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Abstract

Quantum many-body systems coupling photonic and matter degrees of freedom are ideal for
the realization of driven open quantum dynamics at the intersection of quantum optics and con-
densed matter. They offer the possibility to address unresolved issues regarding a variety of
non-equilibrium phenomena. In such open systems, the substructure of the reservoir then intro-
duces further timescales that may enter into competition with rapid system processes, raising
long-standing questions about the influence of non-Markovian effects on dynamics and equilibra-
tion out of equilibrium.

The central result of this thesis is a general pseudo-particle technique that can be applied
to a large class of models of interacting light and matter and allows for realistic and efficient
simulations of the full non-equilibrium dynamics of these systems. Since organic molecules, as
used in experiments with photon condensates, which provide the main area of application for
this thesis, possess an electronic transition coupled to vibrational phonon modes, we construct
a representation where an auxiliary boson is assigned to each vibrational state of the molecule.
An operator constraint then enforces single occupation across all of these states. We emphasize
that we implement the operator constraint exactly and that we are the first to apply a faithful
auxiliary-boson representation to open quantum systems.

As a contribution to bridging the gap between well-understood equilibrium and less explored
non-equilibrium phenomena, we investigate photon condensates as they are driven away from
equilibrium. The earliest signs of the non-equilibrium character of the driven-dissipative photon gas
do not manifest in the spectrally resolved intensity distribution but in the time dependence of the
intensity fluctuations. The energy flow through the system renders it non-Hermitian and induces a
novel driven-dissipative transition in the second-order correlations characterized by the appearance
of exceptional points. If only the static intensity spectrum is monitored, this transition remains
unnoticed, as does the fact that the system is not truly in equilibrium. Non-Markovian effects due
to the non-separability of system and reservoir timescales are shown to become important far away
from equilibrium. Furthermore, we derive a novel photon-condensate Gross-Pitaevskii equation,
which is capable of describing photo-molecular coherence. Such effects cannot be captured by
existing theories and hence serve as a validation of our auxiliary-boson method. These results
provide a building block to understanding the properties of the photon condensates in stationary
operation where they act as fluctuating light sources. In the future, lattice systems of coupled
photon condensates may lead to the appearance of novel driven-dissipative phases of light.
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Zusammenfassung

Quanten-Vielteilchensysteme, die photonische und Materie-Freiheitsgrade koppeln, sind ideal für
die Realisierung einer getriebenen offenen Quantendynamik am Schnittpunkt von Quantenoptik
und kondensierter Materie. Sie bieten die Möglichkeit, ungelöste Fragen zu einer Vielzahl von
Nichtgleichgewichtsphänomenen anzugehen. In solch offenen Systemen kann die Substruktur des
Reservoirs dann weitere Zeitskalen einführen, die in Konkurrenz zu schnellen Systemprozessen
treten, was seit langem bestehende Fragen nach dem Einfluss nicht-Markov’scher Effekte auf
Dynamik und Equilibration außerhalb des Gleichgewichts aufwirft.

Das zentrale Ergebnis dieser Arbeit ist eine allgemeine Pseudoteilchen-Methode, die auf eine
große Klasse von Modellen der Wechselwirkung von Licht und Materie angewendet werden kann
und realistische und effiziente Simulationen der vollständigen Nichtgleichgewichtsdynamik dieser
Systeme ermöglicht. Da organische Moleküle, wie sie in Experimenten mit Photonenkondensaten
verwendet werden, die das Hauptanwendungsgebiet dieser Arbeit darstellen, einen elektronischen
Übergang besitzen, der an Vibrationsmoden gekoppelt ist, konstruieren wir eine Darstellung,
bei der jedem Vibrationszustand des Moleküls ein Hilfsboson zugeordnet wird. Ein Operator-
Zwangsbedingung setzt dann die einfache Besetzung über alle diese Zustände hinweg durch. Wir
betonen, dass wir die Operator-Zwangsbedingung exakt implementieren und dass wir die ersten
sind, die eine solche getreue Hilfsbosonendarstellung auf offene Quantensysteme anwenden.

Als Beitrag zur Überbrückung der Lücke zwischen gut verstandenen Gleichgewichts- und
weniger erforschten Nichtgleichgewichtsphänomenen untersuchen wir Photonenkondensate, die
aus dem Gleichgewicht getrieben werden. Die frühesten Anzeichen für Nichtgleichgewicht im
getrieben-dissipativen Photonengas zeigen sich dabei nicht in der spektral aufgelösten Intensitäts-
verteilung, sondern in der Zeitabhängigkeit der Intensitätsfluktuationen. Der Energiefluss durch das
System macht es nicht-hermitesch und induziert einen neuartigen getrieben-dissipativen Übergang
in den Korrelationen zweiter Ordnung, die durch das Auftreten von sogenannten exceptional
points gekennzeichnet sind. Wenn nur das statische Intensitätsspektrum betrachtet wird, bleibt
dieser Übergang ebenso unbemerkt wie die Tatsache, dass sich das System nicht im Gleichgewicht
befindet. Es zeigt sich, dass nicht-Markov’sche Effekte aufgrund der Nicht-Separierbarkeit von
System- und Reservoirzeitskalen weit entfernt vom Gleichgewicht wichtig werden. Darüber hinaus
leiten wir eine neuartige Gross-Pitaevskii-Gleichung ab, die in der Lage ist, die photo-molekulare
Kohärenz zu beschreiben. Solche Effekte können durch bestehende Theorien nicht erfasst werden
und dienen daher als Validierung unserer Hilfsbosonenmethode. Diese Ergebnisse liefern einen
Baustein zum Verständnis der Eigenschaften der Photonenkondensate im stationären Zustand, wo
sie als fluktuierende Lichtquellen wirken. In der Zukunft könnten Gittersysteme aus gekoppelten
Photonenkondensaten zur Erscheinung neuartiger getrieben-dissipativer Lichtphasen führen.
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Preface

Experimental platforms coupling a set of cavity modes to a collection of two-level systems with
local vibrational degrees of freedom, such as a wide variety of organic molecules [1], are relevant
for applications ranging from Bose-Einstein condensation of photons [2–6], exciton-polaritons
[7, 8] and plasmonic lattices [9] to single-photon sources for quantum information [10]. These
platforms are ideal for the realization of driven open quantum systems at the intersection of
quantum optics and condensed matter that pose a variety of intriguing questions regarding non-
equilibrium stationary states and dynamics [11]. For example, what are the effects of drive and
dissipation on Bose-Einstein condensation?

In open systems, the substructure of the reservoir introduces further timescales that may compete
with both incoherent and coherent system processes such as cavity loss and quantum tunneling,
respectively. Driving the system strongly out of equilibrium, one enters a regime where the full
dynamical description of the reservoir becomes necessary and established approximate models
based on the separation of system and reservoir timescales begin to break down. As experiments
with photon Bose-Einstein condensates, for instance, move in a direction where fast Josephson
oscillations become relevant that can approach the timescale of reservoir relaxation processes [12],
the influence of non-Markovian memory effects [10, 13] on the dynamics and equilibration of the
system moves into focus.

The theoretical treatment of the systems in question is complicated by several technical diffi-
culties. For one thing, the large number of matter constituents precludes employing numerically
exact methods, where even advanced techniques cannot go beyond rather small systems [14]. In
the quantum-optical framework of the master equation, the usual Born-Markov approximation
does allow for a description of large systems in terms of rate equations [15–19] that even feature
a frequency dependence of the incoherent light-matter coupling. However, these equations are
invariably semi-classical since they are based on assuming a classical distribution for photon and
matter excitations. Thus, coherence effects are neglected. The non-Markovian case is also difficult
to treat in a quantum Langevin approach because of the non-linearity inherent to the non-canonical
spin operators, which for this reason were approximated as bosons in Ref. [20].

In this thesis, our central result is a general pseudo-particle technique that can be applied to a
large class of models where light and matter are coherently coupled, such as the Holstein-Tavis-
Cummings Hamiltonian or indeed arbitrary spins or multi-level atoms inside a cavity, as long as
the correlations between individual matter constituents can be neglected. This is equivalent to
working with an effective single-impurity problem.

The technique of using canonical operators to represent (impurity) spins goes back to Abrikosov
[21]. The basic idea is to express operators that do not have canonical commutation relations
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in terms of operators that do and are thus amenable to standard field-theory techniques. In a
two-level system, for example, either the ground or excited state must always be occupied. If each
state is represented by a fermionic operator, the trouble arises that unphysical degrees of freedom
are introduced by the doubly occupied and unoccupied states. This must be counteracted by an
operator constraint that excludes these unphysical states. In the context of the infinite-U Anderson
model [22], a combination of fermions and auxiliary bosons has been introduced [23–27] which
project out the unphysical states by satisfying one holonomic operator constraint. These techniques
are valid in equilibrium field theory. The extension to non-equilibrium has been given in [28–31].
A more recent exposition in non-equilibrium may also be found in [32]. One has to distinguish this
approach from others where the operator constraint is satisfied on average [33, 34].

The microscopic model of organic molecules comprises an electronic transition coupled to
vibrational phonon modes and hence invites a representation in terms of auxiliary bosons only:
each vibrational state of the molecule will be described by a pair of bosonic creation and destruction
operators. The operator constraint then enforces single occupation across all of these states. We
emphasize that we implement the operator constraint exactly and that approximations enter
only via the diagrammatic expansion, which can be adjusted depending on the problem at hand.
Furthermore, quantum coherence between light and matter can be preserved, which is also true of
the full memory of the system. The method is presented to make it easily accessible for use in novel
applications to this field. To our knowledge, we are also the first to apply a faithful representation
of the operator constraint to open quantum systems.

This thesis is organized as follows. In Chp. 1 we set out with a brief historical introduction to
Bose-Einstein condensation, complemented by a theoretical discussion of the ideal Bose gas in
two and three dimensions. Subsequently, we recapitulate the fact that for black-body radiation,
Bose-Einstein condensation does not occur, before giving a first presentation of the main topic of
this thesis: photon Bose-Einstein condensates. Because the latter are driven-dissipative systems,
we conclude this Chp. by introducing a number of theoretical tools that can be applied to model
both classical and quantum systems coupled to external reservoirs: stochastic differential equations,
path integrals, the Fokker-Planck and finally the quantum master equation.

While the quantum master equation is the most frequently employed tool in quantum optics,
the photon condensate is perhaps the best example of a system situated right at the intersection of
quantum optics and condensed matter. The method of choice for describing open condensed-matter
systems, however, is non-equilibrium quantum field theory, which we introduce in Chp. 2 by first
discussing the Schwinger-Keldysh formalism as it applies to open systems. A comparison with the
Martin-Siggia-Rose path integral and the Wigner representation will then help us to form a proper
understanding of the formalism. Diagrammatic expansions are the bread and butter of field theory,
for which reason we introduce the two-particle-irreducible effective action as a useful tool to
construct self-consistent perturbation theory. Since the ensuing equations of Kadanoff-Baym type
need to be solved at the end of the day, this Chp. is concluded by a presentation of Adams-Bashforth-
Moulton predictor-corrector methods. To demonstrate the accuracy of our implementation of these
methods, we provide benchmark results from an application to the analytically solvable problem
of Brownian motion.

Chp. 3 discusses atomic Bose-Einstein condensates and is hence slightly out of the main line of
this thesis. It may be skipped by readers who are only interested in photon condensates. Consisting
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of two parts, this Chp. first gives a detailed account of how to use non-equilibrium quantum field
theory in Keldysh representation in the presence of a symmetry-broken order parameter. The
physics we can understand in this way concerns the growth and depletion of macroscopic matter
waves. In the second part, we present our quantitative results on the influence of the trap geometries
employed in cold-atom experiments on the dynamical stability of the condensates. Note that this
part is based on our publication [35]. Closely related to this is the detailed review of the frequently
used two-mode approximation in App. C.

With Chp. 4 we begin our investigation of photon Bose-Einstein condensates by analyzing its
established microscopic model. We then pursue the derivation of the quantum master equation
which follows when the molecular vibrational degrees of freedom are integrated out via the
Born-Markov approximation. From the master equation, we obtain the rate equations for the
photon occupation and molecular excitation numbers which describe the system well as long as
there is the above-mentioned separation of timescales. The rate equations provide the foundation
for our study of second-order correlations functions in the system. They can be rederived by
making an incoherent ansatz for the density matrix that reduces the problem to the dynamics
of a classical probability distribution, which in turn enables a well-defined truncation scheme
for the expectation-value hierarchy. The latter is needed to calculate the initial values of the
second-order correlation dynamics, which we prove via quantum regression to obey the same
dynamics as small fluctuations around the steady state. We find that the second-order coherence of
the photon condensate can exist in two distinct regimes: whereas very close to equilibrium, the
intensity-intensity correlations decay bi-exponentially, as described by two different relaxation
rates, they follow a damped-oscillating relaxation when the system is driven more strongly. The
transition between these two dynamical regimes is marked by an exceptional point in the spectrum
of the second-order coherence. As a function of the cavity dissipation and the external driving, this
results in a phase diagram in which the two regimes are separated by a continuous boundary. The
question of the global shape of the boundary delimiting the damped-oscillating regime remains
open at this point. Finally, we show that these theoretical findings are confirmed by experiment.
The Chp. is based on publication [36]. The experimental verification of the theoretically found
exceptional point is presented in Ref. [37].

The rate equations employed up to this point suffer from two drawbacks: neither can they treat
coherence between photons and molecules nor is it possible to have system timescales such as
the inverse cavity loss grow independently of the reservoir relaxation. To address both of these
difficulties, in Chp. 5 we extend the microscopic model of the photon condensate by explicitly
including the relaxation processes of the molecular vibrations and introduce a pseudo-particle
representation that allows us to apply a well-defined perturbative expansion in the photo-molecular
coupling. We then derive the modified diagrammatic rules that enable one to enforce the pseudo-
particle operator constraint in the non-equilibrium case. A resummation technique of the photon
T -matrix is introduced to map the many-molecule system to an effective single-impurity problem.
A novel result of this thesis is the application of the pseudo-particle technique to the open-system
dynamics induced by the Lindblad operators describing the vibrational relaxation. Having es-
tablished the method in this way, we proceed to present a variety of benchmark dynamics with
an eye to both verification and illustration. The step toward realistic systems then necessitates
the introduction of a memory-truncation scheme to keep the numerics feasible. Before harness-

ix



ing this to obtain physical results, we take a step back to prove that our method reproduces the
preceding rate equations in the appropriate limit. An interlude is dedicated to another novel
result, the photon-condensate Gross-Pitaevskii equation, which follows from our theory naturally
because of its ability to handle the photo-molecular coherence. Instead of pursuing this route
to its conclusion, however, we return to our previous topic regarding the dynamical regimes of
the photonic second-order coherence. First, we highlight that our theory is capable of producing
realistic molecular spectra which, in particular, satisfy the Kennard-Stepanov relation around the
so-called zero-phonon line. Second, we demonstrate that the damped-oscillating regime is indeed
bounded and acquires quantitative corrections for large cavity loss which are not captured by the
rate equations. The results of this Chp. form the basis for Ref. [38].
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CHAPTER 1

Introduction

Bosons occur everywhere in natural systems. All of the known force-carrying particles are bosons,
most notably the photon. Protons, neutrons and electrons, however, are fermions of spin 1/2. Yet
any composite, integer-spin particle consisting of an even number of fermions is in turn a boson.
This is the reason why in atoms that are not ionized, i.e. where for every proton in the nucleus
there is an electron in one of the atom’s shells, the number of neutrons determines the total spin. A
good example to illustrate this fact are the isotopes of helium: while helium-3 possesses a single
neutron and hence is a fermion, helium-4 contains two neutrons and is accordingly a boson. This
constitutes a fundamental difference between the two isotopes. While the exclusion principle states
that no two fermions may possess the exactly same quantum numbers, such a restriction does not
exist for bosons: in sharp contrast to fermions, any quantum state can be occupied by arbitrarily
many of them.

The simplest collection of bosons is the so-called ideal Bose gas, which we discuss in Sec.
1.1. At low temperatures (or high densities), it gives rise to the famous Bose-Einstein condensate
(BEC), where the difference to fermions is most pronounced as a macroscopic fraction of the gas
particles aggregates in the ground state. The first experimental verification of this phenomenon
was achieved with rubidium-87 [39], which contains 50 neutrons and hence is indeed a boson. To
properly understand the physical background for the greater part of this thesis, which is a BEC
of photons as opposed to cold atoms, it is necessary to first discuss the problem of black-body
radiation, for which a BEC notably does not occur. This is the subject of Sec. 1.2. With the photon
BEC entering the stage in Sec. 1.3, our focus gradually moves from equilibrium phenomena such
as the ideal Bose gas and black-body radiation to the wide field of non-equilibrium physics. The
photon BEC is still close to equilibrium, for which reason it can attain a Bose-Einstein spectrum
for a finite time, yet ultimately it is an open system that must be driven externally to compensate
for the unavoidable effects of dissipation (cf. Chp. 4). For Bose gases coupled to environments,
technically the description is similar to that of classical stochastic systems. It is worthwhile to
review these techniques in Sec. 1.4 because it helps to build a deeper conceptual understanding
of all of the methods involved in describing both quantum optical and bosonic condensed-matter
systems. This topic is finally taken up in Sec. 1.5, where we introduce open quantum systems.
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Chapter 1 Introduction

1.1 Ideal Bose Gas

The main idea behind the central physical theme of this thesis, Bose-Einstein condensation, follows
most naturally from the historical context of its conception in 1924. As discussed at length by
Bach [40], the accurate history of what we now call Bose-Einstein statistics is long and slightly
involved. Bach makes the argument that it was first mentioned by Boltzmann as early as 1868,
and again in 1877. Its first consequential appearance for physics was certainly in 1900, when
Planck tried to find a derivation for his formula interpolating between the Wien and Rayleigh-Jeans
limits in the problem of black-body radiation, and ended up introducing light quanta. Incidentally,
this was also the inception of quantum theory. Why then are the names of Bose and Einstein,
instead of Boltzmann and Planck, attached to our topic? While Planck was concerned with the
statistics of radiation, in 1924 Einstein applied the new statistics to an ideal gas of atoms. This
step, inspired by the analogy with radiation which, under certain circumstances, can itself be
described as a gas of particles, went beyond what was known at the time. Bose, in turn, was a
yet unknown physicist from India who sent his derivation of the statistics to Einstein after it had
been rejected by the Philosophical Magazine.1 Einstein translated Bose’s work and arranged for
its publication. Subsequently, Einstein developed the idea into the quantum theory of the ideal
(Bose) gas in several articles of his own [42, 43].

In the 19th century, Boltzmann had given a statistical foundation to thermodynamics, aptly
summarized in Einstein’s formula [44] relating the entropy S to the number of configurations W
of a gas,

W = eS/kB . (1.1)

In a certain sense, much of the technical work in this thesis will be about more sophisticated ways
of using variants of this formula, which via the large-deviation principle [45] is intimately related
to the effective-action techniques that are going to be of great relevance in later parts. Boltzmann’s
ideas relate the macroscopic equilibrium state, i.e. the state of maximum entropy, to that state of the
system which has the most microscopic realizations. In this picture, a gas is in its most probable
state most of the time. Since for systems with a large number of constituents,2 one macrostate
is overwhelmingly more probable than all others, we rarely observe deviations from equilibrium.
Seen through Boltzmann’s lense, however, such fluctuations constantly occur.

Both Planck, in his derivation of the black-body spectrum [40], and Einstein followed the
intellectual tradition founded by Boltzmann around the idea of atomicity. Einstein’s work on
Brownian motion was indeed decisive in bringing the molecular concept into the mainstream of
science. This happened not least because Brownian motion, the perpetual random jiggling of, for
instance, pollen suspended in water, is the best example where the above-mentioned fluctuations
around the most probable macrostate, usually imperceptible, become visible to the bare eye.3

Thus in 1924, the accepted description of the ideal gas was Maxwell-Boltzmann statistics.

1 Cf. Chp. 23 of Ref. [41].
2 A gas indeed has a very great number of particles, as exemplified by the Avogadro number 6 · 10

23.
3 The mathematical description of Brownian motion will be of importance below. It provides helpful insights for the

stochastic description of physical systems (cf. Sec. 1.4).
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1.1 Ideal Bose Gas

The key assumption behind this form of statistics is the uniform distribution of microstates (or
configurations in Bach’s terminology [40]). Combined with an energy and particle-number
constraint, and the principle of maximum entropy, this leads directly to the well-known Boltzmann
factor exp

{(
Ei − Ej

)
/kBT

}
expressing the ratio of the probabilistic frequencies with which

two states of energies Ei and Ej will be occupied. For Bose-Einstein statistics, on the contrary, the
uniform distribution of microstates is replaced by the uniform distribution of occupation numbers
[40].

The significance of this break with the assumptions of classical Maxwell-Boltzmann statistics is
illustrated vividly by a short episode from the Schrödinger-Einstein correspondence of 1925 [46].
Although like Boltzmann from the Vienna school, Schrödinger had difficulties in grasping the new
way of distributing the particles over the microstates which distinguished the novel Bose-Einstein
from the established classical statistics. Schrödinger even thought that Einstein might have made a
mistake.4 In his reply, Einstein explains the matter clearly with the help of Tab. 1.1, which shows
an illustration of the two kinds of statistics for the exemplary case of two particles distributed
over two states or cells. The left part corresponds to Bose-Einstein statistics: three different
cases are possible. On the right, we see the Maxwell-Boltzmann way of counting: this results
in four different cases. For the thermodynamics, however, not the absolute but only the relative
frequencies of the different cases are important. By treating the second and third of Boltzmann’s
cases as a single one (2. case on the left), the relative importance of the two cases where both
particles occupy the same state is increased. This is sometimes referred to as “statistical attraction”.
In Einstein’s words: “Nach Bose hocken die Moleküle relativ häufiger zusammen als nach der
Hypothese der statistischen Unabhängigkeit der Moleküle.”5 Schrödinger’s difficulties with the
subject6 are echoed even today, as the precise interpretation of the two types of statistics is still a
matter of debate [47–49]. Their difference is usually summarized by saying that classical particles
are “distinguishable”, while quantum particles are “indistinguishable”. Ref. [48] argues that either
both types of particle are distinguishable, or both are indistinguishable. Ref. [49] summarizes the
different definitions of these notions to be found in the literature. A thorough discussion of these
subtleties is, however, besides the point of this thesis.

In present-day thermodynamics, the partition function of the grand canonical ensemble is given
by the sum over all possible total particle numbers N . The relative weights of the different
momentum states ki are given by the Boltzmann factors exp

{
−β
(
εki − µ

)}
, where β = 1/kBT

4 Letter 011†, p. 101 of Ref. [46].
5 Translation by the author: “According to Bose, the molecules relatively huddle together more often than under the

hypothesis of statistical independence of the molecules.”
6 Schrödinger’s reply to Einstein’s clarification: “Sie hatten schon vor längerer Zeit... die Güte, mir einen recht dummen

Einwand gegen Ihre erste Entartungsarbeit in liebenswürdigster Weise und so zu beantworten, daß mir die Sache
sofort klar war. Erst durch Ihren Brief ging mir das Eigenartige und Neue Ihrer statistischen Behandlungsweise auf,
die ich vorher gar nicht verstanden hatte...”

Translation by the author: “A while ago you had the kindness to answer a rather stupid objection of mine to your
first degeneracy work most amiably and in such a way that the matter was immediately clear to me. It was only
through your letter that I realized the peculiarity and novelty of your statistical treatment, which I had not at all
understood before.”
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Chapter 1 Introduction

Bose statistics Independent molecules

1. cell 2. cell 1. cell 2. cell

1. case •• - 1. case I II -

2. case • • 2. case I II

3. case - •• 3. case II I

4. case - I II

Table 1.1: Reproduction of the table from the Schrödinger-Einstein correspondence [46].

and µ is the chemical potential. Then the classical grand partition function reads [50]

Z =
∑

nk1
, nk2

, ...

[
1

nk1
!

(
e
−β
(
εk1
−µ
))nk1 1

nk2
!

(
e
−β
(
εk2
−µ
))nk2

· · ·
]

=
∞∑
N=0

1

N !

{∑
k

e−β(εk−µ)

}N
= exp

{∑
k

e−β(εk−µ)

} (1.2)

where nki ∈ N0 and the momentum sums run over all allowed k. For the example from Tab. 1.1,
we have N = 2 and only two different k vectors. The corresponding summand in Eq. (1.2) is
hence

1

2

{
e
−β
(
εk1
−µ
)

+ e
−β
(
εk2
−µ
)}2

=
e2βµ

2

{
e−2βεk1 +2 e

−β
(
εk1

+εk2

)
+ e−2βεk2

}
. (1.3)

The factor of 2 in front of the second term on the right-hand side shows that the second and third
case from the right half of Tab. 1.1 are indeed counted separately. According to Einstein, this
stems from the statistical independence of the classical particles: after the first particle is placed,
the second particle has two states it can go to; whither it goes is not influenced by the already
determined state of the first particle.

As indicated above, for the quantum case, the situation is different [47]. In his letter to
Schrödinger, Einstein also emphasizes that as the density of the particles is increased, statistical
independence breaks down. The location of the second particle is now influenced by that of the
first: they tend to cluster together. In seemingly innocent distinction to Eq. (1.2), the quantum
grand partition function reads [50]

Z =
∑

nk1
, nk2

, ...

[(
e
−β
(
εk1
−µ
))nk1

(
e
−β
(
εk2
−µ
))nk2

· · ·
]

=
∏
k

∞∑
nk=0

{
e−β(εk−µ)

}nk

=
∏
k

1

1− e−β(εk−µ)
.

(1.4)
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1.1 Ideal Bose Gas

Figure 1.1: Comparison of Maxwell-Boltzmann and Bose-Einstein statistics. The average occupation
number 〈n〉 diverges as ε − µ → 0. In the classical limit β(ε − µ) → ∞, Bose-Einstein approaches
Maxwell-Boltzmann statistics.

Once more, for the example from Tab. 1.1 we find as contributions to Z the terms

e2βµ

{
e−2βεk1 + e

−β
(
εk1

+εk2

)
+ e−2βεk2

}
, (1.5)

where now the cases where both cells are occupied once is no longer counted twice. As one can see
comparing Eqs. (1.2) and (1.4), mathematically the difference between classical and Bose statistics
amounts to the difference between summing an exponential and a geometric series.

1.1.1 Average Occupation

The grand partition function Z allows the calculation of statistical average quantities by taking
derivatives. The occupation of mode k is found to be

〈nk〉 = − 1

β

∂

∂εk
lnZ =

1

eβ(εk−µ)−1
=

e−β(εk−µ)

1− e−β(εk−µ)
. (1.6)

The average occupation serves well to illustrate the connection between classical and quantum
statistics. In the limit where (εk − µ)� kBT , one has

1

eβ(εk−µ)−1
≈ e−β(εk−µ), (1.7)

which is again the classical Boltzmann factor. Thus we understand that quantum effects become
important when the system energy is on the order of kBT . Deep in the quantum regime, that is,
usually for very low temperatures, the different way of counting states that led to a geometric
series instead of an exponential one has rather dramatic consequences: when εk ≈ µ, we have
〈nk〉 → ∞ and the particle number diverges, which is illustrated in Fig. 1.1.

Since, in reality, the particle number cannot diverge, we impose the total particle number N as a
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Chapter 1 Introduction

boundary condition to fix the chemical potential:

N =
∑
k

1

eβ(εk−µ)−1
≈
(
L

2π

)D ∫
dΩ

∫ ∞
0

dk kD−1 1

eβ(εk−µ)−1
, (1.8)

where the approximation of the sum as an integral does not take into account the contribution from
the ground state k = 0.

1.1.2 Densities of States

In the following, we will only consider the ideal Bose gas in dimensions D = 3 and D = 2, as
these are the relevant cases for this thesis. The densities of states in these cases may be written as

g(ε) =
∑
k

δ(ε− εk) ≈
(
L

2π

)D ∫
dΩ

∫ ∞
0

dk kD−1δ(ε− εk)

=

(
L

2π

)D ∫
dΩ

1

2

(
2m

~2

)D/2 ∫ ∞
0

dεk ε
(D−2)/2
k δ(ε− εk)

=

{
ε1/2(L3/4π2)(2m/~2)3/2, D = 3,

(L2/2π)m/~2, D = 2,

(1.9)

where we have substituted k = ±
√

2mεk/~
2. We have found the typical square-root behavior of

the density of states in three dimensions, as well as the well-known energy-independent result in
D = 2. This difference in the exponents with which the energy appears in the density of states
results in the distinct physical behavior of the respective Bose gases.

1.1.3 Three-Dimensional Bose Gas

For the ideal Bose gas in D = 3, our previous calculation leading to g(ε) ∼ ε1/2 has profound
consequences. From Eq. (1.8), the total particle number involves the integral∫ ∞

0
dεk

ε
1/2
k

eβ(εk−µ)−1
= β−3/2

∫ ∞
0

dx
x1/2

e−βµ ex−1
= β−3/2Γ(3/2)Li3/2(eβµ), (1.10)

where we have introduced the Gamma function and the polylogarithm

Lis(z) =
1

Γ(s)

∫ ∞
0

dx
xs−1

z−1 ex−1
, (1.11)
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1.1 Ideal Bose Gas

which converges only for Re s > 0 and |z| < 1, z ∈ C. When z approaches unity from below on

the real axis, it becomes the Riemann zeta function, Lis(z)
z↗1−→ ζ(s). Thus we find

µ ≤ ε0 = 0 (1.12)

for the chemical potential of the ideal Bose gas in three dimensions. For a given temperature T ,
the critical density of particles in the states with k > 0 is then7

ρc(T ) =
Nc

V
=

1

4π2

(
2mkBT

~2

)3/2

Γ(3/2)ζ(3/2) = λ−3
T ζ(3/2) ≈ 2.6 · λ−3

T . (1.13)

Conversely, for a given density ρ, the critical temperature is

Tc(ρ) =
2π~2

mkB

(
ρ

ζ(3/2)

)2/3

. (1.14)

The obvious question to ask now is: For a given T and a particle density ρ < ρc, what happens
when further particles are added to the system by slowly increasing the chemical potential µ until
ρ > ρc? As long as the density is not saturated, the system still lowers its free energy (µ < 0) by
accepting more particles into the states k > 0. But as the saturation threshold is approached and
µ↗ 0, this is less and less advantageous. At some point, it becomes energetically more favorable
to accept additional particles into the ground state k = 0. In thermodynamic language, one says
that they “condense” into the ground state. This means that the true particle density must be written

ρ =
N

V
= ρ0(T ) + ρc(T ), (1.15)

where ρ0(T ) is the condensate density. Evidently, for a fixed density ρ, one may just as well lower
the temperature below Tc to achieve the same effect. While this is employed in condensating
ultracold gases where the number of atoms cannot be increased but the temperature can be lowered
by techniques such as evaporative cooling [39], in the case of the photon BEC condensation is
indeed achieved by adding more photons to a system at constant temperature.8

1.1.4 (Trapped) Two-Dimensional Bose Gas

In two dimensions at T > 0, condensation has been proven to be impossible for homogeneous
systems [51]. The integral analogous to Eq. (1.10),∫ ∞

0
dεk

1

eβ(εk−µ)−1
= −kBT ln

(
1− eβµ

)
, (1.16)

7 The thermal de Broglie wavelength is defined as λT =
√

2π~2
/mkBT and Γ(3/2) =

√
π/2.

8 The photon BEC is not, however, a three-dimensional condensate (s. discussion below).
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Chapter 1 Introduction

is evidently infrared divergent when µ↗ 0. There is no upper bound to the number of particles
that may be absorbed into the states with k > 0. Therefore, Bose-Einstein condensation cannot
occur for homogeneous systems in two dimensions.

On the contrary, for a two-dimensional Bose gas in a power-law potential

U(r) = U0

(r
a

)η
, (1.17)

where η > 0, condensation is possible [52, 53]. This point will be of great importance for the
photon Bose-Einstein condensate to be discussed in Sec. 1.3. Before doing so, however, we
turn to the classic problem of black-body radiation, which will help us to appreciate the intricate
combination of conditions that enables the photon BEC.

1.2 Black-Body Radiation

As mentioned above, the problem of black-body radiation was the first where the idea of Bose
statistics achieved recognition. Both black-body radiation and ideal Bose gases are large assemblies
of bosonic particles. What then differentiates photonic radiation from a dilute gas of atoms with
integer spin?

In the present context, the first important difference is the chemical potential: for the latter, it
is fixed to some finite value by the total number of atoms in the gas, while for the former, the
particle number is not conserved and the chemical potential is zero. Through absorption by and
emission from the walls of the cavity with which the radiation is in equilibrium, the photon number
is constantly adjusted to the value prescribed by the temperature of the black body. The second
difference is the dispersion relation: instead of εk = ~2k2/2m as for massive bosons, in vacuo
photons have a linear dispersion ωk = c |k|, where c is the speed of light.

The first model that comes to mind here is the one-dimensional quantum harmonic oscillator
[50]. The eigenenergies are En = ~Ω(n + 1/2), n ∈ N0, and the grand canonical partition
function becomes

Z = e−β~Ω/2
∞∑
n=0

e−β~Ωn =
e−β~Ω/2

1− e−β~Ω
=

1

2 sinh (β~Ω/2)
. (1.18)

For the average occupation number, one finds

2〈n〉+ 1 = − 1

~Ω

∂

∂β
lnZ = coth (β~Ω/2). (1.19)

This is our first encounter with an instance of the fluctuation-dissipation theorem connecting
correlation and response functions [11].

Going over to a more realistic description in terms of a collection of electromagnetic modes
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1.3 Photon Bose-Einstein Condensate

confined to a box in three dimensions, we obtain for the partition function

Z =
∏
k

(
e−β~ωk/2

1− e−β~ωk

)2

, (1.20)

where the square comes from taking into account the polarization. Analogous to before, the total
photon number is

n(β) = 2
∑
k

1

eβ~ωk −1
, (1.21)

and the density of states now reads

D(ω) = 2
∑
k

δ(ω − ωk) ≈ 2
V

(2π)3 4π

∫ ∞
0

dk k2δ(ω − ωk) =
V

π2

ω2

c3 . (1.22)

which results in

n(T )

V
=

1

π2c3

∫ ∞
0

dω
ω2

eβ~ω −1
=
T 3

π2

(
kB
~c

)3

Γ(3)ζ(3). (1.23)

This is finite, yet without a chemical potential, the photon density of black-body radiation vanishes
like T 3 as the temperature goes to zero: no Bose-Einstein condensation takes place.

1.3 Photon Bose-Einstein Condensate

Can Bose-Einstein condensation still be achieved for photons? From what we have explored so
far, three things are clear: there needs to be a mechanism to thermalize the photons, that is, a
heat bath absorbing and emitting photons at frequencies such that a Bose-Einstein distribution
results; a chemical potential must be introduced to fix the photon number independently of the
temperature; and the dispersion relation has to be such that condensation can occur (unlike for the
free two-dimensional Bose gas). It turns out that all of these requirements can be met by trapping
the photons in an optical microcavity filled with a fluorescent medium [2, 53].

1.3.1 Thermalization Mechanism

The thermalization mechanism for the photons can be obtained by filling a cavity with a solution
of fluorescent dye molecules at room temperature (T ≈ 300 K). A sketch of this set-up is given in
Fig. 1.2. The physics of such vibrating molecules is governed by the Franck-Condon principle [1].
In a simplified picture, a dye molecule may change both its electronic and its vibrational state upon
absorption of a photon. The reason is that for a many-atom molecule, the equilibrium bond length
between the atoms depends on the electronic state. Imagine a molecule is both in its electronic and
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Chapter 1 Introduction

Figure 1.2: The dye-filled cavity is depicted schematically in panel (a) together with a standing wave of the
electromagnetic field. A number of driven-dissipative processes, i.e. the cavity loss κ, the external optical
pumping Γ↑, and the non-radiative decay Γ↓ are also shown, although we ignore them in this introduction
(for a discussion, cf. Chp. 4). In panel (b), we present a sketch of the substructure of the dye molecules as
described in the main text. The vibrational relaxation processes are indicated by the short (yellow) arrows.

vibrational ground state, i.e. the constituent atoms do not oscillate.9 When a photon is absorbed, the
electronic state changes, while the atoms remain in their former equilibrium positions. In the new
electronic state, however, these positions correspond to a non-equilibrium (Franck-Condon) state,
such that the atoms start to vibrate around the displaced equilibrium. The photon has provided the
energy for both the electronic transition and the phononic excitation of the molecular vibration.
Because of the fast thermalization, the new vibrational ground state is reached quickly after the
absorption event (Kasha’s rule). From this state, the molecule then decays back to the electronic
ground state by emission of a photon (up to imperfections due to limited quantum efficiency). The
equilibrium positions change again during this emission, the atoms oscillate for a short time, and
then relax back to the original ground state.

The transitions are most likely to happen when the wave functions of the initial and final states
have a large overlap at the atomic positions in the instant of absorption. This creates a symmetry
between absorption and emission, where the initial and final vibrational state are interchanged.
As depicted in Fig. 1.2 (b), if upon absorption the molecule is most likely to end up in the third
excited state of the phononic oscillator, then after the relaxation to the vibrational ground state
(while still being in the electronic excited state), the preferred final state of emission will be the
electronic ground state combined with the third exited state of the phononic oscillator. Denoting the
electronic transition frequency (also called the zero-phonon line) by ∆ and the phononic frequency
by Ω, the to-be-absorbed photon of frequency ω must provide the energy ~ (∆ + 3Ω), while the
emitted photon will have the energy ~ (∆− 3Ω). This is an example of the Stokes shift: emission
happens at lower frequencies (larger wavelengths) than absorption). This may also be expressed

9 Actually, since the molecules are in contact with a solvent heat bath, the vibrations are thermally occupied via a
thermalization process that happens on very short picosecond timescales.
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1.3 Photon Bose-Einstein Condensate

generally as a sum rule for the involved frequencies,

ω + ngΩ = ∆ + neΩ, (1.24)

where ng, e denotes the phonon number in the electronic ground and excited state, respectively. As
a function of the frequency, the thermal occupation numbers of the phonons in the ground and
excited states are then connected by a Boltzmann factor [53],

ng
ne

= eβ~(ω−∆), (1.25)

where we have made the simplifying assumption that the phonon frequency is the same for the
electronic ground and excited states.10 Assuming detailed balance, one finds for the Einstein
coefficients of absorption and stimulated emission

B12(ω)

B21(ω)
= eβ~(ω−∆) . (1.26)

Since together with spontaneous emission, this will determine the distribution of the photons
over the frequencies via the Einstein rate equations, the fact that we have found a Boltzmann
factor is crucial for obtaining a proper equilibrium photon spectrum. Eq. (1.26) is known as the
Kennard-Stepanov relation.

1.3.2 Chemical Potential and Critical Photon Number

The photon chemical potential is also introduced via the dye molecules. Idealizing these as two-
level systems which may absorb and emit single photons, at temperature T the relative occupation
of the excited and ground states will be given by a Boltzmann factor

M↑/M↓ = e−β~∆, (1.27)

where M↑ (M↓) is the excited (ground) state occupation and ∆ again the (electronic) transition
frequency. If β−1 = kBT � ~∆, practically all molecules are in the ground state. Of course,
this also means no photons will be in the cavity. Importantly though, it is possible to introduce
molecular excitations by optical pumping. If the cavity mirrors are very good (high reflectivity)
and the quantum efficiency of the dye is close to one, the sum of photons and excited molecules is
(approximately) conserved,

n+M↑ = M↓. (1.28)

10 ∑
l e
−β~Ωgl /

∑
l e
−β~Ωel = 1.
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Chapter 1 Introduction

The amount of dye excitations converted into photons may be incorporated into Eq. (1.27) by
means of a photon chemical potential µγ , such that

M↑/M↓ = e−β(~∆−µγ) . (1.29)

The real situation is slightly more complicated since neither the dye efficiency nor the mirror
reflectivity are perfect. Hence, the system is really open, and both the mirror and the quantum loss
have to be taken into account in a full description [16]. These issues will be addressed in Chp. 4.

The dispersion relation of a microresonator with cylindrical symmetry is [53]

ωk =
c

n

√
k2
r + k2

z(r), (1.30)

where n is the refractive index of the cavity medium and kz(r) = πq/D(r). The longitudinal
mode number is denoted by q, while D(r) describes the distance between the two mirror surfaces
as a function of the distance to the optical axis z. A symmetric, spherical cavity with curvature
radius R is described by D(r) = D(0)− 2

(
R−

√
R2 − r2

)
. In paraxial approximation, i.e. for

R� r and kz(r)� kr, the dispersion may be approximated as11

~ωk =
~c
n

πq

D0

(
1 +

r2

D0R

)
+

~ck2
r

2nπq

(
D0 −

r2

R

)

≈ ~πqn
D0c︸ ︷︷ ︸
m

( c
n

)2
+
m

2

2c

D0Rn︸ ︷︷ ︸
Ω

2

r2 +
~2k2

r

2m
,

(1.31)

where we have introduced an effective photon mass m and an effective harmonic frequency Ω,
and neglected the last term of the first line. In this approximation, the photons obtain a dispersion
relation equivalent to that of massive bosons trapped in a two-dimensional harmonic potential. The
linear dispersion relation of black-body radiation is thus avoided. Taking the ground state of the
two-dimensional oscillator as the zero of energy, the eigenfrequencies read

ωlx, ly = Ω
(
lx + ly

)
, (1.32)

where lx, y ∈ N0. The photon number as a function of frequency then becomes

n(ω) =
g(ω)

eβ(~ω−µγ)−1
, (1.33)

where g(ω) = 2 (ω/Ω + 1), as explained in Tab. 1.2. Summing over all states except the ground
state, we find the number of photons in the excited states of the photon gas. Similar to what we did

11 This is true for very weakly curved mirrors brought extremely close together. One finds D(r) ≈ D0 −
2R
(

1−
(

1− r2
/2R

2
))

= D0 − r
2
/R and kz(r) = πq

D0−r
2
/R
≈ πq

D0

(
1 + r

2

D0R

)
.
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1.4 Classical Stochastic Systems

ω = Ω ω = 2Ω

lx 1 0 2 0 1

ly 0 1 0 2 1

Table 1.2: Degeneracy of eigenfrequencies for the two-dimensional harmonic oscillator. There are two ways
to distribute a single quantum, and three ways to distribute two quanta. Including the polarization, for l
quanta one finds g(l) = 2 (l + 1).

above for the ideal Bose gas confined to a box, for temperatures large compared to the oscillator
frequency, ~Ω� kBT , the sum can be approximated by an integral,

nc =

∞∑
l=1

n(lΩ) ≈ 2

(
kBT

~Ω

)2 ∫ ∞
0

dx
x

ex−1
= 2

(
kBT

~Ω

)2

Γ(2)ζ(2) =

(
kBT

~Ω

)2 π2

3
.

(1.34)

This is finite as for the three-dimensional Bose gas or the trapped two-dimensional Bose gas. Since
we now have a chemical potential µγ ≤ 0, it is possible to add further particles beyond nc to
the system by letting µγ ↗ 0. These additional particles will then condense to the ground state
lx = ly = 0 of the harmonic potential.

With an eye to parameters, the trap frequency quoted in Ref. [53] is Ω = 2π · 4.1 · 1010 Hz. At
T = 300 K this results in a critical particle number of nc ≈ 77068. The refractive index is usually
quoted as n = 1.43.

1.4 Classical Stochastic Systems

Before coming to the methods relevant for describing open quantum systems, the following Sec.
will give a brief tour of the techniques used by physicists to model classical stochastic systems.
The merit of reviewing these techniques is that they will help us to understand non-equilibrium
quantum field theory (cf. Chp. 2) in a more intuitive way by contrasting those features of the latter
that are genuinely quantum with those that merely follow from the effects of classical noise. The
part about the classical path integral in 1.4.2 will be especially helpful in coming to grips with
the Schwinger-Keldysh formalism (cf. 2.1). After completing the tour of classical stochastics, we
discuss one of the essential methods to this thesis: we will derive the quantum master equation
and explore its connection to other methods for describing open quantum systems in Sec. 1.5.

1.4.1 Stochastic Differential Equation

Brownian motion is the random motion of dissolved microscopic particles brought about by
collisions with the submicroscopic molecules of the surrounding solvent. To the eye, this motion
looks entirely erratic: the particles jump here and there without any apparent regularity. The
mathematical description of Brownian motion is founded upon the insight that this intuitive picture

13



Chapter 1 Introduction

of randomness may be cast into a rigorous formal assumption. The equations of motion

q̇(t) =
1

m
p(t),

ṗ(t) = −V ′(q(t))− λ

m
p(t) +

√
2λkTξ(t)

(1.35)

go over into Hamilton’s equations of classical mechanics for λ→ 0. Yet for finite friction λ and
temperature T they are conceptually different from the equations of classical mechanics. The reason
for this is the “fluctuating force” ξ(t). It describes the random shocks received by the microparticle
from the collisions with the water molecules. In physical terms, the lack of “regularity” now means
that there is no correlation between one perceptible jump of the microparticle and the next. Of
course, this is an idealization that only holds if the timescale over which the experimentalist can
measure the motion of the microparticle is by far larger than the typical timescale of the molecular
motion. This idea can be expressed as

〈ξ(t)ξ(t′)〉 = δ(t− t′), (1.36)

that is, the values of the fluctuating force at two different points in time are delta-correlated. This
is equivalent to a so-called white noise

A(ω) =

∫ ∞
−∞

dt eiωt〈ξ(t)ξ(0)〉 = 1, (1.37)

which is completely flat in frequency space. Again, in reality such a constant spectrum does not
exist. Rather, a spectrum that is sufficiently broad around the relevant system frequencies is usually
approximated as white. We have to emphasize that Eqs. (1.35) are the physicist’s way of writing
stochastic differential equations. While the trajectories traced out by a Brownian particle are indeed
continuous, they are not differentiable.12 The derivative of the fluctuating force ξ(t) cannot be
defined. Physically, this has to do with the fact that the time interval between two subsequent
measurements of the trajectory cannot be made arbitrarily small without reaching the timescale of
the molecular motion, at which point the shocks dealt by the fluctuating force stop to be temporally
uncorrelated. In mathematics, Eqs. (1.35) are written in differential form as

dq(t) =
1

m
p(t)dt,

dp(t) = −V ′(q(t))dt− λ

m
p(t)dt+

√
2λkTdW (t),

(1.38)

where dW (t) ≡ ξ(t)dt is the Wiener process [54]. Setting the potential term to zero, V (q(t)) = 0,
we recover free Brownian motion, which allows for a straightforward solution of Eqs. (1.35). By

12 That is, the limit lim∆t→0 ∆q/∆t does not exist.
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1.4 Classical Stochastic Systems

making the ansatz dp(t) = e−λt/mdpI(t) we find dpI(t) = eλt/m
√

2λkTdW (t) and hence

p(t) = e−λt/m
(
p(0) +

√
2λkT

∫ t

0
eλt
′
/mdW (t′)

)
. (1.39)

This is the exact solution for the fluctuating momentum of the microparticle. With this in hand, we
can calculate the momentum correlations

〈p(t)p(t′)〉 − e−λ(t+t
′
)/m〈p2(0)〉 = 2λkT e−λ(t+t

′
)/m

∫ t

0

∫ t
′

0
eλ(t̄+t̄

′
)/m〈dW (t̄)dW (t̄′)〉

= 2λkT e−λ(t+t
′
)/m

∫ t

0

∫ t
′

0
dt̄dt̄′ eλ(t̄+t̄

′
)/mδ(t̄− t̄′)

= 2λkT e−λ(t+t
′
)/m

∫ min (t,t
′
)

0
dτ e2λτ/m

= mkT
(

e−λ|t−t
′|/m − e−λ(t+t

′
)/m
)
,

(1.40)

where we have used 〈ξ(t)〉 = 0. For long times, we then have correctly that

〈p2(t)〉
2m

−−−→
t→∞

1

2
kT, (1.41)

which is our second encounter with the fluctuation-dissipation theorem (FDT): the average kin-
etic energy turns out to be kT/2 for one-dimensional Brownian motion, in agreement with the
equipartition theorem of statistical mechanics. Naturally, Langevin originally constructed Eqs.
(1.35) in such a way as to fulfill this relation. Yet the physics behind it is both deep and important.
It demonstrates the connection between the concept of temperature and random motion. It also
shows that as the energy stored in the directed initial motion of the microparticle is lost through
friction, this energy does not vanish: it is converted into heat. After reaching the steady-state, small
amounts of this heat are converted back into kinetic energy such that on the average, the energy
lost to friction is compensated by that gained through fluctuations. This is how the FDT relates to
thermodynamic equilibrium.

1.4.2 From Stochastic Differential Equations to the Classical Path Integral

The derivation given in the following is important since it shows poignantly how the classical path
integral is connected to probability theory. The central idea is to discretize time and then to infer
the probability distribution of the path from the known distribution of the noise. Instead of the
momentum p(t), now consider an arbitrary stochastic variable x(t) described by

dx(t) = αx(t)dt+
√
D dW (t). (1.42)
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To connect to the physical case from above, replace x(t) with the momentum and set α = −λ/m,
D = 2λkT . The Wiener process W (t) is distributed according to (W (t)−W (t′)) ∼ N (0, t− t′).
For the construction of the classical path integral, we follow Hänggi [55], but also Kamenev [56]
for the regularization. A more recent discussion can be found in [57]. The first question to address
is how to discretize Eq. (1.42)? In stochastic calculus, the discretization is crucial (Itô-Stratonovich
dilemma [58]). Here, we subdivide the time interval into N pieces of size ε = (tN − t0)/N . The
equidistant lattice points are tn = t0 + εn, and we use the shorthands xn = x(tn), Wn = W (tn).
The discretized version of Eq. (1.42) then becomes

xn − xn−1 = αxn−1 · ε+
√
D (Wn −Wn−1) , (1.43)

where ξn ≡
√
D (Wn −Wn−1) ∼ N (0, Dε) is the normal-distributed noise. This is a retarded

regularization (Itô), since xn depends only on ξj with j ≤ n (through xn−1).13 The aim is now
to find the probability for a transition from a fixed initial point (x0, t0) to a fixed later point
(x, t > t0):

p(x|x0) =

∫ ∞
−∞

(
N−1∏
n=1

dxn

)
p(xN = x, xN−1, ..., x1|x0), (1.44)

where we marginalize over all intermediate points. From probability theory, we know that upon
substitution,

p(x) = p(ξ)

∣∣∣∣∂ξ∂x
∣∣∣∣ = p(ξ) detJ −1. (1.45)

With the retarded discretization, the Jacobian becomes

∂xn
∂ξn

= 1,

∂xn
∂ξj

=

{
Jnj , j ≤ n,
0, j > n,

(1.46)

which means J is a lower triangular matrix with unit diagonal, and the Jacobian determinant
equals unity. For the joint distribution on the right-hand side of Eq. (1.44), we hence have

p(xN , ..., x1|x0) = p(ξN , ..., ξ1)

=

∫ ∞
−∞

(
N∏
n=1

dzn
2π

)
χ(z1, ..., zN ) exp

{
i
N∑
n=1

εzn

[
xn − xn−1

ε
− αxn−1

]}
,

where we have introduced the curtailed characteristic functional χ [55], and substituted for ξn
by means of Eq. (1.43). From stochastic processes, we know that an Ornstein-Uhlenbeck process

13 For a symmetric regularization (Stratonovich), the path integral acquires additional terms from a non-trivial Jacobian.
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dXt = αXtdt+
√
DdWt is distributed according to

XT = eαTX0 +
√
D

∫ T

0
eα(T−s)dWs ∼ N

X0e
αT ,

D
(
e2αT − 1

)
2α

 ,

which means that the characteristic functional is

χOU(z) = exp

iX0e
αT z −

D
(
e2αT − 1

)
z2

4α

 .

When we expand the exponential in the exponential for small T ≡ ε, we find with X0 = 0 that

χOU(z) = exp

{
−Dε

2
z2

}
.

For χ, we thus obtain

χ(z1, ..., zN ) =

N∏
n=1

χ(zn) =

N∏
n=1

exp

{
−Dε

2
z2
n

}
= exp

{
−D

2
ε

N∑
n=1

z2
n

}
, (1.47)

because, as mentioned above, εξn ∼ N (0, Dε). As a final step, we have to perform the continuum
limit. The characteristic functional becomes that of a delta-correlated Gaussian process,

χ(z) = exp

{
−D

2

∫ tN

t0

dt z2(t)

}
, (1.48)

such that for the transition probability (i.e. the path integral), we arrive at

p(x|x0) =

∫ x(tN )=x

x(t0)=x0

Dx(t)

∫
Dz(t) χ(z) exp

{
i

∫ tN

t0

dt z(t)[ẋ(t)− αx(t)]

}
=

∫
Dx(t)Dz(t) exp

{
i

∫ tN

t0

dt
[
iDz2/2 + z(ẋ− αx)

]}
,

(1.49)

with the functional integral measures

Dz(t) = lim
N→∞

N∏
n=1

dzn
2π

,

Dx(t) = lim
N→∞

(
N−1∏
n=1

dxn

)
.

(1.50)

It should be stressed here that the simple form of Eq. (1.49) relies on the additivity of the noise in
Eq. (1.42). If the constant

√
D was replaced by an arbitrary function g(x) as in [55], thus making
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the noise multiplicative, the result would be more complicated. A word should also be said about
the so-called response field z: as one can see from the derivation, z comes in through expressing
the noise via its characteristic functional. In this capacity, the role of the response field is entirely
transparent. This is less true of the “quantum field” φq frequently encountered in presentations
of the Schwinger-Keldysh path integral. As we will see below, however, φq is exactly equivalent
to the response field z, a fact that is important to appreciate in order to properly understand the
Schwinger-Keldysh formalism.

Presently, the response field z may also be removed via the Hubbard-Stratonovich transformation,
by means of which Eq. (1.49) may be related to the equivalent Onsager-Machlup path integral.
Performing the Gaussian integration over the response variable zn(t), one finds∫ ∞

−∞

dzn
2π

exp

{
−Dε

2
z2
n + iεzn

[
xn − xn−1

ε
− αxn−1

]}
=

1√
2πDε

exp

{
− ε

2D

[
xn − xn−1

ε
− αxn−1

]2
}
,

(1.51)

which is quadratic in the path rather than in the response variable.

1.4.3 From the Path Integral to the Fokker-Planck Equation

To derive the Fokker-Planck equation from the path integral, we follow Ref. [56]. For the present
Markovian case, it is possible to perform a transfer-matrix derivation. For greater generality, we
go over to the case where αxn−1 ≡ A(xn−1), D/2 ≡ D(xn−1). Then the transition probabilities
from point to point are related by

p(xn, tn|xn−1) =

∫ ∞
−∞

dzn
2π

∫ ∞
−∞

dxn−1 exp
{

izn [xn − xn−1 − εA(xn−1)]− εD(xn−1)z2
n

}
× p(xn−1, tn−1|xn−2).

(1.52)

To simplify the notation, we set tn ≡ t, xn ≡ x, z ≡ zn, and tn−1 = t − ε, xn−1 ≡ x − ∆x.
Expanding the drift and diffusion coefficients, and dropping the conditionals in the probability
densities, we then have

p(x, t) =

∫ ∞
−∞

dz

2π

∫ ∞
−∞

d∆x exp

{
iz
[
∆x− εA(x) + εA′(x)∆x

]
− εz2

[
D(x)−D′(x)∆x+

D′′(x)

2
∆x2

]}
p(x−∆x, t− ε).

(1.53)

Note how we expanded the drift coefficient A(x) to first order in ∆x, the diffusion coefficient
D(x), however, to second order. The reason for this is that z ∼ ε−1/2, ∆x ∼ ε1/2. Hence,
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to have a consistent expansion, the diffusion coefficient must be expanded to second order to
compensate for the Gaussian square in the response variable, z2. As a next step, we expand
p(x−∆x, t− ε) = p(x, t)− p′(x, t)∆x+ 1

2p
′′(x, t)∆x2 − εṗ(x, t), resulting in

p(x, t) =

∫ ∞
−∞

dz

2π

∫ ∞
−∞

d∆x exp
{

iz∆x− εD(x)z2
}[

1− iεzA+ iε∆xA′ + εz2∆xD′

+ 1
2(−iεzA)2 + 1

2(εz2∆xD′)2 − 1
2εz

2∆x2D′′
] [
p−∆xp′ + 1

2∆x2p′′ − εṗ
]
,

(1.54)

where we have collected the terms of order ∼ ε0 in the remaining exponential. All other terms
were collected in a second exponential which was subsequently expanded to order ∼ ε1. Observe
how this means that, e.g. a term like εz2∆xD′ ∼ ε1/2 must be taken to second order in the
expansion. Now, we need to calculate all of the moments appearing on the right-hand side, where
the two-dimensional Gaussian density is

f(z,∆x) = exp

{
−εD

[
z2 − iz∆x

εD

]}
= exp

{
−∆x2

4εD
− εD

(
z − i∆x

2εD

)2
}
. (1.55)

This calculation is performed in App. B.4. As a result, Eq. (1.54) is equivalent to

ṗ = Dp′′ −Ap′ −A′p+ 2D′p′ +D′′p+O(ε). (1.56)

Taking ε→ 0, we finally come out with the well-known Fokker-Planck equation

∂

∂t
p(x, t) = − ∂

∂x
A(x)p(x, t) +

∂2

∂x2D(x)p(x, t), (1.57)

for arbitrary drift A(x) and diffusion “matrix” D(x). Given the retarded regularization of the
path integral above, it is no surprise that we found the Fokker-Planck equation in Itô form. If
we write the diffusion matrix as D(x) = 1

2σ
2(x), the corresponding Fokker-Planck equation in

Stratonovich form is

∂

∂t
p(x, t) = − ∂

∂x
A(x)p(x, t) +

1

2

∂

∂x
σ(x)

∂

∂x
σ(x)p(x, t)

= − ∂

∂x

{
A(x) +

1

2
σ(x)σ′(x)

}
p(x, t) +

1

2

∂2

∂x2σ
2(x)p(x, t),

(1.58)

where the so-called spurious drift appears as 1
2σ(x)σ′(x).

1.4.4 Equivalence of Fokker-Planck and Langevin Equation

To complete the cycle that has led us from the Langevin equation via the path integral to the
Fokker-Planck equation, we follow van Kampen [58] to show that the Fokker-Planck equation
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belonging to our original stochastic process (1.42),

∂

∂t
p(x, t) = −α ∂

∂x
xp(x, t) +

D

2

∂2

∂x2 p(x, t),
(1.59)

is equivalent to the Langevin equation

ẋ(t) = αx(t) + ξ(t), (1.60)

where the noise is assumed to be a Gaussian process of mean zero with 〈ξ(t)ξ(t′)〉 = Dδ(t− t′).
Analogously to Eq. (1.39), the solution of this stochastic differential equation is

x(t) = x0e
αt +

∫ t

0
dt′ eα(t−t′)ξ(t′). (1.61)

For the first two moments, we hence find from Eq. (1.60) that

〈x(t)〉 = x0e
αt,

〈x2(t)〉 = x2
0e

2αt − D

2α

(
1− e2αt

)
.

