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Kurzfassung

3D Gebäudemodelle sind heutzutage eine wichtige Voraussetzung für viele Anwendun-
gen wie z.B. Rettungszenarien oder Navigationsaufgaben. Die meisten Ansätze für eine
automatische Rekonstruktion von Gebäuden basieren jedoch auf hochaufgelösten Daten,
welche durch Verdeckungen oder hohe Kosten der Datenerhebung nicht immer zur Ver-
fügung stehen. Stattdessen müssen Reasoning-Methoden mit dünnen und möglicherweise
unvollständigen Daten umgehen. In dieser Arbeit wird ein neuer Reasoning-Ansatz für die
Prädiktion von Gebäuden und ihrer Bestandteile vorgestellt, welcher ohne dichte Messun-
gen auskommt. Der entwickelte Reasoner pro�tiert von einem starken Vorwissen über funk-
tionale Abhängigkeiten und Wahrscheinlichkeitsdichteverteilungen in einem modellgetriebe-
nen Top-Down-Ansatz, der durch starke Regelmäÿigkeiten und Symmetrien in von Men-
schenhand gescha�enen Objekten legitimiert ist. Dabei wird die Ansicht vertreten, dass
es einfacher ist, prädizierte Hypothesen zu veri�zieren oder zu falsi�zieren, als Gebäude
"bottom-up" aus Messungen zu rekonstruieren. Das Ergebnis ist eine kleine Anzahl quali-
�zierter Hypothesen, welche auf nur wenigen Beobachtungen basieren. Das mathematische
Modell zeichnet sich jedoch a priori durch multimodale Wahrscheinlichkeitsdichtefunktio-
nen sowie nichtlineare Relationen von diskreten als auch kontinuierlichen Parametern aus,
was im Allgemeinen zu einer approximativen stochastischen anstelle einer exakten Inferenz
führt. Eine wesentliche Entwurfsentscheidung, um etablierte exakte Algorithmen der Pa-
rameterschätzung zu verwenden, ist die Repräsentation von Verteilungen durch Gauÿsche
Mischverteilungen. Darauf aufbauend besteht die Kernidee dieser Arbeit darin, das Problem
in einen kombinatorischen und einen stochastischen Teil zu unterteilen und logische Con-
straintprogrammierung mit Bayes'schen Netzwerken zu kombinieren. Die Constraintpro-
grammierung reduziert den Suchraum und bestimmt zunächst die diskreten Parameter.
Anschlieÿend wird dieses Zwischenergebnis durch stochastische Inferenz verfeinert, um die
kontinuierlichen Parameter zu bestimmen und die wahrscheinlichsten Hypothesen aus einem
a priori groÿen Hypothesenraum zu �nden. Die Methode hat sich einerseits zur Prädiktion
von Fassadenstrukturen bewährt. Da die nahtlose Auÿen-/Innenmodellierung immer mehr
Beachtung �ndet, wurde der entwickelte Ansatz andererseits an die Prädiktion von Innen-
modellen angepasst. Für das modellbasierte Reasoning werden darüber hinaus Werkzeuge
benötigt, die die Entwicklung redundanzfreier und konsistenter Prototypmodelle erleichtern.
Gleichzeitig ist es nützlich, implizite Constraints explizit zu machen, um die Interpretation
von Messungen für die Gebäuderekonstruktion zu unterstützen. Da die Überprüfung von
Redundanz und Konsistenz gleichbedeutend ist mit dem Nachweis, dass ein Fakt aus einer
Reihe von Prämissen folgt, ergänzt diese Arbeit das Reasoning mit Methoden des automa-
tischen Theorembeweisens. Um der zunehmenden Komplexität im 3D-Raum gerecht zu wer-
den, wird ein neuartiger Ansatz vorgestellt, der algebraisches und logisches Reasoning unter
Verwendung multivariater Polynome und Prädikatenlogik kombiniert. Das algebraische Rea-
soning basiert auf der Methode von Wu mittels Pseudodivision und "Characteristic Sets"
und identi�ziert Redundanz, Inkonsistenz und implizites Wissen. Das regelbasierte Schlieÿen
mit logischen Fakten und Regeln unterstützt das Reasoning durch bekannte Implikationen.
Der Aspekt der Unsicherheit, der im Zusammenhang mit Geoinformationssystemen (GIS)
unvermeidlich ist, wird in dieser Arbeit durch die Verwendung von Wahrscheinlichkeits-
dichtefunktionen, graphischen Modellen und unsicherer projektiver Geometrie behandelt.
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Abstract

3D building models are nowadays an important prerequisite for many applications such as
rescue management or navigation tasks. However, most approaches for the automatic recon-
struction of buildings rely on high-resolution data that cannot always be provided due to
occlusions or high cost of the acquisition of data. Instead, reasoning methods have to cope
with sparse and possibly incomplete data. This thesis presents a novel reasoning approach
for the prediction of building substructures in the absence of dense measurements. The
developed reasoner bene�ts from a strong profound prior knowledge of functional depen-
dencies and probability density distributions in a model-driven top-down approach that is
legitimated by strong regularities and symmetries in man-made objects. It thereby holds the
view that it is easier to verify or falsify predicted hypotheses than to reconstruct buildings
bottom-up from measurements and automatically generates a small number of quali�ed hy-
potheses based only on sparse observations such as footprints. However, the mathematical
model for buildings is a priori characterized by multimodal probability density functions as
well as non-linear relations with both discrete and continuous parameters that in general
leads to approximate stochastic inference instead of exact inference. One substantial design
decision in order to use well established exact algorithms of parameter estimation is the
representation of distributions by Gaussian mixtures. For e�cient reasoning in hybrid mod-
els, the key idea of this thesis is to divide the problem into a combinatorial (discrete) and
stochastic (continuous) part and to combine constraint logic programming with Bayesian
networks. Constraint programming reduces the search space by constraint propagation and
intelligent search strategies and determines the discrete parameters �rst. Afterwards this
intermediate result is re�ned by stochastic inference to evaluate and determine the contin-
uous parameters and �nding the most likely hypotheses out of an a priori large hypothesis
space. The method has been demonstrated to predict façade structures on the one hand.
As the seemless outdoor/indoor modeling gets more and more attention the developed ap-
proach was adapted to the prediction of indoor models on the other hand. As models are a
prerequisite of model-based reasoning, tools are needed that facilitate the development of
redundancy-free and consistent prototyped models providing prior knowledge during model
prediction. At the same time, it is useful to make implicit constraints explicit for supporting
the interpretation of measurements for building reconstruction. Recognizing that the task
of checking redundancy and consistency is equivalent to proving that one constraint follows
from a set of premises this thesis complements the reasoning with methods of automatic
theorem proving. In order to handle the increasing complexity of symbolic reasoning in the
3D space a novel approach is presented that combines algebraic and logical reasoning based
on an appropriate representation of the envisaged constraint-based model using multivariate
polynomials and �rst-order predicate logic. Algebraic reasoning is based on Wu's method of
pseudodivision and characteristic sets and identi�es redundancy, inconsistency and implicit
knowledge. Rule-based reasoning based on logical facts and rules supports the reasoning
process using known implications. The aspect of uncertainty that is inevitable in the con-
text of geoinformation systems (GIS) is handled in the developed reasoning methods by the
incorporation of probability density functions, graphical models and uncertain projective
geometry.
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1 Introduction

Nowadays, 3D city models are used for a wide range of applications and the demand for a
detailed building reconstruction constantly increases. While the pure visualization of build-
ings through textured façades is often easily available the semantic interpretation of laser
scans or images such as the identi�cation and modeling of façades, windows, doors or even
rooms is more challenging. This however is an important prerequisite for many applications
such as rescue management, navigation, facility management or the calculation of energy
balances. An overview of applications of city models is provided by Biljecki et al. (2015).

Consequently, the fundamental aim is to identify and model the components of buildings and
the relations between them. In this context, the representation of geometric, topological and
semantic information of objects is enabled by the standardized markup language CityGML
(Gröger et al. (2008); Gröger et al. (2012)). Di�erent level of details (LOD) range from
building footprints with extruded heights to models with detailed substructures including
windows, doors, protrusions and roofs. Due to an increasing demand for indoor/outdoor
seamless modeling the reconstruction of indoor environments is also an important aspect of
building modeling. Applications such as rescue management or the navigation for the blinds
are reliant on detailed information of the interior including the locations of rooms and their
doors. Complementing CityGML, that uses a boundary representation for objects, building
information models (BIM) are represented by the composition of solids especially developed
for construction and facility management of a building complex. They thus go beyond the
modeling of visible surfaces. Beside the rising interest for BIM the development of the new
OGC standard IndoorGML used for indoor spatial information especially for navigation
purposes (Lee et al., 2014) shows the need for models of indoor environments.

In order to avoid a manual modeling of the as-built state of buildings various approaches
have been developed for the automatic reconstruction and modeling of buildings. They use
more or less dense measurements for bottom up and prototyped models for top down identi�-
cation of building substructures in laser scans or images. However, the collection of measured
data often remains a tedious and expensive task. Data acquisition for façades can be made
with mobile platforms such as passing cars or unmanned aerial vehicles (UAV). However,
the interpretation algorithm has to cope with occlusions by e.g. vegetation. Furthermore,
for indoor environments it is far costlier to have measurements since every room has to be
entered, GPS signals may be weak and walls are often occluded by furniture that makes it
di�cult to identify the correct outlines of the detected objects in even high-resolution 3D
point clouds or images.

Reasoning with sparse observations. While most approaches rely on dense data this
thesis presents a reasoning method based on sparse observations. Figure 1.1 illustrates the
prediction of façade and indoor models. For façades, windows can be predicted based on the

1



1 Introduction

Observations

54,20 qm
1.F01

23,54 qm
1.009

18,91 qm
1.T01

12,59 qm
1.010

67,52 qm
1.008 29,85 qm

1.007

39,01 qm
1.006

23,10 qm
1.005

17,18 qm
1.004

21,51 qm
1.003

17,19 qm
1.002

19,89 qm
1.001

Reference

LOD3-Model

Footprint

Room information table

Proof of non-redundancy and consistency

Prior knowledge

Probability density functions Constraints

Prediction of
Indoor model

Results

Prediction of
Facade model

Observations

Reference

Embrasure

Footprint

Figure 1.1: Overview of developed reasoning methods for the automatic prediction of 3D
building structures in the absence of dense measurements.

footprint without the need of dense façade measurements. Similarly, 3D indoor models that
include rooms and their doors are generated in the absence of costly interior observations.
Instead, the predictions are based on the footprint and locations of windows from exterior
reconstructions and an overview of rooms with functional uses and room areas.

The basic idea to waive on dense data is to use a model-driven approach that relies on
the observation that model parameters follow certain aesthetic and architectural patterns
being captured in probability density distributions or constraints between model parame-
ters. In this way, this thesis shows that by the incorporation of profound prior knowledge
the generation of hypotheses for the reconstruction of buildings of high quality becomes
possible for façades as well as for indoor environments (cf. Figure 1.1). Legitimated by the
regular character of buildings, the proposed method relies on a strong model speci�ying
the constraints between the model parameters that have to be instantiated. The stochastic

2



0,50

0,25

0,00

0,75

1,00

distance between windows

pd
f

1,25 1,50 1,75 2,00 2,25 2,50 2,75 3,00 3,25 3,50 3,75 4,00 4,25 4,50

gaussian mixture
kernel density estimation
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model is based on probability density functions that are built up from a huge set of ground
truth training data and structure the hypothesis space.

Probability density functions. Probability density functions are used to structure the
hypotheses space in that they allow the derivation of plausible thresholds for parameter
domains on the one hand and a ranking of hypotheses with respect to most probable pa-
rameter estimations on the other hand. Figure 1.2 shows a representative distribution for
model parameters � the distance between windows � estimated by a kernel density estima-
tion (Bowman and Azzalini (1997)). Obviously, the distribution is multimodal and hence
not Gaussian. This however would be preferable in order to use well established reasoning
methods for parameter estimation based on Gaussian distributions. Building the bridge to
this, one substantial design decision in order to use classical algorithms of parameter esti-
mation is the approximation of these distributions by Gaussian mixtures. It has been shown
that each arbitrary distribution can be approximated by a Gaussian mixture (McLachlan
and Peel (2000)). While most approaches for hybrid networks apply approximate inference
that approximate intractable multimodal distributions by e.g. particles or unimodal Gaus-
sians, this thesis presents a method that transforms the problem into a linear Gaussian
problem without possibly unreliable approximations and enables estimations by prominent
methods of exact stochastic inference.

By ruling out implausible predictions the presented reasoner yields a small number of qual-
i�ed hypotheses. Probabilities that are derived by a well-de�ned stochastic model enable a
ranking of the generated predictions. This even reveals that one hypothesis is often domi-
nant and favored against other improbable ones. Herewith, the thesis takes the view that it
is easier to verify or falsify a model than to reconstruct buildings bottom up from measure-
ments. The decision between competing hypotheses can be enhanced by �nding a discrim-
inating feature in the di�erent models that has to be examined. The two-staged top-down
approach decreases the overhead for data acquisition and facilitates the interpretation that
consequently saves costs and time.
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1 Introduction

Bi-linear Constraints. Regularities and symmetries between substructures that charac-
terize man-made objects can be further exploited to de�ne constraints on model parameters
in order to restrict the search space for plausible model estimations. As an example for the
prediction of façades, one constraint relates the distances between windows and their seg-
ments of the footprint, the façade width:

fw = dl + dr + nwww + (nw − 1)wd.

Here, the façade width (fw) is the sum of left (dl) and right (dr) margins and the factorized
window widths (ww) and window distances (wd) related to the (discrete) number of windows
(nw). This constraint illustrates the character of the used relations modeling a building.
First, the constraints are non-linear and second, they contain discrete as well as continuous
variables. Although these properties make reasoning in general more complex, for building
façades a special structure of the equation can be recognized: The constraint is bi-linear
and characterized by products of one discrete and one continuous variable. This reveals as
an important property that is exploited in the presented reasoning process.

Exact inference in hybrid models. The addressed problem of building reconstruction
can be modeled and solved by graphical models that are powerful graph-based tools to
reason with uncertain data. Koller and Friedman (2009) give a detailed introduction to
inference in graphical models. However, most approaches are restricted to discrete problems
� solved by exact and approximate methods � while only few methods deal with continuous
cases. One representative is the Kalman �lter (Kalman, 1960). It has been shown to be
equivalent to a Bayesian network with continuous variables and associated linear Gaussians
and is an e�cient method to determine the posterior distribution of the continuous model
parameters according to a measurement update (Koller and Friedman (2009)). It is exact for
linear systems with Gaussian distributions but nonetheless only covers continuous systems
without any discrete variables.

In contrast, a hybrid model containing discrete as well as continuous parameters often leads
to the use of approximate inference algorithms since the original multimodal distributions
in general become intractable. The particle �lter is one method that considers this topic
but however is not exact. Lauritzen and Jensen (2001) tackle exact inference for special
structured hybrid networks where distributions are correct for discrete variables and con-
tinuous variables are described in an exact way by the �rst and second moments of their
distributions. While this method is restricted to linear relations the approach presented in
this thesis is an extension of Lauritzen's algorithm to bilinear relations. The aim of this
thesis is to show that exact inference in this case is feasible. The basic idea is based on
the insight that can be drawn from the following formula for joint distributions in Bayesian
networks (Kjærul� and Madsen (2008)):

p(X∆ = τ) ·N|XΓ|(µτ , σ
2
τ ) =

∏

v∈V∆

P (τv|τpa(v))
∏

w∈VΓ

p(yw|Xpa(w))

The formula over the discrete nodes in V∆ and the continuous nodes in VΓ de�nes the joint
distribution with respect to a discrete instantiation τ and the corresponding normal distri-
butions N with mean µ and variance σ2. As one principle of Bayes networks it is described
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by distributions and probability density functions that depend on the associated parent
nodes pa of the random variables, the preceding nodes in the network. The formula shows
that the problem can be divided into a combinatorial (discrete) and a stochastic (contin-
uous) product. Exploiting this fact the presented reasoning is a two-staged approach. In a
�rst step the discrete problem is solved by using constraint (logic) programming. To this
end, probability density functions are used to derive bounds for variables that together
with constraints modeling the regularities of buildings restrict the search space. CLP in-
stantiates the discrete variables so that the second step, the stochastic part, reduces to
the estimation of solely continuous parameters according to plausible combinatorial results.
Gaussians that are necessary for exact inference are extracted from the multimodal distri-
butions by constraint propagation leading to a single Gaussian component that best �ts
the given observation. Constraint solvers are powerful tools to solve non-linear problems of
discrete and continuous variables with more than one unknown. In this context, Frühwirth
and Abdennadher (2003) state that constraint logic programming in general outperforms
algebraic methods such as the Gröbner base method (Buchberger (1998)). In this thesis,
the combinatorial part based on constraint logic programming is used to search for valid
instantiations of discrete model parameters and consequently to linearize the problem and
providing pure continuous relations. This enables the use of classical exact approaches of
parameter estimation for continuous model parameters afterwards - e.g. by exploiting the
simple structure of matrix multiplications of the Kalman �lter.

From façades to indoor modeling. The presented approach is generic and is as well
applied to �oorplans in the absence of indoor measurements. The problem is to place n
rectangular rooms of known areas within a polygonal building footprint that is assumed to
follow the Manhattan World principle. The width and depth of each room are constrained by
the basic constraint area = width ·depth as well as by derived lower and upper bounds from
probability density functions (PDF). As for the prediction of façades the reasoning within
indoor models is divided into a combinatorial and a stochastic part. Gaussian distributions
and the topology of the rooms � both represented by discrete parameters � are determined
which results in preliminary topological models after constraint propagation. Afterwards,
the posterior for continuous shape parameters such as the width, depth and locations of
rooms are calculated by exact stochastic inference yielding �nal �oor plan models that match
the observations and known building information. Taking the correct hypothesis after model
selection model accuracies for model parameters range between 10 and 20 cm � meeting
the recommended LoD4 accuracy requirements of the OGC CityGML standard (Gröger
et al. (2012)). The approach for veri�cation or falsi�cation of hypotheses is outlined, details
however are beyond the scope of this thesis.

Reasoning on models. As model-driven approaches rely on well-de�ned prototyped build-
ing models, tools for their development are needed. Strong models play an important role for
the automatic reconstruction of buildings but their consistent and redundancy-free devel-
opment is a signi�cant problem. In order to tackle this de�ciency, another part of this thesis
considers the reasoning on models during model development before reasoning with these
models in a top-down approach. As illustrated in Figure 1.1, the prototyped constraint-
based models serve as part of the fundamental prior knowledge used during prediction of
building parts.

5



1 Introduction

Constraint-based modeling is one common way of modeling where the functional model
is built of building primitives such as planar faces that are connected by constraints e.g.
orthogonality or parallelity. In the context of model development, there are three important
questions. At �rst, it is often useful to have a redundancy-free model that contains a minimal
number of constraints and thus is less complex and needs less memory. Moreover, it is a
requirement that the set of constraints is consistent and constraints do not contradict each
other. At last, the task of estimating building structures often needs an overdetermined
equation system in order to compensate uncertain measurements. Instead of searching for a
redundancy-free system the re�nement of the model by deducing further implicit constraints
may be helpful. All these questions are important but tools are not available. To this end,
this thesis contributes to the reasoning with a novel method of logic, algebraic and stochastic
reasoning.

The basic idea is that the mentioned questions lead to the problem whether one constraint
follows from a set of constraints. This suggests the use of automatic theorem proving where
implications are proven by the deduction of constraints. Since building models are mainly
of geometric character the representation of constraints by multivariate polynomials and
thus the use of algebraic methods is appropriate. Loch-Dehbi and Plümer (2011) show that
man-made buildings are dominated by constraints of orthogonality and parallelity that can
be easily de�ned by bilinear relations, i.e. the scalar product and the cross product, using
homogeneous coordinates and thus simplify the representation and the subsequent reason-
ing. For instance two planes Π1 and Π2 with their normal form aix+ biy + ciz + di = 0 are
orthogonal if the scalar product of their normal vectors equals zero:

Π1⊥Π2 ⇔ a1a2 + b1b2 + c1c2 = 0

While there exist e�cient methods to solve these non-linear equations numerically the more
complex decision whether a constraint set is satis�able in general on a symbolic level is far
more challenging. It can further be observed that there is a substantial increase in complex-
ity with the transition from the 2D space to the 3D space. The novel aspect of this work
is that it adresses the reasoning in the three-dimensional space. In contrast to Brenner and
Sester (2005) who make use of algebraic theorem proving with Gröbner bases for the 2D
space this thesis handles 3D problems with Wu's method (Wu, 1986), another variant of al-
gebraic theorem proving. As Gröbner bases, it is based on multivariate polynomials but uses
characteristic sets and the so called pseudodivision to proof the deducibility of constraints.
The triangular form of characteristic sets are often more appropriate for theorems of con-
structive type as it is the case for building models. Further the method is able to generate
degenerate cases, so called subsidiary conditions, under which the theorem remains true �
assumptions on general positions of geometric objects as often mentioned in textbooks. A
lightweight constraint-based reasoner was developed to show that reasoning is feasible as
long as the problem is represented in an adequate manner. The algebraic method is sup-
ported by deductive rule based reasoning and the aspect of uncertainty is incorporated by
the use of uncertain projective geometry.

Contribution. The main contribution of this thesis is a generic method for the predic-
tion of building substructures based on sparse observations. The key idea is to break down
the complex hybrid and non-linear problem into two subproblems of a combinatorial and
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a stochastic part. The developed approach is supported by a profound prior knowledge
including Gaussian mixtures and bilinear constraints whose incorporation leads to a sub-
stantial restriction of the search space. Further, a novel approach of deductive and algebraic
methods for automatic theorem proving is presented in order to identify inconsistency and
redundancy in prototyped building models. In this context, the contributions of this thesis
can be summarized as follows:

• Prediction based on sparse observations. The presented methods predict substructures
in buildings based on sparse observations that are in general not su�cient for detailed
reconstruction in common approaches. Together with a profound prior knowledge
the reasoner yields a ranked set of high quali�ed hypotheses whose veri�cation or
falsi�cation by single additional observations is easier than to build a model bottom
up from measurements.

• Exact inference in hybrid models with non-linear constraints. The developed reasoner
uses a novel approach that combines constraint programming and Bayesian networks
and handles bilinear constraints of discrete as well as continuous variables. It herewith
exploits the special structure of constraints to follow exact inference on hybrid models
instead of approximating distributions in an unreliable way.

• Gaussian mixtures. As a substantial design decision, the stochastic model is described
by Gaussian mixtures for continuous model parameters. Gaussian mixtures are used
to structure the hypothesis space by providing plausible thresholds for parameter
domains. Further, Conditional Linear Gaussian Models are extended to Multilinear
Gaussian models in order to enable the use of Gaussian mixtures for e�cient algo-
rithms of exact inference.

• Generic reasoner. A generic implementation for the prediction of substructures in the
absence of dense observations is provided. Herewith, the reasoning is not restricted
to façade and indoor modeling but can be adapted to arbitrary problems of the same
structure. A de�nition of problems that can be transferred is provided.

• Algebraic reasoning in 3D. The thesis presents a novel method for the reasoning on
building models in the context of 3D model development. Increasing complexity in
the three dimensional space is especially handled by an appropriate representation
and the combination of logical and algebraic methods of automatic theorem proving.
The problem is reduced to the proof of consistency and non-redundancy and Wu's
method of characteristic sets and pseudodivision is used for algebraic reasoning on 3D
building models. They are specially appropriate for theorems of constructive type but
in contrast to Gröbner bases not yet applied in the context of 3D city models.

• Assessing quality. The quality of hypotheses is assessed by incorporating probability
density functions and covariances together with statistical reasoning which enables a
model selection under competing model hypotheses. Uncertain projective geometry is
integrated in order to extend originally crisp methods to noisy data.

As illustrated by Figure 1.1 this thesis covers the prediction of façade and interior models
on the one hand and the geometric reasoning on prototyped models on the other hand. In
this context, the following publications are most relevant for this work and are appended
to the thesis:

7



1 Introduction

• Loch-Dehbi, S., Plümer, L., 2011. Automatic reasoning for geometric constraints in
3D city models with uncertain observations. ISPRS Journal of Photogrammetry and
Remote Sensing 66, 177�187.

• Loch-Dehbi, S., Plümer, L., 2015. Predicting building façade structures with multilin-
ear Gaussian graphical models based on few observations. Computers, Environment
and Urban Systems 54, 68�81.

• Loch-Dehbi, S., Dehbi, Y., Plümer, L., 2017. Estimation of 3D indoor models with con-
straint propagation and stochastic reasoning in the absence of indoor measurements.
ISPRS International Journal of Geo-Information 6.

Outline. The remainder of this thesis is structured as follows: Section 2 gives an overview
of the related work while Section 3 introduces the methodological background. Constraint
programming, Bayesian networks and methods of theorem proving are described for the
automatic reasoning in the context of 3D building reconstruction. Section 4 addresses the
developed approach for the prediction of 3D façade structures. Based on this model, Section
5 describes the transfer of this reasoning process to the prediction of 3D indoor models.
Section 6 presents a method for the support of a consistent and redundancy-free model
development. Finally, Section 7 concludes this work and gives an outlook.
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2 Related Work

The reconstruction of as-built city models has nowadays a wide range of applications that
go beyond visualization of the façades. This however comes along with di�erent problems
including the handling of occlusions, the minimization of distortions, the prevention of user
interaction or the management of the complexity of the problem due to the envisaged level
of detail or the diversity of models. Approaches di�er in the degree of automation, the
models and prior knowledge used for detecting building structures, the range of features
and their level of detail that can be reconstructed or the methods used for interpretation.

One common approach for the automatic reconstruction of buildings is based on proto-
typed models. In contrast to data-driven approaches model-driven top-down approaches �
as applied in this thesis � circumvent the de�ciency of interpretability in noisy possibly
incomplete data. They reconstruct buildings by selecting and instantiating an appropriate
model that best matches the measurements. Haala and Kada (2010) give an overview of
data-driven and model-driven approaches and emphasize the importance of detailed recon-
struction of buildings.

Façade reconstruction. In the context of façade reconstruction various model-driven
works have been published. Pu and Vosselman (2009) incorporated prior knowledge to ex-
tract building parts such as walls, roofs or windows from high density point clouds. Knowl-
edge includes sizes, positions, orientations and topology. It supports the generation of outline
polygons by least squares �tting, convex hull �tting or concave polygon �tting. Cohen et al.
(2014) exploit architectural knowledge for a pixel-wise labeling task in images. A dynamic
programming algorithm was developed for a labeling of pixels to semantic categories such
as sky, roofs or windows. Windows are detected in a single image scenario by Recky and
Leberl (2010) using k-means. Complex façades of historical buildings are interpreted despite
perspective distortions.

Many model-driven approaches for building reconstruction rely on formal grammars. The
possibility to de�ne rules that can model a variety of aggregations and architectural styles
makes grammar-based approaches an appropriate tool to cover a wide range of building
models. One of the �rst works where grammars were applied to building models is pre-
sented by Müller et al. (2007). They use shape grammars to generate a wide range of 3D
building scenes. However, they tackle procedural modeling for the construction of synthetic
buildings rather than the reconstruction of existing ones. The modeling of the as-built state
of façade objects is the opposite paradigm called inverse procedural modeling. In this con-
text various works investigated the usefulness of formal grammars for reconstruction tasks.
The reconstruction of façades by grammar rules was tackled in the work of Becker (2009)
and Becker (2011) respectively. Images and point clouds are interpreted in a bottom-up and
top-down approach where split grammars can be used to predict façade structures in case
of missing data.
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Formal grammars are a strong formalism for the interpretation of buildings but the need for
grammar rules often leads to an expensive manual modeling. To this end, some approaches
use machine learning algorithms to automatically construct grammars. Martinovi¢ et al.
(2012) present a three-layered approach that uses recursive neural networks and Markov
random �elds for the semantic segmentation of building façades. Instead of relying on strong
prior knowledge that restricts the variety of façade styles shape grammars are not provided
as input but derived during façade parsing. They are thus not parametric but generated
instance-based for each façade. For plausible and consistent results the reconstruction pro-
cess is supported by weak architectural knowledge.

While this approach constructs grammars during the construction process � bound to a spe-
ci�c building, other works provide a generic model for subsequent façade parsing. Martinovi¢
and Van Gool (2013) developed an approach for the automatic learning of two-dimensional
attributed stochastic context-free grammars from labeled images for buildings of grid-like
design. Split grammars are learned with Bayesian model merging and used together with
a reversible jump Markov chain Monte Carlo approach for façade parsing. Markov random
�elds (MRFs) together with split grammars were used by Kozinski et al. (2015) in order to
segment an image of grid-structured patterns into architectural elements such as windows
or doors. The algorithm also handles occlusions and incorporates a strong prior knowledge
of semantic constraints that are de�ned by the user for a given dataset. In contrast to these
procedural approaches Dehbi et al. (2017) developed a declarative method that has not
to de�ne the way rules have to be applied. They presented a method for statistical rela-
tional learning of grammar rules that serve as models for the reconstruction of 3D buildings.
They use support vector machines to generate a weighted context free grammar and inte-
grate Markov Logic Networks to enforce topological and geometric constraints and handle
the aspect of uncertainty for probabilistic inference. Additionally, a parsing approach was
presented that demonstrates the interpretation of 3D point clouds based on the learned
grammar rules. The possibility to learn grammars seems to be a great step forward to avoid
the manual modeling. However, the wide range of building types and styles requires a huge
set of grammars.

In most of the approaches graphical models play an important role for reasoning in uncertain
data. Graphical models are as well used by Fan and Wonka (2016). They present a learning
algorithm for hierarchical graphical models with hidden variables in order to model the
exterior of residential buildings based on aerial and street-view images. They further propose
optimization methods for the reconstruction of partially interpreted buildings from images
or the synthesis of new buildings. Wenzel and Förstner (2016) used marked point processes
as an extension of Markov random �elds for high-level façade image interpretation in a
top-down manner. An energy model is presented that compared façade objects to the given
image incorporating learned statistics.

Although these approaches yield good results they rely on dense measurements such as
images or dense 3D point clouds or both. This requirement is often di�cult to satisfy in
an adequate way. Even if sensors are available for the acquisition of high-resolution data
occlusions prevent a fully coverage of the façades so that an approach is needed that is able
to cope with few observations, e.g. footprints. These are in general easily available using
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data sources such as OpenStreetMap 1 or building management services and are less costlier
than the use of dense 3D point clouds. Biljecki et al. (2017) investigated the potential of
generating buildings based on 2D footprints alone. Their approach extrudes footprints to
a predicted height in order to reconstruct LoD1 city models. Façade substructures such as
windows or doors are not the objective of this work. Dehbi et al. (2016a) address the problem
of insu�cient data and presented an approach for the identi�cation of translational and axial
symmetries as well as their hierarchical structures in building footprints. They use context-
free grammars to model the symmetry and hereby are able to exploit this information to
compensate occlusions or missing data. While these approaches based on footprints derive
basic information about the building this thesis predicts semantic and geometric details of
building structures such as windows. A survey by Musialski et al. (2013) summarizes the
methods developed for urban reconstruction.

Indoor modeling. Beside reconstruction of the building exterior indoor modeling attracted
more and more attention in the scienti�c environment in the last years. Zlatanova and
Isikdag (2015) give an overview of applications for indoor models. A review of indoor mod-
eling and mapping can be found in the work of Gunduz et al. (2016). In contrast to façade
reconstruction, the reconstruction of indoor environments remains more di�cult due to the
need for entering each room and handling far more occlusions caused for example by fur-
niture. Zlatanova et al. (2013) summarize the problems that involve the reconstruction of
indoor environments.

Becker et al. (2015) present an iterative automatic learning process for the reconstruction
of 3D indoor models from point clouds. A split grammar enables the prediction of indoor
geometries based on LoD3 models with window structures and laser scans covering all
rooms and hallways. Subsequently the model can be re�ned by additional indoor measure-
ments while noisy or incomplete data can be compensated by the knowledge encoded in
the grammar. Rosser et al. (2017) used a trained Bayesian network for the semi-automatic
data-driven estimation of 2D �oorplans in residential habits. Similar to the approach of this
thesis they incorporated limited prior knowledge such as likely room dimensions and orien-
tations as well as the building footprint or the existence of di�erent room types. However,
they assume that the user speci�es the basic topology of rooms after an initial prediction
of room shapes. Ochmann et al. (2016) emphasize the need for a volumetric, parametric
building model beyond pure surface reconstructions and developed a high-level reconstruc-
tion method as a labeling problem with energy minimization. Xiong et al. (2013) described
a method for the creation of semantically rich 3D building models from point clouds in the
context of building information models (BIM). It detects main objects such as windows or
walls. In contrast to this thesis, these approaches need dense measurements of the building
interiors in order to build an indoor model.

Some approaches made a step forward towards avoiding expensive high-resolution mea-
surements. Diakité and Zlatanova (2016) evaluate the reconstruction of building indoor
environments by using 3D information that is captured by the low cost Android tablet
from Google's Tango project. Although the data is not rich enough to produce detailed
indoor models the approach bene�ts from the rapid interpretation of 3D meshes that is

1https://www.openstreetmap.org
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necessary for indoor navigation in emergency cases. A single image per room captured by
mobile devices is used by Pintore et al. (2016) together with a tracking of user movements
to generate 2.5D indoor maps. The global optimization does not require a Manhattan world
con�guration but therefore is not reliant in case of many occlusions. Mobile phone sensors
were used by Rosser et al. (2015) for semi-automatic reconstructions of residential building
interiors. Together with hard and soft constraints they predict as-built building plans.

In contrast to the reasoner presented in this thesis with these approaches the problem
remains that each room has to be entered and occlusions may distort the results. Further,
with the low cost of the sensors the approaches have to cope with lower quality and distance
ranges. An approach in the absence of indoor measurements was presented by Boeters et al.
(2015). They automatically enhance LoD2 models of CityGML with their corresponding
indoor geometry and predict the storeys of buildings in order to provide a LoD2+ model.
The purpose of this work is to provide enough information for applications such as heat
simulations or the estimation of inhabitants that do not need higher level of details. A
�oorplan with a prediction of shapes and locations of rooms that is covered in this thesis is
not possible.

