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Introduction

This dissertation is composed of four chapters, two of them on the overarching theme
of Bidding in Common-Value Auctions with Multidimensional Uncertainty, and the
two others on Decoupling, Vote Trading, and Corporate Governance.

In the first two chapters, which are joint work with Stephan Lauermann, we
analyze common-value auctions in which bidders are either uninformed about the
number of their competitors or their competitors’ additional private values for the
good. Compared to canonical models of common-value auctions, the second dimen-
sion of uncertainty renders the value inference from the price non-monotone. This
can significantly alter bidding behavior. In particular, bidders may fail to behave
competitively and pool on common bids, a�ecting the allocational and informational
e�ciency of the auction: the good may not be allocated to the bidder with the high-
est valuation and the bid distribution is less informative about the common value of
the good. Besides immediate consequences for the first- and second-price auctions
studied, our results also shed light on the inner workings of centralized markets. Our
analyses, thereby, help to understand the impact of multidimensional uncertainty
on the price discovery and e�ciency of centralized markets.

In Chapter 1, Bidding in Common-Value Auctions with an Uncertain Number of
Competitors, we consider a standard common-value first-price auction in which bid-
ders are uncertain about the number of their competitors. We show that this second
dimension of uncertainty invalidates classic findings for common-value auctions with
a known number of rival bidders (Milgrom and Weber, 1982). In particular, the in-
ference from winning is no longer monotone, and intermediate bids su�er from the
strongest “winner’s curse.” As a result, bidding strategies may not be strictly in-
creasing, giving rise to atoms in the bid distribution. The location of the atoms
is indeterminate, implying equilibrium multiplicity. Moreover, an equilibrium fails
to exist when the expected number of competitors is large, and the bid space is
continuous.

In Chapter 2, Auctions with Multidimensional Signals, we analyze auctions in
which the bidders’ valuation for the good depends on both common and private-value
components with bidders receiving (conditionally) independent signals regarding
each component. Signals regarding the common component are either fully reveal-
ing or pure noise. Due to the multidimensionality of signals, the value of the good
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and the bids are not a�liated, such that conventional arguments cannot be used to
prove existence of an equilibrium. In fact, when the good is sold in a second-price
auction and the distribution of the private values is discrete, the bid distribution
needs to contain atoms, thwarting equilibrium existence (Jackson, 2009). Using an
approach that does not rely on a�liation, we show that when the private-value dis-
tribution is continuous, no atoms can arise. Despite the non-monotone inference
from winning, an equilibrium exists and every equilibrium is pure and strictly in-
creasing in both dimensions. We also establish existence of an equilibrium in the
first-price auction, independent of the private-value distribution.

Chapters 3 and 4, work that was jointly done with Paul Voß, deal with the
e�ects of decoupling and vote trading on corporate governance. Especially since the
Global Financial Crisis in 2008, regulators have strived to strengthen shareholder
oversight and voice by simplifying the voting process and giving shareholders more
explicit power, for instance through “say on pay” requirements. While regulatory
authorities have been trying to foster shareholder democracy, the foundation of
shareholder voting, the linking of each shareholder’s voting power to his or her
economic exposure, appears to be eroding. Financial innovation has created a myriad
ways for activist investors to acquire voting rights far in excess of their stake in the
company, breaking with the old and prudent rule that the number of voting rights
should be aligned with a shareholder’s “skin in the game.” In two chapters, we
investigate the e�ects of this decoupling on corporate governance.

In Chapter 3, The Economics of Decoupling, we set out to provide structure
to the multitude of ways activist investors can use to acquire voting rights with-
out assuming economic exposure. We do so by classifying them into Buy&Hedge,
Hedge&Buy, and Vote Trading techniques. The possibility to swing the outcome
of a vote without bearing the e�ect on share value is of particular interest to an
activist who wants to push her private agenda instead of maximizing firm value.
Thus, we analyze which classes of decoupling techniques can be exploited profitably
by a hostile activist who seeks to prevent a value-increasing reform in order to obtain
a private benefit. We find that Vote Trading techniques pose the largest threat to
shareholder and overall welfare while being most profitable for the hostile activist.
Buy&Hedge techniques are constrained e�cient because the activist su�ers from a
commitment problem. Hedge&Buy techniques exhibit ine�cient and constrained-
e�cient equilibria. The results match the empirical evidence on vote prices from
options and equity lending markets.

In Chapter 4, Shareholder Votes on Sale, we build on the results from Chapter 3
and analyze Vote Trading techniques in greater detail, in a model with a finite num-
ber of shareholders. We show that Vote Trading techniques enable hostile activism
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because voting rights trade at ine�ciently low prices, even when the activist’s hostile
motives are transparent. Our results explain the empirical findings of low vote prices
(Christo�ersen et al., 2007) and ine�cient outcomes (Hu and Black, 2006). Though
an activist with superior information can facilitate information transmission through
Vote Trading techniques, traditional activist intervention techniques, such as proxy
fights, provide the same information transmission without the downsides inherent
in Vote Trading techniques. Our analysis of potential policy measures suggests that
adopting simple majority rules and excluding bought votes o�er the most promising
intervention avenues.
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Bidding in Common-Value Auctions with
an Uncertain Number of Competitors

Joint with Stephan Lauermann

�.� Introduction

In most auctions, bidders are uncertain about the number of competitors they face:

• At auction houses such as Christie’s and Sotheby’s, personal attendance is in
decline as bidders prefer to phone in or place their bids online. Therefore,
bidders “[...] know even less about who they’re bidding against, which in some
cases can leave them wondering how high they should go.”1

• eBay reveals the number of bidders who place a bid but does not disclose how
many prospective bidders follow the auction. In particular, the platform does
not display how many bidders are online to “snipe,” that is, to place their bid
in the last seconds of the auction (Roth and Ockenfels, 2002).

• Considering auction-like trading mechanisms, the continuous order book at the
New York Stock Exchange informs market participants about the stream of
(un)filled buy and sell orders, but reveals neither the number nor the identity
of (potential) buyers and sellers.

Although uncertainty about the number of competitors, or “numbers uncer-
tainty,” is ubiquitous, the subject has received little attention in the literature of
auction theory. One reason may be its irrelevance in standard auction formats with
pure and independent private values: by a revenue-equivalence argument, equilib-
rium bids are just a weighted average of the bids that are optimal when the number
of rival bidders is known (Krishna, 2010, Chapter 3.2.2).

1The Wall Street Journal, “Why Auction Rooms Seem Empty These Days”, June 15,
2014, https://www.wsj.com/articles/with-absentee-bidding-on-the-rise-auction-rooms-seem-empty-these-
days-���������� cf. Akbarpour and Li (2020).

https://www.wsj.com/articles/with-absentee-bidding-on-the-rise-auction-rooms-seem-empty-these-days-1402683887
https://www.wsj.com/articles/with-absentee-bidding-on-the-rise-auction-rooms-seem-empty-these-days-1402683887
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By contrast, in a common-value setting, numbers uncertainty significantly alters
bidding behavior. Recall that when the number of rival bidders is known, the clas-
sic results going back to Milgrom and Weber (1982) establish that there exists a
unique symmetric equilibrium in the first-price and second-price auctions, in which
the bids are strictly increasing in the bidders’ own value estimates. Uniqueness and
strict monotonicity facilitate the revenue comparison of auction formats, welfare con-
siderations (in general interdependent value settings), and empirical identification
strategies. We show that these classic results no longer hold when the number of
competitors is uncertain. Equilibria are generally not strictly increasing but contain
atoms. The location of the atoms is often indeterminate, implying equilibrium mul-
tiplicity. Moreover, equilibrium payo�s are discontinuous at the atoms, invalidating
standard methods for analyzing bidding behavior in these auctions. In particular,
with a continuous bid space, equilibrium generally fails to exist.

To model an auction with numbers uncertainty, we start with a canonical common-
value first-price auction. The value of the good is binary (high or low) and bidders
receive conditionally independent and identically distributed signals, with higher
signals indicating a higher value (a�liation). Each bidder simultaneously submits
a bid, the highest bidder wins, and pays her bid. Ties are broken uniformly. The
only di�erence from the textbook setting is that the number of (rival) bidders is not
known, but instead a random variable which is assumed to be Poisson distributed.
However, our results extend beyond this distributional assumption.

Numbers uncertainty a�ects bidding behavior with common values because it
changes the value inference from winning. In a conventional common-value auc-
tion with a known number of bidders, the expected value conditional on winning is
increasing in the relative position of the bid because a higher bid eases the “win-
ner’s curse.” In fact, there is no winner’s curse at the very top bid. This reduction
reinforces price competition and implies the absence of pooling (atoms in the bid
distribution). Note that at any bid below the top one, the winner’s curse is more
severe if there are more competitors.

With numbers uncertainty, winning is also informative about the number of rival
bidders. In particular, winning with a low bid is more likely when there are fewer
competitors which eases the winner’s curse. Therefore, winning with a low bid is
not necessarily bad news about the value of the good. In our model, the inference is
U-shaped: intermediate bids are subject to the strongest winner’s curse, while there
is no winner’s curse at the bottom or the top (Lemma 1.2 and 1.4).2

We show that every equilibrium is nondecreasing in the bidder’s signal (Lemma
1.1), but the non-monotone inference implies that equilibria cannot be strictly in-

2The random number of competitors adds a second dimension of uncertainty. Thus, the value
of the good is no longer a�liated with the first-order statistic of the signals.
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creasing unless the expected number of competitors is su�ciently small (Propositions
1.1 and 1.2). Hence, the equilibrium bid distribution contains one or more atoms,
as bidders with di�erent signals pool on common bids. Numbers uncertainty incen-
tivize bidders to pool because pooling shields them against the winner’s curse: under
a uniform tie-breaking rule, winning the auction with a bid that ties with positive
probability is relatively more likely when there are fewer competitors, which reduces
the negative inference from winning. An example in Appendix 1.B.1 demonstrates
that atoms already occur in very small auctions, namely when the expected number
of rival bidders is larger than one.

The presence of atoms in the bid distribution substantially alters the analysis
of the auction. First, the location of atoms is often indeterminate, as illustrated by
two examples in Appendices 1.B.2 and 1.B.3. Second, atoms create discontinuities
in the bidders’ payo�s. As a result of these discontinuities, no equilibrium exists
when the expected number of bidders is su�ciently large (Proposition 1.3).

If the bid space is discrete rather than continuous, equilibria do exist by stan-
dard arguments (Lemma 1.9). To study the resulting bidding behavior on a fine
grid, we utilize a “communication extension” of the auction, based on Jackson et al.
(2002). In the communication extension, bidders not only submit a monetary bid
from the continuous bid space but also a message that indicates their “eagerness” to
win, which is used to break ties. The communication extension is useful because, in
contrast to the standard auction, the limit of any converging sequence of equilibria
on the ever-finer grid corresponds to an equilibrium of the communication exten-
sion. Since such an equilibrium inherits the properties of the equilibria on the fine
grid, we can use the equilibrium characterization of the communication extension in
Proposition 1.4 to derive the equilibria on a fine grid (Proposition 1.5).

Qualitatively, any equilibrium on a fine grid with increments d > 0 consists
of three regions. Bidders with high signals essentially follow a strictly increasing
strategy (as the grid permits), while bidders with intermediate signals pool on some
bid bp, and bidders with low signals bid one increment below it, bp ≠ d.3

The equilibria are shaped by a severe winner’s curse at bp, and a “winner’s
blessing” that arises at bids below bp, so that, at these bids, the expected value
conditional on winning is significantly higher than bp. This induces bidders with low
signals to compete for the largest bid strictly below bp. On the grid, this competition
leads them to pool on bp ≠ d; on the continuous bid space, the non-existence of a
largest bid below bp implies the non-existence of an equilibrium.

3In the limit of the ever-finer grid, the two bids bp and bp ≠ d “merge,” such that low-signal
bidders win with the same probability as intermediate-signal bidders. Hence, the limit strategy with
d = 0 is generally not an equilibrium of the continuous bid space with the standard uniform tie-
breaking rule. In contrast, the communication extension allows bidders with low and intermediate
bids to send di�erent messages, such that they can be di�erentiated.
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We discuss the robustness of our results in Section 1.6. We argue that our findings
do not depend on the Poisson distribution of the number of bidders, and that similar
results hold in the second-price auction. Finally, we discuss the related literature on
auctions with a non-constant number of bidders, especially recent contributions by
Murto and Välimäki (2019) and Lauermann and Wolinsky (2018).

�.� Model

A single, indivisible good is sold in a first-price, sealed-bid auction. The good’s
value is either high, vh, or low, v¸, with vh > v¸ Ø 0, depending on the unknown
state of the world Ê œ {h, ¸}. The state is Ê = h with probability fl and Ê = ¸ with
probability 1 ≠ fl, where fl œ (0, 1). The number of bidders is a Poisson-distributed
random variable with mean ÷, such that there are i bidders in the auction with
probability e≠÷ ÷i

i! . The realization of the variable is unknown to the bidders.
Every bidder receives a signal s from the compact set [s, s̄]. Conditional on

the state, the signals are independent and identically distributed according to the
cumulative distribution functions Fh and F¸, respectively. Both distributions have
continuous densities fÊ, and the likelihood ratio of these densities, fh(s)

f¸(s) , satisfies the
(weak) monotone likelihood ratio property: for all s < sÕ it holds that fh(s)

f¸(s) Æ fh(sÕ)
f¸(sÕ) .

Furthermore, 0 < fh(s)
f¸(s) < fh(s̄)

f¸(s̄) < Œ, such that signals do contain information but
never reveal the state perfectly. For convenience, let there be a unique neutral signal
s̆ at which fh(s̆)

f¸(s̆) = 1.
Having received her signal, every bidder submits a bid b. Suppose that there

is a reserve price at v¸, and note that it is without loss to exclude bids above vh,

such that b œ [v¸, vh]. The bidder with the highest bid wins the auction, receives the
object, and pays her bid. Ties are broken uniformly. If there is no bidder, the good
is not allocated. Bidders are risk neutral.

It is useful to recall two special properties of the Poisson distribution prior to
beginning the analysis. A detailed derivation and discussion can be found in Myerson
(1998). First, when participating in the auction, a bidder does not change her belief
regarding the number of other bidders in the auction. Therefore, her belief about
the number of her competitors is again a Poisson distribution with mean ÷. This
property is analogous to a stationary Poisson process, in which an event does not
allow for inferences about the number of other events.

Second, the Poisson distribution implies that attention can be restricted to sym-
metric equilibria.4 Since the Poisson distribution has an unbounded support, it

4This fits our aim of analyzing how uncertainty about the number of competitors rather than
their identity a�ects the equilibrium bidding behavior.
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draws bidders from a hypothetical infinite urn. Any individual bidder and, thus,
any individual strategy are thereby drawn with zero probability. One could imagine
that certain fractions of the population in the urn follow di�erent strategies, such
that those are encountered with positive probability. However, this would be equiv-
alent to drawing the bidders first and having them mix between strategies afterward.

Accordingly, we consider symmetric strategies, which are functions mapping from
the signals into the set of probability distributions over bids — : [s, s̄] æ �[v¸, vh].
Let fiÊ(b; —) denote the probability of winning the auction with a bid b in state Ê, if
the rival bidders follow strategy —. Using Bayes’ rule, the interim expected utility
for a bidder with signal s bidding b is

U(b|s; —) = flfh(s)
flfh(s) + (1 ≠ fl)f¸(s)fih(b; —)(vh ≠ b) (1.1)

+ (1 ≠ fl)f¸(s)
flfh(s) + (1 ≠ fl)f¸(s)fi¸(b; —)(v¸ ≠ b).

A strategy —ú is a best response to a strategy —, if, for (almost) all s, a bid
b œ supp —ú(s) implies that b œ arg maxb̂œ[v¸,vh] U(b̂|s; —). Henceforth, we distin-
guish between claims that hold everywhere and almost everywhere only when it is
central to the argument. Unless specified otherwise, results hold for almost all s.
Two strategies are equivalent if they correspond to the same distributional strategy
after merging all signals that share the same likelihood ratio fh

f¸
. Thus, equivalent

strategies imply the same distribution over bids and utilities.

Lemma �.� Let — be some strategy and —ú a best response to it. If the likelihood
ratio fh

f¸
is strictly increasing, then —ú is essentially5 pure and nondecreasing. If the

likelihood ratio is only weakly increasing, then there exists an equivalent best response
—̂ú that is pure and nondecreasing.

The proof is in the appendix. Higher bids improve the prospects of winning,
which is desirable in the high state in which the winner turns a profit (b Æ vh), but
disadvantageous in the low state in which the winner incurs a loss (b Ø v¸). Thus,
more optimistic bidders are willing to bid more aggressively. If the likelihood ratio fh

f¸

is constant along some interval, the bids can always be ordered to be nondecreasing
along this interval.

We look for Bayes-Nash equilibria —ú, and, by Lemma 1.1, can restrict attention
to pure and nondecreasing strategies. In the following, strategies are nondecreasing
functions mapping signals into bids, — : [s, s̄] æ [v¸, vh].

5Up to a set of signals with measure zero.
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�.� Analysis of the standard auction

The analysis is structured into three parts. The first subsection focuses on the
winning probability and inference from bids that never tie. We then use our findings
to examine strictly increasing strategies, and show that there can be no strictly
increasing equilibrium unless the expected number of bidders is su�ciently small.
Hence, there have to be pooling bids—that is, atoms in the bid distribution. We
investigate these atoms in the second subsection. Last, we argue that the atoms in
the bid distribution necessarily prevent equilibrium existence.

�.�.� Non-pooling bids

Fix some nondecreasing strategy —. A bid b is a non-pooling bid if it is selected
with zero probability by any bidder. Given strategy —, this is the case if b is either
not in the image of —, or if there is only a single signal s such that —(s) = b. In
either situation, a bidder who chooses b wins whenever all of her competitors bid
below b. Since — is nondecreasing, this implies that they all received lower signals
than ŝ = sup{s : —(s) Æ b}. Thus, the bidder wins in the event that s(1) Æ ŝ, where
s(1) = sup{s≠i} is the highest of the competitors’ signals. We employ the convention
that sup{ÿ} = ≠Œ, which means that s(1) = ≠Œ in case there is no competitor.
As a result, the generalized first-order statistic s(1) has a cumulative distribution
function Fs(1)(s|Ê) = e≠÷(1≠FÊ(s)) for s œ [s, s̄].6 Since bid b wins whenever s(1) Æ ŝ,
it wins in state Ê œ {h, ¸} with probability fiÊ(b; —) = e≠÷(1≠FÊ(ŝ)).

A characteristic feature of common-value auctions is that winning is informative
about the value of the good. When choosing a non-pooling bid, all that matters
for this inference is the relative position of the bid, ŝ. Next, we analyze how this
position ŝ a�ects the conditional expected value, E[v|win with b; —] = E[v|s(1) Æ ŝ],
with

E[v|s(1) Æ ŝ] = fle≠÷(1≠Fh(ŝ))vh + (1 ≠ fl)e≠÷(1≠F¸(ŝ))v¸

fle≠÷(1≠Fh(ŝ)) + (1 ≠ fl)e≠÷(1≠F¸(ŝ)) . (1.2)

Recall that s̆ is the unique neutral signal, fh(s̆)
f¸(s̆) = 1.

6Conditional on state Ê, any competitor (independently) receives a signal larger than ŝ with
probability 1≠FÊ(ŝ). By the decomposition and environmental equivalence properties of the Poisson
distribution (Myerson, 1998), bidders believe that the number of rival bidders with signals larger
than ŝ is Poisson distributed with mean ÷(1≠FÊ(ŝ)). The probability that s(1) Æ ŝ is the probability
that there is no competitor with a signal above ŝ.
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Lemma �.� The conditional expected value E[v|s(1) Æ ŝ] is strictly decreasing in ŝ

when ŝ < s̆, has its unique global minimum at ŝ = s̆, and is strictly increasing when
ŝ > s̆.

Proof. Note that avh+v¸
a+1 > bvh+v¸

b+1 if and only if a > b. By (1.2), this means that
E[v|s(1) Æ ŝ] is strictly increasing if and only if e÷(Fh(ŝ)≠F¸(ŝ)) is strictly increasing.
Its derivative is e÷(Fh(ŝ)≠F¸(ŝ))÷[fh(ŝ)≠f¸(ŝ)] and so e÷(Fh(ŝ)≠F¸(ŝ)) is increasing if and
only if fh(ŝ) > f¸(ŝ). The uniqueness of the neutral signal s̆ where fh(s̆) = f¸(s̆)
and the monotone likelihood ratio property imply that fh(ŝ) < f¸(ŝ) for ŝ < s̆, and
fh(ŝ) > f¸(ŝ) for ŝ > s̆.

Lemma 1.2 implies that E[v|s(1) Æ ŝ] is U-shaped in ŝ with its minimum at s̆.
The intuition behind the shape may be explained best with the help of Figure 1.1:

s̄s
v¸

vh

s̆

•(ii) •(i)E[v]

ŝ

Figure �.� The conditional expected value E[v|s(1) Æ ŝ].

First, consider point (i) on the top right, which marks E[v|s(1) Æ s̄]. By defi-
nition, the highest signal, s(1), is always smaller than s̄, independent of the state.
Hence, the event that s(1) Æ s̄ is uninformative about the state and E[v|s(1) Æ s̄] =
E[v].

Second, consider point (ii) on the top left, denoting E[v|s(1) Æ s]. The highest
signal s(1) equals s with zero probability (the signal distribution has no atoms), while
there are no competitor and s(1) = ≠Œ with positive probability. Consequently,
E[v|s(1) Æ s] = E[v|s(1) = ≠Œ]. Since the distribution of bidders is independent of
the state, this event occurs with the same probability in both states. As a result, the
event that s(1) Æ s is also uninformative about the state and E[v|s(1) Æ s] = E[v].
Thus, there is no winner’s curse at the bottom (ii) or at the top (i).

In the middle where ŝ œ (s, s̄), the winner’s curse comes into play. With positive
probability, there are competitor, all of which received signals below ŝ. These low
signals are bad news about the value of the good. Consequently, for ŝ œ (s, s̄), the
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conditional expected value is smaller than the unconditional one, E[v|s(1) Æ ŝ] <

E[v], with the global minimum at s̆, where fh(s̆) = f¸(s̆).
Observe that as ÷ increases, the winner expects to face more rival bidders,

such that the winner’s curse grows more severe. For ŝ œ (s, s̄), it follows that
E[v|s(1) Æ ŝ] ÷æŒæ v¸.7 At the boundaries s and s̄, on the other hand, the inference
is independent of ÷; therefore, E[v|s(1) Æ s] converges in ÷ to a Û-shape.

While the precise form of E[v|s(1) Æ ŝ] follows from the Poisson distribution,
the same e�ects are present under any distribution of bidders. Importantly, the
non-monotonicity does not depend on the possibility that there is no rival bidder,8

but is a consequence of the variation in the number of (rival) bidders. At any bid
below the top, the winning bidder simultaneously updates her belief over two random
variables: the number of competitors and their signal realization. Since these two
can push the conditional expected value in opposite directions, the winning bidder’s
inference will generally not be monotone in ŝ. In other words, numbers uncertainty
breaks the a�liation between the value of the good and the first-order statistic of
(rivals’) signals.

�.�.�.� No strictly increasing equilibrium when ÷ is large

The non-monotone inference from winning can substantially a�ect the equilibrium
behavior of bidders. As a benchmark, consider the standard common-value auction
with a fixed and known number of n Ø 2 bidders. In this setup, the inference is mono-
tone, which implies that the unique symmetric equilibrium is strictly increasing.9

When the numbers uncertainty causes a non-monotone inference, an equilibrium of
this form generally does not exist.

Proposition �.� When ÷ is su�ciently large, no strictly increasing equilibrium exists.

In Appendix 1.B.1 we provide an example which shows that strictly increasing
equilibria can fail to exist for ÷ as low as 1. Here, we first give an intuitive, verbal
argument before sketching out the critical steps of the proof, which is also relegated
to the appendix.

7The monotone likelihood ratio property implies that Fh(s) < F¸(s) for all s œ (s, s̄). Thus,
÷(Fh(s) ≠ F¸(s)) æ ≠Œ for all s œ (s, s̄) when ÷ æ Œ. The convergence then follows by equation
(1.2).

8 For instance, if we consider a truncated Poisson distribution in which there are always at
least n Ø 2 bidders, E[v|s(1) Æ ŝ] is still U-shaped when ÷ is large. At the top, the inference from
winning is una�ected by the truncation, and at the bottom, the winning bidder still updates her
belief toward the lowest number of rival bidders possible, n ≠ 1. Thus, there is a bounded winner’s
curse at s which, however, does not depend on ÷. Since the winner’s curse grows arbitrary large at
any ŝ œ (s, s̄) when ÷ increases, this results in the U-shape.

9There is an exception: If fh
f¸

is constant along some interval at the bottom of the signal
distribution, [s, s], then these signals choose the same bid (cf. Proposition 2 in Lauermann and
Wolinsky (2017)).
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Suppose to the contrary that there is a strictly increasing equilibrium —ú for
an arbitrary large ÷ arbitrary. In this case, a bidder with signal s, following the
strategy —ú wins whenever s(1) Æ s. Conditional on winning, and her own signal,
she, therefore, expects the good to be of value E[v|win with —ú(s), s; —ú] = E[v|s(1) Æ
s, s], with

E[v|s(1) Æ s, s] = flfh(s)e≠÷(1≠Fh(s))vh + (1 ≠ fl)f¸(s)e≠÷(1≠F¸(s))v¸

flfh(s)e≠÷(1≠Fh(s)) + (1 ≠ fl)f¸(s)e≠÷(1≠F¸(s)) . (1.3)

When ÷ is large, the expected competition is fierce, which implies that equilibrium
bids must be close to the expected value conditional on winning, —ú(s) ¥ E[v|s(1) Æ
s, s]. In addition to that, a large ÷ makes the inference from winning more relevant
for the expected value than the bidder’s own signal. Consequently, when ÷ is large,
E[v|s(1) Æ s, s] inherits the U-shape from E[v|s(1) Æ s]. Taken together, this means
that —ú(s) is decreasing below the neutral signal s̆, which is a contradiction.10

To formalize this contradiction, fix three signals s≠ < s¶ < s+ with s+ < s̆. The
argument is structured into three steps. First, we derive an upper bound on the bid
—ú(s+) from individual rationality (Step 1), and then a lower bound on —ú(s¶) from
the incentive constraints of s≠ (Step 2). Step 3 shows that when ÷ is large, the lower
bound exceeds the upper bound.

Step � An upper bound on —ú(s+) is given by

—ú(s+) ≠ v¸

vh ≠ —ú(s+) Æ fl

1 ≠ fl

fh(s+)
f¸(s+)

e≠÷(1≠Fh(s+))

e≠÷(1≠F¸(s+)) . (1.4)

In equilibrium, it has to hold that —ú(s) Æ E[v|win with —ú(s), s; —ú] for (almost)
any signal s. Otherwise, the utility

U(—ú(s)|s; —ú) = P[win with —ú(s)|s; —ú]
1
E[v|win with b, s; —ú] ≠ —ú(s)

2

is negative, which cannot be the case in equilibrium, because a bid of v¸ guarantees
a non-negative payo�. Using (1.3), the condition —ú(s) Æ E[v|win with —ú(s), s; —ú]
can be rearranged to

—ú(s) ≠ v¸

vh ≠ —ú(s) Æ fl

1 ≠ fl

fh(s)
f¸(s)

fih(—ú(s); —ú)
fi¸(—ú(s); —ú) . (1.5)

Now, inequality (1.4) follows from (1.5) with s+ and fiÊ(—ú(s+); —ú) = e≠÷(1≠FÊ(s+))

because —ú is a strictly increasing strategy.

10The crucial step of the proof is to show that —ú(s) converges to E[v|s(1) Æ s, s] quick enough,
such that the U-shape of E[v|s(1) Æ s, s] can be exploited. Otherwise, the argument might fail
because E[v|s(1) Æ s, s] converges to v¸ for all s œ (s, s̄).
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Step � A lower bound on —ú(s¶) is given by

—ú(s¶) ≠ v¸

vh ≠ —ú(s¶) Ø fl

1 ≠ fl

fh(s≠)
f¸(s≠)

e≠÷(1≠Fh(s¶))

e≠÷(1≠F¸(s¶)) A(÷), (1.6)

where A(÷) is a decreasing function with lim÷æŒ A(÷) = 1.

In equilibrium, a bidder with a signal s≠ cannot have an incentive to deviate
from —ú(s≠) to —ú(s¶), which implies that U(—ú(s≠)|s≠; —ú) Ø U(—ú(s¶)|s≠; —ú). In
the appendix, we show that this condition can be used to derive (1.6). Observe that
when A(÷) = 1, the inequality rearranges to —ú(s¶) Ø E[v|s(1) Æ s¶, s≠]. Since the
argument holds for any s≠ < s¶, A(÷) æ 1 captures the observation that when ÷ is
large, bids have to be close to the expected value conditional on winning.

Step � When ÷ is su�ciently large, the upper bound on —ú(s+) expressed by (1.4) is
smaller than the lower bound on —ú(s¶) given by inequality (1.6).

Since —ú(s+) > —ú(s¶) and b≠v¸
vh≠b is increasing in b, a necessary condition for both

inequalities to hold simultaneously is that

fl

1 ≠ fl

fh(s+)
f¸(s+)

e≠÷(1≠Fh(s+))

e≠÷(1≠F¸(s+)) >
fl

1 ≠ fl

fh(s≠)
f¸(s≠)

e≠÷(1≠Fh(s¶))

e≠÷(1≠F¸(s¶)) A(÷).

This can be rearranged to

fh(s+)
f¸(s+)

1fh(s≠)
f¸(s≠)

2≠1
>

e≠÷(1≠Fh(s¶))

e≠÷(1≠F¸(s¶))

1e≠÷(1≠Fh(s+))

e≠÷(1≠F¸(s+))

2≠1
A(÷). (1.7)

The fractions e≠÷(1≠Fh(s¶))

e≠÷(1≠F¸(s¶))

1
e≠÷(1≠Fh(s+))

e≠÷(1≠F¸(s+))

2≠1
capture the di�erence in the inference

from winning when s(1) Æ s¶ instead of s(1) Æ s+. Since s¶ < s+ < s̆, the signals
are from the decreasing leg of E[v|s(1) Æ s] such that the fraction is larger than one.
In fact, the di�erence in inference grows without bound,11

e≠÷(1≠Fh(s¶))

e≠÷(1≠F¸(s¶))

1e≠÷(1≠Fh(s+))

e≠÷(1≠F¸(s+))

2≠1
= e÷([F¸(s+)≠F¸(s¶)]≠[Fh(s+)≠Fh(s¶)]) æ Œ. (1.8)

Since A(÷) æ 1, this means that the right side of equation (1.7) becomes arbitrary
large, while the left side stays constant. Hence, when ÷ is large, the inference from
winning (right side) dominates the inference from the signals (left side). This echoes
the fact that E[v|s(1) Æ s, s] becomes U-shaped as ÷ grows. As a result, inequality
(1.7) cannot hold, and —ú cannot be a strictly increasing equilibrium.

11 [F¸(s+) ≠ F¸(s¶)] ≠ [Fh(s+) ≠ Fh(s¶)] =
s s+

s¶
[f¸(z) ≠ fh(z)]dz Ø

s s+
s¶

f¸(z)(1 ≠ fh(s+)
f¸(s+) )dz > 0

since s+ < s̆.
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�.�.�.� Unique strictly increasing equilibrium when ÷ is small

When ÷ is small, we can give necessary and su�cient conditions for the existence of
a strictly increasing equilibrium. For s, sÕ œ [s, s̄], let Fs(1)(sÕ|s) denote the expected
cumulative distribution function of s(1) conditional on observing s,

Fs(1)(s
Õ|s) = flfh(s)

flfh(s) + (1 ≠ fl)f¸(s)e≠÷(1≠Fh(sÕ)) + (1 ≠ fl)f¸(s)
flfh(s) + (1 ≠ fl)f¸(s)e≠÷(1≠F¸(sÕ)),

and let fs(1)(sÕ|s) be the associated density.

Proposition �.� The ordinary di�erential equation

ˆ

ˆs
—(s) =

1
E[v|s(1) = s, s] ≠ —(s)

2 fs(1)(s|s)
Fs(1)(s|s) with —(s) = v¸ (1.9)

has a unique solution —̂.

(i) If —̂ is strictly increasing, then it is the unique equilibrium in the class of strictly
increasing equilibria.

(ii) If —̂ is not strictly increasing, no strictly increasing equilibrium exists.

The proof is provided in the appendix.12 The argument that no strictly increasing
equilibrium exists made use of two e�ects of a large ÷: that the winner’s curse
determines the shape of E[v|s(1) Æ s, s] and that competition is fierce. Lemma
1.3 shows that both of these conditions are necessary; when the expected value
conditional on winning is monotone, or competition is lax, a strictly increasing
equilibrium exists.

Lemma �.� A strictly increasing equilibrium exists if either

(i) E[v|s(1) = s, s] is strictly increasing in s;

(ii) or ÷ is su�ciently small.

First, if E[v|s(1) Æ s, s] is monotone, the existence problem described above does
not arise. Even if bids are close to the conditional expected value, the bidding
function can be strictly increasing. Indeed, there is a slightly tighter13 bound and
a strictly increasing equilibrium exists if E[v|s(1) = s, s] is strictly increasing in s.
This is the case if and only if

2
1 ˆ

ˆs

fh(s)
f¸(s)

2 f¸(s)
fh(s) + ÷fh(s) ≠ ÷f¸(s) > 0 for a.e. s œ [s, s̄]. (1.10)

12Apart from the slightly di�erent definition of s(1), this is the standard ODE in the literature
cf. (Krishna, 2010, Chapter 6.4).

13E[v|s(1) Æ s, s] is strictly increasing if and only if
1

ˆ
ˆs

fh(s)
f¸(s)

2
f¸(s)
fh(s) + ÷fh(s) ≠ ÷f¸(s) > 0.
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Observe that when fh
f¸

is constant over some interval below the neutral signal s̆,
condition (1.10) is never fulfilled. However, even in this case, a strictly increasing
equilibrium exists when ÷ is small. If competition is very weak, bids stay far below
the expected value conditional on winning. Therefore, the problem described in
Section 1.3.1.1 does not arise, and a strictly increasing equilibrium exists.

�.�.�.� Strictly increasing equilibria and the second-price auction

In a second-price auction, standard arguments imply that the equilibrium bid in a
symmetric and strictly increasing equilibrium is the expected value conditional on
being tied at the top, E[v|s(1) = s, s]. Thus, condition (1.10) is necessary and su�-
cient for the existence of a strictly increasing equilibrium, and no such equilibrium
exists when ÷ is large. Similar problems also arise for other distributions of the
number of bidders. For instance, Harstad et al. (2008) provide an example in which
the distribution is binary and no strictly increasing equilibrium exists.

Wrapping up, Section 1.3.1 demonstrates that uncertainty over the number of
competitors prevents the existence of a strictly increasing equilibrium unless ÷ is
su�ciently small. Combined with Lemma 1.1, this implies that if an equilibrium
exists, it has to be piecewise flat. Next, we take a closer look at these flat parts to
understand why bidders with di�erent signals may have an incentive to pool on the
same bid.

�.�.� Pooling bids

Fix some nondecreasing strategy —, and suppose that —(s) = bp for all s from an
interval, but —(s) ”= bp otherwise. We generally refer to the interval as a pool, to bp

as a pooling bid and, without loss, always consider the closure of interval which is
denoted by [s≠, s+]. We show by a simple computation (proof of Lemma 1.4) that
the probability to win with bp in state Ê œ {h, ¸} is

fiÊ(bp; —) =
P[s(1) œ [s≠, s+] |Ê]
E[#s œ [s≠, s+] |Ê] = e≠÷(1≠FÊ(s+)) ≠ e≠÷(1≠FÊ(s≠))

÷(FÊ(s+) ≠ FÊ(s≠)) , (1.11)

where “E[#s œ [s≠, s+]” denotes the expected number of signal realizations from
the interval [s≠, s+].

Bidders have an incentive to pool because it insures them against the winner’s
curse, meaning that the expected value conditional on winning with the bid bp is
larger than the expected value conditional on winning with a bid marginally above
bp,

E[v|win with bp; —] > lim
‘æ0

E[v|win with bp + ‘; —] = E[v|s(1) Æ s+].
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If this wasn’t he case, any bidder with a signal s œ [s≠, s+] would have an incentive
to marginally overbid bp, raising the expected profits conditional on winning.14 In
Appendices 1.B.2 and 1.B.3 we provide two examples of equilibria with atoms.

To gain intuition into how winning with bp can ease the winner’s curse compared
to winning with a marginally higher bid, consider the following reasoning. With
positive probability, multiple bidders tie on the pooling bid bp, such that the winner
is decided by the uniform tie-breaking rule. Consequently, the bid bp is more likely
to win when there are fewer competitors who also choose bp, that is, when there are
fewer competitors with signals from [s≠, s+]. If those signals are low, meaning that
they are more likely to realize in the low state, this implies that bp wins less often in
the low state than in the high state. Since the bid marginally above bp never ties, it
loses this blessing.

For this insurance to work, the number of competitor has to be uncertain. Other-
wise, winning more often when there are fewer competitors with signals from [s≠, s+]
means winning more often when there are more competitors with signals below s≠.
This exacerbates the winner’s curse. When the number of bidders is Poisson dis-
tributed, the number of bidders with signals below s≠ is conditionally independent
from the number of bidders with signals from [s≠, s+]. Therefore, winning with bp is
more advantageous than winning with a marginally higher bid whenever the expected
number of (rival) bidders with signals from [s≠, s+], that is, ÷[FÊ(s+) ≠ FÊ(s≠)], is
larger in the low state than in the high state.

Formalizing these observations (proof is in the appendix) gives us the following
Lemma.

Lemma �.� Assume that — is some strategy for which there exists an interval [s≠, s+]
and a bid bp such that —(s) = bp for all s œ [s≠, s+] and —(s) < bp < —(sÕ) for all
s < s≠ < s+ < sÕ.

(i) If ÷[Fh(s+) ≠ Fh(s≠)] < ÷[F¸(s+) ≠ F¸(s≠)], then

E[v|s(1) Æ s≠] > E[v|win with bp; —] > E[v|s(1) Æ s+]. (1.12)

(ii) If ÷[Fh(s+) ≠ Fh(s≠)] > ÷[F¸(s+) ≠ F¸(s≠)], then the inequalities in (1.12)
reverse.

(iii) If — is an equilibrium strategy, then ÷[Fh(s+) ≠ Fh(s≠)] < ÷[F¸(s+) ≠ F¸(s≠)].

14Reviewing the argument for inequality (1.5) highlights that the inequality is, in fact, strict,
such that for all s œ [s≠, s+] it holds that —(s) = bp < E[v|win with bp, s; —], and winning more
often raises the profit.
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Combined, Lemmas 1.2 and 1.4 imply that the inference from winning is always
U-shaped in the bid. Suppose, for instance, that all competitors follow strategy
— depicted in the left panel of Figure 1.2 and consider the associated conditional
expected value E[v|win with b; —] which is plotted in the right panel. Bids that are
not in the image of — are colored pink (dashed), pooling bids are teal, and non-
pooling bids are black.

s̄s
v¸

vh

b+
p

b≠
p

—(s̄)

s̆
s

A strategy —(s) with two atoms.

vhv¸

v¸

vh

b≠
p b+

p —(s̄)

•

•

E[v]

b

The expected value E[v|win with b; —].

Figure �.� The inference from winning.

Going through the bids from low to high, first, consider the inference from win-
ning with a bid below the image of —, which is the first pink dashed interval. These
bids can only win when there is no rival bidder, which is why there is no winner’s
curse and the conditional expected value is just E[v].

The first bid in the image of — is the pooling bid b≠
p , which can win when there

are rival bidders. As a result, winning with b≠
p is bad news about the value of

the good, such that E[v|win with b≠
p ; —] < E[v]. Further, because b≠

p is exclusively
chosen by bidders with signals below the neutral signal s̆, inequality (1.12) applies,
and there is an even stronger winner’s curse at bids between b≠

p and b+
p (second pink

dashed interval) than at b≠
p .

The next bid in the image of —, that is b+
p , is again a pooling bid exclusively

chosen by signals below s̆. Thus, the winner’s curse at b+
p is again stronger than at

any lower bid, but a less severe one than winning with a marginally higher bid.
All bids above b+

p that are in the image of — are non-pooling bids and chosen
by signals above s̆. Thus, Lemma 1.2 applies, and the conditional expected value is
strictly increasing above —(s̆). At the top, there is no winner’s curse since bids at
or above —(s̄) always win the auction.

When strategies contain atoms, the bidders’ utilities are discontinuous in the bid.
Winning with a pooling bid is discretely less likely than winning with a marginally
higher bid, and since the probabilities change di�erently across states, the expected
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value conditional on winning with the pooling bid is discretely di�erent, too. As a
result, equilibria do not need to be unique. Instead of following a unique di�erential
equation, they can consist of various mixtures of strictly increasing sections, pooling
bids, and jumps. In Appendices 1.B.2 and 1.B.3, we provide two numerical examples
of equilibrium multiplicity.

�.�.� Non-existence of equilibria

In addition to the non-uniqueness, the discontinuities at atoms create an existence
problem. In equilibrium, the U-shaped inference implies that there is an open set of
bids below any pooling bid with a discretely higher expected value conditional on
winning. When ÷ is large, this induces bidders compete for the highest bid below
the pooling bid, which prevents the existence of an equilibrium.

Proposition �.� When ÷ is su�ciently large, no equilibrium exists.

Formally, this result is a corollary to Proposition 1.4 in the next section. How-
ever, the proof for Proposition 1.4 is fairly indirect. Thus, we sketch out the main
idea here.

First, observe that Proposition 1.1 can be strengthened: when ÷ is large, any
strategy that is not locally constant below the neutral signal s̆ can be excluded as
an equilibrium. To be precise, for almost all s < s̆, the winning probability must
not converge to the probability of having the highest signal as ÷ grows,

lim
÷æŒ

e≠÷(1≠FÊ(s))

fiÊ(—ú(s); —ú) ”= 1 for Ê œ {h, ¸},

such that bidders with almost all signals s < s̆ tie with positive probability.15 As a
result, any candidate equilibrium must essentially be a step function below s < s̆.

In the following, we exclude two salient types of candidates: equilibria in which
bidders with signals below s̆ pool on the same bid, and equilibria in which only
bidders with an interior subset of signals [s≠, s+] µ (s, s̆] pool. Figure 1.3 sketches
out both types. The two arrows in each panel depict two possible deviations. We
show that one of them has to be profitable when ÷ is large, such that equilibria cannot
take either form. While this still leaves a large set of equilibrium candidates—in
particular, equilibria in which the boundaries of the pools change as ÷ increases—it
turns out that similar arguments can be used to exclude those, too.

15If the fraction does converge to one for a set of signals s̆ with positive mass, the proof of
Proposition 1.1 yields exactly the same contradiction for any three signals s≠, s¶, s+ from this set.
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s̄s
v¸

vh

• 1 •2

s̆

bp

s

(a) Candidate —ú with a single, large pool.

s̄s
v¸

vh

s̆s+s≠

bp

•

2 •1

s

(b) Candidate —ú with an interior pool.

Figure �.� Candidate equilibria.

(a) Single, large pool To begin, we show that when ÷ is large, there can be no
equilibrium shaped like the one in the left panel of Figure 1.3.

Lemma �.� For a su�ciently large ÷, there is no equilibrium —ú in which —ú(s) =
—ú(s̆) and —ú(s) > —ú(s̆) for all s > s̆.

Suppose to the contrary such a —ú exists for an arbitrary large ÷. Denote the
pooling bid by bp = —ú(s) = —ú(s̆). The contradiction is derived in three steps. First,
deviation 1 is used to derive an upper bound on bp (Step 1), before deviation 2 is
used to find a lower bound (Step 2). Last, Step 3 shows that when ÷ is su�ciently
large, the lower bound exceeds the upper bound, such that one deviation has to be
profitable. As an abbreviation, we use fi¶

Ê = fiÊ(bp; —ú) and fi+
Ê = lim‘√0 fiÊ(bp+‘; —ú)

for Ê œ {h, ¸}.16

Step � By (1.5), individual rationality (deviation 1) for signal s implies that

bp ≠ v¸

vh ≠ bp
Æ fl

1 ≠ fl

fh(s)
f¸(s)

fi¶
h

fi¶
¸

. (1.13)

Step � There exists a function B(÷) < 1 with B(÷) æ 1 such that

bp ≠ v¸

vh ≠ bp
Ø fl

1 ≠ fl

fh(s̆)
f¸(s̆)

fi+
h

fi+
¸

B(÷). (1.14)

Signal s̆ has an incentive to deviate from bp to a marginally higher bid (deviation
2), unless U(bp|s̆; —ú) Ø lim‘√0 U(bp + ‘|s̆; —ú). Rearranging this inequality gives

bp ≠ v¸

vh ≠ bp
Ø fl

1 ≠ fl

fh(s̆)
f¸(s̆)

fi+
h ≠ fi¶

h

fi+
¸ ≠ fi¶

¸

.

16Explicitly, fi¶
Ê = e≠÷(1≠FÊ(s+))≠e≠÷(1≠FÊ(s≠))

÷(FÊ(s+)≠FÊ(s≠)) and fi+
Ê = e≠÷(1≠FÊ(s+)) for Ê œ {h, ¸}.
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The bid marginally above bp always wins when s(1) Æ s̆, while bp is also subject to a
tie-break whenever there are competitors who also bid bp. Since the expected number
of competitors who choose bp is ÷FÊ(s̆), this means that fi+

Ê
fi¶

Ê
¥ ÷FÊ(s̆). Because

÷FÊ(s̆) grows in ÷ without bound, this implies that B(÷) = fi+
h ≠fi¶

h

fi+
¸ ≠fi¶

¸

1
fi+

h

fi+
¸

2≠1
æ 1,

which gives the result. Observe that when B(÷) = 1, equation (1.14) rearranges
to bp Ø E[v|s(1) Æ s̆, s̆], meaning that bp has to be at least the expected value
conditional on winning with a marginally higher bid.

Step � When ÷ is su�ciently large, the lower bound (1.14) exceeds the upper bound
(1.13). Thus, either deviation 1 or 2 is profitable.

Combining inequalities (1.13) and (1.14) yields

fl

1 ≠ fl

fh(s)
f¸(s)

fi¶
h

fi¶
¸

Ø fl

1 ≠ fl

fh(s̆)
f¸(s̆)

fi+
h

fi+
¸

B(÷).

By definition of the neutral signal fh(s̆)
f¸(s̆) = 1, such that the inequality rearranges to

fh(s)
f¸(s) Ø fi+

h

fi+
¸

1fi¶
h

fi¶
¸

2≠1
B(÷). (1.15)

From fi+
Ê

fi¶
Ê

¥ ÷FÊ(s̆), it follows that fi+
h

fi+
¸

1
fi¶

h
fi¶

¸

2≠1
æ Fh(s̆)

F¸(s̆) : the blessing from winning

with bp as opposed to a marginally higher bid is bounded and of order Fh(s̆)
F¸(s̆) . This

blessing does not su�ce to reconcile the lower bound (1.14) and the upper bound
(1.13). Since fh(s)

f¸(s) < fh(s̄)
f¸(s̄) , the monotone likelihood ratio property implies that

fh(s)
f¸(s) < Fh(s̆)

F¸(s̆) .17 Combined with the observation that B(÷) æ 1, this means that
condition (1.15) is violated when ÷ is large. Thus, either deviation 1 or 2 is prof-
itable, and there can be no equilibrium —ú in which all signals below s̆ pool on the
same bid.

(b) Interior pool Suppose now that there is an equilibrium with an “interior
pool”, even when ÷ is arbitrary large. This type of equilibrium is depicted qualita-
tively in the right panel of Figure 1.3.

Lemma �.� Fix any s≠, s+ with s < s≠ < s+ Æ s̆. When ÷ is su�ciently large, there
is no equilibrium —ú in which —ú(s≠) = —ú(s+), —ú(s) < —ú(s≠) for all s < s≠ and
—ú(s) > —ú(s+) for all s > s+.

17Since fh(s)
f¸(s) < fh(s̄)

f¸(s̄) , the monotone likelihood ratio property implies that fh(s)
f¸(s) < fh(s̆)

f¸(s̆) = 1.
Because fh(s)

f¸(s) < 1 and the densities are continuous, F¸(s̆) =
s s̆

s
f¸(z)dz =

s s̆

s
fh(z) f¸(z)

fh(z) dz <
s s̆

s
fh(z) f¸(s)

fh(s) dz = f¸(s)
fh(s) Fh(s̆).
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Suppose to the contrary that even when ÷ is arbitrary large such a —ú exists.
Denote the pooling bid by bp = —ú(s≠) = —ú(s+). We proceed in the same way
as before and use the deviation 1 to derive an upper bound on bp (Step 1) and
deviation 2 to derive a lower bound on bp (Step 2). Step 3 shows that the lower
bound exceeds the upper bound when ÷ is large, such that one of the deviations
has to be profitable. As abbreviations, we use fi≠

Ê = lim‘√0 fiÊ(bp ≠ ‘; —ú) and
fi¶

Ê = fiÊ(bp; —ú) for Ê œ {h, ¸}.18

Step � By (1.5), individual rationality (deviation 1) for signal s≠ implies that

bp ≠ v¸

vh ≠ bp
Æ fl

1 ≠ fl

fh(s≠)
f¸(s≠)

fi¶
h

fi¶
¸

. (1.16)

Step � There exists a function E(÷) > 1 with E(÷) æ 1 such that

bp ≠ v¸

vh ≠ bp
Ø fl

1 ≠ fl

fh(s)
f¸(s)

fi≠
h

fi≠
¸

E(÷). (1.17)

In equilibrium, no signal s < s≠ can have an incentive to deviate from —ú(s)
to any b œ (—ú(s), bp). In particular, there must not be an incentive to deviate a
bid marginally below bp (deviation 2), meaning that U(—ú(s)|s; —ú) Ø lim‘√0 U(bp ≠
‘|s; —ú). In the appendix, we use this condition for signal s to derive (1.17).