(1.62)

In the Fokker-Planck framework, we may derive a differential equation for the first moment,
assuming that p(x, t) vanishes at x = ±∞,

∂

∂t
〈x〉 =

∫ ∞
−∞

dx x ṗ(x, t)

=

∫ ∞
−∞

dx x

[
−α ∂

∂x
x p+D

∂2

∂x2 p

]

=

∫ ∞
−∞

dx

(
∂

∂x
x

)[
αx p−D ∂

∂x
p

]
= α 〈x〉 ,

(1.63)

the solution to which is 〈x〉 = x0e
αt. Applying the same integration by parts as above twice to the

diffusive part, we find for the second moment

∂

∂t
〈x2〉 =

∫ ∞
−∞

dx x2ṗ(x, t) =

∫ ∞
−∞

dx x2

[
− ∂

∂x
αxp+D

∂2

∂x2 p

]
= 2α 〈x2〉+ 2D,

(1.64)

the solution to which, as one may verify, is given by the second of Eqs. (1.62). For a Gaussian
process, this is all we need to show, and we will not go into further detail here. This completes our
tour of classical stochastic methods. In the remaining part of this Chp. we introduce the first of the
tools used throughout the rest of this thesis to describe interacting open quantum systems.
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1.5 Open Quantum Systems

There are many similarities between classical stochastic systems and open quantum systems (at
least in the case of bosons). One reason for this is that even for a quantum system coupled to a
bath which is also quantum, the resulting noise that enters the effective system description can still
be essentially classical. In the following, we build on this analogy and introduce open quantum
systems first via the quantum Langevin equation. Subsequently, the quantum Wiener process will
help us to introduce the main tool for Chp. 4, the quantum master equation. Because it is of such
importance in treating open quantum systems in general, we also give a second derivation from
first principles. A discussion of phase-space methods concludes Chp. 1.

1.5.1 Quantum Langevin Equation

The closest quantum-mechanical analogy to the Langevin equation (1.35) of classical Brownian
motion is the quantum harmonic oscillator coupled to a thermal reservoir. Gardiner’s textbook [59]
on quantum stochastic methods is the standard reference for this kind of problem. An excellent
discussion of quantum Langevin equations can also be found in [60]. As for the classical analogy,
the equation of motion (~ = 1)

ȧ(t) = −iω0a(t)− λ

2
a(t) +

√
λΓ(t) (1.65)

goes over into the Heisenberg equation of the operator a(t) for λ → 0.14 The most important
difference, however, is that now Γ(t) is also an operator with the properties

[Γ(t),Γ†(t′)] = δ(t− t′),
〈Γ†(t′)Γ(t)〉 = N̄(ω0)δ(t− t′),

(1.67)

and 〈Γ(t)〉 = 0. It is important to notice that N̄ is frequency-dependent and related to the Planck
spectrum by

N̄(ω) =
1

exp (~ω/kT )− 1
. (1.68)

An example relevant for this thesis is a single-mode cavity with frequency ω0 such that ~ω0 � kT ,
in which case N̄(ω0)→ 0 and the quantum noise reduces to zero-point fluctuations. The analogy

14 Throughout this thesis we will keep the “operator hat” implicit for bosonic operators, i.e. â ≡ a. For completeness,
the quantum Langevin equations for q̂ and p̂ can be shown to read

˙̂q =
1

m
p̂− λq̂ +

√
λ~/mω0(Γ + Γ

†
),

˙̂p = −mω2
0 q̂ − λp̂− i

√
λ~mω0(Γ− Γ

†
).

(1.66)
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to classical stochastics can be formalized by writing Eq. (1.65) in differential form as

da(t) = − i

~
[a(t), Ĥ]dt− λ

2
a(t)dt+

√
λ [a(t), a†(t)]dB(t), (1.69)

where now dB(t) is the quantum Wiener process and Ĥ = ω0a
†a. As shown by Gardiner [59], a

quantum Itô calculus can be built by carefully defining its properties. The solution to Eq. (1.65)
may be found with a similar ansatz as above: a(t) = e−(iω0+λ/2)taI(t), which leads to15

a(t) = e−(iω0+λ/2)t

(
a(0) +

√
λ

∫ t

0
dt̄ e(iω0+λ/2)t̄Γ(t̄)

)
. (1.70)

This preserves the commutator if [a(0),Γ†(t)] = 0, as one may also glean from the following
calculations. For the special case of N̄(ω0) = 0 we then obtain

〈a†(t′)a(t)〉 = e−iω0(t−t′)e−λ(t+t
′
)/2

(
〈a†(0)a(0)〉

+ λ

∫ t
′

0
dt̄′
∫ t

0
dt̄ e(iω0+λ/2)t̄e−(iω0−λ/2)t̄

′
〈Γ†(t̄′)Γ(t̄)〉

)
= e−iω0τe−λT 〈a†(0)a(0)〉,

(1.71)

where we have introduced the “center-of-mass” time T =
(
t+ t′

)
/2 (not to be confused with

temperature), and the “relative” time τ = t− t′. These are also called Wigner coordinates [61]. In
the same way, for the reversed operator ordering, we have

〈a(t)a†(t′)〉 = e−iω0(t−t′)e−λ(t+t
′
)/2

(
〈a(0)a†(0)〉

+ λ

∫ t
′

0
dt̄′
∫ t

0
dt̄ e(iω0+λ/2)t̄e−(iω0−λ/2)t̄

′
〈Γ(t̄)Γ†(t̄′)〉

)
= e−iω0τe−λ(t+t

′
)/2
(
〈a(0)a†(0)〉+ eλmin (t,t

′
) − 1

)
= e−iω0τ

(
e−λ(t+t

′
)/2〈a(0)a†(0)〉+ e−λ|t−t

′|/2 − e−λ(t+t
′
)/2
)

= e−iω0τ
(

e−λT 〈a(0)a†(0)〉+ e−λ|τ |/2 − e−λT
)
.

(1.72)

For the commutator we thus find indeed

[a(t), a†(t)] = e−λt[a(0), a†(0)] + 1− e−λt = 1. (1.73)

15 This procedure is actually a lot simpler than for the stochastic classical harmonic oscillator, where it is not straightfor-
ward to find a closed-form solution like (1.70) for p(t).
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From these solutions, we can also build a bridge to the analytical properties of the retarded and
advanced Green functions. These are defined as

GR(t, t′) = −iθ(t− t′)〈[a(t), a†(t′)]〉 = −iθ(t− t′)e−iω0(t−t
′)e−λ(t−t

′)/2,

GA(t, t′) = iθ(t′ − t)〈[a(t), a†(t′)]〉 = iθ(t′ − t)e−iω0(t−t
′)e+λ(t−t′)/2,

(1.74)

where for closed systems one usually writes an infinitesimal η instead of our finite λ. Their Fourier
transforms are

GR/A(ω) =

∫ ∞
−∞

dτ eiωτGR/A(τ) =
1

2

1

(ω − ω0)± iλ/2
, (1.75)

with the plus sign corresponding to the retarded Green function. The spectral function is then [61,
62]

A(ω) = i
(
GR(ω)−GA(ω)

)
= −2 ImGR(ω) =

λ/2

(ω − ω0)2 + (λ/2)2 , (1.76)

which recovers the Lorentzian line shape one expects for the open, low-temperature single-mode
cavity.

1.5.2 Master Equation from Quantum Wiener Process

The Heisenberg equation for an arbitrary operator is equivalent to the von Neumann equation for
the density matrix in closed-system quantum mechanics. In the same vein, it is possible to derive a
master equation for the density matrix from the open-system extension of the Heisenberg equation
(which is the quantum Langevin equation). The general quantum Wiener process is defined by

da = − i

~
[a,HS ]dt+

λ

2

(
2L̂†aL̂− {a, L̂†L̂}

)
dt+

√
λ[a, L̂†]dB +

√
λdB†[L̂, a], (1.77)

where we have introduced the anti-commutator {X̂, Ŷ } := X̂Ŷ + Ŷ X̂ and L̂ can in principle be
any system operator. Now the average of an arbitrary system operator a is

〈a(t)〉 = TrS TrR [a(t)ρ̂R ⊗ ρ̂S(t0)]

= TrS TrR [U(t0, t)a(t0)U(t, t0)ρ̂R ⊗ ρ̂S(t0)]

= TrS {a(t0) TrR [U(t, t0)ρ̂R ⊗ ρ̂S(t0)U(t0, t)]}
= TrS {a(t0) TrR [ρ̂R ⊗ ρ̂S(t)]} = TrS {a(t0)ρ̂S(t)} .

(1.78)

Here we have assumed that the total density matrix can be written in product form with ρ̂R being
the reservoir and ρ̂S the system density matrix. Furthermore, we have assumed that the reservoir
density matrix is time-independent, to which we will come back in the next subsection. With
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〈dB(t)〉 = 0, we can write

〈da(t)〉 = − i

~
〈[a,HS ]〉dt+

λ

2
〈2L̂†aL̂− {a, L̂†L̂}〉dt, (1.79)

or equivalently

d

dt
〈a(t)〉 = − i

~
TrS {ρ̂S(t)[a(0), HS ]}+

λ

2
TrS

{
ρ̂S(t)

(
2L̂†a(0)L̂− {a(0), L̂†L̂}

)}
= − i

~
TrS {a(0)[HS , ρ̂S(t)]}+

λ

2
TrS

{
a(0)

(
2L̂ρ̂S(t)L̂† − {L̂†L̂, ρ̂S(t)}

)}
,

(1.80)

where we have cycled the operators under the trace. Since

d

dt
〈a(t)〉 =

d

dt
TrS {a(t0)ρ̂S(t)} = TrS

{
a(t0)

d

dt
ρ̂S(t)

}
, (1.81)

where a could be replaced by an arbitrary operator X̂ , there must also hold

d

dt
ρ̂S(t) = − i

~
[HS , ρ̂S(t)] +

λ

2

(
2L̂ρ̂S(t)L̂† − {L̂†L̂, ρ̂S(t)}

)
, (1.82)

which completes this derivation of the master equation for the system density matrix. Since we
have started from the quantum Langevin equation, behind which many assumptions are hidden
that we have not yet discussed in detail, next we will give a derivation of the master equation from
first principles.

1.5.3 Derivation of the Master Equation from First Principles

For this detailed derivation of the quantum master equation, we again follow the exposition given
by Gardiner [59]. The starting point is a Hamiltonian of the form

H = HR ⊗ 1S + 1R ⊗HS + VRS , (1.83)

where we have a reservoir (or bath) Hamiltonian HR, a system Hamiltonian HS , and a reservoir-
system coupling VRS which is a matrix on the full (dR × dS)-dimensional Hilbert spaceHRS =
HR ⊗ HS . By the very nature of the separation of a physical entity into reservoir and system,
we assume that VRS induces only weak coupling between the two parts. Otherwise, speaking
of separation would not be meaningful. The quantum dynamics of reservoir plus system is then
described by the von Neumann equation. After going to the interaction picture w.r.t. H − VRS , we
assume for the interaction-picture density matrix as before that

ρ̂I(t) = ρ̂R ⊗ ρ̂S(t). (1.84)
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There are really two assumptions hidden here. The first is that by dropping the time-dependence
of ρ̂R, we have taken the reservoir to be so vast as not to be affected by the coupling to the much
smaller system. The second concerns the separation into a reservoir and a system density matrix.
The full density matrix has to have unit trace and be Hermitian, such that of the (dR×dS)2 complex
coefficients of an arbitrary matrix onHRS , we are left with dR × dS − 1 real coefficients on the
diagonal, and (dR × dS)2 − dR × dS real coefficients off-diagonally. In total, therefore, the most
general density matrix on the full space has (dR × dS)2 − 1 independent real coefficients. Since
general density matrices on either subspace possess only d2

X − 1 independent real coefficients,
where X = R,S, we see immediately that the most general density matrices on the joint space
cannot be of the form ρ̂R ⊗ ρ̂S . The reduced density matrix in the interaction picture is now given
by the reservoir trace over the full interaction-picture density matrix,

ρ̂S(t) = TrR ρ̂I(t). (1.85)

In the interaction picture, we have the von Neumann equation

˙̂ρI(t) = − i

~
[VI(t), ρ̂I(t)] , (1.86)

where VI = ei(H−VRS)t VRS e−i(H−VRS)t. It is equivalent to

ρ̂I(t) = ρ̂I(0)− i

~

∫ t

0
dt′
[
VI
(
t′
)
, ρ̂I(t

′)
]
. (1.87)

If we iterate this by replacing ρ̂I(t
′) with ρ̂I(0)− i

~
∫ t′

0 dt′′
[
VI
(
t′′
)
, ρ̂I(t

′′)
]
, we obtain

ρ̂I(t) = ρ̂I(0)− i

~

∫ t

0
dt′
[
VI
(
t′
)
, ρ̂I(0)

]
− 1

~2

∫ t

0
dt′
∫ t
′

0
dt′′
[
VI
(
t′
)
,
[
VI
(
t′′
)
, ρ̂I
(
t′′
)]]

,

which can also be written as

d

dt
ρ̂I(t) = − i

~
[VI (t) , ρ̂I(0)]− 1

~2

∫ t

0
dt′′
[
VI (t) ,

[
VI
(
t′′
)
, ρ̂I
(
t′′
)]]

= − i

~
[VI (t) , ρ̂I(0)]− 1

~2

∫ t

0
dτ [VI (t) , [VI (t− τ) , ρ̂I (t− τ)]] ,

(1.88)

Tracing this over the reservoir, we come out with

d

dt
ρ̂S(t) = − 1

~2

∫ t

0
dτ TrR [VI (t) , [VI (t− τ) , ρ̂R ⊗ ρ̂S (t− τ)]] , (1.89)

where we have set TrR [VI (t) , ρ̂I(0)] = 0. This is an integro-differential equation of a kind
that we will encounter and solve later in this thesis (cf. Chp. 5). Presently, we ask if there is
not a plausible physical assumption to turn it into an ordinary differential equation? Consider
the reservoir trace under the integral to be a function f(τ) defined on the interval [0,∞). If the
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correlation between reservoir and system is very short-lived, this function will only have support
on a very narrow subset [0, τc], where τc � t is the correlation time. From the perspective of
frequency space, this says the reservoir will have an extremely broad (if not white) spectrum.
Moreover, if the system changes on a timescale τs � τc, we can take ρ̂S(t − τ) = ρ̂S(t) for
all times τ ∈ [0, τc]. Now, instead of taking the upper integral boundary in Eq. (1.89) to be τc,
for mathematical convenience we do essentially the opposite and extend it to infinity. This is
equivalent to the assumption that t is already practically infinite compared to τc. Note that there
is an order to these two points: only after throwing away the τ -dependence of ρ̂S may we send
the integral boundary to infinity. Reversing this order would mean that the system could not have
changed in the past. Accordingly, our final result for the master equation is

d

dt
ρ̂S(t) = − 1

~2

∫ ∞
0

dτ TrR [VI (t) , [VI (t− τ) , ρ̂R ⊗ ρ̂S (t)]] . (1.90)

Neglecting the τ -dependence of ρ̂S is called the (first) Markov assumption in the style of probability
theory where a conditional probability density p(tn|tn−1, ..., t0) over a time series t0, ..., tn is said
to have the Markov property if p(tn|tn−1, ..., t0) = p(tn|tn−1). Turning a retarded integro-
differential equation, where the future depends on the entire history of the system since t0 = 0,
into a differential equation achieves basically the same thing.

1.5.4 Phase-Space Methods: Wigner Representation

A further, convenient way to describe open quantum systems is via phase-space methods. They are
appealing because of their close analogy to classical physics. There exist several standard methods:
P , Q and Wigner representation corresponding to the mapping of operator expectation values in
normal, anti-normal and symmetric order to expectation values of quasi-probability distributions.
The Wigner distribution comes closest to a distribution over classical phase space. The standard
reference is again Gardiner’s book [59] on quantum noise.

For certain special cases such as the open single-mode cavity, these distributions can be com-
pletely positive functions that obey a proper Fokker-Planck equation. This is in general not true for
interacting problems where, for instance, the Wigner representation maps a standard Hubbard-like
quartic term to third-order derivatives in a “generalized” Fokker-Planck equation. Such an equation
cannot be transformed into a stochastic differential equation by canonical methods. While there
exists very interesting work on how such transformations may still be achieved [63–65], to the
author’s knowledge these methods have not yet found widespread application.

More attention has been given to a strain of work that tries to avoid the appearance of generalized
Fokker-Planck equations by increasing the dimension of the phase space to which the density matrix
is mapped. This has led to the so-called positive and gauge P representations [66–68] which allow
for proper Fokker-Planck equations and hence for standard transformations to stochastic differential
equations even for interacting quantum systems. The drawback is that the interaction terms are
in general mapped to multiplicative-noise contributions (cf. B.3.2) which are difficult to handle
numerically for large noise (i.e. strong interactions). Thus there appears to be a “conservation
of difficulty”, as expected. While all of these methods apply only to bosonic systems, work on
fermionic Q functions does exist [69, 70].
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To map the master equation of our open single-mode cavity (which follows from Eq. (1.82) for
L̂ = a) to a Wigner distributionW , we need the following correspondences

a†aρ̂←−
(
α∗ − 1

2

∂

∂α

)(
α+

1

2

∂

∂α∗

)
W
(
α, α∗

)
=

[
|α|2 − 1

2

∂

∂α
α+

1

2
α∗

∂

∂α∗
− 1

4

∂2

∂α∂α∗

]
W
(
α, α∗

)
ρ̂a†a←−

(
α− 1

2

∂

∂α∗

)(
α∗ +

1

2

∂

∂α

)
W
(
α, α∗

)
=

[
|α|2 − 1

2

∂

∂α∗
α∗ +

1

2
α
∂

∂α
− 1

4

∂2

∂α∂α∗

]
W
(
α, α∗

)
aρ̂a† ←−

(
α∗ +

1

2

∂

∂α

)(
α+

1

2

∂

∂α∗

)
W
(
α, α∗

)
=

[
|α|2 +

1

2

∂

∂α
α+

1

2
α∗

∂

∂α∗
+

1

4

∂2

∂α∂α∗

]
W
(
α, α∗

)
.

(1.91)

Applying these to the master equation, we find the corresponding proper Fokker-Planck equation
(cf. App. B.1) for the Wigner distribution

Ẇ
(
α, α∗

)
=

[
−iω0

(
α∗

∂

∂α∗
+

1

2
− α ∂

∂α
− 1

2

)
− λ

2

(
2|α|2 − 1− 1

2

∂2

∂α∂α∗

)]
W
(
α, α∗

)
+ λ

[
|α|2 +

1

2

(
α
∂

∂α
+ 1

)
+

1

2
α∗

∂

∂α∗
+

1

4

∂2

∂α∂α∗

]
W
(
α, α∗

)
= −iω0

[
α∗

∂

∂α∗
− α ∂

∂α

]
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(
α, α∗

)
+
λ
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∂

∂α
α+

∂
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W
(
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λ

2
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∂
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(
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λ

2

)
∂

∂α∗
α∗ +
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2
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W
(
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)
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[
ω0

(
∂
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∂q
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+
λ

2

(
∂

∂q
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∂
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+
λ

4

(
1

2

∂2

∂q2 +
1

2

∂2
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W(q, p),

(1.92)

where in the last step, we have used α = q + ip and ∂α =
(
∂q − i∂p

)
/2 to emphasize the

connection to a distribution on classical phase space. Observe how there is diffusion in both the
spatial and the momentum coordinate. The corresponding stochastic differential equations are

dp = −ω0qdt− λpdt/2 +
√
λ/4 dWp,

dq = ω0pdt− λqdt/2 +
√
λ/4 dWq.

(1.93)
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To bridge the gap to Sec. 1.4, we note here that the corresponding classical path integral is

S[p, q, p̂, q̂] =

∫ t

t0

dt̄
[
p̂ (ṗ+ w0q + λp/2) + q̂ (q̇ − ω0p+ λq/2) + iλ

(
p̂2 + q̂2

)
/8
]

≡
∫ t

t0

dt̄
[
φ̂∗ (i∂t̄ − ω0 + iλ/2)φ− φ̂ (i∂t̄ + ω0 − iλ/2)φ∗ + iλφ̂∗φ̂

]
,

(1.94)

where the hats do not indicate operator-valuedness but label the response fields, and we have made
the reverse transformation back to a complex representation according to

φ =
√

2α =
√

2 (q + ip) ,

φ̂ =
i

2

q̂ + ip̂√
2
.

(1.95)

In the terminology of 1.4.2, the path integral (1.94) has two response fields z1 = p̂ and z2 = q̂.
Later on, we will see that it is both identical to the Schwinger-Keldysh path integral of the open
single-mode cavity and the Martin-Siggia-Rose functional integral belonging to Eqs. (1.42).16

16 This is actually no surprise, but still instructive.
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CHAPTER 2

Non-Equilibrium Quantum Field Theory

The upcoming Chp. begins with an introduction to the Schwinger-Keldysh formalism and its
relation to classical stochastic processes in Sec. 2.1. This is extended by a detailed illustration of
the two-particle-irreducible effective action (2PIEA) as an approach to self-consistent perturbation
theory in Sec. 2.2. Finally, we discuss the numerical solution of the so-called Kadanoff-Baym
equations in Sec. 2.3.

2.1 Schwinger-Keldysh Formalism

When dealing with non-equilibrium quantum field theory (QFT), one necessarily encounters
the question “What is the Schwinger-Keldysh formalism?”, which we shall try to answer in the
following. In recent years, with the growing interest in non-equilibrium phenomena, the technique
has become more relevant. To properly put it into perspective, one should contrast it with QFT in
particle physics, and with QFT in equilibrium.

The two classic authors on the subject are Schwinger [71] and Keldysh [72].1 Schwinger
describes the method rather sharply in terms of operators. Keldysh introduces the rotation to
the more physical “RAK” representation which is named after him. There exist a number of
review articles that are decent starting points for getting familiar with the technique. The first is
the classic by Kubo [74] on the fluctuation-dissipation theorem in equilibrium, which can give
a good motivation for the more general non-equilibrium problem. Ref. [11] is a good place to
start: it derives the Keldysh path integral from a master equation and introduces the one-particle
irreducible (1PI) effective action; it also treats the functional renormalization group. The two
reviews by Berges [75, 76] are highly recommendable, although perhaps more advanced, as they
are based on the two-particle irreducible effective action (2PIEA). They have detailed discussions
of initial conditions and non-perturbative approximation techniques. Ref. [77] is an older piece
that is possibly good for comparison and further reading, but mostly here for completeness.

Kamenev’s book [56] is sort of the standard for the path-integral based approach. It gives
another derivation of the path integral from a discrete-time expansion in terms of coherent states.

1 A precursor to Ref. [71] is [73].
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Among the applications are interacting Bose gases. It uses effective-action concepts without ever
stating this clearly, which is a drawback, but has a relevant chapter on classical stochastics. The
latest version of Altland & Simons’s book [78] has a lot of material on field theory methods both
for classical and quantum non-equilibrium problems, presented in two separate chapters. Their
derivation of the Keldysh path integral is practically identical to Kamenev’s, but there is further
material that may provide a complementary perspective. Calzetta’s book [79] is slightly cryptic
when it comes to notation, but it has a very good chapter on Bose gases with a discussion of
existing approaches (Φ-derivable, conserving and gapless approximations from 2PIEA). Rammer
[61] is a reference work based solely on operators, for those who prefer that. It is very abstract, yet
good for looking up identities and reading about general diagrammatics concepts. Stefanucci’s
book [80] is based on operators as well and derives everything in terms of the so-called Langereth
rules. It is also strong on advanced diagrammatics.

The following two articles are about applications of the method to cold Bose gases. Ref. [81] is
a good resource for an example of how the 2PIEA technique can be brought to bear on an actual
problem. It also discusses the famous Hartree-Fock-Bogoliubov equations and their derivation.
Ref. [82] is interesting because it compares classical and quantum dynamics from the perspective
of the Schwinger-Keldysh path integral, showing how the cubic response-field vertex gives rise to
the non-classical dynamics (this will be explained below).

Concerning the relation of master equation and Keldysh functional integral, Ref. [83] can be
recommended. It contains a relatively detailed derivation of the “Markovian dissipative action”
that is the functional equivalent of the Lindblad master equation in the usual Born-Markov
approximation and is well suited for comparison to Schwinger’s original treatment. Ref. [84] is
an application where the method is used in a way close to the original style given by Schwinger,
which puts the emphasis on the fact that at least for interacting systems the method is about the
response of the system to a “sudden modulation”.

The Schwinger-Keldysh path integral should not be discussed without relating it to classical
non-equilibrium systems. Ref. [85] is the classic resource for the Martin-Siggia-Rose (MSR)
functional integral, although [85] is based entirely on operators and the functional integral was
introduced only later in [86] and [87]. The “response field” also occurring in the Keldysh formalism
is introduced for classical systems, which provides an alternative approach to the Onsager-Machlup
path integral (s. 1.4.2).

2.1.1 From Scattering Amplitudes to Expectation Values

In particle physics, the primary concern is to calculate transition amplitudes asymptotically [88]

Sf←i =
〈
ψf |ψi

〉
= lim

t→+∞
t0→−∞

〈ψf (t)|Ŝ|ψi(t0)〉 , (2.1)

where |ψi(t0)〉 is the initial state of the system, |ψf (t)〉 the final state, and Ŝ is the S-matrix

Ŝ = lim
t→+∞
t0→−∞

Û (t, t0) = lim
t→+∞
t0→−∞

exp
(
−iĤ (t− t0)

)
(2.2)
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2.1 Schwinger-Keldysh Formalism

Figure 2.1: Schwinger-Keldysh contour.

In equilibrium, to calculate thermal expectation values, knowledge of the thermal density matrix

ρ̂ ∝ exp(−βĤ) (2.3)

is required. By treating the inverse temperature β as an imaginary time τ = it, an operator
analogous to (2.2) is obtained, from which point onwards standard QFT techniques carry over [77].
Neither of these approaches, however, pertains to the most general situations that may occur in
a dynamical system. To capture the latter, one would like to be able to calculate time-dependent
expectation values of an arbitrary operator [71]

〈X̂(t)〉 = 〈ψ(t)|X̂|ψ(t)〉 = 〈ψ (t0)| Û (t0, t) X̂ Û(t, t0) |ψ (t0)〉 (2.4)

where now, notably, the initial and final state are identical.

2.1.2 Including Mixed States

Since we have to work with the full forward and backward evolution at any rate, we may just as
well make the technique completely general and allow for mixed states to contribute to the above
time-dependent expectation value. This can be achieved by calculating the latter via the density
matrix,

〈X̂(t)〉 = Tr[ρ̂X̂(t)] = Tr
[
ρ̂Û (t0, t) X̂ Û(t, t0)

]
= Tr

[
Û(t, t0)ρ̂Û (t0, t) X̂

]
= Tr[ρ̂(t)X̂].

The Schwinger-Keldysh partition function is then

Z = Tr[ρ̂(t)]
!

= 1. (2.5)

By expanding the time-dependent density matrix into coherent states along the contour, a non-
equilibrium path integral can be derived [11, 56, 78]. Upon turning Z into a generating functional,
the expectation value can then be calculated. As shown in Fig. 2.1, this is how the closed time
contour (CTP) arises. Note that the direction of time on the backward branch is indeed reversed:
where before only the time-ordering operator T was required, there is now also an anti-time-
ordering operator T̃ . Furthermore, any point in time on the backward contour must be considered
later than any point on the forward contour. On the level of Green functions, this means that,
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Chapter 2 Non-Equilibrium Quantum Field Theory

instead of a single time-ordered Green function, there will now be four different Green functions

G(t, t′) = −i〈TC(â(t)â†(t′))〉 =


GT (t, t′), t, t′ ∈ C+

GT̃ (t, t′), t, t′ ∈ C−

G<(t, t′), t ∈ C+, t′ ∈ C−

G>(t, t′), t ∈ C−, t′ ∈ C+,

where we have introduced contour time-ordering TC . Defined in this way, G(t, t′) may also be
written as

G(t, t′) = −iF (t, t′)− 1

2
signC(t− t′)ρ(t, t′), (2.6)

with the statistical and spectral functions

F (t, t′) =
1

2
〈{a(t), a†(t′)}〉,

ρ(t, t′) = i〈[a(t), a†(t′)]〉,
(2.7)

respectively. We have also introduced the contour sign function signC(t−t′) = θC(t−t′)−θC(t′−t).
Another way of writing these functions is

ρ(t, t′) = G<(t, t′)−G>(t, t′), (2.8)

F (t, t′) =
i

2

(
G<(t, t′) +G>(t, t′)

)
. (2.9)

For closed systems, a convenient way of applying the formalism is to work out the Dyson equation
for the time-ordered Green function, and then to replace time-ordering by contour time-ordering
[76],

G−1
0 (t)G(t, t′) = δC(t− t′) +

∫
C

dt̄ Σ(t, t̄)G(t̄, t′). (2.10)

Formally writing the contour integral as
∫
C dt̄ =

∫∞
t0

dt̄ +
∫ t0
∞ dt̄, evaluating the contour sign

functions under the integral, and separating the parts that are symmetric in contour-time difference
(t− t′) from those that are anti-symmetric (proportional to signC(t− t′)) then results in explicit
equations of motion for F (t, t′) and ρ(t, t′). For the self-energy Σ, one uses a decomposition
analogous to (2.6).

A more direct way of achieving the same thing in terms of the greater and lesser functions
goes as follows (cf. Fig. 2.2). Fix the external times t, t′ to the forward and backward branch,
respectively, or vice versa. Expand the contour into three pieces,∫

C
dt̄ =

∫ min(t,t
′
)

t0

dt̄+

∫ max(t,t
′
)

min(t,t
′
)

dt̄+

∫ t0

max(t,t
′
)
dt̄, (2.11)
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2.1 Schwinger-Keldysh Formalism

Figure 2.2: Schwinger-Keldysh contour for the greater and lesser Green functions G>, G<.

and apply the corresponding greater and lesser signs to Green function and self-energy [80]. The
left-hand side of Eq. (2.10) contributes

i∂t
[
θC
(
t− t′

)
G>

(
t, t′
)

+ θC
(
t′ − t

)
G<

(
t, t′
)]

= iδC
(
t− t′

) [
G>(t, t)−G<(t, t)

]
+ θC

(
t− t′

)
i∂tG

> (t, t′)
+ θC

(
t′ − t

)
i∂tG

< (t, t′) , (2.12)

with i
[
G>(t, t)−G<(t, t)

]
= 1. In total, one finds

G−1
0 (t)G<(t, t′) =

∫ t

t0

dt̄ Σ>(t, t̄)G<(t̄, t′) +

∫ t
′

t
dt̄ Σ<(t, t̄)G<(t̄, t′)

+

∫ t0

t
′

dt̄ Σ<(t, t̄)G>(t̄, t′),

G−1
0 (t)G>(t, t′) =

∫ t
′

t0

dt̄ Σ>(t, t̄)G<(t̄, t′) +

∫ t

t
′

dt̄ Σ>(t, t̄)G>(t̄, t′)

+

∫ t0

t
dt̄ Σ<(t, t̄)G>(t̄, t′).

(2.13)

To get an idea of how the equations of motion in “center-of-mass” time T look like, consider Eq.
(5.52).

2.1.3 Open Systems

The equations we have derived so far do not depend on GT and GT̃ , but only on G< and G> or,
equivalently, on F and ρ. This already goes beyond equilibrium physics, where only the spectral
function is relevant, while the analog of the statistical function is fixed to either the Bose or Fermi
distribution. The missing dependence on GT and GT̃ enters once we make the system open. It
is possible to argue that this does not, in fact, correspond to a situation more general than for
closed systems, since any so-called “open” system can be made into a closed one by restoring
the coupling to the reservoir, the removal of which yielded the open-system dynamics in the first
place. Yet in practice, (almost) all systems are at least weakly open, and it is certainly hardly ever
possible to study the full system including the reservoir.

Schwinger, in his typical style, asks the reader to “imagine that the positive and negative senses
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Chapter 2 Non-Equilibrium Quantum Field Theory

of time development are governed by different dynamics” [71]. In which physical situations
will this be realized? It turns out that the most straightforward cases one can think of are open
systems. As an example, take a single cavity mode of frequency ω0, coupled to an environment at
a low temperature, such that ~ω0 � β−1. Semi-classically, this can be modelled by making the
Hamiltonian non-Hermitian [89],

Ĥ = (ω0 − iλ/2) a†a. (2.14)

The corresponding evolution operator Û is now no longer unitary, that is, it describes a situation as
envisaged by Schwinger. To have a proper microscopic description where probability is conserved,
it is necessary to include so-called quantum jumps into the description. This can be done by
working with the Lindblad master equation

∂tρ̂ = −i
[
Ĥρ̂− ρ̂Ĥ†

]
+ λaρ̂a† (2.15)

In its most general formulation as given by Schwinger, the formalism easily captures this kind
of dynamics. The Schwinger action that appears in the coherent-state expansion of the non-
equilibrium partition function Z is [11]

S[φ∗±, φ±] =

∫ t

t0

dt̄
[
φ∗+ (i∂t̄ − ω0 + iλ/2)φ+ − φ∗− (i∂t̄ − ω0 − iλ/2)φ− − iλφ+φ

∗
−
]
. (2.16)

Note how this contains a contribution across the two branches of the contour. The respective
equations of motion for the greater and lesser Green functions are then

0 = (i∂t − ω0 + iλ/2)G<(t, t′),

0 = (i∂t − ω0 − iλ/2)G>(t, t′) + iλGT (t, t′),
(2.17)

where now the time-ordered Green function appears explicitly. The anti-time-ordered Green
function would appear, for instance, when coupling to a bath at finite temperature. In the equal-
time limit, these equations become

∂tG
<(t, t) = −λG<(t, t),

∂tG
>(t, t) = λG>(t, t)− λ

[
GT (t, t) +GT̃ (t, t)

]
= λG>(t, t)− λ

[
G>(t, t) +G<(t, t)

]
,

(2.18)

which essentially serves to illustrate how the commutator is preserved over time by the quantum
jumps.

34



2.1 Schwinger-Keldysh Formalism

2.1.4 Keldysh Rotation

Shortly after Schwinger, Keldysh independently gave an alternative formulation of the technique
[72]. It is based on an identity involving all of the four Green functions introduced above,

GT (t, t′) +GT̃ (t, t′)−
(
G>(t, t′) +G<(t, t′)

)
= 0, (2.19)

which we have already employed in Eq. (2.18). This suggests defining a new set of Green functions
according to the transformation(

0 GA

GR GK

)
=

1

2

(
1 −1
1 1

)(
GT G<

G> GT̃

)(
1 1
−1 1

)
, (2.20)

where in the top left corner, Eq. (2.19) comes to bear. The retarded, advanced, and Keldysh (R, A,
and K) Green functions are related to Schwinger’s representation by

GR(t, t′) = −θ(t− t′)
(
G<(t, t′)−G>(t, t′)

)
= −θ(t− t′)ρ(t, t′),

GA(t, t′) = θ(t′ − t)
(
G<(t, t′)−G>(t, t′)

)
= θ(t′ − t)ρ(t, t′),

GK(t, t′) = G<(t, t′) +G>(t, t′) = −2iF (t, t′).

(2.21)

Within the path integral, the same transformation is effected by letting [56]

φ± =
1√
2

(φ± φ̂), (2.22)

where φ is related to the classical field, and φ̂ is the so-called response field.2 It has the property
〈φ̂〉 = 0. The transformed Keldysh action reads

SKeldsyh[φ∗, φ, φ̂∗, φ̂] =

∫ t

t0

dt̄
[
φ̂∗ (i∂t̄ − ω0 + iλ/2)φ+ φ∗ (i∂t̄ − ω0 + iλ/2) φ̂+ iλφ̂∗φ̂

]
.

(2.23)

Pay attention to the fact that this is identical to the classical path integral of Eq. (1.94) up to an
integration by parts.

2.1.5 MSR Path Integral from Wigner Representation

As mentioned above, Martin, Siggia, and Rose (MSR) gave an operator formalism for treating
classical stochastic systems [85]. The respective path-integral approach was subsequently published

2 In most texts, the field φ is written as φc and called the “classical” field. However, when expanding an interacting
field theory perturbatively, φ may acquire corrections that displace it from the trivial saddle-point Φ. Since the latter
corresponds to the classical configuration, it seems more appropriate to call Φ the classical field. The response field
is usually denoted by φq and called “quantum” field. Since it exists fully analogously in the classical case, this is,
however, somewhat misleading.
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Chapter 2 Non-Equilibrium Quantum Field Theory

by Janssen and De Dominicis [86, 87]. A great merit of the Keldysh representation is that it relates
in a simple way to these classical counterparts. For certain special cases, such as the above
example of the open single-mode cavity, there is a complete equivalence, such as for the Wigner
representation of the master equation (2.15) which was found to be

Ẇ
(
φ, φ∗

)
=

[(
iω0 +

λ

2

)
∂

∂φ
φ−

(
iω0 −

λ

2

)
∂

∂φ∗
φ∗ + λ

∂2

∂φ∂φ∗

]
W
(
φ, φ∗

)
. (2.24)

The MSR action of this Fokker-Planck equation reads

SMSR[φ∗, φ, φ̂∗, φ̂] =

∫ t

t0

dt̄
[
φ̂∗ (i∂t̄ − ω0 + iλ/2)φ− φ̂ (i∂t̄ + ω0 − iλ/2)φ∗ + iλφ̂∗φ̂

]
,

(2.25)

which is indeed the same as Eq. (1.94) and becomes identical to SKeldsyh after an integration
by parts (assuming the response field vanishes at the boundaries). Naturally, this analogy does
not continue to hold for more complicated systems. Remember that a Hubbard-like interaction
Hint = ga†a†aa produces an equation for the Wigner distribution that includes derivatives of
higher than second order and hence is not of Fokker-Planck type. Accordingly, in the Keldysh
action, non-classical vertices of the form gφ∗φ̂∗φ̂φ̂ appear, which carries three response fields and
is hence no longer Gaussian in these fields. For a further discussion of these vertices, see Ref. [82].

2.1.6 Vertical Branch of the Contour

This paragraph is a brief discussion of the approximation of a system’s past represented by the
vertical branch that one finds frequently attached to the closed time contour [32, 80]. In an
interacting system (and only there), the dynamics is inherently non-Markovian. One can see
this from the memory integrals in the slave-particle dynamics coming in Chp. 5 of this thesis,
for instance. The only exception to this is Hartree-Fock, which in this sense is a “Markovian”
approximation. When one initializes a non-equilibrium problem with some boundary condition for
the Green functions, the memory integrals over the past are still zero - they will build up only after
the system has started to evolve. This essentially means that one is pretending that the system was
not interacting up to the point where the simulation starts. The inclusion of the vertical branch is
an attempt at correcting for this, yet this can only be an approximation to the true situation where
one would wait until a steady-state is reached (which in certain problems is very expensive), then
disturb the system and study the relaxation.

2.2 Two-Particle-Irreducible Effective Action

The two-particle-irreducible effective action (2PIEA) is a well-defined approach to self-consistent
perturbation theory. Originally, the technique goes back to Cornwall, Jackiw and Tomboulis [90].
A standard book on the subject can be found in Ref. [91]. What is self-consistency and why is
it desirable? As explained in the classic article by Baym and Kadanoff [92], it is important for
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2.2 Two-Particle-Irreducible Effective Action

any perturbative approximation to adhere to the conservation laws inherent to the theory under
consideration. This can be achieved by deriving the self-energy from a so-called Φ-functional,
and the 2PIEA provides a systematic way of constructing such functionals [79]. In the resulting
Dyson equation, the self-energy then depends on the full Green function instead of the bare
one, which gives rise to self-consistency. For time-dependent non-equilibrium problems, Ref.
[75] provides another good reason for why a resummed perturbative approximation is superior
to bare perturbation theory: infinite resummation of so-called secular terms ensures a uniform
approximation of the exact solution, that is, the order of the error does not grow over time. As for
two-particle-irreducibility, it is shown by Rammer [93] how resumming self-energy insertions into
dressed self-energies has the effect that the resulting skeleton diagrams are 2PI. This must be so
in order to avoid over-counting of diagrams that are already taken into account implicitly via the
resummation. In a closely related manner, Berges [76] proves by contradiction that if the dressed
self-energy is to be one-particle-irreducible (1PI), as we know it should be, then the effective
action must only contain 2PI diagrams. In this Chp., we shall recapitulate how the resummation
of bare propagators leads to a self-consistent generating functional and to the cancellation of
one-particle-reducible (1PR) diagrams by deriving the two-loop expansion of a φ4 theory.

2.2.1 Two-Loop Expansion

For the detailed derivation of the 2PIEA to two-loop order, we follow Ref. [94] conceptually,
although we depart from its template on several occasions. Further interesting discussions of nPI
techniques in general can be found in [95–99]. Throughout this Sec., the variable x will denote
both time and space: x ≡ (t,x). The starting point of our derivation is the cumulant-generating
functional, which is defined as

W [j,K] := −i~ ln

∫
Dφ exp

{
i

~

[
S[φ] +

∫
dx̄ j(x̄)φ(x̄) +

1

2

∫
dx̄dx̄′ φ(x̄)K(x̄, x̄′)φ(x̄′)

]}
,

(2.26)

where we have introduced the one-point and two-point external sources j(x) and K(x, y). The
classical field Φ(x) is obtained as the solution to

0 =
δS[Φ]

δΦ
+ j(x) +

∫
dx̄ Φ(x̄)K(x̄, x), (2.27)

assuming a symmetric kernel K(x, y) = K(y, x). We furthermore introduce the inverse Green
function

G−1
0 (x, y) := −i

[
δ2S[Φ]

δΦ(x)δΦ(y)
+K(x, y)

]
. (2.28)

The field φ is now decomposed into classical field and fluctuations as

φ(x) = Φ(x) +
√
~δφ(x). (2.29)
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To have a specific example to work with, we pick the Onsager-Machlup-like action

S[φ] =

∫
dx̄

 1

D

(
φ̇(x̄)

2

)2

− m2

2
φ2(x̄)− g

4!
φ4(x̄)

 , (2.30)

where for brevity we have dropped spatial derivatives. The first step of the loop expansion is to
develop the cumulant-generating functional into a power series in ~,

W [j,K] = W (0)[j,K] +W (1)[j,K] +W (2)[j,K] +O(~3), (2.31)

where to lowest order

W (0)[j,K] = −i~ ln exp

{
i

~

[
S[Φ] +

∫
dx̄ j(x̄)Φ(x̄) +

1

2

∫
dx̄dx̄′ Φ(x̄)K(x̄, x̄′)Φ(x̄′)

]}
= S[Φ] +

∫
dx̄ j(x̄)Φ(x̄) +

1

2

∫
dx̄dx̄′ Φ(x̄)K(x̄, x̄′)Φ(x̄′).

Expanding our action around the classical field for small fluctuations, we find

S[Φ + δφ] =

∫
dx̄

{
1

D

[(
Φ̇(x̄)/2

)2
+ ~

(
δφ̇(x̄)/2

)2
+

1

2

√
~Φ̇δφ̇

]
− m2

2

[
Φ2 + ~δφ2 + 2

√
~Φδφ

]
− g

4!

[
Φ4 + 4

√
~Φ3δφ+ 6~Φ2δφ2 + 4~

√
~Φδφ3 + ~2δφ4

]}

= S[Φ] + S[~1/2δφ]− ~1/2
∫

dx̄

{
1

2D
Φ̈δφ+m2Φδφ+

g

3!
Φ3δφ

}
− ~

g

4

∫
dx̄ Φ2δφ2 − ~3/2 g

3!

∫
dx̄ Φδφ3,

(2.32)

where we have integrated by parts in the second step. The derivative of our example action is

δS[Φ]

δΦ(x)
=

∫
dx̄

{
1

4D

δ

δΦ(x)
Φ̇(x̄)Φ̇(x̄)

}
−m2Φ(x)− g

3!
Φ3(x)

= − 1

2D

∫
dx̄
{

Φ̈(x̄)δ(x− x̄)
}
−m2Φ(x)− g

3!
Φ3(x)

= − 1

2D
Φ̈(x)−m2Φ(x)− g

3!
Φ3(x),

(2.33)
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which we recognize in the curly brackets after the second equality in Eq. (2.32). We can now
define

∆W [j,K] := W [j,K]−W (0)[j,K] = const.− i~ ln

∫
Dδφ exp {iSeff/~} , (2.34)

with the constant absorbing the Jacobian determinant from the change of variables (2.29). The
action in the exponential is given by

Seff = S[~1/2δφ]− ~
g

4

∫
dx̄ Φ2δφ2 − ~3/2 g

3!

∫
dx̄ Φδφ3

+
~
2

∫
dx̄ dx̄′ δφ(x̄)K(x̄, x̄′)δφ(x̄′)

+ ~1/2
∫

dx̄ δφ(x̄)

(
δS[Φ]

δΦ(x)
+ j(x̄) +

∫
dx̄′ Φ(x̄′)K(x̄′, x̄)

)
︸ ︷︷ ︸

=0

= S0[δφ,Φ,K]− ~3/2 g

3!

∫
dx̄ Φδφ3 − ~2 g

4!

∫
dx̄ δφ4,

(2.35)

where we have used Eq. (2.27) and introduced

S0[δφ,Φ,K]/~ = S[δφ] +
g

4!

∫
dx̄ δφ4 − g

4

∫
dx̄ Φ2δφ2

+
1

2

∫
dx̄ dx̄′ δφ(x̄)K(x̄, x̄′)δφ(x̄′).

(2.36)

To keep track of terms, note that since we pulled out the quartic fluctuations from S[~1/2δφ] in Eq.
(2.35), here we have to add them constructively. The classical field Φ and the two-point source K
act as additional mass terms for the fluctuations. To two-loop order, that is, to O(~2), expanding
the exponential, performing the Gaussian integral, and introducing expectation values3 then yields

∆W [j,K] ≈ −i~ ln

∫
Dδφ exp

{
i

~
S0[δφ,Φ,K]

}[
1− i

(g
~

)∫
dx̄

{
~3/2

3!
Φδφ3 +

~2

4!
δφ4

}

− 1

2

(g
~

)2
∫

dx̄dx̄′
~3

(3!)2 Φ(x̄)δφ3(x̄)Φ(x̄′)δφ3(x̄′)

]

= −i~ ln

{(
detG−1

0

)−1/2
[

1− ~

(
ig

∫
dx̄

4!
〈δφ4(x̄)〉

+
g2

2

∫
dx̄

3!

dx̄′

3!
Φ(x̄)Φ(x̄′)〈δφ3(x̄)δφ3(x̄′)〉

)]}
≈W (1)[j,K] +W (2)[j,K],

3 To do this, we also have to divide by the normalization
(

detG
−1
0

)−1/2

, which consequently appears as an overall
factor inside the logarithm.
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n 1 2 3 4

~(~−1g~3/2Φδφ3)n g2~2 g4~3

~(~−1g~2δφ4)n g~2 g2~3 g3~4 g4~5

Table 2.1: An overview of the orders of expansion arising from the effective φ3 and the φ4 vertex. The outer
factor of ~ is the overall factor in front of the logarithm in W . The inner factor of ~−1 is the one multiplying
the action in the exponent. The remaining factors of ~1/2 stem from the fluctuating fields. We have ignored
any further conventional factors multiplying the respective vertices (such as 1/4!). In Chp. 5, we are going
to work with a loop expansion of order ~2 that is first order in certain couplings yet second order in another.

where a constant (from Gaussian integration) and the “skewness” 〈δφ3〉 were dropped, and

W (1)[j,K] = −i~ ln
(

detG−1
0

)−1/2
=

i~
2

Tr lnG−1
0 ,

W (2)[j,K] = i~2

{
ig

∫
dx̄

4!
3〈δφ2(x̄)〉2

+
g2

2

∫
dx̄

3!

dx̄′

3!
Φ(x̄)Φ(x̄′)

[
9〈δφ2(x̄)〉〈δφ(x̄)δφ(x̄′)〉〈δφ2(x̄′)〉+ 6〈δφ(x̄)δφ(x̄′)〉3

]}
.

(2.37)

We expanded the logarithm to first order only since in this particular expansion we do not have to
account for the cancellation of disconnected diagrams.4 Diagrammatically, W (2) is expressed as

− i

~2W
(2) ≡ ig

4!
× 3× +

g2

2 · (3!)2 ×
[

9× + 6×
]
,

(2.38)
where the lines yet signify the bare Green function G0 and the three- and four-point vertices are
classical.5 Tab. 2.1 gives a summary of the different orders of ~ and g arising in loop and coupling
expansions.

4 This would be necessary, e.g. if we expanded the exponential to second order in g: the integral∫
dx̄dx̄

′ 〈δφ4
(x̄)δφ

4
(x̄
′
)〉 would then have to be accompanied by the corresponding terms from the expansion of

the logarithm,
∫

dx̄dx̄
′ 〈δφ4

(x̄)〉〈δφ4
(x̄
′
)〉.

5 It is easy to commit an error in the prefactor entering the self-energy at the end of the calculation. To avoid this,
we summarize the relevant contributions. For a Hartree-Fock self-energy, W (2) comes with a factor of i~2 · ig (this
ignores any further conventional factors like 1/4! as in this Chp. or 1/2 as for cold Bose gases). When going over
to Γ

(2), this is complemented by a factor of i
2 that comes from converting the expectation values of the fluctuating

fields into Green functions. Together with the factor of 2i that enters when turning the derivative of Γ
(2) with respect

to the Green function into the self-energy, this means a Hartree-Fock self-energy ends up with a factor of 2i~2
g. To

second order for a theory of type φ3 (which is the relevant case for Chp. 5), the same considerations start with a factor
i~2 · g2

/2, which is then complemented by a factor of i
3, such that we finally have 2i · (−i) · i~2 · g2

/2 = i~2
g

2.
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2.2 Two-Particle-Irreducible Effective Action

2.2.2 Effective Action

The average field or first cumulant 〈φ(x)〉 ≡ ϕ(x) is defined as the derivative of the cumulant-
generating functional with respect to the one-point source,

ϕ(x) :=
δW [j,K]

δj(x)
= exp {−iW [j,K]/~}

∫
Dφ φ(x) exp

{
i

~

[
S[φ] + jTφ+

1

2
φTKφ

]}
,

(2.39)

where we have employed a common shorthand notation in the exponent. This field is to be
distinguished from the classical field Φ(x). Furthermore, we define the second cumulant

G(x, y) := − δ
2W [j,K]

δj(x)δj(y)
=

[
i

~
δW [j,K]

δj(y)

∫
Dφ φ(x) exp

{
i

~

[
S[φ] + jTφ+

1

2
φTKφ

]}

− i

~

∫
Dφ φ(x)φ(y) exp

{
i

~

[
S[φ] + jTφ+

1

2
φTKφ

]}]
exp {−iW [j,K]/~}

= − i

~
[〈φ(x)φ(y)〉 − 〈φ(x)〉〈φ(y)〉] .

(2.40)

The functional derivative with respect to the kernel gives

δW [j,K]

δK(x, y)
= 〈φ(x)φ(y)〉, (2.41)

from which we deduce the alternative expression

G(x, y) = − i

~

[
δW [j,K]

δK(x, y)
−ϕ(x)ϕ(y)

]
. (2.42)

The effective action Γ is now defined as the double Legendre transform of the cumulant-generating
functional:

Γ[ϕ, G] := W [j[ϕ, G],K[ϕ, G]]−
∫

dx̄ j(x̄)ϕ(x̄)

− 1

2

∫
dx̄dx̄′ K(x̄, x̄′)

[
i~G(x̄, x̄′) +ϕ(x̄)ϕ(x̄′)

]
,

(2.43)

where j and K as functions of ϕ and G are given implicitly via

δΓ[ϕ, G]

δϕ(x)
= −j(x)−

∫
dx̄ K(x, x̄)ϕ(x̄),

δΓ[ϕ, G]

δG(x, y)
= − i~

2
K(x, y).

(2.44)
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Chapter 2 Non-Equilibrium Quantum Field Theory

2.2.3 Legendre Transformation

The next step is the crucial one in the procedure: we need to remove the dependence of W on j
and K in favor of ϕ and G. It is, however, not possible to solve (2.44) for j and K directly. Yet
one can see that W does not depend on these explicitly, but merely implicitly through Φ and G0

[94]. Hence, if we could express the latter two in terms of the new variables ϕ and G, the problem
would be solved. Since we are expanding perturbatively in ~, a series expansion will suffice. As a
first step, we expand the new variables in terms of the classical field and bare propagator,

ϕ[Φ, G0] = ϕ
(0)[Φ, G0] +ϕ(1)[Φ, G0] +O(~2),

G[Φ, G0] = G(0)[Φ, G0] +G(1)[Φ, G0] +O(~2).
(2.45)

Calculating this expansion order by order, we find first that

ϕ
(0)(x) =

δW (0)[j,K]

δj(x)
= Φ(x). (2.46)

From Eq. (2.27), one also has

δ2S[Φ]

δΦ(x)Φ(y)
= − δj(y)

δΦ(x)
−K(x, y)−

∫
dx̄ Φ(x̄)

δK(x̄, y)

δΦ(x)
, (2.47)

from which one finds

G(0)(x, y) = −δ
2W (0)[j,K]

δj(x)δj(y)
= −δΦ(x)

δj(y)
= −

(
δj(y)

δΦ(x)

)−1

=

[
δ2S[Φ]

δΦ(x)δΦ(y)
+K(x, y)

]−1

= −iG0(x, y),

(2.48)

where one should prove explicitly that K does not depend on the classical field. This completes
the lowest order. To first order, we have

ϕ
(1)(x) =

δW (1)[j,K]

δj(x)
=

i~
2

δ

δj(x)
Tr lnG−1

0 =
i~
2

∫
dx̄

δ

δj(x)
lnG−1

0 (x̄, x̄)

=
i~
2

∫
dx̄dȳ G0(x̄, ȳ)

δ

δj(x)
G−1

0 (ȳ, x̄)

=
i~
2

∫
dx̄dȳdz̄ G0(x̄, ȳ)

δG−1
0 (ȳ, x̄)

δΦ(z̄)

δΦ(z̄)

δj(x)

=
~
2

∫
dx̄dȳdz̄ G0(x̄, ȳ)

[
δ3S[Φ]

δΦ(z̄)δΦ(ȳ)δΦ(x̄)
+
δK(ȳ, x̄)

δΦ(z̄)

]
δ2W (0)[j, k]

δj(z̄)δj(x)

=
~
2

∫
dx̄dȳdz̄ G0(x̄, ȳ)

δ3S[Φ]

δΦ(z̄)δΦ(ȳ)δΦ(x̄)
iG0(z̄, x),

(2.49)
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2.2 Two-Particle-Irreducible Effective Action

where we have used the formula for the derivative of a matrix logarithm from App. A.3, and have
replaced G(0) by −iG0 in the last line. In terms of our exemplary Onsager-Machlup action, one
obtains 6

δ3S[Φ]

δΦ(x)δΦ(y)δΦ(z)
= − g

3!

δ

δΦ(x)δΦ(y)
Φ3(z) = −gδ(x− z)δ(y − z)Φ(z),

ϕ
(1)(x) = −i

g~
2

∫
dz̄ G0(z̄, z̄)Φ(z̄)G0(z̄, x).

(2.50)

The remaining first-order correction to the Green function is

G(1)(x, y) = −δ
2W (1)[j, k]

δj(x)δj(y)
= − i~

2

δ2

δj(x)δj(y)
Tr lnG−1

0

=
~
2

δ

δj(y)

∫
dx̄dȳdz̄ G0(x̄, ȳ)

δ3S[Φ]

δΦ(z̄)δΦ(ȳ)δΦ(x̄)
G0(z̄, x)

=
~
2

∫
dx̄dȳdz̄dz′

{[
δG0(x̄, ȳ)

δΦ
(
z′
) G0(z̄, x) +G0(x̄, ȳ)

δG0(z̄, x)

δΦ
(
z′
) ] δ3S[Φ]

δΦ(ȳ)δΦ(x̄)δΦ(z̄)

+G0(x̄, ȳ)
δ4S[Φ]

δΦ(ȳ)δΦ(x̄)δΦ(z̄)δΦ
(
z′
)G0(z̄, x)

}
δΦ
(
z′
)

δj(y)︸ ︷︷ ︸
=iG0(z

′
,y)

.

(2.51)

The functional derivative of the bare Green function with respect to the classical field is

δG0(x, y)

δΦ(z′)
=
δ
[
G−1

0 (x, y)
]−1

δΦ(z′)
= −

∫
dx′dy′G0

(
x, x′

) δG−1
0 (x′, y′)

δΦ
(
z′
) G0(y′, y)

= −i

∫
dx′dy′G0

(
x, x′

) δ3S[Φ]

δΦ(x′)δΦ(y′)δΦ(z′)
G0(y′, y)

= igΦ(z′)G0(x, z′)G0(z′, y),

(2.52)

where we show the concrete result for our example action in the last line. Furthermore, we have
used the differentiation rule for an inverse matrix proved in App. A.3. The first-order correction of

6 In anticipation of Eq. (2.58), note that

ϕ
(1)

(x) = i
g~
2

∫
dz̄ G(z̄, z̄)Φ(z̄)G(z̄, x).
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Chapter 2 Non-Equilibrium Quantum Field Theory

the Green function in our example hence becomes

G(1)(x, y) = −i
g~
2

{∫
dz̄dz′

[
δG0(z̄, z̄)

δΦ
(
z′
) G0 (z̄, x) +G0(z̄, z̄)

δG0 (z̄, x)

δΦ
(
z′
) ]Φ(z̄)G0

(
z′, y

)
+

∫
dz′G0

(
z′, z′

)
G0

(
z′, x

)
G0

(
z′, y

)}

= −i
g~
2

{
ig

∫
dz̄dz′ Φ(z̄)Φ(z′)

[
G0

(
z̄, z′

)
G0

(
z′, z̄

)
G0 (z̄, x)

+G0(z̄, z̄)G0

(
z̄, z′

)
G0

(
z′, x

) ]
G0

(
z′, y

)
+

∫
dz′G0

(
z′, z′

)
G0

(
z′, x

)
G0

(
z′, y

)}
.

Inverting Eqs. (2.45), we find for the classical quantities

Φ = ϕ−ϕ(1)[Φ, G0] +O(~2) = ϕ−ϕ(1)[ϕ, G] +O(~2),

−iG0 = G−G(1)[Φ, G0] +O(~2) = G−G(1)[ϕ, G] +O(~2).
(2.53)

Here, the second equalities are decisive for our goal of expressing the classical quantities in terms
of the Legendre-transformed variables: since the first-order corrections are by definition already
O(~), it is consistent to have them depend on the full ϕ and G. Upon replacing the classical
quantities by the full in W (2), the effective action becomes

Γ[ϕ, G] = S[Φ] +W (2)[ϕ, G] (2.54a)

+
i~
2

Tr lnG−1
0 −

1

2

∫
dx̄dx̄′ K(x̄, x̄′)i~G(x̄, x̄′) (2.54b)

+

∫
dx̄ j(x̄) [Φ(x̄)−ϕ(x̄)] +

∫
dx̄dx̄′

K(x̄, x̄′)

2

[
Φ(x̄)Φ(x̄′)−ϕ(x̄)ϕ(x̄′)

]
. (2.54c)

We have grouped the terms according to the order in which we are going to address them in the
following. Starting with (2.54a), the action may now be expanded around the corrected field as

S[Φ] = S[ϕ+ (Φ−ϕ)] = S[ϕ]−
∫

dx̄ ϕ(1)[ϕ, G](x̄)
δS[ϕ]

δϕ(x̄)

+
1

2

∫
dx̄dȳ ϕ(1)[ϕ, G](x̄)

δ2S[ϕ]

δϕ(x̄)δϕ(ȳ)
ϕ

(1)[ϕ, G](ȳ) +O(~3).

