
Essays in Microeconomic Theory

Inauguraldissertation
zur Erlangung des Grades eines Doktors

der Wirtschafts- und Gesellschaftswissenschaften
durch

die Rechts- und Staatswissenschaftliche Fakultät der
Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Jan Knoepfle
aus Donaueschingen

Bonn, 2020



Dekan:
Erstreferent:
Zweitreferent:

Prof. Dr. Jürgen von Hagen
Prof. Sven Rady, PhD
Prof. Dr. Stephan Lauermann

Tag der mündlichen Prüfung: 29. Oktober 2020

Ersatzprüfer: Prof. Francesc Dilmé, PhD



A Laura



Acknowledgements

In preparing this thesis, I was lucky to enjoy the company of and support by numer-
ous people. First, I want to thank my supervisor Sven Rady. As a teacher, he has
been a role model since the first day of the PhD programme. As a supervisor, his
continual support and advice, as well as the freedom to pursue my research interests
without constraints, have led to this thesis. I am grateful to my supervisor Stephan
Lauermann for the guidance and feedback that I received individually and for the
time and e�ort invested into fostering an invaluable group dynamic among all of his
students. I feel privileged to form part of this group. Parts of this thesis were writ-
ten during my research visit at Yale. I am indebted to my local supervisor Marina
Halac for the exceptional feedback, support, and encouragement well beyond the
visit. Our countless meetings considerably shaped Chapters 1 and 3 of this thesis
and provided a source of fun and motivation.

I thank the theory group at the University of Bonn; in particular, Francesc Dilmé,
who was always available with useful suggestions, and Benny Moldovanu, whose
research course and feedback were essential for Chapter 2 of this thesis. I thank
the Department of Economics at Yale for their hospitality, and the theory faculty
for stimulating conversations. My visit would not have been the same without the
company of Ian Ball, Tan Gan, Patrick Lahr, Weicheng Min, and Allen Vong.

Deniz Kattwinkel and Peter A. Wagner are both great coauthors; I would like
to thank them for showing me that joint work is not only more productive but also
a lot of fun. Andre Speit and Lucas ter Steege went from exceptional o�ce mates
to close friends and I thank them, Paul Voß, and many other colleagues at BGSE
for making graduate life a fun experience. I thank Niklas Freier, Anna Schäfer, and
Michelle Trimborn for everyday life support and much-needed distraction.

My undergraduate teachers deserve special mention. Thomas Blum provided
invaluable stimulus and advice to embark on an academic path. Ursula Höpping
sparked and fostered my interest in economics. Without their early guidance and
encouragement, I would never have envisioned myself pursuing a PhD.

Finally, I am eternally grateful to Laura for the love and encouragement dur-
ing the ups and downs. This thesis would not have been possible without and is
dedicated to you. I am indebted to both our families for their unconditional support.



Contents

Introduction 1

� Dynamic Competition for Attention 5
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Updating and the Value of Information . . . . . . . . . . . . . . . . . 13

1.4 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5 News Markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

� Costless Information and Costly Verification 51
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.3 Optimal Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.4 The Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.5 Extension: When the Signal a�ects Preferences . . . . . . . . . . . . 65

2.6 Discussion and Concluding Remarks . . . . . . . . . . . . . . . . . . 69

2.A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

� Inspecting Experimentation 85
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.3 Optimal Contract without Inspections . . . . . . . . . . . . . . . . . 90

3.4 Optimal Contract with Inspections . . . . . . . . . . . . . . . . . . . 93



ii | Contents

3.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

� Dynamic Incentives with Costly Inspections 105
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.3 Construction of the Principal-Optimal Equilibrium . . . . . . . . . . 114

4.4 Characterisation of the Principal-Optimal Equilibrium . . . . . . . . 122

4.5 Overcoming the Commitment Problem . . . . . . . . . . . . . . . . . 127

4.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142



Introduction

This thesis comprises four self-contained essays in economic theory studying the
optimal use of private information in strategic interactions. In all the situations
considered, non-monetary as well as dynamic incentives play an important role.
Chapter 1 contributes to the theory of information design by analysing how inform-
ation is optimally released to attract attention over time. The questions studied in
Chapters 2-4 belong to the theory of mechanism design and contract theory. These
chapters aim to understand how information is used to support incentive provision
and when it is most e�ective to acquire costly information.

Chapter 1, ‘Dynamic Competition for Attention’, models competing informa-
tion sources that release information over time to maximise viewership by a time-
constrained consumer. When the source is a monopolist, the chapter shows that
information arrives in jumps and the analysis uncovers a novel driver for the op-
timality of jumps: the lack of intertemporal commitment combined with the non-
concavity in the value of information. For multiple senders, an equilibrium is char-
acterised in which all information is transmitted in minimal time. The equilibrium
reveals kinship between this market for information and sequential oligopolistic price
competition for standard consumption goods. Information as a good has two note-
worthy features also present in oligopolistic competition: capacity constraints and
consumption externalities. Capacity constraints result from the sources’ fixed en-
dowments with information and – as in standard oligopolies – prevent profits from
being competed away. Consumption externalities arise because each observation by
the consumer a�ects her demand for further information as well as the expectation
about unknown content. In equilibrium, each source’s profit is determined by the
marginal contribution of her information to the consumer’s knowledge.

In Chapter 2, ‘Costless Information and Costly Verification: A Case for Trans-
parency’, joint work with Deniz Kattwinkel, we study the role of correlated inform-
ation in an allocation problem without money where the principal’s optimal choice
depends on an agent’s private information. For the principal, a private correlated
signal is valuable because it induces belief-heterogeneity; the private information
of the agent comes with di�erent beliefs about the signal of the principal. Making
allocation decisions contingent on this signal creates heterogeneity in the expected
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value across agent types. With money, this contingency enables the principal to
elicit the agent’s private type at no cost. We show that this is not the case when
monetary transfers are replaced with costly verification. In this case, transparent
procedures are optimal. The principal’s payo� is the same as if her signal was re-
vealed to the agent prior to their interaction. To explain this contrast, we dissect
two channels through which the principal might benefit from the secrecy of her sig-
nal: the reuse of excess utility for incentives across di�erent signals and the increase
of perceived verification risk for a specific type due to subjective beliefs. We prove
pointwise monotonicity of optimal allocations in the type and the signal. Without
money, these properties respectively render the first and second channel futile. We
conclude that secrecy cannot be justified solely on grounds of e�ciency.

The remaining two chapters study costly inspections in dynamic environments.
Chapter 3, ‘Inspecting Experimentation’, analyses how a venture capitalist optimally
combines bonus payments and inspections to incentivise a cash-constrained entre-
preneur to experiment on a project of unknown quality. Bonuses and inspections
have to deter the entrepreneur from diverting the funds provided by the investor.
The long-term nature of this financing relationship leads to dynamic rents for the
agent, which grow exponentially in the length of the contract. Inspections serve to
decrease these rents by reducing the maximal amount of funds that can be diver-
ted before being detected. When the inspection technology is precise enough, an
additional benefit arises as the principal can reuse rents across time: the threat of
termination serves to incentivise the entrepreneur in early periods without o�ering
additional payments in these periods. In this case, the optimal timing of inspec-
tions is predictable rather than random. This is due to the e�ective discounting
in experimentation relationships that end with the arrival of the first success. The
discounting-induced preferences over time-lotteries imply that, from the perspective
of a diverting agent, the threat of inspections is most powerful when its timing is
predictable.

Chapter 4, ‘Dynamic Incentives with Costly Inspections’, joint work with Peter
A. Wagner, studies how a compliance manager uses inspections and fines to achieve
maximal compliance by an agent. In a long-term interaction, the observability of
inspections facilitates a fully compliant equilibrium even when the principal has no
commitment power. Without observability, incentivising the principal to inspect
necessarily requires instances of non-compliance. We show further that, without
commitment, the principal cannot benefit from random inspections to implement
full compliance because the continuation equilibrium cannot be used to punish skip-
ping an inspection if it was not foreseen to happen with certainty. In comparison
to Chapter 3, the relation between the agent’s risk-preferences on and o� the equi-
librium path is reversed because fulfilling his task – compliance – does not increase
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the probability of termination. Thus, with commitment power, random inspections
weakly dominate predictable rules. We discuss possible arrangements outside our
model which provide the compliance manager with the incentives or commitment
power necessary to benefit from randomisation. We conclude that the separation
of inspection planning and execution as observed in banking supervision is most
promising.





�
Dynamic Competition for Attention

�.� Introduction

Information providers compete for attention. Most online content, such as news,
professional product reviews, or weather forecasts, is o�ered free of charge, and
the websites exploit the attracted attention to create revenue, primarily through
advertisements. Without monetary prices, information providers compete through
two key factors that determine their profits. First, they have to decide how much
and what type of information to acquire. Several papers studying this question
highlight the importance of attention as the currency in media markets.1 Second,
providers have to decide how to reveal their information over time. This aspect
– how to optimally disseminate information when competing for attention – is the
focus of this paper.

Attention is collected from a decision maker who is interested in the information
held by the providers. As attention requires time and e�ort, the decision maker
decides sequentially which providers to visit and when to stop, depending on the
information previously observed. Recent work has studied the design of optimal
dynamic information policies from the perspective of the decision maker.2 Yet, in
many situations, the power to design how information is revealed over time lies with
providers.

How much information can be transmitted from the providers to the decision
maker and what type of information processes arise when providers design o�ers to
attract attention?

To answer these questions, I build a dynamic model in which information pro-
viders – the senders – compete for the attention of a decision maker – the receiver.
The receiver has to take an action and wants to learn about an unknown state to
maximise his utility. Senders are interested in maximising the number of visits and

1See Galperti and Trevino (2018), Perego and Yuksel (2018), and Pant and Trombetta (2019).
2Most notably, Zhong (2019) characterises the optimal process designed by the decision maker

with full flexibility. See discussion below.
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do not care about the receiver’s action. At the beginning of the game, each sender is
endowed with imperfect information over the state through a signal. Subsequently,
there are multiple rounds of communication in which senders compete for a visit by
the receiver. At the beginning of each round, senders o�er experiments over their
signals, that is, each sender commits to a distribution over messages, conditional on
the realisation of her signal. Senders cannot commit across rounds. The receiver
observes all o�ers. He either pays an attention cost to visit one sender and con-
tinue to the next round, or he stops learning and takes the optimal action with the
current level of information. The model captures broad information and preference
specifications with the condition that attention can be split finely enough and each
sender’s signal is informative enough so that it is worth at least one unit of attention,
independent of the information previously delivered by her competitors.

The main result characterises an equilibrium in which all information is trans-
mitted from the senders to the receiver. Each sender attracts attention proportional
to the expected residual value of her information. This is a lower bound on atten-
tion for each sender. Therefore, this equilibrium is receiver-preferred, information is
transmitted in minimal time. O�ers made in equilibrium are of a simple class: each
sender posts a probability with which the experiment reveals her initial signal fully.
With the remaining probability, the experiment delivers no information. I refer to
this class as All-or-Nothing (AoN) o�ers.

The market for information considered in this paper features intertemporal ex-
ternalities. The information observed at any sender changes the receiver’s valuation
for future information as well as his probability assessment of other senders’ signals.
Furthermore, the design of an o�er and its cost (in terms of attention) are closely
intertwined. With externalities and in the absence of prices or general contracts, the
existence of an e�cient equilibrium is not a foregone conclusion.3 To construct the
equilibrium mentioned above, this paper introduces a substitute condition on the
senders’ signals that requires that any sender’s information is more valuable when
her competitors have revealed less.

To gain intuition on the equilibrium and the class of AoN o�ers, consider the
case of a single sender. What is the maximal amount of attention a monopolist
can extract from the receiver? The receiver is willing to pay a total attention cost
equal to the di�erence in expected utility from taking the action with or without
the sender’s information. Due to the lack of intertemporal commitment, the sender
cannot simply require the receiver to visit her for a fixed number of rounds and then
reveal all her information at the last visit. In general, a non-committed monopolist
cannot give out more information than necessary to make the receiver indi�erent

3As shown by the example in Section 1.6, externalities may impede information transmission
entirely.
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between spending another round of attention and taking the action at the current
information. A simple way to keep the receiver indi�erent is to make an AoN o�er
as introduced above. The sender chooses the AoN probability that all information
is revealed as low as possible so that the receiver accepts. AoN o�ers imply that no
information is revealed until a geometrically distributed arrival time, at which time
all information is revealed.

When there are multiple senders, they design experiments facing Bertrand com-
petition in every round. Each sender o�ers an experiment that makes her indi�erent
between being accepted and the lower bound of attention she can attract if she is
not visited. This lower bound consists of waiting until all competitors have revealed
their information and, subsequently, playing the strategy of the monopolist. At
this point, the receiver’s information includes all signals of her competitors, and the
value of the lower bound depends on the realisations of these signals. In equilibrium,
every sender o�ers the AoN probability such that the expected attention is equal to
the current expectation of her lower bound. This expectation and the senders’ o�ers
change over time. Once only one sender is left, the receiver is indi�erent between
stopping and accepting this last sender’s o�er. As signals are substitutes, the receiver
strictly prefers to accept an o�er when there are still multiple senders whose inform-
ation he has not yet observed. Given that senders require attention proportional to
the residual value of their signal, concentrating a fixed amount of information on
fewer senders hurts the receiver. While all information is still transmitted, the total
required attention increases.

I provide examples of information and preference specifications that are cap-
tured by the model together with applications that the literature has studied with
these specifications. Among these is the application of the Gaussian-information,
quadratic-loss specification to examine competition in news markets. For this setup,
I extend the game to consider optimal information acquisition by two competing
news outlets that face a tradeo� between checking further sources more carefully
and breaking the news as early as possible. This investigation race always leads to
specialisation into a less informed outlet that o�ers a more superficial report early
and a more informed outlet that investigates as long as possible to deliver high pre-
cision. If news outlets have di�erent e�ciency levels ex ante, i.e. di�erent rates at
which their precision increases over time, the more e�cient newspaper is the one
that investigates longer, thereby exacerbating its initial advantage. Perhaps surpris-
ingly, increasing the precision of initially available public information may decrease
the final precision at which the action is taken. The adverse e�ect on the incent-
ives to investigate can outweigh the direct increase in precision. If the government
considers increasing information on an issue through a campaign and ignores the
incentives of other providers informing on the same issue, such campaigns may have
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the opposite e�ect and decrease information to the public.
After discussing the related literature below, Section 1.2 presents the model.

Section 1.3 sets the stage for the analysis, examining the value of information and
introducing useful notation. The equilibrium characterisation in Section 1.4 starts
with the monopoly benchmark before deriving the results for multiple senders. The
news application is considered in Section 1.5. Section 1.6 discusses modelling choices
and the relation to Zhong (2019) in more detail. Concluding remarks are presented
in Section 1.7. Proofs not included in the main text can be found in the Appendix.

Related Literature. This paper contributes to the literature on optimal dynamic
information acquisition by a decision maker, firstly, by endogenising the informa-
tion processes chosen by senders, and secondly, by considering attention maximisa-
tion. The tractable dynamic model with multiple senders who are partially informed
presents a technical contribution to the dynamic information design literature. With
the application to news markets, the analysis sheds light on the tradeo� between
publishing news earlier or gathering more precise information. The relation to these
three strands of literature, among others, is discussed in detail below.

Optimal dynamic information acquisition by a decision maker has been
introduced to the economics literature by Wald (1947), where the decision maker
decides when to stop observing an exogenous information process and take an action.
Several papers enrich the decision maker’s problem by allowing him to adjust the
information intensity or to choose among exogenous processes, see Moscarini and
Smith (2001), Mayskaya (2017), Che and Mierendor� (2019), Liang and Mu (2020),
Liang et al. (2019), and others.4 The decision maker in my paper faces a related
acquisition problem but chooses among experiments that are o�ered endogenously
by the senders. More recently, Zhong (2019) characterises the optimal information
process designed by a decision maker with full flexibility facing a precision cost. He
shows that the optimal policy consists of a Poisson process that leads to immediate
action after arrival.5 The current paper contributes to the literature on optimal
dynamic design by considering a related question from the opposite perspective.
Senders choose flexibly how to provide their information over time to maximise the
attention they attract from the receiver. The o�er strategies presented in the current
paper6 imply a geometrically distributed arrival of all information from one sender.
This is akin to a Poisson process in continuous time with fully revealing news and
where the absence of arrival allows no inference (there is no belief drift). Section

4See also Morris and Strack (2017) and Fudenberg et al. (2018) for recent developments on the
Wald problem in di�erent directions.

5This gives a theoretical justification for the common use of Poisson processes to model inform-
ation in dynamic environments, partly due to its tractability laid out in Keller et al. (2005).

6Which attain the unique equilibrium payo� in the monopoly case and the receiver-preferred
equilibrium with competition.
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1.6.2 discusses the connection between Zhong (2019) and the single sender case in
the current paper. I identify the lack of intertemporal commitment as an additional
motive for Poisson processes.

My paper is related to the literature on Bayesian persuasion, based on Ka-
menica and Gentzkow (2011), in which a sender designs information to influence a
receiver’s behaviour. Senders in my model maximise attention and have no persua-
sion motive, that is, the action eventually taken by the receiver does not a�ect the
senders’ utilities. Most contributions model information design using belief-based
techniques. I use an experiment-based approach. Section 1.6.1 discusses the bene-
fits of doing so for a setting with multiple senders who design how to reveal partial
information.

Dynamic information design has been studied in Au (2015), Che and Hörner
(2017), Ely (2017), Renault et al. (2017), Smolin (2017), Board and Lu (2018), Ball
(2019), Che et al. (2020), Ely and Szydlowski (2020), Guo and Shmaya (2019), Orlov
et al. (2020), and others. The main contrasts to the current paper are the persuasion
motive mentioned above and the focus on single-sender7 environments. Ely and
Szydlowski (2020) study the problem of a sender with intertemporal commitment
who wants to persuade the receiver to execute an option as early as possible or as
late as possible. The latter case may be interpreted as paying attention for as long
as possible before stopping, which relates to the single sender case in the current
paper. The optimal information processes in both papers share similar features:
the receiver’s belief is kept constant, and he is indi�erent between stopping and
continuing until the information is fully revealed and he stops. As in Au (2015) and
Che et al. (2020), senders in my paper commit to the information o�ered within a
period but cannot commit across periods. The senders’ focus on the receiver’s costly
attention connects the current paper and Che et al. (2020), who examine optimal
dynamic persuasion when the receiver has to pay an attention cost.

Section 1.5 considers a concrete specification with Gaussian information and
quadratic loss for the receiver. This tractable setting is widely used in the literat-
ure on media competition. This application to news markets is related to Mul-
lainathan and Shleifer (2005), Besley and Prat (2006), Gentzkow and Shapiro (2006),
Galperti and Trevino (2018), Perego and Yuksel (2018), and Pant and Trombetta
(2019). These papers highlight the importance of capturing an audience or maxim-
ising attention for media companies. They study aspects from information acquisi-
tion to optimal provision. Mullainathan and Shleifer (2005), Gentzkow and Shapiro
(2006), and Pant and Trombetta (2019) consider optimal provision, which is the

7With the exception of Board and Lu (2018) who consider multiple sellers which are randomly
matched with potential buyers in a search market and want to induce buyers to buy from them
rather than continuing to search. For a cheap talk model that features multiple senders in a dynamic
environment, see Margaria and Smolin (2018).
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main focus of the current paper. Yet, within the more tractable Gaussian setting, I
extend the analysis and consider information acquisition where precision levels arise
from a market entry game. News outlets face a tradeo� between investigating longer
or breaking a story before the competition. Galperti and Trevino (2018) and Perego
and Yuksel (2018) study optimal static acquisition decisions determined by compet-
ition for attention. Senders in Galperti and Trevino (2018) choose the accuracy and
the clarity of their news pieces at a cost, while receivers have a coordination motive.
Senders in Perego and Yuksel (2018) choose to report on more polarised issues due
to competition. The market entry game in the current paper focuses on accuracy
levels only, and I find that the investigation race to publish first leads to polarisa-
tion in accuracy, where the less productive newspaper reports early and the more
productive newspaper deepens her advantage by investigating as long as possible.

One interpretation of the setting in the current paper is to view senders as selling
information to a receiver requiring a price in units of attention time. For a survey on
markets for information, see Bergemann and Bonatti (2019). Bergemann et al.
(2018) study the optimal design and pricing of a menu of experiments to screen the
receiver according to his willingness to pay. In my paper, the receiver’s willingness
to pay is known. The monopolist can require attention proportional to the price
charged by the monopolist in Bergemann et al. (2018), who would only o�er the
fully revealing experiment if he knew the receiver’s willingness to pay. The dynamic
information market studied in the current paper shares two important features with
dynamic price competition for standard goods. First, the product ‘information’
has important externalities. Bergemann and Välimäki (2006) study repeated Ber-
trand price competition with externalities – the surplus of each purchase depends on
the history of previous purchases. For the special case without inter-group extern-
alities – where the surplus generated by a trade with seller i depends only on the
number previous trades with i – they show that a marginal contribution equilibrium
exists and leads to e�ciency. Information generally features inter-group externalit-
ies. Nevertheless, the receiver-preferred equilibrium presented in the current paper is
also constructed by considering each sender’s expected marginal contribution. The
second noteworthy feature of this market is the presence of capacity constraints:
Each sender is initially endowed with information. This fixed endowment is a ca-
pacity constraint, relating the current paper to Dudey (1992), Martínez-de-Albéniz
and Talluri (2011), and Anton et al. (2014). As information is assumed to be always
worth one visit in the current paper, the capacity constraint is binding. Paralleling
results in the above papers, this implies that each sender can extract positive surplus
despite the competition.

Gossner et al. (2019) study attention with a di�erent focus. They show that
drawing attention to one of several considered options unequivocally increases the
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likelihood of this option being chosen by an agent who uses a fixed threshold rule.
This can be seen as an additional rationale to compete for attention.

�.� Model

�.�.� Environment

One receiver and a finite number of senders i œ {1, · · · , I} interact in discrete rounds
of communication, k = 0, 1, . . . . There is a state of the world Ê from the Polish8

space � that remains constant and is not observed by any player. However, each
sender i is endowed with partial information over the state, represented by a signal
xi from the Polish space Xi. Let X = ◊

i

Xi. The state and signals are jointly
distributed according to the commonly known prior µ̃ œ �(� ◊ X).

The receiver has to take an irrevocable action a from the closed space A to
maximise his utility u(a, Ê), where u : A ◊ � æ R is continuous and bounded. For
this, the receiver relies on information from the senders. In each round, k, he can
either pay the attention cost c > 0 and visit one sender, or take an action with the
information gathered so far. After the action is taken, the game ends.

Senders o�er experiments over their own signal. To avoid signalling, I assume
that senders do not observe their signal prior to revealing it through experiments.
An experiment is a conditional distribution over messages m from the Polish space
M . The message space M is equal for all senders and rich enough to contain all
information about x = (x1, · · · , xI), i.e. X µ M . At the beginning of round k, each
sender i simultaneously announces ⁄i,k : Xi ◊ B(M) æ [0, 1], a (regular) conditional
probability such that ⁄i,k(·, W ) is measurable for all W œ B(M), and ⁄i,k(xi, ·) is a
probability measure given any signal xi œ Xi. The set of possible experiments for
sender i is denoted by �i. Senders compete for attention. In each round that sender
i is visited, she receives utility normalised to one.

�.�.� Strategies, Payo�s, Equilibrium

First, nature draws the state Ê and the signals x = (x1, · · · , xI). At the beginning
of each round k Ø 0, if the receiver has not taken an action previously, all senders
simultaneously o�er experiments ⁄i,k.

The receiver observes the o�ers and chooses dk œ {0, 1, · · · , I}, where dk = 0
encodes that he stops and dk = i œ {1, · · · , I} means that he pays cost c > 0 and
visits sender i. When the receiver stops, he takes an action a œ A, the game ends,
and payo�s realise.9 Visiting sender i implies that he observes mi,k œ M drawn from

8A Polish space is a separable and completely metrisable space. This ensures the existence of
the conditional probability measures used below.

9For completeness, assume that dk = 0 ∆ dk+1 = 0.
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the distribution ⁄i,k and the game continues to the next round.
A public history of the game is

hk =
11

(⁄i,1)I

i=1, d1, md1,1
2

, · · · ,
1
(⁄i,k)I

i=1, dk, mdk,k

22
for k Ø 0,

with initial history h≠1 = ÿ. All players observe all past o�ers, the receiver’s choices
and the message of the chosen sender. Hence, all senders observe the information
revealed by their competitors.10 Denote by H

k the set of round-k histories.
A pure strategy for the receiver is a collection of maps

1
‡R

k

2

kØ0
with

‡R

k : H
k≠1

◊

3
◊
i

�i

4
æ {0, 1, · · · , I}.

Likewise, for each sender i œ {1, · · · , I}, a pure strategy is a collection
!
‡i

k

"
kØ0 with

‡i

k : H
k≠1

æ �i.

The receiver’s final payo� has two components. First, he gets utility u(a, Ê)
when stopping with action a if the state is Ê. Second, there are attention costs that
depend on how many times the receiver visits a sender before taking action. Each
visit costs c > 0, so that the receiver’s final payo� will be

u(a, Ê) ≠ c ·

ÿ

kØ0
{dk ”=0}.

Senders maximise the attention they attract. Each visit gives utility normalised
to 1. Sender i’s final payo� is then

ÿ

kØ0
{dk=i}.

The solution concept is a Perfect Bayesian Equilibrium, with the additional re-
quirement that beliefs are only updated with Bayes’ rule according to the chosen ex-
periment. This requirement ensures the ‘no-signalling-what-you-don’t-know’ prop-
erty (see Fudenberg and Tirole, 1991), whereby o�ers do not reveal information the
senders do not hold. It also implies that experiments from o�-path o�ers would be
interpreted correctly if they were accepted.

10It is plausible that the senders can also visit their competitors, given that experiments are
o�ered publicly. With Gaussian information considered in Section 1.5, I show how this assumption
can be relaxed.
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�.�.� Examples

Before moving to the analysis, I give two specific setups encompassed by the model
presented above. Applications for which these setups or a close variant have been
used in the literature are mentioned in square brackets. The News Markets applic-
ation is considered more carefully in Section 1.5.

Example �: Gaussian Information and Quadratic Loss. [Global games: Morris and
Shin (2002), Bergemann and Morris (2013), Angeletos and Pavan (2007). Social
learning: Vives (1996). News markets: Chen and Suen (2019), Galperti and Trevino
(2018)]

The receiver wants to learn the state of the world Ê ≥ N (0, 1/p0) as precisely
as possible. His utility from the action is u(a, Ê) = ≠(Ê ≠ a)2, so that the expec-
ted stopping utility is minus the conditional variance V ar (Ê|›) given the current
information.11 Each sender i œ {1, · · · , I} is endowed with a conditionally inde-
pendent signal xi ≥ N (Ê, 1/pi), where pi > 0 is sender i’s precision level.

Example �: Additive Attributes. [Consumer search: Wolinsky (1986), Choi et al.
(2018), Ke and Lin (2020). Advertising: Anderson and Renault (2009), Sun (2011)]

Let the receiver be a consumer who considers buying one of two objects, A =
{1, 2}. The (net) utility of the two objects is Ê = (Ê1, Ê2) œ R2, where each object’s
utility is determined by a common and an idiosyncratic attribute as follows:

Êi = Y + “i for i œ {1, 2},

where Y is the common component distributed according to F on [Y , Ȳ ] and “i are
distributed independently according to Gi on [“, “̄]. Each sender holds information
about one of the options in the form of a noisy signal of the total utility but is unable
to distinguish between the common and the idiosyncratic component: x1 = Ê1 + ‘1

and x2 = Ê2 + ‘2 with ‘i

iid
≥ N (0, 1). Senders in my model are indi�erent about the

receiver’s actions. This is the case if the sender does not sell the product by herself,
as with car or technology magazines on- and o�ine.

�.� Updating and the Value of Information

This section introduces notation that will be used extensively in the remainder of
the analysis. To determine the optimal action and compute the expected utility
from stopping, the receiver has to form a belief about Ê. The messages deliver

11The fact that u is not bounded from below does not create problems here since the stopping
utility at the prior is equal to ≠ 1

p0
> ≠Œ.
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information about signals x = (x1, · · · , xI). Recall that the joint distribution over
the state and signals is µ̃ œ �(� ◊ X). I denote its marginal with respect to x,
that is, the unconditional prior distribution of signals, by ›0

œ �(X). It will be
convenient to work with the posterior signal-belief › in the rest of the paper.

The receiver’s stopping utility with belief ›, i.e. the expected utility from the
optimal action, given that he currently holds posterior ›, is

U(›) © max
aœA

EÊ≥µ(›) [ u(a, Ê) ] ,

where µ(›) denotes the belief about the state given that the belief about the signals
is ›. The belief µ is not used in the analysis. The formula is given in Appendix
1.A.1 together with further details on this section.

At the end of round k, the belief ›k is updated to ›k+1 by Bayes’ rule after ob-
serving message mk resulting from the selected experiment ⁄k. Denote the updating
rule by ›Õ such that

›k+1 = ›Õ(›k, m).

Note that the notation suppresses the chosen experiment in the updating rule. Ap-
pendix 1.A.1 contains the updating rule in detail and shows that it is well defined.
I denote by ›Õ(›0, x≠i) the belief that results if the signals of all senders di�erent
from i are known and nothing has been revealed about xi.

With this, define the value of o�er ⁄i at current belief › as

v (⁄i|›) © Exi≥›

Ë
Em≥⁄i(xi,·)

#
U

!
›Õ(›, m)

"$È
≠ U(›).

The value is defined as the expected di�erence between the stopping utilities with
and without the additional information from ⁄i. Note that v Ø 0 always.

For the special case in which sender i’s experiment reveals her exact signal, let

v̄i(›) © v
1
”{xi}|›

2

denote the value of all her information given belief ›. Here, the experiment that
reveals i’s signal precisely is denoted by the Dirac measure ⁄i(xi, ·) = ”{xi}(·).

I assume that attention can be split finely enough to make every sender’s inform-
ation worth one unit of attention, independent of the realisation of her opponents’
signals.

Assumption 1. For all i œ {1, · · · , I} and for all x≠i in the support of ›0(Xi, ·):

v̄i

1
›Õ(›0, x≠i)

2
> c. (A1)



�.� Equilibrium | ��

This condition ensures that for any realisation of the other senders’ signals, even
if the receiver knows these exactly, sender i still has enough information to attract
at least one visit. In particular, condition (A1) implies that no sender has perfect
information. Given the Bertrand competition, if at least two senders had perfect
information, all senders would o�er all information in the first round, and the receiver
would become perfectly informed after one visit.12

�.� Equilibrium

This section identifies a simple class of information-transmission processes that is
su�cient to achieve the unique equilibrium payo�s in the case of a single sender
and the receiver-preferred equilibrium payo� with multiple senders, in which all
information is transmitted in the shortest amount of time possible.

�.�.� Single Sender

Consider the case of a single sender, I = 1. What is the maximal expected attention
cost the receiver is willing to pay for the sender’s information? It is equal to the dif-
ference between the stopping utility with no information and the expected stopping
utility with all information. This is precisely v̄1(›0). As each visit requires a cost of
c, the maximal expected number of visits the sender can attract is

v̄1
!
›0"

c
.

If the sender could commit across rounds, the simplest strategy to implement this
outcome would require v̄1(›

0)
c

≠ 1 visits from the receiver at which no information
is revealed, and then all information would be revealed at the last visit.13 However,
the sender lacks the intertemporal commitment to credibly promise all information
in the last round. She may, for example, repeat the round-0 strategy.

A simple sender strategy to overcome the non-commitment issue and to deal
with potential integer problems is to o�er revealing x1 with probability ⁄ú

œ [0, 1]
and revealing no information with probability 1 ≠ ⁄ú.14 O�ers in this class are
denoted as All-or-Nothing (AoN) o�ers. To give a simple example of an AoN o�er,
assume that the sender’s signal is the result of a coin flip, x1 œ {0, 1}, with ›0 = 0.6
prior probability that x1 = 1. Let the receiver’s utility be 1 if he guesses the signal

12See Section 1.5 for the equivalent of (A1) for Example 1. For Example 2, one su�cient condition
for (A1) is that the noise term of each sender has su�cient variance.

13This intuitive argument neglects non-divisibilities that make this potential strategy suboptimal
as it could only achieve integer amounts of visits.

14I abuse the notation by letting ⁄ú denote a probability in [0,1], while ⁄ generally denotes distri-
butions over messages. Formally, the AoN experiment is represented by the conditional distribution
⁄(x1, ·) = ⁄ú”{x1} + (1 ≠ ⁄ú)”{m} for an arbitrary message m œ M\Xi that conveys no information.
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correctly and 0 otherwise. That is, Ê = x1 œ {0, 1}, A = {0, 1}, and u(a, Ê) =
{a=Ê}.15

Figure 1.1: AoN experiment with binary signal
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Figure 1.1 shows the receiver’s expected utility as a function of the belief as a
solid black line. The three arrows indicate the possible jumps in belief induced by the
AoN experiment. As the middle arrow shows, with probability 1≠⁄ú, the experiment
reveals no information and the belief remains unchanged. With probability ⁄ú, the
sender’s signal is revealed perfectly so that with probability ⁄ú(1 ≠ ›0), the belief
jumps left to 0, and with probability ⁄ú›0, the belief jumps right to 1.

The following result shows that an equilibrium in AoN strategies generally exists
in the monopoly game. Equilibrium payo�s are unique.

Lemma 1. Let I = 1. There is an AoN equilibrium in which, in each round, the
sender o�ers AoN probability

⁄ú
1(›0) = c

v̄1(›0) .

The receiver accepts every round until x1 is revealed. In any equilibrium of the
monopoly game the expected payo�s are v̄1(›

0)
c

for the sender and U
!
›0"

for the
receiver.

Note that assumption (A1) ensures that ⁄ú
1(›0) < 1. If the sender’s strategy

prescribes AoN o�ers until all information is transmitted, the receiver’s continuation
payo� in the event of no revelation (which happens with probability 1 ≠ ⁄ú

1(›0))
remains at his initial payo�. Hence, the AoN probability ⁄ú

1(›0) that makes the
receiver indi�erent between taking action immediately and accepting the o�er, has

15Here, state and signal are identical. For this section, the general model could equivalently be
specified with Ê = x. However, in Section 1.5, signals are chosen endogenously by the senders, so
that modelling the payo�-relevant state separately allows keeping the endogenous signals and the
exogenous state distribution apart.
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to satisfy

U
1
›0

2
= ≠c + ⁄ú

1(›0) Ex1≥›0

Ë
U

1
›Õ(›0, x1)

2È
+ (1 ≠ ⁄ú

1(›0))U
1
›0

2
.

Accepting the o�er creates attention cost c. With probability ⁄ú
1(›0), the receiver

learns x1 and stops with utility U(›Õ(›0, x1))). With probability 1 ≠ ⁄ú
1(›0), the

receiver learns no information, which gives utility U(›0) as the sender will keep him
indi�erent in the following round again.

The o�er ⁄ú
1(›0) is accepted by the receiver in every round until the information

is eventually revealed. The number of rounds until revelation follows a geometric
distribution with parameter ⁄ú

1(›0), so that the expected number of rounds is 1
⁄

ú
1(›0) .

As the receiver is indi�erent between accepting and stopping in every round, it
should not be a surprise that solving the above indi�erence condition for ⁄ú gives

⁄ú
1(›0) = c

v̄1 (›0) .

The expected attention is precisely the upper bound the receiver is willing to spend.
Depending on the information structure, there may be other strategies that re-

solve the sender’s non-commitment and attract the maximal amount of attention.16

The attractiveness of the AoN strategy lies in the fact that it works for general
information structures and in its simplicity. It leads to a stationary information-
arrival process. Furthermore, the lack of inter-temporal commitment requires that
any experiment delivers, in expectation, a strictly positive increase in the stopping
utility. In Section 1.6.2, I discuss in detail that this strict increase requires beliefs to
jump with positive probability whenever the action set is finite and how – even in
the limit as the period length shrinks – the information process necessarily features
a Poisson-jump component. Thereby, this identifies an additional driver of Poisson
information, stemming from the lack of commitment, rather than risk preferences
induced by discounting (see Zhong, 2019). The above results are robust to discount-
ing; the analysis remains almost unchanged when the receiver and the sender share
a common discount factor.

�.�.� Multiple Senders

In the general case with I Ø 2 senders, equilibrium payo�s are no longer unique.
The subsequent analysis focuses on receiver-preferred equilibria. This selection best

16The sender could reveal some information every round, successively increasing the receiver’s
stopping utility to commit herself to o�er even more information in the following round. Appendix
1.A.2 includes an example of such a process when information is normally distributed. The special
feature of the Gaussian distributions allows the sender to achieve information transmission in a
deterministic number of visits (modulo integer problems).
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captures the tradeo� between the amount and the speed of information transmission
since information has no instrumental value for the senders. The welfare-maximising
equilibrium crucially depends on the normalisation of the value the senders derive
from each visit. In particular, if c = 1, maximising welfare is equivalent to maxim-
ising the amount of information transmitted as visits from the receiver to any sender
have no impact on welfare. Whenever c Ø 1, the receiver-preferred equilibrium is
also welfare-maximising.

With multiple senders, there are informational externalities that may impede
information transmission. For illustration, consider the following example with the
detailed argument presented in Section 1.6.3. Suppose there are two senders. Each
sender’s signal is an independent, fair coin flip. The receiver has to guess whether the
two coins match or not. For this decision problem, the signals form complements.
Each signal is valuable only in conjunction with the other. Since senders cannot
commit across rounds, complements cause a hold-up problem: after one sender
has revealed her information, the following sender would require maximal attention,
keeping the receiver at the current stopping utility with one signal only. Anticipating
this, the receiver is not willing to spend any attention for the first signal given that
it delivers no value on its own.

To rule out this class of problems and ensure information transmission, I intro-
duce the following condition.

Definition 1. The senders’ signals are substitutes if, for all i and for all beliefs ›

with supp(›) ™ supp(›0) :

v̄i (›) Ø Ex≠i≥›

#
v̄i

!
›Õ(›, x≠i)

"$
. (SU)

Signals are substitutes if the current value of xi at belief › is greater than the
expected value after knowing all other senders’ signals.17 That sender i’s information
is more valuable the less is known from her competitors is consistent with many
applications. This is especially the case when senders report on a single issue or,
as in Example 2, when the signals allow inference about a common component that
a�ects all options. In both examples above, signals are substitutes.

In equilibrium, competing senders make o�ers that make them indi�erent between
being accepted or rejected. Constructing an AoN equilibrium requires determining
the maximal AoN probability a competing sender is willing to o�er. Consider the
situation in which all senders but i have revealed their signals, and sender i has
revealed no information at all. That is, x≠i is known and the belief is ›Õ(›0, x≠i).

17Börgers et al. (2013) introduce notions of substitutes and complements for a pair of signals.
Viewing xi and x≠i as two signals, (SU) corresponds to the notion of substitutability in Börgers
et al. (2013) for given › and restricted to the specific decision problem considered here. Their
requirement is independent of the decision problem and therefore stronger.
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Sender i can extract maximal attention from the receiver. The receiver is willing to
visit her

v̄i

!
›Õ(›0, x≠i)

"

c

rounds to learn xi.
As will be shown below, a lower bound on the attention sender i can extract is

given by waiting until all competitors have revealed their information and o�ering
AoN probability

⁄ú
i

1
›Õ(›0, x≠i)

2
= c

v̄i (›Õ(›0, x≠i))
.

However, this value depends on the realisations of x≠i, so that its expectation –
taken over all competitors’ signals given the current information – changes over
time. Suppose the AoN probability o�ered by each sender is such that her expected
payo� is precisely the expectation of the outside option mentioned above, assuming
that this o�er was repeatedly accepted until revelation. The following result shows
that, if signals are substitutes, these strategies form an equilibrium. In addition,
this equilibrium attains full information transmission in the shortest possible time
among all equilibria, making it receiver-preferred.

Theorem 1. If senders’ signals are substitutes, there is an equilibrium with the
following strategies. At belief ›, senders whose information has not been revealed
make AoN o�ers with probability

⁄ú
i (›) = c

Ex≠i≥› [v̄i (›Õ(›0, x≠i))]
. (1.1)

The receiver is indi�erent between visiting any of the senders whose information
has not been revealed and visits them in arbitrary order until all information is
transmitted. This equilibrium is receiver-preferred.

Proof. Note that the result characterises a class of equilibria rather than a single
equilibrium as the receiver’s behaviour is not fixed. By (A1), we have that ⁄ú

i
(›) < 1

for all i whose information has not been revealed. The proof is organised in three
claims:

Claim 1. Fix any strategies by senders ”= i and assume the receiver is playing a
best response. Let the current belief be › and assume sender i has not revealed any
information. Then, playing the AoN strategy from the theorem secures sender i an
expected payo� of 1

⁄
ú
i (›) .

