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Abstract

In this work the scattering of two pions in I = 2 and three pions in I = 3 is
analyzed with lattice QCD. The process is computed on three Wilson clover twisted
mass ensembles generated by the ETMC with total momentum up to P? < 4 in all
irreducible representations. One ensemble has been simulated at the physical pion
mass.

The correlation functions are treated with methods to suppress thermal states
and excited states. Energy extraction is performed with multiple different fit
methods and a combination afterwards such that the systematic errors from fit
range selection are taken into account.

The three-pion spectrum has been fitted using the RFT approach. We obtain
apM, = 0.0481(86) for the two-pion scattering length at the physical pion mass.
In the three-pion sector a constant and linear coefficient of the contact interaction
has been extracted. The constant term agrees both with an existing analysis and
leading order ChPT, the linear term has tension with the leading order ChPT
prediction at high pion masses.
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1. Introduction

In classical mechanics, one can solve the two-particle problem analytically and
exactly. The insight is to transform it back to a single-particle problem and have
one particle move in the potential of the other. This way one can study a planet
around the sun or an electron around a hydrogen nucleus. As soon as one adds a
third particle, no exact analytic solution to the dynamics is known. Numerically
these problems can be solved to arbitrary precision given sufficient computing
resources.

The strong force—which governs the interactions of quarks and nuclei and is
described by quantum chromodynamics—inherently is an infinite-particle theory
at low energies. One can partition these into select few valence quarks and infinitely
many sea quarks. The infinitely many sea quarks are dealt with in the established
frameworks. Too many bunches of valence quarks (hadrons) still pose a problem
to the indirect interaction determination that has to be used in the simulations,
the Liischer method. For quite a while only the interaction of two hadrons could be
described. Pions are the lightest hadrons and can only be created in pairs from
the vacuum due to G-parity. The dynamics could only be described to just below
4M .. This restriction is rather severe for simulations at physical pion masses, most
hadronic resonances of interest lie above this threshold.

Additionally, many hadronic resonances like the Roper resonance [1] decay into
more than two particles. Besides the decay channel into N, it also dacays into
Nmm. The latter can only be interpreted in with a three-particle formalism. The
mass of the Roper resonance is at odds with the current understanding of the quark
model, a lattice study from first principles would be highly desirable. Another
example for a decay into more than two particles is the w-meson with the largest
branching fraction into three pions in p-wave [2]. A lattice investigation of the
X, Y and Z resonances also depends on the existence of a suitable multi-particle
formalism.

Recent developments have extended the Liischer formalism to three particles. The
relevant threshold has been lifted to 5M,;, and it is hoped that this will only be the
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start to extend it to many more particles. In this work we will use these relatively
new theoretical techniques and apply them to lattice simulation data of three pion
scattering. In this way the formalism can be evaluated on a simple system and
vetted for more complicated scattering channels.

The main part of this work is the determination of the three-pion interacting
energies on three Wilson clover twisted mass lattices generated by the Extended
Twisted Mass Collaboration, one of them with physical pion mass. The energy
levels are extracted for moving frames up to P? < 4 using several operators to
probe the spectrum in each irreducible representation. Careful treatment of excited
states and thermal pollution allows for an estimation of the systematic errors in
the energy extraction.

Fitting these energies with an appropriate three-pion interaction model allows
the quantification of a three-pion contact interaction strength. Additionally we
provide a determination of the two-pion scattering length a,M, = 0.0481(86) at
the physical point, which is compatible with previous results [3]. The three-pion
interaction is parametrized linearly, the constant term agrees with an independent
determination as well as leading order chiral perturbation theory (ChPT). The
linear term is at odds with leading order ChPT at high pion masses.

In order to obtain these physical results, a lot of software development is needed.
In the last chapter we will cover a few of the important changes to existing software
packages and a new analysis framework that provides much flexibility as well as a
stringent workflow organization.
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On the level of the nucleus the dominating force comes from the strong interaction.
Electromagnetism and the weak force only contribute minor corrections and there-
fore it is permissible to focus on this single interaction described by the theory of
quantum chromodynamics (QCD). A general introduction to quantum field theory
(QFT) and QCD can for instance be found in the textbook by Peskin and Schroeder
[4]. The work presented in this thesis uses the same theoretical foundation as used
in the author’s master thesis [5]. A certain overlap of the theory chapters it to be
expected. Like any other quantum field theory, QCD is expressed as a Lagrange
density [6]:
L=2 Tt (6,0G"")+ 4 (iD—m)wp.

2 color

This expression contains the following quantities:

* The gauge field A is a Lorentz vector field in space-time with one four-count
index u but also a 1-form in the su(3) algebra (adjoint representation) with
an eight-count index a. The components are AZ(x). Using the generators of

the SU(3) group, the Gell-Mann matrices Aflj one can form the su(3) matrix
A, =A"2Y
u u-ra:

* G is the gluon field strength tensor built from gauge potential A as G =
dA+AAA. This makes the field strength tensor G a two-form over space-time.
The components are GZ’;(x).

* The spinor field v describes the quark fields. It it complex Grassmann num-
ber values valued, has a three-count color index (i), a four-count spin/Lorentz
index a and a flavor index f. The components are ¢, f (x). Its adjoint

1) = py° is defined with the Dirac matric °.
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e D= 7#D,, is the “slashed” covariant derivative, the contraction is done with
the Dirac matrices. The covariant derivative D, is defined as D, = 6’“ +iAy,
where g, is the usual partial derivative along direction e,,.

* m is the quark mass matrix which acts purely in flavor space and is diagonal
in all other spaces.

The first part of the action is the “gauge part”, the second the “fermionic part”. The
trace operation only acts on the color indices and not in the other spaces. And in
the whole of this work the constants ¢ and # are set to unity, yielding the natural
units of high energy physics.

Observables in the form of an operator O are extracted using the Feynman path
integral [7]. All information can be extracted with correlation functions as

(0T 010} = | 2499 29 O(A, 9, ) exp(iS(A,,))
[ 2499 29 exp(iS(A,,9))

On the left side, there is the time ordering operator T. If O is a product of operators
at different times, they will be ordered (commuted or anti-commuted) such that
the times are always in increasing order. The action S is the integral over all space-
time, f d*x L. Analytic computation of the path integral is possible when the fields
enter at most quadratic in the Lagrange density, they are free fields then. As soon
as an interaction is added, the integral usually cannot be solved in full. There are
some particular models in certain space-time dimensionality that can be solved.
However, for the interactions in the standard model, one cannot solve the path
integral exactly. If the interaction is weak, like with quantum electrodynamics,
the exponential function can be expanded in powers of the coupling strength.
The terms of this expansion can be visualized as Feynman diagrams. For the low
energy scale of QCD the interaction is large and the expansion cannot sensibly be
truncated. The methods that are used instead are presented in this chapter.

2.1. Simulation

Expansion of the path integral in powers of the gauge coupling will not work in the
low energy regime that the interactions of mesons and baryons are part of. We will
pursue a numerical approach and solve a discretized version on large computers.
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Brute force discretization of the path integral will not get us very far. The integrand
is an oscillating phase and most contributions far away from the classical path will
just cancel each other away. Rather one would try to use importance sampling,
a Monte Carlo technique. It can be used to solve an integral of the form I =
f dx f(x)P(x), where the factor P(x) can be interpreted as a probability density.
Then one generates N values x such that they are distributed like P(x), this is also
called sampling from P. For all these values x; one computes f (x;) and obtains
the estimate for the integral I as

lelvzi:f(xi).

This technique has the advantage that it converges towards the result as 1/vN
independent of the dimension of the space. Regular grid based approaches usually
fall behind in spaces which are more than ten dimensional. As we will see later,
the dimensionality involved here is significantly larger.

For the path integral the operator O is interpreted as the function f, the value
x is comprised of the values of A, 2 and 2. The problem is that the complex
exponential is not real, positive and bounded from above. The common procedure
is the Wick rotation which transforms the time t to imaginary time T = —it such
that the oscillating phase factor exp(iS) becomes a probability weight exp(—S)
which is positive and bounded because S is bounded from below. Introducing
a normalization Z = f@A PP D exp(—S(A,, 1)), one can bring the path
integral into this suggestive form, with function f at front and probability P at the
end:

exp(—S(A, ¢, 7))
Z .

(0|TO|0) = J DA DY D O(A, 4, )

Spacetime has uncountable many points, therefore a state (A(x), P (x), P(x))
cannot be represented on a computer. A finite volume part of it needs to be
discretized to have a finite number of points. The discretization used is a equidistant
lattice with spacing a in all four dimensions. There are a lot of intricacies which
are beyond the scope of this introduction. There are gauge links, plaquettes and
pseudo fermions. For a comprehensive introduction into lattice QCD, the reader is
referred to the book by Rothe [8].

With this discretization in place, the path integral becomes an integral of finite
dimension which can be sampled on a computer. The number of lattice sites is still
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Name L3xT M,/MeV M,L Configurations
cA2.09.48 48° x 96 134 2.98 1604
cA2.30.48 48% x 96 242 5.37 350
cA2.60.32 323 x 64 340 5.05 337

Table 2.1.: Ensembles used in this work.

very large, say 48° - 96 = 10616 832 for a typical lattice used in this work. Each
point then has 4 -9 = 36 complex degrees of freedom (direction and color matrix).
The high number of variables lends itself to sampling with Monte Carlo methods
like the HMC [9]. An accessible introduction to the HMC for QCD is the one by
Lippert [10].

Wilson [11] has introduced a gauge invariant way to discretize the Lagrangian of
QCD onto the lattice. One caveat is the so-called no-go theorem by Nielsen and
Ninomiya [12] which states that there will be one doubler fermion per dimension
if the theory exhibits (a) gauge invariance, (b) translational invariance, (c) locality,
and (d) chiral symmetry in the massless limit. In order to make the doublers heavy
enough to decouple from the spectrum, one of the properties needs to be given
up. We chose to give up the chiral symmetry by the addition of the Wilson term
— anLV“l]) to the action. This term couples left and right handed spinors, just
like the mass term. It makes the doublers heavy, but also introduces additive mass
renormalization.

The basic Wilson action exhibits lattice spacing artifacts or order O(a). A tool for
reducing O(a) effects in most hadronic quantities is the twisted mass formulation
[13, 14]. The mass and the Wilson term are the two terms which break chiral
symmetry. By making them orthogonal in isospin space the additive renormal-
ization is effectively canceled. This needs some non-perturbative tuning in order
to achieve maximal twist. Using the clover term [15] one can reduce the O(a?)
artifacts at cost of different O(a®) artifacts. The clover coefficient cy,, usually needs
to be tuned non-perturbatively.

This work uses a subset of the Ny = 2 Wilson clover twisted mass ensembles by the
ETMC [16] that have already been used in many other projects, including meson
scattering [ 17-22]. The ensembles used are listed in Table 2.1. For all ensembles
we have a lattice spacing a = 0.0914(02)(17) fm and the clover coefficient cg, =
1.57551. They use the Iwasaki gauge [23].
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In total the fermionic operator takes the form

) i
Ewilson + Mg +1UYsT3 + chwaquuv s

where the terms are (1) the Wilson Dirac operator, (2) mass set to critical mass,
(3) twisted mass and (4) the clover term.

The ETMC also has a large group of ensembles with Ny =2 + 1 + 1 Wilson twisted
mass ensembles [24] which have been used in various meson scattering projects
in the work group [18, 20, 25-31] and beyond. Although the 15 ensembles allow
for extrapolations in pion mass, lattice spacing and lattice size, they lack a clover
term and the pion masses do not include the physical one. As three-pion scattering
has already been computed on unphysical pion masses [32], this work includes
physical pion mass for novelty. A new group of Ny = 2+ 1+ 1 Wilson clover twisted
mass ensembles are in the making, but was not yet available during the creation
of this work.

2.2. Group theory

Symmetries play a great role in physics. When working with angular momentum
on the lattice one is forced to review how it interacts in the continuum to transfer
the concepts to the lattice. We will do a short review of the group theoretical
concepts that are necessary for this work.

A mathematical group is a set G, a neutral element 1 and an operation o, written
as (G, 1,0). The following axioms need to hold:

Neutral element There must be an element 1 € g such that for every g € G it
holdsthat g=10g=gol.

Inverse element For every g € G there must be an element denoted as g™ € G
suchthat g7log=gog ' =1.

Associativity For all elements g,h,k € G holds that go(hok)=(goh)ok.

There also exist commutative groups where additionally one has goh =ho g, but
these are not the kinds of groups used in this thesis.

Examples for commutative groups are real numbers and addition, (R, 1, +), real
numbers without zero and multiplication (R \ {0}, 1,-). The integers Z form a
group under addition, but do not form one under multiplication as the inverse
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elements are not part of the group. One examples for non-commutative groups
are real square matrices with non-zero determinants and the usual matrix multi-
plication, (M,,xn, Lyxns )-

A good set of lecture notes on group theory is the one by Liideling [33].

2.2.1. Representation theory

The expansion into partial waves hinges on the spherically symmetric potential.
From Noether’s theorem we know that there must be an associated conserved
quantum number: the total angular momentum. The theorem alone does not give
us quantization, for this we need representation theory of symmetry groups. Every
symmetry group can be represented on a vector space via matrices D' (g), where
I’ labels the representation and g is a group element. The representation is a map
from the group G to the matrices in the vector space V,so G = V x V. Given a
group operation o and a matrix multiplication - the representation must fulfill the
condition

Vg,heG: D'(g)-D'(h)=D(goh). (2.1)

The map D does not need to be injective, it would be called faithful if it was.

One well known representation is the fundamental one. The vector space V is
Cartesian space R3. For rotations around the z-axis the matrices take the form

cos¢p —sin¢g O
D"(¢)=|sing cos¢p O
0 0 1

This representation is faithful. The name “fundamental” comes from the historic
development. This form was first, then the actual group structure and represen-
tation theory was formed later. It is beneficial to think of it as just one of many
possible representations.

Another often seen representation is the trivial one, named A’l“. It just has DA (g)=
1 for all group elements g. It fulfills Equation (2.1). It might seem useless at this
very moment but will become clear shortly. It is not forbidden to just tack on
additional dimensions to the vector space and just insert a unit matrix block to
the representation matrices. As long as the extra dimensions are decoupled, they
will not change the original representation. Decoupling is guaranteed when the
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representation matrices are block diagonal. Looking at the fundamental represen-
tation above it seems to be block diagonal with a two-dimensional representation
and the trivial representation A7 tacked on. This comes from the restriction to
rotations around the z-axis and restricting it to the SO(2) subgroup, we will see
subgroups again later.

There are infinitely many representations possible for every group, but by a change
of basis in V one can block-diagonalize them. The blocks are then independent
representations of the same group which cannot be further reduced, they are called
irreducible representations or irreps for short. Continuous groups have infinitely
many irreps, finite groups only a finite number of them.

These irreps contain the information about the degeneracy of quantum states. For
the SO(3) groups these irreps are well known, perhaps not under that name. The
irreps are called the “angular momentum [ irreps”, the associated vector spaces are
spanned by the spherical harmonics Y;,, with fixed [ and have dimension 2 + 1.
From the level splitting in the hydrogen atom immersed in a magnetic field we
know that the number of generate states with the same [ actually is the same 21+ 1.
The conserved quantity is the label of the irrep. All states within the same irrep
are degenerate and have the same energy. Breaking the full rotational symmetry
with an external magnetic field restricts the group and leads to different irreps,
just as has been seen in the above example of rotations around the z-axis.

2.2.2. Octahedral group

In lattice simulations the continuous rotational symmetry is broken down to the
rotational symmetries of a cube. The remaining symmetry group is the octahedral
group O. The cube and octahedron have the same symmetries as one solid can
be obtained by using the face centers of the other as vertices. From the infinitely
many rotations of a sphere only a handful of discrete rotations remain, they are
exemplified in Figure 2.1.

These rotations, together with reflections, fall into 10 conjugacy classes and there-
fore by Laplace’s theorem there are also 10 irreps for the whole group. Thinking of
angular momentum in terms of irreps of the pertinent symmetry group, there are
only 10 states of “angular momentum” on the lattice. The finite number of irreps
on the lattice unfortunately means that the correspondence between continuum
angular momentum and its lattice conterpart is not bijective. The mapping from
continuum to lattice is called subduction and each of the lattice irreps corresponds
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e E

(a) Edge parallel (b) Face diagonal (c) Space diagonal

Figure 2.1.: Rotation axes of a cube.

© @

(a) (0,0,0) (b) (1,1,0) (©(1,1,1)

Figure 2.2.: Deformation of a cube by boosts along with a certain momentum P.

to an infinite tower of continuum irreps. The irreps relevant for this work are listed
Table 2.2.

2.2.3. Stabilizers

When particles are at zero total momentum, the center of mass frame coincides
with the lattice frame. Non-zero total momentum states are needed for a well
probed energy spectrum. A boost will deform the lattice and further reduce the
symmetry. Figure 2.2 shows these deformations for boosts in more than one
direction component. Only the group elements g € O that do not alter a total
momentum P are left in a boosted lattice. This subgroup is called stabilizer as it
stabilizes certain points or directions in space. The concept is also known as little
group because it contains a subset of the original group.
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Pz AP P

0 A7 0%,45...
E* 2%4% ...
Ty 2%,3%,4%,...

1,4 A, 07.4,...
A, 07,4,
B, 2,
B, 2,
E, 1,3,...

2 A 0M,2,4,...
A, 07,2,4,...
B, 1,3,...
B, 1,3,...

3 A 0%,3,...
A, 07,3,...
E, 1,2,4,...

Table 2.2.: Coupling of the lattice irreps to the continuum angular momenta and
parity. [34, Table 2]
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In the example with the fundamental representation of SO(3) for rotations only
around the z-axis such a stabilizer was effectively considered. This SO(2) subgroup
directly becomes block-diagonal and therefore reducible. In general the irreps will
be different in a stabilizer group.

2.2.4. Group theoretical projection

The quantum field theoretical operators that are used to probe the gauge field
need to have definite quantum numbers in order to be useful. Besides particle
content, isospin and total momentum they also need to be in one of the irreps of
the pertinent stabilizer group for the total momentum P. Such a multi-particle
operator can be constructed from single-particle operators O.

There are multiple conventions regarding the individual particle momenta p;.
In this work we use a convention which uses relative momenta q; and a total
momentum P such that the individual particle momenta p; are

P1=P—q1—q3, P2=q1, P3=4q>.

This formulation has the advantage that conversion back and forth is rather easy
easy to read off. In the case of two identical particles the formulation p; = P/2+q
and p, = P/2—q also has its appeal [31] but is not used in this work.

