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Abstract

The remarkable advances achieved in both research and development of Data Management as
well as the prevalence of high-speed Internet and technology in the last few decades have caused
unprecedented data avalanche. Large volumes of data manifested in a multitude of types and
formats are being generated and becoming the new norm. In this context, it is crucial to both
leverage existing approaches and propose novel ones to overcome this data size and complexity,
and thus facilitate data exploitation. In this thesis, we investigate two major approaches to
addressing this challenge: Physical Data Integration and Logical Data Integration. The specific
problem tackled is to enable querying large and heterogeneous data sources in an ad hoc manner.

In the Physical Data Integration, data is physically and wholly transformed into a canonical
unique format, which can then be directly and uniformly queried. In the Logical Data Integration,
data remains in its original format and form and a middleware is posed above the data allowing
to map various schemata elements to a high-level unifying formal model. The latter enables
the querying of the underlying original data in an ad hoc and uniform way, a framework which
we call Semantic Data Lake, SDL. Both approaches have their advantages and disadvantages.
For example, in the former, a significant effort and cost are devoted to pre-processing and
transforming the data to the unified canonical format. In the latter, the cost is shifted to the
query processing phases, e.g., query analysis, relevant source detection and results reconciliation.
In this thesis we investigate both directions and study their strengths and weaknesses. For

each direction, we propose a set of approaches and demonstrate their feasibility via a proposed
implementation. In both directions, we appeal to Semantic Web technologies, which provide
a set of time-proven techniques and standards that are dedicated to Data Integration. In the
Physical Integration, we suggest an end-to-end blueprint for the semantification of large and
heterogeneous data sources, i.e., physically transforming the data to the Semantic Web data
standard RDF (Resource Description Framework). A unified data representation, storage and
query interface over the data are suggested. In the Logical Integration, we provide a description
of the SDL architecture, which allows querying data sources right on their original form and
format without requiring a prior transformation and centralization. For a number of reasons
that we detail, we put more emphasis on the logical approach. We present the effort behind an
extensible implementation of the SDL, called Squerall, which leverages state-of-the-art Semantic
and Big Data technologies, e.g., RML (RDF Mapping Language) mappings, FnO (Function
Ontology) ontology, and Apache Spark. A series of evaluation is conducted to evaluate the
implementation along with various metrics and input data scales. In particular, we describe an
industrial real-world use case using our SDL implementation. In a preparation phase, we conduct
a survey for the Query Translation methods in order to back some of our design choices.
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CHAPTER 1

Introduction

"You must be the change you wish to see
in the world."

Mahatma Gandhi

The technology wheel has turned remarkably quickly in the last few decades. Advances
in computation, storage and network technologies have led to the extensively digital-ized era
we are living in today. At the center of the computation-storage-network triangle lays data.
Data, which is an encoded information at its simplest, has become one of the most valuable
human assets exploiting of which governments and industries are mobilized. Mathematician
Clive Humby once said: "data is the new oil". Like oil, the exploitation process of data faces
many challenges, of which we emphasis the following categories. First, the large sizes of data
render simple computational tasks prohibitively time and resource-consuming. Second, the very
quick pace at which modern high-speed and connected devices, sensors and engines generate
data. Third, the diverse formats that are result of the diversification of data models and the
proliferation of data management and storage systems. These three challenges, denoted Volume,
Velocity and Variety, respectively form the 3-D Data Management Challenges put forward by
Doug Laney [1], which was later adapted to the 3-V Big Data Challenges. Beyond the 3-V
model, few other challenges have also been deemed significant and, thus, been incorporated,
such as Veracity and Value. The former is raised when data is collected en mass with little to
no attention dedicated to its quality and provenance. The latter is raised when a lot of data is
collected but with no plausibly added value to its stakeholders or external users.
Nowadays, every agent, be it human or mechanical, is a contributor to the Big Data phe-

nomenon. Individuals produce data through their connected handheld devices that they use to
perform many of their daily life activities. For example, communicating with friends, surfing
the Internet, partaking in large social media discourses, playing video games, traveling using
GPS-empowered maps, even counting steps and heartbeats, etc. Industries are contributors
through e.g., analyzing and monitoring the functionality of their manufactured products, health
and ecological institutions through caring for the environment sanity and general human health,
governments through providing inhabitants safety and well-being, etc.

Traditionally, data was stored and managed in the Relational Model [2]. The Relational Data
Management is a well-established paradigm under which a large body of research, a wide array
of market offerings and a broad standardization efforts have emerged. The Relational Data
Management offers a great deal of system integrity, data consistency, and access uniformity, all
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Chapter 1 Introduction

the while reducing the cost of system maintainability and providing advanced access control
mechanisms. However, the advent of extremely large-scale Big Data applications revealed the
weakness of Relational Data Management at dynamically and horizontally scaling the storage
and querying of massive amounts of data. To overcome these limitations and extend application
possibilities, a new breed of data management approaches have been suggested, in particular
under the so-called NoSQL (Not only SQL) family. With the opportunities it brings, this
paradigm shift contributes to broadening the Variety challenge.
Therefore, out of the five Big Data challenges, our main focus in this thesis is Variety with

the presence of variably large volumes of data. Unlike Volume and Velocity problems that can
be addressed in a once-for-all fashion, the Variety problem space is dynamic inherent to the
dynamicity of data management and storage technologies it has to deal with. For example, data
can be stored under a relational, hierarchical, or graph model; as it can also be stored in plain
text, in more structured file formats, or under the various modern NoSQL models. Such data
management and storage paradigms are in continuous development, especially under the NoSQL
umbrella that does not cease to attract significant attention to this very day.

1.1 Motivation

Amid a dynamic, complex and large data-driven environment, enabling data stakeholders,
analysts and users to maintain a uniform access to the data is a major challenge. A typical
starting point for the exploration and analysis of the large repository of heterogeneous data
is the Data Lake. Data Lake is named as an analogy to a natural lake. A lake is a large
pool of water that is in its purest form, which different people frequent for various purposes.
Professionals come to fish or mine, scuba-divers to explore, governments to extract water, etc.
By analogy, the digital Data Lake is a pool of data that is in its original form accessible for
various exploration and analysis purposes. This includes Querying, Search, Machine Learning,
etc. Data Lake management is an integral part of many Cloud providers such as Amazon AWS,
Microsoft Azure, and Google Cloud.

In the Querying use case, data in the Data Lake can directly be accessed, thus, maintaining data
originality and freshness. Otherwise, data can be taken out of the Data Lake and transformed
into another unique format, which then can be queried in a more uniform and straightforward
way. Both approaches, direct and transformed access, have their merits and reasons to exist.
The former (direct) is needed when data freshness is an uncompromisable requirement, or if for
privacy or technical reasons, data cannot be transformed and moved to another environment.
The latter (transformed) is needed if the previous requirements are not posed, if the query
latency is the highest priority, or if there is a specifically desired quality in a certain data model
or management system, in which case data is exhaustively transformed to that data model and
management system.

In this thesis, we focus on enabling a uniform interface to access heterogeneous data sources.
To this end, data has to be homogenized either physically or on-demand. The physical homo-
genization, or as commonly called Physical Integration, transforms data into a unique format,
which then can be naturally queried in a uniform manner. The on-demand homogenization,
or as commonly called Logical Integration, retrieves pieces of data from various sources and
combines them in response to a query. Exploring the two paths, their approaches and methods,
and in what context one can be superior to the other are what motivate the core of this thesis.
Figure 1.1 illustrates the differences between the Virtual and Physical Integration. The latter

2
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Figure 1.1: General overview. For Physical Integration (right side), all data is transformed then queried.
For Virtual Integration (left side), data is not transformed; the query accesses (only) the relevant original
data sources.

accesses all the data after being thoroughly transformed, while the former accesses directly the
original data sources. Query execution details are hidden from the figure; it is to be found
within the two big boxes of the figure, gray (left) and colored (right).

1.2 Problem Definition and Challenges

As stated in the Introduction (Chapter 1), the Variety challenge is still less adequately addressed
in comparison to the other main Big Data dimensions Volume and Velocity. Further, observing
the efforts that try to address the Variety challenge, cross-accessing large heterogeneous data
sources is one of the least tackled sub-challenges (see Related Work, Chapter 3). On the other
hand, traditional Data Integration systems fall short in embracing the new generation of data
models and management systems. The latter are based on substantially different design principles
and assumptions. For example, traditional Data Integration assumes a certain level of model
uniformity that new Data Management systems comply against. Modern distributed database
systems (e.g, NoSQL stores) opened the flour to more flexible models such as the document
or wide columnar. Additionally, traditional Data Integration also assumes the centralized
nature of all the accessed data, while modern Data Management systems are decentralized and
distributed. For example, distributed file systems (e.g., HDFS [5]) invalidate the traditional
assumption that data has to fit in memory or storage of a single machine in order for the various
retrieval mechanisms (e.g., indexes) to be operational and effective. Such assumptions hinder
the capability of traditional Data Integration systems to cater for the large scale and various
types of the new Data Management paradigms.
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Therefore, the general problem that this thesis addresses is providing a uniform access to
heterogeneous data, with a focus on the large-scale distributed space of data sources. The
specific challenges that the thesis targets are the following:

Challenge 1: Uniform querying of heterogeneous data sources

There are numerous approaches to access and interact with a data source, which we can
categorize into APIs and query languages. APIs, for Application Programming Interfaces, expose
programmatic methods allowing users to write, manipulate and read data using programming
languages. A popular example is JDBC (Java Database Connectivity), which offers a standardized
way to access databases. Programmatic methods can also be triggered distantly via a Web
protocol (HTTP), turning an API into a Web API. There are two main approaches by which
Web APIs receive commands from users. The first is by providing the method name to execute
remotely, an approach called RPC (Remote Procedure Call). The second is by issuing more
structured requests ultimately following a specific standard; an example of a prominent approach
is REST (Representational State Transfer). As these methods are effectively executed by a Data
Management system, they can only access its underlying data.
The second approach of interacting with a data source is via query languages. The range of

options here is wider than APIs. Examples include SQL for accessing relational databases (e.g.,
SQL Server) or tabular data in a more general sense (e.g., Parquet files), SQL-derived languages
(e.g., Cassandra Query Language, CQL), XPath/XQuery for XML data, JSON-based operations
for Document stores, Gremlin and Cypher for graph data, etc. An access method that falls in
between the two categories is GraphQL, which allows to run queries via a Web API. However,
similarly to APIs, queries in these languages are only posed against a specific data source to
interact with its underlying data. On the other hand, a few modern frameworks (e.g., Presto,
Drill) have used SQL syntax to allow the explicit reference to heterogeneous data sources in the
course of a single query, and then to retrieve the data from heterogeneous sources accordingly.
However, the challenge is providing a method that accesses several sources at the same time
in an ad hoc manner without having to explicitly reference the data sources, like if the user is
querying a single database.

Challenge 2: Querying original data without prior data transformation

As mentioned earlier in this chapter, in order to realize a uniform access to heterogeneous data
sources, data needs to be either physically or virtually integrated. Unlike the Physical Integration
that unifies the data model in a pre-processing ingestion phase, the Virtual Integration requires
to pose queries directly against the original data without prior transformation. The challenge
here is incorporating an intermediate phase that plays three roles (1) interpreter, which analyses
and translates the input query into requests over data sources, (2) explorer, which leverages
metadata information to find the sub-set of data sources containing the needed sub-results, and
(3) combiner, which collects and reconciles the sub-results forming the final query answer. As
we are dealing with a disperse distributed data environment, an orthogonal challenge to the
three-role middleware is to ensure the accuracy of the collected results. If it issues an incorrect
request as interpreter, it will not detect the correct sources (false positives) as explorer, and,
thus, will not return the correct sub-results as combiner. Similarly, if it detects incorrect links
between query parts as interpreter, it will perform a join yielding no results as combiner.

4



1.2 Problem Definition and Challenges

Challenge 3: Coping with the lack of schema and semantics in data lakes

By definition, a Data Lake is a schema-less repository of original data sources. In the absence of
a general schema or any mechanism that allows to deterministically transition from a query to
a data source, there is no way to inter-operate, link and query data over heterogeneous data
sources in a uniform manner. For example, a database or a CSV file uses a column that has
no meaning, e.g., col0 storing first names of customers. Also, different data sources can use
different naming formats and conventions to denote the same schema concept. For example, a
document database uses a field called fname to store customer’s first names. The challenge is
then to incorporate a mechanism that allows to (1) abstract away the semantic and syntactic
differences found across the schemata of heterogeneous data sources, and (2) maintain a set of
association links that allow detecting a data source given a query or a part of a query. The
former mechanism relies on a type of domain definition containing abstract terms, which are to
be used by the query. The latter mechanism maintains the links between these schema abstract
terms and the actual attributes in the data sources. These mechanisms can be used to fully
convert the data in a Physical Integration of query the original data on-the-fly in a Virtual
Integration.

Challenge 4: Scalable processing of expensive query operations

As the scope of our work is mostly dealing with distributed heterogeneous data sources, the
challenge is to provide a scalable query execution environment that can accommodate the
expensive operations involving those data sources. The environment is typically based on the
main memory of multiple compute nodes of a cluster. A query can be unselective, i.e., it requests
a large set of results without filters, or with filters that do not significantly reduce the size
of the results. For example, an online retailer is interested in knowing the age and gender of
all customers who have purchased at least three items during November’s promotional week
of the last three years. Although we filtered on the year, month and number of purchased
items, the result set is still expected to be large because promotional weeks are very attractive
shopping periods. A query can also join data coming from multiple data sources, which is typical
in heterogeneous environments such as the Data Lake. For example, the retailer asks to get
the logistics company that shipped the orders of all the customers who purchased fewer items
this year in comparison to the previous year and who left negative ratings about the shipping
experience. This query aims at detecting which logistic companies have caused inconvenient
shipping experience making certain customers rely less on the online retailer, and, thus, shop less
therefrom. To do so, the query has to join between Logistics, Customers, Orders, and Ratings,
which is expected to generate large intermediate results only containable and processable in a
distributed manner.

Challenge 5: Enabling joinability of heterogeneous data sources

When joining various data sources, it is not guaranteed that identifiers on which join queries
are posed match, and, thus, the join is successful and the query returns (the correct) results.
The identifiers can be of a different shape or lay in a different value range. For example, given
two data sources to join, values of the left join operand are in small letters and values of the
right are in big letters; or values of the left side are prefixed and contains an erroneous extra
character, and values of the right size are not prefixed and without any erroneous characters.
The challenge is then to correct these syntactic value misrepresentations on the fly during query
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execution, and not in a pre-processing phase generating a new version of the data, which then is
queried.

1.3 Research Questions
To solve the above challenges we appeal in this thesis to Semantic technologies, which provide
a set of primitives and strategies dedicated to facilitating Data Integration. Such primitives
include ontologies, mapping language and a query language, with strategies for how these can
collectively be used to uniformly integrate and access disparate data. These primitives and
strategies allow to solve both Physical and Logical Data Integration problems. In the Physical
Integration, data is fully converted under the Semantic Web data model, namely RDF [6]. In
the Virtual Integration, data is not physically converted but integrated on-demand and accessed
as-is. In both cases Semantic Web query language, SPARQL [7], is used to access the data.

We intend to start our study with a fully Physical Integration where data is exhaustively
transformed into RDF, then we perform the necessary steps to bypass the transformation and
directly access the original data. The advantage of this approach is twofold. First, it will reveal
to us what are the necessary adaptations to transition from a physical off-line to a virtual on-line
on-demand data access. Second, it will unveil the various trade-offs to make in each direction in
order to reap the benefit of each. Finally and for the Virtual Integration in particular, data
remains in its source only effectively accessible using its native query language. Therefore, it is
necessary to ensure the suitability of SPARQL as a unified access interface, or a more efficient
language exists to which SPARQL should be translated. Having clarified the context, our thesis
work is based on the following research questions:

RQ1. What are the criteria that lead to deciding which query language can be most
suitable as the basis for Data Integration?

As Data Integration entails a model conversion, either as physical or virtual, it is important to
check the respective query language’s suitability to act as a universal access interface. Since we
are basing on Semantic Web data model RDF (introduced later in chapter 2) at the conceptual
level, we default to using its query language SPARQL (also introduced in chapter 2) as the
unified query interface. However, at the physical level, a different data model may be more
suitable (e.g., space efficiency, query performance, technology-readiness, etc.), which requires the
translation of the query in SPARQL to the data model’s query language. An example of this can
be adopting a tabular or JSON data model, in which case SPARQL query needs to be translated
to SQL or a JSON-based query formalism, respectively. On the Virtual Data Integration side,
we may resort to another language if it has conversions to more query languages, thus, enables
access to more data sources. Therefore, we start our thesis by reviewing the literature of query
translation approaches that exist between various query languages, including SPARQL.

RQ2. Do Semantic Technologies provide ground and strategies for solving Physical
Integration in the context of Big Data Management i.e., techniques for the representation,
storage and uniform querying of large and heterogeneous data sources?

To answer this, we investigate Semantic-based Data Integration techniques for ingesting and
querying heterogeneous data sources. In particular, we study the suitability of its data model in
capturing both the syntax and semantics found across the ingested data. We examine Semantic
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techniques for the mapping between the data schema and the general schema that will guide
the Data Integration. One challenge in this regard is the heterogeneous data models e.g., table
and attributes in relational and tabular data, document and fields in document data, type and
properties in graph data, etc. We aim at forming a general reusable blueprint that is based
on Semantic Technologies and state-of-the-art Big Data Management technologies to enable
the scalable ingestion and processing of large volumes of data. Since data will be exhaustively
translated to the Semantic data model, we will dedicate special attention to optimizing the size
of the resulted ingested data, e.g., by using partitioning and clustering strategies.

RQ3. Can Semantic Technologies be used to incorporate an intermediate middleware
that allows to uniformly access original large and heterogeneous data sources on demand?

To address this question, we analyze the possibility of applying existing Semantic-based Data
Integration techniques to provide a virtual, uniform and ad hoc access to original heterogeneous
data. By original, we mean data as and where it was initially collected without requiring
prior physical model transformation. By uniform, we mean using only one method to access
all the heterogeneous data sources, even if the access method is based on a formalism that is
different from that of one or more of the data sources. By ad hoc, we mean that from the user’s
perspective, the results should be derived directly starting from the access request and not by
providing an extraction procedure. A uniform ad hoc access can be a query in a specific query
language, e.g., SQL, SPARQL, XPath, etc. The query should also be decoupled from the data
source specification, meaning that it should not explicitly state the data source(s) to access.
Given a query, we are interested in analyzing the different mechanisms and steps that lead to
forming the final results. This includes loading the relevant parts of the data into dedicated
optimized data structures where they are combined, sorted or grouped distributedly in parallel.

RQ4. Can Virtual Semantic Data Integration principles and their implementation be
applied to both synthetic and real-world use cases?

To answer this, we evaluate the implementation of the previously presented principles and
strategies for Virtual Data Integration. We consider several metrics, namely data execution
time, results accuracy, and resource consumption. We use both an existing benchmark with
auto-generated data and queries, as well as a real-world use case and data. Such evaluations
allow us to learn lessons that help improve the various implementations, e.g., performance
pitfalls, recurrent SPARQL operations and fragments to enrich the supported fragment, new
demanded data sources, etc.

1.4 Thesis Overview
In order to prepare the reader for the rest of this document, we present here an overview of the
main contributions brought by the thesis, with references to the addressed research questions.
We conclude with a list of publications and a glance at the structure of the thesis.

1.4.1 Contributions

In a nutshell, this thesis looks at the techniques and strategies that enable the ad hoc and uniform
querying of large and heterogeneous data sources. Consequently, the thesis suggests multiple
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methodologies and implementations that demonstrate its findings. With more details, the
contributions are as follows:

1. Contribution 1: A survey of Query Translation methods. Querying heterogeneous data in
a uniform manner requires a form of model adaptation, either permanently in the Physical
Integration or temporary in the Virtual Integration of diverse data. For this reason, we
conduct a survey on Query Transformation methods that exist in the literature and as
published tools. We propose eight criteria according to which we classify translation
methods from more than forty articles and published tools. We consider seven popular
query languages (SQL, XPath/XQuery, Document-based, SPARQL, Gremlin, and Cypher)
where popularity is judged based on a set of defined selection criteria. In order to facilitate
the reading of our findings vis-à-vis the various survey criteria, we provide a set of graphical
representations. For example, a historical timeline of the methods’ emergence years, or
star ratings to show the translation method’s degree of maturity. The survey allows us to
discover which translation paths are missing in the literature or that are not adequately
addressed. It also allows us to identify gaps and learn lessons to support further research
on the area. This contribution aims to answer RQ1.

2. Contribution 2: A unified semantic-based architecture, data model and storage that are
adapted and optimized for the integration of both semantic and non-semantic data. We
present a unified architecture that enables the ingestion and querying of both semantic
and non-semantic data. The architecture presents a Semantic-based Physical Integration,
where all input data is physically converted into the RDF data model. We suggest a set of
requirements that the architecture needs to fulfill, such as the preservation of semantics
and efficient query processing of large-scale data. Moreover, we suggest a scalable tabular
data model and storage for the ingested data, which allows for efficient query processing.
Under the assumption that the ingestion of RDF data may not be as straightforward as
other flat models like relational or key-value, we suggest a partitioning scheme whereby
an RDF instance is saved into a table representing its class, with the ability to capture
also the other classes within the same class table if the RDF instance is multi-typed. We
physically store the loaded data into a state-of-the-art storage format that is suitable for
our tabular partitioning scheme, and that is queried in an efficient manner using large-
scale query engines. We conduct an evaluation study to examine the performance of our
implementation of the architecture and approaches. We also compare our implementation
against a state-of-the-art triple store to showcase the implementation ability to deal with
large-scale RDF data. This has answers to answer RQ2.

3. Contribution 3: A virtual ontology-based data access to heterogeneous and large data
sources. We suggest an architecture for the Virtual Integration of heterogeneous and
large data sources, which we call Semantic Data Lake, SDL. It allows to query original
data sources without requiring to transform or materialize the data in a pre-processing
phase. In particular, it allows to query the data in a distributed manner, including
join and aggregation operations. We formalize the concepts that are underlying the
SDL. The suggested Semantic Data Lake builds on the principles of Ontolog-Based Data
Access, OBDA [8], hence mappings language and SPARQL query are cornerstones in the
architecture. Furthermore, we allow users to declaratively alter the data on query time
in order to enable two sources to join. This is done on two levels, the mappings and
SPARQL query. Finally, we suggest a set of requirements that SDL implementations
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have to comply with. We implement the SDL architecture and its underlying mechanisms
using state-of-the-art Big Data technologies, Apache Spark and Presto. It supports several
popular data sources, including Cassandra, MongoDB, Parquet, Elasticsearch, CSV and
JDBC (experimented with MySQL, but many other data sources can be connected to via
JDBC in the same way). This contribution aims to answer RQ3.

4. Contribution 4: Evaluating the implementation of the Semantic Data Lake through a
synthetic and a real-world industrial use case. We explore the performance of our imple-
mentation in two use cases, one synthetic and one based on a real-world application from
the Industry 4.0 domain. We are interested in experimenting with queries that evolve a
different number of data sources to assess the ability to (1) perform joins and (2) the effect
of increasing the number of joins on the overall query execution time. We breakdown
the query execution time into its constituent sub-phases: query analyses, relevant data
detection, and query execution time by the query processing engine (Apache Spark and
Presto). We also experiment with increasing sizes of the data to evaluate the implement-
ation scalability. Besides query-time performance, we measure results accuracy and we
collect resource consumption information. For the former, we ensure 100% accuracy of the
returned results; for the latter, we monitor data read/write, data transfer and memory
usage. This contribution has answers to RQ4.

1.4.2 List of Publications

The content of this thesis is mostly based on scientific publications presented at international
conferences and published within their respective proceedings. The following is an exhaustive
list of these publications along with other publications that did not make part of the thesis.
A comment is attached to the publications where I have a partial contribution, and to one
publication (number 2) with another main author involvement. To the other publications, I
have the major contribution, with the co-authors contributing mostly by reviewing the content
and providing supervision advice.

• Conference Papers:
3. Mohamed Nadjib Mami, Damien Graux, Simon Scerri, Hajira Jabeen, Sören Auer,

Jens Lehmann. Uniform Access to Multiform Data Lakes Using Semantic Technologies.
In Proceedings of the 21st International Conference on Information Integration and
Web-based Applications & Services (iiWAS), 313-322. 2019. I conducted most of the
study; co-author Damien Graux contributed to the performance evaluation (Obtaining
and representing Resource Consumption figures, Chapter 8).

4. Mohamed Nadjib Mami, Damien Graux, Simon Scerri, Hajira Jabeen, Sören Auer,
Jens Lehmann. Squerall: Virtual Ontology-Based Access to Heterogeneous and Large
Data Sources. In Proceeding of the 18th International Semantic Web Conference
(ISWC), 229-245, 2019.

5. Gezim Sejdiu, Ivan Ermilov, Jens Lehmann, Mohamed Nadjib Mami. Distlodstats:
Distributed computation of RDF dataset statistics. In Proceedings of the 17th
International Semantic Web Conference (ISWC), 206-222. 2018. This is a joint work
with Gezim Sejdiu. I contributed to formulating and presenting the problem and
solution, and in evaluating the complexity of the implemented statistical criteria.
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6. Kemele M. Endris, Mikhail Galkin, Ioanna Lytra, Mohamed Nadjib Mami, Maria-
Esther Vidal, Sören Auer. MULDER: querying the linked data web by bridging
RDF molecule templates. In Proceedings of the 18th International Conference on
Database and Expert Systems Applications (DEXA), 3-18, 2017. This is a joint work
with Kemele M. Endris and Mikhail Galkin. I contributed to the experimentation,
particularly preparing graph partitioning.

7. Farah Karim, Mohamed Nadjib Mami, Maria-Esther Vidal, Sören Auer. Large-scale
storage and query processing for semantic sensor data. In Proceedings of the 7th
International Conference on Web Intelligence, Mining and Semantics, 8, 2017. This
is a joint work with Farah Karim. I contributed to describing, implementing and
evaluating the tabular representation of RDF sensor data, including the translation
of queries from SPARQL to SQL.

8. Sören Auer, Simon Scerri, Aaad Versteden, Erika Pauwels, Mohamed Nadjib Mami,
Angelos Charalambidis, et al. The BigDataEurope platform–supporting the variety
dimension of big data. In Proceedings of the 17th International Conference on Web
Engineering (ICWE), 41-59, 2017. This is a project outcome paper authored by its
technical consortium. I was responsible for describing the foundations of the Semantic
Data Lake concept, including its general architecture. I also contributed to building
the platform’s high-level architecture.

9. Mohamed Nadjib Mami, Simon Scerri, Sören Auer, Maria-Esther Vidal. Towards
Semantification of Big Data Technology. International Conference on Big Data
Analytics and Knowledge Discovery (DaWaK), 376-390, 2016.

• Journal Articles:

1. Kemele M. Endris, Mikhail Galkin, Ioanna Lytra, Mohamed Nadjib Mami, Maria-
Esther Vidal, Sören Auer. Querying interlinked data by bridging RDF molecule tem-
plates. In Proceedings of the 19th Transactions on Large-Scale Data-and Knowledge-
Centered Systems, 1-42, 2018. This is a joint work with Kemele M. Endris and
Mikhail Galkin. An extended version with the same contribution as the conference
number 6 below.

2. Mohamed Nadjib Mami, Damien Graux, Simon Scerri, Harsh Thakkar, Sören Auer,
Jens Lehmann. The query translation landscape: a survey. In ArXiv, 2019. To be
submitted to an adequate journal. I conducted most of this survey, including most
of the review criteria and the collected content. Content I have not provided is the
review involving Tinkerpop and partially Neo4J (attributed to Harsh Thakkar).

• Demonstration Papers:

12. Mohamed Nadjib Mami, Damien Graux, Simon Scerri, Hajira Jabeen, Sören Auer,
Jens Lehmann. How to feed the Squerall with RDF and other data nuts?. In Proceed-
ing of the 18th International Semantic Web Conference (ISWC), Demonstrations and
Posters Track, 2019.

13. Mohamed Nadjib Mami, Damien Graux, Simon Scerri, Hajira Jabeen, Sören Auer.
Querying Data Lakes using Spark and Presto. In Proceedings of the World Wide Web
Conference (WWW), 3574-3578. Demonstrations Track, 2019.
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14. Gezim Sejdiu, Ivan Ermilov, Mohamed Nadjib Mami, Jens Lehmann. STATisfy
Me: What are my Stats?. In Proceedings of the 17th International Semantic Web
Conference (ISWC), Demonstrations and Posters Track, 2018. This is a joint work
with Gezim Sejdiu. I contributed to explaining the approach.

• Industry Papers:
1. Mohamed Nadjib Mami, Irlán Grangel-González, Damien Graux, Enkeleda Elezi,

Felix Lösch. Semantic Data Integration for the SMT Manufacturing Process using
SANSA Stack. I contributed to deploying, applying and evaluating SANSA-DataLake
(Squerall), and partially establishing the connection between SANSA-DataLake and
another component of the project (Visual Query Builder).

1.5 Thesis Structure
The thesis is structured in nine chapters outlined as follows:

• Chapter 1: Introduction. This chapter presents the main motivation behind the thesis,
describes the general problem it tackles and lists its challenges and main contributions.

• Chapter 2: Background and Preliminaries. This chapter lays the foundations for all the
rest of the thesis, including the required background knowledge and preliminaries.

• Chapter 3: Related Work. This chapter examines the literature for related efforts in
the topic of Big Data Integration. The reviewed efforts are classified into Physical Data
Integration and Virtual Data Integration, each category is further divided into a set of
sub-categories.

• Chapter 4: Overview on Query Translation Approaches. This chapter presents a literature
review on the topic of Query Translation, with a special focus on the query languages
involved in the thesis.

• Chapter 5: Physical Big Data Integration. This chapter describes the approach of Semantic-
based Physical Data Integration, including a performance comparative evaluation.

• Chapter 6: Virtual Big Data Integration - Semantic Data Lake. This chapter describes the
approach of Semantic-based Virtual Data Integration, also known as Semantic Data Lake.

• Chapter 7: Semantic Data Lake Implementation: Squerall. This chapter introduces an
implementation of the Semantic-based Virtual Data Integration.

• Chapter 8: Squerall Evaluation and Use Cases. This chapter evaluates and showcases two
applications of the SDL implementation, one synthetic and one from a real-world use case.

• Chapter 9: Conclusion and Future Directions. This chapter concludes the thesis revising
the research questions, discussing lessons learned and outlining a set of future research
directions.
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CHAPTER 2

Background and Preliminaries

"The world is changed by your example,
not by your opinion."

Paulo Coelho

In this chapter, we introduce the foundational concepts that are necessary to understand the
rest of the thesis. We divide these concepts into Semantic Technologies, Big Data Management
and Data Integration. We dedicate section 2.1 to Semantic Technologies concepts, including
Semantic Web canonical data model RDF, its central concept of ontologies and its standard
query language SPARQL. In section 2.2, we define Big Data Management related concepts, in
particular concepts from distributed computing and from modern data storage and management
systems. Finally, Data Integration concepts are introduced in section 2.3.

2.1 Semantic Technologies
Semantic Technologies are a set of technologies that aim to realize Semantic Web principles, i.e.,
let machines understand the meaning of data and interoperate thereon. In the following, we
define the Semantic Web as well as its basic building blocks.

2.1.1 Semantic Web

The early proposal of the Web [9] as we know it today was defined as part of a Linked Information
Management system presented by Tim Berners Lee to his employer CERN in 1989. The purpose
of the system was to keep track of the growing information collected within the company, e.g.,
code, documents, laboratories, etc. The system was imagined to be a ‘web’ or a ‘mesh’ of
information where a person can browse and traverse from one information source (e.g., reports,
notes, documentation) to another. The traversal used a previously known mechanism called
HyperText (1987) [10]. The proposal received encouragement, so Tim, together with colleague
Robert Cailliau, expanded on the key concepts and presented a reformulated proposal entitled:
"WorldWideWeb: Proposal for a HyperText project"[11] with focus on the Web. Years later, in
2001, Tim Berners Lee and colleagues suggested a transition from a Web of documents [12], as it
was conceived, to a Web of data where textual information inside a document is given a meaning,
e.g., athlete, journalist, city, etc. This meaning is specified using predefined vocabularies and
taxonomies in a standardized format, which machines can understand and inter-operate on.
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ex:
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Figure 2.1: An example of RDF triples forming an RDF graph. Resources are denoted by circles and
literals are denoted by rectangles. Instance resource circles are located on the lower box, and Schema
resources are located on the upper box.

The new Web, called Semantic Web, has not only given meaning to previously plain textual
information but also promoted data sharing and interoperability across systems and applications.

2.1.2 Resource Description Framework
To express and capture that meaning, Semantic Web made use of RDF, the Resource Description
Framework, introduced earlier in 1998 by the W3C Consortium [6]. RDF is a standard for
describing, linking and exchanging machine-understandable information on the Web. It denotes
the entities inside Web pages as resources and encodes them using a triple model subject-
predicate-object, similar to subject-verb-object of an elementary sentence. RDF triple can
formally be defined as follows (Definition 2.1):

Definition 2.1: RDF Triple [13]

Let I, B, L be disjoint infinite sets of URIs, blank nodes, and literals, respectively. A tuple
(s, p, o) ∈ (I ∪B) × I × (I ∪B ∪ L) is denominated an RDF triple, where s is called the
subject, p the predicate, and o the object.

Subject refers to a resource, object refers to a resource or a literal value, predicate refers
to a relationship between the subject and the object. Figure 2.1 shows an example of a set
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1 @prefix ex: <ht tp s : / / examples . o rg / automob i l e /> .
2 @prefix rdf: <http : / /www. w3 . org /1999/02/22− rd f−syntax−ns#> .
3
4 ex: Germany rdf:type ex: Country .
5 ex:BMW rdf:type ex:Model .
6 ex:I8 rdf:type ex:Car .
7 ex:I8 ex: assembly ex: Germany .
8 ex:I8 ex: producer ex:BMW .
9 ex:I8 ex: doorType ex: Butterfly .
10 ex:I8 ex: topSpeed "150"^^ xsd: integer .
11 ex:I8 ex: battery "7.1"^^ xsd:float .

Listing 2.1: RDF triples represented by the graph in Figure 2.1.

of RDF triples, collectively forming an RDF graph. We distinguish between data or instance
resources and schema resources1. Data resources are instances of schema resources. For example,
in Figure 2.1, I8, BMW, Germany, and Butterfly are instances while Car, Model and country are
schema resources, also called classes. I8, BMW and Germany are instances of Car, Model and
Country classes, respectively. All resources of the figure belong to the ontology of namespace
’ex’. In the same figure, "7.1" and "250" are literals of type float and integer respectively.

Resources are uniquely identified using URIs (Uniform Resource Identifiers). Unlike URL
(Uniform Resource Locator) that has necessarily to locate an existing Web page or a position
therein, URI is a universal pointer allowing to uniquely identify an abstract or a physical
resource [14] that does not necessarily have (although recommended) a representative Web
page. For example, <http://example.com/automobile/Butterfly> and ex:Butterfly are URIs.
In the latter, the prefix ex denotes a namespace [14], which uniquely identifies the scheme
under which all related resources are defined. Thanks to the use of prefixes, the car door type
Butterfly of URI ex:Butterfly defined inside the scheme ex can be differentiated from the
insect Butterfly of URI ins:Butterfly defined inside the scheme ins. The triples of the RDF
graph of Figure 2.1 are presented in Listing 2.1.

