equa-
tion:

z1 = S1(z1, N, M) −
c · h(1)

1 − Q1(z1, N, M)
.
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If we take the limit on both sides of the equation as c→ 0, we obtain

x̄ = limc→0[z1]

= limc→0

�

S1(z1, N, M) −
c · h(1)

1 − Q1(z1, N, M)

�

≤ limc→0[S
1(z1, N, M)]

= S1(x̄, N, M)

< x̄,

which constitutes the desired contradiction. Recalling the average representation
of S1(x̄, N, M), the final inequality holds since w1(x̄)< 1 and µ1

r (x̄)= µ < x̄ due to
M < N. Therefore, there exists B1 < x̄ such that for all c> 0, it holds that z1 < B1.

Second, applying the same argument in an analogous way to multi-option se-
quential search, we infer that there exists BK < x̄ such that for all c> 0, zK < BK.
Consequently, setting B :=max{B1, BK}, we conclude that zK < B and z1 < B for all
c> 0.
Making use of this feature, we obtain the following upper bound on the difference
of expected search costs:

ch(K)
K

1 − QK(zK, N, M)
−

c · h(1)
1 − Q1(z1, N, M)

<
ch(K)

K

1 − QK(B, N, M)
−

c · h(1)
1 − Q1(0, N, M)

=
ch(K)

K

1 − QK(B, N, M)
− c · h(1)

= c

� h(K)
K

1 − QK(B, N, M)
− h(1)

�

.

Note that this upper bound does not depend on z1 or zK.
Let us perform a case distinction:

1)
h(K)

K
[1−QK(B,N,M)] − h(1)≤ 0

In this case, we obtain

SK(zK, N, M) − S1(zK, N, M) ≤ 0,

which contradicts Lemma 2.3. Let c̄K be the cost value such that for all c< c̄K, the
unique equilibrium under both search procedures is interior. That is, set

c̄K := min

¨

SK(0, N, M)[1 − QK(0, N, M)]
h(K)

K

,
µ

h(1)

«

> 0,
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recalling the proofs of Propositions 2.1 and 2.2. Then, the established contradiction
implies that, for all these levels of c, we have v1 < vK.

2)
h(K)

K
[1−QK(B,N,M)] − h(1)> 0

To begin with, define

r := min
s∈[0,B]

[SK(s, N, M) − S1(s, N, M)].

Observe that r is well-defined because the involved minimum exists due to the ex-
treme value theorem. Also, it does not depend on z1, zK or c. Lemma 2.3 implies
that r> 0 and, moreover, we have

SK(zK, N, M) − S1(zK, N, M) ≥ r.

Taking the upper bound on the cost difference together with this lower bound on
the difference in terms of expected quality, we arrive at the following inequality:

r < c

� h(K)
K

1 − QK(B, N, M)
− h(1)

�

.

Now, set

c̄K :=
r

h(K)
K

[1−QK(B,N,M)] − h(1)
.

Note that c̄K > 0 since
h(K)

K
[1−QK(B,N,M)] − h(1)> 0 by assumption and, again, r> 0 be-

cause of Lemma 2.3. Then, for all c< c̄K, we have that

r < c

� h(K)
K

[1 − QK(B, N, M)]
− h(1)

�

<
r

h(K)
K

[1−QK(B,N,M)] − h(1)
·

� h(K)
K

[1 − QK(B, N, M)]
− h(1)

�

= r.

This constitutes the desired contradiction.
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Appendix 2.B Derivations

2.B.1 Expected Value Conditional on Stopping

First, we derive the expression for the value quality of some candidate k ∈K for
some member i ∈ N conditional on stopping:

SK(z, N, M)

= E[Xk
i |candidate k hired]

=
N
∑

l=M

Pr(#k supporters = l|k hired)E[Xk
i |k hired and #k supporters = l]

=
N
∑

l=M

qK(z, N, l)
1 − QK(z, N, M)

E[Xk
i |#k supporters = l]

=
N
∑

l=M

qK(z, N, l)
1 − QK(z, N, M)
�

Pr(voter i supports k|#k supporters = l)E[Xk
i |voter i supports k]

+Pr(voter i rejects k|#k supporters = l)E[Xk
i |voter i rejects k]

	

=
N
∑

l=M

qK(z, N, l)
1 − QK(z, N, M)

�

l
N
µK

a (z) +
N − l

N
µK

r (z)
�

= wK(z)µK
a (z) + [1 − wK(z)]µK

r (z),

where wK(z) is defined as

wK(z) :=
N
∑

l=M

qK(z, N, l)
1 − QK(z, N, M)

l
N

.

2.B.2 Probability of Acceptance

Second, we derive the expression for the probability that some member i ∈ N votes
in favor of some candidate k ∈K as a function of K, F, and the employed cutoff z:
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Pr(Xk
i ≥ max

l6=k
X l

i , Xk
i ≥ z)

=

∫ x

0

Pr(Xk
i ≥ s, Xk

i ≥ z)Pr(max
l6=k

X l
i = s)ds

=

∫ x

0

Pr(Xk
i ≥ max{s, z}) Pr(max

l6=k
X l

i = s)ds

=

∫ z

0

Pr(Xk
i ≥ z) Pr(max

l6=k
X l

i = s)ds +

∫ x

z
Pr(Xk

i ≥ s) Pr(max
l 6=k

X l
i = s)ds

= [1 − F(z)]

∫ z

0

dF(s)K−1

ds
ds +

∫ x

z
[1 − F(s)](K − 1)F(s)K−2f(s)ds

= [1 − F(z)]F(z)K−1 +

∫ x

z
(K − 1)F(s)K−2f(s)ds −

∫ x

z
(K − 1)F(s)K−1f(s)ds

= [1 − F(z)]F(z)K−1 +

∫ x

z

dF(s)K−1

ds
ds −

∫ x

z

d[K−1
K F(s)K]

ds
ds

= [1 − F(z)]F(z)K−1 + [1 − F(z)K−1] −
K − 1

K
+

K − 1
K

F(z)K

= F(z)K−1 − F(z)K + 1 − F(z)K−1 − 1 +
1
K
+ F(z)K −

1
K

F(z)K

=
1
K
[1 − F(z)K].
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Chapter 3

Costly Voting: Duverger’s Law Revisited

3.1 Introduction

Plurality voting is a wide-spread electoral system; it is prevalent in the United King-
dom, the United States of America, Canada, and India. A common observation is
that countries operating under plurality voting usually have two major parties. This
was formalized by Duverger (1954), who states that “the simple majority, single
ballot system favors the two-party system”, and is known as Duverger’s law. The
law is driven by two factors: (i) over time, small parties tend to dissipate because
they are unlikely to win an election, and (ii) voters tend to abandon small parties
because they do not want to waste their votes. Instead, small party supporters vote
strategically for one of the two leading candidates. This paper focuses on the second
aspect—the voting behavior of citizens.

In the analysis of plurality voting with more than two alternatives, the literature
has so far mostly focused on costless or compulsory voting. However, participation
is generally voluntary and, thus, endogenous. It is therefore imperative to examine
plurality voting in a model in which voting is costly and participation is voluntary.
To the best of my knowledge, only two papers have approached this task so far.
Arzumanyan and Polborn (2017) study plurality voting with homogenous voting
costs and homogenous cardinal utilities. They find that at least two candidates re-
ceive votes in equilibrium, and that all candidates who receive votes are equally
likely to win.1 Voters who do turn out vote sincerely for their preferred candidate.
By contrast, Xefteris (2019) assumes that costs are smoothly distributed and proves
the existence of Duvergerian equilibria, i.e., equilibria, in which exactly two candi-

1. Note that already in costly voting models of two-candidate elections, toss-up elections, i.e.,
elections in which all candidates are equally likely to win, are a consequence of homogenous voting
costs. For a discussion, see for example Herrera, Morelli, and Palfrey (2014) or chapter 1 of this
dissertation.
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dates receive votes. Strategic voting by some voters may emerge in equilibrium.2
The question whether and under which conditions non-Duvergerian equilibria exist
when costs are smoothly distributed remains open—a partial answer to this ques-
tion is the main contribution of this paper.

I study plurality voting in a large, three-candidate election. Voting is costly and
voluntary, and costs are smoothly distributed, capturing that voting costs might be
different across voters. I show that Duverger’s law applies whenever one candidate
is expected to be trailing, i.e., has the lowest expected vote share. Further, I give nec-
essary and sufficient conditions on the distribution of preferences for the existence
of non-Duvergerian equilibria in which all three candidates receive the same vote
share for any finite electorate. These conditions are knife-edge. Finally, I discuss the
case where exactly two candidates have the lowest expected vote share.

In more detail, three candidates, A, B, and C, vie for election. All six ordinal pref-
erence rankings are feasible and occur with positive probability. Voters have private
values, and cardinal utilities are homogenous, meaning that the first-, second-, and
third-ranked candidate yield cardinal utilities of 1, v ∈ (0,1), and 0, respectively. Vot-
ing is voluntary and costly, and costs are drawn from a continuous distribution that
has a bounded support [0, c̄], with c̄> 0, and a strictly positive density everywhere
on the support. A voter’s preference type and his or her voting costs are private in-
formation. The election is decided by plurality voting, and ties are broken randomly.

I show first that there does not exist an equilibrium in which only one candidate
receives any votes. The existence of Duvergerian equilibria in large elections, i.e.,
as the size of the electorate goes to infinity, is an immediate consequence of the
analysis in Xefteris (2019). Next, I show that these Duvergerian equilibria are the
only possible equilibria in a large election whenever one candidate is expected to be
trailing. This has also been established in the context of costless voting by Palfrey
(1989). Intuitively, in a large election, the probability that a single vote for the trail-
ing candidate affects the outcome of the election, i.e., is pivotal, is infinitesimally
small compared to the probability that a vote for one of the leading candidates is
pivotal. Therefore, avoiding wasting their vote, supporters of the trailing candidate
abandon this candidate to vote strategically for whichever leading candidate they
prefer. Thus, in the limit, the only potential non-Duvergerian equilibria are (i) equi-
libria in which all candidates receive equal vote shares, and (ii) equilibria in which
two candidates are tied behind the front-runner. I show that the first type exists
for any given population size if and only if either candidate is the first choice of
exactly one-third of the electorate. This necessary and sufficient condition is clearly
knife-edge: the equilibrium ceases to exist if the type shares deviate only slightly
from one-third, contrasting the results of Arzumanyan and Polborn (2017). The re-
sult implies that an equilibrium sequence that converges to equal vote shares in the

2. To be precise, voting strategically means not voting for the most preferred candidate in this
context.
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limit also has to satisfy the necessary condition if vote shares are equal at least once
along the equilibrium sequence for some finite population size. Finally, consider
the second non-Duvergerian equilibrium type. All voters who rank the front-runner
first have an incentive to vote sincerely. If the two trailing candidates are already
tied for a sufficiently large electorate, in the limit, the election is most likely to be de-
cided between one of the trailing candidates and the front-runner, and both events
are equally likely. This yields incentives for voters who rank the front-runner last
to vote sincerely. Depending on the incentives of voters who rank the front-runner
second, I derive necessary conditions on the distribution of voter preferences for
such equilibria to exist. These conditions are again knife-edge. I conclude that Du-
verger’s law applies whenever one candidate is expected to be trailing and that the
non-Duvergerian equilibria specified above are knife-edge. Finally, I discuss what
types of non-Duvergerian equilibria still might arise and how my findings relate to
the results of Arzumanyan and Polborn (2017) and the results in the literature on
costless voting.

