Synthese und Charakterisierung von Lithium-metall(I)-phosphaten

Die strukturelle Differenzierung von einwertigen Kationen in multinären Phosphaten

Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.)

der

Mathematisch-Naturwissenschaftlichen Fakultät

der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Dipl. Chem. Branimir Raguž

aus

Bad Honnef

2019

Diese Arbeit wurde mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn angefertigt.

- 1. Referent: Prof. Dr. Robert Glaum
- 2. Referent: Prof. Dr. Jörn Schmedt auf der Günne
- 3. Referent: Prof. Dr. Sigurd Höger
- 4. Referent: Prof. Dr. Hartmut Schmieden

Tag der mündlichen Prüfung: 28.02.2020 Erscheinungsjahr: 2020

"Make it so"

- Captain Jean-Luc Picard -

mojoj obitelji

1	Einleitung	1
1.1	Wissenschaftlicher Hintergrund	1
1.2	Ziele	4
2	Thermodynamisch metastabile Polymorphe von Lithiumpyrophosphat	5
2.1	Einleitung	5
2.2	Synthese	6
2.3	Auswertung der Guinieraufnahmen	7
2.4	Kristallstrukturanalyse von Li4P2O7-pseudomono* aus Pulverdaten	11
2.5	Einkristallstrukturanalyse von Li ₄ P ₂ O ₇ -trig*	15
2.6	Beschreibung und Diskussion der Kristallstrukturen von Li ₄ P ₂ O ₇ -pseudomono*, Li ₄ P ₂ O ₇ -tri und (Li _{0,9} Cu ^I _{0,1}) ₄ P ₂ O ₇ -trig [*]	ig* 19
2.7	Vergleich der verschiedenen Polymorphe von Lithiumpyrophosphat	23
2.8	Thermisches Verhalten von Li ₄ P ₂ O ₇ -pseudomono* und Li ₄ P ₂ O ₇ -trig*	25
3	Das Dreistoffsystem LiO0,5/Cu ^I O0,5/PO2,5	27
3.1	Einleitung	27
3.2	Experimente zur Untersuchung des quasibinären Schnitts Li ₄ P ₂ O ₇ – "Cu ^I ₄ P ₂ O ₇ "	29
3.3	Ergebnisse	30
3.4	³¹ P-MAS-NMR-Untersuchungen	36
4	Das Lithium-kupfer(I)-catena(metaphoshat) Li ₃ Cu ^I (PO ₃) ₄	39
4.1	Synthese	39
4.2	Auswertung der Guinieraufnahmen	41
4.3	Einkristallstrukturanalyse	46
4.4	Beschreibung und Diskussion der Kristallstruktur	50
4.5	³¹ P-MAS-NMR-Untersuchungen	54
4.6	Magnetische Messungen	56
5	Lithium-natrium-pyrophosphate (Li _{1-x} Na _x)4P2O7	58
5.1	Phasenbestand im System Li/Na/P/O	58
5.2	Experimente zur Untersuchung des quasibinären Schnitts Li ₄ P ₂ O ₇ – Na ₄ P ₂ O ₇	60
5.3	Phasenbestand und thermisches Verhalten	60
5.4	Einkristallstrukturanalyse von HT-Li2Na2P2O7 und Li3NaP2O7	62
5.5	Kristallstrukturanalyse von TT-Li2Na2P2O7 aus Pulverdaten	69
5.6	Beschreibung der Kristallstrukturen von HT-Li2Na2P2O7, TT-Li2Na2P2O7 und Li3NaP2O7	74
5.7	³¹ P-MAS-NMR-Untersuchungen	81
5.8	Weitere Gleichgewichtsuntersuchungen im Dreistoffsystem LiO _{0,5} /PO _{2,5} /NaO _{0,5}	83

6		Das Vierelementsystem Li/Ag/P/O	
	6.1	Einleitung	
	6.2	Experimente zur Darstellung von Lithium-silber-phosphaten	
	6.3	Auswertung der Guinieraufnahmen	
	6.4	³¹ P-MAS-NMR-Untersuchungen	91
7		Zusammenfassung	
8		Apparaturen und präparative Methoden	96
	8.1	Durchführung der Festkörperreaktionen	96
	8.2	Multifunktionelle Vakuumapparatur	
	8.3	Öfen	
	8.4	Arbeiten mit Schmelzen	
9		Analytische Verfahren	
	9.1	Pulverdiffraktometrie nach der Guinier-Methode	99
	9.1.1	Präparation der Guinier-Träger	101
	9.1.2	Auswertung der Guinier-Aufnahmen	101
	9.2	Einkristallstrukturanalyse	
	9.3	Strukturbestimmung mittels Realraummethoden	
	9.4	MAS-NMR-Spektroskopie	
	9.5	Magnetische Messungen	
	9.6	Differenz-Thermo-Analysen und thermogravimetrische Untersuchungen	
1	0.	Ausgangsverbindungen	
1	1.	Anhang	
1	2	Abbildungsverzeichnis	
1	3	Tabellenverzeichnis	
1	4	Literaturverzeichnis	

1 Einleitung

1.1 Wissenschaftlicher Hintergrund

Edelmetall(I)-Verbindungen wurden in der Vergangenheit mit Interesse in der Forschung (z. B. JANSEN^[1]) diskutiert. Anders als bei Alkalimetall(I)-Verbindungen, bei denen die Kationen aufgrund der elektrostatischen Abstoßung einen möglichst großen Abstand zueinander einnehmen, wird für viele Edelmetall(I)-Verbindungen eine "Separierung der kationischen und anionischen Strukturanteile"^[1] beobachtet, die in einer lokalen clusterähnlichen Agglomeration der Kationen resultiert. M⁺-M⁺-Abstände, die in etwa denen im Metall entsprechen oder sogar deutlich kleiner sind, werden auf d¹⁰-d¹⁰-Wechselwirkungen zurückgeführt. Im Fall von Ionenverbindungen scheint ein Kationen- zu Anionenverhältnis, bei dem die Kationen überpräsent (vgl. z. B. Ag₂CO₃^[2]) sind, für das ungewöhnliche kristallchemische Verhalten verantwortlich zu sein^[1]. Im Fall von Koordinationsverbindungen (vgl. z. B. Cu(CN)[NH₃]^[3]) wird die räumliche Nähe der Kationen durch verbrückende Liganden aufgezwungen^[1]. Das ungewöhnliche kristallchemische Verhalten resultiert in einer Vielzahl an interessanten physikalischen Eigenschaften. Verbindungen "mit clusterähnlichen d¹⁰-Kationenteilstrukturen"^[1] sind beispielsweise elektrische Halbleiter. Für Silber(I)-Verbindungen tritt weiterhin Farbigkeit auf. Mit "zunehmendem Silbergehalt und zunehmender Ausdehnung der clusterähnlichen "Ausseigerungen"^[1] [...] wird dabei "tendenziell eine Rotverschiebung"^[1] [...] beobachtet (z. B. $Ag_2SO_4^{[4][5]}$ (farblos), $Ag_3PO_4^{[6]}$ (gelb), $Ag_{10}Si_4O_{13}^{[7]}$, (rot)). Die auftretenden elektronischen Effekte werden als "Charge-Transfer-Übergänge aus den HOMOs komplexer Anionen in die durch d¹⁰-d¹⁰-Wechselwirkungen abgesenkten Acceptorniveaus"^[1] interpretiert.

Wird in der ICSD-Datenbank^[8] gegenwärtig nach Kupfer(I)-Verbindungen gesucht, werden mehr als tausend verschiedene Einträge vorgefunden. Der Umstand, dass Cu⁺-Ionen als d¹⁰-Systeme im Ionenverband existenzfähig sind, ist nicht ungewöhnlich und entspricht den Erwartungen. In Unterschied dazu werden diese "in wässriger Lösung infolge der im Vergleich zum Cu⁺-Ion weit höheren Hydratisierungsenergie des Cu²⁺-Ions (Cu⁺: 582, Cu²⁺: 2100 kJ/mol) zu Cu und Cu²⁺ disproportioniert ($K = \frac{c_{Cu^{2+}}}{c^2_{Cu^+}} = 10^6 \frac{l}{mol}$), wie dies auch durch die Potentiale der Vorgänge Cu/Cu⁺ und Cu/Cu²⁺ in wässriger Lösung zum Ausdruck gebracht wird"^[9]:

Trotz der Vielzahl an bekannten Cu⁺-Verbindungen sind reine Kupfer(I)-phosphate, mit Ausnahme von thermodynamisch metastabilem Kupfer(I)-orthophosphat (Cu^I₃PO₄; SNYDER et al.^[10]), weitgehend unbekannt. Jenes wird unter geschlossenen Bedingungen durch Abschrecken einer Schmelze eines stöchiometrischen Gemenges aus Kupfer und Kupfer(II)orthophosphat erhalten. Dabei disproportioniert es teilweise zum gemischtvalenten Kupfer(I,II)-orthophosphat und Kupfer. SNYDER et al. zeigten weiterhin, dass sich unter thermodynamischen Bedingungen durch Zugabe von Lithiumorthophosphat das Kupfer(I)orthophosphat in Form von Li_{3-x}Cu^I_xPO₄ stabilisieren und die Disproportionsreaktion unterdrücken lässt. Das Kupfer(I)-orthophosphat muss dabei mindestens mit etwa 7 % Lithium dotiert werden ($x_{grenz} = Li_{0,2}Cu^{I}_{2,8}PO_4$). Neben der zu Kupfer(I)-orthophosphat isotypen Phase Li_{3-x}Cu^I_xPO₄ (2,1 ≤ *x* ≤ 2,8; Phase III), konnte durch weitere Versuche für den quasibinären Schnitt Li₃PO₄ – Cu^I₃PO₄ die Existenz zweier zusätzlicher, lithiumreicher Phasen Li_{3-x}Cu^I_xPO₄ (Phase I; 0,0 ≤ *x* ≤ 0,75 bzw. Phase II; 0,9 ≤ *x* ≤ 1,8) nachgewiesen werden (vgl. Abb. 1.1)^[10].

Abb. 1.1 Der quasibinäre Schnitt Li₃PO₄ - Cu^I₃PO₄. Darstellung der Homogenitätsbereiche für die einzelnen Mischkristallreihen Li_{3-x}Cu^I_xPO₄^[10] (1: HT-Li₃PO₄ Strukturtyp; 2: TT-Li₃PO₄ Strukturtyp; 3: Cu^I₃PO₄-Typ).

Die Kristallstrukturen der einzelnen Phasen $Li_{3-x}Cu_x^IPO_4$ leiten sich weiterhin von denen der reinen Lithiumorthophosphate ab und lassen sich der Zinkit-Strukturfamilie zuordnen. Der Zinkit-Strukturtyp zeichnet sich durch ein dreidimensionales Netzwerk aus eckenverknüpften [MO₄]-Tetraedern aus. Im Unterschied zur Stammverbindung ZnO, bei der die Metalllagen durch Zink besetzt werden^{[11][12]}, werden diese in den bekannten Lithiumorthophosphaten in geordneter Weise durch Lithium und Phosphor belegt. Da pro Metalllage zwei Tetraederlücken zur Verfügung stehen, ist die Zinkit-Kristallstruktur mit einer gewissen Variabilität behaftet, weshalb für die oben genannten Zinkite kristallchemische Unterschiede beobachtet werden.

Abb. 1.2 Darstellung der Kristallstrukturen von $Li_{3-x}Cu_x^IPO_4^{[10]}$. (Phase I (a); Phase II (b); Phase III (c)). Projektionsrichtung entlang der *c*-Achse (Orthophosphat-Gruppen (gelb); lithiumreichere MO₄-Tetraeder (grau); kupferreichere MO₄-Tetraeder (rot).

Die Bildung der Mischkristallreihe(n) $\text{Li}_{3-x}\text{Cu}_{x}^{I}\text{PO}_{4}$ samt ausgedehntem Homogenitätsbereich (s.o.) erklärt sich wiederum durch die Möglichkeit des sukzessiven Austauschs von Li⁺- durch Cu⁺-Ionen auf den Lithiumlagen, aufgrund ähnlicher Ionenradien (*IR*(Li⁺) = 0,59 Å, *IR*(Cu⁺) = 0,60 Å^[13]). Neben der Besetzungsfehlordnung Li⁺/Cu⁺, tritt für die einzelnen Phasen

 $Li_{3-x}Cu_x^IPO_4$ eine Lagefehlordnung auf, in Folge jener die Cu⁺-Ionen nicht mehr idealtypisch tetraedrisch umgeben sind, sondern aus den Tetraederschwerpunkten herausrücken. Strukturelle Unterschiede zwischen den drei Phasen $Li_{3-x}Cu_x^IPO_4$ resultieren auch hier aus der Überpräsenz an Tetraederlücken und der damit verbundenen Besetzungsvariabilität für die Metallzentren (vgl. **Abb. 1.2**).

Lithium-kupfer(I)-orthophosphate sind insofern interessant, da Hautier et al. ein Redoxpotential $E^{0}(Cu^{+}/Cu^{2+}) = +3,2 \text{ V}$ (vs. Li⁰/Li⁺) in nicht wässrigen Lösungen und ein daran gekoppeltes zweites Redoxpotential $E^{0}(Cu^{2+}/Cu^{3+}) = +4,9 \text{ V}$ (vs. Li⁰/Li⁺) prognostizierten^[14] wonach diese als "drop-in" Kathodenmaterial geeignet wären. Gegenüber gegenwärtig genutzten Kathodenmaterialen, wie z. B. Lithium-eisen(II)-orthophosphat könnten theoretisch Akkumulatoren mit einer doppelt so großen Energiedichte entwickelt werden.

Neben den Lithium-kupfer(I)-orthophosphaten sind weitere Metall-kupfer(I)-phosphate literaturbekannt. Beispiele hierfür sind die zur NASICON-Strukturfamilie gehörenden Phosphate $CuTi_2(PO_4)_3^{[15]}$, $CuZr_2(PO_4)_3^{[16]}$, $CuHf_2(PO_4)_3^{[17]}$, $CuSn_2(PO_4)_3^{[18]}$, $CuTiZr(PO_4)_3^{[19,20]}$, $Cu_2CrZr(PO_4)_3^{[21]}$, und $Cu_2ScZr(PO_4)_3^{[19]}$.

1.2 Ziele

Im Verlauf der vorliegenden Arbeit sollte das Vierelementsystem Li/Cu/P/O auf die Existenz weiterer Lithium-kupfer(I)-phosphate untersucht werden. Neben den Lithium-kupfer(I)phosphaten sollten weitere Lithium-metall(I)-phosphate ($M = Na^+$, Ag^+) synthetisiert, charakterisiert und in Bezug auf deren kristallchemisches Verhalten, miteinander verglichen werden. Insbesondere die Grenzen der gegenseitigen Substituierbarkeit Li⁺/M⁺ sollten bestimmt werden. Auch sollte gezeigt werden, ob die im Vergleich zu Cu⁺ größeren Na⁺- und Ag⁺-Ionen mit den Li⁺-Ionen um dieselben Metallpositionen konkurrieren oder diese womöglich auf eigenen Metallpositionen ausordnen würden?

Ähnlich der Synthese von $Cu_{3}^{I}PO_{4}^{[10]}$ sollten die relevanten Systeme auf die Anwesenheit weiterer metastabiler Phasen überprüft werden. Dabei sollten auch andere Synthesemethoden wie z. B. thermische Zersetzungsreaktionen (siehe: u. a. $CrP_{3}O_{9}^{[22,23]}$, $RuP_{3}O_{9}^{[24]}$, $IrP_{3}O_{9}^{[25]}$) angewandt und mögliche Phasen ggf. charakterisiert werden.

Der diamagnetische Charakter der Lithium-metall(I)-phosphate macht diese für Festkörper-NMR-Experimente zugänglich. Aus diesem Grund sollten umfassende NMR-Studien zur Charakterisierung der Lithium-metall(I)-phosphate durchgeführt werden.

2.1 Einleitung

Für Lithiumpyrophosphat sind seit längerem drei verschiedene, thermodynamisch stabile Modifikationen bekannt, eine Tieftemperaturform die von DAIDOUH et al.^[26] charakterisiert wurde, eine Hochtemperaturform, die nach TIEN et al. bei $\vartheta = 630$ °C aus der Tieftemperaturform hervorgeht^[27], sich nicht abschrecken lässt^[28] und für die von VORONIN et al.^[28] ein Strukturmodel aus Pulverdaten abgeleitet wurde, sowie eine weitere Form (Einkristallzüchtung mittels Hydrothermalsynthese bei 1000 atm), die von YAKUBOVICH et al. strukturell aufgeklärt wurde^[29]. Weiterhin charakterisierten SCHÜLKE et al. anhand der *d*-Werte der sieben intensivsten Reflexe^[30] eine Form von Lithiumpyrophosphat, die "nur beim Erhitzen von Li₃HP₂O₇ neben Li₄P₄O₁₂ Li₆P₆O₁₈, oder (LiPO₃)_n · H₂O erhalten"^[30] wird. Schließlich deutet eine private Mitteilung von DOW CHEMICAL die Existenz eines weiteren Lithiumpyrophosphats an. Ein für diese unbekannte Phase repräsentatives Pulverdiffraktogramm wurde in der ICDD unter der Nummer 00-003-0222^[31] abgelegt. Wie im Folgenden gezeigt wird, handelt es sich bei den beiden letztgenannten Phasen von Li₄P₂O₇ um thermodynamisch metastabile Polymorphe, die im Rahmen dieser Arbeit reproduzierbar synthetisiert und charakterisiert wurden. Diese werden im Folgenden als Li₄P₂O₇-pseudomono* und Li₄P₂O₇-trig* bezeichnet. Eine Zusammenfassung aller kristallographisch beschriebenen Lithiumpyrophosphate gibt Tab. 2.1.

Polymorph	Raumgruppe, Z,	P-Lagen	Kommentar	Lit.
	Gitterparameter (Å, °)			
Li ₄ P ₂ O ₇ -	P1, 4	4	metastabil, Umwandlung	[30]
pseudomono* ^{a)}	$a = 7,88468(5), \alpha = 89,8142(6)$		nach Li ₄ P ₂ O ₇ -trik beginnt	
	$b = 10,30394(6), \ \beta = 115,2950(3)$		bei	
	$c = 7,54581(4), \gamma = 90,2015(5)$		$\mathcal{G} \approx 410 \ ^{\circ}\mathrm{C}$	
Li ₄ P ₂ O ₇ -trik	<i>P</i> 1, 2	2	thermodynamisch stabil bis	[26,27,32]
	$a = 8,5613(3), \alpha = 111,441(2)$		$\mathcal{G} \leq 630 \ ^{\circ}\mathrm{C}$	
	$b = 7,1100(3), \beta = 89,986(3)$			
	$c = 5,181(1), \gamma = 103,065(4)$			
Li ₄ P ₂ O ₇ -mono-HT	$P2_1/n, 4$	2	Hochtemperaturphase,	[27,28]
	a = 8,8264(2),		stabil zwischen	
	$b = 5,2024(9), \beta = 104,384(2)$		$630 < \vartheta \le 882(5) \ ^{\circ}C$	
	c = 13,3106(3),			5003
Li ₄ P ₂ O ₇ -mono-HP	$P2_1/n, 4$	4	Hochdruckphase,	[29]
	a = 5,190(2)		bei 1000 atm erhalten	
	$b = 13,902(3), \beta = 89,97(3)$			
	c = 7,901(3)			[21]
Li ₄ P ₂ O ₇ -trig ^{* a)}	$P3_{2}12, 3$	1	metastabil, Umwandlung	[51]
	a = 5,1699(2)		nach Li ₄ P ₂ O ₇ -trik beginnt	
	c = 18,9722(8)		bei	
			$\vartheta \approx 460 \ ^{\circ}\mathrm{C}$	

Tab. 2.1 Zusammenfassung der kristallographisch charakterisierten Polymorphe von Li₄P₂O₇.

a) (*) \triangleq thermodynamisch metastabile Phase

2.2 Synthese

Zur Synthese der thermodynamisch metastabilen Polymorphe Li₄P₂O₇-pseudomono* und Li₄P₂O₇-trig* von Lithiumpyrophosphat wurden unterschiedliche Methoden angewandt. Zum einen wurden verschiedene Proben der Tieftemperaturform von Lithiumpyrophosphat (Li₄P₂O₇-trik) bei Temperaturen von ϑ = 1000 °C für fünf Minuten in einem Platintiegel aufgeschmolzen und im Anschluss, in einem Zeitraum von wenigen Sekunden, auf der Laborbank an Luft abgeschreckt. Das dabei erhaltene mikrokristalline Li₄P₂O₇ bestand nach Ausweis der Röntgenpulverdiffraktogramme aus den thermodynamisch metastabilen Phasen Li₄P₂O₇-trig* und Li₄P₂O₇-pseudomono* in wechselnden Verhältnissen.

Li₄P₂O₇-pseudomono* konnte auch mittels vorsichtiger thermischer Kondensation synthetisiert werden. Dazu wurden in verschiedenen Experimenten (Exp. 2 und 3; vgl. **Tab. 2.2**) Diammoniumhydrogenphosphat (NH₄)₂HPO₄ und Lithiumcarbonat Li₂CO₃ in stöchiometrischen Mengen in verdünnter Salpetersäure gelöst und anschließend die Lösungen bei moderaten Temperaturen von $\vartheta \approx 150$ °C unter Rühren eingedampft. Die weißen, mikrokristallinen Rückstände wurden in offene Kieselglasampullen überführt und in Kammeröfen von Raumtemperatur auf $\vartheta = 200$ °C erwärmt. Das Aufheizen erfolgte einmal mit 15 °C · h⁻¹ (Exp. 2; **Tab. 2.2**) und in einem weiteren Experiment mit 2 °C · h⁻¹ (Exp. 3; **Tab. 2.2**). In einem zweiten Schritt wurde das Intermediat von Experiment 3 (vgl. **Tab. 2.2**) bei $\vartheta =$ 400 °C zur Entfernung sämtlicher flüchtiger Bestandteile nachgetempert.

In einer alternativen Syntheseroute wurde eine Phosphorsäurelösung mit einer entsprechenden Lithiumhydroxidlösung bis zum zweiten Äquivalenzpunkt neutralisiert, die Lösung eingedampft und der Rückstand nachgetempert (Exp. 4; vgl. **Tab. 2.2**).

Nr.	Edukte	Einwaage	Einwaage	Temp.	Dauer	Ergebnisse nach
		(mg)	(mmol)	(°C)	(h)	IP-Guinieraufnahme
1a	Li ₄ P ₂ O ₇ -trik	500	2,479	1000	5 min	$Li_4P_2O_7$ -pseudomono* $Li_4P_2O_7$ -trig* (85 %) ^{a)}
1b	Li ₄ P ₂ O ₇ -trik	500	2,479	1000	5 min	$\begin{array}{l} Li_4P_2O_7\text{-}pseudomono^*\\ Li_4P_2O_7\text{-}trig^*~(35~\%)^{a)} \end{array}$
2a	Li ₂ CO ₃ (NH4) ₂ HPO ₄	358,81 641,24	4,856 4,856	150	5	nicht untersucht
2b	Rückstand aus 2a			$\begin{array}{c} \text{RT} \rightarrow \\ 200 \end{array}$	12	Li ₄ P ₂ O ₇ - pseudomono* Li ₄ P ₂ O ₇ -trik (NH ₄)NO ₃
3a	Li ₂ (CO ₃) (NH ₄) ₂ HPO ₄	358,78 641,13	4,856 4,855	150	5	nicht untersucht
3b	Rückstand aus 3a			$RT \rightarrow 200$	100	Li ₄ P ₂ O ₇ - pseudomono* (NH ₄)NO ₃
3c	Rückstand aus 3b			400	24	Li ₄ P ₂ O ₇ - pseudomono*
4a	LiOH H ₃ PO ₄			150	5	TT-Li ₃ PO ₄ LiH ₂ PO ₄
4b	Gemenge aus 4a			$RT \rightarrow 200$	100	nicht untersucht
				400	24	Li ₄ P ₂ O ₇ - pseudomono*

Tab. 2.2 Zusammenfassung der Experimente zur Synthese von Li₄P₂O₇-pseudomono* und Li₄P₂O₇-trig*.

a) Anhand der relativen Intensitäten in den Pulverdiffraktogrammen abgeschätzt.

2.3 Auswertung der Guinieraufnahmen

Die Analyse der Beugungsbilder für die Abschreckversuche (vgl. **Tab. 2.2**; Experimente 1a und 1b) zeigt, dass der aus der Schmelze abgeschreckte mikrokristalline Rückstand immer aus einem Zweiphasengemenge der beiden thermodynamisch metastabilen Lithiumpyrophosphate besteht. Der Vergleich zwischen den beiden Experimenten 1a und 1b offenbart zudem, dass das Verhältnis der beiden metastabilen Phasen äußerst variabel ist. So lässt sich aus den Beugungsdaten abschätzen, dass der Anteil von Li₄P₂O₇-pseudomono* am zweiphasigen Gemenge unter vergleichbaren Bedingungen einmal ca. 15 % und einmal ca. 65 % beträgt (vgl. **Abb. 2.1**). Weitere Versuche, durch Variation der Temperatur bzw. der Temperdauer eines der beiden Polymorphe reproduzierbar bevorzugt bzw. phasenrein zu erhalten, schlugen allesamt fehl. Die Keimbildungsenthalpien der einzelnen Polymorphe scheinen zu ähnlich zu sein, als dass bei der beschriebenen Reaktionsführung eine der beiden Verbindungen gezielt synthetisiert werden könnte.

Abb. 2.1 Beispiele für aus Abschreckexperimenten erhaltene Zweiphasengemenge aus $Li_4P_2O_7$ -pseudomono* und $Li_4P_2O_7$ -trig*. Rotes Strichdiagramm: $Li_4P_2O_7$ -trig* (nach Einkristallstrukturanalyse; vgl. **Abschn. 2.5**). Schwarzes Strichdiagramm; $Li_4P_2O_7$ -pseudomono* (nach Strukturmodell aus Pulverdaten; **Abschn. 2.4**). Anteil an $Li_4P_2O_7$ -pseudomono* zu 15 % (1a) bzw. 65 % (1b) anhand der relativen Intensitäten abgeschätzt.

Interessanterweise zeigt die Analyse der Beugungsaufnahmen für die thermischen Zersetzungsreaktionen (vgl. Abschn. 2.2), unter Verwendung von $(NH_4)_2HPO_4$ und Li₂CO₃ als Ausgangsmaterial, dass die phasenreine Synthese von Li₄P₂O₇-pseudomono* auf diesem Weg möglich ist. Entscheidend hierbei ist das Nachtempern des mikrokristallinen Rückstands, der nach dem Eindampfen der Lösung erhalten wird. Der Aufheizprozess darf dabei nicht zu rasch erfolgen, da sonst das thermodynamisch stabile Li₄P₂O₇-trik als Nebenprodukt gebildet wird (vgl. Abb. 2.2b). Nach ausreichend langem Aufheizvorgang erfolgt ein weiterer Temperschritt bei $\vartheta = 400$ °C, mit dem die Entfernung flüchtiger Bestandteile, wie z. B. NH₄NO₃ (vgl. Abb. 2.2b) gewährleistet wird.

Abb. 2.2 Experimentell erhaltene Beugungsdiagramme für thermische Zersetzungsreaktionen (Ausgangsmaterial: $(NH_4)_2HPO_4$ und Li₂CO₃). a) 2 °C · h⁻¹; b) 15 °C · h⁻¹ für RT nach ϑ = 200 °C. Schwarzes Strichdiagramm; Li₄P₂O₇-pseudomono*; grünes Strichdiagramm: NH₄NO₃^[33]; rotes Strichdiagramm Li₄P₂O₇-trik^[26]. Gestrichelte Linien heben Ähnlichkeiten zwischen den beiden Pulverdiffraktogrammen hervor; rot gestrichelte Linie verdeutlicht die Abwesenheit von Li₄P₂O₇-trik nach milderem (a) Aufheizprotokoll. Roter Pfeil: unbekannt.

Weiterhin lassen sich anhand der Beugungsdaten für die Neutralisationsreaktion einer Phosphorsäurelösung mit zwei Äquivalenten LiOH, mit anschließendem thermischem Zerfall, Aussagen über die intermediär auftretenden kristallinen Phasen treffen. Die Entstehung von Li₄P₂O₇-pseudomono* verläuft nicht, wie zunächst vermutet, über "Li₂HPO₄" ab, welches über thermische Kondensation topotaktisch zu Li₄P₂O₇-pseudomono* reagiert. Vielmehr fällt vor Erreichen des zweiten Äquivalenzpunktes TT-Li₃PO₄ aus (vgl. Abb. 2.3a), was nach Eindampfen zur Bildung eines Zweiphasengemenges bestehend aus TT-Li₃PO₄ und LiH₂PO₄ mit der formalen Zusammensetzung "Li₂HPO₄" führt (vgl. Abb. 2.3b). Tatsächlich ist "Li₂HPO₄" in der Literatur unbekannt. Das thermodynamisch metastabile Polymorph Li₄P₂O₇-pseudomono* entsteht demnach, im hohen Maße reproduzierbar, aus der Entwässerung des oben genannten zweiphasigen Gemenges (vgl. Abb. 2.3c; siehe Gleichung 2.1).

$$Li_{3}PO_{4}(s) + LiH_{2}PO_{4}(s) \xrightarrow{1. RT \to 200 \ ^{\circ}C (2 \ ^{\circ}C \cdot h^{-1})}{2. \ 400 \ ^{\circ}C; an \ Luft} \to Li_{4}P_{2}O_{7}(s) + H_{2}O(g)$$
(Gl. 2.1)

Abb. 2.3 Die Synthese von Li₄P₂O₇-pseudomono* ausgehend von LiOH und H₃PO₄. Pulverdiffraktogramme für TT-Li₃PO₄^[34] ((a); bei Neutralisation ausgefallen), für das zweiphasige Gemenge aus TT-Li₃PO₄ und LiH₂PO₄^[35] ((b); Rückstand nach dem Eindampfen) und für Li₄P₂O₇-pseudomono* ((c); nach Aufheizen auf $\vartheta = 400$ °C.

2.4 Kristallstrukturanalyse von Li4P2O7-pseudomono* aus Pulverdaten

Trotz zahlreicher Versuche konnten aus den durch Abschreckversuche erhaltenen, mikrokristallen Zweiphasengemengen der beiden thermodynamisch metastabilen Polymorphe von Li₄P₂O₇ (vgl. **Abschn. 2.2**), keine Einkristalle ausreichender Qualität für eine Strukturanalyse von Li₄P₂O₇-pseudomono* isoliert werden. Allerdings gelang die Indizierung des Pulverdiffraktogramms (vgl. **Abb. 2.2a**) mit Hilfe des Programms TREOR^[36]. Die auf diese Weise ermittelte monokline Elementarzelle wurde im Anschluss mit dem Programm SOS^[37], unter Verwendung von α-Quarz als internen Standard, verfeinert (vgl. **Abschn. 9.1.2**) (*a* = 7,885(2) Å, *b* = 10,306(2) Å, *c* = 7,547(2) Å, *β* = 115,26(2)°, 28 Reflexe, 24,85 < 4θ < 129,03) (siehe **Anhang Tab. 11.1**). Die Ableitung eines Strukturmodells für Li₄P₂O₇-pseudomono* erfolgte mittels Realraummethoden unter Verwendung des Programms ENDEAVOUR^[38,39] (vgl. **Abschn. 9.3**).

Zur Strukturlösung wurde die monokline Metrik der Elementarzelle und die trikline Raumgruppe $P\overline{1}$ angenommen. Weiterhin wurden jeweils vier $[P^{VII}O_3]^+$ - und $[P^{VII}O_4]^-$ -Molekülfragmente definiert und in die Elementarzelle eingeführt. Diese Vorgehensweise sollte die Ausbildung von Pyrophosphatgruppen begünstigen und zugleich ausreichend große Freiheiten bezüglich der Konformation der Pyrophosphatgruppen und dem Bindungswinkel \angle (P,O,P) von den verbrückenden Sauerstoff- zu den benachbarten Phosphoratomen erlauben.

Im ersten Schritt der Strukturlösung wurde eine Kostenfunktion verwendet, bei der die Übereinstimmung zwischen beobachtetem und berechnetem Pulverdiffraktogramm zu 80 % und ein Energiebeitrag zu 20 % gewichtet wurden. Die Li⁺-Ionen wurden zunächst nicht berücksichtigt. Die so abgeleitete Anordnung der Pyrophosphatgruppen erlaubte bereits eine gute Beschreibung des Röntgenpulverdiffraktogramms. Im zweiten Modellierungsschritt wurden die Pyrophosphatgruppen fixiert und die Li⁺-Ionen in die Elementarzelle eingeführt. Die Optimierung von deren Positionen erfolgte mittels einer Kostenfunktion, die für die Anordnung der Atome im Raum ausschließlich Coulomb-Potenziale zuließ. Diese Prozedur führte zu einer Besetzung von Tetraederlücken durch Li⁺-Ionen zwischen den Pyrophosphatgruppen und somit zu einem kristallchemisch sinnvollen Strukturmodell für Li₄P₂O₇-pseudomono*. Dieses Strukturmodell wurde im letzten Schritt der Strukturanalyse nach der RIETVELD-Methode^[40] (vgl. Abb. 2.4) unter Verwendung des Programms FULLPROF^[41] verfeinert. Die isotropen Auslenkungsparameter aller Sauerstoff- ($U_{eq} = 0.0144 \text{ Å}^2$), Phosphor- $(U_{eq} = 0.022 \text{ Å}^2)$ und Lithiumatome (auf $U_{eq} = 0.005 \text{ Å}^2$) wurden zur Stabilisierung der Verfeinerung auf die entsprechenden Werte festgelegt. Die Ergebnisse der Verfeinerung sind in Tab. 2.3, Tab. 2.4 und Tab. 2.5 zusammengefasst.

	Li ₄ P ₂ O ₇ -pseudomono*			
Kristallsystem	triklin			
Raumgruppe (Nr.)	<i>P</i> 1̄ (Nr. 2)	monokline Indizierung mit Sos:		
<i>a</i> (Å)	7,88466(5)	7,885(2)		
<i>b</i> (Å)	10,30395(6)	10,306(2)		
<i>c</i> (Å)	7,54581(4)	7,547(2)		
α (°)	89,8142(6)	90		
β (°)	115,2950(3)	115,26(2)		
γ (°)	90,2015(5)	90		
Zellvolumen $V(Å^3)$	554,262(6)			
Zahl der Formeleinheiten Z	4			
Molmasse $(g \cdot mol^{-1})$	201,71			
Dichte _{roentg.} $(g \cdot cm^{-3})$	2,417			
Kristallfarbe	farblos			
Messbereich in 2θ (°)	$2 \le 2\theta \le 100$			
Schrittweite in 2θ (°)	0,015			
Anzahl an Messpunkten	6533			
Röntgenstrahlung	$\lambda = 1,788965 \text{ Å} (\text{Co-K}\alpha_1)$			
Temperatur (K)	296(2)			
Software	FULLPROF ^[41] , ENDEAVOUR	[38,39]		
gemessene Reflexe	801			
Parameter	87			
Einschränkungen	52			
<i>R</i> -Werte	$R_p^{a} = 15,24; R_{wp}^{b} = 14,96; R_{exp}^{c} = 6,45; R_l^{d} = 7,62$			
$\chi^{2 e}$	5,49			

Tab. 2.3Li₄P₂O₇-pseudomono*. Kristallographische Daten, Angaben zur Datensammlung und
Strukturverfeinerung mittels RIETVELD-Methode^[40].

a) $R_p = \sum_i |y_{i,obs.} - y_{i,calc.}| / \sum_i |y_{i,obs.}|$; b) $R_{wp} = \left[\sum_i w_i |y_{i,obs.} - y_{i,calc.}|^2 / \sum_i w_i |y_{i,obs.}|^2\right]^{0,5}$; c) $R_{exp} = \left[(N - P + C) / \sum_i w_i (y_{i,obs.}^2) \right]^{0,5}$; d) $R_I = \sum_j |I_{j,obs.} - I_{j,calc.}| / \sum_j |I_{j,obs.}|$; e) $\chi^2 = (R_{wp}/R_{exp})^2$

Atom	Lage	x	у	Z.	s. o. f.	U _{iso} (Å ²)
Li1	2 <i>i</i>	0,6049(1)	0,17117(8)	0,4857(1)	1	0,0050(2)
Li2	2i	0,4176(1)	0,33298(8)	0,5514(1)	1	0,0050(2)
Li3	2 <i>i</i>	0,5656(1)	0,39532(9)	0,2337(1)	1	0,0050(2)
Li4	2 <i>i</i>	0,7782(1)	0,09344(9)	0,1613(1)	1	0,0050(2)
Li5	2 <i>i</i>	0,0477(1)	0,15418(9)	0,6193(1)	1	0,0050(2)
Li6	2 <i>i</i>	0,7548(1)	0,59143(8)	0,1677(1)	1	0,0050(2)
Li7	2 <i>i</i>	0,4475(1)	0,08795(8)	0,7380(1)	1	0,0050(2)
Li8	2 <i>i</i>	-0,0217(1)	0,65941(8)	0,6210(1)	1	0,0050(2)
P1	2 <i>i</i>	0,3239(1)	0,65134(8)	0,0621(1)	1	0,0217(6)
P2	2 <i>i</i>	0,1821(1)	0,58808(8)	0,3563(1)	1	0,0217(6)
P3	2 <i>i</i>	0,3231(1)	0,15787(8)	0,0661(1)	1	0,0217(6)
P4	2 <i>i</i>	0,1769(1)	0,09720(8)	0,3545(1)	1	0,0217(6)
O1	2 <i>i</i>	0,1525(2)	0,6269(2)	0,1301(2)	1	0,0144(7)
O2	2 <i>i</i>	0,3293(2)	0,80114(9)	0,0919(2)	1	0,0144(7)
O3	2 <i>i</i>	0,7605(1)	0,40793(9)	0,1575(1)	1	0,0144(7)
O4	2 <i>i</i>	0,5083(1)	0,58430(9)	0,2161(1)	1	0,0144(7)
O5	2 <i>i</i>	0,6330(1)	0,33401(9)	0,5007(1)	1	0,0144(7)
O6	2 <i>i</i>	-0,0002(1)	0,34243(9)	0,6409(1)	1	0,0144(7)
O 7	2 <i>i</i>	0,2010(1)	0,4414(2)	0,4033(8)	1	0,0144(7)
08	2 <i>i</i>	0,1673(2)	0,1136(2)	0,1380(2)	1	0,0144(7)
O9	2 <i>i</i>	0,5174(1)	0,09298(9)	0,2117(1)	1	0,0144(7)
O10	2 <i>i</i>	0,2556(1)	0,09712(9)	0,8645(1)	1	0,0144(7)
O11	2 <i>i</i>	0,3501(4)	0,3083(1)	0,0560(3)	1	0,0144(7)
O12	2 <i>i</i>	0,3622(1)	0,16060(9)	0,5057(1)	1	0,0144(7)
O13	2 <i>i</i>	1,00045(12)	0,15067(9)	0,3563(1)	1	0,0144(7)
O14	2 <i>i</i>	0,17482(13)	0,9421(1)	0,3718(3)	1	0,0144(7)

Tab. 2.4 Li₄P₂O₇-pseudomono*. Angaben zu Wyckoff-Lagen, Atompositionen und isotropen Auslenkungsparametern (Raumgruppe $P\overline{1}$).

[LiO4]		[LiO4]		[P2O7]	
Li1-O5	1,690(1)	Li5-O13	1,857(1)	P1-O2	1,558(1)
Li1-O12	1,985(2)	Li5-O10	1,966(1)	P1-O4	1,581(1)
Li1-O14	1,986(1)	Li5-O6	1,998(1)	P1-O3	1,620(1)
Li1-09	2,047(1)	Li5-O14	2,038(2)	P1-O1	1,656(1)
Li2-04	1,810(1)	Li6-011	1,845(2)	P2-O7	1,545(2)
Li2-O12	1,826(1)	Li6-O3	1,894(1)	P2-O5	1,609(1)
Li2-O5	1,893(2)	Li6-06	1,975(1)	P2-O6	1,614(1)
Li2-07	1,946(2)	Li6-04	2,127(2)	P2-O1	1,668(2)
Li3-O3	1,861(2)	Li7-O12	1,753(1)	P3-O10	1,518(1)
Li3-011	1,882(2)	Li7-09	1,899(1)	P3-O11	1,570(2)
Li3-O5	1,954(1)	Li7-O2	2,029(1)	P3-O9	1,602(1)
Li3-O4	1,992(1)	Li7-O10	2,108(2)	P3-O8	1,605(2)
Li4-013	1,838(1)	Li8-07	1,697(2)	P4-O13	1,504(1)
Li4-O10	1,980(1)	Li8-O13	1,965(1)	P4-O12	1,561(1)
Li4-O2	2,039(1)	Li8-O6	2,056(2)	P4-O14	1,604(1)
Li4-09	2,245(2)	Li8-O3	2,139(1)	P4-O8	1,612(2)

Tab. 2.5 Ausgewählte interatomare Abstände (in Å) für die $[LiO_4]$ -Tetraeder und Pyrophosphatgruppen in $Li_4P_2O_7$ -pseudomono*.

Abb. 2.4 RIETVELD-Plot zu Li₄P₂O₇-pseudomono*. Experimentelles (gepunktet, rot) und berechnetes (durchgezogen; schwarz) Beugungsdiagramm; Bragg-Reflexe (schwarze Striche). Die untere Kurve zeigt die Differenz $I_{obs.} - I_{calc.}$ bei gleicher Skalierung zwischen den beiden Diagrammen.

2.5 Einkristallstrukturanalyse von Li4P2O7-trig*

Im Unterschied zu Li₄P₂O₇-pseudomono^{*} wurden aus den Abschreckexperimenten (vgl. **Abschn. 2.2**) Einkristalle von Li₄P₂O₇-trig^{*} erhalten. Ein plättchenförmiger, farbloser Einkristall wurde nach der in **Abschn. 9.2** beschriebenen Methode diffraktometrisch vermessen.

Li₄P₂O₇-trig* kristallisiert in der trigonalen Laue-Klasse $\overline{3}1m$. Es wurden weder integrale noch zonale Auslöschungen beobachtet. Nur serielle Auslöschungen für die Reflexgruppe *000l* mit der Auslöschungsbedingung $l \neq 3n$ traten auf. Daraus leitete sich das Extinktionssymbol $P 3_1$ —mit den möglichen Raumgruppen $P3_112$ (Nr. 151) und $P3_212$ (Nr. 153) ab.

Die Kristallstruktur von Li₄P₂O₇-trig* wurde im Folgenden in der Raumgruppe $P3_212$ (Nr. 153) gelöst und verfeinert. Der Datensatz von Li₄P₂O₇-trig* umfasste 6756 Reflexe, die auf 1290 unabhängige Reflexe mit einem Gütefaktor der Mittelung von 2,51% reduziert wurden.

Nach der Bestimmung der Startpunktlagen für Phosphor (vgl. Abschn. 9.2) wurden mittels Differenz-Fouriersynthesen die weiteren Atome lokalisiert. Unter Berücksichtigung anisotroper Auslenkungsfaktoren verlief die Kristallstrukturverfeinerung von Li₄P₂O₇-trig* ohne Probleme ($R_1 = 1,76\%$, $wR_2 = 5,07\%$ und Goof = 1,143).

Weiterhin konnten für Li₄P₂O₇-trig* 10 % der Li⁺- durch Cu⁺-Ionen ersetzt werden. Die isotype Zusammensetzung $(Li_{0,9}Cu^{I}_{0,1})_{4}P_{2}O_{7}$ -trig* Verbindung der konnte ebenfalls per Einkristalluntersuchung charakterisiert werden. Für (Li_{0.9}Cu^I_{0.1})₄P₂O₇-trig* wurden 10061 Reflexe beobachtet, woraus sich 1884 unabhängige Reflexe mit einem Gütefaktor der Mittelung von 5,23% ergaben. Anders als im Fall von Li₄P₂O₇-trig* war der Einkristall merohedrisch verzwillingt. Das Anwenden des Zwillingsgesetzes $0 \overline{1} 0 \overline{1} 0 0 0 0 1^{[42]}$ (\triangleq einer diagonalen Spiegelebene, die durch die c-Achse verläuft) war für die Verfeinerung entscheidend ($R_1 = 4.1$ %). Die beiden Zwillingsdomänen lagen dabei in einem Verhältnis von 3:1 vor. Als Besonderheit ergab sich für Metalllage M1 eine Mischbesetzung aus Cu⁺- und Li⁺-Ionen. Für diese Lage wurden die Besetzungsfaktoren gekoppelt verfeinert. Dieses Vorgehen führte zu einem Besetzungsverhältnis von Li_{0.8}:Cu_{0.2}. Zudem wurde der Versuch unternommen, mit Hilfe der EXYZ-Routine in SHELXL, die Cu⁺- und die Li⁺-Ionen auf derselben Position zu fixieren. Dieser Versuch war jedoch nicht erfolgreich ($R_1 = 45$ %). Angaben zur Strukturverfeinerung, Atompositionen, Atomabständen, isotropen und anisotropen Auslenkungsparametern sind in den Tab. 2.6 bis Tab. 2.11 zusammengestellt.

