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ZUSAMMENFASSUNG

Die synthetische Erzeugung von photorealistischen Bildern ist eines der am läng-
sten in der Computergrafik verfolgten Ziele. Die Anwendungen sind breitgefä-
chert und reichen von Virtual Prototyping über Werbung bis hin zu visuellen Ef-
fekten in Filmen. Seit den Anfangstagen der Computergrafik wurde ein beträcht-
licher Forschungsaufwand in die Entwicklung von Renderingalgorithmen und in
die Repräsentation von Szenengeometrie, Lichtquellen und optischen Oberfläche-
neigenschaften investiert. Obwohl es in einigen dieser Gebiete schnelle Fortschrit-
te gab, fanden die optischen Materialeigenschaften über lange Zeit wenig Beach-
tung.

Zunächst wurden nur einfache Texturen und phenomenologische Modelle mit
wenigen Parametern, die auf einfachen Annahmen über die Oberfläche basieren,
verwendet. Mit der Zeit wurden dann auch bessere, physikalisch basierte Refle-
xionsmodelle entwickelt, die die Reflexionseigenschaften von zumindest einigen
Materialklassen schon gut beschreiben konnten. Als Durchbruch in der Beschrei-
bung von optischen Materialeigenschaften kann dann die Entwicklung der soge-
nannten datengetriebenen Methoden bezeichnet werden. Dabei werden die Re-
flexionseigenschaften in einer großen Tabelle dicht abgetastet gespeichert. Diese
Tabellen werden oft durch Messung von realen Oberflächen erzeugt. Datengetrie-
bene Methoden haben den Realismus in der Wahrnehmung vor allem komplexer
Oberflächen mit deutlicher Struktur oder örtlich variierenden Reflexionseigen-
schaften deutlich erhöht. Die Messung von optischen Materialeigenschaften hat
aber auch den Reflexionsmodellen zu neuer Bedeutung verholfen, da sich die Pa-
rameter für diese Modelle automatisch so bestimmen lassen, dass das Modell die
gemessenen Daten und damit die reale Oberfläche bestmöglich wiedergibt. Sind
die Parameter bestimmt, so kommen die Vorteile der Reflexionsmodelle, nämlich
Speichereffizienz und einfaches, semantisches Editieren, zum Tragen.

Heutzutage ist die Messung von Reflexionseigenschaften schon weiter ver-
breitet. Durch die Verwendung von digitalen Photokameras konnten effiziente
Aufbauten zur Akquise von Reflexionsdaten mit hoher Orts- und Winkelauflö-
sung konstruiert werden. In fast allen Fällen wurden jedoch RGB Kameras wegen
ihres geringen Preises und der einfachen Handhabung verwendet. Leider führt
die Diskretisierung des Lichtspektrum durch nur drei, sich eventuell sogar über-
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ZUSAMMENFASSUNG

lappende Filter zu einer falschen Farbdarstellung, wenn unterschiedliche Licht-
quellen und Materialien in einer virtuellen Szene kombiniert werden. Der Grund
dafür ist ein Effekt namens Metamerismus. Grundsätzlich lässt sich dieses Pro-
blem einfach durch eine bessere Abtastung der spektralen Dimension umgehen.
Leider sind die dafür notwendigen Geräte teuer und benötigen einen vergleichs-
weise immensen Aufwand um hochqualitative Messdaten zu liefern. Aus diesem
Grund ist die Messung von dicht abgetasteten Reflexionseigenschaften mit gu-
ter Spektralauflösung im Bereich der Computergrafik immer noch ein weitgehend
ungelöstes Problem.

Die in dieser Dissertation vorgestellten Methoden stellen einen Schritt in die
Richtung von einfach verwendbarer Technologie für spektrale Reflexionsmessung
dar. Die Grundidee ist die Wiederverwertung von bestehender und bereits ausge-
reifter RGB-Technologie mit Zusatz von möglichst wenigen spektralen Messda-
ten. Die vollständigen, dicht abgetasteten spektralen Reflexionseigenschaften wer-
den dann durch eine neue, in dieser Arbeit vorgestellte Methode rekonstruiert. Auf
diese Weise wird die Benutzung von teuren Geräten zur Spektralaufnahme, wie
Filter, Kameras und speziellen Lichtquellen, so gering wie möglich gehalten. Dies
reduziert Preis und Komplexität der Messtechnik sowie die Messzeiten.

Dieses Ziel wird in drei Schritten angegangen: Im ersten Schritt wird ein
Messaufbau konstruiert und kalibriert, der spektrale Reflexionseigenschaften von
Materialmustern ohne weitere Optimierungen aufnehmen kann. Dieser Aufbau
erlaubt uns Ground-Truth Daten zu akquirieren die wir dann in den folgenden
Schritten zur Qualitätsbewertung von komplexeren Methoden heranziehen kön-
nen.
Der zweite Schritt ist die Entwicklung eines neuen Rekonstruktionsverfahrens,
das spektral aufgelöste Bilder aus dünn gemessenen Spektraldaten und dicht ab-
getasteten RGB Daten rekonstruiert. Unsere Methode basiert auf der Minimierung
einer Energiefunktion, die einerseits Übereinstimmung mit den Messdaten bewer-
tet und andererseits die Plausibilität mittels in einer neuer Funktion dargestellten
Vorwissens sicherstellt.
Im letzten Schritt wird die reale Anwendung der Rekonstruktionsmethode in ei-
nem RGB-Spektral-Aufbau behandelt. Dafür stellen wir zunächst eine neue Me-
thode vor, die RGB-Kameras spektral exakt zu charakterisieren. Danach evaluie-
ren wir eine Methode, um schnell die zusätzlichen Spektraldaten zu akquirieren,
indem eine zusätzliche Spektralkamera in einen bestehenden RGB Aufbau inte-
griert wird. Wir demonstrieren, wie damit spektrale Reflexionseigenschaften von
hoher Qualität mit geringem Aufwand gemessen werden können.
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ABSTRACT

The synthetic generation of photo-realistic images is a long-standing goal in the
area of Computer Graphics. The applications are numerous, including virtual pro-
totyping, advertisement and visual effects in movies. Since the early days of Com-
puter Graphics, a tremendous amount of work has been spent on rendering algo-
rithms and on the representation of scene geometry, light, and surface reflectance.
While some of these areas evolved rather quickly, the optical reflectance behavior
of surfaces did not receive much attention over a long time.

In the first time, only simple textures and phenomenological models with few
parameters based on rather simple assumptions about surface materials were used.
Over the time, better physically-based reflectance models were developed which
have the potential to describe at least some classes of materials faithfully. The
introduction of so-called data-driven representations for reflectance can be con-
sidered a major breakthrough. Here, reflectance data is typically acquired from
real-world samples and stored in large tables with dense sampling. Data-driven
techniques led to a substantial increase in the quality of virtual material appear-
ance especially for complex surfaces exhibiting a lot of structure and spatially
varying reflectance behavior. Measured reflectance properties of real-world ma-
terials also helped to use reflectance models in a more sensible way, by finding
parameters for which the model resembles the real-world sample as good as pos-
sible. Afterwards, the parametric model can unveil its strengths, namely memory-
efficiency and simple, physically-based editing.

Nowadays, measuring reflectance properties of surfaces has become more
commonplace. The use of digital cameras enabled the development of efficient
setups to acquire reflectance data with a dense sampling of both angular and spa-
tial domain. In nearly all cases, RGB or similar trichromatic cameras were uti-
lized, because they are cheap and easy to use. Unfortunately, the discretization of
the light spectrum using three filters, which might even overlap, leads to inaccu-
rate colors by an effect called metamerism as soon as different light sources and
materials are combined during rendering. In principle, this can be easily circum-
vented using a better sampling of the spectral domain. Unfortunately, the neces-
sary spectral devices are expensive and require a lot of additional effort to provide
high quality measurement data. For this reason, densely sampled reflectance mea-
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surement of complex surfaces with good spectral resolution still remains an open
problem in Computer Graphics.

The methods presented in this thesis are a step towards widely usable spectral
reflectance capture. The basic idea is to re-utilize established and matured RGB
technology and to add as few spectral measurement data as possible. The dense,
spectral reflectance data is reconstructed afterwards using a novel method. This
way, the amount of dedicated spectral hardware like filters, cameras, and special
light sources and therefore cost and complexity of hardware are reduced, and the
speed of spectral measurements is increased.

We divide the work towards that goal into three main steps: The first one is to
build and calibrate a measurement setup that can acquire spectral reflectance data
in a brute-force manner. This setup allows us to acquire ground-truth data which
in turn enables to judge the quality of more sophisticated methods.
The second step is to develop and evaluate a novel reconstruction method for
spectral images from sparse spectral and dense RGB data. This method is the
foundation of our enhanced spectral reflectance capture. The spectral reconstruc-
tion is performed by minimizing an energy function that meters deviation from
the measured data as well as compliance with a novel prior.
In the last step we aim at the real usage of our aforementioned method in a com-
bined RGB-spectral measurement setup. We propose a novel solution to the prac-
tically relevant problem of obtaining a highly accurate spectral characterization
of RGB cameras. We then evaluate a method to rapidly acquire the additionally
required spectral data by integration of only one spectral camera into an existing
RGB setup without any further modifications. We demonstrate first results for
spectral reflectance capture using this setup.
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CHAPTER 1

INTRODUCTION

One of the long-standing goals in Computer Graphics is the generation of images
from virtual scenes that are indistinguishable from photographs of a correspond-
ing, real scene. Photo-realistic image generation has a large impact in many ar-
eas. As an example, decisions in the design process of new products might be
based solely on rendered images thus omitting the costly manufacturing of proto-
types. Another example is advertisement, where computer generated images are
cheaper to produce and offer greater artistic freedom compared to traditionally
produced photographs or movies. Furthermore, teleshopping applications can of-
fer a greater level of interaction between a virtual representation of the product
and the customer than traditional photographs.

Generating virtual photographs from computer-stored virtual scenes requires
the simulation of light generation and transport inside of the scene as well as the
detection of light by a virtual camera. For this reason, photo-realistic rendering
touches different areas of Computer Graphics, ranging from rendering algorithms
to the representation and acquisition of geometry, light sources and materials.

This thesis focuses on the area of virtual materials. In the context of render-
ing, the important properties of a material are determined by its interaction with
light. This includes in most cases reflection, internal scattering and transmission
of light. Figure 1.1 shows some examples for light-material interaction. Over
the time, a tremendous amount of work was spent on virtual materials and re-
sulted in a rich variety of representations for surface reflectance or transmittance.
Traditionally, analytical functions have been used to describe the reflectance or
transmittance. Here, Computer Graphics has drawn a lot of knowledge from other
areas like physics where light-matter interaction has been studied for a long time.
The interaction is modeled at a microscopic level and the integral over all micro-
scopic effects is described by an analytical function. Despite the fact that some
of the analytical reflectance models describe certain material classes faithfully,
their usage for photo-realistic rendering is limited. This is because it is often a
non-trivial task to choose the right model and to find parameters for the chosen
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(a) Metallic automotive paint (b) A prism refracts light depending on the
wavelength (photograph by Adam Hart-Davis)

(c) A leaf showing translucent behavior (pho-
tograph by Eric Skiff)

(d) Light scattering by fog (photograph by Sam
Javanrouh)

Figure 1.1: Examples of light interacting with matter

model in a way that it resembles a given real material. When this process is done
by hand it involves a lot of expert knowledge and trial iterations. This material
design process gets easily infeasible with increasing surface complexity.

As a consequence, the measurement of surface reflectance or transmittance has
received more and more attention in the area of photo-realistic rendering during
the last two decades. Here, real samples are exposed to known lighting and the
scattered light is captured by certain optical sensors. Afterwards, the acquired data
can be used to automatically determine model parameters or, in case of so called
data-driven techniques, be used for rendering directly. Due to the generality of
data-driven techniques, they can represent the scattering behavior of a vast amount
of real-world surfaces. Measured optical material properties combined with data-
driven techniques offer a much higher visual fidelity achieved with less specialist
and time effort. For these reasons, optical material measurements are one of the
key techniques to make photo-realistic rendering a broadly available tool.

2



CHAPTER 1. INTRODUCTION

1.1 Reflectance Measurements

By now, a lot of measurement setups have been proposed that acquire reflectance
or transmittance data of real surfaces. All rely on the principle described above:
the material sample is lit by a known light source and scattered light is captured
using a sensor. Differences between setups arise from the assumptions about the
measured sample. While a diffusely reflecting, homogeneous surface like a piece
of paper just needs one such measurement, most materials scatter light into pre-
ferred directions, also depending on the direction of incident light. This makes it
necessary to place light source and light sensor in different positions with respect
to the material sample. Here, one can distinguish between serially and parallel
operating measurement setups. Serial setups just have one light source and sensor
and need to relocate both with respect to the sample using a mechanical system.
Parallel setups utilize multiple sensors and/or light sources to reduce capture time.
Parallelizing the capture of scattered light is trivial, but parallel illumination re-
quires to invert the used illumination patterns afterwards which might only be
possible using additional assumptions about the material.

1.2 Spectral Reflectance Measurements

At the beginning of reflectance measurements, only homogeneous, structure-less
materials have been considered and the scattered light was measured using clas-
sical spectrophotometers. However, with the advent of digital cameras based
on CCD and CMOS imaging sensors, the efficiency of reflectance measurement
setups has grown tremendously because cameras allow to take millions of re-
flectance samples at once. Unfortunately, nearly all such devices were built using
cameras having only three color channels, most commonly red, green and blue
(RGB) matching the established display technology. Such trichromatic cameras
are cheap due to their large market and easy to use, leading to highly cost and time
efficient reflectance measurement setups.

Unfortunately, the use of RGB or similar trichromatic reflectance data leads to
wrong colors of the acquired samples when used in a rendering system under an
illumination differing from the light source in the measurement setup. The reason
for this is an effect called metamerism, which has been extensively studied before
(e.g. [WS00], [HP11], [FANF06]). Metamerism is caused by the fact that an
infinite number of spectral distributions of light map onto the same trichromatic
values. So having the trichromatic values alone, the original spectral distribution
cannot be easily inferred from it. In cases where trichromatic images are just used
to be shown to an observer, this does not cause major problems. However, as
soon as an interaction of light with matter has to be simulated, the correct spectral

3
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distributions of incoming light and surface reflectance are required to calculate the
spectral distribution of the scattered light and therefore the correct color.

While an enhancement from RGB to spectral is simple for rendering algo-
rithms and many analytical scattering models, the fully spectral measurement of
reflectance and also of complex lighting is a tough task. One reason for the diffi-
culties is a pure physical one: incoming light needs to be filtered by narrow-band
optical filters or split up by dispersing elements and thus less photons reach the
sensor elements. Therefore, sensors with better quantum efficiency and less noise
are required and the time to take one sample increases. Of course, there exist tech-
niques using broadband filters combined with spectral reconstruction. These filter
pass a larger amount of light through, but they require complex filter changing
mechanisms that have to be integrated in front of light sources or sensors. These
systems - typically huge filter wheels - are quite costly and bulky. Furthermore,
the spectral reconstruction from broadband filters does not support high frequent
features in the captured spectra, often.

These drawbacks make spectral reflectance capture an expensive and tedious
task which has not reached the same practicability as trichromatic reflectance cap-
ture by now.

1.3 Main Contributions
The central contribution of this thesis is a method to allow for faster, simpler and
cheaper measurement of spectral reflectance of real-world samples which allows
for materials with anisotropic reflectance and nearly arbitrary complex surface
structure. The main idea of the method is the re-utilization of matured RGB cap-
ture technology adding as few dedicated spectral measurement samples as possi-
ble. The full spectral reflectance should be reconstructed by a suitable algorithm
from this data. The technique is also directly usable in other related areas, e.g.
capturing of radiance maps for image-based illumination.

We achieve our goal in three steps and therefore structure this thesis accord-
ingly:

1. Ground-truth Data - In a first step we have built a device to capture the re-
flectance of real material samples in a classical and non-optimized manner.
The acquired data can be considered a ground-truth and it allows to sim-
ulate more sophisticated capture methods and to judge the reconstruction
quality they achieve. Using this setup we have captured a small database of
bi-angular, spatially varying, multi-spectral reflectance data-sets which also
allows other researchers to evaluate novel methods for reflectance capture.
Part I of this thesis contains detailed descriptions of the proposed setup and

4
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its calibration and an evaluation concerning the accuracy of the acquired
data.

2. Spectral Reconstruction - The central idea of our work is to acquire dense
RGB reflectance data and as few spectral data as possible and to reconstruct
the dense spectral information afterwards. Therefore, the second step of our
work was to investigate a novel reconstruction method for spectral informa-
tion using dense RGB and sparse spectral data. Our method is based on the
minimization of an energy function that measures conformance of the un-
known spectral images with the RGB and spectral measurements and with
a novel prior on spectral images. In Part II this method and an evaluation
of the reconstruction results on various datasets, especially in comparison
with previous techniques, are presented.

3. Practical Application - To finally fulfill our main goal of efficient spec-
tral reflectance measurement, an existing reflectance acquisition setup us-
ing RGB cameras has been extended with dedicated spectral hardware. In
Part III we present methodology to calibrate such a setup and to acquire
spectral data with minimal effort. For this, we will first introduce a novel
method for the spectral calibration of RGB cameras and novel kind of ra-
diometric calibration for cameras when operated in a range with low signal-
to-noise ratio. Afterwards we describe the novel capture process and a first
evaluation of reconstruction results based on the acquired data.

Moreover, the necessary background for this thesis is given directly afterwards
this introduction in Chapter 2. This covers basics about light and colors as well as
an introduction to photo-realistic rendering. Basic knowledge about measurement
of light is presented as well as prior work on reflectance and transmittance capture.
The thesis in concluded in Chapter 11 with a summary, conclusions and an outlook
to possible future work.

As usual in the field of Computer Graphics, most of the presented, novel
methodology has been previously published on several international conferences
([RSK10], [RK10], [RZK11], [MWRK17]).
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CHAPTER 2

BACKGROUND AND PREVIOUS WORK

This thesis is mainly about light - measuring light and simulating the propagation
of light. For this reason a background and previous work on all related topics
is given. While in the first sections quite general background is given, the later
sections continue to get more specifically related to the main topic of this thesis,
namely reflectance measurement.

2.1 Light
In general, light is electromagnetic radiation (EMR) which is a type of energy
exchanged by charged particles. Since an in-depth explanation on all details of
the nature of EMR would clearly go beyond the scope of this thesis, a high-level
introduction to the physical background is given. The further interested reader is
referred to physics books like [NEBS04].

A lot of theories about the nature of EMR have been proposed throughout
the history. While some physicists like Newton believed in a particle nature of
light, others like Huygens and Descartes thought of it as a wave. After a lot of
experiments on refraction, interference, diffraction and birefringence and the pub-
lication of the wave-based theory of Maxwell [Max63], which could explain all
these effects, the wave theory was commonly accepted. In wave optics EMR is de-
scribed by an electric and a magnetic field component. These two oscillate always
in phase and perpendicular to each other and to the direction of energy propaga-
tion. Figure 2.1 shows a schematic view of electromagnetic radiation according
to Maxwell.

However, in the early 20th century, experiments revealed the photoelectric
effect or certain photo-chemical reactions which could not be explained by the
intensity of light alone, but were dependent on the wavelength of light instead.
Furthermore, other physicists, most notably Max Planck, worked on an explana-
tion of the spectrum of thermal radiation from black bodies and found the EMR to
be quantized [Pla01]. Albert Einstein then formalized the theory that light consists
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Figure 2.1: Schematic view of electromagnetic radiation according to wave-
theory: It has both an oscillating electric field E and a magnetic field B being
perpendicular to each other and to the direction of propagation V and being in
phase.

of small particles, called photons. A photon has a specific energy Qe determined
by the wave frequency or the wavelength:

Qe = hν =
hc

λ
(2.1)

Here, ν is the frequency of light and λ the wavelength. h = 6.62606957×10−34Js
denotes the Planck constant and c = 299, 792, 458m

s
the light speed in vacuum,

which are both universal constants. Using the photon-theory, the effects in ques-
tion could all be explained. Nowadays, it is commonly accepted that EMR exhibits
the wave-particle duality, meaning that it has both properties of a wave and of a
particle.

Our natural detector for EMR is the human eye (see also Section 2.3.1). It
turns photons in approx. the range from 380 nm to 780 nm wavelength into sig-
nals interpreted by our brain where a color sensation is provoked. This wavelength
range is called visible spectrum and EMR in this range is simply called light. How-
ever, there is a large range of other wavelengths / frequencies for which detectors
and natural or man-made emitters exist and which also have various different ap-
plications in technology and science. Figure 2.2 gives an overview about the full
range of EMR.
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Figure 2.2: Overview of the whole spectrum of electromagnetic radiation. The
(human) visible range covers a small portion only.

Equation 2.1 implies that a single beam of light or a single photon is monochro-
matic which was first noticed by Isaac Newton [New72] when experimenting with
prisms. Newton concluded that all other colors including white have to be caused
by a heterogeneous mixture of photons of different energies. One such mixture
is called spectral power distribution or simplified also spectrum. We will use the
word spectrum in this sense throughout this thesis.

2.1.1 Radiometry

When propagation of light in space and interaction of light with matter is consid-
ered, physical quantities beyond the radiant energy Qe have to be defined.

Radiant flux or radiant power Φe is radiant energy per time: Φe = dQe
dt

. The
unit of radiant flux is therefore Watt (W).

Irradiance is the radiant power incident on a surface of unit area:

Ee =
dΦe

dA
(2.2)

Irradiance has a unit of W
m2 . When light is emitted from a surface one speaks of

radiant emittance, radiant exitance, or radiosity.
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Figure 2.3: Solid angle and radiation transfer

Solid angle When considering the transfer of radiant energy between surfaces,
the solid angle ω has to be defined. It is a generalization of a two dimensional
angle to three dimensions. The solid angle of a surface S with respect to a point
p is the area of the projection of S onto the unit sphere around p. Despite the fact
that the solid angle is physically and mathematically unit-less, it is often denoted
to have the unit steradian (sr) for clarity. The solid angle of any surface completely
enclosing p is 4πsr since the projection onto the unit sphere covers it completely.
Figure 2.3(a) clarifies the concept of the solid angle. The differential solid angle
dω of a differential surface patch dS being in distance R from p is computed as:

dω =
dScos(θ)

R2
(2.3)

Here, θ is the angle between the surface normal and the direction to p (see also
Figure 2.3(b)).

Radiant intensity Ie or often simply called intensity is the radiant power per
unit solid angle:

Ie =
dΦe

dω
(2.4)

The unit of intensity is W
sr

. Care should be taken as the term intensity often refers
to irradiance outside of the field of radiometry.
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Radiometric
Quantity Unit Photometric

Quantity Unit

Radiant energy Joule [J] Luminous energy lumen second lm · s
Radiant power Watt [W] Luminous flux lumen [lm]

Irradiance W
m2 Illuminance lm

m2

Radiant intensity W
sr

Luminous intensity candela [cd]
Radiance W

m2sr
Luminance cd

m2

Table 2.1: Overview of radiometric and photometric quantities and their units.

Radiance is power per unit solid angle per unit projected source area:

Le =
d2Φe

dωdS cos(θ)
(2.5)

with θ being the angle between the solid angle dω and the surface normal of the
surface patch dS emitting or receiving the radiance. dS cos(θ) is therefore the
projected differential surface. The unit of radiance is W

m2sr
. When calculating

irradiance from radiance one has to integrate over the whole hemisphere above
dS:

E =

∫
Ω

Lcos(θ)dω (2.6)

where Ω denotes the whole hemisphere.

2.1.2 Photometry
In photometry, light energy is measured with respect to the spectral sensitivity of
the human eye, meaning that radiant power at a certain wavelength is weighted by
the visual sensitivity function. There is a counterpart for all radiometric quanti-
ties in photometry. Table 2.1 contains an overview of the photometric quantities
related to radiometric ones.

2.2 Light Transport
To generate images from virtual scenes, the propagation of light in the scene has
to be simulated. Here, it is important to describe the transport of light between
surfaces mathematically. This section explains the basics of light transport sim-
ulation and how they are implemented in nowadays commonly used rendering
system.

Mostly, in computer graphics, only geometrical optics are used by now. That
means that ”wave effects” like interference or diffraction, polarization or effects
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dependent on energy quantization are neglected in most rendering systems and
light is represented in form of rays only. Though some research work like [OKG+10],
[KFY+10], [TG17] deals with the rendering of single wave-based phenomena,
there is currently no generic solution available. For this reason, we will restrict
ourselves to ray optics in this section.

The first thing we have to consider is a radiation transfer from a differential
surface element dS1 to another element dS2 with distance R (see Figure 2.3(c)).
Seen from dS1, dS2 covers the solid angle dω2 and vice versa.

When we assume that dS1 and dS2 are in vacuum, the radiant power Φ1→2

being emitted from element 1 towards element 2 has to be conserved during the
transfer. Then it holds for the received radiant power Φ2←1 at dS2:

Φ1→2 = Φ2←1 = Φ (2.7)

When inserting the definition of radiance from Equation (2.5) we yield for the
radiance emitted from dS1:

L1 =
d2Φ

dω2dS1 cos(θ1)
(2.8)

and for the radiance received at dS2:

L2 =
d2Φ

dω1dS2 cos(θ2)
(2.9)

With definition of the solid angle ω from Equation (2.3) we get:

dω1 =
dS1cos(θ1)

R2
(2.10)

dω2 =
dS2cos(θ2)

R2

Inserting the solid angle yields:

L1 =
d2ΦR2

dS1 cos(θ1)dS2 cos(θ2)
(2.11)

L2 =
d2ΦR2

dS2 cos(θ2)dS1 cos(θ1)

We conclude therefore that:
L1 = L2 (2.12)

and follow, that radiance is constant along rays. It is therefore an optimal choice
to store this quantity for each ray of light traced through a virtual scene.

12
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Now, we will consider the radiance that is reflected from an opaque surface
into a specific direction. This is described by the so-called reflection equation:

Lr(x, ωo) =

∫
Ω

ρ(x, ωi, ωo)Li(x, ωi)(n · ωi)dωi (2.13)

Here, Lr is the reflected radiance at point x into solid angle ωo. Ω is the hemi-
sphere at x in direction of the surface normal n. Li is the incident radiance from
solid angle ωi and ρ is the Bidirectional Reflectance-Distribution Function BRDF
as introduced by Nicodemus et al. [NRH+77]. More about the BRDF can be
found in section 2.4.

When additionally considering the light emitted by a surface, the rendering
equation as proposed by Kajiya [Kaj86] can be formulated:

Lr(x, ωo) = Le(x, ωo) +

∫
Ω

ρ(x, ωi, ωo)Li(x, ωi)(n · ωi)dωi (2.14)

Here, Le is added to the reflection equation and represents the radiance emitted at
point x into direction ωo.

It should be noted that the rendering equation is sufficient to describe light
transport in scenes with opaque surfaces. Whenever transparent or translucent
materials have to be considered, the more generic radiative transfer equation has
to be considered. We refer the reader e.g. to the report by Novak et al. [NGHJ18].

2.2.1 Rendering
The calculation of photo-realistic images from virtual scenes requires to deter-
mine the incident irradiance at all sensor elements of a virtual sensor - mostly the
pixels of a virtual camera. Considering Equation 2.2, this requires to determine
the incident radiance Li onto the sensor element from all possible solid angles.
This, in turn, is equivalent to solving the rendering equation for all virtual scene
points visible from each image sensor element. This way, all rendering techniques
can be seen as solutions of Kajiya‘s rendering equation differing only in the ad-
ditional assumptions made about the scene‘s geometry, camera, light sources or
materials.

When considering the rendering equation and equation (2.12) we see that Li is
equal to a Lr at a different position x′ visible from x in direction ωi, revealing the
recursive nature of the rendering equation. For this reason, it is seldom possible to
solve this equation analytically. When substituting L′r for Li over and over again,
we end up with a very high dimensional - in principle infinitely recursive - integral.
When using simple numerical quadrature to solve this integral, a huge number of
samples have to be evaluated to enable for a good sampling in all dimensions.
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Figure 2.4: Metamerism and its effect on color accuracy in rendering: In the top
row reflectance spectra of two different materials are shown which are lit by two
different light sources having spectral power distributions plotted in the second
row. The reflected light is then captured using a RGB sensor having the sensitiv-
ity plotted in the third row. The resulting RGB values are shown in the bottom
row.
The two leftmost columns show that the same RGB values are observed for quite
different material reflectances when lit by the same light source (D65). The third
column shows that the same materials lit by a light source having a different spec-
tral power distribution (CIE FL4) will then produce different RGB values when
captured by the same sensor. This effect cannot be reproduced when relying on
the RGB values captured under the D65 light source used in the two leftmost
columns.

Instead of numerical quadrature, Kajiya proposed to use Monte Carlo integra-
tion (MCI) to solve the high-dimensional integral [Kaj86] and called this method
pathtracing. MCI has the fundamental advantage, that the convergence speed
with increasing number of samples does not depend on the dimension of the in-
tegral. Nowadays, all unbiased rendering systems, that are capable of providing
photo realistic images from virtual scenes in a quite general way, are based on
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MCI. However, a lot of other solutions to various simplifications of the rendering
equation have been proposed over time. A thorough discussion would clearly go
beyond the scope of this thesis. Therefore we refer the reader to text books like
[PJH16] for a good overview on rendering techniques in general and on Monte-
Carlo based methods in detail.

2.2.2 Color in Rendering
All equations above treat radiance as a scalar value neglecting the wavelength
dependence. When color is introduced to the computation of light propagation,
a spectral distribution of radiance has to be stored for each virtual light ray. In
theory, one needs to store spectral radiance, which is radiance per frequency or
wavelength and therefore has unit W

m2Hz sr
or W

m2 nmsr
. Of course, an infinitesimal

sampling of the spectral domain is not possible and in practice a representation
using a finite sampling has to be used.

First rendering systems stored and calculated with only three color bands cor-
responding to red, green and blue (RGB) light. This was inspired by display
technology, which in turn was adapted to human vision (see also Section 2.3.1).
While an RGB representation is sufficient for display purposes, it is not sufficient
to calculate the interaction of light and matter in an exact way. As it can be seen
in the reflection equation (equation (2.13)) the product of incoming light Li and
material reflectance ρ has to be calculated per wavelength band. When using three
wavelength bands it is no longer possible to infer the real spectrum with sufficient
accuracy. The reason for this is an effect called metamerism. Metamerism means
that an infinite number of spectra is mapped to the same RGB triple. All spec-
tra corresponding to the same triple are called metamers. In practice the product
between Li and ρ is therefore often simply calculated element-wise between the
two RGB triples. Since in most RGB measurement devices, the three color filters
highly overlap, additional bias is introduced, as this overlap is totally neglected
by element-wise multiplication. Figure 2.4 shows examples of metamers and the
errors introduced by calculating products using RGB values.