2.1.3 Ontology

Ontology is a specification of a common domain understanding that can be shared between
people and applications. It promotes interoperability between systems and reusability of the
shared understanding across disparate applications [15–17]. For example, ontologies define all
the concepts underlying a medical or an ecological domain that enable medical and ecological
institutions to universally share and interoperate over the same data. By analogy, an ontology
to RDF data, among others, plays the role of a schema to relational data. Ontologies, however,
are encoded using the same model as the data, namely the subject-predicate-project triple
model. Further, ontologies are much richer in expressing the semantic characteristics of the
data. For example, they allow to build hierarchies between classes (e.g., Car as sub-class
of Vehicle) or between properties (e.g., topSpeed as sub-property of metric) or establishing
relations between properties (e.g., inverse, equivalent, symmetric, transitive) by using a set
of axioms. Axioms are partially similar to integrity constraints in relational databases, but
with a richer expressivity. Ontologies can be shared with the community, in contrast to the
1 Another common appellation is A-Box for instance resources and T-Box for schema resources.
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relational schema and integrity constraints, both expressed using SQL query language, that
only live inside and concern a specific database. A major advantage of sharing ontologies is
allowing the collaborative construction of universal schemata or models that outlive the data
they were initially describing. This characteristic complies with one of the original Web of
Data and Linked Open Data principles [18]. Last but not least, ontologies are the driver of one
of the most prominent Semantic Data applications, namely the Ontology-based Data Access
(OBDA) [8]. An ontology can be formally defined as follows (Definition 2.2):

Definition 2.2: Ontology [19]

Let C be a conceptualization, and L a logical language with vocabulary V and ontological
commitment K. An ontology OK for C with vocabulary V and ontological commitment
K is a logical theory consisting of a set of formulas of L, designed so that the set of its
models approximates as well as possible the set of intended models of L according to K.

2.1.4 SPARQL Query Language
Both data and ontology are modeled after the triple model, RDF. Several query languages for
querying RDF have been suggested since its conception. RQL, SeRQL, eRQL, SquishQL, TriQL,
RDQL, SPARQL, TRIPLE, Versa [20, 21]. Among these languages, SPARQL has become a
W3C standard and recommendation [7, 22]. SPARQL, for SPARQL Protocol and RDF Query
Language, extracts data using pattern matching technique, in particular graph pattern matching.
Namely, the query describes the data it needs to extract in the form of a set of patterns. These
patterns are triples with some of their terms (subject, predicate or object) being variable, or
as also called unbound. Triple patterns of a SPARQL query are organized into so-called Basic
Graph Pattern and are formally defined as follows (Definition 2.3):

Definition 2.3: Triple Pattern and Basic Graph Patter [23]

Let U,B,L be disjoint infinite sets of URIs, blank nodes, and literals, respectively. Let V be
a set of variables such that V ∩ (U ∪B ∪L) = θ. A triple pattern tp is a member of the set
(U∪V )×(U∪V )×(U∪L∪V ). Let tp1, tp2, . . . , tpn be triple patterns. A Basic Graph Pattern
(BGP) B is the conjunction of triple patterns, i.e., B = tp1 AND tp2 AND . . . AND tpn

For convenience, SPARQL shares numerous common query operations with other query
languages. For example, the following are operations that have identical syntax to SQL: SELECT
/ WHERE for projection and selection, GROUP BY / HAVING for grouping, AVG|SUM|MEAN|MAX|MIN...
for aggregation, ORDER BY ASC|DESC / DISTINCT /LIMIT / OFFSET as solution modifiers
(SELECT is also a modifier). However, SPARQL contains query operations and functions that
are specific to RDF e.g., blank nodes, which are resources (subject or object) for which the URI
is not specified, functions isURI(), isLiteral(), etc. Additionally, SPARQL allows other forms
of queries than the conventional SELECT queries. For example, CONSTRUCT is used to return
the results (matching triple patterns) in the form of an RDF graph, instead of a table like in
SELECT queries. ASK is used to verify whether (true) or not (false) triple patterns can be
matched against the data. DESCRIBE is used to return an RDF graph that describes a resource
given its URI. See Listing 2.2 for a SPARQL query example, which is used to count the number
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of cars that are produced by BMW, have butterfly doors and can reach a top speed of 180km/h
or above.

1 PREFIX ex: <https :// examples .org/ automobile />
2 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
3
4 SELECT (COUNT (? car) AS ?count)
5 WHERE {
6 ?car rdf:type ex:Car .
7 ?car ex: producer ex:BMW .
8 ?car ex: doorType ex: Butterfly .
9 ?car ex: topSpeed ? topSpeed .
10 FILTER (? topSpeed >= "180")
11 }

Listing 2.2: Example SPARQL Query.

2.2 Big Data Management
Data Management is a fundamental topic in the Computer Science field. The first so-called Data
Management systems to appear in the literature dates to the sixties [24, 25]. Data Management
is a vast topic grouping all disciplines that deal with the data. This ranges from data modeling,
ingestion, governance, integration, curation, to processing, and more. Recently, with the
emergence of Big Data phenomena, Big Data Management concept was suggested [26–29]. In
the following, we define Big Data Management, BDM, and its underlying concepts.

2.2.1 BDM Definitions
Big Data can be seen as an umbrella term covering the numerous challenges that traditional
centralized Data Management techniques faced when dealing with large, dynamic and diverse
data. Big Data Management is a sub-set of Data Management addressing data management
problems caused by the collection of large and complex datasets. Techopedia2 defines Big Data
Management as "The efficient handling, organization or use of large volumes of structured and
unstructured data belonging to an organization.". TechTarget3 defines it as "the organization,
administration and governance of large volumes of both structured and unstructured data.
Corporations, government agencies and other organizations employ Big Data management
strategies to help them contend with fast-growing pools of data, typically involving many
terabytes or even petabytes of information saved in a variety of file formats". Datamation4

defines it as "A broad concept that encompasses the policies, procedures and technology used for
the collection, storage, governance, organization, administration and delivery of large repositories
of data. It can include data cleansing, migration, integration and preparation for use in reporting
and analytics.".

2.2.2 BDM Challenges
The specificity of Big Data Management is, then, its ability to address the challenges that arise
from processing large, dynamic and complex data. Examples of such challenges include:
2 https://www.techopedia.com/dictionary
3 https://whatis.techtarget.com
4 https://www.datamation.com/
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• The user base of a mobile app has grown significantly that the app started generating a
lot of activity data. The large amounts of data eventually exhausted the querying ability
of the underlying database and overflew the available storage space.

• An electronic manufacturing company improved the performance of its automated electronic
mounting technology. The latter started to generate data at a very high pace handicapping
the monitoring system ability to collect and analyze the data in a timely manner.

• Data is averagely large but the type and complexity of the analytical queries, which span
a large number of tables became a bottleneck in generating the necessary dashboards.

• New application needs of a company required to incorporate new types of data management
and storage systems, e.g., graph, document and key-value, which do not (straightforwardly)
fit into the original system data model.

These challenges are commonly observed in many traditional Database Management Systems,
e.g. the relational, or RDBMS. The latter was the de facto data management paradigm for four
decades [30, 31]. However, the rapid growth of data in the last decade has revealed RDBMSs
weakness at accommodating large volumes of data. The witnessed performance downgrade is the
product of their strict compliance with ACID properties [32, 33], namely Atomicity, Consistency,
Isolation and Durability. In a nutshell, Atomicity means that a transaction has to succeed
as a whole or rolled back, Consistency means that any transaction should leave the database
in a consistent state, Isolation means that transactions should not interfere, and Durability
means that any change made has to persist. Although these properties guarantee data integrity,
they introduce a significant overhead when performing lots of transactions over large data. For
example, a write operation to a primary key attribute may be bottlenecked by checking the
uniqueness of the value to be inserted. Other examples include checking the type correctness, or
checking whether the value to be inserted in a foreign key attribute exists already as a primary
key in another referenced table, etc. These challenges are hugely reduced by modern Data
Management systems, thanks to their schema flexibility and distributed nature.

2.2.3 BDM Concepts and Principles
To mitigate these issues, approaches in BDM were suggested e.g., to relax the strict consistency
and integrity constraints of RDBMSs and, thus, accelerate reading and writing massive amounts
of data in a distributed manner. The following is a listing of concepts that contribute to solving
the aforementioned challenges, which mostly stem from Distributed Computing field:

• Distributed Indexing. An index in traditional RDBMSs may itself become a source of
overhead when indexing large volumes of data. In addition to the large storage space it
occupies, maintaining a large index with frequent updates and inserts becomes an expensive
process. Modern distributed databases cope with the large index size by distributing
it across multiple nodes. This is mostly the case of hashing-based indexes, which are
distribution-friendly. They only require an additional hash index that allows to tell
in which node a requested indexed data item is located, then the local index is used
to reach the exact item location. This additional hash index is generally a lot smaller
than the data itself, and it can easily be distributed if needed. For example, an index
created for a file stored in HDFS (Hadoop [34] Distributed File System) [5] can be hash-
indexed to locate which file part is stored in which HDFS block (HDFS unit of storage
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comprising the smallest split of a file, e.g., 128MB). Similarly, Cassandra, a scalable
database, maintains a hash table to locate in which partition (sub-set of the data) a tuple
should be written; the same hash value is used to retrieve that tuple given a query [35].
Traditional tree-based indexes, however, are less used in BDM, as tree data structures are
less straightforward to split and distribute than hashing-based indexes. Just as indexes with
conventional centralized databases, however, write operations (insert/update) can become
slower when the index size grows. Moreover, the indexes in distributed databases are
generally not as sophisticated as their centralized counterparts, e.g. secondary indexes [36].
In certain distributed frameworks, an index may have a slightly different meaning, e.g., in
Elasticsearch search engine an index is the data itself to be queried [37].

• Distributed Join. Joining large volumes of data is a typical case where query performance
can deteriorate. To join large volumes of data, distributed frameworks5 typically try to
use distributed versions of hash join. Using a common hash-based partitioner, the system
tries to bring the two sides of a join into the same node, so the join can be partially
performed locally and thus less data is transferred between nodes. Another common type
of join in distributed frameworks is broadcast join, which is used when a side of the join
is known to be small and thus loadable in the memory of every cluster node. This join
type significantly minimizes data transfer as all data needed from one side of the join is
guaranteed to be locally accessible. Sort-merge join is also used in cases where hash join
involves significant data transfer.

• Distributed Processing. Performing computations e.g., query processing, in a distrib-
uted manner can be substantially different than in a single machine. For example,
MapReduce [38] is a prominent distributed processing paradigm that solves computation
bottlenecks by providing two simple primitives allowing to execute computational tasks
in parallel. The primitives are map, which converts an input data item to a (key,value)
pair, and reduce, which subsequently receives all the values attached to the same key
and performs a common operation thereon. This allows to accomplish a whole range
of computation, from as simple as counting error messages in a log file to as complex
as implementing ETL integration pipelines. Alternative approaches are based on DAG
(Directed Acyclic Graph) [39, 40] processing models, where several tasks (e.g., map, reduce,
group by, order by, etc.) are chained and executed in parallel. These tasks operate on the
same chunk of data; data is only transferred across the cluster if the output of multiple
tasks needs to be combined (e.g., reduce, join, group by, etc.). Knowing the tasks order
in the DAG, it is possible to recover from failure by resuming the failed task from the
previous step, instead of starting from the beginning.

• Partitioning. It is the operation of slicing a large input data into disjoint sub-sets called
partitions. These partitions can be stored in several compute nodes and, thus, be operated
on in parallel. Partitions are typically duplicated and stored in different compute nodes to
provide fault tolerance and improve system availability.

• Data Locality. It is a strategy, adopted by MapReduce and other frameworks, to run
compute tasks on the node where the data needed is located. It aims at optimizing
processing performance by reducing the amount of data transfer across the nodes.

5 We mean here engines specialized in querying (e.g., Hive, Presto) or having query capabilities (e.g., Spark,
Flink). Many distributed databases (e.g., MongoDB, Cassandra, HBase) lack the support of joins

19



Chapter 2 Background and Preliminaries

• BASE Properties. A new set of database properties called BASE, by opposition to the
traditional ACID, has been suggested [41]. BASE stands for Basic Availability, Soft state,
and Eventually consistency, which can be described as follows:

– Basic Availability: It states that the database is available, but it may occur that a
read or a write operation makes the database state inconsistent. A write may not
take effect in all the nodes and reads may not retrieve all the required data due to
possible failures in the cluster.

– Soft State: It states that the system is in constant change due to the write operations
that take effect gradually, e.g., data duplication, recovering from failure by copying
data from a healthy node to a recovering or newly joining node.

– Eventual Consistency: It states that the system will be consistent at some time
thanks to its soft state. Writes will be gradually duplicated and distributed across
the cluster nodes, so a read operation on every node will eventually return the latest
response.

BASE properties have purposely a relaxed consistency semantics as to accelerate query
performance. However, it is not to be implied that they are genuinely unreliable. Consist-
ency may not be an issue in every application. An application requiring a higher degree of
consistency can still enforce it at the application level by incorporating necessary checks
when and where needed. For example, it is possible to check an ID to be inserted in
a foreign key column whether it exists as a primary key in another table. Also, as by
definition, BASE properties instructs that the database will still be consistent after all
data has been distributed and/or duplicated across cluster nodes. This is a necessity in
distributed environments.
We give a few examples for how relaxing consistency relieves query performance. It is
often the case that BASE-compliant databases, which are generally NoSQL stores, are
schemaless or schema-flexible. This allows the underlying Data Management System to
perform writs without checking the compliance of every element of every single entry with
the predefined schema. A specific case is Cassandra database, which takes a few measures
as to relief consistency check and, thus, accelerates query performance. For example,
Cassandra does not check whether a value of a specific ID column exists in the database; if
it exists it gets automatically overwritten, an operation called upsert. In a Big Data scale
environment, lowering the level of consistency can yield a manifold improvement in data
read and write performance. Conversely enforcing consistency at the Data Management
level can easily lead to bottlenecks and failures.

2.2.4 BDM Technology Landscape
The two Big Data dimensions Volume and Variety are tightly related to the data type and
storage properties. Data based on its type is classified into structured, semi-structured and
unstructured. Data based on its storage properties can be classified into three categories:

• Plain Files: this represents the most basic form of storage, where data is written and read
sequentially from a plain text file. Examples include CSV, JSON and XML files.

• File formats: this is a more sophisticated file-based storage, where data is stored following
a specific schema that is optimized for data read and/or write. It consists of file partitions
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and metadata that are utilized by processing engines during computation. Those files
are not human-readable and require external capable processing engines to decode and
process them. Examples include Parquet, ORC and Avro.

• NoSQL Stores: these are modern database systems that emerged to overcome the limit-
ations of traditional, mainly relational, databases when dealing with large volumes and
heterogeneous non-relational types of data. The term NoSQL stands for Not-only-SQL,
meaning that other data formats and, thus, query formalities are possible. As a result,
NoSQL stores have varied characteristics, in terms of their conceptual models, storage
schemes and query languages. Based on those differences, they can be classified into four
categories (see Figure 2.2 for a visual illustration of every category):

– Key-value: the simplest of all, it stores data in the form of associations between a
key and a value, e.g., (City -> "Berlin"). Values vary from atomic in primitive types
to more sophisticated types, e.g., arrays, sets, maps, files. Key-value stores are useful
in performing rapid scans and lookups of known values in e.g., indexes, hash maps,
dictionaries. Their simple model allows them to scale very easily and efficiently. The
key-value concept is the base of all the other NoSQL categories. Examples include
Redis, Memcached and Riak.

– Document: it represents data in the form of documents of variable schema, where
every document is a set of key-value pairs in a JSON-like notation, e.g. {City:
"Berlin", Country: "Germany" }. Like in key-value category, values can store
more complex data types e.g., arrays, objects, etc. Every document can have a
different set of keys (fields). Document stores are useful in writing and reading data
in a JSON-like format with a flexible and nested schema. Examples of Document
stores include MongoDB, Couchbase and MarkLogic.

– Wide Column: the less trivial of the four, it conceptually organizes data into sparse
wide tables called column families. A column family is a set of key-value pairs, where
the key is a row ID and the values are a set of key-value pairs. In the latter, the key
is equivalent to a table column and the value is equivalent to a column value in a
conventional relational table. This allows every entry to include a different set of
columns. Wide Column stores are useful in storing tabular data with records having
variable schema. Examples of Wide Column stores include Cassandra, HBase and
Bigtable.

– Graph: the most varied of the four, it represents data in the form of a graph with
nodes and relations between nodes. There are various models of graphs, two prominent
types being Property Graphs and RDF Graphs. The latter, as we explained in subsec-
tion 2.1.2, build the graph starting from simple statements of subject-predicate-object,
where subject and object are the nodes and predicate is the relationship edge. The
former allows to store extra information about nodes and relationships in the form
of key-value pairs called properties. Graph stores are difficult to horizontally scale
due to their strong connected nature. They are useful in storing highly-interlinked
data, suitable for applications like social network analysis, pattern matching, long
path-traversals (multi-join in the relational model). Examples of Graph stores include
Neo4J, OrientDB and Neptune.

With their significant data model differences, NoSQL stores have several characteristics
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Figure 2.2: A categorization of the NoSQL database family.

that differentiate them from traditional RDBMSs:
– They do not adhere to the relational model, although they may use SQL for querying.

Hence, the "only" in Not-only-SQL and their other Non-Relational appellation.
– They do not have or require a fixed pre-defined schema. For example, in a Document
store, a collection may contain a varied number of fields and data types, or a Wide
Column store may have tuples in the same column family with a varied schema.

– They have a distributed and horizontal scale-out architecture, i.e., they store and
query data across a cluster of multiple nodes. When new data is inserted it is
automatically distributed, often with duplication to provide resiliency to failures.
When new nodes are added to the cluster to accommodate heavier processing, they
are automatically used to store data, a property commonly called Elasticity.

– They trade-off several common query operations in favor of enhancing performance
scalability. For example, Key-value stores allow no filtering on values, Document and
Wide Column stores have no join operation. Joins and other dropped operations
are left to the user to implement at the application level or are delegated to other
processing frameworks also with user intervention. Furthermore, normalization, which
is a fundamental principle in relational databases, is recommended against ([42]) by
NoSQL experts to compensate for the lack of join operation. If there are lots of
join use-cases then NoSQL graph database can be used; however, graph databases
perform aggregation operations poorly in comparison to the other NoSQL databases.

2.3 Data Integration
These Data Management approaches and technologies have given applications a broader set
of options, giving birth to new concepts like Polyglot Persistence [43] and Data Lakes [4].
Polyglot Persistence instructs that application data can be saved across multiple different
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storage mediums, with possible duplication, to optimize for specific data processing types. For
example, full-text search in a corpus of unstructured data can be achieved using Elasticsearch,
analytical queries are applied on column-based file formats like Parquet, highly-interlinked data
processing using a graph database, schema-flexible scenarios can benefit from HBase, etc.
Accessing these heterogeneous sources in a uniform manner is a Data Integration problem.

At the conceptual level, Big Data Integration follows the same principles of a general Data
Integration framework, with concepts like general schema, local schemata and mappings between
them that are used during query processing, see Definition 2.4.

Definition 2.4: Data Integration System [44]

A data integration system IS is defined as a tuple <O, S, M>, where:

• O is the global schema, e.g., an RDF Schema, expressed in a language LO over an
alphabet AO. The alphabet AO consists of symbols for each element in O.

• S is the source schema, expressed in a language LS over an alphabet AS . The
alphabet AS contains symbols for each element of the sources.

• M is the mapping between O and S that is represented as assertions: qs → qo; qo → qs.
Where qs and qo are two queries of the same arity, qs is a query expressed in the
source schema, qo is a query expressed in the global schema. The assertions imply
correspondence between global and source concepts.

We distinguish between two classes of Data Integration: Physical and Virtual, respectively
described in the following two subsections.

2.3.1 Physical Data Integration

Physical Data Integration is the process of transforming the entire data from its original model
to another unified canonical data model adopted by and for a given data-consuming application.
Typically, Physical Integration involves three phases:

• Model Conversion: This includes performing model conversion or adaptation e.g., flattening
if the destination data model is tabular. A common example of a purely Physical Data
Integration is the Data Warehouses, where the destination model is relational and the
data has to be loaded under a very specific schema optimized for analytical queries.

• Data Migration: Data is, next, loaded in accordance with the newly chosen and designed
schema. This step typically follows the ETL process, Extact-Transfom-Load. In ETL, data
may not be loaded as it is extracted but undergoes a series of transformations bringing it
to the desired shape. Then it is loaded into the unified model in a corresponding Data
Management System.

• Query Processing: Queries are posed against the newly designed model over the migrated
and fully homogenized data. Thus, they are expressed in the native query language of the
respective Data Management System or the access system in general.
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2.3.2 Logical Data Integration
Logical Data Integration is the process of querying heterogeneous data sources without any
prior data transformation. This means, unlike the Physical Integration, there is no physical
model conversion or data migration involved. However, the complexity is shifted to the query
processing, where three phases are involved:

• Query Decomposition: The query is analyzed and decomposed into sub-queries that each
is responsible for retrieving a subset of the results.

• Relevant Source Detection: Sub-queries are analyzed with the help of metadata about the
schema composition of the data sources. If a match between the sub-query and schema
elements from a data source, the latter is declared as relevant to the query and accessed.
Multiple approaches for querying the detected relevant data sources have been suggested
in the literature. The sub-query can be translated to a query in the data source query
language or in an intermediate abstract/meta language. It can also trigger other access
mechanisms e.g., HTTPS requests (e.g., post/get), programmatic APIs (e.g., JDBC), etc.

• Results Reconciliation: The results from the sub-queries are combined in accordance with
the query, e.g., aggregated, joined or union’ed.

2.3.3 Mediator/Wrapper Architecture
A popular architecture for Data Integration is the so-called Mediator/Wrapper [45, 46]. In
essence, given a query, the architecture separates the tasks of data collection from the sources
and the reconciliation of results into two layers. The latter being the Mediator and the former
being the Wrapper. The Wrapper layer consists of a set of wrappers, which are components able
to access specific data sources. The wrappers have access to source descriptions e.g. schema,
statistics, cost information, access modality, etc. The Mediator layer, on the other hand, consists
of a mediator component that interfaces with the wrappers. The mediator itself does not possess
the required source descriptions to access data sources. Rather, it triggers multiple wrappers,
which it detects as relevant, to extract sub-sets of the final results. The mediator combines the
latter to form the final query answer using e.g., aggregate, group, join operations in accordance
with the input query.

In its typical form, Mediator/Wrapper architecture consists of only one central mediator and
several wrappers. However, other variations have been suggested, e.g., multiple mediators each
responsible for a separate extract scenario. The Wrapper layer can also include one or more
so-called meta-wrappers [47], which are intermediate wrappers transparently combining results
from multiple basic wrappers and providing a unified output to the mediator. The underlying
model of the mediator can be of any type [48], e.g. relational, object-oriented, JSON-based,
XML-based, streaming, etc. Figure 2.3 shows a Mediator/Wrapper architecture withe multiple
wrappers and a single mediator responsible for requesting data from the wrappers and reconciling
their output afterwards to form the final query answer.

2.3.4 Semantic Data Integration
Using Semantic Technologies, we can implement the Data Integration architecture in the following
way. Ontology serves at defining the general schema O. A set of mappings M between the
ontology and data source schemata Si expressed using a mapping language. Finally, the query
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Figure 2.3: The dashed line is a request flow and the solid line is a data flow.

qo is expressed in SPARQL and uses terms from the ontology O. It is the role of the mappings
to navigate from the query to the correct relevant data sources, a common approach in the
Data Integration literature called Local-as-View [49]. There are several ontology languages with
different levels of expressivity, e.g., RDFS (RDF Schema), OWL (Ontology Web Language) that
has a few variants e.g., OWL Lite, OWL DL (Description Language), OWL Full, OWL2. The
minimum required definitions to achieve a Semantic-based Data Integration are classes and
properties. Classes are mapped to entities (e.g., tables in a relational database) and properties are
mapped to entity attributes (e.g., table columns in a relational database). The use of Ontology
for Data Integration is called Ontology-Based Data Integration (OBDI), or Ontology-Based
Data Access (OBDA) [8, 50], which is already an established paradigm in the literature [51]. In
terms of Mediator/Wrapper architecture, the mediator analyzes the input query and uses the
mappings to detect which data sources are relevant. Once identified, the respective mediator
submits sub-queries to the respective wrappers. The wrappers, having knowledge of the source
descriptions, retrieve sub-sets of the final results and return them in mediator’s intermediate
data model. The mediator combines the sub-results in accordance with the query, e.g., aggregate,
group, order, join, etc. and returns the final query answer.
OBDA principles have been recently implemented on top of large scale data sources, e.g.,

NoSQL databases (See Related Work Chapter 3). The challenge is to support the emerging data
types and mediums at the mappings, mediator and wrappers levels. For example, extend previous
mapping languages to allow annotating the various NoSQL models, propose a specialized data
model for the mediator that is adaptable to the NoSQL wrappers and vice-versa, formalize the
access to the various data sources, etc.

2.3.5 Scalable Semantic Storage and Processing
Physical Semantic Data Integration of large and heterogeneous data sources results in voluminous
RDF datasets, which need to be captured, stored and queried in an efficient manner. To this
end, approaches from Distributed Computing data and Query Processing are incorporated and
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adapted to RDF data model. A prominent example is MapReduce (earlier introduced in this
chapter), which is a general-purpose framework for large-scale processing. As a reminder, it
consists of map and reduce phases, map takes a line from an input data source and emits a
key-value pair; reduce receives all values attached to the same key and applies certain processing
thereon. Applied to RDF query processing, RDF triples are flown through one or more map and
reduce phases in response to a query. For example, in the map, RDF subject goes into the key
position and RDF predicate-object pair goes into the value. With this organization, star-shaped
graph patterns can be answered in the reduce phase. Using Hadoop [34], MapReduce de facto
implementation, data can only be accessed sequentially from its distributed file system, HDFS
(earlier in introduced in this chapter). In order to provide faster random access, a NoSQL model
and storage can be used instead. In this case, RDF triples are stored in a NoSQL database
and queries are translated to the native query syntax of the NoSQL database. In order to
optimize SPARQL query execution performance, several partitioning and storage schemes can
be incorporated. The following are some of the most widely used in the literature (reviewed
later in Chapter 3), illustrated in Figure 2.4:

• Triple Tables: RDF triples are stored in files or tables having as schema RDF’s plain
representation, i.e. (subject, predicate, object). It is the simplest scheme resulting in
a very simple and straightforward ingestion phase. However, query processing can be
complex as it may require a series of self-join. This scheme has been adopted by traditional
single-machine RDBMS-based triple stores e.g., [52], relying heavily on indexes to speedup
triple lookup. However, indexes in large-scale environments are not prevalent due to the
significant cost to build, store, update and maintain.

• Vertical Partitioning [53]: RDF triples are split across several tables or files, one table or
file per predicate. The table or file is bi-columnar, it contains only two columns to store
RDF subject and object. This scheme enables querying a large class of queries as it is
typical for SPARQL queries to have predicates bound [54]. Joins are reduced compared
to Triple Table scheme, but they are still required to perform e.g., subject-object or
object-subject joins. If the typing property, e.g., rdf:type, is present with every subject,
possibly more than one type per subject, the typing table can be very large. Further
splitting and balancing this table can alleviate the ingestion and query processing skew.
Les typically, vertical partitioning can be based on the subject instead of the predicate,
creating one table or file per subject with two columns: predicate and object. It can also
be based on the object with two columns: subject and predicate. However, these models
are likely to generate many more tables of much smaller size, as there are generally more
(distinct) subjects and objects than predicates.

• Property Tables [55]: RDF triples are stored into tables where columns represent RDF
properties and cells of these columns store objects. Subjects are stored as the primary key
of the table. Several options as to what a table represents are posed in the literature. It
can represent the RDF class of all the stored triples, or a grouping of properties that tend
to be queried together, or triples distributed using a hashing function, or one universal
table containing all the encountered predicates, etc. It is a more elaborate scheme resulting
in a more complex ingestion task. However, it is more compact in terms of space, as
subjects and predicates are stored only once, in contrast to the Vertical partitioning. This
scheme can answer star-shaped queries more efficiently than the previous schemes, as we
can obtain all the objects attached to one subject with only one table scan and without
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Figure 2.4: RDF Partitioning Schemes.

any join. Joins are till required if there are more than one star-shaped sub-BGPs.

These partitioning schemes can be used in combination; every scheme to optimize for a
specific query type or shape. For example Triple Table when the predicate is unbound and
predicate-based Vertical Partitioning for star-shaped sub-queries. Moreover, one partitioning
scheme can be extended to store metadata information e.g., data type, language tag, timestamp,
needed for various types of applications e.g., multilingual, time-series, etc.
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CHAPTER 3

Related Work

"He who fears climbing mountains lives
forever between the pits."

Aboul-Qacem Echebbi

In this chapter, we review existing approaches for Semantic-based Data Integration. We
divide the efforts based on the integration type, either Physical or Logical. In the former, since
data is physically materialized, a special focus is put on the loading the physical representation
of data. In the latter, data is accessed as-is, so the focus is on the process of transitioning from
the query to the (relevant) data sources.

3.1 Semantic-based Physical Integration

In Semantic-based Physical Data Integration, we generate, store and query RDF data by
transforming heterogeneous large data sources. As a result, generated RDF data will have a
large size, requiring the incorporation of scalable Data Management approaches. Therefore, we
look at the efforts suggesting techniques and technologies for the storage and access to large
RDF graphs. We classify these efforts into three main categories: MapReduce-based RDF
Processing, SQL Query Engine for RDF Processing, and NoSQL-based RDF Processing. In the
first category, only MapReduce paradigm is used, represented by its de facto implementation,
Hadoop. In the second, specialized frameworks for SQL query processing are leveraged. In the
third, NoSQL approaches are used both for storage and querying. This topic has been source
for a large body of research, from which we review the following prominent efforts. Table 3.1
lists the efforts; extensive dedicated review studies have been conducted in the literature, which
we reference in the discussion at the of the section.

3.1.1 MapReduce-based RDF Processing

The aim is to create a set of map and reduce phases given a SPARQL query. By design,
intermediate results of the map phase are written to disk, then read, sorted and transferred to
the reduce phase. Similarly, data between two MapReduce steps is materialized then read again.
Therefore, efforts in this category try to reduce the I/O incurred during query execution by (1)
minimizing the number of MapReduce involved, and (2) using only map phase whenever possible.

29



Chapter 3 Related Work

MapReduce-based RDF Processing
Jaql [56]

PigSPARQL [57]
HadoopRDF [58]
CliqueSquare [59]

SQL Query Engine for RDF Processing
Work SQL Engine

Sempala [62] Impala
SPARQLGX [60] Spark

S2RDF [64] Spark
Sparklify [65] Spark
HAQWA [66] Spark

NoSQL-based RDF Processing
Work NoSQL Framework

Rya [73, 74] Accumulo
H2RDF+ [75] HBase
D-SPARQ [76] MongoDB
ScalaRDF [77] Redis

CumulusRDF [78] Cassandra
AMADA [79–81] DynamdoDB

Table 3.1: Reviewed efforts by their category. For the SQL Query Engine approaches, the adopted SQ
engine is listed. Similarly for the NoSQL-based approaches, the adopted NoSQL framework is listed.

For example, join and aggregation often require a reduce phase to group RDF triples together.
Additionally, indexing and partitioning techniques for large RDF data are investigated.

Authors in [56] present Jaql, a scripting language for processing large semi-structured data
on top of Hadoop. RDF data is first ingested into HDFS as large JSON files with the triple
structure {"s": "subject", "p": "predicate" ,"o": "object"}. Various partitioning
techniques are then implemented. Horizontal Partitioning is implemented by creating a table
for every RDF subject. Vertical Partitioning implemented by creating a JSON file for every
RDF property. Clustered Property implemented by distributing RDF triples across various
clusters. Inverted Indexes are created for every partitioning scheme. For querying, Jaql has
operations that are equivalent to SPARQL query operations, e.g., FILTER -> FILTER, JOIN ->
joins of triple patterns, GROUP BY -> GROUP, ORDER BY -> SORT.
PigSPARQL [57] is an effort to use another processing framework on top of Hadoop, called

Pig. Data is loaded and queried using Pig’s default data model and query engine. A triple
table (subject, predicate, object) is created to store RDF triples. Then, SPARQL queries are
translated into a sequence of Pig’s query language (Pig Latin) commands. The latter include
LOAD, FILTER, JOIN, FOREACH, GENERATE, FILTER, JOIN, UNION. Optimization techniques to
reduce data transferred between map and reduce phases are suggested. For example, early
execution of filters, rearranging the order of triple patterns based on their selectivity, using Pig
multi-join operation to group joins on the same variable, optimizing data partitioning, etc.
HadoopRDF [58] is another effort to store large RDF graphs in HDFS; however, it uses Hadoop

itself for query processing, i.e., MapReduce library. RDF files in N-Triples format (one triple
per line) are stored following the Vertical Partitioning scheme. As mentioned in Chapter 2, this
partitioning may produce abnormally very large files storing the typing predicate, e.g., rdf:type.
HadoopRDF split this file by object, under the assumption that when a typing predicate is
used, the object is typically bound to instruct what type it refers to. This generates as many
object files, type#object1, type#object2, etc. Finally, the SPARQL query is translated into an
internal representation following the adopted scheme. A heuristic is used to reduce MapReduce

30



3.1 Semantic-based Physical Integration

jobs by combining as many joins as possible inside one MapReduce job.
CliqueSquare [59] proposes a novel portioning scheme that enables Hadoop to execute the

most common types of queries, particularly joins, locally within the map phase. CliqueSquare
adopts both Horizontal and Vertical Partitioning. Every triple is stored three times: in an object
partition storing all triples having that object, in a predicate partition storing all predicates of
that predicate, and similarly in an object partition. Furthermore, given a value, the subject,
property, and object partitions of the value are stored in the same node. Finally, all subject
partitions and object partitions of a given value are grouped by their properties. Similarly to
HadoopRDF, typing table is also partitioned by object.
Summary. In addition to the common goal of reducing data written, read and transferred

throughout MapReduce phases, efforts also try to optimize performance by sophisticating the
underlying data representation and partitioning. This naturally comes at the price of a complex
and expensive data ingestion phase, both in terms of loading time taken and disk space usage.
This observation applies to all the reviewed efforts, and it goes in line with the authors’ findings
at [60]. Finally, we leave out other efforts that roughly share the same concepts we have already
presented, and refer to the dedicated survey [61] for more details.

3.1.2 SQL Query Engine for RDF Processing

Recognizing MapReduce limitation at offering low latency query performances, other efforts
suggest processing large RDF data using other in-memory frameworks with ad hoc SQL querying,
e.g., Apache Spark, Impala. A variety of physical representations, partitioning schemes, and
join patterns have also been suggested.
Sempala [62] suggests a SPARQL-over-SQL-on-Hadoop (Distributed File System) approach

querying large RDF data using SQL as an intermediate query language. RDF triples are loaded
into a fully denormalized universal Property Table consisting of all RDF properties found in
the RDF data. The rationale is to reduce the number of joins required. In order to cope with
the wideness and sparsity of the resulted table, the authors use a columnar file format called
Parquet. The latter is queried using a Massively Parallel Processing (MPP) SQL engine called
Impala [63]. Being column-based, Parquet stores data on disk by columns (common in NoSQL
stores) instead of rows (common in RDBMSs), so if a SPARQL query requests a few predicates
only those are read, not the entire record. The unified table is complemented with a Triple Table
to address the class of queries with unbound predicates. Based on their algebraic representation,
SPARQL queries are translated into Impala SQL queries following the suggested partitioning
layout. A conversion methodology of SPARQL to SQL query operations is suggested, with
OPTIONAL being translated to LEFT OUTER JOIN.
SPARQLGX [60] also starts from the observation that most SPARQL queries have their

predicates bound [54], and builds their RDF internal data model accordingly. Thus, SPARQLGX
focus is on SPARQL evaluation, which is based on converting SPARQL operations into Spark
instructions (Scala code). It makes use of Spark transformations that are equivalent to SPARQL
operations, e.g., ORDER BY -> sortByKey, LIMIT -> take, UNION -> union, OPTIONAL ->
leftOutJoin. Finally, to optimize query time, the authors compute statistics about the data to
reduce join intermediate results. Offline, they compute the number of distinct objects, predicates
and objects, and attribute a selectivity count accordingly. Query triple patterns are organized
based on their selectivity before the translation.
Authors of S2RDF [64] note that existing approaches in the literature are only optimized

for certain forms of queries. Hence, they try to fill this gap by proposing an extension of the
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Vertical Partitioning. The approach suggests to pre-computes all possible joins between predicate
tables generated from applying Vertical Partitioning. This minimizes the number of scans and
comparisons to do within a join, which has an impact on disk read, memory consumption and
network. For every triple pattern, a pre-computed table is selected by noticing the correlation
between the triple pattern and others; a selectivity factor is computed based on whichever choice
is made. Selectivity factors are statistics computed during the loading phase. Finally, SQL
queries are run to extract the triples from the various tables and execute the minimum needed
joins. As optimization, similarly to SPARQLGX, S2RDF pays attention to the order of triple
patterns as to reduce join intermediate results. This by joining triple patterns with the more
bound variables first, and exploit table size statistics previously collected. Parquet is used for
storage and Spark SQL for query processing.
Sparklify [65] is a recent addition to the literature, which is an extension of the previous

Sparqlify SPARQL-to-SQL rewriter for RDBMSs. In a pre-processing phase and using Spark
for parallel processing, Sparklify analyses RDF data triple by triple and creates virtual Vertical
Partitioning-based views accordingly, taking into account data types and language tags. At this
level, no data is materialized. After the SPARQL query is issued, the views are used to load
data into Spark DataFrames (data structures specialized for parallel SQL processing), which are
queried using SQL queries generated by Sparqlify rewriter. Optimizations happen at the query
rewriting level, such us removing sub-queries that are known to yield empty results, e.g., joins
based on URIs of disjoint namespaces, or joins between terms of different types, etc.
HAQWA [66] is similar to SPARQLGX in that it translates the SPARQL query into a set

of Spark instructions. It incorporates fragmentation, allocation and encoding strategies. The
fragmentation uses a hash-based partitioning on the RDF triple subjects to evaluate star-shaped
queries locally. The allocation calculates the cost of transferring a triple into other partitions,
where it may join with its local triples. HAQWA encodes RDF terms using integer type, which
is more efficient to operate-on than strings.
Summary. We observe that most efforts focus on optimizing for a certain class of queries that

are claimed to be the most common among SPARQL queries. The same observation was made
by authors in [64]. However, the edge cases are dominant in certain applications, e.g., social
network analysis where queries with a long chain of friend-of-a-friend are typical. On the other
hand, here again, we make the observation that query performance is improved by pre-computing
and storing data during the ingestion phase, e.g., pre-computing join results. We also note that
many efforts compute statistics during the data loading phase. These significant pre-processing
tasks result in a more complex and greedy data loading phase. Finally, we note that there is in
most efforts (except a few e.g., [60] and to a degree [65]) no regard to the dynamicity of the data.
This is an important overlooked aspect commonly found in production-level applications, where
data is prone to new inserts either continually or in intervals. Although not impossible, a heavy
ingestion phase with complex hardwired partitioning layouts, lots of pre-computed results, and
fine-grain statistics collection can quickly become a serious bottleneck in large-scale settings.
Finally, we leave out other efforts (e.g., [67–70]) that roughly share the same concepts as the
efforts reviewed here, and refer to the dedicated surveys for more details [71, 72].