Step � When ÷ is su�ciently large, the lower bound (1.17) exceeds the upper bound
(1.16). Thus, either deviation 1 or 2 is profitable.

Combining inequalities (1.16) and (1.17) yields

fl

1 ≠ fl

fh(s≠)
f¸(s≠)

fi¶
h

fi¶
¸

Ø fl

1 ≠ fl

fh(s)
f¸(s)

fi≠
h

fi≠
¸

E(÷).

This can be rearranged to

fh(s≠)
f¸(s≠)

1fh(s)
f¸(s)

2≠1
Ø fi≠

h

fi≠
¸

1fi¶
h

fi¶
¸

2≠1
E(÷). (1.18)

The product fi≠
h

fi≠
¸

1
fi¶

h
fi¶

¸

2≠1
captures the di�erence in inference from winning with a bid

marginally below bp instead of bp. From s+ < s̆, it follows that ÷[Fh(s+)≠Fh(s≠)] <

÷[F¸(s+)≠F¸(s≠)], such that equation (1.12) of Lemma 1.4 implies that the product
is larger than one: winning with a marginally lower bid reduces the winner’s curse.

18Explicitly, fi≠
Ê = e≠÷(1≠FÊ(s≠)) and fi¶

Ê = e≠÷(1≠FÊ(s+))≠e≠÷(1≠FÊ(s≠))

÷(FÊ(s+)≠FÊ(s≠)) for Ê œ {h, ¸}.
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In fact, this e�ect becomes arbitrarily strong,

fi≠
h

fi≠
¸

1fi¶
h

fi¶
¸

2≠1
¥ e÷([F¸(s+)≠F¸(s≠)]≠[Fh(s+)≠Fh(s≠)])

¸ ˚˙ ˝
æŒ by (1.8)

Fh(s+) ≠ Fh(s≠)
F¸(s+) ≠ F¸(s≠) æ Œ.

By E(÷) æ 1, this means that when ÷ is large, the inference from winning on the
right side of inequality (1.18) dominates the inference from the signals on the left
side of inequality (1.18). As a result, the inequality cannot hold, and either deviation
1 or 2 has to be profitable.

Since the argument against candidate (b) contains some of the key incentives
which shape the bidding behavior, it is useful to repeat it verbally. First, equi-
librium bids can at most be the expected value conditional on winning, such that
E[v|win with bp, s≠; —ú] puts an upper bound on bp (1.16). When ÷ is large, there
is a “winner’s blessing” on bids below bp, such that this upper bound is dwarfed by
the expected value conditional on winning with any lower bid b < bp. In particular,
bp has to be a lot smaller than the expected value conditional on winning with a
marginally lower bid, which wins whenever s(1) Æ s≠. Hence, the expected prof-
its at this marginally lower bid are strictly positive. When ÷ is large, a Bertrand
competition emerges among bidders with signals below s≠: the rivals compete for
the highest bid below bp which maximizes their chances to win the auction but is
subject to a strictly smaller winner’s curse than bp. On the continuous bid space, a
largest bid below bp does not exist, such that no equilibrium exists.

As noted above, the arguments presented do not constitute a comprehensive
proof. We restricted attention to pools which do not change in size as ÷ increases
and only considered equilibria in which the pools end at s̆ and s+ < s̆, respectively.
As it turns out, however, none of these simplifications are significant, and existence
always fails due to an interior atom and the “open set problem” it creates. Naturally,
this open set is a feature of the continuous bid space; when considering auctions on
a grid, there is a maximal bid below any pooling bid, and an equilibrium exists. At
the same time, however, a discrete bid space makes the equilibrium characterization
more challenging. Therefore, we take an indirect approach and first analyze an
extended auction on the continuous bid space, which will help us to characterize
equilibria on a fine grid afterward.
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�.� Communication extension

In this section, we augment the auction mechanism by a communication dimension
similar to Jackson et al. (2002).19 We denote this communication extension by �c,
whereas we label the standard auction mechanism by �. As we show in the next
section, sequences of equilibria on an ever-finer grid converge to an equilibrium of
the communication extension. Therefore, the communication extension always has
an equilibrium, which we can use in Section 1.5 to characterize the equilibria on a
fine grid.

In the communication extension, every bidder simultaneously selects three ac-
tions: a message space M ™ [0, 1], a message m œ [0, 1], and a bid b œ [v¸, vh]. We
consider strategies of the form ‡ : [s, s̄] æ P[0, 1] ◊ �

1
[0, 1] ◊ [v¸, vh]

2
mapping the

signals into a message space and a distribution over messages and bids.20

The auction mechanism selects the winner according to the following rule. First,
it checks whether all bidders report the same message space M ; if not, the good
is not allocated. Afterwards, it discards all bidders who report messages m ”œ M .
Among the remaining bidders, the good is allocated to the one with the highest bid.
If multiple bidders tie on the highest bid, the tie is broken uniformly among those
who report the highest message m œ M . The winner receives the object and pays
her bid.

Denote the probability to win in state Ê œ {h, ¸} with action-tuple (M, m, b)
when all rival bidders follow strategy ‡ by fic

Ê(M, m, b; ‡). Then, the interim ex-
pected utility for a bidder with signal s who selects (M, m, b) is

U c(M, m, b|s; ‡) = flfh(s)
flfh(s) + (1 ≠ fl)f¸(s)fic

h(M, m, b; ‡)(vh ≠ b) (1.19)

+ (1 ≠ fl)f¸(s)
flfh(s) + (1 ≠ fl)f¸(s)fic

¸(M, m, b; ‡)(v¸ ≠ b).

A strategy ‡ú is a best response to a strategy ‡ if for (almost) every s an action-
tuple (M, m, b) œ supp ‡ú(s) implies that (M, m, b) œ arg maxM̂,m̂,b̂ U(M̂, m̂, b̂|s; ‡).
As in the case of the standard auction, unless specified otherwise, all following
results hold for almost every s. Again, we analyze symmetric Bayes-Nash equilibria,
but restrict attention to concordant equilibria in which all bidders report the same
message space M .21

19We discuss the relation to Jackson et al. (2002) in footnote 21.
20We immediately restrict attention to equilibria in which all bidders choose the same M so that

the restriction to pure strategies with respect to the message space is without further loss.
21The outcomes of concordant equilibria are a subset of the outcomes of solutions to the commu-

nication extension in Jackson et al. (2002). In their communication extension, the tie-breaking is
part of the solution which can be interpreted as introducing the auctioneer as a player who selects
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Note that, conditional on a bid b, di�erent messages m, mÕ may induce the same
winning probability, such that they are equivalent. Two strategies are m-equivalent,
if after merging all signals s that share the same likelihood ratio, fh

f¸
, they correspond

to the same distributional strategy, up to equivalent messages.

Lemma �.� Let ‡ú be a concordant equilibrium of the communication extension.
Then, there exists an m-equivalent, concordant equilibrium ‡̂ú that is pure and where

(i) bids b are nondecreasing in s;

(ii) for any given bid b, the report m œ M is nondecreasing in s.

This implies that in both states Ê œ {h, ¸}

(a) fic
Ê(‡̂ú(s); ‡̂ú) is nondecreasing in s;

(b) ‡̂ú(s) = ‡̂ú(sÕ) if and only if fic
Ê(‡̂ú(s); ‡̂ú) = fic

Ê(‡̂ú(sÕ); ‡̂ú) for s, sÕ œ [s, s̄].

In essence, Lemma 1.7 is analogous to Lemma 1.1. Bidders with higher signals
are more optimistic, select weakly higher bids/messages, and win weakly more often.
If multiple signals induce the same belief, the actions can be reordered such that they
are monotone, without altering the implied distribution of bids and (payo�-relevant)
messages. Implication (b) establishes that the problem of equivalent messages can
be ignored. If two distinct action-tuples are in the image of the strategy, then they
win with di�erent probabilities. This simplifies later statements.

Henceforth, we restrict attention to concordant strategies that are pure, in which
bidders with higher signals win weakly more often and where (b) holds. We denote
these by ‡ : [s, s̄] æ P[0, 1] ◊ [0, 1] ◊ [v¸, vh].

We can now explicitly state the winning probabilities. To do so, fix some con-
cordant strategy ‡ and functions µ and — such that ‡(s) = (M, µ(s), —(s)) for all
s. Suppose a bidder chooses the action-tuple (M, m, b). If m œ M and (M, m, b)
is selected with zero probability by a competitor, then she wins whenever s(1) Æ ŝ,
where ŝ = sup({s : —(s) < b} fi {s : —(s) = b and µ(s) < m}) is the highest signal
that chooses a lower bid, or the same bid but lower message. This happens in state
Ê œ {h, ¸} with probability fic

Ê(M, m, b; ‡) = e≠÷(1≠FÊ(ŝ)).

If ‡(s) = (M, m, b) for all s œ [s≠, s+] and ‡(s) ”= (M, m, b) for all other signals,
then the action-tuple wins in state Ê œ {h, ¸} with probability

fic
Ê(M, m, b; ‡) = e≠÷(1≠FÊ(s+)) ≠ e≠÷(1≠FÊ(s≠))

÷(FÊ(s+) ≠ FÊ(s≠)) .

the tie-breaking rule. By contrast, we fully specify the mechanism without introducing such an
additional player. Roughly speaking, in our mechanism, the bidders report the tie-breaking rule.
This is possible in our setting because a misreport can be punished by a uniformly worst outcome
(no allocation) while such outcome may not exist in the more general payo� setting in Jackson et al.
(2002).
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These probabilities are analogous to those in the standard auction, and are derived
in the same manner.

If a bidder chooses an action-tuple (M Õ, mÕ, b) with M Õ ”= M , but mÕ œ M Õ then
she only wins when the deviation to M Õ is not detected. This only happens when she
is alone, which occurs in state Ê œ {h, ¸} with probability fic

Ê(M Õ, mÕ, b; ‡) = e≠÷.

If M Õ = M but mÕ ”œ M , the probability to win is zero.
To fix ideas, note that every equilibrium of the standard auction, �, is also an

equilibrium of the communication extension, �c. If all bidders report M = {0} and
m = 0, the messages do not a�ect the outcome of the auction, and deviations in
M or m are (weakly) dominated by bidding (M, m, v¸); the lowest bid also only
wins when the bidder is alone, but at the lowest possible cost. Thus, the winner is
solely determined by the bids, and we only need to consider deviations in the bid.
Obviously, this makes following the equilibrium strategy of � an equilibrium of �c.

Since every equilibrium of the standard auction is an equilibrium of the com-
munication extension, the set of equilibria of �c is a superset of the equilibria of �.
Indeed, it can be a proper superset, because the communication extension always
has an equilibrium.

Lemma �.� The communication extension �c always has a concordant equilibrium.

The result follows as a corollary to Lemmas 1.9 and 1.10 found in the next
section. For now, we just take existence as given. Even though equilibria are not
unique, it is possible to characterize their form up to some ‘ environment around s

and s̆.

Proposition �.� Fix any ‘ œ (0, s̆≠s
2 ). When ÷ is su�ciently large (given ‘), any

concordant equilibrium ‡ú of �c takes the following form:
there are two disjoint, adjacent intervals of signals I, J such that

(i) [s + ‘, s̆ ≠ ‘] µ I fi J ;

(ii) ‡ú(sI) = (M, mI , bp) for all sI œ I and ‡ú(sJ) = (M, mJ , bp) for all sJ œ J ,
with mI < mJ ;

(iii) there is no m œ M s.t. fic
Ê(‡ú(sI); ‡ú) < fic

Ê(M, m, bp; ‡ú) < fic
Ê(‡ú(sJ); ‡ú) for

Ê œ {h, ¸};

(iv)
s

I ÷fÊ(z)dz > 1
‘ and

s
J ÷fÊ(z)dz > 1

‘ for Ê œ {h, ¸};

(v) on s œ (s̆ + ‘, s̄] the bids are strictly increasing, such that the message m is
irrelevant.

The proof is in the appendix. The following figure summarizes the results:
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s̄s
v¸

vh

bp

I J s̆

‘

s

mI mJ

Figure �.� Equilibria ‡ú of the communication extension.

By part (i), there are two adjacent intervals I and J (pink/dashed, teal/dotted)
that span the signals between s + ‘ and s̆ ≠ ‘. Bidders with signals from either
interval bid bp but separate by sending messages mI and mJ , (ii). Importantly, mI

and mJ are adjacent, meaning that there is no m œ M with mI < m < mJ . Thus,
(iii) holds and there is no action-tuple that wins more often than (M, mI , bp) but less
often than (M, mJ , bp). The intervals I and J can vary in length as ÷ increases, but
the expected number of bidders in both intervals grows without bound, as asserted
by (iv). Above s̆ + ‘, bids are strictly increasing and follow the ordinary di�erential
equation (1.9) with the proper initial value, (v). The message m is irrelevant in this
region. Observe that Figure 1.4 is only a qualitative sketch: J may be contained
in the ‘-environment around s̆, and the equilibrium may assume a di�erent form
within the ‘-environments.

The form of the equilibrium is a direct consequence of the results in Section 1.3.3.
There, we reasoned that in any equilibrium of the standard auction, bids cannot be
strictly increasing below the neutral signal s̆ and s and s̆ cannot pool. The logic be-
hind these two results remains valid in the communication extension. Hence, there
has to be an interior atom, bp, on which bidders with intermediate signals, J , pool
to insure against the winner’s curse, as depicted in candidate equilibrium (b). Since
the inference from winning is U-shaped (cf. Lemma 1.4 and Figure 1.2), compared
to bp, winning with any bid below bp is a blessing for the conditional expected value.
When ÷ is large, this incentivizes bidders with low signals, I, to compete for the
highest bid below bp. In the standard auction, �, no such bid exists, such that
no equilibrium exists. With an endogenous tie-breaking rule, the problem can be
solved. By sending messages mI and mJ , bidders with signals from I and J can
di�erentiate themselves, while leaving no room for bidders with signals from I to
marginally deviate upwards, as stated in part (iii).
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One immediate implication of Proposition 1.4 is that there can be no equilibrium
in the standard auction (Proposition 1.3). By our earlier observation, all equilibria
of � are also equilibria of a communication extension, �c, in which the message
space is a singleton. Since Proposition 1.4 describes every equilibrium of �c, and
the intervals I and J cannot be separated without two distinct messages, � cannot
have an equilibrium.

�.� Standard auction on the grid

Consider a variation of the standard auction in which the bids are constrained to a
set of k Ø 2 equidistant22 values

Bk = {v¸, v¸ + d, ..., v¸ + (k ≠ 2)d, vh},

where d = vh≠v¸
k≠1 . We denote such an auction by �(k).

Lemma �.� Any auction on the grid, �(k), has an equilibrium in pure and nonde-
creasing strategies.

The proof builds on Myerson (2000) and is in the appendix.23 The monotonicity
directly follows from Lemma 1.1, which does not rely on the form of the bid space.

While the discretization solves the existence problem, the discontinuous bid space
makes the equilibrium characterization more challenging. Here, the communication
extension, �c, proves helpful. We are going to show that the equilibria on a fine grid
must have the same structure as the equilibria of �c. A first step shows that the
limit of a converging sequence of equilibria on the ever-finer grid can be represented
as a concordant equilibrium of the communication extension. For a deterministic
population, this corresponds to a special case of Theorem 2 in Jackson et al. (2002).

Lemma �.�� Consider any sequence of auctions on the ever-finer grid, (�(k))kœN,
and any corresponding sequence of equilibria, (—ú

k)kœN. There exists a subsequence
of auctions (�(n))nœN with equilibria (—ú

n)nœN and a concordant equilibrium ‡ú of �c

such that, for all s œ [s, s̄],

(i) ‡ú(s) = (M, µ(s), limnæŒ —ú
n(s)) for some M and function µ : [s, s̄] æ M ;

(ii) limnæŒ fiÊ(—ú
n(s); —ú

n) = fic
Ê(‡ú(s); ‡ú) for Ê œ {h, ¸};

(iii) limnæŒ U(—ú
n(s)|s; —ú

n) = U c(‡ú(s)|s; ‡ú).
22The assumption of equidistance is for expositional purposes only. The following results hold

for any discretization, as long as the grid becomes dense on [v¸, vh] as k æ Œ.
23Since best responses are monotone, the existence proof can be simplified, and applies even if

the likelihood ratio fh(s)
f¸(s) contains jumps.
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The proof is in the appendix. Combined with Lemma 1.9, Lemma 1.10 estab-
lishes the existence of equilibria of �c (Lemma 1.8). Next, we compare the structure
of equilibria on the ever-finer grid with the corresponding limit equilibrium of the
communication extension.

Lemma �.�� Consider a sequence of auctions on the ever-finer grid, (�(n))nœN, with
corresponding equilibria, (—ú

n)nœN, that converge to an equilibrium of �c, denoted ‡ú,
in the sense of Lemma 1.10. Then it holds for (almost) any two signals s≠ < s+

that

(i) ‡ú(s≠) = ‡ú(s+), if and only if —ú
n(s≠) = —ú

n(s+) for any n su�ciently large;

(ii) ‡ú(s≠) ”= ‡ú(s≠), if and only if —ú
n(s≠) < —ú

n(s+) for any n su�ciently large.

Due to this close relationship, equilibria on a fine grid have to be similar to those
of the communication extension. Thus, the characterization from Proposition 1.4
can be used to derive properties of equilibria on a fine grid.

Proposition �.� Fix any ‘ œ (0, s̆≠s
2 ). When ÷ is su�ciently large (given ‘) and k

is su�ciently large (given ‘ and ÷), any equilibrium —ú of �(k) takes the following
form: there are two disjoint, adjacent intervals of signals I, J such that

(i) [s + ‘, s̆ ≠ ‘] µ I fi J ;

(ii) —ú(sI) = b for all sI œ I and —ú(sJ) = b + d for all sJ œ J ;

(iii)
s

I ÷fÊ(z)dz > 1
‘ and

s
J ÷fÊ(z)dz > 1

‘ for Ê œ {h, ¸};

(iv) on s œ (s̆ + ‘, s̄] the bids tie with a probability smaller than ‘.24

Again, the result is summarized best with the help of a figure:

s̄s
v¸

vh

d{

I J s̆

‘

s

Figure �.� Equilibria —ú of the auction on the grid.
24Take any ŝ > s̆ + ‘ and let b̂ = —ú(ŝ). If there exists an interval [s≠, s+] such that —ú(s) = b̂

for all s œ [s≠, s+], then ÷
s s+

s≠
fÊ(z)dz < ‘ for Ê œ {h, ¸}.
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There are two adjacent intervals I and J (pink/dashed and teal/dotted). By (i),
any signal between s+ ‘ and s̆≠ ‘ is part of one of the two intervals. By (ii), bidders
with signals from interval I pool on a bid bp, while bidders on the interval J select
the next bid on the grid, bp + d . The intervals can vary in length as ÷ increases,
but the expected number of bidders in both intervals grows without bound, (iii).
Assertion (iv) states that there are no significant atoms above s̆ + ‘; in fact, the
bidding function becomes smooth and strictly increasing as grid d æ 0.

The characterization highlights why the standard auction, �, is not the limit
of the auctions on an arbitrarily fine grid. As d æ 0, the di�erence between the
two pooling bids bp and bp + d vanishes. In the limit, I and J can no longer be
separated such that they win with the same probability, and the utility changes
discontinuously. Therefore, the limit of a sequence of equilibria on the ever-finer
grid is generally not an equilibrium of the limit auction �.25 However, the limit
outcome can be represented as an equilibrium of �c, because the tie-breaking rule
can be chosen to preserve the di�erent winning probabilities in I and J . Thereby,
equilibria of �c inherit the characteristics of equilibria on a fine grid, which is why
the communication extension can be used to characterize the equilibria on a fine grid.

We now turn to the proof of Proposition 1.5:

Proof. Suppose that for every k at least one of the properties (i)-(iv) is violated.
Then, there exists a sequence of auctions on the ever-finer grid, (�(k))kœN, with equi-
libria, (—ú

k)kœN, along which one property never holds. By Lemma 1.10, this sequence
has a subsequence (—ú

n)nœN converging to an equilibrium of the communication ex-
tension, ‡ú. When ÷ is large, strategy ‡ú takes the form detailed in Proposition 1.4.
We use this form of ‡ú and the convergence of (—ú

n)nœN to find contradictions for the
violations of properties (i)-(iv) for infinitely many n.

First, consider property (iv). If the bids in ‡ú are strictly increasing over some
interval, so is —ú = limnæŒ —ú

n. Thus, when n is su�ciently large (d su�ciently
small), the bids tie with a probability smaller than ‘ on s œ (s̆ + ‘, s̄], and property
(iv) cannot be violated.

Next, consider the intervals I and J of ‡ú, and fix some sI œ int(I) and sJ œ
int(J). Further, define In = {s : —ú

n(s) = —ú
n(sI)} as well as Jn = {s : —ú

n(s) =
—ú

n(sJ)}. By Lemma 1.11, In æ I and Jn æ J . Thus, property (iii) cannot be
violated when n is large.

What remains to be shown is that —ú
n(sI)+d = —ú

n(sJ) when n is su�ciently large
(ii). If this is the case, then (s + ‘, s̆ ≠ ‘) µ In fi Jn, such that property (i) follows,

25In the limit, the strategy becomes roughly the one we ruled out in candidate equilibrium (a)
of Section 1.3.3 in which all signals below the neutral signal s̆ pool on a single bid.
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completing the proof. Suppose to the contrary that —ú
n(sI) + d < —ú

n(sJ) for every
n. Then, it follows from In æ I and Jn æ J that limnæŒ fiÊ(—ú

n(sI) + d; —ú
n) =

e≠÷(1≠FÊ(ŝ)). Since strategy —ú
n is an equilibrium, U(—ú

n(sn)|sn; —ú
n) Ø U(—ú

n(sI) +
d|sn; —ú

n) for all sn œ In fi Jn. Hence, Lemma 1.10 implies that

lim
næŒ

U(—ú
n(s)|s; —ú

n) = U c(‡ú(s)|s; ‡ú) Ø lim
næŒ

U(—ú
n(sI) + d|s; —ú

n) ’s œ I fi J.

This means that in equilibrium ‡ú, bidders prefer ‡ú(sI) or ‡ú(sJ) over some hypo-
thetical action-tuple that wins whenever s(1) Æ ŝ. Thus, there could be an m œ M

with mI < m < mJ because bidders would not deviate to such a message. This is a
contradiction to property (iii) of Proposition 1.4, which completes the proof.

The proof illustrates how the communication extension can be employed to char-
acterize equilibria on a fine grid. This contrasts with standard auctions on the contin-
uous bidding space that cannot fully handle non-vanishing atoms in the equilibrium
bid distribution, thereby acting as an equilibrium refinement. The communication
extension is, hence, the “correct” mechanism to analyze auctions on the fine grid.

�.� Discussion

�.�.� State-dependent competition

One natural modification of the model is the introduction of state-dependent partic-
ipation, expressed by a state-dependent mean ÷Ê. This extension combines numbers
uncertainty with the deterministic but state-dependent participation in Lauermann
and Wolinsky (2017). When the number of bidders depends on the state, being
solicited to participate in the auction contains information about the state. Condi-
tional on participation, a bidder updates her belief to

P[Ê = h|participation] = fl÷h

fl÷h + (1 ≠ fl)÷¸
.

Further, knowledge of the number of competitor now has two additional e�ects.
Apart from determining the intensity of the winner’s curse, it is also directly infor-
mative about the state. This changes the inference from winning, and, thus, the
form of E[v|s(1) Æ ŝ]. Specifically, consider the e�ect state-dependent participation
has on the inference at the bottom, E[v|s(1) Æ s]. As we argued in Section 1.3.1, if
s(1) Æ s, then there is no competitor. When participation is state dependent, this
is either good news about the value of the good (÷h < ÷¸) or bad news (÷h > ÷¸).
Thus, there is either a winner’s blessing, or winner’s curse at the bottom. As long as
÷h
÷¸

œ ( f¸(s̄)
fh(s̄) , f¸(s)

fh(s)), however, this e�ect does not change the general shape of the con-
ditional expected value: E[v|s(1) Æ ŝ] is decreasing in ŝ when ÷hfh(ŝ) < ÷¸f¸(ŝ), has
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its minimum where ÷h
÷¸

fh(ŝ)
f¸(ŝ) = 1, and is increasing when ÷hfh(ŝ) > ÷¸f¸(ŝ). As a re-

sult, state-dependent participation leaves our results mostly unaltered. One merely
needs to replace fÊ(s) with ÷ÊfÊ(s) in every expression and redefine the neutral
signal s̆ such that ÷h

÷¸

fh(s̆)
f¸(s̆) = 1. In the working paper version (Lauermann and Speit,

2019), we prove every result for this more general case. Only when ÷h
÷¸

”œ ( f¸(s̄)
fh(s̄) , f¸(s)

fh(s))
such that no neutral signal s̆ exists are Propositions 1.3, 1.4, and 1.5 vacuous. If
÷hfh(s)
÷¸f¸(s) Ø 1, claim (iii) of Proposition 1.2 ensures the existence of a strictly increasing
strategy; by Lemma 1.4, this is the only symmetric equilibrium.26 If, on the other
hand, ÷hfh(s̄)

÷¸f¸(s̄) < fh(s)
fh(s) and ÷h, ÷¸ are su�ciently large, then there exists an equilibrium

in which every bidder selects the same bid.

�.�.� Distribution of the number of bidders

Generally, numbers uncertainty breaks the a�liation between the first-order statistic
of bidders’ signals and the value of the good. Without a�liation, however, one
cannot expect the equilibrium strategy to be strictly increasing. At the same time,
the lack of a�liation creates room for atoms in the bid distribution. Thus, the results
do not hinge on the distributional assumptions. The Poisson distribution only serves
as a transparent example to illustrate the e�ects because it allows for closed-form
solutions and is characterized by a single parameter. It is not clear, however, whether
there is a class other than Poisson for which the equilibrium existence necessarily
fails. At the very least, the Poisson distribution is not a “knife-edge” case, in the
sense that we can truncate the distribution to always have at least n Ø 2 bidders (cf.
footnote 8), or marginally change the probabilities without changing the results.

�.�.� Signal structure

The assumption of a unique neutral signal s̆ is for convenience only. If there is an in-
terval of signals along which fh(s) = f¸(s), the propositions just become lengthier.27

Also, unboundedly informative signals leave our results unchanged but complicate
some proofs.

While all results are given for continuous densities, we can allow for a finite
number of jumps in fh and f¸. This nests problems with a finite number of discrete
signals as these can be modeled as intervals of signals sharing the same likelihood
ratio. When the densities are discontinuous, all results except of Propositions 1.3,
1.4, and 1.5 still apply. The equilibrium characterizations and non-existence result,
however, rely on the existence of an interval of signals S such that fh(s)

f¸(s) Æ 1, but
fh(s)
f¸(s)

F¸(s)
Fh(s) < fh(s)

f¸(s) for all s œ S. If there is no such interval, and ÷ is su�ciently large,
26Compare Lauermann et al. (2018).
27For example, in Proposition 1.4 the bids are constant between s+‘ and inf{s : fh(s) = f¸(s)}≠‘,

and strictly increasing at or above sup{s : fh(s) = f¸(s)} + ‘.



�.� Discussion | ��

an equilibrium of the form of candidate equilibrium (a) exists: all signals below s̆

pool on the same bid, and all higher signals follow a strictly increasing strategy. Note
that this is always true when signals are binary, which makes this signal structure a
special case.28

�.�.� Reserve price

The assumption of a reserve price at v¸ is used in the proof of Lemma 1.1, which
shows that, without loss, any equilibrium strategy is nondecreasing. If ÷ is suf-
ficiently large, the assumption can be dropped. As ÷ increases, the probability
of being alone in the auction vanishes, such that, by Bertrand logic, bidders with
signals above some s + ‘ choose a bid at or above v¸ and follow a nondecreasing
strategy.29 We prove the result formally in the working paper version (Lauermann
and Speit, 2019). Alternatively, if one assumes that the good is only allocated when
there are at least two bidders, or if one truncates the Poisson distribution at n Ø 2
(cf. 1.6.2), the Bertrand logic applies, and all equilibrium bids have to be above v¸.
The condition of a minimal amount of competition leaves our results qualitatively
unaltered.

�.�.� Second-price auction

As noted in Section 1.3.1.3, whenever ÷ is su�ciently large, there is no strictly
increasing equilibrium in the second-price auction because condition (1.10) does
not hold. Thus, any equilibrium bid distribution necessarily contains atoms, which
are problematic for the standard auctions. In fact, one can check that when ÷ is
su�ciently large, no nondecreasing equilibrium exists in the second-price auction,
either. However, it is possible to construct an analogous communication extension
for the second-price auction that captures the bidding behavior on a fine grid.

�.�.� Literature

There is a small literature on numbers uncertainty in private-value auctions, notably
Matthews (1987), McAfee and McMillan (1987), and Harstad et al. (1990), studying,
e.g., the interaction of numbers uncertainty and risk aversion.

Moreover, there is a recent strand of literature on common-value auctions and
non-constant numbers of bidders. Murto and Välimäki (2019) consider a common-

28Lauermann and Wolinsky (2017) make use of this fact.
29If, to the contrary, the reserve price is 0 < v¸, participation is state dependent with ÷h << ÷¸

and if ÷h, ÷¸ are small, then equilibrium strategies can be strictly decreasing. In this case, bidders
with high signals expect less competition and are, therefore, bid less. Bidders with signal s̄ bid 0,
betting to be alone in the auction.
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value auction with costly entry.30 After observing a binary signal, potential bidders
have to decide whether to pay a fee to bid in the auction. When the pool of potential
bidders is arbitrary large, the number of participating bidders is Poisson distributed
with a signal-dependent mean. The signal dependent entry decision precludes atoms
in the bid distribution, which enables revenue comparisons.

In Lauermann and Wolinsky (2017, 2018) the participation is deterministic, but
state dependent due to a solicitation decision by an informed auctioneer. The in-
terest is in how the outcome of a large first-price auction is a�ected by the ratio of
bidders in the high to the low state. If this the ratio is su�ciently high, the outcome
resembles the usual outcome in large auctions, whereas, when the ratio is small,
there are necessarily atoms at the top. Atoms are the result of a “participation
curse” that arises when there are fewer bidders in the high than in the low state.
The atom at the top prevents information aggregation.

In a setting with many goods, Harstad et al. (2008) and Atakan and Ekmekci
(2019) consider the e�ect of numbers uncertainty on the information aggregation
properties of a k-th price auction (Pesendorfer and Swinkels, 1997). In Harstad
et al. (2008), the distribution of bidders is exogenously given. They find that even if
the equilibrium strategy is strictly increasing (which aids aggregation), information
aggregation fails unless the numbers uncertainty is negligible. They also provide
an example in which equilibrium is not strictly increasing, but they do not study
this question further. Atakan and Ekmekci (2019) assume that bidders have a type-
dependent outside option such that the numbers uncertainty arises endogenously and
is correlated with the state, showing that this also upsets information aggregation.

�.� Conclusion

We have studied a canonical common-value auction in which the bidders are uncer-
tain about the number of their competitors. This numbers uncertainty invalidates
classic findings for common-value auctions (Milgrom and Weber, 1982). In partic-
ular, it breaks the a�liation between the first-order statistic of the signals and the
value of the good. As a consequence, bidding strategies are generally not strictly
increasing but contain atoms. The location of the atoms is indeterminate, implying
equilibrium multiplicity. Moreover, no equilibrium exists in the standard auction on
the continuous bid space when the expected number of bidders is su�ciently large.

Many of the known failures of equilibrium existence in auctions require careful
crafting of the setup, and rely on a discrete type space to generate atoms in the bid
distribution (cf. Maskin and Riley (2000), Jackson (2009)). By contrast, we identify

30Auctions with endogenous entry are also examined by, among others, Levin and Smith (1994)
and Harstad (1990).



�.� Conclusion | ��

a failure of equilibrium existence in an otherwise standard auction setting in which
the type space is continuous and atoms in the bid distribution arise endogenously.

We solve the existence problem by analyzing auctions on the grid, which we
then characterize with the help of a communication extension based on Jackson
et al. (2002). While previous applications of the communication extension used it
largely to provide abstract existence proofs, we show how it can be utilized as a
solution method.

The communication extension captures all limit outcomes of equilibria on the
ever-finer grid. Hence, equilibria on the fine grid have to share the characteristic
properties of the equilibria of the communication extension. In particular, we show
the emergence of an interior atom and a “winner’s blessing” at bids below it. This
incentivizes bidders with low signals to compete for the highest bid below the atom.
Since such a bid does not exist on the continuous bidding space, none of the equilibria
of the communication extension are compatible with the uniform tie-breaking of the
standard auction.

Pooling and the equilibrium multiplicity that arise from numbers uncertainty
have interesting implications. For example, even though the model is purely compet-
itive, bidders with low signals engage in cooperative behavior to reduce the winner’s
curse. Contrary to a common-value auction with a�liation, they have an incentive
to coordinate on certain bids. Consequently, equilibria resemble collusive behavior,
even though they are the outcome of independent, utility-maximizing behavior of
the bidders.31 Moreover, the presence of atoms in the bid distribution invalidates
empirical identification strategies that rely on the bidder’s first-order condition (cf.
Athey and Haile (2007)) and, hence, on a strictly increasing bidding strategy.

Future research may examine the consequences of pooling and equilibrium mul-
tiplicity for classic questions such as revenue comparisons across auction formats.
Since atoms arise at the bottom of the bid distribution, they are particularly relevant
for the determination of the optimal reserve price. Finally, with atoms, the auction
sometimes fails to sell to the bidder with the highest signal, suggesting negative wel-
fare consequences in general interdependent value settings with a small private-value
component.

31Compare also Lauermann and Wolinsky (2017).
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Appendices

�.A Proofs

�.A.� Proof of Lemma �.�

Step � If bÕ > b Ø v¸ and U(bÕ|s; —) Ø U(b|s; —), then U(bÕ|sÕ; —) Ø U(b|sÕ; —) for
sÕ > s. The second inequality is strict if fh(sÕ)

f¸(sÕ) > fh(s)
f¸(s) .

Since bÕ > b Ø v¸ it follows that (v¸ ≠ bÕ) < (v¸ ≠ b) Æ 0. Because the winning
probability fiÊ is weakly increasing in the bid and never zero (the bidder is alone
with positive probability), fiÊ(bÕ; —) Ø fiÊ(b; —) Ø fiÊ(v¸; —) > 0. Together, this yields
fi¸(bÕ; —)(v¸ ≠ bÕ) < fi¸(b; —)(v¸ ≠ b) Æ 0. Hence, U(bÕ|s; —) Ø U(b|s; —) requires that
fih(bÕ; —)(vh ≠ bÕ) > fih(b; —)(vh ≠ b). Rearranging U(bÕ|s; —) Ø U(b|s; —) gives

flfh(s)
(1 ≠ fl)f¸(s) [fih(bÕ; —)(vh ≠ bÕ)≠fih(b; —)(vh ≠ b)] Ø fi¸(b; —)(v¸ ≠ b)≠fi¸(bÕ; —)(v¸ ≠ bÕ).

If sÕ > s is such that fh(sÕ)
f¸(sÕ) > fh(s)

f¸(s) , the left side is strictly larger for sÕ and
U(bÕ|sÕ, —) > U(b|sÕ, —).

Step � The set of interim beliefs that imply indi�erence between two bids, L =
{fh(s)

f¸(s) : ÷b, bÕ with b ”= bÕ and U(b|s; —) = U(bÕ|s; —)}, is countable.

By construction, ’l œ L there exist two bids bl
≠ < bl

+ and a bidder with signal
sl such that fh(sl)

f¸(sl) = l who is indi�erent between these two bids, U(bl
≠|sl; —) =

U(bl
+|sl; —). Furthermore, there exists a ql œ Q s.t. bl

≠ < ql < bl
+. By Step 1,

bl
+ Æ blÕ

≠ for all l < lÕ, which implies that ql < qlÕ . Because Q is countable, so is L.

Step � Fix any strategy —. If the likelihood ratio fh
f¸

is constant on some interval
I, then there is an equivalent strategy —̂ that is pure and nondecreasing over I and
equal to — at every other signal.

Compare Pesendorfer and Swinkels (1997) footnote 8.

Now combine the steps to prove the lemma. First, suppose that the MLRP
holds strictly. Then, for every element l œ L, there is only a single signal sl such
that fh(sl)

f¸(sl) = l which is indi�erent between two bids and may mix. Since L is
countable, the set of signals which potentially mix has zero measure and we can
assign them the lowest bid in the support of their strategies. The resulting strategy
is pure and, by Step 1, nondecreasing. Since the strategy is only changed on a set
of measure zero, the resulting distribution of bids is unchanged.

Next, suppose that signal structure is such that it contains intervals I along
which the likelihood ratio is constant. In this case, apply Step 3 sequentially to
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any such I to receive a strategy which is pure and nondecreasing. Furthermore,
the reordering leaves the distribution of bids and thereby outcomes and utilities
unaltered.

�.A.� Proof of Proposition �.�

We follow the steps as in the body of the text and only derive Step 2.

Step � A lower bound on —ú(s¶) is given by

—ú(s¶) ≠ v¸

vh ≠ —ú(s¶) Ø fl

1 ≠ fl

fh(s≠)
f¸(s≠)

e≠÷h(1≠Fh(s¶))

e≠÷¸(1≠F¸(s¶)) A(÷), (1.20)

where A(÷) is a decreasing function with lim÷æŒ A(÷) = 1.

In equilibrium, there is no profitable deviation, such that U(—ú(s≠)|s≠; —ú) Ø
U(—ú(s¶)|s≠; —ú), that is

flfh(s≠)fih(—ú(s≠); —ú)(vh ≠ —ú(s≠)) + (1 ≠ fl)f¸(s≠)fi¸(—ú(s≠); —ú)(v¸ ≠ —ú(s≠))
flfh(s≠) + (1 ≠ fl)f¸(s≠)

Ø flfh(s≠)fih(—ú(s¶); —ú)(vh ≠ —ú(s¶)) + (1 ≠ fl)f¸(s≠)fi¸(—ú(s¶); —ú)(v¸ ≠ —ú(s¶))
flfh(s≠) + (1 ≠ fl)f¸(s≠) .

Since —ú(s≠) Ø v¸, a necessary condition for the inequality is that

flfh(s≠)fih(—ú(s¶); —ú)(vh ≠ v¸)

Øflfh(s≠)fih(—ú(s¶); —ú)(vh ≠ —ú(s¶)) + (1 ≠ fl)f¸(s≠)fi¸(—ú(s¶); —ú)(v¸ ≠ —ú(s¶)).

Rearranging the inequality gives a lower bound on —ú(s¶)

—ú(s¶) ≠ v¸

vh ≠ —ú(s¶) Ø fl

1 ≠ fl

fh(s≠)
f¸(s≠)

fih(—ú(s¶); —ú)
fi¸(—ú(s¶); —ú)

1
1≠ fih(—ú(s≠); —ú)

fih(—ú(s¶); —ú)
vh ≠ v¸

vh ≠ —ú(s¶)
2
. (1.21)

Because s¶ > s≠ and ÷ æ Œ, it follows that fih(—ú(s≠);—ú)
fih(—ú(s¶);—ú) = e≠÷(Fh(s¶)≠Fh(s≠)) æ

0. Thus, A(÷) = 1 ≠ fih(—ú(s≠);—ú)
fih(—ú(s¶);—ú)

vh≠v¸
vh≠—ú(s¶) æ 1 unless —ú(s¶) æ vh. However,

by individual rationality, —ú(s¶) < E[v|win with —ú(s¶), s¶; —ú] Æ E[v|s¶] Æ E[v],
yielding a contradiction. Therefore, A(÷) æ 1.
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�.A.� Proof of Proposition �.�

For s, ŝ œ [s, s̄], let Fs(1)(ŝ|s) denote the cdf of s(1) conditional on observing s, and
let fs(1) be the associated density

Fs(1)(ŝ|s) = flfh(s)e≠÷(1≠Fh(ŝ)) + (1 ≠ fl)f¸(s)e≠÷(1≠F¸(ŝ))

flfh(s) + (1 ≠ fl)f¸(s) , (1.22)

fs(1)(ŝ|s) = fl÷fh(s)fh(ŝ)e≠÷(1≠Fh(ŝ)) + (1 ≠ fl)÷f¸(s)f¸(ŝ)e≠÷(1≠F¸(ŝ))

flfh(s) + (1 ≠ fl)f¸(s) . (1.23)

Note that because signal distribution is atomless, the probability that there is no
(other) bidder, s(1) = ≠Œ, conditional on observing signal s is P[s(1) = ≠Œ|s] =
Fs(1)(s|s). As a result, for ŝ œ [s, s̄] it holds that Fs(1)(ŝ|s) =

s ŝ
s fs(1)(z|s)dz +

Fs(1)(s|s).
As a further abbreviation, define v(ŝ|s) = E[v|s(1) = ŝ, s], that is

v(ŝ|s) =

Y
_]

_[

flfh(s)fh(ŝ)e≠÷(1≠Fh(ŝ))vh+(1≠fl)f¸(s)f¸(ŝ)e≠÷(1≠F¸(ŝ))v¸

flfh(s)fh(ŝ)e≠÷(1≠Fh(ŝ))+(1≠fl)f¸(s)f¸(ŝ)e≠÷(1≠F¸(ŝ)) if ŝ œ [s, s̄]
flfh(s)e≠÷vh+(1≠fl)f¸(s)e≠÷v¸

flfh(s)e≠÷+(1≠fl)f¸(s)e≠÷ if ŝ = ≠Œ.
(1.24)

If — is strictly increasing and continuous, fiÊ(b; —) = P[s(1) Æ —≠1(b)|Ê; —] for all
b in —’s image. As a result, for all b in the image, the utility (1.1) can be rewritten
as

U(b|s; —) =
⁄ —≠1(b)=s

s

Ë
v(z|s) ≠ b

È
fs(1)(z|s)dz +

Ë
v(≠Œ|s) ≠ b

È
Fs(1)(s|s). (1.25)

Step � If — is a strictly increasing equilibrium, then — is di�erentiable and solves the
ODE ˆ—(s)

ˆs =
1
E[v|s(1) = s, s] ≠ —(s)

2 fs(1) (s|s)
Fs(1) (s|s) with —(s) = v¸.

If — is a strictly increasing equilibrium (economizing on the ú), then it is con-
tinuous. If — would jump upwards, any bid just above a jump would be dominated
by a bid just below the jump, which wins with the same probability but at a lower
price. By the same reason, —(s) = v¸.

Next, take any point s œ (s, s̄) and show that — is di�erentiable at this point.
Let (sn)nœN be a sequence converging to s from below. Then, the sequence with
elements bn = —(sn) converges to b = —(s) from below, too. Because bn < b is a best
response for sn < s, it follows that U(bn|sn; —) Ø U(b|sn; —). Using (1.25), gives

⁄ —≠1(bn)=sn

s

Ë
v(z|sn) ≠ bn

È
fs(1)(z|sn)dz +

Ë
v(≠Œ|sn) ≠ bn

È
Fs(1)(s|sn)

Ø
⁄ —≠1(b)=s

s

Ë
v(z|sn) ≠ b

È
fs(1)(z|sn)dz +

Ë
v(≠Œ|sn) ≠ b

È
Fs(1)(s|sn),
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which can be rearranged to
⁄ sn

s

Ë
b ≠ bn

È
fs(1)(z|sn)dz +

Ë
b ≠ bn

È
Fs(1)(s|sn) Ø

⁄ s

sn

Ë
v(z|sn) ≠ b

È
fs(1)(z|sn)dz.

Dividing by s ≠ sn > 0 as well as Fs(1)(s|sn) =
s s

s fs(1)(z|sn)dz + Fs(1)(s|sn) > 0 and
taking the lim inf yields

lim inf
næŒ

b ≠ bn

s ≠ sn
Ø lim inf

næŒ
1

s ≠ sn

⁄ s

sn

Ë
v(z|sn) ≠ b

È fs(1)(z|sn)
Fs(1)(s|sn)dz.

By inspection of equations (1.23) and (1.24), the continuity of fh and f¸ ensures
that v(z|sn), fs(1)(z|sn) and Fs(1)(s|sn) are continuous in both arguments such that

lim inf
næŒ

b ≠ bn

s ≠ sn
Ø [v(s|s) ≠ b]

fs(1)(s|s)
Fs(1)(s|s) . (1.26)

At the same time, bid b is a best response for signal s, implying that U(bn|s; —) Æ
U(b|s; —), which rearranges to

⁄ —≠1(bn)=sn

s

Ë
v(z|s) ≠ bn

È
fs(1)(z|s)dz +

Ë
v(≠Œ|s) ≠ bn

È
Fs(1)(s|s)

Æ
⁄ —≠1(b)=s

s

Ë
v(z|s) ≠ b

È
fs(1)(z|s)dz +

Ë
v(≠Œ|s) ≠ b

È
Fs(1)(s|s).

Repeating the steps as before, but taking the lim sup instead, yields

lim sup
næŒ

b ≠ bn

s ≠ sn
Æ [v(s|s) ≠ b]

fs(1)(s|s)
Fs(1)(s|s) , (1.27)

and because lim inf Æ lim sup, it follows from equations (1.26) and (1.27) that

lim
næŒ

b ≠ bn

s ≠ sn
= lim

næŒ
—(s) ≠ —(sn)

s ≠ sn
= [v(s|s) ≠ —(s)]

fs(1)(s|s)
Fs(1)(s|s) .

We can repeat the construction for any sequence of signals and bids which con-
verges from above instead of below and obtain the same result. Therefore, — is
di�erentiable and can be written as (replacing v)

ˆ—(s)
ˆs

=
1
E[v|s(1) = s, s] ≠ —(s)

2 fs(1)(s|s)
Fs(1)(s|s) ,

or, fully spelled out for future reference,

= fl÷fh(s)2e≠÷(1≠Fh(s))(vh ≠ —(s)) + (1 ≠ fl)÷f¸(s)2e≠÷(1≠F¸(s))(v¸ ≠ —(s))
flfh(s)e≠÷(1≠Fh(s)) + (1 ≠ fl)f¸(s)e≠÷(1≠F¸(s)) . (1.28)
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Step � If — is strictly increasing and solves the ODE ˆ—(s)
ˆs =

1
E[v|s(1) = s, s] ≠

—(s)
2 fs(1) (s|s)

Fs(1) (s|s) with initial value —(s) = v¸, then — is an equilibrium.

Suppose that — is strictly increasing and solves the ODE. We want to show that
U(—(s)|s; —) Ø U(—(sÕ)|s; —) for all sÕ œ [s, s̄]. This su�ces because —(s) = v¸ denotes
the lower bound of bids and any bid b > —(s̄) is dominated by bidding —(s̄). We
show that U(—(s)|s; —) Ø U(—(sÕ)|s; —) by proving that ˆU(—(sÕ)|s;—)

ˆsÕ Ø 0 for all sÕ < s

and ˆU(—(sÕ)|s;—)
ˆsÕ Æ 0 for all sÕ > s such that the utility is hump-shaped with a global

maximum for signal s at —(s).
Substituting b by —(sÕ) in the utility function (1.25) and taking the derivative

wrt. sÕ yields (note that — is di�erentiable by the assumption of the step)

ˆ

ˆsÕ U(—(sÕ)|s; —) =
1
[v(sÕ|s) ≠ —(sÕ)]

fs(1)(sÕ|s)
Fs(1)(sÕ|s) ≠ —Õ(sÕ)

2
Fs(1)(s

Õ|s),

which is positive if and only if

[v(sÕ|s) ≠ —(sÕ)]
fs(1)(sÕ|s)
Fs(1)(sÕ|s) > —Õ(sÕ).

Because — solves the ODE —Õ(sÕ) = [v(sÕ|sÕ) ≠ —(sÕ)]
fs(1) (sÕ|sÕ)
Fs(1) (sÕ|sÕ) , this means that

ˆ
ˆsÕ U(—(sÕ)|s, —) is positive if and only if

[v(sÕ|s) ≠ —(sÕ)]
fs(1)(sÕ|s)
Fs(1)(sÕ|s) > [v(sÕ|sÕ) ≠ —(sÕ)]

fs(1)(sÕ|sÕ)
Fs(1)(sÕ|sÕ) .

Fully expanded, the left side of the equation becomes (cf. equations (1.22)-(1.24))

flfh(s)e≠÷(1≠Fh(sÕ))

flfh(s)e≠÷(1≠Fh(sÕ)) + (1 ≠ fl)f¸(s)e≠÷(1≠F¸(sÕ)) fh(sÕ)(vh ≠ —(sÕ))
¸ ˚˙ ˝

>0

+ (1 ≠ fl)f¸(s)e≠÷(1≠F¸(sÕ))

flfh(s)e≠÷(1≠Fh(sÕ)) + (1 ≠ fl)f¸(s)e≠÷(1≠F¸(sÕ)) f¸(sÕ)(v¸ ≠ —(sÕ))
¸ ˚˙ ˝

<0

.