Kristallsystem trigonal trigonal Raumgruppe $P3_212$ (Nr. 153) $P3_212$ (Nr. 153) a (Å) 5,1699(2) 5,1978(3) c (Å) 18,9722(8) 19,125(1) Zellvolumen V (Å ³) 439,15(3) 447,49(5) Zahl der Formeleinheiten Z 3 3 Molmasse (g · mol ⁻¹) 201,71 224,72 Dichtenentg, (g · cm ⁻³) 2,288 2,502 F(000) 294 326 Kristallfarbe farblos blassgelb Kristallform plättchenförmig plättchenförmig Kristallgröße (mm ³) 0,15 · 0,06 · 0,04 0,26 · 0,08 · 0,06 Diffraktometer BRUKER APEX-II CCD BRUKER APEX-II CCD benutzte Röntgenstrahlung Mo-K α_1 , $a = 0,71069$ Å Mo-K α_1 , $\lambda = 0,71069$ Å Temperatur (K) 296(2) 293(2) Absorptionskoeffizient (mm ⁻¹) 3,22 < 20 < 34.91 1,06 < 20 < 40,26 Miskelbereich (°) 3,22 < 20 < 34.91 1,06 < 20 < 40,26 Missoptionskorefkur keine 24.5 34 Verwe		Li ₄ P ₂ O ₇ -trig*	(Li _{0,9} Cu ^I _{0,1}) ₄ P ₂ O ₇ -trig*
Raumgruppe $P3_212$ (Nr. 153) $P3_212$ (Nr. 153) a (Å) 5,1699(2) 5,1978(3) c (Å) 18,9722(8) 19,125(1) Zellvolumen V (Å ³) 439,15(3) 447,49(5) Zahl der Formeleinheiten Z 3 3 Molmasse (g · mol ⁻¹) 201,71 224,72 Dichte _{roeng} , (g · cm ⁻³) 2,288 2,502 F(000) 294 326 Kristallfarbe farblos blassgelb Kristallform plättchenförnig plättchenförnig Kristallgröße (mm ³) 0,15 · 0,06 · 0,04 0,26 · 0,08 · 0,06 Diffraktometer BRUKER APEX-II CCD BRUKER APEX-II CCD benutzte Röntgenstrahlung Mo-K α_1 , $\lambda = 0,71069$ Å Mo-K α_1 , $\lambda = 0,71069$ Å Temperatur (K) 296(2) 293(2) Absorptionskoeffizient (mm ⁻¹) 0,722 2,12 Zwillingsgesetz 0 ī 0 1 0 0 0 0 1 3,22 < 2 $\theta < 34,91$ 1,06 < 2 $\theta < 40,26$ Messbereich (°) $3,22 < 2\theta < 34,91$ 1,06 < 2 $\theta < 40,26$ Messbereich (°) $75 \le 45$ $-9 \le h \le 7$	Kristallsystem	trigonal	trigonal
a (Å) 5,1699(2) 5,1978(3) c (Å) 18,9722(8) 19,125(1) Zellvolumen V (Å ³) 439,15(3) 447,49(5) Zahl der Formeleinheiten Z 3 3 Molmasse (g · mol ⁻¹) 201,71 224,72 Dichte _{roeng} . (g · cm ⁻³) 2,288 2,502 F(000) 294 326 Kristallfarbe farblos blassgelb Kristallform plättchenförmig plättchenförmig Kristallgröße (mm ³) 0,15 · 0,06 · 0,04 0,26 · 0,08 · 0,06 Diffraktometer BRUKER APEX-II CCD Brutker APEX-II CCD benutzte Röntgenstrahlung Mo-K α_1 , $\lambda = 0,71069$ Å Mo-K α_1 , $\lambda = 0,71069$ Å Temperatur (K) 296(2) 293(2) Absorptionskoeffizient (mm ⁻¹) 0,722 2,12 Zwillingsgesetz 0 Ī 0 1 0 0 0 0 1 Winkelbereich (°) 3,22 < 20 < 34.91	Raumgruppe	P3 ₂ 12 (Nr. 153)	P3 ₂ 12 (Nr. 153)
c (Å) 18,9722(8) 19,125(1) Zellvolumen V (Å ³) 439,15(3) 447,49(5) Zahl der Formeleinheiten Z 3 3 Molmasse (g · mol ⁻¹) 201,71 224,72 Dichteroentg. (g · cm ⁻³) 2,288 2,502 F(000) 294 326 Kristallfarbe farblos blassgelb Kristallform plättchenförmig plättchenförmig Kristallform No-K $\alpha_1, \lambda = 0,71069$ Å Mo-K $\alpha_1, \lambda = 0,71069$ Å Temperatur (K) 3,22 < 20 < 34,91	<i>a</i> (Å)	5,1699(2)	5,1978(3)
Zellvolumen V (Å ³) 439,15(3) 447,49(5) Zahl der Formeleinheiten Z 3 3 Molmasse (g · mol ⁻¹) 201,71 224,72 Dichteroentg. (g · cm ⁻³) 2,288 2,502 F(000) 294 326 Kristallfarbe farblos blassgelb Kristallform plättchenförmig plättchenförmig Värstallgröße (mm ³) 0,15 · 0,06 · 0,04 0,26 · 0,08 · 0,06 Diffraktometer BRUKER APEX-II CCD BRUKER APEX-II CCD benutzte Röntgenstrahlung Mo-K α_1 , $\lambda = 0,71069$ Å Mo-K α_1 , $\lambda = 0,71069$ Å Temperatur (K) 0,722 2,12 Zwillingsgesetz 0,10 ī 0 0 0 0 1 Winkelbereich (°) 3,22 < 2 θ < 34,91	<i>c</i> (Å)	18,9722(8)	19,125(1)
Zahl der Formeleinheiten Z 3 3 Molmasse (g · mol ⁻¹) 201,71 224,72 Dichteroentg. (g · cm ⁻³) 2,288 2,502 F(000) 294 326 Kristallfarbe farblos blassgelb Kristallform plättchenförmig plättchenförmig Kristallform 0,15 · 0,06 · 0,04 0,26 · 0,08 · 0,06 Diffraktometer BRUKER APEX-II CCD BRUKER APEX-II CCD benutzte Röntgenstrahlung Mo-Ka1, $\lambda = 0,71069$ Å Mo-Ka1, $\lambda = 0,71069$ Å Temperatur (K) 296(2) 293(2) Absorptionskoeffizient (mm ⁻¹) 0,722 2,12 Zwillingsgesetz 0 Ī 0 Ī 0 0 0 0 1 10 I 0 0 0 0 1 Winkelbereich (°) 3,22 < 20 < 34,91	Zellvolumen $V(Å^3)$	439,15(3)	447,49(5)
Molmasse (g · mol $^{-1}$)201,71224,72Dichtervente. (g · cm $^{-3}$)2,2882,502F(000)294326KristallfarbefarblosblassgelbKristallfarbeplättchenförnigplättchenförnigKristallformplättchenförnig0,15 · 0,06 · 0,040,26 · 0,08 · 0,06DiffraktometerBRUKER APEX-II CCDBRUKER APEX-II CCDbenutzte RöntgenstrahlungMo-K α_1 , $\lambda = 0,71069$ ÅMo-K α_1 , $\lambda = 0,71069$ ÅTemperatur (K)296(2)293(2)Absorptionskoeffizient (mm $^{-1}$)0,7222,12Zwillingsgesetz0 Ī 0 Ī 0 0 0 0 1Winkelbereich (°)3,22 < 20 < 34,91	Zahl der Formeleinheiten Z	3	3
Dichteroentg. (g · cm ⁻³) 2,288 2,502 $F(000)$ 294 326 Kristallfarbe farblos blassgelb Kristallform plätchenförmig plätchenförmig Kristallgröße (mm ³) 0,15 · 0,06 · 0,04 0,26 · 0,08 · 0,06 Diffraktometer BRUKER APEX-II CCD BRUKER APEX-II CCD benutzte Röntgenstrahlung Mo-K α_1 , $\lambda = 0,71069$ Å Mo-K α_1 , $\lambda = 0,71069$ Å Temperatur (K) 296(2) 293(2) Absorptionskoeffizient (mm ⁻¹) 0,722 2,12 Zwillingsgesetz 0 1 0 1 0 0 0 1 1 Winkelbereich (°) 3,22 < 20 < 34,91	Molmasse $(g \cdot mol^{-1})$	201,71	224,72
F(00)294326KristallfarbefarblosblassgelbKristallformplättchenförmigplättchenförmigKristallgröße (mm³)0,15 · 0,06 · 0,040,26 · 0,08 · 0,06DiffraktometerBRUKER APEX-II CCDBRUKER APEX-II CCDbenutzte RöntgenstrahlungMo-K α_1 , $\lambda = 0,71069$ ÅMo-K α_1 , $\lambda = 0,71069$ ÅTemperatur (K)296(2)293(2)Absorptionskoeffizient (mm ⁻¹)0,7222,12Zwillingsgesetz0 $\bar{1}$ 0 $\bar{1}$ 0 0 0 0 13,22 < 2 θ < 34,911,06 < 2 θ < 40,26Muskebereich (°)3,22 < 2 θ < 34,911,06 < 2 θ < 40,26Messbereich $-7 \le h \le 8$ $-9 \le h \le 7$ $-7 \le k \le 8$ $-8 \le k \le 9$ $-30 \le l \le 30$ $-34 \le l \le 34$ Verwendete ProgrammeKeinekeineZahl der gemessenen Reflexe6071Gütefaktor der Mittelung R_{int} 0,0250,052 $R(F)^{a_1}$ für $F_0 > 4\sigma(F_0)$ 0,0180,041Gütefaktor $wR(F^2)^{b_1,d}$ 0,0510,118 $Goof^{c^{\circ}}$ 1,1731,094Hack-Parameter $-0,00(7)$ 0,88(4)	Dichte _{roentg.} $(g \cdot cm^{-3})$	2,288	2,502
KristallfarbefarblosblassgelbKristallformplättchenförmigplättchenförmigKristallgröße (mm³)0,15 · 0,06 · 0,040,26 · 0,08 · 0,06DiffraktometerBRUKER APEX-II CCDBRUKER APEX-II CCDbenutzte RöntgenstrahlungMo-Kα1, $\lambda = 0,71069$ ÅMo-Kα1, $\lambda = 0,71069$ ÅTemperatur (K)296(2)293(2)Absorptionskoeffizient (mm ⁻¹)0,7222,12Zwillingsgesetz0 1 0 1 0 0 0 0 1106 < 20 < 40,26	F(000)	294	326
KristallformplättchenförmigplättchenförmigKristallgröße (mm³)0,15 \cdot 0,06 \cdot 0,040,26 \cdot 0,08 \cdot 0,06DiffraktometerBRUKER APEX-II CCDBRUKER APEX-II CCDbenutzte RöntgenstrahlungMo-K α_1 , $\lambda = 0,71069$ ÅMo-K α_1 , $\lambda = 0,71069$ ÅTemperatur (K)296(2)293(2)Absorptionskoeffizient (mm ⁻¹)0,7222,12Zwillingsgesetz0 Ī 0 Ī 0 0 0 0 11,06 < 2 θ < 40,26	Kristallfarbe	farblos	blassgelb
Kristallgröße (mm³) $0,15 \cdot 0,06 \cdot 0,04$ $0,26 \cdot 0,08 \cdot 0,06$ DiffraktometerBRUKER APEX-II CCDBRUKER APEX-II CCDbenutzte Röntgenstrahlung $Mo \cdot K\alpha_1, \lambda = 0,71069$ Å $Mo \cdot K\alpha_1, \lambda = 0,71069$ ÅTemperatur (K)296(2)293(2)Absorptionskoeffizient (mm ⁻¹) $0,722$ $2,12$ Zwillingsgesetz $0,722$ $2,12$ Zwillingsgesetz $0,7 \le 20 < 34,91$ $1,06 < 20 < 40,26$ Messbereich (°) $3,22 < 20 < 34,91$ $1,06 < 20 < 40,26$ Messbereich $-7 \le h \le 8$ $-9 \le h \le 7$ $-7 \le k \le 8$ $-9 \le h \le 7$ $-7 \le k \le 8$ $-8 \le k \le 9$ $-30 \le l \le 30$ $-34 \le l \le 34$ Verwendete ProgrammeSHELXE-97 ^[43] ; SHELXL- ¹ ^[44] ; WinGx ^[45] Absorptionskorrekturkeine10061Zahl der gemessenen Reflexe675610061Zahl der unabhängigen Reflexe12901884Parameter $0,025$ $0,052$ $R(F)^{a)}$ für $F_0 > 4\sigma(F_0)$ $0,018$ $0,041$ Gütefaktor $wR(F^2)^{b),d}$ $0,051$ $1,194$ Goof c° $1,173$ $1,094$ max./min. Restelektronendichte (e · Å ³) $-0,00(7)$ $0,08(4)$	Kristallform	plättchenförmig	plättchenförmig
DiffraktometerBRUKER APEX-II CCDBRUKER APEX-II CCDbenutzte RöntgenstrahlungMo-K $\alpha_1, \lambda = 0,71069$ ÅMo-K $\alpha_1, \lambda = 0,71069$ ÅTemperatur (K)296(2)293(2)Absorptionskoeffizient (mm ⁻¹)0,7222,12Zwillingsgesetz0 Ī 0 Ī 0 0 0 0 1Winkelbereich (°)3,22 < 2 θ < 34,91	Kristallgröße (mm ³)	0,15 · 0,06 · 0,04	0,26 · 0,08 · 0,06
benutzte RöntgenstrahlungMo-K α_1 , $\lambda = 0,71069$ ÅMo-K α_1 , $\lambda = 0,71069$ ÅTemperatur (K)296(2)293(2)Absorptionskoeffizient (mm ⁻¹)0,7222,12Zwillingsgesetz0 Ī 0 Ī 0 0 0 0 1Winkelbereich (°)3,22 < 2 θ < 34,91	Diffraktometer	BRUKER APEX-II CCD	BRUKER APEX-II CCD
Temperatur (K)296(2)293(2)Absorptionskoeffizient (mm ⁻¹)0,7222,12Zwillingsgesetz $0 \ \overline{1} \ 0 \ \overline{1} \ 0 \ 0 \ 0 \ 1$ Winkelbereich (°) $3,22 < 2\theta < 34,91$ $1,06 < 2\theta < 40,26$ Messbereich $-7 \le h \le 8$ $-9 \le h \le 7$ $-7 \le k \le 8$ $-9 \le h \le 7$ $-7 \le k \le 8$ $-8 \le k \le 9$ $-30 \le l \le 30$ $-34 \le l \le 34$ Verwendete ProgrammeSHELXS-97 ^[43] ; SHELXL-97 ^[44] ; WinGx ^[45] AbsorptionskorrekturkeineZahl der gemessenen Reflexe675610061Zahl der unabhängigen Reflexe12901884Parameter6071Gütefaktor der Mittelung R_{int} 0,0250,052 $R(F)^{a)}$ für $F_0 > 4\sigma(F_0)$ 0,0180,041Gütefaktor w $R(F^2)^{b),d}$ 0,0510,118 $Goof^{c^{\circ}}$ 1,1731,094max./min. Restelektronendichte (e · Å ³) $-0.00(7)$ 0,08(4)	benutzte Röntgenstrahlung	Mo-K α_1 , $\lambda = 0,71069$ Å	Mo-K α_1 , $\lambda = 0,71069$ Å
Absorptionskoeffizient (mm ⁻¹)0,7222,12Zwillingsgesetz $0\ \overline{1}\ 0\ \overline{1}\ 0\ 0\ 0\ 1$ Winkelbereich (°) $3,22 < 2\theta < 34,91$ $1,06 < 2\theta < 40,26$ Messbereich $-7 \le h \le 8$ $-9 \le h \le 7$ $-7 \le k \le 8$ $-9 \le h \le 7$ $-7 \le k \le 8$ $-8 \le k \le 9$ $-30 \le l \le 30$ $-34 \le l \le 34$ Verwendete ProgrammeSHELXS-97 ^[43] ; SHELXL-97 ^[44] ; WinGx ^[45] AbsorptionskorrekturkeineZahl der gemessenen Reflexe675610061Zahl der unabhängigen Reflexe12901884Parameter 60 71Gütefaktor der Mittelung R_{int} $0,025$ $0,052$ $R(F)^{a)}$ für $F_0 > 4\sigma(F_0)$ $0,018$ $0,041$ Gütefaktor $wR(F^2)^{b),d)}$ $0,051$ $0,118$ Goof c° $1,173$ $1,094$ max./min. Restelektronendichte (e · Å ³) $-0.00(7)$ $0,08(4)$	Temperatur (K)	296(2)	293(2)
Zwillingsgesetz $0 \ \overline{1} 0 \ \overline{1} 0 0 0 0 1$ Winkelbereich (°) $3,22 < 2\theta < 34,91$ $1,06 < 2\theta < 40,26$ Messbereich $-7 \le h \le 8$ $-9 \le h \le 7$ $-7 \le k \le 8$ $-8 \le k \le 9$ $-30 \le l \le 30$ $-34 \le l \le 34$ Verwendete ProgrammeSHELXs-97 ^[43] ; SHELXL- ^{97[44]} ; WinGx ^[45] AbsorptionskorrekturkeineZahl der gemessenen Reflexe6756Zahl der unabhängigen Reflexe1290Basa1884Parameter60Gütefaktor der Mittelung R_{int} 0,025 $0,051$ 0,041Gütefaktor $wR(F^2)^{b,d}$ 0,051 $0,051$ 0,118 $Goof^{c^{\circ}}$ 1,173 $nax./min. Restelektronendichte (e · Å^3)$ $-0.00(7)$ Flack-Parameter $-0.00(7)$ 0,08(4)	Absorptionskoeffizient (mm ⁻¹)	0,722	2,12
Winkelbereich (°) $3,22 < 2\theta < 34,91$ $1,06 < 2\theta < 40,26$ Messbereich $-7 \le h \le 8$ $-9 \le h \le 7$ $-7 \le k \le 8$ $-8 \le k \le 9$ $-30 \le l \le 30$ $-34 \le l \le 34$ Verwendete ProgrammeSHELXS-97 ^[43] ; SHELXL-97 ^[44] ; WinGx ^[45] AbsorptionskorrekturkeinekeineZahl der gemessenen Reflexe675610061Zahl der unabhängigen Reflexe12901884Parameter6071Gütefaktor der Mittelung R_{int} 0,0250,052 $R(F)^{a)}$ für $F_0 > 4\sigma(F_0)$ 0,0180,041Gütefaktor $wR(F^2)^{b),d)}$ 0,0510,118Goof c'1,1731,094max./min. Restelektronendichte (e · Å ³) $-0.00(7)$ 0,08(4)	Zwillingsgesetz		$0 \bar{1} 0 \bar{1} 0 0 0 0 1$
Messbereich $-7 \le h \le 8$ $-9 \le h \le 7$ $-7 \le k \le 8$ $-8 \le k \le 9$ $-30 \le l \le 30$ $-34 \le l \le 34$ Verwendete ProgrammeSHELXs-97 ^[43] ; SHELXL- $7^{[44]}$; WinGx ^[45] AbsorptionskorrekturkeineZahl der gemessenen Reflexe6756Zahl der unabhängigen Reflexe1290Parameter60Gütefaktor der Mittelung R_{int} 0,025 $0,018$ 0,041Gütefaktor $wR(F^2)^{b,d)}$ 0,051 $0,051$ 0,118 $Goof^{c^{\circ}}$ 1,173 $nax./min. Restelektronendichte (e · Å^3)$ Flack-Parameter $-0.00(7)$ $0,08(4)$	Winkelbereich (°)	$3,22 < 2\theta < 34,91$	$1,06 < 2\theta < 40,26$
$-7 \le k \le 8$ $-8 \le k \le 9$ $-30 \le l \le 30$ $-34 \le l \le 34$ Verwendete ProgrammeSHELXS-97 ^[43] ; SHELXL-97 ^[44] ; WinGx ^[45] AbsorptionskorrekturkeineZahl der gemessenen Reflexe6756Zahl der unabhängigen Reflexe1290Parameter60Gütefaktor der Mittelung R_{int} 0,025 $R(F)^{a)}$ für $F_0 > 4\sigma(F_0)$ 0,018Gütefaktor $wR(F^2)^{b),d}$ 0,051Goof c ^o 1,173nax./min. Restelektronendichte (e · Å ³)Flack-Parameter $-0.00(7)$ 0,08(4)	Messbereich	$-7 \le h \le 8$	$-9 \le h \le 7$
$-30 \le l \le 30$ $-34 \le l \le 34$ Verwendete ProgrammeSHELXS-97 ^[43] ; SHELXL-97 ^[44] ; WinGx ^[45] AbsorptionskorrekturkeineZahl der gemessenen Reflexe6756Zahl der unabhängigen Reflexe1290Parameter60Gütefaktor der Mittelung R_{int} 0,025 $R(F)^{a)}$ für $F_0 > 4\sigma(F_0)$ 0,018Gütefaktor $wR(F^2)^{b),d}$ 0,051Goof co1,173Hack-Parameter-0.00(7)O,08(4)		$-7 \le k \le 8$	$-8 \le k \le 9$
Verwendete ProgrammeSHELXS-97 ^[43] ; SHELXL-97 ^[44] ; WinGx ^[45] AbsorptionskorrekturkeineZahl der gemessenen Reflexe6756Zahl der unabhängigen Reflexe1290Parameter60Gütefaktor der Mittelung R_{int} 0,025 $R(F)^{a)}$ für $F_0 > 4\sigma(F_0)$ 0,018Gütefaktor $wR(F^2)^{b),d)}$ 0,051Goof c° 1,173Hack-Parameter-0.00(7)O,08(4)		$-30 \le l \le 30$	$-34 \le l \le 34$
Absorptionskorrektur keine keine Zahl der gemessenen Reflexe 6756 10061 Zahl der unabhängigen Reflexe 1290 1884 Parameter 60 71 Gütefaktor der Mittelung R_{int} $0,025$ $0,052$ $R(F)^{a)}$ für $F_0 > 4\sigma(F_0)$ $0,018$ $0,041$ Gütefaktor $wR(F^2)^{b),d)}$ $0,051$ $0,118$ $Goof^{c^{\circ}}$ $1,173$ $1,094$ max./min. Restelektronendichte (e · Å ³) $-0.00(7)$ $0,08(4)$	Verwendete Programme	SHELXS-97 ^[43] ; SHELXL-	97 ^[44] ;WinGx ^[45]
Zahl der gemessenen Reflexe675610061Zahl der unabhängigen Reflexe12901884Parameter6071Gütefaktor der Mittelung R_{int} 0,0250,052 $R(F)^{a)}$ für $F_0 > 4\sigma(F_0)$ 0,0180,041Gütefaktor $wR(F^2)^{b),d)}$ 0,0510,118Goof c° 1,1731,094max./min. Restelektronendichte (e · Å ³)-0.00(7)0,08(4)	Absorptionskorrektur	keine	keine
Zahl der unabhängigen Reflexe12901884Parameter 60 71 Gütefaktor der Mittelung R_{int} $0,025$ $0,052$ $R(F)^{a}$ für $F_0 > 4\sigma(F_0)$ $0,018$ $0,041$ Gütefaktor $wR(F^2)^{b,d)}$ $0,051$ $0,118$ Goof c $1,173$ $1,094$ max./min. Restelektronendichte (e · Å ³) $-0.00(7)$ $0,08(4)$	Zahl der gemessenen Reflexe	6756	10061
Parameter6071Gütefaktor der Mittelung R_{int} 0,0250,052 $R(F)^{a)}$ für $F_0 > 4\sigma(F_0)$ 0,0180,041Gütefaktor $wR(F^2)^{b),d)}$ 0,0510,118Goof $^{c)}$ 1,1731,094max./min. Restelektronendichte (e · Å^3)-0.00(7)0,08(4)	Zahl der unabhängigen Reflexe	1290	1884
Gütefaktor der Mittelung R_{int} 0,0250,052 $R(F)^{a)}$ für $F_0 > 4\sigma(F_0)$ 0,0180,041Gütefaktor $wR(F^2)^{b),d)}$ 0,0510,118 $Goof^{c)}$ 1,1731,094max./min. Restelektronendichte (e · Å^3)-0.00(7)0,08(4)	Parameter	60	71
$R(F)^{a)}$ für $F_0 > 4\sigma(F_0)$ 0,0180,041Gütefaktor $wR(F^2)^{b),d}$ 0,0510,118 $Goof^{c}$ 1,1731,094max./min. Restelektronendichte (e · Å ³)-0.00(7)0,08(4)	Gütefaktor der Mittelung R _{int}	0,025	0,052
Gütefaktor $wR(F^2)^{b),d}$ 0,051 0,118 Goof $^{c)}$ 1,173 1,094 max./min. Restelektronendichte ($e \cdot Å^3$) $-0.00(7)$ 0,08(4)	$R(F)^{\mathrm{a}}$ für $F_0 > 4\sigma(F_0)$	0,018	0,041
Goof c)1,1731,094max./min. Restelektronendichte ($e \cdot Å^3$)-0.00(7)0,08(4)	Gütefaktor $wR(F^2)^{b,d}$	0,051	0,118
max./min. Restelektronendichte ($e \cdot Å^3$) $-0.00(7)$ $0,08(4)$	<i>Goof</i> ^{c)}	1,173	1,094
Flack-Parameter -0.00(7) 0,08(4)	max./min. Restelektronendichte (e \cdot Å ³)		
	Flack-Parameter	-0.00(7)	0,08(4)

a) $R_1 = \Sigma ||F_0| - |F_C|| / \Sigma |F_0|$; b) $wR_2 = [(\Sigma (F_0^2 - F_c^2)^2) / \Sigma (w \cdot (F_0^2)^2)]^{1/2}$; c) $Goof = [(\Sigma_{hkl} w \cdot (F_0^2 - F_c^2)^2) / (m-n)]^{1/2}$ d) $w = 1 / [\sigma^2 \cdot (F_0^2)^2 + (a \cdot P)^2 + b \cdot P]$

Atom	Lage	x	у	z	s. o. f.	$U_{ m eq}({ m \AA})^2$
Li1	6 <i>c</i>	0,2753(4)	0,0878(5)	0,1130(1)	1	0,0151(4)
Li2	6 <i>c</i>	0,5915(5)	0,7692(5)	0,1119(1)	1	0,0156(4)
P1	6 <i>c</i>	0,93799(5)	0,43004(5)	0,07843(1)	1	0,00626(6)
01	6 <i>c</i>	0,6445(2)	0,1396(2)	0,07701(4)	1	0,0114(1)
O2	6 <i>c</i>	0,1902(2)	0,4052(2)	0,11318(4)	1	0,0095(1)
O3	6 <i>c</i>	0,9148(2)	0,6886(2)	0,11001(4)	1	0,0135(2)
04	3 <i>a</i>	0,0589(2)	0,5294(1)	0	1	0,0110(1)

Tab. 2.7 Li₄P₂O₇-trig*. Angaben zu Wyckoff-Lagen, Atompositionen und isotropen Auslenkungsparametern.

a) $U_{eq} = \frac{1}{3} \sum_{i} \sum_{j} U_{ij} \cdot a_i^* \cdot a_j^* \cdot a_i \cdot a_j.$

Tab. 2.8 $(Li_{0,9}Cu^{I}_{0,1})_4P_2O_7$ -trig*. Angaben zu Wyckoff-Lagen, Atompositionen und isotropen Auslenkungsparametern.

Atom	Lage	x	у	z	s. o. f.	$U_{ m eq}({ m \AA})^2$
Cu1	6 <i>c</i>	0,2678(7)	0,0960(8)	0,0921(2)	0,204(3)	0,0215(7)
Li1	6 <i>c</i>	0,271(3)	0,092(3)	0,1140(5)	0,796(3)	0,015(2)
Li2	6 <i>c</i>	0,586(1)	0,7712(10)	0,1092(3)	1	0,0140(8)
P1	6 <i>c</i>	0,9337(1)	0,4351(1)	0,07799(3)	1	0,00750(9)
01	6 <i>c</i>	0,6422(4)	0,1447(4)	0,07725(9)	1	0,0139(3)
O2	6 <i>c</i>	0,1857(4)	0,4142(4)	0,11367(8)	1	0,01010(2)
O3	6 <i>c</i>	0,9071(5)	0,6921(4)	0,1083(1)	1	0,0155(3)
O4	3a	0,0559(6)	0,5280(3)	0	1	0,0192(5)

a) $U_{eq} = \frac{1}{3} \sum_{i} \sum_{j} U_{ij} \cdot a_i^* \cdot a_j^* \cdot a_i \cdot a_j.$

Tab. 2.9 Li₄P₂O₇-trig*. Angaben zu anisotropen Auslenkungsparametern.

Atom	$U_{11}({ m \AA})^2$	$U_{22}({ m \AA})^2$	U33 (Å) ²	$U_{23}({ m \AA})^2$	$U_{13}({ m \AA})^2$	U12 (Å) ²
Li1	0,0126(9)	0,0127(9)	0,020(1)	-0,0007(7)	0,0018(7)	0,0066(8)
Li2	0,0129(9)	0,0129(9)	0,023(1)	0,0021(7)	0,0015(7)	0,0079(8)
P1	0,0063(1)	0,0066(1)	0,00610(9)	0,00001(7)	-0,00008(7)	0,00339(8)
01	0,0080(3)	0,0081(3)	0,0155(3)	0,0006(2)	0,0001(2)	0,0020(2)
O2	0,0090(3)	0,0107(4)	0,0102(3)	0,0004(2)	-0,0018(2)	0,0058(3)
O4	0,0103(4)	0,0205(4)	0,0063(4)	0,002(3)	0	0,0052(2)
03	0,0111(3)	0,0100(3)	0,0138(4)	-0,0027(3)	-0,0005(3)	0,0068(3)

Atom	$U_{11}({ m \AA})^2$	$U_{22}({ m \AA})^2$	U33 (Å) ²	$U_{23}(\text{\AA})^2$	$U_{13}({ m \AA})^2$	$U_{12}({ m \AA})^2$
Cu1	0,0125(8)	0,0171(9)	0,037(2)	-0,002(1)	-0,001(1)	0,009(7)
Li1	0,016(3)	0,014(3)	0,020(3)	0,007(3)	0,002(3)	0,011(3)
Li2	0,004(1)	0,005(1)	0,031(3)	0,003(2)	-0,001(1)	0,001(1)
P1	0,0074(2)	0,0073(2)	0,0081(1)	0,0003(1)	-0,0002(1)	0,0040(2)
01	0,0097(6)	0,0091(6)	0,0196(6)	0,0016(5)	-0,0022(5)	0,0022(5)
O2	0,0096(6)	0,0127(6)	0,0122(5)	-0,0007(5)	-0,0033(5)	0,0068(5)
03	0,0124(7)	0,0094(6)	0,0262(7)	-0,0035(6)	0,0003(6)	0,0065(6)
O4	0,014(1)	0,029(1)	0,0091(7)	0,0049(7)	0	0,0069(5)

Tab. 2.10 $(Li_{0,9}Cu_{0,1}^{I})_4P_2O_7$ -trig*. Angaben zu anisotropen Auslenkungsparametern.

Tab. 2.11 Ausgewählte interatomare Abstände (in Å) für die [CuO₄]-Tetraeder (**fett**), [LiO₄]-Tetraeder und Pyrophosphatgruppen in $Li_4P_2O_7$ -trig* und $(Li_{0.9}Cu^{I}_{0.1})_4P_2O_7$ -trig* (*kursiv*).

[Li1O4]		[Li2O4]		[PO4]	
[Cu1O4]					
Li1-O2	1,900(2)	Li2-O1	1,912(2)	P-O1	1,5095(7)
Lil-O2	1,93(1)	Li2-01	1,914(5)	<i>P-01</i>	1,513(2)
<i>Cu1-O2</i>	1,938(4)				
Li1-01	1,916(2)	Li2-03	1,914(2)	P-O2	1,5227(7)
Li1-O1	1,94(1)	Li2-03	1,908(5)	<i>P-O2</i>	1,528(2)
<i>Cu1-01</i>	1,854(4)				
Li1-O3	1,972(2)	Li2-02	1,986(2)	P-O3	1,5232(8)
<i>Li1-O3</i>	1,99(1)	Li2-02	1,979(5)	P-03	1,525(2)
<i>Cu1-O3</i>	2,021(4)				
				5.01	
L11-03	2,103(3)	Li2-02	2,064(3)	P-04	1,5961(4)
<i>Li1-03</i>	2,13(1)	Li2-02	2,124(6)	<i>P-O4</i>	1,598(1)
<i>Cu1-O3</i>	2,553(4)				

2.6 Beschreibung und Diskussion der Kristallstrukturen von Li₄P₂O₇-pseudomono*, Li₄P₂O₇-trig* und (Li_{0,9}Cu^I_{0,1})₄P₂O₇-trig*

Li₄P₂O₇-pseudomono^{*}, Li₄P₂O₇-trig^{*} und (Li_{0,9}Cu^I_{0,1})₄P₂O₇-trig^{*} weisen eine enge strukturelle Verwandtschaft zueinander auf. In den drei Kristallstrukturen sind die Pyrophosphatgruppen dichtest gepackt angeordnet. Bei den beiden trigonalen Phasen sind diese durch Anwesenheit der 3₂-Schraubenachse entlang der *c*-Achse für benachbarte Schichten leicht versetzt.

Alternativ kann die Kristallstruktur von Li₄P₂O₇-trig* und (Li_{0.9}Cu^I_{0,1})₄P₂O₇-trig* auch von einer verzerrten, kubisch-dichtesten Kugelpackung aus Sauerstoffatomen abgeleitet werden, die zwei verschiedene Arten von Oxidschichten enthält. Die Schichten A und C werden von den terminalen Sauerstoffatomen der Pyrophosphatgruppen gebildet und sind voll besetzt. Die Schicht B enthält die verbrückenden Sauerstoffatome der Pyrophosphatgruppen und ist folglich nur zu einem Drittel gefüllt. Die Stapelung der Atome erfolgt in der vorliegenden Kristallstruktur in Schichten senkrecht zur *c*-Achse mit der Stapelungssequenz A, B_{1/3}, C, A⁴, B⁴_{1/3}, C⁴, A⁴, B⁴_{1/3}, C⁴, A. Das Stapelungsmuster wiederholt sich nach neun Schichten. In dieser kubisch-dichtesten Kugelpackung aus Sauerstoffatomen besetzen die Phosphoratome ein Drittel der Tetraederlücken zwischen den A(A⁴,A⁴)- und B(B⁴,B⁴)- bzw. den B(B⁴,B⁴)- und C(C⁴,C⁴)-Schichten. Die Li⁺-Ionen beanspruchen zwei Drittel der Tetraederlücken zwischen den C(C⁴,C⁴)- und A⁴(A⁴,A)-Schichten (vgl. Abb. 2.6).

Auch im Fall von Li₄P₂O₇-pseudomono* sind die Li⁺-Ionen ausschließlich tetraedrisch koordiniert. Anders als bei Li₄P₂O₇-trig* besetzen sie dabei nicht nur die Tetraederlücken zwischen den Schichten aus Pyrophosphatgruppen, die bei Li₄P₂O₇-pseudomono* entlang [21 $\overline{2}$] gestapelt werden (vgl. **Abb. 2.5a**). Vielmehr werden die Pyrophosphatgruppen von einem dreidimensionalen Netzwerk aus [LiO₄]-Einheiten umschlossen (vgl. **Abb. 2.5c**).

Die asymmetrische Einheit von Li₄P₂O₇-trig^{*} enthält neben zwei Metalllagen eine Pyrophosphatgruppe mit einer kristallographisch unabhängigen Phosphorlage. Wie für Diphosphatgruppen bzw. Q₁-Bauelemente erwartet (vgl. z. B.^[22,46]), werden relativ kurze Abstände zwischen den Phosphor- und den terminalen Sauerstoffatomen (1,51 Å $\leq d(P-O_t) \leq$ 1,53 Å) und vergleichsweise lange Abstände zu den verbrückenden Sauerstoffatomen ($d(P-O_b)$ = 1,60 Å) beobachtet. Auch die Abstände d(Li-O) zeigen keinerlei Auffälligkeiten (1,90 Å \leq $d(Li-O) \leq 2,13$ Å) (vgl. z. B.^[26,47,48]). Ähnlich verhält es sich auch für Li₄P₂O₇-pseudomono^{*}, dessen Kristallstruktur acht Metalllagen und zwei Pyrophosphatgruppen mit vier Phosphorlagen aufweist (1,50 Å $\leq d(P-O) \leq 1,66$ Å bzw. 1,85 Å $\leq d(Li-O) \leq 2,25$ Å). Da das Strukturmodell auf Pulverdaten von beschränkter Qualität beruht, kommen Unregelmäßigkeiten zum Vorschein. Beispielsweise wird das zuvor diskutierte Auftreten kurzer Abstände $d(P-O_t)$ und langer Abstände $d(P-O_b)$, das typisch für Diphosphatgruppen ist, nicht beobachtet. Auch erscheinen Abstände d(P-O) von bis zu 1,66 Å anomal lang. Vereinzelt werden Abstände d(Li-O) beobachtet, die mit 1,69 Å bzw. 1,75 Å (vgl. **Tab. 2.5**) anomal kurz sind.

Im Fall von (Li_{0,9}Cu^I_{0,1})₄P₂O₇-trig^{*} wird eine der beiden Metalllagen mit Li⁺- und Cu⁺-Ionen im Verhältnis Li_{0,8}Cu_{0,2} besetzt (vgl. **Abschn. 2.5**). Die Cu⁺-Ionen nehmen hierbei nicht wie die Li⁺-Ionen in reinem Li₄P₂O₇-trig^{*} eine tetraedrische sondern durch Herausrücken in Richtung der Tetraedergrundfläche eine trigonal-planare Koordination mit 1,85 Å $\leq d$ (Cu^I-O) $\leq 2,02$ Å ein. Unter Berücksichtigung eines weiteren Kupfer-Sauerstoffabstands (d(Cu^I-O) = 2,55 Å) entsteht eine verzerrt-tetraedrische Koordination (vgl. **Abb. 2.7d**).

Abb. 2.5 Anordnung der Pyrophosphatgruppen in Li₄P₂O₇-pseudomono^{*}. Projektion entlang der *b*-Achse (a) und [21 $\overline{2}$] (b). Kristallstruktur von Li₄P₂O₇-pseudomono^{*} (c) mit [LiO₄]-Einheiten (grau) und [P₂O₇]-Einheiten (gelb).

Abb. 2.6 Vergleich der Kristallstrukturen von Li₄P₂O₇-trig* und (Li_{0,9}Cu^I_{0,1})₄P₂O₇-trig*.

Abb. 2.7 ORTEP-Darstellung der Pyrophosphatgruppe (a) und der Metalllagen (b) von Li₄P₂O₇-trig^{*} im Vergleich zur Pyrophosphatgruppe (c) und den Metalllagen (d) von $(Li_{0,9}Cu^{I}_{0,1})_4P_2O_7$ -trig^{*}. Wahrscheinlichkeit für Ellipsoide bei 50 %.

2.7 Vergleich der verschiedenen Polymorphe von Lithiumpyrophosphat

Das charakteristische Strukturelement, eine dichtest gepackte Anordnung an Pyrophosphatgruppen, das für die thermodynamisch metastabilen Polymorphe Li₄P₂O₇-pseudomono* und Li₄P₂O₇-trig* beobachtet wird (vgl. **Abschn. 2.6**), findet sich in einer mehr oder weniger verzerrten Variante auch bei den thermodynamisch stabilen Phasen von Lithiumpyrophosphat, Li₄P₂O₇-trik^[26], Li₄P₂O₇-mono-HT^[28] und Li₄P₂O₇-mono-HP^[29] (vgl. **Abb. 2.8**) wieder.

Zwischen den thermodynamisch metastabilen und stabilen Phasen besteht in Bezug auf die Konformation der Pyrophosphatgruppen ein wesentlicher Unterschied. Während die [PO₄]-Tetraeder der Diphosphatgruppen im Falle der metastabilen Polymorphe gestaffelt zueinander stehen, richten sie sich bei den thermodynamisch stabilen Phasen ekliptisch aus (vgl. **Abb. 2.8**). Weshalb die ekliptische Anordnung gegenüber der gestaffelten thermodynamisch bevorzugt ist, kann abschließend nicht geklärt werden. Es erscheint zwar plausibel, dass Diphosphatgruppen mit ekliptischer Konformation im Kristallgitter eine dichtere, thermodynamisch günstigere Packung der Atome ermöglichen. In der Tat weist von allen bekannten Lithiumpyrophosphaten Li₄P₂O₇-pseudomono* das kleinste ($V \cdot mol^{-1} = 138,56 \text{ Å}^3$ $\cdot mol^{-1}$) und die Hochtemperaturmodifikation Li₄P₂O₇-trig* versagt das Dichteargument allerdings, da sich dafür im Vergleich zu den anderen beiden thermodynamisch stabilen Phasen von Lithiumpyrophosphat eine größeres Molvolumen ergibt ($V \cdot mol^{-1} = 146,38 \text{ Å}^3 \cdot mol^{-1}$ vs. $V \cdot mol^{-1} \approx 142,5 \text{ Å}^3 \cdot mol^{-1}$).

Abb. 2.8 Anordnung der Pyrophosphatgruppen in den einzelnen Polymorphen von Lithiumpyrophosphat. Projektionen jeweils auf die dichtest gepackte Ebene. Die verschiedenen Farbtöne dienen zur Unterscheidung der Stapelhöhen.

Das thermische Verhalten der beiden thermodynamisch metastabilen Polymorphe von Lithiumpyrophosphat wurde untersucht, um weitere Informationen zu der Stabilität zu erhalten. Dazu wurde ein Gemenge aus Li₄P₂O₇-pseudomono* und Li₄P₂O₇-trig*, das, wie in **Abschn**. **2.2** beschrieben, durch Abschrecken einer Schmelze von Li₄P₂O₇-trik erhalten wurde, zwischen $\vartheta = 380(25)$ °C und $\vartheta = 500(25)$ °C in Schritten von 10 °C pro Tag an Luft erhitzt. Nach jedem Temperschritt wurde das Gemenge mittels Röntgenpulverdiffraktometrie untersucht.

Die Auswertung der Beugungsbilder zeigt für Temperaturen bis $\vartheta = 400(25)$ °C keinerlei Veränderungen. Ab $\vartheta = 410(25)$ °C verschwinden die für Li₄P₂O₇-trig* charakteristischen Reflexe (gestrichelte Linien; vgl. **Abb. 2.9**,), während Reflexe, die sich Li₄P₂O₇-trik zuordnen lassen, hervortreten. Bis $\vartheta = 460(25)$ °C liegt die untersuchte Probe als Zweiphasengemenge aus Li₄P₂O₇-pseudomono* und Li₄P₂O₇-trik vor. Die Intensität der Reflexe von Li₄P₂O₇pseudomono* nimmt hierbei bereits merklich ab (vgl. **Abb. 2.9**). Das Beugungsbild bei $\vartheta =$ 470(25) °C zeigt nur noch Reflexe, die typisch für Li₄P₂O₇-trik sind. Der Umwandlungsprozess von Li₄P₂O₇-pseudomono* zu Li₄P₂O₇-trik ist abgeschlossen (vgl. **Abb. 2.9**).

Die experimentellen Befunde implizieren, dass sich die beiden thermodynamisch metastabilen Polymorphe unabhängig voneinander entlang verschiedener Reaktionswege in der Schmelze bilden. Sie werden beim Tempern nicht ineinander überführt, sondern gehen bei der entsprechenden Umwandlungstemperatur ($\vartheta = 410(25)$ °C für Li₄P₂O₇-trig*; $\vartheta = 470(25)$ °C für Li₄P₂O₇-pseudomono*) direkt und irreversibel in die trikline, thermodynamisch stabile Tieftemperaturform von Lithiumpyrophosphat über. Weshalb beim Übergang von Li₄P₂O₇trig* und Li₄P₂O₇-pseudomono* nach Li₄P₂O₇-trik unterschiedliche Aktivierungsenergien benötigt werden ist unbekannt. Auch erstaunt die Tatsache, dass sich bei entsprechenden Reaktionsbedingungen (vgl. **Abschn. 2.2** und **2.3**) Li₄P₂O₇-pseudomono* im Subsolidus überhaupt und noch dazu phasenrein bildet. Wodurch die Selektivität der Produktbildung bestimmt wird, ist unklar.

Abb. 2.9 Thermisches Verhalten der thermodynamisch metastabilen Polymorphe von Li₄P₂O₇. Umwandlungstemperaturen: $\vartheta = 410(25)$ °C (Li₄P₂O₇-trig^{*}); $\vartheta = 470(25)$ °C (Li₄P₂O₇-pseudomono^{*}). Gestrichelte Linien verdeutlichen Übergang von Li₄P₂O₇-trig^{*} nach Li₄P₂O₇-trik.
3 Das Dreistoffsystem LiO_{0,5}/Cu^IO_{0,5}/PO_{2,5}

3.1 Einleitung

Ein wesentlicher Aspekt der vorliegenden Arbeit bestand in dem Versuch Cu⁺-Ionen durch Einbau in Lithiumphosphate zu stabilisieren. Ein Beispiel dafür wurde bereits in Abschn. 2.5 in Form von $(\text{Li}_{0,9}\text{Cu}^{I}_{0,1})_4\text{P}_2\text{O}_7$ -trig* vorgestellt. Das Augenmerk galt dem Dreistoffsystem LiO_{0,5}/Cu^IO_{0,5}/PO_{2,5} (rotes Dreieck; vgl. Abb. 3.1). Da sich im Laufe der Untersuchungen herausstellte, dass Lithium-kupfer(I)-phosphate teilweise mit Lithium-kupfer(II)-phosphaten im chemischen Gleichgewicht stehen, musste das Dreistoffsystem LiO_{0,5}/Cu^{II}O/PO_{2,5} (türkisfarbenes Dreieck; vgl. Abb. 3.1) bei der Untersuchung mit berücksichtigt werden. Eine Zusammenstellung aller im System Li/Cu/P/O bekannten, kristallographisch charakterisierten Phosphate und Oxide gibt Tab. 3.1.

Abb. 3.1 GIBBSSCHER Phasentetraeder für das Vierkomponentensystem Li/Cu/P/O mit Hervorhebung der quasibinären Systeme LiO_{0,5}/Cu^{II}O_{0,5}/PO_{2,5} (rot) und LiO_{0,5}/Cu^{II}O/PO_{2,5} (türkis).

Verhindung	Anmerkung	Literaturstelle
	kubisch ^[49–52] : rhomboedrisch ^[53]	[49–53]
LiCu ^I O	Rubisen , monicocurisen	[54,55,56]
		[57,58]
P_4O_{10}	H-Form (<i>R</i> 3c: metastabil) ^[59,60] : O-Form	[59–65]
1 + 0 10	$(Fdd2)^{[61,62]}$: O'-Form $(Pnma)^{[63-65]}$	
Li ₃ PO ₄	HT ^[66] - & TT-Form ^[47] ($\theta_{trans} = 502 \text{ °C}$) ^[34]	[34,47,66]
Li ₄ P ₂ O ₇	fünf Polymorphe: (vgl. Kap. 2)	[26–32]
LiPO ₃		[48,67]
$Li_6P_6O_{18}$		[68]
Cu ^{II} O	monoklin ^[57,69] , kubisch (Kryptoform ^[70])	[57,69,70]
$Cu^{II}_2P_2O_7$	$\alpha^{[71,72]}$ - & β -Phase ^[73,72] ($T_{\text{trans}} = 363 \text{ K}$) ^[72]	[71–73]
$Cu^{II}_5O_2(PO_4)_2$		[74]
$Cu^{II}_4O(PO_4)_2$	triklin ^[75] ; orthorhombisch (Oxidation einer	[75,76]
	Tl/Cu/P-Legierung) ^[76]	
Cu ^I ₃ PO ₄	thermodynamisch metastabil	[10]
Cu ^I Cu ^{II} PO ₄		[77]
$Cu^{II}_{3}(PO_4)_2$		[78]
$Cu^{II}_2P_4O_{12}$		[79]
$Cu^{II}P_4O_{11}$		[80]
LiCu ^{II} (PO ₃) ₃		[81]
$Li_2Cu^{II}_2P_6O_{18}$		[82]
Li ₂ Cu ^{II} P ₂ O ₇		[83]
$Li_2Cu^{II}{}_5(PO_4)_4$		[84,85]
$Li_{3-x}Cu_{x}^{I}PO_{4}(I)$	$0,0 < x \le 0,75$	[10]
$Li_{3-x}Cu^{I}_{x}PO_{4}$ (II)	$0.9 \le x \le 1.8$	[10]
$Li_{3-x}Cu^{I}_{x}PO_{4}$ (III)	$2,1 \le x \le 2,8$	[10]

Tab. 3.1 Phasenbestand in den Dreistoffsystemen LiO_{0,5}/Cu^IO_{0,5}/PO_{2,5} und LiO_{0,5}/Cu^{II}O/PO_{2,5}.