(2.55)

The form of the second-order term W (2)[ϕ, G] of the cumulant-generating functional was given in
Eq. (2.38), the difference now being that the former bare fields and Green-function lines have been
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2.2 Two-Particle-Irreducible Effective Action

replaced by the full ones. Moving to (2.54b), notice that by the geometric series

iG−1
0 =

(
G−G(1)

)−1
=
(
G
(
1−G−1G(1)

))−1

=
(
1−G−1G(1)

)−1
G−1 =

(
1+G−1G(1)

)
G−1 +O(~2).

(2.56)

Employing shorthand notation in some places and dropping terms of order O(~2) as well as
constant terms, we find accordingly

Tr lnG−1
0 −

∫
dx̄dx̄′ K(x̄, x̄′)G(x̄, x̄′) = Tr ln

(
1+G−1G(1)

)
G−1 − TrKG

= Tr lnG−1 + TrG−1G(1) +

∫
dx̄dȳ

[
−iG−1

0 (x̄, ȳ) +
δ2S[Φ]

δΦ(x̄)δΦ(ȳ)

]
G(ȳ, x̄)

= Tr lnG−1 + TrG−1G(1) +

∫
dx̄dȳ

[
δ2S[Φ]

δΦ(x̄)δΦ(ȳ)
G(ȳ, x̄)−G−1(x̄, ȳ)G(ȳ, x̄)

−
∫

dz′dz′′G−1(x̄, z′)G(1)(z′, z′′)G−1(x̄, z′)G(z′′, ȳ)

]
= Tr lnG−1 + TrG−1G(1) +

∫
dx̄dȳ

[
δ2S[Φ]

δΦ(x̄)δΦ(ȳ)
G(ȳ, x̄)− δ(0)−G−1(x̄, ȳ)G(1)(ȳ, x̄)

]

= Tr lnG−1 +

∫
dx̄dȳ

δ2S[Φ]

δΦ(x̄)δΦ(ȳ)
G(ȳ, x̄),

where we have expanded the logarithm in going from the first to the second line and also dropped
δ(0). The second term of the last line is expanded around the full average field ϕ according to

δ2S[Φ]

δΦ(x̄)δΦ(ȳ)
=

δ2S[ϕ]

δϕ(x̄)δϕ(ȳ)
−
∫

dz̄ ϕ(1)[ϕ, G](z̄)
δ3S[ϕ]

δϕ(z̄)δϕ(ȳ)δϕ(x̄)
, (2.57)

which yields the remaining terms for (2.54b):

i~
2

Tr

[
δ2S[ϕ]

δϕ2 G

]
− i~

2

∫
dx̄dȳdz̄ ϕ(1)(z̄)

δ3S[ϕ]

δϕ(z̄)δϕ(ȳ)δϕ(x̄)
G(ȳ, x̄)

=
i~
2

Tr

[
δ2S[ϕ]

δϕ2 G

]
+

ig2~2

4

∫
dz̄dz̄′ iG(z̄′, z̄′)ϕ(z̄′) G(z̄′, z̄)ϕ(z̄)G(z̄, z̄)

=
i~
2

Tr

[
δ2S[ϕ]

δϕ2 G

]
−
(
g~
2

)2

× ,

(2.58)
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where the second term is referred to as the “dumb-bell” graph. Observe also how the new inverse
Green function δ2S[ϕ]/δϕ2 is evaluated at the corrected saddle-point ϕ(x). Finally, line (2.54c)
is equal to

−
∫

dx̄j(x̄)ϕ(1)[ϕ, G](x̄) +
1

2

∫
dx̄dȳ ϕ(1)[ϕ, G](x̄)K(x̄, ȳ)ϕ(1)[ϕ, G](ȳ)

−
∫

dx̄dȳ ϕ(x̄)K(x̄, ȳ)ϕ(1)[ϕ, G](ȳ)

= −
∫

dx̄

{
j(x̄) +

∫
dȳK(ȳ, x̄)

[
ϕ(ȳ)−ϕ(1)[ϕ, G](ȳ)

]}
ϕ

(1)[ϕ, G](x̄)

− 1

2

∫
dx̄dȳ ϕ(1) [ϕ, G] (x̄)K(x̄, ȳ)ψ(1)[ϕ, G](ȳ)

=

∫
dx̄
δS[Φ]

δΦ(x̄)
ϕ

(1)[ϕ, G](x̄)− 1

2

∫
dx̄dȳ ϕ(1) [ϕ, G] (x̄)K(x̄, ȳ)ψ(1)[ϕ, G](ȳ)

=

∫
dx̄

[
δS[ϕ]

δϕ(x̄)
−
∫

dȳ
δ2S[ϕ]

δϕ(x̄)δϕ(ȳ)
ϕ

(1) [ϕ, G] (ȳ)

]
ϕ

(1) [ϕ, G] (x̄)

− 1

2

∫
dx̄dȳ ϕ(1) [ϕ, G] (x̄)K(x̄, ȳ)ψ(1)[ϕ, G](ȳ).

(2.59)

Adding to this Eq. (2.55) produces

S[ϕ]− 1

2

∫
dx̄dȳ ϕ(1) [ϕ, G] (x̄)

[
δ2S[ϕ]

δϕ(x̄)δϕ(ȳ)
+K(x̄, ȳ)

]
ψ(1)[ϕ, G](ȳ)

= S[ϕ]− 1

2

(
g~
2

)2

i2
∫

dx̄dȳdz̄dz̄′ G(z̄′, z̄′)ϕ(z̄′)G(z̄′, x̄)G−1(x̄, ȳ)G(z̄, z̄)ϕ(z̄)G(z̄, ȳ)

= S[ϕ] +
1

2

(
g~
2

)2 ∫
dz̄dz̄′ G(z̄′, z̄′)ϕ(z̄′)G(z̄, z̄)ϕ(z̄)G(z̄, z̄′)

= S[ϕ] +
1

2

(
g~
2

)2

× .

(2.60)
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When replacing G0 → iG in the dumb-bell part of W (2) shown in Eq. (2.38), we gain a factor of
i3, such that the overall prefactor of the dumb-bell graph in W (2) becomes

i4
g2~2

2 · (3!)2 × 9 =
1

2

(
g~
2

)2

. (2.61)

With Eqs. (2.58) and (2.60), this demonstrates in an illustrative fashion how the one-particle-
reducible (1PR) graphs cancel in this construction. As no two-particle-reducible diagrams appear
in our specific expansion, their cancellation could not be demonstrated accordingly. At any rate,
the remaining diagrams contributing to the effective action Γ[ϕ, G] via Eqs. (2.54a) and (2.38),
the so-called “double-bubble” and the “sunset” diagrams, are both 2PI, as they should be. We will
not prove the conserving properties of the self-energy derivable from Γ[ϕ, G] at this point but refer
to the extensive literature cited above.

2.2.4 Equations of Motion & Self-Energy

In terms of a generalized matrix notation, the physical equations of motion for the symmetry-
broken field ϕ(x) ≡ ϕi and the dressed Green function G(x, y) ≡ Gij are obtained from Eqs.
(2.44) by setting the external sources to zero,

0 =
δΓ[ϕ,G]

δϕi
,

0 =
δΓ[ϕ,G]

δGij
.

(2.62)

The first of these two yields a Gross-Pitaevskii-type of equation with corrections to the classical
saddle-point Φi coming from the derivatives δW (2)[ϕ,G]/δϕi of the interacting part of the
effective action Γ[ϕ,G]. The second equation reads

0 =
δ

δGij

[
i~
2

Tr lnG−1 +
i~
2

TrG−1
0 G+W (2)[ϕ,G]

]
, (2.63)

with the bare inverse Green function now being defined by (G−1
0 )ij = δ2S[ϕ]/δϕiδϕj . After

switching indices, this becomes the familiar Dyson equation

(G−1)ij = (G−1
0 )ij − (Σ)ij , (2.64)

which when contracted withG from the right yields an equation in differential form. The resummed
1PI self-energy is obtained from the 2PI generating diagrams as

(Σ)ij [ϕ,G] :=
2i

~
δW (2)[ϕ,G]

δGji
. (2.65)
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2.3 Two-Time Evolution of Kadanoff-Baym Equations

For non-equilibrium problems, the Dyson equation (2.64) acquires a special structure due to the
dependence of the Green function G(x, y) = G(x, t;x′, t′) on two times. In this Sec., we will
focus only on this two-time dependence and drop any other dependencies of the Green function, i.e.
G = G(t, t′). Historically, these equations of motion are known as the Kadanoff-Baym equations
[100, 101]. Further references discussing their numerical solution are [76, 102]. A comprehensive
discussion of their properties can be found in the textbook [80]. Two applications to physical
problems are studied in Refs. [103, 104]. Numerically, the main difficulty arising from the two-time
structure is the computational cost: in the presence of memory integrals, it scales as n3, where
n is the number of grid points. Ref. [105] discusses how this can be reduced to a linear scaling
by certain approximations. In Sec. 5.5, we will learn that for dissipative systems, an almost
comparable scaling can be achieved by truncating the memory integrals and computing only a
restricted set of points on the two-time grid.

The Kadanoff-Baym equations are usually presented in the context of non-equilibrium QFT.
The general problem of two-time expectation values, however, is not restricted to the quantum
domain. It appears just as naturally for the classical stochastic processes we have studied above
(e.g. Eq. (1.40)). The main difference is that in stochastic processes, the dynamics is seldomly
modeled by means of differential equations for expectation values. In order not to limit our horizon
prematurely, we will first introduce a set of two-time equations derived from the classical path
integral given in Eq. (1.49). These can be interpreted as the Kadanoff-Baym equations of Brownian
motion. Their properties are in many ways close to those of their quantum counterparts.

2.3.1 Kadanoff-Baym Equations of Brownian Motion

According to our convention, the inverse Green function of the action

S[x, z] =

∫ t

t0

dt
[
iDz2/2 + z(ẋ− αx)

]
(2.66)

is defined as

G−1
0 (t, t′) = ∂2S = δ(t− t′)

(
0 −∂t − α

∂t − α iD

)
. (2.67)

The corresponding bare Green function reads

G0(t, t′) =

(
GK(t, t′) GR(t, t′)

GA(t, t′) 0

)
=

(
−i〈x(t)x(t′)〉 〈x(t)z(t′)〉
〈z(t)x(t′)〉 0

)
. (2.68)

The link to the “quantum” case follows from φ̂ = iz, φ = x and GR(t, t′) = −i〈φ(t)φ̂(t′)〉,
GA(t, t′) = −i〈φ̂(t)φ(t′)〉. These definitions are, of course, conventional. The missing factors of
−i in the classical GR/A already hint at the fact that the equations we are about to derive are not
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quantum. The Dyson equation of the problem then becomes∫ t

t0

dt̄ G−1
0 (t, t̄)G0(t̄, t′) = δ(t− t′)1, (2.69)

from which the equation governing the evolution in the “direction” of t′ follows as usual by taking
the adjoint. For the Keldysh component, one obtains a differential equation

∂tG
K(t, t′) = αGK(t, t′)− iDGA(t, t′). (2.70)

Transforming to Wigner coordinates, we have

∂TG
K(T, 0) = 2αGK(T, 0)− iD

[
GR(T, 0) +GA(T, 0)

]
= 2αGK(T, 0)− iD,

(2.71a)

∂τG
K(T, τ) =

iD

2

[
GR(T, τ)−GA(T, τ)

]
. (2.71b)

For the retarded and advanced Green functions, the dynamics is governed by

(∂t ∓ α)GR/A(t, t′) = ±δ(t− t′). (2.72)

Again going over to Wigner coordinates, we find as expected that

∂TG
R/A(T, 0) = 0,

(∂τ ∓ α)GR/A(T, τ) = ±δ(τ).
(2.73)

These equations are straightforward to solve and yield

GR/A(T, τ) = Θ(±τ)e±ατ , (2.74)

where we have again used GR(T, 0) + GA(T, 0) = 1 to fix the initial conditions. The more
interesting question is: How to find GK for all times (t, t′) numerically? Clearly, this problem
is different from solving an ordinary differential equation in that time is now suddenly “two-
dimensional”. The analytical solution that we want to reproduce reads

iGK(t, t′) =

(
iGK(0, 0) +

D

2α

)
eα(t+t′) − D

2α

(
Θ(t− t′)eα(t−t′) + Θ(t′ − t)eα(t′−t)

)
.

(2.75)

The best strategy is to use a combination of Eqs. (2.70), (2.71a) and the (classical) symmetry
property GK(t, t′) = GK(t′, t), a strategy which also works for the equations of non-equilibrium
QFT. We will describe the algorithm in general terms in the next subsection, before returning to its
application to Brownian motion.
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Chapter 2 Non-Equilibrium Quantum Field Theory

Figure 2.3: Two-time stepping of Kadanoff-Baym equations. The red vertical arrows indicate the evolution
governed by Eq. (2.76a), the blue diagonal arrows that governed by Eq. (2.76b). The green arrows show
how the symmetry relation may be used to find the points above the diagonal.

2.3.2 Two-Time Structure of the Equations

The Kadanoff-Baym equations of classical and quantum problems alike can be cast into the form

∂tG(t, t′) = −if(t, t′), (2.76a)

∂TG(T, 0) = −if(T, 0), (2.76b)

where for interacting systems the right-hand sides may depend on the entire history of the system
(this will be discussed below). The Green function G(t, t′) is usually a matrix in both the degrees
of freedom and Schwinger-Keldysh space. Additionally, we can assume a symmetry property
relating the values of G(t, t′) for t < t′ to those for t > t′. Combining Eqs. (2.76) with the
symmetry relations and an initial condition at t = t′ = t1 results in the algorithm illustrated in
Fig. 2.3. In both the vertical and the diagonal direction, it reduces the problem to the solution
of an ordinary differential equation, which can in principle be tackled by any standard method.
However, since for non-trivial interacting problems the right-hand sides of Eqs. (2.76) will require
the evaluation of retarded memory integrals, a method is desirable that does not rely on multiple
function evaluations, that is, methods like Runge-Kutta are discouraged in favor of multi-step
methods such as Adams-Bashforth [106].

Notice that many references [100, 102] solve for G>(t, t′) at times t > t′ with Eq. (2.76a), yet
for G<(t, t′) at times t < t′ via the adjoint equation in horizontal direction (the diagonal is stepped
additionally for G<(t, t), from which G>(t, t) can be obtained). As the lesser and greater Green
function are defined on the entire two-time square, the values of G≷ at times t ≶ t′ are then also
found from symmetry. In our algorithm, we have instead chosen to solve for both functions on the
lower triangle (and on the diagonal).
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2.3 Two-Time Evolution of Kadanoff-Baym Equations

Figure 2.4: Predictor-corrector scheme. The first three points after the initial value (red dot) are computed
via the Euler-Heun method (black arrows). The four available points are then fed into the prediction of the
future point (blue arrows), which is then used again during the corrector step (green arrows).

2.3.3 Predictor-Corrector Method

The numerical method used for solving two-time Kadanoff-Baym equations used throughout this
thesis was applied to a similar problem in Ref. [106]. It is a predictor-corrector scheme that
employs a four-step Adams-Bashforth method to predict the future point required to explicitly
evaluate a three-step Adams-Moulton method. Since the four-step method indeed requires four
points from the past to predict the next point, one needs to compute three more points from the
initial value with the one-step Euler-Heun method. The essence of this scheme is shown in Fig. 2.4.
On an equidistant grid of points tk with k = 1, ..., n+ 1 and spacing ∆t, the Adams-Bashforth
discretization of Eq. (2.76a) becomes

G(tk+1, t
′) = G(tk, t

′)− i
∆t

24

(
55f(tk, t

′)− 59f(tk−1, t
′) + 37f(tk−2, t

′)− 9f(tk−3, t
′)
)
.

(2.77)

The value G(tk+1, t
′) is required to evaluate the Adams-Moulton corrector step according to

G(tk+1, t
′) = G(tk, t

′)− i
∆t

24

(
9f(tk+1, t

′) + 19f(tk, t
′)− 5f(tk−1, t

′) + f(tk−2, t
′)
)
.

(2.78)

Applied to Eq. (2.76b), the corresponding expressions are

G(Tk+1, 0) = G(Tk, 0)− i
∆T

24
(55f(Tk, 0)− 59f(Tk−1, 0) + 37f(Tk−2, 0)− 9f(Tk−3, 0)) ,

G(Tk+1, 0) = G(Tk, 0)− i
∆T

24
(9f(Tk+1, 0) + 19f(Tk, 0)− 5f(Tk−1, 0) + f(Tk−2, 0)) ,

(2.79)
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where ∆T =
(
∆t+ ∆t′

)
/2 = ∆t. The right-hand sides only require one function evaluation per

step if the previously evaluated function values are kept in memory. It is possible to keep repeating
the corrector step until convergence is reached.

2.3.4 Improved Initialization Method

Instead of using the Euler-Heun method at the temporal resolution ∆t of the subsequent multi-step
method, one can improve the initialization in a straightforward way. This is desirable because
the multi-step method works accurately for larger lattice spacing ∆t than does the Euler-Heun
method (for which it is well-known that ∆t needs to be very small). Looking at Fig. 2.4, we see
that the time interval on which the Euler-Heun method is employed is given by Iini = [0, 3∆t]. We
now introduce a parameter nini as the number of grid points into which we subdivide the interval
Iini. Then we apply the predictor-corrector scheme as outlined in paragraph 2.3.3 on the interval
Iini with a lattice spacing 3∆t/nini. Setting nini = 3/∆tini for convenience, this implies that the
Euler-Heun methods now works at an improved temporal resolution ∆t · ∆tini. Because 3∆t
is small, nini does not have to be very large. In practice, we find that the results do not depend
noticeably on the chose of nini.

2.3.5 Retarded Memory Integrals

For interacting systems, a diagrammatic approximation beyond Hartree-Fock will turn Eqs. (2.76)
into integro-differential equations. We will restrict the discussion to cases where the self-energy
itself is local in time, which leads to one-dimensional integrals appearing in f(t, t′). These integrals
will generally be of the form

Iba(t, t
′) =

∫ b

a
dt̄ Σ(t, t̄)G(t̄, t′), (2.80)

with either a = t1, b = t, t′ or a = t, b = t′. These integrals need to be performed for every point
on the grid. Furthermore, the longer the system evolves, the more points have to be summed up
under the integrals. These two facts point to the main weakness of the Kadanoff-Baym equations:
the computational effort required to solve them scales as n3. There exist approximations to reduce
this effort to a scaling with n such as the generalized Kadanoff-Baym ansatz [105]. As we will
see later, in strongly driven-dissipative systems a comparable reduction in cost can be achieved
essentially without loss of accuracy. Numerically, we approximate Eq. (2.80) by the trapezoidal
rule [76] according to

I
tj
ti

(t, t′)/∆t ≈
j∑
k=i

[
Σ(t, tk)G(tk, t

′)
]
− 1

2

(
Σ(t, ti)G(ti, t

′) + Σ(t, tj)G(tj , t
′)
)
. (2.81)

For a benchmark problem, we did not find more accurate solutions when using a higher-order
quadrature such as Simpson’s rule, in agreement with Ref. [33]. Such quadratures have been
applied to the solution of Kadanoff-Baym equations in [104, 106].
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Figure 2.5: Numerical solutions of Eqs. (2.82) for diffusion parameters D/ |α| = 4.0 (blue) and D/ |α| =
10.0 (green). The initial conditions are GK(0, 0) = −i and GK(0, 0) = −4i, respectively. The thicker
dashed lines indicate the corresponding analytical solutions of Eq. (2.75). The left panel shows the “forward”
evolution in the center-of-mass time T . The right panel shows the relative-time evolution as evaluated in the
“middle” of the two-time grid. The numerical solutions were evolved up to a maximal time |α|Tmax = 4.0;
the number of steps was n = 212.
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Figure 2.6: Relative errors according to Eq. (2.83) for D/ |α| = 10.0 with initial condition GK(0, 0) = −i.
The numerical solutions were evolved up to time |α|Tmax = 4.0. In the right panel, T = Tmax/2 as before.

2.3.6 Algorithm Benchmark

To verify the correctness and accuracy of our numerical implementation of the algorithm just
outlined, we apply it to the Kadanoff-Baym equations of Brownian motion, the analytical solution
to which is given by Eq. (2.75). Since t > t′ implies GA(t, t′) = 0 and we apply Eq. (2.70)
only below the equal-time diagonal (cf. Fig. 2.3), the pair of equations required to fully solve our
dynamical problem become

∂tG
K(t, t′) = αGK(t, t′),

∂TG
K(T, 0) = 2αGK(T, 0)− iD.

(2.82)

Two solutions for different values of D are shown Fig. 2.5. The corresponding analytical solutions
from Eq. (2.75) above are reproduced accurately. Depending on the initial condition and the ratio
of parameters, the system either decays or climbs to its steady-state. The Fourier transform of the
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Figure 2.7: GK(t, t′) for parameters D/ |α| = 10.0 with initial condition GK(0, 0) = −i. The numerical
solutions were evolved up to a maximal time |α|Tmax = 4.0; the number of steps was n = 212.

spectrum indicates the Lorentzian line shape. The scaling of the error with increased number of
steps is studied in Fig. 2.6. The relative error is calculated according to

εrel(T ) =
∣∣∣GK(T, 0)−GKexact(T, 0)

∣∣∣ · ∣∣∣GKexact(T, 0)
∣∣∣−1

. (2.83)

For the error in relative-time direction εrel(τ), the Keldysh Green function is evaluated at times
GK(Tmax/2, τ). As one may see, the error reduces in proportion to the decreasing step size ∆t.
We also present the two-time behavior of GK(t, t′) in Fig. 2.7 with the same diffusion constant
as for the green curves in Fig. 2.5. This shows both the steady-state value D |α|−1 /2 on the
equal-time diagonal and the exponential decay away from it in the orthogonal direction.
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CHAPTER 3

Atomic Bose-Einstein Condensates

Before addressing photon condensates in Chps. 4 and 5, the present Chp. is concerned with atomic
Bose-Einstein condensates. Historically, Bose-Einstein condensation was first observed as late
as 1995 in a vapor of rubidium atoms [39], and shortly after in a gas of sodium [107]. As briefly
touched upon in 1.1.3, experimentally the major difference between these two types of condensate
is how the condensed phase is achieved. Instead of increasing the particle number as in the photonic
case, in experiments with clouds of cold atoms one lowers the temperature until condensation sets
in. As this is usually done by removing the hottest atoms, the particle number is also not truly
conserved. Theoretical descriptions of cold-atom BEC still assume particle-number conservation
in the sense that one considers the condensate to be already formed and any further loss of atoms
to be (at least temporarily) negligible. This is not to be confused with the presence of a thermal
cloud with which the condensate can exchange particles.

As will become evident in Chps. 4 and 5, the photon BEC can be modelled by several methods
without introducing symmetry breaking explicitly. While satisfactory for simulating the evolu-
tion of particle densities, information on the condensate phase is not easily accessible by such
methods. In the present Chp., on the contrary, we first show in 3.1 how to apply manifestly
symmetry-broken field theory as developed above to the crucial problem of condensate growth and
depletion. Subsequently, we present in 3.2 a theoretical analysis of two cold-atom experiments that
provides quantitative insight into how dissipation can arise in closed systems, a question that is of
fundamental interest [108].

3.1 Dephasing and Enphasing

In the context of Bose-Einstein condensation, one has to differentiate between a mere particle-
number distribution that follows Eq. (1.6) and the presence of a truly phase-coherent, symmetry-
broken order parameter. For the photon BEC, a discussion of how phase coherence can build up
spontaneously as the ground mode is populated macroscopically can be found in Ref. [109]. A
related work on cold atomic gases is [110]. The essence of these studies is that for low-density Bose
gases in the Maxwell-Boltzmann limit, the interaction either with a phonon bath or with other atoms
leads to dephasing and hence to a destruction of the coherent order parameter. This is the regime
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where the quantum Boltzmann equation is applicable. On the contrary, for high-density Bose gases,
the interaction results in a so-called “enphasing” [109] that enhances the order parameter.

Here, inspired by Ref. [111], we will consider an idealized model of a single bosonic mode
the order parameter of which is coupled to its non-condensate occupation via a Lindbladian that
can induce de- or enphasing depending on the sign of a constant. Therefore, this simple model
brings together all of the ingredients that are necessary to form an albeit basic understanding of
phase coherence in Bose-Einstein condensates.1 Since especially in the “Keldysh” representation,
working with the Schwinger-Keldysh formalism is something of an “art” in itself that we shall not
have the opportunity to use elsewhere in this thesis, the present Sec. is well-suited to applying this
craft. We set ~ = 1.

3.1.1 Master Equation

The Lindblad master equation describing the above physics, complemented by drive and loss
processes, reads

˙̂ρ = −iω0[a†a, ρ̂] +
λ

2

{
2aρ̂a† −

(
a†aρ̂+ ρ̂a†a

)}
+
γ

2

{
2a†ρ̂a−

(
aa†ρ̂+ ρ̂aa†

)}
+D

{
2a†aρ̂a†a−

(
a†aa†aρ̂+ ρ̂a†aa†a

)}
,

(3.1)

where λ > 0 is the loss parameter, γ > 0 represents the corresponding gain,2 and D ≷ 0 is
the constant that introduces de- or enphasing to our system. The first thing to learn about the
Lindbladian L[n̂]ρ̂ proportional to D is that it does not affect the total particle number, i.e.

∂t 〈n̂〉|λ=γ=0 = Tr
{

˙̂ρa†a
}∣∣∣
λ=γ=0

= 0, (3.2)

as one can see immediately from Eq. (3.1). At the same time, the expectation value of the
destruction operator obeys

∂t〈a〉 = −iω0〈a〉+ 1
2(γ − λ) 〈a〉 −D 〈a〉 . (3.3)

The general master equation (1.82) is equivalent to a Schwinger action

S[φ∗±, φ±] =

∫
dt
{
φ∗+i∂tφ+ − φ∗−i∂tφ−−iL[φ∗±, φ±]

}
,

L[φ∗±, φ±] = −i(H+ −H−) + λ
2

[
2L+L

∗
− −

(
L∗+L+ + L∗−L−

)]
,

(3.4)

where the Hamiltonian terms are H± = H(φ∗±, φ±). This is our starting point for setting up the
effective action.

1 For a comprehensive overview of theory methods and subtle issues such as phase fluctuations, s. Ref. [112].
2 A thermal bath would result in λ = κ

(
N̄ + 1

)
and γ = κN̄ .
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3.1 Dephasing and Enphasing

Figure 3.1: Time-ordering along the Schwinger-Keldysh contour. The ordering in real time reverses on the
backward branch.

3.1.2 Effective Action & Self-Energy

For simplicity, we will treat the “interaction” vertex proportional to D to lowest order only, that is,
in Hartree-Fock approximation. Keeping properly track of time-ordering (s. Fig. 3.1), we find

LD[φ∗±, φ±] = −D [ φ∗+(t++)φ+(t+)φ∗+(t)φ+(t−) + φ∗−(t−)φ−(t)φ∗−(t+)φ−(t++)

− 2φ∗+(t++)φ+(t+)φ∗−(t−−)φ−(t−) ] ,
(3.5)

where t± = t ± 0±, t±± = t ± 2 · 0±. Note that these superscripts have no direct connection
with the Schwinger-Keldysh contour: they serve merely as aides for time-ordering. Of course,
the contour does still play a role in that the fields on the forward and backward branches are
time-ordered oppositely. As we wanted to work in Keldysh representation, we now set

φ± =
1√
2

(φ± φ̂), (3.6)

and decompose the physical field and the response field into condensate and non-condensate parts
according to φ = Φ + δφ, φ̂ = Φ̂ + δφ̂. Then we perform the equivalent of the expansion detailed
in Sec. 2.2 to derive the effective action, in the course of which the classical field Φ is replaced
by the corrected field ϕ (and analogously for the response field). Time-ordering is then irrelevant
for the mean-fields ϕ, ϕ̂. Furthermore, in Keldysh representation, one needs to keep track of
time-ordering only among the adjoint fields δφ, δφ̂∗, and δφ∗, δφ̂, respectively. Hence, the time
superscripts may be dropped in every other case. To compactify notation, we introduce the field
spinor

ϕ = (ϕ,ϕ∗, ϕ̂, ϕ̂∗)T = (ϕ1,ϕ2,ϕ3,ϕ4)T . (3.7)

The Keldysh action of the corrected fields now reads

SK[ϕ] =

∫
dt
{
ϕ
∗ (i∂t − ω0) ϕ̂ + ϕ̂∗ (i∂t − ω0)ϕ−iL[ϕ]

}
, (3.8)
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with L[ϕ] = Lλ[ϕ] + Lγ [ϕ] + LD[ϕ], where

Lλ[ϕ] =
λ

2

[
ϕ̂ϕ

∗ − ϕ̂∗ϕ − 2ϕ̂∗ϕ̂
]
,

Lγ [ϕ] =
γ

2

[
ϕ̂
∗
ϕ − ϕ̂ϕ∗ − 2ϕ̂∗ϕ̂

]
,

LD[ϕ] = −D
[
ϕ̂
∗
ϕ̂
∗
ϕϕ + ϕ̂∗ϕ̂ϕ∗ϕ + c.c.

]
.

(3.9)

Note the special form of the Lindblad operator in terms of ϕ and ϕ̂, and the sign changes in Lγ
compared to Lλ. The ‘quartic’ structure of LD is reminiscent of the standard anharmonic oscillator.
To wit, the ‘true’ |ϕ|4 term would, however, look like

Sint = g(ϕ̂∗ϕ∗ϕ2 + ϕ̂∗ϕ̂2
ϕ
∗ + c.c.), (3.10)

which has either three fields or three response fields, instead of two each as in LD. The “quantum
vs. classical” nature of these vertices is discussed in Ref. [82]. The total effective action becomes

Γ[ϕ,G] = SK[ϕ] +
i

2
Tr lnG−1 +

i

2
TrG−1

0 G+W (2)[G]. (3.11)

The part quadratic in the fluctuations, giving rise to the trace logarithms in (3.11), is given by

SK[ϕ, δφ] =

∫
dt
{
δφ∗ (i∂t − ω0) δφ̂ + δφ̂∗ (i∂t − ω0) δφ

−i
λ

2

[
δφ̂δφ∗ − δφ̂∗δφ − 2δφ̂∗δφ̂

]
− i

γ

2

[
δφ̂∗δφ − δφ̂δφ∗ − 2δφ̂∗δφ̂

]
+iD

[
ϕϕδφ̂∗δφ̂∗ +ϕ∗ϕ∗δφ̂δφ̂+ 2ϕ∗ϕδφ̂∗δφ̂+ 2ϕ̂∗ϕ∗δφ̂δφ

+ ϕ̂∗ϕδφ̂(t+)δφ∗(t) + ϕ̂∗ϕδφ̂(t−)δφ∗(t)

+ 2
(
ϕ̂
∗
ϕδφ̂∗(t+)δφ(t) + ϕ̂∗ϕδφ̂∗(t−)δφ(t)

)
+ ...

]}
,

(3.12)

where we did not bother to write terms proportional to ϕ̂ because we only need those proportional
to ϕ̂∗ to calculate the condensate, and we used ϕ̂ = ϕ̂

∗ = 0 several times on terms where such
average responses field appear quadratically.3 This leads to an inverse bare Green function

G−1
0 = δ(t− t′)


0 0 0 −i∂t − Ω0

0 0 i∂t − Ω∗0 0
0 −i∂t − Ω∗0 2iDϕ∗ϕ∗ i (λ+ γ) + 2iDϕ∗ϕ

i∂t − Ω0 0 i (λ+ γ) + 2iDϕ∗ϕ 2iDϕϕ

 ,

where we introduced the complex parameter Ω0 = ω0 − i (λ− γ) /2, and ϕ̂ = 0 can be applied
also to the remaining terms linear in these fields when multiplying Greens functions with G−1

0

(these terms are still needed for the calculation of the condensate, though).
3 These terms may be discarded immediately since even after functional differentiation with respect to the average

response fields, they remain proportional to ϕ̂ = ϕ̂
∗

= 0.
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3.1 Dephasing and Enphasing

Next, we have to look at the quartic terms contributing to W (2), which to lowest non-trivial
order, that is, Hartree-Fock, amounts to keeping the so-called “double-bubble” diagram. It is here
where finally we have to keep track of time-ordering. It is neither feasible nor instructive to show
W (2) in full, as the full expansion will produce a plethora of terms differing only through their
time-ordering. Therefore, we simply illustrate how to deal with these. A typical term appearing in
the expansion will be

δφ̂∗(t++)δφ̂(t+)δφ(t−)δφ∗(t−−) = δφ̂∗(t+)δφ̂(t+) |δφ(t)|2 , (3.13)

where we have simplified the time arguments according to the rules stated above (the superscripts
may be shifted arbitrarily as long as the relative time-order of the adjoint fields is preserved). In
terms of Green functions, we then find

W (2)[G] = −iD

∫
d t

{
1

2

[ ∑
µ,ν=±

G41(tµ, t)G32(tν , t) + 4
(
G42(t, t) G31(t, t) +G43(t, t)G21(t, t)

)]

+
1

4

[ ∑
µ,ν=±

G32(tµ, t)G32(tν , t) + 4
(
G32(t+, t)G32(t−, t) +G22(t, t)G33(t, t)

)]

+
1

4

[ ∑
µ,ν=±

G41(tµ, t)G41(tν , t) + 4
(
G41(t+, t)G41(t−, t) +G11(t, t)G44(t, t)

)]

+
1

2

∑
µ=±

µ ·
(
G32(tµ, t) +G41(tµ, t)

)(
G43(t, t) −G21(t, t)

)
−1

4

∑
µ=±

µ ·
(
G42(tµ, t)G11(t, t) +G31(tµ, t)G22(t, t)

)}
.

This leads to a self-energy

Σ(t, t′) = 2i
δW (2)[G]

δG
= −2i · iD

2
δ(t− t′)

(
σφ,φ(t, t) σφ, φ̂(t, t)

σφ̂,φ(t, t) σφ̂, φ̂(t, t)

)
, (3.14)

where we ignore the influence of time-ordering (on δ(t− t′)), and

σφ,φ =

(
0 σφ, φ∗

σφ∗, φ 0

)
, σφ, φ̂ =

(
0 σφ, φ̂∗

σφ∗, φ̂ 0

)
,

σφ̂,φ =

(
0 σφ̂, φ∗

σφ̂∗, φ 0

)
, σφ̂, φ̂ =

(
G22(t, t) 2G21(t, t)− σφ, φ∗

2G21(t, t)− σφ∗, φ G11(t, t)

)
,

(3.15)

with components

σφ, φ∗ = σφ∗, φ = 1
2

(
G41(t−, t)−G41(t+, t) +G32(t−, t)−G32(t+, t)

)
= 1

2

(
GR(t, t−)︸ ︷︷ ︸

=−i

−GR(t, t+)︸ ︷︷ ︸
=0

+GA(t−, t)︸ ︷︷ ︸
=i

−GA(t+, t)︸ ︷︷ ︸
=0

)
= 0, (3.16)
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and

σφ, φ̂∗ = σφ̂∗, φ = 2
(
G41(t+, t) +G41(t−, t)

)
+G32(t+, t) +G32(t−, t) = −i,

σφ∗, φ̂ = σφ̂, φ∗ = 2
(
G32(t+, t) +G32(t−, t)

)
+G41(t+, t) +G41(t−, t) = i,

(3.17)

which nicely illustrates how time-ordering translates into an explicit evaluation of equal-time
advanced and retarded Green functions. Note that to arrive at these results, we used the definitions

G32(t, t′) = −i〈δφ3(t)δφ2(t′)〉 = −i〈δφ̂(t)δφ∗(t′)〉 = GA(t, t′),

G41(t, t′) = −i〈δφ4(t)δφ1(t′)〉 = −i〈δφ̂∗(t)δφ(t′)〉 = GR(t′, t),
(3.18)

and further properties of the Green functions at equal times, e.g. iG31(t, t) = 〈ϕ̂(t)ϕ(t)〉 = 0,
which is true because it relates to the equal-time commutator of two identical operators.

3.1.3 Equations of Motion

Moving forward to the results of the calculation, we find that we need to calculate4

δG−10

δϕ̂∗
(t, t′) = 2iD


0 0 δ(t− t′)ϕ∗(t′) δ±(t− t′)ϕ(t′)

0 0 δ±(t− t′)ϕ(t′)/2 0

δ(t− t′)ϕ∗(t′) δ±(t− t′)ϕ(t′)/2 0 0

δ±(t− t′)ϕ(t′) 0 0 0

 ,

where we have introduced the shorthand δ±(t− t′) = δ(t+ − t′) + δ(t− − t′). This allows us to
calculate the equation of motion of the condensate amplitude ϕ(t) by taking the derivative with
respect to the adjoint field ϕ̂∗, evaluating GR/A(t, t) as before:

0 = −2i
δΓ[ϕ,G]

δϕ̂∗
= −2i

δSK[ϕ]

δϕ̂∗
+ Tr

δG−1
0

δϕ̂∗
G

= −2i
δSK[ϕ]

δϕ̂∗
+

∫
dt̄ Tr

δG−1
0

δϕ̂∗
(t, t̄)G(t̄, t′)

= −2i
(
i∂t − ω0 + i

2 (λ− γ)
)
ϕ+ 2iDϕ∗ (G13(t, t) +G31(t, t))

+ iDϕ
[
GA(t+, t) +GA(t−, t) +GA(t, t+) +GA(t, t−)

]
+ 2iDϕ

[
GR(t+, t) +GR(t−, t) +GR(t, t+) +GR(t, t−)

]
= −2i

(
i∂t − ω0 + i

2 (λ− γ)
)
ϕ+ 2Dϕ.

(3.19)

4 Here, keep in mind Eq. (A.21).
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3.1 Dephasing and Enphasing

To find the Keldysh Green function GK(t, t′), we calculate

0 =

∫
dt̄
∑
k

[G−1
0 (t, t̄)−Σ(t, t̄)]4k[G(t̄, t′)]k2

=
(
i∂t − ω0 + i

2 (λ− γ)
)
GK(t, t′)

+ i
(
λ+ γ + 2Dϕ∗ϕ

)
GA(t, t′) + 2iDϕ2G42(t, t′)

−D
[
−iGK(t, t′) + 2GK(t, t)GA(t, t′) +G11(t, t)G42(t, t′)

]
.

(3.20)

In the “horizontal” direction, by taking the adjoint and switching the time arguments, we find

0 =
(
−i∂t′ − ω0 − i

2 (λ− γ)
)

(−GK(t, t′))

− i
(
λ+ γ + 2Dϕ∗ϕ

)
GR(t, t′)− 2iD

(
ϕ
∗)2 [G42(t′, t)

]†
−D

[
−iGK(t, t′)− 2GK(t′, t′)GR(t, t′) +

[
G11(t′, t′)G42(t′, t)

]†]
,

(3.21)

where we have used the Green-function identity GR(t, t′) = [GA(t′, t)]†. Adding Eqs. (3.20) and
(3.21) and taking t′ → t+, we obtain the equation of motion along the time diagonal as

0 = (i∂t + i (λ− γ))GK(t, t) + i
(
λ+ γ + 2Dϕ∗ϕ

) (
GA(t, t+)−GR(t, t+)

)
+2iDGK(t, t)−2DGK(t, t)

(
GA(t, t+)−GR(t, t+)

)
= (i∂T + i (λ− γ))GK(T, 0)−

(
λ+ γ + 2Dϕ∗ϕ

)
,

(3.22)

where we have used GA(t, t+)−GR(t, t+) = i. Eqs. (3.19) and (3.22) can now be rewritten as

ϕ̇ = −iω0ϕ−
1

2
(λ− γ + 2D)ϕ,

ĠK = − (λ− γ)GK − i
(
λ+ γ + 2D |ϕ|2

)
.

(3.23)

To make these expressions more physically transparent, we set ϕ(t) =
√

2N(t)eiθ(t) and
GK(t, t) = −i (2δN(t) + 1), where N and δN are the condensate and non-condensate occu-
pation, respectively.5 For these quantities, we finally obtain the simple equations

Ṅ = (γ − λ− 2D)N,

δṄ = γ (δN + 1)− λδN + 2DN,
(3.24)

5 This implies
√

2Ne
−iθ
ϕ̇ = Ṅ + 2iNθ̇, from which one can see that θ̇ = −ω0. The factor of two under the square

root is necessary to ensure number conservation in exchange with GK , which corresponds to symmetric or Wigner
operator ordering, yet without a factor of 1/2.
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which we may interpret as follows. Notice that for λ = γ = 0, which is the case of interest, we
have Ṅ + δṄ = 0. This tells us that the particles removed from (added to) the condensate go
to (come from) the non-condensate. On the one hand, for D > 0, which corresponds to phase
diffusion, the condensate is depleted and goes to an empty steady state. On the other hand, for
D < 0, the same is true of the non-condensate. The latter case mimics the enphasing scenario
described in [109, 110]. Thus we can conclude that while the total particle number is indeed
unaffected, the phase coherence of the condensate is either destroyed or enhanced.
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3.2 Fluctuation Damping of Isolated, Oscillating Bose-Einstein Condensates

Figure 3.2: Strongly damped Bose-Josephson oscillations as observed in experiment B [116]. For more
details, see also [117].

3.2 Fluctuation Damping of Isolated, Oscillating Bose-Einstein
Condensates

As experimental systems almost ideally separated from the environment, ultracold atomic gases
may serve as a prototype of closed quantum systems out of equilibrium. Discussing such systems
is only superficially not in line with studying open quantum systems. The question we want to pose
in this Sec. is rather how an isolated quantum system may still show signs of dissipation? However,
we will not touch upon the fundamentals of this question, but merely refer to a known route to
dissipative effects in condensate dynamics, which is to include fluctuations and interaction effects
beyond the Hartree-Fock-Bogoliubov (HFB) approximation. The excitation of non-condensate
quasiparticles can then lead to a damping of oscillatory condensate dynamics [108, 113, 114].

Furthermore, the analysis of Ref. [35], on which this Sec. is based, was restricted to demon-
strating in some quantitative detail that many quasiparticles are created in a specific experimental
setting, without actually taking interactions into account beyond the HFB approximation, which is
ultimately Markovian and thus cannot account for effects of dissipation [113].

The experiments by Albiez et al. [115] clearly displayed undamped dynamics for extended
periods of time (Fig. 3.3). In contrast to this, the experiment in question here is the experimental
setting by LeBlanc et al. [116], where strong damping of the so-called Bose-Josephson oscillations
was observed (Fig. 3.2). In the following, we will refer to these two as experiments A and B,
respectively. As detailed in Ref. [117], the reason for the observed damping remained unexplained
at the time. Ref. [35] addressed this open problem and, thereby, contributed to understanding the
role played by the trap geometry in creating fluctuations. A brief introduction to Bose-Josephson
junctions will be given next. Notice that parts of the work presented in this Chp. are taken from
Ref. [35], of which the author of this thesis is the first author.
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Figure 3.3: Undamped Bose-Josephson oscillations as observed in experiment A [115]. A sketch of the
double-well potential and the localized left and right wavefunctions can be seen at the top.

3.2.1 Bose-Josephson Junctions

Classically, no current will flow between two conducting pieces of material when they are separated
by an insulator. Cooled down into the superconducting regime, however, the coherence length of
the quantum mechanical wavefunction may become large enough to “leak” through the insulator
into the other piece of superconductor, thus creating an overlap that leads to a finite tunneling
probability of the Cooper pairs. This is known as the Josephson effect [118]. A similar effect can
occur when two ultracold atomic Bose-Einstein condensates are separated by a potential barrier
[119]. If the barrier is low, the two coherent matter waves localized in either well also possess an
overlap that induces a tunneling matrix element. The resulting Bose-Josephson oscillations have
been observed in a number of experiments [115, 116, 120].

The paradigmatic model for this system is the two-mode approximation, which was proposed
in Ref. [121] and has been widely investigated [122–136]. Despite its seeming simplicity, due
to non-linearity it gives rise to a variety of interesting physical effects beyond Bose-Josephson
oscillations, the most prominent of which is macroscopic quantum self-trapping (MQST) [122].
As recapitulated in App. C, its phase-space structure also enables the appearance of so-called
π-oscillations [124]. An interesting description in terms of phase-space methods has been given
in Ref. [134]. In the context of the two-mode approximation, it has been noted how a dynamical
instability can give rise to significant contributions beyond mean-field even when the condensate
occupation is large [130, 131]. As shown in detail in App. C, this is due to a critical slowing
down brought about by the repulsive interaction between the atoms. A soft mode, however,
is not observed in either of the two experiments in question. This mechanism can, therefore,
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3.2 Fluctuation Damping of Isolated, Oscillating Bose-Einstein Condensates

Figure 3.4: Sketch of the x-components of the eigenfunctions ψ(r) = ψ(x)ψ(y)ψ(z) of a symmetric,
separable double-well potential Vext(r) = V (x) + V (y) + V (z). The potential along the x-direction, V (x),
is indicated as a solid (black) line.

not be responsible for the presumed excitation of quasiparticles in experiment B. One possible
way of going beyond the standard two-mode approximation is described in [135]: instead of
computing the eigenmodes of the external trap, a renormalization by an effective interaction is
taken into account, which leads to an “improved two-mode model”. While we do take similar
non-local coupling terms into consideration, another way to model the experiments without solving
a fully space-dependent problem is to increase the number of trap eigenmodes beyond two. This
possibility is also discussed in [135]. In contrast to their approach, however, we will work with the
unrenormalized trap eigenstates. Hence, a first step beyond the two-mode model is to investigate a
three-mode approximation more closely. The stability analysis of an according system is also given
in App. C. Another model related yet different from ours was studied in Ref. [137]. In the end, a
realistic description of the early dynamics of the experiments requires to take even more modes into
account. The three-mode approximation still provides an idea of how the creation of quasiparticles
may occur without critical slowing down in the observed Bose-Josephson oscillations.

3.2.2 Quantum Field Theory of a Trapped Bose Gas

There are two standard approaches to the description of the non-equilibrium dynamics of ultracold
bosonic atoms. The first is operator-based and starts from the Heisenberg equation for the field
operator [138]. The second is via quantum field theory and the corresponding coherent-state path
integral [81], which is the approach we are going to present here. For the exemplary case of the
two-mode approximation, in App. C we fall back on the operator-based approach to verify the
results we derived from quantum field theory. Accordingly, we begin with the action S for a
trapped, atomic Bose gas with a contact interaction, which reads

S
[
ψ,ψ∗

]
=

∫
d3rdt

[
ψ∗(r, t)G−1

0 (r, t)ψ(r, t)− g̃

2
ψ∗(r, t)ψ∗(r, t)ψ(r, t)ψ(r, t)

]
. (3.25)
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We have introduced the complex bosonic field ψ(r, t), the coupling parameter g̃ = 4π~2as/m
proportional to the s-wave scattering length as [139, 140], and the inverse bare Green function

G−1
0 (r, t) = i∂t −

(
−~2∇2/2m+ Vext(r)

)
, (3.26)

where Vext(r) is the external trapping potential to which the atoms are confined. The spatial
dependence of the field ψ(r, t) may now be resolved into the complete, orthonormal basis of single-
particle eigenfunctions of the trap [114], which we write as {ψs(r), ψa(r), ψ3(r), ψ4(r), . . . }.
The bosonic field hence becomes

ψ(r, t) = ψs(r)φs(t) + ψa(r)φa(t) +

M∑
m=3

ψm(r)φm(t), (3.27)

with time-dependent complex amplitudes φs, a(t) and φm(t). The parameterM designates the num-
ber of modes to be taken into account. The wavefunctions ψi(r) are the solutions of the stationary
Schrödinger equation with the potential Vext(r). Their eigenfrequencies are {εs, εa, ε3, ε4, . . . }.
The wavefunctions ψs(r) and ψa(r) are the two lowest eigenfunctions of Vext(r). As sketched in
Fig. 3.4, they extend over both wells and have even (s) and odd (a) parity, respectively. In view of
the anticipated dynamics with different occupation numbers in the two wells, it is useful to define
the superpositions ψ1,2(r) = [ψs(r) ∓ ψa(r)]/

√
2, since these are localized in the left or right

well, respectively (s. Fig. 3.4). With the expansion (3.27), the action takes the form S = S0 + Sint.
The quadratic and interacting parts are

S0 =

∫
dt

{
M∑
i=1

[
φ∗i (t) (i∂t − εi)φi(t)

]
− J

[
φ∗1(t)φ2(t) + φ∗2(t)φ1(t)

]}
, (3.28)

Sint = −1

2

M∑
i,j,k,l=1

Uijkl

∫
dt φ∗i (t)φ

∗
j (t)φk(t)φl(t), (3.29)

respectively, where φ1, 2(t) are the antisymmetric and symmetric superpositions of the time-
dependent field amplitudes φs,a(t), respectively. In this mode representation, the spatial depend-
ence of the Bose field ψ(r, t) is absorbed into overlap integrals according to

εi =

∫
d3r ψi(r)

(
−~2∇2

2m
+ Vext(r)

)
ψi(r), (3.30a)

J =

∫
d3r ψ1(r)

(
−~2∇2

2m
+ Vext(r)

)
ψ2(r), (3.30b)

Uijkl =g̃

∫
d3r ψi(r)ψj(r)ψk(r)ψl(r), (3.30c)

where without loss of generality the eigenfunctions ψi(r) are chosen real. Note that ε1 = ε2 =
(εs + εa) /2 and J = (εs − εa) /2, and that the hybridizing bare Josephson coupling J < 0 exists
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only between the two localized lowest modes ψ1(r) and ψ2(r), while the modes with i ≥ 3 are
mutually orthogonal eigenmodes of the trap. For the symmetric double-well, the zero of energy
may be defined as ε1 = ε2 = 0. For M → ∞, the representation in terms of the single-particle
trap eigenmodes defined by Eqs. (3.28), (3.29) and (3.30) is exact. Numerically, the decomposition
in Eq. (3.27) is akin to a Galerkin method: replacing the space-dependence by summations over
eigenfunctions leads to a significant simplification of the numerical initial-value problem when
truncating the decomposition at a finite value of M .

For experiment A [115], four modes were found to be sufficient to produce good agreement
with the experimental data. Furthermore, the Josephson oscillations remained stable over the
period of experimental observation. For experiment B [116], on the contrary, we found that at least
six modes are relevant for the dynamics, and that the resulting Josephson oscillations are indeed
unstable.

3.2.3 Experimental Trapping Potentials & Computation of Parameters

The trapping potential employed in experiment A is given by

VA(r) =
m

2

[
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
]

+
V0

2

[
1 + cos

(
2πx

d

)]
, (3.31)

where the frequencies can be found in Ref. [115]. Since a Hamiltonian with this potential is
separable, the eigenfunctions are products of the eigenfunctions in each spatial dimension. Hence,
the diagonalization of the non-interacting trap system reduces to three separate diagonalizations,
which can be performed by applying standard library methods (e.g. Ref. [141]), yielding all
eigenvalues and eigenfunctions of the trap. The confining potential of experiment B [116] is more
involved and reads

VB(r) = m′F~

√
δ(r)2 +

(
µBgFBRF,⊥(r)

2~

)2

+
m

2
ω2
yy

2. (3.32)

where definitions and parameters are given in [116]. Since Eq. (3.32) is not separable along
the spatial axes, the Hamiltonian dimension is too large for direct numerical diagonalization.
In order to be as close to the actual experiment as possible, one should not approximate VB(r)
by an expression that would be easily accessible numerically. Therefore, one has to resort to
an algorithm that can handle very large matrices, such as the Jacobi-Davidson algorithm [142].
Furthermore, it is crucial to have a precise starting guess for the initial vector spanning the search
subspace. A working practice is to use a library method [141] to obtain a coarse-grained guess
from direct diagonalization and to interpolate this guess to twice the precision, which can then
be used as a starting vector for the Jacobi-Davidson algorithm to retrieve the actual vector at the
doubled resolution. In combination with a sparse-matrix class, this procedure achieves the desired
performance, that is, one can obtain about ten states for resolutions of up to N = 100 grid points
in three dimensions. The separable potential VA(r) can moreover be used to confirm the accuracy
of the algorithm.
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Experiment N z N1 N2 N3 N4 N5 N6

A 1150 0.290 742 408 0 0 – –
B 4500 0.116 2436 1914 75 75 0 0

Table 3.1: Occupation numbers at time t = 0 used for the numerical calculations.

3.2.4 HFB Equations in Multi-Mode Approximation

Instead of repeating the derivation of the equations of motion for the present problem, we point to
the previous Sec. 3.1 and remark that the derivation follows along the very same lines when the
dissipative D-vertices are replaced by the Uijkl. Furthermore, this derivation is performed with
all details in paragraph C.1.6 of App. C for the two-mode approximation. To facilitate a compact
notation, it is useful to introduce the following matrix in “Bogoliubov” space,

GK
ij (t, t′) =

(
Gij(t, t

′) gij(t, t
′)

−g∗ij(t, t′) −G∗ij(t, t′)

)
= −i

(
〈δφi(t)δφ∗j (t′)〉 〈δφi(t)δφ∗j (t′)〉
〈δφ∗i (t)δφ∗j (t′)〉 〈δφ∗i (t)δφj(t′)〉

)
,

(3.33)

where we have dropped the “Keldysh” superscript in the matrix components. In terms of the
latter, the multi-mode Gross-Pitaevskii equation in trap eigenbasis, modified by the coupling to the
non-condensate part, becomes

0 =
(
iδij∂t − hij

)
ϕj −

Uijkl
2

[
ϕ
∗
jϕkϕl + iϕ∗jgkl(t, t)

+iϕkGjl(t, t) + iϕlGjk(t, t)
] (3.34)

where the summation over repeated indices is implied. Since we are working in Hartree-Fock
approximation, both the inverse propagator and the self-energy are local in time. Dropping the
Keldysh self-energy component from the infinitesimal damping formally required to regularize the
dynamics, we can write the Dyson equations for the Keldysh Green functions as

0 =

∫
dt̄ δ(t− t̄)

{[
GR

0

]−1

ij
(t)−ΣR

ij(t)

}
GK
jk

(
t̄, t′
)
. (3.35)

The bare inverse retarded Green function and the retarded self-energy read[
GR

0

]−1

ij
(t) =

(
iδij∂t − hij 0

0 −iδij∂t − hij

)
,

ΣR
ij(t) =

(
Σij(t) σij(t)
σ∗ij(t) Σij(t)

)
,

(3.36)
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where the components are

Σij(t) = Uijkl
[
ϕ
∗
k(t)ϕl(t) + iGkl(t, t)

]
, (3.37a)

σij(t) =
Uijkl

2
[ϕk(t)ϕl(t) + igkl(t, t)] . (3.37b)

Note that we included the “mass terms” proportional to the condensate fields in the self-energy
instead of the inverse propagator. Finally, the equations of motion for the Keldysh components
become

0 =
(
iδij∂t − hij − Σij(t)

)
Gjk(t, t

′) + σij(t)g
∗
jk(t, t

′) (3.38a)

0 =
(
iδij∂t − hij − Σij(t)

)
gjk(t, t

′) + σij(t)G
∗
jk(t, t

′). (3.38b)

Looking to Eq. (3.34), we see that it is sufficient to solve for Gij and the anomalous gij in the
equal-time limit, which as before can be obtained by combining Eqs. (3.38) with their adjoint
counterparts. The initial conditions for the dynamical problem specified by Eqs. (3.34) and (3.38)
are now chosen such that all non-condensate contributions vanish, while the condensate occupations
and phases as well as the interaction parameters are determined by the respective experiment.
Before going over to the results, it is useful to define the population imbalance

z(t) =
|ϕ1|2 − |ϕ2|2

|ϕ1|2 + |ϕ2|2
(3.39)

for the two condensates localized in the left and right potential well. This is the main quantity
measured in the experiments (cf. Figs. 3.2 and 3.3). As in our previous discussion of de- and
enphasing, we also have a non-condensate part

δN(t) =
M∑
i=1

1

2
(iGii(t, t)− 1) , (3.40)

which can be used as a proxy for the stability of the condensate part. In contrast to the scenario
described in 3.1, in a closed system there is no externally induced dephasing. We understand from
the investigation of the two-mode approximation in C.1, however, that a dynamical instability can
essentially have the same effect and also lead to “decoherence” [131]. In a system with more than
two modes, moreover, there is the possibility of having one frequency going soft while others
remain finite. In the three-mode system of Sec. C.2, the instability of the system is due to the
renormalized single-particle energy ε̃3 coming close to the effective Josephson frequency ω̃J , an
effect that can be understood as an instance of parametric resonance. The renormalized Josephson
oscillations turn out to be rapid enough to excite the quasiparticles of the third mode even when
these also receive an energy shift due to their interaction with the two localized condensates.
This puts us in a position to appreciate how damping due to quasiparticles could occur in the
experiments of Ref. [116] without any observed slowing down of the Josephson frequency. The
non-linearity in conjunction with any specific trap can result in an (undesired) instability of the
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Figure 3.5: Population imbalance z(t) and relative fraction of fluctuations δN(t)/N for experiment A (left)
and B (right). The experimental data points (black circles) are taken from Refs. [115] and [116], respectively.
The initial conditions and parameters for the calculations are listed in Tab. 3.1 and Ref. [35].

ground state of interest, which in double-well experiments is always embodied by the two left-
and right-localized modes. Since, in the trap-eigenmode picture, these two states always couple to
higher excited states, the two-mode approximation can become inadequate.

3.2.5 Comparison with Experiments

To examine how experiments A and B fit into the resonance scenario described above, in Fig.
3.5 we present the results of our computations for experiment A with M = 4 modes included,
while for experiment B we took M = 6 modes into account. For the former, the agreement with
the experiment is very good regarding both the frequency and the amplitude of the Josephson
oscillations. The fraction of fluctuations remains below 10%, indicating that this experimental setup
is away from the resonance discussed above. Note that there is no fitting of parameters involved.
For experiment B, we assume a small initial condensate occupation of the modes m = 3, 4, as
listed in Tab. 3.1, because of the small excitation energy of these modes with regard to the larger
interaction parameters. Here, the agreement with experiment is quantitatively acceptable only for
short times. At the point where the agreement starts to decrease, our results show a fast and efficient
excitation of fluctuations, which indicates that this experimental setup is in the resonant regime.
Importantly, we find that the efficient creation of fluctuations for the parameters of experiment B is
robust, independent of the small condensate occupation of the modes with m = 3, 4 as well as the
precise value of N . The reason for the reduced quantitative agreement with experiment can indeed
be understood from the behavior of the fluctuation fraction. In the lower right panel of Fig. 3.5, the
departure of the theoretical results from the experimental data is significant for times when the
non-condensate fraction δN(t)/N is large, which indicates that the HFB approximation employed
in this Sec. is not sufficient and higher-order corrections should be included to account for the
inelastic collisions of quasiparticles. Beyond-HFB diagrammatics will be of importance in Chp. 5.
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CHAPTER 4

Second-Order Correlation Functions of Photon
Bose-Einstein Condensates

Physical systems in thermal equilibrium are well understood. Natural systems, and in particular
organic matter, however, are seldomly found in conditions of thermal equilibrium. Rather, there is
energy going into the system via certain processes and energy going out of the system via others.
This energy flow drives the system away from equilibrium. Earth is the most prominent example of
such a non-equilibrium system: energy enters it in the form of visible light from the sun and is later
on radiated away in the infrared. As a matter of fact, photon condensates are closely analogous:
light of a shorter wavelength excites the organic dye molecules and is converted into photons of
longer wavelength before it leaves the cavity.