As a result, the expression is nondecreasing in s, and strictly increasing in s if fh(s)
f¸(s)

is increasing. This means that

[v(sÕ|s) ≠ —(sÕ)]
fs(1)(sÕ|s)
Fs(1)(sÕ|s) > [v(sÕ|sÕ) ≠ —(sÕ)]

fs(1)(sÕ|sÕ)
Fs(1)(sÕ|sÕ)

if and only if fh(sÕ)
f¸(sÕ) < fh(s)

f¸(s) .
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It follows that

• ˆ
ˆsÕ U(—(sÕ)|s, —) > 0 for all sÕ < s : fh(sÕ)

f¸(sÕ) < fh(s)
f¸(s) ,

• ˆ
ˆsÕ U(—(sÕ)|s, —) < 0 for all sÕ > s : fh(sÕ)

f¸(sÕ) > fh(s)
f¸(s) ,

• ˆ
ˆsÕ U(—(sÕ)|s, —) = 0 for all sÕ : fh(sÕ)

f¸(sÕ) = fh(s)
f¸(s) ,

such that —(s) is a global maximizer for s.

Step � —̂ is a strictly increasing equilibrium if an only if it is strictly increasing and
solves the ODE ˆ—̂(s)

ˆs =
1
E[v|s(1) = s, s]≠—(s)

2 fs(1) (s|s)
Fs(1) (s|s) with initial value —̂(s) = v¸.

If —̂ is an equilibrium, it is unique in the class of strictly increasing equilibria. Thus,
if —̂ is not strictly increasing, no strictly increasing equilibrium exists.

Because the signal densities are continuous, the likelihood ratio fh
f¸

, bids, as well

as values vÊ are bounded and Fs(1)(s|s) > 0 as well as the ODE ˆ—̂(s)
ˆs = [E[v|s(1) =

s, s]≠—̂(s)]
fs(1) (s|s)
Fs(1) (s|s) is Lipschitz continuous (cf. (1.23) and (1.24)). Thus, there exists

a unique solution to the initial value problem —(s) = v¸. Combining this with Step
1 (necessary condition) and 2 (su�cient condition), the result follows.

�.A.� Proof of Lemma �.�

Proposition 1.2 shows that a strictly increasing equilibrium exists if and only if the
unique solution —̂ to the ODE (1.28) is strictly increasing. Thus, we have to show
that —̂ is strictly increasing.

Step � If E[v|s(1) = s, s] is strictly increasing in s, then —̂ is strictly increasing. This
is the case if and only if 2

1
ˆ
ˆs

fh(s)
f¸(s)

2
f¸(s)
fh(s) + ÷fh(s) ≠ ÷f¸(s) > 0 for a.e. s.

Since fh(s)
f¸(s) > 0, it follows that E[v|s(1) = s, s] = v(s, |s) > v¸. In combination

with the initial value —̂(s) = v¸, this means that —̂Õ(s) > 0 (cf. (1.28)). Because
the densities fh and f¸ are continuous, so is —̂ and —̂Õ. Thus, —̂Õ can only become
negative if it intersects the 0 from above. In that case, there exists a ŝ such that
—̂Õ(ŝ) = 0, meaning that v(ŝ|ŝ) ≠ —̂(ŝ) = 0. Since —̂Õ(ŝ) = 0, marginally increasing ŝ

will not change —̂. Hence, the marginal change of v(ŝ|ŝ) decides whether —̂Õ is just
tangent, or intersects the 0 at ŝ. Thus, it su�ces that E[v|s(1) = ŝ, ŝ] = v(ŝ|ŝ) is
strictly increasing in ŝ œ (s, s̄).

The expected value v(s|s) is increasing at (almost) every s if and only if
fh(s)2e≠÷(1≠Fh(s))

f¸(s)2e≠÷(1≠F¸(s)) , is increasing in s (cf. (1.24)). Di�erentiating the function with
respect to s yields

2
1 ˆ

ˆs

fh(s)
f¸(s)

2fh(s)
f¸(s)

e≠÷(1≠Fh(s))

e≠÷(1≠F¸(s)) + fh(s)2

f¸(s)2
e≠÷(1≠Fh(s))e≠÷(1≠F¸(s))

(e≠÷(1≠F¸(s)))2 (÷fh(s)≠÷f¸(s)) > 0.
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Dividing by e≠÷(1≠Fh(s))

e≠÷(1≠F¸(s)) > 0 and fh(s)2

f¸(s)2 > 0 yields the result. Since fh
f¸

is monotone,
it is di�erentiable almost everywhere.

Step � When ÷ is su�ciently small, —̂ is strictly increasing.

v(s|s) = flfh(s)2e≠÷(1≠Fh(s))vh + (1 ≠ fl)f¸(s)2e≠÷(1≠F¸(s))v¸

flfh(s)2e≠÷(1≠Fh(s)) + (1 ≠ fl)f¸(s)2e≠÷(1≠F¸(s))

÷æ0æ flfh(s)2vh + (1 ≠ fl)f¸(s)2v¸

flfh(s)2 + (1 ≠ fl)f¸(s)2 = „(s) Ø „(s) > v¸.

Using that —̂(s) Ø v¸ and equation (1.28), —̂Õ(s) can be bounded above by ÷fh(s)(vh≠
v¸). Therefore, —̂(s) =

s s
s —̂Õ(z)dz + v¸ < „(s) when ÷ is small. Thus, if ÷ is small,

—̂Õ(s) = [v(s|s) ≠ —̂(s)]
fs(1) (s|s)
Fs(1) (s|s) Ø [„(s) ≠ —̂(s)]

fs(1) (s|s)
Fs(1) (s|s) > 0 for all s.

�.A.� Proof of Lemma �.�

Step � fiÊ(bp; —) = P[s(1)œ[s≠,s+] |Ê]
E[#sœ[s≠,s+] |Ê] = e≠÷(1≠FÊ(s+))≠e≠÷(1≠FÊ(s≠))

÷(FÊ(s+)≠FÊ(s≠)) for Ê œ {h, ¸}.

fiÊ(bp; —) = P[no bid > bp|Ê]
Œÿ

n=0

1
n + 1P[n competitors bid bp|Ê]

= e≠÷(1≠FÊ(s+))
1 Œÿ

n=0

1
n + 1e≠÷(FÊ(s+)≠FÊ(s≠)) [÷(FÊ(s+) ≠ FÊ(s≠))]n

n!
2

= e≠÷(1≠FÊ(s+))
1 Œÿ

n=0
e≠÷(FÊ(s+)≠FÊ(s≠)) [÷(FÊ(s+) ≠ FÊ(s≠))]n

(n + 1)!
2

= e≠÷(1≠FÊ(s+))

÷(FÊ(s+) ≠ FÊ(s≠))
1 Œÿ

n=1
e≠÷(FÊ(s+)≠FÊ(s≠)) [÷(FÊ(s+) ≠ FÊ(s≠))]n

n!
2

= e≠÷(1≠FÊ(s+))

÷(FÊ(s+) ≠ FÊ(s≠))
1
1 ≠ e≠÷(FÊ(s+)≠FÊ(s≠)))

2

= e≠÷(1≠FÊ(s+)) ≠ e≠÷(1≠FÊ(s≠))

÷(FÊ(s+) ≠ FÊ(s≠)) .

The numerator is P[s(1) œ [s≠, s+]|Ê] and the denominator is the expected number
of signals from [s≠, s+] in state Ê i.e. E[#s œ [s≠, s+] |Ê].

Step � If ÷[Fh(s+) ≠ Fh(s≠)] < ÷[F¸(s+) ≠ F¸(s≠)], then

E[v|s(1) Æ s] > E[v|win with bp; —] > E[v|s(1) Æ s+].

If ÷[Fh(s+) ≠ Fh(s≠)] > ÷[F¸(s+) ≠ F¸(s≠)], the inequalities reverse.
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For any two events „ and „Õ, E[v|„] > E[v|„Õ] if and only if P[„|h]
P[„|¸] > P[„Õ|h]

P[„Õ|¸] .
Therefore, we have to show that when ÷[Fh(s+) ≠ Fh(s≠)] < ÷[F¸(s+) ≠ F¸(s≠)] it
holds that

e≠÷(1≠Fh(s≠))

e≠÷(1≠F¸(s≠)) >
e≠÷(1≠Fh(s+))≠e≠÷(1≠Fh(s≠))

÷[Fh(s+)≠Fh(s≠)]
e≠÷(1≠F¸(s+))≠e≠÷(1≠F¸(s≠))

÷[F¸(s+)≠F¸(s≠)]

>
e≠÷(1≠Fh(s+))

e≠÷(1≠F¸(s+)) . (1.29)

As an abbreviation, define xÊ = ÷[FÊ(s+) ≠ FÊ(s≠)] for Ê œ {h, ¸}. Dividing the

left inequality of (1.29) by e≠÷(1≠Fh(s≠))

e≠÷(1≠F¸(s≠)) , it becomes 1 >
exh ≠1

xh
ex¸ ≠1

x¸

, which holds because
ez≠1

z is strictly increasing in z.
If, on the other hand, the right inequality of (1.29) is divided by e≠÷(1≠Fh(s+))

e≠÷(1≠F¸(s+)) , it

becomes
1≠exh

xh
1≠ex¸

x¸

> 1, which is true because 1≠ez

z is strictly decreasing in z.

Step � — can only be an equilibrium if ÷[Fh(s+) ≠ Fh(s≠)] < ÷[F¸(s+) ≠ F¸(s≠)].

Suppose to the contrary that — is an equilibrium, but ÷[Fh(s+) ≠ Fh(s≠)] Ø
÷[F¸(s+) ≠ F¸(s≠)].32 Consider a deviation to b + ‘ by any s œ [s≠, s+]. There are
two possibilities:

First, bp + ‘ can be a pooling bid meaning that there exists an interval of signals
[sÕ

≠, sÕ
+] such that ’s œ [sÕ

≠, sÕ
+] it holds that —(s) = bp + ‘ and ”= bp + ‘ otherwise.

Since s̆ < s+ Æ sÕ
≠, this implies that ÷[Fh(sÕ

+) ≠ Fh(sÕ
≠)] Ø ÷[F¸(sÕ

+) ≠ F¸(sÕ
≠)] and

E[v|win with bp + ‘; —]
Step 2

Ø E[v|s(1) Æ sÕ
≠]

Lemma 1.2
Ø E[v|s(1) Æ s+]

Step 2
Ø E[v|win with bp; —].

If bp + ‘ is not played with positive probability, then it wins whenever s(1) Æ y

for some y Ø s+, which means that E[v|win with bp + ‘, s; —] = E[v|s(1) Æ y, s]. This
implies that

E[v|win with bp + ‘; —] = E[v|s(1) Æ y]
Lemma 1.2

Ø E[v|s(1) Æ s+]
Step 2

Ø E[v|win with bp; —].

In either case, it follows that E[v|win with bp + ‘, s; —] Ø E[v|win with bp, s; —] Ø
bp, where the latter inequality follows by individual rationality (cf. (1.5)). Since
a deviation to bp + ‘ discretely increases the winning probability by avoiding the
tie-break, it is always profitable for ‘ su�ciently small. Thus, — cannot be an
equilibrium when ÷[Fh(s+) ≠ Fh(s≠)] Ø ÷[F¸(s+) ≠ F¸(s≠)] which proves the last
assertion.

32Note that because s̆ : ÷fh(s̆)
÷f¸(s̆) = 1, it follows from the MLRP that s+ > s̆.
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�.A.� Proof of Lemma �.�

We follow the steps as in the body of the text and only derive Step 2.

Step � There exists a function B(÷) < 1 with B(÷) æ 1 such that

bp ≠ v¸

vh ≠ bp
Ø fl

1 ≠ fl

fh(s̆)
f¸(s̆)

fi+
h

fi+
¸

B(÷). (1.30)

Signal s̆ has an incentive to deviate from bp to a marginally higher bid (deviation
2), unless U(bp|s̆; —ú) Ø lim‘√0 U(bp + ‘|s̆; —ú), that is

flfh(s̆)fi¶
h(vh ≠ bp) + (1 ≠ fl)f¸(s̆)fi¶

¸ (v¸ ≠ bp)
flfh(s̆) + (1 ≠ fl)f¸(s̆)

Ø flfh(s̆)fi+
h (vh ≠ bp) + (1 ≠ fl)f¸(s̆)fi+

¸ (v¸ ≠ bp)
flfh(s̆) + (1 ≠ fl)f¸(s̆)

Rearranging this inequality gives

bp ≠ v¸

vh ≠ bp
Ø fl

1 ≠ fl

fh(s̆)
f¸(s̆)

fi+
h ≠ fi¶

h

fi+
¸ ≠ fi¶

¸

.

The last fraction can be replaced by

fi+
h ≠ fi¶

h

fi+
¸ ≠ fi¶

¸

= fi+
h ≠ fi¶

h

fi+
¸ ≠ fi¶

¸

1fi+
h

fi+
¸

2≠11fi+
h

fi+
¸

2
=

1 ≠ 1≠e≠÷Fh(s̆)
÷Fh(s̆)

1 ≠ 1≠e≠÷F¸(s̆)
÷F¸(s̆)

1fi+
h

fi+
¸

2
= B(÷)fi+

h

fi+
¸

,

where B(÷) =
1≠ 1≠e≠÷Fh(s̆)

÷Fh(s̆)

1≠ 1≠e≠÷F¸(s̆)
÷F¸(s̆)

æ 1 because ÷FÊ(s̆) æ Œ for Ê œ {h, ¸}.

�.A.� Proof of Lemma �.�

We follow the steps as in the body of the text and only derive Step 2.

Step � There exists a function E(÷) > 1 with E(÷) æ 1 such that

bp ≠ v¸

vh ≠ bp
Ø fl

1 ≠ fl

÷fh(s)
÷f¸(s)

fi≠
h

fi≠
¸

E(÷). (1.31)

In equilibrium, no signal s < s≠ has an incentive to deviate from —ú(s) to any b œ
(—ú(s), bp). In particular, there is no incentive to deviate to a bid marginally below
bp (deviation 2), that is, U(—ú(s)|s; —ú) Ø lim‘√0 U(bp ≠ ‘|s; —ú). Using equation
(1.21), this rearranges to

bp ≠ v¸

vh ≠ bp
Ø fl

1 ≠ fl

÷fh(s)
÷f¸(s)

fi≠
h

fi≠
¸

1
1 ≠ fih(—ú(s); —ú)

fi≠
h

vh ≠ v¸

vh ≠ bp

2
. (1.32)
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Observe that the right side of equation (1.32) is decreasing in fih(—ú(s); —ú). Thus,
we can find the most conservative lower bound on bp by bounding fih(—ú(s); —ú) from
above.

Consider now s and note that monotonicity implies that

fih(—ú(s); —ú) Æ e≠÷(1≠Fh(s≠)) ≠ e≠÷(1≠Fh(s))

÷[Fh(s≠) ≠ Fh(s)] = e≠÷(1≠Fh(s≠)) ≠ e≠÷

÷Fh(s≠) = fīh.

Thus, if we plug s into equation (1.32), the lower bound becomes

bp ≠ v¸

vh ≠ bp
Ø fl

1 ≠ fl

fh(s)
f¸(s)

fi≠
h

fi≠
¸

1
1 ≠ fīh

fi≠
h

vh ≠ v¸

vh ≠ bp

2
.

By inspection, fīh

fi≠
h

æ 0 such that E(÷) = 1≠ fih

fi≠
h

vh≠v¸
vh≠bp

æ 1, unless bp æ vh. However,
by individual rationality, bp Æ E[v|win with bp, s+; —ú] < E[v|s+] Æ E[v], such that
this cannot be the case and E(÷) æ 1.

�.A.� Proof of Lemma �.�

Since we only deal with concordant strategies, all signals report the same message
space M . Further, reporting a di�erent space is weakly dominated by reporting M ,
any m œ M and bidding v¸. To keep notation cleaner, we, hence, drop the explicit
reference to M from all expressions.

Step � Consider any concordant strategy ‡ and two actions (m, b) and (mÕ, bÕ) s.t.
fic

h(mÕ, bÕ; ‡) > fic
h(m, b; ‡). If U c(mÕ, bÕ|s; ‡) Ø U c(m, b|s; ‡), then U c(mÕ, bÕ|sÕ; ‡) Ø

U c(m, b|sÕ; ‡) for sÕ > s. The second inequality is strict if and only if fh(sÕ)
f¸(sÕ) > fh(s)

f¸(s) .

Note that fic
h(mÕ, bÕ; ‡) > fic

h(m, b; ‡) implies that fic
¸(mÕ, bÕ; ‡) > fic

¸(m, b; ‡) since
the winning probabilities are isomorphic across states.

From fic
h(mÕ, bÕ; ‡) > fic

h(m, b; ‡), it follows that bÕ Ø b Ø v¸ which implies that
(v¸ ≠ bÕ) Æ (v¸ ≠ b) Æ 0. If bÕ = b, then fic

h(mÕ, bÕ; ‡)(vh ≠ bÕ) > fic
h(mÕ, b; ‡)(vh ≠ b)

directly. If bÕ > b, on the other hand, fic
¸(mÕ, bÕ; ‡) > fic

¸(m, b; ‡) that fic
¸(mÕ, bÕ; ‡)(v¸≠

bÕ) < fic
¸(m, b; ‡)(v¸ ≠ b). In this case, it follows from U c(mÕ, bÕ|s; ‡) Ø U c(m, b|s; ‡)

also requires that fic
h(mÕ, bÕ; ‡)(vh ≠ bÕ) > fic

h(m, b; ‡)(vh ≠ b).
Rearranging U c(mÕ, bÕ|s; ‡) Ø U c(m, b|s; ‡) yields

fl÷fh(s)
(1 ≠ fl)÷f¸(s) [fic

h(mÕ, bÕ; ‡)(vh ≠ bÕ) ≠ fic
h(m, b; ‡)(vh ≠ b)]

Ø fic
¸(m, b; ‡)(v¸ ≠ b) ≠ fic

¸(mÕ, bÕ; ‡)(v¸ ≠ bÕ).

If sÕ > s is such that fh(sÕ)
f¸(sÕ) > fh(s)

f¸(s) , the left side is strictly larger for sÕ and thus
U c(mÕ, bÕ|s; ‡) > U c(m, b|s; ‡).
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Step � The set of interim beliefs that imply indi�erence between two actions which
win with di�erent probabilities, L = {fh(s)

f¸(s) : ÷(m, b), (mÕ, bÕ) with fic
h(m, b; ‡̂ú) ”=

fih(mÕ, bÕ; ‡̂ú) and U c(m, b|s; ‡ú) = U c(mÕ, bÕ|s; ‡ú)}, is countable.

By construction, ’l œ L there exist two tuples (ml
≠, bl

≠), (ml
+, bl

+) with
fic

h(ml
≠, bl

≠; ‡̂ú) < fic
h(ml

+, bl
+; ‡̂ú) such that signals sl : fh(sl)

f¸(sl) = l are indi�er-
ent between these two bids, U c(ml

≠, bl
≠|sl; ‡ú) = U c(ml

+, bl
+|sl; ‡ú). Furthermore,

there exists a ql œ Q s.t. fic
h(ml

≠, bl
≠; ‡̂ú) < ql < fic

h(ml
+, bl

+; ‡̂ú). By Step 1,
fic

h(ml
+, bl

+; ‡̂ú) Æ fic
h(mlÕ

≠, blÕ
≠; ‡̂ú) for all l < lÕ, which implies that ql < qlÕ . Be-

cause Q is countable, so is L.

Step � Let ‡ú be a concordant equilibrium. Then, there exists a m-equivalent, con-
cordant equilibrium ‡̂ú with the following property: If (m, b) and (mÕ, bÕ) are in the
support of ‡̂ú and fic

h(m, b; ‡̂ú) = fic
h(mÕ, bÕ; ‡̂ú), then (m, b) = (mÕ, bÕ).

If (m, b) and (mÕ, bÕ) are in the support of ‡ú and fic
h(m, b; ‡ú) = fic

h(mÕ, bÕ; ‡ú)
(and thereby fic

¸(m, b; ‡) = fic
¸(mÕ, bÕ; ‡)), then b = bÕ. Otherwise, the action-tuple

with the higher bid is dominated and, hence, cannot be part of a best response.
If (m, b) and (mÕ, b) are in the support of ‡ú, and fic

h(m, b; ‡ú) = fic
h(mÕ, b; ‡ú),

then the report m is, conditional on b, irrelevant. Thus, any (mÕ, b) can be replaced
by (m, b) without altering winning probabilities or payo�s, receiving a m-equivalent
equilibrium ‡̂ú which has the asserted properties.

Using Step 3, in equilibrium, any winning probability can be identified with a
unique message/bid combination, (m, b). By Step 1, bidders with higher beliefs
choose actions tuples which win with higher probabilities and by Step 2 there are at
most countably many beliefs which are indi�erent between multiple action-tuples.
We, thus, can proceed as in Lemma 1.1 and reorder the actions in such a way, that
the strategies are pure and the probability to win is nondecreasing in s. In the
resulting strategy ‡̂ú bids are nondecreasing in the signal, and, given a bid, the
reports are nondecreasing in the signal.

�.A.� Proof of Proposition �.�

Consider a sequence of communication extensions (�c
n)nœN, along which ÷n æ Œ.

By Lemma 1.8, there exists an equilibrium for each n denoted (economizing on the
ú) ‡n. For any ‡n, we adopt the notation that ‡n(s) = (Mn, µn(s), —n(s)) for some
Mn and functions µn : [s, s̄] æ Mn and —n : [s, s̄] æ [v¸, vh]. Since we look at
concordant equilibria, we drop the explicit reference Mn, unless its central to the
argument.
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Step � Fix two signals s≠ < s+ with s+ > s̆. If —n(s≠) = —n(s+) on exactly
[s≠, s+], then, s≠ < s̆. Further, there is a signal s¶ with s≠ Æ s¶ < s̆ such that
‡n(s¶) = ‡n(s+).

First, suppose that µn(s) is strictly increasing on some sub-interval [sÕ
≠, sÕ

+] ™
[s≠, s+]. Then, any ŝ œ [ŝÕ

≠, ŝÕ
+] wins whenever s(1) Æ ŝ, that is with probability

e≠÷n
Ê(1≠FÊ(ŝ)). Since the conditional expected value E[v|s(1) Æ s, s] is strictly increas-

ing above s̆, it has to be that sÕ
+ Æ s̆. Otherwise, any signal sÕ œ [s̆, sÕ

+) would have
a strict incentive to mimic sÕ

+, winning more often, paying the same, and receiving
a higher expected value.33

Since µn(s) cannot be strictly increasing above s̆, there has to be a signal s¶ < s+

such that µn(s) = µn(s+) for all s œ [s¶, s+], meaning that ‡n(s) = ‡n(s+) for all
s œ [s¶, s+].

Now suppose that s¶ Ø s̆, such that [Fh(s+) ≠ Fh(s¶)] < [F¸(s+) ≠ F¸(s¶)]. By
inspection, the argument in the proof of Step 2 of Lemma 1.4 is also valid in the
communication extension. Thus, there is a profitable deviation for all s œ [s¶, s+].
By choosing bid marginally above —n(s) = —n(s+) and an arbitrary report m œ Mn,
signal s wins more often and receives a good of a higher expected value.

Step � Fix any ‘ > 0. If n is su�ciently large, —n(s) is strictly increasing on (s̆+‘, s̄]
and µn(s) is irrelevant on that interval.

Suppose to the contrary that there is a sequence of equilibria (‡n)nœN for which
the claim is violated: for any n, there is an interval of signals [sn

≠, sn
+] with sn

+ > s̆+‘

along which the bid is constant and equal to bn. By Step 0, there is a signal sn
¶ < s̆

such that ‡n(sn
¶ ) = ‡n(sn

+) = (mn, bn). Without loss, let sn
¶ = sn

≠. Note that by
construction, —n(s) > bn for all s > s+

n .
The proof now follows by contradiction, which is structured into three parts.

First, Substep 1 derives an upper bound on bn, and Substep 2 a lower bound on bn.
Then, Substep 3 shows that when n is su�ciently large, the lower bound exceeds
the upper bound which completes the proof.

Note that because —n(s) > bn for all s > s+
n , a bid marginally above bn wins

the auction whenever s(1) Æ sn
+, independent of the signal m œ Mn. To simplify

notation, we abbreviate the implied winning probabilities from bidding (mn, bn) and
bidding marginally more in state Ê œ {h, ¸} by

fin
Ê = fic

Ê(mn, bn; ‡n) = e≠÷n
Ê(1≠FÊ(sn

+)) ≠ e≠÷n
Ê(1≠FÊ(sn

≠))

÷n
Ê(FÊ(sn

+) ≠ FÊ(sn
≠)) ,

fi+,n
Ê = lim

‘æ0
fic

Ê(mn, bn + ‘; ‡n) = e≠÷n
Ê(1≠FÊ(sn

+)).

33Individual rationality would imply that —n(s≠) = —n(sÕ) Æ E[s(1) Æ sÕ, sÕ] < E[v|s(1) Æ sÕ
+, sÕ].
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Substep � An upper bound on bn is given by

bn ≠ v¸

vh ≠ bn
Æ

flfh(sn
≠)

(1 ≠ fl)f¸(sn
≠)

fin
h

fin
¸

. (1.33)

The individual rationality argument (1.5) remains unaltered in the com-
munication extension. Since —n(sn

≠) = bn, this means that bn Æ
E[v|win with (mn, bn), sn

≠; ‡n], which rearranges to equation (1.33).

Substep � A lower bound on bn is given by

bn ≠ v¸

vh ≠ bn
Ø fl

1 ≠ fl

fh(sn
+)

f¸(sn
+)

fi+,n
h ≠ fin

h

fi+,n
¸ ≠ fin

¸

. (1.34)

Since ‡n is an equilibrium, there can not be a profitable deviation. In particular,
U c(mn, bn|sn

+; ‡n) Ø lim‘æ0 U c(mn, bn + ‘|sn
+; ‡n), that is

flfh(sn
+)fin

h(vh ≠ bn) + (1 ≠ fl)f¸(sn
+)fin

¸ (v¸ ≠ bn)
flfh(sn

+) + (1 ≠ fl)f¸(sn
+)

Ø
flfh(sn

+)fi+,n
h (vh ≠ bn) + (1 ≠ fl)f¸(sn

+)fi+,n
¸ (v¸ ≠ bn)

flfh(sn
+) + (1 ≠ fl)f¸(sn

+) ,

which rearranges to (1.34).

Substep � When n is su�ciently large, the upper bound on bn expressed by (1.33)
is smaller than the lower bound on bn given by inequality (1.34).

Combining inequalities (1.33) and (1.34) yields

flfh(sn
≠)

(1 ≠ fl)f¸(sn
≠)

fin
h

fin
¸

Ø fl

1 ≠ fl

fh(sn
+)

f¸(sn
+)

fi+,n
h ≠ fin

h

fi+,n
¸ ≠ fin

¸

≈∆
fh(sn

≠)
f¸(sn

≠) Ø
fh(sn

+)
f¸(sn

+)

fi+,n
h
fin

h
≠ 1

fi+,n
¸
fin

¸
≠ 1

.

Note that because sn
+ > s̆, it follows that fh(sn

+)
f¸(sn

+) > 1, such that is has to hold that

fh(sn
≠)

f¸(sn
≠) >

fi+,n
h
fin

h
≠ 1

fi+,n
¸
fin

¸
≠ 1

. (1.35)

Since sn
≠ < s̆ < s̆ + ‘ Æ sn

+, it has to be true that ÷[FÊ(sn
+) ≠ FÊ(sn

≠)] æ Œ for
Ê œ {h, ¸}. Thus, it follows from

fi+,n
Ê

fin
Ê

=
÷n[FÊ(sn

+) ≠ FÊ(sn
≠)]

1 ≠ e≠÷n[FÊ(sn
+)≠FÊ(sn

≠)] that lim
næŒ

fi+,n
h
fin

h
≠ 1

fi+,n
¸
fin

¸
≠ 1

= lim
næŒ

[Fh(sn
+) ≠ Fh(sn

≠)]
[F¸(sn

+) ≠ F¸(sn
≠)] .
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Further, the MLRP implies that

[Fh(sn
+) ≠ Fh(sn

≠)] =
⁄ sn

+

sn
≠

fh(z)dz =
⁄ sn

+

sn
≠

f¸(z)fh(z)
f¸(z) dz

Ø
⁄ sn

+

sn
≠

f¸(z)
fh(sn

≠)
f¸(sn

≠) dz =
fh(sn

≠)
f¸(sn

≠) [F¸(sn
+) ≠ F¸(sn

≠)],

which rearranges to Fh(sn
+)≠Fh(sn

≠)
F¸(sn

+)≠F¸(sn
≠) Ø fh(sn

≠)
fh(sn

≠) . Thus, equation (1.35) is necessarily
violated when n is large.

Step � Fix any ‘ œ (0, s̆≠s
2 ). When n is su�ciently large, @(M, m, b) s.t. fic

Ê(‡n(s +
‘); ‡n) < fic

Ê(M, m, b; ‡n) < fic
Ê(‡n(s̆ ≠ ‘); ‡n) for Ê œ {h, ¸}. As a result, —n(s) is

constant on [s + ‘, s̆ ≠ ‘].

Since the winning probabilities are isomorphic across states, if the claim is vio-
lated in one state, it is also violated in the other. Suppose to the contrary that there
exists an ‘ œ (0, s̆≠s

2 ) and a subsequence of equilibria (‡n)nœN for which such a devi-
ation denoted by (M Õ

n, mÕ
n, bÕ

n) exists. It follows immediately that M Õ
n = Mn. Oth-

erwise, the deviation only wins when the bidder is alone. Henceforth, let Mn = M Õ
n

and drop the explicit reference from the expressions.
The rest of the for this step is structured into three substeps which yield a

contradiction. First, Substep 1 derives an upper bound on bÕ
n and Substep 2 a lower

bound. Then, Substep 3 shows that when n is su�ciently large, the lower exceeds
the upper bound, which yields the contradiction. To simplify notation, define signals
sn

≠ = sup{s : ‡n(s) = ‡n(s + ‘)} and sn
+ = inf{s : ‡n(s) = ‡n(s̆ ≠ ‘)} and fix some

signal s++ > s̆.

Substep � An upper bound on bÕ
n is given by

bÕ
n ≠ v¸

vh ≠ bÕ
n

Æ flfh(s++)
(1 ≠ fl)f¸(s++)

e≠÷n(1≠Fh(s++))

e≠÷n(1≠F¸(s++) . (1.36)

By Step 2, s++ > s̆ does not pool when n is su�ciently large, and, hence, wins
whenever s(1) Æ s++, such that fic

Ê(‡n(s++); ‡n) = e≠÷n(1≠FÊ(s++)) for Ê œ {h, ¸}.
Since the individual rationality argument for equation (1.5) remains unaltered in
the communication extension, an upper bound on —n(s++) is given by

—n(s++) ≠ v¸

vh ≠ —n(s++) Æ flfh(s++)
(1 ≠ fl)f¸(s++)

e≠÷n(1≠Fh(s++))

e≠÷n(1≠F¸(s++) .

Because the left side of the inequality is increasing in bn and —n(s++) Ø bÕ
n, the

upper bound (1.36) follows.
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Substep � A lower bound on bÕ
n is given by

bÕ
n ≠ v¸

vh ≠ bÕ
n

Ø fl

1 ≠ fl

fh(s)
f¸(s)

fic
h(mÕ

n, bÕ
n; ‡n)

fic
¸(mÕ

n, bÕ
n; ‡n) Q(n), (1.37)

where Q(n) is an increasing function with limnæŒ Q(n) = 1.

First, we want to find a lower bound on fic
Ê(‡n(s); ‡n). By monotonicity, this

probability is maximal if ‡n(s) = ‡n(s + ‘). Further, if fic
Ê(‡n(s + ‘); ‡n) =

fic
Ê(‡n(s); ‡n), then it attains the highest value in either state Ê œ {h, ¸} if all signals

up to sn
≠ pool on the same action-tuple, that is if ‡n(s + ‘) = ‡n(s) for s < sn

≠. As
a result,

fic
Ê(‡n(s); ‡n) Æ e≠÷n

Ê(1≠FÊ(sn
≠)) ≠ e≠÷

÷n
ÊFÊ(sn

≠) = fi≠,n
Ê .

Given this lower bound and because —(s) Ø v¸, we can bound

U c(‡n(s)|s; ‡n) Æ flfh(s)fi≠,n
h (vh ≠ v¸) + (1 ≠ fl)f¸(s)fi≠,n

¸ (v¸ ≠ v¸)
flfh(s) + (1 ≠ fl)f¸(s) . (1.38)

In equilibrium, it has to hold that U c(‡n(s)|s; ‡n) Ø U c(mn, bÕ
n|s; ‡n). Using the

lower bound on (1.38), this rearranges to

bÕ
n ≠ v¸

vh ≠ bÕ
n

Ø fl

1 ≠ fl

fh(s)
f¸(s)

fic
h(mÕ

n, bÕ
n; ‡n)

fic
¸(mÕ

n, bÕ
n; ‡n)

1
1 ≠ fi≠,n

h

fic
h(mÕ

n, bÕ
n; ‡n)

vh ≠ v¸

vh ≠ bÕ
n

2
.

Note that (mÕ
n, bÕ

n) wins at least whenever s(1) Æ sn
≠, such that fic

h(mÕ
n, bÕ

n; ‡n) Ø

e≠÷(1≠Fh(sn
≠)). Thus fi≠,n

h /fio,n
h æ 0 and Q(n) = 1 ≠ fi≠,n

h
fic

h(mÕ
n,bÕ

n;‡n)
vh≠v¸
vh≠bÕ

n
æ 1, unless

bÕ
n æ vh. However, by individual rationality, bÕ

n Æ E[v|win with mn, bÕ
n, sn

≠; ‡n] <

E[v|sn
≠] < E[v], such that Q(n) æ 1.

Substep � When n is su�ciently large, the upper bound on bÕ
n expressed by inequality

(1.36) is smaller than the lower bound on bÕ
n given by inequality (1.37).

Combining inequalities (1.36) and (1.37) yields

flfh(s++)
(1 ≠ fl)f¸(s++)

e≠÷n(1≠Fh(s++))

e≠÷n(1≠F¸(s++) Ø fl

1 ≠ fl

fh(s)
f¸(s)

fic
h(mÕ

n, bÕ
n; ‡n)

fic
¸(mÕ

n, bÕ
n; ‡n) Q(n),

which rearranges to

fh(s++)
f¸(s++)

f¸(s)
fh(s) Ø

1e≠÷n(1≠Fh(s++))

e≠÷n(1≠F¸(s++)

2≠1 fic
h(mn, bn; ‡n)

fic
¸(mn, bn; ‡n) Q(n). (1.39)

Observe that because fic
Ê(mn, bn; ‡n) < e≠÷n(1≠FÊ(sn

+)) for Ê œ {h, ¸}, inequality
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(1.29) and sn
+ < s̆ imply that

fic
h(mn, bn; ‡n)

fic
¸(mn, bn; ‡n) Ø e≠÷n(1≠Fh(sn

+))

e≠÷n(1≠F¸(sn
+)) Ø e≠÷n(1≠Fh(s̆≠‘))

e≠÷n(1≠F¸(s̆≠‘)) .

Thus, a necessary condition for inequality (1.39) to hold is

fh(s++)
f¸(s++)

f¸(s)
fh(s) Ø

1e≠÷n(1≠Fh(s++))

e≠÷n(1≠F¸(s++)

2≠1 e≠÷n(1≠Fh(s̆≠‘))

e≠÷n(1≠F¸(s̆≠‘)) Q(n).

However, since F¸(s++)≠F¸(s̆≠‘) > Fh(s++)≠Fh(s̆≠‘) it follows that ÷n[F¸(s++)≠
F¸(s̆ ≠ ‘) ≠ Fh(s++) + Fh(s̆ ≠ ‘)] æ Œ, such that the right side grows without bound
while the left stays constant. Thus, inequality (1.39) is violated when n is large,
which proves the claim.

Step � Fix any ‘ œ (0, s̆≠s
2 ). When n is su�ciently large, there are two dis-

joint, adjacent intervals In and Jn with [s + ‘, s̆ ≠ ‘] µ In fi Jn. Signals sI œ In

choose ‡n(sI) = (Mn, mn
I , bn) and signals sJ œ Jn choose ‡n(sJ) = (Mn, mn

J , bn).
There is no mn œ Mn s.t. mn

I < mn < mn
J , which implies that @(M, m, b) s.t.

fic
Ê(‡n(sI); ‡n) < fic

Ê(M, m, b; ‡n) < fic
Ê(‡n(sJ); ‡n) for Ê œ {h, ¸}. Last, the expected

number of bidders in both intervals is larger than 1
‘ .

Fix any ‘ > 0 su�ciently small such that fh(s+‘)
f¸(s+‘)

F¸(s̆≠‘)
Fh(s̆≠‘) < fh(s̆≠‘)

f¸(s̆≠‘) . Notice that
such an ‘ exists, because fh(s)

f¸(s)
F¸(s̆)
Fh(s̆) < 1 = fh(s̆)

f¸(s̆) and the expressions are continuous
in its arguments.

Define (mI
n, bn) = ‡n(s + ‘) and let In = {s : (µn(s), —n(s)) = (mI

n, bn)} be
the interval of signals which choose the same action-tuple as s + ‘. Further, let
mJ

n = inf{m œ Mn : m > mI
n} be the next higher report from Mn and Jn =

{s : (µn(s), —n(s)) = (mJ
n, bn)} be the interval of signals which choose the same bid

as s + ‘, but this higher report.34

By Step 3 [s + ‘, s̆ ≠ ‘] µ In fi Jn and, apart from the last, all the
other properties follow by construction. Thus, we only need to check that
s

In
÷nfÊ(s)ds,

s
Jn

÷nfÊ(s)ds æ Œ for Ê œ {h, ¸}. Observe that it su�ces to show
the convergence in state h.

First, consider interval In with bounds denoted sI,n
≠ = inf In and sI,n

+ = sup In

and suppose to the contrary that ÷n(Fh(sI,n
+ ) ≠ Fh(sI,n

+ )) ”æ Œ. Then, there
exists a subsequence along which sI,n

+ ≠ sI,n
≠ æ 0, which, by construction, means

that sI,n
+ , sI,n

≠ æ s + ‘. This implies, however, that when n is su�ciently large
34It might happen that there is no m œ Mn : m > mI

n. In this case, all s > sup In bid —n(s) > bn,
such that choosing a m > mI

n is equivalent to choosing a marginally higher bid. Thus, it is without
loss to assume that the report exists and, if necessary, approximate the action-tuple by choosing a
marginally higher bid.
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fic
h(‡n(s + ‘

2); ‡n) < fic
h(‡n(s + ‘); ‡n) < fic

h(‡n(s̆ ≠ ‘
2); ‡n), which is a contradiction

to Step 3. Thus,
s

In
÷nfh(s)ds æ Œ.

Second, consider interval Jn with bounds denoted sJ,n
≠ = inf Jn = sup In as well

as sJ,n
+ = sup Jn.35 Suppose to the contrary that ÷n(Fh(sJ,n

+ ) ≠ Fh(sJ,n
+ )) ”æ Œ. In

this case, there is a subsequence along which sJ,n
≠ , sJ,n

+ converge to some common limit
sJ . Without loss, let the original sequence be this subsequence. Notice that it cannot
be that sJ < s̆≠‘. Otherwise, fic

h(‡n(s+‘); ‡n) < fic
h(mJ

n, bn; ‡n) < fic
h(‡n(s̆≠‘); ‡n),

which is a contradiction to Step 3. Since the same is true for any ‘Õ < ‘ and
sJ < s̆ ≠ ‘Õ, it follows that sJ Ø s̆. In the following, we only concentrate on this
remaining case.

We, hence, suppose that sJ,n
≠ , sJ,n

+ converge to some sJ Ø s̆, such that
÷n(Fh(sJ,n

+ ) ≠ Fh(sJ,n
+ )) ”æ Œ. The contradiction is created in four steps. First,

Substep 0 shows that the inference from winning with (mJ
n, bn) is approximately

the same as from winning whenever s(1) Æ sI,n
+ . Then, Substep 1 derives an upper

bound on bn and Substep 2 a lower bound. Substep 3 shows that the lower exceeds
the upper bound when n is su�ciently large, which yields a contradiction. To sim-
plify notation, abbreviate the probabilities to win with action-tuple (mI,n

n , bn) by
fiI,n

Ê = fic
Ê(mI,n

n , bn); ‡n) and with action-tuple (mJ,n
n , bn) by fiJ,n

Ê = fic
Ê(mJ,n

n , bn); ‡n)
for Ê œ {h, ¸}.

Substep �
fiJ,n

h

fiJ,n
¸

= e≠÷n(1≠Fh(sJ,n
≠ ))

e≠÷n(1≠Fh(sJ,n
≠ ))

D(n), (1.40)

where D(n) is a function with limnæŒ D(n) = 1.

If ÷n[Fh(sJ,n
+ ) ≠ Fh(sJ,n

≠ )] æ 0, then ÷n[F¸(sJ,n
+ ) ≠ F¸(sJ,n

≠ )] æ 0 and

D(n) = fiJ,n
h

fiJ,n
¸

1e≠÷n(1≠Fh(sJ,n
≠ ))

e≠÷n(1≠F¸(sJ,n
≠ ))

2≠1

=
e

≠÷n(1≠Fh(s
J,n
+ ))≠e

≠÷n(1≠Fh(s
J,n
≠ ))

÷n(Fh(sJ,n
+ )≠Fh(sJ,n

≠ ))

e
≠÷n(1≠F¸(s

J,n
+ ))≠e

≠÷n(1≠F¸(s
J,n
≠ ))

÷n(F¸(sJ,n
+ )≠F¸(sJ,n

≠ ))

1e≠÷n(1≠Fh(sJ,n
≠ ))

e≠÷n(1≠F¸(sJ,n
≠ ))

2≠1

=
e

÷n(Fh(s
J,n
+ )≠Fh(s

J,n
≠ ))≠1

÷n(Fh(sJ,n
+ )≠Fh(sJ,n

≠ ))

e
÷n(F¸(s

J,n
+ )≠F¸(s

J,n
≠ ))≠1

÷n(F¸(sJ,n
+ )≠F¸(sJ,n

≠ ))

æ 1. by l’Hospital.

If lim ÷n[Fh(sJ,n
+ ) ≠ Fh(sJ,n

≠ )] > 0, then sJ = s̆. Otherwise, there is a signal
35If Jn is empty, define sJ,n

≠ = sJ,n
+ = sup In.
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sJ > s̆ which ties with positive probability, which is at odds with Step 3 when
n is su�ciently large. Since sJ = s̆, this means that [Fh(sJ,n

+ )≠Fh(sJ,n
≠ )]

[F¸(sJ,n
+ )≠F¸(sJ,n

≠ )] æ 1 and

÷n[Fh(sJ,n
+ ) ≠ Fh(sJ,n

≠ ) ≠ F¸(sJ,n
+ ) + F¸(sJ,n

≠ )] æ 0, such that

D(n) = fiJ,n
h

fiJ,n
¸

1e≠÷n(1≠Fh(sJ,n
≠ ))

e≠÷n(1≠F¸(sJ,n
≠ ))

2≠1

=
e

≠÷n(1≠Fh(s
J,n
+ ))≠e

≠÷n(1≠Fh(s
J,n
≠ ))

÷n(Fh(sJ,n
+ )≠Fh(sJ,n

≠ ))

e
≠÷n(1≠F¸(s

J,n
+ ))≠e

≠÷n(1≠F¸(s
J,n
≠ ))

÷n(F¸(sJ,n
+ )≠F¸(sJ,n

≠ ))

1e≠÷n(1≠Fh(sJ,n
≠ ))

e≠÷n(1≠F¸(sJ,n
≠ ))

2≠1

=
F¸(sJ,n

+ ) ≠ F¸(sJ,n
≠ )

Fh(sJ,n
+ ) ≠ Fh(sJ,n

≠ )

· e÷n[Fh(sJ,n
+ )≠Fh(sJ,n

≠ )≠F¸(sJ,n
+ )+F¸(sJ,n

≠ )] ≠ e≠÷n[F¸(sJ,n
+ )≠F¸(sJ,n

≠ )]

1 ≠ e≠÷n[F¸(sJ,n
+ )≠F¸(sJ,n

≠ )]
æ 1.

Substep � An upper bound on bn is given by

bn ≠ v¸

vh ≠ bn
Æ flfh(s + ‘)

(1 ≠ fl)f¸(s + ‘)
fiI,n

h

fiI,n
l

. (1.41)

The individual rationality argument for equation (1.5) remains unaltered in the
communication extension. Applied to signal s+‘, which chooses (bn, mI

n), it provides
the inequality.

Substep � A lower bound on bn is given by

bn ≠ v¸

vh ≠ bn
Ø

flfh(sI,n
+ )

(1 ≠ fl)f¸(sI,n
+ )

fiJ,n
h ≠ fiI,n

h

fiJ,n
¸ ≠ fiI,n

l

. (1.42)

Consider signal sI,n
+ = sJ,n

≠ , which is indi�erent (if Jn is non-empty) or
prefers (if Jn is empty) action (mI

n, bn) over (mJ
n, bn). Then, U c(mI

n, bn|sI,n
+ ; ‡n) Ø

U c(mJ
n, bn|sI,n

+ ; ‡n) implies that

flfh(sI,n
+ )fiI,n

h (vh ≠ bn) + (1 ≠ fl)f¸(sI,n
+ )fiI,n

¸ (v¸ ≠ bn)
flfh(sI,n

+ ) + (1 ≠ fl)f¸(sI,n
+ )

Ø
flfh(sI,n

+ )fiJ,n
h (vh ≠ bn) + (1 ≠ fl)f¸(sI,n

+ )fiJ,n
¸ (v¸ ≠ bn)

flfh(sI,n
+ ) + (1 ≠ fl)f¸(sI,n

+ )
,

which rearranges to inequality (1.42).

Substep � When n is su�ciently large, the lower bound (1.42) exceeds the upper
bound (1.41).
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Combining equations (1.41) and (1.42) yields

flfh(s + ‘)
(1 ≠ fl)f¸(s + ‘)

fiI,n
h

fiI,n
l

Ø fl

1 ≠ fl

fh(sI,n
+ )

f¸(sI,n
+ )

fiJ,n
h ≠ fiI,n

h

fiJ,n
¸ ≠ fiI,n

¸

,

which rearranges to

fh(s + ‘)
f¸(s + ‘)

1fh(sI,n
+ )

f¸(sI,n
+ )

2≠1
Ø

fiJ,n
h

fiI,n
h

≠ 1

fiJ,n
¸

fiI,n
¸

≠ 1
. (1.43)

Since sI,n
+ = sJ,n

≠ æ s̆, it has to hold in either state Ê œ {h, ¸} that ÷n(FÊ(sn,I
+ ) ≠

FÊ(s + ‘)) æ Œ. Combined with the observations that

fiI,n
Ê Æ e≠÷n(1≠FÊ(sI,n

+ ))

÷n(FÊ(sn,I
+ ) ≠ FÊ(s + ‘))

and fiJ,n
Ê Ø e≠÷n(1≠FÊ(sI,n

+ )),

this implies that fiI,n
Ê

fiJ,n
Ê

æ 0. Hence, the right side of inequality (1.43) converges to

lim
næŒ

fiJ,n
h

fiI,n
h

≠ 1

fiJ,n
¸

fiI,n
¸

≠ 1
= lim

næŒ
fiJ,n

h

fiJ,n
l

1fiI,n
h

fiI,n
l

2≠1 Step 1= lim
næŒ

D(n)e≠÷n(1≠Fh(sJ,n
≠ ))

e≠÷n(1≠Fh(sJ,n
≠ ))

1fiI,n
h

fiI,n
l

2≠1

= lim
næŒ

e≠÷n(1≠Fh(sJ,n
≠ ))

e≠÷n(1≠Fh(sJ,n
≠ ))

F¸(sI,n
+ ) ≠ F¸(sI,n

≠ )
Fh(sI,n

+ ) ≠ Fh(sI,n
≠ )

e≠÷n(1≠F¸(sI,n
+ )) ≠ e≠÷n(1≠F¸(sI,n

≠ ))

e≠÷n(1≠Fh(sI,n
+ )) ≠ e≠÷n(1≠Fh(sI,n

≠ ))

= lim
næŒ

F¸(sI,n
+ ) ≠ F¸(sI,n

≠ )
Fh(sI,n

+ ) ≠ Fh(sI,n
≠ )

1 ≠ e≠÷n(F¸(sI,n
+ )≠F¸(sI,n

≠ ))

1 ≠ e≠÷n(Fh(sI,n
+ )≠Fh(sI,n

≠ ))
= lim

næŒ
F¸(sI,n

+ ) ≠ F¸(sI,n
≠ )

Fh(sI,n
+ ) ≠ Fh(sI,n

≠ )
.

Since sI,n
+ = sJ,n

≠ æ sJ Ø s̆, when n is large, the MLRP implies that
F¸(sI,n

+ )≠F¸(sI,n
≠ )

Fh(sI,n
+ )≠Fh(sI,n

≠ ) Æ F¸(sI,n
≠ )

Fh(sI,n
≠ ) < F¸(s̆≠‘)

Fh(s̆≠‘) . Furthermore, we chose ‘ > 0 s.t.

fh(s+‘)
f¸(s+‘)

F¸(s̆≠‘)
Fh(s̆≠‘) < fh(s̆≠‘)

f¸(s̆≠‘) <
fh(sI,n

+ )
f¸(sI,n

+ ) such that fh(s+‘)f¸(sI,n
+ )

f¸(s+‘)fh(sI,n
+ ) <

F¸(sI,n
+ )≠F¸(sI,n

≠ )
Fh(sI,n

+ )≠Fh(sI,n
≠ ) when

n is large. Thus, inequality (1.43) is violated when n is large, which means that
the lower bound on bn (1.42) exceeds the upper bound (1.41), such that bn can-
not exist. Since (‡n)nœN is a sequence of equilibria, it, therefore, cannot be that
÷n(Fh(sJ,n

+ ) ≠ Fh(sJ,n
+ )) ”æ Œ.

