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Summary 

The major aim of this work was to prove the suitability of hyperspectral sensors for the detection of 

foliar diseases of wheat under field conditions. Hyperspectral sensors, measurement protocols and 

analysis methods were evaluated both under controlled and field conditions. Findings from controlled 

conditions were used to gain knowledge about the requirements for successful measurement routines 

using hyperspectral sensors and to transfer this knowledge to field measurements. Therefore, 

hyperspectral measurements were performed on different scales, under laboratory conditions 

(measuring distance 11-45 cm) as well as under field conditions using a ground-based vehicle (50 cm) 

and an unmanned aerial vehicle (UAV drone) (20 m). 

Under controlled conditions, the hyperspectral dynamic of five different foliar diseases of wheat was 

investigated in detail. Certain spectral changes were found to be characteristic for a specific disease 

and defined as turning points. The turning points of each disease were combined in a spectral library. 

The spectral library in combination with algorithms from machine learning was successfully used to 

detect, identify and quantify the diseases on wheat leaves. A spatial referencing method based on a 

non-linear 2D polynomial transformation model was developed to perform a retrospective analysis of 

diseased pixels on wheat leaves. By retrospectively going back in time and automatically choosing the 

same pixels over different measurement days, an earliest detectability test for different diseases was 

performed. The pure spore spectra of brown rust and yellow rust were used as input data for a least-

squares factorization to differentiate between the two diseases by a signal decomposition. The mixed 

signal of a diseased plant leaf was decomposed, and the presence of pure spore spectra was detected 

to identify the disease. A deep learning approach using 3D convolutional neural networks was used to 

perform a disease detection and identification on hyperspectral data without previous data labelling. 

The findings from laboratory experiments were used to conceptualize two measurement field 

platforms. Data preprocessing routines were developed with the purpose to normalize and process 

the field data. Bringing the data into a comparable form allows to compare the images of one 

measurement day and on different measurement dates. The data was analyzed using algorithms from 

machine learning. A feature selection was performed to describe certain wavebands that can be used 

for yellow rust detection as most significant disease during vegetation period 2018. The classification 

of yellow rust was successfully performed both on the ground and UAV scale with high classification 

accuracies. The outcome of this study proved the suitability, and with further improvement of analysis 

methods, the potential of hyperspectral sensors for an in-field disease detection in winter wheat.  



 

 

Kurzfassung 
Das Ziel der vorliegenden Arbeit war es, die Eignung von Hyperspektralsensoren zur Detektion von 

Blattkrankheiten des Weizens im Feld zu erproben. In Experimenten, durchgeführt unter kontrollierten 

Bedingungen, wurden Messroutinen etabliert, die eine Übertragung von Hyperspektralmessungen 

vom Labor in das Feld ermöglichen. Hierfür wurden Messungen auf verschiedenen Skalen 

durchgeführt. Unter kontrollierten Bedingungen lagen die Messdistanzen zwischen 11-45 cm. 

Feldmessungen wurden mit einer bodenbasierten Plattform auf 50 cm Messhöhe und einer Drohne 

auf 20 m Flughöhe durchgeführt. Unter kontrollierten Bedingungen wurden die spektralen Dynamiken 

von fünf verschiedenen Blattkrankheiten des Weizens detailliert untersucht. Krankheitsspezifische 

Veränderungen des Pflanzenspektrums konnten identifiziert und als Wendepunkte (Turning Points) für 

jede individuelle Pathogenese definiert werden. Für diese Wendepunkte der Blattkrankheiten wurde 

eine spektrale Bibliothek erstellt. Durch die Anwendung der spektralen Bibliothek (eingesetzt als 

Trainingsdaten für Klassifikationsalgorithmen) auf weitere hyperspektrale Datensätze, war es möglich 

Krankheiten zu detektieren, zu identifizieren und zu quantifizieren. Mit einer räumlichen 

Referenzierungsmethode, basierend auf einem 2D polynomialen Transformationsmodell, konnte eine 

retrospektive Analyse von kranken Pixeln auf Weizenblättern durchgeführt werden. Durch die 

retrospektive Analyse in Kombination mit einer automatischen Auswahl der gleichen Pflanzenpixel an 

verschiedenen Messtagen mittels Transformationsmodell, war eine Aussage zur frühestmöglichen 

Detektierbarkeit einer Krankheit möglich. Die reinen Sporenspektren von Braun- und Gelbrost dienten 

als Trainingsdaten für eine Methode der kleinsten Quadrate, um zwischen den beiden Krankheiten 

durch eine Zerlegung des Spektrums in seine reinen Komponenten zu unterscheiden. Zur Bestimmung 

der Krankheit wurde das Spektrum eines infizierten Blattes faktorisiert und auf Anwesenheit 

krankheitsspezifischer Signaturen untersucht. Ein Deep Learning Ansatz, basierend auf 3D 

konvolutionellen neuronalen Netzen, wurde genutzt, um eine Krankheitsdetektion und –identifikation 

in hyperspektralen Datensätzen durchzuführen, die nicht auf vorherigem Datenlabelling beruht. 

Aufbauend auf den Laborergebnissen wurden zwei Feldmessplattformen etabliert. 

Datenprozessierungsroutinen wurden entwickelt, um Felddaten zu normalisieren und sie in eine 

vergleichbare Form zu bringen. Dies ermöglichte eine Vergleichbarkeit von Datensätzen, die an 

verschiedenen Messtagen aufgenommen wurden. Die Datensätze wurden mit verschiedenen 

Ansätzen des Machine Learning analysiert. Eine Feature Selection wurde durchgeführt, um 

krankheitsspezifische Wellenlängen für den in Saison 2018 vorherrschenden Gelbrost zu bestimmen 

und diese zur Detektion im Feld zu nutzen. Die Erkennung von Gelbrost konnte erfolgreich auf beiden 

Feldplattformen mit einer hohen Gesamtgenauigkeit erreicht werden. Die Erkenntnisse von 

verschiedenen Skalenebenen zeigen, dass eine Krankheitserkennung mit Hyperspektralsensoren im 

Feld möglich ist und im Zuge sich stetig verbessernder Analysemethoden ihr großes Potential auf 

diesem Gebiet entfalten kann.
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1 Introduction 

1.1 Precision agriculture for plant protection measures 

Precision agriculture in crop production can be described as the correct assessment and 

reaction to heterogeneity in the field. Today agriculture is used to once novel approaches like 

global positioning systems and the Internet of Things. These technologies are integrated in the 

daily routines of crop management. Meanwhile agricultural tools and data platforms are 

developed with high pressure and enable a more economic and ecological agricultural practice 

(West et al. 2003). Main areas of interest are field cropping measures like seeding, fertilization 

or plant protection. There is a high demand for techniques that are able to ensure both, a site-

specific monitoring of parameters within field and a site-specific reaction to the monitored 

heterogeneity. Depending on the interrogation, investigations have to be performed on 

different scales: the ground canopy scale, the UAV scale (drones, fixed wings) and the satellite 

scale. Traditional agricultural management practices operate under the assumption that the 

demand for an agricultural measure is distributed homogeneously over the entire field. Today, 

the chemical plant protection measures are under high discussion, but the crop yield needs to 

be protected from diseases and pests. Modern crop varieties are no product of natural 

evolution. They have been selected intensively for high yield over centuries. Compared to their 

wild forms, the most high-yield varieties are less resistant to pathogens, viruses and insects 

that cause yield losses (Boyd et al. 2013; Parnell et al. 2017). Plant diseases reduce the quality 

and quantity of agricultural products, thus resulting in increased costs for crop production and 

the value chain (Bos und Parlevliet 1995). First plant disease patches are often disparately 

allocated within one field and homogeneous application of a chemical compound might not 

be necessary (West et al. 2003). So far, a precise and early detection of a plant disease is still 

challenging. To fulfil the demands of integrated crop protection (careful consideration of all 

available plant protection methods and subsequent integration of appropriate measures that 

discourage the development of populations of harmful organisms and keep the use of plant 

protection products and other forms of intervention to levels that are economically and 

ecologically justified and reduce or minimize risks to human health and the environment), it 

is important to detect, identify and capture the accurate state of disease occurrence and 

severity and to monitor disease spread in fields by visual assessments (Bock et al. 2010; De 

Boer und López 2012; Mahlein 2016). With regard to the inevitable subjectivity of human 

raters, disease ratings are error prone and influenced by the individual rater and primary 
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infection sites are often not obvious (Nutter and Schultz 1995; Nutter et al. 2006; Bock et al. 

2010). Objective disease detection techniques can be realized by new automated methods 

with high sensitivity, specificity and reliability (Mahlein et al. 2018). Automated detecting 

methods can consist of a sensory system in combination with an analysis pipeline including 

computational power and detection algorithms. Spectral sensors offer potentials for a site-

specific real-time detection of diseases. Therefore, it is crucial for a sensor to be highly specific 

in detection of single diseases.  

The current thesis focused on the detection, identification and quantification of wheat 

diseases. The global wheat production system is, among others, limited by foliar diseases that 

cause severe economic losses each year (Oerke 2006; Torriani et al. 2015). The most important 

wheat diseases are tan spot (DTR), septoria tritici blotch (STB), brown rust (BR), yellow rust 

(YR) and powdery mildew (PM). In German winter wheat cropping systems, fungicide 

applications are planned considering the cropping region, the weather conditions and the 

suitable infection conditions (Miedaner 2018). Depending on the region and the present 

conditions during the year, one to three fungicide applications are conducted. In regions with 

comparatively moist weather conditions (Schleswig-Holstein, Mecklenburg-Hither Pomerania) 

three fungicide applications in winter wheat are the rule while in regions that are 

characterized by pre-summer droughts usually only one fungicide application is conducted 

(Miedaner 2018). In years with an early occurrence of YR, high pressure of eyespot, STB and 

DTR or high infection risk for fusarium head blight, two fungicide applications are the rule. As 

this strategy has economic benefits, large farms prefer this twofold strategy (Miedaner 2018). 

A reduction of the number of fungicide applications leads inevitably to a higher demand for 

the right time point of applications. In this regard, forecasting systems actually do help and 

sensors could help to optimize the conduction of plant protection measures depending on the 

present weather conditions and the current field conditions in the future. 

1.2  Site-specific application approaches 

The basis for navigation and autonomous driving applications are Geo Information Systems 

(GIS) based on data from geographic coordinates (Clarke 1986). Numerous automated 

approaches and intelligent machines, like agricultural robots, autonomous tracking systems 

and others have been invented and are the focus of research and development in modern 

agricultural techniques (Robert 2016). As part of the agricultural digitalization, increasing 
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computer power, GIS, global networks, sensitive optical sensor systems, robotic and actuator 

technologies have been developed (Suprem et al. 2013). 

The goal of a plant protection measure considering the spatial variability of diseases in one 

field can only be addressed by robust disease mapping systems and plant phenotyping 

methods (Mahlein et al. 2018). Successful approaches of site-specific application measures in 

the field were shown for fertilizers, growth regulators and a selective weed control system 

(Reckleben 2014; Fernández-Quintanilla et al. 2018). The basis for site-specific disease 

measures is the precise and reliable detection of the respective disease. Optical sensors are 

able to identify primary disease foci and areas differing in disease incidence and can, in 

addition to this, even characterize disease symptom types (Mahlein et al. 2010; Mahlein et al. 

2012; Leucker et al. 2016). Various investigations show that different types of optical sensors 

can be used to accelerate the assessment of plant diseases and other field parameters 

(Hillnhütter et al. 2011; Liebisch et al. 2015; Brugger et al. 2017; Mahlein et al. 2019). The 

majority of so far conducted research indicates that hyperspectral imaging sensors (HIS) offer 

high potentials for improving crop measurements under environmental conditions in the field 

(Whetton et al. 2018a; Whetton et al. 2018b; Yu et al. 2018). After the successful detection 

and identification of the disease as a basis, a measurement must be derived. An interface has 

to convert the detection into a site-specific plant protection measure. The success of the 

conduction is depending on the technology. Site-specific application approaches for plant 

protection measures require an adapted syringe that is able to apply a chemical compound by 

accessing a single nozzle (or a few nozzles) of the system to be as precise as possible. A possible 

workflow of the derivation of a site-specific plant protection measure is shown in Figure 1. 

The first step is the detection of a certain disease. As part of the spatial mapping of the disease 

in the field, a global positioning system (GPS) is essential to generate a site-specific distribution 

map. This application map could then be used to apply a fungicide to individual zones in the 

field. As multispectral sensors combine low costs and an easy implementation of the data to 

the application system, this type of sensor is widely used for different purposes. These sensors 

base on the principle to determine the crop biomass through calculation on different 

wavebands. Due to the specific calculation of wavebands certain values called vegetation 

indices can be derived for crop parameter determination (Berntsen et al. 2006; Reckleben 

2014). However, a sensor that meets all demands of precision farming, is not realistic. Several 
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sensory systems should be combined to integrate interfaces for synergy effects out of sensors, 

GPS, forecasting models and autonomous data analysis pipelines. 

 

Fig. 1: Possible workflow for the derivation of a site-specific application of fungicides against yellow 

rust in a wheat field with a patchy distribution of the disease. First: disease detection, followed by 

disease mapping and the derivation of a site-specific application of a fungicide to eradicate secondary 

infections due to disease patches.
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1.3 Sensor technology for hyperspectral imaging 

Hyperspectral sensors measure the amount of light that is reflected by the crop stand. 

Different to conventional cameras with a red, green, and blue channel (RGB) and high spatial 

resolution, hyperspectral sensors include high resolution optical techniques with an increased 

technical resolution (Mahlein et al. 2018). Relevant spectral regions of the electromagnetic 

spectrum are the ultraviolet range (UV 250-400 nm), the visible range (VIS 400-700 nm), the 

near-infrared range (NIR 700-1000 nm) and the shortwave infrared range (SWIR 1000-

2500 nm) with a spectral resolution of up to 1 nm (Steiner et al. 2008). Spectral sensors can 

be characterized by their spectral resolution (width of wavebands), by their spectral scale (UV, 

VIS, NIR and SWIR) and on the measuring principle. Non-imaging sensors average the spectral 

information in their field of view, while imaging sensors provide spectral information in each 

pixel of the image in an additional dimension z (Mahlein et al. 2018; Thomas et al. 2018). 

Compared to non-imaging systems and depending on their intended purpose, hyperspectral 

imaging sensors (HIS) are often preferred as they deliver additional information such as shape, 

gradient or color of the spatial dimension (Behmann et al. 2015). In many applications, 

multispectral sensors cover the RGB range with additional wavebands in the NIR. These 

sensors provide less data due to their lower spectral resolution but they are often lightweight 

and less cost-intensive (Mahlein et al. 2018). In contrast, HIS are more complex compared to 

RGB or multispectral sensors. HIS are heavier, more expensive and the measurement process 

takes more time which demands high standards to the measurement protocol. HI sensor 

setups typically consist of a hyperspectral sensor, a light source and a control unit for 

measuring, storing and processing the data. The light source can either be artificial (lamps of 

known electromagnetic characteristics) or natural (sunlight). Today the measurement unit can 

be mounted to vehicles, robots, drones, UAVs, tractors, airplanes, satellites and also be 

handheld in the field (Behmann et al. 2018a; Mahlein et al. 2018; Thomas et al. 2018; Whetton 

et al. 2018b; Abdulridha et al. 2019; Bohnenkamp et al. 2019a). By being able to attach the 

measuring units to different vehicles or measurement platforms, HI can be performed on 

various scales depending on the desired parameter to be measured. The suitable 

measurement platform is also determined by the measuring principle of the sensor. Non-

imaging hyperspectral sensors provide a spectrum that is averaged over a certain area without 

spatial information. The focal length of the viewing angle and the distance to the target 

determine the size of the measured area. This might lead to inaccuracies through the lack of 
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spatial information pared with spectral information loss due to incongruous size of the 

measured area (Thomas et al. 2018). Thus an early detection of plant disease symptoms by 

non-imaging sensors is limited (Mahlein et al. 2012). Imaging sensors capture a one-

dimensional spectral information in combination with a two-dimensional spatial information 

of an image. Push broom and whisk broom scanners capture the spectral information of a 

pixel point or a pixel line at the same time (Fig. 2). The image emerges by the movement of 

the sensor. These systems provide high spatial and spectral resolution, but depending on the 

image size, the image acquisition time may take up to minutes. This limits the application of 

the sensor types to motionless objects (Thomas et al. 2018). Filter-based sensors work like 

push and whisk broom sensors with the difference that the spatial dimensions of a full image 

are captured in once while only one waveband is measured at a time. This system does not 

require movement of the sensor and image acquisition, depending on the exposure time, is 

generally faster than for push and whisk broom sensors but image quality is still depending on 

the motionlessness of the object. Another type of sensor are hyperspectral snapshot cameras, 

with a measuring principle similar to RGB-cameras. Although they have a lower spatial and/or 

spectral resolution compared to push or whisk broom, they are promising for field application 

due to their fast image acquisition time (Thomas et al. 2018).  

 

Fig. 2: Various types of sensor systems for spectroscopic image acquisition. Push broom scanner (blue), 

whisk broom scanner (red), filter-based sensor (green) and non-imaging sensor (yellow). The 

measurement principle of each sensor type is illustrated at the hyperspectral data cube in the center 

(According to Thomas et al. (2018)). 
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1.4 Disease interaction determines the optical properties of wheat leaves 

The optical properties of plants are mainly determined by their reflectance, transmission and 

absorbance of light which are governed by leaf properties such as the waxy cuticle, the cell 

wall and others. Transmission and absorbance are influenced by pigments and water (Gates 

et al. 1965; Heim et al. 2015). The reflectance of plants is always a complex signal and caused 

by multiple biochemical interactions resulting in a mixed signal (Gates et al. 1965; Carter und 

Knapp 2001; Gay et al. 2008; Pandey et al. 2017). The reflectance in the visible range is mainly 

characterized by the absorption of leaf pigments such as chlorophyll, carotenoids and 

anthocyanins (Gay et al. 2008). NIR and SWIR stimulate molecular motions that induce a 

strong absorption or reflection by compounds that show characteristic spectral patterns. 

Additionally, the NIR reflectance of plant leaves is mainly determined by the leaf and cell 

structures (Gates et al. 1965; Elvidge 1990). A healthy plant shows a high reflectance in the 

NIR (Reckleben 2014). NIR and SWIR region show water absorption bands with strong 

presence in the SWIR region. Even plant water content can be determined by using SWIR 

imaging (Seelig et al. 2008). 

The biochemical processes and the structure of plant leaves can be influenced by plant 

pathogens. During host-pathogen interactions, physiological and biochemical changes in the 

host tissue take place that might influence the optical properties in a characteristic way 

(Mahlein et al. 2010). The result of this interaction is often a disease symptom. The 

detectability of a disease is essentially influenced by the lifestyle and the resulting disease 

symptoms of the respective disease. In plant pathology, foliar fungal pathogens are mainly 

characterized as pathogens with a necrotrophic lifestyle and pathogens with a biotrophic 

lifestyle. Necrotrophic pathogens (e.g. Zymoseptoria tritici) kill their host cells and feed from 

the nutrients provided by the dead organic matter that enable fungal proliferation in the host 

tissue (Steinberg 2015). Biotrophic fungi, such as mildews and rusts, keep their hosts tissue 

alive as long as possible to derive nutrients from living photosynthetic active leaf area. The 

provision of nutrients can be ensured due to colonialization of the host and the formation of 

haustoria as feeding organs (Dracatos et al. 2018). 

The symptom type of the disease determines the detectability of the disease. This work 

focuses on the detection of foliar diseases of wheat. Five diseases were investigated (Fig. 3). 

The diseases caused by necrotrophic pathogens are represented by tan spot (DTR) and 

septoria tritici blotch (STB). Drechslera tritici-repentis (Died.) Shoemaker is the causal agent of 
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tan spot. D. tritici-repentis grows comparatively fast and is a necrotrophic ascomycete that 

produces a toxin causing typical tan spots in the center of the symptom. Further symptom 

development can result in chlorosis or necrosis, or both depending on the race of the 

pathogen and the genetic background of the wheat cultivar. DTR can cause large necrotic 

lesions on susceptible cultivars (Tomas 1987; Dushnicky et al. 1998a; Dushnicky et. al. 1998b). 

Zymoseptoria tritici (Desm.) Quaedvliet & Crous causes Septoria tritici blotch (STB). The 

ascomycete has a biotrophic and a necrotrophic phase. The biotrophic phase is innocuous for 

the plant and is initially asymptomatic but the necrotrophic phase leads to collapse of cells 

and initial small chlorotic spots resulting in necrotic lesions that can encompass entire leaves. 

Pycnidia are formed in the substomatal cavities of mature necrotic lesions (Steinberg 2015). 

In the disease symptom, the pycnidia appear as tiny black spots formed in a necrotic lesion. 

STB is the key wheat disease in high input wheat cropping regions along with high rainfall. In 

Europe it is estimated that 70 % of fungicide use in wheat is primarily targeted towards STB 

(Torriani et al. 2015). Beside the formation of chlorotic spots, the biotrophic diseases become 

apparent by the intense production of fungal structures on the leaf surface and are 

represented by three different pathogens. Puccinia triticina Eriks. is the fungal agent of brown 

rust (BR). BR shows small chlorotic spots as initial symptoms about 5 days after infection. 

During pathogenesis chlorotic spots increase and develop uredinia in their center, bearing 

reddish to brown urediniospores (Bolton et al. 2008). Puccinia striiformis f. sp. tritici causes 

yellow rust on wheat (YR). First symptoms are tiny chlorotic spots that can occur already 6 to 

8 days after infection. Copious production of urediniospores in uredinia appears about two 

weeks after infection on susceptible cultivars (Chen et al. 2014). Blumeria graminis f. sp. tritici 

(DC.) Speer (Bgt) is the causal agent of wheat powdery mildew (PM). First symptoms occur 4 

days after infection when tiny white spots become visible (Te Beest et al. 2008). 
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Fig 3: Symptom appearance of the different foliar diseases of wheat. Tan spot: chlorotic halo (DTR), 

septoria tritici blotch: pycnidia in necrotic lesions (STB), brown rust: red to brown uredinium and 

chlorotic halo (BR), yellow rust: yellow to orange uredinia with chlorotic tissue along leaf veins (YR), 

powdery mildew: hyaline to white powdery pustules (PM). 

Plant diseases can be detected either indirectly through the detection of structural changes in 

the host tissue (chlorophyll degradation, loss of water and necrosis) or directly through the 

observation of the formation of fungal structures on or in the host (pigmented spores or 

hyphae). Each individual host-parasite interaction has a specific spatial and temporal dynamic 

which has an impact on different wavebands of the electromagnetic spectrum during 

pathogenesis (Wahabzada et al. 2015, Wahabzada et al. 2016). The individual lifestyle of 

fungal pathogens has a significant influence on the detectability. Interactions with 

necrotrophic pathogens become detectable mostly through the formation of an initial 

chlorosis that usually results in necrotic tissue. In this case the disease is detected indirectly 

because spectral peculiarities depend on the biochemical process of first chlorophyll 

degradation followed by cell mortification (Wahabzada et al. 2015; Mahlein et al. 2018). The 
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symptom of necrotrophic diseases is a lesion of dead cells of the leaf. The spectral signature 

is mainly influenced by the internal cell scaffold due to a loss of chlorophyll, the loss of water, 

cell wall structure and lignin (Elvidge 1990). Furthermore, biotrophic diseases can cause a 

degradation of chlorophyll and lead to chlorosis. Additionally, the formation of fungal 

structures on the leaf surface is common (rusts and powdery mildews). They become visible 

through dense formation of hyphae, spore producing units and a massive production of the 

spores as propagules. These propagules can either influence the reflectance of the leaf 

through their pigmentation with, for instance, carotenoids such as many rust diseases (Wang 

et al. 2018; Bohnenkamp et al. 2019b) or dense masses of hyaline spores like powdery mildews 

(Dean et al. 2012). The spectral signature of rust fungi can be determined by the colors of the 

spores (Bohnenkamp et al. 2019b). Most common, asexual urediniospores are produced 

polycyclic during the vegetation period. Spectral signatures of hyaline and colorless structures 

of powdery mildews show a characteristic parallel shift of the curve because a dense 

compaction of hyaline structures leads to an increased reflectance intensity due to 

backscattering of the incoming light. In general, the detectability of the disease is highly 

depending on the effect of environmental factors. Under controlled, nearly perfect laboratory 

conditions and with an up to date measuring setup of technique a detection, identification 

and quantification of a disease is possible. In contrast, the detection under field conditions is 

often limited by occurring weather conditions and the phenotypic appearance of the crop 

stand itself. A common method to detect plant stress and plant diseases is the use of classic 

vegetation indices (VI’s) (Ashourloo et al. 2014; Behmann et al. 2014). A classic VI is the 

Normalized Different Vegetation Index (NDVI). The NDVI can be used to visualize the 

heterogeneity of the vitality of a crop stand (Behmann et al. 2014). The use of the NDVI is not 

suitable for the detection of a specific disease (direct detection) but it provides a relative value 

for the vitality of the crop stand. This value can be used for indirect disease detection (not 

using disease specific bands) as it visualizes diseased regions with a loss of vitality. VI’s are 

calculated out of different wavebands that show characteristic spectral shifts in certain 

spectral regions. These wavebands can be derived either using multispectral sensors (that 

measure only the desired wavebands) or by hyperspectral sensors where the entire spectral 

range can be used to calculate various VI’s out of the spectral range. The use of VI’s allows a 

reduction of the data complexity. By measuring the entire spectral range, different disease 

specific VI’s (DVI’s) can be derived from the spectral information (Mahlein et al. 2013). In 
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literature, various works focus on the use of single or a combination of established classic VI’s 

for disease detection (Devadas et al. 2009; Cao et al. 2013; Zheng et al. 2018a; Chen et al. 

2019) but also DVI’s can be powerful tools for the detection. DVI’s have been developed for 

various diseases of different crop plants. The majority of DVI’s targets the detection of 

biotrophic diseases such as wheat yellow rust (Zheng et al. 2018b), brown rust (Ashourloo et 

al. 2014), sugar beet rust (Mahlein et al. 2013) or other rust diseases like myrtle rust (Heim et 

al. 2019). But also DVI’s for necrotrophic diseases like cercospora leaf spot have been 

developed (Mahlein et al. 2013). An overview of different classic and established VI’s and DVI’s 

is given in Table 1. Several studies focused on the detection of rust diseases of wheat such as 

yellow and brown rust (Ashourloo et al. 2014; Zheng et al. 2018b). The robustness of the 

detection is often limited to the measuring conditions and the pre- or absence of other 

diseases and abiotic stresses. Zheng et al. (2018a) described that VI’s for YR detection might 

be only suitable for several or even one specific growth stage of wheat (sprouting or flowering) 

or the developmental stage of the disease (chlorosis or sporulation). YR disease starts with 

yellow chlorotic spots as initial symptoms. With further development YR starts to produce 

masses of spores in uredinia. A high dynamic in the disease appearance is present. This limits 

the potential and the time of application for one specific DVI. Desirable are DVI’s with 

robustness amongst different growth stages (Zheng et al. 2018a). Regardless of the kind of 

sensor used for the detection, optical measurements always depend on characteristic spectral 

features that must be analyzed in the correct way. 
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Table 1: Examples of spectral vegetation indices that were used to detect plant diseases. Classic VI’s 

were developed to provide information about the general vitality of a crop canopy, disease specific 

VI’s (DVI’s) were developed to detect a certain disease including disease specific wavebands. 
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1.4.1 Wheat disease detection - controlled conditions 

The measuring environment is of high importance for the success of disease detection 

procedures. Most research tackling the detection of plant diseases with optical sensors is 

performed under controlled conditions in a laboratory. In this case, the measuring 

environment can be efficiently controlled by ensuring homogeneous light conditions, a 

constant room temperature and a proved measurement design, e.g. for measuring horizontal 

aligned plant leaves (Mahlein et al. 2012), or the preprocessing and normalization of data 

(Bohnenkamp et al. 2019b). Confounding natural weather conditions, such as rain and 

changing illumination conditions through clouds, or the heterogeneity of a crop stand can be 

excluded. Hyperspectral camera systems can be mounted to autonomous moving devices (e.g. 

a linear stage) that allow a defined movement speed of the sensor over the object to be 

measured (Fig. 4). The light sources can be mounted to this linear stage to ensure a 

homogeneous illumination during measurement. Controlled conditions allow to produce 

repeatable measurement conditions that make it possible to compare data from different 

measurement dates (Bohnenkamp et al. 2019b). Most of these works using HS imaging 

sensors for disease detection were performed in close-range imaging to investigate and 

characterize the pathogenesis (Mahlein et al. 2010; Mahlein et al. 2012; Kuska et al. 2015; 

Lowe et al. 2017; Zhu et al. 2017; Kong et al. 2018; Whetton et al. 2018a; Bohnenkamp et al. 