Related to the interpretation of as-built �oorplans, some methods handle the generation of
virtual indoor environments. Merrell et al. (2010) propose a method for the automatic gen-
eration of residential building layouts. They use a trained Bayesian network and stochastic
optimization to construct visible plausible 3D �oorplans for computer graphics applications.
Mixed integer quadratic programming (MIQP) was applied by Wu et al. (2018) for the gen-
eration of building interiors. They used axis-aligned polygons and identi�ed linear inequality
constraints considering room size or room adjacencies. For optimization they present as well
a rectangle-based layout.

Constraint Logic Programming for 3D city models. The reconstruction of a �oor-
plan with its rooms can be seen as a combinatorial problem to place n rooms in a given
footprint. To this end, Constraint Logic Programming (CLP) can be used to solve this
kind of constraint satisfaction problem. While constraint programming is often used for
combinatorial problems such as scheduling tasks its application in 3D city models is rare.
Charman (1994) presented a knowledge-based system for �oorplan design that considered
geometric constraints on rooms such as non-overlap or adjacency. They used consistency
techniques such as arc-consistency in order to generate all possible �oorplans satisfying
the given constraints. However, it does not deal with the reconstruction of existing �oor-
plans and omits a ranking of possible �oorplans as is proposed in this thesis. Although the
strength of CLP is to solve non-linear problems with more than one unknown it is origi-
nally not made for uncertain relations that however is an important aspect in the context of
GIS. Consequently, in the context of building reconstruction constraint programming is not
widespread. Therefore, the work of Kolbe (2000) proposed the reconstruction of roofs by the
use of constraint logic programming extended by uncertain constraints and an MAP classi�-
cation. Observations of aerial images are compared to constraint-based models of roofs that
are characterized by geometric constraints between primitives. A degree of knowledge is
integrated in constraint programming by Saad et al. (2010) and extended by Saad (2015) in
order to handle uncertainty. Intervals of domains are augmented by cumulative distribution
functions (cdf-intervals). While these approaches integrate the stochastic knowledge into
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the algorithm for constraint logic programming, this thesis tries to pro�t from the strength
of CLP in solving combinatorial problems on the one hand and the dominance of graphical
models in stochastic reasoning on the other hand.

Automatic Theorem Proving. An important basis of successful reasoning with model-
driven approaches are consistent and non-redundant prototyped building models. Ho�mann
and Joan-Arinyo (2005) give an overview of methods for constraint solving and the closely
related automatic theorem proving. Geometric and algebraic constraints are one way to
represent building models. Due to the geometric character of buildings they can often be
de�ned by multivariate polynomials that pave the way to use algebraic reasoning based on
methods of automatic theorem proving such as Gröbner bases or Wu's method. Up to now
these methods have hardly attracted attention in the context of GIS.

Brenner and Sester (2005) presented an approach for cartographic generalization in the
two-dimensional space. During generalization a constraint may be added or removed after
detecting consistency, redundancy or contradiction by the use of Gröbner bases or Jacobi
matrices. The method is extended by the concept of weak primitives that were introduced
by Brenner (2004) and reviewed by Brenner (2005) in the context of interactive modeling
of building scenes. They enable to switch on and o� model-de�ning constraints if geometric
primitives such as points or lines are combined. In contrast to the method developed in this
thesis the authors focus on the two dimensional space and question the feasibility for interac-
tive systems � especially in the 3D space as handled in this thesis. A relaxation of constraints
was handled in the context of this thesis by the concept of uncertain projective geometry and
homogeneous coordinates that turned out to be an appropriate representation of constraints
for geometric reasoning. This choice is con�rmed by Meidow et al. (2009) who emphasize
the bene�ts of using homogeneous coordinates for uncertain two-dimensional primitives in
geometric reasoning processes. Meidow and Hammer (2016) described a work�ow for the
algebraic reasoning in the context of data-driven building reconstruction. Boundary repre-
sentations are derived based on given point clouds and Gröbner bases are used to ensure
independent and consistent constraints.

In contrast to these approaches that use Gröbner bases, this thesis uses Wu's method for
algebraic reasoning that in general shows to be more successful � especially in the case
of geometric construction as stated by Cox et al. (2007) and Quaresma (2010). Kapur and
Mundy (1988) present the application of Wu's method to perspective viewing. In the context
of building reconstruction it is not yet applied.
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3 Methodological background

This chapter introduces the methodological background that is most relevant for this thesis.
Constraint programming and Bayesian networks are introduced to reason with models for
the prediction of building structures. While the strength of constraint logic programming is
the combinatorial aspect with crisp constraints that do in general not consider the impre-
ciseness of objects or measurements, Bayesian networks are powerful stochastic frameworks
that incorporate uncertainty. Methods of automatic theorem proving are presented as a
means for the consistent and redundancy-free development of prototyped models that are
prerequisite for the developed model-driven approach.

3.1 Constraint programming

The reasoning method developed in this thesis has to solve combinatorial problems of non-
linear equations with more than one unknown for which constraint programming is a pow-
erful framework. In this context, it is used to reason with crisp constraints as a �rst step
during model prediction. Uncertainty in form of probabilities are not considered so far.

Characteristic for constraint programming is that the information �ow is not determined
but the problem to solve is given in a declarative way by constraints on partially unknown
discrete and continuous variables. The basic idea of solving a problem, i.e �nding valid
assignments for queried parameters, is following the principle of "constrain and generate"
instead of "generate and test". The constraint solver does not generate instantiations of
parameters and costly tests whether they are valid. Instead, as a �rst step constraints are
used to restrict the search space before searching for one or all possible solutions afterwards.

Typically, there are two types of related problems solved by constraint programming: con-
straint satisfaction problems (CSP) and constraint optimization problems (COP). While
CSPs yield one or more equally valuated solutions that satisfy de�ned constraints, COPs
search for a (single) solution that respects the constraints and further minimizes a given ob-
jective function. The type of problems that are solved by constraint programming techniques
in the context of this thesis are constraint satisfaction problems.

Formally, a constraint satisfaction problem (or constraint network) is de�ned by a set of
constraints C = {C1, ..., Cq} on a set of variables X = {X1, ..., Xn} with corresponding
domains D1, ..., Dn for each variable. The solution space is an n-dimensional search space
that is initially de�ned by the Cartesian product D1× ...×Dn of the domains. A constraint

Ci is a relation on a subset of variables X ′ ⊆ X and thus a subset of D1 × ...×Dn. Figure
3.1 (top) illustrates a constraint network for a constraint satisfaction problem of three
discrete variables {X1, X2, X3} constrained by two constraints {x1 = x2, x1 + x3 = 13}
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Figure 3.1: Constraint networks and search trees for CSP (X ,D, C) with variables X =
{X1, X2, X3}, domains D = {{2, 3, 4, 5}, {3, 4, 5, 8}, {6, 7, 8, 9}} and constraints
C = {X1 = X2, X1+X3 = 13}. Left) Naive depth-�rst search with backtracking.
Right) Enhanced backtrack-free search after enforcing arc-consistency

and corresponding integer valued domains D1 = {2, 3, 4, 5}, D2 = {3, 4, 5, 8} and D3 =
{6, 7, 8, 9}. Finding a solution of a CSP means �nding an instantiation of the variables that
satis�es all constraints Ci ∈ C, that is an assignment {(X1, α1), ..., (Xn, αn)} of values for
each variable Xi with (α1, ..., αn) ∈ D1 × ...×Dn .

The search space can be seen as a tree whose nodes are associated with a variable and
one of its possible instantiations (cf. Figure 3.1 (bottom)). An arc represents an operator
that expands the intermediate solution with an assignment of a value for an additional
variable considering that together with prior instantiations the constraints are still satis�ed.
Solutions are found by performing a depth-�rst search in the search tree and are thus
represented by solution paths to the leaf nodes.

Naive search would be characterized by backtracking, that is, it jumps back to preceding
nodes in the tree (prior states) if a so called dead-end is reached meaning that the current
solution is inconsistent with the constraints. Figure 3.1 (left) shows the original constraint
network and, building on that, the search tree for �nding all consistent solutions of the
problem. White circles at the end of a path represent a dead-end where the algorithm has
to go back to the previous node in order to try another value. Colored circles represent
instantiations of a solution path. Since constraints are only used to test generated solutions
for validity many unnecessary dead-ends are encountered. For an e�cient search the basic
aim of constraint programming is to achieve a backtracking-free search. For example, choos-
ing X1 = 3 and X2 = 3 is consistent with the constraint X1 = X2 but no value can be found
for X3 satisfying X1 + X3 = 13 so that the algorithm has to backtrack. In order to avoid
backtracking, the constraint solver uses constraint propagation and consistency-enforcing
algorithms to derive new constraints from existing ones or to tighten these constraints. Ac-
cording to this principle of "constrain and generate", the search space is decreased before
searching for valid instantiations of the unknown variables.

There exist di�erent consistency-enforcing algorithms on a constraint network whose task is
to extend a partial solution by another variable. E�cient computations exist for enforcing
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arc-consistency that consider constraints with two variables (binary constraints). A binary
constraint is arc-consistent if for each value chosen for one variable of a constraint there
is a consistent choice in the domain of the other variable. A constraint network is arc-

consistent if all its binary constraints are arc-consistent. For constraints having i variables
i-consistency can be enforced meaning that for every consistent instantiation of (i − 1)
variables an instantiation of any ith variable can be found. While a naive algorithm of
arc-consistency tests for all binary constraints of the constraint network every value of one
variable against every value of the other variable until the domains do not change anymore
there exist more intelligent algorithms that reduce the number of tests signi�cantly. For
example reduction of one domain implies only the repeated test of those constraints that are
connected with the variable whose domain was currently changed. Algorithms for enforcing
consistency are described in detail by Dechter (2003). The worst-case complexity of enforcing
arc-consistency is O(ek2) for a constraint network of e binary constraints where k bounds
the domain size. Figure 3.1 (right) shows the arc-consistent network of the exempli�ed CSP
and illustrates the improved search as a result of constraint propagation. The domains of
the values of the variables were checked for inconsistency and values were removed that
cannot participate in a solution. As a consequence, search does not unnecessarily encounter
a dead-end.

Although the search pro�ts from a high level of consistency, there should be a trade-o�
between the time and space spent for consistency-enforcing and constraint propagation -
depending on the level of consistency - and that spent for the search. In this context, since
the complexity of i-consistency is bound by the domain size, bounds-consistency is often less
costlier in case of integer variables with large domains or continuous intervals. A constraint
is bounds-consistent if for each variable Xi ∈ [Ai, Bi], i = 1...n of an n-ary constraint an
instantiation for the other variables Xj , j 6= i can be found so that the constraint with an
assignment Xi = Ai and Xi = Bi respectively is still satis�ed. In other terms, in contrast
to arc-consistency values are only removed from their domain if the result is not split but
still a single interval. The consistency condition of compatibility of values is thus satis�ed
for the lower and upper bound of the domain but not for all values and thus is a trade-o�
between e�ciency of preprocessing and a high level of consistency.

For numeric constraints the search space can be reduced by using propagation rules and
linear elimination that calculate new intervals for each domain of the variables. For a con-
straint X = Y × Z with X ∈ [A,B], Y ∈ [C,D] and Z ∈ [E,F ] with X,Y, Z > 0 the
domain of Z can for example be updated to [A/D,B/C]. Deducing additional constraints
or tightening existing ones produces an equivalent constraint network that avoids to reach
a dead-end involving backtracking.

Further improvements can be made in the subsequent search phase by di�erent search
strategies enhancing the two phases of backtracking, the forward phase and the backward
phase. The forward phase of backtracking is enhanced by the look-ahead principle for vari-
able and value ordering that chooses which variable is selected next and which value should
be assigned. Going backward in case of a dead-end becomes more intelligent by the look-

back principle. It tries to �nd out which node is the reason for a dead-end in order to jump
back to this previous node (backjumping) and thus avoiding unnecessary backtrack points.
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The same aim is reached by an analysis of encountering a dead-end is also used for con-
straint recording (learning) in that new constraints are added to avoid the same failure in
subsequent search iterations.

To sum up, the search space and thus the performance of backtracking depends on the
preprocessing that is the level of local consistency and the strategies used during variable
instantiation.

Introduced in the 1980's, one prominent implementation of constraint solvers is constraint
logic programming (CLP) that is based on logic programming. A logic program is de�ned
by �rst-order predicate logic as a set of clauses of the form H : −B1, ..., Bn. The head H
as well as the Bis of the body are predicates p(t1, ..., tm) with terms ti being a variable,
a constant or in turn the application of a function f(t1, ..., tm). A clause is equivalent to
an if-then-rule meaning if the conjunction of literals B1, ..., Bn is true then the head H is
true, too. Since logic programming is characterized by depth-�rst search with backtracking
and involves relations and predicates that control and constrain the set of solutions it is an
appropriate language for implementing constraint solvers. Constraint programming extends
logic programming by allowing the body of the rules to contain constraints. Further, con-
straint propagation is incorporated to enhance backtracking and thus to solve constraint
satisfaction problems e�ciently. Consequently, CLP provides powerful search strategies that
enable the solvers to handle non-linear constraints with more than one unknown in a declar-
ative way. For more details on constraint processing the reader is referred to Dechter (2003)
and Marriott and Stuckey (1998).

3.2 Bayesian networks

The approach presented in this thesis addresses the uncertainty of both data and models
explicitly. One of the most powerful frameworks for modeling and reasoning over complex
domains with uncertain data are probabilistic graphical models. The prominent methods
use graph-based representations in order to represent complex distributions in a compact
way. An introduction to graphical models used in geodesy and photogrammetry is given by
Förstner (2013). One prominent type of graphical models are Bayesian networks. They are
directed acyclic graphs (DAGs) of a set of nodes V where each node v ∈ V is associated
with a random variableXv and the edges de�ne assumptions about conditional dependencies
and independencies. Discrete random variables are associated with a conditional probability
distribution (CPD) P (Xv|Xpa(v)) that denotes the probability for a discrete node v ∈ V∆

given the state of its parent nodes pa(v), that is, the immediate predecessors in the directed
graph. The graph represents a full joint distribution over the set of random variables Xv

that is � considering the independence assumptions � de�ned as

P (X1, ..., Xn) =
∏

v∈V∆

P (Xv|Xpa(v))

The compact modeling of probabilistic dependencies and independencies enables the use of
e�cient inference algorithms for determining posterior distributions given an observation.

18



3.2 Bayesian networks

There are basically two common types of queries performed on graphical models both in-
volving the joint distribution: conditional probability query and MAP queries. The �rst
determines the posterior probability distribution P (Y |E = e) = P (Y,e)

P (e) for a set Y of
unknown variables given evidence on a subset of variables E = e. MAP queries � also
known as most probable explanations (MPE) � seek the most probable joint assignment
MAP(W |e) = arg maxw P (w, e) to all unknown variables W = X − E given evidence
E = e.

Exact inference over the joint distribution in discrete Bayesian networks can be performed
by variable elimination, that avoids repeated calculations of factors in the joint distribution
by calculating common expressions once and reusing these new factors. Based on this idea
clique trees (or junction trees) are used to specify the transformations and their partial
order. New factors are calculated in corresponding cliques, subsets of variables, and sent
as messages to the next clique towards the root of the tree that leads to the answer of the
query.

Most problems found in the literature are modeled as discrete problems instead of de�ning
continuous or even hybrid networks. The latter involves discrete variables X∆ as well as
continuous variables XΓ (X = X∆ ∪ XΓ). Inference methods for hybrid models can be
applied similar to the discrete case, nevertheless exact inference is in most cases far di�cult
(Koller and Friedman (2009)). One step towards exact inference can be made with additional
assumptions such as that a continuous parameterX ∈ XΓ is normally distributed with mean
µ and variance σ2:

p(x;µ, σ2) = N(µ, σ2) =
1

(2πσ2)1/2
exp

(
−(x− µ)2

2σ2

)

Lauritzen and Jensen (2001) developed a method for exact inference in special Bayesian
networks, so called conditional linear Gaussian (CLG) networks. Characteristic of these
networks is that continuous variables are associated with conditional linear Gaussian CPDs
and discrete nodes do not have any continuous parents. Similar to the discrete case the CLG
CPD for a continuous variable X depends on its discrete parents I ⊆ X∆ and its continuous
parents Z ⊆ XΓ. It is de�ned for each instantiated value τ ∈ Z|I| of the discrete parents as:

p(X|Z = z, I = τ) = N(µτ + βTτ z, στ ),

with mean value µτ and variance στ and a vector of regression coe�cients βτ . For the whole
hybrid network the joint distribution can thus be de�ned as a |XΓ|-dimensional Gaussian
distribution (Kjærul� and Madsen (2008)) for each instantiation τ ∈ Z|X∆|:

p(X∆ = τ) ·N|XΓ|(µτ , σ
2
τ ) =

∏

v∈V∆

P (τv|τpa(v))
∏

w∈VΓ

p(yw|Xpa(w)). (3.1)

Lauritzen's algorithm for CLG networks is similar to the clique tree algorithm for discrete
networks. It is exact for discrete parameters and yields correct means and (co)variances
for the continuous parameters. For non-linear relations and non-Gaussian distributions M-
projection is a standard method for linearization that transforms a Gaussian mixture into
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Figure 3.2: Collapsing a Gaussian mixture (blue) into a single Gaussian (green) does not
yield a good approximation in this case.

a single Gaussian distribution (Koller and Friedman, 2009). This is especially a good ap-
proximation as long as the resulting multivariate Gaussian is close to the original Gaus-
sian mixture. However, this thesis addresses continuous random variables whose Gaussian
mixtures vary widely from the collapsed version using M-projection so that the proposed
approximation reveals not to be practicable in this case (cf. Figure 3.2).

Another special structure of Bayesian networks are state-observation models where the state
(of model parameters) evolves over time. The problem is described by a transition model
that models the change of parameters µ from time step t− 1 to t and an observation model
that de�nes the mapping from model parameters µ to observation parameters o (Koller and
Friedman (2009)).

In the special case of linear Gaussian systems with solely continuous parameters the poste-
rior can be calculated by simple matrix operations using the Kalman �lter (Kalman (1960)).
This e�cient implementation is exploited in the context of this thesis. The idea of the al-
gorithm is to �lter out noise and improve the prediction of model parameters with new
observations. The �rst step is the estimation of the new state µi ∈ Rn and the correspond-
ing covariance matrix Σi with the transition matrix A that models the dependency on the
prior value µi−1:

µi = Aµi−1

Σi = AΣi−1A
T +R

(3.2)

The noise of the model dynamics is incorporated by the covariance matrixR. The subsequent
correction step or measurement update determines the a posteriori state and error covariance
by incorporating the Kalman gain

K = ΣiM
T (MΣiM

T +Q)−1 (3.3)

and using a measurement matrix M ∈ Rn×m that relates the observation vector o ∈ Rm to
the model parameters µ by a mapping o = Mµ:

µ = µ+K(o−Mµ)

Σ = (Id−KM)Σi
(3.4)

Here, Id is the identity matrix and Q ∈ Rm×m de�nes the Gaussian noise of observa-
tions. The Kalman �lter is equivalent to a dynamic Bayesian network (Koller and Friedman
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(2009)), but saves time and space for the calculation of posterior beliefs due to the compact
representation.

3.3 Theorem proving

Model-driven reasoning methods as presented in this thesis need prototyped building models
in order to reconstruct buildings in a top-down manner. For an adequate development
of these models the identi�cation of redundancy and consistency is important. Further,
making implicit latent constraints explicit is of particular interest. Checking the redundancy
of constraints is equivalent to proving their deducibility from a (non-redundant) set of
constraints. In the same way the method can be applied to check consistency or derive new
constraints. For this aim, automatic theorem proving is a powerful means for showing the
validity of a statement given its premises. Depending on the representation of the problem
and applied methods it can be separated into two main categories: algebraic and deductive
(rule-based) reasoning.

Deductive and algebraic reasoning are introduced in the next section and will be illustrated
by the following small geometric theorem of three planes in the three-dimensional space:

Example 1. If plane Π1 is orthogonal to plane Π2 and parallel to plane Π3, then plane Π2

is orthogonal to plane Π3 (Π1⊥Π2 ∧Π1‖Π3 ⇒ Π2⊥Π3).

3.3.1 Deductive reasoning

Deductive reasoning is based on previously known general implications (rules) and basic
facts that often are represented using �rst-order predicate logic. A rule is equivalent to a
logical implication B1∧. . .∧Bn ⇒ H and � as de�ned in Section 3.1 � expressed by so-called
Horn clauses

H ← B1, B2, . . . , Bn

where H,B1, . . . , Bn are atoms and a logical ∧ (AND) is expressed by a comma. Clauses
without body, i.e. n = 0, are called facts. By applying rules new knowledge in form of
new facts can be derived. In the context of automatic theorem proving the aim is then the
derivation of the conclusion using the premises of the theorem together with the known
knowledge of facts and rules given in the database.

The theorem of Example 1 can be expressed by the following rule

orthogona l (B,C) ← orthogona l (A,B) , p a r a l l e l (A,C) .

where A, B, C are variables that can be substituted by constants and same variable names
de�ne the same object. As a consequence, if we have two facts

or thogona l ( f ront , bottom ) .
p a r a l l e l ( f ront , back ) .
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3 Methodological background

in our database, the reasoner can substitute the variable A with front, B with bottom and
C with back and thus deduces orthogonal(bottom, back). In this way, the knowledge can
be extended by applying rules and propagating facts from the right side to the left side.
An implementation of deductive reasoning based on �rst-order predicate logic can be found
in deductive databases that are a combination of traditional relational databases and logic
programming.

In order to draw all possible conclusions from a known set of rules and facts and herewith
verify or falsify a theorem the �xpoint iteration is an e�cient inference technique in de-
ductive databases. A �xpoint is reached if the set of facts in the database does not change
anymore although the given rules are iteratively applied to the data. If the knowledge base
contains the conclusion the theorem is proven to be true. However, the concept is based on
the closed world assumption that means that facts that are not present in the database and
cannot be deduced are considered to be false (Russell and Norvig, 2009). Although deduc-
tive reasoning can deduce new facts very fast algebraic reasoning may prove implications
where deductive inference techniques may fail since algebraic methods are not dependent
on previously de�ned rules. Instead, they only require that theorems can be expressed by
polynomial equations as presented in the next section.

3.3.2 Algebraic reasoning

Building models are dominated by geometric constraints that can be expressed by multivari-
ate polynomials. This paves the way to deduce redundant or new constraints automatically
by using algebraic approaches of automatic theorem proving. The introductory example of
three planes will be used to illustrate the idea of algebraic theorem proving.

For algebraic reasoning, a plane Πi can be represented by its normal form
aix+ biy + ciz + di = 0, that is Πi = ((ai, bi, ci), di) = (ni , di) where ni denotes the
normal vector of the plane. Using this representation, orthogonality and parallelity can
easily be expressed by the dot and cross product:

Πi⊥Πj ⇔ nTi nj ⇔ aiaj + bibj + cicj = 0

Πi‖Πj ⇔ ni × nj ⇔



bicj − cibj
ciaj − aicj
bicj − cibj


 = 0

Consequently the proof of deducing the conclusion c (Π2⊥Π3) from the hypotheses H
(Π1⊥Π2 ∧Π1‖Π3) of Example 1 leads to the following algebraic representation1:

a1a2 + b1b2 + c1c2 = 0 ∧



b1c3 − c1b3
c1a3 − a1c3

b1c3 − c1b3


 = 0⇒ a2a3 + b2b3 + c2c3 = 0

1The term hypothesis is equivalent to the premises under which condition the conclusion holds. It is
a classical term in the context of automatic theorem proving and thus also used in this section - in
contrast to the previously used model hypothesis in the context of predictions in model-based reasoning.
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3.3 Theorem proving

(a) V (H) ⊆ V (c) (b) V (H/d1 · . . . · dt) ⊆ V (c) excluding
degenerated cases with di 6= 0

Figure 3.3: relations between varieties for a theorem proven to be valid: the variety of the
conclusion contains the variety of the premises.

The key idea of algebraic theorem provers is to reduce the problem to the analysis of common
zeros of the multivariate polynomials that represent the premises and the conclusion. The
common zeros of equations h1, . . . , hs in a polynomial ring k[x1, . . . , xn] are called its variety :

V ({h1, . . . , hs}) := {(a1, . . . , an) ∈ kn : hi(a1, . . . , an) = 0 ∀1 ≤ i ≤ s} (3.5)

In order to proof the validity of a theorem, it has to be shown that the zeros of a given
set of premises H = {h1, . . . , hs} are a subset of the zeros of the conclusion c that is
V ({h1, . . . , hs}) ⊆ V (c). If a set of polynomials has no common zeros it is inconsistent.

The relation between varieties of the conclusion and the premises is illustrated in Figure
3.3a. Here, Example 1 of three planes is represented by �ve constraint equations. The
set of zeros V ({h1;h21, h22, h23}) = V ({nT1 n2, n1 × nT3 }) = V ({a1a2 + b1b2 + c1c2; b1c3 −
c1b3, c1a3 − a1c3, b1c3 − c1b3}) is not restricted further if the conclusion c � the second
constraint of orthogonality � is added, since all zeros of H are also part of the zeros of c.
As a consequence, the conclusion c is redundant. Note that actually non-degenerate cases
have to be added.

There are two prominent approaches for automatic theorem proving that are based on
comparing common zeros: the Gröbner base method and Wu's method. While the Gröbner
base method (Buchberger (1998)) requires a Gröbner base that is tested with polynomial
long division Wu's method (Wu (1986)) is based on a characteristic set where the theorem
is proven by pseudodivision, a variant of polynomial long division. The advantage of Wu's
method is that the characteristic set is in most cases easier to construct in the case geo-
metric objects are introduced subsequently. Further, subsidiary conditions are produced
automatically to accept the theorem under some non-degenerated cases. Cox et al. (2007)
and Quaresma (2010) showed that Wu's method is in most cases superior to the Gröbner
base method. In this thesis, Wu's method is used for geometric reasoning on 3D building
models.

Wu's method

Wu's method proves whether a theorem is generically true that is true under some non-
degenerated cases, so called subsidiary conditions. The advantage of this method is that
degenerated cases di can be excluded by considering subsidiary conditions in order to
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3 Methodological background

declare an otherwise false theorem generically true. Consequently, the aim is to show that
V (h1, . . . , hs/d1 · . . . · dt) ∈ V (c) (cf. Figure 3.3b). The algorithm therefore uses character-
istic sets and the so called pseudodivision of multivariate polynomial equations.

A characteristic set is a special triangular equation system on a given ordering of indepen-
dent variables x1 ≺ . . . ≺ xs,

h1(u1, . . . , ud, x1) = 0 ∈ k[x1]

. . .

hs(u1, . . . , ud, x1, . . . , xs) = 0 ∈ k[x1, . . . , xs],

Being de�ned as a minimal ascending chain the characteristic set requires that for each
hypothesis hi the degree of its highest variable (according to the de�ned ordering of in-
dependent variables) is higher than in all subsequent hypotheses hj , j > i. For geometric
theorems this structure is often given with a sequential introduction of geometric objects
and their corresponding relations. The same applies to the required ordering of independent
variables that is crucial for the e�ciency of triangulation. Geometrically seen they corre-
spond to the parameters that can be chosen arbitrarily despite the involved constraints.

The calculation of the characteristic set and later on the proof of the theorem is performed
by pseudodivision. The pseudodivision di�ers from the polynomial long division in allowing
the multiplication of the dividend c with a factor I(hi)

ki , ki > 0:

I(hi)
kic = qihi + r (3.6)

where qi is the quotient and r the pseudoremainder (prem(c, hi, xi) = r). I(hi) denotes
the initial of hi being in turn the coe�cient of the highest variable of the polynomial in
question. For more than one dividend the pseudodivision extends to

I(h1)k1 . . . I(hs)
ksc = q1h1 + . . .+ qshs + r (3.7)

A theorem is proven generically true if the result of the pseudodivision prem(c, H') equals
zero where H' denotes the characteristic set of the original set of multivariate polynomials.
Basically Wu's method consists of three steps:

1. Theorem Formulation: De�ne the theorem {h1, . . . , hs} ⇒ c with hypotheses H =
{h1, . . . , hs} and the conclusion c in form of multivariate polynomial equations
hi = 0, c = 0.

2. Triangulation to characteristic set: Transform the hypothesis H into a characteristic
set H' subject to the dependent variables of the geometric constraints.

3. Proof: Prove the implication H' ⇒ c using the pseudodivision prem(c,H ′) to show
V (h1, . . . , hs/d1 · . . . · dt) ∈ V (c). If the �nal pseudoremainder prem(c,H ′) equals
zero, the theorem is generically proven true with subsidiary conditions di 6= 0.
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3.3 Theorem proving

Referring back to the theorem of Example 1 the characteristic set H ′ = {h′1, h′2, h′3} =
{h1,−h21,−h23} with a chosen variable ordering b2 ≺ c3 ≺ a3 is computed. The corre-
sponding algorithm that uses as well pseudodivision can be found in Buchberger et al.
(1988). Since the solution of the following pseudodivision

prem(c,H ′) = prem(prem(prem(c, h′3, a3), h′2, c3), h′1, b2) (3.8)

yields zero, the theorem is generically proven true with the subsidiary condition that b1 6= 0,
having I(h′1) = I(h′2) = b1 and I(h′3) = −b1 as initials of the three polynomials. The
speci�cation of degenerated cases enables to rule out special con�gurations that otherwise
would prevent to prove the corresponding theorem. An implementation of Wu's method and
the pseudodivision can be found in Wang and Suter (2004).
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4 Automatic reasoning for the prediction

of 3D façade structures

This chapter presents a method for the prediction of 3D façade structures as published
in Loch-Dehbi and Plümer (2015). As it is one of the main principles of this thesis the
approach only relies on sparse observations. In the absence of dense measurements this
thesis follows a model-driven approach that estimates shape and location parameters for
building substructures such as windows and yields a ranked set of predicted façades. As a
consequence, single additional measurements are su�cient to verify or falsify a model that
is easier than to reconstruct buildings bottom-up from measurements.

Section 4.1 introduces the functional and stochastic model that is used as a basis for top-
down façade reconstruction. The façade prediction in turn is presented in Section 4.2. A
transfer of this approach for indoor models and the prediction of �oorplans is explained in
Chapter 5.

4.1 Constraint-based 3D modeling of buildings

The presented model-driven approach is backed by a prototyped building model of which
parameters such as the width of windows have to be instantiated during the reconstruction
process. Man-made objects such as buildings are often characterized by regularities and
symmetries between their parts. In this context, constraints are an appropriate means to
represent and enforce the relations between substructures and at the same time narrow the
search space for plausible predictions of façades. The mathematical model for the identi-
�cation and estimation of geometric objects from observations serves as prior knowledge
and can be divided into a functional and a stochastic model. In this case, the functional
model consists in constraints on model parameters and the stochastic model is de�ned by
probability density functions.

The development of a mathematical model for buildings used in this thesis is based on an
extensive analysis of existing city models in a spatial relational database of about 9 million
buildings from North Rhine Westfalia, Germany. This data is enriched by training data that
was collected by an annotation of ground truth data from about 1000 façades from images
and laser scans. Figure 4.1 shows an extract of the designed database schema for annotated
3D buildings as used for this thesis in the analysis of characteristic properties. The hierar-
chical model includes buildings with their characteristics like footprint type, building type
or architectural style. They in turn are composed of façades with windows. A wide spec-
trum of properties was gathered in order to develop a profound set of prior knowledge. This
includes also derived properties such as distances between objects or correlations between
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4 Automatic reasoning for the prediction of 3D façade structures

Figure 4.1: Extract of database schema for deriving universal prior knowledge used during
reasoning in building façades

model parameters. It should be noted that this data is the basis of general valid and repre-
sentative distributions and constraints but not used as direct input for the reconstruction
of a speci�c building.

The functional model is represented by constraints that relate shape and location parameters
of building substructures such as façades, windows or doors and restrict possible appearances
of the façade. The presented method pro�ts from strong regularities in man-made objects
that consequently legitimate strong constraints. For example shape parameters for a row
of windows cannot be chosen arbitrarily large since the width of the façade as an expected
observation is the sum of the width of the windows and the distances between them and
the margin of the façade. Façade widths are derived from the known footprint that is
additionally analyzed with regard to symmetries. An approach for the identi�cation of
translational and axial symmetries in a building footprint can be found in Dehbi et al.
(2016a). A symmetric footprint suggests the symmetry for the corresponding façade and
avoids the need for measurements of the symmetric parts. Further, the width of a window
is obviously related to the height of a window. This kind of dependency is a result of
architectural, aesthetic or legal regulations that as well help to structure the search space.

2 3dl dr

wf = dl + dr + nwww + (nw − 1)dw

dw1

wf

ww ww ww

dw

Figure 4.2: Functional model for façades illustrated by a row of windows

Figure 4.2 illustrates the representation of windows in a façade and shows the model pa-
rameters of the functional model exempli�ed for a row of windows. The vertical model of a
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4.1 Constraint-based 3D modeling of buildings

façade including heights and vertical distances is represented likewise. The geometric char-
acter of the model leads to continuous shape and location parameters. Moreover, the model
consists of discrete parameters such as the architectural style or the number of windows.

An overview of constraints and used parameters for predicting a row of windows can be
found in Table 4.1. The model parameters can be categorized into discrete and continuous
parameters on the one hand and model and observation parameters on the other hand.
Central for this prediction of façade structures are the few observations oi assumed to be
known a priori and related to the model parameters. The façade width wf as an observation
is related to the continuous parameters dl (distance to the left façade margin), dr (distance
to the right façade margin), ww (window width) and dw (distance between windows) in a
bilinear constraint

o1 = wf = dl + dr + nwww + (nw − 1)dw (4.1)

with the discrete parameter nw denoting the number of windows in a row.

For a possibly but not obligatory observed embrasure de, measured as the distance between
left façade margin and the embrasure, the constraint equation is

o2 = de = dl + (cw − 1)ww + ceww + (cw − 1)dw (4.2)

where additionally cw is the (unknown) index of the window containing the observed em-
brasure and a binary variable ce ∈ {0, 1} �xes whether the observation is related to a left or
a right embrasure. A valid hypothesis is thus an instantiation of the unknown parameters
on the right hand side of the equations. While most approaches handle pure discrete or
continuous models, the presented method has to cope with a hybrid model of discrete and
continuous parameters for which reasoning turns out to be more complex.