�.A.�� Proof of Lemma �.�

Denote the bid space with k Ø 2 equidistant bids by Bk. Existence is shown by a
fixed point argument on the distribution of bids. Since those are Poisson distributed



�� | Chapter �

and thereby fully described by the mean, we look at the compact set of vectors

� =
Ó 1

⁄(b1|h) ... ⁄(bk|h) ⁄(b1|¸) ... ⁄(bk|¸)
2

:
ÿ

bœBk

⁄(b|Ê) = ÷
Ô

µ R2k,

where ⁄(b|Ê) denotes the expected number of bids b in state Ê.
Let F : � ◆ P(�) be the correspondence which maps any ⁄ into the set of vectors

{⁄̃} that are induced by a pure and nondecreasing best response — : [s, s̄] æ Bk

meaning that ⁄̃(b|Ê) =
s

—≠1(b) ÷fÊ(s)ds for all b œ Bk, and —(s) œ arg maxb U(b|s, ⁄)
for almost all s. Here, U(b|s, ⁄) is the interim expected utility from bidding b,
given the bidders signal s and distribution of (other) bids described by the Poisson
parameter ⁄, which fully determines the probability to win with the bid b.

Because � is compact, to apply Kakutani’s Fixed-Point Theorem, we need to
show that F (⁄) is non-empty, convex valued, and that F has a closed graph.

F (⁄) is non-empty because on the finite set there exists a best response for
any signal s. By Lemma 1.1, these best responses can be reordered such that the
resulting — is pure and nondecreasing.

To show that F (⁄) is convex valued, consider ⁄̃ and ⁄̃Õ from its image. We have
to show that ’– œ [0, 1], –⁄̃ + (1 ≠ –)⁄̃Õ = ⁄̃ú œ F (⁄). ⁄̃ and ⁄̃Õ are induced by two
best responses —̃ and —̃Õ. Consider a mixed strategy that follows —̃ with probability
– and —̃Õ with probability 1≠–. Such a strategy is optimal for the bidders and result
in a distribution of bids ⁄̃ú. By Lemma 1.1, there is a pure, nondecreasing strategy
inducing the same distribution and utilities. Thus ⁄̃ú œ F (⁄).

What remains to be shown is that F has a closed graph. Take any two sequences
⁄n æ ⁄ and ⁄̃n æ ⁄̃ where ⁄̃n œ F (⁄n). We have to show that ⁄̃ œ F (⁄). For every
⁄n there is a nondecreasing best response —n inducing ⁄̃n. By Helly’s Selection The-
orem, there is a point-wise converging subsequence of those —n with a nondecreasing
limit —. Obviously, — induces ⁄̃. Furthermore, because U(b|s, ⁄n) is continuous in
both ⁄n and b, — is a best response to ⁄. Thus, F has a closed graph.

Kakutani’s Fixed-Point Theorem guarantees an equilibrium vector ⁄ œ �, and,
by construction, there exists a pure, nondecreasing strategy — which is a best re-
sponse and induces this ⁄. Thus, — is a pure, nondecreasing and symmetric equilib-
rium.

�.A.�� Proof of Lemma �.��

Take the sequence of auctions on the ever-finer grid (�(k))kœN, denote the sequence
of respective bid spaces by (Bk)kœN and equilibria by (—k)kœN (economizing on the
ú). For every k, denote the on-path winning probability in the high state by fik

h(s) =
fih(—k(s); —k) and define an auxiliary function ”k(b) = max{bÕ œ Bk : bÕ Æ b}.

Since (—k)kœN , (fik
h)kœN and (”k)kœN are sequences of nondecreasing functions,
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by Helly’s Selection Theorem, there is a subsequence along which these functions
converge pointwise to some nondecreasing limit —, fih and ”, respectively. We denote
this subsequence by n and, henceforth, consider it exclusively.

Construct M by including m œ M if and only if there exists a signal s œ [s, s̄]
such that fih(s) = m. Further, define function ‡ú(s) = (M, fih(s), —(s)) for every s.

By construction, properties (i) and (ii) of Lemma 1.10 are fulfilled. Steps 1 and
2 proceed by showing properties (iii) and (iv), before Steps 3 and 4 show that ‡ú is
an equilibrium of communication extension.

Step � fic
Ê(‡ú(s); ‡ú) = limnæŒ fiÊ(—n(s); —n) for every s and Ê œ {h, ¸}.

We focus on state h, the result follows for ¸ because the winning probabilities are
isomorphic across states. Fix any ŝ œ [s, s̄] and define the sets Wn = {s : fin

h(s) <

fin
h(ŝ)}, Tn = {s : fin

h(s) = fin
h(ŝ)}, and Ln = {s : fin

h(s) > fin
h(ŝ)}. Furthermore,

define W = {s : fih(s) < fih(ŝ)}, and T as well as L analogously. Because fin
h is

nondecreasing and converges pointwise, Wn æ W, Tn æ T and Ln æ L.
Given strategy —n, signal ŝ wins against signals from the set Wn, loses against

signals Ln and ties with signals from Tn. We want to show that under strategy
‡ú, signal ŝ wins against signals from the set W , loses against signals L, and ties
with signals from T . If this is true, the convergence of the sets and atomless signal
distribution ensures that the winning probabilities converge.

Fix any sL œ L. When n is su�ciently large, sL œ Ln. Further, it follows from
fin

h(ŝ) < fin
h(sL) that —n(ŝ) < —n(sL). This and the convergence of —n implies that

—(ŝ) Æ —(s). Further, by definition of L and M , µ(sL) = fih(sL) > c(ŝ) = fih(ŝ).
Thus, either sL chooses a higher bid and/or a higher report than ŝ. Thus, ŝ never
wins the auction when sL is present.

The symmetric argument can be made for all signals sW œ W , such that signal
ŝ following ‡ú wins against all signals from W .

Last, fix any sT œ T . Again, when n is su�ciently large, sT œ Tn meaning that
fin

h(sT ) = fin
h(ŝ). This implies that —n(sT ) = —n(ŝ) for all n large, which means that

in the limit —(sT ) = —(ŝ). Further, by definition of T and M , µ(sT ) = fih(sT ) =
c(ŝ) = fih(ŝ). Thus, sT and ŝ choose the same bid and same report, ‡ú(sT ) = ‡ú(ŝ),
meaning that they tie.

Step � For every s, it holds that

lim
næŒ

U(—n(s)|s; —n) = U c(‡ú(s)|s; ‡ú) = U c(M, fih(‡ú(s); ‡ú), —(s)|s; ‡ú).

Since limnæŒ fiÊ(—k(s); —k) = fic
Ê(‡ú(s); ‡ú) in both states Ê œ {h, ¸} and for ev-

ery s, and because —n(s) converges to —(s) for every s, the convergence is immediate
from (1.19).
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Step � For every (M, m, b) with m œ M , there is a sequence of bids (bn)nœN with
bn œ Bn such that bn æ b and fiÊ(bn; —n) æ fic

Ê(m, b; ‡ú) in either state Ê œ {h, ¸}.

Since M is kept fixed throughout the proof, it is dropped from the expressions
for ease of notation. Further, we focus on state h. For state ¸ the result follows
because the winning probabilities are isomorphic across states. By construction of
M , there exists a signal sm such that fic

h(‡ú(sm); ‡ú) = m. The proof is structured
into three cases:

Case � fic
h(m, b; ‡ú) = m If ‡ú(sm) = (m, b), then it follows from

fih(—n(sm); —n) = fin
h(sm) æ m and —n(sm) æ b, that (—n(sm))nœN is the desired

sequence.
If ‡ú(sm) ”= (m, b), it follows from b > —(sm) that fic

h(m, —(sm); ‡ú) = P[s1 Æ
sm|h]. Otherwise, there is a non-trivial interval of signals I = {s : ‡ú(s) =
(m, —(sm))} that is outbid by (m, b), such that (m, b) wins strictly more often,
which violates the definition of m. The same is true, if there is a non-trivial in-
terval I = {s : b > —(s) > —(sm)}. Thus, —(sÕ) > b for all sÕ > sm. Take any
⁄ œ (0, 1) and consider bn = ”n(⁄b + (1 ≠ ⁄)—(sÕ)). Whenever n is su�ciently large,
—n(sm) < bn < —n(sÕ), such that in the limit

fic
h(m, b; ‡ú) = P[s1 Æ sm|h] Æ lim

næŒ
fin

h(bn; —n) Æ P[s1 Æ sÕ|h].

Since this is true for any sÕ > sm and ⁄ arbitrary close to 1, the desired sequence
exists.

If ‡ú(sm) ”= (m, b) because b < —(sm) the construction can be repeated symmet-
rically.

Case �: fic
h(m, b; ‡ú) < m In this case, m breaks any potential tie in on b in

the bidders favor, such that (m, b) wins whenever there is no bid above b. Let
s+ = inf{s : —(s) > b}. Then, fic

h(m, b; ‡ú) = P[s(1) Æ s+|h] and for all sÕ > s+ it
holds that —(sÕ) > b. Take any ⁄ œ (0, 1) and consider bn = ”n(⁄b + (1 ≠ ⁄)—(sÕ)).
When n is large, —n(s+) < bn < —n(sÕ), meaning that in the limit

P[s(1) Æ s+|h] Æ lim
næŒ

fin
h(bn; —n) Æ P[s1 Æ sÕ|h].

Since this is true for any sÕ > s+ and ⁄ arbitrary close to 1, the desired sequence
exists.36

Case �: fic
h(m, b; ‡ú) > m The proof is symmetric to Case 2, with an approxima-

tion from below.

Step � ‡ú is a concordant equilibrium of the communication extension, �c.

36Note that if s+ = s̄, then limnæŒ fin
h (bn; —n) æ 1 with any bn = ”n(⁄b + (1 ≠ ⁄)vh).
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First, deviations to a di�erent M Õ and/or a mÕ ”œ M are dominated by reporting
M , an arbitrary m œ M , and bidding v¸. This action-tuple wins at least whenever
the bidder is alone and generates a strictly positive profit in the high state. Thus, we
restrict attention to deviations (mÕ, bÕ) where mÕ œ M and do not explicitly reference
M in the expressions.

Suppose now there is a signal ŝ and a profitable deviation (mÕ, bÕ) such that
U c(mÕ, bÕ|ŝ; ‡ú) > U c(‡ú(ŝ)|ŝ; ‡ú). By Step 3, there exists a sequence of bids (bn)nœN

with bn æ bÕ such that fiÊ(bn; —n) æ fic
Ê(mÕ, bÕ; ‡ú) in either state Ê œ {h, ¸}.

This means that U(bn|ŝ; —n) æ U c(mÕ, bÕ|ŝ; ‡ú). But then U(—n(ŝ)|ŝ; —n) æ
U c(‡ú(ŝ)|ŝ; ‡ú) (Step 2) implies that when n is su�ciently large, a deviation from
—n(ŝ) to bn must have been profitable for ŝ.37 This is a contradiction.

�.A.�� Proof of Lemma �.��

The “if” part of the statement follows directly by (ii) and (iii) of Lemma 1.10. Thus,
we only show that “only if” part.

Step � If ‡ú(s≠) = ‡ú(s+), then —ú
n(s≠) = —ú

n(s+) whenever n is su�ciently large.

Suppose to the contrary that there is a sequence along which —ú
n(s≠) ”= —ú

n(s+).
Since any —ú

n is nondecreasing, it has to hold that {s : —ú
n(s) œ [—ú

n(s≠), —ú
n(s+)]} ”æ

ÿ. We show that combined, these two conditions imply that |fih(—ú
n(s+); —ú

n) ≠
fih(—ú

n(s≠); —ú
n)| ”æ 0.

If {s : —ú
n(s) œ (—ú

n(s≠), —ú
n(s+))} ”æ ÿ, this follows immediately. Otherwise, ei-

ther {s : —ú
n(s) = —ú

n(s≠)} ”æ ÿ, in which case fih(—ú
n(s+); —ú

n) stays bounded above
fih(—ú

n(s≠); —ú
n) because it wins the uniform tie-break on —ú

n(s≠) with certainty;
and/or {s : —ú

n(s) = —ú
n(s+)} ”æ ÿ, in which case fih(—ú

n(s≠); —ú
n) stays bounded below

fih(—ú
n(s+); —ú

n) because —ú
n(s≠) only wins when no bid at or above —ú

n(s+) is made.
If |fih(—ú

n(s+); —ú
n) ≠ fih(—ú

n(s≠); —ú
n)| ”æ 0, it follows that |fih(—ú

n(s+); —ú
n) ≠

fic
h(‡ú(s+); ‡ú)| + |fih(—ú

n(s≠); —ú
n) ≠ fic

h(‡ú(s≠); ‡ú)| Ø |fih(—ú
n(s+); —ú

n) ≠
fih(—ú

n(s≠); —ú
n)| ”æ 0. This is a contradiction to property (iii) of Lemma

1.10, however, which implies that if ‡ú(s≠) = ‡ú(s+), then fih(—ú
n(s≠); —ú

n) and
fih(—ú

n(s+); —ú
n) converge to some common limit fic

h(‡ú(s≠); ‡ú).

Step � If ‡ú(s≠) ”= ‡ú(s+), then —ú
n(s≠) < —ú

n(s+) whenever n is su�ciently large.

Suppose to the contrary that —ú
n(s≠) = —ú

n(s+) for infinitely many n,
and hence —ú(s≠) = —ú(s+). This implies that limnæŒ fih(—ú

n(s≠); —ú
n) =

limnæŒ fih(—ú
n(s+); —ú

n). Since limnæŒ fih(—ú
n(s); —ú

n) = fic
h(‡ú(s); ‡ú) for all s, this

means that fic
h(‡ú(s≠); ‡ú) = fic

h(‡ú(s+); ‡ú).
37Observe that —n(ŝ) ”= bn for infinitely many n. Otherwise, limnæŒ fih(bn; —n) =

limnæŒ fih(—n(ŝ); —n) = fih(ŝ) and, by construction, (mÕ, bÕ) = ‡ú(ŝ).
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Denote the report which strategy ‡ú assigns to signal s by µ(s). Be-
cause —ú(s≠) = —ú(s+), Lemma 1.7 implies that µ(s≠) Æ µ(s+). We now
show that it cannot be that µ(s≠) < µ(s+) because then fic

h(‡ú(s≠); ‡ú) <

fic
h(‡ú(s+); ‡ú). If {s œ [s≠, s+] : µ(s) œ (µ(s≠), µ(s+))} has positive mass, then

fic
h(‡ú(s≠); ‡ú) < fic

h(‡ú(s+); ‡ú) follows immediately. Otherwise, either {s œ
[s≠, s+] : µ(s) = µ(s≠)} has positive mass, in which case fic

h(µ(s+), —ú(s≠); ‡ú) >

fic
h(µ(s≠), —ú(s≠); ‡ú) because µ(s+) wins the uniform tie-break on (µ(s≠), —ú(s≠))

with certainty; and/or {s œ [s≠, s+] : µ(s) = µ(s≠)} has positive mass, in which
case fic

h(µ(s≠), —ú(s≠); ‡ú) < fic
h(µ(s+), —ú(s≠); ‡ú) because µ(s≠) never wins when

an action-tuple (µ(s+), —ú(s≠)) is played.
Thus, µ(s≠) = µ(s+), such that ‡ú(s≠) = ‡ú(s+), which is a contradiction.

�.B Numerical examples

�.B.� No strictly increasing when ÷ > 1

Lemma �.�� Suppose that v¸ = 0, vh = 1 and both states are equally likely. For
any ÷ > 1, there are signal distributions such that no strictly increasing equilibrium
exists.

Proof. Without loss, let the signal space be [0, 1]. In a strictly increasing equilibrium,
the lowest bid equals the reserve price v¸ = 0. Otherwise, the lowest signal, s = 0,
can lower her bid and win in the same situations (when she is alone) paying less.
Suppose that fh(s)

f¸(s) is constant on s œ [0, 1
2 ], meaning that bidders with these signals

are essentially identical and have to be indi�erent about each other’s bids, i.e.

U(0|0; —) = U(—(s)|s; —) ’s œ [0,
1
2]

≈∆ flfh(0)fih(0; —)
flfh(0) + (1 ≠ fl)f¸(0)

= flfh(s)fih(—(s); —)(1 ≠ —(s)) + (1 ≠ fl)f¸(s)fi¸(—(s); —)(≠—(s))
flfh(s) + (1 ≠ fl)f¸(s) .

Note that fÊ(s) = fÊ(0) for all s œ [0, 1
2 ], Ê œ {h, ¸} and fl = 1

2 , such that we can
rearrange the fraction to

≈∆ —(s) = fh(s)
f¸(s)

fih(—(s); —) ≠ fih(—(0); —)
fi¸(—(s); —) + fh(s)

f¸(s) fih(—(s); —)

= fh(s)
f¸(s)

1 ≠ e≠÷Fh(s)

e÷(F¸(s)≠Fh(s)) + fh(s)
f¸(s)

.
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The derivative of — is positive on s œ [0, 1
2 ] if

fh(s)
f¸(s) Ø e÷F¸(s)( f¸(s)

fh(s) ≠ 1 ≠ f¸(s)
fh(s)e≠÷Fh(s)). (1.44)

Suppose now that fh(s), f¸(s) are constant for s Æ 1
2 , and consider the point

s = 1
2 . At this point, the inequality (1.44) becomes

fh(0.5)
f¸(0.5) Ø e÷0.5f¸(0.5)(f¸(0.5)1 ≠ e≠÷0.5fh(0.5)

fh(0.5) ≠ 1). (1.45)

If, for s Æ 1
2 , density f¸(s) œ ( 1

÷0.5 , 2) and fh(s) becomes arbitrary small, the left
side of (1.45) converges to zero, while

lim
fh(0.5)æ0

1 ≠ e≠÷0.5fh(0.5)

fh(0.5) = 0.5÷,

such that right sides of (1.45) remains bounded above 0. Thus, inequality (1.45) is
violated if fh(0.5) is su�ciently small. The densities above 1

2 can be chosen freely
as long FÊ(1) = 1 and the MLRP holds.

�.B.� Equilibria with atoms—binary signals

In this subsection, we construct an example of equilibrium multiplicity in a binary
signal structure. While this violates our standing assumption that signal densities
are continuous, the example is more transparent. We give an example with contin-
uous densities in the next subsection.

Suppose that v¸ = 0, vh = 1 and both states are equally likely. Let the signal
space be [0, 1] and suppose that

fh(s) =

Y
]

[

1
2 s œ [0, 1

2)
3
2 s œ [1

2 , 1]
f¸(s) =

Y
]

[

3
2 s œ [0, 1

2)
1
2 s œ [1

2 , 1],

such that the likelihood ratio is constant and equal to 1
3 on s Æ 1

2 and 3
1 on s > 1

2 .
By inspection of inequality (1.44), for ÷ = 3, no strictly increasing equilibrium

exists. However, there is an equilibrium in which all signals s < 1
2 pool, while all

higher signals follow a strictly increasing strategy. In particular, set —ú(s) = 0.036
for all s < 1

2 and suppose that for s Ø 1
2 , strategy —ú follows the ODE (1.28)

with initial value —ú(0.5) = 0.036. To ensure that this is an equilibrium, low signal
bidders s < 1

2 must have no incentive to deviate to 0 or a bid marginally above
0.0036. Further, —ú(s) has to be strictly increasing above 0.5 and that high signals
s Ø 1

2 have to prefer the high bids over the pooling bid 0.036.
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By simple computation, for s < 1
2

U(0|s; —ú) =
1
2e≠3vh + 3

2e≠3v¸
1
2 + 3

2
= e≠3

4 < 0.0125,

whereas

U(0.036|s; —ú) =
1
2

e≠3(1≠0.5·0.5)≠e≠3
3·0.5·0.5 [0.964] + 3

2
e≠3(1≠0.5·1.5)≠e≠3

3·0.5·1.5 [≠0.036]
1
2 + 3

2
> 0.0127,

such that a deviation to any bid b œ [0, 0.036) is not profitable for low signal bidders.
At the same time, the utility from bidding marginally above 0.036 is

lim
‘√0

U(0.036 + ‘|s; —ú) =
1
2e≠3(1≠0.5·0.5)[0.964] + 3

2e≠3(1≠0.5·1.5)[≠0.036]
1
2 + 3

2
< 0.0127,

such that this is no profitable deviation, either.
Since fh(s) > f¸(s) for all s Ø 1

2 , the ODE (1.28) is strictly increasing above 1
2 if

—ú(0.5) = 0.036 Æ E[v|s(1) = 0.5, 0.5]. This is fulfilled because

E[v|s(1) = 0.5, 0.5] =
(3

2)2e≠3(1≠0.5·0.5)

(3
2)2e≠3(1≠0.5·0.5) + (1

2)2e≠3(1≠0.5·1.5) > 0.6.

Last, for s Ø 1
2 it holds that

U(0.036|s; —ú) =
3
2

e≠3(1≠0.5·0.5)≠e≠3
3·0.5·0.5 [0.964] + 1

2
e≠3(1≠0.5·1.5)≠e≠3

3·0.5·1.5 [≠0.036]
3
2 + 1

2
< 0.06,

and

lim
‘√0

U(0.036+‘|s; —ú) =
3
2

e≠3(1≠0.5·0.5)≠e≠3
3·0.5·0.5 [0.964] + 1

2
e≠3(1≠0.5·1.5)≠e≠3

3·0.5·1.5 [≠0.036]
3
2 + 1

2
> 0.07,

such that all high signals prefer to follow the ODE (1.28).
Hence, —ú is an equilibrium. Further, all inequalities are strict, and utilities are

continuous in the payment, such that there is a continuum of equilibria with di�erent
pooling bids around 0.036.

�.B.� Equilibria with atoms—continuous signals

In this subsection we construct another example of equilibrium multiplicity. Suppose
that v¸ = 0, vh = 1 and both states are equally likely. Let the signal space be [0, 1]
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and suppose that for s œ [0.36, 0.37]

fh(s) = 2s

100 f¸(s) = 3 ≠ 4s

100

Fh(s) = 199 + 16s2

1600 F¸(s) = 395 + 24s ≠ 16s2

800 ,

as well as fh(0)
f¸(0) = 1

4 . The details of the rest of the distribution is arbitrary, as long
as the MLRP is fulfilled. Let ÷ = 7.

We want to show that there is a continuum of equilibria with an atom at the
bottom and is strictly increasing above. An equilibrium of this form, —ú, is char-
acterized by a cuto� ŝ and a bid bp, such that —ú(0) = —ú(ŝ) = bp whereas —ú(s)
follows ODE (1.28) for s > ŝ with initial value —ú(ŝ) = bp. We restrict attention to
equilibria where ŝ œ [0.361, 0.365]. A combination (ŝ, bp) describes an equilibrium if
bidders with signal ŝ are indi�erent between bidding bp and marginally higher bid.
Further, bidders with the lowest signal s = 0 can have no incentive to deviate to 0,
and —ú(s) has to be strictly increasing above ŝ.

For ŝ œ [0.361, 0.365], a bidder with signal ŝ is indi�erent between bp and a
marginally higher bid if U(bp|ŝ; —ú) = lim‘√0 U(bp + ‘|ŝ; —ú), which rearranges to

bp =
fh(ŝ)(e≠7(1≠Fh(ŝ)) ≠ e≠7(1≠Fh(ŝ))≠e≠7

7Fh(ŝ) )

fh(ŝ)(e≠7(1≠Fh(ŝ)) ≠ e≠7(1≠Fh(ŝ))≠e≠7
7Fh(ŝ) ) + f¸(ŝ)(e≠7(1≠F¸(ŝ)) ≠ e≠7(1≠F¸(ŝ))≠e≠7

7F¸(ŝ) )
.

Plugging in Fh(ŝ), F¸(ŝ), the indi�erence gives rise to an increasing function bp(ŝ)
with bp(0.361) = 0.0151769, and bp(0.365) = 0.0154979.

Bidders with signal s = 0 prefer bp(ŝ) over 0 if U(0|0; —ú) Æ U(bp(ŝ)|0; —ú). This
rearranges to

bp(ŝ) Æ
1
4( e≠7(1≠Fh(ŝ))≠e≠7

7Fh(ŝ) ≠ e≠7)
1
4

e≠7(1≠Fh(ŝ))≠e≠7
7Fh(ŝ) + e≠7(1≠F¸(ŝ))≠e≠7

7F¸(ŝ)
,

where the right side is larger than 0.0155 for ŝ œ (0.361, 0.365). Thus, the lowest
signal, s = 0, never wants to deviate to 0.

Next, one can check that E[v|s(1) = s, s] is increasing on s œ [ŝ, 1] because
inequality (1.10) holds. Hence, the ODE (1.28) is strictly increasing on [ŝ, 1] if
bp(ŝ) Æ E[v|s(1) = ŝ, ŝ]. This is the case if

bp(ŝ) Æ fh(ŝ)2e≠7(1≠Fh(ŝ))

fh(ŝ)2e≠7(1≠Fh(ŝ)) + f¸(ŝ)2e≠7(1≠F¸(ŝ)) .

The right side is increasing in ŝ, and equal to 0.0152206 for ŝ = 0.361 and equal
to 0.0158707 for ŝ = 0.365. Indeed, one can check that the upper bound is never
violated for ŝ œ (0.361, 0.365).
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Hence, we constructed a continuum of equilibria: for any ŝ œ (0.361, 0.365), there
is an equilibrium in which all signals s Æ ŝ pool on bp(ŝ), and all higher signals follow
a strictly increasing strategy.
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Auctions with Multidimensional Signals
Joint with Stephan Lauermann

�.� Introduction

In almost all applications of auctions, bidders’ valuations for the good are inter-
dependent, combining common and private-value components. Moreover, bidders
have information on both their own value and the common value, thereby implying
that their private information is multidimensional. Without the natural ordering
of types of the one-dimensional setting, auctions with multidimensional signals are
much more complicated to analyze, because solution methods building on a one-
to-one relationship between signals and bids are not applicable. When the signals
are two-dimensional, a high bid can either be a sign of a bidder with positive infor-
mation regarding the common value component or an indicator of a large private
value. Hence, high bids are not necessarily good news regarding the common value
of the good: in auctions with multidimensional signals, bids and the common value
of the good are generally not a�liated. In the absence of a�liation, equilibrium
strategies do not need to be monotone1 and the equilibrium bid distribution can
contain atoms, that is, bids that bidders with di�erent types pool on.2

While it does complicate the analysis, the lack of a�liation makes auctions with
multidimensional signals an interesting object of study, because atoms and non-
monotone strategies are an important source of allocational and informational in-
e�ciencies: bidders with the highest valuation may not receive the object and the
distribution of bids is less informative about the common value of the good.3 Fur-
ther, atoms can significantly complicate the equilibrium analysis. If the equilibria
of an auction on an arbitrary fine grid contain nonvanishing atoms, these equilibria

1Reny and Perry (2006) provide an example of a non-monotone best response in a double
auction.

2Consider, for example, Chapter 1.
3Among others, compare Atakan and Ekmekci (2014) and Lauermann and Wolinsky (2017).
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may have no counterpart on the continuous bid space. Therefore, atoms can prevent
equilibrium existence.4

In this chapter, we analyze a second-price auction in which the value of the good
depends on both common and a private-value components, and bidders are either
informed or uninformed about the common component. Jackson (2009) shows that
in this setup, a discrete private-value distribution may thwart equilibrium existence:
in a second-price auction, it is dominant for informed bidders to bid their valuation.
If the private-value distribution is discrete, this valuation takes finitely many values,
such that any equilibrium bid distribution must contain atoms. At these atoms, the
bidders’ payo�s are discontinuous, which can prevent equilibrium existence. This
non-existence result has been taken to indicate a general existence problem in mul-
tidimensional auctions—for example in Pesendorfer and Swinkels (2000, p. 501),
Tsetlin and Peke� (2006, p. 64), Tan and Xing (2011, p. 99), and Heumann (2019,
p. 4).

We show that despite the lack of a�liation, no such problem arises when the
private-value distribution is continuous. In this case, the bidding behavior by in-
formed bidders does not create atoms in the bid distribution, and uninformed bid-
ders have an incentive to bid away from any bid that ties with positive probability
because winning a random tie-break would intensify the winner’s curse. Establish-
ing this curse from the random tie-break is the crucial step in our proof, and we
provide a more detailed intuition for this in the body of the text. Consequently,
when the private-value distribution is continuous, there can be no atoms in the bid
distribution, such that the second-price auction has an equilibrium, and any equilib-
rium strategy is pure and strictly increasing in both dimensions. Further, we prove
existence in the first-price auction, independent of the private-value distribution.5

The results are remarkable, in that an equilibrium exists and all equilibria are
“well-behaved,” even though the equilibrium bids and the common-value component
are not a�liated and basic single-crossing properties fail. Consequently, bidders in
a second-price auction may incur an expected loss when winning at a low price
and enjoy a profit only when winning at a higher price.6 This goes to show that
while the lack of a�liation can give rise to non-monotone strategies or atoms in
the bid distribution, it does not necessarily have to. Hence, the non-existence that
Jackson (2009) uncovers appears to be an artifact of the specific assumptions on
the auction format and private-value distribution, rather than an indicator of a

4In particular, existence proofs that rely on a discretization approach like the one by Athey
(2001) are not applicable. Therefore, an equilibrium may not exist, as in Chapter 1.

5In a first-price auction, informed bidders have a strict incentive to outbid any atom because
marginally raising their bid discretely increases their probability to win at essentially the same cost.

6We demonstrate this by an example in Section 2.7. As one consequence, the corresponding
social choice function is not posterior-implementable (Jehiel et al., 2007).
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fundamental problem with the existence of well-behaved equilibria in auctions with
multidimensional signals. Further, the lack of a�liation and non-standard solution
method sets our results apart from other existence proofs in the literature on auctions
with multidimensional signals, such as Jehiel et al. (2007) and Heumann (2019),
which usually recover some sort of a�liation.

As a technical contribution, we demonstrate how the endogenous tie-breaking
rule of Jackson et al. (2002) can be made amenable and used to prove existence and
form of equilibria in the auction. In particular, we restrict attention to a simple class
of endogenous tie-breaking rules and use insights from the equilibrium strategies on a
bid grid to show that Jackson et al. (2002) guarantee the existence of an equilibrium.
In a second step, we analyze our simplified “communication extension” and prove
that equilibrium strategies must be strictly increasing, such that the tie-breaking
rule is irrelevant and the equilibrium strategy of the communication extension is
also an equilibrium of the standard auction. This solution method lends itself to
related problems.

The remainder of the chapter is structured in the following manner. In Section
2.2, we set up the model, and in Section 2.3, we revisit the non-existence result by
Jackson (2009). In Section 2.4, we prove equilibrium existence when the private-
value distribution is continuous. In Section 2.5, we turn to the first-price auction
and sketch the existence proof. In Section 2.6, we discuss the e�ect of an uncertain
number of competitors, and in Section 2.7, we present the conclusion.

�.� Model

A single, indivisible good is sold in a second-price sealed-bid auction with n Ø 2
risk-neutral bidders. The value of the good depends on both common and a private-
value components: the value is u(vÊ, ◊), where vÊ is the unknown, state-dependent
common-value component, ◊ is the bidder’s private-value component, and u(vÊ, ◊) Ø
0 is the value function. Let u be bounded and strictly increasing in both arguments.

The private value ◊ œ � ™ R is independently and identically distributed across
bidders, according to some distribution with a cumulative distribution function F .
The common value vÊ is either high, vh, or low, v¸, with vh > v¸, depending on an
unknown state of the world Ê œ {h, ¸}. The state is high, h, with probability fl > 0
and low, ¸, with probability 1 ≠ fl > 0.

Every bidder knows her private value and receives a conditionally independent
and identically distributed signal s œ {h, ¸, ÿ} about the state. With probability
q œ (0, 1) the signal s is uninformative, s = ÿ, with probability 1 ≠ q it reveals the
state, s = Ê.
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Having observed her private value and signal, every bidder simultaneously sub-
mits a bid b Ø 0. The bidder with the highest bid wins the auction, receives the
object, and pays the second-highest bid. Ties are broken uniformly.

We analyze symmetric strategies represented as three functions {—h, —¸, —ÿ} that
describe the bidding behavior conditional on observing signal s œ {h, ¸, ÿ}. Every
function —s(◊) : � æ �R+ maps the private values into a distribution over bids. To
simplify the notation, we collect the functions in — = {—h, —¸, —ÿ}.

Given a signal s œ {h, ¸, ÿ} and the strategy —, we denote by G(p|s; —) the
(expected) cumulative distribution function of the second highest bid—that is the
price, p. If a bidder with signal s and private value ◊ bids b, this implies that her
interim expected utility is

U(b|s, ◊; —) =
⁄

[0,b)
E[u(vÊ, ◊)|p = z, s; —] ≠ z dG(z|s; —)

+ P[p = b, win tb|s; —]
1
E[u(vÊ, ◊)|p = b, win tb, s; —] ≠ b

2
, (2.1)

where “p = b, win tb” denotes the event that the bidder ties on b and wins the
random tie-break.

We study symmetric Bayes-Nash equilibria: a strategy profile — is an equilibrium
if b œ supp —s(◊) implies that b œ arg maxb̂ U(b̂|s, ◊; —) for s œ {h, ¸, ÿ} and almost
all ◊.

�.� Discrete private-value distribution

Before proving the existence of an equilibrium when the private-value distribution is
continuous, it is helpful to revisit the non-existence result by Jackson (2009) when
the distribution of the private-value component is discrete.

Definition �.� In the discrete model, denoted �SPA
d , the distribution of private values

is discrete.

Jackson (2009) shows that when there are n = 2 bidders, the support of discrete
private-value distribution is su�ciently dense and the probability of receiving an
informative signal, q, is low, no symmetric equilibrium may exist.

Proposition �.� (Jackson (����)) When there are n = 2 bidders, the discrete model,
�SPA

d , may not have an equilibrium.

Proof. Suppose that the space of private values is � = {0, ‘, 2‘, ..., ◊̄} and that every
realization has equal probability. Let u(vÊ, ◊) = vÊ + ◊ and v¸ Ø 0. We show that
there is an ‘̄ > 0 and a function q̄(‘) > 0, such that for any ‘ < ‘̄ and any q < q̄(‘),
no equilibrium exists.
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In a second-price auction, every symmetric equilibrium is an equilibrium in un-
dominated strategies (cf. Jackson (2009)). Thus, equilibrium bids in a symmetric
equilibrium must lie between the lowest and the highest feasible valuation (given
signal s). Bidders who receive a perfectly informative signal s œ {h, ¸} face no un-
certainty regarding the value of the good, such that they bid their valuation, vÊ + ◊.
Uninformed bidders know that the common value is v¸ at worst and vh at best, such
that their bids can be restricted to the interval [v¸ + ◊, vh + ◊].

For the remainder of the proof, we focus on uninformed bidders with private value
◊ = 0. First, note that (ÿ, 0) bidders select bids b < vh with probability 1. If they
were to bid vh with positive probability, they would tie with and win against another
(ÿ, 0) bidder with positive probability, decreasing the expected value conditional on
tying on p = vh from vh toward the prior expected value. Thus, tying on vh would
result in an expected loss, such that any (ÿ, 0) bidder would be strictly better o�
marginally reducing her bid.

When q is small, a (ÿ, 0) bidder believes that her competitor is informed with
probability close to 1. Because informed bidders only bid below vh in state ¸, the
expected value conditional on winning with a bid b < vh is close to v¸. This implies
that when q is su�ciently small (given ‘), bids by (ÿ, 0) bidders are bounded below
v¸ + ‘. Otherwise, they would occasionally win and pay a price above v¸ + ‘ while
receiving a good with an expected value close to v¸. In fact, (ÿ, 0) bidders will only
select bids strictly below v¸ +‘ because a small q implies that the bid v¸ +‘ is almost
certainly made by a (¸, ‘) competitor. If a (ÿ, 0) bidder would tie on p = v¸ + ‘, her
expected valuation for the good would only be ¥ v¸ and she would incur a strict
loss. Hence, she would be strictly better o� marginally reducing her bid.

In the last step, we argue that this confinement of bids to [v¸, v¸ + ‘) creates a
contradiction. If a (ÿ, 0) bidder bids in this interval, she can only win against two
types of competitors: a (¸, 0) bidder or another (ÿ, 0) bidder. All other types select
higher bids. When the competitor is of type (¸, 0), the price is p = v¸. This case
is insignificant for bidder (ÿ, 0)’s incentives because her payo� is exactly 0 in this
situation. Therefore, we only need to consider the case in which her competitor is
also of type (ÿ, 0). When both bidders in the auction are uninformed, there can
be no inference regarding the common-value component of the good, such that the
expected value is flvh +(1≠fl)v¸. When ‘ is su�ciently small, v¸ +‘ < flvh +(1≠fl)v¸,
such that the (ÿ, 0) bidder strictly prefers to win against another (ÿ, 0) type at any
price p < v¸ + ‘. Now, a Bertrand competition among the (ÿ, 0) bidders emerges.
They have an incentive to outbid any bid b < v¸ + ‘ and would settle only on the
highest bid from this set—which, however, does not exist.
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The critical step in the argument is the last one. Conditional on the pivotal event
that the competitor is also of the (ÿ, 0) type, the two (ÿ, 0) bidders are engaged in
a Bertrand competition. Due to the lack of a�liation between the bids and the
common value of the good, the conditional expected value drops discretely at v¸ + ‘.
Therefore, bidders compete on an open set, such that no equilibrium exists. The
source of the discrete downward jump at v¸ + ‘ is the atom in the bid distribution,
which follows directly from the discrete value distribution and the auction format:
the perfectly informed bidders are basically mechanical and bid their valuation.
Since they are of type (¸, ‘) with strictly positive probability, there has to be an
atom at v¸ + ‘.7

However, we must indicate that this argument only works for n = 2 bidders.
When there are n Ø 3 bidders, and the winning bid is below v¸ + ‘, multiple com-
petitors may either be of the (¸, 0) or of the (ÿ, 0) type, such that the contradiction
does not arise. Unfortunately, the general proof of Proposition 1 in Jackson (2009)
misses a step, which we were unable to patch (cf. Appendix 2.B).

�.� Continuous private-value distribution

Having established why the existence of an equilibrium in a model with a discrete
private-value distribution may fail, we now turn to the model with a continuous
private-value distribution.

Definition �.� In the continuous model, the distribution of private values is is con-
tinuous. For simplicity, assume that the distribution has full support on � = [◊, ◊̄].
We denote this model by �SPA

c .

When the private-value distribution is continuous, it is obvious that informed
bidders bidding their valuation no longer cause atoms in the bid distribution. By
utilizing an endogenous tie-breaking rule as in Jackson et al. (2002), we show that,
in fact, the bid distribution is continuous, such that an equilibrium exists.

Proposition �.� In the continuous model, �SPA
c , an equilibrium —ú exists, and every

equilibrium is pure and strictly increasing in both dimensions.8

In the next section, we prove the existence and form of equilibrium strategies
in multiple steps. The idea and main challenge of the proof is to establish that
uninformed bidders have a strict incentive to bid away from any bid that ties with
positive probability.

7In an auction with an endogenous tie-breaking rule (Jackson et al., 2002), this problem can be
solved such that an equilibrium exists. In equilibrium, types (ÿ, 0) and (¸, ‘) bid v¸ + ‘, but (ÿ, 0)
bidders only win when there are no (¸, ‘) bidders. In our specific version of the communication
extension (Definition 2.3), this would correspond to a rule ·ú in which ·ú(¸, ‘) > ·ú(ÿ, 0).

8In other words, —ú
s (◊) is strictly increasing in ◊ for all s œ {h, ÿ, ¸} and —ú

¸ (◊) < —ú
ÿ(◊) < —ú

h(◊)
for all ◊ œ �.
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�.�.� Proof of Proposition �.�

We begin the proof by introducing a simple endogenous tie-breaking rule to the
auction, one that is easy to work with. In a second step, we then argue that the
results by Jackson et al. (2002) guarantee the existence of an equilibrium in this
particular communication extension. Thereafter, we show that the equilibrium bid
distribution of our communication extension cannot contain atoms, such that the
tie-breaking rule is irrelevant, and the equilibrium strategy of the communication
extensions is also an equilibrium strategy of the standard auction, �SPA

c . Last, we
show that any equilibrium of �SPA

c must be pure and strictly increasing in both
dimensions.

Definition �.� In the communication extension of the continuous model, �CE≠SPA
c ,

bidders report their signal, ŝ œ {h, ¸, ÿ}, as well as their private value, ◊̂ œ �,
alongside their bid, b. The tie-breaking rule is characterized by a function · : S◊� æ
[0, 1]. If multiple bidders tie on the same bid, the rule awards the good to the bidder
with the highest ·(ŝ, ◊̂). If multiple bidders tie on the same bid and report the same
·(ŝ, ◊̂), the winner is selected randomly among them.

A pair (—ú, ·ú) constitutes an equilibrium of �CE≠SPA
c , if, given ·ú, bidding —ú

s (◊)
and reporting truthfully are a best response for almost every type (s, ◊). As we
show, �CE≠SPA

c has an equilibrium with a simple structure.

Proposition �.� There is an equilibrium (—ú, ·ú) of the communication extension,
�CE≠SPA

c , in which

(i) —ú
Ê(◊) = u(vÊ, ◊) for Ê œ {h, ¸};

(ii) —ú
ÿ is pure and nondecreasing;

(iii) ·ú(ÿ, ◊̂) is nondecreasing in ◊̂.

To show that our simple communication extension, �CE≠SPA
c , has an equilibrium

of this particular form, we make use of Theorem 2 of Jackson et al. (2002), which
guarantees that the limit of a sequence of equilibria on the ever-finer grid (where an
equilibrium exists) converges to an equilibrium of a game with some endogenous tie-
breaking rule. Therefore, we can use insights regarding the bidding behavior in the
standard auction on the grid to ensure that the simple endogenous tie-breaking rule
of �CE≠SPA

c su�ces. First, in the symmetric equilibrium of the standard auction,
informed bidders bid their valuation (as the grid permits), so that they also have
to do so in �CE≠SPA

c (i). Further, we show that on the grid, the strategy of the
uninformed bidders has to be pure and nondecreasing. Hence, their strategy also
needs to be pure and nondecreasing in �CE≠SPA

c (ii) and higher private values need to
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win more often, such that the tie-breaking rule can be represented by a nondecreasing
function (iii). The formal proof can be found in the appendix.

Observe that because —ú
h and —ú

¸ are strictly increasing in ◊, informed bidders
almost never tie and the tie-breaking rule is irrelevant to them. In the next step, we
want to show that —ú

ÿ is also strictly increasing in ◊, meaning that the (endogenous)
tie-breaking rule plays no role and —ú is an equilibrium of �SPA

c , as well.
Suppose, on the contrary, that there exists a bid ba œ (u(v¸, ◊), u(vh, ◊̄)) and

a nontrivial interval I such that —ú
ÿ(◊) = ba for all ◊ œ I.9 This is qualitatively

illustrated in Figure 2.1.

◊̄0
u(v¸,◊)

u(vh, ◊̄)

ba

◊¶

•

—ú
ÿ

◊

I

W T L
• •

Figure �.� Candidate equilibrium strategy —ú
ÿ of �CE≠SPA

c with an atom at ba.

Pick any ◊¶ from the interior of I. We want to show that an uninformed bidder
with private value ◊¶ either has an incentive to marginally overbid or underbid ba,
such that she either always wins or loses when p = ba. When p ”= ba, her payo�s are
unchanged.

Denote the highest private value of an uninformed competitor by ◊(1)
ÿ and of an

informed competitor by ◊(1)
Ê . If there is no (un-)informed competitor, we associate

the respective first-order statistic with ≠Œ. Since informed bidders follow a strictly
increasing strategy, they bid ba with zero probability. This implies that when p = ba,
with probability 1, there is at least one uninformed competitor who also bids ba,
meaning that ◊(1)

ÿ œ I, and all informed competitors select a bid below ba, which is
the case when ◊(1)

Ê < —ú≠1
Ê (ba) = ◊Ê. Note that because ba œ (u(v¸, ◊), u(vh, ◊̄)), it

follows from —ú
Ê(◊) = u(vÊ, ◊) that F (◊h) < F (◊¸).

9When there is an atom at ba = u(v¸, ◊), uninformed bidders with private values ◊ > ◊ turn a
strict profit when the price is p = ba. Since marginally higher bid wins discretely more often (no
random tie-break), it is a profitable deviation. When the atom is at ba = u(vh, ◊̄), tying on p = ba

and winning the random tie-break is uninformative about the state since only uninformed bidders
tie and ba always wins against informed bidders. Thus, the expected common value conditional on
tying on ba = u(vh, ◊̄) and winning the random tie-break is just the prior, such that the winning
uninformed bidder incurs a loss and would be better o� marginally lowering her bid.
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When multiple uninformed bidders tie on ba, the tie-breaking rule has to de-
cide on the winner among the uninformed bidders: either ·ú(ÿ, ◊(1)

ÿ ) > ·ú(ÿ, ◊¶), in
which case ◊¶ loses the auction, or ·ú(ÿ, ◊(1)

ÿ ) < ·ú(ÿ, ◊¶), in which case ◊¶ wins.
If ·ú(ÿ, ◊(1)

ÿ ) = ·ú(ÿ, ◊¶), the uninformed bidder with private value ◊¶ wins in case
the random tie-break decides in her favor. Therefore, ·ú partitions the interval of
uninformed bidders that tie on ba, that is I, into three (potentially empty) intervals:
those values that ◊¶ wins against, W , those values that ◊¶ ties with, T , and those
she loses against, L; these are depicted in Figure 2.1. Taken together, an uninformed
bidder with private value ◊¶ who reports her type truthfully derives a payo� of

P[◊(1)
ÿ œ W, ◊(1)

Ê Æ ◊Ê|ÿ]
1
E[u(vÊ, ◊¶)|◊(1)

ÿ œ W, ◊(1)
Ê Æ ◊Ê, ÿ] ≠ ba

2

+ P[◊(1)
ÿ œ T, win tb, ◊(1)

Ê Æ ◊Ê|ÿ]
1
E[u(vÊ, ◊¶)|◊(1)

ÿ œ T, win tb, ◊(1)
Ê Æ ◊Ê, ÿ] ≠ ba

2

from the pivotal event that p = ba.
To show that ◊¶ has an incentive to either overbid or underbid ba, we first con-

sider auctions with n = 2 bidders, and then turn to n Ø 3 bidders. Given that
informed bidders never tie, the result is relatively straightforward when there are
only n = 2 bidders because then, tying on ba reveals that the competitor is also
uninformed. The problem becomes more di�cult when we analyze auctions with
n Ø 3 bidders. Although only uninformed bidders tie on ba, when there is more
than one competitor, tying on ba and the random tie-break is informative regarding
the (relative) number of informed and uninformed bidders in the auction. This af-
fects the inference regarding the common component of the good.

Case n = 2 When there are two bidders and p = ba, with probability 1, the
competitor is also uninformed. Consequently, the expected value conditional on
p = ba is just the prior. This implies that an uninformed bidder with private value
◊¶ has an incentive to marginally deviate,10 unless

ba = flu(vh, ◊¶) + (1 ≠ fl)u(v¸, ◊¶). (2.2)

If ba is smaller, ◊¶ can strictly raise her profits by bidding marginally more, thereby
ensuring a win whenever ◊(1)

ÿ œ L or when ◊(1)
ÿ œ T and she would have lost the ran-

dom tie-break. If ba is larger, ◊¶ wants to bid marginally less, thereby circumventing
an expected loss when ◊(1)

ÿ œ W or when ◊(1)
ÿ œ T and she would have won the ran-

10A marginal up- or downward-deviation is available because there are at most countably many
atoms in the bid distribution. Thereby, there is a bid arbitrary close to ba that only wins whenever
p < ba (underbid) or guarantees a victory whenever p Æ ba (overbid). Because the deviation bid
never ties, the tie-breaking rule and, thus, the report are irrelevant.
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dom tie-break.11 However, if (2.2) holds for ◊¶, it will not hold for any ◊ œ I \ {◊¶}.
Hence, no nontrivial interval I can exist and —ú

ÿ has to be strictly increasing ◊.

Case n Ø 3 For the case with more than two bidders, we derive two preliminary
lemmas. Both are surprising because they show that when there are n Ø 3 bidders,
the order statistics of actions by other uninformed bidders are informative with
regard to the value of the good. Here, we provide an intuition for the results and
move the formal proofs to the appendix.

Lemma �.� Suppose that n Ø 3 and T is nontrivial. Then,

E[u(vÊ, ◊)|◊(1)
ÿ œ T, win tb, ◊(1)

Ê Æ ◊Ê, ÿ] < E[u(vÊ, ◊)|◊(1)
ÿ œ T, ◊(1)

Ê Æ ◊Ê, ÿ],

for all ◊ œ �.

First, we find that winning the random tie-break intensifies the winner’s curse,
relative to merely being tied. The common value shifts the bids by informed bid-
ders to a higher level in the high state. Therefore, winning at any price ba œ
(u(◊, v¸), u(◊̄, vh)) is more likely in the low than in the high state, F (◊h) < F (◊¸).
This is bad news regarding the value of the good: the winner’s curse. Note that
the winner’s curse is stronger if there are more informed competitors. If ◊(1)

ÿ œ T ,
which implies that the winner is selected by the random tie-breaking rule, winning
the auction is more likely when there are only a few competitors who also bid ba and
report ·ú(ÿ, ◊̂). Since only uninformed bidders tie on ba, this implies that winning
the random tie-break is more likely when there are fewer uninformed competitors
and, thus, more informed competitors. This intensifies the winner’s curse, such that
winning the random tie-break is bad news regarding the value of the good.

