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Abstract

This thesis considers four search problems which are related to or emerge from a geometric context.
Each search problem is examined in a separate chapter; these four chapters are framed by an introduc-
tion and a conclusion which discuss the content at a meta-level. Chapter 1 introduces fundamental
concepts and formal notation. Additionally, references to related articles and textbooks for further
reading are provided.

Chapter 2 examines the search for a single target point t hiding in Euclidean space. The chapter
considers a new query model whereby query points must be placed to locate the target. The feedback
of the queries is an ordering of the query points by distance to t. With regard to the feedback, two
variants of the query model are distinguished: Either query points have to be placed all at once or one
by one depending on the response received on the previous queries. For both variants, we develop
lower and upper bounds on the precision that can be achieved.

Chapter 3 examines the search for a boundary point of a simply connected region R in the
Euclidean plane. Starting from an unknown position s ∈ R, the searcher follows a trajectory until a
boundary point is reached. A competitive analysis is employed to prove that a specific spiral strategy
achieves a reasonable competitive factor if R has a non-empty kernel; the competitive factor is even
optimal if s lies within the kernel of R. The basis for the competitive analysis is a new measure
of intrinsic complexity for instances of geometric search problems. In principle, the lower bound
technique can also be applied to prove optimality for other geometric search problems; for many of
them, optimality is a long-standing open problem.

Chapter 4 examines the search for a rounding of an edge-weighted graph which meets certain
constraints. Given an undirected graph with edge-weight function ω , (how efficient) is it possible
to find an integer-valued weight function ω̃ such that the absolute change in weight of each shortest
path is less than ε? What happens if we add the restriction that a shortest path w. r. t. ω should remain
shortest w. r. t. ω̃? We further impose the new restriction that a shortest path w. r. t. ω̃ must already be
shortest w. r. t. ω and settle the complexity status of all three versions of this problem: By reduction
from 3-SAT, even the simplest form is NP-hard for general graphs and small values of ε . However, if
the graph is a tree with n vertices, an algorithm is given to compute a solution in O(n2) time.

Chapter 5 examines the search for specific configurations in a new, two-dimensional, discrete
fire-expansion model. For example, given two cells s and t where cell s is initially set on fire, will cell
t eventually ignite? We prove this question to be undecidable, i. e., no general algorithm exists that
can solve every instance of this decision problem within any finite number of steps. In fact, we prove
by reduction from two-register machines that the fire-expansion model is Turing-universal, i. e., it is
capable of carrying out the computations of arbitrary Turing machines.
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Frequently Used Notations

Roman Symbols

b a box in the firefighting reduction, usually with coordinates (b1,b2)

c a constant in N; a cell in the cell-graph

d Euclidean metric

f ,g usually functions

fM (partial) function computed by Turing machine M

G = (V,E) a graph where V denotes the set of vertices and E the set of edges

L , L1/L2 a set of lists, the first/second layer of cells

M2 a specific two-register machine

M a specific Turing machine

p,q usually a (query) point

R, ∂R region in the Euclidean space and its boundary

s start (vertex/point/cell) of a path or fire

t end or target (vertex/point/cell) of a path or fire; a discrete moment in time

u,v usually vertices in a graph

yi,yi Boolean variable and its negation

Greek Symbols

αx Length of the circular arc segment of radius x around s of an escape path

δ transition function of a Turing machine, cellular automaton, or artificial neural network

ε a (small) positive value representing an error term or radius

Γ alphabet; spiral curve in the Euclidean plane

γ , γ(t) an escape path for some region



xii Frequently Used Notations

ω / ω̃ real-valued/integer-valued edge-weight function of a graph

π path or walk in a graph or the Euclidean plane

πs, πs(x) certificate path, certificate path for x and s

Σ alphabet (of a Turing machine)

σ , σi string (sequence of characters) over an alphabet, i-th character the string

ξ (L ) maximum-traversal-cost of a set of lists

ζ , ζ (t) an escape strategy for some region

Subscripts

i, j subscript indices used to enumerate elements

l , r , t , b subscript indices indicating the left/right/top/bottom direction

Other Symbols

Bε [p] closed n-ball of radius ε and center p

Bε (p) open n-ball of radius ε and center p

bs(p,q) bisector (bisecting curve) of two points p,q

(Rn,d) n-dimensional Euclidean space

Acronyms / Abbreviations

BFS breadth-first search

CA cellular automaton

CA random-access machine

CNF conjunctive normal form (of a Boolean formula)

DAG directed acyclic graph

DFS depth-first search

DNF disjunctive normal form (of a Boolean formula)

GoL (Conway’s) Game of Life

ILP integer linear program

ker kernel of a (polygonal) region in the Euclidean plane

lcm least common multiple

NN artificial neural network

SAT satisfiability problem of Boolean logic

TM Turing machine



Chapter 1

Introduction

For centuries, people intriguingly studied algorithms as systematic descriptions of procedures without
a formal definition of the term algorithm. To take two examples, consider the following tasks, an
arithmetic and a geometric one, cf. Figure 1.1: Given a pair of integer numbers, how can their sum,
difference, or product be computed? Or, given a rectangle in the plane, how can one construct a square
with the same area as the rectangle using only compass and straight edge? In both examples, a solution
to the specific instance can be obtained by carrying out basic operations following a certain procedure,
intuitively referred to as an algorithm.1 However, it was not until the 1930s that the term was properly
defined by Church, Gödel, Kleene, Turing and others. Their theoretical models of computation paved
the way for the invention of modern computers and laid the foundation for modern Computer Science.
For this reason, this decade can be considered as the genesis of Theoretical Computer Science, a
discipline dedicated to providing a mathematical foundation for past, current and future developments
in Computer Science.

A major mission of Theoretical Computer Science is to provide sound mathematical explanations
for (computational) questions which arise, e. g., from computer experiments or observations in
practice. Reconsider the two initial examples. As far as the impossibility of certain classical geometric
problems is concerned, Galois theory, a field of Mathematics, answers the question as to whether
a Euclidean constructions (algorithm) exists for a given task.2 However, when it comes to the
efficiency of computational tasks, no matter whether of arithmetic or geometric nature, it seems
fair to say that these are questions primarily examined in (Theoretical) Computer Science. Finding
answers to computational questions involves the following two fundamental steps: In a first step, a
problem or hypothesis is formally stated; in the second step, it is analysed mathematically. In both
steps, an underlying model serves as a cohesive framework interlinking reality and theory; it further
provides the basis for a mathematical treatment. The choice of the model must be done carefully:
On the one hand, the model needs to be simple enough to abstract from reality and to make the
hypothesis mathematically tractable. On the other hand, the model needs to be complex enough that
the hypothesis remains meaningful and its statement still accounts for the original context.

By examining four problems in new models, this thesis contributes the following results. The
chapters 2 to 5 discuss search problems which are related to or emerge from a geometric context. Each
problem is analysed in a new model or context which, compared to previously considered models,
adds some power so that surprising and non-trivial results can be proven. This does not only add a
certain twist to the problems, it leads to a better understanding of the problems and helps to provide

1 For a list of characteristics that such an intuitive algorithm should exhibit, see, e. g., [14, p. 3].
2 For a historical perspective on the notion of algorithms in the field of geometry, we refer to [87, pp. 1 ff.]
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w

ℓ ℓ ·w 1.

2.

3. hh2

4.

(i) Squaring a rectangle with compass
and straight edge, i. e., ℓ ·w = h2.

2 6 4
× 5 2 1

2 6 4
+ 5 2 8 -
+ 1 3 2 0 - -

= 1 3 7 5 4 4

(ii) The grade-school algorithm for the
multiplication applied to 264 and 521.

Figure 1.1: Two different examples of algorithmic procedures. (i) Given a rectangle, one can construct
a square of the same area using only ruler and compass by following these four steps. (ii) The
grade-school algorithm reduces the initial task to multiplications with a single digit and additions of
intermediate results.

mathematical explanations for related problems. The four problems of this thesis can be distinguished
via two dimensions: The type of search space (either continuous or discrete) and the number of targets
(either a fixed, single target, one arbitrary target from many, or multiple targets at once).

Chapter 2 examines the search for a single, stationary target point t in a continuous search space.
The chapter considers a new query model: Query points are placed in the search space to locate
the target; the feedback of the queries is an ordering of the points by distance to t. With respect to
the feedback, two variants of the model are distinguished: Either the query points are placed all at
once, or points are placed one by one depending on the responses received on the previous queries.
Note that the feedback always reveals information about t’s location with respect to all previously
placed query points; hence, the new query model appears to be stronger than models where feedback
only gives information about the most recently issued query, such as, e. g., in a binary search. This
raises the question as to whether one can benefit from this additional information. As a matter of fact,
such benefits are possible but limited; we prove lower and upper bounds on the precision that can
be achieved. These results provide evidence for the observation that binary searching is an efficient
approach in many settings.

Chapter 3 also considers a search problem in a continuous search space; however, the objective
is to find one out of many target points. More precisely, located at a starting point s in an unknown,
simply connected region R in the Euclidean plane, one must reach ∂R, the boundary of R, within
a reasonable amount of time. Time is the limiting cost in this search problem and is measured in
terms of the length of the path one follows to reach ∂R. When comparing the cost of a strategy
to the shortest path from s to ∂R, it seems impossible to prove the optimality of certain strategies.
As an alternative to this standard cost model, we introduce a new cost model for geometric search
problems in the plane and discuss the performance of search strategies with respect to this measure.
Generally speaking, this cost model opens up an alternative way to prove optimality of geometric
search strategies. We apply this technique to prove the optimality of spiral searching strategies for
the initial problem and a similar one. The results provide evidence for the observation that spiral
searching is highly efficient for many geometric search problems in the Euclidean plane.

In contrast to previous chapters, Chapter 4 examines the search for a solution to the following
discrete problem where multiple constraints must be met: Given an undirected graph with edge-weight
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function ω; (how efficient) is it possible to find an integer-valued weight function ω̃ such that the
absolute change in weight of each shortest path is less than ε? What happens if we add the restriction
that a shortest path w. r. t. ω should remain shortest w. r. t. ω̃? We further impose the new restriction
that a shortest path w. r. t. ω̃ must already be shortest w. r. t. ω . The flexibility in this rounding model
is given by the error threshold ε , which immediately raises the question whether the difficulty only
depends on ε . In fact, such a rounding always exists for rational-valued ω if the error threshold ε is
not part of the input and can be chosen arbitrarily large; yet, it is not clear whether this also holds for
every real-valued ω . For small, fixed values of ε , we settle the complexity status for all three versions
of this problem: By reduction from 3-SAT, even the simplest form of this problem is NP-hard for
general graphs. However, if the graph is a tree with n vertices, an algorithm is given to compute a
solution in O(n2) time. These results fit to two general observations in Theoretical Computer Science:
First, for many problems3 better runtime bounds exist for integer-valued than for real-valued input;
thus, it seems unlikely that real-valued input can be efficiently transformed into integer-valued input
without loss of information in our rounding model. Second, many NP-hard problems on general
graphs are easy to solve on restricted graph classes, e. g., vertex cover or dominating set.

Finally, Chapter 5 is motivated by the following search problem for a single, specific configuration
in a new, two-dimensional, discrete fire-expansion model: Given two cells s and t where cell s is
initially set on fire and the fire expands in discrete time steps, will the target cell t eventually ignite?
The new model builds on existing ones by introducing two integer parameters to each cell, which
model the cell’s resistance against ignition and its remaining fuel. This simple extension adds a lot of
computational power to this model: We prove by reduction that the fire-expansion model is Turing-
universal, i. e., it is capable of simulating the computations of every Turing machine. This implies
that the initial question is undecidable on Turing machines, i. e., no general algorithm exists that can
solve every instance of this problem within any finite number of steps. Since the fire-expansion model
is related to concepts like cellular automata and artificial neural networks, both of these concepts
are briefly reviewed and their relation to the model is discussed. The results of this chapter provide
another example of a general observation in science and nature: Simple, local structures with a simple,
local behaviour can often lead to incredibly complex global behaviour. Unlike in many other models,
this is even possible if the cells cannot restore their initial state.

Organisation of this chapter. The remainder of this chapter briefly introduces the fundamental
concepts and the formal notation used throughout this thesis. It indicates where these concepts are
required in this thesis and provides references to related articles and textbooks for further reading.
This chapter closes with a detailed overview of how the content of this thesis relies on results that
were previously presented at conferences or workshops, and published in peer-reviewed proceedings
or journals.

1.1 Graphs and Basic Exploration Algorithms

Many interesting search problems on graphs involve the search for a single or multiple targets.
Often, it is assumed that a target can hide at any vertex of a graph G = (V,E). Thus, a strategy
might need to search at every vertex of G in the worst case. Moreover, if G is unknown from the
beginning, the strategy can not compute a shortest walk to traverse G optimally; quite the contrary,
the strategy has to systematically explore the vertices and edges of G. Hence, such a strategy is also

3For example, shortest-path or sorting problems.
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called an exploration strategy for G. Two fundamental exploration algorithms for graphs follow the
diametrically opposed search paradigms Breadth-First Search (BFS) and Depth-First Search (DFS):
Both start at a specified vertex s ∈ V ; while BFS gradually expands the search depth from s, DFS
successively visits a non-marked neighbour of the current vertex if possible and retracts otherwise.
For a more precise description of both graph algorithms see, e. g., [23]. Although both algorithms
will eventually locate a stationary target in every finite graph, their performance can be quite different;
often, the performance of these basic exploration algorithms can be improved in certain settings, see,
e. g., [29, 56, 58, 64]. Finally, BFS and DFS are a starting point for many other applications; to give
two examples: They can be used to test certain properties of G, e. g., whether G is connected or even
a tree; moreover, BFS can be applied to compute a shortest path between vertices u,v of a directed
acyclic graph, i. e., a u-v path of minimal weight.

Graphs, breadth-first search and depth-first search appear several times throughout this thesis.
Section 3.2 introduces Kirkpatrick’s [64] discrete search problem on lists, for which he developed a
new measure of intrinsic complexity balancing BFS and DFS in an optimal way. In Chapter 4, we
search for roundings of a finite, undirected, edge-weighted graph G. For the special case where G is a
tree, such a rounding can be efficiently computed. Finally, the new fire-expansion model, introduced in
Chapter 5, is based on a planar, node-weighted cell-graph. Moreover, the chapter considers a directed,
infinite configuration-graph which models the behaviour of an abstract machine that can carry out
computations of an arbitrary computer program. In such an infinite, directed configuration-graph
neither BFS nor DFS can always find a desired target vertex t when starting from a given vertex s.
As we will see, the situation is even worse: There exists no algorithm that can solve this problem in
general!

The notation which we introduce in the following is commonly used in Mathematics and Computer
Science; e. g., it can be found in [23, 65, 83]. A graph G is defined as a tuple (V,E) where V denotes
a finite set of vertices and E a finite set of edges. Each element of E is an unordered pair of distinct
vertices. Two vertices u,v ∈V are called adjacent if {u,v} ∈ E; thus, v is called a neighbour of u and
the neighbourhood of u is the set of all neighbours of u. The degree of u is the number of neighbours
of u. Graphs can also be defined for infinite sets of vertices and edges; we will explicitly distinguish
between finite and infinite graphs where necessary.

In addition to these basic definitions, there are several other important definitions for structures
in G. A graph is called directed if E is a binary relation on V , i. e., every element of E is an ordered
pair of distinct vertices; to distinguish a directed from an undirected edge, we write (u,v) instead of
{u,v}. In a directed graph, v is called a neighbour of u (or adjacent to u) if (u,v) ∈ E. The outdegree
of a vertex u is the number neighbours of u and the indegree is the number of nodes to whom u is
adjacent to. The triple (V,E,ω) is called a weighted graph G if ω is a mapping that assigns a (real)
weight to every edge of E. A v0-vl walk π is a sequence of vertices v0, . . . ,vl where {vi,vi+1} ∈ E for
every 0≤ i < l; v0 is also called the start and vl the end of π . The number of edges l is called the length
of the walk and ω(π) := ∑

l−1
i=0 ω({vi,vi+1}) its weight. A path is a v0-vl walk where v0, . . . ,vl are

distinct; a cycle is a walk where start and end are identical, i. e., v0 = vl . A graph is called connected
if there exist a u-v walk for every pair of vertices u,v ∈V .

There are many important types of graphs, also called graph classes; relevant in this thesis are
the following ones. An undirected graph T = (V,E) is called a tree if T is simply connected and
does not contain a cycle; if all vertices of T have degree at most two, it is also called a path graph or
list. A directed graph that does not contain a cycle is called a Directed Acyclic Graph (DAG). We
call a graph planar if it can be drawn in the Euclidean plane where: vertices correspond to points in
the plane, edges correspond to arcs between points, and arcs only touch at points that correspond to
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vertices; for a more formal definition of planarity, see ,e. g., [83, 101]. Moreover, an undirected graph
is called regular if all vertices have the same degree; a directed graph is called regular if all vertices
have the same in- and outdegree. Finally, a regular, undirected graph is called a cell-graph if the nodes
of the graph are cells which are joined by an edge if their cells lie side by side.

Certainly, a reason why graphs are a very popular discrete model is the simplicity with which
many real world applications can be naturally modelled. In traffic networks, cities can be modelled
as vertices whereas edges model connecting highways. In social networks, registered users can be
modelled as vertices and an edge is created whenever two persons become friends or one follows the
other. Last but not least, graphs can be used to model the behaviour of a physical machine, such as an
elevator or a vending machine; the resulting graph is also called a state diagram.

1.2 Basic Concepts of Computational Geometry

Many interesting geometric search problems involve the search for points or paths in the Euclidean
space. Problems where points in a certain subspace have to be located (and reported) usually ask
for data-structures which support these operations efficiently; for further cf. [26, 65, 87]. Problems
that ask for certain paths within a region R often consider shortest paths and shortest escape paths,
where the term shortest refers to the length of the trajectory. While a shortest path between two
points s, t ∈ R does not need to intersect with ∂R, a shortest escape path for R must intersect with
∂R for every possible orientation and every possible start s ∈ R. In two-dimensions, shortest s-t
paths can be computed efficiently in simple polygons [46, 76]. There are also efficient algorithms to
compute shortest s-t paths in scenes with polygonal obstacles in the Euclidean plane [54]. However,
in three-dimensional space, we cannot expect such an efficient solution; already the combinatorial
problem of determining the sequence of obstacles-edges touched by a shortest path is NP-hard [18].
It seems even more difficult to find shortest escape paths for regions in the Euclidean plane; only
for rather few types of regions a shortest escape path is known [36]. Moreover, there is no general
algorithm to compute a shortest escape path for a given region. For a survey on geometric shortest
path problems, see, e. g., [80]. In general, the search for paths (trajectories) with certain properties
has been subject of many research articles and book in the field of competitive path planning; e. g.,
see [3, 59, 60].

Concepts of (Computational) Geometry appear several times throughout this thesis. Chapter 2
considers the search for a single target point t in a bounded subspace of the Euclidean space; e. g., the
unit interval, the unit disk, the unit cube, or the unit circle. The search space considered in Chapter 3
is an unknown, simply connected region R in the Euclidean plane; the aim is to develop general
strategies (geometric trajectories) which search for ∂R and approximate the unknown shortest escape
path of R. We also present an algorithm to compute a certain escape path in simple polygons. Finally,
in Chapter 5, we embed an infinite graph into the Euclidean plane; the geometric coordinates of the
embedded vertices are used to store the register content of an abstract machine model.

The notation introduced in the following is commonly used in Mathematics and Computer Science;
it can be found e. g. in [65]. For any fixed n ∈ N, we call the metric vector space (Rn,d) equipped
with the Euclidean metric d : Rn×Rn→R, d (p,q) := (∑n

i=1(pi−qi))
1/2 the n-dimensional Euclidean

space. For the special cases where n = 1 and n = 2, the search spaces are also called the line and the
Euclidean plane. A subspace S of the Euclidean space is a subset S⊂Rn equipped with the Euclidean
metric.

Often, the search space is restricted to a subspace of the Euclidean space. The unit interval is
the subspace [0,1] of the line; the n-dimensional unit cube denotes the subspace [0,1]n of Rn. With
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Bε (p), we denote the open n-ball of radius ε and center p, i. e., Bε (p) := {q ∈ Rn | d (p,q) < ε};
moreover, with Bε [p] := {q ∈Rn | d (p,q)≤ ε}, we denote the closed n-ball. For n = 2, the subspace
B1 [0] is called the closed unit disc and the boundary ∂B1 [0] := {q ∈ R2 | d (p,q) = 1} of which is
called the unit circle.

In general, a subspace S ⊂ Rn can be open or closed. A point p in a subspace S is called an
interior point of S if an ε > 0 exists whereby Bε (p)⊂ S. Moreover, S is called open if all points of S
are interior points; S is called closed if its complement, i. e., Sc := {p ∈ Rn | p ̸∈ S} is open. A point
p ∈ Rn is called a boundary point of S if, for every ε > 0, Bε (p) contains a point of S and a point of
Sc; the set of all boundary points of S is called the boundary of S and denoted with ∂S.

Important objects studied in Euclidean space are paths. A path γ is (the image of) a continuous
and rectifiable mapping of [0,1] into Rn. We consider γ(0) as the start of the path and γ(1) as its end;
γ is called closed if start and end coincide, i. e., γ(0) = γ(1). With {γ} we denote the trace of γ , i. e.,
{γ(t) : 0≤ t ≤ 1}, and with |γ | we denote its length. Moreover, γ is called a simple path if all of its
points, except for possibly start and end, are distinct; i. e., ∀t, t ′ ∈ [0,1), γ(t) = γ(t ′) implies t = t ′.

Subspaces of the Euclidean plane with important properties are (simply connected) regions. A
subspace R⊂ R2 is called path-connected if, for every two points s, t ∈ R, there exists a path γ from s
to t that fully lies in R, i. e., γ(0) = s,γ(1) = t and {γ} ⊂ R. Moreover, R is called a region if R is
open and path-connected. The Jordan curve theorem states that every simple, closed path γ subdivides
the Euclidean plane into exactly two regions: An inner, bounded region with γ as its boundary; and
an outer, unbounded region of which the boundary is also given by γ . Finally, R is called simply
connected if R is path-connected and, for every simple, closed path γ in R, the inner, bounded region
is fully contained in R.

Important objects studied in the Euclidean space or plane are line segments, polygonal chains
and polygons. A line segment pq between two point p,q ∈ R2 is defined as the set of points
{p+λ (q− p) | 0 ≤ λ ≤ 1}. For a sequence of points p1, . . . , pn, the path γ which consist of the
sequence of line segments pi pi+1 for 1≤ i < n is called a polygonal chain. If the polygonal chain γ is
simple and closed, it defines a simply connected, closed region which is called a (simple) polygon P.
Note that the boundary ∂P of P is exactly γ and belongs to P. The points p1, . . . , pn are also called
the vertices (or corners) of P; the line segments pi pi+1 are also called the edges of P. The size of P is
given by the number n of vertices of P.

Other important objects are defined based on the concept of visibility. In an arbitrary region R,
a point q ∈ R is said to be visible from p ∈ R if the line segment pq is fully contained in R, i. e.,
pq⊂ R. Moreover, the kernel of R is the set of points from which all other points in R are visible, i. e.,
ker(R) := {p ∈ R | ∀q ∈ R : pq⊂ R}. Finally, given a polygon P and a specific point p ∈ P, we define
the visibility polygon of p in P as the subset Vp ⊂ P of all points which are visible from p. Note that
the visibility polygon Vp consists of some of the vertices and (parts of) the edges of P and can be
computed efficiently, cf. [65].

Certainly, a reason why the Euclidean space is a popular model is the way it naturally models
the space in which we live. Up to three dimensions, it is easy to visualize and gain intuition on a
geometric problem. Moreover, the Euclidean space is equipped with a natural metric d that provides
important properties: For any p,q,r ∈ Rn, the distance from p to q is symmetric and non-negative,
i. e., d (p,q) = d (q, p) ≥ 0; it further satisfies the triangle inequality d (p,r) ≤ d (p,q) + d (q,r).
While discrete models, such as graphs, often abstract from geometric information, this data can
be maintained in Euclidean space. Often, it can be exploited to develop more efficient algorithms
for a given problem. The field of Computational Geometry aims to use geometric information and
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geometric properties to develop efficient algorithms for geometric problems; see [26, 65] for further
reading.

1.3 Models of Computation and Computability

To examine computational problems theoretically, it is necessary to agree on a model of computations.
These theoretical models make the results independent of existing technology, specific hardware and
computer architectures; instead, they allow to focus on the mathematical nature of computational
problems and to gain insight into their structure. Many different machine models have been devel-
oped in the past to capture the intuitive notion of computability or to address specific features of
computational hardware.

Throughout this thesis, the following models of computation appear, more or less explicitly,
several times. With respect to the runtime analysis of algorithms, we assume that the underlying
machine model is a (variant of the) Random-Access Machine (RAM): In Chapter 2, this is a standard
RAM; depending on whether the input is rational or real-valued, Section 4.3 presumes a RAM
supporting the floor operation or the stronger real RAM model; definitely, a real RAM is presumed in
Section 3.3.5. With respect to the polynomial-time reductions described in Section 4.2 and Section 5.3,
the standard RAM model, which is equivalent to the Turing machine model, suffices to establish the
connection between two computational problems. In addition to the RAM model, we use another
machine model in Chapter 5: two-register machines. This simple model is capable of simulating the
computations of every Turing machine, which we point out in Section 5.3.1. Moreover, we show how
to simulate computations of two-register machines with a new fire-expansion model introduced in
Chapter 5. The notation defined in the following is commonly used in Mathematics and Computer
Science; it varies slightly between authors, e. g., see [4, 14, 100].

Turing machines are an important model for the study of computational problems. A deterministic
Turing machine M = (Σ,Q,δ ) is a tuple where Σ is a finite set of symbols, called alphabet; Q is a
finite, non-empty set of possible states; and δ : Q×Σ→ Q×Σ×{−1,0,+1} defines a transition
function. The tape consists of an infinite number of cells4 and a head that always points to one of
the cells. Each cell of the tape contains a single character, i. e., an element of Σ; all except for a
finite number of cells contain the predefined blank symbol ⊔ ∈ Σ. Ignoring the infinite number of
cells with blank symbols to the very left and right of the tape, we can describe the content of the
tape with a finite sequence σ = (σ1, . . . ,σn) of characters which is called a string or word over Σ;
moreover, n defines the length of σ . The configuration of M at a discrete time t is a snapshot of M’s
current state q ∈ Q, M’s tape string σ , and the index i of the character to which the head currently
points; thus, it can be uniquely represented with the tuple (σ ,q, i). At any time t, a computational step
is carried out by: (i) reading the character a ∈ Σ to which the tape head points to and (ii) applying
the transition function at time t to obtain δt(q,a) = (q′,a′,m). This transfers M into a state q′ ∈ Q,
replaces the character a at the head’s position with a′, and moves the tape head to the left (m =−1)
or right (m =+1) neighbouring cell or not at all (m = 0). Thus, M is transferred from configuration
(q,σ , i) to configuration (q′,σ ′, i+m).

Turing machines provide a formal definition of what we described intuitively as an algorithm at
the beginning of this chapter. The input of a Turing machine M is a finite string σ ∈ Σ∗; the length
|σ | of the string is called the input size; we assume that the head initially points to σ1. We say that
M terminates (or halts) for the input σ if there exists a time t > 0 such that δt(q,a) = (q,a,0) where

4More precisely, the tape has an infinite number of cells to the left and right direction. Thus, every cell has a unique left
and right neighbouring cell.
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δt denotes the t-th application of the transition function.5 We define the runtime of M for σ as the
minimum number of steps provided that the M terminates for input σ ; otherwise we consider the
runtime to be infinite. Since the runtime of M does not only depend on the input size but also on
the specific symbols of σ , we often consider the worst-case runtime for an input of size n; i. e., the
maximum runtime of M over all possible inputs of size n. The output of M is given by the final tape’s
string if M terminates.

Based on the definition of a Turing machine, we further define many other important terms. A
Turing machine M uniquely identifies an input σ ∈ Σ∗ with an output σ ′ ∈ Σ∗ if M halts on σ , since M
is deterministic; thus, M computes a partial function fM : Σ∗→ Σ∗. To put it the other way round, we
call a function f computable if there exists a Turing machine that computes f . We call two different
Turing machines M,M′ equivalent if they compute the same function; i. e., for every σ ∈ Σ∗, either
M,M′ both halt and fM(σ) = fM′(σ) or neither of them halts. Although both compute the same
function, M and M′ may very well differ with regard to their runtime; hence, we might be interested
to compare two Turing machines with regard to their runtime. For this purpose we introduce the
following notation.

To compare the asymptotic growth of two functions, we use the following standard notation [44].
For two functions f ,g : N→ R≥0, we write f ∈ O(g)⇔ limn→∞

f (n)/g(n) < ∞ and f ∈ Ω(g)⇔ g ∈
O( f ). Throughout this thesis, we use this notation not only to analyse the asymptotic runtime of
algorithms; we use it also to bound the number of certain objects or the precision of an algorithm
depending on the input size. Let f (n) denotes the worst-case runtime of an algorithm with an
input of size n; then we write that f (n) is polynomial if there exists a polynomial g(n) such that
f (n) ∈ O(g(n)). Note that the notation allows to simplify the polynomial g to a monomial with
multiplicative coefficient one. Since these simplifications are of minor importance in the limit, we
may speak of asymptotic bounds: We write g is an upper bound for f (g bounds f from above, g
upper-bounds f ) if and only if f ∈ O(g); similarly, we write g is a lower bound for f (or g bounds f
from below, g lower-bounds f ) if and only if f ∈Ω(g).

One reason why the Turing machine is a popular model is certainly its simple and robust definition.
Many modifications of the definition do not substantially change the model. For example, it makes no
difference to use any fixed, positive number of tapes; use any fixed, positive number of heads per tape;
use only tapes with a semi-infinite number of cells; reduce the size of the alphabet to only the digits
0 and 1. All these modified versions can be simulated by Turing machines of the above definition
with a runtime overhead which is upper-bounded by a polynomial in the input size. Furthermore,
Turing machines proved to be equivalent to several other attempts to define the intuitive notion
of computability such as: general recursive functions; WHILE- and GOTO-programs; λ -calculus;
RAMs; register machines. The fact that all these definitions are basically equivalent, supports the
Church-Turing thesis which states that the functions computed by Turing machines are exactly those
functions which can be computed intuitively; it further allows us to use the terms computable and
computability independent of the Turing machine model.

Another reason for the popularity of the Turing machine model might be its practical implications.
Certainly, the computations of a Turing machine can be easily carried out using pen and paper.
However, the most stunning implication is that Turing machines are computers and algorithms at
the same time; they also give a formal definition of what hard- and software is: Since all defining
components of a Turing machine M are of finite size, M can be described as a finite string σM itself.
Thus Turing showed that general purpose machines are conceivable which lead to the design of the

5Note that there will be no more changes to the tape’s content in future steps. Alternative definitions assume that TM
switches to a special halting state.



1.3 Models of Computation and Computability 9

first, modern computers. Moreover, Turing showed that a so-called Universal Turing machine U
exists which is able to carry out the operations of any other Turing machine M given in the form of
σM . This Universal Turing machine U can be seen as a sort of (low-level) hardware computer which
is capable of running any given software program. Furthermore, U is a key component to prove the
undecidability of problems such as the halting problem, i. e., no algorithm exists which can decide
whether a Turing machine will ever halt.

Another important model for the study of computational problems is the Random-Access Machine
(RAM). Compared to Turing machines, this model is slightly more oriented to the design of real
computers. The RAM consists of an unlimited number of registers each of which can contain an
arbitrarily large integer or floating point number. To manipulate the content of a register, the RAM
executes instructions, one at a time. The set of available instructions usually contains arithmetic
operations such as additions, subtractions, multiplications or divisions; data-movement operations to
load, store and copy register content; and operations to manipulate the control flow such as conditional
statements, jumps, call of subroutines or return statements.

The RAM model simplifies the analysis of algorithms tremendously. Often, algorithms are given
in pseudocode, a (textual) high-level description of the operations that an algorithm needs to perform.
Given the pseudocode of an algorithm, its runtime can be analysed by simply counting the number
of basic operations a RAM has to carry out. Compared to the basic operations provided by Turing
machines, this simplifies the runtime analysis for the algorithm essentially. Luckily, an analysis based
on the RAM model is not fundamentally different as when based on the Turing machine model: One
can prove that a RAM can be simulated by a Turing machine with only a small polynomial runtime
overhead and vice versa.6

Frequently used variants of the standard RAM are the real RAM and the word RAM model. The
real RAM extends the standard definition by the following two assumptions: First, every register
can store an arbitrarily large real number; second, the set of operations contains analytic functions
such as k-th root, exp, log and trigonometric functions. Since its first description in [91], this model
has become the standard model in the field of Computational Geometry [26, 65, 87]. In the word
RAM model, the size of every register is limited to a certain number of bits. For example, if the input
consists of integer values with a maximum absolute value of n ∈ N0, the number of bits per register is
assumed to be c · log(n) for some constant c≥ 1. This avoids that huge amount of data can be stored
in a single register.

Σ∗ Σ∗

Γ∗ Γ∗

f

r

g

r′

Figure 1.2: Reducing f to g.

Functions can be related to each other using so-called reductions.
The notation introduced in the following is inspired by Blum [14]
and lectures of Rolf Klein; it is slightly more general than other
definitions and allows to relate functions which depend on different
models of computation. Let f : Σ∗ → Σ∗ and g : Γ∗ → Γ∗ be two
(partial) functions. We define that f can be reduced to g if and only if
there exists a pair of functions r,r′ : Σ∗→ Γ∗ which relates the input
and the output of f to g such that the diagram on the right commutes;
moreover, we assume that r is total and r′ is injective. Thus, for every
input σ ∈ Σ∗ it is r′( f (σ)) = g(r(σ)) and f (σ) can be obtained by
applying the (partial) inverse function of r′ to g(r(σ)), alternatively. Note what such a reduction
implies for f : If the functions r,g,r′ are Turing-computable, so is f and we call the reduction a
Turing-reduction; moreover, if r,g,r′ are computable in polynomial time on Turing machines each,

6This holds in the logarithmic cost model where the cost of a RAM operation depends on the number of bits used to
store the corresponding arguments. For a proof, cf. [14] or [4].
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so is f and we call the reduction a polynomial-time reduction. Since f and g solve computational
problems, we also write that a problem is polynomial-time reducible to another problem without
explicitly mentioning the underlying functions. Finally, note that f and g could rely on completely
different models of computation; e. g., in Chapter 5 we prove that every Turing-computable function f
can be reduced to a function g which is defined by a fire’s expansion in the new fire-expansion model.

1.4 Basic Concepts of Computational Complexity

The model of computation is useful to classify (decision) problems with respect to their resource
requirements, e. g., their worst-case runtime. Such classifications are subject to Complexity theory. A
fundamental problem of Computational Complexity arises from propositional logic and asks for the
satisfiability of Boolean formula.

Boolean expressions, the complexity classes P and NP, and the satisfiability problem SAT appear
several times throughout this thesis. In Section 2.2, we use Boolean expressions to optimize a given
query strategy: In a preliminary step, we model minimum requirements as a Boolean formula; then,
we convert the formula to DNF to read off optimal solutions. The complexity classes NP and the
satisfiability problem SAT appear explicitly in Chapter 4 of this thesis; by polynomial-time reduction,
SAT is reduced to the decision problem as to whether an ε-rounding of a given edge-weighted graph
and an error-threshold ε exists. The reduction implies NP-hardness for the rounding problem.

In the following, we summarize only basic concepts of Complexity theory using standard notation
and the Turing machine model; for further reading and a more detailed description we refer to [4].
A subset L ⊂ Σ∗ is called a language over the alphabet Σ; the total mapping χL : Σ∗→ {0,1} with
χL(σ) = 1⇔ σ ∈ L is called the characteristic function of L or a decision problem in general7. We
write that a Turing machine ML decides L if ML computes the characteristic function χL.

The complexity class P is the set of languages which can be decided by Turing machines in
polynomial time; i. e., L ∈ P if χL is computable in O(|σ |c) time for every input σ ∈ Σ∗ and some
constant c ∈ N. Similarly, the class NP is the set of languages for which their characteristic function
can be verified by Turing machines in polynomial time; i. e., for every language L ∈ NP there exists a
function fL : Σ∗→{0,1} with the following property: For every w ∈ L, there exists a v ∈ Σ∗ such that
fL(v) = 1 and fL is computable in time O(|w |c) by Turing machines for some constant c ∈ N.8 Note
that the definition of P and NP is robust with respect to the machine model; more precisely, it does
not depend on whether a Turing machine or RAM is the underlying model of computation.

Based on the hypothesis that P is a proper subset of NP, reductions are the key to interrelate
different problems and thus define so-called complexity classes, i. e., sets of problems that can be
decided with similar computational effort. This has been done in the 1960s by defining the complexity
classes P and NP with the aim to explain why some computational problems can be solved efficiently
on modern computers whereas others cannot. It has been continued with the discovery of the
polynomial time (and space) hierarchy and numerous other complexity classes. Recently, reductions
have been used to refine problems within P in order to explain the lack of improvements in theoretical
runtime bounds for various popular problems over many years.

Important problems in Computational Complexity arise from propositional logic. A Boolean
expression or formula α consist of variables y1, . . . ,yn, the logical operators ∧,∨ and ¬, and brackets
(,). To each variable, one can assign either the logical value true or false which we represent with

7This stems from the fact that χL maps a word in L to a truth value and thus decides whether a given σ ∈ Σ∗ is part of L.
8Note that the polynomial runtime bound on the runtime of fL implies a polynomial bound on the length of v.
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the binary values 1 and 0. An assignment for α is a mapping ψ : {y1, . . . ,yn}→ {0,1}. A Boolean
formula α is said to be in conjunctive normal form (CNF) if α can be written in the form

α =
∧

1≤i≤m

ci with ci :=

(∨
j

li j

)
,

where each literal li j is either a variable yk or its negation yk. Each disjunction ci is called a clause
of α . Similarly, α is said to be in disjunctive normal form (DNF) if α can be written in the form

α =
∨

1≤i≤m′
c′i with c′i :=

(∧
j

li j

)
.

Note that a clause of α in DNF is a conjunction of literals.
A key problem in NP is the Boolean satisfiability problem of propositional logic (SAT). The

problem SAT asks whether a given CNF formula α is satisfiable; more precisely, SAT is the
language of Boolean expressions which are in CNF and have a satisfying assignment. Cook and
Levin independently proved that any other problem in NP can be reduced to an instance of SAT in
polynomial time. Thus, SAT cannot be solved substantially faster than any other problem in NP; it is
said to belong to the set of hardest problems in NP which is also called NP-hard problems. Certainly,
SAT is in NP since the correctness of a given assignment can be verified by simply evaluating the
formula.
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Chapter 2

Searching for a Stationary Target Point

This chapter examines the following search problem in a continuous search space: A single target
point t hides in a bounded part of the Euclidean space. To pinpoint the location of t as precise as
possible, we issue query points q1, . . . ,qn in the search space; the feedback is an ordering of the query
points by distance to t.

With respect to the feedback, we distinguish two variants: Either query points have to be placed
all at once, which we refer to as the one-shot variant; or, points are placed one by one depending
on the response received on the previous queries which we refer to as the incremental variant. For
both variants we establish lower and upper bounds on the precision that can be achieved. At first, we
consider the case where the search space is the unit interval or the unit circle, i. e., the boundary of the
unit disc. Then, we discuss what this implies for higher dimensional search spaces.

2.1 Formal Problem Statement and Related Work

In many settings one essentially searches for a target based on information retrieved from an ordering
or ranking of objects. Imagine we want to set up receivers to locate an animal which carries a tracking
device that sends signals. The strength of the signals may vary, but we know one thing for sure: the
closer the animal is, the stronger is the signal. Or imagine a researcher conducting a survey who
wants to summarize respondents’ political preferences by scoring them on several scales, e. g., from
conservative to progressive, or from favouring a small state to a large state. Respondents may not be
able to score themselves but, given a number of hypothetical party programmes, they can rank them
and say which one they like best.

To address settings like these, we consider the following model. We assume that the target is a
point in a one- or higher-dimensional space. To pinpoint the location of the target, we issue queries
(receivers, party programmes) that are points in the same configuration space. As a response, we
obtain an ordering of the query points according to their distance to the target. From this we try to
derive the location of the target with the highest possible accuracy; or conversely, we try to reach high
accuracy with as few (expensive) queries as possible.

Searching for a stationary target is a common problem in Computer Science and Applied Math-
ematics. Strategies such as evenly distributed query points or binary search immediately spring to
mind; however, as we will see in this chapter, at least in certain abstract settings of the problem we
can do much better. The problem of efficiently obtaining an order on a set of objects has been studied
before in very general settings [62], but note that in our case, the cost measure is the number of query
points that are used, not the number of comparisons that are made between them. The reconstruction
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of geometric objects based on a sequence of geometric probes, such as points, lines, hyperplanes, or
wedges, has also been investigated: the problem was introduced by Cole and Yap [21] and the main
focus is also on the number of queries [94].

Specifically, we focus on the following setting.

Definition 1 (query strategy). Given a bounded subspace R of the Euclidean space, a certain number
of queries n ∈ N and a target t at an unknown position within R.

A query point is a specific point in R and a query strategy is an ordered set of n query points
q1, . . . ,qn ∈ R. The response of the i-th query is an ordering of the points q1, . . . ,qi by increasing
Euclidean distance to t.