The remainder of this paper is organized as follows: Section 3.2 reviews the
related literature, and section 3.3 introduces the model. Section 3.4 defines the
equilibrium strategies and treats one-candidate and two-candidate equilibria, that
is, equilibria in which exactly one or exactly two candidates receive positive vote
shares, respectively. Section 3.5 considers three-candidate equilibria, and section
3.6 concludes. All omitted proofs appear in the appendix.

3.2 Related Literature

This paper contributes to two bodies of work. One is the literature on costly voting.
Palfrey and Rosenthal (1983), Ledyard (1984) and Palfrey and Rosenthal (1985)
introduced the canonical model of a two-candidate election. The theory on endoge-
nous participation has been continually growing. To name but a few strands of this
literature, Campbell (1999), Börgers (2004), Krasa and Polborn (2009), Krishna
and Morgan (2012), Krishna and Morgan (2015), Kartal (2015), and Grüner and
Tröger (2019) are concerned with the welfare properties of different election sys-
tems, Herrera, Morelli, and Palfrey (2014) compare turnout under different elec-
tion systems, and Evren (2012) and Feddersen and Sandroni (2006) study ethical
voting. Goeree and Großer (2007), Taylor and Yildirim (2010), Myatt (2015), and
chapter 1 of this dissertation introduce aggregate uncertainty about the distribution
of preferences and the effect of information.

To the best of my knowledge, there are only three other papers that study costly
voting in plurality-rule elections with more than two candidates: Feddersen (1992),
Arzumanyan and Polborn (2017), and Xefteris (2019). Feddersen (1992) assumes
that the policy space is a ball in the Euclidean n-space. Voters have quadratic utility
over policy positions and incur a homogenous and positive cost conditional on vot-
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ing. He finds that, generally, an equilibrium exists and exactly two positions receive
votes, and thus confirms Duverger’s law. Arzumanyan and Polborn (2017) assume
that multiple candidates vie for election under plurality rule. Voters face homoge-
nous and positive voting costs, and homogenous utility (1, v and 0 for the first-,
second-, and third-ranked candidate, respectively). They find that in equilibrium,
for a sufficiently large electorate, a set of relevant candidates arises. All relevant
candidates receive votes and are equally likely to win. Voters who do turn out vote
sincerely because voters who rank one of the non-relevant candidates first have
lower stakes in the election and prefer to abstain. For the case of a three-candidate
election, Arzumanyan and Polborn (2017) identify an open set of voting costs c for
which the set of relevant candidates contains exactly two candidates (0< c≤ 1

4)
or all three candidates (0< c≤ 2

3(1− v
2)). Thus, Duverger’s law does not hold. Xef-

teris (2019) studies plurality-rule elections with multiple candidates and assumes a
smooth distribution of costs. He proves that Duvergerian equilibria, i.e., equilibria
in which exactly two candidates receive votes, generally exist in the limit. Further,
he shows that, by contrast to Arzumanyan and Polborn (2017), strategic voting
emerges in equilibrium. This is because cost cutoffs arise endogenously, so even vot-
ers with lower stakes turn out to vote if their cost realization is sufficiently low. In a
related setting with three candidates, I derive that there cannot exist an equilibrium
where exactly one candidate is expected to be trailing in the limit. Further, I show
that the three-candidate equilibria derived in Arzumanyan and Polborn (2017) are
knife-edge when the distribution of voting costs is smooth.

The second body of related literature is concerned with multicandidate elections
when voting is costless or compulsory. One strand of this literature has studied Du-
verger’s law and its applicability.3 Palfrey (1989) considers a large three-candidate
election and shows that Duvergerian equilibria arise if one candidate is expected
to be trailing. He argues verbally that all potential three-candidate equilibria must
be knife-edge. However, this claim is rebutted by Myerson and Weber (1993), who
contrast the equilibria arising in multicandidate elections under plurality rule, ap-
proval voting, and the Borda count. They provide an example of a non-Duvergerian,
quasi-Bayesian equilibrium in which two candidates are expected to tie behind the
front-runner and show that this equilibrium persists under small parameter changes.
Fey (1997) builds on Palfrey (1989) and shows that non-Duvergerian equilibria as
described by Myerson and Weber (1993) indeed exist in a Bayesian equilibrium
model. However, Fey (1997) shows that these equilibria are not stable, employing
the stability notion introduced in Palfrey and Rosenthal (1991). He argues that while
the equilibrium itself is not knife-edge, it requires a “type of knife-edge coordination
of beliefs” that makes it unstable.

3. See Fey (1997) for a review of the earlier literature approaching Duverger’s law.
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Plurality-rule elections with multiple candidates have since been studied under
many different aspects. Among others, robustness of equilibria has, for example,
also been studied by Messner and Polborn (2007) and Messner and Polborn (2011),
aggregate uncertainty about the distribution of preferences has been examined by
Clough (2007), Myatt (2007), and Fisher and Myatt (2017), ethical voting has been
studied by Bouton and Ogden (2017), and information aggregation has been stud-
ied by Hummel (2011). Forsythe, Myerson, Rietz, and Weber (1993) and Hermann
(2012) take an empirical approach.

Methodologically, this paper builds on the analysis of large Poisson games as
introduced byMyerson (2000). Further, it is related to the analysis of approval voting
in multicandidate elections, in particular to Myerson (2002), Núñez (2010), Bouton
and Castanheira (2012), and Durand, Macé, and Núñez (2019).

3.3 The Model

There is a set of three candidates, L := {A, B, C}, who vie for election. A citizen’s
ranking over the three candidates is given by his or her type t ∈ T, where T :=
{AB, AC, BA, BC, CA, CB}. The prior distribution over types is given by the vector
r= (r(t))t∈T, where r(t)> 0 for all types t ∈ T, and

∑

t∈T r(t)= 1. Citizens have in-
dependent private values. Type t= ij derives utility 1 if candidate i is elected, utility
v ∈ (0, 1) if candidate j is elected, and 0 else. The number of citizens follows a Pois-
son distribution with mean n, meaning that the probability that there are n citizens
in the electorate is e−n nk

k! .
Voting is voluntary and costly. The set of available actions is denoted by Z =

{A, B, C,;}; the actions z ∈ Z being voting for candidate A, B, C, or abstaining, respec-
tively. If a citizen decides to turn out and casts a vote for either of the candidates,
the citizen incurs the voting cost c. The voting cost is identically and independently
distributed according to the cumulative distribution function F, which has a strictly
positive density f on [0, c̄], where c̄≥ 1.⁴ Further, F is assumed to be differentiable.
While the distribution of preferences is commonly known, an individual citizen’s
preference type and voting cost realization are private information.

The voting rule is plurality, and ties are broken randomly. The equilibrium con-
cept is symmetric Bayesian equilibrium.

3.4 Equilibrium

3.4.1 Strategies

The above specifies a Poisson game as introduced by Myerson (1998b). A pure strat-
egy σ : T × [0, c̄]→ Z assigns for each combination of preference type and voting

4. This is a sufficient condition for turnout to be incomplete.
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costs in T × [0, c̄] an action z ∈ Z. I consider strategies that are symmetric across
citizens.⁵

Note that for any preference type, voting for the least preferred candidate is
strictly dominated by abstention. Hence, in equilibrium, a citizen will either vote for
his or her first-best or second-best candidate, or abstain altogether. For most ballots,
a single vote does not affect the outcome of the election. In these circumstances,
an individual citizen would rather abstain and save the cost of voting, given that
his or her own vote does not change the outcome of the election. Therefore, when
deciding whether to turn out to vote or to abstain, any voter conditions on the event
of being pivotal, i.e., affecting the election outcome with one single vote. A vote is
pivotal if it either breaks a tie between two or three candidates, or creates such a
tie.

Denote by X the set of vote profiles x = (x(l))l∈{A,B,C}. The event that candidates
i and j are tied is denoted by

tieij := {x ∈ X | x(i) = x(j)}.

Similarly, the event that all three candidates are tied is denoted by

tieABC := {x ∈ X | x(A) = x(B) = x(C)}.

The pivotal event that candidates i and j are ahead of k and tied for first place is
defined by

pivij := {x ∈ X | x(i) = x(j) > x(k)}.

Finally, for any set of events E ∈ X, the set E−l contains all events such that one
additional vote for l yields an event in E. For example, piv−A

AB is the set of ballots such
that casting one more vote for A yields a tie between A and B while C is trailing.
Equipped with this notation, the expected benefit of voting for the first-best candi-
date i for type t= ij can be written as

U(i, ij) =
2 − v

3
Pr(tieABC) +

2 − v
6

Pr(tie−i
ABC) +

1 − v
2

Pr(pivij) +
1 − v

2
Pr(piv−i

ij )

(3.1)

+
1
2

Pr(pivik) +
1
2

Pr(piv−i
ik ).

To derive the expected benefit of voting for i in the event that a vote for i breaks a
tie between all three candidates, tieABC, note that i will win the election because of
the additional vote, yielding a utility of 1. However, without this vote, i would have
won with probability 1

3 , and j would have won with probability 1
3 , which would have

yielded utilities of 1 and v, respectively. Thus, the expected benefit is 1− 1
3(1+ v)=

5. The symmetry assumption is without loss of generality given the Poisson setting. For details,
see Myerson (1998a).
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2−v
3 . The other terms are derived accordingly.

Similarly, the expected benefit of voting for the second-best candidate j is given by

U(j, ij) =
2v − 1

3
Pr(tieABC) +

2v − 1
6

Pr(tie−j
ABC) +

v − 1
2

Pr(pivij) +
v − 1

2
Pr(piv−j

ij )

(3.2)

+
v
2

Pr(pivjk) +
v
2

Pr(piv−j
jk ).

Viewed in isolation, turning out and voting for either candidate i or j is beneficial
if and only if the expected benefit of voting exceeds the citizen’s realized cost of
voting c. Since the expected benefit of voting is independent of c, for every type ij,
there is a pair of cost cutoffs (c(i, ij), c(j, ij)) such that

c(i, ij) = U(i, ij), and (3.3)

c(j, ij) = U(j, ij). (3.4)

Since only voting for the least preferred candidate is dominated, conditional on
voting, the citizen of type t= ij has to trade off voting for i against voting for j. Here,
two effects come into play: First, whenever j is behind i, or the election is a close
race between i and j, i.e., candidate k is expected to be trailing, voting for j harms
type t= ij because it reduces the winning probability of the preferred candidate i.
However, whenever i is trailing behind both j and k, i.e., the election is a close race
between j and k, a vote for i would be wasted, but a vote for j might contribute
to defeating the worst candidate. The resolution of this trade-off depends on which
event has the higher probability. Overall, conditional on voting, a citizen will vote for
the candidate who yields the largest expected benefit. Consequently, the equilibrium
strategy of a voter of type ij can be summarized as follows:

σ(ij, c) =











i if c ≤ c(i, ij) and c(i, ij) ≥ c(j, ij), ⁶

j if c ≤ c(j, ij) and c(j, ij) > c(i, ij),

; else.