3.1.3 NoSQL-based RDF Processing

Despite their ability to provide up to a sub-second performance, data processing frameworks,
e.g., Spark, Impala, Hive, are not designed to be used as databases. Hence, there will always be
limitations at a certain level due to design incompatibilities. For example, they do not have
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their own persistence storage backend as they purposely opt for the storage-compute separation.
They also do not offer (efficient) indexes, they lack ad hoc querying optimizations as they do
not own the data, they cannot keep consistent statistics, etc. Therefore, several efforts in the
literature chose to leverage the query and storage capabilities of existing NoSQL databases.
Rya [73, 74] uses Accumulo as backend, a distributed column-oriented key-value store that

uses HDFS to store its underlying data. Rya creates three Accumulo index following the Triple
Table layout, storing (subject, Predicate, Object), (Predicate, Object, Subject) and (Object,
Subject, Predicate). As Accumulo by default sorts and partitions all key-value pairs based on
the Row ID of the key, Rya stores all RDF triples of the three indexes in the Row ID. Every
triple pattern (eight possible cases) can be inserted using a range scan of one of the three tables.
SPARQL query is evaluated locally using an index nested loop join. Here again, a MapReduce
job is run to count the number of distinct subjects, predicates and objects and estimate triple
patterns selectivity.
H2RDF+ [75] uses HBase as backend, a NoSQL store sitting on top of HDFS. HBase is

similar to Accumulo in architecture and data model design being a column-based key-value.
Similarly to Rya, H2RDF+ materializes several indexes; however, it does it for six permutations
instead of three, namely [SP_O], [PS_O], [PO_S], [OP_S], [OS_P] and [SO_P]. Each table
is sorted and range-partitioned (range of keys). Every triple pattern can be retrieved via a
range scan of only one table of the six. These schemes allow joins between triple patterns to
be executed using Merge Join. A cost model is suggested to estimate the cost of joins and
suggests an optimal order. H2RDF+ has a hybrid adaptive execution model; according to query
selectivity and estimated join cost, it decides whether to execute the query locally or in parallel
using Hadoop MapReduce. Distributed (MapReduce-based) implementation of the traditional
Multi-Way Merge join and Sort Merge join are presented and used for querying.
D-SPARQ [76] uses MongoDB as backend, a document-based NoSQL store. Starting from the

input RDF data, a graph is constructed. Using a graph partitioning algorithm, partitions are
created of the same number as the cluster nodes. Next, triples are distributed across the nodes
by placing triples matching a graph vertex in the same partition as the vertex. As a replication
mechanism, vertices along a path of n of a given vertex are added to the same partition as
that vertex. As triples of the same subjects are co-located, star-shaped graph patterns on the
subject can be efficiently answered. D-SPARQ leverages MongoDB compound index, by creating
indexes for the pairs [SP] and [PO]. To enable parallel querying, it detects the following triple
patters: patters sharing the same subject, patterns with object-subject, subject-object, and
object-object join connections, and independent triple patterns sharing no variables. Finally
and as other efforts, statistics are collected to compute triple pattern selectivity.
ScalaRDF [77] uses Redis as backend, an in-memory key-value NoSQL store. First, all RDF

terms (subject, predicate, object) are stored as numeral IDs, so to save on the storage. The
mappings between the ID and the original terms are stored in an auxiliary dictionary. Triples are
indexes in six tables, [SP_O], [PO_S], [SO_P], [P_SO], [O_SP], and [S_PO], and distributed
across the cluster in a Redis store using a consistent hashing protocol. This is the only work
considering the deletion or update of the ingested RDF data, the explicit resizing of the cluster,
and the data backup and node recovery. These features are necessary as ScalaRDF is composed
of custom modules not benefiting from any existing resource management frameworks, unlike
the other HDFS and NoSQL-based stores. Here again, the query is analyzed and triple patterns
are reordered based on cardinality statistics collected at the ingestion phase.
CumulusRDF [78] uses Cassandra as a key-value store, where it stores its four indexes. Sesame

query processor is used to translate SPARQL queries to index lookups on Cassandra indexes,
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as well as to perform filtering and join on a single dedicated node. AMADA [79–81] uses
DynamoDB as backend, a cloud key-value NoSQL store from Amazon. AMADA stores a
different type of indexes; it does not index RDF triples themselves, but maps every RDF term
(e.g., subject) to the datasets it is stored in. Given a query, the relevant index is detected, using
which a set of relevant sub-datasets are located. The latter are loaded into a single-machine
triple store and queried.
Summary. Efforts in this category take advantage of the opportunities offered by NoSQL

Database Management Systems. They make use of more sophisticated indexes, statistics, more
control over the storage layer, etc. However, the focus of most efforts is on the execution of
triple patterns, i.e., retrieval of matching triples and joining them. Consideration for other
common SPARQL operations, e.g., aggregation, union, optional, is lacking. Further, join is
not always executed in parallel, but in most cases is delegated to a single node. The lack of
common SPARQL operations and distributed join hinders the applicability of these approaches
in real-world scenarios. Finally, we leave out a few more efforts that roughly share the same
concepts as the effort reviewed here, and refer to dedicated surveys for more details [61, 72, 82,
83].

3.1.4 Discussion
In the following we highlight how our work aligns and differs from the existing reviewed efforts:

• Our work falls within the second category in that we neither use MapReduce framework
for query processing nor a NoSQL database for storage and querying. Rather, we use a
scalable processing engine with SQL query capabilities, Apache Spark, and an optimized
file format in HDFS, Apache Parquet. We avoid MapReduce as it is a disk-based batch-
oriented framework incurring a significant I/O and transfer overhead. Apache Spark, being
memory-based, is more suitable for iterative and short-lived queries. It also provides other
libraries that can extend the work and enrich RDF exploitation. For example, it has a
library to ingest other data sources than RDF, which is desirable in our Data Integration
work. Other libraries include Machine Learning, Stream Processing, and Graph Processing,
which enable more opportunities e.g., ingesting streaming RDF data or perform analytics
over the integrated data. Storage-wise, we avoid a NoSQL store as we want to simplify the
stack to only one query engine and HDFS. HDFS, being a popular distributed file system,
its contained data can be accessed by a much larger array of processing frameworks, in
contrast to locking the data into one format and Data Management system (i.e., NoSQL).

• Our work particularly resembles Sempala at the processing layer (Impala instead of
MapReduce) and storage layer (Parquet instead of NoSQL). It resembles Sempala and
SPARQLGX in avoiding indexes and the manual distribution of RDF triples across cluster
nodes. We just rely on the default data distribution and duplication of HDFS, and the
efficient data compression of Parquet. However, our work diverges from existing work in
the way it designs the Property Tables. We create a Property Table per RDF class with
additional columns capturing the other classes if an RDF instance is of multiple types. In
addition to saving on the disk space, this scheme makes query answering more intuitive
and straightforward for the tabular-based querying (SQL) that we adopt. Refraining from
the creation of indexes is a purposeful choice. Rational being (1) we want to accelerate
the ingestion phase, which is a tedious and costly process in most reviewed efforts, and (2)
we want to give consideration for dynamic data, where more data is expected to regularly
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Work Access Distributed Join Manual Nb. of Velocity
Interface Support Support Wrapper Sources Support

Squerall [84, 85] Semantic " " %/" Multiple %

Optique [86] Semantic " " " Multiple "

Ontario [87] Semantic " % " 2 %

[88] Semantic % ? " 2 %

SparqlMap-M [89] Semantic % Indirect " 1 %

[90] Semantic % % " 1 %

[91] Relational ? ? " 2 %

HybridDB [92] JSON-based % % " 2 %

[93–95] CRUD/REST % Indirect " 3 %

SOS [96] CRUD/API % % " 3 %

Forward [97] SQL/JSON ? " " Multiple %

CloudMdsQL [95] SQL-like " ? " 1 %

Table 3.2: Information summary about reviewed efforts. Question mark (?) is used when information
is absent or unclear. %/" under ’Manual Wrapper’ means that wrappers are by default not manually
created, but certain wrappers may be manually created. ’Distributed Support’ means whether the work
support the distributed processing of query operations. ’Nb. of Sources’ is the number of supported data
sources.

be added to the sources, which is also disregarded by most reviewed efforts. In fact, using
an optimized (strong compression and fast random access) file format e.g., Parquet is a
convenient alternative when indexing is not desired or not supported by the underlying
query engine. Parquet, for example, offers pseudo-indexes, thanks to its default smart use
of statistics, bloom filters, predicate-push down, compression and encoding techniques, etc.

In brief, we have not found any published work tackling the ingestion and querying of
heterogeneous large-scale data sources into RDF format. Hence, our work is the first to propose
a blueprint for an end-to-end semantified Big Data architecture, with an implementation that
employs state-of-the-art extensible and scalable Big Data technologies.

3.2 Semantic-based Logical Data Integration

Data that is not physically transformed to RDF can also be queried on the fly. This is addressed
by incorporating a unifying middleware and access interface to original heterogeneous data
sources. In this second section of the literature, we review efforts following this integration
pattern. Although Semantic-based Virtual Data Integration is an established research area in
the literature, its applicability to the new Big Data technology space is still an emerging effort.
Therefore, we do not review only Semantic-based Virtual integration but also involve other
integration and access approaches, as illustrated in Figure 3.1. In Table 3.2, we summarize
the information about the reviewed efforts along six criteria; a detailed review is subsequently
presented.
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Figure 3.1: A visual representation of the reviewed related efforts.

3.2.1 Semantic-based Access

Optique [86] is an OBDA-based platform that accesses both static and dynamic data sources
(streams). It makes a particular emphasis on semi-automatically extracting ontology and
mappings (using R2RML, RDB to RDF Mapping Language) starting from analyzing data source
schemata. An integral part of Optique is a visual query builder that allows non-experts to build
queries by introducing and filtering concepts and properties. Offline, Ontop is used to map
ontology axioms to relational queries (SQL). Online, a SPARQL query is generated, unfolded and
transformed to SQL basing on Ontop mappings. Streaming data is queried using an extension
of SPARQL called STARQL. Relational data sources are queried using SQL; other sources, e.g.,
CSV, XML, are queried using a separate parallel SQL query engine called Exareme. There is
only a mention of NoSQL with no explicit description of how they can be accessed, and no
mention of distributed file systems (e.g., HDFS). Although code-source of some individual used
components (e.g. Ontop, Exareme) is separately available, code-source of the central Optique
platform that is used to query a set of Big Data sources is not found.
Ontario [87] presents an implementation of a SDL, but lacking some of the requirements that

we deem crucial in SDL implementations (subsection 6.1.2), e.g., supporting heterogeneous and
large data sources, and distributed query execution. The emphasis is rather put on the query
rewriting, planning, and federation, with a strong stress on RDF data as input. Query plans
are built and optimized based on a set of heuristics. Ontario was evaluated in a centralized
environment over small-sized RDF (via a SPARQL endpoint) and relational data (MySQL).
Authors of [88] motivate and advocate for the integration of OBDA technology over NoSQL

stores. This involves the incorporation of a schema, the use of a high-level declarative query
language and the support of integrity constraints. They suggested a preliminary approach
for query processing focuses on star-shaped SPARQL queries. The prototype, which is lightly
described, involves the query conversion from SPARQL to Java programs using MongoDB and
Cassandra APIs. As it is a preliminary study, there is no discussion about the parallel and
distributed execution of the queries, and no evaluation has been presented. Finally, the basis of
the discussions was solely around Document and Columnar NoSQL stores.
SparqlMap-M [89] focuses on Document databases, MongoDB in particular, and enables

querying them using SPARQL. It provides a relational view over Document databases. The
effort extends a previous SPARQL-to-SQL translation method and uses R2RML as the mapping
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language. Unions and joins, which are not supported by Document databases, reserve a special
treatment. SPARQL queries are translated to union-free sub-queries. Intermediate results are
materialized and pushed to an internal RDF triple store to perform the joins. The scope here is,
however, narrower than what is considered in this thesis in terms of data source heterogeneity.
Ontop/MongoDB [90] proposes a formal generalization of the traditional OBDA framework to

allow querying NoSQL stores. The SPARQL query is first translated to a high-level intermediate
query, which is optimized (e.g., eliminating redundant self-join, replacing join of unions with union
of joins) and then translated to the native query language of the data sources. An implementation
of the presented approaches extending Ontop was described. SPARQL queries are translated
to MongoDB Aggregate Queries, which are a set of procedure stages processing a MongoDB
collection and returning a new modified collection. The implementation is demonstrated on a
single MongoDB store with small data.

3.2.2 Non-Semantic Access

SQL-based Access

Motivated by the mainstream popularity of SQL query language, [91] poses a relational schema
over NoSQL stores. A set of mapping assertions that associate the general relational schema
with the data source schemata are defined. These mappings are expressed using a proposed
mapping language. Authors state that most NoSQL stores do not have a declarative query
language, rather a procedural access mechanism. For that, they suggest an intermediate query
language called Bridge Query Language, BQL, which contains Java methods accessing the
NoSQL databases. SQL queries supported are SELECT-PROJECT-JOIN conjunctive queries; other
operations e.g., aggregations are not supported. The queries are translated to BQL using the
mapping assertions, then to Java procedures using NoSQL stores’ respective APIs. Cassandra
and MongoDB APIs are used for demonstration. The underlying approach of join processing is
not explained, and the prototype is not evaluated.

JSON-based Access

Authors in [92] propose a JSON-based general schema on top of RDBMSs and NoSQL stores.
Schema semantic differences are captured using alias, similar to ontology properties in RDF
ontologies. Queries are posed against the general schema and expressed using procedural calls
including JSON-like notations. However, the access is only to single data sources; cross-source
joins and aggregations can only be performed over JSON materialized query results. Further,
the prototype is evaluated with only small data on a single machine.

CRUD API-based

ODBAPI [93] enables running CRUD (Create, Read, Update, Delete) operations over NoSQL
stores and RDBMSs. It abstracts away the access syntax of the heterogeneous data sources by
using common HTTPS requests get, put, post and delete. It aligns the concepts of three database
categories: RDBMS (MySQL), Key-Value (Riak), and Document (CouchDB) into a unified
conceptual model. Transparently, these requests trigger calls to the APIs of the respective
data sources. Thus, more complex operations, e.g., joins, aggregations, are not supported. The
authors extend their approach to support joins [94, 98], but not in a scalable way. The approach
performs joins locally if involved data is located in the same database and the latter supports
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join, otherwise, data is moved to another capable database. Naturally, moving data can become
a bottleneck in large-scale settings.

Similarly to ODBAPI, SOS [96] suggests a generic programming model, a common interface
and a meta-layer that collectively provide an abstraction on top of heterogeneous NoSQL and
RDBMS sources. The programming model allows to directly access data sources using get(),
put() and delete() methods, and, thus, simplifies application development. These methods are
developed for every data source, using its official Java API. The Meta-layer consists of three
components against which source schemata are aligned: Set (e.g., table), Struct (e.g., tuple),
and Attribute (e.g., column). However, cross-databases join is not addressed. Three NoSQL
data sources are considered, Key-value (Riak), Document (MongoDB) and Columnar (HBase).

Using a Hybrid Query Language

[97] suggests a generic query language that is based on SQL and JSON formalism, called
SQL++. It tries to cover the capabilities of, among others, the heterogeneous NoSQL query
syntax (Hive, Jaql, Pig, Cassandra, JSONiq, MongoDB, Couchbase, SQL, AsterixDB, BigQuery
and UnityJDBC). SQL++ queries are translated to subqueries in the syntax of the source
query language. However, only one NoSQL data source, MongoDB, is used to demonstrate the
presented query conversion capabilities.
CloudMdsQL [95] proposes a SQL-like language, which contains invocations to the native

query interfaces of NoSQL and RDMBS databases. The learning curve of this query language is
higher than other efforts suggesting to query solely using plain (or minimally adapted) SPARQL,
SQL, API calls, and JSON-based procedures. Its general architecture is distributed; however,
we are not able to verify whether intra-source join is also distributed in the absence of the
source-code.
In both efforts, users are expected to learn the syntax of other languages in addition to

standard SQL.

Centralized OBDA and Polystores

There are two other categories that share with the Semantic Data Lake the ability to access
heterogeneous stores. However, they differ in the scope of data sources to access and the access
mechanism. The first family is represented by the solutions mapping relational databases to
RDF [99], and Ontology-Based Data Access over relational databases [51], e.g., Ontop, Morph,
Ultrawrap, Mastro, Stardog. These solutions are not designed to query large-scale data sources,
e.g., NoSQL stores or HDFS. The second family is represented by the so-called polystore systems,
which address large-scale heterogeneous data sources but require the movement of data across
the data sources, or the data itself is duplicated across the sources, e.g., [100–102]. The task is
to find which store answers best a given query (analytical, transactional, etc.) or which store to
move all/part of the data to.

3.2.3 Discussion

The literature review revealed that providing a cross-source ad hoc uniform query interface
and distributed query execution is generally not a central focus point. Further, the Virtual
Integration literature is still less involved and advanced in comparison to the Physical Integration
literature in the thesis topic. Hence, the gap we identified in the Virtual Integration is wider
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and has more room for innovation. In particular, there seems to be no work that collectively
meets the following criteria:

• Performing a fully distributed and parallel query processing including the join operation of
disparate and heterogeneous data sources. The query execution manager in the reviewed
efforts was a centralized component to which all intermediate results from the sub-
queries is sent for reconciliation. This is clearly a bottleneck for many queries (e.g.,
unselective or aggregation queries) since data cannot be centrally accommodated or
efficiently transferred across the network. In a disparate siloed data environment, joining
heterogeneous distributed data sources is crucial.

• Making use of Semantic Web technologies that provide artifacts for a fully on-demand
virtual query processing. For example, SPARQL allows to express queries that are agnostic
to the underlying data sources. It also provides a flexible query model that supports the
joining of disparate data sources, thanks to its concept of Basic Graph Patters. Ontologies
and Mapping Languages provide convenient standardized means to link data to high-level
general data models, abstracting away semantic differences found across the data schemata.

• Supporting many data sources from the state-of-the-art Big Data Management, all the
while not solely basing on handcrafted wrappers. As of today, many Big Data query engines
provide a rich set of connectors to dozens of popular and unpopular data sources. Resorting
to manually creating wrappers is not only counterproductive but also often error-prone and
rarely as effective and covering as the officially-provided wrappers/connectors. Exploiting
these wrappers save the time for optimizing on the upper layers of the Data Integration,
e.g., query decomposition, distributed query execution and results reconciliation.

Our work addresses the previous points by incorporating Semantic and Big Data Technologies.
From Semantic Technologies, RDF is conceptually used as the underlying data model for the
on-demand Data Integration. RML mapping language (RDF Mapping Language) is used to
keep the links between data source entities and attributes with high-level ontology classes and
properties. RML is extended with the FnO (Function) ontology, which allows to declare functions
independently from the technical implementations. FnO functions are used to alter join keys
on query-time and enable the connection between two data sources. SPARQL is used as the
input query language and SQL as an intermediate query language given its omnipresence in the
majority of Big Data processing engines. Among the latter, we leverage two popular frameworks,
Spark and Presto. These engines provide facilities for distributed query execution including
the ability to connect to a vast array of data sources without the need to manually creating
wrappers for them.
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CHAPTER 4

Overview on Query Translation Approaches

"Don’t count the days, make the days
count."

Muhammad Ali

A Data Integration process of heterogeneous data entails a model harmonization at a certain
level. For the Physical Integration, all data is transformed to a unified model in a pre-processing
phase. For the Virtual Integration, relevant data is loaded on query-time to a data model
that is optimized for efficient query processing and that acts as an abstraction on top of the
heterogeneous data sources. As the data model is followed by the query language, we set to
conduct a survey of the literature on the topic of query translation methods. The survey reviews
as many relevant criteria as possible to maximize its utility. However, in the context of this
thesis we are interested in the following question:

RQ1. What are the criteria that lead to deciding which query language can be most
suitable as input for the Data Integration?

To answer this, we observe how many languages can the input query be translated to. We take
into consideration the semantic similarity between the input and destination query. A significant
semantic difference may result in the impossibility to translate certain query constructs and
operations or cause a loss in the retrieved results. Since we are solving the integration problem
using Semantic Technologies, we start with the assumption that our input query would be
in SPARQL. However, we keep the question open, such that if the survey reveals that more
languages can be reached from another query language, then we can consider that language as
a meta-language to which we translate the SPARQL query. Further, the choice of the query
language follows the data model adopted by the Data Integration system. Since we are dealing
with large-scale data, the choice of the model is critical as it can either optimize or hinder
query processing performance. As an initial assumption, SQL and Document-based are good
candidates, since several distributed processing engines adopt the tabular and Document/JSON
as the central data model, e.g. Apache Spark, Apache Druid, Apache Drill. The survey has as
secondary purpose the exploration of common translation strategies, e.g., query optimizations,
storage-aware and schema-aware translation methods, mappings-based translation methods, etc.
which we can leverage to guide our own approaches.

We consider six query languages chosen based on a set of criteria: SQL, SPARQL, Gremlin,

41



Chapter 4 Overview on Query Translation Approaches

Document-based, XPath/XQuery. SQL was formally introduced in the early seventies [30]
following the earlier proposed and well-received relational model [2]. SQL has influenced the
design of dozens subsequent query languages, from several SQL dialects to object-oriented,
graph, columnar, and the various NoSQL languages. SPARQL is the de facto standardized
query language to query RDF data. XPath and XQuery are the de facto and standardized
query languages for XML data. Document-based is not standardized but is commonly used
with JSON formalism. All these query languages are used in a large variety of storage and Data
Management systems. In order to leverage the advantages of each, companies and institutions
are choosing to store their data under different representations, a phenomenon known as Polyglot
Persistence [43]. As a result, large data repositories with heterogeneous data sources are being
generated (also known as Data Lakes [4]), exposing various query interfaces to the user.

On the other hand, while computer scientists were looking for the holy grail of data represent-
ation and querying in the last decades, it is meanwhile accepted that no optimal data storage
and query paradigm exist. Instead, different storage and query paradigms have different charac-
teristics especially in terms of representation and query expressivity and scalability. Different
approaches balance differently between expressivity and scalability in this regard. While SQL,
for example, comprises a sophisticated data structuring and very expressive query language,
NoSQL languages trades schema and query expressivity for scalability. As a result, since no
optimal representation exists, different storage and query paradigms have their right to exist
based on the requirements of various use-cases.
With the resulted high variety, the challenge is then how can the collected data sources be

integrated and accessed in a uniform ad hoc way. Learning the syntax of their respective query
languages is counterproductive as these query languages may substantially differ in both their
syntax and semantics. A plausible approach is to develop means to map and translate between
different storage and query paradigms. One way to achieve this is by leveraging the existing
query translators, and building wrappers that allow the conversion of a query in a unique
language to the various query languages of the underlying data sources. This has stressed the
need for a better understanding of the translation methods between query languages.

Several studies investigating query translation methods exist in the literature. However, they
typically tackle pair-wise translation methods between two specific types of query languages, e.g.,
[103] surveys XML languages-to-SQL query translations, [104–106] surveys SPARQL-to-SQL
query translations. To the best of our knowledge, no survey has tackled the problem of universal
translation across several query languages. Therefore, in this chapter, we take a broader view
over the query translation landscape. We consider existing query translation methods that
target many widely-used and standardized query languages. Those include query languages that
have withstood the test of time and recent ones experiencing rapid adoption. The contributions
of this article can be summarised as follows:

• We propose eight criteria shaping what we call a Query Translation Identity Card; each
criterion represents an aspect of the translation method.

• We review the translation methods that exist between the most popular query languages,
whereby popularity is judged based on a set of defined measures. We then categorize them
based on the defined criteria.

• We provide a set of graphical representations of the various criteria in order to facilitate
information reading, including a historical timeline of the query translation evolution.
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• We discuss our findings, including the weakly addressed query translation paths or the
unexplored ones, and report on some identified gaps and lessons learned.

This chapter is based on the following survey:
• Mohamed Nadjib Mami, Damien Graux, Simon Scerri, Harsh Thakkar, Sören Auer, Jens

Lehmann. The query translation landscape: a survey. In ArXiv, 2019. I conducted most
of this survey, including most of the review criteria and the collected content. Content I
have not provided is the review involving Tinkerpop and partially Neo4J (attributed to
Harsh Thakkar).

4.1 Considered Query Languages
We chose the most popular query languages in four database categories: relational, graph,
hierarchical and document-oriented databases. Popularity is based on the standardization
efforts, number of citations to relevant publications, categorizations found in recently published
works and technologies using the query languages. Subsequently, we introduce our chosen query
languages and motivate the choice. We provide a query example for these query languages. Our
example query corresponds to the following natural language question:

Find the city of residence of all persons named Max.

4.1.1 Relational Query Language
SQL is the de facto relational query language first described in [30]. It has been an ANSI/ISO
standard since 1986/1987 and is continually receiving updates, latest published in 2016 [107].

Example: SELECT place FROM Person WHERE name = "Max"

4.1.2 Graph Query Languages
The recently published work at the ACM Computing Surveys [108] features three query languages:
SPARQL, Cypher and Gremlin. Further, a blog post [109] published by IBM Developer in 2017
sees those query languages as most popular1.

SPARQL is the de facto language for querying RDF data. Of the three surveyed graph query
languages, only SPARQL became a W3C standard in 2008 and is still receiving updates, the
latest of which is SPARQL 1.1 [110] 2013. Research publications on SPARQL foundations [23,
111, 112] are among the most cited across all graph query languages.

Example: SELECT ?c WHERE {?p :type :Person . ?p :name "Max" . ?p :city ?c }

Cypher is Neo4j’s query language developed in 2011 and open-sourced in 2015 under the
OpenCypher project [113]. Cypher has been recently formally described in a scientific publica-
tion [114]. At the time of writing, Neo4j tops DB engine ranking [115] of Graph DBMS.

Example: MATCH (p:Person) WHERE p.name = "Max" RETURN p.city
1 GraphQL is also mentioned, but it has far less scientific and technological adoption.
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Gremlin [116] is the traversal query language of Apache TinkerPop [116]. It first appeared
in 2009, predating Cypher. It also covers a wider range of graph query operations: declarative
(pattern matching) and imperative (graph traversal). Thus, it has a larger technological adoption.
It has libraries in more query languages: Java, Groovy, Python, Scala, Clojure, PHP, and
JavaScript. It is also integrated into more renowned data processing engines (e.g., Hadoop,
Spark), and graph databases (e.g., Amazon Neptune, Azure Cosmos, OrientDB, etc).

Example (declarative): g.V().match(.as(’a’).hasLabel(’Person’).has(’name’,’Max’).
as(’p’),__.as(’p’).out(’city’).values().as(’c’)).select(’c’)
Example (imperative): g.V().hasLabel(’Person’).has(’name’,’Max’).out(’city’).values()

4.1.3 Hierarchical Query Languages

This family is dominantly represented by XML query languages. XML appeared more than two
decades ago and has been standardized in 2006 by W3C [117]; it is used mainly for data exchange
between applications. W3C recommended XML query languages are XPath and XQuery.

XPath allows to define path expressions that navigate XML trees from a root parent to
descendent children. XPath has been standardized by W3C in 1999 and is continually receiving
updates, the latest of which published in 2017 [118].

Example: //person[./name=’Max’]/city]

XQuery is XML de facto query language. XQuery is also considered a functional programming
language as it allows calling and writing functions to interact with XML documents. XQuery
uses XPath for path expressions and can perform insert, update and delete operations. It was
initially suggested in 2002 [119], standardized by W3C in 2007 and recently updated in 2017 [120].

Example: for $x in doc("persons.xml")/person where $x/name=’Max’ return $x/city

4.1.4 Document Query Languages

The representative document database that we choose is MongoDB. MongoDB, first released
in 2009, is the document database that attracts the most attention both from academia and
industry. At the time of writing, MongoDB tops Document stores ranking [115].

MongoDB operations. MongoDB does not have a proper query language like SQL or SPARQL
but rather interacts with documents by means of operation calls and procedures.
Example: db.product.find({name: "Max"}, {city: 1})

4.2 Query Translation Paths

In this section, we introduce the various translation paths between the selected query languages.
Figure 4.1 shows a visual representation, where the nodes correspond to the considered query
languages and the directed arrows correspond to the translation direction; the thickness of the
arrows reflects the number of works on the respective query translation path.
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4.2.1 SQL ↔ XML Languages

The interest in using a relational database as a backbone for storing and querying XML has
appeared as early as 1999 [121]. Even though XML model differs substantially from the relation
model, e.g., multi-level data nesting, cycles, recursive graph traversals, etc., storing XML data
in RDBMSs was sought to benefit from their query efficiency and storage scalability.

XPath/XQuery-to-SQL: XML documents have to be flattened, or shredded, into relations
so they can be loaded into or mapped to relational tables. The ultimate goal is to hide the
specificity of the back-end store and make users feel as if they are directly dealing with the
original XML documents. In parallel, there are efforts to provide an XML view on top of
relational databases. The rational is can be to unify the access using XML, or to benefit from
XML querying capabilities, e.g., expressing path traversals and recursion.

SQL-to-XPath/XQuery: This covers approaches for storing XML in native XML stores, but
adding an SQL interface to enable the querying of XML by SQL users. Metadata about how
XML data is mapped to the relational model is required.

4.2.2 SQL ↔ SPARQL

SPARQL-to-SQL: Similarly to XML, the interest in bridging the gap between RDF model
and the relational model emerged with RDF first days. This was motivated by multiple and
various use cases. For example, RDBMSs were suggested to store RDF data [122, 123], even
before SPARQL standardization. Also, the Semantic Web community suggested a well-received
data integration proposal whereby disparate relational data sources are mapped to a unified
ontology model and then queried uniformly [123, 124]. The concept evolved to become the
popular OBDA, Ontology-Based Data Access [8], empowering many of applications today.

SQL-to-SPARQL: The other direction received less attention. The main two motivations
presented were enhancing interoperability between the two worlds in general, and enabling
reusability of the existing relation-oriented tools over RDF data, e.g, reporting and visualization.

4.2.3 SQL ↔ Document-based

The main motivation behind exploring this path was to enable SQL users and legacy systems to
access the new class of NoSQL document databases with their sole SQL knowledge.

SPARQL-to-Document: The rationale here is identical to that of SPARQL-to-SQL, with
one extra consideration: scalability. Native triple stores become prone to scalability issues
when storing and querying significant amounts of RDF data. Users resorted to more scalable
solutions to store and query the data [125]. The most studied database solution by the research
community, we found, was MongoDB.

4.2.4 SQL ↔ Graph-based

SQL-to-Cypher: This path is considered for the same reasons as the SQL-to-Document, which
is mainly attempting to help users with SQL knowledge to approach graph data stored in Neo4j.
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Cypher-to-SQL: The rationale is to allow running graph queries over relational databases. It
has also been advocated that using relational databases to store graph data can be beneficial in
certain cases, benefiting from the efficient index-based retrieval typically offered by RDBMSs.

Gremlin-to-SQL: The aim here is to allow executing Gremlin traversals (without side effect
steps) on top of relational databases in order to leverage the optimization techniques built into
RDBMSs. To do so, the property graph data is represented and stored as relational tables.

SQL-to-Gremlin: The main motivation is to enable RDBMS users to migrate to graph databases
in order to leverage the advantages of graph-based functions (e.g., depth-first search, shortest
paths, etc.) and data analytical applications that require distributed graph data processing.

4.2.5 SPARQL ↔ XML Languages

SPARQL-to-XPath/XQuery: Similarly to SQL-to-XML paths, this path seeks to build inter-
operability environments between semantic and XML database systems. Moreover, it allows to
add a semantic layer on top XML data and services for integration purposes.

XPath/XQuery-to-SPARQL: Enabling XPath traversal or XQuery functional programming
styles on top of RDF data can be an interesting feature to equip native RDF stores with. This
encourages new adopters from the XML world to embark on the Semantic Web world.

4.2.6 SPARQL ↔ Graph-based

SPARQL-to-Gremlin: This path aims to bridge the gap between the Semantic Web and Graph
database communities by enabling SPARQL querying of property graph databases. Users well
versed in SPARQL query language can avoid learning another query language, as Gremlin
supports both OLTP and OLAP graph processors, covering a wide variety of graph databases.

4.3 Survey Methodology
Our study of the literature revealed a set of generic query translation patterns and common
aspects that can be used to classify the surveyed query translation methods and tools. We refer
to them as translation criteria and organize them into three categories.

I. Translation Properties

Describe the properties of the translation method divided into type and coverage.

1. Translation Type: Describes how the target query is obtained.
a) Direct: The translation method generates the destination query starting from and

by analyzing only the original query.
b) Intermediate/Meta Query Language-based: The translation method generates the

destination query by passing by an intermediate (meta-)language.
c) Storage Scheme-aware: The translation generates queries depending on how data is

internally structured or partitioned.
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Figure 4.1: Query translation paths found and studied.

d) Schema Information-aware: The translation method depends mainly on the schema
information of the underlying data.

e) Mapping Language-based: The translation method generates the destination query
using a set of mapping rules expressed in an established/standardized third-party
mapping language, e.g., R2RML [165].

2. Translation Coverage: Describes how much of the input query language syntax is covered.
For example, projection and filtering preserved, joining and update dropped.

II. Translation Optimization

Describes the techniques used by the various approaches to improve query translation efficiency.

1. Optimization Strategies: Describes any optimization techniques applied during query
translation, e.g., reordering joins in a query plan to reduce intermediate results.

2. Translation Relationship: Describes how many destination queries can be generated
starting from the input query: one-to-one, one-to-many. Generally, it is desirable to reduce
the number of destination queries to one, so we consider this an optimization aspect. We
separate it from the previous point, however, as it has a different (discrete) value range.

III. Community Factors

Include different factors that can be used by interested users in deciding on the translation
method value. For example, a method that is empirically evaluated, available for usage, adopted
by other users and maintained have evidence for a well-founded method.
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1. Evaluation: Assesses whether the translation method has been empirically evaluated. For
example [149] evaluates the various schema options and their effect on query execution
using the TPC-H benchmark.

2. Availability: Describes whether the translation method implementation or prototype is
openly available. That can be known, for example, by checking if the reference to the
source code repository or download page is still available.