For systems in thermal equilibrium, the machinery of equilibrium statistical mechanics allows
one to calculate straightforwardly, for instance, the spectral intensity distribution of a photon gas.
As we have seen in paragraph 1.1.1, this results in a Bose-Einstein distribution. In non-equilibrium
scenarios where Boltzmann’s considerations no longer apply (cf. the introduction to Sec. 1.1),
however, an equally general formalism does not exist. As we remarked in paragraph 2.1.3, one
consequence of this is that in non-equilibrium quantum field theory, the statistical function is no
longer fixed to the Bose distribution function but becomes a degree of freedom on the same footing
as the spectral function. To bridge the gap between well-understood equilibrium and still largely
unexplored non-equilibrium phenomena, it seems reasonable to start by investigating a system as it
is gradually driven away from equilibrium. In this respect, the photon BEC holds an ideal position
because it can be operated both very close and further away from equilibrium. Though it is in
fact never in a perfect thermal equilibrium state, it reliably undergoes Bose-Einstein condensation,
which remains true even as the system is driven more strongly. As we will see in the following, the
earliest signs of the non-equilibrium character of the driven-dissipative photon gas do not manifest
in the spectral intensity distribution but in the time dependence of the intensity fluctuations. The
energy flow through the system makes it non-Hermitian and induces a novel driven-dissipative
transition in the second-order coherence of the photon condensate characterized by the appearance
of an exceptional point. If only the static intensity spectrum was considered, this transition would
go unnoticed, as would the fact that the system is not truly in equilibrium.
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Chp. 4 is organized as follows. After introducing the non-equilibrium model of the photon
condensate in Sec. 4.1 by deriving it from a microscopic Hamiltonian via a polaron transformation
and the Born-Markov approximation, we describe the methods required to study second-order
correlation functions in Sec. 4.2 and also present some illustrative solutions. Finally, in Sec. 4.3
we apply the developed methods to understand the experimental data. Notice that parts of the work
presented in this Chp. are taken from Ref. [36], of which the author of this thesis is a co-author.

4.1 Non-Equilibrium Model of the Photon BEC
As mentioned above, the photon BEC is not a closed system: the cavity mirrors are not perfect, for
which reason the photons do not stay inside the cavity indefinitely, which in turn necessitates the
introduction of an external optical pumping to supply excitations to the system. Furthermore, the
quantum efficiency of the dye molecules only amounts to about 95%, which means that a fraction
of the absorbed photons will not be re-emitted. For all of these reasons, the photon BEC should be
modeled as an open system. The cavity loss, the optical pumping, and the electronic loss due to
imperfect quantum efficiency can be described within the previously encountered framework of
the master equation, as was done in Ref. [16] for the first time. A more detailed discussion of the
same model may be found in [17].

The Franck-Condon principle was discussed in the introduction (cf. 1.3.1) as the physical
foundation of the interaction between the photons and dye molecules. We understood in broad
terms how the molecular vibrations alter the electronic transition frequency: insufficient or excess
energy of an incoming photon may be compensated by destruction or creation of a corresponding
amount of phonons. A two-level system with a similarly “fluctuating” transition frequency is
described in Ref. [15] by means of the modified Jaynes-Cummings Hamiltonian

HX = ω0a
†a+ g

(
a†σ− + aσ+

)
+

∆

2
σz +

1

2
X(t)σz, (4.1)

whereX(t) is a fluctuating quantity. The model in Ref. [16] is now a physically motivated alteration
of the Hamiltonian (4.1). Since the fluctuations of the dye-molecule transition are generated by the
phonon coupling, a promising idea is to replace X(t) by some function of the phonon operators.
The question then is of course: which function? The physics of the Franck-Condon principle
provides the answer. As we learned above, the equilibrium positions of the constituent atoms in
the dye molecules depend on the electronic state. When an electronic transition takes place, the
atoms are suddenly in a non-equilibrium state and begin to vibrate. If one idealizes these molecular
vibrations with the help of a single phonon mode per molecule with operators bm and b†m, this
means that the rest position of the phononic oscillator should be coupled to the electronic transition,
which suggests the following Hamiltonian [16, 143] for a collection of M molecules and multiple
cavity modes:

H =
∑
k

ωka
†
kak+

M∑
m=1

[
∆

2
σzm + Ω b†mbm + Ω

√
S σzm

(
bm + b†m

)
+ g

∑
k

(
akσ

+
m + a†kσ

−
m

)]
.

(4.2)
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The cavity-photon modes with transverse dispersion ωk are represented by the bosonic operators
ak and a†k. The vibrational states of dye molecule m have an oscillator frequency Ω. The electronic
two-level system of molecule m is described by the Pauli matrix σzm and raising/lowering operators
σ±m, the electronic transition frequency being ∆. The Franck-Condon coupling is parametrized by
the so-called Huang-Rhys parameter S, where the phonon position operators are x̂m ∼ (bm + b†m).
Since σzm = σ+

mσ
−
m − σ−mσ

+
m, the effect of this term will be a displacement of the phononic

oscillator with the sign depending on whether the molecule is in the electronic ground or excited
state. The effect of having several vibrational modes is discussed in [17].

For the rest of this Sec., we will follow [15–17, 19] in developing the Hamiltonian (4.2) into a
description of the open-system dynamics of the photon BEC. The first step is to make a polaron
transformation to deal with the potentially strong Franck-Condon coupling parameterized by S.
After that, the second step is to derive a master equation by treating the phonons as a bath to which
the system is weakly coupled via the optical transition parameter g.

4.1.1 Polaron Transformation

In this paragraph, we will perform an exemplary polaron transformation on the Hamiltonian

H̃ = ω0a
†a+ Ωb†b+

∆

2
σz + g

(
aσ+ + a†σ−

)
+ Ω
√
Sσz(b+ b†) (4.3)

from which the analogous transformation of the Hamiltonian (4.2) may be obtained straightfor-
wardly. The polaron transformation is defined via the unitary operator

Û = exp
{
−
√
Sσz

(
b† − b

)}
. (4.4)

As this expression suggests, it is designed to undo the shift proportional to the phonon position
operator. To apply it to the present case, we need to calculate the action of Û on the separate terms
in the Hamiltonian by means of a commutator expansion,1 i.e.

Û †σzÛ = σz +
√
S
(
b† − b

)
[σz, σz] + ... = σz,

Û †σ±Û = σ± +
√
S
(
b† − b

)
[σz, σ±] + ...

= σ± ± 2
√
S
(
b† − b

)
σ± +

1

2!

(
2
√
S
(
b† − b

))2
σ± ± ...

= σ± exp
{
±2
√
S
(
b† − b

)}
,

Û †bÛ = b+
√
Sσz[b† − b, b] + ... = b−

√
Sσz.

(4.5)

From the last line, we can also see that Û †b†Û = b† −
√
Sσz . This implies Û †b†bÛ =

Û †b†Û Û †bÛ = b†b −
√
Sσz

(
b+ b†

)
+ S · 1. By construction, the second term will exactly

cancel the Franck-Condon coupling proportional to Ω
√
S. For the total Hamiltonian, dropping the

1
e
Ŝ
X̂ e
−Ŝ

= X̂ + [Ŝ, X̂] + 1
2!

[Ŝ, [Ŝ, X̂]] + ...
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constant, we come out with

Û †H̃Û = ω0a
†a+ Ωb†b+

∆

2
σz + g

(
aσ+D̂(2

√
S) + a†σ−D̂(−2

√
S)
)
, (4.6)

where D̂(α) = exp {αb† − α∗b} is the displacement operator of the phonon mode. Going back to
the general Hamiltonian (4.2), by sequentially applying Ûm = exp {−

√
Sσz(b†m − bm)} to each

molecule, we find Û †mHÛm = HS +HR + VRS , where the system part reads

HS =
∑
k

ωka
†
kak +

M∑
m=1

∆

2
σzm, (4.7)

the reservoir part is HR =
∑M

m=1 Ω b†mbm, and the system-reservoir coupling becomes

VRS = g
∑
k

M∑
m=1

(
akσ

+
mD̂m(2

√
S) + a†kσ

−
mD̂m(−2

√
S)
)
, (4.8)

with the displacement operators D̂m being defined analogously to before. The presence of these
operators changes the former Jaynes-Cummings coupling into an interaction where the emission
and absorption of photons is accompanied by potentially multiple creation and destruction events
of vibrational quanta. Since VRS is proportional to g, in its new form the Hamiltonian lends itself
to a perturbative expansion along the lines of paragraph 1.5.3.

4.1.2 Removal of First-Order Contribution

Assuming a thermal reservoir density matrix at inverse temperature β, one may use the identity
[19]

〈D̂(α)〉R = exp

{
−|α|

2

2
coth

βω

2

}
, (4.9)

which holds for the harmonic oscillator with frequency ω, to calculate

〈D̂m(±2
√
S)〉R = exp

{
−2S coth

βΩ

2

}
. (4.10)

where 〈X〉R = TrRXρR. In analogy to a proper cumulant expansion, this first-order average
ought to be factored out of the perturbative expansion [19]. Note that this step was not discussed in
Ref. [16]. Hence, we introduce a constructive zero and write

D̂m(2
√
S) = D̂m = (D̂m − 〈D̂m〉R) + 〈D̂m〉R,
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and define the coherent term

Hcoh = gβ
∑
k

M∑
m=1

(
akσ

+
m + a†kσ

−
m

)
, (4.11)

with the thermally averaged coupling constant gβ = g exp {−2S cothβΩ/2}. This term would
have to be added to the system part of the total Hamiltonian. However, since the experiments
relevant to this Chp. operate in the regime gβ/g � 1 [19], and the detunings are very large
compared to the coherent coupling, |ωk − ∆| � g, the cavity mode effectively couples to the
molecules only incoherently via the Lindblad operators to be derived below. Therefore, the
contribution of Hcoh can be neglected, which then agrees with the approach of [16].

4.1.3 Cavity Loss, Optical Pumping and Imperfect Quantum Efficiency

Assuming that the photons and the molecules are coupled to external baths that do not influence
each other, we can include the discussed processes of cavity loss κ, external optical pumping Γ↑,
and imperfect quantum efficiency Γ↓, by writing down the master equation [16, 19]

ρ̇(t) = −i[HS +HR + VRS , ρ(t)] +
∑
k

κ

2
L[ak]ρ(t) +

M∑
m=1

[
Γ↑
2
L[σ+

m] +
Γ↓
2
L[σ−m]

]
ρ(t),

(4.12)

where the Lindbladians are defined as L[L]ρ(t) = 2Lρ(t)L† − {L†L, ρ(t)}. This assumes the
cut-off frequency of the cavity to be so large that the surrounding electromagnetic environment
may be considered to be at zero temperature.

4.1.4 Born-Markov Approximation

Continuing with our discussion of the Hamiltonian part

H=HS +HR + g
∑
k

M∑
m=1

[
akσ

+
m

(
D̂m(2

√
S)− 〈D̂m〉R

)
+ a†kσ

−
m

(
D̂m(−2

√
S)− 〈D̂m〉R

)]
,

we are now ready for the perturbative treatment in the weak optical coupling g. As underlined
once more by the form in which we have written the Hamiltonian, the phonons play the role of the
reservoir. The first step is to transform VRS to the interaction picture with respect to HS +HR. For
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the sake of completeness, note that the interaction picture of the phonon annihilation operator is

1

2
√
S

eiΩb
†
mbm bm e−iΩb

†
mbm = bm + iΩt[b†mbm, bm] +

(iΩt)2

2!
[b†mbm, [b

†
mbm, bm]] + ...

= bm − iΩtbm +
(iΩt)2

2!
bm − ...

= bm

∞∑
k=0

(−iΩt)k

k!
= bm e−iΩt .

(4.13)

To find the interaction picture of the displacement operator, one may perform

eiΩb
†
mbm

(
b†m − bm

)k
e−iΩb

†
mbm =

(
eiΩb

†
mbm

(
b†m − bm

)
e−iΩb

†
mbm

)k
=
(
b†m eiΩt−bm e−iΩt

)k
,

from which one obtains

eiΩb
†
mbm D̂m(±2

√
S) e−iΩb

†
mbm = D̂m(±2

√
S eiΩt).

For the Pauli matrices, one generally has

ei∆tσ
z
/2 σ± e−i∆tσ

z
/2 = diag(ei∆t/2, e−i∆t/2)σ± diag(e−i∆t/2, e+i∆t/2) = e±i∆t σ±.

In total, these considerations yield the interaction picture of the system-reservoir coupling as

VI(t) = g
∑
k

M∑
m=1

[
e−iδkt akσ

+
m

(
D̂m(2

√
S eiΩt)− 〈D̂m〉R

)
+ eiδkt a†kσ

−
m

(
D̂m(−2

√
S eiΩt)− 〈D̂m〉R

)]
,

(4.14)

where we have introduced the detuning between cavity mode k and dye molecules as δk = ωk−∆.
Performing the perturbative expansion to second order in g, the master equation for the system
density matrix then requires the evaluation of

TrR [VI(t)ρI(0)] = TrR [VI(t)ρR ⊗ ρS(0)]

= g
∑
k

M∑
m=1

(
e−iδkt〈D̂m(t)− 〈D̂m〉R〉R [akσ

+
m, ρS(0)]

+ eiδkt〈D̂†m(t)− 〈D̂m〉R〉R [a†kσ
−
m, ρS(0)]

)
= 0,

(4.15)

76



4.1 Non-Equilibrium Model of the Photon BEC

which is zero per construction and where one should keep in mind that generally, the partial trace
of a commutator need not be zero. We also need to evaluate∫ ∞

0
dτ TrR [VI (t) , [VI (t− τ) , ρI(t)]]

=

∫ ∞
0

dτ TrR

{
VI(t)VI(t− τ)ρI(t)− VI(t)ρI(t)VI(t− τ)

− VI(t− τ)ρI(t)VI(t) + ρI(t)VI(t− τ)VI(t)
}

= g2
∑
k, l

M∑
m,n=1

∫ ∞
0

dτ Vklmn(t, t− τ),

(4.16)

with

Vklmn(t, t− τ) = e−iδkt eiδl(t−τ)
(
〈D̂m(t)D̂†n(t− τ)〉R − 〈D̂m〉2R

)
akσ

+
ma
†
lσ
−
n ρS(t)

− e−iδkt eiδl(t−τ)
(
〈D̂†n(t− τ)D̂m(t)〉R − 〈D̂m〉2R

)
akσ

+
mρS(t)a†lσ

−
n

+ eiδkt e−iδl(t−τ)
(
〈D̂†m(t)D̂n(t− τ)〉R − 〈D̂m〉2R

)
a†kσ

−
malσ

+
n ρS(t)

− eiδkt e−iδl(t−τ)
(
〈D̂n(t− τ)D̂†m(t)〉R − 〈D̂m〉2R

)
a†kσ

−
mρS(t)alσ

+
n

+ e−iδk(t−τ) eiδlt
(
〈D̂m(t− τ)D̂†n(t)〉R − 〈D̂m〉2R

)
ρS(t)akσ

+
ma
†
lσ
−
n

− e−iδk(t−τ) eiδlt
(
〈D̂†n(t)D̂m(t− τ)〉R − 〈D̂m〉2R

)
akσ

+
mρS(t)a†lσ

−
n

+ eiδk(t−τ) e−iδlt
(
〈D̂†m(t− τ)D̂n(t)〉R − 〈D̂m〉2R

)
ρS(t)a†kσ

−
malσ

+
n

− eiδk(t−τ) e−iδlt
(
〈D̂n(t)D̂†m(t− τ)〉R − 〈D̂m〉2R

)
a†kσ

−
mρS(t)alσ

+
n ,

(4.17)

where we have dropped anomalous contributions.2 Since the dye molecules are solved in water
at room temperature, we assume there are no correlations between the vibrations of different
molecules, such that only those contributions to Eq. (4.16) survive which have n = m. Furthermore,
it is helpful to employ the secular approximation [18], which in the present case means to discard
all terms with k 6= l since they oscillate with exp {±i (ωk − ωl) t} in the interaction picture. To
evaluate the reservoir expectation values in Eq. (4.16), we need the commutator

[eiΩt b†m − e−iΩt bm, e
−iΩ(t−τ) bm − eiΩ(t−τ) b†m] = − eiΩτ + e−iΩτ = −2i sin Ωτ . (4.18)

2 Pay attention to how every second line, with the occurrence of the jump terms, the two displacement operators switch
positions compared to the previous line. This comes from the cyclic property of the trace over the reservoir.
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Then

D̂m(t)D̂†m(t− τ) = exp
{

2
√
S
(

eiΩt b†m − e−iΩt bm

)}
× exp

{
−2
√
S
(

eiΩ(t−τ) b†m − e−iΩ(t−τ) bm

)}
= exp

{
2
√
S
[(

eiΩt− eiΩ(t−τ)
)
b†m − c.c.

]
− 4iS sin Ωτ

}
= D̂m

(
2
√
S eiΩt

(
1− e−iΩτ

))
exp {−4iS sin Ωτ},

and from Eq. (4.9)

〈D̂m(t)D̂†m(t− τ)〉R = exp

{
−4S

[
(1− cos Ωτ) coth

βΩ

2
+ i sin Ωτ

]}
= 〈D̂†m(t)D̂m(t− τ)〉R.

(4.19)

The right-hand side of the master equation then involves the integral

K(δ) = g2
∫ ∞

0
dτ eiδτ

(
exp

{
−4S

[
(1− cos Ωτ) coth

βΩ

2
+ i sin Ωτ

]}

− exp

{
−4S coth

βΩ

2

}) (4.20)

where, contrary to Refs. [15, 16], the molecular driven-dissipative contributions to the master
equation (4.12) are not incorporated as a convergence factor exp

{
−
(
Γ↑ + Γ↓

)
τ/2
}

.3 The reason
is that for the weak external pumping employed in the experiments discussed below, the influence
of the rapid relaxation of the reservoir on the broadening of the molecular spectrum described by
K(δ) is much larger than any additional broadening due to Γ↑,↓. It is, therefore, valid to assume

3 Regarding the derivation of this factor, Ref. [15] quotes the one given in [144]. Apart from the natural emergence
of this factor in the framework of Chp. 5, another way to derive it could be via quantum Langevin equations. From
paragraph 1.5.2 we know the quantum Wiener processes

dσ
±
m = −i[σ

±
m, HS ]dt−

Γ↑ + Γ↓
2

σ
±
mdt+

√
Γ↑,↓[σ

±
m, σ

∓
m]dWm +

√
Γ↓,↑dW

†
m[σ

∓
m, σ

±
m], (4.21)

where we have used the symbol Wm(t) instead of B(t), or the corresponding quantum Langevin equations

σ̇
±
m(t) = ±i∆σ

±
m(t)−

Γ↑ + Γ↓
2

σ
±
m(t)±

√
Γ↑,↓σ

z
m(t)Λm(t)∓

√
Γ↓,↑Λ

†
m(t)σ

z
m(t), (4.22)

where we have written Λm(t) instead of Γ(t). These are solved by

σ
±
m(t) = e

±i∆t−(Γ↑+Γ↓)t/2
(
σ
±
m +

∫ t

0

dt̄ e
∓i∆t̄+(Γ↑+Γ↓)t̄/2

[
±
√

Γ↑,↓σ
z
m(t)Λm(t)∓

√
Γ↓,↑Λ

†
m(t)σ

z
m(t)

])
,

which are not, however, closed-form solutions since σzm(t) in turn depends on σ±m(t). However, dropping the noise
terms, one could envisage going to the “interaction picture” also with respect to the exponential damping in order to
produce the convergence factor.
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that the molecular spectrum remains constant over the experimentally explored range of external
pumping strengths. The more general formalism to be developed in Chp. 5 includes not only the
above convergence factor, but also correctly models the additional broadening due to the photon
dissipation κ, a process that is not considered in Refs. [15, 16]. In the form given in Eq. (4.20), the
spectrum then fulfills the Kennard-Stepanov relation

K(+δ)

K(−δ) = eβδ, (4.23)

which is essentially an instance of the Kubo-Martin-Schwinger relation [73, 145].

Moving back to the evaluation of the double commutator in our perturbative expansion, we have∫ ∞
0

dτ Vkkmm(t, t− τ) = K(−δk)
(
ak(t)σ

+
m(t)a†k(t)σ

−
m(t)ρS(t)

−a†k(t)σ
−
m(t)ρS(t)ak(t)σ

+
m(t)

)
+K(+δk)

(
a†k(t)σ

−
m(t)ak(t)σ

+
m(t)ρS(t)

−ak(t)σ
+
m(t)ρS(t)a†k(t)σ

−
m(t)

)
+K∗(−δk)

(
ρS(t)ak(t)σ

+
m(t)a†k(t)σ

−
m(t)

−a†k(t)σ
−
m(t)ρS(t)ak(t)σ

+
m(t)

)
+K∗(+δk)

(
ρS(t)a†k(t)σ

−
m(t)ak(t)σ

+
m(t)

−ak(t)σ
+
m(t)ρS(t)a†k(t)σ

−
m(t)

)
,

(4.24)

which evaluates to∫ ∞
0

dτ Vkkmm(t, t− τ) = Re [K(−δk)]
({

ak(t)a
†
k(t)σ

+
m(t)σ−m(t), ρS(t)

}
− 2a†k(t)σ

−
m(t)ρS(t)ak(t)σ

+
m(t)

)
+ Re [K(+δk)]

({
a†k(t)ak(t)σ

−
m(t)σ+

m(t), ρS(t)
}

− 2ak(t)σ
+
m(t)ρS(t)a†k(t)σ

−
m(t)

)
+ i Im [K(−δk)] [ak(t)a

†
k(t)σ

+
m(t)σ−m(t), ρS(t)]

+ i Im [K(δk)] [a†k(t)ak(t)σ
−
m(t)σ+

m(t), ρS(t)].

(4.25)

For similar reasons as when we discarded Hcoh, the Lamb shifts given by the imaginary parts of
the function K(δ) may be ignored in the investigation of the incoherent dynamics of the system
[17]. Undoing the interaction picture, and introducing the notation Γ±k = 2 Re [K(±δk)], we can
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finally write down the master equation of the photon BEC as

ρ̇(t) = −i[H0, ρ(t)] +
∑
k

κ

2
L[ak]ρ(t) +

M∑
m=1

[
Γ↑
2
L[σ+

m] +
Γ↓
2
L[σ−m]

]
ρ(t)

+
∑
k

M∑
m=1

[
Γ−k
2
L[a†kσ

−
m] +

Γ+
k

2
L[akσ

+
m]

]
ρ(t),

(4.26)

where ρ is now the system density matrix in the Schrödinger picture and H0 =
∑

k δka
†
kak. Notice

that as long as one considers only the evolution of occupation numbers, i.e. expectation values
that do not depend on the relative phase between photons and dye molecules, the Hamiltonian
contribution to this master equation may just as well be dropped.

4.1.5 Rate Equations and Steady State

To lowest order in the expectation-value hierarchy, the equations of motion following from Eq.
(4.26) are given by

∂t〈a†kak〉 = −κ〈a†kak〉 −
1

2

M∑
m=1

[
Γ+
k 〈a†kak (1− σzm)〉 − Γ−k 〈aka†k (1 + σzm)〉

]
, (4.27a)

∂t〈σzm〉 = Γ↑ (1− 〈σzm〉)− Γ↓ (1 + 〈σzm〉)
+
∑
k

[
Γ+
k 〈a†kak (1− σzm)〉 − Γ−k 〈aka†k (1 + σzm)〉

]
, (4.27b)

where the system average is 〈X〉(t) = TrXρ(t). Assuming that the molecules are all behave
identically, one may ignore the molecular index m and replace the sum over the M molecules
in Eq. (4.27a) by a factor of M , e.g.

∑
m〈σ

z
m〉 ≡ M〈σz〉. Similarly, by summing over m in Eq.

(4.27b), and using

M∂t〈σz〉 = 2∂t〈M↑〉,
M〈1 + σz〉 = 2〈M↑〉,
M〈1− σz〉 = 2〈M −M↑〉,

(4.28)

with analogous replacements for the higher-order expectation values, we arrive at the rate equations

∂t〈nk〉 = −κ〈nk〉 − Γ+
k 〈nk

(
M −M↑

)
〉+ Γ−k 〈(nk + 1)M↑〉, (4.29a)

∂t〈M↑〉 = Γ↑
(
M − 〈M↑〉

)
− Γ↓〈M↑〉

+
∑
k

[
Γ+
k 〈nk

(
M −M↑

)
〉 − Γ−k 〈(nk + 1)M↑〉

]
. (4.29b)
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4.2 Second-Order Coherence

The second equation now describes the collective dynamics of the number of excited molecules.
A further simplification can be made by assuming the factorization 〈nkM↑〉 ≈ 〈nk〉〈M↑〉. As
discussed in [17], in the equilibrium limit where κ, Γ↑, ↓ → 0, the rate equations then predict a
steady-state Bose-Einstein distribution

〈nk + 1〉
〈nk〉

=
Γ+
k 〈M −M↑〉
Γ−k 〈M↑〉

= eβδk
∑

l Γ
−
l 〈nl + 1〉∑
l Γ

+
l 〈nl〉

, (4.30)

where we have used Eq. (4.29a) for the first, and Eq. (4.29b) and the Kennard-Stepanov relation
Γ+
k /Γ

−
k = eβδk for the second equality. This completes our derivation of the non-equilibrium

model of the photon BEC.

4.2 Second-Order Coherence

In this Sec., we examine the temporal dynamics of the photon BEC in a regime where a driven-
dissipative steady state is induced by a balance of cavity losses and continuous dye pumping. This
leads to the appearance of exceptional points in the frequency and decay rate of the photon second-
order correlation g(2)(τ), even though their spectrally resolved number distribution remains, within
experimental uncertainties, indistinguishable from an equilibrium Bose-Einstein distribution. This
constitutes a novel form of non-equilibrium transition.

The coupling of cavity modes to the dye molecules entails that the latter act as both a heat bath
and a particle “reservoir”: dye excitations may be converted into cavity photons and vice versa. On
one hand, for a dye reservoir which is large relative to the photon population, this results in strong
number fluctuations and a zero-delay second-order coherence g(2)(0) = 2, i.e. as for a thermal
light source. Fluctuations as large as the average occupation do indeed occur within the condensed
phase. On the other hand, at smaller relative sizes of photon population and dye reservoir, the
condensate can also be operated in the canonical-statistics regime where number fluctuations are
weak and consequently g(2)(0) = 1. A previous discussion of the static second-order coherence
g(2)(0) as well as the time-dependent first-order coherence g(1)(τ) of the photon BEC was given
in Ref. [17].

Apart from records of the thermal number spectrum of the stationary photon gases, in the
experiments the transverse cavity ground mode (condensate mode) is always singled out. Since at
any time the number of available (non-excited) molecules in the reservoir is overwhelmingly large
compared to the total number of excited-state photons

∑
k 6=0〈a

†
kak〉, such that what the ground

mode sees of the excitation “reservoir” is essentially unaffected by the presence of the thermal tail,
the analysis may be restricted to the photon correlations in the condensate, i.e. we will consider
only the ground mode k = 0, where ωc ≡ ω0 is the cavity cut-off. The latter is chosen such that
the ground-mode detuning is δ ≡ δ0 = ωc −∆ < 0. For clarity, we will express the incoherent
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Chapter 4 Second-Order Correlation Functions of Photon Bose-Einstein Condensates

couplings Γ±0 of the molecules to the ground mode as

Bem ≡ Γ−0 ,

Babs ≡ Γ+
0 .

(4.31)

Finally, from here on, we will drop the cavity-mode subscript on the photon operators and write
a ≡ a0. For completeness, the master equation to be studied henceforth is

ρ̇ =
κ

2
L[a]ρ+

1

2

M∑
m=1

{
Γ↑L[σ+

m] + Γ↓L[σ−m] +BemL[a†σ−m] +BabsL[aσ+
m]
}
ρ, (4.32)

where we have dropped H0 since, as explained before, it does not contribute to the dynamics of
the quantities of interest.

4.2.1 Density-Matrix Ansatz

The fact that Eq. (4.32) does not depend on the phase difference between the photon and molecule
sector of the system enables an ansatz for the density matrix to be made in the diagonal form

ρ(t) =

∞∑
n=0

M∑
m=0

Pnm(t) |n〉〈n| ⊗ ρm, (4.33)

where ρm is the incoherent mixture of M molecules m of which are excited, and Pnm is the
classical joint probability distribution for the number of ground-mode photons n and the number
of molecular excitations m. Using this ansatz in the master equation gives rise to an equation for
Ṗnm (cf. Ref. [17]). Note that the Lindbladians of Eq. (4.32) indeed only couple the Pnm among
themselves and hence do not necessitate the consideration of any (coherent) off-diagonal matrix
elements. To briefly illustrate the ansatz, set M = 4. Then

ρ3 =
1

4
(|1110〉〈1110|+ |1101〉〈1101|+ |1011〉〈1011|+ |0111〉〈0111|) , (4.34)

which gives, e.g.

4∑
j=1

σ−j ρ3σ
+
j =

1

4

(
|0110〉〈0110|+ |0101〉〈0101|+ |0011〉〈0011|

+ |1010〉〈1010|+ |1001〉〈1001|+ |0011〉〈0011|

+ |1100〉〈1100|+ |1001〉〈1001|+ |0101〉〈0101|

+ |1100〉〈1100|+ |1010〉〈1010|+ |0110〉〈0110|
)

= 3ρ2,

(4.35)
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since

ρ2 =
1

6

(
|1100〉〈1100|+ |1010〉〈1010|+ |1001〉〈1001|

+ |0101〉〈0101|+ |0011〉〈0011|+ |0110〉〈0110|
)
.

(4.36)

The joint distribution Pnm provides an alternative approach to finding the rate equations of the
photon BEC. It furthermore offers are well-defined truncation scheme via the assumption that Pnm
is Gaussian. Below, this will prove to be a valuable tool especially for the higher-order expectation
values required for the study of the second-order coherence function. It is of relevance for Chp. 5
that this procedure precludes the study of phenomena for which the coherence between photons
and molecules cannot be neglected.

4.2.2 Calculation of Expectation Values from Classical Distribution

From the classical probability distribution Pnm, expectation values may now be calculated as
follows. The photon occupation number is defined as

〈n〉 =

∞∑
n=0

nPn =

M∑
m=0

∞∑
n=0

nPnm,

where we obtain the marginal distribution Pn by summing over the molecular excitation number
m. Now the cavity-loss process, for example, contributes to the equation of motion of the photon
number a term

∂t〈n〉 =
M∑
m=0

∞∑
n=0

nṖnm ' κ
M∑
m=0

∞∑
n=0

[
n(n+ 1)Pn+1,m − n2Pnm

]
= κ

M∑
m=0

∞∑
n=1

[
n(n+ 1)Pn+1,m − n2Pnm

]
= κ

M∑
m=0

[ ∞∑
n=2

(n− 1)nPnm −
∞∑
n=1

n2Pnm

]

= κ

M∑
m=0

∞∑
n=1

[
(n− 1)n− n2

]
Pnm

= −κ
M∑
m=0

∞∑
n=0

nPnm = −κ〈n〉,

(4.37)
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where we have shifted photon summation index several times. To calculate the time derivative
Ṗnm, we have used, e.g.

∞∑
n=0

Pnma |n〉〈n| a† =
∞∑
n=1

Pnma |n〉〈n| a†

=

∞∑
n=1

nPnm |n− 1〉〈n− 1|

=
∞∑
n=0

(n+ 1)Pn+1,m |n〉〈n| .

(4.38)

For one of the remaining two terms (the emission term), one finds similarly

Bem

M∑
m=0

∞∑
n=0

[
n2(m+ 1)Pn−1,m+1 − n(n+ 1)mPnm

]
=Bem

M∑
m=1

∞∑
n=1

[
n2mPn−1,m − n(n+ 1)mPnm

]
=Bem

M∑
m=1

∞∑
n=0

[
(n+ 1)2m− n(n+ 1)m

]
Pnm

=Bem

M∑
m=0

∞∑
n=0

(n+ 1)m [n+ 1− n]Pnm

=Bem〈(n+ 1)M↑〉,

(4.39)

such that this term contributes

∂t〈n〉 ' Bem

(
〈M↑〉(〈n〉+ 1) + σ2

n,M↑

)
, (4.40)

where we introduced the covariance σ2
n,M↑

= 〈nM↑〉 − 〈n〉〈M↑〉. The two variances in turn are

σ2
X = 〈X2〉 − 〈X〉2 with X = n, M↑. Repeating what we did for the cavity-loss contribution to

the equation of motion of the first moment of Pn, we find for its second moment that

∂t〈n2〉 =

M∑
m=0

∞∑
n=0

n2Ṗnm ' κ
M∑
m=0

∞∑
n=0

[
n2(n+ 1)Pn+1,m − n3Pnm

]
= κ

M∑
m=0

∞∑
n=1

[
(n− 1)2n− n3

]
Pnm = κ(〈n〉 − 2〈n2〉).

(4.41)
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With ∂t〈n〉2 = 2〈n〉∂t〈n〉 = −2κ〈n〉2, it follows that

∂tσ
2
n ' κ(〈n〉 − 2〈n2〉+ 2〈n〉2) = κ(〈n〉 − 2σ2

n). (4.42)

Again for the emission term, we calculate

Bem

M∑
m=0

∞∑
n=0

[
n3(m+ 1)Pn−1,m+1 − n2(n+ 1)mPnm

]
=Bem

M∑
m=0

∞∑
n=0

[
(n+ 1)3 − n2(n+ 1)

]
mPnm

=Bem

M∑
m=0

∞∑
n=0

(n+ 1)(2n+ 1)mPnm

=Bem〈
(

2n2 + 3n+ 1
)
M↑〉 = Bem

(
3〈nM↑〉+ 〈M↑〉+ 2〈n2M↑〉

)
=Bem

[
3(σ2

n,M↑
+ 〈n〉〈M↑〉) + 〈M↑〉+ 2(〈n2〉〈M↑〉+ 2〈n〉〈nM↑〉 − 2〈n〉2〈M↑〉)

]
,

(4.43)

where we have used the Gaussian identity 〈X2Y 〉 = 〈X2〉〈Y 〉+2〈X〉〈XY 〉−2〈X〉2〈Y 〉, implying
the assumption that Pnm is Gaussian.4 This gives the contribution of the emission term

∂tσ
2
n ' Bem〈

(
2n2 + 3n+ 1

)
M↑〉 − 2Bem〈n〉

[
〈M↑〉+ 〈nM↑〉

]
= Bem

[
3σ2

n,M↑
+ 〈n〉〈M↑〉+ 〈M↑〉+ 2〈n〉〈nM↑〉+ 2〈n2〉〈M↑〉 − 4〈n〉2〈M↑〉

]
= Bem

[
3σ2

n,M↑
+ 〈n〉〈M↑〉+ 〈M↑〉

+2(〈n〉σ2
n,M↑

+ 〈M↑〉σ2
n + 2〈n〉2〈M↑〉)− 4〈n〉2〈M↑〉

]
= Bem

[
(2〈n〉+ 3)σ2

n,M↑
+ 〈n〉〈M↑〉+ 〈M↑〉+ 2〈M↑〉σ2

n

]
,

(4.46)

which agrees with the result from Ref. [17]. The remaining contributions to this equation and the
other equations for the first and second cumulants can be calculated in the manner just detailed (cf.
Eq. (4.50)).

4 For a bivariate normal distribution with mean vector µ = (〈X〉, 〈Y 〉)T and covariance matrix

Σ =

(
〈X2〉 − 〈X〉2 〈XY 〉 − 〈X〉〈Y 〉
〈XY 〉 − 〈X〉〈Y 〉 〈Y 2〉 − 〈Y 〉2

)
, (4.44)

one has

〈X2
Y 〉 = 〈X〉2〈Y 〉+ 〈Y 〉

[
〈X2〉 − 〈X〉2

]
+ 2〈X〉 [〈XY 〉 − 〈X〉〈Y 〉]

= 〈X2〉〈Y 〉+ 2〈X〉〈XY 〉 − 2〈X〉2〈Y 〉.
(4.45)
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4.2.3 Calculation of Expectation Values from Master Equation

The direct way of calculating the dynamical equations for the expectations values from the master
equation may, of course, be employed alternatively. Again replacing the sum over all molecules by
a factor of M , this yields the single-mode special case of Eqs. (4.27a), reading

∂t〈a†a〉 = −κ〈a†a〉 − M

2
Babs〈a†a (1− σz)〉+

M

2
Bem〈aa† (1 + σz)〉, (4.47a)

∂t〈σz〉 = Γ↑ (1− 〈σz〉)− Γ↓ (1 + 〈σz〉) +Babs〈a†a (1− σz)〉 −Bem〈aa† (1 + σz)〉.
(4.47b)

Comparing these to the equations one finds from Pnm,

∂t〈n〉 = −κ〈n〉 −Babs〈n
(
M −M↑

)
〉+Bem〈(n+ 1)M↑〉, (4.48a)

∂t〈M↑〉 = Γ↑
(
M − 〈M↑〉

)
− Γ↓〈M↑〉+Babs〈n

(
M −M↑

)
〉 −Bem〈(n+ 1)M↑〉, (4.48b)

we see that the heuristic rationale which lead to Eqs. (4.29a) and (4.29b) is equivalent to making
the incoherent density-matrix ansatz (4.33). The next-order expectation values such as 〈a†aσz〉
may be found from the higher-order equations

∂t〈a†a†aa〉 = −2κ〈a†a†aa〉 − 2MBabs〈a†a†aaσ−σ+〉

+ 2MBem

(
〈a†a†aaσ+σ−〉+ 2〈a†aσ+σ−〉

)
,

(4.49a)

∂t〈a†aσ+σ−〉 = −κ〈a†aσ+σ−〉+ Γ↑〈a†aσ−σ+〉 − Γ↓〈a†aσ+σ−〉

+Babs〈a†a†aaσ−σ+〉 −Bem

(
〈a†a†aaσ+σ−〉+ 2〈a†aσ+σ−〉

)
− (M − 1)Babs〈a†aσ+σ−σ̃−σ̃+〉+ (M − 1)Bem〈aa†σ+σ−σ̃+σ̃−〉,

(4.49b)

∂t〈σ+σ−σ̃+σ̃−〉 = Γ↑

(
〈σ−σ+σ̃+σ̃−〉+ 〈σ+σ−σ̃−σ̃+〉

)
− 2Γ↓〈σ+σ−σ̃+σ̃−〉

+Babs

(
〈a†aσ−σ+σ̃+σ̃−〉+ 〈a†aσ+σ−σ̃−σ̃+〉

)
− 2Bem〈aa†σ+σ−σ̃+σ̃−〉.

(4.49c)

The Pauli matrices σ̃± describe any molecule that is not identical to σ±. In this operator form, the
expectation values that are quartic in the Pauli matrices, in particular, are difficult to truncate.
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4.2.4 Truncation of the Expectation-Value Hierarchy

Under the assumption that Pnm is Gaussian, however, Eqs. (4.49) can be truncated rigorously.
Starting with Eq. (4.49a), we find unambigously that

∂t〈n2〉 = ∂t〈a†aa†a〉 = ∂t〈a†a†aa〉+ ∂t〈a†a〉
= κ(〈n〉 − 2〈n2〉) +Bem

[
2〈(n2 + n)M↑〉+ 〈(n+ 1)M↑〉

]
−Babs

[
2〈(n2 − n)(M −M↑)〉+ 〈n(M −M↑)〉

]
= κ(〈n〉 − 2〈n2〉) +Bem

[
2〈n2M↑〉+ 〈(3n+ 1)M↑〉

]
−Babs

[
2〈n2(M −M↑)〉 − 〈n(M −M↑)〉

]
= κ(〈n〉 − 2〈n2〉) +Bem

[
4〈n〉〈nM↑〉+ 2〈M↑〉〈n2〉 − 4〈M↑〉〈n〉2 + 〈(3n+ 1)M↑〉

]
−Babs

[
2〈n2〉(M − 〈M↑〉) + 4〈M↑〉〈n〉2 − 4〈n〉〈nM↑〉 − 〈n(M −M↑)〉

]
.

(4.50)

In decomposing the expectation values of four Pauli matrices, one has to be more careful. It turns
out that this has to be done as follows:

M(M − 1)〈σ+σ−σ̃+σ̃−〉 = 〈M2
↑ 〉 − 〈M↑〉,

M(M − 1)〈σ+σ−σ̃−σ̃+〉 = M〈M↑〉 − 〈M2
↑ 〉.

(4.51)

To understand why, consider the special case M = 3. Then the total set of molecular states is{
{|000〉}, {|100〉 , |010〉 , |001〉}, {|110〉 , |101〉 , |011〉}, {|111〉}

}
. (4.52)

If we only consider the molecular system and assume that the four incoherent mixtures of the states
in each subset are equally probable, 5 then the overall normalization of the incoherent density
matrix is 1/4, and 〈M↑〉 = 6/4 and 〈M2

↑ 〉 = 14/4. Furthermore, for the action of the operators
we find

Tr
∑
j 6=1

σ+
1 σ
−
1 σ̃

+
j σ̃
−
j ρ2 = 2/3,

Tr
∑
j 6=1

σ+
1 σ
−
1 σ̃

+
j σ̃
−
j ρ3 = 2.

(4.53)

The contributions from ρm=0, 1 obviously vanish. For the second ordering,

Tr
∑
j 6=1

σ+
1 σ
−
1 σ̃
−
j σ̃

+
j ρm=1, 2 = 2/3, (4.54)

5 Later on, this normalization will be fixed by Pnm.
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with contributions from ρm=0, 3 vanishing. Consequently,

M(M − 1)〈σ+σ−σ̃+σ̃−〉 = Tr
∑
k, j 6=k

σ+
k σ
−
k σ̃

+
j σ̃
−
j
ρ2 + ρ3

4
=

2 + 6

4
=

14− 6

4

= 〈M2
↑ 〉 − 〈M↑〉,

M(M − 1)〈σ+σ−σ̃−σ̃+〉 = Tr
∑
k, j 6=k

σ+
k σ
−
k σ̃
−
j σ̃

+
j
ρ1 + ρ2

4
=

2 + 2

4
=

18− 14

4

= M〈M↑〉 − 〈M2
↑ 〉.

(4.55)

Note that the sum over k simply contributes a factor of three. Applying it to Eq. (4.49b), we find

∂t〈nM↑〉 = M∂t〈a†aσ+σ−〉
= −κ〈nM↑〉+ Γ↑〈n(M −M↑)〉 − Γ↓〈nM↑〉
+Babs

(
〈n2(M −M↑)〉 − 〈n(M −M↑)〉

)
−Bem

(
〈n2M↑〉+ 〈nM↑〉

)
−Babs〈n(M −M↑)M↑〉+Bem〈(n+ 1)(M2

↑ −M↑)〉
= −κ〈nM↑〉+ Γ↑〈n(M −M↑)〉 − Γ↓〈nM↑〉
+Babs

[
2〈M↑〉〈n〉2 − 2〈n〉〈M↑〉2 −M(〈n〉+ 〈nM↑〉) + 〈n〉〈M2

↑ 〉

+ 2(〈M↑〉 − 〈n〉+ 1/2)〈nM↑〉+ (M − 〈M↑〉)〈n2〉
]

+Bem

[
2〈M↑〉〈n〉2 − 2〈n〉〈M↑〉2 − 〈M↑〉+ (〈n〉+ 1)〈M2

↑ 〉

+ 2(〈M↑〉 − 〈n〉 − 1)〈nM↑〉 − 〈M↑〉〈n2〉
]
.

(4.56)

Finally, for Eq. (4.49c), we obtain

∂t〈M2
↑ 〉 = M(M − 1)∂t〈σ+σ−σ̃+σ̃−〉+ ∂t〈M↑〉

= 2Γ↑

(
M〈M↑〉 − 〈M2

↑ 〉
)
− 2Γ↓

(
〈M2
↑ 〉 − 〈M↑〉

)
+ 2Babs〈n(MM↑ −M2

↑ )〉 − 2Bem〈(n+ 1)(M2
↑ −M↑)〉

+ Γ↑
(
M − 〈M↑〉

)
− Γ↓〈M↑〉+Babs〈

(
M −M↑

)
n〉 −Bem〈(n+ 1)M↑〉

= Γ↑

(
2M〈M↑〉+M − 〈M↑〉 − 2〈M2

↑ 〉
)

+ Γ↓

(
〈M↑〉 − 2〈M2

↑ 〉
)

+Babs

(
(2M − 1)〈nM↑〉+M〈n〉 − 4〈M↑〉〈nM↑〉 − 2〈n〉〈M2

↑ 〉+ 4〈n〉〈M↑〉2
)

−Bem

(
4〈M↑〉〈nM↑〉+ 2〈n〉〈M2

↑ 〉 − 4〈n〉〈M↑〉2 + 2〈M2
↑ 〉 − (〈n〉+ 1)〈M↑〉

)
.

(4.57)

The truncation rules (4.51) thus lead to equations that are identical to those one obtains from
calculating with Pnm. Eqs. (4.50), (4.56) and (4.57) are needed to find the steady-state expectation
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values in conjunction with Eqs. (4.48).

4.2.5 Dynamics of Second-order Correlation Function

The time-dependent photon density-density or second-order correlation function measured in the
experiment is defined as

g(2)(τ) =
〈n(t+ τ)n(t)〉
〈n(t)〉2

∣∣∣∣∣
t→∞

=
Tr
[
a†a eL̂τ ρ̃∞

]
Tr
[
a†aρ∞

]2 , (4.58)

where L̂ is the total Lindblad superoperator belonging to the master equation (4.32), ρ∞ =
limt→∞ ρ(t) denotes the steady-state density matrix, and we introduce an effective density matrix6

ρ̃∞ := a†aρ∞.

Defining also the corresponding effective average X(τ) := TrXeL̂τ ρ̃∞, the second-order coher-
ence becomes simply

g(2)(τ) =
n(τ)

〈n〉2∞
. (4.59)

The effective averages n and M↑ obey almost the same equations as 〈n〉 and 〈M↑〉, the only
difference arising from the fact that the trace of the effective density matrix is not normalized,
Tr ρ̃∞ = 〈n〉∞, which entails

Γ↑M Tr
[
σ−σ+ρ̃∞

]
= Γ↑

(
〈n〉∞M −M↑

)
.

Thus, one finds equations of motion analogous to Eqs. (4.48),

∂τn = −κn−Babsn(M −M↑) +Bem(n+ 1)M↑, (4.60a)

∂τM↑ = Γ↑
(
〈n〉∞M −M↑

)
− Γ↓M↑ +Babsn(M −M↑)−Bem(n+ 1)M↑. (4.60b)

It is important to note that the form of these equations is independent of the operator ordering in
the definition of g(2)(τ) in Eq. (4.58). Their structure is determined by L̂ rather than the per se
arbitrary effective density matrix. What does change are the initial conditions. This, however, is
negligible for the relatively large photon numbers relevant experimentally, the difference being on
the order of 1/〈n〉∞.

The relation between Eqs. (4.48) and (4.60) may also be understood from the density-matrix
ansatz. If ρ∞ is represented as a diagonal matrix with elements P∞nm, then ρ̃∞ will also be diagonal
with elements P̃∞nm(τ = 0) = nP∞nm.7 These provide the initial conditions for a system of

6 Note in passing that, for the normal-ordered second-order correlation function, one would need to set ρ̃∞ = aρ∞a
†.

7 The obvious representation that comes to mind is ρ∞ = diag (P
∞
00 , ..., P

∞
0M , P

∞
10 , ..., ) and ρ̃∞(τ = 0) =
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equations formally identical to that given by the equation for Ṗnm in Ref. [17].

As before, the higher-order moments nM↑ need to be truncated in practice, which can be
achieved using the Gaussian identity from above applied to the steady-state expectation values, i.e.

〈n2M↑〉∞ = 2〈n〉∞〈nM↑〉∞ + 〈M↑〉∞〈n2〉∞ − 2〈n〉2∞〈M↑〉∞, (4.61)

where the average is

〈X〉∞ =
∞∑
n=0

M∑
m=0

XP∞nm. (4.62)

But since

〈nX〉∞ =

∞∑
n=0

M∑
m=0

nXP∞nm =

∞∑
n=1

M∑
m=0

XP̃∞nm = X, (4.63)

Eq. (4.61) also implies

nM↑ = 〈n〉∞M↑ + 〈n〉∞〈nM↑〉∞ + 〈M↑〉∞n− 2〈n〉2∞〈M↑〉∞. (4.64)

By computing the steady-state density matrix directly, one can also check that this relation is
fulfilled quite well already for intermediate system sizes with molecule numbers of order M ∼ 102.
If we furthermore introduce the vector

g(τ) =

(
∆g(2)

n

∆g
(2)
n,M↑

)
=

(
n− 〈n〉2∞

M↑ − 〈n〉∞〈M↑〉∞

)
, (4.65)

Eqs. (4.60) become

∂τ∆g(2)
n = 〈n〉∞

{
−κ〈n〉∞ −Babs〈n(M −M↑)〉∞ +Bem〈(n+ 1)M↑〉∞

}
− κ∆g(2)

n −Babs

[
(M − 〈M↑〉∞)∆g(2)

n − 〈n〉∞∆g
(2)
n,M↑

]
+Bem

[
(〈n〉∞ + 1)∆g

(2)
n,M↑

+ 〈M↑〉∞∆g(2)
n

]
,

(4.66a)

∂τ∆g
(2)
n,M↑

= 〈n〉∞
{

Γ↑(M − 〈M↑〉∞)− Γ↓〈M↑〉∞
+ Babs〈n

(
M −M↑

)
〉∞ −Bem〈(n+ 1)M↑〉∞

}
− (Γ↑ + Γ↓)∆g

(2)
n,M↑

+Babs

[
(M − 〈M↑〉∞)∆g(2)

n − 〈n〉∞∆g
(2)
n,M↑

]
−Bem

[
(〈n〉∞ + 1)∆g

(2)
n,M↑

+ 〈M↑〉∞∆g(2)
n

]
.

(4.66b)

Using the steady-state solutions of Eqs. (4.48) to eliminate the curly brackets, we end up with the

diag (P
∞
10 , ..., P

∞
1M , 2P

∞
20 , ...).

90



4.2 Second-Order Coherence

linear system

∂τg(τ) =

(
−κ− Γ̃M Γ̃n

Γ̃M −
(
Γ↑ + Γ↓

)
− Γ̃n

)
g(τ), (4.67)

where

Γ̃M = Babs(M − 〈M↑〉∞)−Bem〈M↑〉∞,
Γ̃n = Babs〈n〉∞ +Bem(〈n〉∞ + 1).

(4.68)

The constant Γ̃M is composed of an absorption term proportional to the number of ground-state
molecules in the steady state (M−〈M↑〉∞), and a corresponding emission term with the number of
excited molecules. The constant Γ̃n is given by an absorption term, and the terms corresponding to
stimulated and spontaneous emission. Eq. (4.67) is formally equivalent to the system of equations
obeyed by the linear fluctuations around the steady state, as it should be. The derivation we have
given is hence an explicit proof of the so-called quantum regression theorem [146] as applied to
our particular system. Note that the essence of this theorem is already contained in the semigroup
structure of Eq. (4.58).

4.2.6 Eigenvalues of Second-Order Coherence Dynamics

The matrix in Eq. (4.67) is non-Hermitian because of time-reversal symmetry breaking in the
driven-dissipative system. As a result, its eigenvalues are found to be complex, λ1, 2 = λ′ ± iλ′′,
where λ′, λ′′ ∈ R. In terms of the quantities defined in Eqs. (4.68), the eigenvalues are given by

λ1, 2 = −γ ±
√
γ2 − ω2

0, (4.69)

where

2γ = κ+ Γ↑ + Γ↓ + Γ̃M + Γ̃n, (4.70a)

ω2
0 = κΓ̃n + (κ+ Γ̃M )(Γ↑ + Γ↓). (4.70b)

The second-order correlation function will be oscillating whenever γ2 − ω2
0 < 0, and bi-

exponentially damped otherwise. Without drive and dissipation (κ = Γ↑ = Γ↓ = 0), we have a
two-component system which shows a single relaxation time, i.e. the system possesses one zero
eigenvalue and a purely real eigenvalue λ = −(Γ̃M +Γ̃n). Accordingly, the open-system character
is necessary to achieve an imaginary part for the eigenvalues and hence an oscillating solution. For
the second-order correlation function, one finds general solutions of the form

g(2)(τ) = 1 + e−γτ
(
c1e

√
γ

2−ω2
0 + c2e−

√
γ

2−ω2
0

)
, (4.71)

with γ > 0 ensuring stability in the oscillating regime. In principle, the system could become
unstable in the bi-exponential regime, yet we will see below that this does not occur for physically
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relevant parameters. The initial conditions for the dynamics of the second-order correlation
functions are found from the steady-state solutions for the second cumulants,

∆g(2)
n (0) = 〈n2〉∞ − 〈n〉2∞,

∆g
(2)
n,M↑

(0) = 〈nM↑〉∞ − 〈n〉∞〈M↑〉∞,
(4.72)

which, as mentioned, can be obtained from Eqs. (4.50), (4.56) and (4.57) together with Eqs. (4.48).

4.2.7 Approximation Near Equilibrium

For small drive and dissipation, i.e. when the system is close to equilibrium, Eq. (4.30) can be
assumed to be approximately valid, leading to the relation

Babs(M − 〈M↑〉∞) ≈ Bem〈M↑〉∞ +Bem
〈M↑〉∞
〈n〉∞

, (4.73)

which in turn entails

Γ̃M ≈ Bem
〈M↑〉∞
〈n〉∞

. (4.74)

Experimentally, one can make the further approximations8

κ� Γ↑ � Γ↓,

〈M↑〉∞ � 〈n〉∞ � 1,

Bem � Babs,

(4.75)

where the latter depends via the Kennard-Stepanov relation on both the temperature and the
detuning at which the experiment is conducted. Using these to simplify the eigenvalues λ1, 2, we
find9

2γ ≈ Bem
(
〈M↑〉∞/〈n〉∞ + 〈n〉∞

)
,

ω2
0 ≈ κBem〈n〉∞.

(4.76)

4.2.8 Expansion in Inverse Molecule Number

While Eqs. (4.76) are appealing for their simplicity, they are not valid if the system is driven more
strongly. Also, they still depend on secondary quantities (the steady-state occupations) instead of
system parameters. Since 〈n〉∞ can be measured and 〈M↑〉 approximated, practically this is not a
problem. Theoretically, however, it is still appealing to have explicit expressions at least in some
limit. Fortunately, because of the large number of molecules M � 1 in the system,10 it is possible

8 Actual numbers are provided below.
9 This makes use of the expression 〈n〉∞ ≈MΓ↑/κ derived in 4.2.8 to justify Γ̃MΓ↑ ≈ Bemκ� κΓ̃n.

10 For the steady-state experiments in the large traps, M is usually on the order of 10
9.
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4.2 Second-Order Coherence

to derive more general analytical results from an expansion in the inverse molecule number 1/M
[17], which can be done as follows. We expand the steady-state photon number into a series

〈n〉∞ = Mn0 + n1 +O(1/M), (4.77)

and similarly for 〈M↑〉∞, σ2
n, σ2

M↑
, σ2

n,M↑
.11 Inserting these series’ into the respective equations

and separating powers, one obtains

〈n〉∞ =
M
(
BemΓ↑ −BabsΓ↓

)
κ (Bem +Babs)

+O(1), (4.78)

〈M↑〉∞ =
MBabs + κ

Babs +Bem
+O(1/M), (4.79)

for the steady-state occupations12 and for the second cumulants

σ2
n =

MBem
(
BemΓ↑ +BabsΓ↑ +Babsκ

)
κ (Bem +Babs)

2 +O(1),

σ2
M↑

=
MBemBabs

(Bem +Babs)
2 +O(1),

σ2
n,M↑

= − MBemBabs

(Bem +Babs)
2 +O(1).

(4.80)

With Γ↓ = εΓ↑ and Babs = eβδBem, we now find for the steady state that

〈n〉∞ ≈
MΓ↑

(
1− eβδ+ln ε

)
(1 + eβδ)κ

, (4.81a)

〈M↑〉∞ ≈
MeβδBem + κ

(1 + eβδ)Bem

, (4.81b)

which provides a useful heuristic connecting the experimentally accessible 〈n〉∞ to the unknown
pumping rate Γ↑ in the form

〈n〉∞ ≈MΓ↑/κ. (4.82)

11 Note that we do not introduce further notation to highlight the steady-state values of σ2
n, σ2

M↑ and σ2
n,M↑ .

12 The first-order term for the photon number is already quite lengthy and does not contribute significantly for M � 1:

n
1

=
BemB

2
abs−B

2
emBabs−BemΓ↓Γ↑−BemΓ

2
↑+BabsΓ

2
↓+BabsΓ↓Γ↑

B
2
emΓ↑−BemBabsΓ↓+BemBabsΓ↑−B

2
absΓ↓

.
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4.2.9 Approximation for Large Molecule Numbers

Applying the 1/M expansion to the eigenvalues λ1,2, we may write

Γ̃M = −κ,
Γ̃n = MΓ↑Bem

(
1− eβδ+ln ε

)
/κ,

(4.83)

from which we find

γ =
Γ↑
2

(
1 + ε+

MBem

κ

(
1− eβδ+ln ε

))
≈
(

1− eβδ+ln ε
)MΓ↑Bem

2κ
, (4.84a)

ω2
0 =

(
1− eβδ+ln ε

)
MΓ↑Bem. (4.84b)

This means that the eigenvalues become

λ1, 2 = −
(

1− eβδ+ln ε
)MΓ↑Bem

2κ
±
√√√√(MΓ↑Bem

2κ

)2

− MΓ↑Bem(
1− eβδ+ln ε

)
 , (4.85)

an expression that turns out to be a good approximation in an intermediate regime as the system
moves away from equilibrium. For MΓ↑Bem > 4κ2/

(
1− eβδ+ln ε

)
, the eigenvalues become

purely real. It is important to note, however, that Eq. (4.85) is not valid for Γ↑ → 0, in which
case it predicts λ1, 2 = 0. Expanding the square root for large Γ↑ and taking ε → 0, one finds
asymptotically that

λ1, 2 = −MΓ↑Bem

2κ
± MΓ↑Bem

2κ
∓ κ =

{
κ−MΓ↑Bem/κ,

−κ.
(4.86)

Note that the approximation leading to Eq. (4.85) is not employed in the analysis of the experimental
data. It rather serves to illustrate how the openness of the system influences the eigenvalues through
the steady-state occupations by making the dependence on Γ↑ and κ explicit.