The response of a query allows to restrict possible locations of the target t within R to a subspace
of R. Given two query points qi,q j, the bisector of qi and q j is the set of points for which the distance
to qi equals the distance to q j, which we denote with bs(qi,q j). For every pair of query points,
their bisector divides R into two subspaces. Thus, the ordering of the query points restricts possible
locations of t to one of these two subspaces. Considering all pairs of query points, possible locations
of t are restricted to a subspace bounded on each side by a bisector or the boundary of R.

In the following, we use the diameter of the resulting subspace as the measure for the accuracy.
One can argue to use the area of the region instead; however, this can result in very thin and long
regions contradicting the aim to precisely locate the target, as the diameter limits the area but not vice
versa.

Definition 2 (accuracy). Let diam(R) denote the diameter of R and let S ⊂ R be the subspace in
which the target is found to lie after the n-th query point has been placed.

The accuracy of a query strategy is the minimum value diam(R)/diam(S) over all possible
locations of t ∈ R.

With respect to the frequency of the responses, we distinguish two variants. In the one-shot
variant, the response is only given after all n query points q1, . . . ,qn have been placed. In this case one
needs to maximize the number of different, well-spaced bisectors. Such combinatorial questions are
classical problems in discrete geometry; see for example [77]. Moreover, this variant is closely related
to problems from Arithmetic Combinatorics or Combinatorial Number Theory. In the incremental
variant, a response is given after each query point placement and may affect the choice of the next
point. Thus, query strategies can operate in a binary search fashion, but we can do even better than
that, as we will see later. Note that the incremental variant can also be interpreted as a game where an
adversary tries to hide the target in the largest possible area. Geometric games about area optimization
have a tradition in Computational Geometry, e. g., see [2].

Organisation of this chapter. In the remainder of this section, we present research related to our
search problem. Section 2.2 examines the one-shot variant of the search problem on the line. We
prove a quadratic lower bound for the accuracy that any strategy can achieve and provide a non-trivial
strategy with accuracy Θ(n2), which is at most a factor two from optimal. Section 2.3 examines the
incremental variant of the search problem on the line. We develop a strategy with accuracy Ω(2.29n)
and prove that no strategy can achieve accuracy Ω(3.66n). In Section 2.2, we discuss the one-shot and
incremental variant for other search spaces, such as the unit circle, the unit disc, and n-dimensional
unit cube and sphere. We conclude with Section 2.5.
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Related Work

As already mentioned above, query strategies in the one-shot variant are related to problems from
Arithmetic Combinatorics and Combinatorial Number Theory. This field of mathematics seeks to
develop estimates associated with arithmetic operations such as addition, subtraction, multiplication,
and division.

Erdős and Turán [30, 31] and, in 2010, Cilleruelo et. al. [20] developed bounds for the Sidon
sequence problem [93]. This problem, named after Fourier analyst Simon Sidon, considers positive,
increasing, integer sequences which are bounded by some value N ∈ N. The challenge is to find such
a sequence A that contains a maximum number of elements under the restriction that all pairwise
sums of elements of A have to be different. Please note that not every integer x ∈ [1,N] has to have
a representation as the sum of two elements of A ; however, if x is the sum of two elements, this
representation has to be unique.

The same problem has been independently studied by different researchers in various contexts
and under different names. Bloom and Golomb [13] used the notion of rulers: A so-called Golomb
ruler is a set of marks along an integer ruler, such that no two marks have the same distance.
Formally, a Golomb ruler is a set A = {a1,a2, . . . ,an}, such that ai−a j = ak−al ⇔ i = k∧ j = l for
1≤ i, j,k, l ≤ n. Thus, it is not difficult to see that every Golomb ruler is a Sidon set and vice versa.
More variants of these rulers have been considered; probably most relevant to mention with regard to
our query problem is the m-perfect ruler of length n. For this type of Golomb ruler, every x up to a
certain m≤ N equals the difference of exactly one pair of elements.

How Sidon sequences and Golomb rulers are related to query strategies for the one-shot variant of
our problem are discussed at the end of Section 2.2.

2.2 One-Shot Strategies on the Line

In this section, we consider the one-shot variant of the problem and restrict the search space R to an
interval on the line. W. l. o. g. we assume that R is the unit interval [0,1]; by scaling and shifting, every
query strategy can be adapted to work for an arbitrary search interval [l,r].

In the one-shot variant we get the response only after placing all n points. This ordering pinpoints
the target t to a subinterval bounded by bisectors of query points or by the boundary of the unit interval.
As the target may lie in any subinterval, the problem is equivalent to minimizing the maximum size
of such a subinterval. As n query points can produce at most

(n
2

)
= 1/2 · (n2−n) distinct bisectors,

there are at most 1/2 · (n2−n)+1 subintervals. Thus, we get the following (trivial) upper bound for
the accuracy of one-shot strategies:

Theorem 1. No deterministic strategy using n query points in the unit interval can locate an arbitrary
target with accuracy larger than 1

2 · (n
2−n+2) ∈ O(n2) in the one-shot variant.

Surprisingly, there is a query strategy with an accuracy that is very close to this upper bound.
Instead of only presenting the strategy and proving its accuracy, we develop this strategy throughout
this section: In Section 2.2.1, we discuss optimal query strategies for cases where the number of query
points is small and derive a simple general strategy from these observations; then, this query strategy
is improved in Section 2.2.2 to achieve an accuracy of at least 1/4 · (n2 +6n−27).
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q1 q2

(i) n = 2

q1 q2 q3

(ii) n = 3

q1 q2 q3 q4

(iii) n = 4

Figure 2.1: Optimal one-shot query strategies for the case where n≤ 4. The query points of EQUIDIST

are given as labelled dots on the unit interval in the bottom line. Every black rectangle above the line
indicates a bisector bs(qi,q j) generated by qi,q j; the closer qi and q j are along the line, the closer the
rectangle is to the line.

2.2.1 Developing a Simple Query Strategy from Optimal Strategies for n≤ 4

If the number of query points is small, optimal query strategies can be easily found. Obviously,
for n = 1, no bisector subdivides the unit interval; consequently, the accuracy can not be increased
at all and is equal to one. Using two query points q1,q2, exactly one bisector bs(q1,q2) is created;
consequently, the search space can be split into at most two subintervals of equal size limiting the
accuracy for n = 2 to two. A similar argument can be applied to bound the maximum accuracy for
n = 3: Three query points generate at most three distinct bisectors dividing the unit interval into
four subintervals to achieve an accuracy of at most four. For n = 2 and n = 3, the optimal strategies
illustrated in Figure 2.1i and ii match these lower bounds.

Looking only at the optimal query strategies for n≤ 3, one might hope that the accuracy can be
doubled with every additional query point; however, due to Theorem 1, this is impossible. In fact, this
is already impossible for n = 4 as the following observation shows. The idea of this proof was already
mentioned by Endre Csóka at the workshop Search Games: Theory and Algorithms at the Lorentz
Center in Leiden in 2016.

Observation 1. The accuracy of an optimal one-shot strategy using n = 4 query points is 6.

Proof. W. l. o. g., we may assume that 0 ≤ q1 ≤ q2 ≤ q3 ≤ q4 ≤ 1. Let the accuracy of the query
strategy be 1/a, then the maximum size of a subinterval is a; this bounds the positions of the two left
most bisectors bs(q1,q2),bs(q1,q3) and the right most bisector bs(q3,q4) from which we derive the
following inequalities.

bs(q1,q2)≤ a ⇒ q2 ≤ 2a−q1 ≤ 2a (2.1a)

bs(q1,q3)≤ bs(q1,q2)+a ⇒ q3 ≤ q2 +2a
(2.1a)
≤ 4a (2.1b)

1≤ bs(q3,q4)+a ⇒ 1≤ q3 +q4 +2a−1
(2.1b)
≤ 6a (2.1c)

Equation 2.1c implies that the accuracy 1/a is at most 6; in fact, this accuracy can be achieved choosing
(q1,q2,q3,q4) = (0, 1/3, 2/3,1), see Figure 2.1iii.

One can also prove this observation via linear programming. For this purpose, one can assign
a variable to each query point and force them to lie in ascending order by introducing appropriate
constraints. The objective is to minimize the size of the largest subinterval. To express the size of
the subintervals in terms of the variables, one needs to fix the ordering of the bisectors using the
constraints of the linear program. Due to symmetry, one can restrict the attention to only one such



2.2 One-Shot Strategies on the Line 17

ordering for n = 4; however, for larger values of n, this is no longer true. Thus, to prove an upper
bound for n > 4, one rather requires a technique different to linear programming.

Observation 1 shows two things: First of all, the accuracy cannot be doubled with every additional
query point. Second, it seems like a good idea to place one query point at each end of the interval
and to place the remaining ones equally spaced; thus, one achieves optimal accuracy for the cases
where n ∈ {2,3,4}. Let us denote this strategy applied to the unit interval with EQUIDIST(n) in the
following; moreover, let Qn := {q1, . . . ,qn} denote the set of query points generated by the strategy.
Algorithm 1 gives pseudocode for the general case where the search interval is [l,r].

Algorithm 1: EQUIDIST([l,r],n)
Input: An interval [l,r] with l < r that contains the target point t; a number of query points n≥ 2.
Output: A set Qn of n equally spaced query points l = q1 < q2 < · · ·< qn = r.

dist← (r− l)/(n−1)
for i← 0 to (n−1) do

add qi+1 := (l + i ·dist) to Q
return Q

It is not difficult to prove that the accuracy of EQUIDIST(n) is exactly 2(n− 1). In a first
step, one can prove the following statement via induction over n: Qn generates bisectors only at
positions q2, . . . ,qn−1 and 1/2 · (qi+qi+1) for 1≤ i < n; i. e., at every query point qi and between every
consecutive pair of query points qi,qi+1. Finally, the accuracy of EQUIDIST(n) follows from the
fact that there are exactly 2n−2 subintervals of equal size; the subintervals are generated by 2n−3
equally spaced bisectors from which n−2 bisectors lie exactly on query points q2, . . . ,qn−1, and n−1
many lie between every consecutive pair.

2.2.2 Improving the Accuracy of EQUIDIST

As we have seen before, EQUIDIST achieves optimal accuracy for n ∈ {2,3,4}; however, this is no
longer true for n≥ 7 as the following observation shows: Removing q4 from Q7 does not change the
accuracy. For a graphical proof, we refer to Figure 2.2; the figure also illustrates that the number of
redundant, that is to say coinciding, bisectors generated by EQUIDIST(n) grows with the number of
query points n. Thus, the fact that some query points of Qn can be removed without loss of accuracy
is due to redundancy among the bisectors. Unfortunately, for larger values of n it is not easy to see
which of the query points could be removed; luckily, we can use the following approach to find a
solution with the help of a computer.

For every set of query points Qn generated by EQUIDIST(n), we can construct a Boolean formula
αn with the following property: αn can be satisfied by setting at most k variables to true if and only
if n− k points of Qn can be removed without loss of accuracy. As mentioned above, Qn generates
bisectors only at positions q2, . . . ,qn−1 and 1/2 · (qi +qi+1) for 1≤ i < n; for ease of description, we
call these positions columns which we denote with c3, . . . ,c2n−1, see Figure 2.2i. Thus, a bisector
in column ck is generated by every pair of distinct query points qi,q j where i+ j = k; moreover, a
subset S ⊂Qn achieves the same accuracy as Qn if and only if the points in S generate a bisector
in every column. We assign a Boolean variable yi to every query point qi ∈Qn and let a subset
S correspond to an assignment of the variables in the following way: yi is true if qi ∈ S and
false otherwise. For each column ck, we create the disjunction ck :=

∨
i+ j=k (yi∧ y j) where each

conjunction (yi∧y j) models the bisector generated by qi and q j if yi,y j are both true; the disjunction
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q1 q2 q3 - q5 q6 q7

c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13

(i) Removing q4 from the set of points Q7.

α7 := (y1∧ y2)∧ (y1∧ y3)

∧
(
(y1∧ y4)∨ (y2∧ y3)

)
∧

(
(y1∧ y5)∨ (y2∧ y4)

)
∧

(
(y1∧ y6)∨ (y2∧ y5)∨ (y3∧ y4)

)
∧

(
(y1∧ y7)∨ (y2∧ y6)∨ (y3∧ y5)

)
∧ c9∧ c10∧ c11∧ c12∧ c13

(ii) Corresponding Boolean expression for Q7.

Figure 2.2: Careful removal of query points generated from EQUIDIST(n) can give a strategy for
fewer points but with the same accuracy: (i) q4 has been removed from Q7, the set of query points
generated by EQUIDIST(7). As before, bisectors are indicated with rectangles above the line: Grey
rectangles indicate bisectors which q4 would generate with every other query point; in every column
at least one bisector (black rectangle) remains. (ii) α7 can be satisfied by setting only six variables (all
except y4) to true.

of conjunctions models the constraint that at least one bisector in the column is required to satisfy
ck. Finally, we obtain αn as the conjunction αn :=

∧
3≤k≤2n−1 ck since a bisector is required in every

column to maintain the accuracy; an example for n = 7 is given in Figure 2.2ii. Altogether, a subset
S ⊂Qn corresponds to an assignment of the variables and satisfies αn if and only if S achieves the
same accuracy as Qn.

To remove as much redundancy among the bisectors of Qn as possible while maintaining the
accuracy, one can equivalently seek for satisfying assignments of αn that sets a minimum number
of variables to true. For this purpose αn can be converted into disjunctive normal form (DNF) in a
first step; in a second step, one can determine the minimum length ln of a conjunction in DNF and
remove all conjunctions which are strictly longer than ln. Both steps can be carried out with the help
of computer programs such as Mathematica or Maple; resulting formulas are given in Table 2.1 for
several small values of n. Every minimal subset S ⊂Qn which achieves the same accuracy as Qn is
of size ln; moreover, if αn is in DNF, the elements of such a subset S can be read off the variables in
any conjunction of length ln.

The assignments given in Table 2.1 reveal a pattern for removing query points to minimize
redundancy. It is always necessary to set the first (last) three variables to true, which implies that the
three query points to the left (right) are never removed. For ln < 11, the fourth query point from left
(and from right) is removed; several of the remaining points are removed to leave regular gaps of size
at most two. However, for ln = 11, one observes that leaving gaps of size at most two is no longer a
unique optimal solution. In fact, keeping four query points from left and right, it is possible to leave
regular gaps of size three1; moreover, for ln ≥ 12 leaving gaps of size two is no longer optimal! This
suggests that the size of the gaps should be increased with the number of query points. In general,
keeping the first (x+1) query points from the left (and right) allows to leave regular gaps of size x.

The removal of query points can be used to define a strategy for a given number of n query points.
This strategy chooses a subset of size n among the query points of EQUIDIST(ϕx(n)) where ϕx(n) is

1Both possibilities to remove a maximum number of query points from Q21 while maintaining the accuracy are also
illustrated in Figure A.1 in the appendix.
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n ln αn in DNF trimmed to clauses of length ln

7 6 (y1∧ y2∧ y3∧ y5∧ y6∧ y7)

8 6 (y1∧y2∧y3∧y5∧y6∧y7∧y8) ∨ (y1∧y2∧y3∧y4∧y6∧y7∧y8)

15 9 (y1∧ y2∧ y3∧ y5∧ y8∧ y11∧ y13∧ y14∧ y15)

18 10 (y1∧ y2∧ y3∧ y5∧ y8∧ y11∧ y14∧ y16∧ y17∧ y18)

21 11 (y1∧ y2∧ y3∧ y5∧ y8∧ y11∧ y14∧ y17∧ y19∧ y20∧ y21) ∨
(y1∧ y2∧ y3∧ y4∧ y7∧ y11∧ y15∧ y18∧ y19∧ y20∧ y21)

Table 2.1: For a given number of query points n in the first column, the second column gives the
minimum length ln for clauses of αn in DNF. The third column gives αn in DNF trimmed to clauses
of length ln; each of these clauses corresponds to a minimal subset S ⊂Qn which achieves the same
accuracy as Qn.

an appropriate function of n and the maximum gap size x. Specifically, the strategy GAPx(n) uses
only the following n points from EQUIDIST(ϕx(n)):

• The first (x+1) query points to the left, i. e., q1,q2, . . . ,qx+1;

• the last (x+1) query points to the right, i. e., qϕx(n)−x, . . . ,qϕx(n)−1,qϕx(n);

• every (x+1)-th query point starting with q2x+1, i. e., q2x+1+k·(x+1) for k ∈ {0, . . . ,n− (2x+3)}.

This results in widely spaced query points throughout the search range, and tightly spaced points near
both ends, omitting at most x consecutive query points from EQUIDIST(ϕx(n)). Most useful bisectors
will then be formed by one of the tightly spaced points and one of the widely spaced points.

It remains to show how to compute ϕ . Let us assume that x > 0 and n is sufficiently large (more
precisely, n > 2x+4). Then, all kept and removed points can be added up; using that n query points
remain in the end, we obtain

ϕx(n) = 2 ·
(
2x+1

)︸ ︷︷ ︸
(i)

+ x︸︷︷︸
(ii)

+
(
n−2(x+2)

)
·
(
x+1

)︸ ︷︷ ︸
(iii)

= n(x+1)−2x2− x−2,

where: (i) counts all (kept and removed) query points left of the first, and right of the last gap of
size x; (ii) counts the removed query points of the first gap of size x to the left; and (iii) counts all
occurrences of a gap of size x with a single query point to the right.

Lemma 1. For x,n ∈N with n≥ 2x+3, the one-shot query strategy GAPx has accuracy 2(ϕx(n)−1).

Proof. It suffices to show that every distinct bisector of EQUIDIST(ϕx(n)) is also created by GAPx(n),
as the points chosen by GAPx(n) form a subset of those chosen by EQUIDIST(ϕx(n)). Hence, for
each 1≤ i < ϕx(n), GAPx(n) must choose two points that form a bisector in the middle between qi

and qi+1. For each 1 < j < ϕx(n), GAPx(n) must choose two points that form a bisector directly
on q j.

For i≤ x and j≤ x this is given by q1,q2, . . . ,qx+1. For x < i < ϕx(n)/2, EQUIDIST(ϕx(n)) forms a
bisector between qi and qi+1 with all of the pairs (q1,q2i),(q2,q2i−1), . . . ,(qx+1,q2i−x). One of these
pairs has to be in the chosen subset of GAPx(n), since the first q1, . . . ,qx+1 are all present, and the
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choosing process omits at most x consecutive points from q2i−x, . . . ,q2i. Likewise, one of the pairs
(q1,q2 j−1), (q2,q2 j−2), . . . ,(qx+1,q2 j−(x+1)) must have been chosen by GAPx(n). Those pairs form a
bisector on q j for x < j ≤ ϕx(n)/2. The existence of the remaining bisectors, that is, those in the right
half of the unit interval, follows by the symmetry of the strategy.

Hence GAPx(n) and EQUIDIST(ϕx(n)) produce the same set of 2ϕx(n)−3 distinct equidistant
bisectors which gives an accuracy of 2(ϕx(n)−1) for both strategies.

Given n, it remains to choose x optimally in order to maximize ϕx(n). As the slope of the linear
function ϕx(n) increases with x, GAPx+1 eventually supersedes GAPx. The break-even point between
GAPx and GAPx+1 is at n = 4x+3; hence, the optimal choice is x = ⌈(n−3)/4⌉.

Note that the n query points of GAPx(n) can also be computed directly without the need to
generate all ϕ(n) points beforehand and remove all except for n afterwards; hence, GAPx(n) can be
implemented to run in linear time, pseudocode is given in Algorithm 2.

Theorem 2. For any number of points n≥ 3 and x = ⌈(n−3)/4⌉, the one-shot strategy GAPx(n) has an
accuracy of 2(ϕx(n)−1)≥ 1/4 · (n2 +6n−27) ∈Ω(n2).

Considering the lower and upper bound given by Theorem 2 and Theorem 1, one observes that
both bounds lie a small constant factor of two apart. As shown in Observation 1, it is (already)
impossible to place four query points in such a way that their bisectors are all distinct and divide the
unit interval into parts of equal size; hence, we conjecture that the trivial upper bound of Theorem 1 is
not tight. Yet, it might also be possible to improve the lower bound; with our optimization approach
we obtain a strategy which is only optimal among strategies with equidistant bisectors.

Algorithm 2: GAP([l,r],n)
Input: An interval [l,r] with l < r that contains the target point t; a number of query points n≥ 2.
Output: A set Q of n query points l = q1 < q2 < · · ·< qn = r.

if n≤ 5 then
EQUIDIST([l,r],n)

x← ⌈(n−3)/4⌉
ϕx(n)← n · (x+1)−2x2− x−2
dist← (r− l)/(ϕx(n)−1)
for i from 0 to x do

add qi+1 := (l + i ·dist) and qn−i := (r− i ·dist) to Q
for k from 0 to n− (2x+3) do

add q(x+2)+k := ((l +2x ·dist)+ k · (x+1) ·dist) to Q

On the Relation between One-Shot Strategies and Sidon Sequences/Golomb Rulers

As pointed out in Section 2.1, Sidon sequences and Golomb rulers are equivalent forms of the
same problem. Recall that a Sidon sequence A is a positive, increasing integer sequence up to a
largest value N ∈ N with the following constraint: For every integer x ∈ [1,N], there is at most one
representation of x as the sum of two elements of A .

Query strategies in the one-shot variant seem closely related to Sidon sequences. This impres-
sion comes from the fact that redundancy in the pairwise sums is completely eliminated for Sidon
sequences; however, this is not true for the GAP strategy, where redundancy in the bisectors remains.



2.3 Incremental Strategies on the Line 21

The strategy GAP selects a subset S ⊂Qn such that: For every k ∈ [3,2n−1], there is at least one
bisector in column ck, which is formed by elements of S . Another difference to Sidon sequences is
that query points are not restricted to lie on integer (or rational) coordinates. Placing query points on
real-valued coordinates or even in an asymmetric way, one might be able to achieve higher accuracy.

Regardless of these differences, it may very well be that results from Arithmetic Combinatorics or
Combinatorial Number Theory can help to narrow the gap between the lower and upper bound.

2.3 Incremental Strategies on the Line

In this section we consider the incremental variant of the problem and restrict the search space R to an
interval on the line; w. l. o. g. we assume that R is the unit interval. In the incremental variant, we learn
the ordering of q1, ...,qi−1 by increasing distance to the target point t before placing query point qi;
thus, we may choose the location of qi depending on this information. As in the one-shot variant, the
ordering of the query points pinpoints the location of t to a subinterval bounded by bisectors of query
points or the boundary of R. The overall aim is to minimize the size of the subinterval in which t is
found to lie after placing the last query point qn.

It is not difficult to see that a strategy querying R in a binary search manner achieves an accuracy
of 2n−1. This strategy could place the first two query points at 0 and 1 to increase the accuracy to two;
the remaining query points can be placed such that the interval containing t is halved in each step and
the accuracy is doubled. Surprisingly, we can do better than this with a recursive strategy that takes
advantage of more than one new bisector in many steps as we will see later.

A first attempt to bound the accuracy of every incremental query strategy gives a (trivial) upper
bound of (n!). Let Ri−1 denote the subinterval of R in which the target is known to lie after placing qi−1.
Placing query point qi, we obtain (i−1) new bisectors that qi generates with previously placed query
points. These bisectors split Ri−1 into at most i subintervals where at least one of which must have
size at least 1/i times the size of Ri−1. Thus, the accuracy increases with a factor of at most i leading
to an accuracy of at most (n!) after qn has been placed.

Another attempt to bound the accuracy of incremental strategies is to relate incremental to one-
shot strategies and apply Theorem 1, the (trivial) upper bound of one-shot strategies. In fact, an
incremental query strategy for n query points defines a query tree of height (n−1): Each node of this
tree specifies where qi has to be placed depending on the interval in which t is found to lie, see e. g.
Figure 2.3i or Figure 2.4i. Using all query points of the query tree at once, one obtains a one-shot
strategy that achieves the same accuracy. It remains to bound the size of the query tree: Similar to the
above reasoning, placing qi creates (i−1) new bisectors which split the interval into at most i new
subintervals; hence, a node of the tree in height i has at most (i+1) children. This adds up to at most
∑

n−1
i=0 i! nodes in total and proves the following observation.

Observation 2. For every incremental strategy with n queries, there exists a one-shot strategy with at
least the same accuracy using at most ∑

n−1
i=0 i! query points.

Unfortunately, none of these two approaches to bound the accuracy of optimal incremental
strategies from above is tight. Note that the second approach does not even give a better bound than
the first, since the upper bound of Theorem 1 introduces another quadratic factor. Nevertheless, the
first bound is useful to prove optimality of certain incremental strategies for small values of n.

The remainder of this section is organized as follows. We begin with discussing optimal incre-
mental query strategies for small numbers of query points in Section 2.3.1; the ideas of these query
strategies are used to improve on the lower and upper bound in subsequent sections. In Section 2.3.2,
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(ii) Example query for t ∈ (0.5,1].

Figure 2.3: The query tree in (i) defines an optimal incremental query strategy for n = 3: After placing
q1,q2, their bisector splits the interval in two subintervals of equal size; q3 can be placed either at 0
or 1, depending on the subinterval in which the target t is found to lie. The choice for q3 further splits
the subinterval into three parts of equal size, as shown in (ii). This results in an accuracy of 6.

we prove the existence of a query strategy that achieves an accuracy of Ω(2.29n) and thus outper-
forms the binary search approach. The proof already shows how this strategy can be obtained. For
completeness, we give query algorithms in Section 2.3.3. In Section 2.3.4, we show that the naive (n!)
upper bound for the accuracy of optimal incremental strategies can be improved to single exponential
growth; more precisely, we prove an upper bound of O(3.66n).

2.3.1 Optimal Query Strategies for n≤ 4

Obviously, for n = 2, optimal incremental strategies are identical to optimal one-shot strategies and
achieve accuracy of at most 2.

For n = 3, an optimal query strategy with accuracy 6 is illustrated in Figure 2.3. The bisector of
q1,q2 splits the interval in half which increases the accuracy by a factor of two. Then, q3 is used to
generate two more bisectors which further split a half into three subintervals of equals size; this gives
an accuracy gain of three. Optimality of this strategy follows immediately from the (n!) bound or
Observation 2.

For n = 4, a query strategy with accuracy 14 is illustrated in Figure 2.4. Similar to the strategy for
three query points, the bisector of q1,q2 splits the interval in half; however, the bisectors generated
by q3 now split each half into one small and two larger subintervals; by placing q4, each of the larger
subintervals can be split into three parts of equal size matching the size of the small subinterval. In the
third step, the gain of accuracy is slightly larger than two; it is exactly three for the larger subintervals
in the fourth step.

Especially the query strategy for n = 3 gives hope that the accuracy can be increased by a factor of
three from step three onward. From this point of view, it feels like the strategy for n = 4 is suboptimal
and has some room for improvement: First of all, the two bisectors generated by q3 do not split the
interval into three subintervals of equal size; moreover, one of the bisectors generated by q4 is not
even used to increase the accuracy. This feeling is supported by the fact that 4! = 24 only gives a
rather loose upper bound for the accuracy.

As the following observation shows, such large accuracy gains are already impossible for n = 4.
Since the proof of this observation is rather long and technical, it is given in Section A.2.

Observation 3. The accuracy of an optimal incremental strategy using n = 4 query points is 14.

We end this section with a closer look at the query strategy given in Figure 2.4 in order to gain
some insight into characteristics of strategies for n > 4. There are two important features to observe:
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(ii) Example query for t ∈ (4/7,11/14].

Figure 2.4: The query tree in (i) defines an incremental query strategy for n = 4. Compared to the
strategy of Figure 2.3, the choice for q3 splits each half into three subintervals of different size: One
subinterval of size 1/14, which is already small enough; two subintervals of size 3/14, which are further
divided into thee parts by placing q4, as illustrated in (ii). This results in an accuracy of 14.

First of all, it might be possible to use more than one bisector in many steps to improve the accuracy
even if an interval is not split into parts of equal size; this idea ultimately led to the discovery of
the incremental query strategy presented in Section 2.3.2. Second, one of the bisectors generated
by q4 lies outside the current subinterval (no matter where q4 is placed); hence, some of the newly
created bisectors in a step might not be able to contribute to increasing the accuracy. More precisely,
two previously placed query points need to lie close enough so that they can (possibly) contribute
to accuracy gains when the next query point is placed; this observation lead to the concept of close
pairs which we use to prove a general upper bound for the accuracy of incremental query strategies in
Section 2.3.4.

2.3.2 A Query Strategy with High Accuracy

In the following, we develop a strategy that takes advantage of at least two bisectors in many steps,
except for the first. As we will see, this leads to a mean increase of accuracy of more than a factor
two per step. Consequently, this strategy outperforms the binary search approach for n≥ 3. Let h(n)
be the accuracy we aim for, as a function of n, the number of query points we get to place. For ease
of description, we use the interval [0,h(n)] instead of the unit interval and pinpoint the target to an
interval of length at most 1.

Similar to the optimal strategies for n ≤ 4, our incremental strategy places the first two query
points symmetrically to split the initial interval [0,h(n)] in half.2 Let g(n) denote the distance of the
first two query points to their common bisector, so q1 is placed at 1

2 h(n)−g(n) and q2 at 1
2 h(n)+g(n).

Now suppose the target lies to the right of the bisector, the other case is symmetric. We now place q3
at some distance 2 f (n) to the right of q2 and find that the target lies in one of three intervals, see
Figure 2.5a:

(I) [bs(q1,q2),bs(q1,q3)] = [1
2 h(n), 1

2 h(n)+ f (n)], of size f (n);

(II) [bs(q1,q3),bs(q2,q3)] = [1
2 h(n)+ f (n), 1

2 h(n)+g(n)+ f (n)], of size g(n); or

(III) [bs(q2,q3),h(n)] = [1
2 h(n)+g(n)+ f (n),h(n)], of size 1

2 h(n)−g(n)− f (n).

2In fact, an optimal strategy places q1,q2 always like this as discussed in the proof of Observation 3.
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Figure 2.5: Placement of the first query points for the incremental query strategy locating a target
with accuracy h(n).

To interval (I) we apply the strategy recursively with the remaining n−3 query points, starting from
scratch; hence, we have to choose f (n) = h(n− 3). In contrast, for the intervals (II) and (III) we
exploit the previously placed query points q2 and q3 at distance f (n) left and right of their bisector.
We describe the strategy in the following paragraph only for interval (III); the same strategy can be
applied symmetrically to the second interval provided that the second interval is not larger than the
third for n≥ 3, which we refer to as condition (A). Note that condition (A) implies g(n)≤ 1/2 ·h(n),
which ensures that q1 and q2 lie within the interval [0,h(n)]. To ensure q3 ∈ [0,h(n)], we also require
g(n)+2 f (n)≤ 1/2 ·h(n) for n≥ 3, which we refer to as condition (B).

We now describe how our strategy queries interval (III) with two predetermined query points q2,q3
and n−3 query points q4, . . . ,qn that can be chosen freely, see Figure 2.5b. We place q4 right of q3 at
distance 2 f (n−1) = 2h(n−4); to ensure that q4 ∈ [0,h(n)], this requires that h(n−3)+2h(n−4) is
not larger than the size of (III) for n≥ 4 which we refer to as condition (C). Again, we find that the
target lies in one of three subintervals, see Figure 2.5b:

(i) [bs(q2,q3),bs(q2,q4)], of size f (n−1);

(ii) [bs(q2,q4),bs(q3,q4)], of size f (n); or

(iii) [bs(q3,q4),h(n)], of size 1
2 h(n)−g(n)−2 f (n)− f (n−1).

To subinterval (i) we apply the overall strategy recursively from scratch. Subinterval (iii) has
predetermined query points q3,q4 at distance f (n−1) left and right of its left boundary; hence, we can
apply the adapted strategy recursively using the remaining n−4 points provided that its size follows
the recursive definition, i. e., 1/2 ·h(n)−g(n)−2 f (n)− f (n−1) = 1/2 ·h(n−1)−g(n−1)− f (n−1)
for n≥ 4 which we refer to as condition (D). The subinterval (ii) has predetermined query points at
distance f (n−1) left and right of its right boundary; we can apply the strategy recursively as long
as it is smaller than the third subinterval, which gives f (n)≤ 1/2 ·h(n−1)−g(n−1)− f (n−1) for
n≥ 4 and is referred to as condition (E).3

Since f (n) = h(n−3), it remains to choose h and g as functions of n such that
3 To apply the query strategy of the third (sub-)interval to the second, we can enlarge the size of the second (sub-)interval

to match the size of the third; explicitly, we do this in the algorithms in Section 2.3.3. To be always able to enlarge this
interval, we have to verify two conditions: First, interval (I) and (II) are together larger than (III). Second, subinterval (i)
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• the conditions for recursive application are satisfied, i. e., for n≥ 4 we have

(A) g(n−1)≤ 1
4 h(n−1)− 1

2 h(n−4);

(B) g(n−1)≤ 1
2 h(n−1)−2h(n−4);

(C) g(n)≤ 1
2 h(n)−2h(n−3)−2h(n−4);

(D) 1
2 h(n)−g(n)−2h(n−3) = 1

2 h(n−1)−g(n−1);

(E) g(n−1)≤ 1
2 h(n−1)−h(n−3)−h(n−4);

• and, when no further recursion is possible because we run out of query points, the interval
containing the target is small enough: h(0)≤ 1, h(1)≤ 1 and h(2)≤ 2 for the initial interval
and interval (I); and 1/2 ·h(3)−g(3)− f (3)≤ 1 for interval (III), which also bounds the size of
interval (II) by condition (C).

Theorem 3. There is a deterministic, incremental strategy to locate a target using n query points
in a unit interval with accuracy Ω(bn), where b > 2.29 is the largest real root of b4− b3− 6b− 2.
The accuracy h(n) is given by the recurrence formula h(0) = 1, h(1) = 1, h(2) = 2, h(3) = 6 and
h(n) = h(n−1)+6h(n−3)+2h(n−4) for n≥ 4.

Proof. We prove that, for the above conditions (A) to (E) and the restrictions on the size of the final
interval, we can find suitable recursive starting values and definitions of g,h. Thus, by construction,
we obtain a strategy of accuracy h(n).

To start with, we show how to obtain recursive definitions of g and h that satisfy the conditions (A)
to (D). Since h is a non-decreasing function of n, condition (B) is redundant, as it is already implied
by condition (E). Rewriting condition (D) to g(n) = g(n− 1)+ 1/2 · (h(n)− h(n− 1))− 2h(n− 3)
and substituting it into condition (C) reveals that condition (C) is equivalent to condition (B), hence
redundant. We now satisfy condition (A) by simply choosing equality g(n−1)= 1

4 h(n−1)− 1
2 h(n−4)

for n≥ 4. Substituting this in the remaining conditions we get the following: Condition (D) becomes
h(n) = h(n−1)+6h(n−3)+2h(n−4) for n≥ 4, which is the recurrence formula in the theorem;
condition (E) becomes h(n−1)≥ 4h(n−3)+2h(n−4); using g(n−1) this is equivalent to h(n−3)≤
g(n−1). As the proof that this form of condition (E) holds for our choice of g(n) is rather technical,
we take care of it in Lemma 2 at the end of this section.

Finally, we prove that the final intervals are small enough when running out of query points.
Obviously, this holds by definition of h(n) for n ∈ {1,2,3} and it remains to show that 1

2 h(3)−g(3)−
h(0)≤ 1: We derive suitable values for g(3) and h(3) using g(3) = 1

4 h(3)− 1
2 h(0) which simplifies

this inequality to h(3)≤ 6; hence, we may choose g(3) = 1 and h(3) = 6. Note that the alternative
form of condition (E) is already satisfied for n = 4, since h(1)≤ g(3),

A closer analysis of the recurrence formula, the subsection on a closed form expression below,
reveals that h(n) ∈Ω(bn), where b≈ 2.29 . . ., the largest root of the polynomial b4−b3−6b−2.

Note that, for sake of simplicity, the above strategy is not quite optimal. If we proceed recursively
with only few points left to place, we can sometimes do slightly better by taking some already placed
points into account. For example, h(2) = 2 because, if we get to place only two points, we can only
create one bisector and therefore we cannot achieve accuracy better than 2. However, if we start
with more than 3 points and get to a final interval in which we get to place the last two points, then

and (ii) are together larger than (iii). For the first condition, this can be easily verified using the definition of g(n) as given
in Theorem 3. The second condition can be verified using g(n)≥ 2g(n−1), which can be proven by induction over n itself.
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each one can form a bisector together with a previously placed query point outside the interval. This
allows us to assume h(2) = 3 in the recursive definition of h(n) for n≥ 4, which slightly improves
the constant factor in the asymptotic bound.

Finally, it remains to prove that the alternative form of condition (E) holds.

Lemma 2 (condition (E)). If we choose h(n) and g(n) as in the proof of Theorem 3, then, for any
n≥ 4, we have h(n−3)≤ g(n−1).

Proof. To prove the inequalities via induction over n≥ 5, we require some additional inequalities:

g(n) ≥ h(n−2) (2.2)

2h(n−3) ≤ h(n−2) (2.3)

2h(n−2)+h(n−3) ≥ h(n−1) (2.4)

g(n) ≤ h(n−1)/2 (2.5)

Obviously, (2.2), (2.3), (2.4) and (2.5) hold for n = 5.4 We make use of the following two recurrence
formulas

h(n) = 4g(n)+2h(n−3) (2.6)

h(n) = h(n−1)+6h(n−3)+2h(n−4) (2.7)

where (2.6) holds for n≥ 3 and (2.7) holds for n≥ 4 by definition. Substituting h(n−1) = 4g(n−
1)+2h(n−4) for n≥ 4 in (2.7) gives h(n) = 4g(n−1)+6h(n−3)+4h(n−4) and substituting this
formula for the left-hand side of (2.6) gives

g(n) = g(n−1)+h(n−3)+h(n−4) (2.8)

for n ≥ 4. Additionally, from (2.6) we conclude h(n− 4) = h(n− 1)/2− 2g(n− 1) for n ≥ 4.
Substituting this into (2.8) for h(n−4) gives

g(n)−h(n−1)/2 = h(n−3)−g(n−1) (2.9)

for n≥ 4.
We perform the inductive step from n to n+1 for n≥ 5. We would like to show that under the

assumption that (2.2), (2.3), (2.4) and (2.5) hold for an arbitrary, but fixed n≥ 5, we conclude that
(2.2), (2.3), (2.4) and (2.5) hold for n+1. We additionally apply (2.6), (2.8) and (2.9).

(2.2)′ g(n+1) = g(n)+h(n−2)+h(n−3) (From (2.8))
≥ 2h(n−2)+h(n−3) (From (2.2))
≥ h(n−1) (From (2.4))

(2.3)′ h(n−1)/2 ≥ g(n) (From (2.5))
h(n−1) ≥ 2g(n) (⇔)

≥ 2h(n−2) (From (2.2))

(2.4)′ h(n) = 4g(n)+2h(n−3) (From (2.6))
≤ 2h(n−1)+2h(n−3) (From (2.5))
≤ 2h(n−1)+h(n−2) (From (2.3))

4Note that (2.4) does not hold for n = 4 but we start the induction for n = 5.
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(2.5)′ h(n)/2 ≥ g(n+1) (From (2.9) for n+1 and (2.2))

Thus, condition (E) holds by induction.

A Closed Form Expression for the Recurrence Formula h(n)

In the following, we derive a closed form expression for the recurrence formula h(n) using the
technique of generating functions, e. g., see [44]. In a first step, we use the recurrence relation5 of
Theorem 3 to define the semi-infinite integer sequence (hn)i≥0 where h0 := h1 := 1,h2 := 3,h3 := 6
and

hn := hn−1 +6hn−3 +2hn−4 for n≥ 4. (2.10)

Then, we identify the elements of the sequence with coefficients of a power series to obtain the
generating function H(z) := ∑n≥0 hn · zn. Applying the recursive definition (2.10) to the coefficients
of the series and manipulating the power series, we can derive the closed form

H(z) =
3z3−2z2−1

2z4 +6z3 + z−1
=:

P(z)
Q(z)

.

The final step involves to expand the closed form of H(z) into a power series and read off the
coefficients of hn. For this purpose, we use that Q(z) can be factorized using its four roots
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into Q(z) = 2(r1− z)(r2− z)(r3− z)(r4− z) where β := 9
4 +

α

2·32/3 −
7

3√3·α
and α := 3

√√
31641−153.

We apply the rational expansion theorem [44, p. 340] to obtain the complex-valued closed form
expression

hn =
a1

rn
1
+

a2

rn
2
+

a3

rn
3
+

a4

r3
n where ai :=

−P(ri)

ri ·Q′(ri)

with Q′(z) := d
dz Q(z) = 8z3 + 18z2 + 1. The coefficients can be evaluated to obtain approximately

a1 ≈ 0.57089,a2 ≈ 0.51391 and a3 ≈−0.04240+0.01187i. It is not difficult to prove that a4 = a3
using the equivalences z1 + z2 = z1 + z2,z1 · z2 = z1 · z2 for conjugate complex numbers z1,z2 ∈ C.
Applying the same rules, we can finally derive a real-valued closed form for hn as follows

hn =
a1

rn
1
+

a2

rn
2
+

a3

rn
3
+

a3

r3
n =

a1

rn
1
+

a2

rn
2
+

(
a3

rn
3

)
+

(
a3

rn
3

)
=

a1

rn
1
+

a2

rn
2
+2 ·ℜ

(
a3

rn
3

)
= a1 ·

(
1
rn

1

)
+a2 ·

(
1
rn

2

)
+2 · |a3 | · cos(ϕa3−n ·ϕr3) ·

(
1
|r3 |n

)
≈ 0.57 · (−0.32)n +0.51 ·2.29n +2 ·0.04 · cos(2.86+1.87n) ·1.63n,

5And the fact that we may choose h2 = 3 if n≥ 4, as mentioned above.
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where ϕa3 = arg(a3)≈ 2.86873 and ϕr3 = arg(r3)≈−1.87329 denote the arguments of the complex
numbers a3 and r3 respectively.