Special for this model is that for each observation oi continuous model parameters are
characterized by equations of the form

oi =

|XΓ|∑

j=1

djcj , (4.3)

where the dj 's are discrete coe�cients containing discrete model parameters, the cj 's are
continuous model parameters and |XΓ| is the cardinality of the set of continuous parameters.
The key idea of the presented approach is that the non-linear problem can be reduced to a
linear problem as soon as the discrete parameters are instantiated.
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continuous

variable

discrete variable ww
dw

window width
distance between windows

in constraint for GM

component

dl distance between left façade margin and �rst window
dr distance between right façade margin and last window

(unknown)

model

parameter

ww nw gc1 nw number of windows
dw cw gc2 cw index of window corresponding to embrasure
dl ce gc3 ce index of left or right embrasure corresponding to ob-

servation
dr r1 gc4 ri i-th ratio

r2 gci index of mixture component for i-th Gaussian mixture
r3 wf façade width

observation

parameter

wf de distance between left façade margin and embrasure
de pi i-th pseudo-observation (= 0)
p1, p2, p3

constraints

wf = dl + dr + nwww + (nw − 1)dw
de = dl + (cw − 1)ww + ceww + (cw − 1)dw
p1 = r1ww − dw
p2 = r2dw − dl
p3 = r3dl − dr

Table 4.1: Overview of constraints and used parameters for predicting a row of windows in façades



4.1 Constraint-based 3D modeling of buildings

Beside these two basic constraints, the analysis of the ground truth data showed that there
are high correlations between continuous model parameters that are exploited to constrain
the search space further. A window, for example, that is very high is unlikely to be very
narrow. More precise, it turns out that there are some dominant ratios r that can be repre-
sented categorically by some states of discrete nominators and denominators: r = n/d. By
adding additional parameters as so called pseudo-observations pi that are always observed
as 0 the model incorporates the functional dependencies between two model parameters xi
and xj : 0 = pi = rkxi − xj . In this way, the constraints still ful�ll the special form of
equations 4.3 and further provide additional information for an overdetermined equation
system used during the interpretation of measurements for the reconstruction of buildings.
In order to consider the aspect of uncertainty the ratio is constrained up to a small ε:
n/d− ε ≤ r ≤ n/d+ ε.

The characteristics of the models are not only re�ected in the constraints but also in distri-
butions that can be learned from training data. As exempli�ed in Figure 1.2 none of these
probability density functions are Gaussian but rather multimodal. However, it has been
shown that each arbitrary distribution can be approximated by a Gaussian mixture of m
components each weighted by its probability ωi (McLachlan and Peel (2000)):

m∑

i=1

ωiN(µi, σ
2
i ) (4.4)

Gaussian mixtures are an appropriate way to model skew symmetric or multimodal distri-
butions and thus allow for more e�cient inference methods. In the case of façade modeling
it has turned out that Gaussian mixtures are highly peaked with few components and small
variances (cf. Figure 1.2) and thus help to structure and constrain the hypothesis space
enormously. The knowledge of a building type or an architectural style yield even more
precise distributions since the range of typical values for model parameters di�erentiate for
di�erent types and styles (cf. also Section 4.2).

With this basis of profound background knowledge the task of the reasoner is now to deter-
mine the most probable instantiations for the model parameters given the observations. For
reasoning with uncertain data and modeling the dependencies and independencies between
model parameters and its distributions e�ciently Bayesian networks as a special variant of
graphical models often turn out to be a powerful tool. Figure 4.3 shows the network for
predicting a row of windows as is re�ected in the constraints. Discrete nodes are expressed
by simple ovals while a double line represents continuous nodes. Continuous variables re-
lated to the nodes of this network can be divided into observation parameters O = (wf , de)
and (unknown) model parameters XΓ = (dl, dr, ww, dw). As described by the constraints
the functional dependencies of model parameters are modeled as converging connections
(Kjærul� and Madsen (2008)). This inter-causal inference is a special property of graphi-
cal models: As soon as observations, e.g. the façade width, are known as evidence, model
parameters become dependent and in�uence each other.

However, model parameters are a priori characterized by non-Gaussian probability density
functions which makes inference for many well-known algorithms hard to cope with. In order
to use e�cient methods for linear Gaussian networks the developed reasoner incorporates
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4 Automatic reasoning for the prediction of 3D façade structures

Figure 4.3: Extract of a Bayesian network for modeling a row of windows. Unknown model
parameters get dependent by two observations: the façade width wf and (option-
ally) the distance de between the left façade margin and an observed embrasure

Gaussian mixtures by adding an additional discrete parent node where each of the discrete
states then represents the index of the Gaussian component with probability wi of the
corresponding mixture (Loch-Dehbi and Plümer, 2015). In this way, the Bayesian network
is the basis for stochastically determining the posterior of the unknown model parameters
that �t the observations and satisfy the related constraints. The following section describes
how the introduced model is used for the prediction of building substructures based on
sparse observations.

4.2 Predicting building façade structures based on sparse

observations

The geometric and semantic interpretation of laser scans or images from buildings in general
relies on measurements of high-density that are not always available or whose acquisition
is expensive. In contrast, this section presents an approach that predicts substructures in
building façades based on few observations such as footprints. The approach is illustrated
by an example of predicting a row of windows as described in Section 4.1. Here, the building
façade is characterized by a hybrid model of discrete and continuous parameters related by
non-linear dependencies.

Referring to Section 4.1, the posteriors of model parameters can be determined exploiting
converging connections in a Bayesian model as soon as an observation of the façade width
and possibly an embrasure are given. While there are e�cient algorithms for discrete systems
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Figure 4.4: Overview of proposed cp-BN reasoner. A priori the reasoner has to cope with a
large number of hypotheses. However, the incorporation of profound prior knowl-
edge together with the combination of constraint propagation and Bayesian net-
works leads to a probabilistically high quali�ed and ranked set of hypotheses.
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hybrid networks remain a challenging task. As stated by Koller and Friedman (2009) the
resulting number of mixture components is in the worst case exponential in the number
of unassigned discrete variables. However, if it becomes possible to determine the discrete
parameters the problem reduces to a pure continuous and linear problem where distributions
are no more multimodal but Gaussian and the Bayesian network represents a multivariate
Gaussian distribution.

The joint distribution of equation 3.1 shows that the problem divides into a discrete and
a continuous part which suggests the separation of the reasoning in a combinatorial (dis-
crete) and a stochastical (continuous) part. To this end, this work presents a method that
combines constraint logic programming with graphical models and pro�ts from the strength
of constraint programming in solving combinatorial problems and the power of Bayesian
networks in reasoning with uncertain data. The result of the prediction is a set of ranked
hypotheses for shape and location parameters that can be re�ned further in a top-down
approach.

Figure 4.4 gives an overview of the developed cp-BN reasoner that basically consists of three
reasoning steps:

1. Incorporation of prior knowledge

2. Constraint propagation

3. Bayesian network

The method only relies on few observations such as a building footprint or possibly available
single embrasures of windows. Prior knowledge is incorporated to reduce the search space
for valid values of model parameters. Therefore, probability density functions are derived
from a ground truth data base using Expectation Maximization (McLachlan and Peel,
2000). They are used for deriving bounds of continuous parameters on the one hand and
for providing distributions for the statistical component on the other hand. As described
in Section 4.1 the model is further characterized by relations on continuous and discrete
parameters in a Bayesian network where nodes of continuous parameters do not have any
continuous parents.

In this way, the problem of this thesis is modeled similar to a conditional linear Gaussian
network for which e�cient inference methods exist (Lauritzen and Jensen, 2001). The dif-
ference lies in the fact that the states (especially their number) are not known a priori and
that relations between model parameters are multilinear instead of linear. In order to avoid
the unwanted case that there is no full assignment of discrete variables and the result of the
reasoning process is a mixture of Gaussians instead of a multivariate Gaussian distribution,
discrete parameters are determined in a �rst step using constraint propagation before rea-
soning with continuous parameters afterwards. The solution of the constraint satisfaction
problem (CSP) is described by integers for discrete parameters τi including the indices of
mixture components that represent relevant intervals of the continuous parameters.

Figure 4.5 illustrates this e�ect of determining the discrete parameters by the combinato-
rial component. With unknown discrete parameters the probability density functions of the
model parameters are multimodal composed of several Gaussian components. The reduction
after constraint propagation leads to single unimodal Gaussians whose means are appropri-
ate for an initialization of the stochastic reasoning. By instantiating the discrete parameters
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4.2 Predicting building façade structures based on sparse observations

Figure 4.5: E�ect of applying the proposed cp-BN reasoning on the illustrated example of
predicting a row of windows. The Gaussian mixtures characterizing the model
parameters are reduced to single Gaussian components after the instantiation of
discrete parameters leading to a unimodal instead of a multimodal hypotheses
space.
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4 Automatic reasoning for the prediction of 3D façade structures

the stochastic reasoning has to cope with a linear Gaussian problem that enables the use
of well-studied e�cient inference algorithms for calculating the posterior belief.

The space of possible discrete solutions is restricted by constraint propagation using the
constraints in Table 4.1. Furthermore, intervals can be derived from the di�erent mixtures
components to structure the hypothesis space. The j-th component is thus represented by
3λ intervals: [µj − λσj , µj + λσj ].

Together they de�ne a CSP with constraints C = {C1, ..., Cq} on variables X = {X1, ..., Xn}
with associated domains D = {D1, ..., Dn}. The constraint solver searches for a solution of
the CSP by �nding instantiations τi = (a1, ..., an) ∈ D1 × ... × Dn for each variable so
that all constraints are satis�ed. The incorporation of constraint logic programming yields
a small number of quali�ed hypotheses.

The result of the combinatorial component are possible instantiations τ1, ..., τk for discrete
parameters with τi ∈ N|X∆|, that is in the case of predicting a row of windows a set of
solutions for

• the four indices of the selected Gaussian distributions from the mixtures
(gci, i = 1, ..., 4)

• the number of windows (nw)

and in case of an observed embrasure

• the index of the window that contains the observed embrasure (cw)

• the assignment of the observation to the left or right embrasure (ce).

After constraint propagation, the last step of reasoning consists in the determination of the
continuous parameters and their quality. Stochastic reasoning is performed on a Bayesian
network that is dynamically constructed for each solution of the constraint solver. For each
discrete instantiation τl with l ∈ 1, ..., k dependencies of variables are described with respect
to the i-th observation by linear relations of the form

oi =

|XΓ|∑

j=1

δjlcj , (4.5)

where the δjl are constants transformed by the instantiation of the discrete parameters. Only
the continuous parameters cj remain as random variables that �nally have to be corrected
by calculating the posterior belief. In order to exploit this special structure the intermediate
model can be seen as a state-observation model, a dynamic Bayesian network where the
state of variables evolves over time. In the case of linear Gaussian dependencies with solely
continuous variables these networks are equivalent to linear dynamic systems and enable an
e�cient calculation of the posteriors by simple matrix multiplications using Kalman �lters.

Since the building model does not evolve over time the transition from one state to another
characteristic for dynamic systems is omitted. Instead, the measurement update, also called
correction step, is applied to the vectors and matrices constructed from the output of the

36



4.2 Predicting building façade structures based on sparse observations

Figure 4.6: Result of predicting façades based on known façade widths. Green marked hy-
potheses match the correct solutions. Red vertical lines drawn across the ranked
solutions mark the location suggested for a single measurement in order to decide
between the di�erent hypotheses.

combinatorial component. The reasoning determines a posterior distribution, i.e. µ ∈ Rn
and Σ, for the model parameters:

µ = µ+K(o−Mµ)

Σ = (Id−KM)Σ
(4.6)

where M ∈ Rn×m is the measurement matrix constructed according to the used constraints
in Table 4.1 so that o = Mµ and K is the Kalman gain de�ned by

K = ΣMT (MΣMT +Q)−1 (4.7)

Hereby, Id denotes the identity matrix and Q ∈ Rm×m is the Gaussian noise of observations.

Applying this calculation to each intermediate result of the constraint solver, the reasoner
outputs the k best hypotheses

Hbest = (µ1, τ1, P1), ..., (µk, τk, Pk)

with means µi ∈ R|XΓ| and discrete instantiations τi ∈ N|X∆| ranked by its (unnormalized)
probabilities

Pi = exp(

|XΓ|∑

j=1

log(pdf01
j (µij))) (4.8)

where pdf01
j is the on [0, 1] scaled density of the distribution corresponding to the j-th model

parameter. By determining a set of ranked hypotheses instead of one single prediction it is
avoided that the interpretation that best �ts the real façade is rejected at an early stage
due to a lower probability.

37



4 Automatic reasoning for the prediction of 3D façade structures

Figure 4.7: An observation of a single embrasure changes the ranking in favour of the correct
hypothesis

Figure 4.6 shows the results of predicting a row of windows based on a single observation,
namely the building footprint respectively the derived façade width. As depicted in the third
column of Figure 4.6 occlusions can be compensated as well. Among 55 façades that were
used for the evaluation of the approach more than half of the correct predictions were ranked
as �rst hypothesis with an average error of 0.37 m. Observations of embrasures and the
corresponding relation constraining the model parameters are not used in these examples.
However, in order to select between di�erent hypotheses, an additional measurement of
for example an embrasure yields more accurate information about the building structures.
Figure 4.7 demonstrates how the ranking is changed in favour of the correct hypothesis. The
decision at which position a measurement best improves the reconstruction process and the
�nal model selection is beyond the scope of this thesis.

The approach succeeds best for buildings that have a clearly de�ned appearance so that
model parameters �t the characteristics covered by the probability density functions and
the derived constraints. This is especially the case for o�ce buildings or buildings of cultural
heritage. In contrast, for example, some modern buildings may follow their own rules without
the typical regular structure. This requires an extended modeling to capture the diversity
of façades and possibly needs more measurements to verify or falsify a relaxed model.

A decrease of errors can be made, if the building type or the architectural style is incor-
porated. The knowledge of these characteristics results in more precise and stronger peaks
of probability density functions and thus excludes implausible instantiations in an early
stage. Figure 4.8 illustrates how distributions become more precise if the architectural style
is known. Obviously, the Gaussian mixture components represent di�erent styles and the
knowledge of the architectural style can limit the search to a smaller range of probable val-
ues. Architectural style and building type can be automatically derived in a classi�cation
task by support vector machines as proposed by Römer and Plümer (2010) and Henn et al.
(2012).

4.3 Cp-BN reasoner: A generic method

The presented approach is not restricted to building façades but is implemented indepen-
dently from the domain of buildings and can thus be transferred to other applications. At
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4.3 Cp-BN reasoner: A generic method

Figure 4.8: Impact of knowledge about architectural style. Comparison of the Gaussian
mixture for the height of windows independent of the architectural style (blue)
and for windows in buildings of Wilhelminian style (red).

all times the equations are build up dynamically dependent on the speci�c problem and
the intermediate solutions. The object-oriented and modular manner covers a wide range
of con�gurations.

The transfer to another problem requires that the problem can be de�ned as cp-BN problem

(X ,D, C) on a cp-Bayesian network (cp-BN) as de�ned below:

A cp-BN problem (X ,D, C) is de�ned by a set of parameters X with corresponding domains
D and a set of constraints C with the following properties:

• continuous model parameters X ∈ X are characterized by a Gaussian mixture

• observed continuous parameters X ∈ X are characterized by an observed value and a
precision for this observation (σ)

• discrete model parameters X ∈ X are characterized by a domain with integral bounds

• (optional) ratios r = Xi
Xj

are characterized by a discrete domain of a list of numerators
and a list of denominators

• constraints C are de�ned by a CLP expression on the set of variables X

Gaussian mixtures are not only used to handle probabilities for reasoning with uncertain
data but provide a means to derive bounds for continuous model parameters. Together
with integral bounds and constraints including relations on ratios constraint propagation
algorithms are able to reduce the search space.

A cp-Bayesian network (cp-BN) is a Bayesian network where every discrete variable has
only discrete parents and every continuous variable has a conditional probability distribution
that can be characterized by a Gaussian mixture or whose dependency can be described by
a bilinear relation with factors of discrete and continuous variables as de�ned in Equation
4.3.
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4 Automatic reasoning for the prediction of 3D façade structures

Input: prior knowledge (prior distributions, integral domains, constraints),
observations

Output: best k hypotheses Hbest = (µ1, τ1, P1), ..., (µk, τk, Pk)
// incorporation of prior knowledge

derive information: observations, parameter bounds
initialize model: observations o with measurement noise Q, constraints and
distributions
// constraint-based reasoning

construct constraint satisfaction problem CSP (X ,D, C) according to model
initialization
propagate constraints and search for plausible intermediate hypotheses H′ = (h1, ...hk)
of the CSP (with instantiations for discrete parameters X ∈ X∆)
// statistical reasoning

for hi ∈ H ′ do
construct matrices Σ,M,Q and vectors o and µ of Kalman �lter
calculate posterior belief by updating measurement with
K = ΣMT (MΣMT +Q)−1

µ = µ+K(o−Mµ)
Σ = (Id−KM)Σ

end

determine k most likely assignments: MAP k(µ|o)
// refinement (optional)

re�ne results by updating beliefs and ranking as soon as additional information is
available

Algorithm 1: Algorithm cp-BN combining constraint-based with statistical reasoning
for a prediction of structures based on few observations

The latter can often be ensured by using pseudo-observations that are always observed as
zero. The paradigm of restricting the search space by constraint propagation requires do-
mains de�ned by one or more intervals, that is upper and lower bounds for model parameters
that can be derived from available probability density functions.

The Algorithm 1 generalizes the presented approach and depicts the procedures that can
be applied to arbitrary cp-BN problems. In all cases the reasoning passes three reasoning
steps: the incorporation of problem speci�c prior knowledge, the combinatorial reasoning
using constraint logic programming and the statistical reasoning using Bayesian networks.
Constraints that are used in the combinatorial component are shipped over to the statistical
component if they de�ne a state-observation model and involve continuous parameters.

To sum up, the algorithm changes a problem of an in�nite number of hypotheses to a small
number of quali�ed hypotheses by the incorporation of prior knowledge and the combination
of constraint logic programming and Bayesian networks. Hereby, it is able to perform exact
inference on a non-linear problem with discrete as well as continuous parameters.
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5 Automatic reasoning for the prediction

of 3D indoor models

This section describes the prediction of 3D indoor models published by Loch-Dehbi et al.
(2017). Similar to the approach for façade prediction sparse observations are su�cient for
model generation. The proposed method avoids indoor measurements and thus circumvents
expensive or di�cult acquisition of data for which each room has to be entered and that
is impeded by occlusions, e.g. from furniture. Instead it uses basic knowledge about the
building footprint, the (exterior) locations of windows and available room characteristics
such as the room area. Together with probability density functions and constraints the
implemented reasoner predicts the shape and location of rooms and estimates �oor heights
and doors. As an adaption to the approach presented in chapter 4 it follows a model-driven
top-down approach and combines constraint logic programming with Bayesian networks in
order to make exact inference feasible despite few observations and a non-linear model with
discrete as well as continuous parameters. A MAP based inference �nally yields a ranked
set of hypotheses.

The basic problem to solve is to place n rooms of known areas ai in a given polygonal
building footprint. The i-th room is represented by a reference point (xi, yi) and its width
wi and depth di that are in a �rst step constrained by a bilinear constraint ai = wi ∗ di
(cf. Figure 5.1a). Herewith, it di�ers from the façade prediction in that the dependency is
a product of two continuous parameters.

The problem of placing rooms in a rectangle is closely related to Perfect Rectangle Pack-
ing, which is known to be NP-hard (Garey and Johnson, 1979). Apparently, the �oorplan

Figure 5.1: a) Overview of location and shape parameters for modeling �oorplans b) Han-
dling non-rectangular footprints by adding additional auxiliary rooms (green)
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5 Automatic reasoning for the prediction of 3D indoor models

prediction is in the same way NP-hard as it is a generalization of the special case that the
building footprints are rectangular and the lower bounds for shape parameters are equal to
the upper bounds thus having a known width and depth. The NP-hardness suggests that
it is di�cult to achieve e�cient algorithms in the worst case.

In the same way as for façade reconstruction the key idea is that regularities in the con-
struction of buildings legitimate the use of strong building models during model prediction.
Constraints on shape and location parameters and the incorporation of probability den-
sity functions narrow the search space of valid predicted �oorplans. This also reduces the
problem that measurements of furniture are misinterpreted as walls.

The dominance of orthogonality and parallelity in man-made objects leads to the simpli�y-
ing design decision that the model follows the Manhattan world assumption. The building
footprint as well as the rooms are assumed to be rectangular. In order to handle non-
rectangular footprints, this constraint can be relaxed by adding auxiliary virtual rooms as
shown in Figure 5.1b.

Instead of an expensive acquisition of indoor measurements the reasoning is based on data
that is usually available with house keepers or real estate managers. A priori known build-
ing footprints that can be extracted from open source data such as OpenStreetMap back
the reasoner as well as categorical prior knowledge such as identifying room numbers, in
particular for o�ce rooms, or the functional use of rooms such as toilet or corridor. The
latter for example advises information about typical dimensions of rooms such as long and
narrow in case of a corridor. The developed reasoning method further exploits that rooms
with consequent room numbers are likely to be adjacent. Measurements of the indoor en-
vironment are a priori not needed, they can though be used selectively to decide later on
between competing hypotheses of �oorplans.

Additionally, the reasoning pro�ts from (two-dimensional) locations of window embrasures
(xw1, yw1) and (xw2, yw2) that are assumed to be given from exterior measurements (cf.
Figure 5.1a). The latter can be derived using existing approaches for the identi�cation of
building parts such as presented by Dehbi et al. (2016b), Dehbi et al. (2017) or Recky and
Leberl (2010) and serve for constraining relations between room and window parameters as
described later on.

In this context, for a �oorplan prediction of high accuracy the location parameters of a
room should be related to the parameters of its neighbour rooms and the parameters of the
windows that they contain. However, a priori the correspondence of windows and the adja-
cency of rooms is unknown so that this information cannot be used to de�ne constraining
relations on location parameters. Instead, this becomes possible as soon as the topological
model is given. To this end, the reasoning is based on a combinatorial and a stochastic part
similar to the reasoning for façades presented in Section 4.2. The combinatorial component
determines the discrete parameters such as the correspondence of windows to rooms and the
bilateral relations between rooms, i.e. the horizontal and vertical neighborhood such as 'left
to' or 'right to'. Finally, the stochastic component calculates the continuous parameters:
the width and depth of rooms and their locations.

The uncertainty of the model is expressed in probability density functions for continuous
model parameters that are derived from annotated �oorplans with about 1160 rooms col-
lected in a spatial relational ground truth database (cf. Figure 5.2). The hierarchical model
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Figure 5.2: Database schema used for deriving probability density functions and constraints
of the �oorplan model

de�nes windows, doors, rooms, façades and buildings and records properties of and correla-
tions between these objects. The data is used to develop the constraint-based mathematical
�oorplan model and to derive probability density functions. Alike for façades as described in
Chapter 4 probability density functions are neither Gaussian nor unimodal, which a priori
excludes the use of many well-studied e�cient inference methods. In order to circumvent
this de�ciency the prepocessing of the combinatorial component selects only one appropriate
Gaussian component of the Gaussian mixture.

The prediction of �oorplans is implemented by three reasoning steps as depicted in Sec-
tion 4.3. The reasoner incorporates prior knowledge and separates the problem into a discrete
combinatorial and a continuous stochastic part.

Location and shape parameters of rooms are constrained by topological and statistical
constraints that help to structure the hypothesis space. For an intermediate topological
model the reasoning method incorporates hard and soft constraints on discrete as well as
continuous parameters. Hard constraints have to be satis�ed during model instantiation
whereas soft constraints represent relations that should be valid but are allowed to be
violated � bound by a maximum number of violations � to preserve plausible instantiations.

The following hard constraints are used by the combinatorial component to search for valid
topological solutions:

• the product of room widths and depths is equal to the areas of rooms.

• The domain vertices for rooms that contain windows exclude ranges where windows
are placed so that walls do not cross windows.

• at least one of the exterior walls of a room with a window contain the vertices of the
corresponding window
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5 Automatic reasoning for the prediction of 3D indoor models

• polygons of rooms do not overlap by forcing that vertices of one room cannot lie in a
polygon of another room but on the same side outside of this polygon instead.

• polygons of rooms lie inside the footprint and the domains of room vertices are
bounded according to the footprint dimensions.

• the number of rooms along a corridor is restricted by the width of the façade since in
turn the room width is bound by a statistically derived minimum

• width and depth are bound by lower and upper bounds derived from probability
density functions. They are in turn dependent on the building type or the functional
use of the corresponding room.

The topological model is further constrained by the following two soft constraints:

• rooms with consecutive room numbers are mostly adjacent

• rooms are mostly adjacent to an existing corridor

As it can be seen these relations on location and shape parameters of rooms further con-
strain the domains of model parameters by upper and lower bounds or even more complex
constraints. They thus exclude impossible instantiations and de�ne a constraint satisfaction
problem (CSP) that is solved by constraint logic programming. Table 5.1 gives an overview of
model and observation parameters and used constraints similar to the prediction of façades
(cf. Section 4.1).

It should be noted that the assignment of windows to rooms is not known a priori. Instead
the combinatorial component solves the discrete labeling problem by �tting the correspond-
ing constraints. The occurrence of windows in a room further depends on the functional use
of the room so that not all rooms are forced to have a window. For example, it is required
that a window is assigned to an o�ce room but not necessary to a corridor.

The reasoning pro�ts from a preliminary relaxation in that rooms in intermediate results do
not have to �ll the entire space and walls are modeled later on during statistical reasoning.
Herewith, a spring model is used similar to the approach in Becker (2009) in order to provide
bu�ers for fast intermediate results that are improved in a subsequent step. Without loss of
generality, the footprint is rotated in such a way that its main axis is parallel to the x-axis
of the coordinate system. Since the complexity of the algorithm is bound by the domain
size, discrete values for x-coordinates are enumerated excluding those that fall in window
ranges in order to avoid the a priori in�nite continuous search space. This leads to an
easier instantiation of other parameters since constraints can be transformed to functions.
Since we are only interested in rough instantiations, more precisely ranges that represent a
component of the Gaussian mixture, and further bu�ers are provided due to the omission of
separating walls during constraint propagation this relaxation and discretization is su�cient
for a correct topological model (see second row in Figure 5.3).
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continuous

variable

discrete variable ai
wi

area of i-th room
width of i-th room

in constraint for GM

component

di depth of i-th room
(xi, yi) reference point of i-th room in left lower corner

model

parameter

wi wcw gc1i wf width of footprint
di relij gc2i df depth of footprint
xi gc3i (xf ,yf ) reference point of footprint in left lower corner
yi gc4i (xw1 ,yw1) left reference point of w-th window
wallext gcext (xw2 ,yw2) right reference point of w-th window
wallint gcint wallext widths of exterior walls

observation

parameter

wf rnoi wallint width of interior walls
df wcw window correspondence for w-th window
xf rnoi room number of i-th room
yf relij bilateral relation (neighborhood) between rooms
xw1 ,yw1 gcext, gcint index of Gaussian component for walls
xw2 ,yw2 gcki index of Gaussian component for k-th model param-

eter of i-th room

constraints (exemplarily)

room area ai = wi ∗ di
window correspondence wcw = rnor
room touches exterior wall (front) yi = yw1 + wallext
room walls between windows (front) ((xi ≤ xw1) ∧ (xw2 ≤ (xi + wi)))
rooms inside footprint ((xf ≤ xi) ∧ (yf ≤ yi) ∧ ((xi + wi) ≤ (xf + wf )) ∧ ((yi + di) ≤ (yf + df )))
non-overlapping of rooms (xi + wi ≤ xj) ∨ (xj + wj ≤ xi) ∨ (yi + di ≤ yj) ∨ (yj + dj ≤ yi)
adjacency (room i left to room j) ((xi + wi + wallint = xj) ∧ ¬((yj + dj ≤ yi) ∨ (yi + di ≤ yj)))

Table 5.1: Model and observation parameters and constraints used for modeling �oorplans. Bold marked parameters denote a
priori known parameters. The text in brackets denotes the case for which the constraint is exemplarily written. Note
that the adjacency of rooms and their assignment to an exterior wall and the containing window is not given but
determined by the combinatorial component of the reasoner.
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To sum up, the combinatorial component yields the initial states of continuous parameters
for the statistical reasoning as means of selected Gaussian distributions and outputs a set
of topological models with evidence for discrete parameters:

• indices of the selected Gaussian distributions from the mixtures

• indices of rooms mapped to corresponding windows

• the adjacencies between rooms.

Herewith, it provides the prerequisites for the de�nition of linear equations of a state-
observation model for the exact stochastic reasoning. The stochastic reasoning applied af-
terwards produces a result that is topologically equivalent1 but geometrically di�erent in
order to adapt the intermediate predictions to the as-is �oorplans of the real world. The
problem is set up dynamically for each solution in the output of the combinatorial compo-
nent. In contrast to the prediction of façade substructures not all constraints are shipped
over to the statistical component since they were mainly used to rule out values for dis-
crete parameters. Further, walls were not modeled during constraint propagation in order
to provide bu�ers for the topological model. Together with the continuous room parameters
xi, yi, wi and di two variables wallint and wallext for the inner and outer walls are added
for the stochastic reasoning.

There are basically two constraint types that are used to ensure geometrically correct so-
lutions. In order to ensure the special structure of equation 4.3, where the observation is
de�ned as a sum of products with one discrete and one continuous factor, zero-instantiated
pseudo-observations are introduced.

The �rst constraint type expresses the adjacency of rooms. For an i-th room that lies left
to the j-th room the relation can be expressed as follows:

oij = 0 = xi + wi + wallint − xj .

Likewise, the other vertical and horizontal neighborhoods are modeled.

Based on the a priori predicted assignments of rooms to windows the location of rooms is
strongly limited by the corresponding known window coordinates. For a room related to
the w-th window - in this case lying at the front side of the building - its coordinates have
to be adjusted using the following constraint:

oiw = 0 = yw + wallext − yi.

Obviously, the envisaged problem reduces to a special structured Bayesian network: a con-
ditional linear Gaussian network. More precisely, the reasoner has to deal with a linear
structure of constraints where initial beliefs for model parameters are represented by mul-
tivariate Gaussian distributions. In the same way as described in Section 4.2 the posterior
belief is calculated using the correction step of the Kalman Filter and continuous shape and
location parameters are adjusted. Bilateral relations of the topological model are coded in
an adjacency graph that is used to built up the matrices dynamically in a recursive way.

1equivalent up to homeomorphic transformations (Worboys and Duckham, 2004)
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Figure 5.3: Result of predicting �oorplans in the absence of indoor measurements. The
topological model is the result of the combinatorial component by determining
discrete parameters while the stochastic model is the �nal output after the
subsequent statistical correction of the continuous parameters.
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5 Automatic reasoning for the prediction of 3D indoor models

By incorporating the Kalman gain the reasoner outputs corrected means µ and covariances
Σ for continuous model parameters of the �nal stochastic model.

Finally, the quality of the hypotheses is determined by calculating MAPk(µ|o), the k most
probable explanations, and the resulting hypotheses are ranked by their (unnormalized)
probabilities (cf. equation 4.8) .

Figure 5.3 shows the result of the reasoning process for three di�erent types of buildings: a
rectangular and a non-rectangular footprint of o�ce buildings as well as a footprint stem-
ming from a residential house. In contrast to the rectangular footprint auxiliary rooms have
to be added for the non-rectangular footprint in order to ensure that the footprint satis�es
the rectangle assumption (cf. Figure 5.1b). Nevertheless, the protrusions are bene�cial in
that they point to walls that are located at their end points and separate the rooms. As
mentioned before, an important �nding of the ground truth data is that rooms with con-
secutive room numbers are often adjacent and a large number of rooms can be placed with
high topological accuracy if room numbers are known � meaning that the adjacency be-
tween the rooms is predicted in a correct way. The room numbers are only used to enhance
the prediction but are not part of the �nal geometric result. Consequently, di�erent assign-
ments of room numbers may result in equivalent (geometric) solutions if room dimensions
are the same. The result gets more precise if single rooms are known to belong to a speci�c
window that thus constrain their order. For a limited number of rooms such as toilets or
stairs this information can be derived based on the surface appearance or the location of
windows. Additionally, the adjacency to a corridor automatically aligns the rooms along this
special rectangle. The challenge of residential buildings is that rooms have no identifying
room numbers that suggest the neighbourhood of rooms. Instead, the reasoner pro�ts from
a wider variety of functional uses and a smaller total area.

Figure 5.3 demonstrates the topological models as output of the combinatorial component.
Temporarily walls are ignored and an alignment of rooms along the corridor is not forced
in a �rst step to provide bu�ers for the prediction of the intermediate topological model
that focuses on discrete parameters. Continuous parameters are initialized afterwards by the
means of the chosen Gaussian mixture components and are updated by stochastic reasoning
� more precisely by the measurement update of the Kalman �lter � in order to �t optimal
in the �oorplan. As already addressed in Chapter 1 the stochastic model as �nally selected
meets the recommended OGC requirements of model accuracies between 10 and 20 cm.
The reasoner predicts �oorplans in the absence of indoor measurements and instead uses
less expensive data such as available footprints or the room area. However, single additional
observations from the interior can be used to select between competing hypotheses and
increase the accuracies further.

While the presented constraints are limited to the description of 2D �oorplans, a further
processing of the result allows for the derivation of 3D indoor models as shown in Figure
5.4. The prediction of the 3D model becomes possible by extruding walls to predicted
heights and estimating doors using statistics for the location of doors. Staircases or other
details are beyond the scope of this thesis. False positives are marked with green dotted
lines. The size of rooms as well as their functional use in�uences the location of doors. The
histograms in Figure 5.5 show the dominance of speci�c locations dependent on the width
of the corresponding rooms. Further, kernel density estimations based on 3D point clouds
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Figure 5.4: Derived 3D model as a postprocessing of the �oorplan prediction. Dotted lines
show false positives of the prediction of door locations.
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Figure 5.5: Histograms of door locations dependent on the width of rooms

of façades provide information about the height of each storey (Dehbi et al. (2016b)). Even
more robust results could be achieved by the use of a classi�cation for the location of doors.