Lemma �.� Let J and J Õ be two nontrivial intervals with J < J Õ.12 Then,

E[u(vÊ, ◊)|◊(1)
ÿ œ J, ◊(1)

Ê Æ ◊Ê, ÿ] < E[u(vÊ, ◊)|◊(1)
ÿ œ J Õ, ◊(1)

Ê Æ ◊Ê, ÿ],

for all ◊ œ �.

Lemma 2.2 shows that, holding everything else constant, outbidding more un-
informed bidders reduces the winner’s curse. Higher realizations of the first-order
statistic of uninformed types, ◊(1)

ÿ , are more likely when the number of uninformed
bidders is large. Hence, the conditional expected number of uninformed bidders is

11Note that marginally overbidding or underbidding strictly changes the winning probability of
the uninformed bidder with private value ◊¶ because ◊¶ is from the interior of I.

12J < J Õ if inf J Æ inf J Õ and sup J Æ sup J Õ, where at least one inequality is strict.
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higher conditional on J Õ than conditional on J . If there are more uninformed com-
petitors, there are fewer informed ones, which eases the winner’s curse.

With the two lemmas in place, we can now turn to the main argument. Let
“�underbid” denote the additional events the uninformed bidder with private value
◊¶ wins in if she bids ba and reports her type truthfully instead of selecting a
marginally lower bid13—that is, when ◊(1)

ÿ œ W or when ◊(1)
ÿ œ T and she wins

the random tie-break. Symmetrically, let “�overbid” be the additional events the
bidder wins in when selecting a bid marginally above ba—when ◊(1)

ÿ œ T and she
loses the random tie-break or when ◊(1)

ÿ œ L. Both deviations are depicted in Fig-
ure 2.1. Since ◊¶ is from the interior of I, both P[�underbid, ◊(1)

Ê Æ ◊Ê|ÿ] > 0 and
P[�overbid, ◊(1)

Ê Æ ◊Ê|ÿ] > 0. As we show in the appendix, Lemmas 2.1 and 2.2 give
rise to the following corollary.

Corollary �.�

E[u(vÊ, ◊)|�underbid, ◊(1)
Ê Æ ◊Ê, ÿ] < E[u(vÊ, ◊)|�overbid, ◊(1)

Ê Æ ◊Ê, ÿ],

for all ◊ œ �.

Since P[�overbid, ◊(1)
Ê Æ ◊Ê|ÿ] > 0, an uninformed bidder with private value ◊¶

benefits strictly from marginally overbidding ba, unless

ba Ø E[u(vÊ, ◊¶)|�overbid, ◊(1)
Ê Æ ◊Ê, ÿ]. (2.3)

However, if equation (2.3) holds, it follows from Corollary 2.1 that

ba > E[u(vÊ, ◊¶)|�underbid, ◊(1)
Ê Æ ◊Ê, ÿ].

Because P[�underbid, ◊(1)
Ê Æ ◊Ê|ÿ] > 0, this implies that the uninformed bidder

with private value ◊¶ would strictly benefit from marginally lowering her bid. Thus,
either overbidding or underbidding ba has to be strictly profitable for the uninformed
bidder with private value ◊¶ (and every other ◊¶Õ from the interior of I), creating
a contradiction. Thereby, no interval I can exist, which proves that —ú

ÿ is indeed
strictly increasing in ◊. Consequently, —ú is pure and strictly increasing in ◊, such
that the tie-breaking rule is irrelevant and —ú is an equilibrium of �SPA

c .

13Again, such a deviation is available because there are, at most, countably many atoms in the
bid distribution. Thus, there has is a bid arbitrarily close to ba that only wins whenever p < ba

(underbid) or guarantees a victory whenever p Æ ba (overbid). Because the deviation never ties,
the tie-breaking rule and, thus, the report are irrelevant.
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We now show that all symmetric equilibria of the continuous model, �SPA
c , are

pure and strictly increasing in both dimensions.
First, note that any symmetric equilibrium of �SPA

c is also an equilibrium of
�CE≠SPA

c in the form specified in Proposition 2.3. By setting ·ú to be constant, (iii)
is satisfied with the endogenous tie-breaking “disabled.” Further, in �SPA

c , symmetric
equilibria are equilibria in undominated strategies (cf. Jackson (2009)), such that
informed bidders bid their valuation (i). Last, the argument that uninformed bidders
follow a nondecreasing strategy in the proof to Proposition 2.3 did not rely on the
continuous bid space, such that it also holds for �SPA

c , (ii). Having shown that
any equilibrium of Proposition 2.3 must be pure and strictly increasing in ◊, this
completes the proof in the first dimension.

What remains to be shown is that any —ú is also strictly increasing with respect
to the signal, that is, —ú

¸ (◊) < —ú
ÿ(◊) < —ú

h(◊) for almost all ◊. Because bids for
uninformed bidders are confined to [u(v¸, ◊), u(vh, ◊)], the equilibrium strategy —ú

is nondecreasing in s. The proof for strict monotonicity is slightly tedious, which
is why we move it to a separate lemma in the appendix; Lemma 2.4. Roughly
speaking, in equilibrium, uninformed bidders have to bid their expected valuation
conditional on being tied. If —ú is constant in s, uninformed bidders select the same
bids as informed bidders, such that the inference from being tied cannot be perfectly
revealing of the state, resulting in a contradiction.

�.� First-price auction

In this section, we change the auction format to a first-price auction and analyze
both the discrete and the continuous private-value distribution.

Definition �.� Holding everything else fixed, let �FPA
d and �FPA

c be the analogs of
�SPA

d and �SPA
c when the good is sold in a first-price auction.

As evident from the last section, when the good is sold in a second-price auction,
a continuous private-value distribution implies that there can be no atom in the
bid distribution, which ensures that an equilibrium exists. Compared to a discrete
private-value distribution, the crucial di�erence originates from the fact that under
the continuous private-value distribution, informed bidders bidding their valuation
no longer tie with positive probability.

When the good is sold in a first-price auction, the auction format incentivizes
informed bidders to bid away from any bid that ties with positive probability; in-
dependent of the private-value distribution. Employing a similar communication
extension as earlier, we can show that, thereby, uninformed bidders must follow a
strictly increasing strategy as well, such that the first-price auction always has an
equilibrium and the equilibrium bid distribution contains no atoms.
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Proposition �.� The discrete, �FPA
d , and continuous, �FPA

c , model of the first-price
auction have an equilibrium.

• In all equilibria of �FPA
d , bidders with signal s = ¸ and the lowest private

value, ◊ = inf �, bid u(v¸, ◊). All other types mix continuously, and bidders
with higher private values mix over sets of strictly higher bids. Therefore, the
only atom in the equilibrium bid distribution is at u(v¸, ◊).

• All equilibria of �FPA
c are pure and strictly increasing in ◊.

Having established that informed bidders do not tie with positive probability
in a first-price auction, the proof follows along the same lines and with the same
intuition as the proof for the second-price auction. To save on redundancies and
keep the chapter short, we only outline the central steps of the proof. We focus on
the discrete case, �FPA

d . The continuous case follows analogously.

Proof sketch.

1. The communication extension of the first-price auction, �CE≠FPA
d , has an equi-

librium.

2. In any equilibrium of �CE≠FPA
d , informed bidders except (¸, ◊) types earn

strictly positive profits.

• In state ¸, (¸, ◊) types bid at most u(v¸, ◊). Thus, all other informed
bidders can secure a positive payo� by bidding marginally above u(v¸, ◊),
winning whenever all competitors are of the (¸, ◊) type. In state h, in-
formed bidders earn information rents relative to uninformed bidders.
Since the uninformed bidders make at least zero profits, informed bidders
in state h make positive profits.

3. In any equilibrium of �CE≠FPA
d , informed bidders except (¸, ◊) types play a

fully mixed strategy.

• Suppose there is an informed bidder, other than the (¸, ◊) type, who
selects a bid ba with strictly positive probability. Then, she ties on this
bid with strictly positive probability. Consequently, bidding marginally
more than ba discretely raises her probability to win, and since she makes
strictly positive profits when winning, this deviation is strictly profitable.

4. This implies that if there is an atom above u(v¸, ◊, ), it has to be the result of
uninformed bidders pooling.
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5. Using the same argument as earlier, one can show that pooling on the atom in-
tensifies the winner’s curse for uninformed bidders. Thus, uninformed bidders
have a strict incentive to bid away from it and follow a “strictly increasing”
strategy (bidders with higher private values mix over sets of strictly higher
bids).

6. Except for the atom at u(v¸, ◊), which only (¸, ◊) types tie on, the equilibrium
bid distribution is atom free. Hence, the tie-breaking rule is irrelevant and the
equilibrium strategy of �CE≠FPA

d is also an equilibrium of �FPA
d .

�.� Uncertain number of competitors

In case the number of bidders is Poisson-distributed, the environmental equivalence
property of the Poisson distribution (Myerson, 1998) implies that knowledge of the
number of uninformed bidders does not allow for an inference regarding the number
of informed bidders. Ergo, tying and winning the random tie-break does not a�ect
the conditional expected valuation, such that the inequalities of Lemmas 2.1 and 2.2
become equalities. In this case, the proof follows similarly as for n = 2 bidders and
Proposition 2.2 still holds.

�.� Conclusion

In this chapter, we studied auctions in which the value of the good depends on
both private and common-value components and bidders are either informed or
uninformed regarding the common component. We showed that when the good
is sold in a second-price auction and the private-value distribution has no mass
points, or when the good is sold in a first-price auction, any equilibrium is strictly
increasing in the private value. The monotonicity and the resulting absence of atoms
in the equilibrium bid distribution have multiple e�ects: apart from implications
for the allocational and informational e�ciency of the auction, it means that the
bidders’ utility is continuous in the bid and the tie-breaking rule is irrelevant. This
is important for empirical estimation methods that usually rely on continuity and,
if the payo� function is di�erentiable, first-order conditions to identify the bidders’
types (compare, for example, Athey and Haile (2007)). Further, the absence of atoms
in the equilibrium bid distribution entails that the limit of any sequence of equilibria
on an ever-finer bid grid can be represented as an equilibrium on the continuous bid
space with the standard tie-breaking rule. Therefore, equilibria on the fine grid can
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be analyzed by solving the game on the continuous bid space, avoiding complications
arising from a coarse bid set.

Nevertheless, although all equilibria are well-behaved, the bids and the common
value of the good are not a�liated. This implies that in the second-price auction,
with positive probability, the payment of the winning bidder may exceed her con-
ditional expected valuation for the good, such that she incurs a loss. Contrary to
auctions with a�liation in which a single-crossing property ensures that the winning
bidder earns an expected profit when winning at any price below her bid, the bidder
may prefer not to win at low prices.14 The following example demonstrates this
e�ect.

Example To simplify the argument, we provide an example in which the private-
value distribution is discrete. It is easy to see that a similar continuous distribution
will imply the same qualitative bidding behavior. Suppose that there are n = 2
bidders, the good is sold in a second-price auction and the common value is either
vh = 1 or v¸ = 0 with equal probability. Let the value function be u(vÊ, ◊) = vÊ + ◊.
There are four private values, � = {0, 1

2 , 3
4 , 11

4} and q ¥ 0, such that bidders are
almost certainly informed. Since informed bidders bid their valuation and bidders
are almost always informed, there are essentially eight bids in the equilibrium bid
distribution:

bid b 0 1
2

3
4 1 11

4 11
2 13

4 21
4

E[vÊ|p = b; —ú] ¥ 0 0 0 1 0 1 1 1
.

Obviously, the price and the conditional expected value are not a�liated. Now con-
sider the bidding incentives for an uninformed bidder with private value 3

4 . This
type will bid strictly above 1 because at all lower bids, she earns a profit. If she bids
above 11

2 , she trades o� a profit of 1
4 when the price is 11

2 against a loss of 1
2 when

the price is 11
4 . However, if the private value ◊ = 1

2 is su�ciently likely and private
value ◊ = 11

4 is su�ciently unlikely, the expected gain outweighs the loss, such that
the (ÿ, 3

4) bidder has a strict incentive to bid more than 11
2 . Consequently, (ÿ, 3

4)
bidders will bid at least 11

2 and incur a strict loss if the competitor is a (¸, 11
4) type

and the price is 11
4 .

The lack of a�liation results in non-concave payo� functions for the bidders,
implying that local optimality is not a su�cient condition to determine a bidder’s
equilibrium bid. Further, it implies that the corresponding social choice functions
are not posterior-implementable: conditional on winning at a price that results in
an expected loss, bidders experience regret and would like to revise their bid (cf.
Jehiel et al. (2007)).

14In an ascending auction, bidders would have an incentive to be inactive at intermediate bids.
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Last, our findings indicate that the non-existence identified in Jackson (2009)
is an artifact of the specific assumptions—namely, the discrete private value distri-
bution and the second-price auction format. Thereby, the result is unlikely to hint
at a more fundamental reason why auctions with multidimensional signals should
not have equilibria or why equilibria should not be well-behaved. This is good news
for the e�ciency result obtained by Pesendorfer and Swinkels (2000), which relies
on the existence of a strictly increasing equilibrium and suggests that the positive
result by Heumann (2019) does not hinge on the assumption of Gaussian signals.15

15Heumann (2019) shows that in a setting with two-dimensional Gaussian signals, the signals
can be translated into a single-dimensional su�cient statistic that is a�liated with the value of
the good, such that the results by Milgrom and Weber (1982) hold and an equilibrium exists.
Further, Heumann (2019) shows that there can be multiple of these su�cient statistics, resulting
in equilibrium multiplicity.
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Appendices

�.A Proofs

�.A.� Proof of Proposition �.�

Consider a version of �SPA
c on a bid grid, in which bidders are restricted to choose

a bid from a finite set Bk. Suppose that Bk becomes dense on [0, u(vh, ◊̄)] as k æ
Œ. Any such discretized auction has an equilibrium which we denote by —k =
{—k

h, —k
¸ , —k

ÿ }.
Theorem 2 of Jackson et al. (2002) guarantees that here is a subsequence of

discretized auctions, as well as an endogenous tie-breaking rule, such that (a) —k
s æ

—ú
s for all s œ {h, ÿ, ¸}, (b) —ú = {—ú

h, —ú
¸ , —ú

ÿ} and the endogenous tie-breaking rule
form an equilibrium of a communication extension, and (c) outcomes and payo�s
converge. We want to show that the specific class of endogenous tie-breaking rules
of our communication extension (Definition 2.3) captures one of these equilibria and
that it takes the form as described in Proposition 2.3.

Since symmetric equilibria of the SPA are equilibria in undominated strate-
gies, on any grid Bk, informed bidder select a bid —k

Ê(◊) œ
)

max{b œ Bk : b Æ
u(vÊ, ◊)}, min{b œ Bk : b Ø u(vÊ, ◊)}

*
. Consequently, the limit strategy is —ú

Ê(◊) =
u(vÊ, ◊), which pure and strictly increasing. This means that at most a countable
number of informed types tie with positive probability. Since those do not a�ect the
outcome of the auction and informed bidders are indi�erent about tying on their
valuation, the tie-breaking rule is irrelevant for them.

We now turn to uninformed bidders. We first show that, without loss, —k
ÿ is

pure and nondecreasing. Fix any strategy —k and consider any two bÕ > b such that
G(bÕ|ÿ; —k) ≠ G(b|ÿ; —k) > 0. Note that the change in utility from moving from bid
b to bÕ is

U(b|◊, ÿ; —k) ≠ U(bÕ|◊, ÿ; —k)

= P[win with b’ but not b|ÿ; —k]

·
1
E[u(vÊ, ◊)|win with b’ but not b, ÿ; —k] ≠ E[p|win with b’ but not b, ÿ; —k]

2
.

Because G(bÕ|ÿ; —k)≠G(b|ÿ; —k) > 0, it follows that P[win with b’ but not b|ÿ; —k] >

0, such that U(b|ÿ, ◊; —k) ≠ U(bÕ|ÿ, ◊; —k) is strictly increasing in ◊. Thus, if ◊ prefers
bÕ over b, so does any ◊Õ > ◊.

Let �̂ = {◊ : ÷b ”= bÕ s.t. U(b|ÿ, ◊; —k) = U(bÕ|ÿ, ◊; —k)} be the set of uninformed
bidders that is indi�erent between two bids. We want to show that this set is
countable. By construction, ’◊ œ �̂ there are two bids b◊

≠ < b◊
+ such that a bidder ◊

is indi�erent between these two bids, U(b◊
≠|ÿ, ◊; —k) = U(b◊

+|ÿ, ◊; —k). Furthermore,
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there exists a q◊ œ Q s.th. b◊
≠ < q◊ < b◊

+. By the observation above, b◊
+ Æ b◊Õ

≠ for
all ◊ < ◊Õ, which implies that q◊ < q◊Õ . Because Q is countable, so is �̂. Since �̂
is countable, it has zero measure. As a result, any best response and, thereby, any
equilibrium is pure and nondecreasing almost everywhere. Thereby, it is without
loss to restrict attention to pure and nondecreasing strategies.

Since —k
ÿ are pure and nondecreasing, the limit, —ú

ÿ , is pure and nondecreasing.
This means that in the limit, if there is an atom in the bid distribution, it is the result
of uninformed bidders tying. Thus, the tie-breaking rule has to decide which tying,
uninformed bidder wins, which can result in three cases: a certain win, a certain loss,
or a random tie-break. Because bidders with higher private values win (weakly) more
often along the sequence of auctions on the ever-finer grid, the tie-breaking rule has
to be such that bidders with higher private values win (weakly) more often. Thus,
the limit outcome of any sequence of auctions on the ever-finer grid can be captured
by an endogenous tie-breaking rule ·ú(ÿ, ◊̂) which is nondecreasing in ◊̂. Since ·ú

captures the limit of equilibrium outcomes, deviations in the report ◊̂ are either
equivalent to mimicking some type, or to choosing a marginally larger bid or larger
bid which does not tie, such that the tie-breaking rule is irrelevant. Since —ú

ÿ is the
limit of equilibria, none of these deviations in the report can be strictly profitable.

What remains to be shown is that ·ú can actually deter bidders from lying about
their signal s. First, note that because informed bidders almost never tie, on-path,
they are indi�erent about the tie-breaking rule. Further, any deviation to a bid
ba ”= —ú

Ê(◊) where the report may matter can only reduce the informed bidder’s
payo�. Next, turn to uninformed bidders. Because informed bidders are indi�erent
about ·ú(Ê, ◊̂), we can deter any misreport by an uninformed bidder by setting
·ú(Ê, ◊̂) < ·ú(ÿ, ◊̂) for all ◊̂. Thereby, for an uninformed bidder, misreporting her
signal becomes identical to a marginal downward deviation in her bid. Since such a
marginal deviation is not strictly profitable in equilibrium, neither is misreporting
under ·ú.

�.A.� Probabilities and expected values of the uninformed bidders

We derive the probabilities and expected values of the uninformed bidders for later
use. Let J = [◊≠, ◊+] ™ [0, ◊̄] be any nontrivial interval.
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Probabilities P[◊(1)
ÿ œ J, ◊(1)

Ê Æ ◊Ê|ÿ]
P[◊(1)

ÿ œ J, win tb, ◊(1)
Ê Æ ◊Ê|ÿ]

P[◊(1)
ÿ œ J, ◊(1)

Ê Æ ◊Ê|Ê] =
n≠1ÿ

i=0
P[i uninf] · P[◊(1)

ÿ œ J, ◊(1)
Ê Æ ◊Ê|i uninf; Ê] (2.4)

=
n≠1ÿ

i=0

A
n ≠ 1

i

B

qi(1 ≠ q)n≠1≠i · F (◊Ê)n≠1≠i[F (◊+)i ≠ F (◊≠)i].

[F (◊+)i ≠ F (◊≠)i] is the probability that at least one of i uninformed bidders has a
private value ◊ œ J . Expanding this probability gives

[F (◊+)i ≠ F (◊≠)i] =
iÿ

j=1

A
i

j

B

(F (◊+) ≠ F (◊≠))j

¸ ˚˙ ˝
j uninformed œJ

F (◊≠)i≠j .

As a result, the probability to tie on J and win the random tie-break is

P[◊(1)
ÿ œ J, win tb, ◊(1)

Ê Æ ◊Ê|Ê] =
n≠1ÿ

i=1

A
n ≠ 1

i

B

qi(1 ≠ q)n≠1≠iF (◊Ê)n≠1≠i (2.5)

· [
iÿ

j=1

A
i

j

B

(F (◊+) ≠ F (◊≠))jF (◊≠)i≠j 1
j + 1].

P[◊(1)
ÿ œ J, ◊(1)

Ê Æ ◊Ê|ÿ] and P[◊(1)
ÿ œ J, win tb, ◊(1)

Ê Æ ◊Ê|ÿ] are the averages of (2.4)
and (2.5), weighted by the prior.

Expected values E[u(vÊ, ◊)|◊(1)
ÿ œ J, ◊(1)

Ê Æ ◊Ê, ÿ]
E[u(vÊ, ◊)|◊(1)

ÿ œ J, win tb, ◊(1)
Ê Æ ◊Ê, ÿ]

Given any event A and the uninformative signal ÿ, the conditional expected value
for private value ◊ is

E[u(vÊ, ◊)|A, ÿ] =
flP[A|h]
P[A|¸] u(vh, ◊) + (1 ≠ fl)u(v¸, ◊)

flP[A|h]
P[A|¸] + (1 ≠ fl)

.

Plugging in (2.4) and (2.5), respectively, yields E[u(vÊ, ◊)|◊(1)
ÿ œ J, ◊(1)

Ê Æ ◊Ê, ÿ] as
well as E[u(vÊ, ◊)|◊(1)

ÿ œ J, win tb, ◊(1)
Ê Æ ◊Ê, ÿ].

Expected values E[u(◊, vÊ)|i uninf, ◊(1)
ÿ œ J, ◊(1)

Ê Æ ◊Ê, ÿ]
E[u(◊, vÊ)|i uninf, ◊(1)

ÿ œ J, win tb, ◊(1)
Ê Æ ◊Ê, ÿ]
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We can expand E[u(vÊ, ◊)|A, ÿ] =
qn≠1

i=0 P[i uninf|A, ÿ] ·E[u(vÊ, ◊)|i uninf, A, ÿ] to

E[u(◊, vÊ)|i uninf, A, ÿ] =
flP[A,i uninf|h]
P[A,i uninf|¸] u(vh, ◊) + (1 ≠ fl)u(v¸, ◊)

flP[A,i uninf|h]
P[A,i uninf|¸] + (1 ≠ fl)

, (2.6)

which is strictly increasing in P[A,i uninf|h]
P[A,i uninf|¸] . Using the summands of (2.4) and (2.5),

we note that for any nontrivial J

P[◊(1)
ÿ œ J, ◊(1)

Ê Æ ◊Ê, i uninf|h]
P[◊(1)

ÿ œ J, ◊(1)
Ê Æ ◊Ê, i uninf|¸]

=
P[◊(1)

ÿ œ J, win tb, ◊(1)
Ê Æ ◊Ê, i uninf|h]

P[◊(1)
ÿ œ J, win tb, ◊(1)

Ê Æ ◊Ê, i uninf|¸]

=
1F (◊h)

F (◊¸)
2n≠1≠i

. (2.7)

Thus, for any nontrivial J , it follows by (2.6) that

E[u(vÊ, ◊)|i uninf, ◊(1)
ÿ œ J, ◊(1)

Ê Æ ◊Ê, ÿ] (2.8)

= E[u(vÊ, ◊)|i uninf, ◊(1)
ÿ œ J, win tb, ◊(1)

Ê Æ ◊Ê, ÿ].

Further, we observe that because (2.8) is strictly increasing in
1

F (◊h)
F (◊¸)

2n≠1≠i
,

when F (◊h)
F (◊¸) < 1, this means that (2.8) is nondecreasing16 in i with

E[u(vÊ, ◊)|1 uninf, ◊(1)
ÿ œ J, ◊(1)

Ê Æ ◊Ê, ÿ] (2.9)

< E[u(vÊ, ◊)|n ≠ 1 uninf, ◊(1)
ÿ œ J, ◊(1)

Ê Æ ◊Ê, ÿ].

�.A.� Lemma �.�—Ranking of conditional expected values

Lemma �.� Suppose that for j œ {1, ..., n ≠ 2} and any k > j it holds that

P[j uninf|A, ÿ]
P[j uninf|B, ÿ] <

P[k uninf|A, ÿ]
P[k uninf|B, ÿ] , (2.10)

and
E[u(vÊ, ◊)|i uninf, A, ÿ] = E[u(vÊ, ◊)|i uninf, B, ÿ]

is nondecreasing i with E[u(vÊ, ◊)|1 uninf, A, ÿ] < E[u(vÊ, ◊)|n ≠ 1 uninf, A, ÿ].
Then,

E[u(vÊ, ◊)|A, ÿ] > E[u(vÊ, ◊)|B, ÿ].

Proof. We can expand E[u(vÊ, ◊)|A, ÿ] =
qn≠1

i=1 P[i uninf|A, ÿ] ·

16If 0 < F (◊h)
F (◊¸) < 1 this is obvious. If F (◊h)

F (◊¸) = 0, then
1

F (◊h)
F (◊¸)

2n≠1≠i

= 0 for all i < n ≠ 1 and
1

F (◊h)
F (◊¸)

2n≠1≠i

= 1 for i = n ≠ 1.
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E[u(vÊ, ◊)|i uninf, A, ÿ] and E[u(vÊ, ◊)|B, ÿ] respectively. Then,

E[u(vÊ, ◊)|A, ÿ] ≠ E[u(vÊ, ◊)|B, ÿ]

=
n≠1ÿ

i=1
(P[i uninf|A, ÿ] ≠ P[i uninf|B, ÿ]) · E[u(vÊ, ◊)|i uninf, A, ÿ].

Since
qn≠1

i=1 P[i uninf|A, ÿ] =
qn≠1

i=1 P[i uninf|B, ÿ] = 1, the strict monotone likelihood
ratio property (2.10) implies that P[i uninf|A, ÿ]≠P[i uninf|B, ÿ] is strictly increasing
in i.

If E[u(vÊ, ◊)|i uninf, A, ÿ] is constant in i, E[u(vÊ, ◊)|A, ÿ] ≠ E[u(vÊ, ◊)|B, ÿ] = 0.

However, if E[u(vÊ, ◊)|i uninf, A, ÿ] is nondecreasing in i and strictly increases at (at
least) one i, it follows that E[u(vÊ, ◊)|A, ÿ] ≠ E[u(vÊ, ◊)|B, ÿ] > 0, completing the
proof.

�.A.� Proof of Lemma �.�

From ba œ (u(v¸, ◊), u(vh, ◊̄)) it follows that F (◊h)
F (◊¸) < 1, such that (2.8) is nondecreas-

ing in i and (2.9) holds. By Lemma 2.3, we only need to show that

P[i uninf|◊(1)
ÿ œ T, ◊(1)

Ê Æ ◊Ê, ÿ]
P[i uninf|◊(1)

ÿ œ T, win tb, ◊(1)
Ê Æ ◊Ê, ÿ]

(2.11)

=
P[◊(1)

ÿ œ T, win tb, ◊(1)
Ê Æ ◊Ê]

P[◊(1)
ÿ œ T, ◊(1)

Ê Æ ◊Ê]
¸ ˚˙ ˝

independent of i

P[◊(1)
ÿ œ T, ◊(1)

Ê Æ ◊Ê|i uninf]
P[◊(1)

ÿ œ T, win tb, ◊(1)
Ê Æ ◊Ê|i uninf]

¸ ˚˙ ˝
„(i)

P[i uninf]
P[i uninf]

is strictly increasing in i.
Using the summands of (2.4) and (2.5), we can write „(i) as

„(i) = (F (◊+) ≠ F (◊≠))i

qi
j=1

!i
j

"
(F (◊+) ≠ F (◊≠))j 1

j+1

flF (◊h)n≠1≠i + (1 ≠ fl)F (◊¸)n≠1≠i

flF (◊h)n≠1≠i + (1 ≠ fl)F (◊¸)n≠1≠i

= (i + 1)

1
F (◊+)
F (◊≠)

2i
≠ 1

qi+1
j=2

!i+1
j

"
(F (◊+)

F (◊≠) ≠ 1)j≠1

= (i + 1)

1
F (◊+)
F (◊≠)

2i
≠ 1

(F (◊+)
F (◊≠) ≠ 1)≠1 qi+1

j=2
!i+1

j

"
(F (◊+)

F (◊≠) ≠ 1)j

= (i + 1)(F (◊+)
F (◊≠) ≠ 1) ·

1
F (◊+)
F (◊≠)

2i
≠ 1

1
F (◊+)
F (◊≠)

2i+1
≠ 1 ≠ (i + 1)(F (◊+)

F (◊≠) ≠ 1)
.
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For ease of notation, we replace F (◊+)
F (◊≠) by d. „ is strictly increasing in i if and only

if „(i)
„(i≠1) > 1 for all i Ø 2 which can be expanded to

„(i)
„(i ≠ 1) = (i + 1)(di ≠ 1)

di+1 ≠ 1 ≠ (i + 1)(d ≠ 1)
di ≠ 1 ≠ i(d ≠ 1)

i(di≠1 ≠ 1) > 1

≈∆ di(di ≠ (d ≠ 1)2i2 ≠ 2d) > d2i ≠ ((d ≠ 1)2i2 + 2d)di≠1

≈∆ d + d1+2i ≠ di(2d + (≠1 + d)2i2) > 0

≈∆ d
i
2 ≠ d≠ i

2

i
>

d ≠ 1Ô
d

. (2.12)

For i = 1 both sides of (2.12) equal. Hence, the inequality holds for i Ø 2 if the left
side is strictly increasing in i. We can rewrite the left side as17

d
i
2 ≠ d≠ i

2

i
= ln(d) +

Œÿ

j=1

i
2

2j

(2j + 1)! ln(d)2j+1.

Since d = F (◊+)
F (◊≠) > 1, it follows that ln(d) > 0, such that the left side of inequality

(2.12) is indeed strictly increasing in i. Thus, (2.11) is strictly increasing in i which
proves the result.

�.A.� Proof of Lemma �.�

Since (2.7) is independent of J , it follows that

E[u(vÊ, ◊)|i uninf, ◊(1)
ÿ œ J, ◊(1)

Ê Æ ◊Ê, ÿ] (2.13)

= E[u(vÊ, ◊)|i uninf, ◊(1)
ÿ œ J Õ, ◊(1)

Ê Æ ◊Ê, ÿ].

From ba œ (u(v¸, ◊), u(vh, ◊̄)) it follows that F (◊h)
F (◊¸) < 1, such that

E[u(vÊ, ◊)|i uninf, ◊(1)
ÿ œ J, ◊(1)

Ê Æ ◊Ê, ÿ] is nondecreasing in i and (2.9) holds. By
Lemma 2.3, we only have to show that for any j œ {1, ..., n ≠ 2} and any k > j

P[k uninf|◊(1)
ÿ œ J, ◊(1)

Ê Æ ◊Ê, ÿ]
P[j uninf|◊(1)

ÿ œ J, ◊(1)
Ê Æ ◊Ê, ÿ]

<
P[k uninf|◊(1)

ÿ œ J Õ, ◊(1)
Ê Æ ◊Ê, ÿ]

P[j uninf|◊(1)
ÿ œ J Õ, ◊(1)

Ê Æ ◊Ê, ÿ]
. (2.14)

17Since d
i
2
i = e

ln(d) i
2

i and d
≠i
2
i = e

ln(d) ≠i
2

i , we can use ex =
q

j
xj

j! to write

d
i
2 ≠d

≠ i
2

i as
q

j=0
ln(d)j ( i

2 )j

j!i ≠
q

j=0
ln(d)j ( ≠i

2 )j

j!i =
q

j=0
ln(d)j ij ≠(≠i)j

2
j!i =

q
j=1,3,...

ln(d)j ij

j!i =
q

j=1,3,...
ln(d)j ij≠1

j .
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Note that for J = [◊≠, ◊+] the probability P[i uninf|◊(1)
ÿ œ J, ◊(1)

Ê Æ ◊Ê, ÿ] is

!n≠1
i

"
qi(1 ≠ q)n≠1≠i(flF (◊h)n≠1≠i + (1 ≠ fl)F (◊¸)n≠1≠i)(F (◊+)i ≠ F (◊≠)i)

qn≠1
j=1

!n≠1
j

"
qj(1 ≠ q)n≠1≠j(flF (◊h)n≠1≠j + (1 ≠ fl)F (◊¸)n≠1≠j)(F (◊+)j ≠ F (◊≠)j)

.

Using this, we prove (2.14) by showing that for any j œ {1, ..., n ≠ 2} and any
k > j

P[k uninf.|◊(1)
ÿ œ J, ◊(1)

Ê Æ ◊Ê, ÿ]
P[j uninf.|◊(1)

ÿ œ J, ◊(1)
Ê Æ ◊Ê, ÿ]

= qk(1 ≠ q)n≠1≠k(flF (◊h)n≠1≠k + (1 ≠ fl)F (◊h)n≠1≠k)
qj(1 ≠ q)n≠1≠j(flF (◊h)n≠1≠j + (1 ≠ fl)F (◊¸)n≠1≠j) · F (◊+)k ≠ F (◊≠)k

F (◊+)j ≠ F (◊≠)j
(2.15)

is strictly increasing in ◊+. To do so, we only need to consider the rightmost fraction
of (2.15) and show that

ˆ

ˆ◊+

F (◊+)k ≠ F (◊≠)k

F (◊+)j ≠ F (◊≠)j
> 0

≈∆ F (◊+)[jF (◊+)jF (◊≠)k + F (◊+)k((k ≠ j)F (◊+)j ≠ kF (◊≠)j)] > 0

≈∆ [1 ≠
1F (◊≠)

F (◊+)
2k

] 1
k

< [1 ≠
1F (◊≠)

F (◊+)
2j

]1
j

.

Because 1≠ax

x is decreasing in x when a = F (◊≠)
F (◊+) < 1, this is always satisfied.

In the same manner, we show that (2.15) is strictly increasing in ◊≠. Taking the
derivative of the last fraction of (2.15) with respect to ◊≠ yields

ˆ

ˆ◊≠

F (◊+)k ≠ F (◊≠)k

F (◊+)j ≠ F (◊≠)j
> 0

≈∆ F (◊≠)[jF (◊≠)jF (◊+)k + F (◊+)k((k ≠ j)F (◊≠)j ≠ kF (◊+)j)] > 0

≈∆ [
1F (◊+)

F (◊≠)
2k

≠ 1] 1
k

> [
1F (◊+)

F (◊≠)
2j

≠ 1]1
j

.

Because dx≠1
x is increasing in x when d = F (◊+)

F (◊≠) > 1, this is always satisfied.
Since J < J Õ, i.e. inf J Æ inf J Õ and sup J Æ sup J Õ with at least one strict

inequality, this implies that (2.14) is satisfied, which completes the proof.
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�.A.� Proof of Corollary �.�

For ease of notation, we suppress the explicit reference to ◊(1)
Ê Æ ◊Ê and the unin-

formative signal ÿ.
The expected value E[u(vÊ, ◊)|�overbid] expands to

1
P[◊(1)

ÿ œ T ] ≠ P[◊(1)
ÿ œ T, win tb] + P[◊(1)

ÿ œ L]

1
E[u(vÊ, ◊)|◊(1)

ÿ œ T ]P[◊(1)
ÿ œ T ]

≠ E[u(vÊ, ◊)|◊(1)
ÿ œ T, win tb]P[◊(1)

ÿ œ T, win tb] + E[u(vÊ, ◊)|◊(1)
ÿ œ L]P[◊(1)

ÿ œ L]
2
,

and E[u(vÊ, ◊)|�underbid] expands to

1
P[◊(1)

ÿ œ T, win tb] + P[◊(1)
ÿ œ W ]

1
E[u(vÊ, ◊)|◊(1)

ÿ œ T, win tb]P[◊(1)
ÿ œ T, win tb]

+ E[u(vÊ, ◊)|◊(1)
ÿ œ W ]P[◊(1)

ÿ œ W ]
2
.

If P[◊(1)
ÿ œ T ] = 0, then P[◊(1)

ÿ œ T, win tb] = 0, but because ◊¶ is from the
interior of I, P[◊(1)

ÿ œ T ] = 0 implies that both L and W are non trivial. As a result,

E[u(vÊ, ◊)|�overbid] = E[u(vÊ, ◊)|◊(1)
ÿ œ L]

L2.2
> E[u(vÊ, ◊)|◊(1)

ÿ œ W ] = E[u(vÊ, ◊)|�underbid].

If P[◊(1)
ÿ œ T ] > 0 and, thereby, P[◊(1)

ÿ œ T, win tb] > 0, then

1
P[◊(1)

ÿ œ T ] ≠ P[◊(1)
ÿ œ T, win tb] + P[◊(1)

ÿ œ L]

1
E[u(vÊ, ◊)|◊(1)

ÿ œ T ]P[◊(1)
ÿ œ T ]

≠ E[u(vÊ, ◊)|◊(1)
ÿ œ T, win tb]P[◊(1)

ÿ œ T, win tb] + E[u(vÊ, ◊)|◊(1)
ÿ œ L]P[◊(1)

ÿ œ L]
2

L2.1,L2.2
>

E[u(vÊ, ◊)|◊(1)
ÿ œ T ]

1
P[◊(1)

ÿ œ T ] ≠ P[◊(1)
ÿ œ T, win tb] + P[◊(1)

ÿ œ L]
2

P[◊(1)
ÿ œ T ] ≠ P[◊(1)

ÿ œ T, win tb] + P[◊(1)
ÿ œ L]

= E[u(vÊ, ◊)|◊(1)
ÿ œ T ]

=
E[u(vÊ, ◊)|◊(1)

ÿ œ T ]P[◊(1)
ÿ œ T, win tb] + E[u(vÊ, ◊)|◊(1)

ÿ œ T ]P[◊(1)
ÿ œ W ]

P[◊(1)
ÿ œ T, win tb] + P[◊(1)

ÿ œ W ]
L2.1,L2.2

>
1

P[◊(1)
ÿ œ T, win tb] + P[◊(1)

ÿ œ W ]

·
1
E[u(vÊ, ◊)|◊(1)

ÿ œ T, win tb]P[◊(1)
ÿ œ T, win tb] + E[u(vÊ, ◊)|◊(1)

ÿ œ W ]P[◊(1)
ÿ œ W ]

2
,

so that E[u(vÊ, ◊)|�overbid] > E[u(vÊ, ◊)|�underbid].
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�.A.� Lemma �.�—Strict monotonicity in s

Lemma �.� Any equilibrium of �SPA
c is strictly increasing in s, meaning that —ú

¸ (◊) <

—ú
ÿ(◊) < —ú

h(◊) for almost all ◊.

Proof. Let µ be the measure induced by F and suppose to the contrary that there
is a set K ™ � with µ(K) > 0 such that —ú

ÿ(◊) = —ú
Ê(◊) = u(vÊ, ◊) for all ◊ œ K and

some Ê œ {h, ¸}. Without loss, let K be such that inf K > ◊ and sup K < ◊̄.
We want to show that if —ú

ÿ(◊) = —ú
h(◊) for all ◊ œ K, uninformed bidders

overpay with positive probability, meaning that they have an incentive to lower
their bid, and that if —ú

ÿ(◊) = —ú
¸ (◊) for all ◊ œ K, uninformed bidders miss out on

profitable events, meaning that they have an incentive to raise their bid. In either
case, this results in a contradiction since —ú is an equilibrium.

We prove the lemma for state Ê = h, i.e. when —ú
ÿ(◊) = u(vh, ◊) for all ◊ œ K.

The argument for state ¸ follows symmetrically.
First, because —ú

ÿ(◊) = —ú
h(◊) for all ◊ œ K, no perfect updating is possible. In

particular, there is a „ > 0 such that for every subset L ™ K with µ(L) > 0, the
probability P[h|p œ —ú

ÿ(L)|ÿ; —ú] < 1 ≠ „.18

Further, since u is strictly increasing in vÊ, there is a Â > 0 and a subset K Õ µ K

with µ(K Õ) > 0 such that u(vh, ◊) ≠ u(v¸, ◊) > Â for all ◊ œ K Õ.
Last, because u is bounded, there are at most finitely many jump points m œ M

at which u(vh, m + ‘) ≠ u(vh, m ≠ ‘) Ø ÷ = Â„2 for all ‘ > 0.
Now, for any fl œ (0, 1), there is an interval Ifl with µ(Ifl) > 0 such that µ(K Õ fl

Ifl) > flµ(Ifl). It is without loss to assume that for flÕ > fl, IflÕ µ Ifl and that
sup Ifl œ K Õ.19 Further, let µ(Ifl) æ 0 as fl æ 1 (if necessary, we chop up the
interval). Since M is finite, when is fl su�ciently large, we can choose Ifl such that
Ifl fl M = ÿ.20

Denote ◊≠ = inf Ifl and ◊+ = sup Ifl. When fl is su�ciently large, i.e. the
interval Ifl is su�ciently short, u(vh, ◊+) ≠ u(vh, ◊≠) < ÷ = „2Â. Further, because
µ(KÕflIfl)

µ(Ifl) æ 1, when fl is su�ciently large, P[h|p œ [—ú
ÿ(◊≠), —ú

ÿ(◊+)]|ÿ; —ú] < 1 ≠ „2.
We want to show that a downward deviation of type ◊+ from —ú

ÿ(◊+) = u(vh, ◊+)
to —ú

ÿ(◊≠) = u(vh, ◊≠) is profitable. Since µ(Ifl) > 0, it follows that P[p œ
[—ú

ÿ(◊≠), —ú
ÿ(◊+)]|ÿ; —ú] > 0. Therefore, the deviation is strictly profitable if

E[u(vÊ, ◊+)|p œ [—ú
ÿ(◊≠), —ú

ÿ(◊+)], ÿ; —ú] < E[p|p œ [—ú
ÿ(◊≠), —ú

ÿ(◊+)], ÿ; —ú].

18Since q > 0 and —ú
ÿ(inf K) > —ú

ÿ(◊), conditional on any price p œ —ú
ÿ(L), the probability that all

bidders are uninformed is bounded away from zero, which pushes the probability toward the prior.
19Otherwise, we shrink the interval from the top, removing points ”œ KÕ and raising µ(KÕflIfl)

µ(Ifl) .
20When fl is su�ciently large, there is at most one m œ Ifl, which splits Ifl into two. We take the

left half of Il
fl if µ(KÕ fl Il

fl) Ø flµ(Il
fl), and the right half, otherwise.
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Because ◊+ œ K Õ, it has to hold that u(vh, ◊+) ≠ u(v¸, ◊+) > Â. Since P[h|p œ
[—ú

ÿ(◊≠), —ú
ÿ(◊+)]|ÿ; —ú] < 1 ≠ „2, it follows that

E[u(vÊ, ◊+)|p œ [—ú
ÿ(◊≠), —ú

ÿ(◊+)], ÿ; —ú] < u(vh, ◊+) ≠ „2Â.

Further, because u(vh, ◊+) ≠ u(vh, ◊≠) < ÷ and —ú
ÿ(◊) Ø u(vh, ◊≠) for all ◊ Ø ◊≠, it

has to hold that

E[p|p œ [—ú
ÿ(◊≠), —ú

ÿ(◊+)], ÿ; —ú] Ø u(vh, ◊≠) Ø u(vh, ◊+) ≠ ÷.

By construction, the deviation is profitable, completing the contradiction.

�.B Proposition � in Jackson (����)

In this section, we quickly point out the contradictory step in the proof of Proposition
1 (n Ø 3) in Jackson (2009) which we were unable to resolve.

• Claim 3 requires that ‘ < 1≠a
2a ≈∆ 2a‘ < 1 ≠ a.

• Hence, there is type T = 2a‘, S = 0 who bids 2a‘ œ (a‘, 1 ≠ a).

• Since T = 2a‘, S = 0 is an informed bidder, even as m æ 0, the probability
that Wi œ (a‘, 2a‘) does not vanish.

• As a result, a bidder of type Ti = ‘, Si = 1
2 who deviates to a bid slightly above

(1≠a) incurs a loss with strictly positive probability. Thus, the deviation does
not need to be profitable.
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The Economics of Decoupling
Joint with Paul Voß

�.� Introduction

Even if a company formally adheres to the “one-share one-vote” principle, this does
not imply that the number of votes a shareholder can cast is actually aligned with
his or her stake in the company. Financial innovation has created a vast set of
“decoupling techniques” for activist investors to acquire votes without taking a long
position, decoupling their voting power from their economic exposure. As the cases
collected by Hu and Black (2008a),1 the aggregate evidence found by Christo�ersen
et al. (2007) as well as Kalay et al. (2014), and the recent fight for control over
Premier Foods (2018) show,2 these decoupling techniques are very popular with
activist investors. Thereby, it comes as no surprise that the practice caught the eye
of the press and regulatory authorities alike.3

What stands out about the public cases of decoupling is the variety of techniques
employed, ranging from the usage of repo contracts to the acquisition of shares
and hedges. While all these techniques ultimately resulted in a misalignment of
voting power and economic exposure, they di�ered substantially in the transactions,
timing, and parties involved. This begs the question if from the activists’ perspective,
di�erent decoupling techniques are mere substitutes or whether there are meaningful
economic di�erences in the cost and incentives they impose on activist investors.

The second, complementary question is what motivates activist investors to em-
ploy these decoupling techniques. While decoupling has been used to improve cor-
porate governance, the prospect of voting without bearing the e�ect on share value

1Henceforth, we quote Hu and Black (2008a) as the most recent overview of their extensive
documentation of decoupling, Hu and Black (2006, 2008a,b, 2007).

2Financial Times, July 15, 2018, “Market reverberates with accusations of empty voting,” https:
//www.ft.com/content/�e�����e-��dd-��e�-a��d-��e�d������d.

3See, for instance, the ESMA’s “Call for evidence on empty voting” (September 2011),
https://www.esma.europa.eu/press-news/consultations/call-evidence-empty-voting, or the “SEC Sta�
Roundtable on the Proxy Process” (July 2018), https://www.sec.gov/news/public-statement/statement-
announcing-sec-sta�-roundtable-proxy-process.

https://www.ft.com/content/0e28929e-85dd-11e8-a29d-73e3d454535d
https://www.ft.com/content/0e28929e-85dd-11e8-a29d-73e3d454535d
https://www.esma.europa.eu/press-news/consultations/call-evidence-empty-voting
https://www.sec.gov/news/public-statement/statement-announcing-sec-staff-roundtable-proxy-process
https://www.sec.gov/news/public-statement/statement-announcing-sec-staff-roundtable-proxy-process
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is undoubtedly of particular interest to activists who want to push their private
agenda, instead of maximizing firm value. “[Therefore,] [it] is a source of some
concern that [...] important corporate actions [...] might be decided by persons who
could have the incentive to [...] block actions that are in the interests of the share-
holders as a whole” (SEC, Concept Release on the U.S. Proxy System, p. 139).4

In this chapter, we give structure to the vast amount of decoupling techniques by
deriving three classes of economically equivalent decoupling techniques: Buy&Hedge
techniques, Hedge&Buy techniques and Vote Trading techniques.5

Afterward, we analyze which of these three classes can be exploited profitably
by a hostile activist who opposes a firm value increasing reform, and we uncover a
clear ranking in welfare implications. We find that Vote Trading techniques allow
the activist to push her private agenda and expropriate shareholders at zero costs,
whereas Buy&Hedge techniques are constrained e�cient because the activist su�ers
from a commitment problem. Hedge&Buy techniques fall in between, exhibiting
ine�cient and constrained-e�cient equilibria.

By categorizing the decoupling techniques, we develop a framework to assess ex-
isting and novel financial transactions in their potential to promote hostile activism.6

Thereby, we provide guidance on which financial transactions need the closest mon-
itoring and, potentially, regulation. Further, our results match and help to better
understand di�erences in empirical findings of decoupling via equity lending markets
Christo�ersen et al. (2007) and options markets Kalay et al. (2014).

�.�.� Shareholder voting processes and decoupling techniques

Before we can classify the decoupling techniques and preview our results, we need
to provide a short overview of the shareholder voting process and highlight how it
is vulnerable to decoupling.

Shareholders can exercise their voting rights in ordinary, annual meetings, and
special meetings. Proceedings conducted at a record date, held roughly 30 days
prior to the meeting, determine which shareholders are eligible to vote how many
shares:7 doing so, the shareholder structure is locked-in, such that later changes are
not taken into account. At the meeting day, decisions are made either with a simple
majority or a supermajority.

4See https://www.sec.gov/rules/concept/����/��-�����.pdf.
5In Chapter 4, we analyze the pros and cons of Vote Trading techniques as means of activist

intervention compared to traditional forms of shareholder activism. In this chapter, we consider
Vote Trading techniques as a benchmark.

6It is worth pointing out that our classification does not square with the one suggested in the
2010 SEC Concept Release on the U.S. Proxy System, https://www.sec.gov/rules/concept/����/��-
�����.pdf.

7The details of the process can vary across countries. However, it is easy to check that the lead
time is irrelevant for the outcomes and incentives of the decoupling techniques analyzed.

https://www.sec.gov/rules/concept/2010/34-62495.pdf
https://www.sec.gov/rules/concept/2010/34-62495.pdf
https://www.sec.gov/rules/concept/2010/34-62495.pdf
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There are di�erent features of this process that allow an activist investor to de-
couple her voting power from her economic exposure. First, the allocation of voting
rights is agnostic toward coupled assets in the activist’s portfolio. For example, the
allocation does not take any hedges into account, allowing an activist to shed her
economic exposure to retain only the voting right. Further, the shareholder struc-
ture is fixed after the record date, such that trades between the record date and
meeting do not a�ect the number of votes a shareholder can cast. By acquiring
shares before the record date (cum voting rights) and o�oading them right after (ex
voting rights), the activist can acquire voting rights without the economic exposure.
Even more significant, the number of votes is determined by the temporary posses-
sion of the shares. Hence, the activist is eligible to vote borrowed shares, or shares
that she has already sold for later delivery at the time of the record date.