Das Auftreten von Lithium-kupfer(I)-orthophosphaten, die in umfassender Form von SNYDER et al.^[10] untersucht wurden (vgl. **Tab. 3.1**), führte zu der Frage nach der Existenz von Lithiumkupfer(I)-pyrophosphaten bzw. -metaphosphaten. In diesem Sinn wurden im Rahmen der vorliegenden Arbeit die quasibinären Schnitte Li₄P₂O₇ – "Cu^I₄P₂O₇" und LiPO₃ – "Cu^IPO₃" untersucht. Die Ergebnisse werden im Folgenden vorgestellt.

3.2 Experimente zur Untersuchung des quasibinären Schnitts Li₄P₂O₇ – "Cu^I₄P₂O₇"

Der quasibinäre Schnitt Li₄P₂O₇ – "Cu^I₄P₂O₇" bzw. (Li_{1-x}Cu^I_x)₄P₂O₇ in der Formulierung als Mischkristall wurde mittels Komproportionierungsreaktionen untersucht. Bei diesen wurde Kupfer, Li₄P₂O₇-trik und Cu^{II}₂P₂O₇ im stöchiometrischen Verhältnis entsprechend **Gleichung 3.1** eingesetzt.

$$(1-x)\operatorname{Li}_{4}P_{2}O_{7}(s)+2x\operatorname{Cu}_{2}^{II}P_{2}O_{7}(s)+x\operatorname{Cu}^{0}(s)\xrightarrow{500^{\circ}C-650^{\circ}C; 2d} (\operatorname{Li}_{1-x}\operatorname{Cu}_{x}^{I})_{4}P_{2}O_{7}(s)$$
(Gl. 3.1)

Die Experimente wurden wegen der Oxidationsempfindlichkeit von Kupfer(I)-verbindungen in geschlossenen Kieselglasampullen durchgeführt. Die Reaktionsgemenge wurden zu Presslingen verarbeitet, die Synthesen bei Temperaturen von $\vartheta = 500$ °C (Exp. 7a; vgl. **Tab. 3.2**) bzw. $\vartheta = 650$ °C für 48 h durchgeführt. Die blassroten Presslinge, nahmen nach erfolgter Reaktion eine ockerfarbene Tönung an und lagen nach Verreiben als ockerfarbene Pulver vor. Mit zunehmendem Kupferanteil *x* wurden rötlichere Ausgangsgemenge bzw. rötlichere Reaktionsprodukte erhalten. Die Einwaagepunkte der Versuchsreihe können **Abb. 3.2** entnommen werden. Die Ergebnisse sind in **Tab. 3.2** zusammengefasst.

Weiterhin wurde der Versuch unternommen, Einkristalle von $(\text{Li}_{1-x}\text{Cu}_{x}^{I})_{4}\text{P}_{2}\text{O}_{7}$ zu züchten, indem ein Reaktionsgemenge aus Kupfer, Li₄P₂O₇-trik und Cu^{II}₂P₂O₇ mit x = 0,15 in einer geschlossenen Kieselglasampulle bei $\vartheta = 900$ °C aufgeschmolzen und die Schmelze für zehn Tage bei dieser Temperatur homogenisiert wurde. Um eine Reaktion zwischen Ampullenwand und Reaktionsgemenge zu verhindern, wurde das Ausgangsmaterial in Kupferblech eingebettet. Nach Abschrecken der Kieselglasampulle mit Wasser, konnten blassgelbe, transparente, quaderförmige Einkristalle aus dem mikrokristallinen Produkt isoliert werden.

Abb. 3.2 Einwaagen für die Versuchsreihe zur Synthese von $(Li_{1-x}Cu_x^I)_4P_2O_7$; rot: Homogenitätsgebiet.

Nr.	x	Edukte	Einwaage	Einwaage	Temp.	Dauer	Ergebnisse nach
			(mg)	(mmol)	(°C)	(d)	IP-Guinieraufnahme
5	0,03	$Li_4P_2O_7$	234,61	1,163	650	2	$(Li_{0,97}Cu^{I}_{0,03})_{4}P_{2}O_{7}^{a)}$
		$Cu^{II}_2P_2O_7$	10,82	0,036			
		Cu	4,57	0,072			
6	0,06	Li ₄ P ₂ O ₇	220,16	1,091	650	2	$(Li_{0,94}Cu^{I}_{0,06})_{4}P_{2}O_{7}^{a)}$
		$Cu^{II}_2P_2O_7$	20,99	0,070			Cu ^{b)}
		Cu	8,89	0,140			
7a	0,1	Li ₄ P ₂ O ₇	403,88	2,002	500	2	Li ₄ P ₂ O ₇ -trik
		$Cu^{II}_2P_2O_7$	85,95	1,000			Cu
		Cu	71,86	0,502			Li ₂ Cu ^{II} P ₂ O ₇
7b	0,1	Li ₄ P ₂ O ₇	403,88	2,002	650	2	$(Li_{0,9}Cu^{I}_{0,1})_{4}P_{2}O_{7}^{a)}$
		$Cu^{II}_2P_2O_7$	85,95	1,000			
		Cu	71,86	0,502			
8	0,12	Li ₄ P ₂ O ₇	193,88	0,961	650	2	$(Li_{0,88}Cu^{I}_{0,12})_{4}P_{2}O_{7}^{a)}$
		$Cu^{II}_2P_2O_7$	39,46	0,131			Cu,
		Cu	16,66	0,262			Li ₂ Cu ^{II} P ₂ O ₇
9	0,2	Li ₄ P ₂ O ₇	163,35	0,810	650	2	$(Li_{0,88}Cu^{I}_{0,12})_{4}P_{2}O_{7}^{a)}$
		$Cu^{II}_2P_2O_7$	60,96	0,202			Cu,
		Cu	25,74	0,405			Li ₂ Cu ^{II} P ₂ O ₇
10	0,75	Li ₄ P ₂ O ₇	33,94	0,168	650	2	$Cu^{II}_2P_2O_7$
		$Cu^{II}_2P_2O_7$	151,93	0,505			Cu,
		Cu	64,21	1,010			Li ₂ Cu ^{II} P ₂ O ₇
11	0,15	Li ₄ P ₂ O ₇	188,91	0,902	900	10	(Li _{0,9} Cu ^I _{0,1}) ₄ P ₂ O ₇ -trig*
		$Cu^{II}_2P_2O_7$	47,85	0,159			Cu
		Cu	20,32	0,320			

Tab. 3.2 Zusammenstellung der Experimente entlang des quasibinären Schnitts Li₄P₂O₇ – "Cu^I₄P₂O₇".

a) Zusammensetzung *x* anhand von Guinieraufnahmen (vgl. Abb. 3.5) und ermittelten Gitterparametern (vgl. Tab. 3.3) abgeschätzt.

b) Anteil an Kupfer ≈ 1 % (mittels quantitativer Analyse des Programms MATCH!^[86] abgeschätzt).

3.3 Ergebnisse

Die Auswertung der Pulverdiffraktogramme für Experiment 7 der Versuchsreihe (vgl. **Tab. 3.2**) zeigt, dass die angestrebte Komproportionierung bei Temperaturen von ϑ = 650 °C eintritt. Für das Produkt werden Beugungsbilder erhalten, die Ähnlichkeiten mit Beugungsbildern von reinem Lithiumpyrophosphat in der triklinen Modifikation aufweisen. Lithiumpyrophosphat wird demnach sukzessive mit Cu⁺-Ionen entsprechend (Li_{1-x}Cu^I_x)₄P₂O₇-trik dotiert. Wie erwartet verschieben sich die beobachteten Reflexe beim Austausch der kleineren Li⁺-Ionen gegen die größeren Kupfer(I)-Ionen zu kleineren Beugungswinkeln 4 θ (gestrichelte Linien; vgl. **Abb. 3.3**). Weiterhin bildet sich bei einer Reaktionstemperatur von $\vartheta = 500$ °C nicht ein Mischkristall der Form (Li_{1-x}Cu^I_x)₄P₂O₇-trik aus. Vielmehr liegt das Reaktionsprodukt als ein Gemenge aus triklinem Lithiumpyrophosphat, Kupfer und Lithium-kupfer(II)pyrophosphat (Li₂Cu^{II}P₂O₇) vor (vgl. **Abb. 3.3**). Damit die Komproportionierung im vorliegenden Fall eintritt, muss die Reaktionstemperatur demnach $\vartheta < 500$ °C betragen.

Abb. 3.3 Röntgenpulverdiffraktogramme zu (Li_{1-x}Cu^I_x)₄P₂O₇ (x = 0,1). Gleichgewichtsgemenge bei $\vartheta = 500$ °C aus Li₄P₂O₇-trik (rotes Strichdiagramm^[26]), Cu (rote Pfeile) und Li₂Cu^{II}P₂O₇ (grünes Strichdiagramm^[83]); Mischkristall (Li_{0.9}Cu^I_{0.1})₄P₂O₇-trik bei $\vartheta = 650$ °C; gestrichelte Linien verdeutlichen Reflexverschiebung.

Ausgehend vom Strukturmodell der triklinen Modifikation von Lithiumpyrophosphat^[26] wurden für verschiedene Kupferanteile x die Pulverdiffraktogramme indiziert und die Gitterparameter mit Hilfe des Programms Sos^[37] (vgl. Abschn. 9.1.2) bestimmt. Eine Zusammenstellung der ermittelten Werte gibt Tab. 3.3 wieder. Die Indizierung ist in Tab. 11.2 bis Tab. 11.7 wiedergegeben (vgl. Anhang).

x	a	b	С	α	β	γ	V
	(Å)	(Å)	(Å)	(°)	(°)	(°)	(Å ³)
0 ^[26]	8,5613(3)	7,1100(3)	5,1851(1)	111,441(2)	89,986(3)	103,065(4)	284,99(2)
0 ^{a)}	8,5651(7)	7,113(1)	5,1882(5)	111,41(1)	89,97(1)	103,04(1)	285,51(4)
0,03	8,576(1)	7,118(1)	5,1977(7)	111,50(2)	90,08(2)	103,05(2)	286,34(7)
0,06	8,587(1)	7,128(1)	5,2083(8)	111,59(2)	90,13(2)	103,06(2)	287,45(7)
0,10	8,600(1)	7,140(1)	5,2188(8)	111,74(2)	90,24(2)	103,04(2)	288,65(7)
0,12 ^{b)}	8,604(1)	7,144(1)	5,2225(8)	111,80(2)	90,23(2)	103,05(2)	289,01(7)
0,20 ^{b)}	8,592(4)	7,129(4)	5,210(4)	111,64(6)	90,08 (4)	103,08(3)	287,7(2)

Tab. 3.3 Gitterparameter und Zellvolumina für $Li_4P_2O_7$ -trik und $(Li_{1-x}Cu_x^I)_4P_2O_7$ -trik bei verschiedenen x.

a) Eigene Messung im Rahmen dieser Arbeit.

b) Gleichgewichtsgemenge aus $(Li_{1-x}Cu_x^I)_4P_2O_7$ -trik, Cu und $Li_2Cu^{II}P_2O_7$.

Abb. 3.4 Zusammenhang zwischen den Gitterparametern *a* (schwarz), *b* (rot) und *c* (grün) und der Zusammensetzung *x* im Fall von $(\text{Li}_{1-x}\text{Cu}_{x}^{I})_{4}\text{P}_{2}\text{O}_{7}$.

Abb. 3.5 Beugungsdiagramme zur Synthese von $(Li_{1-x}Cu_x^I)_4P_2O_7$ -trik für verschiedene Zusammensetzungen *x*. Rote Pfeile: Cu; rotes Strichdiagramm: $(Li_{0,9}Cu_{0,1}^I)_4P_2O_7$ -trik (von Strukturmodell für Li $_4P_2O_7$ -trik $^{[26]}$ unter Annahme einer statistischen Verteilung der Cu⁺-Ionen auf den Metalllagen abgeleitet); grünes Strichdiagramm: $Li_2Cu^{II}P_2O_7$ ^[83].

Bis zu einem Kupferanteil x = 0,1 wird ein linearer Anstieg der Gitterparameter (vgl. Abb. 3.4) und somit VEGARDSCHES Verhalten^[87] beobachtet.

Die Gitterparameter für den 12% igen Ansatz unterscheiden sich wiederum nicht signifikant von jenen für die Zusammensetzung bei x = 0,1 (vgl. **Tab. 3.3**). Die Grenzzusammensetzung für $(\text{Li}_{1-x}\text{Cu}_x^{\text{I}})_4\text{P}_2\text{O}_7$ -trik ist demnach $x_{grenz} = 0,1$. Im Einklang damit zeigt das Pulverdiffraktogramm für die Zusammensetzung x = 0,12 schwache Reflexe von Kupfer und Lithiumkupfer(II)-pyrophosphat.

Weiterhin zeigt sich, dass die ermittelten Gitterparameter für einen Kupferanteil x = 0,2 signifikant von denen der zuvor ermittelten Grenzzusammensetzung abweichen. Die Diskrepanz erklärt sich dadurch, dass sich für diesen Ansatz bereits so viel Lithium-kupfer(II)pyrophosphat gebildet hat, dass die Zuordnung der Reflexe und damit eine korrekte Indizierung schwerfällt. Eine Zusammenstellung der für die Versuchsreihe aufgenommenen Pulverdiffraktogrammen kann Abb. 3.5 entnommen werden.

Bei Zusammensetzungen mit $x \ge 0.5$ liegen Kupfer(II)-pyrophosphat, Lithium-kupfer(II)pyrophosphat und Kupfer miteinander in einem Gleichgewichtsgemenge vor (Exp. 10; vgl. **Abb. 3.6**). Sämtliche mit Hilfe der Versuchsreihe ermittelten Gleichgewichtsbeziehungen für \mathcal{P} = 650 °C sind in **Abb. 3.7** zusammengefasst.

Abb. 3.6 Beugungsdiagramm zu " $(Li_{1-x}Cu_x^I)_4P_2O_7$ " (x = 0.75; Exp. 10). Gleichgewichtsgemenge bei $\vartheta = 650^{\circ}C$ aus Cu^{II}₂P₂O₇ (rotes Strichdiagramm^[72]), Cu (rote Pfeile) und Li₂Cu^{II}P₂O₇ (grünes Strichdiagramm^[83]).

Abb. 3.7 Teil des GIBBSSCHEN Phasentetraeders für das Vierelementsystem Li/Cu/P/O mit besonderem Augenmerk auf die Dreistoffsysteme LiO_{0,5}/Cu^IO_{0,5}/PO_{2,5} (rot) und LiO_{0,5}/Cu^{II}O/PO_{2,5} (türkis). Darstellung der Gleichgewichtsbeziehungen für den quasibinären Schnitt Li₄P₂O₇ – "Cu^I₄P₂O₇" (grau-gestrichelte Linie). Gleichgewichtsexperimente bei $\vartheta = 650$ °C durchgeführt.

Der Versuch, aus der Schmelze Einkristalle von $(Li_{1-x}Cu_x^I)_4P_2O_7$ -trik zu züchten (vgl. Abschn. 3.2), führte nicht zum gewünschten Ergebnis. Experiment 11 (vgl. Tab. 3.2) hatte vielmehr die Synthese des zuvor charakterisierten $(Li_{0,9}Cu_{0,1}^I)_4P_2O_7$ -trig* (vgl. Abschn. 2.5) zur Folge, das Isotypie zum thermodynamisch metastabilen Li₄P₂O₇-trig* aufweist. Das Aufschmelz- und Abschreckverhalten eines Gemenges mit der formalen Zusammensetzung " $(Li_{0,85}Cu_{0,15}^I)_4P_2O_7$ " ähnelt demnach stark jenem von reinem Li₄P₂O₇-trik (vgl. Abschn. 2.3). Im Gegensatz zu reinem Li₄P₂O₇-trik, liefert das Pulverdiffraktogramm im Fall von " $(Li_{0,85}Cu_{0,15}^I)_4P_2O_7$ " (Exp.11; vgl. Abb. 3.8) keinerlei Hinweise auf thermodynamisch metastabiles Li₄P₂O₇-pseudomono*. Die Anwesenheit von Cu⁺-Ionen in der Schmelze scheint die Bildung der meta-

stabilen trigonalen Phase gegenüber der metastabilen, pseudomonoklinen Phase zu begünstigen. Weiterhin wird beobachtet, dass die Struktur von Li₄P₂O₇-trig^{*}, vergleichbar mit der Struktur von Li₄P₂O₇-trik, die Substitution von maximal 10 % Li⁺- durch Cu⁺-Ionen zulässt. Es wurde nicht untersucht, ob für den trigonalen Fall vergleichbar mit (Li_{1-x}Cu^I_x)₄P₂O₇-trik (0,0 $\leq x \leq 0,1$) ein Homogenitätsbereich existiert oder ob es sich bei (Li_{0,9}Cu^I_{0,1})₄P₂O₇-trig^{*} um eine diskrete Zusammensetzung handelt.

Abb. 3.8 Vergleich der Beugungsdiagramme von abgeschreckten mikrokristallinen Rückständen mit Li₄P₂O₇-trik (Exp. 1b) und (Li_{1-x}Cu^I_x)₄P₂O₇" (x = 0,15; Exp. 11) als Ausgangsmaterial. Schwarzes Strichdiagramm: (Li_{0.9}Cu^I_{0.1})₄P₂O₇-trig* (aus Einkristallstrukturverfeinerung abgeleitet, siehe **Abschn. 2.5**). Rote, gestrichelte Linien deuten Abwesenheit von Li₄P₂O₇-pseudomono* für abgeschrecktes "(Li_{1-x}Cu^I_x)₄P₂O₇" (x = 0,15) an.

3.4 ³¹P-MAS-NMR-Untersuchungen

Da Kupfer(I)-verbindungen als d¹⁰-Systeme diamagnetisch sind und im Gegensatz zu paramagnetischen Substanzen nicht mit einem von außen angelegtem Magnetfeld interferieren sollten, boten sich NMR-Experimente als ergänzende Analytik an. Für (Li_{1-x}Cu^I_x)₄P₂O₇-trik (x = 0,1) und (Li_{0,9}Cu^I_{0,1})₄P₂O₇-trig* wurden ³¹P-MAS-NMR-Untersuchungen durchgeführt (zum technischen Ablauf siehe Abschn. 9.3). Die ³¹P-MAS-NMR-Spektren wurden mit solchen von Li₄P₂O₇-trik, Li₄P₂O₇-trig*, und Li₄P₂O₇-pseudomono* verglichen.

Pyrophosphat	P-Lagen	S iso (ppm)	
Li ₄ P ₂ O ₇ -trik	2	-4,4; -6,6	
(Li _{0,9} Cu ^I _{0,1}) ₄ P ₂ O ₇ -trik	2	-3,7; -5,8	
Li ₄ P ₂ O ₇ -pseudomono*	4	-2,6	
Li ₄ P ₂ O ₇ -trig*	1	-6,6	
$(Li_{0.9}Cu_{0.1}^{I})_{4}P_{2}O_{7}$ -trig*	1	-5.9	

Tab. 3.4 Zusammenstellung der ³¹P-MAS-NMR-Daten. Isotrope chemische Verschiebungen δ_{iso} für Li₄P₂O₇-trik, (Li_{0.9}Cu^I_{0.1})₄P₂O₇-trig*, (Li_{0.9}Cu^I_{0.1})₄P₂O₇-trig* und Li₄P₂O₇-pseudomono*.

Im Fall der thermodynamisch stabilen Modifikation von Lithiumpyrophosphat zeigt das ³¹P- MAS-NMR-Spektrum zwei scharfe Resonanzen mit gleicher Intensität bei $\delta_{iso} = -4.4$ ppm und $\delta_{iso} = -6.6$ ppm. Diese Beobachtung steht mit der Struktur dieser Modifikation (zwei kristallographisch unabhängige Phosphorlagen; vgl. Tab. 3.4) im Einklang. Im Vergleich dazu, ist das ³¹P-MAS-NMR-Spektrum der kupferhaltigen isotypen Verbindung (Li_{0.9}Cu^I_{0.1})₄P₂O₇trik sehr ähnlich (vgl. Abb. 3.9b). Die Werte für die isotropen Verschiebungen sind im Vergleich nur leicht tieffeldverschoben ($\delta_{iso} = -3.7$ ppm und $\delta_{iso} = -5.8$ ppm). Allerdings sind die beiden Resonanzen nicht mehr intensitätsgleich, wobei das schwächere Signal eine Schulter aufweist (vgl. Abb. 3.9b). Der Trend setzt sich beim Vergleich zwischen Li₄P₂O₇-trig* und (Li_{0.9}Cu^I_{0.1})₄P₂O₇-trig* fort. Auch hier wird, in Übereinstimmung mit dem Strukturmodell (eine kristallographisch unabhängige Phosphorlage; vgl. Tab. 3.4), eine Resonanz beobachtet. Diese ist im Fall der kupferhaltigen Verbindung durch Tieffeldverschiebung samt ausgeprägter Schulter gekennzeichnet ($\delta_{iso} = -5.9$ ppm vs. $\delta_{iso} = -6.6$ ppm; vgl. Abb. 3.9e). Schultern, bzw. asymmetrische Intensitätsverteilungen korrelieren vermutlich mit Veränderungen in der lokalen Umgebung der Phosphoratome, hervorgerufen durch den Einbau von Cu⁺-Ionen in die Kristallgitter von Li₄P₂O₇-trik und Li₄P₂O₇-trig*. Zudem lässt die Intensitätsverteilung für (Li_{0.9}Cu^I_{0.1})₄P₂O₇-trik vermuten, dass sich die Cu⁺-Ionen wahrscheinlich nicht statistisch auf alle Metalllagen verteilen, sondern bevorzugt bestimmte Metalllagen besetzen. Die markante Schulter im Fall von (Li_{0,9}Cu^I_{0,1})₄P₂O₇-trig* (vgl. Abb. 3.9e) kann wiederum möglicherweise auch auf amorphe Bestandteile in der durch Abschrecken einer Schmelze erhaltenen Probe zurückgeführt werden. Das ³¹P-MAS-NMR-Spektrum für Li₄P₂O₇-pseudomono* (vgl. Abb. **3.9c**) zeigt interessanterweise ein Signal ($\delta_{iso} = -2,6$ ppm), trotz vier, kristallographisch unabhängiger Phosphorlagen im Strukturmodell (vgl. Tab. 2.4). Neben der Möglichkeit einer. Isochronen Überlagerung, könnte diese Beobachtung darauf hindeuten, dass das in Abschn. 2.4 beschriebene Strukturmodell für Li₄P₂O₇-pseudomono* höhere Symmetrie als $P\overline{1}$ aufweist.

Abb. 3.9 Zusammenfassung der ³¹P-MAS-NMR-Experimente. Verunreinigungen: Li₃PO₄ ($\delta_{iso} = 9,1$ ppm) (*), Rotormarkierung ($\delta_{iso} = -11,4$ ppm) (**). Resonanz bei -5,7 ppm (***) unbekannt.

4 Das Lithium-kupfer(I)-catena(metaphoshat) Li₃Cu^I(PO₃)₄

4.1 Synthese

Neben dem quasibinären Schnitt Li₄P₂O₇ – "Cu^I₄P₂O₇" wurde im Laufe der vorliegenden Arbeit der quasibinäre Schnitt LiPO₃ – "Cu^IPO₃" (Li_{1-x}Cu^I_xPO₃) untersucht. Dies erfolgte ebenfalls mit Hilfe von Komproportionierungsreaktionen, bei denen Kupfer, LiPO₃ und Cu^{II}₂P₄O₁₂ eingesetzt wurden (**Gleichung 4.1**).

$$(1-x) \operatorname{LiPO}_{3}(s) + \frac{1}{4}x \operatorname{Cu}_{2}^{\mathrm{II}} \operatorname{P}_{4} \operatorname{O}_{12}(s) + \frac{1}{2}x \operatorname{Cu}^{0}(s) \xrightarrow{500 \,^{\circ}\mathrm{C}; \, 1\mathrm{d}} \operatorname{Li}_{1-x} \operatorname{Cu}_{x}^{\mathrm{I}} \operatorname{PO}_{3}(s)$$
(Gl. 4.1)

Die Synthesen wurden auch hier in geschlossenen Kieselglasampullen durchgeführt. Die Reaktionsgemenge wurden zu Presslingen verarbeitet, die Experimente bei Temperaturen von $\vartheta = 500$ °C durchgeführt. Bei höheren Temperaturen schmolzen die Presslinge auf. Dieser Umstand wurde bei der Züchtung von Einkristallen genutzt.

Abb. 4.1 Einwaagen für die Versuchsreihe zur Synthese von $\text{Li}_{1-x}\text{Cu}_x^{\text{I}}\text{PO}_3$ und Homogenitätsgebiet bei 0,14 $\leq x \leq 0,25$.

Innerhalb einer Reaktionszeit von 24 Stunden wurde bei $\vartheta = 500$ °C Gleichgewichtseinstellung erreicht. Das blassrote Ausgangsmaterial lag nach erfolgter Reaktion als ockerfarbener Pressling vor. Für $x \ge 0.25$ wurde eine Rotfärbung des Materials beobachtet. Die Einwaagepunkte der Versuchsreihe können Abb. 4.1 entnommen werden, die Ergebnisse der Versuchsreihe sind in Tab. 4.1 zusammengefasst.

Nr.	x	Edukte	Einwaage	Einwaage	Temp.	Dauer	Ergebnisse nach
			(mg)	(mmol)	(°C)	(d)	IP-Guinieraufnahme
12	0,1	$\begin{array}{c} LiPO_{3}\\ Cu^{II}_{2}P_{4}O_{12}\\ Cu \end{array}$	211,11 30,20 8,69	2,457 0,068 0,137	500	1	Li _{0,86} Cu ^I _{0,14} PO ₃ ^{a)} LiPO ₃ , Cu
13a	0,14	$\begin{array}{c} LiPO_{3}\\ Cu^{II}{}_{2}P_{4}O_{12}\\ Cu \end{array}$	196,85 41,33 11,86	2,291 0,093 0,187	500	1	$\begin{array}{l} Li_{0,86}Cu^{I}_{0,14}PO_{3}{}^{a)}\\ Cu,Cu^{II}{}_{2}P_{2}O_{7}{}^{b)}\end{array}$
13b	0,14	$\begin{array}{c} LiPO_{3}\\ Cu^{II}{}_{2}P_{4}O_{12}\\ Cu \end{array}$	196,85 41,33 11,86	2,291 0,093 0,187	500	1	Li _{0,86} Cu ^I _{0,14} PO ₃ ^{a)} LiPO ₃ , Cu
14a	0,2	$\begin{array}{c} LiPO_{3}\\ Cu^{II}{}_{2}P_{4}O_{12}\\ Cu \end{array}$	176,76 56,97 16,36	2,057 0,129 0,257	500	1	$\begin{array}{l} Li_{0,80}Cu^{I}_{0,2}PO_{3}{}^{a)}\\ Cu,Cu^{II}{}_{2}P_{2}O_{7}{}^{b)}\end{array}$
14b	0,2	LiPO ₃ Cu ^{II} ₂ P ₄ O ₁₂ Cu	176,79 56,95 16,34	2,058 0,129 0,257	500	1	Li _{0,80} Cu ^I _{0,2} PO ₃ ^{a)} Cu,
15a	0,25	$\begin{array}{c} LiPO_{3}\\ Cu^{II}{}_{2}P_{4}O_{12}\\ Cu \end{array}$	161,01 69,18 19,87	1,874 0,156 0,313	500	1	$\begin{array}{l} Li_{0,75}Cu^{I}_{0,25}PO_{3}{}^{a)}\\ Cu,\ Cu^{II}{}_{2}P_{2}O_{7}{}^{b)}\end{array}$
15b	0,25	$\begin{array}{c} LiPO_{3}\\ Cu^{II}{}_{2}P_{4}O_{12}\\ Cu \end{array}$	161,05 69,19 19,85	1,875 0,156 0,313	500	1	$\begin{array}{l} Li_{0,75}Cu_{0,25}PO_{3}{}^{a)}\\ Cu\end{array}$
16	0,35	LiPO3 Cu ^{II} 2P4O12 Cu	123,09 91,71 26,26	1,433 0,207 0,413v	500	1	$\begin{array}{l} Li_{0,75}Cu^{I}_{0,25}PO_{3}{}^{a)}\\ Cu \end{array}$
17	0,5	$\begin{array}{c} LiPO_{3}\\ Cu^{II}_{2}P_{4}O_{12}\\ Cu \end{array}$	94,05 121,19 34,77	1,095 0,274 0,547	500	1	$Li_{0,75}Cu^{I}_{0,25}PO_{3}^{a)}$ Cu, LiCu ^{II} (PO ₃) ₃

Tab. 4.1 Zusammenstellung der Experimente für den quasibinären Schnitt LiPO₃ – "Cu^IPO₃".

a) Anhand der Guinieraufnahmen und ermittelten Gitterparametern (vgl. Tab. 3.3) wurde x abgeschätzt.

b) $Cu^{II}_2P_4O_{12}$ mit $Cu_2P_2O_7$ verunreinigt.

4.2 Auswertung der Guinieraufnahmen

Eine Auswahl der für die Versuchsreihe aufgenommenen Pulverdiffraktogramme ist in den Abb. 4.3 bis Abb. 4.6 dargestellt.

Alle fünf Beugungsbilder zeigen ein eng verwandtes Reflexmuster, das sich weder mit der Datenbank des Programms MATCH!^[86] noch mit der ICSD-Datenbank^[8] identifizieren lässt. Zudem zeigt sich, dass mit zunehmenden Kupfergehalt *x* in den Einwaagen, die Reflexe der zu diesem Zeitpunkt unbekannten Phase zu niedrigeren Beugungswinkeln 4 θ verschoben werden. Das deutet darauf hin, dass die unbekannte Phase einer gewissen Phasenbreite unterliegt und es zu einer Mischkristallbildung der Form Li_{1-x}Cu^I_xPO₃ gekommen ist. Dazu passt die Beobachtung, dass sich in Abhängigkeit der Zusammensetzung *x* die relativen Reflexintensitäten, vor Allem sichtbar am Beispiel des Reflexes 2 0 $\overline{2}$ (vgl. Abb. 4.4 bis Abb. 4.6) zum Teil deutlich ändern.

Neben der unbekannten Phase wird in den Ansätzen Kupfer als Nebenphase beobachtet. Des Weiteren lassen sich wenige schwache Reflexe Kupfer(II)-pyrophosphat $Cu^{II}_2P_2O_7$ zuordnen. (vgl. z. B. Abb. 4.4). Dies kann mit einer leichten Verunreinigung des Eduktes $Cu^{II}_2P_4O_{12}$ mit $Cu^{II}_2P_2O_7$ erklärt werden. Für x = 0,1 zeigt sich wiederum, dass die unbekannte Phase $Li_{1-x}Cu^{I}_xPO_3$ in der unteren Grenzzusammensetzung im chemischen Gleichgewicht mit Lithiummetaphosphat vorliegt (vgl. Abb. 4.3).

Schließlich treten beim Übergang von der Zusammensetzung x = 0,25 nach x = 0,5 deutliche Unterschiede in den Beugungsdiagrammen auf. Neben den Reflexmustern für die unbekannte Phase Li_{1-x}Cu^I_xPO₃ und Kupfer, werden Reflexe beobachtet, die sich LiCu^{II}(PO₃)₃^[81] zuordnen lassen (vgl. Abb. 4.7). Diese Beobachtung deutet auf eine obere Grenzzusammensetzung für das unbekannte Metaphosphat Li_{1-x}Cu^I_xPO₃ bei $0,25 \le x \ge 0,5$ hin. Das beobachtete Gleichgewicht bei x = 0,5 wird mit Gleichung 4.2 beschrieben, sämtliche in der Versuchsreihe beobachteten Gleichgewichtsbeziehungen werden in Abb. 4.2 wiedergegeben.

$$\frac{1}{2}\text{LiPO}_{3}(s) + \frac{1}{8}x \operatorname{Cu}_{2}^{\text{II}}P_{4}O_{12}(s) + \frac{1}{4}x \operatorname{Cu}^{0}(s) \xrightarrow{500 \,^{\circ}\text{C}; \, 1\text{d}}$$

$$\frac{2}{5}\text{Li}_{0,75}\text{Cu}_{0,25}^{\text{I}}\text{PO}_{3}(s) + \frac{1}{5}\operatorname{LiCu}^{\text{II}}(\text{PO}_{3})_{3}(s) + \frac{1}{5}\text{Cu}^{0}(s) \quad (\text{Gl. 4.2})$$

Abb. 4.2 Teil des GIBBSSCHEN Phasentetraeders für das Vierelementsystem Li/Cu/P/O. Gezeigt werden die quasiternären Bereiche LiO_{0,5}/Cu^{II}O/PO_{2,5} (Türkis) und LiO_{0,5}/Cu^{II}O_{0,5}/PO_{2,5} (rot) und die Gleichgewichtsbeziehungen für den quasibinären Schnitt LiPO₃ - "Cu^IPO₃" bei $\vartheta = 500$ °C.

Die Indizierung des unbekannten Reflexmusters erfolgte mit Hilfe des Programms VISSER^[88]. Dazu wurde das Pulverdiffraktogramm von Li_{0,86}Cu^I_{0,14}PO₃ (Exp. 13a; vgl. **Tab. 4.1**) mit α -Quarz als Standard aufgenommen (vgl. **Abschn. 9.1.2**) und die beobachteten Reflexlagen ausgemessen. Den gegen den Standard korrigierten Beugungswinkeln ordnete das Programm *hkl*-Werte zu und schlug für die bis dahin unbekannte Verbindung eine innenzentrierte, monokline Zelle vor, die zu einer *C*-zentrierten Zelle umgestellt wurde. Die weitere Analyse der beobachteten *hkl*-Werte ergab für 28 Reflexe die Auslöschungsbedingungen: *hkl*: $h + k \neq$ 2n; *h0l*: h, $l \neq 2n$; 0k0: $k \neq 2n$. Damit konnten die möglichen Raumgruppen auf die zum Extinktionssymbol *C* 1 *c* 1 passenden Gruppen *C c* (Nr. 9) bzw. *C*2/*c* (Nr.15) eingeschränkt werden.

Abb. 4.3 Experimentelles Pulverdiffraktogramm für $\text{Li}_{1-x}\text{Cu}_x^{I}\text{PO}_3$ (x = 0,1); rote Pfeile: Cu; rotes Strichdiagramm: $\text{LiPO}_3^{[48]}$; Schwarzes Strichdiagramm: $\text{Li}_{0.86}\text{Cu}_{0.14}^{I}\text{PO}_3$. Die Simulation für $\text{Li}_{0.86}\text{Cu}_{0.14}^{I}\text{PO}_3$ beruht auf dem Einkristallstrukturmodell von $\text{Li}_{13,5}\text{Cu}_{2,5}^{I}(\text{PO}_3)_{16}$ (vgl. **Abschn. 4.3**) mit angepassten *s.o.f* für die Metalllagen Li4 ($8f \rightarrow 0,22$) bzw. Cu1 ($4d \rightarrow 0,56$).

Abb. 4.4 Experimentelles und simuliertes Pulverdiffraktogramm (schwarz) für $Li_{0,86}Cu_{0,14}^{I}PO_3$; Einwaage x = 0,14; roter Pfeil: Cu; graue Pfeile: $Cu_{2}^{II}P_2O_7^{[72]}$.

Abb. 4.5 Experimentelles und simuliertes Pulverdiffraktogramm für Li_{0,8}Cu^I_{0,2}PO₃; rote Pfeile: Cu; graue Pfeile: Cu^{II}₂P₂O₇^[72]. Die Simulation für Li_{0,8}Cu^I_{0,2}PO₃ beruht auf dem Einkristallstrukturmodell von Li_{13,5}Cu^I_{2,5}(PO₃)₁₆ (vgl. **Abschn. 4.3**) mit angepassten *s.o.f* für die Metalllagen Li4 (8 $f \rightarrow 0,1$) bzw. Cu1 (4 $d \rightarrow 0,8$).

Abb. 4.6 Experimentelles und simuliertes Pulverdiffraktogramm für $Li_{0,75}Cu^{I}_{0,25}PO_3$; rote Pfeile: Kupfer; graue Pfeile: $Cu^{II}_{2}P_2O_7^{[72]}$. Die Simulation für $Li_{0,75}Cu^{I}_{0,25}PO_3$ beruht auf dem Einkristallstrukturmodell von $Li_{13,5}Cu^{I}_{2,5}(PO_3)_{16}$ (vgl. **Abschn. 4.3**) mit vollbesetzter Metalllage Cu1.

Abb. 4.7 Experimentelles Pulverdiffraktogramm für $\text{Li}_{1-x}\text{Cu}_x^{I}\text{PO}_3$ (x = 0,5); rote Pfeile: Cu; grünes Strichdiagramm: $\text{LiCu}^{II}(\text{PO}_3)_{5}^{[81]}$; schwarzes Strichdiagramm: $\text{Li}_{0,75}\text{Cu}^{I}_{0,25}\text{PO}_3$.

Mit dem Indizierungsvorschlag wurden für die Diffraktogramme der Proben Li_{1-x}Cu¹_xPO₃ mit x = 0,10, x = 0,14, x = 0,20, x = 0,25 und x = 0,50 die Gitterparameter bestimmt. Die Ergebnisse der Berechnung sind in **Tab. 4.2** zusammengefasst. Details zu den Indizierungen finden sich in **Tab. 11.8** bis **Tab. 11.15** (vgl. **Anhang**) wieder.

x	a	В	С	β	V	Anzahl
	(Å)	(Å)	(Å)	(°)	(Å ³)	Reflexe
0,10 ^{a)}	14,496(7)	8,182(1)	9,442(4)	120,91(4)	960,8(5)	30
0,14 ^{b)}	14,513(6)	8,190(1)	9,455(3)	120,90(3)	964,4(4)	29
0,14	14,507(4)	8,1861(7)	9,453(2)	120,92(2)	963,1(3)	30
0,20 ^{b)}	14,525(5)	8,198(1)	9,480(3)	120,88(2)	968,8(4)	29
0,20	14,531(4)	8,1978(7)	9,486(2)	120,92(2)	969,4(3)	33
0,25 ^{b)}	14,532(5)	8,2051(9)	9,499(3)	120,91(2)	971,9(4)	29
0,25	14,547(3)	8,2062(7)	9,507(2)	120,91(1)	973,8(2)	35
0,50 ^{a)}	14,541(3)	8,202(1)	9,511(2)	120,92(2)	973,1(3)	18
. ~.						

 Tab. 4.2
 Ermittelte Gitterparameter und Zellvolumina für die vorliegende Messreihe.

a) Gitterparameter für Grenzzusammensetzungen $x_{grenz} = 0.14$ und $x_{grenz} = 0.25$.

b) Versuche mit Cu^{II}₂P₂O₇-Verunreinigung.

Die ermittelten Gitterparameter zeigen für die Zusammensetzungen x = 0,14 bis x = 0,25 einen nahezu linearen Anstieg (vgl. Abb. 4.8) der Gitterparameter an, der im Einklang mit der VEGARDSCHEN Regel^[87] steht. Für die Zusammensetzungen x = 0,10 und x = 0,5 ergeben sich im, Rahmen der Genauigkeit der Bestimmung, Werte, wie für x = 0,14 respektive x = 0,25. Die untere Grenzzusammensetzung liegt damit offenbar bei $x_{grenz} = 0,14$, die obere bei $x_{grenz} = 0,25$.

Abb. 4.8 Zusammenhang zwischen den Gitterparametern *a* (schwarz), *b* (rot) und *c* (grün) und der Zusammensetzung *x* im Fall von $\text{Li}_{1-x}\text{Cu}_x^{I}\text{PO}_3$.

4.3 Einkristallstrukturanalyse

Aus einem Experiment, bei dem ein Phasengemenge aus LiPO₃, $Cu_2^{II}P_4O_{12}$ und Kupfer auf die Zusammensetzung Li_{0,8}Cu^I_{0,2}PO₃ eingewogen wurde, konnte ein Einkristall gezüchtet werden, indem ein entsprechendes Reaktionsgemenge in einer geschlossenen, evakuierten Kieselglasampulle bei relativ moderaten Temperaturen von $\vartheta = 525$ °C zum Schmelzen gebracht und daraufhin mit einer Rate von 1 °C · h⁻¹ (vgl. Abschn. 8.4) abgekühlt wurde. Die auskristallisierte Schmelze wurde im Anschluss vorsichtig zerdrückt. Unter dem Lichtmikroskop konnte aus den Bruchstücken ein kleiner, farbloser, quaderförmiger Kristall isoliert und entsprechend Abschn. 9.2 diffraktometrisch werden.

Die Verbindung kristallisiert in der Laue-Klasse 2/*m*. Es wurden integrale Auslöschungen für die Reflexgruppe *hkl* mit der Auslöschungsbedingung *hkl*: $h + k \neq 2n$ beobachtet. Es lag eine *C*-Zentrierung vor. Zusätzlich ergaben sich weitere Auslöschungen für die Reflexgruppen *h0l* (Auslöschungsbedingung: $h, l \neq 2n$) und *0k0* (Auslöschungsbedingung: $k \neq 2n$). Daraus leitete sich das Extinktionssymbol *C*1*c*1 mit den dazugehörigen Raumgruppen *Cc* (Nr. 9) und *C*2/*c* (Nr. 15) ab. Diese Beobachtung stimmt mit der Indizierung der Pulveraufnahmen überein (vgl. Abschn. 4.2). Die Kristallstruktur wurde im Folgenden in der höhersymmetrischen Raumgruppe C2/c gelöst und verfeinert. Laut Verfeinerung betrug der Kupferanteil x = 16 %, die Zusammensetzung somit Li_{0,84}Cu^I_{0,16}PO₃ bzw. Li_{13,5}Cu^I_{2,5}(PO3)₁₆. Dies deutet darauf hin, dass das Reaktionsgemisch inkongruent aufschmilzt.

Der Datensatz von Li_{13,5}Cu^I_{2,5}(PO₃)₁₆ umfasste 7323 Reflexe. Daraus ergaben sich 2130 unabhängige Reflexe mit einem Gütefaktor der Mittelung von 2,5%. Die Strukturlösung erfolgte anhand eines empirisch^[89] absorptionskorrigierten Datensatzes. Die Strukturlösung verlief nach bewährter Methode (vgl. **Abschn. 9.2**). Die Kristallstruktur ließ sich gut verfeinern ($R_1 = 2,05\%$, wR₂ = 6,34% und *Goof* = 1,100).

Das vorgeschlagene Strukturmodell für Li_{13,5}Cu^I_{2,5}(PO₃)₁₆ weist einige Besonderheiten auf. So wird für eine der vier vorliegenden Lithiumlagenlagen Li3 eine Lagefehlordnung beobachtet. Anomal hohe Werte für die anisotropen Auslenkungsparameter führten zu einer Aufspaltung der Wyckoff-Lage 4e in die Lage 8f mit halber Besetzung. Wegen hoher Korrelation der anisotropen Auslenkungsparameter wurde diese Lage nur isotrop verfeinert. Des Weiteren wird für die Lithiumlage Li4 und die Kupferlage Cu1 sowohl eine Lage- als auch Besetzungsfehlordnung beobachtet. Wegen der räumlichen Nähe der beiden Metalllagen zueinander, wurden ihre Besetzungsfaktoren bei der Strukturverfeinerung in Relation gesetzt. Mit Hilfe der EADP-Routine in SHELX-97^[44] wurden zusätzlich die anisotropen Auslenkungsparameter für die beiden Metalllagen aneinandergekoppelt. Diese Prozedur führte zu einem Besetzungsverhältnis von Li_{0.38}Cu_{0.62}. Anomal hohe Werte für die anisotropen Auslenkungsparameter führten zudem zu der Annahme, dass die Li⁺-Ionen im Unterschied zu den Cu⁺-Ionen nicht die spezielle Wyckoff-Lage 4d sondern versetzt dazu die allgemeine Wyckoff-Lage 8*f* besetzen (vgl. Abb. **4.10c**). Weiterhin zeichnet sich die Besetzungsfehlordnung auf den Metalllagen Li4 und Cu1 für zuvor postulierte Phasenbreite für die Mischkristallreihe $Li_{1-x}Cu_{x}^{I}PO_{3}$ unter der Annahme eines variablen Besetzungsverhältnisses von Cu⁺- bzw. Li⁺-Ionen verantwortlich und liefert eine Erklärung für die beobachtete obere Grenzzusammensetzung x_{grenz} , = 0,25, die aus einer Vollbesetzung der Metalllage Cul mit Cu⁺-Ionen bei gleichzeitiger Nichtbesetzung der Metalllage Li4 resultiert.

Trotz der oben aufgeführten Besonderheiten ergeben sich mehr als zufriedenstellende Gütefaktoren der Verfeinerung mit $R_1 = 2,05\%$, wR₂ = 6,34% und *Goof* = 1,100, was für die gute Qualität des vermessenen Einkristalls spricht. Angaben zur Strukturverfeinerung, Atompositionen, Atomabständen, isotropen und anisotropen Auslenkungsparametern sind in den **Tab. 4.3** bis **Tab. 4.6** zusammengestellt.

	Li13,5Cu ^I 2,5(PO3)16
Kristallsystem	monoklin
Raumgruppe	<i>C</i> 2/ <i>c</i> (Nr. 15)
Gitterparameter (Einkristalldaten)	
<i>a</i> (Å)	14,5240(6)
<i>b</i> (Å)	8,1961(3)
<i>c</i> (Å)	9,4774(4)
β (°)	120,979(2)
Zellvolumen $V(Å^3)$	967,26(7)
Zahl der Formeleinheiten Z	1
Molmasse (g \cdot mol ⁻¹)	1516,12
Dichteroentg. $(g \cdot cm^{-3})$	2,602
F(000)	736,7
Kristallfarbe	farblos
Kristallform	quaderförmig
Kristallgröße (mm ³)	$0,01 \cdot 0,10 \cdot 0,28$
Diffraktometer	Bruker APEX-II CCD
benutzte Röntgenstrahlung	Mo-K α_1 , $\lambda = 0,71069$ Å
Temperatur (K)	296(2)
Absorptionskoeffizient (mm ⁻¹)	2,18
Winkelbereich (°)	3,3 < 2 <i>θ</i> < 35,02
Messbereich	$-23 \le h \le 22$
	$-13 \le k \le 13$
	$-15 \le l \le 15$
Verwendete Programme	SHELXS-97 ^[43] ; SHELXL-97 ^[44] ; WinGx ^[45]
Absorptionskorrektur	empirisch
Zahl der gemessenen Reflexe	7323
Zahl der unabhängigen Reflexe	2130
Parameter	97
Gütefaktor der Mittelung R _{int}	0,021
$R(F)^{\mathrm{a}}$ für $F_0 > 4\sigma(F_0)$	0,021
Gütefaktor $wR(F^2)^{b,d}$	0,064
<i>Goof</i> ^{c)}	1,100
max./min. Restelektronendichte ($e \cdot Å^3$)	+0,495 / -0,443

 $\label{eq:table_$

a) $R_1 = \Sigma ||F_0| - |F_C|| / \Sigma |F_0|$; b) $wR_2 = [(\Sigma (F_0^2 - F_c^2)^2) / \Sigma (w \cdot (F_0^2)^2)]^{1/2}$; c) $Goof = [(\Sigma_{hkl} w \cdot (F_0^2 - F_c^2)^2) / (m-n)]^{1/2}$ d) $w = 1/[\sigma^2 \cdot (F_0^2)^2 + (a \cdot P)^2 + b \cdot P]$

Atom	Lage	x	у	Z.	s. o. f.	Ueq (Å ²) ^{a)}
Li1	4 <i>e</i>	0	0,8112(4)	1/4	1	0,0180(5)
Li2	4 <i>e</i>	0	-0,5149(4)	1/4	1	0,0181(5)
Li3	8 <i>f</i>	0,0142(4)	-0,1492(4)	0,7779(5)	0,5	0,0167(8)
Li4	8 <i>f</i>	0,225(1)	0,299(2)	0,482(2)	0,1878(8)	0,0203(1)
Cu1	4d	1/4	1/4	1/2	0,624(2)	0,0203(1)
P1	8 <i>f</i>	0,16103(2)	0,03291(3)	0,66455(3)	1	0,01120(6)
P2	8 <i>f</i>	0,12975(2)	-0,31951(3)	0,60018(3)	1	0,01117(6)
01	8 <i>f</i>	0,08488(8)	-0,3306(1)	0,7100(1)	1	0,0193(2)
O2	8 <i>f</i>	0,15230(7)	0,1493(1)	0,5382(1)	1	0,0193(2)
03	8 <i>f</i>	0,26902(7)	0,0632(1)	0,8367(1)	1	0,0182(2)
O4	8 <i>f</i>	0,06057(7)	-0,3526(1)	0,4220(1)	1	0,0187(2)
05	8 <i>f</i>	0,18443(7)	-0,1446(1)	0,6214(1)	1	0,0167(2)
06	8 <i>f</i>	0,07165(7)	0,0268(1)	0,6966(1)	1	0,0162(2)

Tab. 4.4 Atomlagen und isotrope Auslenkungsparameter für $Li_{13,5}Cu^{I}_{2,5}(PO_3)_{16}$.

a) $U_{eq} = \frac{1}{3} \sum_{i} \sum_{j} U_{ij} \cdot a_i^* \cdot a_j^* \cdot a_i \cdot a_j.$

Tab. 4.5 Anisotrope Auslenkungsparameter für $Li_{13,5}Cu^{I}_{2,5}(PO_3)_{16}$.

