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natürlich Juergen für das Korrekturlesen und Danke Leila für die sprachliche Hilfe!

III





Abstract

This thesis presents a method for pattern recognition in neurocognitive data, in

particular intracranial electroencephalographic (iEEG) data. The approach aims to

reveal mechanisms underlying cognitive processes. This means that the algorithm

has not only been designed to achieve above chance prediction results, but also to

offer a better understanding and new insights into the functionality of the brain.

A support vector machine algorithm has been developed which deals with the

complex data structure, the high number of potential datapoints and features, as

well as the typically small and unbalanced sample sizes. In particular, the peri-

odicity of phase measures is taken into account for statistics and training of the

model. Background information about cognitive processes provides an informative

basis for feature selection. Time series analysis is used for feature extraction and

circular statistics cope with the periodic characteristics of the data entering feature

preselection.

Then the algorithm was applied to iEEG data recorded in presurgical epilepsy

patients during a continuous word recognition task. In two studies, memory for-

mation was successfully predicted based on iEEG measures from rhinal cortex and

hippocampus, two memory-related brain regions. Different iEEG measures (i.e. ab-

solute phases, phase shifts and power values) were compared for their predictive

capabilities. The results obtained by training the algorithm with iEEG data re-

veal the superiority of absolute phases compared to the other measures and their

importance for memory processes. Hence, the presented method is able to provide

valuable insights into basic mechanisms of brain functions.

Finally, a further application comprising memory enhancement methods is pre-

sented. Here, the results of the previous application are turned into assumptions for

further research. In particular, 5 Hz auditory beat stimulation was applied during

an associative memory task. It was shown that phase locking was increased and

that memory performance was altered depending on absolute phase values. These

findings confirmed the importance of oscillatory phases for memory formation and

the informative value of the previous outcomes. Taken together, the presented algo-

rithm is able to expose key information patterns derived from neurocognitive data

and might be used in memory enhancement applications.
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1 | Introduction

Pattern recognition is the automated discovery of regularities and pattern in data

through computer algorithms. Prediction algorithms enable model building to pre-

dict future outcomes. Together they are used in a wide variety of research areas, and

have many applications including the fields of medicine and neuroscience. In par-

ticular, these promising approaches enable researchers to potentially solve complex

questions by investigating large quantities of data or datasets with special struc-

tures. When applying machine learning methods to neurocognitive data, particular

challenges (i.e. small sample sizes, complex data structures, high-dimensionality)

have to be handled in order to develop sufficient methods for understanding how

the human brain and body are working or how they respond to a disease and its

intervention (clinical or therapeutic), in order to optimize medical treatment.

Neurosciences focus on research of the nervous system. Along with the structural

analysis of the brain and investigation of neural diseases like dementia, Alzheimer’s

and Parkinson’s disease, underlying functions and basic mechanisms of cognitive pro-

cesses are studied. Uncovering how the brain works (e.g. regarding consciousness

or memory formation) is one of the key goals of the neurosciences (see e.g. Kandel

et al., 2012). General knowledge about the brain’s different regions and their main

functions can be used as starting points for further and more detailed analyses.

To image brain activity, there are different commonly used methods. Functional

magnetic resonance imaging (fMRI) visualizes active areas indirectly via changes

in blood flow and offers a high spatial resolution but at the expense of temporal

resolution. On the contrary, electroencephalography (EEG) measures electric brain

activity directly with a high temporal resolution but at the cost of spatial resolution.

There are non-invasive EEG recorded from the scalp surface and intracranial EEG

(iEEG) measured directly within brain structures. As cognitive processes take place
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CHAPTER 1. INTRODUCTION

within milliseconds, EEG, especially intracranial EEG recordings, offer useful data

to explore underlying mechanisms of brain operations (e.g. Hämäläinen et al., 1993;

Niedermeyer and da Silva, 2004). Although iEEG offers the most precise spatial in-

formation (compared to surface EEG), recordings cannot easily be acquired because

it is an invasive imaging method and patient groups are often rather small. Further-

more, also the electrode coverage is limited in iEEG and might not be suitable for

some studies. EEG features like event related potentials (ERPs), signal power and

oscillatory phases are known to play an important role in neural processing (e.g.

Bruns, 2004). Studying these characteristics is thus essential to get to the bottom

of cognitive functions. Particularly phase information as a circular unit of measure-

ment requires careful handling during analysis procedures to account for its periodic

structure. Hence, applying statistics, especially pattern recognition algorithms, to

neurocognitive data pose a challenge, not only because of the often quite small size

of datasets, but also because of the data structure itself.

A classical analysis approach is statistical modelling using regression. Regression

analysis fits a model function by minimizing the errors between observations and

estimations. The function (e.g. linear, logistic) is defined by the model design. After

parameter estimation, significance of regressors can be determined and new values

can be prognosticated (see e.g. Steyerberg, 2009). Although until now, regression

models are the most commonly used models for clinical purpose, they are not the

method of choice in the presented approach. Apart from commonly using the whole

dataset, this algorithm is limited by the choice of the model function and the required

statistical assumptions (e.g. linear relationship between dependent variable and

regressors and homoscedasticity for linear regression). Therefore, it is not flexible

enough for complex data structures that may appear in neurocognitive data.

Current classification algorithms profit from growing speed and storage capacity

of modern computing systems. During recent years, data science has become a

trending topic using big data and neural networks or deep learning. It can be

applied in all kind of research areas as well as cross-disciplinary and also finds its

application in everyday life (e.g. predicting price developments in stock market,

improving Google search results and personalized advertisements). The growth of

capacity of data storage and computational power also had a huge impact on natural

sciences. Computational neuroscience forms a research area connecting cognitive

2



neuroscience with computer science for example by combining image processing and

machine learning techniques. The special characteristics of deep neural networks

is that they can automatically learn from raw data without further coded rules

by simulating the way biological neurons make connections (see e.g. Schmidhuber,

2015). Still, this method is not suited for the presented analysis approach, because

deep learning requires large datasets that are often hard to gather when working

with patient data. Aside from this restriction, interpreting training results with

regard to basic mechanisms is problematic because thousands of weights can be

used to reach a solution without showing what is going on exactly inside the neural

network.

Alongside other statistics and classification methods like decision trees and near-

est neighbour classification, support vector machine (SVM) is another algorithm that

became possible and important with growing computational power. A SVM clas-

sifier separates groups by transforming the data to a higher dimension to make it

linearly separable. It has the ability to use complex, high-dimensional training data

and generalize its results to unseen samples (see e.g. Press et al., 2007). Therefore it

is a powerful tool that offers the opportunity to be used in a wide range of biomedical

applications. It provides the possibility to use small datasets which makes it suitable

for training with neurocognitive data. In recent research, SVM is mainly applied

using many features, combining behavioural and neurological measures. But using

a high number of features to classify small datasets bears the risk of overfitting1 and

makes the interpretation of underlying mechanisms challenging. Prediction based on

neuroscience data can target different objectives. In clinical research, many studies

aim to develop methods that are able to predict certain outcomes or differentiate

between specific classes (see Chapter 2 for related work). Whether for personalized

approaches for optimal patient treatment or for mind reading applications, the result

is more important than the underlying mechanism. This might likewise be the case

when classification algorithms offer the possibility to prevent violent behaviour with

aggression therapy or provide additional support for children with estimated low

reading abilities. Hence, to achieve these aims, it can be very helpful to combine

many different features including behavioural measures and diverse neuroimaging

data arising from fMRI and EEG recordings. Also, the number of features can be

1When a model is fitted too specifically to the present dataset (for example same set for training
and testing), it might detect characteristics that do not generalize to new data

3



CHAPTER 1. INTRODUCTION

quite high to improve classification performance, while a reduced number makes

it easier to interpret the importance of single features. With regard to practical

applications, it is important to keep an eye on the cost-benefit ratio and consider

if neurocognitive measures add information that is worth the extra costs (i.e. for

expensive MRI data probes).

The approach presented in this thesis aims to develop an algorithm that provides

as much biological information as possible in neurocognitive datasets. By doing so,

it intends to offer new insights into the functionality of the brain. This means for

the development of the method that a lower prediction performance is acceptable

in favour of a better understanding of the underlying mechanism. Therefore a min-

imal number of features is preferable. Regression analysis which is still the most

widespread method in clinical studies is not suited for this purpose because it is

not flexible enough to handle complex data structures. Additionally, in existing

studies, models are often fitted using the complete dataset and internal validation

(like bootstrap) is used (see Chapter 2.1). It is important to keep that fact in mind

with regard to overfitting and generalization. The training (and validation) data

should be clearly separated from the test dataset for model building to get reli-

able validation results. Algorithms like SVM and deep learning are able to classify

more complex datasets. Deep neural networks have become increasingly popular in

maybe all interdisciplinary fields and profit a lot from growing storage capacities

and computational power. They are very good in automatic pattern recognition

to make predictions or cluster data and are mostly able to generalize to new data

(e.g. Schmidhuber, 2015). But deep learning is not applicable to the neurocognitive

datasets that shall be examined with the method developed in the following. This

is because of several reasons. Deep learning typically requires large datasets. Es-

pecially when data is collected from patients, it might be difficult to recruit a large

sample due to a low number of potential participants. When thinking about using

data collected in different studies or over a longer time span in different hospitals,

apart from finding a congruent subject base it is often problematic to access this

data because of ethical reasons and data protection regulations (Boyd and Craw-

ford, 2012). Additionally, the way deep learning and neural networks handle data

is not suited for the presented approach. This machine learning technique combines

different features or even parts of features to new data to predict and cluster the

4



original data. In many cases this can be very effective resulting in high prediction

accuracies. But the interpretability of underlying mechanisms is really complicated,

not only caused by the number of features, but the algorithm itself. It is hard to

understand how the data was processed from the algorithm and which conclusions

regarding basic principles can be drawn from the results. Hence, the chosen algo-

rithm for further development in this thesis is a SVM. In most applications it is also

trained using a lot of features to get best prediction results. But it is possible to use

small datasets and when using a low number of different features, interpretation is

easily practicable.

While regression analysis does not offer the necessary flexibility to handle com-

plex data and datasets are mostly too small to result in reasonable models for deep

learning, SVMs have to manage several challenges as well when working with neu-

rocognitive data. Typically, EEG data is recorded with a high sampling rate and

together with all neurologically relevant frequencies its high-dimensionality offers

many possible features (cf. Hämäläinen et al., 1993). At the same time, datasets

are typically quite small, because they are recorded in patient groups and gathering

big data fails at data congruency and ethical reasons or data protection regulations

(cf. Boyd and Crawford, 2012). To avoid overfitting, features have to be selected

carefully. Additionally, it is important to account for unbalanced data for training

and testing the algorithm as well as for special data structures (i.e. circular data).

The method that is developed in this thesis will reduce computational time and

the number of features to choose from by combining datapoints, use circular statis-

tics for feature preselection, and test how to cope best with unbalanced class sizes.

Moreover, the circular data structure is respected when training the SVM.

In this thesis, machine learning ideas in neural data domains are developed,

machine learning questions are posed on neural data and it is dealt with its compu-

tational aspects. First, some background about different machine learning methods

and their application in medicine and neuroscience as well as their interpretation

concerning basic mechanisms is provided (Chapters 2 and 3). Then, a method for

EEG data analysis is developed, which handles the circularity of phase measures,

the challenge of small datasets and aims to reveal as much biological background

as possible (Chapter 4). Finally, the presented method is applied to real brain data

(Chapters 5 and 6) and a conclusion and prospect of future development are given

5



CHAPTER 1. INTRODUCTION

(Chapters 7 and 8).

The content of this dissertation has been published in large part in these three

articles:

❼ Prediction of successful memory encoding based on single-trial rhinal and hip-

pocampal phase information (Höhne et al., 2016)

❼ Prediction of memory formation based on absolute electroencephalographic phases

in rhinal cortex and hippocampus outperforms prediction based on stimulus-

related phase shifts (Derner et al., 2018b)

❼ Modulation of Item and Source Memory by Auditory Beat Stimulation: A Pilot

Study With Intracranial EEG (Derner et al., 2018a)

6



2 | Related Methods

In the following chapter, different methods common to both classification and predic-

tion are described (i.e. regression, deep learning, SVM). In addition to the individ-

ual methodological descriptions, some examples of how these techniques have been

applied in recent neuroscientific research are given. Additionally, the limitations of

applying these algorithms in the context of describing brain functions based on EEG

data, and finally why a SVM is implemented in this thesis, are also explained.

2.1 Regression

Regression is a classical analysis approach that is commonly used for modelling

in clinical research (see e.g. Steyerberg, 2009). Regression models estimate the

relationship between a dependent variable y and one or more independent variables

x1, ..., xn (regressors). The model function f is fitted by minimizing the error ǫ

between the observed values and the estimation described through the regressors.

y = f (x1, ..., xn) + ǫ (2.1)

There are many studies analysing diverse data using regression models to gain infor-

mation about the association between certain behaviour and neurocognitive features.

Additionally the significance of correlation values is examined in many cases. The

focus of these studies is often on improving the prediction of certain behaviours,

for example, to be able to individualize patients’ treatment or to minimize costs to

society.

There are studies that aim to answer the question of treatment response. E.g.

voxelwise regression of fMRI data during the presentation of different face expres-

7



CHAPTER 2. RELATED METHODS

sions showed significant association between the pretreatment activity in amygdala

and anterior cingulate cortex and treatment response in generalized anxiety disor-

der (Whalen et al., 2008; Nitschke et al., 2009). A whole brain regression analysis

with differential fMRI responses to angry vs. neutral faces revealed that treatment

response to cognitive behavioural therapy in social anxiety disorder can be pre-

dicted from this data (Doehrmann et al., 2013). For generalizability of the results,

cross-validation was used to build the generalized linear model (GLM) and test the

prediction based on brain activation. Its significance was assessed using permutation

tests. Subject-specific contrast images were used for the analysis with a voxelwise

threshold and topological correction procedure to account for false positives and

limit the false discovery rate. Furthermore, amygdala activation to emotional face

expressions shows a significant correlation to reduction of symptoms in depressed

patients in a random-effects multiple regression model (Canli et al., 2005). And

using regression analysis of fMRI responses to fearful and neutral facial expressions,

a significant association between activity in the amygdala and ventral anterior cin-

gulate and the response to behaviour therapy for post-traumatic stress disorder was

detected (Bryant et al., 2008). Apart from the fact, that these studies use fMRI data

that is non-invasive and offers a lot of possible features compared to (i)EEG data,

regression models were often built using complete datasets, which reduces the evalu-

ation to internal validation and limits the generalizability to new data. They focused

on prediction of outcomes and did not aim to explain underlying mechanisms.

Other studies concentrate on future incidents which have effects on society. Aha-

roni et al. (2013, 2014) used Cox proportional-hazards regression models to study the

relation between activity in the anterior cingulate cortex (ACC) during a go/no-go

control task (GNG) together with other potential predictors (including age, alcohol

or drug abuse and GNG error rate) and the months to a future rearrest of released

criminal offenders. The discrimination accuracy (how well groups are separated) was

assessed via ROC (receiver operation characteristic) curves that follow true positive

and false positive fractions. They evaluated the coefficients in the model using an

internal validation by resampling the Cox distribution in a bootstrapping sequence

and found that only the error-related ACC response was robust to bootstrap resam-

pling. Maurer et al. (2009) showed that ERPs in EEG data recorded in kindergarten

children improve the prediction of their reading ability in primary school in a multi-

8



2.2. BIG DATA AND DEEP LEARNING

ple linear regression model. By adding neurophysiological measures to behavioural

measures as predictors, the explained variance increased significantly. Furthermore,

while using a logistic regression, the number of correctly classified children was sig-

nificantly higher, when neurophysiological values were included. Even a correlation

between fMRI activity in reward-related regions of the brain and popularity of songs

(measured by the number of sales) was shown using logistic regression (Berns and

Moore, 2011). In these studies neurophysiological measures improved models sig-

nificantly but behavioural measures were still used for modelling which masks the

importance of underlying brain activity.

The aim of the different research projects using neurological data and regres-

sion analysis is mainly to improve existing models (e.g. for advances in patients’

treatment). Many of these studies report the significance of correlation values and

associations between predictors and the dependent variable. Nevertheless, they of-

ten use the complete dataset and internal validation to build the model and do not

aim to give specific prediction accuracies. Thereby, the risk of overfitting and the

question of generalization to new datasets remain open. Additionally, regression

models are fixed to preassigned model functions and statistical assumptions (e.g.

linear relationship between dependent variable and regressors and homoscedastic-

ity for linear regression). Neurocognitive data cannot always fit these requirements

caused by small datasets and complex data structures. Hence, although regression

models are still the most commonly used models for clinical purpose, they are not

the method of choice in the presented approach.

2.2 Big Data and Deep Learning

Caused by the continuously growing capacity of data storage and computational

power the collection and analysis of massive amounts of data in all sorts of domains

gets easier and easier. Data science deals with these “new” records. The so called big

data (i.e. datasets too large for traditional analysis methods) can be used in diverse

machine learning procedures. The further development of artificial intelligence (AI)

benefits from these huge datasets and the advances of high power computing systems

and pattern recognition algorithms. Deep learning is a subset of AI inspired by the

way the brain is structured. It uses multi-layered neural networks to recognize
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patterns in representations of images, text, speech and other data. One can find

its daily application for example in automated recommendations and advertising on

websites or in translation apps. Deep neural networks can automatically learn from

raw data without further coded rules and their predictive accuracy increases when

provided with more data. Simulating the way biological neurons make connections

in the brain, underlying patterns and correlations in the training data are identified.

To do so, weights are assigned to the connections between the artificial neurons to

define the responses to different features and data is back-propagated to check for

mistakes (e.g. Schmidhuber, 2015).

For example Ramsundar et al. (2015, 2017) used deep learning on broad collec-

tions of pharmaceutical data (big data) to predict interactions between targets and

small molecules for drug discovery.

For different mind reading approaches brain activity data and deep neural net-

works are combined. Enabling direct communication from neuronal activity to a

computer (e.g. using a brain-computer interface (BCI)) might help people with dis-

abilities or neurological diseases or for example improve image search in a fast and

natural way.

By training a neural network using EEG data recorded while participants were

looking at images of different object classes, Spampinato et al. (2017) showed that

automated discrimination between visual categories based on brain signals is possi-

ble with an accuracy of 83 %. FMRI pictures contain general information regarding

what the person is thinking about. Different mind reading approaches based on

fMRI data are described from Wen et al. (2018) using deep learning to encode and

decode watched movies with natural stimuli and from Shen et al. (2019a,b) who

reconstructed images people were looking at from visual cortical activity using a

pretrained deep neural network for the same input images. Their algorithm also

generalizes to artificial shapes and alphabetical letters although trained only on

natural images. Speech reconstruction using deep learning trained on invasive elec-

trocorticography (ECoG) from the human auditory cortex recorded in presurgical

epilepsy patients was demonstrated from Akbari et al. (2019). Angrick et al. (2019)

used a deep neural network to reconstruct audible waveforms from ECoG captured

while patients read words aloud. Anumanchipalli et al. (2019) translated neural

activity into speech acoustics when sentences were read or spoken aloud but also
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for silently mimed sentences via neural network. A BCI was trained using a deep

neural network to classify EEG signals from imagery left and right hand movement

(Zhang et al., 2019). Lawhern et al. (2018) presented a neural network to construct

EEG-specific models where automatic feature extraction and classification general-

ize across different ERP and oscillatory-based BCI tasks. The analysed paradigms

covered performance improvement through correction of incorrect BCI output (i.e.

of a speller), and classification of actual or imagined movement.

Especially for clinical research, it is hard to gather large amounts of data. Groups

of participants (i.e. patients) are often very small and data cannot be combined eas-

ily. Homogeneity of data is needed for comparability and reproducibility. Also,

combining data from different studies or using data which might have been recorded

unwittlingly or used for other than original purposes is critical because ethical guide-

lines have to be met and patients’ privacy has to be protected. Because of this,

medical datasets are being isolated in institutions and strict regulations concerning

data sharing are applied. Still, releasing data could help in designing personalized

drugs and research all kinds of diseases (Boyd and Crawford, 2012; Manovich, 2012).