The results show that the incorporation of profound prior knowledge enable plausible pre-
dictions of �oorplans. This is especially the case for o�ce buildings or other public buildings
that usually provide room numbers as well as room types and exhibit a clear structure. The
combinatorial complexity of locating rooms can thus be increased drastically. The approach
is designed to be applicable to residential housings as well. The lower number of rooms
compensates the absence of room numbers with regard to combinatorics. However, the
�oorplan layouts may be more diverse. Rooms are not necessarily aligned along a corridor
and room shapes do not have to be a rectangle. In this case, the prediction of �oorplan lay-
outs demands the development of additional controlling mechanisms constraining models
of residential houses.
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6 Geometric reasoning on 3D building

models

Model-driven approaches for the reconstruction of 3D buildings as presented in Chapter
4 and 5 depend on well-de�ned prototyped models. Therefore, as part of this thesis a
prototyped reasoning tool was developed that ensures a consistent and redundancy-free
representation, enables to reason within these models and is able to handle quality issues
in uncertain data.

Constraint-based models are a common formalism for the representation of 3D buildings.
Since man-made objects are often characterized by geometric constraints such as parallelity
and orthogonality these constraints can be well represented by multivariate polynomials.
While there are e�cient methods to solve equations numerically for a concrete task of
reconstruction this thesis presents a method that makes the analysis of constraint-based
models feasible for general con�gurations on a symbolic level. The basic idea is that the
proof of a consistent and redundancy-free model or the deduction of implicit constraints is
equivalent to proving a theorem of one constraint being a conclusion of others. Following
this concept, the developed approach uses algorithms of automatic theorem proving and
integrates algebraic as well as deductive (rule-based) reasoning.

6.1 Geometric constraints for 3D building models

The geometric model can be speci�ed by primitives of buildings such as planar faces for
walls or roof halves. The presented approach is illustrated by a model of a gable roof house

Figure 6.1: Prototyped model of gable roof
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Figure 6.2: Orthogonality and Parallelity are dominant in man-made objects such as build-
ings

being an aggregation of a cuboid and a prism (see Figure 6.1). Since most man-made objects
have a regular structure (Steadman (2006), Loch-Dehbi and Plümer (2011)), the primitives
such as planes representing the walls are basically related by geometric constraints such as
orthogonality and parallelity. Figure 6.2 shows the dominance of these constraints in 3D
building models.

Object Projective representation
plane A = (a, b, c, d) = (Ah, A0)

A = X ∧ L = Π
T

(X)L

point X = (x, y, z, w) = (X0, Xh)
X = A ∩ L = ΠT (A)L

line L = (a, b, c, d, e, f) = (Lh,L0)

L = A ∩B = Π(A)B
L = X ∧ Y = Π(X)Y

Table 6.1: Algebraic representation of geometric objects and possible constructions accord-
ing to Heuel (2004) with Π(X)(6x4) := (∂X ∧Y/∂Y ), Π(X)(6x4) := (∂X ∧L/∂L)
and X ∧ Y = (XhY0 − YhX0, X0 × Y0)

In the context of algebraic modeling, a substantial increase of complexity can be observed
from the 2D to the 3D space and many geometric constraints are characterized by multi-
linear or even quadratic equations of polynomials. As a consequence, an adequate choice of
reasoning methods as well as an appropriate representation of the building model is crucial
for a reliable method.

As a �rst step towards feasibility, the presented approach uses projective geometry and
represents points, lines and planes as homogeneous coordinates so that constraints can be
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Bi-relational Algebraic degree of
constraint representation freedom (DoF)

plane A ⊥ plane B AThBh = 0 1
line L ⊥ plane A S(Lh)Ah = Lh ×Ah = 0 2
plane A ‖ plane B S(Ah)Bh = Ah ×Bh = 0 2
line L ‖ plane A LThAh = 0 1
point X ∈ plane A XTA = 0 1

Table 6.2: Modeling orthogonality, parallelity and incidence with S(x) = ∂x ∧ y/∂y =
∂x× y/∂y, the basic constraints that are needed to model a gable roof house.

represented by simple bilinear constraint equations. Table 6.1 and table 6.2 give an overview
of the algebraic representation of geometric objects and constraints as proposed by Heuel
(2004). Later on in this work, it can be seen how this representation also paves the way for
the integration of uncertainty.

Beyond the use of projective geometry further simpli�cations of the representation lead to a
reduction of running time and more interpretable results. With respect to the representation
of the model a minimum of variables is at all times preferable. Without loss of the generality,
one simpli�cation is the rotation of the model so that one plane is parallel to the x-y-plane.
To this end, the normal vector of the plane that is involved in most of the constraints can
be set to (0, 0, 1) so that many factors get eliminated. Further variables reduce to zero,
if the origin of the coordinate system is placed where the most complex constraints are
involved. For a gable roof house, the relation for constraining the orientation of the roof
and its symmetry are more complex than the orthogonality and parallelity constraints of
the walls so that the origin is placed in the roof of the building for a simpli�cation of roof
constraints.

Beside basic constraints of orthogonality and parallelity there are two high-level constraints
that restrict the gable roof of the building. The �rst one constrains the orientation of the
roof and the second one forces the roof to be symmetric. More details can be found in the
work of Loch-Dehbi and Plümer (2011).

The implemented constraint-based reasoner uses two methods of automatic theorem prov-
ing: algebraic and logic reasoning. While algebraic reasoning uses multivariate polynomials
to de�ne constraints and theorems deductive reasoning uses logical facts and rules. While
algebraic reasoning requires no knowledge about rules describing the dependencies between
geometric properties the strength of deductive reasoning lies in the fast deduction of new
constraints based on an a priori de�ned set of rules. The following section describes the
combination of the logical and algebraic reasoner based on these representations. The as-
sessment of quality under the aspect of uncertainty is an important aspect of GIS data and
modeling. To this end, the numeric representation is as well integrated. Section 6.3 extends
the representation by covariance matrices and describes the handling of uncertainty in order
to apply the model in reconstruction tasks.
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Figure 6.3: Overview of logical and algebraic methods for automatic theorem proving

6.2 Geometric reasoning using automatic theorem proving

The geometric reasoning is intended for two applications: Ensuring a redundancy-free and
consistent representation of a building model and deducing new implicit objects and rela-
tions for the reconstruction from uncertain data. In both cases it has to be shown whether
one constraint follows from another constraint that suggests the use of automatic theorem
proving. While there exist e�cient algorithms to solve the problems numerically, this thesis
deals with proving theorems on a symbolic level that is to prove if a theorem is in general
valid independent from real numeric values.

While most approaches of theorem proving handle two-dimensional problems, the presented
method has to tackle 3D models. In this context, an increasing complexity can be observed
in the transition from the two dimensional to the three dimensional space. The increasing
number of variables and constraints that are needed to model a theorem in the 3D space
requires a special representation and handling of the problem.

In order to tackle this challenge, logical reasoning is combined with algebraic reasoning and
an appropriate representation of constraints is presented. To show the feasibility of this
approach a constraint-based reasoner was developed. Figure 6.3 gives an overview of the
implemented logical and algebraic component.

At �rst, the logical component uses fast deductive reasoning with �rst-order predicate logic
to derive new facts based on known implications. It further extends the geometric scope of
algebraic reasoning to constraints of topology and partonomy. The implemented deductive
reasoner has two tasks and thus two types of rules:

1. derive new geometric objects and constraints based on known rules

2. generate hypotheses that have to be checked by the algebraic reasoner

Rules of type 1 derive new facts by applying construction rules and known axioms until a
�xpoint is reached and no new facts are produced. This background knowledge is extended
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steadily with new proven theorems such as the example in Section 3.3 or proven theorems
known from literature. As soon as they can be represented in a logical language the deductive
reasoner pro�ts from the possibility of a fast deduction of implicit relations. If for example
objects O1, O2 and O3 are planes and O1 is orthogonal to O2 and parallel to O3 the fact
that O2 is orthogonal to O3 can be deduced without any algebraic transformation:

orthogona l (O2,O3) ← plane (O1) , p lane (O2) , plane (O3) ,
O2 \= O3, orthogona l (O1,O2) , p a r a l l e l (O1 ,O3)

Rules of type 2 generate hypotheses that the algebraic reasoner has to verify. Due to the
closed world assumption facts remain false as long as they are not in the database. As
a consequence, it is worth to test whether this assumption really holds or the algebraic
reasoner �nds a proof of the contrary. As an example, having neither orthogonality nor
parallelity of two planes, the algebraic component should check whether the negation as
assumed in the closed world holds or on the contrary the following hypothesized fact can
be deduced:

hyp_orthogonal (O1,O2) ← plane (O1) , p lane (O2) ,
not ( orthogona l (O1,O2) ) , not ( p a r a l l e l (O1 ,O2) ) , O1 \= O2

The result of the logical component is a prerequisite for the algebraic component which is
a central component in the presented reasoning process. In contrast to the logical reasoner
based on rules algebraic theorem proving needs neither rules nor prior knowledge. Instead
the theorem alone is used to prove the conclusion from the premises. Based on multivariate
polynomials the proof is more complex than simply applying rules but therefore is able
to discover implications that could not be de�ned a priori in form of logical rules due to
complexity or lack of knowledge.

Basically, the algebraic reasoning consists of two applications:

1. testing building models for consistency and redundancy for a minimum well-de�ned
prototype

2. deducing new facts for the support of 3D building reconstruction from uncertain
measured data.

Finding a redundancy-free and consistent representation leads to a more comprehensive and
readable model as well as less disk space. Further, the combinatorial complexity is decreased
and may thus be bene�cial for further processing. In contrast, in the context of building
reconstruction a redundant set of constraints may be of advantage in that additional deduced
objects and implicit relations made explicit can be used to verify or adjust the interpretation
of measurements.

In both cases the task is equivalent to prove whether one constraint follows from another
constraint. For algebraic reasoning the second component of the developed reasoner uses
constraints that are represented by multivariate polynomials and Wu's method is chosen as
an algebraic method for automatic theorem proving (cf. Section 3.3). For each theorem a
characteristic set is computed and it is checked by pseudodivision whether the conclusion
can be deduced. If the method reveals that the polynomials have no common zeros the set
of constraints is declared to be inconsistent. In general, Wu's method is preferred to other
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Figure 6.4: Runtime of proving a theorem with and without simpli�cation of constraints

algebraic methods since they often turn out to be more e�cient for geometric theorems (Cox
et al. (2007)). Furthermore, the automatic generation of subsidiary conditions covers the
assumption of geometric con�gurations being in a general position that is often mentioned
in textbooks.

For the e�ciency of the algorithm an appropriate representation as described in Section
6.1 turns out to be crucial. The use of projective geometry together with a reduction of
variables reduces the complexity signi�cantly. A limitation the reasoner has to cope with is
that Wu's method is restricted to equations and does not allow inequalities. The constraints
as described in Section 6.1 involve inequalities but however can be modeled by equivalent
expressions with the introduction of an additional variable w (Kapur and Mundy (1988)):

x < 0⇔ xw2 + 1 = 0

x > 0⇔ xw2 − 1 = 0
(6.1)

Beside an appropriate representation of constraints that avoids complex constraints with
quadratic terms and many variables (cf. Section 6.1), the complexity of the problem depends
on the choice and the ordering of dependent variables. They should be chosen in such a way
that they support the construction of a characteristic set on the one hand and the proof
by pseudodivision on the other hand. Geometrically seen, this often relates to the step-wise
introduction of geometric objects and consequently their parameters. With a simpli�cation
of the problem by choosing the right representation and with the combination of deductive
reasoning with algebraic reasoning the complexity and consequently the running time can
be reduced signi�cantly.

Feasibility of the proposed approach was proven on a set of constraints representing ten
interrelated gable roof houses. It could be shown that 11 of 22 constraints that a gable
roof exhibits are redundant and do not have to be modeled explicitly. Figure 6.4 shows the
impact of the proposed simpli�cation of constraints by measuring the runtime of proving a
theorem with increasing number of constraints.
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The following work�ow exempli�es the two mentioned applications for the algebraic and
deductive reasoning on 3D building models. Assuming we have a gable roof house that
is modeled by 7 planes with 16 orthogonality and 3 parallelity constraints as suggested
by Figure 6.1, the �rst task is to ensure a redundancy-free set of constraints. A set of k
constraints can be tested with respect to redundancy by a recursive test of

c1, ...ck−1 ← ck

First, the reasoner tries to deduce the constraint ck by �xpoint iteration in the logical
component. It applies all existent rules to the known logical facts excluding ck until the
knowledge base does not change anymore. If ck could be deduced, it is redundant and
can be removed from the set of constraints. Implications that cannot be proven by the
application of logical rules are checked with Wu's method. In this case, it can for example
be shown that the theorem front⊥bottom ∧ front‖back ⇒ bottom⊥back � not included
in the set of logical rules � is true. Therefore, the theorem is repesented by multivariate
polynomials

a1a2 + b1b2 + c1c2 = 0 ∧



b1c3 − c1b3
c1a3 − a1c3

b1c3 − c1b3


 = 0⇒ a2a3 + b2b3 + c2c3 = 0

A characteristic set H ′ = {h′1, h′2, h′3} = {h1, h21, h23} is constructed and �nally the pseu-
doremainder is determined recursively:

r3 = prem(c, h′3, a3) = −b1b2b3 − b1c2c3 − b3a1a2

r2 = prem(r2, h
′
2, c3) = −b21b2b3 − b1b3a1a2 − b1c2b3c1

r1 = prem(r2, h
′
1, b2) = 0.

Since the result equals zero the implication is true and the model can omit the deduced
orthogonality constraint orthogonal(bottom, back). As a consequence, the model needs less
memory and reasoning methods have to cope with a less complex model.

The rule of general validity can be added as logical rule for the logical component:

or thogona l (B,C) ← orthogona l (A,B) , p a r a l l e l (A,C) .

Expanding the knowledge of the deductive reasoner speeds up the proof of deduction in
subsequent iterations. For example, by substituting A with leftSide, B with bottom and C
with rightSide it can now be concluded by simply applying this new rule that the constraint
orthogonal(bottom, rightSide) is as well redundant.

The second application of the implemented reasoner concerns the reconstruction of buildings
and therefore the deduction of implicit objects and constraints. In this case, redundancy
helps to enhance the result in noisy data during model-driven reconstruction. Having a
laserscan of 3D points representing a gable roof house, the task is to estimate planes that best
match the observations and at the same time satisfy the constraints that de�ne the model.
Redundant information in an over-constrained system can be used to validate estimated
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objects. In a �rst step, new objects are created, for example a ridge line as the intersection
of the left and right roof half of the gable roof (cf. Table 6.1):

ridge ≡
(
Lh
L0

)
=

(
rRh × lRh

rR0 · lRh − lR0 · rRh

)

Consequently, it is the task to deduce new constraints concerning the ridge that so far
were not part of the constraint set. The deductive component begins again with a �xpoint
iteration. On this basis, it further generates hypotheses with rules of type 2 that should be
proven by the algebraic component, for example:

hyp_orthogonal (O1,O2) ← l i n e (O1) , p lane (O2) ,
not ( orthogona l (O1,O2) ) , not ( p a r a l l e l (O1,O2) ) , O1 \= O2 .

The variables of this rule can be substituted by O1 = ridge and O2 = front which yields
the new hypothesized fact

hyp_orthogonal ( r idge , f r on t ) .

It has to be proven by Wu's method whether this orthogonality constraint is an implication
of the already existing constraint set. With this deduction the strength of Wu's method can
be shown. Although the ridge does not occur explicitly in the premises, algebraic reasoning
can conclude a new constraint concerning the ridge since the algebraic representation reveals
the correlations between variables. Testing possible conclusions by logical and algebraic
methods of automatic theorem proving, the reasoner �nds two constraints of orthogonality
and three constraints of parallelity concerning the ridge line. This shows that the ridge is
a major object in the building model and its identi�cation is bene�cial for the building
reconstruction. At the same time these new constraints can be used to verify estimated
planes.

6.3 Checking validity for uncertain constraints

In contrast to the development of prototyped mathematical models for buildings the han-
dling of uncertainty plays an important role in the context of GIS if these models are applied
to the reconstruction of buildings. In this case, there is a need for evaluating uncertain con-
clusions since in the context of reconstructing buildings the reasoner has to consider that
objects do not hold crisp constraints, that is, a constraint may only be valid up to a small
ε as an e�ect of imprecise measurements. Furthermore, the quality of conclusions has to
be quanti�ed in a sound way. Deduced relations are not necessarily true in an uncertain
con�guration but have to be tested in the context of measured data and their precision.
However, Wu's method is restricted to crisp constraints that do not consider imprecise mea-
surements. To this end, the presented reasoning is extended to deal with noisy data and
uncertain projective geometry is incorporated in order to address the statistical aspect of
uncertainty. On the one hand, this ensures that constraints remain valid if the degree of
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Figure 6.5: Three-fold representation of the orthogonality constraint with planes Π1 =
((1.1, 0.02, 0.1), 0) and Π2 = ((0.1, 2.9, 0.11), 0)

uncertainty of the corresponding objects is negligible. On the other hand, the statistical
component can check whether proven conclusions remain true under the perspective of un-
certainty. For example, it might be that the constraints of the premises have a marginal
degree of accepted uncertainty. As a consequence, the conclusion is not obligatory reliable
due to error propagation.

In order to meet the requirements of uncertain data, geometric objects are extended by a
covariance matrix to (x,Σxx). A chi-square distributed test statistics can be performed for
a bilinear constraint whose matrix multiplications from Table 6.2 are represented of the
form c = U(a)b = V (b)a. Here, U(a) and V (b) denote the Jacobians of the constraint with
respect to a and b respectively. First order error propagation is applied to determine the
covariance matrix of the constraint c:

Σcc = U(a)ΣbbU
T (a) + V (b)ΣaaV

T (b) (6.2)

In this way, the proof by Wu's method is extended by a statistical test depending on a given
signi�cance level (1-α) and the degree of freedom (DoF) of the corresponding constraint (cf.
Table 6.2) :

prem(c,H) = 0 ∧ I(hi) 6= 0 ∧ cTΣ−1
cc c > χ2

1−α;DoF .

Hereby, the conclusion is assessed by its degree of uncertainty. For deductive reasoning the
proof is extended equivalently.

Figure 6.5 illustrates the three-fold representation of constraints used for logical, algebraic
and statistical reasoning. In Section 6.2 the logical and algebraic reasoning was demon-
strated with an example where a new object for the ridge was constructed and the fact
ridge⊥front was deduced automatically. However, it might be that for example the con-
clusion ridge⊥front is not reliable for a validating test since the constraints of the premises
were already very imprecise. A χ2-distributed test statistics with test values di = ciΣcicici
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thus assesses the quality of the conclusion in a concrete (numeric) scenario:

leftRoofHalf⊥front :d1 = 2.52 < χ2
0.95,1 = 3.748

leftRoofHalf⊥front :d2 = 3.19 < χ2
0.95,1 = 3.748

6 =⇒
ridge⊥front :d3 = 6.35 > χ2

0.95,2 = 5.938

In this case d3 exceeds the value of the corresponding χ2-distribution. The derived constraint
di�ers too much from the strict orthogonality constraint, thus is not reliable for the use in
further validations and cannot be considered true.

The feasibility of developing and analyzing prototyped models was illustrated in the context
of 3D building modeling, but however can be transferred to arbitrary geometric objects. To
this end, the approach of deductive, algebraic and statistical reasoning is implemented as a
generic system. The reasoning accepts all constraint-based models that can be expressed by
logical predicates or multivariate polynomials. Algebraic representations are restricted to
equations but inequations can be transformed to equations after introducing an additional
parameter. Crucial for the performance of the algebraic reasoning is an appropriate repre-
sentation that minimizes the number of variables. The presented approach focuses on linear
objects like points, lines or planes in the three-dimensional space and shows the feasibility
of 3D theorem proving for interactive systems. Other primitives such as spheres that come
along with a higher complexity need further investigations.
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7 Conclusion and outlook

This thesis presented an approach for the prediction of 3D building structures based on
sparse observations. In contrast to common approaches, dense measurements are not needed
in order to generate plausible hypotheses of 3D building models. This becomes possible due
to a highly structured hypothesis space together with an adequate combination of logical
and stochastic reasoning methods. An a priori in�nite search space is thus reduced to a few
good hypotheses.

The presented reasoner follows a model-driven top down approach and holds the view that
it is easier to verify or falsify a prediction top-down than to build a model bottom up from
measurements. The overall task is to instantiate model parameters with most likely values
that at the same time satisfy the given constraints. Bayesian networks have been used as a
powerful framework for reasoning in stochastic models. However, the model is characterized
by bilinear constraints with discrete and continuous parameters that in general suggests the
use of approximate inference methods. To this end, this thesis proposed an approach that
makes exact inference feasible. The idea of conditional linear Gaussian networks (CLG) was
adapted to multilinear instead of linear relations and Gaussian mixtures instead of Gaussian
distributions.

The key aspect is the separation of the problem into a combinatorial (discrete) and a
stochastic (continuous) problem and the use of a strong prior knowledge that is legitimated
by strong regularities in man-made objects and based on an extensive data analysis of a
ground truth data base. The latter consists in constraints and probability density functions
that in turn are approximated by Gaussian mixtures and thus pave the way to use well
established reasoning methods. Clear peaks and small variances of the Gaussian mixtures
often help to structure the hypotheses space.

The reasoner makes use of the strength of constraint logic programming for solving com-
binatorial problems and the advantages of Bayesian networks for reasoning with uncertain
data. The combinatorial component transforms an a priori bilinear and multimodal prob-
lem in a linear unimodal one. It therefore determines the discrete parameters and initializes
the continuous ones by means of Gaussian distributions. A Kalman �lter as an e�cient
implementation of a special Bayesian network �nally predicts the continuous parameters
in accordance to known observations. Finally the reasoner outputs a ranked set of hy-
potheses according to a MAP-estimation that can be re�ned further by additional single
measurements in order to decide between competing hypotheses. In this way, the proposed
model-driven approach decreases time, space and costs for data acquisition and interpreta-
tion.

The thesis covers façade models and indoor models and thus bridges the gap between the
exterior and interior reconstruction for a seamless indoor/outdoor modeling. For façade
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models the prediction is based only on measurements of the footprints, more precisely
derived façade widths. Single observations of embrasures can enhance the result further.
Despite the leak of fully observed objects occluded substructures are predicted as well and
uncertain possibly erroneous data is compensated. The prediction of 3D indoor models gets
along without the need for indoor measurements. Shape and location parameters of rooms
are predicted based on the building footprint together with basic information of rooms such
as the room area or the functional use that are usually available e.g by facility managers. If
room numbers are available they are exploited to restrict the possible neighborhood of rooms
and hence narrow the combinatorial possibilities of locating rooms. Exterior measurements
of windows and their predicted correspondences to rooms help to localize the rooms within
the footprint. This especially facilitates the correct prediction of occluded walls and reduces
the misinterpretation of measurements. The 2D �oorplan is extended to a 3D model by
estimated heights and predicted doors.

In the context of model-driven approaches, consistent and redundancy-free prototyped
mathematical models are an important prerequisite. To this end, an approach for geometric
reasoning was presented that supports the development of models for the reconstruction
of 3D buildings. The reasoner therefore uses methods of algebraic theorem proving, more
precisely Wu's method of characteristic sets, and pro�ts from the strength of algebraic
reasoning based on multivariate polynomials and the advantages of deductive reasoning
using logical facts. While deductive methods are based on pre-de�ned rules, perform fast
deductions and further are able to handle a reasoning on topology and partonomy, algebraic
methods prove implications without the need of any prior knowledge.

In order to demonstrate the feasibility of reasoning on 3D models a prototype was imple-
mented that is able to check for consistency or redundancy and deduces new implicit objects
or constraints automatically. The model is de�ned by constraints between primitives such
as planes, lines or points where an appropriate representation of the model has been shown
to be crucial for e�cient reasoning. Algebraic relations are modeled using projective ge-
ometry in order to have multilinear rather than quadratic equations. Further, the explicit
reference of points is avoided where possible and the invariance with respect to translation
and rotation is exploited to reduce the model complexity.

As in the context of GIS the assessment of quality is important, Wu's method that originally
does not consider any uncertainty is extended by a chi-square distributed test statistics.
With objects and constraints augmented by covariances according to the concept of uncer-
tain projective geometry, errors are propagated and the degree of uncertainty assesses the
quality of deductions.

The reasoner is not restricted to building models. A generic framework was developed that
can be applied to a wide range of applications. Further, the algorithm is implemented in
a modular and object-oriented manner. Thus, substructures such as rooms, windows or
façades can be combined in a manifold way to model a large variety of buildings.

While the developed approach focuses on the generation and the ranking of plausible hy-
potheses the e�cient veri�cation or falsi�cation of models is outlined but beyond the scope
of this work. In this context, it is desirable to suggest a minimal number of additional
measurements needed in order to decide between competing hypotheses. This may be an
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observation that veri�es an predicted object, e.g. an embrasure, or supports the interpreta-
tion of model properties such as the observation of the window appearance whose special
structure for example may identify a bath room. An automatic determination of additionally
needed measurements is thus a challenging and valuable task.

Due to the dominance of rectangular structures in man-made objects this thesis assumes
that buildings and their substructures follow the Manhattan world assumption. This as-
sumption is especially valid for cultural heritage buildings or other big buildings such as
o�ces or hospitals. For indoor predictions, it was shown how non-rectangular shapes could
be modeled by adding auxiliary rooms. The restriction of rooms being rectangular could
be extended to other categories of rectilinear shapes such as L- or T-shapes by modeling
a room as combination of two rectangles. The façade model may be extended to a grid of
individual windows and doors instead of uniformed ones for modeling the variety that can
be especially observed in modern residential houses. An extended analysis of characterizing
relations between the substructures is needed in this case.

The prediction of �oorplans is constrained by a non-linear relation that is not linearized
during combinatorial reasoning. The Kalman �lter used for determining the posterior of
the shape and locations parameters can be extended for more precise results to non-linear
systems such as the extended Kalman �lter or the unscented Kalman �lter.

Due to the fact that orthogonality, parallelity and symmetry are main organizing principles
the presented algebraic reasoning covers only linear objects such as planes, lines and points.
Primitives of higher order such as spheres have to be investigated.
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Abstract

This paper presents a novel approach to automated geometric reasoning for 3D building
models. Geometric constraints like orthogonality or parallelity play a prominent role in man-
made objects such as buildings. Thus, constraint based modelling, that speci�es buildings
by their individual components and the constraints between them, is a common approach
in 3D city models. Since prototyped building models allow one to incorporate a priori
knowledge they support the 3D reconstruction of buildings from point clouds and allow the
construction of virtual cities. However, high level building models have a high degree of
complexity and consequently are not easily manageable. Interactive tools are needed which
facilitate the development of consistent models that, for instance, do not entail internal
logical contradictions. Furthermore, there is often an interest in a compact, redundancy-
free representation. We propose an approach that uses algebraic methods to prove that a
constraint is deducible from a set of premises. While automated reasoning in 2D models
is practical, a substantial increase in complexity can be observed in the transition to the
three-dimensional space. Apart from that, algebraic theorem provers are restricted to crisp
constraints so far. Thus, they are unable to handle quality issues, which are, however, an
important aspect of GIS data and models. In this article we present an approach to auto-
matic 3D reasoning which explicitly addresses uncertainty. Hereby, our aim is to support the
interactive modelling of 3D city models and the automatic reconstruction of buildings. Geo-
metric constraints are represented by multivariate polynomials whereas algebraic reasoning
is based on Wu's method of pseudodivision and characteristic sets. The reasoning process
is further supported by logical inference rules. In order to cope with uncertainty and to
address quality issues the reasoner integrates uncertain projective geometry and statistical
hypothesis tests. Consequently, it allows one to derive uncertain conclusions from uncertain
premises. The quality of such conclusions is quanti�ed in a way which is sound both from
a logical and a statistical perspective.
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a b s t r a c t

This paper presents a novel approach to automated geometric reasoning for 3D building models.
Geometric constraints like orthogonality or parallelity play a prominent role in man-made objects such
as buildings. Thus, constraint based modelling, that specifies buildings by their individual components
and the constraints between them, is a common approach in 3D city models. Since prototyped building
models allow one to incorporate a priori knowledge they support the 3D reconstruction of buildings
from point clouds and allow the construction of virtual cities. However, high level building models have
a high degree of complexity and consequently are not easily manageable. Interactive tools are needed
which facilitate the development of consistent models that, for instance, do not entail internal logical
contradictions. Furthermore, there is often an interest in a compact, redundancy-free representation. We
propose an approach that uses algebraic methods to prove that a constraint is deducible from a set of
premises. While automated reasoning in 2D models is practical, a substantial increase in complexity can
be observed in the transition to the three-dimensional space. Apart from that, algebraic theorem provers
are restricted to crisp constraints so far. Thus, they are unable to handle quality issues,which are, however,
an important aspect of GIS data and models. In this article we present an approach to automatic 3D
reasoning which explicitly addresses uncertainty. Hereby, our aim is to support the interactive modelling
of 3D city models and the automatic reconstruction of buildings. Geometric constraints are represented
bymultivariate polynomials whereas algebraic reasoning is based onWu’smethod of pseudodivision and
characteristic sets. The reasoning process is further supported by logical inference rules. In order to cope
with uncertainty and to address quality issues the reasoner integrates uncertain projective geometry and
statistical hypothesis tests. Consequently, it allows one to derive uncertain conclusions from uncertain
premises. The quality of such conclusions is quantified in a way which is sound both from a logical and a
statistical perspective.

© 2011 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by
Elsevier B.V. All rights reserved.

1. Introduction

Due to an increasing demand of high resolution city models,
automatic building construction and reconstruction in 3D has be-
come an essential task. Since the use of city models for noise
mapping, disaster management or the calculation of escape routes
requires exact knowledge of the structure of buildings, the refine-
ment of city models is a fundamental need. Though this is still a
challenging and complex problem, its complexity can be reduced
considerably by using 3D building models, such as a prototyped
description of a gable roof house. These support the estimation of
buildings or building parts in imagery or laser scanner data by the
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E-mail addresses: loch-dehbi@igg.uni-bonn.de (S. Loch-Dehbi),

pluemer@igg.uni-bonn.de (L. Plümer).

integration of strong a priori knowledge about the building struc-
ture.

The estimation of geometric objects fromobservations is gener-
ally solved by using amathematical model that can be divided into
a functional model and a stochastic model. The functional model
describes the relations between unknown parameters whereas the
stochastic model is characterized by an estimation of accuracy of
the observations. In our context, the functional model is built of
primitives of buildings, e.g. planar faces that representwalls or roof
halves. Because most man-made objects have a regular structure,
these primitives are specified by geometric constraints such as
parallelity and orthogonality. An excerpt of constraints that char-
acterise a gable roof house is depicted in Table 1. These constraints
are expressed in terms of logical predicates which give both a
formal and readable definition and furthermore support geomet-
ric and topological relations. Empirical investigations based on a
database of LOD1 models show the dominance of orthogonality
and parallelity in buildings. The diagram in Fig. 1 illustrates the

0924-2716/$ – see front matter© 2011 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.
doi:10.1016/j.isprsjprs.2010.12.003
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Fig. 1. Bi-relational constraint statistics show dominance of orthogonality and parallelity in 3D buildingmodels. Comparison is based on LOD1models build upon the shown
footprints.

Table 1
Excerpt of constraints describing a gable roof house.

Geometric constraints

parallel (leftWall, rightWall), parallel (front, back)

orthogonal (bottom, rightWall), orthogonal (bottom, leftWall),
orthogonal (bottom, back),
orthogonal (front, back), orthogonal (rightWall, front),
orthogonal (rightWall, back),
orthogonal (leftWall, front), orthogonal (leftWall, back),
orthogonal (back, rightRoofHalf),
orthogonal (back, leftRoofHalf), orthogonal (front, rightRoofHalf),
orthogonal (front, leftRoofHalf)
. . .

Topological constraints

meets (bottom, rightWall), meets (bottom, leftWall), meets (bottom, front),
meets (bottom, back),
meets (rightWall, front), meets (rightWall, back), meets (leftWall, front),
meets (leftWall, back),
meets (back, rightRoofHalf), meets (back, leftRoofHalf),
meets (front, rightRoofHalf),
. . .

percentage of bi-relational constraints between 3D planes in dif-
ferent extracted models of single buildings and of whole clusters
of buildings respectively. We took imprecise measurements of ge-
ometric objects into account and performed pairwise comparisons
between planes across all buildings. Obviously, it can be seen that
in all cases more than 60% of coupled planar faces are either or-
thogonal or parallel. This is even valid for buildings with rounded
shapes (no. 3) as well as for whole city districts where not all
houses are aligned (no. 6).

In order to model complex 3D buildings, reasoning tools are
needed which support the development of consistent building
models. They are supposed to handle prototypedmodels as well as
uncertain geometric objects from noisy observations which leads
to several requirements. Apart from a consistent model it is often
beneficial to provide a non-redundant specification of constraints.
This allows not only for a compact and readable characterisation
but also decreases the complexity for further processing of these
models, e.g. the comparison of different models or the learning
of structural details. In fact, our example in Table 1 contains
redundant constraints so that a reduced description is composed
of only less than half of these geometric constraints. The property,
for example, that the right wall is orthogonal to the bottom has
already been fulfilled by demanding that the right wall be parallel
with the left wall, which is in turn orthogonal to the bottom.

In order to support the process of reconstruction, it is moreover
conducive to enrich our knowledge of the model automatically.

Thus it should be analyzed if further objects and constraints are
deducible. Consequently, these predictions can be used to verify
estimated hypotheses in order to support the 3D reconstruction of
buildings from point clouds. Since we are dealing with uncertain
observations the modeller has to deal with imprecise constraints
and should be able to handle quality issues.