For applications where exact color reproduction is required, it is therefore in-
evitable to compute all interactions between light and materials with fine spectral
resolution. This is implemented in modern commercial rendering systems like
Maxwell1 or FryRender2 or freely available systems like LuxRender 3 or Mitsuba
4. To fully utilize the accuracy of those spectral rendering engines, illumination
Le and material BRDF ρ have to be known with sufficient spectral resolution.

1http://www.maxwellrender.com/
2http://www.randomcontrol.com/fryrender
3http://www.luxrender.net
4http://www.mitsuba.org
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Rendering which uses an unbiased algorithm and uses full spectral data is
sometimes called predictive rendering since an exact prediction about object‘s
appearance is possible. This kind of rendering systems can be used for all appli-
cations discussed in the introduction.

2.3 Measuring Light
In the context of this thesis, the measurement of amplitude and wavelength of light
is an important issue.

Different kinds of interaction between light and matter can be utilized to trans-
form incident light to other measurable signals. The energy discharged by a pho-
ton can cause the re-configuration of a molecule. Furthermore, electrons might
be emitted from a piece of matter, especially metals, when they absorb enough
energy from a photon. This is called the photoelectric effect and was first ob-
served by Heinrich Hertz [Her87]. The so called inner photoelectric effect takes
place in semiconductors, where an electron is raised from the valence band to the
conduction band being free to move around in the semiconductor afterwards.

2.3.1 Devices
The effects described above are used in many different devices including human
and animals eyes.

In the retina of human or animal eyes, so called cone and rod cells trans-
form incoming light into electrical signals that are transmitted to the visual cor-
tex. Inside of these cells the pigments rhodopsin and photopsin are the primary
detectors of light. They consists of the protein opsin bound to a molecule called
retinal which is closely related to vitamin A. In inactivated state the retinal is in
the 11-cis form. When absorbing a photon, the retinal changes to all-trans state
effectively re-configuring the whole large molecule. In a process called visual
phototransduction further chemical reactions are triggered until the optical signal
is finally transformed into an electrical signal. The all-trans-retinal is afterwards
transformed back to 11-cis state. This is called the visual cycle.

In dependence of the kind of opsin the retinal is bound to, the absorbance
characteristics of the molecule with respect to wavelengths is changed. Human
rod cells contain rhodopsin for vision under low-light conditions having a peak
absorbance at about 500nm. In the cone cells, which are responsible for color vi-
sion, different photopsins are bound to retinal leading (in case of a normal human)
to three different absorbance characteristics with peak absorbances of about 420,
530 and 560nm corresponding to color stimuli of blue, green and red. This three
dimensionality of human color vision was noticed early by Grassmann [Gra53].
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The first man-made light detector was photographic film. It consists of silver
halide crystals embedded in a gelatin film. When light strikes the surface of the
crystals, it raises electrons from the valence to the conduction band. The electrons
travel to so called sensitivity specks, points with crystal defects. Here, they re-
combine with silver ions to form deposits of metallic silver. This so called latent
image is then made visible during development. The developer turns those entire
crystals into metallic silver, which have enough silver already deposited on their
sensitivity specks by incident light.

The photoelectric effect was utilized in video camera tubes. Here, the incom-
ing image is focused on a metal plate causing an emission of electrons from the
plate in relation to the intensity of incoming light. The outgoing electron image
beam is focused and used to generate an electric signal in different ways.

Modern electronic imaging devices are all based on the inner photoelectric ef-
fect. Mostly the semiconductor silicon is used, which has a band gap of 1.12eV (at
room temperature) corresponding to light of 1107 nm wavelength. This means,
that incoming light of shorter wavelength (thus including the full visible range)
will raise electrons from the valence to the conduction band making them freely
movable inside of the silicon. By applying a voltage or by doping, the free elec-
trons and holes can be moved, stored and read out. This process was used in
photodiodes to convert light to voltages. Photodiodes and linear arrays of pho-
todiodes have been used in spectrophotometers in conjunction with a diffractive
element like a prism or grating to measure single spectral power distributions.

However, it remained unclear how an imaging device could be constructed
based on photodiodes or other photoactive silicon elements. The solution was the
charge-coupled device (CCD) invented by Boyle and Smith [BS70] while working
on new types of computer memory. The CCD is an array of photoactive capacitors
that accumulate charge (electrons) when exposed to light. The array allows to shift
the charge from capacitor to capacitor in each row by applying alternating shift
voltages. At the end of each row the charge of the last pixel can be converted to a
voltage by floating diffusion and digitized by an analog-to-digital converter.

With the advent of CMOS technology more electrical circuits could be inte-
grated into the pixels itself. This led to the development of CMOS active pixel
sensors (APS) where floating diffusion and amplification is integrated into each
pixel. Due to their much lower power consumption, CMOS sensors are nowadays
often used in cell phones or similar mobile devices. More about CCD and CMOS
imagers can be found in [HL07]. Since other measurement devices for light in
the visible spectrum do no longer have large practical relevance, especially in the
field of reflectance measurement, we will further on just consider CCD and CMOS
imagers and respective spectrophotometers.
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2.3.2 Color and Spectral Imaging

CCD and CMOS pixels are sensitive to a broad range of electromagnetic radiation.
To acquire color images, optical filters or dispersive elements in front of the sensor
have to be used to restrict the incoming light to certain wavelength bands. Here, a
lot of different spectral resolutions and technical concepts exist.

Trichromatic cameras are the most commonly used ones. Since our human
eye also has three different color sensors, trichromatic cameras like those that
resemble the red, green and blue (RGB) retinal receptors are sufficient for color
imaging with good color reproduction when displaying or printing the images. A
perfect match can be delivered by those cameras satisfying the Luther condition
[Lut27] meaning that the three effective spectral responses of the trichromatic
camera are all different linear combinations of the human cone responses.

The desired filtering of incoming light by wavelength can be achieved in dif-
ferent ways. In trichromatic cameras so called color filter arrays (CFA) are most
commonly used, meaning that the individual pixels of a CCD or CMOS imager
chip are covered with small colored filters. Among these the Bayer filter mosaic is
most frequently applied. It contains 50% green, 25% red and 25% blue pixels with
the green pixels being diagonally distributed. The greater number of green pixels
reflects the larger sensitivity of the human eye to green light. Figure 2.5 shows
the layout of the Bayer pattern. To obtain a full RGB triple at each pixel location,
interpolation techniques are employed. This process is called demosaicing. A
thorough review on this topic was made by Li et al. [LGZ08].

Another option is to use a combination of beam splitters to project the same
image onto three image sensors and to place an optical filter before each of the
sensors. This has the advantage that the resolution is higher and no artifacts due
to demosaicing can occur. The main disadvantage is the higher cost. Nowadays,
this three-CCD layout is mainly chosen in better video cameras or in specialized
industrial cameras.

When image display or printing is not the primary goal, or if more complex
color operations shall be performed on images, three broad and overlapping color
bands are often no longer sufficient. In the context of this thesis, especially photo-
realistic image generation may suffer from bad color reproduction when RGB or
similar trichromatic representations are used (see also Section 2.2.2). Here, ac-
quisition systems with higher spectral resolution come into play. The acquisition
process is then called spectral imaging or imaging spectroscopy. Here, a whole
spectral data cube formed by the two spatial axes and the spectral axis has to be
captured. One speaks of a multi-spectral system if the number of spectral bands
is above 5 or 6 but below 100. All systems having a larger number of bands
are called hyper-spectral. Since this nomenclature is a bit fuzzy, numbers be-
ing slightly different might be found in other literature. An older but thorough
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Figure 2.5: The bayer filter mosaic: the single pixels of the sensor (e.g. a CCD
chip) are covered with red, blue and green filter elements in a fixed pattern. From
the values of the single pixels a full RGB image can be recovered using a demo-
saicing technique.

overview about spectral imaging techniques can be found in [HBG+00].
Many techniques unroll the acquisition of the cube in time, assuming a static

scene. Here, filter-based, whisk-broom and push-broom devices can be used (see
Figure 2.6). In filter-based spectral imaging systems the spectral dimension of
the data cube is serialized. A changeable optical filter is added in front of a
monochrome image sensor to capture differently filtered light. Here, one has to
distinguish between the type and the spectral transmittance of the filter. The fil-
ters can be interchanged using a mechanical system, often a wheel, or a so called
tunable filter can be used. Tunable filters vary their spectral transmittance by a
non-mechanical or micro-mechanical method and therefore allow for extremely
fast change in comparison to mechanical filter wheels. Moreover, they are mostly
lightweight. However, they only support transmittance with certain band-pass and
also have often bad peak transmittance. A good overview about spectral imaging
using tunable filters was made by Gat [Gat00]. Optical filters mountable in a me-
chanical filter wheel offer more freedom in the filter choice and therefore allow
to use filter glasses with better optical properties. They also allow to use filters
with broader, alternatively overlapping spectral transmittance. Then, the spectra
have to be reconstructed from the imager‘s response after the acquisition. Exam-
ples for the use of mechanical filter wheels with overlapping filters are numerous
in the color imaging literature. We would like to point to work by Hardeberg et
al. [HSB+99b] in which a good overview on spectral reconstruction operators is
given.

In whisk-broom devices (e.g. [MSI94]), both spatial dimensions are unrolled
in time by scanning the image pixel-wise using a spectrophotometer. The incom-
ing light from different viewing directions is transmitted to the spectrophotometer
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Figure 2.6: Sketches of different approaches to spectral imaging

by using e.g. a freely rotatable mirror. This scheme is used in systems where
acquisition time plays a minor role compared to spectral accuracy. These can be
found e.g. in special satellites scanning the earth’s surface.

In push-broom devices, one of the spatial dimensions of the spectral data cube
is acquired serially. The respective capture devices are capable of imaging one
line of a scene with high spectral resolution. This is achieved by using a slit
aperture followed by a diffractive element like a prism or grating. The incoming
light is masked by the slit, dispersed by the prism and then measured using a CCD
or CMOS chip, where one of the image dimensions corresponds to the position
on the line measured and one to the wavelength. This way a rather high spectral
resolution is possible, which cannot be achieved using filter based approaches.
Unfortunately, the whole device has to be moved with respect to the scene in
order to capture a 2D image. Such devices are therefore often used in scanner
setups like [AFOR04] or at industrial assembly lines where the target is moved
anyway.

Another category of spectral imaging devices captures in a snapshot i.e. non-
serial manner. Here, different techniques exist as well. The most simple solution
is to extend the Bayer pattern with more filters. As an example, Kidono et al.
[KN07] proposed to replace one of the green filters by an infrared filter for night-
vision purposes. Another option is to used a prism or grating as in push-broom
devices and then a hole-mask to prevent the dispersed spectra to overlap on the
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image sensor. This approach has been implemented by Du et al. [DTCL09],
[CDT+11]. A mathematically more involved technique is Computated Tomogra-
phy Imaging Spectroscopy (CTIS) introduced by Descour et al. [DD95] where the
incoming light is split by a diffraction grating and produces multiple diffraction
patterns on the image sensor. In recent work Habel et al. [HKW12] showed how
to construct a low-cost CTIS camera. The diffraction patterns can be seen as mul-
tiple projections of the spectral data cube onto a plane. From these projections
the data cube can be reconstructed by the inversion of the projection matrix. Un-
fortunately, the reconstruction has no unique solution and is also prone to noise
artifacts.

Another snapshot technique is coded aperture snapshot spectral imaging
(CASSI) (e.g. [GJB+07], [WPSB08], [WPSB09]). Here, the image is dispersed
onto a coded aperture, typically a LCD element, where spatial and spectral infor-
mation mixes. A random binary pattern is used to select parts from the mixed
information. Afterwards the dispersion process is reversed and the image is cap-
tured using a CCD or CMOS imager. The spectral data cube is reconstructed
from the mixed information using algorithms like GPSR [FNW07]. Like in the
case of CTIS, the solution is not unique and the reconstruction requires strong
regularization.

2.4 Materials
Whenever light travels through matter or reaches matter boundaries, interaction
takes place. To describe the large variety of effects in detail is clearly beyond the
scope of this thesis. The reader is referred to [Nas01] for a more or less complete
overview.

The interaction takes place at an atomic or molecular level. Incoming pho-
tons of appropriate energy can be reflected or refracted at medium boundaries or
they can be absorbed by an atom or molecule and their energy is transformed. It
may either be transformed to atomic vibrations, heating the matter, or an electron
might be raised to a higher energy level or may even ejected from the atoms or
molecules electron shells (ionization). By the reversion of these processes pho-
tons are emitted or re-emitted from matter. Colliding atoms or molecules in heated
matter emit part of the energy in form of photons. Electrons falling back to lower
energy levels emit a photon of frequency corresponding to the energy difference
of the levels.

In the context of photo-realistic image generation modeling the light-material
interaction at atomic level is too detailed, especially when considering the fact that
mostly geometrical optics are used. For this reason, different levels of abstrac-
tion have been defined. The next section will give an introduction to the various
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functions that have been defined to describe light-matter interaction. The section
afterwards will give a detailed overview on the measurement of those functions
from real material samples.

2.4.1 Formalization of Light-Matter Interaction
When considering a solid, opaque material, it is convenient to simplify the inter-
action of light with an object made of that material by computing interactions at
the surface of the object only. The scattering behavior of light at the surface is then
called surface reflectance. Informally, one wants to know how much light enter-
ing the object at a specific position xi from a direction ωi, having a wavelength λi
at time ti exits the object at a different position xo into a direction ωo with a dif-
ferent wavelength λo at time to. Figure 2.7(a) shows a sketch of the geometry and
quantities. This would lead to a function on a 12 dimensional parameter space:

ρ(xi, ωi, λi, ti, xo, ωo, λo, to) (2.15)

Effects often neglected in computer graphics are phosphorescence - the ability of
a material to re-emit incident light at a later point in time - and fluorescence -
the transport of radiant energy from a wavelength λi to a (longer) wavelength λo.
When we eliminate ti, to and set λ = λi = λo we end up with a 9D function.
When assuming a finite discretization of the wavelength domain, we can also
omit λ from the function and end up with the so called Bidirectional Scattering-
Surface Reflectance-Distribution Function (BSSRDF) which has been formalized
by Nicodemus et al. [NRH+77]:

ρ(xi, ωi, xo, ωo) =
dLo(xo, ωo)

dΦi(xi, ωi)
=

dLo(xo, ωo)

dEi(xi, ωi)dAi
=

dLo
Li(xi, ωi)cos(θi)dωidAi

(2.16)
Here, Lo is the exitant radiance, dΦi the incident radiant flux through surface
patch dAi around xi, dEi the corresponding irradiance, Li the incident radiance
and θi the angle between ωi and the surface normal at xi. The BSSRDF has unit
m−2sr−1.

When integrating the BSSRDF into the rendering equation (2.14), one has to
add an additional integral over the surface of the respective object:

Lo(x, ωo) = Le(x, ωo) +

∫
Ω

∫
A

ρ(xi, ωi, x, ωo)Li(xi, ωi)dAidωi (2.17)

When considering light propagation in non-solid matter like fluids, fog or
gases, classical rendering based on the rendering equation and the BSSRDF or
BRDF is no longer applicable. Here, a scattering function has to be defined for
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every point in the volume. This is formalized as a so called phase function which
is a probability density function:

p(ωi, ωo) = prob(photon scattered into ωo|photon incident from ωi) (2.18)

Using phase functions in photo-realistic rendering requires to compute scattering
events not only at material surfaces but at regular or randomly chosen intervals
when tracing light rays through a volume. Since this thesis focuses on surface
reflectance, the whole area of volume rendering is out of scope and we refer the
interested reader to [PJH16].

Except the restriction to geometric optics and the omission of phosphores-
cence and fluorescence, the BSSRDF contains no assumptions about the mate-
rial or the kind of interaction between light and matter and is thus able to repre-
sent an extremely huge class of materials. Unfortunately, it is still a very high-
dimensional function (8D) and therefore unhandy in terms of measurement, stor-
age and rendering. For certain special cases, further simplifications have been
defined. First, if one considers only nearly opaque surfaces, subsurface scattering
can be neglected. Therefore, xi = xo = x and the reflectance function simplifies
to:

ρ(x, ωi, ωo) =
dLo(x, ωo)

dEi(x, ωi)
=

dLo(x, ωo)

Li(x, ωi)cos(θi)dωi
(2.19)

This function now has unit sr−1 and is often called Spatially-Varying Bidirec-
tional Reflectance-Distribution Function (SV-BRDF). It can be directly used in
the rendering equation without any modifications.

If homogeneous materials are considered, even the dependence on surface po-
sition x vanishes, ending up with the Bidirectional Reflectance-Distribution Func-
tion (BRDF) [NRH+77]:

ρ(ωi, ωo) =
dLo(ωo)

dEi(ωi)
=

dLo(ωo)

Li(ωi)cos(θi)dωi
(2.20)

The BRDF is a four-dimensional function with unit sr−1 and a value range of
[0,∞). Figure 2.7(b) clarifies the BRDF geometry.

The BRDF has some properties which are extremely useful in photo-realistic
image generation:

• Superposition: Different light rays at a surface point do not affect each
other. This makes is possible to integrate all contributions in the reflection
equation ( 2.13).

• Reciprocity: ρ(ωi, ωo) = ρ(ωo, ωi). The BRDF does not change its value
when interchanging incoming and outgoing light direction. This is espe-
cially useful in rendering algorithms when tracing light rays in an ”inverse”
manner from the camera to the light sources.
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Figure 2.7: Geometry for the BSSRDF and BRDF

• Energy conservation:
∫

Ω
ρ(ωi, ωo)cos(θi)dωi ≤ 1 for all ωo. No energy can

be ”generated” at a surface. For this reason the contribution of light paths
scattering through a virtual scene decreases with the number of scattering
events making rendering techniques like path-tracing possible, because the
recursion of the rendering equation can be cut off at a certain maximum
level or using a certain probability.

A further simplification is the assumption of so called isotropy. A material
is called to be isotropic, when the value of its BRDF does not change when ro-
tating the material around the surface normal. Otherwise the material is called
anisotropic. Isotropic BRDFs are only three-dimensional since they can be pa-
rameterized over the two elevation angles θi, θo of ωi and ωo and the difference of
the azimuth angles φi − φo.

Another way to represent surface reflectance is offered by the Bidirectional
Texture Function (BTF) introduced by Dana et al. [DvGNK97],[DvGNK99]. A
BTF is the extension of the texture concept as proposed by Blinn et al. [BN76] by
bi-directionality. A BTF therefore consists of one texture map per pair (ωi, ωo) of
incoming and outgoing light directions: B(x, ωi, ωo). x is a point on a reference
plane to which the real surface point is mapped in direction ωo. Furthermore, it is
assumed that the incident illumination comes from infinity and is therefore equal
on all surface points on the material. This principle is illustrated in Figure 2.8.
The BTF includes geometric information about the material‘s surface in its sin-
gle textures. Furthermore, there is no additional assumption about the scattering
process itself. Subsurface scattering, interreflections and shadowing are directly
represented in the textures. For this reason, the BTF should not be confused with
the SV-BRDF, which has the same parameter space but a rather different mean-
ing. If we consider the properties of the single texels of a BTF, we see that, due
to the inclusion of all these non-local effects, properties like energy conservation
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Observer

Figure 2.8: The BTF principle: The reflectance of an arbitrarily complex surface
is parameterized on a reference plane. It is assumed that the light source is at
infinite distance.

and reciprocity can be violated. Wong et al. therefore coined the term Apparent
BRDF (aBRDF) [WHON97]. Due to its properties the BTF is thus well-suited for
surfaces of high geometrical complexity which are difficult to model using tra-
ditional geometry representations and SV-BRDFs. However, it is mostly limited
to materials being not too specular, as these would require a very fine resolution
of the space of directions ωi, ωo and therefore a tremendous amount of texture
images.

2.4.2 Representation of Reflectance Functions
Having introduced the conceptual functions, by which surface reflectance can be
described, we will now consider the concrete representation of those functions.
Here, two concepts exist:

1. representation by analytical functions and

2. data-driven approaches.

For some special material classes, the BRDF or SV-BRDF can be represented
by simple analytical functions. One such example are perfect mirror surfaces,
having the following BRDF:

ρmirror(ωi, ωo) =
δ([φi − φo]0..π − π)δ(θi − θo)

cos(θi)sin(θi)
(2.21)

where δ(x) is the Dirac delta function.
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Another example are perfectly diffuse surfaces, equally scattering light into
all directions:

ρlambert(ωi, ωo) =
a

π
(2.22)

with a being the albedo of the surface in the range 0..1. Diffuse surfaces are also
called Lambert-reflectors after Johann H. Lambert.

Since most real world materials are neither ideal mirrors nor ideal diffusers,
a lot of analytical BRDF models have been proposed to fill the gap in between.
Some of them are purely phenomenological ones, meaning that they are not de-
rived from an explicit model of the microscopic surface structure and reflectance.
Among them the models from Phong [Pho75] and Blinn [Bli77] are most famous
and still widely used. Another class of analytic BRDF models is derived by as-
suming a certain microscopic surface structure and optical parameters of the sin-
gle surface elements. These so called physically-based BRDF models allow for
higher accuracy for many material classes than the phenomenological ones. Most
of these models are based on the assumption of microfacets, small, planar surface
parts at microscopic level where the orientation of the facets with respect to the
global surface normal is often described by a statistical function. The microfacets
are assumed to have some rather simple reflectance behavior and the BRDF model
function then approximates the reflectance of the overall surface consisting of the
microfacets in a closed-form solution. Well known representatives of this kind of
BRDF models are the Cook-Torrance model [CT82], where microfacets are as-
sumed to be perfect smooth reflectors, and the Oren-Nayar model [ON94], where
microfacets are assumed to be perfect diffusers. There is a large number of addi-
tional models proposed over the years that depend heavily on the Cook-Torrance
model, replacing single parts of it with different functions or tables. A complete
review of these models is out-of-scope of this thesis.

Data driven approaches follow a different paradigm. Here, the values of the
reflectance function are stored in a high-dimensional table. Values in between
the table‘s sampling points are interpolated. Especially the Bidirectional Texture
Function is mostly stored in a data-driven manner since it is very cumbersome to
represent the irregular structures inside of the aBRDFs using analytical reflectance
models. Due to the fact that reflectance functions are high-dimensional and often
a dense sampling is required for good approximation of real-world reflectance, the
storage cost of the table easily exceeds practical limits. For this reason, compres-
sion techniques, e.g. based on statistical analysis, are used to reduce the storage
size. For an overview of compression techniques for BTF the reader is referred to
[FH09] or [Mül09].

In summary, the main advantage of data-driven approaches is their generality,
as they make it possible to represent a huge range of materials with great accu-
racy. The main disadvantages are the large storage costs and the worse editability,
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since there are no parameters having a intuitive physical meaning as with the an-
alytical BRDF models. The advantages of analytical reflectance models are their
compact storage cost and fast evaluation speed. The main drawback is their lack
of accuracy for representing many real-world materials.

2.4.3 Application of Virtual Materials

As described above there is a large set of possible representations to chose from
when assigning materials in virtual scenes. The fundamental problems are how to
choose the correct function class, the correct representation and how to come up
with the parameters for the chosen representation.

While the function class is solely determined by the kind of material, the other
two choices still remain. Whether to choose an analytical reflectance model or
a data-driven representation and how to obtain the necessary parameters or data
heavily depends on the application. Of course, there are applications, where there
is either no real material that has to be matched or there is no demand to match
a given real material with high precision. Moreover, limited computational and
memory resources may prevent the usage of data-driven approaches.

However, there is a lot of more demanding applications, where it is necessary
to have a virtual representation of a material that enables for true photo-realistic
image generation. Examples are virtual prototyping, advertisement, design or
other applications requiring virtual product display like teleshopping.

Classically, virtual materials for demanding applications have been generated
by manually choosing parameters for analytical reflectance models by hand. For
this, a CG artist tries to match the look of the material from some photographs or
a real sample on his table by creating a geometry with standard modeling tools
and by trying around with the reflectance model parameters. Even with a lot
of experience this is a tedious task. Moreover, the effort increases rapidly with
surface complexity - imagine for example an artist who has to model every single
thread of a fabric.

A possible solution to increase the productivity and quality in this setting is to
capture the reflectance of real material samples and to represent the captured data
in the desired representation. In case of analytic reflectance models this requires a
model fitting process in which the model parameters are found by e.g. an energy
minimization algorithm. In case of data-driven representation the process is much
simpler since the acquired reflectance data can be used with an appropriate inter-
polation method directly. However, the huge amount of data might render a data
reduction technique necessary.

In the following section we will deal with the measurement of surface re-
flectance, the central topic of this thesis.
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2.5 Reflectance Measurement
Acquisition of surface reflectance requires the sampling of one of the functions
defined in section 2.4.1. Let us consider the BRDF as an illustrative example.
From equation 2.20 we see that the BRDF is dLo

Licos(θi)dωi
. To acquire one sample

to approximate the BRDF for a certain pair of directions we have to measure
the exitant radiance Lo in a certain solid angle ωo while exposing the material
to a defined radiance Li from another solid angle ωi. In practice this requires to
place a light source of known power, (small) size and emission characteristics in
direction ωi and a light detector as introduced in section 2.3 in direction ωo. It
should be noted that we are not able to really acquire an ideal BRDF sample since
real detectors or emitters having differential solid angle with respect to the sample
do not exist, of course.

We will now first have a generic look at possible concepts to achieve this and
will afterwards give a detailed overview about previous work in this area.

The number of measurement points, that have to be sampled, depends on the
desired representation. If, for example, a homogeneous, diffusely reflecting ma-
terial has to be measured, one sample to determine the albedo is sufficient (see
equation 2.22). However, for more complex models a larger number of samples
with different angles is required and for data-driven representations even a dense
sampling of all parameter dimensions of the reflectance function is necessary.

When mounting light source, detector and material sample to a mechanical
system that allows to place light source and detector in different directions with
respect to the material sample, one speaks about a gonioreflectometer. Since go-
nioreflectometers need only one light source and one detector element they can
be equipped with high quality components and are therefore often used to ac-
quire data of high accuracy. However, since all direction pairs have to be sampled
serially involving mechanical interactions, the measurement times are typically
rather long. When also spatially varying reflectance should be captured, such a
serial measurement process is getting highly impractical.

To overcome this problem, multiple detector elements can be utilized to cap-
ture the reflected radiance at several angles in parallel. Especially imaging sensors
offer the opportunity to capture millions of reflectance samples in one picture. In
case of spatially varying reflectance this could be samples of the surface of the
material with similar light and view angles or in the case of homogeneous ma-
terials a larger range of incident and exitant light directions as long as the real
material sample exhibits enough surface curvature.

Above methods still sample light directions serially and exploit only paral-
lelism in view directions and/or spatial dimensions. Parallelizing capture of dif-
ferent light directions is not trivially possible. Only when targeting certain re-
flectance models or assuming that the reflectance function can be represented us-
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ing some basis functions, parallelized light capture by utilizing extended or mul-
tiple light sources is possible. After the capture process the acquired data has to
be processed to recover the reflected radiance per incoming light direction.

2.5.1 Practical considerations

Besides these fundamental principles a lot of practical issues have to be consid-
ered. The first problem arises from the high dynamic range of certain, especially
specular materials. For them, many orders of magnitude lie between the reflected
radiance for near specular compared to far off-specular angles. Since all light
detectors have limited dynamic range (see Section 2.3.1), methods to extend dy-
namic range like exposure bracketing have to be applied.

Additional constraints are caused by the physical layout of the setup. For BTF
capture or for gonioreflectometers one would like to have a perfectly directional
light source as well as an orthographic sensor/camera projection. For this it would
be advantageous to move light sources and sensors far away from the material
sample and use a light source that is as small as possible. Of course, in nearly
all practical scenarios the space for the setup is limited and therefore also the
distance to the light sources and sensors. Moreover, larger distance and smaller
light source size decrease the irradiance at the material sample and therefore cause
longer exposure times at the sensor to record the reflected radiance.

There is also a trade-off in the light source itself: one would obviously want
to have it as small as possible and at the same time as bright as possible to de-
crease exposure times and/or acquisition noise. Obviously both parameters are
physically contradictory and a certain compromise has to be chosen.

When acquiring samples with a camera system, the aperture size of the opti-
cal system is another crucial parameter. On the one hand, when it is too large,
the depth-of-focus will be too small to capture the sample sharply focused es-
pecially from shallow viewing angles. This could be circumvented by tilt-shift
optics (Scheimpflug principle) which can be mechanically complicated. Addi-
tionally, with a large aperture the solid angle wrt the sample deviates more from
the ideal case of a differential solid angle. This will lead to angular blurring of the
captured reflectance which will be especially noticeable at highlights.

On the other hand, when the aperture is too small, the amount of light reaching
the sensor is strongly reduced leading to longer exposure times or a higher noise
level. Moreover one will run into the diffraction limit when choosing an aperture
being to small.

Summarizing, all practical setups to acquire real-world reflectance have to
make a lot of compromises and it is therefore often advantageous to optimize a
setup for a special use-case.
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2.5.2 Previous Work
After having introduced reflectance capture concepts we will now proceed to give
an overview about real setups, that have been proposed by now.

Diffuse Reflectance: The most simple case of materials considering the re-
flectance measurement are those being homogeneous and (nearly) diffuse. As we
can see in equation 2.22 only the spectral albedo has to be captured. The sample
has to be illuminated in a defined manner and either a hemispherically integrated
or a point-wise sampled spectrum of reflected light has to be taken. Different
geometrical configurations have been defined and standardized. An overview on
geometries and corresponding devices can be taken from [WH87].

Classical Gonioreflectometers: Classically, BRDFs are measured using go-
nioreflectometers using a spectrophotometer as light detector. Therefore, the re-
flectance is resolved with high spectral resolution. Examples for this approach
are the setups by Proctor et al. [PB96] and Serrot et al. [SBBC98]. These setups
just differ in the choice of mechanical system, light source and spectrophotometer
they use.