4.2.10 Solution of Truncated First-Moment Equations

For large M , the influence of σ2
n,M↑

in Eqs. (4.48) is negligible, meaning one can use 〈nM↑〉 ≈
〈n〉〈M↑〉 and solve them as a closed system of equations.13 This results in

〈n〉∞ =
Bem〈M↑〉∞

κ+Babs(M − 〈M↑〉∞)−Bem〈M↑〉∞
,

〈M↑〉∞ =
1

2a

(
b±

√
b2 − 4aMΓ↑ (MBabs + κ)

)
.

(4.87)

13 The second-moment equations are needed still to find the initial values of the second-order correlations.
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Figure 4.1: Eqs. (4.87) plotted against the external pumping Γ↑ for parameters M = 5.17 · 109, κ = 2.33

GHz, Bem = 2.50 · 10−5 GHz, Γ↓ = 0 and Bem/Babs = 57 (Kennard-Stepanov relation corresponding to
a cut-off wavelength of λc ≈ 571.3 nm). The dashed lines are Eqs. (4.82) and (4.81b). Visibly, they agree
well with the results from the truncated first-moment equations, the deviation of 〈M↑〉∞ for small Γ↑ being
on the order of merely 105 molecules.

with a = (Bem +Babs)
(
Γ↓ + Γ↑

)
and b = MΓ↑ (Bem +Babs)+Bemκ+

(
Γ↓ + Γ↑

)
(MBabs + κ).

It is instructive to compare these solutions to the approximate expressions from the 1/M expansion,
which is done in Fig. 4.1 for typical experimental parameters. Illustratively, employing a non-linear
solver to find steady-state solutions to the set of five equations provided by (4.48), (4.50), (4.56)
and (4.57), a value of Γ↑ = 1.15 · 10−5 GHz leads to steady-state occupations 〈n〉∞ = 2.51 · 104,
〈M↑〉∞ = 8.92 · 107 and steady-state (co-) variances σ2

n = 8.77 · 107, σ2
M↑

= 4.08 · 108 and

σ2
n,M↑

= −8.77 · 107. For the much lower value of Γ↑ = 9.17 · 10−7 GHz, we find steady-state oc-

cupations 〈n〉∞ = 2.00 ·103, 〈M↑〉∞ = 8.92 ·107 and steady-state (co-) variances σ2
n = 4.00 ·106,

σ2
M↑

= 1.87 · 108 and σ2
n,M↑

= −4.00 · 106. The fact that σ2
n ≈ −σ2

n,M↑
is supported by Eqs.

(4.80).14 Both results clearly support the assumption 〈nM↑〉 ≈ 〈n〉〈M↑〉 at least when looking for
steady states since 〈n〉∞〈M↑〉∞ � |σ2

n,M↑
|.

14 In the numerator of σ2
n, the term proportional to κ is the dominant one for the current parameters.
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Figure 4.2: Time-dependent second-order correlations function for the parameters of Fig. 4.1 with (left)
Γ↑ = 1.15 · 10−5 GHz and (right) Γ↑ = 9.17 · 10−7 GHz. The zero-delay values are g(2)(0) = 1.14,
g
(2)
n,M↑

(0) = 1.00− 3.92 · 10−5, and g(2)(0) = 2.00, g(2)n,M↑(0) = 1.00− 2.24 · 10−5, respectively.

4.2.11 Exemplary Solutions

The oscillating solutions for the second-order correlation functions at Γ↑ = 1.15 · 10−5 GHz are
plotted in Fig. 4.2. Their functional form can be expressed as

g(2)(τ) = 1 +
∆g(2)

n (τ)

〈n〉2∞

= 1 +
e−γτ

〈n〉2∞

[
σ2
n cosωτ +

γ

ω

(
σ2
n + 2σ2

n,M↑

)
sinωτ

]
,

g
(2)
n,M↑

(τ) = 1 +
∆g

(2)
n,M↑

(τ)

〈n〉∞〈M↑〉∞

= 1 +
e−γτ

〈n〉∞〈M↑〉∞

[
σ2
n,M↑

cosωτ −
(
ω2 + γ2

2γω
σ2
n +

γ

ω
σ2
n,M↑

)
sinωτ

]
,

(4.88)

where g(2)
n,M↑

(τ) is the second-order “cross-correlation”. The numerical values for decay rate and
frequency are γ = 0.319 GHz and ω = 1.177 GHz, respectively. Complementary to this, the
bi-exponentially damped solutions for the second-order correlation functions at Γ↑ = 9.17 · 10−7

GHz are plotted in Fig. 4.2. In turn, their functional form can be expressed as c1e−γ1τ + c2e−γ2τ ,
where the constants c1, 2 can be found from the eigenvectors and the zero-delay values. The two
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Figure 4.3: The eigenvalues of Eq. (4.69) as a function of Γ↑ for parameters (left) as in Fig. 4.1, and (right)
M = 1.00 · 109, κ = 100 GHz, Bem = 1.00 · 10−4 GHz, Γ↓ = 0 and Bem/Babs = 10. Two exceptional
points appear in the spectrum as the system moves away from equilibrium. The vertical lines (left) mark
Γ↑ = {1.15 · 10−5, 9.17 · 10−7} GHz, the values corresponding to Fig. 4.2. The dashed curves show Eq.
(4.85). A brief discussion of exceptional points is given in the text.

decay rates have values γ1 = 0.119 GHz and γ2 = 0.996 GHz.
The behavior of the eigenvalues as a function of pump power is shown in Fig. 4.3 for two

different sets of parameters and compared to analytical results from the expansion in the inverse
molecule number. In both cases, as Γ↑ increases, the system passes through two exceptional
points. At these points, the square root in Eq. (4.69) switches from real to imaginary (imaginary to
real). Correspondingly, the decay changes from a single rate to two different rates (two different
rates to a single rate). Looking at the eigenvectors as the exceptional points are approached,
one observes how two distinct eigenvectors gradually approach each other until they become
identical,15 which distinguishes this so-called coalescence [147] from the usual degeneracy where
two distinct eigenvectors possess the same eigenvalue.

Instead of keeping the cavity loss κ fixed and looking at the eigenvalues, it is also instructive to
study the occurrence of the exceptional points as a function of both κ and Γ↑, which is done in
Fig. 4.4. Visibly, this gives rise to a kind of phase diagram where the bi-exponentially decaying
solutions outside of the curve are separated from the oscillating ones on the inside. It is even
possible to entirely avoid the oscillating regime for very small κ by circumnavigating the lower tip
of the curve as one drives the system further away from equilibrium. In looking at this diagram,
one should keep in mind that the emission and absorption coefficients Bem and Babs do depend
on Γ↑ via Eq. (4.20). As mentioned above, this is not relevant experimentally at the moment.

15 The left and right eigenvectors of a non-Hermitian matrix are generally not the same.
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Figure 4.4: The zeros of the square root in Eq. (4.69) for the two cases of Figs. 4.2 and 4.3. The dashed
curves show Γ↑ = 4κ2M−1B−1em , the corresponding result from Eq. (4.85) when Babs and Γ↓ are neglected.

Addressing the question of the shape of the phase diagram far away from equilibrium, however,
will require taking this effect into account. As a matter of fact, it will indeed be necessary to extend
the existing model [16] which altogether ignores the influence of the cavity loss κ. This will be
one of the subjects of Chp. 5.

4.3 Application to Experiment

The final part of the present Chp. is devoted to the comparison of the developed theory with actual
experiments. Note that this Sec. is derived from Ref. [36], which does not contain the experimental
observation of the exceptional point at the transition from the bi-exponential to the oscillating
regime. For the presentation and discussion of the experimental verification of this transition,
consider instead Ref. [37].

To measure the mode intensities and the temporal intensity-intensity correlations, i.e. the mode
occupation numbers and the second-order coherence, the microcavity emission is directed through
a mode filter to separate the condensate mode k = 0 from the higher-order photons with k > 0.
The light passing through the mode filter is then imaged onto a photomultiplier, the output signal
of which is simultaneously recorded by two oscilloscopes, with the cross-correlation used for the
further analysis of the intensity fluctuations. The higher-order modes contribute weakly to the
intensity near the optical axis in the far-field, such that some photons from these modes erroneously
pass the mode filter. This systematic error in the filtering reduces the experimentally measured
values of g(2)(0). As a result, the experimental intensity-intensity correlations can be expected to
be lower than the theoretically calculated values. One does not, however, expect any influence on
the temporal shape of the correlation signal.

The dephasing time τϕ of the dye transition16 is much shorter than the photon cavity lifetime,

16 This is fixed by the collision time of solvent and dye molecules on the order of 10
−14 s.
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τϕ � τp.17 As the experiment operates in the weak-coupling regime, where the trapped particles
are photons instead of polaritons, coherence between dye excitations and photons cannot be
established. The photon lifetime is, furthermore, much shorter than the non-radiative decay time
of the dye molecules, τp � τnon-rad .18 The sum of cavity photons (including the thermal tail)
and dye excitations can hence be taken as conserved on the scale of the photon lifetime τp, while
the stationary photon number is conserved only on average. Approximately, also the sum of
condensate photons and dye excitations is conserved, as the exchange between thermal-tail photons
and condensate photons happens via the bath and, as mentioned, the dye excitations outnumber
the (thermal) photons by orders of magnitude [3]. In the regime where several absorptions and
emissions take place before any single photon leaves the cavity, the cavity reaches a thermal spectral
distribution at the rovibrational temperature of the dye, which is around room temperature (300 K).
Fig. 4.5 presents data of the optical spectrum for varying steady-state condensate occupations 〈n〉∞
(i.e. at different external-pumping rates). The match between measurements and equilibrium theory
supports the idea that a thermal spectrum is achieved to good approximation in the experiments,
even though pumping and losses drive the system permanently away from equilibrium. Finally,
above the critical total photon number, the thermal photon gas produces a BEC, indicated by the
ground-mode peak in the spectrum around the low-frequency cavity cut-off.

By changing the steady-state photon number 〈n〉∞ relative to the number of dye molecules within
the mode volume, the system can be tuned from the small-reservoir regime with Poissonian number
statistics and g(2)(0) ≈ 1 to a strongly fluctuating regime of large reservoirs with Bose-Einstein
statistics and g(2)(0) ≈ 2. The initial values for the dynamics of the second-order correlation
functions are found from the steady-state solutions for the second moments, 〈n2〉∞ and

〈
nM↑

〉
∞.

Typical measurements for the time dependence of the second-order correlation function are given in
Fig. 4.6 for condensate numbers 〈n〉∞ ≈ 4620 and 〈n〉∞ ≈ 17100, respectively, showing damped,
oscillatory behavior, which can be understood from the theoretical discussion above. Within the
experimentally investigated parameters, the oscillations persist as the system is tuned from the
grand-canonical to the canonical regime. As can be seen in Fig. 4.6, the photon number fluctuations
(relative to the average condensate number) decrease at higher average condensate numbers, which
indeed correspond to a relatively smaller dye reservoir. This was studied in more detail in earlier
experimental work [4]. For the present system, the theoretical values for g(2)(0) of the condensate
mode at 〈n〉∞ ≈ 4620 and 〈n〉∞ ≈ 17100 are≈ 2.0 and≈ 1.3 respectively. The smaller values of
g(2)(0) observed in the experiments are, as discussed, attributed to the systematic error in the mode
filtering, which moves the correlation signal towards g(2)(τ) = 1 for all times τ . The solid lines
in Fig. 4.6 are fits of Eq. (4.71) to the experimental data. The systematic error hence results in a
decrease of the coefficients c1, c2 compared to the theory values. The experimental estimates of the

second-order relaxation time τc = 1/ |γ| and the oscillation frequency ω = Im

√
γ2 − ω2

0 of g(2)

are found by fitting the theoretical model to the data as depicted in Fig. 4.6. The variation of the
oscillation frequency ω as a function the condensate number 〈n〉∞ is shown in Fig. 4.7. An increase
of the oscillation frequency of the second-order coherence function with the condensate occupation

17
τp ≈ 0.5 ns, as determined by cavity losses.

18
τnon-rad lies around 50 ns [148].
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Figure 4.5: Optical spectra (arbitrary units) as a function of wavelength λ, obtained from the cavity leakage
through the mirrors. The experiment was conducted at a cut-off wavelength of λc = 571.3 nm. Solid lines
indicate fits of the Bose-Einstein distribution at 300 K to the data (broadened by the experimental resolution),
the steady-state condensate number 〈n〉∞ being the only free parameter. The fit results for 〈n〉∞ are given
in the legend. The spectra at different 〈n〉∞ are vertically shifted vertically to improve visibility.

is observed. The solid line in Fig. 4.7 is obtained using a fit of the theoretical eigenvalues of
Eq. (4.67) to the experimental data, where the model parameters κ,Γ↑, and Bem are used as fit
parameters while the nonradiative decay rate Γ↓ is set to zero.

The experimental data are fitted well for different values of 〈n〉∞ by three parameters which
come out consistent with experimentally estimated values. This can be interpreted (supported by
the fits shown in Fig. 4.6) as evidence that the g(2) oscillations can be traced back to the physics
described by the rate equations, that is, the breaking of time-reversal symmetry due to drive and
dissipation, which move the system off equilibrium, as well as the coupling between the two
subsystems made up of dye molecules and cavity photons, respectively.

Interestingly, in spite of the non-equilibrium features visible in g(2)(τ), the number spectrum
follows an equilibrium Bose-Einstein distribution within experimental accuracy (see Fig. 4.5).
The physical origin of this intriguing behavior is the (stationary) transport of photons from the
dye reservoir into the resonator and out into the environment, while the average condensate
occupation is constant and the photon gas reaches an equilibrium spectral distribution via the
contact with the thermal dye molecules. The calculations show, furthermore, that the zero-delay
second-order coherence g(2)(0) > 1 is not affected by drive and dissipation, while the time
dependence of the second-order coherence g(2)(τ) does change with the latter. The induced photon
transport brings about non-trivial structure in the intensity-intensity correlations, as observed in
the presented experiments. Related effects are known from nanoelectronics, e.g. current-carrying,
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Figure 4.6: Typical results for the time dependence of the second-order correlation function for two different
condensate numbers. The solid lines are fits to Eq. (4.71). The envelope of the observed correlation signal
g(2)(τ) decays with a relaxation time of about 4 ns.

metallic nanowires, where the electron energy distribution is thermalized via rapid electron-electron
interactions in the wire [149].

To summarize, we theoretically derived an oscillatory second-order coherence function of an
open photon Bose-Einstein condensate that was also observed experimentally by investigating
the emission of a dye microcavity. Its origin goes back to the driven-dissipative character of the
light condensate. The presented results show that even when the spectral photon distribution
is compatible with thermal equilibrium within experimental accuracy, the fluctuation dynamics
depend sensitively on the openness of the system. As mentioned, one can observe similar behavior
in the hot-electron regime of electronic quantum wires at large bias voltage, where non-thermal
noise, even though non-oscillatory, is generated by the current. Because of the frequent electron-
electron collisions in the wire, this co-exists with an equilibrium (Fermi-Dirac) distribution of the
electron energy. In Ref. [36], this phenomenon was described for a photon system for the first time.

The damped oscillations of g(2)(τ) observed in photon condensates are reminiscent of laser
relaxation oscillations. However, there are certain important differences: for one thing, a laser
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Figure 4.7: Oscillation frequency of the second-order coherence g(2)(τ) as a function of the condensate
occupation 〈n〉∞, as measured in the experiment (dots) and predicted by the rate equations (solid line).
The parameters are M = 5.17 · 109, κ = 2.33 GHz, Bem = 2.50 · 10−5 GHz, Bem/Babs ≈ 57 (Kennard-
Stepanov relation corresponding to a cut-off wavelength λc = 571.3 nm), Γ↓ = 0.

is in a state far from equilibrium with a non-thermal spectral distribution. Contrary to this,
photon condensates are operated off, yet close to equilibrium, and follow an equilibrium Bose-
Einstein distribution, while they still show clear non-equilibrium dynamics in the intensity-intensity
correlations. Furthermore, for steady-state lasers g(2)(τ) = 1 for all τ . This means that a non-trivial
g(2)(τ) cannot occur unless the system is perturbed externally, as happens with laser relaxation
oscillations when a laser is switched on. For photon condensates which are not deep in the canonical
regime where the reservoir very small, the steady state is characterized by g(2)(0) > 1, and thus
sustaining fluctuations that are responsible for the spontaneous excitation of the oscillations.
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CHAPTER 5

Non-Equilibrium Pseudo-Particle Approach to
Open Quantum Systems

The microscopic model of the photon BEC introduced in Ref. [16] explicitly includes all essential
degrees of freedom that are present in the experiment. As discussed in the previous chapter, the
Hamiltonian reads

H =
∑
k

ωka
†
kak +

M∑
m=1

[
∆

2
σzm + Ω b†mbm

+ Ω
√
S σzm

(
bm + b†m

)
+ g

∑
k

(
akσ

+
m + a†kσ

−
m

)]
.

(5.1)

The subsequently employed phenomenological or macroscopic description, however, is based
on the physically well-motivated idea that the phonons bm, b†m can be treated as a reservoir and
hence be integrated out. This assumes a coupling of the phonons to a bath of harmonic oscillators
(representing the water in which the molecules are dissolved) with a relaxation rate λ that is by far
the fastest timescale in the system. In terms of a master equation for the full system, this can be
described by

ρ̇ = −i[H, ρ] +

M∑
m=1

λ

2

(
N̄(Ω) + 1

)
L[bm]ρ+

λ

2
N̄(Ω)L[b†m]ρ, (5.2)

where N̄(Ω) represents the temperature-dependent occupation of the water bath surrounding the
molecules. Physically, the Lindbladians in Eq. (5.2) describe the approach of the oscillators bm,
b†m to a steady state with average occupation N̄ over a timescale 1/λ which is typically a few ps or
shorter. When this timescale is assumed to be so short that this steady state is reached immediately
relative to the change of all other quantities in the system, then the phonons may be assumed to be
thermal from the outset and treated as a reservoir accordingly. In addition, an assumption about
the frequency spectrum of the phonons must be made. The presence of only a single frequency Ω
is likely an oversimplification.
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Figure 5.1: Motivations for generalizing the existing model of the photon condensate. (Left) Experimentally
measured oscillations of two cavity modes confined to a double-well potential at a cutoff of 594 nm (data
courtesy of Christian Kurtscheid). The period of the coherent tunneling is on the order of 10 ps, which
is potentially not much faster than the vibrational relaxation time 1/λ. (Right) Sketch of the g(2) phase
diagram from Chp. 4. To answer the question of whether the oscillating regime is bounded from above, the
system parameter κ needs to be increased until it begins to compete with λ.

The separation of timescales is certainly valid for the steady-state experiments where the mode
populations fluctuate on a nanosecond range [53]. Importantly though, the introduction of micro-
potentials [150] to photon-BEC experiments has enabled the creation of potential structures that
allow for a coherent coupling between different photon modes. An excellent example is a double-
well potential realized in Ref. [12], where the coherent overlap between the wave functions in
the two wells creates a tunneling matrix element. From the left panel of Fig. 5.1 one may see
that this induces very fast oscillations of periods that are on the order of 10 ps, suggesting these
experiments are entering into a regime where a system timescale becomes competitive with the
phonon relaxation rate. This may serve as a first motivation to look for a non-Markovian extension
of the macroscopic rate equations that have been employed so far in the description of the photon
BEC. A second and more immediate motivation arises from the interesting question whether the
oscillating regime of the g(2) phase diagram studied in Chp. 4 is bounded from above (right panel
of Fig. 5.1). To answer this question, it should be theoretically admissible to increase the cavity
loss κ without bound, which necessarily entails that it is going to enter into competition with the
reservoir relaxation rate λ. We can already anticipate that in this way κ will acquire influence on
the emission and absorption spectra.

To achieve such a non-Markovian model where the parameter λ enters explicitly, it is necessary
to keep the phonons bm, b†m in the description. This means that the coherent Jaynes-Cummings
terms g(akσ

+
m + a†kσ

−
m) will also be present. As we have seen in the previous chapter for a single

photon mode, the approach of Refs. [16–18] is, however, essentially based on a semi-classical
product ansatz for the system density matrix

ρ(t) =

∞∑
n=0

M∑
m=0

Pnm(t)|n〉〈n| ⊗ ρm, (5.3)

which precludes the inclusion of coherent terms such as the Jaynes-Cummings couplings. While
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one can envision modifying this ansatz to include coherence between the photon modes [18],
coherence between the two parts of the system, photons and molecules, is a more difficult matter.
In the single-mode picture of the previous chapter, the reason is that the rate equations resulting
from the calculation with the product ansatz can only be truncated systematically when the
essentially classical particle-number distribution Pnm is assumed to be Gaussian. Unfortunately,
this does not give a rule for the truncation of expectation values depending on phase differences
between the two parts of the system, that is, those induced by the coherent couplings. Therefore,
heuristic truncation techniques found in the literature [19] cannot be systematically controlled. The
potentially severe consequences of this will be illustrated below.

5.1 Pseudo-Particles

The technique of using canonical operators to represent impurity spins goes back to Abrikosov
[21]. The main idea is to expand operators that do not have canonical commutation relations in
terms of operators that do, and hence to allow for treatment by standard field-theory techniques
(most importantly perturbation theory). In a two-level system or spin 1/2, for example, either
the ground or excited state must always be “occupied”. If each is represented by a new fermion
operator, respectively, the trouble arises that unphysical states are introduced: the doubly occupied
and unoccupied states. This must be compensated for by an operator constraint that excludes the
unphysical states. The question then arises: How to enforce this constraint in the perturbation
series? Essentially, the Green functions will be projected onto the physical subspace by means of
an auxiliary chemical potential. This will be described in the following for both equilibrium and
non-equilibrium problems.

In the context of the infinite-U Anderson model [22], a combination of fermions and so-called
auxiliary bosons has been introduced [23–27] which together must satisfy a single operator
constraint. These techniques are valid in equilibrium field theory. The extension to non-equilibrium
has been given in [28, 29, 31]. A more recent exposition in non-equilibrium may also be found
in [32]. The microscopic model of the photon BEC invites a representation in terms of auxiliary
bosons only: each vibrational state of the dye molecule will be described by a pair of bosonic
creation and destruction operators. The constraint will enforce single occupation across these states.
We give a particular formulation of the technique in terms of greater and lesser Green functions
only. Previous works also include advanced and retarded [28, 29] or Matsubara Green functions
[32] into the description, which is entirely equivalent, of course, yet sometimes less transparent.

A model superficially similar to ours was given in Ref. [151]. However, it is rather an ad-hoc
description and not a faithful representation of the proper microscopic Hamiltonian. A previous
attempt to represent the two-level systems by fermions did not enforce the operator constraint
and was hence unsuccessful [152]. Furthermore, to the author’s knowledge we are the first to
extend the technique to open systems by introducing dissipative processes that respect the operator
constraint and conserve the pseudo-particle number. This requires a full synthesis of the projection
method and Schwinger-Keldysh field theory. The methods that follow here have been developed
with the microscopic model of the photon BEC in mind, yet may be applied to any system where
there is a large set of incoherent spins coupled coherently to a collection of cavity modes.
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5.1.1 Auxiliary-Boson Representation

A single dye molecule (M = 1) in the microscopic model has a quantum state |σ, n〉, where
σ = g, e refers to ground and excited state, respectively, and n denotes the vibrational state of the
molecule. For each of these states, we introduce creation and destruction operators dσ, n, d†σ, n with
[dσ, n, d

†
υ,m] = δσυδnm and d†σ, n |vac〉 = |σ, n〉. Then the physical operators in Eq. (5.1) may be

expressed via the auxiliary bosons as

b =
∞∑
n=0

∑
σ

√
n+ 1 d†σ, ndσ, n+1, (5.4)

and

σ+ =
∞∑
n=0

d†e, ndg, n,

σz =

∞∑
n=0

[
d†e, nde, n − d†g, ndg, n

]
,

(5.5)

where we have dropped the subscript m on the molecular operators. If this representation is to be
faithful, we have to enforce the operator constraint

Q̂ =
∞∑
n=0

∑
σ

d†σ, ndσ, n = 1. (5.6)

One may then check easily that the auxiliary-boson representation just given does indeed reproduce
the correct commutation relations for the phonon operators b, b† and the Pauli matrices. For
instance,

[b, b†] =
∑
n,m

∑
συ

√
n+ 1

√
m+ 1 [d†σ, ndσ, n+1, d

†
υ,m+1dυ,m]

=
∑
n,m

∑
συ

√
(n+ 1) (m+ 1)

{
d†σ, n

(
δσυδnm + d†υ,m+1dσ, n+1

)
dυ,m

− d†υ,m+1

(
δσυδnm + d†σ, ndυ,m

)
dσ, n+1

}

=
∑
σ

{ ∞∑
n=0

(n+ 1) d†σ, ndσ, n −
∞∑
n=1

n d†σ, ndσ, n

}

=
∞∑
n=0

∑
σ

d†σ, ndσ, n = Q̂.

(5.7)
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The quartic contributions may only be dropped under the assumption that the operators never act
on anything other than states in the physical subspace. This will be ensured by the projection via
the auxiliary chemical potential to be introduced in the next section.

In pseudo-particle representation and still for M = 1, the Hamiltonian (5.1) becomes

H =
∑
k

ωka
†
kak +

∞∑
n=0

[
(Ωn+ ∆/2)d†e, nde, n + (Ωn−∆/2)d†g, ndg, n

+ Ω
√
S (n+ 1)

(
d†e, n+1de, n − d†g, n+1dg, n + h.c.

)
+ g

∑
k

(a†kd
†
g, nde, n + akd

†
e, ndg, n)

]
.

(5.8)

5.1.2 Green-Function Representation

It is useful at this point to briefly introduce the Green functions in terms of which we will express
our problem from now on. For the cavity modes ak, a†k, the molecular ground-state operators dg,m,
d†g,m, and the molecular excited-state operators de,m, d†e,m, the corresponding Green functions are
defined by

D<
kl(t, t

′) = −i〈a†l (t
′)ak(t)〉, (5.9a)

D>
kl(t, t

′) = −i〈ak(t)a
†
l (t
′)〉, (5.9b)

G<mn(t, t′) = −i〈d†g, n(t′)dg,m(t)〉, (5.9c)

G>mn(t, t′) = −i〈dg,m(t)d†g, n(t′)〉, (5.9d)

E<mn(t, t′) = −i〈d†e, n(t′)de,m(t)〉, (5.9e)

E>mn(t, t′) = −i〈de,m(t)d†e, n(t′)〉. (5.9f)

Frequently, we will use a compact matrix notation where [G≶(t, t′)]mn = G≶
mn(t, t′). As we have

seen in the previous subsection, the pseudo-particle greater and lesser functions (G≶ and E≶)
scale differently with the auxiliary fugacity ζ. Since this fact is crucial for enforcing the operator
constraint in non-equilibrium, we will not use other representations such as statistical and spectral
functions [76].

5.1.3 Conserving Approximation

Diagrammatically, we again follow the 2PIEA construction detailed in Sec. 2.1. The vertex in
Eq. (5.8) does not contribute to first order in g since we do not assume symmetry breaking for the
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photon field. To second order in g, the effective action acquires vertex diagrams

W (2) ∼ g2 , (5.10)

where the wiggly line denotes the photon, the dashed line the excited-state, and the solid line
the ground-state propagator, respectively. Note that the 2PIEA construction is equivalent to a
Φ-derivable approach [79]. This means that our diagrammatic approximation is conserving, which
is a necessary requirement for enforcing the operator constraint faithfully.

The self-energies are obtained from the vertex diagrams in Eq. 5.1.3 by differentiation with
respect to the propagators. In terms of the contour-time-ordered Green functions, the self-energies
then become

ΣD(t, t′) = ig2 Tr
[
E(t, t′)G(t′, t)

]
, (5.11a)

ΣG(t, t′) = ig2E(t, t′) Tr
[
D(t′, t)

]
, (5.11b)

ΣE(t, t′) = ig2G(t, t′) Tr
[
D(t, t′)

]
, (5.11c)

such that in Schwinger-Keldysh representation, they read

Σ<
D(t, t′) = ig2 Tr

[
E<(t, t′)G>(t′, t)

]
, (5.12a)

Σ>
D(t, t′) = ig2 Tr

[
E>(t, t′)G<(t′, t)

]
, (5.12b)

Σ<
G(t, t′) = ig2E<(t, t′) Tr

[
D>(t′, t)

]
, (5.12c)

Σ>
G(t, t′) = ig2E>(t, t′) Tr

[
D<(t′, t)

]
, (5.12d)

Σ<
E(t, t′) = ig2G<(t, t′) Tr

[
D<(t, t′)

]
, (5.12e)

Σ>
E(t, t′) = ig2G>(t, t′) Tr

[
D>(t, t′)

]
. (5.12f)

5.1.4 Equilibrium Projection

Within the equilibrium formalism of quantum field theory, a nice presentation of the projection
technique has been given by Coleman [26]. Let us denote the auxiliary chemical potential by
µ and introduce the corresponding fugacity ζ = e−βµ. The canonical partition function on a
Hilbert space HQ with an arbitrary but fixed value of the operator constraint will be written as
TrHQ [ρ̂0] = ZC(Q). Then a grand-canonical partition function can be defined by

ZG(ζ) = Tr
[
ζQ̂ ρ̂0

]
=

∞∑
Q=0

ζQ TrHQ [ρ̂0] = ZC(0) + ζZC(1) +O(ζ2). (5.13)

The decisive factor ζQ̂ weighs each canonical partition function contributing to ZG(ζ) according to
its operator-constraint value. Apart from the contribution of the unphysical ground state Q̂ = 0, the
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physically correct ZC(1) could be obtained from Eq. (5.13) by multiplication with 1/ζ, followed
by taking either of the equivalent limits µ→∞ or ζ → 0. The operator average associated with
ZG(ζ) is

〈X̂〉ζ = Z−1
G (ζ) Tr

[
X̂ ζQ̂ ρ̂0

]
= Z−1

G (ζ)
∞∑
Q=0

ζQ TrHQ

[
X̂ ρ̂0

]
. (5.14)

When X̂ annihilates the ground state Q̂ = 0, its unphysical contribution is removed, and we find
the correct average in the physical subspaceH1 as

〈X̂〉H1
=

TrH1

[
X̂ ρ̂0

]
ZC(1)

= lim
ζ→0

〈X̂〉ζ
〈Q̂〉ζ

= lim
ζ→0

Z−1
G (ζ)

(
ζ TrH1

[
X̂ ρ̂0

]
+O(ζ2)

)
Z−1
G (ζ)

(
ζ TrH1

[
Q̂ ρ̂0

]
+O(ζ2)

) .
(5.15)

For later purposes, it is instructive to look at two special operator averages. First, consider

〈dg, nd†g, n〉ζ = Z−1
G (ζ)

(
TrH0

[
dg, nd

†
g, n ρ̂0

]
+ ζ TrH1

[
dg, nd

†
g, n ρ̂0

]
+O(ζ2)

)
= Z−1

G (ζ)
(

TrH0
[ ρ̂0] + ζ TrH1

[
dg, nd

†
g, n ρ̂0

]
+O(ζ2)

)
=
ζ→0
O(1),

(5.16)

which does not annihilate the ground state. Accordingly, the result is not of order ζ but ratherO(1).
Reversing the order of the two operators, we find

〈d†g, ndg, n〉ζ = Z−1
G (ζ)

(
TrH0

[
d†g, ndg, n ρ̂0

]
+ ζ TrH1

[
d†g, ndg, n ρ̂0

]
+O(ζ2)

)
= Z−1

G (ζ)
(
ζ TrH1

[
d†g, ndg, n ρ̂0

]
+O(ζ2)

)
=
ζ→0
O(ζ)

(5.17)

as expected. The same holds for the excited-state operators. These results will be of great
importance for the projection technique in non-equilibrium, which is the subject of the next section.

5.2 Non-Equilibrium Projection

The following exposition of the pseudo-particle projection in non-equilibrium field theory relies
on a derivation of the Schwinger-Keldysh path integral that has been adapted from [11, 56, 78].
These references all have variants of essentially the same standard approach to the problem, which
is to expand the density matrix along a discretized closed-time path by means of inserting coherent
states at every point. By using this approach on the projection, we give a novel derivation that does
not rely on the explicit inclusion of a vertical branch on the Schwinger-Keldysh contour [32], but
instead works for an arbitrary Gaussian initial density matrix.
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Figure 5.2: Schwinger-Keldysh contour for the expansion of the density matrix.

A sketch of the discretized contour can be seen in Fig. 5.2. The only difference to Sec. 2.1 is
that we have replaced the initial density matrix according to

ρ̂0 ← ζQ̂ ρ̂0. (5.18)

The idea is to project the initial state of the non-equilibrium problem in a way analogous to the
equilibrium one. The dynamics of the density matrix is governed by the von Neumann equation

∂tρ̂ = Lρ̂ = −i[H, ρ̂]. (5.19)

Since we are going to work perturbatively later on, it is sufficient to derive only the free path
integral and hence to assume that H is quadratic. Furthermore, without loss of generality, we will
give the derivation for a single two-level system without vibrational substructure (n = 0), and we
will focus on the ground state only. For the reason that ground and excited state are only coupled
indirectly via the constraint, the resulting inverse Green function appearing in the derivation of
the free path integral will be block diagonal, such that ground and excited state can be considered
separately. As will become obvious, the excited state may be included in the derivation without
any difficulty.

5.2.1 Scaling of Bare Green Functions

Our aim in this section is to derive the proper ζ scaling of the greater and lesser Green functions
that we have anticipated in equilibrium. The initial density matrix can be assumed to be of the form

ρ̂0 = κd
†
d (5.20)

for some real parameter κ < 1 [56]. We have dropped the subscripts of the ground-state operators
dg, 0, d†g, 0. Since we also keep the presence of the corresponding excited state implicit, during the

following derivation ζQ̂ will be replaced by ζd
†
d. As mentioned, we then “trotterize” the time
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evolution induced by the von Neumann equation and insert coherent-state identities

ρ̂n =

∫
dφ∗+,ndφ+,n

π

dφ∗−,ndφ−,n
π

e−φ
∗
+,nφ+,ne−φ

∗
−,nφ−,n |φ+,n〉〈φ+,n| ρ̂n |φ−,N−n〉〈φ−,N−n|

(5.21)

at every point along the contour. Doing so will result in the Schwinger-Keldysh partition function

Z =

∫ ( N∏
k=0

dφ∗+,kdφ+,k

π

dφ∗−,kdφ−,k
π

)
exp

{
iφ†G−1

0 φ
}
, (5.22)

with a bare inverse Green function given by

G−1
0 = −i



−1 0 · · · · · · 0 ζ · κ
h+ −1 0

. . . . . .
...

h+ −1
1 −1

h−
. . .

...
. . . −1 0

h− −1


, (5.23)

where h± = 1∓ iδtω0 for a single ground state with ω0 = −∆/2. We have also used the operator
identity

ζd
†
dκd

†
d = exp

(
d†d ln ζ

)
exp

(
d†d lnκ

)
= exp

(
d†d ln ζκ

)
= (ζκ)d

†
d . (5.24)

The determinant of the inverse Green function is

det
(
−iG−1

0

)
= 1− ζκ(h+h−)N −→

N→∞
1− ζκ. (5.25)

In the continuum limit, δt→ 0, N →∞ such that δtN = t, this yields bare Green functions of
the form

GT0 (t, t′) = −ie−iω0(t−t′)
(
θ(t− t′) +

ζκ

1− ζκ

)
, (5.26a)

GT̃0 (t, t′) = −ie−iω0(t−t′)
(
θ(t′ − t) +

ζκ

1− ζκ

)
, (5.26b)

G<0 (t, t′) = −ie−iω0(t−t′) ζκ

1− ζκ, (5.26c)

G>0 (t, t′) = −ie−iω0(t−t′)
(

ζκ

1− ζκ + 1

)
. (5.26d)
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For t = t′ = 0, the lesser function should be iG<0 (0, 0) = ζng, 0, where the initial occupation ng, 0
must be such that the constraint is fulfilled, which would be Q̂ ≡ ng, 0 + ne, 0 = 1 for a single set
of ground and excited states. Hence, we have ng, 0 = κ/ (1− ζκ), which means

κ =
ng, 0

1 + ζng, 0
−→
ζ→0

ng, 0. (5.27)

Therefore, we find

GT0 (t, t′) −→
ζ→0
−ieiω0(t−t′)θ(t− t′), (5.28a)

GT̃0 (t, t′) −→
ζ→0
−ieiω0(t−t′)θ(t′ − t), (5.28b)

ζ−1G<0 (t, t′) −→
ζ→0
−ieiω0(t−t′)ng, 0, (5.28c)

G>0 (t, t′) −→
ζ→0
−ieiω0(t−t′). (5.28d)

Note how both the time-ordered and the anti-time-ordered Green function merely involve the
greater Green function. This is a direct result of the limit ζ → 0. A similar thing happens for the
spectral function. Usually, it is given by

ρ0(t, t′) = G<0 (t, t′)−G>0 (t, t′), (5.29)

which is not to be confused with the initial density matrix ρ̂0. But since the lesser Green function
scales with ζ, we have

ρ0(t, t′) −→
ζ→0
−G>0 (t, t′). (5.30)

While this might seem odd at first, it actually is a crucial feature of the projection technique.
Exactly analogous expressions hold for the bare excited-state Green functions E≶

0 .

5.2.2 Scaling of Resummed Green Functions and Self-Energies

So far, we have investigated the bare Green functions occurring for non-interacting problems. As
we have seen above, though, a self-consistent perturbative expansion in the small parameter g
involves second-order self-energies coupling the pseudo-particles with each other and with the
cavity modes. Hence, we have to ask whether the ζ scaling of the bare pseudo-particle Green
functions will be modified by the self-consistent resummation of the diagrams? If we assume
for a moment that the full Green functions possess the same scaling as the bare ones, the Dyson
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equations resulting from the 2PIEA construction will read

(i∂t − hG) ζG<(t, t′) =

∫ t

t0

dt̄
[
Σ>
G(t, t̄)− ζΣ<

G(t, t̄)
]
ζG<(t̄, t′)

−
∫ t
′

t0

dt̄ ζΣ<
G(t, t̄)

[
G>(t̄, t′)− ζG<(t̄, t′)

]
,

(5.31a)

(i∂t − hG)G>(t, t′) =

∫ t

t0

dt̄
[
Σ>
G(t, t̄)− ζΣ<

G(t, t̄)
]
G>(t̄, t′)

−
∫ t
′

t0

dt̄ Σ>
G(t, t̄)

[
G>(t̄, t′)− ζG<(t̄, t′)

]
,

(5.31b)

(i∂t − hE) ζE<(t, t′) =

∫ t

t0

dt̄
[
Σ>
E(t, t̄)− ζΣ<

E(t, t̄)
]
ζE<(t̄, t′)

−
∫ t
′

t0

dt̄ ζΣ<
E(t, t̄)

[
E>(t̄, t′)− ζE<(t̄, t′)

]
,

(5.31c)

(i∂t − hE)E>(t, t′) =

∫ t

t0

dt̄
[
Σ>
E(t, t̄)− ζΣ<

E(t, t̄)
]
E>(t̄, t′)

−
∫ t
′

t0

dt̄ Σ>
E(t, t̄)

[
E>(t̄, t′)− ζE<(t̄, t′)

]
,

(5.31d)

where we have made the ζ scaling explicit and abbreviated the quadratic parts of the dynamics
through the matrices hG,E , respectively. These Dyson equations are integro-differential equations
with a causal structure: the evolution of the functions depends only on points in the past. This
means they can be solved by explicit time-stepping, starting with known initial values at time
t0. Looking at the factors of ζ on the right-hand side of the equations, this tells us immediately
that any initial scaling in ζ will be conserved by the equations. If in the limit ζ → 0 there holds
G<(0, 0) = O(ζ), thenG<(t, t′) = O(ζ) must hold for all times t, t′ because there are no terms
O(1) present on the right-hand side of the respective equation. By close inspection, one may tell
that the same is true for the remaining equations. As we have ensured the initial scalings via the
projection, we may conclude that even for a self-consistent solution of Eqs. (5.31), the ζ scaling of
the bare Green functions will be reproduced in the full Green functions, provided we start with a
properly scaled initial condition and employ a conserving approximation. Summarizing, this gives
the scalings

G<(t, t′) =
ζ→0
O(ζ), (5.32a)

G>(t, t′) =
ζ→0
O(1), (5.32b)

E<(t, t′) =
ζ→0
O(ζ), (5.32c)

E>(t, t′) =
ζ→0
O(1). (5.32d)
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for the full Green functions, and

Σ<
D(t, t′) =

ζ→0
O(ζ), (5.33a)

Σ>
D(t, t′) =

ζ→0
O(ζ), (5.33b)

Σ<
G(t, t′) =

ζ→0
O(ζ), (5.33c)

Σ>
G(t, t′) =

ζ→0
O(1), (5.33d)

Σ<
E(t, t′) =

ζ→0
O(ζ), (5.33e)

Σ>
E(t, t′) =

ζ→0
O(1). (5.33f)

for the resummed self-energies. Observe how both photon self-energies are O(ζ). This will have
important consequences in the following.

5.2.3 Projected Dyson Equations

With the scalings of the full Green functions and self-energies established, we may actually perform
the projection of Eqs. (5.31) onto the physical subspace. For the lesser Green functions, this means
to multiply by 1/ζ and then to take the limit ζ → 0. For the greater Green functions, the former
step is not necessary. This leads us to

(i∂t − hG)G<(t, t′) =

∫ t

t0

dt̄ Σ>
G(t, t̄)G<(t̄, t′)−

∫ t
′

t0

dt̄ Σ<
G(t, t̄)G>(t̄, t′), (5.34a)

(i∂t − hG)G>(t, t′) =

∫ t

t
′

dt̄ Σ>
G(t, t̄)G>(t̄, t′), (5.34b)

(i∂t − hE)E<(t, t′) =

∫ t

t0

dt̄ Σ>
E(t, t̄)E<(t̄, t′)−

∫ t
′

t0

dt̄ Σ<
E(t, t̄)E>(t̄, t′), (5.34c)

(i∂t − hE)E>(t, t′) =

∫ t

t
′

dt̄ Σ>
E(t, t̄)E>(t̄, t′). (5.34d)

There are several things to notice about these equations. The type of the self-energies (> or <)
is always determined by the constituent pseudo-particle Green function. Hence, in the equations
for the lesser functions, the right-hand sides always involve a product of greater and lesser
pseudo-particle Green functions, whereas for the greater functions only the product of two greater
pseudo-particle Green functions survives. This indeed gives a general rule of thumb for doing
the projection: drop all terms that do not involve the correct number of greater and lesser signs
from the equations. It should be emphasized here that this procedure is independent of the specific
diagrammatics: instead of the two-loop1 expansion employed here, we could pick any other set of
diagrams and still perform the projection according to the rule just outlined.

1 Two-loop from the perspective of the 2PI effective action or Φ-functional.
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We have not discussed the photon Dyson equation yet. The photons are not pseudo-particles,
yet their greater and lesser self-energies still scale with the fugacity. Making the scaling explicit,
the Dyson equations would read

(i∂t − hD)D≶(t, t′) =

∫ t

t0

dt̄
[
ζΣ>

D(t, t̄)− ζΣ<
D(t, t̄)

]
D≶(t̄, t′)

−
∫ t
′

t0

dt̄ ζΣ≶
D(t, t̄)

[
D>(t̄, t′)−D<(t̄, t′)

]
.

(5.35)

How is this apparent conflict to be reconciled? It should be clear that the fugacity scaling of the
pseudo-particle Green functions can only work out if the photon Green functions appearing in the
self-energies Σ≶

G,E are O(1). From this we learn that within these self-energies, the full photon

Green functionsD≶ have to be replaced by the bare ones:

D≶(t, t′)←−D≶
0 (t, t′). (5.36)

Any alteration of the photons due to the pseudo-particles necessarily would be O(ζ), such that its
influence in turn certainly drops out of the pseudo-particle self-energies. Therefore, these become

Σ<
G(t, t′) = ig2E<(t, t′) Tr

[
D>

0 (t′, t)
]
,

Σ>
G(t, t′) = ig2E>(t, t′) Tr

[
D<

0 (t′, t)
]
,

Σ<
E(t, t′) = ig2G<(t, t′) Tr

[
D<

0 (t, t′)
]
,

Σ>
E(t, t′) = ig2G>(t, t′) Tr

[
D>

0 (t, t′)
]
.

How to calculate the effect of the pseudo-particles on the photons will be the next subject.

5.2.4 Full Photon Green Function

To obtain physical results, any quantity involving pseudo-particles must be projected to the physical
subspace. As it turns out, this rule can be most easily adhered to when the photon Green functions
are not resummed via the Dyson equations involving the self-energies, but rather by means of the
T -matrix. Diagrammatically, the general Dyson equation

D(t, t′) = D0(t, t′) +

∫
C

dt̄

∫
C

ds̄D0(t, t̄)ΣD(t̄, s̄)D(s̄, t′) (5.37)

can be depicted as

= + (5.38)
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where the bare (full) photon Green function is given by the single (double) line and the self-energy
by the hatched circle. In terms of the T -matrix, full photon Green function becomes

D(t, t′) = D0(t, t′) +

∫
C

dt̄

∫
C

ds̄D0(t, t̄)TD(t̄, s̄)D0(s̄, t′) (5.39)

which diagrammatically looks like

= + (5.40)

where the cross-hatched circle is the T -matrix. Notice how the Green function attached to it from
the right is now the bare instead of the full one. In contrast to the self-energy given in subsection
5.1.3, the T -matrix is composed of a sum over strings of pseudo-particle bubbles resulting in

= ζ · + ζ2 · + . . . , (5.41)

where the double dashed (solid) lines denote the full excited-state (ground-state) propagator. Each
term in the T -matrix has a factor of ζ to the power of the number of bubbles. As before, to project
it we have to multiply by 1/ζ and then take ζ to zero. This means that in the projected T -matrix
only the single bubble will survive. Expanding the contour C as before,∫

C
ds̄ =

∫ min(t̄,t
′
)

t0

ds̄ +

∫ max(t̄,t
′
)

min(t̄,t
′
)

ds̄ +

∫ t0

max(t̄,t
′
)
ds̄ , (5.42)

one thus obtains explicit expressions in terms of known quantities. For the resummed lesser
function, we have

D< −D<
0 =

∫ t

t0

dt̄

{∫ t̄

t0

ds̄D>
0 T

>
DD

<
0 +

∫ t
′

t̄
ds̄D>

0 T
<
DD

<
0 +

∫ t0

t
′

ds̄D>
0 T

<
DD

>
0

}

+

∫ t
′

t
dt̄

{∫ t̄

t0

ds̄D<
0 T

>
DD

<
0 +

∫ t
′

t̄
ds̄D<

0 T
<
DD

<
0 +

∫ t0

t
′

ds̄D<
0 T

<
DD

>
0

}

+

∫ t0

t
′

dt̄

{∫ t
′

t0

ds̄D<
0 T

>
DD

<
0 +

∫ t̄

t
′

ds̄D<
0 T

>
DD

>
0 +

∫ t0

t̄
ds̄D<

0 T
<
DD

>
0

}
,

(5.43)
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whereas for the resummed greater function we find

D> −D>
0 =

∫ t
′

t0

dt̄

{∫ t̄

t0

ds̄D>
0 T

>
DD

<
0 +

∫ t
′

t̄
ds̄D>

0 T
<
DD

<
0 +

∫ t0

t
′

ds̄D>
0 T

<
DD

>
0

}

+

∫ t

t
′

dt̄

{∫ t
′

t0

ds̄D>
0 T

>
DD

<
0 +

∫ t̄

t
′

ds̄D>
0 T

>
DD

>
0 +

∫ t0

t̄
ds̄D>

0 T
<
DD

>
0

}

+

∫ t0

t
dt̄

{∫ t
′

t0

ds̄D<
0 T

>
DD

<
0 +

∫ t̄

t
′

ds̄D<
0 T

>
DD

>
0 +

∫ t0

t̄
ds̄D<

0 T
<
DD

>
0

}
.

(5.44)

Alternatively, it is possible to calculate the resummed functions in differential form. Eq. (5.39) can
by multiplying with the inverse bare Green function be cast to∫

C
dt̄D−1

0 (t, t̄)D(t̄, t′) = δC(t− t′) +

∫
C

dt̄

∫
C

ds̄ δC(t− t̄)TD(t̄, s̄)D0(s̄, t′), (5.45)

which withD−1
0 (t, t′) = δC(t− t′)D−1

0 (t) is equivalent to

D−1
0 (t)D(t, t′) = δC(t− t′) +

∫
C

dt̄ TD(t, t̄)D0(t̄, t′). (5.46)

From here, one may find equations for the greater and lesser functions that formally look similar
to standard Dyson equations, yet with the difference that on the right-hand sides, the T -matrices
appear instead of the self-energies andD is replaced byD0.

5.2.5 Many Incoherent Molecules

Our considerations so far were limited to the case of a single molecule, M = 1. In the real
experiments, a very large number of molecules is dissolved inside the cavity, with M being on the
order of 106–109. For simplicity, let us for a second think about whether the case M = 2 could be
solved exactly with the present technique. What would the operator constraint look like in this
case? There is only one way to ensure that both molecules have single occupation at all times: one
has to enforce

Q̂1Q̂2 = 1, (5.47)

where the subscript m = 1, 2 now indicates the molecule and each Q̂m has the same form as
above. To enforce the expectation value of this quartic operator constraint at initial time [33], one
has to work four-particle-irreducibly, that is, employ the 4PI effective action [95, 99].2 Clearly,

2 While even more involved than the present construction, it would be technically very interesting to see whether this
problem can still be solved exactly, which would result in a kind of ”two-impurity unit cell” that could be used to
improve DMFT simulations. As a matter of fact, using the 4PIEA to solve any fully time-dependent non-equilibrium
system seems not to have been done so far.
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for an exact projection of an arbitrary number of molecules M , one would have to work with
the 2MPI effective action, which is impossible. Because of the high temperature (T ∼ 300 K)
of the surrounding water, the molecules may, however, be assumed to be entirely uncorrelated.
For this reason, it is justified to replace the product operator constraint

∏
m Q̂m = 1 by the set of

constraints Q̂m = 1 for all m = 1, ...,M , in other words, to project each molecule separately. This
essentially assumes 〈∏m Q̂m〉 =

∏
m〈Q̂m〉. Furthermore, we can assume Q̂1 = ... = Q̂M and

hence treat all molecules as though they were completely identical. For experimentally relevant
purposes, these assumptions are well-justified. Introducing a set of fugacities ζm accordingly, for
the T -matrix we then find the familiar-looking expression

=
M∑
m=1

{
ζm · +

∑
m̃

ζmζm̃ · + . . .

}
(5.48)

where the two bubbles in the second diagram now belong to different molecules (although we treat
them identically). Each term appearing in this T -matrix has to be projected separately. Only those
survive which have no ζm appearing to higher powers than linear. Attaching external legs and
treating all bubbles as identical, this is equivalent to

= M ·
{

+ (M − 1) · + . . .

}

where we have drawn the hatched circles instead of the bubbles. As a series, this can also be
written

TM :=
M∑
k=1

M !

(M − k)!
D0TD (D0TD)k−1D0. (5.49)

When this sum converges fast (such that one may take the upper boundary of the sum to infinity
and use M !/ (M − k)! ≈ Mk), it should be a very good approximation to resum the terms in
the curly brackets to yield the full photon Green function, yet coupled to the molecules with an
enhanced effective vertex strength

√
Mg.

The criteria for fast convergence of the series have to be discussed at this point. It will generally
not be true that a combination of very large molecule number M , small coupling g and large
photon occupations will give rapidly declining contributions from longer chains of bubbles. The
driven-dissipative processes that also enter into the dynamics do, however, have such an effect
because they narrow the support of the Green functions in two-time space. For instance, the cavity
loss alone should suffice to suppress very long bubble chains. Note that this is not in contradiction
to the requirement of having many absorption-emission cycles before a photon leaves the cavity.
The molecule number is so large that both criteria can be met.
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Dropping hD for brevity, the resulting Dyson-like equations are then

i∂tD
≶(t, t′) = M

∫ t

t0

dt̄
[
T>D (t, t̄)− T<D (t, t̄)

]
D≶(t̄, t′)

−M
∫ t
′

t0

dt̄ T≶
D(t, t̄)

[
D>(t̄, t′)−D<(t̄, t′)

]
.

(5.50)

In the “horizontal” time direction,3

i∂t′D
≶(t, t′) = M

∫ t
′

t0

dt̄
[
T>D (t̄, t′)− T<D (t̄, t′)

]
D≶(t, t̄)

−M
∫ t

t0

dt̄ T≶
D(t̄, t′)

[
D>(t, t̄)−D<(t, t̄)

]
,

(5.51)

and in the equal-time limit, we find

i∂TD
<(t, t) = M

∫ t

t0

dt̄
[
T>D (t, t̄)D<(t̄, t)− T<D (t, t̄)D>(t̄, t)

+ D<(t, t̄)T>D (t̄, t)−D>(t, t̄)T<D (t̄, t)
]

= i∂TD
>(t, t).

(5.52)

This completes the technical discussion of the problem. The equations have to be solved together
with the projected Dyson equations of the pseudo-particles. Before going over to experimentally
realistic cases, in the following we will first discuss a couple of toy cases. This will serve the
purpose of verifying the methods we have established on simple examples where either analytical
solutions are known or numerical solutions can be obtained by other means than field theory.

3 The T -matrix picks up a minus when taking the adjoint because of the factor of i in front of the bubble diagram.
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m, n 0 1 2

0 I II III

1 II I II

2 III II I

Table 5.1: Vertex types I, II and III appearing in Eq. (5.53). Only the diagonal (type I) is included into the
final description.

5.3 Auxiliary Bosons Applied to Open Systems

The phonon Lindblad operators of the master equation (5.2) have yet to be written in terms of
pseudo-particles. It is worth emphasizing that, to the author’s knowledge, this has not been
discussed in the literature before. For closed systems, the Dyson equation can always be written
down in terms of the contour-time-ordered Green function, which after evaluating the contour
leads to equations involving only the greater and lesser Green functions. As we have seen in 2.1.3,
this is no longer true for open systems: the structure of the Lindblad operators over the whole
contour is such that in the Green-function equations of motion, the (anti-) time-ordered Green
functions appear also. This requires a little extra care when applying the projection technique to
open systems. For clarity, we go back to the single-molecule case M = 1. With the representation
(5.4), the operator L[b]ρ becomes

L[b]ρ =

∞∑
m,n=0

∑
σ, υ

√
m+ 1

√
n+ 1

[
2d†σ,mdσ,m+1ρd

†
υ, n+1dυ, n

−
{
ρ, d†υ, n+1dυ, nd

†
σ,mdσ,m+1

}]
.

(5.53)

As long as we do not explicitly introduce symmetry breaking for the photon modes, any coherence
between ground and excited states can be discarded from the description, which is also a physically
reasonable assumption. Hence, only terms with σ = υ survive in Eq. (5.53). Since these terms
are quartic, we have to apply perturbation theory, which we do to the same order in ~ as for
the Jaynes-Cummings coupling above. The resulting Hartree-Fock diagrammatics has a slightly
complicated structure depending on the vibrational states involved in the vertices. There happen
to be three different types (s. Tab. 5.1). The most straightforward one is defined by m = n (the
diagonal of Tab. 5.1) and reads

L[d†σ, ndσ, n+1]ρ = 2d†ndn+1ρd
†
n+1dn −

{
ρ, d†n+1dnd

†
ndn+1

}
, (5.54)

where we have dropped the index σ for brevity. The second vertex (type II) is given by m = n+ 1.
It only influences the coherence between different vibrational states and not their densities. This
can be understood as follows. In the physical subspace, quartic terms involving three different
vibrational states such as {ρ, d†n+1dnd

†
n+1dn+2} always vanish identically. In an obvious bra-ket

120



5.3 Auxiliary Bosons Applied to Open Systems

notation, the only contribution comes from the jump term according to

Tr {|n〉〈n+ 1| · 2 |n+ 1〉〈n+ 2| ρ(t) |n+ 1〉〈n|} = 2 Tr {|n+ 1〉〈n+ 2| ρ(t)} . (5.55)

Thus we see that the coherence |n〉〈n+ 1| between states |n〉 and |n+ 1〉 is influenced by the
coherence |n+ 1〉〈n+ 2|. Since such coherences have little influence on the photon dynamics
for large vibrational relaxation rates λ, we are going to ignore this type of vertex. The third and
final vertex (type III) connects coherences between states which are two or more quanta apart, e.g.
|n〉〈n+ 2| and |n+ 1〉〈n+ 3|; these we are also going to ignore.

For the external pumping and electronic loss L[σ±]ρ, we make a similar simplification in
that we only allow for transitions between vibrational states with the same number of quanta.
These vertices are then also of type I. For the electronic loss in particular this may constitute an
oversimplification; yet since this process is always weak in comparison to the external pumping,
we will put Γ↓ = 0 for most applications. A more physical implementation would be to have
the vibrational state n = 0 of the excited-state manifold only decay to the uppermost vibrational
state of the ground-state manifold, a process which would not, however, be related to L[σ−]ρ in
a straightforward way. As another remark, for the external pumping one may want to consider
introducing a blue detuning by converting ground-state quanta n into excited-state quanta n+ ∆n.
We will not pursue any such generalization in the following. With these considerations in mind,
the final master equation for our system becomes

∂tρ = −i[H, ρ] +
1

2

{∑
k

κL[ak] +
∞∑
n=0

[
Γ↑L[d†e, ndg, n] + Γ↓L[d†g, nde, n]

+
∑
σ

(n+ 1)
(
λ
(
N̄(Ω) + 1

)
L[d†σ, ndσ, n+1] + λN̄(Ω)L[d†σ, n+1dσ, n]

)]}
ρ

(5.56)

where H is defined in Eq. (5.8). As one may see, the auxiliary-boson Lindbladians all belong to
vertex type I in the sense that they involve two different auxiliary-boson operators.

5.3.1 Lindblad Operators in Hartree-Fock Approximation

To have a consistent diagrammatic expansion for the four couplings g, Γ↑, ↓ and λ of our theory,
we expand the corresponding vertices to second order in ~. For the incoherent couplings, such a
two-loop expansion amounts to keeping the “double-bubble” diagram in the generating functional,
or in other words, to working in Hartree-Fock approximation. Since all of the incoherent vertices
are of type I, we will treat them collectively by first considering the expansion of the Lindbladian

Γ

2
L[d†0d1]ρ = Γd†0d1ρd

†
1d0 −

Γ

2

{
ρ, d†1d0d

†
0d1

}
, (5.57)

where for the moment the subscripts are placeholders for any of the states contributing to the
Lindblad terms in Eq. (5.56) and Γ represents the corresponding incoherent coupling. The first
step is to write down the Hartree-Fock equations for this Lindbladian without performing the
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pseudo-particle projection. Once the unprojected equations are established, it will be possible to
do the projection by taking the established fugacity limit ζ → 0.

Paying attention to the time-ordering of the operators in the anti-commutator, one may derive
the equations of motion analogously to Sec. 3.1. The result is

(i∂t − hG)G<(t, t′) =
Γ

2

(
G<11(t, t) −G≶

01(t, t)

G≶
10(t, t) G>00(t, t)

)
G<(t, t′)

− ΓG<11(t, t)

(
GT̃00(t, t′) GT̃01(t, t′)

0 0

)
,

(i∂t − hG)G>(t, t′) = −Γ

2

(
G<11(t, t) G≶

01(t, t)

−G≶
10(t, t) G>00(t, t)

)
G>(t, t′)

+ ΓG>00(t, t)

(
0 0

GT10(t, t′) GT11(t, t′)

)
.