Atom ^{a)}	$U_{11}({ m \AA})^2$	$U_{22}({ m \AA})^2$	$U_{33}({ m \AA})^2$	$U_{23}(\text{\AA})^2$	$U_{13}({ m \AA})^2$	$U_{12}({ m \AA})^2$
Li1	0,022(1)	0,014(1)	0,018(1)	0	0,011(1)	0
Li2	0,023(1)	0,015(1)	0,017(1)	0	0,011(1)	0
Li4	0,0237(2)	0,0226(2)	0,0178(2)	0,002(2)	0,0131(2)	-0,0083(1)
Cu1	0,0237(2)	0,0226(2)	0,0178(2)	0,002(2)	0,0131(2)	-0,0083(1)
P1	0,0130(1)	0,0099(1)	0,0111(1)	-0,00027(8)	0,00648(9)	-0,00183(8)
P2	0,0132(1)	0,0096(1)	0,0098(1)	-0,00019(8)	0,00528(9)	0,00065(8)
01	0,0276(4)	0,0143(4)	0,0250(4)	-0,0004(3)	0,0200(4)	-0,0013(3)
O2	0,0226(4)	0,0184(4)	0,0164(3)	0,0052(3)	0,0097(3)	-0,0031(3)
O3	0,0184(4)	0,0192(4)	0,0122(3)	-0,0007(3)	0,0044(3)	-0,0084(3)
O4	0,0209(4)	0,0150(3)	0,0111(3)	-0,0014(3)	0,0018(3)	0,0012(3)
O5	0,0207(4)	0,0111(3)	0,0234(4)	-0,0040(3)	0,0151(3)	-0,0031(3)
O6	0,0177(3)	0,0134(3)	0,0223(4)	-0,0003(3)	0,0137(3)	-0,0003(3)

a) Die Lithiumlage Li3 wurde nur isotrop verfeinert.

[Li1O4]		[Li2O4]		[Li3O5]		[Li4O4]	
Li1-06	1,909(2)	Li2-04	1,930(2)	Li3-06	2,002(4)	Li4-02	1,86(2)
Li1-06	1,909(2)	Li2-04	1,930(2)	Li3-06	2,008(4)	Li4-02	1,94(2)
Li1-04	1,938(2)	Li2-01	1,936(2)	Li3-01	2,088(4)	Li4-01	2,34(2)
Li1-04	1,938(2)	Li2-01	1,936(2)	Li3-01	2,114(4)	Li4-O3	2,74(2)
				Li3-O2	2,239(4)		
[P1O ₄]		[P2O ₄]		[Cu1O ₂]			
P1-O6	1,4782(8)	P2-O4	1,4790(8)	Cu1-O2	1,8314(9)		
P1-O2	1,4847(8)	P2-O1	1,4879(8)	Cu1-O2	1,8314(9)		
P1-O5	1,5946(8)	P2-O3	1,5933(8)				
P1-O3	1,5966(8)	P2-O5	1,6006(8)				

Tab. 4.6 Interatomare Abstände in $Li_{13,5}Cu^{I}_{2,5}(PO_3)_{16}$ in Å.

4.4 Beschreibung und Diskussion der Kristallstruktur

Im Zuge der Versuchsreihe zur Untersuchung des quasibinären Schnitts LiPO₃ - "Cu^IPO₃" gelang mit der Verbindung Li_{13,5}Cu^I_{2,5}(PO₃)₁₆ erstmalig die Synthese eines Lithium-kupfer(I)- catena(metaphosphats). Als Besonderheit wird, anders als bei den Lithium-kupfer(I)- orthophosphaten (vgl.^[10]) und Lithium-kupfer(I)-pyrophosphaten (vgl. **Abschn. 3.2**), im Fall von Li_{13,5}Cu^I_{2,5}(PO₃)₁₆ das entsprechende Lithiumphosphat LiPO₃ nicht unter Erhalt seiner Kristallstruktur mit einem Anteil an Cu⁺-Ionen dotiert. Vielmehr wird die Entstehung eines eigenen Strukturtyps beobachtet.

Die Verbindung kristallisiert in der monoklinen Raumgruppe C2/c (a = 14,5240(6) Å, b = 8,1961(3) Å, c = 9,4774(4) Å, $\beta = 120,979(2)^{\circ}$) und enthält eine Formeleinheit in der Elementarzelle. Die asymmetrische Einheit besteht aus vier voneinander unabhängigen Lithiumlagen, einer Kupferlage, und zwei bzw. sechs voneinander unabhängigen Phosphorbzw. Sauerstofflagen. Die Kupferlage und eine Lithiumlage (Li4) sind aufgrund der räumlichen Nähe in Bezug auf die Lagebesetzung aneinander gekoppelt (Besetzungsverhältnis von Li_{0,38}Cu_{0,62}; (vgl. Abschn. 4.3).

Die Phosphoratome werden erwartungsgemäß tetraedrisch von vier Sauerstoffatomen umgeben. Dabei werden, typisch für ein Metaphosphat, zwei kurze Phosphor-Sauerstoff-Abstände (1,4774 Å $\leq d(P-O_t) \leq 1,4887$ Å) für die terminalen und zwei lange Phosphor-Sauer-

stoff-Abstände (1,5925 Å $\leq d(P-O_b) \leq 1,6014$ Å) für die verbrückenden Sauerstoffatome beobachtet (vgl. z. B.^[22,46]). Charakteristisch für ein Catena(metaphosphat) liegen die [PO₄]-Einheiten in Form unendlich verknüpfter Ketten entsprechend der NIGGLI-Formel $\int_{\infty}^{1} [PO_{1/2}O_{2/2}]^{-}$ vor. Weiterhin zeigt die Metaphosphatkette eine Translationsperiode von vier Tetraedern (vgl. Abb. 4.9).

Die Li⁺-Ionen auf den Lagen Li1 und Li2 werden ebenfalls von vier Sauerstoffatomen koordiniert. Diese [LiO₄]-Tetraeder bilden in der Kristallstruktur kantenverknüpfte Doppeltetraeder aus. Die Lithium-Sauerstoff-Abstände betragen 1,907 Å $\leq d$ (Li-O) \leq 1,940 Å und zeigen keine Auffälligkeit auf (vgl. z. B.^[26,47,48]).

Abb. 4.9 Polyeder- (a, b). und ORTEP-Darstellung (c) einer Translationsperiode der Metaphosphatkette Wahrscheinlichkeit für Ellipsoide bei 50 %.

Im Unterschied dazu, besetzen die Li⁺-Ionen auf der Lage Li3 nicht Tetraeder- sondern Oktaederlücken. Dieser Umstand ist eher ungewöhnlich, da Oktaederlücken zu groß sind, als dass kleine Ionen wie Li⁺ den Raum optimal füllen könnten. Durch Verringerung der Koordinationszahl wird dieser unvorteilhafte Zustand aufgelöst. Unter Inkaufnahme eines Symmetrieverlusts, rücken die Li⁺-Ionen auf der Lage Li3 aus der Mitte der Oktaederlücken in Richtung eines der axialen Sauerstoffatome heraus, wodurch die Koordinationszahl von sechs auf fünf (vgl. **Abb. 4.10b**) verringert wird. Die ermittelten Lithium-Sauerstoffabstände betragen 1,998 Å $\leq d$ (Li-O) $\leq 2,243$ Å und liegen im erwarteten Rahmen.

Abb. 4.10 ORTEP-Darstellung eines $[Li_2O_6]$ -Doppeltetraeders (a), der Umgebung der Li⁺-Ionen (Metalllage: Li3) (b), der linear koordinierten Cu⁺-Ionen (Metalllage: Cu1) bzw. der tetraedrisch stark verzerrten Koordinationssphäre der Li⁺-Ionen (Metalllage: Li4) (c). Wahrscheinlichkeit für Ellipsoide bei 50 %.

Ein weiterer interessanter Aspekt der Lithiumlage Li3 ist die Frage, ob die Li⁺-Ionen jeweils eine der zwei möglichen Atompositionen besetzen (vgl. **Abb. 4.10b**) und auf diesen verharren oder es zu einem schnellen Austausch zwischen den beiden Positionen kommt.

Die Cu⁺-(I)-Ionen auf der Lage Cu1 sind linear von zwei Sauerstoffatomen koordiniert, was nicht ungewöhnlich ist^[90,58,91,56]. Auch interatomare Abstände von 1,8305 Å $\leq d$ (Cu-O) \leq

1,8323 Å sind üblich^[90,58,91,56]. Demnach liefert das vorliegende Strukturmodell ein gutes Indiz dafür, dass die Cu⁺-Ionen in der synthetisierten Verbindung tatsächlich die Oxidationsstufe +I annehmen.

Abb. 4.11 Projektion der Kristallstruktur von $Li_{13,5}Cu^{I}_{2,5}(PO_3)_{16}$ entlang der *c*-Achse (a); Projektion der Kristallstruktur nach Einstellung der oberen Grenzzusammensetzung $Li_{12}Cu^{I}_{4}(PO_3)_{16}$ (b).

Für die Li⁺-Ionen auf der Lage Li4 ergibt sich wiederum ein komplizierteres Bild. Wie im Fall der Lage Li3, rücken auch hier die Li⁺-Ionen aus der Mitte der Koordinationspolyeder, d. h. von der speziellen Wyckoff-Lage 4*d* auf die allgemeine Wyckoff-Lage 8*f*, heraus. Der Effekt ist an den ermittelten Werten für die Lithium-Sauerstoff-Abstände (1,84 Å $\leq d$ (Li-O) $\leq 2,76$ Å) zu sehen, aus denen eine stark verzerrte tetraedrische Koordinationssphäre für die entsprechenden Li⁺-Ionen hervorgeht. Oben diskutierte Sachverhalte sind graphisch in Abb. 4.10 dargestellt. Sowohl die Verknüpfung der Baugruppen [Li₂O₆], [LiO₅], [LiO₄] und [Cu^IO₂] mit den Metaphosphatketten als auch die Projektion der Kristallstruktur nach Erreichen der oberen Zusammensetzung *x* = 0,25 werden in der Abb. 4.11 gezeigt.

4.5 ³¹P-MAS-NMR-Untersuchungen

Für verschiedene Zusammensetzungen $\text{Li}_{1-x}\text{Cu}_{x}^{I}\text{PO}_{3}$ mit x = 0,14, x = 0,2, x = 0,25 und x = 0,35, bei der das Lithium-kupfer(I)-catena(metaphoshat) im thermodynamischen Gleichgewicht mit Kupfer und LiCu^{II}(PO₃)₃ steht, wurden zusätzlich ³¹P-MAS-NMR-Untersuchungen den Angaben in **Abschn. 9.4** entsprechend durchgeführt und mit NMR-Daten von LiPO₃^[92] verglichen.

Tab. 4.7 Zusammenstellung der ³¹P-MAS-NMR isotropen chemischen Verschiebungen δ_{iso} von Li_{1-x}Cu^I_xPO₃ für verschiedene Zusammensetzungen *x*. *A*: Integrierte Intensitäten der Signale.

x	$\delta_{ m iso}~(m ppm)$	A (a. u.)	
0,14 ^{a)}	-21,9; -24,6	1:2	
0,20 ^{a)}	-22,1; -24,2	1:5	
0,25 ^{a)}	-22,2; -24,2; -24,9	1:3,75:4,5	
0,25 ^{b)}	-24,7		
0,35	-24,9		
(1) D (1) (1) (2)			

a) Proben mit bis zu 3 % $Cu^{II}_2P_2O_7$ verunreinigt.

b) Probe ohne erkennbare $Cu^{II}{}_2P_2O_7\mbox{-}Verunreinigung.$

Im Fall von LiPO₃^[92] zeigt das Spektrum im Bereich zwischen $\delta_{iso} = -21.7$ ppm und $\delta_{iso} = -25.7$ ppm vier scharfe Banden im Intensitätsverhältnis von 2:1:1:1 (vgl. **Abb. 4.12a**), was mit dem Strukturmodel von MURASHOVA et al, das von fünf voneinander kristallographisch unabhängigen Phosphoratomen in der Elementarzelle ausgeht^[48], im Einklang steht. Das beobachtete Intensitätsverhältnis erklärt sich damit, dass zwei Resonanzen, die jeweils für ein Phosphoratom stehen, isochron überlagern.

Chemische Verschiebungen, die für die Mischkristallreihe Li_{1-x}Cu^I_xPO₃ beobachtet werden $(-21.9 \text{ ppm} \le \delta_{iso} \le -24.9 \text{ ppm}; \text{vgl. Tab. 4.7})$ sind vergleichbar mit denen für LiPO₃, die einzelnen Resonanzen fallen jedoch sehr viel breiter aus (vgl. Abb. 4.12). Zusätzlich zeigen die Spektren für die Zusammensetzungen x = 0,14 und x = 0,20 (vgl. Abb. 4.12b und Abb. 4.12c) jeweils zwei isotrope Signale mit einem Intensitätsverhältnis von 1:2 bzw. 1:5 (vgl. Tab. 4.7), was vordergründig im Widerspruch zum abgeleiteten Strukturmodel für die Mischkristallreihe Li_{1-x}Cu^I_xPO₃ steht, wonach man für die zwei kristallographisch, unabhängigen Phosphoratome (vgl. Abschn. 4.3) entweder zwei scharfe Resonanzen gleicher Mächtigkeit oder, wie am Beispiel für die Zusammensetzungen x = 0,25 und x = 0,35 (vgl. Abb. 4.12e und Abb. 4.12f), eine breite, aus zwei isochron zusammenlaufenden Signalen, resultierende Bande erwarten würde.

Abb. 4.12 Gemessene ³¹P-MAS-NMR-Spektren von LiPO₃^[92] (a) und Li_{1-x}Cu^I_xPO₃ mit x = 0,14 (b), x = 0,2 (c), x = 0,25 mit (d), ohne (e) Cu^{II}₂P₂O₇-Verunreinigung und x = 0,35 (f). Spinfrequenz 12 kHz (a)^[92]; 15 kHz (b) & (e); 20 kHz (c) & (d) & (f).

Die Diskrepanz zwischen Beobachtung und Erwartung lassen sich sehr wahrscheinlich auf die einzelnen, zuvor postulierten Fehlordnungen, die mit dem Strukturmodell für die Mischkristallreihe $Li_{1-x}Cu^{1}xPO_{3}$ einhergehen (Lagefehlordnung für Li3 und Li4; Besetzungsfehlordnung für Li4; vgl. Abschn. 4.3), zurückführen. Ähnliches wurde bereits im Fall der Lithium-kupfer(I)-pyrophosphate beobachtet (vgl. Abschn. 3.4). Es erscheint plausibel, dass lagefehlgeordnete Atome in unmittelbarerer Umgebung von NMR-aktiven Kernen zu lokalen Unterschieden führen, die sich dann in einer Linienverbreiterung von Resonanzen bemerkbar machen. Dieser Hypothese folgend, sollte sich eine Besetzungsfehlordnung erst recht auf die lokale Umgebung der NMR-aktiven Kerne auswirken. Die Tatsache, dass im vorliegenden Fall für die Zusammensetzungen x = 0.14 und x = 0.20 entweder Metalllage Li4 mit Li⁺- oder die sich in unmittelbarer Nachbarschaft befindende Metalllage Cu1 mit Cu⁺-Ionen besetzt wird, führt aller Wahrscheinlichkeit nach zur Aufspaltung der Resonanz ($\delta_{iso} = -21.9$ ppm vs. $\delta_{iso} = -24.6$ ppm; vgl. Abb. 4.12b). Interessanterweise scheint die Intensität des Signals bei $\delta_{iso} \approx -22.0$ ppm mit dem Besetzungsfaktor der Metalllage Li4 zu korrelieren. Mit zunehmenden Kupferanteil x bzw. mit der stetigen Abnahme von Lithium auf Metalllage Li4

nimmt die Intensität der Resonanz bei $\delta_{iso} \approx -22.0$ ppm ab, bis sie für die Zusammensetzungen x = 0,25 und x = 0,35 (\triangleq Gleichgewicht zwischen Li_{0,75}Cu^I_{0,25}PO₃, Cu und LiCu^{II}(PO₃)₃), also bei vollbesetzter Metalllage Cu1 mit Cu⁺-Ionen, gänzlich verschwindet. Der Umstand, dass das Signal bei $\delta_{iso} \approx -22.0$ ppm beim Experiment d) (vgl. Abb. 4.12d) noch zu sehen ist, spricht für eine, zu einer kleineren Zusammensetzung hin, abweichende, fehlerhafte Einwaage, die aus der Verunreinigung des Ansatzes mit Cu^{II}₂P₂O₇ resultiert.

4.6 Magnetische Messungen

Um die Hypothese zu überprüfen, dass Kupfer in der Mischkristallreihe Li_{1-x}Cu¹_xPO₃ tatsächlich in der Oxidationsstufe +I vorliegt, wurden zusätzlich magnetische Messungen an zwei verschiedenen Proben mit der Zusammensetzung Li_{0,8}Cu^I_{0,2}PO₃ (x = 0.2) durchgeführt. Die beiden Proben wurden mit Hilfe eines PPMS Vibrating Sample Magnetometers der Firma Quantum Designs untersucht. Interessanterweise wurde in beiden Fällen nach diamagnetischer Korrektur ein leichtes paramagnetisches Moment beobachtet. Für beide Proben wurden Pulverdiffraktogramme aufgenommen (vgl. Abb. 4.13). Dabei deutete eines der beiden auf die Anwesenheit von Cu^{II}₂P₂O₇ als Nebenphase hin (vgl. Abb. 4.13b). Es sollte nun überprüft werden, ob der beobachtete Paramagnetismus womöglich auf jene Verunreinigung, die mit ca. 3 % abgeschätzt wurde, zurückzuführen ist. Dazu wurde die kapselkorrigierte Massensuszeptibilität (alle Einheiten im cgs-System) bei T = 300 K experimentell bestimmt ($\chi_g = -0.42 \cdot 10^{-7}$ cm³·g⁻¹) und mit den theoretischen Massensuszeptibilitäten für Cu^{II}₂P₂O₇ und Li_{0.8}Cu^I_{0.2}PO₃ entsprechend Gleichung 4.3 in Relation gesetzt.

$$\chi_{g,300 \text{ K}}(\exp.) = (1-x)\chi_{g,300 \text{ K}}(\operatorname{Cu}_{2}^{\text{II}}\operatorname{P}_{2}\operatorname{O}_{7}) - x\chi_{g,300 \text{ K}}(\operatorname{Li}_{0,8}\operatorname{Cu}_{0,2}^{\text{I}}\operatorname{PO}_{3})$$
(Gl. 4.3)

Anhand des CURIE-WEISS-Gesetzes^[93] (siehe **Gleichung 9.9**) wurde die Massensuszeptibilität für Cu^{II}₂P₂O₇ bestimmt ($\chi_g = 53, 1 \cdot 10^{-7} \text{ cm}^3 \cdot \text{g}^{-1}$). Die Massensuszeptibilität für diamagnetisches Li_{0,8}Cu^I_{0,2}PO₃ wurde nach BAIN et al.^[94] anhand diamagnetischer Korrektur-terme auf $\chi_g = -4, 13 \cdot 10^{-7} \text{ cm}^3 \cdot \text{g}^{-1}$ abgeschätzt (siehe **Gleichung 4.3**). Der Massenanteil von Cu^{II}₂P₂O₇ an der Probe beträgt demnach ca. 6,5 %. Dieses Ergebnis stimmt mit jenem aus der Analyse des Beugungsdiagramms gut überein. Im Unterschied dazu gab das Pulver-diffraktogramm für die zweite Probe keinen Hinweis auf Cu^{II}₂P₂O₇ (vgl. **Abb. 4.13a**), obwohl ein paramagnetisches

Moment beobachtet wurde. Trotz der scheinbaren Abwesenheit jenes Pyrophosphates als Nebenphase wurde auch hier sein Massenanteil über die Massen-suszeptibilität ($\chi_{g,exp} = -1,38 \cdot 10^{-7} \text{ cm}^3 \cdot \text{g}^{-1}$) abgeschätzt. Dieser beträgt ca. 5 %. Der Massenanteil von Cu^{II}₂P₂O₇ an der Probe ist wahrscheinlich zu klein als das er mit Hilfe der Pulverdiffraktometrie detektiert werden konnte. Zusammenfassend lässt sich sagen, dass die beobachteten magnetischen Momente sehr wahrscheinlich auf die Verunreinigung der Proben mit paramagnetischem Cu^{II}₂P₂O₇ zurückzuführen sind.

Abb. 4.13 Pulverdiffraktogramme zu $Li_{0,8}Cu_{0,2}^{I}PO_3$ (erste (a) und zweite (b) magnetische Messung) in Gegenüberstellung zu Simulationen, die vom Strukturmodell aus einer Einkristallstrukturbestimmung mit angepassten Gitterparametern und Besetzungsfaktoren für Li4/Cu1 abgeleitet wurden. Grauer Pfeil: $Cu_2^{II}P_2O_7^{[72]}$. Probe b) ist schätzungsweise mit ca. 3 % $Cu_2^{II}P_2O_7$ verunreinigt (anhand der relativen Intensitäten in den Pulverdiffraktogrammen abgeschätzt).

5 Lithium-natrium-pyrophosphate (Li_{1-x}Na_x)₄P₂O₇

5.1 Phasenbestand im System Li/Na/P/O

Neben Lithium-kupfer(I)-phosphaten wurde im Rahmen dieser Dissertation auch der quasibinäre Schnitt Li $_4P_2O_7 - Na_4P_2O_7$ des Dreistoffsystems Li $O_{0,5}/PO_{2,5}/NaO_{0,5}$ untersucht. Alle im System Li/Na/P/O bekannten, kristallographisch charakterisierten Phosphate sind in Abb. 5.1 zusammengestellt.

Abb. 5.1 Ausschnitt aus dem Dreistoffsystem LiO_{0,5}/PO_{2,5}/NaO_{0,5} (gelb) für ϑ = 500 °C. Eingezeichnet sind alle bislang im System charakterisierten Verbindungen.

Die Lithiumphosphate wurden bereits diskutiert (vgl. **Abschn. 3.1**). Für Natriumpyrophosphat (Na₄P₂O₇) wird eine kristalline Modifikation in der Literatur beschrieben^[95]. Für Natriumorthophosphat (Na₃PO₄) sind zwei Modifikationen bekannt, die Tieftemperaturform α - Na₃PO₄^[96,97], die bei ϑ = 325 °C^[98] in die Hochtemperaturform γ -Na₃PO₄^[98,99,97] übergeht. Natriumtriphosphat (Na₅P₃O₁₀) liegt ebenfalls in einer Tief- (Phase II^[100,101]) und einer Hochtemperaturmodifikation (Phase I^[102]) vor. Letztere ist oberhalb von ϑ = 450 °C stabil. Für Natriummetaphosphat existiert eine Vielzahl verschiedener Modifikation. Wird NaH₂PO₄^[103] bei ϑ = 250 °C entwässert, entsteht das MADRELLSCHE Salz^[104], eine Form von NaPO₃, die bei ϑ = 300°C in eine Hochtemperaturform übergeht. Das Erhitzen von NaH₂PO₄ auf ϑ = 600 °C

und anschließendes Abschrecken der Schmelze führt zur Bildung des amorphen GRAHAMSCHEN Salzes, das durch längeres Tempern bei ϑ = 580 °C in das KURROLSCHE Salz (NaPO₃; Typ A)^{[105][106]} übergeht. KURROLSCHES Salz (Typ A) entsteht auch beim langsamen Abkühlen der Schmelze und wandelt sich beim Zerreiben oder an feuchter Luft in einen B-Typ^[107] um. Die Hochtemperaturform vom MADRELLSCHEM Salz und das KURROLSCHE Salz (Typ B) gehen schließlich bei $\vartheta = 400$ °C eine Phasenumwandlung zum *cyclo*-Trimetaphosphat (Na₃P₃O₉)^[108] ein^[9]. Weiterhin werden in der Literatur drei verschiedene Lithium-natriumorthophosphate beschrieben (Li₂NaPO₄^[109], LiNa₅(PO₄)₂^{[110][111]} und LiNa₃P₂O₇^[112]). Während des Zusammenschreibens wurde die Kristallstruktur der Hochtemperaturform von Li2Na2P2O7 veröffentlicht^[113], die auch in dieser Arbeit (Abschn. 5.4) diskutiert wird. Die Lithium-natriumphosphate liegen anderes als die Lithium-kupfer(I)-phosphate (vgl. z. B. Abschn. 2.6 und 4.4) in Form von diskreten Verbindungen mit definierter Zusammensetzung ohne Phasenbreite vor. Im Unterschied zu den in etwa gleichgroßen Li⁺- und Cu⁺-Ionen ($IR(Li^+) = 0.59$ Å, $IR(Cu^+) =$ 0.60 Å^[13]), sind die Na⁺-Ionen wahrscheinlich zu groß ($IR(Na^+) = 1.16$ Å^[13]) um Tetraederlücken besetzen zu können und bevorzugen offenbar Oktaederlücken. Dieser Umstand wird anhand des strukturellen Vergleichs von Li₂NaPO₄^[109] mit HT-Li₃PO₄^[47,66] (vgl. Abb. 5.2) verdeutlicht.

Abb. 5.2 Struktureller Vergleich zwischen Li₂NaPO₄^[109] (links) und HT-Li₃PO₄^[47] (rechts). Die Na⁺-Ionen besetzen ausschließlich Oktaederlücken, die Li⁺-Ionen Tetraederlücken

5.2 Experimente zur Untersuchung des quasibinären Schnitts Li₄P₂O₇ – Na₄P₂O₇

Die Experimente zur Synthese der Lithium-natrium(I)-pyrophosphate erfolgten an Luft in offenen Kieselglasampullen. Gemenge aus Li₄P₂O₇ und Na₄P₂O₇ wurden stöchiometrisch auf ganzzahlige Verhältnisse Li⁺/Na⁺ (Li₂Na₂P₂O₇ und Li₃NaP₂O₇) eingewogen, durch Verreiben homogenisiert und für einen Tag bei $\vartheta = 500$ °C getempert. Im Fall von "Li₂Na₂P₂O₇" musste das Ausgangsmaterial in einem Zeitraum von vier Tagen mehrfach aus dem Ofen genommen und verrieben werden, um eine homogene Probe zu erhalten. Weiterhin wurden Gemenge mit den Zusammensetzungen "Li₂Na₂P₂O₇" und "Li₃NaP₂O₇" zur Züchtung von Einkristallen bei $\vartheta = 700$ °C in einem Platintiegel an Luft aufgeschmolzen, langsam (1 °C · h⁻¹) auf $\vartheta = 600$ °C abkühlt und anschließend auf der Laborbank bei Raumtemperatur abgeschreckt. Alle Reaktionsprodukte waren farblos und mikrokristallin und wurden röntgenographisch charakterisiert.

Nr.	x	Edukte	Einwaage	Einwaage	Temp.	Dauer	Ergebnisse nach
			(mg)	(mmol)	(°C)	(d)	IP-Guinieraufnahme
18a	0,25	Li ₄ P ₂ O ₇	347,30	1,722	500	1	Li ₃ NaP ₂ O ₇
		$Na_4P_2O_7$	152,65	0,574			
			a (- a a)		- 0 0 0)		
18b	0,25	$Li_4P_2O_7$	347,30	1,722	700^{a}		$L_{13}NaP_2O_7$
		$Na_4P_2O_7$	152,65	0,574			
19a	0,5	$Li_4P_2O_7$	215,64	1,069	500	1	Li ₃ NaP ₂ O ₇ , Na ₄ P ₂ O ₇ ,
		$Na_4P_2O_7$	284,34	1,069			TT-Li2Na2P2O7
19b	0,5	$Li_4P_2O_7$	215,64	1,069	500	4	TT-Li ₂ Na ₂ P ₂ O ₇
		$Na_4P_2O_7$	284,34	1,069			
19c	0,5	Li ₄ P ₂ O ₇	215,64	1,069	700 ^{a)}		HT-Li ₂ Na ₂ P ₂ O ₇
		$Na_4P_2O_7$	284,34	1,069			

Tab. 5.1 Zusammenfassung der Experimente entlang des quasibinären Schnitts Li₄P₂O₇ - Na₄P₂O₇.

a) Abkühlrate von 1 °C · h⁻¹ auf ϑ = 600 °C.

5.3 Phasenbestand und thermisches Verhalten

Die Pulverdiffraktogramme der mikrokristallinen Reaktionsprodukte nach Gleichgewichtseinstellung bei ϑ = 500 °C für die Einwaagen "Li₂Na₂P₂O₇" und "Li₃NaP₂O₇" zeigen unbekannte Beugungsbilder, die sich nicht mit den Randphasen Li₄P₂O₇ und Na₄P₂O₇ erklären lassen (vgl. Abb. 5.3 und Abb. 5.4). Der Vergleich mit simulierten Diagrammen anhand der Daten von Einkristallstrukturanalysen (vgl. Abschn. 5.4) bzw. Röntgenpulverbeugungsdaten (vgl. Abschn. 5.5) belegt, dass es sich dabei um die diskreten Verbindungen Li₂Na₂P₂O₇

und Li₃NaP₂O₇ handelt. Bei Li₂Na₂P₂O₇ unterscheiden sich die Pulverdiffraktogramme von Proben, die im Subsolidus ($\vartheta \le 500 \text{ °C}$) von solchen, die aus einer langsam abgekühlten Schmelze ($\vartheta = 700 \text{ °C}$; 1 C · h⁻¹; vgl. Abb. 5.5) erhalten werden. Demnach tritt Li₂Na₂P₂O₇ in einer TT- und einer HT-Form ($\vartheta \ge 550 \text{ °C}$) auf. DTA/TG-Untersuchungen (siehe Anhang; vgl. Abb. 11.1) zeigen neben dem Schmelzpunkt ($\vartheta = 622 \text{ °C}$) einen schwachen endothermen Effekt bei $\vartheta = 550 \text{ °C}$.

Beugungsbilder, die für die Synthese von Li₂Na₂P₂O₇ nach einer Reaktionszeit von einem Tag ($\vartheta = 500$ °C) aufgenommen wurden, erlauben den Schluss, dass sich die Tieftemperaturmodifikation von Li₂Na₂P₂O₇ nicht direkt bildet. Vielmehr entsteht, kinetisch kontrolliert, zunächst Trilithium-natrium-pyrophosphat Li₃NaP₂O₇ (siehe **Anhang**; vgl. **Abb. 11.2**), das dann mit dem Überschuss an Na₄P₂O₇ (siehe **Anhang**; grünes Strichdiagramm^[95]; vgl. **Abb. 11.2**), langsam zu TT-Li₂Na₂P₂O₇ weiterreagiert.

Im weiteren beschriebene Experimente zum Phasenbestand und den Gleichgewichtsbeziehungen zwischen dem quasibinären Schnitt LiPO₃ – NaPO₃ und Li₃PO₄ – Na₃PO₄ (vgl. **Abschn. 5.8**) geben keine Hinweise auf Phasenbreiten bei Li₂Na₂P₂O₇ und Li₃NaP₂O₇.

Abb. 5.3 Experimentelles (oben) und simuliertes Pulverdiffraktogramm (unten) für $Li_3NaP_2O_7$; rote Pfeile: $Li_4P_2O_7$ -trik^[26]. Die Simulation beruht auf der Einkristallstrukturanalyse von $Li_3NaP_2O_7$ (vgl. **Abschn. 5.4**)

Abb. 5.4 Experimentelles (oben) und simuliertes Pulverdiffraktogramm (unten) für TT-Li₂Na₂P₂O₇. Die Simulation beruht auf einem nach der RIETVELD-Methode^[40] verfeinerten Strukturmodell von TT-Li₂Na₂P₂O₇ (vgl. **Abschn. 5.5**).

Abb. 5.5 Experimentelles (oben) und simuliertes Pulverdiffraktogramm (unten) für HT-Li₂Na₂P₂O₇. Die Simulation beruht auf der Einkristallstrukturanalyse von HT-Li₂Na₂P₂O₇ (vgl. **Abschn. 5.4**).

5.4 Einkristallstrukturanalyse von HT-Li2Na2P2O7 und Li3NaP2O7

Quaderförmige, farblose Einkristalle der beiden Verbindungen wurden aus deren erstarrten Schmelzen (Exp. 18b und Exp. 19c; vgl. **Tab. 5.1**) vorsichtig herausgebrochen und diffraktometrisch vermessen (vgl. **Abschn. 9.2**).

Aus der Messung konnte die Laue-Klasse von HT-Li₂Na₂P₂O₇ nicht eindeutig bestimmt werden. Sowohl 6/m wie auch 6/mmm, waren gleichermaßen plausibel (R_{int} jeweils 6,7 %). Des
Weiteren wurden weder integrale noch zonale Auslöschungen beobachtet. Einzig für die Reflexgruppe *000l* wurde die serielle Auslöschungsbedingung $l \neq 6n$ erfüllt. Daraus leitete sich das Extinktionssymbol *P6*₁-- mit den dazugehörigen Raumgruppen *P6*₁ (Nr. 169) und *P6*₅ (Nr. 170) im Falle der niedersymmetrischen Laue-Klasse 6/*m* bzw. *P6*₁22 (Nr. 178) und *P6*₅22 (Nr. 179) für 6/*mmm* ab.

Die Kristallstruktur von HT-Li₂Na₂P₂O₇ wurde im Folgenden in der Raumgruppe *P*6₁ gelöst und verfeinert. Der Datensatz umfasste 19584 Reflexe, die sich auf 2672 unabhängige Reflexe mit einem Gütefaktor der Mittelung von 6,2 % reduzieren ließen.

Unter Berücksichtigung anisotroper Auslenkungsfaktoren wurden sämtliche Atome lokalisiert und die Kristallstruktur zufriedenstellend ($R_1 = 4,14$ %) verfeinert. Aufgrund des enantiomorphen Charakters der Raumgruppen $P6_1$ und $P6_5$ war die Strukturlösung und Verfeinerung auch in der Raumgruppe $P6_5$ möglich und führte zu einem vergleichbaren Ergebnis ($R_1 = 4,14$ %). Der Abgleich der Flack-Parameter^[114] im Fall von $P6_1$ (-0.0(1)) und $P6_5$ (1.0(1)) führte jedoch zu dem Schluss, dass das Strukturmodell in der Raumgruppe $P6_1$ die absolute Struktur richtig beschreibt.

Eine Analyse mit Hilfe der Symmetriesuchoption des Programms ENDEAVOUR^[38,39] deutete auf das Auftreten zusätzlicher, noch nicht berücksichtigter Symmetrieelemente in Form von zweizähligen Drehachsen entlang der Blickrichtungen *a* und [210] im hexagonalen Kristallsystem hin. Schließlich wurde die Struktur mit der Matrix $\overline{1} \ 0 \ 0 \ \overline{1} \ 0 \ 0 \ 1$ bei Berücksichtigung einer Ursprungsverschiebung (0,00; 0,00; 0,489) in die Raumgruppe *P*6₁22 transformiert.

Trotz Reduzierung der Parameter (118 für *P*6₁; 61 für *P*6₁22), führte die Verfeinerung in der höhersymmetrischen Raumgruppe zu einer Verbesserung des Gütefaktors $R_1 = 4,14$ % für *P*6₁ auf $R_1 = 3,28$ % für *P*6₁22. Dieses Ergebnis deckt sich mit dem von Zhao et al. publizierten^[113]. Laut deren Strukturmodell kristallisiert HT-Li₂Na₂P₂O₇ in der zu *P*6₁22 enantiomorphen Raumgruppe *P*6₅22 ($R_1 = 0,022$; $wR_2 = 0,04$; *Goof* = 1,10)^[113].

Li₃NaP₂O₇ kristallisiert in der monoklinen Laue-Klasse 2/*m*. Das Auftreten zonaler Auslöschungen für die Reflexgruppe *h0l* (Auslöschungsbedingung: $h + l \neq 2n$) und serieller Auslöschungen für die Reflexgruppe *0k0* (Auslöschungsbedingung: $k \neq 2n$) ließ nur noch *P*2₁/*n* (Nr. 14) als mögliche Raumgruppe zu. Trotz Lokalisierung aller Atome konnte die Kristallstruktur zunächst nur auf *R*₁ = 17,15 % verfeinert werden. Der Umstand, dass die Gitterparameter mit *a* = 15,763(1) Å und *c* = 15,802(1) Å im vorliegenden Fall nahezu identisch sind und die Tatsache, dass es sich um ein monoklines Kristallsystem handelt, ließ pseudomerohedrische Verzwillingung vermuten. Mit Hilfe des Zwillingsgesetzes 0 0 1 0 $\overline{1}$ 0 1 0 0, mit dem die kristallographischen Achsen *a* und *c* vertauscht und die *b*-Achse invertiert werden, wurde der Gütefaktor der Verfeinerung erheblich verbessert ($R_1 = 5,71$ %).

Angaben zur Strukturverfeinerung, Atompositionen, Atomabständen, isotropen und anisotropen Auslenkungsparametern für HT-Li₂Na₂P₂O₇ und Li₃NaP₂O₇ sind in den **Tab. 5.2** bis **Tab. 5.8** zusammengestellt.

	HT-Li2Na2P2O7	Li3NaP2O7
Kristallsystem	hexagonal	monoklin
Raumgruppe	<i>P</i> 6 ₁ 22 (Nr. 178)	$P2_1/n$ (Nr. 14)
<i>a</i> (Å)	5,1180(3)	15,763(1)
<i>b</i> (Å)		5,2288(3)
<i>c</i> (Å)	39,778(3)	15,802(1)
β (°)		117,021(3)
Zellvolumen $V(Å^3)$	902,35(9)	1160,3(1)
Zahl der Formeleinheiten Z	6	8
Molmasse (g \cdot mol ⁻¹)	233,8	217,75
Dichte _{roentg.} $(g \cdot cm^{-3})$	2,582	2,493
F(000)	684	848
Kristallfarbe	farblos	farblos
Kristallform	quaderförmig	quaderförmig
Kristallgröße (mm ⁻³)	0,12 · 0,06 · 0,03	0,36 · 0,12 · 0,06
Diffraktometer	APEX-II CCD	APEX-II CCD
benutzte Röntgenstrahlung	Mo-K α_1 , $\lambda = 0.71073$ Å	Mo-K α_1 , $\lambda = 0,71073$ Å
Temperatur (K)	296(2)	296(2)
Absorptionskoeffizient (mm ⁻¹)	0,854	0,807
Winkelbereich (°)	$3,07 < 2 \theta < 35,1$	$1,45 < 2\theta < 35,02$
Messbereich	$-8 \le h \le 8; -8 \le k \le 8;$	$-25 \le h \le 25; -8 \le k \le 8;$
	$-63 \le l \le 64$	$-20 \le l \le 25$
verwendete Programme	SHELXS-97 ^[43] , SHELXL-97 ^[4]	$^{4]}, WINGX^{[45]},$
	ENDEAVOUR ^[38,39]	
Zahl der gemessenen Reflexe	19584	30735
Unabhängige Reflexe	1343	5125
Parameter	61	236
Gütefaktor der Mittelung Rint	0,067	0,066
$R_1^{a)}$ für $ F_0 > 4\sigma(F_0)$	0,029	0,051
$R_1^{a)}$ für alle Reflexe	0,033	0,057
Gütefaktor $wR_2(F^2)^{b,d}$	0,076	0,122
<i>Goof</i> ^{c)}	1,105	1,105
Zwillingsmatrix		$0\ 0\ 1\ 0\ \overline{1}\ 0\ 1\ 0\ 0^{e)}$
Flack-Parameter	-0,0(2)	
Restelektronendichte ($e \cdot Å^3$)	+0,696 / -0, 509	+0,729 / -1, 111
$\frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{ E_n - E_n E_n - E_n E_n - E_n - E_n - E_n - E_n $	$\pm 0.030 / -0.303$	(0, 127 / -1, 111) $(\Sigma_{1,1}, 127 / -1, 111)$

 $\label{eq:constraint} \textbf{Tab. 5.2} \hspace{0.1cm} \text{Kristallographische Daten für } HT-Li_2Na_2P_2O_7 \hspace{0.1cm} \text{und} \hspace{0.1cm} Li_3NaP_2O_7 \hspace{0.1cm} \text{und} \hspace{0.1cm} Angaben \hspace{0.1cm} \text{zu} \hspace{0.1cm} deren \hspace{0.1cm} \text{Kristallstrukturanalyse.}$

a) $R_1 = \Sigma ||F_0| - |F_C|| / \Sigma |F_0|$; b) $wR_2 = [(\Sigma (F_0^2 - F_c^2)^2) / \Sigma (w \cdot (F_0^2)^2)]^{1/2}$; c) $Goof = [(\Sigma_{hkl} w \cdot (F_0^2 - F_c^2)^2) / (m-n)]^{1/2}$ d) $w = 1 / [\sigma^2 \cdot (F_0^2)^2 + (a \cdot P)^2 + b \cdot P]$; e) Volumenverhältnis der beiden Individuen: 2:1.

Atom	Lage	x	у	z	s. o. f.	$U_{ m eq}~({ m \AA})^{2~{ m a})}$
Na1	12 <i>c</i>	0,0640(2)	0,0640(2)	1/6	1	0,0170(2)
Na2	6 <i>a</i>	0,0878(2)	0,0439(1)	1/12	1	0,0204(2)
Li1	6 <i>b</i>	0,7382(7)	0,4225(7)	0,02643(7)	1	0,0143(5)
P1	12 <i>c</i>	0,40518(8)	0,65838(9)	0,12047(1)	1	0,00704(9)
01	6 <i>b</i>	0,2567(4)	0,6283(2)	1/12	1	0,0122(3)
O2	12 <i>c</i>	0,1683(3)	0,6539(3)	0,14390(3)	1	0,0123(2)
03	12 <i>c</i>	0,4287(3)	0,3764(3)	0,12427(3)	1	0,0132(2)
O4	12 <i>c</i>	0,7061(3)	0,7581(3)	0,04474(3)	1	0,0114(2)
\ 	1	* *				

Tab. 5.3 HT-Li₂Na₂P₂O₇. Angaben zu Wyckoff-Lagen, Atompositionen und isotropen Auslenkungsparametern.

a) $U_{eq} = \frac{1}{3} \sum_{i} \sum_{j} U_{ij} \cdot a_i^* \cdot a_j^* \cdot a_i \cdot a_j.$

Tab. 5.4 HT-Li₂Na₂P₂O₇. Angaben zu anisotropen Auslenkungsparametern.

Atom	$U_{11}({ m \AA})^2$	$U_{22}({ m \AA})^2$	U33 (Å) ²	$U_{23}({ m \AA})^2$	$U_{13}({ m \AA})^2$	$U_{12}({ m \AA})^2$
Na1	0,0174(3)	0,0174(3)	0,0142(4)	0,0020(2)	-0,0020(2)	0,0072(4)
Na2	0,0133(5)	0,0251(4)	0,0189(5)	-0,0107(4)	0	0,0066(2)
Li1	0,014(1)	0,014(1)	0,016(1)	-0,000(1)	0,002(1)	0,007(1)
P1	0,0069(1)	0,0075(2)	0,0062(1)	0,0002(1)	-0,0001(1)	0,0032(1)
01	0,0096(6)	0,0175(6)	0,0069(6)	0,0024(5)	0	0,0048(3)
O2	0,0100(5)	0,0159(5)	0,0098(4)	-0,0019(4)	0,0016(4)	0,0055(4)
03	0,0147(5)	0,0100(5)	0,0168(5)	0,0001(1)	-0,0028(4)	0,0076(5)
O4	0,0086(5)	0,0139(5)	0,0125(5)	-0,0019(4)	-0,0003(3)	0,0063(4)

Tab. 5.5Ausgewählte interatomare Abstände (in Å) für die $[NaO_6]$ -Oktaeder, $[LiO_4]$ -Tetraeder undPyrophosphatgruppen in HT-Li₂Na₂P₂O₇.