Foo [Foo97], [LFTW06] present a setup that is restricted to isotropic reflectance.
The light source can just be rotated around one axis going through the sample, thus
lacking one degree of freedom. Otherwise, the setup is comparable to those above.

Multi-View BRDF Measurements: The serial nature of gonioreflectometers
can be straightforwardly overcome by parallelizing the capture of reflected light.

An example is the LED setup of Ben-Ezra et al. [BEWW+08], which utilizes a
hemisphere densely covered with LEDs both for illuminating the material sample
as well as for measuring the reflected light in parallel.

Another, widely used technique is to employ CCD and CMOS imagers which
can take millions of reflectance samples at once.

Ward [War92] use a CCD camera with a fish-eye lens to image the reflection
of a sample in a hemispherical mirror. This way they capture the reflected light
from the sample in parallel and with high resolution. By moving a light source
inside of the hemispherical mirror, they provide different illumination directions.

Another possibility is to take images of a curved surface which is homoge-
neously covered by the material in question. Marschner et al. [MWL+99] take
images of a sphere (or other curved surface) using a digital camera that can be ro-
tated around the object with one degree of freedom while the light source is fixed
with respect to the object. This way, isotropic BRDFs can be captured.

Matusik et al. [MPBM03a], [MPBM03b] also used a setup like this, but
proposed to reduce the number of camera positions and to fill the holes using
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the push-pull algorithm applied to the BRDF data in half-diff parameterization
[Rus98].

Both Marschner and Matusik utilized standard RGB cameras in their setups
therefore limiting the use of the acquired data to cases where no exact color re-
production is required (see also section 2.2.2). However, the extension to spec-
tral measurement just requires the exchange of the camera system. Since only
one camera is used, this can be done with reasonable effort. Such an extension
was described by Kim et al. [KSKL10]. They utilize a HDR-CMOS camera (al-
ready introduced in [KKP+08]) and a tunable band-pass filter to capture images
of painted spheres with 16 spectral bands.

When furthermore extending the approach of Kim to fluorescent materials,
that re-radiate incoming light of short wavelength at a longer wavelength, band-
pass filters in front of light source and camera have to be used. Such a setup was
constructed by Hullin et al. [HHA+10]. To avoid sampling the whole bi-spectral
domain for each camera position, they calculated a basis from a small set of this
full bi-spectral slices and reconstructed the slices for the other camera positions
by using a bi-spectral entry from the basis which matches sparsely sampled points
from the respective camera position best.

Spatially-resolved Gonioreflectometers: When extending reflectance capture
to spatially varying materials, digital imaging sensors are inevitable. Of course,
whisk-broom approaches could be used, but with increasing spatial resolution
such an approach renders infeasible.

First setups in this area also had a gonioreflectometer design, just exchanging
the spectrophotometer by a color camera.

The capture setup constructed by Levoy and Hanrahan [LH96] is a first variant
despite the fact that they wanted to capture whole light fields.

The first straightforward spatial gonioreflectometer was presented by Dana et
al. [DvGNK97], [DvGNK99] to measure BTFs (see section 2.4.1). They utilized
a robot arm, which brings the material sample in different orientations with respect
to the light sources and a video camera. The video camera was moved manually
to different positions. With this setup they captured 60 BTFs with 207 images per
material sample and published the data in the CuReT database.

Later setups from McAllister et al. [McA02], Sattler et al. [SSK03] and
Koudelka et al. [KMBK03] relied on the same principle but provided a better
angular resolution, image quality and automated measurement procedures. Typ-
ical measurement times for one bi-directioanl sample are in the order of a few
seconds. Due to the serial nature of the capture process, 10 or more hours are
required to digitize one material sample even for a moderate angular sampling.

As for the image-based BRDF measurement devices, RGB cameras were uti-
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lized limiting the use of the acquired data. Fortunately, only one camera is re-
quired, making an extension using a spectral imaging device possible with rea-
sonable effort. Until now, there is only one such setup presented by Tsuchida et
al. [TAN+05], [TSA+05]. They included a wheel of 16 spectral bandpass filters
in front of a strong lightsource and used a sensitive, monochrome camera. With
this setup they are able to measure multi-spectral, spatially-varying reflectance of
samples up to 4x4 cm in size. For 6500 bi-directional samples they had to spend
13 hours of measurement time. However, only results for homogeneous materials
were presented by now.

Multi-View Setups: For spatial gonioreflectometers, the long measurement times
can only be circumvented when taking multiple samples in parallel.

One approach can be to use an optical system that projects reflected light from
multiple directions onto a single image sensor. The setup from Han et al. [HP03]
is an example. They placed a kaleidoscope on the material sample and took pho-
tographs from above the kaleidoscope. The resulting images contain multiple
views of the material. Unfortunately, the resulting angular and spatial resolution
is extremely low.

The more promising approach is to use multiple cameras mounted at different
directions with respect to the sample.

Vertical arcs equipped with cameras and light sources were used by Matusik
et al. [MPN+02]. The light arc and the sample could be turned around the vertical
axis to allow for the scanning of the whole hemispherical reflectance.

The maximum level of view-parallelization is achieved by the device first
described by Müller et al. [MBK05] and in extended form by Schwartz et al.
[SWRK11], [SSW+14]. It consists of a hemispherical gantry densely covered
with 151 consumer digital cameras facing the material sample. The flash light
source of the cameras are used as light sources. Due to the maximal level of par-
allelization this device is able to capture a low-dynamic range BTF in about 30
minutes. The main drawback is the moderate quality of the cameras themselves,
as they are only consumer grade.

Multi-Light Setups: Parallelizing the capture of reflected light is theoretically
straightforward. Further optimization is only possible when the illumination is
parallelized as well.

Schechner et al. proposed to use multiplexed illumination [SNB03]. Here,
multiple light sources are switched on, increasing the brightness of the illumi-
nation and therefore reducing the required exposure time to capture the reflected
light and reducing the dynamic range of the scene. To be able to recover the re-
flectance for a single light afterwards, images using multiple light patterns have
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to be recorded. Devices based on this idea were presented by Wenger et al.
[WGT+05] and Mukaigawa et al.[MSY07].

When assuming that the reflectance of the material can be represented using
certain data-driven basis functions or analytical reflectance models, other light
sources and acquisition processes are applicable. Linear light sources like tubes
have been used by Gardner et al. [GTHD03] and Ren et al. [RWS+11]. The tube
is moved across the material sample in one direction and a video is recorded by
one camera. Gardner fitted a Ward BRDF model [War92] afterwards while Ren
uses a basis of previously acquired BRDFs from which the BRDF of the single
surface positions is reconstructed.

Nearly arbitrary, uncontrolled illuminations are allowed by the method from
Dong et al. [DWT+10]. They also utilize a basis of BRDFs captured from the
same material using a small handheld device in beforehand.

Ghosh et al. [GAHO07] assumed that the BRDF can be represented in a spher-
ical basis. They utilized a projector to create illuminations corresponding to the
positive and negative basis entries and measure the response over a large part of
the hemisphere simultaneously using a digital camera. Furthermore, they can also
fit analytical reflectance models to the acquired data.

It should be emphasized that all these multi-light methods except the light mul-
tiplexing ones are not capable of measuring surface reflectance in a reliable and
generic manner as they all rely on certain assumptions on the material. Therefore,
they have limited use in predictive rendering.

Subsurface Scattering: When considering materials like human skin, marble
or plastics, scattering of light beneath the objects surface contributes significantly
to the overall appearance of the object. Since it would be a very tedious task
to densely sample a BSSRDF (equation (2.16)), one often assumes that the light
being scattered subsurface leaves the material diffusely distributed. This is a quite
reasonable assumption except for very thin surfaces like leafs.

When assuming diffuse re-emittance of light, only one sample per surface
point has to be measured. For this purpose Nickell et al.[NHE+00] and Weyrich
et al. [WMP+06] proposed to use a measurement head densely filled with optical
fibers. One of these fibers is used to illuminate the respective surface point while
the others transmit the emitted light from nearby surface points to an imaging sen-
sor. By placing the measurement head onto a nearly planar surface point, samples
of the BSSRDF can be acquired.

Spectral reconstruction: When summarizing previous work on reflectance ac-
quisition of spatially varying surfaces, it is apparent that a tremendous amount of
work has been spent on the optimization of capture processes to increase quality
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and reduce capture time. Unfortunately, all optimized setups are only equipped
with RGB or similar trichromatic cameras due to their low cost and easiness of
use. When aiming at predictive rendering this data has limited use.

Other researchers have already worked on approaches to retrieve spectral re-
flectance data from RGB data (e.g. [HSB+99b], [IB99], [Ima98], [SH10], [DSD+16],
[ABS16], [JZG+17], [NPB14], [AWT17]). Since this would allow to re-use exist-
ing, efficient capture setups, this is a good idea. We will discuss these approaches
in greater detail in Chapter 5 and then present a thorough comparison of our novel
method against theirs in Chapters 7 and 10.4.

2.6 Summary
At a first glance, it seems to be straightforward to extend some of the optimized
setups to spectral domain by employing one of the spectral imaging techniques
explained in section 2.3.2. Since materials exhibit in most cases only smooth
spectral reflectance, even multi-spectral approaches should suffice.

Unfortunately, severe physical limitations hamper the practicality of such a
straightforward approach. Even when using only a moderate spectral sampling
of about 10 to 20nm, the corresponding optical bandpass filters have much less
transmittance than e.g. traditional red, green or blue filters. This way, a lot of the
photons is absorbed in the filter before reaching the image sensor. This has to be
counteracted by more sensitive cameras, longer exposure times or stronger light
sources. In cases where the setup just requires one light source and one camera as
for the spatial gonioreflectometers, this might be done with acceptable additional
costs. But as soon as a larger level of view parallelism is desired or as soon as e.g.
multiple light sources are utilized to reduce the time for mechanical movements,
simply using better hardware easily renders a spectral extension impractical.

Due to the presence of high quality and fast acquisition setups, RGB re-
flectance measurement has gained a rather high level of attention in both research
and industry. In contrast to this, spectral reflectance of complex surfaces is sel-
dom considered due to the absence of efficient capture setups, though it would be
highly desirable to use spectral SVBRDFs or BTFs for predictive rendering.

We will now continue to describe our efforts to construct a setup to measure
multi-spectral SVBRDFs or BTFs in a straightforward manner.
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Ground-Truth Data
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CHAPTER 3

SPECTRAL GONIOREFLECTOMETER DEVICE

3.1 Preliminaries
Our first step towards faster spectral reflectance capture of spatially-varying sur-
faces is to build a spatial gonioreflectometer with a multi-spectral imaging system.
We restrict ourselves to materials exhibiting no fluorescence and phosphorescence
because multi-spectral SVBRDFs or BTFs are already seven dimensional. When
considering the measurement times reported in previous work with RGB goniore-
flectometers like [DvGNK97], [McA02], [SSK03] and the multi-spectral goniore-
flectometer of Tsuchida et al. [TAN+05] a lot of acquisition time is required even
when neglecting fluorescence and phosphorescence.

Using the gonioreflectometer setup a database of spectral reflectance ground-
truth data was acquired and published at the BTF database of the University of
Bonn [BTF]. The acquired data was used to evaluate the quality of more sophisti-
cated capture methods introduced later in this thesis and may hopefully also help
other researchers to evaluate novel methods on spectral reflectance data.

The new device is an upgrade to the spatial gonioreflectometer of Sattler et
al. [SSK03]. We integrated a monochrome CCD camera with high quantum ef-
ficiency and good signal-to-noise ratio. In front of the camera an electronically
tuneable bandpass filter was used. When restricting to non-fluorescent materi-
als, one could also use a bandpass filter in front of the light source. However,
a camera-filter combination offers the opportunity to be used for other purposes
as well. In our case, we used the same camera system for the capture of multi-
spectral environment maps as well.

In the following chapters we first describe the hardware, the calibration and the
measurement process. Afterwards we explain, how the acquired raw data is post-
processed to be usable in a spectral rendering system and discuss results obtained

All text in Part I marked in gray is self-cited from M. RUMP, R. SARLETTE, AND R. KLEIN.
Groundtruth Data for Multispectral Bidirectional Texture Functions. In proceedings of CGIV
2010, pages 326-330, June 2010.
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with the proposed acquisition method.

3.2 Gonioreflectometer Device
Our multi-spectral gonioreflectometer is based on the hardware setup by Sattler et
al. [SSK03]. We will therefore first describe their setup in detail and afterwards
discuss the necessary changes.

3.2.1 RGB gonioreflectometer
The spatial gonioreflectometer from Sattler et al. is based on the basic idea of
Dana et al. [DvGNK97] to measure reflectance of complex surfaces and represent
them as a Bidirectional Texture Function (BTF). Unfortunately, the apparatus of
Dana required a lot of manual work and also suffered from a bad image quality
due to the usage of an analog video camera with a frame grabber and a low angular
sampling. In contrast to this, the gonioreflectometer of Sattler should provide high
quality with minimal manual effort.

Common hardware used by both setups is a robot arm, which holds the mate-
rial sample and can orient this sample in different angles with respect to camera
and light source. The light source is at a fixed position with respect to the robot
and the camera is moved to different positions on a half circle around the robot.
Dana et al. mounted the camera on a standard tripod and had to place it at the
different positions by hand.

Sattler used an Intellitek Scorbot ER-4u robot arm. This is an educational
robot with five degrees of freedom able to carry about 21̇ kg. The robot can be
controlled via a USB connection using the accompanying software development
kit on a PC.

As a light source a 570W hydrargyrum medium-arc iodide (HMI) lamp is
used. HMI lamps have a high luminous efficacy and a good color rendering index
(CRI). The Broncolor F575 lamp used in the setup has a corresponding color
temperature of about 6000K indicating that it emits nearly white light and has
a CRI > 90 which means the spectral power distribution is suitable to acquire
trichromatic reflectances with high accuracy.

The first conceptual difference to the setup of Dana was to use a digital still
camera (DSC) instead of an analog video camera because professional DSCs of-
fer a much higher resolution and image fidelity. In this case a Kodak DCS Pro
14n SLR camera was used. It allows full control of all functionality including
download of raw images over a IEEE 1394 (”FireWire”) connection.

The second conceptual difference was to mount the camera onto a rail system
which allows for fully automatic movement in a half circle around the robot. The
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(a) Sketch of the setup and the angular sam-
pling used by Sattler et al.

(b) Photograph of the setup: The sample is held
by a robot arm, the light source is fixed and
the camera is automatically movable on a rail
around the robot.

Figure 3.1: The BTF measurement setup from Sattler et al. [SSK03].

rail and the dolly are custom designed. As a drive for the dolly another motor
from the Intellitek Scorbot was used. Fortunately, the robot controller allows for
the connection of additional motors that can then also be controlled via the PC.

Figure 3.1 shows a photograph of the RGB spatial gonioreflectometer in the
lab at the University of Bonn.

3.2.2 Setup Modification
When extending the given RGB setup for spectral measurements, a lot of design
decisions arise:

• Determine the kind of spectral imaging system to use

• Consider the mechanical limitations for the spectral imaging system and the
light source

• Check, if power and spectral power distribution of the existing light source
are appropriate for spectral measurements

Since we want to capture ground-truth data, it is necessary to chose a spectral
imaging system that does not place any requirements on the scene like CTIS or
CASSI systems (see section 2.3.2). It would be advantageous to use a snapshot
technique like [DTCL09] to reduce capture time. Unfortunately, the spatial res-
olution is too low to capture complex surfaces with sufficient detail. Therefore
only serial techniques remain. Among them the whisk-broom and push-broom
techniques provide both excellent spatial and spectral resolution. However, they
lead to impractically long measurement times since they need - in case of a push-
broom technique - a few hundred scans per light/view direction pair and in case
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of whisk-broom techniques even up to millions of data points per direction pair.
Moreover, most reflectance spectra tend to be very smooth as they originate from
superimposed, broad bands [Nas01]. For this reason, the high spectral resolution
of whisk- and push-broom spectral imaging systems is not required. Therefore,
the method of choice is filter-based spectral imaging providing high spatial and
moderate spectral resolution.

For filter-based spectral imaging a monochrome camera is required which
should have a good signal-to-noise and quantum efficiency to counteract the low
incident photon count. Currently, the best performance is delivered by actively
cooled CCD cameras which are for example used in astronomic applications (e.g.
[RBdB+99]). Unfortunately, since the camera has to be mounted on the rail
dolly cooling designs requiring bulky equipment are not applicable. Currently,
the most compact camera cooling system consists of a thermoelectric element di-
rectly mounted onto the CCD and a secondary cooling with airflow. These devices
easily fit into a rather small camera housing and are therefore perfectly applicable
in our case.

We utilize a Photometric CoolSnap K4. This is a CCD-based camera for sci-
entific applications with 2048× 2048 pixels resolution, a quite large pixel size of
7.4µm × 7.4µm. The thermoelectric cooling system holds the imager at a stable
temperature of −25◦C.

Additionally, a system of changeable spectral bandpass filters is required. Two
different placements for the filter system are possible: either in front of the light
source to filter incident light on the sample or in front of the camera to filter
reflected light. Moreover, a filter system has to be chosen. Either mechanical
filter wheels with glass-filters or electronic filters are applicable.

We decided to place the filter system in front of the camera because this en-
ables the use of the resulting camera system beyond the reflectance capture sce-
nario, e.g. for the acquisition of spectral environment maps. Moreover, a filter
in front of the light source it technically quite complicated since it has to absorb
high amounts of radiometric energy without getting destructed. Only few filters
are available which are stable enough for this purpose. Since the camera has to be
moved in the setup and is thus mounted onto the dolly, a compact and lightweight
filter system is required. We therefore decided to use an electronically tuneable
filter (ETF). Besides the mechanical advantages, these filters have the additional
advantage of a fast switching time which cannot be achieved by mechanical sys-
tems.

Different ETF systems exist (see also [Gat00]). Among them liquid crystal
tunable filters (LCTF) and acousto-optical tunable filters (AOTF) are most com-
monly used in practice. Unfortunately, AOTF offer only a very limited field of
view [HSB99a] and are therefore not well suited for imaging purposes. In con-
trast, LCTFs have been used for spectral imaging before [Gat00], [HSB99a] and
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here especially those from Cambridge Research and Instrumentation1. Since they
are compact and allow for direct integration into the camera‘s optical system,
we can use them on the dolly of our gonioreflectometer as well. For the visible
spectrum CRI offers three different models with 7, 10 and 20nm bandwidth. We
decided to use the VariSpec-VS10 model with 10nm bandwidth to ensure suffi-
cient spectral resolution for reflectance spectra with higher frequent flanks like
those based on interference effects at the material‘s surface. The VariSpec is in-
tegrated into a special optical system from Schneider-Kreuznach with large focal
length to capture an area of about 20x20 cm at 2m distance (our working distance
due to the radius of the halfcircle rail). The first part of the optical system colli-
mates the incoming light rays for the LCTF making the spectral transmittance not
varying over the image. Behind the LCTF the second part of the optical system is
projecting the image onto the sensor. As a result we have a very compact multi-
spectral imaging system which we can also use for other tasks like environment
map capture.

When considering the light source, we noticed that fortunately a quite strong
light source (570W HMI) was already integrated into the RGB setup in order to
achieve lower exposure times. The high color rendering index (CRI) indicates
an overall good spectral power distribution. Unfortunately, the CRI is based on
the tristimulus ∆EUVW measure [Wys63] and can therefore hide certain spectral
features like narrow peaks which are typical for gas discharge lamps. We there-
fore measured the emission spectrum of the HMI lamp using an Ocean Optics
USB4000 spectrophotometer with high spectral resolution. The result is shown in
Figure 3.4(a). The narrow peaks on the otherwise well distributed spectrum could
make spectral calibration more difficult.

Since gas discharge lamps are often operated with pulses we also checked the
spectrum of the HMI lamp with a high time resolution of 6ms. Unfortunately,
higher time resolution was not possible with the Ocean Optics. However, the
measurement series revealed that the three peaks in the lamp spectrum oscillate
over time. A respective plot can be found in Figure 3.4(c). When performing a
frequency analysis of this series using a Fourier transformation (see Figure 3.4(e))
we can clearly notice that the oscillation has a frequency of 15Hz. For comparison
we also included the plots for a wavelength far off the peaks. One can notice that
this part of the spectrum does not oscillate. Since the spread-out part of the HMI
lamp spectrum is generated by thermal effects, this was the expected behavior.
Due to the peak oscillations, all exposure times have to be multiples of 1/15s ≈
66.6ms when using this lamp.

For this reason, we also considered a black-body like lamp. Here, we have

1Now a division of Caliper http://www.caliperls.com
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(a) Modified setup with HMI lamp (b) Modified setup with QTH
lamp

Figure 3.2: Photographs of the modified gonioreflectometer setup.

chosen a quartz tungsten halogen (QTH) lamp from Newport2. These lamps have a
black-body-like spectrum with a color temperature of about 3000K. Figure 3.4(d)
shows the emission spectrum of the lamp. In contrast to arc lamps like HMI lamps
they have a smooth spectrum with no peaks. Due to this fact and due to their
stable and oscillation-free energy output they are well suited for measurement
purposes. Unfortunately, due to their low color temperature, they emit little light
in the "blue" part of the visible spectrum. We therefore decided to use the available
model with maximum power, namely 1000W. The lamp is quite bulky and requires
a lot of cooling, but this is acceptable since it is not moved during measurement.

Images of the modified gonioreflectometer are shown in Figure 3.2.

3.3 Gonioreflectometer Calibration
A careful calibration of all components of the setup was performed. For the geo-
metric calibration we relied on the work of Sattler et al. since we did not change
the mechanical system and its control. This means we had to perform a radio-
metric and spectral calibration of camera and light sources. Since we have two
possible light sources to choose from, we have to determine which one provides
best quality and measurement speed in combination with the camera system.

The radiometric calibration of the camera aims at recovering incident irradi-
ance on the pixels from the pixel values. We assume an imaging model similar to
those from Debevec et al. [DM97] and Robertson et al. [RBS03]:

px = f(tIx) + dx (3.1)

where px is the final digital counts for pixel x, Ix the incident irradiance on pixel x,
t the exposure time, f the so-called response curve and dx the dark current counts

2http://www.newport.com/Quartz-Tungsten-Halogen-Lamps/378263/1033/info.aspx
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for pixel x. f is a - in general non-linear - function which summarizes all optical
and electronic effects inside of the camera which determine how incident photon
count on a pixel maps to the discrete pixel values. For the radiometric calibration
of the CoolSnap camera, the per-pixel dark current and the response curve have to
be determined. Then, incident irradiance can be recovered from pixel values by:

Ix =
f−1(px − dx)

t
(3.2)

The dark current is mainly generated when electrons are raised to the con-
duction band by thermal effects or when there is a certain leakage in the electric
circuits of a pixel [HL07]. Therefore, it depends on exposure time and on device
temperature and is independent of the incident irradiance. There are two standard
approaches to determine and subtract dark current. In the first variant, the pixel
values of special, light-shielded pixels at the start of each image row are averaged
by the CCD controller. This average is subtracted from the remaining ”active”
pixels of the row. This method however, does not consider the so called fixed pat-
tern noise (FPN), the deviations in dark current leakage between the single pixels.
Some pixels of a CCD are even so called warm or hot pixels that have such a
large dark current leakage that they saturate only due to dark current. The second
standard method is to capture a so called dark frame before or after the respective
”real” exposure. Afterwards the dark frame is subtracted from the data frame.
This way, fixed pattern noise and temperature dependence are correctly consid-
ered. Unfortunately, both frames are biased by dark current shot noise, reset noise,
amplifier noise and potential other noise sources [HL07]. When subtracting, the
variance increases as µfinal =

√
2µ2

invididual. Moreover, capturing dark frames
before or after each data frame roughly doubles the measurement time, which is
crucial in our gonioreflectometer.

Fortunately, the CCD imager of the CoolSnap camera is actively cooled and
has a constant temperature of about −25◦C. Due to this, dark current is overall
reduced and - for us important - depends on exposure time only. For this, we are
fortunately able to capture the dark frames in beforehand which reduces both mea-
surement time and noise. Noise reduction is achieved by capturing multiple dark
frames for every exposure time and by averaging these dark frames. In our case,
we captured 50 dark frames per exposure time. We preselected a set of exposure
times and interpolate between the respective averaged dark frames linearly when
recovering the incident irradiance using equation 3.2.

The calibration of the response curve was performed using the algorithm from
Robertson et al. [RBS03] which recovers the inverse response curve f−1 up to a
scale factor. We will call the resulting curve f̂−1 and refer to the return value of
that function with the generic word "energy" in the following. To obtain a cali-
bration with high quality, we took 200 images with steadily increasing exposure
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(a) Inverse response curve of the CoolSnap
camera with dark current subtracted. The
response was calibrated using 200 images.
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(b) Signal to noise ratio of the CoolSnap camera
with increasing exposure time.

Figure 3.3: Radiometric calibration of the CoolSnap camera.

time, subtracted the dark current and run the Robertson algorithm. The resulting
inverse response curve is shown in Figure 3.3(a).

To measure reflected radiance from the material sample, the missing scale
factor has to be determined. This scale factor is moreover dependent on the wave-
length since the VariSpec filter and the optical system have different transmis-
sion per wavelength band and the CCD has a wavelength-dependent quantum ef-
ficiency. To determine the scale factors it is common practice to place a sample
with known BRDF in the setup, acquire the camera‘s response and determine the
ratio between known reflectance and measured response. We use a Zenith Ultra-
White Reflectance target from Sphere Optics, a nearly perfect white and diffuse
surface made of barium sulphate. The factors are then calculated as:

Fλ =
IλWλt

π

1
1
n

∑n
i=1 f̂

−1(pλ,i,white)
(3.3)

where I is the spectrum of the light source used for calibration, W the manufac-
turer supplied reflectance spectrum of the Zenith UltraWhite (see Figure 3.5(d)),
t the exposure time and pλ,i,white the n pixel values of the white standard. The
first term is therefore the exitant radiance from the white standard (BRDF multi-
plied with light) and the second term is the reciprocal of the measured irradiance-
proportional value using f̂−1.

The resulting factors are shown in Figure 3.4(b). The quantum efficiency of
the whole camera system is very low in the short wavelengths corresponding to
blue light due to the reduced quantum efficiency of the CCD and due to the worse
transmission of the VariSpec filter for short wavelengths (see also Figure 3.4(f)).

Unfortunately, these differences in quantum efficiency increase the measured
dynamic range of the scene. Two possible solutions exist to compensate for this.

44



CHAPTER 3. SPECTRAL GONIOREFLECTOMETER DEVICE

The first option is to use constant exposure times for all wavelength bands and
scale the measured energy values according to the inverse quantum efficiency.
The second option would be to adjust the exposure time to the quantum efficiency.
To check, which approach is superior for the CoolSnap camera, we measured the
signal-to-noise ratio for a large range of exposure times up to 60s. The result
is depicted in Figure 3.3(b), showing that the SNR is steadily increasing with
exposure time, even for extremely long exposure times like 60s. This is due to the
fact that the sensor is cooled producing few thermal electrons. We conclude, that
longer exposure times deliver better results than scaling. Therefore, a different
exposure time tλ is calculated for every wavelength band with peak transmission
at λ:

tλ =
tbaseFλ
Iλ

(3.4)

with I being the spectrum of the lamp used. This way, the camera system mea-
sures at similar signal levels in all wavelength bands when capturing a gray mate-
rial.

When we calculate the resulting exposure times for both lamps (see Fig-
ures 3.5(b) and 3.5(a)) we realize that the QTH lamp is less suited for measure-
ment with our camera system since it emits very low energy at short wavelengths.
Please note that it was not even possible to determine a stable measurement of
the necessary scaling factor for the 400nm band. We therefore decided to use the
HMI lamp despite all the difficulties caused by the nature of that lamp. Due to the
lamp osciallations we rounded all exposure times to the next multiple of 66.6ms
(see discussion of HMI lamp in Section 3.2.2).

Having obtained the full calibration, the BRDF value for every pixel x on the
material sample can be theoretically calculated as follows:

ρ(x, λ) =
Fλf̂

−1(px,λ − dx,tλ)

Iλtλ
(3.5)

where I is the spectrum of the illumination used during the measurement and px,λ
is the pixel value at x measured for wavelength λ. dx,tλ is the dark current value
interpolated from the pre-recorded dark frames for exposure time tλ.

In practice, we determine the ratio F ′λ = Fλ
Iλ

prior to each measurement run
because the light source has to moved to two different positions manually and the
factors F ′ obviously also depend on the lamp distance which may vary by some
centimeters. It is also important to note that both lamps also show certain aging
effects and long-term instabilities over the whole capture time. To compensate for
this we mount a small X-Rite I1 spectrophotometer opposite to the light source
and capture the spectrum for each bi-directional measurement point. From the I1
measurements a single scaling factor Fi,long per measurement point i is generated
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in relation to the first point i0. Figure 3.5(c) shows such a long-time variation of
the HMI lamp.

Summarizing, the reflectance for every point x is recovered by:

ρ(i, x, λ) =
F ′λFi,longf̂

−1(pi,x,λ − dx,tλ)

tλ
(3.6)

In the following chapter we will now describe the practical implementation of
the measurement process and the post-processing of the acquired data. We will
furthermore show results from the acquired ground-truth BTF data.
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(a)HMI575 lamp: Mean emission spec-
trum
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(b)Spectral sensitivity of the multi-spectral
camera system.
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(c)HMI575 lamp: Spectral emittance of the
545.9nm peak over time with a time reso-
lution of 6ms. The lamp controller gener-
ates regular electric pulses to the electrodes
generating oscillating line emissions from
the gas.
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(d)Emission spectrum of the QTH lamp in
comparison to a perfect black-body emit-
ter. This lamp does not suffer from narrow
spectral emission peaks or any oscillations
over time as the HMI lamp does.
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(e)HMI575 lamp: Frequency analysis of
the oscillations. The 545.9 nm spectral
peak shows a frequency peak at 15Hz (the
peak at roughly 75Hz is due to the acquisi-
tion noise). The frequency analysis for the
thermal part of the HMI spectrum shows a
rather uniform distribution of amplitudes,
meaning that this part does not oscillate.
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(f)Transmission spectra of the VariSpec fil-
ter tuned to peak transmission wavelengths
from 400 to 720nm in 10nm steps accord-
ing to manufacturer. The steadily decreas-
ing transmittance with decreasing wave-
length is notable.
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(a) Suitability of the QTH lamp in conjunc-
tion with the VariSpec bandpass filter: For
an equal SNR in all wavelength bands very
long exposure times would be necessary for
the ”blue” wavelengths to compensate for the
faint lamp emission and the bad filter trans-
mission. It was not even possible to deter-
mine a scaling factor for the 400nm band in
a reliable way.
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(b) Exposure times for all wavelength bands
when using the HMI lamp. The exposure
time for the ”blue” wavelengths are still high
to compensate for the bad filter transmis-
sion but the effect is much smaller compared
to when using the QTH lamp (see nearby
graph).
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(c) Temporal change of HMI lamp emittance
over long time.
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(d) Spectral reflectance of the Zenith Ultra-
White (provided by manufacturer).