Proof of Claim 1. First, we show that the AoN strategy ensures that the receiver
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will not stop without observing sender i’s information. Formally, for all beliefs ›,

≠c + ⁄ú
i (›)Exi≥›

#
VR

!
›Õ(›, xi)

"$
+ (1 ≠ ⁄ú

i (›))VR (›) Ø U (›) .

Here, VR denotes the receiver’s continuation value (suppressing history and strategy).
Clearly, VR(›) Ø U(›), as the receiver always has the option to stop. For the above
inequality to hold, substituting and rearranging gives that it is su�cient to show
that

Exi≥›

#
U

!
›Õ(›, xi)

"$
≠ U (›) Ø

c

⁄ú
i
(›) .

The left-hand side of this inequality is the definition of v̄i (›). Replacing ⁄ú
i

on the
right-hand side with (1.1) shows that this inequality is equivalent to the definition
of substitutes in (SU).

Second, we show that the expected payo� for sender i from using the AoN
strategy is exactly 1

⁄
ú
i (›) . To illustrate this concisely, the remainder of the argument

for Claim 1 considers Markov strategies, so that the belief › determines the senders’
payo�s. This restriction is not necessary for the result and a detailed argument
without it is included in Appendix 1.A.1. Observe that i’s valuation satisfies:

Vi(›) =

Y
]

[
1 + ⁄ú

i
(›)0 + (1 ≠ ⁄ú

i
(›))Vi(›) if i is chosen

0 + Exj≥›

Ë
Emj≥⁄j(xj ,·) [Vi(›Õ(›, mj))]

È
if j ”= i is chosen.

In the first line, i is visited and her continuation value is 0 if her information
is revealed and remains unchanged if no information is given out. The value 1

⁄
ú
i (›)

follows immediately from re-arranging. In the second line, depending on the realisa-
tion of mj and the receiver’s choice in the following round, the value Vi(›Õ(›, mj)) is
either 1

⁄
ú
i (›Õ(›,mj)) if sender i is chosen in that round, or

Vi(›Õ(›, mj)) = Ex¸≥›Õ(›,mj)
Ë
Em¸≥⁄¸(x¸,·)

#
Vi(›Õ(›Õ(›, mj), m¸))

$È
,

if a sender ¸ ”= i is chosen. As c > 0, there can be at most finitely many rounds and
realisations before sender i is chosen so that, eventually, we arrive at realisations
with belief ›̂ and Vi(›̂) = 1

⁄
ú
i (›̂) .

Since, by definition,

1
⁄ú

i
(›̂)

= Ex≠i≥›̂

Ë
v̄i

1
›Õ(›0, x≠i)

2È 1
c

,
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we have that

Exj≥›

C

Emj≥⁄j(xj ,·)

C
1

⁄ú
i
(›Õ(›, mj))

DD

= Exj≥›

5
Emj≥⁄j(xj ,·)

5
Ex≠i≥›Õ(›,mj)

Ë
v̄i

1
›Õ(›0, x≠i)

2È 1
c

66

= Ex≠i≥›

5
v̄i

1
›Õ(›0, x≠i)

2 1
c

6
= 1

⁄ú
i
(›) .

Therefore, by taking expectations as many times as necessary from the last realisa-
tion to the current stage with belief ›, we get the claimed payo�.

Claim 2. Let all senders play the AoN strategies from the theorem and assume the
receiver is playing a best response. Then, no sender has a profitable deviation.

Proof of Claim 2. The receiver visits all senders on the equilibrium path by
Claim 1. Suppose the on-path belief is › and that only information from senders
1, · · · , j ≠ 1 has been observed. Then, the equilibrium continuation utility of the
receiver can be expressed as

VR (›) = Ex≥›

Ë
U

1
›Õ(›0, x)

2È
≠ c

Iÿ

i=j

Vi(›), (1.2)

where the proof of the last claim showed that Vi(›) = 1
⁄

ú
i (›) for all i.

Suppose now that one sender iÕ deviates to an o�er that gives an expected payo�
higher than 1

⁄
ú
iÕ (›) if accepted. By visiting the remaining, non-deviating senders, the

receiver achieves an expected payo� of

Ex≠iÕ ≥›

Ë
U

1
›Õ(›0, x≠iÕ)

2È
≠ c

Iÿ

i=j

i”=iÕ

1
⁄ú

i
(›) . (1.3)

The ⁄ú
i

are chosen such that, at the last sender, the receiver is indi�erent between
stopping without her information or paying the corresponding attention cost to
obtain her information. Hence, (1.2) and (1.3) are equal. Even if the alternative
strategy of sender iÕ would lead to all her information being revealed, the receiver
still prefers to reject any o�er yielding iÕ an expected payo� higher than 1

⁄
ú
iÕ (›) .

Claim 3. The AoN equilibrium achieves the maximal payo� for the receiver among
all equilibria.

Proof of Claim 3. The action is always taken with all information. As the value
of information is always positive and, by claim 1, no sender can receive less attention
in expectation, the AoN equilibrium is receiver-preferred.
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Theorem 1 yields a simple computation of the equilibrium payo�s of the receiver
and the senders. It su�ces to compute the expected residual value of each sender’s
signal. After the following remark, the next subsection makes use of this to show
that, if signals are substitutes, concentrating information on fewer senders slows
down transmission.

Remark 1. Note that the on-path strategies in this equilibrium are Markov. Senders’
actions are fully determined by the state, ›. The receiver’s actions are fully determ-
ined by the state and the o�ers made in the current round. The state › is not
strictly payo�-relevant in that two distinct posterior beliefs over signals may lead
to the same belief µ over states and, therefore, to the same stopping utility. One
might argue that µ is a more appropriate state variable. However, it is easy to verify
that the belief µ captures too little information to determine optimal behaviour in
the continuation game: consider a case with two senders who have symmetrically
distributed signals. One of the two has revealed this signal to the receiver but the
other has not. The same belief µ may be derived from sender 1’s signal or sender
2’s signal being known, but the value of future o�ers from senders 1 and 2 depends
crucially on this distinction.

�.�.� Concentration of Information

As the action is taken after all information is transmitted, the receiver’s expected
total payo� is

Ex≥›0

Ë
U

1
›Õ(›0, x)

2È
≠ c

Iÿ

i=1

1
⁄ú

i
(›0) .

Each sender’s attention is proportional to the residual value of her information so
that the receiver’s total payo� is equal to

Ex≥›0

Ë
U

1
›Õ(›0, x)

2È
≠

Iÿ

i=1
Ex≠i≥›0

Ë
Exi≥›Õ(›0,x≠i)

Ë
U

1
›Õ(›0, x)

2È
≠ U

1
›Õ(›0, x≠i)

2È
.

Consider increasing the concentration of information by merging the signals of
senders i = 1 and i = 2 into a single signal x1,2 = (x1, x2) held by sender 2.
Sender 1 has no information and is excluded from the game.

This decreases the speed of information transmission. To see this, consider the
receiver’s utility after the concentration. The first term remains the same as the over-
all information has not changed. The attention required by senders i œ {3, · · · , I}

also remains una�ected. The change comes from the attention required for signal
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x1,2, which is now equal to

Ex≥›0

Ë
U

1
›Õ(›0, x)

2È
≠ Ex≠{1,2}≥›0

Ë
U

1
›Õ(›0, x≠{1,2})

2È
. (1.4)

Before the concentration, observing x1 and x2 required the attention of

Ex≥›0

Ë
U

1
›Õ(›0, x)

2È
≠ Ex≠1≥›0

Ë
U

1
›Õ(›0, x≠1)

2È
+ Ex≥›0

Ë
U

1
›Õ(›0, x)

2È
(1.5)

≠ Ex≠2≥›0

Ë
U

1
›Õ(›0, x≠2)

2È
.

To see that the cost after concentrating the information in (1.4) is greater than the
cost before in (1.5), consider the di�erence:

Ex≠1≥›0

Ë
U

1
›Õ(›0, x≠1)

2È
+ Ex≠2≥›0

Ë
U

1
›Õ(›0, x≠2)

2È

≠Ex≠{1,2}≥›0

Ë
U

1
›Õ(›0, x≠{1,2})

2È
≠ Ex≥›0

Ë
U

1
›Õ(›0, x)

2È
.

This can be rearranged to

Ex≠{1,2}≥›0

Ë
v̄1(›Õ(›0, x≠{1,2}))

È
≠ Ex≠1≥›0

Ë
v̄1(›Õ(›0, x≠1))

È
,

which is positive since signals are substitutes. Hence, concentrating the same amount
of information on fewer senders slows down information transmission and hurts the
receiver.

�.� News Markets

This section applies the main results to the specification in Example 1 to derive
and interpret further comparative statics and extend the model by endogenous in-
formation acquisition. Variants of this Gaussian setting have been applied to study
various aspects of media markets in Galperti and Trevino (2018), Chen and Suen
(2019), and others.

The receiver wants to be informed about the state of the world Ê ≥ N (0, 1/p0).
He wants to match the state with his action a and gets utility u(a, Ê) = ≠(a ≠ Ê)2.
Each newspaper i holds some information about the state represented by a signal
that is independent conditional on the state: xi ≥ N (Ê, 1/pi) where pi > 0 is called
i’s precision level. The receiver’s optimal action at belief › is aú(›) = EÊ≥µ(›) [Ê],
and the expected utility from stopping with belief › is ≠EÊ≥µ(›)

#
(aú(›) ≠ Ê)2$

=
≠V ar (Ê | ›). Hence, the receiver’s stopping utility at prior information is ≠

1
p0

. The
reduction in variance caused by any sender’s signal is independent of the realisation
of her own or her opponents’ signal. In particular, if the receiver knows the signals
of all senders, his stopping utility is ≠

1
p0+p1+...+pI

. Precision increases linearly.
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�.�.� Exogenous Precision

To characterise the AoN equilibrium analogous to Theorem 1, define by

P © p0 +
Iÿ

i=1
pi,

the precision level of all senders plus p0, the precision of the state distribution. Let
P≠i = P ≠ pi denote the total precision without sender i. In this case, assumption
(A1) boils down to the requirement that, for all i:

1
P≠i

≠
1

P≠i + pi

> c,

so that the residual value of sender i’s information exceeds the attention cost c.

Corollary 1. There is an AoN equilibrium analogous to Theorem 1 in which each
sender i o�ers AoN probability

⁄ú
i = c

P≠i(P≠i + pi)
pi

in every round until her signal is revealed.

In this AoN equilibrium, sender i expects to attract the total attention of

1
⁄ú

i

= pi

cP≠i(P≠i + pi)
.

With higher precision, she can attract more attention. A higher precision of her
competitors’ signals or of the initial distribution both lead to a higher P≠i and
decrease sender i’s expected attention.

The receiver’s final payo� is

≠
1
P

≠ c
Iÿ

i=1

pi

cP≠i(P≠i + pi)
.

Hence, fixing the total precision level P , the reader is better o�, the smaller is

Iÿ

i=1

pi

P ≠ pi

=
Iÿ

i=1

3
P

P ≠ pi

≠ 1
4

.

The highest utility the receiver can get is trivially achieved at maximal prior precision
with p0 = P and pi = 0 for all i Ø 1. If we fix P and p0, does the receiver prefer
the remaining precision to be distributed evenly among all newspapers or to be
skewed with some papers holding a lot and others holding very little information?
The fraction on the right side of the equality is convex in pi. The receiver prefers
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a uniform distribution of precision levels over senders, that is, pi = P ≠p0
I

for all
i œ {1, · · · , I}.

�.�.� Information Acquisition

In practice, the precision of a newspaper’s information is endogenously determined
by its investigation process and editorial policies. One crucial factor that a�ects
precision is the time at which a story is reported. Investigating a newsworthy is-
sue features a natural tradeo� between checking further sources more carefully and
running a story as early as possible.18

This subsection considers an investigation race between two newspapers to ex-
amine how this time tradeo� a�ects precision levels. Each paper’s precision is de-
termined by the time elapsed until it starts reporting the story. The following results
show that the investigation race leads to specialisation of the two papers into an early
reporter with lower precision and a late reporter with higher precision. This is the
case even if their productivity levels, the increase in precision per investigated time,
are identical. More than that, when the precision levels are unequal, the investig-
ation race exacerbates the inequality: the more productive newspaper will deepen
its advantage by investigating longer than the less productive competitor. Further
comparative statics o�ered below show that increasing initial public precision may
lead to a decrease of total final precision.

To allow for cleaner exposition, the following results are presented in terms of
a continuous-time game in which newspaper i’s precision level is kfli after market
entry at time k. The increase in precision per instant, fli, can be interpreted as
the investigation productivity of newspaper i. That is, investigating from time 0
until some time k Ø 0 results in a signal xi ≥ N (Ê, 1

kfli
).19 Appendix 1.A.2 presents

the discrete-time game underlying this subsection. The outcomes presented here
are to be interpreted as equilibrium results in the discrete-time game, considering
arbitrarily short periods. I assume that the receiver incurs attention costs only
after the first sender entered the market. One interpretation is that the issue at
hand only becomes eminent for the receiver after the first piece of news is o�ered.
Furthermore, I assume senders are productive enough so that their investigation is
initially worthwhile from the receiver’s perspective: the marginal increase in utility,
ˆ

ˆk

≠1
p0+flik

, at k = 0 is higher than the marginal cost, or, equivalently:

18See the paper ‘The thirst to be first’ by Lewis and Cushion (2009) for a discussion of the
importance of breaking news earlier than competitors.

19This arises for example if we assume that paper i observes a Brownian motion with drift Ê and
instantaneous variance 1

fli
.
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Assumption 2. For both newspapers i = 1, 2:

fli > p2
0c. (A2)

I focus on pure-strategy equilibria and restrict attention to equilibria in AoN
strategies such that, after both newspapers entered the market, they play the AoN
equilibrium from the previous subsection. In what follows, such equilibria are called
pure AoN equilibria. This restriction rules out collusive equilibria in which the equi-
librium selection after the second paper enters is used to punish or reward specific
entry choices. See Appendix 1.A.2 for a discussion of other equilibria.

The first result for the entry game states that there cannot be a pure AoN equi-
librium in which both newspapers enter the market at the same time. Consequently,
I will refer to the first paper to enter the market as the leader and to the second
paper as the follower.

Lemma 2. In any pure AoN equilibrium of the investigation race, senders enter at
di�erent times. Suppose the leader, i = ¸, enters at time k¸. Then,

i) the follower, i = f , enters only after the leader has revealed all information.

ii) the leader’s expected payo� is

E[kf ] ≠ k¸ = 1
c

3
≠1

p0 + k¸fl¸

≠
≠1
p0

4
.

iii) if the follower enters at kf , her expected payo� is

1
c

A
≠1

p0 + k¸fl¸ + kf flf

≠
≠1

p0 + k¸fl¸

B

.

Lemma 2 states further that (i) the follower will enter the market only once
the leader has no private information. At this point, not entering would induce the
receiver to stop. As long as the leader has enough private information to keep the
receiver engaged, the follower prefers to increase her precision and enter later. More
precision gives the follower a higher payo� in the AoN equilibrium after she enters.
In turn, the leader will not risk the receiver stopping as long as she has enough
private information. Item (ii) says that the leader keeps the receiver indi�erent
between stopping at prior information (with utility ≠1

p0
) and observing the leader’s

information.20 Similarly for item (iii), the follower is a monopolist once she enters
the market21 and keeps the receiver indi�erent between stopping at the current

20By item (i), there are no competing o�ers from the follower.
21The leader’s information was fully revealed before.
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information (utility ≠1
p0+k¸fl¸

) and stopping with both senders’ information (utility
≠1

p0+k¸fl¸+kf flf
).

The two papers separate into di�erent editorial policies. The leader starts in-
forming after checking fewer sources, and the follower investigates as long as possible
to deliver more in-depth information.

The payo�s in Lemma 2 pin down the expected payo�s in the investigation race
as a function of the leader’s identity and her entry time k¸. Let Li(k¸) be paper i’s
payo� if it enters as the leader (¸ = i) at time k¸. Let Fi(k¸) be paper i’s payo� if it
becomes the follower as paper ¸ ”= i enters at time k¸. The following result collects
the properties of the functions Li and Fi that allow characterising the unique pure
AoN equilibrium of the investigation race.

Theorem 2. For both newspapers i = 1, 2;

• the leader’s payo� Li(k¸) is strictly increasing for all k¸ Ø 0.

• there is a time kú
i

> 0 with the property that, for all k¸ Æ kú
i
, we have Fi(k¸) Ø

Li(k¸), and for all k¸ > kú
i
, we have Fi(k¸) < Li(k¸).

• kú
1 < kú

2 if and only if fl1 < fl2.

In the unique pure AoN equilibrium of the investigation race, the less productive
paper starts reporting first at time kú = max{kú

1, kú
2}.

To gain intuition for this result, consider Figure 1.2, which depicts the case in
which fl2 > fl1. After kú = max{kú

1, kú
2} = kú

2, both papers strictly prefer to enter
as the leader. By continuity, for any potential leader entry time later than kú, the
follower prefers to undercut slightly. For paper i, entering the market as the leader
at any k < kú

i
is dominated by entering at kú

i
: if the competitor does not enter

before, this is due to the monotonicity of Li, if the competitor does consider entry
before, this is due to Fi > Li. Paper 2 will not enter as the leader before kú

2, the time
at which she is indi�erent between entering and becoming the leader or becoming
the follower by 1’s entry. If 2 does not stop at kú

2 (but at any time strictly later),
the best response of paper 1, is to enter as the leader at kú

2.
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Figure 1.2: Leader and Follower Payo�s
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Theorem 2 shows that the investigation race presented in this model exacerbates
the inequality in precision levels. The more productive paper investigates longer.
This resonates with a news cycle in which the ‘yellow press’ paper first runs a news
story with less careful fact-checking, and a more investigative newspaper informs
the receiver later but more precisely.

With Theorem 2, we can do comparative statics on the total information dis-
covered in equilibrium. Assume from now on that fl2 Ø fl1, so that newspaper 1
is the first one to enter the market at kú = kú

2. Then, the expected utility of the
receiver from the action is Ek2

Ë
≠1

p0+kúfl1+k2fl2

È
. This gives a measure for the total

information obtained in this game. The following result considers how it changes in
parameter values.

Lemma 3. Holding all other parameters fixed, in the investigation race equilibrium,
Ek2

Ë
≠1

p0+kúfl1+k2fl2

È
is

i) decreasing in c, and

ii) decreasing in p0 for all p0 œ [0, p] with p > 0.

Point i) states that lower attention costs lead to a higher level of knowledge
reached in equilibrium. According to point ii), interestingly, the overall information
may decrease if p0 increases. Hence, if society considers a measure that delivers pub-
lic information initially, the incentive e�ect on the papers that will investigate less
as a response may outweigh the first-order e�ect and lead to less overall information.
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The intuition for this last result is as follows. How long the follower investigates
is determined by the time the leader can report on an issue with her own information.
As the prior precision becomes very small, the leader can attract a lot of attention
even with little information gathered previously. The follower can then investigate
for a long time.

�.� Discussion

�.�.� Experiment-Based vs Belief-Based Modelling

I model information using a signal-/experiment-based approach instead of the com-
monly used belief-based approach of working directly in the space of distributions
over posterior beliefs. See Kamenica and Gentzkow (2011) for static and Ely et al.
(2015) for dynamic settings. The experiment-based approach is more convenient for
games with multiple senders and dynamic games in particular.

Gentzkow and Kamenica (2016) study a static multiple-sender game with belief-
based techniques. They introduce Blackwell connectedness, a condition on the in-
formation senders can o�er. It ensures that each sender can unilaterally deviate to
any feasible but more informative posterior distribution. In a simultaneousmove one-
shot game, this condition allows them to consider Nash equilibria in which senders
choose the same posterior distribution, and no sender has an incentive to deviate to
a more informative posterior distribution. In the setting presented here, Blackwell
connectedness holds if and only if all senders have one identical signal. Due to the
competition, this case is rather uninteresting in my model. There is a competit-
ive equilibrium in which all senders o�er all their information in the first round.
The receiver chooses randomly which sender to visit, after which all information is
observed and the game ends.

Another reason for the experiment-based approach is that di�erent beliefs over
signal xi may arise depending on the information observed previously. Identical of-
fers would give di�erent distributions over posterior beliefs depending on the current
belief. Alonso and Camara (2016) identify a bijection between the posteriors that
emerge when players with di�erent priors update their beliefs through a common
signal. Given that histories are public in my game, this connection would permit
to set up the model with the belief-based approach: letting the sender choose the
posterior distribution for a baseline belief and keeping track of the resulting pos-
terior distributions for di�erent beliefs. However, with a large set of possible beliefs
that can emerge in any round, this is not tractable. Furthermore, the model with
experiments can be easily extended to the case with multiple receivers who may have
observed di�erent realisations before choosing from the same set of signals, and the
case in which senders cannot observe the realisations of their competitors.
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�.�.� Lack of Commitment and Poisson Arrival

I relate my result of the single-sender case to Zhong (2019) and identify the lack of
intertemporal commitment by the sender as an additional driver in favour of Poisson
processes against Gaussian processes.

Zhong (2019) shows that Poisson learning is uniquely optimal for a decision
maker who designs an optimal information process subject to costs proportional to
the expected reduction in entropy. His paper shows that this is driven by discount-
ing and the resulting risk preferences. With linear time-costs instead of discounting,
Poisson and Gaussian information are both optimal for the decision maker. Fea-
turing no discounting, my model identifies another channel that requires a jump
component in the revelation of information – namely, the lack of intertemporal com-
mitment by the sender. Together with the non-concavity in the value of information,
this requires discrete jumps in the receiver’s belief with positive probability, even in
the limit as the length of a period goes to 0.

To illustrate this, consider the following example. The receiver has to guess
the outcome of a coin flip, which is the information a single sender holds. That
is, � = X1 = A = {0, 1} with x1 = Ê. Let the receiver get utility 1 whenever he
guesses correctly and 0 otherwise. Then, for belief › = Pr[Ê = 1], we have U(›) =
max{›, 1 ≠ ›}. If the current belief is ›, Lemma 1 implies that the monopolist gets
(1 ≠ max{›, 1 ≠ ›}) 1

c
rounds of attention. This holds for all rounds and beliefs.22

For the receiver to be willing to pay the attention cost c in the current round, any
experiment has to satisfy

Em

#
max{1 ≠ ›Õ(›, m), ›Õ(›, m)}

$
≠ c Ø max{1 ≠ ›, ›}.

It follows that the message m resulting from the o�ered experiment has to change
the receiver’s optimal action with positive probability. If the chosen action stays
constant,

Em

#
max{1 ≠ ›Õ(›, m), ›Õ(›, m)}

$
= max

)
Em

#
1 ≠ ›Õ(›, m)

$
,Em

#
›Õ(›, m)

$*

= max{1 ≠ ›, ›}

and the experiment’s value is 0. Whenever the current belief › is di�erent from 1
2 ,

this implies that, with positive probability, the experiment has to induce a discrete
jump in the belief.

22As long as (1 ≠ max{›, 1 ≠ ›}) Ø c. If this is not fulfilled, no further information transmission
is possible.
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Figure 1.3: Experiments without and with action change
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The left panel in Figure 1.3 shows an experiment with value 0. Since the action
is unchanged at both possible posteriors, and U is linear in between, the expected
stopping utility is unchanged. To deliver positive value, any experiment has to
change the action with positive probability, which implies for the example in the
graph that a posterior belief < 1

2 has to be reached with positive probability, as
shown in the right panel. This is certainly true for discrete rounds that require
cost c > 0. Yet, jumps in the revelation remain necessary, even in the continuous-
time limit with attention cost cdt per interval with length dt. Zhong (2019) shows
that without loss, any posterior belief process can be decomposed into a Poisson
component with jumps and a gradual Gaussian component. Letting the period
length go to 0, the probability of a belief change induced by a Gaussian process
vanishes exponentially. Together with the above observation, we can conclude that
the information o�ered by the sender has to include at least some jump component,
even as periods become arbitrarily small. Note that the reason for Poisson here
is di�erent from the risk preferences induced by discounting in Zhong (2019). In
the current model without discounting, Poisson is required by lack of intertemporal
commitment on the side of the sender.

�.�.� Complementary Signals and Hold-Up Problem

To illustrate how complementarities in the senders’ information hinder transmission
in equilibrium, consider two senders. Each sender observes the outcome of an in-
dependent, fair coin flip. The receiver has to guess whether the two coins match
or not. Let the receiver’s utility again be 1 if he guesses correctly and 0 otherwise.
In this case, the two signals (coin flips) are perfect complements. In particular, the
value of observing one signal without any information about the other is 0.

Suppose that sender 1 has revealed the result of her coin flip. Sender 2 is a
monopolist and requires 1

c

1
2 visits in expectation to reveal her information.23 Anti-

23The value of sender 2’s information after knowing x1 is the di�erence between being able to
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cipating this, the receiver’s willingness to pay for sender 1’s signal is 0. The receiver
is not willing to invest a single visit, even if sender 1 o�ers to reveal her information
for sure. The cost c > 0 is too high.

There can be no information transmission in equilibrium due to this hold-up
problem that arises with one sender after having observed the other sender’s in-
formation.

Going away from the case where the first sender o�ers to reveal her information
perfectly, suppose that sender 1 revealed partial information, and for concreteness,
let the current belief about x1 be ›1 with 1

2 < ›1 < 1. Then, the value of sender
2’s information is v̄2(›1) = ›1 ≠

1
2 . After knowing the result of the second coin,

the receiver guesses correctly whether they match or not with probability ›1 > 1
2 .

Sender 2 can extract at least v̄2(›1)/c units of attention with the corresponding AoN
strategy. Note that, as signals are complements, the value of her information will
increase in expectation with further revelations about x1.

�.� Concluding Remarks

This paper presents a tractable model to study dynamic information provision by
senders who are interested in maximising attention. A simple class of processes
su�ces to transmit all information from senders to the receiver with minimal atten-
tion. For the single sender case, I identify the lack of intertemporal commitment as
a novel driver for Poisson information. With competition, I identify a condition on
the informational externalities that ensures that all information can be transmitted.
The concentration of information on fewer senders decreases the receiver-payo� in
his preferred equilibrium. In the case of Gaussian information where each sender’s
informational endowment can be parametrised by a single number, equal precision
levels among senders are preferable for the receiver.

If the senders’ precision levels are determined in an investigation race, how-
ever, they are polarised. The more e�cient newspaper exacerbates its informational
advantage by investigating longer than the less e�cient competitor. An exogen-
ous increase of initially available public information may decrease the newspapers’
incentives to investigate enough to decrease the final precision reached in society.
Hence, measures that deliver public information on an issue may be counterproduct-
ive and lead to less total information on this issue.

The model lends itself to several extensions that are beyond the scope of this
paper. While I assumed that all messages are publicly observable, modelling inform-
ation as experiments can handle heterogeneous priors. Heterogeneous priors may
arise if the senders do not observe the message of the visited competitor or if they

guess correctly for sure or with probability 1
2 .
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do not observe the receiver’s visit history. Incorporating such non-observabilities
would allow a welfare comparison between the case in which information providers
can track their users across sites and the case in which they are not permitted to do
so.

Other interesting avenues for future research are di�erent aspects of information
acquisition, such as the choice of issues to report on or the decision between seeking
more or less correlation with other newspapers. The tractable computation of equi-
librium payo�s in this model can be used as a reduced-form of the payo�s and applied
to those questions. Lastly, the introduction of prices in addition to attention allows
for comparing membership-based business models to advertisement-based business
models.
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�.A Appendix

�.A.� Additional Results and Omitted Proofs

�.A.�.� Updating of Information
The belief about the state, µ(›), if the signal-belief is ›, is given by

µ(›)(·) =
⁄

X

µ0
|x(x, ·)d›(x),

where µ0
|x is the conditional probability of the state Ê, given the signals x. Note that two di�erent

signal-posteriors › ”= ›̂ may induce the same state-belief µ(›). As discussed after the proof of
Theorem 1, working with µ as the state variable would not, therefore, contain enough information.
As the signal space X is complete and separable, a regular conditional probability exists. It has
the properties that µ0

|x(·, W ) is measurable for all W œ B(�) and µ0
|x(x, ·) is a probability measure

for all x œ X.
At the end of round k, the receiver uses message mk resulting from the selected experiment

⁄k to update the belief from ›k to ›k+1. If, in the following expression, the denominator on the
right-hand side is non-zero, the receiver forms ›k+1 through Bayes’ rule as follows:

›k+1(·) =

s
·
⁄k(xdk , mk)d›k(x)

s
X

⁄k(xdk , mk)d›k(x)
.

In order to define the updating rule ›Õ(›k, m) more generally, note that Lk(·) ©
s

X
⁄k(xdk , ·)d›k(x)

constitutes a probability measure over M . The updating rule ›Õ(›k, m) is the non-negative function
that satisfies

⁄

MÕ
›Õ(›k, m)(·)dLk(m) =

⁄

·
⁄k(xdk M Õ)d›k(x), for all M Õ œ B(M).

Such a function ›Õ exists and is unique Lk-almost everywhere by the Radon-Nikodym Theorem, as
for any X Õ œ B(X), the right-hand side, interpreted as a measure on M , is absolutely continuous
with respect to Lk (see Billingsley, 1995, p. 422).

An experiment from sender i contains information only about xi directly, i.e. ⁄(xi, ·) is inde-
pendent of xj for all j ”= i. However, the receiver’s belief about xj will still change through the
correlation among signals. If dk = i, the likelihood ratio for two distinct x≠i, xÕ

≠i, given xi will not
be changed through the updating. That is, ›k+1(xi,x≠i)

›k+1(xi,xÕ
≠i

) = ›k(xi,x≠i)
›k(xi,xÕ

≠i
) for all xi.

Lastly, v Ø 0 always, since

U(›) = max
aœA

EÊ≥µ(›) [ u(a, Ê) ]

= max
aœA

Em|›
#
EÊ≥µ(›Õ(›,m)) [ u(a, Ê) ]

$
Æ Em|›

Ë
max
aœA

EÊ≥µ(›Õ(›,m)) [ u(a, Ê) ]
È

,

where I shorten the notation from Exi≥›Em≥⁄(xi,·) to Em|›. The second equality is due to the
martingale property of beliefs, which ensures that Em|› [›Õ(›, m)] = › for any experiment.
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�.A.�.� Proofs for General Model

Proof of Lemma �
The AoN equilibrium follows from the text following Lemma 1. Further,

v̄1
!
›0"

c

is clearly an upper bound for the expected rounds of attention. The AoN strategy ensures the sender
this payo� so that she is not willing to deviate to any strategy with a strictly lower payo�.

Proof of Theorem � without Markov Restriction
This proof refers to the proof of Theorem 1, regarding the second step of Claim 1. Let sender i

play the AoN strategy from the theorem. By the first step of the claim, the receiver does not stop
before sender i’s information is revealed. We can therefore determine the number of visits sender i

attracts as

E

C
ÿ

nØ0

nŸ

m=1

!
1 ≠ ⁄ú

i (›k(m))
"
D

, (1.A.1)

where n counts the number of visits to sender i and k(m) is the round in which sender i is visited
the m’th time. The process

!
E

#
v̄(›Õ(›0, x≠i))

-- Fk

$"
kØ0 is a martingale. I write the sigma algebra

Fk explicitly instead of the belief ›k. The definition (1.1) shows that ⁄ú is a convex function of the
above process, so that the process

!
⁄ú(›k)

"
kØ0 is a submartingale. For any finite m, the stopping

time k(m) is finite almost surely. Further, ⁄ú œ [0, 1], so that the submartingale has bounded
increments. This implies that we can apply the optional stopping theorem to derive that, for any
mÕ > m:

1 ≠ ⁄ú
i (›k(m)) Ø E

Ë1
1 ≠ ⁄ú

i (›k(mÕ))
2--- Fk(m)

È
.

The following steps show that this permits deriving a lower bound for the number of visits in (1.A.1)
given by

ÿ

nØ0

!
1 ≠ ⁄ú

i (›0)
"n = 1

⁄ú
i (›0) . (1.A.2)

To see how this is derived, consider, for illustration, the sum in (1.A.1) until n = 2, which satisfies

E
#

1 +
!
1 ≠ ⁄ú

i (›k(1))
" !

1 +
!
1 ≠ ⁄ú

i (›k(2))
""-- F0

$

Ø E
#

1 + E
#!

1 ≠ ⁄ú
i (›k(2))

"-- Fk(1)
$ !

1 +
!
1 ≠ ⁄ú

i (›k(2))
""-- F0

$

= E
#

1 + E
#!

1 ≠ ⁄ú
i (›k(2))

"-- Fk(1)
$ !

1 + E
#!

1 ≠ ⁄ú
i (›k(2))

"-- Fk(1)
$"-- F0

$
.

The inequality uses (1.A.2) and the equality follows from the tower property of conditional expect-
ations. This step can be reiterated. By Doob’s martingale convergence theorem, the limit

lim
kæŒ

E
#!

1 ≠ ⁄ú
i (›k)

"-- Fk(m)
$

exists and is smaller or equal to
!
1 ≠ ⁄ú

i (›0)
"
. Applying these steps for all n œ N0, where the

submartingale inequality and the tower property have to be used repeatedly for terms with n > 2,
gives the desired result.
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�.A.� Proofs for Investigation Race
This section presents the discrete time investigation race underlying Section 1.5. As before, the
state distribution is N (0, 1/p0). The length of each time period is � > 0. Each newspaper’s
precision is determined endogenously in the following stopping game. To obtain information about
the state, the papers can investigate before entering the market to disseminate news. Investigating
in round n, i.e. from time n� until (n + 1)�, means that newspaper i is endowed with signal
xi,k ≥ N (Ê, 1

fli

1
� ). Conditional on the state, signals are independent across senders and rounds.

Entering the market allows the newspaper to o�er news from that round onward. Note that the
normal distribution implies that the signals gathered by sender i from round 0 up to market entry
at round n are equivalent to observing a normal signal with precision level nfli�. The senders get
payo� � per round. The receiver’s cost is c� and, as mentioned above, he incurs costs only after
the first newspaper entered.

Timing

k k + 1
Senders:
-enter market
- or continue
investigating

Senders who
entered:
o�er news

Senders who
investigate:
xi,k realises

Receiver:
–visit i

–action aú

News realisation

The timing in each round is as follows. Senders decide whether to enter the market. This
decision is publicly observed. Senders who entered in this round or before, o�er news. For senders
who continue investigating, signal xi,k realises. News o�ers become public, and the receiver decides
whether to visit one of the senders who o�ers news or take the action.

In the main text, I introduced the assumption, fli > p2
0c, to ensure that each newspaper is

e�cient enough so that investigation is e�cient initially. For period length �, the corresponding
assumption is that the first round of investigation be e�cient:

≠ 1
p0 + fli�

≠ c� > ≠ 1
p0

… fli(1 ≠ p0c�) > cp2
0. (1.A.3)

Note that this assumption implies that for any length �, p0c� < 1. As � goes to zero, (1.A.3)
reduces to the assumption in the main text.

As in the main text, I focus on pure strategy equilibria, and I rule out that di�erent entry
times are rewarded or punished through the equilibrium that is played after both senders enter the
market by focusing on equilibria in which, after both senders are in the market, they play the AoN
continuation equilibria corresponding to Theorem 1. However, di�erent from the main text, this
section also considers di�erent equilibrium strategies by the leader while she is the only sender in
the market.

Results
Lemma A.1. Suppose the leader has entered the market in round n¸ and the follower has not

entered. In any equilibrium of the continuation game, the follower does not enter the market before

the leader has revealed all her information to the receiver.
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Proof. Playing the AoN equilibria after the follower’s market entry implies that her payo�, as a
function of entry rounds n¸ of the leader and nf of the follower, is

3
nf flf �

c(p0 + n¸fl¸�)(p0 + n¸fl¸� + nf flf �)

4

{
nf flf

c(p0+n¸fl¸�)(p0+n¸fl¸�+nf flf �) >1}.

The indicator function whenever

≠1
p0 + n¸fl¸� + nf flf � ≠ ≠1

p0 + n¸fl¸� > c�.

This is condition (A1), ensuring that the information held by the follower is worth at least one
round of attention. If the precision of the leader grows too large and her information is revealed
too early, the follower cannot attract any attention.

This payo� is increasing in nf (both the value and the likelihood that the indicator function is
one), so that the follower will enter the market only if the receiver would otherwise stop in this round.
In the case that the follower does not enter, what makes the receiver stop? If the leader has revealed
too much information so that giving out her exact signal is worth less than c�, the receiver stops.
Waiting one more round and hoping that the follower will enter is not profitable as the follower will
extract all the surplus from the receiver. For the leader, it is optimal to replace any such realisations
that would lead the receiver to stop (absent entry of the follower) with full information revelation.
To see why, consider the leader’s payo� in such a round. That is, in a round n in which she o�ers
an experiment ⁄, such that the set Mst © {m : 1

p0+fl¸n¸�(1≠ V ar(E[x¸|›Õ(›n,m)])
V ar(x¸) )

≠ 1
p0+fl¸n¸� < c�}

occurs with positive probability. Mst includes all messages that make the information about the
leader’s signal x¸ precise enough so that the receiver is not willing to spend a further c�, even with
the promise of getting all information.24 Clearly, the leader cannot attract any further visit after a
message in Mst has realised. The following change in the o�ered experiment increases the leader’s
expected utility and ensures that the receiver still accepts. Consider the overall probability of such
a message

Ln(Mst) =
⁄

X

⁄

Mst

⁄(x¸, dm)›n(dx)

and replace all messages in this set by revealing no information with probability –Ln(Mst) and
all information with probability (1 ≠ –)Ln(Mst). To ensure the same continuation value for the
receiver, – is chosen such that

–
≠1

p0 + n¸fl¸�(1 ≠ V ar(E[x¸|›n])
V ar(x¸) )

+ (1 ≠ –) ≠1
p0 + n¸fl¸�

= 1
Ln(Mst)

⁄

X

⁄

Mst

≠1
p0 + fl¸n¸�(1 ≠ V ar(E[x¸|›Õ(›n,m)])

V ar(x¸) )
⁄(x̃¸, dm)›n(dx̃).

The right-hand side is the expected value after a message of set Mst (note that even with the
follower entering, the receiver will be left at her current stopping utility because of the follower’s
monopoly power). The left-hand side equals this expected utility, either giving no further inform-
ation or all information held by the leader. Note that – œ [0, 1] since for all m, V ar(E[x¸|›n]) Æ
V ar(E[x¸|›Õ(›n, m)]) Æ V ar(x¸). The leader is better o�, the probability with which this round
is her last round of attention decreases, and with positive probability, she reached the next round
with the receiver’s belief remaining unchanged.

Knowing that the follower keeps investigating instead of competing actively as long as the leader

24Note that the set Mst depends on the current belief and the experiment o�ered.
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still holds private information gives rise to the following result, akin to Lemma 1 in the main text
with the leader in the role of the monopolist. In every round after she enters, the leader will not
o�er more information than necessary to keep the receiver indi�erent between stopping and visiting.

Lemma A.2. Suppose the leader enters in round n¸. Let nf ≠ 1 be the round in which all her

information is revealed. Then, her expected payo�, (E[nf ] ≠ n¸)�, is equal to

(E[nf ] ≠ n¸)� = 1
c

3
1
p0

≠ 1
p0 + n¸fl¸�

4
= n¸fl¸�

cp0(p0 + n¸fl¸�) .

This pins down the follower’s expected entry time nf .25 The realisation of nf , however, depends
on the leader’s o�er strategy applied from n¸ onward. There are several such strategies. The main
text focused on the equilibrium in which the leader plays an AoN strategy from n¸ onward until
her information finally realises. Therefore, I will first consider this equilibrium in what follows and
provide the proofs for the main text. Subsequently, I consider di�erent strategies to argue that the
e�ects and results presented in the main text do not hinge on this equilibrium selection.

The AoN o�er for the leader entering in round n¸ reveals her information in each period with
probability

⁄¸(n¸) = cp0(p0 + n¸fl¸�)
n¸fl¸

.

By the assumptions above, this is smaller than one for any n¸ Ø 1.
Fixing the leader’s strategy, the payo�s of leader and follower in the investigation race are

determined by the identity of the leader (¸ = 1 or ¸ = 2) and the entry time n¸. For the leader,
i = ¸:

Li(n¸) = 1
c

n¸fli�
p0(p0 + n¸fli�) = 1

⁄i(n¸) . (1.A.4)

For the follower, i = f and j = ¸:

Fi(n¸) =
Œÿ

nf =n¸+1

(1 ≠ ⁄j(n¸))nf ≠(n¸+1) ⁄j(n¸)1
c

nf fli� {
nf fli

c(p0+n¸flj �)(p0+n¸flj �+nf fli�) >1}

(p0 + n¸flj�)(p0 + n¸flj� + nf fli�) . (1.A.5)

If both newspapers enter in the same period:

Bi(n¸) = { 1
c

n¸fli
(p0+n¸flj �)(p0+n¸(fl1+fl2)�) >1}

1
c

n¸fli�
(p0 + n¸flj�)(p0 + n¸(fl1 + fl2)�)

+(1 ≠ { 1
c

n¸fli
(p0+n¸flj �)(p0+n¸(fl1+fl2)�) >1}) max{0,

1
c

n¸fli�
(p0 + n¸flj�)(p0 + n¸(fl1 + fl2)�)

+� ≠ 1
c

n¸flj�
(p0 + n¸fli�)(p0 + n¸(fl1 + fl2)�)}.