As we have several statements of the form A and B⇒ C we use
approaches of automatic theoremproving to deduce the redundant
or implicit constraints automatically. Since geometric constraints
can be represented by algebraic equations one category of auto-
matic proofs is expressed in terms of multivariate polynomials. As
in many cases geometric constraints contain several parameters,
the polynomials are often multilinear or even quadratic. While 2D
models are manageable in many cases, a substantial increase in
complexity can be observed in the transition to the three dimen-
sional space, which has to be overcome by the modeller. There are
efficient methods to solve non-linear equation systems numeri-
cally. However, we do not seek single solutions. Instead, we have
to copewith the questionwhether or not a constraint set is valid in
general. In other words, our interest does not lie in finding specific
values but in proving theorems on a symbolic level.

Apart from algebraic approaches, there is another category of
reasoning techniques which is based on logical facts and inference
rules. They require the declaration of at least basic theorems but
they are therefore very efficient in finding possible conclusions.
Since logical reasoning is appropriate to represent structural and
semantic information we integrate it in our reasoning tool.

As in the context of GIS uncertain relations are common it has to
be ensured that proofs are still valid if the premises and the objects
involved are inaccurate. Additionally, true conclusions have to be
evaluated by their quality in order to enhance the reconstruction
of 3D building models. Nevertheless, the approaches to algebraic
theorem proving are designed for reasoning hard constraints. So
far, the aspect of uncertainty has not been considered. In order
to integrate automatic reasoning with uncertainty we make use
of uncertain projective geometry which was proposed by Heuel
(2004) and is able to model imprecise geometric constraints.

The main contribution of this article is a procedure for 3D rea-
soning in man-made objects. We use Wu’s method, which is an
algebraic approach of theoremproving based onmultivariate poly-
nomials and characteristic sets andwhichwas introduced to prove
geometric theorems, especially those of a constructive type. Addi-
tionally, we combine a logical rule-based reasoner with an alge-
braic reasoner. Hereby we benefit from the strength of deductive
rules for deducing facts and the expressiveness of algebraic poly-
nomial equations valuable for parameter-based geometric state-
ments. We demonstrate that reasoning in 3D building models is
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feasible if constraints are represented in an suitable way. Uncer-
tainty and quality issues are addressed by incorporating uncertain
projective geometry and statistical hypothesis tests, thus allowing
one to derive conclusions from uncertain premises and to quan-
tify uncertainty of the former. We have implemented this proce-
dure as a prototype and illustrate the feasibility of our approach by
two applications thus demonstrating its suitability for interactive
systems.

2. Related work

Constraints play an important role in the representation of
man-made objects. Constraint graphs for geometric objects rep-
resent the geometric and topological relations between different
primitives, such as parallelity between planes. Kolbe (2000) deals
with these spatial relations between primitives. He describes roofs
by geometric constraints and compares them to observations from
aerial images to reconstruct buildings. Brenner (2005, 2004) dis-
cusses the modelling of complex objects by constraints and intro-
duces weak primitives that allow for a relaxation of constraints
between geometric primitives in observed objects.

Heuel (2004) uses a statistical approach for polyhedral object
reconstruction which is based on relation tests in uncertain
observations. For this aim, he developed statistical algorithms
that are able to check geometric relations including uncertainty
information. An extension of the mathematical estimation model
by uncertain projective geometry yielded promising results for
extracting objects from imagery data (Förstner, 2005; Meidow
et al., 2009). Dehbi and Plümer (2011) proposed a framework to
learn grammar rules of building parts from noisy observations.
They make use of uncertain projective geometry to obtain
characteristic geometric constraints between estimated objects
that represent the concept to be learned.

Automatic theorem proving became popular in the late 1970s
with the work of Wu (1986), who was able to prove numerous
theorems automatically. Another widely used approach which is
based on the construction of the Groebner Bases was proposed
by Buchberger et al. (1998). These methods were successfully
applied for perspective viewing (Kapur and Mundy, 1988) or
formula derivation (Chou and Gao, 1989).

However, methods of automatic theorem proving have hardly
been noticed in the context of GIS and building modelling. A
notable extension is the work of Brenner and Sester (2005) who
discuss the use of Groebner Bases for solving equation systems
and identifying redundancy and consistency of constraints in the
context of cartographic generalization. However, they emphasize
the problem of complexity and state that the Groebner Base
method may not be feasible for interactive systems. Alternatively,
it has been shown that Wu’s method, which is presented in the
next subsection, can be more efficient in geometric theorems
of construction type and is also able to solve more complex
problems (Cox et al., 2007). Recently, Quaresma (2010) published
a benchmark that compares algebraic methods of automatic
theoremprovers. This database confirms thatmost of the theorems
can be proven by Wu’s method even if Groebner Bases fail and if
both methods succeed Wu’s method is superior considering the
runtime.

In the context of automatic theorem proving several interactive
tools were implemented for the 2D space (e.g. Gao and Lin,
2002). Due to the lack of systems in the 3D space Roanes-Macías
and Roanes-Lozano (2007) presented a software package for the
mathematical tool Maple that allows for the investigation of
problems in 3D geometry. They were able to prove geometric
theorems by algebraic methods where conclusions are defined
by point-on-object relations. In order to support polynomial
elimination and the proving of algebraic theorems Wang (2004)

implemented the Maple package Epsilon. It provides functions
for calculating with arbitrary systems of multivariate polynomials
and is able to interpret algebraic equations of theorems in the
two-dimensional space. Chou et al. (2000) developed a deductive
theorem prover for the 2D space that is specialized in geometric
problems and able to prove and discover theorems.

3. Automatic theorem proving

Checking the redundancy of constraints is equivalent to proving
their deducibility from other constraints. Automatic theorem
proving is a powerful means to show the validity of a statement
given its premises. Automatic theorem provers can be separated
into two main categories: deductive (rule-based) and algebraic
approaches. Deductive reasoners need predefined inference rules
that are applied to initial facts in order to deduce new properties.
Efficient methods allow for a fast deduction of new facts. However,
the strength of deductive reasoning depends on the conclusiveness
of its rules. It is based on the closest world assumption which
means that facts that cannot be proven true are considered to
be false. In contrast, algebraic reasoning is independent of any
knowledge about deduction rules or geometric theorems but
only analyses the constraints by computing with its algebraic
representations. Matsuyama and Nitta (1995) state that algebraic
theorem provers are particularly superior when theorems have
an algebraic equivalent and include simple coordinate-based
statements such as metric, parallelity or collinearity. Since these
constraints are the main organizing principles in building models
we will focus on this method in our approach. Nonetheless, we
will benefit from features that are provided by logical reasoning
techniques such as exploiting known geometric axioms and coping
with topological and hierarchical relations.

In the following subsections deductive and algebraic reasoning
techniques are presented and illustrated by a small 3D example of
three planes, where the following theorem holds:

Theorem 1. If plane A is orthogonal to plane B and parallel with plane
C, then plane B is orthogonal to plane C (A⊥B ∧ A ‖ C ⇒ B⊥C).

3.1. Deductive reasoning

Deductive reasoning is the process ofmaking conclusions based
on previously known general statements and facts. In general,
deductive approaches work with first-order predicate logics.
Consequently, the basis of deductive reasoning are relational
facts and inference rules that have to be defined in advance.
Table 1 contains a list of atoms, which express relations of the
form predicate(term1, term2, . . . , termN). A term may be a
constant or a variable. In the case of our example, they are called
facts as they do not contain any variables. A rule is equivalent to
a logical implication: B1 ∧ . . . ∧ Bn ⇒ H and it is expressed by
so-called Horn clauses
H ← B1, B2, . . . , Bn

whereH, B1, . . . , Bn are atoms and a logical∧ (AND) is represented
by a comma. The head H becomes true if the predicates in the body
B1, . . . , Bn are satisfied by thepreviously known facts. For example,
the following facts represent geometric constraints mentioned in
Theorem 1 and Table 1 respectively:

orthogonal ( front , bottom ) . pa r a l l e l ( front , back ) .

Additionally, an inference rule which expresses Theorem 1 is
known to the reasoner, that is

orthogonal (B , C) ← orthogonal (A , B ) , p a r a l l e l (A , C ) .

That means if there exist two facts, ‘A is orthogonal to B’ and ‘A
is parallel with C ’ it implies that the statement ‘B is orthogonal to
C ’ is true as well. In this case, A, B, C are variables that can be
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replaced by constants, identical variable names define the same
object. Applying this rule to the two facts above, the variables in
the body of the rule will be substituted by the constants front,
back and bottom and propagated to the head predicate. Conse-
quently, the knowledge of the reasoner is extended by the fact
orthogonal(bottom,back). Thus, applying these rules to the
data available, reasoning can be achieved. A useful feature of im-
plemented inference techniques is the fixpoint iteration which al-
lows to ask for all possible conclusions. A fixpoint is reached if the
set of facts in the database does not change anymore and no new
inferences can bemade although the given rules are iteratively ap-
plied to the initial and deduced facts.

3.2. Algebraic reasoning

Since geometric constraints can be expressed by multivariate
polynomials, redundant or new constraints can be deduced
automatically by using symbolic approaches of automatic theorem
proving. In the following, the idea of algebraic theorem provers is
illustrated by the introductory example of three planes.

In order to express the theoremwith multivariate polynomials,
a planeΠi can be represented by the algebraic equation aix+biy+
ciz+di = 0, that is Πi = ((ai, bi, ci), di) = (ni, di)where ni equals
the normal vector of the plane. Hence, geometric constraints such
as orthogonality or parallelity have their polynomial counterpart
which leads to the following algebraic representation of Theorem1
(h1 : Π1⊥Π2 ∧ h2 : Π1 ‖ Π3 ⇒ ĉ : Π2⊥Π3):

h1 : a1a2 + b1b2 + c1c2 = 0 ∧ h2 :

b1c3 − c1b3
c1a3 − a1c3
a1b3 − b1a3


= 0

⇒ ĉ : a2a3 + b2b3 + c2c3 = 0.

(1)

With this algebraic representation of the theorem it is possible to
answer the questions of deducibility, e.g. redundancy, by algebraic
methods. It should be noted that the second geometric constraint,
the parallelity, has to be expressed by three multivariate polyno-
mials h2 = {h21, h22, h23} (see also Section 4.2 for algebraic repre-
sentations of constraints). The key aspect is that the satisfaction of
geometric relations {h1, . . . , hs}, i.e. possible geometric instances
of the corresponding geometric objects, can be reduced to
analysing common zeros of the polynomials. The common zeros
of the equations h1, . . . , hs in a polynomial ring k[x1, . . . , xn] are
called its variety:

V ({h1, . . . , hs})

:= {(α1, . . . , αn) ∈ kn : hi(α1, . . . , αn) = 0 ∀1 ≤ i ≤ s}. (2)

The relation between two varieties gives evidence of the deducibil-
ity of constraints: given a constraint set of hypotheses H =

{h1, . . . , hs} and a conclusion ĉ , the aim is to show that the zeros
of h1, . . . , hs are a subset of the zeros of ĉ: V ({h1, . . . , hs}) ⊆ V (ĉ).
Fig. 2 illustrates this fact by the given Theorem 1 of three planes
and five constraint equations h1, h21, h22, h23, ĉ. The set of zeros
V ({h1, h21, h22, h23}) = V ({nT

1n2, (n1 × n3)
T
}), that is the solu-

tion space of the exemplifying constraint equations, will not be re-
stricted further if we add ĉ , the second constraint of orthogonality,
because all zeros of H — excluding degenerated cases — are also
part of the zeros of ĉ .

There are two well-known algebraic approaches of automatic
theorem proving, namely the Groebner Base Method and Wu’s
Method. The Groebner Base Method uses polynomial long division
of a Groebner Base whereas Wu’s method uses pseudodivision of
a characteristic set. In both cases a remainder of zero indicates
that the conclusion follows from the premises. Themain difference
consists in the required transformation of the initial constraint set.
The Groebner Base method requires that the polynomial set used

Fig. 2. Relations between varieties.

during the polynomial long division has to satisfy the property
of a Groebner Base. This is necessary to ensure the uniqueness
of the result since otherwise the result depends on the order of
monomials and the divisibility of the leading terms. While the
Groebner Base Method can solve several algebraic tasks, Wu’s
method was exclusively developed for proving theorems and is
therefore mostly superior to the Groebner Base Method. This is
mainly due to the fact that a characteristic set is computed which
is a special triangular equation system on a given ordering of
dependent variables x1 ≺ . . . ≺ xs,

h1(u1, . . . , ud, x1) = 0 ∈ k[x1]
. . .

hs(u1, . . . , ud, x1, . . . , xs) = 0 ∈ k[x1, . . . , xs].

Its structure is often almost satisfied with a step-by-step intro-
duction of geometric objects and their constraints. Nonetheless,
the feasibility still depends on how constraints are represented
by polynomials, but together with a suitable representation Wu’s
method proves to be feasible for our domain of discourse (see
Section 5).

Wu’s method

Wu’s Method verifies the relation between two constraint sets
by using the so-called pseudodivision of multivariate polynomial
equations. The output answers the question whether the theorem
is generically true, that is, true under some non-degenerated
conditions, the so-called subsidiary conditions. These often allow
for a geometric interpretation or at least have got an algebraic
meaning. Degenerated cases can therefore be excluded by
considering subsidiary conditions in order to declare an otherwise
false theorem generically true.

Thus, the main idea of Wu’s method is to show that the
zeros of the hypothesis {h1, . . . , hs} which do not vanish on the
degenerated cases are included in zeros of the conclusion ĉ . The
used pseudodivision of twomultivariate polynomials ĉ and hi can be
considered as a division betweenunivariate polynomials, e.g. in the
highest variable xi of the divisor hi. It differs from the polynomial
long division in allowing the multiplication of the dividend ĉ with
a factor I(hi)

ki , ki > 0:

I(hi)
ki ĉ = qihi + r

I(h1)
k1 . . . I(hs)

ks ĉ = q1h1 + · · · + qshs + r
(3)

where qi denotes the quotient and r the pseudoremainder
(prem(ĉ, hi, xi) = r). I(hi) equals the initial of hi, which is the
coefficient of the highest variable of the polynomial in question.

A pseudoremainder of zero indicates that the polynomial c
can be concluded from the hypotheses. Referring back to the
introductory 3D example, recursive pseudodivision checks the
validity of the Theorem 1:

prem(ĉ,H ′) = prem(prem(prem(ĉ, h′3, a3), h
′

2, c3), h
′

1, b2).
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Table 2
Outline of Wu’s method.

1. Theorem Formulation: Define the theorem H = {h1, . . . , hs} ⇒ ĉ in form of multivariate polynomial equations hi = 0, ĉ = 0.
2. Triangulation to characteristic set: Transform the hypothesis into a special triangulated equation system H ′ subject to the dependent variables of the geometric
constraints.
3. Proof : Prove H ′ ⇒ ĉ , that is realized by pseudodivision to show that V (h1, . . . , hs/I1 · · · · · It ) ⊂ V (ĉ). If the final pseudoremainder prem(ĉ,H ′) equals zero, the
theorem is generically proven true under the subsidiary conditions Ii ≠ 0.

Fig. 3. System components of our prototype and their interactions.

This is done on basis of the computed characteristic set {h′1, h
′

2, h
′

3}

= {h1, h21, h23} with a chosen variable ordering b2 ≺ c3 ≺ a3. It
can be seen that the cardinality of the characteristic set does not
equal the size of the initial constraint set but is oriented towards
the dependent variables instead. The characteristic set is also
computed by pseudodivision, an algorithm for this computation
can be found in Buchberger et al. (1998).

The iterative computation of prem(ĉ,H ′) in order to prove the
theorem leads to the following results:

r3 = prem(ĉ, h′3, a3) = −b1b2b3 − b1c2c3 − b3a1a2
r2 = prem(r3, h′2, c3) = −b

2
1b2b3 − b1b3a1a2 − b1c2b3c1

r1 = prem(r2, h′1, b2) = 0.

Since the final pseudoremainder is zero (prem(ĉ,H ′) = 0), the
theorem is true under the subsidiary condition that b1 ≠ 0, having
I(h′1) = I(h′2) = b1 and I(h′3) = −b1 as initials of the three
polynomials. Further theoretical background and examples can be
found in Chou (1988) and Loch-Dehbi and Plümer (2009).

Table 2 presents an outline ofWu’smethod. The basic algorithm
ofWu’smethod and the pseudodivision have been implemented in
Maple by Wang (2004).

4. Geometric reasoner

In order to demonstrate the feasibility of our approach and to
provide a tool for reasoning in 3D building models we have imple-
mented a constraint-based reasoning system. It draws upon the
theories of automated theorem proving and uncertain projective

geometry and is composed of two parts: amodeller and a reasoner.
The data model becomes accessible by a database that connects
both system parts. Fig. 3 shows the system components of our pro-
totype and their interactions and thus illustrates our approach and
its key issues.

The modeller provides the possibility for describing a cons-
traint-based model. Our reasoning system handles prototyped
building models as well as concrete geometric objects estimated
from uncertain observations. The graphical user interface allows
the user to define a complex geometric object by its components
and the constraints between them. Alternatively, one can load
a building model from a given external script that provides the
basis for reasoning with estimated object and uncertain relations.
Constraints as well as object parameters can thus be specified both
by the manual and the automatic definition of a model but are
at last stored in the same way in the underlying database. The
defined model is then accessible for the reasoner which facilitates
the deduction of constraints by defining and proving a geometric
theorem.

The reasoner consists of a logical and an algebraic component
in order to benefit from both approaches to deduction. In order
to handle uncertain constraints from measured data we further
integrate a statistical component which is able to complete
the proof of exact constraints with regard to uncertainty. In
correspondence to these components the building model has a
threefold representation: a logical, a symbolic and a numerical
one (see Fig. 4): our constraint based modelling system provides
various predefined relations that are at first stored in the form of
logical predicates. This has three fundamental advantages: first, it
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Fig. 4. Threefold representation of model: example for plane 1 ((1.1, 0.02, 0.1), 0)
being orthogonal to plane 2 ((0.1, 2.9, 0.11), 0).

allows for a sound model description by providing the possibility
of specifying topological and geometric constraints together with
other arbitrary properties. Second, it is close to an ontology based
description and even understandable for the user. Lastly, algebraic
relations can be derived from these predicates uniquely. Algebraic
relations are the second form of representation and are expressed
by multivariate polynomials on a symbolic level. As a third form
of representation we use a test value for statistical tests by
substituting variables in the polynomial equations by real values
of observations. All three representations are present at all stages
of the reasoning process. In this way, the interaction of the three
components is made continuously and the assignment of different
representations remains unambiguous.

For our domain of discourse we have to deal with two major
tasks. On the one hand a constraint-based modeller operating
in the context of GIS has to deal with the uncertainty of mea-
sured data. Therefore, general validity has to consider uncertain
observations which lead to conclusions with different degrees of
quality. On the other hand, in the transition from 2D to 3D space,
the reasoner has to cope with the increasing complexity of spa-
tial theorems that at first results in a prolonged running time. The
number of constraints that is necessary to deduce parallelity of
planes from orthogonalities, for example, increases. Since three 3D
planes can be orthogonal in pairs without having two of them par-
allel, in contrast to the 2D space we need five instead of two con-
straints to ensure that parallelity exists (Fig. 5). In order to tackle
the problem of efficiency, an adequate combination of the logical
and the algebraic reasoner as well as an appropriate algebraic rep-
resentation is crucial. The following subsections present in detail
the three different levels of reasoning realised by the interaction
of the logical, algebraic and statistical component.

4.1. Applying inference rules

As a first step, the constraints are processed by the logical
reasoner which is based on inference rules and has two domains
of responsibility.

On one hand, it provides knowledge about structural topologi-
cal details of geometric objects in order to construct new objects of
existing ones. On the other hand, it tries to verify the basic theorem
by deriving new facts. Therefore, construction rules and known ax-
iomswere rewritten in order to formulate them by logical formula.
They are applied to the facts representing the building model until
a fixpoint is reached. The verified theorem of Section 3 is an exam-
ple for these rules that we denote as type 1:

orthogonal (O2 ,O3) ← plane (O1) , plane (O2) , plane (O3) ,
orthogonal (O1 ,O2) , pa r a l l e l (O1 ,O3)

For real observations and uncertain constraints statistical tests
complete the reasoning process through a persistent communica-
tion (for details see Section 4.3).

Inference rules are not suitable for all kinds of geometric theo-
rems. Theyperformwell in high level and structured reasoning that
is independent of real coordinates but they are dependent on their
set of inference rules. As a consequence, the algebraic reasoner is
used as a major tool for reasoning geometric constraints. Although
the algebraic reasoner has no previous knowledge about valid con-
clusions it is not necessary to test obviously false theorems. For
example, parallelity excludes orthogonality, and constraints that
are already known do not have to be checked again. Occurrences
of variables give hints for restricting the search space. Hence, the
logical component supports the algebraic reasoner by generating
hypotheses and thus ruling out impossible theorems by applying
rules of type 2 to both initial facts and already deduced relations,
e.g.:

hyp_orthogonal (O1 ,O2) ← plane (O1) , plane (O2) ,
not ( orthogonal (O1 ,O2) ) , O1 \=O2 ,
not ( pa r a l l e l (O1 ,O2) )

This exemplary rule generates hypotheses of orthogonality be-
tween two instantiated planes if at this stage neither orthogonal-
ity nor parallelity constraints between these planes exist. That is,
e.g. not(orthogonal(O1, O2)) expresses that the database

Fig. 5. Increasing complexity: deduction of parallelity in 2D and 3D.
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Table 3
Orthogonality, parallelity and incidence with S(x) = ∂x ∧ y/∂y = ∂x× y/∂y.

Bi-relational constraint Algebraic representation DOF (n)

plane A⊥plane B AT
hBh = 0 1

line L⊥ plane A S(Lh)Ah = Lh × Ah = 0 2
plane A ‖ plane B S(Ah)Bh = Ah × Bh = 0 2
line L ‖ plane A LThAh = 0 1
point X ∈ plane A XTA = 0 1

has not yet proven the fact and thus is worth testing for the alge-
braic reasoner. Finally, these hypotheses are passed to the algebraic
reasoner.

4.2. Proving algebraic theorems

The algebraic component, which usesWu’s method, is a central
element in our reasoner. It accesses the algebraic representation
of the building model, more precisely a subset of objects and
constraints that appear in the pre-selected hypotheses produced
by the logical component.

As a first step it has to simplify the constraints in order to reduce
complexity and formulates the theorem as it is required by Wu’s
method. Finally, it computes the characteristic set and checks the
theorem by pseudodivision.

As depicted in Section 3.2 geometric entities and constraints
can be expressed by multivariate polynomials. Nevertheless,
geometric theorems in 3D space become more complex because
the number of constraints and their variables as well as the
subsidiary conditions increase. Since this influences the efficiency
considerably, the geometric constraints of a building model have
to be translated into an appropriate algebraic representation. This
comprises the general choice of an algebraic equation for objects
and constraints as well as further simplifications for specific
constraint configuration. In the following we will show that
building models can be expressed by multivariate polynomials.
Furthermore, it will be demonstrated that simplifications of
equations are possible in order to reduce complexity in the three
dimensional space.

Euclidean geometry is the traditional way to represent geomet-
ric objects algebraically. For our purpose, projective geometry is
a powerful formalism which allows the efficient representation
of constraints and object constructions. Above all, it is able to in-
tegrate the aspect of uncertainty in a reliable way (see also Sec-
tion 4.3).

Thus, we map all planes, lines and points into the projective
space, that is, we analyse constraints between 3D points, lines
and planes which are represented by homogeneous coordinates.
While planes remain the same as in the Euclidean space, that
is A = (Ah; A0) = (a, b, c; d), points are transformed to a 4-
vector with (x, y, z) → (P0; Ph) = (x, y, z; 1). A line is a 6-
vector L = (Lh; L0) = (a, b, c; d, e, f ) which contains its direction
and the distance to the origin and can be obtained by a single
matrix–vector-multiplication, e.g. as intersection of two planes or
join of two points.

Using this algebraic representation the constraints can be ex-
pressed by simple constraint equations. Table 3 shows an ex-
cerpt of possible relations (see Heuel (2004) for comprehensive
overviews of object constructions and relations). Although other
representations are possible, the advantage of this algebraic rep-
resentation (including the cross product and the scalar product) is
that it does not contain any quadratic equations so far, but is bi-
linear instead. We further noticed that in the context of theorem
proving even the cross product for expressing the parallelity is su-
perior to an equation representing the linear dependency of nor-
mal vectors.

Fig. 6. Basic model of gable roof house.

Furthermore, we choose such algebraic representations that
minimize the number of variables. Among others, this is reflected
in the algebraic equation of a plane. Models are directly expressed
by relations between planes so that the use of points is an
exceptional case.

Apart from the basic relations mentioned we have two high-
level constraints concerning the roof which cannot be expressed
by a single equation. We assume the building to be represented by
a cuboid and a prism (see Fig. 6). In order to ensure that the ridge
is the top of the house and thus avoiding the roof being oriented
downwards, we require that a point i = (i1, i2, i3) of the ridge
line lies above the top of the cuboid. Although we cannot assume
that planes are oriented, i.e. with normal vectors turned outwards,
this property can be realized by incorporating oriented projective
entities. Therefore the sign of the dot product between a plane A
and a homogeneous point p is computed:

sign(⟨A, p⟩) =

1
−1. (4)

This provides information about the position of a point with regard
to a plane. A value of 1 states that the point lies above the plane,
otherwise it is located below. As a consequence another point
k = (k1, k2, k3) is chosen in the bottom plane. The resulting
constraints require that the two dot products ⟨T , k⟩ and < T , i >
with respect to the top plane of the cuboid T and the two points i
and k must have different signs. Although Wu’s method does not
allow strict inequations, there are equivalent expressions which
only use equations by introducing another variable w (Kapur and
Mundy, 1988):

x < 0⇔ xw2
+ 1 = 0

x > 0⇔ xw2
− 1 = 0.

(5)

The property of roof symmetry has to relate points p in the left roof
plane to points p′ in the right roof plane which are connected by a
line that is orthogonal to the plane of symmetry (as, bs, cs, ds):

(p′1, p
′

2, p
′

3) = (p1, p2, p3)T + 2((as, bs, cs)T

× ((−1)(as, bs, cs)T (p1, p2, p3)− ds)).

Consequently, all geometric constraints can be expressed by
multivariate polynomials.

The complexity of three-dimensional algebraic relations can
further be reduced by a simplification of the polynomials. Obvi-
ously, our theorems are invariant to translation and rotation and
are dominated by constraints of orthogonality and parallelity (cf.
Fig. 1). Therefore, we make the plane that is related to most of the
other objects without loss of generality parallel with the x-y-plane
by setting its normal vector to (0, 0, 1). In turn, further values in
the hypotheses are forced to be zero. In the case of the gable roof
house, for example the normal vector of the bottom face is instan-
tiated by real values and simplifies constraints by eliminating vari-
ables. Thus it enhances the calculation of the characteristic set and
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Fig. 7. Comparison of runtime for Wu’s method: with and without simplification.

the formulation of subsidiary conditions. Fig. 7 shows the impact of
exploiting structural properties of geometric objects.We evaluated
our method on a changing number of building models and mea-
sured the running time of proving a theorem while extending the
constraint set. In general, the complexity increases substantially
with a growing number of variables.

Moreover, it is often possible to position the origin of the co-
ordinate system in such a way that several variables are reduced
to zero. This is especially possible if the process of building recon-
struction involves one building at a time. In case of a gable roof
house the origin lies in the top plane of the house block and con-
tains the axis of symmetry for the roof. The resulting advantage is
that it is possible to express the constraints of the roof by using four
pointswith the special property that two of their coordinates equal
zero. Consequently, the property of orientation reduces to i3w2

1−1
and k3w2

2 + 1 respectively. The symmetry is simply expressed by
the incidence of three points p = (p1, 0, 0), p′ = (−p1, 0, 0) and
i = (0, 0, i3).

Besides, the efficiency of Wu’s method depends on the choice
and ordering of dependent variables. On one hand, they should
support the construction of a triangular equation system. On the
other, the polynomials in independent variables that appear in
the denominators of the coefficients as well as the initials in the
construction of the characteristic set do not have to equal zero.
Consequently, they should be simplified or avoided.

We have observed that these simplifications do not only lead
to a reduction of running time but also to interpretable subsidiary
conditions. This is mainly due to the substantial reduction of the
number of terms that occur in the constraints. In general, one single
gable roof house contains at least seven planes with 28 variables.
The corresponding constraint equations of the characteristic set
are partly quadratic and have an average of four algebraic terms.
Performance can be improved since simplifications reduce each
equation of the theorems input to one to two terms without
containing any computationally expensive quadratic equations.

4.3. Evaluating uncertain conclusions

So far, entities and their constraints were considered as certain.
If we deal with the reconstruction of buildings our approach has
to cope with data which do not yield crisp geometric relations.
For example two estimated planes could share an angle of 89.9
instead of 90° which nonetheless should be considered to be
orthogonal in a weak sense. However, the dot product for testing
the orthogonality would not equal zero and thus the relation is
rejected. The consideration of uncertain geometric objects also
affects the reasoningprocess because the quality of conclusions has
to be quantified in a sound way. Furthermore, proven conclusions
are even in a weak sense not guaranteed to hold although
the corresponding uncertain constraints in the hypotheses were

satisfied. Hence, an additional test, that verifies towhich extent the
measured data supports the deduced conclusions, is indispensable.

In order to consider the aspect of uncertainty in geometric
relations a common approach compares the result vector ĉ of the
relational operation to a chosenmargin ϵ. Nevertheless, it is hard to
choose an appropriate value for an error ribbon because it depends
on the position of a specific geometric object and its confidence
region. Alternatively, to cope with this type of uncertainty we use
the concept of uncertain projective geometry which was proposed
by Heuel (2004). It combines projective geometry with statistics
and provides statistical tests to check geometric relations between
uncertain geometric entities.

The idea behind this approach is to represent a geometric entity
as a pair(x, Σxx) by adding a measure of accuracy to the algebraic
representation, the covariance matrix Σxx. We assume that the
uncertainty of observations is greater than the deviation between
the mathematical model and its real implementation. Hence, we
restrict attention to noisy observations. The error of measurement
is propagated through all operations such as the transformation
from Euclidean entities to projective entities or the construction
of lines from two planes.

With a covariance matrix at hand, hypothesis tests of statis-
tical testing theory can be integrated (Koch, 1999). According to
Table 3 each concluded relation R(x, y) can be expressed by a
matrix–vector-multiplication. Thus, the null-hypothesis of a geo-
metric relation corresponds to an algebraic constraint equation of
the following form:

H0 : ĉ = U(x)y = V (y)x = 0.

U(x) = ∂ ĉ/∂y and V (y) = ∂ ĉ/∂x are the Jacobians of the
constraint equations with respect to y and x respectively and have
to be determined for error propagation. In case of parallelity of two
planes A and B, for example, where x = Ah and y = Bh, U(Ah)
equals the Jacobian S(Ah) = ∂(Ah × Bh)/∂Bh, V (Bh) the negated
Jacobian−S(Bh). Consequently, ĉ is the result of the cross product
with regard to planes A and B.

Finally, according to Heuel’s statistical approach a chi-square
distributed test statistics ĉTΣ−1ĉ ĉ ĉ is computed where the covari-
ance matrix of ĉ can be obtained by first order error propagation
Σĉ ĉ = U(x)ΣyyUT (x) + V (y)ΣxxV T (y). This statistical framework
enables the automatic reasoning about uncertain constraints by
quantifying the quality of the conclusion with its covariance ma-
trix and a statistical value.

Given a significance level (1−α), the condition forWu’smethod
extends to

prem(ĉ,H) = 0 ∧ I(hi) ≠ 0 ∧ ĉTΣ−1ĉ ĉ ĉ < ϵH := χ2
1−α;n.

The logical deduced facts hold true if beside the geometric
predicates an additional predicate is satisfied which confirms the
relation in question on basis of the statistical hypothesis test.

5. Demonstrating feasibility: applications of automated deduc-
tion

This section presents possible applications of our reasoning
system in the context of building modelling. We describe how a
redundance-free and consistent representation can be obtained
and how valid relations and predictions are found.

5.1. Finding a redundance-free and consistent representation

While describing a building model one major task is to obtain
a redundance-free and consistent representation. On one hand, a
compact representation leads to less disk space and a readable
model as well as simplifying a model for further processing on the
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other hand. The latter will lead to less combinatorial complexity
by ruling out redundant constraints as it is beneficial e.g. for learn-
ing structural properties as proposed by Dehbi and Plümer (2011).
Thus, our aim is to reduce a constraint set automatically.

In Section 4, we presented a threefold internal model represen-
tation. Fig. 8 shows the graphical user interface for developing an
underlying building model. It allows an incremental modelling of
prototypes by creating 3D objects and constraints between these.
If existing models such as estimations from point clouds are avail-
able, they can be loaded instead via the scripted modus. Iteratively
added constraints may be discarded if they are redundant. A con-
straint is redundant if it is deducible from a constraint set so far
declared as non-redundant. This leads to a theorem of hypothesis
and conclusion: non-redundant constraint set⇒ new constraint.

First, the logical reasoner determines whether the conclusion
is deducible by inference rules given the non-redundant part as
initial facts. Being a query in terms of deductive reasoners it is an
efficient procedure based on fixpoint iteration. As described in the
last section the algebraic reasoner analyses hypotheses generated
by inference rules. The algebraic reasoner becomes indispensable,
if dealing with relations based on arithmetics. In case of the
gable roof house, Wu’s method is e.g. able to show that the
roof symmetry implies the fact orthogonal(rightRoofHalf,
front) if orthogonal(leftRoofHalf, front) holds. The
proof is based on dependencies of parameterswhich is the strength
of algebraic approaches.