Figure 3.4: Spectral calibration of the measurement setup: Spectral emittance of
light sources, spectral sensitivity of the camera system and combination of camera
system and light sources.
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GROUND-TRUTH MEASUREMENTS AND RESULTS

4.1 Ground-truth Measurements

4.1.1 Measurement Process

In order to capture the new kind of data the existing control program of the go-
nioreflectometer was altered to incorporate control for the new hardware, namely
the VariSpec filter, the CoolSnap camera and the X-Rite I1 to track the light emit-
ted by the HMI lamp. Since all these hardware parts have an accompanying SDK,
extension of the program was simple and straightforward. Especially, the control
code for the robot and rail was not touched.

The measurement process for each material is split into two parts since the
lamp has to be moved to two different positions to allow for capture of directions
all over the material‘s local hemisphere (otherwise a fully circular rail would be
necessary). In front of each of these runs, the white reference target is held by the
robot and calibration images are taken as explained in Chapter 3.3 to determine
the factors F ′λ.

Afterwards the sample holder with the material sample itself is mounted to the
robot arm. The sample holder is a metal frame with a handle for the robot and with
fixing screws to mount plastic plates of about 6cm squared into the center. Onto
the plastic plate materials can be glued or otherwise fixed. Due to this modular
system it is possible to choose a plastic plate best suiting the material to measure
without requiring to manufacture a completely new sample holder.

The two measurement runs itself are then fully automatized. For each direc-
tional sample, the mechanical system is moved to the respective position. Then
the program waits for a short delay of one second for mechanical vibrations to
die away. Afterwards the tunable filter is serially switched to peak transmission
wavelengths from 400 to 720nm in 10nm steps and an image per wavelength band
is taken with the CoolSnap camera using the exposure times tλ shown in Fig-
ure 3.5(b). This image capture process takes about 68 seconds for all wavelength
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bands, from which 63.6 seconds are exposure time, and 130 ms per image × 33
bands = 4.3 seconds are used for filter switching and image download to the con-
trol computer.

The angular sampling is unchangedly taken from Sattler‘s setup. He captured
81 view x 81 lights directions ending up with 6561 direction pairs. These angular
sample points are ordered in a way that the average mechanical movement times
are minimized. They take about 5 seconds in average and up to 20 seconds if
the camera has to be moved on the rail. Therefore the total capture time for one
material sums up to 6561 × (68s + 5s + 1s) = 485514s = 134.9h = 5.6d. Of
course, such a long capture time is impractical for a practical use of the proposed
setup in industrial processes but it suffices for the capture of a set of ground-truth
datasets.

4.1.2 Post-Processing

The acquired raw data has to be processed in order to recover final reflectance
values for every point x and all direction pairs i on the material surface according
to equation (3.5).

First, a mapping from raw image pixels x′ to material surface positions x is
determined. If surface geometry and camera parameters were known, this would
be a trivial task. Since we do not have any knowledge about the material‘s surface
geometry, we assume a planar surface in accordance with the BTF principle (see
Section 2.4.1). The camera‘s intrinsic parameters could be calibrated by read-
ily available methods like [Zha00]. Unfortunately, the extrinsic parameters of
the camera, namely the position and rotation in relation to the materials surface,
cannot be easily calibrated in our setting. The reason is the inaccuracy of the me-
chanical system. A mechanical system of the desired size which would be capable
of positioning with sub-pixel accuracy would be too costly. Therefore, we employ
computer vision methods to detect the material target in the raw images. For this,
we enclose the material sample with a narrow border made of white paper. It
is constructed by imprinting a larger black rectangle onto the paper using a inkjet
printer leaving out the border area in the center. Inside of the border area the space
for the material target is cut out. Figure 4.1 shows some raw images which clarify
the construction of the white border. The corners of the white border are then
detected in the images and a homography matrix can be computed, which maps
the plane of the border in image space to the proxy/texture plane of the material.
The main problem of detecting the border is the paper and the black print being
not perfectly diffuse and therefore showing certain amounts of gloss as well as
fresnel reflection artifacts. Therefore, a stable detection in the images is required.
We achieve this with the following steps:
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1. Generate a binary image by thresholding the raw image

2. Construct a list of all outer contours in the binary image

3. Remove all contours having a bounding box of inadequate size

4. For all contours:
(a) Perform a local PCA [KL97] on the contour points using 6 clusters and

one principal component. This corresponds to stably fitting 6 lines into
the points.

(b) Remove the two smallest clusters.
(c) Compute intersections of the four remaining lines when angle between

lines is larger than 10◦.

5. Remove all rectangles having inadequate size

6. If no rectangles remain, reduce threshold and continue at step 1.

The two excess clusters in the local PCA help to better deal with small artifacts.
After this coarse rectangle is found, a sub pixel accurate refinement of the corner
positions has to take place to obtain a good registration. This is achieved by first
computing the homography matrix H , mapping from the coarse image rectangle
to the texture space [0, 1]2, and then extracting small image pieces around the
corners in texture space. This pieces have a width and height of 0.1 texture space
units and are centered at the corners. The resolution can be freely chosen to adjust
the desired accuracy. For each of the image pieces the 5 and 95 percentiles of
the pixel values are calculated and the pixel values are linearly re-mapped (and
clamped) so that the percentile values end up as black and white. The result are
four small image pieces like those shown in Figure 4.1(d). The position of the
corners in the small image pieces is determined by fitting a Chan-Vese model
[CV01]. The ”inside” is assumed to have constant value of 1 and the ”outside” of
0 and the contour is assumed to be rectangular. Therefore, only the corner point
in the image has to be optimized. The resulting target function is minimized by
a brute-force scan using a GPU program written in CUDA and takes about one
second for all four image pieces when using a resolution of 200x200 pixels. The
resulting corner points are in texture space and are then mapped back to image
space using the inverse homography matrix H−1.

Since this process has to be performed for all view and light combinations,
some of the images with shallow viewing angle and opposite light direction ex-
hibit strong fresnel reflections on both the white paper and the black paint of the
sample holder. Figure 4.1(c) shows an example of such a situation. In this cases,
the algorithm based on thresholding does not provide any solution. For this, we

51



CHAPTER 4. GROUND-TRUTH MEASUREMENTS AND RESULTS

(a) Image from the red fabric dataset. One
can clearly see the sample holder consist-
ing of the metal frame and the white border
made by printing on white paper.

(b) Image from the ”Colorchecker” dataset

(c) Image from the color checker
dataset showing strong fresnel re-
flection: For these images the black
ink and the white paper are barely
distinguishable.

(d) Extracted and scaled corner image
pieces to fit the Chan-Vese model.

Figure 4.1: Example raw images from the gonioreflectometer setup. The images
have been generated by applying the appropriate scale factors to the images cor-
responding wavelengths, then mapping the images from spectral space to sRGB
and finally applying a gamma mapping.
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(a) The color chart under neutral, environmen-
tal illumination.

(b) The Lego bricks under neutral, environ-
mental illumination.

(c) The red fabric under neutral, environmental
illumination.

(d) The wallpaper under neutral, environmen-
tal illumination.

Figure 4.2: Some rendered images using the acquired multi-spectral groundtruth
BTF data. The resulting spectral images have been converted to sRGB color space
for display purposes.

implemented a small tool that enables for easy selection of the corners in a graph-
ical user interface for all images where the automatic extraction did not work.

Having determined the image position of all corners of the white border in all
raw images, textures for all direction pairs and wavelengths can be extracted. This
is done by mapping all positions x ∈ [0, 1]2 in texture space to the respective raw
image position x′ and using linear interpolation to extract the pixel value. The
resolution of the textures can be chosen freely, but more than 800 × 800 is not
sensible due to the size of the material sample in the raw images corresponding
to frontal views. To extract the BTF value for each of the pixels, equation (3.6) is
applied.

This step is computationally relatively cheap and therefore highly limited by
IO bandwidth. To maximize IO, the raw images are read by one CPU thread while
multiple threads perform the processing and another thread is responsible for the
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saving of the final images. On the processing computer (Intel Core i7 QuadCore
and a recent HDD) this step takes about 6 hours.

Finally, one ends up with a BTF consisting of one registered, radiometrically
and spectrally calibrated texture per measured direction pair. In principle, this data
is directly suitable for rendering. However, in 800× 800 pixel resolution and with
33 spectral bands, the 6561 textures require 516GB of memory. Therefore, the
textures should be compressed using methods like those described in [MMS+05]
or [FH09]. Following the findings of Müller [Mül09] about the compression of
RGB BTFs we used a PCA based compression method that is a modification of
the method first described in [KMBK03]. We first split the spectra of all texels
into a sum (brightness) and a normalized spectrum and factorize the two parts
individually. The brightness channel contains most of the complexity that arises
from the mesostructure of the BTF. For this reason, we used 250 PCA components
to represent it, whereas 60 components were sufficient to reproduce each single
band of the normalized spectra. We end up with approx˙ 2.5 GB of compressed
data without a large loss in accuracy.

If a decoding plugin can be supplied, this data can be directly fed into any
spectral renderer. As a demonstration we rendered several images using the ac-
quired data. These can be found in Figure 4.2.

4.2 Results
To build a first usable database of spectral BTFs, we selected four different mate-
rials:
• A hand-painted color checker with 16 fields, including fluorescent and spec-

ular ones

• A piece of complex fabric having four different threads in it (dark and light
red, grey, and silver)

• A piece of wallpaper with complex structure and gloss

• A quadratic piece of Lego bricks of different colors including a transparent
one

Figure 4.1 shows photographs of these four material samples. The post-processed
images of these samples have been published in the BTF Database Bonn1 to be
used by other researchers to develop methods for efficient spectral BTF capture,
compression, and rendering.

To check the accuracy of our datasets we made several comparisons. First,
we compared the spectra of different parts of the material samples measured with

1http://cg.cs.uni-bonn.de/de/projekte/btfdbb/download/spectral/
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Figure 4.3: Comparison of our ”red fabric” data (see also Figure 4.1(a)) integrated
to mimic the spectrometer behavior with measurements acquired with the spec-
trometer: We tried to match the spots where we measured with the I1 as good as
possible.

our setup to corresponding measurements using a X-Rite I1 handheld spectropho-
tometer. The I1 illuminates a circular spot of the sample using a ring-shaped light
with elevation angle of θ = 45◦ and detects the reflected spectrum from the top
(45/0 annular geometry). To simulate this, we integrated our data over circular
spatial regions as well as all the images of the BTF that correspond to illumina-
tion directions of θ = 45◦ and viewing directions from the top. Since we do not
known the exact geometry of the spectrometer we cannot hope to reproduce all of
the data exactly. This is especially true for the specular fields since here a small
angular deviation results in strong differences in brightness. The comparison re-
sult can be seen in Figures 4.4 and 4.3. Our setup is able to reproduce the spectra
with high precision.The fluorescent colors on the colorchecker (please note that
the paper contains some optical brightener as well) cannot be reproduced which
results from the different amount of energy emitted by the light source of the I1
and our HMI lamp in the UV range. Since we did not sample the dimension of
wavelength of incoming light, this effect cannot be reproduced. Most likely the
differences for the specular materials are caused by the very simple I1 simulation,
because it is done averaging all images with illumination from 45◦ elevation and
top view. This matches only roughly the internal conditions of the I1 leading to
larger errors for specular materials.

For the second comparison we took a multispectral photograph of the color
checker in a room with complex lighting consisting of small thermal light sources
(halogen lamps) as well as large fluorescent light sources (neon lamps). The re-
sulting illumination spectrum has sharp peaks and is quite different compared to
typically used daylight illuminants.

Then we captured the illumination conditions extending the method from De-
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Figure 4.4: Comparison of our ”Colorchecker” data (see also Figure 4.1(b)) in-
tegrated to mimic the spectrometer behavior with measurements taken with the
X-Rite I1 spectrometer: All fields but the specular and the fluorescent ones are
reproduced very good. Most likely the differences for the specular materials are
caused by the very simple I1 simulation, because it is done averaging all images
with illumination from 45◦ elevation and top view.

bevec et al. [DM97] by taking multispectral photographs of a chrome sphere
mounted at the position of the material samples. The environment map is shown
in Figure 4.5.

Using this image-based lighting data and the captured BTF data we re-rendered
a photograph of the color checker using a spectral rendering system. A compar-
ison of the rendering and the photograph can be seen in Figure 4.6. The multi-
spectral images have been converted to RGB by convolving the spectra with the
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Figure 4.5: Environment map of a room with complex lighting consisting of large
neon lamps and small halogen spotlights. The average spectrum has sharp peaks
and the illumination in this room is therefore quite different from a typical daylight
situation. The spectral image has been mapped to sRGB for display purposes.

CIE 1931 RGB color matching functions whereas the environment map and the
BTFs for the RGB comparison were converted to RGB before the rendering. All
three images have been white balanced using the same RGB factor derived from
the environment map and tonemapped using a measured response curve of a RGB
camera afterwards. Calibrated tonemapping and display of the multispectral im-
ages is out of scope of this paper and thus not further discussed. The multispectral
rendering reproduces the photograph faithfully and shows the accuracy of our re-
flectance data. The third image of Figure 4.6 shows that RGB BTFs cannot be
used for predictive rendering due to metamerism effects.

It should be noted that a BTF capture system based on trichromatic cameras
would produce an even worse result. The reason for that is, that one would need to
transform the system-dependent RGB output to some standard color space (here:
CIE 1931 RGB). This would require an ICC profile or similar for the capture
system. However, it is not possible to derive exact values in the standard color
space from the system-dependent RGB values especially in such a complex case
with many different spectra contained in one image (this issue is discussed later on
in this thesis in greater detail). In contrast to this, we were able to calculate exact
CIE 1931 RGB triples from the spectral data. The same issue is of course also
true for the environment map. Thus, our comparison contains the bias introduced
by the RGB rendering only.
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Figure 4.6: Comparison of a photograph (top) with a spectral rendering (center)
and a RGB rendering (bottom) showing the accuracy of our data as well as the
impacts of metamerism.
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4.3 Summary
Summarizing, in Part I we have shown how to modify and calibrate an existing
gonioreflectometer to capture multi-spectral, ground-truth BTFs and how post-
processing of the raw images takes place. In detail:
• how to select an appropriate camera system, i.e. camera and filters.

• how to find a lighting system matching the camera system.

• how important an exact knowledge of the light source spectral power distri-
bution is, especially also over time.

• how to do a spectral calibration of the whole system.

• how to apply calibration data at post-processing time.

• how to register all BTF images in the texture coordinate space.

• how existing BTF compression methods can be easily applied to spectral
BTFs

• how to perform an inter-device matching of acquired spectral reflectance

Overall, this should give the reader the knowledge do build up his own multi-
spectral BTF capture device and moreover it gives the opportunity to judge the
properties and quality of the acquired and published data. The resulting data has
been made publicly available for other researchers to e.g. test their algorithms.
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Part II

Spectral Reconstruction
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CHAPTER 5

INTRODUCTION TO SPECTRAL RECONSTRUCTION

Spectral reconstruction is the process of reconstructing a light spectrum or - in
case of spectral imaging - an image of spectra from measurement device re-
sponses. Therefore, it is one of the central tasks in the area of spectroscopy and
spectral imaging.

Spectral reconstruction is a comparably simple task when the device provides
dense measurement data by using narrow-band optical filters or diffractive ele-
ments to split the incoming light into its spectral components (see also Part I). In
this case, the device responses have to be transformed into an energy-linearized
value and eventually a spectral bandpass correction has to take place. This is de-
scribed in great detail in many standard text-books i.e. [Sch07]. Unfortunately,
devices of this type require long acquisition times due to several reasons: First,
they require long exposure times since low irradiance is incident on each sensor
element due the filtering or splitting. Second, it requires multiple acquisition cy-
cles to capture the whole spectral data cube (see also Section 2.3.2). It is therefore
faster to acquire data with broadband filters like typical RGB filters or a small set
of glass filters mounted in a filter wheel.

However, as soon as the original spectra have to reconstructed from this kind of
data, the problem is getting more complicated and the reconstruction often has no
unique solution. Nevertheless, broadband filters were already utilized for multi-
spectral imaging [HSB+99b], [IB99], [Ima98], [SH10]. These approaches try to
invert the mapping from spectral space to the low dimensional space of device
responses by some numerical method like pseudo-inverse matrices, effectively
assuming that all imaged spectra are located on a hyper-plane in spectral space
having dimension equal to or less than the number of utilized broadband filters. It
is easily imaginable that this is not true as soon as more different materials and/or
light sources are present in the imaged scene.

All text in Part II marked in gray is self-cited from M. RUMP AND R. KLEIN. Spectralization:
Reconstructing spectra from sparse data. In proceedings of SR ’10 Rendering Techniques, pages
1347-1354, 2010.
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The basic idea of our approach for multi-spectral capture - not limited to sur-
face reflectance - is to utilize hybrid data. When reviewing the light measurement
devices described in section 2.3.1 it becomes apparent that there exist a lot of
devices - most of them being based on CCD or CMOS chips - which can either
capture single 2D slices of or a certail integral over the spectral data cube with
high resolution and in a single shot. It is therefore reasonable to try to combine
different of these devices and fuse the acquired data to achieve a better constraint
spectral reconstruction compared to single-mode data.

Of course, the choice of different devices is use-case dependent. Nevertheless,
it can be noted that in many areas - and in computer graphics as well - a lot of
effort has been spent on utilizing RGB cameras for various purposes like light and
reflectance measurements. The reason is that RGB cameras are cheap, easy-to-
use, provide a high spatial resolution and - due to their similarity to the human
eye - a color accuracy that is acceptable in certain applications. Due to these large
amounts of existing RGB hardware and knowledge on the usage and calibration
of RGB devices, it is desirable to re-utilize and only extend existing devices to
increase the spectral resolution from three (potentially overlapping) spectral bands
to a much higher spectral resolution.

In this part of the thesis we will introduce a framework that allows to com-
bine spatially dense data gathered by RGB devices with spatially sparse data hav-
ing higher spectral resolution captured by devices like spectrophotometers, line-
scan cameras, narrow-band filter based cameras (see section 2.3.1) or snapshot-
spectral-imagers to reconstruct spectral datasets like images or reflectances. Our
algorithm is based on energy minimization and allows for easy integration of many
different types of devices. For easier understanding of the text, we will restrict
ourselves to spectral images afterwards. Nevertheless, the algorithm is applicable
to BRDFs or other types of reflectance data.

Hybrid data Hybrid data has been used by other researchers for spectral imag-
ing in beforehand. Imai et al. [IB98] combine a high resolution grayscale scanning
with a low-resolution multi-spectral image. They assume that inside of the foot-
print of a low-resolution pixel all spectra lie on a low-dimensional hyperplane in
spectral space. Murakami et al. [MIYO07] combine a high-resolution RGB im-
age and sparse, dot-wise measured spectra - possibly provided by a whisk-broom
spectral imager - to a high-resolution spectral image. While they approach the re-
construction from a different view (Bayesian statistics) their method is to a certain
degree similar to our one. They aim at reconstructing that spectral image which
has the highest posterior probability with respect to the measured data. Their ap-
proach is theoretically sound but it lacks a good prior on spectral images. They
simply assume that the entries of the spectral data cube have a gaussian distribu-
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tion. Unfortunately, many real world images violate this assumption and we will
give examples for this later on.

In contrast to this, we will introduce a novel prior in section 6.2 that is better
suited for a broad range of real world images, can be easily adapted to specific use
cases and can be easily integrated into the spectral reconstruction process.

Dong et al. [DSD+16] also use hybrid data to capture full spectra BTFs. They
combine a full RGB BTF with a single spectral image of the material lit with
spherical illumination. From the spectral image they compute a low dimensional
linear basis (three-dimensional in case of the RGB system) using non-negative
matrix factorization ([KP08]). In a second stage, this basis is used to recon-
struct the spectral images for all different view and light combinations. While
this method is very fast and a practical implementation is rather simple, the re-
striction to a low dimensional basis limits the use of this method to materials with
few linearly independent spectra. We will make a comparison to their method in
Chapter 10.4.3 where we deal with measurements of BTFs.

Training-based approaches Moreover, training approaches have been used to
reconstruct spectral signals from RGB or similar images. Here, the prior knowl-
edge is not specified in terms of a (closed) mathematical expression, but it is
learned based on similar example data that has to be present in a first phase - the
training phase. In the second phase, the unknown spectral data can be guessed
from RGB data based on the trained settings. The reconstruction quality is then
dependent on the similarity between training data and the unknown data to be re-
constructed. Multiple authors have focused on reconstruction of single images.
Yet, their approaches could also be used in reflectance capture, of course.

In principle the method from Dong et al. [DSD+16] is also training-based,
since there the reconstruction is learned based on a single spectral image. How-
ever, they benefit from the fact that the spectral image shows the same material.
In general, other training-based approaches do not require spectral information
from the same material but rely on a larger set of training data which needs to be
sufficiently similar to the unknown data to reconstruct.

Ngyuen et al. [NPB14] use a radial basis function network to reconstruct
spectral reflectance from RGB reflectance. In their method, the basis functions
are recovered from the training data using a least squares optimization. For the
reconstruction, the weights for the interpolation are then simply obtained by using
the RBF kernel on the distance in RGB space.

Arad et al. [ABS16] and Aeschbacher et al. [AWT17] utilize a sparse, over-
complete dictionary of spectra obtained by running the K-SVD algorithm [AEB+06]
on the training data. The dictionary entries are then projected to RGB space us-
ing the spectral sensor sensitivity. During the reconstruction Arad et al. find the
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sparse interpolation weights for each entry of the dictionary using the orthogonal
matching pursuit (OMP) algorithm [PRK93] in RGB space. The found coeffi-
cients are then used to reconstruct the spectra using the spectral dictionary. In
contrast to this, Aeschbacher et al. use the regression method from Timofte et al.
[TDSVG14]. By using a sparse, overcomplete basis they circumvent the prob-
lems of other approaches that fail with too many linearly independent spectra in
a single image/dataset. We will perform a detailed comparison to this method in
this chapter and also in Chapter 10.4.4.

Jia et al. [JZG+17] propose to utilize the dimensionality reduction of Zhao
and Feng [ZF14] that also allows for reconstruction from low-dimensional data
points. They reduce the training spectra to a three dimensional space and then
train a compact neural network to map from RGB values to the 3D embedding. A
given RGB image can then be mapped using the trained network and afterwards
reconstructed using the method from Zhao and Feng.

In 2018, a whole NTIRE challenge [ABST18] focussed on neural-network-
based approaches to reconstruct spectral images from RGB images. All meth-
ods are based on training a convolutional neural network to the training data.
They only differ in the architecture of their networks. Here, the network of the
HSCNN+ method from Shi et al. [SCX+18] showed the best results. However,
those methods assume that they can distinguish between the different spectra in
their training data using the RGB projection only. This causes problems with
metameric - or near metameric - colors. Also, if not trained to spectral data, that
is very similar to the actual data to reconstruct, they will fail. It is a very cumber-
some process to train a CNN to example data (Shi et al. report 38-60 hours on a
cluster of 8 GPUs) and also a lot of example data is required for a stable result.
For that reason we argue that the deep learning solutions are not well suitable for
the case of hybrid data where typically only sparse spectral data (but from the
same sample) is available.

Therefore, we concentrate our evaluation on the methods that enable for sen-
sible integration of the spectral data from a hybrid dataset:
• Hardeberg et al. [HSB+99b]
• Murakami et al. [MIYO07]
• Arad et al. [ABS16] and Aeschbacher et al. [AWT17]
• Dong et al. [DSD+16]

Colorization It should be noted, that the process of enhancing spectral reso-
lution from three bands to e.g. 30 bands is highly related with the process of
colorization. In colorization, all pixels of a grayscale image are given a color e.g.
based on user defined example colors for some image regions [LLW04] or based
on other, structurally similar color images [ICOL05]. Following this nomencla-
ture, we call our method spectralization.
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CHAPTER 6

SPECTRALIZATION

To reconstruct a spectral image S we will minimize an energy function E(S).
Like in many other approaches, our energy function will consist of two parts: a
data term Edata(S) and a prior term Eprior(S). The data term is comparably sim-
ple, just metering compliance of S with the measured data. The prior, however,
requires a lot more attention. Moreover, care has to be taken that the terms of E
are just linear in the unknowns and only euclidean distance is used. Since S is
a complete multi-spectral image, it consists of a tremendous amount of unknown
variables rendering other minimization approaches than linear least squares meth-
ods infeasible on current computers.

We will hereafter first introduce a common notation for spectralization, then
introduce and discuss our prior and afterwards state the exact energy function and
explain, how to compute the minimum.

6.1 Preliminaries and Notation
We will now first shortly introduce the notation for this chapter. The unknown
spectral dataset (image, BRDF, etc) is denoted by S. S is a n × k matrix, where
n is the number of pixels/directions and k is the number of spectral bands. Si
denotes the i-th row of S and is therefore one spectrum.

The spectral response of the RGB (or similar) camera system describes the re-
lation between RGB and spectral measurements. It is composed of multiple parts
like transmission of the optical system of the camera, transmission of the filters
and quantum efficiency of the image sensor. It can be summarized by one func-
tion Ri

cam(λ) per color channel i, where λ denotes the wavelength. An incoming
spectrum x(λ) is mapped to device values by:

vi =

∫
λ

x(λ)Ri
cam(λ)dλ (6.1)

When discretizing to k wavelength bands, Ri
cam can be written as a vector and -
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when combining these vectors for all b filters - Rcam as a k × b matrix. Then,
the integral can be written as a dot product and therefore the device responses v
corresponding to the discretized spectrum s are computed as a matrix product:

v = sRcam (6.2)

For simplicity of notation we will now drop the index cam from R. The complete
spectral dataset S is therefore mapped by the matrix of the broadband camera
system to a matrix V = SR.

From this mathematical view it is again demonstrated, why there are infinitely
many solutions for S when just R and V are known. Mathematically, an inverse
matrix for R has to be calculated and an approximation S ′ to S could be recon-
structed as S ′ = V R−1. Due to the fact that b < k, the null-space ofR is not empty
and thus R−1 is not unique. One might choose e.g. the pseudo inverse R+, which
is the inverse matrix with minimal norm. This was already proposed by Imai
and Berns [IB99]. A better solution was introduced by Hardeberg [HSB+99b],
who computes an inverse matrix that minimizes the reconstruction error for a pre-
viously known set of example spectra. If the example spectra are well related
to those being captured, the reconstruction accuracy can be increased. Unfortu-
nately, regardless which inverse matrix R−1 is used for this simple reconstruction,
the spectra in S ′ will all be located on a b-dimensional hyperplane in spectral
space. If a scene is captured which contains more than b linearly independent
spectra, the reconstruction using an inverse matrix introduces a systematic bias.

6.2 A prior on spectral images
As explained before, we will reconstruct spectral images from incomplete infor-
mation. Without imposing any further restrictions on the image, the reconstruction
process has infinitely many solutions. Therefore, we have to introduce additional
knowledge and define a prior on spectral images. Some desirable properties are:

1. It should fit a huge class of images.

2. It should be of linear-least-squares nature to allow for efficient minimiza-
tion.

3. It should be adaptable to special cases.

There have been significant amounts of research spent on (color) statistics of
images, e.g. [HBS92], [Hei06], [Koe10], [CZ11]. These statistics can be used in
the area of image denoising, reconstruction or restauration. However, it is not easy
to integrate such statistical knowledge into a linear-least-squares error function.
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Figure 6.1: Checking histograms of natural images: The values are typically not
normal distributed. Therefore, the prior used by Murakami et al. [MIYO07] will
not work well.

Appearance Space

A

RGB data V

Ni

iπapp

Figure 6.2: Principle of our appearance space: A projection of all pixels i of the
RGB image V to the appearance space A is calculated. Afterwards, local neigh-
borhoods in the appearance space are determined for all points, each correspond-
ing to a pixel i.

Murakami et al. [MIYO07] assume that the entries of the spectral image are
normal-distributed and simplify the resulting optimization problem in a way that
a minimum can be computed easily. Unfortunately, images are in most cases not
normally distributed, as it is shown on two example images in Figure 6.1, and
therefore this prior introduces stronger bias.

We propose a quite different prior that is more related to typical colorization
[LLW04] or editing approaches like AppWand [PL07] or AppProp [AP08]. We
assume that the spectral image is - after being projected to an appropriate appear-
ance space A - locally smooth. We furthermore assume that A only depends on V
and not on S.

To be more precise, the pixels from V are mapped toA by means of a function
πapp : V → A and then a nearest neighbor search is performed in A recovering a
neighborhood set Ni for all pixels i of predefined size. This way, a neighborhood
graph is built on all pixels. It is important to note that the implementation of the
neighborhood search needs to ensure that ∀j > i : j ∈ Ni → i /∈ Nj . Otherwise,
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the neighborhood graph would often have doubled connections and would also
too easily break up in too many, locally connected clusters.

Having defined the neighborhoods, it is assumed that the spectra in each of
these neighborhoods are similar to each other. This principle is visualized in Fig-
ure 6.2. We figured out, that 3 neighbors per pixels are already sufficient. The
prior term does then consist of the distance from pixel i to all pixels in the neigh-
borhood set:

Eprior(S) =
n∑
i=1

∑
j∈Ni

γi,n ‖Si − Sj‖2 (6.3)

where γi,n is an additional weight, which might be derived from the distance be-
tween πapp(Vi) and πapp(Vn). However, it turned out that setting γi,n = 1 is a
good choice for a small size of Ni. This prior term fulfills aim (2) because it is
linear-least-squares and moreover easy to evaluate since only a small number of
neighbors per pixel have to be taken into account.