For the follower i, each round nf > n¸ is reached with probability (1 ≠ ⁄j(n¸))nf ≠(n¸+1). If
the leader’s information hits, which happens with probability ⁄j(n¸), the follower receives attention
that makes the receiver indi�erent between only the leader’s or both the leader’s and the follower’s
information. However, as mentioned above, this is only if the di�erence is worth at least one visit,
as captured by the indicator function.

The next results show that if � is small enough, there cannot be an equilibrium in which both
papers enter the market at the same time, unless both enter in the very first round.

25For completeness, I call nf the follower’s entry time, even if the indicator function above is 0
and she cannot attract any attention.
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Lemma A.3. There exist ‘ > 0 such that for any � Æ ‘, for all n > 1, for i = 1, 2:

Fi(n) > Bi(n).

Proof.

Fi(n) > Bi(n)

≈=
Œÿ

nf =n+1

(1 ≠ ⁄j(n))nf ≠(n+1) ⁄j(n) nf fli�
(p0 + nflj�)(p0 + nflj� + nf fli�)

>
nfli�

(p0 + nflj�)(p0 + n(fl1 + fl2)�) .

Note that the second line inequality is su�cient because in the cases where the indicator function
in any term in F is 0, it is also 0 for B. In the opposite case, one of the claimed inequalities is
always fulfilled. Furthermore, the fraction is increasing in nf , so that any term of the left-hand sum
is greater than the right-hand fraction. It is multiplied with the probability function of a geometric
distribution, which sums to one so LHS has to be greater than RHS.

This shows that there cannot be a pure strategy equilibrium in which the senders enter the
market in the same round. The next result shows that if � is small enough, the follower’s payo� in
early periods strictly exceeds the leader’s payo� for both players. This, together with the fact that
the leader’s payo� is increasing in n¸, implies that entering as the leader is strictly dominated by
investigating in early periods.

Lemma A.4. There exist ‘ > 0 such that for any � Æ ‘, for both papers, i = 1 and i = 2: there

exists nú
i >1, such that Fi(n¸) > Li(n¸) for all n¸ < nú

i .

Proof. To take care of the indicator function in Fi, characterised in (1.A.5), note that the term on
the LHS of the inequality is increasing in nf . Therefore, we can define

nj(n¸) © min
;

n œ N
---- n Ø n¸ + 1 fl nflj

c(p0 + n¸fli�)(p0 + n¸fli� + nflj�) > 1
<

.

We can write Li(n¸) < Fi(n¸) as

n¸fli�
p0(p0 + n¸fli�) <

Œÿ

nf =ni(n¸)

(1 ≠ ⁄j(n¸))nf ≠(n¸+1) ⁄j(n¸) nf fli�
(p0 + n¸flj�)(p0 + n¸flj� + nf fli�) .

The last fraction in the sum satisfies

nf fli�
(p0 + n¸flj�)(p0 + n¸flj� + nf fli�) = 1

p0 + n¸flj�

3
1 ≠ p0 + n¸flj�

p0 + n¸flj� + nf fli�

4
.
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The entire sum is then equal to

Œÿ

nf =ni(n¸)

(1 ≠ ⁄j(n¸))nf ≠(n¸+1) ⁄j(n¸) 1
p0 + n¸flj�

≠
Œÿ

nf =ni(n¸)

(1 ≠ ⁄j(n¸))nf ≠(n¸+1) ⁄j(n¸) 1
p0 + n¸flj� + nf fli�

= (1 ≠ ⁄j(n¸))ni(n¸)≠(n¸+1) ⁄j(n¸) 1
p0 + n¸flj�

Œÿ

m=0

(1 ≠ ⁄j(n¸))m

≠
Œÿ

nf =ni(n¸)

(1 ≠ ⁄j(n¸))nf ≠(n¸+1) ⁄j(n¸) 1
p0 + n¸flj� + nf fli�

= (1 ≠ ⁄j(n¸))ni(n¸)≠(n¸+1)

A
1

p0 + n¸flj� ≠ ⁄j(n¸)
Œÿ

m=0

(1 ≠ ⁄j(n¸))m 1
p0 + n¸flj� + (n¸ + 1)fli� + mfli�

B
.

If � and n¸ are small enough, we get ni(n¸) = n¸ + 1 so that the above term is larger than
3

1
p0 + n¸flj� ≠ 1

p0 + n¸flj� + (n¸ + 1)fli�

4
= (n¸ + 1)fli

(p0 + n¸flj�)(p0 + n¸flj� + (n¸ + 1)fli�) .

With this, a su�cient condition for Li(n¸) < Fi(n¸) is

n¸ + 1
n¸

p0
p0 + n¸flj�

p0 + n¸fli�
p0 + n¸flj� + (n¸ + 1)fli�

> 1,

which is satisfied for � small enough as the second and third fraction become arbitrarily close to
1 as � decreases to 0. For fixed �, if nj(ni) = ni + 1, then nj(n) = n + 1 for all n Æ ni. The
existence of an nú

i as in the lemma follows as the term above is decreasing in n¸.

Considering the limit of (1.A.4) and (1.A.5) as � goes to 0 and n¸ goes to Œ fixing the time
k = n�, we get that

Li(k¸) = 1
⁄i(k¸) = k¸fli

cp0(p0 + k¸fli)
,

and

Fi(k¸) = 1
p0 + k¸flj

≠
⁄ Œ

0
e≠k⁄j (k¸)⁄j(k¸) 1

p0 + k¸(flj + fli) + kfli

= 1
p0 + k¸flj

≠ ⁄j(k¸)
fli

e
⁄j (k¸)

fli
(p0+k¸(fli+flj ))

⁄ Œ

⁄j (k¸)
fli

(p0+k¸(fli+flj ))

e≠s

s
ds.

Proof of Theorem �
The next results on F and L prove Theorem 2. With the above characterisation, we have for both
i that

lim
k¸¿0

Li(k¸) = lim
k¸¿0

Fi(k¸) = 0.
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Taking the derivative with respect to k¸ and considering the limit, gives:

lim
k¿0

3
ˆLi(k)

ˆk

4
= fli

cp2
0

and

lim
k¿0

3
ˆFi(k)

ˆk

4
= fli

cp2
0

+ fliflj

c2p4
0

.

Hence, the follower’s payo� is higher initially. Furthermore,

lim
k¸æŒ

Li(k¸) = 1
cp0

and

lim
k¸æŒ

Fi(k¸) = 0.

This shows that Fi crosses Li from above at least once. To show that this happens at only one
k¸ > 0, I show that the derivative of Fi(k¸)≠Li(k¸) crosses 0 at most twice. This is su�cient to rule
out a second positive intersection point since we have established limk¸¿0

ˆ
ˆk¸

(Fi(k¸) ≠ Li(k¸)) > 0
and limk¸æŒ (Fi(k¸) ≠ Li(k¸)) < 0. At the first intersection, Fi crosses Li from above. If there
were a second intersection point, Fi would again lie above Li. For limk¸æŒ (Fi(k¸) ≠ Li(k¸)) < 0
to hold, this would require a third intersection which, in turn, requires that the derivative be 0 at
least three times. Define

Âi(k¸) © cp0(p0 + k¸flj)(p0 + k¸(fli + flj))
k¸fliflj

,

and consider

Fi(k¸) ≠ Li(k¸)

= 1
c(p0 + k¸flj) ≠ p0(p0 + k¸flj)

k¸fliflj
eÂi(k¸)

⁄ Œ

Âi(k¸)

e≠s

s
ds ≠ k¸fli

cp0(p0 + k¸fli)

= p2
0 ≠ k2

¸ fliflj

cp0(p0 + k¸fli)(p0 + k¸flj) ≠ p0(p0 + k¸flj)
k¸fliflj

eÂi(k¸)
⁄ Œ

Âi(k¸)

e≠s

s
ds

Multiply the term with

k¸fliflj

p0(p0 + k¸flj)e≠Âi(k¸) > 0.

and consider the derivative

ˆ
ˆk¸

Q

a (p2
0 ≠ k2

¸ fliflj)(p0 + k¸(fli + flj))
p0(p0 + k¸fli)(p0 + k¸flj)

e≠Âi(k¸)

Âi(k¸) ≠
⁄ Œ

Âi(k¸)

e≠s

s
ds

R

b

=e≠Âi(k¸) c(p0 + k¸fli)(p0 + k¸flj)
!
p2

0 ≠ k2
¸ fliflj

" !
p2

0 ≠ k2
¸ flj(fli + flj)

"

ck¸p0(p0 + k¸fli)2(p0 + k¸flj)3

≠ e≠Âi(k¸) k¸fliflj

!
k3

¸ fliflj(2fli + flj) + 5k2
¸ p0fliflj + k¸p2

0flj ≠ p3
0
"

ck¸p0(p0 + k¸fli)2(p0 + k¸flj)3

+ e≠Âi(k¸) (p2
0 ≠ k2

¸ flj(fli + flj)
k¸(p0 + k¸flj)(p0 + k¸(fli + flj)) .
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This is equal to 0 i�

c(p0 + k¸fli)(p0 + k¸flj)
!
p2

0 ≠ k2
¸ fliflj

" !
p2

0 ≠ k2
¸ flj(fli + flj)

"

cp0(p0 + k¸fli)2(p0 + k¸flj)2

≠
k¸fliflj

!
k3

¸ fliflj(2fli + flj) + 5k2
¸ p0fliflj + k¸p2

0flj ≠ p3
0
"

cp0(p0 + k¸fli)2(p0 + k¸flj)2

+ p2
0 ≠ k2

¸ flj(fli + flj)
(p0 + k¸(fli + flj)) = 0.

Multiplying and rearranging yields

(p0 + k¸(fli + flj))
!
c(p0 + k¸fli)(p0 + k¸flj)

!
p2

0 ≠ k2
¸ fliflj

" !
p2

0 ≠ k2
¸ flj(fli + flj)

""

≠ (p0 + k¸(fli + flj))
!
k¸fliflj

!
k3

¸ fliflj(2fli + flj) + 5k2
¸ p0fliflj + k¸p2

0flj ≠ p3
0
""

+ cp0(p0 + k¸fli)2(p0 + k¸flj)2 !
p2

0 ≠ k2
¸ flj(fli + flj)

"
= 0.

Collecting k¸ with equal exponents gives

+ck6
¸ flifl

2
j (fli + flj)2 + k5

¸

!
cp0fl2

j (fli + flj)2 + cp0fliflj(fli + 3flj)(fli + flj)
"

+k4
¸

!
cp2

0fliflj(fli + flj) + cp2
0flj(fli + flj)(fli + 3flj) ≠ fliflj(fli + flj)(2fli + flj)

"

+k3
¸

!
≠cp3

0fl2
i ≠ 3cp3

0fliflj + cp3
0flj(fli + flj) ≠ p0fliflj(7fli + 6flj)

"

+k2
¸

!
≠3cp4

0fli ≠ 3cp4
0flj ≠ p2

0flj(6fli + flj)
"

+ k¸

!
p3

0fli ≠ 2cp5
0
"

+ p4
0 = 0.

The factor after k3
¸ is negative since fli > cp2

0 for both i. Therefore, there are exactly two ‘sign
changes’ in the sequence, and by the rule of signs, the number of positive roots is at most two.
Next, I show that the intersection point kú

i as defined in Theorem 2 is lower for the less e�cient
newspaper (with lower fli). For this, consider again the equation Fi ≠ Li = 0. This is equivalent to

(p2
0 ≠ k2

¸ fliflj)(p0 + k¸(fli + flj))
p0(p0 + k¸fli)(p0 + k¸flj) = Âi(k¸)eÂi(k¸)

⁄ Œ

Âi(k¸)

e≠s

s
ds. (1.A.6)

with

Âi(k¸) = cp0(p0 + k¸flj)(p0 + k¸(fli + flj))
k¸fliflj

.

Note that the left-hand side is symmetric, so that it is the same whether i = 1 or i = 2. Further,
Âi(k¸) > Âj(k¸) if and only if fli < flj . The function on the right-hand side, xex

s Œ
x

e≠s

s ds, is
increasing in x, so that the term on the right crosses the term on the left (from below) at an
earlier k¸ for higher Âi. Hence, the higher e�ciency newspaper has a later intersection point. This
concludes the proof of Theorem 2.

Proof of Lemma �
To establish Lemma 3, suppose wlog that fl1 < fl2, so that paper 1 is the leader and enters the
market at kú = kú

2 . To avoid cluttering the notation, I will drop the follower’s index from the
stopping time and auxiliary function. That is, kú = kú

2 and Â = Â2 for the remainder of the paper.
This allows me to write partial derivatives as, for example, Âc. Consider the expected precision
with which the receiver stops. By Lemma 2, the two papers extract all surplus from the receiver,
so that the expected utility from the action, Ek2

# ≠1
p0+fl1kú+k2fl2

$
, is equal to

≠1
p0

+ c (L1(kú) + F2(kú)) .
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Using the formula for L1 given above and the fact that kú was defined such that F2(kú) = L1(kú),
this simplifies to

≠1
p0

+ kúfl1
p0(p0 + kúfl1) + kúfl2

p0(p0 + kúfl2) = ≠ p2
0 ≠ (kú)2fl1fl2

p0(p0 + kúfl1)(p0 + kúfl2)

Part i). First, consider the change in precision caused by c:

d
dc

3
≠ p2

0 ≠ kú(c)2fl1fl2
p0(p0 + kú(c)fl1)(p0 + kú(c)fl2)

4
= kc

4kp0fl1fl2 + p2
0(fl1 + fl2) + k2fl1fl2(fl1 + fl2)

(p0 + kfl1)2(p0 + kfl2)2

----
k=kú

.

(1.A.7)

Hence, to show that the total precision is decreasing in c, it is su�cient to show that kc < 0.
By the implicit function theorem and the definition of kú in (1.A.6), we can determine the

partial derivative kc as

kc =
≠ ˆ

ˆc

1
(p2

0≠k2fl1fl2)(p0+k(fl1+fl2))
p0(p0+kfl1)(p0+kfl2)

2
Â +

1
(p2

0≠k2fl1fl2)(p0+k(fl1+fl2))
p0(p0+kfl1)(p0+kfl2)

2
Âc (Â + 1) ≠ ÂcÂ

ˆ
ˆk

1
(p2

0≠k2fl1fl2)(p0+k(fl1+fl2))
p0(p0+kfl1)(p0+kfl2)

2
Â ≠

1
(p2

0≠k2fl1fl2)(p0+k(fl1+fl2))
p0(p0+kfl1)(p0+kfl2)

2
Âk (Â + 1) + ÂkÂ

------
k=kú

,

Recall that the condition used to determine kú was F2 ≠ L2 = 0. As established above, F2 crosses
L2 from above, so that the denominator of the last expression is negative at k = kú.

It follows that kc < 0 if and only if

≠ ˆ
ˆc

3
(p2

0 ≠ k2fl1fl2)(p0 + k(fl1 + fl2))
p0(p0 + kfl1)(p0 + kfl2)

4
Â

+
3

(p2
0 ≠ k2fl1fl2)(p0 + k(fl1 + fl2))

p0(p0 + kfl1)(p0 + kfl2)

4
Âc (Â + 1) ≠ ÂcÂ > 0

≈∆ (p2
0 ≠ k2fl1fl2)(p0 + k(fl1 + fl2))

p0(p0 + kfl1)(p0 + kfl2) >
Â

Â + 1

Applying again the definition of kú, the fraction on the left is equal to ÂeÂ
s

Â
e≠s

s ds. The exponential
integral satisfies the equation ÂeÂ

s
Â

e≠s

s ds > Â
Â+1 . The comparative static on c follows.

Part ii). To determine the change in p0, consider the definition of kú:

kú =

Y
]

[k > 0 : (p2
0 ≠ k2fl1fl2)(p0 + k(fl1 + fl2))

p0(p0 + kfl1)(p0 + kfl2) = ÂeÂ

⁄ Œ

Â

e≠s

s
ds

Z
^

\ . (1.A.8)

The expected final precision is given by

≠ (p2
0 ≠ k2fl1fl2)

p0(p0 + kfl1)(p0 + kfl2) .

Given the definition of kú, we have

≠ (p2
0 ≠ k2fl1fl2)

p0(p0 + kfl1)(p0 + kfl2) = ≠ Â
(p0 + k(fl1 + fl2))eÂ

⁄ Œ

Â

e≠s

s
ds.

Note that Â
(p0+k(fl1+fl2)) = cp0(p0+kfl1)

kfl1fl2
= cp2

0
kfl1fl2

+ cp0
fl2

goes to zero fast enough so that we must have

lim
p0¿0

3
≠ (p2

0 ≠ k2fl1fl2)
p0(p0 + kfl1)(p0 + kfl2)

4
= 0.
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Note that the disutility is weakly negative everywhere. For the term to remain at zero, we need
k = pÔ

fl1fl2
everywhere. This, however, gives strictly positive values on the right-hand side of the

definition of kú.
By continuity, this implies that there must be a p > 0, such that

d
dp0

3
≠ p2

0 ≠ k(p0)2fl1fl2
p0(p0 + k(p0)fl1)(p0 + k(p0)fl2)

4
< 0

for all p0 Æ p.

Gradual Information Release by Leader
While the leader’s payo� is fully determined by k¸ in any pure strategy equilibrium, the follower’s
payo� depends on the leader’s revelation strategy. The analysis above considered the case where
the leader makes AoN o�ers. However, the leader could choose di�erent distributions, as long as
E [kf ]≠k¸ = k¸fl¸

cp0(p0+k¸fl¸) and the receiver is willing to pay attention in each round. This subsection
considers the equilibrium with maximal information precision. As the senders extract all surplus
from the receiver and the leader’s payo� is fixed for fixed k¸, this is equivalent to maximising the
follower’s payo�.26

Fixing k¸ and the resulting E [kf ], the expected payo� of the follower is

E
5

kf flf

c(p0 + k¸fl¸)(p0 + k¸fl¸ + kf flf )

6
.

This is maximised at minimal variance of kf . With this, we can characterise the information-
maximal equilibrium of the stopping game. The payo�s in the stopping game for the leader are

Li(k¸) = 1
c

k¸fli

p0(p0 + k¸fli)
,

and for the follower

Fi(k¸) = E
5

1
c

k2(k¸)flj

(p0 + k¸fli)(p0 + k¸fli + k2(k¸)flj)

6
.

In the information-maximal equilibrium, k2 takes values k¸ +Â k¸fl1
cp0(p0+k¸fl1) Ê and k¸ +Á k¸fl1

cp0(p0+k¸fl1) Ë.
In the limit as time periods become small, we get

Fi(k) = 1
c

(k¸ + k¸fl1
cp0(p0+k¸fl1) )flj

(p0 + k¸fli)(p0 + k¸fli + (k¸ + k¸fl1
cp0(p0+k¸fl1) )flj)

= k¸fl2(cp0(p0 + k¸fl1) + fl1)
c(p0 + k¸fl1)(cp0(p0 + k¸fl1)(p0 + k¸(fl1 + fl2)) + k¸fl1fl2) .

The leader cannot commit to giving out more information than necessary to attract the re-
ceiver’s attention. To make sure all her information is revealed by kf = k¸ + k¸fl¸

cp0(p0+k¸fl¸) with prob-
ability one, she therefore has to release news gradually, so that the receiver is indi�erent between
stopping and visiting the sender from k¸ until kf . For k œ [k¸, kf ), let ·(k) be the non-decreasing
precision level transmitted from the leader to the receiver.The indi�erence condition prescribes that

26Note that maximising precision for a fixed stopping time of the leader does not directly imply
that the resulting equilibrium of the investigation race has maximal precision. However, this will
be the case here as increasing the follower’s payo� across all k¸ leads to an increase in the entry
equilibrium level, kú

¸ .
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at all k:

≠ 1
p0 + · [k]fl¸

≠ c(k ≠ k¸) = ≠ 1
p0

… · [k] = cp2
0(k ≠ k¸)

fl¸(1 ≠ cp0(k ≠ k¸)) .

The information that the leader gives out per instant is then · Õ[k], which increases gradually as
time passes from k¸ to kf . The more informed the receiver is, the faster his precision has to increase
to keep him from stopping.
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�
Costless Information and Costly
Verification:
A Case for Transparency

Joint with Deniz Kattwinkel

�.� Introduction

A principal has to take a binary decision for which she relies on an agent’s private
information. The agent prefers one of the two actions independent of his information.
Prior to the decision, the principal privately observes a signal about the agent’s
information. She cannot incentivise the agent through monetary transfers but has
the opportunity to reveal his information at a cost.

Examples for this setting include: a human resource department decides whether
to hire a candidate, a judge decides whether to acquit or convict a defendant, or a
competition authority decides whether to grant or deny a company permission to
merge with or acquire another firm.

While one party – the agent – has a clear preference toward one action (the
candidate wants to be hired, the defendant wants to be acquitted, and the company
wants to merge), the preferences of the other party – the principal – depend on in-
formation that is privately held by the agent. Here, one may think of the candidate’s
ability, the defendant’s guilt, or the company’s competitive position in the market.

Often, monetary transfers to elicit the agent’s private information are not feas-
ible,1 but the principal can learn the information at a cost, for example, by con-
ducting an assessment centre, a trial, or a market analysis. However, verification is

1The assumption is that payments cannot depend on the agent’s report. Even though a public
sector job entails payments, if the payment is fixed, it cannot be used to incentivise truthful reports
of the candidate’s ability.
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costly, so the principal has an incentive to economise on it.
Typically, costly information acquisition is not the only way to learn the agent’s

private information. The potential employer receives references or recommendation
letters from previous supervisors, the judge can inspect the outcome of pretrial
investigations, and the competition authority has sector-specific knowledge derived
from its supervisory function. The principal privately observes factors that are
correlated with the agent’s type.

In this paper, we introduce correlated information to a mechanism design setting
with costly state verification. We want to explore how the principal can use her
private information to minimise the verification costs and the decision ine�ciencies
required to elicit the agent’s type. Can the principal exploit the fact that her
correlated information is secret?2

Results. We show that the optimal Bayesian incentive compatible (BIC) mechan-
ism takes a simple cuto� with appeal structure: if the principal observes a signal
that makes her su�ciently certain that the agent’s preferred action is also what she
prefers, she takes it, independent of the agent’s type report. If the signal falls below
this cuto�, she takes the nonpreferred action by default but gives the agent the
possibility to appeal. An appeal is always verified and induces the agent-preferred
action whenever his type exceeds a threshold. This appeal threshold is set such that
the types who appeal are exactly those which make it worthwhile for the principal
to implement the agent-preferred action and pay the verification cost.

A remarkable feature of this mechanism is that it is ex-post incentive compatible
(EPIC): truthfully reporting his type remains a best response of the agent even if
the principal’s signal was known to him. Hence, the principal does not benefit from
the secrecy of her signal. This clashes with the observation that institutions invest
significant cost and e�ort to keep information private. A potential justification for
this investment is the possibility to increase e�ciency through private information.
When the signal realisation is kept private from the agent, his beliefs about the
signal vary with his type due to the correlation. We identify two channels through
which the principal could potentially exploit secrecy to increase e�ciency by saving
verification costs. However, as the main contribution, we show that the optimal
mechanism (decision and verification rule) does not make use of secrecy. Its decision-
rule satisfies monotonicity properties that render the two channels futile.

The first potential channel to benefit from secrecy is the redistribution of excess
allocation utility across di�erent signal realisations to satisfy Bayesian Incentive
Constraints. We show that, as in the case without correlation, pointwise mono-

2In contrast to our result outlined below, the literature on mechanisms with transfers suggests
that secrecy can be exploited. See Myerson (1981), Crémer and McLean (1988), McAfee and Reny
(1992). A detailed discussion of the related literature is contained in Section 2.6.1.
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tonicity of the optimal decision-rule in the agent’s type rules out this benefit (see
Manelli and Vincent, 2010, Gershkov et al., 2013). The second potential channel to
benefit from secrecy exploits the belief heterogeneity induced by correlation to fine-
tune verification probabilities, so that, for certain types, verification is subjectively
more likely (see Crémer and McLean, 1988, for the fine-tuned lotteries in the case
with money). We show that pointwise monotonicity in the principal’s signal and
non-randomness of the optimal decision-rule rule out this benefit.

Our result advocates transparent procedures as the principal does not lose from
revealing her private information prior to interacting with the agent. Accordingly,
e�ciency concerns do not justify withholding information. The human resource de-
partment showing the references to the candidate, the judge informing the defendant
of pretrial investigation results, or the competition authority publicising her mar-
ket assessments would not constrain the implementation of the optimal procedures.
The cost and e�ort to keep information private must, therefore, be explained by
other motives.3 Our findings are in line with the development of codes of criminal
procedure in continental Europe. While modern codes prescribe the disclosure of all
potential charges to the defendant, this was not always the case (see Section 2.3.1
for a discussion of the evolution of the Austrian code of procedure).

After establishing that full transparency is no worse than withholding all inform-
ation, we argue how this implies that full transparency also weakly dominates any
strategic information release or design by the principal.

The equivalence between EPIC and BIC implementability is shown in Manelli
and Vincent (2010) and Gershkov, Goeree, Kushnir, Moldovanu and Shi (2013)
under the standard mechanism design assumptions. These seminal results depend
crucially on the independence of information. With correlated information, this
equivalence does not hold generally. Nevertheless, in our setting, the optimal BIC
mechanism can be implemented EPIC, despite correlation. To the best of our know-
ledge, this is the first result of this kind under correlated information.4 Without the
assumption of independent information, standard techniques to characterise imple-
mentable mechanisms do not apply. Therefore, we have to use new techniques to
characterise the optimal mechanism: we adopt a variational approach.

We extend the analysis to settings in which the principal’s signal has a direct
e�ect on her payo�s. When this e�ect is positive, our result carries over: transpar-
ency comes without loss for the principal. If, in contrast, the direct e�ect is negative,
the principal benefits from secrecy. This reveals that correlated information poses a
limitation to the general equivalence between BIC and EPIC implementation.

3One motive to keep references secret from the candidate are the incentives of the issuer.
4While the allocation mechanism in Crémer and McLean (1988) satisfies dominant incentive

compatibility in the second stage, the surplus extraction in the first stage requires that agents do
not know the realisation of the correlated information.
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�.� Model

In the remainder of the paper, we use the terminology of one specific binary decision:
the allocation of a single indivisible good.

�.�.� Setup

The principal (she) decides whether to allocate the good to the agent (he). Her
allocation preferences depend on the agent’s private type t œ R. The set of possible
types, T , is finite.

While t is unknown to the principal, she receives costless information about it
in form of a private signal s œ S, finite and ordered. Type t and signal s are
jointly distributed according to f(t, s) > 0 for all t œ T, s œ S. The signal satisfies
the Monotone Likelihood Ratio Property (MLRP): for all t < tÕ

œ T , f(tÕ
,s)

f(t,s) is
nondecreasing in s. This implies that a higher signal is more indicative of a higher
type.5 On top of the costless information, the principal has the option to learn t at
verification cost c > 0. Verification is perfect; she learns the exact type.6

The principal derives valuation v(t) when allocating the good to an agent of
type t. We normalise the value she derives from not allocating to 0. Therefore, v

represents the net value for the principal. Valuation v(t) is nondecreasing and there
are tÕ, tÕÕ

œ T with v(tÕ) < 0 < v(tÕÕ).7 When the agent has type t he receives utility
u(t) > 0 from the good. His payo� from not receiving the good is always zero.

�.�.� Mechanisms

We study the interaction between principal and agent in a mechanism design setting
and characterise the mechanism that maximises the principal’s expected payo� net
of verification costs. The principal can design arbitrary mechanisms and the agent
plays a Bayesian best response after learning his type. A key question in this setting
is: can the principal use her private information – the signal – to elicit the agent’s
information – the type? To render the use of her information possible, we assume
that the signal is contractible. She can commit to mechanisms that are contingent
on the signal realisation.8 In the appendix, we therefore define a broad class of

5MLRP is equivalent to requiring that t and s be a�liated (Milgrom and Weber, 1982, p. 1098)
6Whether the verification technology reveals the true type of the agent or just confirms whether

the agent has a specific type or not, does not alter our results.
7Otherwise, the principal could implement her first-best allocation without the agent’s private

information.
8This approach gives the principal maximal flexibility to use her information. She can commit

to truthfully communicating her signal realisation to the mechanism. An alternative approach
would be to consider the informed principal problem, requiring the mechanism to make truthful
communication incentive compatible for her. We show in Section 2.6 that our results are robust to
this modelling choice. The optimal mechanism constitutes an equilibrium in the informed principal
problem.
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dynamic mechanisms that allow the principal to release garblings of her information
at any point of their interaction. This covers any potential for information design
by the principal. It turns out that this can be captured entirely within a simple
class of mechanisms:

A direct mechanism in this setting specifies for any type-signal pair (t, s) two
probabilities x(t, s) and z(t, s) and proceeds as follows. It asks the agent to report
his type. Based on this report t and the signal realisation s one of three distinct
events occurs:

1. With probability x(t, s) the good is allocated to the agent and he is not verified.

2. With probability z(t, s) the agent is verified. Then, the good is allocated to
him if and only if he is found to have reported truthfully.

3. With probability 1 ≠ x(t, s) ≠ z(t, s) the good is not allocated to the agent and
he is not verified.

Feasibility requires the total allocation probability x(t, s) + z(t, s) not to exceed 1.
In the remainder we refer to x(t, s) as the non-verified allocation probability. A
mechanism is called truthful if reporting truthfully is a best response for all types.
The theorem below combines a revelation principle with optimality considerations.

Theorem 1. There is a direct truthful mechanism which maximises the principal’s
expected valuation net of verification costs.

In the proof in Appendix 2.A, we first derive a revelation principle (reminiscent
of Ben-Porath, Dekel and Lipman (2014) and Akbarpour and Li (2020)) for our
setting with correlated information. Then we exploit that any optimal mechanism
needs to satisfy two intuitive properties. Maximal Punishment: if verification reveals
a misreport, the agent does not receive the good. Minimal Verification: after his
report is verified to be true, the agent receives the good for sure.

Truthful direct mechanisms do not restrict the principal’s ability to strategically
release information. Take a mechanism that is not in direct form. Suppose the
mechanism reveals a garbling of the signal and then asks the agent to send a message.
Di�erent realisations of the garbling induce di�erent beliefs about the signal when
the agent sends his message. The revelation principle shows that this information-
design mechanism can be replicated by a direct mechanism. This direct mechanism
asks the agent for his type and then internally simulates the original mechanism with
the agent’s best response corresponding to the reported type. Although the agent’s
belief in the direct mechanism is not updated before his report, when evaluating the
expected utility from his report, he takes the perspective of the simulated agent.
This way, the information design in the original mechanism a�ects the incentives of
the agent to report truthfully in the direct mechanism.
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�.�.� Incentive Compatibility

In standard mechanism design problems, the set of feasible allocations is pinned
down by the incentive compatibility constraints through the well-known integral
characterisation (Myerson, 1981). Our design setting is non-standard in two ways:
the absence of transfers and the presence of correlated information. Ben-Porath,
Dekel and Lipman (2014) show how the former impedes the integral characterisa-
tion and present a tractable characterisation for mechanisms without transfers and
with independent information. Correlated information impedes this approach (see
Example 1) and requires an alternative methodology.

Bayesian IncentiveCompatibility. Absent monetary transfers, the agent cares solely
about the probability of receiving the good. Consider the incentives of an agent of
type t. He does not know the signal realisation. If he reports truthfully, he faces the
random (as a function of the random variable s) allocation probability x(t, s)+z(t, s).
Whether his report is verified is irrelevant for him. If, however, t reports t̂ ”= t, he
receives the good with random probability x(t̂, s), i.e. only if he is not verified.
Therefore, type t prefers reporting t to reporting t̂ if

u(t) · Es [x(t, s) + z(t, s) | t ] Ø u(t) · Es

Ë
x(t̂, s) | t

È
.

Since every type derives strictly positive utility from the good (u(t) > 0), type t’s
preference intensity can be eliminated from the IC constraint. The agent simply
maximises his expected allocation probability and the Bayesian incentive constraint
can be expressed as

Es

Ë
(x(t, s) + z(t, s) ≠ x(t̂, s)) {t}

È
=

ÿ

sœS

f(t, s)
Ë
x(t, s) + z(t, s) ≠ x(t̂, s)

È
Ø 0.

(BIC
t,t̂

)

In mechanism design without transfers and independent information, normal-
ising the preference intensities implies that the expected utility of any misreport t̂

is independent of the agent’s true type, t.9 Therefore, incentive compatibility holds
whenever the type with the lowest allocation probability does not want to misreport
(see Ben-Porath, Dekel and Lipman, 2014). In our model with correlated informa-
tion, this does not hold. Di�erent types hold di�erent beliefs about s, so that interim
expected allocation probabilities for a given report are not equal for di�erent types.
Hence, with correlation, one must consider the interim expectations for all reports
for all types. The following example illustrates this and will later be revisited to
illustrate the intuition for our results.

9Without correlation, the expectation over s is constant in t.
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Example 1. The agent’s type is either high or low, t œ {L, H}. The principal
observes signal s œ {¸, h}. Type and signal are jointly distributed according to

A
f(L, ¸) f(L, h)
f(H, ¸) f(H, h)

B

= 1
6

A
2 1
1 2

B

. (2.1)

Consider the following non-verified allocation probabilities

(x(L, ¸), x(L, h), x(H, ¸), x(H, h)) = (0, 1, 1, 0) , (2.2)

which allocate if and only if report and signal do not match. Suppose there is no
verification. This mechanism is not incentive compatible. Both types prefer to mis-
report because they put higher probability on the matching signal. For both types,
the interim expected allocation probability from truthtelling is 1

3 while misreporting
yields 2

3 .

A general characterisation of incentive compatibility with belief heterogeneity
remains an open question. Instead of characterising incentive compatible mechan-
isms explicitly, Crémer and McLean (1988) and McAfee and Reny (1992) show that,
with money, the belief heterogeneity allows the principal to extract all surplus from
the agents.10 Full surplus extraction will not be feasible in our setting. In contrast,
we consider the following, more restrictive incentive constraints as an intermediate
step toward characterising the optimal mechanism.

Ex-Post Incentive Compatibility and Transparency. We call a mechanism trans-
parently implementable if there is an implementation that starts with the principal
making her information public. In the case of direct mechanisms, transparency re-
quires that all types t do not misreport after observing any signal s. This is, thus,
equivalent to requiring ex-post incentive compatibility (EPIC):

x(t, s) + z(t, s) ≠ x(t̂, s) Ø 0. (EPIC(s)
t,t̂

)

Every Bayesian incentive constraint (BIC
t,t̂

) is a weighted sum of the corres-
ponding (EPIC(s)

t,t̂
) constraints. Incentive compatible transparent mechanisms

are therefore BIC. In Example 1, after learning the signal, both types agree which
report is most profitable (the report contrary to the signal). With transparency,
when all types learn the signal, the belief heterogeneity is resolved. This facilitates
the characterisation of optimal transparent mechanisms (Section 2.4.2). Paired with
our main conceptual contribution (Section 2.4.1) – that any BIC mechanism can be

10They establish the existence of an incentive compatible mechanism that allocates e�ciently and
extracts all surplus and, therefore, must be optimal.



�� | Chapter �: Costless Information and Costly Verification

made transparent without loss for the principal – this yields optimal mechanisms in
the larger class of BIC rules.

�.� Optimal Mechanisms

The principal designs a mechanism that maximises her expected utility from the
allocation net of the cost of verification. If the good is assigned without verification,
she gains v(t). In the case of allocation with prior verification, she additionally pays
cost c. Hence, the principal’s problem can be stated as the following linear program:

(LP ) : max
(x,z)Ø0

E [ x(t, s) v(t) + z(t, s) (v(t) ≠ c) ]

s.t. for all t, t̂ œ T, s œ S : (BIC
t,t̂

)

and x(t, s) + z(t, s) Æ 1.

Note that the principal optimises subject to the Bayesian incentive constraints (not
to the stronger transparency constraints). The principal’s value from a transparent
mechanism cannot exceed the value from the above problem. The following class of
mechanisms plays an important role in the ensuing analysis:

Definition 1. A mechanism (x, z) is called cuto� with appeal if there exists a
cuto� s̄ and an appeal threshold t̄ such that:

i) If s Ø s̄, then x(t, s) = 1 for all t and z(t, s) = 0 for all t.

ii) If s<s̄, then x(t, s) = 0 for all t and z(t, s) =

Y
]

[
1 for t Ø t̄

0 for t < t̄.

Figure 2.1: Cuto� with appeal

z = 1

x = 1

s̄

t̄

x + z = 0

t ø

s æ

Figure 2.1 sketches a cuto� with appeal mechanism. If the signal realisation is
above the cuto� s̄, the principal allocates the good to the agent irrespective of his
reported type without verification (x = 1). If the signal is below the cuto�, the agent
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can receive the good only after his type report is verified to be above the threshold t̄

(z = 1). Note that appeal threshold t̄ is the same after all signals. We call this class
cuto� with appeal because it can be implemented by the following procedure. For
signals above s̄, the principal allocates without eliciting any information from the
agent. For signals below s̄, the default is not to allocate but the principal gives the
agent the opportunity to appeal. An appeal is granted only after the type is verified
to be above the threshold. Our main result shows that the optimal mechanism can
be found in this class and specifies the optimal cuto� for the signal and the appeal
threshold for the type.

Theorem 2. The principal’s problem is solved by the cuto� with appeal mechanism
with cuto�11

s̄ = min
Ó

s
-- Et[ v(t) | s ] > Et[ (v(t) ≠ c )+

| s ]
Ô

,

and appeal threshold

t̄ = min
)
t

-- v(t) ≠ c > 0
*

.

By the positive correlation (MLRP), higher signals make the principal more
optimistic about the agent’s type. If the signal exceeds the cuto� s̄, she is su�ciently
optimistic and allocates without eliciting any further information from the agent. If
the signal is below the cuto�, the principal is pessimistic and makes her decision type-
dependent. To prevent misreports she allocates only after type verification. The
threshold t̄ is such that for all higher types the principal profits from allocating even
accounting for the verification costs (i.e. when v(t)≠c > 0). Therefore, given a signal
s below the cuto�, the principal’s expected value is Et[(v(t) ≠ c)+

|s]. The optimal
cuto� s̄ is set such that the principal prefers this value when the signal falls below s̄

and prefers the expected value from allocating to all types otherwise. In this optimal
mechanism, the principal does not exploit the heterogeneous beliefs for information
elicitation. In particular, the agent would report her type truthfully given any belief
about the signal. Our cuto� with appeal procedure does not entail complex surplus-
extracting schemes as the literature suggests for optimal mechanisms in settings
with money (Crémer and McLean, 1988). This does not mean that benefiting from
belief heterogeneity is generally impossible in our setting. Section 2.4.1 illustrates
how the principal optimally uses type-dependent beliefs in the same setting when
her objective is not solely e�ciency.

The proof of Theorem 2 is presented in Section 2.4 and consists of two steps.
The first step contains the main conceptual contribution of the paper: the prin-

11For r œ R we denote the positive part by (r)+ = max{r, 0}
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cipal can achieve her optimum in the class of BIC mechanisms with a transparently
implementable mechanism. Thus, transparency entails no loss. The second step
completes the proof by showing that the cuto� with appeal mechanism in Theorem
2 is optimal in the class of transparent mechanisms. Before presenting the proof,
we collect important features of the optimal mechanism and demonstrate how our
result applies to the optimal design of court procedures.

Transparent Implementation. The cuto� with appeal mechanism in Theorem 2
can be implemented transparently. The principal could first reveal her signal to the
agent and then ask him to report his type. To see why, consider Figure 2.1. If the
signal exceeds the cuto� s̄, the allocation is independent of the report (the shaded
blue area). If the signal falls below s̄, the agent can only get the good after being
verified (the shaded yellow area) so that misreporting cannot be beneficial even when
the agent knows the signal.

Minimal Communication. The optimal mechanism can be implemented with a min-
imum of communication between the agent and the principal: the principal first takes
a provisional decision on the allocation which is only based on her signal. Then the
agent is given the opportunity to appeal against this decision. This is the only
instance where the two have to exchange binary messages. In case of appeal, the
principal verifies and allocates according to the outcome.

Unique Implementation. If his type is below the threshold, the agent’s chances
of getting the good are una�ected by his report. Hence, he is indi�erent between
truthtelling and any misreport. To make truthtelling the unique best response,
consider the following amendment of the optimal mechanism. The principal o�ers
a small probability of allocating the good when the agent reports a type below the
threshold and the signal falls below the cuto�. Then, the agent has strict incentives
to report truthfully for any type. If the probability is chosen small enough this
mechanism with strict incentives achieves a payo� arbitrarily close to the optimum.