Finally, referring back to Table 1 we obtain a non-redundant
constraint set that still defines a gable roof house and is sufficient
to ensure eight remaining geometric constraints. We preferred
to retain constraints of parallelity and, as a consequence, the
following final result is proven:

Redundant constraints:
orthogonal(rightRoofHalf, front),
orthogonal(leftRoofHalf, front),
orthogonal(bottom, leftWall),
orthogonal(rightWall, back),
orthogonal(leftWall, front),
orthogonal(rightWall, front),
orthogonal(bottom, front),
orthogonal(rightRoofHalf, front)

We further evaluated our reasoner by exploiting structural
characteristics of whole groups of man-made objects. Therefore, a
constraint set was reduced that represents several representative
building models with roofs containing dormers: we processed
150 (uncertain) geometric constraints within an estimation of 32
planes found in a point cloud of 10 interrelated gable roof houses.
Checking redundancy of a constraint took on average 0.29 s and
at the longest 0.71 s (Intel r⃝-CoreTM2-Duo @ 3.00 GHz). In general,
not all houses will be correlated so that even a decomposition of
the constraint set into smaller ones is possible.

In the case of finding a redundance-free representation we do
not have to enable the statistical component although applying the
process to observed data. As we only remove constraints from the
initial constraint set it is ensured that these are already satisfied at
the beginning.

5.2. Deducing new relations

Since the overall task is the reconstruction of buildings, we are
not only interested in a redundancy-free representation. Instead, it
is of great benefit to know which relations can be deduced from a
given constraint set in order to enrich our knowledge of themodel.
The larger the building models become the more complex it is
for humans to survey the implicit relations. Hence, the process of
building reconstruction is supported by deduction as constructed

objects and implicit relations can be used to verify estimated
models.

Another need of finding relations relates to the development of
a building description. If the user has tomodel a building it is much
easier to use a predefined complex object that can be composed of
a whole building or a building part. As an example, two parts of a
gable house roof, a cuboid and a prism should build a complete
house. By composing the two parts one surface vanishes in the
inside of the house and thus has to be eliminated. Consequently,
the constraints that were related to this object are also eliminated
and it has to be guaranteed that the constraints thatwere deducible
beforehand are added to the new constraint set. Apart from that,
the user is able to control modelled prototypes since the tool
helps to detect missing constraints or those that are not intended.
Thus, deducing new relations facilitates the interactive modelling
of complex buildings.

Our reasoner deduces relations from a given set of objects and
constraints identified in real observations or from a predefined
prototype of a building or a building part. In general, constraints
are passed from the logical reasoner to the algebraic component
and are finally processed by the statistical component. In order
to find new relations the logical reasoner applies the rules to
the input constraint set to reach a fixpoint. New objects can be
constructed from the givenmodel (e.g. a line as intersection of two
planes), which in turn inherit new relations. Rules of type 2 are
applied to initial and already deduced facts and forwarded to the
algebraic reasoner. We useWu’s method to check whether further
constraints of the predefined constraint types follow from a given
constraint set. For each constraint a theorem is formulated and it is
verified by pseudodivision whether the theorem holds. All results
can be traced back to their geometric meaning since the threefold
representation is never decoupled.

Since the strength ofWu’s method lies in the capability of prov-
ing a theorem by computing polynomial consequences of the hy-
potheses, it is especially suitable for reasoning about new objects
that are constructed from already known primitives. An example
of conclusions our reasoner draws involves e.g. the ridge of a gable
roof housewhose representing line is the intersection of the planes
rR = (rRh; rR0) and lR = (lRh; lR0) of the two roof halves:

ridge ≡

Lh
L0


=


rRh × lRh

rR0 · lRh − lR0 · rRh


.

The algebraic reasoner deduces that apart from the constraints be-
tween the planes of a gable roof house the following constraints
hold:

orthogonal(ridge, front),
orthogonal(ridge, back),
parallel(ridge, leftWall),
parallel(ridge, rightWall),
parallel(ridge, bottom)

These correlations between the ridge and other primitives show
that it is a major element in a building and contains considerable
information about the corresponding geometric model. One can
infer that the identification of a ridge in observations may sub-
stantially contribute to the reconstruction of buildings because its
constraints determine various variables by polynomial elimination
of the constraint equations (cf. Table 3). Vice versa, the conclusion
can be used to verify the process of reconstruction. Deduced pre-
dictions including relational properties are beneficial to check geo-
metric hypotheses from estimations in noisy observations. Hereby,
they improve the correctness of 3D building models.

Likewise, reasoning in 3D buildingmodels becomes possible on
a higher level of detail. For example, two dormers on a roof half are
commonly aligned, that is they inhibit the property of translation
symmetry along the direction of the ridge. For points p and p′ in its
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Fig. 8. Graphical user interface for developing a redundance-free and consistent building model.

components we obtain the relation: p′ = p+ λ · Lh which leads to
statements about the mutual position of the dormers’ ridge. Such
prior knowledge enables the reasoner to show that theymust have
the same height and that their ridges are parallel with each other.

Finally, the rule-based reasoner can in turn benefit from this
proof in that theorems can be used as inference rules for future
fixpoint iterations.

If the input stems from noisy observations proven conclusions
are continuously checked by statistical tests before they are added
to the final result. The test value quantifies the data-dependent
quality of the conclusion. The following concrete example with
algebraic constraint equations ĉi, i = 1, 2, 3, depicts the con-
sequences with regard to the χ2-distributed test statistics (cf.
Section 4.3):

ĉ1 ≡ leftRoofHalf⊥front :
ĉT1 Σ−1ĉ1 ĉ1

ĉ1 = 2.52 < χ2
0.95,1 = 3.748

ĉ2 ≡ rightRoofHalf⊥front :
ĉT2 Σ−1ĉ2 ĉ2

ĉ2 = 3.19 < χ2
0.95,1 = 3.748

H̸⇒

ĉ3 ≡ ridge⊥front :
ĉT3 Σ−1ĉ3 ĉ3

ĉ3 = 6.35 > χ2
0.95,2 = 5.938.

This shows thatwith regard to this exemplified set of noisy data the
validation of a model should not depend on this unreliable conclu-
sion that was deduced correctly under exact conditions. In general,
by integrating uncertain projective geometry we provide an indi-
cator that scores the degree of uncertainty of our conclusion.

6. Conclusion

This paper presented a reasoning system that supports users in
developing and analysing buildingmodels. It supports the develop-
ment of redundance-free and consistent prototypes as well as the
reasoning about estimated objects based on given observations.
We have shown how methods of automatic theorem proving can
successfully be applied to reduce constraint sets, predict related
objects and find implicit relations in building models. Therefore,
we combined the strength of algebraic methods with the advan-
tages of deductive reasoners and demonstrated the feasibility for
3D building modelling. We have shown that geometric constraints
of 3D buildings can be expressed by multivariate polynomials and
that uncertainty can be integrated in a sound manner.

Our research was inspired by the work of Brenner and Sester
(2005), who made use of Groebner Bases for 2D reasoning in the
context of cartographic generalization and emphasize the com-
plexity of the problem. Compared to 2D space, the complexity of
theorems in 3D increases considerably. We developed a feasible
approach which meets the requirements of interactive reasoning
systems. We address building models and spatial reasoning by
applying Wu’s method in combination with deductive inference
rules.

In order to cope with the increased complexity of the algebraic
reasoner, the choice of an appropriate algebraic representation
turned out to be crucial. While Roanes-Macías and Roanes-Lozano
(2007) express theorems by point-on-object relations, we have
chosen a different representation and avoided the explicit refer-
ence to point coordinates wherever possible. By using insights of
projective geometry we were further able to construct polynomi-
als that are multilinear rather than quadratic. We extended the
reasoning with the construction of new geometric objects which
in turn inherit new properties. Orthogonality, parallelity and sym-
metry are the main organizing principles in buildings. We focused
on linear objects such as planes, lines and points. We made use of
invariance with respect to rotation and translation and exploited
structural properties to reduce the complexity. Our reasoner pro-
vides the construction of geometric primitives as well as prede-
fined relations between them, especially orthogonality, parallelity,
symmetry, incidence and touch. However, further investigations
about primitives of higher order manifolds such as spheres which
imply a higher complexity of theorems have still to be done.

In order to cope with real observations we integrated the
theory of uncertain projective geometry and used a chi-square-
distributed test statistics to obtain valid predictions in the context
of noisy observations. Therefore, covariance matrices were added
to the model representation and propagated throughout all
operations. Deduced (strict) relations could thus be verified with
regard to their objects’ confidence regions so that we were able to
quantify the quality of proven theorems. In contrast to the work
of Heuel (2004) hypothesis tests are restricted to valid conclusions
that were already deduced on a symbolic level and are finally
valued considering the uncertainty of existing measurements.

We implicitly assumed that the uncertainty of observations is
greater than the deviation between the geometrical model and
its real counterpart. For this reason, we restricted attention to
noisy observations and did not take the the mathematical model
and its real implementation into account. However, independent
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from the impreciseness of measurement geometric objects such as
walls not meeting the crisp constraints designed by architects. In
order to represent both kinds of uncertainty, our approach can be
extended by incorporating corresponding covariancematrices into
the statistical tests. Therefore, further empirical evidence on the
uncertainty of construction would be necessary.

We enhanced the process of algebraic reasoning by a rule-
based reasoner which provides efficient techniques to deduce
relational facts and reduces the complexity of the reasoner by
ruling out impossible hypotheses beforehand. Thus, the reasoning
is not only restricted to geometric constraints but allows also for
drawing conclusions within other domains, such as topology and
partonomy.

This article has a strong relation to the approach presented
by Dehbi and Plümer (2011) whose goal is to learn semantic
models of buildings and building parts from noisy observations.
They use uncertain projective geometry to obtain basic relations
of estimated objects while we use this framework to quantify
the quality of drawn conclusions. They differentiate between high
and low level learning. The latter yields a model of uncertain
objects and geometric constraints that is the basis of further
learning processes but has not to be redundance-free. In order
to reduce the combinatorial complexity of correlations involving
the concept to be learned, our geometric reasoner can be used to
minimize this constraint set. Logic programming, the fundament
of their approach, provides deductive mechanisms which are
also applied within our approach. It should be investigated how
these semantic ruleswhich incorporate hierarchical, structural and
geometric properties of building parts may enhance the deduction
of predictions in our context.

The main contribution of this paper is to provide a method
that handles automatic reasoning in three-dimensional constraint-
based (building) models and includes the derivation of constraints
from uncertain premises. We have implemented a prototype that
checks the model with respect to redundancy and consistency and
which is able to deduce new properties. The reasoning process
works both on user-defined crisp constraints and uncertain
constraints based on observations such as 3D point clouds. It is
able to perform exact as well as uncertain reasoning. Although
being specifically geared to the context of 3D building models,
objects and constraints are not restricted to buildings but allow for
a development of arbitrary geometric objects.
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B.2 Predicting building façade structures with multilinear

Gaussian graphical models based on few observations
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Abstract

This paper presents a new approach for the prediction of substructures in building façades
based on sparse observations. We automatically generate a small number of most likely
hypotheses and provide probabilities for each of them. Probability density functions of
model parameters which in most cases are non Gaussian and multimodal are learned from
training data and approximated by Gaussian mixtures. Relations between model parameters
are represented by non-linear constraints. For stochastic reasoning we design and apply
a special kind of Bayesian networks which involves both discrete as well as continuous
variables, a scenario which often suggests the use of approximate inference which however
is infeasible in the face of a huge number of competing model hypotheses. In order to
be able to scan huge model spaces avoiding the pitfalls of approximate reasoning and to
exploit the potential of both observations and models, we combined Bayesian networks with
constraint logic programs. We designed a method which breaks down the problem into a
feasible number of subproblems for which exact inference can be applied. We illustrate our
approach with building façades and demonstrate that particularly for buildings with strong
symmetries number and position of windows can be deduced on the basis of ground plans
alone.
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This paper presents a new approach for the prediction of substructures in building façades based on sparse obser-
vations. We automatically generate a small number of most likely hypotheses and provide probabilities for each
of them. Probability density functions ofmodel parameters which inmost cases are non Gaussian andmultimod-
al are learned from training data and approximated by Gaussian mixtures. Relations betweenmodel parameters
are represented by non-linear constraints. For stochastic reasoningwedesign and apply a special kindof Bayesian
networkswhich involves both discrete aswell as continuous variables, a scenariowhich often suggests the use of
approximate inferencewhich however is infeasible in the face of a huge number of competingmodel hypotheses.
In order to be able to scan huge model spaces avoiding the pitfalls of approximate reasoning and to exploit the
potential of both observations and models, we combined Bayesian networks with constraint logic programs.
We designed a method which breaks down the problem into a feasible number of subproblems for which
exact inference can be applied. We illustrate our approach with building façades and demonstrate that particu-
larly for buildings with strong symmetries number and position of windows can be deduced on the basis of
ground plans alone.

© 2015 Elsevier Ltd. All rights reserved.

1. Motivation and context

Nowadays 3D building models are widely available but they mostly
do not contain detailed structure and semantical information. Facades
where details are only provided by texture mappings are often not suf-
ficient for many applications. Semantics that can be encoded by the
standardized data model CityGML (Gröger, Kolbe, Czerwinski, & Nagel,
2008) are important for many scenarios such as rescue scenarios or
the calculation of energy balances. Detailed information about doors
or windows in an apriori unknown building might be crucial for rescue
teams to accelerate assistance.

Haala and Kada (2010) emphasize the importance of detailed
building reconstruction and give an overview of approaches in the
context of automatic city modeling. However, building models that
represent building parts such as windows or doors explicitly are
rare and up to now modeled manually or semi-automatically in
most cases. Moreover, an automatic reconstruction in general relies

on high-resolution measurements such as 3D point clouds from
laser scans or features extracted from images. This requirement is
often not able to be satisfied in an appropriate way so that we have
to cope with an apriori small number of observations instead.
While ground plans are already available by the use of data sources
such as official data or Open Street Map the acquisition of 3D point
clouds is far costlier.

As a consequence, our centralmotivation is to predict unknown sub-
structures in buildings based only on few observations. While most ap-
proaches expect observations of adequate density, characteristic for our
approach is that we are able to generate best hypotheses for a building
model based on otherwise insufficient measurements, in particular
ground plans. Additional data may lead to a verification or falsification
of models which however is less expensive than reconstructing a build-
ing bottom-up from measurements. Fig. 1 illustrates our approach for
predicting a row of windows in a complex façade of the Poppelsdorf
Castle in Bonn, Germany (see Fig. 1a). The hypothesis about the win-
dows in Fig. 1c is the result of the reasoning process that incorporated
the ground plan of the building (red line) as well as measurements of
single embrasures (dotted lines in Fig. 1b). Full observations of all win-
dows are not necessary to generate a hypothesis of this quality. The
width of façades is for example correlated to the number of windows,
thewidth of windows and the distance betweenwindows and together
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with a model for these building parameters, especially probability dis-
tributions, the space of hypotheses becomes strongly constrained. The
use of Gaussian mixture models, constraint solvers and stochastic
models help to cope with the apriori infinite space of a hybrid building
model.

Generating good hypotheses becomes possible due to the regulari-
ties that can be found in buildings. Poppelsdorf castle as illustrated in
Fig. 1 is an example of a cultural heritage buildings which are character-
ized by symmetries and parallel or orthogonal structures. What is obvi-
ous and especially pronounced in façades of cultural heritage can be
observed as well in modern buildings. Model parameters such as
width ofwindows or height of floors follow certain architectural restric-
tions. In turn, the number of windows that can be placed within one
floor is restricted by thewidth of the façade. A typical constraint charac-
terizing this relation has the formwf ¼ dl þ dr þ nw �ww þ ðn� 1Þ � dw
wherewf denotes the width of the façade, dl and dr the distances to the
left respectively right side of the façade, ww the width of the windows
and dw the distance between windows and nw the number of windows.
Thus we get a bilinear formula with continuous parameters ðwf ;dl;dr ;
ww;dwÞ and one discrete parameter ðnwÞ and products formed from a
continuous and discrete factor. Beyond that, the values of themodel pa-
rameters have characteristic distributions that can be learned from ex-
amples. Fig. 2 illustrates these distributions. Note that none of these
distributions is Gaussian. Instead, both are multi-modal. We used a ker-
nel density estimation (Bowman&Azzalini, 1997) that can, however, be
approximated rather neatly byGaussianmixtureswith few components
and small variances. It will turn out that this is an essential prerequisite

for the possibility of using efficient inference algorithms. All in all, this
prior knowledge together with a powerful reasoning algorithm allows
to generate good hypotheses of buildings.

To generate the best hypotheses we make use of Bayesian networks
as a special kind of probabilistic graphical models. Bayesian networks
are the directed variant of graphical models and have been established
to be powerful tools for reasoning with uncertain data. The domain
model for buildings can be represented as a hybrid Bayesian model
with discrete as well as continuous parameters. It is further character-
ized by multilinear equations with apriori unknown discrete variables
and mixtures of Gaussians that make inference unfeasible. While there
exist efficient inference algorithms for discrete networks, inference in
hybrid networks remains to be a challenging task. Koller and
Friedman (2009) pointed out that the resulting number of mixture
components is exponential in the number of unassigned discrete vari-
ables in the worst case. Lauritzen and Jensen (2001) developed an effi-
cient algorithmwhich is able to tackle the problem of exact inference in
restricted hybrid networks. It provides a solution whose distributions
are correct for discrete variables. For continuous variables first and sec-
ond moments of the posterior distribution are correct while the true
distribution might be a Gaussianmixture. It is sufficient for many appli-
cations since it is often the discrete variables that are queried or the
resulting Gaussian distribution is close to the original Gaussianmixture.
In contrast, the joint distributions of the continuous model parameters
for façade prediction are multimodal and so are the marginal distribu-
tions. As a consequence, an approximate inference algorithm as pro-
posed by Lauritzen and Jensen (2001) would prevent the computation

Fig. 1. Reasoning process for predicting a complex façade: (a) reference image: façade of Poppelsdorf Castle, (b) input: ground plan (solid line) and measurements of embrasures (dotted
lines) as observations, and (c) output: resulting hypothesis.
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of appropriate results since collapsing a Gaussian mixture means deter-
mining a single (probably worthless) Gaussian distribution using M-
projection (Koller & Friedman, 2009).

Fig. 3 illustrates the problem in the context of buildings. It shows the
Gaussian mixture for the distance between windows (blue). Applying
the M-projection to this distribution yields a mean that is not valid in
that it is unlikely having a building with this property. Instead, the
most likely assignments to allmodel parameters, also known asMAP in-
ference (Koller & Friedman, 2009), has to be found. While the common
MAP task is to find a single solution that maximizes the probabilities of
all query variables this work aims to provide a ranked set of most likely
assignments.

To sum up, in the hybrid building model there are two main prob-
lems: the number of discrete states is unknown and the discrete states
are never observed and remain uninstantiated. This leads to a hybrid
model with discrete and continuous variables and – even worse –
non-linear dependencies. In order to reason with uncertain data in an
efficient and adequate way while profiting from the strength of Bayes-
ian networks, we propose a new approach which handles the complex
inference task in hybrid networks and still remains suitable for our ap-
plication of building reconstruction. To this end, we combine Bayesian
networkswith constraint logic programming (CLP). Thebridge between
the twoworlds CLP and Bayesian networks are on the one hand the dis-
crete integer variables and on the other hand the individual compo-
nents of the Gaussian mixture distributions. Gaussian distributions,
the single components of the Gaussian mixture, are used to define 3
sigma or 4 sigma intervals on real numbers which serve as domains in
the CLP algorithm. As will be demonstrated in Section 4 this allows to
derive bounds for the hitherto unbound integral variables. While the
constraint program linearizes the problem and instantiates the discrete
parameters, the Bayesian network calculates the posterior given the ob-
servation in a compact way. For reasons of efficiency and convenience,
we exploit the special structure of the resulting statistical problem and

calculate posterior beliefswithmatrixmultiplications based on the con-
cept of the Kalman Filter. The result is a multivariate Gaussian – not a
mixture of Gaussians or its collapsed version. Our algorithm outputs
the best instantiations for themodel parameters given the observations
and ranks the resulting hypotheses by their probabilities. We provide a
whole set of (ranked) hypotheses instead of a single, most probable so-
lution since the latter not always meets the real world configuration.
Selecting the appropriate hypothesis in a second step opens the way
to find nonetheless the correct interpretations.

Our main contributions are

• generation of few probable hypotheses for building façades based on
sparse in general unsufficient observations

• description of the functional model by multilinear relations of mixed
integral and continuous parameters

• description of the stochastic model by Gaussian mixtures and the ex-
tension of Conditional Linear GaussianModels toMultilinear Gaussian
Models

• development of an algorithm that efficiently restricts the solution
space by solving the discrete problem using constraint logic program-
ming and estimating the optimal continuous parameters using a
Kalman filter.

The remainder of this paper is structured as follows: Section 3 illus-
trates the way buildings can be modeled by mixed graphical models.
Our CLP approach for solving the discrete problem that occurs in this
context is presented in Section 4. Section 5 describes the determination
of continuous parameters. Section 6 presents the algorithm of our ap-
proach in detail and expounds the interaction of the combinatorial
and the statistical part. It generalizes the presented approach and intro-
duces a framework for predicting substructures for well-defined prob-
lems. Finally, Section 7 shows the results we achieve for generating a
few best hypotheses.

Fig. 3. Collapsing a Gaussian mixture (blue) yields a Gaussian distribution (green) with μ ¼ 2:43 and σ2 ¼ 0:37. Although it is an efficient approach for many application it is not appro-
priate for this case of multimodal distributions for predictions in buildings.

Fig. 2.Gaussianmixture (blue) and kernel density estimation (red) for distance between two neighboring windows, mixture model is good approximation with fivemeans (gray vertical
lines) and extremely small variances (gray horizontal lines).
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2. Related work

In the context of building reconstruction various approaches have
been published that use a model-based top-down approach to detect
symmetry or regular structures and to generate building models.
Wenzel, Drauschke, and Förstner (2008) proposed an approach that de-
tects repetitive structures in facade images in order to provide a mid-
level feature for model-based learning. They therefore use heuristic
search methods and the criterion of minimum description length and
thus derive compact descriptions of facades. Alahmadi, Atkinson, and
Martin (2013) exploit the regularity in facades and use functional de-
pendencies for the building height to determine the number of floors
in the context of population estimates. Ripperda and Brenner (2009)
show the importance of the use of structural information for the recon-
struction of building facades and present an approach that incorporates
facade grammars in its reconstruction process. Schmittwilken and
Plümer (2010) reconstruct and classify facade parts in 3d point clouds
where the key feature of their approach is the usage of prior knowledge.
It is incorporated in a step-wise classification that is composed of pre-
sampling, selection of the most likely sample and the estimation of
boundaries. Becker (2011) presents an automatic approach for the geo-
metric modeling of 3d buildings that uses grammar rules and combines
a bottom-up and top-down knowledge propagation. Weissenberg,
Riemenschneider, Prasad, and Gool (2013) present an automatic meth-
od that infers grammar rules from annotated facades. They show the
benefit of these models for compression, facade comparison and syn-
thesis of new virtual facade. The approach of Martinovic, Mathias,
Weissenberg, and Gool (2012) uses three layers to semantically seg-
ment building facades. Beside the use of recursive neural networks
and Markov random fields they introduce weak architectural knowl-
edge to finally optimize the reconstruction. In Pu and Vosselman
(2009) knowledge is incorporated to extract building parts such as
walls, roofs or windows from high density point clouds or to make as-
sumptions about occluded facade parts. Müller, Zeng, Wonka, and Van
Gool (2007) use shape grammars for an image-based procedural
modeling of facades. They try to match architectural elements with 3D
elements in a library to generate high-quality geometric information.
Drauschke and Förstner (2008) and Ali, Seifert, Jindal, Paletta, and
Paar (2007) combine template matching with machine learning to
find building parts such as windows in facades. Although all these
model-based approaches yielded satisfying results they rely in contrast
to this work on the existence of sufficient data and are unable to cope
with very few observations.

Several approaches showed the benefit of employingmachine learn-
ing to tasks related to architectural style. Hanna (2007) having the
grouping of building block plans in different architectural styles in
mind proposes an approach for classification based on axial graph spec-
tra. Henn, Römer, Gröger, and Plümer (2012) predicts the type of a
building by incorporating its spatial context using support vector
machines.

Graphical models as used in our approach are well established in
computer vision and 3Dmodeling. Yang and Förstner (2011) use condi-
tional random fields (CRFs) as a special type of graphicalmodels in com-
bination with randomized decision forest classifiers to classify regions
in images of building facades. Here, CRFs model the dependencies be-
tween neighboring regions and consider the differences in color to im-
prove classification results. CRFs were introduced by Lafferty,
McCallum, and Pereira (2001) for the segmentation and labeling of se-
quence data and adapted by Kumar and Hebert (2003) to natural
image classification. Scholze, Moons, and Gool (2002) present a proba-
bilistic approach for model-based reconstruction of building roofs.
They extract 3D line segments from high resolution images and group
these into planes by applying Bayesian networks. Batra, Yadollahpour,
Guzmn-Rivera, and Shakhnarovich (2012) propose an approach for
solving the Diverse M-best problem in Markov Random Fields. They
constrain their work to discrete models but emphasize the need for

diversity by using a dissimilarity function and generalizing the M-Best
MAP problem.

Although originally not developed for domains with uncertain,
inaccurate observations constraint programming was extended by
several approaches to incorporate a stochastic component. Saad,
Gervet, and Abdennadher (2010) propose a constraint programming
algorithm using intervals with cumulative distribution functions
(CDFs). They extended the formalism of interval bounds by CDFs
that enable to represent a degree of knowledge for uncertain data.
Flerova and Dechter (2010) solve the problem to find the m best
solutions for optimization tasks in graphical models. To this end,
combination and marginalization operators are adapted in order to
generate a sorted list of solutions in tree decompositions. However,
our approach relies on the classical CLP algorithm and thus exploits
its strength in solving combinatorial problems with non-linear con-
straint equations, while Bayesian networks are used to reason with
uncertain data.

3. Statistical reasoning in building models

As illustrated in Section 1man-made objects such as buildings are
characterized by a number of regularities. On the one hand geomet-
ric relations such as parallelity and orthogonality are dominant in
buildings. Loch-Dehbi and Plümer (2011) studied the geometric
rules that can be found in man-made objects and presented an ap-
proach for deducing geometric relations in 3D building models. On
the other hand, buildings can be described by functional and statisti-
cal dependencies between model parameters. In this paper we focus
on the latter properties of buildings. The knowledge of architectural
design as well as available distributions about model parameters en-
able to generate good hypotheses in order to reconstruct buildings.
The domainmodel of buildings includes probabilities for discrete pa-
rameters and probability density functions for continuous parame-
ters. Due to the existence of relations between model parameters
and the possibility to quantify them by conditional probabilities sto-
chastic networks are an appropriate tool for reasoningwithin the un-
certain world of building models.

Probabilistic graphical models are nowadays one of the most
prominent and most powerful methods for reasoning in uncertain
domains. One class of models are the Bayesian networks that are di-
rected graphs whose nodes v∈V represent random variables Xv and
whose edges denote dependencies (Koller & Friedman, 2009). Each
random variable is associated with a conditional probability distri-
bution (CPD) PðXvjXpaðvÞÞ that describes its status dependent on the
values of its parent nodes paðvÞ, that is its immediate predecessors
as induced by the graph. The graph structure encodes complex distri-
butions compactly and thus allows for efficient inference algorithms.
Bayesian networks represent a joint distribution in a compact way
and enable to answer questions about the posterior distribution
given an observation.

Since building modeling is determined by discrete as well as con-
tinuous variables, hybrid networks are required that contain nodes
associated with discrete as well as continuous variables X ¼ XΔ∪
X Γ . In contrast to approximate reasoning exact inference within hy-
brid networks is in general not feasible. In order to reduce complex-
ity for exact reasoning with continuous variables distributions of the
building model are approximated by Gaussian distributions with
mean μ and variance σ2 so that a random variable X is characterized
by

pðx;μ;σ2Þ ¼ Nðμ;σ2Þ ¼ 1

ð2πσ2Þ1=2
exp �ðx� μÞ2

2σ2

 !

A special case of Bayesian network is the conditional linear Gaussian
(CLG) Network (Lauritzen, 1992; Lauritzen & Jensen, 2001). The most
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important assumption here is that discrete nodes are not allowed to
have continuous parents and that all continuous variables can be de-
scribed by conditional linear Gaussian CPDs. A conditional linear Gauss-
ian CPD with I⊆XΔ and Z⊆X Γ is then defined as

pðXjZ ¼ z;I ¼ τÞ ¼ Nðμτ þ βT
τz;στÞ

where μτ is a mean value for instantiationτ;βτ a vector of regression co-
efficients and στ the corresponding variance.

The joint distribution in a hybrid network can thus be defined as a j
XΓ j-dimensional Gaussian distribution

pðXΔ ¼ τÞ � NjXΓ jðμτ ;σ
2
τÞ ¼ ∏

v∈VΔ

PðτvjτpaðvÞÞ ∏
w∈VΓ

pðywjXpaðwÞÞ

for each instantiation τ of XΔ (Kjærulff & Madsen, 2008).
The most likely assignment (MAP assignment) for given evi-

dence E ¼ e is found by maximizing the posterior probability for
variables W ¼ X � E: MAPðW jeÞ ¼ argmaxωPðω;eÞ . The presented
work aims to find the k most probable explanations, denoted by

MAPkðWjeÞ.
The continuous parameters of a building model can be described by

Gaussianmixtures ofm components eachweighted by its probabilityωi:

Xm
i¼1

ωiNðμ i;σ
2
i Þ ð1Þ

It has been shown that each arbitrary distribution can be approxi-
mated by a Gaussian mixture (McLachlan & Peel, 2000). Fig. 2
shows the probability density function of one of the building param-
eters – the distance between windows – estimated by the use of
kernel densities – compared with its fitted Gaussian mixture. Gauss-
ian mixtures are an appropriate way to model skew symmetric or
multimodal distributions and make it possible to rely on a number
of well-studied inference algorithms that are available in literature.
Additionally, the estimated Gaussian mixtures for the building pa-
rameters reveal that distributions of continuous parameters are
strongly peaked and mixture components only have small variances.
This helps to structure the space of hypotheses.

Although Bayesian networks expect probability density functions to
be Gaussian, Gaussian mixtures can be modeled by adding additional
discrete nodes. Fig. 4 shows exemplarily the realization of a Gaussian
mixture with two components. Each component of the Gaussian mix-
ture is represented by a state of a discrete variable whose node is a par-
ent of the continuous node. The probability density function of the
continuous variables is determined by its means μ i and variances σ2

i

and the probability ωi for each component.

Fig. 5 shows an excerpt of a hybrid domainmodel that serves as pro-
totype for modeling a single building facade. Discrete nodes are repre-
sented by simple ovals while a double line expresses that it is a
continuous one. Variables that are related to the nodes of the network
can be divided into two groups: model parameters and observation
parameters.

For each observation oi there exist nonlinear functional dependen-
cies for continuous model parameters

X ¼ ðdl;dr ;ww;dwÞ:

For the width of a facade (wf ) we assume for example that it is a re-
sult of a multilinear equation of the number of windows (nw), the dis-
tance from the left facade margin to the first window ( dl ), the
distance from the right facade margin to the last window (dr), the
width of the window (ww) and the distance between neighboring
windows (dw):

o1 ¼ wf ¼ dl þ dr þ nw �ww þ ðnw � 1Þ � dw

An observed part of an embrasure is additionally characterized by its
correspondence to one of the windows cw (⩽n) and the correspon-
dence to the left or right embrasure ce – marked as 0 for the left
side and 1 for the right side of the window. The dependencies are de-
termined by

o2 ¼ de ¼ dl þ ðcw � 1Þ �ww þ ce �ww þ ðcw � 1Þ � dw

The functional dependencies of parameters are modeled by converg-
ing connections. This effect, in the literature often referred to as
inter-causal inference or explaining away effect, is a special property
of graphical models. As soon as observations are given, model pa-
rameters become dependent and influence each other. For instance,
the width of a facade as an observation is dependent on the continu-
ous model parameters and the number of windows. In turn, if the
width of the facade is provided as evidence, the model parameters
cannot be chosen arbitrarily anymore (cf. Fig. 5).

By observation, another structural property is that in many cases
parameters are correlated. If the correlations are high, ratios of pa-
rameters turn out to be a good representation. It turns out that ratios
between two continuous model parameters xi and xj can be modeled
by discrete states since they can be summarized by some states of the
form ratio ¼ n=d with n;d∈N. The observation that the equation xj ¼
ratio � xi holds for some discrete state of the variable ratio restricts
the domains of the model parameters. To model this correlation in
the Bayesian network a pseudo observation pi ¼ 0 is introduced: 0 ¼

Fig. 4.Modeling Gaussian mixtures (GMs)∑m
i¼1ωiNðμ i;σ

2
i Þ in Bayesian networks by introducing an additional discrete node for selecting the component of the distribution, tables illus-

trate distributions for m = 2.
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pi ¼ ratio � xi � xj (Fig. 6). The dependency is defined by a “converg-
ing connection” (Kjærulff & Madsen, 2008). By setting evidence on
the pseudo observation (always observed as 0) model parameters
are forced to fulfil the relational properties. Thus, the special form
that characterize the constraints of the statistical reasoning is
preserved.

The search space can be tightened further by integrating further
prior knowledge such as the building type or architectural style that

influences the probability distributions. For instance, the width of win-
dow in a house ofWilhelminian style is in general smaller than in a typ-
ical modern single-family house. Further restriction due to architectural
design are incorporated so that impossible configurations are ruled out
at early stage.

A Bayesian network represents a multivariate Gaussian distribution
if evidence for all discrete variables is available. As long as there is no full
assignment of discrete variables the result of the reasoning process is a
mixture of Gaussians. As mentioned in Section 1, Lauritzen and Jensen
(2001) proposed an efficient algorithm for inference in conditional lin-
ear Gaussian networks that overcomes the problem of having Gaussian
mixtures of exponential size but is not appropriate for the presented
building model.

In our case,we have a special case of Bayesian networks that is similar
to CLG networks. Discrete nodes do not have continuous parents but in
contrast to CLG networks at first the functional dependencies are bilinear
with products containing discrete integral and continuous variables since
discrete variables are apriori unknown (especially the number of states).
Table 1 summarizes the basic discrete and continuous variables and their
nonlinear constraint equations that are used to predict a rowofwindows.
They are divided into variables that occur in the constraints and those

Fig. 5. Extract of generically constructed Bayesian network modeling a single (planar) building facade.

Fig. 6. Converging connection with introduced pseudo observation for modeling relations
between two model parameters.