The crucial part is the choice of the appearance projection function πapp. For-
tunately, the choice does not affect the performance during minimization of E(S)
because the projection to A and the construction of the neighborhoods Ni are per-
formed in a pre-processing step only once. It is therefore possible to choose quite
complex functions πapp to obtain better results. Furthermore, a suitable πapp can
be selected for each spectral image class, whenever it is known in beforehand.
This makes our choice fulfill aim (3).

We will now first discuss some possible choices for the appearance projection
function and will afterwards evaluate their quality on a database of spectral images
to check whether it is suitable for a broad range of typical spectral images - or in
other words - check fulfillment of aim (1).

The simplest choice for the appearance space is the RGB color space. The
corresponding appearance mapping function is therefore the identity function:

πRGBapp := id (6.4)

Since the three RGB values can be seen as a rough sampling of the spectrum
(despite the fact, that the three RGB filters might heavily overlap), it is natural, that
in many cases similar RGB values also correspond to similar spectra. It should
be noted that the RBF interpolation in [NPB14] has a quite similar assumption
since it uses a distance in the RGB space between the measured RGB value and
the cluster centers to derive the interpolation weights.

Of course, problems can occur with two or more metameric surfaces in the
scene. Many appearance neighborhoods would likely cover pixels from more
than one region leading to the reconstruction of an average spectrum there. For-
tunately, the RGB image contains more valuable information than the individual
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RGB triples. Simply using the RGB space as an appearance space discards all spa-
tial and therefore textural information. One simple extension could be to include
the spatial coordinates of the RGB pixels into the appearance space by defining:

πRGBXYapp (Vi) := [Vi, xi, yi] (6.5)

where xi and yi are the (appropriately scaled) x and y coordinates of pixel i. Then,
two metameric regions, which are not spatially adjacent, would get separated in
the corresponding 5D appearance space.

Another option is to include the RGB triplets of neighboring pixels into the
appearance space e.g. by extracting small patches surrounding the pixel i. In the
area of texture synthesis this is a well known approach to identify similar image
regions. The corresponding appearance projection can be defined like this:

πpatch,mapp (Vi) :=



Vidx(xi−m,yi−m) . . . . . . . . . . . . . . . . . Vidx(xi+m,yi−m)

...
. . . . .

. ...
... · · · αcenterVi · · ·

...
... . .

. . . .
...

Vidx(xi−m,yi+m) . . . . . . . . . . . . . . . . . Vidx(xi+m,yi+m)


(6.6)

where idx maps two pixel position x, y back to the pixel index. We weight the
RGB value of the center pixel itself equally to the sum of all surrounding pixels
by setting αcenter = ((2m+ 1)2 − 1).

It should be emphasized again, that other choices for the appearance space are
also possible which might better fit to more specific image classes.

To evaluate, how much error is introduced by Eprior depending on πapp we
evaluated a perceptual ∆E∗94 and a relative error in all neighborhoods Ni on
real spectral images. For this, we used several multi-spectral image databases
[NFF02], [FANA04], [CZ11] as well as a set of self-captured textures1. These
image databases represent a wide class of objects and materials because they
include natural, urban and indoor scenes. To enhance our multi-spectral tex-
ture database, we also extracted some stone and wood textures from the Harvard
database [CZ11]. This wide variety can be seen in the selection of example images
depicted in Figure 6.3.

For each image in the database we calculated V = SR. To determine the im-
pact of the spectral response R of the RGB camera, we performed all tests using
two different cameras. One was a industrial computer vision camera (SVS Vis-
tek 4022) and one a professional SLR camera (Kodak DCS 760). The spectral
responses of these cameras are shown in Figure 6.4. The DCS 760 shows more

1http://cg.cs.uni-bonn.de/en/projects/spectral-btf-measurement/
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Figure 6.3: Example images from the image databases use throughout our eval-
uation. The databases cover many classes of images of outdoor and indoor man-
made environments or vegetation as well as textures of different materials.

72



CHAPTER 6. SPECTRALIZATION

400 500 600 700
0

0.02

0.04

0.06

0.08

Wavelength [nm]

R
es

po
ns

e 
[]

(a) SVS Vistek 4022
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(b) Kodak DCS 760

Figure 6.4: Spectral response of two different RGB cameras. The DCS 760 shows
much stronger overlap of the filters, especially for the blue one.

overlap between the filters - especially the ”blue” filter is very broad. After calcu-
lating πapp(Vi) for all i we determined the three nearest neighbors Ni for all pixels
i. This search can be speed up using a space partitioning technique like a kd-tree.
Then we calculated the average error for all pixels i:

∆i =
1

|Ni|
∑
j∈Ni

Υ(Si, Sj) (6.7)

We used two different error functions Υ to measure the distance of two spectra in
S. The first one is the well known ∆E∗94 =: Υ∆E , which is perceptually linear but
reduces to trichromatic space for color comparison. Since the illumination has to
be known for this formula, we were not able to compute it on the Harvard database
[CZ11]. For the textures, we evaluate the ∆E∗94 for a set of selected CIE lamps
covering a broad range of everyday illumination conditions (A, D65, D50, D75,
FL1, FL4, FL8, FL12, HP1, HP3) and compute an average from the resulting,
single ∆E values.

The second error function is the mean relative error in percent:

Υrel(x, y) =
100

k

k∑
i=1

|xi − yi|
|xi|+ ε

(6.8)

where ε is a small constant (we have chosen 10−3) to avoid divisions by zero and to
down-weight dark and therefore noisy pixels. We will refer to this error measure
as relative error in the discussion of the results.

Figure 6.6 and Figure 6.7 show error histograms for the ∆E∗94 distance func-
tion on non-texture and texture images respectively. Figure 6.8 and Figure 6.9
contain the same kind of results for the relative error. The respective upper-left
plot of each group shows the error when assuming full knowledge about the spec-
tral image S and setting πapp(Vi) = Si. There are three effects that lead to errors
on the ground-truth data:
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• noise on the acquired data

• pixels who do not have similar pixels in the image at all (e.g. small high-
lights)

• the nearest neighbor search in the space of image spectra to determine the
Ni is run using euclidean distance by using a approximate kd-tree search
(using FLANN [ML09]). This is of course worse compared to searching for
neighbors having lowest ∆E∗94 or lowest relative error. That would require a
brute-force search being prohibitively slow. Especially, the whole effect can
be noticed in Figure 6.6 where the RGB appearance space with the Kodak
DCS 760 used for plot (b) is even producing a better result than the search
on the spectral space.

Small highlight pixels are extremely seldom and most of the error is introduced
in dark regions where acquisition noise has larger impact in relation to the signal.
This can be observed in the example images in Figure 6.5. The errors are generally
lower for our textures since they were recorded using multiple exposures (HDR
imaging) leading to less acquisition noise.

The mean errors for both kinds of images and for both error measures are
summarized in Figure 6.10. It is remarkable, that the simple RGB space of the
Kodak DCS 760 is performing extremely well in the ∆E∗94 error, despite of the
fact that the spectral sensitivity (see Figure 6.4(b)) has strong overlap. When
we compare the results to those evaluated with the relative error, where the DCS
760 performs worse, we see that this effect is caused by a better match between
the XYZ primaries and the cameras response. All results for the ∆E∗94 are only
provided to gain a vivid feeling on the overall level of errors. It cannot be used
to really judge the errors on the whole spectrum since the spectrum is reduced to
a point in a tristimulus space (L∗a∗b∗) before evaluating the difference. We will
therefore continue to just evaluate errors using the relative error in the following
parts of this thesis.

Looking at the relative errors (second row of Figure 6.10) one can observe
that the restriction to RGB introduces additional error compared to the ground-
truth case. Nevertheless, that additional error is not very significant compared to
the inherent errors. Furthermore, we deduce that the spatial structure of the RGB
image helps to improve the prior quality, because the errors get reduced when
either the XY coordinates of the pixel i are included in the appearance space or
where a small patch around pixel i is considered. However, since this gain is very
small and since taking into account patches is computationally expensive, it is
mandatory to use the πRGBXYapp appearance space projection.

Furthermore, it is remarkable that the error added by the prior in comparison
to the ground-truth case is similar for both textures and non-textures. This is
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astonishing at a first glance, because we do not expect the same level of self-
similarity in non-textures. However, we do only assume local smoothness and
make no assumption about the global image structure (like Murakami et al.). Since
the non-texture images consist of multiple surfaces each in turn exhibiting self-
similar content, our prior is applicable in both cases.

Summarizing, the prior based on the local smoothness assumption introduces
some additional error compared to the ground-truth case. Nevertheless, the mea-
surement noise stays the primary source of errors and we therefore conclude that
our choice for the prior is viable. Moreover, it works on texture and non-texture
images, allows for adaption to special cases and furthermore sticks to the linear-
least-squares restriction allowing for efficient minimization.
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(a) Outdoor image from [FANA04]
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(b) Indoor scene from [CZ11]
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(c) Texture from our own database

Figure 6.5: Three example images from the evaluation of the prior quality from
three different categories (outdoor, indoor and textures) for the Vistek camera on
simple RGB appearance space. Left column: original image mapped to sRGB,
middle column: ∆E∗94, right column: relative error.
The error introduced by the prior is small on most surfaces. In darker regions the
error is dominated by the acquisition noise in the data. When comparing to the
light surfaces it suggests that the primary source of inherent local non-similarity
in the appearance space results from the acquisition noise.
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(a) Ground-truth
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(b) RGB using Kodak DCS 760
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(c) RGB using SVS Vistek
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(d) RGB+XY using SVS Vistek
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(e) 3x3 patch using SVS Vistek
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(f) 5x5 patch using SVS Vistek

Figure 6.6: Checking the smoothness prior on non-texture images: Accumulated
∆E∗94 error histograms. The upper left histogram shows that the ground-truth
data does already contain some noise and local non-similarities. The reduction to
trichromatic space is introducing nearly no additional error when using the ∆E∗94.
The RGB appearance space with the Kodak DCS 760 used for plot (b) is even
producing a better result. See the respective text for a discussion on this effect.
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(a) Ground-truth
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(b) RGB using Kodak DCS 760
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(c) RGB using SVS Vistek
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(d) RGB+XY using SVS Vistek

0 2 4 6
0

10

20

30

∆E
*

94

F
ra

ct
io

n
 o

f 
p

ix
el

s 
[%

]

(e) 3x3 patch using SVS Vistek
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(f) 5x5 patch using SVS Vistek

Figure 6.7: Checking the smoothness prior on texture images: Accumulated
∆E∗94 error histograms. The upper left histogram shows that the ground-truth
data does already contain some noise and local non-similarities. The reduction
to trichomatic space is introducing some additional error, which may be reduced
using the spatial information inside of the data.
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(a) Ground-truth
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(b) RGB using Kodak DCS 760
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(c) RGB using SVS Vistek
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(d) RGB+XY using SVS Vistek
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(e) 3x3 patch using SVS Vistek
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(f) 5x5 patch using SVS Vistek

Figure 6.8: Checking the smoothness prior on non-texture images: Accumulated
relative error histograms. The upper left histogram shows that the ground-truth
data does already contain some noise and local non-similarities. The reduction
to trichomatic space is introducing some additional error, which may be reduced
using the spatial information inside of the data.
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(a) Ground-truth
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(b) RGB using Kodak DCS 760
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(c) RGB using SVS Vistek
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(d) RGB+XY using SVS Vistek
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(e) 3x3 patch using SVS Vistek
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(f) 5x5 patch using SVS Vistek

Figure 6.9: Checking the smoothness prior on texture images: Accumulated rela-
tive error histograms. The upper left histogram shows that the ground-truth data
does already contain some noise and local non-similarities. The reduction to tri-
chomatic space is introducing some additional error, which may be reduced using
the spatial information inside of the data.
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94 on non-textures
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(b) ∆E∗
94 on textures
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(c) Relative error on non-textures
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(d) Relative error on textures

Figure 6.10: Summary smoothness prior: The reduction to RGB introduces only
small additional errors when our prior is used. For comparison purposes, we
included the error on a reconstruction assuming that the spectra inside of the im-
ages are on a 3-dimensional hyperplane in the spectral space (second bar). When
measuring in tristimulus space using the ∆E∗94, the errors seem to be acceptable.
However, when metering the relative error on the spectral data, the problems with
this assumption become obvious (the errors are out of the display range here, be-
ing 150% on textures and 250% on non-textures). For our prior, both ∆E∗94 and
relative errors are only moderately higher than the noise-introduced errors on the
ground-truth data. It can be seen that using the spatial information inside of the
RGB data generally helps to reduce the errors a bit. The errors on the textures
are generally lower because this data contains less noise. The ∆E∗94 errors for the
DCS 760 are generally lower because of the good match between the CIE XYZ
primaries and the camera‘s sensitivity.

81



CHAPTER 6. SPECTRALIZATION

6.3 Energy function

After having introduced and discussed our prior term, we are now able to for-
mulate the whole energy function for our reconstruction technique. For this, the
data term has still to be defined. One part of the data term has to include the
available RGB (or similar) data and has to measure conformance of the unknown
spectral image with the measured RGB values. The second part has to incorpo-
rate the additional spectral knowledge which we will label as D having m scalar-
valued entries. Any measurement of a device can be understood as an integral
over the spectral data cube (in case of an image) multiplied with a sensitivity
function for the respective device or device pixel. For example, the pixel values of
a monochrome camera would correspond to integrals over the spectral dimension
of the cube multiplied with the overall spectral sensitivity of the camera system.
In this sense, all kinds of (spectral) measurement devices provide integrals and
can therefore incorporated into the energy function in the same manner.

The most general form of our energy function can be stated as follows:

E (S) =
m∑
j=1

αj

∥∥∥∥∥
(

n∑
i=1

k∑
l=1

wi,l,jSi

)
−Dj

∥∥∥∥∥
2

(6.9)

+ β
n∑
i=1

‖SiRcam − Vi‖2

+ γ

n∑
i=1

∑
j∈Ni

‖Si − Sj‖2

Here, the first term accounts for the spectral data, the second for the RGB data
and the third one is the previously introduced prior term. α, β and γ are factors to
weight the terms. The wi,l,j are the sensitivity weights for the (spectral) measure-
ment point Dj , pixel i and wavelength band l. Obviously, the RGB-term could
also be expressed in the form of the first term, but we will keep it separated to
emphasize the denseness of V .

We will now first consider a special case for spectralization by assuming, that
the spectrum of certain pixels is known with the desired target resolution - e.g. by
using a line-scan or a whisk-broom spectral imaging system as in [MIYO07]. In
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this case the energy function simplifies to:

E (S) = α

m∑
j=1

∥∥SP (j) −Dj

∥∥2 (6.10)

+ β

n∑
i=1

‖SiRcam − Vi‖2

+ γ

n∑
i=1

∑
j∈Ni

‖Si − Sj‖2

Here, the P function retrieves the pixel index for the j-th spectral measurement
point. In the rest of this part of the thesis we will analyze the performance of our
spectral reconstruction for the cases of a whisk-broom device like in [MIYO07]
as well as a push-broom device scanning one or more lines of each image.

6.3.1 Choice of Weights
For a good reconstruction quality, a viable choice of the three weights α, β and γ
is crucial. Since the three terms of the energy function are of very different scale,
we propose the following scheme to weight all three terms equally in a first step:

α = α′
mk + 3n+ k

∑n
i=1 |Ni|

mk

β = β′
D̄

V̄

mk + 3n+ k
∑n

i=1 |Ni|
3n

(6.11)

γ = γ′
mk + 3n+ k

∑n
i=1 |Ni|

k
∑n

i=1 |Ni|

The large fractions compensate for the differences in the number of terms.
Since the first and the third term measure distance in spectral space directly, we
have to add further adjustment only to the second one. To bring the second term
to the same scale, we divide by the mean of the RGB data V̄ and multiply with
the mean of the spectral data D̄.

Then, the new weights α′, β′ and γ′ determine the total weight of each term.
A good choice is to weight all three equally by setting α′ = β′ = γ′ = 1. All our
results have been obtained by this weighting.

6.4 Minimization
Our energy function (see Equation 6.9) is designed to be linear in the entries of the
spectral image S and uses only squared error terms. The minimization Srecon =
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argminE(S) can therefore be expressed using matrix notation:

Srecon = argmin ‖MES − bE‖2 (6.12)

where ME and bE are a matrix and a vector respectively constructed from the
energy function and ‖.‖ denotes the standard euclidean distance. The absolute
minimum can be found using closed solutions e.g. based on QR factorization. Un-
fortunately, the matrixME is of size (m+bn+k

∑
i |Ni|)×(kn) when considering

the general form of the energy function. For an image having n = 1 Megapixel
resolution, using k = 30 spectral bands, having m = 1

100
n = 10000 and using

3 appearance neighbors per pixel this results in a matrix of size 93,010,000 ×
30,000,000. This matrix size currently prohibits the use of explicit solvers.

Therefore, an iterative solver has to be used. We implemented our method
both using a conjugate gradient (CG) [HS52] method and the LSQR algorithm
[PS82]. In both cases the matrix ME does not need to be stored explicitly, it
is sufficient to supply a function that computes the multiplication of ME with a
vector. Fortunately, the matrix is extremely sparse and therefore a multiplication
can be computed efficiently. In case of the CG algorithm the matrix has to be
quadratic and positive definite. Therefore we have to solve the normal equation
instead: ME

TMES = ME
T b. ME

TME fulfills the desired properties but the nor-
mal equation has a worse condition when evaluated on actual computers having
limited numerical accuracy. For the implementation an additional function has to
be supplied that performs a multiplication of ME

T with a vector.
We used an own implementation of both algorithms in a MATLAB2 environ-

ment. Both algorithms would have been readily available in MATLAB, but we
tailored an implementation for our specific needs. First of all we avoided storing
multiple vectors of result size since this is in our case a whole spectral image.
Furthermore, both algorithms have to compute dot products of vectors of large
length, more specific k × n. To ensure numerical stability we implemented those
using a tree-reduction scheme.

6.4.1 Convergence
To decide which minimization algorithm provides better results in terms of ac-
curacy and computing speed we evaluated our implementation using one texture
and one non-texture image. Figure 6.11 shows the convergence behavior using the
LSQR and the cg solver for both cases. It is notable, that the cg algorithm does
not converge strictly whereas the LSQR algorithm reduces L2 error continuously.
This is mainly due to the fact that the numerical stability when solving the normal
equation with cg is worse than solving the optimization problem directly in LSQR.

2http://www.mathworks.com
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However, it can be seen in (b) that both algorithm converge to approximately the
same final solution. Moreover, it is notable that the convergence behavior is nearly
identical for both images, even though being of very different content. Finally, the
results indicate that convergence in the L2 error is highly correlated with con-
vergence in the relative reconstruction error. We can therefore rely on standard
detection for convergence in the algorithms.

Since both algorithm require roughly the same amount of computation time
per iteration in our MATLAB implementation, no recommendation can be made.
We used the LSQR algorithm in all our further results.
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Figure 6.11: Convergence of spectralization using two different solvers: (a) shows
the L2 error with solver iterations. For comparison purposes, the curves for cg
and LSQR have been normalized to start at one. In (b) the resulting reconstruction
error for each solver iteration is depicted. There is a good correspondence between
convergence in the optimizer’s L2 error and the reconstruction error.

6.4.2 Computation Speed
The speed per iteration is highly determined by the matrix-vector multiplications
MES (orME

TMES for the cg algorithm). Here, the part ensuring similar spectral
neighborhood in appearance space requires most time. The setting for the size of
the Ni in Equation 6.9 is therefore crucial and should be chosen wisely. Through
experiments we determined that a neighborhood size of 3 is already sufficient for
good reconstruction results and does also not waste too much computing time.

In our implementation, the multiplications are implemented in C++ and in-
cluded in MATLAB as a module. We used a Intel Core i7-3770 CPU with 3.4
GHz clock. With this setup an image having one megapixel resolution and 33
spectral bands can be reconstructed in about 840 seconds. Of this, 44 seconds are
used to construct the appearance space neighborhoods and the remaining approx.
800 seconds are spent on 500 LSQR iterations.
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EVALUATION OF SPECTRAL RECONSTRUCTION

QUALITY

We analyzed the reconstruction quality of our method using the same image databases
as in 6.2. Furthermore we added 2 BRDFs where we assume spectral knowl-
edge for just a very small subset of directions. The BRDFs are extracted from
the Colorchecker dataset measured during our ground-truth experiments (see Fig-
ure 4.1(b)) and are equally sampled over the hemisphere at 81x81 directions.
For all datasets the complete multi-spectral ground truth was available so that the
reconstruction quality can be reliably rated.The RGB device values are generated
artificially using the camera response Rcam by:

V = SRcam (7.1)

The spectral data values D are generated by averaging over the respective image
spots. Afterwards gaussian noise with σ = 1% of mean signal is added to the
synthesized RGB data V . Since the spectral data for all our test datasets is cap-
tured using real cameras, it is inherently biased with noise. For this analysis we
will assume perfect registration of RGB and spectral data. In Chapter 10 we will
discuss the issue of possible misalignment.

We evaluated our method as well as the methods from Imai [IB99], Smits
[Smi99], Hardeberg [HSB+99b], Murakami [MIYO07], Dong [DSD+16], and
Aeschbacher [AWT17] on all test datasets.

The methods from Imai and Hardeberg are inverse matrix methods whereas
the method from Smits is heuristic and tries to combine precomputed smooth
spectra for red, green, blue, cyan, magenta, yellow and white to get the desired
match with the measured RGB triple as well as a smooth spectrum. It is there-
fore only applicable in cases where material reflectance is measured. The method
from Hardeberg uses prior knowledge of imaged spectra to find a best inverse ma-
trix. Dong et al. create a similar three dimensional basis using a non-negative
matrix factorization. This is in contrast to Hardeberg, who uses a generic matrix
factorization. Spectral A+ from Aeschbacher et al. works rather similar to the
methods of Hardeberg and Dong in the sense that they also create a linear basis
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of the imaged spectra. However, Spectral A+ uses a K-SVD to create an over-
complete basis and is therefore not limited to three dimensional subspaces of the
spectral space as the Hardeberg, Imai, and Dong methods. In our evaluation we
pass the known spectral curves into all of the methods except for the Imai and
Smits method, who cannot make use of them at all.

None of the aforementioned methods makes use of the spatial location of the
known spectral data. This is incorporated into the Murakami method. It is - though
being derived in a different way - an extension of the Hardeberg method and adds
an additional correction term to improve results exploiting that knowledge about
spatial positions.

As explained in section 6.2 we will use the relative errors to judge and compare
the reconstruction quality and we will use the same spectral image databases, here.
To simplify comparison, we evaluated our method for the spectral response of the
Vistek camera only. Results for other cameras are very similar.

7.1 Whisk-Broom Data
One possibility to supply sparse spectral data is to use a whisk-broom imager that
scans just certain spots distributed over the image. This was also proposed by
Murakami et al. [MIYO07]. For our analysis we distributed 250 spectral spots in
a regular grid over the image. The spots are square having a size of 0.5% of the
image width.

Figure 7.1 shows the resulting average reconstruction errors of all methods
mentioned above as well as our spectralization method. For our method we used
the simple RGB appearance space. The errors were evaluated on the non-texture
images of the database - though we will see that the performance on texture images
is very similar.

We first notice that the two very simple methods from Imai and Smits de-
liver a very poor reconstruction quality. Furthermore, the Spectral A+ method
did also not perform very well. This is rather astonishing since it is technically
very sound and should also not suffer from problems of high dimensionality due
to the overcomplete basis. We have tried various parameter sets for this method,
but the result got worse if not using the parameters proposed by Aeschbacher et
al. [AWT17] (sparsity k = 8, regularization λ = 0.1). We assume that the 250
spectral points are not enough to create a good basis. We also refer the reader to
Section 10.4.4, where we compare reconstructed BTF data results.

Figures 7.2 and 7.3 go into more detail on the error evaluation. The respective
upper left figures show the comparison of mean reconstruction errors whereas the
others contain error histograms for the best performing methods. We notice that
the Hardeberg method, though not using the spatial position of sparse spectral
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Figure 7.1: Reconstructing non-texture images using whisk-broom data: Mean
relative error. 250 spectral data points on a regular grid have been used as sparse
spectral input.

information, performs already quite well on average. The method from Dong et
al. is rather similar to it, but it uses non-negative matrix factorization to build the
spectral basis functions. It seems that this is - though being a sensible idea from a
physical standpoint - a slightly worse choice. The Murakami method improves -
as is expected due to the additional correction term that utilized the position of the
spectral measurement spots - a bit on the Hardeberg and Dong methods. Finally,
our method even outperforms the Murakami method in average and also in error
distribution.

When comparing texture and non-texture results we notice, that the error on
textures is generally lower than on non-textures for all methods, but that the shape
of the histogram looks very similar. The reason for the lower mean error is again
(see also Section 6.2) the lower noise level in the spectral reference data of the
textures. All methods tend to produce spectra that are smoothed to some degree
and therefore more noise-free. In real-world applications, this is a valuable prop-
erty. The reason for the similar histogram shape is - as explained in Section 6.2 -
the fact that non-texture images consist of locally similar image content, as well.

To deepen our insight into the reconstruction achievable by the different meth-
ods we will analyze some of the images in greater detail here. We will first con-
centrate on the texture of a complex fabric from our spectral textures database.
The resulting reconstruction errors of the different reconstruction methods can be
seen in Figure 7.4. The methods from Imai and Smits produce very high errors as
they do not incorporate additional spectral knowledge. Spectral A+ does also not
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perform well - to our very surprise as mentioned earlier. The methods from Hard-
eberg and Dong perform already quite well, but they can only handle three of the
four kinds of threads with high accuracy. That is due to the limitation to a three
dimensional subspace of the spectral space. The Murakami method can improve
on this result due to an additional correction term incorporating the position of the
spectral data points. However, our method performs even better on this dataset
which is most likely due to our better image prior.

Another example is depicted in Figure 7.5. Again, a texture with more than
three different basis materials is used and the Hardeberg and Dong methods fail to
reconstruct one of the materials whereas our method performs well on the whole
texture. The only difference to the previous example is that the Murakami method
fails to improve on the result of the Hardeberg method and produces a worse result
on average. The reason for this is most likely the prior used in the Murakami
method. It is assumed, that the pixel values have a normal distribution, globally.
As the histogram in 7.5(g) shows, the histogram of this texture is highly non-
normal.
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(b) Dong
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(c) Hardeberg
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(d) Murakami
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(e) Our method (RGB appearance space, SVS
Vistek)

Figure 7.2: Reconstructing non-texture images using whisk-broom data: Accu-
mulated relative error histograms. 250 spectral data points on a regular grid have
been used as sparse spectral input.
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(b) Dong
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(c) Hardeberg
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(d) Murakami
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(e) Our method (RGB appearance space)

Figure 7.3: Reconstructing texture images using whisk-broom data: Accumulated
relative error histograms. 250 spectral data points on a regular grid have been used
as sparse spectral input.
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(a) The texture (b) Imai (c) Smits

(d) Hardeberg (e) Spectral A+ (f) Dong

(g) Murakami (h) Our
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Figure 7.4: Comparison of pixel-wise relative reconstruction error (in %) for dif-
ferent methods on a fabric texture image: The methods from Imai and Smits pro-
duce very high errors as they do not incorporate additional spectral knowledge.
The methods from Hardeberg and Dong performs already quite well, but it can
only handle three of the four kinds of threads with high accuracy. That is due
to the limitation to a three dimensional subspace of the spectral space. The Mu-
rakami method can improve on this result due to an additional correction term
incorporating the position of the spectral data points. However, our method per-
forms even better on this dataset.
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Figure 7.5: Comparison of pixel-wise relative reconstruction error (in %) for dif-
ferent methods on another fabric texture image: As in Figure 7.4 the Hardeberg
and the Dong methods fail to reconstruct one of the four different kinds of threads
with good accuracy whereas our method is not limited to three materials. Due to
the non-gaussian distribution of pixel values (see (g)) the correction term of the
Murakami method leads to a worse result compared to the Hardeberg and Dong
methods. In contrast, our method is limited neither by the dimensionality of the
image’s spectra nor by the distribution of values and it therefore reconstructs all
pixels with nearly the same accuracy. The pixel spectra from one exemplary pixel
of the red base thread is plotted in (h), demonstrating the quality improvement.
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7.2 Push-Broom Data
Using push-broom spectral imaging (see Chapter 2.3.2) is another way to supply
sparse spectral data. It is easily possible to just scans a single or very few lines
of the image. In our analysis we assumed two horizontal lines at 33% and 66%
vertical positions.

Mean reconstruction errors as well as error histograms on non-texture and
texture images are shown in Figures 7.6 and 7.7. The results are very similar
to those obtained with whisk-broom input: The Hardeberg and Dong methods
perform worse, the Murakami method improves a bit and our method is best on
average. However, for this kind of input, the errors are generally higher and the
different methods do not provide significantly different reconstruction quality.

This is most likely due to the fact that the two horizontal lines miss important
spectral features in many images. The more evenly distributed points from the
whisk-broom simulation provide a better sampling of all different spectral shapes
contained in the images.

7.3 BRDF Data
To evaluate reconstruction quality on rather simple BRDFs we randomly sampled
an increasing number of direction pairs for which spectral data is assumed to be
provided. The top light and top view is always contained.

The resulting errors can be taken from Figure 7.8. We excluded the Murakami
method as it is not straightforwardly applicable in this case. The results indicate
that for BRDFs of rather simple materials like the solid paints our method does
not improve upon the results of the trained inverse from Hardeberg. This might
be different in case of more complex materials like pearlescent paints that show
angular dependent color flops, but no such experiments have been performed for
this thesis.

We follow, that for simple BRDFs a good reconstruction is already possible
using a few direction pairs with spectral information, only. Therefore, our method
may be used to capture high-resolution spectral BRDFs using existing RGB mea-
surement techniques and dedicated multi-angle spectrophotometers1 providing a
few view/light combinations only. This helps to increase measurement speed and
simplicity drastically compared to traditional gonioreflectometer setups.