2.3.3 A Recursive, Incremental Query Algorithm

In the following, we give pseudocode for the recursive query strategy described in Theorem 3. In each
step, the position of the next query point depends on the number k of query points that remain to be
placed and the current subinterval in which the target t hides. Thus, it is not necessary to compute the
whole query tree for all possible locations of t in advance and the runtime of the algorithm is linear in
the overall number of query points n. The description of the algorithm is based on the routine QUERY-
INTERVAL with two subroutines QUERYLEFTSUBINTERVAL and QUERYRIGHTSUBINTERVAL. The
input of each routine is the current search interval [l,r] in which t is known to lie and the number k.
Additionally, the subroutines require two previously placed query points and a scaling factor.

Algorithm 3: QUERYINTERVAL([l,r],k)
Input: The interval [l,r] in which t is known to lie; a number k ≥ 2 of query points to be placed.
Output: The routine places two query points ql < qr; then, the search continues in the left or right

subinterval or ends.

bs← (r− l)/2,C← (r− l)/h(k) ▷ define bisector and scaling factor

ql/r← bs∓g(k) ·C ▷ place query points ql,qr

if k = 3 then
if t ∈ [l,bs] then

qend ← l
else ▷ t ∈ [bs,r]

qend ← r
else if k > 3 then

if t ∈ [l,bs] then
QUERYLEFTSUBINTERVAL([l,bs],ql,qr,k−2,C)

else ▷ t ∈ [bs,r]
QUERYRIGHTSUBINTERVAL([bs,r],qr,ql,k−2,C)

First, consider routine QUERYINTERVAL. Depending on k, the algorithm proceeds as follows:
If k < 2, we assume that the algorithm aborts without placing any (additional) query point. In all
other cases, two query points ql,qr are generated and their bisector splits [l,r] in two subintervals
[l,bs], [bs,r] of equal size; ql,qr are placed g(k) ·C left and right of the bisector where the scaling
factor C relates the size of the search interval to the accuracy that we aim for. If k = 3, a final query
point qend is placed either at l or r to optimally split the subinterval into three parts of equal size;
note that this corresponds to an increase in accuracy of h(3) = 6. Otherwise, k > 3 and more than
one query point may still be placed (we already placed two). Hence, the search continues in the
subinterval that contains t using the corresponding subroutine. The arguments passed to the subroutine
are: the subinterval [l,bs] or [bs,r], the two query points ql,qr that have just been placed, the number
of remaining query points and the scaling factor C. Note that ql,qr are both at distance g(k) ·C from
bs; one of which lies inside the subinterval while the other one lies outside. This corresponds to the
setting sketched in Figure 2.5a.
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Algorithm 4: QUERYRIGHTSUBINTERVAL([l,r],qin,qout ,k,C)

Input: The interval [l,r] in which t is known to lie; two query points qout < l < qin ≤ r such that
l = bs(qout ,qin); a number k ≥ 1 of query points to be placed; a scaling factor C.

Output: The routine places a query points q to split the search interval in three parts; then, the search
continues recursively depending on the part in which t is found to lie.

q← qin +2 ·h(k−1) ·C ▷ place query point q
bsr← (q+qin)/2, bsl ← (q+qout)/2

if t ∈ [bsr,r] then
QUERYRIGHTSUBINTERVAL([bsr,r],q,qin,k−1,C)

if t ∈ [bsl,bsr] then
bs′l ← bsr− (r−bsr) ▷ artificial bisector where bs′l ≤ bsl
QUERYLEFTSUBINTERVAL([bs′l,bsr],qin,q,k−1,C)

else ▷ t ∈ [l,bsl]
QUERYINTERVAL([l,bsl],k−1)

Finally, we describe how to query a subinterval using QUERYRIGHTSUBINTERVAL for which
pseudocode is given in Algorithm 4; QUERYLEFTSUBINTERVAL works symmetrically and pseu-
docode is given in the Appendix A.3. If k < 1, we assume that the subroutine aborts without placing a
query point; otherwise, the subroutine places exactly one query point in the subinterval [l,r]. A query
point qin which lies within the subinterval and another query point qout which lies outside to the left
such that l is their common bisector. Hence, by placing a single query point q in the subinterval [l,r],
it can be split into three parts; the position of q is chosen 2 ·h(k−1) ·C right of qin corresponding to
the setting sketched in Figure 2.5b.6 These three parts are handled in three cases: In the first case,
the target is found to lie in the rightmost part [bsr,r]; this part can be queried recursively now that
q lies within the new search interval and qin lies outside at appropriate distance. In the second case,
the target is known to lie within the central part [bsl,bsr]; we increase the size of the this part by
shifting bsl to the left, until its size is exactly as large as the rightmost part7. The new left bound
of the central interval is denoted with bs′l , which lies exactly (r−bsr) left of bsr. This modification
allows to consider the central part as a left subinterval where q lies outside to the right of the interval
at appropriate distance; hence, we may continue recursively with QUERYLEFTSUBINTERVAL, using
ql as the query point in the interval and q as the one outside. In the third and last case, the target
hides in part [l,bsl] and none of the query points qin,qout ,q lies in this subinterval; thus, the overall
strategy QUERYINTERVAL is started recursively on the subinterval, ignoring all previously placed
query points.

Figure 2.6 exemplifies the incremental search of the algorithm for eight query points.

2.3.4 An Upper Bound for the Accuracy of Incremental Strategies

As observed at the beginning of Section 2.3, (n!) is an upper bound for the accuracy of an incremental
strategy; in fact, we can prove a much stronger upper bound on the accuracy that can be achieved:

6Note that the position of q depends on h(k−1), not f (k) = h(k−3), since two query points have already been placed
in the previous calls; again, the scaling factor relates the size of the search interval to the accuracy that we aim for.

7As discussed in Footnote 3 page 24, this is always possible.
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n = 2 3 4 5 6 7 8

g(n) = - 1 3 7 16 36 84
h(n) = 3 6 14 34 76 172 404

(i) Values of the recursive formulas h(n) and g(n).

0 404

ql

118

qr

286

×

t

(ii) The initial call of routine QUERYINTERVAL([0,404],8) creates a pair of query points ql/r = 202∓ 84
splitting the interval at 202 in two subintervals of equal size; t is found to lie in the right subinterval.

0 404202
118 286

q

354

×

(iii) The call of routine QUERYRIGHTSUBINTERVAL([202,404],286,118,6,1) places a query point at q =
286+2 ·34 = 354; this generates two more bisectors which split the subinterval in three parts. The target is
found to lie in the rightmost part, resulting in another call of QUERYRIGHTSUBINTERVAL.

236 404320
286 354

q

382

bs′

×

(iv) The call of QUERYRIGHTSUBINTERVAL([320,404],354,286,5,1) places a query point at q = 354+2 ·
14= 382. As t is found to lie in the central part, the algorithm creates an artificial bisector bs′ = 368−36= 332.

332 404368
354 382

q

342

×

(v) The call of QUERYLEFTSUBINTERVAL([332,368],354,382,4,1) places q at 354−2 ·6 = 342. This results
in a call of QUERYINTERVAL, since t is found to lie in the rightmost part; previously placed points are discarded.

368365
364 366

q

362
×

(vi) The call of routine QUERYINTERVAL([362,368],3) starts from scratch and places a pair of points ql/r at
323∓1; a final query point qend is placed and the target found to lie in the interval [321,322].

Figure 2.6: Target t hides at 363.5 ∈ [0,404]. Algorithm 3 pinpoints the target’s location to the
subinterval [363,364] using 8 queries; binary search would locate t within [362.96875,366.125].
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Theorem 4. No deterministic, incremental strategy using n query points can locate an arbitrary
target in the unit interval with an accuracy Ω(3.66n).

The proof of this theorem is based on the following insight, which we already observed for the
optimal query strategy of Observation 3: Previously placed query points need to lie close enough to
possibly contribute to accuracy gains when a new point is placed. Suppose, for example, that we have
placed n−1 query points, and placing another query point qn generates two new bisectors, which
divide the interval containing the target into three equal parts. Thus, the current accuracy improves by
a factor three. However, this large increase in accuracy requires two previously placed query points
qi and q j that satisfy the following two conditions: First, the points qi and q j are consecutive in the
left-to-right order of all previously placed points; second, the distance between the bisectors bs(qn,qi)
and bs(qn,q j) is 1/3 of the current size of the interval containing the target. Therefore, the distance
between qi and q j must be 2/3 of the current size of the interval containing the target.

The previous example illustrates that, for a large increase in accuracy, one needs to have close
pairs: pairs of previously placed query points with a (comparatively) small distance in between.
The example also illustrates that, as the accuracy increases, close pairs can stop being close as their
distance relative to the current accuracy increases. Moreover, with the placement of each query
point, one can create at most two new close pairs: one with the left neighbour and one with the right
neighbour among all query points placed so far.

Definition 3 (accuracy gain). Let Rn denote the interval in which the target is known to lie after
qn has been placed. Further, let rn be the size of Rn and an the corresponding accuracy 1/rn. With
gn := an/an−1 = rn−1/rn , we denote the increase of accuracy achieved by placing qn.

To create a close pair, one must place a query point qn close to a previously placed query point,
but then the newly created bisectors are also close to the previously created bisectors. In particular,
if a close pair is created, most new bisectors inside Rn−1 will be relatively close to the boundary of
Rn−1 and away from the centre of Rn−1. Thus, creating close pairs cannot go together with substantial
accuracy gains if the target is near the centre of Rn−1. In effect, close pairs are a resource whose
scarcity limits the accuracy that can be obtained. We will now make this insight more precise.

Definition 4 (d-close pair). A d-close pair is a pair of previously placed query points that are
consecutive in their left-to-right order and have a distance strictly less than d divided by the current
accuracy. Further, let pn(d) denote the number of d-close pairs after qn has been placed.

The following three lemmas capture the trade-off between on the one hand, creating close pairs,
and on the other hand, using and losing them while pin-pointing the location of the target. Each
lemma assumes that query points q1, ...,qn have been placed in response to learning R0, ...,Rn−1,
which we now consider to be fixed. Within this context, Rn is still a variable: the bisectors of qn

with the previously placed query points subdivide Rn−1 into a set R of subintervals, and Rn ∈R is
the subinterval among them that contains t. In turn, gn and pn(d) are functions of Rn. Each lemma
assumes a certain accuracy gain gn and derives a bound for the net change in the number of d-close
pairs pn(d), for all or for some possible values of Rn. The lemmas address different levels of accuracy
gains: small, medium and large. We use the Lemmas 3-5 to prove bounds on the cumulative accuracy
gain from successive query points by induction in Lemma 6, which in turn leads to the proof of
Theorem 4.

Lemma 3 (small accuracy gain). If gn ≥ 1+ d/2 for all possible Rn ∈R, then pn(d)≤ pn−1(d)+1
for all possible Rn ∈R.
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Proof (by contradiction). Suppose two new d-close pairs are created: one with a previously placed
point ql to the left and one with a previously placed point qr to the right of qn, by definition. For ease
of notation, we may choose the origin of our coordinate system such that Rn−1 is the interval (0,rn−1).

As gn≥ 1+d/2, placing qn subdivides Rn−1 into intervals that each have size at most rn−1/(1+d/2).
In particular, the leftmost interval must be bounded from the right by a bisector generated by qn

together with a previously placed query point q j and we get

0 < bs(qn,q j) =
qn +q j

2
≤ rn−1

1+ d/2
. (2.11)

Since (qn,qr) is a d-close pair and rn ≤ rn−1/(1+ d/2) holds, we have

qr < qn +drn ≤ qn +d · rn−1

1+ d/2
. (2.12)

Using both equations, we may now conclude that for the value (qr +q j)/2 we have

0 <
qr +q j

2

(2.12)
<

1
2

(
qn +d · rn−1

1+ d/2
+q j

)
(2.11)
≤ rn−1

1+ d/2
+

d
2
· rn−1

1+ d/2
= rn−1.

Since by definition, the interval Rn−1 = (0,rn−1) cannot contain any bisectors of previously placed
query points, we cannot have 0 < bs(qr,q j) < rn−1 if qr and q j are different points. Therefore qr

and q j must be the same point. Although in this case both points do not create a bisector, we may
conclude that qr lies inside Rn−1, since the above equation 0 < (qr +q j)/2 = qr < rn−1 still holds.

By a symmetric argument, ql must also lie inside Rn−1. However, if Rn−1 contains both ql and qr,
then Rn−1 also contains their bisector, which contradicts the definition of Rn−1. Note that ql and qr

can not be the same point as each of them creates a d-close pair with qn, by assumption.
Therefore, if two d-close pairs are created, there must be possible locations for the target inside

Rn−1 that lead to rn > rn−1/(1+ d/2). This however contradicts the claimed accuracy gain, which is
independent of the target’s position.

Now, assume that the accuracy gain is somewhat higher than what we assumed in the previous
lemma. In this case no additional d-close pairs can be created at all, as the following lemma shows.
Note that it might even be the case that several d-close pairs are lost.

Lemma 4 (medium accuracy gain). If gn ≥ 2+ d/2 for all possible Rn ∈R, then pn(d)≤ pn−1(d)
for all possible Rn ∈R.

Proof (by contradiction). Suppose a new d-close pair is created with a previously placed point qr.
We analyse the case in which qr lies to the right of qn, the other case is symmetric. Again, we choose
the origin of our coordinate system such that Rn−1 is the interval (0,rn−1), for ease of notation.

Because (qn,qr) is a d-close pair, we have

qn > qr−drn ≥ qr−d · rn−1

2+ d/2
. (2.13)

For each previously placed query point q j ̸= qr, we have

bs(qn,q j) =
qn +q j

2

(2.13)
>

1
2
·
(

qr−d · rn−1

2+ d/2
+q j

)
= bs(qr,q j)−

d
2
· rn−1

2+ d/2
.
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Since the bisectors bs(qr,q j) do not lie in Rn−1, this implies that the bisectors bs(qn,q j), for q j ̸= qr,
cannot lie in the interval (0,rn−1− (d/2) · rn−1/(2+ d/2)] = (0,2rn−1/(2+ d/2)]. Therefore, the only
remaining new bisector, bs(qn,qr), cannot subdivide the interval containing the target, which is larger
than 2rn−1/(2+ d/2), into two pieces of size at most rn−1/(2+ d/2).

Thus, if a d-close pair is created, there must be target locations inside Rn−1 that lead to rn >
rn−1/(2+ d/2). This, however, contradicts the claimed accuracy gain, which is independent of the
target’s position.

Lemma 5 (large accuracy gain). For any c > 1 and h,d such that h≥ 2+ d/2 and 2/h≤ d ≤ 2, the
following implication holds:

If gn > h for all possible Rn ∈R, then there is a possible interval Rn ∈R and a k > 0, such that
gn < ck(c−1)−1(1− 2/h)−1 and pn(d)≤ pn−1(d)− k.

Proof. Suppose that the placement of qn subdivides Rn−1 into m+2 regions. Note that m≥ 1, since
otherwise it would not be possible to achieve an increase in accuracy that is strictly greater than h > 2.
Among these m+2 regions, each of size less than rn−1/h, there is a leftmost region and a rightmost
region. We call the other m regions interior regions and label them I1, . . . , Im, in order of decreasing
size. Subtracting the size of the leftmost and rightmost region from rn−1, we conclude that the total
size of the interior regions is more than (1− 2/h)rn−1. Since c > 1 we may also conclude

m

∑
k=1
|Ik| >

(
1− 2

h

)
rn−1 >

(
1− 2

h

)
rn−1 ·

(
1− 1

cm

)

=

(
1− 2

h

)
rn−1 · (c−1) ·

(
c−(m+1)−1

c−1−1
−1

)

=
m

∑
k=1

(c−1)(1− 2/h)rn−1

ck ,

by using the geometric series. Therefore, there must be a k such that the k-th largest interior region
has size more than c−k(c− 1)(1− 2/h)rn−1. If Rn is that k-th largest region, the accuracy gain is
upper-bounded by ck(c−1)−1(1− 2/h)−1.

It remains to show that in this case, the number of d-close pairs decreases by at least k. Since
h ≥ 2+ 2/d, by Lemma 4, no d-close pairs are created. Each interior region Ii with i ∈ {1, . . . ,k}
is bounded by the bisectors of qn with two previously placed query points q− and q+, which were
neighbours in the left-to-right order. The distance between q− and q+ is

• less than 2rn−1/h≤ d · rn−1, since, by the conditions of the lemma, Ii has size less than rn−1/h;

• at least 2rn ≥ d · rn, since Ii is at least as big as Rn = Ik.

Thus, q− and q+ constitute a d-close pair before, but not after placing qn.

We can now derive the following formula that expresses the cumulative effects of Lemmas 3, 4
and 5 for a complete deterministic query strategy:
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Lemma 6. For any h, d, c, and w such that h ≥ 2+ d/2 and 2/h ≤ d ≤ 2 and 1 < c ≤ w, for each
non-negative integer n, it holds that

anwpn(d) ≤ bn

for certain locations of the target, where

b = max
{(

1+
d
2

)
w2,

(
2+

d
2

)
w, h,

c
w(c−1)(1− 2/h)

}
.

Proof (by induction). If n = 0, we have a0 = 1, p0(d) = 0 and the claim holds.
Now suppose we add another query point qn. Distinguishing by the minimum accuracy gain that

is achieved for any target in Rn−1, one of the following cases must hold:

• Lemma 5 applies. Then, there is a possible Rn ∈R and a k such that gn < ck(c−1)−1(1−2/h)−1

and pn(d)≤ pn−1(d)− k. Using the induction hypothesis, we conclude

anwpn(d) <
ck ·w−k

(c−1)(1− 2/h)
·an−1wpn−1(d) ≤ c

w(c−1)(1− 2/h)
·bn−1 ≤ bn.

Note that here we use the condition c ≤ w; without that condition we would not be able to
bound ckw−k to c/w, or to any other constant.

• Lemma 5 does not apply, but Lemma 4 does. So pn(d)≤ pn−1(d) and, for some Rn ∈R, we
have gn ≤ h, which implies an ≤ h ·an−1. Using the induction hypothesis, we may conclude
anwpn(d) ≤ han−1wpn−1(d) ≤ b ·bn−1 = bn.

• Lemma 4 does not apply, but Lemma 3 applies. So pn(d)≤ pn−1(d)+1 and, for some Rn ∈R,
we have gn < (2+ d/2), which implies an < (2+ d/2)an−1. With the induction hypothesis, we
get anwpn(d) < (2+ d/2)wan−1wpn−1(d) ≤ b ·bn−1 = bn.

• None of the Lemmas 3, 4, 5 apply. We have pn(d) ≤ pn−1(d)+ 2, because each new query
point creates at most two d-close pairs, and, for some Rn ∈ R, we have gn < (1+ d/2), so
anwpn(d) < (1+ d/2)w2an−1wpn−1(d) ≤ b ·bn−1 = bn.

This establishes the induction step, and proves the lemma.

It remains to pick h, d, c and w such that we get the most out of Lemma 6. Our goal is to prove a
strong upper bound, so we want to minimize b. As we can see directly in the definition of b, it cannot
hurt to choose d as small as possible and c as large as possible, so we choose c = w and d = 2/h (this
also makes the condition h≥ 2+d/2 as permissive as possible). It remains to minimize:

max
{(

1+
1
h

)
w2,

(
2+

1
h

)
w, h,

1
(w−1)(1− 2/h)

}
,

subject to h ≥ 2+ 1/h and w > 1. The maximum of the last three terms is minimized when all
are equal: If either one or two of them were higher than the other, it would be possible to adjust
h and w slightly such that the higher terms are lowered. Solving for w and h gives us that the last
three terms are equal when h is the largest root of h3− 4h2 + h+ 1, so h is slightly smaller than
3.6511 and w = h/(2+1/h) is approximately 1.6057. The first term is of no concern since for these
values of h and w, which minimize the other three terms, the first term is even smaller. Thus we get
b = h≈ 3.6511.



2.4 Further Variants and Higher Dimensional Settings 35

Since pn(d) cannot be negative, there are targets for which an ≤ anwpn(d) ≤ bn for all n, and thus,
such targets are not located with accuracy better than Ω(bn). This concludes the proof of Theorem 4.

2.4 Further Variants and Higher Dimensional Settings

In the following, we first consider an online setting of the incremental variant where the number of
query points n is not known in advance. Then, we consider modifications of the one-shot variant
where t hides on the unit circle, the unit square or unit disk.

2.4.1 The Online Incremental Variant

The incremental variant of our search problem can also be studied in an online setting. In such a
setting, the exact number of query points n remains unknown until the last query point has been
placed; i. e., whether qi may be placed or not is only revealed after placing qi−1. The original variant
where n is known from the beginning is also called the offline incremental variant in the following.
The challenge is to develop strategies with high accuracy that do not depend on the number of query
points.

As already for the offline incremental variant, a binary search approach achieves an accuracy of
2n−1 in the online incremental variant. The binary search approach uses only the previously placed
query point qi−1 to decide where to place qi; thus, the position of qi does not depend on the overall
number of query points. This approach can be even extended to query higher dimensions.

Also in the online incremental variant it is possible to do better than the binary search approach
by adapting the incremental query strategy as follows. In the initial routine, the position of the first
two query points ql,qr can be expressed as (1/2∓ g(k)/h(k)) · (r− l), cf. Algorithm 3 and Figure 2.5a.
Similarly, in the i-th consecutive call of a subroutine, the new query point q lies at qin+2 · f (k+1−i)/h(k) ·
(r− l) where qin denotes the point within the current search interval, cf. Algorithm 4 and Figure 2.5b.
To make the position of the query points independent of their overall number, we choose h(n) = bn

and g(n) = 1/4 ·h(n)− 1/2 ·h(n−3) = (1/4− 1/2b3)bn. Thus, we can compute the position of ql,qr

relative to the size of the initial search interval using the ratio

R1 :=
g(k)
h(k)

=
1
4
− 1

2b3 ≈ 0.2089

in the initial routine; more precisely, we replace the first two lines of Algorithm 3 with C← (r− l),
i← 0 and ql/r← (1/2 ∓ R1) ·C. Now, C denotes the size of the search interval on which the initial
routine has been started; the new variable i counts the number of consecutive calls of a subroutine
and is passed to every subroutine as an additional argument. Similarly, we rewrite the ratio in the i-th
consecutive call of a subroutine as

h(k−3+1− i)
h(k)

=
h(k−3)

h(k)
·b1−i, define R2 :=

h(k−3)
h(k)

=
1
b3 ≈ 0.0823,

and place q in every subroutine relative to the position of qin. More precisely, we replace the first line
of Algorithm 4 by i← i+1 and q← qin +2 ·R2 ·b1−i ·C. Finally, the position of query points are
independent of the overall number of query points and we obtain the following result.

Corollary 1. In the online incremental variant, there is a strategy to locate a target in the unit interval
with accuracy Ω(bn) where b > 2.2993 is the largest real root of b4−b3−6b−2.
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2.4.2 The One-Shot Variant on the Unit Circle

As an intermediate step towards two dimensional strategies, one can also study one-shot strategies
on the unit circle. In contrast to the unit interval, every bisector intersects with the unit circle at two
positions. With an analysis similar to Theorem 1, one obtains a new upper bound of (n2−n) ∈ O(n2)
for the accuracy of every one-shot strategy; namely, the number of bisectors is 2

(n
2

)
which generate at

most this number of subintervals on the unit circle.
To achieve high accuracy for this variant of the problem, one can adapt the one-shot strategy GAPx

as follows. Instead of two blocks of (x+1) query points at the left and right end of the interval, we
start with a single block of (x+1) query points and build gaps in both directions along the boundary
of the circle. Applying an analysis similar to Section 2.2.2 we obtain the following corollary.

Corollary 2. For the one-shot variant on the unit circle, there is a strategy to locate a target with
accuracy 1/2 · (n2 +4n−9) ∈Ω(n2).

Proof. Consider the query points generated by GAPx(n). Since every pair of points generates a
bisector to the left and right on the circle, we may identify the first and the last block of (x+ 1)
query points; more precisely, we match qi and qϕx(n)−(x+1)+i for 1≤ i≤ x+1. Thus, we obtain a new
function ϕ◦x (n) for the number of query points of an equivalent EQUIDIST(ϕ◦(n)) strategy on the
circle. Counting query points and gaps as before, we get

ϕ
◦
x (n) = ((x+1)+2x)+ x+(n− (x+3)) · (x+1) = n(x+1)− x2−2.

Choosing x = ⌈(n−1)/2⌉ optimally, we obtain ϕ◦(n) = 1/4
(
n2 +4n−9

)
. This completes the proof

since the accuracy, equal to the number of subintervals, is exactly 2 ·ϕ◦(n) on the unit circle.

Similar to the one-shot variant on the unit interval, a constant factor gap of 1/2 between upper and
lower bound remains.

2.4.3 One-Shot Strategies in Two Dimensions

Now let us turn our attention to the two-dimensional case. In the following, we assume that the target
hides in the unit square or the unit disk. Applying the techniques presented in Section 2.2, we obtain
quadratic lower and upper bounds for the accuracy of one-shot strategies for both types of search
spaces.

Corollary 3. No deterministic strategy using n query points in the unit square (or unit disk) can
locate an arbitrary target with accuracy larger than O(n2).

Proof. For the proof, we consider the case where R is the unit square; a similar argument can be
applied for the case where R is the unit circle.

As n query points generate at most 1/2 · (n2−n) bisectors, the number of cells in the arrangement
A of bisectors is at most 1/8 · (n4−2n3 +3n2−2n+8).8 Let δ denote the maximum diameter of all
cells, i. e., δ := maxC∈A diam(C); Since a circle of radius δ/2 maximizes the area that can be covered
with diameter δ , the portion of R covered by a cell of diameter δ is not larger than π · δ 2/4; this gives
an upper bound of the area that all cells can cover together. In turn, since this area is at least 1, this
gives a lower bound δ ≥ 4

√
2 · (π(n4−2n3 +3n2−2n+8))−1/2 ∈Ω(n−2) on the smallest maximum

diameter that can be achieved. Hence the accuracy is O(n2).

8Note that an arrangement of k lines in the plane has at most
(n+1

2
)
+1 cells; see, e. g., [44, pp. 4 ff.].



2.5 Conclusion and Outlook 37

(i) The GAP-strategy extended to the disc where query
points are placed only along coordinate axes.

(ii) Could this be an optimal placement of four query
points in the one-shot variant on the unit disc?

Figure 2.7: In higher dimensional settings, it might be better to place one of the query points in the
center of the disk, instead of placing queries only along coordinate axes.

Note that a slightly smaller constant factor hidden in the big-O notation can be achieved using a
tighter upper bound for the maximum area of a single cell, such as (2π/3−

√
3) ·δ 2.

Corollary 4. In the one-shot variant, a target can be located in the unit square (or unit disk) with
accuracy Ω(n2) with n query points.

Proof. Define k := ⌊n/2⌋. As we want to prove a lower bound for the accuracy, we may choose to
use only 2k query points. We choose our coordinate system such that the center of the unit square
(or unit disk) lies at (0,0). Then, we apply GAPx(k) along each axis of the coordinate system. Now
consider only the bisectors perpendicular to the coordinate axes. These bisectors subdivide the unit
square (unit disk) into small rectangles (or parts of small rectangles), each of height and width at
most 1/2 · (ϕx(k)−1)−1, by Lemma 1. Consequently, with x = ⌈(k−3)/4⌉, the diameter of each square
is at most 4

√
2
(
k2 +6k−27

)−1, which gives the quadratic lower bound for the accuracy in terms
of n.

To search a d-dimensional cube or ball, we could place roughly n/d query points on each coordinate
axis in a round-robin fashion; on each axis, we place the points according to the one-shot, incremental,
or online incremental strategy. Thus, where we obtain accuracy h(n) in one dimension, we can
pinpoint a target to a cube of width h(⌊n/d⌋)−1 in d dimensions. This approach, however, fails to take
advantage of bisectors between query points placed on different axes, not to mention query points
placed more freely. Indeed, for d = 2, there are better solutions for n ∈ {3,4}, see Figure 2.7. This
shows that GAP-strategy is not optimal when extended to the d-dimensional case for d ≥ 2; yet, it
remains unknown whether GAPx is optimal in the one-dimensional case.

2.5 Conclusion and Outlook

In this chapter, we examined the problem of searching for a stationary target point in a bounded part
of the Euclidean space. We considered a new query model where query points must be placed in the
search space; the feedback is an ordering of the query points by distance to t. With respect to the
feedback, we distinguished two variants: In the one-shot variant all query points had to be placed
at once, whereas in the incremental variant points were placed one by one depending on previous
feedback.

For the one-shot variant of our search problem, we presented a (trivial) upper bound and developed
a lower bound for the accuracy that can be achieved. Only a constant-factor gap between both bounds
remains when the search space is a line, a circle, or even a disk or square in the two-dimensional
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setting. One approach to narrow the gap might be to improve the trivial upper bound of Theorem 1.
Another approach could be to further reduce redundancy among the bisectors generated by GAP;
most redundant bisectors are located towards the center and towards the left/right boundary of the
interval. Improvements for the one-shot variant on the unit interval immediately imply improvements
for the higher dimensional setting and other search spaces, e. g., for the unit circle.

For the incremental variant, we developed a non-trivial upper and lower bound. In this variant, the
remaining gap between upper and lower bound grows exponentially in n. Our query strategy does not
seem to leave room for substantial improvements; hence, further progress must come from an entirely
new query strategy, or from tightening the upper bound. Observe that in each step, our query strategy
only uses the bisectors which are formed with the two previously placed query points that are closest
to the target. If one can prove that there is an optimal search strategy with this property, this would
immediately improve the upper bound to O(3n).

Apart from the variants discussed in this chapter, other interesting variants can be defined when
the target may slightly move between successive query points are placed or when the responses to
queries may be inconsistent. In the first case, one can ask questions such as: How much movement of
the target would prevent us from locating it? Or, how fast can we locate a target as a function of its
speed of movement? Regarding the second case, an example of an inconsistent response could be that,
in order of increasing distance from the target, we find the query points 1/4, 3/4, and 1/2. In such cases,
the problem may become one of finding the target location that is, in some sense, most consistent
with the responses.

Finally, we conclude this chapter comparing the performance of the incremental strategy of
Algorithm 3 to that of the binary search approach. As mentioned above, our incremental query
strategy outperforms the binary search approach in the new query model. Recall the definition of
accuracy as the reciprocal of the initial interval’s size divided by the size of the resulting subinterval.
To develop a feeling for the exponential decrease of the search interval’s size, see Table 2.2. At
first sight, the benefit of the incremental strategy compared to the binary search approach seems
immense: The difference in the final interval’s size grows exponentially with the number of query
points. However, this effect is less than one might expect, which becomes apparent when comparing
this difference to the size of the initial query interval. As already exemplified in Figure 2.6, the
incremental strategy with 8 query points locates t within a final interval of (at most) 1 metre when
applied to an initial interval of 404 metres; in contrast, the binary search approach locates t about 3.15
times less precise, i. e., in a final interval of size 3.15 metres. Although this difference keeps growing
with the number of query points, it becomes relatively unimportant compared to the size of the initial
interval: In the previous example, the difference of roughly 3.15−1 = 2.15 metres corresponds to
merely 0.53% of the initial interval’s size; for an initial interval of 130 km and 15 query points, it
is already less than 0.0064%. In the end, this relative imprecision makes little difference when the
number of query points grows.

Nevertheless, the results of this chapter are important for settings where queries are limited or
only available at great expenses. The results show that it is possible to achieve the same accuracy
using fewer query points as compared to the naive, binary searching approach. For example, instead
of placing 18 query points in a binary search fashion, it is possible to achieve the same accuracy using
only 15 query points with the incremental strategy, see Table 2.2. Note that saving three of 18 queries
cuts the costs by more than 16%. In general, using only logb 2≈ 83.65% of the query points required
by the binary search approach, the incremental strategy achieves the same accuracy. To put it in a
nutshell, using resources more efficiently in the new query model, it is possible to save a constant
percentage of query points compared to the naive approach.
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approximate size of initial interval / number of query points

404 m / 8 130 km / 15 130 km / 18 0.8 ly / 53

approximate
size of

remaining
interval

incremental
strategy

1 m 1 m 0.08 m 1 mm

binary
search

3.15 m 8.3 m 1 m 1669 mm

Table 2.2: Comparing the incremental strategy’s performance to the performance of the binary search
approach. The column specifies the size of the initial interval (in metres, kilometres, or light-years)
and the number of query points to place. The maximum size of the final subinterval after all query
points have been placed is given in the corresponding row.





Chapter 3

Searching for the Boundary of a Region

This chapter considers the following search problem in a continuous search space. A hiker is located
at an unknown position in a forest modelled by a simply connected region R in the Euclidean plane.
What is a good path for the hiker to follow in order to reach an arbitrary boundary point of R within a
reasonable amount of time?

If the shape of R is unknown, the hiker’s dilemma clearly is: Should one start exploring the area
close-by and expand the search radii gradually? Or should one rather pick some direction and run
straight on?

We employ a competitive analysis to prove that a specific spiral strategy achieves a reasonable
competitive factor for the case where the forest has a non-empty kernel; moreover, if the hiker’s
unknown starting position lies in the kernel of the forest, this strategy is (almost) optimal w. r. t. the
competitive factor. As a basis for our competitive analysis, we introduce a new measure of intrinsic
complexity for instances of this escape problem, which we compare to several known shortest escape
paths. Finally, we exemplify how the notation and the lower bound technique developed throughout
this chapter can be applied to other geometric search problems in order to prove the optimality of
given search strategies.

3.1 Introduction and Formal Problem Statement

In 1956, Bellman [11] posed the following research problem: Given a region R and a random point
within the region; determine the path which minimizes the maximum time required to reach the
boundary. Though it attracted a lot of interest, the problem has only been solved for several special
cases to this day. In 2002, Williams [103] even incorporated it into his list of Million Buck Problems;
a collection of problems where he believes that a solution to any of them will be worth at least one
million dollar to Mathematics.

For a formal treatment of the problem, we use the following notation in the style of Finch and
Wetzel [36]. A path γ is a continuous and rectifiable mapping of [0,1] into R2. We consider γ(0) as
the start of the path and γ(1) as its end; with {γ} we denote the trace of γ , i. e., {γ(t) : 0≤ t ≤ 1}, and
with |γ | we denote its length. Similarly, we use the terms for any (sub-)path γ(a,b) of γ from γ(a)
to γ(b). A rotation ρ can be applied to (points γ(t) of) the path γ , which we denote by ρ(γ(t)) and
{ρ ◦ γ} accordingly. Assume that a simple (not necessarily closed) Jordan curve, i. e., a intersection-
free path, divides the Euclidean plane into exactly two regions; the region that contains a specific
starting point s ∈R2 is denoted by R. We denote the boundary of R by ∂R; moreover, with ker(R) we
denote the kernel of R, i. e., the set of points p ∈ R such that all of ∂R is visible from p.
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Definition 5 (escape path). Given a region R and a position s ∈ R. We call a continuous and
rectifiable mapping γ : [0,1]→ R2 an escape path for s if {ρ ◦ γ}∩∂R ̸= /0 holds for every rotation ρ

with γ(0) = ρ (γ(0)) = s. Moreover, we call γ an escape path for R, if γ is an escape path for every
s ∈ R.

Using this notation, Bellman’s problem is equivalent to finding a shortest escape path for a given
region R. Unfortunately, shortest escape paths are known only for special types of regions; for many
other simple types, neither the length nor the shape of a shortest escape path is known. Nevertheless,
it would be desirable to have at least some general escape strategy which behaves almost as good as
an unknown shortest escape path for R. In contrast to a shortest escape path, such an escape strategy
needs to be less dependent on the size and shape of a specific region; this implies that a search strategy
has no specific end, which motivates the following definition as a mapping of R≥0 into the Euclidean
plane.

Definition 6 (escape strategy). Given a family of regions R and a position s ∈ R2. We call a
continuous and rectifiable mapping γ : R≥0→ R2 with γ(0) = s an escape strategy for R if, for all
R ∈R such that s ∈ R, {ρ ◦ γ}∩∂R ̸= /0 holds for every rotation ρ with γ(0) = ρ (γ(0)) = s.

For an escape path or escape strategy γ , we write γ escapes at time t ∈ R if and only if t is the
first time that γ(t) reaches ∂R; i. e., γ(t) ∈ ∂R and ∄ t ′ < t : γ(t ′) ∈ ∂R. As mentioned above, we seek
for an escape strategy γ that approximates the length of the shortest escape path with a constant factor
for every region R and all s ∈ R.

Definition 7 (approximation of an escape path). Let c ∈ R+, γ be an escape path (or escape
strategy respectively) and πR be an escape path for R. We call γ a c-approximation of πR for R if the
following holds.

For every s ∈ R, there exist ts ≤ 1 (or ts < ∞ respectively) and t ′s ≤ 1 such that

• γ escapes at time ts from R in the worst case;

• πR escapes at time t ′s from R in the worst case;

• |γ(0, ts) | ≤ c · |πR(0, t ′s) | holds.

Moreover, we call it a c-approximation for a family of regions R if γ is a c-approximation of πR for
every R ∈R.

Since shortest escape paths are unknown for most regions, it is hard to compare them directly to
certain strategies. For this reason we proceed in two steps: In a first step, we assume that we are given
the shape of R and the position of the starting point s ∈ R. Based on this information, we introduce an
escape path for s of a special kind which we call the certificate path. We provide evidence for why the
certificate path may serve as an appropriate substitute for the unknown shortest escape path in general.
In a second step, we discuss how to approximate the certificate path when neither information about
R nor s ∈ R is available; without this information, the precise shape or length of both, the shortest
escape path and the certificate path, are unknown.

Organisation of this chapter. Section 3.2 presents previous results regarding Bellman’s problem
and research related to our approach. Section 3.3 introduces and discusses the certificate path as a new
notion of the intrinsic complexity for instances of the shortest escape path problem. In Section 3.4, we
show how the certificate path can be approximated: We provide a spiral strategy that approximates the
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certificate path with a factor smaller than 8.1125 for the family of regions with a non-empty kernel; we
prove that this strategy approximates the shortest escape path with an optimal factor of 3.3187 for the
family of fat convex shapes, equilateral triangles and infinite strips. In Section 3.5, we prove a lower
bound for the approximation of the certificate path: For the family R of regions with a non-empty
kernel, there is no c-approximation for R with a factor c < 3.3131; we discuss how this factor can be
improved which establishes the optimality result of Section 3.4. Moreover, we exemplify how the
notation and the lower bound technique can be applied to another geometric search problem in order
to prove optimality of a specific spiral search strategy. Finally, we conclude with Section 3.6.

3.2 Previous Results and Related Work

In this chapter, we apply a technique inspired by Kirkpatrick [64] to develop provably good escape
strategies for Bellman’s problem. This section gives background information on both: previous results
to Bellman’s problem and Kirkpatrick’s technique. First, we review solutions to special cases of
Bellman’s problem; then, we give a short introduction to competitive analysis and a short summary of
Kirkpatrick’s technique.

3.2.1 On Bellman’s Problem and Special Cases

Bellman [11] originally stated his research question as follows. “Given a region R and a random point
s ∈ R. Determine the paths which: (i) Minimize the expected time, or (ii) minimize the maximum time
required to reach the boundary.” With regard to these two objectives, he was particularly interested
in two special cases where R is (a) the region between two parallel lines at known distance d apart
and (b) the semi-infinite plane where d is the initial distance to the boundary. In this chapter, with
Bellman’s problem we only refer to the minimization objective (ii), i. e., finding a shortest escape path
for a region R.

Bellman’s problem has been given several other names. In 1962, Burr [84, pp. 23-24,149] restated
it under the name river-shore problem: a swimmer got lost in a river and tries to swim to the shore as
quick as possible. In the context of search games [3], the swimming-in-the-fog problem is a game of
two players: a searcher, who tries to reach the boundary of a known shape following a single finite
path starting at s; a hider, who can rotate and translate the environment so that the path of the searcher
will cross the boundary as late as possible. Finally, in their great survey, Finch and Wetzel [36] refer
to it as the lost-in-the-forest problem: A hiker got lost in a forest of known shape R and wants to
follow a shortest escape path for R to leave the forest as quick as possible. Finch and Wetzel also
establish the connection with Moser’s worm problem (see [81], LM 50), which conversely asks for
the smallest convex region that covers any path of fixed length.

To date, Bellman’s problem has only been solved for some special cases of R. For several special
cases, we present shortest escape paths in Section 3.3 and compare them to our certificate path. For
the infinite-strip, case (a), Zalgaller [106] found a shortest escape path in 1961; the same solution has
been rediscovered and proven by researchers in different fields (e. g., in analysis or computational
geometry) [1, 19, 70, 71]. For the half-plane setting, case (b), Isbell [61] found a shortest escape
path in 1957. Moreover, shortest escape paths are also known for circular disks, circular sectors, the
equilateral triangle, rectangles, fat convex bodies, and some other special cases. All of these results
are presented in the survey by Finch and Wetzel [36].
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3.2.2 Competitive Analysis and Kirkpatrick’s Alternative Cost Measure

Sleator and Tarjan [95] introduced a technique that has come to be known as competitive analysis.
The technique has been used in many settings since then; see, e. g., [33, 57, 88]. Where classical
worst-case analysis classifies two strategies as equivalent w. r. t. their performance, using competitive
analysis it is often possible to tell them apart.