2019b). Hyperspectral close-range imaging provides images with both, a high spectral and 

spatial resolution, suitable for a pixel wise investigation of diseased crop leaves (Mahlein et 

al. 2012; Mahlein 2016). Early host-pathogen interactions occur in the submillimeter range. 

Wahabzada et al. (2015) used a hyperspectral camera for disease detection at close range with 

a pixel size of 0.12 mm per pixel. The used setup was suitable for the detection of early host-

pathogen-interaction responses (Wahabzada et al. 2015). Thus, only close range imaging has 

a spatial resolution sufficient for detecting these changes in early pathogenesis (Mahlein et al. 

2012). Various host-pathogen-interactions on monocotyledonous and dicotyledonous plants 

have been investigated (Yuan et al. 2014; Leucker et al. 2016; Zhu et al. 2017; Kong et al. 2018; 

Whetton et al. 2018a; Yao et al. 2019). In cereals, experiments were mostly performed with 

wheat and barley. Several studies were performed with biotrophic fungi (Kuska et al. 2015; 

Wahabzada et al. 2015; Whetton et al. 2018a; Bohnenkamp et al. 2019b; Yao et al. 2019) but 

also investigations with necrotrophic fungi have been conducted (Iori et al. 2015; Wahabzada 

et al. 2015; Behmann et al. 2018b). A central part of investigations is the characterization of 
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the spectral dynamic of pathogenesis to link these findings with biochemical processes of the 

host-pathogen-interaction. The gain of knowledge is used to train models for an autonomous 

detection and identification of one present disease or mixed infections. The scope for 

investigations under controlled conditions can be the development of robust measuring 

protocols for phenotyping approaches for disease resistance of cultivars and antifungal 

compounds in the greenhouse or the development of detection routines for field approach. 

Therefore, the horizontal fixation of cereal plant leaves allows a detailed monitoring of the 

spectral leaf properties under disease pressure over time. These findings must be combined 

with data from high throughput facilities that gather additional information on plant disease 

appearance on different leaf levels and leaf geometries. A milestone out of these findings 

should be the development of data sets that include not just the quantification of directly 

measurable diseases on a certain leaf but also calculations and/or estimations for the disease 

occurrence on the whole plant. Detection models have to take into account that the degree 

of the disease cannot be represented in just one image from top view. Lower leaves are often 

covered by upper leaves. High throughput information of hundreds of diseased crop plants is 

needed to develop calculations for the specific true amount of the disease. This information 

is of essential importance to develop robust detection models for field approaches under 

environmental conditions. 

 

 

Fig. 4: Schematic overview of a hyperspectral line scanning measuring system for controlled conditions. 

Scheme shows linear stage with attached camera system (hyperspectral line scanner), defined light 

sources and the object to be measured (nadir distance to the camera 40 cm). A time series of brown 

rust (zoom) is displayed (from first symptoms to late stage symptoms and sporulation) to show how 

reproducible data is generated. 
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1.4.2 Wheat disease detection - field conditions 

Optical measurements under field conditions are extraordinarily challenging (Bravo et al. 

2003; West et al. 2003). A wheat crop stand is a geometric complex structure with several 

hundreds of tillers per square meter forming the canopy. The leaf architecture of crop plants 

can either be erectophile or planophile with the effect that an erectophile architecture allows 

views to the lower leaf levels (from nadir view) (Sandmeier et al. 1998). Wheat plants seem to 

be a mixture out of both types with an occurring secondary irradiance (light is reflected or 

transmitted) in between the crop stand that might brighten shadowed areas. The crop 

architecture and the leaf angle are important factors influencing the measurements of 

reflectance. The way of light through the crop canopy is a complex phenomenon. The wheat 

canopy is composed of many leaf layers of different altitudes with variability in leaf size, 

orientation, shape and coverage of the ground surface (Campbell 2002). Upper leaves cast 

shadows that mask lower leaves. The overall reflectance is a combination of leaf reflectance 

and shadowing. Compared to single-leaf-measurements under controlled conditions, the crop 

canopy reflectance tends to be lower due to shadowing. In a crop canopy, the relative 

decrease of the NIR is much lower than the visible light. This can be explained by the fact that 

3-5 % of the visible light is reflected by the field canopy compared to 10 % of visible light in 

single-leaf-measurements from controlled conditions. 35 % of the NIR is reflected in the field 

while 50 % are reflected under controlled conditions (Campbell 2002). Fig. 5 shows a simplified 

schematic description of the way that light of different spectral regions takes through the crop 

canopy. Infrared radiation is transmitted through the upper leaves and reflected from lower 

leaves and retransmitted back through upper leaves. Reflection of NIR also happens when 

light that was transmitted through leaves, reaches the soil below the canopy and then is 

reflected back. The visible light consists of the red, green and blue range. Red and blue light is 

largely absorbed by the crop canopy for photosynthesis and green light is largely reflected 

through the presence of chlorophyll (plants appear green) (Campbell 2002). 
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Fig. 5: Simplified cross sectional view of the way of light through a crop canopy. Light can be reflected, 

transmitted or absorbed. The measured signal is the result of the complex interaction of light from 

different spectral regions of the electromagnetic spectrum with the crop canopy layers and the soil. 

IR: infra-red light, R: red light, G: green light, B: blue light (Adapted from Campbell (2002)). 

Additional to these highly complex tasks, another factor that is highly specific for a single crop 

has to be taken into account - the leaf geometry. The leaf geometry has a significant distortion 

effect on the spectrum. The composition of shadowed and illuminated canopy components is 

highly dependent on the leaf orientation and structural properties of the plant species, 

phenology and health status. Regarding analysis of field data, Jay et al. (2016) showed that the 

disturbing effect of changing weather conditions could be significantly removed, but the 

negative effect of leaf geometry remains in the data. The PROCOSINE model might be an 

approach to handle these effects (Jay et al. 2016). 

Additionally, infection biology and epidemiology of a disease have a big impact on its 

detectability. The inoculum of many pathogens is soil borne or located in crop debris on the 

ground. Diseases often spread from the bottom leaves to the upper leaves through wind or 

most likely through the kinetic energy of rain droplets (STB). Such a disease will appear and 

manifest initially on lower leaf levels long before the upper leaves or the flag leaf of wheat can 

be colonized. The control thresholds for fungicide applications (counting disease incidence) 
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for STB depend on the wheat growth stage. In BBCH 32-37 it is 30 % disease incidence (on the 

upper four leaves) while in 39-61 it is 10 % (Miedaner 2018). A detection device for practical 

approach should be able to objectively determine these specific control thresholds for each 

disease. Septoria tritici blotch has an additionally long latency phase where no symptoms are 

visible (biotrophic phase). This hampers a profound measurement by nadir on top of a crop 

canopy as the upper leaves just don’t show disease symptoms. To gather the infection status 

of a crop stand infected by a pathogen that initially infects the lower leaf levels, a sensor 

system ought to be moved through the crop stand to cover each leaf level. Other diseases like 

tan spot have also soil borne inoculum and can have a particularly rapid disease development 

when it comes to favorable conditions (Strelkov and Lamari 2003). The latency phase usually 

takes only a few days and disease monitoring might occur late when symptoms already 

became visible on the leaf surface. Exclusively wind-borne pathogens initially infect the upper 

leaves where the spores land on and germinate. This favors the detection of foliar rust 

diseases or powdery mildews. Especially in early phase of the vegetation period, YR shows an 

initially patchy distribution in the field where chlorotic spots (as first symptoms) can become 

visible on all present leaves. Brown rust is a typical disease of the later/warmer season and 

might initially become visible as chlorotic spots on all present leaves. Powdery mildew can 

occur during the whole season on stems and leaves. Several authors have shown that a 

general detection of crop stress in the field is possible. Likewise, the detection of more specific 

biotic crop stress caused by plant diseases is possible (West et al. 2003; Whetton et al. 2018b; 

Yu et al. 2018; Zheng et al. 2018a). Most of these works use multispectral imaging or 

hyperspectral non-imaging sensors, but only a few of them used a hyperspectral imaging 

measurement system. As there is a huge variation of hyperspectral cameras on the market, 

hyperspectral measurements in the field demand high quality equipment and measurement 

platforms suitable for their purpose (Mahlein et al. 2018; Thomas et al. 2018). 

1.5 Effect of weather conditions on hyperspectral field measurements 

The image quality of field data in general is influenced by various factors. Environmental 

conditions are not controllable in the field. Disturbing weather conditions such as wind 

(blurred images) and rain or dew causing leaf wetness (diffuse backscattering of light) can 

easily impair spectral images that are obtained in the field. Field measurements should be 

performed on calm days after leaf drying. The most relevant factor is illumination. Optical 

measurements are depending on a light source. This can either be the sun as a natural light 
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source or artificial light on a measurement platform. When the sun is the natural light source, 

changing illumination conditions over time due to clouds or the diurnal cycle might lead to 

impractical data. If a hyperspectral camera is used, this could lead to heterogeneous 

illumination conditions within one image due to the time-delayed image acquisition 

depending on the spatial and spectral resolution. The spectral information of different images 

cannot be compared one another (Bravo et al. 2003; West et al. 2003; Roosjen et al. 2016) 

and one result could be misclassifications (Bohnenkamp et al. 2019a). Figure 6 shows the 

effect of changing illumination conditions on the image quality during image acquisition with 

a line scanning camera. In various works, the scientists preferred measuring conditions with a 

dense cloud coverage under the assumption that the cloud coverage is homogeneous and 

light conditions are constant (West et al. 2003; Whetton et al. 2018b). Cloudy conditions have 

an advantage compared to a cloudless sky: the sunlight will be scattered. This leads to the fact 

that scattered light results in a more homogeneous illumination of the crop canopy with less 

to no disturbing shadow casted by the measuring device or the upper plant organs. 

Nevertheless, a cloudy sky can be less homogeneous as it appears. The cloud coverage could 

be inhomogeneous with locations of less or more dense clouds that are in motion of the wind 

and heterogeneities in image brightness can change from minute to minute (Mahlein et al. 

2018). Illumination changes could occur during single measurements or the measurement day 

without being noticed. The amount of change is easier to measure under direct light 

conditions (with no clouds). But here, a strong cast of shadows in the crop canopy could lead 

to inhomogeneous illumination conditions in between the different leaf levels (Yu et al. 2018). 

Due to the plant architecture, the flag leaf (F) has the highest sun exposure. The lower leaf 

levels (F-1, F-2, F-3…) are often covered by the upper leaves. Either way, in the field it is of 

high importance to be able to perform measurements that are robust against variation in 

illumination intensity (Wendel and Underwood 2017). The illumination intensity has to be 

continuously observed. In combination with reflectance standards, that reflect a defined 

amount of the sunlight, the data can be processed and normalized. By performing a data 

normalization, the field data can be compared even on different measurement days. A typical 

standard for field measurements reflects 50 % of the incoming sunlight and can be recorded 

in each hyperspectral image of the crop canopy (Bohnenkamp et al. 2019a). Interpolation 

approaches might fail through a lack of continuous illumination observations (Suomalainen et 

al. 2014; Roosjen et al. 2016). Radiation transfer models have been described that might be 
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suitable to address these issues (Jay et al. 2016). Especially at close scale imaging, the leaf 

geometry has a big impact on the accuracy of radiative transfer and thus leads to significant 

disturbing effects for illumination normalization. Jay et al. (2016) considered the spectral 

reflectance of the leaf surface in combination with the local leaf orientation. The used model 

allows a robust sub-millimeter retrieval of foliar hyperspectral reflectance and shows the 

potential for future works combining close-range imaging considering illumination conditions 

and the local leaf geometry (Jay et al. 2016). 

 

Fig. 6: Effect of changing illumination conditions on the image quality during a hyperspectral image 

acquisition. The measuring principle is based on a line scanning camera. The image acquisition took 

about 30 seconds. The used exposure time in the camera settings was adapted to the lower 

illumination conditions. When the illumination increases, the brighter image parts are overexposed to 

sunlight. A manual or automatic down-regulation of the exposure time during image acquisition was 

not possible. Overexposed image parts are the upper plant organs (flag leaf and ears). 
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1.6 Effect of biological heterogeneity of wheat on hyperspectral field measurements 

The biological heterogeneity and the correct dealing with it, is one core determinant for the 

successful analysis and interpretation of field data. Biological heterogeneity can be defined as 

the entire dynamic of the phenotypic appearance of a crop stand and single crop plants in the 

field. With a deeper look into a wheat canopy, it becomes obvious that the wheat plant 

consists of different plant organs that are located on different altitude levels. A wheat plant 

has a stem, different leaves with each younger leaf located one leaf level above the older one, 

and ears (depending on the growth stage). The iteration of different crop growth stages also 

has an impact on the electromagnetic spectrum (Zheng et al. 2018a). If hyperspectral 

measurements should be performed in the field, this complex architecture of a wheat plant 

has to be considered. Different leaf altitudes lead to inhomogeneous illumination conditions 

on the different leaf levels (Mahlein et al. 2018). Inhomogeneous illumination conditions have 

to be considered if the spectral properties of different leaves should be compared. A 

hyperspectral imager is often not capable of detecting the true status of disease incidence on 

the lower leaves (Whetton et al. 2018b). Additionally, the upper leaves can cast shadow onto 

lower leaves. Similar to the changing illumination due to weather conditions, the 

inhomogeneous illumination of a crop stand has to be taken into account for later calculations 

and corrections. The canopy color changes from week to week due to the plant development 

in environmental conditions influenced by natural growth, light, age and maturity 

(senescence), nutrient availability and not least the cultivar color itself. This dynamic of the 

optical appearance makes it complex to compare spectral properties from one measuring day 

to another. Additionally, the optical properties can be influenced by symptoms and a 

premature senescence caused by abiotic and biotic factors. Chlorotic spots, stripes and 

necrosis can be caused by nutrient deficiencies or plant diseases. These symptoms appear on 

different leaf levels in different intensities. Typically, leaves of different ages show a diverse 

susceptibility to stress. When it comes to favorable conditions for plant disease infections, 

wheat plants exhibit different disease incidences on different leaf levels in combination with 

mixed infections. Because this heterogeneity is captured in one single hyperspectral image 

(Fig. 7), these data sets consist of a high complexity for further analysis. From nadir view, the 

lower leaves show higher YR infestation than the upper leaves, but this status can hardly be 

represented in the images. Due to the lower reflectance intensities of the older leaves the 
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detectability of the disease could vanish. This effect might be strengthened through color 

changes of the leaves resulting from maturity. 

 

Fig. 7: Data cube of a hyperspectral image taken in the field. The data cube illustrates the biological 

heterogeneity that is present in each hyperspectral field image. The spectral information is influenced 

by ground signals, different leaf altitude signals and disease signals on different leaf altitudes. 
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1.7 Effect of the measurement scale on hyperspectral in-field wheat disease detection 

To define a measuring setup, it is of high importance to be aware of what needs to be 

measured. Choosing the right sensor in combination with the right measurement scale is the 

key requirement for successful field measurement platforms. Possible targets could be an 

early detection and identification of wheat diseases, a quantification of the disease symptoms 

or a quantification of disease incidence in the field. UAV measurements in a height of 50 m to 

the crop stand in combination with a low spatial resolution hyperspectral camera will not be 

sufficient to perform an early detection of single initial chlorotic spots caused by YR compared 

to a measuring device that is moved closely above the leaf canopy in combination with a high 

spatial resolution optics and a submillimeter pixel size. The measurement purpose always 

determines the measurement scale. Various works under laboratory conditions showed that 

a pixel wise analysis of disease symptoms close-range imaging is possible (Kuska et al. 2015; 

Wahabzada et al. 2015; Leucker et al. 2016; Bohnenkamp et al. 2019b). The most precise 

measurements can be performed under laboratory conditions through the exclusion of 

environmental factors. The measurements are often performed on close-scale (measuring 

distance from the object of interest to the optics: several millimeters – 60 cm) and can either 

be addressed to answer basic research issues or the gathering of huge data sets in high 

throughput devices (high throughput phenotyping). Disease detection of foliar wheat diseases 

in the field so far is mostly performed with ground-based vehicles (Bravo et al. 2003; West et 

al. 2003; Moshou et al. 2004; Whetton et al. 2018b; Yu et al. 2018; Azadbakht et al. 2019). 

Various works focused on the detection of diseases using VI’s in combination with a non-

imaging spectrometer. Whetton et al. (2018b) used a hyperspectral imaging camera on a 

ground-based vehicle for the detection of YR and fusarium head blight. A ground-based 

detection is often performed in a distance of 20-60 cm over the crop canopy. This distance, in 

combination with a camera that provides a suitable spatial resolution, can image a disease 

symptom by several pixels with a submillimeter size. In this case diseased pixels can be 

differentiated from healthy plant pixels. In addition to that this separation enables a 

quantification of diseased pixels possible by simply counting the pixels. This allows for a 

disease quantification. Non-imaging sensors average the spectral information over a certain 

area and do not provide a spatial distribution of pixel information in one image. Hence, a direct 

quantification of the disease is not possible and has to be done through the calculation of 

gradients or regressions out of the averaged spectral reflectance. 
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UAV drones equipped with multispectral cameras are frequently used to acquire canopy data 

from a larger scale. Measurements are often performed in 20-100 m height above the wheat 

canopy (Bohnenkamp et al. 2019a). With a UAV, a larger area can be monitored compared to 

ground-based vehicles or rating. One disadvantage of the measuring distance is the resulting 

lower spatial resolution. The higher the altitude the bigger the ground pixels of the image. This 

means that the same camera that is used on a UAV (pixel size several centimeters) or a satellite 

(pixel size several meters) can have a submillimeter pixel size at ground canopy scale. Figure 

8 shows the effect of the measuring distance (UAV and ground-based measurements) on the 

pixel size. This effect means a loss of information and a higher number of mixed signals due to 

transition areas from diseased to healthy, leaf to plant and leaf to soil pixels. Contrary, Zhang 

et al. (2019) proved that hyperspectral cameras can be used for sufficient disease detection 

of YR on the UAV-scale combining the advantages of spectral and spatial information of 

hyperspectral imaging. In general, the issue of the scale is always the compromise between 

the desired information content (size of one pixel) and the throughput/flexibility of the 

measuring platform. This fact can be upscaled to plane and satellite measurements. A UAV 

drone in 20 m height is capable of detecting early patches of YR. But a ground-based system 

with the same camera might be able to detect first changes several days earlier and this could 

be the time that is necessary to initiate an effective plant protection measure. Choosing the 

right measurement scale is always a compromise between a high throughput (UAV scale) and 

a high resolution (ground canopy scale). Each scale makes different demands to data 

processing and analysis but they have one thing in common: for future commercialization of 

new sensory systems in agriculture, data analysis pipelines have to automatically analyze the 

data and to derive a measure online in the field where it is operating. 
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Fig. 8: Comparison of the calculated theoretical pixel size on the ground canopy (top image, 50 cm 

measuring distance) and the UAV scale (bottom image, 20 m measuring distance). At the ground 

canopy scale (top zoom image) one pixel has the size of 0.16 cm in the displayed image. One YR 

symptom can be represented by many pixels. At UAV scale (bottom zoom image) one pixel has the size 

of 5.4 cm. The spectral information of either 0.16 cm or 5.4 cm is averaged in one pixel. At UAV scale, 

a higher throughput is possible but a loss of information occurs due to decreased spatial resolution. 
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1.8 Artificial intelligence as a tool for data analysis 

Much as hyperspectral sensors are promising for the detection of diseases in agricultural 

crops, they are very complex when it comes to the analysis and interpretation of their 

generated data. Data from hyperspectral images are big in size (up to several gigabytes). The 

analysis is challenging as a small proportion of relevant information from the hyperspectral 

signal has to be extracted (Behmann et al. 2015). To enable reliable results under challenging 

environmental conditions, such as sunlight and/or cloudy weather, complex algorithms are 

needed (Wendel and Underwood 2017). Machine learning (ML) has emerged in the era of big 

data technologies (Liakos et al. 2018). Usually, ML involves a learning process with the object 

to learn from training data to perform a certain task such as the classification of plant diseases 

in an image. An individual example is described by a set of attributes, also known as features 

or variables. ML tasks can be classified in supervised and unsupervised learning models. In 

supervised models, training data is provided as input data to the algorithm (Liakos et al. 2018). 

The training data is labeled but can be error prone due to the manual annotation of a human 

being (Bohnenkamp et al. 2019a). Unsupervised models do not rely on labeled training data 

while the algorithm works unsupervised based on the data distribution with the goal of 

discovering hidden patterns (Liakos et al. 2018). Machine learning approaches are able to cope 

with hundreds of wavebands of hyperspectral sensors, whereas for multispectral sensors VI’s 

are adequate. ML in combination with hyperspectral cameras can be used for the detection, 

identification and quantification of plant diseases. They learn a model out of the data itself 

with the ability to unveil hidden features of the data (Behmann et al. 2015; Lowe et al. 2017; 

Mahlein et al. 2018; Bohnenkamp et al. 2019a). The combination of hyperspectral imaging 

data with analysis approaches from machine learning offers high potentials for a robust 

detection of plant diseases (Golhani et al. 2018). 

Representative supervised classification algorithms are the spectral angle mapper (SAM) and 

the support vector machine (SVM) (Fig. 9). These algorithms rely on the labeling of training 

data for model generation (Bohnenkamp et al. 2019a). The SAM calculates the spectral 

resemblance (a spectral angle) between a reference spectrum and the spectrum to be 

classified. The SAM algorithm uses the mean spectra of the input classes as reference spectra 

(Kruse et al. 1993). The SVM creates a decision boundary between classes for classification. 

The efficiency results in a parametrization by support vectors (Cortes and Vapnik 1995). 

Compared to the SAM the SVM does not use the mean spectra of a certain class as input data. 
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Instead, it can be trained on the whole data set and can use the spectrum of each pixel as 

input data. The SAM and the SVM were successfully used for the detection of YR of wheat 

even under field conditions (Bohnenkamp et al. 2019a). The scientists were able to reach an 

accuracy of > 90 % for YR detection both on the ground canopy and the UAV scale. Huang et 

al. (2019) used SVM to detect powdery mildew in winter wheat. Whetton et al. (2018b) used 

a PLS regression with a leave-one-out cross-validation for the detection of YR and fusarium 

head blight in the field. Azadbakht et al. (2019) showed a detection with high accuracy of 

wheat brown rust hyperspectral imaging at different leaf area index levels with different 

machine learning techniques using support vector regression, boosted regression trees, 

random forest regression and Gaussian process regression. 

 

Fig. 9: Schematic comparison of the two different supervised classification algorithms spectral angle 

mapper (SAM) and support vector machine (SVM). Different ways of handling reference spectra. 

Classification through the calculation of the angle between vectors of spectra (SAM) and classification 

by creating a decision boundary using supporting vectors (SVM). The handling of reference data 

determines the suitability of an algorithm for a certain task. 
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A powerful tool to improve the detectability of plant diseases in hyperspectral images is the 

use of neural networks (NN) from deep learning that are based on and adapted from the 

human nervous system (Golhani et al. 2018). Like the vast network of neurons in the human 

brain, NNs are interconnected complex networks of nodes. Different to predefined features 

from ML, deep learning (DL) models determine more abstract and more informative data 

representation (Mahlein et al. 2018). DL models do not depend on labelled training data and 

are self-learning approaches. Major types of NNs are Single-Layer Perceptron (SLP), Multi-

Layer Perceptron (MLP), Radial-Basis Function (RBF) networks, Kohonen’s Self-Organising Map 

(SOM) networks, Probabilistic Neural Network (PNN) and Convolutional Neural Network 

(CNN). Due to the unique capabilities such as learning, generalization and imaging, CNNs show 

high potentials to improve the reliable diagnosis of plant diseases and have a higher degree 

of diagnosability compared to other ML techniques (Golhani et al. 2018). CNNs as part of deep 

learning constantly achieve new accuracies in image recognition and segmentation (Chen et 

al. 2018). NNs were used in various applications for disease detection. (Moshou et al. 2004) 

used MLP and SOM for the automatic detection of YR in wheat with a detection accuracy of 

99 %. (Zhang et al. 2019) used a deep convolutional neural network approach to detect YR in 

hyperspectral UAV images with a detection accuracy of 80-90 %. The constantly good accuracy 

over different growth stages during vegetation period was particularly interesting. In the 

future, a fundamental goal for disease detection techniques will be the early detection of 

diseases. In the best case the combination of a sensor and ML/DL algorithms should be 

capable to detect the disease before it becomes visible for the human eye. Future plant 

disease detection pipelines will include recent analysis methods from machine and deep 

learning to reach high detection accuracies even at early growth stages and under constantly 

challenging environmental conditions. 
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1.9 Objectives of the study 

This study aimed to test the potential of hyperspectral sensors for the in-field detection of 

foliar diseases of wheat with regard to a site-specific detection and disease mapping. 

The first goal (I) was to generate characteristic spectral signatures from different diseases 

under laboratory conditions with hyperspectral sensors by monitoring the spectral dynamic 

of tan spot, septoria tritici blotch, brown rust, YR and powdery mildew during disease 

development. The spectral dynamic has been monitored, and spectral changes should be 

explained with biochemical processes that happen during host pathogen interaction for better 

understanding of how to extract the spectral fingerprint of a disease out of the mixed signal 

of a plant leaf. This interaction was investigated simultaneously using different microscopic 

methods. 

(II) Once this information was generated, recent data analysis methods were performed on 

this data. Different approaches from machine learning were used to detect, identify and 

quantify the different foliar diseases from fixed horizontally aligned plant leaves and out of 

plant leaves with natural leaf angles. 

(III) To ensure a transduction of HI to the field, a ground-based vehicle was conceptualized and 

developed for canopy field measurements of winter wheat. Additionally, a data processing 

pipeline was developed to produce data that are comparable both over different images and 

different measurement days. High attention was given to ensure a data-based scale and 

knowledge transfer. 

(IV) The insights from (I, II, III) were used to additionally establish a UAV based measuring 

system to simultaneously monitor the wheat canopy performance on the UAV scale from 20-

100 m with a suitable analysis pipeline for UAV data. 

(V) The suitability of hyperspectral sensors for an in-field detection of plant diseases should 

be assessed through the identification of disease specific wavebands to give an evaluation and 

recommendation on the future potential for the field approach of hyperspectral and 

multispectral sensors for disease detection. 
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2 Hyperspectral library of foliar diseases of wheat 

This work has been submitted to the Journal “Phytopathology” of the American 

Phytopathological Society. Submission date: 12-Sep-2019. The current status is “Major 

Revision”. Involved authors: David Bohnenkamp, Jan Behmann, Ulrike Steiner, Anne-Katrin 

Mahlein. 

David Bohnenkamp performed the experiments (100%), DB analyzed the data and wrote the 

paper (80%). 

2.1 Abstract 

This work established a hyperspectral library of important foliar diseases of wheat in time 

series to detect spectral changes from infection to symptom appearance induced by different 

pathogens. The data were generated under controlled conditions at the leaf-scale. The 

transition from healthy to diseased leaf tissue was assessed, spectral shifts were identified 

and used in combination with histological investigations to define developmental stages in the 

pathogenesis for each disease. The spectral signatures of each plant disease that are indicative 

of a certain developmental stage during pathogenesis - defined as Turning points - were 

combined into a spectral library. A spectral angle mapper algorithm was used to test the 

potential of this library for the detection and quantification of foliar diseases in hyperspectral 

images. The classifier provided reliable results for the biotrophic fungi. Classification of 

necrotrophic fungi was less reliable due to the development of unspecific necrosis. But even 

the temporal coincidence of misclassifications indicated characteristics for identification of 

necrotrophic diseases. The potential of applying spectral analysis methods, in combination 

with a spectral library for the detection and identification of plant diseases is shown. Further 

evaluation and development of these algorithms might lead to a robust detection and 

identification of plant diseases at different developmental stages and could promote the 

development of site-specific management techniques of plant diseases under field conditions. 

2.2 Introduction 

Precision crop protection will make use of sophisticated sensors that help to enable a site-

specific plant disease management at the right time and the right spot for application to avoid 

dispensable fungicide use (West et al. 2003; Mahlein et al. 2018). It is important to develop 

technical systems that fulfil these demands that are expected from modern precision 

agriculture (Bock et al. 2010; Mahlein et al. 2012b). Therefore, reliable identification of disease 
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symptoms and determination of disease incidence in the field are necessary. Hyperspectral 

cameras are one promising technique for field applications (Hillnhütter et al. 2011). These 

cameras are able to detect and identify structural and physiological changes that are caused 

by plant diseases, in and on the leaf surface because structural changes lead to characteristic 

shifts of the leaf reflectance spectrum. By measuring the reflected light, hyperspectral 

cameras are able to detect these changes in the electromagnetic spectrum from 400–2500 nm 

(Mahlein 2016).  