An equilibrium is a vector of cutoff costs (c(i, ij), c(j, ij))t=ij∈T such that it is opti-
mal for a citizen of type t= ij and costs c≤max{c(i, ij), c(j, ij)} to participate in the
election and vote for candidate σ(ij, c) if all other citizens in the electorate follow
the same strategy. Say that a voter of type ij votes sincerely if c(i, ij)> c(j, ij), that
is, if he or she votes for his or her first-best candidate. Say that a three-candidate
equilibrium is sincere if all voters vote sincerely.

6. Thus, the tie-breaking assumption is that voters vote for their preferred candidate when in-
different. I do not consider mixed equilibria because I conjecture that indifference does not occur in
large elections.
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It is useful to define participation rates p(l, t) as the probability that type t ∈ T
turns out to vote for candidate l ∈ L= {A, B, C}. The equilibrium strategies yield

p(i, ij) =

(

F(c(i, ij)) if c(i, ij) ≥ c(j, ij),

0 else,

p(j, ij) =

(

F(c(j, ij)) if c(j, ij) > c(i, ij),

0 else,

p(k, ij) = 0.

Define the voting probability of type t, p(t), as the probability that type t turns out
to vote for any candidate instead of abstaining:

p(t) = max
l∈L
{p(l, t)}.

Note that the pivot probabilities, and, thus, cost cutoffs and participation rates, gen-
erally depend on the expected number of citizens, n. This dependence is sometimes
omitted to save notation and is otherwise denoted by a subscript.⁷

Given the citizens’ strategies and given the expected number of citizens n, the
expected share of citizens voting for candidate l is τn(l)=

∑

t∈T r(t)pn(l, t), and the
expected number of votes candidate l receives is given by nτn(l). Since the size of
the electorate is Poisson distributed with mean n, the number of votes for candidate
l is also Poisson-distributed with mean nτn(l), and, further, the number of votes for
candidate l is independent of the number of votes for candidate l0 6= l. Since in a
Poisson game the probability of any event depends only on the expected number of
votes cast for each of the candidates, the probabilities of the pivotal events are:

Pr(tieABC) = e−nτn(A)−nτn(B)−nτn(C)
∞
∑

k=0

(nτn(A))k

k!
(nτn(B))k

k!
(nτn(C))k

k!
, (3.5)

Pr(tie−A
ABC) = e−nτn(A)−nτn(B)−nτn(C)

∞
∑

k=1

(nτn(A))k−1

(k − 1)!
(nτn(B))k

k!
(nτn(C))k

k!
, (3.6)

Pr(pivAB) = e−nτn(A)−nτn(B)−nτn(C)
∞
∑

k=1

(nτn(A))k

k!
(nτn(B))k

k!

k−1
∑

j=0

(nτn(C))j

j!
, (3.7)

Pr(piv−A
AB ) = e−nτn(A)−nτn(B)−nτn(C)

∞
∑

k=1

(nτn(A))k−1

(k − 1)!
(nτn(B))k

k!

k−1
∑

j=0

(nτn(C))j

j!
,

(3.8)

where the probabilities of the other pivotal events are computed analogously.

7. Of course, the strategy of a citizen also depends on the strategies of the other citizens, which
is, too, omitted.
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3.4.2 Equilibrium Types

There are three conceivable types of equilibria: (i) one-candidate equilibria, in which
only one candidate receives votes, (ii) two-candidate equilibria, or Duvergerian equi-
libria, in which two candidates receive votes, and (iii) three-candidate equilibria, in
which all three candidates receive votes.

Proposition 3.1 states that one-candidate equilibria can never exist. Thus, the
only potential non-Duvergerian equilibria are three-candidate equilibria.

Proposition 3.1. For any n, there does not exist an equilibrium in which exactly one
candidate receives votes.

Proof. Take any n and suppose, by contradiction, that only one candidate receives
any votes. Assume without loss of generality that this candidate is A. Since r(t)> 0
for all t ∈ T, a positive share of the population, r(BC)+ r(CB)> 0, ranks candidate
A last. Because voting for A is dominated by abstention for types BC and CB, only
A receiving any votes implies that cn(B, BC)= cn(C, BC)= cn(B, CB)= cn(C, CB)= 0.
Recall the definition of cn(B, BC):

cn(B, BC) =
2 − v

3
Prn(tieABC) +

2 − v
6

Prn(tie−B
ABC) +

1 − v
2

�

Prn(pivBC) + Prn(piv−B
BC )
�

+
1
2

�

Prn(pivAB) + Prn(piv−A
AB )
�

.

Given the prescribed equilibrium strategies, a vote for B can be pivotal against A if
and only if either no voter turns out to vote for A or exactly one voter turns out to
vote for A. But then,

cn(B, BC) =
2 − v

3
e−nτn(A) +

1
2

e−nτn(A)nτn(A) > 0

—a contradiction! Consequently, given the assumption that F has full support on
[0, c̄], there is a strict incentive for citizens of types BC and CB to turn out to vote
for either B or C.

Next, Proposition 3.2 reveals that two-candidate equilibria always exist in large
elections.

Proposition 3.2. As n→∞, all three Duvergerian equilibria exist.

The result is due to Xefteris (2019). Note that Xefteris (2019) allows for |L| ≥ 3
and allows for cardinal utilities to be smoothly distributed, however ruling out indif-
ference. Yet, his results also go throughwhen assuming, as I do, that cardinal utilities
are homogenous. The proof idea is to first restrict the strategy space to the options
of voting for two of the three candidates—say, without loss of generality, either for
A or for B—or to abstain, and then showing that the equilibrium of the restricted
game continues to be an equilibrium for sufficiently large n in the unrestricted game,
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in which voters might also vote for the third candidate, say C. Intuitively, if all other
voters are expected to vote for either A or B, the probability that a single vote is
pivotal for C is infinitesimally small compared to the probability that a vote for A
or B is pivotal. Since voters who rank C first still derive utility from having their
second-ranked candidate elected, it is more beneficial for them to vote strategically
for their second choice. Clearly, this argument requires voters who prefer C not to be
indifferent between A and B. The argument holds for all three types of Duvergerian
equilibria: one, where A does not receive any votes, one where B does not receive
any votes, and one where C does not receive any votes.⁸

Now, the remaining question is whether three-candidate equilibria exist in the
limit, which will be in the focus of the next section.

3.5 Three-Candidate Equilibria

3.5.1 Large Elections

The subsequent analysis is based on the analysis of large elections, that is, as n goes
to infinity. Define τ(l) := limn→∞τn(l), and write τ= (τ(A),τ(B),τ(C)). Let me
begin with some preliminary results as n→∞.

Lemma 3.1. Along all equilibrium sequences, participation rates are interior, i.e., for
all t ∈ T and for all n, pn(t) ∈ (0,1).

This result is a consequence of the assumptions that the support of the cost
distribution F is bounded below by zero and that the upper bound, c̄, is larger than 1,
which is the utility a voter derives from the election of his or her preferred candidate.
The proof of this and subsequent results are displayed in the appendix.

Define the share of citizens who turn out to vote for any candidate by φn :=
τn(A)+τn(B)+τn(C) and define the total turnout by Φn := nφn.

Lemma 3.2. Along all equilibrium sequences, total turnout goes to infinity as n goes
to infinity. That is, lim infn→∞Φn =∞.

Suppose that total turnout were finite in the limit. Then, the pivot probabilities
would have strictly positive limits, and so would the equilibrium cost cutoffs. Since
F has full support on [0, c̄], there would be a strictly positive fraction of voters who
would turn out to vote, implying infinite turnout in the limit, since r(t)> 0 for all
t ∈ T.

In the costly voting game with three candidates, one is interested in the vote
shares of the candidates, while the share of abstaining voters is not of great inter-
est. Define the vote shares of the candidates by ξn(l) := τn(l)

φn
, and limn→∞ ξn(l)=:

8. Note that all three Duvergerian equilibria require a significant amount of coordination be-
tween the voters. The question of how voters coordinate on candidates is outside of the scope of this
model.
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ξ(l)= τ(l)
φ . Note that, by definition, ξ(A)+ ξ(B)+ ξ(C)= 1. Since, by Lemma 3.2,

the total turnout Φn goes to infinity as n→∞, the game with abstention can be
interpreted as one without abstention by taking Φn as the population mean of the
reduced game.⁹ Then, the analysis in Myerson (2000) applies. Note that a three-
candidate equilibrium exists in the limit if and only if ξ(A),ξ(B),ξ(C)> 0.

3.5.2 Pivot Probabilities and Their Magnitudes

The incentives of citizens to vote are pinned down by the pivot probabilities. These,
however, are difficult to compute, since they generally tend to zero as n grows large.
Myerson (2000) introduces the concept of the magnitude of a sequence of events,
which measures the rate at which the probability of the event sequence goes to zero
as the population mean n goes to infinity. This section collects results on magnitudes
and asymptotic pivot probability ratios that will be useful for proving the ensuing
results.

First, I define themagnitude of a sequence of events in the reduced game without
abstention which, in this context, measures the rate at which the probability of the
event sequence goes to zero as the total turnout Φn goes to infinity.

Definition 3.1. Given the sequence of vote shares (ξn)∞n=1, the magnitude µ of the
sequence of events E = {En}∞n=1 with En ⊂ X is

µ(E|Φnξn) = limn→∞
1
Φn

log Pr(En|Φnξn).

Observe that the magnitude is always smaller than or equal to zero because
the logarithm of a probability can never be positive. If the magnitude µ(E|Φnξn) is
negative, the probability of the sequence of events E converges to zero at the rate of
eΦnµ(E|Φnξn) as Φn, or equivalently, n, grows large.1⁰

The notion of the magnitude is useful to compare pivot events with different
magnitudes. The following lemma is due to Myerson (2000) and Bouton and Cas-
tanheira (2012).

Lemma 3.3. Consider two sequences of events, {E1}∞n=1, {E2}∞n=1, E1,n, E2,n ⊂ X, and
suppose that µ(E1)< µ(E2). Then, the probability ratio of the two events is approxi-
mately given by eΦn(µ(E1)−µ(E2)) and goes to zero as n tends to infinity:

limn→∞
Pr(E1)
Pr(E2)

= 0.

9. This step was already suggested in Myerson (2000). Qualitatively, it does not change the
analysis since ξn(i)= τn(i)/φn.

10. This means that Prn(E)∼ O (eΦnµ(E|Φnξn)) as n→∞.
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For an intuition, recall that the magnitude measures the rate at which a proba-
bility converges to zero as n grows large. If µ(E1)< µ(E2), then the probability of
the sequence {E1}∞n=1 converges to zero faster than the probability of {E2}∞n=1. The
result implies that if there is a strict ordering of the pivot probabilities, as n goes
to infinity, the incentives of the voters are determined by the pivot event with the
largest magnitude, and the relative probabilities of all other pivot events vanish.

There are three useful results that can be employed to compute the magnitude of
a given event: theMagnitude Theorem according toMyerson (2000), theMagnitude
Equivalence Theorem according to Núñez (2010), and a result from Durand, Macé,
and Núñez (2019) that has been derived in the context of approval voting.

Lemma 3.4 (Magnitude Theorem, Myerson (2000)). Let E = {En}∞n=1 be any se-
quence of events in X, and let (ξn)∞n=1 be any sequence of vote shares. Then,

µ(E|Φnξn) = limn→∞
1
Φn

log(Pr(En|Φnξn))

= limn→∞max
xn∈En

1
Φn

log(Pr(xn|Φnξn))

= limn→∞max
xn∈En

∑

l∈{A,B,C}

ξn(l)ψ
�

xn(l)
Φnξn(l)

�

,

where ψ(θ) := θ(1− logθ)− 1.