Furthermore, deep learning does not only stick to biological backgrounds any-

more in favour of brute force computing to get high performance algorithms. The

brain’s biology makes any interconnection between neurons within a certain distance

possible. It is much more complex than any existing artificial neural network where

the number of layers, connections and directions of propagations is discrete. Also,

today’s approaches need much more training input than the human brain to under-

stand concepts. Nevertheless, it is still possible that research developing AI brings

new insights into how the brain works. Still, interpreting training results from deep

learning with regard to basic mechanisms is very hard because several thousands of

weights can be used to reach a solution without showing what is going on exactly

inside the neural network. Therefore, deep learning is not suited for the presented

analysis approach.

2.3 Support Vector Machine

A support vector machine is another type of algorithm that became possible and im-

portant with growing computational power. SVM classifies data via a hyperplane. It
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searches for a linear function (the hyperplane) that separates the data in classes with

maximal free space between hyperplane and the nearest datapoints. This means it

is a “large margin classifier” dividing data by a clear gap that is as wide as possible

to make the classification of new data objects reliable. The datapoints determining

the separating plane are called support vectors. The support vector machine uses

linear classification (based on the linear hyperplane function). To be able to classify

non-linear data, a kernel function transforms the data to higher dimensions where

it is linearly separable. Here, the hyperplane that separates the data classes linear

is found and can be transformed back to lower dimensions via the kernel function.

Additionally, other parameters can be adjusted to allow for exceptions (i.e. data-

points in wrong classes). These slack variables make the algorithm more flexible. To

find the best function to separate the training data, the allowed classification errors

are penalized during the optimization process. Via this method, overfitting can be

avoided and the number of support vectors needed to describe the hyperplane is

smaller (see also Chapter 3.4).

The SVM is a powerful tool in a wide range of biomedical applications because of

its ability to use complex, high-dimensional training data and generalize its results

to unseen samples. It can also be used for small datasets. It offers the possibility to

investigate development of mental diseases, responsiveness to medical treatment and

social and cognitive functioning. Some examples for recent research in neuroscience

using SVM algorithms are the following:

Soon et al. (2008) examined the predictability of motor decisions before the subject

made this decision consciously and found that the outcome can be encoded based

on brain activity in prefrontal and parietal cortex up to 10 s before the decision

enters awareness. They applied a GLM with 26 regressors as well as a linear SVM

with 10-fold cross-validation (leave-one-out) to search for predictive voxels in an

unbiased fashion. They used a “searchlight” algorithm to determine which local

brain pattern clusters in the fMRI data were predictive for subjects’ decisions. The

clusters contained voxels in a radius of 3 voxels (∼ 64 voxels used as features for

each cluster) with fixed regularization parameter C = 1. Also via a SVM and leave-

one-out cross-validation, Costafreda et al. (2009) were able to identify responders

to cognitive behavioural therapy based on fMRI data recorded during presentation

of different sad facial expressions. And Hoeft et al. (2011) predicted future reading
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gain (vs. no improvement) in dyslexia based on multivariate pattern analysis of

whole brain activation patterns in fMRI and diffusion tensor imaging data (which

visualizes brain structural connectivity) during phonological processing using a SVM

and leave-one-out cross-validation for generalization. Behavioural measures were

not predictive, but the multivariate pattern analysis in regions selected based on

prior knowledge revealed right prefrontal brain mechanisms during a reading task

as effective predictors. Further, recursive feature (i.e. voxel) elimination was used

to find an optimal pattern with maximal performance to distinguish between the

two classes. Koutsouleris et al. (2009) aimed to find whole-brain neuroanatomical

abnormalities as valuable biomarkers for early detection of psychosis. They used

multivariate pattern classification on structural MRI data to identify subjects at

high risk of disease transition. Generalizability of prediction results was estimated

via cross-validation and classification of an independent cohort.

Caused by the high-dimensionality of fMRI data, predictions can be made based

on a high number of features. While this measure cannot record individual neurons

but rather shows blood flow, it is still able to differentiate very small brain areas

with voxel size about 1 mm. As a result, even when using many features the exam-

ined brain regions can be quite small anyway. Additional dimensionality reduction

can be performed using principal component analysis (PCA). But results are less

interpretable with regard to underlying basic mechanisms when using a lot of fea-

tures or combination of features like from PCA. MRI maximizes spatial information

at the cost of temporal resolution whereas EEG provides high temporal resolution

at the loss of spatial resolution (e.g. Hämäläinen et al., 1993). Hence, EEG does not

offer the same number of features from areas that are close to each other than MRI

does and interpretation of underlying mechanism from predictions based on many

locally different features is difficult.

There are also studies using discriminant analysis to quantify the ability of cer-

tain features to separate different classes and determine the accuracy of correct

classification via these models. A stepwise discriminant analysis can be applied to

identify features that enter and stay in the model. For example Molfese et al. (2001)

analysed how accurately ERP measures and different behavioural features discrim-

inate between groups of different reading ability. Fell et al. (2008) investigated

which mediotemporal EEG measures (e.g. ERP, power, phase synchronization and
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rhinal or hippocampal phase-locking) predict memory formation most effectively in

a continuous word recognition task based on data from first word presentations,

revealing that inter-trial phase-locking outperformed other EEG measures. And by

applying parametric discriminant analysis, Fell et al. (2011) found rhinal alpha and

hippocampal theta power as best predictors for subsequent memory among different

power frequency ranges from the prestimulus domain. It has to be considered that

these studies mainly include all data for modelling and thereby generalizability and

reliability of classification accuracy is to be handled with care.

2.4 Summary

In clinical research, investigators aim to develop highly specialized models that are

most appropriate for predicting a certain outcome or for correctly classifying data.

Up until now, regression analysis remains the most widespread method in med-

ical research fields. These studies often combine behavioural and neurocognitive

data and use whole datasets to get significant regression models (e.g. Whalen et al.,

2008). Furthermore, the analyses are restricted by statistical assumptions and de-

sign functions (e.g. linear relationship between dependent variable and regressors

and homoscedasticity for linear regression). Hence, they are often not best suited

to handle the complex data structures that can arise in the neurocognitive domain.

SVM and deep learning are able to manage large datasets and many features but

in most cases require a lot of data or features to make accurate predictions. The

number of features, but also the deep learning algorithm itself, presents a problem

when determining the basis of neurocognitive functions. There are a lot of applica-

tions where the final prediction outcome is more important than its interpretability

concerning underlying mechanisms. This is the case, for example, in personalized

patient treatment (e.g. Nitschke et al., 2009; Doehrmann et al., 2013) or mind read-

ing approaches (e.g. Wen et al., 2018; Shen et al., 2019b). In these cases, training

the algorithms with many different features is useful so as to achieve higher pre-

diction accuracies. In the following sections, a method is developed that aims to

uncover basic brain mechanisms based on EEG data (e.g. the importance of phase

information for memory processes). To enable generalization and to obtain reliable

results, the test and training datasets should be clearly separated so that no internal
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validation occurs. In turn, a reduced number of features makes it easier to interpret

the importance of single features and a lower prediction performance is acceptable

in favour of a better understanding of the underlying mechanisms. Apart from the

difficult interpretability, deep learning is not suitable for this purpose as it typi-

cally requires large datasets that are often not available when working with patient

data. As SVM can be trained using small datasets, this algorithm has been chosen

for further development in this thesis. It handles the complex structure of EEG

data. Additionally, the challenge of small, unbalanced sample sizes combined with

potentially high-dimensionality of the data is addressed.
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3 | Theoretical Background

3.1 Neurocognitive Framework

The algorithm presented in this thesis is developed for intended use with neurocog-

nitive data. To this end, background information concerning the basic structures

of the brain, EEG acquisition and the relationship between cortical oscillations and

memory can be useful for the choice of analysis methods and feature selection. These

are broadly described in the following chapter.

3.1.1 The Human Brain

When analysing the human brain, general knowledge about its different regions and

their main functions can be used as starting point for feature selection.

The brain basically consists of the cerebrum, the cerebellum and the brainstem.

The brainstem is relevant for basic functions like the regulation of heartbeat, respira-

tion and eating. It also contains structures for the sensory system and motor control

especially of the face. The cerebellum is important for coordination of motoric func-

tions and essential aspects of motor learning. The cerebrum has two hemispheres

which in general are responsible for the opposite site of the body each. Cortex, basal

ganglia and limbic system belong to the cerebrum. The basal ganglia are situated at

its base and include parts of the motor system. In the cortex, the outer layer of the

neural tissue, four cerebral lobes can be distinguished for each hemisphere: frontal,

temporal, occipital and parietal lobe. The frontal lobe is the largest lobe including

the primary motor cortex and regions for speech, decision making and short-term

memory. The occipital lobe receives visual information which is connected to sen-

sory memory. The parietal lobe is important for spatial navigation and processes
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sensory information. The temporal lobe handles acoustic input and contains struc-

tures for semantic and memory. The limbic system is situated in the mediotemporal

lobe in each hemisphere and its most important structures are the hippocampus and

entorhinal cortex which play an essential role in memory formation (see for example

Thompson, 2001).

3.1.2 EEG Signals

EEG is an imaging method (in the wider sense) that is particularly used for diagnos-

tic purpose in epilepsy or sleep disorders as well as during narcosis monitoring. It

has a lower spatial resolution (especially in surface EEG) than other imaging meth-

ods like MRI but a higher temporal resolution which is within milliseconds - the

time range of cognitive processes. Additionally, it measures electric brain activity

(changes in membrane potentials) directly instead of blood flow for example. EEG

signal characteristics are mainly described through different frequency components

and their amplitudes (which are typically higher in lower frequencies).

Several frequency bands in EEG signals are distinguished depending on their

biological meaning. Alpha frequencies (7 Hz - 13 Hz) are associated with a relaxed

waking state with closed eyes. During certain sleep states and mental processes

beta frequencies (13 Hz - 30 Hz) are present. Frequencies in the gamma range

(> 30 Hz) occur during cognitive processes and might represent the formation of

neuronal networks. The delta frequency band (0.5 Hz - 4 Hz) is mainly present

during deep sleep in healthy adults. Theta frequencies (4 Hz - 7 Hz) can be found

in healthy adults during sleep and rhythmic theta-activity is associated with mental

processes like memory tasks (Walter, 2005). (The exact division can slightly vary

depending on the sources).

3.1.3 EEG Oscillatory Phases and Memory

Oscillatory phases of local field potentials and electroencephalographic signals play

an important role in neural processing. They can facilitate or inhibit neural ac-

tivity and communication within a certain time window or processing stage (e.g.

Womelsdorf et al., 2007; Fell and Axmacher, 2011) by interacting with neural mem-

brane potentials and modulating neural excitability and discharge times (Elbert and
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Rockstroh, 1987; Fröhlich and McCormick, 2010; Anastassiou et al., 2010).

Several studies investigated their impact on perceptual and cognitive operations.

Prestimulus phases in the alpha frequency band of scalp EEG were found to influ-

ence perception of visual stimuli (Busch et al., 2009; Mathewson et al., 2009). Ad-

ditionally, by manipulating local phases and phase differences between regions with

transcranial alternating current stimulation visual and acoustic detection is changed

too, suggesting a causal role of phase dynamics (Neuling et al., 2012; Helfrich et al.,

2014). Phase information is also well-known to be an essential characteristic of

memory operations. Several neural operations within the medial temporal lobe (es-

pecially within the rhinal cortex and hippocampus) are associated with long-term

memory (e.g. Sederberg et al., 2007; Fell et al., 2008; Lopour et al., 2013; Burke et al.,

2014). Stimulus-related phase resets are found in low-frequency oscillations during

memory tasks (e.g. Rizzuto et al., 2003; Mormann et al., 2005; Haque et al., 2015).

In memory processes, phases of hippocampal theta oscillations regulate the direction

and magnitude of synaptic plasticity. In rats, it was shown that synaptic efficacy

(which is linked to learning and memory) is enhanced when electrical stimulation is

applied at the peak of hippocampal theta oscillations and depressed when the stimu-

lation is implemented at the trough (Pavlides et al., 1988; Huerta and Lisman, 1993).

Moreover, it was found that mediotemporal phase information reflecting the stabil-

ity of phases across trials (e.g. rhinal and hippocampal inter-trial phase-locking

and rhinal-hippocampal synchronisation) is superior to amplitude information or

event-related potentials for differentiation between subsequently remembered and

forgotten trials (Fell et al., 2008; Lopour et al., 2013). Effective stimulus process-

ing and memory formation may also be accompanied by phase shifts, a response of

neuronal structures to stimulus presentations (e.g. Achuthan and Canavier, 2009).

This summarized description of the relationship between oscillatory phases and

memory can also be found in Höhne et al. (2016) and Derner et al. (2018b).

3.2 Time Series Analysis

Neurophysiological signals (in this case EEG signals) have a natural temporal order-

ing of datapoints with one observation or sample belonging to a single point in time

at each sampling point. Methods used to analyse such time series data belong to the
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mathematical domain of time series analysis. It aims to describe signals, identify

changes caused by specific stimuli or circumstances, eliminate irrelevant information

(e.g. filtering to remove noise) and predict future signal values based on previously

available data. Commonly used methods are regression analyses for curve fitting and

signal smoothing or calculation of moving averages. Auto- and cross-correlation can

be applied to analyse the relation between signals or between different time points

within a signal. Furthermore, analysis in the time and frequency domain is impor-

tant in time series analysis, which also includes spectral analysis. Characteristics

of useful approaches (i.e. Butterworth filtering and Hilbert, Fourier and continuous

wavelet transform) are described in the following chapter.

3.2.1 EEG Recording

EEG data is typically recorded in different channels either with multiple surface elec-

trodes with their locations mainly based on the 10-20-system as well as extended

or reduced modifications of the 10-20-system or intracranial with implanted subdu-

ral grid electrodes or depth electrodes with several contacts (e.g. Niedermeyer and

da Silva, 2004). IEEG has a higher spatial resolution than scalp EEG and can de-

tect rapid local changes that might remain undetected in scalp EEG due to spatial

averaging. IEEG is an invasive method and is in humans only used for medical pur-

pose (for example presurgical evaluation in epilepsy patients, when the seizure onset

zones cannot be precisely determined with noninvasive examinations). But often it

is possible to additionally perform some research paradigms to collect data. When

the continuous EEG signal is recorded, a sequence of discrete time data is generated

by sampling in equidistant time intervals. The EEG voltage recorded in one channel

gives the difference between the voltages of two electrodes which are the recording

electrode and a certain electrode chosen as reference electrode. The clinical scalp

EEG is usually recorded with a sampling rate of 256 Hz - 512 Hz but the sampling

rate can be substantially higher in research applications. IEEG is often recorded at

even higher sampling rates because subdural signals contain components of higher

frequencies. This is necessary based on the Nyquist-Shannon-theorem (Shannon,

1949) which states that a continuous time-signal can be completely reconstructed

from a discrete time-signal when the sampling rate is larger than two times the

highest frequency contained in the signal. This means to reconstruct a signal with
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a maximal frequency of fmax a sampling rate > 2fmax is needed and the distance T

between recorded points of the discrete-time signal must fulfil T < 1/(2fmax).

3.2.2 Extraction of Phase and Power Values

An EEG signal is composed of different components which comprise regular vari-

ations (periodic sinus oscillations of different frequencies), event-related signal

changes and random noise. Because the signal is continuously shifting, data points

which are temporally close to each other are more closely related than observa-

tions further apart. Important measures associated with neural activity are phases

(e.g. phase synchronization, phase-locking) and amplitudes (e.g. power). These sig-

nals typically change frequency characteristics over time and time-frequency anal-

ysis becomes important. It provides complex-valued fields (i.e. two-dimensional)

over time and frequency domain simultaneously representing amplitude and phase.

Techniques include Hilbert transform, continuous wavelet transform and short-time

Fourier transform. Traditional Fourier transform is mostly appropriate for longer

signal segments and often not the first choice for short segments of neural activity.

With matched time-frequency resolution, these three spectral analysis approaches

are equivalent concerning phase and amplitude (Bruns, 2004).

Coordinates in the phase space can be used to describe the state of a harmonic

oscillation at a specific point in time (Fig. 3.1). The phase value describes the

position of a periodic oscillation definitely. Because of the periodicity of the sine or

cosine oscillation the phase value between 0 and 2π recurs after each period. The

EEG signal f can be described with its amplitude A and phase value φ at every

point in time as:

f (t) = A (t) eiφ(t) = A (t) (cos (φ (t)) + i sin (φ (t))) (3.1)

which results in

tan (φ (t)) =
sin (φ (t))

cos (φ (t))
=

Im (f (t))

Re (f (t))
(3.2)

The phase gives the angle and the amplitude gives the corresponding absolute value

(distance from origin) in these polar coordinates (Pikovsky et al., 2001).
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Figure 3.1: Phase φ(t) and amplitude A from a harmonic oscillation on the limit
cycle.

Butterworth Filter and Hilbert Transform

For the algorithm presented in this thesis, Butterworth filtering and Hilbert trans-

form is used to decompose the signal into neighbouring frequency components and

computing the analytic signal. Continuous wavelet transform is an alternative

method to get a time-frequency representation and is described at the end of this

section. To extract measures from different frequencies, EEG responses can be fil-

tered in a chosen frequency range by a second-order two-pass Butterworth filter

with a certain bandwidth. The Butterworth filter is a recursive digital filter that

suppresses the unwanted signal components. The filter order determines the sharp-

ness of the filter in the transition band (i.e. an increasing filter order increases the

attenuation beyond the cut-off frequency). It is given by the highest power of the

transfer function in the numerator or denominator. The transfer function describes

the dependency between input and output signal. With a normalized cut-off fre-

quency of f = 1 the transfer function H(s) for a second-order Butterworth filter is

H (s) =
K

s2 +
√
2s+ 1

. (3.3)

It can be transferred to other cutoff frequencies (Meyer, 2006). Importantly, this

filter preserves the phases that will be used as features in the classification. Addi-

tionally, the roll-off around the cutoff frequency is sufficiently sharp for low filter

orders and without ripples. This allows a combination of acceptably small edge
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effects with reasonably high filter accuracy.

To obtain the phase values the complex discrete-time analytic signal w(t) is

determined by the Hilbert transform of the signals. The complex Hilbert transform

sH(t) is added to the real part of the original signal s(t).

w (t) = s (t) + isH (t) (3.4)

This imaginary part is a version of the original signal with a shift of π/2. It is given

by a convolution with the function 1/πt (Kiencke, 1998):

sH (t) = s (t) ∗ 1

πt
=

1

π

∫

∞

−∞

s (τ)

t− τ
dτ (3.5)

(Fast) Fourier transform (see below) can be used to determine the analytic signal.

The Fourier transform has the characteristic that the Fourier transform F of the con-

volution of two functions is the product of the Fourier transforms of these functions

(Föllinger, 2003). This means for the Hilbert transform sH(t):

F (sH (t)) = F

(

s (t) ∗ 1

πt

)

= F (s (t)) · F
(

1

πt

)

. (3.6)

After this calculation the inverse Fourier transform is determined to obtain the

Hilbert transform (Pikovsky et al., 2001).

Based on the complex signals wj,k, the phases φj,k for each contact and the phase

differences ∆j,k between two contacts (c1 and c2) are extracted for each time point

j of each trial k.

φj,k = arctan

(

Im (wj,k)

Re (wj,k)

)

(3.7)

∆j,k = φj,k (c1)− φj,k (c2) (3.8)

The phases span the range [0, 2π) with zero representing the peak and π the trough

of the oscillation. Additionally, power values Powj,k can be extracted from these

complex signals.