(5.58)

These equations can be evaluated numerically for t > t′. For the complete numerical solution, we
also need to specify the equations in the equal-time limit. This gives

iĠ
<

(T, 0) =
[
hG,G

<(T, 0)
]

+
Γ

2

(
G<11(T, 0) −G≶

01(T, 0)

G≶
10(T, 0) G>00(T, 0)

)
G<(T, 0)

+
Γ

2
G<(T, 0)

(
G<11(T, 0) G≶

01(T, 0)

−G≶
10(T, 0) G>00(T, 0)

)

− ΓG<11(T, 0)

(
GT̃00(T, 0) +GT00(T, 0) GT̃01(T, 0)

GT10(T, 0) 0

)
,

iĠ
>

(T, 0) =
[
hG,G

>(T, 0)
]
− Γ

2

(
G<11(T, 0) G≶

01(T, 0)

−G≶
10(T, 0) G>00(T, 0)

)
G>(T, 0)

− Γ

2
G>(T, 0)

(
G<11(T, 0) −G≶

01(T, 0)

G≶
10(T, 0) G>00(T, 0)

)

+ ΓG>00(T, 0)

(
0 GT̃01(T, 0)

GT10(T, 0) GT11(T, 0) +GT̃11(T, 0)

)
.

(5.59)

Note that for the off-diagonal Green functions at equal time, greater and lesser signs are indeed
interchangeable because of the vanishing commutator. A comparison of a numerically exact
solution of these equations with the result of our algorithm from Sec. 2.3 for a Hamiltonian

hG =

(
0 π/2
π/2 2π

)
(5.60)
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Figure 5.3: Numerical solution of Eqs. (5.58) and (5.59) for hG as defined in Eq. (5.60) and initial conditions
G<00(0, 0) = 0, G<11(0, 0) = −i · 10−2 (off-diagonals initially zero). Thick dashed lines indicate the
numerically exact solutions. The results were calculated with a step size of Γ · 2−7 for a number of 29 steps
(nini = 3 · 27).

is shown in Fig. 5.3. As expected, the effect of L[d†0d1]ρ is to transfer excitations from state 1 into
state 0. The oscillations superposed with this incoherent transfer are due to the coherent coupling
in hG. As before, the algorithm of Sec. 2.3 reproduces the exact results accurately. One reason for
this is that we are well within the perturbative regime due to the small initial occupation G<11(0, 0).
For larger initial occupation, the loop expansion starts to deviate slightly from the exact result, as
expected.

5.3.2 Projected Lindblad Operators in Hartree-Fock Approximation

The next step is to perform the pseudo-particle projection on Eqs. (5.58) and (5.59). Since
ultimately we want to describe the vibrational relaxation, we take one step in that direction and
give the equations of motion following from the total operator

Γ

2

[(
N̄ + 1

)
L[d†0d1] + N̄L[d†1d0]

]
ρ. (5.61)

The result for the previous case L[d†0d1] then follows for N̄ = 0. Basically, the projection is
now performed by removing all terms with too many lesser functions in Eqs. (5.58). But there
seemingly arises an ambiguity from the identity of unprojected off-diagonal lesser and greater
functions. One has to keep in mind, however, that for pseudo-particles there should hold

G>(T, 0) =

(
G>00(T, 0) G>01(T, 0)

G>10(T, 0) G>11(T, 0)

)
=

(
−i 0

0 −i

)
(5.62)

for all times T . This means that it would be possible to remove all equal-time off-diagonal greater
Green functions from the equations (and hence to remove the ambiguity). At the same time, one
can observe that the ambiguous terms would also have to be dropped because of their scaling in ζ
if they were interpreted as lesser functions. Thus, the requirement of Eq. (5.62) ensures that the
projection can be performed consistently. One may verify that Eq. (5.62) is indeed fulfilled by all
of the respective equations of motion, in particular by the accordingly projected version of Eq.
(5.59).
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Adding also the terms required for L[d†1d0]ρ by switching the appropriate indices, we arrive at

i∂tG
<(t, t′) = hGG

<(t, t′) +
ΓN̄

2

(
G>11(t, t) 0

0 G>00(t, t)

)
G<(t, t′)

+
Γ

2

(
0 0

0 G>00(t, t)

)
G<(t, t′),

(5.63a)

i∂tG
>(t, t′) = hGG

>(t, t′)− ΓN̄

2

(
G>11(t, t) 0

0 G>00(t, t)

)
G>(t, t′)

+ ΓN̄

(
G>11(t, t) 0

0 G>00(t, t)

)
G>(t, t′) +

Γ

2

(
0 0

0 G>00(t, t)

)
G>(t, t′)

= hGG
>(t, t′) +

ΓN̄

2

(
G>11(t, t) 0

0 G>00(t, t)

)
G>(t, t′)

+
Γ

2

(
0 0

0 G>00(t, t)

)
G>(t, t′).

(5.63b)

These equations evidently possess the correct fugacity scalings. For the equal-time equation of
G<, we start from Eqs. (5.59) and again remove all terms with the wrong scaling. This yields

iĠ
<

(T, 0) =
[
hG,G

<(T, 0)
]

+
ΓN̄

2

{(
G>11(T, 0) 0

0 G>00(T, 0)

)
,G<(T, 0)

}
− ΓN̄

(
G<11(T, 0) 0

0 G<00(T, 0)

)
G>(T, 0)

+
Γ

2

{(
0 0

0 G>00(T, 0)

)
,G<(T, 0)

}
− Γ

(
G<11(T, 0) 0

0 0

)
G>(T, 0)

=
[
hG,G

<(T, 0)
]

+
Γ

2

{(
N̄G>11(T, 0) 0

0
(
N̄ + 1

)
G>00(T, 0)

)
,G<(T, 0)

}
− Γ

((
N̄ + 1

)
G<11(T, 0) 0

0 N̄G<00(T, 0)

)
G>(T, 0),

where we have introduced an anti-commutator. Again, this equation has the correct fugacity scaling.
As discussed above, we do not need an equation for the equal-time evolution ofG>. Within both
the ground- and excited-state manifolds, the Lindblad operators of Eq. (5.56) couple neighboring
vibrational states according to a structure which for the self-energy matrices of Eqs. (5.63) and
n+ 1 states in total would look like(

N̄ + 1
)

diag
(
0, G>00, 2G

>
11, ..., nG

>
n−1,n−1

)
+ N̄ diag

(
G>11, 2G

>
22, .., nG

>
nn, 0

)
. (5.64)

We still have to consider the external pumping proportional to Γ↑. The relevant matrices for this

are diag
(
E≶(t, t′),G≶(t, t′)

)
, since without symmetry breaking there is no coherence between

ground and excited states. In terms of these matrices, the contribution to the equations of motion
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Figure 5.4: Relaxation of the vibrational degrees of freedom in the electronic excited state. The dashed
line shows i

∑pmax
n=0 nE

<
nn(t, t)→ N̄ . The parameters are g = 0, i.e. we have decoupled the excited states

from the rest of the system, ∆/λ = 2.0, Ω/λ = 0.1, S = 0.5, N̄ = 1.0, Γ↑ = Γ↓ = 0. The number of
vibrational states considered is 10, which is equivalent to a maximal number of phonons pmax = 9. The
results were calculated with a step size of 10λ · 2−9 for a number of 29 steps (nini = 3 · 25).

can be written rather compactly as

i∂t

(
E≶(t, t′) 0

0 G≶(t, t′)

)
=

Γ↑
2

(
0 0

0 diag(E>(t, t))

)(
E≶(t, t′) 0

0 G≶(t, t′)

)
. (5.65)

For the forward dynamics, we find

i

(
Ė
<

(T, 0) 0

0 Ġ
<

(T, 0)

)
=

Γ↑
2

{(
0 0

0 diag(E>(T, 0))

)
,

(
E<(T, 0) 0

0 G<(T, 0)

)}
− Γ↑

(
diag(G<(T, 0)) 0

0 0

)(
E>(T, 0) 0

0 G>(T, 0)

)
.

(5.66)

The equations for the electronic loss Γ↓ follow analogously. Before concluding this section,
consider Fig. 5.4 which shows the relaxation of the vibrational degrees of freedom in the electronic
excited state induced by the vibrational relaxation in Eq. (5.56). The dashed line indicates the
statistical average

∑
n nE

<
nn(t, t) which correctly approaches N̄ . We therefore conclude that the

master equation (5.56) is capable of describing the phonon thermalization adequately. As a further
comment, consider that kB/~ ≈ 0.13 THz/K. This means typical room temperatures around
T ∼ 293 K are equivalent to frequencies of about 40 THz. For vibrational frequencies Ω in the
THz range, N̄(Ω) will never comprise more than a handful of quanta, as one may see from Fig.
5.5.
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Figure 5.5: According to the thermodynamics of the harmonic oscillator, in the canonical ensemble there
holds 2N̄(Ω) + 1 = 1/ tanh(β~Ω/2).

5.4 Benchmark System Dynamics

Before moving to the application of our non-Markovian model to photon condensation, it is
instructive to give an illustration of the auxiliary-boson method for the case of a single molecule
(M = 1), where apart from perturbative limitations, the method is in principle exact. We begin
with an investigation of the Jaynes-Cummings model in 5.4.1, where analytical solutions are readily
available. In 5.4.2, this is followed by an “open” Jaynes-Cummings model (which includes the
cavity loss). Afterwards, we discuss the fulfillment of the operator constraint in 5.4.3, before
moving on to a four-level system as our final benchmark in 5.4.4. Note that unless stated otherwise,
nini = 3 · 25 in all of the simulations still following in Chp. 5.

5.4.1 Some Exact Solutions

The obvious starting point for testing our methods is the simplest special case of the Hamiltonian
(5.1), the Jaynes-Cummings model defined by

HJC = ω0a
†a +

∆

2
σz + g

(
a†σ− + aσ+

)
≡ δa†a + g

(
a†σ− + aσ+

)
,

(5.67)

where δ = ω0 − ∆. As is well known, it can be solved analytically [153], the reason for this
being essentially that the photon Hilbert space becomes block-diagonal because the change of
the photon number is determined entirely by the two-state dynamics of the molecule. What is
slightly surprising, however, is that also the integro-differential equations (5.34) admit an analytical
solution, at least for the special case defined by an initially excited molecule coupled to an empty
cavity. These conditions we express as D<

0 (t, t′) = 0, D>
0 (t, t′) = −i exp (−iδ(t− t′)) as well

as G>(0, 0) = −i and E≶(0, 0) = −i. It is useful to have an analytical solution to benchmark
our numerical implementation of the auxiliary-boson Dyson equations and the photon T -matrix
integrals. Yet one should certainly not expect this analytical solution to agree perfectly with the
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exact solution of the Jaynes-Cummings model. Plugging the bare photon functions into Eqs. (5.34),
we find

∂tG
<(t, t′) = ig2

∫ t
′

0
dt̄ e−iδ(t̄−t)E<(t, t̄)G>(t̄, t′), (5.68a)

∂tG
>(t, t′) = 0, (5.68b)

∂tE
<(t, t′) = −ig2

∫ t

0
dt̄ e−iδ(t−t̄)G>(t, t̄)E<(t̄, t′), (5.68c)

∂tE
>(t, t′) = −ig2

∫ t

t
′

dt̄ e−iδ(t−t̄)G>(t, t̄)E>(t̄, t′). (5.68d)

Eq. (5.68b) allows us to simplify these equations even further to

∂tG
<(t, t′) = g2eiδt

∫ t
′

0
dt̄ e−iδt̄E<(t, t̄), (5.69a)

∂tE
<(t, t′) = −g2e−iδt

∫ t

0
dt̄ eiδt̄E<(t̄, t′), (5.69b)

∂tE
>(t, t′) = −g2e−iδt

∫ t

t
′

dt̄ eiδt̄E>(t̄, t′). (5.69c)

At this point, finding an analytical solution becomes straightforward [154]. The adjoint equations
are also required and read for the excited-state functions

∂t′E
<(t, t′) = −g2eiδt

′
∫ t
′

0
dt̄ e−iδt̄E<(t, t̄), (5.70a)

∂t′E
>(t, t′) = g2eiδt

′
∫ t

t
′

dt̄ e−iδt̄E>(t, t̄). (5.70b)

To find an elementary solution to Eq. (5.69b), consider

∂2
tE

<(t, t′) = iδg2e−iδt
∫ t

0
dt̄ eiδt̄E<(t̄, t′)− g2E<(t, t′)

= −iδ∂tE
<(t, t′)− g2E<(t, t′).

(5.71)

Here we have exploited that one may convert linear integral equations of Volterra type such as
Eq. (5.69b) into initial-value problems which admit solutions by standard methods.4 Eq. (5.71) is

4 The Volterra equations of the second kind [154] corresponding to the integro-differential equation (5.71) read

E
<

(t, t
′
) =

∫ t

0

dt̄ z(t̄) + E
<

(0, t
′
),

z(t) = −g2
e
−iδt

∫ t

0

dt̄ e
iδt̄
E
<

(t̄, t
′
).

(5.72)
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equivalent to a Sturm-Liouville equation [155]

d

dt

(
eiδtẋ(t)

)
+ g2eiδtx(t) = 0, (5.73)

which is solved by

x(t) = e−iδt/2
(
AeiΩt +Be−iΩt

)
, (5.74)

where we have introduced Ω2 = g2 + δ2/4 and we allow A, B ∈ C. From x(0) = −i and
ẋ(0) = 0, we find ReA = ReB and Im [A−B] = δ/2Ω. Since we also have to satisfy the
adjoint equation, this suggests the solution

E<(t, t′) = −ie−iδ(t−t′)/2
(

cos Ωt+
iδ

2Ω
sin Ωt

)(
cos Ωt′ − iδ

2Ω
sin Ωt′

)
. (5.75)

In the equal-time limit, we thus have

E<(t, t) = − i

2

[
1 + cos 2Ωt+ (δ/2Ω)2 (1− cos 2Ωt)

]
. (5.76)

To solve Eq. (5.69c), we proceed along the same lines and find

E>(t, t′) = −ie−iδ(t−t′)/2
(

cos
(
Ω(t− t′)

)
+

iδ

2Ω
sin
(
Ω(t− t′)

))
. (5.77)

To calculate G<(t, t′), Eq. (5.69a) can be integrated from t0 = 0 to t to give

G<(t, t′) = g2
∫ t

0
dt̄ eiδt̄

∫ t
′

0
dt̄′ e−iδ

¯
t
′
E<(t̄, t̄′)

= −i (g/Ω)2 eiδ(t−t′)/2 sin Ωt sin Ωt′

= − i

2
(g/Ω)2 eiδτ/2 [cos Ωτ − cos 2ΩT ] ,

(5.78)

which in the equal-time limit reduces to G<(t, t) = − i
2(g/Ω)2 (1− cos 2Ωt). This in turn ensures

iE<(t, t) + iG<(t, t) = 1. From Eq. (5.43), the solution for the photon lesser Green function is

D<(t, t′) = ig2
∫ t

0
dt̄

∫ 0

t
′

dt̄′ D>
0 T

<
DD

>
0

= e−iδ(t−t′)g2
∫ t

0
dt̄ eiδt̄

∫ t
′

0
dt̄′ e−iδ

¯
t
′
E<(t̄, t̄′)

= e−iδ(t−t′)G<(t, t′),

(5.79)
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Figure 5.6: Absolute deviation of the numerical predictor-corrector solution of Eqs. (5.34) from the analytical
solution Re

[
G<(t, t′)E>(t, t′)∗

]
given in Eq. (5.85) for (left) t = t′ = T and (right) t = 1

2 (Tmax + τ),
t′ = 1

2 (Tmax − τ), where g/δ = 2−2 and Tmaxδ = 16.0 (nini = 3 · 26).

where only the last integral of the first line of Eq. (5.43) contributes. This confirms our physical
intuition about the photon evolution for this special case of the model.

To learn more about these solutions of Eqs. (5.34), we should compare them to the analytical
solution of the Jaynes-Cummings model. To follow the established approach, we transform to the
frame rotating with the photons [153]. Then, in terms of the coefficients of a wave-function ansatz

|ψ(t)〉 = C0(t) |0〉 |e〉+D0(t) |1〉 |g〉 , (5.80)

the dynamics is governed by (
Cn(t)
Dn(t)

)
= Un(t)

(
Cn(0)
Dn(0)

)
(5.81)

with a time-evolution operator

Un(t) =

(
cosβnt+ iδ

2βn
sinβnt − ig

√
n+1
βn

sinβnt

− ig
√
n+1
βn

sinβnt cosβnt− iδ
2βn

sinβnt

)
, (5.82)

where in general β2
n = δ2/4 + (n + 1)g2. For the initial condition |ψ(0)〉 = |0〉 |e〉, we have

C0(0) = 1 and D0(0) = 0. The solution for the wave function is found to be

|ψ(t)〉 =

(
cos Ωt+

iδ

2Ω
sin Ωt

)
|0〉 |e〉 − i

g

Ω
sin Ωt |1〉 |g〉 . (5.83)

Applying Pauli matrices to this state, we may calculate σ±σ∓ |ψ(t)〉, which in the Schrödinger
picture yields time-dependent expectation values

〈σ+(t)σ−(t)〉 = cos2 Ωt+ (δ/2Ω)2 sin2 Ωt = iE<(t, t),

〈σ−(t)σ+(t)〉 = (g/Ω)2 sin2 Ωt = iG<(t, t).
(5.84)
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Evidently, these happen to agree with E<(t, t) and G<(t, t), respectively, even though Eqs. (5.34)
are perturbative. Because the greater function E>(t, t′) does not correspond to a physical operator
in terms of Pauli matrices, we cannot find a direct comparison. We may, however, construct
physical operator products that involve E>(t, t′) after the projection. As we will show in more
detail in 5.4.2, for physical two-time expectation values such as 〈σ−(t′)σ+(t)〉, the projection
technique gives the result

〈σ−(t′)σ+(t)〉 ≡ G<(t, t′)E>(t, t′)∗

=
eiδτ

2
(g/Ω)2 (cos Ωτ − cos 2ΩT )

(
cos Ωτ − iδ

2Ω
sin Ωτ

)
.

(5.85)

To verify our numerical implementation of Eqs. (5.34), we present in Fig. 5.6 the absolute deviation
of this expression from the numerical result obtained by our predictor-corrector method. As one
can see, the error is small and goes down systematically for an increased number of steps.

For the exact solution of the Jaynes-Cummings model, a complication arises because the
two-time structure of 〈σ−(t′)σ+(t)〉 couples the subspace {|1〉 |g〉 , |0〉 |e〉} of |ψ(t)〉 to the ad-
jacent subspace {|2〉 |g〉 , |1〉 |e〉}. This means we have to calculate U1(t′ − t)σ+ |ψ(t)〉 =
−i (g/Ω) sin Ωt U1(t′ − t) |1〉 |e〉, where

U1(t) |1〉 |e〉 =

(
cosβ1t+

iδ

2β1
sinβ1t

)
|1〉 |e〉 − i

√
2g

β1
sinβ1t |2〉 |g〉 . (5.86)

Hence, we may evaluate

〈σ−(t′)σ+(t)〉 = 〈ψ(t′)|σ−U1(t′ − t)σ+ |ψ(t)〉

= (g/Ω)2 sin Ωt′
(

cos
(
β1(t− t′)

)
− iδ

2β1
sin
(
β1(t− t′)

))
sin Ωt

=
1

2
(g/Ω)2 (cos Ωτ − cos 2ΩT )

(
cosβ1τ −

iδ

2β1
sinβ1τ

)
.

(5.87)

To compare this to our auxiliary-boson result, we have to rotate Eq. (5.85) to the photon frame,
which removes the phase factor exp (iδτ). As is underlined by Fig. 5.7, Eq. (5.87) agrees with Eq.
(5.85) only for small δτ . This is, however, not surprising since Eqs. (5.34) are approximate to begin
with and the ratio g/δ = 2−2 is relatively large in the present example. In the perturbative limit
g/δ → 0, one may see that Eqs. (5.87) and (5.85) agree perfectly for all τ as β1 → Ω. Another
interesting limit is the resonant case δ → 0 where evidently g/δ →∞, such that we are in effect
in the non-perturbative regime. Then β1 →

√
2Ω and the two results only agree for τ = 0. For

all physical applications of our non-Markovian model, the ratio g/δ will indeed be very small,
leading in turn to small photon numbers per molecule. Furthermore, we will be mostly interested
in equal-time results, which for our current example agree with the exact expressions even though
the spectral results from relative-time dynamics are only approximate. We continue this discussion
in 5.4.2.
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5.4.2 Open Jaynes-Cummings Model

In addition to the dynamics induced by HJC, we introduce a cavity loss for the photon mode in
the manner established in Eq. (2.15) of 2.1.3. From the corresponding master equation, one may
derive the equations of motion as

∂t〈a†a〉 = −κ〈a†a〉 − ig
(
〈a†σ−〉 − 〈aσ+〉

)
,

∂t〈σz〉 = 2ig
(
〈a†σ−〉 − 〈aσ+〉

)
,

∂t〈aσ+〉 = −iδ〈aσ+〉 − κ

2
〈aσ+〉 − ig

(
〈a†aσz〉+ 〈σ+σ−〉

)
.

(5.88)

These are, however, not closed because of the occurrence of 〈a†aσz〉 in the last of Eqs. (5.88).
In the photon-BEC literature, this term has been treated by means of the heuristic truncation
〈a†aσz〉 ≈ 〈a†a〉〈σz〉 [19]. While this may work in certain parameter regimes, it is not a controlled
approximation. This can have undesirable consequences, as exemplified by the negative particle
numbers highlighted in Fig. 5.8, which indeed are not a numerical artifact. While this problem is
mild for the parameters we have chosen here, it becomes more severe in other parameter regimes.
In particular, a factor of M coming from a sum over many molecules in the equation for 〈a†a〉 can
lead to strongly unphysical results. This is yet another manifestation of the difficulties involved in
truncating the expectation-value hierarchy when phase coherence between photons and molecule(s)
plays a role (cf. the introduction to this Chp.). As explained above, the auxiliary-boson technique
provides a way out of this conundrum. In the present context, this can be appreciated from Fig.
5.9. The inset underlines that the unphysical negative particle numbers have been removed by
the pseudo-particle method and that this correctly reproduces numerically exact results. Fig.
5.10 shows similar plots for an increased detuning parameter, which results in less photons and
a slightly altered spectral function. Again, numerically exact results are captured well by the
predictor-corrector scheme, even for a relatively small number of steps.

To calculate physical expectation values such as 〈σz(t)〉 = 〈σ+(t)σ−(t)〉 − 〈σ−(t)σ+(t)〉, we

Figure 5.7: Comparison of relative-time dynamics. Dashed (red) line: the analytical solution (5.87) of the
Jaynes-Cummings model for 〈σ−(t′)σ+(t)〉 ; solid (black) line: the analytical solution (5.85) rotated to the
photon frame. The times are t = 1

2 (Tmax + τ), t′ = 1
2 (Tmax − τ) where g/δ = 2−2 and Tmaxδ = 16.0.
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Figure 5.8: Solution of Eqs. (5.88) with truncation 〈a†aσz〉 ≈ 〈a†a〉〈σz〉 for parameters κ/δ = 2−6,
g/δ = 2π · 2−6. The negative occupations are not a numerical artifact but result from the uncontrolled
truncation.

Figure 5.9: Solution of Eqs. (5.43) and (5.44) for parameters κ/δ = 2−6, g/δ = 2π · 2−6. The (black) solid
lines are based on the algorithm of Sec. 2.3. The (red) dashed lines are the benchmark results calculated with
a numerically exact method from the corresponding von Neumann equation. Because of the good agreement,
the lines overlap identically. The spectral function is defined as AD(t, t′) = − Im

(
D>(t, t′)−D<(t, t′)

)
.

In the right panel, the times are t = (Tmax + τ) /2 and t′ = (Tmax − τ) /2, where Tmaxδ = 32.0. The results
were calculated with a step size of δdt = 10−2 for a number of 210 steps (nini = 3 · 26).

132



5.4 Benchmark System Dynamics

Figure 5.10: Solution of Eqs. (5.43) and (5.44) for the same parameters as in Fig. 5.9, yet with increased
detuning 5δ. In the right panel, the times are again t = (Tmax + τ) /2 and t′ = (Tmax − τ) /2, where now
5Tmaxδ = 32.0. The results were calculated with a step size of δdt = 10−2 for a number of 210 steps
(nini = 3 · 26).

Figure 5.11: Equal-time occupation as given by the pseudo-particle lesser Green functions and the corres-
ponding numerically exact time evolution of 〈σz〉. The parameters are those of Fig. (5.9).

have to apply the projection according to

〈σ+(t′)σ−(t)〉 = lim
ζ→0

1

〈Q̂〉ζ
〈d†e(t′)dg(t′)d†g(t)de(t)〉ζ

t
′
>t
= − lim

ζ→0

1

ζ
ζE<(t, t′)G>(t′, t) = E<(t, t′)G>(t, t′)∗,

〈σ−(t′)σ+(t)〉 = lim
ζ→0

1

〈Q̂〉ζ
〈d†g(t′)de(t′)d†e(t)dg(t)〉ζ

t
′
>t
= − lim

ζ→0

1

ζ
ζG<(t, t′)E>(t′, t) = G<(t, t′)E>(t, t′)∗.

(5.89)

Since a product of a greater and a lesser pseudo-particle Green function is of order ζ, this yields
the correct result. Note that arbitrary products of time-ordered Pauli matrices can be treated in the
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Figure 5.12: Relative-time dynamics of projected quantities for the parameters of Fig. 5.9. The solutions
for the real parts of Eqs. (5.89) are shown. The results for t′ < t follow from symmetry. The deviations
from the benchmark result are not due to numerical imprecision but follow from the limited validity of the
perturbative expansion (cf. Fig. 5.13).

Figure 5.13: Relative-time dynamics of projected quantities for the parameters of Fig. 5.10. The solutions
for the real parts of Eqs. (5.89) are shown. The deviations from the benchmark result in the right panel are
hardly perceptible. The reason for this are the smaller occupation numbers, which also enter the criterion of
validity of the loop expansion.

same way. For the equal-time average, we hence find the expected result

〈σz(t)〉 = lim
ζ→0

1

ζ

(
ζE<(t, t)G>(t, t)∗ − ζG<(t, t)E>(t, t)∗

)
= iE<(t, t)− iG<(t, t), (5.90)

which is plotted in Fig. 5.11. Further confirmation for the logic behind Eqs. (5.89) can be obtained
by considering the dynamics in τ -direction, which is studied in Fig. 5.12. Again, we find good
agreement between the predictor-corrector method and the solution of the master equation, except
for the small deviations visible for large τ in the right panel of Fig. 5.12. To understand this, we
also have to consider Fig. 5.13, which shows the same quantities but for the large detuning 5δ.
This entails smaller occupation numbers for the photons (cf. Fig. 5.10). Looking back to Sec. 2.2,
we understand that our perturbative expansion to two-loop order neglects higher-order terms that
contain time integrals over products of powers of the coupling constant with Green functions. The
validity of this approximation hence hinges on the magnitude of the neglected terms, to which the
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Green functions contribute more for larger occupation numbers. Another contributing factor is
the maximal time of integration: the magnitude of the neglected integrals can increase for larger
integration domains, for which reason any such perturbative expansion should at some point start
to deviate from exact results.5 This is indeed what we witness in Fig. 5.12. That the deviations
have disappeared in Fig. 5.13, even though the integration time has increased, confirms that the
occupation numbers influence the perturbative validity independently. Most importantly, we can
conclude that the deviations in Fig. 5.12 are not due to a failure of the auxiliary-boson method.

5.4.3 Fulfillment of the Operator Constraint

The way we employed the projection technique in Eqs. (5.89) brings our attention back to the
operator constraint. In terms of the original Pauli matrices, it reads

1 = Q̂ = σ+σ− + σ−σ+. (5.91)

To verify that it is indeed satisfied as an operator constraint6, in principle one has to check
the expectation values 〈Q̂k〉 for all values k. To illustrate, we inspect only the cases k = 1, 2.
Time-ordering properly, we can write

〈σ+(t+)σ−(t)〉+ 〈σ−(t+)σ+(t)〉 = lim
ζ→0

1

〈Q̂〉ζ

[
〈T d†e(t+)dg(t

+)d†g(t)de(t)〉

+ 〈T d†g(t+)de(t
+)d†e(t)dg(t)〉

]
= lim

ζ→0

1

〈Q̂〉ζ

[
〈T d†e(t+)de(t)〉〈T dg(t+)d†g(t)〉

+ 〈T d†g(t+)dg(t)〉〈T de(t+)d†e(t)〉
]

= −
(
E<(t, t)G>(t, t) +G<(t, t)E>(t, t)

)
= ng + ne = 〈Q̂〉 = 1,

(5.92)

where we have used that for pseudo-particles, iG>(t, t) = iE>(t, t) = 1. In the unconstrained
field theory, on the contrary, one ends up with

〈σ+(t+)σ−(t)〉+ 〈σ−(t+)σ+(t)〉 = −
(
E<(t, t)G>(t, t) +G<(t, t)E>(t, t)

)
= ne

(
ng + 1

)
+ ng (ne + 1)

=
(
1− ng

) (
ng + 1

)
+ ng

(
1− ng + 1

)
= −2n2

g + 2ng + 1 ≥ 1,

(5.93)

5 If this were not true, one could simply reduce the coupling constant to make the neglected terms smaller, while the
necessary increase of integration time would not make them larger.

6 To be distinguished from the expectation-value constraint 〈Q̂〉 = 1 which can be implemented easily via the initial
conditions of any conserving approximation.
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where the final inequality holds for ng ∈ [0, 1]. Thus, we understand that the projection technique
is vital already on this level. For k = 2, we have the more complicated expression

〈Q̂2〉 = lim
ζ→0

1

〈Q̂〉ζ

〈
T
[
d†e(t

++)de(t
+) + d†g(t

++)dg(t
+)
] [
d†e(t)de(t

−) + d†g(t)dg(t
−)
]〉

= − lim
ζ→0

1

〈Q̂〉ζ

[
ζ2E<(t, t)E<(t, t) + ζE<(t, t)E>(t, t) + ζ2G<(t, t)E<(t, t)

+ ζ2G<(t, t)E<(t, t) + ζG<(t, t)G>(t, t) + ζ2G<(t, t)G<(t, t)
]

= ng + ne = 〈Q̂〉 = 1.

Again, for the unconstrained field theory, one finds a different result which in this case is even
strictly greater than one,

〈Q̂2〉 =
(
ne + ng

)2
+ ne (ne + 1) + ng

(
ng + 1

)
= 1 + 2

(
n2
g − ng + 1

)
> 1. (5.94)

Without attempting a rigorous proof of 〈Q̂k〉 = 1 for all k, we can conclude that the auxiliary-boson
method goes beyond approaches where the operator constraint is satisfied on average [33, 34].

5.4.4 Single-Mode Cavity Coupled to Four-Level System

To explore the behavior of our implementation of Eq. (5.56) in the presence of some vibrational
substructure, we move on to the special case of a single dissipative cavity mode coupled to what
essentially amounts to a four-level atom. We should emphasize that the auxiliary-boson field theory
can in principle be used to describe an arbitrary multi-level atom, i.e. the Hamiltonian need not
have the specific structure of Eq. (5.8). In particular, one could employ the technique to implement
a proper spin algebra in terms of auxiliary bosons. The closest analogy to the four-level atom we
are about to describe would be a spin-3/2. Moving back to bra-ket notation for the molecule, we
have a Hamiltonian

H = ω0a
†a −∆ |g, 0〉〈g, 0|+ (Ω−∆) |g, 1〉〈g, 1|+ ∆ |e, 0〉〈e, 0|+ (Ω + ∆) |e, 1〉〈e, 1|

+ Ω
√
S (|e, 0〉〈e, 1| − |g, 0〉〈g, 1|+ h.c.) + g

∑
n=0,1

(a† |g, n〉〈e, n|+ h.c.), (5.95)

which is a special case of Eq. 5.8. For brevity, we also define the notation

Jσ, n; σ
′
, n
′ :=

∣∣σ , n〉〈σ′, n′∣∣ (5.96)

for these operators. The Lindbladians of the vibrational relaxation then become

L[Je, 0; e, 1]ρ = L
[
|e, 0〉〈e, 1|

]
ρ = |e, 0〉〈e, 1| ρ |e, 1〉〈e, 0| − 1

2
{|e, 1〉〈e, 0| |e, 0〉〈e, 1| , ρ}

= |e, 0〉〈e, 1| ρ |e, 1〉〈e, 0| − 1

2
{|e, 1〉〈e, 1| , ρ}

(5.97)
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Figure 5.14: Solution of Eqs. (5.43) and (5.44) for parameters κ/δ = 0.1, g/δ = 2π · 0.01, λ/δ = 0.05,
N̄ = 1.0, Ω/δ = 0.1, S = 1.0, Γ↑/δ = 0.1, Γ↓ = Γ↑/20. Initial conditions are given in Fig. 5.15. The
(black) solid lines are based on the algorithm of Sec. 2.3. The (red) dashed lines are the benchmark results
calculated with a numerically exact method from the corresponding von Neumann equation. Because of
the good agreement, the lines overlap identically. In the right panel, the times are t = (Tmax + τ) /2 and
t′ = (Tmax − τ) /2, where Tmaxδ = 16. The results were calculated with a step size of δdt = 2−4 for a
number of 28 steps (nini = 3 · 26).

and L[Je, 1; e, 0], which are proportional to λ(N̄ + 1) and λN̄ , respectively. We remark that
the collapse of the matrix element in the anti-commutator is reproduced by the auxiliary-boson
algebra when applying the operator constraint. Furthermore, we include the analogous operators
Γ↑L[Je, n; g, n] and Γ↓L[Jg, n; e, n] for n = 0, 1. Simulation results for this model are summarized
in Figs. 5.14, 5.15 and 5.16. The pseudo-particle dynamics is dominated by the driven-dissipative
processes. The cavity occupation relaxes toward a steady-state. The benchmark results were again
obtained by solving the master equation directly with a standard library [156]. They agree very
well with our multi-step solutions of the Kadanoff-Baym equations. Physical expectation values
such as time-ordered products of molecular operators are projected according to the same rules as
before. For instance,

〈T Jg,n; e,n(t′)Je,n; g,n(t)〉 = 〈T d†g, n(t′)de, n(t′)d†e, n(t)dg, n(t)〉
t
′
>t
= −G<nn(t, t′)E>nn(t′, t) = G<nn(t, t′)E>nn(t, t′)∗,

〈T Je,n; g,n(t′)Jg,n; e,n(t)〉 = 〈T d†e, n(t′)dg, n(t′)d†g, n(t)de, n(t)〉
t
′
>t
= −E<nn(t, t′)G>nn(t′, t) = E<nn(t, t′)G>nn(t, t′)∗,

(5.98)

where T is the time-ordering operator. The corresponding results are presented in Fig. 5.16 and
show excellent agreement. The principles used in Eq. (5.98) can be used to calculate arbitrarily
long chains of molecular operators.
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Figure 5.15: Equal-time pseudo-particle occupations for the same parameters as in Fig. 5.14. The initial
conditions are G<nn(0, 0) = 0 for n = 0, 1, E<00(0, 0) = 0, E<11(0, 0) = −i and an empty cavity. The
operators Jg, 0; g, 0 etc. are defined in Eq. (5.96).

Figure 5.16: Relative-time dynamics of projected quantities for the parameters of Fig. 5.14. The solutions
for the real parts of Eqs. (5.98) are shown for n = 0.

5.5 Memory Truncation

As mentioned in Sec. 2.3, solving the equations of motion for interacting systems7 numerically on
the two-time grid becomes computationally very expensive when the number of grid points needs
to be large. This happens whenever the product of the fastest system frequency and the required
final time is not small. In our case, there are both the usually fast molecular relaxation rate λ and
the a priori much slower photon dynamics. Incidentally, waiting for stimulated emission to set in
may take a long time.

Compared to numerically solving ordinary differential equations, the cubic instead of linear
dependence on the number of grid points in the interacting case originates in the second temporal
dimension and the summation of discretized time integrals. Loosely speaking, the Green functions
in driven-dissipative systems will have a τ -dependence of the form exp (−λτ), where λ is a sum
over terms proportional to all relevant drive and dissipation constants (comprising λ in particular).
When λ is large, the two-time grid must have a fineness capable of resolving the exponential
decay (or any fast coherent oscillations, for that matter). However, such a resolution will neither

7 Here, “interacting” refers to anything beyond Hartree-Fock.
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Figure 5.17: Forward dynamics of a single photon mode k = 0 for different memory truncations. Initial
conditions and parameters are TrD<(0, 0) = 0, iG<00(0, 0) = 1, and M = 109, g/λ = 4.5 · 10−5, ω0/λ =
−1.0, κ/λ = 1.0, Ω/λ = 1.0, S = 1.0, N̄ = 0.25, Γ↑/λ = 0.05, Γ↓ = Γ↑/40, and vibrational-state
truncation at n = 4. Simulations calculated for 213 steps up to a final time λTmax = 512 with memory times
λτmem = {1.5, 4.0}. The steady-state occupations are limt→∞ i TrD<(t, t) = {8.347 · 106, 8.446 · 106},
which means that the short-memory value deviates only by about 0.012.

be possible nor required in T -direction. One solution here would be to transform the equations
of motion to Wigner coordinates and then to construct a grid with different spacings in the two
orthogonal time directions. Yet there is an even simpler approach. Any integral over relatively
fast decaying Green functions will be computable at sufficient precision over a small support that
does not grow as the two-time grid expands towards its final size. In the same spirit, computing
points far off the “time diagonal” τ = 0 will be superfluous because they are negligible in the first
place. This way, by truncating the number of steps we move away from the time diagonal, and by
restricting the computation of the integrals to that same narrow “band”, it is indeed possible to
achieve a quasi-linear scaling in the number of grid points without losing substantial accuracy.

The quantitative consequences of different truncation parameters nmem are studied in Figs. 5.17
and 5.18. Note that technically, nmem is not the number of points included away from the diagonal
moving in τ -direction, but rather moving in the vertical and horizontal directions t and t′. As one
may understand from Fig. 5.18, a short-valued memory nmem = 24 results in a certain number of
points inaccurately remaining zero. With a longer-valued memory nmem = 64, these points attain
their proper values. However, looking to Fig. 5.17, we see that the influence of this inaccuracy is
not even considerable (at least for similar parameters). Needless to say, computing all of the points
and the full integrals for a grid of final size 213 would be abominably expensive and yet bring no
noticeable improvement.
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Figure 5.18: Influence of the memory truncation on the photon T -matrices. The initial conditions and
parameters are identical to those of Fig. 5.17. The solid lines belong to the shorter memory time λτmem = 1.5.
The time arguments are G≶

mnE
≷
nm = G≶

mn(t, t− τ)E≷
nm(t− τ, t), where the center-of-mass time T = t is

indicated by the vertical dashed line in Fig. 5.17. The color code is explained in Fig. 5.20.
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5.6 Markovian Limit & Photon-BEC Gross-Pitaevskii Equation

To establish a connection with Chp. 4 where the photon BEC was investigated by means of the rate
equations (4.27a), it is very instructive to see how the fully non-Markovian equations of motion
give rise to the rate equations in a certain form of memoryless limit, which is the topic of 5.6.1. In
the same spirit, in 5.6.2 we will apply the auxiliary-boson technique to the master equation (4.26)
from which the vibrational degrees of freedom have already been removed.

5.6.1 Derivation of the Rate Equations from the Non-Markovian Model

The forward dynamics of the photons is given by8

∂TD
<(t, t) = −i[hD,D

<(t, t)] +Mg2
∫ t

0
dt̄ ID(t, t̄), (5.99)

where the memory integral kernel is now

ID(t, t̄) = Tr
[
E>(t, t̄)G<(t̄, t)

]
D<(t̄, t) + Tr

[
G<(t, t̄)E>(t̄, t)

]
D<(t, t̄)

− Tr
[
E<(t, t̄)G>(t̄, t)

]
D>(t̄, t)− Tr

[
G>(t, t̄)E<(t̄, t)

]
D>(t, t̄).

(5.100)

The trace over the pseudo-particles involves all of the off-diagonal Green functions, i.e.∫ t

t0

dt̄ Tr
[
E>(t, t̄)G<(t̄, t)

]
D<(t̄, t) =

∫ t

0
dt̄

∞∑
m,n=0

E>mn(t, t̄)G<nm(t̄, t)D<(t̄, t). (5.101)

Since the ground- and excited-state Hamiltonians differ,9 there does not exist a simultaneous
eigenbasis for the two, even though they have identical eigenvalues. Neither can the polaron
transformation be employed to get rid of the off-diagonals because they come back into the problem
via the then off-diagonal self-energies. Therefore, we do not apply any basis transformation to
simplify the traces in Eq. (5.99).10 When the vibrational states have a fast relaxation, or in other
words are strongly broadened by collisions with the surrounding solvent, the dynamics of the
pseudo-particles in τ direction is approximately stationary and independent of the dynamics in T
direction. Additionally, the vibrational states can only have an overall forward evolution, which
is to say that a quantum going either into the ground- or excited-state manifold will end up in
vibrational state n with a fixed probability pn, where

∑
n pn = 1. This enables us to write, for

instance,

G<nm(t, t′) = G<(t, t)e−Γ↑τ/2gnm(τ), (5.102)

8 For this paragraph, we drop the explicit inclusion of the various driven-dissipative processes.
9 They have hopping elements of opposite sign.

10 In the following, one should also bear in mind that the off-diagonal greater functions are always zero at equal times
whereas the diagonal ones are complex unity, i.e. G>mn(t, t) = −iδmn.
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where gnm(τ) encodes the relative-time dynamics of G<nm(t, t′) beyond the effect of Γ↑, that is,
the vibrational frequencies and relaxation. It has the property gnm(0) = G<nm(t, t)/G<(t, t), such
that gnn(0) = pn. Note that the ground states are indeed not broadened by Γ↓. The corresponding
expression for the excited states reads

E<mn(t, t′) = E<(t, t)e−Γ↓τ/2emn(τ), (5.103)

where similarly enm(0) = E<nm(t, t)/E<(t, t). This allows us now to write the total number of
excited molecules as

〈M↑〉(t) = iM TrE<(t, t) = iM

∞∑
n=0

E<nn(t, t) = iME<(t, t), (5.104)

and similarly for the ground state where

M − 〈M↑〉(t) = iM TrG<(t, t) = iM
∞∑
n=0

G<nn(t, t) = iMG<(t, t), (5.105)

such that the constraint Q̂ = 1 ensures total number conservation. Now, the stationarity assumption
of the pseudo-particle τ dynamics assures that their greater functions do not have a T dependence
(E>mn(t, t′) = E>mn(t− t′) and analogously for G>mn). Finally, apart from rapidly oscillating phase
factors, for small cavity loss the photon lesser Green functions can be considered constant over the
narrow support of the highly dissipative greater functions around the equal-time diagonal. With
this in mind, pulling out a factor of exp (−Γ↓τ/2) from the greater function, we can combine the
above approximations to write

Mg2
∫ t

0
dt̄ Tr

[
E>(t, t̄)G<(t̄, t)

]
D<
kk(t̄, t) ≈ D<

kk(t, t)MG<(t, t)
∞∑

m,n=0

g2

×
∫ t

0
dt̄

{
eiδk(t−t̄)e−(Γ↑+Γ↓)(t−t̄)/2

[
eΓ↓(t−t̄)/2E>mn(t− t̄)gnm(t̄− t)

]}
= −nk(t)

[
M − 〈M↑〉(t)

] ∞∑
m,n=0

g2
∫ t

0
dτ eiδkτe−(Γ↑+Γ↓)τ/2

[
eΓ↓τ/2E>mn(τ)gnm(−τ)

]

= ink(t)
[
M − 〈M↑〉(t)

]
g2
∫ t

0
dτ eiδkτe−(Γ↑+Γ↓)τ/2A(τ) = iK(δk)nk(t)

[
M − 〈M↑〉(t)

]
,

where we have also pulled out the factor of −i from the greater function,G< and E> have each
contributed a phase factor proportional to ∆/2, and δk = ωk −∆ as before. Evidently, we have
introduced A(τ) := ieΓ↓τ/2E>mn(τ)gnm(−τ) as well as

K(δ) := g2
∫ t

0
dτ eiδτe−(Γ↑+Γ↓)τ/2A(τ), (5.106)
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which plays the same role as Eq. (4.20) defined in Chp. 4.1.4. The final term of Eq. (5.100) can be
treated analogously, yielding

Mg2
∫ t

0
dt̄ Tr

[
G>(t, t̄)E<(t̄, t)

]
D>
kk(t, t̄)

≈ − [nk(t) + 1] 〈M↑〉(t)
∞∑
n=0

g2
∫ t

0
dτ e−iδkτe−(Γ↑+Γ↓)τ/2

[
eΓ↑τ/2G>mn(τ)enm(−τ)

]

= i [nk(t) + 1] 〈M↑〉(t)g2
∫ t

0
dτ e−iδkτe−(Γ↑+Γ↓)τ/2A(τ) = iK(−δk) [nk(t) + 1] 〈M↑〉(t),

where we have used eΓ↑τ/2G>mn(τ)enm(−τ) = eΓ↓τ/2E>mn(τ)gnm(−τ). With the remaining
terms from Eq. (5.100), we find in total that

Mg2
∫ t

0
dt̄ ID(t, t̄) ≈ i

[
K(δk) +K∗(δk)

]
nk(t)

[
M − 〈M↑〉(t)

]
− i
[
K∗(−δk) +K(−δk)

]
[nk(t) + 1] 〈M↑〉(t)

= 2i Re [K(δk)]nk(t)
[
M − 〈M↑〉(t)

]
− 2i Re [K(−δk)] [nk(t) + 1] 〈M↑〉(t).

(5.107)

With ∂TDkk(t, t) ≡ −i∂tnk(t), this reproduces the correct rate equation (4.29a) for the photons.
The same analysis we have just performed can be repeated to obtain the rate equation for 〈M↑〉(t)
from the forward equation of motion of E< (or for that matter G<), which we present for
completeness,

∂TG
<(t, t) = −i[hG,G

<(t, t)] + g2
∫ t

0
dt̄ I(t, t̄),

∂TE
<(t, t) = −i[hE ,E

<(t, t)]− g2
∫ t

0
dt̄ I(t, t̄),

(5.108)

where the memory integral is given by

I(t, t̄) = E>(t, t̄)G<(t̄, t) TrD<(t̄, t)

+G<(t, t̄)E>(t̄, t) TrD<(t, t̄)

−E<(t, t̄)G>(t̄, t) TrD>(t̄, t)

−G>(t, t̄)E<(t̄, t) TrD>(t, t̄).

(5.109)

Figs. 5.19 and 5.20 illustrate how the assumptions leading up to Eq. (5.107) are reproduced
naturally by the microscopic dynamics for according parameters. We may thus conclude that our
model indeed constitutes a valid generalization of the existing treatments.
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5.6.2 Application of Pseudo-Particles to the Master Equation

The discussion of the memoryless limit of our theory naturally leads us to ask if pseudo-particles
can also be applied to the master equation (4.26)? This is essentially equivalent to investigating if
summing over the vibrational states on the level of the Dyson equation yields the same results as
performing the Born-Markov approximation in the framework of the density matrix. Clearly, the
answer should be affirmative. Introducing the time-dependent fields φ(t), φσ(t), σ = g, e for a
single photon mode and pseudo-particles, respectively, and dropping Γ↑,↓ for conciseness, we find
the Schwinger-Keldysh actions

S±0 =

∫
dt
{
φ∗± [i∂t − δ ± iκ/2]φ± + φ∗g,±i∂tφg,± + φ∗e,±i∂tφe,±

}
, (5.110)

Figure 5.19: Forward dynamics of a single photon mode k = 0 with initial conditions iD<
00(0, 0) = 0,

iG<00(0, 0) = 1 (from which it follows via the operator constraint that all other vibrational states are
unoccupied), and parameters M = 109, g/λ = 9.0 · 10−6, ω0/λ = −0.2, κ/λ = 0.02, Ω/λ = 0.2,
S = 1.0, N̄ = 0.25, Γ↑/λ = 0.005, Γ↓ = Γ↑/20, and vibrational-state truncation at n = 4. Simulations
calculated for 212 steps up to a final time λTmax = 640 with a memory time of λτmem = 20.0. The color
code is explained in the caption of Fig. 5.20. The three vertical lines in the top left panel refer to the different
center-of-mass times investigated also in Fig. 5.20. The average constraint 〈Q̂〉 = 1 is fulfilled to machine
precision. The forward dynamics of the molecules indeed display the envelopes G<(t, t) and E<(t, t).
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such that S0 = S+
0 − S−0 − iκ

∫
dt φ+φ

∗
−. In the interacting part, for later use we also retain the

thermally averaged coherent coupling gβ defined in 4.1.2 and hence obtain

S±int = −gβ
∫

dt
{
φ∗±φ

∗
g,±, φe,± + φ±φg,±, φ

∗
e,±
}

± i
Γ+

2

∫
dt φ∗±(t)φ±(t∓)φ∗g,±(t)φg,±(t∓)φe,±(t)φ∗e,±(t∓)

± i
Γ−

2

∫
dt φ±(t)φ∗±(t∓)φg,±(t)φ∗g,±(t∓)φ∗e,±(t)φe,±(t∓),

(5.111)

Figure 5.20: Relative-time dynamics of the quantities determining the emission and absorption spectrum
for the same initial conditions and parameters as in Fig. 5.19. The time arguments are G≶

mnE
≷
nm =

G≶
mn(t, t − τ)E≷

nm(t − τ, t). The hat notation signifies Ĝ<mn := G<mn(t, t − τ)/G<nn(t, t), and Ê<nm :=
E<nm(t, t− τ)/E<nn(t, t) (note that we have chosen this denominator instead of the envelopes simply for
better visibility). Thus the functions which enter A(τ) are indeed found to be approximately T -independent.
The slight variations that are visible can be further reduced with increasing λ. The center-of-mass times
λT = {250, 375, 600} are marked by the vertical lines in the photon evolution shown in Fig. 5.19.
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where we have time-ordered appropriately.11 The total action then follows as

S = S0 + S+
int − S−int

− iΓ+
∫

dt φ+φ
∗
e,+φg,+φ

∗
−φe,−φ

∗
g,−

− iΓ−
∫

dt φ∗+φ
∗
g,+φe,+φ−φg,−φ

∗
e,−.

(5.112)

This is an interesting example of a physically arising vertex with six fields in total. In terms of the
lengthy total field spinor

φ =
(
φ+, φ

∗
+, φg,+, φ

∗
g,+, φe,+, φ

∗
e,+, φ−, φ

∗
−, φg,−, φ

∗
g,−, φe,−, φ

∗
e,−
)T

= (φ1, φ2, φ3, φ4, φ5, φ6, φ7, φ8, φ9, φ10, φ11, φ12)T ,
(5.113)

and with the condensate-fluctuation decomposition φ± = Φ + δφ±,12 we find

S0 =

∫
dt {δφ2(i∂t − δ + iκ/2)δφ1 + φ4i∂tφ3 + φ6i∂tφ5 − δφ8(i∂t − δ − iκ/2)δφ7

−φ10i∂tφ9 − φ12i∂tφ11 − iκδφ1δφ8 − g̃
[
Φ∗φ4φ5 + Φφ3φ6 − Φ∗φ10φ11 − Φφ9φ12

]}
.

(5.114)

The interacting part then summarizes as

Sint =
iΓ+

2

∫
dt
(
|Φ|2 + δφ1(t−)δφ2(t)

)
φ3(t−)φ4(t)φ5(t)φ6(t−)

+
iΓ−

2

∫
dt
(
|Φ|2 + δφ1(t)δφ2(t−)

)
φ3(t)φ4(t−)φ5(t−)φ6(t)

+
iΓ+

2

∫
dt
(
|Φ|2 + δφ7(t+)δφ8(t)

)
φ9(t+)φ10(t)φ11(t)φ12(t+)

+
iΓ−

2

∫
dt
(
|Φ|2 + δφ7(t)δφ8(t+)

)
φ9(t)φ10(t+)φ11(t+)φ12(t)

− iΓ+
∫

dt
(
|Φ|2 + δφ1δφ8

)
φ3φ6φ10φ11

− iΓ−
∫

dt
(
|Φ|2 + δφ2δφ7

)
φ4φ5φ9φ12,

(5.115)

11 Details on how to do this can be found in Sec. 3.1 and App. C.
12 Here we do not introduce a contour subscript for the classical field because we already know that it should to satisfy

Φ+ = Φ−.
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which results in a contribution to the effective action that reads13

W (2)[ϕ, G] =
iΓ+

2

∫
dt (−iG12(t−, t) + i2

∣∣∣ϕ2
∣∣∣) [G34(t−, t)G56(t, t−) +G36G45

]
+

iΓ−

2

∫
dt (−iG12(t, t−) + i2

∣∣∣ϕ2
∣∣∣) [G34(t, t−)G56(t−, t) +G36G45

]
+

iΓ+

2

∫
dt (−iG78(t+, t) + i2

∣∣∣ϕ2
∣∣∣) [G9,10(t+, t)G11,12(t, t+) +G9,12G10,11

]
+

iΓ−

2

∫
dt (−iG78(t, t+) + i2

∣∣∣ϕ2
∣∣∣) [G9,10(t, t+)G11,12(t+, t) +G9,12G10,11

]
− iΓ+

∫
dt (−iG18 + i2|ϕ|2)

[
G3,10G6,11 +G36G10,11

]
− iΓ−

∫
dt (−iG27 + i2|ϕ|2)

[
G49G5,12 +G45G9,12

]
.

(5.116)

For the photon Green functions, we then find equations of motion

0 =

{
[i∂t − δ + iκ/2]− iΓ+

2

[
GT (t−, t)ET (t, t−) + ∆T,†(t, t)∆T (t, t)

]
− iΓ−

2

[
GT (t, t−)ET (t−, t) + ∆T,†(t, t)∆T (t, t)

]}
D<(t, t′)

+ iΓ−
[
G>(t, t)E<(t, t) + ∆T (t, t)∆T̃ ,†(t, t)

]
DT̃ (t, t′),

0 =

{
− [i∂t − δ − iκ/2]− iΓ+

2

[
GT̃ (t+, t)ET̃ (t, t+) + ∆T̃ ,†(t, t)∆T̃ (t, t)

]
− iΓ−

2

[
GT̃ (t, t+)ET̃ (t+, t) + ∆T̃ ,†(t, t)∆T̃ (t, t)

]}
D>(t, t′)

−
{

iκ− iΓ+
[
G<(t, t)E>(t, t) + ∆T,†(t, t)∆T̃ (t, t)

]}
DT (t, t′),

(5.117)

where we have introduced the new Green functions

∆T (t, t′) = −i〈T de(t)d†g(t′)〉 = −i〈φe,+(t)φ∗g,+(t′)〉,
∆T,†(t, t′) = −i〈T dg(t)d†e(t′)〉 = −i〈φg,+(t)φ∗e,+(t′)〉.

(5.118)

and their corresponding anti-timed-ordered varieties. Their lesser and greater components obey
∆≶,†(t, t′) = −[∆≶(t′, t)]†. These functions are only relevant when a symmetry-broken solution

13 Note that the additional factor (with ~ restored) from the expansion of W (2) is in this case i~ · (−i) ≡ 1 because of
the Lindbladian character of the interaction.
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with a condensate amplitude ϕ(t) is to be considered (in which case they are crucial). From their
definition, we conclude they describe the coherence between the ground and excited states of the
molecules. As usual for pseudo-particles, the greater function must have the important property

∆>(t, t) = 0. (5.119)

Below, we briefly come back to these functions; to verify the Markovian limit, we set ϕ = 0 and
may hence discard them. For a very large number of molecules, the lesser function now obeys14

(i∂t − δ + iκ/2)D<(t, t′) = M

{
iΓ+

2
G<(t, t)E>(t, t) +

iΓ−

2
G>(t, t)E<(t, t)

}
D<(t, t′)

− iMΓ−G>(t, t)E<(t, t)DT̃ (t, t′),(
i∂t′ + δ + iκ/2

)
D<(t, t′) = M

{
iΓ+

2
G<(t, t)E>(t, t) +

iΓ−

2
G>(t, t)E<(t, t)

}
D<(t, t′)

− iMΓ−G>(t, t)E<(t, t)DT (t, t′),

(5.120)

such that in the equal-time limit, we correctly obtain

(i∂T + iκ)D<(t, t) = M
[
Γ+G<(t, t) + Γ−E<(t, t)

]
D<(t, t′)

−MΓ−E<(t, t)
[
D>(t, t) +D<(t, t)

]
= M

[
Γ+G<(t, t)D<(t, t)− Γ−E<(t, t)D>(t, t)

]
.

(5.121)

This underlines once more the importance of properly taking care of the time-ordered Green
functions. For the greater function, we have

(i∂t − δ − iκ/2)D>(t, t′) = −M
{

iΓ+

2
G<(t, t)E>(t, t) +

iΓ−

2
G>(t, t)E<(t, t)

}
D>(t, t′)

−
{

iκ− iMΓ+G<(t, t)E>(t, t)
}
DT (t, t′),

(5.122)

which in the equal-time limit dutifully produces the same result. The equations for G<(t, t) and
E<(t, t) can also be calculated from S0 and Eq. (5.116) in the established manner. The present
results further substantiate the general validity of our approach.

14 Here we have rather sweepingly repeated the resummation over many incoherent molecules described in 5.2.5. The
influence of a single molecule would scale as O(ζ) and hence drop out from the photon dynamics.

148



5.6 Markovian Limit & Photon-BEC Gross-Pitaevskii Equation

5.6.3 Gross-Pitaevskii Equation

Even though we are not going to investigate it in the remainder of this thesis, the proper Gross-
Pitaevskii equation of the photon BEC is interesting in its own right and a novel result that we
should present for completeness. Taking the derivative of the effective action with respect to ϕ∗(t),
we find

0 = (i∂t − δ + iκ/2)ϕ(t)− igβ
(
∆<(t, t) + ∆>(t, t)

)
− iΓ+

2
ϕ(t)

[
G<(t, t)E>(t, t) +O(ζ2)

]
− iΓ−

2
ϕ(t)

[
G>(t, t)E<(t, t) +O(ζ2)

]
+ iΓ−ϕ(t)

[
G>(t, t)E<(t, t) +O(ζ2)

]
.