For each total momentum magnitude P> we have a reference total momentum
denoted P, These are (0,0,0), (0,0,1), (1,1,0), (1,1,1) and (0,0, 2).

One can construct a multi-particle operator with N,, particles from single particle
operators O(p) by building products of them and projecting them into the proper
group theoretical irrep. The necessary prescription has been worked out by various
people in the field and was given by Werner et al. [30] in a form very close to this
one:

NP
o {qht= >, DpLr[ o, R;'RRp)". 2.2)
g€Stab(Pyer) i=1 '

The version given in the cited thesis also works for particles of non-zero spin,
which is a generality not needed here with only pseudo-scalar particles. There is a
lot to unpack in this equation. One has a and 8 which are the row and column
indices of the irreducible representation. All matrix elements of an irrep behave
the same way; it just might that a particular operator gives a zero in some elements.
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There one has to simply chose a different matrix element. The matrices D! are
the irreducible representations. The general equation also contains the Wigner-D
matrices D’ which are just the spin-J representations from the continuum. For
J = 0 all elements are just unity, therefore they are omitted from the equation.
The matrices R, are the Cartesian representations of elements g.

g is the group element which brings Py to P.,. Precisely, we have P, = Ry Py
The argument of the single operator, RgfleRg Di, therefore is the rotation of the
single particle momentum to the reference frame, application of the group element
and rotation back into the frame of interest. This way the stabilizer groups only
need to be known for the reference frames.

In this work the only single-particle (annihilation) operators that is used are the
charged pion operator n* = —ysd and its conjugated counterpart 7~ = dysu.

Later on for the Liischer method we will need the subduction coefficients s that
connect lattice and continuum symmetry. For the mesonic cases these are given
by Gockeler et al. [35, Tables 10, 12 and 14]. For this work the subduction
coefficients have been computed from scratch with the same representations using
Equation 2.90 from Reference [31] because phase freedoms and other choices lead
to incompatible coefficients if not everything is chosen consistently. The following
expression is used, with a phase freedom ¢,,.

d
NI L. U H I 2.3)

my 1S@b(Prerl o,

These equations are implemented in the sLapH Projections NG package [36], which
is also covered in Section 6.2 in more detail.

2.3. Correlator computation

Correlators containing quark operators cannot directly be computed on the lattice
as there are no Grassmann numbers on the computer. Instead one needs to perform
the Wick contractions and decompose the correlator as a linear combination of
diagrams. This can be illustrated with a correlation function from two pions to two
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Q0
o0
o0 o0
(a) C2c OCO
0 @ o

(b) C4cC (c) C4cD
(d) C6cC (e) C6cCD (H) Cé6ecD

Figure 2.3.: Diagrams used in this work. Only quark propagation is shown, gluon
interactions are taken into account to all orders by the gauge config-
urations. The gray vertices on the left are on the source time slice,
vertices on the right are on the sink time slice. The sLapH method
removes all the spatial information, therefore permutations of the
source or sink vertices yield the same correlation function.

pions, (r~(t) n~(t) ©*(0) =*(0)). We perform one particular Wick contraction:

(5|1(t)Y51|1(t) d(t)ysu(r) 1_|1(0)Y5C|1(0) 1‘|1(0)Y50|1(0)>

= (YS Pu(ta 0) ¥s Pd(07 t) Ys Pu(ta O) Ys Pd(O) t)) .

This has a particular topology, namely one quark-connected piece where the
propagators cross back and for from source to sink time slice and back. For the
scattering of three pions at maximum isospin there are six diagrams that contribute,
these are illustrated in Figure 2.3. The nomenclature here works as follows. The
first “C” stands for “correlator” and is always fixed, then the number of operators
comes as a number. The “c” stands for conjugated (or charged) and means that
half of the propagators use the vy hermiticity for a flavor change in the light quark.
These are needed when working with charged pions in twisted mass. The trailing
letters denote the shape of the diagram. A “C” stands for “cross”, a “D” is a “direct”
diagram and the “CD” is a combination of both. The Wick contraction of the
example above yields the “C4cC” diagram.

One can compute propagators from point (or similar) sources. These have the dis-
advantage that they have to be computed for each Dirac structure and momentum
and are therefore not easily reusable. In order to separate propagators and the
particle operators (with Dirac structure and momentum) the Laplacian Heaviside
method [37] can be employed. With the method one can factorize a correlation
function into tensors that either depend on the inversion or on Dirac structure and



2.3. Correlator computation 21

momenta such that all parts are small enough to store. These building blocks can be
generated once and then used to analyze various physical scattering processes.

The first step is a lossy compression of the gauge field. One computes the eigen-
spectrum of the Laplacian operator on each gauge configuration to obtain the
matrix of eigenvectors V, and eigenvalues A,. Using a cutoff 03 one can then
construct a smearing operator & (script S) which projects the spectrum onto the
lowest eigenvalues only:

S =Vp0(c2+Ap) V).

The matrix @(052 + Ap) is diagonal and has 0 and 1 entries on the diagonal.
Therefore one can just discard the corresponding eigenvectors from V and call

that V. The smearing operator therefore is & = VV'.

This allows the introduction of a quark line £ (script Q) that is derived from the
propagator M -1

2=sM 1y =V M V)V,

The key advantage is that the dimensions of V' are such that it has few rows
(corresponding to the compressed space) and many columns (corresponding to
full space and color). The object VIM ™V therefore has a reduced size and can
be stored on disk. When computing full correlation functions later on, the Dirac
structures I and momenta p will enter as V' exp(ip -x)I'V, which can be computed
independently of the quark line also a reduced size. Inversions have to be done
only once, all possible contractions can be built up from these building blocks later
on.

The required number of inversions are still very high, and given usual gauge noise
it is a waste of resources to perform all of them. Therefore the stochastic LapH
method [38] uses random noise vectors 1 with E(n;) = 0 and E(n;n;) = 6;;. For
each of these random vectors (indexed by r, Ny of them) one solves MX" = 7".
These solutions then approximate the propagator as

1 &
b P T, %
Mij NNR Xln] .

r=1

One key feature of the sLapH method is the dilution. It can be applied in time,
Dirac space and LapH space. The idea is that the random noise vectors get diluted
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Figure 2.4.: The dilution schemes as introduced by Morningstar et al. [38]. Map-
ping from original space (squares) to the dilution blocks (circles). The
original space has eight elements in this illustration. This figure has
already been published in Reference [5].

such that certain off-diagonal elements are less noisy by a projection operator P(?)
where b labels the blocks. Figure 2.4 shows how the different dilution schemes can
be visualized. We generally use block dilution in time, full dilution in Dirac space
and interlace dilution in LapH space. For the cA2.09.48 and cA2.30.48 ensembles
we have a time dilution block size of 3, cA2.60.32 has a block size of 2.

These dilution operators are then already contracted such that one has minimal
storage requirements for the building blocks. The three quantities that are used in
the contraction are the “V-dagger-V” objects

Z V'exp(ip - x)I'V,
X

the random vectors (RV) p" and the perambulators
viM—lvp®p

Using these building blocks one can compute correlation functions that are ex-
pressed in terms of the propagators. As an example we will take a look at the C20
diagram, which is just a single pion propagating assuming that the light flavors are
the same. In twisted mass this involves another propagator conjugation for the
flavor change, which we have omitted here for illustration. We start right after the
Wick contraction, insert smearing operators, insert stochastic unit matrices in the
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form random vectors and recast the expression in term of the building blocks.

Cr=Tr(ysM 'ysM™1)
=Tr(ysVV M lvviyvviM—lvvh)
=Tr(rsVV M 'VPyn'P'V iy vV M VPpp'PTVT)
=Tr(p PTViysVVIM VPP Viy . VVIM~IVPp)
N N —— N S — N ———
RV Vv Perambulator RV vy Perambulator

All indices and arguments are suppressed in this example. It is important that the
random vectors that are inserted are unique, otherwise this introduces unwanted
correlations. More complicated diagrams can be built up in the same fashion from
these building blocks.

Computation of all combinations of source and sink time slices takes a bit longer
than 24 hours on a single node of JUWELS [39]. Longer wall times are not permit-
ted for jobs. We therefore need to partition the work somehow. A straightforward
solution has been to limit the source time slice with a certain remainder r such
that t,, mod 3 = r is fulfilled. This way we can set r € {0,1,2} and compute the
correlator C(t,, tg;) in three jobs.

Just taking a third of the source time slices would normally result in data which
just is a bit more noisy. The interplay with the block dilution however leads to
three distinct correlators. Figure 2.5 shows the three strides for one particular
correlator. One can see that it falls into three classes and the strides sample all of
them. If one would only take a single of the strides, the resulting correlator shows
a three-count jumping pattern. Therefore it is necessary to still do all three strides
and average the results.

2.4. Error estimation with resampling

The usage of Monte Carlo integration for the path integral means that the results
are not exact, but rather only statistically converging towards the true values.
As only finite statistics is available, one needs to estimate these statistical errors
in order to provide a trustworthy result. The method of choice for such error
estimation is a Monte Carlo methods itself: bootstrap.
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Figure 2.5.: Decomposition of the correlator into three strides. cA2b.09.48, config-
uration 534, 31 ground state.
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Let X be a data distribution and x; its particular measurements, of which there
are N. We can use estimators like

1 N
0(X)= N;xi

to compute the mean from this distribution. The uncertainty for the mean value can
be computed from the standard deviation. This does not generalize to arbitrary
estimators, like fitting a non-linear model to the data. Instead the bootstrap
provides an error estimate for any estimator without needing to derive an error
for it.

For R ~ 1500 times one creates a new distribution X*" by randomly drawing
N elements from X with replacement. These distributions X* are similar to the
original distribution X, the deviations encode the statistical uncertainty from the
finite number of measurements. For all these distributions X* one computes the
estimated values 0*". These again form the distribution ©*. The standard deviation
of ©* is the statistical uncertainty associated with 6(X), the estimated value from
the original data.

This procedure works with any estimator 6. Therefore one can pass the original
data X and the resampled data sets X* through all the analysis steps. At every point
one can compute the uncertainty of intermediate results. There are no constraints
to the analysis steps, this work uses non-linear model fitting and eigenvalue solving
among many other procedures.

Slightly simpler is the jackknife resampling. Instead of drawing N elements with
replacement, one takes all elements except the r-th one. The number of samples
R is limited by the available data, in this case R = N. The jackknife distribution is
more narrow than the bootstrap distribution, the error estimate needs to be scaled
with a constant factor. The jackknife procedure is just a linear approximation to
the bootstrap and has only been used as a cross-check in this work. The results
are obtained with bootstrap resampling.






3. Energy extraction

The gauge configurations are probed with various operators O to yield correlation
functions of the form (O(t)0'(0)). A model is needed before one can proceed
with the extraction of energy levels. One has to explicitly write out the trace over
all states. Then one uses the time evolution operator, taking the anti-periodic
boundary conditions in time into account. Finally one introduces a complete set
of states to extract the time dependence of the correlation function. This yields
the spectral decomposition,

(G000 =S D0
=>> " (n|e T 0|m) (m|eH* OF n)
- Z Z (n|O|m) (m|O" |n) e En (T~ Ent

By explicitly performing the exchange of m and n, one can see the cosh-like states
that build the spectrum:

Z Z |<m| of |n)|2exp (—(En +Em)£) cosh ((Em —E,) (t — %)) .

m n=m

The terms are suppressed by different global factors, the higher the energies, the
less they contribute to the spectrum. And larger energy difference yield a steeper
slope in the cosh. In the following we will introduce methods to extract these
energies from the time dependent part of the correlation function.

Determining the pion mass is easy as it is the lowest state involving only a single
particle operator. Also the precision usually is way higher than any other energy
extracted from more complicated systems. Using the single particle energy one
can take the group theoretical prescriptions and predict the non-interacting energy
levels for the given ensemble, an example is shown in Figure 3.1.

27
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Figure 3.1.: Non-interacting energy levels expected on cA2.09.48 for all relevant
momenta P? and irreps I'. The respective elastic thresholds of 4M,,
and 5M,; are denoted with a horizontal line. The numbers denote
the integer momenta squared of the individual particles, pf; p% and
p%; pg ; p% for two and three particles.
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Figure 3.2.: Treatment of the correlator matrix until the energy is fitted. Some
operations can be skipped. This figure has already been published
[40].

Depending on the spatial lattice extent L and the pion mass M, there are not many
energy levels below the respective elastic thresholds of 4M,, and 5M,; in the 2m
and 37 channels. The cA2.09.48 is the one with the fewest states below threshold
as it has a fairly small M L.

This chapter covers the intricacies of extracting the energies from the correlators
that have been computed for this project. Difficulties arise at large times slices from
noise and thermal states as well as at small times from excited states. Both have
treatments which will be introduced and exemplified in what follows. Figure 3.2
contains a flow chart with the methods that will be introduced. They have a
particular order and can be combined.

3.1. Generalized Eigenvalue Method (GEVM)

Via the spectral decomposition it can be seen that the correlation function would
be dominated by the lowest state (m = 1, n = 0) in the continuum (T — ©0).
As the lattice simulation is bound to work with finite temporal extent T, there is
a whole tower of states to be analyzed. The back propagating terms have to be
included, and the largest time separation possible is t = T /2.

Ideally the overlap between operator and ground state would be large, all other
overlaps small; then the resulting signal would be dominated by the ground state
and E, could be determined with small statistical uncertainty. In general one
does not know which interpolating operators O couple to the various states |n) of
the system. The established procedure is the variational method in the form of a
generalized eigenvalue problem (GEVP) [41]. Instead of trying to find the single
perfect operator one uses multiple ones. These have different overlaps with the
states in the system. By using all cross combinations in correlation functions one
can then diagonalize the correlator matrix and extract the ground state better.

Let there be different interpolating operators O; that all have the same overall
quantum numbers like total momentum, lattice irrep and parity. They could differ
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in the Dirac structure, have different relative momenta in a multi-particle operator,
be a resonance or contain derivative operators. Using these one forms a matrix
of correlation functions, C;;(t) = (O;(t) O;r(O)). The generalized eigenvalues are
defined via the condition

C(t)v(t,tg) = Alt, to) C(to) v(t, to).

In practice one chooses a fixed t; and then performs a Cholesky decomposition on
C(tq) to restate the problem as a normal eigenvalue problem which is then solved
using regular methods.

The so called principal correlators A;(t) then show exponentially decreasing behav-
ior like a correlation function but with only one of the states from the correlator
matrix contributing. States which are not resolved in the GEVP will still be present,
in general these have much higher energies and therefore the desired state dom-
inates earlier than before. The energy extraction is then performed on these
principal correlators.

As each time slice t has independent eigenvalues, the labeling is not unambigu-
ous. This problem gets worse when considering the bootstrap samples, it is not
necessarily clear how the eigenvalues on the bootstrap samples relate to the ones
from the central values. One refers to these issues as “sorting problems” and can
also be seen as tracking problems. There are various strategies for numbering the
eigenvalues:

1. A simple approach is to just sort the eigenvalues by value on each time slice.
The bootstrap samples are done in the exact same way and matched to their
central values. This approach is called “values” in the hadron library. It
is the easiest approach and yields good results when the eigenvalues can
be separated. Crossing of principal correlators is not possible with this
approach.

2. Alternatively one can pick a particular time slice as a reference for the eigen-
vectors. Then on every other time slice one computes the scalar product of
the eigenvectors with the ones on the reference time slice. As the eigenvec-
tors correspond to the matrix element of operator and the state, they are
assumed to be the same for all time slices. This model is called “vectors” and
can potentially allow crossing of principal correlators. The downside is that
the simple ranking by pairwise scalar products is not unique.
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Instead of comparing every time slice to the time slice t;, one can also
compare to the previous time slice. This means that slight evolution of the
eigenvectors can be tracked, but it can also mean that the tracking fails a
little earlier on in the noise.

3. Embellishing the “vectors” method by taking all possible combinations will
make it stable, but not necessarily any better.

Figure 3.3 shows the “values” and “vectors” methods in action for a reasonable
average case. It is a GEVP with four by four operators going in, therefore there are
four principal correlators. The colored blobs in this violin plot show the bootstrap
distribution of the principal correlators on each time slice. The different colors
are the numbers that the sorting algorithm has assigned. The violins are shifted
horizontally such that they do not overlap, even though they are only defined at
integer times.

The first time slices are just fine, the four eigenvalues clearly separate into four
different chunks and there is no ambiguity about it. Starting around time slice 20
one can see that with both methods the distributions for the principal correlators
3 and 4 start to overlap. Around these times one can see differences between the
two methods. With “value” sorting the values are ordered in a strictly monotonic
fashion per sample, the “vectors” sorting allows principal correlators to have the
same value. Later time slices grow increasingly problematic and eventually the
principal correlator 2 will also start to mix with the higher two.

By eye one can spot sorting points, our brain is capable of detecting a pattern
and follow a trend. This has not been successfully implemented for the computer.
Fortunately the signal quality turns out to be sufficiently well that one does not
have to solve this problem. It is sufficient to make pairwise Z-tests and stop using
the data of A;(t) for all times larger than the first where the bootstrap distribution
of A;(t) and A,,;(t) are not separable at a significance level of say a = 5%. This
usually occurs when the signal has become very noisy anyway, but the noise is
of course worsened by sorting problems. With the Z-test in place one can easily
stay clear of these time slices when choosing fit ranges and therefore prevent the
sorting issues from propagating further in the analysis.
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Figure 3.3.: Resampling distribution of the eigenvalues per time slice as partitioned

by the GEVP sorting algorithms “values” and “vectors”. These “violins”
are vertical histograms, visualizing the resampling distribution of each
eigenvalue. The topmost one is so narrow that one cannot see the
red fill color. Data from the cA2.09.48 ensemble, two pion channel,
d? =1, A, irrep, bootstrap and no thermal state removal.
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Figure 3.4.: “solve” effective mass for a case with a visible thermal pollution.
cA2.09.48, 2m channel, d? = 1, B, irrep, first principal correlator.

3.2. Thermal state treatment

Non-trivial correlation functions often do not only contain the signal from the
ground state of interest but certain other states which are called thermal states
or thermal pollution. They spoil the plateau of the effective mass at large time
separations. These effective masses will be introduced later on in more detail. At
this point we only need to know that they feature a plateau when the state of
interest dominates the signal. In realistic cases there will not be any plateau and
the thermal states have to be treated. An example can be found in Figure 3.4
where a downwards trend completely prevents a plateau. The effective mass used
here takes the back propagating part of the correlator into account, therefore it
must be an additional pollution present.

We will first inspect the origin of the thermal states and use this to predict their
energies for later removal. Different treatment techniques are discussed and are
used for the analysis done in this work.