Powj,k = Re (wj,k)
2 + Im (wj,k)

2 (3.9)
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Fourier Transform

With the Fourier transform a time-dependent signal can be converted to the fre-

quency domain. It has a perfect frequency resolution (for an unlimited signal) but

no time information. The obtained spectrum describes how much each frequency

contributes to the average power of the signal. It can be used for spectral analysis

of time series. For a continuous function, the Fourier transform is defined through

f̂ (w) =

∫

∞

−∞

f (t) e−iwtdt (3.10)

And the original signal can be determined by the inverse transform

f (t) =

∫

∞

−∞

f̂ (w) eiwtdw (3.11)

with w the angular frequency (units are radians per second) (Whitaker, 2000).

For a discrete signal (like a recorded EEG signal with equal time steps) the

discrete Fourier transform (DFT) is applied (Meyer, 2006). For a signal s[n] with

N sampling points, the discrete DFT is:

S [m] =
N−1
∑

n=0

s [n] e−i 2πmn

N , m = 0, ..., N − 1 (3.12)

and the inverse DFT:

s [n] =
1

N

N−1
∑

m=0

S [m] ei
2πmn

N , n = 0, ..., N − 1. (3.13)

To reduce the computing time (from O(N2) to O(N ·log2N)), Fast Fourier transform

is applied. It uses the symmetry of the spectrum as well as an optimized arithmetic.

The discrete Fourier transform has a limited time-frequency resolution ∆F = 1/T

(with segment length T ). This means that the frequency resolution is very coarse

for short segments (e.g. ∆F = 10 Hz for T = 100 ms). A finer time-frequency

resolution can be achieved, for instance, with Wavelet-based methods.
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Continuous Wavelet Transform

Continuous wavelet transform is another method to get representations of the signal

in the time-frequency domain. The signal s(t) is convolved with filter kernels wf (t)

called wavelets.

sw (t) = s (t) ∗ wf (t) =

∫

∞

−∞

s (τ) · wf (t− τ) dτ (3.14)

The wavelets are complex-valued oscillations multiplied by envelopes of different

shapes:

wf (t) = af (t) · ei2πft (3.15)

with each representing a certain frequency band centred around f . To modify the

frequency band, the chosen so called mother wavelet is varied by scale and translation

parameter. They correlate with the signal if it contains a similar frequency. The

obtained complex signal is equivalent to the analytic signal of the Hilbert transform.

A commonly chosen mother wavelet is the Morlet wavelet with a Gaussian envelope

wf (t) = e−t2/2σ2 · ei2πft (3.16)

where σ is the width of the Gaussian σ = n
2πf

and n the number of cycles. With the

constant ratio f/σ the bandwidth is proportionally increasing with frequency. This

might be useful to match the classical brain-signal frequency bands (Bruns, 2004).

In this case also, the convolution can be calculated via the Fourier transform where

the Fourier transform of the convolution is the product of the Fourier transforms of

the two functions (i.e. the signal and the wavelet).

3.3 Circular Statistics

Phase values are circular values meaning that they have a periodic structure. Com-

mon statistics could lead to inaccurate or even absurd results, therefore circular

statistics are used which take into account the periodicity of the data. Unit vectors

and trigonometric functions are applied in many calculations and in particular, the

Von Mises distribution, which is the circular analogue of the normal distribution,

which underlies most circular statistical tests.
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3.3.1 Mean Resultant Vector and Mean Direction

When the average of a circular dataset would be calculated as arithmetic mean, the

result might be incorrect (for example 2π − a and a has a true mean of 0 but the

arithmetic mean is π, which is exactly the opposite direction). The mean direction

can be calculated by transforming the angle values θi, i = 1, ..., N in unit vectors

ri =

(

cos (θi)

sin (θi)

)

and averaging the transformed vectors r̄ = 1
N

∑N
i=1 ri =

(

a

b

)

.

The mean direction θ̄ of the dataset is then calculated as the direction of the mean

resultant vector r̄:

θ̄ =























































arctan(b/a), a > 0,

arctan(b/a) + π, b ≥ 0, a < 0,

arctan(b/a)− π, b < 0, a < 0,

π/2, b > 0, a = 0,

−π/2, b < 0, a = 0,

undefined, b = 0, a = 0.

(3.17)

The length of the mean resultant vector lies between 0 and 1 and provides a measure

for the directional concentration of the data. The circular variance is calculated as

S = 1− R̄ (Berens, 2009).

3.3.2 Rayleigh Test

A significant Rayleigh test indicates that phases are not uniformly distributed but

exhibit significant phase accumulations and is especially powerful in identifying uni-

modal differences from a uniform distribution (Berens, 2009). The p-value of a

Rayleigh test is calculated based on the length of the mean resultant vector R̄ of

the data points xi, i = 1, ..., n.

R̄ =

√

√

√

√

(

1

n

n
∑

i=1

cos (xi)

)2

+

(

1

n

n
∑

i=1

sin (xi)

)2

(3.18)

p = exp

(

√

1 + 4n+ 4
(

n2 −
(

R̄n
)2
)

− (1 + 2n)

)

(3.19)
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3.3.3 Fisher’s Method

Fisher’s method is a statistical procedure testing a hypothesis for a collective based

on the results of independent statistical tests for the individuals of the collective

(Neuhäuser, 2011). It utilizes the uniform distribution of each p-value in [0, 1] under

the null hypothesis. This means that −2 ln pj is χ2 distributed with 2 degrees of

freedom and consequently−2
∑k

j=1 ln pj is χ
2 distributed with 2k degrees of freedom.

With χ2
2k,1−α indicating the (1− α)-quantile of the χ2 distribution with 2k degrees

of freedom, Fisher’s method gives a significant result for:

−2
k
∑

j=1

ln pj ≥ χ2
2k,1−α ⇔

k
∏

j=1

pj ≤ exp

(

−
χ2
2k,1−α

2

)

(3.20)

3.3.4 Circular Kruskal-Wallis Test

Significant differences of phase values and inter-electrode phase differences between

trials of different conditions can be determined based on a non-parametric multi-

sample test for equal circular medians similar to a Kruskal-Wallis test for linear data

(Berens, 2009). In this test procedure, the overall median θ is calculated based on

all N observations in the combined sample. Then the number of negative differences

mi in (−π, π], i = 1, ..., k, in every sample i as well as the total number of negative

values in the combined sample M = m1+ ...+mk are determined. The test statistic

P is compared to the 1− α quantile of the χ2
k−1 distribution and calculated as

P =
N2

M(N −M)

k
∑

j=1

m2
j

nj

− NM

N −M
. (3.21)

3.4 Support Vector Machine

An SVM algorithm will be developed in this thesis. The SVM separates a dataset

(~xi, yi), i = 1, ..., n in two classes via a hyperplane with ~xi being a k-dimensional

feature vector and yi indicating the corresponding class −1 or 1. When trained,

the sign of the function f(~x) should predict the value of y. For linearly separable

data in n dimensions there exists an n − 1 dimensional hyperplane which can be
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described as

f(~x) = ~w · ~x+ b = 0 (3.22)

with ~w a normal vector to the hyperplane and b an offset. Then the decision rule

will be

y =







−1, for f(~x) < 0

1, for f(~x) > 0.
(3.23)

Additionally, the hyperplane with the largest margin will be determined by maxi-

mizing the distance to the points nearest to the hyperplane. It is possible to find

two parallel bounding hyperplanes that separate the data with a distance as large

as possible and fulfil

yi(~w · ~xi + b) ≥ 1 (3.24)

For this so called fat plane structure the distance between the bounding hyperplanes

is twice the margin

2×margin = 2(~w · ~w)−1/2 (3.25)

To find the maximum-margin hyperplane, which is the hyperplane that lies halfway

between the bounding hyperplanes, ‖~w‖ has to be minimized subject to (3.24),

i = 1, ..., n. Some of the data points lie exactly on one of the bounding hyperplanes

(f(~x) = ±1) and are the so called support vectors of the solution.

To get rid of the strict assumption of linearly separable data the kernel trick

is used. A function ϕ maps the k-dimensional feature vectors into an embedding

space of a (much) higher dimension N . The idea is that the nonlinearly sepa-

rable data can be separated via a linear hyperplane in the higher N -dimensional

space. It is not necessary to know the mapping ϕ(~x) but use the kernel function

Kij = K(~xi, ~xj) = ϕ(~xi) · ϕ(~xj). This results in

f(~x) = ~w · ϕ(~x) + b =
∑

i

αiyiϕ(~xi) · ϕ(~x) + b =
∑

i

αiyiK(~xi, ~x) + b (3.26)

The kernel function must be symmetric and have nonnegative eigenvalues. Addition-

ally, any multinomial combination of kernel functions is a kernel function. For a given

kernel function K(, ), K(ϕ(~xi), ϕ(~xj)) is one for any ϕ. And K(~xi, ~xj) = g(~xi)g(~xj)
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3.4. SUPPORT VECTOR MACHINE

is always a kernel for any function g. A linear kernel function is given as

K(~xi, ~xj) = ~xi · ~xj.

To allow for data points that are not correctly classified by the hyperplane, a

slack variable ξ with ξ = 0 for correctly and ξ > 0 for wrongly separated data

is added. Based on a chosen regularization parameter λ in the range 0 < λ < ∞,

which varies accuracy and possible robustness of solutions, the optimization problem

changes to:

minimize:
1

2
~w · ~w + λ

∑

i

ξi (3.27)

subject to: ξi ≥ 0,

yi(~w · ~xi + b) ≥ 1− ξi, i=1,...,n

This slack variable allows there to be some solution, also for not linearly separable

data (Press et al., 2007).

3.4.1 Cross-Validation

When using cross-validation, the classification algorithm is trained iteratively with

subsets of the complete data set to avoid overfitting and allow for generalization

to new data. To do so, the data is split into a chosen number of equal folds (e.g.

five folds for five-fold cross-validation). Then, one subset each is hold out as test or

validation set and the remaining (e.g. four) folds are used to fit the model. The folds

can even be chosen in an extreme way, where all data except one observation is used

for training (leave-one-out). Prediction performance for each model is determined

using the hold-out observations. Model fitting and validation is repeated for each

fold. The overall accuracy is then estimated as the average performance over all

accuracies. This means, all data is used for training and testing, but each time the

model is tested with data that was not included in training. This way, the optimistic

bias arising from overfitting (when the same data is used to train and test the model)

is reduced (Bishop, 2006).
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3.5 Summary

The background information and theoretical foundations previously outlined in this

chapter have been used in the development of the SVM algorithm for intended

application to neurocognitive EEG datasets. Understanding the background of how

the neurocognitive data is derived allows for the choice of measures that can be

used as features, to be better informed. For instance, information regarding the

function of different brain structures can indicate which EEG recording channels

are of interest, and in turn the relationship between EEG oscillations and memory

processes help identify EEG measures that are relevant for the specific process (e.g.

power or phase values). Time series analysis is used for feature extraction and the

algorithm is concerned with the periodic structure of the data by computing circular

statistics. Further details of the SVM algorithm are given in the next chapter.
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4 | Pattern Recognition in EEG

Data

In this chapter the prediction algorithm for intended application to neuronal datasets

is described. It has been specifically designed for pattern recognition in EEG, ex-

pressly that of iEEG data. The method has been roughly described in Höhne et al.

(2016) and Derner et al. (2018b).

Prediction and classification algorithms can address categorization of data to

any chosen number of categories. The classification method has to be developed

accordingly for binary or multiclass classification. In medicine and neuroscience,

there are many applications where it is interesting to differentiate between only two

different states (for example predicting memory formation remembered vs. forgotten

(e.g. see Chapters 5 and 6), perception of a signal near a threshold (e.g. Mathewson

et al., 2009) or positive vs. negative response to a treatment (e.g. Costafreda et al.,

2009)). The methods outlined in this thesis focus on analysing EEG data with

a two-class classification using a support vector machine. The most recent brain

models concentrate increasingly on individual subjects instead of one overall model.

Here, the same algorithm is applied for each subject but separately on a subject

by subject basis. The results are still generalizable, but an underlying mechanism

may become more evident on a single subject basis that might be hidden otherwise

(i.e. when combining several subjects) due to inter-individual differences. Based

on this information, features depending on frequencies and time points are selected

individually for each subject. Importantly, the circular characteristic of EEG phases

is considered.

After preprocessing of the EEG data, time windows and frequencies with statis-

tically significant phase clustering across patients are identified. Then for each pa-

31



CHAPTER 4. PATTERN RECOGNITION IN EEG DATA

tient, time periods and frequencies for which the absolute phases and inter-electrode

phase differences differ between both conditions are determined. Finally, a SVM is

trained using the phases and phase differences from the most significant time win-

dows and frequencies. The workflow of the proposed method is sketched in Fig. 4.1.

In particular, the algorithm is concerned with the periodic structure of the data,

the high number of potential datapoints and features, as well as the typically small

and unbalanced sample size. Importantly, the overall aim was to employ a minimal

set of features for successful prediction, for ease of exposition, on the one hand, and

as such an approach is most closely related to possible practical applications (e.g.

controlling one of the features by deep brain stimulation), on the other hand.

Figure 4.1: Workflow of the proposed method. Neurocognitive data is prepro-
cessed for extraction of measures of interest. The prediction procedure uses 5-fold
cross-validation. Features are preselected in the training dataset (60 %) and the final
features are determined based on prediction results of the validation data (20 %).
The overall prediction accuracy is calculated as the average of prediction accuracies
of each fold.
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4.1. ARTEFACT REJECTION

4.1 Artefact Rejection

An EEG signal is typically filtered after recording to eliminate typical artefacts. A

bandpass-filter is applied to remove artificial high or low signal components caused

for example by movement or potentials generated by muscle cells. A notch filter is

used to remove artefacts caused by power lines.

EEG data also often contain artefacts caused by muscle activity (blinking, chew-

ing, and jaw muscle activity) as well as pathologic activity (e.g. epileptic spikes in

iEEG data recorded in epilepsy patients). Trials that included abnormally high am-

plitudes as well as abrupt rises or falls should be removed by an artefact rejection. To

keep signal quality as consistent as possible, automated artefact rejection algorithms

should be preferred to manual artefact rejection. Here an algorithm implemented

in MATLAB (MATLAB Version 8.2; The MathWorks Inc.) is chosen. Based on

time intervals during which neural processes take place and keeping in mind that

preprocessing might bring edge effects, trials are selected for a time window from

1000 ms before to 2500 ms after stimulus onset. The mean x̄ (or x̄g) and standard

deviations s (or sg) for each segment is calculated for the data points xi, i = 1, ..., n

as well as for the gradients gi = xi+1 − xi, i = 1, ..., n − 1 (differences between two

consecutive data points).

x̄ =
1

n

n
∑

i=1

xi, x̄g =
1

n− 1

n−1
∑

i=1

(xi − xi+1) =
1

n− 1

n−1
∑

i=1

gi, (4.1)

s2 =
1

n− 1

n
∑

i=1

(xi − x̄)2, s2g =
1

n− 2

n−1
∑

i=1

(gi − x̄g)
2,

If one segment shows data points or gradients diverging more than five standard

deviations from the mean this segment is eliminated for all contacts. So each data

point xi within a segment has to fulfil

|xi − x̄| < 5s ∧ |gi − x̄g| < 5sg (4.2)

If data still shows artefacts (observed by visual inspection) after the automatic

artefact rejection it should be considered to exclude a patient from further analysis

and only keep the data from the other patients for classification.
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4.2 Feature Selection

The SVM algorithm will use a five-fold cross-validation to determine the overall

prediction accuracies. For feature selection, an additional validation dataset is used.

For each subject, the dataset is randomly divided in a set of 60 % training, 20 %

validation and 20 % test trials.

To extract measures from different frequencies, EEG responses are filtered by

a second-order two-pass Butterworth filter with a bandwidth of 1 Hz. For SVM

classification, frequencies from 0.5 Hz to 50 Hz in 0.5 Hz steps were considered

because these frequencies cover the biological relevant frequency bands that occur

in EEG signals. The complex discrete-time analytic signal is determined by the

Hilbert transform of the signals to extract the phase values of each contact and

phase differences between two contacts each. Additionally, power values can be

extracted from these complex signals. In order to avoid edge effects, EEG responses

were segmented from -1000 ms to 2500 ms with respect to stimulus onset, and

after filtering and Hilbert-transform 500 ms at both sides are discarded. The free

FieldTrip toolbox for MATLAB is used for filtering of the signal and extraction

of phase values (Oostenveld et al., 2011). As measures for each time point and

frequency are extracted in this step, the statistical tests that are described in the

following can be calculated in parallel for each time-frequency point. To further

reduce computing time, also filtering and Hilbert transform for each frequency can

be parallelized for feature extraction beforehand.

For circular statistics the free CircStat toolbox for MATLAB is used (Berens,

2009). First to get an impression of the phase values contained in the dataset

a Rayleigh test (function circ rtest) is performed for each time window and each

filter frequency separately for trials of both conditions. A significant Rayleigh test

indicates that phases are not uniformly distributed but exhibit significant phase

accumulations. To identify overall effects Rayleigh tests are performed for each of

the k subjects individually and p-values pj, j = 1, ..., k, are then combined using

Fisher’s method.

This step does not provide any information about potentially contained dif-

ferences between conditions but about frequencies with high phase accumulations.

This information could be used to reduce the frequency bands considered for feature
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selection and thereby reduce the calculation time for the entire algorithm. When

background information about the data is knows (for example from previous studies

or common knowledge) this step might be omitted.

Frequencies and time intervals with significant differences of phase values and

inter-electrode phase differences between trials of different conditions were selected

for each patient based on a non-parametric multi-sample test for equal circular

medians similar to a Kruskal-Wallis test for linear data (function circ cmtest). These

tests are performed on the training data set only (60 % randomly selected trials).

In other words, there is no overlap between the 60 % of data used for testing for

differences in median phase direction and the test data used for classification. Based

on the overall result of the Rayleigh test the frequency range for classification is

chosen (frequency range with most pronounced phase accumulations is chosen). For

each patient and each measure the frequencies and time windows with the 10 most

significant differences between conditions were preselected as features. To further

reduce the number of preselected features a validation data set (20 % trials) is used

and a support vector machine with a linear kernel classifying the trials into both

categories is applied to this data set. Based on the highest prediction accuracies in

the validation data one time-frequency point for each measure is selected as final

features for classification of the test data (remaining 20 % trials) for each patient

and measure. Importantly, frequency and time points are independently selected

for each measure (e.g. phases, phase differences, phase shifts or power values). The

workflow of the proposed method is sketched in Fig. 4.1.

4.3 Classification

One specific frequency and time point will be selected for each patient and measure

based on significant differences between the measures for both conditions in the

training trials.

Phase is a circular quantity, hence to avoid calculation errors and account for

the periodicity of the data, the real and imaginary part Re(φ(t)) and Im(φ(t)) of

the complex representation of the phases are entered as features to a support vector

machine instead of the phase values φ(t) itself, resulting in a doubling of the number

of features. (In other words, the phases and phase shifts are deconstructed into their
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sine and cosine contributions.)

Because neurocognitive data (i.e. EEG data) is often unbalanced and has

small trial numbers the classification procedure is performed using five-fold cross-

validation with adjusted numbers of randomly chosen training trials. The data is

down sampled by randomly choosing n training trials for the condition with the

higher number of trials with n being the number of trials in the other condition.

(Other methods for adjusting the number of training trials were also tested; see

Chapter 4.4). The overall classification accuracy is reported as the averaged accura-

cies from these five cross-validation runs. Classification efficiency is evaluated by a

non-parametric label permutation approach (Maris and Oostenveld, 2007). Group

labels are randomly shuffled 1000 times and then these surrogate trials are classified

again for all five-folds using the same classification procedure as for the original

trials. The statistical significance of above chance classification performance (95 %

threshold) is evaluated by ranking the mean accuracy of the real data within the

accuracies obtained from the label shuffled data. Exactly stated, in order to con-

form to the 95 % threshold, the accuracy of the real data had to rank within the

50 highest accuracies of the 1000 label shuffled data. The support vector machine

is applied to new trials and classification accuracies are evaluated for each patient

separately.