[Na1O ₆]		[Na2O6]		[Li1O4]		[P1O4]	
Na1-O4	2,405(2)	Na2-O4	2,335(1)	Li1-03	1,871(3)	P1-O4	1,513(1)
Na1-O4	2,407(2)	Na2-O4	2,337(2)	Li1-04	1,947(4)	P1-O3	1,515(2)
Na1-O3	2,428(1)	Na2-O3	2,370(2)	Li1-02	2,013(4)	P1-O2	1,520(2)
Na1-O3	2,430(1)	Na2-O3	2,372(1)	Li1-02	2,064(3)	P1-O4	1,6342(9)
Na1-O2	2,575(2)	Na2-O1	2,666(1)				
Na1-O2	2,576(2)	Na2-O1	2,666(1)				

Atom	Lage	x	у	Z	s. o. f.	$U_{ m eq}({ m \AA})^{2{ m a})}$
Na1	4 <i>e</i>	0,4845(1)	0,2086(3)	0,6458(1)	1	0,0199(3)
Na2	4 <i>e</i>	0,3537(1)	0,2333(4)	0,0086(1)	1	0,0286(4)
Li1	4 <i>e</i>	0,5087(4)	0,317(1)	-0,0574(4)	1	0,016(1)
Li2	4 <i>e</i>	0,3134(5)	0,340(1)	-0,2288(5)	1	0,022(1)
Li3	4 <i>e</i>	0,2293(4)	0,157(1)	0,1864(4)	1	0,018(1)
Li4	4 <i>e</i>	0,2494(5)	-0,299(1)	-0,0914(5)	1	0,019(1)
Li5	4 <i>e</i>	0,4442(4)	-0,319(1)	0,5052(4)	1	0,014(1)
Li6	4 <i>e</i>	0,4101(5)	0,307(1)	0,2472(5)	1	0,022(1)
P1	4 <i>e</i>	0,34970(5)	0,1651(1)	0,39953(5)	1	0,0100(1)
P2	4 <i>e</i>	0,40431(5)	-0,1697(1)	-0,14966(5)	1	0,0101(1)
P3	4 <i>e</i>	0,3420(5)	-0,2064(1)	0,12090(5)	1	0,0108(1)
P4	4 <i>e</i>	0,3785(5)	-0,3002(1)	0,65919(5)	1	0,0107(1)
01	4 <i>e</i>	0,2604(2)	0,1532(5)	0,4222(2)	1	0,0203(4)
O2	4 <i>e</i>	0,4265(2)	0,3078(4)	0,4822(2)	1	0,0139(4)
O3	4 <i>e</i>	0,3177(2)	0,3083(4)	0,3063(2)	1	0,0129(4)
O4	4 <i>e</i>	0,4584(2)	-0,2692(5)	0,6307(2)	1	0,0165(4)
O5	4 <i>e</i>	0,3093(2)	-0,3100(4)	-0,1832(2)	1	0,0131(4)
O6	4 <i>e</i>	0,3640(2)	-0,2265(5)	0,0365(2)	1	0,0160(4)
O7	4 <i>e</i>	0,3968(2)	0,1119(4)	-0,1294(2)	1	0,0137(4)
O8	4 <i>e</i>	0,3286(2)	0,0691(4)	0,1428(2)	1	0,0162(4)
O9	4 <i>e</i>	0,4850(2)	-0,3092(4)	-0,0694(2)	1	0,0140(4)
O10	4 <i>e</i>	0,3748(2)	-0,1127(4)	0,3931(2)	1	0,0143(4)
O11	4 <i>e</i>	0,4092(2)	-0,3556(4)	0,2057(2)	1	0,0204(4)
O12	4 <i>e</i>	0,3566(2)	-0,5781(4)	0,6688(2)	1	0,0154(4)
O13	4 <i>e</i>	0,4317(2)	-0,1746(4)	-0,2355(2)	1	0,0175(4)
014	4 <i>e</i>	0,2913(2)	-0,1441(5)	0,6018(2)	1	0,0216(5)

Tab. 5.6 Li₃NaP₂O₇. Angaben zu Wyckoff-Lagen, Atompositionen und isotropen Auslenkungsparametern.

 $\overline{a) U_{eq} = \frac{1}{3} \sum_{i} \sum_{j} U_{ij} \cdot a_{i}^{*} \cdot a_{j}^{*} \cdot a_{i} \cdot a_{j}}.$

Atom	$U_{11}({ m \AA})^2$	$U_{22}({ m \AA})^2$	$U_{33}({ m \AA})^2$	$U_{23}(\text{\AA})^2$	$U_{13}({ m \AA})^2$	$U_{12}({ m \AA})^2$
Na1	0,0221(7)	0,01867(6)	0,0170(7)	-0,0007(5)	0,0073(6)	0,0021(5)
Na2	0,0172(7)	0,0288(7)	0,034(1)	0,0114(6)	0,0067(7)	-0,0003(6)
Li1	0,018(3)	0,014(2)	0,019(3)	-0,001(2)	0,011(2)	-0,002(2)
Li2	0,019(3)	0,013(2)	0,026(3)	0,000(2)	0,004(2)	0,002(2)
Li3	0,019(3)	0,015(2)	0,018(3)	-0,002(2)	0,006(2)	0,001(2)
Li4	0,017(3)	0,015(2)	0,021(3)	-0,001(2)	0,005(2)	0,000(2)
Li5	0,015(2)	0,014(2)	0,012(2)	-0,000(2)	0,005(2)	-0,001(2)
Li6	0,022(3)	0,016(2)	0,025(3)	0,001(2)	0,009(2)	-0,003(2)
P1	0,0098(3)	0,0093(3)	0,0110(3)	0,0005(2)	0,0048(3)	0,0002(2)
P2	0,0118(3)	0,0090(3)	0,0095(3)	-0,0004(2)	0,0048(3)	-0,0003(2)
P3	0,0101(3)	0,0113(3)	0,0117(3)	-0,0007(2)	0,0056(3)	-0,0001(2)
P4	0,0111(3)	0,0106(3)	0,0110(3)	-0,0000(2)	0,0056(3)	0,0001(2)
O1	0,014(1)	0,025(1)	0,026(1)	0,0122(9)	0,0135(9)	0,0059(8)
O2	0,0129(9)	0,0141(9)	0,0109(9)	-0,0015(7)	0,0020(7)	-0,0022(7)
O3	0,0143(9)	0,0134(8)	0,0102(9)	0,0009(7)	0,0049(7)	0,0008(7)
O4	0,017(1)	0,0207(9)	0,016(1)	-0,0026(8)	0,0110(9)	-0,0025(8)
05	0,0124(9)	0,0119(8)	0,016(1)	-0,0011(7)	0,0068(8)	-0,0013(7)
O6	0,016(1)	0,0215(9)	0,015(1)	-0,0025(8)	0,0102(8)	-0,0014(8)
07	0,0153(9)	0,0087(7)	0,0154(9)	-0,0015(6)	0,0055(7)	0,0009(7)
08	0,018(1)	0,0117(8)	0,021(1)	-0,0024(7)	0,0106(9)	0,0000(7)
O9	0,0127(9)	0,0143(9)	0,014(1)	0,0004(7)	0,0052(8)	0,0021(7)
O10	0,015(1)	0,0099(8)	0,017(1)	0,0004(7)	0,0064(8)	0,0029(7)
O11	0,022(1)	0,0165(9)	0,016(1)	0,0011(8)	0,0024(8)	0,0004(8)
012	0,016(1)	0,0108(8)	0,020(1)	-0,0015(7)	0,0084(8)	-0,0027(7)
013	0,020(1)	0,022(9)	0,0120(9)	-0,0063(7)	0,0088(8)	-0,0086(8)
014	0,019(1)	0,0164(9)	0,023(1)	0,0015(8)	0,0033(9)	0,0050(8)

Tab. 5.7 Li₃NaP₂O₇. Angaben zu anisotropen Auslenkungsparametern

[Na1O6]		[Na2O6]		[Li1O ₄]		[Li2O4]	
Na1-O11	2,308(3)	Na2-O14	2,248(3)	Li1-07	1,933(5)	Li2-07	1,936(6)
Na1-O2	2,374(3)	Na2-O9	2,308(3)	Li1-06	1,938(7)	Li2-05	1,962(6)
Na1-O12	2,479(3)	Na2-O6	2,436(3)	Li1-09	1,961(7)	Li2-05	1,976(7)
Na1-O4	2,527(3)	Na2-O8	2,481(4)	Li1-09	1,981(6)	Li2-012	2,06(1)
Na1-O10	2,598(3)	Na2-O7	2,638(4)				
Na1-O4	2,756(3)	Na2-O6	2,852(3)				

Tab. 5.8 Ausgewählte interatomare Abstände (in Å) für die $[NaO_6]$ -Oktaeder, $[LiO_4]$ -Tetraeder und Pyrophosphatgruppen in Li₃NaP₂O₇.

[Li3O4]		[Li4O4]		[Li5O4]		[Li6O4]	
Li3-03	1,940(5)	Li4-014	1,896(6)	Li5-04	1,910(7)	Li6-011	1,881(7)
Li3-O10	1,963(5)	Li4-O12	1,941(6)	Li5-O10	1,934(6)	Li6-08	1,998(6)
Li3-03	1,989(6)	Li4-06	2,043(6)	Li5-O2	1,956(7)	Li6-O3	2,06(1)
Li3-08	2,029(8)	Li4-05	2,06(1)	Li5-O2	1,980(6)	Li6-04	2,104(6)

[P1O ₄]		[P3O ₄]		[P2O ₄]		[P4O ₄]	
P1-O2	1,514(2)	P3-O11	1,496(2)	P2-O9	1,514(2)	P4-O14	1,498(2)
P1-O3	1,519(2)	P3-O8	1,518(2)	P2-O7	1,523(2)	P4-O12	1,517(2)
P1-O10	1,521(2)	P3-O6	1,527(3)	P2-O5	1,531(2)	P4-O4	1,527(4)
P1-O1	1,604(3)	P3-O1	1,615(3)	P2-O13	1,600(3)	P4-O13	1,624(2)

5.5 Kristallstrukturanalyse von TT-Li2Na2P2O7 aus Pulverdaten

Im Unterschied zur Hochtemperaturmodifikation von Li₂Na₂P₂O₇ konnten für die Tieftemperaturmodifikation von Li₂Na₂P₂O₇ keine Einkristalle erhalten werden. Die hinreichende Qualität des Pulverdiffraktogramms von TT-Li₂Na₂P₂O₇ gestattete jedoch eine Indizierung der beobachteten Reflexe (orthorhombisch; a = 13,2361 Å, b = 8,9930 Å, c = 5,0278 Å; V = 598,47 Å³; Z = 4; 48 Reflexe, FOM = 12) mit Hilfe des Programms TREOR^[36]. Mit der orthorhombischen Zelle und der Raumgruppe *P*1 erfolgte die Ableitung eines Strukturmodells mittels Realraummethoden unter Verwendung des Programms ENDEAVOUR^[38,39].

Wie für $Li_4P_2O_7$ -pseudomono* beschrieben (vgl. **Abschn. 2.4**), wurden auch hier jeweils vier $[P^{VII}O_3]^+$ - und $[P^{VII}O_4]^-$ -Molekülfragmente definiert und in die Elementarzelle eingeführt. Aufgrund des signifikanten Einflusses der relativ schweren Na⁺-Ionen auf die Intensität des Beugungsbildes mussten diese, anders als die Li⁺-Ionen, von vornherein mitberücksichtigt werden.

Im ersten Schritt der Strukturlösung (globale Optimierung) wurde eine Kostenfunktion verwendet, bei der die Übereinstimmung zwischen beobachtetem und berechnetem Pulverdiffraktogramm zu 70 % und ein Energiebeitrag zu 30 % gewichtet wurden. Diese Prozedur führte bereits zu einer kristallchemisch sinnvollen Anordnung der einzelnen $[P^{VII}O_3]^+$ und $[P^{VII}O_4]^-$ -Molekülfragmente und Na⁺-Ionen im Raum (vgl. Abb. 5.7a) und erlaubte eine gute Beschreibung des Röntgenpulverdiffraktogramms. Der zweite Optimierungsschritt (lokale Optimierung) erfolgte mittels einer Kostenfunktion, die nur die Energie des Modells berücksichtigte. Diese Methode führte zu einem Zusammenschluss von drei, der jeweils vier $[P^{VII}O_3]^+$ - und $[P^{VII}O_4]^-$ -Molekülfragmente zu Pyrophosphatgruppen. Für Fragment $[P4^{VII}O_3]^+$ und $[P7^{VII}O_4]^-$ (eingerahmter Ausschnitt; vgl. Abb. 5.7b) wurde der Zusammenschluss aufgrund einer fehlerhaften Positionierung des $[P4^{VII}O_3]^+$ -Fragments nicht beobachtet. Die Betrachtung der Raumkoordinaten für die einzelnen Pyrophosphatgruppen und Na⁺-Ionen wies jedoch auf Symmetrieäquivalenz hin. Unter Ausnutzung dieser Symmetrieäquivalenz wurde die letzte Pyrophosphatgruppe händisch modelliert. Zusätzlich musste die Atomposition Na1 (vgl. Abb. 5.7b) symmetriebedingt korrigiert werden.

Das auf diese Weise angepasste Strukturmodell wurde mittels der Symmetriesuchoption des Programms ENDEAVOUR^[38,39] von *P*1 nach *Ama*2 (Nr. 40) transformiert (vgl. **Abb. 5.7c**). In einem weiteren Optimierungsschritt wurden die Li⁺-Ionen in die Kristallstruktur eingeführt und mit einer Kostenfunktion, die erneut nur die Energie des Modells in Betracht zog, kristallchemisch sinnvoll positioniert (vgl. **Abb. 5.7d**).

Dieses Strukturmodell wurde im letzten Schritt der Strukturanalyse nach der RIETVELD-Methode^[40] (vgl. Abb. 5.6) unter Verwendung des Programms FULLPROF^[41] verfeinert. Die Ergebnisse der Verfeinerung sind in Tab. 5.9 bis Tab. 5.11 zusammengefasst.

KristallsystemorthorhombischRaumgruppe (Nr.) $Ama2$ (Nr. 40) a (Å)13,24541(6) b (Å)8,99653(4) c (Å)5,03089(2)Zallandaran $V(h^3)$ 500,405(5)
Raumgruppe (Nr.) Ama2 (Nr. 40) a (Å) 13,24541(6) b (Å) 8,99653(4) c (Å) 5,03089(2) Zallasakanan V_{i} (Å3) 500,405(5)
a (Å) 13,24541(6) b (Å) 8,99653(4) c (Å) 5,03089(2) Zallaskung V_{i} (Å3) 500,405(5)
b (Å) 8,99653(4) c (Å) 5,03089(2) Zallaskung V_{i} (Å 3) 500,405(5)
c (Å) 5,03089(2) Zelleslammer $V_{(3,3)}$ 500,405(5)
7.11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
Zelivolumen $V(A^2)$ 599,495(5)
Zahl der Formeleinheiten Z 4
Molmasse $(g \cdot mol^{-1})$ 233,80
Dichte _{roentg.} $(g \cdot cm^{-3})$ 2,59
Kristallfarbe farblos
Messbereich in 2θ (°) $5 \le 2\theta \le 90$
Inkrement in 2θ (°) 0,015
Anzahl an Messpunkten 5667
benutzte Röntgenstrahlung $\lambda = 1,788965 \text{ Å} (\text{Co-K}\alpha_1)$
Temperatur (K) 296(2)
Software FULLPROF ^[41] , ENDEAVOUR ^[38,39]
gemessene Reflexe 100
Parameter 30
Einschränkungen 0
<i>R</i> -Werte $R_p^{a} = 11,65; R_{wp}^{b} = 15,99; R_{exp}^{c} = 14,21; R_I^{d} = 5,51$
$\chi^{2 e}$ 1,27

Tab. 5.9 TT-Na2Li2P2O7. Kristallographische Daten, Angaben zur Datensammlung und Strukturverfeinerungmittels RIETVELD-Methode^[40].

a) $R_p = \sum_i |y_{i,obs.} - y_{i,calc.}| / \sum_i |y_{i,obs.}|$; b) $R_{wp} = \left[\sum_i w_i |y_{i,obs.} - y_{i,calc.}|^2 / \sum_i w_i |y_{i,obs.}|^2 \right]^{0,5}$; c) $R_{exp} = \left[(N - P + C) / \sum_i w_i (y_{i,obs.}^2) \right]^{0,5}$; d) $R_I = \sum_j |I_{j,obs.} - I_{j,calc.}| / \sum_j |I_{j,obs.}|$; e) $\chi^2 = (R_{wp}/R_{exp})^2$

Atom	Lage	x	у	z	s. o. f.	$U_{ m eq}({ m \AA})^2$
Na1	4 <i>a</i>	0	1/2	0,100(7)	1	0,022(3)
Na2	4b	1/4	0,0434(7)	0,575(7)	1	0,019(2)
Li1	8 <i>c</i>	0,079(2)	0,215(2)	0,06445	1	0,015(8)
P1	8 <i>c</i>	0,6376(3)	0,1196(4)	0,060(7)	1	0,006(1)
01	8 <i>c</i>	0,0681(6)	0,2651(9)	0,436(7)	1	0,009(3)
O2	8 <i>c</i>	0,1317(6)	0,5331(9)	0,427(6)	1	0,009(3)
03	8 <i>c</i>	0,6299(6)	0,1156(9)	0,361(7)	1	0,011(3)
O4	4 <i>b</i>	1/4	0,3128(12)	0,491(8)	1	0,011(5)

Tab. 5.10 TT-Li₂Na₂P₂O₇. Angaben zu Wyckoff-Lagen, Atompositionen und isotropen Auslenkungsparametern.

[Na1O ₆]		[Na2O6]		[Li1O4]		[P1O4]	
Na1-O3	2,34(3)	Na2-O2	2,37(4)	Li1-02	1,91(2)	P1-O4	1,52(5)
Na1-O3	2,34(3)	Na2-O2	2,37(4)	Li1-01	1,93(3)	P1-O3	1,52(2)
Na1-O2	2,42(3)	Na2-O3	2,40(2)	Li1-03	1,96(3)	P1-O2	1,53(2)
Na1-O2	2,42(3)	Na2-O3	2,40(2)	Li1-01	2,05(3)	P1-O4	1,65(1)
Na1-O1	2,68(2)	Na2-O4	2,46(2)				
Na1-O1	2,68(2)	Na2-O4	2,95(4)				

Tab. 5.11Ausgewählte interatomare Abstände (in Å) für die $[NaO_6]$ -Oktaeder, $[LiO_4]$ -Tetraeder undPyrophosphatgruppen in TT-Li_2Na_2P_2O_7.

Abb. 5.6 RIETVELD-Plot zu TT-Li₂Na₂P₂O₇. Experimentelles (gepunktet, rot) und berechnetes (durchgezogen; schwarz) Beugungsdiagramm; Bragg-Reflexe (schwarze Striche). Die untere Kurve zeigt die Differenz $I_{obs.} - I_{calc.}$ bei gleicher Skalierung zwischen den beiden Diagrammen.

Abb. 5.7 Strukturlösung für TT-Li₂Na₂P₂O₇ mittels Realraummethoden unter Verwendung des Programms ENDEAVOUR^[38,39]. Verteilung der $[P^{VII}O_3]^+$ und $[P^{VII}O_4]^-$ -Molekülfragmente und Na⁺-Ionen (rot) im Raum (Kostenfunktion: 70 % Beugungsintensität und 30 % Energie) (a). Zusammenführung der $[P^{VII}O_3]^+$ und $[P^{VII}O_4]^-$ Molekülfragmente zu Diphosphatgruppen (Kostenfunktion: 100 % Energie) (b). Transformation der Kristallstruktur von TT-Li₂Na₂P₂O₇ nach *Ama*2 (Nr. 40) (c) und nach Einführung der Li⁺-Ionen (grau) (Kostenfunktion: 100 % Energie) (d).

5.6 Beschreibung der Kristallstrukturen von HT-Li₂Na₂P₂O₇, TT-Li₂Na₂P₂O₇ und Li₃NaP₂O₇

Das Pyrophosphat HT-Li₂Na₂P₂O₇ kristallisiert in der hexagonalen Raumgruppe *P*6₁22 (*a* = 5,1180(3) Å, *c* = 39,778(3) Å, γ = 120°) und enthält 6 Formeleinheiten in der Elementarzelle. Die asymmetrische Einheit besteht aus zwei Natriumatomen, vier Sauerstoffatomen, einem Phosphoratom und einem Lithiumatom. Diphosphatgruppen sind das charakteristische Bauelement der Struktur. Deren Anordnung weist zudem auf eine enge Verwandtschaft zur in **Abschn. 2.6** diskutierten trigonalen Form von Li₄P₂O₇ hin (vgl. **Abb. 5.8b**). Auch im Fall von HT-Li₂Na₂P₂O₇ leitet sich die Anordnung der Pyrophosphatgruppen von einer dichtesten Kugelpackung ab. Anders als bei der trigonalen Form von Li₄P₂O₇, wird die Translationsperiode durch das Auftreten einer sechszähligen 6₁-Schraubenachse entlang der Hauptblickrichtung verdoppelt, was sich in einer Verdopplung des Gitterparameters *c* bemerkbar macht (vgl.: Gitterparameter Li₄P₂O₇-trig*: *a* = 5,1699(2) Å, *c* = 18,9722(8) Å). Des Weiteren besetzen die Lithiumatome, genau wie bei Li₄P₂O₇-trig*, ausschließlich Tetraederlücken, die sich zwischen den Pyrophosphatschichten befinden. Da HT-Li₂Na₂P₂O₇ im Vergleich zu Li₄P₂O₇-trig* nur halb so viel Lithium enthält, werden hierbei auch nur noch ein Drittel der möglichen Tetraederlücken besetzt (vgl. **Abschn. 2.6**).

Das von der trigonalen Form von Lithiumpyrophosphat abgeleitete Teilgitter wird wiederum von einem Netzwerk aus kantenverknüpften [NaO₆]-Oktaedern umschlossen, das sich entlang der *c*-Achse erstreckt. Dieses Netzwerk wird in vergleichbarer Form auch für Natriumpyrophosphat^[95] beobachtet. Natriumpyrophosphat kristallisiert in der orthorhombischen Raumgruppe $P2_12_12_1$ (a = 9,367(5) Å, b = 5,390(2) Å, c = 13,480(8) Å)^[95]. Die enge Verwandtschaft wird deutlich, wenn die Hälfte der Natriumlagen aus der Struktur entfernt (vgl. Abb. 5.8c) und die Elementarzelle pseudohexagonal aufgestellt wird (gestrichelte Linien; vgl. Abb. 5.8d). Im Unterschied zu Na₄P₂O₇, wird die Translationsperiode im Fall von HT-Li₂Na₂P₂O₇ durch das Auftreten der 6₁-Schraubenachse entlang der *c*-Achse verdreifacht. Die Kristallstruktur von HT-Li₂Na₂P₂O₇ kann folglich als Hybridstruktur zwischen Na₄P₂O₇ und Li₄P₂O₇-trig* aufgefasst werden.

Abb. 5.8 Darstellung der Kristallstruktur von HT-Li₂Na₂P₂O₇ entlang der *a*-Achse unter Vernachlässigung (a) und Mitberücksichtigung (e) der Na⁺-Ionen im Vergleich zur Kristallstruktur von Li₄P₂O₇-trig^{*} (b). Die Darstellung der Hälfte der Natriumpositionen in Na₄P₂O₇ (c) und die pseudo-hexagonale Aufstellung der Elementarzelle von Na₄P₂O₇ (mit gestrichelten Linien angedeutet; d) dient zur Verdeutlichung der Verwandtschaft zu HT-Li₂Na₂P₂O₇.

In Bezug auf die interatomaren Abstände treten keinerlei Anomalien auf. Erwartungsgemäß werden für die Diphosphatgruppen, jeweils drei kurze Abstände zwischen Phosphor und den terminalen Sauerstoffatomen (1,513 Å $\leq d(P-O_t) \leq 1,520$ Å) und ein langer Abstand zum verbrückenden Sauerstoffatom ($d(P-O_b) = 1,6342$ Å) beobachtet. Abstände d(Li-O) zwischen 1,871 Å und 2,064 Å (vgl. z. B.^[26,47,48]) und d(Na-O) zwischen 2,335 Å und 2,666 Å (vgl. z. B.^[95,96,103]) sind auch nicht ungewöhnlich (vgl. Abb. 5.9 und Tab. 5.5).

Abb. 5.9 ORTEP-Darstellung eines [LiO₄]-Tetraeders (a), einer Diphosphatgruppe (b) und eines [Na₂O₁₀]-Doppeloktaeders in HT-Li₂Na₂P₂O₇. Wahrscheinlichkeit für Ellipsoide bei 50 %.

Zwischen der Hoch- und Tieftemperaturmodifikation von Li₂Na₂P₂O₇ (*Ama*2; *a* = 13,24541(6) Å, *b* = 8,99653(4) Å, *c* = 5,03089(2) Å) besteht eine enge strukturelle Verwandtschaft. So liegen vergleichbare Strukturmotive in beiden Kristallstrukturen vor (vgl. **Abb. 5.10a**). Unterschiede treten in der Konformation der Diphosphatgruppen auf, die im Fall der Tieftemperaturmodifikation ekliptisch und für die Hochtemperaturmodifikation gestaffelt ist. Weiterhin werden die Diphosphatgruppen im Fall von HT-Li₂Na₂P₂O₇ entlang des Stapelvektors (*c*-Achse; **Abb. 5.10b**) verdrillt (6₁-Schraubenachse). Auch erlaubt der Übergang von TT-Li₂Na₂P₂O₇ nach HT-Li₂Na₂P₂O₇ eine dichtere Packung der Atome ($V \cdot \text{mol}^{-1} = 150,39$ Å³ · mol⁻¹ (HT-Li₂Na₂P₂O₇) vs. 149,87 Å³ · mol⁻¹ (TT-Li₂Na₂P₂O₇)).

Da die Raumgruppe *Ama*2, in der die Kristallstruktur von TT-Li₂Na₂P₂O₇ gelöst und verfeinert wurde, keine Untergruppe von $P6_122$ ist, handelt es sich bei dem beobachteten Übergang offenbar um eine Phasenumwandlung erster Ordnung.

Abb. 5.10 Vergleich zwischen den Kristallstrukturen von TT-Li₂Na₂P₂O₇ (a) und HT-Li₂Na₂P₂O₇ (b) entlang der jeweiligen Stapelvektoren und senkrecht (c + d) dazu.

Im Unterschied zu den Kristallstrukturen der Pyrophosphate, die bis hierhin diskutiert wurden (vgl. Abschn. 2.6 und 2.7), sind die Pyrophosphat-Einheiten in $Li_3NaP_2O_7$ nicht mehr dichtest gepackt. Die Pyrophosphatgruppen zeigen mit ihrer Längsachse nicht mehr in eine Richtung, sondern sind paarweise um 90° gegeneinander verdreht. Die einzelnen Diphosphatgruppen eines Pärchens sind zudem um ein halbe Translationsperiode entlang der *b*-Achse gegeneinander verschoben (vgl. Abb. 5.11a).

Die Na⁺-Ionen besetzen nur Oktaeder-, die Li⁺-Ionen ausschließlich Tetraederlücken. Für die schichtweise Anordnung der [LiO₄]-Einheiten ergibt sich ein relativ komplexes Bild, das Ecken- wie auch Kantenverknüpfung zeigt (vgl. Abb. 5.11c).

Abb. 5.11 Anordnung der Pyrophosphatgruppen (gelb) (a), der $[NaO_6]$ -Oktaeder (rot) (b) und des $[LiO_4]$ -Netzwerks (grau) (c) in Li₃NaP₂O₇ und Darstellung der Kristallstruktur von Li₃NaP₂O₇ (d) entlang der *b*-Achse.

Die Analyse der interatomaren Abstände für Li₃NaP₂O₇ zeigt keinerlei Anomalien (1,496 Å \leq d(P-O_t) \leq 1,531 Å; 1,600 Å \leq d(P-O_{b.}) \leq 1,624 Å; 1,881 Å \leq d(Li-O) \leq 2,104 Å; 2,248 Å \leq d(Na-O) \leq 2,852 Å). (vgl. Abb. 5.12 und Tab. 5.8).

Abschließend zeigt die Untersuchung der unmittelbaren Umgebung der terminalen Sauerstoffatme, die an die vier kristallographisch unabhängigen Phosphoratome koordinieren, vergleichbare zweite Koordinationssphären für P1 und P2 bzw. P3 und P4 (vgl. Abb. 5.13). Erstere werden verhältnismäßig von mehr Li⁺-, letztere von mehr Na⁺-Ionen umgeben.

Abb. 5.12 ORTEP-Darstellungen ausgewählter Pyrophosphatgruppen (a), $[NaO_6]$ -Oktaeder (b) und $[LiO_4]$ -Netzwerke (c) in Li₃NaP₂O₇. Wahrscheinlichkeit für Ellipsoide bei 50 %.

Abb. 5.13 Darstellung der zweiten Koordinationssphäre der vier kristallographisch unabhängigen Phosphorlagen in Li₃NaP₂O₇. Wahrscheinlichkeit für Ellipsoide bei 50 %.

5.7 ³¹P-MAS-NMR-Untersuchungen

Für die Lithium-natrium-pyrophosphate wurden ³¹P- MAS-NMR-Spektren (vgl. Abschn. 9.4) aufgenommen und mit den Spektren der beiden Randphasen Li₄P₂O₇-trik und Na₄P₂O₇ (vgl. Abb. 5.14a und Abb. 5.14e) verglichen. Die Spektren der einzelnen Lithium-natriumpyrophosphate (vgl. Abb. 5.14b bis Abb. 5.14d) ähneln dabei sehr dem ³¹P-MAS-NMR-Spektrum von Na₄P₂O₇ und weisen allesamt eine Resonanz auf, die aufgrund eines zum Zeitpunkt der Messung leicht verstellten magischen Winkels durch Schultern verbreitert sind. Während das Auftreten einer Bande für TT-Li₂Na₂P₂O₇ und LiNa₃P₂O₇ mit der entsprechenden Kristallstruktur korrespondiert (jeweils eine unabhängige Phosphorlage; vgl. Tab. 5.10 bzw.^[112]), muss die beobachtete Resonanz im Fall von Na₄P₂O₇ (zwei unabhängige Phosphorlagen^[95]) als isochrone Überlagerung von zwei NMR-Signalen gedeutet werden. Bei Li₃NaP₂O₇ (vier unabhängige Phosphorlagen; vgl. Tab. 5.6) würde anhand der Unterschiede in der zweiten Koordinationssphäre der NMR-aktiven P-Kerne (vgl. Abb. 5.13) ein Spektrum mit zwei Resonanzen erwartet. Diese Unterschiede üben allerdings offenbar keinen allzu großen Einfluss auf die Elektronendichteverteilung um die NMR-aktiven Zentren aus. Statt der zwei erwarteten Banden wird nur eine signifikant verbreiterte Resonanz (vgl. Abb. 5.14b) beobachtet. Neben der Hauptresonanz tritt zudem ein weiteres, deutlich schwächeres Signal bei $\delta_{iso} = -6.9$ ppm auf (vgl. Tab. 5.12), welches sich im Einklang mit dem Pulverdiffraktogramm für Li₃NaP₂O₇ (vgl. Abb. 5.3) der Nebenphase Li₄P₂O₇-trik zuordnen lässt. Für die Resonanzen zeigt sich eine Tieffeldverschiebung, je mehr Natrium die Mischkristalle enthalten ($\delta_{iso} = -3.0$ ppm (Li₃NaP₂O₇); $\delta_{iso} = -1,2$ ppm (TT-Li₂Na₂P₂O₇); $\delta_{iso} = 0,6$ ppm (LiNa₃P₂O₇); $\delta_{iso} = 1,4$ ppm (Na₄P₂O₇); Tab. 5.12).

trik, $L_{13}NaP_{2}O_{7}$, $\Gamma_{1}-L_{12}Na_{2}P_{2}O_{7}$, $L_{1}Na_{3}P_{2}O_{7}$ und $Na_{4}P_{2}O_{7}$.				
Pyrophosphat	P-Lagen	δ _{iso} (ppm)	•	
Li ₄ P ₂ O ₇ -trik	2	-4,4; -6,6	-	
Li ₃ NaP ₂ O ₇	4	$-3,0;(-6,9)^{a)}$		
TT-Li2Na2P2O7	1	-1.2		

1

2

0,6

1,4

Tab. 5.12 Zusammenstellung der ³¹P-MAS-NMR-Daten. Isotrope chemische Verschiebungen δ_{iso} für Li₄P₂O₇-trik, Li₃NaP₂O₇, TT-Li₂Na₂P₂O₇, LiNa₃P₂O₇ und Na₄P₂O₇.

^{a)} Verunreinigung der Probe mit Li₄P₂O₇-trik.

LiNa₃P₂O₇

 $Na_4P_2O_7$

Abb. 5.14 Zusammenfassung der ³¹P-MAS-NMR-Experimente. Verunreinigung: HT-Li₃PO₄ (*), Li₄P₂O₇-trik (**).

5.8 Weitere Gleichgewichtsuntersuchungen im Dreistoffsystem LiO_{0,5}/PO_{2,5}/NaO_{0,5}

Ergänzend zu den Untersuchungen entlang des quasibinären Schnitts Li₄P₂O₇ – Na₄P₂O₇ wurden im Verlauf der vorliegenden Arbeit weitere Experimente zur Ermittlung von Gleichgewichtsbeziehungen zwischen den quasibinären Schnitten LiPO₃ – NaPO₃ und Li₃PO₄ – Na₃PO₄ durchgeführt. Die Versuchsreihe wurde bei einer Reaktionstemperatur von ϑ = 500 °C unternommen. Einwaagepunkte, bei denen Na₃P₃O₉ als Edukt eingesetzt wurde (Experimente 20 – 22; 24, 25; vgl. **Tab. 5.13**), bildeten unter den gegebenen Bedingungen Eutektika aus, weshalb in diesen Fällen zur Untersuchung des Subsolidus die Reaktionstemperatur auf ϑ = 450 °C herabgesetzt werden musste. Die Ergebnisse der Versuchsreihe sind in **Tab. 5.13** wiedergegeben und in **Abb. 5.15** visualisiert. Pulverdiffraktogramme zu den einzelnen Experimenten werden mittels **Abb. 11.3** bis **Abb. 11.9** im **Anhang** zusammengestellt.

Abb. 5.15 Gleichgewichtsbeziehungen im Dreistoffsystem $LiO_{0,5}/PO_{2,5}/NaO_{0,5}$. Eingezeichnet sind die untersuchten Einwaagepunkte (rot), die ermittelten Gleichgewichtsbeziehungen (schwarze Linien) und die im Verlauf dieser Arbeit charakterisierten Lithium-natrium-phosphate (rot).

Nr.	x	Edukte	Einwaage	Einwaage	Temp.	Dauer	Ergebnisse nach
			(mg)	(mmol)	(°C)	(d)	IP-Guinieraufnahme
20	0,5	LiPO ₃ Na ₃ P ₃ O ₉	114,28 135,72	1,330 0,444	450	1	$Li_{1-x}Na_xPO_3 (x = 0,75)$ LiPO ₃
21	0,75	LiPO ₃ Na ₃ P ₃ O ₉	54,83 195,22	0,638 0,638	450	1	$Li_{1-x}Na_{x}PO_{3}(x=0,75)$
22	0,89	LiPO3 Na3P3O9	23,58 226,50	0,274 0,740	450	1	$Li_{1-x}Na_{x}PO_{3} (x = 0,75)$ Na ₃ P ₃ O ₉
23		LiPO3 Li4P2O7 Na4P2O7	151,60 59,28 39,06	1,756 0,294 0,147	500	3	$Li_{1-x}Na_{x}PO_{3} (x = 0,75)$ LiPO ₃ Li ₄ P ₂ O ₇
24		Li ₄ P ₂ O ₇ Na ₃ P ₃ O ₉	82,69 167,21	0,410 0,547	450	2	Li ₄ P ₂ O ₇ Na ₃ P ₃ O ₉
24b		Li4P2O7 Na3P3O9 Na4P2O7	39,30 158,90 51,80	0,195 1,558 0,195	450	3	LiNa ₃ P ₂ O ₇ Li _{1-x} Na _x PO ₃ ($x = 0,75$) TT-Li ₂ Na ₂ P ₂ O ₇
25		Li ₄ P ₂ O ₇ Na ₃ P ₃ O ₉ Na ₄ P ₂ O ₇	27,24 91,51 131,34	0,135 0,299 0,494	450	3	LiNa ₃ P ₂ O ₇ Na ₃ P ₃ O ₉ Na ₅ P ₃ O ₁₀ (Phase II)
26		Li ₃ PO ₄ Li ₄ P ₂ O ₇ Na ₄ P ₂ O ₇	82,06 142,91 25,06	0,709 0,708 0,094	500	3	$\begin{array}{l} Li_{3}PO_{4}\\ Li_{3}NaP_{2}O_{7}\\ Li_{4}P_{2}O_{7}\end{array}$
27		Li ₃ PO ₄ Li ₄ P ₂ O ₇ Na ₄ P ₂ O ₇	96,79 42,14 111,21	0,836 0,209 0,418	500	3	$\begin{array}{l} LiNa_{3}P_{2}O_{7}\\ TT-Li_{2}Na_{2}P_{2}O_{7}\\ Li_{3}PO_{4} \end{array}$
28		Li3PO4 Na4P2O7	75,89 174,25	0,655 0,655	500	2	LiNa3P2O7 Li2NaPO4 Na4P2O7

 $\label{eq:constraint} \begin{array}{l} \textbf{Tab. 5.13} \hspace{0.1cm} Zusammenstellung \hspace{0.1cm} der \hspace{0.1cm} Experimente \hspace{0.1cm} zur \hspace{0.1cm} Bestimmung \hspace{0.1cm} von \hspace{0.1cm} Gleichgewichtsbeziehungen \hspace{0.1cm} zwischen \hspace{0.1cm} den \hspace{0.1cm} quasibinären \hspace{0.1cm} Schnitten \hspace{0.1cm} LiPO_3 - NaPO_3 \hspace{0.1cm} und \hspace{0.1cm} Li_3PO_4 - Na_3PO_4. \end{array}$

Die Experimente 20 bis 22 (vgl. **Tab. 5.13**), mit denen der quasibinäre Schnitt LiPO₃ – NaPO₃ untersucht wurde, deuten die Existenz eines bislang, unbekannten Lithium-natriummetaphosphats an. Pulverdiffraktogramme, die für Li_{1-x}Na_xPO₃ (x = 0,5) und Li_{1-x}Na_xPO₃ (x = 0,89) aufgenommen wurden (vgl. **Abb. 5.16**), zeigen neben dem unbekannten Beugungsbild Reflexe, die sich den Edukten LiPO₃ (grünes Strichdiagramm^[48]; Li_{1-x}Na_xPO₃ (x = 0,5); vgl. **Abb. 5.16**) und Na₃P₃O₉ (schwarzes Strichdiagramm^[108]; Li_{1-x}Na_xPO₃ (x = 0,89); vgl. **Abb. 5.16**) zuordnen lassen. Das Pulverdiffraktogramm für Li_{1-x}Na_xPO₃ (x = 0,75) zeigt ausschließlich Reflexe der noch nicht näher charakterisierten Phase (vgl. Abb. 5.16). Bei dieser sollte es sich um ein Lithium-natrium-metaphosphat mit der Zusammensetzung LiNa₃(PO₃)₄ handeln.

Abb. 5.16 Experimentelle Pulverdiffraktogramme zur Untersuchung des quasibinären Schnitts LiPO₃ – NaPO₃ bzw. Li_{1-x}Na_xPO₃ für verschiedene Zusammensetzungen x (x = 0.5; x = 0.75; x = 0.89). Grünes Strichdiagramm: LiPO₃^[48]; schwarzes Strichdiagramm: Na₃P₃O₉^[108]. Grün gestrichelte Linien dienen zur Betonung der Reflexe von LiPO₃; rot gestrichelte Linie heben Reflexmuster von "LiNa₃(PO₃)₄" hervor. Gesternte (*) Reflexe sind mit Indizierung (siehe Anhang; vgl. Tab. 11.17) nicht erfasst.

Interessanterweise wurde für ein Natriummetaphosphat (NaPO₃) ein Pulverdiffraktogramm in der ICDD unter der Nummer 00-011-0650^[115] abgelegt (C2/m, a = 15,38 Å, b = 3,504 Å, c =7,078 Å, $\beta = 93,87^{\circ}$, V = 380,57 Å³), das sehr starke Ähnlichkeiten zu jenem von "LiNa₃(PO₃)₄" aufweist. Das Pulverdiffraktogramm für "LiNa₃(PO₃)₄" ließ sich demgemäß indizieren, was unter Zuhilfenahme des Programms SOS^[37] zu folgender Zellmetrik führte (P2/m, a = 15,39(1)) Å, b = 3,377(3) Å, c = 7,067(4) Å, $\beta = 93,90(6)^{\circ}$, V = 366,4(4) Å³, 10 Reflexe, (siehe Anhang; vgl. Tab. 11.17) Der Austausch eines Anteils an Na⁺-Ionen gegen kleinere Li⁺-Ionen führt zu einer richtungsabhängigen Verkleinerung der Elementarzelle (V=380,57 Å³ vs. 366,4(4) Å³). Während die *a*-Achse erhalten bleibt (a = 15,38 Å vs. a = 15,39(1) Å), werden die *c*-Achse leicht (c = 7,078 Å vs. c = 7,067(4) Å) und die b-Achse stark verkürzt (b = 3,504 Å vs. b =3,377(3) Å). Interessanterweise lassen sich mit der unternommenen Indizierung nicht alle beobachteten Reflexe (gesternte Reflexe; vgl. Abb. 5.16) erklären. Möglicherweise führt die Na⁺/Li⁺-Substitution zu einem Symmetrieverlust und die Elementarzelle müsste in einer anderen Raumgruppe beschrieben werden. Die Symmetrie könnte aber auch unter Vergrößerung der Elementarzelle erhalten bleiben, wonach die Reflexe, die sich nicht indizieren lassen, Überstrukturreflexe wären.

6 Das Vierelementsystem Li/Ag/P/O

6.1 Einleitung

Abschließend sollte im Rahmen der vorliegenden Arbeit geklärt werden, ob es, vergleichbar mit dem Vierelementsystem Li/Na/P/O (vgl. **Kap. 5**), auch im Vierelementsystem Li/Ag/P/O zur Mischkristallbildung kommt. Lithium-silber-phosphate wurden in der Literatur bislang nicht beschrieben. Neben den bekannten Lithiumphosphaten (vgl. **Abschn. 3.1**) sind die Silberphosphate TT-Ag₃PO₄^{[116][117]} HT-Ag₃PO₄^[99], Ag₄P₂O₇^[118], AgPO₃^[119,120] und Ag₅P₃O₁₀^[121] als mögliche Edukte zugänglich. Im weiteren Verlauf richtete sich das Augenmerk auf die quasibinären Schnitte Li₄P₂O₇ – Ag₄P₂O₇ und Li₃PO₄ – Ag₃PO₄ des Dreistoffsystems LiO_{0,5}/PO_{2,5}/AgO_{0,5} mit den denkbaren Mischkristallreihen (Li_{1-x}Ag_x)₄P₂O₇ bzw. Li_{3-x}Ag_xPO₄.

6.2 Experimente zur Darstellung von Lithium-silber-phosphaten

Im Rahmen der Experimente zur Synthese möglicher Lithium-silber-pyrophosphate wurden folgende Einwaagen gewählt: "Li₃AgP₂O₇", "Li₂Ag₂P₂O₇" und "LiAg₃P₂O₇". Mittels des Einwaagepunktes "Li_{1,5}Ag_{1,5}PO₄" wurde weiterhin auf die Existenz möglicher, gemischter Lithium-silber-orthophosphate Li_{3-x}Ag_xPO₄ geprüft. Stöchiometrische Gemenge aus Li₄P₂O₇ und Ag₄P₂O₇ wurden durch Verreiben homogenisiert und für einen bei Tag ϑ = 500 °C in offenen Kieselglasampullen getempert. Das 1:1-Gemenge aus Li₃PO₄ und Ag₃PO₄ ("Li_{1,5}Ag_{1,5}PO₄") wurde für zwei Tage bei einer Temperatur von ϑ = 600 °C gehalten und für jeweils zwei Tage bei ϑ = 750 °C bzw. ϑ = 800 °C nachgetempert. Die allesamt mikrokristallinen und farblosen Produkte wurden röntgenographisch untersucht.

Tab. 6.1	Zusammenstellung der Experimente für die quasibinären Schnitte Li ₄ P ₂ O ₇ -Ag ₄ P ₂ O ₇ und Li ₃ PO ₄ -
Ag ₃ PO ₄ .	

Nr.	x	Edukte	Einwaage	Einwaage	Temp.	Dauer	Ergebnisse nach
			(mg)	(mmol)	(°C)	(d)	IP-Guinieraufnahme
29a	1,5	Li ₃ PO ₄	54,21	0,468	600	1	Li ₃ PO ₄ , Ag ₃ PO ₄
29b		Ag ₃ PO ₄	195,88	0,468	750	1	Li ₃ PO ₄ ^{a)} , Ag ₃ PO ₄
29c					800	1	Li ₃ PO ₄ ^{a)} , Ag ₃ PO ₄
30	0,25	$\begin{array}{c} Li_4P_2O_7\\ Ag_4P_2O_7\end{array}$	249,98 250,02	1,239 0,413	500	1	$Li_3AgP_2O_7$
31	0,5	$\begin{array}{c} Li_4P_2O_7\\ Ag_4P_2O_7\end{array}$	125,01 375,02	0,620 0,619	500	1	Li ₃ AgP ₂ O ₇ , LiAg ₃ P ₂ O ₇
32	0,75	$\begin{array}{c} Li_4P_2O_7\\ Ag_4P_2O_7\end{array}$	50,01 450,11	0,248 0,743	500	1	Li ₃ AgP ₂ O ₇ , LiAg ₃ P ₂ O ₇

a) z. T. Reflexaufspaltung beobachtet, Möglicher Hinweis auf Mischkristallbildung Li_{3-x}Ag_xPO₄.

6.3 Auswertung der Guinieraufnahmen

Das experimentell erhaltene Pulverdiffraktogramm des mikrokristallinen Produkts für die Einwaage "Li_{1,5}Ag_{1,5}PO₄" bei einer Reaktionstemperatur von $\vartheta = 600$ °C (Exp. 29a; vgl. **Tab. 6.1**) zeigt mit der Ausnahme zweier nicht identifizierter, intensitätsschwacher Reflexe (rote Pfeile; **Abb. 6.1**) Beugungsdiagramme, die sich den beiden eingesetzten Edukten Li₃PO₄ (grünes Strichdiagramm; vgl. **Abb. 6.1**) und Ag₃PO₄ (schwarzes Strichdiagramm; vgl. **Abb. 6.1**) zuordnen lassen. Eine Mischkristallbildung der Form "Li_{3-x}Ag_xPO₄" tritt demnach im Temperaturbereich RT $\leq \vartheta \leq 600$ °C nicht ein.

Abb. 6.1 Experimentell erhaltene Röntgenpulverdiffraktogramme für die Einwaagen "Li_{1,5}Ag_{1,5}PO₄" bei verschiedenen Reaktionstemperaturen ($\vartheta = 600$ °C; $\vartheta = 750$ °C; $\vartheta = 800$ °C). Schwarzes simuliertes Strichdiagramm: Ag₃PO₄^[120]; grünes simuliertes Strichdiagramm: HT-Li₃PO₄^[66]. Rote Pfeile: nicht zuzuordnende Reflexe. Vergrößerter Ausschnitt zur Verdeutlichung der Reflexaufspaltung (gesternte Reflexe) im Fall von HT-Li₃PO₄.