(5.123)

WithG>(t, t) = E>(t, t) = −i and ∆>(t, t) = 0, dropping theO(ζ2) contributions, and applying
the same reasoning we have already used for the photon Green functions D≶ when it comes to the
resummation over many incoherent molecules,15 this becomes

i∂tϕ(t) = (δ − iκ/2)ϕ(t) + iMgβ∆<(t, t) +
M

2

[
Γ+G<(t, t)− Γ−E<(t, t)

]
ϕ(t), (5.124)

which needs to be complemented by equations for E<(t, t) and ∆<(t, t). Deriving a fully space-
dependent version of this equation will be left for future projects. Note that it is indeed inhomo-
geneous, a fact that one may anticipate from the structure of the gβ-vertex. While it is otherwise
superficially linear in ϕ(t), it is still, of course, a non-linear equation by virtue of the terms
proportional to Γ±. We can also appreciate that ∆< is indeed crucial for non-trivial solutions to
exist. As the last result of this section, consider the evolution of the excited-state lesser function,

i∂tE
<(t, t′) = gβϕ(t)∆<,†(t, t′) +

Γ−

2

(
iD>(t, t) + |ϕ(t)|2

)
G>(t, t)E<(t, t′)

− Γ+
(

iD<(t, t) + |ϕ(t)|2
)
G<(t, t)ET (t, t′)

+
1

2

[
Γ+
(

iD<(t, t) + |ϕ(t)|2
)

+ Γ−
(

iD>(t, t) + |ϕ(t)|2
)]

∆>(t, t)∆<,†(t, t′)

− Γ+
(

iD<(t, t) + |ϕ(t)|2
)

∆>(t, t)∆<,†(t, t′) +O(ζ2)

= gβϕ(t)∆<,†(t, t′) +
Γ−

2

(
iD>(t, t) + |ϕ(t)|2

)
G>(t, t)E<(t, t′)

− Γ+
(

iD<(t, t) + |ϕ(t)|2
)
G<(t, t)ET (t, t′),

(5.125)

15 One should investigate this in more detail to see if there are subtleties involved (certainly when going over to a
space-dependent condensate ϕ(x, t)).
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Figure 5.21: Microscopic steady-state emission (dashed line) and absorption (solid line) spectra Γ±(δ)
without the approximate assumptions gnm(t, t′) = gnm(τ) and emn(t, t′) = emn(τ) (cf. Eqs. (5.102) and
(5.103)) for initial conditions i TrG<(0, 0) = i TrE<(0, 0) = 1/2, and parameters g = 0 (i.e. only the
molecules are considered), Ω/λ = {2, 3}, S = 0.25, N̄ = 0.25, Γ↑ = Γ↓ = 0, and vibrational-state
truncation at n = 4. At the zero-phonon line δ = 0, the emission and absorption coefficient that would enter
the rate equations have the same value λΓ(0) = g2 · {1.298, 0.970}. Simulations calculated for 211 steps
up to a final time λTmax = 16 with a memory time of λτmem = 5.0. The spectra are taken at “half time”
λT = 8.0.

which possesses the correct equal-time limit. The equation for ∆<(t, t′) follows analogously. As a
final remark, consider that ∆<(t, t) = −i〈d†g(t)de(t)〉 is connected to the “anomalous” expectation
value 〈σ−(t)〉, which is only non-zero when evaluated in a spin coherent state. These interesting
perspectives will be considered elsewhere.

5.7 Molecular Spectra and Kennard-Stepanov Relation

This Sec. discusses the molecular spectra produced by our method when no simplifying assumptions
are made. The resulting spectra should satisfy the Kennard-Stepanov relation (4.23) at least in the
vicinity of the zero-phonon line δ = 0. Technically, the emission and absorption curves are related
to the photon T -matrices via

Γ−(δ) = −2g2 Re
[
i TrE<(t, t)

]−1
∫ t

0
d(t− t̄) e−iδ(t−t̄)e−(Γ↑+Γ↓)(t−t̄)/2 Tr G̃

>
(t, t̄)Ẽ

<
(t̄, t),

Γ+(δ) = −2g2 Re
[
i TrG<(t, t)

]−1
∫ t

0
d(t− t̄) e−iδ(t−t̄)e−(Γ↑+Γ↓)(t−t̄)/2 Tr G̃

<
(t, t̄)Ẽ

>
(t̄, t),

(5.126)

where the tilde symbols indicate that we have pulled the exponential factors exp (i∆(t− t̄)) and
exp

{
−
(
Γ↑ + Γ↓

)
(t− t̄)/2

}
out of the trace. Defining K(δ) in this way occurs with the idea in

mind that it is the right-hand sides of Eq. (5.126) acting in lieu of Eq. (4.20) when the parameters
are chosen such that the full pseudo-particle dynamics effectively recovers the rate equations.
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Figure 5.22: Microscopic steady-state emission and absorption spectra Γ±(δ) for initial conditions
i TrG<(0, 0) = i TrE<(0, 0) = 1/2, and parameters g = 0 (i.e. only the molecules are considered),
Ω/λ = {2, 3, 4, 5}, S = 0.25, N̄ = 0.25, Γ↑ = Γ↓ = 0, and vibrational-state truncation at n = 4. At
the zero-phonon line, we find λΓ(0) = g2 · {1.298, 0.970, 0.833, 0.763}. Simulations done as in Fig. 5.21.
Observe that the secondary peaks indeed appear at the correct location as specified by the respective value
of the vibrational frequency Ω.
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Figure 5.23: Ratio of steady-state emission and absorption spectra Γ±(δ) as depicted in Fig. 5.22. The
thick dashed lines show the best least-squares fit of the data to an exponential exp (−C · δ/λ) over the
interval δ/λ ∈ [−1, 1], where the best fits for the constants are C = {0.616, 0.508, 0.415, 0.347}. The
dotted (black) line shows the Kennard-Stepanov relation exp (−~δ/kBT ) for T = 293 K. Because of the
thermal occupation N̄ = 0.25, the frequency scale is fixed implicitly to Ω ≈ 62.2 THz or ~Ω/kB ≈ 473 K.
A collection of photon modes placed inside the dashed vertical lines would attain a Bose-Einstein number
distribution in the steady state.
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Figure 5.24: Steady-state emission (dashed line) and absorption (solid line) spectra Γ±(δ) for initial
conditions i TrG<(0, 0) = i TrE<(0, 0) = 1/2, and parameters g = 0 (i.e. only the molecules are
considered), Ω/λ = 2, S = {0.25, 0.5, 1.0, 2.0}, N̄ = 0.25, Γ↑ = Γ↓ = 0, and vibrational-state truncation
at n = 4. At the zero-phonon line, we find λΓ(0) = g2 · {1.298, 0.569, 0.300, 0.173}. Simulations done as
in Fig. 5.21. The Huang-Rhys parameter S has a strong influence on the spectra. Note how the value at the
zero-phonon line decreases with the increasing bandwidth.

153



Chapter 5 Non-Equilibrium Pseudo-Particle Approach to Open Quantum Systems

Figure 5.25: Microscopic steady-state emission and absorption spectra Γ±(δ) for different values of N̄ =
{0.25, 0.35, 0.45, 0.55}, initial conditions and g = 0 as above, Ω/λ = 1, S = 1, Γ↑ = Γ↓ = 0, and
vibrational-state truncation at n = 4. At the zero-phonon line, we find λΓ(0) = g2 · {0.797, 0.786,
0.768, 0.745}. Simulations calculated for 210 steps up to a final time λTmax = 16 with a memory time of
λτmem = 3.5. The spectra are taken at “half time” λT = 8.0.

To investigate the spectra, we decouple the photons from the molecules by setting g = 0 and
equally distribute the molecular population over the ground and excited manifolds. Moreover, we
evolve the system such that it is in the steady state at “half-time”, i.e in the center of the two-time
square depicted in Fig. 2.3. This ensures that we have maximal time intervals at our disposal
to compute the spectra. For vibrational frequencies on the order of 10 THz we know from Fig.
5.5 that the corresponding thermal occupation N̄ will be low. In fact, one finds that a thermal
occupation N̄ = 0.25 corresponds to a realistic vibrational frequency Ω ≈ 62.2 THz [17], which
is equivalent to a temperature of ~Ω/kB ≈ 473 K. Such a low value of N̄ has the advantage that
we do not have to include a very large number of vibrational states into the simulations. Truncation
of these states at n = 4 (meaning that 5 states are included) is sufficient to produce physically
realistic results. Fig. 5.21 compares two exemplary spectra for different ratios Ω/λ. In the right
panel, the characteristic secondary peaks appear at the correct locations. The Kennard-Stepanov
relation is in fact fulfilled around the zero-phonon line. Fig. 5.22 shows these two spectra again on
a larger frequency interval, alongside with two more spectra at higher vibrational frequencies. For
these four panels, Fig. 5.23 compares the ratios Γ(−δ)/Γ(+δ) to the Kennard-Stepanov relation
at T = 293 K. A least-squares fit on the interval δ ∈ [−1, 1] is used to determine the exponential
constant. Within this interval around δ = 0, the agreement is very good even four our relatively
simple relaxation model. Placing a collection of photon modes inside this interval would hence
result in these modes being thermally occupied according to a Bose-Einstein distribution. Outside
the interval, the spectra do no longer satisfy the Kennard-Stepanov relation, which also holds
true for the spectra of real dye molecules. Fig. 5.24 presents some more results for different
Huang-Rhys parameters S, which as expected has a strong effect on the peak structure. Note that
the height of the spectra decreases strongly with the growing width. Finally, in Fig. 5.25 we do not
find a strong dependence of the spectra on N̄ . These results are very encouraging as regards the
general ability of the auxiliary-boson method to describe the relevant physics.
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λΓ−(−1, 0) λΓ+(−1, 0) c−1 c+
1 c−2 c+

2

g2 · 0.7960 g2 · 0.5900 −0.1200 −0.0480 0.0085 0.0010

Table 5.2: Fit parameters for modeling the dependence of emission and absorption on the external pumping
according to Eq. (5.127).

One should not forget that the spectra presented here are calculated for Γ↑ = Γ↓ = 0. The
additional broadening in Eq. (4.20) due to these processes is automatically included by the auxiliary-
boson method if the two parameters are different from zero. When they are small compared to λ,
this effect is not pronounced. From our method, it also becomes evident that in general κ will have
a similar influence on the emission and absorption spectra.

5.8 Non-Markovian Corrections to the Phase-Diagram Boundary

This final part is devoted to answering the question brought up in the introduction to Chp. 5 and
discussed in Fig. 5.1: Is the g(2) phase diagram bounded from above, and if so, does the system
timescale κ influence the dynamics beyond the approximation provided by the rate equations (cf.
Chp. 4)? The first part of the question regarding the upper boundary will be addressed on the basis
of the rate equations. For the second part, the quantitative corrections due to the non-separable
system-reservoir timescales, we employ the full capacity of the formalism developed above. Unlike
Chp. 4 where we were restricted to a small region of the g(2) phase diagram for which the spectral
influence of the external pumping could be neglected (Γ↑ � λ in the notation of our microscopic
model), the full exploration of the diagram requires us to take into account the emission and
absorption coefficients Γ± as functions of Γ↑.

16 This is the topic of the first part of the present Sec.
in 5.8.1. Afterwards, we present the closed g(2) phase diagram in 5.8.2. This Sec. is then concluded
by a discussion of the quantitative corrections following from the full microscopic model in 5.8.3.

5.8.1 Emission and Absorption Spectrum

The emission and absorption spectrum following from the auxiliary-boson field theory for the
parameters given in Tab. 5.3 is presented in Fig. 5.26. The single photon mode k = 0 that we want
to study in reference to Chp. 4 is indicated by the dashed vertical line at δ = 0. The peak displaced
toward the left (red detuning) corresponds to the emission, whereas the peak displaced toward the
right (blue detuning) models the absorption coefficient.

In Fig. 5.26, the influence of the external pumping Γ↑ is not taken into account on purpose. For
the study of the entire g(2) phase diagram, however, this is no longer acceptable. The additional
broadening due to the exponential factor e−Γ↑τ/2 in Eq. (4.20) needs to be incorporated when
computing the spectra from the photon T -matrices. Therefore, we treat the coefficients as functions

16 While we do not neglect Γ↓, this parameter is kept constant and hence never goes into a regime where its influence on
the spectra becomes noticeable compared to that of λ.
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Figure 5.26: Steady-state emission (thick line) and absorption (thin line) spectra Γ±(δ) as calculated from
the steady-state photon T -matrix for initial conditions i TrG<(0, 0) = i TrE<(0, 0) = 1/2, parameters
S = 1.00, N̄ = 0.25, Γ↑ = Γ↓ = 0, vibrational-state truncation at n = 4, and λΓ(0) = g2 · 0.798. The
thick line corresponds to the emission coefficient Γ(−δ). Simulations calculated for 211 steps up to a final
time of λTmax = 16 with memory time λτmem = 4.0 (nmem = 512).

of both the detuning and the pumping by letting Γ± = Γ±(δ,Γ↑).17 Then the broadening effect of
the pumping on emission and absorption at the location of the photon mode k = 0 can be modeled
via the functions

λΓ±(δ = −1,Γ↑) = g2
(
c±1 Γ↑/λ+ c±2

(
Γ↑/λ

)2)
+ λΓ±(−1, 0), (5.127)

where for the present system parameters the constants take the values given in Tab. 5.2. These
constants can be obtained from fits to the numerically determined Γ±(δ,Γ↑). As expected, the
broadening results in a decrease of Γ± as the pumping Γ↑ is ramped up. We emphasize again that
this effect is included in the auxiliary-boson field theory by default, while within the framework
of Chp. 4 it has to be taken into account by explicitly adjusting Γ±. For larger values of Γ↑/λ, it
turns out to have a non-trivial influence on the position of the boundary of the g(2).

5.8.2 Boundary of the Phase Diagram

With Eq. (5.127) at our disposal, we may compute the full boundary of the g(2) phase diagram
along the lines of paragraph 4.2.11, where now emission and absorption also change along the
Γ↑-axis. The result is presented in Fig. 5.27 (a): the phase diagram is indeed bounded instead
of open. Note that neglecting Eq. (5.127) would entail a larger oscillating region with the phase
boundary extending almost up to Γ↑/λ = 1.0, while the qualitative shape of the oscillating region
would not change much.

Although not visible on the large scale of the full diagram, the lower “tip” does in fact not reach
all the way down to the origin κ = Γ↑ = 0, for which reason it is possible to circumvent the
oscillating region when going from the “equilibrium” area at very weak external pumping and

17 Note that we use the notation Γ
±

(δ) ≡ Γ(±δ).
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cavity loss to the strongly driven case toward the right (cf. lower panel of Fig. 5.27 (a)).
Evidently, the upper boundary of the oscillating region lies in a parameter regime where the

system timescale κ is comparable to the vibrational relaxation rate λ. For this reason, the boundary
drawn according to the rate equations of Chp. 4 cannot be relied upon, which is why we compare
the steep (red) dashed line with the results from the microscopic auxiliary-boson field theory in the
subsequent paragraph 5.8.3.

The remaining three straight lines drawn across the phase diagram correspond to the transverse
sections investigated in Figs. 5.27 (c) – (d). Note that these results are also calculated from the rate
equations and hence ignore any corrections arising from the system timescale κ. Their qualitative
features are still expected to be modeled accurately by the rate equations and highlight a number of
physically interesting points: (i) The seemingly unintuitive collapse in photon population visible
in Fig. 5.27 (c) for increasing Γ↑, while κ is held constant, follows from the change in Γ± as
functions of Γ↑. As one could expect, the photon mode is quite sensitive to these parameters.
For broader emission and absorption peaks, the ratio Γ+/Γ− known from the Kennard-Stepanov
relation gradually approaches unity.

(ii) The condensation or decondensation transitions [5] are always accompanied by a critical
slowing down of the system in the sense that one of the relaxation rates τ−1 goes to zero rapidly,
which can be interpreted as an indication of a phase transition also out of equilibrium [157].
Furthermore, the molecule excitations become fully saturated (this cannot be discerned very well
in Figs. 5.27 (c) – (d)), which can also be thought of as triggering the collapse in photon occupation
in the first place.

(iii) The behavior of the second-order coherence g(2) needs to be considered separately from the
occupation of the photon mode. The transition in the second-order coherence can but does not have
to coincide with the condensation or decondensation transition. However, if one passes through
the oscillating zone, the decondensation transition must occur after the change from oscillating to
bi-exponential g(2) behavior because the decondensation transition is accompanied by a diverging
relaxation time. Yet a single relaxation rate in the system can never approach zero since a zero
relaxation rate is only possible when the square root in Eq. (4.69) becomes real and cancels the
term in front. Thus we find that out of equilibrium, there is a more sensitive mechanism at work in
the temporal second-order coherence that may antecede the decondensation phase transition.

5.8.3 Quantitative Corrections to the Boundary

In this paragraph, we turn to a comparison of the steep, (red) dashed path κ(Γ↑) = 20 Γ↑ drawn
in Fig. 5.27 with the corresponding results following from the fully non-Markovian microscopic
dynamics. Instead of obtaining the steady-state occupation analytically from the rate equations
of Chp. 4 and calculating the eigenvalues of the matrix in Eq. (4.69), we now have to solve the
integro-differential equations derived from our field-theoretic considerations. Therefore, we resort
to computing the density response of the photon mode to an external perturbation rather than the
actual second-order coherence. By the quantum regression theorem which we derived in 4.2.5,
these two approaches are equivalent, i.e. we could have adopted the same procedure to be used
here also for extracting the frequency and relaxation rate of the second-order coherence from the
rate equations. The initial conditions for the numerical simulations are as follows. We start with an
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Figure 5.27: (a) The closed g(2) phase diagram for M = 109 as computed from the model of Chp. 4 with the
steady-state occupations, g(2) frequency ω and relaxation rate τ−1 presented for the paths parameterized by
(b) κ(Γ↑) = 0.9λ, (c) κ(Γ↑) = 2.00

(
Γ↑ − 0.10λ

)
and (d) κ(Γ↑) = 1.35

(
Γ↑ − 0.25λ

)
. The parameters

Γ± are analyzed in 5.8.1. For the figure discussion, s. paragraph 5.8.2. The (red) dashed line corresponds to
κ = 20 Γ↑ and is separately compared to the auxiliary-boson method in Fig. 5.30.
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M g/λ δ/λ Ω/λ S N̄ Γ↑/κ Γ↓/λ

109 4.5 · 10−5 −1.0 1.0 1.0 0.25 0.05 1.25 · 10−3

Table 5.3: Overview of the generic system parameters employed for the final results. The cavity loss κ is
excluded because it serves as a control parameter. Note that the external pumping Γ↑ is given in units of κ,
i.e. their ratio is held fixed. For the diagrammatics to be accurate, the photo-molecular coupling g should be
small enough that the product of g2 and the photon number is also small.

empty cavity and all molecules in the total ground state, which can be expressed in terms of Green
functions as D<(0, 0) = 0, where we dropped the subscript k = 0 and D>(0, 0) follows from
the commutator, G<mn(0, 0) = −iδ00 and E<mn(0, 0) = 0. Remember that the greater functions
G>mn(0, 0) = E>mn(0, 0) = −iδmn are fixed automatically by the projection. The system is then
evolved until it reaches the steady state. The set of generic parameters used for the simulations is
summarized in Tab. 5.3. The results to be presented do not depend strongly on the precise values
of the various parameters.

A number of exemplary trajectories of the photon occupation 〈n〉(t) = iD<(t, t) are shown in
the inset of Fig. 5.28. Depending on the value of κ, the attainment of the steady state requires a
different amount of time. As expected, the critical slowing down indicated by a diverging relaxation
time also bears on the approach to the steady state which becomes very slow. After reaching the
steady state, a weak, short Gaussian pulse is added to the constant external drive, such that the
functional form of the total external pumping reads

Γ↑(t) = Γ↑

(
1 +A exp

{
−(t− tP )2

2σ2
P

})
, (5.128)

where tP varies with the attainment of the steady state, and A = 10−2, λσP = 1/2. The density
responses in the main panel of Fig. 5.28 show the evolution of the photon occupation following
the Gaussian pulse (5.128), where the points t = 0 of the four trajectories in Fig. 5.28 correspond
to the respective maxima of the 〈n〉(t) curves after tP . For the examples depicted in Fig. 5.28,
it is evident that the first two cases with smaller κ show an oscillating response, while the other
two cases with larger κ do not. Close to the upper boundary of the g(2) phase diagram in Fig.
5.27, however, this difference is no longer obvious, of course, such that the determination of the
boundary demands for a quantitatively accurate criterion to group the trajectories into “oscillating”
vs. “bi-exponential”. The frequency ω and decay rate τ of the density responses can be extracted
well by least-squares fitting the ansatz functions

fosc(t) = e−t/τ (f(0) cosωt+ C sinωt) ,

fbi-exp(t) =
f(0)

2

(
e−t/τ1 + e−t/τ2

)
+ C

(
e−t/τ1 − e−t/τ2

) (5.129)

to the simulation data. The quality of the fit is can then be estimated by the standard error, which
in turn determines whether the response is classified as damped-oscillating or bi-exponentially
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Figure 5.28: (Main panel) Density response 〈n〉(t) − 〈n〉∞ after the pump pulse Eq. 5.128 and (inset)
approach to the steady state 〈n〉∞ = limt→∞ iD<(t, t) for initial conditions and parameters TrD<(0, 0) =
0, iG<00(0, 0) = 1, M = 109, g/λ = 4.5 · 10−5, δ/λ = −1.00, Ω/λ = 1.00, S = 1, N̄ = 0.25,
Γ↑/κ = 0.05, Γ↓/λ = 1.25 · 10−3, vibrational-state truncation at n = 4, a temporal resolution of
λdt = 2−4 and memory time λτmem = 4.0. We have verified the convergence of our simulations by varying
both dt and τmem.

relaxing. An illustration of the fitting procedure for the two points directly next to the upper
boundary of the phase diagram is given in Fig. 5.29 and Tabs. 5.4, 5.5. One can see that even for
these two points on either side of the boundary, the fit classification is always unique. To ensure
that the data are not fitted even better by a single exponential decay, the corresponding best fits
are also presented in Fig. 5.29. Because they are evidently worse than either of the functions in
Eq. (5.129), their standard errors are excluded from Tabs. 5.4, 5.5. Due to the slowing down of
the dynamics between κ/λ = 1.475 and κ/λ = 1.480 (cf. Fig. 5.29), the numerical solution of
the Kadanoff-Baym equations becomes very expensive and does not allow for an arbitrarily close
approach of the transition.

Going over to our final results in Fig. 5.30, one can see that we still resolve the phase transition
well enough to clearly differentiate it from the one predicted by the rate equations (s. the right inset
of Fig. 5.30 (c)). While qualitatively similar, the latter happens for a larger value of κ/λ compared
to the microscopic result. These quantitative corrections we observe for large κ/λ confirm our
insight about the non-separable system-reservoir timescales and that the photon condensate requires
a treatment beyond the rate equations in certain parameter regimes. The upper boundary of the g(2)

phase diagram is indeed modified by taking into account the effect of the cavity loss. Physically,
this can be understood from the additional broadening of the emission and absorption spectrum
effected by the cavity loss κ.

Although the difference between the two theoretical methods is not particularly pronounced
for the parameters of Tab. 5.3, one can envisage situations where the upper boundary of the g(2)

phase diagram lies at even larger values of the system-reservoir ratio κ/λ, in which case one
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κ/λ s(τ) s(ω) s(C)

1.475 1.01 · 10−8 1.08 · 10−8 1.29 · 10−9

1.480 2.35 · 10−5 1.18 · 10−3 1.61 · 10−1

Table 5.4: Standard errors for the damped-oscillating ansatz.

κ/λ s(τ1) s(τ2) s(C)

1.475 2.84 · 10−3 2.93 · 10−3 2.85 · 10−1

1.480 4.02 · 10−9 1.45 · 10−8 4.42 · 10−10

Table 5.5: Standard errors for the bi-exponentially decaying ansatz.
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Figure 5.29: Comparison of the fits directly to the left and right of the transition at large κ. (Upper panels)
Data and best fits for several different ansatz functions. A uni-exponential decay is also fitted to underline
that it is not a possible best fit, as can indeed be judged by eye. (Lower panels) The absolute error (difference
of data and fit) for the two viable options fosc and fbi-exp.
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would expect the rate equations to strongly misquantify the crossover to the bi-exponential region.
The same holds for the phase transition in the photon occupation accompanied by the diverging
relaxation time.

The quantitative reliability of our non-Markovian microscopic theory stems mainly from two
factors. The first and weaker one is that it seems reasonable to expect the kind of deviation that
we find numerically given our physical understanding of the molecular spectrum. The second and
more important factor is that for small κ/λ, the insets of Fig. 5.30 show that the auxiliary-boson
field theory agrees very well with the rate equations,18 which serves as an independent validation of
our analytical and numerical methods. Considering the far greater complexity of both the analytical
derivation described in Secs. 5.1 – 5.3 and the numerical methods of Sec. 2.3, the agreement with
the much simpler methods in the expected parameter regime is in fact a strong indicator of the
correctness of the entire scheme. Before concluding this Chp. we should point out again that the
full non-equilibrium auxiliary field theory (developed here for the first time in the context of open
systems) is not restricted to applications to photon condensation but also has the potential to yield
interesting results in fields such as exciton-polaritons or even strongly correlated electrons where,
of course, the auxiliary bosons would be joined by auxiliary fermions.

18 Clearly, the g(2) oscillation frequency in Fig. 5.30 (b) is most sensitive to our corrections and departs from the
rate-equation result quite early. This can be understood in broad terms by again considering the square root in Eq.
(4.69), which tells us that oscillation frequency essentially traces out a half ellipse of a certain eccentricity. When the
latter changes due to our quantitative corrections, the entire shape of the curve must be affected.
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Figure 5.30: Comparsion of the pseudo-particle dynamics with the rate equations. (a) Steady-state photon
number 〈n〉∞, (b) density-response frequency ω, and (c) relaxation rate τ−1 as functions of the cavity loss κ.
The inset (d) shows the saturation of the steady-state molecular excitation 〈M↑〉∞ = limt→∞ i TrE<(t, t).
The ratio κ/Γ↑ = 20 is held constant and the remaining parameters take the values summarized in Tab. 5.3.
The (red) dashed lines (s. also Fig. 5.27) show the rate-equation results for parameters Γ± as discussed in
5.8.1.
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Conclusion

This thesis presented an overall perspective on a variety of methods to describe non-equilibrium
quantum systems. The position of photon condensates between quantum optics and condensed
matter made them an ideal object of study to also understand in detail how these different methods
are connected. We developed the Schwinger-Keldysh formalism in its full scope as it applies to
open systems, going beyond mean-field descriptions by including self-consistently resummed
propagators. A still larger perspective opened up when we compared these methods to classical
stochastic processes, which are often neglected in the context of condensed-matter physics yet in-
dispensable for building a proper understanding of many physical and formal details. Furthermore,
we discussed the implementation of an efficient method to solve equations of Kadanoff-Baym
type and showed how to apply these techniques to classical Brownian motion, which serves as a
bridge between separate fields of study. For the future, this marks a starting point when applying
non-equilibrium field theory to non-Markovian and multiplicative classical stochastic systems,
which can be difficult to treat by other means.

In Chp. 3, we presented a summary of our detailed analysis of two of the trap geometries
employed in cold-atom BEC experiments and their influence on the dynamical stability of such
systems. In the course of this, we also provided a comprehensive review of the frequently used
two-mode approximation in App. C, including the mean-field stability analysis which, to the
author’s knowledge, so far lacks from the literature.

We began our investigation of the photon BEC as it is driven away from equilibrium in Chp.
4, and gave a detailed description of the time-dependent second-order correlation by rederiv-
ing the phenomenologically established rate equations from the microscopic Hamiltonian and
then applying quantum regression. The driven-dissipative character of the system induced non-
Hermitian dynamics, which led to the appearance of exceptional points in the spectrum of the
intensity-intensity correlations. Notably, our calculations matched the experimental findings,
which confirmed that intensity fluctuations are more sensitive to deviations from equilibrium
than the stationary occupation spectrum. These results provide an important building block to
understanding the properties of the photon BEC in steady-state operation where it essentially acts
as a fluctuating light source. Moreover, it is of practical relevance that second-order correlations
can be used to determine the system parameters accurately. In the future, lattice systems of coupled
dye microcavities may lead to the appearance of novel driven-dissipative phases of light.

Chp. 5 was devoted to developing a generalized model of the photon BEC that allows for a
genuinely non-Markovian description beyond the previously given frequency-dependent emission
and absorption. In Sec. 5.2 we gave an independent derivation of the pseudo-particle method in
non-equilibrium, making it more accessible as a technique for future research. In particular, we
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applied pseudo-particles with a faithfully enforced operator constraint for the first time to open
systems, and thus proved that the technique also works for Lindblad operators where superficially
there seemed to be an ambiguity (cf. Sec. 5.3). The photon BEC Gross-Pitaevskii equation derived
in 5.6.3 is a novel result that has lead to an already on-going project with the aim of describing
vortex formation in ring-shaped lattices.

Another research topic to be addressed is the inclusion of multiple cavity modes beyond the
ground state. While both our theoretical derivations and the numerical methods already cover
this case, it was not investigated in this thesis because it is not relevant for the dynamics of the
ground mode. Since our microscopic model is able to produce emission and absorption spectra
satisfying the Kennard-Stepanov relation, we can be confident that it is also capable of dynamically
generating a Bose-Einstein distribution for modes near the zero-phonon line. The auxiliary-boson
technique then allows one to study the effect of non-Markovianity on the equilibration of the cavity
spectrum.

A closely related idea concerns the introduction of a symmetry-broken order parameter into
the fully non-Markovian model, that is, to combine the technique used to derive the photon-BEC
Gross-Pitaevskii equation from the master equation of Chp. 4 with the established field-theory
treatment of the fully microscopic master equation of Sec. 5.3. Although not necessary from the
perspective of having a valid approximation, this would yield access to the phase of the photon
condensate and the effect of incoherent excitations.

One of the motivations for an extension of the existing description of photon condensates was
the possibility to realize very rapid Josephson oscillations in double-well potentials experimentally.
It seems natural to implement a model of this set-up with our formalism and to study in detail
its physical behavior as the Josephson frequency is increased until it competes with the reservoir
relaxation.

As touched upon briefly in paragraph 5.2.5, there are only a few discussions of the four-particle-
irreducible (4PI) effective action [94, 158]. To the author’s knowledge, actual applications of
the technique to the dynamics of open systems do not exist. Even though it is certainly very
challenging to formulate the equations, let alone to integrate them numerically, it would be rather
interesting from a field-theory perspective to better understand the role played by vertex corrections
in non-equilibrium problems. A related question regards the feasibility of the auxiliary field theory
as generated via the fugacity scaling in the context of a two-impurity problem. Independent of the
numerical solvability of such 4PI approaches, one could investigate if the technique succeeds at all
in providing a consistent set of equations that implements the two-impurity operator constraint
faithfully.
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APPENDIX A

Functions & Functionals

A.1 Green Functions

Given the plethora of Green functions being in use, a summary of their respective definitions and
relations is desirable. For the rest of this section, we will refer to them as components. The most
commonplace are the retarded and advanced components

GR(t, t′) := −iθ(t− t′)〈[a(t), a†(t′)]〉, (A.1a)

GA(t, t′) := iθ(t′ − t)〈[a(t), a†(t′)]〉. (A.1b)

Directly related are two different ways of defining the spectral function,

ρ(t, t′) := i〈[a(t), a†(t′)]〉, (A.2a)

A(t, t′) := −iρ(t, t′). (A.2b)

The statistical information is usually summarized in either the statistical function

F (t, t′) :=
1

2
〈{a(t), a†(t′)}〉 (A.3)

or the Keldysh component

GK(t, t′) := −2iF (t, t′). (A.4)

Evidently, all of these functions are defined in terms of expectation values of the commutator and
anti-commutator,

〈[a(t), a†(t′)]〉 = 〈a(t)a†(t′)〉 − 〈a†(t′)a(t)〉
〈{a(t), a†(t′)}〉 = 〈a(t)a†(t′)〉+ 〈a†(t′)a(t)〉.
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This naturally leads us to consider the greater and lesser components

G>(t, t′) := −i〈a(t)a†(t′)〉, (A.5a)

G<(t, t′) := −i〈a†(t′)a(t)〉, (A.5b)

which are given primacy in this thesis. The time-ordered and anti-time-ordered components are
defined via these as

GT (t, t′) := −i
〈
T
(
a(t)a†(t′)

)〉
= θ(t− t′)G>(t, t′) + θ(t′ − t)G<(t, t′), (A.6a)

GT̃ (t, t′) := −i
〈
T̃
(
a(t)a†(t′)

)〉
= θ(t− t′)G<(t, t′) + θ(t′ − t)G>(t, t′). (A.6b)

It is possible to encounter the alternative notation(
G++ G+−

G−+ G−−

)
=

(
GT G<

G> GT̃

)
. (A.7)

Coming to some important identities, we note

GT (t, t′) +GT̃ (t, t′)−
(
G>(t, t′) +G<(t, t′)

)
= 0, (A.8)

from which the Keldysh representation is constructed. Furthermore, observe

GR(t, t′) = −θ(t− t′)
(
G<(t, t′)−G>(t, t′)

)
= −θ(t− t′)ρ(t, t′), (A.9a)

GA(t, t′) = θ(t′ − t)
(
G<(t, t′)−G>(t, t′)

)
= θ(t′ − t)ρ(t, t′), (A.9b)

which also implies that [61]

ρ(t, t′) = G<(t, t′)−G>(t, t′) = GA(t, t′)−GR(t, t′), (A.10)

Similarly, we find

F (t, t′) =
i

2

(
G<(t, t′) +G>(t, t′)

)
. (A.11)

Two frequently used equal-time identities are

GA(t, t)−GR(t, t) = i,

GA(t, t) +GR(t, t) = 0,
(A.12)

although technically these should never appear.
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A.2 Gaussian Integration

A.2 Gaussian Integration

In a notation that relates to the main body of this thesis, the quadratic Gaussian integral is

IGauss =

∫
ddϕ exp {iS[ϕ]}

=

∫
ddϕ exp

{
i

2
ϕT
(
∂2S[ϕ]

)
ϕ

}
=

∫
ddϕ exp

{
−1

2
ϕTG−1

0 ϕ

}
= (2π)d/2

(
detG−1

0

)−1/2
,

(A.13)

withG−1
0 = −i∂2S[ϕ] and the Hessian matrix

∂2S[ϕ] =


δ
2
S[ϕ]

δϕ
2
1

· · · δ
2
S[ϕ]

δϕ1δϕd
...

. . .
...

δ
2
S[ϕ]

δϕdδϕ1
· · · δ

2
S[ϕ]

δϕ
2
d

 . (A.14)

Furthermore, we have∫
ddϕ exp

{
−1

2
ϕTG−1

0 ϕ+ jTϕ

}
= (2π)d/2

(
detG−1

0

)−1/2
exp

{
1

2
jTG0 j

}
, (A.15)

which proves immediately that

〈ϕαϕβ〉 = (2π)−d/2
(

detG−1
0

)1/2
∫

ddϕ ϕαϕβ exp

{
−1

2
ϕTG−1

0 ϕ

}

= (2π)−d/2
(

detG−1
0

)1/2
[

δ2

δjαδjβ

∫
ddϕ exp

{
−1

2
ϕTG−1

0 ϕ+ jTϕ

}]
j=0

=

[
δ2

δjαδjβ
exp

{
1

2
jTG0 j

}]
j=0

= (G0)αβ = iGαβ,

(A.16)

assuming thatG0 is symmetric. Finally, we state the important identity

−i ln IGauss = const.+
i

2
Tr lnG−1

0 . (A.17)
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A.3 Functional Differentiation

In this section, we summarize a few useful functional differential identities. For the matrix
logarithm, one finds

(lnA(x))′ = T diag(λ−1
i (x)) diag(λ′i(x))T−1

= TD−1T−1T diag(λ′i(x))T−1 = A−1A′.
(A.18)

Furthermore, one may write 0 =
(
A(x)A−1(x)

)′
= A′(x)A−1(x) + A(x)

(
A−1(x)

)′
, from

which it follows that (
A−1(x)

)′
= −A−1(x)A′(x)A−1(x). (A.19)

A related result important for the 2PI effective action reads

δ

δGji
Tr lnG−1 = Tr

δG−1

δGji

δ

δG−1 lnG−1

= TrG
δG−1

δGji
= −TrGG−1 δG

δGji
G−1

= −G−1
ab

δGba
δGji

= −G−1
ab δaiδbj = −G−1

ij ,

(A.20)

where we have switched to summation convention in the last line. In the presence of time-ordered
fields, one should also be aware of

δ

δφ(t)δφ̂∗(t′)

∫
ds φ̂∗(s±)φ(s) =

δ

δφ(t)
φ(t′∓) = δ(t± − t′),

δ

δφ̂∗(t)δφ(t′)

∫
ds φ̂∗(s±)φ(s) =

δ

δφ̂(t)
φ̂∗(t′±) = δ(t∓ − t′).

(A.21)

A.4 Effective Action

In the framework of the 1PI effective action Γ = Γ[ϕ], for the two-point function

G(x, y) = − δ
2W [j,K]

δj(x)δj(y)
(A.22)

there holds the well-known identity∫
dz

δ2Γ[ϕ]

δϕ(x)δϕ(z)
G(z, y) = δ(x− y). (A.23)
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It can be proved by noticing that the adjoint Legendre-transform relations δW [j,K]/δj(x) = ϕ(x)
and j(x) = −δΓ[ϕ]/δϕ(x) imply

G−1(x, y) = −
(
δϕ(x)

δj(y)

)−1

= − δj(y)

δϕ(x)
=

δ2Γ[ϕ]

δϕ(x)δϕ(y)
, (A.24)

where the inverse is understood in the functional sense. An obvious question to ask is: What
constitutes the equivalent identity for the 2PI effective action Γ = Γ[ϕ, G]? The answer can be
found without proof in a footnote of Ref. [90] and reads

−1

~

(
Wjj WjK

WKj WKK

)(
~Γϕϕ − 2ΓG − 4ϕΓϕG + 4ϕ2ΓGG/~ 2~ΓϕG − 4ϕΓGG/~

2~ΓϕG − 4ϕΓGG/~ 4ΓGG/~

)
= 1,

(A.25)

where we have resorted to writing functional derivatives as subscripts. To prove this identity, we
employ the implicit-function theorem. As a reminder, consider the standard example of a function
f : R2 → R, where f(x, y) = x2 + y2 − 1. This implicitly defines a function y : R→ R. The
theorem now allows one to calculate the derivative of y(x) without knowing its functional form
explicitly. Specifically, in this case

yx(x) = −
(
fy(x, y(x))

)−1
fx(x, y(x)) = − x

y(x)
, (A.26)

which from y(x) = ±
√

1− x2 can be seen to give the correct answer. To prove Eq. (A.25), we
need the theorem in the form(

xu xv
yu yv

)
= −

(
fxx fxy
fyx fyy

)−1(
Su Sv
Tu Tv

)
, (A.27)

where the functions x, y : R2 → R are defined implicitly via

S(x, y, u, v) = fx(x, y)− u,

T (x, y, u, v) = fy(x, y)− 1

2

(
u2 + cv

)
,

(A.28)

where c is a constant. To make the connection with Eq. (A.25), note the correspondences x↔ j,
y ↔ K, u↔ ϕ and v ↔ G. The functions S and T are defined according to the double Legendre
transform used in the 2PI effective action,

f(u, v) = f(x(u, v), y(u, v))− ux(u, v)− 1

2

(
u2 + cv

)
y(u, v). (A.29)

The inverse relations are

fu(u, v) = −x− yu,
fv(u, v) = −cy/2. (A.30)
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To make another connection, the Legendre transform familiar from classical mechanics and the
1PI effective action would read

f(u, y) = ux(u)− f(x(u), y). (A.31)

Note also that f(u, v) corresponds to Γ[ϕ, G], while its adjoint f(x, y), for which we use the same
function symbol, corresponds to W [j,K]. Eq. (A.27) is equivalent to(

xu xv
yu yv

)(
−1 0
−u −c/2

)−1

= −
(
fxx fxy
fyx fyy

)−1

, (A.32)

in which we still have to determine the derivatives on the left-hand side. From (A.30), we know

fuu = − (xu + y + uyu) ,

fuv = − (xv + uyv) = −cyu/2,
fvv = −cyv/2,

(A.33)

which can be solved for xu,v and yu,v to yield

xu = 2ufuv/c− fuu + 2fv/c,

xv = 2ufvv/c− fuv,
yu = −2fuv/c,

yv = −2fvv/c.

(A.34)

where in solving for xu,v, we have inserted y and yv from the second equation in (A.30), respect-
ively. Feeding these back into the left-hand side of Eq. (A.32), we obtain

1

c

(
xu xv
yu yv

)(
−c 0
2u −2

)
=

1

c

(
−cxu + 2uxv −2xv
−cyu + 2uyv −2yv

)
=

1

c

(
cfuu − 2fv − 4ufuv + 4u2fvv/c 2fuv − 4ufvv/c

2fuv − 4ufvv/c 4fvv/c

)
,

(A.35)

which, eo ipso, proves Eq. (A.25) if we set c = ~ and use the above correspondences.1 Mathemat-
ically, the essence of this procedure is that we have expressed the inverse Hessian matrix via the
Legendre-transformed quantities.

1 Be aware that this convention does not conform to the Legendre transform used in Sec. 2.2 where c = i~.
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APPENDIX B

Stochastic Calculus

B.1 Multivariate Fokker-Planck and Langevin Equations

The multivariate stochastic differential equation (SDE)

dx = A(x, t)dt+B(x, t)dW (t) (B.1)

is equivalent to the Fokker-Planck equation [54, 58]

Ṗ (x, t) = −
∑
i

∂i [Ai(x, t)P (x, t)] +
1

2

∑
i,j

∂i∂j

{[
B(x, t)BT(x, t)

]
ij
P (x, t)

}
. (B.2)

The Fokker-Planck equation (1.92),

Ẇ
(
α, α∗

)
=

[(
iω0 +

λ

2

)
∂

∂α
α−

(
iω0 −

λ

2

)
∂

∂α∗
α∗ +

λ

2

∂2

∂α∂α∗

]
W
(
α, α∗

)
, (B.3)

then has a diffusion matrix

B(α, t)BT (α, t) =

(
0 λ/2
λ/2 0

)
. (B.4)

Possible solutions forB are therefore

B =
√
λ/2

1√
2

(
1 ±i
1 ∓i

)
. (B.5)

Accordingly, its SDE is

dα = − (iω0 + λ/2)α dt+B (dW1, dW2)T

= − (iω0 + λ/2)α dt+
√
λ/2

dW1 ± i dW2√
2

.
(B.6)
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With α = q + ip, this turns into the pair of equations

dq = (ω0p− λq/2) dt+
√
λ/2 dW1/

√
2,

dp = − (ω0q + λp/2) dt±
√
λ/2 dW2/

√
2.

(B.7)

From Eq. (B.2), this is equivalent to a Fokker-Planck equation

Ẇ (q, p) =

[
ω0

(
∂

∂p
q − ∂

∂q
p

)
+
λ

2

(
∂

∂q
q +

∂

∂p
p

)
+
λ

4

(
1

2

∂2

∂q2 +
1

2

∂2

∂p2

)]
W (q, p) .

Note that the factors of 1/2 in the diffusive part are accidentally missing from Eq. (6.2.5) of [59]
(they are present in an older version of the book).

B.2 Polar Coordinates

B.2.1 Fokker-Planck Equation

Turning back to equations (1.92) and (B.3), we would like to be able to perform the substitution
α = reiϕ, where the corresponding Jacobian determinant reads

detJ =

∣∣∣∣∣
(

eiϕ ireiϕ

e−iϕ −ire−iϕ

)∣∣∣∣∣ = −2ir. (B.8)

The distribution transforms asW(α, α∗) = |detJ |−1W(r, ϕ) =W(r, ϕ)/2r. From

∂

∂α
f(α, α∗) =

d

dα
f(r(α, α∗), ϕ(α, α∗)) =

∂f

∂r

∂r

∂α
+
∂f

∂ϕ

∂ϕ

∂α
, (B.9)

we find with 2∂r/∂α =
√
α∗/α = e−iϕ and 2i∂ϕ/∂α = 1/α = e−iϕ/r that

∂f(α, α∗)

∂α
=

e−iϕ

2

[
∂f(r, ϕ)

∂r
+

1

ir

∂f(r, ϕ)

∂ϕ

]
. (B.10)

Hence, we may calculate

∂

∂α
α =

1

2

[
∂

∂r
r − ie−iϕ ∂

∂ϕ
eiϕ

]
, (B.11)

and

∂

∂α
α+

∂

∂α∗
α∗ =

∂

∂r
r + 1 =

1

r

∂

∂r
r2,

∂

∂α
α− ∂

∂α∗
α∗ = −i

∂

∂ϕ
.

(B.12)
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For the diffusion term, we need

∂2

∂α∂α∗
=

1

4

[
1

r

∂

∂r
r
∂

∂r
+

1

r2

∂2

∂ϕ2

]
. (B.13)

The Fokker-Planck equation of the Wigner distribution in polar coordinates finally reads

Ẇ(r, ϕ) = ω0
∂

∂ϕ
W(r, ϕ) +

λ

2

∂

∂r
rW(r, ϕ) +

λ

4

[
1

2

∂

∂r
r
∂

∂r

1

r
+

1

2

1

r2

∂2

∂ϕ2

]
W(r, ϕ). (B.14)

To make this physically intuitive, we should make the further substitution r =
√
N , which implies

W(r, ϕ) = 2
√
NW(N,ϕ). Furthermore, we have ∂/∂r = 2

√
N∂/∂N . As a function of the

particle number, the Wigner distribution then obeys

Ẇ(N,ϕ) =

[
ω0

∂

∂ϕ
+ λ

∂

∂N
(N − 1/2)

]
W(N,ϕ) +

λ

2

[
∂2

∂N2N +
1

4N

∂2

∂ϕ2

]
W(N,ϕ),

in which the loss manifestly does not act on the vacuum fluctuations. The SDE for phase and
particle number can be read off and become

dϕ = −ω0dt+
1

2

√
λ/NdWϕ,

dN = −λ (N − 1/2) dt+
√
λNdWN ,

(B.15)

where we have introduced the independent Wiener processes Wϕ and WN , respectively. This
nicely underlines how it is possible for a lossy Bose field to have both a well-defined particle
number and phase. If N � 1, then phase fluctuations are evidently suppressed. Yet in this case,
certainly N �

√
N holds almost as well, such that particle-number fluctuations may also be

neglected.

B.2.2 Itô Calculus

It is instructive to repeat the change of variables directly on the level of the SDE by means of the
Itô calculus. Writing Eq. (B.6) and its adjoint as

dα = − (iω0 + λ/2)α dt+
√
λ/2 dWα,

dα∗ = (iω0 − λ/2)α∗dt+
√
λ/2 dW ∗α,

(B.16)
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we apply Itô’s lemma to the functions ϕ(α, α∗) = −i(lnα− lnα∗)/2 and N(α, α∗) = α∗α, i.e.

dϕ =
1

2i

{
dα

α
− dα∗

α∗
− 1

2

[(
dα

α

)2

−
(

dα∗

α∗

)2
]}

=
1

2i

[
− 2iω0dt+

√
λ/2N

(
e−iϕdWα − eiϕdW ∗α

)
− (λ/4N)

((
e−iϕdWα

)2
−
(

eiϕdW ∗α

)2
)

dt
]
,

dN = α∗dα+ αdα∗ + dαdα∗

= −λNdt+
√
λN/2

(
e−iϕdWα + eiϕdW ∗α

)
+ λdt/2,

(B.17)

where from the second-order terms of the Taylor expansion we have only kept dW 2
α ∼ dt and

dropped both dtdWα ∼ dt3/2 and dt2. The Wiener processes

Wϕ =
1√
2i

(
e−iϕdWα − eiϕdW ∗α

)
=
√

2 Im
[
e−iϕdWα

]
= cosϕdW2 − sinϕdW1,

WN =
1√
2

(
e−iϕdWα + eiϕdW ∗α

)
=
√

2 Re
[
e−iϕdWα

]
= cosϕdW1 + sinϕdW2

(B.18)

are connected to W1,2 by an orthogonal transformation and may be considered as independent [54].
Therefore, we can also write

√
2e−iϕdWα = dWN + idWϕ and conclude

Im

[(
e−iϕdWα

)2
]

= dWNdWϕ = 0. (B.19)

Using all of this on Eqs. (B.17), we have

dϕ = −ω0dt+
1

2

√
λ/NdWϕ,

dN = −λNdt+
√
λNdWN + λdt/2,

(B.20)

which is identical to Eqs. (B.15).
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B.3 Positive P Representation

This section is devoted to a few applications of the positive P representation [66–68]. It allows one
to map even interacting Bose systems to proper Fokker-Planck equations. As was remarked in the
introduction (cf. 1.5.4), this is not possible, for instance, by means of the Wigner representation.
Now the complex P operator-phase-space correspondences are

aρ←− αP (α),

a†ρ←− (β − ∂/∂α)P (α),

ρa† ←− βP (α),

ρa←− (α− ∂/∂β)P (α),

(B.21)

where α = (α, α∗, β, β∗)T . When applying these rules sequentially, one finds, e.g.[
ρa†
]
a = (α− ∂/∂β) [βP (α)] =

(
αβ − ∂

∂β
β

)
P (α). (B.22)

The jump terms require a moment’s reflection to see that

a†ρa = (β − ∂/∂α)(α− ∂/∂β)P (α)

=

{
αβ − ∂

∂α
α− β ∂

∂β
+

∂2

∂α∂β

}
P (α)

=

{
αβ − α ∂

∂α
− ∂

∂β
β +

∂2

∂α∂β

}
P (α)

= (α− ∂/∂β)(β − ∂/∂α)P (α).

(B.23)

Upon using the analyticity of the projection operator Λ(α) [59] and with α = αx + iαy, we may
replace the derivatives in (B.21) according to

∂

∂α
=

∂

∂αx
= −i

∂

∂αy
, (B.24)

and analogously for β, which then yields the correspondences of the positive P representation.

B.3.1 Driven-Dissipative Single-Mode Cavity

As a first application, we take the standard driven-dissipative, single-mode master equation

ρ̇ = −iω0[a†a, ρ] +
γ

2

{(
N̄ + 1

)
L[a] + N̄L[a†]

}
ρ. (B.25)
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We then find a Fokker-Planck equation

Ṗ = −iω0

(
− ∂

∂α
α+

∂

∂β
β

)
P +

γ

2

(
N̄ + 1

)(
2αβ − αβ +

∂

∂α
α− αβ +

∂

∂β
β

)
P

+
γ

2
N̄

[
2

(
αβ − ∂

∂α
α− β ∂

∂β
+

∂2

∂α∂β

)
− αβ + α

∂

∂α
− αβ + β

∂

∂β

]
P.

(B.26)

Bringing the drift terms into standard form (derivatives to the left of variables) and collecting terms,
we obtain the much simpler form

Ṗ = −iω0

(
− ∂

∂α
α+

∂

∂β
β

)
P

+
γ

2

(
∂

∂α
α+

∂

∂β
β

)
P + γN̄

∂2

∂α∂β
P.

(B.27)

This is not a valid Fokker-Planck equation, though, because we are lacking the “diagonal” diffusion
terms ∂2/∂α2, ∂2/∂β2. Fortunately, having the positive P representation at our disposal, we can
resort to a trick to solve this problem and write1

∂2

∂α∂β
= c

(
∂2

∂α2 −
∂2

∂α2 +
∂2

∂β2 −
∂2

∂β2

)
+

∂2

∂α∂β

= c

(
∂2

∂α2
x

+
∂2

∂α2
y

+
∂2

∂β2
x

+
∂2

∂β2
y

)
+

1

2

(
∂2

∂αx∂βx
− ∂2

∂αy∂βy

)
,

(B.28)

where c is an arbitrary constant, which we set to c = 1/4 for simplicity. Then the diffusion matrix
from B.1 is

B(α)BT (α) =
γN̄

2

(
BxB

T
x BxB

T
y

ByB
T
x ByB

T
y

)
=
γN̄

2


1 1 0 0
1 1 0 0
0 0 1 −1
0 0 −1 1

 , (B.29)

where now α = (αx, βx, αy, βy)
T . The matricesBx, y are found to be

Bx =
√
γN̄/2

(
1 0
1 0

)
,

By =
√
γN̄/2

(
0 1
0 −1

)
.

(B.30)

1 Note the connection to the Cauchy-Riemann equations 0 =
(
∂x + i∂y

)
(u(x, y) + iv(x, y)) = ∂xu(x, y) −

∂yv(x, y) + i
(
∂yu(x, y) + ∂xv(x, y)

)
for an analytic function f(x+ iy) = u(x, y) + iv(x, y).
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The stochastic differential equations equivalent to Eq. (B.25) then follow as

dα =
[
−iω0 diag (1,−1, 1,−1)− γ

2
diag (1, 1, 1, 1)

]
α dt+

(
Bx 0
By 0

)
dW , (B.31)

with the vector-valued Wiener-process dW = (dW1, dW2,dW1,dW2)T . Note that while the
phase-space dimension does indeed double, only two independent Wiener processes are required
(as for the Sudarshan-Glauber P representation).

B.3.2 Interactions

We are in a position to consider an actual interaction term in the Hamiltonian. The obvious choice
is H = Ua†a†aa/2. Then we need the correspondences

a†a†aaρ←− (β − ∂α)2 α2P (α),

ρa†a†aa←−
(
α− ∂β

)2
β2P (α).

(B.32)

Instead of the von Neumann equation, there now holds

Ṗ (α) = − iU

2

(
−2∂αα

2β + ∂2
αα

2 + 2∂ββ
2α− ∂2

ββ
2
)
P (α)

= −F̂ (α)P (α)− iU

2

(
∂2
αα

2 − ∂2
ββ

2
)
P (α),

(B.33)

where we have introduced the drift operator F̂ (α) = −iU
(
∂αα

2β − ∂ββ2α
)

. Since −iα2 =

2αxαy − i(α2
x − α2

y), for each of these terms we have to evaluate ∂2
α in such a way as to produce a

proper Fokker-Planck equation. That is to say

∂2
α

(
−iα2

)
=
(
∂2
αx
− ∂2

αy

)
αxαy − ∂αx∂αy

(
α2
x − α2

y

)
(B.34)

does not give a proper result because the corresponding determinant is strictly negative. However,
by writing

∂2
α

(
−iα2

)
=

1

2
∂2
α

[(
αx + αy

)2 − (αx − αy)2]− ∂αx∂αy (α2
x − α2

y

)
=

1

2

[
∂2
αx

(
αx + αy

)2
+ ∂2

αy

(
αx − αy

)2 − 2∂αx∂αy

(
α2
x − α2

y

)] (B.35)

we may cure this problem. For β, we find similarly that

∂2
βiβ2 =

1

2

[
∂2
βx

(
βx − βy

)2
+ ∂2

βy

(
βx + βy

)2
+ 2∂βx∂βy

(
β2
x − β2

y

)]
. (B.36)
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In total, we construct a diffusion matrix

B(α)BT (α) =
U

2


(
αx + αy

)2
0 −α2

x + α2
y 0

0
(
βx − βy

)2
0 β2

x − β2
y

−α2
x + α2

y 0
(
αx − αy

)2
0

0 β2
x − β2

y 0
(
βx + βy

)2
 , (B.37)

which has eigenvalues {0, 0, U(α2
x + α2

y), U(β2
x + β2

y)} and is hence positive semidefinite. The
matrices needed for the construction of the vector SDE become

Bx =
√
U/2

(
αx + αy 0

0 βx − βy

)
,

By =
√
U/2

(
αy − αx 0

0 βx + βy

)
.

(B.38)

These are, of course, not unique. They entail the purely real equations

dαx = U
(
α2
xβy + 2αxαyβx − α2

yβy

)
dt+

√
U/2

(
αx + αy

)
dW1,

dβx = −U
(
β2
xαy + 2βxβyαx − β2

yαy

)
dt+

√
U/2

(
βx − βy

)
dW2,

dαy = U
(
α2
yβx + 2αxαyβy − α2

xβx

)
dt+

√
U/2

(
αx − αy

)
dW1,

dβy = −U
(
β2
yαx + 2βxβyαy − β2

xαx

)
dt+

√
U/2

(
βx + βy

)
dW2,

(B.39)

where while going from αx, y to βx, y, in the drift terms we have interchanged α and β and flipped
the signs. Obviously, the strength of the noise depends on the interaction U . Moreover, the noise is
multiplicative instead of additive as for the non-interacting problem above, which unfortunately
makes strongly interacting systems as hard to simulate as ever. Naturally, what these equations
also lack is a physical interpretation.

B.4 Transfer-Matrix Derivation of the Fokker-Planck Equation

The two-dimensional probability density of subsection 1.4.3 is

f(z,∆x) = exp

{
−εD

[
z2 − iz∆x

εD

]}
= exp

{
−∆x2

4εD
− εD

(
z − i∆x

2εD

)2
}
. (B.40)

The normalization is fixed by

1 =
1

2π

∫
dz d∆xf(z,∆x). (B.41)
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For the first moments, we then have 〈∆x〉 = 0 and

〈z〉 =
1

2π

∫
dz d∆x z f(z,∆x) =

1

2π

∫
dz̃ d∆x

(
z̃ +

i∆x

2εD

)
f(z̃ + i∆x/2εD,∆x) = 0.

(B.42)

The second moments are

〈∆x2〉 = 2εD,

〈z2〉 =
1

2π

∫
dz̃ d∆x

(
z̃2 − ∆x2

(2εD)2 +
iz̃∆x

εD

)
f(z̃ + i∆x/2εD,∆x)

=
1

2εD
− 2εD

(2εD)2 ,

〈z∆x〉 = i.

(B.43)

A number of trivial higher moments read 〈z2∆x〉 = 〈z∆x2〉 = 〈z2∆x3〉 = 〈z4∆x2〉 =
〈z4∆x3〉 = 0. For the remainder, we find

〈z2∆x2〉 = 〈z̃2∆x2〉 − 1

(2εD)2 〈∆x
4〉+

i

εD
〈z̃∆x3〉

= 〈z̃2〉 〈∆x2〉 − 1

(2εD)2 · 3 · 〈∆x
2〉2

=
1

2εD
2εD − 1

(2εD)2 · 3 · (2εD)2 = −2,

(B.44)

and 〈z∆x3〉 = 6iεD, 〈z2∆x4〉 = −24εD, 〈z4∆x4〉 = 24. With all of these moments evaluated,
the transition probability obeys the equation

p = p+ 〈∆x2〉︸ ︷︷ ︸
2εD(x)

p′′

2
− εṗ+ iε 〈z∆x〉︸ ︷︷ ︸

i

(A(x)p′ +A′(x)p)

+ iεA′(x)
p′′

2
〈z∆x3〉︸ ︷︷ ︸
6iεD(x)

−iε2A′(x)ṗ 〈z∆x〉 − εD′(x)p′ 〈z2∆x2〉︸ ︷︷ ︸
−2

− 1

2
ε2A2(x)

p′′

2
〈z2∆x2〉+

1

2
ε2D′2(x)

p′′

2
〈z4∆x4〉︸ ︷︷ ︸

24

− εD
′′(x)

2
p 〈z2∆x2〉 − εD

′′(x)

2

p′′

2
〈z2∆x4〉︸ ︷︷ ︸
−24εD(x)

+ε2D
′′(x)

2
ṗ 〈z2∆x2〉 .

(B.45)
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APPENDIX C

Bosonic Double-Well Systems

This App. contains additional material related to Sec. 3.2. The two-mode approximation is
investigated in some detail, including the mean-field equations and the beyond-mean-field treatment,
where the latter is derived both from quantum field theory and in the Heisenberg picture. The
relation between the two approaches is discussed. We also comment on the subject of the decay of
macroscopic quantum self-trapping (MQST). Next, the stability analysis for an exemplary three-
mode approximation is performed, which reveals two exceptional points as a control parameter is
tuned.