For the three pion interacting spectrum we probe with operators Or(P,q;,q>; t)
which transform under a given lattice irrep I by the construction outlined in
Section 2.2.4. The particle content of this operator is ¥ (p;) n* (p2) ©*(p3) such
that the individual momenta map to the total and relative momenta. The computed
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correlators are correlation functions matrices consisting of operators of the form

Tr (O[‘(P: q1,92;t) O;:(P, q3,94; 0))

with the same irrep I" and total momentum for all operators but different relative
momenta at source and sink. These different source and sink operators build up
the correlator matrix.

The temporal dependence of the correlation function has already been shown at
the beginning of the chapter, though the explicit structure of the operator has
been omitted at that point. Together with the momentum arguments we have the
following expression:

Tr (OF(P,ql,‘h; t) O;(P,Q3,CI4§ 0))
= ZZ <n| OF(PJ qq, q2) |m> (ml O;['(P) QB; q4) |n> e_En'(T_t)e_Emt .
m n

The signal that we are interested in has n = 0 and m = n*(p;) n*(p,) nt(p3).
Therefore the exponential time dependence is only with E5, as the vacuum energy
can be set to E, = 0. Unfortunately we also must face contributions from the
case where n = n(p;) and m = n*(py) n*(p3). The leading contribution of
this kind one might expect is the one with all three momenta zero. Howevet,
for given irrep the multi particle operator does not couple to all combinations of
individual momenta. The lowest lying thermal contribution therefore might be
higher than one would expect. We will present an algorithm to find this one for a
whole correlator matrix.

The state in between will have a matrix element (1t(p;)| Or(p1, P2, P3) | (p2) T(p3)).
The three momenta must couple to the operator O, otherwise this contribution
would be non-zero anyway. Additionally the symmetry for the intermediate two
pion state must be compatible with the three pion irrep I" as well. In the continuum
with spin as a conserved quantum number we can easily see this. The irreps there
are the angular momentum [ irreps. And as the pion itself has [ = 0 but negative
parity (07), we must make sure that both the O as well as the |mtmt) have the
same angular momentum but opposite parity. In group theory irreps one would
express thisas 0~ @ [t =1[".

On the lattice this works similarly. The single pion on the left will always be in the
A7 irrep, which is just the trivial irrep regarding spin and has a sign for parity. The
two pion states will have positive parity in the P = 0 case and therefore the three
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Figure 3.5.: Deviation from measured in-flight pion energy to continuum dispersion
relation prediction.

pion operator O being in irrep I'~ will need the two pions to be in I'* in order for
this to give a contribution as A7 ® 't = I~ for all lattice irreps I'. With non-zero
individual momenta we have to take care that the chosen momenta actually couple
to the respective irreps.

We therefore need a way to find the E(p;) and E,.(p,, p3) that contribute to
a thermal pollution to the correlator matrix with given total momentum P? and
irrep I'". Once we can insert that into the spectral decomposition to find the time
independent suppression factor exp(—(E,, + E)T) and time dependent factor
exp(—(Eq, — E)t) of the thermal state.

3.2.1. Choosing the energies

The E.(p;) can be sourced from the pion correlator at P2 = 0 boosted to p; or
from the pion correlator with the appropriate momentum. In general we see that
the energy extracted from P? = 0 has less statistical uncertainty than the ones
with non-zero momenta. The boosted energies are verified against the energies
extracted from the non-zero momentum frames, see Figure 3.5 for the deviations.
As they agree within uncertainty we chose to use the boosted energies with less
statistical uncertainty.
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For the energy E, . (p,, p3) there are two options: Either compute the non-interacting
energy from the known relative momenta or use the interacting energy measured
from the correlator. Using the non-interacting energies benefits from rather low
statistical uncertainties as the zero momentum pion mass can be used throughout.
Also the group theory seems to be clear-cut as the single particle momenta going
in are exactly known. For a weakly interacting system like the three pions at
maximal isospin (I = 3) there is not a large difference. However, the physical issue
is a two-particle state traveling in a time loop. This state consists of interacting
particles and not two single particles which propagate independently. Therefore
usage of the interacting energies appears to be the correct treatment and the
non-interacting energies an approximation whose applicability depends on the
scattering process at hand.

Most steps are the same for both kinds of energies, differences arise in Step 4 in the
following procedure. Given is a total momentum P and an irrep I'” that describe
the correlator matrix for the three pion states.

1. Find all possible combinations of individual momenta {p;, p,, ps} that couple
to the given irrep I'". Since isospin considerations also apply it is easiest
to just look at the projection prescriptions and see which relative momenta
show up in the correlator matrix.

Up to certain cutoffs for P? and max; pl.2 <1land ), pl.2 such that the non-
interacting energies are not way beyond 5aM,. on the ensembles of interest
we have a table of operators contributing to the given irreps for three pions.
This data was generated by the new projection code [36]. The full tables can
be found in Appendix B. An example of this algorithm with table excerpts
will be given shortly.

2. Take all unique permutations (up to N! for N particles) of these three mo-
menta and also put them into the pool of momentum combinations. This
means that we can just partition p; to the one pion state and take the p,
and p; to the two pion state without losing a combination.

3. We can always create a state (1(p;)| in the A7 irrep, therefore this is triv-
ial. We then have to check for every momentum combination if the state
|(p,) m(p3)) actually couples to the oppositve parity irrep I'*. If that is the
case, add the current individual momentum combination to a list of accepted
combinations.
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4. The way of the energy computation differs for interacting and non-interacting
energies. One needs to go through the accepted combinations and compute
and do either of the two options:

* For the non-interacting energies simply use the dispersion relation, so

2m)\?
e =i+ (m )

2

2m)? m
e =\ M2+ (o) 4\ M2+ (T

* The interacting energies Egg are extracted from a correlator matrix
with a total momentum P’ and irrep I't. Through the variational
method (GEVP) we cannot keep track of the individual momenta that
went into each state. Therefore we just need to take the tower of states
characterized by P’ and I'". For each accepted momentum combination
we take P’ = p, + p5 and take the lowest state from the tower of states.
This gives us the E;“; for the thermal state.

5. Compute the time independent suppression factor exp(—(Ey, + E)T). Also
compute the time dependence factor exp(—(E,, —E-)t) and evaluate this at
the time slice t where one expects the signal to be. Tally all the contributions
in a table.

6. Pick the contribution which is deemed most obnoxious in the potential
plateau region. It is not clear whether one should pick the one with the lowest
suppression factor or rather the one with the strongest time dependence.
We do not know the amplitudes for the different states that arise from the
physical matrix elements; therefore we just set them to unity. For the end
result we use the state which has the highest product of time dependent and
time independent factor.

As an example for the algorithm, we can take a look at P2 = 0 in the A7 irrep. The
three pion momenta are listed in Table 3.1. We now try all combinations of the
momenta.

* The first row has all momenta zero, there it does not matter how one parti-
tions the three momenta into the one and two pion system. The two pions
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P> Trrep p, P> s

0 Alu (0,0,0) (0,0,0) (0,0,0)
0 Alu (0,0,—1) (0,0,0) (0,0,1)
2 Bl (0,1,—-1) (0,0,1) (1,0,0)
2 Bl (1,1,0) (1,0,0) (—1,0,0)
2 Bl (=1,1,0) (1,0,0) (1,0,0)

Table 3.1.: Selection of three-pion individual momenta contributions. The full
table can be found in Appendix B.

P> Irrep p, Ps

0 Alg (0,0,0) (0,0,0)
0 Alg (0,0,—1) (0,0,1)
0 Alg (-1,—-1,0) (1,1,0)
1 Al (0,0,2) (0,0,—1)
1 Al (0,0,1) (0,0,0)
1 Al (-1,0,1) (1,0,0)
1 Al (=1,-1,1) (1,1,0)
1 Bl (-1,0,1) (1,0,0)
2 Bl (1,1,-1) (0,0,1)
4 Bl (0,-1,1) (0,1,1)

Table 3.2.: Selection of two-pion individual momenta contributions. The full table
can be found in Appendix B.
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Figure 3.6.: Thermal states arising from different momentum combinations of the
three pions involved for two cases on the cA2.09.48 lattice.

will have total momentum P? = 0 and be in the A7 irrep. We take a look at
Table 3.2 and find that indeed there is a contribution from both momenta
being zero. Therefore we add the corresponding one and two pion energies
to the pool of contributions.

* In the next row we have two options. We first take the momentum zero for
the single pion. The two pion system therefore still have total momentum
zero, but the particles have a back-to-back momentum. We also find this in
the second table, therefore this contributes as well.

* Setting (0,0,—1) away for the single particle leaves a two-pion system with
total momentum P2 = 1. We find that in the fifth row of Table 3.2. Therefore
this also contributes.

There are more momenta contributions possible in the three-pion operator. All
thermal states that are considered are shown in Figure 3.6a. One can see that the
case with all momenta zero is the most significant thermal state. We will therefore
pick that one as the one to treat and ignore the others, which are suppressed by
several orders of magnitude.

In the previous example all tested combinations contributed as it is the trivial irrep.
We will also look at the frame P? = 2 in the B; irrep as that is non-trivial and
couples only to d-wave. A few momentum combinations are tried as follows.
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N
N
’j

> 141 20 Ps3
P~ I' p P> 0 A7 (0,0,0) (0,0,0) (0,0,0)
0 A" (0,0,0) (0,0,0) 0 E- (0,0,—1) (0,0,0) (0,0,1)
0 Bt — _ 1 4, (=1,0,1) (0,0,0) (1,0,0)
1 4, (0,0,1) (0,0,0) 1 B, (~1,0,1) (0,0,0) (1,0,0)
1 B — — 1 E (-1,0,1) (0,0,0) (1,0,0)
1 B, — — 2 A, (1,0,—-1) (0,0,0) (0,1,1)
2 A, (1,1,0) (0,0,0) 2 A, (1,1,0) (0,0,0) (0,0,0)
2 A, — _ 2 B, (0,1,-1) (0,0,1) (1,0,0)
2 B, — — 2 B, (1,1,-1) (0,0,0) (0,0,1)
2 By — _ 3 4, (1,0,~1) (0,0,1) (0,1,1)
3 4, (1,1,1) (0,0,0) 3 A, (1,1,0) (0,0,0) (0,0,1)
4 E — _ 3 E (1,1,0) (0,0,0) (0,0,1)
4 A, (0,0,2) (0,0,0) 4 A, (0,-1,1) (0,0,0) (0,1,1)
4 B, — — 4 B, (~1,0,1) (0,0,1) (1,0,0)
4 E (=1,0,1) (0,0,1) (1,0,0)

(a) Two pion channel

(b) Three pion channel

Table 3.3.: Leading thermal state contributions in the respective channels on the
cA2.09.48 ensemble. The other ensembles have slightly different time
dependencies on the thermal states and can lead to a different leading
state.

* First we take take (0, 1,—1) for the single pion and have p, + p; =(1,0,1)
for the two-pion system. This has total momentum P? = 2 but the momenta
do not couple in this way. Therefore this is not a valid contribution.

* Taking (1,0,0) for the single pion leaves (0,1, 0) as the total momentum
for the two-pion system. And indeed we find this case in the table, albeit
rotated under a meaningless global rotation. Therefore this contributes.

The resulting thermal states of this example are depicted in Figure 3.6b. One can
see that there are way less thermal states in this irrep. The E irreps do not even
show any thermal states. These results are also listed in Table 3.3, where all frames
and irreps can be found.
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3.2.2. Energy extraction in presence of thermal states

Given the pairs of E (p;) and E,.(ps,p3) the thermal state can be predicted.
Its time dependence is given by exp(—(E,, — E;)t) in the forward term. We
introduce AE := E,, — E,. and write this as exp(—AE t). There is an additional
backward propagating part as well which goes as exp(—AE - (T — t)). Together
they either form a cosh (sum) or a sinh (difference). For the three pions we only
have time-even operators and therefore everything will have a cosh-shape.

The ground state signal of the correlation function has a cosh-shape and therefore
is modeled by

C(t) =Aq[exp(—Eyt) +exp(—Ey - (T —t))].

When we take one thermal state into account we have the model expression

C(t) =Aq[exp(—Eot) + exp(—Ey - (T —t))]
+A; [exp(—AE t)+exp(—AE - (T —t))].

There are two methods of extracting the energies using the knowledge of the
thermal states. One is called weight-shift-reweight [34], the other one explicitly fits
the thermal states. For both methods we need to know the AE.

The weight-shift-reweight method works as follows:

1. Divide the whole correlation function by the time dependence of the thermal
pollution (the bracket with amplitude A;). This way the correlation function

C,(t) :=C(t)/ [exp(—AE t) + exp(—AE - (T — t))]

loses the time dependence in the thermal pollution and just has A; as an
additive constant.

2. Perform a shift of the correlation function by &t. The weight-shifted correla-
tion function therefore is

Cuws(t) := Gy (t = 5t) = Cy, (t).

The additive constant will drop out in this process.
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3. One could fit the correlator now as is and have more complicated model for
it. When the back-propagating part is neglected in both the signal and the
thermal state one still can use a simple “shifted” model for this correlator
and will obtain an energy that differs by AE from the actual signal energy.

Instead we perform the reweight and multiply the weight-shifted correlator
with the time dependence of the thermal state again to undo the weighting:

Cuwsr(t) := Cys(t) - [exp(=AE - (t = 6t)) + exp(=AE - (T —(t = 6t)))] .

We introduce a weight factor w := exp(—AE) into the notation and write the full
fit model for a general cosh/sinh sign s as

mAO exp(—EO -t+ T)W_Bt

. [ —[exp(2EoT) + sexp(E, - (2t + T))]w?t
—s[exp(2E,T) +sexp(E, - (2t + T)) w2t T
+ [exp(Eq - (5t +2T)) +sexp(Eg - (=5t + 2t + T))Jw?* [w? +swT ] ] .

We see that ignoring the back-propagating part by setting s = 0 the model drastically
simplifies to a simple “shifted” model. The advantage of this method is that the A;
amplitude does not need to be known or determined. Yet we have the shift and
this introduces much more noise and makes finding plateaus harder.

Explicitly fitting the thermal state is simpler conceptually. One needs to use the
model with the explicit thermal state and has the amplitude A; as an additional fit
parameter. One could fix the AE, but rather we also introduce it as a fit parameter
constrained with our prior knowledge from the considerations above. An additional
summand with a normal distribution is added as a prior to the y? function:

exo [ AE— AE
P\ sap) )’
where we have introduced the mean value AE and its standard error s(AE) as

extracted before. This additional prior will constrain the parameter space such
that we only have three truly free fit parameters instead of four.
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3.3. Fit range selection

Fitting a model directly to all available data points of the correlator does not work,
unfortunately. For small times there are excited states with unknown masses.
Therefore the model becomes only valid starting from a certain t;. Additionally in
most non-trivial correlation functions there is exponential error growth towards
the end. For all times beyond a t, the signal-to-noise ratio is just too bad to fit the
model. These time slices add little to the y? but add another degree of freedom.
Additionally possibly present thermal pollutions becomes significant towards the
end. One needs to choose t, sufficiently small that all thermal pollutions drown in
the noise.

A good starting point for choosing t; and t, (the fit range) is the effective mass.
There are different variants depending on the expected model. The simplest
approach is the “log” effective mass. It assumes that the correlator is just the
forward part, C(t) =Aexp(—Et)), and applies

e (©) =_1og(%) .

In order to include the backward propagating part one can use the “solve” method.
It uses the model with forward and backward part and solves

C(t+1) _ cosh(—meg(t) - (¢ +1))
C(t) ~ cosh(—meg(t) - t)

for the effective mass on each time slice numerically. The weight-shift-reweight
treatment also changes the model that needs to assumed for the signal. This leads
to a rather complicated effective mass, which is more complicated but in principle
similar to the one above. It is called the “weighted” effective mass. Depending
on the treatment of the correlators we will use the appropriate effective mass
definition.

Figure 3.7 shows the effective mass for a well-behaved case from the analysis in
the upper left. It also shows a zoomed version in the lower left. The upper right
is the correlator with the chosen fit range and fit marked. Looking at the figure
one can rather easily read off that the excited states have died down below the
noise level at t = 10. And the noise level becomes too large after t = 25. Here the
choice of the fit range seems rather straightforward.

As the effective mass uses derivatives of the correlator to get rid of the amplitude,
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Figure 3.7.: Effective mass, correlator and fit ratio in the “weighted” model for
the weight-shift-reweight correlator of the cA2.30.48 ensemble, 21t
channel, d?> = 0 and E irrep, first principal correlator. Blue lines
denote the beginning of the GEVP sorting problem. The horizonal
gray line denotes the non-interacting energy expectation.
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each point in the effective mass will use two or three points of the correlator. When
fitting the correlator, no such thing happens and every point is independently
described by the model. To judge the quality of a fit on a given range it is better to
look at the “ratio plot” which depicts C(t)/Cpoqel(t). This way one can see which
points lie above or below the model curve and whether there is an upwards or
downwards trend indicating an incorrectly estimated energy for the correlator.

In the effective mass it appears as if we could start fitting two time slices before and
could stop two slices earlier to avoid the point that is significantly higher. However,
the ratio plot is much better suited to determine that. Only the black points are
used in the fit, the gray points are not used. As one can see that the fit range could
only start one time slice earlier. This has not been included as its error is rather
small and would have dominated the fit. And the fit range ends such that all the
points in the fit nicely lie on the unit line in the ratio. Also the outlier is gone,
that might be an artifact from taking the derivative of the correlator. Therefore
the effective mass should be an initial guidance, but the ratio should be used to
commit to the ranges.

In more complicated cases, however, the choice becomes rather subjective. This
can be seen for a different case in Figure 3.8. The plateau cannot be easily found
and one could argue that the fit range should rather be from 15 to 20 instead of
the one chosen. In the effective mass each point of the plateau is compatible with
the fitted value, and the plateau is not too short; this makes it a decent choice.
Also in the ratio one can see that points go above and below the unit line, yet still
within errors and to both sides of the line. Additionally the result is compatible
with the other methods, therefore it was determined to accept this fit range. Still,
one needs to find a procedure for this.

In general, discussing fit ranges with colleagues with almost always lead to dis-
agreement. It is a problem that has bogged the field for decades and there have
been various ideas to remove the subjectivity from the selection.