Hyperspectral measurements in the field are particularly challenging (Bravo et al. 2003; West 

et al. 2003), because measuring systems have to combat disturbing and inhomogeneous 

weather conditions such as sunlight and wind (Bravo et al. 2003; Bravo et al. 2004). To 

introduce hyperspectral imaging technology into practical use in agriculture, basic knowledge, 

generated under controlled conditions, is necessary (Thomas et al. 2017). Various research 

has focused on the field detection of the biotrophic rust diseases of wheat, such as yellow rust 

(Bravo et al. 2003; Whetton et al. 2018), brown rust (Ashourloo et al. 2014) and powdery 

mildew (Cao et al. 2015).  

In the field, different developmental stages of a disease can occur coincidentally. Plant 

diseases lead to specific symptom types with different size, shape and appearance on the host. 

While some fungi produce masses of fungal structures and spores on the leaf surface, for 

instance biotrophic fungi, the spectral signal of the leaf is considerably determined by features 

of these structures. Typical features might be the pigmentation of spores or a dense mycelium 

(Wahabzada et al. 2015). The symptoms of necrotrophic fungi are mainly characterized by the 

appearance of necrotic leaf area. Spore production is often less obvious compared to 

biotrophic fungi. The crucial point is the detection of spectral patterns that are individual to 

one certain disease, even if the symptoms are similar. To ensure this determination with 

hyperspectral sensors, the host-pathogen interaction has to be investigated in detail. 

In this work, diseases causing necrosis are represented by two important pathogens of wheat. 

Drechslera tritici-repentis (Died.) Shoemaker is the cause of tan spot (DTR). D. tritici-repentis 

grows comparatively fast and is a necrotrophic ascomycete that produces a toxin leading to 

typical tan spots giving its name. Further symptom development can result in chlorosis or 

necrosis, or both depending on the race of the pathogen and wheat cultivar (Thomas and 

Bockus 1987). Zymoseptoria tritici (Desm.) Quaedvliet & Crous causes Septoria tritici blotch 
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(STB). The ascomycete has a biotrophic and a necrotrophic phase. The biotrophic phase is 

innocuous for the plant and is initially asymptomatic but necrotrophic phase leads to collapse 

of cells and initial small chlorotic spots resulting in necrotic lesions that can encompass entire 

leaves. Pycnidia are formed in the substomatal cavities of mature necrotic lesions (Steinberg 

2015).The biotrophic diseases become apparent by the intense production of fungal 

structures on the leaf surface and are represented by three different pathogens. Puccinia 

triticina Eriks. is the fungal agent of brown rust (BR). BR shows small chlorotic spots as initial 

symptoms about 5 days after infection. During pathogenesis chlorotic spots increase and 

develop uredinia in their centre, bearing urediniospores (Bolton et al. 2008). Puccinia 

striiformis f. sp. tritici causes yellow rust on wheat (YR). First symptoms are tiny chlorotic spots 

that can occur already 6 to 8 days after infection. Copious production of urediniospores in 

uredinia appears about two weeks after infection on susceptible cultivars (Chen et al. 

2014).Blumeria graminis f. sp. tritici (DC.) Speer (Bgt) is the causal agent of wheat powdery 

mildew (PM). First symptoms occur 4 days after infection when tiny white spots become 

visible(Te Beest et al. 2008). 

Aim of this study was to build up a spectral library for five different foliar diseases of wheat 

from infection to symptom development. Controlled conditions were chosen to establish a 

data set that shows the potential of a spectral library for disease detection which can be 

transferred across scales. Susceptible cultivars and one field isolate of each pathogen were 

used. Cultural practices excluded the influence of other pests, diseases, or nutrient 

deficiencies. The spectral library then was tested as training data in algorithms for 

autonomous disease detection and quantification. (i) Hyperspectral time series 

measurements were performed to observe the spectral changes of infected wheat leaves 

during pathogenesis. (ii) Simultaneous investigations of infected plant tissue with microscopy 

were used to interpret spectral changes during time series in accordance to the pathogenesis. 

(iii) Findings of hyperspectral measurements and histological investigations were utilized to 

define four spectral Turning points for each disease. These Turning points represent spectral 

signatures of a plant disease that is indicative of a developmental stage during pathogenesis. 

The definition of Turning points shall favor the time-independent and simultaneous 

determination of disease stages resulting from the occurrence of different infection incidents 

in the field. The outcome of this work show for the first time a detailed and comparative 

characterization of the spectral disease dynamics of wheat foliar diseases. These findings are 
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merged in a hyperspectral library as a spectral compendium for wheat disease detection, 

identification and quantification. 

2.3 Materials and methods 

Plant cultivation 

Spring wheat plants (Triticum aestivum), cv. Taifun and cv. Chamsin (KWS SAAT SE, Einbeck, 

Germany) were grown in plastic pots of 13 cm diameter and 11.5 cm height in commercial 

substrate ED73 (Balster Erdenwerk GmbH, Sinntal-Altengronau, Germany) in a greenhouse 

under controlled conditions at 22/20°C day/night temperature, 60 ± 10% RH and a 

photoperiod of 16h per day. The plants were watered as necessary. After reaching BBCH 

growth stage 30 (sprouting) (Meier et al. 2001) plants were inoculated. According to 

Bundessortenliste (2018) cv. Taifun has a susceptibility of 8 for brown rust, 6 for yellow rust 

and 5 for powdery mildew. Chamsin shows a susceptibility of 6 for both DTR and STB 

(Bundessortenliste, BSA, 2018). 

Pathogen cultivation 

Experiments were performed with D. tritici-repentis (causal agent of tan spot, DTR), Z. tritici 

(causal agent of septoria leaf blotch, STB), P. triticina (causal agent of brown rust, BR), P. 

striiformis (causal agent of yellow rust, YR), and B. graminis f. sp. tritici (causal agent of 

powdery mildew of wheat, PM). A spot and chlorosis inducing isolate of Drechslera tritici-

repentis was used. The pathogen was cultured on oatmeal medium and stored at 18°C and a 

photoperiod of 12h. Z. tritici was isolated from a field in Rinkerode (Drensteinfurt, North 

Rhine-Westphalia, Germany). The hemi-biotrophic pathogen was cultivated on ISP2 medium 

(International Streptomyces Project Medium 2) and stored at 18°C and a day/night rhythm of 

12/12h. Puccinia triticina was isolated from a trial field in Bonn (Germany). P. triticina was 

cultivated on wheat of cv. Taifun in the greenhouse conditions outlined above. A field isolate 

of Puccinia striiformis was used. It was cultured on wheat of cv. Catargo in a Panasonic climate 

cabinet (Panasonic Corporation, Kadoma, Japan) at 17/13°C day/night temperature, 70% RH 

and a photoperiod of 16h per day. Plant leaves were moistened using a spray flask daily. 

Blumeria graminis f. sp. tritici was isolated from a trial field in Bonn (Germany). B. graminis is 

an obligate biotrophic ascomycete and was cultured on wheat of cv. Taifun in a separate 

chamber in the greenhouse under conditions as per description.  
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Inoculum preparation and incubation 

D. tritici-repentis was inoculated on wheat plants cv. Chamsin with a spore suspension in 

0.01% Tween-20-water (2 x 104 conidia/ml) and incubated for with 24h without light followed 

by 24h with diffuse light in 100% RH in the greenhouse.  

Z. tritici was inoculated on wheat plants cv. Chamsin with a spore suspension in 0.01% Tween-

20-water (2,5 x 106 conidia/ml) and incubated for with 48h without light followed by 48h with 

diffuse light in 100% RH in the greenhouse. After incubation the plants were transferred into 

a separate greenhouse chamber with 18/16°C day/night temperature, 60 ± 10% RH and a 

photoperiod of 16h per day. During the following days, plants were misted from above once 

per hour for 5 secs by using a nebulizer nozzle at the finish of a watering system. 

P. triticina was inoculated on wheat plants cv. Taifun with spore suspension in Tween-20-

water (8 x 104 conidia/ml) and incubated for with 48h in diffuse light at 100% RH in the 

greenhouse. 

P. striiformis urediniospores suspended in 3MTM NovecTM 7100 mineral oil (IoLiTec-Ionic 

Liquids Technologies GmbH, Heilbronn, Germany), were applied on wheat plants cv. Taifun by 

using an air brush. The plants were incubated in a climate cabinet for 24h, 100% RH and 10°C 

without light. After incubation conditions were set back to 17/13°C day/night temperature, 

70% RH and a photoperiod of 16h per day. Until symptom appearance plant leaves were 

moistened using a spray flask once per day. 

B. graminis f. sp. tritici was inoculated with conidia by consistently agitating and moving 

sporulating plants above the plants to be infected. Inoculated plants (cv. Taifun) were kept in 

a separate chamber in the greenhouse. 

Hyperspectral time series measurements 

The investigated pathogens have characteristic latency phases and differing dynamics of 

disease development, thus the interval for hyperspectral imaging was individual, depending 

on the pathogen. This individuality resulted in distinct time series and measuring days per 

pathogen. The individual workflows for each disease are presented in figure 1. Disease process 

of DTR was measured daily from 3 to 15 days after inoculation (dai). STB was measured every 

day from 4 to 31 dai while BR was measured daily from 3 to 12 dai. The time series of YR was 
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taken daily from 2 to 31 dai and from 1 to 12 dai with an additional measurement 16 dai PM 

was measured. 

 

Fig. 1. Sketches of temporal progress and workflow depending on the individual lifestyle of foliar 

diseases of wheat. Each column contains the duration, in days after inoculation (dai), of the incubation, 

the latency period, the hyperspectral image acquisition and biological processes in relation to specific 

time points during pathogenesis. Tan spot (DTR), septoria tritici blotch (STB), brown rust (BR), yellow 

rust (YR) and powdery mildew (PM). 

Hyperspectral imaging was performed with a Specim V10 (VNIR 400-1000 nm) and a Specim 

SWIR (1000-2500 nm) camera (Specim, Spectral Imaging Ltd., Oulu, Finland). Camera details, 

measuring setup, and data processing are described in detail in Behmann et al. (2018).  

In each of the five time series 16 intact leaves were measured multi-temporal. Four leaves 

were used from the mock control while 12 leaves were on inoculated plants. According to 

Behmann et al. (2018) Leaves were fixed in trays by threads to achieve a homogeneous and 

stable horizontal alignment with adaxial leaf side to the lens of the camera. The threads of the 

tray formed segments of the leaves. The segments were marked with white marker spots of 

about 1 mm diameter to facilitate the manual assignment of certain pixels or symptoms on 

the leaf on different measuring dates. With this experimental design, measurement conditions 

were kept as homogeneous as possible during the whole time series to gain reproducible data. 

Plants were provided with water and nutrients as necessary to prevent abiotic stress. All 
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experiments were repeated three times. Through a distance of 42.5 cm from the object to the 

lenses of the cameras one pixel had the size of 0.02 mm2 in VNIR and 0.22 mm2 in SWIR. For 

the calculation of reflectance based on radiance measurements, image acquisition consisted 

of four images: the barium sulfate based white reference (WR) plus its dark current (DCW) and 

the plant image (PI) plus its dark current (DCP). Images were normalized by calculating the 

ratio of the dark-subtracted plant image and the dark-subtracted white reference as follows: 

(PI-DCP)/(WR-DCW). The reflectance spectra were smoothed using a 1D Savitzky-Golay filter 

(Savitzky and Golay, 1964). Parameters for the smoothing process were five centered 

supporting points and a third degree polynomial.  

Data analysis of hyperspectral images 

The data analysis of hyperspectral images was done in ENVI Classic 5.3 (Exelis Visual 

Information Solutions, Boulder, CO, USA). The “Region of Interest (ROI)” tool was used to 

observe spectral changes of the leaf surfaces retrospectively. Therefore, certain pixels of a 

disease specific symptomatic area at the end of the time series measurements was chosen 

and traced back in time retrospectively as described by Mahlein et al. (2012a). Each spectrum 

of the VNIR range is represented by 50 pixels and each spectrum of the SWIR range is 

represented by 10 pixels due to lower resolution of the camera.  

Each pathogenesis was characterized by defining four representative hyperspectral Turning 

points. These Turning points consist of a spectral signature of a plant disease that is prestigious 

to a developmental stage of the pathogen during pathogenesis. Spectral changes were linked 

to simultaneous biochemical processes that happen in the host tissue due to host pathogen 

interaction.  

The spectral information of disease dynamics was combined in a spectral library. The spectral 

library was used to train a classifier for image analysis. The classification of hyperspectral 

images was performed by the spectral angle mapper algorithm (SAM) (Kruse et al. 1993). SAM 

is a supervised classifier that can assign a pixel to one of the learned classes. Thereby, each of 

the classes is represented by one reference spectrum and the spectral catchment area. The 

spectral resemblance between the pixel and each reference spectrum was calculated by the 

spectral angle between the vectors of the reference spectrum and the spectrum to be 

classified (Kruse et al. 1993). The classification of hyperspectral images was done by using a 

fixed set of hyperspectral data and two disease-plant-complex specific spectra of the spectral 
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library as reference spectra. The fixed set included a spectrum of the non-infected control, an 

early stage spectrum of the specific disease and a late stage spectrum of each disease. The 

spectral catchment area was set to a value of 0.2 for each control to favor the classification of 

green leaf area and 0.1 for the other classes. These values were identical in each classification 

and just the spectra of early symptoms and the control were exchanged for other diseases. A 

classification of early symptoms of different diseases was consciously avoided. The 

classification results were analyzed by using the ROI tool over the classified leaf to get 

proportionally information about the number of pixels classified into a certain class. 

Percentage values were round to the first decimal places. The spectral information for 

illustration of time series measurements was plotted in SigmaPlot version 11.0 (Systat 

Software GmbH, Erkrath, Germany). 

Microscopic methods 

Microscopically investigations of the host-parasite interaction over time were done by 

fluorescence microscopy. Sampling was performed on each day that hyperspectral images 

were taken. Fungal structures were stained with the fluorochrome Uvitex 2B according to 

Dugyala et al. (2015). Leaf sections of 25 mm2 were bleached in Farmer’s Fixative (3:1, 

ethanol:acetic acid), then soaked in 0.1M Tris-HCl and stained with 0.01 % Uvitex 2B. 

Samples were stored in 50% Glycerol. Fungal structures showed a bright blue fluorescence 

while plant cells did not incorporate the dye. Fluorescence microscopy was done by using a 

Leitz DMRB microscope (Leica Microsystems, Wetzlar, Germany) with a 100- and a 200-fold 

magnification combined with a Hitachi CCD HV-C20 camera (Hitachi Europe GmbH, 

Düsseldorf, Germany). The used filters for fluorescence excitation were in the range from 

340-380 nm, 355-425 nm and 490-560 nm. For image acquisition and management, the 

imaging software Discus (Carl H. Hilgers, Königswinter, Germany) was used. 
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2.4 Results 

Hyperspectral signatures of foliar diseases corresponding to histological development  

The data of fluorescence microscopy and hyperspectral imaging were compared to define four 

spectral Turning points (TP) for each disease. Each Turning point shows a specific spectral 

signature that represents a certain developmental stage of pathogenesis. To ensure that the 

spectral changes were not caused by leaf senescence or other environmental factors, the 

spectra of non-infected leaves were compared over the time series. No significant spectral 

differences were found. 

Tan spot  

Spectral signatures 3, 7 and 10 dai (TP1, TP2 and TP3) of DTR diseased leaves were slightly 

different to the uninfected control (Fig. 2 (I) A). Microscopy showed a rapid fungal growth in 

the host tissue in the first hours after inoculation. However, hyperspectral measurements 

could not be performed to monitor early development due to requirements for inoculation. 

Microscopy images represent fungal development in the host tissue during the first seven 

days. With ongoing pathogenesis, a further spread of the disease was observed. This spread 

of necrotic area was defined as the Turning points as it affects the spectral signature more 

than the fungal growth in the first three days. The Green peak stayed visible but a slight 

continuous increase of reflectance in the range of 580 – 780 nm could be observed. 

Microscopically investigation of the host tissue showed a yellowish auto fluorescence in the 

walls of epidermal cells that were penetrated by D. tritici-repentis 24 h after inoculation. A 

yellow auto fluorescence could be detected between intercellular spaces of mesophyll cells 

48 hai. Dark spots with no auto fluorescence appeared 72 hai. These spots were surrounded 

by yellow fluorescing mesophyll cells similar to that initial spot observed 48 hai. From 79 hai 

on the black spots and the auto fluorescing border tissue emerged. On TP 4, 15 dai, there was 

a distinct increase in the spectral Blue range from 440 to 500 nm and a strong increase in the 

range of 550 to 650 nm. On 15 dai there was still a strong absorption from 650 to 700 nm. The 

NIR range showed a clear tendency to decrease in further pathogenesis. The typical plateau 

of healthy plant leaves in the NIR mitigates with disease development. While TP2 and 3 (7 and 

10 dai) are nearly congruent in the NIR range, the NIR-plateau is vanished at TP4 (15 dai). From 

TP2 to 3 (7 to 10 dai) the disease progress does not affect the NIR range. The SWIR range is 

mainly affected by the water absorption bands at 1420 nm and 1920 nm. Spectral signatures 
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show a strong increase of this bands over time. The differences of TP2 and 3 appear more 

obvious in SWIR than in VNIR. At 15 dai there is a strong increase in reflection intensity over 

the entire range. In general, the SWIR curve loses its round shape in later days of pathogenesis 

and the spectrum seems more erratically.  

Septoria tritici blotch 

The spectral signatures of the Turning points for STB diseased leaves showed a continuous 

increase of reflectance in VIS and NIR range, while no fungal structures of Z. tritici could be 

observed in the host tissue before 15 dai (Fig. 2 (I) B). TP1 and TP2 (15 and 21 dai) were very 

similar to each other in the blue range from 400 – 500 nm and in the NIR range from 700 to 

900 nm, but TP2 (21 dai) showed an increased reflectance from 550 to 700 nm. The SWIR 

range showed a slight increase for TP1 and TP2 but no strong differences between them. A 

dense mesh of mycelium in the intercellular space of the mesophyll tissue was visible on TP2. 

First pycnidia were formed. A strong increase in the blue range from 400 to 500 nm and from 

550 to 700 nm could be observed on TP3 (28 dai). The Green peak almost disappeared. A 

distinct increase of the water absorption bands appears, but the spectral signature preserves 

its shape. The intercellular space was completely filled with mycelium. Pycnidia developed a 

dark color. Especially on TP4 (31 dai) the Green peak was completely vanished. The curve is 

steeper and shows a strong descent from 650 to 680 nm, which was also observed for the DTR 

interaction. The curve is slightly flatted in the NIR plateau and shows an increased reflectance 

compared to the control. The whole reflectance in the SWIR is increased and the distances 

between highest and lowest peaks decrease. Ripe pycnidia were visible. Necrotization of plant 

leaves was intense. Residues with a yellow auto fluorescence could be observed in 

fluorescence microscopy. 
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Fig. 2 (I). Histological development of necrotrophic diseases of wheat (left) corresponding to 

hyperspectral signatures (right). Combination of data from time series of fluorescence microscopy and 

hyperspectral measurements. Histological development and spectral dynamics are shown for the four 

measuring dates with Turning points indicating new processes in disease development and shifts in 

the spectral signature. A tan spot disease, B septoria tritici blotch. Each spectrum VNIR n=50 pixels, 

each spectrum SWIR n=10 pixels. 

Brown rust 

On TP1 and TP2 (4 and 7 dai) the spectral signatures of BR diseased leaves showed similar 

intensities in the range of 400 to 500 nm (Fig. 2 (II) A). Compared to TP1, TP2showed a greater 

increase from 500 to 700 nm, but the Green peak could still be observed. The NIR range was 

still equal and the plateau on the same level. Mycelial structures were observed in between 

the mesophyll cells on TP1. The mycelium spread and formed primary uredinia at TP2. At this 

time point colonies were not ripe and completely covered by the cuticle. Urediniospores 

showed different fluorescence colors and seemed to be in different ripening stages. On TP3 

(9 dai) a distinct increase of the absorption in the blue range was visible. The intensity was 

decreased to the values of the control again. The curve was also decreased from 500 to 580 

nm, but showed a further increase from 580 to 700 nm. The Green peak was strongly 

mitigated. The NIR plateau started to decline under the control, but subtended the earlier 
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days at 800 nm. A rupture of the cuticle and a release of urediniospores was observed. On TP4 

(12 dai) a stronger absorption in the blue range was observed. The absorption rates were 

higher than those of the non-infected control. The absorption had a maximum at 430 nm. The 

Green peak is flattened and the curve slightly shifted to higher wavelengths. There was a 

decrease of the intensity from 550 to 600 nm, but the reflectance intensity was still higher 

compared to the control. A strong increase from 600 to 700 nm occurred on TP4. Compared 

to the other diseases, BR did not show the descent at 650 to 700 nm. The NIR plateau was 

flattened. In histological investigations, a showed massive sporulation and a distribution of 

urediniospores was observed on the whole leaf sample. The SWIR region was not affected by 

BR thus far. An increase over the time series could be observed, but water absorption bands 

stayed clearly visible over the time. TP1 and TP2 were almost congruent. The intensity 

increased the next days until TP4 but the shape of the curve did not seem to be affected.  

Yellow rust 

The spectral signatures of YR diseased leaves on TP1 (7 dai) showed a first slight increase over 

the whole VNIR range (Fig. 2 (II) B). A first spread of fungal hyphae can be observed in the 

mesophyll. TP2 (10 dai) showed further increase of the reflectance intensity especially from 

550 to 680 nm. From 680 to 900 nm TP1 and TP2 were congruent. Fungal colonies showed a 

stripe-type colonization of the host tissue. On TP3 (15 dai) the spectral signature showed a 

strong increase in the range from 400 – 680 nm, especially the range 500 to 700 nm was 

intensely increased. The NIR range seemed to be steady and was almost congruent with TP1 

and TP2. Primary uredinia could be found in colonies and were completely covered by the 

epidermis. The uredinia contained hyaline to dark brown urediniospores, looking similar to 

those color types observed in the BR interaction. On TP4 (21 dai) a further increase from 400 

to 700 nm could be observed. Especially the region at 550 to 650 nm showed a strong increase. 

The descent from 640 to 680 nm was also visible in the YR interaction. The NIR plateau was 

still visible and TP4 showed the same reflectance levels in the NIR region like TP1, TP2 and 

TP3. Sporulation of uredinia could be observed, the epidermis was ruptured. The SWIR region 

showed a distinct increase of the spectrum on TP4. TP1, TP2 and TP3 were on one level with 

the control and almost congruent. The SWIR region was not influenced by YR. 
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Powdery mildew 

In general, the spectral signatures of PM Turning points act as a parallel shift of the spectrum 

(Fig. 2 (II) C). The spectrum of TP1 (4 dai) looked like a parallel shift of the control with 

increased intensity. The Green peak was clearly visible. Mycelial growth on the leaf surface 

could be observed. TP2 (9 dai) showed an increased reflectance intensity from 400 to 700 nm. 

The Green peak seemed more indistinct. The Blue peak signified a peak at 460 nm. The NIR 

region was decreased compared to TP1 and on the level of the control. A dense growth of 

mycelium could be observed. Fungal sporulation was visible. The Green peak was nearly 

vanished on TP3 (12 dai) and the Blue peak at 460 nm was more distinct. The NIR region 

slightly increased compared to TP1. The spectral signature of TP4 (16 dai) showed a strong 

increase of reflectance from 400 to 900 nm. A clear Blue peak was visible at 460 nm while the 

Green peak was completely gone. The curve lost its shape from 400 to 700 nm and developed 

a high gradient. The values in the NIR region were highest for TP4 but the plateau maintained. 

The PM interaction did not exhibit a descent in the range from 650 to 680 nm. A strong growth 

and sporulation was obvious for TP3 and TP4, leaf samples were overgrown by the fungus. 

The SWIR region showed a continuous increase of the spectral signatures over time with the 

highest values on TP4. The curves stayed in typical shape and did not show big differences in 

their course. 
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Fig. 2 (II). Histological development of biotrophic diseases of wheat (left) corresponding to 

hyperspectral signatures (right). Combination of data from time series of fluorescence microscopy and 

hyperspectral measurements. Histological development and spectral dynamics are shown for the four 

measuring dates with Turning points indicating new processes in disease development and shifts in 

the spectral signature. A brown rust, B yellow rust, C powdery mildew. Each spectrum VNIR n=50 

pixels, each spectrum SWIR n=10 pixels. 

Comparison between spectral dynamics of different diseases 

Comparing the spectral information of the different diseases, distinct differences characterize 

the dynamic of each disease (Table 1). DTR is the only disease that shows a constant decrease 

of reflectance in the NIR range on all Turning points. The NIR plateau is flattened most, 

compared to the other diseases. STB and PM are the only diseases that show a constant and 

strong increase of the NIR plateau while STB seems to have a flattening effect on the plateau. 

BR shows an increased absorption in the blue range from 400 to 500 nm on later Turning 
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points while YR shows an increased reflectance. Both rust diseases do not seem to have a 

strong effect on the NIR plateau while BR shows a decreased reflectance on later Turning 

points and YR keeps one level of reflectance during pathogenesis. BR is the only disease that 

does not show the descent from 650 to 700 nm on the last Turning point. The decrease from 

500 to 580 nm followed by the increase from 580 to 700 nm is characteristic. YR shows a 

strong increase from 500 to 650 nm. The PM spectra are parallel shifts with a weakened Green 

peak while a Blue peak seems to appear on later Turning points. In general, the SWIR region 

seemed to be similar for all diseases and did not show that distinct characteristics compared 

to the VNIR region. The necrotrophic diseases, DTR and STB, affected the SWIR region more 

intense than the biotrophic rust fungi and PM. 

 
DTR STB BR YR PM 

Blue region ↑ ↑ ↓ ↑ ↑ 

Green peak → ↑ ↓ ↑ ↑ 

Red edge ↑ ↑ ↑ ↑ ↑ 

NIR ↓ ↑ ↓ → ↑ 

SWIR ↑ ↑ → → ↑ 

↑ increase ↓ decrease → constant 

Table 1. Spectral regions of the electromagnetic spectrum that are influenced by different foliar 

diseases of wheat. Colored boxes indicate a certain alteration that is specific to one disease. Tan spot 

(DTR), septoria tritici blotch (STB), brown rust (BR), yellow rust (YR) and powdery mildew (PM). 

Classification of necrotizing diseases based on spectral library 

The classification of necrotizing diseases showed, that a necrosis is more unspecific compared 

to the symptoms of biotrophic pathogens. Detailed information about the classification results 

of all diseases is given in Table 2. Classification results of a leaf infected with DTR 3 dai emerged 

that already 92.8 % of leaf pixels were classified as early symptomatic and 4.5 % as healthy 

(Fig. 3). The amount of pixels classified as other diseases was low (<1 %) and often located in 

transition areas to marker spots. The leaf had a calculated diseased area of 93.3 %. In later 

pathogenesis 15 dai 42.2 % of the leaf were classified as early symptomatic while 4.5 % were 

classified as late stage symptoms of DTR. The amount of pixels classified as other diseases was 

high. Especially pixels classified as YR (21.9 %) and STB (9.8 %) were overrepresented. YR was 



2 Hyperspectral library of foliar diseases of wheat 

52 
 

classified to a higher amount in the border regions of the necrotic area, while STB and PM 

classification were located in the center of necrosis. The leaf had a calculated diseased area 

of 84.3 %. 

Classification results of a leaf infected with STB 21 dai showed that 6.7 % of leaf area was 

classified as early symptomatic and 91.6 % as healthy. The amount of pixels classified as other 

diseases was low (<1 %). Chlorotic tissue that was already visible by the eye was classified as 

early symptomatic. Leaf edges and outer transition areas of marker spots were frequently 

classified as early symptom. Areas of high reflectance values were classified as early 

symptomatic. The leaf had a calculated diseased area of 6.8 %. The results 31 dai indicated 

that 30.1 % were divided as early symptomatic, 2.4 % as late stage STB, and 58.5 % as healthy. 

DTR and YR are represented in higher amounts than STB. Areas of bright illumination were 

classified as early symptomatic but might occur healthy on the RGB visualization. Necrotic 

tissue was classified as late symptoms of STB, but these lesions were mostly surrounded by 

pixels classified as DTR and YR. An especially bright necrosis on the leaf edge was classified as 

PM. In general, a distinct higher number of pixels was classified as early symptomatic as they 

were visible as chlorotic on the RGB visualization. In classification results it is obvious that 

transition areas from early to late symptom show pixels classified as other diseases. The leaf 

had a calculated diseased area of 39.8 %. 