Futility of Information Design. The contractability of the signal gives the principal
maximal flexibility to use her private information. Nevertheless, by our main find-
ing, the optimal mechanism is transparent. This implies that the principal does not
profit from persuading the agent to reveal his information by any form of informa-
tion design. As outlined in the discussion following Theorem 1, our class of direct
mechanisms covers procedures in which the principal commits to release parts of her
information to the agent to manipulate his beliefs.

With less flexibility, e.g. when the private signal is not contractible, information
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design remains futile. As a consequence, our mechanism also solves the informed
principal problem as discussed in Section 2.6.2.

�.�.� Informing the Defendant

Consider the following application of our model: a judge has to decide whether to
acquit or convict a defendant. The defendant privately knows whether he is guilty or
innocent. The judge observes the result of a pretrial investigation and can conduct a
full trial which is costly but will reveal whether the defendant is guilty. She wants to
acquit the defendant if and only if he is innocent whilst the defendant prefers being
acquitted irrespective of his guilt. When we model the defendant as the agent,
the judge as the principal and decision to acquit as the allocation (x = 1) we can
identify the agent being innocent with t = 1 and t = 0 with the agent being guilty.
We can capture the preferences of the judge (to only acquit an innocent agent) by
v(t) = t ≠ 1/2.12

The optimal mechanism we derive resembles the proceedings of a pretrial. The
case is dismissed if the signal for the defendant’s innocence is strong enough, i.e. the
charge is weak. If the signal for innocence is below this cuto�, the agent can plead
guilty and is convicted, or can request a trial by pleading not guilty, after which he
is acquitted if indeed found to be not guilty and convicted otherwise.

A relevant implication of our transparency result is that the justice system does
not profit from keeping the discovery of pretrial investigations secret. This is estab-
lished practice in modern codes of procedures (see Brady v. Maryland, 1963, for
the case of U.S. federal law)13 but was not always the case. Compare for example
today’s Austrian criminal code of procedure (StPO, §6 (2)) with the code of 1803
(Franz II, 1803, §331). While the modern code grants the right to learn about all
potential charges to the defendant, the version from 1803 grants much more discre-
tion in the extent of information released to the defendant, stating that he has to
be informed only as far as necessary to notify him that he is accused.14

If one extends the model and allows for more types of the agent, i.e. guilty
(t = 0), guilty of a minor crime (t = 3/4) and, innocent (t = 1) another feature of
our optimal mechanism arises in the pretrial application. When a defendant who is

12If an innocent agent (t = 0) is convicted (x = 0) the net utility loss is given by 0≠v(1) = ≠1/2.
If a guilty agent (t = 0) is acquitted (x = 1) it is given by v(0) = ≠1/2.

13The prosecution did not inform the defendant Brady of his companion’s previous confession to
the actual killing. The Supreme Court ruled that ‘the government’s withholding of evidence that
is material to the determination of either guilt or punishment of a criminal defendant violates the
defendant’s constitutional right to due process.’

14This is in line with the broader development in continental Europe from medieval inquisitorial
proceedings with secret charges to modern criminal law proceedings (Kittler, 2003). The most
famous defendant whose charges are kept secret may be Josef K., the protagonist in Franz Kafka’s
novel Der Proceß (The Trial). In fact, Kittler (2003) suggests that legal scholar Kafka based his
Proceß not on his contemporary but the medieval procedural standards.
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guilty of the minor crime triggers a trial by misrepresenting his type as innocent he
cannot hope for acquittal in the trial. The judge commits to punish her for having
lied even if this is ex post ine�cient v(3/4) = 1/4 > 0. This feature is reflected by
the harsher punishments that lying in court or failing to confess usually entails.

�.� The Proof of Theorem �

�.�.� The Case for Transparency

This subsection presents the main conceptual contribution of our paper: the prin-
cipal cannot exploit the secrecy of a private signal that is correlated with the agent’s
type to reduce his information rents. This stands in marked contrast to settings with
transfers where secrecy and correlation permit full elimination of information rents.

Proposition 1. It is without loss of optimality for the principal to use a transparent
procedure. Formally, consider any mechanism (x, z) that is feasible in the principal’s
problem. There exists a feasible mechanism (x̃, z̃) that satisfies (EPIC(s)

t,t̂
) for all

s, t, t̂ and delivers a payo� to the principal no lower than that generated by (x, z).

The formal proof of this proposition can be found in the appendix. There are
two channels through which the principal can potentially exploit secrecy. We revisit
Example 1 to illustrate for each channel, (i) how it allows the principal to lower the
verification costs required to implement an arbitrary allocation, and (ii) why this is
not possible for optimal allocations.

Example 1 continued (a). Consider the environment from Example 1 with dis-
tribution (2.1). The optimal transparent verification schedule to implement the total
allocation (2.2), which allocates if and only if type and signal do not match, verifies
with probability one whenever the good is allocated, i.e.

z =
A

0
(L,¸)

, 1
(L,h)

, 1
(H,¸)

, 0
(H,h)

B

.

The agent’s ex post incentive constraint is binding when his type and the signal match
(and he does not get the good) and it is slack otherwise. Under secrecy, the total
allocation (2.2) can be implemented with the cheaper verification schedule

z =
A

0
(L,¸)

, 0.5
(L,h)

, 0.5
(H,¸)

, 0
(H,h)

B

.

This creates only half the verification cost than with transparency.

With the second, cheaper verification schedule, the allocation is not transparently
implementable. If type L knows that the signal is ¸, he can get allocation with
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probability 1/2 by misreporting H. In this example, secrecy allows the principal
to re-use excess allocation probability across di�erent signals when the agent is
unaware of the signal realisation. Why does this not work in the optimal allocation
mechanism? When the total allocation probability is non-decreasing in t for all
s, an improvement as above is not possible. First, monotonicity implies that only
upward incentive constraints matter.15 Second, if an EPIC constraint at a signal s

binds for some type, it must also bind for all lower types at this signal. It follows
that, in an optimal transparent mechanism, the lowest type’s EPIC constraint must
bind at all signals. No slack can be re-used even under secrecy. Note that the gain
in flexibility to re-use excess utility across signals does not depend on correlation.
This advantage of Bayesian Implementation is present for general distributions. In
the case of independent types, however, it is precisely the pointwise monotonicity
of allocations that leads to the EPIC-DIC equivalence (Manelli and Vincent, 2010,
Gershkov et al., 2013, Ben-Porath et al., 2014).

With correlation, monotonicity in t is not su�cient to conclude that transparency
is optimal. The resulting belief heterogeneity presents an additional channel to
benefit from secrecy. The following example shows how the principal exploits this
when the total allocation is non-monotone in s.

Example 1 continued (b). Consider the total allocation probabilities

x + z =
A

1
(L,¸)

, 0
(L,h)

, 1
(H,¸)

, 1
(H,h)

B

. (2.3)

The optimal verification probabilities to implement this transparently are

z =
A

0
(L,¸)

, 0
(L,h)

, 0
(H,¸)

, 1
(H,h)

B

.

Given the distribution in (2.1), this results in verification costs of 1·
2
6c = 1

3c. Without
observing the signal, the agent updates his belief conditional on his type. Given the
joint distribution in (2.1), type L’s subjective belief on signal ¸ is 2

3 . Consider L’s
Bayesian incentive constraint:

(BICL,H) : 2
3 · 1 + 1

3 · 0 Ø
2
3 · (1 ≠ z(H, ¸)) + 1

3 · (1 ≠ z(H, h)) .

The principal can exploit that type L puts more weight on signal ¸ and shift verific-
ation probability from the type-signal combination (H, h) to (H, ¸). Without trans-

15Indeed, the first step of the proof consists in presenting a relaxation of the principal’s problem
discarding, among others, all downward incentive constraints. Establishing monotonicity directly
is complicated with belief heterogeneity.
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parency, the allocation above is optimally implemented with verification probabilities

z =
A

0
(L,¸)

, 0
(L,h)

, 0.5
(H,¸)

, 0
(H,h)

B

. (2.4)

They create verification costs of only 1
6 · 0.5 · c = 1

12c.

This improvement is di�erent from the one presented Example 1(a). It relies
on correlation. The principal benefits from secrecy by exploiting the agent’s belief
heterogeneity, shifting verification probability from higher to lower signals. This
reduces the overall verification probability because the relevant incentive constraint
is for type L not to report H and type L’s subjective belief on signal ¸ is higher.
Why does this not work in the optimal mechanism? The reason that makes this
shift possible when we move from transparency to secrecy is the non-monotonicity
of the total allocation in the signal. In the proof we rule out this non-monotonicity.
This is possible since the signal has no direct e�ect on the principal’s preferences.
Moving allocation probability towards higher signals for any given type relaxes the
upward incentive constraints. As the signal s does not a�ect the principal’s value
directly, she is indi�erent as to which signals carry allocation probability. This is
di�erent in our extension in which s has a direct e�ect on the principal’s value (see
Section 2.5).

However, pointwise monotonicity in both t and s is still not enough to obtain
transparency. The following example shows that secrecy is also beneficial when
allocation probabilities are interior.

Example 1 continued (c). Consider the following total allocation probabilities:

x + z =
A

0.5
(L,¸)

, 0.5
(L,h)

, 1
(H,¸)

, 1
(H,h)

B

. (2.5)

If the principal has to implement (2.5) with a transparent procedure, the cost-minimal
verification schedule is

z =
A

0
(L,¸)

, 0
(L,h)

, 0.5
(H,¸)

, 0.5
(H,h)

B

.

This results in verification costs of 1
6 · 0.5 c + 2

6 · 0.5 · c = 1
4 · c. Just as in Example

1(b), the principal can exploit that type L puts more weight on signal ¸. The optimal
verification probabilities under secrecy,

z =
A

0
(L,¸)

, 0
(L,h)

, 0.75
(H,¸)

, 0
(H,h)

B

,
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ensure truthful reporting at lower costs 1
6 · 0.75 · c = 1

8 c.

Interior total allocation probabilities give the principal more flexibility in design-
ing lie-deterring verification rules and allow her to benefit from secrecy. In the proof
of Proposition 1, we show that it is optimal for the principal to use deterministic
procedures. The optimality of transparent rules follows from the monotonicity and
nonrandonmess of optimal allocation rules.

This concludes the intuition for the first step of the proof of Theorem 2. For
clearer illustration, the chosen examples feature fixed total allocation probabilities
and present changes in verification only. In the formal proof, however, we do not de-
compose the program, but solve for optimal allocation and verification jointly. This
solution strategy is more e�ective in our setting as characterising optimal verification
rules for arbitrary allocations is tedious due to the belief heterogeneity.

�.�.� Optimal Transparent Mechanisms

To complete the proof of Theorem 2, we need to solve the principal’s problem subject
to the EPIC constraints.

Proposition 2. The cuto� with appeal mechanism presented in Theorem 2 maxim-
ises the principal’s payo� among all transparently implementable mechanisms.

The formal proof is relegated to the appendix. Solving the problem under EPIC
constraints is significantly simpler as the belief heterogeneity plays no role once the
agent knows the signal. In fact, the principal’s problem can be solved independently
for each signal realisation s. The subproblem corresponding to signal s is analogous
to the special case of a single agent in Ben-Porath et al. (2014). Hence, our main
conceptual contribution, Proposition 1, creates a link between the cases of correlated
and independent information by establishing that the principal voluntarily forgoes
the screening potential of heterogeneous beliefs. This is in stark contrast to settings
where monetary transfers are feasible.

�.� Extension: When the Signal a�ects Preferences

In the previous sections, we characterise optimal mechanisms under the assumption
that the principal’s signal has no direct e�ect on her allocation value. In the court
example in Section 2.3.1, the judge’s value from convicting a guilty defendant does
not depend on the findings from the pre-trial investigations. The relevance of these
investigations stems from a better assessment of the defendant’s guilt. Given his
guilt or innocence, the investigation does not a�ect the judge’s preferences over
di�erent rulings. Formally, the principal’s valuation v(t) does not depend on s

directly.
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To extend the analysis, suppose that the principal derives valuation v : T ◊

S æ R when allocating the good to an agent of type t at signal s. As before, we
normalise the value she derives from not allocating to 0 and assume that t ‘æ v(t, s)
is nondecreasing for any s œ S. The agent’s problem does not change. Both the
Bayesian and EPIC incentive constraints remain the same. Only the principal’s
objective changes; it now reads:

max
(x,z)Ø0

E [ x(t, s) v(t, s) + z(t, s) (v(t, s) ≠ c) ].

�.�.� Optimal Transparent Mechanisms

We first characterise optimal transparent mechanisms. This characterisation and
its proof are analogous to Proposition 2. The reason is that, by transparency, the
optimal allocation and verification rule can again be determined separately for each
signal realisation s œ S.

Proposition 3. The optimal transparent mechanism is as follows: for all s œ S,
Y
]

[
x(t, s) = 1, z(t, s) = 0 if Et[ (v(t, s) | s ] > Et[ (v(t, s) ≠ c )+

| s ]

x(t, s) = 0, z(t, s) = {v(t,s)>c} otherwise.

In addition, this characterisation leads to the following increasing (Figure 2.2(a))
and decreasing (Figure 2.2(b)) cuto� with appeals mechanisms under the respective
regularity assumption:

(a) When the direct e�ect is positive, so that for all t, s ‘æ v(t, s) is increasing,
then there exists a cuto� s̄a and appeal thresholds t̄(s) such that:

i) If s Ø s̄a, then x(t, s) = 1 for all t and z(t, s) = 0 for all t.

ii) If s<s̄a, then x(t, s) = 0 for all t and z(t, s) =

Y
]

[
1 for t Ø t̄(s)

0 for t < t̄(s),

with s̄a = min
)
s

-- Et[v(t, s)|s] > Et[(v(t, s) ≠ c)+
| s]

*

and t̄(s) = min
)
t

-- v(t, s) ≠ c > 0
*
.

(b) When the direct e�ect is su�ciently negative so that s ‘æ Et[v(t, s)|s] is de-
creasing, then there exists a cuto� s̄b and appeal thresholds t̄(s) such that:

i) If s Ø s̄b, then x(t, s) = 0 for all t and z(t, s) =

Y
]

[
1 for t Ø t̄(s)

0 for t < t̄(s).
ii) If s<s̄b, then x(t, s) = 1 for all t and z(t, s) = 0 for all t,

with s̄b = min
)
s

-- Et[v(t, s)|s] < Et[(v(t, s) ≠ c)+
|s]

*
and t̄(s) as above.
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The formal proof in the appendix is analogous to the proof of Proposition 2.
The general characterisation of the optimal transparent mechanism at the beginning
of Proposition 3 holds true for any functional form of the principal’s value v(·, ·).
Under the monotonicity conditions in the second part of Proposition 3 the optimal
transparent mechanism takes a cuto� with appeals form which is illustrated in Figure
2.2.

Figure 2.2(a) covers the case when the signal has a positive direct e�ect on the
principal’s value.16 In the plot, v(t, s) = t + s ≠ 1/2, so that the principal’s first best
allocation is to allocate whenever t exceeds the dotted decreasing diagonal. If the
signal realisation is above the cuto� s̄a, the principal is optimistic about her value
from allocating as v increases in s and a high s is indicative of a high type t. For
s Ø s̄a she allocates the good irrespective of his report without verification (x = 1).
For signals below the cuto� s̄a, the good is allocated only after the agent’s type is
verified to be above the threshold t̄(s) which now depends on s. On both sides of
the cuto� s̄a, this mechanism deviates from the principal’s first best allocation to
satisfy the agent’s incentives. For s Ø s̄a, the good is allocated too often (the blue
area below the dotted diagonal). For s < s̄a, the good is allocated too rarely (the
white belt above the dotted diagonal).

Figure 2.2: Cuto� with appeals mechanisms with positive and negative direct e�ect

x = 1

z = 1

s̄a

x + z = 0

v(t, s) = 0

t̄(s)
t ø

s æ

(a) Increasing v(t, ·)

t ø

s æs̄b

z = 1

x = 1

x + z = 0

v(t, s)=0

t̄(s)

(b) Su�ciently decreasing v(t, ·)

Figure 2.2(b) illustrates the cuto� mechanism when the direct e�ect is su�ciently
negative so that s ‘æ Et[v(t, s)|s] is decreasing.17 The e�ect of s on Et[v(t, s)|s]
consists of two components. There is a positive, indirect information e�ect: the
principal expects a higher type after observing a higher signal. This is countered by
a direct negative e�ect since v(t, s) is decreasing in s. The condition in (b) means
that the direct e�ect dominates. In the plot, v(t, s) = t ≠ s, the principal’s first best

16In the court example, this functional form would apply if the justice system got an additional
benefit from the final verdict confirming the initial charge.

17Decreasing v in s would apply if the principal’s signal increased her opportunity cost of alloc-
ating.
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is to allocate whenever t exceeds the dotted increasing diagonal. Here, the principal
is more optimistic about the allocation value when the signal is lower. Hence, the
good is now allocated without verification when s < s̄b and it is allocated only after
verification when s Ø s̄b.

�.�.� Optimal Bayesian Mechanisms

In this subsection, we show that our BIC-EPIC equivalence with correlation (The-
orem 2) carries over when the direct e�ect is positive but not when it is negative.
This dependence on the direction reveals the distinct nature of our setting in com-
parison to settings with independent information where the equivalence holds more
generally.

If the direct e�ect is positive, the optimal Bayesian mechanism is again given by
the optimal transparent mechanism.

Proposition 4. If the direct e�ect of the signal is positive (v(t, s) increasing in
s), the transparent mechanism in Proposition 3(a) is optimal in the class of BIC
mechanisms.

The proof is relegated to the appendix. The optimal transparent mechanism
in the case of a positive direct e�ect (Figure 2.2(a)) is deterministic and monotone
in type and signal. Again, these properties ensure that no secret mechanism can
do better than this transparent mechanism. The intuition that the transparent
mechanism satisfies these properties is similar to the case without direct e�ect. In
that case, in which the signal s did not a�ect the principal’s value directly, she was
indi�erent as to which signals carry allocation probability. In the present case with a
positive direct e�ect, v(t, s) is increasing in s so that the principal prefers allocation
probability at higher signals. Hence, the positive direct e�ect guarantees that the
optimal transparent mechanism is increasing in s. This is no longer the case when
the direct e�ect is negative. The example in Figure 2.2(b) shows that this is not
the case if v(t, s) is decreasing in s. Here, the optimal transparent mechanism is not
increasing in s. In this case, the optimal BIC mechanism exploits secrecy and, thus,
is not transparent:

Proposition 5. If the direct e�ect of the signal is negative (v(t, s) decreasing in s)
and the optimal transparent mechanism (x, z) features x(t̂, s) > 0 and z(t̂, sÕ) > 0
for some t̂ œ T and some s < sÕ

œ S, then there exists a mechanism (x̃, z̃) with a
strictly higher value, which is BIC. Hence, the principal profits strictly from s being
private.

The proof is again relegated to the appendix. Note that under the regularity
assumption in Proposition 3, that Et[ (v(T, s) | s ] is decreasing in s, the optimal
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transparent mechanism has the properties stated in the proposition whenever it is
nontrivial, i.e. whenever x and z are positive at some combinations (t, s). As noted
previously, the principal saves verification costs by shifting verification probability
at high reports toward low signals. Low types, who have an incentive to misreport,
find such signals more likely. Transparency then requires a shift in the allocation
probability for low types toward the other signal realisations to ensure that, at those
signals indicating no verification of high reports, the low types have no incentive to
deviate. If the principal’s value is decreasing in the signal, shifting allocation toward
higher signals comes at a cost and, therefore, transparency comes at a cost.

�.� Discussion and Concluding Remarks

�.�.� Literature

In settings where monetary transfers are feasible, the principal can design lotteries
rewarding the agent for guessing the value of her privately observed signal correctly.
Di�erent agent types hold di�erent beliefs over the signal distribution and, therefore,
reveal their type by guessing the signal they deem most likely. If the agent’s liability
is not limited, the principal can increase reward and loss in the lottery to such
an extent that the incentives to win the lottery exceed any incentives regarding
the allocation decision. In doing so, she can learn the agent’s type at arbitrarily
small costs. Mechanisms with monetary transfers and correlated information have
been discussed by Crémer and McLean (1988), Riordan and Sappington (1988),
Johnson et al. (1990), and McAfee and Reny (1992), who all establish conditions on
the information structure that ensure full surplus extraction by the principal. As all
surplus can be extracted, revenue maximisation leads to ex-post e�cient allocations.
Neeman (2004) discusses the genericity of the above-mentioned conditions and shows
that full surplus extraction is possible only if every preference type is ‘determined’ by
his belief over the correlated characteristics. Even though this condition is fulfilled
in our setting with costly verification, full surplus extraction is not feasible and
implementing the ex-post e�cient allocation is not optimal for the principal. The
full surplus-extracting lotteries require potentially unbounded transfers. For the
case of bounded transfers or limited liability, Demougin and Garvie (1991) show
that the qualitative results, the application of rewards as bets on the signal, still
apply. Di�erent from our setting, the principal gains by maintaining her signal
private even when bounds or limited liability preclude full surplus extraction.

In the absence of monetary transfers, Bhargava et al. (2015) show how positively
correlated beliefs among voters allow overcoming the impossibility of nondictatorial
voting rules established by Gibbard (1973) and Satterthwaite (1975).

Our result is in line with the findings in other settings where monetary trans-
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fers are not feasible but correlated information is absent. The literature (Glazer
and Rubinstein, 2004, Ben-Porath, Dekel and Lipman, 2019, Erlanson and Kleiner,
2020, Hart, Kremer and Perry, 2017, Halac and Yared, 2020) has found optimal
mechanisms to take a simple cuto� structure and to be EPIC in the sense that the
agents would also report truthfully if they were informed about the other agents’
type realisations before their report.

The possibility for the mechanism designer to verify an agent’s private informa-
tion at a cost was first introduced by Townsend (1979) considering a principal-agent
model for debt contracts, which was extended to a two-period model by Gale and
Hellwig (1985). These early models of state verification feature both monetary trans-
fers and verification. Glazer and Rubinstein (2004) introduce a setting where the
principal has to take a binary decision depending on the multidimensional private
information of the agent. Here, the principal cannot use monetary transfers, but she
can learn about one dimension before making her decision.

Our model is most closely related to that of Ben-Porath, Dekel and Lipman
(2014), who model costly verification and consider the case of allocating a good
among finitely many agents whose types are independently distribute. Erlanson
and Kleiner (2020) study a collective decision problem with costly verification and
show that the optimal mechanism is EPIC and can be implemented by a simple
weighted majority voting rule. Mylovanov and Zapechelnyuk (2017) consider an
allocation problem without monetary transfers in which the principal learns the
agents’ types without cost but only posterior to the allocation decision and has the
ability to punish untruthful reports up to a limit. Halac and Yared (2020) consider
a delegation problem and specify conditions on the verification cost that ensure
optimality of a threshold mechanism with an escape clause.

Erlanson and Kleiner (2020) show for the case of independent information that
the equivalence between BIC and EPIC mechanisms holds more generally rather
than only for optimal mechanisms. This relates to Gershkov, Goeree, Kushnir,
Moldovanu and Shi (2013) and Manelli and Vincent (2010), who show equivalence
between BIC and DIC mechanisms in settings with monetary transfers. All these
results depend on the assumption that the private information of players is inde-
pendently distributed (see discussion in Gershkov et al., 2013, p. 212). We deviate
from this assumption by introducing correlation between the agent’s type and the
principal’s signal and show that equivalence obtains for optimal allocation rules but
not generally.

�.�.� Informed principal problem

As the principal has private information, our model is also related to the informed
principal problem cf. Myerson (1983) and Maskin and Tirole (1990). With monetary
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transfers, Severinov (2008) and Cella (2008) show that correlated information allows
for an e�cient solution to the informed principal problem. By our assumptions
on the principal’s commitment, the mechanism proposed by the designer does not
convey information to the agent, so that there is no informed principal problem
in our model Nonetheless, the fact that the principal’s signal can be made public
without loss implies that the informed principal game has a separating equilibrium in
which the agent perfectly learns the principal’s type from the proposal. This implies
that our mechanism constitutes a solution to the informed principal problem for
Cases 1 and 2 when the EPIC mechanism is optimal.

�.�.� Concluding Remarks

This paper studies the role of information in a mechanism design model in which
the principal may use costly verification instead of monetary transfers to incentivise
the revelation of private information. We show that a transparent mechanism is
optimal. It is without loss for the principal to make her information public before
contracting with the agent. Our result gives a rationale for the use of transparent
procedures in a variety of applications from hiring to procedural law. This is in
contrast with results on correlation in mechanism design problems with money.

In an extension in which the principal’s private information also a�ects her pref-
erences, we characterise the mechanism and show that the above qualities remain if
the information and direct e�ect work in the same direction. In the opposite case,
we show how the principal can benefit by ensuring that her signal remains private.
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�.A Appendix

Proof of Theorem �
The revelation principle presented here is close to the revelation principle in Ben-Porath, Dekel and
Lipman (2014), but it takes into account possible issues arising from the correlation between the
signal and the type realisation.
Pick any (possibly dynamic) mechanism G and an agent strategy sA that is a best response to
this mechanism. Then, there is an equivalent incentive compatible, direct, two-stage mechanism
characterised by the pair of functions (e, a),

e : T ◊ S æ [0, 1],

a : T ◊ T fi {ÿ} ◊ S æ [0, 1],

of the following form:

1. The agent reports his type t̂ œ T .

2. Given her signal realisation s, the principal verifies the agent’s type with probability e(t̂, s).

3. Depending on the result of this verification t œ T fi{ÿ}, where ÿ encodes the event that there
was no verification, the principal allocates the good to the agent with probability a(t̂, t, s).

Instead of G, the principal could commit to the following mechanism:

• The agent reports a type t̂ œ T .

• Given this report and her signal’s realisation, s, the principal calculates the marginal prob-
ability of verification in the equilibrium in the original game under the condition that the
agent’s type was t̂ and the principal’s signal was s:18

e(t̂, s) := P(there is verification|sA(t̂), s).

• The principal verifies the agent’s true type with this probability: e(t̂, s).

– If she finds that the agent reported the truth, t̂, or if she did not verify t = ÿ, she
allocates the good with probability that equals the marginal probability of allocation
in the original mechanism, conditional on the type being equal to t̂ and the signal being
equal to s :

a(t̂, t̂, s) = a(t̂, ÿ, s) = P(allocation|sA(t̂), s).

– If she verifies and finds out that the agent misreported, i.e. t ”œ {t̂, ÿ}, the allocation
probability is determined in the following way:
The principal constructs a lottery over all stages in the original mechanism which have
the principal verify the agent with positive probability in equilibrium, conditional on
the event that the agent played according to sA(t̂) and the signal was s.
The probabilities of the lottery are chosen such that they equal the probability of veri-
fying at this stage for the first time, conditional on the event that there is verification
at some point in the game.
Now, she chooses one of these stages according to the above probabilities. She simu-
lates the game from this point onward, assuming that the game had reached this stage
and it was found at this point that the agent’s true type was t, by letting the simulated
agent behave according to what is described in sA(t) for behaviour after this knot and

18This means the probability that there was verification at any point in the game, specified by G
and played by the agent according to sA(t̂), under the condition that signal s realised.
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the verification. The strategy sA contains a plan for the behaviour of the agent from
this stage onward. The principal simulates his own behaviour, as prescribed in the
original mechanism.
Given any signal realisation, this reproduces the allocation profile in the original game
resulting from the following strategy for type t ”= t̂ (which he could play without
knowing the true signal realisation s): The agent of type t imitates type t̂’s behaviour
s(t̂) until the first verification, and then sticks to the behaviour that the equilibrium
strategy prescribes for his type.

If the agent reports the truth, the marginal probabilities of verification and allocation and,
therefore, the expected utilities of the agent and the principal are the same in both mech-
anisms. However, truth-telling is optimal for the agent in the constructed mechanism, as
misreporting yields the exact same outcome as the above-described deviation strategy in the
original game and, therefore, cannot be profitable.

There are two further observations that help simplify the class of possible optimal mechanisms.
In short, in any optimal mechanism, the principal will chose he highest possible punishment for
detected misreports and the highest possible reward for detected truth-telling.

1. Maximal punishment: t ”œ {t̂, ÿ} ∆ a(t̂, t, s) = 0
As the mechanism is direct, in equilibrium, the agent will not lie, therefore, decreasing
a(t̂, t, s) for t ”œ {t̂, ÿ} will not a�ect the expected utility of the mechanism designer. This
deviation only increases the incentives to report truthfully. Therefore we can assume WLOG
that the optimal mechanism features maximal punishment.

2. Maximal reward: e(t̂, s) > 0 ∆ a(t̂, t̂, s) = 1.
Suppose a(t̂, t̂, s) < 1. One could now lower the probability of verification, de(t̂, s) < 0, while
increasing the probability of allocation after confirming the report as true, da(s, t̂, t̂) > 0,
such that d(e(t̂, s)a(t̂, t̂, s)) = 0.
Lowering the verification probability would only increase the incentives to misreport and
the overall allocation probability after report t̂ and signal s, if there was allocation with
positive probability conditional on no verification, i.e. a(s, t̂, ÿ) > 0. However, in this case,
this allocation could be lowered da(s, t̂, ÿ) < 0 such that d((1 ≠ e(t̂, s))a(s, t̂, ÿ)) = 0, and
the incentives to misreport and the overall allocation probability would remain constant.
As this procedure would save verification costs while keeping all unconditional allocation
probabilities constant, we can rule out that an optimal mechanism features non-maximal
reward.

These observations fix the allocation after verification. E�ectively the mechanism designer therefore
has to choose only the verification probability e(t, s) and the allocation probability, conditional on
no verification a(s, t, ÿ).
For convenience, define z(t, s) = e(t, s), the joint probability of verification and allocation, and
x(t, s) = (1 ≠ e(t, s))a(t, ÿ, s), the joint probability of no verification and allocation.
Note that the set of mechanisms described by

{(x(t, s), z(t, s))tœT,sœS |’t œ T ’s œ S : 0 Æ x(t, s) + z(t, s) Æ 1}

is equivalent to all maximal reward and punishment, two-stage, direct mechanisms.19

19The inverse mapping is given by

(e(t, s), a(t, ÿ, s)) = (z(t, s), x(t, s)) .
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Proof of Proposition �
We present the following relaxation of the problem, and show that it is solved by a transparent
mechanism which proves that it is a solution to the original LP. Define the set of profitable types
as those t with a positive allocation value,

T + © {t œ T |v(t) > 0},

and the unprofitable types accordingly as T ≠ © T \T +. Both sets are non-empty by the assumption
that v crosses 0. Otherwise, the optimal mechanism is trivial.

The relaxed problem includes only those incentive constraints that prevent types in T ≠ from
misreporting types in T +. Hence, it reads as follows:

(LP.r) max
(x,z)Ø0

ÿ

tœT

ÿ

sœS

f(t, s) [x(t, s) v(t) + z(t, s) (v(t) ≠ c)]

s.t. ’t œ T ≠, ’t̂ œ T + : (BICt,t̂) and

’(t, s) œ T ◊ S : x(t, s) + z(t, s) Æ 1.

In the remainder of the proof, we derive feasible changes to a solution to the relaxed problem
which do not lower the principal’s value and which finally lead to the cuto� mechanism. We make
repeated use of the following notation: we denote changes in the allocation probability by dx(t, s)
so that the new probability after the change is given by x(t, s) + dx(t, s). dx(t, s) may be positive
or negative. Analogously for dz(t, s). Further, d(BICt,t̂) denotes the change in surplus utility that
type t receives from reporting the truth rather than misreporting t̂, which is induced by a change of
the above form. Recall that the constraint (BICt,t̂) reads as

q
s

f(t, s)
#
x(t, s) + z(t, s) ≠ x(t̂, s)

$
Ø 0

so that d(BICt,t̂) denotes the change to the left-hand side of this inequality.
The value for the principal is given by

V =
ÿ

tœT

ÿ

sœS

f(t, s) [x(t, s) v(t) + z(t, s) (v(t) ≠ c)] ,

and dV will denote the induced change to this value.
Step 1: The optimal mechanism in the relaxed problem features ’t œ T ≠ ’s œ S : z(t, s) = 0:

Suppose z(t, s) > 0 for some type t œ T ≠. Shifting probability mass from z(t, s) to x(t, s) such
that the overall allocation probability stays constant,

0 < dx(t, s) = ≠dz(t, s),

saves the principal verification costs and does not distort the incentives, as type t’s incentive to
misreport remains the same, and all incentive constraints to misreport a type t œ T ≠ are ignored
in the relaxed problem.
Step 2: There is an optimal mechanism in the relaxed problem featuring a cuto� form for x(t̂, ·):

’t̂ œ T + ÷s̃(t̂) œ S : x(t̂, s)

Y
__]

__[

= 0 if s < s̃(t̂)

œ [0, 1) if s = s̃(t̂)

= 1 if s > s̃(t̂)

.

Take a feasible IC mechanism of the relaxed problem featuring that for some t̂ œ T +, ÷s < sÕ œ S

such that x(t̂, s) > 0, x(t̂, sÕ) < 1.

Note that the value of a(t, ÿ, s) does not play any role in the mechanism if e(t, s) = z(t, s) = 1 and
can therefore be chosen arbitrarily.
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Modify the mechanism only at two points, shifting allocation probability mass from x(t̂, s) to
x(t̂, sÕ), i.e. dx(t̂, s) < 0 and dx(t̂, sÕ) > 0. Choose these shifts in a proportion such that for the
highest unprofitable type, t̃ © max T ≠, the incentive to misreport t̂ remains unchanged:

0 != d(BICt̃,t̂) = ≠f(t̃, s) dx(t̂, s) ≠ f(t̃, sÕ) dx(t̂, sÕ) = 0 … dx(t̂, s) = ≠f(t̃, sÕ)
f(t̃, s)

dx(t̂, sÕ).

For all types t œ T ≠, we have t Æ t̃, and, therefore,

d(BICt,t̂) = ≠f(t, s) dx(t̂, s) ≠ f(t, sÕ) dx(t̂, sÕ) = f(t, s)
5

f(t̃, sÕ)
f(t̃, s)

≠ f(t, sÕ)
f(t, s)

6
dx(t̂, sÕ) Ø 0

by the monotone likelihood ratio property. The principal’s value changes in the following way:

dV =f(t̂, s) dx(t̂, s) v(t̂) + f(t̂, sÕ) dx(t̂, sÕ) v(t̂)

=f(t̂, s)
5

≠f(t̃, sÕ)
f(t̃, s)

dx(t̂, sÕ)
6

v(t̂) + f(t̂, sÕ) dx(t̂, sÕ) v(t̂)

=f(t̂, s)
5

f(t̂, sÕ)
f(t̂, s)

≠ f(t̃, sÕ)
f(t̃, s)

6
dx(t̂, sÕ) v(t̂) Ø 0,

since dx(t̂, sÕ) > 0 and t̂ œ T +, which implies both v(t̂) Ø 0 and t̂ > t̃. The proposed shift is clearly
feasible if in the original mechanism, x(t̂, sÕ) + z(t̂, s)Õ < 1. In the case that x(t̂, sÕ) + z(t̂, s)Õ = 1,
it can still be implemented by shifting in addition mass from z(t̂, sÕ) to z(t̂, s) to ensure that
x(t̂, sÕ) + z(t̂, s)Õ and x(t̂, s) + z(t̂, s) remain constant:

dx(t̂, sÕ) + dz(t̂, sÕ) = 0 and dx(t̂, s) + dz(t̂, s) = 0.

This implies dz(t̂, sÕ) < 0 and dz(t̂, s) > 0. This is feasible as x(t̂, sÕ) < 1 and x(t̂, sÕ) + z(t̂, s)Õ = 1
imply that z(t̂, sÕ) > 0. As x(t̂, s) > 0, we must further have z(t̂, s) < 1 by feasibility. To maintain
the total allocation probabilities constant, the above changes in x are compensated by the following
changes in z:

dz(t̂, s) = f(t̃, sÕ)
f(t̃, s)

(≠dz(t̂, sÕ)).

The incentives for any lower type to misreport his type as t̂ are weakened in the same way as above
because z(t̂, s) and z(t̂, sÕ) do not play a role in the constraints that prevent misreport t̂.

Finally, the principal’s value now changes by

dV =f(t̂, s)
#
dx(t̂, s) v(t̂) + dz(t̂, s) (v(t̂) ≠ c)

$
+ f(t̂, sÕ)

#
dx(t̂, sÕ) v(t̂) + dz(t̂, sÕ) (v(t̂) ≠ c)

$

= ≠ c
#
f(t̂, s) dz(t̂, s) + f(t̂, sÕ) dz(t̂, sÕ)

$

= ≠ c f(t̂, s)
5

f(t̃, sÕ)
f(t̃, s)

≠ f(t̂, sÕ)
f(t̂, s)

6
(≠dz(t̂, sÕ)) Ø 0,

as, by MLRP, the term in squared brackets is negative and, by assumption, ≠dz(t̂, sÕ) Ø 0.
Step 3: There is an optimal mechanism in the relaxed problem featuring x(t̂, ·) = x(ˆ̂t, ·) for all
t̂, ˆ̂t œ T +:

By the cuto� structure established in Step 2, x(t̂, ·) = (0, . . . , 0, x(t̂, s̃(t̂)), 1, . . . , 1) for all t œ T +.
Suppose to the contrary that x(t̂, s̃(t̂)) +

q
s>s̃(t̂) 1 > x(ˆ̂t, s̃(ˆ̂t)) +

q
s>s̃(ˆ̂t) 1 for some t̂, ˆ̂t œ T +.

Replacing x(ˆ̂t, ·) by x(t̂, ·) does not generate new incentives to misreport, but it increases the
principal’s expected value, as it increases the allocation probability for profitable types. If feasibility
is hurt, i.e. x(t̂, s) + z(ˆ̂t, s) > 1 for some s œ S, decrease z(t̂, s) until x(t̂, s) + z(ˆ̂t, s) = 1. This is
also a strict improvement for the principal, as she saves verification costs.
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Step 4: There is an optimal mechanism in the relaxed problem featuring x(t̂, ·) = x(ˆ̂t, ·) for all
t̂, ˆ̂t œ T + fi T ≠:

Fix some unprofitable type t œ T ≠. By Step 1, we have z(t, ·) = 0. Optimally, the principal
wants to choose the lowest possible allocation probability for the unprofitable types. However, she
needs to grant him at least the same interim allocation probability that he could achieve by misre-
porting to be a profitable type t̂ œ T + (by steps 2–3, we know that x(t̂, ·) is the same for all t̂ œ T +).
As the signal realisation has no e�ect on the allocation value, the principal is indi�erent between
any allocation vector x(t, ·) which induces the same interim allocation probability, E[x(t, s)|t], i.e.
E[v(t)x(t, s)|t] = v(t)E[x(t, s)|t]. Therefore, she can grant the unprofitable types just the same
allocation probability they would face if they misreported a profitable type: x(t, ·) = x(t̂, ·).

This step concludes the proof. If the non-verified allocation probability is independent of the
type report at each signal, the agent has no incentive to misreport even if he knows the signal.

Proof of Proposition �
Step 0: For any s œ S, the optimal (x(·, s), z(·, s)) can be determined separately, as all constraints
only involve allocation and verification probabilities for the same signal realisation. The principal’s
optimal expected value is the weighted sum of the values of these subproblems:

(LP (s)) max
(x(·,s),z(·,s))Ø0

Et [ x(t, s) v(t) + z(t, s) (v(t) ≠ c) | s ]

s.t. ’t, t̂ œ T : (EP IC(s)t,t̂) and

’t œ T : x(t, s) + z(t, s) Æ 1.

Step 1: For any s œ S and for all t, t̂ œ T : x(t, s) = x(t̂, s), i.e. the allocation probability x(·, s)
has to be constant in the report.

Suppose to the contrary that there were reports t and t̂ with x(t̂, s) > x(t, s). Ex-post incentive
compatibility implies that for all t̃ œ T , we have x(t̃, s) + z(t̃, s) Ø x(t̂, s) > x(t, s). Hence, there
cannot be a type with a binding incentive constraint regarding the report t. This, in turn, implies
that optimally, z(t, s) = 0. If it were positive, z(t, s) could be lowered and x(t, s) could be increased,
at least until the strict inequality above binds. This leaves the allocation probabilities unchanged
but lowers verification costs.

The incentive constraints of type t now take the form x(t, s) + 0 Ø x(t̃, s) for all reports t̃ and,
in particular, for report t̂, contradicting the above hypothesis. Hence, we must have that for all
t, t̂: x(t, s) = x(t̂, s) © ‰s.
Step 2: With constant x(·, s), all incentive constraints are automatically fulfilled, as the unverified
allocation probability is the same for any possible report. The principal’s problem reads as follows:

(LP (s)) max
(‰s,z(·,s))Ø0

ÿ

tœT

f(t, s) [‰s v(t) + z(t, s) (v(t) ≠ c)]

s.t. ’t œ T : ‰s + z(t, s) Æ 1.