3. Impact: Describes the influence made by the translation method among the community.
This can be measured, for example, in terms of the number of research publications citing
it.

4. Metadata: Provides some related information about the presented translation method,
such as the date of first and last release/update. For example, this helps to obtain an
indication of whether the solution is still maintained.

4.4 Criteria-based Classification
Scope definition. Given the broad scope tackled in this survey, it is important to limit the
search space. Therefore, we take measures as to favor quality, high-influence and completeness,
as well as preserve a certain level of novelty.

• We do not consider a work that describes the query translation very marginally or that
has a broad scope with little focus on the query translation aspects.

• We only consider efforts proposed during the last fifteen years, i.e., after 2003. This applies
in particular to XML-related translations; however, interested readers may refer to an
existing survey covering older XML translation works [103].

• We do not consider efforts that are five years old and have no (external) citation.

It is also important to explicitly prune the scope in terms of what aspects are not considered
in the survey:

• We do not address post-query translation steps, e.g., results formats and representations.

• As the aim of this survey is to explore the methods and capabilities, we do not comment
on the results of empirical evaluations of the individual efforts. This is also due to the
vast heterogeneity between the languages, data models and use cases.

• The translation method is summarized, which may entail that certain details are omitted.
The goal is to allow the reader to discover the literature; interested readers are encouraged
to visit the individual publications for the full details.

In the remainder of this survey, we refer to the articles and tools by citation and, when
available, by name, then describe the respective query translation approaches. Further, it should
not be inferred that the article or the tool presents solely query translation approaches, but
often, other aspects are also addressed, e.g., data migration. These aspects are considered
out-of-scope of the current survey. Finally, in order to give the survey a temporal context, efforts
are listed in chronological order.
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I. Translation Properties > 1. Translation Type

a) Direct

SQL-to-XPath/XQuery: ROX [149] aims at directly querying native XML stores using a
SQL interface. The method consists of creating relational views, called NICKNAMEs, over
a native XML store. The NICKNAME contains schema descriptions of the rows that would
be returned starting from XML input data, including mappings between those rows and
XML elements in form of XPath calls. Nested parent-child XML elements are caught, in the
NICKNAME definition, by expressing primary and foreign keys between the corresponding
NICKNAMEs. [150, 151] propose a set of algorithms enabling direct logical translations of simple
SQL INSERT, UPDATE, DELETE and RENAME queries to statements in the XUpdate language2. In
the case of INSERT, the SQL query has to be slightly extended to instruct in which position
related to the context node (preceding/following) the new node has to be inserted.

SPARQL-to-SQL: [130] defines a set of primitives that allow to (a) extract the relation
where triples matching a triple pattern are stored, (b) extract the relational attribute whose
value may match a given triple pattern in a certain position (s,p,o), (c) generate a distinct
name from a triple pattern variable or URI, (d) generate SQL conditions (WHERE) given a
triple pattern and the latter primitive, and (e) generate SQL projections (SELECT) given a
triple pattern and the latter three primitives. A translation function returns a SQL query by
fusing and building up the previous primitives given a graph pattern. The translation function
generates SQL joins from UNIONs and OPTIONALs between sub-graph patterns. FSparql2Sql [135]
is an early work focusing on the various cases of filter in SPARQL queries. While RDF
objects can take many forms e.g., IRIs (Internationalized Resource Identifier), literals with and
without language and/or datatype tags, values stored in RDBMS are generally atomic textual or
numeral values. Therefore, the various cases of RDF objects are assigned primitive data types,
called "facets". For example, facets for IRIs, datatype tags and language tags are of primitive
type String. As a consequence, filter operands become complex, so they need to be bound
dynamically. To achieve that, SQL-92 CASE WHEN ... THEN expressions are exploited. [133]
proposes several relational-based algorithms implementing different operators of a SPARQL
query (algebra). In contrast to many existing efforts, this work aims to generate flat/un-nested
SQL queries, instead of multi-level nested queries. The aim is to leverage the performance
of common SQL query optimizers. SQL queries are generated using SQL augmentations, i.e.,
SPARQL operators gradually augment the SQL query instead of creating a new nested one.
The algorithms implement functions, which generate parts of the final SQL query.

SQL-to-Document-based: QueryMongo [159] is a Web-based translator that accepts a SQL
query and generates an equivalent MongoDB query. The translation is based solely on the SQL
query syntax, i.e., not considering any data or schema. No explanation about the translation
approach is provided. [166] is a library providing an API to translate SQL to MongoDB queries.
The translation is based on the SQL query syntax only.

SPARQL-to-XPath/XQuery: [141] does not provide a direct translation of SPARQL to
XQuery, rather SPARQL embedded inside XQuery. The method involves representing SPARQL
2 XUpdate is an extension of XPath allowing to manipulate XML documents.
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in the form of a tree of operators. There are operators for projection, filtering, joining, optional
and union. These operators declare how the output (XQuery) of the corresponding operations
are represented. The translation involves data translation from RDF to XML and the translation
of the operators to corresponding XQuery queries. An XML element with three sub-elements
is created for each triple term (s, p and o). The translation from an operator into XQuery
constructs is based on transformation rules, which replace the embedded SPARQL constructs
with XQuery constructs. The translation from an operator into XQuery constructs is based on
transformation rules, which replace the embedded SPARQL constructs with XQuery constructs.
In XQL2Xquery [140], variables of the query BGP (Basic Graph Patter) are mapped to XQuery
values. A for loop and a path expression is used to retrieve subjects and bind any variables
encountered. Then, nested under every variable, iterate over the predicates and bind their
variables. In a similar way, nestedly iterate over objects. Next, BGP constants and filters are
mapped to XQuery where. OPTIONAL is mapped to an XQuery function implementing a left
outer join. For filters, XQuery value comparisons are employed (e.g., eq, neq). ORDER BY
is mapped to order by in a FLWOR expression. LIMIT and OFFSET are handled using position
on the results. REDUCED is translated into a NO-OP.

XPath/XQuery-to-SPARQL: [142] presents a translation method that includes data trans-
formation from XML to RDF. During the data transformation process, XML nodes are annotated
with information used to support all XPath axes. For example, type information, attributes,
namespaces, parent-child relationships, information necessary for recursive XPath, etc. The
above annotations conform to the structure of the generated RDF and are used to generate the
final SPARQL query.

Gremlin-to-SQL: [156] proposes a direct mapping approach for translating Gremlin queries
(without the side effect step) to SQL queries. The authors propose a generic technique to
translate a subset of Gremlin queries (queries without side effect steps) into SQL leveraging the
relational query optimizers. They propose techniques that make use of a novel scheme, which
exploits both relational and non-relational storage for property graph data. This is achieved
by combining relational with JSON storage for adjacency information and vertex and edge
attributes respectively.

SPARQL-to-Gremlin: Gremlinator [153, 154] proposes a direct translation of SPARQL
queries to Gremlin pattern matching traversals, by mapping each triple pattern within a
SPARQL query to a corresponding single step in the Gremlin traversal language. This is made
possible by the match()-step in Gremlink, which offers a SPARQL-style of declarative construct.
Within a single match()-step, multiple single step traversals can be combined forming a complex
traversal, analogous to how multiple basic graph patterns constitute a complex SPARQL
query [167].

b) Intermediate/Meta Query Language-based

Type-ARQuE [132] uses an intermediate query language called AQL, Abstract Query
Language, which is designed to stand between SQL and SPARQL. AQL extends from the
relational algebra (in particular the join) and accommodates both SQL and SPARQL semantics.
It is represented as a tree of expressions and joins between them, containing selects and orders.
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The translation process consists of three stages: (1) SPARQL query parsed and translated to
AQL, (2) AQL query undergoes a series of transformations (simplification) preparing it for SQL
transformation, and (3) AQL query translated to the target SQL dialect, transforming AQL join
tree to SQL join tree, along with the other selects and orders expressions. Example of stage 2
simplifications: type inference, nested join flattening, join inner joins with parents, etc. In [129],
Datalog is used as an intermediate language between SPARQL and SQL. SPARQL query is
translated into a semantics-similar Datalog program. The first phase is translating SPARQL
query to a set of Datalog rules. The translation adopts a syntactic variation of the method
presented in [168] by incorporating built-in predicates available in SQL and avoid negation,
e.g., LeftJoin, isNull, isNotNul, NOT. The second phase is generating an SQL query starting
from Datalog rules. Datalog atoms ans, triple, Join, Filter and LeftJoin are mapped to
equivalent relational algebra operators. ans and triple are mapped to a projection, while
filter and joins to equivalent relational filter and joins, respectively.

SPARQL-to-Document: In [164], a generic two-step SPARQL-to-X approach is suggested,
with a showcase using MongoDB. The article proposes to convert the SPARQL query to a pivot
intermediate query language called Abstract Query Language (AQL). The translation uses a set
of mappings in a mapping language called xR2RML, which is an extension of RML [169]. These
mappings describe how data in the target database is mapped into the RDF model, without
converting data itself to RDF. AQL has a grammar that is similar to SQL both syntactically
and semantically. The BGP part of a SPARQL query is decomposed into a set of expressions
in AQL. Next, xR2RML mappings are checked for any maps matching the containing triple
patterns. Those detected matching maps are used to translate individual triple patterns to
atomic abstract queries. The latter are of the form "FROM query PROJECT reference WHERE
condition". Where query is the concrete query over the database, which is a MongoDB query.
Unsupported operations like JOIN in MongoDB are assumed left to a higher-lever query engine.

c) Storage scheme-aware

XPath/XQuery-to-SQL: In [148] XTRON, a relational XML management system is presen-
ted. The article suggests a Schema-oblivious way of storing and querying XML data. XML
documents are stored uniformly in identical relational tables using a unified predefined relational
model. Generated queries then have to abide by this fixed relational schema.

SPARQL-to-Document: D-SPARQ [76] focuses on the efficient processing of join operation
between triple patterns of a SPARQL query. RDF data is physically materialized in a cluster of
MongoDB stores, following a specific graph partitioning scheme. SPARQL queries are converted
to MongoDB queries accordingly.

Cypher-to-SQL: Cyp2sql [158] is a tool for the automatic transformation of both data and
queries from a Neo4j database to a relational database. During the transformation, the following
tables are created: Nodes, Edges, Labels, Relationship types, as well as materialized views to
store the adjacency list of the nodes. Cypher queries are then translated to SQL queries tailored
to that data storage scheme.
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SQL-to-Gremlin: SQL-Gremlin [155] is a proof-of-concept SQL-to-Gremlin translator. The
translation requires that the underlying graph data is given a relational schema, whereby elements
from the graph are mapped to tables and attributes. However, there is no reported scientific
study that discusses the translation approach. SQL2Gremlin [170] is a tool for converting SQL
queries to Gremlin queries. They show how to reproduce the effect of SQL queries using Gremlin
traversals. A predefined graph model is used during the translation; as an example, Northwind
relational data was loaded as a graph inside Gremlin.

d) Schema information-aware

XPath/XQuery-to-SQL: In [143], the process uses summary information on the relational
integrity constraints computed in a pre-processing phase. An XML view is constructed by
mapping elements from the XML schema to elements from the relational schema. The XML view
is a tree where the nodes map to table names and the leaves to column names. An SQL query
is built by going from the root to the leaves of this tree, a traversal from a node to a node is a
join between the two corresponding tables. In [146], XML data is shredded into relations based
on an XML schema (DTD) and saved in a RDBMS. The article extends XPath expressions to
allow capturing recursive queries against a recursive schema. XPath queries with the extended
expressions can, next, be translated into an equivalent sequence of SQL queries using a common
RDBMS operator (LFP: Simple Least Fixpoint). Whereas [145] builds a virtual XML view on
top of RDBMSs using XQuery, the focus of the article is on the optimization of the intermediate
relational algebra.

SQL-to-SPARQL: R2D [127, 128] proposes to create a relational virtual normalized schema
(view) on top of RDF data. Schema elements are extracted from RDF schema; if the schema
is missing or incomplete, schema information is extracted by thoroughly exploring the data.
r2d:TableMap, r2d:keyField, r2d:refersToTableMap denote a relational table, its primary key,
and foreign key, respectively. A relational view is created using those schema constructs, against
which SQL queries are posed. SQL queries are translated into SPARQL queries. In the SQL
query, for every projected, filtered or aggregated (along with GROUP BY) variable, a variable
is added to the SELECT of SPARQL query. SQL WHERE conditions are added to SPARQL
FILTER, LIKE mapped to a regex(). Moreover, blank nodes are used in a number of cases. In
RETRO [126], RDF data is exhaustively parsed to extract domain-specific relational schema.
The schema corresponds to the Vertical Partitioning, i.e., one table for every extracted predicate,
each table is composed of (subject object) attributes. Then, the translation algorithm parses the
SQL query posed against the extracted relational schema and iteratively builds the SPARQL
query.

SQL-to-Document-based: [160] requires the user to provide a MongoDB schema, expressed
in a relational model using tables, procedures, and functions. [161] provides a JDBC access to
MongoDB documents by building a representative schema, which is, in turn, constructed by
sampling MongoDB data and fitting the least-general type representing the data.

SQL-to-XPath/XQuery: AquaLogic Data Services Platform [152] builds an XML-based
layer on top of heterogeneous data sources and services. To allow SQL access to relational data,
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a relational schema is mapped to AquaLogic DSP artifacts (internal data organization), e.g.,
service function to relational tables.

SPARQL-to-Document: In the context of OBDA, [163] suggests a two-step approach,
whereby the relational model is used as an intermediate between SPARQL and MongoDB
queries. Notions of MongoDB type constrains (schema) and mapping assertions are imposed on
MongoDB data. These notions are used during the first step of the query translation to create
relational views. Next, the schema is extracted from the data stored in MongoDB. MongoDB
mappings relate MongoDB paths (e.g., student.name) to ontology properties. A SPARQL query
is decomposed into a set of translatable sub-queries. Using MongoDB mappings, MongoDB
queries are created. OntoMongo [162] proposes an OBDA on top of NoSQL stores, applied to
MongoDB. Three artifacts are involved: an ontology, a conceptual layer, and mappings between
the latter two. The conceptual layer adopts the object-oriented programming model, i.e., classes
and hierarchy of classes. Data is accessed via ODM, Object-Document-Mapping, calls. SPARQL
triple patterns are grouped by their shared subject variable (star-shaped). Each group of triples
is assumed to be of one class defined in the mappings; the class name is denoted by the variable
of the shared subject. MongoDB query can be created by mapping query classes to classes
in the conceptual model, which then is used to call MongoDB terms via ODM. The lack of
join operation in MongoDB is substituted with a combination of two unwind commands each
concerning one side (class) of the join.

Cypher-to-SQL: Cytosm [157] presents a middleware allowing to execute graph queries
directly on top of non-graph databases. The application relies on the so-called gTop (graph
Topology) to build a form of schema on top of graph data. gTop consists of two components:
(1) Abstract Property Graph model, and (2) a mapping to the relational model. It captures the
structure of property graphs (node and edge types and their properties) and provides mapping
between graph query language and the relational query language. The latter involves mapping
nodes to table rows and edges to either fields of rows or a sequence of table-join operations.
Query translation is twofold. First, Using gTop abstract model, Cypher path expressions (from
MATCH clause) are visited and a set of restricted OpenCypher [114] queries are generated, denoted
rOCQ. Restricted queries do not contain multi-hop edges and anonymous entities since those are
not possible to translate in SQL. Second, rOCQ queries are parsed and an intermediate SQL-like
query is generated, having one SELECT and WITH SELECT for each MATCH. SELECT variables are
checked if they require information from the RDBMS and if they inter-depend. Then, the
mapping part of gTop is used to map nodes to relational tables. Finally, edges are resolved into
joins, also basing on gTop mappings.

SPARQL-to-XPath/XQuery: SPARQL2XQuery is described in a couple of publications
[137–139]. The translation is based on a mapping model between OWL ontology (existing or
user-defined) and XML Schema. Mappings can either be automatically extracted by analyzing
the ontology and XML schema or manually curated by a domain expert. SPARQL queries are
posed against the ontology without knowledge of the XML schema. The BGP (Basic Graph
Pattern) of the SPARQL query is normalized into a form where each graph pattern is UNION-free,
so each pattern can be processed independently and more efficiently. XPaths are bound to graph
pattern variables; there are various forms of binding for various variable types. Next, graph
patterns are translated into an equivalent XQuery expression using the mappings. For each
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variable of a triple, a For or Let clause using the variable binding is created. Ultrawrap [136]
implements an RDF2RDB mapping, allowing to execute SPARQL queries on top of existing
RDBMSs. It creates an RDF ontology from the SQL schema, based on which it next creates a
set of logical RDF views over the RDBMS. The views, called Tripleviews, are an extension of
the famous triple tables (subject, predicate, object) with two additional columns: subject and
object primary keys. Four Tripleviews are created: types, varchar(size), int and object properties.
These tables respectively store the subjects along with their types in the database, the textual
attributes, the numeral attributes, and the join links between the tables. Given a SPARQL
query, each triple pattern maps to a Tripleview.

e) Mapping language-based

SPARQL-to-SQL: In SparqlMap [134], triple patterns of a SPARQL query are individually
examined to extract R2RML triple maps. Methods are applied to find the candidate set of triple
maps, which is then pruned to produce a set that prepares for the query translation. Given
a SPARQL query, a recursive query generation process yields a single but nested SQL query.
Sub-queries are created for individual mapped triple patterns and for reconciling those via JOIN
or UNION operations. Nested subqueries over RDBMS tables extract the columns as well as
structural information e.g., term type (resource, literal, etc.); they also concatenate multiple
columns to form IRIs, etc. To generalize the technique of [129] (Datalog as intermediate
language) to arbitrary relational schema, R2RML is incorporated. For every R2RML triple
map, a set of Datalog rules are generated reflecting the same semantics. A triple atom is
created for every combination of subject map, property map and object map on a translated
logical table. Finally, the translation process from Datalog to SQL is extended to deal with the
new rules introduced by R2RML mappings. [79] extends a previously published translation
method [130] to involve user-defined R2RML mappings. In particular, it incorporates R2RML
mappings in α and β mappings as well as genCondSQL(), genPRSQL() and trans() functions.
For each, an algorithm is devised, considering the various situations found in R2RML mappings
like the absence of Reference Object Map. SparqlMap-M [89] enables querying document stores
using SPARQL without RDF data materialization. It is based on a previous SPARQL-to-SQL
translator, SparqlMap [134], so it adopts a relational model to virtually represent the data.
Documents are mapped to relations using an extension of R2RML allowing to capture duplicate
demoralized data, which is a common characteristic of document data. The lack of union and join
capabilities is mitigated by a multi-level query execution, producing and reusing intermediate
results. Projections (SELECT ) are pushed to the document store, while the union and join are
executed using an internal RDF store.

2. Translation coverage

By coverage, we mean the fragment of the query language that is supported by the translation
method. We note the following before starting our review of the various efforts:

• The coverage of the translation method is extracted not only from the core of the respective
article(s) but also from the evaluation section and from the online page of the implement-
ation (when available). For example, [89, 136] evaluate using all 12 BSBM benchmark
queries, which cover more scope than that of the article. Further, the corresponding online
page of [136] mentions features that are both beyond the core and the evaluation sections
of the article.
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• We mention the supported query feature, but we do not assume its completeness, e.g.,
[162] supports filters but only for equality conditions. Interested users are encouraged to
seek details from the corresponding article or tool.

• Some works, e.g., [130, 162] support only one feature. This does not necessarily imply
insignificance, but it may reflect a choice made by the authors to reserve the full study to
covering that particular feature, e.g., specific graph pattern shapes, OPTIONAL cases, etc.

SQL-to-X and SPARQL-to-X: See Table 4.1 and Table 4.2 for the translation methods
and tools starting from SQL and SPARQL, respectively. For SQL, the WHERE clause is an
essential part of most useful queries, hence its support by all methods. GROUP BY is the next
commonly supported feature, as it enables a significant class of SQL queries: analytical and
aggregational queries. To a lower extent supported is the sorting operation ORDER BY. Since
JOIN and, to less extent, UNION are operations of typically high cost, they are among the
least supported features. As most researched query categories are of retrieval nature (SELECT),
update queries, e.g., INSERT, UPDATE and DELETE, are weakly addressed. DISTINCT and nested
queries are rarely supported, which might also be attributed to their typical expensiveness. For
example, typically, DISTINCT requires sorting, and nested-queries generate large intermediate
results. EXCEPT, UPSERT, and CREATE are only supported by individual efforts. For SPARQL,
query operation support is more prominent across the reviewed efforts. FILTER, UNION and
OPTIONAL are the most commonly supported operations with up to 60% of the surveyed efforts.
To less extent, DISTINCT, LIMIT and ORDER BY are supported by about half of the efforts. The
remaining query operations are all only supported by a few efforts, e.g., DESCRIBE, CONSTRUCT,
ASK, blank nodes, datatype(), bound(), isLiteral(), isURI(), etc. GRAPH, SUB-GRAPH, BIND
are examples of useful query operations but only supported by individual efforts. In general,
DESCRIBE, CONSTRUCT and ASK are far less prominent SPARQL query types in comparison to
SELECT, which is present in all the efforts. isURI() and isLiteral() are SPARQL-specific
functions with no direct equivalent in other languages.

XPath/XQuery-to-SQL: The queries that [143] focuses on are simple path expressions,
including descendant axis traversal, i.e., //. [146] enables XPath recursive queries against a
recursive schema. [145] focuses on optimizing relational algebra, where only a simple XPath
query is used for the example. [147] covers simple ancestor, following, parent, following-sibling,
descendant-or-self XPath queries. In [144], the supported XPath queries involve descendant/child
axes with simple conditions. [148] translates XQuery queries with path expressions including
decedent axis // XQuery queries, dereference operator => and FLWR expressions.

XPath/XQuery-to-SPARQL: Authors of [142] mention support for recursive XPath queries
with descendant, following and preceding axes as well as for filters.

Cypher-to-SQL: Authors of [157] experiment with queries containing MATCH, WITH, WHERE,
RETURN, DISTINCT, CASE, ORDER BY, LIMIT. They also consider simple patterns with known
nodes and relationships, − > and < − directions, and variable-length relationship. [158] is able
to translate MATCH, WITH, WHERE, RETURN, DISTINCT, ORDER BY, LIMIT, SKIP, UNION, count(),
collect(), exists(), label(), id(), and rich pattern cases, e.g., (a or empty)–()–(b or empty), [a or
empty]-[b]-(c or empty), − > and < −, (a) −− > (b).
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? not (clearly) mentioned supported. Others are features provided only by individual efforts.
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Table 4.2: SPARQL features supported in SPARQL-to-X query translations. See Table 4.1 for " % ?.
Others are features provided only by individual efforts.
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II. Translation Optimization

3. Optimization strategies

In this section, we present the various techniques, which are employed by the reviewed effort for
the sake of improving query translation performance. We note that, in order to avoid repetition,
we will use some terms that have previously been introduced in Translation Type (Section 4.4).

XPath/XQuery-to-SQL: [143] suggests to eliminate joins by eliminating unnecessary prefix
traversals, i.e. first traversals from the root. [145] proposes a set of rewrite rules meant to detect
and eliminate unnecessarily redundant joins in the relational algebra of the resulted SQL query.
During query translation, [146] suggests an algorithm leveraging the structure of XML schema:
pushing selections and projections into the LFP operator, (Simple Least Fixpoint). PPFS+ [147]
mainly seeks to leverage RDBMS storage of shredded XML data. Based on empirical evaluation,
nested loop join was chosen to apply merge queries over the shredded XML. They try to improve
query performance by generating pipelined plans reducing time to "first results". Authors try to
abide by XPath semantics of order and uniqueness: XPath results should follow the order of the
original XML document and have no duplicates. To meet these requirements, redundant orders
(ORDER BY) are eliminated, and ordering operations are pushed down the query plan tree. As a
physical optimization, the article resorts to indexed file organization for the shredded relations.
Even though XTRON [148] is schema-oblivious by nature, some schema/structural information
is used to speed up query response. That is by encoding simple paths of XML elements into
intervals of real numbers using a specific algorithm (Reverse Arithmetic Encoder). The latter
reduces the number of self-joins in the generated SQL query.

SQL-to-XPath/XQuery: ROX [149] suggests a cost-based optimization to generate optimal
query plans, and physical indexes for quick node look-up; however, no details are given.

SPARQL-to-SQL: The method in [79] optimizes certain SQL query cases that negatively
impact (some) RDBMSs. In particular, the query rewriting techniques Sub-Query Elimination
and Self-Join Elimination, are applied. The former removes non-correlated sub-queries from the
query by pushing down projections and selections, while the latter removes self-joins occurring
in the query. [133] implements an optimization technique called Early Project simplification,
which skips variables that are not needed during query processing from the SELECT clause. In
SparqlMap [134], filter expressions are pushed to the graph patterns, and nested SQL queries
are flattened to minimize self-joins. In FSparql2Sql [135], the translation method may generate
an abnormal SQL query with a lot of CASE expressions and constants. The query is optimized
by replacing complex expressions by simpler ones, e.g., by manipulating different logical orders
or removing useless expressions. The translation approach in Ultrawrap [136] is expected to
generate a view of a very large union of many SELECT-FROM-WHERE statements. To mitigate this,
a strategy called Unsatisfiable Conditions Detection is used. It detects whether a query would
yield empty results even before executing it. This can be the case in the presence of contradictions
e.g., WHERE predicate equals two opposite values. The strategy also prunes unnecessary UNION
sub-trees, e.g., by removing an empty argument from the UNION in case two attributes of the
same table are projected or filtered individually, then joined. The generated SQL query in [129]
may be sub-optimal due to the presence of e.g., joins of UNION sub-queries, redundant joins
with respect to keys, unsatisfiable conditions, etc. Techniques from Logical Programming are
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borrowed. The first is Partial Evaluation used to optimize Datalog rules dealing with ans and
triple atoms, by iteratively filtering out options that would not generate valid answers. The
second is Goal Derivation in Nested Atoms and Partial SDL-tree with JOIN and LEFT JOIN
dealing with join atoms. Techniques from Semantic Query Optimization are applied to detect
unsatisfiable queries, e.g., joins when equating two different constants, simplification of trivially
satisfiable conditions like x = x. The generated query in [130] is optimized using simplifications,
e.g., removing redundant projections that do not contribute to a join or conditions in sub-queries,
removing true values from some conditions, reducing join conditions based on logical evaluations,
omitting left outer joins in case of SPARQL UNION when union’ed relations have an identical
schema, pushing projection to SELECT sub-queries, etc.

SPARQL-to-Document: Query optimization in D-SPARQ [76] is based on a "divide and
conquer"-like principle. It groups triple patterns into independent blocks of triples, which can
run more efficiently in parallel. For example, star-shaped pattern groups are considered as
indivisible blocks. Within a star-shaped pattern group and for each triple predicate, patterns
are ordered by the number of triples involving that predicate. This boosts query processing by
reducing the selectivity of the individual patter groups. In the relational-based OBDA of [163],
the intermediate relational query is simplified by applying structural optimization, e.g., replacing
join of unions by union of joins, semantic optimization, e.g., redundant self-join elimination,
etc. In [164], the generated MongoDB query is optimized by pushing filters to the level of triple
patterns, and by self-join elimination through merging atomic queries that share the same FROM
part, and by self-union elimination through merging UNIONs of atomic queries that share the
same FROM part.

Cypher-to-SQL: Cyp2sql [158] stores graph data following a specific tables scheme, which
is designed to optimize specific queries. For example, Label table is created to overcome the
problem of prevalent NULL values in the Nodes table. The query translator decides, on query-time,
which relationship to use in order to obtain node information. Relationship data is stored in the
Edges table (storing all relationships) as well as in their separate tables (duplicate). Further
optimization is gained from using a couple of meta-files populated during schema conversion,
e.g., a nodes property list per label type is used to narrow down the search for nodes.

SPARQL-to-XPath/XQuery: In [141], a logical optimization is applied to the operator tree
in order to generate a reorganized equivalent tree with faster translation time (no more details
are given). Next, a physical optimization aims to find the algorithm that implements the
operator with the best-estimated performance.

Gremlin-to-SQL SQLGraph [156] proposes a translation optimization whereby a sequence
of the non-selective pipe g.V (retrieve all vertices in g) or g.E (retrieve all edges in g) are replaced
by a sequence of attribute-based filter pipes (filter pipes that select graph elements based on
specific values). For example, the non-selective first pipe g.V is explicitly merged with the more
selective filter filterit.tag == ’w’ in the translation. For the query evaluation, optimization
strategies from the RDBMS are leveraged.
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Work One-to-one One-to-many
SQL-to-XPath/XQuery

[149] ROX "

SPARQL-to-SQL
[132] Type-ARQuE "

[135] FSparql2Sql "

SQL-to-SPARQL:
[127, 128] R2D SQL-to-SPARQL "

SQL-to-Document-based
[159] QueryMongo "

Gremlin-to-SQL
[156] SQLGraph "

Table 4.3: Query Translation relationship. The number of destination queries generated from one input
query, one or many.
4. Translation relationship

A translation method that deterministically generates a single optimized query is more efficient
than a one that generates several queries and leaves it to the user to decide on the most efficient.
We note that this information is not always explicitly stated, and we cannot make assumptions
based on the architectures or the algorithms. Therefore, we only report when there is a clear
statement about the type of relationship. Information is collected in Table 4.3.

III. Community Factors

For better readability and structuring, we collect the information in Table 4.4. The last
column rates the community effect using stars (8), which are to be interpreted as follows.
8: ‘Implemented’, 88: ‘Implemented and Evaluated’ or ‘Implemented and Available (for
download)’, ‘888: ‘Implemented, Evaluated and Available (for download)’.

4.5 Discussions

In the next, we report on our findings with respect to the query translation scope in the reviewed
efforts. We also report on the translation paths around which there is a few to no published
efforts. Furthermore, we describe the gaps that we discovered as well as the lessons learned.
Additionally, we conclude on the query language to use as input for the Data Integration. Finally,
we project several relevant dates on a vertical timeline, highlighting when the involved query
languages have appeared and when the reviewed efforts have been published.

Weakly addressed paths. Although one would presume that SQL-to-Document-based transla-
tion is a well-supported path given the popularity of SQL and document databases, there is still
modest literature in this regard. Most of the efforts provide marginal contributions in addition
to the more general SQL-to-NoSQL translation. Furthermore, the translation of this path in all
cases is far from being complete and does not follow the systematic methodology observed by
other efforts in this study. Some of these works are [173–175]. Similarly, despite the popularity of
SQL and Gremlin, the Gremlin-to-SQL translation has also attracted little attention. That may
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Paper/tool YFR YLR nR nC Implementation Reference Community
XPath/XQuery-to-SQL

[143] 57 8

[146] 2005 37 88

[145] 2006 1 88

[147] PPFS+ 40 88

[144] 5 88

[148] XTRON 23 88

SQL-to-XPath/XQuery
[150, 151] 1, 5
[152] AquaLogic 2006 2008 22 Acquired by Oracle and merged in its products 88

[149] 65 88

SPARQL-to-SQL
[131] Sparqlify 2013 2018 30 2 https://github.com/SmartDataAnalytics/Sparqlify 888

[132] Type-ARQuE 2010 6 http://www.cs.hut.fi/~skiminki/type-arque/index.html 88

[79] Morph translator 2014 2018 37 74 Part of Morph-RDB: https://github.com/oeg-upm/morph-rdb 888

[130] 151 88

[135] 28 88

[133] 78 888

[134] SPARQLMap 22 888

[136] Ultrawrap 99 https://capsenta.com/ultrawrap 88

[129] 52 Part of Ontop: https://github.com/ontop/ontop 88

SQL-to-SPARQL
[127, 128] R2D 19, 15 88

[126] 14
SQL-to-Document-based

[159] Query Mongo
[160] MongoDB Trans-
lator

8

[161] UnityJDBC 8

SPARQL-to-Document-based
[76] D-SPARQ 11 88

[89] SparqlMap-M 2015 2017 12 2 https://github.com/tomatophantastico/sparqlmap 888

[163] 19 Extends Ontop but no reference found 8

[162] OntoMongo 2017 1 https://github.com/thdaraujo/onto-mongo 88

[164] 2014 2015 6 5 https://github.com/frmichel/morph-xr2rml/tree/query_rewrite 88

Cypher-to-SQL
[157] Cytosm 2017 1 2 https://github.com/cytosm/cytosm 888

[158] Cyp2sql 2017 2017 1 https://github.com/DTG-FRESCO/cyp2sql 88

Gremlin-to-SQL
[156] SQLGraph 2015 44 88

SQL-to-Gremlin
[155] SQL-Gremlin 2015 2016 1 https://github.com/twilmes/sql-gremlin 8

SPARQL-to-XPath/XQuery
[137–139]
SPARQL2XQuery

29, 11, 21 http://www.dblab.ntua.gr/~bikakis/SPARQL2XQuery.html 888

[141] 45 88

[140] XQL2Xquery 6 88

XPath/XQuery-to-SPARQL
[142] 21 88

SPARQL-to-Gremlin
[153, 154] Gremlinator 2018 6 https://github.com/apache/tinkerpop/tree/master/sparql-gremlin 888

Table 4.4: Community Factors. YFR year of first release, YLR year of last release, nR number of releases,
nC number of citations (from Google Scholar). If nR = 1 it is the first release and last release is last
update.
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be due to the large difference in the semantics of the Gremlin graph traversal model and the SQL
relational model. In general, the work on translating between SQL and MongoDB and Gremlin
languages is still in a relatively early stage. This is partially because of the lack of a strong
formal foundation of the semantics and complexity of MongoDB document language as well
as that of Gremlin. On the other hand, the path XPath/XQuery-to-SPARQL has significantly
fewer methods than its reverse. This is possible because SPARQL is more frequently used for
solving integration problems, e.g., as part of the OBDA framework, which involves translating
various queries into SPARQL.

Missing paths. We have not found any published work or tool for the following paths: SQL-
to-Cypher, Gremlin-to-SPARQL, XPath/XQuery-to-Cypher and vice versa, XPath/XQuery-
to-Gremlin and vice versa, Cypher-to-Document-based and vice versa. We see opportunities
in tackling those translation paths with rationals similar to those of the currently tackled
translation paths. For example, although SPARQL and Gremlin fundamentally differ in their
approaches to query graph data, one based on graph pattern matching and one on graph
traversals, they are both graph query languages. A transition from one to the other not only
allows the interoperability between systems supporting those languages but also makes data
from one world available to the other without requiring to learn the other respective query
language [181]. Similarly, since XML languages have a rooted notion of traversals, conversion to
and from Gremlin is natural. In fact, according to [182], the early prototype of Gremlin used
XPath for querying graph data.

Gaps and Lessons Learned. The survey allowed us to identify gaps and learn lessons, which
we summarize in the following points:

• We noticed that the optimizations that are applied during the query translation process
have more potential to improve the overall translation performance than the optimization
applied to the generated query. This is because at query translation-time, optimizations
from the system of the original query, e.g., statistics, can be leveraged to impact the
resulted target query. This opportunity is not present once the query in the target language
has been generated.

• Looking at the query translation scope, there seems to still be a lack in covering the more
sophisticated operations of query languages, e.g., more join types and temporal functions
in SQL, blank nodes, grouping and binding in SPARQL, etc. Such functions are motivated
by and are at the core of many modern analytical and real-time applications. Indeed, some
of those features are newly-introduced and some of the needs are only recently exposed.
Therefore, we make the call to update the existing methods or suggest new approaches in
order to embrace the new features and address the recent needs.

• Certain efforts present well-founded and defined query translation frameworks, from the
query translation process to the various optimization strategies. However, the example
queries effectively worked on are simple and would hardly represent real-world queries.
Real-world use-case-driven translation methods would be more effective in revealing
the useful query patterns and fragments, and in evaluating the underlying optimization
techniques.
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1974 · · · • Chamberlin et al. [30]. SQL introduced.
2002 · · · • Boag et al. [119]. XQuery introduced.
2003 · · · • Berglund et al. [176]. XPath introduced.

2004 · · · • Halverson et al. ROX [143, 177]. SQL-to-XPath/XQuery
XPath/XQuery-to-SQL.

2005 · · · • Fan et al. [146]. XPath-to-SQL.

2006 · · · • Mani et al. [145]. XQuery-to-SQL.

2007 · · · • Droop et al. [142]
Georgiadis et al. [147].

XPath/XQuery-to-SPARQL
XPath/XQuery-to-SQL.