Classification of diseases with biotrophic lifestyles based on spectral library 

In general, the classification of the diseases caused by biotrophic pathogens was more specific 

compared to necrotizing diseases. The amount of pixels classified as other diseases was lower 

and classifications appeared more zoned. On a BR infected leaf 7 dai, 32 % of leaf area was 

classified as early symptomatic and 66.3 % was classified as healthy. The leaf showed a clear 

segregation into these two classes and the amount of pixels classified as other diseases was 

low (<1 %). Also here these pixels were located in transition areas to the marker spots. Some 

pixels of leaf veins were classified as early symptomatic. The calculated diseased area was 31.9 

%. On 12 dai the leaf was mainly separated into early symptomatic (45.6 %), late stage BR (5 

%) and healthy (47.8 %). In most cases, pixels classified as BR were surrounded by early 

symptomatic pixels. The amount of pixels classified as other diseases was still low (<1 %). The 

leaf had a calculated diseased area of 50.6 %. 
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A YR infected leaf showed a clear segregation in early symptomatic (9.7 %) and healthy (88.2 

%) 15 dai. The amount of pixels classified as other diseases was low (<1 %). The SAM 

visualization showed no distinct point chlorosis compared to BR. The leaf had a calculated 

diseased area of 9.9 %. On 21 dai the leaf showed an increase of early symptomatic pixels up 

to 24.3 % and 2.9 % late stage YR. Healthy pixels were reduced to 68 %. A great number of 

spore bunches, 1 % of leaf area, were classified as late symptom of BR instead of YR. DTR has 

a certain amount of pixels in transition areas from early to late symptoms of YR. Pixels 

classified as STB are located in the center of YR symptoms. The leaf had a calculated diseased 

area of 30.7 %. 

PM classification of a leaf 9 dai showed a clear segregation of leaf area into early symptomatic 

(3.8 %) and healthy (93.3 %). In the center of early symptoms, some pixels were classified as 

late stage symptoms of PM (0.1 %). BR was classified in the transition regions of marker spots 

(0.3 %). The calculated infection was 4.2 %. On 12 dai 9.4 % of leaf pixels were calculated as 

early symptomatic and 6.3 % as late stage PM. 79.6 % of leaf area was classified as healthy. At 

9 dai the pixels classified as diseased increased in areas where PM was detected. Wrong 

classifications of other diseases again happened in transition areas from early to late 

symptoms. These transition areas often consisted of one row of pixels surrounding a late stage 

symptom of PM. The leaf had a calculated infection of 17.2 %. 

 

 
Table 2. Spectral angle mapper classification of diseased wheat leafs separated into different classes 

of the spectral library (in percent pixels of wheat leaf). Values are calculated for two different Turning 

points during pathogenesis. Grey pixels indicate the amount of pixels classified as early symptomatic 

and the late stage symptoms of each disease. Tan spot (DTR), septoria tritici blotch (STB), brown rust 

(BR), yellow rust (YR) and powdery mildew (PM). 
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Fig. 3. Spectral angle mapper (SAM) classifications of early and late stage symptoms of different foliar 

diseases of wheat corresponding to RGB visualizations of hyperspectral images. Each disease is 

presented on two measuring dates during pathogenesis. SAM classification images are presented 

below the corresponding hyperspectral image. First image of each disease group shows an RGB 

visualization of the early stage symptomatic leaf followed by the corresponding SAM image. The next 

leaf shows the RGB visualization of the late stage symptomatic leaf followed by its SAM classification 

(Reference spectra base on the spectral information shown in figure 2). Tan spot (DTR), septoria tritici 

blotch (STB), brown rust (BR), yellow rust (YR) and powdery mildew (PM). 
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2.5 Discussion and conclusion 

Plant diseases exhibit different biological features that can be linked to certain spectral 

alterations during pathogenesis. Reflectance values of a healthy leaf are low at 400 – 700 nm 

due to photosynthetic active pigments, which absorb peculiarly from 425 – 492 nm (Blue 

region) and 645 – 700 nm (Red region). Reflectance values in the NIR (700 – 1300 nm) are high 

due to the multiple scattering at the air-cell interfaces within leaf tissue (Gates et al. 1965; 

West et al. 2003; Kuska et al. 2015). The generation of hyperspectral time series showed that 

each disease led to characteristic spectra, depending on the pathogenesis. Individuality can 

also be a sum of spectral properties of different regions over the spectral range, resulting in a 

specific combination of spectral features (Table 1). Necrotrophic fungi cause the collapse of 

leaf structures and necrotic lesions on the leaf. The necrotic area is more unspecific in contrast 

to characteristic spore stocks of rust fungi and powdery mildew. Fungal structures of 

biotrophic pathogens on the leaf surface had more impact on the individual spectral 

fingerprint than structures of the necrotrophic pathogens. 

The spectral dynamic of DTR showed a characteristic decrease of reflectance in the NIR 

plateau (Fig. 2(I)). The NIR plateau is mainly influenced by the plants leaf tissue and cell 

structure (Elvidge 1990). A degradation of those compounds like fructose, glucose, starch and 

proteins leads to a decrease in the NIR plateau of DTR infected leaves. Mahlein et al. (2012a) 

and Leucker et al. (2016) showed that dark pigments, toxin production and cell degradation in 

the centers of Cercospora leaf spot symptoms might lead to a reduced reflectance intensity. 

The dark tan spot is caused by a host specific toxin produced by the fungus (Tomas and Bockus 

1987). Thus the presence of the dark tan spot could explain the decrease of the NIR plateau. 

An enrichment of substances that emit a yellow fluorescence was observed with microscopy. 

These substances might be part of a lignin-based defense mechanism of the plant against the 

pathogen (Dushnicky et al. 1998). The SAM classification of DTR showed that misclassifications 

into YR (21.9 %) and STB (9.8 %) were present in the late pathogenesis stages. Only 4.5 % of 

pixels were classified as late stage symptoms of DTR. This low amount can be explained by the 

annotation of pixels for the extraction of reference spectra by human beings. Reference pixels 

were taken over time from the same dark spots that appeared as first symptoms. The 

overrepresentation of YR and STB could be due to the unspecificity of necrosis with absence 

of masses of characteristic fungal structures. 
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STB infected leaves showed an increased reflection in all spectral regions (Fig. 2(I)). Through 

degradation of chlorophyll the Green peak disappeared. In comparison to DTR, the NIR plateau 

increased, although the symptoms and the necrosis resemble to a DTR symptom. This increase 

might happen because STB does not form dark spots except for pycnidia with a size of 60 – 

200 µm (Eyal et al. 1987). In the used measuring setup for VNIR image acquisition, pycnidia 

with an average size of 60 – 200 µm were too small to visualize in one pixel with a side length 

of 0.15 mm. The increase in the Blue region is caused by the degradation of pigments, such as 

chlorophylls (Lichtenthaler and Bushmann 2001). Classification results of the STB 

pathogenesis indicated higher amounts of pixels classified as DTR and YR than for STB (2.4 %). 

STB is augmented classified in the necrotic centers, while DTR and YR are classified in 

transition areas from chlorotic to necrotic tissue. The transition areas could be similar in kind 

to the late stage symptoms of the disease. Another reason is the unspecificity of STB necrosis 

compared to DTR or necrosis induced by total degradation of chlorophyll through YR. 

Leaves affected by BR showed a characteristic decrease of reflectance in the Blue region, an 

increase from 580 to 700 nm and a decrease of the NIR plateau around 750 nm (Fig. 2(II) a). 

The pigmented urediniospores of P. triticina are red to brown in color (Bolton et al. 2008; 

McTaggart et al. 2014). The color of these spores is related to the presence of carotenoids 

(Hennessy and Sackston 1972). Carotenoids are pigments that absorb light in the Blue region 

(Elvidge 1990; Lichtenthaler and Buschmann 2001). A massive production of spores leads to 

higher absorption rates in the Blue region and consequential decreased reflectance 

intensities. The increased reflectance at 580 to 700 nm (red color range) was caused by the 

pigmentation of the spores. The absence of a descent at 650 to 700 nm was characteristic to 

BR. This descent stayed visible in the other pathogen time series and showed absorption 

maxima of chlorophyll a and b (Chapelle et al. 1992). Presumably the signal of these maxima 

were superimposed by the density of spores in the uredinium. The density of urediniospores 

could also affect the NIR-plateau due to the overlay of leave tissue. The leaf structure signal 

was amended and the NIR plateau decreased. The classification results of BR disease showed 

a clear segregation in diseased and healthy leaf area.  

The spectra of YR disease showed a constant increase of reflectance from 400 to 700 nm. YR 

did not show an increased absorption in the Blue range in contrast to BR, although 

urediniospores of YR contain carotenoids (Zwetko and Pfeifhofer 1991). This could be 
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explained by a total degradation of chlorophyll that absorbs in the Blue range (Lichtenthaler 

and Buschmann 2001) and a different carotenoid composition (Irvine et al. 1954; Zwetko and 

Pfeifhofer 1991) and. All carotenoid pathways have in common the introduction of conjugated 

double bonds on phytoene to produce different colored intermediates and the cyclization 

(introduction of α- or β-ionone rings) of one or the two ends of the polyene chain to generate 

the characteristic carotenoid structures. After formation of the colorless phytoene conjugated 

double bonds are introduced in the molecule. An increasing number of double bonds in the 

molecules shifts the absorption maximum towards longer wavelength, resulting in the 

different yellow to red colors of the desaturation products. An additional affect may be a 

varying thickness or density of the spore layer between YR and BR allowing a higher leaf signal 

proportion in the YR spectra. The NIR plateau is unaffected and plant structure seems to be 

obtained during infection with biotrophic fungi. Maybe the effect of YR on the NIR plateau is 

also less strong because of the varying density of spores on the leaf compared to BR and the 

leaf signal is still dominant. In general, SAM classification of YR operated and there was little 

misclassification except for STB and BR. STB was classified in areas with bright pixels were high 

infection leads to total degradation of chlorophyll or beginning necrosis of the leaf. 

The spectral dynamic of PM looks like a parallel shift of the curve with mitigated leaf signal on 

later Turning points. Kuska et al. (2015) and Wahabzada et al. (2016) described constant 

reflectance increases of the full VIS NIR range for powdery mildew on barley. The reflectance 

intensity increases with density of fungal structures on the leaf surface. On later Turning points 

the Green peak is gone and an increase in the spectral border range in the Blue region 

emerges. Mycelium and conidia of PM are hyaline and non-pigmented (Zhang et al. 2005). PM 

forms a dense net of hyphae and spores on the leaf surface that increase reflectance intensity 

and cover characteristic spectral features of the leaf signal. The SAM classifier was robust on 

PM detection.  

Even under controlled conditions, the spectrum is always a mixed signal with various factors 

influencing its composition. Actually spectral signatures of different cultivars differ from each 

other and this difference has to be examined in future works. The SAM is depending on means 

of spectra. Algorithms that automatically subtract the part of the spectrum that is influenced 

by cultivar differences or other components could help future characterization of materials in 
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spectroscopy. Machine learning and improvement of algorithms might favor robust handling 

of mixed signals (Behmann et al. 2014). 

This work presents, for the first time, a library of the spectral dynamics of five foliar diseases 

of wheat. The spectral dynamic is described with four Turning points for each disease that are 

combined in a time series. The spectral library was used as input for a SAM classifier to test 

the potential of gathered spectral information as a compendium for disease detection, 

identification and quantification. The library could also be used as input data for other 

algorithms such as support vector machines. Further work is necessary to verify the resilience 

of this spectral information for a transmission from leaf-scale to higher scales such as the 

canopy- or UAV-scale und uncontrolled field conditions where biological heterogeneity is 

present at all times. Because of the use of packed reference spectra as a compendium for 

wheat diseases, this approach favors a detection of leaf diseases in the field where plants 

show different developmental stages of disease specific symptoms at the same time. Our 

results indicate that spectral libraries give high potentials for an automated disease detection 

and quantification in commercial use, such as field application, fungicide research or plant 

resistance phenotyping. 
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3 Spatial referencing of hyperspectral images for tracing of plant disease 

symptoms 
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hyperspectral images for tracing of plant disease symptoms. Journal of Imaging, 4(12), 143. 

David Bohnenkamp performed the experiments (100%), DB analyzed the data and wrote the 
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3.1 Abstract 

The characterization of plant disease symptoms by hyperspectral imaging is often limited by 

the missing ability to investigate early, still invisible states. Automatically tracing the symptom 

position on the leaf back in time could be a promising approach to overcome this limitation. 

Therefore, we present a method to spatially reference time series of close range hyperspectral 

images. Based on reference points, a robust method is presented to derive a suitable 

transformation model for each observation within a time series experiment. A non-linear 2D 

polynomial transformation model has been selected to cope with the specific structure and 

growth processes of wheat leaves. The potential of the method is outlined by an improved 

labeling procedure for very early symptoms and by extracting spectral characteristics of single 

symptoms represented by Vegetation Indices over time. The characteristics are extracted for 

brown rust and septoria tritici blotch on wheat, based on time series observations using a 

VISNIR (400–1000 nm) hyperspectral camera. 

3.2 Introduction 

Hyperspectral images of plants are suitable to assess the health and vitality state of plants 

[1, 2]. Leaf diseases show characteristic symptoms, allowing a hyperspectral characterization 

of symptom development [1, 3]. The spectral dynamic of symptom development during 

pathogenesis has been described for numerous plant-pathogen systems [4]. Therefore, 

hyperspectral imaging has been applied on multiple scales from the leaf level via full plants up 

to the field and landscape scale [5–8]. Platforms, microscope stands, laboratory systems, high-

throughput facilities, as well as Unmanned Aerial Vehicles (UAVs), planes, and satellites are 

used [5–7, 9, 10]. This publication focuses on tracking leaf diseases of wheat at the leaf scale. 
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Wheat (Triticum aestivum) is the second most cultivated crop worldwide which is threatened 

by various pathogens infecting root, stem, leaves, and ears [11]. At the leaf scale, a limiting 

factor is the natural variability in the spatial and temporal development of disease symptoms 

[12]. The exact position of symptom appearance and dynamics of development are bound to 

multiple parameters and, to a certain extent, unpredictable [13, 14]. Therefore, symptoms of 

different development steps are present at a certain point in time, hampering the clear 

extraction of the typical symptom development. At best, each symptom has to be traced 

during the different observation days on its own to have a clearer look on the different steps 

of pathogenesis. Performing this task is extremely labor intensive and in many situations not 

feasible, e.g., for the early parts of the pathogenesis before expression of a visible symptom. 

Few studies have focused this task [5, 6], but are restricted to the characterization of single 

symptoms instead of extracting a representative description of the pathogenesis. 

A further advantage of spatially referenced hyperspectral time series is the generation of large 

amounts of training data with high quality annotation for the training of machine learning 

models [15]. Even very early effects of the disease could be included as positions on the leaves 

showing symptoms at a later point in time are known. The underlying assumption is that if 

disease symptoms are visible, the first changes could most probably be recorded by the 

hyperspectral camera a few days earlier. Prerequisite for these applications is a common 

measurement coordinate system for every image, but its generation on leaf scale is 

challenging due to leaf movements and growing. The spatial assignment of two images is a 

common task in computer vision and addressed by the terms image matching or image 

referencing [16–18]. In remote sensing a joint spatial reference system for multiple 

observations is often provided by the data distributor. Images are georeferenced by an 

automatic process to localize reflectance characteristics and perform multi-temporal analyses 

based on repetitive observations of a location. Space and airborne images are georeferenced 

either by ground control points with known coordinates or by additional sensors determining 

the location and orientation of the sensor platform. Usually Global Navigation Satellite System 

(GNSS) receiver are combined with Inertial Measurement Systems (IMS) to reach sufficient 

global accuracy as well as local continuity [19, 20]. Ortho-rectified images are generated by 

projecting the reflectance information obtained from the 3D earth surface on a 2D reference 

plane using the determined camera models. By this approach, spatial distortion within the 

images can be removed [20]. However, in close range scenarios with plants, the image 
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referencing relies typically on the image content instead of external sensors as the measured 

object cannot be assumed to be solid. Therefore, the joint coordinate system is a new concept 

on the leaf scale. Most of the approaches of extracting geometrical features aim at the 

classification of plant species based on the shape of its leaf or organs [21–23] but the 

generated features can be transferred to the image matching problem. Gupta et al. [24] 

investigated the growing characteristics of multiple species using a dense grid of ink markers 

on the leaves. Based on reference points on a separate reference object, camera models have 

been further determined for the combination of reflectance and 3D surface data of plants 

[25, 26]. Generally, three method groups to establish correspondence between RGB images 

can be identified: Point approaches [27], area/contour approaches [28, 29], and global 

approaches in pixel [30] or frequency space [31]. The point approaches detect relevant 

suitable points within the images and describe their local neighborhood by robust descriptors 

(e.g., Scale-invariant feature transform, SIFT [32]) allowing an assignment of points from 

different images. Such methods are rarely used for plant leaves (e.g., [27]) but are the 

standard procedure for RGB image matching for 3D reconstruction. Area and contour 

approaches at first extract the leaf within the image and perform an assignment based on the 

shape or texture characteristics of the leaf surface [29]. Yin et al. [33] used chamfer matching 

to perform the assignment of Arabidopsis leaves based on their shape. Bar-Sinai et al. [28] 

used a matching of the local graph of leaf veins to investigate the response of the leaf to 

mechanical stress. An approach for the multi-modal registration of RGB images and thermal 

images of plants based on extracted silhouettes in both image types has been developed [34]. 

There, a non-rigid spline model was used to match the silhouettes and generate the data for 

the detection of diseased plant tissue [35]. These methods for spatial image matching rely on 

characteristic shapes or textures. In the present case of parts of wheat leaves none of that is 

informative. In monocot plants the leaf veins are arranged in parallel and provide no 

intersections to detect. Moreover, the low spatial resolution of hyperspectral images 

compared to RGB images prevents the extraction of detailed surface texture information. 

Disease symptoms may be suitable patterns at later time points but are not present at the 

earlier days. The silhouette of the fixated leaf parts matches approximately a rectangle, 

especially for larger leaves where the leaf tip is not captured. To handle this challenge, artificial 

reference points of white color have been applied on the leaf surface to allow the image 

referencing within this study. Leaves are fixated to reduce the complexity to a 2D case 
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approximating the leaf surface by a horizontal 2D plane. In such a case, transformations 

between different image coordinate systems can be performed by 2D transformation like 

Affine, Similarity, or Polynomial transformation models [36]. The optimal choice depends on 

the required model flexibility. We introduce an approach to spatially reference multiple 

hyperspectral image cubes of time series experiments. These spatially referenced images form 

a new 4 dimensional data type with two spatial axis (x and y), one spectral axis (λ), and a fourth 

temporal axis (t). Within these new data type disease symptoms can easily be traced back in 

time, even to the point when no symptom is visible for the human eye. The referencing is 

performed using an algorithm robust against missing or non-stable reference points by 

including the RanSaC algorithms [37] and multiple 2D geometric transformations [36] in 

combination with a well-defined set of control points. As data, time series measurements of 

wheat leaves fixated in a grid frame assessed by a VISNIR hyperspectral pushbrom camera 

sensible in the visible (400–680 nm) and near-infrared part of the electro-magnetic spectrum 

(680–1000 nm) were used. Two relevant diseases of wheat with different symptom 

expressions were covered: Septoria tritici blotch and brown rust (Figure 1). 

 

Figure 1. RGB images of the symptoms of (A) brown rust caused by Puccinia triticina and (B) septoria 

tritici blotch caused by Zymoseptoria tritici. Brown rust symptoms are dominated by reddish spore 

stocks whereas necrotic lesions are characteristic for septoria tritici blotch. 
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3.3 Materials and methods 

Plant Material & Fungal Pathogens  

Plant Material  

Wheat plants (triticum aestivum), cv. Taifun and cv. Chamsin (KWS SAAT SE, Einbeck, 

Germany) were grown in plastic pots in substrate ED73 (Balster Erdenwerk GmbH, Sinntal-

Altengronau, Germany). The plants were grown under greenhouse conditions with 22/20 ◦C 

day/night temperature, 60 ± 10% RH and a photoperiod of 16 h per day. Plants were 

inoculated after reaching BBCH growth stage 30 (sprouting) [38].  

Fungal Pathogens  

Inoculations of wheat plants were done with isolates of Zymoseptoria tritici and Puccinia 

triticina. The isolate of Z. tritici was cultured on artificial ISP2 media. As obligate biotrophic 

pathogen, P. triticina was maintained on living plants.  

Hyperspectral Measurements  

A hyperspectral line scanning spectrograph (ImSpector V10E, Spectral Imaging Ltd., Oulu, 

Finland), covering the VISNIR spectral range from 400–1000 nm has been used for image 

assessment [6]. Images had a spectral resolution of up to 2.8 nm and a spatial resolution of 

0.14 mm per pixel. This results in a hyperspectral datacube with 211 bands and 1600 px per 

image line. A homogeneous illumination was ensured by using six ASD-Pro-Lamps (Analytical 

Spectral Devices Inc., Boulder, CO, USA). Camera and illumination were installed on a 

motorized line scanner (Spectral Imaging Ltd.). Camera settings and motor control were 

adapted using the SpectralCube software (Version 3.62, 2000, Spectral Imaging Ltd.). Leaves 

have been horizontally fixed in a tray using strings allowing imaging of around 20 cm of each 

leaf. Multiple leaves have been placed side by side within a single image. White color spots 

are applied as reference points on the leaves to allow image referencing. As shown in Figure 

2, six spots in two rows are applied to each leaf section of approximately 4 cm. Observing five 

leaf sections limited by the fixating strings results in 30 white color spots on each leaf. As 

background material, blue cardboard has been selected as it supports background 

segmentation. For brown rust, time series measurements from 2 to 12 days after inoculation 

(dai) have been captured. Contrarily, for septoria tritici blotch 15 to 27 dai were covered due 

to the deviating process of pathogenesis. The data has been normalized, i.e., reflectance was 
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calculated relative to a barium sulphate white reference (Spectral Imaging Ltd.) and a dark 

current measurement. Normalization has been performed following [39] using ENVI 4.6 + IDL 

7.0 (EXELIS Visual Information Solutions, Boulder, CO, USA). 

 

Figure 2. Scheme of the referenced hyperspectral time series of a single leaf observed at four 

exemplary days. Reference points (white spots), fixating strings (in black), and the developing disease 

symptoms are included. 

Algorithm for Hyperspectral Image Referencing  

The proposed algorithm is divided into four steps: 1. background segmentation, 2. reference 

point detection, 3. matching of reference points, and 4. the spatial transformation (Figure 3). 

 Background Segmentation  

The background segmentation relies on the classification method Random Forest algorithm 

[40] to separate leaf regions and background. The model was trained by manual annotation 

of a single hyperspectral image. As training data 1000 pixels of the blue background, 1000 

pixels of healthy leaf tissue, 1000 pixels of chlorotic leaf tissue, and 500 pixels of spore stocks 

were randomly sampled from the annotation in which the human expert has tried to represent 

the class variability. Remaining artifacts of misclassified pixels causing very small regions and 
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holes within large regions were corrected using connected components approach. Leaf 

regions were extracted and identified by corresponding leaf number based on the position 

within the image.  

Reference Point Extraction  

For the selection of the reference points, the Random Forest algorithm was applied as well. 

By manual annotation 100 pixels of the white reference points and 1000 pixels of plant 

material (balanced mixture of healthy, chlorotic, and spore stock tissue) were selected and 

used to train the model. Classified regions within a size range of 3 to 40 pixels were regarded 

and the center of gravity was extracted as the pixel position. To exclude mixed pixels, the 

reference point region has been extended by 3 pixels and removed from the leaf regions. 

 

Figure 3. Dataflow of the proposed algorithm for geometric referencing of hyperspectral images. 

Assignment of Reference Points  

Point correspondence was used to derive the geometric transformation model between two 

images of a leaf recorded at different observation days. Following, the assignment of single 

reference points between the different observation dates is a prerequisite for image 

transformation. In our approach, the Random Sample Consensus (RanSaC) algorithm [37] 



3 Spatial referencing of hyperspectral images for tracing of plant disease symptoms 

69 
 

determines a preliminary nonreflective similarity transformation by assigning two random 

reference points in the base image to two random points in the image to reference. The 

models were evaluated by projecting each reference point of the origin image to the target 

image and assess the distance to the closest reference points of the target image. Reference 

points within a distance of 20 px are assumed to be correct and, therefore, support the model. 

By repeating this process and selecting the transformation model with the maximum number 

of supporting reference points, a preliminary referencing was performed. Using nearest 

neighbor assignment with a distance threshold of 20 px, reference points were assigned and 

reference points without counterpart were excluded from the further process. 

Spatial Image Transformation Models  

A transformation model was derived using the corresponding reference points. It is used to 

reference all images of a time series to the first observation day. The type and flexibility need 

to be adapted to the specific task. We compared different transformation types [36]: 

Nonreflective Similarity, Affine, Projective, Polynomial, and Local Weighted Mean (LWM). 

Nonreflective Similarity transformation is defined by rotation, translation, and scaling. Adding 

a shearing parameter and another scale factor results in an affine transformation. The 

Projective transformation represents a central-projective transformation between the two 

image coordinate systems and is defined by eight coefficients [36]. The Polynomial model 

relates the coordinates within the two images by a mathematical description based on two 2D 

polynomials. We selected polynomials of order 3 as they are able to represent the assumed 

leaf movements. The LWM model differs from the mentioned transformation due to its local 

character. The image is divided into regions in which a local polynomial transformation model 

is applied [41]. All steps of the algorithm have been performed using Matlab 2013a (The 

Mathworks, Natick, MA, USA) and the corresponding Image Processing Toolbox.  

Evaluation of Transformation Accuracy  

Evaluation of the transformation accuracy was performed by the Root Mean Square Error 

(RMSE) on Euclidean deviations of n reference points  
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To evaluate the transformation quality, assessing the mean accuracy of projected reference 

points is not sufficient. Large distortions or missing image information can occur in parts of 

the leaf without affecting the RMSE parameter. Therefore, two further quality parameters 

were introduced: Stability and Extrapolation. The first is defined as the RMSE of an inner point, 

if it is not included into the transformation model. This approximates the transformation 

quality of arbitrary points of the leaf. The extrapolation parameter approximates the 

transformation quality at the leaf border by the transformation accuracy of the four outer 

points point in the first and last point columns at the leaf base and the leaf tip (cv. Figure 2). 

The evaluation has been performed on the full time series (11 images) of a representative leaf 

showing brown rust symptoms. For the accuracy measurement 11 × 30 = 330, for the 

extrapolation 11 × 4 = 44, and for the stability 11 × 5 = 55 reference points have been used. 

The hold out reference points for stability calculation have been evenly distributed within the 

inner points.  

Vegetation Indices  

For characterization of the spectral development of symptomatic areas, Vegetation Indices 

based on selected spectral bands (λi) have been used. The Normalized Difference Vegetation 

Index (NDVI) uses a combination of a red band (670 nm) and a NIR band (800 nm) according 

to formula 2 to extract information about plant vitality and Chlorophyll content [10]. In 

addition, the Photochemical Reflectance Index (PRI) was calculated, using the difference 

between two bands in the green color range (531 nm and 570 nm) [42] as well as the 

Anthocyanin Reflectance Index (ARI) that uses a green (550 nm) and a NIR (700 nm) band 

which is sensitive to changes in carotenoid pigments [43].  

  

The selected Vegetation Indices are correlated to different plant-physiological parameters 

(chlorophyll content, photochemical activity, anthocyanin content) which are significantly 

influenced during disease development.  
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Presymptomatic Labeling  

To demonstrate the advantages of a fully referenced data set, we used spatial referencing to 

move the border of symptoms that can be annotated retrospectively regarding the infection 

time. At first a supervised classification model (Random Forest algorithm [40]) has been 

derived on the full spectral information based on manual annotations of vital plant material, 

chlorotic regions, and spore stocks of brown rust (training data composition given in Section 

2.3.1). Such models reproduce the visual annotation with good accuracy but are not able to 

detect invisible effect. Here, spectra of pixels that were two days later detected as diseased 

were include in the training data and the Random Forest model is retrained. Furthermore, 

only pixels were included that are observed at every observation day to guarantee continuous 

time series observation for every point on the leaf surface within the data set. The extended 

annotations are used to retrain the classification model. 

3.4 Results 

This section presents the obtained results of the spatial referencing algorithm for 

hyperspectral images and the proposed applications tracing of symptoms and advanced 

labeling. The referencing approach has been applied to time series observations of two 

different diseases: Septoria tritici blotch and brown rust, each represented by twelve leaves. 