An example where competitive analysis has been successfully applied is the m-lane cow-path
problem: A single goal is hidden on one of m rays emanating from a common source s; the searcher,
initially located at s, is required to find the goal. The cost of the search is given by the distance the
searcher covers while exploring the rays and retracing to s. Thus, the cost of any strategy can be
arbitrarily increased by placing the goal far away from s; hence, a breadth-first-searching strategy
would already be optimal according to a classical worst-case analysis.

Comparing a strategy’s cost to the cost of an optimal strategy that knows where the goal lies,
differences between strategies are revealed. Baeza-Yates et al. [8] prove that the cost of their strategy
exceeds an optimal strategy’s cost by a factor of at most (2em+ 1), where e denotes the natural
logarithmic base. This competitive factor is also proven to be optimal. Although, at first sight, the
m-lane cow-path problem appears to be a discrete version of Bellman’s problem, there are two main
differences: The searcher has to find a single goal, whereas in Bellman’s problem it suffices to reach
an arbitrary point of ∂R; moreover, the searcher has to retrace to s when switching from one ray to
another, which is not the same for Bellman’s problem. These are also the main differences to the
following problem.

In [64], Kirkpatrick introduces and analyses1 the multi-list-traversal problem: Given a (multi)set
L of m lists of unknown length, find the end of one of the lists with few traversal costs. It is only
allowed to traverse a single list at a time; however, for any list, this process can be interrupted at any
position and resumed later. Costs are charged for traversing a list; no costs are charged for switching
between lists.

A standard competitive analysis has weaknesses when applied to this problem: The analysis
compares an algorithm to a fully informed algorithm which knows the length of each list and only
traverses the shortest list to its end. Thus, similar to the cow-path problem, a linear dependency of the
competitive factor in m is the best one could hope for; in this sense, a simple breadth-first-searching
strategy would already be optimal, although, it does not seem to be a good choice for every instance;
see Figure 3.1. Hence, a fully informed strategy does not seem like a suitable choice for the competitor.
Moreover, one can argue that the intrinsic complexity of an instance of the problem does not only
depend on the length of a shortest list in L but on the number of lists, as well.

To overcome these problems, Kirkpatrick proceeds in two steps. In a first step, he introduces a
different competitor: a partially informed strategy which knows the length of all lists, but not the order
in which they are given in L . Thus, he defines a different measure for the intrinsic complexity for a
multi-list-traversal problem instance L : The maximum-traversal-cost of a strategy is the maximum
cost that the strategy requires for any ordering of the lists in L ; the intrinsic maximum-traversal-cost
ξ (L ) is the minimal maximum-traversal-cost over all deterministic strategies. In other words, the
intrinsic complexity of an instance L is the best that a partially informed algorithm can achieve on all
permutations of L . He proves that ξ (L ) = i∗ · | li∗ |, where i∗ := argmin1≤i≤m i · | li | and li denotes
the i-th longest list in L . Thus, the intrinsic complexity of an instance indirectly incorporates the
number of lists. Provably, every deterministic strategy that works correctly on all permutations of
L requires at least cost ξ (L ); a strategy that traverses each list up to length | li∗ |, has at most cost

1Kirkpatrick [64] also analyses randomized strategies and proves performance guarantees; we only summarize his
results for deterministic strategies.
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ξ (L ), see Figure 3.1 (iii). In a second step, Kirkpatrick introduces a hybrid strategy and proves a
tight bound of O(ξ (L ) · log(min(m,ξ (L ))) for its traversal cost. Now, the competitive factor is
logarithmic in the number of lists m, which highlights the hybrid strategy’s strength compared to the
standard breadth-first-searching approach.

l1 l2 l3 l4 l5 l6 l7(i) l1 l2 l3 l4 l5 l6 l7(ii) l1 l2 l3 l4 l5 l6 l7(iii)

i · |li|

Figure 3.1: Searching for the end of one out of m = 7 lists given in a random order. (i) If all lists have
about the same length, it is reasonable to pick an arbitrary list and traverse it up to its end. (ii) If one
list is significantly shorter, it is reasonable to traverse all lists up to the length of the shortest. (iii) In
general, if li is the i-th longest list, at most i lists have to be traversed up to length | li | to find the end
of one of them.

All in all, the use of alternative comparison measures has some tradition. Consider the problem of
searching for a point in a polygon and competing against the shortest path. As there is no competitive
strategy, other comparison measures have been suggested in this case; see, e. g., [38, 72].

3.3 The Certificate Path

Every escape strategy is trapped in the dilemma of searching the area close-by versus going straight
into one direction. While a breadth-first-search approach (BFS) will always result in an escape strategy
when expanding the search-radii gradually, this is not true for a pure depth-first-search approach
(DFS): the trace is a ray, which can be rotated such that the intersection with ∂R is empty for the
case where R is the half-plane. Balancing BFS and DFS in a hybrid strategy which expands the BFS
search-radii exponentially, one obtains an escape strategy that approximates the shortest distance d
from s to ∂R with a constant factor; the smallest competitive factor is about 27, which we show in
Section 3.4.1. In the sense that a constant factor is the best we could hope for, this hybrid strategy is
already optimal; however, for certain types of regions, there is an escape strategy that performs much
better and for some starting positions we can even prove that it is optimal! To prove this, the shortest
distance d is not a constructive choice for the competitor. This is why we replace it by a new notion
of complexity which we introduce in the following.

The certificate path is a hybrid strategy that balances BFS and DFS in an optimal way. Assume
we have to design an escape path for s in R and we are given the distance from s to ∂R into every
direction but not the initial orientation within R. Depending on the specific distances, a pure BFS or
pure DFS approach gives an escape path of reasonable length; see Figure 3.2i and ii. For the general
case, we define the certificate path as an optimal way of balancing BFS and DFS based on the given
distances from s to ∂R.
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s

(i) The distance from s to ∂R is about
the same in every direction; hence
αx ≈ 0.

s

(ii) The distance x from s to ∂R is
very short for only few directions;
hence αx ≈ 2π .

s

(iii) The distances from
s to ∂R vary such that
αx ≈ 1/2 ·π .

Figure 3.2: The certificate path πs depends on the distance from s to ∂R. In the two extreme cases, πs

consists (i) either only of a straight line segment or (ii) the arc segment covers a full circle. In general,
πs balances both extremes; e. g., see (iii).

Definition 8 (certificate path). Given a region R and s ∈ R. A certificate path for x and s, denoted by
πs(x), is an escape path that consists of a straight line segment of length x attached to a circular line
segment of length x ·αx along the circle of radius x around s.

A certificate path, denoted by πs, is a shortest one among all certificate paths for values of x.

Note that such a certificate path always exists. The exact values for x and αx depend on s and R:
Intersecting the circle of radius x around s with ∂R, the largest arc segment that lies in R defines x ·αx;
see Figure 3.2iii. In this restricted family of paths, the certificate path πs is a shortest escape path.

The definition of the certificate path bears strong resemblance to Kirkpatrick’s alternative cost
measure for the multi-list-traversal problem introduced in Section 3.2.2. Recall the definition of the
intrinsic maximum-traversal-cost ξ (L ) as the min-max cost that any deterministic algorithm can
achieve over all permutation of the lists L of given lengths. The certificate path seems like a natural
extension of this definition to the two-dimensional setting. This impression basically comes from
three common features: First, both cost measures hinge on additional information about the distances
to the targets; in the traversal problem this is the length of each list whereas it is the distances from
s to ∂R for our problem. Second, they are similar in the sense that both guarantee success as soon
as a certain search depth is covered for a certain number of lists or directions respectively. Finally,
the cost grows linearly with the search depth for both cost measures. However, there are also three
crucial differences to mention: First, ξ (L ) depends on the number of lists m whereas πs does not
depend on a limited number of directions; not even if the distance from s to ∂R is given only for a
limited number of directions. Second, ξ (L ) depends on the depth up to which the lists are traversed;
this approaches the area of a sector S that is covered during the search, when m grows to infinity.
In contrast, the cost of πs is given by its length |πs | which corresponds rather to the boundary of
S. Last but not least, ξ (L ) is invariant to permutations of the lists which is necessary to prove
ξ (L ) = min1≤i≤m i · | li |; however, we require πs to be only robust under rotations which corresponds
to rotations of the ordering of the lists, where the first list is repeatedly appended at the end. When the
ordering of the lists is only subject to such rotations, the equality relaxes to ξ (L )≤min1≤i≤m i · | li |.
Similarly, |πs | is only an upper bound for the length of a shortest escape path that can be designed
given the distances from s to ∂R. Nevertheless, we are convinced that πs is a good measure for the
inherent complexity of an instance of the shortest escape path problem.
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Figure 3.3: Three environments for which the diameter D is the shortest escape path: (i) Circular
disks, (ii) circular sectors with α ≥ 60°, and (iii) fat convex sets.

Further, we are convinced that the certificate path πs can serve as a substitute for the unknown
shortest escape path. More precisely, we support the following two claims: (a) For every R and
every s ∈ R, πs approximates the shortest escape path with a small, constant factor; (b) πs is almost
optimal when given the distance to ∂R into every direction, i. e., with a small constant factor, πs

approximates the shortest escape path that is specifically designed given the radial distances from
s to ∂R. Intuitively, (a) should hold since a shortest escape path for R is required to be an escape
path for every s ∈ R, while πs is specifically designed for a single s ∈ R based on the given distances
from s to ∂R. To support claim (a), we prove for several cases where a shortest escape path is known
that πs does not escape later than the shortest escape path in the worst case; i. e. πs approximates the
shortest escape path with a factor c≤ 1. To support claim (b), we prove that πs approximates Isbell’s
path γs with a factor of c < 1.0935 in the worst case, where γs is a shortest escape path when R is the
half-plane and the distance from s to ∂R is given. If the reader is willing to accept both claims, the
following subsections can be skipped to see how πs can be approximated.

Last but not least, the certificate path πs can be efficiently computed for polygonal regions, as
we show in Section 3.3.5. This shows that πs is not only a theoretical tool in the absence of shortest
escape paths but can in fact be computed; even though, this is not necessary since it can be easily
approximated with the strategies presented in Section 3.4.

3.3.1 Fat Convex Sets, Circular Disks, Circular Sectors, and Regular n-Gons

For several geometric shapes, the diameter is known to be a shortest escape path. Circular disks,
circular sectors with an opening angle of at least 60°, and regular n-gons for n > 3 are special cases of
a more general family of geometric shapes: fat, convex sets. A compact, convex set S⊂ R2 is called2

fat if it contains two points p,q such that: (i) the straight line segment pq from p to q is the diameter
of S; (ii) a rhombus with smaller inner angle of 60° and pq as its smaller diagonal fits in S. For such a
rhombus, Poole and Gerriets [86] proved, in the notion of Moser’s worm problem, that the diameter
is the shortest escape path; hence, the diameter is also the shortest escape path for all fat geometric
shapes.

It is not difficult to see that πs approximates the diameter with a factor c≤ 1. The definition of πs

allows αx to be equal to zero; in this case, x must be equal to the largest distance from s to ∂R. If, for
example, s lies at the center of a disc of radius D, πs consists of a straight line segment of length D/2,
see Figure 3.2i; hence, πs does not escape earlier than the straight line shortest escape path. For any
other position of s, πs is not longer than the maximum distance from s to ∂R due to its definition, see
Figure 3.3; thus it escapes not later than the shortest escape path in the worst case. Altogether, for any
s ∈ R, πs approximates the diameter with a factor c≤ 1.

2Note that there are several other definitions of fatness.
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3.3.2 Besicovitch’s Escape Path for Equilateral Triangles

To prove that the certificate path πs outperforms Besicovitch’s [12, 24] shortest escape path γ for the
equilateral triangle, we proceed as follows. Let T be an equilateral triangle with sides of unit length
and let t1, t2, t3 be the segments that constitute ∂T . As Figure 3.4i shows, γ is symmetric and consists
of three segments of equal length, which constitute a total length3 of approximately 0.981918. We
subdivide possible choices for s ∈ T into two subsets: (a) Points s ∈ T for which the distance to ti is
greater than d := 2xcos(α) · sin(α) = 9/28

√
7 for at least two segments ti; (b) all remaining points, for

which the distance to ti is at most d for two segments ti. For each set, we give an upper bound for |πs |
and a lower bound for |γ(0, t) |, where γ escapes at t in the worst case.

For case (a), we first observe that a maximum distance from s to ∂T is at least 1/
√

3, where the
min-max is attained when s lies at the center of T . Let C be a corner of T such that: (i) the distance
from s to the segments ti, t j that touch in C is greater than d; (ii) the distance from s to C is maximized,
i. e., there is no other corner C′ such that (i) holds and the distance from s to C′ is greater. Finally,
we obtain the lower bound for |γ(0, t) | by rotating γ such that it escapes at C = γ(t): Due to (i), γ

does not escape earlier than t; by (ii), we obtain |γ(0, t) | ≥ 1/
√

3 > x. This lower bound implies that γ

escapes along the second or third segment from s; however, by triangle inequality, the straight line
segment from s to C is strictly shorter than |γ(0, t) | and an upper bound for |πs |.

In case (b), s is at most d from two segments; hence, s lies in one of the corners of the triangles,
indicated by gray shaded rhombi in Figure 3.4ii. On the one hand, γ can always be rotated around s
such that the first two segments of γ fully4 lie in T ; hence |γ(0, t) | > 2x in the worst case. On the
other hand, |πs | ≤ |πs(d) | ≤ d · (1+4π/3), which is strictly smaller than 2x.

Altogether, this shows that πs approximates γ with a factor c < 1.

3.3.3 Zalgaller’s Escape Path for the Infinite Strip of Unit Width

To prove that the certificate path outperforms Zalgaller’s [106] shortest escape path γ for the infinite
strip S of unit width, we proceed in two steps. Let t denote the time where γ escapes from S in the
worst case. In a first step, we give a lower bound for |γ(0, t) | independent of s ∈ S. Then, we show
that |πs | stays below this bound for every s ∈ S based on a case distinction.

For the first step, consider γ as depicted in Figure 3.5i; if S is the infinite strip of unit width, γ

has a total length |γ(0,1) | ≈ 2.2783. For any position s, it is |γ(0, t) |> 2.139 when escaping at t in
the worst-case. This can be seen as follows: W. l. o. g. assume that s is closer to the lower boundary
of the strip and γ is rotated such that the top vertex v is arbitrarily close to the upper boundary of
the strip; thus, γ escapes through the lower boundary of S at point v′ = γ(t) and, due to the unit
width, the distance from v to v′ is arbitrarily close to one. Altogether, when γ escapes at time t,
|γ(0, t) | ≥ 1/2 · |γ(0,1) |+1 > 2.139; see Figure 3.5ii.

In the second step, we show that |πs | < 2.139 for every s ∈ S by dividing the points in S into
two subsets: (a) points s ∈ S for which the distance to ∂S is greater than d := 1/4; (b) all remaining
points, for which the distance to ∂S is at most d. For case (a), consider the certificate path πs(1) for
which α1(d) = α ′+α ′′ = arcsin(d)+ arcsin(1− d); since α1(d) < 1.101 for d ∈ (0.25;0.75), we
have |πs | ≤ |πs(1) |< 1 · (1+1.101) = 2.101. For case (b), |πs | ≤ πs(1/4)≤ 1/4 · (1+2π)< 1.83.

In both cases, it is |πs | < 2.139 < |γ(0, t) |, which shows that πs approximates γ with a factor
c < 1.

3Note that this is shorter than the diameter of the triangle.
4The distance from any point in a gray shaded rhombus to the non-adjacent side of the triangle is at least

2xcos(α)sin(α)/cos(π/3)> 2x.
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Figure 3.4: (i) Besicovitch’s escape path is a shortest escape path for the equilateral triangle with unit
side length; α = arcsin(1/

√
28)≈ 10.9◦ and x =

√
3/28. (ii) Along dashed lines, the distance to one

side of the triangle equals d := 2xcos(α)sin(α) = 9/28
√

7. For any point in the shaded rhombi, the
distance to two of the sides of the triangle is at most d and greater than 2x to the third; the certificate
path in the worst case (red) satisfies |πs | ≤ d · (1+ 2/3 ·2π).
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Figure 3.5: (i) Zalgaller’s escape path in its bounding box of height 1 and width x; the defining values
are ϕ = arcsin(1/6+ 4/3 sin(1/3 arcsin 17/64)), ψ = arctan(1/2 · secφ) and x = secϕ ≈ 1.043590. (ii)
Zalgaller’s escape path can always be rotated such that vertex v is arbitrarily close to the upper
boundary and the path escapes at point e = γ(t) via the lower boundary. For points in gray shaded
areas, the distance to ∂S is at most d = 1/4 and |πs | is bounded by |πs(1/4) |; for all other points, |πs |
is bounded by |πs(1) |.
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Figure 3.6: (i) Isbell’s escape path γs where d denotes the distance from s to ∂H. (ii) For x≥ d, πs(x)
(red) is an escape path with αx = 2 · arccos(d/x) that approximates γs (blue).

3.3.4 Isbell’s Path to Find a Line at Known Distance

Let H be the family of half-planes. For every H ∈H , πs approximates the shortest escape path for
H that is specifically designed given the distance from s to ∂H. Isbell’s path γs is a shortest escape
path when the distance from s to ∂H is given [61]; note that this is equivalent to the information about
the radial distances to ∂H around s which are provided to compute πs. In contrast to the shortest
escape paths discussed above, πs can only approximate γs with a factor c≥ 1. This is due to the fact
that πs is restricted to a certain shape and only a shortest path within this class of paths; yet, we can
prove that πs approximates γs with a small factor.

Lemma 7. For every infinite half-plane H, πs approximates Isbell’s path with a factor c < 1.0935.

Proof. In [61], Isbell proved that |γs |= (
√

3+ 7/6 ·π +1)d where γs denotes the shortest escape path
which is specifically designed given the distance d from s to ∂H. W. l. o. g. we may set d = 1.

For x≥ d, the certificate path for x in H is an escape path and αx equals x · (2π−2 · arccos(1/x)).
Thus, πs can be obtained by minimizing x · (1+2π−2 · arccos(1/x)), which gives x ≈ 1.04356 and
results in an approximation factor smaller than 1.093484.

This exemplifies that a certificate path, although restricted to a special shape, can approximate
optimal solutions based on the same amount of information. Therefore, we are convinced that it
is legitimate to focus on the approximation of the certificate path instead of (unknown) shortest
escape paths in Section 3.4. In Section 3.4.3, we use the lemma to show how tight our spiral strategy
approximates Isbell’s path.

3.3.5 Computing the Certificate Path in a Simple Polygon P

In this section we consider the case where P is a simple polygon in the Euclidean plane and describe
how to compute the certificate path πs for a point s in P. Let V denote the visibility polygon of s
in P; using subscripts, we distinguish the set of edges EP of P from the set of edges EV of V . With a
preprocessing step, we ensure that for every x > 0, the circle ∂Bs [x] of radius x around s intersects
with every edge of EP or EV at most once.5 Let P and V be given by the set of vertices {p1, . . . , pn}

5 Every edge of P which does not satisfy this assumption can be split in two edges by inserting a single additional point
into ∂P. This preprocessing adds at most n additional points; hence, the complexity of P (and ∂P) remains linear in n.
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Figure 3.7: Sweeping a polygon with an expanding circle around s; due to the preprocessing step,
for fixed radius x, the dashed sweep line ∂Bs [x] intersects with any segment at most once. (i) A
candidate defines the red-coloured path γs(ax,bx,+1) for some radius x. At each event, a point p ∈U
is processed: (ii) p is an endpoint of eb; (iii) p is an endpoint of ea; (iv) p is the endpoint of ea and eb;
or (v) p comes to lie on the circular segment from ax to bx.

and {v1, . . . ,vn′} after the preprocessing step. In the following, we denote the union of both set with U ;
thus, U := {p1, . . . , pn}∪{v1, . . . ,vn′} where |U | ≤ n+n′ ∈ O(n).

Apart from the definition above, πs can also be described using a pair of points ax ∈ ∂V,bx ∈ ∂P
together with a direction of rotation σ ∈ {−1,+1} which is either clockwise (−1) or counter-
clockwise (+1). Thus, πs consists of two subpaths: a straight line segment sax from s to ax of
length x, attached to the σ -oriented circular segment from ax to bx along ∂Bs [x]. In the following,
we abbreviate paths of this shape with γs(ax,bx,σ) for short, see also Figure 3.7i. This alternative
description motivates the following definition of a candidate where ax and bx are fixed to specific
edges; at the same time, the radius x may vary.

Definition 9 (candidate). A candidate consist of a pair of edges ea ∈ EV ,eb ∈ EP; a direction of
rotation σ ; and a maximal existence interval [x−,x+]⊂ R>0 so that, for all x ∈ [x−,x+], γs(ax,bx,σ)
lies completely within P where ax, bx denote the unique intersections of ea,eb with ∂Bs [x].

The length-function ℓ : [x−,x+]→ R+ of the candidate maps every radius x to the length of
γs(ax,bx,σ) where ax,bx depend on x, i. e., ℓ(x) 7→ |γs(ax,bx,σ) |. We call ℓ(x) the length of the
candidate at x.

On the one hand, for every certificate path πs, a candidate γs(ax,bx,σ) exists where πs(x) equals6

γs(ax,bx,σ) for some x in the candidate’s existence interval; this allows us to restrict the search for πs

to the set of all candidates. On the other hand, note that there are candidates where γs(ax,bx,σ) is not
even an escape path for some/every x in their existence intervals. However, for every fixed radius x, a
candidate of maximum length at x has to be an escape path. This motivates the following approach.

The idea of the algorithm is to reduce the search for πs to the set of candidates. Thus, πs can
be obtained by finding a radius x that minimizes the length of a candidate of maximum length at x.
For this purpose, the algorithm proceeds in three steps: In a first step, we compute all σ -oriented
candidates for each σ ∈ {−1,+1}; in a second step, for each σ , we compute the upper envelope of
the set of length-functions defined by the σ -oriented candidates; finally, we obtain πs via computing a
minimum value of each of the upper envelopes.

On the first sight, there seems to be a quadratic number of candidates: one for every pair of edges.
In fact, there is not a candidate for every pair since γs(ax,bx,σ) must lie within P. As the following
lemma shows, the number of candidates is linear.

6up to rotations around s
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Lemma 8 (computation of candidates). The number of candidates is O(n). After O(n logn) prepro-
cessing time, all candidates can be computed in O(n) deterministic time.

Proof. The following sweep algorithm computes all candidates by expanding the radius of Bs [x]
gradually. In the following, we only consider candidates with counter-clockwise orientation σ =+1;
candidates with σ =−1 can be computed similarly. Due to the preprocessing step, an event occurs if
and only if a boundary point of U comes to lie on ∂Bs [x]; thus, we may sort and process the points in
U in ascending distance from s. In a sweep status structure, we keep track of all candidates for which
the lower bound x− of their existence interval has been found but the upper bound x+ is still unknown.

At every event, a boundary point p ∈ U comes to lie on ∂Bs [x] and at most one candidate
γs(ax,bx,σ) has to be updated: Two candidates of the same orientation can never overlap for the
same value of x; hence, at most one candidate exists where p ∈ γs(ax,bx,σ). In all other cases,
p ̸∈ γs(ax,bx,σ) and does not affect the maximal existence interval of the candidate. Consequently,
no update is required for these candidates. With regard to the affected candidate, we distinguish two
cases: (I) Either p is the endpoint of ea,eb, or both; or (II) p comes to lie on the circular segment from
ax to bx.

In case (I), ea,eb, or both are completely contained in Bs [x] and will no longer intersect with
∂Bs [x] for radii larger than x; cf. Figure 3.7ii to 3.7iv. Hence, we may set x+ := x and remove the
candidate from the sweep status structure. If p is not an endpoint of both, ea and eb, we have to create
new candidate. For this purpose, let e ∈ EP,ev ∈ EV denote the edges7 adjacent to p which lie outside
of Bs [x].8 If p is the endpoint of ea, we create a σ -oriented candidate for the pair of edges (ev,eb),
cf. Figure 3.7ii; otherwise, p is the endpoint of eb and we create a σ -oriented candidate for the pair
(ea,e), cf. Figure 3.7iii. In every case, we set x− := x and insert the candidate into the sweep status
structure.

In case (II), we may set x+ := x and remove the candidate from the sweep status structure since
γs(ax,bx,σ) does no longer lie completely within P for radii larger than x. As p is neither an endpoint
of ea nor eb, p is the endpoint of e,e′ ∈ EP and ev ∈ EV

9 which lie outside of Bs [x]. The three edges
can be ordered in σ -orientation around p; since ev is an edge of the visibility polygon V , we may
assume that it lies to the left or right of the ordering, i. e., w. l. o. g. we assume either the order e,e′,ev

or ev,e′,e. In contrast to case (I), we now have to create two new σ -oriented candidates: If the
ordering is e,e′,ev, we create two σ -oriented candidates for the pairs of edges (ea,e) and (ev,eb), cf.
Figure 3.7v; otherwise, we create two σ -oriented candidates for the pairs of edges (ea,e′) and (e,eb).
For both candidates, we set x− := x and insert them into the sweep status structure.

We initialise the sweep status structure as follows. Let p be a point of U that lies closest to s, at
distance m. Thus, for every x < m, Bs [x]∩∂P = /0 and no candidate exists for radii smaller than m.
We create the initial σ -oriented candidate similar to case (II). Let e,e′,ev or eV ,e′,e be the ordering of
the edges adjacent to p which lie outside of Bs [x]: If the ordering is e,e′,ev, create a single, σ -oriented
candidate for the pair (ev,e); otherwise, create a single, σ -oriented candidate for the pair (e,e′). For
both candidates, set x− := x and insert them into the sweep status structure.

The number of events is given by |U |, which is linear in n as stated above. After the initialisation
step, only a single candidate path exists; moreover, at each event, only a single candidate is updated
which implies that the number of new candidates increases by at most two. Hence, the overall number
of candidates is bounded by the number of events and linear in n.

7Note that e = eV if e is visible from s.
8Note that e could as well lie within Bs [x]; however, this case needs to be handled similar to case (II).
9Note that e = eV or e′ = eV if e and e′ are visible from s.
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After O(n logn) preprocessing time, each event can be processed in constant time. More precisely,
the events of type (I) can be processed in constant time since one can always access the affected
candidate via ea or eb of which p is an endpoint. However, this is impossible for the events of type (II)
as there is no candidate path with segments adjacent to p. Nevertheless, for every point p of U , one
can store a pointer to the segments of P and V which ∂Bs [x] intersects before and after p. With this
pointer we can find the affected candidate via the segment ea in constant time. A data structure storing
all pointers requires O(n) space and can be computed in O(n logn) time. As each candidate can be
easily accessed via the edges ea,eb, a simple list suffices to implement the sweep status structure.

As soon as the last event has been processed, P and V are completely contained in Bs [x]; hence,
the algorithm terminates. Furthermore, no σ -oriented candidates other than the ones computed during
the algorithm can exist: Due to the maximality of the existence interval of every candidate, either
ax− or bx− is an endpoint of a segment; the endpoint, however, defines an event where the desired
candidate is created.

In a second step, we compute the upper envelope of the length-functions of all σ -oriented
candidates as follows. For each set of candidates, we compute the upper envelope of the length-
functions, since the candidate of maximum length at x defines an escape path for x. Both sets contain
at most O(n) candidates; the length-functions of two candidates intersect at most twice as described
below. Thus, since length-functions are only defined on existence intervals, the complexity of their
upper envelope is O(λ4(n)) where λ4(n) denotes the maximum length of a Davenport-Schinzel
sequence of order 2+2 = 4 including n distinct values.10 The upper envelope of the length-functions
can be computed in O(λ4(n) logn) time, cf. [92].

Finally, we obtain the certificate path from both upper envelopes as follows. Sweep over each
upper envelope to find a radius for which the upper envelope attains a minimum value. Since the
minimum corresponds to a candidate and defines an escape path, the shorter one defines πs.

Theorem 5. Given a polygon P with n edges in the Euclidean plane. For every s ∈ P, the certificate
path πs(x) can be computed in O(λ4(n) logn) time where λ4(n) denotes the maximum length of a
Davenport-Schinzel sequence of order 4.
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Figure 3.8: The value of αx can
be obtained subtracting α ′ and α ′′

from ∡AsB.

It remains to show that two length-functions can intersect
at most twice. The length function ℓ of a candidate is defined
for every x within the candidate’s existence interval [x−;x+] and
can be expressed as follows. Let da denote the shortest distance
from s to the line la defined by the edge ea and let A be the point
on this line at distance da from s; similarly, we define db and B
with respect to the edge eb, cf. Figure 3.8. Thus, we can express
ℓ as

ℓ(x) = (1+αx) · x where

αx = ∡AsB− arccos
(

da

x

)
− arccos

(
db

x

)
.

For two candidates with length functions ℓ and ℓ′, consider their
difference in length, i. e., ℓ(x)− ℓ′(x); this difference equals

10Note that, for any t ∈N, λt(n) ∈O(n log∗ n) where log∗ n denotes the iterated logarithm, i. e., the smallest value m such
that log(log(· · · log(n)))≤ 1. Thus, the growth of λt(n) is practically considered as linear, e. g., log∗(265536) = 5.
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zero if and only if

f (x) := c+ arccos
(

da

x

)
+ arccos

(
db

x

)
− arccos

(
d′a
x

)
− arccos

(
d′b
x

)
= c+ arcsec(dax)+ arcsec(dbx)− arcsec

(
d′ax
)
− arcsec

(
d′bx
)

= 0

where c is a constant that depends on the position of the line segments of both candidates. Since
da,db,d′a,d

′
b are all non-negative, also the sums (arcsec(dax) + arcsec(dbx)) and (arcsec(d′ax) +

arcsec(d′bx)) are strictly increasing with x and can have at most two proper intersection.
Note that all three steps of the algorithm can also be performed in one sweep. However, for the

sake of presentation, we decided to explain all three steps separately. Moreover, combining them into
a single step does not improve the asymptotic runtime bound: The complexity of the upper envelope
remains λ4(n) and the log-factor is still required for the initial sorting of the points.

Further note that the algorithm can be adapted to compute πs for arbitrary regions R in the
Euclidean plane where ∂R is defined using polygonal chains; this includes unbounded regions as well
as regions with polygonal holes.

Finally, note that we presumed the underlying computational model to be a real RAM. In the
runtime analysis of this algorithm, this is particularly necessary in order to compute the intersections
of length-functions. In practice, these intersections can be approximated numerically.

3.4 Approximation of the Certificate Path

In this section, we consider two families of regions and analyse two types of escape strategies to
approximate the certificate path πs. For the family of simply connected regions, an escape strategy
can always be obtained by searching along expanding concentric circles. We show that such a strategy
can approximate πs with a factor of roughly 27. For the (sub-)family of regions with a non-empty
kernel, we consider spiral searching strategies. We first develop a spiral strategy that approximates πs

with an optimal factor for the case where s ∈ ker(R); then, we prove that this strategy approximates
πs with a factor of roughly 8.1125 for arbitrary starting positions s ∈ R.

3.4.1 Searching via Expanding, Concentric Circles in Simply Connected Regions

The following notation is used to describe strategies of expanding concentric circles. Let the coordinate
system be chosen such that s = (0,0). Every escape strategy ζ of expanding concentric circles can
be described by alternating the following two steps: (1) Follow the horizontal axis to the right for
some distance; (2) at the current position (x,0), follow the circular arc segment of radius x around s
in (counter-)clockwise direction for 360°. Thus, ζ can be uniquely described by a positive, infinite
sequence X := {xi}i≥0, the elements of which define the radii of the concentric circles, see also
Figure 3.9i.

In a preliminary step, we consider how ζ approximates the shortest distance dR from s to ∂R.
W. l. o. g.11 we may assume that ζ reaches ∂R during step (2) of the (i+ 1)-th iteration; thus, ζ

escapes after searching an angular portion (α · xi+1) of the circle of radius xi+1 around s. Since ζ did
not escape in previous iterations, we know that dR = xi + ε for some ε > 0. Thus, we can bound the

11Otherwise the competitive-ratio can be increased by creating a new simply connected region R’ with the following
properties: (i) the shortest distance from s to ∂R is unchanged, i. e., dR = dR′ ; (ii) ζ reaches ∂R’ in the (i+1)-th iteration.
Figure 3.9i gives a sketch of such a region.
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Figure 3.9: An escape strategy ζ of expanding, concentric circles around s. The radii of the circles
define a positive sequence {xi}i≥0. A specific region R is indicated with a green line. Moreover, in (i)
the red line segment indicates the shortest distance from s to ∂R; whereas in (ii) the red line indicates
the certificate path πs.

competitive ratio of ζ from above:

xi+1(1+α)+∑
i
j=0 2πx j

dR
≤

xi+1 +∑
i+1
j=0 2πx j

xi + ε
≤

xi+1 +∑
i+1
j=0 2πx j

xi
,

where α ∈ [0,2π]. In the worst-case, the competitive ratio comes arbitrarily close to this upper bound
for certain regions as, for example, indicated in Figure 3.9i.

To obtain a strategy ζ with a minimal competitive factor, we employ a technique of Gal [3]. For
this purpose, we consider the following sequence of functionals

Fl(X) =
x1 +∑

1
j=−l 2πx j

x0
with F(X) =

x1 +∑
1
j=−∞ 2πx j

x0
,

which is motivated by the above considerations. We convince ourselves that these functionals satisfy
all necessary preconditions [3, (7.5)-(7.9), p. 110] of Gal’s minimax theorem [3, Theorem 7.9]; for a
similar functional this is verified in the Appendix B.1. Hence, we may apply the theorem to obtain
that a minimal value of the functional is attained by geometric sequences Aa, i. e.,

limsup
i→∞

F(X+i) ≥ inf
0≤a≤∞

F(Aa) = inf
a>1

a1+∑
1
j=−∞ 2πa j

a0 = inf
a>1

a1 +2π
∞

∑
j=−1

a− j

= inf
a>1

a2(2π+1)−a
a−1 = 1+4π +2

√
2π(1+2π)≈ 27.096,

where a = 1+
√

2π/(1+2π)≈ 1.9288. Thus, among all strategies of expanding, concentric circles,
the strategy described by the sequence {ai}i≥0 achieves a smallest competitive factor.

Now, we turn the attention to the approximation of the certificate path. The family of simply
connected regions R contains also regions for which the certificate path becomes arbitrarily close
to dR, the shortest distance from s to ∂R; an example is indicated in Figure 3.9ii. For these types
of regions, the certificate path consists of a line segment of length (xi + ε) attached to a circular
segment of length (ε · xi). Moreover, |πs | approaches dR since ε can be chosen arbitrarily small.
Hence, when approximating the certificate path, ζ can not achieve a better approximation factor as
when approximating dR and we obtain the following theorem.
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Figure 3.10: Comparing the spiral path ζ (blue) to the certificate path πs (red). In the two extreme
cases, πs is either a straight line segment (i) or covers a full circle around s (ii). In the general case
(iii), πs covers a circular sector S(x,αx).

Theorem 6. For the family of simply connected regions R, the escape strategy of expanding, concen-
tric circles approximates the shortest distance to ∂R (and the certificate path for s) with a factor of
27.096. The radius in the i-th iteration is given by ai where a = 1+

√
2π/(1+2π).

In the sense that a constant approximation factor is the best that we could hope for, Theorem 6
gives already a sufficient solution; however, the approximation factor is far from the lower bound
which we establish in Section 3.5. For this reason, we consider a special type of simply connected
regions in the subsequent section: regions with a non-empty kernel. We develop a strategy which
achieves a much better approximation factor for this subclass of regions.

3.4.2 Spiral Search in Regions with a Non-Empty Kernel

The approach presented in Section 3.4.1 can also be applied to the family of regions with a non-empty
kernel to develop a strategy of expanding, concentric circles with a smallest approximation factor.
Such a strategy achieves an approximation factor of roughly 8.14; however, this is far from the lower
bound, which we establish in Section 3.5. Hence, in the following, we consider spiral strategies
instead. We develop a strategy which achieves an optimal approximation factor for the case where the
starting position s lies in the kernel s ∈ ker(R) of the region R. Let πs denote the certificate path; its
length is given by |πs |= x · (1+αx) for some x≥ 1 and αx ∈ [0,2π].

A logarithmic spiral Γ can be defined using polar coordinates (a · eϕ cot(β ),ϕ); the angular coordi-
nate is given by ϕ ∈ (−∞,∞) and the radial coordinate is expressed by a constant a and eccentricity
β . The Euclidean distance from s to a coordinate (a · eφ cot(β ),φ) is given by the radial coordinate; the
arc length |Γ(−∞,φ) | is equal to a/cosβ · eφ cot(β ). Replacing Γ(−∞,0) with a straight line segment
from (0,0) to (a,0) results in an escape strategy ζ .

We can now adapt the two parameters a,β to obtain a strategy ζ that approximates every πs best.
Let p = (a · eφ cot(β ),φ) be the coordinate where ζ escapes from R; for the certificate path, there are
two extreme cases that can occur, see Figure 3.10: (i) Either πs is a straight line segment, which
implies αx = 0 and x = a · eφ cot(β ); (ii) or πs is a straight line segment attached to a full circle around
s, which implies αx = 2π and x = a ·e(φ−2π)cot(β ). For both cases, we want the spiral strategy to attain
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the same approximation factor; hence we set

|ζ (0,φ) |
a · eφ cotβ (1+0)

=
|ζ (0,φ) |

a · e(φ−2π)cotβ (1+2π)
⇔ 1 =

e2π cotβ

1+2π

and obtain β = arccot(ln(2π +1)/(2π))≈ 1.265.

Theorem 7. Let R be the family of regions with a non-empty kernel. If s ∈ ker(R) for R ∈R, then the
spiral strategy ζ with eccentricity β = arccot(ln(2π +1)/(2π)) is a c-approximation of the unknown
certificate path πs with c = 1/cosβ ≈ 3.318674.

Proof. Let πs be given by x ∈ R>0 and αx ∈ [0,2π]; with S(x,αx), we denote the circular sector
centred at s of radius x and central angle αx. Hence, πs escapes from R after searching S(x,αx) in the
worst case. We first show that ζ escapes from R as soon as ζ covers S(x,αx): Let t be the first time that
ζ covers S(x,αx), i. e., t := minϕ{ϕ | a · e(ϕ−αx)cot(β ) ≥ x}; then p = ζ (t) can be expressed by polar
coordinates (r,φ) with r = a · eφ cot(β ), see Figure 3.10iii. Consider the coordinates sl := (x,φ) and
sr := (x,φ −αx) that frame S(x,αx). By definition of αx, the open balls Bε(sl) and Bε(sr) with radius
ε contain points of ∂R ∀ε > 0; moreover, since s ∈ ker(R), ζ can never cross the rays emanating from
s through sl,sr at a distance larger than x. Consequently, if ζ just passes through (x,φ −αx) without
intersecting with ∂R, then ζ escapes at p the latest. Finally, we compare the length of ζ up to φ to the
length of πs by

f (αx) =
|ζ (0,φ) |

a · e(φ−αx)cotβ (1+αx)
≤

a
cosβ
· eφ cotβ

a · e(φ−αx)cotβ (1+αx)
=

eαx cotβ

cosβ (1+αx)
,

which attains a maximum value of 1/cos(β ) for αx ∈ {0,2π}.

Note that such a spiral strategy ζ can never be a constant factor approximation for the family of
arbitrary simply-connected regions: For any c ∈ R, there exists a simply connected region that winds
itself around the spiral path such that the approximation factor of ζ is larger than c.

3.4.3 Implications of the Spiral Strategy

The spiral strategy of Theorem 7 approximates πs with a small approximation factor for regions R
where s ∈ ker(R). As we show in the following, the strategy also yields a rather small approximation
factor for the family of regions with a non-empty kernel.

Corollary 5. Let R be the family of regions with a non-empty kernel. The spiral strategy ζ with
eccentricity β = arccot(ln(2π + 1)/(2π)) is a c-approximation of the certificate path for R with
c < 8.1125.

Proof. Similar to the proof of Theorem 7, let πs be given by x ∈ R>0 and αx ∈ [0,2π]; let S(x,αx)
be the circular sector centred at s of radius x and central angle αx. Hence, πs escapes from R after
searching S(x,αx) in the worst case. Moreover, let p = ζ (t), sl , sr be defined as in the proof of
Theorem 7; see Figure 3.10iii.

For the proof, we proceed in three steps: In a first step, we identify a point p′ := ζ (φ +ϕ) where
ϕ < 2.8286 and express p′ in polar coordinates. In a second step, we prove via contradiction that ζ

escapes from R at time t ≤ φ +ϕ in the worst case using that R has a non-empty kernel. Finally, we
conclude with proving that the approximation factor holds for every πs.
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First, we define p′ via ϕ as follows; see Figure 3.11: Let φ ′ be the largest value smaller than
φ such that the line through p and ζ (φ ′) is tangent to ζ at ζ (φ ′); with g, we denote the line
through p and ζ (φ ′). Then, we define ϕ as the first intersection of g and ζ larger than φ , i. e., ϕ :=
minϕ>0{ϕ | g∩ζ (φ +ϕ) ̸= /0}. W. l. o. g. we may choose the coordinate system such that g is tangent
to ζ at (a,0), since the angle ϕ remains unchanged; thus, the slope of g equals tan(β ) by definition of
the eccentricity. The line g can be expressed in slope-intersept form y = g(x) = tan(β ) ·x− tan(β ) ·a;
moreover, expressing ζ in Cartesian coordinates, we obtain the following system of equations which
can be solved to obtain the equation on the right hand side:

g : y = tanβ · x− tanβ ·a

ζ :
x = a · eϕ·cotβ · cosϕ

y = a · eϕ·cotβ · sinϕ

⇔ 1 = eϕ cotβ ·
(

cosϕ− sinϕ

tanβ

)
.