1like the X-Rite MA series or the BYK-mac
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(b) Dong

0 5 10 15 20 25 30 >35
0

10

20

30

Relative error [%]

F
ra

c
ti

o
n

 o
f 

P
ix

e
ls

 [
%

]

(c) Hardeberg
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(d) Murakami
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(e) Our method

Figure 7.6: Reconstruction error on non-texture images using simulated spectral
input from a push-broom device: The results confirm those of the whisk-broom
input (see Figure 7.2).
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(b) Dong
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(d) Murakami
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(e) Our method

Figure 7.7: Reconstruction error on texture images using simulated spectral input
from a push-broom device: The results confirm those of the whisk-broom input
(see Figure 7.3).
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Figure 7.8: Comparison of reconstruction error for simple BRDFs: Our method
compared to the Hardeberg method with increasing number of known direction
pairs. For visualization purposes the BRDFs are converted to images (a) and (c)
by unrolling the view and light directions into x and y directions, respectively. In
(b) and (d) the reconstruction error with increasing number of spectral data points
- i.e. number of (V,L) direction pairs sampled with full spectrum - is shown. For
such simple examples our method does not help a lot to improve the result.
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7.4 Reconstruction Error with Varying Amount of
Spectral Data

An important property of a spectral reconstruction method is its stability with re-
spect to the amount of spectral information supplied. We therefore performed
the whisk-broom simulation from Section 7.1 with a varying number of spectral
data points. The resulting reconstruction errors for our method and the methods
from Hardeberg, Dong, and Murakami are plotted in Figure 7.9. We denote a
general drop of errors with increasing number of spectral data points, as it is ex-
pected. However, the methods from Hardeberg, Dong and Murakami do not bene-
fit any more, when the number of data points surpasses a certain limit, whereas our
method provides steadily better results with more spectral information added. In
the case of the Hardeberg and Dong methods, the reason is that it is restricted to a
three dimensional spectral subspace. As soon as enough information is present to
choose the best possible space for the respective image, the reconstruction quality
cannot be increased by adding more data. Interestingly, we see an error increase
for the Dong method for 250 data points and we have not found an explanation
for this behavior. The Murakami method benefits a bit from more spectral infor-
mation as it has an additional correction term added to the result of the Hardeberg
method. This correction term takes into account the spatial position of the spec-
tral data. We can see that this helps a lot for non-texture images but not so much
for texture images. The reason is, that the dimensionality of the spectra for non-
texture images is higher, in general, and the correction term helps to locally correct
spectra. We also see that it helps to add more data to have more pixels corrected.
However, the method is still outperformed in all cases by our method.

7.5 Reconstruction Error with Varying Amount of
Acquisition Noise

In all our analysis above we always assumed that the synthesized RGB data (see
Equation 7.1) is biased by gaussian noise having σ at 1% of the mean signal.
As the spectral data itself originates from camera measurements in all our test
datasets, it is noise biased by itself. To evaluate, how our reconstruction method
performs with different levels of acquisition noise, we performed a whisk-broom
simulation with 250 spectral datapoints (see Section 7.1) with different noise lev-
els having a σ ranging from 0.5% up to 5% of the mean signal. The resulting
reconstruction errors using our method as well as the Hardeberg, Dong and Mu-
rakami methods are depicted in Figure 7.10. As expected, the reconstruction er-
rors of all methods increase with more noise in the input data. For the Hardeberg
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Figure 7.9: Checking reconstruction error with varying amount of spectral input
data: Results for our method and the two best previous methods on the whole im-
age database. Especially the Hardeberg and Dong methods do not benefit when
more and more spectral data is added. The additional correction of the Murakami
method added to the results of the Hardeberg method does help a bit, when enough
spectral data is added. However, it can be seen that our method is capable of re-
ducing the reconstruction error steadily with increasing amount of spectral infor-
mation.

and Murakami methods, the error increase is very similar to that of our method.
Only for textures, the Murakami method seems to behave more robust against
noise. While having much higher reconstruction error for lower noise, it performs
like our method for high noise. The reason for this is not directly clear and would
require more analysis on the Murakami method itself, what is out of scope of this
thesis. For the Dong method we see a clear advantage with respect to robustness
to noise. Though it is outperformed by our method in the noise range that was
analyzed here, we see a less steep increase of reconstruction error with RGB data
noise. For applications with high noise in the RGB acquisition process, the Dong
method might therefore be a preferable choice.

7.6 Incomplete Spectral Information

Another critical case is when incomplete spectral information available, i.e. for
a whole part of an image or a material on a texture no spectral data is contained
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Figure 7.10: Checking reconstruction error with varying noise in the input data:
Results for our method and the three best previous methods on the whole image
database with gaussian noise of varying σ added to the synthesized RGB data. As
expected, reconstruction errors increase with more and more noise. The method
from Dong et al. behaves most robustly with increasing noise. However, our
method does still perform best for all investigated noise levels. However, in the
presence of even more noise, the Dong method might become superior.

in the sparse set. To analyze the behavior of spectralization in comparison to the
other previous methods in this case, we have a closer look at one particularly suit-
able example from the texture database: a dark fabric having colorful stripes on
it. Figure 7.11 shows relative reconstruction error maps for this texture where the
colorful stripes have (c), (e) and have not been sampled (d), (f). When having
data from the colorful stripes, they are reconstructed rather well using both meth-
ods. Our algorithm performs a bit better due to the aforementioned dimensionality
problem of the Murakami method (see also Figure 7.5). As soon as this data is
missing, quality on the stripes drops in both methods as expected. However, as our
method has more freedom to shape the spectral curves, it performs worse in this
case. Example spectra from the orange stripe are shown in (b), demonstrating this
behavior. It should be pointed out, that a different choice of the appearance space
and therefore a different construction of neighborhood could have prevented this
behavior.
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Figure 7.11: Incomplete data: Color coded relative error maps for the "dark fab-
ric" dataset with different levels of spectral information. When having data from
the colorful stripes, they are reconstructed well (c) and (e), our algorithm performs
a bit better due to the aforementioned dimensionality problem of the Murakami
method (see also Figure 7.5). As soon as this data is missing in (d) and (f) both
methods drop in quality on the stripes as expected. However, as our method has
more freedom to shape the spectral curves, it performs worse in this case. Exam-
ple spectra from the orange stripe are shown in (b), demonstrating this behavior.
A different choice of the appearance space could have prevented this behavior.
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CHAPTER 8

SUMMARY

In Part II of this thesis we have introduced a novel method to reconstruct dense
spectral data from dense RGB and sparse spectral data.
For this, we introduced a novel smoothness prior on spectral images, stating that
one can deduce a similarity of the spectrum from a similarity in the RGB space.
This might not work on a simple per-pixel basis, of course, but our method allows
to define nearly arbitrarily complex metrics to compare locations in an RGB image
for similarity, e.g. comparing a whole surrounding patch. Since the method only
performs a neighborhood search based on the defined metric in a pre-processing
step, the spectral reconstruction algorithm itself remains untouched by the choice
of this metric. This way, our method allows for the adaption to special cases of
images or datasets by the selection of an appropriate metric. We have shown the
accuracy of the smoothness prior on a wide variety of datasets and also with a
selection of RGB space metrics.

Based on the aforementioned prior, we have then introduced a novel algorithm
to reconstruct dense spectral data from dense RGB and sparse spectral data. This
algorithm is based on a linear-least-squares optimization and is quite generic with
respect to the kind of data that needs to be reconstructed. Especially, it is not
required that the data-set to reconstruct is an image - i.e. it might be a tabulated
BRDF, a slice of a BTF, or something even less structured. The energy func-
tion for the optimization is first introduced in a quite generic manner (see Equa-
tion 6.9). We then presented a thorough evaluation of the algorithm based on a
more specific formulation of the energy function (see Equation 6.10) with respect
to convergence, speed, and reconstruction accuracy. The accuracy is compared to
prior work in great detail in Chapter 7, showing that our method outperforms prior
work in nearly all cases. Compared to the - on our test datasets - best performing
prior-work method from Murakami et al. [MIYO07] our algorithm is much more
generic though being more or equally accurate.

With these findings we will conclude this whole part of this thesis and will
continue to discuss another major challenge: the spectral calibration of trichro-
matic cameras.
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Implementation
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CHAPTER 9

RGB DEVICE CALIBRATION AND MATCHING

To use the Spectralization technique in practical applications, two different match-
ing problems have to be solved: the geometric matching, where the location of
sparse spectral information with respect to the dense RGB data has to be deter-
mined, and spectral matching, where the relation between RGB pixel/reflectance
values and spectral data is of interest. In this chapter we will deal with the latter
problem and propose and evaluate a novel method for spectral characterization of
RGB or similar trichromatic imaging devices. Geometric calibration is discussed
in the next chapter.

Calibration of camera devices is of fundamental importance for all kinds of
color accurate photography beyond image based reflectance measurement. Com-
monly used standard software (e.g. [Gil11]) for color calibration aims only at col-
orimetric calibration, that is for transformation from the device dependent trichro-
matic values to some device independent trichromatic color space like XYZ or
L*a*b*. Recovering this transformation is often called profiling and the trans-
formation device profile. The International Color Consortium1 (ICC) has stan-
dardized such device profiles. An ICC profile is sufficient for color reproduction
under the same or very similar lighting conditions compared to the profiling con-
ditions and is therefore widely applied for simple photographic applications by
pre-recording profiles for some standard illumination conditions.

However, knowledge about the spectral response of the imaging system offers
greater flexibility and often greater accuracy compared to standard colorimetric
profiles. It has been proven [CTNM06] that standard color correction and color
processing purposes like white balancing can benefit from the effective spectral
response. Moreover, standard ICC profiles can be generated for arbitrary lighting
conditions when the effective spectral response is known.

All text in Chapter 9 marked in gray is self-cited from M. RUMP, A. ZINKE, AND R. KLEIN.
Practical Spectral Characterization of Trichromatic Cameras. In: ACM Transactions on Graphics
(Proceedings of SIGGRAPH Asia), 30:6, 2011

1http://www.color.org
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Finally, there are a lot of application for which the effective spectral response
of the imaging system is crucial. This includes designing image-based measure-
ment or photographic setups [FOP08] and of course all spectral imaging tech-
niques that utilize trichromatic cameras like our Spectralization technique or e.g.
[IB99].

For digital cameras the imaging process is influenced by many different factors
affecting the pixel value P (xi) of a pixel xi. Assuming an idealized system the
response may be written as:

P (x) ∝
∫
Nx

C(x, x′)

∫
Λ

E(λ)Tc(x
′, λ)To(λ)Lscene(λ, x

′)dλdx′, (9.1)

where λ denotes wavelength, Λ the respective range of integration, Lscene is the
scene radiance imaged in pixel x′, To the transmission of the optical system, Tc
the transmission of the color filter array, E the quantum efficiency of the sensor
and C the cross-talk between pixels x and x′ in the neighborhood Nx of x. In
equation (9.1) a potential non-linearity between incoming radiance and pixel value
is not explicitly considered. If required, methods like [DM97] or [RBS03] can be
applied to compensate for such effects by estimating the response curve.

Parameters for certain camera components, like spectral transmittance or quan-
tum efficiency, are sometimes published by the manufacturer. However, for the
complete system usually no such data is available. Unfortunately, to use a camera
system for image based measurement or other applications requiring a deeper un-
derstanding about how pixel values are related to scene radiance, the total effective
spectral response Reff is required (called Rcam in Chapter 6). This effective spec-
tral response comprises all effects influencing spectral imaging as summarized in
Equation 9.1:

P (x) ∝
∫

Λ

Reff(λ)Lscene(λ, x)dλ (9.2)

Assuming Reff to be independent of x, pixel cross-talk effects are neglected. This
is obviously a simplifying assumption because Reff might depend on brightness
differences between nearby pixels.

To make a spectral calibration method usable in practice and to make it acces-
sible to a wide range of users simplicity is a key factor. To date no such practical
methods for estimating the spectral response of cameras are available - existing
approaches for measuring it require costly hardware such as either tunable filters
or light sources (e.g. monochromators) or they need strictly controlled acquisition
conditions limiting their applicability and leading to a rare consideration of the
spectral response.

108



CHAPTER 9. RGB DEVICE CALIBRATION AND MATCHING

9.1 Previous Work

The most common method to measure the effective spectral response of cameras
is to capture the response of the camera under tunable monochromatic illumina-
tion ([VFTB97], [FOP08]). This approach is also suggested as EMVA Standard
[EMV10]. Unfortunately, the technical requirements are high hampering broad
application of this technique. To reduce the effort of monochromator-based ap-
proaches, several methods have been proposed, that recover the effective spectral
response from color chart images. Hubel et al. [HSF94] take photographs of a
Macbeth color chart using 16 narrowband and 8 broadband filters in front of a
dedicated light source. While the coarse shape of the spectral response is deter-
mined by the narrowband illumination, the broadband illumination in conjunction
with the different color fields is used to recover finer detail. Relying upon the
same basic idea further methods have been proposed since then.
Cheung et al. [CLH+05], Solli et al. [SALK05] and Vrhel and Trussel [VT99]
used image color charts or different color fields under broadband illumination to
calibrate cameras. They exploit the fact that recovering the effective spectral re-
sponse of a camera with known spectral reflectances is essentially the same as
recovering spectral reflectance from camera responses with known camera char-
acteristics. Therefore, they employ methods for spectral reflectance estimation
to this problems, which mostly rely on linear methods like least-squares pseudo-
inverse matrices.
Shen and Xin [SX04a], [SX04b], [SX06] performed spectral characterization of
flatbed scanners by acquiring color charts. From the response of the scanner to the
known color fields they optimized a transformation matrix from scanner response
to spectral space. To this end, they either used Wiener estimation on training data
in a local surrounding of the candidate response or they employed constrained
least squares optimization. Ebner [Ebn07] followed a similar approach for cam-
era calibration but used evolution strategies so solve for the energy minimization
problem.

Common to all the previous methods is the need for controlled lighting con-
ditions and/or very specialized hardware. While this is acceptable for dedicated
scientific measurements it is prohibitively costly to be established as standard for
everyday applications. Building on prior work that attempt to estimate spectral
response from color chart images, we present a novel fast and simple method that
is robust enough to handle uncontrolled acquisition conditions. The only assump-
tion about lighting we make is that a spectral characterization of the dominant
illuminant is available, either by using spectral data (e.g. obtained with low-cost
spectrophotometers) or measured color temperature in certain cases.
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Figure 9.1: Illustrating the workflow of our spectral calibration approach. Our
method is capable of reconstructing the effective spectral response of trichromatic
cameras from photographs of a color chart captured under uncontrolled lighting
conditions. The only assumption is that the spectral power distribution of the
dominant illuminant is given. Alternatively, in many relevant cases even knowing
a color temperature of the illumination is sufficient.

9.2 Calibration Overview
Our method is capable of reconstructing the effective spectral response Reff of
trichromatic cameras from photographs of a color chart2 captured under largely
uncontrolled lighting conditions. Furthermore the spectral power distribution of
the dominant illuminant must be given. Alternatively, in many relevant cases
even knowing a color temperature of the illumination is sufficient. By introducing
a novel imaging model accounting for specularity and spatially varying illumi-
nation, our approach is robust with respect to uncontrolled, out-of-lab capturing
conditions. It is important to note that even carefully designed lab-setups can suf-
fer from these problems. As a consequence, our method can lead to better results,
even when applied to data acquired under lab conditions.

A schematic overview of our approach is shown in Figure 9.1. In the following
sections the different steps of our algorithm are explained in further detail.

9.3 Data Acquisition
To estimate the effective spectral response of a camera, radiometrically calibrated
photographs of a color chart3 as well as the relative spectral power distribution of
the respective illumination are required.
In contrast to existing techniques our methods yields reliable results, even in con-
junction with highly uncontrolled indoor and outdoor conditions. The only fun-

2We use the big Gretag Macbeth ColorChecker DC, the quasi standard for color correction in
photography.

3The reflectance spectra of the color fields are assumed to be known.
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Figure 9.2: Synthetic example: Exemplary reconstruction of effective spectral
responseReff minimizingEbasic for a synthetic dataset. In this example, the camera
response was generated assuming perfectly Lambertian color fields and isotropic
daylight illumination.

damental assumption made is that the lit color fields contain enough information
for reconstructing spectral camera response.
For measuring the illumination, standard spectrophotometer hardware like the
EyeOne from X-Rite or similar cost effective devices suffice. Alternatively, for
certain lighting conditions (e.g. halogen bulb lamps, filament lamps or cloudy
sky), the illumination spectrum may be also inferred by measuring color temper-
ature (e.g. by using chroma-meters).
Ideally, several photographs of a color chart are taken under different lighting
conditions.

9.4 Estimating Effective Spectral Response
The basic idea of the estimation process is to optimize for effective spectral re-
sponse curves Reff that explain the measurements in a best possible manner. More
precisely, the difference between the trichromatic colors of the color fields cap-
tured by the camera and the known reflected spectral radiance projected to trichro-
matic color space using Reff is minimized.
After introducing the basic energy formulation in the next section we explain how
it needs to be extended to be usable with data captured under uncontrolled condi-
tions.
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9.4.1 Basic Approach
All existing methods for estimating spectral response from color chart images
assume that only light spectrum and measured spectral reflectance is required
to model the color of a color field. These assumptions are commonly formal-
ized along the lines of the following objective function to be minimized [SX04a,
SX04b, SX06, Ebn07]:

Ebasic(Reff) =
3∑
c=1

(
Ebasic
d (Reff

c ) + αEbasic
sm (Reff

c )
)

(9.3)

with

Ebasic
d (Reff

c ) =
J∑
j

∥∥∥∥∥
k∑
i=1

[
Si,jLiR

eff
i,c

]
−Dj,c

∥∥∥∥∥
2

, (9.4)

Ebasic
sm (Reff

c ) =
k−1∑
i=1

∥∥∥Reff
i,c −R

eff
i+1,c

∥∥∥2

. (9.5)

Here, Reff
i,c are the unknown effective spectral responses for color channel c and a

discrete wavelength λi. k is the number of spectral bands, j the field on the color
checker, J the total number of color fields, L the spectral power distribution of the
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Figure 9.3: Using real data: the reconstruction suffers from serious artifacts if
Ebasic is used as objective function, neglecting spatial non-uniformity of illumi-
nation and specularity of color fields. The image in the upper right shows the
illumination conditions under which the image was captured. For comparison, the
effective spectral response captured using a monochromator is plotted as dashed
curves.
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illuminant, S the known reflectance spectra of the color fields and D the average
camera response to the respective color field in the photograph.
The data term Ebasic

d minimizes color differences between observed and recon-
structed data while Esm enforces smoothness on the spectral response curves
which is controlled using the factor α. A global optimum of the above can be
easily found by standard linear least squares optimization techniques like a QR-
factorization.
Using Ebasic with synthetic data works as expected. For an example we refer to
Figure 9.2, where a synthetic example with 33 spectral bands and measured day-
light illumination is shown. As can be seen, the reconstruction error is negligible.
The results indicate, that the information provided by the different color fields of
the color chart is in principle sufficient for accurate reconstruction which was also
reported in previous work. Informally speaking, there are enough slopes in the
spectral power distribution of the light reflected by the color fields to resolve the
effects of Reff for the given spectral resolution.

9.4.2 Using Real Data

When applying the basic algorithm introduced above to real data, the method fails
as can be seen in Figure 9.3. Obviously the original idealized model assumptions
— that only light spectrum and spectral reflectance of the color chart are required
for reconstruction — do not hold in practice. There are mainly two sources of
bias:

1. Contrary to common belief, the color fields of the Macbeth color chart in-
clude substantial specularity as illustrated in Figure 9.4. We found this to
be true also for all other color charts we considered.

2. In out-of-lab conditions the illumination across the color chart is often non
homogeneous, mainly due to occluding objects or due to incident angle
when using a nearby light source. Additionally, some kinds of color charts
do not have a solid housing and are therefore prone to slight bending. This
is especially true for the larger color charts. Due to the bending, the incident
angle is slightly different for each color field biasing the results.

As will be shown, accounting for the above issues is essential to obtain usable
results. In particular, specularity can be a serious problem, even in the case of
controlled conditions in a laboratory. Of course, specularity can be reduced in a
laboratory using for example cross-polarization, but it continues to pose a serious
problem in out-of-lab conditions. Spatial inhomogeneity has already been con-
sidered in previous work (e.g. in [CLH+05]) but was always corrected by hand
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(a) Specular direction (b) Off-specular direction

(c) Specular data (d) Fit using our method

Figure 9.4: Color chart specularity: comparing two rectified color chart images
taken under spot light illumination. Top row: The fields in (a) are considerably
brighter and less saturated than the ones in (b), revealing the amount of spec-
ularity of the color fields. Bottom row: (c) shows the normalized difference
between (a) and (b), (d) is the specularity estimated by our method as discussed
in section 9.4.2. Please note the close match between estimated and measured
specularity maps.

before estimating the spectral response. In contrast, we integrate the spatial homo-
geneity as well as the specularity correction directly into the estimation process
and completely eliminate manual work.

To account for both specularity and shadowing effects the basic imaging model
used in equation (9.4) needs to be extended. In particular we assume, that the
BRDFs of the color fields include a diffuse and a white specular component
(caused by Fresnel reflection on a dieletric surface). Furthermore, we make the
idealized assumption that incident illumination has a dominant component whose
relative spectral distribution is independent of the viewing angle. However, the il-
lumination may be partially occluded generating smooth lighting variations across
the color chart. The proposed imaging model is illustrated in Figure 9.5.
Under these assumptions, shadowing is approximated by a single scaling factor
per color field and specularity by adding an individual wavelength independent
constant to the diffuse reflectance spectrum of each color field. As the model
assumptions given above might be violated in practice, we propose to capture
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dominant light

tspectrum

OccluderColorchecker
Figure 9.5: Illustrating the proposed imaging model considering specularity and
spatially varying illumination: Assuming a dominant illuminant, specularity is
approximated by adding an individual wavelength-independent constant to the
reflectance spectrum of each color field. Spatial non-uniformity is modeled by a
scaling factor per field.

multiple images under different illumination conditions or at least by rotating the
camera around the color chart in place seeing different parts of the environment
in the specular reflection.
However, according to our experience it is often sufficient to take as few as one
photograph to obtain usable results.

The new imaging model including specularity and shadowing was implemented
by the following objective function:

E(Reff, F, σ) =
3∑
c=1

(
Ed(R

eff
c , F, σ) + αEsm(Reff

c )
)

+
3∑
c=1

(
γEdamp(R

eff
c ) + δEborder(R

eff
c )
)

(9.6)

+ βE illu
sm (F )

Data term:

Ed(R
eff
c , F, σ) =

J∑
j

wj,c

∥∥∥∥∥
k∑
i=1

[
(Si,j + σj)LiR

eff
i,c

]
− FjDj,c

∥∥∥∥∥
2

(9.7)

For the computation of the data term E(Reff, F, σ) additional scaling factors Fj
determine shadowing of each of the color fields of the color chart. The parameter
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σj is the unknown specularity per color field j and is controlling the amount of
white added to the spectral reflectance S of a color field. Furthermore, we intro-
duce weights wj,c reflecting the importance of different color fields. A detailed
explanation how to compute these weights is given below.

Regularization:

Esm(Reff
c ) =

k−1∑
i=1


∥∥∥Reff

i,c −R
eff
i+1,c

∥∥∥
Rpreveff
i,c +Rpreveff

i+1,c

2

(9.8)

E illu
sm(F ) =

J∑
j

∑
n∈Nj

‖Fj − Fn‖2 (9.9)

Edamp(R
eff
c ) =

k∑
i=1

∥∥∥Reff
i,c(λi)−R

preveff
i,c (λi)

∥∥∥2

(9.10)

Eborder(R
eff
c ) =

(
Reff

1,c +Reff
k,c

)
(9.11)

We extended the basic regularization term Ebasic
sm from equation (9.5) by iteratively

dividing through the result from the last step. The term in the denominator leads to
stronger regularization in the lower (nosier) parts of the spectral response curves
and to weaker regularization in the "more interesting" peaks that exhibit quite a lot
variation. An extra term E illu

sm enforces the scaling factors Fj used in the data term
to be comparable to those in its spatial neighborhood Nj . Essentially this means
that smooth shadow gradients across the color chart are preferred. The Eborder
term fixes the start and end of the spectral curves to zero, since we assume no
substantial contribution from outside the spectral range we use for optimization.

Unfortunately, the above energy functional is bilinear in Reff and σ and is thus
no longer solvable using linear least-squares optimization techniques.
For that reason an alternating least squares strategy was employed: The parame-
ters Reff and F are fit in one iteration of the optimization, whereas in a subsequent
step Reff and F are kept fixed and σ is estimated.
In the first step, the responses Reff

c are constraint by an additional term Edamp to
the previous result Rpreveff to avoid oscillations in the alternating least squares al-
gorithm.

Moreover, to increase stability and to accelerate the fitting process multigrid
optimization was used: We start with a low spectral resolution with 8 spectral
components, that is successively increased by 4 once the alternating least squares
algorithm for this level has converged. At every resolution increase Rpreveff is
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Figure 9.6: Synthetic example: Reconstruction results on disturbed synthetic data
using Equation 9.6.

resampled accordingly and Edamp ensures fitting consistency with respect to the
previous result.

The effectiveness of the modified functional was tested on synthetic data sets
with scaling factors given by a smooth gradient field in the range of [0.8, 1.2] and
with a random specularity in the range of [0, 0.1]. The estimated spectral response
for this synthetic example is shown in Figure 9.6. Opposed to the result obtained
with the basic energy functional when used with real data (see Figure 9.3), the ex-
tended version succeeds in reconstructing the shape of original spectral response
curves.

Generally, the method gave stable results for various lighting conditions such
as overcast sky, blue sky and direct sunlight even in the presence of (partial) shad-
owing and specularity.

Choosing field weights The color fields on the color chart are optimized for
photographic applications. However, as they are not evenly distributed in spectral
domain (in particular when additionally considering the illumination spectrum)
and since not all of the fields are equally relevant for guiding the reconstruction
process field weights wj,c are used for compensation. Choosing viable weights is
crucial for obtaining reliable results. We base the choice of the weights on the
following three ideas:

1. The sum spectral power distribution of the product of illuminant and re-
flectance of the fields should be optimized with respect to equal spectral
distribution across all spectral bands. This is particularly important for the
shorter wavelengths that typically have less support.

2. For each of the effective response curves we have to select fields with a
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spectral reflectance that has steep slopes and good support in those bands
where the response itself has high support.

3. Extremely high weights of certain fields should be avoided to have a good
noise to signal ratio and to minimize reconstruction bias due to the assump-
tions made.

The above objectives are modeled by a sum of two weighting terms:

wj,c = wdistrib
j + wslopes

j,c (9.12)

Here, the term wdistrib
j is used to enforce spectral equalization, to have approxi-

mately the same support in all wavelength bands:

wdistrib
1..J = argmin

{w1,..,wJ}
vari

(
J∑
j=1

wjSi,jLi

)
, (9.13)

where vari denotes the variance across spectral bands i. To this end we fit the
set of wdistrib

j simultaneously. The other term wslopes
j,c attempts to model the slope

constraints. To this end, we calculate the derivatives of ∂SLi,j =
∂(Si,jLi)

∂i
and

∂Reff
i,c =

∂Reff
i,c

∂i
with respect to wavelength by finite differencing characterizing the

slopes:

wslopes
j,c =

k∑
i=1

(
(∂SLi,j)(R

eff
i,c) + (∂SLi,j)(∂R

eff
i,c) + (Sj,iLi)R

eff
i,c

)
(9.14)

Figure 9.7 shows a weight map for halogen lighting. In this example, the weights
for the blue fields are higher to compensate for the small amounts of energy in the
blue part of the spectrum.

Parameter settings. The proposed objective function E(Reff) is controlled by
four different weights α, β, γ and δ. Consistently good reconstruction results
were obtained with the following values that have been kept fixed for all examples
presented in this work: α = 3, β = 500, γ = 1, δ = 10. We found that our method
is not very sensitive to moderate variations of these parameters. Please note that
both, photographic device RGB data and light spectra, are normalized to have a
mean of one and that diffuse reflectance is assumed to be in [0, 1].
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9.5 Results

9.5.1 Acquired Datasets
For testing the effectiveness of our methods, the effective spectral response of five
different camera models was estimated:

1. Kodak DCS 760 SLR (Kodak760)

2. Kodak DCS Pro 14n SLR (Kodak14n)

3. SVS Vistek svs4022COGE industry video camera (Vistek4022)

4. Canon PowerShot G9 (consumer level DSC)

5. CCam BCi-6600-USB CMOS industry video camera

For all camera models raw image data without demosaicking was acquired. We
took images of the Macbeth Color Checker DC as discussed in Section 9.3 for a

(a) Color field reflectances (b) Color field reflectances lit by halogen light

(c) Weight Map (d) Scaled color field reflectances

Figure 9.7: Spectral equalization using field weights: (a) Reflectance spectra of all
240 color fields of ColorChecker DC together with the mean spectrum (bold red).
(b) The result when illuminated with halogen light. In this case short wavelengths
are clearly underrepresented. (c) The corresponding weight map according to
equation (9.12). (d) Weights applied to the spectra.
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Figure 9.8: Example images for the reconstruction of effective spectral camera
response: top row: Kodak DCS Pro 14n at daylight, bottom row: SVS Vistek
svs4022COGE at halogen lighting. For display purposes, the images have been
demosaicked and a gamma of 2.2 has been applied.

C lib t dCalibrated
lamp

Tuneable
narrowband filter

Camera
system

Lambertian
white surface

Figure 9.9: Sketch of our measurement setup for measuring the reference spectral
responses.

wide range of different lighting conditions, including outdoor and indoor illumi-
nation. Some example images are shown in Figure 9.8. Based on the captured
data we analyzed the behavior of the novel method regarding accuracy, stability
and limitations.

Reference data. For comparison purposes the effective spectral response of the
above camera models was also measured under laboratory conditions using near-
monochromatic lighting as suggested in previous work ([VFTB97], [FOP08]).
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We’d like to stress the fact that cross-talk effects affect the effective spectral re-
sponse and that the relative magnitude of these effects increases with the strengths
of local contrasts on the Bayer pattern. Since monochromatic light yields a very
strong contrast between the different color channels, a spectral response curve
measured using monochromatic light may differ from a curve determined under
more natural broadband illumination used for our measurements. As such the
acquired reference data should not be considered a ground truth.

A sketch of our measurement setup can be found in Figure 9.9. It consists of a
calibrated lamp illuminating a white Lambertian surface and a liquid crystal tun-
able filter (the VariSpec-VS10 used during BTF measurements, see Chapter 3.2)
in front of the measured camera device. The filter has a narrowband transmis-
sion of approx. 10 nm bandwidth and can be tuned to wavelengths between 400
and 720nm, thus produces nearly monochromatic light. Beforehand we carefully
measured the transmittances of the tunable filter. We acquired images with vary-
ing exposure time tuning the filter throughout its operable range in 10nm steps
and extracted and averaged pixel values ∆i,c of the Lambertian surface as seen by
the camera for each wavelength band i and color channel c.