Combined, these three features open the possibility for a multitude of decoupling
techniques, which can substantially diverge in their economic implications depending
on the timing, order of transactions, and counterparties involved. In any of these
decoupling techniques, however, the activist has to achieve two goals. First, she has
to obtain possession of the shares for the record date, either by buying or borrowing
them. In case she purchased the share, she then has to shed the associated economic
exposure. This can be done by either selling the shares after the record date or by
hedging them. In fact, a hedge can be bought before or after acquiring the shares.
Taken together, this gives rise to three classes of decoupling techniques.

Buy&Hedge In the first class of decoupling techniques, the activist buys the
shares she wants to vote (prior to the record date) before hedging them. This
hedging can be done, for instance, by acquiring options or simply selling the shares
after the record date, retaining only the voting rights. In this class of decoupling
techniques, the activist assumes positive economic exposure before reducing it again.

Hedge&Buy The second class of decoupling techniques simply flips the order of
transactions of Buy&Hedge techniques. By hedging her economic exposure first, the
activist is essentially short before acquiring the shares, such that she never takes a
long position in the company.

Vote Trading The third class of decoupling techniques is composed of those which
are equivalent to the outright trade of voting rights. Essentially, in these techniques,
the shares and hedge are both provided by the same shareholder. Thereby, the
economic exposure remains with the shareholder at all times, and only the voting
rights ever change hand. Most importantly, Vote Trading techniques include the
common practice of borrowing shares over the record date (Christo�ersen et al.,
2007), but also the usage of repos or synthetic assets. For instance, in a repo
contract, the shares posted as collateral are already set to be repurchased, such that
only the voting rights are reallocated.



�� | Chapter �

�.�.� Preview of results

To analyze which classes of decoupling techniques can be exploited profitably by a
hostile activist to push her private agenda, we consider a simple model in which
dispersed shareholders vote on the implementation of a reform. Shareholders know
the reform to be value increasing and, thus, support it. The hostile activist, on the
other hand, derives a private benefit from the status quo and wants to prevent the
reform. The activist’s motives are common knowledge.

We find that because the activist’s hostile motives are known, she does not
benefit from hedging her economic exposure after acquiring the shares (Buy&Hedge
technique): any rational and competitive market providing her with a hedge will
charge her the fair value, taking into account the activist’s motives. Consequently,
the hedging market is irrelevant to the activist’s incentives. The shares commit
her to implement the reform unless her private benefit from the status quo exceeds
the loss in share value on the blocking minority of shares. Thus, the outcome of
decoupling via a Buy&Hedge technique is constrained e�cient.

Still, a hedge may be beneficial to the activist when the order of transitions
is flipped, that is when the activist uses a Hedge&Buy technique. By acquiring
the hedge first, the activist builds a short position, which commits her to block the
reform whenever she gets the chance. If shareholders anticipate that the activist will
be successful in acquiring a blocking minority, they are willing to sell their shares
at the depressed “no reform”-price. Thereby, shareholders su�er a loss in share
value, and the activist can prevent the reform while earning a profit. On the other
hand, if shareholders do expect the reform to pass, they demand the high “successful
reform”-price, which the activist may not be willing to pay when her private benefit
from the status quo is small. Thus, when the activist’s private benefit is small, there
are two types of self-fulfilling equilibria: ones in which the reform is blocked and
ones in which the reform passes.

Last, Vote Trading techniques have a unique equilibrium in which the activist
acquires the necessary voting rights at zero prices and always blocks the reform.
When employing a Vote Trading technique, the activist essentially bundles the buy
and hedge transaction and only trades with the shareholders. Thereby, shareholders
always retain the economic exposure and only sell their voting right. When evaluat-
ing the o�er by the hostile activist, shareholders value their voting right according
to their expectation of whether it will change the outcome of the vote. When there
are many shareholders, no individual shareholder is pivotal with positive probability,
such that the voting right holds no value to him. As a result, there is no monetary
transfer from the activist to the shareholders.
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In conclusion, we can rank the three classes of decoupling techniques in order of
their implications on (shareholder) welfare as

Buy&Hedge º Hedge&Buy º Vote Trading.

While Buy&Hedge techniques are constrained e�cient, Hedge&Buy techniques have
two types of equilibria: ones which are constrained e�cient and ine�cient ones,
which allow the hostile activist to block the reform and earn a profit, even when
her private benefit from the status quo is small. Vote Trading techniques only have
ine�cient equilibria and result in the lowest (zero) transfer from the activist to the
shareholders.

We also analyze the interaction of decoupling techniques and dual-class struc-
tures. In dual-class structures, the activist only has to acquire voting-shares, re-
ducing the economic exposure she has to assume to block the reform. Thereby,
dual-class structures foster hostile activism through Buy&Hedge and Hedge&Buy
techniques by reducing the private benefit required to make a hostile intervention
profitable. In contrast, we find that dual-class structures have no impact on the
ine�ciency of Vote Trading techniques.

The rest of the chapter is structured into eight sections. After discussing the
related literature in Section 3.2, we set up the model in Section 3.3. In Section 3.4
we analyze Buy&Hedge techniques, and in Section 3.5 Hedge&Buy techniques. In
Section 3.6 we analyze Vote Trading techniques. We discuss the e�ect of dual-class
structures in Section 3.7, relate our results to previous empirical findings in Section
3.8, and conclude in Section 3.9.

�.� Literature

The early papers on the optimal design of voting rights in the corporation are pri-
marily concerned with dual-class structures. Grossman and Hart (1988) as well as
Harris and Raviv (1988) provide conditions under which a single share class is op-
timal in corporate control contests. The subsequent literature has also shown that
dual-class structures can be useful in the context of corporate takeovers to over-
come the free-rider problem (Grossman and Hart, 1980). In particular, non-voting
shares can be used to increase private benefits of control (Burkart et al., 1998), or
solve problems of asymmetric information (At et al., 2011), thereby enabling value-
increasing takeovers. In a model with finitely many shareholders, Gromb (1992)
shows that reducing the number of voting shares increases the pivotality probabil-
ity and, thus, mitigates shareholders’ free-riding behavior. For a detailed overview
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of the literature on dual-class structures, see Burkart and Lee (2008). Recently,
Burkart and Lee (2015) demonstrate how synthetic assets can be used to overcome
adverse selection problems and free-riding in takeovers.

As far as decoupling techniques go, Vote Trading techniques have received by
far the most attention. In the context of corporate governance, Brav and Mathews
(2011) and Eso et al. (2015) show that Vote Trading techniques may be beneficial
for corporate governance when information about the optimal decision is dispersed.
On the other hand, Casella et al. (2012) shows that there is generally no competitive
equilibrium in the market for voting rights when market participants have di�erent
preferences about the outcome of the vote. Neeman (1999), Bó (2007), and Chapter
4 show in di�erent models that Vote Trading techniques generally lead to ine�ciently
low vote prices, which can be exploited by a hostile activist. Further, in Chapter
4, we demonstrate that shareholders can learn from activist’s willingness to employ
a Vote Trading technique but that traditional forms of activist interventions are
superior in communicating information. Blair et al. (1989) as well as Dekel and
Wolinsky (2012) consider the e�ect of Vote Trading techniques on control contests.
Blair et al. (1989) analyze the e�ect of taxation on the choice of vehicle by the
contestants. Dekel and Wolinsky (2012) prove that Vote Trading techniques can be
socially harmful by fostering welfare decreasing takeovers.

Levit et al. (2019) consider a model with heterogeneous shareholder preferences
in which shareholders can trade shares before the voting stage. Trading oppor-
tunities render the shareholder base endogenous, introducing a feedback loop and
self-fulfilling equilibria. In Kalay and Pant (2009), shareholders use the options mar-
ket as a commitment device to improve their bargaining position in a subsequent
control contest. This e�ect is similar to the one the activist exploits in our model
when employing a Hedge&Buy technique.

�.� Model

Investors Consider a public company owned by a continuum of shareholders
with mass 1. Every shareholder owns one share, consisting of a cash-flow claim
and a voting right. Further, there is an activist investor who owns no shares. All
investors are risk neutral.

Shareholder meeting The company has an upcoming shareholder meeting with
a single, exogenously given reform-proposal on the agenda. The vote is binding,
and the reform is implemented if at least ⁄ œ (0, 1) votes are cast in favor of it.
Otherwise, the status quo prevails.
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Payo�s If the company sticks with the status quo, the company’s total value
remains unchanged at v > 0; if the reform is implemented, the company’s value
increases by � > 0 to v + �. In spite of its positive e�ect on the firm value, the
activist opposes the reform as she gains private benefits b > 0 if the status quo
remains. These private benefits may, for instance, stem from other assets of her
portfolio: debt in the same company reducing the risk appetite or cross ownership
leading to di�erent supplier preferences. Alternatively, the status quo may allow
the activist to (continue to) extract b at a cost to the firm of � Ø b. In any case,
we take b to be exogenously given. If b < �, the reform increases overall welfare,
whereas the status quo is e�cient whenever b > �.

�.�.� Voting stage

We ignore the peculiar equilibria in which voters play weakly dominated strategies.
Thus, investors always vote in favor of their preferred alternative, and the outcome
of the vote is uniquely determined by who owns how many voting rights at the time
of the meeting. In the following, we do not explicitly model the voting stage, but
only use that the activist can block the reform if she controls at least (1 ≠ ⁄) of the
voting rights.

�.� Buy&Hedge techniques

We first consider the class of decoupling techniques we call “Buy&Hedge” tech-
niques. In this simplest form of decoupling, the hostile activist buys shares from
the shareholders and hedges her position afterward, for instance, by procuring put
options or reselling the shares after the record date has passed.

�.�.� Order of transactions

Suppose that the activist can make a public take-it-or-leave-it o�er p œ R+ per
share. She can restrict her o�er to be valid for m shares she is willing to buy. If
more shareholders decide to sell, they are rationed. It is without loss to assume that
the activist makes o�ers for up to m = 1 ≠ ⁄ shares.

Shareholders observe the o�er p and decide whether they want to sell their share.
To capture the predominant anonymity among shareholders, we consider symmetric
strategies, denoted by their mixing probability q : R+ æ [0, 1].

Having acquired min{q(p), m} shares for p, the activist then has the option to
hedge her entire position, guaranteeing her the “successful reform”-value v + �. For
instance, this can be done by buying put options with a strike price of v + �.8 We

8If the activist could choose the strike price and size of the hedge, insuring all of her shares at
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assume that the hedging market is rational and competitive, such that the activist
needs to pay the fair value.

An explicit overview of the payo�s can be found in Appendix 3.A.1. Here, and
henceforth in this chapter, we analyze subgame perfect equilibria.

�.�.� Hedging stage

Solving the model from the back, suppose that the activist acquired qú(p) < 1 ≠ ⁄

shares in the buying stage. In this case, she cannot swing the decision and the share
value is v + �. As a result, the hedge is free, and the activist is indi�erent between
acquiring or not.

Alternatively, suppose that the activist bought the necessary 1 ≠ ⁄ shares and
also the hedge. Then, the value of her portfolio is fixed at (1 ≠ ⁄)(v + �), meaning
that it is strictly optimal for her to block the reform. In this case, the hedge has
to pay out (1 ≠ ⁄)�. The rational and fully informed market providing the hedge
expects this and charges (1 ≠ ⁄)� for the hedge. As a result, the activist is, again,
indi�erent about hedging her shares, and her decision whether to block the reform
is una�ected. Consequently, she will only block the reform if b Ø (1 ≠ ⁄)�.

Wrapping up, since hedging markets ask for the fair price, the ability to hedge
does not a�ect the activist’s payo�s or her decision: the activist will only block the
reform in case she acquired 1 ≠ ⁄ shares (the blocking minority) and b Ø (1 ≠ ⁄)�
(blocking is profitable).

�.�.� Buying stage

When b < (1 ≠ ⁄)�, shareholders anticipate that the activist will never block the
reform and are not willing to sell their share unless the activist pays them the
“successful reform”-price of v + � per share. Therefore, the activist is indi�erent
between buying the shares and not. In any equilibrium, the reform passes, the
firm value rises to v + �, and the payo�s of the shareholders and the activist are
unchanged.

When b > (1 ≠ ⁄)�, shareholders correctly anticipate that the reform is blocked
if the activist can acquire su�ciently many shares, qú(p) Ø 1 ≠ ⁄. Depending
on how shareholders coordinate, this gives rise to a continuum of equilibria where
pú œ [v, v + �] and reform is always blocked. Details can be found in the proof in
the appendix.

v + � would constitute a best response. Note that in contrast to the share market, the activist
cannot exploit any potential coordination failure in the market for hedges (e.g. by splitting and
randomizing her purchase of options) since non-shareholders make at least zero profits by standard
participation constraints.
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Proposition �.� Suppose that the activist employs a Buy&Hedge technique,

• if b < (1 ≠ ⁄)�, the reform passes and the firm value increases to v + � in
any equilibrium. The shareholders’ and the activist’s payo�s are unchanged;

• if b > (1 ≠ ⁄)�, the reform is blocked and the firm value remains at v in any
equilibrium. Shares trade at prices between v and v + �, such that the total
loss incurred by shareholders is between � ≠ (1 ≠ ⁄)� and �. The activist’s
profit is between b and b ≠ (1 ≠ ⁄)�.

If b < (1≠⁄)�, shareholders are fully protected against hostile activism through
Buy&Hedge techniques. Absent of asymmetric information, the activist cannot fool
the hedging market and is, thereby, stuck with the economic exposure of the shares
she seeks to vote. When the private benefit from the status quo is small, these shares
commit her to implement the reform.

If b > (1 ≠ ⁄)�, the economic exposure of the blocking minority of shares does
not commit the activist to implement the reform, such that the reform is blocked.
Depending on the coordination among shareholders, their aggregate loss is between
⁄� = � ≠ (1 ≠ ⁄)� and �.

Note that the ine�cient outcome in case b > (1≠⁄)� and b < � stems from the
externality of voting. If a fraction (1 ≠ ⁄) of voters were to equally share the benefit
b > (1≠⁄)�, they would block the reform without any regard to their externality on
the other ⁄ voters. In that sense, Buy&Hedge techniques result in e�cient outcomes,
constrained only by the ine�ciency from the voting process itself.

For coherent exposition, we phrase the transaction in which the activist sheds
her economic exposure in terms of a hedge, e.g., put options. As we mention in the
introduction to this section, the same outcome can be achieved via share sales after
the record date. In this case, a competitive and rational outside market will pay the
activist the fair value for her share position, anticipating her actions.9 In particular,
when the activist sells all of her shares or none (cf. footnote 8), the outside market
will pay her v per share. Therefore, the activist does not benefit from selling her
shares, and she only blocks the reform if b Ø (1 ≠ ⁄)�.

9Alternatively, the activist could sell her shares to existing shareholders. In our model with a
continuum of shareholders, existing shareholders have the same willingness to pay for the shares as
an outside market. If the number of shareholders was finite, such that their decision whether to
buy shares could a�ect the outcome of the vote, they would pay less: the incumbent shareholders
would internalize that, with positive probability, their acquisition encourages the activist to block
the reform, reducing the value of their existing share portfolio.
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�.� Hedge&Buy techniques

In this section, we consider “Hedge&Buy” techniques. In this class of decoupling
techniques, the hostile activist switches the order of transactions of the Buy&Hedge
techniques, such that she uses the hedge to build a short position before acquiring
the shares.

�.�.� Order of transactions

Suppose that the activist can buy a hedge from the outside market that guarantees
her a firm value of v + �; for instance, in the form of put options with a strike price
at v+�. It is without loss to assume that she either buys no hedge or insures (1≠⁄)
shares (cf. footnote 8). The hedging market is rational and competitive, so that the
activist can acquire the hedge for its fair value

After deciding whether to buy a hedge, the activist can make a public take-it-
or-leave-it o�er p œ R+ for which she is willing to acquire shares. She can further
set an upper bound on the number of shares she is willing to acquire, m. If more
shareholders decide to sell their shares, they are rationed. Assume that the activist
makes o�ers for up to m = 1≠⁄ shares. The activist conditions her o�er on whether
she acquired a hedge, such that her strategy becomes p : {0, 1 ≠ ⁄} æ R+.

Shareholders observe whether the activist hedged her position as well as the
o�er p and decide whether they want to sell their share. We denote shareholders’
symmetric strategy by q : {0, 1 ≠ ⁄} ◊ R+ æ [0, 1].

An explicit overview of the payo�s is in Appendix 3.A.1.

�.�.� Buying stage

In the body of text, we solve the game when the activist’s private benefit is small,
b < (1 ≠ ⁄)�. The solution to the game with a large private benefit, b > (1 ≠ ⁄)�,
can be found in the proof to Proposition 3.2 in the appendix. Again we solve the
game from the back.

The activist can only block the reform in case she o�ers a price p such that
shareholders sell with probability qú(·, p) Ø (1 ≠ ⁄). Further, she only wants to
do so if she hedged her position beforehand. Otherwise, the economic exposure
of the shares commits her to implement the value-increasing reform (cf. Section
3.4.2). If the activist does not own a hedge, shareholders know that the activist will
implement the reform and demand the “successful reform”-price of v + �. Thus,
when the activist owns no hedge, the reform passes, the activist is indi�erent between
acquiring the shares or not, and her payo� is 0.

Now, suppose that the activist hedged her shares which commits her to block
the reform. Shareholders anticipate this and base their decision whether to sell on
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the other shareholders’ equilibrium decision. Since no shareholder is pivotal with
positive probability, it is optimal for any shareholder to sell his share if p Ø v and
qú(1 ≠ ⁄, p) Ø 1 ≠ ⁄, so that the reform is blocked, or whenever p Ø v + �.10 Not
selling is optimal for the shareholder whenever p Æ v + � and qú(1 ≠ ⁄, p) < 1 ≠ ⁄,
meaning that the reform passes. The activist, on the other hand, has an incentive
to pay any price p Æ b

1≠⁄ + v + � as long as qú(1 ≠ ⁄, p) Ø (1 ≠ ⁄) because this
provides her with a payo� of

Vhedge(p) = b + (1 ≠ ⁄)v + (1 ≠ ⁄)�
¸ ˚˙ ˝

payout hedge

≠(1 ≠ ⁄)p > 0,

whereas any price p such that qú(1 ≠ ⁄, p) < (1 ≠ ⁄) results in a payo� of at most
zero. Since a price p > v + � guarantees her qú(1 ≠ ⁄, p) Ø 1 ≠ ⁄, the activist
will always choose a price pú such that qú(1 ≠ ⁄, pú) Ø 1 ≠ ⁄. This gives rise to a
continuum of equilibria in the buying subgame in which the activist owns a hedge.
For any pú œ [v, v + �] there is an equilibrium in which qú(1 ≠ ⁄, pú) Ø 1 ≠ ⁄ and
qú(1 ≠ ⁄, p) < (1 ≠ ⁄) for all p < pú. Consequently, the value from owning a hedge
is Vhedge(pú) œ [b, b + (1 ≠ ⁄)�].11

Combined, there are two outcomes of the buying subgame: when the activist
did not acquire a hedge, she does not block the reform and her payo� is 0. In case
she did buy a hedge, she always blocks the reform and her payo� is Vhedge(pú) œ
[b, b + (1 ≠ ⁄)�].

�.�.� Hedging stage

If the activist decides to buy a hedge, she will always block the reform, such that the
sellers of the hedge incur a loss of (1 ≠ ⁄)�. The rational outside market anticipates
this and demands the fair value for the hedge, (1 ≠ ⁄)�.

As a result, it only pays for the activist to buy a hedge and block the reform in
case the value from owning a hedge is Vhedge(pú) Ø (1≠⁄)�. Since b < (1≠⁄)�, this
means that there are two types of equilibria, depending on the equilibrium of the
subsequent subgame: when Vhedge(pú) > (1 ≠ ⁄)�, the activist acquires the hedge
and blocks the reform, whereas if Vhedge(pú) < (1 ≠ ⁄)�, she does not buy the hedge
and the reform is implemented.

10If qú(1≠⁄, p) Æ 1≠⁄ and p Ø v +�, selling shareholders are not rationed and any shareholder
is better o� selling. If qú(1 ≠ ⁄, p) Ø 1 ≠ ⁄, the reform is blocked which is compatible with any price
p Ø v.

11Note that pú Æ v + � because at any p > v + �, qú(1 ≠ ⁄, p) = 1, meaning that the activist is
strictly better o� lowering her o�er to pÕ = p+v+�

2 .
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Proposition �.� Suppose that the activist employs a Hedge&Buy technique,

• if b < (1 ≠ ⁄)�, there are two types of equilibria:

1. either the activist buys the hedge for (1 ≠ ⁄)�, acquires (1 ≠ ⁄) shares,
and blocks the reform. In this case, the firm value remains at v. Shares
trade at prices between v and v + b

1≠⁄ , such that the total loss incurred
by shareholders is between � ≠ b and �. The activist’s profit is between
b and 0.

2. or the activist does not buy a hedge, so that the reform passes and the
firm value increases to v +�. The shareholders’ and the activist’s payo�s
are unchanged.

• if b > (1 ≠ ⁄)�, the reform is blocked and the firm value remains at v in any
equilibrium. Shares trade at prices between v and v + �, such that the total
loss incurred by shareholders is between � ≠ (1 ≠ ⁄)� and �. The activist’s
profit is between b and b ≠ (1 ≠ ⁄)�.

Since the hedging market anticipates the activist’s actions, it charges the correct
fair value for the hedge. Thus, the activist does not benefit directly from hedging
her shares (cf. equation (3.1)). Nevertheless, acquiring a hedge before the shares can
be beneficial for her because it ensures that the activist never holds a long position.
Whereas in a Buy&Hedge technique, the interim ownership of the shares commits
the activist with a low private value, b < (1 ≠ ⁄)�, to pass the reform, buying
the hedge first lifts this commitment. This gives rise to two types of self-fulfilling
equilibria when b < (1 ≠ ⁄)�.

In both types of equilibria, conditional on owning a hedge, the activist o�ers a
price pú such that she acquires the blocking minority of shares, qú(1≠⁄, pú) Ø 1≠⁄.
Thus, if the activist buys the hedge and prevents the reform, her ex ante payo� is

(1 ≠ ⁄)v + b ≠ (1 ≠ ⁄)pú + (1 ≠ ⁄)�
¸ ˚˙ ˝
payo� hedge

≠ (1 ≠ ⁄)�
¸ ˚˙ ˝
price hedge

. (3.1)

However, only when pú < v + b
1≠⁄ , it pays for the activist to buy the hedge and

the blocking minority of shares. This is the first type of equilibrium. In the other
type of equilibrium, pú > v + b

1≠⁄ , meaning that the activist’s profits from acquiring
the shares and blocking the reform do not su�ce to cover the cost of the hedge,
preventing her from doing so.

When b > (1 ≠ ⁄)�, the case we mostly ignored in this section, the result is
unchanged relative to the result of the Buy&Hedge technique. Since the activist has
an incentive to prevent the reform independent of a hedge, the reform is blocked in
any equilibrium and the price the activist pays is pú œ [v, v + �], as in Section 3.4.
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�.� Vote Trading techniques

Last, we turn to the class of decoupling techniques that are equivalent to the outright
trade of voting rights, such as borrowing shares over the record date via the equity
lending market. A more thorough analysis with a finite number of shareholders can
be found in Chapter 4. Here, we keep the analysis Vote Trading techniques short
and treat it primarily as a benchmark.

Suppose that before the record date, the activist can make a public take-it-or-
leave-it o�er p œ R+ per voting right.12 Shareholders observe the o�er and sell their
voting right with probability q : R+ æ [0, 1].

Appendix 3.A.2 provides an explicit overview of the payo�s.

Proposition �.� In any equilibrium, the activist o�ers pú = 0, shareholders sell with
probability qú(0) Ø 1 ≠ ⁄, and the activist always blocks the reform.

When the activist employs a Vote Trading technique, the economic exposure
never leaves the original shareholders. Hence, the activist only needs to compensate
shareholders for their voting rights. Since there are many shareholders, they cor-
rectly anticipate that their individual sale is not going to change the outcome of the
vote, such that shareholders do not value their voting rights—the curse of pivotality.
Thus, they are willing to sell their voting rights at any positive price. The activist,
on the other hand, never assumes economic exposure herself, making it optimal for
her to block the reform, independent of her private value, b > 0. As a result, the
activist can always acquire the voting rights for free and prevent the reform.

�.� Dual-class structures

Up to now, we assumed that all shares are identical voting shares. To also cover
dual-class structures, suppose there are „ œ (0, 1] voting and 1≠„ non-voting shares.
Every shareholder holds either one or the other. Given the dual-class structure, the
activist can block the reform if she controls (1 ≠ ⁄)„ shares.

Corollary �.� All previous results remain valid for dual-class structures when replac-
ing (1 ≠ ⁄) by (1 ≠ ⁄)„.

The proofs hold verbatim, replacing (1≠⁄) by (1≠⁄)„. In dual-class structures,
holders of non-voting shares get no say in the outcome of the vote, meaning that the
ine�ciency of voting increases: if (1 ≠ ⁄)„ shareholders prefer a particular course of
action, they ignore the e�ect on the (1 ≠ „) + ⁄„ minority. As a result, Buy&Hedge
techniques, as well as the first type of equilibria in Hedge&Buy techniques, remain

12The activist might restrict her o�er to (1≠⁄) voting rights as in the other decoupling techniques
analyzed, but this does not a�ect the results.
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constrained e�cient given the ine�ciency of voting in dual-class structures. Still,
the private benefit required for a hostile activist to profit from blocking the reform
decreases from (1 ≠ ⁄)� to „(1 ≠ ⁄)�. Further, the total compensation to share-
holders decreases. Vote Trading techniques, on the other hand, are una�ected by
dual-class structures.13

Note that our analysis of Buy&Hedge techniques concluded that hedging after
the acquisition of shares is never strictly profitable, such that the Buy&Hedge tech-
niques are, essentially, “Buy” techniques. Thereby, the results for the Buy&Hedge
techniques also cover the simple form of hostile activism in which the activist blocks
the reform through the acquisition of (few) voting shares.

�.� Empirical implications

Our model predicts that the (implicit) prices for voting rights vary substantially,
depending on the decoupling technique employed. When voting rights are acquired
via a Vote Trading technique, prices are zero. This is in line with the empirical
evidence from the equity lending market, which finds a significant trade volume
and close to zero prices (Christo�ersen et al., 2007).14 Turning to Buy&Hedge
and Hedge&Buy techniques, when b < (1 ≠ ⁄)�, Buy&Hedge techniques are not
profitable for the activist. Depending on the equilibrium selection, however, the
activist may be able to block the reform using a Hedge&Buy technique. In this
case, the implicit price of a voting right, i.e. the di�erence between the price o�ered
by the activist and the value of the cash flow entitlement, is between 0 and b

1≠⁄ .
When b > (1≠⁄)�, Buy&Hedge techniques as well as Hedge&Buy techniques, allow
the activist to block the reform. Here, the implicit price of a voting right is between
0 and �, depending on the equilibrium selected. The positive prices are consistent
with the findings by Kalay et al. (2014) who detect a spike in the options trading
around the record date and find that the implicit prices for voting rights derived
from options are strictly positive.

Moreover, our results show that hostile activism via Buy&Hedge techniques and
Hedge&Buy techniques are particularly likely when ⁄ is large, that is when the
reform requires a supermajority. This is in line with most of the cases collected by
Hu and Black (2008a), which predominantly involved supermajority decisions.

13In the context of corporate takeovers, Hart (1995) points out that dual-class structures are
irrelevant if voting rights and cash flow claims can be unbundled.

14Christo�ersen et al. (2007) attribute their findings to the supposedly common interests of
shareholders. However, this explanation seems to be at odds with the evidence by Hu and Black
(2008a). As we argue more extensively in Chapter 4, low prices are the result of a market failure
in the market for voting rights and not necessarily a sign of aligned interests.
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�.� Conclusion

Our analysis focuses on hostile activism in an environment without hidden mo-
tives. Thereby, we seek to bound the threat of hostile activism through decoupling
techniques and abstract from any ine�ciencies stemming from asymmetric informa-
tion.15 We find that the three classes of decoupling techniques can be ranked in
terms of their implications on shareholder and overall welfare as

Buy&Hedge º Hedge&Buy º Vote Trading.

When b < (1 ≠ ⁄)�, the activist cannot use a Buy&Hedge technique to block the
reform, such that overall welfare is maximized. Hedge&Buy techniques, on the other
hand, have two types of equilibria: equilibria in which the reform passes, reducing
shareholder and overall welfare, and equilibria in which the reform is blocked. Thus,
the result is ambiguous and relies on equilibrium selection. Last, Vote Trading
techniques always result in a blocked reform and zero transfer to the shareholders.
Therefore, this class of decoupling techniques is the worst in terms of shareholder
and overall welfare.

When b > (1 ≠ ⁄)�, all three classes of decoupling techniques allow the activist
to block the reform. However, Vote Trading techniques guarantee that there is
zero transfer from the activist to the shareholders, whereas Buy&Hedge as well as
Hedge&Buy techniques can result in strictly positive transfers.

By ranking the three classes of decoupling techniques, we provide insights into
which current and future transactions need the most rigorous monitoring and, po-
tentially, regulation.16 Further, we find that dual-class structures increase the threat
of hostile activism via Buy&Hedge and Hedge&Buy techniques, whereas Vote Trad-
ing techniques, already least e�cient, remain una�ected. Last, we note that simple
majority rules are most robust to hostile activism via Buy&Hedge and Hedge&Buy
techniques by maximizing the constrained-e�cient parameter regions and minimize
the loss to shareholders, independent of the labeling of the options.

15Whereas activists with an aligned agenda have ample opportunity to communicate and verify
their best interests to implement value-increasing reforms, hostile activists must rely on methods
that allow them to gain control of the company without bearing the full economic costs. Thus, while
decoupling may also aid friendly activists, hostile activists set the benchmark for the e�ciency loss
from decoupling, cf. Chapter 4.

16For instance, our results show that share-blocking systems which prevent one type of
Buy&Hedge technique have no benefit when there is no asymmetric information.
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Appendices

�.A Payo�s

�.A.� Buy&Hedge and Hedge&Buy techniques

Shareholders When the activist o�ers p per share, a shareholder who sells his
share and is not rationed receives a payo� of p. If the shareholder is rationed or
rejects the o�er, his payo� is equal to the firm value: if the reform is implemented
it is v + �, if the status quo remains it is v.

Activist If the activist does not buy a hedge, o�ers p per share, and receives q(p)
of the shares, her payo� is

min{q(p), 1 ≠ ⁄}(v ≠ p) + b

in case she blocks the reform (which requires q(p) Ø 1 ≠ ⁄), and

min{q(p), 1 ≠ ⁄}(v + � ≠ p)

when she does not block the reform.
If the activist buys a hedge for ph, o�ers p per share, and receives q(p) of the

shares, her payo� is

min{q(p), 1 ≠ ⁄}(v ≠ p) + b + (1 ≠ ⁄)� ≠ ph

when she blocks the reform (which requires q(p) Ø 1 ≠ ⁄), and

min{q(p), 1 ≠ ⁄}(v + � ≠ p) ≠ ph

in case she does not.
Note that depending on the timing, in the second stage of the game, either the

cost of the hedge, ph, or the cost of the shares, p min{q(p), 1 ≠ ⁄}, are sunk.

�.A.� Vote Trading techniques

Shareholders When the activist o�ers p per voting right, a shareholder who
sells his voting right and is not rationed receives a payo� of p plus the firm value: if
the reform is implemented, his total payo� is p + v + �, if the status quo remains,
it its p + v. If the shareholder is rationed or rejects the o�er, his payo� is equal to
the firm value v or v + �, respectively.

Activist If the activist o�ers p per voting right and receives q(p) of the voting
rights, her payo� is

b ≠ q(p)p
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when she blocks the reform (which requires that q(p) Ø 1 ≠ ⁄), and

≠q(p)p

in case she does not.

�.B Proofs

�.B.� Proof of Proposition �.�

The case in which b < (1 ≠ ⁄)� is covered in the body of the text.
Since the outside market charges the fair value for the hedge, the activist is

indi�erent between hedging her position and not, and because b > (1 ≠ ⁄)�, she
always blocks the reform. Shareholders anticipate this. Since no shareholder is
pivotal, they are willing to sell their shares for v if they anticipate that the activist
will block the reform, qú(p) Ø 1 ≠ ⁄, or require v + � if they anticipate that the
activist will not block the reform, qú(p) < 1≠⁄. This means that when qú(p) < 1≠⁄

but p Æ v + �, they are (weakly) better o� not selling, such that qú(p) Æ 1 ≠ ⁄ is a
best response. If qú(p) Ø 1 ≠ ⁄ and p Ø v, they are (weakly) better o� selling, such
that qú(p) Ø 1 ≠ ⁄ is a best response.

Since b > (1 ≠ ⁄)�, the activist makes a strict profit by o�ering p marginally
above v + �, where qú(p) = 1. Therefore, it cannot be that the equilibrium price pú

is such that qú(pú) < 1≠⁄ and the activist makes (weakly) negative profits. Further,
it has to hold that pú Æ v +�. Otherwise, pÕ = pú+v+�

2 would always be a profitable
deviation. Thus, the equilibrium price has to be pú Æ v + � and qú(pú) Ø 1 ≠ ⁄,
which implies that pú Ø v.

The continuum of equilibria can be constructed by fixing any pú œ [v, v + �].
If qú(pú) = 1 and pú Ø v, then selling is a best response for shareholders. For all
p < pú and qú(p) = 0, not selling is a best response. Since the activist chooses the
lowest p such that qú(p) Ø 1 ≠ ⁄, the result follows.

�.B.� Proof of Proposition �.�

The case in which b < (1 ≠ ⁄)� is covered in the body of the text.
If b > (1 ≠ ⁄)� and the activist acquired (1 ≠ ⁄) shares, the activist always

blocks the reform, independent of any hedge. Let her payo� from the buying stage
be Whedge(pú

h) in case she owns a hedge and Wnohedge(pú
nh) in case she does not own

a hedge.
If pú is such that qú(·, pú) Ø 1 ≠ ⁄, then the activist’s payo� from paying pú is

Whedge(pú) = Vhedge(pú) and Wnohedge(pú) = Vhedge(pú) ≠ (1 ≠ ⁄)�. Note that for
p marginally above v + �, it must be true that qú(·, p) = 1 such that Whedge(p) >
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(1 ≠ ⁄)�, and Wnohedge(p) > 0. This means that in equilibrium, it has to hold for
pú œ {pú

h, pú
nh} that qú(·, pú) Ø 1 ≠ ⁄. Otherwise, the activist would make a (weakly)

negative profit and could profitably deviate to a p marginally above v + �. Further,
because p > v +� guarantees qú(·, p) = 1, it follows that pú Æ v +�. Otherwise, the
activist could always lower her o�er to pÕ = pú+v+�

2 and achieve the same outcome at
lower cost. Thereby, the equilibrium price has to be pú Æ v +� and qú(·, pú) Ø 1≠⁄,
which implies that pú Ø v.

For any pú œ [v, v + �], there is an equilibrium in which qú(·, pú) Ø 1 ≠ ⁄ and
qú(·, p) < 1 ≠ ⁄ for all p < pú Æ v + �. Given that p Æ v + �, if qú(·, p) < 1 ≠ ⁄,
shareholders anticipate that the reform will pass and are (weakly) better o� not
selling. If p Ø v and qú(·, p) Ø 1≠⁄, shareholders anticipate that the reform will pass
and are (weakly) better o� selling. As a result, there is a continuum of continuation
payo�s: Whedge(pú

h) œ [b, b + (1 ≠ ⁄)�] and Wnohedge(pú
nh) œ [b ≠ (1 ≠ ⁄)�, b].

The outside market correctly anticipates that a hedged activist blocks the reform
and charges the fair value (1 ≠ ⁄)� for the hedge. The activist buys it, depending
on the value of the continuation game. Thus, the hedge has no direct e�ect on the
activist’s payo�, but may a�ect it through equilibrium selection in the continuation
game. Taken together, the payo� of the activist is between b ≠ (1 ≠ ⁄)� and b.

�.B.� Proof of Proposition �.�

Since no shareholder is pivotal with positive probability, the vote’s outcome is inde-
pendent of any individual shareholder’s sale. As a result, no shareholder values his
voting right, such that qú(p) = 1 for any p > 0. It follows that pú = 0. Otherwise,
pÕ = pú

2 > 0 would be a profitable deviation for the activist because pÕ would also
guarantee her the voting right, qú(pÕ) = 1, but at a lower cost. Further, qú(0) Ø 1≠⁄.
If it was the case that qú(0) < (1 ≠ ⁄), the activist would make zero profits. Hence,
she could profitably deviate to a price p marginally above 0 at which qú(p) = 1,
securing her all the voting rights at essentially zero cost, thereby guaranteeing her
a profit.
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Shareholder Votes on Sale
Joint with Paul Voß

�.� Introduction

Shareholder voting is one of the cornerstones of corporate governance. It equips
shareholders with the power to enforce their demands, laying the foundation for
shareholder activism. Typically, a shareholder’s voting rights are determined by
her shares on a pro-rata basis—one share, one vote—thereby linking a shareholder’s
influence to his economic interest. However, activist investors can subvert this prin-
ciple by acquiring voting rights far in excess of their cash flow claims. While the
outright trade of voting rights is illegal in most jurisdictions, financial innovation
has created new techniques to decouple voting power and economic exposure—for
instance, via the equity lending market. Activist investors were happy to add these
new techniques to their toolbox,1 whereas the decoupling raised eyebrows among
policymakers2 and the press.3

In this chapter, we analyze how decoupling techniques relate to traditional forms
of shareholder activism, and examine the consequences for corporate governance.
We focus on the class of decoupling techniques that are economically equivalent to
the outright trade of voting rights, that is, the class of Vote Trading techniques
(cf. Chapter 3). In the remainder of the chapter, we simply refer to (the usage
of) these techniques as vote trading. Importantly, this class includes the most com-
mon practice of acquiring voting rights by borrowing shares over the record date
(Christo�ersen et al., 2007). Our analysis reveals that vote trading unilaterally

1Hu and Black (2006, 2008a,b, 2007) document anecdotal evidence of decoupling. Henceforth,
we reference Hu and Black (2008a) as the most recent overview.

2Consider, for example, the “SEC Concept Release on the U.S. Proxy System” (July
2010), https://www.sec.gov/rules/concept/����/��-�����.pdf, the “SEC Sta� Roundtable on the
Proxy Process” (July 2018), https://www.sec.gov/news/public-statement/statement-announcing-sec-
sta�-roundtable-proxy-process, or the ESMA’s “Call for evidence on empty voting” (September 2011),
https://www.esma.europa.eu/press-news/consultations/call-evidence-empty-voting.

3The New York Times, April 26, 2012, “The Curious Case of the Telus Proxy Battle”, https:
//dealbook.nytimes.com/����/��/��/the-curious-case-of-the-telus-proxy-battle/.

https://www.sec.gov/rules/concept/2010/34-62495.pdf
https://www.sec.gov/news/public-statement/statement-announcing-sec-staff-roundtable-proxy-process
https://www.sec.gov/news/public-statement/statement-announcing-sec-staff-roundtable-proxy-process
https://www.esma.europa.eu/press-news/consultations/call-evidence-empty-voting
https://dealbook.nytimes.com/2012/04/26/the-curious-case-of-the-telus-proxy-battle/
https://dealbook.nytimes.com/2012/04/26/the-curious-case-of-the-telus-proxy-battle/
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benefits hostile activists and is not needed for friendly activists to guide corporate
decision making as they can rely on traditional intervention techniques such as proxy
campaigns.4

In a first analysis, we build a simple model in which a finite number of share-
holders vote on the implementation of a reform. Shareholders know the reform
to be value increasing and, thus, support it. In this setting, there is no need for
value-increasing activism. Therefore, we concentrate on the case in which a hostile
activist who derives private benefits from the company sticking with the status quo.
Shareholders are fully aware of the activist’s motives.

We show that despite the activist’s transparent motives, the activist can acquire
voting rights at prices close to zero and prevent the value increasing reform. This is
the result of a market failure in the market for voting rights. The value of a voting
right depends on the trading and voting decisions of the other market participants:
it only bears value if it is decisive (pivotal) in the outcome of the vote, which is
unlikely for any individual voting right. Thus, rational shareholders are willing to
sell their voting rights at a price significantly below their individual loss from the
blocked reform. This allows the hostile activist to block the value-increasing reform
without compensating shareholders.

Competition in the market for voting rights does not fix the market failure and,
hence, does not prevent hostile activism. Even if a blockholder is willing to act as a
white knight and make a competing o�er, he may be at a disadvantage depending
on the majority rule. In particular, if the reform requires a supermajority to pass, it
may be too expensive for the blockholder to acquire the necessary fraction of voting
rights. Therefore, competition reduces the threat of hostile activism, but ine�cient
outcomes remain.

Our results give a new interpretation of the empirical and anecdotal observations
on vote trading. Christo�ersen et al. (2007) find that voting rights trade at near-zero
prices, which they attribute to common interests of investors. On the other hand,
Hu and Black (2008a) present anecdotal evidence of vote trading which yields—
prima facie—ine�cient outcomes. We reconcile these two seemingly contradictory
findings in that we show that low prices need not be a sign of common interests, and
ine�cient outcomes do not require hidden motives. Instead, our analysis suggests
that low prices are caused by a more fundamental market failure. Further, the
competitive advantage of a hostile activist in supermajority decisions delivers an
explanation for the disproportionate occurrence of vote trading in these decisions,
as documented by Hu and Black (2008a).

4Our results imply that activist chooses her intervention method as a function of her motives.
Hence, the model explains why studies investigating “traditional” shareholder activism (such as
Brav et al. (2008)) find positive e�ects of activism on shareholder value, whereas the evidence on
vote trading suggests adverse e�ects on shareholder value (Hu and Black, 2008a).
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In a second step, we consider the more complex setup in which the activist
possesses superior information about the e�ect of the reform. We ask the question
of whether vote trading may be advantageous for corporate governance by fostering
information transmission from the activist to other shareholders,5 and we compare
vote trading to other traditional forms of activist interventions. To this end, we
extend the model by an uncertain state that determines whether the reform proposal
increases or decreases shareholder value. The activist privately knows the state.

If the activist and shareholders have aligned interests, that is, if the activist’s
private benefit from the status-quo is negligible, vote trading is not necessary for in-
formation transmission: the activist can also communicate her superior information
via cheap talk, such as public endorsements.

We, thus, focus on the case in which the activist’s private benefit from the status
quo leads her to oppose the reform in either state, preventing cheap talk. Interest-
ingly, despite the misaligned interests of shareholders and activist, vote trading can
facilitate information, and improve firm value in this situation. Shareholders can
learn from the activist’s vote acquisition: when the activist is endowed with some
shares, her willingness to pay for the voting rights is correlated with the state. This
gives rise to a separating equilibrium in which the activist prevents the reform more
often when it is in the shareholders’ interest, increasing firm value. However, the
ability to improve shareholder value depends on significant prices for voting rights
since those are needed as a costly signal. When shareholdings are dispersed, the
emerging low prices prevent an informational benefit. Absent of vote trading, the
activist might use other costly signals to achieve the same, or even superior outcomes.
Activist investors’ traditional methods––the acquisition of a minority stake in the
company, or costly proxy fights, for example—can achieve first-best communication,
independent of the shareholder structure.

We conclude that vote trading benefits only hostile activists because they cannot
rely on traditional forms of activist interventions. As a result, vote trading threatens
corporate governance and shareholder value. This is true even in the (unlikely) best-
case scenario in which shareholders are fully informed about the activist’s motives.
Thus, we advocate the regulation of vote trading.

Because ine�cient outcomes from the market for voting rights occur even when
motives are transparent, policy measures aimed at increasing transparency are not
su�cient to restore e�ciency and prevent hostile activism. At the same time, vote
trading often emerges as a byproduct, such that banning transactions that may be
used for vote trading is costly. Consequently, we recommend policy measures that
regulate the eligibility to vote. In particular, we propose regulating entities instead

5The informational advantage of vote trading is stressed by Brav and Mathews (2011) as well
as Eso et al. (2015).
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of securities. That is, we argue that any entity who acquires voting rights through
vote trading (through a Vote Trading technique, cf. Chapter 3) should not be eligible
to vote. Further, our analysis reveals that decisions taken by supermajority rule are
especially likely to be blocked by hostile activists. Consequently, our model suggests
that simple majority voting helps to prevent hostile activism.

�.�.� Trading votes for shareholder meetings

In this chapter, we analyze the empirically most relevant decoupling techniques,6

which are the ones that are economically identical to the outright trade of voting
rights (Vote Trading techniques, cf. Chapter 3). For simplicity, we refer to (the
usage of) these techniques as vote trading. When engaging in vote trading, the
activist trades directly with the shareholders, and the economic exposure remains
with the shareholders at all times. Only the voting right changes hands for a flat
transfer.

In practice, the bulk of vote trading occurs via the equity lending market. Since
the possession of a share at the record date su�ces to obtain the voting right, an
activist investor seeking to acquire voting rights only needs to borrow the shares she
wants to vote over the record date. When the lending fee is independent of the share
value, as is usually the case, the shareholder (lender) retains the economic exposure
and only sells the voting right. The lending fee captures the cost of acquiring the
voting right. Alternatively, the same outcome can be achieved through a repo con-
tract in which the cash-providing side (the activist) obtains the shares for a limited
amount of time, before selling it back to the collateral providing side (shareholder)
at pre-negotiated terms. Again, the initial shareholder fully retains the economic
exposure, whereas the activist only secures her right to vote, at a flat price. Last, it
is easy to design synthetic assets that are economically equivalent to vote trading.7

�.�.� Empirical insights from the equity lending market

Christo�ersen et al. (2007) provide the first evidence of vote trading via the equity
lending market. They find that a significant spike in the volume of share lending over
the record date. Kalay et al. (2014) validate this result with a di�erent estimation

6Financial innovation has created a multitude of decoupling techniques that diverge in their
economic implications depending on the timing, order of transactions, and counterparties. For a
more detailed account of the shareholder voting process and an overview over (other) decoupling
techniques, see Chapter 3.

7For instance, the activist could engage in voting trading by buying synthetic calls, i.e. bundles
of shares and a put option, from the shareholder. If the put option is at the money, the activist
can exercise it right after the record date, such that she only retains the voting right. In case
the activist is hostile and seeks to reduce share value, she will always exercise the option and the
economic exposure remains with the shareholder.
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approach.8 Hu and Black (2008a), collect anecdotal evidence of decoupling between
1988 and 2008. They register over 40 decoupling cases, many of which rely on share
lending. In those cases, the additional voting rights were used to influence decisions
over diverse issues, ranging from management entrenchment to takeover approvals.
The practice continues to be popular with activists, as the recent fight for control of
Premier Foods (2018) highlights.9 Arguably, one of the reasons for this popularity
of the equity lending market as a platform for vote trading is its size and liquidity.
Within the U.S. stock market, for instance, an average of 20% of a company’s shares
is available for borrowing (Campello et al., 2019).1011

Besides providing empirical evidence of an active and sizable market for vot-
ing rights, Christo�ersen et al. (2007) and Kalay et al. (2014) also estimate the
market price of voting rights. Christo�ersen et al. (2007) find no significant prices
for voting rights, whereas Kalay et al. (2014) estimate significant but small prices.
Christo�ersen et al. (2007) interpret their findings as a sign of common values. Be-
cause all investors supposedly share the same interests, there is no need to charge
positive prices for voting rights. Instead, investors are willing to delegate their vot-
ing rights to more informed parties. This argument, however, seems to be at odds
the findings of Hu and Black (2008a); most of the their cases resulted in—prima
facie—–ine�cient outcomes and reduced shareholder value. While di�erent in de-
tail, the cases share a common feature in that voting rights acquired by a single
hostile activist were used to block supermajority decisions.

Our theory reconciles the empirical findings of positive trading volume, low
prices, and ine�cient outcomes. We show that a market failure in the market
for voting rights leads to low prices, enabling hostile activism. Those ine�cient
outcomes do not require hidden motives by the activist.12

8Kalay et al. (2014) focus on decoupling techniques that work via the options market and are
not equivalent to the outright trade of voting rights (i.e. no Vote Trading techniques, cf. Chapter
3), i.e. the class of decoupling techniques analyzed in this chapter. However, they also use their
methodology to analyze data from the equity lending market.

9Financial Times, July 15, 2018, “Market reverberates with accusations of empty voting”, https:
//www.ft.com/content/�e�����e-��dd-��e�-a��d-��e�d������d.

10With the continuing growth in popularity of ETFs, which use share lending as an inte-
gral part of their business model, the size of this market is likely to expand—see, for exam-
ple, Deutsche Bundesbank Monthly Report, October 2018, https://www.bundesbank.de/resource/blob/
������/�fd�ae�f����fb�ce���c���ce�����b/mL/����-��-exchange-traded-funds-data.pdf.

11Campello et al. (2019) show that companies try to limit the number of lendable shares with
share buybacks, and argue that they do so to limit short-selling opportunities. Our results give
another rationale for the buyback—namely that placing a limit on the number of lendable shares
limits the number of votes that can be bought via the equity lending market.