The first two positive zeros of the equation give φ and (φ +ϕ), which can be computed numerically
to obtain φ ≈ 4.62896,(φ +ϕ)≈ 7.45744 and ϕ < 2.8286.

Second, we prove that ζ escapes from R at time t ≤ φ +ϕ . Assume to the contrary this were not
true, then ζ (0,φ +ϕ)∩∂R = /0. Since R is simply-connected, Bε(sl) contains a point of ∂R ∀ε > 0,
and sl lies closer to s than p, ∂R has to cross the line segment pp′; thus, the intersection of pp′ and ∂R
is non-empty, i. e., I := pp′∩∂R ̸= /0. For every v ∈ ker(R) we conclude that: v ̸∈ g, since boundary-
points in I block the visibility between p and p′ along g; v cannot lie above g, since boundary-points
in I block the visibility to either p or p′; v cannot lie below g, since boundary-points in I block the
visibility to points of R above g. Thus, ker(R) = /0 which contradicts the initial assumption.

Finally, we bound the approximation factor for every πs by comparing the length of ζ (0,φ +ϕ)
to the length of πs by

f ′(αx) =
|ζ (0,φ +ϕ) |

a · e(φ−αx)cotβ (1+αx)
≤

a
cosβ
· e(φ+ϕ)cotβ

a · e(φ−αx)cotβ (1+αx)
= eϕ·cotβ · f (αx),

which attains a maximum value of eϕ·cotβ/cos(β )≈ 8.112465 for αx ∈ {0,2π}.

Note that the approximation factor can be brought closer to 8 by choosing β slightly larger than
arccot(ln(2π +1)/(2π)); this, however, weakens the optimal approximation factor for the case where
s lies in the kernel.

Finally, the spiral strategy does not only approximate the certificate path with a reasonably
small approximation factor. Due to the results of Section 3.3, the results directly transfer to the
approximation of shortest escape paths for several families of regions.

Corollary 6. For the family of fat convex shapes, equilateral triangles and infinite strips, the spiral
strategy ζ with eccentricity β = arccot(ln(2π+1)/(2π)) is an optimal c-approximation of the shortest
escape path with c < 3.3187.

Splendidly, the approximation holds even though neither the precise shape of the region12 nor
the concrete size of this shape is known! We expect that the same holds for several other families for
which we have not given proofs in Section 3.3.

12More precisely, we assume that a given region is known to be of one of the following types: a fat convex shape, an
equilateral triangle or an infinite strip. However, the exact type remains unknown.
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ϕ

βs

g

p = (r,φ)

p′ = (r′,φ +ϕ)

sr

sl

Figure 3.11: The spiral strat-
egy ζ (blue) leaves ∂R at p′

in the worst case. At p, ζ

has searched the circular sec-
tor S(x,αx) (red) and does not
leave R, yet. The point p′ is
defined via the line through p
that is tangent to ζ .

For the family of half-planes, the approximation factor of Isbell’s path increases only slightly due
to Lemma 7. Again, note that neither the distance from s to the boundary nor the family of regions is
known to the escape strategy!

Corollary 7. For the family of infinite half-planes, the spiral strategy ζ with eccentricity β =
arccot(ln(2π +1)/(2π)) is a c-approximation of Isbell’s path with a factor c < 3.6304.

For the sake of completeness, note that Isbell’s path can be approximated with a factor of c< 2.159
when the family of regions is known to contain only half-planes. This can be achieved with a spiral
strategy that directly approximates the distance from s to ∂H with a factor of less than 13.82; e. g.,
see [8, 37]. Similarly, better approximation factors are conceivable if the family of regions is precisely
known to contain only shapes of a specific type, e. g., only fat convex shapes, only equilateral triangles,
or only infinite strips.

In general, logarithmic spirals are natural candidates for optimal competitive search strategies, but
in almost all cases the optimality remains a conjecture; see [8, 32, 35, 37, 3]. In [73], the optimality of
spiral search was shown for the problem of searching for a point in the plane with a radar. Many other
conjectures are still open. For example Finch and Zhu [37] considered the problem of searching for a
line in the plane; Finch [35] conjectures that the family of logarithmic spirals contains an optimal
strategy. In the following section, we develop a lower bound which establishes optimality of the
approximation factors given in Theorem 7 and Corollary 6.

3.5 A Lower Bound for the Approximation Factor

Throughout this section, R denotes the family of regions with a non-empty kernel. We prove the
following lower bound for the approximation of the certificate path for R.

Theorem 8. For the family of regions R with a non-empty kernel, there is no escape strategy that
approximates the certificate path for R with a factor of less than 3.3126.

The idea of the proof is as follows. Given a c-approximation of the certificate path, we first prove
that c can be bounded from below by discrete functionals on positive, real-valued sequences. To
establish the lower bound of the approximation factor by discrete functionals, we proceed in three
steps: With Lemma 9, we show how an arbitrary continuous escape strategy can be discretised to
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obtain a sequence of coordinates on rays. The sequence of coordinates is used to construct tight upper
bounds for the length of the certificate path in Lemma 10. Finally, Lemma 11 allows us to rearrange
the positive, real-valued sequences obtained from the coordinates and thus relate the strategy’s cost
to the cost of πs. Then, using a theorem of Gal, we optimize the sum of two extreme functionals to
obtain a lower bound for the maximum of both.

Lemma 9 (discretisation). Let ζ be a c-approximation of the certificate path for R and n≥ 3 be an
odd number of equidistant rays r1,r2, . . . ,rn emanating from s = ζ (0).

Then, there exists an infinite sequence Z = {zi}i≥0 of tuples zi := (xi,Ni) such that:

1. xi > 0 denotes the search depth along the ray with index Ni ∈ {1, . . . ,n} in the i-th step;

2. any two consecutive coordinates zi,zi+1 lie on neighbouring rays; and

3. for every k ≥ 1 with zk = ζ (tk) for some tk > 0, it is |z0 |+∑
k−1
i=0 d (zi,zi+1)≤ ζ (0, tk).

Proof. Let the n rays emanating from s = ζ (0) be denoted with r1,r2, . . . ,rn in clockwise order; for
this proof, we assume that s is not part of the rays, i. e. s ̸∈ r j∀ j.

Since ζ achieves a finite, constant approximation factor for any certificate path, it must visit
all of the rays infinitely many often13, i. e., ∀ j∀t > 0∃t ′ > t : ζ (t ′) ∈ {r j}. Moreover, for each
ray r j visited at time t, there is a different ray that ζ visits afterwards, i. e., if ζ (t) ∈ {r j}, then
∃t ′ > t∃k ̸= j : ζ (t ′) ∈ {rk}. Now we obtain the entries of Z by the following procedure.

Let r j be the ray that ζ visits first. We define x0 as the largest distance from s that ζ visits on r j

before another ray is visited, i. e.

x0 := max{ t > 0
∣∣ (ζ (t) ∈ {r j})∧ (∀k ̸= j : {ζ (0, t)}∩{rk}= /0)};

since ζ visits another ray afterwards, this maximum value must exist. Altogether this defines
z0 = (x0,N0) where N0 = j is the index of the ray visited first.

Let ti−1 be the time of the visit registered in the (i−1)-th step of Z; i. e., ζ (ti−1) = zi−1. We define
the i-th entry of Z for i > 0 inductively by the following procedure: Let r j be the ray visited next,
which implies that j = Ni ̸= Ni−1; then, xi is the largest distance visited along r j by ζ after leaving the
previous ray and before visiting another ray, i. e.

xi := max{ t > ti−1
∣∣ (ζ (t) ∈ {r j})∧ (∀k /∈ { j,Ni−1} : {ζ (ti−1, t)}∩{rk}= /0)}.

Again, this maximum value has to exist since ζ visits another ray afterwards. Hence, we obtain an
infinite sequence of coordinates Z from ζ , see Figure 3.12i.

Note that this construction does not imply that zi and zi+1 lie on neighbouring rays: ζ can pass
through s and visit an arbitrary ray at any time. To ensure that this property holds, we employ the
following trick: Between any two entries zi,zi−1 of Z, the direct edge from zi−1 to zi intersects at
most (⌊n/2⌋−1) rays and never s, since n is odd and the rays are equidistant; hence, we can add the
coordinates of these intersection points to Z.

Finally, for every ζ (tk) = zk, the sum of straight-line distances between every pair of consecutive
points of {zi}k

i=0 is never longer than the length of |ζ (0, tk) |. This can be easily proven via induction
over k applying the triangle inequality in the induction step.
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(i) Discretisation of a c-approximation ζ (blue)
along 5 rays. Only the first 12 entries of Z are
given.
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(ii) In region Rε , every πs(λ
′
j + ε) (red), is an es-

cape path and an upper bound for πs; e. g., for
j ∈ {1,5}.

Figure 3.12: (i) Every c-approximation of the certificate path for R can be discretised to obtain an
infinite sequence of coordinates. (ii) At any time, the maximal search depths can be used to construct
concrete regions for which bounds to the certificate paths are known.

In the following, we assume that ζ escapes from some region R at time t. By the discretisation
of the previous lemma, we obtain a finite, discrete sequence Zk = {zi}k

i≥0 such that zk = ζ (t) is the
point where ζ escapes from R. With the following lemma, we construct special regions around ζ (0, t)
such that we are able to give a tight upper bound for the length of the certificate path in each of
these regions by search depths of coordinates of Zk. Therefore, let λ j denote the maximum search
depth that Zk attains on the j-th ray, i. e., λ j := max0≤i≤k{xi | Ni = j}; see Figure 3.12ii. Finally, let
Λ := {λ1, . . . ,λn} be the set of all maximum search depths and Λ′ = (λ ′1, . . . ,λ

′
n) be a permutation of

Λ such that the search depths are sorted in descending order; i. e., λ ′1 ≥ λ ′2 ≥ ·· · ≥ λ ′n.

Lemma 10 (certificate path upper bound). Given an escape strategy ζ that escapes at time t from a
region R ∈R. Let Zk be a discretization of ζ (0, t) on n equidistant rays as described above; moreover,
let Λ′ = (λ ′1, . . . ,λ

′
n) be the sequence of maximal search depths in descending order.

For every ε > 0, there exists a region Rε ∈R such that |πs | ≤ (λ ′j + ε) · (1+ j · 2π/n) for every
1≤ j ≤ n; moreover, ζ escapes from Rε not earlier than time t.

Proof. Let s denote the common origin of the n rays. Due to equidistance, the angle between
neighbouring rays is equal to 2π/n. We construct Rε as follows: First, set the distance from s to ∂Rε

along ray ri to λi, where i = Nk; this ensures that ζ still escapes at time t. Then, for every ray ri with
index i ̸= Nk, set the distance from s to the boundary of Rε along ri to λi + ε; connect the points of
∂Rε on the rays such that s ∈ ker(Rε) and ∂Rε neither intersects with ζ (0, t) nor with the polygonal
chain defined by Zk, see Figure 3.12i.

13 Assume to the contrary this were not the case. Then, one of the rays is never visited after a certain time and beyond a
certain radius. Since the boundary could hide along this ray, the approximation factor can never be constant which results in
a contradiction.
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Since, by construction, there are no additional intersections of ζ with Rε , ζ escapes from Rε at
time t. Moreover, πs(λ

′
j + ε) consists of a straight line segment of length x := (λ ′j + ε) attached to

an circular arc segment of length x ·αx around s. By a similar reasoning as in Section 3.2.2, πs(x)
visits at most ( j+1) consecutive rays at depth (λ ′j + ε) until it reaches ∂Rε along one of which; thus,
αx ≤ j · 2π/n. Hence, in Rε , πs(x) is an escape path and |πs | ≤ x · (1+αx).

Lemma 11 (reordering sequences). Let θ ∈R and d : R2→R with d(x,y) 7→
√

x2−2xycosθ + y2.
Given a finite, positive sequence Xk = {xi}k

i≥0 and let
−→
X k be a sequence obtained from Xk by

rearranging the entries in monotonically increasing order. Then x0 + ∑
k−1
i=0 d (xi,xi+1) ≥ −→x 0 +

∑
k−1
i=0 d (−→x i,

−→x i+1)≥ ∑
k−1
i=0 d (−→x i,

−→x i+1) holds.

Proof (via induction). We prove the first inequality via induction over k, the second inequality holds
since all xi are positive. For the induction start k = 1, we have −→x 0 = min(x0,x1) and the inequality
holds due to the symmetry of d.

For the induction step k→ k+1, we define xm as the maximum of Xk with the largest index, i. e., m
is the largest index such that xi ≤ xm holds for all 0≤ i≤ k. W. l. o. g. we may assume that 0 < m < k:
If m = 0 we first reverse the sequence to obtain Xk, where xi := xk−i and x0 = xk < xm = x0; due to the
symmetry of d, it is xm+∑

k
i=0 d (xi,xi+1)> x0+∑

k
i=0 d (xk−i,xk−i+1)= x0+∑

k
j=0 d (x j,x j+1). If m= k,

the inequality can be directly proven by applying the induction hypothesis to x0+∑
k−1
i=0 d (xi,xi+1) since

xm = xk =
−→x k. It remains to consider the case where 0 < m < k; we define yi := xi for 0≤ i≤ m−1,

yi := xi+1 for m≤ i≤ k, yk+1 := xm =−→y k+1, a := min(xm−1,xm+1), b := max(xm−1,xm+1) to obtain

x0 +
k

∑
i=0

d (xi,xi+1) = x0 +
m−2

∑
i=0

d (xi,xi+1)+d (xm−1,xm)+d (xm,xm+1)

+
k

∑
i=m+1

d (xi,xi+1)+d (xm−1,xm+1)−d (xm−1,xm+1)

= y0 +
m−2

∑
i=0

d (yi,yi+1)+d (a,xm)+d (b,xm)

+
k

∑
i=m+1

d (yi−1,yi)+d (ym−1,ym)−d (a,b)

= y0 +
k−1

∑
i=0

d (yi,yi+1)+d (a,xm)+d (b,xm)−d (a,b)

IH
≥ −→y 0 +

k−1

∑
i=0

d (−→y i,
−→y i+1)+d (a,xm)+d (b,xm)−d (a,b)

= −→y 0 +
k

∑
i=0

d (−→y i,
−→y i+1)−d (−→y k,xm)+ d (a,xm)+d (b,xm)−d (a,b)

≥ −→y 0 +
k

∑
i=0

d (−→y i,
−→y i+1) =

−→x 0 +
k

∑
i=0

d (−→x i,
−→x i+1) .

Since xm is a maximum of Xk and −→y k is a maximum of Xk \{xm}, we have a≤ b≤−→y k ≤ xm; thus,
the last inequality holds due to Lemma 24 part 2 which we give in the Appendix B.2.

Finally, we prove the lower bound.
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Proof of Theorem 8. Let ζ be a c-approximation of the certificate path for R. By definition, for
arbitrary R ∈R with s ∈ R, ζ (t) escapes at some time t and |ζ (0, t) | ≤ c · |πs | holds. By Lemma 9,
for any odd n≥ 3, ζ can be discretised to obtain a positive sequence Zk = {zi}k

i=0, where ζ (t) = zk
and consecutive entries correspond to visits of neighbouring rays. As before, d denotes the Euclidean
metric.

Since ζ escapes at zk, we can bound c from below with the following chain of inequalities for any
1≤ j ≤ n:

c≥ |ζ (0, t) ||πs |
≥

x0 +∑
k−1
i=0 d (zi,zi+1)

|πs |
(3.1a)

=
x0 +∑

k−1
i=0

√
x2

i −2cos
(2π

n

)
xixi+1 + x2

i+1

|πs |
(3.1b)

≥
x0 +∑

k−1
i=0

√
x2

i −2cos
(2π

n

)
xixi+1 + x2

i+1

(λ ′j + ε)(1+ j · 2π

n )
(3.1c)

≥
−→x 0 +∑

k−1
i=0

√
−→x 2

i −2cos
(2π

n

)−→x i
−→x i+1 +

−→x 2
i+1

(−→x k+1− j + ε) · (1+ j · 2π

n )
(3.1d)

≥
∑

k−1
i=0

√
−→x 2

i −2cos
(2π

n

)−→x i
−→x i+1 +

−→x 2
i+1

−→x k+1− j · (1+ j · 2π

n )
. (3.1e)

The second inequality in 3.1a holds due to Lemma 9 part 3. Equality 3.1b holds by Lemma 9 part 2
since consecutive entries in Z lie on neighbouring, equidistant rays. Since ζ (t) is a c-approximation for
every region in R, inequality 3.1c also holds for the special region Rε ∈R of Lemma 10. Inequality
3.1d holds due to Lemma 11 and since the j-th largest maximum search depth λ ′j is exactly −→x k+1− j
in the reordered sequence. Finally, in the last inequality we may leave out −→x 0 and ε since ε can be
chosen as small as necessary14.

Since this bound holds for every k, this leads us to the definition of a sequence of functionals

F j
l (X) :=

∑
k−1
i=−l

√
x2

i −2cos
(2π

n

)
xixi+1 + x2

i+1

xk+1− j(1+ j · 2π

n )
for l ≥ k ≥ n and

F j(X) := lim
l→∞

F j
l (X) =

∑
k−1
i=−∞

√
x2

i −2cos
(2π

n

)
xixi+1 + x2

i+1

xk+1− j(1+ j · 2π

n )
,

where X denotes a doubly infinite, positive sequence.15 Altogether, for every odd n ≥ 3, every
1≤ j ≤ n and every k ≥ n, c is bounded from below by the discrete functional F j(X) where X is a

14Namely, ε ≤−→x 0
−→x k+1− j/∑

k−1
i=0

√
−→x 2

i −2cos
( 2π

n
)−→x i
−→x i+1 +

−→x 2
i+1.

15The single infinite, positive sequence can be extended to the left by any converging, positive sequence.
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positive sequence. Moreover, each functional satisfies the unimodality condition [3, (7.7), p. 109], for
which we provide a proof in Section B.1.

Assume that ζ achieves an optimal approximation factor c. For every k, using a theorem by Gal [3,
Theorem 7.1, p. 108], Xk can be made arbitrarily close to a geometric sequence by linear combinations
of subsequences multiplied with non-negative coefficients; hence, we may as well assume that Xk
is a geometric sequence, i. e., xi = ai for some 0 ≤ a ≤ ∞. Moreover, since each functional F j

l is
unimodal, a lemma by Gal [3, Lemma 7.5, p. 110] shows that the value of the functional does not
increase when applied to this linear combination; this implies that it still lower bounds c.

Since Xk is obtained from a strategy with an optimal approximation factor, it minimizes the
maximum value of all F j(X); conversely, when minimizing the sum of the two functionals F1(X)
and Fn(X), we may conclude that one of them bounds c from below with at least one half of the sums
value. Hence, we consider F1(A)+Fn(A) for which we resolve the geometric series part and simplify
the expression to obtain

gn(a) :=
1

a−1


√

1−2cos
(2π

n

)
a+a2

(1+ 2π

n )

+
an−1

a−1


√

1−2cos
(2π

n

)
a+a2

(1+2π)

 .

For any odd number of rays n, there is a value of a > 1 that minimizes gn; moreover, any such
minimal value of gn gives a lower bound on the sum of two ratios in the original problem. With
growing n, infa>1 gn(a) converges to≈ 6.626252 from below; e. g. for n= 210000001, we obtain a≈
1.00000000907908 and gn(a)≈ 6.626252, which gives the lower bound of 6.626252/2 = 3.313126
for c.

3.5.1 Further Remarks and Discussion of the Lower Bound Technique

In the proof of Theorem 8, Gal’s minimax theorem was not applied directly, which has the following
reason. As shown in the proof, for every 1≤ j ≤ n, the approximation factor is bounded from below
by a sequence of functionals F j

l (X) with the functional F j(X) in the limit. These functionals satisfy
all necessary preconditions16 of Gal’s minimax theorem which we verify in Section B.1. Hence, we
may apply Gal’s theorem [3, Theorem 7.9] to conclude that the functional attains a minimal value
when applied to a geometric sequence Aa. More precisely, we obtain that

limsup
i→∞

F j(X+i) ≥ inf
0≤a≤∞

F j(Aa) = inf
a>1

k−1
∑

i=−∞

√
a2i−2cos( 2π

n )a2i+1+a2i+2

ak+1− j(1+ j· 2π

n )

= inf
a>1

k−1
∑

i=−∞

ai
√

1−2cos( 2π

n )a+a2

ak+1− j(1+ j· 2π

n )
= inf

a>1

√
1−2cos( 2π

n )a+a2

(1+ j· 2π

n )
·

∞

∑
i=−k+1

a−i

ak+1− j

= inf
a>1

√
1−2cos( 2π

n )a+a2

(1+ j· 2π

n )
·

∞

∑
i=0

a−i+
k−1
∑

i=1
ai

ak+1− j = inf
a>1

√
1−2cos( 2π

n )a+a2

(1+ j· 2π

n )
·

a
a−1+

(
1−ak
1−a −1

)
ak+1− j

= inf
a>1

√
1−2cos( 2π

n )a+a2

(1+ j· 2π

n )
· ak

ak+1− j(a−1) = inf
a>1

a j−1

(1+ j· 2π

n )
·
√

1−2cos( 2π

n )a+a2

a−1 ,

where X+i denotes the sequence obtained from X by shifting indices i to the right. For growing values
of n, the infimum and the corresponding value of a > 1 tends to the values as given in Table 3.1. Since

16These are given in [3, (7.5)-(7.9), p. 110] and [3, (7.20), p. 113].



3.5 A Lower Bound for the Approximation Factor 65

j = 1 2 3 . . . n−1 n

a≈ ∞ 1.0073443 1.0058163 . . . 1.0000977 1.0000976
F j(Aa)≈ 1 1.0097814 1.0156709 . . . 2.3736137 2.3736407

Table 3.1: For fixed j and n = 10001, the infimum is attained for the value a := argmin0≤a≤∞ F j(Aa)
and given in the corresponding column. All values are rounded to the last decimal; for larger values
of n, only positions far after the decimal point are subject to minor changes. Clearly, the values
exemplify the transition from DFS to BFS: For j = 1, an infinite base a for the exponential strategy
Aa defines a pure DFS with an optimal approximation factor of 1; for larger values of n, the value of a
quickly approaches 1 causing a growth of the approximation factor.

every F j(Aa) gives a lower bounds on c that is far from the upper bound of Theorem 7, the sum of
two extreme functionals is used to prove the lower bound.

Comparing the bounds on the approximation factor given by Theorem 7 and 8, one observes a
small gap of roughly 0.0056 which can be explained as follows. In the proof the lower bound, the
sum of the two extreme functionals F1 and Fn is considered and minimized to obtain a lower bound
for the maximum of one of them. Consider the values for n and a used in the proof of the theorem;
evaluating the two functionals F1 and Fn separately for these values reveals that F1(Aa)≥ 3.4438
and Fn(Aa)≥ 3.1823. Hence, minimizing their sum does not imply that both functionals attain the
same value; this weakens the lower bound and explains why a small gap remains.

The gap can be closed with the following approach. Instead of the sum F1(X) +Fn(X) of
the extreme functionals, we consider their weighted sum p/q ·F1(X) +Fn(X) and minimize the
corresponding function g̃n(a). For example, g̃n(a) attains a minimum of g̃n(a) ≈ 7.236546 for
a≈ 1.000000198 and the choice p = 85,q = 72. This translates17 into a lower bound of greater than
≈ 3.31867 and closes the gap. In contrast to the values of F1(Aa) and Fn(Aa) as before, the new value
of a almost balances the difference in the values of the functionals. The gap can be further closed by
adjusting the multiplicative factor to perfectly balance the value of these functionals.

For other geometric search problems, the lower bound technique presented above can be applied
to prove optimality of a given strategy. To do so, one can challenge the given strategy w. r. t. the
approximation of the certificate path πs: An upper bound for the approximation factor can often be
derived from the given strategy, since πs (or rather its length) is easy to bound from above; to prove a
lower bound, the technique used in the proof of Theorem 8 can be used as a framework. Note that,
for the problem at hand, the framework can not used as a black box. Quite the contrary: The exact
combination of the Lemmata 9-11 will not always suffice to establish the lower bound by discrete
functionals; more precisely, it might be necessary to replace some of which by more suitable ones
taking the specific search problem into account. However, the rough steps indicated by the lemmata
can be used as a guideline to establish the desired connection: (i) Derive a discretization of the strategy
as a real-valued sequence, (ii) prove tight upper bounds for πs and (iii) rearrange the sequence to
establish a connection between the discrete strategy and the certificate path. Finally, optimality of the
given strategy follows based on the hypothesis that the certificate path is the best one can do with the
given amount of information.

In the following, we exemplify the use of the technique with a proof of optimality for a spiral
strategy that searches for a target point in the plane with a radar. Similar to an escape strategy, a

17 We use the following observation, which can be easily proven via contradiction: If (p/q ·X +Y ) = c, then max{X ,Y} ≥
(cq)/(p+q).



66 Searching for the Boundary of a Region

s

p

ζ(t)

(i)

s

p

πs

(ii)

Figure 3.13: The problem of searching for a point in the plane with a radar. (i) A search trajectory
finds p at time t using a radar. The problem is equivalent to the search for a boundary point if ∂R is a
ray; the length of the certificate path is upper-bounded by πs(x) with αx = 2π and x = |sp |, see (ii).

search strategy is defined as a trajectory ζ : R≥0→R2 originating from the searcher’s starting position
s in the Euclidean plane. The target point p is considered as found at time t if the straight line
segment from s to ζ (t) contains p; see Figure 3.13i. Gal [41, 3] analysed the problem in a competitive
framework where |ζ (0, t) | is compared to the straight line distance d from s to p; he showed that
with a certain logarithmic spiral search strategy one achieves a competitive ratio of approximately
17.289. In 2010, Langetepe [73] proved that this is optimal with a technique similar to the lower
bound technique used above. Using the notation and the results established in this chapter, we can
now give a short and elegant prove for the optimality.

Corollary 8. For the problem of searching a point in the plane, the logarithmic spiral with eccentricity
arccot(b) defines a search strategy with an optimal competitive ratio of minx>0 e2πx

√
1+ 1/x2, where

b is the value that minimizes the competitive ratio.

Proof. The problem can be considered as an escape path problem where R is the Euclidean plane and
∂R is defined as the ray emanating from p into the direction of −→sp; see Figure 3.13ii.

An upper bound for the approximation factor can be easily obtained from Gal’s spiral searching
strategy, cf. [41, pp. 172 ff.] or [3, pp. 157 ff.]. Let d denote the distance from s to p. The path that
consists of a straight line segment of length d attached to a full circle of radius d around s is a tight
upper bound for πs. Since the spiral achieves a competitive ratio of less than 17.28935 compared to
the straight line distance d, comparing the strategy to the length of πs one obtains an upper bound of
17.289/(1+2π)≈ 2.3739.

For the lower bound, we apply the technique as presented in this section. Without the need to
make modifications, we may use the Lemma 9-11 to bound the approximation factor c from below
by a sequence of functionals as done in the proof of Theorem 8; thus, for every odd number of rays
n≥ 3 , we obtain that c≥ Fn(X) where X is a positive sequence. Applying Gal’s minimax theorem
as stated above, this gives a lower bound on c of greater than 2.3736; see Table 3.1.

Note that the lower bound given in Theorem 8 does not hold if the shape of regions is restricted
to a special type; e. g. for the case where R is the half-plane. If the type of region is restricted,
it is not always possible to construct (tight) upper bounds for the length of the certificate path in
Lemma 10. In the absence of an upper bound on |πs |, it is impossible to establish the lower bound
of the approximation factor c by functionals. If the bound is not tight, the technique can only give a
weak lower bound on c.
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3.6 Conclusion and Outlook

In this chapter, we considered the problem of searching for the boundary of a simply connected region
in the plane. Motivated by a similar approach of Kirkpatrick, we introduced a new measure for the
intrinsic complexity of instances this geometric search problem: the certificate path πs. It provided
the basis for a competitive analysis comparing search strategies to πs. We provided a strategy of
expanding concentric circles which approximates πs with a factor of roughly 27 for the family of
simply connected regions. For regions with a non-empty kernel, we provided a spiral strategy that
approximates πs with a factor of 8.1125 and with an optimal factor of 3.3187 for the case where
s∈ ker(R). Moreover, we provided a matching lower bound on the approximation factor and discussed
what the results imply for Bellman’s escape path problem.

The problem of searching for the boundary of a region is closely related to Bellman’s escape path
problem. Unfortunately, exact solutions to the escape path problem are only known for some specific
types of regions. We showed that the shortest escape path can be approximated with a small, constant
factor for the family of regions which consists of all fat convex shapes, all equilateral triangles and all
infinite strips. For these special types of regions, we had to prove that the certificate path actually
approximates the shortest escape path; thus, other (convex) geometric shapes can be easily included
into this family by proving that the certificate path approximates a shortest escape path. In general,
we raised the following two claims: For every simply connected region R, (i) πs approximates the
shortest escape path with a factor c≤ 1; and (ii) πs is almost optimal when given the distance from s
to ∂R into every direction.

This chapter raises several open problems. A crucial open problem remains to prove or disprove
the two claims (i) and (ii). At least for claim (ii), a proof seems to be within the realms of possibility.
Moreover, it remains open to give a strategy which achieves a smallest approximation factor for
regions with a non-empty kernel; note that our logarithmic spiral strategy can be improved giving up
the constraint that the approximation factor is optimal when s ∈ ker(R). The same question remains
open for the family of simply connected regions. In both cases, it remains open to provide a (better)
lower bound. Finally, it would be interesting to see the technique applied to other geometric search
problems in order to prove optimality of certain strategies. For the problem of searching a line in the
plane, our lower bound technique seems like a promising approach.





Chapter 4

Shortest-Path-Preserving Rounding

This chapter examines the following discrete problem where multiple targets have to be met: Given
an undirected, edge-weighted graph G = (V,E,ω) with weight function ω : E→ R≥0; (how efficient)
is it possible to find an integer-valued weight function ω̃ such that the absolute change in weight of
each shortest path is less than ε? What happens if we further add the restriction that shortest paths
w. r. t. ω should remain shortest w. r. t. ω̃ and vice versa? For which graph classes can we compute
such a rounding of the weights efficiently? In this chapter we prove, by reduction from 3-SAT, that
the problem is NP-hard in general. For the case where the graph is a tree with n vertices, we present
an algorithm which computes a solution in O(n2) time.

4.1 Formal Problem Statement

Various applications of graphs, in particular applications related to finding shortest1 paths, naturally
get inputs with real weights on the edges; however, for theoretical or practical reasons, graphs with
small integer weights are often preferred or even required.

For a practical example, consider a transportation network modelled as an undirected graph with
a weight function on the edges that represents the time (or cost) it takes to travel each edge. If
the weights are small integers, one could draw a zone map of the network such that the number of
zone boundaries crossed by each shortest path corresponds to the weight of the path [48]. Given a
graph with real edge weights, we would therefore like to normalize the weights such that weight 1
corresponds to the intended zone diameter of the map, and then round the normalized weights to
integers such that shortest paths are maintained. The corresponding zone map would then provide a
fairly accurate representation of travel costs, and would be easier to read and use than a map in which
the true travel costs are written in full detail next to each edge.

There are also other applications that could take advantage of graphs with integer weights. These
include shortest path problems for which there are algorithms that are more efficient with small
integer weights than with arbitrary, real weights [47, 98, 99, 102]. Funke and Storandt [40] cite
space efficiency, the speed of arithmetic operations, and stability as advantages of low-precision edge
weights.

However, rounding edge weights to integer values has also certain drawbacks. As argued and
demonstrated by Funke and Storandt [40, 96], naively rounding weights to the nearest integer values
can lead to rounding errors accumulating; large rounding errors, in turn, can change the structure of

1That is to say a path of minimum weight.
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shortest paths. When rounding weights naively, some paths may see their lengths doubled whereas
other, arbitrarily long paths may see their lengths reduced to zero [40]. Funke and Storandt argue that
also randomized rounding is likely to cause unacceptable errors in any graph that is large enough [40].
This brings us to the following problem statement.

Definition 10 (ε-roundings). Let G = (V,E,ω) be an finite, undirected, edge-weighted graph with
weight function ω : E→ R≥0. We call ω̃ : E→ N0 a path-oblivious ε-rounding on G if the following
condition holds:

1. For any shortest path π in G, we have | ω̃(π)−ω(π) |< ε , i. e., between ω and ω̃ , the weight
of any shortest path in G changes by strictly less than ε .

We call ω̃ a weak ε-rounding if, in addition, the following condition holds:

2. Any shortest path in G = (V,E,ω) is also a shortest path in G̃ = (V,E, ω̃).

Moreover, we call ω̃ a strong ε-rounding if it is a weak ε-rounding and, additionally, the following
condition is satisfied:

3. Any shortest path in G̃ is also a shortest path in G.

The definition raises the question whether these types of ε-roundings always exists for a sufficiently
large choice of the error threshold ε . For the case of path-oblivious and weak ε-roundings, it is not
difficult to see that for any graph G there exists an ε such that G admits a trivial weak ε-rounding: We
could simply choose ε to be larger than the diameter of G and round all weights down to zero. Thus,
the loss of weight along each shortest path is less than ε; moreover, shortest paths remain shortest,
since all paths are of length zero, then.

For many other types of problems, a huge choice of ε , resulting in huge differences in weight,
would make the concept of rounding moot. We would rather have an ε-rounding for a small value of
ε such as ε = 1, but in that case, an ε-rounding does not always exist. For example, consider a star
that consists of three edges of weight 1/2 does not admit a 1-rounding: at least two of the three edges
would have to be rounded in the same way. If we round two edges down, there would be a shortest
path with rounding error −1; if we round two edges up, there would be a shortest path with rounding
error 1. Given an undirected graph G = (V,E,ω) with non-negative real weight function ω : E→R≥0
and a error tolerance ε , our problem is therefore to decide whether G admits a path-oblivious, weak,
or strong ε-rounding.

Organisation of this chapter. In the remainder of this section, we examine whether strong ε-
roundings always exist for large choices of ε and discuss research related to our problem. Section 4.2
settles the complexity status of this problem by proving that all three versions of the decision problem
are NP-hard for general graphs. In Section 4.3, we present an algorithm which solves the problem in
O(n2) time for trees with n vertices. In fact, trees always admit a 2-rounding and we can compute, in
O(n2 logn) time, the smallest ε such that the tree admits an ε ′-rounding for any ε ′ > ε . The algorithm
is constructive, that is, it can easily be adapted to produce the corresponding weights ω̃ . We conclude
with Section 4.4.

4.1.1 On the Existence of Strong ε-Roundings

For the case of strong ε-roundings, we can easily prove their existence if the weight function is
restricted to non-negative rational weights:
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Observation 4 (Existence of strong ε-roundings). For every G= (V,E,ω) with ω : E→Q≥0, there
exists an ε ≫ 0 such that G admits a strong ε-rounding.

Proof. Let m := |E | and ℓ := maxπ{ω(π) | π is a shortest path in G}, i. e., ℓ is defined as the weight
of the longest shortest path in G. Since ω is a rational weight function, for each edge ei ∈ E there exist
two integer values pi,qi ∈ N0,qi ̸= 0 such that ω(ei) = pi/qi. Let N be the least common multiple of
the denominators, i. e., N := lcm(q1, . . . ,qm). Multiplying the weight of each edge with N we obtain
an integer-valued weight function ω̃ , where ω̃(ei) := N ·ω(ei) for 1≤ i≤ m. For every path π ∈ G,
this function implies the following identity

ω̃(π) = ∑
e∈π

ω̃(e) = ∑
e∈π

N ·ω(e) = N ·ω(π). (4.1)

Thus, conditions 1 to 3 can be easily verified using Equation 4.1 and the definition of shortest paths:

1. For every shortest path π ∈ G, it is

| ω̃(π)−ω(π) | (4.1)= |N ·ω(π)−ω(π) |= |(N−1) ·ω(π) |< N · l.

2. Also every shortest path π in G is a shortest path in G̃, since for every path π ′ we have

ω̃(π)
(4.1)
= N ·ω(π)≤ N ·ω(π ′)

(4.1)
= ω̃(π ′).

3. Finally, every shortest path π in G̃ was already a shortest path in G, since

ω(π)
(4.1)
=

1
N
· ω̃(π)≤ 1

N
· ω̃(π ′)

(4.1)
= ω(π ′).

Thus, G admits a strong (N · ℓ)-rounding.

The proof of this observation also shows that an identity like Equation 4.1 is sufficient to establish
the existence of a strong ε-rounding; moreover, the identity seems necessary if both of the conditions
2 and 3 have to be satisfied. This suggests that a strong rounding might not always exists for an
arbitrary real-valued weight function, although, this is no formal disproof.

4.1.2 Related Work

Funke and Storandt [40] consider a rounding problem on undirected graphs with the following
conditions: the absolute change in weight of any edge should be less than one; the relative change in
weight between every two vertices u and v whose shortest path (before rounding) consists of at least k
edges, should be bounded. No restrictions are imposed on the change of weight of paths of fewer than
k edges, regardless of their weight.

Compared to our model as introduced above, there are two major differences to Funke and
Storandt’s model [40]. One important difference to our model is that, even when distances are
preserved, Funke and Storandt [40] allow shortest paths to change, which we forbid for weak/strong
ε-roundings. The essential difference, however, is that Funke and Storandt consider relative errors
rather than absolute errors: If x is the distance between u and v before rounding, and x̃ is the distance
between u and v after rounding, then the rounding error would be max(x/x̃, x̃/x). This might ease the
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problem because of the following property of relative errors (which Funke and Storandt exploit in
their heuristics): If the relative change of weight on any subpath of a path is bounded, then the relative
change of weight on the complete path automatically adheres to the same bound. To prevent the
rounding errors on short paths from dominating the result, Funke and Storandt introduce an input
parameter k. They only require the relative rounding error to be at most 1+ ε for distances between
vertices that are at least k edges apart along the shortest path. For individual edges, they require an
absolute rounding error less than 1. This implies that the rounding error of a path depends on how the
path is subdivided into edges: If the path consists of m edges where m < k, an absolute rounding error
close to m is accepted; if m≥ k, the relative rounding error is bounded to 1+ ε .

Funke and Storandt argue that, in general, many rounding problems are NP-hard. They describe
an integer linear program for their problem that appears to be too expensive to solve even for small
graphs. For this reason, they turn to describing and evaluating a greedy rounding heuristic. Note
that the rounding problem as studied by Funke and Storandt may, in some sense, be easier than ours,
as they can exploit a subpath property: If the relative change of weight on any subpath of a path is
bounded, then the relative change of weight on the complete path automatically adheres to the same
bound. For absolute changes in weight, this property does not hold.

In follow-up work, Storandt [96] draws attention to the importance of preserving actual shortest
paths and not only distances. For graphs that consist of a single path, she shows how to round the
weights in linear time such that the absolute change in weight of any subpath is less than one; for
completeness, we will describe the solution in Section 4.3. For general graphs, Storandt proposes
to augment the graphs with additional edges that can represent paths of many edges in the original
graphs without suffering from accumulated rounding errors. Note, however, that this approach may
be suitable if the goal is a data structure for shortest path queries; the approach is not suitable for the
map drawing application that we mentioned in the introduction.

Asano et al. [5] study roundings in the following setting. The original graph A has a weight
function that assigns real weights in [0,1] to all vertices, not edges. A set F of paths in A is given,
whose weights should be maintained. A valid rounding assigns weights in {0,1} to all vertices of A
such that the total weight of each path in F changes by less than one. The problem is superficially
similar to ours, as we could define A to consist of weighted vertices that represent the weighted edges
of our graph G, and we could define F as the set of shortest paths in G (not A). However, hardness
results mentioned by Asano et al. do not apply to our problem because our problem is more specific.
Asano et al. obtain combinatorial results for the case in which F consists of shortest paths in A (not
G). Note that, in any case, Asano et al. do not consider a shortest path maintenance condition: their
roundings do not guarantee that any shortest path in the original graph is still a shortest path in the
rounded graph, as there are no restrictions on the total change of weight on paths not in F .

Finally, note that various authors have studied roundings in the following setting. The input
is a hypergraph H—to distinguish it from the graphs in our paper, we will call the vertices of H
hypervertices and its edges hyperedges. The hypervertices have real weights in [0,1]. Each hyperedge
is a set of at least two hypervertices; its weight is the sum of the weights of its hypervertices. The goal
is to find a global rounding, that is, replace the hypervertex weights by integers such that the change
of weight on each hypervertex and each hyperedge is less than one. Note that our path-oblivious
1-rounding problem can be formulated in these terms.

Asano et al. [7, 6] proved that finding a global rounding for such a hypergraph is NP-hard if the
hypervertices represent cells of a square grid and the hyperedges represent squares of 2× 2 cells.
Later, Asano with different co-authors [5], studied the rounding problem as described above; in the
notion of hypergraphs, it can be stated as follows: The hypervertices represent the n vertices of a
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graph A with weights on vertices; the hyperedges represent all shortest paths in A. They conjectured
that in this case, at most n+1 global roundings of the (hyper-)vertex weights are possible. This was
proven for path-shaped graphs [89], and later also for outerplanar graphs [97]. However, to establish
a relation to our (path-oblivious, weak, or strong) ε-rounding problem, one would have to reduce
the square grid rounding problem to our problem; or, our problem of finding a rounding of the edge
weights to the problem of finding a rounding of the (hyper-)vertex weights.