* Instead of doing a single fit, one could do all possible ones and average them
with some procedure. This has been persued by this group for a while. The
crucial ingredient is the weight that is assigned to each fit. We have used
a p-value weighting. In a fit it gives the conditional probability of finding
such or more noisy data if the model describes the data. A very low p-value
therefore is interpreted as a bad model for the data. Assigning a low weight
to fits with low p-value, say below 5 %, will therefore remove unsuitable
fit ranges from the average. A very large p-value, say above 90 %, usually
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Figure 3.8.: Effective mass, correlator and fit ratio in the “weighted” model for
the weight-shift-reweight correlator of the cA2.30.48 ensemble, 21t
channel, d2 = 1 and A, irrep, second principal correlator. Blue lines
denote the beginning of the GEVP sorting problem. The horizonal
gray line denotes the non-interacting energy expectation.
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means that one has fitted noise and that everything would be compatible
with that model. These would be fit ranges that just take a few points of
noise at the end.

It seemed that assigning the maximum weight to p = 0.5 and having it fall
off linearly towards p = 1.0 and p = 0.0 would favor the fits that are just
right. Taking all possible fits would eliminate all subjectivity. However, most
bad fits can easily be tuned to have a p-value of around 0.5. If the value
is too low, just extend t, until sufficient noise brings down the y2/dof and
p-value up to 0.5. If it needs to be lowered, just shorten t, or extend t; into
the excited states such that the p-value comes down to 0.5.

This method had been used for a while until it was realized that favoring
p-values of 0.5 does not make sense. If the model describes the data, the
p-values are uniformly distributed between 0.0 and 1.0. Therefore it can
only be used to discard a null hypotheses, but not to differentiate between
slightly different good null hypotheses.

* For the analysis in the p-channel [30] the fits have been performed for the
correlators with and without weight-shift-reweight independently. This gave
two independent energy extractions from different looking correlators. The
two fit ranges chosen of course contain subjectivity, yet the spread between
them gave an estimate for the systematric error from the fit range choice.

* Matthias Fischer has implemented an improved version of the fit range
weighting in his master’s thesis [42]. Using Markov chain Monte Carlo meth-
ods he samples all fit ranges and possible energies in a Bayesian approach.
Instead of just trying to describe the data within the fit range the model also
describes the excited states. As their nature is not known, a sleight of hand
was used: All points before t; contribute exactly 1.0 to the 2 and are taken
to be perfectly described. This made the beginning of the fit range much
more stable.

This method is almost exactly what we were looking for, with a crucial caveat.
In the process all bootstrap samples are used holisticly, the end result is an
energy distribution stemming from statistical (gauge noise) and systematic
(fit range choice) fluctuations. The correlation with the observation is gone.
This means that fitting to the single pion correlators and then to interacting
two or three pion correlators yield uncorrelated results, making energy
differences less precise than would be possible with correlation taken into
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account. So although this solves most problems, it is not workable for
computing energy shifts like in this work here.

One alternative approach might be to fit correlator ratios such that the
extracted energy directly is the energy shift. Due to the thermal pollution
in both the two-pion and three-pion correlators the ratio is expected to be
rather noisy and hard to fit, therefore this has not been tried yet.

Additionally there is insufficient experience with this method, it is not clear
how well it actually handles the systematic effects and how the results should
be interpreted.

* Training a simple neural network using chosen fit ranges to predict other fit
ranges does not seem to work [43]. And even if it would, systematic errors
would still needed to be discussed.

For this work it the method of Reference [30] has been extended to more methods.
Using each of the methods on every energy level gives a handful of different energy
determinations. The resulting energies are compared and significant deviations
from other energies are investigated. The choice of the fit range selection still
suffers from subjectivity, but overall the different methods will give a reasonable
estimate on the systematic effects.

In most cases the energies of the different methods are very compatible with each
other. Sometimes the energies of the weight-shift-reweight and multi-state fit
deviate in a statistically significant way and cannot be explained with a badly
chosen fit range. In these cases it is not clear which of the two is closer to the true
energy of that state.

3.4. Prony GEVM

A fundamentally different approach to the issue of thermal states is also possible:
fitting earlier. The presence of excited states in the region of small ¢ forces us
to seek a plateau in a later region of the correlator when the excited states have
already sufficiently decayed to be below the gauge noise level. The larger time slice
we use, the more pronounced the thermal states get. If we were able to attenuate
the excited states then we would have a plateau much earlier, being able to ignore
the thermal states in that region. The Prony GEVM, PGEVM (or Hankel method
in the plots) allows to separate away part of the excited states. This section will
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introduce the method and its application to the data at hand. More details about
the method itself can be found in Reference [20], where we have published the
details.

The GEVP resolves as many energies as there are operators put in. The tower of
states that couple to operators is infinitely high, therefore even with a large GEVP
there will still be excited states spoiling the first few time slices. In most cases they
are sufficiently large and decay rather quickly, in other cases the excited states
have not decayed before the noise towards the end of the temporal extent sets in.
The principal correlators contain the state of interest as well as excited states that
the GEVP could not resolve. The energy gap in the contributions in each principal
correlator allows to treat the excited states as one or few effective states above the
relative ground state. By constructing a GEVP from each principal correlator these
excited states can in theory be resolved and separated from the actual signal.

For the construction we need the prescription for a Hankel matrix H of size n x n

parametrized by a vector with 2n — 1 elements x = (xg, X1, ..., X9,_2):
Xo X1 Xz ot Xp
Xq Xo X3 cee Xn
H(x,n)=| X2 X3 X4 - Xpy41
Xpn—1 Xp Xpy1 77 Xop—2

If we choose n smaller, then not all elements of the vector are used to build the
matrix.

We define two vectors from the correlation function. The first is just the correlator
starting from a reference time t, the second starts shifted by 6t and therefore
is shorter, only supporting a Hankel matrix up to n < (T /2 —ty,— &t)/2. These
vectors are

x =(C(ty),C(ty+1),...,C(T/2)),
¥y =(C(tyg+5t),C(tg+6t+1),...,C(T/2)).

Using the two vectors one can define a second GEVP with eigenvectors v and
eigenvalues A as

H(y,n)v(tg,dt) = H(x,n)A(ty,dt)v(ty, ot).

To make sense out of the eigenvalues we need to assume the correlation function
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to be free of a back-propagating part and just a tower of exponentials,

C(t) = Z a, exp(—E;t).

n

The eigenvalues that we obtain correspond to a single such exponential stripped
of its amplitude,

Ai(tg,dt) = exp(—E;5t).

Evaluating this for every possible time t = ty + &t can be done in two different
ways:

1. Keep t, fixed and let &t vary. The resulting eigenvalue functions will decay
just as regular principal correlators would do. We will call this the “fixed
PGEVM”.

2. Vary t, and keep &t fixed. The resulting eigenvalue functions will be a
constant plus noise. In this work it is called “running PGEVM”.

As will be seen shortly, both methods yield different quality results.

3.4.1. Running PGEVM sorting issues

The running PGEVM severely suffers from sorting problems whereas the fixed
PGEVM only shows this as much as the GEVPs from correlator matrices. The
reason could be that a small energy gap in the eigenvalue expression exp(—E;dt)
with &t fixed to 1 will lead to a bad eigenvalue separation. The fixed PGEVM will
have eigenvalues that are suppressed by &t > 5 in the cases used in this work.

The correlator matrices that form the first GEVP can be of arbitrary size. Eigenvalue
sorting methods needs to work independent of the involved number. With both
variants of the PGEVM one can freely choose the size n of these matrices, also
controlling the number of eigenvalues that come out. From the data we have seen
that only n = 2 gives sensible results, larger n make the signals worse and not
better. For two eigenvalues a fourth sorting option is possible, which works as
follows. From the other energy extraction methods as well as the non-interacting
energies we expect the lower eigenvalue from the running PGEVM to lie in a
certain energy corridor. The width needs to be tried out, for the middle one just
uses a measurement. For the original data, only eigenvalues that lie within this
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Figure 3.9.: Eigenspectrum of the running PGEVM per time slice for an examplaric
case. cA2.09.48 ensemble, 2m channel, P2 =0, I' =A“1L, first princi-
pal correlator, weight-shift-reweight applied, bootstrap resampling.
Details in the main text.

range are kept. This way the eigenvalue that corresponds to the signal of interest
is chosen. Then for the samples the eigenvalue that is closer to the selected central
one is picked. This way outliers in the eigenvalue spectrum are discarded. Still this
method can fail when the central value lies far off the expected ground state.

Figure 3.9 shows the resampling distribution of both eigenvalues per time slice.
Ideally these distributions should have two humps and should be separable. For
the first four time slices in the given example this is quite easily possible. Also they
lie close to the value determined with non-PGEVM as indicated by the horizontal
black line. Using the corridor approach will lead to well separated eigenvalues.
The error bars indicate the confidence interval for the two eigenvalues that the
distribution has been divided into using the range sorting method.

For the later time slices the situation is not as clear. There the distribution ceases to
have two humps and instead becomes one very broach one. Trying to classify that
into eigenvalues seems to become very hard. Through this method the eigenvalue
resampling distribution for the selected eigenvalues can be very wide, to the point
where it becomes unusable. The vertical blue lines denote the time from which
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onward this principal correlator mixes with the next one in the first GEVP Large
noise beyond these lines therefore has nothing to do with the PGEVM and was
introduced earlier on.

Mean and standard deviation become meaningless due to the very long tails of
the distribution. Using an outlier resistant statistical treatment makes these time
slices workable again. Instead of taking the standard deviation as a measure of
uncertainty for the two eigenvalues, we use the half the distance between the
16 % and 84 % quantiles of the resampling distribution. The central value can
also be an outlier, therefore we do replace the central value with the middle of
the two quantiles. This will make the error estimate symmetric. Using this new
central value and error estimate, parametric bootstrap could be used to generate
the desired number of samples again. Correlation would be lost, however.

The covariance, being the multivariate generalization of the (squared) standard
deviation, is also impeded by long tails. We deal with this as follows. Values
that lie a certain number (we used 5.0) error estimates away from the central
values are just ignored in the computation. The elements of the covariance matrix
are computed for a pair of time slices, and pairs are used if neither value lies
outside the respective thresholds. This pairwise nature could potentially lead to
a covariance matrix that has negative eigenvalues [44], this has not posed any
trouble in actual applications. The such determined covariance matrix is used
in parametric bootstrapping to generate the desired number of samples without
extreme outliers. The analysis continues as usual after this.

In Figure 3.10 the values and error estimates for the usual central value and
standard deviation (black points and red bars) as well as the quantile method
(green bars) are shown. For the first few time slices both methods coincide, the
lack of outliers means that no tails are clipped. Then for the later time slices it can
be seen that the quantile method is much more robust. For t = 19 we can also see
that the original data (black point) is outside the confidence interval determined
by the quantiles (green bar). The two quantiles however are just at the plateau,
showing that it is an improvement to also resample the central value from the
clipped bootstrap distribution. And at t = 24 one can see that the central value
even lies outside of the plotting region, whereas the interval set by the quantiles
agrees with the plateau.

The jackknife distribution is more narrow than the bootstrap distribution, therefore
the sorting problem in the running PGEVM is much less severe. We have found
that the signal quality of the jackknife data is just slightly worse than the cut and
resampled bootstrap data.
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Figure 3.10.: Resampled ground state eigenvalue from the running PGEVM per
time slice for an examplaric case. cA2.09.48 ensemble, 27 channel,
P2=0,T = A7, first principal correlator, weight-shift-reweight
applied, bootstrap resampling. Details in the main text.

3.4.2. Examples for the PGEVM

For illustration of both the running and fixed PGEVM we will take a look at the
cA2.30.48 ensemble, 2m channel, d?> = 0 and A7 irrep, first principal correlator.
This state suffers from thermal pollution such that there is a significant difference
between weight-shift-reweight and no thermal state treatment. This state also has
contamination with excited states, just like every other state used in this work.
This way we can see the effects of both thermal and excited state treatment in
interaction.

Figure 3.11 has six effective masses, the three methods (regular, fixed and running
PGEVM) in combination with and without weight-shift-reweight. This will be
the first plot in a series of three, this first one shows the overall behavior of the
effective masses. There are two striking observations: The regular (non-PGEVM)
method shown in red has significant excited states. It cannot be really seen at this
zoom level, but there cannot be any plateau before t = 10. Then secondly the
thermal pollution gives a downward trend towards large time separations if not
treated (red and green circles). The difference between regular and fixed PGEVM
is that for the regular method (red circles) we take the “solve” effective mass which
takes the back propagating part into account but no thermal states, for the fixed
PGEVM (green circles) we take the “log” effective mass which neither includes
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Figure 3.11.: Effective masses for different thermal and excited state treatmens.
cA2.30.48 ensemble, 2 channel, d?> = 0 and A7 irrep, first principal
correlator, weight-shift-reweight applied, bootstrap resampling.

thermal nor back propagating parts. In either case one cannot expect plateau in
these regions.

Figure 3.12 then visualizes the same data, but zoomed in to see the plateaus better.
Also the two different treatments of thermal states are separated into two facets of
the plot. In both cases it can be seen that the fixed PGEVM suppresses the excited
states during early times compared to the regular (no PGEVM) treatment. We
also see that the running PGEVM seems to have a plateau almost the full time
range. The uncertainties are rather large, however. The general observation is that
although the running PGEVM is theoretically promising, it fails to deliver energies
that are more precise than with the regular or fixed PGEVM. Therefore in this work
the running PGEVM only serves as a cross check for the other methods.

Figure 3.13 has the regular and fixed PGEVM only, shown further zoomed in
to see their qualities. In both thermal treatment variants it can be seen that the
regular method has much stronger excited states than the running PGEVM. Without
weight-shift-reweight (upper facet) the uncertainty is much smaller and the effect
of the thermal pollution in the form of a downwards trend is clearly visible. As
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Figure 3.12.: Zoomed version of Figure 3.11. For better readability the plain and
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panels in addition to the different shape.
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Figure 3.13.: Further zoomed version of Figure 3.12 without the running PGEVM.

the PGEVM does not take the back propagating part into account and only the
“log” effective mass can be used for that model on the early time slices, it is not
surprising that this method has an even stronger downwards trend compared to
the regular method. However, the attenuation of excited states in the beginning
lets one find a plateau at early time slices such that an energy can be extracted.
The regular method can also be fitted with the multi-state model, there just is not
an effective mass available for this.

In the lower facet one can see the same for correlators where weight-shift-reweight
has been applied. The general noise level is much larger as the shift takes a
numerically sensitive derivative of the correlator. The downwards trend is gone
from both methods, the removal of the leading thermal pollution apparently
was sufficient to make all further pollution drown in the gauge noise. For the
regular method one can find a plateau and fit it with the corresponding “weighted”
correlator model. For the fixed PGEVM one can find a plateau which starts a bit
earlier. The noise level seems to be much larger in the data, yet the determined
energy has roughly the same precision as with the regular method.

Fit ranges have been chosen for the various methods. The resulting fitted energies
are compared in Figure 3.14. First one can see that the resampling method
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Figure 3.14.: Determined energies from the correlators shown in Figure 3.11.
The fit method on the left axis also includes the chosen fit range in
parentheses.

(bootstrap or jackknife) does not have a significant influence on the fit result.
This means that jackknife is also sufficient for the error estimation during energy
determination. Then one can see that the various methods have some tension
between them, yet they are all compatible with a common average value. The
combined value is computed with the procedure detailed in Section 3.6.

3.5. Ratio method

Instead of fitting C,.(t) and C,(t) separately and deal with excited and thermal
states, one can form the ratio C,(t)/C,(t)* which has an energy dependence of
E,. —2M,,. Fitting this correlator ratio directly gives the energy shift from the
interaction between the two pions. Additionally the thermal and excited states
that are present in both correlators may cancel each other to some extent, giving a
cleaner signal. This method has been used in various projects [45, 46] in a way
that also includes the derivative method [47] to get rid of constant contributions.

For this work the two-particle ratio R, is used in the same way that it has been
used by Feng, Jansen, and Renner [45]. For the three-particle ratio R5 the ratio is
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taken in two steps; first a ratio, then the derivative, and another ratio. The forms
used in this work are

Con(t)—Cor(t+1)

Cr(t)>—Cr(t+1)2

C3ﬂ(t)/cﬂ(t)_ CBT\:(t + 1)/C'rt(t + 1)
Cr(t)2—Cr(t+1)2

3.1

Ry(t) =

R3(t) = (3.2)
The three particle ratio has been chosen in this way to first remove the thermal
states by a single pion with the ratio in the numerator. The numerator has a sinh-
like shape such that dividing it by another sinh-like shape again gives a cosh-like
shape. Other ratios have been tried out, this particular one seems to be the most
effective one.

Figure 3.15 shows the effective masses for the three pion ground state P2 = 0, A7
irrep) on the cA2.60.32 ensemble, the one with the heaviest pion mass. Compared
are the effective mass of just the correlator (plain), the one with weight-shift-
reweight and the ratio R5. The latter has been shifted upwards by the denominator
energy to compare them with the other methods. One can see that the untreated
correlator exhibits massive thermal states, no plateau can be identified. The
effective mass of the weighted correlator looks much better and seems to show a
plateau between t; = 12 and t, = 20; but there still is a downwards trend that
likely arises from the second thermal state. The contributing thermal states in that
state are shown in Figure 3.6 (Page 39). There one can see that the second state
from the top still has a significant contribution, which has not been removed in the
weight-shift-reweight procedure. The effective mass of the ratio features a much
cleaner plateau.

In general we find that the ratio method allows the energy to be determined with
less statistical uncertainty than other methods. In some cases, like cA2.09.48 at
P? = 0 and E~ irrep, the ratio method is the only one where a plateau can be
identified. In rare cases we cannot find a convincing plateau in the ratio and rather
omit this method in favor of the other methods.

One can also try to combine the ratio and the PGEVM assuming that the ratio
behaves like a correlator. This usually fails because the ratio comes from below
and then falls down again. The PGEVM tries to find the ground state, and with the
ratio there are contributions with are not simply excited states. Almost no energy
levels produce sensible results with the ratio PGEVM therefore this method was
dropped completely.
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3.6. Combining results from different methods

As one can see in Figure 3.14, the different fit methods give results that are
compatible with each other, yet show some tension. This tension is a good estimate
for the systematic error in the fit range choice, for unresolved thermal states and
unresolved excited states. Each of the statistical errors does not fully represent
the uncertainty that the data really have. This becomes apparent when phase shift
models are fitted to energies of a single fit method only. We will therefore use
the information from all methods to compute one energy value with a combined
statistical and systematic error that covers the whole uncertainty.

Let X; be the bootstrap or jackknife resampling distributions of the energy values
obtained by different fit methods, the indices i (and j) label the different methods.
The individual samples are always labelled with r € [1,R]. So one observation of
one method would be x;,.. As usual in statistical settings distributions or statistical
variables are denoted in capitals, single concrete values with lowercase letters.