The sequence {xn}∞n=1 ∈ {En}∞n=1 that maximizes the sum on the right-hand side
above is called a major sequence of points in the sequence of events {En}∞n=1. The
Magnitude Theorem states that the magnitude of any sequence of events in X is
equal to the magnitude of a major sequence of points in these events, where almost
all the probability of the sequence of events is concentrated.
Applying the theorem yields the following expressions:

Lemma 3.5.

µ(tieABC|Φnξn) = 3(ξ(A)ξ(B)ξ(C))
1
3 − 1,

µ(tieAB|Φnξn) = 2
p

ξ(A)ξ(B) − ξ(A) − ξ(B).

The magnitudes of the events tieAC, tieBC are computed analogously. Observe that
µ(tieABC|Φnξn)≤ µ(tieij|Φnξn) for all pairs ij because the event that three candidates
tie is a subset of the event that two candidates tie. The expressions above imply that
the magnitude of any tie event is zero if all expected vote shares are equal in the
limit, and that the magnitude of a tie between two candidates is zero if the expected
vote shares of these two candidates are equal in the limit.

Next, the Magnitude Equivalence Theorem allows me to derive the magnitudes
of events that differ by a single translation from events with known magnitude.
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Lemma 3.6 (Magnitude Equivalence Theorem, Núñez (2010)). Let Y ⊂ L and
pivot(Y) := {x ∈ X|∀y ∈ Y, x(y)≥maxl∈L x(l)− 1,∀l /∈ Y, x(l)≤maxl∈L x(l)− 2}.
Given a sequence of vote shares {ξn}∞n=1, it holds that

µ(pivot(Y)|Φnξn) = µ(D|Φnξn),

for some outcome D ⊂ X defined by

D := {x(i) = x(j)∀i, j ∈ Y} ∪ {x(i) ≥ x(j) ∀i ∈ Y and j ∈ L\Y.}

Applying this theorem directly yields

Claim 3.1.

µ(tieij|Φnξn) = µ(tie−i
ij |Φnξn) = µ(tie−j

ij |Φnξn),

µ(tieABC|Φnξn) = µ(tie−A
ABC|Φnξn) = µ(tie−B

ABC|Φnξn) = µ(tie−C
ABC|Φnξn), and

µ(pivij|Φnξn) = µ(piv−i
ij |Φnξn) = µ(piv−j

ij |Φnξn).

Thus, the event in which casting one single vote yields a tie has the same magnitude
as the event of the tie itself.

Finally, Durand, Macé, and Núñez (2019) have derived a result that allows to
compute the magnitude of the event pivij. Their proof directly applies to this model
and is therefore omitted.

Lemma 3.7 (Durand, Macé, and Núñez (2019)). For any vote share profile
(ξ(l))l∈L, L= {i, j, k}, and for any pair of candidates ij,

µ(pivij|Φnξn) =

(

µ(tieij|Φnξn), if δij(ξ) > 0

µ(tieABC|Φnξn), if δij(ξ) ≤ 0,

where δij(ξ) :=
p

ξ(i)ξ(j)− ξ(k).

To understand the result, consider the probability of the pivotal event pivAB,
which is the event that A and B are tied and C has less votes than A. This event
is equivalent to the event tieAB with the additional constraint that C has less votes
than A. As already stated in Durand, Macé, and Núñez (2019), δAB(ξ)> 0 can be
interpreted as the expected vote share difference between A and C conditional on
the event that A and B are tied. If this difference is positive, the constraint is slack
and, conditional on A and B being tied, the probability of pivAB must be the same
as the probability of tieAB. However, if δAB(ξ)≤ 0, the constraint is binding and,
conditional on A and B being tied, the probability of pivAB must be infinitesimally
smaller than that of tieAB. In this case, pivAB has the same magnitude as tieABC—the
event that all three candidates tie.
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Lemma 3.7 relates the magnitudes of the events pivij and tieij, but does not
directly allow to draw precise conclusions about the ratio of the respective probabil-
ities. The next result reveals that if the threshold δij(ξ) is positive, not only do tieij

and pivij have the same magnitude, but the limit of their probability ratio must be
one.

Lemma 3.8. For any vote share profile (ξ(l))l∈L, L= {i, j, k}, and for any pair of can-
didates ij,

limn→∞
Pr(pivij)

Pr(tieij)
= 1 if δij(ξ) > 0,

with δij(ξ) :=
p

ξ(i)ξ(j)− ξ(k).

The result is derived by decomposing the event tieij into three disjunct sets, in-
cluding pivij and tieABC, and showing that all sets of events but pivij must have a
smaller magnitude than tieij if the stated condition is satisfied. Thus, all the proba-
bility mass of tieij is concentrated on the subset pivij in the limit. I believe that this
lemma is useful beyond the application in this paper.

3.5.3 Duverger’s Law

The main result of this section states that whenever one candidate has a strictly
lower limiting expected vote share than the other two candidates, there cannot ex-
ist a three-candidate equilibrium. This establishes Duverger’s law in costly voting,
provided that exactly one candidate is expected to be behind the other two candi-
dates. Suppose, without loss of generality, that the trailing candidate is C.

Proposition 3.3. There does not exist a sequence of equilibria in which ξ(A)≥ ξ(B)>
ξ(C)> 0.

Let me sketch the proof. I show first that if candidate C is expected to be trailing,
the probability of the pivot event that candidates A and B are tied (or nearly tied)
while C is behind goes to zero at a slower rate than the probability of any pivotal
event involving C. Intuitively, conditional on C having the lowest expected vote share,
it must be more likely that A and B are tied (or nearly tied) while C is trailing, than
that C is actually tied for first place with either A, B, or both. By Lemma 3.3, this
implies that, as n→∞, the probability of any pivot event involving C vanishes
relatively to the probabilities of the pivotal events involving A and B. Take any voter
who ranks C first, for example type CA. The previous step yields that the ratio of
cost cutoffs, cn(C,CA)

cn(A,CA) , tends to zero as n goes to infinity. In particular there must
exists some n̄ such that for all n> n̄, cn(C,CA)

cn(A,CA) < 1. Intuitively, voting strategically for
A yields utility in the pivotal event involving A and B, while voting for C yields utility
only in the pivotal events involving C, whose probabilities vanish. Thus, types CA
and CB have an incentive to vote strategically. Similarly, all voter types who rank C
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second have an incentive to vote sincerely because the relative expected benefit of
voting for the second-ranked candidate goes to zero. Consequently, all voters who
turn out either vote for A or B, but never C, yielding a zero vote share for candidate
C for sufficiently large n, and in particular in the limit.

The result relies on the assumption that voters derive strictly positive utility from
their second choice being elected. If there would be a type of voter who only derives
utility from C being elected and receives a utility of zero otherwise, the result would
not hold for the following reason: Suppose that the equilibrium strategies prescribe
that nobody should vote for C. Then, even if the probability of being pivotal is much
smaller for a vote for C than for a vote for either A or B, it is still positive. Given
that F has full support on [0, c̄], the C supporter will prefer to vote for C instead of
abstaining.

3.5.4 Non-Duvergerian Equilibria

The previous section established that three-candidate equilibria fail to exist if one
candidate is expected to be trailing behind the other two candidates in the limit.
So, there are two potential scenarios in which a three-candidate equilibrium might
still exist as n grows large: (i) the case where all candidates are expected to tie, i.e.,
where ξ(A)= ξ(B)= ξ(C)> 0, and (ii) the case where two candidates are tied for
second and third place, i.e., where ξ(A)> ξ(B)= ξ(C)> 0 (up to a relabeling of
candidates).
Proposition 3.4 gives a necessary and sufficient condition for the existence of equi-
libria in which vote shares are exactly equal for finite n.

Proposition 3.4. [Equal vote shares]

(1) If r(AB)+ r(AC)= r(BA)+ r(BC)= r(CA)+ r(CB)= 1
3 , there exists an equilib-

rium sequence with ξn(A)= ξn(B)= ξn(C)= 1
3 for all n.

(2) For any n, an equilibrium sequence satisfying ξn(A)= ξn(B)= ξn(C)= 1
3 exists

only if r(AB)+ r(AC)= r(BA)+ r(BC)= r(CA)+ r(CB)= 1
3 .

For an intuition for the first part note that if each candidate is preferred by one-
third of the population, by symmetry, there exists a sequence of cost cutoffs (ĉn)n≥1

such that for each n, every citizen turns out if his or her cost realization is smaller
than this cutoff, and voting is sincere. Then, expected vote shares are equal for all
n. To derive the existence of such a cutoff, I first show that if all other voters employ
the same cost cutoff and vote sincerely, it is a best response for some individual voter
to do the same. Then, this common cost cutoff is a continuous functions of the pivot
probabilities, and vice versa. The existence of the equilibrium cutoff follows from
Brouwer’s fixed point theorem.

The second part of Proposition 3.4 reveals that the sufficient condition is also
necessary for a three-candidate equilibrium sequence that satisfies equal vote shares
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for all candidates to exist for some n. Intuitively, if the expected vote shares are equal,
all two-way ties are equally likely, and so are the corresponding pivot events. This
implies first that all voters have an incentive to vote sincerely. Second, the cost cut-
offs coincide for all voter types, and so do the participation rates. Thus, the expected
vote share of a candidate is given by the participation rate multiplied with the share
of citizens who rank this candidate first, divided by the total turnout rate. Conse-
quently, vote shares can only be equal if indeed each candidate is expected to be
ranked first by an equal share of citizens. This condition is clearly knife-edge—the
equilibrium will cease to exist if the distribution of voter preference types is slightly
different because, fixing the strategies induced by equal expected vote shares, the
candidate who is the first choice of a plurality of voters will receive a higher vote
share than the other candidates.

The second part of Proposition 3.4 implies that the stated necessary condition
is also a necessary condition for the existence of an equilibrium with equal vote
shares in the limit—i.e., satisfying 0< ξ(A)= ξ(B)= ξ(C)—provided that the cor-
responding equilibrium sequence satisfies 0< ξn(A)= ξn(B)= ξn(C) for at least
one value of n. It remains an open question what conditions are necessary for an
equilibrium sequence to exist that satisfies equal vote shares in the limit, but does
not satisfy equal vote shares for any finite n.

The last potential limit three-candidate equilibrium is the one in which two
candidates are tied behind the front-runner in the limit as the population size
grows large. For example, let A and B be tied behind C as n→∞, meaning that
0< ξ(A)= ξ(B)< ξ(C). In such an equilibrium, in the limit, the pivotal events
between A and C and between B and C have the same magnitude and are much
more likely than the pivotal events between A and B. Therefore, all voters who
rank C first have a strict incentive to vote for C. By contrast, the incentives of the
types who rank C second or last depend on the shape of the equilibrium sequence
(ξn(A),ξn(B),ξn(C)) and on the parameter v.