In this simplified program, z(t, s) will be set as high as possible, i.e. to 1 ≠ ‰s if (v(t, s) ≠ c) is
positive and to 0 otherwise, yielding the following:

(LP (s)) max
‰sœ[0,1]

‰s ·
ÿ

tœT

f(t, s) v(t) +
ÿ

tœT

f(t, s) (1 ≠ ‰s) (v(t) ≠ c)+.
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Step 3: Expressed in terms of conditional expectations, the problem is linear in ‰s:

(LP (s)) max
‰sœ[0,1]

‰s · Et

#
v(t)| s

$
+ (1 ≠ ‰s) · Et

#
(v(t) ≠ c)+| s

$
.

Generically, the optimal value of ‰ is either 0 or 1, depending on which of the expectations is larger.
The optimality of the cuto� mechanism follows as Et[ v(t) | s ] ≠ Et[ (v(t) ≠ c )+ | s ] is increasing
in s.

Proof of Proposition �
Similar to Step 0 in Proposition 2, for any s œ S, the optimal (x(·, s), z(·, s)) can be determined
separately, as all constraints only involve allocation and verification probabilities for the same signal
realisation. This results in |S| separate problems, one for each possible signal realisation s œ S. In
these separate problems v(t, s) is a function of t only. Therefore, for all s œ S, all steps in the proof
of Proposition 2 can be replicated with v(t) replaced by v(t, s).

The results on the cuto� mechanisms follows from the above solution for each s and the obser-
vation that the regularity assumptions imply that

Et[ v(t, s) | s ] ≠ Et[ (v(t, s) ≠ c )+ | s ]

is monotone in s; increasing in case (a) and decreasing in case (b).

Proof of Proposition �
Step 0: (Relaxation) Define the following cuto� in the signal space:

s = min{s|E[v(t, s)|s] > E[(v(t, s) ≠ c)+]},

where (a)+ = max{0, a} and we use the convention that min ÿ = max S. Note that v(t, s) ≠
(v(t, s) ≠ c)+ = min{c, v(t, s)} is increasing in both components. Due to the MLRP it follows that
E[v(t, s)|s] ≠ E[(v(t, s) ≠ c)+ is increasing in s.

Next, define the set of profitable types T + = {t œ T | v(t, s) Ø 0}. We denote all types that are
not profitable by T ≠ = T ≠ T +.

The relaxed problem ignores certain incentive constraints. It optimises the same objective
function but only subject to:

’t̂ œ T + ’t œ T with t < t̂ : (BICt,t̂)

Step 1: There is an optimal solution to the relaxed problem that takes a cuto� form in x for all
t œ T :

’t œ T ÷ s̃(t) œ S : x(t, s) =

Y
__]

__[

0 if s < s̃(t)

x(t, s) œ [0, 1) if s = s̃(t)

1 if s > s̃(t)

.

Suppose there is a (relaxed) incentive compatible mechanism which has for some t œ T and
sÕ < sÕÕ œ S : x(t, s) > 0 and x(t, sÕ) < 1.

In the following, we consider a shift in allocation probability from x(t, sÕ) to x(t, sÕÕ) that keeps
the overall allocation probability for type t constant:

f(t, sÕ) dx(t, sÕ) + f(t, sÕÕ) dx(t, sÕÕ) = 0 … dx(t, sÕ)¸ ˚˙ ˝
<0

= ≠f(t, sÕÕ)
f(t, sÕ) dx(t, sÕÕ)¸ ˚˙ ˝

>0

.
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First, for any type t≠ < t the probability of receiving the good without verification after a misreport
t decreases in the new mechanism:

f(t̃, sÕ)dx(t, sÕ) + f(t̃, sÕÕ)dx(t, sÕÕ) = ≠f(t̃, sÕ)
5

f(t, sÕÕ)
f(t, sÕ) ≠ f(t̃, sÕÕ)

f(t̃, sÕ)

6
dx(t, sÕÕ) Æ 0.

The last inequality holds since the likelihood ratio is increasing. The shift yields type t the
same allocation probability, so he cannot have a new incentive to misreport. Therefore, all relaxed
incentive constraints survive.

Second, the modified mechanism yields the principal a higher expected value:

f(t, sÕ) dx(t, sÕ) v(t, sÕ) + f(t, sÕÕ) dx(t, sÕÕ) v(t, sÕÕ) = f(t, sÕÕ)dx(t, sÕÕ)
#
≠v(t, sÕ) + v(t, sÕÕ)

$
> 0

The proposed shift is clearly feasible if in the original mechanism x(t, sÕÕ) + z(t, sÕÕ) < 1. In
the case that x(t, sÕÕ) + z(t, sÕÕ) = 1, it can still be implemented by shifting in addition mass from
z(t, sÕÕ) to z(t, sÕ) such that x(t, sÕÕ) + z(t, sÕÕ) and x(t, sÕ) + z(t, sÕ) stay constant:

dx(t, sÕ) = ≠dz(t, sÕ) and dx(t, sÕÕ) = ≠dz(t, sÕÕ).

As we assume x(t, sÕÕ) < 1 and x(t, sÕÕ) + z(t, sÕÕ) = 1, we have z(t, sÕ) > 0. Since x(t, sÕ) > 0 we also
have z(t, sÕ) < 1.

The incentives for any lower type to misreport his type as t are weakened in the same way
as above since z(t, s) and z(t, sÕ) do not play a role in these constraints. The incentive for t to
misreport is not a�ected since the total allocation probability x + z is kept constant.

Further, the principal’s expected value is not changed by these shifts:

f(t, sÕ)
#
dx(t, sÕ) v(t, sÕ) + dz(t, sÕ) (v(t, sÕ) ≠ c)

$
+ f(t, sÕÕ)

#
dx(t, sÕÕ) v(t, sÕÕ) + dz(t, sÕÕ) (v(t, sÕÕ) ≠ c)

$

= ≠c f(t, sÕÕ)
5

f(t, sÕÕ)
f(t, sÕ) ≠ f(t, sÕÕ)

f(t, sÕ)

6
(≠dz(t, sÕ)) = 0.

The reason is that the allocation probability x + z remains the same with these shifts, so that
only the verification changes. However, the change in verification is such that it does not alter the
expected verification probability for the true type t and, therefore, neither the expected verification
cost for the principal.
Step 2: The optimal mechanism in the relaxed problem features

’t œ T ≠ ’s œ S : z(t, s) = 0.

In the relaxed problem we disregard all incentive constraints that prevent the agent to misreport
his type as t œ T ≠. If there were some t œ T ≠ and s œ S with z(t, s) > 0, shifting probability mass
from z(t, s) to x(t, s) by

dz(t, s)¸ ˚˙ ˝
<0

= ≠ dx(t, s)¸ ˚˙ ˝
>0

,

would save the principal verification costs while keeping the overall allocation probability constant.
It would therefore not a�ect the incentive constraints in the relaxed problem.
Step 3: We can assume that the optimal mechanism also takes a cuto� form in x + z:

’t œ T ÷s(t) œ S : x(t, s) + z(t, s) =

Y
__]

__[

0 if s < s(t)

x(t, s) + z(t, s) œ [0, 1) if s = s(t)

1 if s > s(t)

.
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For t œ T ≠, this property follows immediately from the previous two steps with s(t) = s̃(t).
Suppose for t œ T + that there exist sÕ < sÕÕ œ S with z(t, sÕ) > 0 and x(t, sÕÕ) + z(t, sÕÕ) < 1. To

rule out this possibility, consider a shift in mass from z(t, sÕ) to z(t, sÕÕ) in a way that the allocation
probability for a truth-telling agent of type t remains constant, i.e.

dz(t, sÕÕ)¸ ˚˙ ˝
>0

= f(t, sÕ)
f(t, sÕÕ) (≠ dz(t, sÕ)¸ ˚˙ ˝

<0

).

Note that this shift is feasible by assumption and that it will keep all relaxed incentive constraints
unchanged, since the true type t receives the same expected allocation probability, and z(t, ·) does
not play a role in the IC constraints preventing misreport t.

From the principal’s point of view, it is favourable because it keeps the verification probability
and thus the costs constant, while shifting allocation mass from (t, sÕ) to the more favourable type–
signal pair (t, sÕÕ), i.e.

dV = f(t, sÕ)dz(t, sÕ)[v(t, sÕ) ≠ c] + f(t, sÕÕ)dz(t, sÕÕ)[v(t, sÕÕ) ≠ c]

= 0 · c + f(t, sÕ)[v(t, sÕÕ) ≠ v(t, sÕ)](≠dz(t, sÕ)) > 0.

Step 4: In the relaxed problem, it is without loss for the principal to require the IC constraints to
hold point-wise at each signal, i.e. ’t œ T , ’t̂ œ T + with t < t̂ and ’s œ S:

(EP IC(s)t,t̂) : x(t, s) + z(t, s) ≠ x(t̂, s) Ø 0.

By the above steps, the (Bayesian) IC constraints in the relaxed problem can be written as
follows:20 ’t œ T and ’t̂ œ T + with t̂ > t :

ÿ

sœS

f(t, s)(x(t, s) + z(t, s)) ≠
ÿ

sœS

f(t, s)x(t̂, s)

=f(t, s(t))(x(t, s(t)) + z(t, s(t))) +
ÿ

s>s(t)

f(t, s) 1 ≠(f(t, s̃(t̂)) x(t̂, s̃(t̂)) +
ÿ

s>s̃(t̂)

f(t, s) 1) Ø 0.

This condition clearly requires that s(t) Æ s̃(t̂) and, in the case of equality, x(t, s(t)) + z(t, s(t)) Ø
x(t̂, s̃(t)). Because by the definition of s(t), x + z is equal to 0 below and equal to 1 above this
threshold, we can conclude that, for all s, x(t, s) + z(t, s) Ø x(t̂, s) which implies (EP IC(s)t,t̂).
Step 5: Consider an optimal mechanism in the relaxed problem that satisfies the cuto� structure
from the previous step. This mechanism also satisfies (EP IC(s)t,t̂) for all t, t̂ œ T ≠ with t < t̂.
That is, no unprofitable type has an incentive to report any higher unprofitable type.

Assume that for some s œ S there are types t < t̂ œ T ≠ such that the constraint (EP IC(s)t,t̂)
is violated. Define sÕ © min{s œ S|÷t < t̂ œ T ≠ : x(t, s) + z(t, s) < x(t̂, s)} to be the lowest signal
for which some type t profits from a higher report t̂ œ T ≠. Let tÕ © min{t œ T ≠|÷t̂ œ T with t̂ >

t : x(tÕ, sÕ) < x(t̂, sÕ)} be the smallest type with EP IC(sÕ) incentives to misreport his type to some
type t̂ œ T ≠.

Since z(tÕ, sÕ) = 0 for the unprofitable type tÕ (Step 3), this implies x(t, sÕ) < x(t̂, sÕ). As
tÕ, t̂ œ T ≠, it follows that t̂’s EPIC(sÕ) constraints are slack for all reports in T +. Having x(t̂, sÕ) >

x(tÕ, sÕ) Ø 0 can therefore only be optimal in the relaxed problem if v(t̂, sÕ) Ø 0. This implies that
sÕ > s̄ since T ≠ is precisely defined as the set of types t with v(t, s̄) < 0. Since x(tÕ, sÕ) < x(t̂, sÕ) Æ 1,
taking the cuto� structure from step 1 into account we can infer that for all s < sÕ it holds that
x(tÕ, sÕ) = 0 . In particular we have x(tÕ, s̄) = 0.

By the minimality of sÕ we get that 0 = x(tÕ, s̄) Ø x(t̃, s̄) for all t̃ œ T ≠ with t̃ > tÕ. By the

20Making use of the fact that z(t, s) = 0 for all t œ T ≠.
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minimality of tÕ we get that x(t̃, s̄) Æ x(tÕ, s̄) = 0 for all t̃ œ T ≠ with t̃ < tÕ. Furthermore, by
EP IC(s̄) IC compatibility, it follows that 0 = x(t, s̄) Ø x(tÕ, s̄) for all tÕ œ T +. So we have that
x(t, s̄) = 0 for all t which by definition of s̄ cannot be optimal in the restricted problem (for which
this mechanism is also optimal) as Et[ (v(t, s̄) | s̄ ] > Et[ (v(t, s̄) ≠ c )+ | s̄ ] Ø 0.
Step 6: Consider an optimal mechanism in the relaxed problem that satisfies (EP IC(s)t,t̂) for all
t œ T , for all t̂ œ T + with t̂ > t, and for all s œ S. This mechanism also satisfies (EP IC(s)t,t̂), for
t, t̂ œ T with t > t̂, i.e. no type benefits from reporting any lower type.

Assume that there are types tÕÕ > tÕ œ T such that x(tÕÕ, s) + z(tÕÕ, s) < x(tÕ, s) for some s.
WLOG let tÕÕ be the lowest type for which such a downward deviation is profitable.

Optimality of the relaxed mechanism requires then that Et[ v(t, s) {T ÆtÕ} | s ] > 0. Otherwise
the principal would be better o� by lowering x for all types below tÕÕ (note that x(tÕÕ, s) + z(tÕÕ, s) <

x(tÕ, s) implies that types t < tÕÕ cannot have binding upwards constraints towards reports higher
than tÕÕ as this would violate the upward constraints for tÕÕ). Monotonicity of the value in the
type in turn implies that v(t, s) > 0 for all t > tÕ. This contradicts optimality as the designer could
increase x(t, s) for all higher types without violating any incentives. Either by just increasing x(t, s)
if x(t, s) + z(t, s) < 1 or by lowering z(t, s) at the same time to save verification costs.

This concludes the proof. We have shown that optimal solution to the relaxed problem is
EPIC (Step 4). Therefore the principal’s expected value in the original problem cannot exceed the
expected value from this optimal EPIC solution. In Steps 5 and 6 we ruled out the two possible
violations of the original (ex-post) incentive constraints that can arise in a solution to the relaxed
problem. Hence the candidate solution is also EPIC in the original problem. In particular, it is
Bayesian incentive compatible and therefore a solution to the original problem.

Proof of Proposition �
To prove the claim, we construct an improvement that will not violate the Bayesian incentive
constraints. This su�ces to show that the principal strictly profits from ensuring that the realisation
of s remains private because the improved mechanism will implement the same allocation at lower
verification costs. Consider the shift of mass from z(t̂, sÕ) to z(t̂, s) and – in order to maintain the
overall allocation x + z unchanged – vice versa for x(t̂, sÕ) and x(t̂, s) :

dx(t̂, sÕ) + dz(t̂, sÕ) = 0 and dx(t̂, s) + dz(t̂, s) = 0.

To ensure that the Bayesian incentive constraints of all types t < t̂ are not violated by the shift,
we require that

’t < t̂ : d(BICt,t̂) = ≠f(t, s) dx(t̂, s) ≠ f(t, sÕ) dx(t̂, sÕ) Ø 0,

which is equivalent to dx(t̂, sÕ) Æ f(t,s)
f(t,sÕ)

!
≠dx(t̂, s)

"
. The proposed change has ≠dx(t̂, s) > 0,

and f(t,s)
f(t,sÕ) is decreasing in t. Hence, the right-hand side of the above expression is minimised at

tÕ = max{t œ T |t < t̂}. Note that t̂ ”= min{t œ T } as otherwise v(t, sÕ) > c > 0 at all t so that the
optimal mechanism would allocate without verification after this signal.

Setting dx(t̂, sÕ) = f(tÕ,s)
f(tÕ,sÕ)

!
≠dx(t̂, s)

"
ensures that the incentives to misreport toward t̂ are

weakened for all lower types. The above changes in x imply for z:

≠dz(t̂, s) = f(tÕ, sÕ)
f(tÕ, s) dz(t̂, sÕ).
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The principal’s value changes as follows:

dV =f(t̂, s)
#
dx(t̂, s) v(t̂, s) + dz(t̂, s) (v(t̂, s) ≠ c)

$
+ f(t̂, sÕ)

#
dx(t̂, sÕ) v(t̂, sÕ) + dz(t̂, sÕ) (v(t̂, sÕ) ≠ c)

$

= ≠ c
#
f(t̂, s) dz(t̂, s) + f(t̂, sÕ) dz(t̂, sÕ)

$

= ≠ c f(t̂, s)
5

f(tÕ, sÕ)
f(tÕ, s) ≠ f(t̂, sÕ)

f(t̂, s)

6
(≠dz(t̂, sÕ)) > 0.

The second equality follows because the allocation remains the same with these shifts, so that only
the verification cost changes.

Finally, note that in the optimal EPIC mechanism, z(t̂, s) = 1 implies z(t, s) = 1 for all t > t̂

and that x(·, s) is constant in the report at all s. Therefore, the fact that z(t̂, s) = 1 in the original
mechanism implies that the Bayesian IC constraints for higher types to lie downward to t̂ are slack
so that we can always find a shift in magnitude small enough to not violate these constraints. The
only case in which these constraints are not slack in the optimal EPIC mechanism is when several
types receive exactly the same allocation. In this case, the above improvement can be applied to
the highest report in this class.
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�
Inspecting Experimentation

�.� Introduction

Uncertainty and progressive learning are inherent features of innovative ventures.
They intensify the incentive problem that arises when fund provision and control
of the venture are separated. The experimenter can misappropriate the provided
funds for private consumption or ine�cient investments that yield private benefits.
One tool to handle this dynamic moral hazard problem is the design of bonuses that
reward the agent for positive outcomes to align his interests with those of the prin-
cipal. This paper introduces inspections as an additional tool. In practice, investors
spend considerable time and e�ort to make the resources put into experimentation
public.

Venture capitalists concentrate investments in early stage companies and
high technology industries where informational asymmetries are signific-
ant and monitoring is valuable. (Gompers and Lerner, 2004, pp. 132-
133)

Examples beyond venture capital financing include the allocation of funds to uni-
versities by the government and the distribution of the R&D budget to di�erent
projects within an organisation. Processing information on current and past fund
allocation entails an important fixed cost component. When inspectors travel to the
agent’s facilities for interviews, verify the state of prototypes, or create progress re-
ports, the required resources vary only little in the time-frame and amount of funds
to be accounted for.

Because monitoring is costly and cannot be performed continuously, the
venture capitalist will periodically check the project’s status and preserve
the option to abandon. (Gompers and Lerner, 2004, p. 139)
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The aim of this paper is to analyse optimal experimentation contracts, com-
bining inspections and payments to avert fund diversion at minimal cost. Should
inspections be random or deterministic and what is the optimal timing? What is
the optimal payment schedule and contract length and, in particular, how are these
a�ected by inspections?

Analysis. To answer the above questions, I study the experimentation relationship
in a two-armed bandit model.1 A principal provides funds to an agent to experi-
ment on a project of uncertain quality. In each period, the agent privately decides
whether to experiment on the project or divert the funds provided by the principal
for his private benefit. If the agent experiments, the good project yields a publicly
observable success with some probability. The agent’s experimentation choices are
not observable by the principal and need to be incentivised through payments, po-
tentially contingent on success. The agent is protected by limited liability so that
all payments have to be non-negative. The novel feature is that the principal can
perform inspections which allow her to detect fund diversion with some probability
that is increasing in the amount of funds the agent has appropriated. The principal
can commit to a contract, and the projects success and inspection outcomes are
contractible.

To build intuition, I first characterise the optimal bonus stream and contract
duration for the benchmark case without inspections. It is well known from the
literature that the optimal contract requires the agent to continuously experiment
in every period until success occurs or some finite deadline is reached. The players
gradually become more pessimistic about the project’s quality if the agent exper-
iments and produces no success. This implies that, after diverting funds and not
experimenting for some time, the agent is more optimistic than his (on-path) self
who experimented without success. Hence, the most profitable deviations – which
determine the bonus payments – are to divert funds for a short time and experiment
afterwards. The bonus payments leave rents to the agent that consist of two com-
ponents. First, since experimentation may lead to a success and thereby end the
relationship, doing so limits the agent’s option to divert funds in the future. For this,
he is compensated with a dynamic rent. Second, the more optimistic belief about
the project’s quality that would result from fund-diversion requires an information
rent. The total rent increases exponentially in the remaining length of the contract.
Therefore, the principal commits to ending the relationship ine�ciently early. If
players could renegotiate at the end of the contract, they would agree to experiment
for longer.

1Thereby the paper builds on Bergemann and Hege (1998), Keller et al. (2005), and Hörner and
Samuelson (2013), among others. For a survey, see Bergemann and Välimäki (2008).
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With inspections, optimal contracts still require the agent to experiment for
the entire contract duration. If an inspection detects otherwise, the relationship is
terminated since this provides the harshest punishment the principal can apply. The
optimal payment scheme after inspection is given by the non-inspection benchmark
as the conditions to deter fund diversion are equivalent. Prior to inspection, the
optimal payment rule depends crucially on the precision of the inspection technology.
An inspection that results in detection gives a conclusive signal of fund diversion,
the arrival of a success gives a conclusive signal of experimentation; the lack of either
detection or success provides a non-conclusive signal. If the precision of the signal
resulting from the lack of success exceeds the precision of the signal resulting from
lack of detection, bonus payments are necessary at all times for incentive provision.
However, the dynamic rent is reduced as inspections make the option of future fund
diversion less likely. In the other case, if the precision of inspections exceeds a
threshold, it is optimal to shift all payments to the future and pay bonuses only for
successes after inspections. Dynamic rents are decreased even further in this case
as the principal leverages the threat of losing post-inspection rents to incentivise
pre-inspection experimentation.

Under this re-use of rents, the optimal contract duration is strictly larger than
in the benchmark without inspections. This e�ect can be strong enough to make
the principal commit to a longer contract duration than would be statically optimal.
That is, if the principal had not committed to the termination deadline, starting from
some time prior to the deadline, she would like to renegotiate and stop immediately.
The agent would reject this so the contract is renegotiation proof. In any case, the
contract length never exceeds the first best duration of experimentation.

The optimal timing of inspection with precise inspections is entirely determ-
inistic. Randomisation reduces the threat that an inspection poses to the fund-
diverting agent for the following reason. With experimentation, conditioning future
times on the event that no success arrived previously leads both players to e�ect-
ively discount the future at a higher rate. As fund diversion rules out success,
a deviating agent has a lower e�ective discount rate. Lower discount rates imply
higher risk aversion over time-lotteries (DeJarnette et al., 2020) so that a discounted-
mean-preserving contraction of inspection times intensifies the expected threat of an
inspection for the diverting agent.

The remainder of the paper is organised as follows. The next section presents
the model, defines the class of feasible contracts, and describes the resulting payo�s.
Optimal contracts are discussed in Section 3.3 for the case without inspections in
Section 3.4 for the case with inspections. Concluding remarks are presented in
Section 3.5. All proofs are contained in the Appendix 3.A. Apart from the papers
mentioned here, additional literature on dynamic inspections can be found in 4.1.
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�.� Model

Environment. There is a principal (she) who contracts with an agent (he) to ex-
periment on a project in continuous time t œ [0, Œ). At every instant, the principal
chooses whether to provide funds of Ï > 0 which are necessary for experimentation.
The agent has no funds of his own and is protected by limited liability so that all
payments from principal to agent have to be non-negative. When given the neces-
sary funds, the agent decides whether to invest them to experiment on the project
(at = 1) or to divert the funds provided for that instant (at = 0).

The project is either of good or bad quality, denoted by Ê œ {0, 1}, where Ê = 1
encodes the good state. Both players share initial prior belief µ0 œ (0, 1) that the
project is good. At every instant, the project yields a success with Poisson arrival
rate Ê⁄at. That is, a bad project yields success with probability 0, independent of
the agent’s experimentation choice. A good project’s success rate is ⁄ if the agent
experiments, and 0 if he does not experiment. Success is publicly observable. The
first success ends the game and gives the principal utility normalised to 1.2 The
agent does not intrinsically care about success. When he shirks and diverts the
provided funds, he obtains an instant flow payo� of Ï.3

The agent’s experimentation choice is hidden. The principal has two instruments
to incentivise it. First, she can o�er monetary payments in the form of fixed wages
as well as bonuses that are paid conditional on the arrival of a success. Second,
the principal can schedule inspections. At any inspection time tI Ø 0 she observes
detection state ◊tI œ {0, 1} where ◊0 = 0, ◊t transitions from 0 to 1 at exponential
rate ”(1 ≠ at), and the state ◊t = 1 is absorbing. That is, the detection rate ” Ø 0
captures the precision of the inspection technology. If ” = 0, ◊t = 0 forever so that
inspections are uninformative. In the limit as ” æ Œ, any positive amount of funds
the agent diverts is detected at the next inspection with certainty. The interpretation
of this technology is that, whenever the agent diverts funds, he risks ‘leaving a paper-
trail’ with probability proportional to the amount of funds he diverted. If the trail
is detectable (◊t = 1) it is found at the next inspection. The state ◊t is observed
neither by the principal nor by the agent prior to inspections. At the time of each
inspection, the principal pays fixed cost Ÿ > 0.

Both players are risk neutral expected-utility maximisers. If one player decides
not to participate in the relationship at the beginning, both receive utility 0.

2One can think of 1 as the discounted expected value of continuing a project known to be good
to cover the case of multiple valuable successes.

3The analysis is easily adapted to the case where the agent receives utility Â ”= Ï from diverting
the funds. Specifically, Â < Ï captures the case where only part of the funds can be appropriated
by the agent.
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Contracts. At the beginning of the relationship the principal commits to a con-
tract to maximise her expected utility. Two prior observations are useful to simplify
the class of admissible contracts. First, any optimal contract requires the agent
to experiment at every instant until either a success occurs or some deadline is
reached. Second, in the o�-equilibrium event that inspection reveals fund-diversion,
the contract specifies the harshest possible punishment by terminating the relation-
ship immediately.4 Hence, without loss of generality, the principal o�ers a contract
C = (T, N I , b, w) consisting of the following components:

i) A deadline T œ [0, Œ] such that the agent is expected to work at every in-
stant t œ [0, T ] if no success has arrived previously and no fund diversion was
detected.

ii) An inspection process N I =
1
N I

t

2
T

t=0
œ N[0,T ]

0 which is non-decreasing, right-
continuous and has dN I

t = 1 if an inspection occurs at t and dN I
t = 0 other-

wise. N I
t and dN I

t ◊t are public.

iii) A bonus schedule b = (bt)T
t=0 œ R[0,T ]

+ . Bonus bt determines the payment the
agent receives immediately after success in period t. Accordingly, the principal
receives 1 ≠ bt.

iv) A wage process w = (wt)T
t=0 which is non-decreasing with dwt © wt≠limsøt ws.5

The game ends with the arrival of a success or at time T . Deadline and inspections
may be random. All events are to be understood as conditional on no success and no
detection having occurred previously as these events end the interaction. Part (iii)
states that, in case of success, the promised bonus is paid to the agent immediately.
In particular, the principal does not profit from performing any inspection after
success occurred. An equivalent interpretation of bt is that of the agent’s share of
the venture at time t.

Agent. Given contract C, the agent chooses an action plan a = (at)T

t=0 with the
restriction that a be absolutely continuous with respect to the Lebesgue measure on
[0, T ] and measurable with respect to the natural filtration induced by inspection
process N I . As above, a is to be understood as conditional on continuing the rela-
tionship, that is, conditional on no detection or success. To economise on notation,
a denotes both the agent’s strategy and the resulting path realisation. In the case
of deterministic inspections, they are identical.

4The first observation follows from the fact that no information is created if at = 0 on some
positive interval so that the principal can close any gaps without altering the agent’s incentives (see
Lemma A.3 in Green and Taylor, 2016, for a formal argument). The second observation follows
from the agent’s limited liability and the fact that shirking does not occur on the equilibrium path.

5The optimal contract will feature no fixed wages. Including them in the contract specification
facilitates the exposition.
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Define detection (stopping) time ‰ = inf{t œ [0, T ] : dNt◊t = 1} with the
convention that ‰ = T if dNt◊t = 0 always. The distribution of ‰ depends on the
agent’s strategy. The agent’s expected utility resulting from contract C and strategy
a is

U(C, a) =

Ea

‰

5⁄
‰

0

5
µ0e≠⁄

s t

0 asds⁄atbtdt +
3

µ0e≠⁄

s t

0 asds + (1 ≠ µ0)
4

(dwt + (1 ≠ at)Ïdt)
66

,

where the sub- and superscript are included to highlight the dependence of ‰ on a.
The first term in the square brackets captures the utility from the bonuses. If the
state is good, time t is reached with probability e≠⁄

s t

0 asds. A success arrives at rate
⁄at. The second term captures the agent’s payo� from wages and fund diversion
which accrue independently of the state as long as no success occurred previously.

Principal. Assume that the contract C =
1
T, N I , b, w

2
is such that it is optimal

for the agent to experiment throughout. Then the principal’s expected discounted
payo� from contract C is

V (C) =
⁄

T

0

Ë
µ0e≠⁄t⁄(1 ≠ bt)dt +

1
µ0e≠⁄t + 1 ≠ µ0

2
(≠dwt ≠ Ïdt ≠ ŸdN I

t )
È

.

Conditional on the project being good, every period t is reached with probability
e≠⁄t, success arrives at rate ⁄, and the principal receives expected payo� (1 ≠ bt).
Prior to a success, the principal pays the stream of wages, fund provision, and
inspection cost Ÿ whenever dN I

t = 1.
The principal’s problem can be stated as

max
C

V (C) s.t.

1 œ arg max
a

U (C, a) . (IC)

Here, 1 denotes the process a with at = 1 everywhere. Likewise, 0 will be used
below to denote processes that are constantly 0 in the case of w and N I . The agent
can always secure utility of at least 0 by choosing at = 0 for all t so his participation
constraint is automatically fulfilled in any incentive compatible contract.

�.� Optimal Contract without Inspections

This section presents the solution to the principal’s problem in the no-inspection
benchmark in which she is forced to choose N I

t = 0 for all t. The solution to this
problem is known in the literature. With slight variations in the model setup, it can
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be found in Bergemann and Hege (1998), Hörner and Samuelson (2013), Green and
Taylor (2016), and Halac et al. (2016), among others. Therefore, I anticipate that
the optimal contract features no fixed wages and illustrate the optimal bonuses and
deadlines with intuitive arguments here. Proposition 4 in Appendix 3.A.1 contains
the formal result. Its proof relies on techniques from optimal impulse control; see
Arutyunov et al. (2018).

Bonuses. Consider first the optimal bonus payments for fixed deadline T . Let
µt denote the posterior belief if, despite continual experimentation, no success has
arrived until time t. By Bayes’ rule,

µt = µ0e≠⁄t

1 ≠ µ0 + µ0e≠⁄t
.

The analysis below will make repeated use of the identities 1≠µ0
1≠µt

= µ0e≠⁄t + 1 ≠ µ0

and 1≠µ0
1≠µt

µt = µ0e≠⁄t. The principal’s problem for optimal bonuses reads

max
b

I⁄
T

0

1 ≠ µ0
1 ≠ µt

(µt⁄(1 ≠ bt) ≠ Ï) dt

J

s.t.

1 œ arg max
a

U ((T, 0, b, 0), a) .

The bonuses necessary to incentivise experimentation in every period can be
constructed recursively. Which potential deviations determine the relevant incentive
constraints? If the bonuses are such that the agent who has experimented until
period t is willing to experiment from t + dt until T , then after diverting the funds
during [t, t + dt), he has even more incentive to experiment. The reason is that
his belief about project quality is more optimistic after fund diversion than after
experimenting without success. Define by zt the agent’s expected discounted utility
from honouring the contract conditional on the project being good:

zt =
⁄

T

t

e≠⁄(s≠t)⁄bsds. (3.1)

At belief µt, the agent’s expected discounted utility is µtzt. The resulting incentive
constraint to avert fund diversion during [t, t + dt) is

µtzt Ø Ïdt + µtzt+dt. (3.2)

In the optimal contract, this constraint is binding for all t. Applying a Taylor-
expansion and discarding terms that vanish faster than dt, one obtains the condition
0 = Ï

µt
+ zÕ

t. Inserting µt and the boundary condition zT = 0, we get the benchmark
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continuation utility at time t given deadline T :

zB

t = Ï

A

T ≠ t + 1 ≠ µ0
µ0

e⁄T
≠ e⁄t

⁄

B

. (3.3)

The deadline is omitted from the definition of zB
t unless the dependence shall be

highlighted explicitly. To obtain the corresponding bonuses, take the derivative in
(3.1) to get zÕ

t = ≠⁄bt + ⁄zt. Inserting zB
t , the optimal benchmark bonus schedule is

bB

t = Ï

µt⁄
+ Ï(T ≠ t) + Ï

1 ≠ µt

µt

e⁄(T ≠t)
≠ 1

⁄
.

Bonuses prior to the deadline have to compensate not only for the forgone shirking
payo� with amount Ï

µt⁄
but also o�er a dynamic rent Ï(T ≠ t) to compensate the

agent for the fact that experimentation may end the relationship, depriving him of
the option to divert funds until T . However, if the agent shirked at time t, he would
strictly prefer to experiment so that his forgone utility in case of success is larger
than Ï(T ≠ t). The last term captures this additional information rent.

Contract Duration. Before determining the optimal contract duration without in-
spections, suppose first that the principal acts myopically and consider the last
instant of a contract. At t = T , the bonus is bB

T
= Ï

µT ⁄
. Ignoring previous periods,

the principal is willing to provide funds and o�er bonus bT for experimentation if

≠Ïdt + µT ⁄dt (1 ≠ bT ) Ø 0.

Inserting the bonus from above, this is equivalent to µT ⁄ Ø 2Ï. Abstracting from
dynamic rents, the principal is willing to finance experimentation whenever the
expected proceeds from the project (µT ⁄) exceed the cost of funding (Ï) plus the
cost of incentives (Ï). Define the static deadline as6

T static
© sup{T Õ

Ø 0 : µÕ
T ⁄ Ø 2Ï}.

We will compare this static deadline, which will generally not be optimal, to the
optimal deadlines without and with inspections. For the remainder of the analysis,
assume that the principal wants to experiment at least initially, i.e. µ0⁄ ≠ 2Ï > 0.

When choosing the optimal deadline, the principal internalises that each instant
of experimentation raises the bonuses at previous times due to the increasing rents.
Given the agent’s payo� as a function of the deadline in (3.3), the optimal deadline

6The myopic problem is considered as well in Green and Taylor (2016). In the current paper, the
condition features 2Ï due to the fact that fund diversion yields utility of the same amount. If the
funds delivered utility of Â, the condition would be µT ⁄ Ø Ï + Â, as in Green and Taylor (2016).
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can be derived by solving the following problem:

max
T Ø0

I⁄
T

0

1 ≠ µ0
1 ≠ µt

(µt⁄ ≠ Ï) dt ≠ µ0zB

0 (T )
J

.

It is easily verified that the objective is concave in T and strictly positive whenever
µ0⁄ > 2Ï. Using zÕ(t) = ≠

Ï

µt
, the problem can be rewritten as

max
T Ø0

I⁄
T

0

1 ≠ µ0
1 ≠ µt

1
µt⁄ ≠ Ï ≠ Ïe⁄t

2
dt

J

.

The bracketed term in the integral is strictly decreasing in t, so that the optimal
contract continues as long as it is above 0. Define the optimal benchmark deadline
by T B. It is determined by the solution to

⁄µT B = Ï + Ïe⁄T
B

. (3.4)

The expected proceeds (µT ⁄) have to compensate the principal for the cost of funding
(Ï) and the incentive cost (Ïe⁄T ) which now includes the dynamic rent component
and is higher that in the myopic consideration. As the belief is decreasing over
time, it follows that T B < T static. Without inspections, the principal commits to
ending the relationship earlier than she would myopically. This implies that the
contract is not renegotiation proof: At time T B, the principal would prefer to have
the agent experiment further and pay the necessary continuation utility. For this
reason, replacement of the entrepreneur has been suggested to improve e�ciency
in experimentation settings (Bergemann and Hege, 1998). The next section shows
that this may be reversed with inspections, the principal sometimes commits to
experimenting longer than myopically optimal. If that is the case, the contract
becomes renegotiation proof as the agent would not agree to forgo his continuation
value by earlier termination and, given the principal has to provide a positive payo�,
she prefers to do so through a contract rather than simply handing out a lump sum
payment.

�.� Optimal Contract with Inspections

I focus on the case in which the principal can schedule at most one inspection. Given
the results in the previous section, denote by V 0(µt, z) the principal’s value function
without inspections at initial belief µt and agent’s continuation utility z. The formal
expression is given in (3.A.1) in the appendix. The principal’s problem in case of a
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single inspection can be written as

V 1(µ0, u0) =

sup
t1,F,b,z

;⁄
t1

0

1 ≠ µ0
1 ≠ µt

Ë
(1 ≠ Ft) ((µt⁄(1 ≠ bt) ≠ Ï)dt ≠ dwt) +

1
V 0(µt, zt) ≠ Ÿ

2
dFt

È<
,

s.t. (PK) : µ0u0 =
⁄

t1

0

1 ≠ µ0
1 ≠ µt

[(1 ≠ Ft) (µt⁄btdt + dwt) + µtztdFt] ,

(IC).

Here, t1 is the end date of the first (pre-inspection) stage; without loss we can assume
that t1 Æ T F B which is defined by µT F B ⁄ = Ï.7 F is the cdf of the inspection-time
distribution œ �([0, t1]). Processes bt and zt denote the bonuses and continuation
utility in case of success or inspection at t.

As in the previous section, the results on the optimal contract components are
established consecutively. I first consider payments, then contract duration, and
finally the inspection policy.

Payments. The result on all contract components will depend significantly on the
precision of the inspection technology measured by ”. For payments, we have the
following result:

Proposition 1. The payments in the optimal contract with at most one inspection
are as follows:

• There are no fixed wages, wú
t = 0 for all t.

• If ” Æ ⁄, the optimal contract features positive bonuses throughout: bú
t > 0 for

all t.

• There exists ”̄ œ (⁄, Œ) such that, if ” Ø ”̄ and the optimal contract includes
inspections, then no bonuses are paid prior to inspection.

The formal proof of this and all following results are relegated to the appendix
and derived by means of the optimal-control techniques in Arutyunov et al. (2018).

The intuition for the result is as follows. Consider first the case ” Æ ⁄. If the
agent diverts funds from time 0 until an inspection at time t, he gets the continuation
utility zt with probability e≠”t, the probability that he is not detected. If the agent
experiments, he gets continuation utility zt only if no success occurs previously, i.e.
with probability e≠⁄t. If ⁄ Ø ”, the second probability does not exceed the first and

7After T F B , the principal’s expected return from experimentation is negative. She is better o�
by cutting o� the remaining part of the contract. If the original contract includes an inspection after
T F B , the inspection can be moved to T F B with lower probability replacing the agent’s continuation
utility from the remaining contract with a cash payment.
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termination before t is triggered more likely by experimentation and success than
by diversion and detection. If no bonuses were paid, the agent would prefer to reap
the benefit of fund diversion and obtain the continuation utility at t with higher
probability.

Next, let ” be large. On path, principal and agent have the same belief so that
payments can be shifted into the future in a ratio that maintains the principal and
the (non-deviating) agent indi�erent. If the detection rate is high enough, this makes
fund diversion prior to inspection less attractive. While it increases the probability
of reaching the inspection date without success and at a more optimistic belief, the
agent risks being detected. When the detection rate ” exceeds success rate ⁄ by a
su�cient amount, the second e�ect dominates. In this case, the rents necessary for
post-inspection incentives have an additional reward for the principal. The threat of
loosing the promised continuation payo� at inspection prevents fund diversion prior
to inspection without additional payments. The rents from the post-inspection stage,
which give the agent strictly positive continuation payo�, are re-used to provide
incentives also at the pre-inspection stage.

Contract Duration. Due to the re-use of rents, the principal’s tendency to commit
to ine�cient early termination is dampened with inspections, as the following result
shows.

Proposition 2. Suppose an inspection is performed at time tú. Let T ú
≠ tú be the

remaining contract duration. If ” > ⁄, then T ú
≠ tú > T B(µtú), the continuation

contract lasts longer than the optimal no-inspection benchmark starting with prior
belief µtú.

To compare the two deadlines, suppose we start at time 0 but with prior belief
µtú and choose the optimal deadline T B without inspection. Benchmark deadline
T B was determined in (3.4) by the condition µT B ⁄ ≠ Ï ≠ Ïe⁄T

B = 0. For the case
with inspection, the proof in the appendix reveals that there is a multiplier Â(t) > 0
associated with the agent’s incentive constraint such that, when inspection occurs
at time tú, experimentation continues optimally until the time T ú determined by

µT ú⁄ ≠ Ï ≠ Ïe⁄(T ú≠t
ú) + Ïe⁄(T ú≠t

ú)Â(t)(1 ≠ e≠(”≠⁄)tú) = 0.

While the first three terms are the same as in the optimality condition in the no-
inspection benchmark when starting at tú, there is an additional term, which is pos-
itive when ” > ⁄ so that T ú has to be strictly later than T B. Recall that we defined
T static as the solution to µt ≠2Ï = 0. Hence, when ≠Ïe⁄(T ú≠t

ú) +Ïe⁄(T ú≠t
ú)Â(t)(1≠

e≠(”≠⁄)tú) > ≠Ï, the principal values the rents created in the continuation contract
so much that she commits to experimenting longer than myopically optimal.