Reaktionsprodukte, die nach dem Tempern bei höheren Reaktionstemperaturen von $\vartheta = 750$ °C (Exp. 29b; vgl. **Tab. 6.1**) bzw. $\vartheta = 800$ °C (Exp. 29c; vgl. **Tab. 6.1**) erhalten werden, liefern vergleichbare Beugungsdaten. Einige der dominanten Reflexe von HT-Li₃PO₄ spalten jedoch anders als im Pulverdiffraktogramm von Exp. 29a auf (durch Sterne in der vergrößerten Darstellung der Reflexe markiert; vgl. **Abb. 6.1**). Auch nimmt die Intensität der Reflexe, die sich HT-Li₃PO₄ zuordnen lassen, relativ zur Reflexintensität von Ag₃PO₄ merklich zu. Diese Befunde deuten darauf hin, dass Li₃PO₄ bei höheren Reaktionstemperaturen zum Teil mit Ag⁺-Ionen dotiert wird und es zu einer Mischkristallbildung kommt. Versuche, ausgehend vom Strukturmodell für HT-Li₃PO₄^[66], durch Variation der Besetzungsverhältnisse Li⁺/Ag⁺ auf den beiden Lithiumlagen das experimentelle Beugungsdiagramm für Exp. 29c zu simulieren, führten allerdings nicht zum Erfolg.

Im Unterschied dazu, haben die Reflexmuster, die für die mikrokristallinen Produkte der Einwaagepunkte "Li₃AgP₂O₇" und "LiAg₃P₂O₇" bei einer Reaktionstemperatur von ϑ = 500 °C (Exp. 30 und 32, vgl. Abb. 6.2) beobachtet werden, nichts mit den beiden Randphasen Li₄P₂O₇ und Ag₄P₂O₇ gemein. Durch Zuhilfenahme der Strukturmodelle der entsprechenden Lithiumnatrium-pyrophosphate Li₃NaP₂O₇ (vgl. Abschn. 5.4) und LiNa₃P₂O₇^[112] konnten die beobachteten Beugungsbilder indiziert werden. Die Lithium-silber-pyrophosphate Li₃AgP₂O₇ und LiAg₃P₂O₇ sind demnach diskrete Verbindungen, die isotyp zu den entsprechenden Lithium-natrium-pyrophosphaten Li₃NaP₂O₇ und LiNa₃P₂O₇ sind. Im Fall von Li₃AgP₂O₇ wurde die Zellmetrik mit dem Programm SOS^[37] unter Verwendung von α-Quarz als Standard (vgl. Abschn. 9.1.2) ermittelt und verfeinert ($P2_1/n$; a = 15,965(5) Å, b = 5,2961(9) Å, c =15,952(4) Å, $\beta = 118,00(2)^{\circ}$, 30 Reflexe; (Anhang; vgl. Tab. 11.16). Für LiAg₃P₂O₇ ließ die mangelnde Qualität der Röntgenpulverdiffraktogramme keine Indizierung zu. Hierbei wurden Gitterparameter aus einer Einkristallmessung abgeleitet ($C222_1$; a = 5,486(1) Å, b = 9,539(2)Å, c = 12,751(3) Å), die vergleichbar mit denen von LiNa₃P₂O₇ (C222₁; a = 5,4966(2)Å, b =9,1365(4) Å, c = 12,2764(5) Å)^[112] sind. Mit Hilfe der so ermittelten Gitterparameter und unter Verwendung der Strukturmodelle von Li₃NaP₂O₇ (vgl. Abschn. 5.4) und LiNa₃P₂O₇^[112] wurden mit dem Programm LAZY-PULVERIX^[122] (vgl. Abschn. 9.1.2) Pulverdiffraktogramme für Li₃AgP₂O₇ und LiAg₃P₂O₇ simuliert, die sehr gut mit den beobachteten übereinstimmen (vgl. Abb. 6.2). Aufgrund der beobachteten Isotypie lag die Vermutung nahe, dass zu TT-Li₂Na₂P₂O₇ (vgl. Abschn. 5.5) und/oder HT-Li₂Na₂P₂O₇ (vgl. Abschn. 5.4) auch ein "Li₂Ag₂P₂O₇" existieren sollte. Nach Beugungsaufnahmen für die Einwaage "Li₂Ag₂P₂O₇" (Exp. 31; Abb. 6.2) liegt das mikrokristalline Produkt nach der Reaktion bei $\vartheta = 500$ °C allerdings als Phasengemenge aus $Li_3AgP_2O_7$ und $LiAg_3P_2O_7$ (vgl. Abb. 6.2) vor.

Abb. 6.2 Experimentell erhaltene Röntgenpulverdiffraktogramme für Li₃AgP₂O₇, LiAg₃P₂O₇ und die Einwaage (Li_{1-x}Ag_x)₄P₂O₇ (x = 0,5). Simulierte Strichdiagramme für Li₃AgP₂O₇ und LiAg₃P₂O₇ basieren auf Strukturmodellen von Li₃NaP₂O₇ (vgl. **Abschn. 5.4**) und LiNa₃P₂O₇^[112] mit angepassten Gitterparametern. Rot gestrichelte Linien dienen zur Hervorhebung der dominanten Reflexe von Li₃AgP₂O₇.

6.4 ³¹P-MAS-NMR-Untersuchungen

Auch im Fall der Lithium-silber-phosphate wurden ³¹P-MAS-NMR-Spektren der beiden gemischten Pyrophosphate Li₃AgP₂O₇ und LiAg₃P₂O₇ aufgenommen (vgl. **Abschn. 9.4**) und mit den ³¹P-MAS-NMR-Daten der isotypen Lithium-natrium-phosphate Li₃NaP₂O₇ und LiNa₃P₂O₇ verglichen (siehe **Abb. 6.3** und **Tab. 6.2**).

Zeigte das ³¹P-MAS-NMR-Spektrum von Li₃NaP₂O₇ noch eine verbreiterte Resonanz als isochrone Überlagerung von vier NMR-Signalen für die vier kristallographisch unabhängigen Phosphorlagen (vgl. **Abb. 6.3a**), werden nun zwei intensitätsäquivalente Banden beobachtet (vgl. **Abb. 6.3c**), die vermutlich Folge der Unterschiede in der zweiten Koordinationssphäre der NMR-aktiven P-Kerne (vgl. **Abb. 5.13**) sind und sich als Überlagerungen von jeweils zwei isochronen NMR-Signalen deuten lassen. Anders als im Fall der Na-O_t-P-Bindung wird aufgrund des kovalenteren Charakters der Ag-O_t-P-Bindung offenbar einen stärkerer Einfluss auf die Elektronendichteverteilung um die NMR-aktiven ³¹P-Zentren ausgeübt, sodass sich die lokalen elektronischen Umgebungen der Phosphorkerne mit verhältnismäßig mehr Ag⁺- Ionen in der zweiten Koordinationssphäre (P3 und P4; vgl. **Abb. 5.13**) von denen mit einem höheren Li⁺-Ionenanteil (P1 und P2; vgl. **Abb. 5.13**) deutlicher unterscheiden und es zu einer Aufspaltung der Resonanz kommt (vgl. **Abb. 6.3c**). Auch wird eine Tieffeldverschiebung der Signale beobachtet ($\delta_{iso} = -3,0$ ppm (Li₃NaP₂O₇) vs. $\delta_{iso} = 1,4$ ppm bzw. $\delta_{iso} = -3,5$ ppm (Li₃AgP₂O₇; **Tab. 6.2**), was ein weiteres Indiz für den stärkeren Einfluss der Ag⁺- Ionen auf die elektronische Umgebung der Phosphorkerne ist.

Die ³¹P-MAS-NMR-Spektren von LiAg₃P₂O₇ und LiNa₃P₂O₇ zeigen strukturmodellkonform^[112] jeweils eine Resonanz, die im Fall von LiAg₃P₂O₇, deutlich verbreitert und tieffeldverschoben ist ($\delta_{iso} = 0,6$ ppm (LiNa₃P₂O₇) vs. $\delta_{iso} = 6,6$ ppm (LiAg₃P₂O₇); vgl. **Tab. 6.2**).

Pyrophosphat	P-Lagen	$\delta_{ m iso}~(m ppm)$	Literatur
Li ₃ NaP ₂ O ₇	4	-3,0;	diese Arbeit
$Li_3AgP_2O_7$	4	1,4; -3,5	diese Arbeit
LiNa ₃ P ₂ O ₇	1	0,6	diese Arbeit
LiAg ₃ P ₂ O ₇	1	6,6	diese Arbeit
$Ag_4P_2O_7$	2	7,1; 7,9	[121]

Tab. 6.2 Zusammenstellung der ³¹P-MAS-NMR-Daten. Isotrope chemische Verschiebungen δ_{iso} für Li₃NaP₂O₇, Li₃AgP₂O₇, LiNa₃P₂O₇, LiAg₃P₂O₇ und Ag₄P₂O₇.

Abb. 6.3 Zusammenfassung der ³¹P-MAS-NMR-Experimente für die Lithium-silber-pyrophosphate. Gesternte (*) chemische Verschiebungen: Verunreinigung der Probe von LiAg₃P₂O₇ (d) mit Li₃AgP₂O₇.

Schließlich zeigt das ³¹P-MAS-NMR-Spektrum von LiAg₃P₂O₇ (vgl. Abb. 6.3d) neben der Resonanz bei $\delta_{iso} = 6,6$ ppm, zwei intensitätsschwächere Signale bei $\delta_{iso} = 1,6$ ppm und $\delta_{iso} = -3,3$ ppm, die sich Li₃AgP₂O₇ (vgl. Abb. 6.3c) zuordnen lassen. Dieser Befund bestätigt die Ergebnisse der Röntgenpulveranalyse (vgl. Abschn. 6.3), wonach Li₃AgP₂O₇ und LiAg₃P₂O₇ als Gleichgewichtsphasen koexistieren und die Zusammensetzung Li₂Ag₂P₂O₇ im Fall der Lithium-silber-pyrophosphate nicht realisiert wird.

7 Zusammenfassung

Die vorliegende Dissertation behandelt die Synthese und Charakterisierung neuer Lithiummetall(I)-phosphate ($M = Cu^+$, Na^+ , Ag^+). Dabei wurde nach der literaturbekannten Substitution von Li⁺ durch Cu⁺ in Mischkristallen Li_{3-x}Cu^I_xPO₄ auch die entsprechende Substituierbarkeit in Li₄P₂O₇ (bis zu 10 mol %) und in Metaphosphat Li_{1-x}Cu_xPO₃ mit 0,14 $\le x \le 0,25$ beobachtet. Weiterhin wurden erstmalig die gemischten Pyrophophate Li₃NaP₂O₇, TT-Li₂Na₂P₂O₇, Li₃AgP₂O₇ und LiAg₃P₂O₇ synthetisiert und charakterisiert.

Kristallchemisch relevante Unterschiede werden zwischen den Lithium-kupfer(I)-phosphaten und den Lithium-natrium- bzw. Lithium-silber-phosphaten beobachtet. Während bei den ersteren für die Metalllagen Besetzungs- und Lagefehlordnungen auftreten, die in der Ausbildung ausgedehnter Homogenitätsbereiche resultieren, bilden sich für die letzteren multinäre Verbindungen mit diskreten Zusammensetzungen aus. Die Li⁺- und Cu⁺-Ionen werden ausschließlich tetraedrisch koordiniert, wobei die letzteren bereits merklich aus den Schwerpunkten der Tetraeder herausrücken. Im Unterschied dazu wird für die Na⁺- und Ag⁺-Ionen ausnahmslos eine oktaedrische Koordination beobachtet.

Für Lithium-kupfer(I)-(catena)metaphosphat $\text{Li}_{1-x}\text{Cu}_x\text{PO}_3$ (0,14 $\leq x \leq$ 0,25) wird ein eigener Strukturtyp beobachtet. Im Fall der Lithium-kupfer(I)-pyrophosphate entsprechen die Kristallstrukturen jenen der reinen Lithiumpyrophosphate Li₄P₂O₇-trig* und Li₄P₂O₇-trik.

Neben der schon lange bekannten, thermodynamisch stabilen triklinen Modifikation von Li₄P₂O₇ wurden im Rahmen dieser Arbeit die thermodynamisch metastabilen Phasen Li₄P₂O₇-trig* und Li₄P₂O₇-pseudomono* reproduzierbar erhalten. Trotz der Schwierigkeiten, die mit der Einkristallzucht von thermodynamisch metastabilen bzw. irreversibel umwandelnden thermodynamisch stabilen Phasen einhergehen, gelang diese für Li₄P₂O₇-trig* (metastabil). Im Fall von Li₄P₂O₇-pseudomono* (metastabil) und TT-Li₂Na₂P₂O₇ (stabil) erfolgte die Strukturaufklärung aus Pulverdaten über Realraummethoden unter Verwendung des Programmes ENDEAVOUR. Die in dieser Arbeit beschriebene Methode (Vorgabe von [P^{VII}O₃]⁺- und [P^{VII}O₄]⁻-Molekülfragmenten; Anpassung an experimentell beobachtete Reflexintensitäten unter Berücksichtigung von Coulomb-Wechselwirkungen) führte in beiden Fällen zu kristallchemisch sinnvollen Strukturmodellen.

Wiederkehrendes Strukturelement bei den vorgestellten Pyrophosphaten (mit Ausnahme von $Li_3MP_2O_7$ (M = Na⁺, Ag⁺)) ist eine dreidimensionale, dichtest gepackte Anordnung von Pyrophosphatgruppen. Unterschiede werden hierbei vor Allem bei der Konformation der Pyrophosphatgruppen beobachtet. Beispielsweise stehen für die thermodynamisch metastabilen

Polymorphe von Lithiumpyrophosphat (Li₄P₂O₇-trig* und Li₄P₂O₇-pseudomo*) die [PO₄]-Einheiten einer Diphosphatgruppe gestaffelt. Im Vergleich dazu sind diese für die thermodynamisch stabilen Polymorphe Li₄P₂O₇-trik, Li₄P₂O₇-mono-HT und Li₄P₂O₇-mono-HP ekliptisch angeordnet. Ähnlich dazu wird beim Übergang von TT- nach HT-Li₂Na₂P₂O₇ ein Wechsel der Konformation der Pyrophosphatgruppen von ekliptisch nach gestaffelt beobachtet.

Abb. 7.1 Darstellungen der Kristallstrukturen von Li₄P₂O₇-trig*, Li₄P₂O₇-pseudomono* und TT-Li₂Na₂P₂O₇.

Abb. 7.2 Vergleich zwischen den Konformationen der Pyrophosphatgruppen in $Li_4P_2O_7$ -trik (stabil) und $Li_4P_2O_7$ -trig* (metastabil).

An den kristallographisch charakterisierten, ausschließlich diamagnetischen Phasen, wurden umfangreiche ³¹P- MAS-NMR-Studien betrieben. Besonders im Fall der Lithium-kupfer(I)-phosphate werden Signalverbreiterungen beobachtet, die wahrscheinlich mit der postulierten Li⁺/Cu⁺ Besetzungs- bzw. Lagefehlordnung auf den Metalllagen korrelieren. Im Unterschied dazu liefern strukturell vergleichbare kupferfreie Lithiumphosphate wie z. B. Li₄P₂O₇-trig^{*} und Li₄P₂O₇-pseudomono^{* 31}P-MAS-NMR-Spektren mit scharfen Resonanzen.

Abb. 7.3 ³¹P-MAS-NMR-Experimente für die Lithium- und Lithium-kupfer(I)-pyrophsphate Verunreinigungen: Li₃PO₄ ($\delta_{iso} = 9,1$ ppm) (*), Rotormarkierung ($\delta_{iso} = -11,4$ ppm) (**). Resonanz bei -5,7 ppm (***) unbekannt.

Ziel nachfolgender Arbeiten könnte die Synthese weiterer Lithium-metall(I)-phosphate ($M = Cs^+$, Tl^+ , In^+) sein. Wie würden diese sich kristallchemisch verhalten? Wie würde beispielsweise die Koordinationssphäre der Cs^+ -Ionen ausschauen? Wie würde sich das lone pair der Tl^+ -Ionen auf seine Koordination auswirken? Ist die Stabilisierung von In⁺-Ionen in solch einer Umgebung überhaupt möglich?

Die vorliegende Arbeit zeigte zudem, dass metastabile Phasen auf unterschiedlichen präparativen Wegen zugänglich sind und unter den richtigen Voraussetzungen gar charakterisiert werden können. Eine genauere Auseinandersetzung mit der Synthese und Charakterisierung metastabiler Phasen könnte in Zukunft vielversprechend sein.

8 Apparaturen und präparative Methoden

8.1 Durchführung der Festkörperreaktionen

Die während dieser Dissertation angesetzten Reaktionsgemenge wurden zu etwa 250 bis 500 mg schweren, stäbchenförmigen Presslingen verarbeitet. Im Unterschied zu einem losen Pulver wird hierbei die diffusionslimitierte Geschwindigkeit von Festkörperreaktion erhöht. Des Weiteren wird die Kontaktfläche zwischen der Tiegelwand und dem Reaktionsgemenge reduziert. Die Wahrscheinlichkeit einer unerwünschten Reaktion zwischen dem Tiegelmaterial und den eingesetzten Edukten wird demnach verringert.

Die Reaktionsgemenge wurden in Achatmörsern durch sorgfältiges Verreiben homogenisiert, in eine Pressform (vgl. **Abb. 8.1**) gegeben und mit einem Stempel zusammengedrückt. Mit Hilfe einer hydraulischen Presse (Hersteller: Firma PAUL-OTTO WEBER GmbH, Remshalden, Deutschland) wurde über den Stempel für 15 Minuten ein Druck von 25 kN auf das Pulver ausgeübt.

Abb. 8.1 Explosionsmodell des verwendeten Presswerkzeugs^[123].

Neben stäbchenförmigen Presslingen für kleinere Ansätze, lassen sich mit der entsprechenden Pressform auch größere Ansätze zu Tabletten zusammenpressen.

Die Reaktionsgemenge wurden im Anschluss, je nach Bedarf, in offene Kieselglasampullen gegeben bzw. in evakuierte Kieselglasampullen eingeschlossen und in Kammer- oder Einzonenrohröfen (vgl. Abschn. 8.3) isotherm getempert.

8.2 Multifunktionelle Vakuumapparatur

Das Ausheizen, Evakuieren und Abschmelzen von Kieselglasampullen bzw. das Fluten von Kieselampullen mit Argon erfolgte an einer multifunktionellen Vakuumapparatur (vgl. Abb. 8.2). Zum Evakuieren der Kieselglasampullen wird eine Drehschieberpumpe (Typ: BS5000; Firma EDWARDS) eingesetzt. Das Ausheizen der Ampullen erfolgt in Einzonenrohröfen (vgl. Abschn. 8.3).

Argon musste vor der Verwendung vorgetrocknet werden. Die Trocknung des Schutzgases wurde gewährleistet, indem es durch eine Waschflasche mit konzentrierter Schwefelsäure und dann durch vier Trockentürme mit festem Kaliumhydroxid, Molekularsieb (Korngröße 2 mm) und Phosphorpentoxid geleitet wurde.

Abb. 8.2 Skizze der multifunktionellen Vakuumapparatur (Abbildung entnommen aus^[124]).

8.3 Öfen

Temperexperimente, beschrieben im Rahmen der vorliegenden Arbeit, wurden in verschiedenen Öfen durchgeführt.

Das Ausheizen der Kieselglasampullen erfolgte in Einzonenrohröfen. Diese bestehen aus einem Keramikrohr aus Pythagorasmasse (Innendurchmesser 4 cm) auf das eine Heizwicklung aus Kanthaldraht (KanthalA-1: 22 % Cr, 5,8 % Al, 72,2 % Fe; Firma BERGHÜTTEN GmbH, Dietzenbach, Deutschland) angebracht ist. Zur thermischen Isolierung ist das Rohr mit Hochtemperaturzement bestrichen und in Glimmerpulver in einem Stahlblechrohr gelagert. Die Temperaturmessung erfolgt durch Ni/Cr-Ni-Thermoelemente, die mit Hilfe digitaler PID-Regler (Modelle 2404, 2416; Firma EUROTHERM GmbH, Limburg an der Lahn, Deutschland) mit einer Genauigkeit von ± 1 °C gesteuert werden.

Isotherme Temper- bzw. Kristallisationsexperimente in geschlossenen Kieselglasampullen wurden in Universal-Rohröfen (Modell RT 30-200/15; Firma NABERTHERM GmbH, Lilienthal, Deutschland) durchgeführt. Die eingesetzten Temperaturregler (Modell 2408, EUROTHERM GmbH, Limburg an der Lahn, Deutschland) ermöglichten die Ausführung aufwendiger, mehrstufiger Heizprotokolle und im Fall der Kristallisationsversuche aus Schmelzen (vgl. z. B. **Abschn. 4.3**) ein langsames Abkühlen mit Raten von 1 °C · h⁻¹.

Temperexperimente in offenen Kieselglashalbampullen wurden in Laborkammeröfen (Modell B170; Firma NABERTHERM GmbH, Lilienthal, Deutschland) durchgeführt. Diese verfügen über eine integrierte Temperaturregelung, mit der die gewünschte Temperatur mit einer Genauigkeit von einigen °C eingestellt werden kann. Die Temperaturverteilung in der Offenkammer kann hierbei um bis zu \pm 25 °C schwanken.

8.4 Arbeiten mit Schmelzen

Im Verlauf der vorliegenden Arbeit musste bisweilen mit Schmelzen gearbeitet werden. So beschränkte sich die Züchtung einiger untersuchter Einkristalle auf das langsame Abkühlen einer Schmelze der entsprechenden Verbindung (vgl. z. B. Abschn. 4.3). Weiterhin wurden thermodynamisch metastabile Phasen zum Teil durch Abschrecken von Schmelzen erhalten (vgl. Abschn. 2.2). Aufgrund der relativ hohen Reaktivität einer Schmelze und der Tatsache, dass die erzeugten Schmelzen Alkaliemetallionen wie z. B. Li⁺, Na⁺ enthielten (vgl. z. B.
Abschn. 5.4), wurden die Experimente nicht in Kieselglasampullen, sondern in Platintiegeln durchgeführt. Oxidationsanfällige Schmelzen mussten wiederum in geschlossenen, evakuierten Kieselglasampullen gehandhabt werden. Zur Kontaktvermeidung der Schmelze mit der Ampullenwand, wurde im konkreten Fall das Reaktionsgemenge in Kupferblech gewickelt (vgl. Abschn. 3.2).

9 Analytische Verfahren

9.1 Pulverdiffraktometrie nach der Guinier-Methode

Mikrokristalline Pulver, wurden im Verlauf der vorliegenden Dissertation mit Hilfe der Guinier-Methode röntgenographisch untersucht. Verwendet wurde eine Guinier-Kamera des Typs G670 (HUBER Diffraktionstechnik GmbH & Co. KG, Rimsting, Deutschland), deren Prinzip in **Abb. 9.1** dargestellt ist.

Abb. 9.1 Aufbau einer Guinierkamera (Abbildung entnommen aus^[92] und modifiziert).

Neben der Röntgenstrahlung sind für die Funktionsweise einer Guinier-Kamera weitere Komponenten wie z. B. der Monochromator, der Probenhalter samt Probe, die Röhre, die Image plate (*IP*) (Typ: BAS-IP MS 2325; FUJIFILM HOLDINGS CORPORATION; Minato, Tokyo, Japan), auf der eine Bildspeicherfolie aufgetragen ist, und der Detektor relevant.

Die für die Untersuchung notwendige Röntgenstrahlung wird erzeugt, indem ein fokussierter Elektronenstrahl bei einer Hochspannung von 40 kV und einer Stromstärke von 30 mA auf eine Kupferanode gelenkt wird. Dabei werden aus der Elektronenhülle der Kupferatome kernnahe Elektronen herausgeschlagen, wodurch die Atome in einen energetisch stark angeregten Zustand übergehen. Damit die energetisch stark angeregten Atome relaxieren können, werden in einem Folgeschritt die entstandenen Elektronenlöcher durch kernferne Elektronen aufgefüllt. Bei diesem Prozess wird Röntgenstrahlung frei. Je nachdem aus welcher Elektronenschale das auffüllende Elektron stammt, wird Röntgenstrahlung unterschiedlicher Wellenlänge frei. Als Monochromator wird ein Germaniumkristall eingesetzt und so in den Strahlengang platziert, dass die BRAGGSCHE Gleichung^[125] nur für eine bestimmte Wellenlänge (hier: Cu-K α_1 -Strahlung, $\lambda = 1,54051$ Å) erfüllt, wird (vgl. **Gleichung 9.1**).

 $n \cdot \lambda = 2 \cdot d_{\rm hkl} \cdot \sin\theta$

(Gl. 9.1)

n: Beugungsordnung des Röntgenstrahls; natürliche Zahl

 λ : Wellenlänge der verwendeten Strahlung

d_{hkl}: Netzebenenabstand

 θ : Einfallwinkel an der Netzebene

Der fokussierte Röntgenstrahl wird auf die Probe gelenkt und dort an den Kristalliten unterschiedlicher Ausrichtung gebeugt. Der Probenhalter wird dabei im Strahlengang hin und her bewegt, um möglichst viele Kristallite möglichst oft in Reflexionsstellung zu bringen. In der Kamera werden die gebeugten Röntgenstrahlen auf die 90 Millimeter lange Bildspeicherfolie gelenkt. Die einzelnen Komponenten der Kamera sind so angeordnet, dass der Beugungswinkel 2 θ in einem festen Verhältnis zum Abstand eines Beugungsreflexes vom Primärstrahl auf der Bildspeicherfolie steht. Ein Millimeter Folie entspricht einem Beugungswinkel 2 θ von einem Grad.

Bei der Belichtung der Image-plate wird der *"photostimulated luminescence*"-Effekt^[126] ausgenutzt. Die Bildspeicherfolie enthält mit Eu²⁺-Kationen dotiertes BaBrF. Durch auftreffende Röntgenquanten, werden diese zu Eu³⁺-Kationen oxidiert, wobei die freiwerden-

den Elektronen Zwischengitterplätze besetzen und dort Farbzentren bilden. Auf diese Art kann die Information über aufgetroffene Röntgenstrahlung gespeichert werden.

Die auf der Image-plate gespeicherte Information wird im Anschluss von der Huber-Kamera maschinell ausgelesen und digitalisiert. Das Beugungsbild wird dabei mit rotem Laserlicht abgetastet, wobei Eu^{3+} -Kationen zu Eu^{2+} -Kationen reduziert werden. Als Folge wird Licht im blaugrünen Wellenbereich emittiert, dessen Intensität dann mit einer Photozelle mit Photomultiplier gemessen werden kann. Aus dieser Messung wird ein *xy*-Datensatz im ASCII-Format gewonnen, bei dem die beobachtete Reflexintensität gegen den Beugungswinkel 2 θ aufgetragen ist. Nach erfolgter Messung wird die Bildinformation auf der Image-plate mit einer weißen Halogenlampe gelöscht, wodurch diese für die nächste Messung wieder zur Verfügung steht.

9.1.1 Präparation der Guinier-Träger

Eine für Röntgenstrahlen transparente Mylar-Folie (Typ: TF-160, FLUXANA GmbH & Co. KG) wurde auf dem Probenhalter platziert und mit einem passenden Ring auf dem Probenhalter fixiert. Auf die Folie wurden zwei Spatelspitzen der fein verriebenen, kristallinen Probe gegeben und mit 3 bis 4 Tropfen Ethanol suspendiert. Diese Aufschlämmung wurde auf der Folie fein verteilt, sodass ein dünner Film aus sehr vielen unterschiedlich orientierten Kristalliten entstand. Nach Verdunstung des Ethanols, konnte die Probe nach der in **Abschn. 9.1** beschriebenen Methode untersucht werden. Sollen aus den Reflexlagen (Beugungswinkeln) Gitterparameter bestimmt werden, so ist eine Korrektur der Winkel notwendig. Dies wurde erreicht, indem die Probe zusammen mit einem Standard vermessen wurde, von dem die Reflexpositionen sehr genau bekannt sind. Als Standard wird z. B. Tiefquarz verwendet. Standard und Probe wurden vermengt und nach zuvor erwähntem Muster auf die Folie aufgetragen.

9.1.2 Auswertung der Guinier-Aufnahmen

Die erhaltenen *xy*-Datensätze im ASCII-Format (vgl. Abschn. 9.1) wurden mit dem Programm ORIGIN^[127] graphisch dargestellt. Mit Hilfe der erhaltenen Pulverdiffraktogramme konnte die Zusammensetzung der Probe bestimmt werden. Dazu wurden Simulationen von Diffraktogrammen für Verbindungen bekannter Kristallstruktur mit Hilfe des Programms LAZY-PULVERIX^[122] berechnet und im Anschluss mit dem Programm GINA^[128] als Strichdiagramm graphisch dargestellt. Gemessene und simulierte Pulverdiffraktogramme wurden im Anschluss verglichen. Kristallstrukturdaten, die für die Simulation der Pulverdiffraktogramme notwendig sind, wurden aus der Inorganic Crystal Structure Database (ICSD)^[8] entnommen. Alternativ wurden die experimentellen Beugungsdaten mit dem Programm MATCH!^[86] ausgewertet. Hierbei vorteilhaft ist der Datenabgleich dank umfangreicher Datenbanken wie der PDF-2^[129] oder der COD^[130]. Im Fall von Phasengemengen ermöglicht das Programm auch eine quantitative Aussage über die Zusammensetzung untersuchter kristalliner Proben.

Neben der qualitativen und quantitativen Phasenanalyse wurde die Zellmetrik verschiedener Phasen (vgl. z. B. Abschn. 2.4) anhand experimentell erhaltener Pulverdiffraktogramme bestimmt. Dazu wurden die Programme Sos1 und Sos2^[37] verwendet. Das Programm Sos1 führt eine Korrektur der Reflexpositionen der untersuchten Probe durch Abgleich mit den bekannten Reflexpositionen von Tiefquarz als Standard aus. Das Programm Sos2 berechnet die Gitterkonstanten anhand der vorgegebenen Indizierung der Reflexe.

9.2 Einkristallstrukturanalyse

Neben röntgenographischen Untersuchungen an Pulvern, wurden im Rahmen der Dissertation Einkristallstrukturanalysen durchgeführt (vgl. z. B. Abschn. 4.3).

Dabei wurden unter einem Lichtmikroskop geeignete Einkristalle verschiedener Proben entnommen. Es wurde darauf geachtet, dass die Einkristalle möglichst gut definierte Flächen aufwiesen und frei von Verwachsungen und Einschlüssen waren. Die Kristalle wurden mit Sekundenkleber auf Glasfäden befestigt, die zuvor mit Hilfe von Kerzenwachs auf Probenhalter montiert wurden. Die Probenhalter wurden im Anschluss auf einen Goniometerkopf platziert und dieser wurde im euzentrischen Punkt des Einkristalldiffraktometers positioniert.

Bei der Messung wurden besagte Einkristalle im Röntgenstrahl gedreht, um möglichst viele Netzebenenscharen in Reflexionsstellung zu bringen und somit einen vollständigen Datensatz zu erhalten.

Die Einkristallbeugungsdaten wurden allesamt an einem X8-Kappa Apex II Vierkreis-Diffraktometer (Firma BRUKER AXS GmbH, Karlsruhe, Deutschland) gesammelt. Die für die Messung benötigte Röntgenstrahlung wird bei dem verwendeten Vierkreisdiffraktometer mit einer Molybdän-Röntgenröhre (Mo-K α_1 -Strahlung, $\lambda = 0,71069$ Å) erzeugt und an Graphit monochromatisiert. Als Detektor kam ein sogenannter CCD-Flächenzähler (Charge-Coupled-Device; Halbleiter, mit röntgenempfindlicher Fluoreszenzschicht aus Gadoliniumoxidsulfid (Gd_2O_2S) beschichtet^[131]) zum Einsatz. Das Bild wird erzeugt, wenn die Röntgenstrahlung den Szintillator (Gd_2O_2S) zum Leuchten bringt und die lichtempfindlichen Dioden (Halbleiter) auf die Photonen reagieren. Das Vierkreis-Diffraktometer ist nach dem Prinzip der *Kappa*-Geometrie aufgebaut. Der Goniometerkopf lässt sich dabei um drei Achsen (ω -Kreis, κ -Kreis, φ -Kreis) drehen. Der vierte θ -Kreis ist koaxial zum ω -Kreis und trägt den CCD-Zähler. Die aus der Messung erhaltenen Datensätze wurden mit dem Programm SHELXS-97^[43] ausgewertet. Dabei wurden mittels Direkter Methoden^[132] Startpunktlagen für die schwereren Atome ermittelt und im Anschluss wurde mit dem Programm SHELXL-97^[44] eine Strukturverfeinerung durchgeführt. Beide Programme sind Bestandteil des Programmpaketes WINGX^[45].

9.3 Strukturbestimmung mittels Realraummethoden

Bei der Strukturbestimmung von unbekannten kristallinen Feststoffen muss in vielen Fällen aufgrund der Abwesenheit geeigneter Einkristalle auf Röntgenpulverdaten zurückgegriffen werden. Dabei stellt das Ableiten eines gescheiten Strukturmodells mir den entsprechenden Atompositionen die Hauptschwierigkeit dar. Gängige Methoden wie z. B. die Patterson-Methode^[133] oder direkte Methoden^[134] versuchen in Analogie zur Einkristallstrukturbestimmung Reflexen Intensitäten zuzuordnen, was aufgrund der Intensitätsüberlagerungen verschiedener Reflexe in Pulverdiffraktogrammen problematisch ist. Im Unterschied dazu verfolgen sog. Realraummethoden einen Ansatz bei dem unter Kenntnis der Zellmetrik und des Zellinhalts erhaltenen die Differenz zwischen experimentell und berechneten Beugungsdiagrammen durch Verschieben der Atome in der Zelle mit Hilfe der Kostenfunktion $\Delta I_{exp/calc}(2\theta)$ minimiert wird. Dieses Vorgehen führt allerdings in vielen Fällen dazu, dass vor Erreichen des globalen Minimums, das mit der gesuchten Kristallstruktur korrespondiert, sich das System in lokalen Minima "verläuft", was zu kristallchemisch unsinnigen Strukturmodellen führt. Um die Wahrscheinlichkeit des Durchlaufens eines lokalen Minimums zu verringern, wird neben der Differenz aus experimentellen und berechneten Pulverdiffraktogrammen, die potentielle Energie des Systems mitberücksichtigt, wodurch die Kostenfunktion folgendermaßen angepasst wird (siehe Gleichung 9.2):

(Gl. 9.2)

$$C = \alpha \cdot E_{\text{pot}} + (1 - \alpha) \cdot R_{\text{B}}$$

 E_{pot} : potentielle Energie der Atomanordnung

R_B: R-Wert mit dem experimentelle und berechnete Beugungsdiagramme verglichen werden

α: Pareto-Parameter

Computerprogramme wie ENDEAVOUR^[38,39] führen mit der oben aufgeführten Gleichung eine kombinierte globale Optimierung (*Pareto-Optimierung*) durch und versuchen letztlich das globale Minimum des Systems zu bestimmen. Je nach Fallbeispiel ist es dabei sinnvoll, den Wichtungsfaktor α (*Pareto-Faktor*) zu variieren.

9.4 MAS-NMR-Spektroskopie

Bei der NMR-Spektroskopie wird der Umstand ausgenutzt, dass manche Atomkerne einen Kernspin *I* besitzen, der sich aus der Summe der Eigendrehimpulse der Nukleonen ergibt^[135]. Die Eigendrehimpulse nehmen dabei Werte von ¹/₂ an. Sowohl Neutronen als auch Protonen entgegengesetzten Spins fügen sich im Atomkern zu Paaren zusammen. Sind Kernladungs- und Nukleonenzahl gerade, wie z. B. im Fall von ${}_{6}^{12}C$, heben sich die Eigendrehimpulse gegenseitig auf und für den Kernspin gilt: I = 0. Sogenannte gg-Kerne (g für gerade) sind demnach für NMR-Untersuchungen unzugänglich. Im Fall von ug-, gu-Kernen oder uu-Kernen^[136], bei denen Kernladungszahl oder Ordnungszahl bzw. beide Zahlen ungerade sind, heben sich die Eigendrehimpulse nicht vollständig auf und es wird ein Kernspin $I \neq 0$ beobachtet. Nach den Gesetzen der klassischen Physik ist der Kernspin mit einer sich bewegenden Ladung in einem geschlossenen Stromkreis vergleichbar. Folglich wird im Fall von $I \neq 0$ ein Magnetfeld induziert und die Atomkerne besitzen ein magnetisches Dipolmoment μ . Mit einem von außen angelegten Magnetfeld können die magnetischen Momente NMR-aktiver Kerne in Wechselwirkung treten, was letzten Endes die Grundlage für die NMR-Spektroskopie darstellt. Durch Wechselwirkung des magnetischen Moments $\vec{\mu}$ eines Atomkerns und eines von außen angelegten Magnetfelds \vec{B}_0 (entlang der Laborkoordinate z) spalten die möglichen Energieniveaus des Kerns auf. Dieser als ZEEMAN-Wechselwirkung^[137] bekannte Effekt wird mit Gleichung 9.3 beschrieben.

$$E = -\gamma \cdot B_0 \cdot m_z \cdot \hbar \tag{Gl. 9.3}$$

- *y*: gyromagnetisches Verhältnis (kernspezifische Konstante)
- \hbar : reduziertes PLANKSCHES Wirkungsquantum
- m_z : magnetische Quantenzahl (Werte: -I, ..., I)

Im einfachsten Fall spaltet ein NMR-aktiver Kern mit einem Kernspin $I = \frac{1}{2}$ in zwei Energieniveaus auf. Die Besetzung der einzelnen Energieniveaus wird mit Hilfe einer BOLTZMANN-Verteilung^{[138][139]} (siehe **Gleichung 9.4**) beschrieben.

$$\frac{N_{\beta}}{N_{\alpha}} = \exp\left(-\frac{h \cdot v_{\rm L}}{k_{\rm B} \cdot T}\right)$$
(Gl. 9.4)

 v_L : Larmorfrequenz

- h: PLANKSCHES Wirkungsquantum
- *k_B*: BOLTZMANN-Konstante
- T: Temperatur

Im Grundzustand wird bevorzugt der energieärmere Zustand (N_a) besetzt. Indem die zu messende Probe einem Radiowellenpuls mit einer, für die Atomsorte charakteristischen Larmorfrequenz v_L ausgesetzt wird, werden die NMR-aktiven Atomkerne vermehrt in den energiehöheren Zustand (N_β) angeregt, d. h. die Kernspins präzidieren mit besagter Frequenz um das angelegte Magnetfeld. Mit der Zeit richten sich im thermischen Gleichgewicht die Kernspins bevorzugt entlang des angelegten Magnetfeldes aus. Longitudinal wird dabei Magnetisierung aufgebaut, bis Sättigung eintritt. Durch Einstrahlen eines 90°-Hochfrequenz-Impulses wird der Magnetisierungsvektor in die xy-Ebene projiziert. Dieser präzidiert mit der Larmorfrequenz um das angelegte Magnetfeld und induziert in einer senkrecht zum Magnetfeld angebrachten Spule einen als FID (free induction decay) bezeichneten Strom, der sich detektieren^[140] und mittels Fourier-Transformation in ein charakteristisches NMR-Spektrum umgewandeln lässt. Nach Abschalten des Radiofrequenzpulses relaxieren die Atomkerne in den energieärmeren Zustand und der Messzyklus beginnt von vorn.

Eine wesentliche Information, die sich aus einem NMR-Experiment ableiten lässt, ist die chemische Verschiebung δ . Der Effekt kommt durch die Interferenz zwischen dem von außen angelegten Magnetfeld und der Elektronenhülle der NMR-aktiven Atomkerne zustande. Diese Wechselwirkung hat eine Induktion eines Magnetfeldes *B*_{ind} zur Folge. *B*_{ind} und *B*₀ sind dabei proportional zueinander, mit der chemischen Verschiebung δ als Proportionalitätskonstante (siehe Gleichung 9.5).^[141]

 $\vec{B}_{\text{ind}} = -\,\widehat{\delta}\cdot\vec{B}_0$

Bind: induziertes Magnetfeld

- B₀: angelegtes Magnetfeld
- $\hat{\delta}$: chemische Verschiebung (Tensor 2. Ordnung)

Die chemische Verschiebung ist eine anisotrope Größe, d. h. sie ist abhängig von der Orientierung der Kernumgebung bzw. des Moleküls zum Magnetfeld. Sie lässt sich mit Hilfe von sechs Parametern beschreiben. Dazu gehören die drei Hauptachsen δ_{11} , δ_{22} , δ_{33} und die drei EULER-Winkel $\Theta = \alpha, \beta, \gamma$. In Flüssigkeiten spielt die Anisotropie der chemischen Verschiebung aufgrund der schnellen Molekülbewegung und der damit verbundenen Wahrnehmung einer gemittelten Kernumgebung nur eine untergeordnete Rolle. Der anisotrope Teil der chemischen Verschiebung wird durch die Bewegungsprozesse ausgemittelt, nur der isotrope Anteil δ_{iso} bleibt erhalten^[141].

Die chemische Verschiebung δ ist eine dimensionslose Größe und wird in ppm (parts per million) angegeben. Je nach elektronischer Umgebung des NMR-aktiven Kerns, wird eine charakteristische, chemische Verschiebung beobachtet. Diese kann dazu genutzt werden, Informationen über die chemische Bindung abzuleiten^[141]. Ist beispielsweise verhältnismäßig viel Elektronendichte an NMR-aktiven Atomkernen lokalisiert, verschieben sich beobachtete Resonanzen im Spektrum nach rechts, ins sogenannte Hochfeld. Im umgekehrten Fall, bei wenig lokalisierter Elektronendichte, erfolgt eine Verschiebung nach links in das sogenannte Tieffeld. Ein weiterer Effekt, der die chemische Verschiebung beeinflusst, ergibt sich aus der durch das äußere Magnetfeld induzierten Elektronenbewegung, die ihrerseits ein lokales Magnetfeld hervorruft. Dieser Effekt kann sowohl diamagnetisch als auch paramagnetisch sein (vgl. dazu^[142]).

Die chemische Verschiebung δ ist eine relative Größe, weshalb für jede NMR-aktive Atomsorte ein Standard festgelegt wird, auf den die gemessenen chemischen Verschiebungen δ bezogen werden (siehe **Gleichung 9.6**)^[141].

$$\delta [\text{ppm}] = \frac{v_{\text{Probe}} - v_{\text{Standard}} [\text{Hz}]}{\text{Messfrequenz} [\text{MHz}]}$$
(Gl. 9.6)

*v*_{Probe}: Frequenz der Probe

v_{Standard}: Referenzfrequenz (standardmäßig auf null gesetzt)

(Gl. 9.5)

Beim Übergang zum Festkörper, d. h. durch die Fixierung der "Moleküle" auf feste Positionen, kann die Anisotropie der chemischen Verschiebung nicht mehr ignoriert werden. Alle sechs Parameter des Tensors der chemischen Verschiebung müssen beachtet werden. Hierbei muss zwischen Messungen an Pulvern und Einkristallen unterschieden werden. Aufgrund der statistischen Verteilung der Orientierung des chemischen Verschiebungstensors in Bezug auf die *z*-Achse, geht für pulverförmige Proben die Orientierungsabhängigkeit in Form der drei EULER-Winkel $\Theta = \alpha$, β , γ verloren und es lassen sich nur die Werte für die drei Hauptachsen δ_{11} , δ_{22} , δ_{33} bestimmen^[141]. Der Einfluss der Anisotropie der chemischen Verschiebung zeigt sich in Festkörper-NMR-Spektren an relativ breiten Signalen. Dieser Effekt wird durch Dipol-Dipol-Wechselwirkungen zwischen einzelnen NMR-aktiven Kernen verstärkt, was eine niedrige spektrale Auflösung zur Folge hat, wodurch die Auswertung der Spektren erschwert wird.

Der HAMILTON-Operator \hat{H}_D (siehe z. B.^[143]) für die heteronukleare Dipol-Dipol-Wechselwirkung wird in **Gleichung 9.7** wiedergegeben.

$$\widehat{H}_{\mathrm{D}} = -\frac{\mu_0 \cdot \gamma_1 \cdot \gamma_{\mathrm{S}} \cdot \hbar^2}{4 \cdot \pi^3 \cdot r_{\mathrm{IS}}^3} \cdot (3 \cdot \cos^2 \theta - 1) \cdot \widehat{I}_z \cdot \widehat{S}_z$$
(Gl. 9.7)

 μ_0 : magnetische Feldkonstante

 γ_{mn} : gyromagnetische Verhältnisse zweier NMR-aktiver Kerne

h: reduziertes PLANKSCHES Wirkungsquantum

rmn: Abstand zweier NMR-aktiver Kerne

Imnz: Kernspins zweier NMR-aktiver Kerne

Der Einfluss der dipolaren Wechselwirkung kann herausgemittelt werden, indem der winkelabhängige Term von **Gleichung 9.7** auf null gesetzt wird. Experimentell wird dies bei der sogenannten MAS-Messtechnik^[144] (**M**agic Angle Spinning) realisiert. Hierbei wird die Probe um einen Winkel von 54,7° relativ zum angelegten Magnetfeld B_z rotiert. Zusätzlich wird durch das schnelle Drehen der Probe mit bis zu 25 kHz der Flüssigzustand "simuliert". Bei entsprechend schneller Rotation wird so die Anisotropie der chemischen Verschiebung fast vollständig herausgemittelt. Als Folge werden hochaufgelöste Festkörper-NMR-Spektren erhalten.

Die im Verlauf dieser Dissertation durchgeführten ³¹P-MAS-NMR-Messungen wurden an einem Varian Infinity+ Spektrometer, ausgestattet mit einem 2,5 mm Doppelresonanzmesssonde (Chemagnetics), bei 162,532 MHz und Rotationsgeschwindigkeiten von 15 bis 20 kHz unternommen. Die aufgenommenen ³¹P-MAS-NMR-Spektren stellen Überlagerungen von bis zu 640 Transienten dar, die mit einer Repetitionszeit von 30 s, einer 90°-Pulsdauer von 1,9 µs und einer 10 Hz Linienverbreiterung während der Datenprozessierung erhalten wurden. Die Messungen wurden mittels Spin-Echo Pulssequenzen durchgeführt. Magnetisierung, die aufgrund von Inhomogenitäten im angelegten Magnetfeld durch Auseinanderlaufen bzw. Dephasierung der Spins verloren geht, wird bei der oben genannten Messtechnik durch das Einstrahlen eines 180° Pulses und der damit verbundenen Refokusierung der Spins wieder aufgebaut und ein Signal kann als Spin-Echo gemessen werden^[145].

Die erhaltenen Spektren wurden mit Hilfe des Programms SPINSIGHT 4.3.2^[146] ausgewertet. Als Bezugssystem wurde bei den ³¹P-MAS-NMR-Messungen 85%-ige Phosphorsäure verwendet.

9.5 Magnetische Messungen

Experimente zum magnetischen Verhalten einiger synthetisierter Phasen, wurden mit Hilfe eines PPMS Vibrating Sample Magnetometers (Firma QUANTUM DESIGNS Inc., San Diego, USA) durchgeführt.