4.2 Complexity of the Problem

By reduction from 3-SAT, we prove that it is NP-hard to decide, given an edge-weighted graph G
and an error tolerance ε ∈ (3/4;1], whether G admits a path-oblivious, weak, or strong ε-rounding.
The reduction we present, proves hardness for all three variants of the problem.

The 3-SAT problem is the following. Given a 3-CNF formula, i. e., a Boolean formula α in
conjunctive normal form, where each of the m clauses consists of exactly three literals. Each literal is
either one of n variables x1,x2, . . . ,xn or its negation. Decide whether α is satisfiable. W. l. o. g. we
assume that every variable appears at most once in each clause of the 3-SAT formula.2

In the following, we show how to construct a graph Gα = (V,E,ω) for a given 3-CNF formula
α such that Gα admits a strong ε-rounding if α is satisfiable, whereas Gα does not even admit a
path-oblivious ε-rounding if α is not satisfiable. To describe Gα , we introduce subgraphs called
variable gadgets and clause gadgets, as well as clause-variable edges and shortcut edges.

The idea of the construction is as follows and works for every ε ∈ (3/4;1]. In Lemma 12, we will
show that a variable gadget admits exactly two strong ε-roundings. We identify these two roundings
with the assignments true and false of a Boolean variable. Using clause-variable edges, the state of
a variable gadget can be transferred to a clause gadget (Lemma 14). Locally, the clause gadget admits
an ε-rounding if and only if one of the variable assignments (transferred via clause-variable edges)
satisfies the clause (Lemma 13). We use shortcut edges to ensure that shortest paths in Gα which do
not contribute to modelling α , are easy to analyse and unique—before and after rounding the weights
(Lemma 15).

To design a variable gadget first consider two edges attached to a triangle, where each edge
is of weight 2.5, as illustrated in Figure 4.1i. In an ε-rounding, the choice of the rounding for
e(vi,0), the edge incident on vi,0, determines the rounding of the remaining edges; see Figure 4.1ii
and Figure 4.1iii. To obtain a variable gadget for variable xi, we proceed as follows. Assume that
xi appears in h literals l1, . . . , lh of α . We construct h triangles ∆i,1, . . . ,∆i,h, where each ∆i,k (for
k ∈ {1, ...,h}) has a left vertex, a right vertex, and a base (bottom) vertex; we label the base vertex
vi,k. We chain up the triangles by including an edge between the right vertex of ∆i,k and the left vertex
of ∆i,k+1 for each k ∈ {1, ...,h− 1}. To the left vertex of ∆i,1, we attach another vertex vi,0, and to
the right vertex of ∆i,h, we attach another vertex vi,h+1, as shown in Figure 4.2. Finally, for every
1≤ k ≤ h, if lk = ¬xi, we add another vertex vi,k, called inverter, which we connect to vi,k. All edges
of the variable gadget have an initial weight of 2.5. We call the edges of ∆i,1, . . . ,∆i,h triangle edges.
Moreover, with e(vi,0) we denote the unique edge of the variable gadget attached to vi,0.

2Otherwise, α can be transformed in polynomial time as follows: First, remove all clauses that contain a variable and
its negation, since they are always satisfied. Next, introduce three new variables a, b, and c. In every clause that contains
two or three copies of the same literal, replace the second copy by b and the third copy (if it exists) by c. Finally, append
the following clauses to α: (¬a∨¬b∨¬c),(¬a∨¬b∨ c),(¬a∨ b∨¬c),(a∨¬b∨¬c),(a∨¬b∨ c),(a∨ b∨¬c). The
additional clauses ensure that b and c are false in every satisfying assignment. Therefore, they do not affect the original
clauses in which they replace a duplicate literal.
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Figure 4.1: A minimal variable gadget. In an ε-rounding of this gadget for ε ∈ (1/2;1], every shortest
path of two edges has to round one edge up and the other one down; otherwise the total rounding error
on the path would be ±1, violating Condition 1 of an ε-rounding. Thus, the top triangle edge must
be rounded in the opposite way as compared to the edges e(vi,0) and e(vi,2), incident on vi,0 and vi,2,
respectively. These arguments imply that e(vi,0) and e(vi,2) have to be rounded in the same way and
all triangle edges are rounded in the opposite way. Note that paths containing two triangle edges have
rounding error ±1; however, such paths are never shortest paths, neither before nor after rounding.
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Figure 4.2: The variable gadget for xi, where xi appears in h literals l1, . . . , lh of α . In this sketch we
assume l2 = ¬xi, so an additional vertex vi,2 is added and attached to vi,2. All edges have weight 2.5,
so the choice of the rounding for e(vi,0) determines the rounding of all other edges in an ε-rounding
for ε ∈ (1/2;1]: triangle edges have to be rounded complementary to non-triangle edges.

A variable gadget has only two different ε-roundings for ε ∈ (1/2;1]; moreover, in such an
ε-rounding, the choice of the rounding for e(vi,0) determines the rounding of all other edges.

Lemma 12 (ε-roundings of variable gadgets). A variable gadget admits exactly two ε-roundings
for ε ∈ (1/2;1] (both of which are strong ε-roundings): either all triangle edges are rounded up and
all other edges down, or vice versa.

Moreover, for any two vertices u,v of the gadget, the rounding error of the unique shortest path
from u to v is either zero or equal to the rounding error on the last edge of the path ending at v.

Proof. For a single triangle and its adjacent non-triangle edges, Figure 4.1 explains that all triangle
edges must be rounded in the same way, while non-triangle edges must be rounded in the opposite
way. Tracking the triangles in Figure 4.2 from left to right, the same holds for any number of triangles,
by induction.

We will now argue that these two roundings satisfy the conditions of a strong ε-rounding. Note
that, before and after rounding, paths with two consecutive triangle edges are no shortest paths. Thus,
a simple path in this gadget is a shortest path before rounding if and only if it is a shortest path after
rounding, and in any shortest path triangle and non-triangle edges alternate. Therefore, any shortest
path with an even number of edges has rounding error zero; any shortest path with an odd number
of edges has the rounding error of its last edge. This establishes Conditions 1, 2 and 3 of a strong
ε-rounding and thus completes the proof.

To create a clause gadget for clause C j, we take a cycle of nine vertices and nine edges where
each edge gets an initial weight of 3.6. Moreover, we attach, to every third vertex along the cycle, a
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new vertex, called a knob, with another edge of weight 2.5, called a handle. We denote the knobs
by c j,1,c j,2,c j,3, as shown in Figure 4.3i. We will use the notation e(c j,t) to denote the edge (handle)
of the clause gadget that connects c j,t to the cycle. Finally, we add a vertex which we connect to
every vertex on the cycle with an edge of weight 6. Note that the weights of these edges are integer;
hence, they cannot be rounded. A clause gadget has at least three strong 1-roundings, see Figure 4.3ii.
However, as the following lemma shows, there is no path-oblivious, weak, or strong ε-rounding for
the clause gadget in which e(c j,1), e(c j,2) and e(c j,3) are all rounded up.

c j,1 c j,2

c j,3

3 3
4

3 1
4

3 3
4

3 3
4

3 1
4 3 3

4
3 3

4

3 1
4

3 3
4

2.5 2.5

2.5

(i) The initial weight of all edges incident
on the centre is 6.

4
3

4
4 3 4

4

3
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2 2

2 or 3
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3 4 3

4

3
4

3 3

2

(ii) Three ε-roundings of the clause gadget. No two consecutive
edges along the nonagon can be rounded down in an ε-rounding.
At most two of the edges e(c j,1),e(c j,2) and e(c j,3) are rounded
up.

Figure 4.3: The clause gadget for clause C j and ε ∈ (3/4;1].

Lemma 13 (ε-roundings of a clause gadget). Consider a clause gadget for C j and its three handles
e(c j,1),e(c j,2) and e(c j,3).

The clause gadget admits a path-oblivious ε-rounding for ε ∈ (3/4;1] if and only if at least one of
its three handles is rounded down. If there is a path-oblivious ε-rounding, there is a strong ε-rounding.

Proof. Figure 4.3ii shows a strong ε-rounding for the clause gadget for the cases in which one, two,
or three of the edges e(c j,1),e(c j,2) and e(c j,3) are rounded down. It remains to show that if none of
these three edges are rounded down, it is impossible to obtain an ε-rounding (not even a path-oblivious
one) for the complete gadget.

Assume, to the contrary, that the weights of e(c j,1), e(c j,2), and e(c j,3) are all rounded up.
For the shortest path between any pair of c j,1,c j,2,c j,3, we now know that (at least) two of the
three edges along the nonagon have to be rounded down. Otherwise, the shortest path of length
2 ·2.5+2 ·3.75+3.25 = 15.75 w. r. t. ω would have weight (at least) 2 ·3+1 ·3+2 ·4 = 17 w. r. t. ω̃ ,
contradicting Condition 1 of an ε-rounding. However, if at least six of the nine edges along the
nonagon have to be rounded down, there have to be two adjacent edges {u,v},{v,w} along the
nonagon, which are rounded down. Consequently, the shortest path from u to w has weight at least 7
w. r. t. ω but at most 6 w. r. t. ω̃ , which again contradicts Condition 1 of an ε-rounding.

Next, we introduce clause-variable edges to connect the variable gadgets to the clause gadgets
containing these variables. More precisely, if variable xi appears in clause C j, we connect the
corresponding gadgets with exactly one clause-variable edge of weight D := 5m+20 according to
the following rule: if the t-th literal in C j is xi, then we connect a base vertex of the variable gadget
for xi to c j,t , using an edge of weight D; if the t-th literal in C j is ¬xi, then we connect an inverter
of the variable gadget for xi to c j,t , using an edge of weight D. We do this such that exactly one
clause-variable edge is connected to each inverter, and exactly one clause-variable edge is connected
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to each base vertex that is not attached to an inverter. By design, the variable gadgets have the right
numbers of base vertices and inverters to make this possible.

Note that clause-variable edges do not invalidate Lemmata 12 and 13. They still hold with respect
to the shortest paths between any pair of vertices of the variable or clause gadget, respectively. This
can be seen as follows. There are m clauses and each variable appears in each clause at most once.
Hence, the diameter of a variable gadget is at most (2m+1) ·2.5. The diameter of a clause gadget
is 15.75. Thus, the variable and clause gadgets all have diameter less than D−2. Therefore, before
rounding, no path between two vertices of the same gadget that uses a clause-variable edge can be
a shortest path. Moreover, when we choose an ε-rounding for each gadget separately, the rounded
weight of the shortest path between any pair of vertices within a gadget will still be less than D−1,
while the rounded weight of any path using a clause-variable edge will still be at least D. Therefore,
also after rounding, no path between two vertices of the same gadget that uses a clause-variable edge
can be a shortest path. Thus, adding the clause-variable edges does not invalidate Lemmas 12 and 13.

Further note that due to this construction, the choice for e(vi,0) also determines the rounding for
e(c j,t) in an ε-rounding:

Lemma 14 (clause-variable edges and ε-roundings). For any ε-rounding on Gα with ε ∈ (3/4;1]:

• If c j,t is connected to a base vertex of the variable gadget for xi, then e(c j,t) is rounded in the
same way as e(vi,0);

• if c j,t is connected to an inverter vertex of the variable gadget for xi, then e(c j,t) is rounded in
the opposite way as e(vi,0).

Proof. Consider the t-th literal l of clause C j (t ∈ {1,2,3}).
If l = xi, then a clause-variable edge connects c j,t to a base vertex of the variable gadget for xi.

Now consider the path that consists of a triangle edge incident to this base vertex (with weight 2.5),
the clause-variable edge (with integer weight D), and e(c j,t) (with weight 2.5). This path has length
D+5 and is a shortest path: Any other path between the same vertices would have to make a detour in
the variable gadget and has length at least D+7.5; or, it leads over at least three other clause-variable
edges and has length at least 3D. Because the path has integer length w. r. t. ω , it cannot change its
weight in any ε-rounding. It follows that e(c j,t) must be rounded in the opposite way as compared to
the triangle edge in the variable gadget, which, by Lemma 12, implies that e(c j,t) is rounded like the
non-triangle edge e(vi,0).

Otherwise, l = ¬xi and a clause-variable edge connects c j,t to an inverter. Now we consider the
path that consists of the non-triangle edge incident on the inverter in the variable gadget, the clause-
variable edge, and e(c j,t). Again, the last edge must be rounded in the opposite way as compared to
the first, which, by Lemma 12, is rounded in the same way as e(vi,0).

Finally, to ensure that the shortest path between any pair of vertices of Gα is unique (and easy to
analyse), we add shortcut edges according to the following rule. If u and v are vertices of Gα such
that one of the following conditions holds:

(i) u and v belong to different variable gadgets;

(ii) u and v belong to different clause gadgets;

(iii) u belongs to a variable gadget for variable xi and v belongs to a clause gadget for clause C j and
neither xi nor ¬xi appears in C j;
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then we include an edge {u,v} in Gα with weight 2D.

Lemma 15 (shortest path via shortcut edge). Let u and v be vertices of Gα that are directly
connected by a shortcut edge, and let ω̃ be an ε-rounding with ε ∈ (3/4;1] on Gα . Then, the shortcut
edge {u,v} is the unique shortest path in Gα with respect to ω and ω̃ .

Proof. By construction, u and v belong to different gadgets and there is no clause-variable edge
between these gadgets. Therefore, any path from u to v other than the direct shortcut edge {u,v}, must
use either (a) another shortcut edge of weight 2D plus at least one other edge of weight at least 2.5 or
(b) at least two clause-variable edges of weight D each, plus at least one other edge of weight at least
2.5 (because no vertex is incident on more than one clause-variable edge). In both cases, before and
after rounding, the total weight of the path would be at least 2 more than the weight of the shortcut
edge {u,v}, which is 2D. Therefore, {u,v} is the unique shortest path in Gα with respect to both, ω

and ω̃ .

Note that, just like clause-variable edges, the shortcut edges do not invalidate Lemmas 12 and 13.
They do not invalidate Lemma 14 either, as its proof hinges on shortest paths of length D+5 < 2D−2.
Figure 4.4 exemplifies the construction of Gα .

We can finally prove the following theorem.

Theorem 9. Given an edge-weighted graph G and an error tolerance ε , it is NP-hard to decide
whether G admits (1) a path-oblivious ε-rounding; (2) a weak ε-rounding; (3) a strong ε-rounding.

The proof assumes that ε ∈ (3/4;1] and can be sketched as follows. On the one hand, we show
how to obtain a strong ε-rounding for Gα if α has a satisfying assignment: For each variable xi,
we round e(vi,0) down if the assignment sets xi to true; otherwise, we round e(vi,0) up. We use
Lemmata 12 to 14 to make it a strong ε-rounding on Gα . On the other hand, we show that if Gα

admits a path-oblivious ε-rounding, then α is satisfiable. This we do by constructing a satisfying
assignment for α from a given path-oblivious ε-rounding: If the weight of e(vi,0) is rounded down,
we set xi to true, otherwise to false.

Proof of Theorem 9. For the proof we assume that ε ∈ (3/4;1] and show that if α is satisfiable, Gα

admits a strong ε-rounding. Moreover, if Gα admits a path-oblivious ε-rounding, then α is satisfiable.
To start with, we show how to obtain a strong ε-rounding for Gα if α is satisfiable. Let ψ be an

assignment of values to the variables that satisfies α . So we have ψ : {x1, . . . ,xn}→ {0,1}, where 0
denotes the logical value false and 1 denotes true; correspondingly, ψ(¬xi) = 1−ψ(xi). Then, a
strong ε-rounding ω̃ for Gα can be constructed in the following way:

• edges with integer weight keep their weight;

• in a variable gadget for xi: if ψ(xi) = 0, all triangle edges are rounded down and all non-triangle
edges (including e(vi,0)) are rounded up; if ψ(xi) = 1, all triangle edges are rounded up and all
non-triangle edges (including e(vi,0)) are rounded down;

• in a clause gadget for clause C j with literals lt for t ∈ {1,2,3}: If ψ(lt) = 0, the weight of e(c j,t)
is rounded up; if ψ(lt) = 1, the weight of e(c j,t) is rounded down. Observe that this implies the
following: If lt = xi, then e(c j,t) is rounded like the non-triangle edges in the variable gadget
for xi; if lt = ¬xi, then e(c j,t) is rounded like the triangle edges. Since α is satisfied, also C j is
satisfied and at least one of the edges e(c j,1), e(c j,2), e(c j,3) is rounded down. By Lemma 13,
we can complete the rounding of the gadget to one of those given in Figure 4.3ii (modulo
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C1 C2 C3

x1 = 0 x2 = 1/x2 = 0

x3 = 1 x4 = 0

3

3 3

3
3 222/3

2

2 2

3

3

2/3

2 2

3/22

2 2

2

2 2

2

2 2
3 3

33

3
3

3 2
2

2 2
2

23 33
3

3 3
3

3
2 2 3

3/2 3/2
2/3

2D

2D

2D

2D

D

D D

D

D
D

DD

D

Figure 4.4: A sketch of Gα for α = (x1∨x2∨¬x3)∧(x1∨x3∨¬x4)∧(¬x1∨¬x3∨x4). Grey bounding
boxes mark gadgets, clause-variable edges are dashed and have weight D = 5 ·3+20 = 35, shortcut
edges (mostly omitted) are dotted and have weight 2D. The weights of the edges in Gα have been
rounded according to the assignment of the variables, which are given in the boxes of the corresponding
variable gadgets. Both assignments are given for x2, which affects the rounding of several edges: The
rounded weight of each affected edge is given by a/b where a corresponds to the assignment x2 = 1
and b corresponds to x2 = 0. Whether one can obtain an ε-rounding for ε ∈ (3/4;1] depends of the
choice for x2: If x2 = 1, we can obtain an ε-rounding for the clause gadget for C1 and Gα ; whereas for
x2 = 0, this is already impossible for the clause gadget for C1, since all of its handles are rounded up.
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rotation). That is, for each pair of edges from e(c j,1),e(c j,2), and e(c j,3), if both of them are
rounded up, we round the three edges between them along the nonagon to 3, 4, 3; in all other
cases, we round the three edges between them along the nonagon to 4, 3, 4.

Certainly, the weight of every edge has been rounded either up or down and is now integer. It remains
to prove that Conditions 1, 2 and 3 of a strong ε-rounding are fulfilled for the shortest paths between
any pair of vertices u and v in Gα . Let u,v be vertices of Gα . If Gα contains a shortcut edge {u,v},
Lemma 15 applies and the conditions hold. Otherwise, u,v are not connected by a shortcut edge and
we have to distinguish two cases:

(i) u and v lie in the same gadget;

(ii) u lies in a variable gadget for a variable xi and v in a clause gadget for a clause C j and either xi

or ¬xi appears in C j.

(i) For each gadget, we constructed a strong ε-rounding according to Lemma 12 or 13. As
observed above, the lemmata continue to hold after adding clause-variable edges and shortcut edges.
Thus, if u and v lie in the same gadget, Conditions 1, 2, 3 are satisfied with respect to shortest paths
between u and v.

(ii) Since each variable occurs at most once in any clause, the gadgets of u and v are, by construc-
tion, connected by exactly one clause-variable edge {s,c}, where s is a base or inverter vertex in the
variable gadget, and c = c j,t is a handle of the clause gadget, for some t.

We start with verifying Condition 1 of the ε-rounding for a shortest path π(u,v) from u to v that
uses the clause-variable edge {s,c}. For any two vertices a and b on π(u,v), let π(a,b) be the subpath
of π(u,v) from a to b. If C j includes the positive literal xi, then s is a base vertex of the variable
gadget, by construction. Consider the unique shortest path π(u,s) from u to s in the variable gadget.
By Lemma 12, the rounding error on π(u,s) is either zero or equal to the rounding error on any
triangle edge (which is either −0.5 or 0.5). Adding {s,c} to the path does not change the rounding
error, as it has integer weight. If v = c, we are done now. Otherwise, the subpath π(c,v) from c to v in
the clause gadget uses the edge e(c j,t) = {c,c′}. By Lemma 14, e(c j,t) is rounded in the same way
as the non-triangle edges in the variable gadget. It follows that the rounding error of either π(u,c)
or π(u,c′) is zero. The remaining part of the path from u to v, that is π(c,v) or π(c′,v), lies entirely
inside the clause gadget and is the unique shortest path to v from c or c′, respectively, with rounding
error more than −ε and less than ε , by Lemma 13. Hence, Condition 1 is satisfied with respect to
π(u,v). If C j includes the negative literal ¬xi, then s is an inverter vertex, and the whole argument
goes through with the roles of triangle and non-triangle edges swapped.

The weight of π(u,v) w. r. t. ω is bounded by ω(π(u,v)) = ω(π(u,s))+D+ω(π(c,v))≤ 5m+
D+15.8 = 2D−4.2≤ 3D−2. Since Condition 1 is satisfied, the weight with respect to ω̃ is therefore
less than 3D−1. This bound rules out other paths that do not use {s,c}: any other path from u to v
that avoids the clause-variable edge {s,c} must pass by (a) a single other gadget, or (b) at least two
other gadgets. In case (a), the path must use at least two clause-variable edges or shortcut edges, each
of weight at least D. In fact, at least one of these edges must be a shortcut edge of weight 2D, because
a path from u with two clause-variable edges and no shortcut edges, could only end in a variable
gadget. In case (b), the path uses at least three clause-variable edges or shortcut edges, each of weight
at least D. In both cases (a) and (b), the total weight of the path would be at least 3D; however, such a
path cannot be shortest, neither before nor after rounding.

Since the shortest paths within the gadgets are maintained by Lemma 12 and 13, it follows that
also Conditions 2 and 3 are satisfied with respect to u and v; i. e., a shortest path between u and v
w. r. t. ω is shortest w. r. t. ω̃ and vice versa.
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This completes the proof that if α is satisfiable, then Gα admits a strong ε-rounding. It remains to
prove that if Gα admits a path-oblivious ε-rounding, then α is satisfiable. This we do by constructing,
from a given path-oblivious ε-rounding, a choice ψ of the variables that satisfies α .

Assume we are given an ε-rounding ω̃ of Gα . If in ω̃ , the weight of e(vi,0) is rounded down,
we set ψ(xi) = 1, otherwise we set ψ(xi) = 0. Now consider the clause gadget for any clause C j.
Following Lemma 13, we know that there is at least one t ∈ {1,2,3} such that e(c j,t) is rounded down.
By construction, a clause-variable edge connects c j,t to a base vertex or an inverter of the variable
gadget for a variable xi: a base vertex if xi appears as a literal in C j, and an inverter if ¬xi appears as a
literal in C j. Following Lemma 14, in the first case e(vi,0) is rounded in the same way as e(c j,t), that
is, down, and thus ψ(xi) = 1 and the literal xi makes C j true. In the second case, e(vi,0) is rounded
in the opposite way of e(c j,t), that is, up, and thus ψ(xi) = 0, and the literal ¬xi makes C j true. The
same argument applies to each clause C j, and thus, ψ satisfies α .

To complete the proof, observe that 3-SAT is an NP-hard problem and Gα consists of O(mn)
vertices and O(m2n2) edges and can be constructed in polynomial time.

4.3 A Quadratic-Time Algorithm for Trees

In the following, we present algorithms for the special case in which the graph is a tree. Note that
in this case there is only one simple path between any pair of vertices; hence, there is no difference
between path-oblivious, weak, and strong ε-roundings.

Clearly, if the whole graph is a path with edges e1, ...,en, a 1-rounding always exists; moreover,
it can be computed in linear time, assuming the floor function can be computed in constant time,
see [89, 96]: Let di be 1/2+∑

i
j=1 ω(ei); then we set ω̃(ei) = ⌊di⌋−⌊di−1⌋. Now, for any subpath

ea, ...,ez, we have ∑
z
i=a ω̃(ei) = ⌊dz⌋−⌊da−1⌋< dz− (da−1−1) = 1+∑

z
i=a ω(ei) and ∑

z
i=a ω̃(ei) =

⌊dz⌋−⌊da−1⌋> (dz−1)−da−1 =−1+∑
z
i=a ω(ei); thus ω̃ satisfies Condition 1 for ε = 1, and ω̃ is a

1-rounding. Sadakane et al. [89] prove that a path of n vertices admits at most n different 1-roundings,
describe how to compute all 1-roundings in O(n2) time, and show how to determine a 1-rounding
with the smallest maximum absolute rounding error in the same time.

If the graph is a tree, observe that we can obtain a 2-rounding in linear time as follows. Choose
any vertex of the tree as the root r. For any other vertex u, let p(u) be the parent of u, and let du

be the (unrounded) weight of the path from r to u. Now we set ω̃({p(u),u}) = ⌊du⌋−⌊dp(u)⌋. By
the same calculation as above, for any vertex u, the absolute rounding error |e(u,v)| on any path
from u to an ancestor v of u is now less than one. Now, given two arbitrary vertices u and w, let v
be their lowest common ancestor. The absolute rounding error on the path from u to w is at most
|e(u,v)|+ |e(v,w)|< 2.

We now present an algorithm that decides, given a tree T and an error threshold ε < 2, in quadratic
time, whether T admits an ε-rounding. We choose an arbitrary vertex of T as the root r. We say v is a
descendant of u if u lies on the path from r to v. For any vertex u, the subtree Tu of T is the subgraph
of T that is induced by all descendants of u; this vertex u is called the root of Tu, see Figure 4.5. By
|T | we denote the number of vertices of T ; by π(u,v) we denote the path in T from u to v.
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Figure 4.5: A rooted tree T with root vertex r. The subtree Tu with root u can be extended to a
subgraph T ′u with root p(u) by adding the edge {u, p(u)}.

Definition 11 (root error range). Let ω̃ be an ε-rounding on a tree T with root r. For any v ∈ T , let
e(r,v) be the rounding error on π(r,v), that is, e(r,v) := ω̃(π(r,v))−ω(π(r,v)).

We call the smallest interval that contains the signed rounding errors of the paths from r to all
vertices of T the root error range E(T, ω̃), so

E(T, ω̃) :=
[

min
v∈T

e(r,v),max
v∈T

e(r,v)
]
.

Note that e(r,r) = 0, so if T is a leaf, then E(T, ω̃) = [0,0].
We call a rounding ω̃ of T locally optimal if there is no other rounding ω̃ ′ of T such that the

corresponding root error range E(T, ω̃ ′) is smaller than and contained in E(T, ω̃).
Let the error range set E (T ) be the set of root error ranges that can be realized by locally optimal

ε-roundings of T , that is, the set E (T ) := {E(T, ω̃) | ω̃ is a locally optimal rounding}.

Lemma 16 (error range set size). E (T ) has at most 2|T | elements.

Proof. Observe that in any ε-rounding with ε < 2, the weight of any path π(r,v) is rounded to
⌊ω(π(r,v))⌋−1, ⌊ω(π(r,v))⌋, ⌈ω(π(r,v))⌉, or ⌈ω(π(r,v))⌉+1.

Any root error range E(T, ω̃) includes 0, since e(r,r) = 0. Therefore, the lower bound of any root
error range E(T, ω̃) is zero or negative, and it must be the rounding error on some path π(r,v) whose
rounded weight is ⌊ω(π(r,v))⌋ or ⌊ω(π(r,v))⌋−1. Since v must be one of the n vertices of T , this
implies that there are at most 2n possible values for the lower bound of any root error range.

Because E (T ) contains only root error ranges of locally optimal ε-roundings, no two elements of
E (T ) can have the same lower bound, so the total number of elements of E (T ) is also bounded by
2n.

Our algorithm computes the error range set for every subtree of T bottom-up. For this purpose,
we need two subalgorithms. The first subalgorithm (explained in the proof of Lemma 17) adds, to a
given subtree, the edge that connects the root to its parent in T . The second subalgorithm (explained
in the proof of Lemma 18) combines two such parent-added subtrees who have a common parent.
In the description of these algorithms, we assume that error range sets are sorted in ascending order
by the lower bounds of the root error ranges. Since error range sets contain only root error ranges of
locally optimal roundings, no element of an error range set can be contained in another. Therefore,
the fact that the error range sets are sorted by ascending lower bound, implies that they are also sorted
by ascending upper bound.
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Let T ′u be the subgraph of T that consists of Tu and the edge between u and its parent p(u) in T ;
we choose p(u) as the root of T ′u , see Figure 4.5.

Lemma 17 (moving up). Given E (Tu), we can compute E (T ′u) in O(|Tu|) time.

Proof. Let f denote the fractional part of the weight of {p(u),u}; more precisely, f :=ω({p(u),u})−
⌊ω({p(u),u})⌋. Any ε-rounding for T ′u must consist of an ε-rounding for Tu combined with set-
ting ω̃({p(u),u}) to ⌊ω({p(u),u)}⌋+ k for some k ∈ {−1,0,1,2} (because ε < 2, no other val-
ues for ω̃({p(u),u}) are allowed). For any vertex v ∈ T ′u , other than the root p(u), we have
e(p(u),v) = e(p(u),u)+ e(u,v) = k− f + e(u,v); for the root p(u) we have e(p(u), p(u)) = 0. Thus,
a choice of an ε-rounding for Tu with root error range [a,b] ∈ E (Tu), together with a choice of k ∈
{−1,0,1,2}, results in a rounding for T ′u whose root error range is the smallest interval that includes
[a+ k− f ,b+ k− f ] and 0, that is, the root error range for T ′u is [min(a+ k− f ,0),max(0,b+ k− f )].
This rounding is an ε-rounding if and only if −ε < a+ k− f and b+ k− f < ε .

Thus, the elements of E (T ′u) are all from the set:

S =

[min(a+ k− f ,0),max(0,b+ k− f )]

∣∣∣∣∣∣∣∣
[a,b] ∈ E (Tu),

k ∈ {−1,0,1,2},
−ε < a+ k− f ,

b+ k− f < ε

 .

We can compute S in lexicographical order by first computing, for each k ∈ {−1,0,1,2}, the set
Sk := {[min(a+ k− f ,0),max(0,b+ k− f )] | [a,b] ∈ E (Tu),−ε < a+ k− f ,b+ k− f < ε} in lexi-
cographical order from E (Tu), and then merging the sets S−1,S0,S1 and S2 into one lexicographically
ordered set S.

To obtain E (T ′u) from S, all that remains to do is to filter out the root error ranges that are not
locally optimal. To do so, we start with an empty stack and scan S in lexicographical order. When we
scan an element [a,b] of S, we pop elements from the stack until the stack is empty or until the top
element [a′,b′] satisfies b′ < b; then, if a′ ̸= a, we push [a,b] onto the stack. After all elements of S
have been scanned, the stack contains E (T ′u).

Procedure FILTER describes the filtering algorithm in pseudocode; Procedure COMPUTEERROR-
RANGESETWITHPARENTEDGE gives the full algorithm to compute E (T ′u) from E (Tu).

Algorithm 5: FILTER(E )
Input: An set E of root error ranges in lexicographical order.
Output: Maximal subset E ′ of E such that no element of E ′ is contained in another.

E ′← list with sentinel element [−∞,−∞]
foreach [a,b] in E do

[a′,b′]← last element of E ′

while b′ ≥ b do Remove last element from E ′; [a′,b′]← last element of E ′

if a′ ̸= a then Append [a,b] to E ′

return E ′ without the first element (sentinel)

Clearly, the filtering algorithm runs in linear time: for each element [a,b] of S we spend time
proportional to the number of pushes (appends) and pops (removes), and each element is pushed
at most once and popped at most once. The correctness follows from two observations. First, we
maintain the invariant that the root error ranges on the stack, from bottom to top, are sorted in
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Algorithm 6: COMPUTEERRORRANGESETWITHPARENTEDGE(E (Tu))
Input: E (Tu) in ascending order, where Tu has root u.
Output: E (T ′u) in ascending order, where T ′u = Tu∪{{p(u),u}} with root p(u).

f ← ω({p(u),u})−⌊ω({p(u),u})⌋
for k←−1 to 2 do

Sk← empty list
foreach [a,b] in E (Tu) do

if −ε < a+ k− f and b+ k− f < ε then
Append [min(a+ k− f ,0),max(0,b+ k− f )] to Sk

Merge S−1,S0,S1 and S2 into lexicographically ordered list S
return FILTER(S)

ascending order by lower bound and by upper bound (so that none of these intervals contains another).
This invariant is maintained because we only push [a,b] onto the stack when the stack is empty, or
when the top [a′,b′] of the stack satisfies both a′ < a and b′ < b. Second, we only discard root error
ranges that are not locally optimal. To see this, observe that an element [a′,b′] is removed from the
stack only when we scan an element [a,b] with a′ ≤ a (because [a,b] follows [a′,b′] in the scanning
order) and b≤ b′ (otherwise we would stop popping). This implies [a,b] ∈ [a′,b′]. If [a,b] = [a′,b′],
we will now pop [a′,b′] but push [a,b] onto the stack again and the stack does not actually change.
Otherwise, [a,b] is contained in and smaller than [a′,b′], so [a′,b′] does not correspond to a locally
optimal rounding and is rightfully removed from the stack. We only refrain from pushing [a,b] when
the top of the stack satisfies a = a′ and b′ < b, so that [a′,b′] is contained in and smaller than [a,b]
and therefore, the root error range [a,b] is not locally optimal.

Given two trees T ′1 and T ′2 that have the same root vertex r, but are otherwise disjoint as in
Figure 4.5, we denote by T ′1 ∪T ′2 the union of the two trees; T ′1 ∪T ′2 also has root r.

Lemma 18 (merging error range sets). Given E (T ′1) and E (T ′2) for two trees T ′1 and T ′2 whose root
r is the only vertex that they have in common, we can compute E (T ′1 ∪T ′2) in O(|T ′1|+ |T ′2|) time.

Proof. Consider a rounding ω̃ of T ′1 ∪T ′2 that consists of an ε-rounding of T ′1 with root error range
[a1,b1] and an ε-rounding of T ′2 with root error range [a2,b2]. For i ∈ {1,2}, let ui and vi be vertices
in T ′i that determine the lower and upper bounds of the root error range [ai,bi], that is: ai = e(r,ui) and
bi = e(r,vi). The path composed of π(u1,r) and π(r,u2) is a path in T ′1 ∪T ′2 with e(u1,u2) = a1 +a2;
similarly, we have e(v1,v2) = b1 +b2. It follows that ω̃ can be an ε-rounding only if a1 +a2 >−ε

and b1 +b2 < ε . These conditions are also sufficient, since any other path from a vertex w1 ∈ T ′1 to a
vertex w2 ∈ T ′2 consists of a path with error e(r,w1) ∈ [a1,b1] and a path with error e(r,w2) ∈ [a2,b2],
so the total error is within [a1 +a2,b1 +b2].

Since T ′1 , T ′2 and T ′1 ∪T ′2 have the same root, the root error range E(T ′1 ∪T ′2, ω̃) is the union of the
root error ranges of T ′1 and T ′2 , that is, E(T ′1 ∪T ′2, ω̃) = [min(a1,a2),max(b1,b2)]. We say ω̃ is of type
1 if a1 < a2, and of type 2 if a2 ≤ a1.

We will now explain how to find a linear-size set S1 of root error ranges for T ′1 ∪T ′2 that includes
the root error ranges of all locally optimal roundings of type 1. Recall that such a root error range for
T ′1 ∪T ′2 must stem from a root error range [a1,b1] ∈ E (T ′1) and a root error range [a2,b2] ∈ E (T ′2) that
satisfy the following conditions: (i) a2 > a1 (condition for type 1); (ii) a2 >−ε−a1; (iii) b2 < ε−b1.
The idea of the algorithm is to scan the root error ranges [a1,b1] ∈ E (T ′1) in ascending order while
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maintaining pointers to: the first range [a′2,b
′
2] ∈ E (T ′2) that satisfies condition (i); the first range

[a′′2,b
′′
2]∈ E (T ′2) that satisfies condition (ii); and the last range [a′′′2 ,b

′′′
2 ]∈ E (T ′2) that satisfies condition

(iii)3. Note that as a1 and b1 increase, the first pointer ascends in E (T ′2), whereas the second and
the third pointer descend in E (T ′2). Therefore we can scan all of E (T ′1) while maintaining the three
pointers into E (T ′2) in linear time.

For any error range [a1,b1] scanned from E (T ′1), consider now the range [a2,b2] ∈ E (T ′2) with
a2 = max(a′2,a

′′
2), that is, the range pointed to by the furthest of the first two pointers. If b2 ≤ b′′′2 (that

is, we are not past the third pointer), we include [min(a1,a2),max(b1,b2)] = [a1,max(b1,b2)] in S1.
Note that we do not need to consider a combination of [a1,b1] with any other range [a,b] ∈ E (T ′2)
between [a2,b2] and [a′′′2 ,b

′′′
2 ]: the resulting error range for T ′1 ∪ T ′2 would be [a1,max(b1,b)] and

include [a1,max(b1,b2)], so it would be either a duplicate of [a1,max(b1,b2)], or it would not be
locally optimal.

In a similar fashion, we can find a linear-size set S2 of root error ranges for T ′1 ∪T ′2 that includes
the root error ranges of all locally optimal roundings of type 2. Finally we can merge S1 and S2
and filter out error ranges that are not locally optimal with the algorithm described in the proof of
Lemma 17. The full algorithm is given by Procedure MERGEERRORRANGESETS.

Algorithm 7: MERGEERRORRANGESETS(E (T ′1),E (T ′1))
Input: E (T ′1) and E (T ′2), each in ascending order, where T ′1 and T ′2 have a common root.
Output: E (T ′1 ∪T ′2) in ascending order.

Add sentinel [−ε,−ε] at the beginning of E (T ′1) and E (T ′2)
Add sentinel [ε,ε] at the end of E (T ′1) and E (T ′2)
S1← empty list
Let p1 point to the first element of E (T ′2)
Let p2 and p3 point to the last element of E (T ′2)
foreach [a1,b1] in E (T ′1) except the sentinels do

while element [a2,b2] pointed at by p1 violates a2 > a1 do
p1← pointer to successor

while predecessor [a2,b2] of element pointed at by p2 satisfies a2 >−ε−a1 do
p2← pointer to predecessor

while element [a2,b2] pointed at by p3 violates b2 < ε−b1 do
p3← pointer to predecessor

Let [a′2,b
′
2], [a

′′
2,b
′′
2], [a

′′′
2 ,b

′′′
2 ] be the elements pointed at by p1, p2, p3

if max(b′2,b
′′
2)≤ b′′′2 then Append [a1,max(b1,b′2,b

′′
2)] to S1

Compute S2 in a similar manner
Merge S1 and S2 into a lexicographically ordered list S
return FILTER(S)

To decide whether a tree T admits an ε-rounding, we compute E (Tu) for all subtrees Tu of T
bottom-up.

Specifically, if u is a leaf, E (Tu) = [0,0]. If u is an internal vertex with a single child v, then
Tu = T ′v and we compute E (Tu) = E (T ′v ) from E (Tv) with the algorithm of Lemma 17. If u is an
internal vertex with two children v and w, we first compute E (T ′v ) and E (T ′w) from E (Tv) and E (Tw),
respectively, with the algorithm of Lemma 17, and then we compute E (Tu) = E (T ′v ∪T ′w) with the

3 Consider E (T ′2) augmented with sentinel ranges [−ε,−ε] and [ε,ε].
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algorithm of Lemma 18. Finally, if u is an internal vertex with more than two children, we first
compute E (T ′v ) from E (Tv) for each child v. Then we organize all children in a balanced binary merge
tree M with the children of u at the leaves ; for a vertex x in M, let C(x) be the children of u in the
subtree of M rooted at x. With vertex x we associate the error range set E (

⋃
v∈C(x) T ′v ). We process

the merge tree M bottom-up, using the algorithm of Lemma 18 for each internal vertex x of M to
compute E (

⋃
v∈C(x) T ′v ) from the error range sets associated with the children of x. The error range set

computed for the root of M constitutes E (Tu).
Ultimately, we compute E (Tr). If and only if this error range set is non-empty, T admits an

ε-rounding.
We say the effective height of the tree T is the height it would have when all internal vertices with

more than two children were replaced by their binary merge trees. The algorithms of Lemmas 17 and
18 take time linear in the size of the subtrees that are being processed. Thus, if T has n vertices and
effective height h, the above algorithm to compute E (Tr) runs in O(nh) time. This proves:

Theorem 10. Given an edge-weighted tree T of n vertices and an error tolerance ε , one can decide
in O(n2) time whether T admits an ε-rounding.

To find the minimal maximum rounding error, we first compute the lengths of all O(n2) simple
paths in the tree in O(n2) time. We can do so with a bottom-up algorithm that computes for each
vertex u the lengths of all paths in Tu, and passes on the lengths of all paths in Tu that end in u to the
parent of u. Each path produces up to four candidate values for the maximum rounding error, namely,
for k ∈ {−1,0,1,2}, the absolute value of (k minus the fractional part of the path length). We sort all
of these candidate values in O(n2 logn) time. Finally we find the smallest error tolerance for which
the decision algorithm says yes by binary search, using O(logn) calls to the decision algorithm, which
takes O(n2 logn) time in total.

Corollary 9. Given an edge-weighted tree T of n vertices, we can compute a rounding of T that
minimizes the maximum absolute rounding error on any simple path in the tree in O(n2 logn) time.