The next proposition treats the case where the equilibrium sequence is constant
for sufficiently large n in the sense that 0< ξn(A)= ξn(B)< ξn(C) for all n larger
than some n̄. In this case, for n> n̄, the probability of the pivotal events between A
and C and between B and C are equally likely from the perspective of an individual
voter (yielding symmetric strategies for types AC and BC), and, again, are much
more likely than the pivotal events between A and B. Then, all voters who rank C
last have a strict incentive to vote for their favorite candidate. Since r(t)> 0 for all
t ∈ T and f > 0 on [0, c̄], ξ(A) and ξ(B) are strictly positive.11 Depending on v, types
AC and BC will either vote sincerely or strategically. Thus, two types of equilibria

11. This argument fails if A is expected to be behind B in the limit as n grows large, albeit slightly.
Then, the event that the election is decided between B and C is much more likely than the event that
the election is decided between A and C, yielding the incentive for types AB to abandon A.
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are conceivable. Proposition 3.5 states the two respectively necessary conditions on
the distribution of voter types for such equilibria to exist in the limit as n→∞.

Proposition 3.5. An equilibrium sequence satisfying 0< ξ(A)= ξ(B)< ξ(C) in the
limit and 0< ξn(A)= ξn(B)< ξn(C) for all n larger than some n̄

(1) exists only if r(AB)+ (1− v)r(AC)= r(BA)+ (1− v)r(BC), provided that all types
vote sincerely.

(2) exists only if r(AB)= r(BA), provided that types AB, BA, CA, CB vote sincerely and
types AC, BC vote strategically for C.

The two stated conditions are necessary for limiting expected vote shares of
candidates A and B to be equal in the respective type of equilibrium. These imply
that both equilibrium types are knife-edge because even a slight deviation from
the respective condition upsets the respective equilibrium. For an intuition for the
first condition, r(AB)+ (1− v)r(AC)= r(BA)+ (1− v)r(BC), observe that the event
pivAB has a smaller magnitude than the event pivAC (or, equivalently, of pivBC). Thus,
as n→∞, the cost cutoffs are shaped by the events pivAC and pivBC, while pivAB

becomes negligible. For type AB (or BA), the expected benefit of creating or breaking
a tie against C by voting for A (or B) yields utility one-half, while for type AC (or
BC), this only yields utility 1−v

2 . This explains the factor (1− v). For the second
equilibrium type, if only types AB and BA vote for A and B, respectively, by symmetry,
both types have the same cost cutoff. Therefore, expected vote shares can only be
equal if the type shares are equal, yielding the second condition, r(AB)= r(BA).

The previous proposition only covers the case where the equilibrium sequence
is constant for sufficiently large n. Thus, the case where the equilibrium sequence
converges in any other way to its limit 0< ξ(A)= ξ(B)< ξ(C) remains open and is
left for future research. The necessary conditions stated in Proposition 3.5 remain
valid if it can be shown that expected vote shares of A and B being equal implies
that, along the equilibrium sequence, Pr(pivAC)

Pr(pivBC) converges to 1 in the limit. This, in
turn, would imply that types AB and BA, and AC and BC, respectively, face the same
incentives, and the arguments from Proposition 3.5 apply. Without further assump-
tions, however, this is not immediate because the sequence of vote shares converges
to its limit at a sublinear rate.12,13

3.5.5 Discussion

In the previous section, I have derived necessary conditions for certain kinds of three-
candidate equilibria which turned out to be knife-edge. Thus, for these equilibria

12. This follows from the fact that participation rates converge to zero, but total turnout goes to
infinity as n grows large.

13. What does follow from the previous analysis is that Pr(pivAC)
Pr(pivBC) is bounded above zero and finite.

Further, by Lemma 3.8, and using the closed-form approximations in Myerson (2000),
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Duverger’s law holds and the intuition developed in Palfrey (1989) applies. Yet, it
is still an open question what are necessary conditions for the remaining types of
three-candidate equilibria and whether they, too, are knife-edge or can be satisfied
for an open set of parameters. In a costly voting framework with homogenous costs,
Arzumanyan and Polborn (2017) have identified a continuum of non-Duvergerian
equilibria, and Fey (1997) has derived a non-Duvergerian equilibrium when voting
is costless. Let me now discuss their findings in relation to my model.

In Arzumanyan and Polborn (2017), three-candidate equilibria have the fea-
ture that all candidates are expected to tie. To be precise, Arzumanyan and Polborn
(2017) state that for voting costs c≤ 2

3(1− v
2), and a fixed preference distribution

(r(t))t∈T, there exists N̄(c) such that for all n> N̄(c), there exist three-candidate equi-
libria satisfying 0< ξn(A)= ξn(B)= ξn(C). Thus, these equilibria exist for a whole
range of parameter constellations. This stands in contrast to my findings captured in
Proposition 3.4 which state that such equilibria exist if and only if r(ij)+ r(ik)= 1

3
for all ij, ik ∈ T. The difference in these results is driven by the different assumptions
on the cost distribution. Since voting costs are homogenous in Arzumanyan and Pol-
born (2017), in equilibrium, voters need to be exactly indifferent between voting
and abstaining. Thus, the expected benefit of voting needs to be the same for every
voter, meaning that expected vote shares need to coincide. Given a fixed distribu-
tion of preferences, the voting probabilities of different types adjust accordingly to
equalize the expected vote shares. By contrast, if, as in my model, the cost distribu-
tion is smooth, equal expected vote shares and equal expected voting benefits imply
equal cost cutoffs, and thus, equal participation rates. Therefore, the candidates’
vote shares can be equal only if each candidate is preferred by an equal share of the
population.1⁴

The second type of three-candidate equilibria in which two candidates tie be-
hind a front-runner corresponds to the ones first described in Myerson and Weber
(1993) and analyzed in Fey (1997). In Fey (1997), voting is compulsory, and the util-
ity a voter derives from his or her second choice, v, is smoothly distributed. There are
only three types of voters: types AB (share 0.3+ ε), BA (share 0.3− ε), and C (share

limn→∞
Pr(pivAC)
Pr(pivBC)

= limn→∞
Pr(tieAC)
Pr(tieBC)

= limn→∞
e−nφn(

p
ξn(A)−ξn(C))2

e−nφn(
p
ξn(B)−ξn(C))2

q

4πnφn

p

ξn(B)ξn(C)
q

4πnφn

p

ξn(A)ξn(C)

= limn→∞
e−nφn(

p
ξn(A)−ξn(C))2

e−nφn(
p
ξn(B)−ξn(C))2

.

This, however, need not imply that the limit ratio is 1 because limn→∞
−nφn(
p
ξn(A)−ξn(C))2

−nφn(
p
ξn(B)−ξn(C))2

= 1 need not

imply that limn→∞
e−nφn(

p
ξn(A)−ξn(C))2

e−nφn(
p
ξn(B)−ξn(C))2

= 1.
14. As already stated, models with homogenous voting costs generally yield toss-up elections. In

two-candidate elections, the difference between the assumptions of homogenous versus smooth costs
has already been discussed; in particular, with respect to the underdog effect. For more details, see
Herrera, Morelli, and Palfrey (2014) or chapter 1 of this dissertation.
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0.4), where C types are indifferent between A and B. A strategy of types AB and BA
is described by a cutoff v̄ such that a voter votes for his or her first-ranked candidate
if and only if v< v̄. Fey (1997) shows that there exists a sequence of equilibria satis-
fying 0< ξ(A)= ξ(B)< ξ(C). In such an equilibrium, types BA and C vote sincerely
and type AB-voters with a large v are prescribed to vote for B. In a finite electorate,
this means that A receives fewer votes than B, reinforcing the strategic voting of the
fraction of AB types with high v’s. In the limit, A and B receive equal vote shares.
Since this equilibrium exists for a range of ε > 0, the conditions are not knife-edge.

In my model, this equilibrium construction cannot hold if the limit of the ratio
Pr(pivAC)
Pr(pivBC) goes to one as n grows large because ξ(A)= ξ(B) would imply equal voting
benefits for types AB and BA, yielding equal participation rates. Then, vote shares
could not be equal unless the respective population shares coincide. For the case
that limn→∞

Pr(pivAC)
Pr(pivBC) 6= 1, it is an open question whether a similar construction as

employed by Fey (1997) will yield an equilibrium in the present model of costly
voting. Since the parameter v is homogenous in my model, there is no mixing and all
voters of the same type will vote for the same candidate, conditional on turning out.
However, cost cutoffs might differ between voters of types AB and BA, potentially
enabling a similar equilibrium construction as in Fey (1997), where candidate A
receives fewer votes than B for sufficiently large, but finite n.

3.6 Conclusion

In this paper, I analyze plurality voting with three candidates in an environment in
which voting is costly and voluntary, and costs are drawn from a smooth distribu-
tion. I examine the question whether three-candidate equilibria can exist. My main
finding is that such equilibria do not exist in the limit as the expected number of cit-
izens grow large if exactly one candidate is expected to have the lowest vote share.
Equilibria in which all candidates are expected to tie exist for finite populations
only under knife-edge conditions. Finally, equilibria in which two candidates are
expected to tie behind the front-runner for sufficiently large n and in the limit can
exist only under knife-edge conditions. The general existence of equilibria in which
the second-and third-placed candidate are tied in expectation still remains an open
question.

I show first that, as n→∞, equilibria must be Duvergerian whenever one can-
didate is expected to be trailing. Thus, there are two remaining potential types of
three-candidate equilibria: Either (i) all candidates are expected to tie, or (ii) two
candidates tie behind the front-runner. For given n, type (i) can be supported as
an equilibrium if and only if each candidate is ranked first by exactly one-third of
the electorate. If, along an equilibrium sequence, condition (ii) is satisfied already
for sufficiently large n, type (ii) has two subtypes—depending on the incentives of
the voters who rank the front-runner second. For both subtypes, I find necessary
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conditions on the distribution of preferences for existence in a large election. These
necessary conditions are again knife-edge. If condition (ii) is satisfied only in the
limit, the analysis does not yield general necessary or sufficient conditions for the
existence of a type (ii) .

My results extend the analysis of Xefteris (2019), who proves the existence of Du-
vergerian equilibria in a slightly more general model, and contrast with the analysis
of Arzumanyan and Polborn (2017), who assume that voting costs are homogenous.
Homogenous voting costs imply that all voters need to be indifferent between vot-
ing and abstaining in equilibrium. As a result, the expected benefit of voting must
be equal for all preference types, implying a toss-up election. Thus, the fundamen-
tal difference between costly voting models with smooth versus homogenous costs
that has already been discussed for two-candidate elections extends to models with
multiple candidates.

Further, my results reflect those of Palfrey (1989) who proves that non-
Duvergerian equilibria cannot exist if one candidate is expected to be trailing in the
limit in amodel of costless voting. The questionwhether the type of non-Duvergerian
equilibria derived in Fey (1997) can also exist under costly voting, and, thus, endoge-
nous participation, remains open.