Table 1
Basic variables and constraints for predicting a row of windows.
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that were only introduced to model Gaussian mixtures. The constraints
elucidate that for each observed parameter oi we have an equation that
can be modeled by a special form of a bilinear constraint

oi ¼
X
i

dici; ð2Þ

where the di’s are discrete model parameters and the ci’s are continuous
ones. As soon as the discrete parameters are determined the equation be-
comes linear.

To sum up, we define a cp-Bayesian network as follows:
A cp-Bayesian network (cp-BN) is a Bayesian network where

every discrete variable has only discrete parents and every continu-
ous variable has a CPD that can be characterized by a Gaussian mix-
ture or whose dependency can be described by a relation as in
formula (2).

As soon as there are valid instantiations for the discrete parame-
ters, there is a parametric description of the continuous ones for each
consistent solution that refers to a single hypothesis. The resulting
small space of hypotheses together with the prior knowledge and
given observations facilitates a dynamic construction of a graphical
model afterwards. Having a full assignment of discrete parameters,
inference in the Bayesian network only has to consider linear depen-
dencies between continuous nodes and thus allows for efficient
algorithms. The following section shows our approach to solve the
discrete problem.

4. Solving the discrete problem

Although the instantiation of the discrete variables is apriori un-
known the building model is characterized by various constraints
that help to avoid combinatorial explosions. The space of parameters
can be reduced drastically if only reasonable instantiations are
considered.

Beside the functional dependencies described in Section 3 vari-
ables are further constrained by domains, i.e. bounded by intervals
½blower;bupper �. In the case of building modeling some discrete param-
eters such as the number of windows are apriori unrestricted, how-
ever the upper bounds can be derived dynamically during the
reasoning process dependent on the width of the facade and the
Gaussian mixtures which were used to describe the distributions
of the model parameters – especially thresholds derived from
their single components.

As described in Section 3 a continuous parameterxi is determined by
a Gaussian mixture with m components, means μ j and small variances

σ2
j ; j ¼ 1;…;m. Partitioning the space of a parameter into different com-

ponents and introducing thresholds leads to a specification of possible
domains as disjunction of m constraints such as

μ1 � λσ1⩽xi⩽μ1 þ λσ1
∨ …
∨ μm � λσm⩽xi⩽μm þ λσm

ð3Þ

The jth component is approximated by an interval of ½μ j � λσ j;μ j þ
λσ j�. Setting λ ¼ 3 implies that values are in this interval with a
probability of 99.7%. The small error made by this discretization
can be arbitrarily minimized by adapting λ. However, the chosen
accuracy is sufficient enough for both reasoning and runtime
issues.

Ratios are determined by discrete parameters, its numerator n and
its denominator d (r≈n=d), so that two model parameters xi and xj

have to be related corresponding to the ratio r up to a small ∊

xi ¼ r � xj∧n=d� ∊⩽r⩽n=dþ ∊:

Obviously, the problem is described by constraints on variablesX1;…
;Xn with associated domains D1;…;Dn . Constraints described above
restrict these domains so that the final solution leads to a small num-
ber of qualified hypotheses. The domains of the continuous variables
are defined by intervals that in turn lead to finite domains of the dis-
crete variables. Given the constraint equation for an observation, for
example the width of the façade, the number of windows or the
components of the Gaussian distributions cannot be combined arbi-
trarily. In conclusion, our problem can be seen as a constraint satis-
faction problem (CSP). We are interested in possible instantiations
of the discrete parameters before applying inference techniques
with Bayesian networks.

Consequently the idea of our approach is to solve a constraint
satisfaction problemwith respect to valid values for the discrete param-
eters that can be used later on as evidence for statistical reasoning. For
solving those combinatorial constraint satisfaction problems constraint
programming is a powerful framework. In this context, the following
concepts are of major value.

A constraint satisfaction problem (CSP) is defined by a set of vari-
ables X ¼ fX1;…;Xng with domains D ¼ fD1;…;Dng and a set of con-
straints C ¼ fC1;…;Cqg on these domains. The search space for
potential hypotheses is determined by the cartesian product of the
domains, i.e. D1 �…� Dn. A constraint Ci is a relation on a subset of
variables X0⊆X and thus a subset of D1 �…� Dn . A solution of a CSP
is an instantiation of the variables, i.e. an assignment of values for
each variable fðX1;α1Þ;…;ðXn;αnÞg with ðα1;…;αnÞ∈D1 �…� Dn so
that all constraints are satisfied.

There exist various implementations of constraint solvers of which
one type is realized by the use of logic programming. Due to its declar-
ative character and powerful search strategies logic programs are ad-
vantageous for defining constraint satisfaction problems (Dechter,
2003).

Logic programs are a collection of clauses described by first-order
predicate logic. A clause is equivalent to a logical implication: B1∧…∧Bn

⇒H and is expressed by

H←B1;B2;…;Bn

where H;B1;…;Bn are literals and a logical AND (∧) is represented by a
comma. A literal is a predicate of the form pðt1;…;tnÞ or its negation,
where ti is a term. A term can be a variable (in capital letters), a constant
(lower case) or a function. The head H becomes true if the literals in the
body B1;…;Bn are satisfied. An example for a clause would be pðX;Y;ZÞ←
qðXÞ;rðX;Y ;ZÞ. This clausewith variablesX;Y and Z represents an if-then-
rule, i.e. if both the literal qðXÞ and rðX;Y ;ZÞ are true, then the literal pðX
;Y;ZÞ is true as well. Equal variable names have to be instantiated by
equal values.

Constraint logic programs extend this formalism by adding con-
straints that restrict the search space following the definition on
constraint satisfaction problems. As an example, the above example
could be extended by a nonlinear multiplication constraint: pðX;Y ;ZÞ
←X ¼ YZ;qðXÞ;rðX;Y;ZÞ.

Solving a constraint satisfaction problem means finding one so-
lution or all solutions that is finding instantiations for the variables
in the queried literal. A query pð2;Y;ZÞ means finding an instantia-
tion for Y and Z that satisfies 2 ¼ YZ;qð2Þ and rð2;Y;ZÞ. Therefore
the constraint solver follows the principle “constraint and gener-
ate”, i.e. the algorithm begins with propagating the constraints
and uses a depth-first search afterwards to find valid instantiations
for the variables with respect to the constraints. Constraint propa-
gation means deducing additional constraints or restricting existing
ones such as narrowing the domains. An efficient and sufficiently
powerful concept for such consistency-enforcing is to achieve
bounds consistency. A constraint is bounds-consistent if all interval
bounds participate in a solution of the constraint. Propagation
rules are used for calculating new intervals for each variable. For
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the constraint X ¼ YZ (e.g. xi ¼ ratio � xj) with X∈½A;B�;Y∈½C;D�;Z∈½E;
F� and X;Y ;Z > 0 the interval bounds for Z can for example be up-
dated to ½A=D;B=C�. Domain splitting supports the search afterwards
by splitting the intervals in order to check values for consistency
and to determine the space of solutions for the variables.

Likewise, the constraint satisfaction problem is solved for the
prediction of windows. For example a façade width of W = 13.0 m
bounds the number of windows to a maximum of four due to given
domains for the continuous model parameters that are based on
available distributions. This in turn restricts the selection of mixture
components. For more details on constraint processing the reader is
referred to Dechter (2003) and Marriott and Stuckey (1998).

To conclude, (logic) constraint solvers are powerful tools to handle
non-linear constraints and allow to solve problems which contain dis-
crete as well as continuous variables. In contrast to Gröbner Bases
(Buchberger, 1998) as a method for solving polynomial equations
they can performbetter in this case, i.e. they have polynomial time com-
plexity (Frühwirth & Abdennadher, 2003).While the valuation of a dis-
crete variable is an integer, continuous variables are determined by
intervals dependent on a given precision. Bound propagation and inter-
val reasoning enable to find a solution for non-linear continuous con-
straint satisfaction problems as being present in our approach and
consequently transform the exponential problem into a linear one.

To sum up, the use of constraint programming in the presented pre-
diction process leads to

1. Determination of discrete states
2. Gaussians instead of Gaussian mixtures
3. Linear constraints instead of multi-linear ones

Fig. 7 compares the size of resulting mixture components in the
Bayesian network with and without applying the constraint satisfaction.
It shows the effect of the presented cp-BN approach for the introduced ex-
ample in the context of façade prediction (cf. Section 3). The resulting dis-
tribution for a continuous model parameter is not a mixture of Gaussians
but a single Gaussian for each consistent solution that is appropriate for
the prediction of reasonable façades. Since discrete parameters are instan-
tiated by solving the constraint satisfaction problem they are treated as
constants so that their nodes can be omitted in the subsequent statistical
reasoning for determining the continuous parameters.

5. Finding the continuous values

Fig. 7 showed the Bayesian network that remains after eliminating
the instantiated discrete nodes. Instead with non-linear dependencies
on discrete and continuous variables, inference has now to consider lin-
ear dependencies on continuous variables. The stochastic component is
mainly a special structured network: a state-observationmodel with aρ
-dimensional state vector x representing themodel parameters and a s-
dimensional observation vector o. One Gaussian distribution for each
model parameter is selected by the CLP component as one part of the
Gaussian mixtures so that distributions are no longer multimodal.
With the instantiation of discrete parameters I ¼ τ we have a linear
problem for the lth hypothesis and ith observation of the form:

oi ¼
Xρ
j¼1

τiljx
i
lj ð4Þ

where the τilj’s are the discrete (instantiated) coefficients of the contin-

uous model parameters fxl1;…;xlρg.
For such state estimations where model parameters are only ob-

served indirectly the Kalman Filter is an efficient algorithm for calculat-
ing the posterior (Kalman, 1960). It assumes that state transition and
measurement can be described linearly and initial beliefs are represent-
ed by multivariate Gaussian distributions. Being originally deployed for

dynamic systemswhere states evolve over time, the Kalman filter is im-
plemented in two steps, the prediction of time step t based on time step
t � 1and themeasurement update that corrects the prediction by incor-
porating the latest observations. Since the model of buildings is static
and does not change over time the prediction step is omitted whereas
the latter calculation, the measurement update, is implemented in the
presented approach to determine the posterior distributions. Gaussian
distributions represented byμ andΣare carried over from the constraint
solver of the reasoner. A linear observation model describes the map-
ping from the state vectorμ∈Rρ to the observation vectoro∈Rs by amul-
tiplication with a measurement matrix M∈Rρxs : o ¼ Mμ . The Gaussian
noise for observations is expressed by a s-by-s matrix Q so that the con-
ditional probability is defined as

PðojμÞ ¼ NðMμ;QÞ

Table 2 gives an overview of the input parameters originating from
prior input and combinatorial output and the assignment to the
corresponding statistical variables in the measurement update of the
Kalman Filter. Simple matrix multiplication for the state-observations
model complete the reasoning process. By incorporating the Kalman gain

K ¼ ΣMT ðMΣMT þ QÞ�1 ð5Þ

after the initialization ofmatrices the posterior distribution, i.e.μ andΣ, is
calculated:

μ ¼ μ þ Kðo�MμÞ
Σ ¼ ðId� KMÞΣ ð6Þ

As a result, continuous parameters are determined for each instantiation
of discrete parameters yielding a set of most likely hypotheses.

6. Prediction of building parts

In the following we delineate the implementation of the developed
cp-BN reasoner for predicting unknown structures in building facades.
Fig. 8 shows the two basic components the reasoner is composed of: a
combinatorial component that uses constraint logic programming to re-
strict the number of possible hypotheses and to instantiate the discrete
parameters and a statistical component based on bayesian networks
that calculates the posterior distribution for the continuous parameters
and allows for a final valuation of the prediction.

For reasons of generalisability the semantic formulation of the prob-
lem is encapsulated in a model so that the field of applications is not re-
stricted to building facades but is flexible with respect to the input
problem instead. Since the controlling units – the combinatorial and sta-
tistical component – are implemented independently from the model
predictions can be generated for arbitrary problems as long as they repre-
sent a cp-BN problem. The following conventions have to hold for well-
defined input data:

A cp-BN problem ðX ;CÞ is defined by a set of parametersX and a set of
constraints C with the following properties:

• continuous model parameters∈X are characterized by a Gaussianmix-
ture (with μ ’s, σ ’s, ω’s)

• observed continuous parameters ∈X are characterized by an observed
value and a precision for this observation (σ)

• discrete model parameters ∈X are (optionally) characterized by a do-
main with integral bounds

• ratios∈X are characterized by a list of numerators and a list of denom-
inators

• constraints ∈C are defined by an CLP expression whose variables ∈X
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Table 2
Overview of input parameters for the measurement update and corresponding statistical variables.

Fig. 7.Number of resultingmixture components for query variables of the buildingmodel in conventional BNand proposed cp-BN. Discrete states represent thenumber ofwindows on the
one hand and the indices of mixture components on the other hand. The instantiation of discrete parameters by applying the cp-BN approach transforms themultimodal space of hypoth-
eses into a unimodal one.
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Constraints are considered in the CLP component in order to
restrict the search space. They are the basis of the statistical com-
ponent if they define a state-observation-model and have the
form as in formula (2). It should be noted that the latter require-
ment can often be fulfilled by adding pseudo observations (cf.
Section 3).

Algorithm 1 depicts the cp-BN approach which is used to generate
hypotheses. Combining constraint programming with probabilistic
models the complexity is reduced and inference is adapted appropriate-
ly to the domain of buildings.

Algorithm 1. Algorithm cp-BN for prediction.

The reasoner is based on prior knowledge for the domain model that
is given by a large set of training data. For buildings the training data con-
sists of about 1000annotated façades collected in a ground truth database
of buildings. The database includes distances between building parts such
as windows, their sizes and qualifying properties such as the building
type. This allows to derive knowledge that can be used while reasoning
about a queried building. Information includes Gaussian mixtures for
model parameters, ratios between model parameters, type of building
and characteristics of the ground plan such as symmetry.

Above, basic data about buildings are available in a database of about
9 million buildings of North-Rhine-Westfalia, Germany, with their
ground plans and height. Footprints could as well be extracted from
open source projects such as Open Street Map.

We illustrate our approach with an example of predicting a row of
windows in a building façade where the only observation we might
have is the width of the façade. As illustrated in Section 3, the model is
described basically by four continuous parameters. These are character-
ized by Gaussian mixtures that are a good approximation of the distri-
bution and at the same time allow for methods that require the
distributions to be Gaussians. By using Expectation Maximization
(McLachlan & Peel, 2000) a Gaussian mixture for each continuous pa-
rameter is provided for the statistical domain model (cf. Section 1).

The reasoner startswith defining a constraint satisfaction problemac-
cording to the prior knowledge and available observations. The domain
model is represented by a logic program that incorporates constraints
as described in Section 4. Known observations, e.g. for the width of a fa-
çade, are instantiated as input whereas the apriori unknown discrete
model parameters remain as query variables and have to be found by
the constraint solver. Therefore, the CLP component uses the ECLiPSe
Constraint Programming System and its hybrid integer/real interval ar-
ithmetic constraint solver.

The constraint solver narrows the search space by propagating the
given information and yields all possible solutions for the model speci-
fication. Thus, the CLP component instantiates the discrete variables
such as selected component of the Gaussian mixtures and the number
of windows (cf. Fig. 5) and linearizes the problem with the result that
initial beliefs become normally distributed. Instead of amultimodal dis-
tribution for eachmodel parameter we reduce the problem to one com-
ponent of the Gaussian mixtures and thus are able to use well-studied
efficient implementations. In order to minimize computation time sim-
ilar hypotheses are identified in the CLP result as a post-processing and
duplicates are eliminated by expecting a distance δ ¼ maxðxki � xljÞ⩽∊;i
; j ¼ 1…jXj, between two hypotheses Hk and Hl for a given threshold ∊.

Fig. 8. Components of cp-BN reasoner.
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Preferring a set of diverse hypotheses, this additionally leads to the fact
that hypotheses differ from each other significantly.

In a final step, the posterior distribution for each hypothesis is calcu-
lated within the statistical component (lines 7–12). The probabilistic
model is constructed generically dependent on the given problem and
the determination of the discrete parameters. The resulting matrices
are the input of the correction step of the Kalman filter (cf. Section 5)
that yields the continuous parameters for each hypothesis.

Fig. 9 shows the results of thefilter algorithmby comparing the prior
and posterior beliefs. The beliefs are shown for three different steps.
Apriori distributions (red) represented as Gaussian mixtures are the
input of the algorithm. After solving the constraint satisfaction problem,
the prior reduces to one component of the mixture (blue) as shown at
the bottom of the figure. They are specific for one solution of the prob-
lem and are given to the statistical component that integrates observa-
tions and model assumption to calculate the posterior belief (green).

The reasoner provides means μ i∈RjX Γ j for continuous model param-
eters and the related instantiations τi∈RjXΔ j for discrete variables. Final
hypotheses are ordered by their (unnormalized) probabilities Pi calcu-
lated on basis of the apriori known distributions:

Pi ¼ exp
XjXΓ j

j¼1

logðpd f 01j ðμ ijÞÞ
0
@

1
A

where pdf 01j is the on ½0…1� scaled density of the distribution corre-
sponding to the jth model parameter.

We finally get a set of hypotheses of themost probable façades given
the observations:

Hbest ¼ ðμ1;τ1;P1Þ;…;ðμk;τk;PkÞ

The set of k best hypotheses does not only present the most probable
hypothesis since this would probably prevent finding the best interpre-
tation of the input data. Instead, a diverse but sorted set of predicted fa-
çades is the result.

7. Experimental results

The reasoner was evaluated with various constellations of input pa-
rameters. Buildings were chosen of different building types (cultural
heritage, terraced building, …) and architectural style (Wilhelminian,
Modern,…). The influence of prior knowledge was analysed. Ground
truth values were used to assess the quality of the predictions. The
prior knowledge and ground truth data is based on a relational database
of about 1000 annotated façades. Fig. 10 shows the relevant extract of

the database schema. It is a hierarchical model that characterizes build-
ings by their ground plan type, building type and architectural style and
relates them to their measured parts, such as facades containing in turn
windows. The data was acquired by the use of the annotation
tool ‘measureFacade’ (Staat & Schmittwilken, 2010) that enables the
measurement of location and form parameters in images and 3D laser
scans.

Fig. 11 shows the output of the reasoner for predicting rows of win-
dows in different façades. The only observation for the predictions was
the ground plan of the building. That is, inference was based on the
width of the façade and the prior knowledge about distributions and
constraints given by the analysis of the ground truth data. Results
were generated after 0.2 s on a Windows 64 Bit machine (3.4 GHz,
16 GB RAM) with a solution space of averagely 8 hypotheses. As
shown in 11c, the prediction can also compensate occluded façades. Hy-
potheses can be distinguished by single discriminating measurements
of embrasures as indicated by vertical lines. Additional laser scan mea-
surements or the result of an edge detection in images yieldmore accu-
rate information about the correct hypothesis.

Table 3 gives an overview of the quality of the results. It summarizes
the results for hypotheses that have a rank lower than 1, 2, 4 and 8 re-
spectively. The error is calculated as maximum norm of the difference
between predicted and ground truth values. The quality depends on
how much the facade meets the norm with respect to the distributions
chosen according to the prior knowledge. For example, the prediction
for the facade in 11a yields better results than in 11b since the form pa-
rameters such as the window distance of the latter facade are less com-
mon. It can be seen that for more than half of the tested façades the
correct number of windows was predicted for its first hypotheses with
an average errorerr allof 0.374m for the continuousmodel parameters.
Thewidth of windows is even predictedwith an average error err ww of
0.089m. For the whole test set the correct hypothesis was listed among
the top eight hypotheses.

The generated hypotheses based on ground plans already include
the accurate façade. However certainty can be increased by considering
one additionalmeasurement such as the position of an arbitrary embra-
sure (Fig. 12). The constraint satisfaction problem is extended to predict
the correspondence of this observation to one of the windows and the
decision between left or right embrasure (cf. Table 1). The functional
dependency that comes with an equation for the distance between
the left margin of the façade and the embrasure leads to clearer results
since the location of an embrasure further restricts the space of valid
hypotheses.

The quality of the results is enhanced if the type of building (e.g. cul-
tural heritage, villa, terraced building) or the architectural style (e.g.

Fig. 9.Distributions for the distance betweenwindows in different reasoning steps: top: prior as Gaussianmixturewith 5 components, bottom:Gaussian distribution as selected component of
the Gaussian mixture (blue) and resulting posterior (green).
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Wilhelminian, modern) is known. Obviously, castles can have wider
windows than terraced buildings. Buildings of Wilhelminian style are
often characterized by high floors with high and narrow windows,
whereas modern buildings have in general lower and wider windows.
This fact is reflected in the Gaussian distributions that are used to re-
strict the domains of variables and can thus be exploited for the

Fig. 13. Impact of different prior knowledge on Gaussian mixtures. blue: height of win-
dows in façades of different architectural style, red: height of windows in façades of
Wilhelminian style.

Fig. 10. Relevant extract of database schema. Measurements (location and form parameters) and categorical attributes are used for prior knowledge and evaluation.

Fig. 11. Resulting ranked hypotheses for predicting a row of windows with given width of façade. Vertical red lines show how hypotheses can be discriminated by an additional test to
select the hypothesis best matching the real-world scenario.

Table 3
Quality of results for predicting a row of window with given width of façade: number of hypotheses with correct number of windows and errors for continuous model parameters (in
meters).

rank #windows correct (correct/total) avg(err)_ww) avg(err)_all) min(err)_all) max(err)_all)

1 28/55 0.089 0.374 0.078 0.817
≤ 2 38/55 0.094 0.435 0.052 1.857
≤ 4 45/55 0.128 0.509 0.052 1.857
≤ 8 55/55 0.198 0.573 0.052 1.857

Fig. 12. Resulting ranked hypotheses with given width of façade (left) and additionally
embrasure (right). Certainty is increased by considering a single observed embrasure.
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reasoning process. As the Gaussian mixtures in Fig. 13 suggest different
components represent different architectural styles. Amore precise rea-
soning is possible with known architectural style since parameters can
be described with less mixture components and thus smaller domains.
For the automatic derivation of building types from ground plans and
LOD1 models with support vector machines see Römer and Plümer
(2010) and Henn et al. (2012).

The horizontal model can be extended by a similar structured
vertical model as soon as the height of a building is available (e.g.
from a LOD1 model). As a result, the reasoner supports the process of
reconstructing buildings in 3D. A verification of predictions that the rea-
soner provides supports a top-down approach where a data-driven
identification of building parts in possibly sparse raw data can be omit-
ted.

8. Conclusion

This paper presented an approach for predicting apriori unknown
structures in buildings. In contrast to other approaches, the implemented
reasoner only needs few observations such as the corresponding ground
plan to generate appropriate hypotheses with high probability. To this
end, statistical reasoning was combined with constraint logic program-
ming. Prior knowledge was integrated that was obtained from a ground
truth database of façades such as form parameters of windows.

For reasoning within uncertain data we followed a top-down ap-
proach and represented the domain model as a Bayesian network
whose structure is similar to a conditional linearGaussian (CLG)network.
In contrast to CLG networks, some of the discrete parameters are apriori
unknown and have an unrestricted number of values. As a consequence,
we had to cope with bilinear functional dependencies between discrete
and continuous variables. To tackle this problem the developed reasoner
is extended by a component based on constraint logic programming that
solved the combinatorial problem of discrete parameters. In this way, it
was able to linearize the problem and to find an instantiation of the dis-
crete parameters by solving constraint satisfaction problems. Being
equivalent to a Bayesian networkwith continuous variables and associat-
ed linear Gaussians a Kalman Filter was applied to determine the posteri-
or distribution of the continuous model parameters according to a
measurement update.

Strong regularities in the appearance of man-made objects legiti-
mate a top-down approach with a model characterized by strong con-
straints and distributions. Prior knowledge that supported the
reasoning process was acquired by an extensive analysis of a ground
truth database. Distributions of model parameters were described by
non-parametric probability density functions and approximated by
Gaussian mixture models. The distributions are characterized by a
strongly peaked space of parameters that together with functional de-
pendencies allowed for a generation of good hypotheses based only
on fewobservations such as ground plans. Amore precise reasoning be-
comes possible by exploiting prior knowledge, e.g. the architectural
style. Hypotheses can be refined by incorporating further observations.

Thefield of application is not restricted to building façades but rather
is extendable to other problems that are characterized bymixed integral
and continuous values with multilinear constraints. To this end, the do-
mainmodel is not represented by a static structure but instead build ge-
nerically based on the given input.

By combining statistical and combinatorial reasoning the presented
reasoner is able to perform exact inference. The reasoner provides
means and variances for the continuous model parameters together
with corresponding instantiations of the discrete parameters and out-
puts the best hypotheses given the observations.
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B.3 Estimation of 3D indoor models with constraint

propagation and stochastic reasoning in the absence of

indoor measurements
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Abstract

This paper presents a novel method for the prediction of building �oor plans based on
sparse observations in the absence of measurements. We derive the most likely hypothesis
using a maximum a posteriori probability approach. Background knowledge consisting of
probability density functions of room shape and location parameters is learned from training
data. Relations between rooms and room substructures are represented by linear and bilinear
constraints. We perform reasoning on di�erent levels providing a problem solution that is
optimal with regard to the given information. In a �rst step, the problem is modeled as a
constraint satisfaction problem. Constraint Logic Programming derives a solution which is
topologically correct but suboptimal with regard to the geometric parameters. The search
space is reduced using architectural constraints and browsed by intelligent search strategies
which use domain knowledge. In a second step, graphical models are used for updating
the initial hypothesis and re�ning its continuous parameters. We make use of Gaussian
mixtures for model parameters in order to represent background knowledge and to get
access to established methods for e�cient and exact stochastic reasoning. We demonstrate
our approach on di�erent illustrative examples. Initially, we assume that �oor plans are
rectangular and that rooms are rectangles and discuss more general shapes afterwards. In
a similar spirit, we predict door locations providing further important components of 3D
indoor models.
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Abstract: This paper presents a novel method for the prediction of building floor plans based on
sparse observations in the absence of measurements. We derive the most likely hypothesis using
a maximum a posteriori probability approach. Background knowledge consisting of probability
density functions of room shape and location parameters is learned from training data. Relations
between rooms and room substructures are represented by linear and bilinear constraints. We perform
reasoning on different levels providing a problem solution that is optimal with regard to the given
information. In a first step, the problem is modeled as a constraint satisfaction problem. Constraint
Logic Programming derives a solution which is topologically correct but suboptimal with regard to
the geometric parameters. The search space is reduced using architectural constraints and browsed
by intelligent search strategies which use domain knowledge. In a second step, graphical models
are used for updating the initial hypothesis and refining its continuous parameters. We make use
of Gaussian mixtures for model parameters in order to represent background knowledge and to
get access to established methods for efficient and exact stochastic reasoning. We demonstrate our
approach on different illustrative examples. Initially, we assume that floor plans are rectangular and
that rooms are rectangles and discuss more general shapes afterwards. In a similar spirit, we predict
door locations providing further important components of 3D indoor models.

Keywords: floor plan; 3D indoor models; automatic reasoning; graphical models; Constraint Logic
Programming; Gaussian mixture

1. Introduction

The automatic generation of 3D models of building exteriors such as facades or roofs in level of
detail 3 (LoD3) according to CityGML [1] has been a subject of intensive research [2,3]. For indoor
navigation, for example, interior models such as 3D models represented in LoD4 of CityGML [4] or
models acquired from Building Information Modeling (BIM) are required [5,6]. In comparison to
outdoor models, indoor models are not yet widely available. Indoor models, however, open up new
fields of application with high relevance, including indoor navigation, evacuation planning and facility
management. In addition, such models are an essential prerequisite for tasks like guide for the blind.
While most approaches which derive indoor models rely on measured data such as images or 3D
point clouds, we believe that this extensive data acquisition of additional indoor measurements is not
necessary. To this aim, we propose a novel method for the derivation of 3D indoor models from sparse
observations without the need of extra indoor measurements. If building information models are not
available, previous approaches for indoor modeling require indoor measuring and modeling which is
both expensive and difficult. Measurements are expensive because each single room has to be accessed.

ISPRS Int. J. Geo-Inf. 2017, 6, 90; doi:10.3390/ijgi6030090 www.mdpi.com/journal/ijgi
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The derivation of models from measurements is difficult due to the masking of walls by furniture.
For the distinction between walls and for instance bookshelves or wardrobes, modeling affords prior
knowledge and regularization. In this article, we demonstrate that prior knowledge together with
outdoor models, especially footprints and information about the positions of windows and floors
suffice in many cases if generally available data on room areas, functional use and room numbers are
given. To structure and simplify the presentation, we start with the assumption that both floor plans
and rooms are rectangular and discuss more general shapes in the end.

The problem we address is characterized by a set of N rectangular rooms that have to be placed
within a polygonal footprint. In this context, a room is defined by a reference point and its width and
depth. The width and depth of the rooms are bounded by upper and lower values and constrained by
a bilinear constraint area = width ∗ depth, where the area is known a priori and the two parameters
width and depth are unknown. In the problem we solve, a building footprint as well as the area of each
room are given. We assume that each room has a rectangular shape. Lower and upper bounds for
the width and depth of each room are derived from probability density functions (PDF). The decision
variant of our problem is to decide whether or not the building footprint can be partitioned into
rooms that satisfy our specifications. In the special case that the building footprint is a rectangle
and that, for each room, the lower bound is equal to the upper bound, this problem is related to
Perfect Rectangle Packing. Since Perfect Rectangle Packing is known to be NP-hard [7], our more
general problem seems NP-hard, too. For that reason, it is unlikely to find an efficient solution in the
worst case. We understand, however, that an appropriate representation of background knowledge,
the definition of domains and constraints on model parameters and an intelligent combination of
constraint propagation and stochastic reasoning yields optimal solutions in a rather efficient way in
most realistic scenarios. In order to meet these expectations, we propose a method that reduces the
search space by a stepwise reasoning. Architectural constraints and regularities together with an initial
relaxation of the problem lead to a fast intermediate result that is adapted to a qualified hypothesis in
a second step. The relaxation is contributed to the fact that walls are initially not modeled and rooms
do not have to fill the entire space. However, an important architectural constraint consists in the fact
that interior walls do not intersect windows. In this step, this constraint is reduced to ensuring that
interior room boundaries do not cross window ranges. Rooms are modeled in a topological correct
way (non-overlapping, within footprint,...) but are not necessarily aligned along a corridor. In the
sense of 2D-topological correctness, two rooms are in our context either disjoint or meet each other in
common walls avoiding their overlapping. We used a spring model similar to the approach described
in [8]. In this way, we do not consider wall elements in the first step, providing a buffer and enabling
improvement of preliminary results in a subsequent step.

Based on the intermediate result, stochastic inference is used in order to deliver a qualified set of
solutions that is topologically equivalent but is geometrically different. We use the notion of topological
equivalence in the standard sense i.e., equivalent up to homeomorphic transformations (for details,
see, for instance, [9] or [10]). In particular, topological equivalence preserves adjacency. The set of
solutions is augmented by probabilities derived from a most probable estimation. The exact location of
rooms—considering an alignment between rooms—, together with its width and depth and the width
of walls are estimated in a subsequent step. The key point is the determination of hypotheses together
with likelihood information which structures the hypotheses space. In our experiments, we stated that
this space is dominated by a hypothesis with regard to others which describes an expected solution.

An extensive analysis of shape and location parameters such as width and depth of rooms leads to
a prior knowledge represented by architectural constraints and probability density functions. Similar to
the reasoning process performed in [11], estimation of floor plans is characterized by a bilinear model.
The non-linearity is attributed to the fact that a room area is the product of its width and its depth.
Besides not allowing that walls cross windows, the fact that windows are e.g., part of office or housing
rooms is an important constraint which restricts the domains of shape and location parameters of
rooms considerably. Obviously, the latter constraint is not necessary to be hold in the case of corridors
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or utility rooms. Furthermore, for office buildings with an usually large number of rooms, the available
room number is an advantage not to be underestimated since rooms with consequent room numbers
tend to be adjacent with high probability. This prior knowledge together with probability density
functions make the problem of locating rooms within the footprint feasible. Assigning each window to
a room and determining the bilateral relations between rooms turn out to be a combinatorial task that
we solved by constraint propagation leading to preliminary topological models.

This paper presents a novel approach for the automatic prediction and generation of building
floor plans. Based on sparse observations, we automatically generate a limited number of best
hypothesis and provide likelihoods for each solution. The resulted hypotheses are ranked according
to an MAP-estimation [12]. The probability density functions for each model parameter provide the
possibility to assess the likelihood of each hypothesis and to order it w.r.t. competitive hypotheses
accordingly. Dense observations like 3D point clouds are not required. We understand that it is easier
to verify or falsify hypotheses than to reconstruct models from observations in a bottom-up way and
follow a model-based top-down approach. While most approaches expect observations of adequate
density, characteristic for our approach is that we are able to generate best hypotheses for a floor plan
based on otherwise insufficient measurements. We start with geometric information on the building
footprint as well as position and sizes of the windows. Furthermore, we exploit non-geometric data on
rooms including areas and functional use, at least the distinction between office or housing rooms,
corridors and toilet. This is important because, in contrast to office or housing rooms, corridors and
toilets do not need windows. As illustrated in Figure 1, the input consists of a building footprint and
available information about rooms (area of rooms, identifying number of each room and possibly the
functional use of each room). Most of this information can be acquired from building management
services. The location of the windows can be derived using existing methods for the identification of
building parts from point clouds or images of facades such as, for instance, described in [13] or [14].
The algorithm does not require any indoor images or laser scans from walls to predict, nevertheless,
floor plans such as those depicted in Figure 1. For the comparison, the associated reference floor plan
is shown. Additional data may lead to a verification or falsification of models which, however, is less
expensive than reconstructing a building interior bottom-up from measurements. The output of our
method is an indoor model for the given floor including a layout for the rooms, location of the doors
and the height of the rooms. Topology will be consistent and precision of geometry will be optimal
w.r.t. the given information due to exact stochastic inference in the sense of [12]. In our test cases,
we yielded accuracies for the model parameters between 10 and 20 cm.