4.4 Conclusion and Outlook

In this chapter, we examined a rounding problem on edge-weighted graphs where three constraints
had to be met. On the one hand, the absolute change in weight along each shortest path had to be less
than a given error threshold ε . On the other hand, a shortest path had to remain shortest after rounding
the edge-weights. We further imposed the restriction that a shortest path, after the rounding, had to
have already been shortest beforehand. We discussed the question how the difficulty of this problem
depends on the value of ε: By reduction from 3-SAT, we proved that the problem is NP-hard for
ε ∈ (3/4;1], even in its simplest form. However, if the graph is a tree, the problem can be solved in
polynomial time. The conditions of our NP-hardness construction raise several questions.

First, note that we motivated the study of the ε-rounding problem with applications of graphs
that are, typically, almost planar. These graphs are usually not as simple as trees, but neither they are
like the graph in our NP-hardness proof where most pairs of vertices are connected by a direct edge.
To deal with realistic graphs in data structures for shortest-path queries, Storandt [96] proposes to
augment graphs with additional edges. The edges can represent paths of many edges in the original
graphs without suffering from accumulated rounding errors; however, for the map drawing application,
which we mentioned in the introduction, such an approach would not be suitable. In this application
we have to keep rounding the edge-weights of the original graph. Where then, between trees and
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almost-complete graphs, lies the boundary between easy and hard? So far, we have been unable to
reduce 3-SAT, even planar 3-SAT, to a planar instance of an ε-rounding problem. It might be that in
a (near-)planar graph, the dependencies between shortest paths between different pairs of vertices are
so strong that the problem becomes easy to decide, as it is the case with trees. Possibly, a first step in
this direction would be to develop an efficient algorithm for graphs that consists of a single cycle or a
tree with one additional edge. To improve our understanding of the structure of the problem, we may
also try to get a subquadratic algorithm for trees or to develop parametrized algorithms for general
graphs, e. g., where the parameter limits the number of paths along which the conditions have to hold.

Second, we may further examine how NP-hardness of the problem depends on the choice of ε . In
our NP-hardness proof we assumed ε ∈ (3/4;1]. Note that for the case where ε < 1/2 the problem is
trivial for arbitrary graphs: Each edge can only be rounded in one way (if at all); then, one can verify
in polynomial time whether necessary conditions are satisfied. However, neither for 1/2≤ ε ≤ 3/4 nor
for ε > 1 we know how to construct a working variable gadget. For which of these values does the
problem remain NP-hard? For which does it become easy to solve?

Third, we might reconsider the exact conditions of an ε-rounding. Observe that our results hold
even for the rounding problem in which we only ensure Condition 1 (the absolute change in weight)
and ignore Condition 2 and 3 (shortest paths remain shortest paths): the graphs in our NP-hardness
construction are such that the second and third conditions are implied by the first. Thus, by itself,
dropping the requirement that shortest paths should be preserved does not make our problem easier.
Funke and Storandt [40] consider the rounding problem with different conditions. It is not clear
whether this reduces the theoretical complexity of the problem as compared to the conditions of our
approach. Funke and Storandt observe that many rounding problems are NP-hard, but do not prove
this specifically for shortest-path-preserving rounding problems. They describe an integer linear
program that they find to be too expensive to solve even for small graphs, and then describe and
evaluate a greedy rounding heuristic.

Although it is interesting to aim for exact solutions of the problem, it might be more relevant for
many applications to go for approximate solutions instead. A crucial step is therefore to examine
whether the problem remains NP-hard for values of ε (slightly) larger than one. On trees, we can
compute a 2-rounding in linear time; do similar approximations also exist for other graph classes?
This would be of particular interest since some graph algorithms are significantly faster when applied
to integer-weighted instead of real-weighted graphs [47, 98, 99, 102]. For example, consider classical
problems as the single-source shortest path (SSSP) or the all-pairs shortest path (APSP) problem.
For the SSSP problem, Thorup [99] showed that it can be solved for directed graphs in deterministic
O(E +V log logV ) time if the weights of the edges are non-negative integer values. Note that
Thorup’s runtime bound only depends on the number of vertices and not necessarily on the largest
weight. For the APSP problem, the currently best runtime bound is O(EV +V 2 log logV ) for integer-
weighted, directed graphs [47]. Thus, strong ε-roundings could lead to runtime improvements for
classical problems on real-weighted graphs, even if ε is large: Compute an ε-rounding efficiently in a
preprocessing step and apply the algorithms for integer-weighted graphs afterwards.

We conclude with a note on the computational model used in this chapter. The polynomial
time reduction presented in Section 4.2 holds for the standard RAM model: all weights of the
resulting graph are rational and, to solve the original 3-SAT problem, we may choose a rational value
ε ∈ (3/4;1]. With respect to the algorithm on trees, the runtime analysis presumes a RAM model
which supports the floor operation for rational-valued input. If, however, the input is real-valued, we
require a stronger model already to store the input; a real RAM, e. g., would be sufficient.



Chapter 5

A Universal Fire-Expansion Model

This chapter examines the search for a single, specific configuration in a new, two-dimensional,
discrete fire-expansion model: Given two cells s, t where cell s is initially set on fire and the fire
expands in discrete time steps, will the single target cell t eventually ignite?

The fire-expansion model provides a simple and more realistic framework for the study of fire-
expansion or fire-fighting problems in large varied terrains. The new model builds on existing ones by
introducing two integer parameters to each cell, which model the cell’s resistance against ignition
and its remaining fuel. This simple extension adds a lot of computational power to this model: We
prove by reduction from two-register machines that the fire-expansion model is Turing-universal, i. e.,
it is capable of simulating the computations of every Turing machine. Thus, the halting problem
for Turing machines implies that the initial question is undecidable on Turing machines, i. e., no
general algorithm exists that can solve every instance of this decision problem within any finite
number of steps. Since the new fire-expansion model is related to concepts like cellular automata and
artificial neural networks, both of these concepts are briefly reviewed and their relation to the model is
discussed.

5.1 Formal Problem Statement and Related Work

Predicting the spread of fire in practice is a highly complex task that involves many parameters one
can neither foresee nor control. For the formal study of such problems, several models have been
suggested and investigated in different communities.

In Theoretical Computer Science and Mathematics, models have been examined where fire spreads
in a polygon [69], in the Euclidean plane [17, 68, 63], or along edges of a graph [27, 39]. Usually,
the challenge is to limit or stop the fire’s expansion, e. g., by building barriers or placing fire-fighters.
Research in these models normally focuses on proving tight lower and upper bounds on what can be
achieved with a limited resource: In continuous models, researchers have been analysing the building
speed of barriers which slow down or even stop the fire’s expansion; in discrete models, the number
of fire-fighters available to block/contain/extinguish the fire has been considered. Tight bounds are
only available for simple cases in these models, e. g., see [63] or [34] for a survey.

In other communities, models have been developed to predict a fire’s expansion in a given terrain.
To forecast as realistic as possible, some models incorporate thermodynamic or chemical parameters
as well as weather conditions, e. g., wind speed and direction. Some of the models are capable of
distinguishing between fires at different heights such as ground fires and crown fires. For a survey on
theoretical and (semi-) empirical models, see [85].
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Figure 5.1: Fire-expansion in a section of 3×3 cells. In each cell, the corresponding x- and y-value is
given in the form x;y at the beginning of the designated time step t. The cell’s state is indicated by
colour: Red for burning, white for alive, and grey for dead. At the transition to the next time step, the
propagation rules are applied which affects the x- and y-values: (i) The initial x- and y-value pairs; (ii)
a single cell is set on fire; (iii) the fire spreads to neighbouring cells; (v) the fire-expansion stopped.

We introduce the following new model with the aim to provide a simple, theoretical framework
for the study of fire-expansion and fire-fighting problems in large, varied terrains.

Definition 12 (fire-expansion model). A layer L is a regular tiling of the plane into square cells.
The state of cell c at time t ∈ N0 is given by two non-negative integers, x(c, t) and y(c, t). Cell c is
called burning at time t if x(c, t) = 0 and y(c, t)> 0 hold; alive if x(c, t)> 0 and y(c, t)> 0; or dead
if y(c, t) = 0 holds. At the transition from time t to t +1, the state of cell c changes as follows:

• If c is alive at time t, then x(c, t + 1) := max{x(c, t)− b,0}, where b denotes the number of
direct neighbours of c burning at time t;

• if c is burning at time t, then y(c, t +1) := y(c, t)−1.

An instance of the fire-expansion model is a finite description of the regular cell-graph which consists
of a fixed number of layers. Each cell of a layer contains an individual pair of integer weights. The
layers are stacked on top of each other whereby each cell of the bottom layer is adjacent to the cell
directly above and vice versa.

Intuitively, x and y describe the (diminished) resistance against ignition and the (remaining) fuel
of an individual cell at time t. Choosing suitable values for the cells, one can model natural properties
of a given terrain: different types of ground and fuel; natural obstacles such as mountains or rivers.
Thus, a cell of dry grassland might get small integers for both values such that it catches fire easily
and burns down quickly. In contrast, we expect both values to be comparatively high for a moist forest
such that the forest keeps burning for quite a while, once it caught fire. Figure 5.1 exemplifies the
expansion of a fire over time in a bounded section of a single layer.

The fire-expansion model extends previously suggested discrete models in two main aspects. First,
instead of a single layer of cells in the Euclidean plane, we allow for multiple layers which are stacked
on top of each other and linked horizontally. Second, each cell obtains two individual integer values
which model the resistance against ignition and the fuel of the cell. These simple extensions provide
the flexibility to simulate the fire-expansion in existing models where fire spreads, e. g., in grids [27].
These simple extensions also add a lot of computational power as we prove in this chapter: With only
two layers of cells, the model is capable to simulate every Turing machine, although, cells are unable
to restore their initial state. In contrast to the results of this chapter, variants of the new model have
been considered where only a finite number of cells in a single layer is considered. Some interesting
algorithmic fire-fighting questions in this variant are discussed in [66, 67]; moreover, these problems
are examined in the doctoral thesis of Barbara Schwarzwald [90].
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The individual pairs of integer values stored in the cells immediately imply the following major
differences to existing models. First, not all cells necessarily catch fire when adjacent to a burning
cell, which implies that natural barriers can exist hidden in the cells values. Second, an expanding
fire can die down on its own without the need to block or extinguish burning cells at all. Last but not
least, different cells emit different amount of energy once burning; hence, in a dynamic version where
a limited number of cells can be blocked per step to fight the fire’s expansion, one has to carefully
choose which of the cells to block.

Organisation of this chapter. In Section 5.2, we discuss how the model is related to other concepts
like cellular automata and artificial neural networks. In Section 5.3, we prove that the new fire-
expansion model can be used to simulate the computations of every Turing machine. We conclude
with Section 5.4.

5.2 Related Work

The fire-expansion model is closely related to two powerful concepts which have been extensively
studied in the past: Cellular Automata (CAs) and artificial Neural Network (NNs). This section
introduces both concepts and explains how they can be used to simulate the fire-expansion model.

Although the fire-expansion model can be simulated via CAs or NNs, it is still reasonable to
examine the new model. First, it links up two fields that might not have seem closely related before:
Theoretical fire-fighting and Computability theory. This might explain why many computational
questions in this simple model are surprisingly difficult to solve: With only a single layer and a limited
number of cells, questions are always decidable but seem to be efficiently solvable only for special
cases [67, 90]; with only two layers of cells, the fire-expansion is capable of simulating every Turing
machine, which implies that many questions are undecidable. Moreover, the proof of this simulation
result requires no complicated tools; it uses simple gadgets which are assembled to describe the
desired instance of the fire-expansion model. Nevertheless, the relation between the fire-expansion
model and CAs, NNs gives rise to several questions, which we pick up in Section 5.4.

5.2.1 On the Relation to Cellular Automata

In the following, we briefly introduce and review the concept of cellular automata; the notation is
similar to [43, 45]. A cellular automaton is a deterministic, dynamical system that consists of an array
of identical finite state machines which change their state simultaneously at discrete time steps. It can
be described as a tuple (G,Q,N ,δ ) where: G = (V,E) is a regular graph, N defines a (reflexive)
neighbourhood relation on V , Q is a finite set of states, and δ is a transition function. Often, the
vertices of V are also called cells and the transition function is called the update rule. An identical
finite-state machine M, with state set Q and transition function δ , is placed at every v ∈V . With k
we denote the size of Q and with n the size of the neighbourhood for v, i. e., k := |Q | and n := |Nv |.
Finally, the transition of M from time t to t +1 is defined by the mapping δ : Q× (q1, . . . ,qn)→ Q,
which depends on M’s state and M’s neighbours’ states (q1, . . . ,qn) ∈ Qn at time t. Note that, at every
time step, the transition function is applied to all cells simultaneously.

Subsequently, we restrict our attention to the following popular parameters for the definition of a
cellular automaton. We consider cellular automata for which G is the d-dimensional integer lattice
Zd and d ∈ {1,2}. The neighbourhood relation is defined via the L∞ or the L1 metric: The Moore
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neighbourhood of radius r for a vertex v = (v1,v2) ∈ Z2 is defined as the set

Nv :=
{

z ∈ Z2 ∣∣ |v1− z1 | ≤ r ∧ |v2− z2 | ≤ r
}

;

the von Neumann neighbourhood of radius r for a vertex at v = (v1,v2) ∈ Z2 is defined as the set

Nv :=
{

z ∈ Z2 ∣∣ |v1− z1 |+ |v2− z2 | ≤ r
}
.

Many popular CAs have only two states (k = 2), which suffices to model binary extremes such as 0/1,
dead/living, or black/white.

Cellular automata have been extensively studied in the past. In [105], Wolfram presents an
impressive study on CAs and how their update rules behave on various input patterns. Wolfram
suggests a classification of CAs according to their asymptotic behaviour on finite input patterns;
however, this classification scheme has crucial weaknesses as observed by several authors [9, 10, 16,
25] who propose different classification schemes. Common to most of the classification schemes
seems to be that CAs which are capable of Turing-universal computation form the most restricted
class; thus, a CA that simulates the fire-expansion model belongs to this class of CAs. The fact that
(even one-dimensional) CAs can simulate arbitrary Turing machines is well known, e. g., see [10, 55]
or [43, p. 70]; however, these proofs usually hinge on the fact that cells can restore their initial states.
Note that this is not possible for cells in our fire-expansion model.

The definition of the new fire-expansion model bears strong resemblance to cellular automata.
This impression comes from three common features: First of all, both definitions rely on regular
graphs which specify where computational units are located. Second, in both models, the transition
function δ is identical for all computational units. Finally, the transition function is local for both
models. In fact, every instance of the fire-expansion model can be simulated by a CA with d = 3 and
the r = 1 von-Neumann neighbourhood. However, following this approach implies that the number of
states of the CA depends on the x- and y-values stored in the cells of the fire-expansion model. Thus,
the resulting CA requires large components (set of states, transition function) in contrast to the simple
and intuitive instance of the fire-expansion model.

In the following, we briefly introduce three popular cellular automata and discuss their relation to
the fire-expansion model.

The first (and probably most popular) cellular automaton is Game of Life (GoL) by John Conway
[42]. The parameters of GoL are d = 2, k = 2, and the r = 1 Moore neighbourhood; the transition
function is defined by the following rules: A dead cell at time t becomes alive at time t +1 if exactly
3 of its 8 neighbours are alive; a living cell survives if exactly 2 or 3 neighbours are alive at time
t and dies from overpopulation otherwise. Initially, at time t = 0, all cells are dead except for a
finite population. Note that the transition is quite different to the update rules of the fire-expansion
model: Cells can die from overpopulation in GoL for which there is no equivalent transition in the
fire-expansion model; moreover, dead cells can be reborn which is impossible in the fire-expansion
model. To prove that GoL can simulate every Turing machine, one crucially depends on the fact that
cells can restore their initial state.

Another popular cellular automaton is often referred to as Rule 110. The choice of it’s parameters
are d = 1,k = 2, and r = 1, which is particularly interesting since it minimizes all three parameters of
a CA. The evolution of an initial population of such a CA crucially depends on the update rule. For a
systematic study of the update rules, Wolfram [104] suggested the following scheme to enumerate
all of them: Due to the choice of the neighbourhood, the input of δ for a cell z ∈ Z are the states of
the cells z−1, z, z+1; thus, each input is one of eight binary strings {0,1}3. All input strings can be
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sorted in lexicographical ascending order to obtain s1 ≤ ·· · ≤ s8; concatenating the binary images
δ (s1) . . .δ (s8) in the same order, uniquely defines a binary number of eight bits. This binary number
corresponds to a decimal number which ranges from 0 to 255 and defines the number of the update
rule. Some of the update rules are not difficult to understand and the evolution of an initial population
can be predicted easily. However, this is not the case for Rule 30 and Rule 110: Rule 30 seems to
produce unpredictable patterns starting from simple initial states [45, 105]; Rule 110 equips the CA
with unlimited computational power, i. e., based on Rule 110, the CA is able to simulate every Turing
machine as Cook proved in [22]. Note that this is only possible since cells can restore their initial
state, which is impossible in the fire-expansion model. Nevertheless, as Baldwin already states in [9],
Cook’s result is extraordinary: It shows that all three parameters of CA complexity (i. e., dimension,
number of states and radius) can be minimized without loosing the CA’s power to simulate every
Turing machine.

Finally, a popular cellular automaton, which seems closely related to our model, is Wireworld,
as Dewdney calls it in [28]. The parameters of this CA are d = 2,k = 4, and the r = 1 Moore
neighbourhood. The four states of the cells in the plane model are called: background, wire, electron-
tail, and electron-head. The names of the states become immediately already clear when looking at
the definition of the update rules: Electron-head cells turn electron-tail; electron-tail cell turn wire
cell; wire cells turn electron-head cell if exactly one neighbour is electron-head; finally, background
cells never change their state. Thus, this CA allows to simulate an arbitrary Turing machine: On the
two-dimensional array of background cells, one can draw necessary wires, logical gates, and memory
registers. Background cells never change their state and serve to isolate components from each other.
Note that also this construction crucially depends on the fact that wire cells can restore their initial
state. This, however, is impossible in our model.

5.2.2 On the Relation to Automata Networks and Artificial Neural Networks

Important models which build on cellular automata are automata networks and discrete, artificial
neural networks. In the following, both models are briefly described; for a formal definition see [43].

Automata networks extend CAs in two important aspects: First, the underlying graph G does no
longer need to be regular; it suffices that G is countably infinite, locally-finite, and directed. Second,
the finite-state machines located at vertices of G do no longer have to be identical; instead, there can
be a finite number of different machines, enumerated by M1, . . . ,Mm, which makes it necessary to
define a specific transition function δi for each Mi. In a nutshell, an automata network does not have
to be as homogeneous as a CA; yet, the network allows for a finite description and transitions are
performed locally.

Artificial neural networks (NNs) are a special case of automata networks with the following
properties. The underlying, directed graph G = (V,E,ω) is edge-weighted and the set of states has
an additive-multiplicative structure. Moreover, for every vertex v ∈V , the state of v at the next time
step depends only on ∑(u,v)∈E ω(u,v) ·qu(t) where qu(t) denotes the state of vertex u at time t. That
is, the next state of v depends on the weighted sum of the current state of all cells which have v as a
neighbour. Thus, the transition function is oblivious to where exactly input comes from.

Due to outstanding achievements in practice, NNs have experienced several renaissances since
the early attempts by McCulloch and Pitts [78], in 1943. In the late 1980s and early 1990s, they
have been successfully applied to solve practical problems such as to recognise speech or patterns, to
simulate artificial life, or to solve combinatorial problems, e. g., see [43, p. 113 f.] or [82, pp. 62 ff.].
Again, in the late 2010s, they attracted a lot of attention when they have been successfully applied to
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problems like the board game Go. For many years, this game has been considered as a domain where
humans outplay computers.

From a theoretical point of view, there are three important results to mention: First of all, the class
of Turing-computable functions (and equivalent classes) is contained in the class of functions that can
be computed via NNs: Turing machines can be simulated by CAs, which are special cases of NNs.
Moreover, this inclusion is proper since, e. g., the halting problem for Turing-machines1 is solvable
by means of NNs, cf. [43, p. 106 f.]. Note that this does not invalidate the Church-Turing thesis;
the underlying graph of a NN can be infinite whereas all defining elements of Turing machines are
finite. Second, similar to a universal Turing machine, there exists a universal NN which is capable of
simulating every given NN on every given starting configuration. Finally, one can prove the existence
of problems that are unsolvable to NNs; the proof employs a diagonal argument. Finally, all three
models, NNs, automata networks and CAs are computationally equivalent when restricted to graphs
of finite bandwidth; cf. [43].

The fire-expansion model as defined in Section 5.1 bears strong resemblance to artificial neural
networks. In addition to the similarities with CAs, this impression comes from two features: First, the
cells of the fire-expansion model can be considered as different computational units placed at vertices
of a directed graph. Second, in each time step, the local transition function in the fire-expansion model
depends only on the number of burning neighbouring cells.2

As described above, an instance of the fire-expansion model can be simulated by a CA; since
NNs extend CAs, it can also be simulated by NNs. Such a NN can be constructed as follows: A
directed graph for the NN can be obtained by creating a vertex for every cell in the cell-graph; to
obtain the set of edges, create two directed edges (u,v) and (v,u) with unit weight for every pair of
vertices u,v if the corresponding cells cu,cv are adjacent in the cell-graph. However, following this
approach implies that the number of states of the NN depends on the x- and y-values stored in the
cells of the fire-expansion model. Thus, the resulting NN requires large components (set of states,
transition function) in contrast to the simple and intuitive instance of the fire-expansion model.

5.3 Simulation of Turing Machines with the Fire-Expansion Model

By reduction from two-register machines, we prove that, with only two layers, the fire-expansion
model can simulate every Turing machine M. For the proof we proceed in two steps: In a first
step, we introduce the notion of two-register machines in Section 5.3.1. We further argue that, for
every Turing machine M, there exists a two-register machine M2 which computes the same function.
Moreover, we describe a nice, geometric interpretation of two-register machines in Section 5.3.2. In
a second step, we use the idea of this geometric interpretation to construct an instance □ M2 of the
fire-expansion problem for every given two-register machine M2 . The instance □ M2 has an important
property: Computations of M2 correspond to fire-expansions in the cell-graph of □ M2 and vice versa.

5.3.1 A Note on Two-Register Machines

We define two-register machines in the style of Boerger et al. [15, p. 28 f.]. A two-register machine M2
is a triple (r1,r2,P) where: r1,r2 are two registers that contain an arbitrarily large, non-negative
integer-value each and P is a finite program, i. e., a finite sequence of instructions (I1, . . . , In). Each

1In general, this holds for every recursively enumerable language.
2For a single transition it is irrelevant which of the neighbouring cells are burning; although, this can make a difference

over time due to different x- and y-values in the cells.
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instruction can be uniquely identified via its index. We assume that In is a special instruction that
causes M2 to halt; all other instructions are either addition instructions or subtraction instructions.
An addition instruction is a triple (i,r, j) where i is the index of the instruction, r ∈ {r1,r2} specifies
one of the registers, and j is the index of the next instruction. When processing this instruction, M2
increments the value of r by one and proceeds with I j. A subtraction instruction is a quadruple
(i,r, j,k) where i is the index of the instruction, r ∈ {r1,r2} specifies one of the registers, and j,k are
indices of (possibly) following instructions. When processing this instruction, M2 checks first whether
the content of r is zero: If this is the case, then M2 proceeds with I j; otherwise, M2 decrements r by
one and proceeds with Ik. Note that, using subtraction instructions, it is possible to branch the control
flow and simulate conditional statements. A configuration C of a two-register machine M2 is a triple
(b1,b2, Ii) where b1,b2 ∈ N are the contents of the registers r1,r2 and Ii is the instruction that M2 is
going to process next.

Minsky [79] proved that a two-register machine program M2 exists for every Turing machine M
which computes the same function. The idea of the proof is as follows.3 W. l. o. g. we may assume that
M has a single, semi-infinite tape. Since the tape’s content σ is finite at any time, it can be represented
as a single, non-negative integer which we denote by val(σ ). Moreover, the position of the tape’s
head can be uniquely defined via the index of the character of σ to which the head currently points
to; i. e., if the head points to σi, this value is equal to i. Thus, a configuration of M can be uniquely
encoded with the integer 2val(σ)32i

. The two-register machine M2 stores this integer representation of
M’s configuration in the first register r1 and uses r2 to simulate a transition of M.

5.3.2 Geometric Interpretation of Two-Register Machines

Two-register machines have a nice geometric interpretation. Consider the boxes4 generated by the
N0×N0 cell graph and illustrated in Figure 5.2. A box b can be uniquely addressed by a tuple of
integers coordinates (b1,b2), where (0,0) corresponds to the bottom left most box; we also write
b = (b1,b2). The tuple of coordinates of each box can be interpreted as the registers of a two-register
machine M2 ; i. e., the box with coordinates (3,2) corresponds to M2 ’s register contents (r1,r2) = (3,2).

Given a two-register machine M2 , we construct a locally-finite, directed graph G M2 = (V,E) as
follows.5 The infinite set of vertices V contains a vertex vb

i for every box b and every instruction Ii;
note that the number of vertices per box is finite, since the program of M2 is finite. The infinite set of
edges E consist of directed edges between vertices of the same or neighbouring boxes. For each box
b = (b1,b2), the edges are defined according to the following rules:

• For each addition instruction Ii = (i,r1, j), add a directed edge (v(b1,b2)
i ,v(b1+1,b2)

j );

• for each addition instruction Ii = (i,r2, j), add a directed edge (v(b1,b2)
i ,v(b1,b2+1)

j );

• for each subtraction instruction Ii = (i,r1, j,k), add a directed edge (v(b1,b2)
i ,v(b1−1,b2)

k ) if b1 > 0
otherwise add (v(b1,b2)

i ,v(b1,b2)
j );

• for each subtraction instruction Ii = (i,r2, j,k), add a directed edge (v(b1,b2)
i ,v(b1,b2−1)

k ) if b2 > 0
otherwise add (v(b1,b2)

i ,v(b1,b2)
j ).

3In [79], Minsky uses two-tape non-writing Turing machines; these machines consist of two semi-infinite tapes which
are completely empty and have a single head per tape. The content of a tape is encoded by the head’s position on the tape.

4We use the term box to underline the difference to cells of the fire-expansion model which contain the x and y-values.
5 It is well known that such a graph G M2 can be constructed within the N0×N0 cell graph. For example, Dieter Rödding

presented this type of construction in lectures on Mathematical Logic at the University of Münster between 1980 and 1984.



94 A Universal Fire-Expansion Model

r1

r2

0 1 2 3 4

0

1

2

vi
v j

vk

vi

v j

vk

vi

v j

vk

vi

v j

vk

vi

v j

vk

vi

v j

vk

vi

v j

vk

vi
v j

vk

vi

v j

vk

Figure 5.2: A sketch of how G M2 is constructed and embedded into the plane. Note that in order to
improve the legibility: superscripts have been omitted; vertices are only given for the instructions
Ii, I j, Ik and only for the boxes with coordinates (3,1), (0,1) and their neighbours; edges were only
drawn for the addition instruction Ii = (i,r2, j) and the subtraction instruction I j = ( j,r1, i,k) and only
for vertices within the boxes with coordinates (3,1) and (0,1).

The resulting graph G M2 has several nice properties. First of all, although V and E contain
infinitely many elements, the description of G M2 is finite. Moreover, the number of incoming and
outgoing edges per box is finite, since the program of M2 is finite. Second, it can be intuitively drawn
in the boxes as indicated in Figure 5.2. Finally, by construction of G M2 , every vertex has exactly one
outgoing edge, except for the ones that correspond to M2 ’s halting instruction; this stems from the fact
that computations of M2 are deterministic and implies that a directed path between two vertices of
G M2 is unique. In fact, one can prove the following observation via induction over the length (number
of edges) of the path.

Observation 5. There is a directed path from v(b1,b2)
i to v(b

′
1,b
′
2)

j in G M2 if and only if the two-register
machine M2 reaches configuration (b′1,b

′
2, I j) when started in configuration (b1,b2, Ii), i. e., M2 is

started with initial register contents (r1,r2) = (b1,b2) and Ii as the first instruction.

5.3.3 Simulating Two-Register Machines via Fire-Expansion

Subsequently, we reduce a given two-register machine to an instance of the fire-expansion model; the
idea of the reduction is as follows. For a two-register machine M2 , we use the idea of the geometric
interpretation to systematically construct G M2 within the two layers L1, L2 of the cell-graph; we
denote the resulting instance of the fire-expansion model with □ M2 . The idea of this construction
is to map edges of G M2 to sequences of alive cells called wires. For simplicity, wires in L1 are
sequences of horizontally aligned cells; in L2, wires are sequences of vertically aligned cells. To
prevent a fire on one wire from leaping over to a parallel one, we use cells which are dead from the
very beginning. Finally, □ M2 has a property similar to Observation 5 for specific cells c,c′ in □ M2

and specific configurations C,C′ of M2 : Setting cell c on fire, the fire follows particular wires and
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(ii) Layout of the cells in L2.

Figure 5.3: A crossing gadget with its initial x and y-values given in the the cells. The x- and y-values
of grey shaded cells are both zero and have been omitted for the sake of legibility.

eventually ignites c′ if and only if M2 reaches configuration C′ within a finite number of steps when
started in configuration C. Since M2 has a finite descriptions, so do G M2 and □ M2 .

To describe the details of the reduction, we proceed as follows. The geometric interpretation
as indicated in Figure 5.2 already provides a coarse subdivision of N0×N0 into boxes; we further
subdivide the boxes into the cells of □ M2 . To specify the cells of each layer L1, L2 and their x-y
value-pairs, we use the following types of gadgets: the crossing gadget X, the instruction gadget I, the
program gadget P, the connector gadget C, and the box gadget B. A lemma describes the essential
feature of each gadget. Proof sketches for the lemmata are given in Appendix C.

Throughout the description, we use the following notation. We say a cell c ignites at time t if and
only if c’s state is alive at time (t−1) and burning at time t. Each gadget is a connected subset S of
cells in L1, L2 which forms a rectangle in each layer and every cell in L1 is adjacent to exactly one
cell in L2 (the cell directly above or below). A gadget’s cell c ∈ S is called a boundary-cell if it is
adjacent to a cell c′ ̸∈ S; all other cells of S are interior cells. Since S forms a rectangle, we use the
subscripts l , r , t , and b to denote the boundary-cells at the left, right, top, and bottom edge of S.
Moreover, a boundary-cell with weights (1;1) is called an input-cell; similarly, a boundary-cell with
weights (2;1) is called an output-cell. To improve readability in the sketches of gadgets, grey shaded
cells indicate cells with weights (0;0), i. e., cells in the state dead. A wire is a path in the cell-graph
where each of its cells is alive and can only ignite its direct predecessor or direct successor. If a wire
is connected to an input-cell of a gadget, it is called an input-wire of the gadget; similarly, we call it
an output-wire if it is connected to an output-cell of a gadget.

The crossing gadget addresses the fact that edges of G M2 can cross in an embedding of the graph.
The layout is defined by the 9×9 cells as given in Figure 5.3. It ensures that vertical and horizontal
wires can cross in □ M2 such that a fire expanding along one wire does not affect the state of the cells
along the other wire. Since G M2 is not necessarily planar, the embedding of G M2 in the geometric
interpretation is likely to have (many) crossing edges. Certainly, a crossing of two wires can be easily
realized with a cell-graph of three or more layers; however, one would still have to describe how to
place the crossing in order to avoid that too many crossings occur at the same spot. In the following
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Figure 5.4: Layout of the basic instruction gadget with the initial x- and y-values given in the cells. It
is identical to the layout of the specific instruction gadget for subtraction instructions involving r2.
The alive cells of L2 connect the cells I in and I out to vertical wires in L2 outside of the gadget.

we describe how □ M2 can be constructed using only two layers. Since crossings cannot be realised in
a single layer of cells,6 two is the minimum number of layers required to make the reduction work
in the model as defined in Definition 12. The following lemma captures the essential property of a
crossing gadget.

Lemma 19 (crossing gadget). Let X in be an input-cell and X out an output-cell of a crossing gadget
connected with a straight vertical or horizontal wire.

If X in is the first cell of the adjacent wire that ignites at time t, the following holds: X out ignites
at time t ′ ≤ t +11; the state of all cells that do not belong to the wire remains unchanged; and, at
time t ′+1, none of the gadget’s cells are burning.

Note that the x-y-value pairs of
l

X in and
r

X out (or
r

X in and
l

X out) can be swapped to ensure
that both horizontal wires run to the left (right). Similarly, the wires of L2 can be directed so that
both run upwards or downwards. None of these changes invalidates Lemma 19. This will be used in
the description of the layout of a connector gadget.

The instruction gadget addresses the fact that a vertex vi of G M2 has at most one outgoing edge.
The basic layout is defined by the 9× 9 cells as given in Figure 5.4. It ensures that once a fire
reaches the gadget via one of the four input-cell, it can only expand via the unique output-cell. This
functionality is realised by layer L1 of the gadget; the purpose of L2 is to connect vertical wires
outside of the gadget to L1. Recall that every vertex vi of G M2 has a finite number of incoming edges
and at most one outgoing edge. For the instruction gadget, we assume that vi has at most a single
incoming edge per direction; later, we explain why this can be assumed and how incoming edges
of vi are bunched together with the connector gadget. Thus, the instruction gadget has only a single
input-cell into each direction denoted by

l
I in,

r
I in,

t
I in and

b
I in. Moreover, we call the cell with

6 The impact of a burning cell is the same for every neighbouring cell; hence, it is impossible to realize a crossing within
a single layer avoiding that a fire ignites both wires.
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Figure 5.5: Layout of the program gadget: An Ii-instruction gadget is placed for each 1≤ i≤ n along
the diagonal of a n×n block matrix; each block consists of 9×9 cells. Into each remaining block, a
crossing gadget is placed. This sketch assumes that I1 is a subtraction instruction involving r2 and I2
is an addition instruction involving r1.

weight (1;1) in the centre of L1 the centre-cell and denote it with I cen. The following lemma captures
the crucial property of an instruction gadget.

Lemma 20 (instruction gadget). Let I in be an input-cell, I out be an output-cell, and I cen be the
centre-cell in L1 of the basic instruction gadget. If I in ignites at time t, I cen ignites at time t ′ ≤ t +8;
if I cen ignites at time t, I out ignites at time t ′′ ≤ t +8. The state of all other input-cells, except for I in’s
direct neighbour, remains unchanged; and, at time t ′′+1, none of the gadget’s cells are burning.

Given the basic instruction gadget, we can define a specific Ii-instruction gadget for every in-
struction Ii of M2 . For the halting instruction In, we define the In-instruction gadget as a copy of the
basic variant for which we set the values of I out to (0;0) in both layers; although the cells’ values
are no longer (2;1), we still refer to them as the output-cells of the In-instruction gadget. Thus,
Lemma 20 still holds for the In-instruction gadget, except for the fact that I out never ignites. For any
other instruction Ii, we define a specific Ii-instruction gadget based on rotations of the basic variant
by multiples of 90°: If Ii is an addition instruction involving r1 (r2), the basic variant is rotated by
90° (180°); if Ii is a subtraction instruction involving r1 (r2), the basic variant is rotated by 270° (0°).
Since none of the rotations invalidates Lemma 20, it holds for every specific Ii-instruction gadgets
where Ii ̸= In. To indicate that an input-cell belongs to a specific Ii-instruction gadget, we use the
subscript index i; as before, the pre-subscript indicates the direction where the cell comes to lie
after the rotation: For example, if Ii is an addition instruction to register r1, the output-cells of the
Ii-instruction gadget lie to the right and we denote such a cell with

r
I out

i .
The program gadget addresses the fact that a box in G M2 contains multiple vertices which need to

be systematically arranged. The layout is defined via n×n blocks of cells where each block consists
of 9×9 cells, see Figure 5.5. For 1≤ i≤ n, we place an Ii-instruction gadget into the i-th block along
the diagonal of the matrix; into each remaining block, we place a crossing gadget. The layout ensures
that incoming and outgoing wires of instruction gadgets intersect only at specific positions and two
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Figure 5.6: Layout of the corners
with which a crossing of two wires
can be replaced. This ensures that a
fire burning along a wire on L1 can
switch and continue to burn along an-
other wire in L2 and vice versa.

1;1 1;1

(i) Layout of the cells in L1.

1;1

1;1
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layers suffice to model all intersections. For each direction and each 1≤ i≤ n, a vertical or horizontal
wire connects the input-cell (output-cell) of the Ii-instruction gadget to an input-cell (output-cell) of
the program gadget; we denote these cells with

l
P in

i ,
l

P out
i ,

r
P in

i ,
r

P out
i ,

t
P in

i ,
t

P out
i ,

b
P in

i ,
b

P out
i .

The following lemma captures the gadget’s property.

Lemma 21 (program gadget). Let P in
i be an input-cell and P out

i be an output-cell of the program
gadget which are connected to the Ii-instruction gadget with a horizontal or vertical wire. Moreover,
let I cen

i be the centre-cell of the Ii-instruction gadget, T := 12(n− 1) + 8, and n the number of
instructions of M2 .

If P in
i ignites at time t, then I cen

i ignites at time t ′ ≤ t +T . Moreover, if I cen
i ignites at time t, then

r
P out

i (
l
P out

i ) ignites at time t ′′ ≤ t +T if and only if Ii is an addition (subtraction) instruction for
register r1; and,

t
P out

i (
b
P out

i ) ignites at time t ′′ ≤ t +T if and only if Ii is an addition (subtraction)
instruction for register r2. The state of all other boundary cells remains unchanged and, at time t ′′+1,
none of the gadget’s cells are burning.

The connector gadget addresses two facts: A vertex vi of G M2 can have a large number of incoming
edges whereas an instruction gadget expects only a single input-wire per direction; moreover, for
i ̸= n, the outgoing edge connects vi to a vertex of the same or a neighbouring box. The basic layout
is defined via n×2n blocks of cells where each block consists of 9×9 cells; into each block we place
a crossing gadget. The first n horizontal wires from the top of the crossing gadget are oriented to run
from right to left; the first n horizontal wires from the bottom of the gadget are oriented to run from
left to right. The orientation of the vertical wires does not change, i. e., for 1≤ i≤ n, the (2i−1)-th
wire from the left runs upwards whereas the 2i-th wire runs downwards. As indicated in Figure 5.7,
we change crossings to corners to connect the i-th horizontal wire from below to the i-th horizontal
wire from above; similarly, we proceed to connect the i-th vertical wire from the left to the (n+ i)-th
vertical wire from the left. Layers in the layout of a corner, which are given in Figure 5.6, can be
swapped and rotated by multiples of 90° to ensure that a fire burning along one wire continues along
the other wire only in the desired direction. Thus, the i-th and (2n+1− i)-th horizontal wire from
below are connected to the i-th output-cell from the left in the top row. Altogether, we call these cells
the output-wire of

t
C out

i . This implies the following two facts: First, many output-wires of different
instruction gadgets can be linked to the same output-wire of

t
C out

i . Second, every output-wire of an
instruction gadget can pass through the gadget, cf. Figure 5.7. The following lemma captures these
two properties.

Lemma 22 (connector gadget). In a basic connector gadget, let
t
C in

j ,
b
C out

j be the input-cell and
output-cell of the (2 j)-th vertical wire from the left. Moreover, let

t
C out

i be the output-cell of the
(2i−1)-th vertical wire from the left and let c be a cell of the attached wire that runs through both
layers.

If
t
C in

j ignites at time t, then
b
C out

j ignites at time t ′ ≤ t+12n. Moreover, if c ignites at time t, then
t
C out

i ignites at time t ′ ≤ 60n. In both cases, the state of all other boundary cells remains unchanged
and, at times t ′+1 and t ′′+1, none of the gadget’s cells are burning.
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(i) Layout of the cells in L1.

tC
out
1 tC
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2
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1 bC
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(ii) Layout of the cells in L2.

Figure 5.7: The layout of a connector gadget consists of n×2n block; each block consist of 9×9
cells and contains a crossing gadget. All boundary cells, except for the ones at the top edge in L2 are
replaced with dead cells. The output-wire of

t
C out

1 is indicated with a blue path: the vertical, dashed
lines in (i) indicate where the wire runs in L2; similarly, horizontal, dashed lines in (ii) indicate where
the wire runs in L1. Note that the left n×n blocks have input-cells and output-cells in the bottom row
while the n×n blocks on the right have only dead boundary cells. Further note that the input-wire of
b

C in
i is disconnected from the output-wire of

t
C out

j for every 1≤ i, j ≤ n.
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Figure 5.8: Layout of the junctions
with which a crossing of two wires
can be replaced. This ensures that an
input-wire of the connector gadget
can be connected to an output-wire.

1;2 2;1

(i) Layout of the cells in L1.

1;1

1;1

1;1

(ii) Layout of the cells in L2.

Given the basic connector gadget, we can define specific variants for each direction. The variants
are obtained by rotations of the gadget by multiples of 90°: A b -connector (t -connector) gadget is
obtained from the basic variant by a rotation of 0° (180°); an r -connector (l -connector) gadget is
obtained from the basic variant by a rotation of 90° (270°) and a swap of the layers. Note that neither
rotating the gadget nor swapping the layers invalidates Lemma 22.

The basic box gadget gives a full description of how vertices and edges of a single box in G M2

are mapped to cells of □ M2 . The basic layout is defined via 3×3 blocks of cells where each block
consists of 9n×9n cells, which is exactly the size of a program gadget. A program gadget is placed
in the center block; the remaining blocks are filled with specific connector gadgets: A l /r /b /t -
connector gadget is placed left/right/above/below of the program gadget such that the output-cells of
the connector gadget are adjacent to the input-cells of the program gadget, cf. Figure 5.9.