Figure 4 shows the effect of referencing by the RGB visualization of hyperspectral images 

showing a progressing brown rust infection 2–12 dai. 
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Figure 4. Effect of the spatial referencing. (A) shows the time series of unaligned hyperspectral images 

and (B) the same time series after the application of the proposed algorithm. To illustrate the result, 

identical points within the images were connected by red lines. 

Figure 5 shows the results of tracing mature symptoms back in time. For brown rust and 

septoria tritici blotch, a continuous transition starting from healthy tissue has been extracted. 

The final state represents the deviating symptom appearance of the diseases (cv. Figure 1). 

Background Segmentation and Reference Point Detection  

Parts of the algorithm are common and well understood steps in many image analysis 

pipelines. 1. background segmentation and 2. reference point detection did not limit the 

accuracy or performance of the algorithm. The used Random Forest classifier was trained on 

manually annotated but representative training data and reached on this data an accuracy of 

more than 99%. The derived class images “background vs. leaf” and “leaf vs. reference point” 

showed a high level of concordance with the visual impression. In transfer regions, e.g., the 

unsharp transition of leaf tissue to the white color of the reference points, a true region 

boundary is not defined. Consequences are neglectable as the center of gravity of the 

reference point region showed a high level of reproducibility within the different images. 
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Figure 5. Visualization of the tracing results by using RGB visualizations of a symptom and the 

corresponding Vegetation indices anthocyanin reflectance index (ARI), normalized difference 

vegetation index (NDVI), and photochemical reflectance index (PRI) for brown rust (A, C) and septoria 

tritici blotch (B, D). For visualization purposes the NDVI was multiplied by 10 and the PRI by 40. Time 

series of spectral characteristics are derived to uncover the deviating spectral dynamics of the diseases. 

In contrast, the matching of the reference points to the base image of day 1 is challenging if 

larger movement had occurred or missing points complicate the assignment process. The 

RanSaC algorithm determines a preliminary non-reflective similarity transformation and 

allows a nearest neighbor assignment. More flexible transformations tend to degenerated 

cases assigning multiple reference point to a single base point. Using the RanSaC with 10,000 

iterations, an optimum has been found in each case, whereas using only 1000 iteration led to 

a suboptimal result in around 10% of the runs.  

Transformation Model  

The flexibility and robustness of a transformation model type determines the suitability of the 

model for a specific task. Average quality parameters of the different models for the full time 

series of a representative leaf of the brown rust data set are given in Table 1. 

The extracted quality parameters indicate advantages of using transformation functions with 

higher flexibility and more model parameters. In each of the three performance parameters 

accuracy, stability, and extrapolation, the LWM transformations reached the lowest error 

rates whereas Similarity and Affine transformation obtained the highest error rates.  
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Table 1. Performance parameters (accuracy, stability, and extrapolation) of the five transformation 

model types assessing the suitability for the spatial referencing of wheat leaves. The accuracy is 

measured by the reprojection error of used reference points. The stability is measured by the 

reproduction error of unused control points within the leaf and the ability to extrapolate is measured 

by the root mean square error (RMSE) of unused control points at the base and the tip of the leaf. 

Displayed are the mean results during the whole time series of eleven days (standard deviation in 

brackets). 

 

Presymptomatic Labeling  

The effect of the extended labeling is shown in Figure 6. The manual annotation allows to 

detect the spore stocks with good accordance with the visual impression. The highly chlorotic 

tissue at the later observation data was also selected whereas the transition areas to the vital 

plant tissue is mostly assigned to the healthy class. The extended labelling allows to move this 

border between vital and chlorotic tissue. The transition areas are now separated from the 

vital area and regions showing no visual symptoms are detected. Non-continuously observed 

points of the leaf surface were excluded causing that the covered area by the fixation strings 

are widened as it is summed up for each day. 

 

Figure 6. RGB visualization and corresponding classification results of a brown rust time series. 

Compared are the classification results based on a manual annotation and an improved annotation 

including the data two days before detection. 
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3.5 Discussion 

The results show that automated referencing of hyperspectral images is possible. The shown 

approach enables the tracking of spatial symptoms regarding size and reflection in particular 

for the spectral area between 400–1000 nm. Furthermore, tracking of the spectral 

characteristics of diseases over time gives new insights for a biological interpretation and an 

improved detection. This has been shown for brown rust for periods between 2–10 days after 

inoculation and for 15–30 days for septoria tritici blotch (Figure 5). The time series uncover 

similarities as well as differences within the type of effect and its dynamics. For both diseases 

the NDVI is reduced and the ARI increased indicating the degradation of chlorophylls and the 

production of anthocyanins, but the change by septoria tritici blotch is much sharper. The PRI 

shows contrary effects if the two disease: Brown rust induces a decrease whereas septoria 

tritici blotch induces an increase. PRI is related to the photochemical activity meaning the 

productivity of photosynthesis [42]. This is surprising as the brown rust permits vital leaf tissue 

whereas septoria tritici blotch causes necrotic tissue. Such response may be explained by the 

pigments of the produced brown rust spores interfering with the used bands of PRI [44]. The 

extended labeling showed high potential to train machine learning models with higher 

sensitivity even in very early symptom stages (Figure 6). To the best of our knowledge, this is 

a new approach in hyperspectral close range imaging. In non-imaging setups the early 

symptoms have been classified [45]. In such scenario a spatial referencing is not required, 

however, this neglects the high sensitivity for small scale symptoms [6].  

Conditions for tracing are proper measurement setup and suitable background material 

allowing a clear background separation. The background material has to differ significantly 

from the plant material, wilted leaves, reference points, and disease symptoms. The selected 

blue paper material fulfills these demands. Minor errors occur at reflecting metal edges of the 

tray but these can be filtered out by a minimal region size. Same applies for the reference 

points. They need to be durable enough over the experimental period and, furthermore, need 

to differ significantly from plant material, wilted leaves, and disease symptoms. Critical parts 

include the selection of the transformation model as it is always a compromise between 

robustness and accuracy. The LWM model provides the highest accuracy (Table 1). 

Nevertheless, the Polynomial transformation model was selected as it reached very similar 

results compared to the LWM model which tends to produce distorted image areas due to its 

local character. As local transformation models depend always on a small part of the 
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information, they are less stable but have the ability to represent also local changes due to 

wilting. In the present data set, the resulting distortions and twisting effects could not be 

represented by any of the models. Advantages of the local model were therefore very rare 

whereas negative effects occur much more frequent especially at the leaf borders. One 

disadvantage of the showed method is the use of markers on the leaf tissue. Effects of the 

marker material on the underlying leaf tissue cannot be completely excluded as well as a 

possible change of the disease development. However, differences were not observed 

between marked leaves and unmarked control plants. Limitations for the method are given 

by the size of the reference points. Using the shortwave-infrared camera (1000–2500 nm; 

Specim Spectral Imaging Ltd., Oulu, Finland) of the measurement platform, it was not possible 

to detect them with the required accuracy. The spatial resolution of the shortwave-infrared 

camera is by a factor of 10 lower than the spatial resolution of the VISNIR camera [25]. 

Upcoming hyperspectral cameras may be able to allow the spectral referencing also within 

different spectral regions. Further research will focus on the use of interest operators on 

image data as they are used for motion tracking. In particular, the use of the SIFT [32] operator 

for tracking within RGB Image sequences could be an applicable alternative. This could be 

adapted to the needs of hyperspectral image sequences using different bands and their 

spectral relation. Spatial tracking of markers is a key capability for transferring the findings of 

the shown experiments to the high throughput greenhouse scale (e.g., [46]). Tracking is 

needed due to leaf movement (external) and plant growth (internal) which leads to a complex 

transformation of the complete plant. At the moment, the method is limited to 2D leaves due 

to the integrated geometrical transformations. Even since the data fusion of hyperspectral 

images and 3D models is possible [25, 26], the referencing has many more degrees of freedom. 

Changes in the shape of the leaf over time has to be represented within the transformation 

model having the potential to result in a runaway model complexity. Furthermore, reference 

points within the 3D model has to be selected, described (e.g., by RIFT descriptor [47]), and 

assigned to image locations. However, extensive studies are required to represent leaf 

growing and leaf movements by a compact and applicable model. Modelling the complete 

development of not only geometry, but also nutrient supply and changes in reflectance is 

possible when using L-Systems [48] or FSP models (FSPM–functional-structural-plant-models) 

[49] which use substitution in a grammar structure to model the plant development. By this, 
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the continuous geometric referencing of hyperspectral images provides valuable input data 

for modelling plant growing and development. 

3.6 Conclusion 

This publication introduces a method for referencing of hyperspectral images. Field of 

application is the improved tracking of hyperspectral information of disease symptoms and 

their development over time. Results have been shown for symptoms and their development 

of septoria tritici blotch and brown rust, using a VISNIR camera measuring between 400 and 

1000 nm. The potential of the method has been demonstrated by extracting the dynamic of 

spectral indices of a single symptom over time. Furthermore, the possibility to annotate 

invisible symptoms by tracing visible symptoms back in time to the invisible phase of 

pathogenesis. The concept of spectral tracking over time can contribute to a more dynamic 

research of disease development instead of focusing to mature symptoms and their appearing 

in the visible bands. 
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4.1 Abstract 

This study establishes a method to detect and distinguish between brown rust and yellow rust 

on wheat leaves based on hyperspectral imaging at the leaf scale under controlled laboratory 

conditions. A major problem at this scale is the generation of representative and correctly 

labelled training data, as only mixed spectra comprising plant and fungal material are 

observed. For this purpose, the pure spectra of rust spores of Puccinia triticina and P. 

striiformis, causal agents of brown and yellow rust, respectively, were used to serve as a 

spectral fingerprint for the detection of a specific leaf rust disease. A least-squares 

factorization was used on hyperspectral images to unveil the presence of the spectral signal 

of rust spores in mixed spectra on wheat leaves. A quantification of yellow and brown rust, 

chlorosis and healthy tissue was verified in time series experiments on inoculated plants. The 

detection of fungal crop diseases by hyperspectral imaging was enabled without pixel-wise 

labelling at the leaf scale by using reference spectra from spore scale observations. For the 

first time, this study shows an interpretable decomposition of the spectral reflectance mixture 

during pathogenesis. This novel approach will support a more sophisticated and precise 

detection of foliar diseases of wheat by hyperspectral imaging. 

4.2 Introduction 

Mixed signals are a frequent issue in remote sensing applications, where each pixel within 

satellite imagery captures many square metres of the Earth’s surface. As a result, the recorded 

signal is a combination of all objects weighted by their spatial proportion. This problem is 
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frequently addressed by ‘endmember unmixing methods’ (Dennison & Roberts, 2003). Similar 

effects occur also in close range imaging and hyperspectral microscopy, which both have a 

higher spatial resolution (Mahlein et al., 2012; Behmann et al., 2014; Kuska et al., 2015, 2017). 

Here, the mixing is not primarily due to the large pixel area, but is significant in the vertical 

domain. The high level of transmittance of thin fungal tissue, and therefore lower reflection 

intensities, in combination with the strong reflectance of plant tissue layers, generates a 

combined signal with regard to the height component (Fig. 1). The reflectance of these 

diseased plant leaves is changed to certain spectral shifts according to the fungal development 

in the host tissue. As a consequence of the potential application for detecting plant diseases, 

hyper-/multispectral sensors have aroused the interest and expectation of the public, farmers 

and companies as sophisticated optical sensors in agriculture that may support deeper 

insights into plant physiology and sustainable plant protection measures, as well as for 

improvements in the phenotyping process in crop resistance breeding (Jay et al., 2016; 

Mahlein, 2016; Mishra et al., 2017; Asaari et al., 2018; Kuska & Mahlein 2018; Mahlein et al., 

2018). 

To contribute to sustainable management practice in agriculture, the precise detection of 

primary infection sites and disease dynamics is fundamental. An example of a current practical 

reference is the increasing global spread of rust diseases and the overcoming of effective crop 

resistances (Torriani et al., 2015). Rust diseases are widespread and highly host-specific 

(Dracatos et al., 2018), and rust fungi are obligate biotrophic pathogens (Mendgen & Hahn, 

2002). The pigmentation of rust spores is due to the presence of carotenoids (Hennessy & 

Sackston, 1972). Four different types of carotenoids have been found in rust fungi, with γ- and 

β-carotenes appearing in most species (Smits & Mitchell, 1951). However, carotenoid 

composition between different rust species varies greatly (Zwetko & Pfeifhofer, 1991). It is 

assumed that carotenoids play a protective role against UV radiation and oxidative stress, and 

could act as virulence factors (Butler & Day, 1998; Avalos & Carmen Limón, 2015). The colour 

of rust spores is correlated to the content and composition of these carotenoids, which are 

located in the cell wall and as lipid droplets in the cytoplasm (Hennesy & Sackston, 1972; Wang 

et al., 2018). In the case of yellow rust and brown rust, differences in the pigmentation due to 

carotenoids can be observed by the naked eye. However, even with the application of 

hyperspectral imaging, the measured signal from fully developed uredinia is still a mixture of 

the spore spectra and the underlying leaf spectra (Wahabzada et al., 2016). The changing 
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weights of these components increases the complexity of identification. Often training data 

capturing the variability within the specific dataset are used to define the class border 

between healthy and diseased leaf tissue (Behmann et al., 2015). However, the training data 

are also composed of mixed signals, which can cause an increase in complexity of annotation 

and may affect the quality of the data. As a result, such models are limited to a specific data 

set or measurement setup. This means that a model requires new training data in order to be 

transferred to new datasets (Thomas et al., 2018). 

 

Figure 1 Schematic cross section of a wheat leaf infected with brown rust and the different leaf layers. 

The leaf is divided into cuticle (C), epidermis (Ep), palisade mesophyll (Pm) and spongy mesophyll (Sm). 

The arrows indicate the incoming light and the reflected mixed signal of the leaf, which is affected by 

properties of the different leaf layers and fungal activity within the tissues and on the leaf surface. 

In scenarios with mixed signals of a limited number of influencing factors, different kinds of 

matrix decomposition or matrix factorization are widely applied (Pauca et al., 2006). Typically, 

the data matrix is factorized into the latent variables and weights/loadings, e.g. by principal 

component analysis (PCA; Wold, 1987), simplex volume maximization (SiVM; Thurau et al., 

2010) or multivariate curve resolution (Tauler et al., 1995). All of these methods include 

different optimization functions, constraints and different ways of interpreting the results. 

PCA conserves a maximum of variance, SiMV selects extreme data points on the approximated 

convex hull, and multivariate curve resolution focuses on a physically plausible model by 
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additional constraints based on prior knowledge. The present study does not use factor 

spectra derived from the data for analysis, but relies on the use of pure spectra. 

To improve and specify hyperspectral data and to overcome the inaccuracy of mixed signals, 

a method has been established that allows measurement of the pure spectra of rust spores. 

These reference spectra can be integrated into a non-negative least-squares factorization, 

unveiling the composition of the incoming signal spectra. By the summed weights of spore 

spectra, Puccinia triticina and P. striiformis, causal agents of brown and yellow rust of wheat, 

respectively, can be distinguished. Using pure fungal spectra for detection of plant diseases 

on plant leaves is a new approach in plant pathology and might enable development of disease 

detection models with a minimum of annotated training data. The spectral signal is 

decomposed into known factors instead of using a classifier assigning a specific disease. 

4.3 Materials and methods 

Preparation of fungal material and measurements on spore scale 

A field isolate of Puccinia triticina was maintained on Triticum aestivum ‘Taifun’ (KWS) in a 

growth chamber at 22 °C and illuminance of 5000 cd m−2 with a 16 h photoperiod. Triticum 

aestivum ‘Catargo’ was used to maintain an isolate of Puccinia striiformis in a growth chamber 

at 17/13 °C day/night and illuminance of 5000 cd m−2 with a 16 h photoperiod. Urediniospores 

of both fungal pathogens were harvested and stored at 20 °C in the dark, 14 days after 

inoculation (dai). To acquire hyperspectral reflectance properties, urediniospores were 

transferred to a crafted cylindrical well inside the edge of a low reflectance dish (Brightic Black 

Dish), 4 mm in diameter and with a volume of 13.5 µL (Fig. 2). Thus, the theoretical total 

amount of spores was c. 1.6 million for P. triticina and c. 2.3 million for P. striiformis, assuming 

spore dimensions as given by Anikster et al. (2005) and Chen et al. (2014). To gain pure spore 

spectra, at least c. 50 spores of P. triticina and c. 44 spores of P. striiformis were stacked above 

each other in the crafted cylindrical well. 
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Figure 2 Hyperspectral measurement installation to record fungal spectral reflectance. Samples were 

placed directly underneath the hyperspectral camera using a Black Dish (Brightic). A crafted cylindrical 

well with a volume of 13.5 µL ensures consistent amounts and predefined distribution of the fungal 

spores. 

Preparation of plant material and time series measurements at the leaf scale 

The time series of both pathogens were performed on spring wheat T. aestivum ‘Taifun’. 

Plants were spray inoculated with a spore suspension in light mineral oil (yellow rust) and in 

tween water (brown rust). Spore suspension was set to 8 x 104 urediniospores/ml. Inoculated 

plants were stored under conditions as for spore proliferation. Hyperspectral time series at 

the leaf scale were obtained by daily hyperspectral measurements during pathogenesis from 

infection to mature symptoms. For each disease, the same leaves were measured over time 

(brown rust 2–12 dai, yellow rust 2–31 dai). In each of the two experiments, four plants with 

four leaves were analysed, with a mock inoculated plant as the healthy control. To minimize 

other stress factors except the plant disease, the leaves were not cut off from the plants. The 

leaves of all plants were fixed in a wire mesh frame to allow the measurement of all leaves of 

all plants in one image with the line scanner (Fig. 3). Plant leaves were fixed in a horizontal 

position with the adaxial leaf side to the camera system. This design guaranteed that the 

leaves were measured under the same conditions every day, with regard to leaf angle, 

illumination and leaf position in the fixation tray. During hyperspectral time series 

measurements, the incidence of abiotic stresses such as water or nutrient deficiency was 

avoided. After each measurement, the tray with plants was brought back to the greenhouse. 
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Figure 3 RGB visualization of the wire mesh from the field of view of the hyperspectral camera. 

Inoculated leaves show yellow rust 21 days after inoculation and homogeneous illumination of the leaf 

surface. 

Hyperspectral imaging, data preprocessing and analysis 

An ImSpector PFD V10E (Spectral Imaging Ltd) with a spectral range of 400–1000 nm and a 

spectral resolution of 2.73 nm was used to determine the VIS-NIR range of fungal spores. The 

determined and assessed pure spectra of rust spores were applied on a hyperspectral time 

series of brown rust (2–12 dai) and yellow rust (2–31 dai) pathogenesis using the same system 

and method. The hyperspectral camera was mounted on a linear stage. For image recording, 

the samples were placed directly underneath the camera system and were illuminated 

homogeneously by six halogen tungsten lamps with 10 000 lx (Analytical Spectral Devices Inc.) 

with a vertical orientation of 45° and a distance of 18.5 cm from the samples to the fore-optic 

of the camera (Fig. 2). Hyperspectral measurements were performed under controlled 

conditions with the exclusion of sunlight. Spectral binning was set to 4 and spatial binning was 

set to 1, resulting in 211 bands and 1600 pixels per line. The frame rate was set to 10 frames 

per second and exposure time was adjusted to the object. For a detailed description of the 

measuring setup, refer to Mahlein et al. (2012). 

Hyperspectral data cubes of pure rust spores were acquired 0, 14, 28 and 67 days after harvest 

of spores to capture the temporal variability. To receive the relative reflectance, a white 

reference bar (SphereOptics GmbH) was recorded (W), followed by a dark current image (B1). 

Subsequently, the spore samples (I0) and a corresponding dark current image (B2) was 
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recorded. Calculation of relative reflectance was performed according to the formula R = (I0 − 

B2)⁄(W − B1), using the software ENVI v. 4.6 (Exelis Visual Information Solutions). Spectral 

signals were smoothed by employing the Savitzky–Golay filter (Savitzky & Golay, 1964). 

Parameters for the smoothing process were five supporting points to the left and right and a 

third degree polynomial. Spectral signatures were extracted manually using a polygon region 

of interest of 724 pixels. 

Hyperspectral image factorization 

Observations on the spore scale and the representative spectra of healthy and chlorotic leaf 

tissue were used to factorize hyperspectral images at the leaf scale. The different spectra were 

combined into a library of factor spectra (Fig. 4a), composed of four brown rust spectra, four 

yellow rust spectra, five chlorotic spectra and six healthy spectra. For the diseases, one 

spectrum per measurement day (time points after harvest) was used. Signals with higher 

variability, such as chlorotic and healthy leaf tissue, were represented by five and six spectra, 

respectively. The chlorotic spectra were generated by the difference between healthy spectra 

and observations of different proportions of chlorotic/necrotic leaf tissue. 

For factorization, a non-negative least-square fitting was performed (Lawson & Hanson, 1974). 

The iterative optimization algorithm was based on the active-set approach and solved the 

following optimization problem: 

min
𝑥

‖𝐶 ∗ 𝑥 − 𝑑‖2
2 where 𝑥 ≥ 0. 

The algorithm determined for each spectrum 𝑑 the linear combination of factor spectra 𝐶 with 

minimal quadratic deviation and non-negative weights (Fig. 4b). As a result of repetitive 

application, a weight for each factor spectrum was determined for each pixel within a 

hyperspectral image. It was essential that negative weights were excluded, because a 

biological interpretation of a negative reflectance image was not given. 

To draw conclusions, the weights of the different factor types, brown rust, yellow rust, 

chlorotic and healthy, were summed up to reveal the share at the specific hyperspectral signal. 

To extract information of larger image parts, the signal composition could be spatially 

averaged. 
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Figure 4 Composition of the hyperspectral library using spectra of healthy leaves, brown rust spores, 

yellow rust spores and the effect of chlorosis (a). The principle of non-negative least-squares fit of a 

spectrum is visualized (b). The transparent spectral border regions are disregarded in the analysis due 

to noise effects. 

 

4.4 Results 

The reflectance intensities of observed spore spectra differed slightly between 700 and 

1000 nm according to the storage time points 0–67 days after harvest (dah, data not shown). 

All spectra have been included in the spectral library to represent the temporal variability of 

reflectance characteristics. 

Detection and visualization of fungal infections at the leaf scale 

The detection of brown rust and yellow rust symptoms on wheat leaves using hyperspectral 

images is shown in Figures 5 & 6. The observation of brown rust symptoms was performed at 

12 dai, whilst yellow rust symptoms were observed at 17 dai because of slower symptom 

development. These measurement days were selected from a larger time series dataset to 

verify the method at the point of clear disease symptoms without advanced senescence. The 

reflectance intensities of diseased leaves differed slightly between 700 and 1000 nm. All 
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spectra were included in the spectral library to represent the temporal variability of 

reflectance characteristics. 

Figures 5 and 6 show a RGB visualization derived from the hyperspectral image, the summed 

weights of brown and yellow rust, and the chlorotic and healthy spectra. The colour maps 

were linearly stretched between 0 (blue) and 0.6 (red) whereas for healthy leaf tissue they 

were stretched between 0 (blue) and 1.2 (red) due to the different value range. 

Brown rust-infected plants 

The brown rust uredinia on the leaf surface were clearly detected within the healthy leaf and, 

accordingly, the healthy component was reduced at these locations (Fig. 5). Some uredinia 

had already ruptured through the epidermal layer, whilst most were still covered. The yellow 

rust and chlorotic component showed almost no response, revealing that the brown rust 

infection had not resulted in significant chlorotic tissue. In contrast, the results suggested that 

the uredinia below the epidermal layer were detected as brown rust, but at a lower proportion 

compared to the healthy factor spectrum. This supports the idea of vertical unmixing of the 

different layers within the leaf as here, the semitransparent characteristics of the epidermis 

were used to identify the underlying brown rust uredinia. 

 

Figure 5 Factorization of wheat leaves infected with brown rust 12 days after inoculation when 

symptoms are already visible. Summed weights of the factor spectra of healthy leaves, brown rust 

spores, yellow rust spores and the effect of chlorosis are visualized. 

Yellow rust-infected plants 

Leaves infected by yellow rust showed different characteristics to the brown rust-infected 

leaves (Fig. 6). Inoculated leaves showed the highest sum weight, but other factors were also 

affected. Whilst the brown rust factor provided little response, the chlorotic component gave 

a severe response. Interestingly, it showed a different spatial pattern to the yellow rust 
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sporulation, indicating that the factorization method was able to separate the two different 

processes of (i) spore production, and (ii) chlorotic lesions below some of the uredinia. The 

healthy factor showed strong differences related to the geometry of the leaf. The central leaf 

vein appeared much darker in RGB due to shadow effects, and in consequence the sum of 

weights of tissue classified as healthy was reduced. This corresponded to a downscaling factor 

applied to the affected spectra. The healthy factor was correspondingly reduced in areas of 

yellow rust sporulation and chlorosis. 

 

Figure 6 Factorization of wheat leaves infected with yellow rust 17 days after inoculation when 

symptoms are already visible. Summed weights of the factor spectra of healthy leaves, brown rust 

spores, yellow rust spores and the effect of chlorosis are visualized. 

Temporal dynamic of factor weights of a progressing infection 

The algorithm was applied to two time series experiments with brown and yellow rust on 12 

wheat leaves. The background was masked and the average factor weights of all leaf pixels 

were calculated. Table 1 shows the percentage deviation of the factor weights from the mean 

factor weights of healthy leaves observed 2, 3 and 4 dai. 

In the brown rust experiment, the increase in brown rust factor weights started 7 dai. After 

an approximately exponential increase, it reached a maximum of 1024.5 % at 12 dai. In the 

same period, the yellow rust component also increased but only reached a value of 308 % 12 

dai. These miss assignments occurred mainly in highly necrotic regions of severely affected 

leaves. 

In the yellow rust experiment, the increase of the yellow rust component started 12 dai and 

reached a maximum of 7762 % at 31 dai. In this experiment, the algorithm also showed a 

response for the other pathogen component. Here, a classification of brown rust increased, 
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but reached a much lower value of 1482 % 31 dai. Furthermore, the healthy component 

decreased starting from 12 dai, with a final value of −21.7 %. 

4.5 Discussion and conclusion 

Spores of P. triticina exhibited a spectral ramp pattern in the visible infrared (VIS) range with 

low reflectance from 400 to 500 nm. Every 100 nm, from 500 to 900 nm, the spectral 

reflectance was increased approximately 0.15 [%⁄100]. The strong absorption in the blue 

range and high reflectance in the red range is in accordance with the availability of carotenoids 

in the urediniospores. Spores of P. triticina contain a total of 1710 µg per g fresh weight 

carotenoids, consisting of 66.1 % γ-carotene, 21.1 % β-carotene and 12.9 % lycopene (Irvine 

et al., 1954). Although β-carotene is non-photoactive, the molecular structure of carotenoids 

of long and conjugated CC-double bounds is responsible for light absorption between 380 and 

550 nm (Lichtenthaler, 1987). The maximum absorption depends mainly on the oxygen-

containing derivatives, which are described and grouped as xanthophylls. These develop by 

cyclization of the chain ends, e.g. the β-cyclization of lycopene to γ-carotene and then to β-

carotene (Candau et al., 1991). During different storage time points from 0 to 67 days after 

harvest of spores, these pigment compositions did not change and spectral differences were 

not significant in the VIS range (Fig. 4). Slight differences in the spectral signature could be 

explained due to the loss of water during storage or the natural variability between spores. 

In contrast, spores of P. striiformis showed different reflectance signatures in the VIS range 

(Fig. 4). The blue range showed strong absorptions, and the spectral intensity increased at 

522 nm. This spectral pattern is also in accordance with the availability of carotenoids in the 

urediniospores of P. striiformis, but with a different composition. Spores of P. striiformis 

contain >150 µg per g fresh weight, with 72% β-carotene and 28% γ-carotene (Zwetko & 

Pfeifhofer, 1991). In comparison to P. triticina, the lower amount and the different 

composition of carotenoids in P. striiformis could be responsible for the different spectral 

pattern starting at 550 nm. A similar result was obtained by Wahabzada et al. (2015), who 

showed differences from 550 nm in diseased barley leaves. These differences were mainly 

found between rust and net blotch-infested barley, even though the changes to leaf colour 

caused by the diseases look similar to the human eye. 

The results of the factorization method based on the spectra in Figures 5 and 6 show that a 

separation of signal components originating from different layers within the plant leaf is 
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possible. In particular, the yellow rust dataset verifies the hypothesis that different fungal 

structures and plant cells from different layers contribute to the signal (Wahabzada et al., 

2016). This signal can be decomposed into distinct spatial distribution maps of the investigated 

components, allowing the in-depth analysis of pathogenesis, e.g. the interaction of different 

rust species with differing amounts of chlorosis. 