2008 · · · •

Prudhommeaux [112]
Hu et al. [144]
Lu et al. [135]
Min et al. XTRON [148].

SPARQL introduced
XML-to-SQL
SPARQL-to-SQL
XQuery-to-SQL.

2009 · · · •

Fan et al. [178]
Vidhya et al. [151]
Elliott et al. [133]
Bikakis et al. [138, 139]
Ramanujam et al.

XPath-to-SQL
SQL-to-XPath
SPARQL-to-SQL
SPARQL-to-XQuery
SQL-to-SPARQL.

2010 · · · •
Vidhya et al. [150]
Kiminki et al.
Type-ARQuE [132].

SQL-to-XQuery
SPARQL-to-SQL.

2011 · · · •

Das R2RML [165]
Atay et al. [179]
Fischer et al. [140]
Rachapalli et al. RETRO [126].

SQL-to-SPARQL
XML-to-SQL
SQL- and SPARQL-to-XQuery
SQL-to-SPARQL.

2012 · · · •

Rodrıguez-Muro et al.
Quest [180]
Unbehauen et al.
SPARQLMap [134].

SPARQL-to-SQL
SPARQL-to-SQL.

2013 · · · • Santos Ferreira et al.[173]
Sequeda et al. Ultrawrap [136].

SQL-to-Document based
SPARQL-to-SQL.

2014 · · · •
Bikakis et al. [172]
Priyatna et al. Morph [79]
Lawrence [175].

SPARQL-to-XQuery
SPARQL-to-SQL
SQL-to-Document-based.

2015 · · · • Sun et al. SQLGraph [156]
Bikakis et al. [137].

Gremlin-to-SQL
SPARQL-to-XQuery.

2016 · · · • Unbehauen et al.
SparqlMap-M [89]. SQL-to-Document-based.

2017 · · · • Steer et al. Cytosm [157]. Cypher-to-SQL.

2018 · · · • Thakkar et al. Gremlinator [153,
154]. SPARQL-to-Gremlin.

Table 4.5: Publication years Timeline of the considered query languages and translation methods.
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• There is a wide variety in the evaluation frameworks used by each of the query translation
methods. Following a unique standardized benchmark specialized in evaluating and assess-
ing query translation aspects is paramount. Such a dedicated benchmark, unfortunately,
does not exist at the time of writing.

Data Integration Query Language. After exploring the query translation literature, it appears
that SQL and SPARQL are the most suitable languages to use as Data Integration canonical
language, and, thus, RDF and relational/tabular as the internal underlying data model. They
both have the most number of translations to other languages (see outgoing edges in Figure 4.1).
Document-based query language, however, has no translation method to other languages. As a
result, we retain SPARQL as the natural query language of our Semantic-based Data Integration.

Query Translation History. We project the surveyed efforts into a vertical timeline shown in
Table 4.5. The visualization allows us to draw the following remarks. SPARQL was very quickly
recognized by the community, as efforts translating to and from SPARQL started to emerge
the same year it was suggested. We cannot make a similar judgment about the adoption of
SQL, XPath and XQuery as these were introduced earlier than the time frame we consider in
this study (2003-2020). Efforts on translating to and from SPARQL have continued to attract
research efforts to date. Efforts translating to and from SQL is present in all the years of the
timeline, except 2013. With lesser regularity, efforts translating to and from XPath/XQuery
have also been continually published. However, despite their latest updates in 2017, we have
not found any scientific publications (at least complying with our criteria) since 2015.

4.6 Summary
In this chapter, we have reported on our survey that we conduced reviewing more than forty
articles and tools on the topic of Query Translation. The survey covered the query translation
methods that exist between seven popular query languages. Although retrieving and organizing
the information was a complicated and sensitive task, the study allowed us to extract eight
common criteria according to which we categorized the surveyed works. The survey showed
that both SQL and SPARQL are the most suitable options to act as the canonical query
language for Data Integration scenarios. As our integration approach is Semantic-based, we
opt for SPARQL. Naturally, SPARQL along with ontologies and mappings language constitute
a more comprehensive framework for Data Integration. The survey has also served its second
purpose; it helped us enrich our understanding of the various query translation strategies in
general. For example, schema-aware translation, intermediate language usage, query optimization
techniques, query rewriting and augmentation, etc. Finally, the survey allowed us to discover
which translation paths are not sufficiently addressed and which ones are not addressed yet, as
well as to observe gaps and learn lessons for future research on the topic.

64



CHAPTER 5

Physical Big Data Integration

"There are two ways of spreading light: to
be the candle or the mirror that reflects
it."

Edith Wharton

In this chapter, we focus on our Semantic Data Integration approach, namely physical integ-
ration of heterogeneous data sources using Semantic Technologies. Semantic Data Integration
requires to convert to RDF all data coming from the input data sources, then to query the
uniform output data using SPARQL. We propose an architecture for this integration, which
we term SBDA, for Semantified Big Data Architecture. This chapter formally introduces the
proposed architecture, suggests a set of requirements that it needs to meet, and describes it in
the form of a reusable blueprint. An implementation of the blueprint is subsequently described
and evaluated comparing it to a baseline native RDF triple store. In particular, we present
our strategies for representing and partitioning the resulted to-be-queried RDF data. In this
chapter, we address the following research question:

RQ2. Do Semantic Technologies provide ground and strategies for solving Physical
Integration in the context of Big i.e., techniques for the representation, storage and
uniform querying of large and heterogeneous data sources?

Contributions of this chapter can be summarized as follows:

• The definition of a blueprint for a Semantified Big Data Architecture that enables the
ingestion, querying and exposure of heterogeneous data with varying levels of semantics
(hybrid data), while ensuring the preservation of semantics.

• A proof-of-concept implementation, named SeBiDA, of the architecture using Big Data
components such as Apache Spark and Parquet.

• Evaluation of the benefits of using Big Data technology for storing and querying hybrid
large-scale data. In particular, we evaluate SeBiDA performance in ingesting and querying
increasing data sizes, while comparing it to a centralized RDF triple store.

This chapter is based on the following publication:
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• Mohamed Nadjib Mami, Simon Scerri, Sören Auer, Maria-Esther Vidal. Towards Seman-
tification of Big Data Technology. International Conference on Big Data Analytics and
Knowledge Discovery (DaWaK), 376-390, 2016.

5.1 Semantified Big Data Architecture
A Semantified Big Data Architecture, SBDA [183], allows for ingesting and processing heterogen-
eous data on a large scale. In the literature, there has been a separate focus on achieving efficient
ingestion and querying of large RDF data and for other structured types of data. However,
approaches for combining both RDF and non-RDF under one same architecture is overlooked.
Our Semantic Data Integration approach addresses this gap through the introduction of (1)
a unified data model and storage that is adapted and optimized for ingesting and integrating
heterogeneous data using the RDF model, and (2) unified querying over all the ingested data.

5.1.1 Motivating Example
In order to facilitate the understanding of subsequent concepts and approaches, we start by
introducing a simple motivating example. Suppose that a municipality is building a citizen-facing
online service to manage the bus network. The municipality got hold of three data sources of
various types, which they need to integrate and query in a uniform manner in order to improve
the mobility service (see Figure 5.1):

1. Mobility: an RDF graph containing information about Buses circulating around the city,
e.g., matriculation and size. Data is stored in NTriple files in HDFS.

2. Regions: JSON-encoded data containing information about the country’s Regions where
buses operate, e.g., name and surface, semantically described using ontology terms in
JSON-LD format. Data is stored in a JSON format in HDFS.

3. Stop: a tabular data containing information about Stops e.g., names and coordinates,
complying with GTFS specification 1. Data is stored in a Cassandra database.

The problem to be solved is providing uniafied data model to store and query these datasets,
independently of their dissimilar types. Once done, the three data sources can be queried in
unity. For example, to investigate recurrent complaints about bus delays at a certain stop,
the company suspects driver unpunctuality and retrieves all bus drivers that serve that stop.
Another example, to increase bus frequency near to a recently opened university, the company
tries to relocate certain buses from other regions to the new university region. To do so, the
company retrieves the number of buses serving each region and sorts them in a descendant
order.

5.1.2 SBDA Requirements
In order to fulfill its objectives, SBDA should meet the following requirements:
R1: Ingest semantic and non-semantic data. SBDA must be able to process arbitrary types

of data. We should distinguish between semantic and non-semantic data. Semantic data is all
data that is either originally represented according to the RDF data model or has an associated
1 https://developers.google.com/transit/gtfs/
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"@id": "regionA"
"name": "Ile-de-France",
"population": "12,005"

Stops: Cassandra table (Dn)

"@context": {
    "name": "plc:name",
    "population": {
       "@id": "plc:population",
       "@type": "xsd:long"
    }
},

Regions: JSON-LD file (Da)

stop_id stop_name stop_lat stop_long

stopA “Pyramides” 48.8666 2.3344

stopB “Concorde” 48.8656 2.3211

ex:
lat

ex:
stopBy

Mobility: RDF dataset (Ds)

ex:
stop1

ex:
bus1

“1234” “Ost”

ex:
region1

ex:
Bus

ex:
Stop

rdf:type rdf:type

ex:
name

ex:
locatedIn

ex:
Region

rdf:type

ex:
driver1

ex:
driver

“5678”

ex:
long

Figure 5.1: Motivating Example. Mobility: semantic RDF graph storing information about buses;
Regions: semantically-annotated JSON-LD data about country’s regions; and (3) Stop: non-semantic
data about stops stored in a Cassandra table.

mapping, which allows to convert it to RDF. Non-semantic data is all data that is represented
in other formalisms, e.g., tabular, JSON, XML. SBDA requires to lift non-semantic data to
semantic data, which can be achieved through the integration of mapping techniques e.g.,
R2RM2, CSVW3 annotation models or JSON-LD contexts 4, RML [169]. This integration can
lead to either a representation of the non-semantic data in RDF or its annotation with semantic
mappings, which enable the conversion to RDF at a later stage. In our example, Mobility and
Regions are semantic data. The former is originally in RDF model, while the latter is not in
RDF model but has mappings associated that enables the conversion to RDF. Stops, on the
other hand, is a non-semantic dataset on which semantic lifting can be applied.
R2: Preserve semantics and metadata in Big Data processing chains. Once data is prepro-

cessed, semantically enriched and ingested, it is paramount to preserve the semantic enrichment
as much as possible. RDF-based data representations and mappings have the advantage
(e.g., compared to XML) of using fine-grained formalisms (e.g., RDF triples or R2RML triple
maps) that persist even when the data itself is significantly altered or aggregated. Semantics
preservation can be reduced as follows:

• Preserve URIs and literals. The most atomic components of RDF-based data representation
are URIs and literals 5. Best practices and techniques to enable the storage and indexing
of URIs (e.g., by separately storing and indexing namespaces and local names) and literals
(along with their XSD or custom datatypes and language tags) need to be defined. In
the dataset Mobility, the Literals "Alex Alion" and "12,005"xsd:long, and the URI

2 http://www.w3.org/TR/r2rml
3 http://www.w3.org/2013/csvw/wiki/Main_Page
4 http://www.w3.org/TR/json-ld
5 We disregard blank nodes, which can be avoided or replaced by IRIs [184].

67



Chapter 5 Physical Big Data Integration

‘http://xmlns.com/foaf/0.1/name‘ (shortened foaf:name in the figure), should be stored in
an optimal way in the big data storage. x2

• Preserve triple structure. Atomic URI and literal components are organized in triples.
Various existing techniques can be applied to preserve RDF triple structures in SBDA
components (e.g., HBase [185–187]). In the dataset Mobility, the triple (prs:Alex
mb:drives mb:Bus1) should be preserved by adopting a storage scheme that keeps the
connection between the subject prs:Alex, the predicate mb:drives and the object mb:Bus1.

Data may not be in RDF format but annotated using semantic models by means of mapping
rules. The mappings are usually composed of fine-grained rules that define how a certain
entity, attribute or value can be transformed to RDF. The preservation of such data structures
throughout processing pipelines means that resulting views or query results can also be directly
transformed to RDF. R2RML, RML, JSON-LD contexts, and CSV annotation models are
examples of mapping languages. In Regions dataset of the motivating example (Figure 5.1),
the semantic annotations defined by the JSON object @context would be persisted in association
with the actual data it describes, RegionA.

R3: Scalable and Efficient Query Processing. Since the SBDA architecture targets large
data sources, Data Management techniques like data caching, partitioning, indexing, query
optimization have to be exploited to ensure the scalable and efficient performance of query
processing. For example, cache in memory the triples that have the most frequently accessed
predicates, partition on disk the data in a certain scheme that minimizes data transfer across
compute nodes, index the data for fast retrieval of RDF objects when subject and predicate are
known, query rewriting to reduce joins, etc.

5.1.3 SBDA Blueprint

We represent the SBDA architecture as a generic blueprint that can be instantiated using
various processing and query technologies. The only fixed decision we made is the choice of
the target data model, which we suggest to be tabular following the prevalence of this model
in Big Data technologies. Historically, the relational data model and RDBMSs backed several
state-of-the-art RDF centralized triple stores [188–190]. The tendency persists with the modern
RDF distributed storage and processing systems, which we will review in the Related Work
of this thesis (Chapter 3). In this section, we provide a formalisation of the various concepts
underlying the SBDA blueprint.

Definition 1 (Heterogeneous Input Superset) We define a heterogeneous input superset HIS, as
the union of the following three types of datasets:

• Dn =
{
dn1

, . . . , dnm

}
is a set of non-semantic, structured or semi-structured, datasets in

any format (e.g., relational database, CSV files, Excel sheets, JSON files).

• Da =
{
da1

. . . , daq

}
is a set of semantically annotated datasets, consisting of pairs of

non-semantic datasets with corresponding semantic mappings (e.g., JSON-LD context,
metadata accompanying CSV).

• Ds =
{
ds1

, . . . , dsp

}
is a set of semantic datasets consisting of RDF triples.
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In our motivating example, stops, regions, and mobility correspond to Dn, Da, and Ds,
respectively.

Definition 2 (Dataset Schemata) Given HIS=Dn ∪Da ∪Ds, the dataset schemata of Dn, Da,
and Ds are defined as follows:

• Sn = {sn1
, . . . , snm

} is a set of non-semantic schemata structuring Dn, where each sni
is

defined as follows:

sni
= {(T,AT ) | T is an entity type and AT is the set of all the attributes of T}

• Ss = {ss1
, . . . , ssq

} is a set of the semantic schemata behind Ds where each ssi
is defined

as follows:

ssi
= {(C,PC) | C is an RDF class and PC is the set of all the properties of C6}

• Sa = {ss1
, . . . , ssp

} is a set of the semantic schemata annotating Da where each ssi
is

defined the same way as elements of Ss.

In the motivating example, the semantic schema of the dataset7 mobility is:
ss1

= {(ex:Bus, {ex:matric, ex:stopsBy}), (ex:Driver, {ex:name, ex:drives})}

Definition 3 (Semantic Mapping) A semantic mapping is a relation linking two semantically-
equivalent schema elements. There are two types of semantic mappings:

• mc = (e, c) is a relation mapping an entity type e from Sn onto a class c.

• mp = (a, p) is a relation mapping an attribute a from Sn onto a predicate p.

SBDA facilitates the lifting of non-semantic data to semantically annotated data by map-
ping non-semantic schemata to RDF vocabularies. The following are possible mappings:
(stop_name, rdfs:label), (stop_lat, geo:lat), (stop_long, geo:long).

Definition 4 (Semantic Lifting Function) Given a set of mappings M and a non-semantic data-
set dn, a semantic lifting function SL returns a semantically-annotated dataset da with semantic
annotations of entities and attributes in dn.

In the motivating example, dataset Stops can be semantically lifted using the following
set of mappings: {(stop_name, rdfs:label),(stop_lat, geo:lat), (stop_long, geo:long)}, thus a
semantically annotated dataset is generated.

Definition 5 (Ingestion Function) Given an element d ∈ HIS, an ingestion function In(d)
returns a set of triples of the form (RT , AT , f), where:

• T an entity type or class for data on d,

• AT is a set of attributes A1, . . . , An of T ,
6 A set of properties PC of an RDF class C where: ∀ p ∈ PC (p rdfs:domain C).
7 Here again, for simplicity, we use the exemplary namespace prefix ex, which can denote any given ontology.
Multiple ontology namespace prefixes can also be used e.g., ex1, ex2.
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• RT ⊆ type(A1)× type(A2)× · · · × type(An) ⊆ d, where type(Ai) = Ti indicates that Ti is
the data type of the attribute Ai in d, and

• f : RT × AT →
⋃

Ai∈AT
type(Ai) such that f(t, Ai) = ti indicates that ti ∈ tuple t in RT

is the value of the attribute Ai.

The result of applying the ingestion function In over all d ∈ HIS is the final dataset that we
refer to as Final Dataset FD.

FD = ⋃
di∈HIS In(di)}

Definition 6 (Data Queries) Let q be a relational query on relations RT in FD. We define a
Querying function R that generates a view v over the transformed dataset FD given a query q:

R(FD, q) = rn×w = v

• r is a matrix containing n rows, which represent the results, and w columns, which
correspond to the query variables.

• rprov is a metadata matrix containing provenance information (source dataset(s) links,
acquisition timestamp) for each element of the resulting matrix.

• q is retained as the query generating v.

The set of all views is denoted by V .

These concepts are visually illustrated in Figure 5.2. The SBDA blueprint handles a repres-
entation (FD) of the relations resulting from the ingestion of multiple heterogeneous datasets in
HIS (ds, da, dn). The ingestion (In) generates relations or tables (denoted RT ) corresponding
to the data, supported by a schema for interpretation (denoted T and AT ). The ingestion of
semantic (ds) and semantically-annotated (da) data is direct (denoted respectively by the solid
and dashed lines), a non-semantic dataset (dn) can be semantically lifted (SL) given an input
set of mappings (M). Query processing can then generate a number (|Q|) of results over (FD).

5.2 SeBiDA: A Proof-of-Concept Implementation
We validate our blueprint through the description of a proof of concept implementation, called Se-
BiDA (for Semantified Big Data Architecture). It comprises the following three main components
(Figure 5.3), which are subsequently detailed:

• Schema Extractor : It performs schema knowledge extraction from an input data source
and performs semantic lifting based on a provided set of mappings.

• Data Loader : It creates tables based on the extracted schemata and loads input data
accordingly.

• Data Server : It receives queries and generates results as tuples or RDF triples.

The first two components jointly realize the ingestion function In from subsection 5.1.3. The
resulting tables FD can then be queried using the Data Server to generate the required views.
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Figure 5.2: A Semantified Big Data Architecture Blueprint.

5.2.1 Schema Extractor

We extract the structure of both semantic and non-semantic data to transform it into the tabular
model, an operation that is commonly called flattening. The schema extraction mechanism
varies from a data source to the other:

(A) From the semantic or semantically-annotated input datasets (ds or da), we extract classes
and properties describing the data (see Definition 2). In the presence of RDF schema,
classes and properties can be extracted by querying it. If not, schema information is
extracted by exhaustively parsing the data. For example, this can be achieved by first
reformatting RDF data into the following representation:

(class, (subject, (predicate, object)+)+)
which reads: "Each class has one or more instances where each instance can be described
using one or more (predicate, object) pairs", and then we retain the classes and properties.
The XSD datatypes, if present, are leveraged to type the properties, otherwise8 string is
used.

(B) From each non-semantic input dataset (dn), we extract entities and attributes (cf. Defini-
tion 2). For example, in relational and some NoSQL databases, entities and attributes
correspond respectively to tables and columns, which can be retrieved by querying a set of
default metadata tables. Another example, the entity and its attributes can be extracted
from a CSV file’s name and header, respectively. Whenever possible, attribute data types

8 When the object is occasionally not typed or is a URL.

71



Chapter 5 Physical Big Data Integration

Figure 5.3: SeBiDA General Architecture. Data and work flows start from the left to the right. Insets
are input sets: (a) semantic and semantically-annotated data schema, (b) non-semantic data schemata,
(c) semantic mappings, (d) Final Dataset table schemata.

are extracted, otherwise, string is used. Schemata that do not natively have a tabular
format (e.g., XML, JSON) also undergo flattening into entity-attributes pairs. Although
principally different from the relational/tabular model, it is common to find non-tabular
data organized into repeated schema-fixed tuples that can be extracted and saved into
tables. For example, modern processing engines e.g., Apache Spark, do not accept the
conventional single-rooted JSON files, but a variation called JSON Lines9 where each line
is a separate valid JSON value. This enables these engines to load JSON files and query
them using their regular schema. The same is observed for XML files, which may contain
a flat ordering of elements from which a regular schema can be extracted. One may not
reinvent the wheel and use off-the-shelf some of the modern specialized processing engines
that support the extraction of data from various sources. We use in our implementation
Apache Spark10 (see Figure 5.3) and it has wrappers11 for many popular data sources,
which can be used to extract schema information from JSON, XML, NoSQL databases,
etc.

As depicted in Figure 5.3, schema extraction is performed independently and prior to data
loading. Extracted schema information is saved in an independent metadata store. This is
important because it allows the user to visualize the schema, navigate through it, and formulate
queries accordingly. In our SeBiDA implementation, we use MongoDB12, which is a flexible
schema-less document-based store.

9 http://jsonlines.org
10 https://spark.apache.org
11 https://spark-packages.org
12 https://www.mongodb.org
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Source Target Datatype
stop_name http://xmlns.com/foaf/0.1/name String
stop_lat http://www.w3.org/2003/01/geo/wgs84_pos#lat Double
stop_lon http://www.w3.org/2003/01/geo/wgs84_pos#long Double
parent_station http://example.com/sebida/parent_station String

Table 5.1: Mapping data attributes to ontology properties with datatype specification.

5.2.2 Semantic Lifter
In this step, SeBiDA targets the lifting of non-semantic entities/attributes to existing ontology
classes/properties. The lifting process is semi-automated. We auto-suggest ontology terms
based on the syntactical similarity with the entities/attributes. If semantic counterparts are
undefined, internal URIs are created by attaching a base URI. Otherwise, the user can adjust
the suggestions or incorporate custom ones. Table 5.1 shows a result of this process, where
four attributes from the entity ’Stop’13 have been mapped to existing vocabularies, where the
forth converted to an internal URI. In our implementation, semantic mappings are stored in
the same MongoDB metadata store in the form of simple one-to-one relationships, and thus
can be visually explored. However, RDF-based mapping standards (e.g., R2RML [das2011r2],
RML [169]) can also be used. The latter are even more favorable if more sophisticated mapping
specification is required. Being in RDF, these standards also enable the interoperability across
systems or implementations.

5.2.3 Data Loader
This component loads data from the source HIS into the final dataset FD. First, it generates
tables following a tailored partitioning scheme. Then, it loads data into the tables accordingly.

Table Generation

Tables are generated following the previously extracted schema (subsection 5.2.1). For each
class, a corresponding table template is created as follows:

(A) For Semantic Data, a table with the same label is created for each class (e.g. a table
`ex:Bus` from the RDF class ex:Bus). A default column ’ID’ (of type string) is created
to store the triple’s subject. For each predicate describing the class, an additional column
is created typed according to the predicate extracted data type. This representation
corresponds to the Property Table scheme [55], and more specifically its class-based
clustering variant. In the latter, triples are distributed into tables based on their RDF
type [189]. This Property Table partitioning scheme is used by traditional centralized triple
stores e.g, Sesame, Jena2, RDFSuite and 4store [189]. A particularity in our approach is
the ability to capture the classes of multi-typed RDF instances. For every table template,
an extra column of array type called "alsoType" is added, which is intended to store every
extra type found attached to one same RDF instance. Further, a boolean column called
type flag column is added to the table template whenever an instance of an otherType is
detected. In the previous example, two type flag columns are added also_Electric and
also_Mini-bus. Observe the schema of the table in Figure 5.4.

13 developers.google.com/transit/gtfs/reference
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(B) For non-Semantic data, for each entity, a table is similarly created as above, taking the
entity label as table name and creating a typed column for each attribute. We assume that
multi-typing is only a prevalent property in semantic data, and thus we do not consider
the problem of scattering data across several tables.

For RDF data, since not all instances have values to all the predicate, the tables may end
up storing lots of null values, and thus reserving unnecessary storage space. However, this
concern has largely been reduced following the emergence of modern NoSQL databases (e.g.,
HBase), and columnar storage formats (e.g., Apache Parquet), where the null values do not
occupy a physical space. The particularity of columnar formats is that tuples are physically
stored column-by-column instead of line-by-line. With this organization, all values of the same
column are of the same type, in contrast to values of the same row that are of different types.
This value homogeneity enables efficient compression e.g., by skipping the unnecessary null
values (run-length encoding [191]). Another advantage of the columnar data layout is schema
projection, whereby only projected columns are read and returned following a query. Using the
columnar format for solving this so-called table sparsity problem is witnessed in the literature
of centralized RDF stores, e.g., in [191]
In our implementation, we use Apache Spark to perform the data loading. We leverage its

numerous wrappers to ingest as many data sources as possible. We only resort to building our
custom reader when no wrapper is available, which is the case of RDF data. For storing the
loaded data, we use the column-oriented tabular format Apache Parquet14, which allows to
overcome the sparsity problem. Parquet is suitable for storing RDF data from other respects.
It also supports composed and nested columns, i.e., saving multiple values in one column and
storing hierarchical data in one table cell. This is a common occurrence in RDF where one
instance may use the same predicate several times, e.g., _:authoredBy predicate. Parquet
also involves state-of-the-art encoding methods, e.g., bit-packing, run-length, and dictionary
encoding. In particular, the latter can be useful to store long strings, which is the case of URIs.
Finally, Parquet files are saved inside Hadoop Distributed Filesystem (HDFS), which is the de
facto distributed file system for Big Data applications. This makes it so that other processing
engines can inter-operate and query the same data generated by SeBiDA. This is not a design
choice of ours, but rather a common understanding across modern Big Data applications leading
to the emergence of so-called Hadoop Ecosystem [192]. In the latter, Hadoop Distributed File
System is used as the central data repository from which the various processing frameworks
read raw data.

Table Population

Once the table template is created, the table is populated as follows:

1. For each RDF extracted class (see subsection 5.2.1) iterate through its instances, a new
row is inserted for each instance into the corresponding table. The instance subject is
stored in the ’ID’ column, whereas the corresponding objects are saved under the column
representing the predicates. Multi-typed instances are stored following the design style
described above (Table Generation). See Figure 5.4 for a visual illustration. If an instance
is of Bus, Electric and Mini-bus types, it is stored in the Bus table, the other types
are added to the alsoType array column, and true is set as the value to the type flags
also_Electric and also_Mini-bus.

14 https://parquet.apache.org
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ex:bus1 rdf:type ex:Bus ; ex:Electric ; ex:Mini-bus .
ex:bus1 ex:name "600"^^xsd:integer .
ex:bus1 ex:driver ex:driver1 .
ex:bus2 rdf:type ex:bus ; ex:Electric .
ex:bus2 ex:name "601"^^xsd:integer .
ex:bus2 ex:driver ex:driver2 .

ID 
string

ex:name 
int

ex:driver 
string

aslo_Electric
boolean

also_Mini-bus
boolean

alsoType 
Array[String]

ex:bus1 "600" ex:driver2 true true [“ex:Electric”,”ex:Mini-bus”]

ex:bus2 "601" ex:driver2 true false [“ex:Electric”]

Table ex:Bus

load 

Figure 5.4: Storing two RDF instances into ex:Bus table while capturing their multiple types. Data
types are also captured, e.g., xsd:integer (XML Integer type) to table integer type.

In the presence of multiple types, we sort the types lexicographically and use the latest
for the to-be-populated table. This way, instances of similar types end up in the same
table, thus, we reduce data scattering. However, other types can be selected, e.g., the
most used type or, in the presence of schema, the most specific or generic, etc. The most
and generic types can be extracted from the class hierarchy, provided that an adequate
RDF schema is available. The most and least used types can be obtained by computing
statistics e.g., during the loading process. Each choice has its impact on data distribution
and, thus, query performance. For example, using the most generic type from the class
hierarchy (e.g., Bus) would result in a skewed large table containing potentially too many
instances; however, the table would store all the data of that type and no union is required.
If, however, a less generic class is used (e.g., Mini-bus) to build the table, and if a query
asks for instances from the top-level generic class (e.g., Bus), a union with all the less
generic tables is required.

2. Table population in the case of non-semantic data varies according to the data type. For
example, we iterate through each CSV line and save its values into the corresponding
column of the corresponding table. XPath and JSONPath [193] can be used to iteratively
select the needed nodes in XML and JSON files, respectively. Technically, thanks to their
versatility, many modern technologies allow to extract, transform and load (ETL) data.
This makes the overall integration process simpler and more cost-effective since data is read
and written without requiring intermediate data materialization. In our implementation,
Apache Spark enables us to read data from the heterogeneous sources and load it under
our unified partitioning and storage layout.

5.2.4 Data Server

Data loaded into tables following the unified tabular layout can be accessed in an ad hoc manner
by means of queries. The Data Server is the component responsible for receiving and performing
query processing and representing the final results.
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SELECT ?n ?d {

   ?b ex:driver ?d .

   ?b ex:name ?n .

   FILTER (?n != "500")

}

SELECT ex:name, ex:driver FROM ex:Bus 

UNION

SELECT ex:name, ex:driver FROM ex:Mini-bus 

UNION

SELECT ex:name, ex:driver FROM ex:Electric

WHERE ex:name != "500"

Figure 5.5: From SPARQL to SQL with SQL Query Expansion to involve instances of the same type
scattered across multiple tables.

Querying Interface

Since our SBDA architecture and implementation propose a tabular-based model for representing
the integrated data, the data itself is accessed using SQL query language. However, semantic
data is more naturally accessed using SPARQL. Therefore, a custom SPARQL-to-SQL conversion
method should be designed to access the data. SPARQL-to-SQL methods exist in the literature,
but they cannot be adopted as-is to our custom data partitioning scheme, i.e., Class-based
Multi-Type-Aware Property Tables. We generally follow a simple direct translation, similarly
to [62], benefiting from the analogous semantics of several basic SQL and SPARQL (e.g., SELECT,
FILTER, ORDER BY, GROUP BY, LIMIT). We differ from [62], however, in that we apply UNION
whenever instances of the same type are scattered across multiple tables. To reconcile this
scattered data, we use the Query Expansion algorithm described in Listing 5.1 and illustrated
in Figure 5.5. We call the table addressed in the SQL query (after FROM) the Main Table,
e.g., ex:Bus in Figure 5.5. The algorithm aims at performing a query rewriting to include the
other tables where instances of the same type as the Main Table can be found. To decide on
whether a union is needed and what are the complementary tables to union, the Data Server
visits the schema and looks for any table that has the Main Table name as a flag column, i.e.,
also_{MainTable}, (Lines 7 and 8). This is one rationale behind keeping the schema separately
stored as metadata. If a table is found, a SELECT query is added as a UNION with the SELECT
of the input SQL query. If other tables are found, they are similarly added as UNION to the
previous query, etc. (Lines 9 and 10). In SQL standard, there are two requirements for the
UNION operator that have to be met:

1. The involved SELECT statements should include columns of analogous types. This condition
is met as the user conceptually searches for the columns of the same entity, they are just
physically found in disperse tables. The types are preserved by the Data Loader, which is
the component responsible for populating the various tables containing instances of the
same type.

2. The involved SELECT statements should have the same number of columns. This require-
ment is also met as the rewriting operation is done automatically by the Data Server
without manual user intervention.
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?n ?d

"600" ex:driver1

"601" ex:driver2

SELECT ?n ?d {

   ?b ex:driver ?d .

   ?b ex:name ?n .

   FILTER (?n != "500")

}

ex:res1  ex:name   "600"
ex:res1  ex:driver   ex:driver1
ex:res2  ex:name   "601"
ex:res2 ex:driver   ex:driver2

Query Results: table Results: triples

or

Figure 5.6: A SPARQL query (left) returning results represented in tables (middle) or triples (right).

1 Input: query , FD
2 Output : newQuery
3
4 mainTable = table(query)
5 newQuery = query // i.e., " SELECT ... FROM { mainTable } ..."
6
7 foreach table in FD
8 if schema_columns (table) contains also_{ mainTable }
9 newQuery = newQuery + " UNION SELECT { columns } from {table} " +

10 "WHERE alsoOfType_ {table }= true"

Listing 5.1: Query Expansion rewriting to include all tables containing all instances of the same type.

Multi-Format Results

The Data Server can return the query results both as a table or as an RDF graph. The table is
the default results representation stemming both from the underlying tabular data model and
from the query engine used, Apache Spark. The process of RDFisation is achieved as follows:
Create a triple from each projected column, using the column name and value as the triple
predicate and object, respectively. For the triple subject, if the results include one table ID
column, use its value as the triple subject. Otherwise, set the subject to <base-URI/res_{i}>,
where the base URI is defined by the user, and i is an auto-incrementing integer. See Figure 5.6
for an example of a query and its two result formats, where ex is the prefix of an exemplary
base URI https://example.com/data.

5.3 Experimental Study

The goal of this experimental study is to evaluate to what extent SeBiDA15 meets the require-
ments R1, R2, and R3 (see subsection 5.1.1). Namely, ingest both semantic and none-semantic
data, preserve data semantics after the ingestion and during query processing, and exploiting
the effect of BDM techniques, in particular caching, on query execution time.

5.3.1 Experimental Setup

Datasets

We use the Berlin Benchmark [194] to generate both semantic and non-semantic data. We use
the formats N-Triple and XML, for semantic and non-semantic data respectively, both produced
15 https://github.com/EIS-Bonn/SeBiDA
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RDF Dataset Size Type Scale Factor (# products)
Dataset1 48.9GB RDF 569,600 (200M)
Dataset2 98.0GB RDF 1,139,200 (400M)
Dataset3 8.0GB XML 284,800 (100M)

Table 5.2: Description of the Berlin Benchmark RDF Datasets. The original RDF data is in plain-text
N-Triple serialization format.

RDF Dataset Loading Time New Size Ratio
Dataset1 3960 sec 389MB 1:0.008
Dataset2 10440 sec 524MB 1:0.005
Dataset3 1800 sec 188MB 1:0.023

Table 5.3: Data Loading performance. Shown are the loading times, the sizes of the obtained data, and
the ratio between the new and the original sizes.

using BSBM data generator16. Table 5.2 describes the generated data in terms of the number of
triples and file size.

Queries

We evaluate with all 12 BSBM SQL queries, which are slightly adapted to match the SQL
supported syntax of the underlying query engine, Apache Spark. We use LEFT OUTER JOIN
and inner queries instead of OPTIONAL and NOT IN sub-queries; the latter being unsupported 17.
We also omit time filter and RDF object language comparison, which are also not supported.
Filtering based on the language tag is a specific function to the RDF data model, so not present
at the SQL query.

Metrics

We measure the loading time of the datasets, the size of the datasets after the loading, as well
as the query execution time over the loaded datasets. The queries are run both against a cold
cache and a warm cache. Running on cold cache eliminates the impact of any possible previously
computed intermediate results. Warm cache is running the five queries after having run the
query once before, which reuses some temporary internal data during the subsequent runs of
the same query. The query execution is run 10 times and the average time is reported, with a
timeout of 300 seconds (5 minutes). Loading timeout is 43200 seconds (12 hours).

Environment

All queries are run on a cluster of three nodes having DELL PowerEdge R815, 2x AMD Opteron
6376 (16 cores) CPU and 256GB RAM, and 3 TB SATA RAID-5 disk. Queries are run in a cold
cache and warm cache. To run on cold cache, we clear the cache before running each query18.
16 Using a command line: ./generate -fc -pc [scaling factor] -s [file format] -fn [file name], where

file format is nt for semantic data and xml for non-semantic XML data.
17 At the time of conducting these evaluations.
18 Using a dedicated Linux system command: sync; echo 3 > /proc/sys/vm/drop_caches
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Dataset1

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Geom. Mean
Cold
Cache 3.00 2.20 1.00 4.00 3.00 0.78 11.3 6.00 16.00 7.00 11.07 11.00 4.45
Warm
Cache 1.00 1.10 1.00 2.00 3.00 0.58 6.10 5.00 14.00 6.00 10.04 9.30 3.14
Diff. 2.00 1.10 0 2.00 0 0.20 5.20 1.00 2.00 1.00 1.03 1.70 1.31
Ratio 3.00 2.00 1.00 2.00 1.00 1.34 1.85 1.20 1.14 1.17 1.10 1.18 1.42

Dataset1 ∪ Dataset3

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Geom. Mean
Cold
Cache 3.00 2.94 2.00 5.00 3.00 0.90 11.10 7.00 25.20 8.00 11.00 11.5 5.28
Warm
Cache 2.00 1.10 1.00 5.00 3.00 1.78 8.10 6.00 20.94 7.00 11.00 9.10 4.03
Diff. 1.00 1.84 1.00 0 0 -0.88 3.00 1.00 4.26 1.00 0 2.40 1.22
Ratio 1.50 2.67 2.00 1.00 1.00 0.51 1.37 1.17 1.20 1.14 1.00 1.26 3.70

Table 5.4: Benchmark Query Execution Times (seconds). in Cold and Warm Caches. Significant
differences are highlighted in bold.