First we computes weights for the different distributions using the variance:

var(X;)™!
£ Zjvar(Xj)—1 '

As all distributions have the same number of elements, the jackknife scaling factor
(N —1)?/N will drop out and can be ignored in this relation.

We further compute the weighted means for every sample r, we call the resulting
quantity Y:

Yr= E :Wixir'
i

This quantity Y will have a smaller width than the individual distributions X;.
Correlation between configurations is preserved by this method such that energy
shifts can still be computed in a meaningful way.

We compute the width of the resulting distribution of weighted means, which
encodes the statistical error. For bootstrap resampling this is

a=sd(Y),

in case of jackknife resampling one need to include the scaling factor.
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And additionally we compute the mean absolute differences of the individual
central values compared to the weighted mean of the central values. This is an
estimate for the systematic error between the various fit methods.

b =mean(|X; —Y]).

We use the mean absolute error instead of the standard deviation as it is more
robust against outliers [48, p. 41].

Using both the estimates for the statistical and systematic errors, a and b respec-
tively, we can compute a scaling factor that should be applied. The general idea is
that the statistical and systematic error are independent and should be added via
the Pythagorean theorem. We want to keep the statistical error (1) and add the
systematic error in terms of the statistical error (b%/a?). In total we obtain

The distribution Y needs to be widened by that factor s via the prescription

yr:(yr_?)'s'i'Y-

The distribution Y will then contain both the statistical and systematic uncertainty
as a simple normally distributed resampling distribution that is easy to work with.

For a simple test case with artificial data, the distributions X; and X, have been
drawn from a normal distribution. In the case of “values: same” both central
values are chosen as 1.0. In case of “values: different” the central values are 1.0
and 2.0. The standard deviation in “errors: same” is chosen to be 0.1 for both. In
case of “errors: different” they are 0.1 and 0.3. Figure 3.16 shows the four possible
combination of same/different values and errors for the distributions X, X,, their
weighted average and the weighted and rescaled distributions.

The four facets show distinct cases, which demonstrate the method in all possible
combinations.

Bottom right The values and errors of both quantities are the same. We end up
with a quantity that has a smaller overall error because we are able to use
two independent measurements to yield the same result.
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Figure 3.16.: Test example for combination of different resampling distributions
using artificial data.
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Top right Now the errors are different. The larger uncertainty of the second
sample does not dilute the quality of the first sample.

Top left The values are different now, but one sample is more precise than the
other. The average value gets nudged a bit, but stays with the more precise
value. However, the systematic error is now included and covers the other
point in a reasonable way.

Bottom left The statistical errors seem to be rather low, but the systematic is
very large. The resulting value is in the middle and the error covers both
observation.

3.7. Results

The results of this chapter are the two-pion and three-pion spectra measured on
all three ensembles. The spectra in each channel are displayed in the Figures 3.17,
3.18, 3.19. Only the interesting region until slightly above the respective inelastic
thresholds are shown. One can see that in the ensembles with larger M, L there
are more states below threshold. All energy levels are made publicly available [49]
such that an independent analysis of the data can be performed.

Most energy shifts (interacting compared to non-interacting) are statistically sig-
nificant and repulsive. There are some cases in which the shift is compatible with
zero. Whether the energy levels are consistent can only be seen by the y?2 value of
the fits to the spectrum which get introduced in the next two chapters.
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4. Two pion scattering

Scattering experiments have given many insights into the physics of elementary
particles and their interactions. The LHC at CERN is known to many people
outside of the physical community and performs such scattering experiments. The
accelerated particle beams are brought onto a collision course, a surrounding
detector measures final state particles created in the interaction at the center. One
does not use pion beams directly as they are unstable particles under the weak
and electromagnetic force. Experiments with pions in nature are more indirect
than in lattice QCD simulations.

We want to review how scattering experiments are analyzed and then approach this
with a lattice simulation from the theoretical side. Lattice QCD creates predictions
that can then be compared with the experiment.

Scattering with two pions on the lattice has been done many times before. As they
are the simplest asymptotic states they are the entry point and test bed for any
analysis method. Usually one starts in the maximal isospin channel because the
signals are the cleanest due to the lack of quark-disconnected diagrams. For an
overview on two-particle lattice scattering, see for instance the review by Briceno,
Dudek, and Young [50].

There are already many investigations at I = 0[17, 51-53] and I = 1 [54-57] with
different lattice actions, number of flavors and pion masses. There exist also a lot
of studies for I = 2, a few of them are in the following list in rough chronological
order.

* Feng, Jansen, and Renner [45] determined the S-wave scattering length for
N; = 2 Wilson twisted mass fermions down to M, = 270 MeV.

* Dudek et al. [58] presented a trial of their S- and D-wave extraction method
on N; = 3 Wilson clover fermions with several masses down to M, =
400MeV.

67
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¢ Dudek, Edwards, and Thomas [34] then followed up with a S- and D-wave
extraction using a large correlator matrix on Ny = 3 Wilson clover fermions
down to M, = 396 MeV.

* Fu [52] extrapolated the S-wave scattering length at the physical point using
N; =2+ 1 staggered quarks down to M, = 240 MeV.

* The ETMC [59] used Ny = 2+ 1 + 1 Wilson twisted mass fermions, with
three lattice spacings, multiple volumes and pion masses down to 250 MeV
to produce the S-wave scattering length at the physical point with a detailed
investigation of systematic effects.

* Mai et al. [60] performed a combined analysis of two pion scattering at all
three isospin channels on N; = 2 lattices and obtain the scattering lengths as
well as p and o pole positions.

As we will later see in Chapter 5, every three pion scattering analysis needs
results from the two pion subsystem. In order to obtain such data in a correlated
way, usually the two pion scattering is also performed in the works that will be
introduced in said chapter.

4.1. Partial wave expansion

In scattering experiments one usually measures count rates with a detector covering
as much of the solid angle as possible. With the proper normalization this gives
the differential cross section do/ df2. Total angular momentum [ is a conserved
quantity as we work with a spherically symmetric interaction, we therefore have
no dependence on the polar angle ¢. The asymptotic scattering states can be
written via plane waves of momentum k in spherical coordinates [61, (18.27)],

fi(0) =Y (21 +1)fP(cos ),
[=0

with scattering amplitudes f;. These amplitudes can be expressed as a phase shift
angle §; and are related to the scattering amplitudes via [61, (18.37)]

_ exp(id;) sin(6;)

fi P
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Additionally we have elastic scattering, therefore the different partial waves do
not mix. This yields a simple form of the differential cross section [61, (18.37)]:

do _ 1 Z 2 i 2 2
— =— > (2l +1)*sin(6;)*P;(cos 0)=.
dn k2 1

All information from the cross section therefore can be also expressed with the
phase shifts 9;.

The scattering momentum dependence can be expanded in a power series, the
effective range expansion. To first order this is given by

k cot(5q) = 1 + 1rk2,
ag 2
where k is the relative scattering momentum, & the phase shift of angular momen-
tum [ = 0, q the scattering length and r the effective range. As this model has
two parameters, it will be called “ERE-2” in this work. Depending on the physical
field the definition has a different sign for ag.

As also stated in Reference [62], there is a zero in the scattering amplitude for
k = M, /2 called the ‘Adler zero”. The effective range therefore does not describe
this region. For the two-pion scattering this is not a limitation. However, the two-
pion subsystem in three-particle scattering can become sub-threshold; a description
which is valid in that region is needed. Taking the Adler zero into account with a
two parameter model gives the “Adler-2” model:

k s 9 B, ,
M—COt(50) = S _22:2]\4,1_L (BO + M_%k .

T

We fix z2 = M2 as this is the LO ChPT prediction. Even when left as a free
parameter, the resulting value is compatible with LO ChPT [63-65] (via [40]).

The parameters B, and B; are related to the scattering length and effective range
via

BO T 2—22 BO '

One can also add the next order as B,M th/ k? into the parentheses to make it the
“Adler-3” model.
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The scattering length and effective range can be expressed via chiral perturbation
theory (yPT or ChPT). To leading order we have the predictions
M2

M.aq Mftaorz?a.

— T
16mF2
There are different normalizations for F,, one where it has the physical value of

around 91 MeV and another where there is an additional factor of +/2 such that
the physical value is around 129 MeV. The ETMC uses the latter convention.

As can be seen in previous lattice studies, the leading order ChPT works surprisingly
well for this S-wave scattering phase shift at maximum isospin [45].

Only few data points are available in irreps that couple to the d-wave interaction.
Therefore we use a zeroth order expansion in this case [40],

k> 1
—cot(6,) =—
a Mza,

4.2. Luscher method

Lattice QCD needs to operate in imaginary time to benefit from importance sam-
pling. However, scattering in imaginary time cannot directly yield access to real
time scattering quantities like the phase shift. An indirect approach is needed. The
one used in this work has been set out by Liischer [66] and is called the Liischer
method. Initially it gave the scattering length for two equal particles at rest and was
later extended for non-equal particles, non-zero relative momenta and non-zero
total momentum. Relatively new are extensions to more than two particles. For
the two pion scattering in this work the formulation by Gockeler et al. [35] is
used.

The alternative method for indirect scattering is the HAL QCD method which works
with an effective QCD potential between the particles and computes scattering
quantities from that.

All forms of the Liischer method connect the infinite volume scattering quantities
(like the phase shift or scattering length) to the finite size energies. The core is
the quantization condition which for the two pion system takes the form given by
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Gockeler et al. [35, Equation 54]:
det(Mlm’l/m/ — 511’5mm’ COt(él)) =0. 4.1)

We investigate elastic scattering, therefore we will always have [ = I’. The notation
is to be understood such that the determinant is taken of a tensorial quantity with
the indices Im, ’m’ where the second summand is a diagonal.

The matrix M, ;/,,y is a function of the relative back-to-back momenta of the two
particles. It is expressed in the continuum angular momentum quantum numbers
[ and m which we do not have on the lattice. We rather have our data points in
the lattice irreps I'. Depending on the continuum angular momentum [ and I’ we
will have a different subduction of the continuum scattering amplitude M,
into the lattice one with the following subduction prescription [35, Equation 60]
using the subduction coefficients from Equation (2.3):

r _ T'anx .T'an’
Mln,l’n’ - chm Crrmy Mlm,l’m’ '

mm’

Using this change of basis we obtain the applicable form of the quantization
condition Gockeler et al. [35, Equation 63]:

det (M}, — 6108, c0t(5))) = 0.

Again this is to be understood as the determinant of a tensor with the given index
structure.

In the continuum the different partial waves are completely orthogonal to each
other, there is no mixing between partial wave. The subduction of infinitely many
continuum angular momenta [ to the finite number of lattice irreps I" leads to a
mixture. The partial waves mix on the lattice and they need to be treated together
in principle. Assuming that higher partial waves are sufficiently suppressed by the
centrifugal barrier, one can just take a look at the leading partial wave for any given
irrep. Table 2.2 tallies this mixing and allows us to investigate S-wave and D-wave
by taking the appropriate irreps and ignoring higher waves. The quantization
condition becomes the determinant of a scalar quantity and can therefore directly
be inverted. For the p we have fixed it to [ = 1, for two pions in S-wave we will
fix it to [ = 0. All other elements of the continuum scattering amplitude are then
taken as zero.

A proper combined treatment of the different partial waves will need to solve the
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determinant equation with multiple data points for all phase shifts at the same
time, usually using a fit to the energy levels.

The continuum scattering amplitudes are themselves expressed via linear combi-
nations of the wj; given by Clebsch-Gordan coefficients C [35, Equation 39]:

I+ j
Mlm,l’m’ = Z Z \% 2j + 1(_1)li] Clm,js,l’m’ st(qZ) .

j=I= 5=

The Clebsch-Gordan coefficients are here expressed in the Wigner 3j-symbols as
[35, Equation 35]

m’ sl—j+l’ - L Ut g r
Cum,jo,ome = (D)™ i 7/ [20 + 10[2) + 1021 +1] | 00 o)

s —m’

The w;, themselves consist of the Liischer Z-function together with the Lorentz
boost factor y [35, Equation 40]:

Y_l

NG IES

This function can be computed as

Z(Lg) =)

2ZEP,

st(q2) = q_j_lzjs(l:qz)-

1
D iy py= {1 [ La]mez]),

22 —q 2
where d is the integer total momentum and 7 is a matrix applying the Lorentz boost
factor to the boosted dimension only [35, Equations 33f]. The grid P4 has points
for all the non-interacting relative momenta, Z(1,q?) therefore has poles there.
This function has multiple numeric implementations, we use the R implementation
rzeta [67].

4.2.1. Singularities in the Zeta function

Liischer’s Z-function depends on the relative momentum q and the Lorentz boost
factor y. It has poles exactly on non-interacting kinematic configurations where
two particles have lattice momenta. Sometimes the energy of a certain state
is somewhat compatible with no interaction. In these cases the samples (from
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Figure 4.1.: Phase shift computed from w, as a function of relative momentum
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bootstrap or jackknife) cross the non-interacting energy level. This leads to a
problem in the Z-function as the associated phase shift usually jumps from §; =0
to 6; = m. This effect is illustrated in Figure 4.1. The resampling distribution
of the phase shift will not be normally distributed but rather have half a peak at
6; = 0 and another half peak at 6; = m. Taking the standard deviation of this
distribution will give a much overestimated error.

The crossing of singularities means that the samples are compatible with both a
repulsive and an attractive state. Various ideas on the treatment were formed, in
the end the conclusion has been that these problematic energy levels should simply
be excluded. A promising idea seemed to check whether only a few of the samples
cross the singularity. In these cases the distribution could be clipped at the tails
and instead of using a standard deviation one would instead use quantiles which
are insensitive to removal of the tails. The usual standard deviation corresponds
to the 16 % and 84 % quantiles, clipping a few percent of the points on each end
therefore does not hurt. The problems arise in further transformations which might



74 4. Two pion scattering

not be strictly monotonic and therefore would depend on the tails.

The jackknife distribution is much less wide than the bootstrap distribution. A
common way to work around the singularity crossing of the bootstrap distribution
is to use jackknife as a resampling method instead. As jackknife is only a linear
approximation to the bootstrap we expect that it becomes less accurate for large
non-linearities. The number of points in the phase shift are much less decimated
when using jackknife and allow for a more sensible extrapolations in the following
steps.

4.3. Fitting the phase shift

We have seen how the phase shift is related to the energy levels via the Liischer
formalism. As a first step one can just focus on S-wave and has a direct corre-
spondence without a need for a scattering matrix model. Also we have seen how
the phase shift can be modeled. Now there are two ways to extract the model
parameters from the energy levels determined in Chapter 3:

1. In a two-step process one first computes the S-wave phase shift 6, for every
energy level. There will be strong correlation between the relative scattering
momentum aq and the phase shift §,, which needs to be preserved via
resampling.

Then one fits the phase shift model to the points (aq, 6,) while taking into
account the covariance between independent and dependent variable as well
as among the points. Fitting with uncertainties on the independent variable
is done by promoting the values to fit parameters and adding priors to the
22 expression. With N points and n model parameters one needs to work
with N + n fit parameters.

2. Combine the Z-function directly with the fitting and compute 6, dynamically
during the iterations of the fit. This way the fit parameters are solely the
ones of the model. Also correlation between scattering momentum aq and
phase shift 6 is taken into account automatically. There is no need for
a covariance between them as the dependent variable is the energy and
the independent are just nominal labels for the various energy levels (total
momentum, irrep, correlator id).
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The second method seems to be rather popular as it has less fit parameters to
work with. The only caveat seems to be that the rather expensive Z-function
needs to be evaluated for every iteration of the fit and not just once per energy
level and bootstrap sample. Additional benefit is that one does not compute a
resampling distribution of the phase shift and is safe from the singularity crossing.
The samples of the energy levels can still be part repulsive and part attractive, but
the distribution as a whole does not enter the fit via covariance as it does in the
first method.

The two-step process has been used in Reference [30]. The same code was applied
to the data of this thesis to cross-check the implementation of the second method
that Fernando Romero Lopez has used to analyze the same data.

A direct comparison using both methods with the same method and the same data
shows that there are discrepancies in the resulting fit parameters. After exclusion
of common errors and cross-checking intermediate results, this is interpreted as a
systematic problem of the first method. By evaluating the Z-function only on the
bootstrap samples, the fit model does not know anything about the Z-function. It
is possible that aq, which become fit parameters, vary such that 6,(aq) does not
match the previously computed value of the phase shift. This would yield phase
shift model parameters that could not actually be fulfilled with the given energy
levels.

4.4. Results

The energies of the A; irreps contributing to the s-wave phase shift are fitted per
ensemble using both ERE and Adler models. The ERE-2 model produces results
which are compatible with the Adler-2 result. As the latter model better describes
the data, we show the results for the Adler-2 and Adler-3 models in Table 4.1. As
the two-pion interaction is also heavily used as part of the three-pion interaction,
more results will be found in the combined fits that are presented in Section 5.2.
For the physical point ensemble the results of the fit with the Adler-2 model are
visualized in Figure 4.2, together with fits to experimental data [65, 68] as a
comparison.

Figure 4.3 shows the fit to the cA2.30.48 ensemble and Figure 4.4 shows the fit to
the cA2.60.32 ensemble. As these feature unphysical pion masses, no comparison to
experimental data is possible. Deviations from the leading order ChPT prediction
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Ensemble 1/B, B; B, x2/dof
cA2.09.48 —0.0477(90) —1.4(1.2) — 11.08/(10—2)
cA2.30.48 —0.160(23) —1.8(6) — 15.30/(16 — 2)
cA2.60.32 —0.2090(54) —2.3(3) — 19.06/(16 —2)
cA2.60.32 —0.2110(57) —3.1(6)  0.4(2) 15.96/(16—3)
Table 4.1.: Results for s-wave fits using the Adler-2 and Adler-3 models with fixed
zg =M 121 Table taken from Reference [40].
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Figure 4.2.: s-wave phase shift fitted with the Adler-2 model on the physical point

ensemble cA2.09.48. Our results are compared to the fits to experi-
mental data by Kaminski, Pelaez, and Yndurain [65] and Colangelo,
Gasser, and Leutwyler [68]. Figure taken from Reference [40].
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Figure 4.3.: s-wave phase shift fitted with the Adler-2 model on cA2.30.48. Figure
taken from Reference [40].

become more pronounced with heavier pion masses, which of course is not a
surprise as the pion mass is the expansion parameter.