Finally, the literature on costly voting in multi-candidate elections has yet to an-
swer the question of how voters coordinate. Duvergerian equilibria require voters to
agree on which candidate is expected to receive the lowest vote share and will, thus,
be abandoned. This does not need to be the candidate with the lowest ex ante sup-
port. One possible equilibrium refinement is the focal point-approach by Schelling
(1980), which claims that agents are likely to coordinate on the salient equilibrium
and would likely eliminate the candidate who is ranked first by the lowest fraction
of citizens. In this context, polls could be an important coordination device. Fixing
how voters coordinate given a certain poll result, it will be interesting to analyze
the arising incentives for poll participants. In two-candidate elections, the under-
dog effect yields incentives for poll participants to misrepresent their preferences to
stimulate turnout of like-minded voters. Yet, in multicandidate elections, the trailing
candidate in the poll might be abandoned in the election, yielding incentives for poll
participants to support their favorite candidate in the poll. It is not obvious which
incentive dominates, and the answer to this question is left for future research.
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Appendix 3.A Proofs

3.A.1 Proofs for Section 3.5.1 (Large Elections)

Proof of Lemma 3.1.
Recall that the probability of type t voting for any candidate is maxl pn(l, t). First, this
probability cannot be one for any type. Suppose, without loss of generality, that the
probability of voting is one for type AB. Then, either pn(A, AB)= 1 or pn(B, AB)= 1,
meaning that either cn(A, AB)= c̄ or cn(B, AB)= c̄. Inspecting equations (3.1) and
(3.2) and recalling that c̄> 1 yields the desired contradiction.

Second, the probability of voting cannot be zero for any type. Suppose, with-
out loss of generality, that the probability of voting is zero for type AB. Then, both
pn(A, AB)= 0 and pn(B, AB)= 0, meaning that both cn(A, AB)= 0 and cn(B, AB)= 0.
Recall the definition of cn(A, AB), and consider the cost cutoffs for types BA and CA.

cn(A, AB) =
2 − v

3
Prn(tieABC) +

2 − v
6

Prn(tie−A
ABC)

+
1 − v

2

�

Prn(pivAB) + Prn(piv−A
AB )
�

+
1
2

�

Prn(pivAC) + Prn(piv−A
AC )
�

,

cn(A, BA) =
2v − 1

3
Prn(tieABC) +

2v − 1
6

Prn(tie−A
ABC)

+
v − 1

2

�

Prn(pivAB) + Prn(piv−A
AB )
�

+
v
2

�

Prn(pivAC) + Prn(piv−A
AC )
�

,

cn(A, CA) =
2v − 1

3
Prn(tieABC) +

2v − 1
6

Prn(tie−A
ABC)

+
v − 1

2

�

Prn(pivAC) + Prn(piv−A
AC )
�

+
v
2

�

Prn(pivAB) + Prn(piv−A
AB )
�

.

Since cn(A, AB)= 0 is possible only if all pivot events involving A have zero proba-
bility, i.e., only if, for all n, Prn(pivABC)= Prn(piv−A

ABC)= Prn(pivAB)= Prn(piv−A
AB )=

Prn(pivAC)= Prn(piv−A
AC )= 0, it must be true that cn(A, BA)= cn(A, CA)= 0. Thus,

no citizen’s strategy prescribes to vote for A. Similarly, all pivot events involving
B must have zero probability. This means that cn(A, t)= cn(B, t)= 0 for all t ∈ T,
and no voter is prescribed to vote for either A or B. Consider now the incen-
tives of any type who ranks candidate C third. A vote for either A or B is piv-
otal against C if nobody turns out to vote for C, which occurs with probability
e−n(τn(A)+τn(B)+τn(C)) > 0, or if exactly one voter turns out for C, which occurs with
probability e−n(τn(A)+τn(B)+τn(C))nτn(C). However, this implies cn(A, t), cn(B, t)> 0
for all types who rank C last, and in particular, that cn(A, AB)> 0—a contradiction.
The other cases are entirely analogous.

Proof of Lemma 3.2.
Suppose, by contradiction, that along some subsequence, n(τn(A)+τn(B)+τn(C))
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has a finite limit. Thus, the probability that nobody turns out to vote is given
by e−n(τn(A)+τn(B)+τn(C)) > 0. Thus, inspecting equations (3.5)-(3.8) yields that
limn→∞U(i, ij)> 0 for all types ij ∈ T. Hence, for all types t ∈ T, the cost cutoffs
converge to strictly positive limits. In particular, the maximum of the two cost cut-
offs has to be strictly positive in the limit for all preference types. Then, given that
F is assumed to have full support on [0, c̄], for each type t ∈ T, limn→∞ pn(t)> 0.
Now, τn(A)+τn(B)+τn(C)=

∑

t∈T r(t)pn(t), and thus, limn→∞ n(τn(A)+τn(B)+
τn(C))= limn→∞ n

∑

t∈T r(t)pn(t)=∞—a contradiction!

3.A.2 Proof for Section 3.5.2 (Magnitudes)

Proof of Lemma 3.5.
Magnitude of tieABC

µ(tieABC|Φnξn) = limn→∞max
γ≥0

∑

l∈{A,B,C}

ξn(l)ψ
�

γ

Φnξn(l)

�

.

The first order condition yields

−
∑

l∈{A,B,C}

ξn(l)
1

Φnξn(l)
log

γ

Φnξn(l)
= 0

⇔
1
Φn





∑

l∈{A,B,C}

log
γ

Φnξn(l)



 = 0

⇔
γ

Φnξn(A)
·

γ

Φnξn(B)
·

γ

Φnξn(C)
= 1

⇔
γ3

Φ3
n
= ξn(A)ξn(B)ξn(C).

The second order condition yields ∂ 2

(∂ γ)2 = − 3
Φnγ
< 0. Thus, the objective function is

strictly concave.
Ignore the integer restriction on γ for now. The unique optimal solution is given by

γ

Φn
=

∏

l∈{A,B,C}

(ξn(l))
1
3 .

Define g(n) := γ
Φn
, and let g := limn→∞ g(n).

As noted in Myerson (2000), when γ(n) is the integer rounding of Φng(n), the
sequence {γ(n)}n≥1 is a major sequence in tieABC. This means that {γ(n)}n≥1 has a
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magnitude that is equal to the greatest magnitude of any sequence in tieABC. This
magnitude is given by

µ(tieABC|Φnξn) = limn→∞

∑

l∈{A,B,C}

ξn(l)ψ
�

Φng(n)
Φnξn(l)

�
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∑
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ξn(l)
�

g(n)
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�

1 − log
g(n)
ξn(l)

�

− 1
�
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∑

l∈{A,B,C}

ξn(l)
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∏

l∈{A,B,C}

[ξn(l)]
1
3 −

∑

l∈{A,B,C}

ξn(l)

= 3
∏

l∈{A,B,C}

[ξ(l)]
1
3 −

∑

l∈{A,B,C}

ξ(l).

= 3[ξ(A)ξ(B)ξ(C)]
1
3 − 1.

Magnitude of tieAB

µ(tieAB|Φnξn) = limn→∞ max
γ≥0,δ≥0





∑
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ξn(l)ψ
�

γ

Φnξn(l)

�

+ ξn(C)ψ
�

δ
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�



 .

The first order conditions yield

∂
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ξn(l)
1
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log

γ

Φnξn(l)
= 0

⇔
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log
γ
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 = 0

⇔
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·

γ
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⇔
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n
= ξn(A)ξn(B).

∂

∂ δ
: −ξn(C)

1
Φnξn(C)

log
δ

Φnξn(C)
= 0

⇔
δ

Φn
= ξn(C).

The Hessian is given by

H =

� −2
Φnγ

0

0 −1
Φnδ

�

.
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Since H is negative definite, the objective function is strictly concave. Ignoring the
integer restrictions on γ and δ for now, the unique optimal solution is given by

γ

Φn
=

∏

l∈{A,B}

[ξn(l)]
1
2 ,
δ

Φn
= ξn(C).

Define g(n) := γ
Φn

and d(n) := δ
Φn
, and let g := limn→∞ g(n) and d := limn→∞ d(n).

Then,

µ(tieAB|Φnξn) = limn→∞

∑

l∈{A,B}

ξn(l)ψ
�

Φng(n)
Φnξn(l)

�

+ ξn(C)ψ
�

Φnd(n)
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�
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1 − log
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1 − log
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= limn→∞ g(n)

�

2 − log
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g(n)2

ξn(A)ξn(B)

��

+ d(n)
�

1 − log
�

d(n)
ξn(C)

��

− ξn(A) − ξn(B) − ξn(C)

= limn→∞ 2
Æ

ξn(A)ξn(B) − ξn(A) − ξn(B)

= 2
p

ξ(A)ξ(B) − ξ(A) − ξ(B).

Proof of Lemma 3.8.
Consider some sequence of vote shares (ξn)n∈N with δij(ξ)=

p

ξ(i)ξ(j)− ξ(k)> 0.
Recall that tieij := {x ∈ X : x(i)= x(j)}, and define notpivij := {x ∈ X : x(i)= x(j)<
x(k)}. Then,

tieij ={x ∈ X : x(i) = x(j) > x(k)} ∪ {x ∈ X : x(i) = x(j) = x(k)}

∪ {x ∈ X : x(i) = x(j) < x(k)}

=pivij ∪ tieABC ∪ notpivij,

and, for all n,

Prn(tieij) = Prn(pivij) + Prn(tieABC) + Prn(notpivij).

Since δij(ξ)> 0, by Lemma 3.7,

µ(pivij|Φnξn) > µ(tieABC|Φnξn).

This implies that Prn(tieABC)
Prn(pivij)

→ 0 as n→∞.
Let me now derive µ(notpivij|Φnξn).
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Following Myerson (2002) and Bouton and Castanheira (2012), the magnitude of
the event notpivij is defined as

µ(notpivij|Φnξn) = limn→∞max
x

∑

l∈L

x(l)
nφn

�

1 − log
�

x(l)
nφnξn

��

− 1

s.t. x(i) = x(j), and

x(k) > x(j).

If I ignore the second constraint, or if the constraint is not binding at the optimum,
this magnitude is exactly µ(tieij|Φnξn). So, let me calculate the optimum.
Set x(i)= γ= x(j), x(k)= κ, and maximize ignoring the second constraint for now:

max
γ≥0,κ≥0
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The first order conditions yield
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The Hessian is given by

H =
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nφnγ

0

0 −1
nφnκ

�

.

Since the Hessian is negative definite, the objective function is strictly concave.
Thus, the first order conditions are sufficient for an optimum. It remains to check
whether these values imply γ∗ < κ∗, which would yield that the second constraint
is not binding at the optimum.
Now, by assumption, δij(ξ)=

p

ξ(i)ξ(j)− ξ(k)> 0. This implies that there exists
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some n̄ such that for all n> n̄,
p

ξn(i)ξn(j)− ξn(k)> 0. Consequently, for all n> n̄,
given that nφn > 0,

nφn

�
Æ

ξn(i)ξn(j) − ξn(k)
�

> 0

⇔ γ∗ − κ∗ > 0.

Thus, for all n> n̄, the unique unconstrained maximizer (γ∗,κ∗) does not satisfy the
second constraint, and, hence, cannot do so in the limit as n→∞. Consequently,
the value of constrained maximization problem, µ(notpivij|Φnξn), has to be strictly
smaller than the value of the unconstrained maximization problem, µ(tieij|Φnξn).
As a result, limn→∞

Prn(notpivij)
Prn(pivij)

= 0.
But then,

limn→∞
Prn(tieij)

Prn(pivij)
= limn→∞

Prn(pivij) + Prn(tieABC) + Prn(notpivij)

Prn(pivij)

= 1 + limn→∞

�

Prn(tieABC)
Prn(pivij)

+
Prn(notpivij)

Prn(pivij)

�

= 1.