5.3.2 Results and Discussions

For data loading time, the results in Table 5.3 show that semantic data loading takes between 1
to 3 hours, whereas non-semantic XML data loading time takes 0.5 hours. In the absence of a
schema, the loading of semantic data requires to exhaustively parse all the data and reorganize
it to correspond with our tabular model (flattening). During this process, an inevitable large
data movement occurs (Spark collect function), causing a significant network transfer and,
thus, negatively impacting query performance. A small technique that we employed and that
improved the loading time was reversing the URIs of RDF objects. It allowed for faster sorting
and more balanced data distribution. The tables extracted from the semantic data are product,
offer, vendor, review, person and producer, which correspond exactly to the main tables of
the BSBM relational representation. Similar tables are retrieved from XML data, which are
accessed using Spark XML reader19 by means of XPath calls. However, we achieve a substantial
gain in terms of data size due to the adopted data model that avoids data repetition (in case of
RDF data) and the used file format (Parquet) that performs very efficient data compression
(see subsection 5.2.3).

Table 5.4 reports on the results of executing Berlin Benchmark 12 queries againstDataset1 (ori-
ginally semantic), alone and in combination with Dataset3 (originally non-semantic). Table 5.5
reports on the same but using Dataset2 (originally semantic) instead of Dataset1. Queries are
run on cold cache and then on warm cache. The results show that all queries finished far below
the specified threshold (300s), with the fastest query being Q6 finishing in 0.78s cold and 0.58s
warm, and the slowest query being Q9 finished in 25.2s cold and 20.94s warm. Among the 12
19 For more details: https://github.com/databricks/spark-xml
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Dataset2

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Geom. Mean
Cold
Cache 5.00 3.20 3.00 8.00 3.00 1.10 20.00 7.00 18.00 7.00 13.00 11.40 6.21
Warm
Cache 4.00 3.10 2.00 7.00 3.00 1.10 18.10 6.00 17.00 6.00 12.04 11.2 5.55
Diff. 1 0.1 1 1 0 0 1.9 1 1 1 0.96 0.2 0.66
Ratio 1.25 1.03 1.50 1.14 1.00 1.00 1.10 1.17 1.06 1.17 1.08 1.02 1.12

Dataset2 ∪ Dataset3

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Geom. Mean
Cold
Cache 11.00 3.20 7.20 17.00 3.00 1.10 23.10 16.00 20.72 10.00 14.10 13.20 8.75
Warm
Cache 4.00 3.20 2.00 8.00 3.00 1.10 21.20 8.00 18.59 7.00 12.10 11.10 5.96
Diff. 7 0 5.2 9 0 0 1.9 8 2.13 3 2 2.1 2.79
Ratio 2.75 1.00 3.60 2.13 1.00 1.00 1.09 2.00 1.11 1.43 1.17 1.19 1.47

Table 5.5: Benchmark Query Execution Times (seconds). in Cold and Warm Caches-Significant differences
are highlighted in bold

queries, the most expensive queries are Q7 to Q12. Q7 is the most complex joining the largest
number of tables (four), followed by Q9 and Q12 joining three tables producing a large number
of intermediate results (in the absence of filters). Q8 and Q10 are similar in that they join two
tables while sorting the final results. Q11 accesses the largest table (offer) filtering on a string
value that does not exist in the data. Q1 to Q6 belong to the lower end of query execution time.
Q1 query accesses only one table and has two selective filters. Q2 joins two tables, but one
table is small in addition to filtering the results to a specific operand ID. Q3 and Q5 contain
a self-join (one table), but largely limit the intermediate results by incorporating five and six
filters, respectively. Q4 contains a union but accesses only one table with two filters. Q6 is the
simplest and smallest query with only one filter. Note that for this query, the difference between
the warm and cold cache execution is negative. This means that the query execution on the
cold cache was faster than that on the warm cache. This is plausible with fast queries finishing
within a second or two as there might be a variable overhead either from the system or the
query engine that dominates the query execution time.

Further, the results in Table 5.4 and Table 5.5 suggest that caching can significantly improve
query performance by up to 3 times saving up to 9 seconds (significant differences highlighted in
bold). Thus, we obtain evidence of the benefits of using the cache stored during previous runs
by the query engine, Spark. Finally, results also show that including data from (originally XML)
Dataset3 using UNION operator in the 12 queries does not deteriorate query performance. This
is because the data effectively queried is in Parquet format generated during XML ingestion,
which is the same format as Dataset1 and Dataset2. This is evidence that hybrid semantic and
non-semantic data can be uniformly integrated and queried using a single query (R1). Further,
we were able to capture the semantics of the data in our suggested RDF data partitioning
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RDF Dataset Loading Time New Size Ratio to Parquet S ize
Dataset1 93min 21GB 55:1
Dataset2 Timed out - -

Table 5.6: Loading Time of RDF-3X.

Engine Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12
SeBiDA 3.00 2.20 1.00 4.00 3.00 0.78 11.3 6.00 16.00 7.00 11.07 11.00
RDF-3X 0.01 1.10 29.213 0.145 1175.98 2.68 77.80 610.81 0.23 0.419 0.13 1.58

Table 5.7: SeBiDA vs. RDF-3X Query Execution Times (seconds). Cold Cache only on Dataset1.
Significant differences are highlighted in bold.

scheme (R2). Finally, the exploitation of caching and columnar-oriented format allowed us to
optimize query performance (Q3).

5.3.3 Centralized vs. Distributed Triple Stores

We can regard SeBiDA as a distributed triple store as it can load and query semantic RDF
data. Therefore, in the next series of evaluation, we compare SeBiDA’s performance against
the performance of a popular RDF store, RDF-3X [195]20. We evaluate both the loading and
querying of semantic data, the results of which are respectively shown in Table 5.6 and Table 5.7.
Loading timeout is 43200 seconds (12 hours).

Loading time shows that RDF-3X loaded Dataset1 within 93 minutes, compared to 66 minutes
in SeBiDA. Loading Dataset2, RDF-3X exceeded the timeout threshold and took up to 24
hours before we manually terminate it. The witnessed low loading performance in RDF-3X
is attributed to the exhaustive creation of six triple indexes. These indexes also take a much
larger disk footprint in comparison to SeBiDA with a factor of 55. SeBiDA, on the other
hand, generates a much-reduced data thanks to its partitioning scheme and highly-compressed
generated Parquet tables.
For query execution time, Table 5.7 reveals no definitive winner, but show that SeBiDA in

all queries does not exceed the cap of 20s, while RDF-3X does in four queries (Q3, Q5, Q7,
Q8) and even passes to the order of minutes. We do not report on the query time of Dataset2
using RDF-3X as data was not loaded. This comparison practically supports the proposition
we made in Chapter 2 that modern highly efficient and scalable formats, such as Parquet, can
compensate for the lack of indexes in improving query execution by using optimized internal
data structures and data encoding (R3).

5.4 Summary
The experimental series allows us to draw the following conclusions. The loading phase can be a
bottleneck in the overall Data Integration process. Noticing the loading time of the Semantic
data Dataset1 and Dataset2, there seems to be a proportionality between the data size and
loading time. Namely, loading Dataset2 took double the time taken by Dataset1; similarly, the
scale size of Dataset2 is double that of Dataset1. Loading larger datasets, e.g., billion triples,
20 https://github.com/gh-rdf3x/gh-rdf3x
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would clearly jeopardize the Data Integration process. For non-semantic data, loading the small
XML Dataset3 was also comparatively long. Although it has 16% of Dataset1 size, it took
50% of its loading time. This adds to the price of reintegrating the data when the sources
have received more data after the first integration. These costs include schema evolution and
alignment in case the data has changed at the level of schema, data de-duplication to avoid
inserting previously inserted data, synchronization in case the data itself has been altered, etc.
A complex data loading phase hinders the adoption of the Physical Integration in many use
cases, e.g., where data dynamicity and freshness are strong requirements.
Although our Class-based Multi-Type-Aware Property Table partitioning and clustering

scheme optimizes for the loaded data footprint and query execution time, it cannot answer
queries when the predicate is unbound. However, it has been shown in the literature that such
queries are rare [54]; the same choice was made by other similar efforts as reported in the Related
Work (chapter 3).

The data loading bottleneck provides the rationale behind the second part of this thesis,
namely the Virtual Integration of heterogeneous and large data sources. A virtual integration
implies that queries are posed against the original data on demand, without requiring any prior
data transformation and loading. We hypothesize that a Virtual Integration will alleviate the
ingestion overhead, but will shift the overhead to the query processing phase. This is because
the underlying data is dissimilar in nature and disparate across multiple sources, in contrast to
a fully homogeneous and centralized environment in the Physical Integration.
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CHAPTER 6

Virtual Big Data Integration - Semantic Data
Lake

"Do not go where the path may lead, go
instead where there is no path and leave a
trail."

Ralph Waldo Emerson

As previously mentioned (Introduction Chapter 1), multiple and diverse data models and
distributed Data Management systems have emerged in recent years to alleviate the limitation
of traditional centralized Data Management. A prominent example is the NoSQL non-relational
family which includes models like Key-value, Document, Columnar, and Graph. Consequently,
organizations are purposely converging towards these new models in order to capitalize on their
individual merits. However, this paradigm shift poses challenges on the way of achieving a pure
Physical Data Integration, such as:

• It is cumbersome to impossible migrating all the collected heterogeneous data to a single
universal model without incurring data loss, both in structure and semantics. For example,
nested and multi-valued array data in a document format cannot be converted in a flat tabu-
lar format. Similarly, graph data cannot be straightforwardly transformed into a document
format without incorporating variable levels of normalization and denormalization.

• Data transformation and migration incurs a significant cost, both in time and resources.
Migrating very large data volumes requires investing in more storage and network resources,
adding to the already resource-consuming original large data.

• Many organizations are less likely to sacrifice data freshness especially with the advent of
streaming and IoT technologies. Another data source added to the pool adds a complexity
level to the overall Data Integration processes.

Further, we have witnessed some of the issues that arise from exhaustively transforming
data following a purely Physical Data Integration process (reported in section 5.4). In the
Logical Data Integration, heterogeneous data sources are accessed directly in their raw format
without requiring prior data transformation and enforcing centralization. Keeping data in its
raw format not only promises freshness but also makes data available to any type of processing
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e.g., analytics, ad hoc querying, search, etc. The repository of heterogeneous data sources in
their original formats is commonly referred to as Data Lake [196]. In this chapter, we describe
our approach that leverages Semantic Web techniques to enable the ad hoc querying of Data
Lakes, called Semantic Data Lake. In particular, we address the following research question:

RQ3. Can Semantic Technologies be used to incorporate an intermediate middleware
that allows to uniformly access original large and heterogeneous data sources on demand?

Contributions of this chapter can be summarized as follows:

• We provide a thorough description of the concepts and components underlying the Semantic
Data Lake.

• We suggest six requirements that need to be fulfilled by a system implementing the
Semantic Data Lake.

• We detail the distributed query execution aspects of the Semantic Data Lake.

This chapter is based on the following publications:

• Mohamed Nadjib Mami, Damien Graux, Simon Scerri, Hajira Jabeen, Sören Auer, Jens
Lehmann. Uniform Access to Multiform Data Lakes Using Semantic Technologies. In
Proceeding of the 21st International Conference on Information Integration and Web-based
Applications & Services Proceedings (iiWAS), 2019.

• Mohamed Nadjib Mami, Damien Graux, Simon Scerri, Hajira Jabeen, Sören Auer, Jens
Lehmann. Squerall: Virtual Ontology-Based Access to Heterogeneous and Large Data
Sources. In Proceeding of the 18th International Semantic Web Conference (ISWC)
229-245, 2019.

• Mohamed Nadjib Mami, Damien Graux, Simon Scerri, Hajira Jabeen, Sören Auer. Query-
ing Data Lakes using Spark and Presto. In Proceedings of the World Wide Web Conference
(WWW), 3574-3578. Demonstrations Track, 2019.

• Sören Auer, Simon Scerri, Aaad Versteden, Erika Pauwels, Mohamed Nadjib Mami, An-
gelos Charalambidis, et al. The BigDataEurope platform–supporting the variety dimension
of big data. In Proceedings of the 17th International Conference on Web Engineering
(ICWE), 41-59, 2017.

6.1 Semantic Data Lake
The term Data Lake [4] refers to the schema-less pool of heterogeneous and large data sources
residing in their original formats on a horizontally-scalable cluster infrastructure. It typically
consists of scale-out file/block storage infrastructure (e.g., Hadoop Distributed File System) or
scalable databases (e.g., NoSQL stores). By definition, it requires dealing with the original data
without requiring a physical transformation or pre-processing. After emerging in the industry,
the concept has increasingly been discussed in the literature [197–199].

The integration of heterogeneous data is the key rationale behind the development of Semantic
Technologies over the past two decades. Local data schemata are mapped to global ontology
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terms using mapping languages that have been standardized for a number of popular data
representations, e.g., relational data, JSON, CSV, XML, etc. Heterogeneous data can then
be accessed in a uniform manner by means of queries in a standardized query language,
SPARQL [200], employing terms from the ontology. Such data access is commonly referred to
as Ontology-Based Data Access (OBDA) [8]. The application of these Semantic Technologies
over the Data Lake led to the Semantic Data Lake concept, which we introduced in a series
of publications [201–204] and detail in this thesis.

6.1.1 Motivating Example
In order to facilitate the understanding of subsequent definitions, we will use the SPARQL query
in Listing 6.1 as a reference. ns denotes an example ontology where classes and properties are
defined.

1 SELECT DISTINCT ?price ?page
2 WHERE {
3 ? product a ns: Product .
4 ? product ns: hasType ?type .
5 ? product ns: hasPrice ?price
6 ? product ns: hasProducer ? producer .
7 ? producer a ns: Producer .
8 ? producer ns: homepage ?page .
9 FILTER (? price > 1200)
10 } ORDER BY ?type LIMIT 10

Listing 6.1: Example SPARQL Query.

6.1.2 SDL Requirements
The Semantic Data Lake, SDL, is then an extension of the Data Lake supplying it with
a semantic middleware, which allows the uniform access to original heterogeneous large data
sources. Therefore, an SDL-compliant system must meet the following requirements:

• R1. It should be able to access large-scale data sources. Typical data sources inside a
Data Lake range from large plain files stored in a scale-out file/block storage infrastructure
(e.g., Hadoop Distributed File System, Amazon S3) to scalable databases (e.g., NoSQL
stores). Typical applications built to access a Data Lake are data- and compute-intensive.
While a Data Lake may contain small-sized data, the primary focus of the Data Lake is,
by definition [4], data and computations that grow beyond the capacity of single-machine
deployments.

• R2. It should be able to access heterogeneous sources. The value of a Data Lake-accessing
system increases with its ability to support as many data sources as possible. Thus, a
SDL system should be able to access data of various forms. This includes plain-text files
e.g., CSV, JSON, structured file formats, e.g., Parquet, ORC, databases, e.g., MongoDB,
Cassandra, etc.

• R3. Query execution should be performed in a distributed manner. The following are
scenarios highlighting this requirement. (1) Queries joining or aggregating only a sub-set
of the data may incur large intermediate results that can only be computed and contained
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by multiple nodes. (2) As original data is already distributed across multiple nodes, e.g.,
in HDFS or a high-availability MongoDB cluster, query intermediate results can only be
stored distributedly and computed in parallel. (3) Many NoSQL stores, e.g., Cassandra
and MongoDB, dropped the support for certain query operations [205], e.g., join, in favor
of improving storage scalability and query performance. Thus, in order to join entities of
even one same database, e.g., collections in MongoDB, they need to be loaded on-the-fly
into an execution environment that supports join, e.g., Apache Spark [40].

• R4. It should be able to query heterogeneous sources in a uniform manner. One of the
main purposes of adding a semantic layer on top of the various sources is to abstract away
the structural differences found across Data Lake sources. This semantic middleware adds
a schema to the originally schema-less repository of data, which can then be uniformly
queried using a unique query language.

• R5. It should query fresh original data without prior processing. One of the ways the
Data Lake concept contrasts with traditional Data Integration paradigms (e.g., Data
Warehouse [206]) is that it does not enforce centralization by transforming the whole data
into a new format and form. It rather queries directly the original data sources. Querying
transformed data compromises data freshness, i.e., a query returns an outdated response
when data has changed or been added to the Data Lake meanwhile. Such pre-processing
also includes indexing; once new data is added to the Data Lake, queries will no longer
access the original data but excludes the new yet un-indexed data. Besides Data Lake
requirements, index creation in the highly scalable environment of the Data Lake is an
expensive operation that requires both time and space resources.

• R6. It should have a mechanism to enable the cross-source join of heterogeneous sources.
Data Lake is often created by dumping silos of data, i.e., data generated using separate
applications but has the potential to be linked to derive new knowledge and drive new
business decisions. As a result, Data Lake-contained data may not be readily joinable but
requires introducing changes at query-time to enable the join operation.

6.1.3 SDL Building Blocks
In this section, we provide a formalisation for SDL underlying building blocks.

Definition 7 (Data Source) A data source refers to any data storage medium, e.g., plain file,
structured file or a database. We denote a data source by d and the set of all data sources by
D = {di}.

Definition 8 (Data Entities and Attributes) Entities are collections of data that share a similar
form and characteristics. These characteristics are described in the form of attributes. We
denote an entity by ex = {ai}, where x is the entity name and ai are its attributes. A data
source consists of one or more entities, d = {ei}.

For example, ‘Product’ is an entity of relational form, and is characterized by (Name, Type,
Producer) attributes.

Definition 9 (Ontology) An ontology O is a set of terms that describe a common domain con-
ceptualization. It principally defines classes C of concepts, and properties P about concepts,
O = C ∪ P .
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For example, ns:Product is the class of all products in an e-commerce system (ns is an
ontology identifier or namespace), of which ns:hasType, ns:hasPrice and ns:hasProducer
are properties and ns:Book is a sub-class.

Definition 10 (Semantic Mapping) A semantic mapping is a relation linking two semantically-
equivalent terms. We differentiate between two types of semantic mappings:

• Entity mappings: men = (e, c) a relation mapping an entity e from d onto an ontology class
c. For example, (ProductTable, ns:Product) is mapping the entity ProductTable from a
Cassandra database to the class ns:Product of the ontology ns. M en is the set of all entity
mappings.

• Attribute mappings: mat = (a, p) a relation mapping an attribute a from a given e onto an
ontology property p.

For example, (price, ns:hasPrice) is mapping attribute price of a Cassandra table to the
Ontology property ns:hasPrice. Mat is the set of all attribute mappings.

Definition 11 (Query) a query q is a statement in a query language used to extract entities by
means of describing their attributes. We consider SPARQL as a query language, which is used to
query (RDF [6]) triple data (subject, property, object). In particular, we are concerned with the
following fragment: the BGP (Basic Graph Pattern), which is a conjunctive set of triple patterns,
filtering, aggregation and solution modifiers (projection, limiting, ordering, and distinct). Triple
patterns are triples that are partially undefined e.g., (a, b, ?object).

Definition 12 (Query Star) Query star is a shorthand version of a subject-based star-shaped
sub-BGP, a set of triple patterns sharing the same subject. We denote a star by stx ={
ti = (x, pi, oi) | t ∈ BGPq

}
where x is the shared subject and BGPq = {(si, pi, oi) | pi ∈ O},

i.e., triple patterns of a star (thus of the BGP) use properties from the ontology. We call star
variable the subject shared by the star’s triples. A star is typed if it has a triple with the typing
property (e.g., rdf:type or a).

For example, (?product rdf:type ns:Product . ?product ns:hasPrice ?price . ?p
ns:hasType ?type . ?product ns:hasProducer ?producer) is a star that has variable
product and type ns:Product.

Definition 13 (Query Star Connection) A star sta is connected to another star stb if sta has
a tripe pattern (called connection triple) with the object being the variable of star stb, i.e.,
connected(sta, stb)→ ∃ti = (si, pi, b) ∈ sta.

For example, triple (?product ns:hasProducer ?producer) of stproduct connects stproduct

with stproducer.

Definition 14 (Relevant Entities to Star) An entity e is relevant to a star st if it contains
attributes ai mapping to every triple property pi of the star i.e., relevant(e, st) → ∀pi ∈
pred(st)∃aj ∈ e | (pi, aj) ∈ M

at, where pred is a relation returning the set of properties of a
given star.
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Definition 15 (Distributed Execution Environment) A Distributed Execution Environment, DEE,
is the shared physical space where large data can be transformed, aggregated and joined. It has
an internal data model with which the contained data comply. It is similar to the Staging Area
of Data Warehouses [206], acting as an intermediate homogenization layer.

For example, DEE can be a shared pool of memory in a cluster where data is organized in
large distributed tables.

Definition 16 (ParSet (Parallel dataSet)) A ParSet is a data structure that is partitioned and
distributed, and that is queried in parallel. ParSet has the following properties:

• It is created by loading the star’s relevant entities into the DEE.

• It has a well-defined data model, e.g., relational, graph, document, key-value, etc.

• It is populated on-the-fly and not materialized, i.e., used only during query processing then
cleared.

Its main purpose is to abstract away the schema semantic differences found across the varied
data sources. We denote by PSx the ParSet corresponding to the star stx, the set of all ParSets
is denoted PS.

Definition 17 (ParSet Schema) ParSet has a schema that is composed of the properties of its
corresponding star, plus an ID that uniquely identifies ParSet’s individual elements. To refer to
a property p of a ParSet, the following notation is used PSstar.p.

For example, the schema of PSproduct is {hasPrice, hasType, hasProducer, ID}, its property
hasPrice is referred to by PSproduct.hasPrice.

Definition 18 (Joinable ParSets) Two ParSets are joinable if their respective stars are connected
(by a connection triple), i.e., joinable(PSa, PSb) ⇐= connected(sta, stb). If the two ParSets
have a relational model for example, two of their attributes may store inter-matching values.
ParSets are incrementally joined following a query, results of which are called Results ParSet,
denoted PSresults.

For example, ParSet PSproduct: {hasPrice, hasType, hasProducer, ID} is joinable with ParSet
PSproducer: {hasHomepage, ID}, because the query contains the (connection) triple (?product
ns:hasProducer ?producer).

Definition 19 (Entity Wrapping) Entity Wrapping is a function that takes one or more relevant
entities to a star and returns a ParSet. It loads entity elements and organizes them according to
ParSet’s model and schema. wrap(ei)→ PSx.

For example, a collection (entity) of a Document database is adapted (flattened) to a tabular
model by mapping every document property to a table1 column.
1 Complex entities e.g., nested documents, may result in more than one table.
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?k bibo:isbn ?i .
?k dc:title ?t .
?k schema:author ?a .
?k bibo:editor ?e . 

?a foaf:firstName ?fn .
?a foaf:lastName ?ln .
?a rdf:type nlon:Author .
?a drm:worksFor ?in .
?in rdfs:label ?n1 .
?in rdf:type vivo:Institute 
?e rdfs:label ?n2 .
?e rdf:type saws:Editor .
?c rdf:type swc:Chair .
?c dul:introduces ?r . 
?c foaf:firstName ?cfn .
?r schema:reviews ?k .
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Figure 6.1: ParSets extraction and join (for clarity ParSet(x) is shortened to PS(x))

6.1.4 SDL Architecture

We envision an SDL architecture to contain four core components (see Figure 6.2): Query
Decomposition, Relevant Source Detection, Data Wrapping and Distributed Query Processing.
It accepts three inputs: the query, semantic mappings and access metadata. In the following,
we describe the techniques and mechanisms underlying the architecture components.

Query Decomposition

Firstly, the input query is validated and analyzed to extract its contained query stars (Defini-
tion 12), as well as the connections between the stars (Definition 13). Query decomposition is
subject-based (variable subjects) since the aim is bringing and joining entities from different
sources. For example, in Figure 6.1 left, six stars have been identified (shown in distinct colored
boxes) represented by their variables k, a, in, e, c and r. Similar decomposition methods are
commonly found in OBDA and Query Federation systems (e.g., [207]).

Relevant Source Detection

For every star, the mappings are visited to find the relevant entities (Definition 14). If more than
an entity is relevant, they are combined (union). If a star is typed with an ontology class, then
only entities with ’entity mapping’ to that class are extracted. For example, suppose a query
with two joint stars (?x _:hasAuthor ?y) and (?y foaf:firstName ?fn, ?y foaf:lastName
?ln). There exist, in the data, two entities about authors and speakers, both having the
two attributes mapping to the predicates foaf:firstName and foaf:lastName, and an entity
about books. As star y is untyped, and as both authors and speakers entities have attributes
mapping to the predicates of star y, both will be identified as relevant data, and, thus, be joined
with star x about books. Semantically, this yields wrong results as speakers have no relationship
with books. Hence the role of the type in a star.

89



Chapter 6 Virtual Big Data Integration - Semantic Data Lake

Data Wrapping

Relevant entities are loaded as ParSets, one ParSet per query star. This component implements
the Entity Wrapping function (Definition 19), namely loading entities under ParSet’s model and
schema, e.g., the flattening of various data into tables. In the classical OBDA, the input SPARQL
query has to be translated to queries in the language of each relevant data source. This is in
practice hard to achieve with the highly heterogeneous Data Lake nature. Therefore, numerous
recent publications (e.g., [89–91]) advocate for the use of an intermediate query language to
interface between the SPARQL query and the data sources. In our case, the intermediate query
language is the query language (e.g., SQL) corresponding to ParSet data model (e.g., tabular).
The Data Wrapper generates data in ParSet model at query-time, which allows for the parallel
execution of expensive query operations, e.g., join, or any unselective queries. There must exist
wrappers to convert data entities from the source to ParSet data model. For each identified star
by the Query Decomposition, exactly one ParSet is generated by the Data Wrapping. If more
than an entity are relevant, the ParSet is formed as a union. Moreover, not the entirety of the
entities is loaded, but predicate push-down optimization filters their content already at the data
source level. This means that the only data loaded into ParSets is strictly what is needed to
perform the join, and possibly the aggregations. An auxiliary metadata file (Config) is provided
by the user, containing access information to guide the conversion process, e.g., authentication,
deployment specifications, etc. More details are given in Section 6.2.

Distributed Query Execution

Connections between stars detected by Query Decomposition will be translated into joins
between ParSets. Any operations on star properties (e.g., filtering) or results-wide operations
(e.g., aggregation, sorting) are translated to operations on ParSets. Section 6.2 is reserved for
detailing this component.

6.2 Query Processing in SDL

The pivotal property of SDL distinguishing it from traditional centralized Data Integration and
Federation Systems is its ability to query large-scale data sources in a distributed manner. This
requires the incorporation of adapted or new approaches, which are able to overcome the data
scale barrier. In this section, we detail the various mechanisms and techniques underlying the
distributed query execution in the SDL. Query Processing in SD stars by extracting stars from
the SPARQL query, then forming ParSet from relevant data, then querying the ParSets. In this
section, we first describe how ParSets are formed and interacted with (subsection 6.2.1), then
how they are effectively queried (subsection 6.2.2).

6.2.1 Formation of and Interaction with ParSets

ParSets are the unit of computation in the SDL architecture. They are first loaded from relevant
data source entities and then filtered, transformed, joined and aggregated as necessary in the
course of a query. They can be seen as views that are populated from underlying data entities
and are (only) available during the query execution time.
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Figure 6.2: Semantic Data Lake Architecture (Mappings, Query and Config are user inputs).

From Data Source’s Model to PatSet’s Model

Retrieving data from a data source and populating the ParSet is performed by wrappers, which
apply the necessary model transformation or adaptation. For example, if ParSet is of a tabular
model and one data source is of a graph model, the source wrapper creates a tabular version
by flattening the graph data structures. The data is retrieved using the source available access
mechanisms. Several mechanisms were used in the literature ranging from programmatic APIs
(e.g., getter/setter methods, ORM/OGM2, query methods), Web APIs (e.g., GET requests,
query endpoints), connectivity standards (JDBC, ODBC), etc.

ParSets Language as ’Intermediate’ Query Language

ParSets have a specific data model and, thus, can be interacted with using a specific query
language, e.g., tabular model and SQL. The query language of the ParSets can then be used as
an intermediate query language. Using the latter, it becomes possible to convert SDL’s unique
query language (SPARQL in our case) to ParSet’s unique query language (e.g., SQL), instead of
the languages of every data source. Solving data integration problems using an intermediate or
meta query language is an established approach in the literature. It has been used in recent
works (e.g., [89, 90]) to access large and heterogeneous data sources.

Interaction Mechanisms with ParSets

Once ParSets are created, they are used in two different ways, detailed as follows.
2 Object-Relational Mappings/Object-Grid Mappings
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parset = wrapper(entity)
filter(parset)
aggregate(parset)
join(parset,otherParset)

Listing 6.2: ParSets manipulation. The ParSet is created from a data source entity by a specialized
wrapper. The ParSet is then interacted with using a set of manipulation methods, here filter, then
aggregate, then join with another ParSet.

SELECT C.type ... FROM cassandra.cdb.product C JOIN
mongo.mdb.producer M ON C.producerID = M.ID
WHERE M.page="www.site.com" ...

Listing 6.3: A self-contained SQL query. The query contains references to the required data sources and
entities: a Cassandra table and a MongoDB collection.

• Manipulated ParSets. This is the case of wrappers generating ParSets in a format that
users can manipulate. For example, if the model of the ParSet is tabular, the returned
ParSet would be a table that users can interact with by means of SQL-like functions.
This approach is more flexible as users have direct access to and control over the ParSets
using an interaction language (e.g., Java). However, knowledge about the latter is, thus, a
requirement. Listing 6.2 illustrates this mechanism.

• Self-Contained Query. This is the case where wrappers do not create ParSets in a data
structure that users can control and manipulate. Users can only write one universal
self-contained declarative query (i.e., ask for what is needed and not how to obtain it)
containing direct references to the needed data sources and entities. An example of such a
self-contained query in SQL is presented in Listing 6.3, where product and producer are
two tables from Cassandra cdb and MongodB mdb databases, respectively.

This classification can categorize the various existing query engines that can implement the
ParSet. For example, the first mechanism is applicable using Apache Spark or Flink3, the second
mechanism is applicable using Presto4, Impala5, Drill6 or Drimio7.

6.2.2 ParSet Querying
Once ParSets are produced by the wrappers, they are effectively queried to retrieve the sub-
results that collectively form the final SPARQL query answer. The operations executed over
ParSets correspond to SPARQL query operations. In the next, we describe how to deduce the
list of operations and how they are executed.

From SPARQL to ParSet Operations

We remind that for every query star a ParSet is created, which has a schema that is composed
of the properties of the corresponding star (Definition 17). In order to avoid property naming
3 https://flink.apache.org
4 https://prestosql.io
5 https://impala.apache.org
6 https://drill.apache.org
7 https://docs.dremio.com
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conflicts across multiple stars, we form the components of ParSet’s schema using the following
template: {star-variable}_{property-name}_{property-namespace}, e.g., product_hasType_ns.
Then, the SPARQL query is translated into ParSet operations following the algorithm shown
in Listing 6.5; ParSet operations are marked with an underline.

1. For each star, relevant entities are extracted (lines 5 to 7).

2. For each relevant entity, a ParSet (oneParSet) is loaded and changed in the following way.
If the SPARQL query contains conditions on a star property, equivalent ParSet filtering
operations are executed (lines 10 and 11). If there are joinability transformations [85]
(Requirement 6, subsection 6.1.2), also equivalent transformation operations on ParSet are
executed. If more than one entity is relevant, the loaded oneParSet is combined with the
other ParSets relevant to the same star (line 14). Finally, add the changed and combined
starParSet to a list of all ParSets (line 15).

3. Connections between query stars translate into joins between the respective ParSets,
resulting in an array of join pairs e.g., [(Product, Producer),(Product, Review)] (line 17).
As shown in the dedicated algorithm in Listing 6.6 (more detailed in Listing 6.7), results
ParSet (PSresults) is created by iterating through the ParSet join pairs and incrementally
join them (line 18).

4. Finally, if the SPARQL query contains results-wide query operations e.g. aggregations
solution modifiers (project, limit, distinct or ordering) equivalent operations are executed
on the results ParSet (lines 19 to 28).

Steps 1–3 are are illustrated in Table 6.1.

ParSet Operations Execution

Once ParSet operations are decided, their executed depends on the interaction mechanism of
the implementing engine described in 6.2.1. For clarification purposes, we project some of the
concepts on practical terms from current state-of-the-art query engines.

• Manipulated ParSets. This applies when ParSets are manually8 loaded and manipulated
using execution engine functions. This is the case of DataFrames, a possible implementation
of ParSets in Spark, which undergo Spark transformations, e.g., map, filter, join,
groupByKey, sortByKey, etc. If we consider oneParset of line 9 in Listing 6.5 as a
DataFrame, then every ParSet operation can be implemented using an equivalent Spark
transformation.

• Self-Contained Query. As in this case, a high-level declarative query is generated, there
are no explicit operations to manually run in a sequence. Rather, ParSet operations
of Listing 6.5 create and gradually augment a query, e.g., SQL query in Presto9. For
example, in the query of Listing 6.1, there is a condition filter ?price > 1200, ParSet
operation of line 11 augments the query with WHERE price > 1200. Similarly, the query
parts ORDER BY ?type and LIMIT represented by ParSet operations order (line 22) and

8 By manual we do not mean the direct user interaction, but the implementation of these ParSets in a given SDL
implementation. The only user interaction is via issuing SPARQL query.

9 https://prestosql.io
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1 SELECT DISTINCT C.type , C.price
2 FROM cassandra .cdb. product C
3 JOIN mongo.mdb. producer M ON C. producerID = M.ID
4 WHERE C.price > 1200 ORDER BY C.type LIMIT 10

Listing 6.4: Generated self-contained SQL Query.

1 Input: SPARQL query q
2 Output : resultsParSet
3
4 allParSets = new ParSet ()
5 foreach s in stars(q)
6 starParSet = new ParSet ()
7 relevant - entities = extractRelevantEntities (s)
8 foreach e in relevant - entities // one or more rlevant entities
9 oneParSet = loadParSet (e)
10 if containsConditions (s,q)
11 parSet = filter (oneParSet , conditions (s))
12 if containsTransformations (s,q)
13 parSet = transform (oneParSet , conditions (s))
14 starParSet = combine (starParSet , oneParSet )
15 allParSets += starParSet
16
17 parSetJoinsArray = detectJoinPoints (allParSets ,q)
18 resultsParSet = joinAll ( parSetJoinsArray )
19 if containsGroupBy (b)
20 resultsParSet = aggregate ( resultsParSet ,q)
21 if containsOrderBy (q)
22 resultsParSet = order( resultsParSet ,q)
23 if containsProjection (q)
24 resultsParSet = project ( resultsParSet ,q)
25 if containsDistinct (q)
26 resultsParSet = distinct ( resultsParSet ,q)
27 if containsLimit (q)
28 resultsParSet = limit( resultsParSet ,q)

Listing 6.5: ParSet Querying Process (simplified).

limit (line 28) augment the query by ORDER BY C.type LIMIT 10. Full generated SQL
query of the query in Listing 6.1 is presented in Listing 6.4. Query Augmentation is a
known technique in query translation literature, e.g., [133].

Optimization Strategies

In order to optimize query execution time, we have designed the query processing algorithm
(Listing 6.5) in such a way that we reduce as much data as soon as possible, especially before
the cross-ParSet join is executed. There are three locations where this is applied:

1. We push the query operations that affect only the elements of a single ParSet to the
ParSet itself, not until obtaining results ParSet. Concretely, we execute the filter and
transform operations before the join. Aggregation and the other solution modifiers are
left to the final results ParSet, as those operations have a results-wide effect.