The spectral separation and the distinct spatial patterns derive from the underlying 

physiological processes. The pigment composition is a predominant characteristic of different 

rust populations and allows a spectral separability of spores. Spectra of spores are dominated 

by pigment composition, presumably acting as protection against UV light, whereas the 

chlorotic tissue is characterized by reduced chlorophyll content and reduced rate of 

photosynthesis (Brugger et al., 2017). Various studies have focused on the detection of rust 

diseases, even under field conditions (Bravo et al., 2003; Ashourloo et al., 2014; Whetton et 

al., 2018). Most of these used vegetation indices in classification scenarios where one 

spectrum is classified as either healthy or diseased. In the present work, it is assumed that a 

spectrum reflected from a leaf is composed of pixels, each representing mixed reflectance 

from different biological materials, including disease-specific features. These features are 

separated by using a spectral unmixing approach. 

In yellow rust, the change of colour during symptom development can be caused by different 

biological processes, even if the colours look similar. Here, the different spectral signatures of 

developing P. striiformis spores and yellow chlorotic leaf tissue are distinguishable from each 

other, even though both signals overlap in the spatial domain. 

As the reflectance signals are the result of a physical mixing, transmission measurements can 

provide a different perspective on the plant–pathogen interaction, complementing the 

reflectance signal (Thomas et al., 2017). The upper layers and surface structures of the leaves 

account for the major part of the reflectance signal, whereas the lower levels contribute more 

to the transmission signal (Thomas et al., 2018). Combining these spatially referenced 

measurements would allow the signal to be decomposed with greater accuracy and, 

furthermore, may allow a vertical localization of the signal source. 

The results of this study provide an approach for analysis of a larger dataset including millions 

of spectra which could also include necrotic, chlorotic and senescent leaf parts, and where 
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decomposition could allow a plausible quantification and reliable identification of the fungal 

pathogen. Further work is required to test the methods on outdoor plants or in a wider range 

of conditions, including the presence of other diseases, nutrient effects, wetness and 

senescence. In contrast to a non-probabilistic identification approach (Behmann et al., 2014; 

Thomas et al., 2018), the proposed method allows a more sensible quantification, because 

minor factors within single pixels can also be evaluated, with the potential to exploit the data 

to a higher extent. 

The results of the time series experiments here follow the development of the disease, with a 

constant increase in the disease-related components and a reduced percentage of the healthy 

component associated with an increase in the amount of infection. However, in both datasets 

the area of disease misclassification also increases, but at a lower level. The effect of leaf 

inclination as a result of senescent or necrotic wilting causes these miss assignments and is a 

limitation of this method, as it cannot be represented in the model. Nonlinear effects are 

represented by unrelated factors, e.g. yellow rust on the plants that were exclusively 

inoculated with brown rust or vice versa. Alternatively, they cannot be represented by the 

defined model and lead to increased residual values of the fitting process. Such increased 

residual values have been observed particularly in non-plant parts of the image, and at a much 

lower level in healthy leaf parts with strong geometry (middle vein or rolled up sections). The 

corresponding summed weights show an increase in the misclassification of diseases starting 

at 7 and 10 dai The summed weights of factor spectra of the present disease are at least tripled 

compared to the non-present disease. This enables a clear classification, e.g. by calculating 

the ratio of the two factor sums. 

The spectral properties of pigmented rust spores can be unveiled from the leaf spectra. 

Biotrophic fungi like rusts often produce a tremendous amount of spores that affect leaf 

reflectance in a characteristic way. The model used here could also be promising for the 

detection of other rust diseases or powdery mildews, and possibly also for the differentiation 

of necrotrophic fungi. However, the differentiation of necrotrophic fungi has yet to be proven, 

and this method might not be applicable for spectra extracted from pure fungal structures of 

necrotrophic fungi, because of the development of necrotic areas and the presence of few 

macroscopically visible fungal structures on the leaf surface. The level of natural variability of 

spore pigmentation for most rust species is not yet known, therefore further studies are 
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required to evaluate this approach. Nevertheless, the proposed method can give new insights 

as it solves the problem of limited and uncertain training data by transferring the spectra 

obtained from the spore scale to the leaf scale. 

The present results show and verify the potential of multiscale observations (spore and leaf 

scale) for quantitative and qualitative assessment of fungal and plant components within the 

hyperspectral signal. The method is capable of separating different spectral fungal spore 

signals out of the mixed signals of a diseased plant leaf. Both rust diseases were detectable 

and distinguishable from each other when full symptoms were exhibited. One interesting 

observation was the separation of yellow rust sporulation and chlorosis in the yellow rust 

experiment. Even though the yellow rust spores covered the chlorotic tissue, the extracted 

spatial distribution pattern of chlorotic tissue did not seem to be affected by the yellow rust. 

The limitation of the model is the inability to represent nonlinear effects or no separable 

components within the signal. In the datasets investigated here, miss assignments occurred if 

severely necrotic leaves started to crinkle resulting in a strong relief and self-shadowing. The 

application of pure rust spectra in combination with a least square factorization offers the 

possibility of detecting and identifying brown rust and yellow rust on wheat leaves. The model 

is very compact and efficiently applied on the pixel scale, and an implementation of this 

‘spectral source’ in handheld hyperspectral cameras including on-board processing 

capabilities (Behmann et al., 2018) could allow a mobile integration of hyperspectral imaging 

and analysis with instant feedback. 
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5.1 Abstract 

Hyperspectral images provide manifold information on the plant status and potential disease 

symptoms, but the interpretation of such data is challenging. The most relevant patterns of 

plant diseases within the spectral and spatial dimensions are unknown. Deep learning models 

are known for the adaptation to multidimensional input as features representations are 

optimized during the learning phase. The use of 3D Convolutional Neural Networks allows to 

interpret hyperspectral data cubes directly without any preprocessing. Within this study, such 

a model is trained for the classification of healthy plant tissue and relevant foliar wheat 

diseases, i.e. Yellow Rust, Brown Rust and Septoria Tritici Blotch. On a test data set an overall 

accuracy of 88.1% withF1-scores between 0.79 and 0.91 are reached. Its plausibility is checked 

by class activation maps. They reveal that leaf parts showing obvious disease symptoms are 

much more relevant for disease detection than healthy or background regions. This study 

introduces 3D-CNNs for the detection of plant diseases based on close-up hyperspectral 

images to provide a basic receipt for proceeding models. 

5.2 Introduction 

Information on the health status of crop plants is essential for sustainable crop production. 

Within this context precision agriculture and phenotyping technologies are defined as 

promising and supportive approaches. Sensors and especially hyperspectral imaging can 

provide useful insights in plant state and disease symptoms, but the link to plant-physiological 

parameters has to be defined in many cases [1, 2]. 

In recent years, deep learning draws considerable attention as it allows to extract valuable 

information without predefined features by learning optimal feature representation during 

the training process [3]. A deep learning model consists of multiple layers containing data 

representations with different level of abstraction. In a classification model, the highest level 

of abstraction is typically the class probability. 
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As features representations are optimized during the learning phase, deep learning models 

can be more flexible regarding feature dimensionality. Traditional machine learning 

approaches mostly rely on sample representations by 1D feature vectors. In contrast, 

convolutional neural networks (CNNs) make use of 2D input matrices by applying 

convolutional filters shared between all parts of the input matrix. This reduces the number of 

model parameters significantly and allows the analysis of images with millions of pixels with 

regard to the local context [3]. The use of 3D-CNNs extends this concept to 3D convolutional 

filters that allow to interpret data cubes directly without neglecting the spatio-spectral 

context of each single entry [4]. The adapted network architecture still supports relevance 

measures like class activation maps (CAM) that allow to locate the relevant information within 

the data volume [5]. 

Deep learning for plant disease detection is mostly applied on RGB images [6, 7]. As a sufficient 

amount of RGB images is available online, the models cover multiple crops, each with its 

individual diseases. Plant disease detection based on hyperspectral images is a new 

application field for deep learning. Dijkstra et al. [8] showed that a Multi-Layer Perceptron 

with ReLu activation outperforms Support Vector Machines and other approaches at the 

detection of a disease and abiotic damage. They performed a patch-wise classification of 

hyperspectral images of affected potato leaves. Recently, Polder et al. [9] showed the 

feasibility of an infield detection of potato virus Y using hyperspectral images and a CNN. 

The training of deep learning models can be time consuming but the inference step is fast, 

especially on dedicated hardware [10]. Deep learning models are suited for the direct 

integration within a hyperspectral camera if it provides sufficient computing capabilities [11]. 

Such a prompt data analysis would reduce some of the drawbacks of hyperspectral imaging 

like the large amount of recorded data and high effort for data transfer and in-house analysis. 

In this study, wheat and three plant diseases, Yellow Rust (YR), Brown Rust (BR) and Septoria 

Tritici Blotch (STB) have been selected as biological model system. Pathogens causing rust 

diseases like the investigated YR and BR are biotrophic fungi and colonize the intracellular 

space and deduce nutrient to build spore clusters with characteristic color. Necrotrophic 

diseases like STB cause chlorotic and necrotic leaf tissue by the release of phytotoxic 

compounds. All three diseases are of high relevance for wheat production and an early 

identification could improve the efficiency of plant protection measures. 
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This study outlines the visual appearance and the biological background of the investigated 

disease symptoms, provides an expedient introduction in 3D-CNNs and evaluates the 

optimized model. Details on the selected model architecture and training parameters are 

stated. It is evaluated on a hold-out test data set and its plausibility is verified by class 

activation maps. 

5.3 Materials and methods 
2.1. Plant diseases on wheat 

Wheat is affected by numerous plant diseases reducing the yield, limiting the yield quality or 

inducing mycotoxins. The used data set included three highly relevant plant diseases of wheat 

caused by fungal pathogens and showing symptoms on the wheat leaves. Inoculation was 

performed at plant state BBCH 30 [12]. Hyperspectral images are obtained when mature 

symptoms of each disease have been expressed resulting in a different measurement time for 

each disease. Details on the preparation of the biological material are provided in 

Bohnenkamp et al. [13]. 

YR on wheat is caused by the fungal pathogen Puccinia striiformis. P. striiformis is an obligate 

biotrophic rust fungus. It shows a massive mycelial spread between the leaf veins and leads 

to chlorotic leaf tissue in stripes. First symptoms are tiny chlorotic spots that can already occur 

6-8 days after infection. The massive production of urediniospores appears about two weeks 

after infection on susceptible cultivars. Observations were performed 18 days after 

inoculation. 

Puccinia triticina is the fungal pathogen of BR. As an obligate biotrophic rust fungus P. triticina 

aims to keep the hosts tissue alive as long as possible. P. triticina diverts the transport of 

assimilates to its own structures. As first symptoms chlorotic spots get visible five days after 

inoculation. During disease development chlorotic spots increase and develop stocks of 

urediniospores in their center. Observations were performed ten days after inoculation. 
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Figure 1. Structure of the used 3D-CNN with two convolutional layers and two fully connected 

layers with around 500,000 parameters. Three diseases and the healthy control group were 

used as target classes of the model. 

STB is caused by Zymoseptoria tritici. STB is one of the most important foliar diseases of wheat 

and currently the most important in Europe [14]. The ascomycete has a biotrophic and a 

necrotrophic phase. The biotrophic phase proceeds asymptomatic. The necrotrophic phase 

leads to the collapse of cells of the leaf tissue and initial small chlorotic spots resulting in 

necrotic lesions that can spread over the whole plant leave. Mature necrotic lesions form 

pycnidia in the substomatal cavities. Observations were performed 22 days after inoculation. 

2.2. Hyperspectral imaging 

The leaves were horizontally fixated in a wire frame to capture hyperspectral images. 

Hyperspectral camera ImSpector PFD V10E (Spectral Imaging Ltd., Oulu, Finland) with a 

spectral range of 400-1000 nm was used in nadir orientation to observe the fixated leaf 

samples at a distance of 42.5 cm. The images reach a pixel size of 0.15 mm. Further details on 

the measuring setup are provided in [13]. Spectral signals were smoothed by employing the 

Savitzky-Golay filter with 11centered supporting points and a third degree polynomial. To 

reduce the effect of noise in the spectral border regions bands 1-20 and 181-211 are removed 

from the data set. Overall, a test set of 500 image samples per disease and 1500 image samples 

for the healthy control group as well as the hold-out test data set were generated (data 

dimensions 64 x 64 x 148 px). Training and test data were obtained from different leaves to 

increase the reliability of model evaluation. 
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2.3. 3D-CNNs for classification 

CNNs using 2D convolutional filters are well established for image analysis [3, 15]. Due to the 

3D data characteristics of hyperspectral images, 3D-CNNs are applied (Fig. 1). They use the 

same methodological frameworks as CNNs but use 3D filters for convolution. As a result, the 

spatial-spectral characteristics are not separated but used in a joint fashion as feature for the 

following layers. 3D-CNNshave been introduced by Tran et al. [16] for action recognition based 

on video data. Nagasubramanian et al. [4] used 3D-CNNs for the classification of the disease 

stem rot and utilized saliency maps for the interpretation and evaluation of the model 

characteristics. The use of 3D-CNNs is an adaptation of CNNs with two-dimensional 

convolutional filters. For 2D-CNNs, each filter K is a 2D matrix which is convoluted with the 2D 

input image to provide the 2D output S image for the next layer. 

S(i,j) = (K∗I)(i,j) =∑m∑nI(i−m,j−n)K(m,n)   (1) 

The entries of the kernel matrix are optimized during the training phase and shared for the 

whole image. To deal with RGB images with three channels, the kernels are frequently applied 

and optimized channel-wise. For 3D convolutional layers the kernel is extended to a 3D matrix 

and the channels or bands are analyzed in a joint approach. 

S(i,j,k) = (K∗I)(i,j,k) =∑m∑n∑oI(i−m,j−n,k−o)K(m,n,o)   (2) 

The associated layers for pooling are extended in the same way. In image analysis, the 

combination of convolutional layers with dense layers has proved to be successful [3]. Using 

this approach, the relevant information is compressed in a decreasing number of nodes 

resulting in more abstract features. Following the proposed model consists of two 

3Dconvolutional layers (kernel dimensions 6 x 6 x 16 in both cases) and two fully-connected 

dense layers (50 and 4 neurons). Max pooling (2 x 2 x 2) on the convolutional output has been 

applied as usual. Dropout has been applied in two layers to prevent overfitting. Due to the 

high number of kernel parameters, dropout has been applied also between the convolutional 

layers. The last two layers can be interpreted as non-linear classification. These layers use 

vector valued input layers to generate vector valued output layers. The last dense layer has as 

many output nodes as classes to predict. Using softmax, class probabilities are assigned to 

these output nodes. For the transition of the 3D convolution part of the model to the 1D dense 
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part, a flattening operation is applied that reshapes a 3D input layer to a 1D output layer by 

simply lining up all entry of the 3D matrix. 

2.3.1. Training and model validation 

The risk of overfitting was reduced by 3-fold data augmentation, in which the spatial 

dimensions of the samples were transposed and mirrored resulting in 12,000 image samples 

for training. Due to the direct relationship to the classification accuracy, categorical cross-

entropy has been used as loss measurement for the model during the training by Adam 

optimizer. The training was performed in multiple steps in which the learning rate was 

adapted from 0.01 to 0.001 to 0.0001. Each of the stages has a duration of 100 epochs 

consisting with a mini batch size of 64 (Fig. 2). All operations have been performed with Keras 

2.1.3 and Tensorflow 1.5.0 backend. The training and validation phase has been conducted on 

a Xeon E5-1620 using two Nvidia TITAN GPUs, each with 6GB memory. 

2.3.2. Relevance indicators 

Deep learning models are hard to interpret as a single model parameter is generally not 

related to a specific meaning. Nevertheless, approaches for the visualization of filters and 

ways of interpretation arein focus of current research [5]. Class activation maps (CAM) 

localizes the relevance for a classificationwithin the data. Averaging the spectral or spatial 

dimensions across a large data set allows to extractrelevant positions in spectral or spatial 

domain. The CAM visualization has been conducted using keras-vis library 0.4.1 [17] on Intel 

Core i7-3930Ksystem with a Nvidia GTX 1050 with 4GB memory. 
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Figure 2. Test accuracy of the three consecutive training phases with Adam optimizer (lr = 0.01, 0.001, 

0.0001). 

 

5.4 Results and discussion 

3.1. Optimization phase 

The overall training was performed in approximately 23 hours. Extending the number of 

epochs before changing the learning rate to more than 100 did not improve the model 

accuracy. In accordance with [15], the model accuracy during the presented learning structure 

stagnated after approximately100 epochs in each phase but improved if the learning rate has 

been changed (Fig. 2). However, increasing the model accuracy by further learning rate 

changes was not possible. Presumably, the composition of the training data as well as the 

capacity of the model architecture has to be adapted fora significant increase in model 

performance. 

3.2. Improved interpretation by feature relevance 

The visualization of relevant regions by CAM within the images allows a plausibility verification 

of the model obtained during the training process [4]. Disease detection models should mostly 
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rely on the specific disease symptoms and their direct neighborhood to represent their shape. 

In contrast, unrelated leaf tissue or background material should be less relevant. Using CAM, 

the relevant regions are located for each of the disease (Fig. 3). For YR the elongated uredinia, 

for BR the smaller round uredinia and for STB the locations of the larger areas of necrotic leaf 

tissue are highlighted. In summary, the trained model has the striven property. Furthermore, 

the CAM approach may provide support if multiple diseases are present within one image (not 

tested). Different target classes could be differentiated and their symptoms could be located. 

3.3. Classification accuracy 

The application of the optimized model to the hold-out test data set reveals a usable accuracy 

of 88.1% (cv. Tab. 1). Thereby, the accuracy of the individual classes measured by theF1-score 

is not homogeneous. The highestF1is reached by the healthy class with 0.91, followed by BR 

with 0.89, STB with 0.86 and YR with 0.79. The performance differences can be related to the 

data set composition and symptom characteristics. The healthy class reached the highest 

accuracy as it is represented by50% of the training data and is characterized by a low spatial 

heterogeneity. The BR showed very characteristic and evenly distributed symptoms on the 

whole leaf. Image samples showing only few BR symptoms are very rare. In contrast, YR 

showed a lower number but larger uredinia of bright yellow color similar to chlorotic tissue. 

Furthermore, YR uredinia are accompanied by larger and more pronounced chlorosis, the 

characteristic symptom of STB, impeding the separation of YR and STB. The complexity of 

separating YR and STB in comparison to BR is reflected also in the confusion matrix (Tab. 1). 

 

Figure 3. Class activation maps (CAM) averaged in the spectral dimension for Yellow Rust (YR, left), 

Brown Rust (BR, center) and Septoria Tritici Blotch (STB, right). 
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Table 1. Confusion matrix of the model performance on a holdout test data set including healthy leaf 

tissue, Yellow Rust (YR), Brown Rust (BR) and Septoria Tritici Blotch (STB) samples. 

 

One aspect that has not been regarded but may has impact on the obtained accuracy is the 

optimization of the spatial scale of the input samples. The spatial scale of the image samples 

is the result of the interplay of pixel dimensions, aperture angle and observation distance. 

Depending on the data set a specific size is optimal to represent the characteristics of a 

disease. This number will differ between data sets and also classes [10]. Applied to plant 

diseases, the 64 x 64 px may represent the Symptoms much better than the large scale 

symptoms of STB and YR. 

There are two closely related challenges for the training of a disease detection model, the 

heterogeneity of disease severity in hyperspectral data and the limited amount of training 

data. Even highly controlled inoculation experiments produce image samples with very low or 

even invisible disease symptoms which tend to be misclassified to the healthy class. The 

natural variability of the classes has to be represented within the training data but wrong 

labels have the potential to reduce the overall accuracy significantly [18]. If the class variability 

in the training data varies strongly, an implicit class weighting is performed favoring the less 

variable classes. Rigorous checks on label quality as well as a compensation of deviating class 

variabilities may be of high relevance for future models. 

The ratio of training sample size and required model complexity is decisive for the 

optimization process [19]. Therefore, many prediction models in plant context face the 

problem of limited training data. To compensate they are based on available models pre-

trained on millions of images [20]. Training only the last layers and adopting the parameters 

of the convolutional layer are in many cases sufficient to adapt the model to a new task. In 

the context of hyperspectral imaging such pre-trained models are not available [20]. 

Consequently, it is required to learn from scratch with randomized initialization. The 
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availability of suitable data or pre-trained models may change in the future, but currently 

descriptions of successful configurations provide an added value. 

The interpretation of highly controlled close-up images is an intermediate research step. 

Disease detection in the laboratory may be relevant in special cases but with low impact on 

agriculture. 

Especially for wheat, the relevant scales are large fields. Hyperspectral observations in the 

field are challenging as typically illumination is less stable and a leaf fixation is impossible. The 

variable leaf angles and observation distances strongly impair the hyperspectral signal [1]. 

Moreover, a sufficient label quality in the field is hard to obtain as the covered area is typically 

too large to be assessed by a human rater. The presented model is not able to handle field 

data as the expected variability is not included in the used training data. However, it can be 

used as base model and extended by new data with a broader focus. Training a field model 

from scratch is even more challenging than in the laboratory due to the enumerated problems. 

Due to the release of data interpretation from assumptions and prior knowledge, CNNs are 

especially suited for in-field applications. In such scenarios the prior knowledge and the 

relevance of application are in imbalance. 

We believe there are two approaches to proceed with hyperspectral disease detection. In the 

first approach, all available data will be composed into a large data set. The enormous 

biological variability will be handled by the huge amount of hyperspectral data provided by 

multiple research groups. The second approach will rely on a unified sensor setup that is able 

to reduce drastically the variability caused by environmental conditions. If such a platform will 

be accepted in the research community, the focus of the obtained data can be broadened, yet 

preserving the interchangeability of models and datasets. We believe that the second 

approach is more expedient as the number of research groups working on hyperspectral 

disease detection is low and affordable and user-friendly sensors are not available for 

hyperspectral imaging data. Furthermore, deep learning is well suited for the interpretation 

of hyperspectral images and will advance the plant disease detection as it has been shown 

also in other fields. 
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5.5 Conclusion 

This study presents the application of 3D-CNNs in the novel context of differentiating multiple 

foliar plant diseases based on close-up hyperspectral images. The model allows to classify 

hyperspectral images in their raw 3D representation without neglecting the spatial or spectral 

context of individual measurements. The straight-forward model definition and training 

process reached an overall accuracy of 88.1%. The plausibility was furthermore verified using 

CAM analysis. This study provides a working configuration regarding data set characteristics, 

model architecture, training strategy and evaluation methods. This sets a starting point for 

extended applications. Thereby the potential of 3D-CNNs for greenhouse or even the field 

scenarios will be assessed by further studies. 
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6.1 Abstract 

The application of hyperspectral imaging technology for plant disease detection in the field is 

still challenging. Existing equipment and analysis algorithms are adapted to highly controlled 

environmental conditions in the laboratory. However, only real time information from the 

field scale allows to guide plant protection measures and to optimize the use of resources. At 

the field scale, many parameters like the optimal measurement distance, informative feature 

sets and suitable algorithms have not been investigated. In this study, the hyperspectral 

detection and quantification of yellow rust in wheat is evaluated using two measurement 

platforms: a ground-based vehicle and an unmanned aerial vehicle (UAV). Different disease 

developing stages and disease severities have been provided in a plot-based field experiment. 

Measurements were performed weekly during vegetation period. Data analysis was 

performed by three prediction algorithms with a focus on the selection of optimal feature 

sets. In this context also the across-scale application of optimized feature sets, an approach of 

information transfer between scales, is evaluated. Relevant aspects for an on-line disease 

assessment in the field integrating affordable sensor technology, sensor spatial resolution, 

compact analysis models and fast evaluation are outlined and reflected. For the first time, 

hyperspectral imaging observation of a plant disease experiment have been comparatively 

performed at two scales, ground canopy and UAV. 
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6.2 Introduction 

Today’s demands to agricultural cropping systems are high. Agroecosystems have to be highly 

productive while the undesirable impact on the environment has to be as low as possible. 

Resource conserving methods with a minimum of chemical input are in favor. One vision to 

approximate this goal are site-specific cropping measures. A site-specific management has the 

potential to lead to a higher or constant productivity with a constant or reduced input of 

resources [1]. One segment for site-specific-applications are plant protection measures [2]. 

The spatial occurrence of plant diseases in the field, especially in the early season, is often 

heterogeneous while in most cases plant protection compounds are applied homogeneously 

onto the crop. This spatial heterogeneity of disease occurrences might lead to diverse 

fungicide demands that are often not considered. Many diseases firstly occur in patches 

before they start spreading in the field. One approach for a site-specific application of plant 

protection measures might be the application of fungicides in patches of disease occurrence 

[3-5]. This could prevent or stop disease spreading without applying a fungicide to the whole 

field [1]. 

Spectral sensors might be tools to accomplish the perceptions of a site-specific disease 

management [6, 7]. Spectral sensors measure the light reflected from the crop canopy [1]. 

During pathogen attack and disease development on the crop leaf, diseases establish a 

spectral fingerprint in the reflected leaf signature [8-10]. These shifts of the signature can be 

detected using spectral sensors particularly in the electromagnetic spectrum from 400 – 2500 

nm [11]. Spectral sensors can be divided into hyperspectral and multispectral sensors, 

depending on their spectral resolution. The number and width of measured wavebands mainly 

characterize the spectral resolution [11]. 

Non-imaging hyperspectral sensors average the spectral information over a certain area while 

imaging sensors contain the spectral information for each pixel [7]. Hyperspectral imaging 

sensors (HIS) provide spectral information in a spatial resolution. Multispectral sensors 

typically cover i.e. the RGB-range with an additional NIR band. These sensors are less cost 

intensive and generated data is less complex but does not cover the broad spectral range like 

a hyperspectral sensor. 

Spectral sensors have been applied on different scales [12]. For field approach, a hyperspectral 

camera can be mounted to a ground-based vehicle or to a UAV [3, 1, 13, 11]. Depending on 

the interrogation and measuring setup, each scale can have advantages and disadvantages. 
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On ground scale it is possible to detect small features of a few millimeters through high 

resolution on close range while the throughput on the UAV scale is much higher with still 

higher resolution compared to satellite imagery [14, 5, 15, 16]. For field applications of 

spectral sensors, depending on the scale, the resolution or the measurement time can become 

a limiting factor. Most field applications for disease detection focused on the calculation of 

vegetation indices (VIs) [17-19] using multispectral sensors. VIs are developed by accounting 

certain band ratios to highlight one factor and reduce the impact of another factor [20]. 

Depending on the wavelength, these indices can be either indicators for crop vitality, general 

crop stress, pigment content or a specific plant disease [21, 18]. Few works showed an 

approach for disease detection using imaging hyperspectral sensors under field conditions 

[10]. This might be due to the reason that spectral measurements under field conditions are 

challenging and the complexity of hyperspectral data is higher than multispectral data [1]. The 

features of multispectral sensors might result in lower image acquisition durations and lower 

susceptibility to environmental factors during measurements. The image quality of field data 

in general is influenced by various factors. Beside suitable weather conditions, the field crop 

species and also the disease symptom type are of high relevance for successful 

measurements. The leaf architecture and disease occurrence on the plant mainly determines 

the detectability of the disease. Disease presence on lower plant and leaf levels result in a 

decreased reflected signal. Disturbing weather conditions such as wind and rain can easily 

impair spectral images obtained in the field. One elusive and eminently important factor is the 

illumination. Changing illumination conditions over time, caused by clouds or solar altitude, 

can lead to uninterpretable data, because spectra of different images cannot be compared 

with each other anymore [3, 1, 22]. The detection of diseases on different leaf levels is also 

challenging because of inhomogeneous illumination conditions through the leaf altitude in the 

crop stand and upper leaves that cast shadow. Also these leaves might be in different 

developmental stages and a senescent leaf has to be differentiated from a healthy green or a 

diseased leaf. The leaf angle to the camera influences the spectral signal. Not least the image 

quality is essentially determined by the spatial resolution of the used sensor system. Small 

symptoms of a disease can only be visualized when the spatial resolution in combination with 

the measurement distance is appropriate for the desired data quality. 

So far various field measurements on the ground canopy scale of cereal crops focused on the 

detection of biotrophic diseases such as yellow rust [3, 13, 23, 10, 24, 25], brown rust [18, 26] 



6 In-field detection of yellow rust in wheat on the ground canopy and UAV scale 

114 
 

and powdery mildew of wheat [19]. This might be due to the fact that biotrophic diseases 

appear more likely on the upper leaf layers because of wind distribution and a preference for 

fresh and healthy leaf tissue [27]. Necrotrophic diseases are most severe on lower leaf levels 

and therefore more difficult to detect by remote sensors. A detection and quantification of 

septoria tritici blotch with a hyperspectral radiometer was shown in the field [28]. 