Figure 1. Our approach derives floor plans automatically (bottom right) from sparse observations like
window locations from possibly LoD3 exterior models, footprint and room information such as room
areas (top). No additional indoor measurements are needed. For the comparison, a reference floor plan
is depicted (bottom left).
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Despite the complex non-linear problem, the presented reasoner performs exact inferences.
Therefore, Constraint Logic Programming (CLP) is combined with Graphical models. Figure 2a
summarizes our general approach: we start with a problem characterized by discrete and continuous
parameters and an infinite hypotheses space. This is restricted to a small number of feasible candidates
by constraint propagation in a first step. In these hypotheses, model parameters are fixed from a
topological point of view, but are intermediate. They are input to a stochastic reasoner in a second
step. Parameters are adapted to the available observations and the background knowledge in the
form of probability distributions of model parameters by using an MAP-based inference. Probability
distributions of model parameters such as the width of office rooms can nicely be represented by
kernel density estimations [15] or—for our purpose even better—Gaussian mixtures, as illustrated by
Figure 2b. It can be seen that the Gaussian mixture is a good approximation to model skew symmetric or
multimodal distributions and, at the same time, enables to using well established reasoning algorithms.
As stated in [16], each arbitrary probability density function can be approximated by Gaussian mixture
models. We use a special case of graphical models which is a Conditional Linear Gaussian model.
This enables performing an exact stochastic inference.

Figure 2. (a) reasoning process: the combination of constraint propagation and a maximum a posteriori
probability inference reduces a huge search space with continuous and discrete parameters to a small
set of solutions with the most likely hypothesis; (b) distribution of the width of office rooms: a Gaussian
mixture is a good approximation to a skew symmetric or multimodal distribution.

Some of the results described in this paper have been presented at the indoor 3D workshop in the
frame of the 11th 3D Geoinfo conference in Athens. This article extends [17] in several aspects:

• Whereas [17] describes the overall approach, this article discusses the relevant methods and
algorithms in more depth.

• Whereas [17] represents position of rooms and windows in a continuous domain and performs
reasoning with inequalities in these domains, in this paper, we represent geometry in discrete
domains during the combinatorial part and apply a method of constraint propagation in finite
domains that is considerably more efficient.

• This article deals with doors and estimates their sizes and positions and thus provides an access
for indoor navigation.

• It generalizes from 2D floor plan layouts to 3D indoor models.

The main contribution of this paper is a novel approach which affords 3D indoor models and
avoids extra measurements in the form of images or 3D point clouds. From a methodological point of
view, we apply stochastic inference in the sense of graphical models and combine combinatorial
reasoning/constraint propagation in a bilinear model with stochastic inference using Gaussian



ISPRS Int. J. Geo-Inf. 2017, 6, 90 5 of 18

mixtures in a novel way. As extension of our previous publication [17], the approach is described and
elaborated in the following sections.

2. Related Work

While 3D models of the exterior of buildings are widely available in different levels of detail,
3D building interior models (LoD4 in CityGML, [18]) are not yet widespread. Tasks such as rescue
management, indoor navigation and guide for the blind have led to growing interest in the design
and modeling of building interiors. In this context, the authors of [19] proposed an approach for the
generation of building floor plans from laser range data based on a triangulation of a 2D sampling of
wall positions. Becker et al. used shape grammars in [20] for the reconstruction of 3D indoor models
from 3D point clouds. In [21], Ochmann et al. segmented a point cloud into rooms and outside area
and reconstructed the scene by solving a labeling problem based on an energy minimization. For the
derivation of indoor models, all mentioned approaches rely on dense observations such as 3D point
clouds from laserscans or range cameras using mobile mapping systems. The necessary measurements
are both cost and time extensive. Derivation of observations for indoor models is rather different from
getting measurements for outdoor models using airborne or terrestrial platforms. Every single room
must be entered and scanned. Furthermore, while one is interested in modeling walls, doors, windows
and ceilings, they are concealed by all kinds of furniture. Strong model assumptions are needed in
any case. In order to overcome the acquisition of dense observations as a time-consuming process,
low cost sensors have been employed in several approaches. For instance, Diakité et al. investigated
in [22] the usefulness of the low cost Android tablet from Google’s Tango project for the acquisition of
indoor building environments. The information extracted from the native models of this device are
not rich enough in order to derive detailed indoor models. As a consequence, our central motivation is
to predict unknown substructures in buildings such as floor plans based on strong model assumptions
in the sense of background knowledge but only few observations like the area of rooms and footprints.
For more information about the works in indoor modeling and mapping, we refer to a survey of recent
research in this field [23].

A constraint-based approach for the generation of floor plans has already been designed in
1994. In [24], Charmann describes a knowledge-based system that generates all possible floor plans
satisfying a set of geometric constraints on the rooms (non-overlap, adjacency, minimal/maximal area,
minimal/maximal dimension, etc.). Therefore, he defines the semi-geometric arc-consistency in order
to adapt consistency techniques to geometric problems. In comparison to our method, this approach
does not address the reconstruction of floor plans for existing buildings and does not take probable
configurations into consideration.

Constraint propagation is a powerful method to solve combinatorial problems. Approaches,
however, that extend this framework by a stochastic component are rather rare. The authors of [25]
adapt combination and marginalization operators to find the m-best solutions for optimization tasks in
graphical models. Intervals with cumulative distribution functions are used in [26] to model a degree
of knowledge for uncertain data. In order to address uncertainty, our approach combines the classical
constraint propagation with Bayesian Networks and thus benefits from the strength of both paradigms.

3. Modeling Floor Plans with Constraints

Our approach to predict floor plans follows a model-based top-down approach. Therefore,
the problem is modeled based on an extensive analysis of real floor plans as well as dimensional
restrictions based on laws and architectural characteristics. We understand that man-made objects are
characterized by a number of regularities. On the one hand, geometric relations such as parallelity
and orthogonality are dominant in buildings. In [27], Loch-Dehbi et al. studied the geometric rules
that can be found in man-made objects and presented an approach for deducing geometric relations
in 3D building models. On the other hand, buildings can be described by functional and statistical
dependencies between model parameters. In this paper, we focus on the latter properties of buildings.



ISPRS Int. J. Geo-Inf. 2017, 6, 90 6 of 18

The knowledge of architectural design as well as available distributions about model parameters
enable generation of good hypotheses in order to reconstruct buildings.

The estimation of floor plans can be reduced to find the width wi and depth di as well as the
reference point (xi, yi) for each single ith room. Besides outdoor building models in LOD3, we only
need data which is available with every housekeeper and every real estate manager without the need
of any indoor measurements. We are given the area of the rooms in addition to the corresponding
building footprint and possibly the functional use and the identifying numbers of rooms. Furthermore,
we exploit the (two-dimensional) location parameters (xw1, yw1) and (xw2, yw2) of the windows
stemming from exterior measurements of the facade. Figure 3a gives an overview of the domain model
and its parameters. The figure further illustrates that, for rooms with windows, at least one of their
walls has to take the value of the minimum or maximum values xmin, ymin, xmax and ymax within the
corresponding footprint, respectively.

Figure 3. (a) illustration of location and shape parameters for a floor f and an ith room with a single
window used during the reasoning process; (b) example for adding auxiliary fix rooms (green) in order
to model floor plans with a non-rectangular footprint.

In a first step, we assume that rooms as well as the corresponding footprint have a rectangular
shape. This assumption will later be relaxed in order to model buildings that are not rectangular but,
however, follow the Manhattan world assumption. Therefore, auxiliary virtual rooms (green rectangles
in Figure 3b can be added that fill the gaps in order to complete a rectangle. Without loss of generality,
we further assume that the longest side of a footprint is parallel to the x-axis in order to have a
consistent usage of width and depth for the rooms. For rectangular footprints, this is guaranteed
based on an ortho-rectification after a main axis determination of the footprint.

3.1. Hard and Soft Constraints

The topological and architectural knowledge about buildings especially rooms is used to define
constraints on the model parameters. In contrast to functions, the constraints usually have several
unknown parameters that have to be determined. The first constraint relates the given parameter
area of the ith room with the two unknowns width wi and depth di which is a bilinear, that is
non-linear, constraint:

area = wi ∗ di. (1)

An obvious but important constraint is that all rooms have to be in the (rectangular) floor shape f
derived from the building footprint. It simplifies to a test whether the ith room lies within a bounding
box with reference point (x f , y f ), width w f and depth d f . The index i corresponds to the room identifier
in the column ID from the room information table from Figure 1:

((x f ≤ xi) ∧ (y f ≤ yi) ∧ ((xi + wi) ≤ (x f + w f )) ∧ ((yi + di) ≤ (y f + d f ))). (2)
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Another important constraint to maintain topological correctness is the non-overlapping of rooms.
The fact that two distinct rooms i and j have to be disjunct can be modeled as follows:

(xi + wi ≤ xj) ∨ (xj + wj ≤ xi) ∨ (yi + di ≤ yj) ∨ (yj + dj ≤ yi). (3)

Knowledge of the positions of windows can be used for two purposes: on the one hand,
the coordinates of the rooms depend on the coordinates of the windows which are placed on a
shared wall. Consequently, for instance a window w which lies in the front side of the floor, like the
window in Figure 3, and corresponds to the ith room, constrains the possible values of the y-coordinate
of this room in the following way:

yi = yw1 + wallext = ymin + wallext, (4)

where wallext denotes the depth of the exterior wall. On the other hand, we use the fact that the walls
separating rooms do not have to cross windows. Therefore, the x- and y-coordinates, respectively,
cannot take values where windows are placed. For the same window lying on the front side of the
floor, the constraint can be expressed as follows:

((xi ≤ xw1) ∧ (xw2 ≤ (xi + wi))). (5)

For windows of the left, right and back side of a building equivalent constraints exist. Note that
the correspondence of a window w to a room i expressed by wcw = rnoi is as well not known a priori
and has to be determined during the reasoning process. This combinatorial task is formulated as a
labeling problem. The existence of a window in a room depends on the functional use of this room.
For office rooms, an assignment of a window is obligatory, while it is not the case for corridors or
utility rooms. If a room is not assigned to a window, it is not constrained by relations (4) and (5) and
thus can be considered as an interior room.

In addition to the described hard constraints that have to be fulfilled for all rooms obligatory,
the floor plan model contains two soft constraints. They hold true in most of the cases but can
be violated for exceptions. However, the number of violations is bounded avoiding implausible
topological models. One soft constraint considers that the room number is highly correlated to the
neighborhood of rooms. If two rooms have consequent room numbers, they should be adjacent where
possible. In our context, the term adjacency refers to the neighborhood of rooms. This is expressed by
the following constraint—exemplarily for an ith room i left to a jth room j:

((xi + wi + wallint = xj) ∧ ¬((yj + dj ≤ yi) ∨ (yi + di ≤ yj))), (6)

where wallint represents the depth of the interior wall. The symbol “¬” stands for a logical negation.
Right, top, and bottom adjacency are also possible and can be defined in an equivalent way. Since the
relative relations between rooms are not known, an exclusive-or combines the four possibilities for the
adjacency of rooms. This also turns out to be a combinatorial task that we solve.

Since the corridor is usually the entrance to a room, a further soft constraint describes the adjacency
of a room to an existing corridor. In this case, the adjacency constraint used for the neighborhood
above is conditional on the functional use—in this case “corridor”—of the rooms.

3.2. Probability Density Functions

Besides constraints, the reasoning process benefits from statistical prior knowledge that is derived
from a groundtruth database of about 1600 rooms with different functional uses. Figure 4 shows
a relevant excerpt of the underlying database model. Central to our analysis is the relation room
with shape and location parameters of each room as well as their functional use and the location of
doors and windows. Rooms reference their corresponding buildings, which enables access to available
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footprints. Finally, the neighbourhood of rooms is annotated in order to analyze the bilateral locations
e.g., with respect to the functional use of rooms. Note that this data does not serve as direct input for
the reasoning process but is a representative basis for the derivation of probability distributions and
constraints for the floor plan model and its prediction.

Figure 4. Excerpt from the relational database schema. Location and shape parameters of rooms are
a.o. used for prior knowledge and evaluation.

As shown in the constraints before, the model is described basically by continuous parameters:
x, y, width and depth of rooms as well as the depth of exterior and interior walls. Figure 2b shows the
probability density function of the floor plan parameter width of office rooms estimated by the use of
kernel densities and compared with its fitted Gaussian mixture. It has been shown that each arbitrary
distribution can be approximated by a Gaussian mixture ([16]):

m

∑
i=1

ωi N(µi, σ2
i ). (7)

Gaussian mixtures are an appropriate way to model skew symmetric or multimodal distributions
and make it possible to rely on a number of well-studied inference algorithms that are available in
literature. By using Expectation Maximization ([16]), a Gaussian mixture of m components, each
weighted by its probability ωi for each continuous parameter, is estimated for the reasoning process.
On the one hand, probability density functions are used to derive upper and lower bounds for the
continuous model parameters during constraint propagation. On the other hand, they are an important
knowledge for statistical inference.

4. Constraint Propagation for Topological Floor Plan Derivation

In a first step, the floor plan model is defined by constraints on several variables with associated
domains. Constraints described above restrict these domains so that the final solution leads to
a small number of qualified hypotheses. In conclusion, our problem can be seen as a constraint
satisfaction problem (CSP). Besides the values of the continuous model parameters defining the rooms,
we are interested in further discrete parameters. In this context, the correspondence of windows to
a room as well as the bilateral relations between rooms have to be determined. This turns out to
be a complex combinatorial problem. The idea of our approach is to solve a constraint satisfaction
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problem with respect to valid values that can be used later on as initial instantiations for statistical
reasoning. For solving those combinatorial constraint satisfaction problems, constraint programming
is a powerful framework.

A constraint satisfaction problem is characterized by a set of constraints C = {C1, ..., Cq} on
domains D = {D1, ..., Dn} of a set of variables X = {X1, ..., Xn} that can be numeric-discrete as well
as continuous or symbolic. The Cartesian product of the domains, i.e., D1 × ...× Dn, defines the initial
search space. A constraint Ci is defined as a relation on a subset of variables X ′ ⊆ X , i.e., a subset of
D1 × ...× Dn. They can be boolean or arithmetic—allowing linear as well as non-linear dependencies.
A solution of a CSP is an instantiation of the variables, i.e., an assignment of values for each variable
{(X1, α1), ..., (Xn, αn)} with (α1, ..., αn) ∈ D1 × ...× Dn so that all constraints are satisfied. Therefore,
the constraint solver follows the “constrain and generate” principle in order to narrow the search
space. Constraint inference is performed before finding valid instantiations. During inference, new
constraints are derived from existing ones and existing constraints are tightened. This is done by using
so called consistency-enforcing algorithms and constraint propagation [28].

The search benefits from the a priori known domains of the parameters and their constraints.
In the context of floor plans, the model parameters of each room are restricted by the bounding box
defined by the (rectangular) footprint of the building. The width and depth of the rooms depend on
the functional use. For example, toilets usually cannot be as large as lecture halls. Their lower and
upper bound can be derived from the Gaussian mixtures estimated by the use of the groundtruth
database for rooms. The location of rooms is further bounded by the location of windows that are a
priori known from exterior measurements. The constraints described in Section 3 are used to exclude
impossible instantiations by constraint propagation. The latter means deducing additional constraints
or restricting existing ones such as narrowing the domains. Herewith, the number of possible solutions
is reduced. However, the set of possible solutions can contain those which are not consistent with
regard to the constraints. The claim is to omit a subsequent search excluding inconsistencies as early
as possible leading to single valued domains. In this context, the search space is affected by the level
of consistency. Many domains of constraints can be updated as soon as a related domain changes
by considering arc-consistency. A variable Xi ∈ Di, i = 1...n of a (binary) constraint is arc-consistent
with respect to another variable Xj, j 6= i if, for each value of Xi, there exists an instantiation for Xj not
violating the constraint. However, in some cases, e.g., the equality constraint we use, a more efficient
and but sufficiently powerful concept for such consistency-enforcing is to achieve bounds consistency.
A constraint C with n variables X1, ..., Xn is bounds-consistent if for each variable Xi ∈ [A, B], i = 1...n,
there exist instantiations for the other variables Xj, j 6= i so that C is satisfiable with respect to the
instantiations Xi = A and Xi = B, respectively. A and B denote the lower and upper bound of the
associated domain of the variable Xi represented as an interval. If a bound changes for one variable,
new intervals for other variables are calculated by propagation rules in order to reduce the search
space within the domains. For instance, for the constraint X = Y ∗ Z (e.g., area = width ∗ depth)
with X ∈ [A, B], Y ∈ [C, D], Z ∈ [E, F] and X, Y, Z > 0, the interval bounds for Z can be updated
to [A/D, B/C].

A search for solutions is performed by traversing a search graph and finding a solution path to the
leaf nodes. A node represents a variable together with one possible instantiation. An arc represents an
operator that augments the current solution with a value assignment to an additional variable that does
not conflict the prior instantiations regarding the constraints. The search is in general characterized by
backtracking. It uses a depth-first search and jumps back to prior states (nodes in the search graph) if
the search leads to a dead-end. A dead-end is a leave that is inconsistent with the constraints which
means that the domain of its corresponding variable became empty after the constraint propagation.
In order to perform a search with as few failures as possible and to avoid backtracking, two principles
are followed dynamically during search: Look-ahead and Look-back. The first determines the best
choice for the next variable and its value, while the second deals with the level where the algorithm
jumps back in case of a dead-end. More details on constraint processing can be found in [28,29].
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There exist various implementations of constraint solvers [29]. In addition to algebraic, symbolic
or graph-based algorithms, a prominent implementation is Constraint Logic Programming realized by
the use of logic programming. CLP benefits from the declarative character of logic programs and the
powerful search strategies of constraint programs in order to define and solve constraint satisfaction
problems. The search strategy in logic programming is characterized by backtracking with depth-first
search. The constraints correspond to relations and predicates in logical language. (Logic) constraint
solvers as used in our implementation are powerful tools to handle non-linear constraints with more
than one unknown.

The strength of CLP is to solve combinatorial problems in a declarative way. This enables
in addition to predefined relations to define customized ones in a simple and flexible way.
“Combinatorial problems can be tackled which usually have exponential complexity” [30]. In our
context, we exploit the fact that separating walls of the rooms do not cross windows. We expressed this
constraint as a logical relation. Before searching solutions, we enumerate possible (discrete) values for
the x-coordinates of each room excluding those falling within window ranges. Exploiting architectural
knowledge, we do not have to cope with the a priori infinite continuous search space. Instead, we
transfer the problem into an enumeration of interesting values so that the search algorithm finds
the arrangement of the rooms much faster than dealing with infinite continuous domains. The most
important value is the one that lies in the middle between two windows. This is attributed to the fact
that most of the walls are centered between windows. This high level of discretization is especially valid
for rooms that obligatory have a window such as office rooms. Other rooms of different functional use
e.g., corridors are excluded and their domains are represented by intervals with decimeter precision.
This is necessary since the reference points of corridors can take values that are excluded by the
windows for other rooms.

The discretization along the x-axis leads to an easier instantiation of the other parameters.
If, for the ith room, xi and xmax

i are determined, the width wi = xmax
i − xi can be subsequently

derived (cf. Figure 3). Likewise, the assignment of the depth follows from a previous assignment
of the width according to the constraint area = di ∗ wi. Following this pattern, we are transforming
constraints into functions with only one unknown parameter. The y-coordinate yi is determined by the
corresponding window, that is the minimum ymin or the maximum ymax of the footprint respectively,
depending on the window location. If the window lies on the front side of the floor, yi − wallext

equals the lower bound ymin of the floor. Otherwise, if the window is located on the opposite side,
ymax

i + wallext equals ymax.
We are aware that the transition from continuous to discrete values does not guarantee to match

the expected values. We ignored temporary the walls in order to provide buffers for the deviations
occurred after the value discretization. In this context, the variables wallint and wallext have not to be
determined in this step. As a consequence, irregular gaps exist between the rooms and the alignment
of rooms along the corridor is not automatically given. Furthermore, uncertain measurements were
not considered during the combinatorial reasoning. Figure 5 shows in the second row the intermediate
result that is found by constraint propagation. Although the result is topologically correct and satisfies
the given constraints defining the floor plan model, it has to be adapted geometrically in a subsequent
step. This will be elaborated in the next section.



ISPRS Int. J. Geo-Inf. 2017, 6, 90 11 of 18

Figure 5. (a–c) Floor plan prediction demonstrated on three examples with regard to
different requirements.

5. Conditional Linear Gaussian Models for Stochastic Floor Plan Prediction

As stated in the previous section, constraint propagation yields an intermediate result with
a correct topology, but suboptimal geometrical parameters. The predicted preliminary rooms do
not fill the entire footprint space. In particular, the alignment of rooms along a corridor is not
guaranteed. The combinatorial reasoning provides initial values that are updated and refined.
The result remains topologically equivalent but becomes geometrically different in order to match
the provided measurements. After tackling the combinatorial task leading to a consistent solution
from a topological point of view, we focus on closing the gaps between the rooms. In this stage, exact
inference can be performed in order to satisfy this task.

The inference is realized in the frame of a stochastic reasoning which gives access to well known
statistical algorithms. The functional model is defined basically by two types of constraints that ensure
the geometrical consistency. The most important constraint describes the local relation between two
adjacent rooms. We exploit the fact that the combinatorial component finds the bilateral relations
between rooms. For example, if the ith room is left to the jth room, then their coordinates are related by:

xi + wi + wallint − xj = 0. (8)

This constraint enforces not only the adjacency between rooms but also the alignment of rooms
along corridors. This is a consequence of the rectangular shaped rooms according to the Manhattan
world assumption. It should be noted that constraint (8) is a part of constraint (6) since topological
aspects do not have to be considered anymore.

Similar to the constraint (4), the exact location of the reference point of each room is corrected
exploiting the information about windows’ correspondences to rooms from the combinatorial part:

ymin = yi − wallext. (9)

Again, this constraint exemplarily holds for windows (and their associated rooms) that lie on the
front side of the floor.
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In order to perform a stochastic reasoning, we make use of probability density functions
addressing the uncertainty of the model parameters. It can be stated that the prior knowledge is
in principle neither Gaussian nor unimodal. This statement can be confirmed in Figure 2b exemplified
by the room width as an important part of our stochastic background knowledge. Non-Gaussian and
multimodal distributions are known to not be suitable for efficient and exact reasoning. We mentioned
already that we overcome this obstacle by using Gaussian mixtures. When we use the intermediate
model of the combinatorial part as a starting point for the stochastic estimation of geometric parameters,
each model parameter is related to one component of a Gaussian mixture. Using this approach,
we can safely assume that parameters are normally distributed in the following and are no longer
multimodal. We are now in a special, well-understood field of stochastic reasoning with probabilistic
graphical models.

Probabilistic graphical models are nowadays one of the most prominent and most powerful
methods for reasoning in uncertain domains. Bayesian Networks are one type of graphical model
represented by directed graphs, where each node v ∈ V is related to a random variable Xv and
where the absence of edges indicates independencies between these model parameters ([12]). Random
variables are characterized by conditional probability distributions (CPD) P(Xv|Xpa(v)) that give
probabilities for each variable status dependent on the instantiation of its parent nodes pa(v), which
are its immediate predecessors as induced by the graph. The graph structure enables a compact
representation of a joint distribution and paves the way for an efficient inference in order to determine
the posterior distribution given an observation. The presented floor plan model is defined by
constraints on discrete as well as continuous variables and thus has to be represented by hybrid
networks that are characterized by nodes associated with discrete as well as continuous variables
X = X∆ ∪ XΓ. In contrast to approximate reasoning, exact inference within hybrid networks is in
general not feasible. The feasibility is achieved with additional assumptions such as that a parameter
X is normally distributed with mean µ and variance σ2:

p(x; µ, σ2) = N(µ, σ2) =
1

(2πσ2)1/2 exp
(
− (x− µ)2

2σ2

)
.

A special case of Bayesian Networks is the conditional linear Gaussian (CLG) network ([31,32])
that assumes Gaussian distributions for the continuous parameters. All continuous variables have to
be described by conditional linear Gaussian CPDs, and their corresponding continuous nodes are not
allowed to be a parent of a discrete node. A conditional linear Gaussian CPD with I ⊆ X∆ and Z ⊆ XΓ

is defined as
p(X|Z = z, I = τ) = N(µτ + βT

τ z, στ),

where µτ is a mean value for instantiation τ, βτ a vector of regression coefficients and στ the
corresponding variance.

The joint distribution in a hybrid network can thus be defined as an |XΓ|-dimensional
Gaussian distribution

p(X∆ = τ) · N|XΓ |(µτ , σ2
τ) = ∏

v∈V∆

P(τv|τpa(v)) ∏
w∈VΓ

p(yw|Xpa(w))

for each instantiation τ of X∆ ([33]).
In the context of floor plan modeling, our problem fits well the assumptions on CLGs. Therefore,

we use a CLG network in order to model uncertainty and improve the intermediate result from
the CLP. The selection of the components of the Gaussian mixtures allows us to use a specially
structured Bayesian Network: a state-observation model with an n-dimensional state vector x ∈ Rn

representing the model parameters and an m-dimensional observation vector o ∈ Rm that can be
described by the mapping o = Mx with a measurement matrix M ∈ Rn×m. For such state estimations,
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the correction step of Kalman filter is an efficient algorithm for calculating the posterior. It assumes
that state transition and measurement can be described linearly and initial beliefs are represented by
multivariate Gaussian distributions.

In our context, Gaussian distributions with µ and σ are carried over from the constraint solver
of the reasoner and are augmented by two dimensions in order to model the exterior and interior
walls. The functional model represented by the measurement matrix M is defined according to
Equations (8) and (9). It should be noted that in this case compared to Equation (6), the equality
of parameters is converted into a substraction that equals zero. In this way, the state-observation
model can be used with a pseudo-observation equal to zero. The posterior is computed by matrix
multiplications similar to the correction step of the Kalman filter. The Kalman gain

K = ΣMT(MΣMT + Q)−1 (10)

is used to update, that is, to adjust the intermediate result of the combinatorial component and the
Gaussian distributions are updated by

µ = µ + K(o−Mµ),

Σ = (Id− KM)Σ),
(11)

where Q ∈ Rm×m is the Gaussian noise of the observations and Id is the identity matrix.
Finally, the most likely assignment (MAP assignment) for given evidence E = e is found by

maximizing the posterior probability for variables W = X \ E: MAP(W|e) = arg maxω P(ω, e). The
presented work aims to find the k most probable explanations, denoted by MAPk(W|e), in order to
assess the quality of the solutions.

The reasoner provides means µi ∈ R|XΓ | for continuous model parameters of the ith hypothesis
and the related instantiations τi ∈ R|X∆ | for discrete variables. Final hypotheses are ordered by their
(unnormalized) probabilities Pi calculated on the basis of the a priori known distributions:

Pi = exp(
|XΓ |
∑
j=1

log(pd f 01
j (µij))),

where pd f 01
j is the on [0...1] scaled density of the distribution corresponding to the jth model parameter.

We finally get a set of hypotheses of the most probable floor plans given the observations:

Hbest = (µ1, τ1, P1), ..., (µk, τk, Pk).

Since, in this stage, we can assume Gaussian distributions, likelihood of hypotheses is calculated
based on the given covariance matrices and the residuals in the ordinary way. The probability density
functions for each model parameter provide the possibility to assess the likelihood of each hypothesis
and order them accordingly.

6. Results and Discussion

As a result, the reasoner yields automatically the most probable floor plans in significantly
less than a second in nearly all cases on a Windows 64 Bit machine (3.4 GHz, 16 GB RAM). We
assumed standard deviations of 10 cm for the location of windows and yielded, in our test cases,
accuracies for the model parameters between 10 and 20 cm. The results are summarized in Figure 5.
Each predicted floor plan in the last row corresponds to the best ranked hypothesis found by our
approach. The second row shows the intermediate results provided by the constraint propagation. For
comparison, the reference floor plans are depicted in the first row. The quality of the results depends
on how much the floor plans meet the norm with respect to the distributions derived from the prior
knowledge.
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It can be seen that the reasoning component in the combinatorial part estimates the correspondence
of windows to rooms and determines the approximate location of each room. Not modeling the interior
walls provides a buffer which supports preserving topological correctness. Geometric consistency is
considered in the next step as well. The statistical component fills the gaps by adjusting the shape
and location parameters and the depth of walls. The alignments of rooms along existing corridors are
ensured as well. The listed results of our reasoning process show exemplarily floor plans predicted
with regard to different requirements. The first column depicts a rectangular floor plan stemming from
an office building. Most of the buildings are characterized by a rectangular shape. The second column
shows a floor plan that does not satisfy the rectangularity assumption. In this case, it is adapted to a
rectangular shape by adding four auxiliary rooms. Nevertheless, the non-rectangularity turns out to
be beneficial and can be exploited to determine grid points for the discretization of the x-coordinate.
While a simple unstructured rectangular footprint provides no information about walls, in this case,
the left and right boundaries of the protrusions indicate an interior wall as a bound for a room at this
position. The last row visualizes the results of the reasoning for a floor plan in a residential house.
The particularity for this type of floor plan is that the rooms usually do not have an identifying number
that could restrict their location.

How the knowledge about room numbers influences the prediction is shown in Figure 6. Due to
the soft constraint of adjacent rooms in the case of consequent room numbers, the reasoner finds the
correct ordering of the rooms and thus predicts the floor plan. The left result is avoided using an upper
bound for the number of the violations of the soft constraint so that only rooms 1.006 and 1.007 are not
adjacent. Furthermore, the knowledge of one single correspondence of a room to a window accelerates
the reasoning process. This fact is especially beneficial for rooms whose associated windows are easily
identifiable from outside, such as the case of stairs.

Figure 6. The incorporation of room numbers in (b) contributed to better results than without room
number information in (a).

Derivation of a 3D Indoor Model from Predicted Floor Plans

Up to now, we have described how floor plans can be estimated without any indoor measurements.
This 2D model is extended to a 3D model by extruding the walls of the rooms and inserting windows
and doors. Windows are known a priori from outdoor measurements. Doors can be predicted due to
available distributions of the location of doors from annotated data. Figure 7 shows these distributions,
where possible locations of a door are divided into left, right or middle. Hypotheses are derived
depending on the size of the rooms, which influences the distribution.

The height of the walls in turn is derived from the height of the facade and the location of windows.
As described in [13], the height of each story can easily be derived by kernel density estimations based
on 3D point clouds of facades. Since windows are usually located at hip height, the knowledge can be
exploited to predict the location of the floor within the building.

Figure 8 shows the 3D indoor model corresponding to the floor plan derived in Figure 5b. In rooms
with a width smaller than 3 m, doors are mostly located in the middle of the wall shared with the
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corridor. In larger rooms, the histogram shows that the left and right position of the door is more
probable. The doors in our 3D model are predicted based on these distributions. Special rules are
introduced in order to model architectural features. For example, for the rooms at the right side of the
building, doors cannot be located close to the right wall, as indicated by the learned distribution, since
the stairs would avoid this placing (cf. reference image in Figure 5b. Furthermore, in small toilets, such
as room 1.010, the door does not lie in the middle since the space should be used to place a sink close
to the door. A courtroom in cultural heritage buildings, such as the case here, usually has the door
centered in the wall while lecture halls or auditoriums locate the door at the left or right side due to
the rows of chairs and their accessing corridor. False positives of our door prediction are marked with
green dotted lines. Future work will take this issue into account based on a supervised classification
task in order to predict doors in a more robust way.

Figure 7. Histograms of the location of doors depending on the width of rooms. This information is
used for the prediction of door locations in derived floor plans for 3D indoor modeling.

Figure 8. 3D indoor model of the resulted floor plan from Figure 5b. Door locations and story heights
are derived and classified from background knowledge.
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7. Conclusions

The paper presents a novel approach for the prediction of floor plans without the need of any
indoor measurements. The algorithm represents prior knowledge with probability distributions of
the model parameters on the one hand and linear as well as bilinear constraints on the other hand,
using an extensive data analysis. This analysis is based on a large database of about 1600 buildings,
which captures, among others, shape and location parameters of the rooms. Parameter distributions
are represented by Gaussian mixtures that are flexible enough to model multi-modal distributions on
the one hand, and can be reduced in our approach to single Gaussian distributions allowing exact
stochastic inference on the other hand. Constraints together with probability density functions reduce
the search space and enable reconstruction of floor plans based on otherwise insufficient data.

In order to be able to apply exact stochastic inference in complex models, we combine constraint
processing with a conditional linear Gaussian graphical model. The combinatorial problem of assigning
each window to a room and determining the bilateral relations between rooms is solved by constraint
propagation, leading to preliminary topological models. This intermediate result is adjusted by a
statistical component that aligns rooms along corridors where possible and estimates walls completing
the floor plan model.

Initially, we had assumed that floor plans and rooms are rectangular. Figure 8, however, illustrates
how an extension allows more general shapes of floor plans. We are aware that there are more general
room layouts such as L, T or even U shaped rooms. Despite these shapes of rooms seeming to violate
basic assumptions on general approaches, we believe that they can be modeled as a composition of
two or more rectangular rooms. Whereas the stochastic modeling seems to be feasible, the modeling
and design of constraints for a constraint solver will be a subject of future work.

Based on the predicted floor plans, a 3D indoor model is built with the use of architectural
regularities and probability distributions exploited for the prediction of doors. The floor heights
are extracted from the distances between windows from subsequent floors. The door locations are
predicted using Gaussian mixtures, whereas the shape parameters of doors are derived from probability
density functions depending on the building style.

In this paper, the examples have been chosen in such a way that they represent rectangular models
that cover a significant part of office rooms as well as non-rectangular floor plans. We took not only
post-war building styles into consideration, but also buildings stemming from the beginning of the
last century. The paper dealt also with residential houses. More complex room layouts in this context
will be the topic of a forthcoming paper.

Recently, the integration of BIM and outdoor models in the CityGML format have gained more
attention. BIM is a hot topic in the context of construction industry and supports both the construction
process and facility management. While, in the recent past, models in the geoinformation and CityGML
context focused on the outer building surfaces, constructive aspects and building indoors are the
main points of interest from a BIM point of view. We believe that, in cases where BIM models are not
available, our approach that predicts indoor models without additional measurements provides a link
between BIM and CityGML.
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