In Table 4.2 the results of the d-wave phase shift model fitted to the energies in
the irreps contributing are listed. A visualization of the results is presented in
Figure 4.5, together with a fit to experimental data [65]. Their result is a repulsive
d-wave interaction in the energy region which we also have in our spectrum. Our
result lies lower and also suggests a repulsive interaction with mild statistical
significance. The gap between our and their result is slightly more than one
standard deviation, we therefore deem them as compatible. The range of sampled
energies does not extend low enough towards the threshold that we could make
any statement about the zero crossing in the phenomenological phase shift fits.

Figure 4.6 and 4.7 show our phase shift fits to the two heavier ensembles. Again,
as these have unphysical pion masses, there is no comparison to physical results.
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Figure 4.4.: s-wave phase shift fitted with the Adler-2 model on cA2.60.32. Figure
taken from Reference [40].

Ensemble M2a, x2/dof Ecy range

cA2.09.48 0.0005(3) 7.33/(4—1)  [4.0M,,6.3M,]
cA2.30.48 0.007(2) 16.89/(10—1) [2.8M,,4.2M,]
cA2.60.32 0.0037(8) 15.03/(12—1) [3.2M,,4.4M,]

Table 4.2.: Results for d-wave fits using a constant model. Table taken from Refer-
ence [40].
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mental data by [65]. Figure taken from Reference [40].
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taken from Reference [40].



5. Three pion scattering

Scattering with two particles is well established. Symmetric two-particle interac-
tions of spin-less particles are reduced to a one particle problem by boosting into
the center of mass system and treating it as a single particle in a possibly compli-
cated potential. Counting the degrees of freedom also shows that a two-particle
system is rather simple. We have 6 kinematic degrees of freedom (position, mo-
mentum) for a single particle. Two particles have 12 degrees of freedom, but there
are 10 conserved quantities (center of mass movement, total angular momentum,
energy), bringing this down to only 2 degrees of freedom, basically the two axes
of an ellipsis or the independent Mandelstam variables s and t.

Adding a third particle makes this extremely more complicated as no transformation
can reduce it to a one-particle system. The degrees of freedom are 3-6—10 = 8 and
more than twice as many as before. The kinematic machinery needed to analyze
such a scattering process is much more complicated and has only been built up
recently.

The motivations for studying multi-particle scattering are manifold. As pion masses
closer or at the physical value are possible, the relevant thresholds become lower
as well. Without a proper description of the physics beyond the 4M . and similar
thresholds one cannot reliably extract scattering information at these energies.
Also there are resonances that decay into three or even more particles, like the
Roper resonance [1] (via [62]) and many of the X, Y, Z resonances [62] or the
w-meson [2]. The first steps into a new formalism are made with physically easy
systems. At the current state the investigation of three pions with maximum isospin
provides the simplest case in QCD to apply the formalism and advance the field.

A recent review of the three particle scattering formalism is given by Hansen
and Sharpe [69]. There are three approaches, a relativistic field theory approach
(RFT), a non-relativistic effective field theory approach (NREFT) and a finite
volume unitarity approach (FVU). In this work the RFT approach will be used as it
is the only one extended for higher partial waves in the two particle subsystem at
this time.
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The following is a selection of recent works that made progress in the three pion
scattering and lay the foundation of this work.

* Beane et al. [70] computed the ground-state energies (P2 = 0) for up to
five m* using LQCD. They extracted the two-particle scattering length and
also find a repulsive three pion interaction. Used are MILC lattices with
M, =291 MeV [71] and domain wall valence fermions.

 Detmold et al. [72] extended their previous work [70] to include twelve m*.
Their finding of a repulsive three pion interaction is strengthened.

* Romero-Lopez, Rusetsky, and Urbach [73] apply the threshold expansion in
complex ¢* theory.

* Mai and Doring [74] used experimentally available data for the 27 system
and previous LQCD energy determinations of the three pion ground state
[70, 72] to extract a three body coupling via the FVU approach.

* Horz and Hanlon [32] were the first to provide energy levels for the three
pion system at maximum isospin for all irreps P2 < 3. The two pion system
is also given until P2 < 4. The energies are extracted on the N; = 2+1 lattice
with M, = 200MeV from the CLS effort.

* Blanton, Romero-Ldpez, and Sharpe [75] extended the RFT formalism to
also include D-wave states for the dimer.

¢ Blanton, Romero-Lépez, and Sharpe [62] analyzed the existing three pion
energies [32] using the extended RFT formalism [75]. In their analysis they
were able to obtain a significant non-zero contribution of the s-wave states
of the dimer, the d-wave contributions were compatible with zero.

* Mai et al. [76] analyzed the existing data [32] using the FVU approach.

* Hansen, Romero-L6pez, and Sharpe [77] have extended the RFT formalism
to lower-than-maximum isospin channels.

* Beane et al. [78] have computed the ground-state energies of charged and
mesons on two different lattices, once with up to 12 pions, and again with up
to three nucleons. This way the electromagnetic effects could be quantified
in such a many-particle environment.
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* Culver et al. [79] compute three pion I = 3 energies on two ensembles
(220 MeV and 315 MeV) using three elongations each. They show a gener-
alization of the FVU approach to elongated boxes and use this to predict an
expected spectrum using LECs from other sources. These are compared to
the energy levels determined from the lattice scattering.

In this work we present an extension to multiple twisted mass ensembles including
physical pion mass and an attempt to resolve the D-wave in the dimers. The
lattices only have Ny = 2 and also all share the same lattice spacing, making
only an extrapolation (interpolation, actually) in the pion mass possible. The
determination of the energy levels and the steps leading up to them were performed
by the author, the scattering analysis using these energies has courteously been
performed by Fernando Romero Lépez using tools already used in Reference [62].
We will introduce this formalism in the following section.

5.1. Formalism

The description of the formalism is mostly based on the work by Blanton, Romero-
Lépez, and Sharpe [62]. Equations shown here can be found in that paper.

Three indistinguishable particles can already interact in a non-trivial way without
an actual three-particle interaction term. By using the four-vertex interaction %,
term of the effective Lagrangian £ = &, + L4n + Lo + ... twice, one can create
a three-particle interaction. First particles 1 and 2 interact, then particles 2 and
3 interact, as depicted in Figure 5.1a. As the particles are indistinguishable, all
permutations need to be averaged over. This diagram is the leading order (LO)
interaction using only %,,. Additional such exchanges are possible using the same
four-vertex interaction, but do not contribute at LO, which is considered here. The
intermediate propagator can go on-shell, creating a divergence. The four-vertex
interaction has been studied already and is assumed to be known in the context of
three particle interaction.

The simultaneous three-particle interaction comes from the %, term in the effec-
tive Lagrangian and is shown in Figure 5.1b. There we have only a single contact
interaction term and no intermediate propagators. The left diagram is subtracted
from the whole three-particle scattering amplitude .#5 to make it divergence free,
yielding .#; 4¢. From this an UV-regulated scattering quantity is derived, 3 4.
These are the same at leading order. The higher orders are much harder to derive,
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(a) From %, (b) From %,

Figure 5.1.: Contributions to the three-pion scattering amplitude .#5 at LO. Figure
adapted from Blanton, Romero-Lépez, and Sharpe [62].

certain integral equations need to be solved. A discussion of the higher orders can
be found in Reference [62, Supplement S2]. It is estimated that the deviations
between .#; 4 and 73 4¢ could already be 50 % at M, = 200 MeV, making it hard
to connect our lattice results to physical scattering processes.

The three-particle quantization condition can be cast in a form that is similar to
the two-particle quantization condition, Equation (4.1). It is given as

det(F3(E,P, L) + g 5(E")) =0,

where F5 is a function that depends on the two-particle scattering amplitude and
geometric functions. As the two pion system naturally is part of the three pion
analysis, this function can be assumed as known at this point (details in supplement
of Reference [62]). The function 3 is an intermediate quantity that depends
on the observed finite-volume three-particle energies E* = 4/s. For such a fit
one needs a parameterization. In this work an expansion to linear order in the
scattering momentum A = (s —9M ﬁ) /(OM th) is used:
Haa(8) = H5(A) = e + e A

The linear order does not contain angular degrees of freedom, therefore it is
isotropic.

The isotropic approximation to g 3 can only couple to little groups that are highly
symmetric. Therefore for P2 = 0 only the A7 irrep and for P2 €{1,2,3,4} the
A, irrep exhibit a true three-particle interaction. The other irreps show an energy
shift stemming solely from the two-particle interaction. [62, Supplement p. 3]

Using this parametrization of 3, together with information extracted from
two-pion scattering allows to fit this model to the obtained energy levels and
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Ensemble 1/B, B, M2A0° MK 2/ dof
cA2.09.48 —0.0481(86) —1.3(1.1) 0(800) —200(500)  19.06/(19—4)

cA2.30.48 —0.171(22) —2.0(5)  7500(5600) —13000(5000) 36.30/(33—4)
cA2.60.32 —0.2061(49) —1.9(2)  4500(1500) —6200(1800) 58.89/(43—4)

Table 5.1.: Results for the combined fit to two- and three-pion scattering with the
Adler-2 model in the two-pion sector, using 22 = Mﬁ fixed. Table taken
from Reference [40].

determine the two parameters JZ";(;’O and J{dl?(;’l. Alternatively one can perform a
combined fit to the two-pion and three-pion sectors to obtain interaction strengths

for both channels in a consistent way.

The expectation from LO ChPT with only S-wave interaction in the two-particle
system for the three-particle scattering amplitude is

M4
M2 Ay 5 = F—j(18 +27A)+O(M2/F?)
T

= (16mM,ay)*(18 + 27A) + O(M2/F?).

5.2. Results

The fit of the models of two-pion and three-pion interactions are performed si-
multaneously. Even if the two-pion interaction were fitted first, the resulting fit
parameters would have to enter the three-pion interaction fit in the form of priors
to account for the statistical uncertainty. As they become fit parameters this way,
one can use the two-pion energy levels directly in a global fit instead of using the
intermediate prior construction which only captures the first two modes of the
distribution.

The combined fit uses only the A; energy levels in the two pion sector as only s-wave
interactions are taken into account there. The three pion interaction is modeled
with the linear expression, in total we have four fit parameters. In Table 5.1 we
summarize the results from the combined fits to each of the three ensembles.

The constant term of the three pion interaction, J{dliz,’o, is positive. This means

that the interaction is attractive at threshold (A = d). The results for all three
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Figure 5.2.: Constant term of #¢ 3 as a function of the two-pion s-wave scattering
length. Comparison with Reference [62]. Figure taken from Refer-
ence [40].

ensembles, together with the previous result [62], is shown in Figure 5.2. Our
results suggest a larger slope than LO ChPT, which would also be compatible with
the previous result. Likely this means that NLO effects are not negligible and the
next order of the prediction should be derived at some point.

The linear term, Ji’(;?(;l comes out negative for all our ensembles, as well as in
the previous work. As one can see in Figure 5.3, this is in stark contrast to the
positive values and positive slope that LO ChPT predicts. Here again NLO effects
can be very significant. Another source of systematic deviation can arise from the
mapping between .#5 and .y 3, where also only the leading order was considered.
The potential deviation is estimated at up to 50% at M,, = 200MeV and only
increasing from there. For a full treatment of this part one needs to solve the
integral equation governing the relation, which was beyond the scope of our work

in Reference [40].

Table 5.2 reproduces the results already shown in Table 4.1 together with the
combined fit results of Table 5.1. One can see that the results agree very well
within their uncertainties. Additionally one can see that the uncertainties have
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1/B, B,

Ensemble 2t Combined 27 Combined

cA2.09.48 —0.0477(90) —0.0481(86) —1.4(1.2) —1.3(1.1)
cA2.30.48 —0.160(23) —0.171(22) —1.8(6) —2.0(5)
cA2.60.32 —0.2090(54) —0.2061(49) —2.3(3) —1.9(2)

Table 5.2.: Results for s-wave fits using the Adler-2 model in the fit to the 27 data
alone (left columns) or using the combined fit (right columns). One
can see excellent agreement.

been reduced in the case of the combined fit, the three pion interaction is able to
further constrain the two pion interaction. We therefore quote ayM,, = 0.0481(86)
as our two-pion scattering length at the physical point. This is compatible with
previous results [3, Table 23], but does not constrain them any further.



6. Software development

Deriving equations and conjuring up a data analysis strategy is only part of the
story. The other is to actually implement them such that the results are correct,
the procedures can be extended and that it runs with sufficient performance to
get the work done with the allocated computing time. Scientific codes are often
prototypes that pioneer the application of a new method. The method itself will
be extended in unforeseen directions and the code needs to adapt. In this chapter
we will introduce some key features that made this work possible.

6.1. Parameter value framework

Most people write their data analysis code in a dynamic language like Python or
R. These offer easy manipulation of numeric data and creation of visualizations.
Usually work groups build up a repository of common functionality, for instance
the “hadron” package [80] for R. There is functionality for IO, error estimation,
fitting, plotting. Using the provided functions allows to write an analysis of simple
pion correlators with just around ten lines of code. A more complex analysis like
the one performed for the p resonance [30] required a lot more steps, but in
principle it just uses all these functions.

Doing variations of steps emerged as a recurring requirement for the analysis. For
instance we would use bootstrap as our resampling method and wanted to also
see how the jackknife would perform. The removal of thermal states with the
weight-shift-reweight method introduces a lot of noise, therefore it is desired to
also try it without. Choosing the fit range for correlators is a notoriously ambiguous
problem, one needs to try different ranges and see how the fit behaves. The whole
analysis had to be carried out for our 15 ensembles, but we started the extraction of
the phase shift when the first ensemble was available. Different definitions of the
effective mass can yield different insights into the plateau region and remaining
unwanted states. There are many more variation points and more of them emerged
as the analysis was developed.

89
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Usually one particular set of choices is made and implemented. Senior colleagues
will look at the results and ask to have some other choices tried out. The first
approach usually is to just change it in the code, re-run and produce another plot. In
the best case the other variant will be discarded as useless and the code is changed
back. However, there usually will be follow up questions, like to have a single
plot with both variants. We now have the problem to have both variants available
in the code at the same time. We could let the program run through with the
resampling method “bootstrap” and serialize the results into X_bootstrap.Rdata,
change the program to use jackknife and store the results in X_jackknife.Rdata.
Then we write a script that loads both data sets and creates the plot. But next the
advisor wants to see the energy levels with bootstrap and jackknife. So this ad-hoc
changing and re-running of the code does not scale well.

The next approach is to have variables like X_bootstrap and X_jackknife in the
code and write the analysis like that. Everywhere will be variables with the two
suffixes, and a lot of code has to be duplicated. Perhaps autocorrelation has not
been taken into account and one wants to try different block sizes. This now
has various values and one will end up with variables like X_bootstrap_blockl,
X_bootstrap_block2, with all the duplication in the parts of the code. Adding
another block length would require the introduction of more variables and adding
this variant everywhere else. Given the vast number of variation points, the
combinatorics quickly spiral out of control.

6.1.1. Embracing variation points

The proposed solution is to embrace these variation points and make them a first
class element in the analysis. A fundamental problem with the above attempts
is that the there are values within the names of (programming language) vari-
ables. One should rather only have them stored inside of variables. Unfortunately,
programmers gravitate towards deeply nested data structures and arrays of high
dimension. All these variants could form a hypercube, the axes describing the
variants. Unfortunately most functions do not easily operate on this. Also not all
cross combinations are desired, therefore this hypercube will develop gaps. The
next approach might be a deeply nested hierarchical structure, but that is only
worse.

The concept of “tidy data” [81] solves both issues as the data frames will always
be just two dimensional tables. The cost is that some values are replicated, but the
additional memory and compute load are clearly worth the predictable structure.



6.1. Parameter value framework 91

Adding more decision points are just more columns, but the dimensionality of the
data structure does not change at all.

The combinatorics of different decision points shall be taken care of by the frame-
work. We want to be able to introduce arbitrary many variants at any point in the
analysis. For instance we want to have the following variants for the resampling
methods:

boot_method

bootstrap
jackknife

Adding a block length is very easy, we just add another column to the this parameter
table and obtain the following:

boot_method boot_1

bootstrap 1
bootstrap 2
jackknife 1

The long data format allows us to just list the combinations that we want. We
do not have to do all, there are no gaps in a hypercube, no need for a nested
structure.

We want to allow every part of the code to be done in arbitrary many variations.
This unfortunately means that we have to apply our operation to every set of
parameters. With the long format it means that we just have to apply the function
to each row of this data frame. The presence of another parameter column will
not affect the function in any way, it will be transparent to new parameters that
have been introduced later.

Each of these variants (rows in the parameter data frame) will have an arbitrary
number of variables attached. While operating on a given parameter set the func-
tion will have the corresponding values available. After resampling the variable
will be the resampled correlation function corr_boot. As there are three differ-
ent parameter sets, the value will be a list of three elements, each holding the



92 6. Software development

corresponding corr. In the R implementation that is a numbered list where each
element is a named list.’

In a different part of the code we would have the effective mass. We want to have
both the “acosh” and the “log” type to compare them, so we set up the parameter
data frame as follows:

effmass_type

acosh
log

We want to compute the effective mass for our resampled correlation functions,
but these come attached with this data frame of resampling parameters. We have
another data frame of parameters giving us the type of effective mass. After doing
the combinatorics we will have more parameters:

boot_method boot_1 effmass_type

bootstrap 1 acosh
bootstrap 1 log
bootstrap 2 acosh
bootstrap 2 log
jackknife 1 acosh
jackknife 1 log

If a parameter occurs in both parameter data frames that are to be merged, an
inner product of the values is performed. This could occur if we would want a
certain type of effective mass only with a certain resampling scheme.

In the concrete implementation the computation of the effective mass could look
like this:

f <- function (param, value) {
effmass <- hadron::effmass.cf(
value$corr_boot,
type = param$effmass_type)

In Python one can use a list containing dict elements, in C++ one would use a vector each
containing a map.
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list(effmass = effmass)

effmass <- pv_call(f, corr_boot, effmass_type)

The function f accepts one row of the parameter data frame (which is then just
a named list) and the corresponding value (also a named list). The return value
is a named list containing arbitrary many variables, in this case just the effective
mass. Inside the function we use functionality from the “hadron” package to do the
actual effective mass computation. The resampled correlation function corr_boot
is taken from the value object. The type of the effective mass is a parameter and
therefore comes from the param variable.

The function pv_call will take one or more of these parameter-value-objects and
perform the necessary combinatorics. Then the function f is applied to each row
of the parameters and corresponding values. As the rows of the parameter data
frame are independent variants, they are parallel and can be run concurrently.
The R implementation does this via multi-processing automatically. The number
of variants in a typical analysis easily exceed the number of CPU cores on any
machine, therefore effectively utilizing the available resources.