Dabei wird eine Kapsel mit der zu untersuchenden Probe in ein homogenes Magnetfeld einund senkrecht zu diesem zum Schwingen gebracht. Das oszillierende Magnetfeld der schwingenden Probe induziert eine messbare Spannung in einer Pickup-Spule, die proportional zur Feldstärke *H* des angelegten Magnetfeldes ist^[147]. Das Signal wird von dem Messprogramm als Magnetisierung $M_{exp.}$ ausgegeben. Da die Probekapsel anteilig zu der beobachteten Magnetisierung in Form von M_K beiträgt, muss $M_{exp.}$ um diesen Betrag korrigiert werden. Mit den Werten für *H*, M_K , $M_{exp.}$, der Probenmasse *m* und der molaren Masse M_P der magnetischen Spezies können die magnetische Massensuszeptibilität χ_g (**Gleichung 9.8**) und die molare magnetische Suszeptibilität χ_{mol} (**Gleichung 9.9**) bestimmt werden.

$$\chi_{\rm g} = \frac{M_{\rm exp.} - M_{\rm K}}{H \cdot m} \tag{Gl. 9.8}$$

$$\chi_{\rm mol} = \chi_{\rm g} \cdot M_{\rm P} \tag{Gl. 9.9}$$

Mexp: experimentell bestimmte Magnetisierung

MK: Kapselbeitrag zur experimentell bestimmten Magnetisierung

m: Probenmasse

H: Feldstärke des angelegten Magnetfeldes

 $M_{\rm P}$: molare Masse der magnetischen Spezies

Zu der molaren magnetischen Suszeptibilität χ_{mol} tragen alle Elektronen der magnetischen Spezies bei. Deshalb muss für nicht diamagnetische Substanzen der diamagnetische Anteil $\chi_{dia,mol}$ von der beobachteten molaren magnetischen Suszeptibilität χ_{mol} abgezogen werden. Werte der diamagnetischen Korrektur werden in der Regel empirisch ermittelt und sind für viele magnetische Spezies bekannt^[94].

Unter Annahme des CURIE-, bzw. des CURIE-WEISS-Gesetzes^[93] kann schließlich das effektive magnetische Moment μ_{eff} (Gleichung 9.10) berechnet werden.

$$\mu_{\text{eff}} = \sqrt{\frac{3 \cdot k_{\text{B}}}{N_{\text{A}} \cdot \mu_{\text{B}}^2}} \cdot \sqrt{\chi_{\text{mol}} \cdot T}$$
(Gl. 9.10)

 $k_{\rm B}$: BOLTZMANN-Konstante

- $N_{\rm A}$: AVOGADRO-Konstante
- $\mu_{\rm B}$: BOHRSCHES Magneton
- *T*: Absolute Temperatur

9.6 Differenz-Thermo-Analysen und thermogravimetrische Untersuchungen

Die im Rahmen der vorliegenden Dissertation unternommenen Experimente zum thermischen Verhalten einzelner Phasen wurden mit Hilfe eines Thermoanalysators (Typ: STA 429, Firma NETSCH GmbH, Selb, Deutschland) durchgeführt.

Mit einer Differenz-Thermo-Analyse (DTA)^[148] werden kalorische Effekte detektiert, die beispielsweise bei Phasenumwandlungen, Zersetzungsreaktionen oder Aufschmelzprozessen auftreten.

Das Prinzip einer DTA beruht auf dem simultanen Erwärmen einer Probe und einer Referenzsubstanz, die im eingestellten Temperaturbereich inert ist. Während sich die Referenzsubstanz sukzessive aufheizt, wird die eingesetzte Wärmeenergie im Fall der zu untersuchenden Probe als latente Umwandlungswärme bei Phasenübergängen gespeichert^[149]. Aus der Temperaturdifferenz zwischen Referenz und Probe kann auf das Vorzeichen der Reaktionsenthalpie geschlossen werden. Phasenübergänge und Aufschmelzprozesse sind in der Regel endo-, Zersetzungsreaktionen für gewöhnlich exotherm.

Gleichzeitig zu der DTA wurde durch thermogravimetrische Untersuchungen (TG) auf mögliche Änderungen der Probenmasse, wie sie beispielsweise bei Entwässerungs-Verdampfungs- oder Zersetzungsprozessen^[150] auftreten, geprüft.

10 Ausgangsverbindungen

Die im Laufe der vorliegenden Dissertation verwendeten kommerziell erhältlichen Ausgangsverbindungen sind in **Tab. 10.1** zusammengestellt.

Substanz	Hersteller	Reinheit
Kupfer (Pulver)	Merck	99,7 %
Konz. HNO ₃	Riedel de Häen	65 %, reinst
(NH4) ₂ HPO ₄	Riedel de Häen	99 %
Aceton	Merck	99 %
Ar	Air Products	Ar 4,6
H_2	Air Products	99 %
O ₂	Air Products	99 %
SiO ₂ (Tiefquarz)	Merck	guinierrein
Kieselglas	GVB Solutions	-

Tab. 10.1 Zusammenstellung der kommerziell erhältlichen Ausgangsverbindungen.

Eine Zusammenstellung vorrätiger Ausgangsverbindungen aus dem Bestand der Arbeitsgruppe kann Tab. 10.2 entnommen werden.

Tab. 10.2 Zusammenstellung vorrätiger Ausgangsverbindungen.

Substanz	Hersteller	Reinheit	Aussehen
Ag ₃ PO ₄	Jan Häbel	guinierrein	gelbes Pulver
$Ag_4P_2O_7$	Jan Häbel	guinierrein	farbloses Pulver
$Cu_2P_2O_7$	Christian Litterscheid	guinierrein	grünes Pulver
Li ₃ PO ₄	Lisa Büttner	guinierrein	farbloses Pulver
Na ₃ PO ₄	unbekannt	guinierrein	farbloses Pulver
Na ₃ P ₃ O ₉	unbekannt	guinierrein	farbloses Pulver
Na ₄ P ₂ O ₇	unbekannt	guinierrein	farbloses Pulver

Nicht vorrätige Edukte, wie zum Beispiel $Cu_2P_4O_{12}$, $Li_4P_2O_7$ -trik. und LiPO₃ mussten nasschemisch synthetisiert werden.

Nr.	Edukte	Einwaage	Einwaage	Temp.	Dauer	Ergebnisse nach
		(g)	(mmol)	(°C)	(h)	IP-Guinieraufnahme
33	Li ₂ CO ₃ (NH ₄) ₂ HPO ₄ HNO ₃ (Lsm.)	3,66 6,55	49,58 49,58	150	5	
	Rückstand			500	48	Li ₄ P ₂ O ₇ -trik
34	Li ₂ CO ₃ (NH ₄) ₂ HPO ₄ HNO ₃ (Lsm.)	7,69 2,15	29,1 58,2	150	5	
	Rückstand			500	48	LiPO ₃
35	Cu (NH4)2HPO4 HNO3 (Lsm.)	1,43 9,54	22,57 72,24	150	5	
	Rückstand			500	48	$Cu_2P_4O_{12}$

Tab. 10.3 Einwaagen zur Darstellung der verwendeten Ausgangsstoffe.

Dabei wurden stöchiometrische Mengen von Lithiumcarbonat (Li₂CO₃) und Diammoniumhydrogenphosphat ((NH₄)₂HPO₄) in wenigen Millilitern verdünnter Salpetersäure gelöst und die Lösung bei ca. ϑ = 150 °C bis zur Trockne eingekocht.

Im Fall der Darstellung von Kupfer(II)-tetracyclo-metaphosphat ($Cu_2P_4O_{12}$) musste ein großer Überschuss an Diammoniumhydrogenphosphat eingesetzt werden. Die stöchiometrische Einwaage führte in der Regel zur Ausbildung eines Phasengemenges, bestehend aus dem gewünschten Produkt und Kupfer(II)-pyrophosphat ($Cu_2P_2O_7$).

Die feinkristallinen Rückstände wurden in offenen Kieselglashalbampullen zur Entfernung flüchtiger Bestandteile für 48 h bei ϑ = 500 °C getempert. Die Reinheit der kalzinierten mikrokristallinen Rückstände wurde anhand von Guinieraufnahmen überprüft.

Abb. 10.1 Experimentelles und simuliertes^[26] Pulverdiffraktogramm von $Li_4P_2O_7$ -trik.

Abb. 10.2 Experimentelles und simuliertes^[48] Pulverdiffraktogramm von LiPO₃.

Abb. 10.3 Experimentelles und simuliertes^[79] Pulverdiffraktogramm von Cu₂P₄O₁₂.

11 Anhang

, -	- , () , -	· · · · · · · · · · · · · · · · · · ·	- , - () ,	- cui.			
h	k	l	$4 heta_{ m calc.}$	$4 heta_{ m obs.}$	Δ	Icalc.	Iobs.
1	0	0	24,803	24,803	0,00	18	31
1	0	-1	27,180	27,173	0,01	69	23
1	2	0	42,509	42,494	0,02	1000	1000
1	0	1	43,010	43,094	0,13	673	855
1	0	-2	47,191	47,154	0,06	161	106
2	0	0	49,903	49,903	0,00	201	137
2	0	-2	54,751	54,732	0,04	382	313
1	2	1	55,325	55,412	0,18	59	60
2	2	-1	57,166	57,141	0,05	219	170
1	2	-2	58,685	58,751	0,14	157	111
0	2	2	62,828	62,899	0,16	24	80
2	0	1	65,810	65,778	0,08	70	96
0	4	0	69,579	69,576	0,01	296	346
3	0	-2	71,228	71,235	0,02	203	251
1	0	-3	71,839	71,824	0,04	298	284
1	2	2	75,914	75,932	0,05	111	197
3	2	0	83,629	83,666	0,11	38	150
2	4	1	97,274	97,293	0,06	20	37
4	0	-3	99,351	99,321	0,10	1	51
3	0	-4	101,583	101,518	0,22	23	49
2	2	-4	103,238	103,296	0,20	25	37
1	2	-4	105,160	105,154	0,02	5	30
0	0	4	107,339	107,311	0,10	22	34
1	6	0	109,873	109,848	0,09	33	59
4	2	-4	119,025	119,065	0,15	18	30
5	0	-1	120,631	120,622	0,03	80	87
2	6	-2	121,866	121,891	0,09	18	61
1	6	2	128,941	128,909	0,12	45	66

Tab. 11.1 Li₄P₂O₇-pseudomono*: Beobachtete Reflexe im Bereich 12,38 $\leq 2\theta \leq 64,47^{a}$; Exp. 3c; a = 7,885(2) Å, b = 10,306(2) Å, c = 7,546(2) Å, $\beta = 115,26(2)^{\circ}$; $\Delta = |\sin^2\theta_{cal.} - \sin^2\theta_{ob}| \cdot 1000$.

a) 120 Reflexe im angegebenen 2 θ -Bereich, stärkster nicht beobachteter Reflex bei 2 θ = 58,72° ($I_{calc.}$ = 43)

h	k	l	$4 heta_{ ext{calc.}}$	$4 heta_{ m obs.}$	Δ	Icalc.	Iobs.
0	1	0	27,542	27,565	0,02	64	34
0	0	1	36,855	36,876	0,03	111	108
1	-1	1	40,905	40,917	0,02	1000	1000
2	0	0	42,733	42,728	0,01	72	40
1	0	1	44,307	44,330	0,04	91	84
2	-1	0	44,946	44,918	0,05	488	286
2	0	-1	54,073	54,067	0,01	290	281
0	2	0	55,492	55,501	0,02	843	489
2	1	0	56,477	56,467	0,02	674	444
2	0	1	59,253	59,246	0,02	24	48
1	2	-1	61,835	61,825	0,02	93	126
2	-1	-1	62,536	62,503	0,08	203	166
3	-1	0	63,813	63,808	0,01	41	31
0	1	-2	69,092	69,078	0,03	396	299
3	-1	1	71,748	71,739	0,02	28	25
3	-2	0	74,693	74,689	0,01	35	30
2	1	1	75,587	75,616	0,08	92	65
3	1	0	76,687	76,672	0,04	72	61
0	3	-1	78,153	78,147	0,02	116	85
0	1	2	89,753	89,753	0,00	22	35
2	0	2	90,387	90,391	0,01	28	29
4	-1	-1	94,186	94,171	0,05	45	69
4	0	1	98,563	98,530	0,11	54	51
2	3	0	105,116	105,126	0,03	112	99
1	-2	3	108,484	108,509	0,09	44	42
1	-4	2	109,067	109,058	0,03	47	23
0	0	3	114,835	114,808	0,10	1	63
4	-4	0	128,118	128,119	0,01	77	70
6	-1	0	130,675	130,697	0,09	87	36
2	-1	-3	131,783	131,796	0,05	43	27

Tab. 11.2 Li₄P₂O₇-trik: Beobachtete Reflexe im Bereich 13,77 $\le 2\theta \le 65,90^{a}$; a = 8,5651(7) Å, b = 7,113(1) Å, c = 5,1882(5) Å, $a = 111,41(1)^{\circ}$, $\beta = 89,97(1)^{\circ}$, $\gamma = 103,04(1)^{\circ}$; $\Delta = \sin^{2}\theta_{cal.} - \sin^{2}\theta_{obs.}$ | · 1000.

a) 207 Reflexe im angegebenen 2 θ -Bereich, stärkster nicht beobachteter Reflex bei 2 θ = 40,45° ($I_{calc.}$ = 75).

v = 7,1	10(1) A, $t = 5,17$	11(1) A, $u = 1$	11,50(2), p = 50,0	$JO(2), \gamma = 103$,05(2),2	SIII Ucal.	SIII 0 _{obs.} 1000.
h	k	l	$4 heta_{ ext{calc.}}$	$4 heta_{ m obs.}$	Δ	Icalc.	Iobs.
0	1	0	27,546	27,527	0,02	56	33
0	0	1	36,818	36,766	0,07	104	110
1	-1	1	40,856	40,790	0,10	1000	1000
2	0	0	42,689	42,701	0,02	76	26
1	0	1	44,304	44,312	0,01	103	111
2	-1	0	44,889	44,863	0,04	440	319
2	0	-1	53,946	53,969	0,04	322	287
0	2	0	55,501	55,489	0,02	923	621
2	1	0	56,459	56,420	0,08	728	440
2	0	1	59,257	59,221	0,08	29	36
1	2	-1	61,742	61,802	0,13	78	104
2	-1	-1	62,441	62,442	0,00	223	159
3	-1	0	63,727	63,753	0,06	45	26
0	1	-2	68,962	69,004	0,10	458	314
3	-1	1	71,703	71,715	0,03	29	30
3	-2	0	74,607	74,595	0,03	39	35
2	1	1	75,625	75,645	0,05	85	67
3	1	0	76,647	76,665	0,05	85	51
0	3	-1	78,084	78,065	0,05	108	62
2	-2	-1	80,784	80,745	0,11	77	87
1	-3	0	81,694	81,705	0,03	72	53
0	1	2	89,728	89,704	0,07	26	26
2	0	2	90,383	90,424	0,13	30	30
4	-1	-1	94,003	94,023	0,07	48	88
4	0	1	98,541	98,501	0,13	61	45
2	3	0	105,133	105,148	0,05	123	79
1	-2	3	108,299	108,316	0,06	45	47
1	-4	2	108,909	108,876	0,12	52	26
0	0	3	114,710	114,712	0,00	3	112
2	0	-3	119,497	119,488	0,04	65	61
4	-4	0	128,006	128,029	0,09	87	48
6	-1	0	130,494	130,487	0,03	101	44
2	-1	-3	131,592	131,585	0,03	51	41

Tab. 11.3 (Li_{0.97}Cu_{0.03})₄P₂O₇-trik: Beobachtete Reflexe im Bereich 13,77 $\leq 2\theta \leq 65,80^{a}$; Exp. 5; a = 8,576(1) Å, b = 7,118(1) Å, c = 5,1977(7) Å, $a = 111,50(2)^{\circ}$, $\beta = 90,08(2)^{\circ}$, $\gamma = 103,05(2)^{\circ}$; $\Delta = |\sin^{2}\theta_{cal.} - \sin^{2}\theta_{obs.}| \cdot 1000$.

a) 207 Reflexe im angegebenen 2 θ -Bereich, stärkster nicht beobachteter Reflex bei 2 θ = 45,89° ($I_{calc.}$ = 54).

			· · · · · · · · · · · · · · · · · · ·			1	
h	k	l	4 hetacalc.	$4 heta_{ m obs.}$	Δ	Icalc.	Iobs.
0	1	0	27,531	27,487	0,05	48	41
0	0	1	36,772	36,726	0,06	96	91
1	-1	1	40,786	40,790	0,01	989	1000
2	0	0	42,644	42,611	0,05	80	24
1	0	1	44,282	44,222	0,10	115	126
2	-1	0	44,824	44,823	0,00	387	358
2	0	-1	53,834	53,839	0,01	352	334
0	2	0	55,469	55,449	0,04	1000	750
2	1	0	56,427	56,380	0,10	777	557
2	0	1	59,235	59,221	0,03	34	26
1	2	-1	61,629	61,632	0,01	62	72
2	-1	-1	62,345	62,352	0,02	243	162
3	-1	0	63,637	63,623	0,03	48	30
0	1	-2	68,818	68,834	0,04	520	348
3	-1	1	71,632	71,625	0,02	31	40
3	-2	0	74,498	74,515	0,05	43	42
2	1	1	75,626	75,645	0,05	78	74
3	1	0	76,594	76,585	0,02	98	87
0	3	-1	77,961	77,935	0,07	98	101
2	-2	-1	80,697	80,685	0,03	86	96
1	-3	0	81,626	81,665	0,11	82	73
0	1	2	89,667	89,704	0,11	31	21
2	0	2	90,334	90,374	0,12	32	27
4	-1	-1	93,833	93,853	0,06	113	103
4	0	1	98,489	98,461	0,09	68	50
2	3	0	105,089	105,108	0,06	133	91
1	-2	3	108,071	108,106	0,12	46	50
1	-4	2	108,676	108,656	0,07	56	36
0	0	3	114,554	114,502	0,19	4	106
2	0	-3	119,256	119,278	0,08	73	66
4	-4	0	127,824	127,820	0,02	97	72
6	-1	0	130,312	130,317	0,02	116	69
2	-1	-3	131,386	131,366	0,08	60	41

Tab. 11.4 (**Li**_{0,94}**Cu**_{0,06})₄**P**₂**O**₇**-trik**: Beobachtete Reflexe im Bereich 13,76 $\leq 2\theta \leq 65,70^{a}$; Exp. 6; a = 8,587(1) Å, b = 7,128(1) Å, c = 5,2083(8) Å, $a = 111,59(2)^{\circ}$, $\beta = 90,13(2)^{\circ}$, $\gamma = 103,06(2)^{\circ}$; $\Delta = |\sin^{2}\theta_{cal.} - \sin^{2}\theta_{obs.}| \cdot 1000$.

a) 207 Reflexe im angegebenen 2 θ -Bereich, stärkster nicht beobachteter Reflex bei 2 θ = 45,85° ($I_{calc.}$ = 64).

v = 1,1	10(1)11, c = 5,	$2100(0)$ $11, \alpha = 11$	(1, 7, 1(2), p =)0, 2	21(2), 7 = 103	,01(2),2	oni ocal.	5111 0 005. 1000.
h	k	l	$4 heta_{ m calc.}$	$4 heta_{ m obs.}$	Δ	Icalc.	Iobs.
0	1	0	27,515	27,531	0,02	34	42
0	0	1	36,746	36,705	0,06	76	99
1	-1	1	40,717	40,682	0,05	873	1000
2	0	0	42,582	42,631	0,08	77	18
1	0	1	44,286	44,320	0,06	118	141
2	-1	0	44,754	44,750	0,01	286	283
2	0	-1	53,697	53,796	0,20	356	313
0	2	0	55,438	55,416	0,04	1000	814
2	1	0	56,372	56,355	0,03	763	497
2	0	1	59,235	59,174	0,13	37	33
1	2	-1	61,458	61,424	0,08	39	89
2	-1	-1	62,260	62,224	0,08	244	185
3	-1	0	63,532	63,453	0,18	47	29
0	1	-2	68,677	68,662	0,04	551	369
3	-1	1	71,565	71,532	0,09	29	57
3	-2	0	74,388	74,371	0,04	44	62
2	1	1	75,655	75,641	0,04	61	87
3	1	0	76,505	76,531	0,07	106	112
0	3	-1	77,792	77,801	0,02	78	88
2	-2	-1	80,646	80,591	0,16	89	105
1	-3	0	81,566	81,571	0,01	86	71
0	1	2	89,677	89,701	0,07	34	39
2	0	2	90,343	90,371	0,09	32	29
4	-1	-1	93,637	93,632	0,02	50	131
4	0	1	98,439	98,422	0,05	70	44
2	3	0	105,020	105,024	0,01	134	99
1	-2	3	107,852	107,865	0,05	43	51
1	-4	2	108,380	108,365	0,05	55	48
0	0	3	114,467	114,467	0,00	6	63
2	0	-3	119,037	119,039	0,01	76	53
4	-4	0	127,655	127,684	0,11	101	59
6	-1	0	130,082	130,095	0,05	124	57
2	-1	-3	131,246	131,236	0,04	66	36

Tab. 11.5 (Li_{0,9}Cu_{0,1})₄P₂O₇-trik: Beobactete Reflexe im Bereich 13,75 $\leq 2\theta \leq 65,63^{a}$); Exp. 7b; a = 8,600(1) Å, b = 7,140(1) Å, c = 5,2188(8) Å, $a = 111,74(2)^{\circ}$, $\beta = 90,24(2)^{\circ}$, $\gamma = 103,04(2)^{\circ}$; $\Delta = |\sin^2\theta_{cal.} - \sin^2\theta_{obs.}| \cdot 1000$.

a) 207 Reflexe im angegebenen 2 θ -Bereich, stärkster nicht beobachteter Reflex bei 2 θ = 45,85° ($I_{calc.}$ = 51).

1000.								
h	k	l	4 hetacalc.	$4 heta_{ m obs.}$	Δ	Icalc.	Iobs.	
0	1	0	27,514	27,480	0,04	34	33	
0	0	1	36,736	36,680	0,08	76	113	
1	-1	1	40,681	40,614	0,10	873	1000	
2	0	0	42,564	42,525	0,06	77	24	
1	0	1	44,275	44,307	0,05	118	177	
2	-1	0	44,733	44,727	0,01	286	477	
2	0	-1	53,672	53,724	0,10	356	519	
0	2	0	55,435	55,416	0,04	1000	797	
2	1	0	56,360	56,336	0,05	763	515	
2	0	1	59,218	59,218	0,00	37	48	
1	2	-1	61,418	61,379	0,09	39	109	
2	-1	-1	62,250	62,180	0,16	244	187	
3	-1	0	63,500	63,530	0,07	47	43	
0	1	-2	68,627	68,663	0,09	551	509	
3	-1	1	71,522	71,494	0,07	29	72	
3	-2	0	74,355	74,335	0,05	44	74	
2	1	1	75,655	75,626	0,08	61	78	
3	1	0	76,484	76,496	0,03	106	123	
0	3	-1	77,747	77,726	0,06	78	84	
2	-2	-1	80,646	80,597	0,14	89	132	
1	-3	0	81,556	81,577	0,06	86	91	
0	1	2	89,680	89,658	0,07	34	64	
2	0	2	90,319	90,338	0,06	32	53	
4	-1	-1	93,599	93,638	0,13	50	175	
4	0	1	98,404	98,418	0,05	70	50	
2	3	0	105,012	105,027	0,05	134	99	
1	-2	3	107,758	107,736	0,08	43	72	
1	-4	2	108,281	108,286	0,02	55	86	
0	0	3	114,432	114,464	0,12	6	155	
2	0	-3	118,991	118,992	0,00	76	79	
4	-4	0	127,609	127,627	0,07	101	50	
6	-1	0	130,012	129,996	0,06	124	90	
2	-1	-3	131,225	131,215	0,04	66	34	

Tab. 11.6 "(**Li**_{0.88}**Cu**_{0.12})**4P**₂**O**₇**-trik**": Beobachtete Reflexe im Bereich 13,75 $\leq 2\theta \leq 65,62^{a}$; Exp. 8; a = 8,604(1) Å, b = 7,144(1) Å, c = 5,2225(8) Å, $\alpha = 111,80(2)^{\circ}$, $\beta = 90,23(2)^{\circ}$, $\gamma = 103,05(2)^{\circ}$; $\Delta = |\sin^2\theta_{cal.} - \sin^2\theta_{obs.}| \cdot 1000$.

a) 207 Reflexe im angegebenen 2 θ -Bereich, stärkster nicht beobachteter Reflex bei 2 θ = 45,83° ($I_{calc.}$ = 94).

$\frac{h}{h}$	k	l	$4\theta_{\text{calc.}}$	$\frac{4\theta_{\rm obs.}}{4\theta_{\rm obs.}}$	Δ	Icalc. ^{b)}	<i>I</i> obs. ^{b)}
0	1	0	27,526	27,447	0,08	34	24
0	0	1	36,768	36,726	0,06	76	62
1	-1	1	40,776	40,710	0,10	873	841
1	0	1	44,282	44,312	0,05	118	93
2	-1	0	44,814	44,813	0,00	286	216
2	0	-1	53,810	53,879	0,14	356	202
0	2	0	55,459	55,489	0,06	1000	1000
2	1	0	56,410	56,380	0,06	763	203
2	0	1	59,233	59,181	0,11	37	26
2	-1	-1	62,333	62,312	0,05	244	109
0	1	-2	68,795	68,874	0,20	551	196
2	1	1	75,624	75,645	0,06	61	43
3	1	0	76,569	76,585	0,04	106	43
0	3	-1	77,926	77,935	0,03	78	45
2	-2	-1	80,691	80,645	0,13	89	78
1	-3	0	81,613	81,665	0,15	86	42
4	-1	-1	93,801	93,763	0,12	50	65
2	3	0	105,061	105,058	0,01	134	60
1	-2	3	108,038	108,066	0,10	43	28
1	-4	2	108,623	108,576	0,17	55	16
0	0	3	114,541	114,502	0,14	6	89
2	0	-3	119,221	119,238	0,06	76	41
4	-4	0	127,801	127,820	0,07	101	37
6	-1	0	130,271	130,277	0,02	124	25
2	-1	-3	131,365	131,366	0,00	66	21

Tab. 11.7 "(Li_{0,8}Cu_{0,2})₄P₂O₇-trik": Beobachtete Reflexe im Bereich 13,76 $\leq 2\theta \leq 65,69^{a}$); Exp. 9; a = 8,589(2) Å, b = 7,130(2) Å, c = 5,210(1) Å, $a = 111,61(3)^{\circ}$, $\beta = 90,15(3)^{\circ}$, $\gamma = 103,05(2)^{\circ}$; $\Delta = |\sin^2\theta_{cal.} - \sin^2\theta_{obs.}| \cdot 1000$.

a) 207 Reflexe im angegebenen 2θ -Bereich.

b) Reflexe überlagern sehr stark mit denen der Nebenphase Li₂Cu^{II}P₂O₇. Intensitätsvergleich $I_{calc.}/I_{obs.}$ wenig aussagekräftig.

h	k	l	$4\theta_{\text{calc.}}$	$4\theta_{\rm obs.}$	Δ	Icalc.	Iobs.
1	1	0	25,882	25,905	0,02	218	205
2	0	0	28,461	28,526	0,07	355	255
2	0	-2	38,043	38,098	0,08	763	973 ^{b)}
3	1	-1	42,674	42,749	0,12	1000	1000
3	1	0	48,088	48,129	0,07	293	485
0	2	1	48,709	48,810	0,18	364	435
2	2	-1	50,480	50,500	0,04	578	817
4	0	-2	51,223	51,310	0,16	236	402
1	1	2	57,177	57,269	0,19	173	265
2	2	-2	58,030	58,079	0,10	159	166
3	1	1	61,625	61,629	0,01	37	234
0	2	2	62,088	62,179	0,20	365	502
1	1	-3	63,971	63,918	0,12	202	865 ^{b)}
4	2	-1	66,418	66,378	0,10	111	161
1	3	0	67,227	67,258	0,07	267	288
1	3	-1	68,455	68,527	0,18	86	70
3	3	-1	75,696	75,685	0,03	124	136
1	1	3	78,286	78,304	0,05	137	147
3	3	-2	78,986	78,984	0,00	213	283
1	3	2	85,172	85,201	0,09	52	45
6	0	-4	87,066	87,060	0,02	148	171
7	1	-2	90,587	90,619	0,10	107	108
2	2	3	96,930	96,925	0,02	29	35
5	3	0	99,116	99,073	0,14	108	126
2	4	1	99,908	99,923	0,05	55	78
4	4	-1	102,789	102,761	0,10	46	54
4	4	-2	103,642	103,650	0,03	70	60
1	1	-5	108,663	108,636	0,09	36	58
1	5	1	117,472	117,438	0,13	103	94
10	0	-4	129,365	129,356	0,04	27	32

Tab. 11.8 Li_{1-x}Cu_xPO₃ (x = 0,1): Beobachtete Reflexe im Bereich 12,94 $\leq 2\theta \leq 64,68^{a}$; Exp. 12; a = 14,496(7)Å, b = 8,182(1) Å, c = 9,442(4) Å, $\beta = 120,92(2)^{\circ}$; $\Delta = |\sin^2\theta_{cal.} - \sin^2\theta_{obs.}| \cdot 1000$.

a) 195 Reflexe im angegebenen 2θ -Bereich, stärkster nicht beobachteter Reflex bei $2\theta = 59,10^{\circ}$ ($I_{calc.} = 183$); Reflex bei $2\theta = 27,37^{\circ}$ ($I_{obs.} = 1101$) \triangleq Hauptreflex von LiPO₃.

b) signifikante Abweichung resultiert aus Reflexüberlagerungen.

h	k	l	$4 heta_{ m calc.}$	$4 heta_{ m obs.}$	Δ	Icalc.	Iobs.
1	1	0	25,852	25,825	0,03	218	190
2	0	0	28,425	28,407	0,02	355	316
2	0	-2	37,993	37,985	0,01	763	807
3	1	-1	42,626	42,598	0,04	1000	1000
3	1	-2	47,951	47,981	0,05	101	433 ^{b)}
0	2	1	48,652	48,641	0,02	364	447
2	2	-1	50,424	50,442	0,03	578	693
4	0	-2	51,163	51,163	0,00	236	312
1	1	2	57,096	57,125	0,06	173	260
2	2	-2	57,961	57,955	0,01	159	164
3	1	-3	61,418	61,447	0,06	189	227
0	2	2	62,008	62,037	0,07	365	518
1	1	-3	63,881	63,817	0,15	202	726 ^{b)}
4	2	-1	66,341	66,318	0,06	111	140
1	3	0	67,153	67,138	0,04	267	299
1	3	-1	68,379	68,388	0,02	86	81
3	3	-1	75,610	75,679	0,18	124	143
1	1	3	78,170	78,219	0,14	137	154
3	3	-2	78,895	78,939	0,12	213	276
7	1	-2	90,477	90,468	0,03	107	121
2	2	3	96,789	96,796	0,02	29	29
5	3	0	98,992	98,995	0,01	108	93
4	4	-1	102,668	102,634	0,12	46	47
4	4	-2	103,521	103,483	0,13	70	54
1	3	-4	107,266	107,252	0,05	72	69
2	0	4	108,475	108,521	0,16	21	47
1	5	1	117,331	117,355	0,09	103	86
2	2	4	118,183	118,125	0,22	96	160
10	0	-4	129,199	129,206	0,03	27	24

Tab. 11.9 Li_{0,86}Cu_{0,14}PO₃: Beobachtete Reflexe im Bereich 12,93 $\leq 2\theta \leq 64,6^{a}$; Exp. 13a; a = 14,513(6) Å, b = 8,190(1) Å, c = 9,455(3) Å, $\beta = 120,90(3)^{\circ}$; $\Delta = |\sin^2\theta_{cal.} - \sin^2\theta_{obs.}| \cdot 1000$.

a) 195 Reflexe im angegebenen 2 θ -Bereich, stärkster nicht beobachteter Reflex bei 2 θ = 44,94° ($I_{calc.}$ = 70). b) signifikante Abweichung resultiert aus Reflexüberlagerungen.

h	k	l	$4 heta_{ m calc.}$	$4 heta_{ m obs.}$	Δ	Icalc.	Iobs.
1	1	0	25,866	25,855	0,01	218	188
2	0	0	28,440	28,486	0,05	355	351
2	0	-2	38,002	37,968	0,05	763	935
3	1	-1	42,644	42,669	0,04	1000	1000
3	1	0	48,054	48,049	0,01	294	422
0	2	1	48,676	48,639	0,07	364	444
2	2	-1	50,448	50,420	0,05	578	779
4	0	-2	51,179	51,180	0,00	236	329
1	1	2	57,123	57,189	0,14	173	235
2	2	-2	57,985	57,989	0,01	159	174
3	1	-3	61,435	61,509	0,16	189	235
0	2	2	62,036	62,059	0,05	365	560
2	0	2	63,821	63,788	0,08	654	770
4	2	-1	66,374	66,418	0,11	111	175
1	3	0	67,189	67,178	0,03	267	281
1	3	-1	68,414	68,408	0,01	86	95
3	3	-1	75,649	75,645	0,01	124	152
1	1	3	78,205	78,224	0,05	137	141
3	3	-2	78,931	78,944	0,04	213	291
1	3	2	85,106	85,121	0,04	52	60
7	1	-2	90,517	90,539	0,07	107	118
2	2	3	96,838	96,845	0,02	29	35
5	3	0	99,047	99,043	0,01	108	122
2	4	1	99,842	99,843	0,00	55	74
4	4	-1	102,723	102,721	0,01	46	62
4	4	-2	103,572	103,570	0,01	70	78
1	3	-4	107,313	107,287	0,09	72	68
2	0	4	108,528	108,516	0,04	21	54
1	5	1	117,397	117,398	0,00	103	103
10	0	-4	129,251	129,236	0,06	27	30

Tab. 11.10 Li_{0,86}Cu_{0,14}PO₃: Beobachtete Reflexe im Bereich 12,93 $\leq 2\theta \leq 64,63^{a}$; Exp. 13b; a = 14,507(4) Å, b = 8,1861(7) Å, c = 9,453(2) Å, $\beta = 120,92(2)^{\circ}$; $\Delta = |\sin^2\theta_{cal.} - \sin^2\theta_{obs.}| \cdot 1000$.

a) 195 Reflexe im angegebenen 2 θ -Bereich, stärkster nicht beobachteter Reflex bei 2 θ = 59,04° ($I_{calc.}$ = 181).

h	k	l	$4 heta_{ ext{calc.}}$	$4 heta_{ m obs.}$	Δ	Icalc.	Iobs.
1	1	0	25,828	25,785	0,04	174	168
2	0	0	28,395	28,407	0,01	427	372
2	0	-2	37,903	37,905	0,00	481	593
3	1	-1	42,591	42,558	0,05	1000	1000
3	1	-2	47,879	47,981	0,18	80	340 ^{b)}
0	2	1	48,587	48,571	0,03	289	333
2	2	-1	50,375	50,352	0,04	461	524
4	0	-2	51,103	51,073	0,06	139	206
1	1	2	56,958	56,955	0,00	138	211
2	2	-2	57,871	57,845	0,05	185	183
3	1	-3	61,281	61,277	0,01	208	230
0	2	2	61,887	61,917	0,07	369	459
1	1	-3	63,703	63,697	0,01	217	773 ^{b)}
4	2	-1	66,286	66,278	0,02	87	136
1	3	0	67,090	67,078	0,03	212	218
1	3	-1	68,307	68,308	0,00	104	92
3	3	-1	75,542	75,509	0,09	135	121
1	1	3	77,960	77,959	0,00	144	144
3	3	-2	78,803	78,799	0,01	171	192
7	1	-2	90,405	90,408	0,01	85	86
2	2	3	96,565	96,586	0,07	23	26
5	3	0	98,888	98,865	0,08	87	72
4	4	-1	102,573	102,564	0,03	36	34
4	4	-2	103,414	103,423	0,03	73	57
1	3	-4	107,017	106,992	0,09	57	60
2	0	4	108,167	108,221	0,19	12	39
1	5	1	117,200	117,235	0,13	100	105
2	2	4	117,875	117,825	0,19	93	137
10	0	-4	129,069	129,076	0,03	16	25

Tab. 11.11 Li_{0,8}Cu_{0,2}PO₃: Beobachtete Reflexe im Bereich 12,91 $\leq 2\theta \leq 64,54^{a}$; Exp. 14a; a = 14,525(5) Å, b = 8,198(1) Å, c = 9,480(3) Å, $\beta = 120,88(2)^{\circ}$; $\Delta = |\sin^2\theta_{cal.} - \sin^2\theta_{obs.}| \cdot 1000$.

a) 195 Reflexe im angegebenen 2 θ -Bereich, stärkster nicht beobachteter Reflex bei 2 θ = 44,88° ($I_{calc.}$ = 70). b) signifikante Abweichung resultiert aus Reflexüberlagerungen.

h	k	l	$4 heta_{ m calc.}$	$4 heta_{ m obs.}$	Δ	Icalc.	Iobs.
1	1	0	25,827	25,815	0,01	174	143
2	0	0	28,393	28,446	0,06	427	350
2	0	-2	37,878	37,888	0,01	481	536
3	1	-1	42,575	42,579	0,01	1000	1000
3	1	0	47,977	47,959	0,03	235	303
0	2	1	48,586	48,600	0,02	289	324
2	2	-1	50,366	50,370	0,01	461	492
4	0	-2	51,069	51,090	0,04	139	186
1	1	2	56,958	57,019	0,13	138	171
2	2	-2	57,854	57,869	0,03	185	159
3	1	-3	61,246	61,299	0,12	208	234
0	2	2	61,882	61,929	0,11	369	460
1	1	-3	63,686	63,668	0,04	217	694 ^{b)}
4	2	-1	66,272	66,288	0,04	87	112
1	3	0	67,089	67,098	0,02	212	210
1	3	-1	68,303	68,318	0,04	104	88
3	3	-1	75,532	75,515	0,05	135	126
1	1	3	77,958	77,975	0,05	144	143
3	3	-2	78,784	78,814	0,08	171	183
1	3	2	84,922	84,951	0,09	41	36
6	2	-2	86,716	86,741	0,07	64	127
6	0	-4	86,743	86,731	0,04	140	219
7	1	-2	90,368	90,369	0,00	85	92
2	2	3	96,567	96,585	0,06	23	24
5	3	0	98,885	98,873	0,04	87	80
2	4	1	99,669	99,673	0,01	45	51
4	4	-1	102,563	102,551	0,04	36	31
4	4	-2	103,394	103,350	0,15	73	49
4	4	0	106,927	106,947	0,07	16	57
1	1	-5	108,134	108,126	0,03	40	31
2	0	4	108,168	108,136	0,11	12	39
1	5	1	117,200	117,188	0,04	100	106
10	0	-4	128,989	128,986	0,01	16	20

Tab. 11.12 Li_{0,8}Cu_{0,2}PO₃:Beobachtete Reflexe im Bereich 12,91 $\leq 2\theta \leq 64,5^{a}$; Exp. 14b; a = 14,531(4) Å, b = 8,1978(7) Å, c = 9,486(2) Å, $\beta = 120,92(2)^{\circ}$; $\Delta = |\sin^2\theta_{cal.} - \sin^2\theta_{obs.}| \cdot 1000$.

a) 195 Reflexe im angegebenen 2 θ -Bereich, stärkster nicht beobachteter Reflex bei 2 θ = 58,93° ($I_{calc.}$ = 153). b) signifikante Abweichung resultiert aus Reflexüberlagerungen.

h	k	l	$4 heta_{ m calc.}$	$4 heta_{ m obs.}$	Δ	Icalc.	Iobs.
1	1	0	25,809	25,745	0,06	147	140
2	0	0	28,386	28,367	0,02	479	378
2	0	-2	37,830	37,775	0,08	326	436
3	1	-1	42,563	42,518	0,07	1000	1000
3	1	-2	47,815	47,901	0,15	67	281 ^{b)}
0	2	1	48,534	48,491	0,08	243	282
2	2	-1	50,327	50,272	0,10	389	464
4	0	-2	51,052	50,993	0,11	88	141
1	1	2	56,879	56,835	0,09	116	178
2	2	-2	57,792	57,765	0,06	204	189
3	1	-3	61,170	61,157	0,03	222	220
0	2	2	61,801	61,827	0,06	372	433
1	1	-3	63,581	63,567	0,03	228	711 ^{b)}
4	2	-1	66,245	66,228	0,04	73	95
1	3	0	67,030	67,038	0,02	178	194
1	3	-1	68,238	68,268	0,07	117	86
3	3	-1	75,478	75,459	0,05	135	135
1	1	3	77,839	77,839	0,00	150	125
3	3	-2	78,716	78,719	0,01	144	170
7	1	-2	90,360	90,318	0,13	71	67
2	2	3	96,437	96,456	0,06	19	18
5	3	0	98,827	98,825	0,01	74	68
4	4	-1	102,488	102,464	0,08	30	28
4	4	-2	103,311	103,313	0,00	76	54
1	3	-4	106,839	106,822	0,06	48	54
2	0	4	107,999	108,011	0,04	7	31
1	5	1	117,081	117,105	0,09	98	91
2	2	4	117,699	117,695	0,01	91	143
10	0	-4	128,968	128,996	0,11	11	16

Tab. 11.13 Li_{0,75}Cu_{0,25}PO₃: Beobachtete Reflexe im Bereich 12,90 $\leq 2\theta \leq 64,48^{a}$; Exp. 15a; a = 14,532(5) Å, b = 8,2051(9) Å, c = 9,499(3) Å, $\beta = 120,90(2)^{\circ}$; $\Delta = |\sin^2\theta_{cal.} - \sin^2\theta_{obs.}| \cdot 1000$.

a) 195 Reflexe im angegebenen 2 θ -Bereich, stärkster nicht beobachteter Reflex bei 2 θ = 89,58° ($I_{calc.}$ = 66). b) signifikante Abweichung resultiert aus Reflexüberlagerungen.

h	k	l	$4 heta_{ m calc.}$	$4 heta_{ m obs.}$	Δ	Icalc.	Iobs.
1	1	0	25,799	25,725	0,07	147	144
2	0	0	28,360	28,347	0,01	479	392
2	0	-2	37,797	37,754	0,06	326	576
3	1	-1	42,529	42,496	0,05	1000	1000
3	1	-2	47,776	47,878	0,18	67	298 ^{b)}
0	2	1	48,522	48,508	0,02	243	297
2	2	-1	50,309	50,289	0,04	389	497
4	0	-2	50,999	50,969	0,06	88	162
1	1	2	56,842	56,850	0,02	116	160
2	2	-2	57,765	57,740	0,05	204	180
3	1	-3	61,121	61,130	0,02	222	248
0	2	2	61,774	61,800	0,06	372	517
1	1	-3	63,538	63,540	0,01	228	791 ^{b)}
4	2	-1	66,202	66,210	0,02	73	103
1	3	0	67,018	67,010	0,02	178	245
1	3	-1	68,225	68,200	0,06	117	112
3	3	-1	75,451	75,438	0,03	143	163
1	1	3	77,784	77,807	0,06	150	154
3	3	-2	78,684	78,687	0,01	144	190
1	3	2	84,790	84,784	0,02	35	44
6	0	-4	86,590	86,603	0,04	134	226
6	2	-2	86,618	86,613	0,02	70	304 ^{b)}
7	1	-2	90,268	90,281	0,04	71	91
2	2	3	96,375	96,416	0,13	19	26
5	3	0	98,767	98,784	0,05	74	84
2	4	1	99,545	99,543	0,01	38	61
4	4	-1	102,450	102,470	0,07	30	39
4	4	-2	103,271	103,270	0,00	76	66
1	3	-4	106,782	106,776	0,02	48	64
1	1	-5	107,859	107,875	0,06	43	30
2	0	4	107,915	107,885	0,11	7	44
2	2	-5	110,089	110,082	0,02	0	71
1	5	1	117,058	117,054	0,02	98	95
2	2	4	117,617	117,603	0,05	91	170
10	0	-4	128,819	128,807	0,05	11	19

Tab. 11.14 Li_{0,75}Cu_{0,25}PO₃: Beobachtete Reflexe im Bereich 12,90 $\leq 2\theta \leq 64,41^{a}$; Exp. 15b; a = 14,547(3) Å, b = 8,2062(7) Å, c = 9,507(2) Å, $\beta = 120,91(1)^{\circ}$; $\Delta = \left| \sin^2\theta_{cal.} - \sin^2\theta_{obs.} \right| \cdot 1000$.

a) 195 Reflexe im angegebenen 2 θ -Bereich, stärkster nicht beobachteter Reflex bei 2 θ = 44,79° ($I_{calc.}$ = 90).

b) signifikante Abweichung resultiert aus Reflexüberlagerungen.

· · ·				eun	000.		
h	k	l	$4 heta_{ m calc.}$	$4 heta_{ m obs.}$	Δ	Icalc.	Iobs. ^{b)}
1	1	0	25,813	25,766	0,05	147	
3	1	-1	42,529	42,532	0,03	1000	
0	2	1	48,540	48,504	0,07	243	
4	0	-2	51,009	50,994	0,03	88	
1	1	2	56,842	56,845	0,01	116	
2	2	-2	57,775	57,776	0,00	204	
3	1	-3	61,062	61,036	0,06	222	
0	2	2	61,782	61,796	0,03	372	
1	1	-3	63,520	63,536	0,04	228	
4	2	-1	66,237	66,206	0,07	73	
1	3	0	67,014	67,047	0,08	178	
1	3	-1	68,258	68,277	0,05	117	
3	3	-2	78,714	78,737	0,06	144	
6	2	-3	89,501	89,485	0,05	14	
7	1	-2	90,313	90,335	0,07	71	
5	3	-1	92,312	92,325	0,04	41	
5	3	0	98,823	98,794	0,10	74	
4	4	-2	103,321	103,322	0,00	76	

Tab. 11.15 Li_{1-x}Cu_xPO₃ (x = 0,5): Beobachtete Reflexe im Bereich 12,91 $\leq 2\theta \leq 51,66^{a}$; Exp. 17; a = 14,541(3) Å, b = 8,202(1) Å, c = 9,511(2) Å, $\beta = 120,92(2)^{\circ}$; $\Delta = |\sin^2\theta_{cal.} - \sin^2\theta_{obs.}| \cdot 1000.$

a) 109 Reflexe im angegebenen 2θ -Bereich.

b) $I_{obs.}$ wurde nicht ermittelt. Reflexe überlagern zu stark mit denen der Nebenphase LiCu^{II}(PO₃)₃. $I_{obs.}$ wenig aussagekräftig.

h	k	l	4 hetacalc.	$4 heta_{ m obs.}$	Δ	Icalc.	Iobs.
0	0	2	25,118	25,013	0,10	83	141
2	0	-2	25,865	25,734	0,13	151	131
1	0	-3	33,715	33,619	0,12	117	165
1	1	0	35,752	35,730	0,03	63	52
1	1	1	39,853	39,801	0,08	35	29
2	1	-2	42,398	42,341	0,09	1000	1000
3	0	1	45,133	45,131	0,00	344	573
1	1	-3	47,667	47,631	0,06	105	200
0	0	4	50,544	50,510	0,06	86	157
3	0	-5	56,500	56,427	0,15	200	630
0	1	4	60,919	60,914	0,01	28	64
4	1	-4	62,208	62,183	0,06	134	150
3	1	2	64,367	64,381	0,03	68	65
3	1	-5	66,018	65,989	0,07	70	128
0	2	0	67,641	67,637	0,01	360	645
1	0	5	70,543	70,553	0,03	60	88
2	1	4	75,028	75,037	0,02	87	199
0	0	6	76,622	76,645	0,06	74	114
6	1	-4	77,170	77,234	0,17	67	91
7	0	-3	79,042	79,011	0,09	120	386
3	2	1	82,086	82,055	0,09	123	303
2	1	5	86,538	86,486	0,15	2	45
4	0	4	88,065	88,053	0,04	36	63
3	2	-5	89,257	89,280	0,07	64	154
3	1	5	95,831	95,825	0,02	14	46
3	2	-7	106,004	106,036	0,11	74	133
2	3	-2	107,132	107,133	0,00	45	52
4	2	4	113,303	113,293	0,04	57	39
3	0	7	115,272	115,276	0,02	46	42
5	1	5	117,530	117,558	0,11	66	46

Tab. 11.16 Li₃AgP₂O₇: Beobachtete Reflexe im Bereich 12,93 $\leq 2\theta \leq 58,77^{a}$; Exp. 30; a = 15,965(5) Å, b = 5,2961(9) Å, c = 15,952(4) Å, $\beta = 118,00(2)^{\circ}$; $\Delta = |\sin^2\theta_{cal.} - \sin^2\theta_{obs.}| \cdot 1000$.

a) 392 Reflexe im angegebenen 2 θ -Bereich, stärkster nicht beobachteter Reflex bei 2 θ = 38,10° ($I_{calc.}$ = 130).