Depending on the coordinates (b1,b2) of a box, we can finally define the layout of a specific box
gadget. For this purpose, we modify the basic layout by replacing crossings with junctions; thus,
we connect input-cells of the box gadget (or output-cells of program gadget in the center) to the
output-wires of the connector gadgets placed around the center. Layers in the layout of a junction,
which are given in Figure 5.8, can be swapped and rotated by multiples of 90° to ensure that a fire
burning along one wire continues along the output-wire of the connector gadget into the desired
direction7 . This is done according to the following rules:

• If Ii = (i,r, j) is an addition instruction with r = r1 (r = r2), then connect
l

B in
i (

b
B in

i ) to the
j-th output-wire of the l -connector (b -connector) gadget;

• if Ii = (i,r, j,k) is a subtraction instruction with r = r1 and b1 > 0 (r = r2 and b2 > 0), then
connect

r
B in

i (
t

B in
i ) to the k-th output-wire of the r -connector (t -connector) gadget;

• if Ii = (i,r, j,k) is a subtraction instruction with r = r1 and b1 = 0 (r = r2 and b2 = 0), then
connect

l
P out

i (
b

P out
i ) to the j-th output-wire of the l -connector (b -connector) gadget.

Figure 5.9 exemplifies these modifications. All specific box gadgets together8 give a complete
description of □ M2 where cells of the cell-graph that do not belong to a box are filled with dead cells.
The following lemma ensures that the connections meet the intended purpose.

7Note that, by construction, the output-wire is directed which ensures that fire can only expand into one direction.
8Note that there are only four different ones.
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Figure 5.9: The layout of L1 of a box gadget. For the example, we assume that coordinate b2 = 0,
I2 = (2,r1,1) is an addition instruction (blue lines), and I1 = (1,r2,n,2) is a subtraction instruction
(red lines). As before, dashed lines indicate where wires continue in L2. Junctions have been placed
to connect

l
B in

2 to the first output-wire of the l -connector gadget and
b

P out
1 to the n-th output-wire

of the b -connector gadget.
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Lemma 23 (box gadget). Let (b1,b2)I cen
i be the centre-cell of the Ii-instruction gadget within the box

gadget of coordinates (b1,b2) where Ii ̸= In.
If (b1,b2)I cen

i ignites at time t, exactly one of the following implications holds:

• (b1+1,b2)I cen
j ignites at time t ′ if Ii = (i,r1, j);

• (b1,b2+1)I cen
j ignites at time t ′ if Ii = (i,r2, j);

• (b1−1,b2)I cen
k ignites at time t ′ if Ii = (i,r1, j,k) and b1 > 0;

• (b1,b2−1)I cen
k ignites at time t ′ if Ii = (i,r2, j,k) and b2 > 0;

• (b1,b2)I cen
j ignites at time t ′ if Ii = (i,r1, j,k) and b1 = 0;

• (b1,b2)I cen
j ignites at time t ′ if Ii = (i,r2, j,k) and b2 = 0;

where t ′ is bounded by a constant depending on n, the number of instructions of M2 .

Using Lemma 23, we finally prove the following theorem. Note that neither the following theorem
nor its proof depend on G M2 ; in exchange, we can bound the simulation time by means of instructions
of M2 . The proof of the theorem is similar to the one for Observation 5. The idea is to employ
induction over the number of transitions of M2 for the forward direction; for the reverse direction, we
employ induction over the discrete number of simulation steps.

Theorem 11. The fire-expansion model can simulate every two-register machine M2 with constant
time overhead, where the constant depends on the number of instructions of M2 .

Proof. We prove the following equivalence: When M2 is started in configuration (b1,b2, Ii), it reaches
configuration (b∗1,b

∗
2, Ik) within m steps if and only if there exists some tm ≥ 0 such that, in the instance

□ M2 of the fire-expansion model, (b∗1,b
∗
2)I cen

k ignites at time tm if cell (b1,b2)I cen
i is initially set on fire;

i. e., the x-value of (b1,b2)I cen
i is set to zero at time t = 0.

We prove the forward direction via induction over m: If m = 0, the hypothesis holds since only
one cell is set on fire at t0 = 0. For the induction step (m− 1)→ m, we may assume that the last
transition of M2 is from configuration Cm−1 = (b′1,b

′
2, j) to Cm = (b∗1,b

∗
2,k); hence I j is not the halting

instruction. By induction hypothesis, (b′1,b
′
2)I cen

j ignites at some time tm−1 if cell (b1,b2)I cen
i is set on

fire at time t = 0. Since Cm−1 and Cm are successive two-register machine configurations, it is either
b′1 = b∗1 and |b′2−b∗2 | ≤ 1, or b′2 = b∗2 and |b′1−b∗1 | ≤ 1. Thus, (b′1,b

′
2)I cen

j and (b∗1,b
∗
2)I cen

k lie either
in the same or in neighbouring box gadgets. Since I j is not the halting instruction, by Lemma 23,
(b∗1,b

∗
2)I cen

k ignites at time tm ≤ tm−1 + t ′. Since, t ′ is linear in the number of instructions n, the time
overhead is constant per simulation step.

We prove the reverse direction via induction over tm. Provided that (b∗1,b
∗
2)I cen

k ignites at time tm
when (b1,b2)I cen

i is initially set on fire, we have to show that M2 reaches configuration (b∗1,b
∗
2, Ik) when

started in (b1,b2, Ii). For the induction start tm = 0, the only cell in the cell-graph which is burning at
tm is (b1,b2)I cen

i by assumption. Thus, (b∗1,b
∗
2)I cen

k and (b1,b2)I cen
i are the same cells and the hypothesis

holds, since M2 obviously reaches its initial configuration without a single transition.
For the induction step, we know that tm > 0. Consequently, (b1,b2)I cen

i , (b∗1,b
∗
2)I cen

k have to be
different cells. Let (b′1,b

′
2)I cen

j denote the centre-cell which ignited at time tm−1 < tm right before
(b∗1,b

∗
2)I cen

k ; i. e., no centre-cell in the cell-graph ignites between tm−1 and tm.9 Note that, at time

9Note that (b′1,b
′
2)I cen

j = (b1,b2)I cen
i is possible.
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tm−1, all burning cells in the cell-graph lie within the instruction gadget of (b′1,b
′
2)I cen

j ; moreover,
by Lemma 23, (b′1,b

′
2)I cen

j and (b∗1,b
∗
2)I cen

k have to lie in the same or in neighbouring box gadgets.10

Additionally, Lemma 23 shows that when M2 is in configuration (b′1,b
′
2, I j), it proceeds to configuration

(b∗1,b
∗
2, Ik) in a single step. By induction hypothesis, M2 reaches configuration (b′1,b

′
2, j) within m−1

steps when started in configuration (b1,b2, Ii). Altogether, M2 reaches configuration (b∗1,b
∗
2, Ik) within

m steps when started in configuration (b1,b2, Ii), which completes the proof.

Implications of the Proof

Compared to simulations of Turing machines in other models, dead cells cannot regenerate their
state during the simulation in the fire-expansion model. Once a cell reaches the state dead during
the fire-expansion, the cell remains in this state until the simulation ends. This makes it necessary to
encode information about M2 ’s state in the geometric information of □ M2 ’s cell-graph; more precisely,
the state of M2 corresponds to the state of some specific cells in the embedded cell-graph and vice
versa.

The proof of Theorem 11 implies that many interesting and apparently simple questions cannot be
algorithmically solved in general. By reduction from the halting problem for Turing machines, we
obtain the following corollary.

Corollary 10. There is no algorithm that can decide for every instance of the fire-expansion model
and two cells c,c′ whether cell c′ eventually ignites when cell c is initially set on fire.

The reduction and proof of Theorem 11 shows that it is even impossible to decide whether the fire
comes close to c′.

Corollary 11. Given an instance of the fire-expansion model, two cells c,c′ and a finite radius r ∈ N.
There is no algorithm that can decide whether there is a cell within distance11 less that r from c′

which eventually ignites when cell c is initially set on fire.

The proof of the corollary can be sketched as follows. In the construction of □ M2 , we required
27n×27n cells to realize a box gadget; certainly, we can realize the box gadget within any larger
number of cells, e. g., for 27n · r×27n · r cells with instruction gadgets of 9r×9r cells. Now assume,
to the contrary, the problem was decidable for some (possibly) large, constant radius r. Thus, however,
we could decide the problem of Corollary 10: If c′′ lies close to c′, a transition of c′′ form alive to
burning already implies that c′ eventually ignites; this, however, gives a contradiction.

Many other interesting questions, e. g., whether a fire extinguishes over time without the need to
fight it, are algorithmically unsolvable as well.

Finally, the proof shows that a cellular automaton with d = 3, k = 6 and the r = 1 Moore
neighbourhood can simulate every Turing machines if the update rule forbids rebirth of cells. Similar
to the fire-expansion model, the cellular automaton requires only two layers, since cells cannot restore
their initial states. The number of states k = 6, stems from the fact that only four different types of
x-y-value pairs have been used in the cells; two additional pairs occur when counter values diminish
during the simulation.

10Assume to the contrary this were not true, then the fire has to pass through another box gadget to reach (b∗1,b
∗
2)I cen

k . This,
however, is only possible when passing through another instruction gadget which contradicts the assumption that (b′1,b

′
2)I cen

j

ignited right before (b∗1,b
∗
2)I cen

k .
11Here, the distance between two cells can be defined e. g. via the L1 metric.
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5.4 Conclusion and Outlook

In this chapter, we have introduced a new, discrete model for the study of fire-expansion and fire-
fighting problems in Theoretical Computer Science. The model generalizes existing models by
adding two integer parameters to each cell of the cell-graph. This simple extension added a lot of
computational power to the model: We proved that with a cell-graph of only two layers, it is possible
to simulate the computations of arbitrary Turing machines. This implies that already many interesting
fire-expansion problems in this general model are algorithmically undecidable. Interesting variants of
this model can modify the cell-graph or the update rule (transition function).

Modifications of the cell-graph could use cells of a different shape, restrict the size of the cell-
graph and even the values stored in the cells. Instead square cells, one could use a graph where each
layer consist, e. g., of hexagonal cells. In general, one could use any other regular cell-graphs and
the results of this chapter still apply for this case. If the size of the cell-graph is restricted to a finite
number of cells in a single layer, fire-expansion and also fire-fighting problems immediately become
decidable. Since many fire-fighting questions still turn out to be hard to solve, one can further impose
restrictions to the x- and y-values stored in the cells. Yet, there are still many interesting, but difficult
problems to study. Some initial results are presented in [66, 67] and the doctoral thesis of Barbara
Schwarzwald [90].

Modifications of the update rule could include the following ones. On the one hand, additional
parameters can be introduced to describe weather conditions as well as crown or ground fires; these
extensions could be applied to single cells individually or uniformly to the entire lattice. On the other
hand, the update rule could allow cells to restore their initial x- and y-values over time. Thus, they can
change their state from dead back to alive. Note that this modification makes it possible to realize a
crossing of wires even within a single layer [66, 67] which implies for this variant that Theorem 11
already holds for a cell-graph which with a single layer of cells. Note that in the model as introduced
in this thesis, such a transition from dead to alive is impossible. This is also a major difference to
other Turing universal CA, e. g., GoL, Rule 110, or Wireworld as discussed in Section 5.2.

It will be interesting to further examine the relation between the fire-expansion model and popular
CAs such as GoL, Rule 110, and Wireworld. One may ask whether the fire-expansion model can be
used to simulate other popular CAs such GoL, Rule 110, or Wireworld. A major difference appears to
be the transition function: In GoL cells can die from overpopulation for which there is no equivalent
transition in the fire-expansion model; similarly, dead cells in GoL can be reborn which is impossible
in the fire-expansion model. Moreover, in some CAs, such as GoL or Wireworld, one can simulate
the logical gadgets ∧, ∨ and ¬. It would be highly interesting to see whether this is also possible with
(a variant) of the fire-expansion model. One may further ask whether GoL, Rule 110, or Wireworld
can be simulated with the fire-expansion model. This is not trivial since the transition graph of a cell
in these automata is cyclic, whereas it is acyclic for the fire-expansion model. For many CAs this
property is essential for the simulation of Turing machines.

The relation between arbitrary CAs and the fire-expansion model gives rise to several questions.
In Section 5.2, we stated that CAs can simulate the fire-expansion model in linear time; however, the
construction requires a certain (potentially large) number of states. Can this simulation be done more
efficiently, i. e., avoiding the large increase in the number of states? Conversely, can the fire-expansion
model simulate every CA (in linear time)? If not, which modification of the fire-expansion model
makes both models computationally equivalent? Similarly, it remains open whether NN can be used
to simulate the fire-expansion model efficiently, i. e., to avoid that the number of states of the NN
depend on the size of the x-y-values stored in the cells. It is also conceivable that y-values can be used
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as edge-weights of the NN to achieve a simulation of the fire-expansion by a NN in sublinear time.
Again, (under which extensions) does the converse hold?





Chapter 6

Conclusion and Research Perspectives

In four chapters, this thesis examined different search problems which are related to or emerge from
a geometric context. Each problem was analysed in a new model or context where surprising and
non-trivial results were proven. This does not only add a certain twist to these problems, it further
leads to a better understanding of the problems and helps to provide mathematical explanations for
related problems and general observations. In the following, we briefly summarise the results, discuss
implications at a meta-level and suggest directions for further research.

Chapter 2 examined the problem of searching for a stationary target point in a bounded part of the
Euclidean space. The chapter considered a new query model where feedback was given by an ordering
of the query points. With regard to the feedback, we distinguished two variants of the model. For
both variants, we proved lower and upper bounds for the precision that can be achieved with a certain
number of queries. However, for both variants, a gap between lower and upper bound remained: In
the one-shot variant, the gap is only a constant factor, even in the two-dimensional setting; in contrast
to this, the gap grows exponentially in the incremental variant, already in the one-dimensional setting.
It would certainly be interesting to see how the results can be improved to narrow these gaps.

Additionally, finding a different query model which allows for substantial improvements in
comparison to binary searching strategies, would be fascinating. In the incremental variant, both
strategies, the new query strategy and the binary search approach, achieved an accuracy which
grows single exponentially with n, the number of queries; namely, O(2.29n) and O(2n), respectively.
Furthermore, no such query strategy can achieve an accuracy which grows faster than O(3.66n).
Generally speaking, this implies that, even in this stronger query model, the accuracy of every query
strategy is limited to single exponential growth with a rather small, constant base. As discussed in
Section 2.5, this shows that one cannot do fundamentally better than binary searching. However, is
there a different query model whereby a search strategy can outperform the binary search approach
by an order of magnitude? That is to say, while the accuracy of the binary search approach in this
model still grows single exponentially, could another strategy achieve accuracy with, e. g., doubly
exponential growth? Such results might shed new light on the conditions under which binary searching
is essentially optimal; or, conversely, allow for a better insight and understanding of the conditions
under which query strategies can be substantially better than a binary search approach.

Chapter 3 examined the search problem for a boundary point of a region in the Euclidean plane,
which is related to Bellman’s escape path problem. We introduced and motivated a new measure
to capture the intrinsic complexity of such geometric search problems. It provided the basis for our
analysis of search strategies for the initial problem. We developed lower and upper bounds on the
approximation factor that can be achieved and discussed what this implies for Bellman’s escape path
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problem. Generally speaking, this offered an alternative for proving the optimality of geometric search
strategies, which we exemplified for two spiral search strategies. The results provided evidence for
the general observation that spiral searching is highly efficient for many geometric search problems in
the Euclidean plane. This seems to stem from the fact that spiral trajectories balance a BFS and DFS
approach by increasing the search depth exponentially into every direction. In general, increasing
the search depth exponentially is a design paradigm for search strategies, cf. [65]. For several other
search problems, this paradigm gave optimal search strategies; see, e. g., [3, 8]. It would be interesting
to see how our approach can be applied to other geometric search problems in order to prove the
optimality of strategies which have not been improved for many years. For example, for the problem
of searching for a line in the plane, optimality of a certain spiral strategy is a long-standing conjecture
[35, 37].

Particularly fascinating would be to see further progress on the shortest escape path problem. The
problem has attracted a lot of attention and could only be solved for special types of regions up to this
date. Finding a shortest escape path for a given region is tedious work; for this reason, we decided to
seek for approximations of shortest escape paths with a small, constant factor. We provided such an
approximation for the family of regions which consist of all fat, convex shapes, all equilateral triangles,
and all infinite strips. The missing key to link our approximation results to shortest escape paths for a
larger family of regions seems to be the following claim: For every region with a non-empty kernel1,
the certificate path approximates a shortest escape path with a small constant factor. Note that the
certificate path is actually well-defined for every path-connected region. Although it seems to be
a reasonable measure for the complexity of escape problems in every path-connected region, it is
impossible to approximate it: While the certificate path can locate a single point in the plane, this is
impossible for a trajectory that approximates the certificate path with a constant factor. Hence, for
the family of path-connected regions, it is certainly necessary to develop different measures for the
inherent complexity of geometric search problems.

Chapter 4 examined the search for an ε-rounding on an edge-weighted graph which meets three
constraints. The first constraint ensures that the absolute change in weight along each shortest path
is less than ε . The second constraint ensures that a shortest path remains shortest after rounding
the edge-weights. Unlike other authors, we imposed the third, new constraint that a shortest path,
after the rounding, had to have already been shortest beforehand. We discussed how the difficulty
of this problem depends on the value of ε . By reduction from 3-SAT, we proved that, even in its
simplest form, the problem is NP-hard for ε ∈ (3/4;1]. However, in the case where the graph is a
tree, we showed how to compute a solution efficiently. The fact that NP-hard problems become
polynomial-time solvable on restricted graph classes is not surprising; the same effect can be observed
for many other graph problems, e. g., vertex cover or dominating set. But where exactly does the
difficulty of this rounding problem lie? It will be most interesting to see whether the problem can be
efficiently solved for other graph classes such as cycles, DAGs and planar graphs. Especially with
respect to planar graphs, the question is most urgent since graphs are (almost) planar in many practical
applications.

Although it is reasonable to assemble the constraints as done in Definition 10, it makes sense
to consider them separately. It will be interesting to see whether path-oblivious ε-roundings with
rather small, constant values of ε exist also for more general graph classes and can be computed
efficiently; recall that, a 1-rounding (2-rounding) can be computed efficiently for the special case
where the graph is a path (tree). Do similar approximations also exist for other graph classes? With
regard to the second and third constraint, it is not even clear whether both of them can be ensured at

1Maybe even for every simply connected region.
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the same time for every graph. The discussion in Section 4.1 suggests that this is impossible when
each constraint presupposes the prior one. Thus, it would be necessary to further study the interplay
of these conditions, assemble them in a different manner or even consider them independent of each
other.

Chapter 5 examined the search for specific configurations in a new, two-dimensional fire-fighting
model. The new model generalises existing ones by adding two integer parameters to each cell which
model the cell’s resistance against ignition and its remaining fuel. This simple extension adds a lot
of computational power to this model, even though, cells can never restore their initial state. In a
cell-graph with a single layer and a bounded number of cells, computational problems can always
be solved; however, many apparently simple questions seem to resist efficient solutions. Efficient
solutions have only been found for some few, interesting problems [67, 90]. In a cell-graph where two
layers are stacked on top of each other, the model becomes Turing-universal as proven and discussed
in this thesis. Thus, for this variant of the model, many interesting problems are inherently unsolvable
by means of computers; among them, the problem of searching for a specific configuration in a
fire-expansion, e. g., where a specific cell is on fire.

Finally, the results of Chapter 5 take us back to the beginning of this thesis where we considered
two computational tasks, a geometric and an arithmetic one. Both of these tasks can be solved, in
principle, by Turing machines which can be simulated within the fire-expansion model themselves.
Who might have expected that these computations can take place even in this simple model? Please
note that we did not address the question as to whether this is also efficient. To simulate computations
and algorithms efficiently, the eminent challenge seems to be to figure out how to ’program’ by means
of fire-expansion; this further involves to provide a meaningful encoding and decoding of input and
output. In retrospect, the fact that Turing machines can be simulated within the fire-expansion model
does not emerge entirely unexpected. Similar phenomena have already been observed for related
concepts like cellular automata and artificial neural networks. Therefore, the results should rather
be seen as additional evidence for a fundamental observation in nature and science: Simple, local
structures with a simple, local behaviour can often lead to incredibly complex global behaviour.
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Appendix A

Additional Proofs, Figures, and
Pseudocode for Chapter 2

A.1 Removing Query Points from EQUIDIST(21)

q1 q2 q3 - q5 - - q8 - - q11 - - q14 - - q17 - q19q20q21

(i) Keeping three query points from the left an right, it is possible to leave regular gaps of size two.

q1 q2 q3 q4 - - q7 - - - q11 - - - q15 - - q18q19q20q21

(ii) Keeping four query points from the left an right, it is possible to leave regular gaps of size three.

Figure A.1: Removing 10 query points from Q21 without loss of accuracy.
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A.2 Proof of Observation 3

Observation 2. The accuracy of an optimal incremental strategy using n = 4 query points is 14.

Proof. Suppose that an incremental strategy achieves accuracy a > 14; thus, we may apply it to the
unit interval to locate the target t in a subinterval of size at most 1/a.

W. l. o. g. we may assume that the first two query points q1 < q2 are placed symmetrically around
1/2;1 thus, we have q1 < 1/2 and q2 = 1−q1 > 1/2. Further, we may assume that t ∈ [0, 1/2], the other
case can be proven symmetrically.

Observe that we have to place q3 such that the accuracy is increased in the third step, i. e., q3 < q2:
Otherwise, q3 creates no bisector within the interval and the accuracy remains two; this limits the
overall accuracy to at most 8 which gives a contradiction.2 Thus, by placing q3 we obtain two
new bisectors bs(q1,q3) < bs(q2,q3) which subdivide the interval into at least two subintervals (i)
[0,bs(q1,q3)] and (ii) [bs(q1,q3),min(1/2,bs(q2,q3))].

The idea of the proof is as follows. We prove that the sizes of interval (i) and (ii) are at most 3/a

each; next, we show that q3 and q1, as well as q1 and q2 lie more than 2/a apart; finally, we use these
facts to conclude that interval (i) has size larger than 2/a which leads to a contradiction. Consider the
following chain of facts, where latter build on previous ones.

(A) The size of interval (i) is at most 3/a, i. e., bs(q1,q3) ≤ 3/a. Assume to the contrary that the
interval was larger; thus, more than two bisectors would be necessary in the fourth step to divide
the interval into parts of size at most 1/a. However, q4 creates only three bisectors where (at
least) one of which does not lie in the interval: bs(q2,q4)≥ 1/2 ·q2 > 1/4 > 3/a. Thus, accuracy
a could not be achieved on interval (i), which gives a contradiction.

(B) The interval (ii) is bounded by [bs(q1,q3),bs(q2,q3)], i. e., bs(q2,q3)< 1/2 and q3 < q1. If this
were not the case, its size would be 1/2−bs(q1,q3)> 7/a− 3/a = 4/a due to Fact (A); thus, more
than three bisectors would be necessary in the fourth step to divide the interval into parts of
size at most 1/a. As q4 creates only three bisectors, accuracy a could not be achieved on this
interval, which gives a contradiction.

(C) The distance between q1 and q2 is greater than 2/a. This follows using Fact (B) and (A):
q2−q1 = 1−2 ·q1 ≥ 1−2 ·2 ·bs(q1,q3)> 14/a−4 · 3/a = 2/a. This implies that, regardless of
the position of q4, the bisectors bs(q1,q4)< bs(q2,q4) are more than 1/a apart; moreover, due
to Fact (B), it is bs(q3,q4)< bs(q1,q4).

(D) The size of interval (ii) is at most 3/a, which implies bs(q2,q3)≤ 6/a by Fact (A). Assume to the
contrary that the interval was larger; thus, all three bisectors created in the fourth step would
be required to divide the interval into parts of size at most 1/a. However, by Fact (C), the part
created by bs(q1,q4) and bs(q2,q4) is of size greater than 1/a, which gives a contradiction.

1 Given an optimal query strategy, the left and right subtree of its corresponding query tree are both optimal strategies.
Assume to the contrary that q1,q2 split the initial interval in two parts of different size; w. l. o. g. we assume that the left part
is larger. In both parts, the size of the largest, final subinterval must be of the same size; otherwise, the strategy can be
improved. Thus, however, the optimal strategy of the left subtree achieves the same accuracy on a larger interval and can be
applied also to the right part to improve the accuracy on this part. This contradicts the assumption that the right subtree’s
strategy was already optimal and can be used to improve the overall strategy which gives a contradiction.

2 Placing q4 creates at most three new bisectors which can split an interval into at most four pars of equal size; hence,
the accuracy gain in the fourth step is limited to a factor of four.
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(E) The distance between q1 and q3 is greater than 2/a. This can be shown using Fact (D): q1−q3 =
(1−q2)−q3 = 1−2 ·bs(q2,q3)> 14/a−2 · 6/a = 2/a.

(F) The distance between q1 and q2 is at most 6/a. Due to Fact (B), it is bounded by bisectors which
q3 creates with q1 and q2; due to Fact (D), the size of interval (ii) is at most 3/a. Thus, the
distance between q1 and q2 cannot be larger than 6/a.

(G) The size of interval (i) is greater than 2/a. From (F) we get 2 ·q1 = q1+(1−q2)= 1−(q2−q1)>
14/a− 6/a = 8/a which we use to bound the size of (i) from below: bs(q1,q3)− 0 > 1/2 · q1 =
1/4 · (q1 +(1−q2)) = 1/4− 1/4 · (q2−q1)≥ 1/4 · (1− 6/a)> 1/4 · (14/a− 6/a) = 2/a.

Since the size of interval (i) is greater than 2/a by Fact (G), at least two bisectors created by q4 have to
split the interval into smaller parts; however, since q3,q1 and q2 lie too far apart, these two bisectors
produce a part which is has size greater than 1/a which gives a contradiction.

A.3 Pseudocode for QUERYLEFTSUBINTERVAL

Algorithm 8: QUERYLEFTSUBINTERVAL([l,r],qin,qout ,k,C)

Input: The interval [l,r] in which t is known to lie; two query points l ≤ qin < r < qout such that
r = bs(qin,qout); a number k ≥ 2 of query points to be placed; a scaling factor C.

Output: The routine places a query points q to split the search interval in three parts; then, the search
continues recursively depending on in which part t is found to lie.

q← qin−2 ·h(k−1) ·C ▷ place query point q
bsl ← (q+qin)/2, bsr← (q+qout)/2

if t ∈ [l,bsl] then
QUERYLEFTSUBINTERVAL([l,bsl],q,qin,k−1,C)

if t ∈ [bsl,bsr] then
bs′r← bsl +(bsl− l) ▷ artifical bisector s.th. bsr ≤ bs′r
QUERYRIGHTSUBINTERVAL([bsl,bs′r],qin,q,k−1,C)

else ▷ t ∈ [l,bsl]
QUERYINTERVAL([bsr,r],k−1)
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Additional Proofs for Chapter 3

B.1 Preconditions of Gal’s Theorem

Recall the definition of the sequence of functionals used in Theorem 8:

F j
l (X) :=

∑
k−1
i=−l d (xi,xi+1)

xk+1− j(1+ j · 2π

n )
,

where d : R2→ R with d(x,y) 7→
√

x2−2xycos
(2π

n

)
+ y2, 0≤ j ≤ n is fixed and l ≥ k−1.

Since d (x,y)≥ 0 for all x,y ∈ R+, F j
l (X) satisfies the monotonicity condition [3, (7.20), p. 113]

F j
l+1(X) =

∑
k−1
i=−l−1 d (xi,xi+1)

xk+1− j(1+ j · 2π

n )
≥

∑
k−1
i=−l d (xi,xi+1)

xk+1− j(1+ j · 2π

n )
= F j

l (X).

Moreover, the functionals satisfy the five conditions [3, (7.5)-(7.9), p. 109 f.]; in detail, these
conditions are: (7.5) F j

l (X) is continuous since X is a positive sequence; (7.6) F j
l (X) satisfies the

homogeneity condition, i. e., for every λ > 0, it is

F j
l (λX) =

∑
k−1
i=−l

√
(λxi)2−2cos

(2π

n

)
(λxi)(λxi+1)+(λxi+1)2

λxk+1− j(1+ j · 2π

n )
= F j

l (X);

(7.7) F j
l satisfies the unimodality condition F j

l (X +Y )≤max{F j
l (X),F j

l (Y )} for every two positive
sequences X ,Y , since

F j
l (X +Y ) =

∑
k−1
i=−l d (xi + yi,xi+1 + yi+1)

(xk+1− j + yk+− j)(1+ j · 2π

n )

Le. 25
≤

∑
k−1
i=−l d (xi,xi+1)+d (yi,yi+1)

(xk+1− j + yk+1− j)(1+ j · 2π

n )

=
∑

k−1
i=−l d (xi,xi+1)

(xk+1− j + yk+1− j)(1+ j · 2π

n )
+

∑
k−1
i=−l d (yi,yi+1)

(xk+1− j + yk+1− j)(1+ j · 2π

n )
≤ F j

l (X)+F j
l (Y ).

Finally, condition (7.8) and (7.9) are naturally satisfied.
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Figure B.1: Positive reals a ≤ b ≤
c ≤ e are mapped on two rays. By
triangle inequality, the length of
the dashed segments is at most the
length of the solid ones.

a0
b0 c0 e0

a1
b1

c1
e1

θ

B.2 Technical Lemmata

Lemma 24. Let θ ∈ R and d : R2→ R with d(x,y) 7→
√

x2−2xycosθ + y2. For all a,b,c,e ∈ R≥0
such that a≤ b≤ c≤ e, the following inequalities hold:

1. d (a,b)≤ d (a,c) and

2. d (a,b)+d (c,e)≤ d (a,e)+d (b,c)
1.
≤ d (a,e)+d (b,e).

Proof. We begin with proving the first inequality. Since a≤ b≤ c, there exist ε > 0 and δ > 0 such
that b = a+ ε and c = b+δ ; moreover, since d(a,b)≥ 0, we obtain the equivalence

d (a,b)≤ d (a,c) ⇔ 2acos(θ)≤ 2a+2ε +δ ,

where the inequality on the right holds ∀θ ∈ R since a,ε,δ are non-negative and cos(θ)≤ 1.
To prove the second inequality, we map a to two polar coordinates a0 := (a,0), a1 := (a,θ) on

two rays at an angle θ apart; similarly, we proceed for b,c and e, see Figure B.1. Thus, the value of
d (a,b) equals the Euclidean distance between corresponding coordinates on different rays; i. e., the
distance from a0 to b1, which is identical to the distance from a1 to b0. By triangle inequality of the
Euclidean metric we conclude

d (a,b)+d (c,e) = d (a1,b0)+d (c1,e0)≤ d (a1,e0)+d (b0,c1) = d (a,e)+d (b,c) .

Lemma 25. Let θ ∈ R and d : R2→ R with d(x,y) 7→
√

x2−2xycosθ + y2. For all x,y,x′,y′ ∈ R≥0
the following inequalities holds: d (x+ y,x′+ y′)≤ d (x,x′)+d (y,y′).

For a proof of this lemma we refer to [3, pp. 155 f.].
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Proof Sketches for the Lemmata of
Chapter 5

Lemma 19 (crossing gadget). Let X in be an input-cell and X out an output-cell of a crossing gadget
connected with a straight vertical or horizontal wire.

If X in is the first cell of the adjacent wire that ignites at time t, the following holds: X out ignites
at time t ′ ≤ t +11; the state of all cells that do not belong to the wire remains unchanged; and, at
time t ′+1, none of the gadget’s cells are burning.

Proof sketch. Set
l

X in on fire at time t = 0, i. e., setting x(
l
X in,0) = 0. Then, apply the rules of the

fire expansion (Definition 12) several times to see
r

X out ignites at time t = 11, i. e., x(
r
X out,11) = 0.

Moreover, at time t = 12, none of the gadget’s cells is burning. By symmetry, the same hold for all
other pair of input-output cells.

Note that the choice of the weights for cells where a horizontal wire in L1 is adjacent to a vertical
wire in L2 is crucial: Since the x-value is two and the y-value is one, it is impossible for such a cell
to ignite its neighbour on the other wire. Hence, the state of all cells that do not belong to the wire
remains unchanged. This ensures also that a fire can pass along a different wire of the gadget at a
moment later in time.

Lemma 20 (instruction gadget). Let I in be an input-cell, I out be an output-cell, and I cen be the
centre-cell in L1 of the basic instruction gadget. If I in ignites at time t, I cen ignites at time t ′ ≤ t +8;
if I cen ignites at time t, I out ignites at time t ′′ ≤ t +8. The state of all other input-cells, except for I in’s
direct neighbour, remains unchanged; and, at time t ′′+1, none of the gadget’s cells are burning.

Proof sketch. If I in is the first cell of the gadget that ever ignites, the lemma can be verified by setting
x(I in,0) = 0 and applying the rules of the fire expansion (Definition 12). Note that none of the
other input-cells can ignite due to the choice of weight of their inner neighbour. The fire burns for a
maximum number of 16 steps when I in, I out lie in L2 of the gadget.

If I in is not the first cell of the gadget that ever ignites, then I out already ignited a time earlier than
t +16 which does not invalidate the lemma.

Lemma 21 (program gadget). Let P in
i be an input-cell and P out

i be an output-cell of the program
gadget which are connected to the Ii-instruction gadget with a horizontal or vertical wire. Moreover,
let I cen

i be the centre-cell of the Ii-instruction gadget, T := 12(n− 1) + 8, and n the number of
instructions of M2 .
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If P in
i ignites at time t, then I cen

i ignites at time t ′ ≤ t +T . Moreover, if I cen
i ignites at time t, then

r
P out

i (
l
P out

i ) ignites at time t ′′ ≤ t +T if and only if Ii is an addition (subtraction) instruction for
register r1; and,

t
P out

i (
b
P out

i ) ignites at time t ′′ ≤ t +T if and only if Ii is an addition (subtraction)
instruction for register r2. The state of all other boundary cells remains unchanged and, at time t ′′+1,
none of the gadget’s cells are burning.

Proof sketch. Let I in
i be the input-cell of the Ii-instruction gadget to which P in

i is connected to via
the input-wire. All cells of this input-wire are alive since fire cannot expand along input-wire into
the reverse direction, fire does not ignite input-cells of the instruction gadget from inside, fire does
not leap over from adjacent wires, and no cells ignite spontaneously. The input-wire passes through
at most n− 1 crossing gadgets, each of which requires twelve steps by Lemma 19. Hence, by an
inductive argument, I in

i ignites at time t +12(n−1) the latest. By Lemma 20, I cen
i ignites at most

eight steps later than that.
Similarly, one can prove the second implication. Note that, by construction, I out

i points into the
correct direction depending on the type of the instruction of Ii. Moreover, the fire expands only along
a single wire at a time and does not change the state (not even the x- or y-value) of any other boundary
cell.

Lemma 22 (connector gadget). In a basic connector gadget, let
t
C in

j ,
b
C out

j be the input-cell and
output-cell of the (2 j)-th vertical wire from the left. Moreover, let

t
C out

i be the output-cell of the
(2i−1)-th vertical wire from the left and let c be a cell of the attached wire that runs through both
layers.

If
t
C in

j ignites at time t, then
b
C out

j ignites at time t ′ ≤ t+12n. Moreover, if c ignites at time t, then
t
C out

i ignites at time t ′ ≤ 60n. In both cases, the state of all other boundary cells remains unchanged
and, at times t ′+1 and t ′′+1, none of the gadget’s cells are burning.

Proof sketch. Since the wire from
t

C in
j to

b
C out

j runs through at most n crossing gadgets, the first
implication follows from applying Lemma 19 repeatedly.

For the second implication, the wire from c to
t

C out
i runs through at most 2n crossing gadgets

to the right, at most n crossing gadgets upwards, and at most 2n crossing gadgets back to the left.
Altogether, the wire passes through at most 5n crossing gadgets each of which requires twelve steps.
The implication follows by applying Lemma 19 repeatedly and taking the placement of corners into
account.

Lemma 23. Let (b1,b2)I cen
i be the centre-cell of the Ii-instruction gadget within the box gadget of

coordinates (b1,b2) where Ii ̸= In.
If (b1,b2)I cen

i ignites at time t, exactly one of the following implications holds:

• (b1+1,b2)I cen
j ignites at time t ′ if Ii = (i,r1, j);

• (b1,b2+1)I cen
j ignites at time t ′ if Ii = (i,r2, j);

• (b1−1,b2)I cen
k ignites at time t ′ if Ii = (i,r1, j,k) and b1 > 0;

• (b1,b2−1)I cen
k ignites at time t ′ if Ii = (i,r2, j,k) and b2 > 0;

• (b1,b2)I cen
j ignites at time t ′ if Ii = (i,r1, j,k) and b1 = 0;

• (b1,b2)I cen
j ignites at time t ′ if Ii = (i,r2, j,k) and b2 = 0;

where t ′ is bounded by a constant depending on n, the number of instructions of M2 .
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Proof sketch. Let (b1,b2)I cen
i ignite at time t.

If instruction Ii is the halting instruction, then the fire extinguishes after at most eight steps due to
the construction of the In-instruction gadget; note that no boundary cell of the Ii-instruction gadget
changed its state or values.

If Ii = (i,r1, j), then (b1,b2)
rP out

i ignites at time t ′ ≤ t +T , by Lemma 21. Since Ii is an addition
instruction, no corner has been placed along the wire from (b1,b2)

rP out
i to (b1,b2)

rB out
i of the l -connector

gadget; thus, by Lemma 22, (b1,b2)
rB out

i ignites at time t ′ ≤ t +T +12n. Now, (b1,b2)
rB out

i is adjacent
to (b1 +1,b2)

l
B in

i which ignites in the next step. However, by construction, a corner has been placed
to connect (b1 +1,b2)

l
B in

i to the j-th output-wire of the l -connector gadget. Hence, after passing
through at most (n−1)/2 crossing gadgets, the fire ignites a cell c on the j-th output-wire of the
connector gadget after another 12(n−1)/2 steps. By Lemma 22, (b1 +1,b2)

rC out
j of the l -connector

gadget ignites after at most 60n steps; since it is adjacent to (b1 +1,b2)
l

P in
j by construction, this cell

ignites in the next step. Finally, by Lemma 21, (b1 +1,b2)I cen
j ignites after another T steps at time

t ′ ≤ t +T +12n+12(n−1)/2+60n+T ≤ t +30(n−1)+72n.
Similarly, one can prove the correctness for all other types of instructions and values of (b1,b2).
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space, 13
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cycle, 4, 74, 86, 108

Diagonal argument, 92
discretisation, 60
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edge
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shortcut edge, 73

escape path, 42
circular disc, 47
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fat, convex set, 47
half-plane, 50
infinite strip, 48

escape strategy, 42
Euclidean metric, 5
Euclidean plane, 50, 87
Euclidean space, 5
exploration, 4
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gadget, 95
clause gadget, 73
variable gadget, 73
box gadget, 100
connector gadget, 98
crossing gadget, 95
instruction gadget, 96
program gadget, 97

Golomb ruler, 15, 20
graph, 4, 72, 80, 86, 87, 93

cell-graph, 5
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directed, 93
locally-finite, 93
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regular, 5, 89

halting problem, 9
hypergraph, see graph

incremental variant, 13, 21, 38
input, 8

size, 8
instruction, 9, 93

addition instruction, 93
subtraction instruction, 93

Isbell, 50

Jordan curve theorem, 6

kernel, 6, 56
Kirkpatrick, 43, 44

line segment, 6
linear programming, 17, 72, 86
list, 5
literal, 11
lower bound, 8

maximum-traversal-cost, 44, 46
Minsky, 93

neural networks
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O-Notation, 8
observation, 16, 21, 22, 71
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two dimensional, 36

unit circle, 36
online, 35
output, 8

path, 4, 6, 72, 80
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length, 6
shortest escape path, 5
shortest path, 5
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path graph, 5
point

boundary point, 6
interior point, 6

polygon, 6, 87
simple polygon, 6, 50
visibility polygon, 50

polygonal chain, 6, 54
polynomial-time reduction, see reduction
pseudocode, 9

query point, 14
query strategy, 14

random access machine, see RAM
recurrence formula, 25, 27

closed form expression, 27
reduction, 10, 95
region, 6

simply connected, 6, 54
root error range, 81
rounding, 70

path-oblivious, 70
weak, 70
strong, 70
1-rounding, 80
existence, 71
of clause gadget, 75
of variable gadget, 74

satisfiability, see SAT
search for

boundary point, 41
line in the plane, 50
point in the plane, 66
single target, 13

Sidon
Sidon sequence, 15, 20



Index 137

Sidon set, 15, 20
space

boundary, 6
closed space, 6
open space, 6

spiral, 56, 57
string, 7

tree, 5, 80, 86
triangle inequality, 7
Turing machine, 7, 93

computability, 8
equivalence, 8
input, 8
output, 8
runtime, 8
termination, 8
universal, 9

Turing-reduction, see reduction
two-register machine, 93

configuration, 93
instruction, 93
program, 93

undecidability, 9
unit

cube, 6
disk, 6
interval, 6, 15
sphere, 6

unit circle, 36
Universal Turing machine, 9
upper bound, 8

visible, 6

Wetzel, 41, 43
Williams, 41
wire, 94

input-wire, 95
output-wire, 95

word, see string
worst-case, 8

Zalgaller, 43, 48
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