The analysis and interpretation of sensor data is crucial for future implementation. Promising 

techniques are algorithms from machine and deep learning, in combination with suitable 

sensors and measurement platforms. These methods are particularly suitable to cope with the 

amount of wavebands provided in hyperspectral data and can be used for the detection of 

plant diseases [29-32, 7].  

This work presents a new approach for field trial studies using innovative HIS and machine 

learning for a pixel wise detection of crop diseases. A winter wheat trial was conducted in the 

vegetation period of 2018. The crop was infected with Puccinia striiformis, the causal agent of 

yellow rust (YR). Weekly hyperspectral measurements were performed on the ground canopy 

and the UAV scale to monitor the spectral dynamic of crop stands during the vegetation 

period. Measurements were performed on a mobile field platform in a distance of 50 cm to 

the crop canopy and with a UAV drone in 20 m height over the plots to work on and compare 

different scales. Hyperspectral images were captured using a line scanner attached to a linear 

stage in a measurement booth and a frame based hyperspectral camera for UAV applications. 

Field data were preprocessed and normalized and then analyzed using the supervised 

classification methods Spectral Angle Mapper (SAM) and Support Vector Machine (SVM) to 

detect yellow rust of wheat. Additionally, a feature selection was performed on hyperspectral 

data to verify the potential for a waveband reduction from hyperspectral to multispectral data 

for disease detection. 

 

6.3 Materials and methods 

Field trial layout 

In the vegetation period 2017/2018 a field trial with winter wheat was conducted at trial 

station Campus Klein-Altendorf 50°37’31.00’’N, 6°59’20.54’’E (Rheinbach, Germany). In 

2016/2017 a first field trial was performed for specifying the measuring setup and routine 

(data are not shown). The cultivars JB Asano (Limagrain GmbH, Edemissen, Germany) and 

Bussard (KWS SAAT SE, Einbeck, Germany) were sown on 26.10.2017 with 320 kernels/m². 
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Field emergence was on 14th November 2017 while harvest took place on 24.07.2018. JB 

Asano was chosen because of a susceptibility to YR. The field trial was designed in 10 

treatments per cultivar with two repetitions resulting in 40 plots (plot size: 3x7m). The plot 

design was randomized within each cultivar. With a change of the cultivar after each plot the 

direct proximity of plots with the same cultivar was avoided. This was designed to arrange the 

field trial into two long rows of plots with cultivars alternating after each other in 20 plots per 

repetition (Fig. 1). The treatments within one cultivar were randomized. Two fertilizer 

intensities (160kg N/ha and 30kg N/ha) were applied per cultivar. For cultivar Asano, two 

treatments were used for additional inoculation with YR. The whole field trial was aligned from 

North-West to South-East direction. 

 

Figure 1. Field trial layout (RGB-stitch from UAV-images) at the research station Campus Klein-

Altendorf (Rheinbach, Germany) of winter wheat varieties Bussard and Asano in 2018 with treatment 

declaration, and measurement strategy. The trial was designed in two long rows of plots to reduce the 

amount of turns and keep continuous measurements. 
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Inoculations 

Additional inoculations of Puccinia striiformis were performed in April and May (25.04.2019; 

12.05.2019). To establish high disease infections, the inoculations were repeatedly performed 

by applying a spore suspension on the plants immediately after rainfall incidences. 

Inoculations were timed to forecasted infection risks after the xarvio field manager (BASF 

Digital Farming GmbH, Münster, Germany). The spore suspension was applied with a garden 

pump sprayer and contained 8x104 spores/ml. Two liters of spore suspension were 

homogeneously applied over one plot. 

Visual disease ratings 

Visual disease ratings were performed weekly from calendar week 17-23. One plot was rated 

two times at the same locations where hyperspectral measurements took place. Disease 

incidence was assessed by the eye of a human rater. The diseased leaf area (%) was rated on 

15 leaves per leaf level. Additionally, the growing stage and the amount of visible leaf area of 

each leaf level in the hyperspectral image (from top view) was ascertained. 

Crop stand and disease development 

The vegetation in 2018 started late in March and was denoted by a drought that especially 

affected the length of the growing season and lead to an early harvest in July (Fig. 2). Septoria 

tritici blotch, tan spot and powdery mildew were insignificant during the complete growing 

season. YR could establish a significant infection on cultivar Asano and measurements were 

not aggravated due to mixed infections. First YR symptoms were found in mid of April and 

were based on natural infection incidences. Until beginning of May (BBCH 31) a serious 

increase of YR was rated. Warm days and cold nights seemed to favor infection incidences 

through dew formation. Until mid of May (BBCH 37-39) YR was the dominating disease. 
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Figure 2. Schematic overview of the course of vegetation period 2018. For each calendar week, the 

actions are presented and disease occurrence of yellow rust is shown. Weekly assessments and 

measurements were performed during the vegetation period (CW = calendar week). 

Measurement platforms 

Field platform Phytobike 

The measurement platform based on a square steel construction with four wheels, provided 

by Forschungszentrum Jülich (Jülich, Germany), covers 3-meter-wide experimental plots 

(Figure 3). Sensors for reflectance characteristics as well as localization systems, power supply 

and control of the sensors from a control laptop were mounted to the steel frame. All sensors 

were variable in height by a moveable aluminum profile construction. By this, the sensor 

platform can be adapted to the growth stages of the plants and a constant distance between 

sensors and crop canopy is enabled. With a weight of around 150 kg, the construction 

approaches the limit of platforms without steering, which can still be moved by the physical 

strength of two people. 

As a hyperspectral sensor, the Specim V10E line camera (Specim Oy, Oulu, Finland) was used. 

The motion required for the Specim V10E camera was realized by a linear stage (Velmex, 

Bloomfield, USA). Measurements were triggered via the control computer allowing a flexible 

reaction to changing light situations by an adapted integration time. The Specim V10E camera 

measured the electromagnetic spectrum in a range from 400 to 1000 nm with a spectral 

resolution of 2.73 nm. Sunlight was used as natural light source. A canvas measuring cabin 

was constructed to avoid shadow cast by sensors and equipment of the Phytobike. 
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UAV measurements 

The UAV allows to perform overview images of whole experiments or at least of parts of the 

experiment. Recent technologies enable hyperspectral imaging at UAV scale. We combined a 

UAV DJI Matrice 600 (Da-Jiang Innovations Science and Technology Co., Shenzen, China) with 

a Rikola hyperspectral camera (Senop Oy, Oulu, Finland) (Fig. 3). The Rikola camera measures 

the reflected light in a range from 500 to 900 nm. The measured wavebands were selectable 

and spectral resolution was set to 7 nm using 55 wavebands. With flight times of around 20 

minutes, the whole experiment was captured within one battery capacity. For plot 

observations, 20 m flight height has been selected and the UAV hoovered over each plot 

center for a duration of 10s. Sunlight was used as natural light source. 

 

Figure 3. Construction plan of the Phytobike (top left) and the final appearance in the field including 

the cotton diffusor (top right). The used UAV system consisting of a DJI Matrice 600 and a Rikola 

hyperspectral camera (bottom left). Normalization was performed using a 50 % grey reference panel 

(bottom right). 
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Data preprocessing 

This study focused on the information about relevant wavebands as the central outcome. We 

used a dataflow to assess the capability to transfer this information between observation 

scales (Fig. 4). There, we built two datasets for yellow rust prediction, a classification dataset 

on field scale and a regression data set on UAV scale. Multiple prediction models and feature 

selection results were derived. In the final step, models were optimized using the selected 

features, whereas feature section information were also exchanged. The resulting four 

classification models with selected features, two on field scale (features selected on field scale 

and on UAV scale) and two on UAV scale (features selected on field scale and on UAV scale), 

were evaluated. This allowed to evaluate the value of feature selection and, more specifically, 

the value of feature information obtained at a different observation scale. 

 

 

Figure 4. Underlying workflow of data assessment to compare different prediction algorithms and 

evaluating the value of information about selected features at different scales. 
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Spectral preprocessing 

The derivation of the physical surface property reflectance from observed intensity 

observations is an essential part of hyperspectral image processing. The normalization 

procedure has to be adapted to the measurement platform and is based on a spectral 

reference panel with a known homogeneous reflectance in the observed wavelengths. At all 

scales, the following equation was applied to calculate the Reflectance R from the observation 

Im, reference Imref and the corresponding dark currents DCIm and DCref. In the field, the 

additional DCref has been omitted due to practical reasons.  

𝑅 =
ℑ − 𝐷𝐶ℑ

ℑ𝑟𝑒𝑓 − 𝐷𝐶𝑟𝑒𝑓
 

On the ground canopy scale, a 50 % spectral reference panel has been measured within each 

image of the line scanner. A separate dark current has been observed for the Specim V10E 

camera before every image. Due to practical reasons, UAV flight sequences were started with 

the acquisition of a single Dark Current and one image of the reference panel immediately 

before and after flying the frame based Rikola camera over the wheat plots. Image quality 

always suffers from motion of the object to be measured or motion of the sensor. To avoid 

this images were taken in conditions as calm as possible on the ground canopy scale. The 

Rikola camera was hoovered for at least 10 images over the reference panel to ensure that 

image quality is sufficient for data normalization. The use of cross sensor normalization, e.g. 

by using a separate spectrometer that is continuously logging the incoming light intensity has 

been tested but was not successful due to a deviating response characteristic between the 

different sensors. 

To remove high frequency noise at the spectral border regions of the Specim V10e, the bands 

1-20 (400-450 nm) and 181-211 (910-1000 nm) have been excluded from further analysis 

resulting in 161 used spectral bands. In addition, a Savitzky-Golay filter using 15 centered 

points and polynomial of degree 3 has smoothed the data of the Specim V10e.  

Data normalization 

The plant geometry can perform severe distortion due to varying leaf angles, leaf distances to 

the camera and specular reflections on particular parts of the leaves. To compare the 

reflectance characteristics omitting the additive and multiplicative factors, the Standard 

Normal Variate (SNV) has been developed [33]. It is able to remove scaling factors due to 
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varying distance or leaf angle as well as additional factors like specular reflection, e.g. on leaf 

tips. The normalization was performed both on ground canopy and field data. The SNV 

representation was calculated per spectrum S and focuses the shape of the spectral curve: 

𝑆𝑁𝑉 =
𝑆 − 𝑚𝑒𝑎𝑛(𝑆)

𝑠𝑡𝑑(𝑆)
 

 

Prediction algorithms 

Multiple algorithms can perform predicting a class or continuous value based on features of a 

sample. In general, they use a vector representation as input. In this study, the classifiers 

Spectral Angle Mapper and Support Vector Machine as well as the regression algorithm 

Support Vector Regression are applied on ground canopy data (taken with the phytobike). To 

train and evaluate the models, four images of one measuring day were annotated to be used 

as training data and four images were annotated to be used as test data. The amount of 

annotated pixels differed in the different images due to natural heterogeneity in the crop 

stand. Pixel numbers were at least several thousand for each class up to several hundred 

thousand pixels for all classes in one image. Based on the huge amount of annotated pixels, a 

model was trained on a subsampled data set, to make it trainable and to rebalance the classes. 

With the exception of the water class, all classes are trained with 1,000 samples per class after 

subsampling of training data. The spectral angle mapper (SAM) was used because in literature 

it is described to work resiliently under inhomogeneous light conditions [34]. The 

development of the classification model is easy and fast. The support vector machine (SVM) 

was used because of the fact, that in theory it is trained on the whole dataset and considers 

the spectrum of each pixel as training data. Vegetation indices (VI’s) were used because 

various published works focused on VI’s as tool for disease detection. VI’s can be seen as 

established representatives for optical measurements of plant parameters. The models were 

trained using three data representations: full spectra, SNV normalization and 20 spectral VI’s. 

The results can be compared to a SAM that represents the base line accuracy. The comparison 

is performed on the YR test data from 23rd May 2018. The evaluation of different feature 

representations shows a small advantage of SNV normalizations, whereas it is treated as 

standard representation in the following. As performance measures, we applied the overall 

accuracy using six classes for the model, combining the background and the old leaves/straw 

class. Furthermore, we evaluated the F1 score (Table 1) for the class disease providing a 
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homogenized combination of precision and recall. The F1 score declares the amount of pixels 

of one class that is correctly classified into this class after the formula 

2*((precision*recall)/(precision+recall)). The two performance measures correspond in the 

tendency, however the F1 score decreases faster as the large amount of background pixels 

stabilizes the overall accuracy. 

Spectral angle mapper 

The SAM is a prediction algorithm, developed for an efficient classification of high dimensional 

spectral data. The assignment is based on the angle between the spectra to classify and 

reference spectra, treating a spectrum as high-dimensional vector [34]. The spectrum to be 

classified was assigned to the reference spectrum/class with smallest angular distance. In 

addition, a threshold prohibits an assignment of spectra with a large angular distance.  

Support vector algorithms 

Support Vector Machine classification (SVM) as well as Support Vector Regression (SVR) are 

established machine learning methods that have proven to deal well in situations with many 

features but a very limited number of samples [35]. This is a common situation in 

hyperspectral data analysis and following it is a suitable approach for hyperspectral remote 

sensing as well as close range imaging. A critical point for the application SVM and SVR is the 

selection of the hyper parameters Cost C, kernel parameter γ (SVM) or C and complexity 

control ν (ν-SVR). They were selected by grid search combined with a cross validation. Grid 

points were 10−5 … 1010for C, 10−8 … 102 for ν and 0.05 … 0.50 for n. Optimization algorithm 

was SMO and as implementation LIBSVM 3.18 has been used with Matlab [36].  

Vegetation indices 

On hyperspectral images on ground canopy data 20 VI’s were tested to visualize crop 

heterogeneity and to detect yellow rust in the field. The composition was used because it was 

successfully tested as indicator for crop vitality [37]. The composition of VI’s was chosen 

according to [37]. Due to the limitation of available bands of the Rikola camera, for UAV data 

only 16 VI’s were used and the ARVI, mRESR, mRENDVI and SIPI were excluded. 

Model evaluation 

To compare the performance of the different models on the respective data sets different 

measures have been applied depending on the model type. All measures have been calculated 
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on test set that has not been used in training. For classification models, that determine the 

discrete classes y as a function f(X) of the data X, the accuracy is defined as the percentage of 

correctly classified data points. The f1-score in contrast, is based on the precision and recall of 

each class. In Regression tasks with continuous target variables, the coefficient of determination 

R², Correlation and Root Mean Square Error (RMSE) is applied. Due to the limited amount of 

data we applied the Leave-one-out cross validation to generate the test predictions. This 

procedure learns a model on the whole data set except one sample. This is repeated for all 

samples in the data set. 

Feature selection 

There are multiple approaches for feature selection, feature subset selection and feature 

weighting. Filter approaches like Relief are very fast and provide a weight for each feature. In 

contrast, wrapper approaches have the big advantage to deal well with high levels of 

redundancy and to select the best subset with minimal size [38]. Major drawback is the high 

computational load. Feature selection at all scales (on ground canopy and UAV images) has been 

performed by a Wrapper approach comprising a SVM or SVR, respectively. A sequential forward 

feature selection (Statistics Toolbox, Matlab2013a) has been used whereas the called criterion 

function minimizing the prediction error has been implemented based on LIBSVM 3.18. For the 

SVM the accuracy has been maximized and for the SVR the RMSE has been minimized. Due to 

the limited number of samples in the UAV dataset a leave one out cross validation has been 

performed to generate the test predictions to calculate the criterion. 

Spatial resolution as key parameter for disease detection 

Beside relevant wavelengths, the required spatial resolution or ground sampling distance 

(GSD) is highly important for the definition of a sensor capable to detect different wheat 

diseases in the field. Based on the Test and Training data sets, simulations have been 

performed where the test data has been extracted from subsampled spectra by a factor of 2, 

10, 20 and 100. A knn and an aggressive subsampling approach were compared to visualize 

the effect of different annotation strategies on the F1-score for the detection of YR. 
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6.4 Results and discussion 

Supervised classification of hyperspectral pixels at the ground canopy scale 

One approach to analyze the hyperspectral data on the field scale is the pixel-wise 

classification into usual pixel (background, straw, healthy leaf tissue) and in disease specific 

symptoms. In the field experiment 2018, YR had a significant disease severity and classifiers 

for this disease were derived.  

The use of 16 VI’s reached a reasonable but not competitive performance. However, it has to 

be noted that we compare 161 features to 16 features meaning a significant reduction in 

dimensionality. The results can be integrated in a later discussion of the various feature sets 

obtained by feature selection. 

Based on these results, SVM SNV (Table 1) has been selected as most appropriate approach. 

A visual comparison of the SAM results and the SVM SNV result is shown in Figure 5. Significant 

differences are apparent. The SVM detects much more senescent leaves, e.g. all leaves from 

the lower leaf levels whereas the SAM assigns these to the background or the healthy leaves. 

The SVM is more sensitive for ear detection that cause major problems in the SAM image, 

where they are partly assigned to YR. Overall, both approaches are sensitive to YR but the 

SVM is much more accurate in the very bright image parts as well as the darker background 

part while in the SAM classification the class YR is overrepresented. The visually most 

significant aspect is the large number of blue pixels in the visualization of the SVM result. YR 

disease was present at all leaf levels and led to an early senescence in lower leaf levels. 

Table 1. Comparison of evaluation parameters obtained on test data for different data representations 

and prediction algorithms on ground scale for Support Vector Machine (SVM) and the Spectral Angle 

Mapper (SAM). 

 SVM Raw SVM SNV SVM Indices SAM 

Accuracy 91.9% 92.9% 90.2% 81.4% 

F1 score disease 83.2% 84.0% 76.4% 48.3% 
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Figure 5. Visual comparison of representative Spectral Angle Mapper (SAM) and Support Vector 

Machine Standard Normal Variate (SVM SNV) results for the same ground-based image of one 

representative measurement location of a plot inoculated with YR and the RGB visualization of the 

hyperspectral camera. Classes were generated from manual annotation of train and test data. 

The classification models have been validated following two approaches: (1) Pixel-wise 

classification of the hold-out test data set consisting of manually annotated pixels of new 

images of separate plots and (2) prediction of pixel-classes of all images obtained at a 

respective day and comparing the total % disease class from all plant pixels to the visual 

assessment done by the expert (Fig. 6). (1) results in a confusion matrix allowing to calculate 

multiple performance measures such as the overall accuracy, the sensitivity and the recall, 

whereas (2) provides R²-value, correlation coefficient and a regression plot. Table 1 shows the 

overall accuracy and the F1-score for the different classification methods. 



6 In-field detection of yellow rust in wheat on the ground canopy and UAV scale 

126 
 

Presumably, due to light reflections and transmission or a deviating weighting of the different 

canopy levels, the SVM prediction overestimates the ratio of diseased pixels. To compensate 

this, a linear regression model has been applied. However, deviations between the predicted 

disease severity and the visual assessment can have various reasons, e.g. the section of the 

plot observed by the sensor does not represent the true status that is evaluated by the visual 

assessment. The viewing angle produces a variable composition of different leafs and leaf 

layers in the field of view of the human and the sensors. Furthermore, the visibility of lower 

leaf levels is low for imaging system from the top and more accurate if the human rater can 

go deep into the crop stand for individual leaf disease rating. Further points are that the visual 

assessment produces a single value averaging the affected leaf area. At repeated disease 

assessments with multiple experts, different deviations have been observed depending on the 

literature [39, 40]. The method of disease detection is subjective to the individuals performing 

the assessment. Another prime factor for deviations and classification inaccuracies is the 

biological heterogeneity. This has to be considered as highly dynamic within one field, one 

plot, and one location and even on different leaf layers and single leaves. The biological 

heterogeneity can be affected by many factors e. g. the leaf color and status, stem elongation 

(distance of leaf layers), the density of the canopy and other biological growth processes. 

 

Figure 6. Scatter plot of the relation between visual assessment and predicted disease ratios for Yellow 

rust on 23rd of May 2018 before and after application of a linear calibration model. The calibration 

model has the purpose to compensate scale differences in the prediction values. 
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Evaluation of hyperspectral UAV observations using a filter-system hyperspectral camera 

To characterize the reflectance characteristics of field plots, spectra of the central 4 x 2 m of 

each plot have been averaged. Intra-plot variations were neglected. Multiple traits have been 

predicted with reasonable accuracy based on SVM and SVR analysis of the 55 recorded bands 

from 500-900 nm. Tab. 2 shows the obtained performance parameters based on a SNV 

representation and the integration of all 55 bands.  

Using the SVR approach, a prediction of the disease severity in percent was possible with 

reasonable accuracy (Fig. 7). The interpretation of this result has to take into account that a 

value from the visual assessment might not represent the average plot value because diseases 

may occur at zoned locations in the plot and assessment locations may be in these spots or 

not. 

 

Figure 7. Prediction results of a YR infestation obtained by a leave-one-out procedure of the Support 

Vector Regression (SVR) on the UAV scale. Each point represents a plot observation and its color the 

observation date (DD-MM). 
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Table 2. Performance values for different SVM and SVR models predicting the treatments of the wheat 

field experiment based on UAV observations. 

TRAIT/TREATMENT PERFORMANCE 

Fertilizer level Accuracy = 82.3% 

Fungicide  Accuracy = 91.5% 

Fungicide + Fertilizer level (4 classes) Accuracy = 71.4% 

Disease Detection (severity > 0) Accuracy = 90.0% 

Disease severity estimation Correlation = 70.6% 

 

Selection of relevant features at different scales 

One of the main motivations for the application of hyperspectral imaging technology is the 

potential to find the most relevant wavelength for a specific task and to subsequently design 

a specific sensor. [41] showed that specific wavelengths might be useful to identify certain leaf 

diseases in sugar beet. In wheat, VI’s are described that are capable in detecting brown rust 

[18]. This shows that a selection of specific wavelengths can be specific for one disease. We 

applied the introduced technique to data sets on ground canopy and UAV scale and derived 

important wavelength for the detection of disease symptoms as well as the prediction of 

disease severity.  

Ground scale 

Feature selection on field scale has been performed for the detection of YR. The models were 

trained on a homogenized sample of training data and validated by a five-fold cross validation. 

The final accuracy has been determined on the hold-out test set. To reduce the computational 

complexity, the feature has been regularly subsampled by a factor of 5. The resulting 33 bands 

have been ranked and an optimal band number has been selected (Fig. 8).  

For YR an optimal number of 16 features reached 91% accuracy. However, to allow a 

comparison with the UAV scale selection, we selected the best 10 features providing an 

accuracy of 88%. The waveband of 780 nm in the NIR is the most important for YR detection. 
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The next two bands are also in in the NIR, followed by a band in the blue/green spectral region. 

Less important is the NIR >800 nm and the red part of the spectrum. Various works showed 

that VIs using wavelength out of these spectral regions can be successfully used to detect rust 

diseases of wheat [17, 18, 25] or even for necrotrophic diseases of other crop plants such as 

groundnuts [42]. In literature it is described that pigments and water influence the absorbance 

and reflectance of light with plant interaction [43-45]. The measured reflectance signal is 

always a mixed signal and the result out of complex biochemical interactions [43, 46, 47]. The 

visible region is mainly influenced by the light absorption of leaf pigments [48]. Healthy wheat 

canopies appear dark green because of high amounts of chlorophyll in the leaves [10]. With 

YR infection in the leaf tissue a degradation of chlorophyll happens while the urediniospores 

of rust fungi are pigmented through the formation of carotenoids [49]. This could explain the 

importance of certain absorption or reflection bands of pigments for YR detection in the visible 

range. The effect of chlorophyll degradation and formation of chlorosis and a thereof resulting 

detectability for the disease is also described for septoria tritici blotch [28]. The NIR region is 

strongly influenced by the leaf and cell structures, the architecture of the canopy and water 

absorption bands [43, 50]. High YR incidence leads to an early senescence of leaves in the 

upper but particularly in the lower leaf levels. This changes the appearance of the crop 

architecture, reduces the vitality of leaves and water content and could result in the 

importance of specific wavebands for YR detection.  

UAV scale 

For the feature selection on UAV scale the detection and quantification of YR infections has 

been investigated. Using the UAV and the filter-system Rikola hyperspectral camera, the mean 

spectrum of the central part of each plot has been measured at multiple days. The first four 

dates have been used as later a suitable disease estimation has not been possible due to the 

starting senescence.  

The optimal number of features was 11 features, reaching an RMSE of 17.9 (i.e. to the visual 

assessment at the ground of around 70 %) (Fig. 8). Here the most important bands were 830 

nm and 510 nm followed by NIR bands. Without significance are the red region 630-700 nm 

and the beginning of the NIR 700-800 nm. The selection of the spectral border band would be 

a sign of fitting to noise if the Specim V10E line scanner has been used, but here the Rikola 

camera has been used without an increased noise at the spectral border regions.  
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Figure 8. Result of the feature selection for the classification of YR in the field on ground (top) and 

UAV (bottom) scale. The reached accuracy for the different amounts of features (left) and the 

ranking of the inclusion within the feature subset (right). 

 Feature selection results for further traits are shown in Table 3. Also here, important bands 

are in the green and NIR region which might be triggered by the same biochemical reactions 

as on the ground scale. However, for the fertilizer, fungicide and the combined treatment the 

spectral region 600-750 nm had a higher relevance. 
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Table 3. The six most important bands for selected plot traits at the UAV scale and ranking of the 

wavebands (in nm) for importance of feature selection beginning with the highest. Selected traits: 

Fertilizer (Fert), fungicide (Fung), fungicide + fertilizer, yellow rust (YR) detection, yellow rust 

regression. 

Ranking Fert Fung Fert+Fung YR 

Detection 

YR 

Regression 

1 767 727 734 797 832 

2 725 804 887 881 510 

3 648 762 545 601 867 

4 557 648 559 706 874 

5 627 594 517 874 587 

6 704 767 748 594 594 

 

Cross-scale interpretation 

The cross-scale interpretation reveals significant inconsistencies but also parallels. The 

inconsistencies are related to sensor characteristics as not always the same sensor has been 

applied. Furthermore, additional factors at the different scales (leaf geometry, mixed pixels 

with background) are included at the higher scales that may rely on further bands to be 

regarded properly by the prediction model.  

The number of required features varies at the different scales. In a separate experiment (data 

not shown) with fixated leaves in the laboratory, a perfect differentiation was possible using 

two bands. Geometry is also not relevant as the leaves are fixated in horizontal position. The 

highest number is required on field scale by 18 on average as here the complex geometry and 

complex scattering effects in the canopy affect the recorded signal. At the UAV scale the 

geometry is the same but due to the physical smoothing by blur and high pixel size, the signal 

has been simplified again. There an optimum is reached at 11 omitting the spectral region 

620-820 nm. 

The red region had a low relevance for the classification of YR on the field and UAV scale. This 

might be due to the fact that urediniospores P. striiformis appear more yellow than red (due 

to carotenoid composition) and do not show strong reflection in the red region. The NIR region 
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had an increased relevance on the UAV scale. Presumably this is related to the simple 

separability based on pigments on the lower scale whereas in the field the leaf geometry 

distorts this signal and the NIR region is required to compensate this effect.  

The differences and parallels of the different feature sets motivated the cross-scale 

application of feature sets. It is assumed that information about optimal feature sets can be 

an advantage also at a different scale. Therefore, the feature sets for the assessment of YR are 

exchanged between the ground scale with the Specim V10 and the UAV scale with the Rikola 

hyperspectral camera. To allow a comparison of the different feature sets, the number of 

included features is fixated to 10 based on the previous feature selection runs (Fig. 8). 

Evaluation at ground and UAV scale are performed following the same principle as in the 

feature selection. Table 4 shows the performance of multiple feature sets. The highest 

accuracy is reached by the full data set, followed by the 16 VI’s. The feature sets with 10 

features reached a slightly lower but in direct comparison very similar accuracy. The results 

indicate that the complex situation in the wheat canopy request for more than 10 features. 

The good performance of the equidistant feature set can be explained by the resemblance to 

the 10 selected features that are nearly equidistant distributed over the spectral range. Both 

feature sets apply wavebands out of the same spectral regions. Furthermore, the performance 

of the field selected feature set points to the heterogeneity of reflectance characteristics, even 

in the same treatment group. The test and training data have been extracted from separate 

image sets. Following, this feature set has been optimized on the training data but has no 

advantages compared to the equidistant feature set on the test data. 

The comparison of different feature sets shows the potential positive results of a feature 

selection to a higher degree. The highest accuracy was obtained by the feature set optimized 

at UAV scale whereas the feature set from the ground scale obtained an even lower 

performance than the equidistant feature set (Table 5). For the UAV data set a separation in 

test and training data was not possible due to the much smaller data base. Here, a leave-one-

out cross validation has been applied to obtain R² and correlation coefficients. The obtained 

feature set may be more adapted to the evaluation procedure at the UAV scale compared to 

the ground scale. The UAV evaluation shows that it is possible to slightly increase the accuracy 

by feature selection compared to the full data set and also that uninformed subsampling does 

not lead to optimal results. 
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Table 4. Performance of the different feature sets for the YR detection based on ground observations. 