After the above code has been run, the variable effmass will be a parameter-value-
object containing the parameters boot_method, boot_1 and effmass_type, as
well as the value effmass (same name, different programming language entity).
All further steps in the analysis using the effective mass will automatically contain
these parameters. In case more parameters are added prior to this code, they
will transparently flow through the function f. In the above code the parameters
boot_method and boot_1 are just ignored.

Should a particular parameter combination be unsuitable, the function f could just
return NA which is a special value in R denoting not available. These parameter
sets will just be dropped from the result.

Currently only an R implementation of this framework [82] exists, for the lack of a
batter name it is called “paramvalf”. It consists only of around 350 lines of R code
because it draws from the “dplyr” package [83]. If a similar library (like Pandas
for Python) is available, porting the framework should be straightforward.
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6.1.2. Summaries

This functionality already cures the proliferation of named variables in the program,
also it makes extensions easy. There still is a missing piece for the creation of
summaries and summary plots. The various values are still independent. As an
example we want to plot the effective mass and then visualize the resampling
methods and the effective mass definitions. For this we create summary, which is
a data frame summarizing everything that we want.

f <- function (param, value) {
summary <- data.frame(
time = 0:(length(value$effmass$t0) - 1),
effmass_val = value$effmass$to,
effmass_err = value$effmass$se)
list(summary = summary)

}

effmass_summary <- pv_call(f, effmass)

By using the specially named return value summary, we instruct pv_call to flatten
the resulting data frame per parameter into one large data frame. The end result
will resemble this form:

boot_method boot_1 effmass_type +time effmass_val effmass_err

bootstrap 1 acosh 0 0.9668706 0.01306962
bootstrap 1 acosh 1 1.0456415 0.01215015
bootstrap 1 acosh 2 0.9945144 0.01121410
bootstrap 1 log 0 0.9565278 0.01368002

This format lends itself to visualization with the “ggplot2” package [84] where we
could just do the following:

ggplot(effmass_summary,
aes(x = time,
y = effmass_val,
color = boot_1,
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shape = effmass_type)) +
geom_point() +
geom_errorbar(aes(ymin = effmass_val - effmass_boot,
ymax = effmass_val + effmass_val)) +
facet_grid(~ boot_method)

The output is a plot with facets for the different resampling methods, the effective
mass each shown with error bars. Different point shapes show the various effective
mass types and a color gradient shows the resampling blocking length. In case
that this visualization proves ineffective, one can easily choose different visual
elements for the variables. Adding another variable like the ensemble, removal
of thermal states or different particle channels is straightforward and can also be
resolved in this plot. Alternatively one can use the “group by” functionality to
create separate plots for these new parameters.

6.1.3. Organizing the code

For instance the analysis for Reference [30] has over 16000 lines in total. In
order to retain an overview one needs structure. R provides a serialization format
(RData) which can store and load every variable, even across different versions and
architectures. We have therefore divided the analysis into small chunks that load
data, process it and then save it again. The natural interface between these chunks
is the saved data. The “paramvalf” package contains the utility functions pv_load
and pv_save which automatically choose a file name based on the variable name.
This is orthogonal to the variation points and effectively provides a workflow
management for the analysis.

Working on a single chunk is now easy because the number of moving parts is low.
The correct execution order for the chunks now is a non-trivial problem, though.
With the load and save instructions all the chunks naturally define dependencies
onto each other. We just need to run the chunks that save a particular variable
before we can run one that will load it. A Python script provided with this package
will parse the R code and generate a directed acyclic graph (DAG) from this. The
graph is visualized with GraphViz [85] and also emitted as a Makefile. Figure 6.1
shows a partial data flow diagram for Reference [30]. Calling make via a wrapper
script will then execute all the chunks of R code such that everything is consistently
updated.
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data/rho/temporal.tsv

remove_temporal.R

output/rho/corr_matrix_boot_rt.Rdata output/rho/gevp_reference_time.Rdata
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Figure 6.1.: Partial data flow graph from Reference [30]. White boxes are R code
chunks, green boxes mark text files with parameters. Blue boxes
denote serialized data and purple boxes are function files that contain
utility functions within the analysis. Yellow chunks are R Markdown
documents that generate a report.
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This part is independent of the actual parameter-value constructs. In principle one
could split this into two different libraries. The memory usage scales linearly with
the number of variants that are performed, therefore there have been plans to
automatically serialize data as it is computed. So far this has not been implemented
satisfactorily, but it could couple both parts tighter at some point in the future.

6.1.4. Converting parameters to values and back

The values from different parameter sets are processed always separate from
each other. This is fine only in most of the cases. We routinely run an analysis
on ensembles with different lattice extents L/a, different pion masses aM, and
different lattice spacings a. Several analysis steps (resampling, GEVE fitting) are
done per ensemble. Extrapolations however require that we take several ensembles
and regard them as a whole group. One concrete use case is analysis of finite
size effects. We want to make groups that have the same lattice spacing and pion
mass, but different lattice extents. In SQL terminology we want to group by lattice
spacing and pion mass. Actually we also want to group by everything except
the lattice extent. In the pv_call function there is a parameter called convert
which takes the names of the parameters that shall not be grouped and rather
converted.

As an concrete example one can use the effective mass data from before. There
we had the parameters boot_method, boot_1 and effmass_type. If one were to
compute whether the means and errors are significally different for a specific time
slice (Z-test), one would need to group by boot_1 and effmass_type, but would
want to let go of boot_method as an external parameter. The following table shows
the four groups that are generated.

boot_method | boot_1 effmass_type

bootstrap 1 acosh
jackknife 1 acosh
bootstrap 1 log
jackknife 1 log
bootstrap | 2 acosh
bootstrap | 2 log
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Some of these groups do not contain both resampling methods. Therefore we
could not do a comparison with them and have to return NA instead. The meaning
of param and value that are passed to the inner function will change. param
will instead be a data frame with multiple rows (two or one in this example)
containing the columns boot_1 and effmass_type. The value will contain the
fields boot_method, a list of strings; and effmass, a list with the effmass values
corresponding to the rows in the param data frame. The function needs to then
pick out the two effective mass objects and perform the comparion. The result will
have the parameters boot_1 and effmass_type, and it will only have two rows
as we only keep the first two groups in this example.

The opposite direction is also possible. When solving a GEVE we have one n timesn
correlator matrix going in per parameter combination. The output however has a
principal correlator id, which we ideally expose as a new parameter. For this the
inner function needs to return a list with just one entry named paramval. It must
be a parameter-value-object containing just the new correlator_id parameter.
The pv_call function will recognize that and resolve the nested data structure
into a large parameter-value-object with many more rows and the additional
parameter.

6.1.5. Shortcomings

Although this framework has served very well in constructing the p and 37 analyses,
there are a few shortcomings which currently lack a proper solution.

The framework neatly decouples all the various parameters from each other, mak-
ing it very easy to add more parameters and also more steps in the analysis graph.
Adding more data is very easy as well, one just makes the parameter tables longer.
Dependencies will get automatically resolved and in the end everything is up-
dated.

Memory usage Having the values for all parameter combinations in a single
object can lead to very large memory requirements. Storing the effective masses
and their bootstrap samples for over ten ensembles, tens of energy levels per
ensemble, multiple fit methods and two resampling methods can require around
10GB of memory. Usually multiple such objects (say effective masses, fits and
principal correlators) need to be kept in memory. For the analyses in this work
the memory requirements are such that they cannot run on a regular workstation
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any more. Due to the computing complexity it is advisable to use a larger server
anyway, but the memory requirements force one to do so.

One solution attempt has been implemented but did not catch on: Instead of
having the values for all parameter combinations in memory, they can be serialized
into individual files and loaded as needed. This way one would only need as much
memory as there are processes working on the data. Memory scaling would be
constant in the number of parameter combinations and not linear. The caveat is
that there is a lot of disk IO with small files. There must be a threshold, otherwise
the overheads would become crippling for small objects.

The largest issue is ensuring integrity of the files. The paramval object will only
contain references to other files in the value section. These could be stored in
files with random names, but then it would be hard to determine which files have
expired. The disk usage would grown with each execution of the analysis, which
is not acceptable. Instead it was tried to create a directory with numbered files.
When the object is created again, the directory is pruned first and then each value is
serialized again into a numbered files. This way old files are automatically deleted
and the directories are organized and human serviceable.

But how does one know the name of the variable that the result will be stored in?
In normal code, it looks like this:

result <- pv_call(func, data)
pv_save( 'project', result)

The function pv_call cannot know that the result will be stored in a variable
called result. In order to circumvent this, the function signature was changed
to pv_call(result, func, data) and used R’s non-standard evaluation [86] to
create a variable called result in the calling scope. This way of writing is just a
bit inconvenient but still possible.

Experiments with the described changes have been performed and were under-
whelming. R is a managed language and uses a garbage collector. Even calling
gc() in the code will not necessarily free up memory. Also loading data in the
pv_call function had to be done carefully because the data would otherwise accu-
mulate during the pv_call function call and use as much memory as it did before.
Actually it would use more because of R’s pass by promise automatic read-only
referencing which helps to lessen the memory footprint. Multiprocessing also
increases the memory usage.
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In the end it was decided that all the additional trouble was not worth it. With the
changes the analysis could in principle run on a laptop, but there it would take
very long due to the low clock speed and core count. As the cluster frontend has
enough memory anyway, these changes have been reverted and large analyses just
require memory in the ballpark of 50 GB.

Dependency granularity Another problem is that the framework tracks de-
pendencies only on a file level, which means per PV object. Say we just have a
single fit range for a particular energy level. Then we would expect that only that
fit would be performed. Unfortunately the granularity of change tracking is on a
file level and the text file with the fit ranges was changed, so all fits will be re-done,
although the results will be exactly the same as before.

One could just take some hash digest of all the parameters and data that go into a
result and store that with the results. If the input files have changed, it could be
checked whether the hashes have not changed and the previous output would be
used, otherwise it would be computed anew. It is rather problematic to get the
dependencies right in all cases, for instance there could potentially be inconsistent
results that are computed using different versions of installed libraries. This is not
tracked in the present state either, but at least all the data in one PV object will be
consistent.

This is harder than it might appear at first. If not all dependencies are tracked
correctly, results would be inconsistent, users lose trust and just re-run everything.
So far attempts to tackle this problem have been held back because the fear of
inconsistent states has been larger than the need for more efficiency.

Debugging New abstractions require new tools for debugging. The additional
abstraction here is over variants. When any of the variants fail, the whole function
call of pv_call fails. One can set a global boolean variable debug_mode which
will force all pv_call invocations to use serial execution using lapply instead of
parallel execution via pbmclapply [87, 88]. This removes the multiprocessing
problem from the debugging but leaves the debugging inside the lapply. One
needs to run until the variant with the error comes up and then debug it. Just
calling browser () inside the closure will not be of much help as succeeding variants
need to be skipped.

The best option currently is to set the following:
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debug_mode <- TRUE
options(error = browser)

All pv_call will then use serial execution with the main process. Errors (as
triggered via stop()) then trigger the debugger and one can investigate the faulty
variant. Investigating the param row in the closure parameter gives clues to which
variant has failed.

It would be desirable to get to errors more quickly and also be able to debug
parallel execution of variants. So far there are no fruitful plans to achieve this
goal.

6.2. Projection code

One part in the toolchain is a projection code which implements Equation (2.2).
For Reference [30] we have used the sLapH Projection code [89]. It takes numeric
correlation functions and projects them into the lattice irreps that couple to I =1
and j = 1. Unfortunately it is a rather monolithic code that had analytic simplifica-
tions done before the implementation. Everything was tailor made to the specific
channel and therefore extension was deemed unsuitable.

In order to prevent a similar situation in the future, the stated goal of the new code
is set to support arbitrary many particle in every partial wave and isospin. Although
only pions were going to be used at first, extension points for non-scalar particles
have been left in the code. All analytic simplifications that arise from a specific
isospin and spin channel shall only be done within the code. The need of analytic
algebra led to usage of the Wolfram Language [90], the language in the Mathematica
computer algebra system. Unfortunately the free software alternatives were not
deemed sufficiently capable. Additionally the Quark Contraction Tool [91] was
already available for the Wolfram Language, alleviating the need to program Wick
contractions.

The new projection code [36] is built in a modular fashion such that the various
steps are somewhat independent of each other. The repository contains many
dozen pages of documentation explaining the design decisions, implementation
details and also some usage instructions.
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6.3. Contraction code

For the three pion contractions the existing sLapH contractions code [92] had been
extended to support more than two particles. This alone would not have sufficed as
the number of momentum combinations with three particles at source and another
three at the sink is significantly larger than with two particles. Without significant
changes the code would have taken way too much computer time and memory
and could not even fit onto compute nodes with 96 GB as they are deployed on
JUWELS [39].

In a round of refactoring a caching structure has been introduced. This allowed
the reuse of elements that have been already computed while still being able
to control the size by clearing the cache. Quantities that have been computed
eagerly were then computed on demand and cached. The disadvantage has been
large memory usage, which did not pose a problem for two particles at the time
for Reference [30]. Each thread on the CPU had it own cache, letting it work
completely independent from the other ones. The many source-sink time slice
combinations were just distributed to the threads.

For three particles another round of refactoring was needed, partially undoing
changes from the preceding round. So far only elements of the form Tr(QQ) had
been cached, which makes computation of C4cD and C4cV diagrams very cheap.
The diagrams consisting of four quark lines, C4cB and C4cC however did not profit
from this as they are of the form Tr(QQQQ). There have been some tricks that
cache the intermediate QQ objects to essentially bring it down to the computation
of all QQ objects and then assembly of the trace as Tr((QQ)(QQ)) from cached
objects. The diagrams for three particles on either side will have Tr(QQQQQQ)
and therefore the intermediate QQ objects needed to be cached to facilitate reuse
across all diagrams that are computed.

The sheer number of momentum combinations however made it feasible to just
hold all the intermediate objects in memory for a single thread. Usage of more
threads meant a multiple of the memory. At the time the code could only run on
machines which had around 60 GB of memory per thread, which is completely
unobtainable at the moment. The target machine, JUWELS, has 48 CPU cores and
96 GB of memory per node, giving each thread just 2 GB. Using only few threads
would have been a giant waste of resources as they are billed by the full node.
We have decided to not parallelize over the time slice combinations but rather
over the momentum combinations. This way the memory usage becomes virtually
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independent of the number of threads used, making it a much better fit for existing
supercomputer system.

Momentum combinations that get computed were generated by the code during
startup on each configuration. For at most two particles at either source or sink the
number of combinations is limited and the existing brute force algorithm finished
in a few minutes. For a two-to-two particle diagram it would take all possible
single particle momenta up to pi2 < 4, perform all combinatoric combinations of
two of particles and only then check whether total momentum was as desired.
It would have been much simpler to just subtract the momenta from the total
momenta to obtain the momentum of the last particle. This algorithm did not
scale for three particles at source or sink, which is not surprising in hindsight.

As the code was rather convoluted and the algorithm inefficient, it was decided
to just use the list of correlators demanded from the projection code as input.
The user will have to create the projection prescriptions before being able to run
contractions. This way only correlators are generated which will be used in the
projection later on. In the old state certain correlators were computed but never
used, another waste of resources.

This fundamental change in the usage also allowed us to get rid of the seemingly
arbitrary momentum cutoffs that had been in place. The rules for the individual
particle momenta have been the following:

p?<4, Y p?<c(P?),

1

with the cutoff function given as
c(0)=4, C(1)=5, C(@2)=6, C(3)=7, CH4)=4.

These arbitrary seeming cutoffs serve the purpose of avoiding states which have
their non-interacting energies way above the 4M,, threshold. This heuristic is no
longer needed with the new projection code as its modular fashion also allows to
export a listing with all the individual particle momenta coupling to a given irrep.
Figure 3.1a shows this for a typical case. Then one can insert the lattice extent L/a
and the pion mass aM,, to decide which states lie above the relevant thresholds.
Usually one operator above the threshold is kept to stabilize the GEVE all higher
operators are just cut in order to save computing resources. The generated list
of actually useful correlation functions is then used by the contraction code to
compute them.
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All the refactoring could have introduced various errors in the program. In order to
prevent this, a full end-to-end integration test has been introduced before touching
the code. In this way any deviations in the end result would be spotted quickly. As
a contraction on a real lattice would need too much time, a special small 4* lattice
has been generated for testing. The tests for all diagrams run within a minute
on a regular computer. Using the service from Travis CI [93] they are run each
time a new commit is uploaded to GitHub. While making changes to the code,
the tests were never allowed to fail, guaranteeing that the results still match the
initial version of the code. A few normalizations have been corrected carefully,
this lead to a controlled update of the reference data. Diagrams which were newly
added did not have a reference, there a cross check was done with an independent
implementation.

Going forward, the next projects can benefit from an improved contraction code that
is ready to be extended with more diagrams stemming from lower-than-maximum
isospin channels.



7. Conclusion

In this work we present the first computation of the three-pion contact interaction
at physical pion masses. The constant term is in agreement with LO ChPT and
previous data, whereas the linear term shows a trend into the wrong direction.

We obtain ay,M, = 0.0481(86) as our two-pion scattering length at the physical
point using the two and three pion spectra in a combined fit. This is compatible
with previous results, but does not constrain these any further.

Going forward, one could derive the NLO ChPT prediction for 3pi and properly
solve the integral equations connecting the unphysical 4 5 of the quantization
condition with the physical .#5 such that a comparision far away from threshold
becomes more meaningful.

The statistics on the cA2.30.48 ensemble is rather low. Especially in the three pion
scattering one can see that it has the least statistical weight. A doubling of the
statistics is possible and could be done in the future to improve significance of the
results.

The ETMC has a group of ensembles with N = 2 + 1 + 1 non-clover twisted
mass fermions, which would offer additional flavors but lacks an ensemble at the
physical pion mass. Therefore these ensembles were not used for this work. A
new group with Ny =2+ 1+ 1 clover twisted mass fermions is in the making and
could be used to investigate k-physics in the context of three-pion scattering while
still benefiting from the O(a?) improvement by the clover term. Additionally this
ensemble group will feature multiple lattice spacings, such that the size of lattice
artifacts could be quantified.

As the RFT formalism has been extended to lower-than-maximum isospin channels
[77], numerical studies could follow with reasonable effort using existing software.
The new projection code [36] has been kept general enough that an extension to
other isospins is not necessary, but spin would need to be finished such that inter-
mediate p resonances could also be probed with operators. The contraction code
[92] is also refactored such that adding the required quark-disconnected diagrams
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is not much more work and fits into existing structures. The energy extraction
of the correlators does not depend on the isospin channel and could just be used
directly. The changes in the RFT formalism would have to be implemented.