4.4 Optimization

After deciding how the algorithm should handle the circular EEG data and which

measures will be selected as features, the algorithm can be optimized. To do so, the

algorithm was trained using a real dataset and prediction accuracies for different

parameter choices were compared.

4.4.1 Slack Variable

When training a SVM with a linear kernel (min 1/2~w · ~w+λ
∑

i ξi; see Chapter 3.4),

a hyperplane that separates the data as well as possible while having the largest

minimum margin is searched. The λ parameter is a regularization parameter which

determines how much misclassification is allowed during optimization. A small λ

gives a large margin but allows more outlier. In opposite, a large λ chooses a
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smaller margin in favour of more correctly classified training points. Tuning λ is

an important step. Trying to classify each training sample correctly or allowing a

too large training error can reduce generalizability of the classifier to new data. λ

should be chosen dependent from the data. This can be realized via a grid search

where the SVM is trained with different instances of λ and the optimal parameter

is chosen via validation data (additional to the final test set and distinct from the

training data). In the application described in this thesis, λ = 1 was used.

4.4.2 Sample Size

Handling different group sizes is crucial when applying machine learning algorithms.

Especially for small trial numbers, training results can be highly corrupted by un-

balanced group sizes. For example, when differentiating between two classes with

90 % of trials in the first class and only 10 % in the other, a training algorithm

would achieve an accuracy of 90 % by simply assigning all trials to the first group.

Hence, for the presented algorithm, sample sizes will be adjusted before entering the

SVM. Besides, it is possible to account for different group sizes in the test dataset

by evaluating the classification performance for each class separately (sensitivity

(true positive rate) and specificity (true negative rate) in a binary classification)

and calculating the overall prediction accuracy as mean between these individual

accuracies.

For adjusting group sizes, three different methods were compared using a dataset

consisting of real iEEG data (for the entire analysis of this data, see Chapters 5, 6).

Resampling

The number of trials m in the smaller sample ssmall can be increased to the number

of trials n in the larger sample sbig by randomly selecting trials from ssmall and

adding them to this group (duplicating n−m trials until the sufficient group size n

is reached).

Downsampling

In a similar manner to resampling, the number of trials n in the larger sample can

be reduced to the size m of the smaller sample by randomly selecting trials from sbig
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and discarding them (n−m trials) from the training dataset for classification.

Upsampling

The number of trials in the smaller sample (ssmall) can also be augmented by adding

artificially constructed trials to that group. These trials should of cause fulfil all

characteristics of the original dataset and fit as good as possible in this particular

group. In the approach examined for this comparison, for each new datapoint, two

datapoints from ssmall were selected in a random way. To do so, the phase value a1

of the first datapoint was chosen randomly from the complete dataset ssmall and the

phase value a2 of the second datapoint was chosen among the five nearest neighbours

to the first point. Then, a new datapoint was inserted randomly which lies between

the two original datapoints. Importantly, a random distance between the two points

is chosen but the special characteristic of the circular data is maintained (i.e. the

new datapoint lies on the unit circle).

When a1 ∈ [0, 2π) and a2 ∈ [0, 2π) and a1 < a2 the minimal distance between

the two phase values is determined as min(d1, 2π − d1) with d1 = a2 − a1. To get

a new simulated datapoint a random part of this distance d = d1 or d = d1 − 2π

respectively, is added to a1 to get a new phase value: a1 + rd, r ∈ [0, 1]. This new

datapoint lies between the two original datapoints and on the unit circle. With the

new phase value and the distance 1 of the unit circle, its sine and cosine attributes

can also be determined.

Comparison Based on Real Data

To compare the three different methods for adjustment of group sizes, a real iEEG

dataset was used. Three different features (rhinal phase, hippocampal phase, rhinal-

hippocampal phase difference) were selected and entered separately into a SVM (de-

constructed into their sine and cosine contributions). The samples were adjusted

using resampling, downsampling or upsampling and the resulting prediction accu-

racies were compared.

For all three tested features, there was no notable difference between the three

different adjustment methods (repeated measures ANOVA all p > 0.7). The overall

accuracies (∼ 64 %) as well as sensitivity (∼ 65 %) and specificity (∼ 63 %) gave
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Figure 4.2: Adjustment of sample sizes. Average prediction accuracies (sensi-
tivity and specificity) in ROC area for three different adjustment methods. A SVM
was trained with rhinal phase, hippocampal phase or rhinal hippocampal phase dif-
ferences of adjusted samples each. There were no notable differences between the
three methods (repeated measures ANOVA all p > 0.7).

approximately equivalent results (see Fig. 4.2). This means that each method could

be adopted. Upsampling is not the first choice because it adds artificial datapoints

that are just assumed to fit the real dataset. Down- and resampling both select

random portions of the data and provide more reliable results when the procedure is

repeated several times. Because downsampling is the more classically used approach

in neuroscience, this method is chosen for sample size adjustment.

4.4.3 Time Windows

Besides feature extraction for each selected frequency in parallel, the calculation

effort might be optimized by reducing the number of data points used for the pre-

diction algorithm. EEG signals are often recorded with a high sampling rate but are

changing continuously with time depending on the actual state. In the following step

the number of time points is reduced to minimize calculation effort and smooth the

signal. For this purpose, phase and power values are averaged for non-overlapping

successive time windows for each trial and frequency. EEG signals typically have a

minimal sampling rate of 200 Hz. Based on this sampling rate, the prediction accu-

racy of the SVM algorithm was determined for averaged values from time windows

with a duration of 5 ms (original resolution), 10 ms and 20 ms (which would be

related to averaging across a whole 50 Hz cycle).
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A SVM was trained separately for five different features of a real dataset: rhinal

phase, hippocampal phase, rhinal-hippocampal phase difference, rhinal power, hip-

pocampal power (see Chapter 5 for the complete analysis of this dataset). Prediction

accuracies averaged across these five features were determined and compared. Sen-

sitivity and specificity as well as the number of results significantly above chance

level were also taken into account. (During this step, no high prediction accuracies

are expected because the algorithm is trained with single features only.)

Average prediction accuracy for 5 ms time intervals was 60.0 %, 59.9 % for 10 ms

and 58.7 % for 20 ms intervals. These results do not seem to show large differences

but the tendency remains the same when regarding sensitivity (61.6 % for 5 ms,

61.2 % for 10 ms and 60.5 % for 20 ms) and specificity (58.7 % for 5 ms, 58.6 %

for 10 ms and 56.9 % for 20 ms) separately (see Fig. 4.3). Additionally, a repeated

measures ANOVA showed significant differences tested across all 27 subjects of the

dataset (F2,78 = 3.1993, p = 0.0489; paired t-tests 5 ms vs. 10 ms p = 0.72, 10 ms

vs. 20 ms p = 0.09, 5 ms vs. 20 ms p = 0.05). When considering the number of

patients with prediction accuracies above chance level, results for the 20 ms time

window (40.7 %) were clearly worse than those for the 5 ms (45.2 %) or 10 ms

(45.9 %) time windows.

Based on these results averaging values in time windows with duration of 10 ms

were chosen for the algorithm (250 windows in total for segments with 2500 ms

length). With regard to the prediction algorithm, these values seem to contain as

much information as the original data points (original resolution with 5 ms length

for the analysed dataset) but reduce the calculation time for feature selection con-

siderably (already reduced by half for a relatively low sampling rate of 200 Hz).

4.4.4 Generalized Linear Models

Since regression analyses like generalized linear models are still the most common

models in clinical research, the developed method is compared to this traditional

analysis method by building a linear model using a real dataset. Here, the SVM

achieves clearly higher prediction accuracies than GLM (> 60 % vs. ∼ 50 %). (See

Chapters 5.2 and 6.2 for results reported based on SVM and 6.3 for results based

on GLM).
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Figure 4.3: Merged time intervals. Mean prediction accuracies across five sin-
gle features (rhinal phase, hippocampal phase, rhinal-hippocampal phase difference,
rhinal power, hippocampal power). Datapoints that entered the algorithm as fea-
tures were averaged across time intervals of different length (5 ms, 10 ms, 20 ms).
Left: mean overall accuracies as well as results for sensitivity and specificity. Right:
boxplots for prediction results across all 27 subjects

4.5 Summary

The SVM algorithm presented in this thesis is designed to cope with the com-

plex data structure and to avoid overfitting of the typically high-dimensional EEG

datasets. The features used are selected individually for each patient and feature

preselection is based on tests comparing phase accumulation and phase directions

derived from circular statistics (i.e. Rayleigh and Kruskal-Wallis tests) for different

frequencies and time windows of averaged datapoints. The periodic structure of the

data is also taken into account when the phase features enter the SVM decomposed

in their sine and cosine parts, and the small and unbalanced sample size is consid-

ered through downsampling, cross-validation and repeated runs. Importantly, the

algorithm is designed to reveal as much biological information as possible within the

neurocognitive data and uncover basic mechanisms. Hence, in the next chapter, its

application to a real iEEG dataset is presented.
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5 | Prediction of Successful Mem-

ory Encoding Based on Single-

Trial Rhinal and Hippocampal

Phase Information

In this chapter, the previously described algorithm that is developed to analyse

neurological data and investigate basic functions is applied to a real iEEG dataset.

The data was recorded from the mediotemporal lobe of 27 presurgical epilepsy pa-

tients who were asked to perform a continuous word recognition paradigm. The

algorithm shall examine the relation between phase values and memory formation.

Phase information during the encoding trials is used as features for the support

vector machine to predict subsequent remembering vs. forgetting. (The content of

this chapter has been previously published in Höhne et al. (2016).)

Fell et al. (2008) investigated how closely different mediotemporal EEG mea-

sures are related to memory formation. They analysed the dataset regarding av-

erage event-related potentials, changes in rhinal and hippocampal power spectrum

and measures reflecting the stability of phase values and phase differences across

trials (i.e. inter-trial phase-locking and phase-synchronization between rhinal cor-

tex and hippocampus). They found that memory formation comes along with phase

regulation in the rhinal cortex and hippocampus shortly after stimulus onset and

that phase-locking values showed the largest difference between subsequently re-

membered and forgotten trials compared to the other examined measures. Against

the background of facilitation of neural processing and cellular plasticity through os-

cillatory phases via spike-field coupling and thereby promotion of memory formation
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(e.g. Fell et al., 2011; see Chapter 3.1.3), there should be ideal and inappropriate

phases for successful memory encoding. The results from the previous study reveal

a stronger phase accumulation for subsequently remembered compared to forgotten

trials but give no information if the phases are centred around different or the same

values. Based on this information, it is an open question whether single-trial phase

values per se can predict successful memory formation and trials can be correctly

classified into remembered and forgotten based on selected phase values (or if the

phase regulation is rather a reaction to something else like the word presentation).

First, encoding-related responses for remembered and forgotten words are ana-

lysed to explore the effect of absolute single-trial phase values as relevant predictor

of subsequent memory performance. Then, it is examined if prediction based on

single-trial phase values is superior to prediction based on single-trial power.

Results summary : Prediction of successful memory encoding was possible in

the majority of patients (23 out of 27) based on absolute single-trial phase values

with an overall classification accuracy of 69.2 % across all subjects. Importantly,

only three features were chosen, one rhinal phase, one hippocampal phase and one

rhinal-hippocampal phase difference. Successful prediction is also possible when

features are selected from the prestimulus interval only (19 out of 27 patients with

above chance prediction and an overall accuracy of 65.2 %). Prediction based on

absolute single-trial phases outperforms prediction based on single-trial power. Also

combining absolute phase measures with single-trial power did not increase predic-

tion accuracies significantly.

5.1 Material and Methods

Patients

The EEG signals were recorded in 31 right-handed presurgical epilepsy patients (14

females, 16 - 61 years, mean age 40) who ranged in duration of their pharmacoresis-

tant unilateral temporal lobe epilepsies from 4 to 57 years (mean 23 years). Based

on magnetic resonance imaging scans or post-surgical histological examinations, 16

patients suffered from unilateral hippocampal sclerosis (right: 11, left: 5), 9 from

unilateral extrahippocampal lesions without signs of hippocampal sclerosis (right: 6,
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left: 3), 3 from unilateral hippocampal sclerosis with additional extrahippocampal

lesions on the same side (right: 1, left: 2) and 3 patients had no clear lesion. All but

two patients underwent subsequent epilepsy surgery after implantation. At the time

of recording, all patients received anticonvulsive medication (plasma levels within

the therapeutic range). Each patient performed a continuous word recognition task

while recording as part of the presurgical routine and gave written informed consent

to participate in the study and for the use of the data for research purposes. The

study was approved by the local ethics committee of the Medical Faculty at the

University of Bonn.

Experimental Paradigm

A continuous word recognition paradigm was performed (Fig.5.1 A). A total of 450

frequent German nouns (300 different words) were presented consecutively of which

150 words were displayed only once and the other were shown with one repetition.

The lag between the first and the second presentation of a word varied between a

short lag of 3 to 6 words in 50 % of the trials and a long lag of 10 to 30 words

in the other 50 %. The word stimuli were presented in white colour on a black

background and lasted 300 ms with an individually adjusted inter-stimulus interval

of 1600 ms (n = 6), 2000 ms (n = 16) or 2700 ms ± 200 ms (n = 9) based on the

subjects’ abilities (evaluated based on their performance in a few pilot trials). The

adjustments aimed to enable patients to respond to each word using one of two keys

which they pressed with their right and left forefingers. They had to decide after each

presentation if the word has been displayed before (old) or not (new). Depending

on whether a word was correctly identified (i.e. correctly recognized as “old”) or not

(i.e. wrongly labelled as “new”) at the second presentation, responses to the first

presentation were classified as subsequently “remembered” or “forgotten”. The EEG

recordings related to the first presentation of words shown with one repetition were

analysed and used for prediction applying the presented SVM algorithm. If only a

small number of words were recognized correctly (bad performance with less than 30

correctly recognized “old” or “new” words) or if ERPs were defective through sharp

waves or spikes, recordings were repeated with a parallel version of the continuous

word recognition task on the following day. In these cases, the data of the second

recordings were used for the analyses.
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Figure 5.1: A: Con-
tinuous word recog-
nition paradigm. Sub-
jects had to remember
common German words
and trials of the first
presentation were classi-
fied as subsequently re-
membered or forgotten
based on the response
to the second presenta-
tion. B: Electrode im-
plantation site. Only
recordings from contacts
contralateral to the ictal
onset zone were included
in the analysis.

EEG Recordings

Intracranial depth electrodes with 10 platinum contacts were implanted stereotacti-

cally along the longitudinal axis of the hippocampus. Electrode contact placement

was ascertained based on the individual MRIs and comparison with standardized

anatomical atlases (e.g. Duvernoy, 1988). Each patient had at least one contact in

the rhinal cortex and one in the hippocampus. IEEG was recorded using a sampling

rate of 200 Hz, the signals were referenced to linked mastoids and bandpass-filtered

from 0.01 Hz (6 dB/octave) to 70 Hz (12 dB/octave). Only recordings from con-

tacts contralateral to the ictal onset zone were included in the analysis (Fig. 5.1 B).

Then, for each patient one rhinal and one hippocampal electrode contact was chosen

based on the MRI data and average ERPs. The rhinal (RH) contact was defined

as anatomically located within the anterior parahippocampal gyrus with the largest

mean amplitude (new words) of the negative component between 200 ms and 600 ms

(N400 component, Grunwald et al. e.g. 1999). The hippocampal (HI) contact was

defined as located within the hippocampus and showing the largest mean ampli-

tude (new words) of the positive component between 300 ms and 1500 ms (P600

component, Fernández et al. e.g. 1999; Ludowig et al. e.g. 2008).
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Because lateralization of verbal memory in MTL (mediotemporal lobe) epilepsy

patients is variable due to functional shifts (e.g. Helmstaedter et al., 2006), EEG

measures from right and left hemisphere were combined for statistical analyses and

figures.

Artefact Rejection

The automated artefact rejection algorithm was applied to remove the segments with

abnormal high amplitudes or abrupt signal changes from the hippocampal and rhinal

contacts. On average, 14 % of the trials were removed as a result of the artefact

rejection. After the automatic artefact rejection, visual inspection revealed that the

data from four patients still showed artefacts and therefore they were excluded from

further analysis resulting in 27 patients for classification.

Extraction of Phase and Power Values

Phase and power values as well as the phase differences between rhinal cortex and

hippocampus were extracted for each time point of each trial from -500 ms to 2000 ms

with respect to stimulus onset using a second-order two-pass Butterworth filter with

1 Hz bandwidth in a frequency range from 0.5 Hz to 50 Hz (0.5 Hz steps) and Hilbert

transformation as described in Chapter 3.2.2.

For each measure, values were averaged for non-overlapping successive time win-

dows of 10 ms duration for each trial and frequency. For the resulting 250 time

windows per frequency, Rayleigh tests were performed separately for “later remem-

bered” and “later forgotten” trials for rhinal and hippocampal phase values as well

as for rhinal-hippocampal phase differences.

Prediction of Subsequent Memory

Features to predict subsequent memory (remembered vs. forgotten trials) were given

by one rhinal phase, one hippocampal phase and one rhinal-hippocampal phase

differences. Features were selected as described in Chapter 4.2.

A non-parametric multi-sample test for equal circular medians for “later remem-

bered” vs. “later forgotten” trials was performed for each time-frequency point of
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the training data set for each patient. For each measure, from the 10 most sig-

nificant time-frequency points, one was selected as final feature for classification of

the test data (20 % trials) based on the highest prediction accuracies of the SVM

classification in the validation data set (20 % trials). The five-fold cross-validation

classification algorithm with adjusted numbers of trials was applied to the real and

imaginary part of the phases resulting in a doubling of the number of features.

The significance of classification accuracies was evaluated for each patient based on

non-parametric label permutation statistics.

To compare prediction capabilities of power to absolute phase values, the same

procedures which were applied to the rhinal and hippocampal phase values and phase

differences were independently applied to these measures (i.e. frequency and time

points were selected individually for each phase and power measure). Importantly,

power values are no circular quantity and therefore the power values were entered

to the classification algorithm unmodified, also, power values are only calculated

for the rhinal and hippocampal channel but not as difference between these two

contacts.

Additional Classifications

For the classification based on absolute phase values and phase differences two differ-

ent frequency ranges were considered and their results were compared. First, based

on the frequency range with most pronounced phase accumulations in the Rayleigh

test, the restricted frequency range from 0.5 Hz to 13 Hz was considered for feature

selection. Second, all frequencies up to 50 Hz were included. Additionally, the time

windows limited to the prestimulus interval (-500 ms to 0 ms) were used for feature

selection.

5.2 Results

Behavioural responses

On average, of all repeatedly presented words, 66.7 % ± 21.3 % (mean ± s.d.) were

later successfully remembered as old (hits). Presented new words were wrongly

categorized as old (false alarms) in 23.8 % ± 30.7 % of all cases. Hits minus false
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alarm rate was significantly above zero (paired t-test; p < 10−7). Reaction times at

the time of encoding did not differ between subsequently remembered and forgotten

words (remembered: 878 ms ± 161 ms; forgotten: 882 ms ± 232 ms; paired t-test

t30 = 0.175, p = 0.86).

Phase Accumulation

First, frequency bands with significant phase accumulations across subjects were

identified for rhinal and hippocampal phase values and rhinal-hippocampal phase

differences within the frequency range from 0.5 Hz to 50 Hz (0.5 Hz steps). P-values

of Rayleigh tests for each patient were combined using Fisher’s method for each

time-frequency point (non-overlapping 10 ms time windows) (Fig. 5.2). For all three

measures, rhinal and hippocampal phases and phase differences, accumulations were

mostly prominent in the low frequency range up to 13 Hz, mainly in the time range

between -200 ms and 800 ms. Further accumulations were found for phase differences

in the gamma frequency range between 40 Hz and 50 Hz. An accumulation of the

rhinal-hippocampal phase difference points to a synchronization with a consistent

coupling phase between the two regions (phase lags were clustered around zero). The

extensive examination of possible influence of volume conduction is not discussed in

this thesis (since it does not provide important information for the presented SVM

algorithm) but data and control analyses addressing the possible influence can be

found in detail in the supplementary material in Höhne et al. (2016).