Thus, employing Myerson (2000), equation (5.3), as n→∞,

Prn(pivij) ≈
e−nφn

�p
ξn(i)−

p
ξn(j)

�2

q

4πnφn
p

ξn(i)ξn(j)
.1⁵

3.A.3 Proof for Section 3.5.3 (Duverger’s Law)

Proof of Proposition 3.3.
Suppose, by contradiction, that ξ(A)≥ ξ(B)> ξ(C)> 0.
Then, because of r(t)> 0 for all t ∈ T, there must exist a (convergent) subsequence
of cost cutoffs along which at least one of the following inequalities is satisfied:

limn→∞
cn(C, CA)
cn(A, CA)

> 1, limn→∞
cn(C, CB)
cn(B, CB)

> 1,

limn→∞
cn(C, AC)
cn(A, AC)

> 1, limn→∞
cn(C, BC)
cn(B, BC)

> 1.

Note first that, δAB(ξ)=
p

ξ(A)ξ(B)− ξ(C)> ξ(C)− ξ(C)= 0. Thus, by Lemma
3.7, µ(pivAB|Φnξn)> µ(tieABC|Φnξn).

15. The expression xn ≈ yn indicates that limn→∞
xn
yn
= 1.
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Claim 3.2. ξ(A),ξ(B)> ξ(C) implies that µ(pivAB|Φnξn)> µ(pivAC|Φnξn) and
µ(pivAB|Φnξn)> µ(pivBC|Φnξn).

Proof. There are three different possibilities: (i) ξ(A)= ξ(B), (ii) ξ(A)> ξ(B), or
(iii) ξ(B)> ξ(A).

Case (i): Then, δAC(ξ)=
p

ξ(A)ξ(C)− ξ(B)< ξ(A)− ξ(B)= 0, so, by Lemma 3.7,
µ(pivAC|Φnξn)= µ(tieABC|Φnξn).
By the same argument, µ(pivBC|Φnξn)= µ(tieABC|Φnξn).

Case (ii): Then, δBC(ξ)=
p

ξ(B)ξ(C)− ξ(A)< ξ(A)− ξ(A)= 0, and, thus, by
Lemma 3.7, µ(pivAB|Φnξn)> µ(pivBC|Φnξn). Thus, it is left to show that
µ(pivAB|Φnξn)> µ(pivAC|Φnξn).
By Lemma 3.7, either, µ(pivAC|Φnξn)= µ(tieAC|Φnξn)= 2

p

ξ(A)ξ(C)− ξ(A)− ξ(C)
or µ(pivAC|Φnξn)= µ(tieABC|Φnξn). If the latter holds, the conclusion is again imme-
diate. If the former holds, by Lemma 3.5, observe that

µ(pivAB|Φnξn) > µ(pivAC|Φnξn)

⇔ 2
p

ξ(A)ξ(B) − ξ(A) − ξ(B) > 2
p

ξ(A)ξ(C) − ξ(A) − ξ(C)

⇔ 2
p

ξ(A)
�
p

ξ(B) −
p

ξ(C)
�

> ξ(B) − ξ(C)

⇔ 2
p

ξ(A) >
p

ξ(B) +
p

ξ(C),

which is true because of the assumption that ξ(A)> ξ(B)> ξ(C)> 0.

Case (iii) is analogous to case (ii).

By the Magnitude Equivalence Theorem, µ(tie−C
ABC)= µ(tie−A

ABC)= µ(tieABC),
µ(piv−C

AC )= µ(piv−A
AC )= µ(pivAC), and µ(piv−C

BC )= µ(pivBC). Now, by Lemma 3.3, as
n→∞, Prn(pivBC)

Prn(pivAB) → 0, Prn(pivAC)
Prn(pivAB) → 0, Prn(tieABC)

Prn(pivAB) → 0, and so on. Consequently,

limn→∞
cn(C, CA)
cn(A, CA)

= limn→∞

2−v
3 Prn(tieABC) + 2−v

6 Prn(tie−C
ABC) + 1−v

2 [Prn(pivAC) + Prn(piv−C
AC )] + 1

2 [Prn(pivBC) + Prn(piv−C
BC )]

2v−1
3 Prn(tieABC) + 2v−1

6 Prn(tie−A
ABC) + v−1

2 [Prn(pivAC) + Prn(piv−A
AC )] + v

2 [Prn(pivAB) + Prn(piv−A
AB )]

= limn→∞
Prn(pivAB)
Prn(pivAB)

2−v
3

Prn(tieABC)
Prn(pivAB) +

2−v
6

Prn(tie−C
ABC)

Prn(pivAB) +
1−v

2 [
Prn(pivAC)
Prn(pivAB) +

Prn(piv−C
AC )

Prn(pivAB) ] +
1
2 [

Prn(pivBC)
Prn(pivAB) +

Prn(piv−C
BC )

Prn(pivAB) ]

2v−1
3

Prn(tieABC)
Prn(pivAB) +

2v−1
6

Prn(tie−A
ABC)

Prn(pivAB) +
v−1

2 [
Prn(pivAC)
Prn(pivAB) +

Prn(piv−A
AC )

Prn(pivAB) ] +
v
2 [1 +

Prn(piv−A
AB )

Prn(pivAB) ]

= 0.

Similarly, limn→∞
cn(C,CB)
cn(B,CB) = 0. As a result, in the limit as n grows large, citizens

who prefer candidate C over candidates A and B have a strict incentive to vote for
their second-preferred candidate or to abstain and will never vote sincerely. By the
same line of argument, limn→∞

cn(C,AC)
cn(A,AC) = 0 and limn→∞

cn(C,BC)
cn(B,BC) = 0.
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Thus, ξ(C)= 0—a contradiction!

Moreoever, since

cn(C, CA)
cn(A, CA)

→ 0,
cn(C, CB)
cn(B, CB)

→ 0,
cn(C, AC)
cn(A, AC)

→ 0, and
cn(C, BC)
cn(B, BC)

→ 0,

there exists n̄ such that for all n> n̄,

cn(C, CA)
cn(A, CA)

< 1,
cn(C, CB)
cn(B, CB)

< 1,
cn(C, AC)
cn(A, AC)

< 1, and
cn(C, BC)
cn(B, BC)

< 1,

yielding the contradiction also for finite, but sufficiently large n.

3.A.4 Proofs for Section 3.5.4 (Non-Duvergerian Equilibria)

Proof of Proposition 3.4.

Part 1: “If”: Suppose that r(AB)+ r(AC)= r(BA)+ r(BC)= r(CA)+ r(CB)= 1
3 .

Fix any n, and take some voter q of type ij. Note first that if all voters other than
voter q vote sincerely and employ the cost cutoff ĉn, it is a best response for q to
vote sincerely and employ the cutoff ĉn, too, independent of his or her type. That is,
ĉn = cn(i, ij)≥ cn(j, ij). To see this, consider cn(i, ij)− cn(j, ij):

cn(i, ij) − cn(j, ij) =(1 − v) Prn(tieABC) +
�

2 − v
6

Prn(tie−i
ABC) −

2v − 1
6

Prn(tie−j
ABC)

�

+(1 − v) Prn(pivij) +
�

1 − v
2

Prn(piv−i
ij ) −

v − 1
2

Prn(piv−j
ij )
�

+
1
2

Prn(pivik) +
1
2

Prn(piv−i
ik ) −

v
2

Prn(pivjk) −
v
2

Prn(piv−j
jk ).

If all voters other than voter q vote sincerely with cutoff ĉn, it holds that τn(A)=
r(AB)F(ĉn)+ r(AC)F(ĉn)= 1

3F(ĉn)= τn(B)= τn(C) because r(ij)+ r(ik)= 1
3 for all

ij, ik ∈ T by assumption. Thus, the difference simplifies to

cn(i, ij) − cn(j, ij) =(1 − v) Prn(tieABC) +
1 − v

2
Prn(tie−i

ABC)

+
3(1 − v)

2
Prn(pivij) +

3(1 − v)
2

Prn(piv−i
ij ),

which is obviously positive because of v< 1. Moreover, if ĉn is the equilibrium cutoff
for all voters other than q, cn(i, ij) must be equal to ĉn by symmetry.

Such an equilibrium exists if the cutoff ĉn solves equation (3.3) for all types
t ∈ T. Thus, ĉn must be a fixed point of (3.3). Since the cutoff ĉn does not depend
on voter types and because vote shares are identical for all candidates, equation
(3.3) is identical for all voter types. Apply now Brouwer’s fixed-point theorem to
just one equation, that is, consider the mapping from [0, c̄] into itself. Note that
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[0, c̄] is non-empty, compact and convex because F has full support on [0, c̄] with
c̄> 1. Further, τn(l), l ∈ L, are continuous functions of the cost cutoff and so are the
pivot probabilities. Thus, Brouwer’s fixed-point theorem guarantees the existence of
a fixed point for each isolated equation (3.3). But then, this fixed point must solve
the equilibrium equation (3.3) for all types t ∈ T.

I conclude that the sincere equilibrium with equal expected vote shares indeed
exists if r(ij)+ r(ik)= 1

3 for all ij, ik ∈ T.

Part 2: “Only if”: Take any n and let ξn(A)= ξn(B)= ξn(C)> 0.

First, Prn(pivAB)= Prn(pivAC)= Prn(pivBC), and Prn(piv−i
ij )= Prn(piv−i

ik ) for all ij, ik ∈

T. Further, Prn(tie−A
ABC)= Prn(tie−B

ABC)= Prn(tie−C
ABC), and Prn(piv−i

ij )= Prn(piv−j
ij ) for all

ij ∈ T. This implies that

cn(i, ij) − cn(j, ij)

=(1 − v) ·
�

Prn(tieABC) +
1
2

Prn(tie−i
ABC) +

3
2

�

Prn(pivij) + Prn(piv−i
ij )
�

�

>0,

since v< 1, meaning that every voter will vote sincerely for his most preferred can-
didate.

Further, this implies that cn(i, ij)= cn(i, ik)≡ cn(i) and furthermore that cn(i)=
cn(j) for all i, j, k. Thus, all voters participate with the same probability pn(i)≡ pn =
F(cn). Then,

τn(A) = pn · [r(AB) + r(AC)].

So, τn(A)= τn(B)= τn(C) can hold only if indeed,

r(AB) + r(AC) = r(BA) + r(BC) = r(CA) + r(CB) =
1
3

.

Let me introduce an intermediate result. Lemma 3.9 will allow me to apply a Taylor
expansion in the proof of Proposition 3.5.

Lemma 3.9. Suppose 0< ξ(A)= ξ(B)< ξ(C). As n→∞, the participation rates
p(t), t ∈ T, go to zero along every equilibrium sequence. That is, lim supn→∞ pn(t)= 0
for all t ∈ T.

Proof. Suppose, by contradiction, that, along some convergent subsequence,
limn→∞ pn(AB)> 0, meaning that limn→∞max{pn(A, AB), pn(B, AB)}> 0.
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Suppose first that limn→∞max{pn(A, AB), pn(B, AB)}= limn→∞ pn(A, AB). This im-
plies that

limn→∞ cn(A, AB) = limn→∞
2 − v

3
Prn(tieABC) +

2 − v
6

Prn(tie−A
ABC)

+
1 − v

2

�

Prn(pivAB) + Prn(piv−A
AB )
�

+
1
2

�

Prn(pivAC) + Prn(piv−A
AC )
�

>0.