C.1 Two-Mode Approximation

As explained in the main text, the two-mode approximation is the “standard model” of ultracold
Bose gases in double-well potentials. The starting point for our discussion is Ref. [122], where
MQST is derived. However, Ref. [122] does not analyze the stability of the mean-field, which is an
important shortcoming since, as we will show in C.1.8, MQST can only occur in the presence of
hyperbolic fixed points. The effect is, therefore, inherently unstable. Our analysis of the mean-field
stability was inspired by Ref. [130], although the following analysis is not explicitly performed
there.

A remark on units: Throughout this App., we set ~ = 1. In all plots and tables to be shown,
frequencies are understood to be measured in units of |J |, whereas time is measured in units of
|J |−1. The initial conditions for numerical simulations are always such that all quasiparticle Green
functions vanish at t = 0 (apart from the vacuum contribution to the greater functions, of course).
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C.1.1 Mean-Field Equations

In two-mode approximation, the mean-field or Gross-Pitaevskii equations for the classical field
amplitudes Φ1,2(t) read

i∂tΦ1 = (ε1 − µ) Φ1 + JΦ2 + U |Φ1|2 Φ1, (C.1a)

i∂tΦ2 = (ε2 − µ) Φ2 + JΦ1 + U |Φ2|2 Φ2. (C.1b)

Unless they are explicitly included, in the following we will always set ε1 = ε2 = 0. To derive
semi-classical equations of motion for the two condensates, we begin by letting

Φα(t) =
√
Nα(t)eiϕα(t), (C.2a)

Φα, c(t) =
√

2Nα(t)eiϕα, c(t), (C.2b)

for α = 1, 2, where Φα, c is the Keldysh classical field, which is not identical to Φα.1 Using the
representation (C.2a) in Eq. (C.1a) gives

iṄ1

2
√
N1

eiϕ1 − ϕ̇1

√
N1eiϕ1 = −µ

√
N1eiϕ1 + J

√
N2eiϕ2 + UN1

√
N1eiϕ1 . (C.3)

Multiplying by Φ∗1 =
√
N1e−iϕ1 , we have

iṄ1

2
−N1ϕ̇1 = −µN1 + J

√
N1N2eiϕ + UN2

1 . (C.4)

Separating real and imaginary parts by adding to (subtracting from) Eq. (C.4) its complex conjugate,
one finds the sought-for semi-classical equations of motion for the condensate occupation and
phase,

Ṅ1 = 2J
√
N1N2 sinϕ, (C.5a)

ϕ̇1 = µ− J
√
N1N2

N1
cosϕ− UN1. (C.5b)

With the definitions

N = N1 +N2, (C.6a)

z =
N1 −N2

N1 +N2
, (C.6b)

ϕ = ϕ2 − ϕ1, (C.6c)

Θ = ϕ1 + ϕ2, (C.6d)

1 The factor of two will be explained below.
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where z is the so-called population imbalance, these two equations transform into

Ṅ

2
(1 + z) +

N

2
ż = NJ

√
1− z2 sinϕ, (C.7a)

Θ̇− ϕ̇
2

= µ− J
√

1− z2

1 + z
cosϕ− NU

2
(1 + z) . (C.7b)

From the equations for N2 and ϕ2, one furthermore obtains

Ṅ

2
(1− z)− N

2
ż = −NJ

√
1− z2 sinϕ, (C.8a)

Θ̇ + ϕ̇

2
= µ− J

√
1− z2

1− z cosϕ− NU

2
(1− z) . (C.8b)

Combining these four to find equations for the variables of the representation (C.6) yields finally

Ṅ = 0, (C.9a)

ż = 2J

√
1− z2 sinϕ, (C.9b)

ϕ̇ = NUz − 2Jz
cosϕ√
1− z2

, (C.9c)

Θ̇ = 2µ−NU − 2J
cosϕ√
1− z2

, (C.9d)

with J < 0. The interpretation of the first and last of these equations is straightforward: the total
number of particles in the condensate is properly conserved, and the equation for the total phase Θ
dutifully decouples. Hence, the dynamics is controlled only by the two equations in the middle,
and the classical phase space reduces to two dimensions.

C.1.2 Fixed Points

To perform the stability analysis of the mean-field, we first need to find the fixed points of
the equations of motion. For this purpose, it is useful to define the dimensionless quantity
Λ = NU/2|J | > 0. As one may see immediately from Eqs. (C.9), an infinite set of fixed points
is given by the phase-space vector v∗ = (z∗, ϕ∗)T = (0,mπ)T , m ∈ Z. For non-zero z, we find
from (C.9c)

NU

2 |J | = ∓ 1√
1− z2

, (C.10)

which is equivalent to ∓Λ−1 =
√

1− z2, depending on m even or odd. As 0 ≤ |z| ≤ 1, one must
choose the positive sign (setting ϕ∗ = π or odd multiples of π) and fix Λ > 1, which is the same as
to say that there are no additional fixed points if (0, π) is elliptic (s. C.1.3). With this, one obtains
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Figure C.1: Portrait of the phase space for Λ = 0.5. The three elliptic fixed points (0,mπ), m = 0,±1
are indicated by black dots. For relative phase ϕ(0) = m · 2π, the initial imbalances were chosen as
z(0) = 0.2, 0.4, 0.6, 0.8, 0.9, 0.99. Accordingly, for ϕ(0) = m ·π, trajectories for z(0) = 0.4, 0.8, 0.9, 0.99
are shown.

Figure C.2: Portrait of the phase space for Λ = 1.25. The two fixed points at (0,±π) have become
hyperbolic, as indicated by the black arrows. In agreement with classical mechanics, this entails the
emergence of four new elliptic fixed points (z∗π,±π). For relative phase ϕ(0) = m · 2π, the initial
imbalances were chosen as z(0) = 0.2, 0.4, 0.6, zcrit, 0.9, 0.99. Accordingly, for ϕ(0) = m · π, trajectories
for z(0) = −0.4, 0.4, zcrit, 0.9, 0.99 are shown. The parameter zcrit is defined in C.1.4.

further fixed points at

z∗π = ±
√

1− 1

Λ2 . (C.11)

For the relative phase ϕ at even multiples of π, one does not obtain fixed points for z 6= 0.
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C.1.3 Stability Analysis

Moving to the stability analysis of the discovered fixed points, we note that the Jacobian of the two
relevant equations of motion is

J (z∗, ϕ∗) =


2|J |z∗ sin (ϕ

∗
)√

1−(z
∗
)
2

−2 |J |
√

1− (z∗)2 cos (ϕ∗)

NU + 2|J | cos (ϕ
∗
)(

1−(z
∗
)
2
)3/2

2|J |z∗ sin (ϕ
∗
)√

1−(z
∗
)
2

 . (C.12)

Because of periodicity, the discussion may be limited to m = 0,±1. For the point (0, 0), the
Jacobian evaluates to

J (0, 0) =

(
0 −2 |J |

NU + 2 |J | 0

)
, (C.13)

which can be seen to result always in purely imaginary eigenvalues (for repulsive interaction
U < 0). As a next step, we consider the fixed points (0,±π). Evaluating the Jacobian there, we
obtain

J (0,±π) =

(
0 2 |J |

NU − 2 |J | 0

)
. (C.14)

This has a characteristic polynomial λ2 = 2 |J | (NU − 2 |J |) = 4 |J |2 (Λ− 1). Therefore, we
find that these fixed points change from elliptic to hyperbolic depending on the ratio Λ = NU/2 |J |,

λ =

{
± 2i |J |

√
|Λ− 1|, Λ < 1,

± 2 |J |
√

Λ− 1, Λ > 1.
(C.15)

As Λ ↗ 1, the pair of complex eigenvalues go to zero, |λ| → 0. This is an instance of critical
slowing down. Above the transition point Λ = 1, there is a pair of purely real eigenvalues, while
the oscillation frequency has become “soft”. The presence of a positive real eigenvalue makes the

fixed points unstable in this regime. For the remaining fixed points z∗π = ±
√

1− 1/Λ2, we find

det
(
J (z∗π,±π)− λ1

)
= λ2 − 2 |J |

Λ

(
NU − 2 |J |Λ3

)
(C.16)

and thus the purely imaginary eigenvalues λπ = ±2 |J |
√

1− Λ2. This is in agreement with a
well-known fact from classical mechanics: “the number of extrema minus the number of saddle-
points” is conserved for dynamical systems [159]. Thus we find three elliptic points for Λ < 1, yet
five elliptic and two hyperbolic points for Λ > 1. Potraits of the phase space for various values of
Λ are shown in Figs. C.1, C.2 and C.3.

The same analysis we have just performed on the semi-classical equations of motion (C.9)
may also be done in terms of the complex classical fields Φα. To study the points (0,±π), one
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Appendix C Bosonic Double-Well Systems

Figure C.3: Portrait of the phase space. The characteristic parameter is Λ = 4.0. This is the phase portrait
usually shown in connection with the two-mode approximation [122]. For ϕ(0) = m · 2π, the displayed
initial imbalances are z(0) = 0.1, 0.3, 0.5, 0.7, 0.8, 0.84, zcrit,±0.9,±0.95,±0.99. The parameter zcrit is
defined in C.1.4. For ϕ(0) = m · π, we have chosen z(0) = ±0.9,±0.99. The curve connecting the pair of
hyperbolic fixed points is called a separatrix. The trajectories for which z(t) ≶ 0 at all times correspond to
MQST for monotonously increasing ϕ(t) and to π-oscillations for bounded ϕ(t).

possibility is to set Φ1 =
√
N/2 = −Φ2. From the original Eqs. (C.1), one then obtains the

chemical potential as

µ =
1

2
(NU + 2 |J |) = |J | (1 + Λ) . (C.17)

The Jacobian will be accordingly

J (Φ1,2,Φ
∗
1,2) = −i


2U |Φ1|2 − µ UΦ2

1 − |J | 0

−U
(
Φ∗1
)2 −2U |Φ1|2 + µ 0 |J |

− |J | 0 2U |Φ2|2 − µ UΦ2
2

0 |J | −U
(
Φ∗2
)2 −2U |Φ2|2 + µ

 ,

(C.18)

where we have to evaluate the fields as Φ1, 2 = ±
√
N/2. The four eigenvalues of this matrix are

then ±2i |J |
√

1− Λ and ±0, which is the same as the result of Eq. (C.15).

C.1.4 Mechanical Analogy

In mean-field, the system possesses a mechanical analogy [122] that is worth being explained
briefly. Remember from classical mechanics that the Hamiltonian for a “mathematical pendulum”
(that is, before assuming Hooke’s law) reads

H =
p2
ϑ

2ml2
+mgl(1− cosϑ) ≡ p2

ϑ

2ml2
−mgl cosϑ, (C.19)
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Figure C.4: The critical population imbalance zcrit for ϕ(0) = 0 as a function of Λ. For Λ = 2, one finds
zcrit = 1. MQST may only occur for Λ > 2. For 1 < Λ < 2, the only trajectories with z(t) > 0 for all t
belong to the type of π-oscillations shown in Fig. C.2.

with pϑ = ml2ϑ̇. The mathematical pendulum has orbits circulating the phase-space origin for
energies −g/l < H/ml2 < g/l. For energies g/l > H/ml2, the pendulum has enough kinetic
energy to “topple over” and keep going round in circles.

Now if we identify the canonically conjugate variables (ϑ̇, ϑ) with (z, ϕ), and replace the fixed
length l of the pendulum in the potential term according to l → l

√
1− z2, we end up with a

Hamiltonian similar to the one corresponding to the mean-field equations,

H =
NU

2
z2 − 2|J |

√
1− z2 cosϕ

= 2|J |
(

Λ

2
z2 −

√
1− z2 cosϕ

)
.

(C.20)

which can be interpreted as the Hamiltonian of a pendulum the length of which decreases with the
rotation velocity (or angular momentum).

Since the system is closed, the total energy must be conserved. If the trajectory is to pass through
either of the points (z, ϕ) = (0,±π), we can conclude that H = 2|J |. The two points (0,±π) are
fixed points of the system. For Λ > 2, the system has a separatrix connecting these two points with
(zcrit, 0), where zcrit = ±2

√
Λ− 1/Λ such that

√
1− z2

crit =
2

Λ

√(
Λ

2
− 1

)2

= 1− 2

Λ
,

Λ

2
z2 =

2

Λ
(Λ− 1) = 2− 2

Λ
.

(C.21)

For the initial point (zcrit, 0), where the phase difference is zero and hence cosϕ(0) = +1, we
then have correctly that H = 2 |J |. If |z(0)| > |zcrit|, the solution cannot cross z = 0 for all times,
which gives rise to MQST. Moreover, non-trivial critical values only exist for Λ > 1. For arbitrary
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ϕ(0), the critical imbalance is given via [122]

Λc = 2


√

1− z2
crit cosϕ(0) + 1

z2
crit

 , (C.22)

which also defines a critical interaction strength via parameter Λc for an initial imbalance z(0) ≡
zcrit. The critical population imbalance as a function of Λ is plotted in Fig. C.4.

C.1.5 Bogoliubov Quasiparticles (Heisenberg Equation)

The previous stability analysis is equivalent to studying the Bogoliubov quasiparticles of the
Bose-Hubbard dimer defined by the Hamiltonian

H = ε1a
†
1a1 + ε2a

†
2a2 + J

(
a†1a2 + a†2a1

)
+
U

2

(
a†1a
†
1a1a1 + a†2a

†
2a2a2

)
, (C.23)

which gives rise to the Heisenberg equations

i∂ta1 = ε1a1 + Ja2 + Ua†1a1a1, (C.24a)

i∂ta2 = ε2a2 + Ja1 + Ua†2a2a2. (C.24b)

Similar to the treatment of Ref. [138], by letting aα = e−iµt (ϕα + δaα), Eqs. (C.24) can be
written

i∂t (ϕ1 + δa1) = [ε1 − µ] (ϕ1 + δa1) + J (ϕ2 + δa2) + U
{
|ϕ1|2ϕ1 + 2 |ϕ1|2 δa1

+ϕ2
1δa
†
1 + 2ϕ1δa

†
1δa1 +ϕ∗1δa1δa1 + δa†1δa1δa1

}
,

(C.25a)

and analogously for the second mode. Taking the average and using 〈δaα〉 = 0 gives the “modified”
Gross-Pitaevskii equation

i∂tϕ1 = [ε1 − µ]ϕ1 + Jϕ2 + U
{
|ϕ1|2ϕ1 + 2ϕ1〈δa†1δa1〉+ϕ∗1〈δa1δa1〉+ 〈δa†1δa1δa1〉

}
.

(C.26a)

N Λ J z(0) ϕ(0)

5000 0.5, 0.95, 1.05, 1.25, 4.00 -1 0.01 π

Table C.1: Parameters for the two-mode examples shown in Figs. C.5, C.6, C.7, C.8 and C.9.
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C.1 Two-Mode Approximation

Keeping only the lowest moments ϕα ≡ Φα, we recover the original Eqs. (C.1). The Heisenberg
equations for the fluctuations can be found as follows. Eq. (C.25a) may be written as

i∂t (ϕ1 + δa1) = [ε1 − µ]ϕ1 + Jϕ2 + U |ϕ1|2ϕ1

+ U
{

2ϕ1〈δa†1δa1〉+ϕ∗1〈δa1δa1〉+ 〈δa†1δa1δa1〉
}

+ [ε1 − µ] δa1 + Jδa2 + U
{

2 |ϕ1|2 δa1 +ϕ2
1δa
†
1

}
+ U

{
2ϕ1

[
δa†1δa1 − 〈δa†1δa1〉

]
+ϕ∗1 [δa1δa1 − 〈δa1δa1〉]

+
[
δa†1δa1δa1 − 〈δa†1δa1δa1〉

]}
,

(C.27)

where we have constructively added and subtracted the three terms appearing in the first and last
curly brackets. Using Eq. (C.26a), we come out with

i∂tδa1 = [ε1 − µ] δa1 + Jδa2 + U
{

2 |ϕ1|2 δa1 +ϕ2
1δa
†
1

}
+ U

{
2ϕ1

[
δa†1δa1 − 〈δa†1δa1〉

]
+ϕ∗1 [δa1δa1 − 〈δa1δa1〉]

+
[
δa†1δa1δa1 − 〈δa†1δa1δa1〉

]}
.

(C.28)

If we linearize this result by keeping only contributions from the first line, we readily see that the
full system with δ := (δa1, δa

†
1, δa2, δa

†
2)T can be written in terms of the Jacobian used in Eq.

(C.18) as

∂tδ = J (ϕ1,2,ϕ
∗
1,2)δ. (C.29)

These quadratic fluctuations around the saddle-point defined by the Gross-Pitaevskii equations
(C.1) will remain small in the vicinity of the elliptic fixed points found above. Close to one of the
hyperbolic fixed points, however, they will increase sharply due to the presence of the positive real
eigenvalue. Physically, this stems from the fact that exciting these “long-wavelength” fluctuations
does not cost any energy once the frequency has gone to zero. At this point, the mean-field
approximation breaks down, as does the approximation including the quadratic fluctuations. Some
improvement may be achieved by taking the next step of approximation, which is via the Hartree-
Fock-Bogoliubov (HFB) equations. For very early times, and as long as fluctuations are still small,
these are expected to model the system well. For large fluctuations and/or long evolution times,
they will deviate from the exact result. As mentioned, including diagrams beyond Hartree-Fock
will capture non-Markovian effects (e.g. damping of oscillations), where certain caveats such
as overdamping are discussed in Ref. [113]. In the following, we are going to derive the HFB
equations in two-mode approximation from the 2PI effective action. Simulations of these equations
for the parameters listed in Tab. C.1 are plotted in Figs. C.5, C.6, C.7, C.8 and C.9.
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Figure C.5: Population imbalance z(t), relative phase ϕ(t) and total fraction of fluctuations δN(t)/N
(defined in Eq. (C.54)) for Λ = 0.5, z(0) = 0.01, ϕ(0) = π, N = 5000, J = −1. The initial population
imbalance is small in order to start in the “linear regime”. The fraction of fluctuations is negligible.

C.1.6 Hartree-Fock-Bogoliubov Equations from 2PI Effective Action

The HFB equations are going to be derived in “Schwinger” representation, that is, in terms of
greater and lesser Green functions. A fully rigorous derivation of these self-consistent equations
has to follow along the same lines as the loop expansion detailed in the Introduction. Here, we are
going to pass over many of the details and rather emphasize from a practical perspective how the
diagrammatic expansion may be constructed. The starting point for the field-theoretic derivation
are the actions

S± =

∫
dt̄

{∑
α

φ∗α,±(t̄)i∂t̄φα,±(t̄)− J
(
φ∗1,±(t̄)φ2,±(t̄) + c.c.

)
− U

2

∑
α

φ∗α,±(t̄)φ∗α,±(t̄)φα,±(t̄∓)φα,±(t̄∓)

}
,

where t̄∓ is earlier (later) on the contour than t̄. The corresponding non-equilibrium action is
S = S+ − S−. To facilitate the application of perturbation theory, we introduce the following
generalized field spinor:

φ =
(
φ1,+, φ

∗
1,+, φ2,+, φ

∗
2,+, φ1,−, φ

∗
1,−, φ2,−, φ

∗
2,−
)T

= (φ1, ..., φ8)T . (C.30)
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C.1 Two-Mode Approximation

The ordering defined here is, of course, conventional. This gives

S [φ] =
1

2

∫
dt̄
{(
φ2i∂t̄φ1 − φ1i∂t̄φ2 + φ4i∂t̄φ3 − φ3i∂t̄φ4

)
− 2J

(
φ2φ3 + φ1φ4

)
− U

(
φ2

1(t̄−)φ2
2(t̄) + φ2

3(t̄−)φ2
4(t̄)
)}

− 1

2

∫
dt̄
{(
φ6i∂t̄φ5 − φ5i∂t̄φ6 + φ8i∂t̄φ7 − φ7i∂t̄φ8

)
− 2J

(
φ6φ7 + φ5φ8

)
− U

(
φ2

5(t̄+)φ2
6(t̄) + φ2

7(t̄+)φ2
8(t̄)
)}

.

(C.31)

For the HFB approximation, we decompose the spinor field as φ = ϕ + δφ and keep only the
terms quadratic or quartic in the fluctuations (have in mind that terms linear in the fluctuations
cancel during the construction of the 2PI effective action). This results in an effective action
(which we denote slightly inconsistently by S instead of Γ)

SHFB [ϕ, δφ] = S [ϕ] + S [δφ]

−U
2

∫
dt̄
{(
ϕ

2
1(t̄−)δφ2

2(t̄) + 4ϕ1(t̄−)ϕ2(t̄)δφ1(t̄−)δφ2(t̄) +ϕ2
2(t̄)δφ2

1(t̄−)
)

+
(
ϕ

2
3(t̄−)δφ2

4(t̄) + 4ϕ3(t̄−)ϕ4(t̄)δφ3(t̄−)δφ4(t̄) +ϕ2
4(t̄)δφ2

3(t̄−)
)

−
(
ϕ

2
5(t̄+)δφ2

6(t̄) + 4ϕ5(t̄+)ϕ6(t̄)δφ5(t̄+)δφ6(t̄) +ϕ2
6(t̄)δφ2

5(t̄+)
)

−
(
ϕ

2
7(t̄+)δφ2

8(t̄) + 4ϕ7(t̄+)ϕ8(t̄)δφ7(t̄+)δφ8(t̄) +ϕ2
8(t̄)δφ2

7(t̄+)
)}

.

(C.32)

This means we have as an inverse Green function

G−1
0 (t, t′) = δ(t− t′)

(
G−1

0,++(t) 0

0 G−1
0,−−(t)

)
, (C.33)

with

G−1
0,++(t) =


−Uϕ2

2 −i∂t − 2Uϕ1ϕ2 0 −J
i∂t − 2Uϕ1ϕ2 −Uϕ2

1 −J 0

0 −J −Uϕ2
4 −i∂t − 2Uϕ3ϕ4

−J 0 i∂t − 2Uϕ3ϕ4 −Uϕ2
3


and G−1

0,−− being defined analogously. We still have to take care of the quartic fluctuation terms
in the action. As usual, this is done by using the Gaussian property when converting expectation
values of interaction terms in the cumulant-generating function into products of second moments.
Here, this essentially amounts to replacing

δφ2
k(t)δφ

2
l (t
′)→ 2〈δφk(t)δφl(t′)〉〈δφk(t)δφl(t′)〉+ 〈δφk(t)δφk(t)〉〈δφl(t′)δφl(t′)〉. (C.34)
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When converting the second moments into Green functions, one has to be careful to symmetrize
correctly. For instance,

δφ2
2(t)δφ2

1(t−)→ 2〈δφ2(t)δφ1(t−)〉2 + 〈δφ2
2(t)〉〈δφ2

1(t−)〉

= −
[

2

(
G12(t−, t) +G21(t, t−)

2

)2

+G11(t, t)G22(t, t)

]
,

(C.35)

where the Green functions in spinor space are given by Gkl(t, t
′) = −i〈δφk(t)δφl(t′)〉. The

(anomalous) Schwinger Green functions are defined as

G≶
αβ(t, t′) = −i〈δφα,±(t)δφ∗β,∓(t′)〉, (C.36a)

G
T/T̃
αβ (t, t′) = −i〈δφα,+/−(t)δφ∗β,+/−(t′)〉, (C.36b)

g≶αβ(t, t′) = −i〈δφα,±(t)δφβ,∓(t′)〉, (C.36c)

g
T/T̃
αβ (t, t′) = −i〈δφα,+/−(t)δφβ,+/−(t′)〉, (C.36d)

This gives, for example,

G<11(t, t′) = G16(t, t′),

G>11(t, t′) = G52(t, t′),

GT11(t, t′) = G12(t, t′),

GT̃11(t, t′) = G56(t, t′),

as well as g<11(t, t′) = G15(t, t′) = g>11(t′, t) (pay attention to the time arguments). Accordingly,
one may find the self-energies as

Σ(t, t′) = δ(t− t′)
(

Σ++(t) 0
0 Σ−−(t)

)
, (C.37)

with2

Σ++(t) = iU


G22(t, t) 2G12(t−, t) 0 0

2G12(t−, t) G11(t, t) 0 0
0 0 G44(t, t) 2G34(t−, t)
0 0 2G34(t−, t) G33(t, t)

 . (C.38)

2 Making use of G12(t−, t) +G21(t, t−) = 2G12(t−, t) and so forth.
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The self-energy Σ−−(t) follows from Σ++(t) through increasing all Green-function indices by
four. As an equation of motion, in the present approximation we have[(

G−1
0,++(t) 0

0 G−1
0,−−(t)

)
−
(

Σ++(t) 0
0 Σ−−(t)

)]
G(t, t′) = δ(t− t′)1. (C.39)

The matrix

G(t, t′) =

(
G++(t, t′) G+−(t, t′)

G−+(t, t′) G−−(t, t′)

)
(C.40)

is defined in components as
(
G(t, t′)

)
kk
′ := Gkk′(t, t

′). Thus the Dyson equation on the plus-
contour reads

0 =
[
G−1

0,++(t)− Σ++

]
G+−, (C.41)

and in components

0 =

(
−Uϕ2

2 −i∂t − 2Uϕ1ϕ2

i∂t − 2Uϕ1ϕ2 −Uϕ2
1

)(
G15 G16

G25 G26

)
+

(
0 −J
−J 0

)(
G35 G36

G45 G46

)
− iU

(
G22(t, t) 2G12(t−, t)

2G12(t−, t) G11(t, t)

)(
G15 G16

G25 G26

)
.

(C.42)

By taking the lower-right component of the resulting 2× 2 matrix, we find

0 = (i∂t − 2Uϕ1ϕ2)G16 − Uϕ2
1G26 − JG36 − iU [(G12(t−, t) +G21(t, t−))G16 +G11G26].

(C.43)

Along the very same lines, on the minus contour we have the Dyson equations

0 =
[
G−1

0,−−(t)− Σ−−

]
G−+, (C.44)

which becomes in components

0 =

(
−Uϕ2

6 −i∂t − 2Uϕ5ϕ6

i∂t − 2Uϕ5ϕ6 −Uϕ2
5

)(
G51 G52

G61 G62

)
+

(
0 −J
−J 0

)(
G71 G72

G81 G82

)
− iU

(
G66(t, t) 2G56(t+, t)

2G56(t+, t) G55(t, t)

)(
G51 G52

G61 G62

)
.

(C.45)
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Figure C.6: Population imbalance z(t), relative phase ϕ(t) and total fraction of fluctuations δN(t)/N for
Λ = 0.95, z(0) = 0.01, ϕ(0) = π, N = 5000, J = −1. The slowing down of the oscillation frequency is
clearly visible. Since Λ < 1, the fraction of fluctuations is still negligible.

Taking the lower-right component, we have

0 = (i∂t − 2Uϕ5ϕ6)G52 − Uϕ2
5G62 − JG72 − iU [(G56(t+, t) +G65(t, t+))G52 +G55G62].

(C.46)

Eqs. (C.43) and (C.46) can now be translated back into the familiar “RAK” representation [61].
Subsequently, the equal-time limit needs to be taken. The classical fields are translated easily,
since ϕα,± = (ϕα, c ±ϕα, q)/

√
2 = ϕα, c/

√
2. The Green functions are translated according to

the transformation belonging to the above field spinor. One obtains

0 =
(
i∂t − U

∣∣ϕ1, c

∣∣2)G<11(t, t′) +
U

2

(
ϕ1, c

)2
g<11(t, t′)∗ − JG<21(t, t′)

− iU
[
2GT11(t−, t)︸ ︷︷ ︸

=G
<
11(t,t)

G<11(t, t′)− gT11(t, t)︸ ︷︷ ︸
=g

<
11(t,t)

g<11(t, t′)∗
]
,

0 =
(
i∂t − U

∣∣ϕ1, c

∣∣2)G>11(t, t′) +
U

2

(
ϕ1, c

)2
g>11(t, t′)∗ − JG>21(t, t′)

− iU
[
2GT̃11(t+, t)︸ ︷︷ ︸

=G
<
11(t,t)

G>11(t, t′)− gT̃11(t, t)︸ ︷︷ ︸
=g

>
11(t,t)

g>11(t, t′)∗
]
,

(C.47)
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Figure C.7: Population imbalance z(t), relative phase ϕ(t) and total fraction of fluctuations δN(t)/N for
Λ = 1.05, z(0) = 0.01, ϕ(0) = π, N = 5000, J = −1. The fraction of fluctuation increases strongly as
we enter the unstable regime Λ > 1. This in turn causes uncontrolled oscillations of large amplitude in the
population imbalance. Note that this is not expected to reproduce the exact solution beyond very early times.

where we have used G26(t, t′) = −i〈δφ2(t)δφ6(t′)〉 = −i〈δφ∗1,+(t)δφ∗1,−(t′)〉 = −
[
g<11(t, t′)

]∗
.

For anomalous (anti-) time-ordered Green functions like gT/T̃11 (t, t), one does not have to keep
track of time-ordering. The conjugate equations after switching t and t′ read

0 =
(
−i∂t′ − U

∣∣ϕ1, c(t
′)
∣∣2)G<11(t, t′)− U

2

(
ϕ
∗
1, c(t

′)
)2
g<11(t, t′)− JG<12(t, t′)

− iU
(
2G<11(t′, t′)G<11(t, t′)− g<11(t′, t′)∗g<11(t, t′)

)
,

0 =
(
−i∂t′ − U

∣∣ϕ1, c(t
′)
∣∣2)G>11(t, t′)− U

2

(
ϕ
∗
1, c(t

′)
)2
g>11(t, t′)− JG>12(t, t′)

− iU
[
2G<11(t′, t′)G>11(t, t′)− g>11(t′, t′)∗g>11(t, t′)

]
,

(C.48)

where we employed the identitiesG≶
αβ(t, t′)† = −G≶

βα(t′, t). Combining the i∂t and i∂t′ equations
by subtraction and then taking t′ → t yields

0 = i∂tG
<
11(t, t) +

U

2

[(
ϕ1, c

)2
g<11(t, t)∗ +

(
ϕ
∗
1, c

)2
g<11(t, t)

]
− J

(
G<21(t, t)−G<12(t, t)

)
,

0 = i∂tG
>
11(t, t) +

U

2

[(
ϕ1, c

)2
g>11(t, t)∗ +

(
ϕ
∗
1, c

)2
g>11(t, t)

]
− J

(
G>21(t, t)−G>12(t, t)

)
.
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Figure C.8: Population imbalance z(t), relative phase ϕ(t) and total fraction of fluctuations δN(t)/N for
Λ = 1.25, z(0) = 0.01, ϕ(0) = π, N = 5000, J = −1. The situation is similar to Fig. C.7.

Adding these two gives finally

0 = i∂tG
K
11(t, t) +

U

2

[(
ϕ1, c

)2
gK11(t, t)∗ +

(
ϕ
∗
1, c

)2
gK11(t, t)

]
+ J

(
GK12(t, t) +GK12(t, t)∗

)
,

where GK21(t, t) = −GK12(t, t)∗ was applied. Next, we look at the lower-left components of Eqs.
(C.42) and (C.45). These read

0 = (i∂t − Uϕ1ϕ2)G15 −
U

2
ϕ

2
1G25 − JG35 − iU [(G12(t−, t) +G21(t, t−))G15 +G11G25] ,

(C.49a)

0 = (i∂t − Uϕ5ϕ6)G51 −
U

2
ϕ

2
5G61 − JG71 − iU [(G56(t+, t) +G65(t, t+))G51 +G55G61] .

(C.49b)

Translating back to physical notation, we obtain

0 =
(
i∂t − U

∣∣ϕ1, c

∣∣2) g<11(t, t′)− U

2

(
ϕ1, c

)2
G>11(t′, t)− Jg>21(t′, t)

− iU
(
2G<11(t, t)g<11(t, t′) + g>11(t, t)G>11(t′, t)

)
,

(C.50a)

0 =
(
i∂t − U

∣∣ϕ1, c

∣∣2) g>11(t, t′)− U

2

(
ϕ1, c

)2
G<11(t′, t)− Jg<21(t, t′)

− iU
(
2G<11(t, t)g>11(t, t′) + g<11(t, t)G<11(t′, t)

)
.

(C.50b)
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C.1 Two-Mode Approximation

With g<11(t, t′) = g>11(t′, t) and switching t and t′, these are equivalent to

0 =
(
i∂t′ − U

∣∣ϕ1, c(t
′)
∣∣2) g>11(t, t′)− U

2

(
ϕ1, c(t

′)
)2
G>11(t, t′)− Jg>21(t, t′)

− iU
(
2G<11(t′, t′)g>11(t, t′) + g<11(t′, t′)G>11(t, t′)

)
,

(C.51a)

0 =
(
i∂t′ − U

∣∣ϕ1, c(t
′)
∣∣2) g<11(t, t′)− U

2

(
ϕ1, c(t

′)
)2
G<11(t, t′)− Jg<21(t′, t)

− iU
(
2G<11(t′, t′)g<11(t, t′) + g>11(t′, t′)G<11(t, t′)

)
.

(C.51b)

Adding Eqs. (C.50a) and (C.51b), and Eqs. (C.50b) and (C.51a), after again taking t′ → t we
arrive at

0 =
(
i∂t − 2U

∣∣ϕ1, c

∣∣2) g<11(t, t)− U

2

(
ϕ1, c

)2
GK11(t, t)− JgK21(t, t)

− iU
(

4G<11(t, t)g<11(t, t) + g>11(t, t)GK11(t, t)
)
,

(C.52a)

0 =
(
i∂t − 2U

∣∣ϕ1, c

∣∣2) g>11(t, t)− U

2

(
ϕ1, c

)2
GK11(t, t)− JgK21(t, t)

− iU
(

4G<11(t, t)g>11(t, t) + g<11(t, t)GK11(t, t)
)
.

(C.52b)

As a last step, adding these two equations produces

0 =
(
i∂t − 2U

∣∣ϕ1, c

∣∣2) gK11(t, t)− U
(
ϕ1, c

)2
GK11(t, t)− 2JgK21(t, t)

− iU
(

4G<11(t, t)gK11(t, t) + gK11(t, t)GK11(t, t)
)
.

(C.53)

To fully convert this equation into the Keldysh or “RAK” representation, we have to replace two
of the lesser functions in the first term of the second line by greater functions, i.e. 4G<11(t, t)←−
2GK11(t, t). The technical reason for this is that the Keldysh representation corresponds to Wigner-
Weyl or symmetric operator ordering [81] which diagrammatically leads to additional vacuum terms
when evaluating loops. As we show below, these additional terms coming from the appearance of
the equal-time greater functions can be absorbed into the overall chemical potential and hence do
not have physical consequences.

The explicit procedure we have just carried out will not be repeated here for all of the other
Green-function equations required to fully specify the dynamical problem. The results will simply
be stated in the next paragraph.

C.1.7 Equivalence of Heisenberg Picture and Keldysh Representation

After stating the remaining HFB equations as derived from the 2PI effective action, we will go
through the instructive exercise of explicitly comparing them with the corresponding Heisenberg
equations. This will both confirm the correctness of our field-theory derivation and shed light
on some minor differences between the two approaches that one should keep in mind. With the
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Appendix C Bosonic Double-Well Systems

Figure C.9: Population imbalance z(t), relative phase ϕ(t) and total fraction of fluctuations δN(t)/N for
Λ = 4.00, z(0) = 0.01, ϕ(0) = π, N = 5000, J = −1. Interestingly, for even larger values of Λ one enters
a new regime where fluctuations start to become smaller again. We have not investigated this phenomenon
any further, however.

identifications GKαα = −iFα = −i (2δNα + 1),3 GK12 = G12, and gKαβ = gαβ . The total fraction
of fluctuations shown in the third panels of Figs. C.5, C.6, C.7, C.8 and C.9 is defined via

δN(t) = δN1(t) + δN2(t). (C.54)

From C.1.6, the equal-time HFB equations in two-mode approximation are then as follows. For
the condensate amplitudes, there holds

i∂tϕ1, c = ε1ϕ1, c + Jϕ2, c + UF1ϕ1, c +
U

2

(∣∣ϕ1, c

∣∣2ϕ1, c + ig11ϕ
∗
1, c

)
, (C.55a)

i∂tϕ2, c = ε2ϕ2, c + Jϕ1, c + UF2ϕ2, c +
U

2

(∣∣ϕ2, c

∣∣2ϕ2, c + ig22ϕ
∗
2, c

)
, (C.55b)

3 This assignment of the symbol Fα is not strictly consistent with the definition of the statistical function elsewhere in
this thesis.
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C.1 Two-Mode Approximation

and for the fluctuation Green functions,

∂tF1 = −J
(
G12 +G∗12

)
− U

2

((
ϕ
∗
1, c

)2
g11 +

(
ϕ1, c

)2
g∗11

)
, (C.56a)

∂tF2 = +J
(
G12 +G∗12

)
− U

2

((
ϕ
∗
2, c

)2
g22 +

(
ϕ2, c

)2
g∗22

)
, (C.56b)

∂tG12 = −i (ε1 − ε2)G12 + J (F1 − F2)− iU
(
F1 − F2 +

∣∣ϕ1, c

∣∣2 − ∣∣ϕ2, c

∣∣2)G12

+
U

2

{[
i
(
ϕ
∗
2, c

)2
+ g∗22

]
g12 +

[
iϕ2

1, c − g11

]
g∗12

}
,

(C.56c)

i∂tg11 = 2ε1g11 + 2Jg12 + U
{[
g11 − iϕ2

1, c

]
F1 + 2

[∣∣ϕ1, c

∣∣2 + F1

]
g11

}
, (C.56d)

i∂tg22 = 2ε2g22 + 2Jg12 + U
{[
g22 − iϕ2

2, c

]
F2 + 2

[∣∣ϕ2, c

∣∣2 + F2

]
g22

}
,

∂tg12 = −i (ε1 + ε2) g12 − iJ (g11 + g22)− iU
(
F1 + F2 +

∣∣ϕ1, c

∣∣2 +
∣∣ϕ2, c

∣∣2) g12

+
U

2

{[
iϕ2

1, c − g11

]
G∗12 −

[
iϕ2

2, c − g22

]
G12

}
.

(C.56e)

For consistency, we will now check that these equations agree with the results one obtains from
the Heisenberg equations of motion. As a first step, compare Eqs. (C.26a) and (C.55a):

i∂tϕ1 = [ε1 − µ]ϕ1 + Jϕ2 + U
(
|ϕ1|2ϕ1 + 2ϕ1〈δa†1δa1〉+ϕ∗1〈δa1δa1〉

)
,

i∂tϕ1, c = ε1ϕ1, c + Jϕ2, c +
U

2

(∣∣ϕ1, c

∣∣2ϕ1, c + 2ϕ1, cF1 + iϕ∗1, cg11

)
,

where we have dropped the contribution of the third cumulant 〈δa†1δa1δa1〉 from Eq. (C.26a), as
this corresponds to the HFB approximation. Setting ϕα, c =

√
2e−iµ̃t

ϕα, and ϕα =
√
Nαeiϕα

(note that to avoid introducing even more notation, we use the same symbols Nα and ϕα in the
polar decomposition of the corrected saddle-pointϕα as we did above for the classical saddle-point
Φα), we find from Eq. (C.55a) that

i∂tϕ1 = [ε1 − µ̃]ϕ1 + Jϕ2 + U

(
|ϕ1|2ϕ1 +ϕ1F1 +

i

2
ϕ
∗
1e2iµ̃tg11

)
.

For the anomalous Green function we identify g11 = −2ie−2iµ̃t〈δa1δa1〉.4 Similarly, we have
F1 = 2〈δa†1δa1〉+ 1. This establishes the equivalence of Eqs. (C.26a) and (C.55a) except for the
zero-point contribution in the definition of the “statistical” function F1. This is the reason we have
chosen a different chemical potential µ̃ for the Keldysh approach. By setting µ̃ = µ + U , Eqs.
(C.26a) and (C.55a) become identical. To understand this better, we can consider the equations for

4 The factor of two in this identity again stems from the fact that the Keldysh representation corresponds symmetric
operator ordering; the “Keldysh” Green function GK , however, is defined without a factor of 1/2.
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the condensate phases in the two approaches:

−ϕ̇1 = ε1 − µ+ J
√
N2/N1 cosϕ+N1U

+
1

2
N1U

[
e−2iϕ1〈δa1δa1〉+ e2iϕ1〈δa†1δa†1〉

]
+ 2U〈δa†1δa1〉,

(C.57a)

−ϕ̇1, c = ε1 − µ̃+ J
√
N2/N1 cosϕc +N1U

+
i

4
N1U

[
e−2iϕ1, cg11 + e2iϕ1, cg∗11

]
+ UF1,

(C.57b)

where ϕc = ϕ2, c − ϕ1, c. As before, there appears the vacuum contribution from F1 which can be
absorbed into the chemical potential µ̃. Of course, the difference in chemical potential, which
acts as a total phase factor, cannot have a physical effect. This can also be understood from
the dynamical equations for the condensate. The physical degrees of freedom are N1, N2 and
ϕ = ϕ2 − ϕ1 (both occupation numbers are needed since the condensate now couples to the non-
condensate particles, such that the condensate number is no longer conserved on its own). In both
equations for Nα, the contribution from the Fα term vanishes, whereas in the equation for ϕ, only
the difference (F1 − F2) appears, such that the zero-point contribution cancels exactly. It remains
to be shown that none of the HFB equations (C.56) depends on the total phase Θ = ϕ1 + ϕ2.
From the Heisenberg equation (C.28), one may calculate the equations of motion for the second
cumulants by using, for example, i∂tδa

†
1δa1 = (i∂tδa

†
1)δa1 + δa†1i∂tδa1. In this way, one finds

i∂t〈δa†1δa1〉 = J
(
〈δa†1δa2〉 − 〈δa†2δa1〉

)
+ U

{
ϕ

2
1〈δa†1δa†1〉 −

(
ϕ
∗
1

)2 〈δa1δa1〉
}
, (C.58a)

i∂t〈δa1δa
†
2〉 = [ε1 − ε2] 〈δa1δa

†
2〉 − J

(
〈δa†1δa1〉 − 〈δa†2δa2〉

)
+ U

{
2
[
|ϕ1|2 − |ϕ2|2

]
〈δa1δa

†
2〉 −

(
ϕ
∗
2

)2 〈δa1δa2〉+ϕ2
1〈δa†1δa†2〉

− 〈δa1δa
†
2δa
†
2δa2〉+ 〈δa†1δa1δa1δa

†
2〉
}
,

(C.58b)

i∂t〈δa1δa1〉 = 2 [ε1 − µ] 〈δa1δa1〉+ 2J〈δa1δa2〉
+ U

{
4 |ϕ1|2 〈δa1δa1〉+ϕ2

1

[
2〈δa†1δa1〉+ 1

]
+ 〈δa1δa

†
1δa1δa1〉+ 〈δa†1δa1δa1δa1〉

}
,

(C.58c)

i∂t〈δa2δa2〉 = 2 [ε2 − µ] 〈δa2δa2〉+ 2J〈δa2δa1〉
+ U

{
4 |ϕ2|2 〈δa2δa2〉+ϕ2

2

[
2〈δa†2δa2〉+ 1

]
+ 〈δa2δa

†
2δa2δa2〉+ 〈δa†2δa2δa2δa2〉

}
,

(C.58d)

i∂t〈δa1δa2〉 = [ε1 + ε2 − 2µ] 〈δa1δa2〉+ J (〈δa1δa1〉+ 〈δa2δa2〉)
+ U

{
2
[
|ϕ1|2 + |ϕ2|2

]
〈δa1δa2〉+ϕ2

1〈δa†1δa2〉+ϕ2
2〈δa1δa

†
2〉

+ 〈δa1δa
†
2δa2δa2〉+ 〈δa†1δa1δa1δa2〉

}
,

(C.58e)
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C.1 Two-Mode Approximation

where, again, we have dropped the contributions from the third cumulants. It is easy to see
that the first two of Eqs. (C.56) agree with the first two of Eqs. (C.58) upon identifying G12 =
−2i〈δa1δa

†
2〉.

Next we have to compare the equations for 〈δa1δa
†
2〉 and G12. Then the quartic expectation

values in Eqs. (C.58) have to be decomposed. This is essentially achieved by using the Gaussian
expectation-value identity

E
[
X2
iXmXn

]
= σiiσmn + 2σinσim. (C.59)

The analogous expressions for the normal-ordered Heisenberg operators are in this case

〈δa1δa
†
2δa
†
2δa2〉 = 〈δa1δa2〉〈δa†2δa†2〉+ 2〈δa1δa

†
2〉〈δa†2δa2〉, (C.60)

〈δa†1δa1δa1δa
†
2〉 = 〈δa1δa1〉〈δa†1δa†2〉+ 2〈δa†1δa1〉〈δa1δa

†
2〉. (C.61)

Together with g12 = −2ie−2iµ̃t〈δa1δa2〉, one can then verify that the third of Eqs. (C.56) agrees
with the third of Eqs. (C.58). Next, we move to the comparison of the equations for g11 and
〈δa1δa1〉 in Eq. (C.56d) and (C.58c), respectively. To repeat, they read

i∂tg11 = 2ε1g11 + 2Jg12 + U
{
−iϕ2

1, cF1 + 2
∣∣ϕ1, c

∣∣2 g11 + 3F1g11

}
,

i∂t〈δa1δa1〉 = 2 [ε1 − µ] 〈δa1δa1〉+ 2J〈δa1δa2〉
+ U

{
4 |ϕ1|2 〈δa1δa1〉+ϕ2

1

[
2〈δa†1δa1〉+ 1

]
+ 〈δa1δa1〉+ 2〈δa†1δa1δa1δa1〉

}
.

With the Gaussian decomposition

2〈δa†1δa1δa1δa1〉 = 6〈δa†1δa1〉〈δa1δa1〉, (C.62)

one comes out with an expression for the right-hand side of Eq. (C.58c) that seemingly lacks a
term 2U〈δa1δa1〉 relative to the Green-function result in Eq. (C.56d), from where one obtains

3F1g11 = 2g11 + g11 + 6〈δa†1δa1〉g11. (C.63)

This will be corrected for by the tilded chemical potential coming from

i∂tg11 = i∂t

(
−2ie−2iµ̃t〈δa1δa1〉

)
= −2ie−2iµ̃t (i∂t〈δa1δa1〉+ 2µ̃〈δa1δa1〉) . (C.64)

By symmetry, what we have just shown also follows for 〈δa2δa2〉 and g22. The field-theoretic
equation for g12 may be verified in a similar manner. As a further comment, consider that the
dependence on the bare phases ϕα, ϕα, c has to be an artifact and could be removed by replacing
〈δaαδaα〉 ← e2iϕα〈δaαδaα〉, gαα ← e2iϕα, cgαα and so forth. Note also that by removing these
phase factors, one sees that the HFB equations do not depend on the total condensate phase Θ.
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Figure C.10: Decay of self-trapping for Λ = 4.00, z(0) = 0.9, ϕ(0) = 0,N = 5000, J = −1. Explanations
are given in the text.

C.1.8 Decay of Macroscopic Quantum Self-Trapping

The decay of MQST was predicted in Ref. [123]. For further discussion, see also [125]. In Ref.
[117] related to experiment B, this phenomenon was observed, yet not connected to the afore-
mentioned references. As we have seen, the instability of MQST can be understood analytically
from the unavoidable presence of hyperbolic fixed points in the phase space: the system will
have a purely real, positive eigenvalue whenever it is self-trapped. This is because the separatrix
enabling the appearance of MQST only occurs for Λ > 2 (s. Fig. C.3). The related effect of
π-oscillations [134] can already happen for Λ > 1 when the initial relative phase ϕ(0) is around
the two hyperbolic fixed points (0,±π), as can be seen from Fig. C.2. A simulation of the decaying
MQST via the HFB equations is shown in Fig. C.10. Because z(0) = 0.9 is above the critical
imbalance for Λ = 4.0 (cf. Fig. C.4), the system is initially in the self-trapped state. As the
fluctuations grow, at early times the self-trapped amplitude decays slowly in a manner very similar
to the observed data from Ref. [117]. With the presence of a large amount of fluctuations for
Λt > 20, the state begins to disintegrate. We have to keep in mind, however, that this is also the
point around which the HFB approximation should not be trusted any longer.

C.2 Three-Mode Approximation

In neither of the experiments under consideration [115, 116] in 3.2, the Josephson frequency goes
to zero. Hence, critical slowing down of the Josephson oscillations cannot be the explanation of
the observed damping. To capture the physics beyond a single frequency going soft, it is necessary
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C.2 Three-Mode Approximation

to include more than two modes into the description. In this section, we will study the effect of
adding a third mode to the problem. The fully realistic description of the experiments in question
requires more than three modes.

The following Gross-Pitaevskii equations were written down in consideration of the interaction
parameters that are typical for the type of traps employed in experiments A and B (cf. Ref.
[35]). Beyond the local interaction U encountered previously, this includes an effective Josephson
coupling J ′ between the two modes localized in either well, an interaction K describing the
coupling between either of the localized modes and the third mode, and finally an interaction R
that couples these modes asymmetrically. As a result, the equations for the classical mean-fields
become

[i∂t − µ] Φ1, c = JΦ2, c +
1

2
U
∣∣Φ1, c

∣∣2 Φ1, c +K

[
Φ1, c

∣∣Φ3, c

∣∣2 +
1

2
Φ∗1, cΦ

2
3, c

]
+R

[∣∣Φ1, c

∣∣2 Φ3, c +
1

2
Φ2

1, cΦ
∗
3, c

]
+ J ′

[(∣∣Φ1, c

∣∣2 +
1

2

∣∣Φ2, c

∣∣2)Φ2, c +
1

2
Φ2

1, cΦ
∗
2, c

]
,

[i∂t − µ] Φ2, c = JΦ1, c +
1

2
U
∣∣Φ2, c

∣∣2 Φ2, c +K

[
Φ2, c

∣∣Φ3, c

∣∣2 +
1

2
Φ∗2, cΦ

2
3, c

]
−R

[∣∣Φ2, c

∣∣2 Φ3, c +
1

2
Φ2

2, cΦ
∗
3, c

]
+ J ′

[(∣∣Φ2, c

∣∣2 +
1

2

∣∣Φ1, c

∣∣2)Φ1, c +
1

2
Φ2

2, cΦ
∗
1, c

]
,

[i∂t − µ] Φ3, c = ε3Φ3, c +
1

2
U3

∣∣Φ3, c

∣∣2 Φ3, c

+K

[(∣∣Φ2, c

∣∣2 +
∣∣Φ1, c

∣∣2)Φ3, c +
1

2

(
Φ2

1, c + Φ2
2, c

)
Φ∗3, c

]
+
R

2

[∣∣Φ1, c

∣∣2 Φ1, c −
∣∣Φ2, c

∣∣2 Φ2, c

]
.

(C.65)

For these equations, we are going to perform a systematic stability analysis around the experiment-
ally relevant fixed point in terms of the single-particle energy ε3 of the third mode, which we take
as a control parameter. In this way, we will see how the bare energy of the third mode can be used
to tune an experiment in and out of the regime of stable oscillations between the modes localized
in the two wells. Interestingly, this will reveal an exceptional point in the spectrum [147].

C.2.1 Stability Analysis

It is not instructive to attempt a full stability analysis of the dynamical system described by Eqs.
(C.65). For two modes, the effective dimension of the phase space turns out to be two because of
number conservation and gauge invariance. With three modes, we have six degrees of freedom
and two conservation laws, resulting in a four-dimensional effective phase space. Experimentally,
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Figure C.11: Eigenvalue spectrum from the stability analysis of the Gross-Pitaevskii equations (C.65) around
the fixed point (C.66) as the control parameter ε3 is increased. The characteristic parameter is Λ = 1250.
The upper panel shows the real parts corresponding to the frequencies present in the system. The lower
panel shows the imaginary parts. The negative branch amounts to a damping of the oscillations, while the
positive branch indicates an instability. As the real parts go to (depart from) zero, the respective imaginary
parts depart from (go to) zero. These points are marked by the second (light blue) dot and next to last (red)
dot. This behavior is typical for exceptional points where a conjugate pair of complex eigenvalues turns into
two different purely real eigenvalues.
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J U J ′ U3 K R

-1.00 1.00 -0.05 0.50 0.10 0.01

Table C.2: Interaction parameters for the three-mode Gross-Piatevskii equations (C.65).

however, only a very restricted subset of this space is relevant. Both experiments can be considered
as perturbations from a fixed point where N∗1 = N∗2 = N/2, N∗3 = 0, where N is accordingly
the total number of particles.5 Furthermore, the initial phase differences between any of the
modes can be assumed to be zero. This suggests setting ϕ∗1, c = ϕ∗2, c = ϕ∗3, c = 0 without
loss of experimental applicability. As one appreciates immediately, these conditions provide
a solution to the fixed-point condition arising from the last of Eqs. (C.65). With a chemical
potential µ = −

[
J +N

(
U + 4J ′

)
/2
]
, the same holds for the first two equations. By studying

the eigenvalues of the Jacobian of Eqs. (C.65) around the fixed point

v∗ = (N∗1 , N
∗
2 , N

∗
3 , ϕ

∗
1, c, ϕ

∗
2, c, ϕ

∗
3, c)

T (C.66)

as a function of ε3, we will gain insights into the effect of the third mode on the dynamics of the
Bose-Josephson junction. The three-mode analogue of the two-mode Jacobian (C.18) will also
have two trivial eigenvalues ±0. Since its explicit form is lengthy and little instructive, we directly
go over to discussing the remaining four eigenvalues as functions of the control parameter ε3,
which are shown in Fig. C.11. The parameters used throughout the analysis are summarized in
Tab. C.2.6 The most striking feature is the appearance of two exceptional points as one of the two
frequencies present in the system first becomes soft (or “massless”) and subsequently regains a
finite “mass”. As this happens, the system develops both a damping and an instability. Beyond that,
there is always a stable frequency (the two straight lines in the upper panel) that corresponds to the
effective Josephson frequency ω̃J .7 Thus we find that both a finite Josephson frequency and the
excitation of quasiparticles through a soft mode are possible in a three-mode system. The (colored)
dots in Fig. C.11 correspond from left to right to the values of ε3 given in Tab. C.3.

To illustrate the behavior of the system as ε3 is increased across both exceptional points,
first consider the time evolution of the population imbalance shown in Fig. C.12, where ε3

now increases from top to bottom and the system is slightly displaced from the fixed point
(C.66). The fast frequency ω̃J is present in all panels, although it is hardly discernible in the
fifth (orange). The first two panels show nicely how the slower frequency gradually softens.
The instability of the system becomes clear from the panels in the middle. One should keep
in mind that the eigenvectors of the Jacobian are superpositions of the standard basis belonging
to the original variables. They are also non-orthogonal because the Jacobian is non-Hermitian.
This means that weakly displacing the third amplitude, for instance, can still result in both
eigenfrequencies being excited because the vector corresponding to a displacement of Φ3 and Φ∗3

5
N = 5000 throughout this section.

6 In relation to the overlap integrals introduced in subsection 3.2.2, these parameters are U = U1111 = U2222,
U3 = U3333, J ′ = U1112 = U1222, K = 2U1133 = 2U2233, R = U1113 = −U2223.

7 The bare Josephson frequency is always 2 |J |.
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Figure C.12: Mean-field z(t) from Eqs. (C.65) for different values of ε3 (s. Tab. C.3). The initial conditions
are N1(0) = 2500, N2(0) = 2500− 10−3, N3(0) = 10−3, Φk, c(0) =

√
2Nk.
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Figure C.13: Mean-fieldN3(t) from Eqs. (C.65) for different values of ε3 (s. Tab. C.3), with initial conditions
identical to Fig. C.12.
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Figure C.14: Normalized fast Fourier transforms (FFT) within the oscillating regimes. The final time
for the FFT was taken at Λt = 500. The right peaks correspond to the effective Josephson frequency
ω̃J/Λ = 1.3336.
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Figure C.15: The second frequency is not visible for larger initial population imbalance,N1(0) = 2500+190,
N2(0) = 2500− 200, N3(0) = 10 (all other parameters as in Fig. C.12).

may have an overlap with both. Since the eigenvectors change as ε3 is increased, the unaltered
initial conditions always correspond to different superpositions of eigenvectors. This becomes
especially apparent in Fig. C.13, where the largest occupation N3 of the third mode does not
correspond does the “most unstable” panel in the middle (yellow). It is also important to notice
that N3(t) is negligible when the system is stable. Another thing that comes to mind upon
closer comparison of Figs. C.12 and C.13 is that N3(t) oscillates at twice the value of the softening
frequency, which is not the case for the population imbalance (this is most easily apprehended from
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Color Dark blue Light blue Green Yellow Orange Red Purple
ε3/ |J | 450 500 550 1000 1450 1500 1550

Table C.3: Single-particle eigenenergies of the third mode and associated color code corresponding to the
plots shown from top to bottom in Figs. C.12, C.13 and C.16.

the second (light blue) panel). The stability analysis is, of course, valid only for the condensate
amplitudes. The question is then: why do

∣∣Φ1, 2

∣∣2 oscillate at the same frequency as Φ1, 2, while
|Φ3|2 oscillates at double the frequency as Φ3? The answer is rather simple: the third mode
oscillates around zero, which is the reason why squaring it doubles the frequency according to
(eiωt)2 = e2iωt. The other two modes, however, have a large offset, such that squaring there
amounts to (

√
n+ eiωt)2 = N + 2

√
Neiωt + e2iωt ≈ N + 2

√
Neiωt. This means that really only

the frequencies from the stability analysis are present in the dynamics of the amplitudes, as it should
be. The softening and “hardening” of the second frequency can also be seen from the Fourier
transforms of the imbalance trajectories shown in Fig. C.14. While the Josephson frequency stays
put, the slow frequency first moves to the left and then back to the right. Interestingly, from Fig.
C.15 we learn that the second frequency is not discernible when the initial population imbalance is
chosen much larger. Of course, for values on this order of magnitude, the perturbation from the
steady-state can no longer be considered “small” and the stability analysis, therefore, does not
apply well.

In the hyperbolic regime, the mean-field behavior changes drastically as soon as fluctuations are
included. As for the two-mode approximation, we do not investigate quadratic fluctuations but
immediately move to the HFB extension of the Gross-Pitaevskii equations (C.65). Their derivation
is analogous to the one given in subsection C.1.6. Since they are lengthy and do not contain any
structural information beyond that defined by Eqs. (C.65), we will not show them here. Instead we
directly move to an inspection of the total number of fluctuations, which is given by

δN(t) =
i

2

(
GK11 +GK22 +GK33

)
− 3

2
. (C.67)

The results from the HFB simulations with the same parameters as before are shown in Fig. C.16.
As one can see, their magnitude is aligned with that of N3(t) for the mean-field case.

For completeness, in Fig. C.17 we also show an example of the dynamics following a large
initial population imbalance when HFB corrections are included. Evidently, the fast oscillations at
the effective Josephson frequency are retained for a few cycles before the instability fully sets in.
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Figure C.16: Fluctuations δN(t)/N defined via Eq. (C.67), as obtained from the HFB extension of Eqs.
(C.65) with N1(0) = N2(0) = 2500, N3(0) = 0, Φk, c(0) =

√
2Nk and parameters as in Fig. C.12.
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