Adapting equation (9.2) yields:

∆i,c =

∫
λ

R̃eff
c (λ)ρ(λ)Tb,i(λ)L(λ)dλ (9.15)

∆i,c =
k∑
j=1

R̃eff
c (j)ρ(j)Tb,i(j)L(j) (9.16)

Here, Tb,i is the transmittance of the bandpass filter tuned to a peak wavelength
λi, ρ is the reflectance of the white Lambertian reflector and R̃eff

c is the effec-
tive spectral response for color channel c. Using matrix notation gives ∆c =

Tb

(
R̃eff
c � ρ� L

)
with transmission matrix Tb and A� b being the element wise

product of a vector b with all columns of a matrix A.
Like Hubel et al. [HSF94] we reconstruct R̃eff

c using a pseudo inverse of Tb,
dividing by ρ� L and applying a gaussian filter with σ = 7nm to avoid ringing.

9.5.2 Comparison to Reference
In Figure 9.10 a comparison between our reconstruction results and the reference
data obtained as described above is shown. As it can be seen, the overall shape of
the response curves is consistent with the reference for the broadband illumina-
tions in the "sunlight" dataset and the "blue sky" dataset indicating a good recon-
struction of the effective spectral response here. Unfortunately, the reconstruction
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results for the "halogen" datasets are less good in the blue part of the spectrum
where especially the red and green curves show bumps Since halogen lamps emit
very small amounts of energy in the blue part of the spectrum, the support for the
data term in the energy functional is quite small here and not even the weights
can compensate for this. The fourth column of Figure 9.10 shows reconstructions
results if all firsts images of the datasets are used in our algorithm. Here, the
reconstruction of the effective response is accurate again. In essence this results
indicate that our algorithm is well suited to reconstruct the effective spectral re-
sponse when illumination conditions are used with a dominant broadband light
source present or when images from different environments are collaboratively
used as an input.

9.5.3 Cross Validation
The comparison of our results to the reference data provides already good evi-
dence that our method works as desired. However, since no ground truth data is
available, we also employed cross validation to compare spectral response curves
obtained with our method to reference measurements. Here, the main objective
was to test consistency and accuracy of fitting results with respect to different
lighting conditions as well as to identify potential overfitting issues. For this pur-
pose camera responses under different illumination conditions were predicted us-
ing acquired data. We took photographs with all five cameras in a laboratory,
where we explicitly tried to avoid any specularity and spatial non-homogenity.
Unfortunately, this was not really possible and so we manually eliminated most of
the non-homogenity by looking at the surrounding grey fields of the chart to en-
able for better comparison and error analysis. As illuminants we used neon lamps,
a HMI lamp and a halogen lamp. Then, after estimating the effective response of
all cameras using our technique (Reff) under sunlight (see Figure 9.10) and using
the reference method with controlled monochromatic lighting (R̃eff), we predicted
the camera response of the datasets using both Reff and R̃eff.

To this end, we calculated the difference dj for a color field j between expected
and measured device response:

dj =
∣∣(Sj � L)Reff −Dj

∣∣ (9.17)

with Dj being the measured pixel value. The same variable was calculated for
R̃eff .

The average errors using our technique and the much more complicated monochro-
mator measurements can be taken from Figure 9.11. As an example, Figure 9.12
shows the detailed prediction result for the neon lighting and the Pro14n cam-
era. In essence, our reconstruction performs even slightly better on most cameras

122



CHAPTER 9. RGB DEVICE CALIBRATION AND MATCHING

to predict the camera images for different illuminants without the need for any
special and costly hardware.

In Figure 9.11, is apparent that the perceptual errors for the CCam camera are
much higher than those for the other cameras. The higher perceptual errors result
from the very broad spectral filters of the CCam camera (see Figure 9.10). Using
these filters, a high-quality transformation of device RGB values to the XYZ color
space is not possible and therefore the perceptual errors are very high. However,
the errors for the monochromator and our approach are similar for this camera as
well.

9.5.4 Validation of Imaging Model
Our assumptions regarding specularity and shadowing were validated by recon-
structing the spectral response using challenging controlled test cases:

• Using very directional illumination created by a halogen spotlight causing
strong specularity effects.

• Placing occluders near the color chart to provoke shadowing.

A reconstruction of the specular term σ for an image captured under halogen
spotlight illumination is presented in Figure 9.4(d). Please note how closely it
matches the reference specularity map (c) generated by comparing acquired in-
specular and off-specular images of the color chart (a) and (b) shown in Figure 9.4.
As for shadowing we refer to Figure 9.13 indicating that our method is able to
reconstruct shadowed regions accurately. For the images in this figure we placed
a black box as an occluder between the color chart and a huge window which was
the main light source in this scene.
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Figure 9.10: Comparing spectral responses estimated by our method (solid lines) to reference measurements acquired using
the monochromator setup (dashed lines): In general spectral response curves estimated by our method show less high
frequency detail compared to the references. For illumination conditions with good support across the spectral domain
the shape is consistently matching the reference. For halogen lighting our methods is less accurate in the blue part of the
spectrum due to the low support of the illuminant.
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Figure 9.11: Cross validation: Average errors for predicting camera responses
across different lighting conditions using the spectral response curves estimated
by our method (blue bars) from the sunlight datasets as well as the measured ref-
erences (red bars). The error was computed using L1 distance in device RGB
space (see equation (9.17)) as well as perceptual ∆E∗94. Per camera, three pho-
tographs of the color chart lit by neon, HMI and halogen lamps have been used.
Even though our method is much simpler, the accuracy is comparable to the tech-
nically much more involved monochromator approach.T̃he perceptual errors for
the CCam camera are much higher than for the others because it has very broad
spectral filters (see Figure 9.10).
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(a) Measured response
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(b) Neon light spectrum

(c) Predicted response using reference
response R̃eff

(d) Difference x10 using reference re-
sponse R̃eff, Avg: 0.040

(e) Predicted response using "our" re-
sponse Reff

(f) Difference x10 using "our" response
Reff, Avg: 0.036

Figure 9.12: Cross validation example for predicting camera response with differ-
ent illumination (see also Figure 9.11) for Kodak DCS Pro14n and a neon lamp.
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(a) Original Image (b) Original Image

(c) Scale Factor Map F (d) Scale Factor Map F

Figure 9.13: Validating shadow compensation: comparing photographs to esti-
mated scale factors F . As can be seen the scale factors are consistent with the
shadowed regions in the original images indicating that our algorithm can deal
with environments strongly deviating from ideal conditions.
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9.5.5 Light from Color Temperature

In general, our method requires an illumination spectrum to be known either by
directly measuring the spectral power distribution of incident lighting using spec-
trophotometers or using tabulated values of well known illuminants. Interestingly,
for our purpose, a variety of relevant illuminants may be well approximated by the
Planck function of the respective color temperature without losing much accuracy.
This includes typical daylight conditions like direct sunlight, cloudy or overcast
sky. Two examples are given in Figure 9.14 for two different camera models
and lighting conditions. Even though the Planckean spectrum is only roughly
matching the actual illumination spectrum, with a significant difference for shorter
wavelengths, the reconstructed spectral responses match surprisingly well. These
results indicate that in many practical cases the spectrophotometer measurement
may be replaced by much simpler devices that acquire color temperature.
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(a) Cloudy sky (6200 K)
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(c) Sunlight (6700 K)
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(d) Reconstructions for Vistek4022 using sun-
light

Figure 9.14: Color temperature vs measured spectral power distribution of illu-
mination: comparing spectral responses reconstructed using cloudy sky as well
as sunlight. Dashed lines indicate results based on color temperature only. For
typical daylight conditions the simplified light model works extremely well.
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9.5.6 Resolving Small Differences in Effective Response

To evaluate whether our method is capable of resolving subtle differences between
effective responses, we used different UV cut filters with the Kodak DCS Pro 14n
camera. The respective transmission spectra of both filters (a combination of two
filters: 420 and UV10, as well as UV10 alone) are shown in figure 9.15(b). For
both setups the effective response was estimated under sunlight conditions. The
results (see figure 9.15(a)) clearly indicate that even subtle spectral differences
can be identified using our method.
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(a) Reconstruction ofReff using two different UV filter combinations
with the Kodak DCS Pro 14n camera
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(b) Transmission spectra for both UV filter combinations

Figure 9.15: Resolving small differences in effective response: Our technique is
able to recover even subtle differences of the effective response caused for exam-
ple by different optical filters.
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Figure 9.16: Using our method for ICC profiling. The quality of the generated
ICC profiles was evaluated by measuring perceptual distances between true XYZ
values of the color chart and XYZ values inferred from device RGB values using
whitebalancing and device-RGB-to-XYZ transformation. The ∆E∗94 error (blue
bars) has been computed for each of the camera models and for three different
lighting conditions: neon, HMI and halogen. For comparison purposes, a state-
of-the-art ICC profiling software (Argyll) was evaluated as well (red bars).

9.5.7 ICC Profiling

A very important application related to color imaging is to transform a given RGB
camera space to some device independent connection space like XYZ or Lab. This
is commonly achieved by applying ICC profiles that represent this color trans-
formation, given by (multiple) 3x3 transformation matrices, as well as so called
shaper curves characterizing energy response of a camera.

Normally, ICC profiles are generated by imaging known color charts for a
given illuminant and then estimating the respective color transform on a trichro-
matic basis. Trichromatic ICC profiling suffers from the fact, that the spectrum
of the illuminant used during profiling basically gets "baked" into the color space
transformation.

In contrast, since we have a practical method for measuring effective spectral
response Reff, we can directly derive color transformation matrices to arbitrary
color spaces that may be easily adapted to a new illuminant without the need
for new profiling. To benchmark ICC profiles generated by taking advantage of
our method we made a comparison to a state-of-the-art profiler. We have chosen
Argyll CMS [Gil11], a freely available and widely recognized profiling system,
because it is able to consider spectral measurements of color checker reflectances
and illuminants. For this purpose, for each of the cameras an ICC profile was
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generated using Argyll from color chart images of the "sunlight" dataset. Subse-
quently, exactly the same data was used to estimate spectral responses Reff.

To recover the XYZ values of the color checker from a photograph taken un-
der a new illuminant L with given spectrum, we have to apply both color space
transformation and whitebalancing to the device RGB values. The profile gen-
erated by Argyll is first applied to the device RGB values ending up with XYZ
values with wrong whitepoint. Thus, whitebalancing is necessary which can, in
this case, only be performed in tristimulus space.

When using our method, we are able to compute an appropriate profile matrix
M incorporating the new illuminant on the fly in the following way:

M =
(
ReffL

)+
MXY Z (9.18)

where A+ denotes the pseudo-inverse of A and MXY Z is the matrix containing
the XYZ primaries’ spectra.

Figure 9.16 shows the resulting average ∆E94 errors per camera for different
illuminants.

9.6 Summary
In this chapter a practical method for the spectral characterization of trichromatic
cameras was presented. By simply taking images of a color chart and measuring
illumination using a spectrometer, the effective spectral response was estimated.
Unlike previous approaches our method does not rely on specialized and costly
hardware or controlled laboratory environments. The effectiveness of the novel
approach is demonstrated by comprehensive analysis including comparisons to
costly reference measurements following the state-of-the-art. As shown, using our
method for ICC profiling is superior in terms of accuracy and flexibility to stan-
dard colorimetric approaches. We presume that this advantage is of fundamental
nature and will apply also to other applications. Obviously, the spectrophotome-
ter is an additional piece of hardware, but it should be stated that simple handheld
devices are quite inexpensive compared to a professional RGB camera and should
be worth the gain provided by our method. Moreover, spectral measurements can
be completely avoided if spectral camera response is estimated under daylight
conditions.
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CHAPTER 10

FAST RGB-SPECTRAL BTF MEASUREMENT

Having introduced the basic building blocks for efficient spectral reflectance cap-
ture during the last chapters of this thesis, we will now outline a possible setup for
combined RGB-spectral BTF acquisition and show some first results.
One of the remaining central problems of spectralization is the geometric regis-
tration between spectral and RGB data. The spectral registration was explained
in the last chapter. During tests we performed using a push-broom device, we
noticed that a good alignment between a spectral scanline and a RGB image is
hard to achieve, even for a fixed setup. Furthermore, it is very likely for many
materials, that a fixed, spectral scanline misses important parts of the material
and therefore a good spectral reconstruction will not be possible (see also Sec-
tion 7.6). One way to circumvent that would be to use a freely movable line by
utilizing e.g. a mirror that can be rotated around an axis. Then, two or more lines
with spectral data could be acquired, potentially even based on an analysis of the
RGB image content. However, the geometric registration problem would be even
more complicated to solve than for a fixed setup.

As an alternative, we propose to use a CCD camera in combination with a
changeable, spectral bandpass filter either in front of the camera or in front of
some of the light sources in the setup. When acquiring images with a spectral
camera system in addition to the RGB camera system, the geometric registration
can be achieved by rather simple methods, as we will explain later on.

The central problem with this setting is the long exposure time required to
capture spectral data with high signal-to-noise ratio (SNR), because of the strong
reduction of photon flux by the bandpass filters. If the spectral data should be
acquired with minimal additional measurement time, either only a few spectral
images can be acquired or spectral images with a much lower SNR have to be
used. Since many real-world materials exhibit strong angular dependence of re-
flectance, a reduction of spectral data points is not generally advised. In this chap-
ter we will therefore explain, how to incorporate images with low SNR resulting
in short exposure times for the spectral image capture.

To test our algorithm, we have modified an existing RGB BTF acquisition
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setup by adding or spectral CCD camera from the goniometer setup described in
Chapter 3.2. We will show how to calibrate such a setup to operate in low SNR
range. In order to evaluate the spectral reconstruction quality that can be achieved
by such a setup in combination with the spectralization method, we will perform
simulations based on the spectral BTF database we acquired with the goniometer
setup.

10.1 Reconstruction
In this section we introduce a variant of the spectralization method that has been
introduced in Chapter 6. This variant is tailored to reconstruct full spectral images
from high-quality RGB data and noisy spectral data.

In contrast to the original method we will not assume that the spectra at some
sparse positions (like spots for a whisk-broom device or lines for a push-broom
device) are known with high quality. Instead, as discussed above, we will use
images with high spatial resolution but a very low SNR. Such images can be cap-
tured by using a monochrome camera with changeable band-pass filter running at
low exposure times, which enables for fast capture. However, this configuration
has the fundamental advantage that a pixel-accurate alignment between RGB and
spectral images is possible. It should be clarified that this registration problem
also prohibits the use of spectral snapshot techniques (see Chapter 2.3.2) due to
their low resolution. One way to register the RGB and spectral images would
be to use a common optical path and a beam splitter, which would allow for a
one-time calibration between both images. However, if a series of spectral im-
ages has to be acquired with non-changing geometry (neither scene nor camera
change), the spectral camera system can be registered by capturing one image for
one spectral band with a long exposure time in beforehand. This image will have
a low noise level and allows for registration against the RGB images using mark-
ers or other methods like optical flow. This second technique is especially useful
for reflectance measurements, because in this case huge image series have to be
captured where only changes in lighting occur.

Of course, the noisy spectral images cannot be used directly. To get rid of the
noise in the spectral images, filtering is necessary which leads to a loss of high fre-
quent spatial details. We will analyse, if the low-noise and high-resolution RGB
images provide enough information to recover the spectral image series. Imai et
al. [IB98] also proposed to capture with different spatial resolutions, and to re-
construct the high-resolution spectral image afterwards. However, they also stick
at a low dimensional subspace of the spectral space and only aim at reconstruct-
ing L∗a∗b∗ images. In contrast to this we would like to reconstruct a full spectral
image and don’t want to accept limitations on the dimensionality of the imaged
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spectra. We incorporate the filtering directly into the spectralization method by
ensuring, that the filter response to the unknown target image matches the filter
response on the noisy input images. Then, the optimizer is responsible for finding
a solution which respects both high frequent detail from the RGB image and low
frequent spectral information from the filtered spectral images.

The new principle is implemented into the following modified energy func-
tion:

En (S) = α
K∑
j=1

∥∥∥∥∥
(

n∑
i=1

F j
i fiSi,bj

)
−

(
n∑
i=1

F j
i fiD

bj
i

)∥∥∥∥∥
2

+ β
n∑
i=1

‖(Sifi)Rcam − fiVi‖2 (10.1)

+ γ

n∑
i=1

∑
j∈Ni

‖Si − Sj‖2

Overall, this energy functionEn(S) is a more generic variant of the spectralization
energy function E(S) in Equation 6.9. The third term is even unchangedly taken
from that. Modifications occur in the first two terms.

The first term ensures that applying a spatial filter F j to the unknown spectral
image S matches the filter response on the noisy, measured image Dbj belonging
to wavelength band bj . K is the number of spatial filters applied to the data, i
denotes a pixel position and n the number of all pixels. When choosing a filter F j

to be zero for all pixels i except for one, we end up with Equation 6.9.
It should be noted that the spectral-to-RGB projection matrix Rcam actually

contains the spectral sensitivity of the camera multiplied by the spectral power
distribution of the respective light source of the measurement setup. That said,
Si is not the spectrum reflected from the material surface, but it is the spectral
reflectance of that material - the quantity that we want to measure.

The first and second term of En do now also incorporate a per-pixel factor
fi, which is computed from the RGB pixel Vi. This allows e.g. for compressing
the dynamic range of the image data before the reconstruction. This is especially
important since we want to reconstruct multiple images of the same material lit
and viewed from different directions, at once. Shading, shadowing and BRDF
effects will lead to largely different brightness, but often the color hue is similar.
Therefore, a dynamic range reduction helps to still spread the spectral information
between different images in a stable and meaningful way. In this work we used:

fi =
1(∑

j V
j
i

)pdyn (10.2)
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with exponent pdyn controlling the degree of dynamic range compression. pdyn =
0 would mean no compression where pdyn = 1 would normalize all pixel colors.
During our experiments we noticed that values for pdyn between 0.5 and 0.6 yield
the best results. Nevertheless, it should be noted that the formal notation would
also allow for other types of dynamic range compression which might be better
suited for other material classes.

It is important to note that one needs to also scale Vi by fi before projecting
to the appearance space to determine the neighborhoods Ni. This way - and by
using the neighborhood search algorithm outlined in Section 6.2 - the degree of
connectivity in the neighborhood graph between different images is increased and
the reconstruction stabilized.

Implementation-wise we can pre-compute Dj =
∑n

i=1 F
j
i fiD

bj
i , they are fil-

tered, scaled versions of the measured imagesDbj . Also, we can pre-compute fiVi
and optimize for a scaled S ′ = (Sifi) instead of S and later on derive the result
pixels as Si = S ′i/fi. Especially pre-computing the Dj yields a large performance
gain.

10.1.1 Single Spectral Image
In simple use cases, just one spectral image is to be acquired. Then, our method
needs one high quality RGB image and one noisy spectral image per desired spec-
tral band as input data. With known noise level and camera sensitivity, an appro-
priate filter size and shape can be chosen per spectral band. In our implementa-
tion we used a gaussian filter with limited support to speed up calculations. With
known filters the Dj are calculated from the noisy spectral images. It is impor-
tant to note that the filters F j on the image should overlap largely because this
also helps to recover the high-frequent spatial details. In our implementation the
neighborhood sets Np are also determined in RGB space based on the values in
V . In Section 10.4.1 we show and discuss results on single images.

10.1.2 Multiple Spectral Images
For a lot of applications multiple spectral images of very similar scenes need to be
taken. In the area of computer graphics, this especially includes measurements of
material’s reflectance. There, a series of images of a material sample is captured,
where illumination and/or viewing directions vary from image to image. However,
between images of similar view or light direction we expect a lot of self-similarity
inside and across images in many practical cases. That means, that it is no longer
necessary to capture a noisy spectral image for every spectral band and every
RGB / desired output image. The regularization term will "transport" the spectral
information between the images and lead to a reconstruction of the full spectrum
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for each image even if there are only few or even only one noisy spectral image
per RGB image. As we will demonstrate in Section 10.4.2 it is even possible
to add RGB images to the reconstruction having no spectral information at all
- as long as the image content is sufficiently similar to the content of the other
images. In effect, this drastically reduces measurement time when capturing series
of similar images. For many hardware configurations an exposure time for the
spectral camera suffices that is comparable to that of the RGB camera. When
taking images in parallel, this can nearly speed up spectral imaging to standard
RGB imaging.

10.2 Acquisition
In this section we describe the hardware setup used during our experiments. We
start with some explanations on the original RGB setup and on the additional
dedicated hardware required for the spectral data. Afterwards the calibration of
the setup is explained with greater detail.

10.2.1 RGB Measurement Setup
For our first practical experiments both with single images as well as with full re-
flectance capture we utilized an existing RGB setup [SSWK13], [SSW+14]. The
setup has a hemispherical gantry covered with 198 2.5W Barthelme LEDs which
can be switched on and off individually. 11 RGB industry video cameras (SVS
Vistek 4022, the same model used in Chapter 9) with a resolution of 2048x2048
pixels are integrated into the gantry forming and arc on one side from the top po-
sition down to an elevation angle of 75◦ measured from the normal. To measure
anisotropic materials as well, the sample holder is mounted onto a precision rota-
tion stage which can orient the samples to arbitrary azimuth angles. Figure 10.1
shows a photograph of the setup.

10.2.2 Spectral Integration
To capture spectral data, we utilize the monochrome camera with the liquid crystal
tuneable filter from our gonioreflectometer setup (see Chapter 3.2). This camera
system is mounted at 45◦ elevation and with 15◦ azimuthal distance to the RGB
camera at the same elevation. This is important since the LEDs are mounted at
the gantry with the same azimuthal distance. After the sample is rotated by 15◦

the spectral camera captures the same content as the RGB camera before. Using
this geometry a nearly pixel-correct alignment between spectral and RGB data is
possible. Pixel matching with this accuracy would be very hard to achieve when
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Figure 10.1: Photograph of the RGB measurement setup utilized during our ex-
periments.

a push-broom or whisk-broom device is used. Nevertheless, our reconstruction
method is quite robust against small misalignment of the data due to the filtering.

The measurement process is as follows: the sample is rotated to 24 different
positions in 15◦ steps. For every rotation angle, an image is taken by the RGB
cameras and the spectral camera using multiple LEDs switched on to have a high
quality image in which the sample holder can be detected with sub-pixel accuracy
to have a perfect alignment between the images of the single cameras. Afterwards
the LEDs are serially switched on, images are captured, and the respective LED
is switched off again. Since the RGB and the spectral camera system are operated
in parallel, and since the spectral camera system is driven at short exposure times,
the measurement process is nearly as fast as a traditional RGB measurement using
the same setup.

10.3 Calibration
We performed a careful calibration of the setup. Here, cameras and light sources
have to be calibrated geometrically and radiometrically. Since geometric cali-
bration of such setups is out of scope of this paper we focus on the radiometric
calibration here.

First of all we measured the spectrum of our LED light sources using an Ocean
Optics USB4000 spectrophotometer. The spectrum is shown in Figure 10.2(a).
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Figure 10.2: Calibration of the measurement setup.

For the cameras two different kinds of calibrations are required: on the one hand
recovery of the opto-electronic conversion function (OECF) to correct for non-
linearities in the sensors response to light and on the other hand spectral calibra-
tion which aims at finding the response efficiency of the optics-camera combina-
tions depending on the wavelength.

Linearizing the response of the RGB cameras is straightforward and was per-
formed using the algorithm of Robertson et al. [RBS03]. To obtain the effective
spectral responseRcam of the RGB cameras we employed our method from Chap-
ter 9. The spectral sensitivity of the RGB cameras is shown in Figure 10.2(b).

For the spectral camera much more care has to be taken since here measure-
ments with a very low SNR will be used. Therefore, the calibration of the camera
must also hold for very low pixels values that are typically not used for measure-
ment purposes. We, however, want to use this range as well, because we use
largely underexposed spectral images as input data. We therefore require a cali-
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Figure 10.3: Checking the stability of the output signal of the monochrome cam-
era in the low SNR range: Two-dimensional response histograms (brighter means
more values in the respective bin) on filtered, dark-subtracted (offset by 30) input
images after applying gaussian filters of increasing size. As one can see, negative
values after dark-subtraction need to taken into account since a clipping would
bias the result largely (for that reason the offset). The cameras output in this range
is statistically stable despite the fact that the output of the single pixels is shot-
noise limited. Due to the stability, data in this pixel value range can be used as an
input for our method.

bration which is exact for the low pixel values, too.
The first step is to obtain exact knowledge about the cameras dark current in

all pixels. For this we took 200 photographs with closed shutter and repeated
this process for different exposure times. The average over the dark frames is
computed with floating point accuracy. One of the mean dark-frames is shown in
Figure 10.2(d). One can easily spot the limited electron transfer efficiency along
the CCD shifting direction.

To recover the OECF in the low-pixel-value range we propose to apply a mod-
ified variant of the Robertson algorithm [RBS03]. This algorithm recovers both
a linearized HDR image and the inverse of the OECF from a series of images of
a static scene captured with different exposure times. We propose to apply this
algorithm to dark-subtracted and filtered images. The filtering is done using a
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gaussian kernel as in the spectral recovery method.
The original energy recovery (Equation (7) in [RBS03]) can be stated as fol-

lows:

xj =

∑
iw(yij)tif(yij)∑

iw(yij)t2i
(10.3)

where xj is the (unknown) energy of pixel j, yij the device counts measured in
pixel j with exposure time ti and w a weighting function for the pixel values. f is
the unknown response curve, the inverse of the OECF, which has a discrete nature
in [RBS03].

To account for noisy images with significant dark-current contribution we
modify equation (10.3) to include filtering:

ỹij =
P∑
p=1

F j
p [yip −Dp] (10.4)

x̃j =

∑
iw(ỹij)tif(ỹij)∑

iw(ỹij)t2i
(10.5)

where F j is a gaussian filter centered at pixel j, Dp is the dark value at pixel p
and P is the number of all pixels. The same filter kernel is used as in the recovery
method (see Equation 10.1). Here, f is no longer discrete. However, it turned out
to be sufficient to store values for f at integral pixel values and interpolate linearly
in between.

The recovery of f (Equation (11) in [RBS03]) has to be adopted to account for
the fractional pixel values. Here, generation of the pixel value histogram has to
include interpolation as well. Let δij = ỹij − bỹijc, then the recovery of a integral
point of f changes to:

L(m) = {(i, j)| bỹijc = m} (10.6)
R(m) = {(i, j)| dỹije = m} (10.7)

f(m) =
1

2
∑

(i,j)∈L(m) (1− δij)
∑

(i,j)∈L(m)

(1− δij)tix̃ij

+
1

2
∑

(i,j)∈R(m) δij

∑
(i,j)∈R(m)

δijtix̃ij (10.8)

To show the effect of filtering on response recovery we computed response
histograms for an exposure series having low pixel values. A response histogram
is a two dimensional histogram where each bin is associated with a pixel value ỹij
and the associated energy estimate f(ỹij)/ti. Such a histogram shows the function
f together with noise or other unwanted effects over the whole pixel value range.
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(a) Real RGB response (b) Simulated RGB response (c) Difference

Figure 10.4: Cross validation of the whole spectral calibration: (a) shows the
real response of the RGB cameras to color fields, (b) shows a simulation of the
responses by applying the RGB filtermatrix Rcam to a spectral image captured
using the spectral camera system (c) is the difference image showing that our
calibration used to generate the image in (b) is very exact. For display purposes,
gamma mapping with γ = 2 has been applied to the RGB images.

An ideal, linear camera without any noise or bias would just show a straight line
of filled bins in this histogram, with all other bins being zero.

Figure 10.3 shows the response histograms for our camera using different fil-
ter sizes during the recovery of f . The histograms converge towards the ideal case
of a single line with increasing filter size. Therefore, the response of the camera
is stable under filtering even for pixel values with an SNR of 1 or smaller. No-
tice, that the dark-current-noise of the camera is normal distributed with standard
deviation 3. The discrete nature of the photon and electron shot-noise completely
cancels out when multiple pixels are combined by filtering.

The spectral calibration of the spectral camera system is straightforwardly per-
formed by acquiring images of a white diffuse reference surface lit by the known
LED illumination and then dividing the linearized camera response by the LED
spectrum. The resulting sensitivity for each wavelength band can be taken from
Figure 10.2(c).

Finally, we checked the complete calibration of both types of cameras by a
cross-validation experiment. This is done by simulating the RGB response to
a X-Rite colorchecker passport from a spectral image acquired by the spectral
camera system. This way all calibration results are combined. The simulated RGB
response matches the real response extremely well which is shown in Figure 10.4.

10.4 Simulated Data

To evaluate, how well extrapolation of spectra across different pixels AND angles
works, we performed some first simulations with the spectral BTF data captured
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Figure 10.5: The right parameters for our setup: Our simulation helps to choose
good values for the capture and reconstruction parameters in beforehand. Here
we show the exposure times tλ for the spectral camera system and the filter sizes
of the gaussian filters in the reconstruction process. The standard deviation σ for
the gaussians was then set to 1/5 of the filter size.

by the gonioreflectometer (see Part I).
Moreover, simulations are extremely helpful because a pixel-wise comparison

between reference and reconstruction can be made. This is not easily possible
when using real data since the geometries and resolutions of the setup used for
the ground-truth measurements and the setup described in Section 10.2 are quite
different. Furthermore, basic understanding about the method and its properties
can be gained without having too much bias by real-world data.

To have an as-realistic-as-possible scenario we performed a detailed simula-
tion of the capture process. For the image capture in the CCD cameras the cali-
bration results from Section 10.3 are used. The following equation describes how
a pixel value M is generated from an incident irradiance x and exposure time t:

Mcam(x, t) = clamp
(⌊
f−1
cam(x t Ecam

λ ) +OADC +Nσ

⌋
, 0, n− 1

)
(10.9)

Ecam
λ denotes the combined quantum efficiency of optical system and sensor at

wavelength λ and f−1
cam is the OECF i.e. the inverse of the response function.

Ocam
ADC is the ADC offset of the camera and Nσcam a random value drawn from

a normal distribution with standard deviation σcam mimicking the various noise
sources inside of the capture process. fcam, Ecam, Ocam

ADC and σcam are taken from
the calibration described in section 10.3. We therefore end up with a detailed sim-
ulation of our measurement setup that helps us to evaluate the quality of spectral
reconstruction in dependence on the various parameters.