Finally a few details about the software engineering needed to realize the physi-
cal results have been given. The parameter-value-framework was introduced, it
provides flexible variation points in the analysis as well as a complete workflow
management to guarantee a consistent state of the analysis. This framework is
now used in multiple other projects. A whole new group theoretical projection
code has been created, it can be extended to provide projections for other physical
channels and particles with spin. The changes to the contraction code have added
features, made it faster and reduced the memory usage. Future extensions for
more physical channels will be rather straightforward.



A. Directed acyclic graph Markov
chain Monte Carlo

“Correlation does not imply causation” is a common statement to prevent people
from trying to read too much into a correlation [94]. Given samples for the random
variables A, B and C one can compute the correlation between them and make
hand-waving conjectures about their causal relationships. The problem is that
with limited data one is prone to fall for spurious correlations of which there are
many amusing examples [95].

Taking a Bayesian viewpoint however, one can give probabilities for different causal
structures. Figure A.1 shows the possible different ways that the variables could
actually interact with each other, assuming that there are no cyclic relationships.
These graphs are directed acyclic graphs (DAG). In particular Figure A.1d shows
how the random variables B and C could have large correlation but no direct
causal contact.

The interaction between the graphs needs to be modeled with some function,
having some edge parameters. A probability density function (PDF) depending on
the values of the random variables and the edge parameters then gives a likelihood
for the given values in that particular graph. By sampling this PDF one will obtain
samples for the random variables. All possible graphs need to be sampled this way
to map out the PDE Once this has been done one can use the Bayesian approach
to invert the relationship and give a likelihood for a particular graph (with certain
edge parameters) given samples of the random variables. The hope is to infer the
causal structure just from the data, exactly as it is commonly pointed out to be a
fallacy to try so.

In this chapter we will work with this approach and attempt to test the approach
with increasingly difficult models. There are a lot of unknowns, the model depen-
dence is a key factor. In reality any sort of non-linear functional dependence could
arise. Additionally the restriction to acyclic graphs could be too strict to explain
certain phenomena. Still it is worthwhile to try this with a toy model.
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Figure A.1.: All possible graph topologies for the causal relationship between the
three random variables A, B and C.

A.1. Model

The graph has p nodes and g directed edges that connect the nodes. The number
of random variables X is also p, each node corresponds to a random variable. We
have Ng;mples Samples of each random variable X; as the vector x;. Not all nodes
need to be connected, some can be multiply connected. Some of the nodes have
no parents, they are called exogenous. Nodes with parents are called endogenous.
Their count is Nepqog- The node numbers of the parents of node i are denoted as
P..

The interaction from one variable with the next is modeled with a logistic curve.
Each node has two parameters (a and o), each edge also has a parameter ().
The node parameters are indexed with a node number i, the edge parameters with
parent p and target node number i as f3,_,;.

The PDF f(a, B, 0;X) is computed from these parameters as follows. We have a
simple logistic function,

1

IOgiStiC(Z) = m .

that serves as the source of non-linearity in the model. Various other functions are
possible.
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The exogenous random variables are taken to be normally distributed. We use the
logarithmic form of the normal distribution,
(x —p)?

1
lognorm(x, u, o) = ~ 0oz 3 log(2mo?).
o

The expected mean value for a certain random variable i on a given sample n is
computed from the parameter a; intrinsic to that node together with the edge
weights and the parent samples:

Mni = logistic(ai + Z ﬁp—>ixnp) .
Jep;

The logarithm of the PDF is then computed as the sum all the log likelihoods:

N,

endog

log(f)= > > lognorm(X,,tnip, 0;)-

i=1 n=1

N,

samples

The model is formulated such that the data is standardized to have zero mean and
unit standard deviation. This process is usually used for meaningless arbitrary
scales like the ones ranging from “very bad” to “very good” on questionnaires. In
physical applications there usually is an absolute scale which should not be stan-
dardized away. The model would need to be extended with additional parameters
for the original mean and standard deviation such that absolute scales could be
recovered. During the conducted experiments it was found to be far less stable
than the standardized model.

In a realistic application the samples for the random variables would be given and
both the graph and the parameter would be inferred. For the development of the
method a fixed graph and fixed parameters are used. From these the samples are
created by first sampling the exogenous variables from a normal distribution with
mean zero and width o;. The endogenous variables are sampled from a normal
distribution with mean u,;, as computed in the above prescription. The algorithm
will then be given the graph must then be able to infer the fixed parameters.
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A.2. Implementation

For sampling a PDF with many parameters the lattice practitioner directly thinks of
the hybrid Monte Carlo algorithm [9]. The chosen model has continuous param-
eters and is differentiable, therefore the algorithm is applicable. The molecular
dynamics part needs an integrator. At first the simple leap frog algorithm has been
used, in the end the minimal norm integrator of fourth order [96] has shown much
more efficient.

The model function has been implemented in Python using the SciPy [97] matrix
and scientific function libraries. The analytic gradient is computed automatically
using the autograd [98] library. It uses the concept of automatic differentiation and
introspects the algebraic expressions and uses appropriate differentiation rules.
This concept allows to quickly change the model without having to derive and
implement the gradient. In machine learning these tools are in widespread use,
whereas lattice QCD has only few operators and manual differentiation is still
feasible. This convenience has a price in computation cost and will feature in
Section A.4.

Input and output has been done exclusively with the YAML serialization language
[99]. It is human and machine readable, also libraries for all relevant programming
languages exist. Analysis of the data was therefore easily done with either Python
or R. For larger numerical data the text format takes up much more storage
space, takes much longer to read and write and can suffer from rounding issues
if not enough significant digits are used in the output. The Python YAML writer
automatically serializes sufficiently many digits and does not have this problem.

Unfortunately the source code of the DAG-MCMC project [100] is still private.

The HMC implementation was tested first by sampling from a normal distribution
with logarithmic PDF of just —x2. A second verification was a simple y?2 fit which
can be compared to a bootstrapped fit. Typical quantities to check are the values
and standard errors of the various fit parameters, their autocorrelation time and
the distribution of exp(—AH) of the updates. Also the scaling of | AH| with the
MD integration step length 6t showed the typical quadratic scaling that one would
expect for a second order integrator. The computation of the forces has been done
with the autograd implementation, just like for the model of interest. After these
tests with known reference results have been passed, we had confidence into the
HMC implementation.
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Figure A.2.: Simple collider model

A.3. Results

At the beginning it was unknown which graph complexity would be suitable for
the first test runs. Therefore larger and smaller models were tested. The simplest
non-trivial model is one with a single endogenous variable with two parents. It
will receive input from two external variables and they become mixed. Figure A.3
shows the graph for this model. There are two edges. In total this model has five
variables: a, 0., 0, and the edge weights 3; and f3,.

With suitable low noise levels the system can indeed figure out the actual values
of the system. These are the values of the five variables that have been used to
generated the data samples that the DAG HMC works with. In Figure A.3 there
are the values of the five variables plotted against the HMC update number. The
HMC should be able to find the global minimum of the log-likelihood function;
in real applications this might take a very long time during which the algorithm
gets stuck in a local minimum. In order to find out whether the starting conditions
have an impact on the resulting equilibrium the simulation has been started with
all variables set to zero and also with all variables already at their true value.
The latter case is cheating for our purposes as we do not known them for real
applications. However both starting values seem to yield the same equilibrium
rather quickly.

This simplest model also gave us the opportunity to experiment with the acceptance
rate. Depending on the model the target acceptance rate, but in general there
is a sweet spot somewhere between 50 % and say 90 %. A too high acceptance
rate means that one does not do much progress in each update, leading to high
autocorrelation times. The number of accepted measurements might seem high,
but the number of uncorrelated measurements is rather low. If the acceptance rate
is too low, there will not be any progress and the required number of raw updates
is again high. The program monitors acceptance rate during the simulation. When
it is too low the number of integration steps will be increased by a constant factor.
This lowers 6t and therefore also | AH|. All updates leading to that change need to
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Figure A.3.: Evolution of the variables a, 04, 0., and the edge weights f3; and
B, with the Markov chain updates. The difference between the two
histories are the starting values (denoted with circles at update 0).
The left one starts with all variables at zero, whereas the right one
starts from the known values. The simulation is run with 7, = 0.1
and N = 50 steps in the MD part.
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Figure A.4.: Model with 10 variables.

be discarded as the ergodicity is violated with a change in simulation parameters.
These automatic changes usually happen early on until a suitable acceptance rate
is stabilized.

A more complicated model that was chosen has 10 variables. Two variables are
exogenous, all the others are connected such that each endogenous variable has
between one and two parents. The generated graph has 11 edges, as shown in
Figure A.4. In total the model has 3411 = 14 parameters that need to be measured
via the HMC. In order to test the stability of this model we have started the runs
from the known central values.

The MD integration length 7, and the number of integration steps N can be
tried to cover various orders of magnitudes. When the integration is performed
too coarsely the forces will become very large or even diverging and spoil the
simulation. Shortening 7, and/or increasing N will make the system more stable in
most cases. There has been a very curious case where the o, would simply diverge
even when started from its known central value, see Figure A.5a. Increasing N by
a factor of 10 does not cure this problem, it will just make the simulation progress
much slower that not enough statistics could be gathered in reasonable time. See
Figure A.5b for the comparison. This initial divergence remains even when one
also decreases 7 by another factor of 10 as can be seen in Figure A.5b. The
simulation just becomes so slow that waiting for it to come back down would not
be feasible.

We would have liked to investigate this further by just letting the simulation run
longer. The simulation as implemented only runs on a single CPU core and the
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Figure A.5.: Simulation of a more complicated model with 10 variables and 11
edges. The diverging parameter is 0.
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autograd implementation is rather slow. It was deemed out of reach until the
performance was improved significantly.

Reparametrization of the o parameters as o = exp(s) to force them to become
positive did not change the strange behavior that we have seen. Using the fourth
order integrator made it better, yet still progress has been too slow to properly
analyze the model.

More complex models, with 30 variables, were also tried. There the autocorrelation
time for some parameters grew to figures like 500 iterations. Given the overall
slow progress in the MD, this meant that the number of usable updates was way
too small to properly sample these types of graphs yet.

The extended model that can work with non-standardized data was too unstable
to yield sensible results with the given performance of the program. Therefore
this branch of investigation has been postponed until after the performance is
improved.

A.4. Performance issues

The automatic differentiation is very nice as it lets the user change the model and
directly access the needed gradient for the HMC. Unfortunately the concrete auto-
grad implementation in Python running on cpython is the dominating bottleneck
of the application. Figure A.6 shows a profile of a HMC run. The top layer is the
benchmark function task, then comes the HMC driver function do_hmc. In the
third line one can see that virtually all the time is spent in the integrator omf4
whereas only a sliver is spent in other parts of the code. The integrator again
spends most time in autograd functionality (nary_f).

There are two steps in the computation of the gradient. First the function is evalu-
ated using special objects that behave like NumPy arrays but built an expression
tree with all the operations that are applied to them. This slows down the actual
evaluation significantly. The standard rules of differentiation are applied to these
expressions. A junction with a product will invoke the product rule and a function
evaluation the chain rule. This way an analytic expression of the gradient it built
up. In a second step concrete values are inserted into this gradient expression tree
and is evaluated bottom up. Autograd cannot tell if the structure of the gradient
will change when it is evaluated with a different function argument and therefore
has to re-build it every single time.
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core.py:8(make_vjp)
7.53s

model.py:43(closure_logtarget)
7.55s

dag_functions.py:159(dag_logtarget)
7.55s

Figure A.6.: Runtime profile of a HMC run showing the dominating cost of the
gradient function grad (marked in pink). Setup (left side) and evalu-
ation (right side) have roughly the same cost. The profile has been
visualized with Snakeviz [101].

Fortunately there is a concept of a constant graph where the user can specify
knowledge about the structure. With our model we know for sure that the structure
will now change, therefore the graph can be generated once and then become
frozen for the remainder of the program. The effect of this can be seen in Figure A.7
where the evaluation part has been reduced. Unfortunately this saves less than
50 % of the costs, so the program is not the needed orders of magnitude faster.

One general way to make a Python program perform faster is by using the Numba
[102] just in time (JIT) compiler. One just lets it turn the Python code into machine
code using the LIVM backend. Unfortunately this does not work for every data
type and every operation. The default settings just compile what they can. In our
case there was no performance benefit. Forcing Numba to compile everything just
yielded in errors about unsupported access mechanism to arrays. Therefore we
would have to change all the code such that it would support Numba.

The autograd library is not being developed further, activity has gathered around
JAX [103], which combines automatic differentiation with JIT. This way the analytic
expression for the gradient is computed once via special expression objects in
Python. The generated code will then hopefully have native machine speed and
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tracers.py:23(maybe_cached _fun)
6.915s

tracers.py:11(partial_fun)
5.81s

tracer.py:35(f_wrapped)
5.11s

tracer.py:35(f_wrapped)
51l1s

Figure A.7.: A profile similar to the one shown in Figure A.6, just with the constant
graph optimization. One can see how the evaluation cost (right side)
is much smaller than the setup cost (left side) now.

could in principle even be used for GPU. For the most part the JAX library can
be dropped into an existing autograd project. However some NumPy operations,
especially slice assignment and cumulative sums, were supported by autograd
but not JAX. Therefore the introduction of JAX would have required significant
changes to the code. Instead of these changes we decided to rather directly aim
for writing the model and simulation in machine code.

A.5. Outlook

The project cannot advance to larger systems or more statistics or non-standardized
models without significant performance improvements. Therefore the next step
would be to implement the model PDF in a computer algebra system like Math-
ematica and compute the gradient analytically once and for all. This expression
could then be implemented in C++ and become native code.

Additionally we would gain the flexibility to evaluate single components of the
gradient independent of each other. The way that autograd lets us access that is
only the full gradient. Computing a single component is as expensive as computing
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the whole gradient. Integrating different components on different time scales
therefore does not give any performance advantages in the current state.



B. Long tables

The following table contains the individual momenta that couple to given total
momentum P? and irrep I' in the two-pion sector.

)
N

Irrep  po D3

Alg (0,0,0) (0,0,0)
Alg (0,0,—1) (0,0,1)
Alg (-1,-1,0) (1,1,0)
Eg (0,0,—1) (0,0,1)
Eg (-1,-1,0) (1,1,0)
Al (0,0,2) (0,0,—-1)
Al (0,0,1) (0,0,0)
Al (-1,0,1) (1,0,0)
Al (-1,-1,1) (1,1,0)
B1 (-1,0,1) (1,0,0)
B2 (-1,-1,1) (1,1,0)
E (-1,0,1) (1,0,0)
E (-1,-1,1) (1,1,0)
Al (1,1,0) (0,0,0)
Al (1,1,-1) (0,0,1)
Al (1,0,-1) (0,1,1)
Al (0,2,0) (1,-1,0)
Al (0,1,0) (1,0,0)
A2 (1,0,—-1) (0,1,1)
Bl (1,1,-1) (0,0,1)
B2 (0,2,0) (1,-1,0)
Al (1,1,1) (0,0,0)
Al (1,1,0) (0,0,1)
Al (0,2,0) (1,-1,1)
E (1,1,0) (0,0,1)
E (0,2,0) (1,-1,1)
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B. Long tables

Irrep  p, Ps
4 Al (0,0,2) (0,0,0)
4 Al (0,0,1) (0,0,1)
4 Al (0,-1,1) (0,1,1)
4 Bl (0,-1,1) (0,1,1)

And in the following table contains the same information for the three-pion sector.

P> TIrrep p; 22 P3
0 Alu (0,0,0) (0,0,0) (0,0,0)
0 Alu (0,0,—1) (0,0,0) (0,0,1)
0 Eu (0,0,—1) (0,0,0) (0,0,1)
1 A2 (0,0,1) (0,0,0) (0,0,0)
1 A2 (-1,0,1) (0,0,0) (1,0,0)
1 A2 (0,0,—1) (0,0,1) (0,0,1)
1 A2 (-1,0,0) (0,0,1) (1,0,0)
1 B2 (-=1,0,1) (0,0,0) (1,0,0)
1 B2 (-1,0,0) (0,0,1) (1,0,0)
1 E (-1,0,1) (0,0,0) (1,0,0)
2 Al (1,0,—1) (0,0,0) (0,1,1)
2 Al (0,1,—1) (0,0,1) (1,0,0)
2 A2 (1,1,0) (0,0,0) (0,0,0)
2 A2 (1,1,—1) (0,0,0) (0,0,1)
2 A2 (1,0,—1) (0,0,0) (0,1,1)
2 A2 (0,1,0) (0,0,0) (1,0,0)
2 A2 (1,1,0) (0,0,1) (0,0,—1)
2 A2 (0,1,—1) (0,0,1) (1,0,0)
2 A2 (1,1,0) (1,0,0) (—1,0,0)
2 A2 (-1,1,0) (1,0,0) (1,0,0)
2 Bl (0,1,—1) (0,0,1) (1,0,0)
2 B1 (1,1,0) (1,0,0) (—=1,0,0)
2 B1 (-1,1,0) (1,0,0) (1,0,0)
2 B2 (1,1,—1) (0,0,0) (0,0,1)
2 B2 (0,1,—1) (0,0,1) (1,0,0)
3 Al (1,0,—1) (0,0,1) (0,1,1)
3 A2 (1,0,1) (0,0,—1) (0,1,1)
3 A2 (1,1,1) (0,0,0) (0,0,0)



121

o
o

Irrep  py 25) p3
3 A2 (1,1,0) (0,0,0) (0,0,1)
3 A2 (1,1,1) (0,0,1) (0,0,—1)
3 A2 (1,1,-1) (0,0,1) (0,0,1)
3 A2 (1,0,—1) (0,0,1) (0,1,1)
3 A2 (0,1,0) (0,0,1) (1,0,0)
3 E (1,0,1) (0,0,—1) (0,1,1)
3 E (1,1,0) (0,0,0) (0,0,1)
3 E (1,1,1) (0,0,1) (0,0,—-1)
3 E (1,1,-1) (0,0,1) (0,0,1)
3 E (1,0,—-1) (0,0,1) (0,1,1)
3 E (0,1,0) (0,0,1) (1,0,0)
4 A2 (0,0,2) (0,0,0) (0,0,0)
4 A2 (0,0,1) (0,0,0) (0,0,1)
4 A2 (0,—1,1) (0,0,0) (0,1,1)
4 A2 (-1,0,1) (0,0,1) (1,0,0)
4 B2 (0,—-1,1) (0,0,0) (0,1,1)
4 B2 (—-1,0,1) (0,0,1) (1,0,0)
4 E (-1,0,1) (0,0,1) (1,0,0)
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