· · · · ·			•					
h	k	l	$4 heta_{ m calc.}$	$4 heta_{ m obs.}$	Δ	Icalc.	Iobs.	
2	0	0	23,036	23,038	0,00		45	
0	0	1	25,086	25,014	0,07		62	
2	0	-1	32,937	32,881	0,07		213	
2	0	1	35,266	35,168	0,13		458	
4	0	0	46,309	46,329	0,03		300	
0	0	2	50,479	50,438	0,08		306	
-2	0	2	54,164	54,198	0,07		322	
2	0	-2	57,091	57,129	0,08		529	
2	1	0	57,719	57,719	0,00		557	
5	0	-1	61,877	61,871	0,01		1000	

Tab. 11.17 "**Na**₃**Li**(**PO**₃)₄": Beobachtete Reflexe im Bereich 11,51 $\leq 2\theta \leq 30,94^{a}$; Exp. 21; a = 15,39(1) Å, b = 3,377(3) Å, c = 7,067(4) Å, $\beta = 93,90(6)^{\circ}$; $\Delta = |\sin^{2}\theta_{cal.} - \sin^{2}\theta_{obs.}| \cdot 1000$.

a) 26 Reflexe im angegebenen 2 θ -Bereich, stärkster nicht beobachteter Reflex bei 2 θ = 22,50° ($I_{calc.}$ = 78).

Abb. 11.1 DTA-Plot von TT-Li₂Na₂P₂O₇. Zu sehen ist der Schmelzpunkt von Li₂Na₂P₂O₇ bei 622 °C und die Phasenübergangstemperatur bei $\vartheta_{\text{trans}} \approx 550$ °C (*).

Abb. 11.2 Experimentelles Diffraktogramm zur Synthese von TT-Li₂Na₂P₂O₇ (Reaktionsdauer: 1d; ϑ = 500 °C). Schwarzes Strichdiagramm: TT-Li₂Na₂P₂O₇; rotes Strichdiagramm: Li₃NaP₂O₇; grünes Strichdiagramm: Na₄P₂O₇^[95]; rote Pfeile: unbekannt.

Abb. 11.3 Experimentelles Pulverdiffraktogramm zu Exp. 23. Grünes Strichdiagramm: LiPO₃^[48]; rotes Strichdiagramm: Li₄P₂O₇-trik^[26]; roter Pfeil: Hauptreflex von "Li_{1-x}Na_xPO₃ (x = 0,75)" (vgl. Abschn. 5.8).

Abb. 11.4 Experimentelles Pulverdiffraktogramm zu Exp. 24. Rotes Strichdiagramm: Li₃NaP₂O₇; gespiegeltes, experimentelles Pulverdiffraktogramm von Exp. 21 (Li_{1-x}Na_xPO₃ (x = 0,75); vgl. **Abschn. 5.8**) um zu verdeutlichen, dass "LiNa₃(PO₃)₄", bei entsprechender Einwaage und Temperatur als Gleichgewichtsphase vorliegt.

Abb. 11.5 Experimentelles Pulverdiffraktogramm zu Exp. 24b. Rotes Strichdiagramm: TT-Li₂Na₂P₂O₇; grünes Strichdiagramm: LiNa₃P₂O₇^[112]; gespiegeltes, experimentelles Pulverdiffraktogramm von Exp. 21 (Li_{1-x}Na_xPO₃ (x = 0,75); vgl. **Abschn. 5.8**) um zu verdeutlichen, dass "LiNa₃(PO₃)₄, bei entsprechender Einwaage und Temperatur als Gleichgewichtsphase vorliegt

Abb. 11.6 Experimentelles Pulverdiffraktogramm zu Exp. 25. Grünes Strichdiagramm: $Na_3P_3O_9^{[108]}$; rotes Strichdiagramm: $Na_5P_3O_{10}$ (Phase II)^[101]; schwarzes Strichdiagramm: $LiNa_3P_2O_7^{[112]}$.

Abb. 11.7 Experimentelles Pulverdiffraktogramm zu Exp. 26. Grünes Strichdiagramm: $HT-Li_3PO_4^{[66]}$; rotes Strichdiagramm: $Li_4P_2O_7$ -trik^[26]; schwarzes Strichdiagramm: $Li_3NaP_2O_7$.

Abb. 11.8 Experimentelles Pulverdiffraktogramm zu Exp. 27. Grünes Strichdiagramm: $HT-Li_3PO_4^{[66]}$; rotes Strichdiagramm: $TT-Li_2Na_2P_2O_7$; schwarzes Strichdiagramm: $LiNa_3P_2O_7^{[112]}$.

Abb. 11.9 Experimentelles Pulverdiffraktogramm zu Exp. 28. Grünes Strichdiagramm: $Na_4P_2O_7^{[95]}$; rotes Strichdiagramm: $Li_2NaPO_4^{[109]}$; schwarzes Strichdiagramm: $LiNa_3P_2O_7^{[112]}$.
12 Abbildungsverzeichnis

Abb. 2.5Anordnung der Pyrophosphatgruppen in Li4P2O7-pseudomono*. Projektion entlang der b-Achse (a) und [212] (b). Kristallstruktur von Li4P2O7-pseudomono* (c) mit [LiO4]-Einheiten (grau) und $[P_2O_7]$ -Einheiten (gelb).21

Abb. 2.6 Vergleich der Kristallstrukturen von Li₄P₂O₇-trig* und (Li_{0,9}Cu^I_{0,1})₄P₂O₇-trig*...... 21

Abb. 2.8Anordnung der Pyrophosphatgruppen in den einzelnen Polymorphen vonLithiumpyrophosphat. Projektionen jeweils auf die dichtest gepackte Ebene. Die verschiedenenFarbtöne dienen zur Unterscheidung der Stapelhöhen.24

Abb. 3.3 Röntgenpulverdiffraktogramme zu $(Li_{1-x}Cu_x^I)_4P_2O_7$ (x = 0,1). Gleichgewichtsgemenge bei ϑ = 500 °C aus Li_4P_2O_7-trik (rotes Strichdiagramm^[26]), Cu (rote Pfeile) und Li_2Cu^{II}P_2O_7 (grünes

Strichdiagramm^[84]); Mischkristall ($Li_{0,9}Cu^{I}_{0,1}$)₄P₂O₇-trik bei ϑ = 650 °C; gestrichelte Linien verdeutlichen Reflexverschiebung. 31

Abb. 4.6 Experimentelles und simuliertes Pulverdiffraktogramm für $Li_{0,75}Cu^{I}_{0,25}PO_3$; rote Pfeile: Kupfer; graue Pfeile: $Cu^{II}_2P_2O_7^{[73]}$. Die Simulation für $Li_{0,75}Cu^{I}_{0,25}PO_3$ beruht auf dem Einkristallstrukturmodell von $Li_{13,5}Cu^{I}_{2,5}(PO_3)_{16}$ (vgl. **Abschn. 4.3**) mit vollbesetzter Metalllage Cu1.

Abb. 5.5 Experimentelles (oben) und simuliertes Pulverdiffraktogramm (unten) für HT-Li₂Na₂P₂O₇. Die Simulation beruht auf der Einkristallstrukturanalyse von HT-Li₂Na₂P₂O₇ (vgl. **Abschn. 5.4**)...... 62

Abb. 5.16 Experimentelle Pulverdiffraktogramme zur Untersuchung des quasibinären Schnitts LiPO₃ – NaPO₃ bzw. Li_{1-x}Na_xPO₃ für verschiedene Zusammensetzungen x (x = 0,5; x = 0,75; x = 0,89). Grünes Strichdiagramm: LiPO₃^[48]; schwarzes Strichdiagramm: Na₃P₃O₉^[109]. Grün gestrichelte Linien dienen zur Betonung der Reflexe von LiPO₃; rot gestrichelte Linie heben Reflexmuster von "LiNa₃(PO₃)₄" hervor. Gesternte (*) Reflexe sind mit Indizierung (siehe **Anhang**; vgl. **Tab. 11.17**) nicht erfasst. 85

Abb. 6.3 Zusammenfassung der ³¹P-MAS-NMR-Experimente für die Lithium-silber-pyrophosphate. Gesternte (*) chemische Verschiebungen: Verunreinigung der Probe von LiAg₃P₂O₇ (d) mit Li₃AgP₂O₇.
Abb. 7.1 Darstellungen der Kristallstrukturen von Li₄P₂O₇-trig*, Li₄P₂O₇-pseudomono* und TT-

13 Tabellenverzeichnis

Tab. 2.1 Zusammenfassung der kristallographisch charakterisierten Polymorphe von Li ₄ P ₂ O ₇
Tab. 2.2 Zusammenfassung der Experimente zur Synthese von Li ₄ P ₂ O ₇ -pseudomono* und Li ₄ P ₂ O ₇ -trig*. 7
Tab. 2.3Li4P2O7-pseudomono*.Kristallographische Daten, Angaben zur Datensammlung undStrukturverfeinerung mittelsRIETVELD-Methode ^[40] .12
Tab. 2.4Li ₄ P ₂ O ₇ -pseudomono*. Angaben zu Wyckoff-Lagen, Atompositionen und isotropenAuslenkungs-parametern (Raumgruppe P1).13
Tab. 2.5 Ausgewählte interatomare Abstände (in Å) für die [LiO4]-Tetraeder und Pyrophosphatgruppenin Li4P2O7-pseudomono*
Tab. 2.6 Kristallographische Daten für Li4P2O7-trig* und (Li09CuI01)4P2O7-trig* und Angaben zu derenKristallstrukturanalyse
Tab. 2.7Li4P2O7-trig*.Angaben zuWyckoff-Lagen, Atompositionen und isotropenAuslenkungsparametern.17
Tab. 2.8(Li_{0,9}Cu^I_{0,1})_4P_2O_7-trig*. Angaben zu Wyckoff-Lagen, Atompositionen und isotropenAuslenkungs-parametern.17
Tab. 2.9 Li ₄ P ₂ O ₇ -trig*. Angaben zu anisotropen Auslenkungsparametern.17
Tab. 2.10 (Li _{0,9} Cu ^I _{0,1}) ₄ P ₂ O ₇ -trig*. Angaben zu anisotropen Auslenkungsparametern
Tab. 2.11 Ausgewählte interatomare Abstände (in Å) für die [CuO ₄]-Tetraeder (fett), [LiO ₄]-Tetraeder und Pyrophosphatgruppen in $Li_4P_2O_7$ -trig* und ($Li_{0,9}Cu^I_{0,1}$)_4P_2O_7-trig* (<i>kursiv</i>)
Tab. 3.1 Phasenbestand in den Dreistoffsystemen LiO _{0,5} /Cu ^{II} O _{0,5} /PO _{2,5} und LiO _{0,5} /Cu ^{II} O/PO _{2,5}
Tab. 3.2 Zusammenstellung der Experimente entlang des quasibinären Schnitts $Li_4P_2O_7 - ,,Cu_4P_2O_7^{"}$
Tab. 3.3 Gitterparameter und Zellvolumina für Li ₄ P ₂ O ₇ -trik und $(Li_{1-x}Cu_x^I)_4P_2O_7$ -trik bei verschiedenenx.32
Tab. 3.4 Zusammenstellung der ³¹ P-MAS-NMR-Daten. Isotrope chemische Verschiebungen δ_{iso} für Li ₄ P ₂ O ₇ -trik, (Li _{0.9} Cu ^I _{0.1}) ₄ P ₂ O ₇ -trik, Li ₄ P ₂ O ₇ -trig [*] , (Li _{0.9} Cu ^I _{0.1}) ₄ P ₂ O ₇ -trig [*] und Li ₄ P ₂ O ₇ -pseudomono [*] .
Tab. 4.1 Zusammenstellung der Experimente für den quasibinären Schnitt LiPO ₃ – "Cu ^I PO ₃ " 40
Tab. 4.2 Ermittelte Gitterparameter und Zellvolumina für die vorliegende Messreihe
Tab. 4.3 Kristallographische Daten von $Li_{13,5}Cu^{I}_{2,5}(PO_3)_{16}$ und Angaben zur Kristallstrukturanalyse.48
Tab. 4.4 Atomlagen und isotrope Auslenkungsparameter für $Li_{13,5}Cu^{I}_{2,5}(PO_3)_{16}$
Tab. 4.5 Anisotrope Auslenkungsparameter für $Li_{13,5}Cu^{I}_{2,5}(PO_3)_{16}$
Tab. 4.6 Interatomare Abstände in $Li_{13.5}Cu^{I}_{2.5}(PO_3)_{16}$ in Å
Tab. 4.7 Zusammenstellung der ³¹ P-MAS-NMR isotropen chemischen Verschiebungen δ_{iso} von Li _{1-x} Cu ^I _x PO ₃ für verschiedene Zusammensetzungen <i>x</i> . <i>A</i> : Integrierte Intensitäten der Signale
Tab. 5.1 Zusammenfassung der Experimente entlang des quasibinären Schnitts Li ₄ P ₂ O ₇ – Na ₄ P ₂ O ₇ . 60
Tab. 5.2 Kristallographische Daten für HT-Li ₂ Na ₂ P ₂ O ₇ und Li ₃ NaP ₂ O ₇ und Angaben zu deren

Tab. 5.3HT-Li2Na2P2O7.Angaben zu Wyckoff-Lagen, Atompositionen und isotropenAuslenkungsparametern.66
Tab. 5.4 HT-Li2Na2P2O7. Angaben zu anisotropen Auslenkungsparametern
Tab. 5.5 Ausgewählte interatomare Abstände (in Å) für die [NaO ₆]-Oktaeder, [LiO ₄]-Tetraeder und Pyrophosphatgruppen in HT-Li ₂ Na ₂ P ₂ O ₇
Tab.5.6Li3NaP2O7.AngabenzuWyckoff-Lagen,AtompositionenundisotropenAuslenkungsparametern.67
Tab. 5.7 Li ₃ NaP ₂ O ₇ . Angaben zu anisotropen Auslenkungsparametern. 68
Tab. 5.8 Ausgewählte interatomare Abstände (in Å) für die [NaO ₆]-Oktaeder, [LiO ₄]-Tetraeder und Pyrophosphatgruppen in Li ₃ NaP ₂ O ₇
Tab. 5.9 TT-Na2Li2P2O7.Kristallographische Daten, Angaben zur Datensammlung undStrukturverfeinerung mittelsRIETVELD-Methode ^[40] .71
Tab. 5.10TT-Li2Na2P2O7.Angaben zu Wyckoff-Lagen, Atompositionen und isotropenAuslenkungsparametern.71
Tab. 5.11 Ausgewählte interatomare Abstände (in Å) für die [NaO6]-Oktaeder, [LiO4]-Tetraeder undPyrophosphatgruppen in TT-Li2Na2P2O7.72
Tab. 5.12 Zusammenstellung der ³¹ P-MAS-NMR-Daten. Isotrope chemische Verschiebungen δ_{iso} für Li ₄ P ₂ O ₇ -trik, Li ₃ NaP ₂ O ₇ , TT-Li ₂ Na ₂ P ₂ O ₇ , LiNa ₃ P ₂ O ₇ und Na ₄ P ₂ O ₇ .81
Tab. 5.13 Zusammenstellung der Experimente zur Bestimmung von Gleichgewichtsbeziehungenzwischen den quasibinären Schnitten LiPO3 – NaPO3 und Li3PO4 – Na3PO4.84
Tab. 6.1 Zusammenstellung der Experimente für die quasibinären Schnitte $Li_4P_2O_7 - Ag_4P_2O_7$ und $Li_3PO_4 - Ag_3PO_4$.87
Tab. 6.2 Zusammenstellung der ³¹ P-MAS-NMR-Daten. Isotrope chemische Verschiebungen δ_{iso} für Li ₃ NaP ₂ O ₇ , Li ₃ AgP ₂ O ₇ , LiNa ₃ P ₂ O ₇ , LiAg ₃ P ₂ O ₇ und Ag ₄ P ₂ O ₇ .91
Tab. 10.1 Zusammenstellung der kommerziell erhältlichen Ausgangsverbindungen.110
Tab. 10.2 Zusammenstellung vorrätig vorliegender Ausgangsverbindungen.110
Tab. 10.3 Einwaagen zur Darstellung verwendeter Ausgangsstoffe. 111
Tab. 11.1 Li ₄ P ₂ O ₇ -pseudomono*: Beobachtete Reflexe im Bereich 12,38 $\leq 2\theta \leq 64,47^{a}$; Exp. 3c; $a = 7,885(2)$ Å, $b = 10,306(2)$ Å, $c = 7,546(2)$ Å, $\beta = 115,26(2)^{\circ}$; $\Delta = \sin^2\theta_{cal.} - \sin^2\theta_{ob} \cdot 1000$
Tab. 11.2 Li ₄ P ₂ O ₇ -trik: Beobachtete Reflexe im Bereich 13,77 $\le 2\theta \le 65,90^{a}$; $a = 8,5651(7)$ Å, $b = 7,113(1)$ Å, $c = 5,1882(5)$ Å, $a = 111,41(1)^{\circ}$, $\beta = 89,97(1)^{\circ}$, $\gamma = 103,04(1)^{\circ}$; $\Delta = \sin^2\theta_{cal.} - \sin^2\theta_{obs.}$ · 1000
Tab. 11.3 (Li _{0,97} Cu _{0,03}) ₄ P ₂ O ₇ -trik: Beobachtete Reflexe im Bereich 13,77 $\leq 2\theta \leq 65,80^{a}$; Exp. 5; $a = 8,576(1)$ Å, $b = 7,118(1)$ Å, $c = 5,1977(7)$ Å, $a = 111,50(2)^{\circ}$, $\beta = 90,08(2)^{\circ}$, $\gamma = 103,05(2)^{\circ}$; $\Delta = \sin^{2}\theta_{cal.} - \sin^{2}\theta_{obs.} \cdot 1000$
Tab. 11.4 (Li _{0,94} Cu _{0,06}) ₄ P ₂ O ₇ -trik: Beobachtete Reflexe im Bereich 13,76 $\leq 2\theta \leq 65,70^{a}$; Exp. 6; $a = 8,587(1)$ Å, $b = 7,128(1)$ Å, $c = 5,2083(8)$ Å, $a = 111,59(2)^{\circ}$, $\beta = 90,13(2)^{\circ}$, $\gamma = 103,06(2)^{\circ}$; $\Delta = \sin^{2}\theta_{cal.} - \sin^{2}\theta_{obs.} \cdot 1000$
Tab. 11.5 (Li _{0,9} Cu _{0,1}) ₄ P ₂ O ₇ -trik: Beobactete Reflexe im Bereich 13,75 $\leq 2\theta \leq 65,63^{a}$; Exp. 7b; $a = 8,600(1)$ Å, $b = 7,140(1)$ Å, $c = 5,2188(8)$ Å, $a = 111,74(2)^{\circ}$, $\beta = 90,24(2)^{\circ}$, $\gamma = 103,04(2)^{\circ}$; $\Delta = \sin^{2}\theta_{cal.} - \sin^{2}\theta_{obs.} \cdot 1000$

Tab. 11.6 "(Li_{0,88}Cu_{0,12})₄P₂O₇-trik": Beobachtete Reflexe im Bereich 13,75 $\leq 2\theta \leq 65,62^{a}$; Exp. 8; *a* = 8,604(1) Å, *b* = 7,144(1) Å, *c* = 5,2225(8) Å, *a* = 111,80(2)°, *β* = 90,23(2)°, *γ* = 103,05(2)°; *Δ* = $|\sin^2\theta_{cal.} - \sin^2\theta_{obs.}| \cdot 1000.$ 119

Tab. 11.8 Li_{1-x}Cu_xPO₃ (x = 0,1): Beobachtete Reflexe im Bereich 12,94 $\leq 2\theta \leq 64,68^{a}$; Exp. 12; a = 14,496(7) Å, b = 8,182(1) Å, c = 9,442(4) Å, $\beta = 120,92(2)^{\circ}$; $\Delta = |\sin^2\theta_{cal.} - \sin^2\theta_{obs.}| \cdot 1000.....121$

Tab. 11.10 Li_{0,86}Cu_{0,14}PO₃: Beobachtete Reflexe im Bereich 12,93 $\leq 2\theta \leq 64,63^{a}$; Exp. 13b; a = 14,507(4) Å, b = 8,1861(7) Å, c = 9,453(2) Å, $\beta = 120,92(2)^{\circ}$; $\Delta = |\sin^2\theta_{cal.} - \sin^2\theta_{obs.}| \cdot 1000....123$

Tab. 11.11 Li_{0,8}Cu_{0,2}PO₃: Beobachtete Reflexe im Bereich 12,91 $\leq 2\theta \leq 64,54^{a}$; Exp. 14a; a = 14,525(5) Å, b = 8,198(1) Å, c = 9,480(3) Å, $\beta = 120,88(2)^{\circ}$; $\Delta = |\sin^2\theta_{cal.} - \sin^2\theta_{obs.}| \cdot 1000.....124$

Tab. 11.13 Li_{0,75}Cu_{0,25}PO₃: Beobachtete Reflexe im Bereich 12,90 $\leq 2\theta \leq 64,48^{a}$; Exp. 15a; a = 14,532(5) Å, b = 8,2051(9) Å, c = 9,499(3) Å, $\beta = 120,90(2)^{\circ}$; $\Delta = |\sin^2\theta_{cal} - \sin^2\theta_{obs.}| \cdot 1000.....126$

Tab. 11.14 Li_{0,75}Cu_{0,25}PO₃: Beobachtete Reflexe im Bereich $12,90 \le 2\theta \le 64,41^{a}$; Exp. 15b; a = 14,547(3) Å, b = 8,2062(7) Å, c = 9,507(2) Å, $\beta = 120,91(1)^{\circ}$; $\Delta = |\sin^2\theta_{cal.} - \sin^2\theta_{obs.}| \cdot 1000.....127$

Tab. 11.15 Li_{1-x}Cu_xPO₃ (x = 0,5): Beobachtete Reflexe im Bereich 12,91 $\leq 2\theta \leq 51,66^{a}$; Exp. 17; a = 14,541(3) Å, b = 8,202(1) Å, c = 9,511(2) Å, $\beta = 120,92(2)^{\circ}$; $\Delta = |\sin^2\theta_{cal.} - \sin^2\theta_{obs.}| \cdot 1000.....128$

Tab. 11.16 Li₃AgP₂O₇: Beobachtete Reflexe im Bereich $12,93 \le 2\theta \le 58,77^{a}$; Exp. 30; a = 15,965(5) Å, b = 5,2961(9) Å, c = 15,952(4) Å, $\beta = 118,00(2)^{\circ}$; $\Delta = |\sin^2\theta_{cal.} - \sin^2\theta_{obs.}| \cdot 1000$129

14 Literaturverzeichnis

- [1] M. Jansen, Angew. Chem. 1987, 99, 1136.
- [2] R. Masse, J. C. Guitel, A. Durif, Acta Crystallogr. 1979, B35, 1428.
- [3] D. T. Cromer, A. C. Larson, R. B. Roof Jnr., Acta Crystallogr. 1965, 19, 192.
- [4] H. B. Larsen, G. Thorkildsen, D. G. Nicholson, P. Pattison, Cryst. Res. Technol. 2016, 51, 730.
- [5] N. E. Brese, M. O'Keeffe, B. L. Ramakrishna, R. B. von Dreele, J. Solid State Chem. 1990, 89, 184.
- [6] H. N. Ng, C. Calvo, R. Faggiani, Acta Crystallogr. 1978, B34, 898.
- [7] M. Jansen, H.-L. Keller, Angew. Chem. 1979, 91, 500.
- [8] *ICSD-Datenbank*, FIZ-Karlsruhe, **2019**.
- [9] N. Wiberg, *Holleman Wiberg. Lehrbuch der Anorganischen Chemie*, 102. Aufl., Walter de Gruiter & Co., Berlin, Deutschland, **2007**.
- [10] K. Snyder, B. Raguž, W. Hoffbauer, R. Glaum, H. Ehrenberg, M. Herklotz, Z. anorg. allg. Chem. 2014, 640, 944.
- [11] K. Kihara, G. Donnay, *Can. Mineral.* **1985**, *23*, 647.
- [12] G. Aminoff, Z. Kristallog. Cryst. Mater. 2015, 56, 495.
- [13] R. D. Shannon, Acta Crystallogr. 1976, A32, 751.
- [14] G. Hautier, A. Jain, S. P. Ong, B. Kang, C. Moore, R. Doe, G. Ceder, *Chem. Mater.* 2011, 24, 3495.
- [15] A. Mbandza, E. Bordes, P. Courtine, A. E. Jazouli, J. L. Soubeyroux, G. Le Flem, P. Hagenmuller, *React. Solid.* 1988, 5, 315.
- [16] I. Busserau, M. S. Belkhiria, P. Gravereau, A. Boireau, J. L. Soubeyroux, R. Olazcuaga, G. Le Flem, Acta Crystallogr. 1992, C48, 1741.
- [17] R. Ahmamouch, S. Arsalane, M. Kacimi, M. Ziyad, Mater. Res. Bull. 1997, 32, 755.
- [18] A. Serghini, R. Brochu, R. Olazcuaga, P. Gravereau, Mater. Lett. 1995, 22, 149.
- [19] T. E. Warner, W. Milius, J. Maier, Ber. Bunsenges. Phys. Chem. 1992, 96, 1607.
- [20] F. J. Berry, G. Oates, L. E. Smart, M. Vithal, R. Cook, H. G. Riketts, R. Williams, J. F. Marco, Polyhedron 1992, 11, 2543.
- [21] A. Boireau, J. L. Soubeyroux, P. Gravereau, R. Olazcuaga, G. Le Flem, J. Alloys Compd. 1992, 188, 113.
- [22] A. Durif, Crystal Chemistry of Condensed Phosphates, Plenum Press, New York, USA, 1995.
- [23] a) F. d'Yvoire, Bull. Soc. Chim. 1962, 1237; b) P. Rémy, A. Boullé, Bull. Soc. Chim. 1972, 2215.
- [24] a) H. Fukuoka, H. Imoto, T. Saito, J. Solid State Chem. 1995, 119, 107; b) H. Imoto, H. Fukuoka, S. Tsunesawa, H. Horiuchi, T. Amemiya, N. Koga, Inorg. Chem. 1997, 36, 4172.
- [25] K. Panagiotidis, R. Glaum, W. Hoffbauer, J. Weber, J. Schmedt auf der Günne, Z. anorg. allg. Chem. 2008, 634, 2922.
- [26] A. Daidouh, M. L. Veiga, C. Pico, M. Martinez-Ripoll, Acta Crystallogr. 1997, C53, 167.
- [27] T. Y. Tien, F. A. Hummel, J. Am. Ceram. Soc. 1961, 44, 206.

- [28] V. I. Voronin, E. A. Sherstobitova, V. A. Blatov, G. S. Shekhtman, J. Solid State Chem. 2014, 211, 170.
- [29] O. V. Yakubovich, O.K. Mel'nikov, Crystallogr. Rep. 1994, 34, 737.
- [30] U. Schülke, R. Kayser, Z. anorg. allg. Chem. 1985, 531, 167.
- [31] ICDD, Powder Diffraction File PDF-2, *Eintrag: 00-003-0222*, **2001**, 12 Campus Blvd., Newtown Square, Pennsylvania, USA.
- [32] M.-S. Song, Y.-M. Kang, Y.-I. Kim, K.-S. Park, H.-S. Kwon, Inorg. Chem. 2009, 48, 8271.
- [33] C. S. Choi, J. E. Mapes, E. Prince, Acta Crystallogr. 1972, B28, 1357.
- [34] C. Keffer, A. D. Mighell, F. Mauer, H. E. Swanson, S. Block, *Inorg. Chem.* 1967, 6, 119.
- [35] M. Catti, G. Ivaldi, Z. Kristallogr. 1977, 146, 215.
- [36] P.-E. Werner, L. Eriksson, M. Westdahl, J. Appl. Crystallogr. 1985, 18, 367.
- [37] G. Meyer, J. Soose, Staatsexamensarbeit, Universität Gießen, 1980.
- [38] H. Putz, J.C. Schön, M. Jansen, J. Appl. Cryst. 1999, 32, 864.
- [39] H. Putz, J.C. Schön, Endeavour 1.7, Crystal Impact GbR, Bonn, Germany, 2009.
- [40] H. M. Rietveld, Acta Crystallogr. 1967, 22, 151.
- [41] J. Rodriguez-Carvajal, "Fullprof A Program for Rietveld Refinement and Pattern Matching Analysis," Abstract of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, **1990**, Toulouse, France, S. 127.
- [42] P. Müller, R. Herbst-Irmer, A. L. Spek, T. R. Schneider, M. R. Sawaya, *Crystal Structure Refinement*. A Crystallographer's Guide to SHELXL, Oxford University Press, New York, **2006**.
- [43] G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112.
- [44] G. M. Sheldrick, *SHELXL-97-Program for crystal structure refinemnet*, Universität Göttingen, Deutschland, **1997**.
- [45] L. G. Farrugia, J. Appl. Cryst. 1999, 32, 837.
- [46] R. Glaum, *Habilitationsschrift*, Universität Gießen, Deutschland, **1999**.
- [47] O. V. Yakubovich, V. S. Ursov, *Krystallografiya* **1997**, *42*, 301.
- [48] E.V. Murashova, N. N. Chudinova, Krystallografiya 2001, 46, 1024.
- [49] J. M. Bijvoet, A. Claasen, A. Karssen, Proc. R. Neth. Acad. Arts Sci. 1926, 1286.
- [50] E. Zintl, A. Harder, B. Dauth, Z. Elektrochem. Angew. Phys. Chem. 1934, 40, 588.
- [51] T. W. D. Farley, W. Hayes, S. Hull, M. T. Hutchings, M. Vrtis, *J. Phys. Condens. Matter* **1991**, *3*, 4761.
- [52] A. Watanabe, G. Kobayashi, N. Matsui, M. Yonemura, A. Kubota, K. Suzuki, M. Hirayama, R. Kanno, *Electrochemistry* 2017, 85, 88.
- [53] N. Masaki, K. Doi, S. Nasu, T. Tanifuji, K. Uchida, J. Nucl. Mater. 1979, 84, 341.
- [54] W. Losert, R. Hoppe, Z. anorg. allg. Chem. 1985, 524, 7.
- [55] H.-N. Migeon, M. Zanne, C. Gleitzer, A. Courtois, J. Solid State Chem. 1976, 16, 325.
- [56] D. Fischer, W. Carl, H. Glaum, R. Hoppe, Z. anorg. allg. Chem. 1990, 585, 75.
- [57] Niggli P., Z. Kristallog. Cryst. Mater. 1922, 57, 253.
- [58] R. Restori, D. Schwarzenbach, Acta Crystallogr. 1986, B42, 201.

- [60] D. W. J. Cruickshank, Acta Crystallogr. 1964, 17, 677.
- [61] H. C. J. de Decker, *Recl. Trav. Chim. Pays-Bas* **1941**, *60*, 413.
- [62] E. H. Arbib, B. Elouadi, J. P. Chaminade, J. Darriet, J. Solid State Chem. 1996, 127, 350.
- [63] H. C. J. de Decker, C. H. Mac Gillavry, L. M. Nijland, Nature 1949, 164, 448.
- [64] D. W. J. Cruickshank, Acta Crystallogr. 1964, 17, 679.
- [65] D. Stachel, I. Svoboda, H. Fuess, Acta Crystallogr. 1995, C51, 1049.
- [66] J. Zemann, Acta Crystallogr. 1960, 13, 863.
- [67] J.-C. Guitel, I. Tordjman, Acta Crystallogr. 1976, B32, 2960.
- [68] T. Ben-Chaabane, L. Smiri-Dogguy, Y. Laligant, A. Le Bail, Eur. J. Solid State Inorg. Chem. 1998, 35, 255.
- [69] J. Deng, M. A. Farid, M. Zhang, A. Yang, H. Zhang, H. Zhang, G. Tian, M. Wu, L. Liu, J. Sun et al., *Inorg. Chem.* 2017, 56, 3475.
- [70] Schmahl N. G., Eikerling G. F., Z. Phys. Chem. 1968, 62, 268.
- [71] K. Lukaszewicz, Bull. Acad. Polon. Sci. Ser. Sci. Chim. 1966, 14, 725.
- [72] K. Pogorzelec-Glaser, A. Pietraszko, B. Hilczer, M. Połomska, *Phase Transitions* 2006, 79, 535.
- [73] B. E. Robertson, C. Calvo, *Can. J. Chem.* **1968**, *46*, 605.
- [74] M. Brunel-Laügt, J.-C. Guitel, Acta Crystallogr. 1977, B33, 3465.
- [75] M. Brunel-Laügt, A. Durif, J.C. Guitel, J. Solid State Chem. 1978, 25, 39.
- [76] H.-M. Schwunck, P. Moser, W. Jung, Z. anorg. allg. Chem. 1998, 624, 1262.
- [77] K. M. S. Etheredge, S.-J. Hwu, Inorg. Chem. 1995, 34, 5013.
- [78] G. L. Shoemaker, J. B. Anderson, E. Kostiner, Acta Crystallogr. 1977, B33, 2969.
- [79] M. Laugt, A. Durif, Seminaires de Chimie de l'Etat Solide 1972, 157.
- [80] R. Glaum, M. Weil, D. Özalp, Z. anorg. allg. Chem. 1996, 622, 1839.
- [81] M. Laügt, I. Tordjman, J. C. Guitel, R. Roudaut, Acta Crystallogr. 1972, B28, 2352.
- [82] M. Laügt, A. Durif, Acta Crystallogr. 1974, B30, 2118.
- [83] M. R. Spirlet, J. Rebizant, M. Liegeois-Duyckaerts, Acta Crystallogr. 1993, C49, 209.
- [84] K. Snyder, R. Glaum, Z. anorg. allg. Chem. 2012, 638, 1287.
- [85] Liang Cui, Shilie Pan, Jian Han, Xiaoyu Dong, Zhongxiang Zhou, Solid State Sci. 2011, 13, 1304.
- [86] H. Putz, K. Brandenburg, *MATCH! Phase Identification from Powder Diffraction*, Crystal Impact GbR, Bonn, Deutschland, **2003-2018**.
- [87] L. Vegard, Z. Phys. 1921, 5, 17.
- [88] J. W. Visser, J. Appl. Crystallogr. 1969, 2, 89.
- [89] SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.
- [90] T. Ishiguro, N. Ishizawa, N. Mizutani, M. Kato, J. Solid State Chem. 1982, 41, 132.
- [91] O. Garlea, P. Bordet, C. Darie, O. Isnard, R. Ballou, J. Phys. Condens. Matter 2004, 16, S811-S816.

- [92] K. Snyder, *Dissertation*, Universität Bonn, Deutschland, 2013.
- [93] H. Lueken, *Magnetochemie. Eine Einführung in Theorie und Anwendung*, 1. Aufl., B. G. Teubner Verlag, Leipzig, Deutschland, **1999**.
- [94] G. A. Bain, J. F. Berry, J. Chem. Educ. 2008, 85, 532.
- [95] K. Y. Leung, C. Calvo, Can. J. Chem. 1972, 50, 2519.
- [96] E. Lissel, M. Jansen, E. Jansen, Z. Kristallogr. 2010, 192, 233.
- [97] R. J. Harrison, A. Putnis, W. Kockelmann, Phys. Chem. Chem. Phys. 2002, 4, 3252.
- [98] D. M. Wiench, M. Jansen, Z. anorg. allg. Chem. 1980, 461, 101.
- [99] John M. Newsam, Anthony K. Cheetham, Bruce C. Tofield, Solid State Ion. 1980, 1, 377.
- [100] D. R. Davies, D. E. C. Corbridge, Acta Crystallogr. 1958, 11, 315.
- [101] D. W. J. Cruickshank, Acta Crystallogr. 1964, 17, 674.
- [102] D. E. C. Corbridge, Acta Crystallogr. 1960, 13, 263.
- [103] M. Catti, G. Ferraris, Acta Crystallogr. 1974, B30, 1.
- [104] K. H. Jost, Acta Crystallogr. 1963, 16, 428.
- [105] A. McAdam, K. H. Jost, B. Beagley, Acta Crystallogr. 1968, B24, 1621.
- [106] K. H. Jost, Acta Crystallogr. 1961, 14, 844.
- [107] K. H. Jost, Acta Crystallogr. 1963, 16, 640.
- [108] H. M. Ondik, Acta Crystallogr. 1965, 18, 226.
- [109] T. Scott Ercit, Can. Mineral. 1991, 29, 569.
- [110] Y. A. Malinovskii, E. A. Genkina, Krystallografiya 1992, 37, 1429.
- [111] R. K. Rastsvetaeva, A. P. Khomyakov, Krystallografiya 1994, 39, 43.
- [112] Y. Shi, Y. Wang, S. Pan, Z. Yang, X. Dong, H. Wu, M. Zhang, J. Cao, Z. Zhou, J. Solid State Chem. 2013, 197, 128.
- [113] D. Zhao, J. Zhao, Y.-L. Xue, B.-F. Hu, X. Xin, Y.-C. Fan, B.-Z. Liu, J. Solid State Chem. 2019, 269, 125.
- [114] H. D. Flack, G. Bernardinelli, J. Appl. Cryst. 2000, 33, 1143.
- [115] ICDD, Powder Diffraction File PDF-2, *Eintrag: 00-011-0650*, 2001, 12 Campus Blvd., Newtown Square, Pennsylvania, USA.
- [116] R.W.G. Wyckoff, Z. Kristallog. 1925, 62, 529.
- [117] M. N. Deschizeaux-Chéruy, J. J. Aubert, J. C. Joubert, J. J. Capponi, H. Vincent, Solid State Ion. 1982, 7, 171.
- [118] M. Weil, E. M. Hammer, R. Glaum, unveröffentlicht, Universität Bonn, Deutschland, 2006.
- [119] K. H. Jost, Acta Crystallogr. 1961, 14, 779.
- [120] K. V. Terebilenko, I. V. Zatovsky, I. V. Ogorodnyk, V. N. Baumer, N. S. Slobodyanik, Acta Crystallogr. 2011, E67, i22.
- [121] E. M. Hammer, Staatsexamensarbeit, Universität Bonn, Deutschland, 2006.
- [122] K. Yvon, W. Jeitschko, E. Parthé, J. Appl. Crystallogr. 1977, 10, 73.
- [123] T. Linden, Persönliche Mitteilung, Bonn, Deutschland, 2019.

- [124] T. Droß, Dissertation, Universität Bonn, Deutschland, 2004.
- [125] W. H. Bragg, W. L. Bragg, Proc. R. Soc. Lond. A. 1913, 88, 428.
- [126] Y. Amemiya, J. Miyahara, *Nature* **1988**, *336*, 89.
- [127] Origin 6.1G, OriginLab Corporation, Northampton, Massachusetts, USA, 1991 2000.
- [128] R. Hübenthal, GINA, Universität Gießen, Deutschland, 1991.
- [129] ICDD, Powder Diffraction File PDF-2, 2001, 12 Campus Blvd., Newtown Square, Pennsylvania, USA.
- [130] a) S. Gražulis, D. Chateigner, R. T. Downs, A. F. T. Yokochi, M. Quirós, L. Lutterotti, E. Manakova, J. Butkus, P. Moeck, A. Le Bail, *J. Appl. Crystallogr.* 2009, 42, 726; b) S. Gražulis, A. Daškevič, A. Merkys, D. Chateigner, L. Lutterotti, M. Quirós, N. R. Serebryanaya, P. Moeck, R. T. Downs, A. Le Bail, *Nucleic Acids Res.* 2012, 40, D420-D427.
- [131] S. L. Bugby, L. K. Jambi, J. E. Lees, J. Instrum. 2016, 11, P09009-P09009.
- [132] a) H. Hauptman, J. Karle, *Acta Crystallogr.* **1957**, *10*, 267; b) H. Hauptman, *Angew. Chem.* **1986**, 98, 600.
- [133] A. L. Patterson, Phys. Rev. 1934, 46, 372.
- [134] C. Giacovazzo, Acta Crystallogr. 1996, A52, 331.
- [135] H. Haken, H. C. Wolf, *Atom und Quantenphysik*, 8. Aufl., Springer Verlag, Berlin, Heidelberg, Deutschland, **2004**.
- [136] A.-ur-Rahman, Nuclear Magnetic Resonance. Basic Principles, 1. Aufl., Springer Verlag, New York, USA, 1986.
- [137] a) P. Zeeman, *Nature* 1897, 55, 347; b) P. Zeeman, *Phil. Mag.* 1897, 43, 226; c) P. Zeeman, *Phil. Mag.* 1897, 44, 255.
- [138] L. Boltzmann, Wiener Berichte 1868, 58, 517.
- [139] G. Wedler, H. J. Freund, *Lehrbuch der Physikalischen Chemie*, 6. Aufl., Wiley-VCH GmbH & Co. KGaA, Weinheim, Deutschland, 2012.
- [140] M. H. Lewitt, Spin Dynamics. Basics of Nuclear Magnetic Resonance, John Wiley & Sons, Ltd, Chichester, England, 2001.
- [141] W. Hoffbauer, Vorlesungsskript zum Thema Festkörper-NMR, Universität Bonn, Deutschland, 2009.
- [142] N. F. Ramsey, Phys. Rev. 1950, 78, 699.
- [143] M. J. Duer, Introduction to Solid-State NMR Spectroscopy, Blackwell Publishing Ltd, Oxford, UK, 2004.
- [144] a) E. R. Andrew, W. S. Hinshaw, R. S. Tiffen, Phys. Lett. A 1973, 46, 57; b) E. R. Andrew, Int. Rev. Phys. Chem. 1981, 1, 195.
- [145] E. L. Hahn, Phys. Rev. 1950, 80, 580.
- [146] M. Carlisle, J. Welch, D. Steele, M. Miller, Spinsight Software, Varian Associates Inc. U.S.A., 1998.
- [147] S. Foner, Rev. Sci. Instrum. 1959, 30, 548.
- [148] R. C. Mackenzie, Thermochim. Acta 1984, 73, 307.
- [149] R. Bud, D. J. Warner (Hrsg.) Instruments of Science. An Historical Encyclopedia, Garland Publishing Inc., New York, USA, 1997.

[150] G. W. Ehrenstein, G. Riedel, P. Trawiel, *Praxis der Thermischen Analyse von Kunststoffen*, 2. Aufl., Carl Hanser Verlag GmbH & Co. KG, München, Deutschland, **2003**.

Danksagung

An erster Stelle gilt mein besonderer Dank meinem Doktorvater Herrn Prof. Dr. Robert Glaum für die interessante Themenstellung und die umfassende persönliche Betreuung dieser Arbeit, deren Anfertigung ohne die zahlreichen, immer konstruktiven Ratschläge, Anmerkungen und Gespräche wohl nicht zustande gekommen wäre. Gerade zu Zeiten als die Arbeit scheinbar nur schleppend voranschritt, war es stets seine motivierende Ansprache, die mir dabei half, Zweifel aus dem Weg zu räumen und die mich immer wieder ermutigte weiterzumachen.

Herrn Prof. Dr. Jörn Schmedt auf der Günne danke ich für die Übernahme des Zweitgutachtens.

Ich bedanke mich bei Herrn Prof. Dr. Sigurd Höger und Herrn Prof. Dr. Hartmut Schmieden für ihre Bereitschaft an der Promotionskommission teilzunehmen.

Ein besonderer Dank gilt Herrn Dr. Wilfried Hoffbauer für die umfassende Unterweisung und Betreuung am Festkörper-NMR, wodurch mir die Übernahme des Messbetriebes am Institiut ermöglicht wurde.

Bedanken möchte ich mich bei Dr. Gregor Schnakenburg und Charlotte Rödde für die zahlreichen Einkristallmessungen, bei Elisa Müller für die Aufnahme der Röntgenpulverdiffraktogramme von Li₄P₂O₇-pseudomono* und TT-Na₂Li₂P₂O₇, die entscheidenden Anteil an der jeweiligen Strukturaufklärung hatten, bei Norbert Wagner für die magnetischen Messungen und bei Klaus Armbruster für die DTA/TG-Untersuchungen.

Meinem lieben AK (auch den Schalkern unter Euch ;-)) danke ich für die schöne, gemeinsame und unvergessliche Zeit, an die ich mich immer wieder gerne zurückerinnern werde. Es erfüllte mich stets mit Freude und Stolz, Teil dieser außergewöhnlichen Gemeinschaft zu sein.

Im Besonderen möchte ich mich bei Emma Mosymow (dieses Mal habe ich es richtig geschrieben ;-)) für die vielen Ratschläge während meiner Anfangszeit im AK und für die warmen, aufmunternden Worte beim Anfertigen meiner Diplomarbeit bedanken. Knut Wittich gilt großer Dank für seine unschätzbare Hilfestellung bei den RIETVELD-Verfeinerungen und die vielen Gespräche über Gott und die Welt ;-).

Thomas Linden und Jan Haebel danke ich für die zahlreichen gemeinsamen Hearthstone-Partien (gg Ez ;-)), Waldemar Grunwald für die vielen heiteren AK-Momente und den daraus resultierenden reichhaltigen Fundus an Anekdoten (Gold schmilzt bei $\vartheta = 1064$ °C, gell ;-)) und Dr. Eberhard 'Ebi' Günther für die geistreicheren Mittagspausen und die vielen Serienempfehlungen ;-). Meiner alten Quali-Gruppe allen voran Andreas, Paul, Marius, Fritzi, Juliane, Anna, Marek, Yuri und all den anderen Weggefährten, die ich hier nicht namentlich erwähnt habe, danke ich für die schöne gemeinsame Studienzeit.

Zu guter letzt möchte ich mich aufs herzlichste bei meiner Schwester Branka und meinen Eltern Staza und Damjan bedanken. Bez vaše ljubavi, vjere i potpore ova disertacija nebi nikad bila napisana. Ovaj rad je toliko moj koliko je i vaš. Od srca vam hvala za sve što ste za mene učini