Starting with a spectral reference image Sref and the light spectrum L we first
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simulate an exposure series for the RGB images by computing

MRGB(CSref (p)diag(L), ti) (10.10)

for all pixels p of the reference image Sref and for different exposure times ti.
Here, MRGB is the function from Equation 10.9 with the parameters for the RGB
camera system. The RGB-LDR images are recombined to form HDR images
using Robertsons algorithm [RBS03].

For the spectral images, one single exposure per wavelength band is simulated
by computing

Mspectral(Sref (p)diag(L), tλ) (10.11)

In our setup, standard RGB reflectance capture is performed using four expo-
sure times ti ∈ {50, 186, 666, 2500} for the RGB cameras. For the spectral cam-
era, we calculated the exposure time as tλ = tbase√

E(λ)L(λ)
. That is, we accept more

noise in those spectral bands having bad support from light source and camera
system quantum efficiency. The size of the gaussian filters in the reconstruction
has to be adjusted accordingly. Figure 10.5 shows both the resulting exposure
times and filter sizes. It should be noted that this figure depicts the filter sizes
that are required to nearly completely cancel the noise from the spectral band im-
ages. However, we found that this is often not necessary and smaller filters can be
used. The reason is that the appearance smoothness term of the energy functions
also acts like a filter and compensates for remaining noise in the filtered, spec-
tral data. Smaller filters can be appreciable because they lead to a speed-up when
calculating the matrix multiplication corresponding to the energy function En.

Since some of the exposure times tλ are larger than the total RGB exposure
time

∑
i ti we cannot obtain the spectral data at exactly the same speed as the RGB

data for this setup. It is clear that we need to finish at least one spectral band expo-
sure before switching to the next light source. However, for other RGB images we
can acquire noisy spectral images for more than a single band. When using a bin-
packing algorithm, the assignment between spectral channels and RGB images
can be optimized. In our case we would be able to acquire the 30 spectral images
during the acquisition of 8 RGB images with about 41% increase in total expo-
sure time. However, we decided to add two more RGB images to the sequence
and acquire the noisiest images two times. With this, we end up with 10 RGB
images and an increase of about 61% in total exposure time. Figure 10.16 later in
this thesis shows the noisy spectral images for the "Lego" dataset for reference.

It should be noted that the whole procedure itself is very general and the pa-
rameters can be easily adjusted for other measurement setups.
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10.4.1 Single Spectral Image

In simple use cases, just one spectral image has to be acquired. We will investigate
this case to derive first insights into the reconstruction quality of the modified
spectralization method utilizing noisy spectral data.

In this single-image case, the input to the reconstruction algorithm is a high
quality RGB image and as many noisy spectral images as we have spectral bands
(in our case 30, ranging from 410 to 700nm in 10nm steps). We used one im-
age (texture) per example material as reference image Sref . After running our
new algorithm, the result S is compared to Sref . To evaluate the spectral accu-
racy of our reconstruction algorithm, we calculated histograms for the relative
reconstruction error and the perceptual ∆E∗94 for all four example materials. See
Equations 6.7 and 6.8 for details on the error computation.

Figure 10.6 show first results for two datasets. The reconstruction quality is
not very satisfactory. Mainly, the reason is noise in the resulting spectral curves.
We found that this is due to the fact that the quadratic function has very small
gradient as soon as the first two terms of the energy function (see Equation 10.1)
approach zero. As a solution, we extend the energy function by adding a spectral
smoothness term:

En (S) = α
K∑
j=1

∥∥∥∥∥
(

n∑
i=1

F j
i fiSi,bj

)
−

(
n∑
i=1

F j
i fiD

bj
i

)∥∥∥∥∥
2

+ β

n∑
i=1

‖(Sifi)Rcam − fiVi‖2 (10.12)

+ γ

n∑
i=1

∑
j∈Ni

‖Si − Sj‖2

+ δ

n∑
i=1

k−1∑
j=1

‖Si,j − Si,j+1‖2

This is physically well supported since we are reconstructing reflectance spectra
here, which are - as mentioned earlier - mostly smooth. With the introduction
of the new term with the new weighting factor δ we change the normalized to
the number of terms that was previously introduced in Equation 6.11. The new
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variant is:

α = α′
mk + 3n+ k

∑n
i=1 |Ni|+ n(k − 1)

mk

β = β′
D̄

V̄

mk + 3n+ k
∑n

i=1 |Ni|+ n(k − 1)

3n
(10.13)

γ = γ′
mk + 3n+ k

∑n
i=1 |Ni|+ n(k − 1)

k
∑n

i=1 |Ni|

δ = δ′
mk + 3n+ k

∑n
i=1 |Ni|+ n(k − 1)

n(k − 1)

The rationale of this normalization stays the same: to account for the difference
in number of terms and for the different scale of D and V in the energy function.
Since the new spectral smoothness term is just meant to help with final conver-
gence, we set δ′ = 0.1, so much lower compared to the other three terms.

Figures 10.7 and 10.8 shows the resulting reconstruction error histograms for
all four datasets when using this new energy function. The ∆E∗94 histograms show
a high concentration of errors below one which corresponds to indistinguishable
stimuli. Very few ∆E∗94 errors are above two for all materials showing that the ref-
erence and the reconstruction are perceptually nearly equivalent. The histograms
of relative errors indicate high reconstruction accuracy as well. An exception is
the "Red fabric" dataset - we will discuss this in Section 10.4.2.1.

Plots of different reflectance spectra are depicted in Figures 10.9, 10.10, 10.11,
and 10.12. One can see that the spectral shapes are reproduced faithfully (again,
with exception of the "Red fabric").

There are mainly two remaining differences:

1. Differences due to noise in the reference data: During spectralization the
pixel-wise noise is mainly filtered out due to the prior - the appearance
smoothness constraint using the RGB-based appearance neighborhoods.

2. A bit of over-smoothing of the spectral curves near the limits of the spectral
range: This is due to the fact that the capture system has rather low sensi-
tivity in that spectral bands (see Figures 10.2(c) and 10.2(a)) and therefore
the spectral smoothness term has a slightly higher ratio compared to the
other wavelength bands. This could be compensated by scaling the per-
band spectral smoothness terms accordingly. However, the higher prior
weight reflects the higher uncertainty in the data for those bands and we
would get more noise into those bands, if we would do so. We will accept
this inaccuracy for the time being and refer to the fact that a capture system
with more evenly distributed spectral efficiency would not suffer from this
problem.
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(a) Red fabric: Histogram
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(b) Lego bricks: Histogram
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(c) Red fabric: Histogram
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(d) Lego bricks: Histogram
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(e) Red fabric: Example pixels
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(f) Lego bricks: Example pixels

Figure 10.6: Relative error for reconstructing single images using the basic en-
ergy function from Equation 10.1: histogram and pixel spectra for two example
textures. The dashed curves indicate the noisy spectral input data (normalized to
the LED light source spectrum for comparison). The reconstruction errors are not
very satisfactory due to high noise in the reconstructed spectra.
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(a) Red fabric
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(b) Lego bricks
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(c) Color checker
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(d) Wallpaper

Figure 10.7: Relative error for reconstructing single images using the energy func-
tion with spectral smoothness term (Equation 10.12): relative error histogram for
all of the four example textures with the black line indicating the mean error. The
high concentration at low errors shows that our method now provides high-quality
spectral images. The only exception is the "Red Fabric" dataset which shows are
broader error distribution with higher mean error. Please see Section 10.4.2.1 for
a discussion on this dataset.

148



CHAPTER 10. FAST RGB-SPECTRAL BTF MEASUREMENT

0 1 2 3 4 5 >6
0

10

20

30

40

50

∆E
*

94

F
ra

c
ti

o
n

 o
f 

P
ix

e
ls

 [
%

]

(a) Red fabric
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(b) Lego bricks
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(c) Color checker
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(d) Wallpaper

Figure 10.8: Perceptual error for reconstructing single images using the energy
function with spectral smoothness term (Equation 10.12): ∆E∗94 histogram for all
of the four example textures with the black line indicating the mean error. The
concentration of errors near or even below one show that our reconstruction algo-
rithm produces perceptually indistinguishable results compared to the reference.
The only exception is the "Red Fabric" dataset which shows are broader error dis-
tribution with higher mean error. Please see Section 10.4.2.1 for a discussion on
this dataset.
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Figure 10.9: Comparison of reference and reconstructed reflectance spectra of selected pixels in the single-image "Lego"
dataset. The shape of the spectra is met with high precision. The dashed curves indicate the noisy spectral input data
(normalized to the LED light source spectrum for comparison).
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Figure 10.10: Comparison of reference and reconstructed reflectance spectra of selected pixels in the single-image "Wall-
paper" dataset. The shape of the spectra is met with high precision. The dashed lines indicate the noisy spectral input data
(normalized to the LED light source spectrum for comparison).
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Figure 10.11: Comparison of reference and reconstructed reflectance spectra of selected pixels in the single-image "Col-
orchecker" dataset. The shape of the spectra is met with high precision. The dashed lines indicate the noisy spectral input
data (normalized to the LED light source spectrum for comparison).
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Figure 10.12: Comparison of reference and reconstructed reflectance spectra of selected pixels in the single-image "Red
Fabric" dataset. The dashed lines indicate the noisy spectral input data (normalized to the LED light source spectrum for
comparison). One can depict some significant inaccuracy in the reconstructed spectra. This is a failure case of our method
which is in more detail discussed in Section 10.4.2.1.
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10.4.2 Multiple Spectral Images
Reconstructing multiple images at once as described in Section 10.1.2 is the much
more challenging case.

In the described setting, there is no single RGB image for which noisy spectral
information is available for all spectral bands. We want the prior term of Equa-
tion 10.12 (see also Chapter 6.2) to "spread" the information between the images.
The idea is to use this algorithm to reconstruct complete bi-angular, spectral re-
flectance data without significant increase in exposure time.

As described in detail at the start of Section 10.4 our measurement setup is
able to acquire the necessary noisy spectral images within the time needed for 10
high quality, high dynamic range, RGB images. For that reason we use test data-
sets with 10 images having noisy spectral information and 10 images without
any spectral information. The 10 images with spectral information are chosen to
correspond to views of 45◦ elevation angle since the spectral camera is mounted at
this angle. Exemplary, Figure 10.15 shows the 20 images for the "Lego" dataset.

Figure 10.13 depicts histograms of the reconstruction errors on the four data-
sets. For each data-set there are two histograms: one showing the error distribution
for the first 10 images and the other one for the last 10 images with no spectral
information. We can derive the following conclusions:

1. The reconstruction errors are in general rather low - our algorithm is able to
reconstruct high quality spectral images.

2. There is only a slight increase of reconstruction error from the first 10 im-
ages to the last 10 images, showing as a shift in the histograms. This means
that the first 10 images already contain enough spectral information to allow
for a good transport via the appearance smoothness prior. The main reason
is that the materials have a complex structure and thus every image contains
a lot of information ranging from diffuse colors to highlights. In case of
less- to non-structured materials this might be different and might poten-
tially render our method non-applicable. However, we refer to our BRDF
reconstruction in Section 7.3 as an option in these cases.

3. For the "Red fabric" dataset, the reconstruction is less accurate compared to
the other datasets. We had already noticed that in Section 10.4.1 and discuss
this in the following section. However, finding 2 also holds for this data-set.

10.4.2.1 Red fabric

The results depicted in Figures 10.7, 10.12, 10.13, and 10.19 indicate that the re-
construction accuracy on the "Red fabric" dataset is worse compared to the other
three datasets. At a first glance this is rather astonishing since this material is
also rather structured and seems to have a lot of self-similarity - within and across
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different images. However, the problem is revealed when having a more detailed
look at the appearance neighborhoods Ni. It turns out that the textures of this
material are full of metamers with respect to the capture system, i.e. there are
different spectra in the texture that map to very similar RGB values. Figure 10.20
shows two examples of those metamers together with one example of a "good"
neighborhood. In principle our method could deal with metamers, if they would
show up on larger structures. However, in this case, the RGB-self-similarity is
on a very small scale (the weaving pattern). For illustration, Figure 10.21 shows
a comparison of raw and filtered data for the 600nm spectral band for the "Red
fabric" and the "Lego" dataset. It can be seen that the fine details for the both
materials are lost due to the filtering. However, for the "Lego" dataset, the larger
structures (the bricks) are still clearly visible. Even two metameric bricks would
therefore be reconstructed successfully if e.g. πRGBXYapp from Equation 6.5 is used
to create the appearance space. But for the "Red fabric" the appearance neigh-
borhoods do only connect very similar positions in the same repeating small-scale
structures that are all suffering from the same problem. That said, for textures
with just fine-scale structures and metameric colors, our method as-is does not
perform well.

As a possible solution we propose two improvements:

• Choose an appearance space projection with better neighborhood informa-
tion. We tested even 5×5 pixel patches and found that they were not enough
to distuingish between different metameric pixels. Since a 5× 5 pixel patch
already leads to a 5 · 5 · 3 = 75 dimensional appearance space and since the
nearest neighbor search gets increasingly costly with the space dimension,
simply increasing the patch size is no valid option. Other descriptors might
be better suited to describe the local textural structure with lower dimen-
sional feature vectors.

• Also capture one additional image for the whole reflectance measurement
as proposed e.g. by Dong et al. (see also Section 10.4.3). From this, the
spectrum of pixels could be converted into spectral constraint for the first
term of the energy function En(S) (see Equation10.12) if the appearance
space distance would be below a certain threshold. Capturing the one ad-
ditional image would not increase overall capture time by a lot, but would
help resolve the aforementioned ambiguities.

However, we did not implement these possible improvements for this thesis and
leave this to future research.
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(a) Red fabric
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(b) Lego bricks
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(c) Color checker
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(d) Wallpaper

Figure 10.13: Relative error for reconstructing multiple images at once: his-
tograms for 20 images. The upper histograms correspond to the images from 45◦

elevation over which the spectral information was spread. The lower histograms
were computed from the remaining 10 images, which had no spectral information
at all and covered different elevation angles. There is only a slight increase of the
errors - proving that the data acquired from 45◦ elevation already contains enough
spectral information for our test cases.
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Figure 10.14: Comparison of reference and reconstructed reflectance spectra of selected pixels in the multi-image "Lego"
dataset. The shapes of the spectra are met with high precision.
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Figure 10.15: The "Lego" dataset: the 20 images - projected to sRGB color space
for display purposes - used to compute simulated results. The first 10 images
are from 45◦ elevation angle and sparse, noisy spectral information is available
for them. The other 10 images have different viewing angles and no spectral
information is available for them.
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410 nm 420 nm 430 nm 440 nm 450 nm

460 nm 470 nm 480 nm 490 nm 500 nm

510 nm 520 nm 530 nm 540 nm 550 nm

560 nm 570 nm 580 nm 590 nm 600 nm

610 nm 620 nm 630 nm 640 nm 650 nm

660 nm 670 nm 680 nm 690 nm 700 nm
Figure 10.16: The "Lego" dataset: the noisy spectral images serving as input for
our reconstruction.
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Figure 10.17: Comparison of reference and reconstructed reflectance spectra of selected pixels in the multi-image "Wall-
paper" dataset. The shapes of the spectra are met with high precision. The first 10 images are those with spread spectral
information, the last 10 images do not have spectral information at all. The results show that the spectral information is
spread to those images by the prior term in the energy function. This is even true for a highlight (Point 5 in Image 16).
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Figure 10.18: Comparison of reference and reconstructed reflectance spectra of selected pixels in the multi-image "Col-
orchecker" dataset. The shapes of the spectra are met with high precision. Only the very steep flanks in the spectral curves
for the red and yellow fields pose a problem due to the spectral smoothness term.
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Figure 10.19: Comparison of reference and reconstructed reflectance spectra of selected pixels in the multi-image "Red
Fabric" dataset. Some spectra are not reconstructed with sufficient accuracy. This failure case of our method is discussed in
Section 10.4.2.1.
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Figure 10.20: RGB neighborhoods in the "Red fabric" dataset: only for the first
pair of pixels, the RGB value similarity does also imply spectral similarity. This
- system induced - metamerism in combination with the fine spatial structure that
is filtered (see Figure 10.21) causes the reconstruction inaccuracy for this dataset.
RGB values were scaled for visualization purposes.
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(a) Red fabric: raw (b) Red fabric: filtered

(c) Lego: raw (d) Lego: filtered

Figure 10.21: Comparing filtered spectral data: the images show raw and filtered
data from the 600nm band for two datasets. The high frequency detail of all
threads is lost for the "Red fabric" dataset. For the "Lego" dataset, the different
bricks are still distuingishable. Please note that the filtered images do not cover
the full image portion since the filter kernels cannot extend past the image borders.
See also Figure 10.20 and Section 10.4.2.1 for a discussion.
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10.4.3 Comparison to Dong et al. [DSD+16]:
We compared the accuracy of the spectralization method to the NMF-based method
from [DSD+16]. Since they have a pretty similar idea to combine a full RGB BTF
with sparse spectral data, their algorithm is straitforwardly applicable to our prob-
lem as well. Their method requires one high quality spectral image acquired using
spherical illumination. This is of course not ideally achievable with our device,
but a high quality approximation to that can be acquired by illuminating the sam-
ple with all LEDs at once. Then the incident irradiance on the sample is that high,
that even with short exposure times a nearly noise-free spectral image can be ac-
quired with the spectral camera system. In Figure 10.22 the reconstruction of the
Lego dataset using their method is shown. It can be seen that their method is pro-
ducing rather good results on many of the pixels. However, it fails to reconstruct
some of the brick colors with high accuracy. The main reason is that the dimen-
sionality of this dataset if too high to allow for a decent reconstruction using a
three-dimensional basis. The error histograms in Figure 10.23 also confirm this
finding. Here, we also noticed that the Dong method performs better on the "Red
fabric" dataset, despite the fact that it is limited by the dimensionality (see also
Section 10.4.2.1).

It should also be noted that using a spherical illumination, the diffuse re-
flectance of the material is well captured. However, such an image would not
contain much information about the specular reflection or the gloss.

It should be noted, though, that their method is computationally magnitudes
faster compared to our optimization approach. That means, whenever one is sure
that the materials to be captured are exhibiting a low spectral dimensionality, and
when an additional method is utilized to reconstruct specular highlights, their
method might be preferable over ours. In a general setting, however, their method
lacks reconstruction accuracy.
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Figure 10.22: Comparison of reference and reconstructed reflectance spectra of selected pixels in the single-image "Lego"
dataset using the NMF-based algorithm from Dong et al. [DSD+16]. Due to the limitation to a three-dimensional basis, not
all spectra can be reconstructed using high precision (esp. the green field at Point 7.)

16
6



CHAPTER 10. FAST RGB-SPECTRAL BTF MEASUREMENT

0 5 10 15 20 25 30 >35
0

5

10

15

20

25

Rel. error [%]

F
ra

c
ti

o
n

 o
f 

P
ix

e
ls

 [
%

]

(a) Our method (Lego)
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(b) Dong et al. (Lego)
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(c) Spectral A+ (Lego)
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(f) Spectral A+ (Col-
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(g) Our method (Red fabric)
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(h) Dong et al. (Red fabric)
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(i) Spectral A+ (Red fabric)

Figure 10.23: Comparison to Dong et al. and Spectral A+: Relative error his-
togram for the "Lego", "Colorchecker" and "Red fabric" datasets. The vertical
black lines indicate the mean error. One can see that our method performs always
better than Spectral A+ - and we are not sure why this happens. For Dong, our
method performs better on "Lego" and "Colorchecker" but worse on the "Red fab-
ric" dataset. The main reason for the better performance on the first two is that
the dimensionality of this dataset if too high to allow for a decent reconstruction
using a three-dimensional basis. This is also true for the "Red fabric", but here our
method fails to deliver high quality results (see Section 10.4.2.1 for a discussion).
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10.4.4 Comparison to Arad et al. [ABS16] and Aeschbacher et
al. [AWT17]

The method from Arad et al. [ABS16] and Aeschbacher et al. [AWT17] is di-
rectly suitable for reconstructing full BTFs as well. To apply Spectral A+ in this
setting, we construct the sparse dictionary from the sphere-lit image, acquired as
for the Dong method in the previous section. We quickly noticed, that the method
delivered very bad reconstruction results with the standard parameters sparsity
k = 8, regularization λ = 0.1. However, when setting λ to very tiny values,
the results improved a lot. We found that λ = 0.00001 yielded the best results
on our datasets. Error histograms for two examples can be seen in Figure 10.23.
We can see that - even with optimized parameters - the reconstruction accuracy
is still very limited compared to the Dong method or to our method. This con-
firms our findings from Sections 7.1 and 7.2. There, we supposed that the 250
spectral datapoints might be insufficient to create a descent, overcomplete basis.
However, we now input the whole sphere-lit, spectral image as training data. That
means, that the pure number of training samples cannot be responsible for the bad
performance. We did not perform any further analysis.

10.5 Real Data

To test our algorithm on real data we captured reference data for a X-Rite Col-
orChecker Passport Photo1 with our spectral camera system using a total exposure
time of 226212ms. Afterwards we captured RGB images and noisy spectral im-
ages with a total exposure time of 7463ms and performed a reconstruction using
our novel algorithm. Figure 10.24 shows a comparison between reference and re-
constructed spectra for one pixel per color field. Additionally, we used the noisy
spectral images directly and added the respective pixels to the plot for comparison
purposes. The figure shows, that our algorithm achieves nearly the same results
as the reference capture while requiring exposure times that are about 1.5 orders
of magnitude smaller even serial capture of RGB and spectral images is assumed.
When both are captured in parallel, the ratio is even better.

This first test with the real setup shows that our modification of the spectral-
ization method introduced in Section 10.1 is well suited for practical applications
and delivers precisely reconstructed spectral images.

1https://www.xrite.com/categories/calibration-profiling/colorchecker-classic-
family/colorchecker-passport-photo-2
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Figure 10.24: Spectral reconstruction using real data: pixel spectra from different
color fields of a X-Rite ColorChecker Passport are shown. The reference data
(dashed red) was obtained using long exposure times and required a total exposure
time of 226212ms. The reconstruction by our algorithm (blue) was based on
camera images with a total exposure time of 7463ms. The green spectra show the
result obtained by using the noisy spectral input data directly. The result indicates
the robustness of our reconstruction against high noise levels. Spectral imaging is
accelerated by about 1.5 orders of magnitude.

10.6 Summary

In this chapter we presented one possible, practical way to utilize the spectraliza-
tion technique to combine RGB and spectral technology to capture image series
with self-similar content. In the area of computer graphics this is relevant for cap-
turing bidirectional reflectance data like BTFs or SVBRDFs, for instance. Due
to the flexibility of the spectralization we can integrate a lot of different kinds
of spectral data into the energy optimization. In this case we used noisy spectral
images, which allow for low exposure times for the spectral imaging system. The
noisy data is integrated by adding a filtering into the energy function. The RGB
data is the key to restore the high resolution spectral images from the incomplete
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input data. Using this set-up we can also solve the problem of geometric registra-
tion of RGB data with respect to spectral data.

For this, we have first introduced a new variant of the energy function in Equa-
tion 10.1 that supersedes the original function from Equation 6.9.. We have also
shown how to calibrate spectral camera system to make use of low-signal, high
noise data. Using a detailed simulation of our RGB-spectral measurement setup
we could analyze the reconstruction performance of our approach in detail in Sec-
tions 10.4.1 and 10.4.2 and propose an improved version of the energy function
in Equation 10.12. Beyond simulated data we have also shown that the proposed
algorithms work for real-world data, as well.

We have also documented a partial failure case of our method in Section 10.4.2.1
and given outlook to possible improvements.

By comparing our results to the methods from Dong et al. [DSD+16] and to
Spectral A+ [AWT17], which are both applicable in the same setting, we have
set our method into the context of prior work. We have shown that our method
performs always better than Spectral A+ and also better than Dong et al. except
for the documented failure case.
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CHAPTER 11

CONCLUSIONS

11.1 Summary
Material reflectance data with dense sampling of the spectral domain is necessary
in all applications where images should be created from virtual scenes by the
means of rendering methods and where exact color reproduction is a required key
feature.

In this thesis we presented a novel solution for reconstructing spectral images
or spectral BRDFs from sparse spectral and dense RGB data, enabling to capture
complex reflectance functions like Bidirectional Texture Functions (BTF) or SV-
BRDFs with high spectral resolution.

Traditionally, mostly trichromatic - e.g. RGB - solutions are available for this
due to the low cost and ease of use of RGB cameras. Straightforwardly extending
existing setups to allow for reflectance acquisition with higher spectral resolution
is associated with large efforts in terms of hardware costs, acquisition time, and
storage cost. Our method helps to reduce these costs and the acquisition time
significantly compared to straightforward approaches.

Our work was divided in three steps:

1. Extend an existing RGB gonioreflectometer with dedicated hardware to en-
able for the capture of spectral BTF ground-truth data.

2. Develop a novel method for the reconstruction of dense spectral data from
dense trichromatic and sparse spectral data, which allows for re-use of ex-
isting RGB capture setups with minimal additional hardware.

3. Propose methods to apply the novel acquisition scheme in practice.

In the first step we extended an existing RGB gonioreflectometer [SSK03]
with a high-quality CCD camera having a liquid crystal tunable filter in the optical
path. This system allowed for capture of spectral images with average bandwidth
of 10nm in the range of 400-720nm. Using this modified system, we captured a
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small database of spectral BTFs and textures to serve as a ground-truth data for
our latter experiments.

In the second step we developed a novel method for reconstructing dense spec-
tral data based on optimization. This method supports a wide variety of input de-
vices since all possible integrals over the spectral data-cube can be incorporated.
One additional contribution inside of this method is a novel prior on spectral im-
ages which predicts similarity of spectra based on similarity in an appearance
space based on the RGB data.

The last part of the thesis deals with practical implementation of measure-
ments using the proposed method from the second step. Here, a robust method
for spectral calibration of RGB cameras is introduced, which allows for calibra-
tion under even largely uncontrolled conditions and for increased accuracy under
laboratory conditions. Furthermore, a possible extension of an existing RGB BTF
capture setup with dedicated spectral hardware is discussed to allow for efficient
capture of the additional spectral data. First results for spectral reconstruction are
presented.

11.2 Discussion and Future Work
Compared to other spectral image reconstruction methods, our spectralization
method delivers results of superior quality, especially in cases where the image
content is complex. All methods, that do not incorporate spectral knowledge of
the image at all, produce unacceptably high reconstruction errors. Those using this
additional knowledge clearly improve. However, the restriction of the methods of
Hardeberg et al. [HSB+99b] and Dong et al. [DSD+16] to a three dimensional
subspace of spectra and the restriction of the Murakami method [MIYO07] to im-
ages having normal distribution of pixel values leads to less precise reconstruction
compared to our method using the appearance-space smoothness prior.

Furthermore, our method allows for flexible integration of nearly every source
of data. All photometric capture devices provide some integral over the spectral
data-cube and the respective integral can be directly modeled in our linear-least-
squares energy function. Especially the Murakami method - while being the most
accurate among the previous methods on images - is very limited with respect to
the kind of input data it accepts and it also works on images only. In contrast to
this, our method can be applied to even fully unstructured data-sets and also to
various kinds of spectral input data.

The first results obtained using the real setup described in Chapter 10 indicate
that the algorithm is also stable when using real data.

The main drawback of spectralization is the high computational demand, re-
sulting in long reconstruction times. While the Hardeberg method needs less than
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a second for any image and the Murakami and Dong methods (if implemented
in an optimized fashion) only a few seconds, our method will easily need 5-10
minutes depending on the image size, the amount of additional spectral data and
the neighborhood sizes in the prior term. For practical applications, especially for
reconstructing whole Bidirectional Texture Functions or alike, this is too slow, of
course.

It is notable that the quite simple Hardeberg method and also the Dong method
already provide good results as soon as the space of spectra in the image has
not significantly more than three dimensions. One possible way to accelerate
spectralization would therefore be to employ a hierarchical reconstruction, where
the optimization would be responsible for dealing with the global image content
without any restrictions and the Hardeberg or Dong method would be used on a
local level to reconstruct the spectra with low computational cost. A hierarchy
might be constructed by clustering in one of the appearance spaces introduced in
Chapter 6.2.

In Section 10.4.2.1 we have also proposed two possible improvements to our
method while we documented a failure case: First, one could use more effi-
cient textural descriptors for the appearance space projection to help deal with
metamers in fine structures. Various image feature descriptors exist that could
help improve the results in the case documented there but also in many other
cases. Second, it could be advantageous to add measurement data corresponding
to more than two kinds of integrals over the spectral data-cube. In this thesis we
have always just used RGB images and combined them with one kind of spec-
tral data. However, the linear-least-squares optimization would straightforwardly
allow to incorporate different kinds of spectral data at the same time.

Furthermore, it would be very interesting to determine good, material class
dependent angular sampling strategies for efficiently acquiring the spectral data
necessary for a high-quality reconstruction of reflectance function data. This is of
high practical relevance since cost efficient reflectance capture setups - tailored to
specific material classes - can be designed this way. For some material classes,
such knowledge is already present e.g. for effect paints there exists an ASTM
standard [AST12]. However, for most material classes, especially for compound
materials consisting of more than one different basic materials, this will require a
thorough analysis.

An additional direction of future research would be to use the algorithm de-
scribed in Chapter 10 for spectral video capture. In the context of computer graph-
ics, spectral video could e.g. be used for capturing space-dependent spectral envi-
ronment maps by imaging a reflecting sphere and moving around the apparatus in
space. The camera system could be designed by using a common optical system
and a beam splitter to project the image onto a RGB sensor and a monochrome
sensor with a changeable filter in front of the monochrome sensor. For every video
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frame, the filter is changed to the next spectral band, resulting in one RGB image
and a one-band spectral image per video frame. Since adjacent video frames are
typically very similar, the algorithm might be used to reconstruct a full spectral
video from this input data.

Finally, an extension of the spectralization method to fluorescent materials
could be interesting. The high practical relevance of fluorescence - even for ev-
eryday materials - was accounted for by Hullin et al. [HHA+10] who presented
a method to capture the bi-spectral BRDF of homogeneous, fluorescent materi-
als. By incorporating RGB images acquired using different light sources (e.g. by
adding two different UV LEDs) into the spectralization method, the amount of
data to be captured could be diminished even further compared to their method.
This could render the acquisition of spatially varying reflectance of - perhaps par-
tially - fluorescent materials practical.
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