Differences Between Conditions

Then, a non-parametric multi-sample circular analogue to the Kruskal-Wallis test

was performed on the training data trials for each patient individually to identify

frequencies and time intervals with significant differences in median phase direction

between “later remembered” and “later forgotten” trials for each patient. Based on

the overall results of the Rayleigh test, the two frequency ranges up to 13 Hz and up

to 50 Hz were considered for the analysis. For the frequency range up to 13 Hz, sig-

nificant (p < 0.05) differences between conditions were found in 2.9 ± 1.9 frequencies

per measure (rhinal and hippocampal phase values and rhinal-hippocampal phase

differences) with a mean length of significant intervals of 36 ms ± 24 ms on average
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Figure 5.2: Results of the Rayleigh tests. Fisher combined p-values of Rayleigh
tests for phase values within rhinal cortex (A), hippocampus (B) and the phase
differences between rhinal cortex and hippocampus (C) under the conditions “later
remembered” (left column) and “later forgotten” (right). Colours indicate p-values
according to a logarithmic scale, with all values > 0.05 coloured in dark cyan.
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across patients. Patients showed significant differences in 8.9 ± 6.1 frequencies with

a mean length of 38 ms ± 14 ms regarding frequencies up to 50 Hz.

The test results for one exemplary patient are shown in Fig. 5.3 (frequency range

up to 13 Hz). For this patient the most significant differences between conditions

were detected at a frequency of 4.5 Hz for rhinal phase, at a frequency of 2.5 Hz

for hippocampal phase, and at a frequency of 11.5 Hz for the rhinal-hippocampal

phase difference. Fig. 5.4 shows the differences between conditions averaged over

trials for these three frequencies. In this example, the rhinal phase difference is

slightly negative for times up to 600 ms and then drifts to increasingly positive

values up to π. For the hippocampus, the phase difference drifts from close to zero

during the prestimulus time range towards −π and further to 2π in the poststimulus

range. The condition difference of rhinal-hippocampal phase differences starts from

slightly negative values in the prestimulus range and then drifts to values up to π

and afterwards back to zero in the poststimulus range. The exemplary patient is

chosen in a way that it shows comparable results to the other subjects and does

not represent extreme outcomes. Results of two other patients (one with more and

one with less pronounced differences) can be found in the supplementary material

in Höhne et al. (2016).

Classification Results

One rhinal phase, one hippocampal phase and one rhinal-hippocampal phase differ-

ence were chosen as features for classification from individual time-frequency points

for each patient based on the results of the circular version of the Kruskal-Wallis

test and classification accuracies in the validation data sets. The frequency range

up to 13 Hz was considered for feature selection based on the results of the Rayleigh

test. Alternatively, features were selected from an extended frequency range up to

50 Hz. Table 5.1 gives a list of selected frequencies and time points for each patient

for both options when considering the whole time range.

The selected phase values for the exemplary patient are shown in Fig. 5.5 (fre-

quencies as above; please see supplementary material in Höhne et al. (2016) for two

other examples). The rhinal phases concentrate at an angle of 2.37 ± 1.37 (average

angle in radians ± angular deviation) for the “later remembered” and at 1.84 ± 1.12

for the “later forgotten” condition. Hippocampal phases concentrate at 5.62 ± 1.14
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Figure 5.3: Circular
Kruskal-Wallis test.
P-values for the tests “later
remembered” vs. “later for-
gotten” for one exemplary
subject (pat13) for frequencies
up to 13 Hz for the phase
values within rhinal cortex
(A), hippocampus (B) and
rhinal-hippocampal phase
differences (C).

Figure 5.4: Mean phase differences be-
tween “later remembered” and “later forgotten”
over time for one exemplary subject (pat13).
Mean phase differences for the rhinal phase (A),
hippocampal phase (B) and rhinal-hippocampal
phase difference (C) averaged over trials at the fre-
quency that was selected for classification. Line
width shows circular variance reduced by factor
5. The coloured line at the bottom indicates the
p-values of the tests for differences between condi-
tions. Green lines mark zero and ±π.
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versus 3.61 ± 1.32 and rhinal-hippocampal phase differences at 6.07 ± 1.25 versus

0.65 ± 1.30 for prestimulus intervals.

Table 5.2 gives a list of the frequencies and time points chosen as features when

feature selection was based on time windows limited to the prestimulus range. It

may be possible that the Butterworth filtering has caused some temporal smearing

of the poststimulus activity into the prestimulus domain. Filtering simulated signals

with the chosen filter characteristics shows that such temporal smearing may extend

up to half the cycle length of the filter frequency (e.g. 100 ms for 5 Hz). Based

on these results, 39 (24.1 %) of the 6 x 27 = 162 values listed in Table 5.2 may be

affected.

Applying the presented support vector machine, the overall classification accu-

racy of correct classifications into “later remembered” and “later forgotten” (aver-

aged over all 27 subjects) for the frequency range up to 13 Hz was 66.2 %. For this

frequency range, 21 subjects achieved individual classification results significantly

above chance based on non-parametric label permutation statistics. The average

accuracy was 67.9 % when regarding only these subjects with above chance classifi-

cation. By using features from all frequencies up to 50 Hz the overall classification

accuracy reached 69.2 %. Above chance results were achieved for 23 subjects with

an average accuracy of 70.6 % for these patients. The individual accuracies for each

patient and both frequency ranges are shown in Fig. 5.6.

Next, the time range for feature selection was limited to the prestimulus interval.

Overall classification accuracy reached 61.2 % for the frequency range up to 13 Hz

and above chance results were achieved for 15 patients. Including the frequencies up

to 50 Hz for feature selection, above chance results were achieved for 19 subjects with

an overall classification accuracy of 65.2 %. The corresponding individual accuracies

are shown in Fig. 5.7.

The ability of each of the three different measures to predict successful mem-

ory formation was evaluated based on classification performance including only one

measure at a time selected from the complete time range. For the frequency range

up to 13 Hz, rhinal-hippocampal phase difference predicted successful memory per-

formance most accurately (63.7 %), followed by hippocampal phase (62.2 %) and

rhinal phase (61.9 %). However, across subjects these accuracies are not significantly

different from each other (repeated measures ANOVA: F2,52 = 0.545; p > 0.5).
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Figure 5.5: Phase values for one exemplary subject (pat13) from the rhinal
cortex (A), the hippocampus (B) and the rhinal-hippocampal phase difference (C)
used for the training of the classifier. The figure shows rose diagrams of the values for
the features selected for frequencies up to 13 Hz. The values of the condition “later
remembered” can be found in the left column and “later forgotten” in the right
one. Mean phases are marked with a blue line; the angular deviation is displayed
by shaded areas.
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A with frequencies up to 13 Hz B with frequencies up to 50 Hz

Figure 5.6: Individual classification accuracies for each patient.
Red lines mark the individual 95 % thresholds; the green line marks the 50 %
accuracy. (A) Included frequencies up to 13 Hz. (B) Included frequencies up to
50 Hz.

A with frequencies up to 13 Hz B with frequencies up to 50 Hz

Figure 5.7: Individual classification accuracies for each patient for pres-
timulus intervals. Red lines mark the individual 95 % thresholds; the green line
marks the 50 % accuracy. (A) Included frequencies up to 13 Hz. (B) Included
frequencies up to 50 Hz.

55



CHAPTER 5. MEMORY PREDICTION BASED ON PHASE INFORMATION

For the frequency range up to 50 Hz, the ranking of classification accuracies re-

vealed hippocampal phase as most predictive measure (64.5 %), followed by rhinal-

hippocampal phase difference (63.6 %) and rhinal phase (63.3 %). Again, these ac-

curacies are not significantly different from each other (repeated measures ANOVA:

F2,52 = 0.254; p > 0.70).

In accordance with previous findings (e.g. Fell et al., 2001) rhinal-hippocampal

phase differences were accumulated around zero (see supplementary material in

Höhne et al. (2016) for data and control analyses addressing a possible influence of

volume conduction). Averaged across all values selected from individual frequency-

time points, the phase differences were slightly negative for later remembered trials

(-0.25 ± 1.02) and slightly positive for later forgotten trials (0.35 ± 0.86, circular

Kruskal-Wallis: p = 0.057).

To evaluate the predictive capabilities of single-trial power values in contrast

to absolute phase values, the same procedures which were applied to phase val-

ues were independently applied to these measures. For the frequency range up to

50 Hz, average classification accuracy was 60.4 % for rhinal power and surpassed

chance level in 13 subjects (vs. 63.3 % and 18 subjects for rhinal phase). For hip-

pocampal power above chance results were achieved for 15 subjects with an overall

classification accuracy of 61.5 % (vs. 64.5 % and 18 subjects for hippocampal

phase). Comparing the prediction accuracies across subjects with an two-way re-

peated measures ANOVA revealed significantly higher accuracies for classification

based on single-trial phase vs. those based on single-trial power (main effect for

measure (phase/power), F1,52 = 6.865; p = 0.012; no main effect for locus (rhinal

cortex/hippocampus) and no interaction measure × locus).

Across subjects, prediction accuracies were not increased significantly by com-

bining the three phase-based features (rhinal phase, hippocampal phase and rhinal-

hippocampal phase difference) and the two single-trial power-based features (rhinal

and hippocampal power), achieving 71.2 % overall prediction accuracy for all fea-

tures vs. 69.2 % for only the phase-based features (two-sided paired t-test, p > 0.25).
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Pat up to 13 Hz up to 50 Hz

Freq Time Freq Time Freq Time Freq Time Freq Time Freq Time
RH RH HI HI diff diff RH RH HI HI diff diff

1 9.5 150 7 530 4 1870 34 -290 27.5 1300 27 1180
2 7 290 7.5 460 8.5 120 28.5 400 48 1050 19 1130
3 7 1100 8 1910 5 1740 22.5 730 19.5 -130 45.5 1440
4 12 390 11 820 6.5 -90 12 390 33.5 1050 41 270
5 5.5 40 8 80 10 990 5.5 40 22 -280 10 990
6 7 1510 6.5 1950 0.5 1040 29 1420 16 690 13.5 -290
7 8 210 12 350 5 -360 48 1210 45 940 41 170
8 1.5 -370 3 640 6 1370 27 1340 37.5 -370 40 1230
9 11.5 -160 13 -320 0.5 1360 11.5 -160 13 -320 0.5 1360
10 10 770 6.5 -200 10 130 49 -120 24.5 380 10 130
11 0.5 1650 1.5 480 0.5 1630 0.5 1650 1.5 480 44.5 60
12 0.5 1200 3.5 -20 7 -80 24 100 3.5 -20 45.5 1360
13 4.5 1420 2.5 640 11.5 920 41.5 520 2.5 640 27 -130
14 2 1000 0.5 1220 13 1300 35 580 0.5 1220 13.5 310
15 13 1740 1.5 -410 6.5 -270 45 620 30 -440 29.5 550
16 11.5 890 0.5 1040 2.5 1730 11.5 890 0.5 1040 23.5 100
17 2 580 0.5 1920 2 1240 2 580 45.5 980 2 1240
18 9 30 0.5 -440 3.5 760 9 30 40.5 1270 43 1750
19 3 1320 9.5 -220 1.5 1420 47 280 9.5 -220 29.5 870
20 0.5 900 1.5 -330 5 1680 0.5 900 44 360 23 320
21 4.5 -150 10.5 -300 8 1670 4.5 -150 10.5 -300 15 1490
22 2 880 1.5 -410 13 1880 33 370 29.5 1780 13 1880
23 12 1870 10.5 1240 1.5 -50 12 1870 10.5 1240 1.5 -50
24 4 1660 4 1020 3 -440 39.5 1650 13.5 1020 23.5 510
25 9 550 5.5 1130 4.5 -170 45 570 40 1240 46.5 1890
26 9 1190 0.5 770 2.5 1850 49 540 0.5 770 29.5 620
27 12.5 420 1.5 950 10 110 15 540 1.5 950 25 1310

Table 5.1: Frequencies and time points chosen as features for classification in
each patient (for at least 4 of 5 folds). The listed time points specify the starting
point of the used 10 ms time interval. The left part of the table lists the selection
for frequencies up to 13 Hz, the right part up to 50 Hz. Abbreviations: RH (rhinal
cortex), HI (hippocampus), diff (difference).
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Pat up to 13 Hz up to 50 Hz

Freq Time Freq Time Freq Time Freq Time Freq Time Freq Time
RH RH HI HI diff diff RH RH HI HI diff diff

1 5.5 -240 3 -290 6.5 -50 34 -290 34 -230 29 -130
2 0.5 -410 8 -130 8.5 -10 0.5 -410 8 -130 20.5 -10
3 12.5 -50 9 -220 12 -60 31.5 -30 19.5 -130 50 -50
4 2 -290 13 -390 6.5 -90 30.5 -120 14.5 -400 20 -230
5 5.5 -10 10.5 -280 11 -70 5.5 -10 22 -280 11 -70
6 2 -230 4 -330 3.5 -180 48.5 -410 23 -220 13.5 -290
7 4 -430 11.5 -360 5 -360 4 -430 17.5 -350 5 -360
8 1.5 -370 11 -30 9.5 -190 1.5 -370 37.5 -370 43.5 -270
9 11.5 -160 13 -320 0.5 -320 11.5 -160 13 -320 0.5 -320
10 2 -290 6.5 -200 10.5 -200 49 -120 6.5 -200 39 -420
11 2 -50 9.5 -320 5 -110 2 -50 34.5 -230 18.5 -440
12 10.5 -390 3.5 -20 7 -80 44 -190 3.5 -20 7 -80
13 12 -380 2 -350 1.5 -80 20 -180 40 -10 27 -130
14 9.5 -50 1.5 -20 3.5 -440 19.5 -300 15.5 -10 41.5 -310
15 7.5 -360 1.5 -410 6.5 -270 26.5 -80 30 -440 26 -10
16 10.5 -80 4 -270 4 -330 17 -230 49.5 -320 49.5 -440
17 8 -70 1.5 -40 5.5 -270 22 -330 36.5 -420 16.5 -320
18 9 -30 0.5 -440 4.5 -420 9 -30 0.5 -440 37.5 -200
19 8.5 -400 9.5 -220 8.5 -90 8.5 -400 9.5 -220 46.5 -290
20 3.5 -60 1.5 -330 8.5 -150 46.5 -300 39 -40 45.5 -20
21 4.5 -150 10.5 -300 13 -30 4.5 -150 10.5 -300 13 -30
22 11 -240 1.5 -410 5 -140 19.5 -160 1.5 -410 25 -340
23 2.5 -180 2.5 -130 1.5 -50 21 -10 2.5 -130 1.5 -50
24 4 -320 5.5 -100 3 -440 48.5 -420 37 -320 3 -440
25 9 -210 2.5 -160 4.5 -170 49.5 -360 50 -150 34.5 -270
26 3.5 -290 5.5 -170 3.5 -380 24.5 -370 5.5 -170 39 -80
27 1.5 -20 8.5 -180 5 -370 1.5 -20 42.5 -90 14.5 -200

Table 5.2: Frequencies and time points chosen as features for classification in
each patient limited to prestimulus time range (for at least 4 of 5 folds). The listed
time points specify the starting point of the used 10 ms time interval. The left part
of the table lists the selection for frequencies up to 13 Hz, the right part up to 50 Hz.
Abbreviations: RH (rhinal cortex), HI (hippocampus), diff (difference).
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5.3 Summary

Fell et al. (2008) analysed different mediotemporal EEG measures and found that

measures reflecting the stability of phase values and phases differences are best to

distinguish between successful and unsuccessful memory formation compared to the

other examined measures. By applying the presented SVM algorithm, the predic-

tive capability (i.e. to distinguish subsequently remembered from forgotten trials)

of absolute single-trial phase values per se was examined. The described analysis

revealed that such a successful above chance prediction of single-trial memory for-

mation was possible in 85 % of patients (23 out of 27) with an average accuracy of

69.2 % across subjects. Importantly, for the prediction, only one rhinal phase value,

one hippocampal phase value and one rhinal-hippocampal phase difference was used.

In accordance with the findings of Fell et al. (2008) that phase-based measures out-

perform measures based on power values in distinguishing subsequently remembered

from forgotten trials, the prediction based on single-trial phase values significantly

surpassed prediction based on single-trial power.

Prediction of successful memory encoding was possible as well when reducing the

time interval for feature selection to the prestimulus interval (19 out of 27 patients),

although a temporal smearing of poststimulus activity into the prestimulus domain

caused by the Butterworth filtering cannot be excluded. In line with this finding,

there are several studies showing that successful memory performance can be related

to prestimulus electrophysiological activity like ERP measures (for an overview see

Cohen et al., 2015) or increased hippocampal theta activity (Fell et al., 2011; Gud-

erian et al., 2009), as well as increased power in the 2 Hz - 4 Hz range together

with increased phase synchronization especially in the temporo-parietal junction,

bilateral prefrontal cortex and mediotemporal lobe (Haque et al., 2015).

Noh et al. (2014) were able to predict subsequent memory formation with an

average prediction accuracy of 59.6 % across 18 subjects (with a chance level of

50 %) applying linear and SVM classifiers. They recorded high-resolution surface

EEG during an object recognition paradigm with stimuli consisting of pictures of

cars and birds. Compared to the attempt presented in this thesis, they used a

relatively high number of features for single-trial based classification comprising pre-

and peristimulus event-related potentials and EEG power in nine different frequency
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bands.

These results provide evidence for the relevance of MTL EEG phases for long-

term memory processes. Rhinal and hippocampal absolute phases reflect and pos-

sibly influence neural membrane potentials and thus affect the firing thresholds for

neural activity via spike-field coupling (Elbert and Rockstroh, 1987). The modula-

tion of the amount of neural excitability by field potential oscillations comparable

to those measured in vivo could be found in vitro and in simulations (e.g. Anastas-

siou et al., 2010; Fröhlich and McCormick, 2010). In this sense, the capability of

rhinal and hippocampal absolute phases to predict memory may indicate whether

inhibition or facilitation of neural activity occurs within precisely the right time

window required for a certain perceptual or cognitive processing sequence. This has

for example been demonstrated for visual perception of stimuli close to the detec-

tion threshold, which was dependent from the phase during processing (Busch et al.,

2009; Mathewson et al., 2009).

Moreover, there are other additional assumed functions of EEG phases, partic-

ularly within the MTL which can be associated to memory processes. It has been

shown that the absolute phases of low-frequency hippocampal oscillations in rodents

control the direction of synaptic changes (Pavlides et al., 1988; Huerta and Lisman,

1993). Additionally, rhinal-hippocampal phase synchronization is closely related to

long-term memory encoding (Fell et al., 2001, 2008). This may be related to effects

of rhinal-hippocampal phase differences on the communication between rhinal cortex

and hippocampus and on spike-timing dependent plasticity via spike field coupling

(Fries, 2005; Fell and Axmacher, 2011).

The present data confirm the relevance of absolute rhinal and hippocampal

phases per se for memory formation in contrast to power. By controlling the EEG

phase it could be possible to enhance memory performance. This would however

only be possible in experimental settings because the oscillatory phases are changing

continuously and therefore the knowledge of the exact time point of stimulus appear-

ance is necessary. In a realistic situation, the time point at which a stimulus occurs

is uncertain. Hence, the controlling of rhinal-hippocampal phase differences, which

may stay relatively stable for longer time intervals, is a more practicable option.

Lately, there have been several studies exploring the effect of deep brain stimula-

tion on memory formation (e.g. Lee et al., 2013; Suthana and Fried, 2014; Reardon,
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2015). Fell et al. (2013) found that memory performance can be indeed be modu-

lated by controlling the rhinal-hippocampal phase difference by deep brain stimula-

tion with a frequency of 40 Hz and phase differences of 0 and 180 degree. The results

presented in this chapter indicate that individually chosen stimulation frequencies

and phase differences determined via classification analyses may be better suited for

memory enhancement and inhibition.