Ground class. All UAV select Field select Equidistant  VI 

# feature 210 10 10 10 16 

Acc. 92.9% 87.4% 88.9% 89.2% 90.2% 

F1 disease 0.84 0.694 0.751 0.732 0.764 

 

Table 5. Performance of the different feature sets for the YR regression based on UAV observations. 

UAV regression All UAV select Field select Equidistant  

# feature 55 10 10 10 

R² 0.63 0.69 0.57 0.61 

Corr. 79.4% 83.0% 75.5% 78.1% 

 

However, the data characteristics at the ground canopy and the UAV scale are so disparate 

that an advantage of feature set transfer is doubtful. The transferred feature set reached a 

lower performance even compared to the uninformed equidistant sampling. There are 

multiple factors contributing to the deviating data characteristics expressed by different 

demands to the feature sets. One of the main points will be the use of different sensors with 

different measurement principles, each adapted to its measurement scale. The noise 

characteristics of the ground camera shows an increased noise level at the spectral border 

regions and a noise optimum in the red range. The UAV camera shows a homogenous 

measurement quality for the whole range, despite some artifact bands around 630 nm, where 

optical refractions seem to occur at a beam splitter. The suitability of a spectral region can be 

significantly reduced by such sensor characteristics but if the effect occurs only at one sensor, 

the optimal feature set changes. Further points regard the implicit spatial smoothing if a larger 

area is captured by a single pixel. At the ground scale, the feature set will directly point to the 

reflectance characteristics of the spores, whereas at the UAV scale the reduced vitality and 

even morphological changes have to be taken into account. In contrast, the close-range 
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observations at ground scale are dominated by the leaf geometry, more specific by leaf angle 

and position within the crop stand. Therefore, the analysis model has to integrate these 

factors to enable predictions as robust as possible against the plant geometry. At the UAV 

scale, most of the pixels provide a mixed signal of multiple leaves and in addition, the analysis 

is performed on the mean spectra of each plot. Most of the geometric effects average out as 

the characteristics of hundreds of leaves are averaged.  

In general, there is no single waveband for individual diseases, respectively, but broad regions 

(blue, green, red, NIR I (700-800 nm), NIR II 800-1000 nm) with a varying relevance for the 

different diseases. This is tightly coupled with the sensor characteristics. The Rikola camera is 

not able to measure the blue and NIR (900-1000 nm) but provides stable noise conditions over 

the whole measurement region. The Specim V10E camera has a larger measurement region 

(400-1000 nm) but the spectral border regions have a much higher noise level. 

Spatial resolution as key parameter for disease detection 

The un-sampled data have a GSD of approximately 0.4 mm (for Specim as well as Rikola). The 

UAV observation (20 m flight height) have a GSD of approximately 8 mm (Fig. 9). 

This approach does not regard the adaptation of the model to the new classification scale. By 

retraining the prediction, the accuracy may be improved as also here the smoothing affects 

the data characteristics. However, even then the disease specific information will vanish at a 

certain level. We omitted this evaluation as the performance measures of the retrained 

models are not comparable anymore as the amount of training data declines drastically, e.g. 

to around 100 samples for YR at higher subsampling scales. 
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Figure 9. Visualization of spatial subsampling effects for the four investigated subsampling levels 

(images) and the effect of scale on accuracy and F1-score for the two different approaches knn (nearest 

neighbor) and an aggressive for subsampling the annotation. 

 

The investigations allow to define a minimal sampling distance at which the mixed information 

does not allow to predict plant diseases any more. Without retraining the model, the accuracy 

decreases at subsampling factors of 10 and 20, respectively. A low subsampling of 2 seems to 

have no negative effects. Presumably, the included smoothing removes border cases and 

outliers which are hard to classify correctly. At higher subsampling levels, more and more 

mixed pixels occur where the aggressive label subsampling tends to extend the image regions 

assigned to a class. Following the effect is here more severe. The accuracy of more than 50% 

at the final state is related to the dominant background which provided a significant majority 

of test data at the high subsampling levels. It is not related to the ability to predict the 

presence of YR. This is performed by the F1-score, a measure to quantify the performance of 

a multi-class prediction model on class level. 

Also in this performance measure, the quality decreases at subsampling factor of 10. 

Surprisingly, the F1-score increases to near to optimal numbers at a subsampling factor of 100. 

Discussing this fact, it has to be noted that at the highest subsampling factor only 119 YR 
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samples are included in the data set, which are all correctly classified. Maybe this is related to 

the accuracy on UAV scale where the majority of geometric effects is averaged out. This point 

has to be evaluated in further investigations but it seems that subsampling by a factor of 100 

removes the leaf structure completely, whereas at a lower subsampling factor the leaf 

structure is still apparent but more and more effects of mixture become present. Without any 

leaf structure the classification problem is simplified to the presence of YR within this part or 

even within the image. At low level disease severities this will cause major problems but here, 

the test data has been selected to show clear disease symptoms. 

Optimal sensor system for plant disease detection 

Two sensor systems have been evaluated, both showing strengths and weaknesses. In direct 

comparison, the flying sensor system has strong advantages in usability, throughput and 

commercial viability. The ground sensing system is much more sensitive as a single symptom 

with a diameter of a few mm can be recorded. Such a spatial resolution can be obtained by 

the flying system only at a flight altitude of around 1 m above the canopy. However, with the 

used system it is not possible, as the downstream from the rotors would strongly move the 

canopy. Alternatively, an optical zoom has to be applied presumably reducing the light flux as 

well as the throughput of the overall system. This could be compensated by an increased 

spatial resolution of the sensing array. 

Summarizing, based on the experiences made during the presented study, we propose to 

focus on a UAV flying in low height in combination with a frame-based spectral camera sensing 

in around 15 equally distributed bands. A tunable band configuration would be an alternative 

that uses bands optimized for every single disease scenario, i.e. crop species, crop 

developmental stage, assumed disease setting, assumed symptom maturity. The spatial 

resolution should be at around 1 mm GSD, a value that allows to detect small symptoms but 

neglects high-frequency noise caused by the complex surface structure of plants [51, 29]. 

6.5 Conclusion 

This study investigated the detection of plant diseases using hyperspectral cameras at ground 

and UAV scale. In this context, the appropriate data analysis is decisive to reach suitable 

results. Supervised classification has the advantage to separate disease related signals from a 

huge amount of natural biological, geometrical and sensor-related variability within a 

hyperspectral image of a crop canopy in the field. We proved that hyperspectral imaging in 
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combination with supervised classification and regression showed good accordance to visual 

assessment at the ground. This allows to address questions regarding the transfer of 

information between different scales and sensors. We showed that a feature selection is able 

to increase the prediction accuracy if it is performed on the analyzed data set. In contrast, 

scale or sensor transfer of selected feature sets was not successful and even less predictive 

than an uninformed regularly sampled feature set. This highlights the importance of a precise 

specification of a prediction task by representative data samples. Deviations in data 

characteristics can significantly impair the performance of a data analysis pipeline or a tailored 

sensor in real-life applications.  

This study sets the basis for ongoing research. New, upcoming sensors fulfilling the demands 

defined in this study may cope also with the current disadvantages. Consequently, there is a 

high probability to realize the defined flying sensor system with high resolution spectral 

camera, computing capabilities and self-localization. Adapted legal conditions would allow an 

integrated system of field managing software, remote sensing based predictions and current 

observations from the field using an automatized UAV. 
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7 Discussion and conclusion 

The first main objective of this study (I) was to design measuring setups for hyperspectral 

sensors to monitor the spectral dynamic of five foliar wheat diseases. Chapter 2 showed the 

detailed investigation of the spectral dynamic of the diseases during pathogenesis in time 

series. The hyperspectral observation of symptom development of five different foliar 

diseases in one specific crop during disease pathogenesis is a novelty and so far, unique. Few 

works describe the full spectral characterization of one certain or more diseases during 

pathogenesis (Mahlein et al. 2012; Kuska et al. 2015; Wahabzada et al. 2015). Mahlein et al. 

(2012) enabled a link of the histological development of fungal diseases in the leaf tissue, 

assessed with invasive microscopical methods, with spectral signatures observed using non-

invasive hyperspectral measurements. In chapter 2 of the present study, hyperspectral 

measurements were accompanied by fluorescence microscopic methods to link spectral 

signatures with biological processes to define disease specific turning points of each 

pathogenesis. Each turning point represented a certain pathogenesis stage as a spectral 

fingerprint that is independent from the point in time of infection (because in the field we do 

not know this point in time) but characteristic for a certain biochemical process of the host-

pathogen interaction. These turning points were combined in a spectral library for foliar 

diseases of wheat. 

In the field, the point in time of infection is in general unknown and difficult to consider 

because the length of the latency phase (time period until first symptoms become visible) 

depends, among others, on the present weather conditions and the microclimate in the field. 

With disease forecasting systems, the suitable infection conditions and the theoretical length 

of the latency phase can be modeled, but a model cannot describe or calculate the absolute 

inoculum presence and successful infection rates of fungal spores. This is especially true for 

STB, as a high variability effect of the temperature on the length of the biotrophic latency 

phase has been described (Lovell et al. 2004). Dugyala et al. (2015) published a rapid protocol 

for the staining of fungal structures of Puccinia triticina in the leaf tissue using fluorescence 

microscopy. This protocol was adapted individually regarding concentrations of chemical 

substances for foliar wheat diseases to unveil their presence in the host (Dugyala et al. 2015). 

Fluorescence microscopy was suitable for monitoring fungal development in the host tissue 

and to link a spectral shift to a biochemical process in the host tissue. Especially the rust 
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diseases and powdery mildew (biotrophic diseases) were easily dyed in the tissue. To stain the 

necrotrophic diseases in the host tissue, higher concentrations (10x) of the dye were 

necessary. This might be due to the fact that tan spot and STB cause collapse of the plant cells 

and lead to necrosis (Dushnicky et al. 1998a; Dugyala et al. 2015). The florescence dye binds 

to chitin (Harrington and Hageage 2003; Harrington 2009; Dugyala et al. 2015) and fungal 

structures in dead plant cells can hardly be stained due to the lack of water and dye 

transportation. Another reason could be the role of lignification processes that are part of the 

host defense (Dushnicky et al. 1998a, Dushnicky et al. 1998b). Fungal structures are capsuled 

and might not be stained anymore. Chapter 2 favored a better understanding of the 

development of a spectral signature of a plant leaf under disease pressure and how fungi 

influence the spectral properties of diseased leaves. 

The next objective (II) was to analyze and classify foliar diseases of wheat in hyperspectral 

images under controlled conditions based on the combined spectral library for the diseases. 

Hyperspectral measurements are either performed with non-imaging or imaging sensors. 

Yuan et al. (2014) showed an approach to distinguish between several diseases and insects on 

winter wheat leaves in the laboratory. The scientists published a non-imaging field 

spectrometer to distinguish between yellow rust, powdery mildew and cereal aphids. Leaves 

were collected from wheat fields and analyzed using Fischer’s linear discriminant analysis 

(FLDA) and partial least square regression (PLSR). The overall accuracy (0.75) was not superior 

but this work presented an interesting approach combining spectral features of different 

wheat diseases in their analysis (Yuan et al. 2014). Wahabzada et al. (2015) implemented a 

Simplex Volume Maximization to automatically discover spectral features that are 

characteristic for a certain barley disease. The scientists detected and distinguished between 

net blotch, brown rust, and powdery mildew. The SAM results in chapter 2 present especially 

for the biotrophic pathogens the potential of hyperspectral images for delivering more 

profound results in disease detection, differentiation and quantification. In this study different 

approaches from machine learning were used to detect, identify and quantify the different 

foliar diseases under controlled conditions. Beside the spectral library for wheat diseases, 

chapter 2 also shows a disease detection and quantification approach using the spectral angle 

mapper algorithm in combination with the different disease specific turning points as input 

training data. Here, it was demonstrated that a spectral library has the potential to serve as 

basic training data in different algorithms. The diseases were detectable and early and late 
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symptoms of the pathogenesis could be distinguished from each other. The disease incidence 

on the leaves was quantified. Non-imaging sensors do not provide the possibility to annotate 

images as input or training data. To train models for reliable disease differentiation, it might 

be useful to use imaging sensors that provide pixel-wise spectral and spatial information. 

Disease detection models learned out of these algorithms might enable an autonomous 

detection of specific developmental stages of a disease in the field. 

In the future, sensors that contain the spectral information for all important diseases of a 

certain crop should be developed. In European wheat cropping systems STB and YR are the 

most devastating diseases (Torriani et al. 2015). In other regions of the world different 

diseases might play a more important role depending on the cropping system and the climate 

(Oerke 2006). The rust diseases (Puccinia spp.) in general are relevant in cropping regions 

around the world as they are widespread biotrophic diseases. Especially black and yellow rust 

have a high destructive potential (Dean et al. 2012). In the warmer regions of South Asia the 

helminthosporium leaf blight, a complex of Cochliobolus sativus and Pyrenophora tritici-

repentis, occurs and might lead to losses up to 30 % and more (Duveiller et al. 2005). If the 

spectral properties of the relevant diseases could be collected in a detection sensor based on 

a spectral library for wheat diseases, this sensor could be used ubiquitously in all wheat 

cropping systems. 

Time series measurements with hyperspectral sensors often result in complex data because 

the data must be comparable over different measurement days to unveil hidden features in 

the data. Chapter 3 demonstrates one approach to perform a spatial tracing of disease 

symptoms back in time series (retrospective analysis) using a non-linear 2D polynomial 

transformation model. The pixels that are located in a disease symptom at later pathogenesis 

could be traced back over different measurement days to detect early spectral changes during 

pathogenesis (by comparing the spectral signatures) using certain reference points and the 

automatic calculation of different VI’s. This approach presents the potential for a 

hyperspectral disease detection at early time points where the disease is not yet visible for 

the human eye. This method could be used on images and the automated analysis of big data 

sets. The spectral signal of the hyperspectral image is still confounded through factors like the 

leaf geometry and plant architecture (Jay et al. 2016; Bohnenkamp et al. 2019a). 

Transformation models could be used to recognize marker points in high throughput devices 
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to gain more information about the spectral changes caused by varying leaf geometry in the 

canopy or on single leaves during time series. High throughput devices offer the possibility to 

gather huge data sets with hundreds of individual plants that are measured up to several times 

a day during long time periods (weeks) under homogeneous conditions. Additionally, this 

approach is promising for early detection tests under controlled conditions in low throughput 

tests but also in high throughput facilities. 

Chapter 4 showed a decomposition of the spectral signatures of wheat leaves infected with 

the rust diseases YR and BR based on the spectral information of pure spore spectra of 

P. striiformis and P. triticina. The main idea was to use the specific spore spectra to unveil the 

spectral fingerprint of the disease in the signal of a diseased plant leaf. A plant leaf always 

represents a mixed signal due to the combination of different biochemical compounds in 

different leaf layers. The decomposition was performed using a least-squares factorization. 

The study indicates that a least-squares factorization can be used to decompose hyperspectral 

mixed signals of plants for unveiling the spectral fingerprint of a plant disease. The spectral 

signal of a diseased leaf is always a mixed signal (Bohnenkamp et al. 2019b). Different 

components, such as water and cellulose, have a different spectral absorption and reflectance 

areas (Elvidge 1990). Future studies should therefore fragment the mixed spectral signal into 

its pure components and properties of the host-pathogen-interaction to achieve a deeper 

understanding of the plant physiology itself. 

But not only plant disease can be distinguished from the healthy plant. Even different 

symptom types of the same disease can be distinguished from each other based on the 

pathogen or plant genotype (Mahlein 2016). Leucker et al. (2016) showed that different 

genotypes of sugar beets can be differentiated from each other by the individual peculiarity 

of Cercospora leaf spots. Depending on the scale, the scientists were able to fragment a leaf 

spot into three different zones depending on the sporulation intensity of the fungus (Leucker 

et al. 2016). These deep insights into the submillimeter scale indicate future approaches for 

the effort of using pure spectra of the leaf and fungal compounds combined in spectral 

libraries. The signal could be decomposed and used to precisely interpret biochemical 

processes due to slight changes of the pure spectra composition. 

Chapter 5 showed a deep learning approach serving as a detection algorithm for plant 

diseases on close-range hyperspectral images. A 3D convolutional neural network (3D-CNN) 
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was used to detect STB, YR and BR on different measurement days. An overall accuracy of 

88.1 % with F1-scores between 0.79 and 0.91 was reached. The highest F1-score for the 

diseases was reached for BR (0.89) followed by STB (0.86) and YR (0.79). The highest accuracy 

for all classes was reached for the class healthy (0.91). Accuracy differences can be related to 

the different symptom types of the diseases and the data set composition. YR uredinia are 

surrounded by large chlorotic halos. Chlorotic spots are also the initial parts of the STB 

symptom development which might lead to misclassifications during disease detection. BR 

symptoms also formed chlorotic halos around the uredinia. The halos remained smaller and 

were more evenly distributed over the whole lamina which might explain the overall good 

accuracy for BR detection compared to STB and YR where specific symptom stages during 

pathogenesis, such as chlorosis in early and bleaching of the leaf in late pathogenesis, could 

appear in a similar way and lead to misclassifications. The results illustrated that the symptom 

always impacts the detection accuracy of a disease. In chapter 2 the biotrophic diseases were 

detected with a higher accuracy than the necrotrophic diseases. But with this 3D-CNN 

approach STB, a necrotrophic disease, was detected with a higher precision than YR, a 

biotrophic disease. The main difference is that we used supervised classification methods 

(with labeled training data) in chapter 2 and self-learning and improving deep learning 

approaches in chapter 5. Mahlein et al. (2018) indicated the high detection potentials for deep 

learning approaches. These approaches are not depending on the quality of labeled training 

data and CNNs frequently reach new accuracy records in disease recognition (He et al. 2015; 

Mahlein et al. 2018). The findings indicate the high potentials of deep learning approaches for 

the detection of plant diseases to unveil the (hidden) spectral fingerprint of diseases in the 

hyperspectral data of plant leaves. 

The third objective (III) was the transduction of HI to the field scale to ensure an in-field 

disease detection and a knowledge transfer on hyperspectral data. Therefore, the ground-

based vehicle (Phytobike) for canopy field measurements of winter wheat in combination with 

a suitable data analysis pipeline was developed. 

As next objective (IV) the measurement platforms were extended to a UAV drone in 

combination with a hyperspectral camera. The UAV system enhanced the field measurements 

by an additional scale. With these measurement platforms hyperspectral measurements were 
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performed on the ground canopy scale at 50 cm and the UAV scale on 20 and 100 m over the 

crop canopy.  

Chapter 6 displayed the centerpiece of this work (combining objectives (III)-(IV)). The two 

measurement platforms are capable in generating reproducible hyperspectral data that is 

comparable over different measurement dates. The Phytobike (ground canopy scale) was 

equipped with two hyperspectral cameras and an additional RGB camera, combined in a 

measurement cabin. The measurement cabin was covered by white canvas to avoid direct sun 

irradiation that causes shadow casting in the wheat canopy. The canvas procured that the light 

conditions in the cabin were diffuse and homogeneous. By using this construction, 

measurements could be performed in homogeneous cloudless and sunny conditions without 

the negative effect of shadow casting in the crop stand. If the issue of casting shadows can be 

reduced or is insignificant, sunny weather is preferable for ground measurements due to 

irradiation heterogeneities that might occur during measurements on a cloudy day. Various 

researchers performed their wheat canopy measurements during clear and sunny weather 

(Cao et al. 2013; Zheng et al. 2018a; Zheng et al. 2018b; Azadbakht et al. 2019) while others 

preferred overcast weather conditions to prevent issues from shadow casting (West et al. 

2003; Whetton et al. 2018b).  

Field data has to be processed and normalized to bring it into a form that allows to compare 

variabilities in the field trials on different measurement days. Varying illumination conditions 

during the day and on different measurement dates often lead to uninterpretable data 

(Bohnenkamp et al. 2019a). In this work, protocols were developed to keep the data 

generation process constant during vegetation period and also data normalization protocols 

were defined to consistently preprocess the data for later analysis. With these protocols it was 

possible to reduce the negative environmental field effects on the data such as changing 

illumination through cloud movement and solar altitude. The normalization procedure is 

based on a spectral reference panel with a known reflectance in the observed wavebands 

(Bohnenkamp et al. 2019a). A 50 % grey reference panel was preferred compared to panels 

with higher reflectance values to avoid an overexposure of images due to strong illumination. 

The panel was captured in each image on ground scale measurements with the line scanner 

and at the beginning of each flight with the UAV. The normalization with reference panels is 

an established method for field measurements. Various works used reference panels for 
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normalization of their data (Bravo et al. 2003; Cao et al. 2013; Yu et al. 2018; Zheng et al. 

2018a; Zheng et al. 2018b). Future works should focus on an automated normalization of the 

data. If the current illumination is constantly measured, an online normalization of field data 

should be possible. 

Close-scale field measurements for wheat disease detection so far were mostly performed 

using non-imaging spectrometers (Cao et al. 2013; Yu et al. 2018; Zheng et al. 2018a; Zheng 

et al. 2018b; Azadbakht et al. 2019). This kind of sensor provides hyperspectral data with a 

high spectral resolution. But a non-imaging sensor does not provide the possibility to do a 

pixel-wise analysis of images due to the lack of spatial information. The spectral information 

is averaged and depends on the measurement angle of the sensor optics (Mahlein 2016). 

Whetton et al. (2018b) used hyperspectral imaging push broom sensors for the detection of 

yellow rust in wheat fields. The scientists used a partial least squares regression (PLSR) with a 

leave-one-out cross-validation. The results indicated that yellow rust in the field can be 

detected by hyperspectral imaging sensors with further adaptation of analysis procedures. 

The measurements were performed in 0.3 m distance to the crop canopy. The image data was 

analyzed with pixel-wise classification, as they deployed a 100-point grid for image 

interpretation (Whetton et al. 2018b). The pixel-wise detection and identification of foliar 

diseases of wheat in the field using close-scale imaging in combination with hyperspectral 

imaging sensors (presented in chapter 6) is a new and promising approach in disease sensing 

(Bohnenkamp et al. 2019a). 

On the UAV scale, the approach of imaging sensors is common and hyperspectral imaging 

sensors have been tested successfully (Abdulridha et al. 2019; Zhang et al. 2019). Abdulridha 

et al. (2019) used a DJI Matrice 600 to perform UAV-based hyperspectral images for detecting 

citrus canker disease in tangerine orchards. The used hyperspectral camera measured 

wavebands in the visible and near infrared range from 400-1000 nm. Regions of interest and 

vegetation indices were set to differentiate between healthy and infected trees. The UAV-

based analysis reached an accuracy of 100 % for differing between healthy and diseased trees 

(Abdulridha et al. 2019). Zhang et al. (2019) used a UAV-based hyperspectral imaging system 

to detect yellow rust in wheat fields. Using snapshot-based hyperspectral imaging in 

combination with deep convolutional neural networks, the scientists reached an overall 

classification accuracy of 85 %. The UAV measurements were performed at 30 m altitude and 
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the spatial resolution was 2 cm per pixel (Zhang et al. 2019). This means that a single symptom 

cannot be solved into several pixels, but instead, a pixel-wise annotation was performed on 

the data. NDVI values were used to automatically label image pixels as soil, rust or healthy 

(Zhang et al. 2019). The results indicate that hyperspectral imaging is a promising tool for 

detecting diseases on the UAV scale. The UAV (and ground-scale) results presented in chapter 

6 not only show a detection and classification of different crop canopy features, such as yellow 

rust incidence, but also a feature selection for yellow rust. The feature selection offers the 

opportunity to reduce the measured wavebands to a certain selection that is specific for the 

diseases of the desired crop. A sensor could be defined that is capable of detecting and 

differentiating the diseases that are relevant for decision-making in plant protection. 

Imaging field data provide the possibility to annotate hyperspectral images for creating 

training data on the pixel and object level. The effectiveness of annotation is depending on 

the spatial resolution of the images. Based on the spatial resolution and the scale, a disease 

symptom might consist of several pixels that could be used for annotation. Several pixels could 

represent the spectral variability that is present in even one single symptom. In this 

hyperspectral data sets, various analysis approaches were performed to detect and quantify 

YR in the field. The accuracy of the different approaches was determined and evaluated in 

chapter 6. Classification results showed an accuracy for YR detection of more than 90 % on 

the ground canopy scale. In this regard, supervised classification methods like the spectral 

angle mapper and support vector machine were used. The future of data analysis will 

increasingly focus on deep learning approaches (Mahlein et al. 2018). Zhang et al. (2019) 

showed that deep convolutional neural networks reached better detection accuracies for 

UAV-based yellow rust detection than a random forest classifier (Zhang et al. 2019). Powerful 

data analysis pipelines have to be improved to introduce them for online analysis on field 

measurements. 

The fifth objective (V) was the definition of a suitable measuring setup for future in-field 

disease detection. The perfect sensor for the detection of plant diseases in the field provides 

high resolution images with short image acquisition times. The measured wavebands are 

specific to the diseases that occur in a certain crop. It is combined with well-established 

analysis pipelines that are capable of fast online processing of the data and a fast online 

disease detection. This sensor also requires few human control and works autonomously in 
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the field with a high throughput. This sensor does not exist. But the technical progress offers 

interesting combinations for sensor approaches depending on what has to be measured. Two 

sensor systems were evaluated in the field. Both had strengths and weaknesses and the 

optimal sensor system at the current status quo can only be a compromise. The ground canopy 

measurement platform is much more sensitive as a detection of single disease symptoms is 

possible through the high resolution. The UAV system has a much higher throughput and the 

generated data size is smaller than the ground canopy data (due to the difference in the 

amount of measured wavebands). The UAV camera also had a shorter image acquisition time. 

As a suitable sensor combination, based on the experiments that are shown in this work, a 

low flying UAV in combination with a frame-based high spatial resolution camera system that 

is measuring as few wavebands as possible (based on a previous disease specific feature 

selection) is recommended. Based on the findings, the sensing of 15 equally distributed bands 

would be suitable. A tunable band configuration makes these sensors more versatile for other 

diseases in other crops or just the desired disease on different growth stages of the crop plant. 

The spatial resolution should be at 1 mm ground sampling distance to allow the detection of 

small symptoms and to neglect high-frequency noise caused by the complex surface of plants. 

This work shows a continuous progression of hyperspectral measurements and analysis 

routines from controlled laboratory conditions to uncontrolled field conditions. The presented 

chapters pointed consecutive works and synergy effects that enabled the development of two 

measurement platforms in combination with a data analysis pipeline for a hyperspectral in-

field detection of foliar diseases of wheat. The basic research focused on the spectral dynamic 

of the most important wheat diseases in Europe during their pathogenesis (chapter 2). The 

findings were used to generate a spectral library that combines the spectral characteristics of 

each disease. This spectral library was used to detect, identify and quantify the diseases under 

controlled conditions. Furthermore, a referencing of marker points was used to automatically 

perform a retrospective analysis of certain pixels back in time during the whole time series 

from late to early measuring days (chapter 3). This approach allowed to perform earliest 

detectability tests on diseased pixels where a symptom was not visible for the human eye. 

Based on the idea that human annotations could be error prone due to lack of objectivity, a 

detectability test based on pure spore spectra of yellow and brown rust was conducted 

(chapter 4). Also, the spectral mixed signal of a diseased leaf was fragmented to gain a deeper 

knowledge about how spectra are composed by different biochemical processes and leaf 
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properties. To test the potentials offered from deep learning, a 3D-CNN was used to detect 

the foliar diseases under controlled conditions (chapter 5). Based on these findings, two 

measurement platforms (ground-canopy and UAV) were conceptualized and introduced for 

field measurements (chapter 6). With both measurement platforms it was possible to gain 

reproducible data on different measurement days. Analysis routines were established and 

various approaches for data analysis were evaluated. The detection and identification of 

yellow rust was possible and the classification accuracy was high reaching 90 % on ground-

canopy scale. 

Further research continuously generates new progresses and both sensors and analysis 

methods improve rapidly. Hyperspectral sensors produce complex data but show high 

potentials for the selection of disease specific wavebands. These wavebands could be selected 

to define future sensors with a reduced number of wavebands that measure only the amount 

of data that is essential in the field. The in-field disease detection is an exciting discipline. On 

the one hand it is highly depending on the technical progress but on the other hand, it has 

tremendous potential to change and shape the way of future plant protection. The presented 

findings in this dissertation make a fundamental contribution to the future field approach of 

optical disease sensing systems.
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