�� | Chapter �: Inspecting Experimentation

Inspection Policy. The previous two results reveal how payments and deadline are
chosen optimally. What is the optimal distribution over inspection times? Per-
haps surprisingly, the optimal inspection time is deterministic when inspections are
su�ciently precise.

Proposition 3. If the inspection cost Ÿ exceeds Ÿ̄, the benchmark contract without
inspections is optimal. Otherwise, there is a principal-optimal contract with inspec-
tion.

• The support of the inspection distribution F ú is finite.

• If ” > ”̄, then there is a deterministic inspection time tú and deadline T ú such
that there are no payments prior to tú, and the continuation contract from tú

onward is given by the benchmark contract starting at belief µtú with remaining
duration T ú

≠ tú.

The reason why randomisation does not help in incentive provision lies in the
time-risk preferences induced by the succession of events in an experimentation
setting and how the agent’s choices a�ect their arrival rates. Consider a random
inspection time t̃. When the agent experiments, payo�s at time t̃ (conditional on no
prior success) are e�ectively discounted at rate ⁄. The expected discount factor is
E

Ë
e≠⁄t̃

È
. When the agent diverts funds, t̃ is reached for certain without prior success.

The expected time is E
#
t̃
$
. Consider replacing t̃ with deterministic time t such that

e≠⁄t = E
Ë
e≠⁄t̃

È
, so the expected discount factor remains equal for the principal and

the agent who experiments. The convexity of the exponential function and Jensen’s
inequality imply that t Æ E

#
t̃
$
, with strict inequality if t̃ is non-degenerate. The

funds the agent can divert until inspection decrease from ÏE
#
t̃
$

to Ït while the
expectations for principal and on-path agent remain equal. Thus, replacing t̃ by the
deterministic inspection time t reduces the agent’s incentives to divert funds while
leaving the expected discounted experimentation payo� unchanged.8 DeJarnette
et al. (2020) show that, under exponential discounting, impatience induces risk-
seeking over time lotteries.9 Discounting increases the expected impact of payo�s
that are timed randomly. In the present setting, an inspection has a negative impact
on the agent’s payo� as it terminates his fund-diversion opportunity. when he diverts
funds, the principal’s e�ective discount rate is higher than the agent’s. Hence, when
its timing is deterministic, the expected impact of the inspection is relatively larger
on the agent.

8Note that this comparison is not driven by the absence of standard discounting. If we want to
capture the players’ impatience with discount rate r, the above change from random to deterministic
timing has the same e�ect, where the linear term corresponding to the perspective of the diverting
agent is replaced by e≠rt and the term corresponding to on-path behaviour is replaced by e≠(r+⁄)t.

9A time lottery in DeJarnette et al. (2020) is a fixed (positive) lump-sum payment realised at a
random time.
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�.� Concluding Remarks

This paper incorporates the possibility of detecting fund-diversion in a two-armed
bandit model of strategic experimentation. I analyse the e�ect of the principal’s
inspection ability on optimal contracts. I find that the optimal contract depends
crucially on the quality of the inspection technology. With low inspection precision,
bonuses are required for incentives at all times. With precise inspections, early
periods are incentivised solely through inspections, re-using the rents resulting from
the later payments that are required for incentives after inspection. In this case, the
optimal inspection timing is deterministic. The next chapter of this thesis reveals
that randomisation can be valuable for incentive provision in non-experimentation
settings and and shows that the discounting-induced risk-preferences of a diverting
agent can go in the other direction. Possible further steps within the present study
include the characterisation of optimal contracts for low and intermediate inspection
precision and the principal’s freedom to choose the total number of inspections.
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�.A Appendix
This appendix contains the formal proofs not included in the main text. I derive necessary condition
applying the Maximum Principal in Arutyunov et al. (2018) which allows for continuous and impulse
controls. Existence of a solution is ensured by Theorem 7.1 therein.

�.A.� Proofs without Inspections
The following result characterises the optimal contract underlying Section 3.3.

Proposition 4. Without inspections, given initial belief µ and promised utility z, the principal’s

value function is

V 0(µ, z) = ≠µz + µ
1 ≠ e≠⁄T (µ,z)

⁄
(⁄ ≠ Ï) ≠ (1 ≠ µ)ÏT (µ, z), (3.A.1)

with T (µ, z) = min
Ó

T F B ; z
Ï + 1≠µ

µ⁄ ≠ 1
⁄ W

1
1≠µ

µ e
1≠µ

µ +z⁄/Ï
2Ô

. Here, W (x) denotes the product

logarithm which is implicitly defined as the value w s.t. wew = x.

Proof. To match the (Meyer) formulation of the control problem in Arutyunov et al. (2018), define
the additional state Ot where O stands for the principal’s objective. The maximum problem can
be written as

min
T,b,w

{≠O(T ) + w0}

s.t.

dOt = 1 ≠ µ0
1 ≠ µt

((µt⁄(1 ≠ bt) ≠ Ï)dt ≠ dwt) O0 = 0

dzt = ⁄(zt ≠ bt)dt ≠ dwt

µt
z0 = z0, zT Ø 0

⁄bt Ø Ï
µt

+ ⁄zt.

Let ÂX denote the co-state associated with state X œ {O, z}. The Hamiltonian associated with
this problem is given by

H(t) = ÂO
t

1 ≠ µ0
1 ≠ µt

(µt⁄(1 ≠ bt) ≠ Ï) + Âz
t ⁄(zt ≠ bt).

The impulse function, Q, associated with the control dwt is given by

Q(t) = ≠ÂO
t

1 ≠ µ0
1 ≠ µt

≠ Âz
t

1
µt

.

Optimality demands Q(t) Æ 0 for all t œ [0, T ] with equality whenever dwt > 0. The co-state ÂO
t

is constant as Ot is absent from both H and Q and we have ÂO
t = ÂO œ {0, 1}. The co-state Âz

t

satisfies Âz
T Ø 0 and dÂz

t = ≠Âz
t ⁄dt, so that Ât = e⁄(T ≠t)Âz

T . This implies that

Q(t) = ≠Â0(µ0e≠⁄t + 1 ≠ µ0) ≠ e⁄(T ≠t)Âz
T (1 + 1 ≠ µ0

µ0
e⁄t)

= ≠
!
µ0e≠⁄t + 1 ≠ µ0

" 3
Â0 + Âz

0
µ0

4

By optimality conditions (6.17-20) in Arutyunov et al. (2018, pp. 138-139), ÂO + |Âz
0 | > 0 and

ÂO, Âz
T Ø 0. Therefore, we have Q(t) < 0 for all t and dwt = 0 for all t.
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This gives a simplification of the problem, as only an initial wage w0 may be paid at the
beginning of the contract. Further, constraint ⁄bt Ø Ï

µt
+ ⁄zt has to bind everywhere as otherwise

we need ˆH
ˆb = 0 which implies ÂO + Âz

0 = 0, a contradiction.
The problem is reduced to choosing the optimal initial wage w0 and deadline T to maximise

⁄ T

0

1 ≠ µt

1 ≠ µ0
(µt⁄ ≠ Ï) dt,

subject to the constraint µ0z0 = w0+Ï
s T

0
1≠µt
1≠µ0

e⁄t⁄dt. It is optimal to choose w0 = 0 if µT ⁄≠Ï > 0
for T : Ï

s T

0
1≠µt
1≠µ0

e⁄tdt = µ0z0. Otherwise, it is optimal to choose T = T F B © T Õ : µT Õ ⁄ ≠ Ï = 0

and w0 = µ0z0 ≠ Ï
s T F B

0
1≠µt
1≠µ0

e⁄tdt.

�.A.� Proofs with Inspection
To match the (Meyer) formulation of the control problem in Arutyunov et al. (2018), define the
additional state Ot where O stands for the principal’s objective. Further, I do not include wages as
controls and verify in the proof of Proposition 1 that this is optimal. The control problem reads

min
t1,‹,z

{≠O(t1)}

dOt = (1 ≠ Ft)
1 ≠ µ0
1 ≠ µt

[(µt⁄(1 ≠ bt) ≠ Ï)dt] + 1 ≠ µ0
1 ≠ µt

!
≠Ÿ + V 0(µt, zt)

"
d‹t O0 = 0

dBt = (Bt ≠ (1 ≠ Ft)bt) ⁄dt B0 Ø 0, Bt1 = 0

dZt = Zt⁄dt ≠ ztd‹t Z0 Ø 0, Zt1 = 0

dFt = d‹t F0 = 0, Ft1 Æ 1

dGt = (1 ≠ Ft)
!
µ0e≠⁄t⁄bt ≠ Ï

"
dt + µ0

!
e≠⁄t ≠ e≠”t

"
ztd‹t G0 = 0, Gt1 Ø 0

¸(bt, Ft, Bt, Zt, t) = ≠⁄bt(1 ≠ Ft) + Ï
µt

(1 ≠ Ft) + ⁄Bt ≠ (” ≠ ⁄)Zt Æ 0.

where the controls are t1 œ [0, T F B ], ‹ œ �([0, t1]), and zt Ø 0 for all t. Note that zt is now a control
chosen directly rather than a state governed by bonuses as in the no-inspection case. Condition
Gt1 Ø 0 represents the global incentive constraint that fund-diversion at all times be less attractive
than experimentation. The constraint ¸ Æ 0 determines the local incentive constraint, determined
analogously to the constraint in the non-inspection benchmark.

Let ÂX denote the co-state associated with state X œ {O, B, Z, F, G}. The endpoint conditions
(6.20) in (Arutyunov et al., 2018, p. 139) imply

ÂO
t1 = › œ {0, 1}, ÂB

0 Æ 0, ÂZ
0 Æ 0, ÂF

t1 Æ 0, ÂG
t1 Ø 0,

ÂB
0 B0 = 0 ÂZ

0 Z0 = 0 ÂF
t1 (1 ≠ Ft1 ) = 0, ÂG

t1 Gt1 = 0.

The Hamiltonian is given by

H
!
O, B, Z, F, G ; b, z, ‹ ; ÂO, ÂB , ÂZ , ÂF , ÂG ; t

"
=

(1 ≠ Ft)
5

ÂO
t

1 ≠ µ0
1 ≠ µt

(µt⁄(1 ≠ bt) ≠ Ï) ≠ ÂB
t ⁄bt + ÂG(µ0e≠⁄tbt ≠ Ï)

6
+ ÂB

t ⁄Bt + ÂZ
t ⁄Zt.

The switching function, capturing the e�ect of measure ‹, is given by

Q
!
O, B, Z, F, G ; b, z, ‹ ; ÂO, ÂB , ÂZ , ÂF , ÂG ; t

"

= ÂO
t

1 ≠ µ0
1 ≠ µt

!
≠Ÿ + V 0(µt, zt)

"
+ ÂF

t ≠ ÂZ
t zt + ÂGµ0(e≠⁄t ≠ e≠”t)zt.
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Henceforth, we will write H(t) and Q(t) and omit the other arguments unless a dependence shall
be made explicit.

Let ÷t be the multiplier associated with the mixed constrained ¸. For each state X, the evolution
of co-state ÂX is governed by dÂX

t = ≠ ˆH
ˆX dt ≠ ˆQ

ˆX d‹t + ˆ¸
ˆX ÷(t)dt. As Ot and Gt, do not appear in

H nor Q, their co-states are constant, i.e. ÂO
t = › œ {0, 1} and ÂG

t © ÂG Ø 0 for all t.
Any optimal path satisfies

ˆH
ˆb

+ ˆQ
ˆb

= ˆ¸
ˆb

÷t

≠ ›(1 ≠ Ft)µ0e≠⁄t⁄ ≠ (1 ≠ Ft)ÂB
t ⁄ + ÂGµ0(1 ≠ Ft)e≠⁄t⁄ = ≠⁄(1 ≠ Ft)÷t,

which simplifies to

÷t = ›µ0e≠⁄t + ÂGµ0e≠⁄t + ÂB
t . (3.A.2)

The co-states ÂB
t and ÂZ

t satisfy the di�erential relation

dÂB
t = ≠⁄ÂB

t dt + ⁄÷tdt and dÂZ
t = ≠⁄ÂZ

t dt + (⁄ ≠ ”)÷tdt.

Define the current value expressions for ÂB
t as ẪB

t © ÂB
t

e≠⁄t and likewise for ÂZ
t and ÷t. Then, we get

ẪB
t ≠ ÷̃t = µ0(› + ÂG),

dẪB
t = ÷̃t⁄dt,

dẪZ
t = ÷̃t(⁄ ≠ ”).

Further, by (3.A.2) d÷̃t = dẪB
t = ÷̃t⁄dt, which leads to

÷̃t = ÷0e⁄t, ẪB
t = ÂB

0 ≠ ÷0 + ÷0e⁄t = ÷0e⁄t ≠ µ0(› + ÂG), ẪZ
t = ÂZ

0 + ÷0(⁄ ≠ ”)e⁄t ≠ 1
⁄

,

or in non-discounted expression, as both will be used below:

÷t = ÷0, ÂB
t = ÷0 ≠ µ0e≠⁄t(› + ÂG), ÂZ

t = ÂZ
0 e≠⁄t + ÷0(⁄ ≠ ”)1 ≠ e≠⁄t

⁄
.

First, we show that › = 1, i.e. that the problem is not degenerate. Suppose to the contrary
that › = 0. Then, for maxz Q(z) to be non-positive, we need ÂZ

t Ø ÂGµ0(e≠⁄t ≠ e≠”t) for all t and,
in particular, ÂZ

0 = 0. This implies ÂG = 0, which we show separately for the two cases ” > ⁄ and
” < ⁄.

In the case of ” > ⁄, ÂZ
t is decreasing, and we need for all t, that ÂZ

t = ≠(” ≠ ⁄) 1≠e≠⁄t

⁄ Ø
ÂGµ0(e≠⁄t ≠ e≠”t). As both are 0 at t = 0, this requires that

lim
t√0

ˆ
ˆt

3
(” ≠ ⁄)1 ≠ e≠⁄t

⁄
+ ÂGµ0(e≠⁄t ≠ e≠”t)

4
Æ 0.

This is equivalent to ” ≠ ⁄ + ÂGµ0(” ≠ ⁄) Æ 0, which gives a contradiction as it requires ” Æ ⁄.
In case ” Æ ⁄, consider ÂZ

t = ÷0(⁄ ≠ ”) 1≠e≠⁄t

⁄ Ø ÂGµ0(e≠⁄t ≠ e≠”t). By (3.A.2) at ÂZ
0 = 0, we

have ÷0 Æ ÂGµ0, inserting ÷0 Æ ÂGµ0 on the left-hand side of the inequality and considering the
derivative of both sides with respect to t at t close to 0 show that this can only hold if ÂG = ÷0 = 0.
Hence, ÂG = 0 also if ” Æ ⁄.

If ÂG = 0, then ÷0 = ÂB
0 , which implies that both are = 0 as ÷0 Ø 0 and ÂB

0 Æ 0. This cannot
be part of an optimal solution as all co-states are 0. Therefore, the problem does not degenerate,
and we have › = 1.



�.A Appendix | ���

Proof of Proposition �
For exposition, wages were excluded from the optimal-control specification above. To see that they
are 0 everywhere optimally, consider a contract with fixed inspection cdf F which is not everywhere
equal to 0 and some incentive compatible combination of payment and continuation utility processes
(b̃, w̃, z̃). The agent’s expected utility is

⁄ t1

0

1 ≠ µ0
1 ≠ µt

#
(1 ≠ Ft)

!
µt⁄b̃tdt + dw̃t

"
+ µtz̃tdFt

$
© µ0u0.

Determine the total expected pre-inspection wage payments P̃ =
s t1

0 (1 ≠ Ft) 1≠µ0
1≠µt

dw̃t and consider
the modified continuation value process z defined by

zt = z̃t + P̃s t1
0

1≠µ0
1≠µt

µtdFt

.

Substituting for u0 in the objective, we get

≠µ0u0 +
⁄ t1

0

1 ≠ µ0
1 ≠ µt

#
(1 ≠ Ft)(µt⁄ ≠ Ï)dt +

!
≠Ÿ + V 0(µt, zt) + µtzt

"
dFt

$
dt.

We have ˆ
ˆz V 0(µ, z) Ø ≠µ. Thus, for fixed value of u0, increasing zt increases the principal’s payo�.

Finally the modification from (b̃, w̃, z̃) to (b̃, 0, z) creates no profitable deviation. Consider the
right hand side of the IC constraint:

max
a

⁄ t1

0
(1 ≠ Ft)

3
µ0e

≠⁄
s t

0
asds + 1 ≠ µ0

4
(1 ≠ at)Ïdt + µ0e

≠⁄
s t

0
asds

e
≠”

s t

0
(1≠as)ds

ztdFt.

By construction of z, the expected utility without fund diversion remains equal:
⁄ t1

0

1 ≠ µ0
1 ≠ µt

(≠(1 ≠ Ft)dw̃t + µt(zt ≠ z̃t)dFt) = 0.

For general strategy a, the di�erence in expected utility resulting from the shift is
⁄ t1

0

5
≠(1 ≠ µ0)(1 ≠ Ft)dw̃t + µ0e≠⁄t

3
≠(1 ≠ Ft)⁄e

⁄
s t

0
(1≠as)ds

dw̃t + e
≠(”≠⁄)

s t

0
(1≠as)ds(zt ≠ z̃t)dFt

46
.

For all t, we have that 1 ≠ µ0 + µ0e
⁄

s t

0
(1≠as)ds Ø µ0e

(⁄≠”)
s t

0
(1≠as)ds for any action profile a. As

the modification satisfies dw̃t Ø 0 and (zt ≠ z̃t) Ø 0, the integral must be smaller than the previous
one. Hence, shifting wage payments to the future does not decrease the principal’s payo� while
decreasing all diversion incentives.

Now, consider the second part of the proposition, that is, ⁄ > ”. The (necessary) local condition
for experimentation at time t was given by ⁄bt(1 ≠ Ft) Ø Ï

µt
(1 ≠ Ft) + ⁄Bt + (⁄ ≠ ”)Zt. As Bt and

Zt are nonnegative, the necessity of positive bonus payments follows immediately in the case ⁄ > ”.
Finally, let ” > ⁄. We have by (3.A.2) that ÷0 = µ0(1 + ÂG) + ÂB

0 , which gives ÂZ
t =

ÂZ
0 e≠⁄t + (µ0(1 + ÂG) + ÂB

0 )(⁄ ≠ ”) 1≠e≠⁄t

⁄ .
Inserting into Q(t) gives:

Q(t) = 1 ≠ µ0
1 ≠ µt

!
≠Ÿ + V 0(µt, zt)

"

+
3

ÂGµ0(e≠⁄t ≠ e≠”t + (” ≠ ⁄)1 ≠ e≠⁄t

⁄
) ≠ ÂZ

0 e≠⁄t + (µ0 + ÂB
0 )(” ≠ ⁄)1 ≠ e≠⁄t

⁄
)
4

zt

+ ÂF
t .
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We can see that, if there is an inspection at some time t > 0, for Q(t) not to explode in z, the
derivative of the bracket cannot be too high. In particular, if ” becomes arbitrarily large, ÂB

0 < 0
is required to maintain arg maxz Q(t, z) Æ 0. However, ÂB

0 < 0 implies B0 = 0. No bonuses can be
paid.

Proof of Proposition �
The remaining contract duration after inspection at t, which we denote by T (t) ≠ t, is determined
by the first-order condition on Q with respect to z:

ˆQ
ˆz

= 1 ≠ µ0
1 ≠ µt

ˆV 0

ˆz
+

!
ÂG(e≠⁄t ≠ e≠”t)µ0 ≠ ÂZ

t

"
.

The benchmark deadline is determined by z such that ˆV 0
ˆz = 0. As V 0 is concave in z, the

optimal value after inspection at t is larger than the benchmark if and only if the bracketed term
above is positive. Substituting for ÂZ

t gives:

ÂG(e≠⁄t ≠ e≠”t)µ0 ≠ ÂZ
t = ÂG(e≠⁄t ≠ e≠”t)µ0 ≠ ÂZ

0 e≠⁄t + ÷0(” ≠ ⁄)1 ≠ e≠⁄t

⁄
.

If ” ≠ ⁄ > 0, the term is positive since ÂZ
0 Æ 0 and ÂG, ÷0 Ø 0.

Proof of Proposition �
To determine the inspection policy, we have to consider the shape of the switching function Q.
Optimality requires that Q(t) Æ 0 for all t and Q(t) = 0 for all t in the support of the inspection
distribution. The co-state ÂF

t satisfies the di�erential relation

dÂF
t = ›

1 ≠ µ0
1 ≠ µt

(µt⁄(1 ≠ bt) ≠ Ï)dt ≠ ÂB
t ⁄btdt + ÂG(µ0e≠⁄tbt ≠ Ï)dt + ÷t

3
⁄bt ≠ Ï

µt

4
dt

= ›
1 ≠ µ0
1 ≠ µt

(µt⁄ ≠ Ï)dt ≠ ÂGÏdt ≠ ÷t
Ï
µt

dt.

The second equality follows from (3.A.2) and conveniently implies that Q(t) can be expressed
independently of the bonuses. Integrating gives:

ÂF
t = ÂF

0 + µ0
1 ≠ e≠⁄t

⁄
(⁄ ≠ Ï) ≠ (1 ≠ µ0)Ït ≠ ÂGÏt ≠ ÷0Ït ≠ ÷0

1 ≠ µ0
µ0

e⁄t ≠ 1
⁄

.

Consider Q(t) after plugging in for ÂF
t from above, zt from (3.1), and V 0 from (3.A.1). After

some algebra, this leads to:

Q(t) = ≠1 ≠ µ0
1 ≠ µt

Ÿ + (ÂGµ0(e≠⁄t ≠ e≠”t) ≠ ÂZ
t ≠ µ0e≠⁄t)Ï

3
(T (t) ≠ t) + 1 ≠ µ0

µ0

e⁄T (t) ≠ e⁄t

⁄

4

+ µ0
1 ≠ e≠⁄T (t)

⁄
(⁄ ≠ Ï) ≠ (1 ≠ µ0)ÏT (t)

+ ÂF
0 ≠ ÂGÏt ≠ ÷0Ït ≠ ÷0

1 ≠ µ0
µ0

e⁄t ≠ 1
⁄

.

Di�erentiation w.r.t T gives the FOC for continuation utility after inspection at t:

0 = (ÂGµ0(e≠⁄t ≠ e≠”t) ≠ ÂZ
t ≠ µ0e≠⁄t)Ï

3
1 + 1 ≠ µ0

µ0
e⁄T (t)

4
+ µ0e≠⁄T (t)(⁄ ≠ Ï) ≠ (1 ≠ µ0)Ï.
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The above can be re-arranged as:

0 = (1 ≠ µ0)
µT (t)

1 ≠ µT (t)

!
µT (t)⁄ ≠ Ï

"
+

!
ÂGµ0(e≠⁄t ≠ e≠”t) ≠ ÂZ

t ≠ µ0e≠⁄t
"

Ï.

Inserting ÂZ
t :

(1 ≠ µ0)
µT (t)

1 ≠ µT (t)

!
µT (t)⁄ ≠ Ï

"
(3.A.3)

+ e≠⁄tÏ

3
ÂGµ0(1 ≠ e≠(”≠⁄)t) ≠ ÂZ

0 + ÷0(” ≠ ⁄)e⁄t ≠ 1
⁄

≠ µ0

4
= 0. (3.A.4)

The first bracket is positive if and only if T (t) Æ T F B . Hence, the second bracket must be negative
for the optimal duration T (t) not to exceed T F B . Furthermore, the second bracket is independent
of T (t) which implies that, if it were positive, the optimal T (t) would be infinite and Q > 0,
contradicting the optimality conditions. Therefore T (t) Æ T F B always.

If ” > ⁄, the second bracket is smallest among all feasible co-state values when ÂG = ÂZ
0 = 0

(Recall that we have ÂG Ø 0 and ÂG Æ 0). This gives an upper bound on t1:

t1 Æ 1
⁄

log
3

µ0⁄
÷0(” ≠ ⁄) + 1

4
.

Further, the second bracket in (3.A.3) is smallest when ÷0 = 0. This allows us to conclude that
ÂZ

0 œ [≠µ0, 0]. Similarly, we need ÂG Æ µ0 + ÂZ
0 for the bracket to be negative at t = 0.

Di�erentiating Q with respect to t gives:

ˆQ
ˆt

= µ0e≠⁄t⁄Ÿ

≠
1

ÂGµ0(e≠⁄t ≠ ”
⁄

e≠”t) ≠ e≠⁄t((ÂZ
0 + µ0) + ÷0

⁄ ≠ ”
⁄

)
2

⁄Ï

3
(T (t) ≠ t) + 1 ≠ µ0

µ0

e⁄T (t) ≠ e⁄t

⁄

4

≠
1

ÂGµ0(e≠⁄t ≠ e≠”t) ≠ (ÂZ
0 e≠⁄t + µ0e≠⁄t + ÷0

⁄ ≠ ”
⁄

(1 ≠ e≠⁄t)) + ÷0

2
Ï

3
1 + 1 ≠ µ0

µ0
e⁄t

4

≠ ÂGÏ,

which can be simplified to:

ˆQ
ˆt

= µ0e≠⁄t⁄Ÿ

≠
1

ÂGµ0(1 ≠ ”
⁄

e≠(”≠⁄)t) ≠ ÂZ
0 ≠ µ0 + ÷0

” ≠ ⁄
⁄

2
⁄Ï

3
e≠⁄t(T (t) ≠ t) + 1 ≠ µ0

µ0

e⁄(T (t)≠t) ≠ 1
⁄

4

≠
1

ÂGµ0(1 ≠ e≠(”≠⁄)t) ≠ ÂZ
0 ≠ µ0 ≠ ÷0

” ≠ ⁄
⁄

+ ÂGe⁄tµt

2
e≠⁄t Ï

µt
.

From the FOC on Q with respect to T (3.A.3), we know that

ÂGµ0(1 ≠ e≠(”≠⁄)t) ≠ ÂZ
0 ≠ µ0 + ÷0(” ≠ ⁄)e⁄t ≠ 1

⁄
Æ 0,

which implies that, if ” is su�ciently large, the time derivative of Q is positive. Therefore, as
inspection can happen only for times t with Q(t) = 0, we can conclude that there is a bound ”̄

such that for any ” Ø ”̄, there can be at most one inspection time. That performing the inspection
is optimal unless Ÿ is too high, follows from comparing the optimal value without inspection given
in the previous subsection with the value attainable with the inspection. At low Ÿ, the latter is
higher.
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�
Dynamic Incentives with
Costly Inspections

Joint with Peter A. Wagner

�.� Introduction

Critics and advocates alike recognise the European Union’s potential as a ‘regulatory
superpower’ (The Economist, 2020). Few manufacturers can a�ord not to comply
with EU regulation and thereby renounce its single market with more than 500m
consumers. The EU prides itself on passing demanding standards so that abiding by
its regulation is su�cient to fulfil most non-EU countries’ requirements. A ‘Rise of
the Regulatory State in Europe’ was already observed by Majone (1994), referring to
the shift in state interventions away from public ownership and centralised planning
to more fine-tuned regulation.

Regulation with fine-tuned interventions requires e�ective procedures to ensure
compliance with standards for production and accounting procedures or transac-
tions which are often complex and hard to observe. Recognising the challenges of
compliance, the European Commission provides substantial guidance in the form of
non-binding recommendations, best-practice benchmarks, and case studies. A case
in point is the recommendation (EU) 2019/138 (European Commission, 2019) which
‘provides a framework to help exporters identify, manage and mitigate risks asso-
ciated with dual-use trade controls and to ensure compliance with the relevant EU
and national laws and regulation.’ Dual-use goods are products with civil as well as
military applications that fall under special regulation to promote international se-
curity, e.g. by ‘countering risks associated with the proliferation of Weapons of Mass
Destruction’ (European Commission, 2019, p. 17). The recommendation focuses on
the established practice of elaborating an Internal Compliance Programme (ICP).
The essential components of ICPs can be summarised with the following quotes.
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A well-functioning ICP has clear reporting procedures about the noti-
fication and escalation actions of employees when a suspected or known
incident of non-compliance has occurred. As part of a sound compliance
culture, employees must feel confident and reassured when they raise
questions or report concerns about compliance in good faith. Perform-
ance reviews, audits and reporting procedures are designed to detect
inconsistencies to clarify and revise routines if they (risk to) result in
non-compliance.

identifies and appoints the person(s) with the overall responsibility to en-
sure the corporate compliance commitments.The internal organisational
structure (European Commission, 2019, pp. 20 & 25)

Further, the document suggests that the person(s) responsible for compliance ‘should
have the power to stop transactions’, and to establish a ‘set of remedial actions
to guarantee the proper implementation of the ICP’ (European Commission, 2019,
p. 24).

The aim of this paper is to study how these elements, reporting procedures,
audits, and potential punishments are optimally combined to ensure maximal com-
pliance in various situations. Is it possible to implement full compliance and, if so,
what are the incentives of a compliance manager to perform inspections of which he
already knows the outcome?

To capture the most salient ingredients of this problem, we present a dynamic
game between a principal and an agent. The principal is tasked with ensuring that
the agent complies with regulation. The agent privately observes the current state
of compliance which is subject to changes at random times. Whenever a potential
change arrives, the agent’s current e�ort determines the probability of maintaining
or obtaining compliance. At each point in time, the agent chooses privately how
much e�ort to invest. He then observes the compliance state and makes a report to
the principal. The principal decides whether to verify this report at a cost and may
choose to punish the agent. Further applications captured by our model include the
following:

Risk-management in banks. Applying our model to the financial sector, the prin-
cipal represents the authority aiming to ensure that banks apply proper risk as-
sessment.1 The agent represents a financial institution. The banking authority can
verify the bank’s risk exposure by conducting stress-tests or on-site audits, and it
has the power to punish banks either through monetary fines, by demanding changes

1In EU member states, this is the responsibility of the central bank and/or the finance ministry.
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in the management structure, or by denying the bank license. We revisit this ap-
plication in Section 4.5 where we discuss possible means to enable randomisation
without commitment.

General Data Protection Rules (GDPR). Since May 2018, the processing and hand-
ling of private data of users in the European Union falls under a EU-wide set of rules
(EU, 2016). With particular emphasis on the online context, these rules are espe-
cially relevant for technology firms as those pooled under the acronym GAFAM.2

The regulation requires data-handling organisations to identify a responsible data
protection o�cer. In our model, the principal represents the data protection o�cer
who is tasked with ensuring and monitoring compliance by the organisation’s sta�
with the regulation.

Results. Our main result shows how full compliance can be attained in equilibrium
requiring minimal inspection costs from the principal. This equilibrium entails two
phases that depend on the agent’s report: a penalty phase and a monitoring phase.
Reporting non-compliance induces the penalty phase in which the agent pays a fixed
flow fine, but is not inspected. Reporting compliance induces the monitoring phase
in which the agent is never fined but subject to periodic inspections. The dynamic
incentives in our setting require a transition fine, that is, a penalty the agent faces for
reporting a failure in compliance while in the monitoring phase. The fine increases
as the next inspection approaches. The transition fine is needed because the agent
would otherwise have an incentive to delay reporting instances of non-compliance in
the monitoring phase, in the hope to recover compliance prior to the next inspection.

To characterise this optimal equilibrium, we find a lower bound on the inspection
costs required to provide incentives for compliance and then show how this bound
can be attained. This bound is established by two results. First, the principal can
achieve compliance at the same costs as if she were able to commit to any predict-
able inspection protocol. Second, a non-committed principal cannot benefit from
randomisation. Thus, we can identify an optimal equilibrium by solving a related
mechanism design problem in which the principal can commit to a cost-minimising
predictable inspection protocol subject to the agent’s incentive compatibility con-
straints.

Comparative statics reveal that compliance can be achieved at lower inspections
costs when the maximal punishment the principal can impose is larger or when
the agent’s e�ort cost is smaller. The arrival rate of transitions and the connection
between e�ort and realised compliance conditional on arrival have ambiguous e�ects
on the inspection costs. In both cases, an increase gives the agent more control over

2Google, Apple, Facebook, Amazon, Microsoft.
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the state. This makes the current state of compliance more informative about e�ort
shortly before but erodes the link between current compliance and e�ort further
in the past. We show that a high degree of control for the agent makes incentive
provision through inspections arbitrarily costly. This cost increase stems from the
fact that, without commitment, inspections cannot be randomised, so the agent is
confident to improve quality prior to inspection whenever it lies in the strict future.

The cost increase is closely related to the value of randomised inspections. Con-
sidering the contracting problem for a committed principal without the restriction
to predictable inspections we show that a random mechanism dominates predictable
plans. In light of our result that a non-committed principal cannot benefit from
randomisation, we discuss possible sources of commitment power or incentives to
inspect. In particular, we conclude that the separation of inspection planning and
execution as observed in banking supervision is a promising measure.3

Our results shed light on the role of commitment in e�ective compliance pro-
cedures. Commitment power is important for costly inspections in two fundamental
and intertwined ways: First, when full compliance is expected from the agent, the
principal has no incentive to pay inspection costs to reveal the agent’s private in-
formation. For instance, Reinganum and Wilde (1985) show that full compliance
is not achievable without commitment in static games. Second, randomised inspec-
tions – which may be more e�ective in providing incentives – are more demanding
on the principal’s commitment power.

With repeated interactions in which the principal’s choices a�ect the continu-
ation play, there is scope to provide punishment for insu�cient inspection. Indeed,
Ben-Porath and Kahneman (2003) prove a folk-theorem, showing that full compli-
ance can be obtained without commitment in the undiscounted limit through public
reports and random inspections. In our game, full compliance is attainable even
with discounting. However, the non-committed principal cannot lower inspection
costs through randomisation. These di�erences stem from the observability of in-
spections. In Ben-Porath and Kahneman (2003), inspections are not observable
so that some instances of non-compliance are required to identify and incentivise
inspections. When these incentives are provided tightly, that is, such that the prin-
cipal is indi�erent between inspecting or not, and inspections are unobserved, the
principal may as well randomise. In the equilibrium constructed in Ben-Porath and
Kahneman (2003), the frequency of non-compliance vanishes as the discount factor
approaches one. In the applications we want to study with this paper, it seems
sensible to assume that the agent observes inspections carried out by the principal.
This makes it possible to provide strict incentives for the principal as the failure
to inspect can be punished. Randomisation, however, requires the principal to be

3See discussion in Section 4.5.
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indi�erent between inspecting or not. We show that this precludes benefiting from
randomisation without commitment power. This may explain the findings in Chang
et al. (1993), demonstrating a high degree of predictability of Medicare audits in the
US.

Related literature. The literature on costly state verification (CSV) has been influ-
ential in explaining debt contracts and the role of financial intermediaries. A number
of papers have studied dynamic extensions of the static models by Townsend (1979),
Gale and Hellwig (1985), Mookherjee and Png (1989) and Border and Sobel (1987).
These include models with a risk-neutral agent and deterministic monitoring schemes
(Webb, 1992, Chang, 1990), with a risk-neutral agent and random verification un-
der wealth constraints (Monnet and Quintin, 2005, Antinolfi and Carli, 2015), and
models with randomised verification and a risk-averse agent (Wang, 2005, Popov,
2016). These papers focus on discrete time settings in which the agent’s information
is i.i.d. across periods. More similar to the setup in this paper is Ravikumar and
Zhang (2012) which also considers a continuous-time model with persistent private
information. However, they consider a pure adverse selection framework in which
private information results from a single exogenous jump in income that is unob-
servable to the principal. In contrast, we consider an information structure that
allows for oscillations between states, and e�ort-dependent transition rates.

All of the above papers focus on optimal mechanisms in which the principal has
full commitment power. Less attention has been given to the question of limited
commitment in costly state verification models. A notable exception is the paper by
Krasa and Villamil (2000) which considers an extension of the standard CSV model
in which the principal is free to choose whether to go to court to enforce a contract.
Their results are similar in spirit to ours, in that randomisation is optimal when
the principal can commit ex-ante, but deterministic verification is optimal without
commitment. However, they use a static model and rely on the assumption of an
external party that enforces the contract. The strategic concerns in our dynamic
model without third-party enforcement are somewhat di�erent.

There is another strand of related literature that is concerned with deterrence of
crimes and illegal behaviour through policing and punishment (Becker, 1968, Bas-
setto and Phelan, 2008, Bond and Hagerty, 2010, Dye, 1986). The primary focus of
these papers is the enforcement of an agent’s hidden action. This stands in contrast
to the CSV literature, which focuses on the problem of eliciting hidden information.
For the case of limited commitment, there is an extensive literature on so-called
‘inspections games’ which have been applied to various problems, among them pol-
lution and arms control. The various contributions to this literature, including static
as well as dynamic models, are surveyed by Avenhaus et al. (2002). A feature of
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equilibria in inspection games is that without commitment, it is impossible to induce
the agent to comply fully, which stands in contrast with the results in this paper.

The basic modelling of state transitions is based on Board and Meyer-ter-Vehn
(2013) which studies the reputation problem of a firm that has to make costly
investments towards quality improvements when quality becomes publicly observable
at random times. We embed this framework into a principal-agent problem, allowing
the principal to control the agent’s payo� and to choose when to verify quality. A
similar model has been studied by Kim (2015) in the context of environmental
control. This author focuses on specific classes of inspection policies without limited
liability and does not solve for the optimal contract. Most closely related is the
independent contribution by Varas et al. (2020). These authors also study optimal
monitoring policies in a principal-agent model with the same inspection technology,
but the incentive problem is somewhat di�erent. In their model, inspections make
the agent’s type public. They focus on mechanisms without reporting and without
transfers where the agent is motivated by the desire to generate a positive reputation
in the market place at future inspection dates.

Our model is also related to the machine maintenance problem in operations re-
search. The machine maintenance problem is a statistical decision problem in which
a machine ‘fails’ at random times which can be observed only through inspection
(see Osaki, 2002, for an overview). Similar models have also been applied in the
accounting literature to study the optimal timing of audits (Kaplan, 1969, Carey
and Guest, 2000, Hughes, 1977).

�.� Model

�.�.� Preliminaries

There are an agent and a principal. Time t œ [0, Œ) is continuous. The principal
and the agent are risk-neutral and discount future payo�s at a common rate r > 0.
The agent is required to comply with exogenously given regulation. Compliance is
represented by a binary indicator variable ◊t œ {0, 1} which fluctuates over time. At
each instant, the agent chooses e�ort level ÷t œ [0, 1] at instantaneous cost of c÷tdt.
E�ort a�ects transition rates of compliance as follows.

State dynamics. Let (�, F , P ) be a probability space, and let {Ft} be a filtration of
the sigma-algebra F . Let the marked point process z = {zt}tØ0 represent the arrival
of random shocks, where zt = 0 except at isolated times t0 < t1 < . . . arriving at
constant rate ⁄. At each random time tj , the value of the shock ztj is uniformly
distributed on [0, 1]. Let {Ft} be the natural filtration generated by z. The process
◊ = {◊t}tØ0 evolves according to a two-state Markov process that depends on the
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shock process and the agent’s e�ort choices. Immediately after the arrival of a shock
zt, ◊t = 1 if –÷t Ø zt, and ◊t = 0 if –÷t < zt. The factor – œ (0, 1) is a noise factor
that represents the possibility that the agent cannot always maintain compliance
despite best e�orts. At any time t, the probability of ◊t+dt = 1 is therefore

Prob(◊t+dt = 1|◊t) =

Y
]

[
1 ≠ ⁄dt + –÷t⁄dt if ◊t = 1,

–÷t⁄dt if ◊t = 0.

Monitoring and fines. The principal has an interest in the agent’s compliance. At
each instant t, the principal’s flow payo� is ◊tH where H > 0. The agent privately
observes ◊t at each time t Ø 0. The principal cannot observe the agent’s e�ort and
compliance is observable only through costly inspections. At any in time t Ø 0, the
principal can investigate the agent at lump-sum cost Ÿ > 0. In addition to inspection
decisions, the principal can punish the agent through fines. Fines may be understood
literally, as compulsory monetary payments, or they may be interpreted as remedial
actions, for example as mentioned in European Commission (2019), that negatively
impact the agent in some other way. This may include vetoing export transactions
or denying banking licenses. We assume that the principal does not benefit from
fining the agent directly. This assumption prevents rent-seeking incentives for the
principal, who could use fines as a means to transfer surplus. In the context of public
institutions, this assumption represents a benevolent view of government that uses
transfers with the intention to correct market failures.

Both players are allowed to ‘exit’, which permanently ends the relationship and
results in a continuation value of zero for the principal, and continuation payo� of
≠B for the agent. For the principal, this implies a constraint on the severity of
the fines she can impose. We assume that the exogenously given bound B is larger
than c(r+⁄)

–⁄r
. Otherwise, the maximal punishment is insu�cient to incentivise e�ort.

The players’ option to exit reflects the idea that they can limit their liability by
dissolving the relationship: a compliance manager or employee can quit her his, a
firm or bank can shut down, etc.