12Hu and Black (2007) point out that there may be other issues, such as lack of transparency
in the market for voting rights and pivotality considerations. We pick up on this issue of pivotality
and formalize it.

https://www.ft.com/content/0e28929e-85dd-11e8-a29d-73e3d454535d
https://www.ft.com/content/0e28929e-85dd-11e8-a29d-73e3d454535d
https://www.bundesbank.de/resource/blob/766600/2fd3ae4f0593fb2ce465c092ce40888b/mL/2018-10-exchange-traded-funds-data.pdf
https://www.bundesbank.de/resource/blob/766600/2fd3ae4f0593fb2ce465c092ce40888b/mL/2018-10-exchange-traded-funds-data.pdf
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The chapter is structured into five sections. Section 4.2 reviews the literature. In
Section 4.3 we show that vote trading in a symmetric information setting uniquely
benefits a hostile activist who can exploit a market failure in the market for voting
rights. In Section 4.4 we investigate the e�ect of vote trading when the activist has
superior information about the correct course of action. We compare vote trading
with traditional forms of activist interventions. We draw conclusion from our find-
ings in Sections 4.5, before developing policy recommendations in Section 4.6. All
proofs are relegated to the appendix.

�.� Literature

Decoupled economic interest and voting power has been studied in the context of
dual-class share structures and takeovers. Grossman and Hart (1988) as well as
Harris and Raviv (1988) provide conditions under which a single share class is op-
timal. Gromb (1992) proves that reducing the number of voting shares increases
shareholders’ likelihood of being pivotal, thereby reducing shareholders’ free-riding
incentives. Burkart et al. (1998) shows that if private benefits are an endogenous
choice by the winning bidder after the takeover, reducing the number of voting shares
necessary for control can increase welfare. When bidders have private information
about the post-takeover value of the firm, At et al. (2011) show that dual-class shares
can facilitate value-increasing corporate takeovers. For a detailed overview of the
theoretical literature on dual-class shares and takeovers, compare Burkart and Lee
(2008). Adams and Ferreira (2008) summarize the empirical literature on dual-class
shares, stock pyramids, and cross-ownership. They find that the value of voting
rights di�ers substantially across countries, time frames, and analysis, but can be
quite significant. However, trading dual-class shares to decouple voting rights and
economic interests is not equivalent to the outright trade of voting rights (i.e. no
Vote Trading technique, cf. Chapter 3), such that it has di�erent economic implica-
tions.

Burkart and Lee (2015) show how the free-rider problem and asymmetric infor-
mation can be overcome by the usage of option contracts. In the context of contests
for corporate control, Dekel and Wolinsky (2012) find that allowing for vote trading
in addition to share trading may increase the probability that an ine�cient bidder
takes over the company. Neeman and Orosel (2006) consider a repeated control
contest among an incumbent manager and a challenger in which vote trading can
be used as a signaling device. Blair et al. (1989) analyze the e�ect of taxation in
a takeover contest where shares and votes can be traded separately. In political
economy, Dekel et al. (2008) consider a contest between two political party’s which
can either buy votes or bribe voters. The authors find that overall payments are
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substantially higher when parties can pay bribes. Dekel et al. (2009) introduce bud-
get constraints to this setting. Their model is related to our competition game, as
we discuss in Section 4.3.3. Casella et al. (2012) demonstrate that the market for
voting rights does not have a competitive equilibrium; thus, they introduce an “ex-
ante vote trading equilibrium.” They identify conditions under which vote trading
fails to aggregate preferences and generates welfare losses relative to simple majority
voting.

Neeman (1999) and Bó (2007) argue that a single buyer can acquire voting rights
at zero prices. Neeman (1999) shows that when the number of voters grows large,
a zero-price equilibrium is the only pure strategy equilibrium robust to noise vot-
ers. Bó (2007) shows that when an activist can write arbitrary, outcome-dependent
contracts, she can bribe voters to vote for her at zero cost.

Brav and Mathews (2011) examine the e�ects of vote trading in the presence of
an informed activist who can either buy shares or sell them short. Shareholders are
no strategic players, but are noise voters. By assumption, the activist can acquire
a certain fraction of their voting rights for free. The activist is more likely to be
pivotal when she has aligned interests because additional shares also provide her
with additional voting rights. As a consequence, vote trading increases the expected
welfare. In Eso et al. (2015), only shareholders with (conditionally) aligned interests
participate in the market for voting rights. They use the market as a way to delegate
their voting rights to the most informed parties, aiding information aggregation and
ensuring that partisans are out-voted.

This chapter is also related to the literature on shareholder voting. Yermack
(2010) summarizes the empirical literature on shareholder voting in United States
based companies, whereas Iliev et al. (2015) present evidence for the importance
of shareholder voting in non-U.S. firms. Bar-Isaac and Shapiro (2020) show that
a blockholder may optimally abstain from voting all of his shares to not crowd
out information of other shareholders. This requires alignment of interests among
the blockholder and other shareholders. Levit and Malenko (2011) show that non-
binding shareholder voting may fail to aggregate information when interests between
management and shareholders only partially align. Malenko and Malenko (2019)
study the e�ect of proxy advisors on information acquisition and voting behavior of
shareholders. Levit et al. (2019) analyze the e�ect of share trading opportunities on
shareholder voting, the shareholder base, and the optimal board design.
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�.� Symmetric information

�.�.� Model

We revisit the model of Chapter 3 but with a finite number of shareholders and an
activist who may own shares in the company.

Investors Consider a public company with n œ N shares outstanding. Each share
consists of a cash-flow claim and a voting right. The company is owned by two types
of investors: an activist investor who owns –n œ N0 shares and (1 ≠ –)n = nS Ø 3
ordinary shareholders who hold a single share each. Henceforth, we will refer to the
activist shareholder as activist, A, and to the ordinary shareholders as shareholders,
S, although the activist can be a shareholder herself. All investors are risk neutral.

Shareholder meeting The company has an upcoming shareholder meeting with
a single, exogenously given reform proposal on the agenda. The vote is binding,13

and the reform is implemented if at least ⁄n œ N votes are cast in favor of it.
Otherwise, the status quo prevails. We assume that 1 ≠ ⁄ > –, such that the
activist cannot block the reform unilaterally and that 1 < ⁄n < nS , meaning that
an individual shareholder can neither block, nor implement the reform.

Payo�s If the company sticks with the status quo, the company’s total share
value remains unchanged at v > 0; if the reform is implemented, the company’s
value increases by � > 0 to v + �.

Despite the positive e�ect of the proposed reform on firm value, the activist may
oppose it as she gains private benefits b > 0 from the status quo. These private
benefits can, for instance, stem from other assets in her portfolio.14 Debt in the
same company may reduce the risk appetite, common ownership leading to anti-
competitive preferences15 or di�erent supplier choices. Alternatively, the status-quo
may allow the activist to (continue to) extract b at a cost to the firm of �. In any
case, we take b to be exogenously given and fixed. In summary, the payo�s are

activist shareholder
status quo –v + b v

n

reform –(v + �) v+�
n .

When b < –�, the activist and the shareholders have aligned interests and both
prefer to implement the reform; the activist is friendly. If b > –�, the activist
prefers the company to stick with the status quo, in which case she is hostile. Since

13In the US binding shareholder voting occurs in the context of by-law amendments, acquisitions,
and equity restructuring. In other countries, such as countries of the EU, shareholder decisions are
usually binding.

14In 2004, during the acquisition of MONY by AXA, bond holdings introduced a wedge in
the interest of MONY shareholders, compare https://www.nytimes.com/����/��/��/business/holders-
of-mony-approve-�.�-billion-sale-to-axa.html.

15Compare Azar et al. (2018) for empirical evidence on the e�ects of common ownership.

https://www.nytimes.com/2004/05/19/business/holders-of-mony-approve-1.5-billion-sale-to-axa.html
https://www.nytimes.com/2004/05/19/business/holders-of-mony-approve-1.5-billion-sale-to-axa.html
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the friendly activist has no e�ect on the outcome of the decision under symmetric
information, in this section we focus on this case of a hostile activist. Further, we
think of the private benefit b as relatively small compared to the overall change in
firm value �. In particular, we assume that b < �, such that the reform increases
welfare.16

�.�.�.� Voting stage

As usual, the voting stage has degenerate equilibria in which all investors either vote
for the status quo or the reform. When no voter can swing the outcome of the vote
unilaterally, voting independent of the own preferences is a best response. However,
these strategies are weakly dominated and yield peculiar equilibria, such that we
rule them out. We assume that if an investor’s voting decision does not a�ect the
outcome of the vote, she votes for her preferred alternative. Hence, the activist casts
all of her votes in favor of the status quo and the shareholders in favor of the reform.
The outcome of the vote is, thereby, uniquely determined by who owns how many
voting rights at the time of the meeting.

In the following, we do not model the voting stage explicitly but only use that
the activist can block the reform if she controls at least (1 ≠ ⁄)n + 1 voting rights.
Given that – < (1 ≠ ⁄), this means that she needs m = (1 ≠ ⁄ ≠ –)n + 1 additional
voting rights to prevent the reform. Otherwise, the e�cient reform is implemented.

�.�.� Vote trading

We now allow the activist to acquire voting rights, for instance by borrowing shares
over the record date.

Suppose the activist can make a public take-it-or-leave-it o�er p œ R+ per voting
right. The o�er is restricted, meaning that the activist can set an upper bound on
the number of voting rights she is willing to acquire. If more shareholders sell
to her, they are rationed. It is without loss to assume that the activist sets an
upper bound at m = (1 ≠ ⁄ ≠ –)n + 1 voting rights. Having observed the o�er
p, shareholders simultaneously decide whether to sell. To capture the anonymity
among shareholders, we consider symmetric strategies represented by a response
function q : R+ æ [0, 1] mapping any o�er p into an acceptance probability q(p).
As a result, the number of shareholders who accept is a binomial random variable
M(nS , q(p)) ≥ Bin(nS , q(p)). Since shareholders are rationed when M(nS , q(p)) >

m, the activist acquires M̄(nS , q(p)) = min{M(nS , q(p)), m} voting rights.
Suppose that the activist o�ers price p and the shareholders respond by mixing

with probability q(p). If the activist buys fewer than m votes, the company’s value
16If b Ø �, the activist could simply take over the company and block the reform, maximizing

welfare.
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rises to v + �. As a result, her payo� is –(v + �) ≠ pM(nS , q(p)). To the contrary,
if M(nS , q(p)) Ø m, the firm value remains at v and the activist receives the private
benefit b, such that her payo� is –v + b ≠ pm. Together, this yields an expected
payo� of

�A(p; q) = –(v + �) + P[M(nS , q(p)) Ø m](b ≠ –�) ≠ pE[M̄(nS , q(p))]. (4.1)

A shareholder’s payo� depends on her selling decision as well as the behavior
of the other nS ≠ 1 shareholders. Fix one shareholder, suppose that the activist
o�ers price p and that the other shareholders respond by mixing with probability
q(p). If the shareholder decides to sell his voting right but fewer than m ≠ 1 other
shareholders also sell, the reform passes and the shareholder’s payo� is p + v+�

n .
Conversely, if at least m ≠ 1 of the other shareholders also sell their voting rights,
the reform is blocked and the share value remains at v

n . Further, if more than m ≠ 1
other shareholders sell, i.e. M(nS ≠ 1, q(p)) > m ≠ 1, the shareholder is rationed. In
this case, his payo� is

p
m

M(nS ≠ 1, q(p)) + 1 + v

n
.

If the shareholder does not sell his voting right, but at least m other shareholders do,
the reform is blocked and his payo� is v

n . Otherwise, it rises to v+�
n . In expectation,

this means that a shareholder’s payo� is

�S(sell; p, q) = v + �
n

≠ P[M(nS ≠ 1, q(p)) Ø m ≠ 1]�
n

+ p
E[M̄(nS , q(p))]

nSq(p)

if he sells his voting right and

�S(keep; p, q) = v + �
n

≠ P[M(nS ≠ 1, q(p)) Ø m]�
n

if he keeps his voting right. The fraction E[M̄(nS ,q(p))]
nSq(p) is the probability not to be

rationed.17

We consider subgame perfect equilibria.

Proposition �.� For any n, an equilibrium (pú, qú) exists. If qú(pú) > 0 and, thereby,
P[M(nS , qú(pú)) Ø m] > 0, then

púE[M̄(nS , qú(pú))]
¸ ˚˙ ˝

E[total transfer]

< m
�
n

· P[M(nS , qú(pú)) Ø m]
¸ ˚˙ ˝

E[loss per shareholder]

. (4.2)

Further,

17Compare (4.7) in the appendix for an explicit derivation of the expression.
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• there always is an equilibrium in which pú = 0 and qú(0) = 1;

• as n grows large, along any sequence of equilibria,

lim
næŒ

P[M(nS , qú(pú)) Ø m] = 1 and lim
næŒ

púE[M̄(nS , qú(pú))] = 0.

Proposition 4.1 establishes that the activist can obtain the blocking minority
without the need to (fully) compensate the shareholders (4.2). Whenever there is
trade,18 shareholders su�er a strict loss. This is possible because the activist can
exploit two ine�ciencies, which create a market failure in the market for voting
rights.

First, there is the externality of voting. The ⁄-majority-rule implies that only
(1 ≠ ⁄)n + 1 votes have to be cast against the reform to block it. This blocking
minority does not internalize the e�ect of their behavior on the rest of the share-
holders. As a result, it would su�ce if the activist compensated m shareholders for
their individual loss of �

n .
However, the activist can do even better and pays less than m times the expected

loss of a shareholder (4.2). A shareholder’s valuation for her voting right depends
on the selling decisions of the other shareholders. The voting right is only valuable
if it is decisive or pivotal in the vote—that is, if exactly m≠1 other shareholders sell
their voting rights. Therefore, any shareholder compares the expected payment the
activist o�ers with the expected loss in case the reform is blocked, but weighs the
expected loss with the probability to be pivotal. In particular, if the activist o�ers
p and the other shareholders sell with probability q(p), a shareholder prefers to sell
if �S(sell; p, q) Ø �S(keep; p, q), which rearranges to

p
E[M̄(nS , q(p))]

nSq(p)
¸ ˚˙ ˝

E[payment]

Ø P[M(nS ≠ 1, q(p)) = m ≠ 1]
¸ ˚˙ ˝

P[pivotal]

�
n¸˚˙˝

loss

. (4.3)

As m = (1 ≠ ⁄ ≠ –)n + 1 œ {2, ..., nS ≠ 1}, the probability of being pivotal is always
strictly smaller than 1.19 Hence, there is a dilution of control and the activist can
acquire the voting rights at a discount.

The proof of Proposition 4.1 further shows that as the population of shareholders
grows, the probability that any single shareholder is pivotal quickly converges to zero.
Therefore, any equilibrium outcome approaches the most extreme one in which every
shareholder sells his voting rights to the activist for free, and the activist always

18Whenever n and b are su�ciently small, there may also be an equilibrium in which pú = 0 and
qú(pú) = 0.

19If q œ {0, 1}, such that every other or no other shareholder sells, P[pivotal] = 0 and the
shareholder sells at any positive price. For all q œ (0, 1), every or no shareholder sells with strictly
positive probability, such that P[pivotal] < 1.
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blocks the reform.
When the number of shareholders is su�ciently large, the market failure that

creates ine�cient outcomes occurs across all symmetric equilibria, such that our
result does not rely on an equilibrium selection. Further, Neeman (1999) shows that
the zero-price equilibrium is the only asymmetric equilibrium robust to noise voters;
this highlights the robustness of our results.

�.�.�.� Conditional or unrestricted o�ers

Restricted o�ers are natural since an activist only needs to acquire a fraction of
the voting rights. Further, shareholders correctly anticipate the possibility to be
rationed (left side of (4.3)), and demand a higher price to compensate for the possi-
bility. Thereby, the restriction has no e�ect on the transfers, and Proposition 4.1 is
completely driven by the shareholders’ pivotality considerations. If we were to con-
sider unrestricted o�ers, the results would remain unchanged for large n. For small
n and large b, the activist may choose a price that gives her, in expectation, more
than m voting rights, to guarantee that she can block the reform. As a result, when
there are few shareholders, the total transfer can exceed m�

n . In the alternative
case in which the activist can restrict the o�er and condition it on the event that
at least m shareholders agree to sell their voting right, the result of Proposition 4.1
is strengthened: for any n, only the zero-price equilibrium survives. We prove the
results in Lemmas 4.7 and 4.8 in the appendix.

�.�.� Competing o�ers

We now investigate how the market failure and the resulting threat of hostile activism
reacts to competition by a friendly blockholder. To that end, suppose that there
is such a blockholder B who owns —n œ N shares but — < ⁄ such that he cannot
implement the reform unilaterally. The number of ordinary shareholders is nS =
(1≠–≠—)n œ N. As before, activist A first makes an o�er pA for mA = (1≠⁄≠–)n+1
voting rights. After observing A’s o�er, blockholder B, acting as a white knight
who wants to implement the reform, jumps in and makes a countero�er pB for up
to mB = (⁄ ≠ —)n = nS ≠ mA + 1 voting rights. Thus, B’s strategy is a function
pB : R+ æ R+ which maps any o�er pA into a countero�er pB(pA).

Note that for the shareholders, selling the voting rights to the blockholder dom-
inates holding onto them. Thus, every shareholder (tries to) sell his voting right
to either the activist or the blockholder. The symmetric best response function
of shareholders is given by q : R+ ◊ R+ æ [0, 1], where q is the probability that
shareholders sell to A and 1 ≠ q the probability that they sell to B. Further, define
M̄A = max{M(nS , q), mA} and M̄B = max{nS ≠ M(nS , q), mB} as the random
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number of shares A and B actually acquire. Again, we consider subgame perfect
equilibria.

Proposition �.� For any n, an equilibrium (pú
A, pú

B, qú) exists.

1. If b≠–�
1≠⁄≠– > —�

⁄≠— and n is su�ciently large, the reform is always blocked,
qú(pú

A, pú
B(pú

A)) = 1. Further,

pú
AE[M̄A(nS , qú(pú

A, pú
B(pú

A)))] = pú
AmA <

1 ≠ ⁄ ≠ –

⁄ ≠ —
—�

but limnæŒ pú
AE[M̄A(nS , qú(pú

A, pú
B(pú

A)))] = 1≠⁄≠–
⁄≠— —�.

2. If b≠–�
1≠⁄≠– < —�

⁄≠— , as n grows large, along any sequence of equilibria, the reform
becomes certain, limnæŒ P[MA(nS , qú(pú

A, pú
B(pú

A)) Ø mA] = 0, and transfers
converge to zero, limnæŒ pú

AnS = limnæŒ pú
B(pú

A)nS = 0.

When the shareholdings are dispersed, i.e. n and mA, mB are large, no in-
dividual shareholder is pivotal with substantial probability. Thus, he simply sells
to the investor who o�ers the higher expected payment, anticipating the di�erent
probabilities to be rationed. How much A and B are willing to o�er depends on
their willingness to pay, b ≠ –� and —�, as well as the number of shares they
have to acquire, (1 ≠ ⁄ ≠ –)n + 1 and (⁄ ≠ —)n. In particular, the activist has a
comparative advantage when she has to acquire fewer shares than the blockholder,
(1≠⁄≠–)n+1

(⁄≠—)n ¥ 1≠⁄≠–
⁄≠— < 1. Note that this is true whenever ⁄ is large, such that com-

petition is unlikely to deter hostile activism in supermajority decisions. Further, the
compensation shareholders receive when the activist blocks the reform is decreasing
in ⁄. Surprisingly, when ⁄ is large, the total transfer from the activist to the share-
holders can be substantially below the expected loss of the blockholder. When the
hostile activist succeeds and blocks the reform, welfare is reduced, although small
shareholders may be (partially) compensated.

If the blockholder deters the activist from making an o�er, vote prices in our
model are close to zero. On the other hand, if the blockholder cannot deter the
activist, the activist has to pay a strictly positive transfer. The analysis by Dekel
et al. (2009) suggest that strictly positive prices may be the result of the o�er
structure. Dekel et al. (2009) show that the unique trading price is zero if the
activist and the blockholder can sequentially adjust their o�er upwards, and if there
is a continuum of shareholders.20 Therefore, (close to) zero prices and a positive
trade volumes do not signal an absence of competition or aligned interests.

20Dekel et al. (2009) analyze a game with a continuum of voters in which the two contestants
make alternating, increasing o�ers until one stops. By an unraveling argument, the loser does not
compete because she would acquire a strictly positive fraction of the voting rights at a positive price
without changing the outcome of the vote.
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�.�.� Discussion

In markets for standard assets without externalities, voluntary trade produces Pareto
improvements. We show that this intuition cannot be transferred to the market for
voting rights. Not only does voting create an externality of the majority on the
minority, but there is a market failure in the voting right market that goes beyond
the externality of voting. The activist does not even compensate m shareholders for
their loss; she pays close to zero compensation. This market failure is the result of the
relative value of a voting right, which depends entirely on the other investors’ trading
and voting decisions and is close to zero when the shareholdings are dispersed.
Importantly, it does not depend on hidden motives by the activist or the details
of the modeling approach.21 As long as shareholders do not believe that they are
pivotal with probability one, the voting rights trade at ine�ciently low prices.

As we show further, competition in the market for voting rights does not elim-
inate the market failure and, by extension, cannot solve the problem of hostile
activism. The threat of competition by a blockholder may deter hostile activists
without raising voting right prices, but relies on the blockholder’s willingness to pay
as well as the number of voting rights he and the activist must acquire.

As pointed out previously, we do not consider a friendly activist in this section
since she would not change the outcome of the vote. When the optimal decision
is common knowledge, an activist only plays a role if she has misaligned interests,
i.e. is hostile. Hence, in a symmetric information setting, vote trading uniquely
aids hostile activists. In Section 4.4 we investigate the situation with asymmetric
information.

Empirical predictions Our model jointly explains low prices for voting rights
(Christo�ersen et al. (2007), Kalay et al. (2014)) and ine�cient outcomes caused by
hostile activists which engage in vote trading (Hu and Black, 2008a).

Moreover, we show that active blockholders may deter hostile activists from
acquiring voting rights, such that it is less likely to occur in companies with large,
active blockholders. Interestingly, the competition does not need to increase prices
in order to deter vote trading. Hence, the observed low prices in the market for
voting rights do not necessarily indicate a lack of competition.

Last, our results imply that supermajority decisions are particularly likely to
be targeted by hostile activists. In addition to market frictions, decisions that re-
quire a supermajority for approval give her a distinct advantage over any potential
competitor. This fits the anecdotal evidence of Hu and Black (2008a) showing that
most incidents of vote trading occurred when a hostile activist blocked a reform that
required a supermajority.

21Casella et al. (2012) show that a competitive equilibrium does not exist. Instead, they consider
a novel equilibrium concept, and show that vote trading can reduce (expected) welfare.
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�.� Asymmetric information

In the previous section, we established that in a symmetric information setting, vote
trading promotes hostile activism, threatening corporate governance and shareholder
value. Certainly, activism can also be put to good use.22 Shareholders often rely
on activist investors for their professional insights and analysis to identify value-
increasing reforms. However, this mutually beneficial relationship is hindered by
ulterior motives of the activist which can make it hard for her to communicate with
the shareholders. To solve this problem, activists engage in proxy fights and disclose
their share position to convince shareholders of their best intentions.

In this section, we investigate the possibilities of vote trading to improve corpo-
rate governance under asymmetric information.23 To this end, we consider a version
of the model in which the activist possesses private information about the optimal
reform decision. We compare vote trading with traditional forms of intervention,
which we identify by their potential to (credibly) communicate the information. The
analysis is split into two cases: when the activist and the shareholders have common
interests (friendly activist), and when the activist always wants to block the reform
(hostile activist).

�.�.� Model

States and payo�s We extend the model by introducing an uncertain state
Ê œ {Q, R} with prior probability fl œ (0, 1

2) that the state is Q. The activist
investor, A, knows the state, the shareholders, S, do not. Throughout Section 4.4,
the activist has a strictly positive share endowment, – > 0.

Again, the activist obtains private benefits whenever the status quo remains.
The reform, however, is not uniformly beneficial for shareholders. In state Q, the
reform reduces firm value by �, such that shareholders also prefer the status quo
over the reform; in state R the reform raises firm value by �. As a result, the payo�s
are

Q activist shareholder R activist shareholder
status quo –v + b v

n status quo –v + b v
n

reform –(v ≠ �) v≠�
n reform –(v + �) v+�

n .

22Compare Brav et al. (2015, 2008) for an empirical analysis of the e�ects of hedge fund activism.
23Brav and Mathews (2011) and Eso et al. (2015) stress the positive e�ect of vote trading on

information transmission and aggregation.



��� | Chapter �

�.�.�.� Voting stage

Shareholders try to maximize their (expected) share value by matching the state. Let
› be the shareholders’ belief that the state is Q at the time of the vote. As before, we
ignore degenerate equilibria where voters play weakly dominated strategies. This
means that if › < 1

2 , shareholders vote for the reform, and if › > 1
2 , they vote

for the status quo. Absent of any additional information › = fl < 1
2 , meaning

that shareholders vote for the reform. The activist knows the state and matches it
whenever b < –�, but she always votes in favor of the status quo whenever b > –�.
As noted before, we refer to these two cases as a friendly activist and hostile activist,
respectively.

�.�.� Friendly activist, b < –�

When the activist has superior information valuable to shareholders, she can poten-
tially improve corporate decision making. Therefore, we also need to analyze the
friendly activist, who did not change the outcome of the decision in the symmetric
information case.

�.�.�.� Vote trading

Suppose the activist can make a public take-it-or-leave-it o�er p Ø 0 for up to m

voting rights. Alternatively, the activist may make no o�er, which we denote by ÿ.24

Since the activist’s o�er depends on the state, her strategy becomes p : {Q, R} æ
R+ fi ÿ. Having observed the o�er, any individual shareholder updates her belief to
›(p) and sells with probability q(p) œ [0, 1].

Because the activist votes for the firm-value maximizing decision, shareholders
benefit from selling their voting right to her. The activist, on the other hand, tries
to acquire the voting rights or steer the decision at the lowest possible cost. The
payo�s are stated explicitly in the proof of Lemma 4.1.

We solve the game for perfect Bayesian equilibria.

Lemma �.� An equilibrium (pú, qú; ›ú) exists. In any equilibrium,

• the activist o�ers pú(Ê) = 0 in at least one state Ê œ {h, ¸};

• the reform is implemented in state R and the status quo remains in state Q.

By Lemma 4.1, vote trading increases the probability that the state is matched
from 1 ≠ fl to 1. Since this is in the best interest of both shareholders and the
activist, welfare rises from v + (1 ≠ 2fl)� to v + (1 ≠ fl)� + flb. This improvement

24Such an action would be (weakly) dominated by o�ering zero in the symmetric information
game.
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is achieved through one of two types of equilibria. In the “delegation equilibrium,”
the activist acquires all voting rights for pú(Q) = pú(R) = 0. Shareholders know
that the activist has aligned interests and that she implements the correct decision,
such that they cede their voting rights to her.25 In a “signaling equilibrium,” the
friendly activist only o�ers to purchase the voting rights in one state. Therefore,
the presence (or lack) of an o�er reveals the state to the shareholders and they vote
in favor of the correct decision.

�.�.�.� Costless communication

Whenever the activist is friendly, there are other forms of activist interventions by
which she can ensure that the correct decision is implemented. She just has to
communicate the optimal decision to the shareholders.

Formally, suppose that the activist cannot acquire voting rights but communi-
cates with the shareholders before the meeting by sending a message from {0, 1}.
Thus, a strategy for the activist is a mapping from the state into the binary mes-
sage space µ : {Q, R} æ {0, 1}. Having observed µ(Ê), shareholders form posterior
›(µ(Ê)) and vote for the status quo if ›(µ(Ê)) > 1

2 , and vote for the reform if
›(µ(Ê)) < 1

2 . We consider perfect Bayesian equilibria.

Lemma �.� There is an equilibrium (µú; ›ú) in which the activist sends µú(Q) ”=
µú(R), such that shareholders learn the state. Thereby, the reform is implemented
in state R and the status quo remains in state Q.

Since shareholders and the friendly activist have aligned interests, they follow her
recommendation, such that the correct decision is taken and welfare is maximized.
Thus, vote trading does not have a unique upside when the activist is friendly.

In practice, means of (cheap talk) communication are readily available and there
is a long-standing tradition of activist investors endorsing company policies or pub-
licly venting their discontent with management, be it through public statements,
interviews, or 13D attachments. Further, the internet significantly simplifies the
communication among shareholders, and regulatory authorities have deliberately
removed legal obstacles to foster communication. For example, proxy rule amend-
ments made in 2007 by the U.S. Securities and Exchange Commission (SEC) encour-
age electronic shareholder forums with this in mind. Christopher Cox, who served
as SEC chairman at that time, summarized the reform, saying,26

25Observe that while such an equilibrium also exists in the game with a hostile activist, the
rationale here is di�erent. Shareholders benefit from delegating their voting rights, such that they
strictly prefer to do so, independent of pivotality considerations.

26SEC press release, November 28, 2007, http://www.sec.gov/news/press/����/����-���.htm.

http://www.sec.gov/news/press/2007/2007-247.htm
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“Today’s action is intended to tap the potential of technology to help sharehold-
ers communicate with one another and express their concerns to companies in ways
that could be more e�ective and less expensive. The rule amendments are intended
to remove legal concerns, such as the risk that discussion in an online forum might
be viewed as a proxy solicitation, that might deter shareholders and companies from
using this new technology.”

Ultimately, there is another channel by which the correct decision can be im-
plemented by the friendly activist: delegation. Uniformed shareholders have an
incentive to give a proxy to the informed, friendly activist free of charge. This al-
lows the friendly activist to implement the correct decision in their place, resulting
in the same Pareto improvement that vote trading o�ers.

�.�.� Hostile activist, b > –�

As we have seen in the last section, vote trading as well as other forms of costless
communication or delegation can improve corporate governance and shareholder
value when the activist is friendly. When the activist is hostile, however, she always
wants to block the reform, such that she cannot transmit information to sharehold-
ers via cheap talk, and shareholders are unwilling to delegate their voting rights.
However, we show in this section that vote trading might still improve corporate
governance and the expected firm value. We then investigate whether traditional
forms of intervention can have similar benefits.

�.�.�.� Vote trading

Again, the activist can make a public take-it-or-leave-it o�er p for up to m voting
rights. Shareholders update their belief to ›(p) and decide with which probability
to sell, q(p). Thus, strategies are p : {Q, R} æ R+ and q : R+ æ [0, 1].

The shareholders’ posterior belief about the state, ›(p), a�ects their expected loss
when the activist blocks the reform. When ›(p) > 1

2 , shareholders actually prefer
the status quo, fixing the firm value at v. In this case, shareholders’ incentives are
aligned with those of the activist and selling to the activist does not change the
outcome of the vote, such that there is no expected loss in firm value when the
activist blocks the reform. On the other hand, when ›(p) < 1

2 , shareholders prefer
the reform since it increases the expected firm value to v+(1≠2›(p))�. Thus, when
the activist blocks the reform, shareholders incur a loss of (1 ≠ 2›(p))�

n .27

27Fully spelled out, this means that

�S(sell; p, q, ›) = v
n

+ (1 ≠ P[M(nS ≠ 1, q(p)) Ø m ≠ 1]) max{0, 1 ≠ 2›(p)}�
n

+ p
E[M̄(nS , q(p))]

nSq(p) ,

�S(keep; p, q, ›) = v
n

+ (1 ≠ P[M(nS ≠ 1, q(p)) Ø m]) max{0, 1 ≠ 2›(p)}�
n

.
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The activist’s payo� is also influenced by the shareholders’ belief, ›(p), because
it determines their voting behavior. Suppose that ›(p) < 1

2 , such that shareholders
who do not sell their voting right vote for the reform. In state R, the activist’s
payo� is given by equation (4.1), whereas in state Q, it is

�A(p; q, ›, Q) = –(v ≠ �) + P[M(nS , q(p)) Ø m](b + –�) ≠ pE[M̄(nS , p(q))].

If ›(p) Ø 1
2 and shareholders who do not sell their voting right vote against the

reform, the activist’s payo� is –v + b ≠ pE[M̄(nS , p(q))], independent of the state.
Since – > 0, the activist’s willingness to pay for the voting rights is higher in

state Q than in state R. As a result, there are separating perfect Bayesian equilibria
in which vote trading can be welfare increasing. The following exemplary equilib-
rium illustrates this e�ect.

Example Suppose there are n = 4 shares and that the activist and three other
shareholders each own one share. The reform changes firm value by � = 1, whereas
the status quo provides the activist with a private benefit of b = 1

2 . The prior
probability of state Q is fl = 1

4 , such that, in expectation, the shareholders benefit
from the reform. The activist, on the other hand, wants to block the reform in either
state. The reform requires a simple majority; in case of a tie, it is implemented as
well. Thus, the activist needs to acquire m = 2 voting rights to prevent the reform.

There is an equilibrium in which pú(Q) = 1
8 , pú(R) = 0, qú(pú(Q)) = 1 and

qú(pú(R)) = 0. In this separating equilibrium, the reform is implemented only in
state R and welfare is maximized. Figure 4.1 illustrates the equilibrium strategies
(pú, qú).

pú(Q)

1
q

p

qú(p)

0
pú(R)

Figure �.� Example of a fully separating equilibrium.
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To construct this equilibrium, suppose that ›ú(p) = 0 for all p œ [0, pú(Q)). Given
this belief, let qú(p) be the smallest solution to the condition that shareholders are
indi�erent between selling and retaining their voting right

2(1 ≠ q)q
¸ ˚˙ ˝

P[M(nS≠1,q)=m≠1]

�
n

= p [(1 ≠ q)2 + 2q(1 ≠ q) + q2 2
3]

¸ ˚˙ ˝
E[M̄(nS,q)]

nSq

.

For all p Ø pú(Q), let ›ú(p) = 1, such that it is strictly optimal for shareholders to
sell, qú(p) = 1. Naturally, the resulting qú is a best response given their belief ›ú.

When shareholders respond with qú, in state R, the activist is indi�erent between
pú(R) = 0 and pú(Q) = 1

8 , �A(pú(R); qú, ›ú, R) = �A(pú(Q); qú, ›ú, R) = 1
4 . Further,

we show in Appendix 4.B.8 that all prices except 0 and 1
8 are dominated. Thus,

pú(R) is a best response. In state Q, the activist’s payo� from blocking the reform
is higher than in state R, such that pú(Q) = 1

8 is the unique best response.
By construction, all investors play best responses and the beliefs are consistent,

such that the proposed strategies and beliefs form a perfect Bayesian equilibrium.

As the next proposition shows, a separating perfect Bayesian equilibrium always
exists but fails to improve expected firm value when n is large.

Proposition �.� There always exists a separating equilibrium (pú, qú; ›ú), i.e. an
equilibrium in which pú(Q) ”= pú(R), such that shareholders learn the state. Further,

1. in any separating equilibrium pú(R) < pú(Q) and qú(pú(R)) < qú(pú(Q)) = 1;

2. as n grows large, along any sequence of equilibria and for Ê œ {Q, R},

lim
næŒ

P[M(nS , qú(pú(Ê))) Ø m] = 1 and lim
næŒ

pú(Ê)E[M̄(nS , qú(pú(Ê)))] = 0.

When the number of shareholders is small, the separating equilibrium can, as
Example 4.1 demonstrates, raise the probability that the correct decision is imple-
mented beyond the ex-ante probability of 1 ≠ 2fl. Thus, vote trading can increase
welfare, even when the activist is hostile, and even if the private benefit does not
su�ce to make up for the expected loss in firm value when the reform is blocked,
b < (1 ≠ fl)� ≠ fl� = (1 ≠ 2fl)�.

This e�ect, however, utilizes vote trading as a costly signal, which can only work
in case the voting rights are su�ciently expensive. As established by Proposition 4.1,
vote prices quickly converge to zero when the firm is owned by more shareholders;
if shareholdings are dispersed, the activist can acquire a blocking minority of voting
rights at negligible cost and block the reform in either state. As a result, the expected
firm value converges to v < fl(v ≠ �) + (1 ≠ fl)(v + �) = v + (1 ≠ 2fl)�, while the
expected transfer converges to zero. When b < (1 ≠ 2fl)�, overall welfare is reduced
compared to the situation without vote trading.
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�.�.�.� Costly communication

Vote trading may improve communication by acting as a costly signal, but so does
any traditional form of costly intervention, yielding (weakly) superior outcomes.

To formalize the idea, suppose that, instead of buying voting rights, the activist
can spend amount Ÿ œ R+, for example, on running a costly but non-informative
public proxy campaign. Thus, her strategy is Ÿ : {Q, R} æ R+. Shareholders
observe Ÿ, form posterior ›(Ÿ), and vote for the status quo if ›(Ÿ) > 1

2 ; they vote
for the reform if ›(Ÿ) < 1

2 . Again, we consider perfect Bayesian equilibria.

Proposition �.�

1. There is an equilibrium (Ÿú; ›ú) in which the activist spends Ÿú(Q) = b ≠ –�
and Ÿú(R) = 0. Shareholders learn the state, block the reform in state Q, and
implement the reform in state R.

2. In every (other) equilibrium, the state is matched with probability of at least
1 ≠ fl.

Proposition 4.4 shows that a costly signal can also be used to credibly com-
municate that the state is Q. In any separating equilibrium, the activist needs to
spend at least Ÿú(Q) = b ≠ –� to signal that the state is Q, preventing the reform.
At Ÿú(Q) = b ≠ –� the activist in state R is exactly indi�erent between spending
Ÿú(Q) and remaining passive, Ÿú(R) = 0: both yield her a payo� of v. In state Q,
the activist strictly benefits from spending Ÿú(Q) because –v+b≠Ÿú(Q) > –(v≠�).

Di�erent from vote trading, in any separating equilibrium of the costly com-
munication game, the first-best firm value is attained. In case the costly signal is
not wasteful, this implies that welfare is maximized. Further, costly signaling can
never reduce shareholder value relative to the pure voting benchmark. It, therefore,
circumvents the risks of hostile activism inherent to vote trading.

Traditional forms of costly intervention include public proxy campaigns or the
public acquisition of shares. Our results generate two new insights regarding the
usage of these tools. First, even if the activist cannot provide evidence of her claims
during the proxy fight, the fact that she is willing to engage in a costly proxy
fight can su�ce as a credible signal. Proxy fights are valuable not because they
directly transmit information but because the associated costs give credence to the
activist. Further, the public acquisition of shares not only aligns the activist and
the shareholders’ interests by raising –, but can be a credible signal that the ac-
tivist wants to maximize shareholder value. Hence, the public disclosure of these
acquisitions—through regulatory filings, for instance—serves an important function
in the communication between investors.
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�.� Conclusion

Financial innovation has created manifold new ways to exchange voting rights; most
notably using the equity lending market. Vote trading became a new force in share-
holder activism, raising the question whether regulators should embrace or worry
about vote trading. Our results show that regulators have reason to be concerned.

Vote trading does not yield Pareto improvements, but renders shareholders vul-
nerable to hostile activism—even in a best-case environment with transparent mo-
tives by the activist. It is true that when the activist has private information about
the optimal decision, vote trading can be beneficial despite the activist’s ulterior mo-
tives. Nevertheless, compared with traditional forms of intervention such as public
endorsements, proxy campaigns, or share acquisitions, vote trading creates inferior
outcomes. Note that we even consider a lower bound on the e�ciency of these tradi-
tional forms of interventions by reducing them to their capacity to act as a costless
or costly signal. For instance, we analyze models of non-verifiable information only.
In practice, activist investors not only suggest certain courses of action but also (try
to) provide evidence for their claims, which can be scrutinized by shareholders and
outside analysts alike.

In conclusion, claims of more e�cient corporate governance via vote trading
seem unconvincing when compared with the traditional forms of intervention by
activist investors. Instead, vote trading threatens shareholder value by enabling
hostile activism. This goes to show that the long-standing tradition of outlawing
the outright trade of voting rights in most countries is well founded. To prevent the
new, indirect ways of vote trading, regulation has to be updated. We discuss some
salient policy proposals in the final section.

�.� Policy implications

�.�.� Transparency measures

The market failure in the market for voting rights does not depend on hidden mo-
tives of the activist. As a result, policies aimed at increasing transparency, such as
extended disclosure requirements28 or rules of informed consent, do not su�ce to
prevent ine�cient market outcomes and hostile activism. Nevertheless, additional
transparency rules might be helpful, to prevent problems of asymmetric information
and to monitor the extent of vote trading.

28Compare Hu and Black (2006) for a discussion of disclosure requirements with the SEC.
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�.�.� Self-regulation by shareholders

Because shareholders collectively bear the cost of vote trading, they have an incen-
tive to self-regulate. In this spirit, large asset managers such as BlackRock claim
to recall shares in case of an “economically relevant vote.”29 Further, non-binding
regulations such as stewardship codes have extended asset managers’ “best practice”
recommendations in the same direction. However, without some form of commit-
ment, none of these self-imposed rules or “shareholder-cartels” are stable. Since it
is individually optimal for shareholders to sell their voting rights if others do not,
there can be no collective abstention from vote trading.

�.�.� Forced recalls

Regulatory authorities could require shareholders to recall their shares for the record
date, forcing them to change the collateral their repo and cancel their lending agree-
ments. While such measures would prevent the most relevant forms of vote trading,
they would also come at a substantial cost. For instance, such regulation would
imply a temporary shutdown of the equity lending market, thereby preventing (non-
naked) short sales over the record date.

�.�.� Excluding bought votes

One way to substantially reduce the ease of vote trading would be to suspend the
voting rights of shares that were acquired in a way that can be exploited for vote
trading. Shares borrowed or posted as collateral would, thus, lose their voting right
until they were returned or resold to a third party.30 This would leave the equity
lending and repo markets una�ected in terms of their capacity to enable short selling
or financing. However, this exclusion would not be a comprehensive solution since
a hostile activist with a positive share endowment could still obtain control. When
owning – > 0 shares, the activist could borrow a fraction ‡ > 1≠–≠⁄

1≠⁄ of the shares,
implicitly voting ‡ as abstentions, thereby blocking the reform.

�.�.� Excluding vote buyers

A more reliable solution than excluding bought votes would be to exclude the vote
buyer from voting any of her shares. This solution not only has the same upsides as
excluding borrowed votes but also prevents the acquisition of voting rights to void
them.

29See https://www.ft.com/content/�e�����e-��dd-��e�-a��d-��e�d������d.
30If a borrowed share would not regain its voting right, share lending would endogenously create

non-voting shares, leading to additional problems.

https://www.ft.com/content/0e28929e-85dd-11e8-a29d-73e3d454535d
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�.�.� Share blocking, lead time of the record date

Prior to 2007, it was common in many EU countries that shares, when voted on, were
blocked from trading before the meeting.31 This was done in an e�ort to prevent
investors from voting shares they no longer owned, aligning the economic interest
and voting power. However, the class of decoupling techniques discussed in this
chapter (Vote Trading techniques, cf. Chapter 3) is una�ected by such measures. In
the case of vote trading via the equity lending market, for example, share blocking
would only require the activist to borrow the shares for the whole lead time of the
record date. The economic exposure would still remain with the initial shareholders
whereas the activist would only receive the voting right.

Similarly, the lead time of the record date has no e�ect on the economic forces
of vote trading and, thereby, the possibility to use vote trading for hostile activism.
Consider, for instance, the most extreme case, in which the voting and the record
date coincide. Such an arrangement would not prevent the activist from borrowing
shares before the record/voting date and returning them afterwards, yielding the
same outcome as the current practice.

�.�.� Majority rules

The anecdotal evidence of Hu and Black (2008a) suggests that decisions that require
a supermajority are particularly vulnerable to hostile activism via vote trading. In
Section 4.3.3 we give one reason for this e�ect: if the reform requires a supermajority,
a blockholder is not able to deter a hostile activist because he is at a disadvantage
relative to the activist, and the transfers from the activist to shareholders is par-
ticularly low. In addition to that, though the depth of the equity lending market
may be sizeable, it is still limited. For both reasons, reducing the required majority
towards a simple majority will help to deter hostile activism.

31See European Commission Sta� Working Document SEC(2006) 181, https://ec.europa.eu/
transparency/regdoc/rep/�/����/EN/�-����-���-EN-�-�.pdf.

https://ec.europa.eu/transparency/regdoc/rep/2/2006/EN/2-2006-181-EN-1-0.pdf
https://ec.europa.eu/transparency/regdoc/rep/2/2006/EN/2-2006-181-EN-1-0.pdf
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Appendices

�.A Identities

Lemma �.� P[M(nS ≠ 1, q) = m ≠ 1] < 1 and limnæŒ P[M(nS ≠ 1, q) = m ≠ 1] = 0.

Proof. The first assertion follows because 0 < m < nS ≠ 1, such that 1 =
qnS≠1

i=0 P[M(nS ≠ 1, q) = i] > P[M(nS ≠ 1, q) = m ≠ 1].
For the second, note that P[M(nS ≠ 1, q) = m ≠ 1] =

!nS≠1
m≠1

"
qm≠1(1 ≠ q)nS≠m is

maximized if

0 =
A

nS ≠ 1
m ≠ 1

B

qm≠2(m ≠ nSq + q ≠ 1)(1 ≠ q)≠m+nS≠1

≈∆ q = m ≠ 1
nS ≠ 1 .

Thus,

P[M(nS ≠ 1, q) = m ≠ 1] Æ
A

nS ≠ 1
m ≠ 1

B

( m ≠ 1
nS ≠ 1)m≠1(nS ≠ m

nS ≠ 1 )nS≠m. (4.4)

Using Stirling’s formula,
!a

b

"
= (1 + o(1))

Ò
a

2fi(a≠b)b
aa

(a≠b)a≠bbb , the right side of (4.4)
becomes

= (1 + o(1))
Û

nS ≠ 1
2fi(nS ≠ m)(m ≠ 1) = (1 + o(1))

Û
1

2fi(1 ≠ ÷)(nS ≠ 1)÷ , (4.5)

with ÷ = m≠1
nS≠1 (implying that ÷ ¥ 1≠⁄≠–

1≠– ). When n, nS , and m æ Œ, the second
assertion follows.

Lemma �.�

nS≠1ÿ

i=m≠1
P[M(nS ≠ 1, q) = i] m

i + 1 = P[M(nS , q) Ø m] m

nSq
. (4.6)

m≠2ÿ

i=0
P[M(nS ≠ 1, q) = i] +

nS≠1ÿ

i=m≠1
P[M(nS ≠ 1, q) = i] m

i + 1 = E[M̄(nS , q)]
nSq

. (4.7)

P[M(nS ≠ 1, q) = m ≠ 1] = m

nSq
P[M(nS , q) = m]. (4.8)
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Proof.

nS≠1ÿ

i=m≠1
P[M(nS ≠ 1, q) = i] m

i + 1 =
nS≠1ÿ

i=m≠1

A
nS ≠ 1

i

B

qi(1 ≠ q)nS≠1≠i m

i + 1

=
nS≠1ÿ

i=m≠1

1
nSq

A
nS

i + 1

B

qi+1(1 ≠ q)nS≠(i+1)m

=
nSÿ

k=m

1
nq

A
nS

k

B

qk(1 ≠ q)nS≠km

= m

nSq
· P[M(nS , q) Ø m].

E[M̄(nS , q)] = P[M(nS , q) Ø m]m +
m≠1ÿ

i=0
P[M(nS , q) = i]i

= P[M(nS , q) Ø m]m +
m≠1ÿ

i=1

A
nS

i

B

qi(1 ≠ q)nS≠ii

= P[M(nS , q) Ø m]m +
m≠1ÿ

i=1

A
nS ≠ 1
i ≠ 1

B

nS · q · qi≠1(1 ≠ q)nS≠i

= P[M(nS , q) Ø m]m +
m≠2ÿ

k=0

A
nS ≠ 1

k

B

nS · q · qk(1 ≠ q)nS≠1≠k

= nSq
1
P[M(nS , q) Ø m] m

nSq
≠ P[M(nS ≠ 1, q) Æ m ≠ 2]

2
,

and plugging (4.6) into the equation, (4.7) follows.

P[M(nS ≠ 1, q) = m ≠ 1] =
A

nS ≠ 1
m ≠ 1

B

qm≠1(1 ≠ q)nS≠m

= (nS ≠ 1)!
(nS ≠ m)!(m ≠ 1)!q

m≠1(1 ≠ q)nS≠m

= (nS)!
(nS ≠ m)!(m)!

m

nSq
qm(1 ≠ q)nS≠m

= m

nSq
P[M(nS , q) = m].

Lemma �.�
„(q) = P[M(nS ≠ 1, q) = m ≠ 1]nSq

E[M̄(nS , q)]

is continuous, strictly concave, with a unique maximum „̄ < 1, and „(0) = „(1) =
0. Also, limnæŒ „(q) = 0 for all q. Further, there are two continuous functions
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q≠(„), q+(„) with domain [0, „̄] of which q≠ is strictly increasing and q+ is strictly
decreasing. For all „ œ [0, „̄) it holds that q≠(„) < q+(„) but „̄ = „(q≠) = „(q+).
In particular, q≠(0) = 0 and q+(0) = 1.

Proof.

10
0

1

q≠(„̄) = q+(„̄)

•„̄

„(q)

q

„

q≠ q+

Figure �.A.� Form of „(q) and definition of q≠ and q+.

Using (4.8), 1
„(q) can be rewritten as

≈∆ 1
„(q) =

qm
i=0 P[M(nS , q) = i]i + P[M(nS , q) > m]m

mP[M(nS , q) = m]

≈∆ 1
„(q) =

qm
i=1

!nS
i

"
qi(1 ≠ q)nS≠ii +

qnS
i=m+1

!nS
i

"
qi(1 ≠ q)nS≠im

m
!nS

m

"
qm(1 ≠ q)nS≠m

≈∆ 1
„(q) = 1

m
!nS

m

" [
mÿ

i=1

A
nS

i

B

qi≠m(1 ≠ q)m≠ii +
nSÿ

i=m+1

A
nS

i

B

qi≠m(1 ≠ q)m≠im]

≈∆ 1
„(q) = 1

m
!nS

m

" [
mÿ

i=1

A
nS

i

B

( q

1 ≠ q
)i≠mi +

nSÿ

i=m+1

A
nS

i

B

( q

1 ≠ q
)i≠mm].