By using this analysis, and applying the classification algorithm to a real iEEG

dataset, it can be demonstrated that relevant information such as the importance of

oscillatory phases can be detected from examining neurocognitive data. Indeed, we

are able to see for certain that mediotemporal EEG phases are crucial for long-term

memory processes. Absolute phases possibly regulate the timing of neural firing by

interacting with neural membrane potentials, and thereby affect successful memory

encoding. Based on this consideration, phase manipulation may offer the possibility

for memory enhancement applications, for example through deep brain stimulation

(e.g. Fell et al., 2013).
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6 | Prediction of Memory For-

mation Based on Stimulus-

Related Phase Shifts

In a further application of the algorithm to the same iEEG dataset analysed in

Chapter 5 the question as to whether stimulus-related rhinal and hippocampal phase

shifts are also related to successful memory formation, and if they are as well suited

in predicting successful memory formation as absolute phase values, was additionally

investigated. (The content of this chapter has been previously published in Derner

et al. (2018b).) The analysis of these phase shifts is performed similarly to that

of the absolute phases and power values, which has been outlined in detail in the

previous chapter. The details of the dataset are described in Chapter 5.1.

Results summary : Differences for phase shifts between remembered and for-

gotten trials were found with more accumulated rhinal phase shifts and larger hip-

pocampal phase shifts for subsequently remembered words. Prediction based on

absolute single-trial phases outperforms prediction based on phase shifts. Also com-

bining absolute phase measures with phase-shifts did not increase prediction accu-

racies significantly.

6.1 Material and Methods

Extraction of Phase Shifts

To compare prediction based on stimulus-related phase shifts to prediction based on

absolute phases, phase shifts were calculated as the following. Absolute phases are
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the phases measured at certain time points and originate from three different factors:

the phase values at stimulus presentation, frequency-specific phase progressions and

stimulus-related phase shifts. The phase value expected at a certain time point tx

assuming no interference on the phase is defined through the phase progression. The

phase progression is dependent from the chosen frequency f and can be calculated

based on the time elapsed since stimulus onset as: 2π · f · tx. The stimulus-related

phase shift ∆ϕ is then given through the difference between the measured (absolute)

phase and the expected phase value. It can be determined based on the relative

phase ϕrel at the specific time point t = tx (i.e. the phase at t = tx relative to

the phase at stimulus onset t = 0) which is given by the difference between the

absolute phase ϕabs at tx and the absolute phase ϕabs at stimulus onset (t = 0):

ϕrel(tx) = ϕabs(tx)− ϕabs(0). With the background of phase progression and phase

shift, the relative phase is also given by ϕrel(tx) = 2π · f · tx + ∆ϕ. Thus, for

a given time point tx and frequency f the phase shift ∆ϕ can be quantified as

∆ϕ = ϕrel(tx)− 2π · f · tx = ϕabs(tx)− ϕabs(0)− 2π · f · tx.

Prediction of Subsequent Memory

To compare prediction capabilities of stimulus-related phase shift measures to ab-

solute phase values, the presented techniques were used (see Chapter 4.2) and the

same procedures which were applied to the rhinal and hippocampal phase values and

phase differences (see Chapter 5.1) were independently applied to these measures

(i.e. frequency and time points were selected individually for each phase and phase

shift measure). Importantly, as phase shifts are a stimulus-related measure, features

were only chosen from the poststimulus interval between 0 ms and 2000 ms.

Analyses of Phase Effects Related to the Dataset

Moreover, the distributions of the phase shifts selected as features for prediction

were analysed. The phase-shifts on each corresponding single time-frequency point

were pooled across all trials and all subjects and for each feature and condition

(“remembered” and “forgotten”) a Rayleigh test was performed. If a significant

deviation from a uniform distribution was found, a Watson-William test (i.e. the

circular analogue of the two-sample t-test) was executed to test for differences in
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mean phase shifts between the two conditions.

Furthermore, several control analyses were performed for phase shifts (described

in Chapter 6.3) concerning prediction accuracies in phase-scrambled surrogate data,

effects related to the N400 and P600 component, dependence of prediction accuracies

from signal-to-noise ratios, generalization of higher prediction accuracies for absolute

phases vs. phase shifts and prediction analysis using a generalized linear model.

6.2 Results

Prediction performance based on phase shift values was compared to that based

on absolute phase values. One rhinal and one hippocampal phase shift value and

one rhinal-hippocampal phase difference shift value chosen from the poststimulus

interval (from 0 ms to 2000 ms) and the whole frequency range up to 50 Hz were

used for classification. The absolute phase values were accordingly chosen from the

poststimulus interval for the comparison (see Table 6.1 and Fig. 6.1 for chosen fre-

quencies and time points). The overall classification accuracy for phase shift values

was 64.9 % with 19 subjects achieving results above chance level and 66.6 % with

results above-chance level for 23 subjects for prediction based on absolute phase

values (Fig. 6.2). Additionally, the individual predictive capability of the three

different measures was assessed by performing classifications based on inclusion of

only one measure. The ranking of classification accuracies revealed hippocampal

phase values as most predictive measure (63.1 % for absolute phase with 18 sub-

jects with above chance results vs. 61.2 % and 14 subjects surpassing chance level

for phase shift), followed by rhinal-hippocampal phase differences (63.0 % and 18

subjects above chance results for absolute phase difference vs. 60.7 % for phase

difference shift with 9 subjects surpassing chance level) and rhinal phase values

(62.6 % for absolute phase with 19 subjects with above chance results compared

to 60.0 % and 9 subjects surpassing chance level for phase shift). Across subjects,

prediction accuracies for classification based on single-trial absolute phases were

significantly higher than those based on single-trial phase shifts and again, the ac-

curacies for the three different features were not significantly different from each

other (two-way repeated measures ANOVA, main effect for MEASURE (absolute

phase/phase shift), F1,75 = 14.38, p = 0.0008; no main effect for FEATURE (rhinal
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cortex/hippocampus/phase difference) F2,75 = 0.345, p = 0.71; no interaction MEA-

SURE x FEATURE, F2,75 = 0.078, p = 0.93). Prediction accuracies could not be

significantly increased by combining the three absolute phase-based features chosen

from the whole time interval (from -500 ms to 2000 ms) and the three poststimu-

lus phase shift-based features, achieving 71.1 % overall prediction accuracy for all

features vs. 69.2 % for only absolute phase-based features (no significant difference

across subjects; paired t-test, p = 0.14).

Figure 6.1: Frequencies and time points chosen as features for classification.
Distributions are shown for classification based on absolute phase values (left col-
umn) and phase shifts (right column). The depicted frequencies (top row) and time
points (bottom row) are pooled over patients and all three features (i.e. rhinal
phases, hippocampal phases and rhinal-hippocampal phase differences, see Table
6.1).
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Pat Phase Shift Absolute Phase

Freq Time Freq Time Freq Time Freq Time Freq Time Freq Time
RH RH HI HI diff diff RH RH HI HI diff diff

1 17.5 1400 13 1710 41.5 20 9.5 150 27.5 1300 27 1180
2 21 750 31.5 660 48.5 170 28.5 400 48 1050 19 1130
3 18 1190 9 20 36 1720 22.5 730 19.5 40 45.5 1440
4 42 1190 30.5 300 46.5 360 12 390 33.5 1050 41 270
5 50 1230 24.5 20 10 890 5.5 40 35.5 830 10 990
6 18.5 620 0.5 680 30.5 1190 29 1420 16 690 0.5 1040
7 36 140 45.5 1160 46 210 48 1210 45 940 41 170
8 3.5 590 15.5 110 9.5 600 27 1340 3 640 40 1230
9 8.5 590 37 340 45 410 49.5 1000 49.5 1360 0.5 1360
10 45 1860 46.5 400 44.5 320 40 510 24.5 380 10 130
11 0.5 330 22.5 120 22.5 70 0.5 1650 1.5 480 44.5 60
12 18 120 1 1640 49.5 1100 24 100 47 1120 45.5 1360
13 22.5 800 48.5 20 32.5 970 41.5 520 2.5 640 22.5 760
14 15 720 49 650 17 1530 35 580 0.5 1220 13.5 310
15 6 1290 36.5 610 10 280 45 620 34.5 620 29.5 550
16 7.5 130 34 1860 36.5 1460 11.5 890 0.5 1040 23.5 100
17 12.5 10 48 10 7.5 1530 2 580 45.5 980 2 1240
18 9 90 19 480 16.5 20 9 30 40.5 1270 43 1750
19 31 270 46.5 630 20 1090 47 280 24.5 200 29.5 870
20 36 620 48 820 28.5 170 0.5 900 44 360 23 320
21 37 640 17 570 41 320 38.5 1170 6.5 1130 15 1490
22 28.5 980 17.5 190 25 290 33 370 29.5 1780 13 1880
23 30.5 920 24.5 1030 34.5 30 12 1870 10.5 1240 49 1940
24 6.5 330 39 40 36 660 39.5 1650 13.5 1020 23.5 510
25 6 160 49 1860 27 380 45 570 40 1240 46.5 1890
26 32.5 630 37.5 670 35.5 10 49 540 0.5 770 29.5 620
27 35 1000 26 150 31 180 15 540 1.5 950 25 1310

Table 6.1: Frequencies and time points based on classification features chosen
in each patient. Abbreviations: RH (rhinal cortex), HI (hippocampus), diff (rhinal-
hippocampal phase difference).
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Figure 6.2: (A) Prediction accuracies based on stimulus-related phase shifts (left
side) and absolute phase values (right side) for each patient. Red lines mark the
individual 95 % threshold; the green line marks the 50 % accuracy. (B) Mean
prediction accuracies ± standard errors based on single features for absolute phase
values (blue) and phase shifts (green) averaged across patients. Abbreviations: RH
(rhinal cortex), HI (hippocampus), Diff (rhinal-hippocampal phase difference).
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Distributions of Phase Shifts

The phase shifts selected for prediction were pooled across all trials and subjects and

their distributions were analysed for the different features and conditions. Based on

Rayleigh tests, rhinal phase shifts showed a significant deviation from a uniform

distribution for remembered trials (p = 0.022, mean = 1.12) but not for forgotten

trials (p = 0.44). Additionally, significant deviations were found for shifts of rhinal-

hippocampal phase differences for remembered (p = 1.27e− 16) and forgotten trials

(p = 2.75e− 28), as well as trends for hippocampal phase shifts in both conditions

(p = 0.056 for remembered and p = 0.057 for forgotten trials). Performing Watson-

William tests for hippocampal phase shifts and shifts of rhinal-hippocampal phase

differences indicated significant differences in mean phase shifts between remembered

and forgotten trials for the hippocampus (p = 0.00048; mean = 1.09 vs. 0.62) with

larger phase shifts for later remembered items, but no significant difference between

conditions for phase shifts of phase differences (p = 0.88; mean = 0.10 vs. 0.09)

(Fig. 6.3).

6.3 Control Analyses

Phase-Scrambled Surrogate Data

Phase-scrambled data was constructed to examine if the predictive capability of

absolute phases and phase shifts may be influenced by data characteristics other

than phase dynamics. For each patient and each channel surrogate data was gener-

ated by randomly rearranging the phases of the original data (Theiler et al., 1992),

i.e. the power spectra of the surrogate data is identical to the original data. The

complete feature selection and prediction procedures were repeated for these data.

For absolute phases and phase shifts, prediction accuracies were not significantly

higher than 50 % chance level across patients (two-tailed t-test, p = 0.72 for abso-

lute phases, p = 0.85 for phase shifts). This shows that our results are not biased

by data characteristics unrelated to phase dynamics but are specifically related to

rhinal and hippocampal phase dynamics.
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Figure 6.3: Distribution of phase shifts for later remembered (left column)
and later forgotten (right column) trials for rhinal phases, hippocampal phases and
rhinal-hippocampal phase differences. The x-axis depicts the values of the phase
shifts (radians ∈ [−π, π], bin width = π/5), the y-axis depicts the number of trials
exhibiting these phase shifts. P-values for the Rayleigh tests are depicted in the left
upper corner of the histograms and p-values for the Watson-Williams tests can be
found in the centre column.

70



6.3. CONTROL ANALYSES

Effects Related to the N400 and P600 Component

Next, we tested if the prediction results reported for absolute phases and phase

shifts are dominated by effects related to the rhinal N400 and hippocampal P600

component. Therefore, average ERPs were calculated separately for remembered

and forgotten trials and subtracted from the individual trials for each patient. Then,

based on the previously selected time-frequency points, prediction accuracies were

calculated for absolute phases and phase shifts. Across patients, these accuracies did

not significantly differ from the previously reported results (paired two-tailed t-test,

p = 0.96 for absolute phases and p = 0.65 for phase shifts). Thus, the previously

calculated accuracies cannot be mainly attributed to the N400 and P600 component.

Signal-to-Noise Ratios

The correlations between signal-to-noise ratios and prediction accuracies based on

absolute phases and phase shifts were evaluated for rhinal cortex and hippocam-

pus. The signal-to-noise ratios were calculated for each patient by dividing the

absolute values of peak amplitudes of the N400 (rhinal)/P600 (hippocampal) com-

ponents through the standard deviation of amplitudes across all time points and

trials (in the corresponding channel). There were statistical trends for positive cor-

relations between individual prediction accuracies based on absolute phases and

rhinal signal-to-noise ratios (Pearson’s cross-correlation corr = 0.34, p = 0.084)

and between prediction accuracies based on phase shifts and hippocampal signal-

to-noise ratios (corr = 0.37, p = 0.055) (Fig. 6.4). No significant correlation was

found between prediction based on absolute phases and hippocampal signal-to-noise

ratios (p = 0.81) or accuracies based on phase shifts and rhinal signal-to-noise ratios

(p = 0.41).

Generalization Across Frequencies

To test if the result that prediction accuracies based on absolute phases surpass those

based on phase shifts generalizes for features chosen for all patients (instead of in-

dividual feature selection), a frequency-resolved prediction analysis was performed.

For this analysis, fixed time windows corresponding to the N400 and P600 compo-

nent were chosen (i.e. a time window centred at 400 ms for rhinal and at 600 ms
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Figure 6.4: Prediction accuracies for each patient versus signal-to-noise-
ratios (SNR) for the chosen contacts. Regression lines are plotted in dashed
style. Pearson’s cross-correlations and related p-values are depicted in the right
upper corner. Left: Prediction accuracies based on phase shifts versus SNR for
hippocampal contacts. Right: Prediction accuracies based on absolute phases values
versus SNR for rhinal contacts.

for hippocampal phases/phase shifts). Then, prediction accuracies were determined

separately for each frequency between 0.5 Hz and 50 Hz based on absolute phases

or phase shifts (Fig. 6.5). In six frequencies, prediction accuracies across patients

surpassed 50 % chance level for absolute phases (6.5 Hz, 10 Hz, 10.5 Hz, 19.5 Hz,

30 Hz, 33 Hz; two-tailed t-test, each p < 0.05). There were no prediction accuracies

different from 50 % chance level for any of the frequencies examined for prediction

based on phase shifts. Accordingly, comparison of all frequencies showed signif-

icantly higher accuracies for prediction based on absolute phases vs. phase shifts

(paired two-tailed t-test, p = 0.0064). Thus, the result of the feature selection-based

analysis generalizes for the frequency-resolved analysis.

Generalized Linear Model

Finally, the results gained using the SVM prediction algorithm were compared to

prediction using a generalized linear model. Frequencies in the theta/alpha range (3

Hz - 12 Hz) were chosen from fixed time windows centred at 400 ms for rhinal and

600 ms for hippocampal phases/phase shifts for prediction (again, corresponding to

the N400 and P600 components). The GLM for absolute phases and phase shifts

were fitted and compared based on the Akaike information criterion (AIC, Akaike,
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Figure 6.5: Frequency-resolved average prediction accuracies aross patients
based on rhinal and hippocampal phase shifts (red curve) and absolute phases (blue
curve). Features were selected for fixed time windows centred at 400 ms (corre-
sponding to the N400 component) for rhinal phases/phase shifts and at 600 ms
(corresponding to the P600 component) for hippocampal phases/phase shifts for
each frequency between 0.5 Hz - 50 Hz.

1974) and the Vuong-test (Vuong, 1989). Evaluating the quality of predictions

revealed a better model based on absolute phases with a lower AIC value of 4195

vs. the model based on phase shifts with an AIC value of 4236. The Vuong-test is

suitable for comparison of non-nested GLMs and indicated a significant difference

between both models (p = 0.043). Prediction accuracies were calculated with the

GLMs fitted to the training data and applied to the test data. Average prediction

accuracy for absolute phases reached 54.9 % and were above 50 % chance level across

patients (two-tailed t-test, p = 0.025). The GLM based on phase shifts achieved an

average prediction accuracy of 48.1 % and was not significantly different from 50 %

chancel level (p = 0.75). Comparing the prediction accuracies of both models across

patients yielded a trend for higher accuracies for the absolute phases v. phase shifts

(paired two-tailed t-test, p = 0.07).
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6.4 Summary

Evaluation of the predictive capability of rhinal and hippocampal phase shifts re-

vealed that they are not as well suited in predicting memory formation as absolute

phase values. Additionally, prediction accuracies were not significantly increased by

combining absolute phase values and phase shifts for classification. However, phase

shifts showed increased accumulation in rhinal cortex, and mean phase shifts were

larger in hippocampus for subsequently remembered vs. forgotten trials, which is

consistent with the suggestion that their magnitude as a marker of effective stim-

ulus processing is important for successful memory encoding (e.g. Achuthan and

Canavier, 2009). Hence, by applying the prediction algorithm, characterized in this

thesis, to a real iEEG dataset, it was possible to reveal useful information about

mechanisms underlying memory processes.
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7 | Auditory Beat Stimulation

to Control Phase Dynamics

and Modulate Memory Per-

formance

Phase synchronization underlies neural communication and facilitates synaptic plas-

ticity, and as a result is understood to enhance memory performance (Fell et al.,

2011). Applying the SVM classification method detailed in this thesis, to real data

has uncovered essential information regarding the importance of EEG phases in the

role of memory formation. This knowledge may be used to develop methods to al-

ter memory performance. Becher et al. (2015) showed that monaural and binaural

auditory beat stimulation with frequencies corresponding to dominant EEG bands

are able to modulate EEG power and phase synchronization. The authors applied

beat stimulation at 5 Hz, 10 Hz, 40 Hz and 80 Hz with low amplitudes (60 dB

sound pressure level) and short durations (5 s). Several significant modulations

of power and phase synchronization were found at temporo-basal, temporo-lateral,

surface and also mediotemporal sites. Phase synchronization increased for 5 Hz

binaural stimulation within temporo-lateral regions and decreased mediotemporal

and temporo-basal for 5 Hz monaural beats. Phase synchronization has been shown

to play a major role in cognitive processes, in particular in memory operations by

facilitating working and long-term memory (Jutras and Buffalo, 2010; Fell et al.,

2011). Hence, auditory beat stimulation (i.e. 5 Hz monaural or binaural beats)

offers a non-invasive approach to interfere with iEEG characteristics. It possibly

changes oscillatory phases to optimal vs. detrimental time windows for neural ac-

75



CHAPTER 7. AUDITORY BEAT STIMULATION

tivity. Hence, working and long-term memory performance may be altered through

its influence on mediotemporal brain regions. The content of this chapter has been

previously published in Derner et al. (2018a).