Timing. The timing at each t Ø 0 is as follows.4 First, the agent chooses e�ort
level ÷t. Subsequently, nature determines whether a technology shock arrives and,
conditional on the arrival of a shock and the e�ort level ÷t, draws a new compliance
level. The agent then observes the realised state and sends a report ◊̂t œ {0, 1} to the
principal. The principal, in turn, makes an inspection decision and, conditional on
the inspection outcome, chooses a fine immediately incurred by the agent. Denote

4We outline the sequentiality at a given instant to establish some intuition about the order of
events over time. Formally, this order is captured by continuity properties of the respective action
and state paths.
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by N I
t the number of inspections and by Ft the cumulative fines up to and including

time t.

Histories and strategies. A history at time t is a collection of paths

ht = {÷s, ◊s, ◊̂s, N I

s , Fs}sœ[0,t],

where
(÷s, ◊s, ◊̂s, N I

s , Fs) œ [0, 1] ◊ {0, 1} ◊ {0, 1} ◊ N0 ◊ R+.

Throughout, we denote by subscript t≠ strict histories ht≠ for which the realisation
at time t are excluded. Let Ht be the set of all time-t histories and Ht≠ the set of
all strict histories. Let H =

t
tØ0 Ht and H≠ =

t
tØ0 Ht≠.

The agent’s strategy specifies e�orts and reports as functions of histories. A
strategy for the agent is then defined as a pair (e, r) = ({et, rt}tØ0) with

et : Ht≠ æ [0, 1], rt : Ht≠ ◊ {0, 1} æ {0, 1},

where et(ht≠) is the agent’s e�ort at time t and rt(ht≠, ◊t) is the agent’s report at
time t after history ht≠ when the state at time t is ◊t.

To capture the principal’s uncertainty about the agent’s e�ort choices and the
true level of compliance, we consider a partition H

P
t of the history set Ht at any t

which comprises all subsets of Ht that are indistinguishable to the principal. Define
the partition H

P
t≠ similarly for strict histories at t. To allow for randomised in-

spections, we assume the principal is equipped with a (private) random signal fi,
defined on a su�ciently rich probability space with state space �. A strategy for
the principal is defined as a pair (n, f) = ({nt, ft}tØ0) of mappings

nt : � ◊ Ht≠ ◊ {0, 1} æ {0, 1}, ft : Ht≠ ◊ {0, 1}
3

æ R+,

which are constant on every HP
t≠ œ H

P
t≠ for each t Ø 0. Here, nt(Â, ht≠, ◊t) is

equal to 1 if an inspection is performed at time t and equal to 0 otherwise, and by
ft(ht≠, ◊t, ◊̂t, dN I

t ) we denote the fine imposed by the principal at time t. We abuse
notation slightly and write ft(ht) instead of fs(ht≠, ◊t, ◊̂t, dN I

t ) whenever there is no
danger of confusion.

The exit decision for each player at any history is a binary variable indicating
whether this player decides to exit or not. For the ease of exposition, we do not
introduce additional notation for these choices. The strategies above are to be
understood as conditional on no player having exited previously. Actions to be
chosen after one player exited are irrelevant.
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Equilibrium. In continuous-time games with observable actions, strategies may not
produce well-defined action paths and – in stochastic environments – agents’ beha-
viour may be non-measurable. We adopt the approach by Kamada and Rao (2018)
and impose restrictions on strategies to ensure well-defined action paths. We refer
the interested reader to the appendix. We do not impose restrictions on strategies
that rule out non-measurable behaviour. Instead, our equilibrium definition requires
that strategies lead to measurable actions along the equilibrium path. Histories away
from the equilibrium path may lead to non-measurability. Payo�s at such histories
can be assigned freely within feasible bounds. In our game, these bounds can be
reached unilaterally by either player at any history, so non-measurablilty o� path
cannot be used as a threat to enlarge the equilibrium set (see also the discussion of
this approach in Kamada and Rao, 2018).

For a given path realisation h = {÷t, ◊t, ◊̂t, N I
t , Ft}tœ[0,Œ) the discounted net

present payo� for the principal at time t is

vt =
⁄ Œ

t

e≠r(s≠t)
1
◊sHds ≠ ŸdN I

s

2
. (4.1)

Similarly, the discounted net present payo� for the agent at time t is given by

ut =
⁄ Œ

t

e≠r(s≠t) (≠c÷sds ≠ dFs) . (4.2)

Given a strategy profile, the principal and the agent form expectations about h based
on their past observations whenever possible. For strategies that induce measurable
action processes along the equilibrium path, we denote the expected payo� for the
agent and the principal at t by Ut(ht≠) = E[ut|ht≠] and Vt(ht≠) = E[vt|ht≠] respect-
ively, where the expectation is with respect to {zs}sœ(t,Œ) and fi.

We define a combination of strategies ((e, r), (n, f)), together with processes
of expectation operators {Vt, Ut}tØ0, to be a perfect Bayesian equilibrium if the
following holds.

1. There is no alternative strategy for the principal that yields a strictly higher
payo� at any t given her expectation.

2. There is no alternative strategy for the agent that yields a strictly higher payo�
at any t given his expectation.

3. Along the equilibrium path, the payo�s Vt and Ut are equal to the conditional
expectations given above. Away from the equilibrium path, Vt and Ut are equal
to the conditional expectations whenever these are well-defined.

4. For all ht≠ œ Ht≠, we have Vt(ht≠) Ø 0, and Ut(ht≠) Ø ≠B.
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�.� Construction of the Principal-Optimal Equilibrium

The main objective in this paper is to construct equilibria that achieve maximum
compliance of the agent at the lowest possible costs for the principal. We say that an
equilibrium achieves maximum compliance if, after any history along the equilibrium
path, the agent exerts maximum e�ort. In this way, the probability of attaining or
remaining in compliance at any given time is maximised. We assume at this point
that H is large, relative to the inspection cost Ÿ, so that the value for the principal
generated from maximum compliance outweighs the monitoring costs that is needed
to compel the agent to exert e�ort. The exact bound on H will follow from the
characterisation of the principal-optimal equilibrium which we present in Section
4.4.

Our construction of the principal-optimal equilibrium proceeds in two steps. We
first show that sequential rationality for the principal is equivalent to the requirement
that the inspection schedule be predictable for the agent.5 The equilibrium optim-
isation is therefore equivalent to finding the cost-minimising predictable strategy for
the principal. This is a mechanism design problem, which we then set up in recursive
form and solve using dynamic programming techniques for piecewise deterministic
processes (Davis, 1993). We show equivalence in the following subsection. The mech-
anism design problem is set up and solved in Subsection 4.3.2. Readers who prefer
to skip the technical details can proceed directly to the equilibrium description in
Section 4.4.

�.�.� Sequential Rationality and Predictability of Inspections

It is sequentially rational for the principal to carry out inspections only if failing
to do so results in some form of punishment. To provide such punishments for the
principal, inspections must be at least partially predictable by the agent. In fact,
the following result shows that the principal cannot gain from any non-predictability
in the timing of inspections.

Lemma 1. For any maximum compliance equilibrium, there exists a maximum
compliance equilibrium with predictable inspections that generates the same expected
payo� for the principal.

The formal proofs of this and the remaining results are relegated to the appendix.
The fact that the principal cannot gain from non-predictable inspections in equilib-
rium is due to the lack of commitment power. Indeed, the principal can do strictly

5Here, predictability means that inspections are measurable with respect to the information
available to the agent, so that he knows at any history whether or not an inspection will take place.
Henceforth, we refer to inspections as random whenever they are non-predictable for the agent.
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better when she can commit to inspecting at random. We will revisit this issue and
potential ways to mitigate the commitment problem in Section 4.5.

The idea behind the proof is to consider the worst realisation of the principal’s
mixed equilibrium strategy and argue that the outcome generated by this strategy
can be replicated by a predictable strategy. More specifically, consider any maximum
compliance equilibrium in which the principal randomises over inspection dates. For
a random strategy to be optimal for the principal, she must be indi�erent between
all inspection processes consistent with her strategy, and at any later date among
those processes that are consistent with past play. Call an inspection process most
vigilant if, after any history, it generates the earliest possible inspection dates that
are consistent with the underlying random strategy. From the agent’s perspective,
there is zero probability that the principal performs inspections any earlier than
given by the most vigilant inspection process. Moreover, by construction, the agent’s
incentive-compatibility conditions must be satisfied between inspections. Therefore,
we can replace the principal’s random strategy with a strategy in which inspections
are predictable and determined by the most vigilant inspection process. With this
new strategy, the incentive-compatibility conditions for the agent continue to be
satisfied. By indi�erence, the principal receives the same payo� as in the original
equilibrium.

The next result shows that the predictability of inspections is indeed the only
restriction implied by sequential rationality. That is, for any strategy combination
with well-defined action paths, predictable inspections and maximum e�ort as the
agent’s best response, there exists a perfect Bayesian equilibrium that induces the
same outcome.

Lemma 2. Let ((n, f), (e, r)) be a strategy profile and suppose the following holds.

(i) The principal’s strategy (n, f) is predictable.

(ii) The agent’s strategy (e, f) is a best response to the principal’s strategy (n, f),
and ÷t = 1 at all t Ø 0 for every action process generated by the profile
((n, f), (e, r)).

(iii) The action path generated by the strategy profile ((n, f), (e, r)) is measurable.

(iv) The expected payo� for the principal is non-negative along any history gener-
ated by ((n, f), (e, r)).

Then there exists a perfect Bayesian equilibrium ((nú, fú), (eú, rú)) which generates
the same distribution over action paths as ((n, f), (e, r)).

Intuitively, predictability makes it easy to incentivise the principal because the
agent immediately detects when an inspection does not take place as anticipated.
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The last two items in the lemma are needed to ensure that the strategy combination
satisfies Conditions (3.) and (4.) in our equilibrium definition. By hypothesis, the
value from compliance H is large enough so that for a principal-optimal strategy
combination, item (iv) is automatically satisfied.

�.�.� Derivation of the Principal-Optimal Predictable Strategy

The two lemmas of the previous subsection jointly imply that we can transform our
equilibrium optimisation problem into a mechanism design problem in which inspec-
tions must be predictable for the agent. By the revelation principle, it is without loss
to focus on direct mechanisms with truthful reporting as any indirect mechanism
can be replicated with a direct mechanism by giving the agent the same payo� that
he would have obtained by misreporting his information in the original mechanism.
A direct mechanism is fully characterised by a strategy for the principal. To de-
rive the optimal direct mechanism, we use the martingale representation theorem to
map a given strategy of the principal into a law of motion for the promised utilities
of the agent and represent the incentive-compatibility conditions as constraints on
the evolution of promised utilities. Standard results then allow us to formulate the
optimisation problem of the principal in recursive form, using promised utilities as
state variables.

Promised Utilities and Incentive Compatibility

Begin by fixing an arbitrary strategy (n, f) for the principal and let Ut be the
agent’s expected discounted continuation payo� from t onward, assuming he exerts
maximum e�ort and reports compliance truthfully throughout. Here, we consider
the general case in which the principal is allowed to use random inspections, as we
will need to refer back to these results later in Section 4.5. To proceed, define Wt

to be the agent’s lifetime expected utility, with expectations taken with respect to
the information that is available up to time t:

Wt =
⁄

t

0
e≠rs (≠dFs ≠ c÷sds) + e≠rtUt

By construction, the process {Wt}tØ0 is a martingale. Note that there are three
types of random e�ects here: changes in compliance, changes in reports, and inspec-
tions. Inspections are governed by the process N I given by the principal’s strategy.
For the sake of consistency, we also introduce the counting processes N ◊ = {N ◊

t }tØ0

and N ◊̂ = {N ◊̂
t }tØ0 that count the number of changes in the state of compliance and

reports, respectively. For each process Na with a œ {◊, ◊̂, I}, define the compensator
to be a predictable process ‹a = {‹a

t }tØ0 such that the compensated process Na
t ≠‹a

t

is a martingale. The compensator exists under very general conditions and can be



�.� Construction of the Principal-Optimal Equilibrium | ���

interpreted as the predictable drift of the underlying (non-predictable) stochastic
process. Alternatively, we can think of the compensator as a generalisation of the
cumulative hazard function, and consequently of d‹a/dt as the hazard rate of trans-
itions in Na

t (if it exists). The martingale representation theorem for marked point
processes (Last and Brandt, 1995) implies the following result.

Lemma 3. There exist predictable processes �◊, �◊̂, �I such that the evolution of
the agent’s promised utility is given by

dUt = rUtdt + dFt + c÷tdt +
ÿ

aœ{◊,◊̂,I}

�a

t (dNa

t ≠ d‹a

t ). (4.3)

The processes �◊, �◊̂ and �I have an intuitive interpretation: �◊
t represents

the jump in utility that results from a change in compliance at time t. Similarly,
�◊̂

t is the jump in utility that results from a change in reported compliance and �I
t

represents the jump in utility that results from an inspection at time t.
The characterisation of the evolution of payo�s in Equation (4.3) enables us to

write the mechanism design problem in recursive form, and therefore, we can use a
dynamic programming approach to solve it. Because of the persistence in compli-
ance, the state variable in our problem must keep track of two utility promises, one
for each possible state (see Fernandes and Phelan, 2000). Intuitively, an additional
state variable is needed to keep track of private valuations of future payo�s, since
these di�er depending on the current state and are not common knowledge at the
time the agent chooses his report.

Formally, consider a principal’s strategy which is incentive compatible with truth-
ful reporting and maximum e�ort. Take a strict history of events at any time t (i.e.
the history up to, but not including t). Now, define

U0
t = Et≠[Ut|◊t = 0],

U1
t = Et≠[Ut|◊t = 1]

(4.4)

to be the promised utilities at ht for each possible realisation of ◊t. Here Et≠ repres-
ents the expectation conditional on all available information up to time t. Following
Zhang (2009), we call U1

t the persistent payo� in state ◊t≠ = 1, and the transitional
payo� in state ◊t≠ = 0, and vice versa for U0

t . The state for the principal’s contract-
ing problem consists of three objects: the most recent state ◊t≠, and the promised
utilities U0

t and U1
t . The following lemma provides a complete characterisation of

the agent’s incentive-compatibility constraints in terms of these variables.
In addition to delivering the utility the agent is promised (promise-keeping con-

straint), the contract has to provide incentives for the agent to truthfully reveal
the state (honesty constraint), incentives for exerting maximum e�ort (obedience
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constraint) and it must be su�ciently lenient to deter the agent from withdrawing
(participation constraint). By standard arguments, it is optimal for the principal to
enforce the most severe punishment after a verified misreport to induce the agent
to reveal the state truthfully. Thus, the agent’s payo� after a false report that was
detected by an inspection is ≠B.

Lemma 4. A principal’s strategy that generates the process {U1
t , U0

t }tØ0 of promised
utilities induces maximum e�ort and truthful reporting if and only if there exists a
predictable process {dµt Ø 0}tØ0 such that for i = ◊t and j = 1 ≠ ◊t we have

(Pk) dU i
t = rU i

t dt + ⁄(i ≠ –)(U1
t ≠ U0

t )dt + dFt + cdt ≠ d‹I
t �I

t .

(H) dU j

t
= rU j

t
dt + ⁄(j ≠ –)(U1

t ≠ U0
t )dt + d‹I

t (B + U j

t
) + dFt + cdt ≠ dµt

(O) U1
t ≠ U0

t Ø c/⁄–,

(P ) U0
t , U1

t œ [≠B, 0]

at all t Ø 0 with dNa
t = 0 for each a = ◊, ◊̂, I.

Condition (Pk) is the promise-keeping constraint which is the expectation of
Equation (4.3) in Lemma 3 conditional on no intervention at time t. Condition
(O) is the obedience constraint that ensures that the agent exerts maximum e�ort.
The condition has a reasonably straightforward interpretation. The right-hand side
of this inequality is the marginal cost of e�ort. The left-hand side represents the
marginal gain from e�ort. The factor ⁄–÷t is the rate at which a shock generates
compliance at e�ort ÷t. The utility gain from compliance is U1

t ≠ U0
t . Therefore,

⁄–(U1
t ≠ U0

t ) is the marginal gain from e�ort for the agent. Thus, (O) states that
for maximum e�ort to be optimal for the agent, the marginal gain must exceed the
marginal cost.

Condition (H) is the honesty constraint that ensures that the agent reports
truthfully. This constraint says that transitional utility cannot increase too quickly.
The variable dµt is the choice of the principal who can use it to lower transitional
utility. We shall refer to it as the principal’s threat. The variable d‹I

t > 0 can be
interpreted as the rate of inspections. When an inspection reveals a misreport, the
agent’s continuation value for the agent is ≠B. Had he reported truthfully instead,
he would have received transitional utility U j

t
. Thus, ≠B ≠ U j

t
is the promised

utility the agent loses if an inspection reveals a false report. The honesty constraint
(H) can be illustrated using heuristic arguments. For simplicity, we focus here on
the specific case with ◊t = 0 and without random inspections. Suppose a failure of
compliance occurs at time t Ø 0. The agent is willing to report the decline without
delay only if he can’t gain from delaying the report. In particular, this means that
on a small interval [t, t + dt), the value of admitting non-compliance must exceed
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the value of misreporting compliance, i.e.

U0
t Ø

⁄
t+dt

t

e≠(r+–⁄)(s≠t)(–⁄U1
s ds ≠ dFs ≠ cds) + e≠(r+–⁄)dtU0

t+dt.

The integral is the instantaneous gain from reporting the high instead of the low
state, followed by a truthful report of the true state at time t + dt if no change
happened in the meantime. Taking a first-order approximation, we obtain, after a
few rearrangements,

U0
t Ø –⁄U1

t dt ≠ dFt ≠ cdt + (1 ≠ rdt ≠ –⁄dt)U0
t+dt.

If we further substitute the approximation dU0
t := U0

t+dt
≠ U0

t and ignore higher
order terms, then this necessary condition for a truthful report is equivalent to

dU0
t Æ rU0

t dt ≠ –⁄(U1
t ≠ U0

t )dt + dFt + cdt.

This inequality is precisely condition (H) in Lemma 4 for the high state without
random inspections. Note that while this heuristic derivation generates a necessary
condition, the general result is also su�cient, and it allows for random arrivals of
inspections.

Optimising over Incentive-Compatible Predictable Strategies

We establish the optimal predictable strategy using a recursive approach due to
Davis (1993), where we solve for the optimal strategy for any given finite number of
inspections, and then take the limit as this number grows large. We do this in two
steps. First, we consider only histories at which the state is always in compliance.
Second, we show how the principal’s strategy can be adjusted to optimally respond
to instances of non-compliance. Here, we provide a heuristic illustration of the first
step, the formal arguments are contained in the proof of Theorem 1.

Between inspections, the evolution of promised utilities during continued periods
of compliance are characterised by a pair of first-order di�erential equations. To see
this, note that whenever there are no inspections, the principal’s choice of dFt cannot
depend on the true state (conditional on the report ◊̂t = 1). Moreover, the principal
and the agent are risk neutral, and therefore it is without loss to shift all fines into
the future until after the next inspection, that is, dFt = 0 for all t Ø 0 strictly
before the next inspection. Assume additionally that dµt = 0 whenever dN I

t = 0.
We later verify that the principal cannot lower monitoring costs through threats
between inspections. Hence, if we start at t = 0 with initial values U0

0 and U1
0 , the

trajectories of the transitional payo� U0
t and the persistent payo� U1

t up until the
first inspection are fully pinned down by the constraints (Pk) and (H) in Lemma 4.
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This pair of coupled first-order di�erential equations has the following closed-form
solution:

U0
t = ert(U0

0 ≠ –(e⁄t
≠ 1)(U1

0 ≠ U0
0 )) + c(ert

≠ 1)/r, (4.5)

U1
t = ert(U1

0 + (1 ≠ –)(e⁄t
≠ 1)(U1

0 ≠ U0
0 )) + c(ert

≠ 1)/r. (4.6)

We now iterate over the number of inspections. Given the promised utilities are
determined by (4.5) and (4.6), the problem reduces to the choice of initial values
(u0, u1) = (U0

0 , U1
0 ) and inspection time T subject to the remaining constraints (O):

U1
t ≠ U0

t Ø
c

–⁄
and (P ): U i

t œ [≠B, 0] for i = 0, 1. Note that full compliance is not
achievable if the number of inspections is bounded so that the problem of minimising
inspection costs subject to full compliance is ill-defined. To ensure that a solution
exists for problem step k œ N, (when the number of inspections cannot exceed k),
we set the principal’s objective to ensure compliance for as long as possible.

Consider the case with no inspection (k = 0). At any time t > 0, the principal
has no possibility to distinguish the states, so that U0

t = U1
t and e�ort can never

be incentivised. In consequence, if the principal has one inspection (k = 1), e�ort
is achievable at most until the time of this inspection. The principal’s goal is to
perform this inspection as late as possible such that the payo� pair (U0

t , U1
t ) fulfils

conditions (O) and (P ) up until this time. The trajectories in (4.5) and (4.6) can
be combined to

U1
t ≠ U0

t = (U1
0 ≠ U0

0 )e(r+⁄)t,

showing that the obedience constraint (O) is fulfilled for all t if u1
≠u0

Ø
c

–⁄
. Hence,

for initial values (u0, u1), the optimal inspection time is given by the minimum of
the two boundary hitting times

T 0(u0, u1) = inf{t > 0 : U0
t Æ ≠B} and T 1(u0, u1) = inf{t > 0 : U1

t Ø 0}.

Finally, the principal chooses (u0, u1) to maximise min{T 0, T 1
}. Note that, by

(4.5), U0
t is increasing in u0 while by (4.6), U1

t is decreasing in u0, for all t Ø 0. An
increase in u0 increases both T 0 and T 1 so that it is optimal to set u0 it as large as
possible, i.e. u0 = u1

≠
c

–⁄
.

The problem is thus reduced to finding the optimal initial utility u1. Again, from
(4.5) and (4.6) we observe that U0

t and U1
t are both increasing in u1 for fixed value of

u1
≠ u0 = c

–⁄
. Thus, T 0 is increasing and T 1 decreasing in u1. The minimum of the

two hitting times, T (u1) © min{T 0(u1
≠

c

–⁄
, u1), T 1(u1

≠
c

–⁄
, u1)}, is then maximised

by choosing u1 so that the utility paths hit the respective boundary simultaneously.
Figure 4.1 illustrates this. For any other choice of initial value u1 the hitting time is
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lower. For higher values u1, the upper boundary is reached earlier, for lower values,
the lower boundary is reached earlier.

Next, consider the case in which the principal can perform two inspections. If the
first of two inspection time were chosen in the same way with both utility levels at
the boundary, then U1

t would have to stay constant at 0 forever, no further incentives
could be created despite another inspection being left. Hence, the principal-optimal
initial value u1 is strictly lower than in the previous case, so that the trajectory of
U0

t reaches the lower boundary ≠B before the trajectory of U1
t reaches the upper

boundary 0. A lower level of u1 forces the principal to inspect earlier, but she retains
the option to fine the agent in the future, which is necessary for future inspections
to be valuable.

Figure 4.1: The evolution of promised utilities over time conditional on continued
compliance with a single inspection. Persistent utility is shown as solid line, trans-
itional utility is dashed.

T (u1)

U1

U0

u1

u0

0

�B

t

U1, U0

We now proceed in a similar fashion for further inspections, denoting by u1(k)
the optimal initial value of the trajectory of U1

t when the total number of inspections
is k. Inspection time T k is determined by the time at which the trajectory of U0

t

reaches ≠B. The more inspections are available to the principal, the more she will
reduce the agents’ persistent payo� in order to retain the option to fine him in the
future. Iterating over the number of inspections k, we thus find that the optimal
initial value u1(k) decreases as k increases. This implies that the inspection time
T k decreases. As k grows large, u1(k) converges to a unique limit uú.

The optimal mechanism, conditional on continued compliance, has the property
that the trajectory of the persistent utility is u-shaped, and it returns to the initial
value uú at the time of each inspection (see Figure 4.2). The limit values uú and T ú

are given by the solution to (4.5) and (4.6) with boundaries (U0
0 , U1

0 ) = (uú
≠

c

⁄–
, uú)
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and (U0
T ú , U1

T ú) = (≠B, uú):

U0
t = ertuú

≠ ert(e⁄t
≠ 1)1 ≠ –

–

c

⁄
+ (ert

≠ 1) c

r
, (4.7)

U1
t = ertuú + ert(e⁄t

≠ 1)1 ≠ –

–

c

⁄
+ (ert

≠ 1) c

r
. (4.8)

We provide an implicit solution to T ú and uú in Theorem 1 below. In case of a
transition to non-compliance at time t, the promised utilities jump to U1

t = uú and
U0

t = uú
≠

c

⁄–
. Using continual fines and threats, the trajectories are held constant at

these levels. In this way, upon another transition back to compliance, the promised
utilities are already at their optimal initial values.

Figure 4.2: The evolution of promised utilities over time conditional on continued
compliance with repeated inspections. Persistent utility is shown as solid line, trans-
itional utility is dashed.
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�.� Characterisation of the Principal-Optimal Equilibrium

We now provide a characterisation of the principal-optimal equilibrium, and describe
its properties and perform comparative statics. The equilibrium can be broadly
summarised as follows. When the agent reports compliance, he does not have to pay
a fine but is subject to periodic inspections. If the agent reports non-compliance, he
pays a lump-sum fine that increases with proximity to the next inspection. While the
agent is non-compliant, the principal requires the agent to pay a constant flow fine
but conducts no inspections. The full details of the principal-optimal equilibrium
are presented in the following theorem.
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Theorem 1. For H su�ciently large, there is a principal-optimal equilibrium, as-
sociated with period length T ú > 0 which is the unique positive solution to

(Br ≠ c) (1 ≠ e≠rT )⁄– ≠ cre⁄T (erT
≠ –) + cr(1 ≠ –) = 0, (4.9)

and utility level uú < 0 given by

uú = ≠B + 2erT
ú(e⁄T

ú
≠ 1)1 ≠ –

–

c

⁄
v.

Let ·t = t ≠ sup{s œ (0, t)|◊̂s = 0 ‚ dN I
s = 1} be the time in compliance since the

last transition or inspection. Along the equilibrium path, the following holds.

1. If ◊̂t = 1: the agent pays no fine and an inspection is performed whenever
·t = T ú.

2. If ◊̂t = 0 and dN ◊̂
t = 1: the agent pays fine P (·t) = uú

≠ c/⁄– ≠ U0
·t

with U0
·t

given in (4.7).

3. If ◊̂t = 0 and dN ◊̂
t = 0: the agent pays a constant flow fine r(c/⁄– ≠ uú).

The implicit characterisation of the length of inspection cycles T ú and the initial
level of promised utility uú is obtained by combining (4.5) and (4.6). First note that
the inspections are entirely predictable for the agent throughout. If the agent knows
the time of the next inspection, he could of course try to hide a failure of compliance,
in the hope of returning to compliance before the next inspection takes place. To
deter the agent from such non-truthful behaviour, he faces a fine that increases over
time.

Figure 4.3 depicts the evolution of the utilities for a specific path realisation.
Starting in the good state, the agent makes no payments, an inspection occurs at
time T ú (the first vertical line). At the second vertical line a decline from the good
to bad state is reported. In a first step, the agent’s utility drops to the current
transitional payo� U0

t . However, the agent pays fine P (·t) immediately so that
his continuation utility increases by that amount to uú

≠
c

⁄–
. The agent now pays

a flow fine so that the promised utility levels remain constant at the optimal pair
(uú

≠
c

⁄–
, uú) until the next transition from bad to good state (the third vertical line).

Conditional on the good state, the agent’s expected utility is lowest in between two
inspections. At the beginning, when the next inspection is still far in the future, the
agent’s incentives to delay the report of a decline in compliance is strongest so that
the principal sets only moderate fines. As time progresses, the fine the agent would
have to pay for a decline in compliance becomes more severe, decreasing his expected
payo�. On the other hand, when the state is still good shortly before inspection,



��� | Chapter �: Dynamic Incentives with Costly Inspections

Figure 4.3: The evolution of an example path realisation starting in the good state.
Solid curves depict the persistent payo�, dashed curves depict the transitional payo�s
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the agent is optimistic that a decline will not occur before the inspection and he will
not be fined in this cycle.

�.�.� Comparative Statics

We now consider the comparative statics of the principal-optimal equilibrium. We
are primarily interested in the e�ects on inspection intensity and cost. Parameters
a�ect the equilibrium in distinct ways. The payo� bound B and cost of e�ort c have
a linear e�ect on payo�s and thus generate monotone e�ects on inspection intensity
and cost. In contrast, adaptiveness – and variability ⁄ determine the properties of
the underlying stochastic process and thus produce more intricate e�ects.

Lemma 5. Consider the equilibrium in Theorem 1 with length of inspection cycle
T ú. Holding all other parameters fixed, T ú is

• increasing in B,

• decreasing in c,

• increasing in –, and

• increasing in ⁄ for ⁄ low enough and decreasing for high ⁄ with lim
⁄æŒ

T ú(⁄) = 0.

The formal proof is relegated to the appendix and exploits the characterisation
of T ú in Theorem 1 by implicit di�erentiation of (4.9). If the bound on the agent’s
disutility B increases, punishments become more e�ective. Unsurprisingly, the time
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between inspections T ú increases. The opposite happens when the flow cost c in-
creases as e�ort becomes harder to incentivise. The comparative statics for – and
⁄ show that the length of inspection cycles is increasing in the informativeness of
inspections. When the e�ectiveness of e�ort – increases, each inspection becomes
more informative about past e�ort choices, so that the time between inspections
increases. In the case of the variability ⁄, the e�ect on the inspection cycle is non-
monotone since the informativeness of inspections about past e�ort choice is itself
non-monotone in ⁄. Informativeness is highest for intermediate levels of ⁄. When
⁄ approaches zero, the state of compliance becomes extremely persistent and even-
tually becomes independent of e�ort. As ⁄ grows large, the state of compliance
becomes extremely fragile with a high frequency of transitions, so that inspections
become increasingly uninformative about past e�ort choices.

In a manufacturing context, ⁄ represents the pace of the industry and – rep-
resents the firm’s internal adaptability to change. Short product cycles require
dynamically evolving regulation. If this makes regulation less complex, compliance
becomes easier to obtain. However, maintaining compliance for an extended period
of time becomes harder.

Next, we study how the costs of compliance vary with changes in the parameters.
Consider the expected discounted inspection costs in the case ◊0 = 16 as a function
of the equilibrium inspection time T ú:

CH = E
5⁄ Œ

0
e≠rtŸdN I

t | ◊0 = 1
6

= r + ⁄–

r(r + ⁄) · (r + ⁄(1 ≠ –)) e≠(r+⁄(1≠–))T ú

1 ≠ e≠(r+⁄(1≠–))T ú · Ÿ.

The first fraction captures the relative likelihood of the good state. Future payo�s
are e�ectively discounted at rate r + ⁄(1 ≠ –) to account for the possibility that the
state may deteriorate prior to inspection. Intuitively, inspection costs decrease as
T ú increases. For – and ⁄, there is an additional e�ect on costs as these parameters
vary the stochastic process and thus the inspection costs caused by any fixed cycle
length T .

Lemma 6. Consider the equilibrium in Theorem 1 with inspection time T ú. Then
the following holds for the discounted total inspection costs CH .

• CH is decreasing in B.

• CH is increasing in c.

• There exist – > c(r+⁄)
Br⁄

and –̄ œ [–, 1] such that CH decreases in – if – < –

and increases if – > –̄.
6The case ◊0 = 0 is analogous. We have CL = ⁄–

r+⁄– CH .
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• There exists ⁄ > cr

Br–≠c
such that CH decreases in ⁄ if ⁄ < ⁄ and CH goes to

infinity for ⁄ æ Œ.

The formal proof is relegated to the appendix. The fractions in the third and
fourth statement are rearrangements of our standing feasibility assumption B >
c(r+⁄)

–r⁄
. In the case of B and c, the results follow immediately from Lemma 5. For

the e�ectiveness of e�ort –, there are several e�ects on inspection costs that work
in opposite directions. As – increases, the agent remains in compliance for longer
periods of time, and more easily regains compliance. Since inspections are performed
only when the agent reports compliance, inspection costs increase if we keep the cycle
length T fixed. On the other hand, by Lemma 5, the inspection cycle length grows
in – which decreases inspection costs. The third bullet in Lemma 6 states that the
second e�ect dominates for low values of – and the first e�ect for high values, so
that the e�ect of – on inspection costs is overall non-monotone.

The variability of compliance ⁄ a�ects inspection costs directly through trans-
itions in compliance and indirectly through the length of inspection cycles T ú. The
direct e�ect of an increase in ⁄ is a reduction in inspection costs, because inspec-
tion cycles are increasingly often interrupted so that inspections are less likely to
be carried out. For low variability, an increase in ⁄ results in a longer equilibrium
inspection cycle (for low ⁄), and thus the total e�ect of an increase in ⁄ on inspection
costs must be negative. For high variability, an increase in ⁄ causes the cycle length
to decrease, so that the two e�ects go in opposite directions. The last bullet in the
lemma shows that the cost-increasing e�ect indeed dominates for large values of ⁄.
Note that for fixed T > 0 the total costs CH decrease to 0 as ⁄ grows arbitrarily
large. Lemma 6 shows that T ú approaches zero fast enough so that the inspection
costs explode in the limit.

This cost increase arises because inspections are scheduled periodically so that
the agent has positive time to aim for a transition to compliance prior to inspection.
This deviation is more attractive for high values of ⁄. As ⁄ becomes arbitrarily high,
the probability of reaching any time in the strict future without a prior state change
vanishes. For inspections to happen with high enough probability to incentivise
e�ort, time T ú has to shrink to 0. The intuition how this leads to arbitrarily large
inspection costs is the following. For the agent who considers to shirk for an instant,
the payo� e�ect at the next inspection is e�ectively discounted at rate r+⁄. Current
e�ort a�ects the state at inspection only if no further transition occurs previously.
This implies that the limit of ⁄e≠(r+⁄)T ú(⁄) converges to a finite constant, as the
proof shows. However, the e�ective discount rate on path – i.e. the relevant rate
to evaluate the principal’s costs – is only r + ⁄(1 ≠ –) so that the limit of CH as ⁄

goes to Œ is proportional to lim ⁄e≠(r+(1≠–)⁄)T ú(⁄) which is infinity for – < 1 since
⁄e≠(r+⁄)T ú(⁄) converges.
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As the comparative statics uncovered, the high costs of compliance in the case of
high ⁄ stem from the agent’s opportunity to achieve a good outcome with high prob-
ability whenever the next inspection is not imminent. Making inspections imminent
(choosing T ú close to 0) makes the costs explode. This suggests that randomisation
over inspection times may be valuable as it permits to threaten the possibility of
instant inspection at all times without having to perform inspections at all times.

�.� Overcoming the Commitment Problem

By Lemma 1, choosing an inspection schedule which is non-predictable for the agent
cannot decrease the principal’s costs when she lacks commitment power. This section
shows that, with commitment power, there is value in non-predictable inspections.
Compliance can be attained with fewer inspections on average. Before we turn to
the analysis, we discuss possible sources of su�cient commitment power for ran-
domisation to be feasible for the principal and situations in which we should expect
them.

The proof of Lemma 1 uncovers that profitable randomisation is unsustainable in
equilibrium because deviations by the principal become unobservable. This suggests
a public randomisation device to force the principal to follow a random inspection
schedule where agent and principal agree on the set of realisations that lead to in-
spection. The principal can be punished with immediate contract termination if
he does not comply. The use of (public) randomisation devices is common in the
theoretical literature on repeated interactions. In practice, such methods are rarely
observed. Our analysis suggests a reason in the context of compliance: benefiting
from random inspections requires a randomisation device that is perfectly observed
by both parties – there cannot be any idiosyncratic noise as the possibility of dis-
agreement regarding the realisation necessarily leads to non-compliance on path.
Yet, our analysis suggests another possibility to profit from random inspections.
Lemma 1 does not rule out randomisation altogether. Rather, it shows that the
required indi�erence between conducting the inspection and postponing it precludes
the principal from benefiting from randomisation. The separation of inspection plan-
ning and its execution can achieve this. For example, inspections can be prescribed
by the internal compliance manager but carried out by external practitioners.7 This
separates the inspection cost from the inspection decision and, thus, eliminates the
principal’s incentive to skip inspections.

There is an important di�erence to note between this suggestion and two seem-
ingly analogous alternatives: directly compensating the inspection cost to the prin-

7See European Commission (2019, p. 24) for this suggestion in the context of ICPs for dual use
goods manufacturers.



��� | Chapter �: Dynamic Incentives with Costly Inspections

cipal at one extreme and outsourcing the oversight activity at the other. Com-
pensating the principal for performed inspections resolves the problem highlighted
above theoretically. However, this would require precise knowledge of the cost and
e�ort required by the principal to perform an inspection (cost Ÿ in our model). If
the compensation for an inspection falls below this value, the incentive to skip it
remains. If the compensation is too generous, this creates an incentive to inspect
ine�ciently often. An example of the separation of planning and execution can be
found in the context of banking supervision in Germany. Depending on the bank’s
size, the European Central Bank or the supervisory agency at the federal Finance
Ministry (BaFin) fulfils the supervisory function and is responsible for scheduling
audits. The execution of these audits, however, is always done by the German
Bundesbank (BaFin, 2016).

Next we provide a random mechanism and show that the principal can decrease
the inspection costs required to implement compliance in comparison to predictable
rules. The derivation remains agnostic about the possible source of commitment
power that allows for randomisation. Assuming that the principal has full commit-
ment power over random inspections, consider the stationary stochastic mechanism
in which the principal sets no fines and no threats between inspections, and chooses
the stationary inspection level mú such that the agent’s promised utility remains
constant at (Ū0, Ū1). Combining the promise-keeping conditions with the honesty
and obedience constraints under the assumption of equality in each of them, we find
that a stationary mechanism must solve

0 = rŪ1 + ⁄(1 ≠ –)(Ū1
≠ Ū0) + c,

0 = rŪ0
≠ ⁄–(Ū1

≠ Ū0) + mú(B + Ū0) + c

0 = ⁄–(Ū1
≠ Ū0) ≠ c.

A simple calculation reveals that this system of equations has the solution

Ū1 = ≠
c

r–
, Ū0 = ≠

c

r–
≠

c

⁄–
, mú = cr(r + ⁄)

Br⁄– ≠ c(r + ⁄) . (4.10)

In the stationary mechanism characterised by these three equations, the honesty
and the obedience conditions bind at all t. The stochastic scheme is structurally
similar to the predictable rule in the sense that the agent is fined for non-compliance
only, and inspections are performed when he reports compliance. The stochastic
mechanism is fully stationary, however. Inspections are conducted at a constant
rate in such a way that promised utilities remain constant throughout.

The value of random inspections can be observed most strikingly when we con-
sider the limit as ⁄ grows large. According to Lemma 6, the inspection costs grow



�.� Concluding Remarks | ���

without bound in the predictable equilibrium. With the stochastic mechanism, the
inspection costs starting in the compliant state are given by

r + ⁄–

r(r + ⁄)múŸ = c(r + ⁄–)
Br⁄– ≠ c(r + ⁄)Ÿ.

This term is always decreasing in ⁄, converging to c–

Br–≠c
Ÿ. As explained with

the comparative statics of the predictable equilibrium, this contrast stems from
the impossibility to threaten immediate inspections without unbounded costs when
randomisation is infeasible.

�.� Concluding Remarks

The paper studies incentive schemes in a dynamic principal-agent setting with costly
monitoring in which the principal wants to induce maximal compliance at minimal
cost. The principal provides incentives for e�ort by performing inspections and
setting fines. We show that full compliance is attainable even without commit-
ment power. The cost-minimal full-compliance equilibrium is derived by solving an
auxiliary mechanism-design problem in which the principal is restricted to using pre-
dictable inspection rules. Without commitment power, the principal cannot profit
from randomised inspections even though this is profitable with commitment power.
Our findings identify a possible reason for the failure of e�ective enforcement: the
lack or wrong assessment of commitment power paired with the use of random in-
spection schedules. As predictable schedules make deviations by the regulator easier
to observe, their commitment requirements are significantly weaker.

A crucial assumption maintained throughout is that the principal seeks full com-
pliance, defined as maximum e�ort and truthful reporting after any history along the
equilibrium path. This assumption keeps the analysis tractable. We interpret the
results in this paper as a benchmark for the design of optimal policies, and as a sound
theoretical approach to generating predictions of the costs of e�ective enforcement.
For a subset of the parameter space, however, full compliance would not be socially
optimal. Extending the analysis to allow for periods of non-compliance by the agent
would be interesting, but it makes the underlying optimisation substantially more
complicated.

There are other aspects not considered in this paper. For example, the analysis
could be extended to allow for exogenous signals about compliance, for an agent
who is imperfectly informed, or an imperfect monitoring technology. Some of these
issues are discussed in Varas et al. (2020). These and other variants might be fruitful
avenues for future research for which the characterisation of incentive-compatible
contracts provided in this paper may result useful.
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�.A Appendix

�.A.� Strategies and outcomes
This part of the appendix contains the formal restrictions on the players’ strategy spaces to ensure
that any combination of strategies leads to a unique and well-defined outcome. We adopt the
approach by Kamada and Rao (2018), requiring that actions are not changed ‘too frequently’ on
any time interval. To apply this approach we first need to restrict the continuous action of each
player, fines and e�ort.