Both summands are strictly convex in q such that 1
„(q) is strictly convex in q. Further,

limqæ0
1

„(q) = limqæ1
1

„(q) = Œ, such that 1
„(q) is U-shaped. Since 1

„(q) Ø 0, it follows
that „ is hump-shaped with „(0) = „(1) = 0 and a unique maximum „̄. Further,
because

„(q) = P[M(nS ≠ 1, q) = m ≠ 1]nSq

E[min{m, M(nS , q)}] <
P[M(nS ≠ 1, q) = m ≠ 1]nSq

nSq
,

Lemma 4.3 implies that „̄ < 1 and limnæŒ „(q) = 0.
Last, since „ is hump-shaped, with „(0) = „(1) = 0 and a unique maximum

„̄, for all p < „̄, there are exactly two functions q≠(p) < q+(p), such that p =
„(q≠(p)) = „(q+(p)). Since „ is continuous, so are q≠ and q+.
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�.B Proofs

�.B.� Proof of Proposition �.�

Note that �S(sell; p, q) = �S(keep; p, q) rearranges to

P[M(nS ≠ 1, q(p)) = m ≠ 1]�
n

= p
E[M̄(nS , q(p))]

nSq(p) . (4.9)

Step � There is always an equilibrium in which pú = 0 and qú(0) = 1.

Since 1 < m < nS and nS Ø 3, if qú(0) = 1, no shareholder is pivotal and selling
the voting right is a best response. Since this is the lowest possible price, the activist
has no profitable deviation.

Step � If qú(pú) > 0 and, thereby, P[M(nS , qú(pú)) Ø m] > 0, then it has to hold
that púE[M̄(nS , qú(pú))] < m�

n P[M(nS , qú(pú)) Ø m].

If qú(pú) œ (0, 1), then (4.9) holds with equality. Further, by (4.8), equation (4.9)
can restated as

púE[M̄(nS , qú(pú))] = P[M(nS , qú(pú)) = m]m�
n

< P[M(nS , qú(pú)) Ø m]m�
n

.

Now suppose that qú(pú) = 1. Using Lemma 4.5, let p̄ = maxq „(q)�
n < �

n . At
any p > p̄, equation (4.9) cannot hold with equality, such that qú(p) = 1. It follows
that if qú(pú) = 1, then pú Æ p̄, otherwise a deviation to a price p̄+pú

2 would be
strictly profitable. Thereby, púE[M̄(nS , qú(pú))] < �

n m = �
n P[M(nS , qú(pú)) Ø m].

Step � limnæŒ P[M(nS , qú(pú)) Ø m] = 1 and limnæŒ púE[M̄(nS , qú(pú))] = 0.

Suppose to the contrary that one of the statements was violated. In this case

–(v + �) + P[M(nS , qú(pú)) Ø m](b ≠ –�) ≠ púE[M̄(nS , qú(pú))] < –v + b

for n arbitrary large. Using Lemma 4.5, let p̄ = maxq „(q)�
n , and consider a devia-

tion to pÕ = p̄ + ‘
m . Since n · p̄ æ 0 and qú(pÕ) = 1, it follows that

limnæŒ–(v + �) +P[M(nS , qú(pÕ)) Ø m](b ≠ –�) ≠ pÕE[M̄(nS , qú(pÕ))] = –v + b ≠ ‘,

such that the deviation is profitable when ‘ is small and n is large.

Step � When b and n are small, there are equilibria in which there is no trade.

Using Lemma 4.5, there is a best response qú(p) = q≠(p), which is continuous and
strictly increasing on [0, p̄] with p̄ = maxq „(q)�

n . Further, qú(0) = 0 and qú(p) = 1
for all p > p̄.
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Suppose that the activist o�ers a price pú œ (0, p̄) such that qú(pú) œ (0, 1) and
equality (4.9) holds. Since pú is a best response, �A(pú; qú) Ø �A(0; qú) = –(v + �).
Plugging (4.9) into �A(p; qú) and using (4.8), this can be rearranged to

–(v + �) ≠ P[M(nS , q) = m]�m

n
+ P[M(n, q) Ø m](b ≠ –�) Ø –(v + �)

≈∆ ≠�m

n
+ P[M(nS , q) Ø m]

P[M(nS , q) = m] (b ≠ –�) > 0.

The likelihood ratio

P[M(nS , q) Ø m]
P[M(nS , q) = m] =

qnS
i=m

!nS
i

"
qi(1 ≠ q)n≠i

!nS
m

"
qm(1 ≠ q)nS≠m

= 1!nS
m

"
nSÿ

i=m

A
nS

i

B

( q

1 ≠ q
)i≠m (4.10)

= 1!nS
m

"
A

nS

m

B

( q

1 ≠ q
)0 +

nSÿ

i=m+1

A
nS

i

B

( q

1 ≠ q
)i≠m qæ0æ 1.

Thus, for p (and, hence, qú(p)) su�ciently low, �A(p; qú) < �A(0; qú) when ≠�m
n +

P[M(nS ,q)Øm]
P[M(nS ,q)=m](b ≠ –�) ¥ b ≠ (1 ≠ ⁄)� ≠ 1

n� < 0. Further, any price above b
m is

dominated by o�ering p = 0 and not trading. If b is su�ciently small, this means
that we found a contradiction and p = 0 is the unique best response.

�.B.� Proof of Proposition �.�

To enhance clarity, we prove equilibrium existence separately in Lemma 4.6 and
characterize the equilibrium first.

Suppose the activist o�ers pA, the blockholder pB, and shareholders mix with
probability q(pA, pB). Then, an individual shareholder (weakly) prefers to sell to A

if and only if

P[M(nS ≠ 1, q(pA, pB)) < mA ≠ 1]�
n

+ pA
E[M̄A(nS , q(pA, pB))]

nSq(pA, pB)

Ø P[M(nS ≠ 1; q(pA, pB)) < mA]�
n

+ pB
E[M̄B(nS , q(pA, pB))]

nS(1 ≠ q(pA, pB))

≈∆ pA
E[M̄A(nS , q)]

nSq
≠ P[M(nS ≠ 1; q) = mA ≠ 1]�

n
Ø pB

E[M̄B(nS , q)]
nS(1 ≠ q) . (4.11)

The expected payo�s for the activist and blockholder are

�A(pA; pB, q)

= –(v + �) + P[M(nS , q(pA, pB)) Ø mA](b ≠ –�) ≠ pAE[M̄A(nS , q(pA, pB))],

�B(pB; pA, q)

= —(v + �) + P[M(nS , q(pA, pB)) Ø mA](≠—�) ≠ pBE[M̄B(nS , q(pA, pB))].
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In an e�ort to keep notation cleaner, we henceforth drop the explicit reference to
the shareholders’ strategy q.

For any n, let pA;n and pB;n be any two prices and let qú
n be a best responses.

Given qú
n, let pú

B;n be a best response, and, given qú
n and pú

B;n, let pú
A;n be an equilib-

rium price. We take converging (sub)sequences of prices and probabilities as needed.

Step � Suppose that lim pA;nn > 0 and/or lim pB;nn > 0.

1. If lim pA;n
pB;n

> 1≠–≠—
1≠⁄≠– , then qú

n(pA;n, pB;n) = 1 when n is su�ciently large;

2. If lim pA;n
pB;n

> 1 but lim pA;n
pB;n

Æ 1≠–≠—
1≠⁄≠– , then lim qú

n(pA;n, pB;n) = lim pA;n
pB;n

1≠⁄≠–
1≠–≠—

and limP[M(nS , qú
n(pA;n, pB;n)) Ø mA] = 1;

3. If lim pA;n
pB;n

= 1, then lim qú
n(pA;n, pB;n) = 1≠⁄≠–

1≠–≠— as well as
limP[M(nS , qú

n(pA;n, pB;n)) Ø mA] = 1
2 ;

4. If lim pA;n
pB;n

< 1 but lim pA;n
pB;n

Ø ⁄≠—
1≠–≠— , then lim qú

n(pA;n, pB;n) = 1 ≠
lim pB;n

pA;n
⁄≠—

1≠–≠— and limP[M(nS , qú
n(pA;n, pB;n)) Ø mA] = 0;

5. If lim pA;n
pB;n

< ⁄≠—
1≠–≠— , then qú

n(pA;n, pB;n) = 0 when n is su�ciently large.

For ease of notation, let qú
n = qú(pA,n, pB,n).

By Lemma 4.3, for any q, limP[M(nS ≠ 1, qú
n) = mA ≠ 1] = 0. Fur-

ther, by the LLN, if lim qú
n > 1≠⁄≠–

1≠–≠— , then limP[M(nS , qú
n) Ø mA] = 1,

lim E[M̄A(nS ,qú
n)]

nSqú
n

= lim 1≠⁄≠–
qú

n(1≠–≠—) , and lim E[M̄B(nS ,qú
n)]

nS(1≠qú
n) = 1. If, on the other hand,

qú
n < 1≠⁄≠–

1≠–≠— , then limP[M(nS , qú
n) < mA] = 1, lim E[M̄B(nS ,qú

n)]
nS(1≠qú

n) = lim ⁄≠—
(1≠qú

n)(1≠–≠—) ,

and lim E[M̄A(nS ,qú
n)]

nSqú
n

= 1. Last, if lim qú
n = 1≠⁄≠–

1≠–≠— , then lim E[M̄A(nS ,qú
n)]

nSqú
n

=

lim E[M̄B(nS ,qú
n)]

nS(1≠qú
n) = 1 and limP[M(nS , qú

n(pA;n, pB;n)) Ø mA] = 1
2 .

If qú
n = 1 and n is arbitrary large, then inequality (4.11), limP[M(nS ≠ 1, qú

n) =
mA≠1] = 0, and lim pA;nn > 0 or lim pB;nn > 0 imply that lim pA;n

pB;n
Ø ⁄≠—

1≠–≠— . If qú
n =

0 for n arbitrary large, the inequality of (4.11) reverses. Since limP[M(nS ≠1, qú
n) =

mA ≠ 1] = 0, and lim pA;nn > 0 or lim pB;nn > 0, it follow that lim pA;n
pB;n

Æ ⁄≠—
1≠–≠— .

Suppose that lim pA;n
pB;n

= “ > 1. When qú
n < 1 s.th. (4.11) holds with equality,

limP[M(nS ≠ 1, qú
n) = mA ≠ 1] = 0, and lim pA;nn > 0 or lim pB;nn > 0, it follows

that lim E[M̄A(nS ,qú
n)]

E[M̄B(nS ,qú
n)]

1≠qú
n

qú
n

= 1
“ . By our earlier observation, this means that lim qú

n >
1≠⁄≠–
1≠–≠— , such that equality (4.11) implies that lim qú

n = “ 1≠⁄≠–
1≠–≠— = lim pA;n

pB;n
1≠⁄≠–
1≠–≠— . If

“ > 1≠–≠—
1≠⁄≠– , equality (4.11) cannot hold when n is large, such that qú

n = 1. In either
case limP[M(nS , qú

n) Ø mA] = 1. This proves properties 1 and 2.
Next, consider the case in which lim pA;n

pB;n
= “ < 1. When qú

n > 0 s.th. (4.11) holds
with equality, limP[M(nS ≠1, qú

n) = mA≠1] = 0, and lim pA;nn > 0 or lim pB;nn > 0,
it follows that lim E[M̄A(nS ,qú

n)]
E[M̄B(nS ,qú

n)]
1≠qú

n
qú

n
= 1

“ . By our earlier observation, this means that
lim qú

n < 1≠⁄≠–
1≠–≠— , such that equality (4.11) implies that lim 1 ≠ qú

n = lim pB;n
pA;n

⁄≠—
1≠–≠— .
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If “ < ⁄≠—
1≠–≠— , equality (4.11) cannot hold when n is large, such that qú

n = 0. In
either case limP[M(nS , qú

n) Ø mA] = 0. This proves properties 4 and 5.
Last, if lim pA;n

pB;n
= 1, then equality (4.11), limP[M(nS ≠ 1, qú

n) = mA ≠ 1] = 0,

and lim pA;nn > 0 or lim pB;nn > 0 imply that lim E[M̄A(nS ,qú
n)]

E[M̄B(nS ,qú
n)]

1≠qú
n

qú
n

= 1. By our
observation, this is the case if and only if lim qú

n = 1≠⁄≠–
1≠–≠— . This proves property 3.

Step � If b≠–�
1≠⁄≠– > —�

⁄≠— and n is su�ciently large, then qú
n(pú

A;n, pú
B;n(pú

A;n)) =
1. Further, pú

A;nE[M̄A(nS , qú
n(pú

A;n, pú
B;n(pú

A;n)))] = pú
A;nmA < 1≠⁄≠–

⁄≠— —�, but
limnæŒ E[M̄A(nS , qú

n(pú
A;n, pú

B;n(pú
A;n)))]pú

A;n = 1≠⁄≠–
⁄≠— —�.

Suppose to the contrary that qú
n(pú

A,n, pú
B,n(pú

A,n)) < 1 even when n is arbitrary
large. When there is no room for confusion, we employ the convention that qú

n =
qú

n(pú
A,n, pú

B,n(pú
A,n)) and pú

B,n = pú
B,n(pú

A,n).
First, we consider the case in which lim qú

n > 1≠⁄≠–
1≠–≠— . Observe that

lim 1 ≠ qú
nqmA≠1

i=0 P[M(nS , qú
n) = i]

= Œ.

For lim qú
n < 1, this follows directly, when lim qú

n = 1, we apply L’Hopital32 to receive

lim 1 ≠ qú
nqmA≠1

i=0 P[M(nS , qú
n) = i]

= lim 1
P[M(nS ≠ 1, qú

n) = mA ≠ 1] = Œ.

Since lim qú
n > 1≠⁄≠–

1≠–≠— and lim
qnS≠1

i=mA
P[M(nS ≠ 1, qú

n) = i] = 1, this means that

E[M̄B(nS , qú
n)]

n(1 ≠ P[M(nS , qú
n) Ø mA])

=
qmA≠1

i=0 P[M(nS , qú
n) = i]mB +

qnS
i=mA

P[M(nS , qú
n) = i](nS ≠ i)

n
qmA≠1

i=0 P[M(nS , qú
n) = i]

=
qmA≠1

i=0 P[M(nS , qú
n) = i]mB +

qnS≠1
i=mA

!nS≠1
i

"
(qú

n)i(1 ≠ qú
n)nS≠1≠i(1 ≠ qú

n)nS

n
qmA≠1

i=0 P[M(nS , qú
n) = i]

=mB

n
+ (1 ≠ – ≠ —)

nS≠1ÿ

i=mA

P[M(nS ≠ 1, qú
n) = i] 1 ≠ qú

nqmA≠1
i=0 P[M(nS , qú

n) = i]

32

ˆ
ˆq

mA≠1ÿ

i=0

P[M(nS , qú
n) = i]

=
mA≠1ÿ

i=1

3
nS

i

4
[i(qú

n)i≠1(1 ≠ qú
n)nS≠i] ≠

mA≠1ÿ

i=0

3
nS

i

4
[(qú

n)i(1 ≠ qú
n)nS≠i≠1(nS ≠ i)]

=
mA≠2ÿ

i=0

P[M(nS ≠ 1, qú
n) = i]nS ≠

mA≠1ÿ

i=0

P[M(nS ≠ 1, qú
n) = i]nS = ≠P[M(nS ≠ 1, qú

n) = mA ≠ 1].
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grows without bound. This growth implies that lim pú
B;nn = 0, because when

lim pú
B;nn > 0 and n is large

—(v + �) + P[M(nS , qú
n) Ø mA](≠—�) ≠ pB;nE[M̄B(nS , qú

n)] < —v

≈∆ —� <
E[M̄B(nS , qú

n)]
n(1 ≠ P[M(nS , qú

n) Ø mA])pB;nn,

such that a deviation by B to pB = 0 is strictly profitable. If lim pú
B;nn = 0, then

lim qú
n Ø 1≠⁄≠–

1≠–≠— and Step 0 imply that lim pú
A;nn = 0. This means that when n is

su�ciently large, B has an incentive to deviate to pÕ
B;n = pú

A;n + ‘
n . By Step 0, when

n is su�ciently large, qú
n(pú

A;n, pÕ
B;n) = 0, implying that

�n
B(pÕ

B;n; pú
A;n) = —(v + �) ≠ n(⁄ ≠ —)(pú

A;n + ‘

n
),

which is obviously larger than �n
B(pú

B;n; pú
A;n) when ‘ is su�ciently small and n is

large. Consequently, it cannot be that qú
n < 1 for n arbitrary large, but lim qú

n >
1≠⁄≠–
1≠–≠— .

In a second step, suppose that lim qú
n = 1≠⁄≠–

1≠–≠— . If lim pú
A;nn > 0 or lim pú

B;nn > 0,
then Step 0 implies that lim pú

A;nn = lim pú
B;nn and limP[M(nS , qú

n) Ø mA] = 1
2 , such

that
lim �n

B(pú
B;n; pú

A;n) = —v + 1
2—� ≠ lim pB;nn(⁄ ≠ —).

Now consider a deviation by B to pÕ
B;n = pú

B;n + ‘
n which, by Step 0, guarantees that

limP[M(nS , qú(pA;n, pÕ
B;n)) Ø mA] = 0 and, hence, yields

lim �n
B(pÕ

B;n; pú
A;n) = —v + —� ≠ lim pú

B;nn(⁄ ≠ —) ≠ ‘(⁄ ≠ —).

When n is su�ciently large and ‘ su�ciently small, such a deviation is always
profitable. When lim pú

A;nn = lim pú
B;nn = 0, the same deviation is profitable.

Last, suppose that lim qú
n < 1≠⁄≠–

1≠–≠— . Then limP[M(nS , qú
n) Ø mA] = 0, such that

lim �n
A(pú

A;n; pú
B;n) Æ –(v + �). Now consider a deviation by A to pÕ

A;n = —�
n(⁄≠—) and

B’s possible responses. If B o�ers pú
B;n(pÕ

A) such that lim pÕ
A;n

pú
B;n(pÕ

A;n) < 1, then, by
Step 0, limP[M(nS , qú

n(pÕ
A;n, pú

B;n(pÕ
A;n))) Ø mA] = 0, and because lim pú

B;n(pÕ
A;n)n >

—�
(⁄≠—) , it follows that

lim �n
B(pú

B;n(pÕ
A;n); pÕ

A;n) < —(v + �) ≠ (⁄ ≠ —) —�
(⁄ ≠ —) = —v,

which is dominated by pB = 0 when n is su�ciently large. If B o�ers pú
B;n(pÕ

A;n)

such that lim pÕ
A;n

pú
B;n(pÕ

A;n) = 1, then, by our observation above, B has a strict incen-
tive to deviate upwards. Thus, B has to respond by o�ering pú

B;n(pÕ
A;n) such that



�.B Proofs | ���

lim pÕ
A;n

pú
B;n(pÕ

A;n) > 1. As a result, limP[M(nS , qú(pÕ
A;n, pú

B;n(pÕ
A;n))) Ø mA] = 1 and, in

the limit, the deviation yields A the payo�

lim �n
A(pÕ

A;n; pú
B;n(pÕ

A;n)) = –v + b ≠ (1 ≠ ⁄ ≠ –) —�
(⁄ ≠ —) ,

which is larger than –(v + �) by assumption. Hence, the deviation is profitable for
A when n is su�ciently large. This proves that qú

n = 1 when n is su�ciently large.
When qú

n = 1 and pú
A;nmA = pú

A;nE[M̄A(nS , qú(pú
A;n, pú

B;n))] Ø 1≠⁄≠–
⁄≠— —�, then

pú
A;n Ø —�

n(⁄≠—) ≠ —�
mAn(⁄≠—) . Suppose A chooses or deviates to pÕ

A;n = —�
n(⁄≠—) ≠

—�
mAn(⁄≠—) . If B o�ers pú

B;n(pÕ
A;n) such that lim pÕ

A;n
pú

B;n(pÕ
A;n) < 1, then lim pú

B;n(pÕ
A;n)n >

lim —�
(⁄≠—) and by Step 0, it follows that limP[M(nS , qú

n(pÕ
A;n, pú

B;n(pÕ
A;n))) Ø mA] = 0.

However, in this case,

lim �n
B(pú

B;n(pÕ
A;n); pÕ

A;n) < —(v + �) ≠ (⁄ ≠ —) —�
(⁄ ≠ —) = —v,

such that pú
B;n(pÕ

A;n) is dominated by pB = 0 when n is su�ciently large. If B o�ers

pú
B;n(pÕ

A;n) such that lim pÕ
A;n

pú
B;n(pÕ

A;n) = 1, then, by our observation above, B would
have a strict incentive to deviate upwards. This means that B has to choose a
pú

B;n(pÕ
A;n) such that lim pÕ

A;n
pú

B;n(pÕ
A;n) > 1, which implies, by our previous argument,

that qú
n(pÕ

A;n, pú
B;n(pÕ

A;n)) = 1 when n is large. Thereby, the deviation to pÕ
A;n is prof-

itable for A when n is su�ciently large. Further, because all expressions are contin-
uous and inequalities strict, the same can be achieved with a pÕ

A;n marginally below
—�

n(⁄≠—) ≠ —�
mAn(⁄≠—) , meaning that pÕ

A;nmA = pÕ
A;nE[M̄A(nS , qú(pÕ

A;n, pú
B;n(pÕ

A;n)))] <
1≠⁄≠–

⁄≠— —�.
Last, if lim pú

AE[M̄A(nS , qú(pú
A, pú

B))] < 1≠⁄≠–
⁄≠— —�, this means that pú

A;n <
—�

n(⁄≠—) ≠ ‘
n for some ‘ > 0 and any n su�ciently large. In this case, however, B could

deviate to pÕ
B;n = —�

n(⁄≠—) ≠ ‘
2n . As a result, limP[M(nS , qú

n(pú
A;n, pÕ

B;n)) Ø mA] = 0
and

lim �n
B(pÕ

B;n; pú
A;n) = —(v + �) ≠ —� + ‘

—�
2(⁄ ≠ —) > —v,

such that the deviation is profitable when n is su�ciently large.

Step � If b≠–�
1≠⁄≠– < —�

⁄≠— , as n grows large, along any sequence of equilib-
ria, limnæŒ P[MA(nS , qú

n(pú
A;n, pú

B;n(pú
A;n))) Ø mA] = 0 and limnæŒ pú

A;nnS =
limnæŒ pú

B;n(pú
A;n)nS = 0.

For ease of notation, let qú
n = qú

n(pú
A,n, pú

B,n(pú
A,n)). When there is no room for

confusion, we employ the convention that pú
B,n = pú

B,n(pú
A,n).
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First, suppose to the contrary that limP[M(nS , qú
n) Ø mA] > 0. Since

�n
A(pú

A;n; pú
B;n) Ø �n

A(0; pú
B;n(0)) Ø –(v + �), it follow that

�n
A(pú

A;n; pú
B;n) = –(v + �) + (b ≠ –�)P[M(nS , qú

n) Ø mA] ≠ pú
A;nE[M̄A(nS , qú

n)]

Ø –(v + �).

Since E[M̄A(nS ,qú
n)]

P[M(nS ,qú
n)ØmA] Ø mA and mA = n(1 ≠ ⁄ ≠ –) + 1, it follows that in the limit

lim pú
A;nn Æ b ≠ –�

1 ≠ ⁄ ≠ –
.

Now consider a deviation by B from pú
B;n to pÕ

B;n = pú
A;n + ‘

n . Because
lim qú

n(pú
A;n, pÕ

B;n) > 1≠⁄≠—
1≠–≠— , it follows that limP[M(nS , qú

n(pú
A;n, pÕ

B;n)) Ø mA] = 0.
Such deviation is profitable when ‘ > 0 is small and n is large because

lim �n
B(pÕ

B;n; pú
A;n) ≠ �n

B(pú
B;n; pú

A;n)

Ø lim(1 ≠ P[M(nS , qú
n Ø mA])[—� ≠ (⁄ ≠ —)npú

A;n] ≠ ‘,

where
—� ≠ (⁄ ≠ —)npú

A;n Ø —� ≠ (⁄ ≠ —) b ≠ –�
1 ≠ ⁄ ≠ –

> 0.

This establishes that limP[M(nS , qú
n) Ø mA] = 0.

We now show that lim pú
A;nn = lim pú

B;nn = 0. First, suppose to the contrary that
lim pú

A;nn > 0. In this case, it has to hold that lim qú
n > 0. Assume this was not true

either, that is lim pú
A;nn > 0 and lim qú

n = 0. Then, there is a small ‘ > 0 such that
lim pú

A;n
pú

B;n≠ ‘
mB

œ ( ⁄≠—
1≠–≠— , 1), which still implies that lim qú

n(pú
A;n, pú

B;n ≠ ‘
mB

) < 1≠⁄≠–
1≠–≠— ,

and, thereby,

lim �n
B(pú

B;n ≠ ‘

mB
; pú

A;n) ≠ lim �B(pú
B;n; pú

A;n) = (⁄ ≠ —)‘,

making it a profitable deviation when n is large. Now, if lim qú
n > 0 and lim pú

A;nn > 0
but limP[M(nS , qú

n) Ø mA] = 0, then

lim �n
A(pú

A;n; pú
B;n) = –(v + �) ≠ lim pú

A;nqú
nn < –(v + �) Æ lim �n

A(0; pú
B;n),

such that A would have profitable deviation to 0. Last, if lim pú
A;nn = 0, then

lim pú
B;nn = 0. Otherwise, a deviation to pú

B;n
2 would always be profitable for B

when n is su�ciently large.
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Lemma �.� The competition game always has an equilibrium (pú
A, pú

B, qú).

Proof. We are going to show existence by construction. Fix some pA. Then, share-
holders are indi�erent between selling to A and B if pB = Â(q; pA) where

Â(q; pA) = (pA
E[M̄A(nS , q)]

nSq
≠ P[M(nS ≠ 1; q) = mA ≠ 1]�

n
) nS(1 ≠ q)
E[M̄B(nS , q)]

is a polynomial of q and strictly increasing and continuous in pA. For later use, we
further note that the slope of Â(q; pA) with respect to pA is decreasing in q (≠Â is
supermodular): for any pA < pÕ

A and q < qÕ, it holds that

Â(q; pÕ
A) ≠ Â(q; pA) > Â(qÕ; pÕ

A) ≠ Â(qÕ; pA).

We can use Â(q; pA) to define a best response for shareholders as

qú(pA, pB) =

Y
____]

____[

1 for pB < Â(1; pA)

min{q : Â(q; pA) = pB} for Â(1; pA) Æ pB < Â(0; pA)

0 for pB Ø Â(0; pA).

By construction, qú is (weakly) decreasing and right-continuous in pB. Note that
qú(pA, Â(q; pA)) Æ q.

Step � Given any o�er pA, B has at least one best response pú
B(pA).

Since qú is (weakly) decreasing and right-continuous in pB and all expressions
are bounded, B’s problem has at least one solution. We denote an arbitrary one by
pú

B(pA).

Step � B’s problem can be restated as

arg max
qœsupp qú(pA,·)

�̂B(q; pA)

= arg max
qœsupp qú(pA,·)

—(v + �) ≠ P[M(nS , q) Ø m]—� ≠ Â(q; pA)E[M̄B(nS , q)].

If �̂B(q; pA) Ø —v, and qÕ < q s.th. Â(q; pA) = Â(qÕ; pA), then �̂B(qÕ; pA) >

�̂B(q; pA).

The first restatement follows directly from the definition of Â and qú. For the
second, note that �̂B(q; pA) Ø —v can be rearranged to

(1 ≠ P[M(nS , q) Ø mA])—� ≠ Â(q; pA)E[M̄B(nS , q)] Ø 0

≈∆ P[M(nS , q) < mA](—� ≠ Â(q; pA) E[M̄B(nS , q)]
P[M(nS , q) < mA] ) Ø 0. (4.12)
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We want to show that the left side of (4.12) is strictly decreasing in q. Since
P[M(nS , q) < mA] is strictly decreasing in q and (4.12) is positive, it su�ces to
show that E[M̄B(nS ,q)]

P[M(nS ,q)<mA] is strictly increasing in q. Note that

E[M̄B(nS , q)]
P[M(nS , q) < mA] = P[M(nS , q) < mA]mB +

qmB≠1
i=0 P[M(nS , 1 ≠ q) = i]i

P[M(nS , q) < mA]

= mB +
qmB≠1

i=0 P[M(nS , 1 ≠ q) = i]i
qnS

i=mB
P[M(nS , 1 ≠ q) = i]

= mB +
qmB≠1

i=0
!nS

i

"
i(1 ≠ q)iqnS≠ii

qnS
i=mB

!nS
i

"
i(1 ≠ q)iqnS≠i

= mB +
qmB≠1

i=0
!nS

i

"
i(1≠q

q )i≠(mB≠1)i
qnS

i=mB

!nS
i

"
(1≠q

q )i≠(mB≠1) ,

where the numerator is increasing in q for all i œ (0, ..., mB ≠1), and the denominator
is strictly decreasing in q for all i œ (mB, ..., nS). Thereby, the assertion follows.

Step � Any best response pú
B(pA) is such that q(pA, pú

B(pA)) is nondecreasing in pA.

Suppose to the contrary that pÕ
A > pA, but qÕ = qú(pÕ

A, pú
B(pÕ

A)) < q =
qú(pA, pú

B(pA)).
If q œ supp qú(pÕ

A, ·) and qÕ œ supp qú(pA, ·), then, by revealed preferences,

�̂B(qÕ; pÕ
A) Ø �̂B(q; pÕ

A) and �̂B(q; pA) Ø �̂B(qÕ; pA). (4.13)

Suppose that q ”œ supp qú(pÕ
A, ·) but �̂B(q; pÕ

A) Ø —v. Then, qú(pÕ
A, Â(q; pÕ

A)) <

q and revealed preferences imply that �̂B(qÕ; pÕ
A) Ø �̂B(qú(pÕ

A, Â(q; pÕ
A)); pÕ

A) >

�̂B(q; pÕ
A). If �̂B(q; pÕ

A) < —v, then �̂B(qÕ; pÕ
A) Ø �̂B(qú(0; pA), pÕ

A) Ø —v implies
that �̂B(qÕ; pÕ

A) Ø �̂B(q; pÕ
A). The argument for qÕ follows symmetrically, such that

(4.13) holds.
Rearranging equation (4.13) using Step 2 gives

(P[M(nS , q) Ø mA] ≠ P[M(nS , qÕ) Ø mA])—�

Ø E[M̄B(nS , qÕ)]Â(qÕ; pÕ
A) ≠ E[M̄B(nS , q)]Â(q; pÕ

A),

(P[M(nS , q) Ø mA] ≠ P[M(nS , qÕ) Ø mA])—�

Æ E[M̄B(nS , qÕ)]Â(qÕ; pA) ≠ E[M̄B(nS , q)]Â(q; pA).

Combined, these yield

E[M̄B(nS , qÕ)]Â(qÕ; pA) ≠ E[M̄B(nS , q)]Â(q; pA)

Ø E[M̄B(nS , qÕ)]Â(qÕ; pÕ
A) ≠ E[M̄B(nS , q)]Â(q; pÕ

A),
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which rearranges to

E[M̄B(nS , qÕ)](Â(qÕ; pÕ
A) ≠ Â(qÕ; pA)) Æ E[M̄B(nS , q)](Â(q; pÕ

A) ≠ Â(q; pA)).

Now, because qÕ < q, it follows that E[M̄B(nS , qÕ)] > E[M̄B(nS , q)] and since Â(q; pA)
is more increasing for lower q, Â(qÕ; pÕ

A) ≠ Â(qÕ; pA) Ø Â(q; pÕ
A) ≠ Â(q; pA), such that

(4.13) is violated. This completes the contradiction.

Step � Without loss, qú(pA, pú
B(pA)) is right-continuous in pA. Since qú(pA, pú

B(pA))
is nondecreasing in pA (Step 3), A’s maximization problem has at least one solution
and an equilibrium exists.

Suppose to the contrary that there exists a decreasing sequence (pA;n)nN with
lim pA;n = pA, and that lim qú(pA;n, pú

B(pA;n)) = q+, but q+ > qú(pA, pú
B(pA)) = q≠.

We argue that it has to hold that

�̂B(q≠; pA) Ø �̂B(qú(pA, Â(q+; pA)), pA) Ø �̂B(q+; pA)

�̂B(qú(pA;n; pú
B(pA;n)); pA;n) Ø �̂B(qú(pA;n, Â(q≠; pA;n)), pA;n) Ø �̂B(q≠; pA;n).

By construction of qú, for any q it is true that qú(Â(q, pA), pA) is in the support of
qú(pA, ·) and qú(Â(q, pA), pA) Æ q. Thereby, the first inequality of either line is a
result of pú

B being a best response of B and the second inequality follows by Step 2.
Since Â and, thereby, �̂B are continuous in pA and q, and because

qú(pA;n, pú
B(pA;n)) as well as pA;n converge, it follows that �̂B(q≠; pA) = �̂B(q+; pA).

Therefore, it’s without loss to change B’s response function at pA to pú
B(pA) =

Â(q+; pA) and qú(pA, pú
B(pA)) = q+.

Since qú(pA, pú
B(pA)) is nondecreasing and right-continuous in pA and all expres-

sions are bounded, �A(pú
A; pú

B, q) has at least one maximizer, such that an equilib-
rium exists.

�.B.� Proof of Lemma �.�

When the activist makes no o�er, ÿ, no shareholder can sell, q(ÿ) = 0.
In state Q, the activist’s payo� is

�A(p; q, ›, Q) = –v + b ≠ pE[M̄(nS , q(p))]

if ›(p) Æ 1
2 and shareholders vote against the reform, and

�A(p; q, ›, Q) = –(v ≠ �) + P[M(nS , q(p)) Ø m](b + –�) ≠ pE[M̄(nS , q(p))]

when ›(p) Ø 1
2 and shareholders vote in favor of the reform.
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In state R, the activist’s payo� is

�A(p; q, ›, R) = –v + b + P[M(nS , q(p)) Ø m](–� ≠ b) ≠ pE[M̄(nS , q(p))]

in case ›(p) Æ 1
2 and shareholders vote against the reform, and

�A(p; q, ›, R) = –(v + �) + b ≠ pE[M̄(nS , q(p))]

if ›(p) Ø 1
2 and shareholders vote in favor of the reform.

When ›(p) Ø 1
2 and shareholders block the reform, firm value is v; if the activist

dictates the outcome of the vote, it rises in expectation by (1 ≠ ›(p))�. If ›(p) Æ 1
2

and shareholders implement the reform, expected firm value is v +(1≠2›(p))�, and
rises in expectation by ›(p)� when the activist dictates the outcome of the vote.
Therefore, the shareholders’ payo�s can be written as

�S(sell; p, q, ›) = v

n
+ max{0, 1 ≠ 2›(p)}�

n

+ P[M(nS ≠ 1, q(p)) Ø m ≠ 1] min{›(p), 1 ≠ ›(p)}�
n

+ p
E[M̄(nS , q(p))]

nSq(p) ,

�S(keep; p, q, ›) = v

n
+ max{0, 1 ≠ 2›(p)}�

n

+ P[M(nS ≠ 1, q(p)) Ø m] min{›(p), 1 ≠ ›(p)}�
n

.

Step � There cannot be an equilibrium with pú(Ê) > 0 in either state Ê œ {Q, R}.

If A o�ers any price p > 0, all shareholders sell because they know that the
friendly activist matches the state. Thus, if pú(Ê) > 0, the activist has a profitable
deviation to any pÕ œ (0, pú) because it reduces her transfer.

Step � There cannot be an equilibrium where pú(Ê) ”= 0 in both states Ê œ {Q, R}.

Suppose A never o�ers pú = 0. By Step 1, pú(Q) = pú(R) = ÿ. Thus, share-
holders do not learn from the activists action and implement the reform. In state
Q, this means that the activist’s payo� is –(v ≠ �). Consider a deviation to ‘

m > 0
in state Q. Being o�ered this positive price, all shareholders sell because they know
that the friendly activist matches the state. Thus, the activist’s payo� is b + –v ≠ ‘,
such that the deviation is profitable when ‘ i su�ciently small. By Step 1 and Step
2, it follows that the activist o�ers pú(Ê) = 0 in at least one state Ê œ {h, ¸}.

Step � In any equilibrium, the reform is implemented in state R, but status quo
remains in state Q.

Given Step 1 and 2, there are two possibilities. If pú(Q) = pú(R) = 0, sharehold-
ers do not learn from the o�er, ›ú(pú(Q)) = ›ú(pú(R)) = fl. If they do not sell and
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implement the reform, they choose the wrong action with probability 1≠fl. Since the
friendly activist always matches the state, if qú(0) > 0 and shareholders are pivotal
with positive probability, it is strictly optimal for them to sell. In case qú(0) = 0,
the activist has a profitable deviation in state Q by o�ering a small positive price
‘
m , securing all voting rights, and blocking the reform (compare Step 2).

When pú(Q) = 0 and pú(R) = ÿ, or pú(R) = 0 and pú(Q) = ÿ, shareholders learn
the state from the o�er, and vote for the reform in state R and for the status quo in
state Q. The activist also matches the state. Thus, when pú(Ê) = 0, shareholders
are indi�erent between voting themselves or delegating their voting right to activist.
Since the firm value is maximized and the activist has no cost, there are no profitable
deviations.

�.B.� Proof of Lemma �.�

Suppose that µú(Q) = 1 and µú(R) = 0. Conditional on observing the message,
shareholders learn the state, ›ú(0) = 0 and ›ú(1) = 1, implement the reform in state
R, and block it in state Q. Since this maximizes firm value and the activist has
aligned incentives, no investor has an incentive to deviate.

�.B.� Proof of Proposition �.�

Step � There always exists a separating equilibrium.

We construct an equilibrium of the following form:

• The activist o�ers pú(Q) > pú(R) Ø 0.

• Shareholders sell with probability qú(p)
I

= 1 if p Ø pú(Q)
< 1 if p < pú(Q).

• On path beliefs are correct, ›ú(pú(Q)) = 1 and ›ú(pú(R)) = 0. O�-path beliefs
are ›ú(p) = 0 for all p < pú(Q) (shareholders believe that the state is R), and
›ú(p) = 1 for all p > pú(Q) .

Let qú(p) = q≠(p) as defined by (4.9) and Lemma 4.5 for all p < p̄ = maxq „(q)�
n

(where ›ú(p) = 0), and qú(p) = 1 for all p Ø p̄.
If p̄ ”œ arg maxp �A(p; qú, R), reduce p̄ and modify qú till it is. This has to be

possible, because �A(p̄; qú, R) = –v + b≠mp̄ is continuous and strictly decreasing in
p̄, whereas for any p < p̄ it holds that �A(p; qú, R) Æ –(v + �) + P[M(nS , qú(p)) Ø
m](b ≠ –�) and P[M(nS , qú(p)) Ø m] is bounded away from one.

When p̄ œ arg max �A(p; qú, R), select a pÕ < p̄ and qú(pÕ) = q+(pÕ) as defined in
Lemma 4.5 such that �A(p̄; qú, R) = �A(pÕ; qú, R). Such a pÕ has to exist, because
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q+(pÕ) is continuous and strictly decreasing in pÕ with q+(0) = 1, and �A(p; q, R) is
continuous in both, p and q. Notice that pÕ < p̄ and qú(pÕ) < 1 = qú(p̄).

Let pú(R) = pÕ, which, by construction, is a best response. Further, let pú(Q) = p̄

and notice that

�A(p; qú, Q) = –(v ≠ �) + P[M(nS , qú(p)) Ø m](b + –�) ≠ pE[M̄(nS , qú(p))]

= �A(p; qú, R) ≠ 2(1 ≠ P[M(nS , qú(p)) Ø m])–�

< �A(p̄; qú, R) = –v + b ≠ p̄m = �A(p̄; qú, Q)

for all p ”= p̄. All prices above p̄ are dominated by p̄. Thus, the activist has no
profitable deviation in either state.

Last, shareholders do not want to deviate. If the price is p > p̄, then qú(p) = 1,
such that no shareholder is pivotal and selling is a best response. At any price below
p̄, shareholders play a best response given their belief that the state is R. When the
price is pú(R), this belief is correct.

Step � In any separating equilibrium, pú(R) < pú(Q) and qú(pú(R)) < qú(pú(Q)) =
1.

Suppose to the contrary that pú(R) ”= pú(Q) but qú(pú(R)) Ø qú(pú(Q)). In any
separating equilibrium, after observing pú(Q), shareholders know that the activist
has aligned interests.

If pú(Q) > 0, shareholders sell with probability qú(pú(Q)) = 1. Thus, the claim
can only be violated if qú(pú(R)) = 1. However, this contradicts the separation,
pú(R) ”= pú(Q), because the lower price dominates the higher price, such that the
activist would want to deviate in one state.

If pú(Q) = 0, shareholders either sell or vote to block the reform. In either case,
the reform does not pass, meaning that any pú(R) > 0 is dominated by pú(Q) = 0,
which contradicts the separation. Thereby, qú(pú(R)) < qú(pú(Q)).

If pú(R) Ø pú(Q), then pú(Q) dominates pú(R) because qú(pú(R)) < qú(pú(Q)).
Thereby, pú(R) < pú(Q), completing the proof.

Step � As n grows large, along any sequence of equilibria and for Ê œ {Q, R},

P[M(nS , qú(pú(Ê))) Ø m] æ 1 and pú(Ê)E[M̄(nS , qú(pú(Ê)))] æ 0.

In the proof of Proposition 4.1, we derived that there is a price p̄ such that
qú(p) = 1 for all p > p̄, even when shareholders believe the state is R, ›ú(p̄) = 0,
such that their expected loss is maximal. Further, np̄ æ 0. Without loss, suppose
that qú(p̄) = 1 as well. Then, lim �A(p̄; qú, ›ú, Ê) = –v + b in both state Ê œ {h, ¸}.

Suppose the assertion was violated and consider a sequence of separating equi-
libria. By Step 2, it su�ces to show that pú(Q)E[M̄(nS , qú(pú(Q)))] æ 0 and
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P[M(nS , qú(pú(R))) Ø m] æ 1. In a separating equilibrium, ›ú(pú(Q)) = 1, such
that shareholders vote for the status quo and

�A(pú(Q); qú, ›ú, Q) = –v + b ≠ pú(Q)E[M̄(nS , qú(pú(Q)))].

If pú(Q)E[M̄(nS , qú(pú(Q)))] ”æ 0, a deviation to p̄ is profitable when n is su�ciently
large. In state R, the belief is ›ú(pú(R)) = 0, meaning that shareholders vote for
the reform and

�A(pú(R); qú, ›ú, R) = –(v + �) + P[M(nS , qú(pú(R))) Ø m](b ≠ –�)

≠ pú(R)E[M̄(nS , qú(pú(R)))].

If P[M(nS , qú(pú(R))) Ø m] ”æ 0, a deviation to p̄ is profitable when n is su�ciently
large.

Next, consider a sequence of pooling equilibria, where pú(Q) = pú(R) = pú,
meaning that ›ú(pú) = fl and shareholders vote for the reform. Then,

�A(pú; qú, ›ú, Q) = –(v ≠ �) + P[M(nS , qú(pú)) Ø m](b + –�) ≠ púE[M̄(nS , qú(pú))]

�A(pú; qú, ›ú, R) = –(v + �) + P[M(nS , qú(pú)) Ø m](b ≠ –�) ≠ púE[M̄(nS , qú(pú))].

When either assertion is violated, then �A(pú; qú, ›ú, Ê) < –v + b for n arbitrary
large, such that a deviation to p̄ is profitable.

�.B.� Proof of Proposition �.�

The equilibrium is supported by o�-path beliefs ›ú(Ÿ) < 1
2 for any Ÿ œ (0, b ≠ –�)

and the correct on-path belief ›ú(0) = 0. Thus, after any Ÿ < b ≠ –�, the reform is
implemented, such that Ÿ = 0 dominates all Ÿ < b≠–�. After observing Ÿ = b≠–�,
the shareholders believe that the state is Q, ›ú(b≠–�) = 1, and the reform is blocked.
Above Ÿ = b ≠ –�, the o�-path beliefs are arbitrary. Thus, any Ÿ > b ≠ –� is also
dominated by either Ÿ = 0 or Ÿ = b ≠ –�.

In state Q, the activist has an incentive to spend Ÿ = b ≠ –�, yielding a payo�
of b + –v ≠ Ÿ = b + –v ≠ (b ≠ –�) = –(v + �) instead of spending Ÿ = 0, which
yields her a profit of –(v ≠ �). In state R, the activist spends Ÿ = 0 and receives
–(v + �) which yields the same payo� as spending Ÿ = b ≠ –�. Hence, Ÿú(R) = 0
and Ÿú(Q) = b≠–� is optimal for the activist and the on-path beliefs are consistent.

There cannot be an equilibrium in which the state is matched with probability
strictly smaller than (1 ≠ fl). In any separating equilibrium, shareholders learn the
state and, therefore, the probability of matching the state is one. In any pooling
equilibrium, shareholders vote according to their prior and implement the reform,
such that the probability of matching the state is (1 ≠ fl).
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�.B.� Unrestricted and conditional o�ers

Lemma �.� When the activist cannot set a restriction, there are equilibria in which
P[M(nS , qú(pú)) Ø m] > 0 but

púE[M(nS , qú(pú))] > m
�
n
P[M(nS , qú(pú)) Ø m].

Proof. Suppose that there is no restriction, such that the activist has to buy from
all shareholder who sell to her. Given o�er p and response q(p), shareholders are
willing to sell if

p Ø P[M(nS ≠ 1, q(p)) = m ≠ 1]�
n

. (4.14)

We prove the result by an example.
Suppose that – = 0, n = 11, and m = 2. Further, � = 1 and b = 3

4 . In this case

P[M(nS ≠ 1, q(p)) = m ≠ 1] Æ P[M(10, 0.1) = 1] = 0.38742.

Solving for q(p) when (4.14) holds with equality, there is a continuous, strictly
increasing best response qú with qú(p) < 0.1 for all p < 0.38742�

n and qú(p) = 1 for
all p Ø 0.38742�

n .
It now follows that pú = 0.38742�

n because for all p < pú

�nr
A (p; qú) < b ú P[M(nS , 0.1) Ø 2]

= b ú 0.302643 < b ≠ n ú 0.38742�
n

= b ≠ 0.38742 = �nr
A (pú; qú).

Any p > pú is dominated by pú. Further, E[M(nS , qú(pú))]pú = 0.38742 > 2
11�,

completing the proof.

Lemma �.� When the activist can condition her restricted o�er on success, in the
unique equilibrium pú = 0 and qú(pú) = 1.

Proof. As in the case without the condition, pú = 0 and qú(0) = 1 constitute an
equilibrium. We show that there is no other equilibrium.

Given any q and the conditional restricted o�er p, a shareholder is indi�erent
between selling the and retaining the share if

p
nS≠1ÿ

i=m≠1
P[M(nS ≠ 1, q) = i] m

i + 1 = �
n
P[M(nS ≠ 1, q) = m ≠ 1]. (4.15)
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With (4.6) and (4.8) this rearranges to

pP[M(nS , q) Ø m] m

qnS
= �

n
P[M(nS ≠ 1, q) = m ≠ 1]

≈∆ pP[M(nS , q) Ø m] = �
n
P[M(nS , q) = m]

≈∆ p = �
n

P[M(nS , q) = m]
P[M(nS , q) Ø m] .

We now note that by (4.10), P[M(nS ,q)=m]
P[M(nS ,q)Øm] is monotonically decreasing in q with

lim
q√0

P[M(nS , q) = m]
P[M(nS , q) Ø m] = 1 lim

q¬1
P[M(nS , q) = m]
P[M(nS , q) Ø m] = 0.

By o�ering p > 0, either qú(p) = 1 or qú is determined by (4.15). In either case,
for any p > 0 and any ‘ > 0, there is a price p‘ < ‘ such that qú(p‘)

qú(p) Ø 1 ≠ ‘. Hence,
a profitable deviation always exists. This means that in equilibrium, it has to hold
that pú = 0 and qú(0) = 1.

�.B.� Proof of the example

Most of the proof can be found in the body of the text. What remains to be shown
is that in state R, the activist does not want to deviate from 0 to any p œ (0, p̄).

At any p œ (0, p̄), the shareholders’ belief is ›ú(p) = 0, and because qú(p) œ (0, 1),
qú is determined by the shareholders’ indi�erence condition (4.9). In state R, the
activist’s payo� function is given by (4.1). Plugging in (4.9), and using (4.8) gives

�A(p; qú, ›ú, R)

= –(v + �) + P[M(nS , qú(p)) Ø m](b ≠ –�) ≠ mP[M(nS , qú(p)) = m]�
n

= –(v + �) + P[M(nS , qú(p)) Ø m]((b ≠ –�) ≠ m
P[M(nS , qú(p)) = m]
P[M(nS , qú(p)) Ø m]

�
n

)

for all p œ (0, p̄).
Since P[M(nS , q) Ø m] is increasing in q, P[M(nS ,q)=m]

P[M(nS ,q)Øm] is decreasing in q (cf.
equation (4.10)), and qú is strictly increasing in p, there can be no interior optimum
pú œ (0, p̄). Since every p > p̄ is also dominated by p̄, it follows that 0 and p̄ are the
only two non-dominated actions. Since the activist is indi�erent between 0 and p̄

when the state is R, there can be no profitable deviations.
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