Results summary : Auditory beat stimulation is a non-invasive brain stimu-

lation technique that is able to alter iEEG power and phase synchronization. In

the presented study, data from epilepsy patients implanted with depth electrodes

in the hippocampus and rhinal cortex is analysed. It is shown that 5 Hz monaural

and binaural beat vs. control stimulation influenced memory performance during

an associative learning task involving item and source recognition. The analysis

of behavioural effects revealed a linear effect of auditory beats on memory per-

formance: binaural > control > monaural (p = 0.036). Additionally, increased

phase-locking of 5 Hz oscillations within rhinal cortex were found for monaural and

binaural stimulation but corresponding to reverse phase shifts. The data suggests

that 5 Hz auditory stimulation alters long-term memory performance where oppo-

site behavioural effects appear to be related to reverse phase shifts within rhinal

cortex.

7.1 Introduction

There are a constantly growing number of persons with memory disorders like

Alzheimer’s disease (Wimo et al., 2003). Hence, there is a big interest in searching for

new therapies that are able to improve memory. As generally known, hippocampus

and rhinal cortex are central structures for long-term memory formation. Stimu-

lating these mediotemporal regions with deep brain stimulation is one method with

good prospects. So far, there are some promising studies but they show ambiguous

results (for reviews see, e.g. Lee et al., 2013; Sankar et al., 2014). Contrary findings

regarding memory performance are described even when performing similar experi-

ments (e.g. Suthana et al., 2012; Jacobs et al., 2016; Hansen et al., 2018). Besides,

deep brain stimulation is an invasive method requiring intracranial electrodes. Even

when an application is legitimate, long-term therapy is too risky.

There are a couple of non-invasive techniques that are able to alter signals in

mediotemporal regions via brain stimulation (for an overview, see Polańıa et al.,

2018). Along with transcranial pulsed ultrasound stimulation (Tufail et al., 2010)
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and temporal inference electric stimulation (Grossman et al., 2017), auditory beat

stimulation is another non-invasive method (e.g. Chaieb et al., 2015; Hommel et al.,

2016). Though its effect on memory performance has not yet been carefully studied.

Auditory beats are signals that are composed of two sine waves with nearby fre-

quencies. These amplitude modulated tones are either presented directly to one or

both ears (monaural beats), or the original pure sine waves are presented separately

to each ear (binaural beats) and the beat perception originates from phase-sensitive

brain stem neurons (Wernick and Starr, 1968). The few studies that investigated

the effect of beat stimulation on cognitive processes report inconclusive results as

well (see e.g. Chaieb et al., 2015, 2017). Binaural beat was found to influence EEG

phases (Schwarz and Taylor, 2005; Ross et al., 2014) and power (e.g. Gao et al., 2014;

Ioannou et al., 2015) as well as interregional phase synchronization (Ioannou et al.,

2015). Becher et al. (2015) showed that monaural and binaural beat stimulation in

the range of typical EEG rhythms is able to alter power and phase synchronization

even in hippocampus and rhinal cortex. Analysing iEEG data recorded in presurgical

epilepsy patients, they detected that 5 Hz binaural beats increased temporo-lateral

phase synchronization while 5 Hz monaural beats decreased mediotemporal phase

synchronization. Using this modulation frequency, binaural vs. monaural beats may

increase vs. decrease long-term memory formation.

To study this suggestion, 5 Hz monaural and binaural beats were presented to

presurgical epilepsy patients. As control stimulation, a pure sine wave at the fre-

quency of the beat carrier frequency was applied. During stimulation, participants

performed an associative learning task (Staresina et al., 2012) that is related to brain

activity in the hippocampus and rhinal cortex (Staresina et al., 2013) and involves

memory for item and for associated source. Since the influence of auditory beat

signals on encoding and retrieval should be studied, stimulation was applied alter-

nately during these different memory process stages for each patient. Behavioural

data as well as iEEG data within hippocampus and rhinal cortex was analysed to

reveal the effect of beat stimulation on memory performance as well as iEEG power,

inter-trial phase-locking and rhinal-hippocampal phase synchronization.
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7.2 Material and Methods

Patients

The EEG signals were recorded in 15 presurgical epilepsy patients (8 females, mean

age 36.3 ± 11.4 years) who were implanted with mediotemporal depth electrodes.

Based on presurgical examinations, 8 patients suffered from seizures with focus in

the hippocampus, 4 patients had temporo-lateral foci and 3 patients had frontal

foci. The seizure foci could be localized in the right hemisphere in 7 patients and

in the left hemisphere in 6 patients. The remaining 2 patients had bilateral foci.

All patients gave written informed consent to participate in the study and for the

use of the data for research purposes. The study was approved by the local Ethics

Committee of the Medical Faculty at the University of Bonn.

Experimental Paradigm

An associative memory task was performed (Fig. 7.1). 50 Germans nouns (per

run) together with an associated source (colour (red/blue) or a scene (office/nature)

depending on the experimental block) were presented for 3.5 s during the encoding

phase. During the inter-stimulus intervals of 1000 ms ± 300 ms a fixation cross

was displayed. The word stimuli were presented in white uppercase letters centred

on a black background 160 pixels above the 200 × 300 pixels big associated source.

Patients had to decide for each trial if the association between noun and colour/scene

was plausible or not. After 1 min break, the retrieval phase of the task started. Here,

the 50 old nouns that had been shown during the encoding phase were presented

together with 25 new words for a maximum of 5 s each. Additionally to the words,

four response options were displayed underneath the noun: (i) “new”, (ii, iii) the two

associated sources (red or blue/office or nature) and (iv) a question mark. Patients

were asked to indicate as quickly and as accurately as possible if (i) the word has not

been displayed before during the encoding phase or (ii) if it was previously shown in

combination with source 1 (e.g. red/office) or (iii) with source 2 (e.g. blue/nature)

or (iv) if they remember the noun but not the corresponding association. Hence, the

memory not only of the noun, but of the combination of the noun and the associated

source was indicated with one button press. Only one source category (colour or
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scene) which was randomly chosen was used for each experimental run (consisting

of 50 encoding and 75 retrieval trials). The presented nouns were randomly selected

out of a list of 450 nouns without overlap between the runs.

Figure 7.1: Associative learning paradigm and beat stimulation. Nouns
were presented in combination with one of two colours or one of two scenes for
3.5 seconds during encoding and patients indicated whether the combination was
plausible or not. During retrieval, the previously presented nouns along with previ-
ously unstudied nouns were shown for a maximum of 5 seconds. Patients indicated
their memory of the noun colour/scene association with one of four possible re-
sponses: (i) new noun, (ii) old noun associated source one, (iii) old noun associated
source two, (iv) old noun but unable to remember association. Auditory beat stimu-
lation was presented either during the encoding (colour runs, top) or during retrieval
phase (scene runs, bottom).

Auditory Beat Stimulation

The following different stimulation conditions were used: 5 Hz monaural beats,

5 Hz binaural beats and 220 Hz control tone. 5 Hz auditory beats were created by
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combining two sine waves with the corresponding frequency difference. The nearby

frequencies were chosen at 217.5 Hz and 222.5 Hz and physically superposed to

generate monaural beats. This amplitude modulated acoustic signal (217.5 Hz sine

wave plus 222.5 Hz sine wave) was presented to both ears simultaneously. For bin-

aural beat stimulation, the sine waves were presented separately, i.e. one sine wave

(e.g. 217.5 Hz) to one ear and the other sine wave (e.g. 222.5 Hz) to the other

ear at the same time. The 5 Hz binaural beat percept origins from the alternating

phase shifts due to the frequency mismatch between the two sine waves (with the

corresponding interaural frequency difference). As control tone, a pure sine wave

(without amplitude modulation) at a frequency of 220 Hz was presented to both

ears simultaneously. Stimuli were produced with the NCH Tone Generator (NCH

software, Canberra, ACT, Australia). And all stimuli were delivered with an av-

erage sound pressure level of 75 dB through over ear headphones via Presentation

Software (Version 16.5, NeuroBehavioral Systems Inc.). The auditory stimulation

was presented at stimulus onset for the duration of each trial (encoding 3.5 s, re-

trieval 5 s). To minimize the possibility of modulation side effects from runs with

stimulation during encoding on runs with stimulation during retrieval, the auditory

stimulation (monaural beats, binaural beats or control tone) was applied either for

the encoding phase (in colour source runs only) or the retrieval phase (in scene

source runs only) across six experimental runs (see Fig. 7.1). In this way, the

possible spill-over of beat stimulation influence on associative word-colour-networks

during encoding to runs with stimulation during retrieval should be reduced by en-

gaging word-scene-networks via scene associations and vice versa. The sequence of

stimulation conditions was randomized and counterbalanced across patients.

Behavioural Data Analysis

Two different memory effects were analysed in behavioural data: (i) an adjusted

item memory effect given by “the probability of a hit minus the probability of a

false alarm”, i.e. (correct old responses to studied items / all responses to studied

items) - (incorrect old responses to new items / all responses to new items) and

(ii) an adjusted source memory effect given by “the probability of a hit minus the

probability of a failure” (excluding “unsure” responses), i.e. (correct source deci-

sions - incorrect source decisions) / correct old responses to studied items. One
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patient performed only three colour runs, and one patient chose in the case of hits

only the question mark response during one of the runs and source memory could

not be reliably accessed. Hence, due to the missing data, these two patients were

excluded from the behavioural analysis. The data from the remaining 13 patients

were statistically analysed with repeated-measures ANOVA (with Huynh-Feldt cor-

rection) and subsequent paired two-tailed t-tests.

IEEG Recordings and Artefact Rejection

Patients were implanted with depth electrodes with 8 cylindrical platinum contacts

(diameter: 1.3 mm; length: 1.6 mm) in the medial temporal lobe. Electrode con-

tact placement was ascertained based on the individual magnetic resonance images

and comparison with standardized anatomical atlases (Duvernoy, 1988). IEEG was

recorded using a sampling rate of 2048 Hz and referenced to linked mastoids. Only

recordings from contacts from the non-pathological hemisphere were included in the

analysis. For this reason, data from two patients with no unilateral seizure onset

zones but bilateral foci were excluded from iEEG analyses (but were included in

behavioural analysis). Via visual inspection with BrainVision Analyzer (Version

2.0, Brain Products), channels were selected and artefacts deriving from movement,

epileptic activity or technical interference were rejected. After artefact rejection,

77.6 % of all trials were included in the analysis. For each patient one rhinal and

one hippocampal electrode contact was chosen based on structural MR information

and average ERPs during recognition phase. Trials defined from 1000 ms before

to 3000 ms after stimulus onset were baseline corrected by subtracting the aver-

aged baseline interval spanning -200 ms to 0 ms. ERPs were determined as average

across correctly classified old and new items. The rhinal contact was defined as

anatomically located within the rhinal cortex with the largest mean amplitude of

the negative component between 250 ms and 750 ms (memory-related anterior me-

dial temporal lobe N400 component, e.g. Guillem et al., 1995; Nobre and McCarthy,

1995; Grunwald et al., 1999; Fell et al., 2008; Staresina et al., 2012, 2013). The hip-

pocampal contact was defined as located within anterior or middle hippocampus and

showing the largest mean amplitude of the positive component between 350 ms and

850 ms (memory-related hippocampal P600 component, e.g. Guillem et al., 1995;

Ludowig et al., 2008; Fell et al., 2008; Staresina et al., 2012, 2013). After discard-
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ing datasets without contacts located in RH or HI or without pronounced ERPs,

datasets from seven patients could be used for further iEEG analysis. One of these

patients performed only colour source runs and for one patient only a hippocam-

pal channel was available. This resulted in the following number of contacts for

the different experimental conditions: (i) colour source, auditory stimulation dur-

ing encoding phase: six rhinal contacts and seven hippocampal contacts; (ii) scene

source, auditory stimulation during recognition phase: five rhinal contacts and six

hippocampal contacts.

Quantification of Phase Synchronization, Phase-Locking

and Power Values

Phase and power values were determined for trials with auditory stimulation which

was applied during encoding phases of the colour runs and retrieval phases of the

scene runs. All trials in the encoding phases, and old/previously studied trials in

retrieval phases were segmented from -1000 ms to 2800 ms with regard to stim-

ulus onset and sorted according to the different stimulation conditions. This re-

sulted in an average number of 39.5 (23 - 48) trials per patient in the encoding

phase and 38.9 (28 - 47) old/previously studied trials per patient in the retrieval

phase. IEEG signals were filtered at 5 Hz using continuous wavelet transforms

with Morlet wavelets of five cycle length. To avoid edge effect, 800 ms were cut

from the resulting signals ω at both sides, leaving the interval from -200 ms to

2000 ms. The time dependent phase values, recorded from within rhinal cortex and

hippocampus (φj = arctan(Im(ωj)/Re(ωj))), power values (Powj = abs(ωj)
2 =

Re(ωj)
2 + Im(ωj)

2) as well as phase differences between rhinal cortex and hip-

pocampus (∆j = φj(RH) − φj(HI)) were extracted for each time point of each

trial. Inter-trial phase-locking and phase synchronization are measures for direc-

tionality and are determined based on circular phase variance. They are given by

the length of the mean complex phase vector (for phase-locking) and mean complex

phase different vector (for phase synchronization) across all trials for each condi-

tion (Lachaux et al., 1999). To account for the expected dependency of the circular

variance on the number of values entering the calculation, the number of trials was

adjusted. For each patient, a random subsection was chosen from each condition by

selecting the same number of trials from each condition (to match the conditions
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with more trials to conditions with fewest trials; range: 23 - 43 trials). Baseline nor-

malization of power, phase-locking and phase synchronization values was executed

by dividing them by the average value from the baseline interval from -200 ms to

-100 ms across trials separately for each condition and subject (i.e. the baseline level

corresponds to the value 1). Since auditory beat stimulation and stimuli relevant

for memory encoding and retrieval (i.e. nouns plus associative stimuli) are deliv-

ered at the same onset time, changes in phase-locking values can reflect changes in

inter-trial phase concentration with regard to both, beat and memory stimuli.

Statistical Analyses

Auditory beat stimulation conditions were compared to the control condition by con-

ducting paired t-tests across all patients for each time point (-200 ms to 2000 ms). To

correct for multiple comparisons non-parametric label permutation cluster statistics

were performed (Maris and Oostenveld, 2007). Based on the paired t-tests, neigh-

bouring significant time points (p < 0.05) were clustered and the sum of t-values

within the cluster was calculated to determine the cluster-value. Then, condition

labels (beat vs. control) were permuted (31/63/127 possible permutations, corre-

sponding to 5/6/7 contacts) and cluster-values were again calculated for the label-

shuffled data. For each permutation the maximum cluster-value was determined and

each cluster value for the original data was ranked among these maximum cluster-

values to get the final p-value. Phase distributions of significant intervals in the

rhinal phase-locking data were further analysed to compare changes during monau-

ral and binaural beat stimulation. For this purpose, trials were merged across all

patients. To ensure equal weights, the following analyses were performed 10 times,

each with a new randomly chosen subset with the same number of trials for each

patient (23 per condition). Results were averaged across all 10 calculations. To test

if phases show significant phase accumulations (in contrast to uniform distribution),

Rayleigh tests (function circ rtest) were conducted across all patients for each time

point of the selected intervals. If Rayleigh tests indicated significant phase accumu-

lations, the differences in phase distribution between binaural and monaural beat

stimulation for these time points was tested with non-parametric multi-sample tests

for equal circular medians (function circ cmtest, similar to Kruskal-Wallis tests for

linear data). All circular statistics were calculated using the free CircStat toolbox
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for MATLAB (Version 8.2, MathWorks Inc.; Berens, 2009). The distribution of

differences between mean phases of binaural vs. monaural beat trials was addi-

tionally analysed for time points with significant Rayleigh and Kruskal-Wallis test.

The phase values were averaged across colour trials (encoding) for each patient and

each selected time point. The differences between both stimulation conditions were

calculated and Rayleigh tests were conducted across all patients (6) and all time

points (58). To test for significant differences between mean phases of binaural vs.

monaural beat trials circular one-sample tests (function circ mtest) similar to one

sample t-tests were performed, testing whether the mean directions of phase differ-

ences were different from zero. Differences in mean phase values between binaural

vs. control and monaural vs. control condition were analysed in the same manner.

7.3 Results

Behavioural Responses

Probability of hits minus false alarms (correct minus incorrect old decisions) indi-

cated significant above chance recognition memory (colour: 57 % ± 25 %, t12 = 8.23,

p < 0.001, scene: 51 % ± 24 %, t12 = 7.78, p < 0.001). Reaction times at the time of

retrieval were significantly faster for remembered vs. forgotten words (remembered:

1.85 s ± 0.42 s; forgotten: 1.97 s ± 0.53 s; paired t-test t12 = −3.03, p = 0.0105).

Probability for correct minus incorrect source recognition was also significantly above

chance (colour: 39 % ± 22 %, t12 = 6.24, p < 0.001, scene: 32 % ± 25 %, t12 = 4.61,

p < 0.001). A one-way repeated measures ANOVA revealed significantly different

reaction times for the three types of source responses (F2,24 = 14.82, p < 0.001; cor-

rect: 1.76 s ± 0.42 s; incorrect: 1.90 s ± 0.42 s, unsure: 2.18 s ± 0.57 s) and showed

a linear effect (correct < incorrect < unsure, F1,12 = 17.18, p = 0.001). Pairwise

comparisons of reaction times between conditions (paired two-tailed t-tests) yielded:

correct vs. incorrect: p = 0.043; correct vs. unsure: p < 0.001; incorrect vs. unsure:

p = 0.022. Significant main effects were found for stimulation (F2,24 = 4.45; p = 0.03;

Huynh-Feldt corrected), for association (F1,12 = 6.82, p = 0.023, colour > scene),

and as expected, for memory (F1,12 = 16.17, p = 0.002, item > source) in a 3-way

repeated-measures ANOVA (memory: item/source; association: colour/scene; stim-
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Figure 7.2: Behavioral results: dependence of memory scores on beat stimulation
conditions. Bars show mean ± S.E.M. (standard error of the mean) of adjusted
scores for item (hits minus false alarms) and source (correct minus incorrect source
association) memory across colour and scene runs and across patients (n = 13).

ulation: binaural beat/monaural beat/control). None of the interactions between

any of the three factors were significant. As hypothesized, a significant linear effect

was found for the factor stimulation, revealing more adjusted hits and higher ad-

justed source memory under binaural beat vs. control vs. monaural beat stimulation

(binaural > control > monaural; F1,12 = 5.59, p = 0.036; see Fig. 7.2; adjusted

hits (mean ± S.E.M.): binaural: 0.57 ± 0.07; control: 0.54 ± 0.07; monaural:

0.51 ± 0.07; adjusted source memory: binaural: 0.41 ± 0.07; control: 0.37 ± 0.07;

monaural: 0.28 ± 0.07). Pairwise comparisons between the stimulation conditions

(paired one-tailed t-tests, effect size Hedges’ g corrected for sample size (Hedges and

Olkin, 1985) yielded for adjusted hits: binaural > monaural: p = 0.056, g = 0.27;

binaural > control: p = 0.085, g = 0.13; control > monaural: p = 0.161, g = 0.13;

and for adjusted source memory: binaural > monaural: p = 0.024, g = 0.47;

binaural > control: p = 0.162, g = 0.15; control > monaural: p = 0.015, g = 0.34.

Phase Synchronization, Phase-Locking and Power Values

IEEG phase synchronization, phase-locking and power values of different stimula-

tion conditions were compared based on non-parametric label-permutation cluster
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statistics. All time points within beat stimulation and control trials were analysed

at the beat stimulation frequency of 5 Hz. Clusters showing significant differences in

phase-locking between beat and control conditions were found within rhinal cortex.

Phase-locking values were higher for binaural beats vs. control during scene trials

between 622 ms and 762 ms (p = 0.031), for binaural beats vs. control during colour

trials between 409 ms and 611 ms (p = 0.016), and for monaural beats vs. control

during colour trials between 595 ms and 738 ms (p = 0.047; see Fig. 7.3). No

significant clusters were found for phase synchronization or power values. Addition-

ally, differences of mean phase-locking values between stimulation and control trials

averaged across the complete stimulation interval (0 s - 2 s) were analysed (paired

t-tests). Mean phase-locking values in rhinal cortex were higher for binaural beats

vs. control condition during colour trials (p = 0.025) and scene trials (p = 0.032),

and for monaural beats vs. control condition during colour trials (p = 0.043).