2. Filter operation runs before transform (line 11 then 13). This is because the transform

94



6.3 Summary

1 Input: ParSetJoinsArray // Pairs [( ParSet , ParSet )]
2 Output : ResultsParSet // ParSet joining all ParSets
3
4 ResultsParSet = ParSetJoinsArray [0] // 1st pair
5 foreach currentPair in ParSetJoinsArray
6 if joinableWith ( currentPair , ResultsParSet )
7 ResultsParSet = join( ResultsParSet , currentPair )
8 else
9 PendingJoinsQueue += currentPair

10 // Next , iterate through PendingJoinsQueue
11 // similarly to ParSetJoinsArray

Listing 6.6: JoinAll - Iterative ParSets Join.

Starproduct:
?product a ns:Product .
?product ns:hasType ?type .
?product ns:hasPrice ?price .

Mappings:
Product → ns:Product
type → ns:hasType
price → ns:hasPrice

�

P SP roduct:
SELECT type AS product_hasType_ns, price AS product_hasPrice_ns
Starproducer:
?producer a ns:Producer .
?producer ns:homepage ?page .

Mappings:
Producer → ns:Producer
website → ns:homepage

�

P SP roducer:
SELECT website AS producer_homepage_ns
Starproduct (follow up)
?product ns:hasProducer ?producer
P Sresults:

Product JOIN Producer ON Product.product_hasProducer_ns = Producer.ID

Table 6.1: ParSets generation and join from the SPARQL query and mappings. The join between
StarP roduct and StarP roducer enabled by the connection triple (?product ns:hasProducer ?producer)
is represented by ParSet(product).(ns:hasProducer) = ParSet(producer).(ID) and translated to the SQL
query shown under PSresults.

affects the attribute values (which will later participate in a join), so if they are reduced
by the filter, fewer data will have to be transformed (then joined).

3. We leverage filter push-down optimization of the query engine. Namely, we allow the
data sources themselves to filter data whenever possible (e.g., possible with Parquet and
not with CSV) before loading them into ParSets. This reduces the data to be joined or
aggregated later on.

6.3 Summary
In this chapter, we provided a formal description of the concepts and principles underlying
the Semantic Data Lake architecture. We suggested six requirements that must be met for
an implementation to be SDL-compliant. Most importantly, such implementation should be
distributed, support joins and access as many original data sources as possible in an ad hoc
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1 Input: ParSetJoinsArray // Pairs [( ParSet , ParSet )]
2 Output : resultsParSet // ParSet joining all ParSets
3
4 ps1 = ParSetJoinsArray [0]. key
5 ps2 = ParSetJoinsArray [0]. value
6
7 resultsParSet = ps1.join(ps2 ).on(ps1.var=ps2.var)
8 joinedParSets .add(ps1 ). add(ps2)
9
10 foreach currentPair in ParSetJoinsArray
11 ps1 = currentPair .key
12 ps2 = currentPair .value
13
14 if joinedParSets . contains (ps1) and ! joinedParSets . contains (ps2)
15 resultsParSet = resultsParSet .join(ps2 ).on( resultsParSet .( ps1.var )= ps2.var)
16 joinedParSets .add(ps1 ). add(ps2)
17 else if ! joinedParSets . contains (ps1) and joinedParSets . contains (ps2)
18 resultsParSet = resultsParSet .join(ps1 ).on( resultsParSet .( ps2.var )= ps1.var)
19 joinedParSets .add(ps1 ). add(ps2)
20 else if ! joinedParSets . contains (ps1) and ! joinedParSets . contains (ps2)
21 joinedParSets . enqueue ((ps1 ,ps2 ))
22
23 while pending_joins . notEmpty do
24 join_pair = pending_join .hea
25 ps1 = join_pair .key
26 ps2 = join_pair .value
27 // Check and join similarily to lines 14-21
28 join_pair = pending_join .tail

Listing 6.7: JoinAll Detailed. Iterating over each join ParSet pair and check (both right and left side
ParSet) if it can join with the previously and incrementally computed results. If a certain pair cannot
join, it is added to a queue. After all pairs have been visited, the queue is iterated over in a simiar way
as previously and the remaining ParSet pairs are joined with the results ParSet, then enqueued. The
algorithm terminates when the queue is empty.

manner. Further, we provided detailed description of the SDL architecture and the various
query execution mechanisms underlying the SDL. In particular, we detail how, given a SPARQL
query, relevant data is organized into ParSets, and how equivalent query operations are derived
from the SPARQL query. We showed the two main mechanisms by which ParSets are formed
and queried. One is by manipulating ParSets in the form of operations on data structures, and
one by augmenting a high-level declarative query in the language of the ParSet data model.
We dedicate the next two separate chapters to describe our implementation of the SDL

(Chapter 7) and report on its empirical evaluation (Chapter 8), respectively.
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CHAPTER 7

Semantic Data Lake Implementation: Squerall

"Tell me and I forget. Teach me and I
remember. Involve me and I learn."

Benjamin Franklin

After describing the concepts, architecture and methodologies of the SDL, in this chapter,
we provide details regarding our implementation of the SDL, called Squerall [202]. We focus
on our choice of technologies for declaring mappings and query-time transformations and for
implementing the various layers of the architecture. We also present Squerall-GUI, the graphical
user interface that supports non-technical users in creating the necessary inputs. The GUI
consists of three sub-interfaces for creating SPARQL queries, mappings and access metadata.
Further, we present Squerall extensibility aspects, demonstrating source extensibility in particular
with supporting access to RDF data. Finally, we describe Squerall integration into the SANSA
Stack, a distributed framework for processing large-scale RDF data.
The main contribution of this chapter is then the description of Squerall, an extensible

implementation of the SDL concept that:

• Allows ad hoc querying of large and heterogeneous data sources virtually without any data
transformation or materialization.

• Allows the distributed query execution, in particular joining data from disparate hetero-
geneous data sources.

• Enables users to declare query-time transformations for altering join keys and thus making
data joinable (definition below).

• Integrates state-of-the-art Big Data engines Apache Spark and Presto with the Semantic
Technologies RML and FnO.

This chapter is based on the following publications:

• Mohamed Nadjib Mami, Damien Graux, Simon Scerri, Hajira Jabeen, Sören Auer, Jens
Lehmann. Squerall: Virtual Ontology-Based Access to Heterogeneous and Large Data
Sources. In Proceeding of the 18th International Semantic Web Conference (ISWC)
229-245, 2019.
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• Mohamed Nadjib Mami, Damien Graux, Simon Scerri, Hajira Jabeen, Sören Auer, Jens
Lehmann. How to feed the Squerall with RDF and other data nuts?. In Proceeding of the
18th International Semantic Web Conference (ISWC), Demonstrations and Posters Track,
2019.

7.1 Implementation

Squerall1 (from Semantically query all) is our implementation of the Semantic Data Lake
architecture. Squerall makes use of state-of-the-art Big Data technologies Apache Spark [40] and
Presto [208] as query engines. Apache Spark is a general-purpose Big Data processing engine
with modules for general Batch Processing, Stream Processing, Machine Learning and SQL
Querying. Presto is a SQL query engine with a focus on the joint querying of heterogeneous data
sources using a single SQL query. Both engines primarily base their computations in-memory.
In addition to their ability to query large-scale data, Spark and Presto have wrappers allowing
access to a wide array of data sources. Using those wrappers, we are able to avoid reinventing
the wheel and only resort to manually building a wrapper for a data source for which no wrapper
exists. We chose Spark and Presto because they offer a good balance between the number of
connectors, ease of use and performance [209, 210]. For example, at the time of writing, we are
able to easily check that Spark and Presto have the largest number of connectors than similar
distributed SQL query engines by visiting their respective documentations.

Squerall is written using Scala and Java query language with a code base of around 6000 lines.
We briefly list in the following the technologies backing every layer of the SDL architecture,
details are given thereafter.

• Query Decomposition: We use Apache Jena to validate the syntax of the query and to
extract the various SPARQL query components, e.g., BGP, projected variables, filtering,
grouping, ordering, etc.

• Source Mapping and Query-Time Transformation: We use RML for mapping declaration
combined with FnO ontology for query-time transformations declaration.

• Data Wrapping and Distributed Query Processing: We use Apache Spark [40] and
Presto [208] to both retrieve the relevant entities and perform the query.

We provide a Sequence Diagram showing how Squerall is interacted with, what sequence
of actions it takes to execute a query, and what major internal components are involved –
see Figure 7.1.

7.2 Mapping Declaration

We distinguish between Data Mappings and Transformation Mappings. The former map schema
elements to ontology terms and the latter map schema elements to functions altering their
(schema elements) values.

1 https://eis-bonn.github.io/Squerall
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7.2 Mapping Declaration

loop stars: star

if orderingExists

if aggregationsExist

Run

findRelevantEntities(star,mappings,config)

query(sparql,mappings,config)

Query
Analyzer

getStars(sparql)

stars

Query
Planner

starJoinPlan

Mapper

relevantEntities

getJoinPlan(stars)

Query
Executor

aggregate(resultsParSet)

resultsDataframe

query(star,relevantEntities,filters,config)

getFilters(sparql)

filters

ParSet

join(ParSets,starJoinPlan)

resultsParSet

ordered(resultsDataframe)

resultsDataframe

results

Figure 7.1: A Sequence Diagram of querying Squerall. ParSets in the join() call is a list of all ParSets
accumulated during the preceding loop.
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7.2.1 Data Mappings

Squerall accepts entity and attribute mappings declared in RML [169], a mapping language
extending the W3C R2RML [211] to allow mapping heterogeneous sources. The following
fragment is used (e.g., #AuthorMap in Listing 7.1):

• rml:logicalsource used to specify the entity source and type.

• rr:subjectMap used (only) to extract the entity ID (in brackets).

• rr:predicateObjectMap used to map an attribute using rml:reference to an ontology
term using rr:predicate.

We complement RML with the property nosql:store (line 5) from our NoSQL ontology2, to
enable specifying the entity type, e.g., Cassandra, MongoDB, etc.

NoSQL Ontology. The ontology is built to fill a gap we found in RML, that is the need to specify
information about NoSQL databases. The ontology namespace is http://purl.org/db/nosql#
(suggested prefix nosql). It contains a hierarchy of NoSQL database: KeyValue, Document,
Wide Column, Graph and Multimodal. Each class has several databases in sub-class, e.g., Redis,
MongoDB, Cassandra, Neo4J and ArangoDB, for each class respectively. The ontology has a
broader scope, it also groups the query languages for several NoSQL databases, e.g., CQL, HQL,
AQL and Cypher. Further, miscellaneous categories about how each database calls a specific
concept (e.g., indexes, primary keys, viewers), what is an entity in each database, .e.g., table,
collection, data bucket, etc.

7.2.2 Transformation Mappings

Sometimes ParSets cannot be readily joined due to a syntactic mismatch between attribute
values. We, therefore, suggest query-time Transformations, which are atomic operations declared
by the user and applied to textual or numeral values. Two requirements should be met:

• TR1. Transformation specification should be decoupled from the technical implementa-
tion. In other words, they only contain high-level function definitions e.g., name, input
parameters, output type, expected behavior. The implementations can be attached in the
form of methods, modules or plugins.

• TR2. Transformations should be performed on-the-fly on query-time, not in a pre-
processing phase physically materializing the altered values. This is important to retain
the originality and freshness of the data sources (see SDL Requirement, Chapter 6
subsection 6.1.2).

Therefore, we suggest to declare those transformations at two different levels: Mappings Level
and Query Level.

2 URL: http://purl.org/db/nosql#.
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7.2 Mapping Declaration

Figure 7.2: A portion of the NoSQL Ontology. It shows several NoSQL store classes under Key-value
(bottom), Document (bottom right), Wide Column (bottom left), and Graph (top) NoSQL classes.

Mappings Level

We incorporate the Function Ontology (FnO, [212]), which allows to declare machine-processable
high-level functions, abstracting from the concrete technology used (TR1). We use FnO in
conjunction with RML similarly to the approach in [213] applied to the DBpedia Extraction
Framework. However, we do not physically generate RDF triples but only apply FnO trans-
formations on-the-fly at query-time (TR2). Instead of directly referencing an entity attribute
rml:reference (e.g., line 7 Listing 7.1), we reference an FnO function that alters the values of
the attribute (line 9 Listing 7.1). For example in Listing 7.1, the attribute InID (line 18) is
indirectly mapped to the ontology term drm:worksFor via the #FunctionMap. This implies that
the attribute values are to be transformed using the function represented by the #FunctionMap,
grel:string_toUppercase (line 16). The latter sets the InID attribute values to uppercase.

Query Level

We propose to add a new clause called TRANSFORM() at the very end of a SPARQL query with
the following syntax:

TRANSFORM ([ leftJoinVar ][ rightJoinVar ].[l|r].[ transformation ]+))

[leftJoinVar][rightJoinVar] identifies the join to enable by referencing its two sides (stars).
[l|r] is a selector to instruct which side of the join (star) is to be transformed. The selector has
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1 <#AuthorMap >
2 rml: logicalSource [
3 rml: source : "../ authors . parquet " ; nosql:store nosql: parquet ] ;
4 rr: subjectMap [
5 rr: template "http :// exam.pl /../{ AID }" ;
6 rr:class nlon: Author
7 ] ;
8 rr: predicateObjectMap [
9 rr: predicate foaf: firstName ;

10 rr: objectMap [rml: reference "Fname "]
11 ] ;
12 rr: predicateObjectMap [
13 rr: predicate drm: worksFor ;
14 rr: objectMap <# FunctionMap >
15 ] .
16
17 <# FunctionMap >
18 fnml: functionValue [
19 rml: logicalSource "../ authors . parquet " ; # Same as above
20 rr: predicateObjectMap [
21 rr: predicate fno: executes ;
22 rr: objectMap [
23 rr: constant grel: string_toUppercase
24 ]
25 ] ;
26 rr: predicateObjectMap [
27 rr: predicate grel: inputString ;
28 rr: objectMap [rr: reference "InID "]
29 ]
30 ] . # Transform "InID" attribute using grel: string_toUppercase

Listing 7.1: Mapping an entity using RML and FnO.

?bk schema : author ?athr .
...
TRANSFORM (?bk?athr.l.skip (12*) && ?bk?athr.r.replc("id","1"))

Listing 7.2: An example of the TRANSFORM clause usage in a SPARQL query.

a special semantics: l refers to the RDF predicate used in the connection triple (Definition 13)
of the left-hand star; r refers to the ID of the right-side star. [transformation]+ is the list of
one or many transformations to apply on the selected side to enable the join.

For example, in Listing 7.2 ?bk?athr refers to the join between ParSet(bk) and ParSet(athr).
It translates to the ParSets join ParSet(bk).(schema:author) = ParSet(athr).(ID), where
schema:author is the predicate of the connection triple (?bk schema:author ?athr). The
selector .l instructs to apply the transformation skip(12*) (skip all values beginning with 12)
to the join attribute of ParSet(athr). The selector .r instructs to apply the transformation
replc("id","1") (replace string "id" with "1") to the join attribute of ParSet(athr).
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7.2 Mapping Declaration

The Mappings Level transformation declaration is more encouraged as it makes use of
existing standardized approaches. However, if the transformations are dynamic and change on a
query-to-query basis, then Query Level transformation declaration is more practical.

Transformations to Application

Squerall visits the transformations on query-time and triggers specific Spark and Presto operations
over the relevant entities. In Spark, a map() transformation is used and in Presto corresponding
string or numeral SQL operations are used. For the uppercase example, in Spark upper(column)
function inside a map() is used and in Presto the SQL upper() string function is used.

7.2.3 Data Wrapping and Querying

We implement Squerall query engine using two popular frameworks: Apache Spark and Presto.
Spark is a general-purpose processing engine and Presto a distributed SQL query engine for
interactive querying, both base their computations primarily in memory. We leverage Spark’s
and Presto’s connector concept, which is a wrapper able to load data from an external source into
their internal data structure, or ParSet, performing flattening of any non-tabular representations.

ParSet Implementations

Spark implements the Manipulated ParSet interaction mechanism (section 6.2.1). The imple-
mentation of ParSet in Spark is called DataFrame, which is a tabular distributed data structure.
These DataFrames can be manipulated using various specialized Spark SQL-like operations,
e.g., filter, groupBy, orderBy, join, etc. The DataFrame schema corresponds to the ParSet
schema, a column per star predicate. As explained with ParSets, DataFrames are created from the
relevant entities (fully or partially with predicate push-down), and incrementally joined. Presto,
on the other hand, implements the Self-Contained Query interaction mechanism (section 6.2.1).
The implementation of ParSet is an internal data structure that is not accessible by users.
Presto, rather, accepts one self-contained SQL query with references to all the relevant data
sources and entities, e.g., SELECT cassandra.cdb.product C JOIN mongo.mdb.producer M
ON C.producerID = M.ID. ParSets, in this case, are represented by SELECT sub-queries, which
we create, join and optimize similarly to DataFrames.

Wrapping Relevant Data Sources

Spark and Presto make using connectors very convenient, users only provide values to a pre-
defined list of options. Spark DataFrames are created using the following formalism:

spark.read. format ( sourceType ). options ( options ). load

In Presto, options are added to a simple configuration file for each data source. Leveraging this
simplicity, Squeral supports out-of-the-box six data sources: Cassandra, MongoDB, Parquet,
CSV JDBC (MySQL tested), and Elasticsearch (experimental).
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Figure 7.3: Config UI provides users with the list of options they can configure. Here are the options for
reading a Parquet file. In the background can be seen other data sources.

7.2.4 User Interfaces

In order to guide non-technical users in providing the necessary inputs to Squerall, we have
built3 Squeral-GUI a set of visual interfaces that generate the access metadata, mappings and
SPARQL query respectively described in the following.

Connect UI

This interface receives from users the required options that enable the connection to a given
data source, e.g., credentials, cluster settings, optimization tuning options, etc. These options
are specific to the query engine used, so in our case Spark and Presto. An example of such
engine-specific options is filterPushDown, which takes true or false when using Spark to
query a Parquet file (see Figure 7.3). To guarantee a persistent reliable storage, configuration
options are internally stored in a lightweight embedded metadata store4. Reading from this
metadata store, this interface produces the Config file with all user-provided access metadata,
which will be used to wrap a data entity and load it for querying (see subsection 7.2.3).

3 Using Play Framework and Scala programming language.
4 A document database Nitrite https://www.dizitart.org/nitrite-database.html
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Mapping UI

This interface uses the connection options collected using Connect UI to extract schema elements
(entity and attributes) then maps them to ontology terms (class and predicates). The extracted
schema elements are tentatively auto-mapped to ontology classes and predicates retrieved from
the LOV (Linked Open Vocabularies) Catalog API5. If the auto-suggested mappings are not
adequate, users can adjust them by searching for other terms from the same LOV catalog or
introducing custom ones, see Figure 7.4 for an example. For certain data sources, e.g., Cassandra,
Parquet, MySQL, etc, schema information can be extracted by running specific queries. However,
other data sources do not provide such a facility, simply because NoSQL stores, by definition,
do not necessarily adhere to a fixed schema. For example, this is the case of the document store
MongoDB. As a workaround, for MongoDB, we have taken a sample of 100 documents and
extracted their properties. When there is a certain regularity in the document properties, or if
the documents have a fixed set of properties, or if there are less than or equal 100 documents
this method suffices. If, otherwise, the documents have a deeply mixed schema and there are
more than 100 documents, this method is not reliable. Therefore, we make it possible for users
to manually complement the missing properties. Similarly to Config UI, mappings are persisted
in the metadata store and can be exported as a file therefrom.

SPARQL UI

This interface guides non-SPARQL experts to build SPARQL queries by using a set of query
widgets for different SPARQL operations, SELECT, FILTER, GROUP BY, ORDER BY, etc. Instead
of hand-typing the query, users interact with the widgets and auto-generate a syntactically valid
SPARQL query. The interface guides users to enter triple patterns describing an entity, one
at a time, so they can easily and progressively build an image of the data they want based on
these entities. For example, they star by entering the triple patterns describing a product, then
the triple patterns of a producer, etc. The interface auto-suggests predicates and classes from
the provided mappings. If a predicate or a class is not auto-suggested, users can predict that
the results set will be empty as only mapped entities and attributes are retrievable. Figure 7.6
shows how an entity is described by entering its type (optional) and its predicate-object pairs.
These descriptions generates at the end the query BGP.

7.3 Squerall Extensibility
The value of a Data Lake-accessing system lays in its ability to query as much data as possible.
For this sake, Squerall was built from the ground up with extensibility in consideration. Squerall
can be extended in two ways: supporting more query engines and supporting more data sources.

7.3.1 Supporting More Query Engines

Squerall code is modular by design, so it allows developers to incorporate their query engine of
choice. Figure 7.7 shows Squerall code classes; the developers only implement a Query Executor
(in color), all the other classes remain the same. This is achieved by implementing the set of
common query operations of the Query Executor interface, e.g., projection, filtering, aggregation,
etc. Spark and Presto are representative of two common types of engines. One queries the data
5 https://lov.linkeddata.es/
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Figure 7.4: Mapping UI auto-suggests classes and properties, but users can adjust. Here we are searching
for an RDF class to map a Person entity. The first column of the table contains the entity attributes and
the third column contains the RDF predicates. The middle column contains a checkbox to state which
predicate to use as the entity (later ParSet) ID.

by manipulating internal data structures using an API, and one queries the data using a single
self-contained SQL query. Most other existing engines align with one of the two types, as we
described in section 6.2.1. As a result, developers can largely be guided by Squerall existing
Spark and Presto executors. For example, Flink is similar to Spark, and Drill and Dremio are
similar to Presto.

7.3.2 Supporting More Data Sources

As we recognize the burden of creating wrappers for the variety of data sources, we chose not to
reinvent the wheel and rely on the wrappers often offered by the developers of the data sources
themselves or by specialized experts. The way a connector is used is dependent on the engine:

• Spark: The connector’s role is to load a specific data entity into a DataFrame using
Spark SQL API. It only requires providing access information inside a simple connection
template:

spark.read. format ( sourceType ). options ( options ). load
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Figure 7.5: SPARQL UI, a general overview. Every button opens a query widget that adds a part
(augmentation) to the query. For example, the blue button creates the BGP (WHERE) —also illustrated
in Figure 7.6, the green creates the SELECT clause, the red creates the FILTER clause, etc. We avoid to
use technical terms and substitute them with natural understandable directives, e.g., "limit the number
of results" instead of e.g., "add the LIMIT modifier". The query will be shown in the button and can
downloaded or reset.

sourceType designates the data source type to access and options is a simple key-value
list storing e.g., username, password, host, cluster settings, optimization options, etc. The
template is similar in most data source types. There are connectors6 already available for
dozens of data sources.

• Presto: The connector’s role is to read a specific data entity into Presto’s internal execution
pipeline. It only requires providing access information in a key-value fashion inside a
configuration text file. Presto uses directly an SQL query to access the heterogeneous
data sources, e.g., SELECT cassandra.cdb.product C JOIN mongo.mdb.producer M ON
C.producerID = M.ID, i.e., there is no direct interaction with the connectors via APIs.

6 https://spark-packages.org/
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Figure 7.6: SPARQL UI auto-suggests classes and predicates.

Run Query Analyser

Planner

Mapper

MainQuery Executor

Spark
Executor

Presto
Executor

...
Executor

class call
subclass 

Figure 7.7: Squerall classes call hierarchy shows the modular design of Squerall. In color (blue) are the
classes to provide for each query engine, the other classes (grey) remain the same.

Similarly to Spark, there are already several ready-to-use connectors for Presto7.

To further support developers in extending Sqeruall, an online guide8 has been made available
for the exact steps needed with helpful pointers to the code-source.

7.3.3 Supporting a New Data Source: the Case of RDF Data

In case no connector is found for a given data source type, we show in this section the principles
of supporting a new data source. The procedure concerns Spark as query engine, where the
connector’s role is to generate a DataFrame from an underlying data entity. Squerall did not
previously have a wrapper for RDF data. With the wealth of RDF data available today as
part of the Linked Data and Knowledge Graph movements, supporting RDF data is paramount.
The role of our new Spark RDF connector is to flatten RDF data and save it as a DataFrame.
7 https://prestosql.io/docs/current/connector.html
8 https://github.com/EIS-Bonn/Squerall/wiki/Extending-Squerall
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DS1

RDF Connector
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Figure 7.8: RDF Connector. A and B are RDF classes, tn denote data types.

Contrary to the previously supported data sources, RDF does not require a schema. As a result,
lots of RDF datasets are generated and published without schema. In this case, it is required to
extract the schema by exhaustively parsing the data on-the-fly during query execution. Also, as
per the Data Lake requirements, it is necessary not to apply any pre-processing and to directly
access the original data. If an entity inside an RDF data is detected as relevant to a query star,
a set of Spark transformations are carried out to flatten the (subject, property, object) triples
and extract the schema elements needed to generate a DataFrame. The full procedure is shown
in Figure 7.8 and is described as follows:

1. Triples are loaded into a Spark tabular distributed dataset (Called RDD9) of the schema
(s: String, p: String, o: String), for subject, predicate and object, respectively.

2. Using Spark transformations, we generate a new dataset in the following way. We map
(s,p,o) triples to pairs: (s,(p,o)), then group pairs by subject: (s,(p,o)+), then find the RDF
class from p (i.e., where p=rdf:type) and map the pairs to new pairs: (class,(s,(p,o)+])),
then group them by class (class, (s, (p, o)+)+). The latter is read as follows: each class
has one or more instances identified by ‘s’ and contains one or more (p, o) pairs.

3. The new dataset is partitioned into a set of class-based DataFrames, columns of which
are the predicates and tuples are the objects. This corresponds to the so-called Property
Table partitioning [52].

4. The XSD data types, if present as part of the object, are detected and used to type the
DataFrame attributes, otherwise string is used.

5. Only the relevant entity/ies (matching their attributes against the query predicates)
detected using the mappings is/are retained, the rest are discarded.

This procedure generates a DataFrame that can join DataFrames generated using other data
connectors from other data sources. The procedure is adapted from the RDF data loaded of
SeBiDa (Chapter 5, section 5.2). We made the usage of the new RDF connector as simple as
the other Spark connectors:
9 Resilient Distributed Dataset
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Inference

Machine Learning

Query Data Lake

RDF Read/Write

Figure 7.9: Squerall integrated into the SANSA Stack under SANSA-DataLake API.

val rdf = new NTtoDF ()
df = rdf. options ( options ). read(filePath , sparkURI ). toDF

NTtoDF is the connector’s instance, options are the access information including RDF file
path and the specific RDF class to load into the DataFrame.

7.4 SANSA Stack Integration
SANSA Stack [214] is a distributed framework for the scalable RDF data processing based
on Apache Spark and Flink. It is composed of fours layers in the form of API libraries (used
programmatically):

1. RDF Read/Write Layer. It allows the access to RDF data stored locally or in Hadoop
Distributed File System. Data is loaded into Spark or Flink distributable data structures,
e.g., RDDs, DataFrames, DataSets, following various partitioning schemes, e.g., Vertical
Partitioning.

2. Query API. It allows to run SPARQL queries over large RDF datasets.

3. Inference API. It allows to apply inference over large-scale RDF data.

4. Machine Learning API. It allows to perform state-of-the-art Machine Learning algorithm
on top of large-scale RDF data.

Squerall has been integrated as a sub-layer called SANSA-DataLake API under the SANSA-
Query API. SANSA-DataLake broadens the scope of SANSA-Query, and thus SANSA itself,
to also query heterogeneous non-RDF data sources. Figure 7.9 presents the SANSA Stack
architecture including the SANSA-DataLake API.

7.5 Summary
In this chapter, we presented Squerall —a framework realizing the Semantic Data Lake, i.e.,
querying original large and heterogeneous data sources using Semantic We technologies. In
particular, Squerall performs distributed query processing including cross-source join operation.
It allows users to declare transformations that enable joinability on-the-fly at query-time.
Squerall is built using state-of-the-art Big Data technologies Spark and Presto, and Semantic
Web technologies SPARQL, (RML and FnO) mappings and ontologies. Relying on the query
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7.5 Summary

engines connectors, Squerall relieves users from handcrafting wrappers —a major bottleneck
in supporting data Variety throughout the literature. Thanks to its modular design, Squerall
can also be extended to support a new query engine. As query and mappings creation can be
a tedious task, we built a set of helping user interfaces to guide non-experts to generate the
SPARQL query and the needed mappings.
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CHAPTER 8

Squerall Evaluation and Use Cases

"The only impossible journey is the one
you never begin."

Tony Robbins

In order to evaluate Squerall’s query execution performance, we conduct an experimental study
using both syntactic and real-world data. For the former, we base on the Berlin benchmark,
where its data generator is used to populate five heterogeneous data sources, and its queries are
adapted to access the populated data. For the latter, we evaluate the usage of Squerall in an
internal use case of a manufacturing company, where both internal data and queries are used.
In this chapter, we address the following research question:

RQ4. Can Semantic Data Lake principles and their implementation Squerall be applied
to both synthetic and real-world use cases?

The chapter provides quantifiable measures for the applicability of Squerall on both synthetic
and real-world use cases. In particular, we make the following contributions:

• Evaluate Squerall’s performance over synthetic data using the Berlin Benchmark, BSBM,
where both its Spark and Presto engines are used.

• Report on the query execution time broken down into its constituting sub-phases.

• Assess the impact of the number of joins on the overall query execution time.

• Evaluate Squerall performance on a real-world data in an industrial use case.

This chapter is based on the following publications:

• Mohamed Nadjib Mami, Damien Graux, Simon Scerri, Hajira Jabeen, Sören Auer, Jens
Lehmann. Squerall: Virtual Ontology-Based Access to Heterogeneous and Large Data
Sources. In Proceeding of the 18th International Semantic Web Conference (ISWC)
229-245, 2019.

• Mohamed Nadjib Mami, Irlán Grangel-González, Damien Graux, Enkeleda Elezi, Felix
Lösch. Semantic Data Integration for the SMT Manufacturing Process using SANSA
Stack. Extended Semantic Web Conference (ESWC) Industry Track, 2020.
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8.1 Evaluation Over Syntactic Data
In this section, we examine the performance of Squerall when applied to synthetic data. We set
to answer the following questions:

• Q1: What is the query performance when Spark and Presto are used as the underlying
query engine?

• Q2: What is the time proportion of query analysis and relevant source detection times to
the overall query execution time?

• Q3: What is the performance of Squerall when increasing data sizes are queried?

• Q4: What is the impact of involving more data sources in a join query?

• Q5: What is the resource consumption (CPU, memory, data transfer) of Squerall running
the various queries?

In the following, we describe the experimental protocol then discuss the experimental results.

8.1.1 Experimental Setup
Data

As we have explored in [85], there is still no dedicated benchmark for evaluating SDL imple-
mentations, i.e., querying original large and heterogeneous data sources in a uniform way using
SPARQL, mappings and ontologies. Therefore, we resort to using and adapting the BSBM
Benchmark [194], which is originally designed to evaluate the performance of RDF triple stores
with SPARQL-to-SQL rewriters. As Squerall currently supports five data sources, Cassandra,
MongoDB, Parquet, CSV, and JDBC, we have chosen to load five BSBM-generated tables into
these data sources as shown in Table 8.1. The five data sources allow us to run queries of up to
four joins between five distinct data sources. We generate three scales: 500k, 1.5M and 5M (in
terms of number of products), which we will refer to in the following as Scale 1, Scale 2 and
Scale 3, respectively.

Queries

We have adapted the original BSBM queries, so they involve only the tables we have effectively
used (e.g., Vendor table was not populated) and do not include unsupported SPARQL constructs
e.g., DESCRIBE, CONSTRUCT. This resulted in nine queries1, listed in Table 8.2, joining different
tables and involving various SPARQL query operations.

Metrics

Our main objective is to evaluate the Query Execution time. In particular, we observe Squerall’s
performance with (1) increasing data sizes, (2) increasing data sources. We evaluate the effect
of Query Analyses and Relevant Source Detection on the overall query execution time. We leave
time markers at the beginning and end of each phase. Considering the distributed nature of
Squerall, we also include a set of system-related metrics, following the framework presented
1 Available at: https://github.com/EIS-Bonn/Squerall/tree/master/evaluation/input_files/queries
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8.1 Evaluation Over Syntactic Data

Product Offer Review Person Producer
Scale Factor Cassandra MongoDB Parquet CSV MySQL
Scale 1 0.5M 0.5M 10M 5M ~26K ~10K
Scale 2 1.5M 1.5M 30M 15M ~77K ~30K
Scale 3 5M 5M 100M 50M ~2.6M ~100K

Table 8.1: Data loaded and the corresponding number of tuples. Scales factor is in number of products.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q10
Tables joined

Product " " " " " " " " "

Offer " " " " " "

Review " " " " " " "

Person " "

Producer " " " "

Query operations involved
FILTER " 1 " 2 " 1 " 3 " 1r " 2 " 1 " 3
ORDER BY " " " " " "

LIMIT " " " " " "

DISTINCT " " " " " "

Table 8.2: Adapted BSBM Queries. The tick signifies that the query joins with the corresponding table
or contains the corresponding query operation. Near to FILTER is the number of conditions involved, and
r denotes a regex type of filter.

in [215], e.g., average CPU consumption and spikes, memory usage, data read from disk and
transferred across the network. We run every query three times on a cold cache, clearing the
cache before each run. As we report on the impact of every phase on the total query time, we
cannot calculate the average of the recorded times. Rather, we calculate the sum of the overall
query times of the nine queries of the three runs and take the run with the median sum value.
Timeout is set to 3600s.

Environment

All queries are run on a cluster of three nodes having DELL PowerEdge R815, 2x AMD Opteron
6376 (16 cores) CPU and 256GB RAM, and 3 TB SATA RAID-5 disk. No caching or engine
optimizations tuning were exploited.

8.1.2 Results and Discussions

Our extensive literature review reveals no single work that was openly available and that
supported all the five sources and the SPARQL fragment that we support. Thus, we compare
the performance of Squerall with both Spark and Presto as the underlying query engines. We
also monitor and report on resource consumption by Squerall running the various queries.
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Figure 8.1: Stacked view of the execution time phases on Presto (seconds). Bottom-up: Query Analyses,
Relevant Source Detection, and Query Execution, the sum of which is the total Execution Time shown
above the bars. Very low numbers are omitted for clarity.
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Figure 8.2: Stacked view of the execution time phases on Presto (seconds). Bottom-up: Query Analyses,
Relevant Source Detection, and Query Execution, the sum of which is the total Execution Time shown
above the bars. Very low numbers are omitted for clarity.
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118



8.1 Evaluation Over Syntactic Data

Performance

The columns in Figure 8.1 and Figure 8.2 show the query execution times divided into three
phases (each with distinct color):

1. Query Analysis: Time taken to extract the stars, joins between stars, and the various
query operations linked to every star e.g., filtering, ordering, aggregation, etc.

2. Relevant Source Detection: Time taken to visit the mappings and find relevant entities
by matching SPARQL star types and predicates against source entities and attributes.

3. Query Execution: Time taken by the underlying engine (Spark or Presto) to effectively
query the (relevant) data sources and collect the results. This includes loading the relevant
entities into ParSets (or a subset if filters are pushed down to the sources), performing
query operations e.g., filtering, executing joins between ParSets, and finally performing
results-wide operations e.g., order, aggregate, limit, etc.

The results2 presented in Figures 8.1, 8.2 and 8.3 suggest the following:

• Presto-based Squarall is faster than Spark-based in most cases except for Q3 and Q10
at Scale 1. It has comparable to slightly lower performance in Q1 and Q8 at Scale 2.
This superiority can be explained by Presto’s nature that is precisely built and optimized
for running cross-source interactive SQL queries. Spark, on the other hand, is a general-
purpose engine with a SQL layer, which builds on Spark’s core in-memory structures that
are not originally designed for ad hoc querying. Unlike Spark, Presto does not load entities
in blocks but streams them through a query execution pipeline [208]. However, Presto’s
speed comes at the cost of weaker query resiliency. Spark, on the other hand, is more
optimized for fault tolerance and query recovery, making it more suitable for long-running
complex queries. The latter are, however, not the case of our benchmark queries. (Q1)

• Query Analysis time is negligible; in all the cases it did not exceed 4 seconds, ranging
from < 1% to 8% of the total execution time. Relevant Source Detection time varies with
the query and scale. It ranges from 0.3% (Q3 Presto Scale 1) to 38.6% (Q8 Spark Scale 2).
It is, however, homogeneous across the queries of the same scale and query engine. Query
Execution time is what dominates the total query execution time in all the cases. It ranges
from %42.9 (Q8 Presto Scale 1) to 99% (Q3 Spark Scale 2), with most percentages being
about or above 90%, regardless of the total execution time. Both Query Analysis and
Relevant Source Detection depend on the query and not the data, so their performance is
not affected by the data size (hence the absence of numbers for Scale 3). (Q2)

• Increasing the size of the queried data did not deteriorate query performance. Co-relating
query time and data scale indicates that performance is proprietorial to data size. Besides,
all the queries finished within the threshold. (Q3)

• The number of joins did not have a decisive impact on query performance, it rather should
be taken in combination with other factors, e.g., the size of involved data, the presence of
filters, etc. For example, Q2 joins only two data sources but has comparable performance
with Q5 and Q6 that join three data sources. This may be due to the presence of filtering
in Q5 and Q6. Q7 and Q8 involve four data sources, yet they are among the fastest queries.