Now, since µ(tieABC)= µ(pivAB)< µ(pivAC), it holds that

limn→∞ cn(A, AB) < limn→∞

�

2 − v
3
+

1 − v
2
+

1
2

�

�

Prn(pivAC) + Prn(piv−A
AC )
�

.1⁶

Further, since pivAC ⊂ tieAC, it holds that Prn(pivAC)≤ Prn(tieAC).1⁷ Thus,

limn→∞ cn(A, AB) < limn→∞
10 − 5v

6

�

Prn(tieAC) + Prn(tie−A
AC )
�

.

From the Offset Theorem in Myerson (2000) [Theorem 2],

limn→∞
Prn(tie−A

AC )

Prn(tieAC)
= limn→∞

√

√ξn(C)
ξn(A)

.

Further, from Myerson (2000), equation (5.3), as n→∞,

Prn(tieAC) ≈
e−nφn

�p
ξn(A)−ξn(C)

�2

q

4πnφn
p

ξn(A)ξn(C)
.

Thus, as n→∞,

limn→∞ cn(A, AB) < limn→∞
10 − 5v

6

�

1 +

√

√ξn(C)
ξn(A)

�

e−nφn

�p
ξn(A)−ξn(C)

�2

q

4πnφn
p

ξn(A)ξn(C)
.

The right-hand side converges to 0 as n→∞, since the denominator is unbounded,
whereas the numerator is bounded—a contradiction. The other cases are analogous.

16. The bound can be found by using the fact that Prn(tieABC), Prn(pivAB)< Prn(pivAC).
17. Actually, by Lemma 3.8, it even holds that limn→∞

Prn(tieAC)
Prn(pivAC) = 1.
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Proof of Proposition 3.5.
Let 0< ξ(A)= ξ(B)< ξ(C) and suppose that there exists some n̄ such that for all
n> n̄, 0< ξn(A)= ξn(B)< ξn(C).

Asymptotic pivot ratios
Recalling equation (3.7), this implies that for all n> n̄, Prn(pivAC)= Prn(pivBC).
Consequently,

limn→∞
Prn(pivAC)
Prn(pivBC)

= 1.

Similarly, by equation (3.8), for all n> n̄, Prn(piv−A
AC )= Prn(piv−B

BC ). This implies that

limn→∞
Prn(pivAC) + Prn(piv−A

AC )

Prn(pivBC) + Prn(piv−B
BC )

= 1.1⁸ (3.A.1)

Next, note that

δAB(ξ) =
p

ξ(A)ξ(B) − ξ(C) < ξ(C) − ξ(C) = 0,

δAC(ξ) =
p

ξ(A)ξ(C) − ξ(B) > ξ(A) − ξ(B) = 0,

δBC(ξ) =
p

ξ(B)ξ(C) − ξ(A) > ξ(B) − ξ(A) = 0.

Therefore, by Lemma 3.7,

µ(pivAC|Φnξn) = µ(pivBC|Φnξn) > µ(pivAB|Φnξn) = µ(tieABC|Φnξn).

Thus,

limn→∞
Prn(pivAB)
Prn(pivAC)

= limn→∞
Prn(pivAB)
Prn(pivBC)

= 0, and

limn→∞
Prn(tieABC)
Prn(pivAC)

= limn→∞
Prn(tieABC)
Prn(pivBC)

= 0.

18. This can also be derived by using Lemma 3.8. Then,

limn→∞
Prn(pivAC) + Prn(piv−A

AC )

Prn(pivBC) + Prn(piv−B
BC )

= limn→∞
Prn(tieAC)
Prn(tieBC)

Prn(pivAC)
Prn(tieAC) +

Prn(piv−A
AC )

Prn(pivAC)
Prn(pivAC)
Prn(tieAC)

Prn(pivBC)
Prn(tieBC) +

Prn(piv−B
BC )

Prn(pivBC)
Prn(pivBC)
Prn(tieBC)

=
1 +

Ç

ξ(C)
ξ(A)

1 +
Ç

ξ(C)
ξ(A)

= 1.
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Types AB, BA, CA, and CB vote sincerely
As n→∞, types AB and BA vote sincerely:

limn→∞
cn(A, AB)
cn(B, AB)

= limn→∞

2−v
3 Prn(tieABC) + 2−v

6 Prn(tie−A
ABC) + 1−v

2 [Prn(pivAB) + Prn(piv−A
AB )] + 1

2 [Prn(pivAC) + Prn(piv−A
AC )]

2v−1
3 Prn(tieABC) + 2v−1

6 Prn(tie−B
ABC) + v−1

2 [Prn(pivAB) + Prn(piv−B
AB )] + v

2 [Prn(pivBC) + Prn(piv−B
BC )]

= limn→∞
Prn(pivAC)
Prn(pivBC)

·
2−v

3
Prn(tieABC)
Prn(pivAC) +

2−v
6

Prn(tie−A
ABC)

Prn(pivAC) +
1−v

2 [
Prn(pivAB)
Prn(pivAC) +

Prn(piv−A
AB )

Prn(pivAC) ] +
1
2 [1 +

Prn(piv−A
AC )

Prn(pivAC) ]

2v−1
3

Prn(tieABC)
Prn(pivBC) +

2v−1
6

Prn(tie−B
ABC)

Prn(pivBC) +
v−1

2 [
Prn(pivAB)
Prn(pivBC) +

Prn(piv−B
AB )

Prn(pivBC) ] +
v
2 [1 +

Prn(piv−B
BC )

Prn(pivBC) ]

= limn→∞

1
2 [Prn(pivAC) + Prn(piv−A

AC )]
v
2 [Prn(pivBC) + Prn(piv−B

BC )]

=
1
v

>1.

The second to last step uses Lemma 3.3 and the fact that µ(pivAC|Φnξn)=
µ(pivBC|Φnξn)> µ(pivAB|Φnξn)= µ(tieABC|Φnξn). The last step uses equation
(3.A.1). The same argument applies to type BA.

Similarly, as n→∞, types CA and CB vote sincerely:

limn→∞ cn(A, CA)

= limn→∞ Prn(pivAC)

�

2v − 1
3

Prn(tieABC)
Prn(pivAC)

+
2v − 1

6

Prn(tie−A
ABC)

Prn(pivAC)

+
v − 1

2

�

1 +
Prn(piv−A

AC )

Prn(pivAC)

�

+
v
2

�

Prn(pivAB)
Prn(pivAC)

+
Prn(piv−A

AB )

Prn(pivAC)

��

= limn→∞
v − 1

2

�

Prn(pivAC) + Prn(piv−A
AC )
�

.

By contrast,

limn→∞ cn(C, CA)

= limn→∞ Prn(pivAC)

�

2 − v
3

Prn(tieABC)
Prn(pivAC)

+
2 − v

6

Prn(tie−C
ABC)

Prn(pivAC)

+
1 − v

2

�

1 +
Prn(piv−C

AC )

Prn(pivAC)

�

+
1
2

�

Prn(pivBC)
Prn(pivAC)

+
Prn(piv−C

BC )

Prn(pivAC)

��

= limn→∞
1 − v

2

�

Prn(pivAC) + Prn(piv−C
AC )
�

+
1
2

�

Prn(pivBC) + Prn(piv−C
BC )
�

.

Thus, there exists n̄ such that for all n> n̄, cn(A, AC)> cn(C, AC).
Thus, types AB, BA, CA, and CB vote sincerely. By symmetry, if voters of type AC

vote sincerely, then so do voters of type BC. It is therefore sufficient to consider two
equilibrium subtypes: the sincere equilibrium and the equilibrium in which types
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AC and BC vote strategically for C.

Sincere equilibria

ξ(A)
ξ(B)

= limn→∞
ξn(A)
ξn(B)

= limn→∞
τn(A)
τn(B)

= limn→∞
r(AB)pn(A, AB) + r(AC)pn(A, AC)
r(BA)pn(B, BA) + r(BC)pn(B, BC)

= limn→∞
r(AB)F(cn(A, AB)) + r(AC)F(cn(A, AC))
r(BA)F(cn(B, BA)) + r(BC)F(cn(B, BC))

.

Since, by Lemma 3.9, limn→∞ pn(t)= 0 for all t ∈ T, a Taylor expansion of F around
0 yields

limn→∞
ξn(A)
ξn(B)

≈ limn→∞
r(AB)

�

F(0) + f(0)(cn(A, AB) − 0) + 1
2 f 0(0) · . . .

�

+ r(AC)
�

F(0) + f(0)(cn(A, AC) − 0) + . . .
�

r(BA)
�

F(0) + f(0)(cn(B, BA) − 0) + 1
2 f 0(0) · . . .

�

+ r(BC)
�

F(0) + f(0)(cn(B, BC) − 0) + . . .
�

≈ limn→∞
f(0)
f(0)

r(AB)cn(A, AB) + r(AC)cn(A, AC)
r(BA)cn(B, BA) + r(BC)cn(B, BC)

Thus,

limn→∞
ξn(A)
ξn(B)

≈ limn→∞
r(AB)cn(A, AB) + r(AC)cn(A, AC)
r(BA)cn(B, BA) + r(BC)cn(B, BC)

= limn→∞
Prn(pivAC)
Prn(pivBC)

·
r(AB) cn(A,AB)

Prn(pivAC) + r(AC) cn(A,AC)
Prn(pivAC)

r(BA) cn(B,BA)
Prn(pivBC) + r(BC) cn(B,BC)

Prn(pivBC)

= limn→∞
Prn(pivAC)
Prn(pivBC)

· limn→∞

r(AB) cn(A,AB)
Prn(pivAC) + r(AC) cn(A,AC)

Prn(pivAC)

r(BA) cn(B,BA)
Prn(pivBC) + r(BC) cn(B,BC)

Prn(pivBC)

.

Using now Lemma 3.3 and the fact that µ(pivAC|Φnξn)= µ(pivBC|Φnξn)>
µ(pivAB|Φnξn)= µ(tieABC|Φnξn),

ξ(A)
ξ(B)

≈ limn→∞
r(AB) + (1 − v)r(AC)
r(BA) + (1 − v)r(BC)

·
Prn(pivAC) + Prn(piv−A

AC )

Prn(pivBC) + Prn(Piv−B
BC )

= limn→∞
r(AB) + (1 − v)r(AC)
r(BA) + (1 − v)r(BC)

,

where the last step holds because of equation (3.A.1). Thus, ξ(A)= ξ(B) only if
r(AB)+ (1− v)r(AC)= r(BA)+ (1− v)r(BC).
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Equilibria in which types AC and BC do not vote sincerely
Employing again the Taylor approximation from the previous step,

limn→∞
ξn(A)
ξn(B)

= limn→∞
τn(A)
τn(B)

≈ limn→∞
r(AB)cn(A, AB)
r(BA)cn(B, BA)

= limn→∞
Prn(pivAC)
Prn(pivBC)

r(AB) cn(A,AB)
Prn(pivAC)

r(BA) cn(B,BA)
Prn(pivBC)

=
r(AB)
r(BA)

· limn→∞
Prn(pivAC) + Prn(piv−A

AC )

Prn(pivBC) + Prn(piv−B
BC )

=
r(AB)
r(BA)

,

given equation (3.A.1).
Thus, ξ(A)= ξ(B) only if r(AB)= r(BA).
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