There were no significant differences for monaural beats vs. control during scene

trials (p = 0.45), or for any of these contrasts in the hippocampus (each p > 0.10).

Rhinal Phase Values

Time intervals with significant phase-locking effects in rhinal cortex were merged

(409 ms - 762 ms) for further analysis. The distributions of phase values for differ-

ent stimulation conditions were compared with Rayleigh tests for each time point

within the merged interval. As expected based on the phase-locking results, signif-

icant phase accumulations were found for the studied time points (colour binaural:

37.62 %, colour monaural: 49.41 %, colour control: 2.46 %, scene binaural: 15.21 %,

scene monaural: 0.03 %, scene control: 2.78 %). Next, the proportion of time points

with significant phase accumulation that overlapped for both beat stimulation con-

ditions were determined. Time points overlapped in 14.66 % of the interval during

colour trials and no time points overlapped for scene trials. Time points for colour

trials with significant Rayleigh tests in both, monaural and binaural beat condi-

tion, were tested for significant phase differences between both conditions based on

Kruskal-Wallis tests. Significant differences in average phase values for monaural

vs. binaural stimulation were found in 60.72 % of the time points with significant

Rayleigh tests (see Fig. 7.4 A for an exemplary time point and Fig. 7.4 B for all time

points with significant Rayleigh and Kruskal-Wallis tests). Finally, the directions of
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Figure 7.3: Phase-locking results for 5 Hz beat stimulation versus con-
trol condition. Mean phase-locking differences in the rhinal cortex are shown for
binaural beats (BB) vs. control (CTRL) and monaural beats (MB) vs. control
stimulation in colour and source runs averaged across patients. Shaded areas in-
dicate the standard error of the mean. Grey areas show significant time intervals
in a label-shuffled cluster statistic for stimulation versus control in each condition
(p < 0.05).
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rhinal phase data for binaural/monaural beats vs. control condition were compared.

As can be seen in Fig. 7.4 A, B phase values may be significantly shifted towards

opposite directions. Opposite phases can be optimal vs. detrimental for mem-

ory formation. For the time points of colour trials with significant Rayleigh and

Kruskal-Wallis tests, mean phase differences were calculated for binaural vs. con-

trol, monaural vs. control and binaural vs. monaural. The differences were tested

for significant phase directions with Rayleigh tests. All tested differences were sig-

nificant (each p < 0.02) and circular one-sample tests revealed significant deviations

from zero for the phase differences between binaural vs. monaural (p < 0.001, mean

phase difference 2.35), and binaural vs. control (p < 0.001, mean phase difference

1.84), as well as a trend for monaural vs. control condition (p = 0.085, mean phase

difference -0.67, see Fig. 7.4 C). These findings indicate that binaural beat stimu-

lation shifts rhinal phases towards opposite directions compared to monaural beat

stimulation.

7.4 Summary

This study investigated the influence of monaural and binaural beat stimulation

on long-term memory. It found that 5 Hz binaural stimulation enhanced and 5 Hz

monaural stimulation decreased memory performance in an associative learning task.

The observed effect of auditory beat stimulation was similar on memory encoding

and retrieval as well as on item and source memory. Caused by the small sample size

the statistical power may not be sufficient to detect all interactions. In the rhinal

cortex phase-locking of stimulus-related theta oscillations were enhanced for binaural

and monaural stimulation compared to the control condition. These increases in

phase-locking are likely due to entrainment of rhinal EEG oscillations with the

beat stimuli. However, almost opposite phase values resulting from reverse phase

shifts for binaural and monaural stimulation were found. Possibly, the different

phase values are due to differences in sensory processing. For instance, steady-state

responses to monaural beats may be triggered by signal peaks, whereas responses to

binaural beats may be triggered when the intracranial sound image jumps from one

ear to the other. The data suggests that rhinal phases are shifted towards optimal

vs. detrimental values for memory processes by binaural vs. monaural stimulation
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Figure 7.4: Phase distributions for the different beat stimulation condi-
tions. (A) Phase distributions from a time point with significant Rayleigh and
Kruskal-Wallis tests (663 ms). Red arrows give the mean resultant vector with a
scaled length (the inner circle indicates the vector length corresponding to a p-value
of 0.05). (B) Mean phase values of all time points with significant Rayleigh and
Kruskal-Wallis tests for binaural (BB) and monaural (MB) beat as well as for control
(CTRL) condition (encoding) are shown. Shaded areas indicate circular variance.
The exemplary data point marked shows the time point chosen for the plot of phase
distributions in (A). (C) Phase differences between binaural and monaural beats
for significant time points (Rayleigh and Kruskal-Wallis tests) during encoding.
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which is in line with the reported influence of phase values on neural communication

(e.g. Womelsdorf et al., 2007). Furthermore, the result is similar to previous findings

indicating that rhinal engagement predicts both item and associative memory during

encoding (Staresina and Davachi, 2008) and retrieval (Staresina et al., 2012).

Rhinal phases most likely affect memory processes by influencing neural mem-

brane potentials and firing threshold through spike-field coupling (e.g. Elbert and

Rockstroh, 1987). That neural activity can be modulated by field potential oscil-

lations have been showed in vitro and in simulations (e.g. Anastassiou et al., 2010;

Fröhlich and McCormick, 2010). Rhinal memory operations such as semantic pro-

cessing and novelty detection may be determined through an optimal vs. detrimental

time window for neural activity, reflected by rhinal phase. In line with these results,

it has been demonstrated that phases of human local field potentials in medial tem-

poral regions code correct vs. incorrect matches in a card-matching task (Lopour

et al., 2013). Furthermore, it has been shown that successful verbal memory encod-

ing can be predicted based on rhinal and hippocampal phase values (Höhne et al.,

2016; Derner et al., 2018b). Several studies reported similar results for scalp EEG

for auditory and visual perception of stimuli close to the detection threshold (e.g.

Busch et al., 2009; Mathewson et al., 2009; Neuling et al., 2012).

In a study based on intracranial EEG data from 31 epilepsy patients, stimulus-

related rhinal phase-locking measures were found superior predictors of long-term

memory compared to other mediotemporal EEG measures, i.e. power and phase-

synchronization (Fell et al., 2008). This data is in line with the findings that

stimulus-related phase-locking of EEG activity within the rhinal cortex influences

long-term memory. In the studies described in the previous chapters it has been

shown that prediction of successful memory encoding is possible with SVM based

on rhinal and hippocampal single-trial phase values, in particular, based on single-

channel phase values from rhinal cortex (Höhne et al., 2016; Derner et al., 2018b).

It has to be clarified that the predictive optimal phase value at a certain time point

lies within a larger range of different phase values that are predictive for remem-

bering (e.g. 1/2π at 400 ms and 3/2π at 500 ms and other values at time points in

between). This is reflected by memory-related phase-locking effects with durations

of several hundreds of milliseconds (Fell et al., 2008), that have similarly been found

with regard to a card matching task (Lopour et al., 2013). In conclusion, increased
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rhinal phase-locking indicated by phase accumulation around a certain optimal vs.

detrimental mean value can affect memory formation.

In the presented data and a previous study (Fell et al., 2008), phase-locking of

theta oscillations indicating optimal phases were found in extended periods of the

temporal order of a theta cycle and above. The fact that optimal phases can be

found at a wider section across the theta cycle is supported by the idea of memory

coding through phases across a full theta cycle. For instance, it has been shown

in rodents that information is “chunked” by location selective neurons firing at

specific theta phases distributed across the entire theta cycle (e.g. Colgin, 2013). The

general coding mechanism underlying memory formation, in particular associative

memory, may be based on this so-called theta-phase precession that is suggested

to be generated in the entorhinal cortex (Yamaguchi et al., 2007). Thus, memory

performance may be modulated by binaural/monaural beat stimulation through

phase shifts of the rhinal theta cycle to different phases during arrival of visual

information at the entorhinal-hippocampal system. This leaves the question if a

shifted stimulation signal would reverse the detrimental effect of monaural beat

stimulation (i.e. a shift by radian π which is a half-cycle/180 degrees). This is to

be studied in the future.

Although stronger percepts caused by monaural beats compared to binaural

beats were found (e.g. Grose et al., 2012), this does not necessarily mean that elec-

trophysiological effects are stronger, but otherwise similar for monaural vs. binaural

beats. Monaural beats are amplitude modulated tones presented directly to one or

both ears and then decoded via the auditory cortex. The beat perception of bin-

aural beats (i.e. the pure sine signals presented separately to each ear) however,

originates from phase-sensitive brain stem neurons (Chaieb and Fell, 2017; Wernick

and Starr, 1968). Becher et al. (2015) reported that mediotemporal power decreased

for 5 Hz monaural beats with a highly significant effect but there was no significant

decrease for 5 Hz binaural beats. On the contrary, a highly significant increase of

temporo-lateral phase synchronization was found for 5 Hz binaural beats, but there

was no increase for 5 Hz monaural beats. These results support the qualitatively

different EEG effects of binaural beats compared to monaural beats (i.e. different

effects in different brain regions). The observed linear behavioural effect for memory

performance (binaural > control > monaural) indicates that it is not due to cap-
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turing of attention by the beat stimulation (compared to control stimulation), which

may divert attention from the processing of memory-related stimuli. In this case,

binaural and monaural beat would both lead to decreased memory performance,

with a stronger effect for monaural beats based on the stronger percept.

Different studies on binaural stimulation reported opposite effects. In line with

the presented study, Ortiz et al. (2008) found increased verbal memory performance

after 5 Hz binaural stimulation during the encoding phase of the memory paradigm.

An opposite effect was reported by Garcia-Argibay et al. (2019a) who detected a

decreased verbal memory effect related to 5 Hz binaural beats as well as by Wahbeh

et al. (2007) who found a detrimental effect of 7 Hz binaural beat stimulation on

immediate verbal memory recall, as measured by the Rey Auditory Verbal Learning

Test. In these studies, the binaural beat stimulation was applied before and not

during the memory task, which is a major difference to the study of Ortiz et al.

(2008) and the presented study. Hence, the timing of beat stimulation may be

crucial for the direction of memory effects, which is in agreement with the results of

a recent meta-analysis (Garcia-Argibay et al., 2019b). In conclusion, the presented

study suggests opposite effects of binaural and monaural beats on long-term memory

based on reverse rhinal phase adjustments, probably dependent on instantaneous

beat stimulation.

It has to be mentioned that it is difficult to prove that iEEG results obtained

from epilepsy patients generalize to healthy subjects. A direct comparison between

epilepsy patients and healthy control is not feasible since iEEG data is not recorded

in healthy subjects. However, a study supporting the validity of the presented

approach found that iEEG data obtained from the non-pathological MTL in pa-

tients with unilateral seizure origins during auditory and visual oddball experiment

are qualitatively similar to the detected effects in iEEG data recorded in healthy

monkeys (Paller et al., 1992). An influence of epilepsy pathophysiology cannot

be completely excluded since there are studies reporting that the performance of

healthy controls was superior to patients with temporal-lobe epilepsy in a sound-

lateralization task (Tezer et al., 2012). Hence, one cannot be absolutely sure that

binaural beat stimulation is processed identically in patients with temporal lobe

epilepsy and in healthy subjects.

In this chapter, the results of Chapters 5 and 6 are turned into assumptions
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for further research. By applying the presented SVM algorithm, it has been shown

that successful memory formation can be predicted based on absolute rhinal and hip-

pocampal phase values. Hence, mediotemporal EEG phases are crucial for long-term

memory processes. The informative value of these results is confirmed in the present

analysis. Here a non-invasive approach (i.e. auditory beat stimulation) to modu-

late EEG characteristics was applied. We can see that 5 Hz binaural and monaural

beat stimulation both increase, rather than decrease phase-locking within rhinal cor-

tex. And by changing this mechanism which underlies memory processes, long-term

memory performance is altered. The reported effects of auditory beat stimulation

on memory performance are in line with the results of the previous chapters that

show the importance of oscillatory phases for memory formation. This means that

the manipulation of phases with regard to optimal vs. detrimental time windows

for neural activity offers a possible way for memory enhancement applications. In

addition, we can see that key information derived from neurocognitive data can be

exposed by applying the SVM algorithm detailed in the previous chapters.
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8 | Conclusion

When applying pattern recognition and prediction algorithms to neurocognitive

data, particular challenges have to be considered in order to develop sufficient meth-

ods for the understanding how the human brain is working. This thesis presents a

machine learning approach that is able to handle these complex datasets and cope

with their specific characteristics (i.e. small sample sizes, complex data structures,

high-dimensionality). Regression models, which are a classical method, do not offer

the necessary flexibility for complex data structures of neurocognitive data. While

deep learning is a trending algorithm, it needs huge datasets for automatic pat-

tern recognition, and in addition, the underlying mechanisms are hard to interpret.

SVM is another promising prediction algorithm. It has the ability to use complex,

high-dimensional training data and generalize its results to unseen samples (see e.g.

Press et al., 2007). Additionally, it provides the possibility to use small datasets.

Therefore, it was chosen for further development in this thesis for intended use with

neurocognitive data. In particular, the typically small and unbalanced sample sizes

are considered through downsampling of the observations of the larger group. By

repeating the procedure several times (i.e. cross-validation) the number of trials

used to assess performance is increased and the bias from random sampling is re-

duced. Thus, the obtained accuracy gains reliability and generalization to new data

is feasible. Because of interindividual differences, it would be hard to find general

mechanisms based on features across all subjects. Hence, features are chosen in-

dividually for each patient. The high-dimensionality of the data in the time and

frequency domains (i.e. high sampling rate and large number of biologically rele-

vant frequencies) offers a huge number of possible features where typically only few

training trials are available. In combination with the limited electrode coverage,

features have to be carefully selected. In the described algorithm, computing time
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and the risk of overfitting are reduced via averaging of time points to cut the number

of time windows and via feature preselection, which is realized by validation sets

and circular statistics.

The aim of the presented approach was to provide as much biological information

as possible in neurocognitive datasets. The results obtained by training the SVM

algorithm with (i)EEG data provide valuable insight into basic mechanisms of brain

functions, which was the intention of the designed method. Application of this

method revealed that it is possible to successfully predict memory formation based

on few phase values in significantly more patients than expected by chance and

that absolute phase values are more predictive than phase shifts and power values

(see Chapters 5 and 6). The informative value of these results could be confirmed

when using the outcomes as research background for further studies on memory

enhancement methods. For instance, it could be demonstrated that auditory beat

stimulation affects memory performance (binaural > control > monaural) and

that it is associated with increased phase locking, particularly with phase shifts of

opposite directions for binaural vs. monaural beats (see Chapter 7). Hence the

presented algorithm is able to expose key information derived from neurocognitive

data and offers new insights into the functionality of the brain.

When applying a prediction algorithm, it is important to make sure that training

(and validation) and test datasets are clearly separated for model building to achieve

accurate predictions (i.e. data that is used to validate and test the model must not be

included in the data to train the SVM). Only in this way is the prediction accuracy

reliable, and the model is able to generalize to new data. In the presented SVM

algorithm, this is ensured via partitioning of the data into training, validation and

test datasets. In particular, the SVM is fitted with the preselected features of the

training dataset and prediction accuracies are calculated based on the validation

dataset. Hence, the evaluation of the final model is executed via the test dataset

that was consistently held out before. In clinical research there are many studies

that use the complete data for the fitting of the model and internal validation like

bootstrapping (the same considerations apply for regression models; e.g. Molfese

et al., 2001; Whalen et al., 2008; Nitschke et al., 2009; Aharoni et al., 2013). As a

consequence, these models are not able to reliably estimate prediction results and

have to be judged with caution. In the worst cases, the accuracies that can be
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achieved with new (previously unseen) data are not better than by chance and the

fitted model is useless.

SVMs typically surpass classical statistical methods like regression models in

performance and generalizability. Here, a traditional GLM model was applied to

the same dataset as the presented SVM algorithm (see Chapter 4.4.4). The GLM

couldn’t achieve successful prediction with above chance results for phase shifts

and prediction accuracies were clearly outperformed by the SVM for both analysed

features (i.e. absolute phases (SVM 66.6 % vs. GLM 54.9 %) and phase shifts

(SVM 64.9 % vs. GLM 48.1 %)). This might be most likely caused by the stiffness

of parameters that have to be chosen prior to the fitting of the model and that do

not enable the necessary flexibility for complex datasets (i.e. iEEG data). Still,

SVM has its limitations. With regard to medical applications, a SVM might not

be the method of choice. Even if it outperforms traditional analysis methods, the

objective of these kinds of applications in medical fields have to be considered. With

a focus on diagnostic outcome, a particularly high prediction performance might be

less important than having a functional and easy model. Furthermore, the cost-

benefit ratio is an important factor. It has to be asked whether demands like longer

computational time are worth the extra effort (e.g. training a SVM vs. fitting a

regression model). Especially for models built on individuals, the training for each

patient separately can be very time-consuming compared to simply applying an

already fitted regression model (i.e. evaluating measured values by solving a specific

function of an existing model).

Contrary to the practice of using simpler models, deep learning is a trending topic

in many research fields. This also includes medical applications such as mind reading

approaches (e.g. Spampinato et al., 2017; Wen et al., 2018; Shen et al., 2019a,b).

When considering the analysis of basic brain functions, these models are hard to

interpret. In turn, a reduced number of features as used in the presented SVM

algorithm (in contrast to previous approaches; see 2.3) makes it easier to interpret

the importance of single features and a lower prediction performance is acceptable in

favour of a better understanding of the underlying mechanisms. Furthermore, deep

learning approaches typically require large datasets that are often not available when

working with patient data. Thus, the usually small (iEEG) datasets do not allow for

the use of these models. Collecting data across different studies to get bigger samples
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will probably not become a realistic option in the future. This is not only because

of the small number of potential patients forming coherent groups, but because of

ethical issues and data protection regulations (Boyd and Crawford, 2012) that may

lead to several concerns when it comes to data sharing and collapsing.

Concerning future work, using the presented SVM algorithm for online systems

is an interesting line of research. One can think about using an online system for

memory enhancement applications or in further research on basic brain functions.

When thinking about possible online systems with practical use, a learning assis-

tant would be a conceivable example. In particular, using the example of learning

of vocabulary, this would work as the following: The system would provide feedback

after each word if it is successfully encoded or not. Based on the phase information

(see Chapters 5 and 6), successful memory would be predicted. In case of ineffec-

tive memory formation, the corresponding word would be shown again later in the

learning run. This way, learning can be optimized since successfully learned words

are only shown once, while forgotten words will be shown repeatedly until finally

learned. In other words, unnecessary repetitions are avoided while at the same time

learning of each single world is assured. Naturally, recording methods have to be

non-invasive. The most time consuming part of the presented method comprises

individual feature selection. A huge number of different time-frequency points have

to be scanned for possible predictors for each subject separately. Although feature

can be extracted in parallel, due to interindividual differences, it is not possible to

train the model for some patients and use it for other patients. A convenient option

to train the SVM for an online application might be to use some pilot trials. Based

on these individual trials a suitable time-frequency point for a specific subject can

be identified prior to the actual task. However, it has to be taken into consideration

that the computational time of the online system is also dependent from the selected

frequency, i.e. for a low frequency, the time window for computation needs to be

accordingly long (e.g. 0.5 Hz frequency needs 2 s long signals).

In conclusion, although deep learning is a trending machine learning algorithm

and classical regression models might be preferred in medical applications, the pre-

sented SVM algorithm is suitable for intended use with neurocognitive datasets and

can help to gain valuable insight into basic brain mechanisms. Additionally, it might

offer an option for the development of clinical online applications.
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Heidelberg.

Fries, P. (2005). A mechanism for cognitive dynamics: neuronal communi-

cation through neuronal coherence. Trends Cogn. Sci., 9:474–480. doi:

10.1016/j.tics.2005.08.011.
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