2 Also available online at:https://github.com/EIS-Bonn/Squerall/tree/master/evaluation
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Metrics Spark Presto
Node 1 Node 2 Node 3 Node 1 Node 2 Node 3

CPU Average (%) 4.327 7.141 4.327 2.283 2.858 2.283
Time Above 90% CPU (s) 9 71 9 0 2 0
Time Above 80% CPU (s) 19 119 19 0 5 0
Max Memory (GB) 98.4 100 98.4 99.5 99.7 99.5
Data Sent (GB) 4.5 6.3 4.5 5.4 8.5 5.4
Data Received (GB) 3.5 3.0 3.5 8.4 4.6 8.4
Data Read (GB) 9.6 5.6 9.6 1.9 0.2 1.9

Table 8.3: Resource Consumption by Spark and Presto across the three nodes on Scale 2.

This is because they involve the small entities Person and Producer, which significantly
reduce the intermediate results to join. With four data sources, Q4 is among the most
expensive. This can be attributed to the fact that the filter on products is not selective
(?p1 > 630), in contrast to Q7 and Q8 (?product = 9). Although, the three-source join
Q10 involves the small entity Producer, it is the most expensive; this can be attributed to
the very unselective product filter it has (?product > 9). (Q4)

Resource Consumption

Resource consumption is visually represented in Figure 8.4 and reported in Table 8.3. We
recorded (1) CPU utilization by calculating its average percentage usage as well as the number
of times it reached 80% and 90%, (2) memory used in GB, (3) data sent across the network in
GB, and (4) data read from disk in GB. We make the following observations (Q5):

• Although the average CPU is low (below 10%), monitoring the 90% and 80% spikes shows
that there were many instants where the CPU was almost fully used. The latter applies
to Spark only, as Presto had far less 80%, 90% and average CPU usage, making it a lot
less CPU-greedy than Spark.

• From the CPU average, it still holds that the queries overall are not CPU-intensive. CPU
is in most of the time idle; the query time is rather used by the loading and transfer
(shuffling) of the data between the nodes.

• The total memory reserved, 250GB per node, was not fully utilized; at most ≈100GB was
used by both Spark and Presto.

• Presto reads less data from disk (Data Read), which can be due to one of the following.
Presto does not read the data in full blocks but rather streams it through its execution
pipelines. Presto might also be more effective at filtering irrelevant data and already
starting query processing with reduced intermediate results.

Moreover, in Figure 8.4, we represent as a function of time the CPU utilization (in orange,
top), the memory usage (in dashed red, bottom) and the data sent over the network3 (in light
blue, bottom) second by second during the complete run of the benchmark at Scale 2 with Spark.
The noticed curve stresses correspond to the nine evaluated queries. We notice the following:
3 For clarity reasons, we do not include Data Received traffic, since it is completely synchronized with Data Sent.
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• CPU utilization curves change simultaneously with Data Sent curve, which implies that
there is a constant data movement throughout query processing. Data movement is mainly
due to the join operation that exists in all queries.

• Changes in all the three represented metrics are almost synchronized throughout all query
executions, e.g., there is no apparent delay between Data Sent or Memory usage and the
beginning of the CPU computation.

• Memory activity is correlated with the data activities (received and sent), all changes in
memory usage levels are correlated with high network activity.

• Unexpectedly, the memory usage seems to remain stable between two consecutive query
executions, which is in contradiction with our experimental protocol that applies cache
clearing between each query. In practice, this can be attributed to the fact that even if
some blocks of memory are freed, they remain shown as used as long as they are not used
again4.

8.2 Evaluation Over Real-World Data
Squerall has been evaluated internally in a large manufacturing industry5. An internal technology,
called Surface-Mount Technology, generates fine-grained manufacturing data in a streaming
fashion and stores it in local log files. Consequently, the resulted size of the data is considerable.
Squerall is used to query this data joining distinct subsets thereof and computing aggregations
over time intervals. In this section, we first describe the use case and technology involved, then
detail how Squerall is used, then finally report on its querying performance.

8.2.1 Use Case Description

Surface-Mount Technology, SMT, is a process for mounting electronic components, e.g., micro-
chips, resistors, capacitors, on print-circuit boards, PCBs. Several sub-processes are involved
in producing these PCBs and are executed by specialized machines. We are interested in two
sub-processes in particular: Surface Mount Devices, SMD, and Automatic Optical Inspection,
AOI. The SMD places the electronic components on top of the PCBs, and the AOI inspects
the boards for any error that could have occurred, e.g., misplaced or bad solder components.
To be able to improve the SMT process in general and the error detection process at the end
of the SMT line in particular, the semantics of the data generated by the machines should be
harmonized. This can be achieved by posing a semantic model that unifies the interpretation
of the different concepts. This allows to run ad hoc queries over the data generated by the
two sub-processes in a uniform way. SMT and AOI data is available in Parquet format, other
sub-processes generate data in CSV format, etc. In order to be able to access these heterogeneous
data sources uniformly, Squerall has been used.

The SMT use case has the following requirements that need to be met by the access solution,
which is Squerall in our case:
4 For more details, see following the common UNIX strategy of memory manage-
ment https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=
34e431b0ae398fc54ea69ff85ec700722c9da773

5 We are abide by not revealing identity, data or ontology.
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Figure 8.4: Resource consumption recorded on one cluster node (which we observed was representative of
the other nodes) with Spark as query engine on Scale 2. Top is CPU percentage utilization. Bottom left
dashed is RAM (in Bytes) recorded at instant t, e.g., 0.4x1011B ≈ 37GB. Bottom right is Data Sent
across the network (in Bytes) at instant t, e.g., 108B ≈ 95MB.
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SMD Tables AOI Data Tables
Event aoiEvent
Machine aoiFailures
ProcessedPanel aoiProcessedPanel
ProcessedComponents aoiComponents
Feeder aoiComponentsPin
Nozzle aoiClassifications
smdBoard aoiMesLocation
Head

Table 8.4: SMD and AOI provided tables.

• R1. Querying the data uniformly using SPARQL as query language exploiting data
semantics that is encoded in the SMT ontology.

• R2. Querying should be scalable accessing the various provided data sizes.

• R3. Querying should support temporal queries (i.e., FILTER on the time), and aggregation
queries (i.e. GROUP BY with aggregate functions, e.g., sum, average).

SMT-generated Data. SMT use case data consists of fifteen tables, eight pertaining to SMD
sub-process and seven to AOI sub-process (see Table 8.4). For SMT, Event is the action performed
(e.g. pick, place), Machine is the machine performing the action, ProcessedComponents are
the components being moved (e.g., picked, placed), Feeder is a device from which the machine
picks a component, ProcessedPanel and Board are respectively the panel and board where
components get placed, Head is the mechanical arm moving the component, Nozzle is the
end used to handle a specific type of component. For AOI, Event is the action during which
the failure happened, Failure is the failure specification, Component and ProcessedPanel are
respectively which component and panel the failure concerns, MesLocation is the panel location,
and CompoenentstPin is the component connector on which the error was detected.

8.2.2 Squerall Usage

Thanks to Squerall’s internal abstraction component (ParSets), data in its format heterogeneity
can be represented and queried in a uniform manner. The target data of SMT use case is SMD
and AOI, which both being stored in Parquet format. As such, data itself is not heterogeneous by
nature, however, it benefits from Squerall mediation mechanism that supports the simultaneous
access to multiple data sources. In other words, the query is run against the abstraction
layer regardless of where data was originated from; all data being of Parquet format or other
heterogeneous formats. The use case also principally benefits from Squerall scalability at
querying large data sources, thanks to leveraging Big Data technologies. Limited to the available
infrastructure at the premises of the use case company, only Apache Spark is used and not
Presto.
As the data generated belongs to the same domain, the SMT use case does not require

query-time transformation (to enable joinability). Hence, we omit query-time transformations
from Squerall architecture and suggest a simplified version, which is presented in Figure 8.5.
To interact with Squerall, the user issues a query on the command line where the results are
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Figure 8.5: Squerall architecture variation excluding query-time transformations. ParSet is replaced by
its implementation in Spark, namely DataFrame.

subsequently shown, see Figure 8.6. The output returned in the console first shows the query
that is being executed, then the schema of the results table, then the results table itself, then
the number of results and finally the time taken by the query execution.

8.2.3 Evaluation

In the following, we will report on the empirical study, which we have conducted to evaluate
Squerall’s performance querying SMT data. The research questions addressed are reduced to
the following:

• RQ1: What is the performance of Spark-based Squerall accessing SMT data by means of
join, aggregation and temporal queries?

• RQ2: What is the performance of Spark-based Squerall when increasing data sizes are
queried?

Data and queries

Three sizes of SMT data are used for the evaluation, as shown in Table 8.5. SMT use case involves
thirteen (13) queries, which have been evaluated using Squerall and reported in Table 8.6.
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Scale 1 Scale 2 Scale 3
439M 3.8G 7.7G

Table 8.5: The sizes of the three data scales.

Figure 8.6: An example of the console output returned by Squerall running a query. It shows the issued
query then the results then the execution time (seconds).

Discussion

Table 8.6 shows all the queries, along with their support status (supported by Squerall or not),
their query execution time across the three data scales and a description of their content. All
queries finished within the threshold of 300 seconds (5 minutes) in the three data scales, with
no empty results set. Query times range from 0.25s minimum (Scale 1) to 129s maximum (Scale
3). Q1 and Q2 are the fastest queries; Q1 does not contain any join and filters the results to
only one day of data. Q2 contains two joins but the filter significantly reduces the results to
one specific panelId. Q5 and Q13 are the slowest queries as they involve two joins including
both SMD and AOI data with no filter. Q13 is slower than Q5 with a factor of 2, as it does
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Query Supported? Scl 1 Scl 2 Scl 3 Description
Q1 " 1.28 2.15 2.02 No join, time filter
Q2 " 0.27 3.26 3.74 2 joins, ID filter
Q3 % (sub-q) / / / /
Q4 % (sub-q) / / / /
Q5 " 7.17 36.16 68.79 2 joins, SMT & AOI, ID filter
Q6 % (sub-q) / / / /
Q7 % (obj-obj join) / / / /
Q8 " 2.78 9.85 29.98 1 join, time filter
Q9 % (agg sub) / / / /
Q10 " 2.98 4.74 5.38 1 join, SMD & AOI, time filter, agg.
Q11 " 4.68 5.34 11.77 2 joins, SMD & AOI, time filter, agg.
Q12 % (agg sub) / / / /
Q13 " 14.51 79.52 129.59 2 joins, SMD & AOI

Table 8.6: Query Execution times (seconds). sub-q refers to a query containing a sub-query, obj-obj join
refers to a query that contains joins at the object position, and agg obj refers to a query that contains
an aggregation on the subject. Under Description, ’time filter’ means that the query contains filter
restricting the results inside a specific time interval, ’ID filter’ means that the query contains a filter on a
very specific panelID.

not contain any filter in contrast to Q5. Q10 and Q11 both involve join plus an aggregation,
however, they are relatively fast as they involve filtering on a timestamp field limiting the results
to only ten days worth of data. Q11 is slower than Q10 as it joins between three tables in
contrast to two in Q10. Finally, Q8 falls in the middle of the query time range; although it
contains a join, it filters the results to one day worth of data.
Table 8.6 also points to what queries are not supported. Squerall at the time of conducting

the evaluation did not support SPARQL queries containing a sub-query, an object to object
join, a filter between object variables, and aggregation on the subject position. See Figure 8.7
for unsupported query examples and explanations. This affects Q3 and Q6 (sub-query), Q7 and
Q4 (object-object join), and Q9 and Q12 (aggregation on the subject position). When there is a
filter comparing two object variables, the case of Q2 and Q4, the query is executed with the
unsupported filter omitted.

8.3 Summary

In this chapter, we reported on our experience evaluating Squerall performance using both
synthetic and real-world use cases. In the synthetic use case, we used Berlin Benchmark, both
data and query. We used a subset of the data (tables) to populate the data sources that Squerall
supports. We also used a subset of the queries (nine out of twelve) excluding unsupported query
types (e.g., DESCRIBE). We evaluated Squerall accuracy, performance and query execution time
breakdown into sub-phases: query analysis, relevant source detection and query execution. The
results suggested that all queries exhibited 100% accuracy and that all queries were successful
finishing within the threshold. The results also showed that query execution time was in the
worst case proportional to the increasing data sizes. In the real-world use case, Squerall executed

126



8.3 Summary

?f fsmt:isFailureOf ?pin ;

   fsmt:failureType ?type .

?c psmt:hasPin ?pin .

   psmt:referenceDesignator ?r .

   psmt:hasSMDHead ?h .

(a) An example of object-object join from Q7 on variable ?pin between the two stars ?f and ?c.

SELECT (COUNT(?failure) as ?failuresShape) ?shape

WHERE {

 ?component psmt:hasPin ?pin ;

            psmt:componentShape ?shape .

 ?failure a fsmt:Tombstoning ;

            fsmt:isFailureOf ?pin .

(b) An example of aggregation on object from Q12, COUNT on ?failure object variable.

FILTER (?ts2 > ?ts)

FILTER (?panelId = "08507999002521806222261041592")

(c) An example of filter between object variables from Q2, between ?ts and ts2.

Figure 8.7: Examples of unsupported SPARQL queries. The red font color highlights the unsupported
operations. In (a) object-object join, in (b) aggregation on the abject variable, (c) filter including two
variables. Queries (a) and (b) are discarded, query (c) is executed excluding the unsupported filter
(strikethrough).

queries withing the threshold of five minutes along the three data sizes used. The use case
included queries with unsupported SPARQL constructs e.g., sub-queries, in which case the
queries were not executed. Supporting this constructs is planned for Squerall’s next release.
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CHAPTER 9

Conclusion

"A person who never made a mistake
never tried anything new."

Albert Einstein

In this thesis, we investigated the problem of providing an ad hoc uniform access to large and
heterogeneous data sources using Semantic Web techniques and technologies. We examined the
applicability of existing Semantic-based Data Integration principles, notably, Ontology-Based
Data Access, to the Big Data Management technology space. We studied both the Physical
and Logical approaches of Data Integration, with more emphasis on the latter. We defined the
tackled problem, challenges and contributions in Chapter 1. We presented the background and
the necessary preliminaries in Chapter 2. We gave a state-of-the-art overview of the related
efforts in Chapter 3. As model and query conversion was an integral part of our envisioned Data
Integration approaches, we conducted a survey on the Query Translation approaches, reported
in Chapter 4. The survey also supported us in the different design and optimization decisions
we have made. Chapter 5 was dedicated to describing our Physical Data Integration approach,
including the Semantified Big Data Architecture definition, its requirements, implementation
and empirical evaluation. Chapter 6 was dedicated to describing our Logical Data Integration
approach, including the Semantic Data Lake definition, its architecture as well as a set of
requirements for its implementation. Our implementation of the Semantic Data Lake was
detailed in Chapter 7. Finally, Chapter 8 presented two use cases of the latter implementation,
one based on a synthetic benchmark and one based on a real-world industrial application.

9.1 Revisiting the Research Questions

In the introduction of the thesis (Chapter 1), we have defined four research questions that
were intended to frame our core contributions of the thesis. In this conclusion, it is important
to retrospectively revisit every research question and make a brief summary about how it
was tackled. In particular, how our Physical and Logical approaches for Data Integration of
heterogeneous and large data sources were conceptually defined and practically implemented.

RQ1. What are the criteria that lead to deciding which query language can be most
suitable as the basis for Data Integration?
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We have tackled this question by conducting an extensive literature review on the topic of
Query Translation, reported in Chapter 4. As the topic was of a general interest and pertained
to an essential aspect of data retrieval in general, the review was enriching and profitable. It
covered both the syntactic and semantic considerations of query translation, query rewriting
and optimization, and the different strategies of transitioning from an input to a target query,
e.g., direct, via intermediate phase, using an (abstract) meta-language, etc. The survey had
several motivations, summarized as follows. First, as model and query conversion is at the
core of data integration, it was necessary to have a general overview of the existing query
translation approaches. This helped us support the choices we made for the external query
language (SPARQL), underlying meta query language (SQL), as well as the transition between
the two in a query execution middleware. For example, SPARQL and SQL were the most
translated to and from query languages, which makes them very suitable to act as a universal
query language. Second, the feasibility and efficiency of a query translation method can only be
evaluated within an operable data translation or migration system, which we wanted to leverage
to make sound design decisions in our different integration approaches. As examples, the use of a
meta-language, as well as query augmentation starting from iteratively analyzing the input query
were both prevalent techniques from the literature, which we adopted. A side motivation was
that, at the time of reviewing, there was no published survey addressing the query translation
across multiple query languages. All that existed was aiming at pair-wise methods involving
only two query languages. We reviewed more than forty query translation efforts, including tools
only available in source hosting services with accompanying description. The survey allowed us
to detect patterns and criteria, against which we classified the reviewed efforts. The criteria
included translation type (direct, indirect), schema-aware or mappings-dependent translation,
commonly used optimization techniques, query coverage as well as community adoption. Finally,
through the survey, we were able to detect the translation paths for which there existed a few
to no publications, as well as to learn some lessons for future research on the topic.

RQ2. Do Semantic Technologies provide ground and strategies for solving Physical
Integration in the context of Big Data Management i.e., techniques for the representation,
storage and uniform querying of large and heterogeneous data sources?

This question was addressed by the Semantic-based Physical Data Integration, detailed in
Chapter 5. In the presence of heterogeneous data sources, classified as semantic and non-
semantic, the aim was to access the data in a uniform way. First, we suggested a generic
blueprint called SBDA, for Semantified Big Data Architecture, that supports the integration of
hybrid semantic and non-semantic data, and the access to the integrated data. The architecture
leveraged Semantic Web techniques and technologies, such as the RDF data model and SPARQL
query language. RDF was used as the underlying data model under which all input data of
different types is represented and physically converted. Data is then naturally queried in a
uniform way using SPARQL. As we target the integration of large datasets, we proposed a
data model and storage that is both space-efficient and scalable, i.e., accommodating increasing
data sizes while keeping reasonable query performance. We suggested a partitioning scheme
that is based on the popular Property Table under which RDF instances are stored into tables
containing columns corresponding to the instance predicates, e.g., first name, last name and
birth date of a person. The tables are clustered by type (RDF class), where all instances of the
same type are stored in the same dedicated table. Further, multi-typed instances are captured
within the same table via incorporating an extra column storing a list of all types that the
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instance belongs to. The table also contains a column for every detected other type, which
indicates whether or not (flag) an instance is also of that type. At the physical level, the tables
are stored in a columnar-format where data is organized by columns instead of rows. This
organization makes it very efficient to store tuples of a large number of columns while accessing
only a subset of them. It also enables efficient compression as the data of the same column
is homogeneous. These characteristics make this format particularly useful for storing RDF
data under our scheme. A SPARQL query typically involves only a subset of the instance
predicates. We also benefit from the compression efficiency as we target the integration of large
datasets. Under this data partitioning and clustering scheme, input SPARQL query needs to
be transparently rewritten to involve the other tables where instances of the same type can be
found. A proof-of-concept implementation of the architecture was presented and evaluated for
performance and generated data size. Both semantic data (RDF) and non-semantic data (XML)
were integrated and queried. In particular, the implementation was compared against a popular
RDF triple store and showed its superiority in terms of space usage and query performance when
queries large data. State-of-the-art Big Data technologies, namely Apache Spark (ingestion and
querying) and Parquet (columnar storage) were used.

RQ3. Can Semantic Technologies be used to incorporate an intermediate middleware
that allows to uniformly access original large and heterogeneous data sources on demand?

This question was addressed by the Semantic-based Logical Data Integration, detailed in
Chapter 6. Conversely to the Physical Integration, the aim here was to query the original data
sources, without a prior transformation to a unique model. In this case, the complexity is
shifted from the data ingestion to query processing. Given a query, it is required to detect the
relevant data sources, retrieve the intermediate results and combine them to form the final query
answer. We proposed an architecture called SDL, for Semantic Data Lake, which is based on
the OBDA (Ontology-based Data Access) principles. We suggested a set of requirements that
should be met when implementing the SDL. For example, the implementation should execute
the queries, including multi-source joins, in a distributed manner to cope with data volume.
In SDL, data schemata (organized into entities and attributes) are mapped to ontology terms
(classes and predicates) creating a virtual semantic middleware against which SPARQL queries
can uniformly be posed. The input query is analyzed to extract all the triple pattern groups
that share the same subject. Additionally, the connections between these groups as well as any
involved query operations (e.g., sorting, grouping, solution modifiers) are detected. The triple
pattern predicates, assumed bound, are matched against the mappings to find the entities that
have attributes matching every predicate. In distributed large-scale settings, two strategies of
accessing the detected relevant data entities were described. In the first, the entities are loaded
into distributed data structures that can be manipulated by the user. The data structures can
be joined following the triple pattern group connections. As optimization, predicate push-down
is applied to filter the entity at the data source level. The second strategy is when the SPARQL
query is internally converted into an intermediate query language, e.g., SQL. The intermediate
query is constructed in augmentation steps, by analyzing the input query (SPARQL). Once fully
constructed, the query is submitted to a query engine that accesses the relevant entities. We
presented an extensible implementation of the SDL, which uses RML and FnO for the mappings
and Apache Spark and Presto for query execution. The two engines provide the data structures
required to distribute the query processing, as well as many readily usable wrappers to enable
the loading of data into their internal data structures. The implementation is built following a
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modular design allowing it to be extended to support more data sources and incorporate new
query engines. The implementation is detailed in a dedicated Chapter 7.

RQ4. Can Virtual Semantic Data Integration principles and their implementation be
applied to both synthetic and real-world use cases?

Our SDL implementation was evaluated in two use cases based respectively on a synthetic
benchmark and a real-world application from the Industry 4.0 domain. We described the
evaluation framework and presented the results in Chapter 8. In the synthetic use case, we
used the Berlin Benchmark, BSBM. We generated five datasets and loaded them into the five
supported data sources: MongoDB, Cassandra, Parquet CSV, and MySQL. We adapted ten
queries to use only the data we ingested and the supported SPARQL fragment. The queries
have various numbers of joins, to which we paid special attention to assess the effect of joining
multiple heterogeneous data sources. We reported on the query execution time, broken down
into query analysis, relevant source detection and actual query execution time. We also examined
the implementation scalability by running the queries against three increasing data scales. We
reported on the query evaluation by, first, comparing the results cardinality against the results
of loading and querying the same benchmark data into MySQL. For data sizes that are beyond
MySQL limits, we resorted to comparing the cardinality when Spark and Presto are used as
query engines. For the industrial use case, we have experimented with real-world data generated
using a so-called Surface-Mount Technology. To evaluate the query performance and scalability,
we ran the queries against three data scales. The use case involved thirteen SPARQL queries,
which we ran and reported. Some queries involved unsupported constructs e.g., sub-queries and
aggregation on the object position.

9.2 Limitations and Future Work

Data Integration poses challenges at various levels, from query analysis to data extraction
to results reconciliation and representation. Thus, there are several avenues for improvement
as well as for extending the current state of the work. In the following, we list a number of
directions that the current work could take in the future, classified into Semantic-based Physical
Integration and Semantic-based Logical Integration.

9.2.1 Semantic-based Physical Integration

Optimizing the Data Ingestion

In the Semantic-based Physical Integration, we focused our effort more on providing data model
and storage schemes that support the integration of large amounts of data under the RDF
standard. The most significant lesson learned was that the ingestion of the heterogeneous
datasets under a chosen partitioning scheme is a laborious and costly task. The cost increases
with the complexity of the partition scheme used. When we assume the absence of an RDF
schema, which is not uncommon, the ingestion of RDF data requires exhaustively processing
data triple by triple. With large RDF data, this operation becomes severely resource and
time-consuming. Most of the existing work that we have reviewed had also incorporated a
heavy data ingestion phase in order to pre-compute various joins optimizing for different query
shapes and patterns. However, it is usually understated that the improved results were only
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possible due to an intensive data ingestion phase, thus little to no attention was dedicated to its
optimization. While we recognize the value of collecting statistics, indexing and partitioning the
data during the loading time, we deem that a heavy data ingestion phase should be addressed
with adequate optimization techniques. The problem is more apparent in our context of large-
scale data-intensive environments. For example, statistics calculations could be done in a lazy
fashion after data has been loaded. Data indexing can also be performed in a similar fashion. In
distributed systems, the notion of eventual consistency [216] can be ported to having eventual
statistics or eventual indexing. With this, the first queries may be slow but future runs of
the same or other queries will eventually have an improved execution time. Data partitioning
can also become challenging. If the data has to undergo fundamental model conversion or
significant data transformation or adaptation, partitioning optimization possibilities become
limited. One may benefit from applying traditional partitioning and scheduling algorithms at
the data ingestion phase, e.g., Range partitioning, Hash partitioning, List partitioning, etc.
For example, distributing RDF triples into compute nodes based on RDF subject or property.
The latter can be useful for Vertical Partitioning schemes. However, this requires a deeper
level of customization, which is not always evident if an existing processing engine is used,
e.g. Hadoop MapReduce, Spark. In this regard, it is not always recommended to manipulate
the underlying distribution primitives and data structures, as this may possibly conflict with
the default ingestion and optimization strategies. For example in Hadoop MapReduce, a
dedicated programming interface called Partitioner offers the possibility to impose a custom
data distribution across the cluster nodes. Exploring these avenues is a viable future next-step
for this thesis.

Expanding the Scope of Query Patterns

Our suggested Class-based Multi-Type-Aware Property Table scheme has some drawbacks. First,
it not allow to answer SPARQL queries where the predicate is unbound. Although it has been
reported that unbound predicates are uncommon in SPARQL queries [54], it is still a valid
extension of the current querying coverage. This could be implemented by additionally storing
the data under the Triple Table scheme (subject, predicate, object). This, however, would add to
both the data ingestion time and ingested data size. However, we could use the same columnar
format (Parquet) to store this table and thus benefit from its efficient compression capability.

Incorporating Provenance Retention

In a Physical Integration environment, it comes naturally to think of incorporating provenance
retention both at the data and query level. Provenance information includes the original source
from which a data item was retrieved, the time of retrieval, the person or agent retrieving the
information, the sources involved in the query results, the person or agent issuing the query, the
query execution time, etc. At the data level, since the data ingestion is a supervised operation,
one can easily record, for each ingested item, which data source it was retrieved from, when and
by whom. For example, while ingesting RDF triples, it is possible to capture the provenance
information at the triple level. It can accompany the triple itself, e.g., (triple, source, time, user),
or similarly if other partitioning schemes are used e.g., in Predicate-based Vertical Partitioning
(subject, object, source, time, user). Provenance information can also be saved in form of an
auxiliary index where every triple is assigned an identifier (e.g., based on a hash function)
and mapped to the provenance information e.g., e.g., (recordID, source, time, user). An RDF
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technique called reification could alternatively be used, whereby provenance information is
encoded in the form of RDF statements about RDF statements.
At the query level, it is particularly important to record the query execution time and

cardinality. This allows following how the results to the same query evolve over time. The
results are timestamped once obtained and saved along with the query statement, the person or
agent issuing the query, etc. If provenance information is attached to individual data elements,
the query engine can automatically retrieve the provenance information along with the query
results. Alternatively, a hash map can be populated during data ingestion, so it is possible to
find the original data source by mapping data elements appearing in the results. Technically,
distributed Key-value in-memory stores (e.g., Redis1) can be used to implement these hash maps.
As the provenance information can escalate in size, such distributed Key-value stores can also be
leveraged to optimize for disk usage by sharding (dividing) the provenance data across multiple
nodes. Finally, Specialized provenance ontologies (e.g., W3C recommendation PROV-O [217])
accompanied with data catalog ontologies (e.g., W3C recommendation DCAT [218]) can be
used to capture provenance information in the RDF model.

Diversifying Query Results Representation

The default SPARQL query answer is tabular, where every column corresponds to the projected
RDF variable. However, when the query is of analytical nature, i.e., computing statistics using
aggregation functions (MAX, MIN, AVG, etc.), the query results can also be represented using the
W3C recommended Data Cube vocabulary [219]. In addition to enabling interoperability and
contributing statistical RDF data that can be linked to or from, results can also be visualized
using specialized tools e.g., CubeViz [220]2. Consider the query "Give me the number of buses
per region and driver gender", each aggregation column (region and gender) corresponds to a
dimension, the column of the computed statistical value (bus_number) is the measure, and
the computed values themselves are the observations. Exposing various result formats is also a
natural extension of the current Data Integration work.

9.2.2 Semantic-based Logical Integration

Supporting a Larger SPARQL Fragment

The SPARQL fragment that our SDL implementation, Squerall, supports has evolved thanks
to the projects it was used in (raised by SANSA users and the I4.0 use case). However, there
are still a few query patterns and operations that we find important to cover in the future.
For example, sub-queries were common in the industrial use case we described in Chapter 8.
Object-object join and aggregation on object variables were also requested. We also see UNION
and OPTIONAL frequently discussed in the literature. While supporting nested sub-queries is
challenging given that we map every query star to a ParSet (implemented in tabular format),
the other features can be relatively straightforwardly addressed. In other words, the addressable
operations and constructs are those that do not interfere with our start-to-ParSet principle. In
our tabular-based implementation, this requirement is translated to keeping the query shape
flat. For example, UNION can be addressable because it just requires combining two separate
entities, and both our used engines Spark and Presto support an equivalent UNION operation.
1 https://redis.io
2 https://github.com/AKSW/cubeviz.ontowiki
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OPTIONAL was less common in the use cases we were involved in, but it is generally translated to
SQL LEFT OUTER JOIN. It is noteworthy, however, that we did not envision Squerall to be or
become a fully-fledged RDF store. The use of SPARQL was more motivated by bridging between
the query and the heterogeneous data sources, passing by the mappings. RDF-specific query
operations and types such as blank nodes, named graphs, isURI, isLiteral, ASK, CONSTRUCT, etc.
are considered out-of-the-scope.

Improving Extensibility

Reflected in both our suggested SDL architecture and our implementation of the architecture,
we paid special attention to allowing for extension opportunities. In Squerall, we showcased
how it can (programmatically) be extended to support more data sources and use other query
engines along with the currently-used Spark and Presto. In the first extensibility aspect, our
current work advocated for the reuse of data source wrappers from the existing underlying query
engines, and thus avoid to each time reinvent the wheel as noticed in the literature. Not only
creating wrappers is a laborious error-prone task, it was also observed in several efforts that
the wrappers were limited in their ability to match data from the source to the data structure
of the query engine. We had our own experience creating wrappers, e.g. MongoDB, and we
faced similar difficulties. However, it is remained to state that there might well be other sources
for which no wrapper exists. This means that the support for source heterogeneity of our
default implementation is limited by the number of wrappers the adopted query engine supports.
Although we demonstrated in this thesis the extensibility methodology for supporting new data
sources (applied to RDF data), it is still an important manual work involvement, which we aim
to partially alleviate by providing specialized guiding user interfaces and suggesting a set of
best practices.
The second extensibility aspect is adding another query engine. In subsection 6.2.2 we

showed that data can be queried either by manipulating ParSets or augmenting a self-contained
internal query submitted as-is to the underlying query engine. The former strategy requires the
implementation of common programmatic interfaces. As previously, programmatic challenges
can be alleviated by providing graphical interfaces or recommended best practices. The latter
strategy, on the other hand, has an intrinsic characteristic that can be levered to support more
query engines straightforwardly. That is accepting self-contained queries not requiring any
programmatic work. There exist other SQL query engines that can be interacted with using
this strategy e.g., Drill, Dremio, Impala. In the future, we can extend our implementation to all
these query engines using the exact same methods we have established for submitting queries to
Presto. These methods generate a self-contained query, which can be submitted as-is to the
other SQL query engines.

Comparing our SDL Implementation and Establishing an SDL Benchmark

We have not conducted any comparative evaluation against related efforts. We rather self-
compared our strategies when both Spark and Presto are used. While we had interesting
results for the community, not comparing to another related effort limits the value delivered by
the conducted evaluation. In fact, there was no existing SDL implementation or similar that
supported all or most of our supported sources. We found only two related efforts both of which
supported a few data sources having only one data source in common with our implementation.
Efforts for providing a SQL interface on top of NoSQL stores were also either limited in terms
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of data sources supported or lack crucial query operations like join. We will continue reviewing
the literature for any similar comparable work published. Alternatively, we might alter our
benchmarking framework as to compare against single-source approaches (thus eliminating
joins), or against SQL-based approaches by creating equivalent SQL queries to our SPARQL
queries. Nonetheless, this would not be a valuable comparison for the community and the results
would not advance the topic of the work in any significant way.

On the other hand, there is still no benchmark dedicated to comparing SDL implementations.
Such a benchmark should be able to generate data that can be loaded into various heterogeneous
data sources and generate a set of SPARQL queries. The data can be generated in a canonical
format, e.g., relational, which can be saved into the different heterogeneous data sources. This
can be achieved by leveraging the wrappers of existing distributed query engines, e.g., Spark.
This is the method we have followed to generate BSBM relational data (SQL dumps) and save
it into Cassandra, MongoDB, Parquet, CSV and MySQL. This method is straightforward and
can exploit the available wrappers of dozens of data source types. The benchmark should also
generate a set of mappings linking data schemata elements to ontology terms. The latter could
be user-defined as they could be exemplary, which users can later adjust.

9.3 Closing Remark

In the scope of modern Big Data technologies, the topic of Semantic Data Integration, especially
the Virtual Integration, is still in its infancy. At the time of writing, there is no production-ready
openly-available solution that can be used for real-world use cases. For example, as mentioned
previously, the efforts that are embarking on this domain lack a common ground that would allow
them to be evenly compared. This can also be attributed to the high dynamicity of many of these
systems that makes it very challenging to provide sustainable access mechanisms. To the same
argument, the substantial model differences between many of the so-called NoSQL stores makes it
virtually impossible to establish a standardized way to interface with these stores. This is a widely
recognized issue that is a source of active ongoing research. Moreover, from our own experience
during this thesis work, dealing with these modern storage and data management systems is a
technically tedious task involving a lot of trial-and-error due to the lack of documentation and
sufficient previous experiences. On the other hand, adopting the traditional OBDA systems
may seem a reasonable direction given their maturity in processing RDF data and dealing with
SPARQL specificities. However, Big Data has come with fundamentally different semantics and
assumptions that would deeply alter the architecture of these traditional centralized OBDA
systems. These range from dealing with large distributed data requiring parallel processing
(e.g. distributed join) to supporting data sources that are very dissimilar in terms of their data
model, query syntax and access modality.
The Physical and Logical Data Integration are two different approaches, which are also

opposite in certain respects. They both have their application scope, merits and challenges. The
Physical Data Integration is favored when it is explicitly desired to transform all input data into
a unique data model and, thus, benefit from model uniformity advantages, e.g. improved query
performance. However, data transformation and centralization is a challenge that worsens with
the increased data volume and variety. The Logical Data Integration is favored if data freshness
and originality are not to be compromised. However, disparate data needs to be individually
accessed then, on-the-fly, homogenized and reconciled. This lowers the time-to-query (i.e., data
is accessed directly) but raises the time-to-results (i.e., longer execution time). Our focus on the
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Logical Data Integration in this thesis gives no recommendation for the latter over the former.
It is a choice that we made after balancing between the technical challenge (a one that promises
faster progress based on our practical experience) and scientific impact and significance (a one
that is more recent and, thus, with more open issues and innovation opportunities).
In the end, it is our hope that this thesis will serve as a reference for future students and

researchers in the topic of ‘Semantic Web for Big Data Integration’, setting foundations for
future research and development in the topic.
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