We say that for a history ht œ Ht, there is an intervention for the agent if either t = 0 or if
t > 0 and at least one of the following holds: (i) ◊t ≠ ◊t≠ ”= 0, (ii) ◊̂ ≠ ◊̂t≠ ”= 0, (iii) NI

t ≠ NI
t≠ ”= 0.

Similarly, we say that there is an intervention for the principal if t = 0 or if t > 0 and at least one
of the properties (ii) and (iii) holds.

For the principal, no new information arrives in between interventions, and we restrict the
strategy of fines to reflect this by being predictable in between interventions. Formally, for any two
histories ht, hÕ

t: ft(ht) ”= ft(hÕ
t) only if there exists · Æ t such that · is an in an intervention time for

the principal and the truncation of the above histories at time · , h· and hÕ
· , are distinguishable for

the principal. Put di�erently, the principal’s fines are specified pathwise; at each intervention, she
chooses how the fines proceed until the time of the next intervention. Given that no information
arrives between interventions any optimally chosen path at t will be sequentially optimal until the
next intervention. Similarly for the agent, we restrict the e�ort strategy to be predictable in between
interventions: For any two histories ht≠, hÕ

t≠: et(ht≠) ”= et(hÕ
t≠) only if there exists · < t such that

· is an in an intervention time for the agent and h· ”= hÕ
· .

To adapt the approach by Kamada and Rao (2018), we require strategies to fulfil the properties
traceability and frictionality defined below. Lemma 7 shows that any combination of strategies that
fulfils these restrictions yields a well-defined and unique outcome path.

A history h is said to be consistent with the agent’s strategy (r, e) at time t if rt(ht≠, ◊t) = ◊̂t

and et(ht) = ÷t. Similarly, a history h is consistent with the principal’s strategy (n, f) at time t if
nt(fi, ht≠, ◊̂t) = dNI

t and ft(ht) = dFt.

Definition 1. The agent’s strategy (r, e) is traceable if for any time-t history ht and any principal-

action path {NI
s , Fs}sØ0 that coincides with ht for all s < t, there is a continuation path {◊̂s, ÷s}sØt

that is consistent with (r, e). Analogously, The principal’s strategy (n, f) is traceable if for any

realisation of fi, any time-t history ht, and any agent-action path {◊̂s, ÷s}sØ0 that coincides with ht

for all s < t: there is a continuation path {NI
s , Fs}sØt that is consistent with (n, f).

Definition 2. The agent’s strategy (r, e) is frictional if for any time-t history ht, there is con-

ditional probability one that the report path {◊̂s}sØt has only finitely many report changes on any

finite interval [t, u] for all paths {÷s, ◊̂s}sØt such that there is a principal-action path {NI
s , Fs}sØt

for which the history

!
ht≠, {NI

s , Fs}sØt, {÷s, ◊̂s}sØt

"
is consistent with the agent’s strategy. Ana-

logously, the principal’s strategy (n, f) is frictional if for any time-t history ht, there is conditional

probability one that the inspection path {NI
s }sØt has only finitely many inspections on any finite

interval [t, u] for all paths {NI
s , Fs}sØt such that there is an agent-action path {÷s, ◊̂s}sØt for which

the history

!
fi, ht≠, {NI

s , Fs}sØt, {÷s, ◊̂s}sØt

"
is consistent with the principal’s strategy.

Lemma 7 (Existence and Uniqueness of consistent outcome paths). Given any possible history

hu≠ =
)

fi, zt, ÷t, ◊̂t, NI
t , Ft

*
tœ[0,u) fi{÷u}, any combination of strategies ((r, e), (n, f)) that are trace-

able and frictional yields a unique consistent path

!
{÷t}tœ(u,Œ), {◊̂t, NI

t , Ft, }tœ[u,Œ)
"

almost surely.

Proof. Step 1: Uniqueness. Fix a pair of strategies, a history up to u, and any realisa-
tion of the shock process {zt}tœ[u,Œ). Suppose there are two distinct continuation paths x =
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{÷x
t , ◊̂x

t , NIx

t , F x
t }tœ[u,Œ) and y = {÷y

t , ◊̂y
t , NIy

t , F y
t }tœ[u,Œ) that are consistent with the strategies

and the shock path. Let t = inf{t Ø u : xt ”= yt} be the first time at which the processes di�er.
Strategy e maps history hA

tA
k

into a deterministic process {÷s}sœ(tA
k

,Œ) only for times tA
k at which an

intervention for the agent occurs. Likewise, strategy f maps history htP
k

into a deterministic process
{Fs}sœ[tP

k
,Œ) for times tP

k with an intervention for the principal. Therefore, if ÷x
s ”= ÷y

s for s > u or
F x

s ”= F y
s for s Ø u, then there must also be a time t Æ s with an intervention at t, i.e. ÷k œ N s.t.

t = tA
k or t = tP

k . Furthermore, we must have hx
t ”= hy

t at this intervention. With probability 1, the
realisation {zt}tœ[u,Œ) has only finitely many jumps on any closed interval. Hence, by frictionality,
there are at most finitely many interventions on any closed interval. Therefore, t defined above
must be an intervention time and the infimum is attained, i.e. xt ”= yt. We therefore must have
◊̂x

t ”= ◊̂y
t or NIx

t ”= NIy

t and, as t is the first such time, hx
t≠ = hy

t≠. As ◊̂x
t and ◊̂y

t both result from
the same strategy, this, however, implies that ◊̂x

t = ◊̂y
t , leaving as only possibility that NIx

t ”= NIy

t .
This contradicts consistency of both processes with the fixed strategy (as hx

t≠ = hy
t≠). Hence, any

pair of traceable and frictional strategies gives at most one consistent outcome.
Step 2: Existence. Existence of a consistent outcome path is shown constructively: Start

with arbitrary history hu≠ =
)

fi, zt, ÷t, ◊̂t, NI
t , Ft

*
tœ[0,u) fi {÷u} and fix a realisation of the shock

process {zt}tœ[u,Œ). We apply the steps below iteratively until they give an outcome path consistent
with z and the strategies for t Ø u: Define paths {÷0

t , ◊̂0
t , NI0

t , F 0
t } equal to the history up to u

and such that for t > 0u : ÷0
t = et(hmaxk tA

k
<u), and for t Ø u: ◊̂0

t = ◊̂u≠, NI0
t = NI

u≠ and
dF 0

t = ft(hmaxk tA
k

<u).8

Let n = 1 and t(1) = u.

i) By traceability, there are paths {÷n
t , ◊̂n

t }tØ0 such that, for t < t(n): {◊̂n
t , ÷n

t } = {÷n≠1
t , ◊̂n≠1

t }
and that {÷n

t , ◊̂n
t , NIn≠1

t , F n≠1
t }tØ0 is consistent with the agent’s strategy and process z for

t Ø t(n). Set {÷n
t , ◊̂n

t } equal to these processes.
Similarly, traceability implies that there exist paths {NIn

t , F n
t } with (NIn

t , F n
t ) = (NIn≠1

t , F n≠1
t )

for t < t(n) and such that {÷n
t , ◊̂n

t , NIn

t , F n
t }tØ0 is consistent with the principal’s strategy on

t Ø u. Set {NIn

t , F n
t } equal to these processes and continue to step (ii).

ii) If {÷n
t , ◊̂n

t , NIn

t , F n
t } is consistent with the strategies for all t œ [u, Œ), stop the procedure.

The proof is complete. Otherwise, redefine n = n + 1 and set t(n + 1) equal to the largest
time v such that there is an intervention at v and {÷n

t , ◊̂n
t , NIn

t , F n
t } is consistent with the

strategies for all t œ [u, v), go to step (i).

If the above procedure stops after finite n, that is because of having given a consistent process
and the proof is complete. In the case in which it does not stop after finitely many iterations,
limnæŒ{÷n

t , ◊̂n
t , NIn

t , F n
t }tØ0 is consistent with the strategies on [u, Œ) with probability one. To

see this, note that for every n, t(n + 2) > t(n). Given that, with probability one, any finite interval
has only finitely many interventions, limnæŒ t(n) = Œ which implies consistency of the resulting
process for all t œ [u, Œ).

�.A.� Proofs from main part

Proof of Lemma �
Suppose there exists a perfect Bayesian equilibrium {ñt, f̃t, ẽt, r̃t}tØ0 – possibly with random in-
spections – that induces full compliance and generates a higher payo�. Let ‹̃I

t be the compensator

8That is, report and inspections are held constant from u onward and fines and e�ort are chosen
according to the strategies (depending only on the last intervention before u) for the case that no
further interventions occur.
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associated with process ÑI
t . We can find a process N̂I with the property that for all s Ø t,

N̂I
s ≠ N̂I

t = 0 ≈∆ ‹̃I
s ≠ ‹̃I

t = 0.

Intuitively, for an equilibrium with random inspections, N̂I is the path realisation of inspections with
the smallest gaps. Because N̂I is the realisation of an equilibrium strategy, the principal’s payo�
from using N̂I is the same as in the equilibrium. Moreover, N̂I

t is predictable by construction. The
agent is inspected more than at any other path realisation so that this strategy induces compliance
since {ÑI

t , F̃t, ÷̃t, ◊̂t}tØ0 was part of a maximal compliance equilibrium.

Proof of Lemma �
We show that any predictable incentive-compatible principal-strategy that generates a positive value
for the principal at each t can be implemented in equilibrium. Let {Nt, Ft} be the paths induced
by the strategy in the lemma. By hypothesis (ii), compliance is incentive compatible for the agent.
Let ñ be an alternative inspection strategy for the principal, possibly random, and let ÑI be the
resulting inspection path if the agent follows the compliant strategy. The set D = {t|dNI

t ”= dÑI
t }

represents the dates at which the principal observably deviates. Adapt the agent’s strategy so that
÷t = 1 at all t Æ inf D and ÷t = 0 otherwise. Since the payo� for the principal from the strategy in
the lemma is positive at each t, and the payo� from any deviating strategy is equal for all t < inf D,
her deviation cannot be profitable as it results in a payo� of 0 from Ø inf D onward. Finally, adapt
the principal’s strategy from the lemma such that he fines the agent as harshly as possible whenever
the agent was expected to exit but failed to do so. This way, for the agent the strategy with ÷t = 0
for t > inf D is incentive compatible and the constructed equilibrium di�ers from the initial strategy
profile in Lemma 2 at most o� the equilibrium path.

Proof of Lemma �
Denote by F the filtration generated by the random processes ◊, ◊̂ and ‹I . Define

Wt :=
⁄ t

0
e≠rs(≠dFs ≠ c÷sds) + e≠rtUt.

The corresponding representation in di�erential form is

dWt = e≠rt(≠dFt ≠ c÷tdt) ≠ re≠rtUt + e≠rtdUt. (4.A.1)

The process {Wt} is an F-martingale by construction. By the martingale representation theorem
for marked point processes (Last and Brandt, 1995, Theorem 1.13.2), there exist F-predictable
functions �̃◊

t , �̃◊̂
t and �̃I

t such that

dWt =
ÿ

aœ{◊,◊̂,I}

�̃a
t (dNa

t ≠ d‹a
t ) (4.A.2)

Replacing �̃a
t = e≠rt�a

t and then equating (4.A.1) and (4.A.2) yields

dUt = rUtdt + dFt + c÷tdt +
ÿ

aœ{◊,◊̂,I}

�a
t (dNa

t ≠ d‹a
t ).

This is the representation of the evolution of promised utilities shown in the lemma.
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Proof of Lemma �
The following lemma provides an intermediate step toward the proof of Lemma 4:

Lemma 8. A mechanism that induces the payo�s {Ut}tØ0 is incentive compatible with maximum

e�ort and truthful reporting if and only if for all t Ø 0:

(i) (r + qú)�◊̂
t ≠ d‹I

t (�I
t ≠ �◊̂

t ) Ø d�◊̂
t when ◊t ”= ◊̂t,

(ii) (1 ≠ 2◊t≠)⁄–(�◊
t + �◊̂

t ) Ø c when ◊t = ◊̂t,

(iii) Ut œ [≠B, 0].

Proof. Define

Wt =
⁄ t

0
e≠rs(≠dFs ≠ c÷sds) + e≠rtŨt.

to be the agent’s expected payo� from using e�ort strategy {÷̃s} and reporting strategy {◊̂s} up to
time t with maximum e�ort and truthful reporting thereafter. Here Ũt is the expected continuation
payo�. We may have Ũt ”= Ut if the agent has reported non-truthfully, i.e. ◊̂t≠ ”= ◊t≠.

Consider first the case in which the agent’s report regarding his type at time t is truthful, so
that Ũt = Ut. Di�erentiating with respect to t yields

dWt = e≠rt(≠dFt ≠ c÷tdt) ≠ re≠rtUtdt + e≠rtdUt.

Using Lemma 3 to replace dUt yields

dWt =

A
e≠rt(≠dFt ≠ c÷tdt) ≠ re≠rtUtdt + e≠rt

A
rUtdt + dFt + cdt +

ÿ

aœ{◊,◊̂,I}

�a
t (dNa

t ≠ d‹a
t )

BB

= e≠rt

A
(1 ≠ ÷t)cdt +

ÿ

aœ{◊,◊̂}

�a
t (dNa

t ≠ qú
t dt) + �I

t (dNI
t ≠ d‹I

t )

B
,

where qú
t = qt(1). If the agent deviates for an additional instant (but still reports truthfully) then

dN◊
t = dN ◊̂

t =

I
1 with probability qt(÷̃t)dt

0 with probability 1 ≠ qt(÷̃t)dt
.

Taking expectations therefore yields

Et[dWt] = e≠rtE
Ë
(1 ≠ ÷t)cdt + (�◊

t + �◊̂
t )(qt(÷̃t) ≠ qú

t )dt
È

.

It follows from Condition (ii) that

(�◊
t + �◊̂

t )q(÷̃t) ≠ c÷t Æ (�◊
t + �◊̂

t )qú
t ≠ c.

Thus Et[dWt] Æ 0. We thus obtain the chain of inequalities

E0[Wt] = E0

5⁄ t

0
dWs + W0

6
=

⁄ t

0
E0 [dWs] + E0 [W0] =

⁄ t

0
E0

Ë
Es[dWs]

È
+ W0 Æ W0. (4.A.3)

Now, consider the case in which the agent’s most recent report about quality at time t is false,
that is ◊t≠ ”= ◊̂t≠ and he continues the non-truthful strategy for an additional moment at time t.
If no change in quality occurs at the additional moment, then the agent must correct his report
immediately thereafter. If a change in quality occurs, then the previously false statement becomes
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truthful, and thus his report does not change. Therefore, we have the following:

dŨt = Ũt ≠ Ũt≠dt

= dN◊
t (Ut ≠ Ut≠dt ≠ �◊̂

t≠dt) + dNI
t (Ut + �I

t ≠ Ut≠dt ≠ �◊̂
t≠dt)

+ (1 ≠ dN◊
t ≠ dNI

t )(Ut + �◊̂
t ≠ Ut≠dt ≠ �◊̂

t≠dt)

= dN◊
t (dUt + d�◊̂

t ≠ �◊̂
t ) + dNI

t (dUt + d�◊̂
t ≠ �◊̂

t + �I
t ) + (1 ≠ dN◊

t ≠ dNI
t )(dUt + d�◊̂

t )

= dUt + d�◊̂
t ≠ dN◊

t �◊̂
t + dNI

t (�I
t ≠ �◊̂

t ).
(4.A.4)

Using again Lemma 3 to replace dUt, we obtain

dWt = e≠rt(≠dFt ≠ c÷tdt) ≠ re≠rt(Ut + �◊̂
t )

+ e≠rt
1

rUtdt + dFt + cdt + �◊
t (dN◊

t ≠ qú
t ) + d�◊̂

t ≠ dN◊
t �◊̂

t + dNI
t (�I

t ≠ �◊̂
t )

2

It follows from the honesty constraint (i) that, in expectation, d�◊̂
t Æ (r + qú)�◊̂

t ≠ d‹t(�I
t ≠ �◊̂

t ).
When we substitute it into dWt and simplify, using again Ũt = Ut + �◊̂

t , we obtain

Et[dWt] = e≠rt
1

(1 ≠ ÷)cdt + (�◊
t ≠ �◊̂

t )q(÷̃t) ≠ qú(�◊
t ≠ �◊̂

t )
2

.

Now, �◊
t ≠ �◊̂

t = (�◊
t + Ut) ≠ (�◊̂

t + Ut) is the payo� di�erence from a change in quality without a
change in report and a change in report without a change in quality. Since ◊t≠ ”= ◊̂t≠ by hypothesis,
this is identical to �̃◊

t + �̃◊̂
t after the history in which the agent’s true quality was identical to his

reported quality. Thus (ii) implies that ÷t = 1 maximises the right-hand side, so that Et[dWt] Æ 0.
By the same argument as in (4.A.3), we have

E0[Wt] Æ W0 = U0.

so that the agent cannot profit from deviating. Taking the limit, we find that

lim
tæŒ

E0[Wt] Æ U0.

which implies that the agent cannot gain from deviating from maximum e�ort and truthful report-
ing. Conversely, if the incentive constraint (i) is violated, then the above inequalities are inverted,
so that the agent has a strict incentive to be dishonest.

To conclude the proof of Lemma 4, we show that condition (P k) follows from Lemma 3 and
(H), (H) and (P ) are equivalent to conditions (i), (ii) and (iii) in Lemma 8. Consider a contract
and a strategy for the agent that jointly generate the payo� process {Ut}tØ0 for the agent, and
denote by {U1

t , U0
t }tØ0 the associated pair of promised utilities defined in Equation (4.4).

(1.) By the definition of U0
t , U1

t , we have

�◊
t + �◊̂

t =

I
U1

t ≠ U0
t if ◊t≠ = ◊̂t≠ = 0

U0
t ≠ U1

t if ◊t≠ = ◊̂t≠ = 1
, qú

t = qt(1) =

I
–⁄ if ◊t≠ = 0

(1 ≠ –)⁄ if ◊t≠ = 1
. (4.A.5)

Combining these two expressions, we can write more succinctly:

qú
t (�◊

t + �◊̂
t ) = ⁄(◊t≠ ≠ –)(U1

t ≠ U0
t ).
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Lemma 3 implies that, conditional on the event that dN◊
t = dN ◊̂

t = dNI
t = 0, we have

dU i
t = rU i

t dt ≠ qú
t (�◊

t + �◊̂
t ) + dFt + cdt ≠ d‹t�I

t

= rU i
t dt + ⁄(i ≠ –)(U1

t ≠ U0
t ) + dFt + cdt ≠ d‹t�I

t

which proves condition (P k) in Lemma 4. Note that �I
t measures the di�erence in utility before

and after an inspection when the agent reports his type truthfully.
(2.) Next, suppose that the agent is not truthful after some history at time t. Let i = ◊t be true
quality and suppose the agent reports j = 1 ≠ ◊t. Then, U i

t = Ut + �◊̂
t , and

dU i
t = (Ut+dt + �◊̂

t+dt) ≠ (Ut + �◊̂
t )

= rUtdt + dFt + cdt ≠ qú
t �◊

t + d�◊̂
t

Æ rUtdt + dFt + cdt ≠ qú
t �◊

t + (r + qú)�◊̂
t ≠ d‹t(�I

t ≠ �◊̂
t )

= r(Ut + �◊̂
t ) ≠ qú

t (�◊
t ≠ �◊̂

t ) ≠ d‹t(�I
t ≠ �◊̂

t ) + dFt + cdt

= rU i
t + ⁄(i ≠ –)(U1

t ≠ U0
t ) ≠ d‹t(�I

t ≠ �◊̂
t ) + dFt + cdt

(4.A.6)

The second line follows from Lemma 3, the inequality in the third line follows from Condition (i)
in Lemma 8, where we take expectations conditional on the event that dN◊

t = dN ◊̂
t = 0. The last

equality in (4.A.6) holds since

qú
t (�◊

t ≠ �◊̂
t ) = qú

t (Ut + �◊
t ≠ (Ut + �◊̂

t )) = qú
t (U j

t ≠ U i
t ) = ⁄(i ≠ –)(U1

t ≠ U0
t ).

Punishment is without cost for the principal, and therefore, it is optimal to impose the most severe
punishment after an inspection reveals a dishonest report. The severity of punishments is restricted
by the limits of enforcement that require the agent’s continuation value not to fall below the lower
bound ≠B < 0. Therefore, we have

�I
t ≠ �◊̂

t = Ut + �I
t¸ ˚˙ ˝

=≠B

≠(Ut + �◊̂
t¸ ˚˙ ˝

=Ui
t

) = ≠(B + U i
t ).

Substituting this last equation into Equation (4.A.6) yields

dU i
t = rU i

t + ⁄(i ≠ –)(U1
t ≠ U0

t ) + d‹t(B + U i
t ) + dFt + cdt,

which is equal to Condition (H) in Lemma 4. Conversely, if (i) does not hold at some t, then using
the same steps as above, the inequality is reversed, so that (H) is violated.
(3.) Substituting Equation (4.A.5) into the obedience constraint (ii) we obtain for each ◊t≠:

(�◊
t + �◊̂

t )(1 ≠ 2◊t≠)–⁄ = –⁄(U1
t ≠ U0

t ) Ø c.

The last inequality is identical to (O) in Lemma 4. Conversely, if (ii) is violated at some t, then
the inequality is reversed, so that (O) is violated.

Proof of Theorem �
We solve the full problem in four parts. First, we solve a deterministic impulse control problem
setting ◊ = 1. Second, we show that fines between inspections cannot lower the costs of monitoring.
Third, we show that by allowing random transitions in quality, the optimal mechanism is the same
as the solution to the deterministic problem whenever ◊t = 1, and for ◊t = 0 it sets a flat fine
without inspections. Finally, we verify that the there is no mechanism in non-Markov strategies
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that performs better.

(1.) Deterministic impulse control. We begin by considering the auxiliary control problem
where ◊t = 1 (no transitions) and dFt = dµt = 0 whenever dNI

t = 0 (no fines or threats without
inspection). This is a standard deterministic impulse control problem with state constrains. Note
here that while we rule out transitions in quality, we continue to constrain the evolution of utility
to satisfy the incentive-compatibility conditions in Lemma 4. In other words, the agent must be
treated as if transitions in quality were possible even though quality is constant over time. Davis
(1993) shows that such impulse control problems can be solved iteratively, by solving the sequence
of impulse control problems in which the number of inspections is (at most) n Ø 0. The value
function of this restricted problem will converge to the value function of the original problem as
n æ Œ.

Fix t0 Ø 0, and for each ◊ œ {0, 1}, denote by T ◊(u0
t , u1) the length of the time interval between

t and the time at which U◊
t hits a boundary, where (u0

t , u1) is the profile of promised utilities at
t0 (assuming, as we will later verify, that U1

s never hits the lower boundary ≠B.) Since dFt = 0
and dµt = 0, the promise-keeping and truth-telling constraints yield a pair of coupled first-order
di�erential equation that have the solution

U1
t = ert(u1 + (1 ≠ –)(e⁄t ≠ 1)(u1 ≠ u0)) ≠ c(1 ≠ ert)/r, (4.A.7)

U0
t = ert(u0 ≠ –(e⁄t ≠ 1)(u1 ≠ u0)) ≠ c(1 ≠ ert)/r. (4.A.8)

Inspection of the truth-telling constraint reveals that U0
t is strictly decreasing in t and from the

previous two equations, it is easy to see that U0
s is strictly increasing in u0. It thus follows that

T 0 is increasing in u0. In a similar vain, U1
s is u-shaped in t and decreasing in u0. Therefore, T 1

must also be increasing in u0. Hence, the boundary hitting time T 0 increases in U0
0 and so for

given U1
0 , the principal chooses U0

0 as large as possible. This means that the obedience constraint
U1

0 ≠ U1
0 = c/⁄– must bind. The maximisation problem is thus reduced to finding the optimal

initial utility u := U1
t . Define

T (u) = min{T 0(u ≠ c/⁄–, u), T 1(u ≠ c/⁄–, u)}

Step n = 0: Suppose the principal cannot perform any interventions. Then the obedience
constraint is necessarily violated (all penalties must be enforced independently of true quality) and
thus no e�ort by the agent can be induced. Hence, the value function for the principal is

Ṽ 0(u) = V̄ 0 =
⁄ Œ

t

e≠(r+⁄)(s≠t)H ds = H/(r + ⁄).

Step n = 1: Suppose there is only one inspection left to be performed. An increase in u strictly
decreases the time U1

t hits the upper boundary 0 and strictly increases the time U0
t hits the lower

boundary ≠B. This is because an upwards shift in the initial promised utility moves up the paths
of both U1

t and U0
t . It is thus immediate that to maximise T , the boundary hitting times must be

equal, that is:
T 0(u ≠ c/⁄–, u) = T 1(u ≠ c/⁄–, u).

Thus, the optimal initial utility uú
1 is given by the value at which both U1 and U0 hit (opposite

sides of) the boundary simultaneously. The resulting value function is given by

Ṽ 1(u) = (1 ≠ e≠rT (u))H/r + e≠rT (u)(V̄ 0 ≠ Ÿ).

Step n = 2: Suppose there are two inspections left to be performed. Let „(s ≠ t, u) := U1
s
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denote the solution for promised utility given by Equation (4.A.7) with initial condition (U0
t , U1

t ) =
(u ≠ c/⁄–, u), measuring time relative to the initial instant t. The value function is then

Ṽ 2(u) = (1 ≠ e≠rT (u))H/r + e≠rT (u)(Ṽ 1(„(T (u), u) ≠ Ÿ).

The optimal initial promised utility u must satisfy the first-order necessary condition

ˆuṼ 2(u) = rT Õ(u)e≠rT (u)#H/r ≠ (Ṽ 1(„(T (u), u)) ≠ Ÿ)
$

+ e≠rT (u)ˆuṼ 1
1 („(T (u), u)) = 0.

Note here that H/r is the upper bound of the principal’s payo�, and thus

H/r ≠ (Ṽ 1(„(T (u), u)) ≠ Ÿ) Ø 0. (4.A.9)

Thus, ˆuṼ 2(u) = 0 only if either T Õ(u) > 0 and ˆuṼ 1(„(T (u), u)) < 0 or if T Õ(u) < 0 and
ˆuṼ 1(„(T (u), u)) > 0. Suppose the latter is the case. Note that T Õ(u) < 0 means that only the
upper boundary is reached, which implies that „(T (u)) = 0. This in turn implies that „(T (u)) > uú

1.
But for u > uú

1, we have

ˆuṼ 1(u) = rT Õ(u)e≠rT (u)#H/r ≠ (Ṽ 0 ≠ Ÿ)
$

< 0,

so it cannot be the case that T Õ(u) < 0 and ˆuṼ 1(„(T (u), u)) > 0. Thus, we have T Õ(uú
2) > 0 and

ˆuṼ 1
1 („(T (uú

2), uú
2)) < 0. Note also that T Õ(uú

2) > 0 means that only the lower boundary is reached
(higher u increases the hitting time) which in turn implies that uú

2 < uú
1.

Step n = k: Suppose there are k interventions left. Now, suppose that ˆuṼ k≠1(0) < 0, as was
shown for k = 2 in step 2. For k > 2, the first-order necessary condition on u is

ˆuṼ k(u) = rT Õ(u)e≠rT (u)!H/r ≠ Ṽ k≠1(„(T (u), u)) + Ÿ
"

+ e≠rT (u)ˆuṼ k≠1(„(T (u), u)) = 0.

If T Õ(uú
k) < 0, then only the upper boundary is reached, which implies that „(T (uú

k)) = 0 and
ˆuṼ k≠1(0) < 0, a contradiction. Thus, the solution must have T Õ(uú

k) > 0 and ˆuṼ k≠1(0) < 0.
Moreover, we have ˆuṼ k(0) < 0 since T Õ(0) < 0 and ˆuṼ k≠1(0) < 0, which proves the induction
hypothesis for k + 1.

There is a value u such that u Æ „(T (u), u) for all u Ø u (this follows from the laws of evolution
of U0, U1). We show that uú

k Ø u for all k. For k = 1, we know uú
2 < uú

1, so that uú
2 Ø u. Let k

be the first index at which uú
k < u < uú

k≠1. Since uú
k < u, we have uú

k > uú
k≠1, but by hypothesis,

uú
k≠1 > u, a contradiction. We thus have uú

k Ø u, which implies that u Æ uú
k < uú

k≠1 for all k > 1.
Therefore, the sequence (uú

k)k is bounded and strictly decreasing, and thus by the monotone con-
vergence theorem, it has a limit uú with uú > u.

(2.) No fines between inspections. Consider now a mechanism {Ft, NI
t }t in which {Ft}t and

{µt}t are any measurable processes with dFt, dµt Ø 0. Since U0
t is decreasing over time, it is

clear that dµt = 0 for all t since otherwise, the time until U0
t reaches the enforcement boundary

decreases, thus increasing monitoring costs. Starting from the original mechanism with arbitrary
fines, we show that there exists a mechanism without fines between inspections that generates the
same costs to the principal.

In the original mechanism with arbitrary fines, suppose t < T are two consecutive inspection
dates. Let u = (u0, u1) be the utility of the agent at time t, and denote by V (U) the principal’s
expected monitoring costs at state U = (U0, U1). Since the principal incurs the cost only at the
time of inspections, the monitoring costs for the principal at time T can be written as

V (u) = e≠rT V (UT )
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where U◊
T = u◊ +

s T

t
dU◊

s for each ◊ œ {0, 1}.
Consider now an alternative mechanism {F̂t, N̂I

t }t that is identical to the original mechanism
at any time s < t and s Ø T . However, we set dF̂s = 0 at all s œ (t, T ) and dF̂t = dFt + FT ≠ Ft

at time t. Denote by Û◊
s the promised utility to the agent in this alternative mechanism, and let

the expected monitoring costs for the principal in the new mechanism be denoted by V̂ (U). The
monitoring costs generated in these mechanisms are equal, since

V̂ (u + dF̂t) = e≠rT V (ÛT ) = e≠rV

3
u + FT ≠ Ft +

⁄ T

t

dÛs

4

= e≠rtV

3
u +

⁄ T

t

(dÛs + dFs)
4

= e≠rT V (UT ) = V (u).

Since this modification can be performed for any pair of consecutive inspection dates, the mechan-
ism constructed in part (1.) of this proof is optimal among mechanisms with arbitrary fine processes
{dFt}tØ0.

(3.) Quality transitions. We now consider the original model, in which quality follows a two-
state Markov chain. In this case, the process is piecewise deterministic because payo�s evolve
deterministically between quality transitions. Suppose u = (u0, u1) is the optimal initial utility pair
in state ◊ = 1. We show that in any contract, it is possible to have Ut = Ū at all t when ◊ = 0
without performing inspections.

The proof is constructive. Suppose Ū is the initial utility when ◊ = 1. Since dU0
t Æ 0 by the

truth-telling conditions, we have U0
t Æ Ū . Set dFt = Ū0 ≠ U0

t and dµt = Ū0 ≠ U0
t ≠ (Ū1 ≠ U1

t ).
By promise keeping and truth telling, we have dU1

t ≠ dU0
t Ø 0, and hence dµt Ø 0. We thus

have U i
t+ = Ū i for i = 0, 1. Therefore, if the initial utility in state ◊ = 1 is Ū , it can be reset

to Ū when the state switches to ◊ = 0. Next, while ◊ = 0, set dFt = ≠rŪ0 + –⁄(Ū1 ≠ Ū0) and
dµt = c + (r + ⁄)(Ū1 ≠ Ū0). Substituting into the promise-keeping and truth-telling constraints, it
follows that dU i

t = 0 for each i = 0, 1, and thus we can construct a contract with Ut = Ū for all t

at which ◊ = 0.

(4.) General mechanisms. Parts (1.)-(3.) demonstrate that the mechanism described in the
theorem is an optimal Markovian mechanism. It remains to show that no (non-Markovian) mech-
anism can do better. Let V ◊t (U) denote the expected costs for the principal in our mechanism that
delivers the agent with promised payo�s of U = (U0, U1). We show that the expected costs in state
◊t from any incentive-compatible mechanism that delivers the initial expected value U0 = (U0

0 , U1
0 )

to the agent cannot lie below V ◊t (U0). Since the inspection cost Ÿ does not depend on the state
value prior to inspection, we can apply Theorem 54.28 from Davis (1993, p. 242) to conclude that
the value function V the unique continuous and bounded function that solves the quasi-variational
inequality

UV ◊(u) ≠ rV ◊(u) Ø 0,

W V ◊(u) ≠ V ◊(u) Ø 0, and
!
UV ◊(u) ≠ rV ◊(u)

" !
W V ◊(u) ≠ V ◊(u)

"
= 0,

on the state space
)

(◊, u0, u1) : ◊ œ {0, 1}, (u0, u1) œ [≠B, 0]2, u1 ≠ u0 Ø c
⁄–

*
. Here, U is the exten-
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ded generator of the piecewise deterministic Markov process which is defined by the relationship9

E◊,uV ◊t (Ut) = V ◊(u) + E◊,u

⁄ t

0
UV ◊s (us)ds

in case no inspection occurs before t, and W is the expected total cost at the time of an inspection.

W V ◊ = min
u0,u1

V ◊(u0, u1) + Ÿ.

Consider an arbitrary incentive-compatible mechanism with inspection process {dNI
t }t and

define the total expected cost at time t by

Gt =
⁄ t

0
e≠rsŸdNI

s + e≠rtV ◊t (Ut).

For t = 0, we have G0 = V ◊0 (U0). For t > 0, we can represent Gt by the di�erential formula (see
Theorem 31.3 in Davis, 1993, p. 83) as

Es[Gt]≠Gs =
⁄ t

s

e≠r(z≠s) !
UV ◊z (Uz) ≠ rV ◊z (Uz)

"
dz+Es

5⁄ t

s

e≠r(z≠s) !
W V ◊z (Uz) ≠ V ◊z (Uz)

"
dNI

z

6
.

By the variation inequality above, both integrals are non-negative so that the process (Gt)t Ø 0 is a
submartingale and E0 [Gt] Ø G0 for any t Ø 0. In particular, taking the limit as t approaches infinity,
we get E0

#s Œ
0 e≠rsŸdNI

s

$
= E0 [limtæŒ Gt] Ø G0 = V ◊0 (U0). Hence, any incentive-compatible

maximal-compliance mechanism leads to weakly higher expected inspection costs.

Proof of Lemma �
Define

�(T ) © (B ≠ c/r) (1 ≠ e≠rT ) ≠ c/(⁄–)e⁄T (erT ≠ –) + c/(⁄–)(1 ≠ –), (4.A.10)

so that T ú = inf{T > 0 : �(T ) = 0}. This exists and is unique whenever our feasibility assumption
B > c r+⁄

r⁄– is satisfied (� is increasing from 0 at T = 0 and crosses 0 from above exactly once). The
function � is continuously di�erentiable in all parameters and in T on a neighbourhood of T ú. By
the implicit function theorem we have

ˆT ú

ˆx
= ≠ �x

�T

---
T =T ú

,

for all parameters x œ {B, c, –, ⁄}, where �x denotes the partial derivative of � with respect to x.
As mentioned above, �(T ) crosses 0 from above at T = T ú so that �T |T =T ú < 0. Hence, for all
parameters, we have

sign

3
ˆT ú

ˆx

4
= sign

1
�x|T =T ú

2
.

The first two items of Lemma 5 follow immediately as � is increasing in B and decreasing in c

everywhere.
Likewise for the third item, note that

�– = c
⁄–2

!
e(r+⁄)T ≠ 1

"
> 0,

9See Davis, 1993, pp. 27-33.
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so that T ú is increasing in –.
For the fourth item, describing the change of T ú in ⁄, consider � in (4.A.10) as ⁄ √ cr

Br–≠c ,
which is the lower bound on ⁄ such that the feasibility assumption B > c(r+⁄)

r⁄– is fulfilled. � = 0 is
then equivalent to

(B ≠ c
r

)(1 ≠ e≠rT ) ≠
1

B ≠ c
r–

2 !
e⁄T (erT ≠ –) ≠ (1 ≠ –)

"
= 0.

This can only be fulfilled at T = 0, as we have B > c
r– > c

r and for all T > 0,

0 > ≠
!
e⁄T (erT ≠ –) ≠ (1 ≠ –)

"
>

1
–

!
e⁄T (erT ≠ –) ≠ (1 ≠ –)

"
.

Hence, T ú is initially increasing in ⁄. Finally, consider � in (4.A.10) to see that T ú(⁄) ⁄æŒ≠æ 0. In
particular,

lim
⁄æŒ

e(r+⁄)T ú(⁄)

⁄
= 0.

This implies that ⁄T ú(⁄) is either finite or grows at lower than logarithmic rate as ⁄ becomes
arbitrarily large. Thus, T ú(⁄) must go to 0.

Proof of Lemma �
The first two items follow immediately from the previous lemma as CH is decreasing in T .

Consider the total derivative of costs CH w.r.t. –:

d
d–

CH =
Ë
(2– ≠ 1)⁄2 + e(r+⁄(1≠–))T ú !

(T ú⁄(r + –⁄)(r + ⁄(1 ≠ –)) ≠ (2– ≠ 1)⁄2"
(4.A.11)

≠ T ú
a · (r + ⁄(1 ≠ –))2(r + –⁄)

È 1
(e(r+⁄(1≠–))T ú ≠ 1)2r(r + ⁄) .

The change in inspection costs caused by varying – contains the negative e�ect through the increase
in T ú and an e�ect on the environment contained in the first terms of the squared bracket. The
second e�ect captures the change in relative probability of high reports as well as the variability of
the state, both of which determine how often the deadline is reached without previously changing
to state L. To see that it is always positive, verify that it is 0 at T = 0 and increasing in T .

We establish the second item of the lemma: there exists – > c(r+⁄)
Br⁄ such that CH is decreasing

in – for all – < –. Note that as – √ c(r+⁄)
Br⁄ , T ú(–) √ 0. The squared bracket in (4.A.11) converges

to ≠T ú
– |

–√ c(r+⁄)
Br⁄

· r(r + ⁄)2. T ú
– is strictly positive for – > c(r+⁄)

Br⁄ . By continuity, the derivative

must be negative for all – smaller than – > c(r+⁄)
Br⁄ .

Last, we show that there exists –̄ such that CH is increasing in – for all – > –̄ and that –̄ < 1
whenever Br≠c

cr is large enough. Consider the squared bracket in (4.A.11) as – ¬ 1. This is equal
to

lim
–æ1

≠⁄2 #
erT (–) ≠ 1

$
+

!
⁄T (–) ≠ rT Õ(–)

"
erT (–).
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From �|–=1 = 0 we get e(r+⁄)T ú(–) –æ1≠æ Br≠c
cr ⁄. Further,

T ú
– |–æ1 = lim

–¬1

A
≠ ⁄(Br ≠ c)(1 ≠ e≠rT ) + cr(e⁄T ≠ 1)

⁄–(Br ≠ c)re≠rT ≠ (r + ⁄)cre(r+⁄)T + ⁄–cre⁄T

----
T =T (–)

B

=
⁄ (Br≠c)

cr

1!
Br≠c

cr ⁄
" r

r+⁄ ≠ 1
2

+
1!

Br≠c
cr ⁄

"
≠

!
Br≠c

cr ⁄
" r

r+⁄

2

≠⁄ (Br≠c)
cr r + (r + ⁄)

!
Br≠c

cr ⁄
" 2r+⁄

r+⁄ ≠ ⁄
!

Br≠c
cr ⁄

"

=
!

Br≠c
cr ⁄

" 2r+⁄
r+⁄ ≠

!
Br≠c

cr ⁄
" r

r+⁄

(r + ⁄)
1!

Br≠c
cr ⁄

" 2r+⁄
r+⁄ ≠ (Br≠c)

cr ⁄
2 .

Inserting into (4.A.11) at – = 1 and defining ‰ = (Br≠c)
cr ⁄ > 1, we see that the deterministic

inspection costs are increasing in – if and only if

⁄2 + ‰

A
≠⁄2 + ⁄

r + ⁄
ln (‰) ≠ ‰

2r+⁄
r+⁄ ≠ ‰

r
r+⁄

‰
2r+⁄
r+⁄ ≠ ‰

B
> 0.

As ‰ grows large (for example as B increases), the fraction in the bracket approaches 1, so the
second term grows arbitrarily large. Therefore, we have that for ‰ large enough, there exists –̄ < 1
such that the deterministic costs are increasing in – for all – > –̄.

In the case of ⁄, the first result, that the costs decrease initially in ⁄, is shown analogously to
the corresponding result in the case of –. To see that the costs become arbitrarily large in the limit,
recall from the previous proof that ⁄T ú(⁄) grows to Œ at lower than logarithmic rate. The total
costs in the limit are thus given by

lim
⁄æŒ

CH = (1 ≠ –)–
r

lim
⁄æŒ

⁄

e(1≠–)⁄T ú(⁄) = Œ.
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